python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch.nn as nn from copy import deepcopy import math import torch.nn.functional as F try: from itertools import izip except ImportError: # python3.x izip = zip __all__ = ['resnext50_32x4d', 'resnext101_32x4d'] class ResNeXtBottleneck(nn.Module): expansion = 4 """ RexNeXt bottleneck type C (https://github.com/facebookresearch/ResNeXt/blob/master/models/resnext.lua) """ def __init__(self, inplanes, planes, cardinality, base_width=4, stride=1, downsample=None): super(ResNeXtBottleneck, self).__init__() D = int(math.floor(planes * (base_width / 64.0))) C = cardinality self.conv_reduce = nn.Conv2d(inplanes, D * C, kernel_size=1, stride=1, padding=0, bias=False) self.bn_reduce = nn.BatchNorm2d(D * C) self.conv_conv = nn.Conv2d(D * C, D * C, kernel_size=3, stride=stride, padding=1, groups=cardinality, bias=False) self.bn = nn.BatchNorm2d(D * C) self.conv_expand = nn.Conv2d(D * C, planes * 4, kernel_size=1, stride=1, padding=0, bias=False) self.bn_expand = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = None if downsample is not None: self.downsample = downsample def forward(self, x): residual = x bottleneck = self.conv_reduce(x) bottleneck = self.relu(self.bn_reduce(bottleneck)) bottleneck = self.conv_conv(bottleneck) bottleneck = self.relu(self.bn(bottleneck)) bottleneck = self.conv_expand(bottleneck) bottleneck = self.bn_expand(bottleneck) if self.downsample is not None: residual = self.downsample(x) return self.relu(residual + bottleneck) class ResNeXt_C5(nn.Module): def __init__(self, block, layers, cardinality=32, base_width=4): self.inplanes = 64 super(ResNeXt_C5, self).__init__() self.cardinality = cardinality self.base_width = base_width self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AvgPool2d(7) self.classifier = nn.Linear(2048, 10000, bias=True) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride=stride, downsample=downsample, cardinality=self.cardinality, base_width=self.base_width)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, cardinality=self.cardinality, base_width=self.base_width)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x def load_pretrained(self, base_network): modules_new = [x for x in self.modules() if (isinstance(x, nn.Conv2d) or isinstance(x, nn.BatchNorm2d) or isinstance(x, nn.Linear))] modules_ori = [x for x in base_network.modules() if (isinstance(x, nn.Conv2d) or isinstance(x, nn.BatchNorm2d) or isinstance(x, nn.Linear))] assert(len(modules_ori) == len(modules_new)) for module, module_ori in izip(modules_new, modules_ori): if isinstance(module, nn.Conv2d) and isinstance(module_ori, nn.Conv2d): if module.weight.data.shape == module_ori.weight.data.shape: module.weight.data = deepcopy(module_ori.weight.data) if module_ori.bias is not None: module.bias.data = deepcopy(module_ori.bias.data) else: print('This should not happen. Skipping Conv layer with size: {} and target size: {}' .format(module.weight.data.shape, module_ori.weight.data.shape)) elif isinstance(module, nn.BatchNorm2d) and isinstance(module_ori, nn.BatchNorm2d): if module.weight.data.shape == module_ori.weight.data.shape: # Copy running mean and variance of batchnorm layers! module.running_mean.data = deepcopy(module_ori.running_mean.data) module.running_var.data = deepcopy(module_ori.running_var.data) module.weight.data = deepcopy(module_ori.weight.data) module.bias.data = deepcopy(module_ori.bias.data) else: print('Skipping Batchnorm layer with size: {} and target size: {}' .format(module.weight.data.shape, module_ori.weight.data.shape)) elif isinstance(module, nn.Linear) and isinstance(module_ori, nn.Linear): module.weight.data = deepcopy(module_ori.weight.data) module.bias.data = deepcopy(module_ori.bias.data) def resnext50_32x4d(pretrained=False): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNeXt_C5(ResNeXtBottleneck, [3, 4, 6, 3], cardinality=32, base_width=4) if pretrained: from fblib.networks.torch2pytorch import resnext_50_32x4d model_full = resnext_50_32x4d.resnext_50_32x4d() model.load_pretrained(model_full) return model def resnext101_32x4d(pretrained=False): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNeXt_C5(ResNeXtBottleneck, [3, 4, 23, 3], cardinality=32, base_width=4) if pretrained: from fblib.networks.torch2pytorch import resnext_101_32x4d model_full = resnext_101_32x4d.resnext_101_32x4d() model.load_pretrained(model_full) return model def test_reproduce(): import pickle classes = pickle.load(urllib.request.urlopen( 'https://gist.githubusercontent.com/yrevar/6135f1bd8dcf2e0cc683/raw/d133d61a09d7e5a3b36b8c111a8dd5c4b5d560ee' '/imagenet1000_clsid_to_human.pkl')) model = resnext101_32x4d(pretrained=True) mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] img = cv2.imread(os.path.join(PROJECT_ROOT_DIR, 'util/img/cat.jpg')).astype(np.float32) / 255. img = cv2.resize(img, dsize=(224, 224)) img = (img - mean) / std img = img[:, :, :, np.newaxis] img = img.transpose((3, 2, 0, 1)) img = torch.from_numpy(img.astype(np.float32)) model = model.eval() with torch.no_grad(): output = model(img) output = torch.nn.functional.softmax(output, dim=1) print('Class id: {}, class name: {}, probability: {:.2f}''' ''.format(output.argmax().item(), classes[output.argmax().item()], output.max().item())) def test_gflops(): from fblib.util.model_resources.flops import compute_gflops from torchvision.models import resnet x50 = resnext101_32x4d(pretrained=False) print('GFLOPS for ResNeXt: {}'.format(compute_gflops(x50))) res50 = resnet.resnet101(pretrained=False) print('GFLOPS for ResNet: {}'.format(compute_gflops(res50))) if __name__ == '__main__': import os import torch import cv2 import numpy as np import urllib.request from fblib import PROJECT_ROOT_DIR test_gflops() test_reproduce()
astmt-master
fblib/networks/classification/resnext.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import math from collections import OrderedDict import torch import torch.nn as nn import torch.utils.model_zoo as model_zoo from fblib.util.mypath import Path try: from torch.hub import load_state_dict_from_url except ImportError: from torch.utils.model_zoo import load_url as load_state_dict_from_url __all__ = ['ResNet', 'resnet18', 'resnet26', 'resnet34', 'resnet50', 'resnet101', 'resnet152'] model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet26': 'https://data.vision.ee.ethz.ch/kmaninis/share/MTL//models/resnet26-c36cf79a7.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } def conv3x3(in_planes, out_planes, stride=1): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def norm2d(num_channels, group_norm=False, num_groups=32, num_channels_per_group=16): if group_norm: if num_groups is not None: num_channels_per_group = num_channels / num_groups else: num_groups = num_channels / num_channels_per_group print("Using groupnorm with num_channels: {}, num_groups: {}. and num_channels_per_group: {}".format( num_channels, num_groups, num_channels_per_group)) return nn.GroupNorm(num_channels=num_channels, num_groups=int(num_groups), affine=True) else: return nn.BatchNorm2d(num_channels) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, group_norm=False): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm2d(planes, group_norm) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm2d(planes, group_norm) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, group_norm=False): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = norm2d(planes, group_norm) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = norm2d(planes, group_norm) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = norm2d(planes * 4, group_norm) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000, group_norm=False): self.group_norm = group_norm self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm2d(64, self.group_norm) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AvgPool2d(7) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.GroupNorm): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), norm2d(planes * block.expansion, group_norm=self.group_norm), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, group_norm=self.group_norm)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, group_norm=self.group_norm)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x class ResNetFeatures(ResNet): def __init__(self, block, layers, num_classes=1000, group_norm=False): super(ResNetFeatures, self).__init__(block, layers, num_classes, group_norm) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) features = x x = self.fc(x) return x, features def resnet18(pretrained=False, features=False, **kwargs): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ if not features: model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) else: model = ResNetFeatures(BasicBlock, [2, 2, 2, 2], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet18'])) return model def resnet26(pretrained=False, features=False, remote=True, **kwargs): """Constructs a ResNet-26 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ if not features: model = ResNet(Bottleneck, [2, 2, 2, 2], **kwargs) else: model = ResNetFeatures(Bottleneck, [2, 2, 2, 2], **kwargs) if pretrained: print('Loading resnet26 Imagenet') # Load checkpoint if remote: checkpoint = load_state_dict_from_url(model_urls['resnet26'], map_location='cpu', progress=True) else: checkpoint = torch.load( os.path.join(Path.models_dir(), 'resnet26.pth'), map_location=lambda storage, loc: storage) checkpoint = checkpoint['model_state'] # Handle DataParallel if 'module.' in list(checkpoint.keys())[0]: new_state_dict = OrderedDict() for k, v in checkpoint.items(): name = k.replace('module.', '') # remove `module.` new_state_dict[name] = v else: new_state_dict = checkpoint # Load pre-trained IN model model.load_state_dict(new_state_dict) return model def resnet34(pretrained=False, features=False, **kwargs): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ if not features: model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) else: model = ResNetFeatures(BasicBlock, [3, 4, 6, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet34'])) return model def resnet50(pretrained=False, features=False, **kwargs): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ if not features: model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) else: model = ResNetFeatures(Bottleneck, [3, 4, 6, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) return model def resnet101(pretrained=False, features=False, **kwargs): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ if not features: model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) else: model = ResNetFeatures(Bottleneck, [3, 4, 23, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet101'])) return model def resnet152(pretrained=False, features=False, **kwargs): """Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ if not features: model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) else: model = ResNetFeatures(Bottleneck, [3, 8, 36, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet152'])) return model def test_reproduce(): import os import torch import pickle import cv2 import numpy as np import urllib.request from fblib import PROJECT_ROOT_DIR classes = pickle.load(urllib.request.urlopen( 'https://gist.githubusercontent.com/yrevar/6135f1bd8dcf2e0cc683/raw/d133d61a09d7e5a3b36b8c111a8dd5c4b5d560ee' '/imagenet1000_clsid_to_human.pkl')) model = resnet26(pretrained=True, features=False) mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] img = cv2.imread(os.path.join(PROJECT_ROOT_DIR, 'util/img/dog.jpg')).astype(np.float32) / 255. img = cv2.resize(img, dsize=(224, 224)) img = (img - mean) / std img = img[:, :, :, np.newaxis] img = img.transpose((3, 2, 0, 1)) img = torch.from_numpy(img.astype(np.float32)) model = model.eval() with torch.no_grad(): output = model(img) output = torch.nn.functional.softmax(output, dim=1) print('Class id: {}, class name: {}, probability: {:.2f}''' ''.format(output.argmax().item(), classes[output.argmax().item()], output.max().item())) if __name__ == '__main__': test_reproduce()
astmt-master
fblib/networks/classification/resnet.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import math import torch import torch.nn as nn from collections import OrderedDict from fblib.util.mypath import Path try: from torch.hub import load_state_dict_from_url except ImportError: from torch.utils.model_zoo import load_url as load_state_dict_from_url model_urls = { 'se_resnet18': 'https://data.vision.ee.ethz.ch/kmaninis/share/MTL//models/se_resnet18-23d68cfd8.pth', 'se_resnet26': 'https://data.vision.ee.ethz.ch/kmaninis/share/MTL//models/se_resnet26-5eb336d20.pth', 'se_resnet50': 'https://data.vision.ee.ethz.ch/kmaninis/share/MTL//models/se_resnet50-ad8889f9f.pth', 'se_resnet101': 'https://data.vision.ee.ethz.ch/kmaninis/share/MTL//models/se_resnet101-8dbb64f8e.pth', } def conv3x3(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class SELayer(nn.Module): def __init__(self, channel, reduction=16): super(SELayer, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, channel // reduction), nn.ReLU(inplace=True), nn.Linear(channel // reduction, channel), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y class CBAMLayer(nn.Module): def __init__(self, channel, reduction=16): super(CBAMLayer, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, channel // reduction), nn.ReLU(inplace=True), nn.Linear(channel // reduction, channel), ) self.assemble = nn.Conv2d(2, 1, kernel_size=7, stride=1, padding=3) def forward(self, x): x = self._forward_se(x) x = self._forward_spatial(x) return x def _forward_se(self, x): # Channel attention module (SE with max-pool and average-pool) b, c, _, _ = x.size() x_avg = self.fc(self.avg_pool(x).view(b, c)).view(b, c, 1, 1) x_max = self.fc(self.max_pool(x).view(b, c)).view(b, c, 1, 1) y = torch.sigmoid(x_avg + x_max) return x * y def _forward_spatial(self, x): # Spatial attention module x_avg = torch.mean(x, 1, True) x_max, _ = torch.max(x, 1, True) y = torch.cat((x_avg, x_max), 1) y = torch.sigmoid(self.assemble(y)) return x * y class SEBasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=16, attention='se'): super(SEBasicBlock, self).__init__() if attention == 'se': attention_layer = SELayer elif attention == 'cbam': attention_layer = CBAMLayer else: raise NotImplementedError self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes, 1) self.bn2 = nn.BatchNorm2d(planes) self.se = attention_layer(planes, reduction) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.se(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class SEBottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=16, attention='se'): super(SEBottleneck, self).__init__() if attention == 'se': attention_layer = SELayer elif attention == 'cbam': attention_layer = CBAMLayer else: raise NotImplementedError self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.se = attention_layer(planes * 4, reduction) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) out = self.se(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000, attention='se'): self.inplanes = 64 super(ResNet, self).__init__() self.attention = attention self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AvgPool2d(7) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, attention=self.attention)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, attention=self.attention)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x class ResNetFeatures(ResNet): def __init__(self, block, layers, num_classes=1000, attention='se'): print('Initializing ResNet with Feature output') super(ResNetFeatures, self).__init__(block, layers, num_classes, attention) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) features = x x = self.fc(x) return x, features def get_state_dict_se(model_name, remote=True): # Load checkpoint if remote: checkpoint = load_state_dict_from_url(model_urls[model_name], map_location='cpu', progress=True) else: checkpoint = torch.load( os.path.join(Path.models_dir(), model_name + '.pth'), map_location=lambda storage, loc: storage) checkpoint = checkpoint['model_state'] # Handle DataParallel if 'module.' in list(checkpoint.keys())[0]: new_state_dict = OrderedDict() for k, v in checkpoint.items(): name = k.replace('module.', '') # remove `module.` new_state_dict[name] = v else: new_state_dict = checkpoint return new_state_dict def se_resnet18(num_classes=1000, pretrained=False, features=False, attention='se'): """Constructs a ResNet-18 model. Args: num_classes: number of output classes pretrained (bool): If True, returns a model pre-trained on ImageNet attention: 'se' or 'cbam' """ if not features: model = ResNet(SEBasicBlock, [2, 2, 2, 2], num_classes=num_classes, attention=attention) else: model = ResNetFeatures(SEBasicBlock, [2, 2, 2, 2], num_classes=num_classes, attention=attention) model.avgpool = nn.AdaptiveAvgPool2d(1) if pretrained: print('Loading se_resnet18 Imagenet') new_state_dict = get_state_dict_se(attention + '_resnet18') # Load pre-trained IN model model.load_state_dict(new_state_dict) return model def se_resnet26(num_classes=1000, pretrained=False, features=False, attention='se'): """Constructs a ResNet-26 model. Args: num_classes: number of output classes pretrained (bool): If True, returns a model pre-trained on ImageNet attention: 'se' or 'cbam' """ if not features: model = ResNet(SEBottleneck, [2, 2, 2, 2], num_classes=num_classes, attention=attention) else: model = ResNetFeatures(SEBottleneck, [2, 2, 2, 2], num_classes=num_classes, attention=attention) model.avgpool = nn.AdaptiveAvgPool2d(1) if pretrained: print('Loading se_resnet26 Imagenet') new_state_dict = get_state_dict_se(attention + '_resnet26') # Load pre-trained IN model model.load_state_dict(new_state_dict) return model def se_resnet50(num_classes=1000, pretrained=False, features=False, attention='se'): """Constructs a ResNet-50 model. Args: num_classes: number of output classes pretrained (bool): If True, returns a model pre-trained on ImageNet attention: 'se' or 'cbam' """ if not features: model = ResNet(SEBottleneck, [3, 4, 6, 3], num_classes=num_classes, attention=attention) else: model = ResNetFeatures(SEBottleneck, [3, 4, 6, 3], num_classes=num_classes, attention=attention) model.avgpool = nn.AdaptiveAvgPool2d(1) if pretrained: print('Loading se_resnet50 Imagenet') new_state_dict = get_state_dict_se(attention + '_resnet50') # Load pre-trained IN model model.load_state_dict(new_state_dict) return model def se_resnet101(num_classes=1000, pretrained=False, features=False, attention='se'): """Constructs a ResNet-101 model. Args: num_classes: number of output classes pretrained (bool): If True, returns a model pre-trained on ImageNet attention: 'se' or 'cbam' """ if not features: model = ResNet(SEBottleneck, [3, 4, 23, 3], num_classes=num_classes, attention=attention) else: model = ResNetFeatures(SEBottleneck, [3, 4, 23, 3], num_classes=num_classes, attention=attention) model.avgpool = nn.AdaptiveAvgPool2d(1) if pretrained: print('Loading se_resnet101 Imagenet') new_state_dict = get_state_dict_se(attention + '_resnet101') # Load pre-trained IN model model.load_state_dict(new_state_dict) return model def test_visualize_graph(): import fblib.util.visualize as viz net = se_resnet26(pretrained=False, attention='se') net.eval() x = torch.randn(2, 3, 224, 224) x.requires_grad_() y = net(x) # pdf visualizer g = viz.make_dot(y, net.state_dict()) g.view(directory='./') def test_reproduce(): import os import torch import pickle import cv2 import numpy as np import urllib.request from fblib import PROJECT_ROOT_DIR classes = pickle.load(urllib.request.urlopen( 'https://gist.githubusercontent.com/yrevar/6135f1bd8dcf2e0cc683/raw/d133d61a09d7e5a3b36b8c111a8dd5c4b5d560ee' '/imagenet1000_clsid_to_human.pkl')) model = se_resnet26(pretrained=True, attention='se') mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] img = cv2.imread(os.path.join(PROJECT_ROOT_DIR, 'util/img/cat.jpg')).astype(np.float32) / 255. img = cv2.resize(img, dsize=(224, 224)) img = (img - mean) / std img = img[:, :, :, np.newaxis] img = img.transpose((3, 2, 0, 1)) img = torch.from_numpy(img.astype(np.float32)) model = model.eval() with torch.no_grad(): output = model(img) output = torch.nn.functional.softmax(output, dim=1) print('Class id: {}, class name: {}, probability: {:.2f}''' ''.format(output.argmax().item(), classes[output.argmax().item()], output.max().item())) if __name__ == '__main__': test_visualize_graph()
astmt-master
fblib/networks/classification/se_resnet.py
astmt-master
fblib/networks/torch2pytorch/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import torch import torch.nn as nn from functools import reduce from fblib.util.mypath import Path class LambdaBase(nn.Sequential): def __init__(self, fn, *args): super(LambdaBase, self).__init__(*args) self.lambda_func = fn def forward_prepare(self, input): output = [] for module in self._modules.values(): output.append(module(input)) return output if output else input class Lambda(LambdaBase): def forward(self, input): return self.lambda_func(self.forward_prepare(input)) class LambdaMap(LambdaBase): def forward(self, input): return list(map(self.lambda_func, self.forward_prepare(input))) class LambdaReduce(LambdaBase): def forward(self, input): return reduce(self.lambda_func, self.forward_prepare(input)) resnext_101_32x4d_model = nn.Sequential( # Sequential, nn.Conv2d(3, 64, (7, 7), (2, 2), (3, 3), 1, 1, bias=False), nn.BatchNorm2d(64), nn.ReLU(), nn.MaxPool2d((3, 3), (2, 2), (1, 1)), nn.Sequential( # Sequential, nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(64, 128, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(128), nn.ReLU(), nn.Conv2d(128, 128, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(128), nn.ReLU(), ), nn.Conv2d(128, 256, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(256), ), nn.Sequential( # Sequential, nn.Conv2d(64, 256, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(256), ), ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(256, 128, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(128), nn.ReLU(), nn.Conv2d(128, 128, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(128), nn.ReLU(), ), nn.Conv2d(128, 256, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(256), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(256, 128, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(128), nn.ReLU(), nn.Conv2d(128, 128, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(128), nn.ReLU(), ), nn.Conv2d(128, 256, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(256), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), ), nn.Sequential( # Sequential, nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(256, 256, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(256), nn.ReLU(), nn.Conv2d(256, 256, (3, 3), (2, 2), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(256), nn.ReLU(), ), nn.Conv2d(256, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), ), nn.Sequential( # Sequential, nn.Conv2d(256, 512, (1, 1), (2, 2), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), ), ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(512, 256, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(256), nn.ReLU(), nn.Conv2d(256, 256, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(256), nn.ReLU(), ), nn.Conv2d(256, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(512, 256, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(256), nn.ReLU(), nn.Conv2d(256, 256, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(256), nn.ReLU(), ), nn.Conv2d(256, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(512, 256, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(256), nn.ReLU(), nn.Conv2d(256, 256, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(256), nn.ReLU(), ), nn.Conv2d(256, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), ), nn.Sequential( # Sequential, nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(512, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (2, 2), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), nn.Sequential( # Sequential, nn.Conv2d(512, 1024, (1, 1), (2, 2), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), ), nn.Sequential( # Sequential, nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), nn.ReLU(), nn.Conv2d(1024, 1024, (3, 3), (2, 2), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(1024), nn.ReLU(), ), nn.Conv2d(1024, 2048, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(2048), ), nn.Sequential( # Sequential, nn.Conv2d(1024, 2048, (1, 1), (2, 2), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(2048), ), ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(2048, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), nn.ReLU(), nn.Conv2d(1024, 1024, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(1024), nn.ReLU(), ), nn.Conv2d(1024, 2048, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(2048), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(2048, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), nn.ReLU(), nn.Conv2d(1024, 1024, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(1024), nn.ReLU(), ), nn.Conv2d(1024, 2048, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(2048), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), ), nn.AvgPool2d((7, 7), (1, 1)), Lambda(lambda x: x.view(x.size(0), -1)), # View, nn.Sequential(Lambda(lambda x: x.view(1, -1) if 1 == len(x.size()) else x), nn.Linear(2048, 1000)), # Linear, ) def resnext_101_32x4d(): model = resnext_101_32x4d_model model.load_state_dict(torch.load(os.path.join(Path.models_dir(), 'resnext_101_32x4d.pth'))) return model
astmt-master
fblib/networks/torch2pytorch/resnext_101_32x4d.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import torch import torch.nn as nn from functools import reduce from fblib.util.mypath import Path class LambdaBase(nn.Sequential): def __init__(self, fn, *args): super(LambdaBase, self).__init__(*args) self.lambda_func = fn def forward_prepare(self, input): output = [] for module in self._modules.values(): output.append(module(input)) return output if output else input class Lambda(LambdaBase): def forward(self, input): return self.lambda_func(self.forward_prepare(input)) class LambdaMap(LambdaBase): def forward(self, input): return list(map(self.lambda_func, self.forward_prepare(input))) class LambdaReduce(LambdaBase): def forward(self, input): return reduce(self.lambda_func, self.forward_prepare(input)) resnext_50_32x4d_model = nn.Sequential( # Sequential, nn.Conv2d(3, 64, (7, 7), (2, 2), (3, 3), 1, 1, bias=False), nn.BatchNorm2d(64), nn.ReLU(), nn.MaxPool2d((3, 3), (2, 2), (1, 1)), # Layer 1 nn.Sequential( # Sequential, nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(64, 128, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(128), nn.ReLU(), nn.Conv2d(128, 128, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(128), nn.ReLU(), ), nn.Conv2d(128, 256, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(256), ), nn.Sequential( # Sequential, nn.Conv2d(64, 256, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(256), ), ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(256, 128, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(128), nn.ReLU(), nn.Conv2d(128, 128, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(128), nn.ReLU(), ), nn.Conv2d(128, 256, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(256), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(256, 128, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(128), nn.ReLU(), nn.Conv2d(128, 128, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(128), nn.ReLU(), ), nn.Conv2d(128, 256, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(256), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), ), # Layer 2 nn.Sequential( # Sequential, nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(256, 256, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(256), nn.ReLU(), nn.Conv2d(256, 256, (3, 3), (2, 2), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(256), nn.ReLU(), ), nn.Conv2d(256, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), ), nn.Sequential( # Sequential, nn.Conv2d(256, 512, (1, 1), (2, 2), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), ), ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(512, 256, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(256), nn.ReLU(), nn.Conv2d(256, 256, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(256), nn.ReLU(), ), nn.Conv2d(256, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(512, 256, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(256), nn.ReLU(), nn.Conv2d(256, 256, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(256), nn.ReLU(), ), nn.Conv2d(256, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(512, 256, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(256), nn.ReLU(), nn.Conv2d(256, 256, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(256), nn.ReLU(), ), nn.Conv2d(256, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), ), # Layer 3 nn.Sequential( # Sequential, nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(512, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (2, 2), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), nn.Sequential( # Sequential, nn.Conv2d(512, 1024, (1, 1), (2, 2), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 512, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(512), nn.ReLU(), ), nn.Conv2d(512, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), ), # Layer 4 nn.Sequential( # Sequential, nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(1024, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), nn.ReLU(), nn.Conv2d(1024, 1024, (3, 3), (2, 2), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(1024), nn.ReLU(), ), nn.Conv2d(1024, 2048, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(2048), ), nn.Sequential( # Sequential, nn.Conv2d(1024, 2048, (1, 1), (2, 2), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(2048), ), ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(2048, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), nn.ReLU(), nn.Conv2d(1024, 1024, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(1024), nn.ReLU(), ), nn.Conv2d(1024, 2048, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(2048), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), nn.Sequential( # Sequential, LambdaMap(lambda x: x, # ConcatTable, nn.Sequential( # Sequential, nn.Sequential( # Sequential, nn.Conv2d(2048, 1024, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(1024), nn.ReLU(), nn.Conv2d(1024, 1024, (3, 3), (1, 1), (1, 1), 1, 32, bias=False), nn.BatchNorm2d(1024), nn.ReLU(), ), nn.Conv2d(1024, 2048, (1, 1), (1, 1), (0, 0), 1, 1, bias=False), nn.BatchNorm2d(2048), ), Lambda(lambda x: x), # Identity, ), LambdaReduce(lambda x, y: x + y), # CAddTable, nn.ReLU(), ), ), nn.AvgPool2d((7, 7), (1, 1)), Lambda(lambda x: x.view(x.size(0), -1)), # View, nn.Sequential(Lambda(lambda x: x.view(1, -1) if 1 == len(x.size()) else x), nn.Linear(2048, 1000)), # Linear, ) def resnext_50_32x4d(): model = resnext_50_32x4d_model model.load_state_dict(torch.load(os.path.join(Path.models_dir(), 'resnext_50_32x4d.pth'))) return model if __name__ == '__main__': model = resnext_50_32x4d()
astmt-master
fblib/networks/torch2pytorch/resnext_50_32x4d.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import numpy as np from copy import deepcopy import torch import torch.nn as nn from torch.nn import init from torch.nn import functional as F import torchvision.models.resnet as resnet from fblib.networks.deeplab_single_task.classifiers import PSPModule, AtrousPyramidModule, AtrousSpatialPyramidPoolingModule from fblib.layers.misc_layers import center_crop, interp_surgery from fblib.networks.deeplab_single_task import resnet as custom_resnet from fblib.util.mypath import Path try: from itertools import izip except ImportError: # python3.x izip = zip affine_par = True # Trainable Batchnorm for the classifier def get_ngroups_gn(dim): """ Get number of groups used by groupnorm, based on number of channels """ n_lay_per_group_low = 16 n_lay_per_group = 32 if dim <= 256: assert(dim % n_lay_per_group_low == 0) return int(dim / n_lay_per_group_low) else: assert(dim % n_lay_per_group == 0) return int(dim / n_lay_per_group) def outS(i): i = int(i) i = (i+1)/2 i = int(np.ceil((i+1)/2.0)) i = (i+1)/2 return i def conv3x3(in_planes, out_planes, stride=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, dilation=dilation, padding=dilation, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, train_norm_layers=False, sync_bnorm=False): super(BasicBlock, self).__init__() self.bnorm = nn.BatchNorm2d self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = self.bnorm(planes) for i in self.bn1.parameters(): i.requires_grad = train_norm_layers self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes, dilation=dilation) self.bn2 = self.bnorm(planes) for i in self.bn2.parameters(): i.requires_grad = train_norm_layers self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, train_norm_layers=False, sync_bnorm=False): super(Bottleneck, self).__init__() padding = dilation self.bnorm = nn.BatchNorm2d self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) # change self.bn1 = self.bnorm(planes, affine=affine_par) for i in self.bn1.parameters(): i.requires_grad = train_norm_layers self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, # change padding=padding, bias=False, dilation=dilation) self.bn2 = self.bnorm(planes, affine=affine_par) for i in self.bn2.parameters(): i.requires_grad = train_norm_layers self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = self.bnorm(planes * 4, affine=affine_par) for i in self.bn3.parameters(): i.requires_grad = train_norm_layers self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, n_classes, nInputChannels=3, classifier="atrous", output_stride=16, decoder=True, static_graph=False, deconv_upsample=False, groupnorm=False, train_norm_layers=False, sync_bnorm=False): super(ResNet, self).__init__() print("Constructing ResNet model...") print("Output stride: {}".format(output_stride)) print("Number of classes: {}".format(n_classes)) print("Number of Input Channels: {}".format(nInputChannels)) v3_atrous_rates = [6, 12, 18] if output_stride == 8: dilations = (2, 4) strides = (2, 2, 2, 1, 1) v3_atrous_rates = [x * 2 for x in v3_atrous_rates] elif output_stride == 16: dilations = (1, 2) strides = (2, 2, 2, 2, 1) else: raise ValueError('Choose between output_stride 8 and 16') self.inplanes = 64 self.classifier = classifier self.decoder = decoder self.deconv_upsample = deconv_upsample self.groupnorm = groupnorm self.train_norm_layers = train_norm_layers self.sync_bnorm = sync_bnorm self.bnorm = nn.BatchNorm2d self.conv1 = nn.Conv2d(nInputChannels, 64, kernel_size=7, stride=strides[0], padding=3, bias=False) self.bn1 = self.bnorm(64, affine=affine_par) for i in self.bn1.parameters(): i.requires_grad = self.train_norm_layers self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=strides[1], padding=1, ceil_mode=False) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=strides[2]) self.layer3 = self._make_layer(block, 256, layers[2], stride=strides[3], dilation=dilations[0]) self.layer4 = self._make_layer(block, 512, layers[3], stride=strides[4], dilation=dilations[1]) if block == BasicBlock: in_f, out_f = 512, 128 else: in_f, out_f = 2048, 512 if decoder: print('Using decoder') if classifier == "atrous": print('Initializing classifier: old atrous pyramid') out_f_classifier = 256 self.layer5 = AtrousPyramidModule(dilation_series=[6, 12, 18, 24], padding_series=[6, 12, 18, 24], n_classes=out_f_classifier, in_f=in_f) elif classifier == "psp": print('Initializing classifier: PSP') out_f_classifier = 256 self.layer5 = PSPModule(in_features=in_f, out_features=out_f_classifier, sizes=(1, 2, 3, 6), n_classes=0, groupnorm=self.groupnorm, sync_bnorm=self.sync_bnorm) elif classifier == 'atrous-v3': print('Initializing classifier: A-trous with global features (Deeplab-v3+)') out_f_classifier = 256 self.layer5 = AtrousSpatialPyramidPoolingModule(depth=out_f_classifier, groupnorm=self.groupnorm, dilation_series=v3_atrous_rates, sync_bnorm=self.sync_bnorm) else: out_f_classifier = out_f self.layer5 = None if not self.groupnorm: NormModule = self.bnorm kwargs_low = {"num_features": 48, "affine": affine_par} kwargs_out = {"num_features": 256, "affine": affine_par} else: NormModule = nn.GroupNorm kwargs_low = {"num_groups": get_ngroups_gn(48), "num_channels": 48, "affine": affine_par} kwargs_out = {"num_groups": get_ngroups_gn(256), "num_channels": 256, "affine": affine_par} self.low_level_reduce = nn.Sequential( nn.Conv2d(256, 48, kernel_size=1, bias=False), NormModule(**kwargs_low), nn.ReLU(inplace=True) ) self.concat_and_predict = nn.Sequential( conv3x3(out_f_classifier + 48, 256), NormModule(**kwargs_out), nn.ReLU(inplace=True), conv3x3(256, 256), NormModule(**kwargs_out), nn.ReLU(inplace=True), # final layer nn.Conv2d(256, n_classes, kernel_size=1, bias=True) ) if self.deconv_upsample: print("Using upsampling with deconvolutions") up_factor = 2 self.upscale_1 = nn.ConvTranspose2d(out_f_classifier, out_f_classifier, kernel_size=up_factor * 2, stride=up_factor, bias=False) else: if classifier == "atrous": print('Initializing classifier: A-trous pyramid') self.layer5 = AtrousPyramidModule(dilation_series=[6, 12, 18, 24], padding_series=[6, 12, 18, 24], n_classes=n_classes, in_f=in_f) elif classifier == "psp": print('Initializing classifier: PSP') self.layer5 = PSPModule(in_features=in_f, out_features=out_f, sizes=(1, 2, 3, 6), n_classes=n_classes, static_graph=static_graph, groupnorm=self.groupnorm, sync_bnorm=self.sync_bnorm) elif classifier == "atrous-v3": print('Initializing classifier: A-trous with global features (Deeplab-v3+)') self.layer5 = AtrousSpatialPyramidPoolingModule(depth=n_classes, in_f=in_f, groupnorm=self.groupnorm, dilation_series=v3_atrous_rates, sync_bnorm=self.sync_bnorm) else: self.layer5 = None # Initialize weights self._initialize_weights() # Check if batchnorm parameters are trainable self._verify_bnorm_params() def _make_layer(self, block, planes, blocks, stride=1, dilation=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion or dilation == 2 or dilation == 4: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), self.bnorm(planes * block.expansion, affine=affine_par), ) # Train batchnorm? for i in downsample._modules['1'].parameters(): i.requires_grad = self.train_norm_layers layers = [] layers.append(block(self.inplanes, planes, stride, dilation=dilation, downsample=downsample, train_norm_layers=self.train_norm_layers, sync_bnorm=self.sync_bnorm)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, dilation=dilation, train_norm_layers=self.train_norm_layers, sync_bnorm=self.sync_bnorm)) return nn.Sequential(*layers) def _verify_bnorm_params(self): verify_trainable = True a = 0 for x in self.modules(): if isinstance(x, nn.BatchNorm2d): for y in x.parameters(): verify_trainable = (verify_trainable and y.requires_grad) a += isinstance(x, nn.BatchNorm2d) print("\nVerification: Trainable batchnorm parameters? Answer: {}\n".format(verify_trainable)) print("Asynchronous bnorm layers: {}".format(a)) def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, 0.01) elif isinstance(m, nn.BatchNorm2d) or isinstance(m, self.bnorm): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.ConvTranspose2d): m.weight.data.zero_() m.weight.data = interp_surgery(m) elif isinstance(m, nn.Linear): init.kaiming_normal_(m.weight) m.bias.data.zero_() def forward(self, x, bbox=None): h, w = x.shape[2:] x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) if self.decoder: x_low = x low_h, low_w = int(x_low.size()[-2]), int(x_low.size()[-1]) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) if self.layer5 is not None: x = self.layer5(x) if self.decoder: if self.deconv_upsample: x = center_crop(self.upscale_1(x), low_h, low_w) else: x = F.interpolate(x, size=(x_low.shape[2], x_low.shape[3]), mode='bilinear', align_corners=False) x_low = self.low_level_reduce(x_low) x = torch.cat([x, x_low], dim=1) x = self.concat_and_predict(x) x = F.interpolate(x, size=(h, w), mode='bilinear', align_corners=False) return x def load_pretrained(self, base_network, nInputChannels=3): flag = 0 i = 0 for module, module_ori in izip(self.modules(), base_network.modules()): if isinstance(module, nn.Conv2d) and isinstance(module_ori, nn.Conv2d): if not flag and nInputChannels != 3: module.weight[:, :3, :, :].data = deepcopy(module_ori.weight.data) module.bias = deepcopy(module_ori.bias) for i in range(3, int(module.weight.data.shape[1])): module.weight[:, i, :, :].data = deepcopy(module_ori.weight[:, -1, :, :][:, np.newaxis, :, :].data) flag = 1 i += 1 elif module.weight.data.shape == module_ori.weight.data.shape: i += 1 module.weight.data = deepcopy(module_ori.weight.data) module.bias = deepcopy(module_ori.bias) else: print('Skipping Conv layer with size: {} and target size: {}' .format(module.weight.data.shape, module_ori.weight.data.shape)) elif isinstance(module, self.bnorm) and \ (isinstance(module_ori, nn.BatchNorm2d) or isinstance(module_ori, self.bnorm)): if module.weight.data.shape == module_ori.weight.data.shape: i += 1 # Copy running mean and variance of batchnorm layers! module.running_mean.data = deepcopy(module_ori.running_mean.data) module.running_var.data = deepcopy(module_ori.running_var.data) module.weight.data = deepcopy(module_ori.weight.data) module.bias.data = deepcopy(module_ori.bias.data) else: print('Skipping Batchnorm layer with size: {} and target size: {}' .format(module.weight.data.shape, module_ori.weight.data.shape)) print("Content of {} layers successfully copied.".format(i)) def load_pretrained_ms(self, base_network, nInputChannels=3): flag = 0 for module, module_ori in izip(self.modules(), base_network.Scale.modules()): if isinstance(module, nn.Conv2d) and isinstance(module_ori, nn.Conv2d): if not flag and nInputChannels != 3: module.weight[:, :3, :, :].data = deepcopy(module_ori.weight.data) module.bias = deepcopy(module_ori.bias) for i in range(3, int(module.weight.data.shape[1])): module.weight[:, i, :, :].data = deepcopy(module_ori.weight[:, -1, :, :][:, np.newaxis, :, :].data) flag = 1 elif module.weight.data.shape == module_ori.weight.data.shape: module.weight.data = deepcopy(module_ori.weight.data) module.bias = deepcopy(module_ori.bias) else: print('Skipping Conv layer with size: {} and target size: {}' .format(module.weight.data.shape, module_ori.weight.data.shape)) elif isinstance(module, self.bnorm) and (isinstance(module_ori, nn.BatchNorm2d) or isinstance(module_ori, self.bnorm)) \ and module.weight.data.shape == module_ori.weight.data.shape: # Copy running mean and variance of batchnorm layers! module.running_mean.data = deepcopy(module_ori.running_mean.data) module.running_var.data = deepcopy(module_ori.running_var.data) module.weight.data = deepcopy(module_ori.weight.data) module.bias.data = deepcopy(module_ori.bias.data) class MS_Deeplab(nn.Module): def __init__(self, block, NoLabels, nInputChannels=3): super(MS_Deeplab, self).__init__() self.Scale = ResNet(block, [3, 4, 23, 3], NoLabels, nInputChannels=nInputChannels) def forward(self, x): input_size = x.size()[2] self.interp1 = nn.Upsample(size=(int(input_size*0.75)+1, int(input_size*0.75)+1), mode='bilinear', align_corners=False) self.interp2 = nn.Upsample(size=(int(input_size*0.5)+1, int(input_size*0.5)+1), mode='bilinear', align_corners=False) self.interp3 = nn.Upsample(size=(outS(input_size), outS(input_size)), mode='bilinear', align_corners=False) out = [] x2 = self.interp1(x) x3 = self.interp2(x) out.append(self.Scale(x)) # for original scale out.append(self.interp3(self.Scale(x2))) # for 0.75x scale out.append(self.Scale(x3)) # for 0.5x scale x2Out_interp = out[1] x3Out_interp = self.interp3(out[2]) temp1 = torch.max(out[0], x2Out_interp) out.append(torch.max(temp1, x3Out_interp)) return out[-1] def Res_Deeplab(n_classes=21, pretrained=None): model = MS_Deeplab(Bottleneck, n_classes) if pretrained is not None: if pretrained == 'voc': pth_model = 'MS_DeepLab_resnet_trained_VOC.pth' elif pretrained == 'ms_coco': pth_model = 'MS_DeepLab_resnet_pretrained_COCO_init.pth' saved_state_dict = torch.load(os.path.join(Path.models_dir(), pth_model), map_location=lambda storage, loc: storage) if n_classes != 21: for i in saved_state_dict: i_parts = i.split('.') if i_parts[1] == 'layer5': saved_state_dict[i] = model.state_dict()[i] model.load_state_dict(saved_state_dict) return model def get_lr_params(model): """ This generator returns all the parameters of the net except for the last classification layer. Note that for each batchnorm layer, requires_grad is set to False in deeplab_resnet.py, therefore this function does not return any batchnorm parameter """ # for multi-GPU training if hasattr(model, 'module'): model = model.module b = [model.conv1, model.bn1, model.layer1, model.layer2, model.layer3, model.layer4, model.layer5] # If decoder exists if 'low_level_reduce' in model._modules.keys(): b.extend([model.low_level_reduce, model.concat_and_predict]) for i in range(len(b)): for k in b[i].parameters(): if k.requires_grad: yield k def get_1x_lr_params(model): """ This generator returns all the parameters of the net except for the last classification layer. Note that for each batchnorm layer, requires_grad is set to False in deeplab_resnet.py, therefore this function does not return any batchnorm parameter """ # for multi-GPU training if hasattr(model, 'module'): model = model.module b = [model.conv1, model.bn1, model.layer1, model.layer2, model.layer3, model.layer4] # If decoder exists if 'low_level_reduce' in model._modules.keys(): b.extend([model.low_level_reduce]) for i in range(len(b)): for k in b[i].parameters(): if k.requires_grad: yield k def get_10x_lr_params(model): """ This generator returns all the parameters for the last layer of the net, which does the classification of pixel into classes """ # for multi-GPU training if hasattr(model, 'module'): model = model.module b = [model.layer5] # If decoder exists if 'low_level_reduce' in model._modules.keys(): b.extend([model.concat_and_predict]) for j in range(len(b)): for k in b[j].parameters(): if k.requires_grad: yield k def lr_poly(base_lr, iter_, max_iter=100, power=0.9): return base_lr*((1-float(iter_)/max_iter)**power) def resnet18(n_classes, pretrained=None, nInputChannels=3, **kwargs): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [2, 2, 2, 2], n_classes, nInputChannels=nInputChannels, **kwargs) model_full = resnet.resnet18(pretrained=True) if pretrained: model.load_pretrained(model_full, nInputChannels=nInputChannels) return model def resnet26(n_classes, pretrained='scratch', nInputChannels=3, **kwargs): """Constructs a ResNet-26 model. Args: pretrained ('imagenet', 'scratch): If 'imagenet', returns a model pre-trained on ImageNet """ print('Constructing ResNet26') model = ResNet(Bottleneck, [2, 2, 2, 2], n_classes, nInputChannels=nInputChannels, **kwargs) if pretrained == 'imagenet': print('Loading resnet 26 weights') model_full = custom_resnet.resnet26(pretrained=True) model.load_pretrained(model_full, nInputChannels=nInputChannels) elif pretrained == 'scratch': print('Training from scratch') else: raise NotImplementedError('Please specify scratch or imagenet for pre-training') return model def resnet50(n_classes, pretrained=None, nInputChannels=3, **kwargs): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 6, 3], n_classes, nInputChannels=nInputChannels, **kwargs) if pretrained is not None: model_full = resnet.resnet50(pretrained=True) model.load_pretrained(model_full, nInputChannels=nInputChannels) return model def resnet101(n_classes, pretrained='scratch', nInputChannels=3, **kwargs): """Constructs a ResNet-101 model. Args: pretrained ('imagenet', 'voc', 'ms_coco): Select model trained on respective dataset. """ model = ResNet(Bottleneck, [3, 4, 23, 3], n_classes, nInputChannels=nInputChannels, **kwargs) if pretrained == 'imagenet': print('Initializing from pre-trained ImageNet model..') model_full = resnet.resnet101(pretrained=True) model.load_pretrained(model_full, nInputChannels=nInputChannels) elif pretrained == 'ms_coco' or pretrained == 'voc': model_full = Res_Deeplab(n_classes, pretrained=pretrained) model.load_pretrained_ms(model_full, nInputChannels=nInputChannels) else: print('Training from scratch') return model def test_flops(): from fblib.util.model_resources.flops import compute_gflops net = resnet26(n_classes=21, pretrained='imagenet', classifier="atrous-v3", output_stride=16, decoder=True) print('GFLOPS: {}'.format(compute_gflops(net, (2, 3, 256, 256)))) if __name__ == '__main__': test_flops()
astmt-master
fblib/networks/deeplab_single_task/deeplab_resnet.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import numpy as np from copy import deepcopy import torch import torch.nn as nn from torch.nn import init from torch.nn import functional as F import fblib.networks.classification.se_resnet as se_resnet_imagenet from fblib.networks.deeplab_single_task.classifiers import AtrousSpatialPyramidPoolingModule from fblib.layers.misc_layers import interp_surgery try: from itertools import izip except ImportError: # python3.x izip = zip affine_par = True # Trainable Batchnorm for the classifier def outS(i): i = int(i) i = (i+1)/2 i = int(np.ceil((i+1)/2.0)) i = (i+1)/2 return i def conv3x3(in_planes, out_planes, stride=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, dilation=dilation, padding=dilation, bias=False) class SELayer(nn.Module): def __init__(self, channel, reduction=16): super(SELayer, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, channel // reduction), nn.ReLU(inplace=True), nn.Linear(channel // reduction, channel), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y class SEBottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, train_norm_layers=False, sync_bnorm=False, reduction=16): super(SEBottleneck, self).__init__() padding = dilation self.bnorm = nn.BatchNorm2d self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) self.bn1 = self.bnorm(planes) for i in self.bn1.parameters(): i.requires_grad = train_norm_layers self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=padding, bias=False, dilation=dilation) self.bn2 = self.bnorm(planes) for i in self.bn2.parameters(): i.requires_grad = train_norm_layers self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = self.bnorm(planes * 4) for i in self.bn3.parameters(): i.requires_grad = train_norm_layers self.relu = nn.ReLU(inplace=True) self.se = SELayer(planes * 4, reduction) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) out = self.se(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class SEResNet(nn.Module): def __init__(self, block, layers, n_classes, nInputChannels=3, classifier="atrous", output_stride=16, decoder=True, train_norm_layers=False, sync_bnorm=False): super(SEResNet, self).__init__() print("Constructing Squeeeze and Excitation ResNet model...") print("Output stride: {}".format(output_stride)) print("Number of classes: {}".format(n_classes)) v3_atrous_rates = [6, 12, 18] if output_stride == 8: dilations = (2, 4) strides = (2, 2, 2, 1, 1) v3_atrous_rates = [x * 2 for x in v3_atrous_rates] elif output_stride == 16: dilations = (1, 2) strides = (2, 2, 2, 2, 1) else: raise ValueError('Choose between output_stride 8 and 16') self.inplanes = 64 self.classifier = classifier self.decoder = decoder self.train_norm_layers = train_norm_layers self.sync_bnorm = sync_bnorm self.bnorm = nn.BatchNorm2d self.conv1 = nn.Conv2d(nInputChannels, 64, kernel_size=7, stride=strides[0], padding=3, bias=False) self.bn1 = self.bnorm(64, affine=affine_par) for i in self.bn1.parameters(): i.requires_grad = self.train_norm_layers self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=strides[1], padding=1, ceil_mode=False) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=strides[2]) self.layer3 = self._make_layer(block, 256, layers[2], stride=strides[3], dilation=dilations[0]) self.layer4 = self._make_layer(block, 512, layers[3], stride=strides[4], dilation=dilations[1]) in_f, out_f = 2048, 512 if decoder: print('Using decoder') if classifier == 'atrous-v3': print('Initializing classifier: A-trous with global features (Deeplab-v3+)') out_f_classifier = 256 self.layer5 = AtrousSpatialPyramidPoolingModule(depth=out_f_classifier, dilation_series=v3_atrous_rates, sync_bnorm=self.sync_bnorm) else: raise NotImplementedError('Select one of the available decoders') NormModule = self.bnorm kwargs_low = {"num_features": 48, "affine": affine_par} kwargs_out = {"num_features": 256, "affine": affine_par} self.low_level_reduce = nn.Sequential( nn.Conv2d(256, 48, kernel_size=1, bias=False), NormModule(**kwargs_low), nn.ReLU(inplace=True) ) self.concat_and_predict = nn.Sequential( conv3x3(out_f_classifier + 48, 256), NormModule(**kwargs_out), nn.ReLU(inplace=True), conv3x3(256, 256), NormModule(**kwargs_out), nn.ReLU(inplace=True), # final layer nn.Conv2d(256, n_classes, kernel_size=1, bias=True) ) else: if classifier == "atrous-v3": print('Initializing classifier: A-trous with global features (Deeplab-v3+)') self.layer5 = AtrousSpatialPyramidPoolingModule(depth=n_classes, in_f=in_f, dilation_series=v3_atrous_rates, sync_bnorm=self.sync_bnorm) else: self.layer5 = None # Initialize weights self._initialize_weights() # Check if batchnorm parameters are trainable self._verify_bnorm_params() def _make_layer(self, block, planes, blocks, stride=1, dilation=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion or dilation == 2 or dilation == 4: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), self.bnorm(planes * block.expansion, affine=affine_par), ) # Train batchnorm? for i in downsample._modules['1'].parameters(): i.requires_grad = self.train_norm_layers layers = [block(self.inplanes, planes, stride, dilation=dilation, downsample=downsample, train_norm_layers=self.train_norm_layers, sync_bnorm=self.sync_bnorm)] self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, dilation=dilation, train_norm_layers=self.train_norm_layers, sync_bnorm=self.sync_bnorm)) return nn.Sequential(*layers) def _verify_bnorm_params(self): verify_trainable = True a = 0 for x in self.modules(): if isinstance(x, nn.BatchNorm2d): for y in x.parameters(): verify_trainable = (verify_trainable and y.requires_grad) a += isinstance(x, nn.BatchNorm2d) print("\nVerification: Trainable batchnorm parameters? Answer: {}\n".format(verify_trainable)) print("Asynchronous bnorm layers: {}".format(a)) def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, 0.01) elif isinstance(m, nn.BatchNorm2d) or isinstance(m, self.bnorm): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.ConvTranspose2d): m.weight.data.zero_() m.weight.data = interp_surgery(m) elif isinstance(m, nn.Linear): init.kaiming_normal_(m.weight) m.bias.data.zero_() def forward(self, x, bbox=None): h, w = x.shape[2:] x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) if self.decoder: x_low = x x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.layer5(x) if self.decoder: x = F.interpolate(x, size=(x_low.shape[2], x_low.shape[3]), mode='bilinear', align_corners=False) x_low = self.low_level_reduce(x_low) x = torch.cat([x, x_low], dim=1) x = self.concat_and_predict(x) x = F.interpolate(x, size=(h, w), mode='bilinear', align_corners=False) return x def load_pretrained(self, base_network, nInputChannels=3): flag = 0 i = 0 for module, module_ori in izip(self.modules(), base_network.modules()): if isinstance(module, nn.Conv2d) and isinstance(module_ori, nn.Conv2d): if not flag and nInputChannels != 3: module.weight[:, :3, :, :].data = deepcopy(module_ori.weight.data) module.bias = deepcopy(module_ori.bias) for i in range(3, int(module.weight.data.shape[1])): module.weight[:, i, :, :].data = deepcopy(module_ori.weight[:, -1, :, :][:, np.newaxis, :, :].data) flag = 1 i += 1 elif module.weight.data.shape == module_ori.weight.data.shape: i += 1 module.weight.data = deepcopy(module_ori.weight.data) module.bias = deepcopy(module_ori.bias) else: print('Skipping Conv layer with size: {} and target size: {}' .format(module.weight.data.shape, module_ori.weight.data.shape)) elif isinstance(module, self.bnorm) and \ (isinstance(module_ori, nn.BatchNorm2d) or isinstance(module_ori, self.bnorm)): if module.weight.data.shape == module_ori.weight.data.shape: i += 1 # Copy running mean and variance of batchnorm layers! module.running_mean.data = deepcopy(module_ori.running_mean.data) module.running_var.data = deepcopy(module_ori.running_var.data) module.weight.data = deepcopy(module_ori.weight.data) module.bias.data = deepcopy(module_ori.bias.data) else: print('Skipping Batchnorm layer with size: {} and target size: {}' .format(module.weight.data.shape, module_ori.weight.data.shape)) elif isinstance(module, nn.Linear) and isinstance(module_ori, nn.Linear): module.weight.data = deepcopy(module_ori.weight.data) module.bias.data = deepcopy(module_ori.bias.data) i += 1 print("Content of {} layers successfully copied.".format(i)) def get_lr_params(model): """ This generator returns all the parameters of the net except for the last classification layer. Note that for each batchnorm layer, requires_grad is set to False in deeplab_resnet.py, therefore this function does not return any batchnorm parameter """ # for multi-GPU training if hasattr(model, 'module'): model = model.module b = [model.conv1, model.bn1, model.layer1, model.layer2, model.layer3, model.layer4, model.layer5] # If decoder exists if 'low_level_reduce' in model._modules.keys(): b.extend([model.low_level_reduce, model.concat_and_predict]) for i in range(len(b)): for k in b[i].parameters(): if k.requires_grad: yield k def get_1x_lr_params(model): """ This generator returns all the parameters of the net except for the last classification layer. Note that for each batchnorm layer, requires_grad is set to False in deeplab_resnet.py, therefore this function does not return any batchnorm parameter """ # for multi-GPU training if hasattr(model, 'module'): model = model.module b = [model.conv1, model.bn1, model.layer1, model.layer2, model.layer3, model.layer4] # If decoder exists if 'low_level_reduce' in model._modules.keys(): b.extend([model.low_level_reduce]) for i in range(len(b)): for k in b[i].parameters(): if k.requires_grad: yield k def get_10x_lr_params(model): """ This generator returns all the parameters for the last layer of the net, which does the classification of pixel into classes """ # for multi-GPU training if hasattr(model, 'module'): model = model.module b = [model.layer5] # If decoder exists if 'low_level_reduce' in model._modules.keys(): b.extend([model.concat_and_predict]) for j in range(len(b)): for k in b[j].parameters(): if k.requires_grad: yield k def lr_poly(base_lr, iter_, max_iter=100, power=0.9): return base_lr*((1-float(iter_)/max_iter)**power) def se_resnet26(n_classes, pretrained=None, nInputChannels=3, **kwargs): """Constructs a ResNet-26 model. Args: pretrained ('imagenet', 'scratch'): If True, returns a model pre-trained on ImageNet """ model = SEResNet(SEBottleneck, [2, 2, 2, 2], n_classes, nInputChannels=nInputChannels, **kwargs) if pretrained == 'imagenet': model_full = se_resnet_imagenet.se_resnet26(pretrained=True) model.load_pretrained(model_full, nInputChannels=nInputChannels) elif pretrained == 'scratch': print('Training from scratch') else: raise NotImplementedError('Select imagenet or scratch for pre-training') return model def se_resnet50(n_classes, pretrained=None, nInputChannels=3, **kwargs): """Constructs a ResNet-50 model. Args: pretrained ('imagenet', 'scratch'): If True, returns a model pre-trained on ImageNet """ model = SEResNet(SEBottleneck, [3, 4, 6, 3], n_classes, nInputChannels=nInputChannels, **kwargs) if pretrained == 'imagenet': model_full = se_resnet_imagenet.se_resnet50(pretrained=True) model.load_pretrained(model_full, nInputChannels=nInputChannels) elif pretrained == 'scratch': print('Training from scratch') else: raise NotImplementedError('Select imagenet or scratch for pre-training') return model def se_resnet101(n_classes, pretrained='scratch', nInputChannels=3, **kwargs): """Constructs a ResNet-101 model. Args: pretrained ('imagenet', 'scratch'): Select model trained on respective dataset. """ model = SEResNet(SEBottleneck, [3, 4, 23, 3], n_classes, nInputChannels=nInputChannels, **kwargs) if pretrained == 'imagenet': model_full = se_resnet_imagenet.se_resnet101(pretrained=True) model.load_pretrained(model_full, nInputChannels=nInputChannels) elif pretrained == 'scratch': print('Training from scratch') else: raise NotImplementedError('Select imagenet or scratch for pre-training') return model def test_flops(): from fblib.util.model_resources.flops import compute_gflops net = se_resnet50(n_classes=21, pretrained='imagenet', classifier="atrous-v3", output_stride=16, decoder=True) print('GFLOPS: {}'.format(compute_gflops(net, (2, 3, 256, 256)))) if __name__ == '__main__': test_flops()
astmt-master
fblib/networks/deeplab_single_task/deeplab_se_resnet.py
astmt-master
fblib/networks/deeplab_single_task/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import math import torch import torch.nn as nn import torch.nn.functional as F import fblib.networks.classification.mobilenet_v2 as mobilenet_v2_imagenet from fblib.util.mypath import Path from collections import OrderedDict def conv3x3_mnet(planes, stride=1, dilation=1): """3x3 depth-wiseconvolution with padding""" return nn.Conv2d(planes, planes, kernel_size=3, stride=stride, dilation=dilation, padding=dilation, bias=False, groups=planes) def conv_bn(inp, oup, stride): return nn.Sequential( nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup), nn.ReLU6(inplace=True) ) class ASPPMnet(nn.Module): """ Atrous Spatial Pyramid Pooling Module (DeepLab-v3+) for mobilenet """ def __init__(self, dilation_series=None, out_f=256, in_f=320): super(ASPPMnet, self).__init__() if dilation_series is None: dilation_series = [6, 12, 18] padding_series = dilation_series self.bnorm = nn.BatchNorm2d kwargs = {"num_features": out_f, "affine": True} # Reduce features in order to apply depth-wise convolutions self.conv_reduce = nn.Sequential(nn.Conv2d(in_f, out_f, kernel_size=1, stride=1, bias=False), self.bnorm(**kwargs), nn.ReLU6(inplace=True)) # List of parallel convolutions self.conv2d_list = nn.ModuleList() # 1x1 convolution self.conv2d_list.append(nn.Sequential(nn.Conv2d(out_f, out_f, kernel_size=1, stride=1, bias=False, groups=out_f), self.bnorm(**kwargs), nn.ReLU6(inplace=True))) # Dilated Convolutions for dilation, padding in zip(dilation_series, padding_series): self.conv2d_list.append(nn.Sequential(nn.Conv2d(out_f, out_f, kernel_size=3, stride=1, padding=padding, dilation=dilation, bias=False, groups=out_f), self.bnorm(**kwargs), nn.ReLU6(inplace=True))) # Global features self.conv2d_list.append(nn.Sequential(nn.AdaptiveAvgPool2d(output_size=(1, 1)), nn.Conv2d(out_f, out_f, kernel_size=1, stride=1, bias=False, groups=out_f), self.bnorm(**kwargs), nn.ReLU6(inplace=True))) self.conv2d_final = nn.Sequential(nn.Conv2d(out_f * 5, out_f, kernel_size=1, stride=1, bias=False, groups=out_f), self.bnorm(**kwargs), nn.ReLU6(inplace=True)) def forward(self, x): h, w = x.size(2), x.size(3) # Reduce x = self.conv_reduce(x) # ASPP interm = [] for i in range(len(self.conv2d_list)): interm.append(self.conv2d_list[i](x)) # Upsample the global features interm[-1] = F.interpolate(input=interm[-1], size=(h, w), mode='bilinear', align_corners=False) # Concatenate the parallel streams out = torch.cat(interm, dim=1) # Final convolutional layer of the classifier out = self.conv2d_final(out) return out class ASPPDecoderMnet(nn.Module): """ ASPP-v3 decoder for Mobilenet """ def __init__(self, n_classes, in_channels_high=320, in_channels_low=24, out_f_classifier=256, atrous_rates=None, up=4, ): super(ASPPDecoderMnet, self).__init__() print('Initializing Mobilenet ASPP v3 Decoder') if atrous_rates is None: atrous_rates = [6, 12, 18] kwargs_out = {"num_features": out_f_classifier, "affine": True} kwargs_low = {"num_features": 48, "affine": True} self.up = up self.norm = nn.BatchNorm2d print('Initializing classifier: ASPP with global features (Deeplab-v3+)') self.layer5 = ASPPMnet(in_f=in_channels_high, out_f=out_f_classifier, dilation_series=atrous_rates) self.low_level_reduce = nn.Sequential(nn.Conv2d(in_channels_low, 48, kernel_size=1, stride=1, bias=False, groups=2), self.norm(**kwargs_low), nn.ReLU6(inplace=True)) self.conv_concat = nn.Sequential(nn.Conv2d(out_f_classifier + 48, out_f_classifier, kernel_size=3, padding=1, stride=1, bias=False, groups=math.gcd(304, 256)), self.norm(**kwargs_out), nn.ReLU6(inplace=True)) self.conv_process = nn.Sequential(conv3x3_mnet(out_f_classifier), self.norm(**kwargs_out), nn.ReLU6(inplace=True)) self.conv_predict = nn.Conv2d(out_f_classifier, n_classes, kernel_size=1, bias=True) def forward(self, x_low, x): x_low = self.low_level_reduce(x_low) x = self.layer5(x) x = F.interpolate(x, scale_factor=self.up, mode='bilinear', align_corners=False) x = torch.cat((x_low, x), dim=1) x = self.conv_concat(x) x = self.conv_process(x) features = x x = self.conv_predict(x) return x, features class InvResidualCommon(nn.Module): """Common Inverted Residual block for Mobilenet """ def __init__(self, hidden_dim, oup, stride, dilation=1, train_norm_layers=False): super(InvResidualCommon, self).__init__() self.conv1 = nn.Conv2d(hidden_dim, hidden_dim, 3, stride, padding=dilation, groups=hidden_dim, bias=False, dilation=dilation) self.bn1 = nn.BatchNorm2d(hidden_dim) for x in self.bn1.parameters(): x.requires_grad = train_norm_layers self.conv2 = nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False) self.bn2 = nn.BatchNorm2d(oup) for x in self.bn2.parameters(): x.requires_grad = train_norm_layers self.relu = nn.ReLU6(inplace=True) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.conv2(x) x = self.bn2(x) return x class InvResidualExpand(nn.Module): """Expanding inverted residual block for Mobilenet """ def __init__(self, inp, hidden_dim, oup, stride, dilation=1, train_norm_layers=False): super(InvResidualExpand, self).__init__() self.conv1 = nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False) self.bn1 = nn.BatchNorm2d(hidden_dim) for x in self.bn1.parameters(): x.requires_grad = train_norm_layers self.conv2 = nn.Conv2d(hidden_dim, hidden_dim, 3, stride, padding=dilation, groups=hidden_dim, bias=False, dilation=dilation) self.bn2 = nn.BatchNorm2d(hidden_dim) for x in self.bn2.parameters(): x.requires_grad = train_norm_layers self.conv3 = nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False) self.bn3 = nn.BatchNorm2d(oup) for x in self.bn3.parameters(): x.requires_grad = train_norm_layers self.relu = nn.ReLU6(inplace=True) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) x = self.conv3(x) x = self.bn3(x) return x class InvertedResidual(nn.Module): def __init__(self, inp, oup, stride, expand_ratio, dilation=1, train_norm_layers=False): super(InvertedResidual, self).__init__() self.stride = stride assert stride in [1, 2] hidden_dim = round(inp * expand_ratio) self.use_res_connect = self.stride == 1 and inp == oup if expand_ratio == 1: self.conv = InvResidualCommon(hidden_dim=hidden_dim, oup=oup, stride=stride, dilation=dilation, train_norm_layers=train_norm_layers) else: self.conv = InvResidualExpand(inp=inp, hidden_dim=hidden_dim, oup=oup, stride=stride, dilation=dilation, train_norm_layers=train_norm_layers) def forward(self, x): if self.use_res_connect: out = self.conv(x) return x + out else: out = self.conv(x) return out class MobileNetV2(nn.Module): def __init__(self, n_classes, width_mult=1., output_stride=16, train_norm_layers=False, nInputChannels=3, classifier='atrous-v3', sync_bnorm=False): super(MobileNetV2, self).__init__() self.train_norm_layers = train_norm_layers if sync_bnorm: raise NotImplementedError('Sync bnorm not implemented for mobilenet') atrous_rates = [6, 12, 18] if output_stride == 8: dilations = (2, 4) strides = (2, 2, 2, 1, 1) atrous_rates = [x * 2 for x in atrous_rates] elif output_stride == 16: dilations = (1, 2) strides = (2, 2, 2, 2, 1) else: raise ValueError('Choose between output_stride 8 and 16') block = InvertedResidual input_channel = 32 inverted_residual_setting = [ # t, c, n, s [1, 16, 1, 1, 1], [6, 24, 2, strides[1], 1], [6, 32, 3, strides[2], 1], [6, 64, 4, strides[3], dilations[0]], [6, 96, 3, 1, dilations[0]], [6, 160, 3, strides[4], dilations[1]], [6, 320, 1, 1, dilations[1]], ] input_channel = int(input_channel * width_mult) # build first layer of low level features self.features = [conv_bn(nInputChannels, input_channel, strides[0])] # build inverted residual blocks for t, c, n, s, dil in inverted_residual_setting: output_channel = int(c * width_mult) for i in range(n): if i == 0: self.features.append(block(input_channel, output_channel, s, expand_ratio=t, dilation=dil, train_norm_layers=train_norm_layers)) else: self.features.append(block(input_channel, output_channel, 1, expand_ratio=t, dilation=dil, train_norm_layers=train_norm_layers)) input_channel = output_channel self.features = nn.Sequential(*self.features) self.features_low = self.features[:4] self.features_high = self.features[4:] if classifier == 'atrous-v3': self.decoder = ASPPDecoderMnet(n_classes=n_classes, in_channels_high=320, out_f_classifier=256, atrous_rates=atrous_rates) else: raise NotImplementedError('Implemented classifier: atrous-v3') self._initialize_weights() self._verify_bnorm_params() def forward(self, x): in_shape = x.shape[2:] x_low = self.features_low(x) x = self.features_high(x_low) x, _ = self.decoder(x_low, x) x = F.interpolate(x, size=(in_shape[-2], in_shape[-1]), mode='bilinear', align_corners=False) return x def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): n = m.weight.size(1) m.weight.data.normal_(0, 0.01) m.bias.data.zero_() def _verify_bnorm_params(self): verify_trainable = True a = 0 for x in self.modules(): if isinstance(x, nn.BatchNorm2d): for y in x.parameters(): verify_trainable = (verify_trainable and y.requires_grad) a += isinstance(x, nn.BatchNorm2d) print("\nVerification: Trainable batchnorm parameters? Answer: {}\n".format(verify_trainable)) print("Asynchronous bnorm layers: {}".format(a)) @staticmethod def _define_if_copyable(module): is_copyable = isinstance(module, nn.Conv2d) \ or isinstance(module, nn.Linear) \ or isinstance(module, nn.BatchNorm2d) or \ isinstance(module, nn.BatchNorm2d) return is_copyable def load_pretrained(self, base_network): copy_trg = {} for (name_trg, module_trg) in self.named_modules(): if self._define_if_copyable(module_trg): copy_trg[name_trg] = module_trg copy_src = {} for (name_src, module_src) in base_network.named_modules(): if self._define_if_copyable(module_src): copy_src[name_src] = module_src mapping = {} for name_trg in copy_trg: if 'decoder' in name_trg: continue elif 'features.' in name_trg: mapping[name_trg] = name_trg for name_trg in mapping: map_trg = mapping[name_trg] if '.conv1' in name_trg: map_trg = map_trg.replace('.conv1', '.0') elif '.bn1' in name_trg: map_trg = map_trg.replace('.bn1', '.1') elif '.conv2' in name_trg: map_trg = map_trg.replace('.conv2', '.3') elif '.bn2' in name_trg: map_trg = map_trg.replace('.bn2', '.4') elif '.conv3' in name_trg: map_trg = map_trg.replace('.conv3', '.6') elif '.bn3' in name_trg: map_trg = map_trg.replace('.bn3', '.7') mapping[name_trg] = map_trg i = 0 for name in mapping: module_trg = copy_trg[name] module_src = copy_src[mapping[name]] if module_trg.weight.data.shape != module_src.weight.data.shape: print('skipping layer with size: {} and target size: {}' .format(module_trg.weight.data.shape, module_src.weight.data.shape)) continue if isinstance(module_trg, nn.Conv2d) and isinstance(module_src, nn.Conv2d): module_trg.weight.data = module_src.weight.data.clone() if module_src.bias is not None: module_trg.bias = module_src.bias.clone() i += 1 elif isinstance(module_trg, nn.BatchNorm2d) and isinstance(module_src, nn.BatchNorm2d): # copy running mean and variance of batchnorm layers! module_trg.running_mean.data = module_src.running_mean.data.clone() module_trg.running_var.data = module_src.running_var.data.clone() module_trg.weight.data = module_src.weight.data.clone() module_trg.bias.data = module_src.bias.data.clone() i += 1 elif isinstance(module_trg, nn.Linear) and (isinstance(module_src, nn.Linear)): module_trg.weight.data = module_src.weight.data.clone() module_trg.bias.data = module_src.bias.data.clone() i += 1 print('\nContents of {} out of {} layers successfully copied\n' .format(i, len(mapping))) def get_lr_params(model, part='all'): """ This generator returns all the parameters of the network """ # for multi-GPU training if hasattr(model, 'module'): model = model.module if part == 'all': b = [model] elif part == 'backbone': b = [model.features_low, model.features] elif part == 'decoder': b = [model.decoder] for i in range(len(b)): for name, k in b[i].named_parameters(): if k.requires_grad: yield k def mobilenet_v2(pretrained='scratch', **kwargs): model = MobileNetV2(**kwargs) if pretrained == 'imagenet': print('loading pre-trained imagenet model') model_full = mobilenet_v2_imagenet.mobilenet_v2(pretrained=True) model.load_pretrained(model_full) elif pretrained == 'coco': print('loading pre-trained COCO model') # Load checkpoint checkpoint = torch.load( os.path.join(Path.models_dir(), 'mobilenet_v2_coco_80.pth'), map_location=lambda storage, loc: storage) # handle dataparallel if 'module.' in list(checkpoint.keys())[0]: new_state_dict = OrderedDict() for k, v in checkpoint.items(): name = k.replace('module.', '') # remove `module.` new_state_dict[name] = v else: new_state_dict = checkpoint # Load pre-trained IN model model.load_state_dict(new_state_dict) elif pretrained == 'scratch': print('using imagenet initialized from scratch') else: raise NotImplementedError('select either imagenet or scratch for pre-training') return model def test_flops(): from fblib.util.model_resources.flops import compute_gflops net = mobilenet_v2(n_classes=21, pretrained='imagenet', output_stride=16, train_norm_layers=True) print('GFLOPS: {}'.format(compute_gflops(net, (2, 3, 512, 512)))) def test_visualize_network(): import fblib.util.pdf_visualizer as viz net = mobilenet_v2(n_classes=21, pretrained='imagenet', output_stride=16, train_norm_layers=True) net.eval() x = torch.randn(1, 3, 512, 512) x.requires_grad_() # pdf visualizer y = net.forward(x) g = viz.make_dot(y, net.state_dict()) g.view(directory='.') if __name__ == '__main__': test_flops() # test_visualize_network()
astmt-master
fblib/networks/deeplab_single_task/deeplab_mobilenet_v2.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch.nn as nn from torch.nn import functional as F import torch affine_par = True class AtrousSpatialPyramidPoolingModule(nn.Module): """ Atrous Spatial Pyramid Pooling Module (DeepLab-v3+) """ def __init__(self, dilation_series=[6, 12, 18], depth=256, in_f=2048, groupnorm=False, sync_bnorm=False, cardinality=1, exist_decoder=True): super(AtrousSpatialPyramidPoolingModule, self).__init__() padding_series = dilation_series self.conv2d_list = nn.ModuleList() self.bnorm = nn.BatchNorm2d if not groupnorm: NormModule = self.bnorm kwargs = {"num_features": depth, "affine": affine_par} else: NormModule = nn.GroupNorm kwargs = {"num_groups": 16, "num_channels": depth, "affine": affine_par} # 1x1 convolution self.conv2d_list.append(nn.Sequential(nn.Conv2d(in_f, depth, kernel_size=1, stride=1, bias=False), NormModule(**kwargs), nn.ReLU(inplace=True))) for dilation, padding in zip(dilation_series, padding_series): self.conv2d_list.append(nn.Sequential(nn.Conv2d(in_f, depth, kernel_size=3, stride=1, padding=padding, dilation=dilation, bias=False, groups=cardinality), NormModule(**kwargs), nn.ReLU(inplace=True))) # Global features self.conv2d_list.append(nn.Sequential(nn.AdaptiveAvgPool2d(output_size=(1, 1)), nn.Conv2d(in_f, depth, kernel_size=1, stride=1, bias=False), NormModule(**kwargs), nn.ReLU(inplace=True))) if exist_decoder: self.conv2d_final = nn.Sequential(nn.Conv2d(depth * 5, depth, kernel_size=1, stride=1, bias=False), NormModule(**kwargs), nn.ReLU(inplace=True)) else: self.conv2d_final = nn.Sequential(nn.Conv2d(depth * 5, depth, kernel_size=1, stride=1, bias=True)) for m in self.conv2d_list: if isinstance(m, nn.Conv2d): m.weight.data.normal_(0, 0.01) elif isinstance(m, self.bnorm): m.weight.data.fill_(1) m.bias.data.zero_() for m in self.conv2d_final: if isinstance(m, nn.Conv2d): m.weight.data.normal_(0, 0.01) elif isinstance(m, self.bnorm): m.weight.data.fill_(1) m.bias.data.zero_() def forward(self, x): h, w = x.size(2), x.size(3) interm = [] for i in range(len(self.conv2d_list)): interm.append(self.conv2d_list[i](x)) # Upsample the global features interm[-1] = F.interpolate(input=interm[-1], size=(h, w), mode='bilinear', align_corners=False) # Concatenate the parallel streams out = torch.cat(interm, dim=1) # Final convolutional layer of the classifier out = self.conv2d_final(out) return out class AtrousPyramidModule(nn.Module): """ Atrous Pyramid Module (DeepLab-v2) """ def __init__(self, dilation_series, padding_series, n_classes, in_f=2048): super(AtrousPyramidModule, self).__init__() self.conv2d_list = nn.ModuleList() for dilation, padding in zip(dilation_series, padding_series): self.conv2d_list.append(nn.Conv2d(in_f, n_classes, kernel_size=3, stride=1, padding=padding, dilation=dilation, bias=True)) for m in self.conv2d_list: m.weight.data.normal_(0, 0.01) def forward(self, x): out = self.conv2d_list[0](x) for i in range(len(self.conv2d_list)-1): out += self.conv2d_list[i+1](x) return out class PSPModule(nn.Module): """ Pyramid Scene Parsing Module (PSP Net) """ def __init__(self, in_features=2048, out_features=512, sizes=(1, 2, 3, 6), n_classes=1, static_graph=False, groupnorm=False, sync_bnorm=False): super(PSPModule, self).__init__() self.groupnorm = groupnorm self.stages = [] self.static_graph = static_graph self.stages = nn.ModuleList([self._make_stage_1(in_features, size) for size in sizes]) self.bottleneck = self._make_stage_2(in_features * (len(sizes)//4 + 1), out_features) self.n_classes = n_classes self.bnorm = nn.BatchNorm2d if self.n_classes > 0: self.final = nn.Conv2d(out_features, n_classes, kernel_size=1) def _make_stage_1(self, in_features, size): if self.static_graph: # For input_image = 256 # kernel_size = {1: 32, 2: 16, 3: 10, 6: 5} # For input_image = 512 The stride for level 6 is not the same as in AdaptiveAvgPool2d kernel_stride_size = {1: [64, 64], 2: [32, 32], 3: [22, 21], 6: [11, 9]} prior = nn.AvgPool2d(kernel_size=kernel_stride_size[size][0], stride=kernel_stride_size[size][1]) else: prior = nn.AdaptiveAvgPool2d(output_size=(size, size)) conv = nn.Conv2d(in_features, in_features//4, kernel_size=1, bias=False) if not self.groupnorm: bn = self.bnorm(num_features=in_features//4, affine=affine_par) else: bn = nn.GroupNorm(num_groups=16, num_channels=in_features//4, affine=affine_par) relu = nn.ReLU(inplace=True) return nn.Sequential(prior, conv, bn, relu) def _make_stage_2(self, in_features, out_features): conv = nn.Conv2d(in_features, out_features, kernel_size=1, bias=False) if not self.groupnorm: bn = self.bnorm(num_features=out_features, affine=affine_par) else: bn = nn.GroupNorm(num_groups=32, num_channels=out_features, affine=affine_par ) relu = nn.ReLU(inplace=True) return nn.Sequential(conv, bn, relu) def forward(self, feats): h, w = feats.size(2), feats.size(3) priors = [F.interpolate(input=stage(feats), size=(h, w), mode='bilinear', align_corners=False) for stage in self.stages] priors.append(feats) bottle = self.bottleneck(torch.cat(priors, 1)) if self.n_classes > 0: out = self.final(bottle) else: out = bottle return out
astmt-master
fblib/networks/deeplab_single_task/classifiers.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import math from copy import deepcopy from collections import OrderedDict import torch import torch.nn as nn from torch.nn.functional import upsample import torchvision.models.resnet as resnet from fblib.util.mypath import Path try: from itertools import izip except ImportError: # python3.x izip = zip try: from torch.hub import load_state_dict_from_url except ImportError: from torch.utils.model_zoo import load_url as load_state_dict_from_url __all__ = ['resnet18', 'resnet34', 'resnet26', 'resnet50', 'resnet101', 'resnet152'] model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet26': 'https://data.vision.ee.ethz.ch/kmaninis/share/MTL//models/resnet26-c36cf79a7.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet_C5(nn.Module): def __init__(self, block, layers): self.inplanes = 64 super(ResNet_C5, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.output = nn.Conv2d(2048, 1, kernel_size=1, stride=1, padding=0) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): input_size = x.size() x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.output(x) x = upsample(x, size=(input_size[2], input_size[3]), mode='bilinear') return x def load_pretrained(self, base_network): for module, module_ori in izip(self.modules(), base_network.modules()): if isinstance(module, nn.Conv2d) and isinstance(module_ori, nn.Conv2d): if module.weight.data.shape == module_ori.weight.data.shape: module.weight.data = deepcopy(module_ori.weight.data) module.bias = deepcopy(module_ori.bias) else: print('Skipping Conv layer with size: {} and target size: {}' .format(module.weight.data.shape, module_ori.weight.data.shape)) elif isinstance(module, nn.BatchNorm2d) and isinstance(module_ori, nn.BatchNorm2d): if module.weight.data.shape == module_ori.weight.data.shape: # Copy running mean and variance of batchnorm layers! module.running_mean.data = deepcopy(module_ori.running_mean.data) module.running_var.data = deepcopy(module_ori.running_var.data) module.weight.data = deepcopy(module_ori.weight) module.bias.data = deepcopy(module_ori.bias.data) else: print('Skipping Batchnorm layer with size: {} and target size: {}' .format(module.weight.data.shape, module_ori.weight.data.shape)) def resnet18(pretrained=False, **kwargs): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet_C5(BasicBlock, [2, 2, 2, 2], **kwargs) model_full = resnet.resnet18(pretrained=True) if pretrained: model.load_pretrained(model_full) return model def resnet26(pretrained=False, remote=True): """Constructs a ResNet-26 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet_C5(Bottleneck, [2, 2, 2, 2]) if pretrained: # Define ResNet26 ImageNet model_IN = resnet.ResNet(block=Bottleneck, layers=[2, 2, 2, 2], num_classes=1000) # Load checkpoint if remote: checkpoint = load_state_dict_from_url(model_urls['resnet26'], map_location='cpu', progress=True) else: checkpoint = torch.load( os.path.join(Path.models_dir(), 'resnet26.pth'), map_location=lambda storage, loc: storage) checkpoint = checkpoint['model_state'] # Handle DataParallel if 'module.' in list(checkpoint.keys())[0]: new_state_dict = OrderedDict() for k, v in checkpoint.items(): name = k.replace('module.', '') # remove `module.` new_state_dict[name] = v else: new_state_dict = checkpoint # Load pre-trained IN model model_IN.load_state_dict(new_state_dict) # Load weights to dense-labelling network model.load_pretrained(model_IN) return model def resnet34(pretrained=False, **kwargs): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet_C5(BasicBlock, [3, 4, 6, 3], **kwargs) model_full = resnet.resnet34(pretrained=True) if pretrained: model.load_pretrained(model_full) return model def resnet50(pretrained=False, **kwargs): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet_C5(Bottleneck, [3, 4, 6, 3], **kwargs) model_full = resnet.resnet50(pretrained=True) if pretrained: model.load_pretrained(model_full) return model def resnet101(pretrained=False, **kwargs): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet_C5(Bottleneck, [3, 4, 23, 3], **kwargs) model_full = resnet.resnet101(pretrained=True) if pretrained: model.load_pretrained(model_full) return model def resnet152(pretrained=False, **kwargs): """Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet_C5(Bottleneck, [3, 8, 36, 3], **kwargs) model_full = resnet.resnet152(pretrained=True) if pretrained: model.load_pretrained(model_full) return model if __name__ == '__main__': net = resnet26(pretrained=True)
astmt-master
fblib/networks/deeplab_single_task/resnet.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import math from copy import deepcopy import numpy as np import torch import torch.nn as nn from torch.nn import init from torch.nn import functional as F import fblib.networks.classification.resnext as resnext_imagenet from fblib.networks.deeplab_single_task.classifiers import PSPModule, AtrousPyramidModule, AtrousSpatialPyramidPoolingModule from fblib.layers.misc_layers import interp_surgery try: from itertools import izip except ImportError: # python3.x izip = zip affine_par = True # Trainable Batchnorm for the classifier def outS(i): i = int(i) i = (i + 1) / 2 i = int(np.ceil((i + 1) / 2.0)) i = (i + 1) / 2 return i def conv3x3(in_planes, out_planes, stride=1, dilation=1, cardinality=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, dilation=dilation, padding=dilation, bias=False, groups=cardinality) class ResNeXtBottleneck(nn.Module): expansion = 4 """ RexNeXt bottleneck type C (https://github.com/facebookresearch/ResNeXt/blob/master/models/resnext.lua) """ def __init__(self, inplanes, planes, base_width=4, stride=1, downsample=None, dilation=1, train_norm_layers=False, sync_bnorm=False, cardinality=32): super(ResNeXtBottleneck, self).__init__() D = int(math.floor(planes * (base_width / 64.0))) C = cardinality padding = dilation self.bnorm = nn.BatchNorm2d self.conv_reduce = nn.Conv2d(inplanes, D * C, kernel_size=1, stride=1, padding=0, bias=False) self.bn_reduce = self.bnorm(D * C, affine=affine_par) for i in self.bn_reduce.parameters(): i.requires_grad = train_norm_layers self.conv_conv = nn.Conv2d(D * C, D * C, kernel_size=3, stride=stride, padding=padding, groups=cardinality, bias=False, dilation=dilation) self.bn = self.bnorm(D * C, affine=affine_par) for i in self.bn.parameters(): i.requires_grad = train_norm_layers self.conv_expand = nn.Conv2d(D * C, planes * 4, kernel_size=1, stride=1, padding=0, bias=False) self.bn_expand = self.bnorm(planes * 4, affine=affine_par) for i in self.bn_expand.parameters(): i.requires_grad = train_norm_layers self.relu = nn.ReLU(inplace=True) self.downsample = downsample def forward(self, x): residual = x bottleneck = self.conv_reduce(x) bottleneck = self.relu(self.bn_reduce(bottleneck)) bottleneck = self.conv_conv(bottleneck) bottleneck = self.relu(self.bn(bottleneck)) bottleneck = self.conv_expand(bottleneck) bottleneck = self.bn_expand(bottleneck) if self.downsample is not None: residual = self.downsample(x) return self.relu(residual + bottleneck) class ResNeXt(nn.Module): def __init__(self, block, layers, n_classes, nInputChannels=3, classifier="atrous", output_stride=16, decoder=True, train_norm_layers=False, sync_bnorm=False, cardinality=32): super(ResNeXt, self).__init__() print("Constructing ResNeXt model...") print("Output stride: {}".format(output_stride)) print("Number of classes: {}".format(n_classes)) print("Number of Input Channels: {}".format(nInputChannels)) print("Cardinality: {}".format(cardinality)) v3_atrous_rates = [6, 12, 18] if output_stride == 8: dilations = (2, 4) strides = (2, 2, 2, 1, 1) v3_atrous_rates = [x * 2 for x in v3_atrous_rates] elif output_stride == 16: dilations = (1, 2) strides = (2, 2, 2, 2, 1) else: raise ValueError('Choose between output_stride 8 and 16') self.cardinality = cardinality self.inplanes = 64 self.classifier = classifier self.decoder = decoder self.train_norm_layers = train_norm_layers self.sync_bnorm = sync_bnorm self.bnorm = nn.BatchNorm2d # Layer structure self.conv1 = nn.Conv2d(nInputChannels, 64, kernel_size=7, stride=strides[0], padding=3, bias=False) self.bn1 = self.bnorm(64, affine=affine_par) for i in self.bn1.parameters(): i.requires_grad = self.train_norm_layers self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=strides[1], padding=1, ceil_mode=False) self.layer1 = self._make_layer(block, 64, layers[0], train_norm_layers=train_norm_layers) self.layer2 = self._make_layer(block, 128, layers[1], stride=strides[2], train_norm_layers=self.train_norm_layers) self.layer3 = self._make_layer(block, 256, layers[2], stride=strides[3], dilation=dilations[0], train_norm_layers=self.train_norm_layers) self.layer4 = self._make_layer(block, 512, layers[3], stride=strides[4], dilation=dilations[1], train_norm_layers=self.train_norm_layers) in_f, out_f = 2048, 512 if decoder: print('Using decoder') if classifier == "atrous": print('Initializing classifier: old atrous pyramid') out_f_classifier = 256 self.layer5 = AtrousPyramidModule(dilation_series=[6, 12, 18, 24], padding_series=[6, 12, 18, 24], n_classes=out_f_classifier, in_f=in_f) elif classifier == "psp": print('Initializing classifier: PSP') out_f_classifier = 256 self.layer5 = PSPModule(in_features=in_f, out_features=out_f_classifier, sizes=(1, 2, 3, 6), n_classes=0, sync_bnorm=self.sync_bnorm) elif classifier == 'atrous-v3': print('Initializing classifier: A-trous with global features (Deeplab-v3+)') out_f_classifier = 256 self.layer5 = AtrousSpatialPyramidPoolingModule(depth=out_f_classifier, dilation_series=v3_atrous_rates, sync_bnorm=self.sync_bnorm, cardinality=self.cardinality) else: out_f_classifier = out_f self.layer5 = None NormModule = self.bnorm kwargs_low = {"num_features": 48, "affine": affine_par} kwargs_out = {"num_features": 256, "affine": affine_par} self.low_level_reduce = nn.Sequential( nn.Conv2d(256, 48, kernel_size=1, bias=False), NormModule(**kwargs_low), nn.ReLU(inplace=True) ) self.concat_and_predict = nn.Sequential( conv3x3(out_f_classifier + 48, 256), NormModule(**kwargs_out), nn.ReLU(inplace=True), conv3x3(256, 256, cardinality=self.cardinality), NormModule(**kwargs_out), nn.ReLU(inplace=True), # final layer nn.Conv2d(256, n_classes, kernel_size=1, bias=True) ) else: if classifier == "atrous": print('Initializing classifier: A-trous pyramid') self.layer5 = AtrousPyramidModule(dilation_series=[6, 12, 18, 24], padding_series=[6, 12, 18, 24], n_classes=n_classes, in_f=in_f) elif classifier == "psp": print('Initializing classifier: PSP') self.layer5 = PSPModule(in_features=in_f, out_features=out_f, sizes=(1, 2, 3, 6), n_classes=n_classes, sync_bnorm=self.sync_bnorm) elif classifier == "atrous-v3": print('Initializing classifier: A-trous with global features (Deeplab-v3+)') self.layer5 = AtrousSpatialPyramidPoolingModule(depth=n_classes, in_f=in_f, dilation_series=v3_atrous_rates, sync_bnorm=self.sync_bnorm) else: self.layer5 = None # Initialize weights self._initialize_weights() # Check if batchnorm parameters are trainable self._verify_bnorm_params() def _make_layer(self, block, planes, blocks, stride=1, dilation=1, train_norm_layers=False): downsample = None if stride != 1 or self.inplanes != planes * block.expansion or dilation == 2 or dilation == 4: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), self.bnorm(planes * block.expansion, affine=affine_par), ) # Train batchnorm? for i in downsample._modules['1'].parameters(): i.requires_grad = train_norm_layers layers = [] layers.append(block(self.inplanes, planes, stride=stride, dilation=dilation, downsample=downsample, train_norm_layers=train_norm_layers, sync_bnorm=self.sync_bnorm, cardinality=self.cardinality)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, dilation=dilation, train_norm_layers=train_norm_layers, sync_bnorm=self.sync_bnorm, cardinality=self.cardinality)) return nn.Sequential(*layers) def _verify_bnorm_params(self): verify_trainable = True a = 0 for x in self.modules(): if isinstance(x, nn.BatchNorm2d): for y in x.parameters(): verify_trainable = (verify_trainable and y.requires_grad) a += isinstance(x, nn.BatchNorm2d) print("\nVerification: Trainable batchnorm parameters? Answer: {}\n".format(verify_trainable)) print("Asynchronous bnorm layers: {}".format(a)) def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, 0.01) elif isinstance(m, nn.BatchNorm2d) or isinstance(m, self.bnorm): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.ConvTranspose2d): m.weight.data.zero_() m.weight.data = interp_surgery(m) elif isinstance(m, nn.Linear): init.kaiming_normal_(m.weight) m.bias.data.zero_() def forward(self, x, bbox=None): h, w = x.shape[2:] x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) if self.decoder: x_low = x x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.layer5(x) if self.decoder: x = F.interpolate(x, size=(x_low.shape[2], x_low.shape[3]), mode='bilinear', align_corners=False) x_low = self.low_level_reduce(x_low) x = torch.cat([x, x_low], dim=1) x = self.concat_and_predict(x) x = F.interpolate(x, size=(h, w), mode='bilinear', align_corners=False) return x def load_pretrained(self, base_network, nInputChannels=3): flag = 0 i = 0 for module, module_ori in izip(self.modules(), base_network.modules()): if isinstance(module, nn.Conv2d) and isinstance(module_ori, nn.Conv2d): if not flag and nInputChannels != 3: module.weight[:, :3, :, :].data = deepcopy(module_ori.weight.data) module.bias = deepcopy(module_ori.bias) for i in range(3, int(module.weight.data.shape[1])): module.weight[:, i, :, :].data = deepcopy( module_ori.weight[:, -1, :, :][:, np.newaxis, :, :].data) flag = 1 i += 1 elif module.weight.data.shape == module_ori.weight.data.shape: i += 1 module.weight.data = deepcopy(module_ori.weight.data) module.bias = deepcopy(module_ori.bias) else: print('Skipping Conv layer with size: {} and target size: {}' .format(module.weight.data.shape, module_ori.weight.data.shape)) elif isinstance(module, self.bnorm) and \ (isinstance(module_ori, nn.BatchNorm2d) or isinstance(module_ori, self.bnorm)): if module.weight.data.shape == module_ori.weight.data.shape: i += 1 # Copy running mean and variance of batchnorm layers! module.running_mean.data = deepcopy(module_ori.running_mean.data) module.running_var.data = deepcopy(module_ori.running_var.data) module.weight.data = deepcopy(module_ori.weight.data) module.bias.data = deepcopy(module_ori.bias.data) else: print('Skipping Batchnorm layer with size: {} and target size: {}' .format(module.weight.data.shape, module_ori.weight.data.shape)) print("Content of {} layers successfully copied.".format(i)) def get_lr_params(model): """ This generator returns all the parameters of the net except for the last classification layer. Note that for each batchnorm layer, requires_grad is set to False in deeplab_resnet.py, therefore this function does not return any batchnorm parameter """ # for multi-GPU training if hasattr(model, 'module'): model = model.module b = [model.conv1, model.bn1, model.layer1, model.layer2, model.layer3, model.layer4, model.layer5] # If decoder exists if 'low_level_reduce' in model._modules.keys(): b.extend([model.low_level_reduce, model.concat_and_predict]) for i in range(len(b)): for k in b[i].parameters(): if k.requires_grad: yield k def get_1x_lr_params(model): """ This generator returns all the parameters of the net except for the last classification layer. Note that for each batchnorm layer, requires_grad is set to False in deeplab_resnet.py, therefore this function does not return any batchnorm parameter """ # for multi-GPU training if hasattr(model, 'module'): model = model.module b = [model.conv1, model.bn1, model.layer1, model.layer2, model.layer3, model.layer4] # If decoder exists if 'low_level_reduce' in model._modules.keys(): b.extend([model.low_level_reduce]) for i in range(len(b)): for k in b[i].parameters(): if k.requires_grad: yield k def get_10x_lr_params(model): """ This generator returns all the parameters for the last layer of the net, which does the classification of pixel into classes """ # for multi-GPU training if hasattr(model, 'module'): model = model.module b = [model.layer5] # If decoder exists if 'low_level_reduce' in model._modules.keys(): b.extend([model.concat_and_predict]) for j in range(len(b)): for k in b[j].parameters(): if k.requires_grad: yield k def lr_poly(base_lr, iter_, max_iter=100, power=0.9): return base_lr * ((1 - float(iter_) / max_iter) ** power) def resnext50(n_classes, pretrained=None, nInputChannels=3, cardinality=32, **kwargs): """Constructs a ResNeXt-50 model. Args: pretrained ('scratch', 'imagenet'): If True, returns a model pre-trained on ImageNet """ model = ResNeXt(ResNeXtBottleneck, layers=[3, 4, 6, 3], n_classes=n_classes, nInputChannels=nInputChannels, cardinality=cardinality, **kwargs) if pretrained == 'imagenet': model_full = resnext_imagenet.resnext50_32x4d(pretrained=True) model.load_pretrained(model_full, nInputChannels=nInputChannels) elif pretrained == 'scratch': print('Training from scratch') else: raise NotImplementedError('Select imagenet or scratch for pre-training') return model def resnext101(n_classes, pretrained=False, nInputChannels=3, cardinality=32, **kwargs): """Constructs a ResNeXt-101 model. Args: pretrained ('scratch', 'imagenet'): Select model trained on respective dataset. """ model = ResNeXt(ResNeXtBottleneck, layers=[3, 4, 23, 3], n_classes=n_classes, nInputChannels=nInputChannels, cardinality=cardinality, **kwargs) if pretrained == 'imagenet': model_full = resnext_imagenet.resnext101_32x4d(pretrained=True) model.load_pretrained(model_full, nInputChannels=nInputChannels) elif pretrained == 'scratch': print('Training from scratch') else: raise NotImplementedError('Select imagenet or scratch for pre-training') return model def test_flops(): from fblib.util.model_resources.flops import compute_gflops net = resnext50(n_classes=21, pretrained='imagenet', classifier="atrous-v3", output_stride=16, decoder=True, train_norm_layers=True, sync_bnorm=False) print('GFLOPS: {}'.format(compute_gflops(net, (2, 3, 256, 256)))) if __name__ == '__main__': test_flops()
astmt-master
fblib/networks/deeplab_single_task/deeplab_resnext.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import math import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import grad from fblib.util.custom_container import SequentialMultiTask import fblib.networks.classification.se_mobilenet_v2 as se_mobilenet_v2_imagenet from fblib.networks.deeplab_multi_task.discriminators import FullyConvDiscriminator from fblib.layers.reverse_grad import ReverseLayerF def conv3x3_mnet(planes, stride=1, dilation=1): """3x3 depth-wiseconvolution with padding""" return nn.Conv2d(planes, planes, kernel_size=3, stride=stride, dilation=dilation, padding=dilation, bias=False, groups=planes) class ConvBNMTL(nn.Module): """Simple 3x3 convolution, batchnorm and relu for MobileNet""" def __init__(self, inp, oup, stride): super(ConvBNMTL, self).__init__() self.conv = nn.Sequential( nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup), nn.ReLU6(inplace=True)) def forward(self, x, task=None): return self.conv(x) class SEMobileMultiTaskDict(nn.Module): """SE for multiple tasks, for MobileNet""" def __init__(self, channel, reduction=4, tasks=None): super(SEMobileMultiTaskDict, self).__init__() self.tasks = tasks self.avg_pool = nn.AdaptiveAvgPool2d(1) if self.tasks is None: self.fc = nn.Sequential(nn.Linear(channel, channel // reduction), nn.ReLU6(inplace=True), nn.Linear(channel // reduction, channel), nn.Sigmoid()) else: print('Initializing Mobile Squeeze and Excitation modules:') self.fc = nn.ModuleDict() for task in self.tasks: print('SE Mobile for task: {}'.format(task)) self.fc[task] = SequentialMultiTask(nn.Linear(channel, channel // reduction), nn.ReLU6(inplace=True), nn.Linear(channel // reduction, channel), nn.Sigmoid()) def forward(self, x, task=None): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) if self.tasks: y = self.fc[task](y).view(b, c, 1, 1) else: y = self.fc(y).view(b, c, 1, 1) return x * y class ConvCoupledSEMnet(nn.Module): """ SE-layer per task, coupled with convolutions and batchnorm. """ def __init__(self, tasks, process_layers=None, norm_kwargs=None, norm_per_task=False, squeeze=False, reduction=4): super(ConvCoupledSEMnet, self).__init__() self.norm_per_task = norm_per_task self.squeeze = squeeze if not isinstance(process_layers, list): process_layers = [process_layers] self.process = nn.Sequential(*process_layers) if self.squeeze: print('Initializing SE on decoder') self.se = SEMobileMultiTaskDict(process_layers[-1].out_channels, tasks=tasks, reduction=reduction) if self.norm_per_task: print('Initializing batchnorm per task on decoder') self.norm = nn.ModuleDict({task: nn.BatchNorm2d(**norm_kwargs) for task in tasks}) else: self.norm = nn.BatchNorm2d(**norm_kwargs) self.relu = nn.ReLU6(inplace=True) def forward(self, x, task): x = self.process(x) if self.norm_per_task: x = self.norm[task](x) else: x = self.norm(x) x = self.relu(x) if self.squeeze: x = self.se(x, task) return x class InvResidualCommon(nn.Module): """Common Inverted Residual block for Mobilenet """ def __init__(self, tasks, norm_per_task, hidden_dim, oup, stride, dilation=1): super(InvResidualCommon, self).__init__() self.norm_per_task = norm_per_task self.conv1 = nn.Conv2d(hidden_dim, hidden_dim, 3, stride, padding=dilation, groups=hidden_dim, bias=False, dilation=dilation) if self.norm_per_task: self.bn1 = nn.ModuleDict({task: nn.BatchNorm2d(hidden_dim) for task in tasks}) else: self.bn1 = nn.BatchNorm2d(hidden_dim) self.conv2 = nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False) if self.norm_per_task: print('Initializing Batchnorm per task on encoder') self.bn2 = nn.ModuleDict({task: nn.BatchNorm2d(oup) for task in tasks}) else: self.bn2 = nn.BatchNorm2d(oup) self.relu = nn.ReLU6(inplace=True) def forward(self, x, task=None): x = self.conv1(x) if self.norm_per_task: x = self.bn1[task](x) else: x = self.bn1(x) x = self.relu(x) x = self.conv2(x) if self.norm_per_task: x = self.bn2[task](x) else: x = self.bn2(x) return x class InvResidualExpand(nn.Module): """Expanding inverted residual block for Mobilenet """ def __init__(self, tasks, norm_per_task, inp, hidden_dim, oup, stride, dilation=1): super(InvResidualExpand, self).__init__() self.norm_per_task = norm_per_task self.conv1 = nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False) if self.norm_per_task: self.bn1 = nn.ModuleDict({task: nn.BatchNorm2d(hidden_dim) for task in tasks}) else: self.bn1 = nn.BatchNorm2d(hidden_dim) self.conv2 = nn.Conv2d(hidden_dim, hidden_dim, 3, stride, padding=dilation, groups=hidden_dim, bias=False, dilation=dilation) if self.norm_per_task: self.bn2 = nn.ModuleDict({task: nn.BatchNorm2d(hidden_dim) for task in tasks}) else: self.bn2 = nn.BatchNorm2d(hidden_dim) self.conv3 = nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False) if self.norm_per_task: print('Initializing batchnorm per task on encoder') self.bn3 = nn.ModuleDict({task: nn.BatchNorm2d(oup) for task in tasks}) else: self.bn3 = nn.BatchNorm2d(oup) self.relu = nn.ReLU6(inplace=True) def forward(self, x, task=None): x = self.conv1(x) if self.norm_per_task: x = self.bn1[task](x) else: x = self.bn1(x) x = self.relu(x) x = self.conv2(x) if self.norm_per_task: x = self.bn2[task](x) else: x = self.bn2(x) x = self.relu(x) x = self.conv3(x) if self.norm_per_task: x = self.bn3[task](x) else: x = self.bn3(x) return x class InvertedResidual(nn.Module): def __init__(self, inp, oup, stride, expand_ratio, tasks, dilation=1, norm_per_task=False, use_modulation=False): super(InvertedResidual, self).__init__() self.stride = stride assert stride in [1, 2] self.norm_per_task = norm_per_task hidden_dim = round(inp * expand_ratio) self.use_res_connect = self.stride == 1 and inp == oup if expand_ratio == 1: self.conv = InvResidualCommon(tasks=tasks, norm_per_task=self.norm_per_task, hidden_dim=hidden_dim, oup=oup, stride=stride, dilation=dilation) else: self.conv = InvResidualExpand(tasks=tasks, norm_per_task=self.norm_per_task, inp=inp, hidden_dim=hidden_dim, oup=oup, stride=stride, dilation=dilation) if use_modulation: print('Initializing SE per task on encoder') self.se = SEMobileMultiTaskDict(tasks=tasks, channel=oup, reduction=4) else: self.se = SEMobileMultiTaskDict(tasks=None, channel=oup, reduction=4) def forward(self, x, task=None): if self.use_res_connect: out = self.conv(x, task) out = self.se(out, task) return x + out else: out = self.conv(x, task) out = self.se(out, task) return out class ASPPMnet(nn.Module): """ Atrous Spatial Pyramid Pooling Module (DeepLab-v3+) for mobilenet """ def __init__(self, dilation_series=None, depth=64, in_f=320, tasks=None, squeeze=False, norm_per_task=True): super(ASPPMnet, self).__init__() if dilation_series is None: dilation_series = [6, 12, 18] padding_series = dilation_series self.bnorm = nn.BatchNorm2d self.squeeze = squeeze kwargs = {"num_features": depth, "affine": True} self.conv2d_list = nn.ModuleList() # 1x1 convolution self.conv2d_list.append( ConvCoupledSEMnet(tasks=tasks, process_layers=nn.Conv2d(in_f, depth, kernel_size=1, stride=1, bias=False), norm_kwargs=kwargs, norm_per_task=norm_per_task, squeeze=self.squeeze)) for dilation, padding in zip(dilation_series, padding_series): self.conv2d_list.append( ConvCoupledSEMnet(tasks=tasks, process_layers=nn.Conv2d(in_f, depth, kernel_size=3, stride=1, padding=padding, dilation=dilation, bias=False, groups=depth), norm_kwargs=kwargs, norm_per_task=norm_per_task, squeeze=self.squeeze)) # Global features self.conv2d_list.append( ConvCoupledSEMnet(tasks=tasks, process_layers=[nn.AdaptiveAvgPool2d(output_size=(1, 1)), nn.Conv2d(in_f, depth, kernel_size=1, stride=1, bias=False, groups=depth)], norm_kwargs=kwargs, norm_per_task=norm_per_task)) self.conv2d_final = ConvCoupledSEMnet(tasks=tasks, process_layers=nn.Conv2d(depth * 5, depth, kernel_size=1, stride=1, bias=False, groups=depth), norm_kwargs=kwargs, norm_per_task=norm_per_task, squeeze=self.squeeze) def forward(self, x, task=None): h, w = x.size(2), x.size(3) interm = [] for i in range(len(self.conv2d_list)): interm.append(self.conv2d_list[i](x, task)) # Upsample the global features interm[-1] = F.interpolate(input=interm[-1], size=(h, w), mode='bilinear', align_corners=False) # Concatenate the parallel streams out = torch.cat(interm, dim=1) # Final convolutional layer of the classifier out = self.conv2d_final(out, task) return out class ASPPDecoderMnet(nn.Module): """ ASPP-v3 decoder for Mobilenet """ def __init__(self, tasks, n_classes, in_channels_high=320, in_channels_low=24, out_f_classifier=64, atrous_rates=None, norm_per_task=True, squeeze=False, up=4, ): super(ASPPDecoderMnet, self).__init__() print('Initializing Mobilenet ASPP v3 Decoder for multiple tasks') if atrous_rates is None: atrous_rates = [6, 12, 18] out_f_low = int(48 * out_f_classifier / 256) kwargs_out = {"num_features": out_f_classifier, "affine": True} kwargs_low = {"num_features": out_f_low, "affine": True} self.up = up self.tasks = tasks print('Initializing classifier: ASPP with global features (Deeplab-v3+)') self.layer5 = ASPPMnet(in_f=in_channels_high, depth=out_f_classifier, dilation_series=atrous_rates, tasks=self.tasks, norm_per_task=norm_per_task, squeeze=squeeze) self.low_level_reduce = ConvCoupledSEMnet(tasks=tasks, process_layers=nn.Conv2d(in_channels_low, out_f_low, kernel_size=1, stride=1, bias=False, groups=math.gcd(in_channels_low, out_f_low)), norm_kwargs=kwargs_low, norm_per_task=norm_per_task, squeeze=squeeze) self.conv_concat = ConvCoupledSEMnet(tasks=tasks, process_layers=nn.Conv2d(out_f_classifier + out_f_low, out_f_classifier, kernel_size=3, stride=1, bias=False, padding=1, groups=math.gcd(out_f_classifier + out_f_low, out_f_classifier)), norm_kwargs=kwargs_out, norm_per_task=norm_per_task, squeeze=squeeze) self.conv_process = ConvCoupledSEMnet(tasks=tasks, process_layers=conv3x3_mnet(out_f_classifier), norm_kwargs=kwargs_out, norm_per_task=norm_per_task, squeeze=squeeze) self.conv_predict = nn.ModuleDict( {task: nn.Conv2d(out_f_classifier, n_classes[task], kernel_size=1, bias=True) for task in tasks}) def forward(self, x_low, x, task=None): x_low = self.low_level_reduce(x_low, task) x = self.layer5(x, task) x = F.interpolate(x, scale_factor=self.up, mode='bilinear', align_corners=False) x = torch.cat((x_low, x), dim=1) x = self.conv_concat(x, task) x = self.conv_process(x, task) features = x x = self.conv_predict[task](x) return x, features class SEMobileNetV2(nn.Module): def __init__(self, n_classes, width_mult=1., output_stride=16, tasks=None, train_norm_layers=False, mod_enc=False, mod_dec=False, use_dscr=False, dscr_k=1, dscr_d=2): super(SEMobileNetV2, self).__init__() self.use_dscr = use_dscr self.norm_per_task_enc = train_norm_layers and tasks and mod_enc self.norm_per_task_dec = train_norm_layers and tasks and mod_dec self.tasks = tasks self.task_dict = {x: i for i, x in enumerate(self.tasks)} atrous_rates = [6, 12, 18] if output_stride == 8: dilations = (2, 4) strides = (2, 2, 2, 1, 1) atrous_rates = [x * 2 for x in atrous_rates] elif output_stride == 16: dilations = (1, 2) strides = (2, 2, 2, 2, 1) else: raise ValueError('Choose between output_stride 8 and 16') block = InvertedResidual input_channel = 32 interverted_residual_setting = [ # t, c, n, s [1, 16, 1, 1, 1], [6, 24, 2, strides[1], 1], [6, 32, 3, strides[2], 1], [6, 64, 4, strides[3], dilations[0]], [6, 96, 3, 1, dilations[0]], [6, 160, 3, strides[4], dilations[1]], [6, 320, 1, 1, dilations[1]], ] input_channel = int(input_channel * width_mult) # build first layer self.features = [ConvBNMTL(3, input_channel, strides[0])] # build inverted residual blocks for t, c, n, s, dil in interverted_residual_setting: output_channel = int(c * width_mult) for i in range(n): if i == 0: self.features.append(block(input_channel, output_channel, s, expand_ratio=t, dilation=dil, tasks=self.tasks, norm_per_task=self.norm_per_task_enc, use_modulation=mod_enc)) else: self.features.append(block(input_channel, output_channel, 1, expand_ratio=t, dilation=dil, tasks=self.tasks, norm_per_task=self.norm_per_task_enc, use_modulation=mod_enc)) input_channel = output_channel # make it nn.Sequential self.features = SequentialMultiTask(*self.features) self.features_low = self.features[:4] self.features_high = self.features[4:] self.decoder = ASPPDecoderMnet(n_classes=n_classes, in_channels_high=320, in_channels_low=24, out_f_classifier=64, atrous_rates=atrous_rates, tasks=self.tasks, norm_per_task=self.norm_per_task_dec, squeeze=mod_dec) if self.use_dscr: self.dscr_k = dscr_k self.dscr_d = dscr_d self.task_label_shape = (128, 128) print('Using Discriminator with kernel size: {} and depth: {}'.format(self.dscr_k, self.dscr_d)) self.discriminator = self._get_discriminator(width_decoder=64) self.rev_layer = ReverseLayerF() self.criterion_classifier = torch.nn.CrossEntropyLoss(ignore_index=255) self._initialize_weights() self._verify_bnorm_params() def forward(self, x, task=None): in_shape = x.shape[2:] x_low = self.features_low(x, task) x = self.features_high(x_low, task) x, features = self.decoder(x_low, x, task) x = F.interpolate(x, size=(in_shape[-2], in_shape[-1]), mode='bilinear', align_corners=False) return x, features def compute_losses(self, outputs, features, criteria, gt_elems, alpha, p): """ Computes losses for tasks, losses for discriminator, output of discriminator, and gradients """ # Compute classification losses and gradients wrt features tasks = outputs.keys() grads = {} losses_tasks = {} task_labels = {} outputs_dscr = {} losses_dscr = {} with torch.enable_grad(): for task in tasks: curr_loss = p.TASKS.LOSS_MULT[task] * criteria[task](outputs[task], gt_elems[task]) losses_tasks[task] = curr_loss if self.use_dscr: # Create task labels task_labels[task] = self._create_task_labels(gt_elems, task).to(outputs[task].device) # Compute Gradients grads[task] = grad(curr_loss, features[task], create_graph=True)[0] grads_norm = grads[task].norm(p=2, dim=1).unsqueeze(1) + 1e-10 input_dscr = grads[task] / grads_norm input_dscr = self.rev_layer.apply(input_dscr, alpha) outputs_dscr[task] = self.discriminator(input_dscr) losses_dscr[task] = self.criterion_classifier(outputs_dscr[task], task_labels[task]) return losses_tasks, losses_dscr, outputs_dscr, grads, task_labels def _create_task_labels(self, gt_elems, task): valid = gt_elems[task].detach().clone() valid = F.interpolate(valid, size=self.task_label_shape, mode='nearest') valid[valid != 255] = self.task_dict[task] valid = valid[:, 0, :, :] return valid.long() def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): n = m.weight.size(1) m.weight.data.normal_(0, 0.01) m.bias.data.zero_() def _verify_bnorm_params(self): verify_trainable = True a = 0 for x in self.modules(): if isinstance(x, nn.BatchNorm2d): for y in x.parameters(): verify_trainable = (verify_trainable and y.requires_grad) a += isinstance(x, nn.BatchNorm2d) print("\nVerification: Trainable batchnorm parameters? Answer: {}\n".format(verify_trainable)) print("Asynchronous bnorm layers: {}".format(a)) def _get_discriminator(self, width_decoder): discriminator = FullyConvDiscriminator(in_channels=width_decoder, n_classes=len(self.tasks), kernel_size=self.dscr_k, depth=self.dscr_d) return discriminator def _define_if_copyable(self, module): is_copyable = isinstance(module, nn.Conv2d) \ or isinstance(module, nn.Linear) \ or isinstance(module, nn.BatchNorm2d) or \ isinstance(module, nn.BatchNorm2d) return is_copyable def _exists_task_in_name(self, layer_name): for task in self.tasks: if layer_name.find(task) > 0: return task return None def load_pretrained(self, base_network): copy_trg = {} for (name_trg, module_trg) in self.named_modules(): if self._define_if_copyable(module_trg): copy_trg[name_trg] = module_trg copy_src = {} for (name_src, module_src) in base_network.named_modules(): if self._define_if_copyable(module_src): copy_src[name_src] = module_src task_specific_counter = 0 mapping = {} for name_trg in copy_trg: # Handle first layers if 'decoder' in name_trg: continue elif 'discriminator' in name_trg: continue elif name_trg in copy_src: map_trg = name_trg elif 'features.0' in name_trg: map_trg = name_trg.replace('.conv', '') elif '.conv1' in name_trg: map_trg = name_trg.replace('.conv1', '.0') elif '.bn1' in name_trg: map_trg = name_trg.replace('.bn1', '.1') elif '.conv2' in name_trg: map_trg = name_trg.replace('.conv2', '.3') elif '.bn2' in name_trg: map_trg = name_trg.replace('.bn2', '.4') elif '.conv3' in name_trg: map_trg = name_trg.replace('.conv3', '.6') elif '.bn3' in name_trg: map_trg = name_trg.replace('.bn3', '.7') elif self._exists_task_in_name(name_trg): # Handle SE layers task = self._exists_task_in_name(name_trg) name_src = name_trg.replace('.' + task, '') if name_src in copy_src: map_trg = name_src task_specific_counter += 1 else: raise ValueError('Unknown module name found: {}'.format(name_trg)) # Handle BatchNom2d layers task = self._exists_task_in_name(map_trg) if task: map_trg = map_trg.replace('.' + task, '') mapping[name_trg] = map_trg i = 0 for name in mapping: module_trg = copy_trg[name] module_src = copy_src[mapping[name]] if module_trg.weight.data.shape != module_src.weight.data.shape: print('skipping layer with size: {} and target size: {}' .format(module_trg.weight.data.shape, module_src.weight.data.shape)) continue if isinstance(module_trg, nn.Conv2d) and isinstance(module_src, nn.Conv2d): module_trg.weight.data = module_src.weight.data.clone() if module_src.bias is not None: module_trg.bias = module_src.bias.clone() i += 1 elif isinstance(module_trg, nn.BatchNorm2d) and isinstance(module_src, nn.BatchNorm2d): # copy running mean and variance of batchnorm layers! module_trg.running_mean.data = module_src.running_mean.data.clone() module_trg.running_var.data = module_src.running_var.data.clone() module_trg.weight.data = module_src.weight.data.clone() module_trg.bias.data = module_src.bias.data.clone() i += 1 elif isinstance(module_trg, nn.Linear) and (isinstance(module_src, nn.Linear)): module_trg.weight.data = module_src.weight.data.clone() module_trg.bias.data = module_src.bias.data.clone() i += 1 print('\nContents of {} out of {} layers successfully copied, including {} task-specific layers\n' .format(i, len(mapping), task_specific_counter)) def get_lr_params(model, part='all', tasks=None): """ This generator returns all the parameters of the backbone """ def ismember(layer_txt, tasks): exists = False for task in tasks: exists = exists or layer_txt.find(task) > 0 return exists # for multi-GPU training if hasattr(model, 'module'): model = model.module if part == 'all': b = [model] elif part == 'backbone': b = [model.features] elif part == 'decoder': b = [model.decoder] elif part == 'generic': b = [model] elif part == 'task_specific': b = [model] elif part == 'discriminator': b = [model.discriminator] for i in range(len(b)): for name, k in b[i].named_parameters(): if k.requires_grad: if part == 'generic' or part == 'decoder' or part == 'backbone': if ismember(name, tasks): continue elif part == 'task_specific': if not ismember(name, tasks): continue yield k def se_mobilenet_v2(pretrained='scratch', **kwargs): model = SEMobileNetV2(**kwargs) if pretrained == 'imagenet': print('loading pre-trained imagenet model') model_full = se_mobilenet_v2_imagenet.se_mobilenet_v2(pretrained=True) model.load_pretrained(model_full) elif pretrained == 'scratch': print('using imagenet initialized from scratch') else: raise NotImplementedError('select either imagenet or scratch for pre-training') return model def main(): import fblib.util.pdf_visualizer as viz elems = ['image', 'semseg', 'edge'] tasks = ['semseg', 'edge'] net = se_mobilenet_v2(pretrained='imagenet', n_classes={'edge': 1, 'semseg': 21}, tasks=tasks, mod_enc=True, mod_dec=True, train_norm_layers=True) net.cuda() net.eval() img = torch.rand(2, 3, 512, 512) img = img.cuda() y = {} for task in tasks: y[task], _ = net.forward(img, task=elems[-1]) g = viz.make_dot(y, net.state_dict()) g.view(directory='./') if __name__ == '__main__': main()
astmt-master
fblib/networks/deeplab_multi_task/deeplab_se_mobilenet_v2_multitask.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from copy import deepcopy import torch import torch.nn as nn from torch.nn import init from torch.nn import functional as F from torch.autograd import grad import fblib.networks.classification.se_resnet as se_resnet from fblib.networks.deeplab_multi_task.decoders import ASPPv3Plus, UbernetDecoder from fblib.networks.deeplab_multi_task.discriminators import FullyConvDiscriminator from fblib.layers.reverse_grad import ReverseLayerF from fblib.layers.squeeze import SELayerMultiTaskDict from fblib.util.custom_container import SequentialMultiTask try: from itertools import izip except ImportError: # python3.x izip = zip affine_par = True class ConvCoupledBatchNormMT(nn.Module): def __init__(self, tasks=None, process_layer=None, norm=nn.BatchNorm2d, norm_kwargs=None, train_norm=False): super(ConvCoupledBatchNormMT, self).__init__() self.tasks = tasks # Processing layer self.process = process_layer # Batch Norm layer(s) if tasks is not None: print('Using per-task batchnorm parameters in Encoder: Downsampling') self.norm = nn.ModuleDict({task: norm(**norm_kwargs) for task in self.tasks}) else: self.norm = norm(**norm_kwargs) # Define whether batchnorm parameters are trainable for i in self.norm.parameters(): i.requires_grad = train_norm def forward(self, x, task=None): x = self.process(x) if self.tasks is None: x = self.norm(x) else: x = self.norm[task](x) return x class SEBottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, train_norm_layers=False, reduction=16, tasks=None, squeeze_enc=True, adapters=False): super(SEBottleneck, self).__init__() self.adapters = adapters self.per_task_norm_layers = train_norm_layers and tasks padding = dilation self.bnorm = nn.BatchNorm2d self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) # change self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, # change padding=padding, bias=False, dilation=dilation) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) if self.adapters: print('Using parallel adapters in Encoder') self.adapt = nn.ModuleDict({task: nn.Conv2d(planes, planes, kernel_size=1, bias=False) for task in tasks}) if self.per_task_norm_layers: print('Using per-task batchnorm parameters in Encoder') self.bn1 = nn.ModuleDict({task: self.bnorm(planes, affine=affine_par) for task in tasks}) self.bn2 = nn.ModuleDict({task: self.bnorm(planes, affine=affine_par) for task in tasks}) self.bn3 = nn.ModuleDict({task: self.bnorm(planes * 4, affine=affine_par) for task in tasks}) else: self.bn1 = self.bnorm(planes, affine=affine_par) self.bn2 = self.bnorm(planes, affine=affine_par) self.bn3 = self.bnorm(planes * 4, affine=affine_par) for i in self.bn1.parameters(): i.requires_grad = train_norm_layers for i in self.bn2.parameters(): i.requires_grad = train_norm_layers for i in self.bn3.parameters(): i.requires_grad = train_norm_layers self.relu = nn.ReLU(inplace=True) if squeeze_enc: self.se = SELayerMultiTaskDict(channel=planes * 4, reduction=reduction, tasks=tasks) else: self.se = SELayerMultiTaskDict(channel=planes * 4, reduction=reduction, tasks=None) self.downsample = downsample self.stride = stride def forward(self, x, task=None): residual = x out = self.conv1(x) if self.per_task_norm_layers: out = self.bn1[task](out) else: out = self.bn1(out) out = self.relu(out) if self.adapters: out = self.adapt[task](out) + self.conv2(out) else: out = self.conv2(out) if self.per_task_norm_layers: out = self.bn2[task](out) else: out = self.bn2(out) out = self.relu(out) out = self.conv3(out) if self.per_task_norm_layers: out = self.bn3[task](out) else: out = self.bn3(out) out = self.se(out, task) if self.downsample is not None: residual = self.downsample(x, task) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, n_classes, classifier='atrous-v3', output_stride=16, tasks=None, train_norm_layers=False, width_decoder=256, squeeze_enc=True, squeeze_dec=False, adapters=False, norm_per_task=False, dscr_type='fconv', dscr_d=2, dscr_k=1): super(ResNet, self).__init__() print("Constructing ResNet model...") print("Output stride: {}".format(output_stride)) print("Number of classes: {}".format(n_classes)) v3_atrous_rates = [6, 12, 18] if output_stride == 8: dilations = (2, 4) strides = (2, 2, 2, 1, 1) v3_atrous_rates = [x * 2 for x in v3_atrous_rates] elif output_stride == 16: dilations = (1, 2) strides = (2, 2, 2, 2, 1) else: raise ValueError('Choose between output_stride 8 and 16') self.inplanes = 64 self.classifier = classifier self.train_norm_layers = train_norm_layers self.bnorm = nn.BatchNorm2d self.squeeze_enc = squeeze_enc self.adapters = adapters self.tasks = tasks self.task_dict = {x: i for i, x in enumerate(self.tasks)} self.per_task_norm_layers = self.train_norm_layers and self.tasks self.use_dscr = True if dscr_type is not None else False # Network structure self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=strides[0], padding=3, bias=False) self.bn1 = self.bnorm(64, affine=affine_par) for i in self.bn1.parameters(): i.requires_grad = self.train_norm_layers self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=strides[1], padding=1, ceil_mode=False) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=strides[2]) self.layer3 = self._make_layer(block, 256, layers[2], stride=strides[3], dilation=dilations[0]) self.layer4 = self._make_layer(block, 512, layers[3], stride=strides[4], dilation=dilations[1]) width_low = 48 * width_decoder / 256 # Adapt in case of thinner classifiers assert (int(width_low) == width_low) print('Using decoder') if classifier == 'atrous-v3' or classifier == 'conv': print('Initializing classifier: A-trous with global features (Deeplab-v3+)') self.decoder = ASPPv3Plus(tasks=self.tasks, n_classes=n_classes, classifier=classifier, in_channels_low=256, in_channels_high=2048, out_f_classifier=width_decoder, atrous_rates=v3_atrous_rates, norm=self.bnorm, norm_per_task=norm_per_task, squeeze=squeeze_dec, adapters=self.adapters, ) elif classifier == 'uber': print('Initializing Ubernet classifier') self.decoder = UbernetDecoder(tasks=self.tasks, n_classes=n_classes, in_channels_low=256, in_channels_high=2048, norm=self.bnorm) else: raise NotImplementedError('Choose one of the available classifiers') if self.use_dscr: print('Using Discriminator') self.dscr_d = dscr_d self.dscr_k = dscr_k self.task_label_shape = (128, 128) self.discriminator = self._get_discriminator(width_decoder) self.rev_layer = ReverseLayerF() self.criterion_classifier = torch.nn.CrossEntropyLoss(ignore_index=255) self._initialize_weights() # Check if batchnorm parameters are trainable self._verify_bnorm_params() def _make_layer(self, block, planes, blocks, stride=1, dilation=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion or dilation == 2 or dilation == 4: downsample = ConvCoupledBatchNormMT(tasks=self.tasks if self.per_task_norm_layers else None, process_layer=nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), norm=self.bnorm, norm_kwargs={'num_features': planes * block.expansion, 'affine': affine_par}, train_norm=self.train_norm_layers) layers = [block(self.inplanes, planes, stride=stride, dilation=dilation, downsample=downsample, train_norm_layers=self.train_norm_layers, tasks=self.tasks, squeeze_enc=self.squeeze_enc, adapters=self.adapters)] self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, dilation=dilation, train_norm_layers=self.train_norm_layers, tasks=self.tasks, squeeze_enc=self.squeeze_enc, adapters=self.adapters)) return SequentialMultiTask(*layers) def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): m.weight.data.normal_(0, 0.01) elif isinstance(m, nn.BatchNorm2d) or isinstance(m, self.bnorm): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): init.kaiming_normal_(m.weight) m.bias.data.zero_() # zero-initialization for residual adapters for name, m in self.named_modules(): if name.find('adapt') >= 0 and isinstance(m, nn.Conv2d): m.weight.data.fill_(0) def _verify_bnorm_params(self): verify_trainable = True a = 0 for x in self.modules(): if isinstance(x, nn.BatchNorm2d): for y in x.parameters(): verify_trainable = (verify_trainable and y.requires_grad) a += isinstance(x, nn.BatchNorm2d) print("\nVerification: Trainable batchnorm parameters? Answer: {}\n".format(verify_trainable)) print("Asynchronous bnorm layers: {}".format(a)) def forward(self, x_in, task=None): x = x_in in_shape = x.shape[2:] # First Layers x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) # Stage #1 and low-level features x = self.layer1(x, task) x_low = x # Stages #2 - #4 x = self.layer2(x, task=task) x = self.layer3(x, task=task) x = self.layer4(x, task=task) # Decoder x, features = self.decoder(x_low, x, task=task) out = F.interpolate(x, size=(in_shape[-2], in_shape[-1]), mode='bilinear', align_corners=False) return out, features def compute_losses(self, outputs, features, criteria, gt_elems, alpha, p): """ Computes losses for tasks, losses for discriminator, output of discriminator, and gradients """ # Compute classification losses and gradients wrt features tasks = outputs.keys() grads = {} losses_tasks = {} task_labels = {} outputs_dscr = {} losses_dscr = {} with torch.enable_grad(): for task in tasks: curr_loss = p.TASKS.LOSS_MULT[task] * criteria[task](outputs[task], gt_elems[task]) losses_tasks[task] = curr_loss if self.use_dscr: # Create task labels task_labels[task] = self._create_task_labels(gt_elems, task).to(outputs[task].device) # Compute Gradients grads[task] = grad(curr_loss, features[task], create_graph=True)[0] grads_norm = grads[task].norm(p=2, dim=1).unsqueeze(1) + 1e-10 input_dscr = grads[task] / grads_norm input_dscr = self.rev_layer.apply(input_dscr, alpha) outputs_dscr[task] = self.discriminator(input_dscr) losses_dscr[task] = self.criterion_classifier(outputs_dscr[task], task_labels[task]) return losses_tasks, losses_dscr, outputs_dscr, grads, task_labels def _get_discriminator(self, width_decoder): discriminator = FullyConvDiscriminator(in_channels=width_decoder, n_classes=len(self.tasks), kernel_size=self.dscr_k, depth=self.dscr_d) return discriminator def _create_task_labels(self, gt_elems, task): valid = deepcopy(gt_elems[task].detach()) valid = F.interpolate(valid, size=self.task_label_shape, mode='nearest') valid[valid != 255] = self.task_dict[task] valid = valid[:, 0, :, :] return valid.long() def _define_if_copyable(self, module): is_copyable = isinstance(module, nn.Conv2d) \ or isinstance(module, nn.Linear) \ or isinstance(module, nn.BatchNorm2d) or \ isinstance(module, self.bnorm) return is_copyable def _exists_task_in_name(self, layer_name): for task in self.tasks: if layer_name.find(task) > 0: return task return None def load_pretrained(self, base_network): copy_trg = {} for (name_trg, module_trg) in self.named_modules(): if self._define_if_copyable(module_trg): copy_trg[name_trg] = module_trg copy_src = {} for (name_src, module_src) in base_network.named_modules(): if self._define_if_copyable(module_src): copy_src[name_src] = module_src task_specific_counter = 0 mapping = {} for name_trg in copy_trg: if name_trg in copy_src: mapping[name_trg] = name_trg # Copy ImageNet SE layers to each task-specific layer elif self.tasks is not None: task = self._exists_task_in_name(name_trg) if task: name_src = name_trg.replace('.' + task, '') if name_src in copy_src: mapping[name_trg] = name_src task_specific_counter += 1 # Handle downsampling layers for name_trg in copy_trg: name_src = None if name_trg.find('downsample') > 0: if name_trg.find('process') > 0: name_src = name_trg.replace('process', '0') elif name_trg.find('norm'): if self.per_task_norm_layers is not None: task = self._exists_task_in_name(name_trg) if task: name_src = name_trg.replace('norm.' + task, '1') else: name_src = name_trg.replace('norm', '1') if name_src in copy_src: mapping[name_trg] = name_src i = 0 for name in mapping: module_trg = copy_trg[name] module_src = copy_src[mapping[name]] if module_trg.weight.data.shape != module_src.weight.data.shape: print('Skipping layer with size: {} and target size: {}' .format(module_trg.weight.data.shape, module_src.weight.data.shape)) continue if isinstance(module_trg, nn.Conv2d) and isinstance(module_src, nn.Conv2d): module_trg.weight.data = deepcopy(module_src.weight.data) module_trg.bias = deepcopy(module_src.bias) i += 1 elif isinstance(module_trg, self.bnorm) and (isinstance(module_src, nn.BatchNorm2d) or isinstance(module_src, self.bnorm)): # Copy running mean and variance of batchnorm layers! module_trg.running_mean.data = deepcopy(module_src.running_mean.data) module_trg.running_var.data = deepcopy(module_src.running_var.data) module_trg.weight.data = deepcopy(module_src.weight.data) module_trg.bias.data = deepcopy(module_src.bias.data) i += 1 elif isinstance(module_trg, nn.Linear) and (isinstance(module_src, nn.Linear)): module_trg.weight.data = deepcopy(module_src.weight.data) module_trg.bias.data = deepcopy(module_src.bias.data) i += 1 print('\nContent of {} out of {} layers successfully copied, including {} task-specific layers\n' .format(i, len(mapping), task_specific_counter)) def get_lr_params(model, part='all', tasks=None): """ This generator returns all the parameters of the backbone """ def ismember(layer_txt, tasks): exists = False for task in tasks: exists = exists or layer_txt.find(task) > 0 return exists # for multi-GPU training if hasattr(model, 'module'): model = model.module if part == 'all': b = [model] elif part == 'backbone': b = [model.conv1, model.bn1, model.layer1, model.layer2, model.layer3, model.layer4] elif part == 'decoder': b = [model.decoder] elif part == 'generic': b = [model] elif part == 'task_specific': b = [model] elif part == 'discriminator': b = [model.discriminator] for i in range(len(b)): for name, k in b[i].named_parameters(): if k.requires_grad: if part == 'generic' or part == 'decoder' or part == 'backbone': if ismember(name, tasks): continue elif part == 'task_specific': if not ismember(name, tasks): continue yield k def se_resnet26(n_classes, pretrained='scratch', **kwargs): """Constructs a SE-ResNet-18 model. Args: pretrained (str): If True, returns a model pre-trained on ImageNet """ print('Constructing ResNet18') model = ResNet(SEBottleneck, [2, 2, 2, 2], n_classes, **kwargs) if pretrained == 'imagenet': print('Loading pre-trained ImageNet model') model_full = se_resnet.se_resnet26(pretrained=True) model.load_pretrained(model_full) elif pretrained == 'scratch': print('Training from scratch!') else: raise NotImplementedError('Select between scratch and imagenet for pre-training') return model def se_resnet50(n_classes, pretrained='scratch', **kwargs): """Constructs a SE-ResNet-50 model. Args: pretrained (str): If True, returns a model pre-trained on ImageNet """ print('Constructing ResNet50') model = ResNet(SEBottleneck, [3, 4, 6, 3], n_classes, **kwargs) if pretrained == 'imagenet': print('Loading pre-trained ImageNet model') model_full = se_resnet.se_resnet50(pretrained=True) model.load_pretrained(model_full) elif pretrained == 'scratch': print('Training from scratch!') else: raise NotImplementedError('Select between scratch and imagenet for pre-training') return model def se_resnet101(n_classes, pretrained='scratch', **kwargs): """Constructs a SE-ResNet-101 model. Args: pretrained (str): Select model trained on respective dataset. """ print('Constructing ResNet101') model = ResNet(SEBottleneck, [3, 4, 23, 3], n_classes, **kwargs) if pretrained == 'imagenet': print('Loading pre-trained ImageNet model') model_full = se_resnet.se_resnet101(pretrained=True) model.load_pretrained(model_full) elif pretrained == 'scratch': print('Training from scratch!') else: raise NotImplementedError('Select between scratch and imagenet for pre-training') return model def test_vis_net(net, elems): import cv2 from torchvision import transforms from fblib.dataloaders import custom_transforms as tr from fblib.dataloaders.pascal_context import PASCALContext from torch.utils.data import DataLoader import fblib.util.visualizepy as viz tasks = elems[1:] net.cuda() # Define the transformations transform = transforms.Compose( [tr.FixedResize(resolutions={x: (512, 512) for x in elems}, flagvals={x: cv2.INTER_NEAREST for x in elems}), tr.ToTensor()]) # Define dataset, tasks, and the dataloader dataset = PASCALContext(split=['train'], transform=transform, do_edge=True, do_human_parts=True, do_semseg=True) dataloader = torch.utils.data.DataLoader(dataset, batch_size=2, shuffle=False, num_workers=0) net.eval() sample = next(iter(dataloader)) img = sample['image'] task_gts = list(sample.keys()) img = img.cuda() y = {} for task in task_gts: if task in tasks: y[task], _ = net.forward(img, task=task) g = viz.make_dot(y, net.state_dict()) g.view(directory='./') def test_gflops(net, elems): from fblib.util.model_resources.flops import compute_gflops batch_size = 2 gflops_1_task = compute_gflops(net, in_shape=(batch_size, 3, 256, 256), tasks=elems[1]) print('GFLOPS for 1 task: {}'.format(gflops_1_task / batch_size)) def test_lr_params(net, tasks): params = get_lr_params(net, part='generic', tasks=tasks) for p in params: print(p) def main(): elems = ['image', 'edge', 'semseg'] tasks = elems[1:] squeeze_enc = False squeeze_dec = False adapters = False width_decoder = 256 norm_per_task = False # Load Network net = se_resnet26(n_classes={'edge': 1, 'semseg': 21}, pretrained='imagenet', classifier='atrous-v3', output_stride=8, tasks=tasks, width_decoder=width_decoder, squeeze_enc=squeeze_enc, squeeze_dec=squeeze_dec, adapters=adapters, norm_per_task=norm_per_task, train_norm_layers=True, dscr_type=None) test_vis_net(net, elems) test_gflops(net, elems) test_lr_params(net, tasks) if __name__ == '__main__': main()
astmt-master
fblib/networks/deeplab_multi_task/deeplab_se_resnet_multitask.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F from fblib.networks.deeplab_multi_task.classifiers_multitask import AtrousSpatialPyramidPoolingModule from fblib.layers.squeeze import ConvCoupledSE def conv3x3(in_planes, out_planes, stride=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, dilation=dilation, padding=dilation, bias=False) class UbernetDecoder(nn.Module): """ Simple Shallow decoder (like Ubernet) """ def __init__(self, tasks, in_channels_low, in_channels_high, n_classes, norm=nn.BatchNorm2d, ret_features=True): super(UbernetDecoder, self).__init__() self.tasks = tasks self.ret_features = ret_features self.high_level = nn.ModuleDict() self.low_level = nn.ModuleDict() self.predict = nn.ModuleDict() for task in tasks: self.high_level[task] = nn.Sequential(nn.Conv2d(in_channels=in_channels_high, out_channels=n_classes[task], kernel_size=1, bias=False), norm(n_classes[task]), nn.ReLU(inplace=True)) self.low_level[task] = nn.Sequential(nn.Conv2d(in_channels=in_channels_low, out_channels=n_classes[task], kernel_size=1, bias=False), norm(n_classes[task]), nn.ReLU(inplace=True)) self.predict[task] = nn.Conv2d(in_channels=2 * n_classes[task], out_channels=n_classes[task], kernel_size=1, bias=True) def forward(self, x_low, x_high, task=None): # Reduce dimensionality of low-level features x_low = self.low_level[task](x_low) # Reduce dimensionality of high-level features and upscale x_high = self.high_level[task](x_high) x_high = F.interpolate(x_high, size=(x_low.shape[2], x_low.shape[3]), mode='bilinear', align_corners=False) # Concatenate features x = torch.cat((x_low, x_high), dim=1) features = x # Make final prediction x = self.predict[task](x) if self.ret_features: return x, features else: return x def test_ubernet(): print('Testing UberNet-like decoder') tasks = ['edge', 'semseg', 'human_parts'] out_channels = {'edge': 1, 'semseg': 21, 'human_parts': 7} in_channels_low = 256 in_channels_high = 2048 x_low = torch.rand(2, in_channels_low, 128, 128) x_high = torch.rand(2, in_channels_high, 64, 64) net = UbernetDecoder(tasks=tasks, in_channels_low=in_channels_low, in_channels_high=in_channels_high, n_classes=out_channels) x_low, x_high, net = x_low.cuda(), x_high.cuda(), net.cuda() for task in tasks: out, _ = net(x_low, x_high, task=task) print('Task: {}, Output Shape: {}'.format(task, out.shape)) class ASPPv3Plus(nn.Module): """ ASPP-v3 decoder """ def __init__(self, tasks, n_classes, classifier='atrous-v3', in_channels_low=256, in_channels_high=2048, out_f_classifier=64, atrous_rates=None, norm=nn.BatchNorm2d, norm_per_task=True, squeeze=False, adapters=False, ): super(ASPPv3Plus, self).__init__() print('Initializing ASPP v3 Decoder for multiple tasks') if atrous_rates is None: atrous_rates = [6, 12, 18] out_f_low = 48 * out_f_classifier / 256 # Adapt in case of thinner classifiers assert (int(out_f_low) == out_f_low) out_f_low = int(out_f_low) kwargs_low = {"num_features": int(out_f_low), "affine": True} kwargs_out = {"num_features": out_f_classifier, "affine": True} self.tasks = tasks if classifier == 'atrous-v3': print('Initializing classifier: ASPP with global features (Deeplab-v3+)') self.layer5 = AtrousSpatialPyramidPoolingModule(in_f=in_channels_high, depth=out_f_classifier, dilation_series=atrous_rates, tasks=self.tasks, norm_per_task=norm_per_task, squeeze=squeeze, adapters=adapters) elif classifier == 'conv': self.layer5 = ConvCoupledSE(tasks=tasks, process_layers=nn.Conv2d(in_channels_high, out_f_classifier, kernel_size=1, bias=False), norm=norm, norm_kwargs=kwargs_low, norm_per_task=norm_per_task, squeeze=squeeze, adapters=adapters, reduction=4) else: raise NotImplementedError('Choose one of the available classifiers') self.low_level_reduce = ConvCoupledSE(tasks=tasks, process_layers=nn.Conv2d(in_channels_low, int(out_f_low), kernel_size=1, bias=False), norm=norm, norm_kwargs=kwargs_low, norm_per_task=norm_per_task, squeeze=squeeze, adapters=adapters, reduction=4) self.conv_concat = ConvCoupledSE(tasks=tasks, process_layers=conv3x3(out_f_classifier + int(out_f_low), out_f_classifier), norm=norm, norm_kwargs=kwargs_out, norm_per_task=norm_per_task, squeeze=squeeze, adapters=adapters) self.conv_process = ConvCoupledSE(tasks=tasks, process_layers=conv3x3(out_f_classifier, out_f_classifier), norm=norm, norm_kwargs=kwargs_out, norm_per_task=norm_per_task, squeeze=squeeze, adapters=adapters) self.conv_predict = nn.ModuleDict( {task: nn.Conv2d(out_f_classifier, n_classes[task], kernel_size=1, bias=True) for task in tasks}) def forward(self, x_low, x, task=None): x_low = self.low_level_reduce(x_low, task) x = self.layer5(x, task) x = F.interpolate(x, size=(x_low.shape[2], x_low.shape[3]), mode='bilinear', align_corners=False) x = torch.cat((x, x_low), dim=1) x = self.conv_concat(x, task) x = self.conv_process(x, task) features = x x = self.conv_predict[task](x) return x, features def test_aspp(): print('Testing ASPP-v3 decoder') import fblib.util.visualizepy as viz tasks = ['edge'] n_classes = {'edge': 1} in_channels_low = 256 in_channels_high = 2048 out_f_classifier = 64 x_low = torch.rand(2, in_channels_low, 128, 128).requires_grad_() x_high = torch.rand(2, in_channels_high, 64, 64).requires_grad_() net = ASPPv3Plus(tasks=tasks, n_classes=n_classes, classifier='atrous-v3', in_channels_high=in_channels_high, in_channels_low=in_channels_low, out_f_classifier=out_f_classifier, norm=nn.BatchNorm2d, squeeze=True) x_low, x_high, net = x_low.cuda(), x_high.cuda(), net.cuda() out = {} for task in tasks: out[task], _ = net(x_low, x_high, task=task) print('Task: {}, Output Shape: {}'.format(task, out[task].shape)) g = viz.make_dot(out, net.state_dict()) g.view(directory='./') def main(): test_ubernet() test_aspp() if __name__ == '__main__': main()
astmt-master
fblib/networks/deeplab_multi_task/decoders.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch.nn as nn class Discriminator(nn.Module): def __init__(self, in_channels, n_classes): super(Discriminator, self).__init__() self.model = nn.Sequential( nn.Linear(in_channels, 128), nn.LeakyReLU(0.2, inplace=True), nn.Linear(128, n_classes), ) def forward(self, x): x = self.model(x) return x class FullyConvDiscriminator(nn.Module): def __init__(self, in_channels, n_classes, kernel_size=1, depth=1): super(FullyConvDiscriminator, self).__init__() padding = (kernel_size - 1) / 2 assert(padding == int(padding)) padding = int(padding) print('\nInitializing Fully Convolutional Discriminator with depth: {} and kernel size: {}' .format(depth, kernel_size)) if depth == 1: self.model = nn.Sequential( nn.Conv2d(in_channels, n_classes, kernel_size=kernel_size, padding=padding, bias=True)) elif depth == 2: self.model = nn.Sequential( nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size, padding=padding, bias=False), # nn.BatchNorm2d(in_channels), nn.ReLU(inplace=True), nn.Conv2d(in_channels, n_classes, kernel_size=kernel_size, padding=padding, bias=True)) def forward(self, x): x = self.model(x) return x class AvePoolDiscriminator(nn.Module): def __init__(self, in_channels, n_classes): super(AvePoolDiscriminator, self).__init__() self.avepool = nn.AdaptiveAvgPool2d(output_size=(1, 1)) self.model = nn.Sequential( nn.Linear(in_features=in_channels, out_features=in_channels), nn.LeakyReLU(0.2, inplace=True), nn.Linear(in_features=in_channels, out_features=n_classes), ) def forward(self, x): x = self.avepool(x) x = x.view(x.size(0), -1) x = self.model(x) return x class ConvDiscriminator(nn.Module): def __init__(self, in_channels, n_classes): super(ConvDiscriminator, self).__init__() self.model = nn.Sequential( nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1, bias=False, stride=4), nn.BatchNorm2d(in_channels), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1, bias=False, stride=4), nn.BatchNorm2d(in_channels), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1, bias=False, stride=4), nn.BatchNorm2d(in_channels), nn.LeakyReLU(0.2, inplace=True), nn.AdaptiveAvgPool2d(output_size=(1, 1)) ) self.classifier = nn.Linear(in_features=in_channels, out_features=n_classes) def forward(self, x): x = self.model(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x
astmt-master
fblib/networks/deeplab_multi_task/discriminators.py
astmt-master
fblib/networks/deeplab_multi_task/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn from torch.nn import functional as F from torch.nn import init from fblib.layers.squeeze import ConvCoupledSE affine_par = True class AtrousSpatialPyramidPoolingModule(nn.Module): """ Atrous Spatial Pyramid Pooling Module (DeepLab-v3+) """ def __init__(self, dilation_series=None, depth=256, in_f=2048, cardinality=1, exist_decoder=True, tasks=None, squeeze=False, adapters=False, se_after_relu=True, norm_per_task=True): super(AtrousSpatialPyramidPoolingModule, self).__init__() if dilation_series is None: dilation_series = [6, 12, 18] padding_series = dilation_series self.bnorm = nn.BatchNorm2d self.squeeze = squeeze kwargs = {"num_features": depth, "affine": affine_par} self.conv2d_list = nn.ModuleList() # 1x1 convolution self.conv2d_list.append( ConvCoupledSE(tasks=tasks, process_layers=nn.Conv2d(in_f, depth, kernel_size=1, stride=1, bias=False), norm=self.bnorm, norm_kwargs=kwargs, norm_per_task=norm_per_task, squeeze=self.squeeze, adapters=adapters, se_after_relu=se_after_relu)) for dilation, padding in zip(dilation_series, padding_series): self.conv2d_list.append( ConvCoupledSE(tasks=tasks, process_layers=nn.Conv2d(in_f, depth, kernel_size=3, stride=1, padding=padding, dilation=dilation, bias=False, groups=cardinality), norm=self.bnorm, norm_kwargs=kwargs, norm_per_task=norm_per_task, squeeze=self.squeeze, adapters=adapters, se_after_relu=se_after_relu)) # Global features self.conv2d_list.append( ConvCoupledSE(tasks=tasks, process_layers=[nn.AdaptiveAvgPool2d(output_size=(1, 1)), nn.Conv2d(in_f, depth, kernel_size=1, stride=1, bias=False)], norm=self.bnorm, norm_kwargs=kwargs, norm_per_task=norm_per_task, squeeze=self.squeeze, se_after_relu=se_after_relu)) if exist_decoder: self.conv2d_final = ConvCoupledSE(tasks=tasks, process_layers=nn.Conv2d(depth * 5, depth, kernel_size=1, stride=1, bias=False), norm=self.bnorm, norm_kwargs=kwargs, norm_per_task=norm_per_task, squeeze=self.squeeze, adapters=adapters, se_after_relu=se_after_relu) else: self.conv2d_final = nn.Sequential(nn.Conv2d(depth * 5, depth, kernel_size=1, stride=1, bias=True)) def forward(self, x, task=None): h, w = x.size(2), x.size(3) interm = [] for i in range(len(self.conv2d_list)): interm.append(self.conv2d_list[i](x, task)) # Upsample the global features interm[-1] = F.interpolate(input=interm[-1], size=(h, w), mode='bilinear', align_corners=False) # Concatenate the parallel streams out = torch.cat(interm, dim=1) # Final convolutional layer of the classifier out = self.conv2d_final(out, task) return out class ConvClassifier(nn.Module): """ A simple convolutional classifier """ def __init__(self, depth=256, in_f=2048, cardinality=1, exist_decoder=True, tasks=None, squeeze=False, se_after_relu=True, norm_per_task=False): super(ConvClassifier, self).__init__() self.bnorm = nn.BatchNorm2d self.squeeze = squeeze kwargs = {"num_features": depth, "affine": affine_par} self.conv2d = ConvCoupledSE(tasks=tasks, process_layers=nn.Conv2d(in_f, depth, kernel_size=3, stride=1, padding=1, dilation=1, bias=False, groups=cardinality), norm=self.bnom, norm_kwargs=kwargs, norm_per_task=norm_per_task, squeeze=self.squeeze, se_after_relu=se_after_relu) if exist_decoder: self.conv2d_final = ConvCoupledSE(tasks=tasks, process_layers=nn.Conv2d(depth, depth, kernel_size=3, stride=1, padding=1, dilation=1, bias=False), norm=self.bnorm, norm_kwargs=kwargs, norm_per_task=norm_per_task, squeeze=self.squeeze, se_after_relu=se_after_relu) else: self.conv2d_final = nn.Sequential(nn.Conv2d(depth * 5, depth, kernel_size=1, stride=1, bias=True)) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, 0.01) elif isinstance(m, nn.BatchNorm2d) or isinstance(m, self.bnorm): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): init.kaiming_normal_(m.weight) m.bias.data.zero_() def forward(self, x, task=None): x = self.conv2d(x, task) # Final convolutional layer of the classifier x = self.conv2d_final(x, task) return x
astmt-master
fblib/networks/deeplab_multi_task/classifiers_multitask.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import numpy as np def jaccard(gt, pred, void_pixels=None): assert(gt.shape == pred.shape) if void_pixels is None: void_pixels = np.zeros_like(gt) assert(void_pixels.shape == gt.shape) gt = gt.astype(np.bool) pred = pred.astype(np.bool) void_pixels = void_pixels.astype(np.bool) if np.isclose(np.sum(gt & np.logical_not(void_pixels)), 0) and np.isclose(np.sum(pred & np.logical_not(void_pixels)), 0): return 1 else: return np.sum(((gt & pred) & np.logical_not(void_pixels))) / \ np.sum(((gt | pred) & np.logical_not(void_pixels)), dtype=np.float32) def precision_recall(gt, pred, void_pixels=None): if void_pixels is None: void_pixels = np.zeros_like(gt) gt = gt.astype(np.bool) pred = pred.astype(np.bool) void_pixels = void_pixels.astype(np.bool) tp = ((pred & gt) & ~void_pixels).sum() fn = ((~pred & gt) & ~void_pixels).sum() fp = ((pred & ~gt) & ~void_pixels).sum() prec = tp / (tp + fp + 1e-12) rec = tp / (tp + fn + 1e-12) return prec, rec
astmt-master
fblib/evaluation/jaccard.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import warnings import cv2 import os.path import numpy as np import glob import json def eval_albedo(loader, folder): rmses = [] for i, sample in enumerate(loader): if i % 500 == 0: print('Evaluating Albedo: {} of {} objects'.format(i, len(loader))) # Load result filename = os.path.join(folder, sample['meta']['image'] + '.png') pred = cv2.imread(filename).astype(np.float32)[..., ::-1] / 255 label = sample['albedo'] if pred.shape != label.shape: warnings.warn('Prediction and ground truth have different size. Resizing Prediction..') pred = cv2.resize(pred, label.shape[::-1], interpolation=cv2.INTER_LINEAR) rmse_tmp = (label - pred) ** 2 rmse_tmp = np.sqrt(np.mean(rmse_tmp)) rmses.extend([rmse_tmp]) rmses = np.array(rmses) eval_result = dict() eval_result['rmse'] = np.mean(rmses) eval_result = {x: eval_result[x].tolist() for x in eval_result} return eval_result def eval_and_store_albedo(database, save_dir, exp_name, overfit=False): # Dataloaders if database == 'FSV': from fblib.dataloaders import fsv as fsv gt_set = 'test' db = fsv.FSVGTA(split=gt_set, do_albedo=True, overfit=overfit) else: raise NotImplementedError res_dir = os.path.join(save_dir, exp_name, 'Results_' + database) base_name = database + '_' + gt_set + '_' + exp_name + '_albedo' fname = os.path.join(res_dir, base_name + '.json') # Check if already evaluated if os.path.isfile(fname): with open(fname, 'r') as f: eval_results = json.load(f) else: eval_results = eval_albedo(db, os.path.join(res_dir, 'albedo')) with open(fname, 'w') as f: json.dump(eval_results, f) print('Results for Albedo Estimation') for x in eval_results: spaces = '' for j in range(0, 15 - len(x)): spaces += ' ' print('{0:s}{1:s}{2:.4f}'.format(x, spaces, eval_results[x])) def main(): from fblib.util.mypath import Path database = 'FSV' save_dir = os.path.join(Path.exp_dir(), 'fsv_se/albedo') # Evaluate all sub-folders exp_names = glob.glob(save_dir + '/*') exp_names = [x.split('/')[-1] for x in exp_names] for exp_name in exp_names: if os.path.isdir(os.path.join(save_dir, exp_name, 'Results_' + database, 'albedo')): print('Evaluating: {}'.format(exp_name)) try: eval_and_store_albedo(database, save_dir, exp_name) except FileNotFoundError: print('Results of {} are not ready'.format(exp_name)) if __name__ == '__main__': main()
astmt-master
fblib/evaluation/eval_albedo.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import glob import json from fblib.util.mypath import Path def sync_and_evaluate_one_folder(database, save_dir, exp_name, prefix=None, all_tasks_present=False): # dataset specific parameters if database == 'BSDS500': num_req_files = 200 gt_set = '' elif database == 'PASCALContext': if all_tasks_present: num_req_files = 1853 gt_set = 'val_all_tasks_present' else: num_req_files = 5105 gt_set = 'val' elif database == 'NYUD': num_req_files = 654 gt_set = 'val' else: raise NotImplementedError if prefix is None: res_exp_name = exp_name else: res_exp_name = prefix + '_' + exp_name # Check whether results of experiments exist chk_dir = os.path.join(save_dir, exp_name, 'Results_' + database, 'edge') if not os.path.exists(chk_dir): print('Experiment {} is not yet ready. Omitting this directory'.format(exp_name)) return # Check for filenames fnames = sorted(glob.glob(os.path.join(chk_dir, '*'))) if len(fnames) < num_req_files: print('Something is wrong with this directory. Check required: {}'.format(exp_name)) return elif len(fnames) > num_req_files: print('Already synced: {}'.format(exp_name)) else: # Seism path seism_cluster_dir = Path.seism_root_dir() # rsync to seism rsync_str = 'rsync -aP {}/ '.format(chk_dir) rsync_str += '[email protected]:{}/datasets/{}/{} '.format(seism_cluster_dir, database, res_exp_name) rsync_str += '--exclude=models --exclude=*.txt' print(rsync_str) os.system(rsync_str) # Submit the job subm_job_str = 'ssh [email protected] "source /home/sgeadmin/BIWICELL/common/settings.sh;' \ 'source /home/sgeadmin/BIWICELL/common/settings.sh;' subm_job_str += 'cp {}/parameters/HED.txt {}/parameters/{}.txt; ' \ ''.format(seism_cluster_dir, seism_cluster_dir, res_exp_name) subm_job_str += 'qsub -N evalFb -t 1-102 {}/eval_in_cluster.py {} read_one_cont_png fb 1 102 {} {}"' \ ''.format(seism_cluster_dir, res_exp_name, database, gt_set) print(subm_job_str) os.system(subm_job_str) # Leave the proof of submission os.system('touch {}/SYNCED_TO_REINHOLD'.format(chk_dir)) def sync_evaluated_results(database, save_dir, exp_name, prefix=None): if prefix is not None: res_exp_name = prefix + '_' + exp_name else: res_exp_name = exp_name split = 'val' # Check whether results of experiment exists chk_dir = os.path.join(save_dir, exp_name, 'Results_' + database) if not os.path.exists(chk_dir): print('Experiment {} is not yet ready. Omitting this directory'.format(exp_name)) return chk_file = os.path.join(save_dir, exp_name, 'Results_' + database, database + '_' + split + '_' + exp_name + '_edge.json') if os.path.isfile(chk_file): with open(chk_file, 'r') as f: eval_results = json.load(f) else: print('Creating json: {}'.format(res_exp_name)) eval_results = {} for measure in {'ods_f', 'ois_f', 'ap'}: tmp_fname = os.path.join(Path.seism_root_dir(), 'results', 'pr_curves', database, database + '_' + split + '_fb_' + res_exp_name + '_' + measure + '.txt') if not os.path.isfile(tmp_fname): print('Result not available') continue with open(tmp_fname, 'r') as f: eval_results[measure] = float(f.read().strip()) # Create edge json file if eval_results: print('Saving into .json: {}'.format(chk_file)) with open(chk_file, 'w') as f: json.dump(eval_results, f) for measure in eval_results: print('{}: {}'.format(measure, eval_results[measure])) def sync_and_evaluate_subfolders(p, database): print('Starting check in parent directory: {}'.format(p['save_dir_root'])) dirs = os.listdir(p['save_dir_root']) for exp in dirs: sync_and_evaluate_one_folder(database=database, save_dir=p['save_dir_root'], exp_name=exp, prefix=p['save_dir_root'].split('/')[-1], all_tasks_present=(exp.find('mini') >= 0)) def gather_results(p, database): print('Gathering results: {}'.format(p['save_dir_root'])) dirs = os.listdir(p['save_dir_root']) for exp in dirs: sync_evaluated_results(database=database, save_dir=p['save_dir_root'], exp_name=exp, prefix=p['save_dir_root'].split('/')[-1]) def main(): exp_root_dir = os.path.join(Path.exp_dir(), 'pascal_se') edge_dirs = glob.glob(os.path.join(exp_root_dir, 'edge*')) p = {} for edge_dir in edge_dirs: p['save_dir_root'] = os.path.join(exp_root_dir, edge_dir) # sync_and_evaluate_subfolders(p, 'NYUD') gather_results(p, 'PASCALContext') if __name__ == '__main__': main()
astmt-master
fblib/evaluation/eval_edges.py
astmt-master
fblib/evaluation/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import warnings import cv2 import os.path import glob import json import numpy as np from PIL import Image VOC_CATEGORY_NAMES = ['background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] NYU_CATEGORY_NAMES = ['background', 'wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', 'bookshelf', 'picture', 'counter', 'blinds', 'desk', 'shelves', 'curtain', 'dresser', 'pillow', 'mirror', 'floor mat', 'clothes', 'ceiling', 'books', 'refridgerator', 'television', 'paper', 'towel', 'shower curtain', 'box', 'whiteboard', 'person', 'night stand', 'toilet', 'sink', 'lamp', 'bathtub', 'bag', 'otherstructure', 'otherfurniture', 'otherprop'] FSV_CATEGORY_NAMES = ['background', 'vehicle', 'object'] def eval_semseg(loader, folder, n_classes=20, has_bg=True): n_classes = n_classes + int(has_bg) # Iterate tp = [0] * n_classes fp = [0] * n_classes fn = [0] * n_classes for i, sample in enumerate(loader): if i % 500 == 0: print('Evaluating: {} of {} objects'.format(i, len(loader))) # Load result filename = os.path.join(folder, sample['meta']['image'] + '.png') mask = np.array(Image.open(filename)).astype(np.float32) gt = sample['semseg'] valid = (gt != 255) if mask.shape != gt.shape: warnings.warn('Prediction and ground truth have different size. Resizing Prediction..') mask = cv2.resize(mask, gt.shape[::-1], interpolation=cv2.INTER_NEAREST) # TP, FP, and FN evaluation for i_part in range(0, n_classes): tmp_gt = (gt == i_part) tmp_pred = (mask == i_part) tp[i_part] += np.sum(tmp_gt & tmp_pred & valid) fp[i_part] += np.sum(~tmp_gt & tmp_pred & valid) fn[i_part] += np.sum(tmp_gt & ~tmp_pred & valid) jac = [0] * n_classes for i_part in range(0, n_classes): jac[i_part] = float(tp[i_part]) / max(float(tp[i_part] + fp[i_part] + fn[i_part]), 1e-8) # Write results eval_result = dict() eval_result['jaccards_all_categs'] = jac eval_result['mIoU'] = np.mean(jac) return eval_result def eval_and_store_semseg(database, save_dir, exp_name, overfit=False): # Dataloaders if database == 'VOC12': from fblib.dataloaders import pascal_voc as pascal n_classes = 20 cat_names = VOC_CATEGORY_NAMES has_bg = True gt_set = 'val' db = pascal.VOC12(split=gt_set, do_semseg=True, overfit=overfit) elif database == 'PASCALContext': from fblib.dataloaders import pascal_context as pascal_context n_classes = 20 cat_names = VOC_CATEGORY_NAMES has_bg = True gt_set = 'val' db = pascal_context.PASCALContext(split=gt_set, do_edge=False, do_human_parts=False, do_semseg=True, do_normals=False, overfit=overfit) elif database == 'NYUD': from fblib.dataloaders import nyud as nyud n_classes = 40 cat_names = NYU_CATEGORY_NAMES has_bg = True gt_set = 'val' db = nyud.NYUD_MT(split=gt_set, do_semseg=True, overfit=overfit) elif database == 'FSV': from fblib.dataloaders import fsv as fsv n_classes = 2 cat_names = FSV_CATEGORY_NAMES has_bg = True gt_set = 'test' db = fsv.FSVGTA(split=gt_set, mini=True, do_semseg=True, overfit=overfit) else: raise NotImplementedError res_dir = os.path.join(save_dir, exp_name, 'Results_' + database) base_name = database + '_' + gt_set + '_' + exp_name + '_semseg' fname = os.path.join(res_dir, base_name + '.json') # Check if already evaluated if os.path.isfile(fname): with open(fname, 'r') as f: eval_results = json.load(f) else: eval_results = eval_semseg(db, os.path.join(res_dir, 'semseg'), n_classes=n_classes, has_bg=has_bg) with open(fname, 'w') as f: json.dump(eval_results, f) # Print Results class_IoU = eval_results['jaccards_all_categs'] mIoU = eval_results['mIoU'] print('\nSemantic Segmentation mIoU: {0:.4f}\n'.format(100 * mIoU)) for i in range(len(class_IoU)): spaces = '' for j in range(0, 15 - len(cat_names[i])): spaces += ' ' print('{0:s}{1:s}{2:.4f}'.format(cat_names[i], spaces, 100 * class_IoU[i])) def main(): from fblib.util.mypath import Path database = 'PASCALContext' save_dir = os.path.join(Path.exp_dir(), 'pascal_se/edge_semseg_human_parts_normals_sal') # Evaluate all sub-folders exp_names = glob.glob(save_dir + '/*') exp_names = [x.split('/')[-1] for x in exp_names] for exp_name in exp_names: if os.path.isdir(os.path.join(save_dir, exp_name, 'Results_' + database, 'semseg')): print('Evaluating: {}'.format(exp_name)) try: eval_and_store_semseg(database, save_dir, exp_name) except FileNotFoundError: print('Results of {} are not ready'.format(exp_name)) if __name__ == '__main__': main()
astmt-master
fblib/evaluation/eval_semseg.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import glob import json from fblib.util.mypath import Path def exists_dir(dir_in): fold_lst = os.listdir(dir_in) for x in fold_lst: if os.path.isdir(os.path.join(dir_in, x)): return True return False def parse_folder(exp_root=Path.exp_dir(), exp_group='pascal_se', tasks=None, db_name='PASCALContext', query='*', dic={}): if tasks is None: tasks = ['edge', 'semseg', 'human_parts', 'normals', 'sal', 'depth'] exp_group_dir = os.path.join(exp_root, exp_group) dirs = os.listdir(exp_group_dir) dirs.sort() best_perf = {task: 0 for task in tasks} for task in {'normals', 'depth', 'albedo'}: if task in tasks: best_perf[task] = 100 # Examine all subdirectories for d in dirs: dir_in = os.path.join(exp_group_dir, d) # No dir or dir without subdirs if not os.path.isdir(dir_in) or not exists_dir(dir_in): continue # If results folder in dir, print results if ('Results_' + db_name) in os.listdir(dir_in): perf = {} task_counter = 0 # Iterate through all tasks for i, task in enumerate(tasks): fnames = glob.glob(dir_in+'/Results_' + db_name + '/' + query + task + '.json') if not fnames: perf[task] = -1 continue task_counter += 1 with open(fnames[0], 'r') as f: data = json.load(f) if task == 'edge': perf[task] = 100 * data['ods_f'] if perf[task] > best_perf[task]: best_perf[task] = perf[task] elif task == 'semseg': perf[task] = 100 * data['mIoU'] if perf[task] > best_perf[task]: best_perf[task] = perf[task] elif task == 'human_parts': perf[task] = 100 * data['mIoU'] if perf[task] > best_perf[task]: best_perf[task] = perf[task] elif task == 'normals': perf[task] = data['mean'] if perf[task] < best_perf[task]: best_perf[task] = perf[task] elif task == 'depth': perf[task] = data['rmse'] if perf[task] < best_perf[task]: best_perf[task] = perf[task] elif task == 'albedo': perf[task] = data['rmse'] if perf[task] < best_perf[task]: best_perf[task] = perf[task] elif task == 'sal': perf[task] = 100 * data['mIoU'] if perf[task] > best_perf[task]: best_perf[task] = perf[task] perf_str = [task + ' ' + '%06.3f' % perf[task] + ' ' for i, task in enumerate(tasks)] perf_str = "".join(perf_str) if task_counter > 0: print('{}: {}'.format(perf_str, d)) dic[d] = perf elif 'models' in os.listdir(dir_in): # Results are not ready yet continue else: # Examine subdirectories recursively print('\n\n{}\n'.format(d)) parse_folder(exp_group=os.path.join(exp_group, d), tasks=tasks, query=query, db_name=db_name, dic=dic) print(best_perf) if __name__ == '__main__': print('\nResults:') dic = {} db = 'PASCALContext' if db == 'PASCALContext': parse_folder(exp_group='pascal_se', query='*res50*', db_name='PASCALContext', dic=dic, tasks=['edge', 'semseg', 'human_parts', 'normals', 'sal']) elif db == 'NYUD': parse_folder(exp_group='nyud_se', query='*res101*', db_name='NYUD', dic=dic, tasks=['edge', 'semseg', 'normals', 'depth']) elif db == 'FSV': parse_folder(exp_group='fsv_se', query='*res101*', db_name='FSV', dic=dic, tasks=['semseg', 'albedo', 'depth']) elif db == 'VOC12': parse_folder(exp_group='single_task', query='*mnet*', db_name='VOC12', dic=dic, tasks=['semseg'])
astmt-master
fblib/evaluation/parse_eval_results.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import warnings import cv2 import glob import json import os.path import numpy as np from PIL import Image PART_CATEGORY_NAMES = ['background', 'head', 'torso', 'uarm', 'larm', 'uleg', 'lleg'] def eval_human_parts(loader, folder, n_parts=6): tp = [0] * (n_parts + 1) fp = [0] * (n_parts + 1) fn = [0] * (n_parts + 1) counter = 0 for i, sample in enumerate(loader): if i % 500 == 0: print('Evaluating: {} of {} objects'.format(i, len(loader))) if 'human_parts' not in sample: continue # Check for valid pixels gt = sample['human_parts'] uniq = np.unique(gt) if len(uniq) == 1 and (uniq[0] == 255 or uniq[0] == 0): continue # Load result filename = os.path.join(folder, sample['meta']['image'] + '.png') mask = np.array(Image.open(filename)).astype(np.float32) # Case of a binary (probability) result if n_parts == 1: mask = (mask > 0.5 * 255).astype(np.float32) counter += 1 valid = (gt != 255) if mask.shape != gt.shape: warnings.warn('Prediction and ground truth have different size. Resizing Prediction..') mask = cv2.resize(mask, gt.shape[::-1], interpolation=cv2.INTER_NEAREST) # TP, FP, and FN evaluation for i_part in range(0, n_parts + 1): tmp_gt = (gt == i_part) tmp_pred = (mask == i_part) tp[i_part] += np.sum(tmp_gt & tmp_pred & (valid)) fp[i_part] += np.sum(~tmp_gt & tmp_pred & (valid)) fn[i_part] += np.sum(tmp_gt & ~tmp_pred & (valid)) print('Successful evaluation for {} images'.format(counter)) jac = [0] * (n_parts + 1) for i_part in range(0, n_parts + 1): jac[i_part] = float(tp[i_part]) / max(float(tp[i_part] + fp[i_part] + fn[i_part]), 1e-8) # Write results eval_result = dict() eval_result['jaccards_all_categs'] = jac eval_result['mIoU'] = np.mean(jac) return eval_result def eval_and_store_human_parts(database, save_dir, exp_name, overfit=False): # Dataloaders if database == 'PASCALContext': from fblib.dataloaders import pascal_context as pascal_context gt_set = 'val' db = pascal_context.PASCALContext(split=gt_set, do_edge=False, do_human_parts=True, do_semseg=False, do_normals=False, do_sal=False, overfit=overfit) else: raise NotImplementedError res_dir = os.path.join(save_dir, exp_name, 'Results_' + database) base_name = database + '_' + gt_set + '_' + exp_name + '_human_parts' fname = os.path.join(res_dir, base_name + '.json') # Check if already evaluated if os.path.isfile(fname): with open(fname, 'r') as f: eval_results = json.load(f) else: eval_results = eval_human_parts(db, os.path.join(res_dir, 'human_parts')) with open(fname, 'w') as f: json.dump(eval_results, f) # Print Results class_IoU = eval_results['jaccards_all_categs'] mIoU = eval_results['mIoU'] print('\nHuman Parts mIoU: {0:.4f}\n'.format(100 * mIoU)) for i in range(len(class_IoU)): spaces = '' for j in range(0, 15 - len(PART_CATEGORY_NAMES[i])): spaces += ' ' print('{0:s}{1:s}{2:.4f}'.format(PART_CATEGORY_NAMES[i], spaces, 100 * class_IoU[i])) def main(): from fblib.util.mypath import Path database = 'PASCALContext' save_dir = os.path.join(Path.exp_dir(), 'pascal_se/edge_semseg_human_parts_normals_sal') # Evaluate all sub-folders exp_names = glob.glob(save_dir + '/*') exp_names = [x.split('/')[-1] for x in exp_names] for exp_name in exp_names: if os.path.isdir(os.path.join(save_dir, exp_name, 'Results_' + database, 'human_parts')): print('Evaluating: {}'.format(exp_name)) try: eval_and_store_human_parts(database, save_dir, exp_name) except FileNotFoundError: print('Results of {} are not ready'.format(exp_name)) if __name__ == '__main__': main()
astmt-master
fblib/evaluation/eval_human_parts.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import warnings import cv2 import os.path import numpy as np import glob import json def normal_ize(arr): arr_norm = np.linalg.norm(arr, ord=2, axis=2)[..., np.newaxis] + 1e-12 return arr / arr_norm def eval_normals(loader, folder): deg_diff = [] for i, sample in enumerate(loader): if i % 500 == 0: print('Evaluating Surface Normals: {} of {} objects'.format(i, len(loader))) # Check for valid labels label = sample['normals'] uniq = np.unique(label) if len(uniq) == 1 and uniq[0] == 0: continue # Load result filename = os.path.join(folder, sample['meta']['image'] + '.png') pred = 2. * cv2.imread(filename).astype(np.float32)[..., ::-1] / 255. - 1 pred = normal_ize(pred) if pred.shape != label.shape: warnings.warn('Prediction and ground truth have different size. Resizing Prediction..') pred = cv2.resize(pred, label.shape[::-1], interpolation=cv2.INTER_CUBIC) valid_mask = (np.linalg.norm(label, ord=2, axis=2) != 0) pred[np.invert(valid_mask), :] = 0. label[np.invert(valid_mask), :] = 0. label = normal_ize(label) deg_diff_tmp = np.rad2deg(np.arccos(np.clip(np.sum(pred * label, axis=2), a_min=-1, a_max=1))) deg_diff.extend(deg_diff_tmp[valid_mask]) deg_diff = np.array(deg_diff) eval_result = dict() eval_result['mean'] = np.mean(deg_diff) eval_result['median'] = np.median(deg_diff) eval_result['rmse'] = np.mean(deg_diff ** 2) ** 0.5 eval_result['11.25'] = np.mean(deg_diff < 11.25) * 100 eval_result['22.5'] = np.mean(deg_diff < 22.5) * 100 eval_result['30'] = np.mean(deg_diff < 30) * 100 eval_result = {x: eval_result[x].tolist() for x in eval_result} return eval_result def eval_and_store_normals(database, save_dir, exp_name, overfit=False): # Dataloaders if database == 'PASCALContext': from fblib.dataloaders import pascal_context as pascal_context gt_set = 'val' db = pascal_context.PASCALContext(split=gt_set, do_edge=False, do_human_parts=False, do_semseg=False, do_normals=True, overfit=overfit) elif database == 'NYUD': from fblib.dataloaders import nyud as nyud gt_set = 'val' db = nyud.NYUD_MT(split=gt_set, do_normals=True, overfit=overfit) else: raise NotImplementedError res_dir = os.path.join(save_dir, exp_name, 'Results_' + database) base_name = database + '_' + gt_set + '_' + exp_name + '_normals' fname = os.path.join(res_dir, base_name + '.json') # Check if already evaluated if os.path.isfile(fname): with open(fname, 'r') as f: eval_results = json.load(f) else: eval_results = eval_normals(db, os.path.join(res_dir, 'normals')) with open(fname, 'w') as f: json.dump(eval_results, f) print('Results for Surface Normal Estimation') for x in eval_results: spaces = "" for j in range(0, 15 - len(x)): spaces += ' ' print('{0:s}{1:s}{2:.4f}'.format(x, spaces, eval_results[x])) def main(): from fblib.util.mypath import Path database = 'PASCALContext' save_dir = os.path.join(Path.exp_dir(), 'pascal_se/edge_semseg_human_parts_normals_sal') # Evaluate all sub-folders exp_names = glob.glob(save_dir + '/*') exp_names = [x.split('/')[-1] for x in exp_names] for exp_name in exp_names: if os.path.isdir(os.path.join(save_dir, exp_name, 'Results_' + database, 'normals')): print('Evaluating: {}'.format(exp_name)) try: eval_and_store_normals(database, save_dir, exp_name) except FileNotFoundError: print('Results of {} are not ready'.format(exp_name)) if __name__ == '__main__': main()
astmt-master
fblib/evaluation/eval_normals.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import warnings import cv2 import os.path import numpy as np import glob import json from PIL import Image import fblib.evaluation.jaccard as evaluation def eval_sal(loader, folder, mask_thres=None): if mask_thres is None: mask_thres = [0.5] eval_result = dict() eval_result['all_jaccards'] = np.zeros((len(loader), len(mask_thres))) eval_result['prec'] = np.zeros((len(loader), len(mask_thres))) eval_result['rec'] = np.zeros((len(loader), len(mask_thres))) for i, sample in enumerate(loader): if i % 500 == 0: print('Evaluating: {} of {} objects'.format(i, len(loader))) # Load result filename = os.path.join(folder, sample["meta"]["image"] + '.png') mask = np.array(Image.open(filename)).astype(np.float32) / 255. gt = sample["sal"] if mask.shape != gt.shape: warnings.warn('Prediction and ground truth have different size. Resizing Prediction..') mask = cv2.resize(mask, gt.shape[::-1], interpolation=cv2.INTER_NEAREST) for j, thres in enumerate(mask_thres): gt = (gt > thres).astype(np.float32) mask_eval = (mask > thres).astype(np.float32) eval_result['all_jaccards'][i, j] = evaluation.jaccard(gt, mask_eval) eval_result['prec'][i, j], eval_result['rec'][i, j] = evaluation.precision_recall(gt, mask_eval) # Average for each thresholds eval_result['mIoUs'] = np.mean(eval_result['all_jaccards'], 0) eval_result['mPrec'] = np.mean(eval_result['prec'], 0) eval_result['mRec'] = np.mean(eval_result['rec'], 0) eval_result['F'] = 2 * eval_result['mPrec'] * eval_result['mRec'] / \ (eval_result['mPrec'] + eval_result['mRec'] + 1e-12) # Maximum of averages (maxF, maxmIoU) eval_result['mIoU'] = np.max(eval_result['mIoUs']) eval_result['maxF'] = np.max(eval_result['F']) eval_result = {x: eval_result[x].tolist() for x in eval_result} return eval_result def eval_and_store_sal(database, save_dir, exp_name, overfit=False): # Dataloaders if database == 'PASCALContext': from fblib.dataloaders import pascal_context as pascal_context split = 'val' db = pascal_context.PASCALContext(split=split, do_edge=False, do_human_parts=False, do_semseg=False, do_normals=False, do_sal=True, overfit=overfit) elif database == 'PASCAL-S': from fblib.dataloaders import pascal_sal as pascal_sal split = 'all' db = pascal_sal.PASCALS(overfit=overfit, threshold=None) else: raise NotImplementedError res_dir = os.path.join(save_dir, exp_name, 'Results_' + database) base_name = database + '_' + split + '_' + exp_name + '_sal' fname = os.path.join(res_dir, base_name + '.json') # Check if already evaluated if os.path.isfile(fname): with open(fname, 'r') as f: eval_results = json.load(f) else: eval_results = eval_sal(db, os.path.join(res_dir, 'sal'), mask_thres=np.linspace(0.2, 0.9, 15)) with open(fname, 'w') as f: json.dump(eval_results, f) print('Results for Saliency Estimation') print('mIoU: {0:.3f}'.format(eval_results['mIoU'])) print('maxF: {0:.3f}'.format(eval_results['maxF'])) def main(): from fblib.util.mypath import Path database = 'PASCALContext' save_dir = os.path.join(Path.exp_dir(), 'pascal_se/edge_semseg_human_parts_normals_sal') # Evaluate all sub-folders exp_names = glob.glob(save_dir + '/*') exp_names = [x.split('/')[-1] for x in exp_names] for exp_name in exp_names: if os.path.isdir(os.path.join(save_dir, exp_name, 'Results_' + database, 'sal')): print('Evaluating: {}'.format(exp_name)) try: eval_and_store_sal(database, save_dir, exp_name, overfit=False) except FileNotFoundError: print('Results of {} are not ready'.format(exp_name)) if __name__ == '__main__': main()
astmt-master
fblib/evaluation/eval_sal.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import warnings import cv2 import os.path import numpy as np import glob import json import scipy.io as sio def eval_depth(loader, folder): rmses = [] log_rmses = [] for i, sample in enumerate(loader): if i % 500 == 0: print('Evaluating depth: {} of {} objects'.format(i, len(loader))) # Load result filename = os.path.join(folder, sample['meta']['image'] + '.mat') pred = sio.loadmat(filename)['depth'].astype(np.float32) label = sample['depth'] if pred.shape != label.shape: warnings.warn('Prediction and ground truth have different size. Resizing Prediction..') pred = cv2.resize(pred, label.shape[::-1], interpolation=cv2.INTER_LINEAR) label[label == 0] = 1e-9 pred[pred <= 0] = 1e-9 valid_mask = (label != 0) pred[np.invert(valid_mask)] = 0. label[np.invert(valid_mask)] = 0. n_valid = np.sum(valid_mask) log_rmse_tmp = (np.log(label) - np.log(pred)) ** 2 log_rmse_tmp = np.sqrt(np.sum(log_rmse_tmp) / n_valid) log_rmses.extend([log_rmse_tmp]) rmse_tmp = (label - pred) ** 2 rmse_tmp = np.sqrt(np.sum(rmse_tmp) / n_valid) rmses.extend([rmse_tmp]) rmses = np.array(rmses) log_rmses = np.array(log_rmses) eval_result = dict() eval_result['rmse'] = np.mean(rmses) eval_result['log_rmse'] = np.median(log_rmses) return eval_result def eval_and_store_depth(database, save_dir, exp_name, overfit=False): # Dataloaders if database == 'NYUD': from fblib.dataloaders import nyud as nyud gt_set = 'val' db = nyud.NYUD_MT(split=gt_set, do_depth=True, overfit=overfit) elif database == 'FSV': from fblib.dataloaders import fsv as fsv gt_set = 'test' db = fsv.FSVGTA(split='test', do_depth=True, overfit=overfit) else: raise NotImplementedError res_dir = os.path.join(save_dir, exp_name, 'Results_' + database) base_name = database + '_' + gt_set + '_' + exp_name + '_depth' fname = os.path.join(res_dir, base_name + '.json') # Check if already evaluated if os.path.isfile(fname): with open(fname, 'r') as f: eval_results = json.load(f) else: eval_results = eval_depth(db, os.path.join(res_dir, 'depth')) with open(fname, 'w') as f: json.dump(eval_results, f) print('Results for Depth Estimation') for x in eval_results: spaces = '' for j in range(0, 15 - len(x)): spaces += ' ' print('{0:s}{1:s}{2:.4f}'.format(x, spaces, eval_results[x])) def main(): from fblib.util.mypath import Path database = 'NYUD' save_dir = os.path.join(Path.exp_dir(), 'nyud_se/edge_semseg_normals_depth') # Evaluate all sub-folders exp_names = glob.glob(save_dir + '/*') exp_names = [x.split('/')[-1] for x in exp_names] for exp_name in exp_names: if os.path.isdir(os.path.join(save_dir, exp_name, 'Results_' + database, 'depth')): print('Evaluating: {}'.format(exp_name)) try: eval_and_store_depth(database, save_dir, exp_name) except FileNotFoundError: print('Results of {} are not ready'.format(exp_name)) if __name__ == '__main__': main()
astmt-master
fblib/evaluation/eval_depth.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import json import os import random import shutil import pandas as pd import tqdm if __name__ == "__main__": def get_parser(): parser = argparse.ArgumentParser() parser.add_argument("--data_dir", type=str, default="/disc/data/dir") parser.add_argument("--output_dir", type=str, default="/disc/data/dir") return parser params = get_parser().parse_args() copy_mode = 'symlink' print("Args:{}".format(json.dumps(vars(params)))) dest_ref10k_dir = os.path.join(params.output_dir, "references_10k") dest_ref990k_dir = os.path.join(params.output_dir, "references_990k") dest_query_40k_dir = os.path.join(params.output_dir, "queries_40k") os.makedirs(dest_ref10k_dir, exist_ok=True) os.makedirs(dest_ref990k_dir, exist_ok=True) os.makedirs(dest_query_40k_dir, exist_ok=True) print(f"Creating output directories: {dest_ref10k_dir}, {dest_ref990k_dir}, {dest_query_40k_dir}") print(f"Copying the reference images") reference_dir = os.path.join(params.data_dir, "references") filenames = [f'R{ii:06d}.jpg' for ii in range(1000000)] csv_path = os.path.join(params.data_dir, "groundtruth_matches.csv") df = pd.read_csv(csv_path, header=None, names=['Q', 'R']) rs = df['R'].values.tolist() rs.sort() is_img_in_query = {} for filename in filenames: is_img_in_query[filename] = False if len(rs) == 0: continue if rs[0] in filename: is_img_in_query[filename] = True rs.pop(0) print(f"Number of reference images that are used in query: {sum(is_img_in_query.values())}") for filename in tqdm.tqdm(filenames): img_path = os.path.join(reference_dir, filename) dest_dir = dest_ref10k_dir if is_img_in_query[filename] else dest_ref990k_dir if copy_mode == 'symlink': os.symlink(img_path, os.path.join(dest_dir, filename)) else: shutil.copy(img_path, os.path.join(dest_dir, filename)) print(f"Copying the query images") train_dir = os.path.join(params.data_dir, "train") filenames = [f'T{ii:06d}.jpg' for ii in range(1000000)] random.seed(0) filenames = random.sample(filenames, 40000) for filename in tqdm.tqdm(filenames): img_path = os.path.join(train_dir, filename) if copy_mode == 'symlink': os.symlink(img_path, os.path.join(dest_query_40k_dir, filename)) else: shutil.copy(img_path, os.path.join(dest_query_40k_dir, filename))
active_indexing-main
prepare_disc.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import os import tqdm import json import torch from torch import device from torchvision import transforms from activeindex import utils device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if __name__ == '__main__': def get_parser(): parser = argparse.ArgumentParser() parser.add_argument("--output_dir", type=str, default='output') parser.add_argument("--data_dir", type=str, default="/img/data/dir") parser.add_argument("--model_name", type=str, default="torchscript") parser.add_argument("--model_path", type=str, default="/path/to/model.torchscript.pt") parser.add_argument("--resize_size", type=int, default=288, help="Resize images to this size. (Default: 288)") parser.add_argument("--batch_size", type=int, default=256, help="Batch size.") return parser params = get_parser().parse_args() print("__log__:{}".format(json.dumps(vars(params)))) print('>>> Creating output directory...') os.makedirs(params.output_dir, exist_ok=True) print('>>> Building backbone...') model = utils.build_backbone(path=params.model_path, name=params.model_name) model.eval() model.to(device) print('>>> Creating dataloader...') NORMALIZE_IMAGENET = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) default_transform = transforms.Compose([ transforms.ToTensor(), NORMALIZE_IMAGENET, transforms.Resize((params.resize_size, params.resize_size)), ]) img_loader = utils.get_dataloader(params.data_dir, default_transform, batch_size=params.batch_size, collate_fn=None) print('>>> Extracting features...') features = [] with open(os.path.join(params.output_dir, "filenames.txt"), 'w') as f: with torch.no_grad(): for ii, imgs in enumerate(tqdm.tqdm(img_loader)): imgs = imgs.to(device) fts = model(imgs) features.append(fts.cpu()) for jj in range(fts.shape[0]): sample_fname = img_loader.dataset.samples[ii*params.batch_size + jj] f.write(sample_fname + "\n") print('>>> Saving features...') features = torch.concat(features, dim=0) torch.save(features, os.path.join(params.output_dir, 'fts.pth'))
active_indexing-main
extract_fts.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np from augly.image import functional as aug_functional import torch from torchvision import transforms from torchvision.transforms import functional from . import augment_queries NORMALIZE_IMAGENET = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) UNNORMALIZE_IMAGENET = transforms.Normalize(mean=[-0.485/0.229, -0.456/0.224, -0.406/0.225], std=[1/0.229, 1/0.224, 1/0.225]) image_std = torch.Tensor([0.229, 0.224, 0.225]).view(-1, 1, 1) def center_crop(x, scale): """ Perform center crop such that the target area of the crop is at a given scale Args: x: PIL image scale: target area scale """ scale = np.sqrt(scale) new_edges_size = [int(s*scale) for s in x.size][::-1] return functional.center_crop(x, new_edges_size) def resize(x, scale): """ Perform center crop such that the target area of the crop is at a given scale Args: x: PIL image scale: target area scale """ scale = np.sqrt(scale) new_edges_size = [int(s*scale) for s in x.size][::-1] return functional.resize(x, new_edges_size) def psnr(x, y): """ Return PSNR Args: x, y: Images tensor with imagenet normalization """ delta = 255 * (x - y) * image_std.to(x.device) psnr = 20*np.log10(255) - 10*torch.log10(torch.mean(delta**2)) return psnr def linf(x, y): """ Return Linf distance Args: x, y: Images tensor with imagenet normalization """ return torch.max(torch.abs(255 * (x - y) * image_std.to(x.device))) attacks_dict = { "none": lambda x : x, "rotation": lambda x, angle: functional.rotate(x, angle, functional.InterpolationMode('bilinear'), expand=True), "grayscale": functional.rgb_to_grayscale, "contrast": functional.adjust_contrast, "brightness": functional.adjust_brightness, "hue": functional.adjust_hue, "hflip": functional.hflip, "vflip": functional.vflip, "blur": functional.gaussian_blur, # sigma = ksize*0.15 + 0.35 - ksize = (sigma-0.35)/0.15 "jpeg": aug_functional.encoding_quality, "resize": resize, "center_crop": center_crop, "meme_format": aug_functional.meme_format, "overlay_emoji": aug_functional.overlay_emoji, "overlay_onto_screenshot": aug_functional.overlay_onto_screenshot, "auto": augment_queries.augment_img, } attacks = [{'attack': 'none'}] \ + [{'attack': 'auto'}] \ + [{'attack': 'meme_format'}] \ + [{'attack': 'overlay_onto_screenshot'}] \ + [{'attack': 'rotation', 'angle': angle} for angle in [25,90]] \ + [{'attack': 'center_crop', 'scale': 0.5}] \ + [{'attack': 'resize', 'scale': 0.5}] \ + [{'attack': 'blur', 'kernel_size': 11}] \ + [{'attack': 'jpeg', 'quality': 50}] \ + [{'attack': 'hue', 'hue_factor': 0.2}] \ + [{'attack': 'contrast', 'contrast_factor': cf} for cf in [0.5, 2.0]] \ + [{'attack': 'brightness', 'brightness_factor': bf} for bf in [0.5, 2.0]] \ # more attacks for the full evaluation attacks_2 = [{'attack': 'rotation', 'angle': jj} for jj in range(-90, 100,10)] \ + [{'attack': 'center_crop', 'scale': 0.1*jj} for jj in range(1,11)] \ + [{'attack': 'resize', 'scale': 0.1*jj} for jj in range(1,11)] \ + [{'attack': 'blur', 'kernel_size': 1+2*jj} for jj in range(1,15)] \ + [{'attack': 'jpeg', 'quality': 10*jj} for jj in range(1,11)] \ + [{'attack': 'contrast', 'contrast_factor': 0.5 + 0.1*jj} for jj in range(15)] \ + [{'attack': 'brightness', 'brightness_factor': 0.5 + 0.1*jj} for jj in range(15)] \ + [{'attack': 'hue', 'hue_factor': -0.5 + 0.1*jj} for jj in range(0,11)] \ def generate_attacks(img, attacks=attacks): """ Generate a list of attacked images from a PIL image. """ attacked_imgs = [] for attack in attacks: attack = attack.copy() attack_name = attack.pop('attack') attacked_imgs.append(attacks_dict[attack_name](img, **attack)) return attacked_imgs
active_indexing-main
activeindex/utils_img.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F class JND(nn.Module): """ https://ieeexplore.ieee.org/document/7885108 """ def __init__(self, preprocess = lambda x: x): super(JND, self).__init__() kernel_x = [[-1., 0., 1.], [-2., 0., 2.], [-1., 0., 1.]] kernel_y = [[1., 2., 1.], [0., 0., 0.], [-1., -2., -1.]] kernel_lum = [[1, 1, 1, 1, 1], [1, 2, 2, 2, 1], [1, 2, 0, 2, 1], [1, 2, 2, 2, 1], [1, 1, 1, 1, 1]] kernel_x = torch.FloatTensor(kernel_x).unsqueeze(0).unsqueeze(0) kernel_y = torch.FloatTensor(kernel_y).unsqueeze(0).unsqueeze(0) kernel_lum = torch.FloatTensor(kernel_lum).unsqueeze(0).unsqueeze(0) self.weight_x = nn.Parameter(data=kernel_x, requires_grad=False) self.weight_y = nn.Parameter(data=kernel_y, requires_grad=False) self.weight_lum = nn.Parameter(data=kernel_lum, requires_grad=False) self.preprocess = preprocess def jnd_la(self, x, alpha=1.0, eps=1e-3): """ Luminance masking: x must be in [0,255] """ la = F.conv2d(x, self.weight_lum, padding=2) / 32 mask_lum = la <= 127 la[mask_lum] = 17 * (1 - torch.sqrt(la[mask_lum]/127 + eps)) + 3 la[~mask_lum] = 3/128 * (la[~mask_lum] - 127) + 3 return alpha * la def jnd_cm(self, x, beta=0.117): """ Contrast masking: x must be in [0,255] """ grad_x = F.conv2d(x, self.weight_x, padding=1) grad_y = F.conv2d(x, self.weight_y, padding=1) cm = torch.sqrt(grad_x**2 + grad_y**2) cm = 16 * cm**2.4 / (cm**2 + 26**2) return beta * cm def heatmaps(self, x, clc=0.3): """ x must be in [0,1] """ x = 255 * self.preprocess(x) x = 0.299 * x[...,0:1,:,:] + 0.587 * x[...,1:2,:,:] + 0.114 * x[...,2:3,:,:] la = self.jnd_la(x) cm = self.jnd_cm(x) return torch.clamp_min(la + cm - clc * torch.minimum(la, cm), 5)/255 # b 1 h w
active_indexing-main
activeindex/attenuations.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import json import os import random from typing import Any, Dict, List, NamedTuple, Tuple import augly.image as imaugs import augly.utils as utils import numpy as np from PIL import Image RNG = np.random.RandomState rng = np.random.RandomState(0) ParametersDistributions = NamedTuple class ParameterDistribution: """Define how to sample a parameter""" def __init__(self, low: Any, high: Any): self.low = low self.high = high def sample(self, rng: RNG) -> Any: raise NotImplementedError() class FixedVariable(ParameterDistribution): def __init__(self, value: Any): super().__init__(0, 0) self.value = value def sample(self, rng: RNG) -> Any: return self.value class UniformFloat(ParameterDistribution): def sample(self, rng: RNG) -> float: return float(rng.uniform(self.low, self.high)) class UniformInt(ParameterDistribution): def sample(self, rng: RNG) -> int: return int(rng.randint(self.low, self.high + 1)) class UniformColor(ParameterDistribution): def sample(self, rng: RNG) -> Tuple[int, int, int]: return tuple(int(rng.randint(self.low, self.high)) for _ in range(3)) class UniformChoice(ParameterDistribution): def __init__(self, choices: List[Any]): super().__init__(0, 0) self.choices = choices def sample(self, rng: RNG) -> Any: if not self.choices: return None index = rng.randint(0, len(self.choices)) return self.choices[index] class UniformBool(ParameterDistribution): def __init__(self): super().__init__(0, 0) def sample(self, rng: RNG) -> bool: return bool(UniformInt(0, 1).sample(rng)) class TextChoice(ParameterDistribution): def sample(self, rng: RNG) -> List[int]: length = UniformInt(self.low, self.high).sample(rng) return [UniformInt(0, 10000).sample(rng) for _ in range(length)] class ListPD(ParameterDistribution): def __init__(self, pds: List[ParameterDistribution]): super().__init__(0, 0) self.pds = pds def sample(self, rng: RNG) -> List[Any]: return [pd.sample(rng) for pd in self.pds] class TuplePD(ParameterDistribution): def __init__(self, pds: List[ParameterDistribution]): super().__init__(0, 0) self.pds = pds def sample(self, rng: RNG) -> Tuple: return tuple(pd.sample(rng) for pd in self.pds) class ExponentialInt(ParameterDistribution): def __init__(self, scale: float, low: int, high: int): super().__init__(low, high) self.scale = scale def sample(self, rng) -> int: # if we sample a value larger than `high`, we need to resample a new one # if we just take the min(x, high), it will change the distribution while True: r = rng.exponential(scale=self.scale) if int(r + self.low) <= self.high: return int(r + self.low) class SymmetricFactor(ParameterDistribution): def sample(self, rng: RNG) -> float: factor = float(rng.uniform(self.low, self.high)) invert = rng.randint(0, 2) return 1 / factor if invert else factor class UniformLeftRightFactor(ParameterDistribution): def sample(self, rng: np.random.RandomState) -> Tuple[float, float]: width = float(rng.uniform(self.low, self.high)) left = rng.uniform(0, 1 - width) right = left + width return left, right class MediaFilterParameters(NamedTuple): """Contains the parameters to apply a video filter. This defines a unique and reproducible transformation""" name: str kwargs: Dict[str, Any] def __repr__(self) -> str: return json.dumps({**{"name": self.name}, **self.kwargs}) class MediaFilterWithPD(NamedTuple): """Define a filter and how to sample all its parameters""" # filter name, must match one the function method in this file name: str # must contains only ParameterDistribution attributes pd: ParametersDistributions class AspectRatioPD(ParametersDistributions): ratio: UniformFloat = UniformFloat(0.5, 2.0) class BlurPD(ParametersDistributions): radius: UniformFloat = UniformFloat(5.0, 10.0) class BlurryMaskPD(ParametersDistributions): background_image: UniformChoice overlay_size: UniformFloat = UniformFloat(0.3, 0.8) x_pos: UniformFloat = UniformFloat(0, 1.0) y_pos: UniformFloat = UniformFloat(0, 1.0) class BrightnessPD(ParametersDistributions): factor: UniformFloat = UniformFloat(0.1, 1.9) class ClipImageSizePD(ParametersDistributions): min_resolution: UniformChoice = UniformChoice([500]) max_resolution: UniformChoice = UniformChoice([3000000]) class ConvertColorPD(ParametersDistributions): mode: UniformChoice = UniformChoice(["P"]) colors: UniformInt = UniformInt(2, 16) class CropPD(ParametersDistributions): xs: UniformLeftRightFactor = UniformLeftRightFactor(0.3, 0.6) ys: UniformLeftRightFactor = UniformLeftRightFactor(0.3, 0.6) class EncodingQualityPD(ParametersDistributions): quality: UniformInt = UniformInt(5, 25) class EnhanceEdgesPD(ParametersDistributions): pass class GrayscalePD(ParametersDistributions): pass class HFlipPD(ParametersDistributions): pass class IdentityPD(ParametersDistributions): pass class OverlayEmojiPD(ParametersDistributions): emoji_path: UniformChoice x_pos: UniformFloat = UniformFloat(0.0, 0.8) y_pos: UniformFloat = UniformFloat(0.0, 0.8) opacity: UniformFloat = UniformFloat(0.5, 1.0) emoji_size: UniformFloat = UniformFloat(0.4, 0.8) class OverlayOntoImagePD(ParametersDistributions): background_image: UniformChoice overlay_size: UniformFloat = UniformFloat(0.3, 0.6) x_pos: UniformFloat = UniformFloat(0, 0.4) y_pos: UniformFloat = UniformFloat(0, 0.4) class OverlayOntoScreenshotPD(ParametersDistributions): template_filepath: UniformChoice crop_src_to_fit: UniformChoice = UniformChoice([True]) class OverlayTextPD(ParametersDistributions): font_file: UniformChoice text: TextChoice = TextChoice(5, 15) font_size: UniformFloat = UniformFloat(0.1, 0.3) color: UniformColor = UniformColor(0, 255) x_pos: UniformFloat = UniformFloat(0.0, 0.6) y_pos: UniformFloat = UniformFloat(0.0, 0.6) class PadSquarePD(ParametersDistributions): color: UniformColor = UniformColor(0, 255) class PerspectiveTransformPD(ParametersDistributions): sigma: UniformFloat = UniformFloat(30.0, 60.0) crop_out_black_border: UniformChoice = UniformChoice([True]) class PixelizationPD(ParametersDistributions): ratio: UniformFloat = UniformFloat(0.2, 0.5) class RotatePD(ParametersDistributions): degrees: UniformFloat = UniformFloat(-90.0, 90.0) class SaturationPD(ParametersDistributions): factor: UniformFloat = UniformFloat(2.0, 5.0) class ShufflePixelsPD(ParametersDistributions): factor: UniformFloat = UniformFloat(0.1, 0.3) def sample(rng: RNG, filter_with_pd: MediaFilterWithPD) -> MediaFilterParameters: """Sample for each ParameterDistribution attribute and return a dict with sampled parameters """ kwargs = {key: pdi.sample(rng) for key, pdi in filter_with_pd.pd._asdict().items()} return MediaFilterParameters(name=filter_with_pd.name, kwargs=kwargs) def sample_img_filters_parameters(rng: RNG, available_filters: List[MediaFilterWithPD]) -> List[MediaFilterParameters]: """Sample parameters for each available filters""" return [sample(rng, vf) for vf in available_filters] def get_assets(emoji_dir: str, font_dir: str, screenshot_dir: str) -> Tuple[List[str], List[str], List[str]]: emojis = [] for fn in utils.pathmgr.ls(emoji_dir): fp = os.path.join(emoji_dir, fn) if utils.pathmgr.isdir(fp): emojis.extend([os.path.join(fp, f) for f in utils.pathmgr.ls(fp)]) fonts = [ os.path.join(font_dir, fn) for fn in utils.pathmgr.ls(font_dir) if fn.endswith(".ttf") ] template_filenames = [ os.path.join(screenshot_dir, fn) for fn in utils.pathmgr.ls(screenshot_dir) if fn.split(".")[-1] != "json" ] return emojis, fonts, template_filenames emojis, fonts, template_filenames = get_assets( utils.EMOJI_DIR, utils.FONTS_DIR, utils.SCREENSHOT_TEMPLATES_DIR ) primitives = { "color": [ MediaFilterWithPD(name="brightness", pd=BrightnessPD()), MediaFilterWithPD(name="grayscale", pd=GrayscalePD()), MediaFilterWithPD(name="saturation", pd=SaturationPD()), ], "overlay": [ MediaFilterWithPD( name="overlay_emoji", pd=OverlayEmojiPD(emoji_path=UniformChoice(emojis)), ), MediaFilterWithPD( name="overlay_text", pd=OverlayTextPD(font_file=UniformChoice(fonts)) ), ], "pixel-level": [ MediaFilterWithPD(name="blur", pd=BlurPD()), MediaFilterWithPD(name="convert_color", pd=ConvertColorPD()), MediaFilterWithPD(name="encoding_quality", pd=EncodingQualityPD()), MediaFilterWithPD(name="apply_pil_filter", pd=EnhanceEdgesPD()), MediaFilterWithPD(name="pixelization", pd=PixelizationPD()), MediaFilterWithPD(name="shuffle_pixels", pd=ShufflePixelsPD()), ], "spatial": [ MediaFilterWithPD(name="crop", pd=CropPD()), MediaFilterWithPD(name="hflip", pd=HFlipPD()), MediaFilterWithPD(name="change_aspect_ratio", pd=AspectRatioPD()), MediaFilterWithPD( name="overlay_onto_screenshot", pd=OverlayOntoScreenshotPD( template_filepath=UniformChoice(template_filenames) ), ), MediaFilterWithPD(name="pad_square", pd=PadSquarePD()), MediaFilterWithPD( name="perspective_transform", pd=PerspectiveTransformPD() ), MediaFilterWithPD(name="rotate", pd=RotatePD()), ], } post_filters = [] def augment_img_wrapper(img, rng: RNG = rng, return_params=False): """ Wrapper for augment_img to handle errors """ try: return augment_img(img, rng, return_params) except Exception as e: print(f"Error augmenting image: {e}") return img, ["none"] def augment_img(img, rng: RNG = rng, return_params=False): """ Sample augmentation parameters for img. Args: img: query image. """ # select filters to apply num_filters = rng.choice(np.arange(1, 5), p=[0.1, 0.2, 0.3, 0.4]) filter_types_to_apply = rng.choice( np.asarray(list(primitives.keys())), size=num_filters, replace=False ) filters_to_apply = [ primitives[ftype][rng.randint(0, len(primitives[ftype]))] for ftype in filter_types_to_apply ] filters_to_apply += post_filters # Ensure that crop is in first position if selected and that convert_color is in last position if selected for j, vf in enumerate(filters_to_apply): if vf.name == "crop": filters_to_apply[j], filters_to_apply[0] = ( filters_to_apply[0], filters_to_apply[j], ) if vf.name == "convert_color": filters_to_apply[j], filters_to_apply[-1] = ( filters_to_apply[-1], filters_to_apply[j], ) # sample parameters for each filter all_filters_parameters = sample_img_filters_parameters( rng, filters_to_apply ) # apply filters for j, ftr in enumerate(all_filters_parameters): aug_func = getattr(imaugs, ftr.name, None) kwargs = ftr.kwargs if ftr.name == "crop": x1, x2 = kwargs.pop("xs") y1, y2 = kwargs.pop("ys") kwargs["x1"], kwargs["x2"] = x1, x2 kwargs["y1"], kwargs["y2"] = y1, y2 img = aug_func(image=img, **kwargs) img = img.convert('RGB') if return_params: return img, all_filters_parameters else: return img if __name__ == '__main__': def get_parser(): parser = argparse.ArgumentParser() parser.add_argument("--output_dir", type=str, default='output') parser.add_argument("--data_dir", type=str, default="/img/data/dir/") parser.add_argument("--seed", type=int, default=42) return parser params = get_parser().parse_args() print("__log__:{}".format(json.dumps(vars(params)))) # set seed np.random.seed(params.seed) random.seed(params.seed) rng = np.random.RandomState(params.seed) # Load data print("Loading filenames from {}".format(params.data_dir)) filenames = os.listdir(params.data_dir) # Generate augmented images print("Generating augmented images into {}".format(params.output_dir)) augmentations = [] os.makedirs(params.output_dir, exist_ok=True) for filename in filenames: img_path = os.path.join(params.data_dir, filename) img = Image.open(img_path) img, filters = augment_img(img, rng, return_params=True) img.convert('RGB').save(os.path.join(params.output_dir, filename), quality=95) augmentations.append(filters) print(filename, "[" + ", ".join([str(ftr) for ftr in filters]) + "]") # break # Save augmentations print("Saving augmentations") with open(os.path.join(params.output_dir, "augmentations.txt"), "a") as f: for augmentation in augmentations: line = "[" + ", ".join([str(ftr) for ftr in augmentation]) + "]\n" f.write(line)
active_indexing-main
activeindex/augment_queries.py
active_indexing-main
activeindex/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import json import time from typing import Callable import faiss import numpy as np import torch from torch import nn from torchvision.transforms import functional from . import utils, utils_img from .attenuations import JND device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') def get_targets( target: str, index: faiss.Index, fts: torch.Tensor, ivf_centroids: np.ndarray = None ) -> torch.Tensor: """ Get the target representations for the features. Args: target (str): Target representation to use. index (faiss.Index): Index to use for retrieval. fts (torch.Tensor): Features to get the targets for. batch_size x feature_dim ivf_centroids (np.ndarray): Centroids of the IVF index. Returns: targets (torch.Tensor): Target representations for the features. batch_size x feature_dim """ if target == 'pq_recons': targets = index.reconstruct_n(index.ntotal-fts.shape[0], fts.shape[0]) # reconstruct the PQ codes that have just been added targets = torch.tensor(targets) elif target == 'ori_ft': fts.clone() elif target == 'ivf_cluster': ivf_D, ivf_I = index.quantizer.search(fts.detach().cpu().numpy(), k=1) # find the closest cluster center for each feature targets = ivf_centroids.take(ivf_I.flatten(), axis=0) # get the cluster representation for each feature targets = torch.tensor(targets) elif target == 'ivf_cluster_half': ivf_D, ivf_I = index.quantizer.search(fts.detach().cpu().numpy(), k=1) centroids = ivf_centroids.take(ivf_I.flatten(), axis=0) targets = (torch.tensor(centroids) + fts.clone() / 2) else: raise NotImplementedError(f'Invalid target: {target}') return targets def activate_images( imgs: list[torch.Tensor], ori_fts: torch.Tensor, model: nn.Module, index: faiss.Index, ivf_centroids: np.ndarray, attenuation: JND, loss_f: Callable, loss_i: Callable, params: argparse.Namespace ) -> list[torch.Tensor]: """ Activate images. Args: imgs (list of torch.Tensor): Images to activate. batch_size * [3 x height x width] model (torch.nn.Module): Model for feature extraction. index (faiss.Index): Index to use for retrieval. ivf_centroids (np.ndarray): Centroids of the IVF index. attenuation (JND): To create Just Noticeable Difference heatmaps. loss_f (Callable): Loss function to use for the indexation loss. loss_i (Callable): Loss function to use for the image loss. params (argparse.Namespace): Parameters. Returns: activated images (list of torch.Tensor): Activated images. batch_size * [3 x height x width] """ targets = get_targets(params.target, index, ori_fts, ivf_centroids) targets = targets.to(device) # Just noticeable difference heatmaps alpha = torch.tensor([0.072*(1/0.299), 0.072*(1/0.587), 0.072*(1/0.114)]) alpha = alpha[:,None,None].to(device) # 3 x 1 x 1 heatmaps = [params.scaling * attenuation.heatmaps(img) for img in imgs] # init distortion + optimizer + scheduler deltas = [1e-6 * torch.randn_like(img).to(device) for img in imgs] # b (1 c h w) for distortion in deltas: distortion.requires_grad = True optim_params = utils.parse_params(params.optimizer) optimizer = utils.build_optimizer(model_params=deltas, **optim_params) if params.scheduler is not None: scheduler = utils.build_scheduler(optimizer=optimizer, **utils.parse_params(params.scheduler)) # begin optim iter_time = time.time() log_stats = [] for gd_it in range(params.iterations): gd_it_time = time.time() if params.scheduler is not None: scheduler.step(gd_it) # perceptual constraints percep_deltas = [torch.tanh(delta) for delta in deltas] if params.use_tanh else deltas percep_deltas = [delta * alpha for delta in percep_deltas] if params.scale_channels else percep_deltas imgs_t = [img + hm * delta for img, hm, delta in zip(imgs, heatmaps, percep_deltas)] # get features batch_imgs = [functional.resize(img_t, (params.resize_size, params.resize_size)) for img_t in imgs_t] batch_imgs = torch.stack(batch_imgs) fts = model(batch_imgs) # b d # compute losses lf = loss_f(fts, targets) li = loss_i(imgs_t, imgs) loss = params.lambda_f * lf + params.lambda_i * li # step optimizer.zero_grad() loss.backward() optimizer.step() # log stats psnrs = torch.tensor([utils_img.psnr(img_t, img) for img_t, img in zip(imgs_t, imgs)]) linfs = torch.tensor([utils_img.linf(img_t, img) for img_t, img in zip(imgs_t, imgs)]) log_stats.append({ 'gd_it': gd_it, 'loss': loss.item(), 'loss_f': lf.item(), 'loss_i': li.item(), 'psnr': torch.nanmean(psnrs).item(), 'linf': torch.nanmean(linfs).item(), 'lr': optimizer.param_groups[0]['lr'], 'gd_it_time': time.time() - gd_it_time, 'iter_time': time.time() - iter_time, 'max_mem': torch.cuda.max_memory_allocated() / (1024*1024), 'kw': 'optim', }) if (gd_it+1) % params.log_freq == 0: print(json.dumps(log_stats[-1])) # tqdm.tqdm.write(json.dumps(log_stats[-1])) # perceptual constraints percep_deltas = [torch.tanh(delta) for delta in deltas] if params.use_tanh else deltas percep_deltas = [delta * alpha for delta in percep_deltas] if params.scale_channels else percep_deltas imgs_t = [img + hm * delta for img, hm, delta in zip(imgs, heatmaps, percep_deltas)] return imgs_t
active_indexing-main
activeindex/engine.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import functools import logging import os import faiss from PIL import Image, ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True import timm from timm import optim as timm_optim from timm import scheduler as timm_scheduler import torch import torch.nn as nn from torch.utils.data import DataLoader from torchvision import datasets, models from torchvision.datasets.folder import default_loader, is_image_file # Index def build_index_factory(idx_str, quant, fts_path, idx_path=None) -> faiss.Index: """ Builds index from string and fts_path. see https://github.com/facebookresearch/faiss/wiki/The-index-factory Args: idx_str: string describing the index quant: quantization type, either "L2" or "IP" (Inner Product) fts_path: path to the train features as a torch tensor .pt file idx_path: path to save the index """ fts = torch.load(fts_path) fts = fts.numpy() # b d D = fts.shape[-1] metric = faiss.METRIC_L2 if quant == 'L2' else faiss.METRIC_INNER_PRODUCT index = faiss.index_factory(D, idx_str, metric) index.train(fts) if idx_path is not None: print(f'Saving Index to {idx_path}...') faiss.write_index(index, idx_path) return index # Arguments helpers def bool_inst(v): if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise ValueError('Boolean value expected in args') def parse_params(s): """ Parse parameters into a dictionary, used for optimizer and scheduler parsing. Example: "SGD,lr=0.01" -> {"name": "SGD", "lr": 0.01} """ s = s.replace(' ', '').split(',') params = {} params['name'] = s[0] for x in s[1:]: x = x.split('=') params[x[0]]=float(x[1]) return params # Optimizer and Scheduler def build_optimizer(name, model_params, **optim_params): """ Build optimizer from a dictionary of parameters """ tim_optimizers = sorted(name for name in timm_optim.__dict__ if name[0].isupper() and not name.startswith("__") and callable(timm_optim.__dict__[name])) torch_optimizers = sorted(name for name in torch.optim.__dict__ if name[0].isupper() and not name.startswith("__") and callable(torch.optim.__dict__[name])) if name in tim_optimizers: return getattr(timm_optim, name)(model_params, **optim_params) elif name in torch_optimizers: return getattr(torch.optim, name)(model_params, **optim_params) raise ValueError(f'Unknown optimizer "{name}", choose among {str(tim_optimizers+torch_optimizers)}') def build_scheduler(name, optimizer, **lr_scheduler_params): """ Build scheduler from a dictionary of parameters Args: name: name of the scheduler optimizer: optimizer to be used with the scheduler params: dictionary of scheduler parameters Ex: CosineLRScheduler, optimizer {t_initial=50, cycle_mul=2, cycle_limit=3, cycle_decay=0.5, warmup_lr_init=1e-6, warmup_t=5} """ tim_schedulers = sorted(name for name in timm_scheduler.__dict__ if name[0].isupper() and not name.startswith("__") and callable(timm_scheduler.__dict__[name])) torch_schedulers = sorted(name for name in torch.optim.lr_scheduler.__dict__ if name[0].isupper() and not name.startswith("__") and callable(torch.optim.lr_scheduler.__dict__[name])) if name in tim_schedulers: return getattr(timm_scheduler, name)(optimizer, **lr_scheduler_params) elif hasattr(torch.optim.lr_scheduler, name): return getattr(torch.optim.lr_scheduler, name)(optimizer, **lr_scheduler_params) raise ValueError(f'Unknown scheduler "{name}", choose among {str(tim_schedulers+torch_schedulers)}') # Model def build_backbone(path, name): """ Build a pretrained torchvision backbone from its name. Args: path: path to the checkpoint, can be an URL name: "torchscript" or name of the architecture from torchvision (see https://pytorch.org/vision/stable/models.html) or timm (see https://rwightman.github.io/pytorch-image-models/models/). Returns: model: nn.Module """ if name == 'torchscript': model = torch.jit.load(path) return model else: if hasattr(models, name): model = getattr(models, name)(pretrained=True) elif name in timm.list_models(): model = timm.models.create_model(name, num_classes=0) else: raise NotImplementedError('Model %s does not exist in torchvision'%name) model.head = nn.Identity() model.fc = nn.Identity() if path is not None: if path.startswith("http"): checkpoint = torch.hub.load_state_dict_from_url(path, progress=False) else: checkpoint = torch.load(path) state_dict = checkpoint for ckpt_key in ['state_dict', 'model_state_dict', 'teacher']: if ckpt_key in checkpoint: state_dict = checkpoint[ckpt_key] state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()} state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()} msg = model.load_state_dict(state_dict, strict=False) print(msg) return model # Data loading @functools.lru_cache() def get_image_paths(path): logging.info(f"Resolving files in: {path}") paths = [] for path, _, files in os.walk(path): for filename in files: paths.append(os.path.join(path, filename)) return sorted([fn for fn in paths if is_image_file(fn)]) class ImageFolder: """An image folder dataset without classes""" def __init__(self, path, transform=None, loader=default_loader): self.samples = get_image_paths(path) self.loader = loader self.transform = transform def __getitem__(self, idx: int): assert 0 <= idx < len(self) img = self.loader(self.samples[idx]) if self.transform: return self.transform(img) return img def __len__(self): return len(self.samples) def collate_fn(batch): """ Collate function for data loader. Allows to have img of different size""" return batch def get_dataloader(data_dir, transform, batch_size=128, num_workers=8, collate_fn=collate_fn): """ Get dataloader for the images in the data_dir. """ dataset = ImageFolder(data_dir, transform=transform) dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=collate_fn, shuffle=False, pin_memory=True, drop_last=False) return dataloader
active_indexing-main
activeindex/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import os import random import faiss import tqdm import numpy as np import pandas as pd import torch import torch.nn as nn from torchvision import transforms from torchvision.transforms import functional from torchvision.utils import save_image from . import attenuations, augment_queries, utils, utils_img from .engine import activate_images device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') def get_parser(): parser = argparse.ArgumentParser() def aa(*args, **kwargs): group.add_argument(*args, **kwargs) group = parser.add_argument_group('Experiments parameters') aa("--output_dir", type=str, default="output/", help="Output directory for logs and images (Default: /output)") aa("--verbose", type=int, default=1) aa("--seed", type=int, default=0) group = parser.add_argument_group('Data parameters') aa("--fts_training_path", type=str, default="path/to/train/fts.pth") aa("--fts_reference_path", type=str, default="path/to/train/ref_990k.pth") aa("--data_dir", type=str, default="/path/to/disc/ref_10k.pth") aa("--query_nonmatch_dir", type=str, default="/path/to/disc/queries_40k") aa("--batch_size", type=int, default=16) aa("--batch_size_eval", type=int, default=128) aa("--resize_size", type=int, default=288, help="Resize images to this size. (Default: 288)") group = parser.add_argument_group('Model parameters') aa("--model_name", type=str, default="torchscript") aa("--model_path", type=str, default="/path/to/model.torchscript.pt") group = parser.add_argument_group('Index parameters') aa("--idx_dir", type=str, default="indexes", help="Directory where to save the index. (Default: index_disc_sscd288)") aa("--idx_factory", type=str, default="IVF4096,PQ8x8", help="String to create index from index factory. (Default: IVF4096,PQ8x8)") aa("--quant", type=str, default="L2", help="Quantizer type if IVF (L2, IP, etc.)") aa("--nprobe", type=int, default=1, help="Number of probes per query if IVF.") aa("--kneighbors", type=int, default=100, help="Number of nearest neighbors to return") group = parser.add_argument_group('Optimization parameters') aa("--iterations", type=int, default=10, help="Number of iterations for image optimization. (Default: 10)") aa("--optimizer", type=str, default="Adam,lr=1e-0", help="Optimizer to use. (Default: Adam)") aa("--scheduler", type=str, default=None, help="Scheduler to use. (Default: None)") aa("--target", type=str, default="pq_recons", help="Target to use. (Default: pq_recons)") aa("--loss_f", type=str, default="cossim", help="Loss w to use. Choose among mse, cossim (Default: cossim)") aa("--lambda_f", type=float, default=1.0, help="Weight of the feature loss. (Default: 1.0)") aa("--lambda_i", type=float, default=1e-2, help="Weight of the image loss. (Default: 1.0)") group = parser.add_argument_group('Distortion & Attenuation parameters') aa("--use_attenuation", type=utils.bool_inst, default=True, help="Use heatmap attenuation") aa("--scaling", type=float, default=3.0, help="Scaling factor for the heatmap attenuation") aa("--scale_channels", type=utils.bool_inst, default=True, help="Scale the RGB channels of the heatmap attenuation") aa("--use_tanh", type=utils.bool_inst, default=True, help="Use tanh for the heatmap attenuation") group = parser.add_argument_group('Evaluation parameters') aa("--use_attacks_2", type=utils.bool_inst, default=False, help="Use attacks_2 for augmentation evaluation. (Default: False)") aa("--eval_retrieval", type=utils.bool_inst, default=True, help="Evaluate retrieval. (Default: True)") aa("--eval_icd", type=utils.bool_inst, default=True, help="Evaluate icd. (Default: True)") group = parser.add_argument_group('Misc parameters') aa("--active", type=utils.bool_inst, default=True, help="Activate images") aa("--save_imgs", type=utils.bool_inst, default=True, help="Save images") aa("--log_freq", type=int, default=11, help="Log every n iterations. (Default: 1)") aa("--debug", type=utils.bool_inst, default=False, help="Debug mode. (Default: False)") return parser @torch.no_grad() def eval_retrieval(img_loader, image_indices, transform, model, index, kneighbors, use_attacks_2=False): """ Evaluate retrieval on the activated images. Args: img_loader (torch.utils.data.DataLoader): Data loader for the images. image_indices (list): List of ground-truth image indices. transform (torchvision.transforms): Transform to apply to the images. model (torch.nn.Module): Model to use for feature extraction. index (faiss.Index): Index to use for retrieval. kneighbors (int): Number of nearest neighbors to return. use_attacks_2 (bool): Use attacks_2 for augmentation evaluation. (Default: False) Returns: df (pandas.DataFrame): Dataframe with the results. """ logs = [] attacks = utils_img.attacks_2 if use_attacks_2 else utils_img.attacks base_count = 0 for ii, imgs in enumerate(tqdm.tqdm(img_loader)): # create attacks for each image of the batch attacked_imgs = [utils_img.generate_attacks(pil_img, attacks) for pil_img in imgs] # batchsize nattacks # create batches for each attack batch_attacked_imgs = [[] for _ in range(len(attacks))] # nattacks 0 for jj, attacked_img_jj in enumerate(attacked_imgs): for kk in range(len(attacks)): # nattacks 0 -> nattacks batchsize img_jj_attack_kk = transform(attacked_img_jj[kk]).unsqueeze(0).to(device) batch_attacked_imgs[kk].append(img_jj_attack_kk) batch_attacked_imgs = [torch.cat(batch_attacked_img, dim=0) for batch_attacked_img in batch_attacked_imgs] # nattacks batchsize # iterate over attacks for kk in range(len(attacks)): # create attack param attack = attacks[kk].copy() attack_name = attack.pop('attack') param_names = ['attack_param' for _ in range(len(attack.keys()))] attack_params = dict(zip(param_names,list(attack.values()))) # extract features fts = model(batch_attacked_imgs[kk]) fts = fts.detach().cpu().numpy() # retrieve nearest neighbors retrieved_Ds, retrieved_Is = index.search(fts, k=kneighbors) # iterate over images of the batch for jj in range(len(batch_attacked_imgs[kk])): image_index = image_indices[base_count+jj] retrieved_D, retrieved_I = retrieved_Ds[jj], retrieved_Is[jj] rank = [kk for kk in range(len(retrieved_I)) if retrieved_I[kk]==image_index] rank = rank[0] if rank else len(retrieved_I) logs.append({ 'batch': ii, 'image_index': image_index, "attack": attack_name, **attack_params, 'retrieved_distances': retrieved_D, 'retrieved_indices': retrieved_I, 'rank': rank, 'r@1': 1 if rank<1 else 0, 'r@10': 1 if rank<10 else 0, 'r@100': 1 if rank<100 else 0, 'ap': 1/(rank+1), "kw": "evaluation", }) # update count of images base_count += len(imgs) df = pd.DataFrame(logs).drop(columns='kw') return df @torch.no_grad() def eval_icd(img_loader, img_nonmatch_loader, image_indices, transform, model, index, kneighbors, seed=0): """ Evaluate icd on the activated images. Args: img_loader (torch.utils.data.DataLoader): Data loader for the images. img_nonmatch_loader (torch.utils.data.DataLoader): Data loader for the non-matching images. image_indices (list): List of ground-truth image indices. transform (torchvision.transforms): Transform to apply to the images. model (torch.nn.Module): Model to use for feature extraction. index (faiss.Index): Index to use for retrieval. kneighbors (int): Number of nearest neighbors to return. query_nonmatch_dir (str): Directory where the non-matching images are stored. seed (int): Seed for the random number generator. (Default: 0) Returns: df (pandas.DataFrame): Dataframe with the results. """ # stats on matching images rng = np.random.RandomState(seed) logs = [] ct_match = 0 # count of matching images for ii, imgs in enumerate(tqdm.tqdm(img_loader)): # create attack for each image of the batch attacked_imgs = [] attack_names = [] for jj, pil_img in enumerate(imgs): attacked_img, aug_params = augment_queries.augment_img_wrapper(pil_img, rng, return_params=True) attack_name = "[" + ", ".join([str(ftr) for ftr in aug_params]) attacked_img = transform(attacked_img).unsqueeze(0).to(device) attack_names.append(attack_name) attacked_imgs.append(attacked_img) attacked_imgs = torch.cat(attacked_imgs, dim=0) # extract features fts = model(attacked_imgs) fts = fts.detach().cpu().numpy() # nearest neighbors search retrieved_Ds, retrieved_Is = index.search(fts, k=kneighbors) # iterate over images of the batch for jj in range(len(imgs)): retrieved_D, retrieved_I = retrieved_Ds[jj], retrieved_Is[jj] image_index = image_indices[ct_match + jj] logs.append({ 'batch': ii, 'image_index': image_index, 'attack': attack_names[jj], 'retrieved_distances': retrieved_D, 'retrieved_ids': retrieved_I, "kw": "icd_evaluation", }) # update count of matching images ct_match += len(imgs) # stats non matching images for ii, imgs in enumerate(tqdm.tqdm(img_nonmatch_loader)): # create attack for each image of the batch attacked_imgs = [] attack_names = [] for jj, pil_img in enumerate(imgs): attacked_img, aug_params = augment_queries.augment_img_wrapper(pil_img, rng, return_params=True) attack_name = "[" + ", ".join([str(ftr) for ftr in aug_params]) attacked_img = transform(attacked_img).unsqueeze(0).to(device) attack_names.append(attack_name) attacked_imgs.append(attacked_img) attacked_imgs = torch.cat(attacked_imgs, dim=0) # extract features fts = model(attacked_imgs) fts = fts.detach().cpu().numpy() # nearest neighbors search retrieved_Ds, retrieved_Is = index.search(fts, k=kneighbors) # iterate over images of the batch for jj in range(len(imgs)): retrieved_D, retrieved_I = retrieved_Ds[jj], retrieved_Is[jj] logs.append({ 'batch': ii, 'image_index': -1, 'attack': attack_names[jj], 'retrieved_distances': retrieved_D, 'retrieved_ids': retrieved_I, "kw": "icd_evaluation", }) icd_df = pd.DataFrame(logs).drop(columns='kw') return icd_df def main(params): # Set seeds for reproductibility torch.manual_seed(params.seed) torch.cuda.manual_seed_all(params.seed) np.random.seed(params.seed) random.seed(params.seed) # Create the directories os.makedirs(params.idx_dir, exist_ok=True) os.makedirs(params.output_dir, exist_ok=True) imgs_dir = os.path.join(params.output_dir, 'imgs') os.makedirs(imgs_dir, exist_ok=True) print(f'>>> Starting. \n \t Index will be saved in {params.idx_dir} - images will be saved in {imgs_dir} - evaluation logs in {params.output_dir}') # Build Index - see https://github.com/facebookresearch/faiss/wiki/Faiss-indexes print(f'>>> Building Index') idx_path = os.path.join(params.idx_dir, f'idx={params.idx_factory}_quant={params.quant}.index') if os.path.exists(idx_path): print(f'>>> Loading Index from {idx_path}') index = faiss.read_index(idx_path) else: print(f'>>> Index not found. Building Index with fts from {params.fts_training_path}...') index = utils.build_index_factory(params.idx_factory, params.quant, params.fts_training_path, idx_path) index.nprobe = params.nprobe if 'IVF' in params.idx_factory: # optionally get the centroids ivf = faiss.extract_index_ivf(index) ivf_centroids = ivf.quantizer.reconstruct_n(0, ivf.nlist) else: ivf_centroids = None # Adding reference images to the index print(f'>>> Adding reference images to the index from {params.fts_reference_path}...') fts = torch.load(params.fts_reference_path) index.add(fts.detach().cpu().numpy()) n_index_ref = index.ntotal if 'IVF' in params.idx_factory: ivf.make_direct_map() # Build the feature extractor model print(f'>>> Building backbone from {params.model_path}...') model = utils.build_backbone(path=params.model_path, name=params.model_name) model.eval() model.to(device) for param in model.parameters(): param.requires_grad = False # loss for feature cossim = nn.CosineSimilarity(dim=-1) pdist = nn.PairwiseDistance(p=2) def loss_f(ft, target): if params.loss_f == 'cossim': dists = -cossim(ft, target) else: dists = pdist(ft, target)**2 return torch.mean(dists) # loss for image mse = nn.MSELoss() def loss_i(imgs, imgs_ori): li = 0 bb = len(imgs) for ii in range(bb): # imgs do not have same size so we cannot use batch mse li += mse(imgs[ii], imgs_ori[ii]) return li/bb # build perceptual attenuation attenuation = attenuations.JND(preprocess = utils_img.UNNORMALIZE_IMAGENET).to(device) attenuation.requires_grad = False # Load images to activate print(f'>>> Loading images from {params.data_dir}...') transform = transforms.Compose([ transforms.ToTensor(), utils_img.NORMALIZE_IMAGENET, ]) transform_with_resize = transforms.Compose([ transforms.ToTensor(), utils_img.NORMALIZE_IMAGENET, transforms.Resize((params.resize_size, params.resize_size)), ]) data_loader = utils.get_dataloader(params.data_dir, transform, params.batch_size) print(f'>>> Activating images...') all_imgs = [] for it, imgs in enumerate(tqdm.tqdm(data_loader)): if params.debug and it > 5: break imgs = [img.to(device) for img in imgs] # Add to index resized_imgs = [functional.resize(img, (params.resize_size, params.resize_size)) for img in imgs] batch_imgs = torch.stack([img for img in resized_imgs]) fts = model(batch_imgs) index.add(fts.detach().cpu().numpy()) if 'IVF' in params.idx_factory: ivf.make_direct_map() # update the direct map if needed # Activate if params.active: imgs = activate_images(imgs, fts, model, index, ivf_centroids, attenuation, loss_f, loss_i, params) # Save images for ii, img in enumerate(imgs): img = torch.clamp(utils_img.UNNORMALIZE_IMAGENET(img), 0, 1) img = torch.round(255 * img)/255 img = img.detach().cpu() if params.save_imgs: save_image(img, os.path.join(imgs_dir, f'{it*params.batch_size + ii:05d}.png')) else: all_imgs.append(transforms.ToPILImage()(img)) if params.save_imgs: # create loader from saved images img_loader = utils.get_dataloader(imgs_dir, transform=None, batch_size=params.batch_size_eval) else: # list of images to list of batches img_loader = [all_imgs[ii:ii + params.batch_size_eval] for ii in range(0, len(all_imgs), params.batch_size_eval)] if params.eval_retrieval: print(f'>>> Evaluating nearest neighbors search...') image_indices = range(n_index_ref, index.ntotal) df = eval_retrieval(img_loader, image_indices, transform_with_resize, model, index, params.kneighbors, params.use_attacks_2) df.to_csv(os.path.join(params.output_dir, 'retr_df.csv'), index=False) df.fillna(0, inplace=True) df_mean = df.groupby(['attack', 'attack_param'], as_index=False).mean() print(f'\n{df_mean}') if params.eval_icd: print(f'>>> Evaluating copy detection on query set...') image_indices = range(n_index_ref, index.ntotal) img_nonatch_loader = utils.get_dataloader(params.query_nonmatch_dir, transform=None, batch_size=params.batch_size_eval) icd_df = eval_icd(img_loader, img_nonatch_loader, image_indices, transform_with_resize, model, index, params.kneighbors) icd_df_path = os.path.join(params.output_dir,'icd_df.csv') icd_df.to_csv(icd_df_path, index=False) print(f'\n{icd_df}') if __name__ == '__main__': # generate parser / parse parameters parser = get_parser() params = parser.parse_args() # run experiment main(params)
active_indexing-main
activeindex/main.py
Active-3D-Vision-and-Touch-main
__init__.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import setuptools setuptools.setup( name="pterotactyl", version="0.1.0", author="Facebook AI Research", description="", long_description_content_type="text/markdown", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Intended Audience :: Science/Research", "Topic :: Scientific/Engineering :: Artificial Intelligence :: Active Sensing", ], python_requires=">=3.6", )
Active-3D-Vision-and-Touch-main
setup.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
Active-3D-Vision-and-Touch-main
pterotactyl/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
Active-3D-Vision-and-Touch-main
pterotactyl/objects/__init__.py
Active-3D-Vision-and-Touch-main
pterotactyl/objects/hand/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import numpy as np import torch from pterotactyl.utility import utils BASE_MESH_SIZE = 1824 BASE_CHART_SIZE = 25 # replay buffer used for learning RL models over the environment class ReplayMemory: def __init__(self, args): self.args = args # basic info which might be used by a learning method # _n denotes observations occuring after the action is perfromed self.mask = torch.zeros((self.args.mem_capacity, self.args.num_actions)) self.mask_n = torch.zeros((self.args.mem_capacity, self.args.num_actions)) self.actions = torch.zeros((self.args.mem_capacity)) self.rewards = torch.zeros(self.args.mem_capacity) self.score = torch.zeros(self.args.mem_capacity) self.score_n = torch.zeros(self.args.mem_capacity) self.first_score = torch.zeros(self.args.mem_capacity) if self.args.use_recon: num_fingers = 1 if self.args.finger else 4 mesh_shape = BASE_MESH_SIZE + ( BASE_CHART_SIZE * self.args.num_grasps * num_fingers ) self.mesh = torch.zeros((self.args.mem_capacity, mesh_shape, 4)) self.mesh_n = torch.zeros((self.args.mem_capacity, mesh_shape, 4)) if self.args.use_latent: latent_size = utils.load_model_config(self.args.auto_location)[ 0 ].encoding_size self.latent = torch.zeros((self.args.mem_capacity, latent_size)) self.latent_n = torch.zeros((self.args.mem_capacity, latent_size)) self.first_latent = torch.zeros((self.args.mem_capacity, latent_size)) self.position = 0 self.count_seen = 0 # add a set of transitions to the replay buffer def push(self, action, observation, next_observation, reward): for i in range(len(action)): self.actions[self.position] = action[i] self.rewards[self.position] = reward[i] self.score[self.position] = observation["score"][i] self.score_n[self.position] = next_observation["score"][i] self.first_score[self.position] = observation["first_score"][i] self.mask[self.position] = observation["mask"][i] self.mask_n[self.position] = next_observation["mask"][i] if self.args.use_recon: self.mesh[self.position] = observation["mesh"][i] self.mesh_n[self.position] = next_observation["mesh"][i] if self.args.use_latent: self.latent[self.position] = observation["latent"][i] self.latent_n[self.position] = next_observation["latent"][i] self.first_latent[self.position] = observation["first_latent"][i] self.count_seen += 1 self.position = (self.position + 1) % self.args.mem_capacity # sample a set of transitions from the replay buffer def sample(self): if ( self.count_seen < self.args.burn_in or self.count_seen < self.args.train_batch_size ): return None indices = np.random.choice( min(self.count_seen, self.args.mem_capacity), self.args.train_batch_size ) data = { "mask": self.mask[indices], "mask_n": self.mask_n[indices], "actions": self.actions[indices], "rewards": self.rewards[indices], "score": self.score[indices], "score_n": self.score_n[indices], "first_score": self.first_score[indices], } if self.args.use_recon: data["mesh"] = self.mesh[indices] data["mesh_n"] = self.mesh_n[indices] if self.args.use_latent: data["latent"] = self.latent[indices] data["latent_n"] = self.latent_n[indices] data["first_latent"] = self.first_latent[indices] return data # save the replay buffer to disk def save(self, directory): data = { "mask": self.mask, "mask_n": self.mask_n, "actions": self.actions, "rewards": self.rewards, "score": self.score, "first_score": self.first_score, "position": self.position, "count_seen": self.count_seen, } if self.args.use_recon: data["mesh"] = self.mesh data["mesh_n"] = self.mesh_n if self.args.use_latent: data["latent"] = self.latent data["latent_n"] = self.latent_n data["first_latent"] = self.first_latent temp_path = directory + "_replay_buffer_temp.pt" full_path = directory + "_replay_buffer.pt" torch.save(data, temp_path) os.rename(temp_path, full_path) # load the replay buffer from the disk def load(self, directory): data = torch.load(directory + "_replay_buffer.pt") self.mask = data["mask"] self.mask_n = data["mask_n"] self.actions = data["actions"] self.actions = data["actions"] self.rewards = data["rewards"] self.score = data["score"] self.first_score = data["first_score"] self.position = data["position"] self.count_seen = data["count_seen"] if self.args.use_recon: self.mesh = data["mesh"] self.mesh_n = data["mesh_n"] if self.args.use_latent: self.latent = data["latent"] self.latent_n = data["latent_n"] self.first_latent = data["first_latent"]
Active-3D-Vision-and-Touch-main
pterotactyl/policies/replay.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import random import numpy as np import torch import torch.utils.data from pterotactyl.utility import utils from pterotactyl.utility import data_loaders from pterotactyl.reconstruction.touch import model as touch_model from pterotactyl.reconstruction.vision import model as vision_model from pterotactyl.reconstruction.autoencoder import model as auto_model import pterotactyl.objects as objects from pterotactyl.simulator.scene import sampler from pterotactyl.simulator.physics import grasping from pterotactyl import pretrained class ActiveTouch: def __init__(self, args): self.args = args self.seed(self.args.seed) self.current_information = {} self.steps = 0 self.touch_chart_location = os.path.join( os.path.dirname(objects.__file__), "touch_chart.obj" ) self.vision_chart_location = os.path.join( os.path.dirname(objects.__file__), "vision_charts.obj" ) self.pretrained_recon_models() self.setup_recon() self.get_loaders() self.sampler = sampler.Sampler( grasping.Agnostic_Grasp, bs=self.args.env_batch_size, vision=False ) # Fix seeds def seed(self, seed): self.seed = seed torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) # get dataloaders def get_loaders(self): if not self.args.eval: self.train_data = data_loaders.mesh_loader_active( self.args, set_type="RL_train" ) set_type = "valid" else: set_type = "test" self.valid_data = data_loaders.mesh_loader_active(self.args, set_type=set_type) def pretrained_recon_models(self): if self.args.pretrained_recon: self.args.touch_location = ( os.path.dirname(pretrained.__file__) + "/reconstruction/touch/best/" ) if self.args.use_img: if self.args.finger: self.args.vision_location = ( os.path.dirname(pretrained.__file__) + "/reconstruction/vision/v_t_p/" ) self.args.auto_location = ( os.path.dirname(pretrained.__file__) + "/reconstruction/auto/v_t_p/" ) else: self.args.vision_location = ( os.path.dirname(pretrained.__file__) + "/reconstruction/vision/v_t_g/" ) self.args.auto_location = ( os.path.dirname(pretrained.__file__) + "/reconstruction/auto/v_t_g/" ) else: if self.args.finger: self.args.vision_location = ( os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_p/" ) self.args.auto_location = ( os.path.dirname(pretrained.__file__) + "/reconstruction/auto/t_p/" ) else: self.args.vision_location = ( os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_g/" ) self.args.auto_location = ( os.path.dirname(pretrained.__file__) + "/reconstruction/auto/t_g/" ) # initialize and load the correct reconstruction models def setup_recon(self): self.touch_verts, _ = utils.load_mesh_touch(self.touch_chart_location) # load predtrained touch prediction model touch_args, _ = utils.load_model_config(self.args.touch_location) weights = self.args.touch_location + '/model' self.touch_prediction = touch_model.Encoder().cuda() self.touch_prediction.load_state_dict(torch.load(weights)) self.touch_prediction.eval() # load predtrained vision prediction model vision_args, _ = utils.load_model_config(self.args.vision_location) weights = self.args.vision_location + '/model' self.mesh_info, self.initial_mesh = utils.load_mesh_vision( vision_args, self.vision_chart_location ) self.initial_mesh = self.initial_mesh.cuda() self.n_vision_charts = self.initial_mesh.shape[0] self.deform = vision_model.Deformation( self.mesh_info, self.initial_mesh, vision_args ).cuda() self.deform.load_state_dict(torch.load(weights)) self.deform.eval() # load predtrained autoencoder model if self.args.use_latent: auto_args, _ = utils.load_model_config(self.args.auto_location) weights = self.args.auto_location + '/model' self.auto_encoder = auto_model.AutoEncoder( self.mesh_info, self.initial_mesh, auto_args, only_encode=True ).cuda() self.auto_encoder.load_state_dict(torch.load(weights), strict=False) self.auto_encoder.eval() # reset the environment with new objects def reset(self, batch): self.current_data = {} self.steps = 0 self.current_data["first_score"] = None self.current_data["batch"] = batch self.current_data["mask"] = torch.zeros( [self.args.env_batch_size, self.args.num_actions] ) self.sampler.load_objects(batch["names"], from_dataset=True) obs = self.compute_obs() self.current_data["score"] = obs["score"] return obs # take a set in the environment with supplied actions def step(self, actions): self.update_masks(actions) obs = self.compute_obs(actions=actions) reward = self.current_data["score"] - obs["score"] self.current_data["score"] = obs["score"] self.steps += 1 done = self.steps == self.args.budget return obs, reward, done # compute the best myopic greedy actions and perfrom them def best_step(self, greedy_checks=None): best_actions = [None for _ in range(self.args.env_batch_size)] best_score = [1000 for _ in range(self.args.env_batch_size)] if greedy_checks == None or ( greedy_checks is not None and greedy_checks >= self.args.num_actions ): for i in range(self.args.num_actions): actions = [i for _ in range(self.args.env_batch_size)] obs = self.compute_obs(actions) for e, s in enumerate(obs["score"]): if s < best_score[e] and self.current_data["mask"][e][i] == 0: best_actions[e] = actions[e] best_score[e] = s else: possible_actions = [ list(range(self.args.num_actions)) for _ in range(self.args.env_batch_size) ] for i in range(self.args.env_batch_size): seen = torch.where(self.current_data["mask"][i] != 0)[0] actions = list(seen.data.cpu().numpy()) actions.sort() actions.reverse() for action in actions: del possible_actions[i][action] checks = min(greedy_checks, len(possible_actions[0])) selected_actions = [ random.sample(possible_actions[i], checks) for i in range(self.args.env_batch_size) ] for i in range(checks): actions = [ selected_actions[j][i] for j in range(self.args.env_batch_size) ] obs = self.compute_obs(actions) for e, s in enumerate(obs["score"]): if s < best_score[e]: best_actions[e] = actions[e] best_score[e] = s actions = np.array(best_actions) obs, reward, done = self.step(actions) return actions, obs, reward, done # check the result of perfroming a specific action def check_step(self, actions): obs = self.compute_obs(actions=actions) return obs # perfrom a given action and compute the new state observations def compute_obs(self, actions=None): with torch.no_grad(): charts = self.get_inputs(actions) img = self.current_data["batch"]["img"].cuda() verts, mask = self.deform(img, charts) if self.args.use_latent: latent = self.auto_encoder(verts.detach(), mask) score = self.get_score( verts, self.current_data["batch"]["gt_points"].cuda() ) if self.current_data["first_score"] is None: self.current_data["first_score"] = score if self.args.use_latent: self.current_data["first_latent"] = latent.data.cpu() mesh = torch.cat((verts, mask), dim=-1).data.cpu() obs = { "score": score.data.cpu().clone(), "first_score": self.current_data["first_score"].clone(), "mask": self.current_data["mask"].data.cpu().clone(), "names": self.current_data["batch"]["names"], "mesh": mesh.data.cpu().clone(), } if self.args.use_latent: obs["first_latent"] = self.current_data["first_latent"] obs["latent"] = latent.data.cpu() return obs # compute the Chamfer distance of object predictions def get_score(self, verts, gt_points): loss = utils.chamfer_distance( verts, self.mesh_info["faces"], gt_points, num=self.args.number_points ) loss = self.args.loss_coeff * loss return loss.cpu() # perform a given action and a convert the resulting signals into expected input for the reconstructor def get_inputs(self, actions=None): num_fingers = 1 if self.args.finger else 4 # this occurs if a reset is being perfromed # here the input is defined with not touch information if actions is None: self.touch_charts = torch.zeros( (self.args.env_batch_size, num_fingers, self.args.num_grasps, 25, 3) ).cuda() self.touch_masks = torch.zeros( (self.args.env_batch_size, num_fingers, self.args.num_grasps, 25, 1) ).cuda() self.vision_charts = self.initial_mesh.unsqueeze(0).repeat( self.args.env_batch_size, 1, 1 ) self.vision_masks = 3 * torch.ones( self.vision_charts.shape[:-1] ).cuda().unsqueeze(-1) else: # perfrom the action signals = self.sampler.sample(actions, touch_point_cloud=True) if self.args.finger: touch = ( torch.FloatTensor( signals["touch_signal"].data.numpy().astype(np.uint8) )[:, 1] .permute(0, 3, 1, 2) .cuda() / 255.0 ) pos = signals["finger_transfrom_pos"][:, 1].cuda() rot = signals["finger_transform_rot_M"][:, 1].cuda() ref_frame = {"pos": pos, "rot": rot} # convert the touch signals to charts touch_verts = ( self.touch_verts.unsqueeze(0) .repeat(self.args.env_batch_size, 1, 1) .cuda() ) pred_touch_charts = self.touch_prediction( touch, ref_frame, touch_verts ).contiguous() # define the touch charts in the input mesh to the reconstructor for i in range(self.args.env_batch_size): if signals["touch_status"][i][1] == "touch": self.touch_charts[i, 0, self.steps] = pred_touch_charts[i] self.touch_masks[i, 0, self.steps] = 2 elif signals["touch_status"][i][1] == "no_touch": self.touch_charts[i, 0, self.steps] = ( pos[i].view(1, 1, 3).repeat(1, 25, 1) ) self.touch_masks[i, 0, self.steps] = 1 else: self.touch_charts[i, 0, self.steps] = 0 self.touch_masks[i, 0, self.steps] = 0 else: touch = ( signals["touch_signal"] .view(-1, 121, 121, 3) .permute(0, 3, 1, 2) .cuda() / 255.0 ) pos = signals["finger_transfrom_pos"].view(-1, 3).cuda() rot = signals["finger_transform_rot_M"].view(-1, 3, 3).cuda() ref_frame = {"pos": pos, "rot": rot} # convert the touch signals to charts touch_verts = ( self.touch_verts.unsqueeze(0) .repeat(self.args.env_batch_size * 4, 1, 1) .cuda() ) pred_touch_charts = self.touch_prediction( touch, ref_frame, touch_verts ).contiguous() # define the touch charts in the input mesh to the reconstructor for i in range(self.args.env_batch_size): for j in range(4): if signals["touch_status"][i][j] == "touch": self.touch_charts[i, j, self.steps] = pred_touch_charts[ i * 4 + j ] self.touch_masks[i, j, self.steps] = 2 elif signals["touch_status"][i][j] == "no_touch": self.touch_charts[i, j, self.steps] = ( pos[i * 4 + j].view(1, 1, 3).repeat(1, 25, 1) ) self.touch_masks[i, j, self.steps] = 1 else: self.touch_charts[i, j, self.steps] = 0 self.touch_masks[i, j, self.steps] = 0 charts = { "touch_charts": self.touch_charts.view( self.args.env_batch_size, num_fingers * 5 * 25, 3 ).clone(), "vision_charts": self.vision_charts.clone(), "touch_masks": self.touch_masks.view( self.args.env_batch_size, num_fingers * 5 * 25, 1 ).clone(), "vision_masks": self.vision_masks.clone(), } return charts # this is perfromed due to a meoery leak in pybullet where loaded meshes are not properly deleted def reset_pybullet(self): self.sampler.disconnect() del self.sampler self.sampler = sampler.Sampler( grasping.Agnostic_Grasp, bs=self.args.env_batch_size, vision=True ) # update the set of action which have been performed def update_masks(self, actions): for i in range(actions.shape[0]): self.current_data["mask"][i, actions[i]] = 1
Active-3D-Vision-and-Touch-main
pterotactyl/policies/environment.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.nn as nn import torch from pterotactyl.utility import utils class Latent_Model(nn.Module): def __init__(self, args): super().__init__() self.args = args latent_size = utils.load_model_config(self.args.auto_location)[0].encoding_size # for embedding previously performed actions layers = [] layers.append(nn.Sequential(nn.Linear(self.args.num_actions, 200), nn.ReLU())) layers.append(nn.Sequential(nn.Linear(200, 100), nn.ReLU())) layers.append(nn.Sequential(nn.Linear(100, latent_size))) self.action_model = nn.Sequential(*layers) # MLP taking as input embedding of actions, a latent embedding of first prediction, and current prediction # and predicts a value for every action hidden_sizes = ( [latent_size * 3] + [args.hidden_dim for _ in range(args.layers - 1)] + [self.args.num_actions] ) layers = [] for i in range(args.layers): if i < args.layers - 1: layers.append( nn.Sequential( nn.Linear(hidden_sizes[i], hidden_sizes[i + 1]), nn.ReLU() ) ) else: layers.append( nn.Sequential(nn.Linear(hidden_sizes[i], hidden_sizes[i + 1])) ) self.model = nn.Sequential(*layers) self.args = args def forward(self, obs): action_input = self.action_model(obs["mask"].float().cuda()) shape_input_1 = obs["latent"].float().cuda() shape_input_2 = obs["first_latent"].float().cuda() full_input = torch.cat((action_input, shape_input_1, shape_input_2), dim=-1) if self.args.normalize: value = torch.sigmoid(self.model(full_input)) * 2 - 1 elif self.args.use_img: value = torch.sigmoid(self.model(full_input)) * 6 - 3 else: value = torch.sigmoid(self.model(full_input)) * 200 - 100 return value
Active-3D-Vision-and-Touch-main
pterotactyl/policies/supervised/model.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import json import argparse from collections import namedtuple from tqdm import tqdm from torch.utils.data import DataLoader import torch import torch.optim as optim from torch.utils.tensorboard import SummaryWriter import numpy as np from pterotactyl.policies import environment from pterotactyl.policies.baselines import baselines from pterotactyl.policies.supervised import model as learning_model from pterotactyl.utility import utils from pterotactyl import pretrained class Engine: def __init__(self, args): self.args = args self.results_dir = os.path.join("results", args.exp_type, args.exp_id) if not os.path.exists(self.results_dir): os.makedirs(self.results_dir) self.checkpoint_dir = os.path.join( "experiments/checkpoint/", args.exp_type, args.exp_id ) if not os.path.exists(self.checkpoint_dir): os.makedirs(self.checkpoint_dir) if not self.args.eval: utils.save_config(self.checkpoint_dir, args) def __call__(self): # setup the environment, policy and data self.env = environment.ActiveTouch(self.args) self.policy = baselines.even_sampler(self.args) train_loaders, valid_loaders = self.get_loaders() self.step = 0 self.models = [ learning_model.Latent_Model(self.args).cuda() for i in range(self.args.budget) ] # logging information writer = SummaryWriter( os.path.join("experiments/tensorboard/", self.args.exp_type) ) # evaluate the policy if self.args.eval: with torch.no_grad(): self.load(train=False) self.step = self.args.budget - 1 self.validate(valid_loaders, writer) return else: for i in range(self.args.budget): params = list(self.models[i].parameters()) self.optimizer = optim.Adam(params, lr=self.args.lr, weight_decay=0) self.load(train=True) for model in self.models: model.eval() self.epoch = 0 self.best_loss = 10000 self.last_improvement = 0 for j in range(self.args.epoch): self.train(train_loaders, writer) with torch.no_grad(): self.validate(valid_loaders, writer) if self.check_values(): break self.epoch += 1 self.step += 1 # load data using pytorch dataloader def get_loaders(self): if not self.args.eval: train_loader = DataLoader( self.env.train_data, batch_size=self.args.env_batch_size, shuffle=True, num_workers=4, collate_fn=self.env.train_data.collate, ) else: train_loader = [] valid_loader = DataLoader( self.env.valid_data, batch_size=self.args.env_batch_size, shuffle=False, num_workers=4, collate_fn=self.env.valid_data.collate, ) return train_loader, valid_loader def train(self, dataloader, writer): total_loss = 0 iterations = 0.0 self.models[self.step].train() for v, batch in enumerate( tqdm(dataloader, total=min(self.args.train_steps, len(dataloader))) ): if v >= self.args.train_steps: break try: obs = self.env.reset(batch) except: continue # move to the correct step with torch.no_grad(): cur_actions = [] for i in range(self.step): values = self.models[i](obs) for acts in cur_actions: for e, act in enumerate(acts): values[e][act] = 1e10 actions = torch.argmin(values, dim=1) next_obs, reward, all_done = self.env.step(actions) obs = next_obs cur_actions.append(actions) # predict action values all_pred_values = self.models[self.step](obs) pred_values = [] # sample some random actions and compute their value random_actions = np.random.randint( 50, size=self.args.env_batch_size * 5 ).reshape(5, self.args.env_batch_size) target = [] for actions in random_actions: temp_obs = self.env.check_step(actions) if self.args.normalize: score = (temp_obs["first_score"] - temp_obs["score"]) / temp_obs[ "first_score" ] else: score = temp_obs["first_score"] - temp_obs["score"] cur_pred_values = [] for j, a in enumerate(actions): cur_pred_values.append(all_pred_values[j, a]) pred_values.append(torch.stack(cur_pred_values)) target.append(score) target = torch.stack(target).cuda() pred_values = torch.stack(pred_values) loss = ((target - pred_values) ** 2).mean() # backprop loss.backward() self.optimizer.step() # log message = f"Train || step {self.step + 1 } || Epoch: {self.epoch}, loss: {loss.item():.3f}, b_ptp: {self.best_loss:.3f}" tqdm.write(message) total_loss += loss.item() iterations += 1.0 self.train_loss = total_loss / iterations writer.add_scalars( f"train_loss_{self.step}", {self.args.exp_id: total_loss / iterations}, self.epoch, ) # perfrom the validation def validate(self, dataloader, writer): observations = [] scores = [] actions = [] names = [] self.models[self.step].eval() valid_length = int(len(dataloader) * 0.2) for v, batch in enumerate(tqdm(dataloader)): names += batch["names"] try: obs = self.env.reset(batch) except: continue self.policy.reset() cur_scores = [obs["score"]] cur_actions = [] for i in range(self.step + 1): action_values = self.models[i](obs) for acts in cur_actions: for e, act in enumerate(acts): action_values[e][act] = 1e10 action = torch.argmin(action_values, dim=1) next_obs, _, _ = self.env.step(action) # record observation obs = next_obs cur_scores.append(obs["score"]) cur_actions.append(action.data.cpu()) observations.append(obs["mesh"]) scores.append(torch.stack(cur_scores).permute(1, 0)) actions.append(torch.stack(cur_actions).permute(1, 0)) print_score = (scores[-1][:, -1] / scores[-1][:, 0]).mean() print_reward = ( (scores[-1][:, 0] - scores[-1][:, -1]) / scores[-1][:, 0] ).mean() message = f"Valid || score: {print_score:.4f}, " message += f"reward = {print_reward:.4f}" tqdm.write(message) if self.args.visualize and v == 5 and self.args.eval: meshes = torch.cat(observations, dim=0)[:, :, :3] utils.visualize_prediction( self.results_dir, meshes, self.env.mesh_info["faces"], names ) self.env.reset_pybullet() scores = torch.cat(scores) rewards = ((scores[:, 0] - scores[:, -1]) / scores[:, 0]).mean() current_loss = (scores[:, -1] / scores[:, 0]).mean() self.current_loss = current_loss print("*" * 30) message = f"Total Valid || step {self.step + 1 } || score: {current_loss:.4f}, " message += f"reward = {rewards.mean():.4f}" tqdm.write("*" * len(message)) tqdm.write(message) tqdm.write("*" * len(message)) if self.args.visualize and self.args.eval: actions = torch.stack(actions).view(-1, self.args.budget) utils.visualize_actions(self.results_dir, actions, self.args) if not self.args.eval: writer.add_scalars( f"valid_loss_{self.step}", {self.args.exp_id: current_loss}, self.epoch ) def check_values(self): if self.best_loss >= self.current_loss: improvement = self.best_loss - self.current_loss print(f"Saving with {improvement:.3f} improvement on Validation Set ") self.best_loss = self.current_loss self.last_improvement = 0 self.save() return False else: self.last_improvement += 1 if self.last_improvement >= self.args.patience: print(f"Over {self.args.patience} steps since last imporvement") print("Moving to next step or exiting") return True def load(self, train=False): if self.args.pretrained: if self.args.use_img: if self.args.finger: location = ( os.path.dirname(pretrained.__file__) + "/policies/supervised/v_t_p" ) else: location = ( os.path.dirname(pretrained.__file__) + "/policies/supervised/v_t_g" ) else: if self.args.finger: location = ( os.path.dirname(pretrained.__file__) + "/policies/supervised/t_p" ) else: location = ( os.path.dirname(pretrained.__file__) + "/policies/supervised/t_g" ) config_location = f"{location}/config.json" with open(config_location) as json_file: data = json.load(json_file) data["auto_location"] = self.args.auto_location data["eval"] = True data["visualize"] = self.args.visualize self.args = namedtuple("ObjectName", data.keys())(*data.values()) self.models = [ learning_model.Latent_Model(self.args).cuda() for i in range(self.args.budget) ] for i in range(self.args.budget): self.models[i].load_state_dict(torch.load(location + f"/model_{i}")) else: if train: for i in range(self.step): self.models[i].load_state_dict( torch.load(self.checkpoint_dir + f"/model_{i}") ) else: for i in range(self.args.budget): self.models[i].load_state_dict( torch.load(self.checkpoint_dir + f"/model_{i}") ) def save(self): torch.save( self.models[self.step].state_dict(), self.checkpoint_dir + f"/model_{self.step}", ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--limit_data", action="store_true", default=False, help="use less data, for debugging.", ) parser.add_argument( "--finger", action="store_true", default=False, help="use only one finger." ) parser.add_argument( "--touch_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/touch/best/", help="the location of the touch part prediction.", ) parser.add_argument( "--vision_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_p/", help="the location of the touch part prediction.", ) parser.add_argument( "--auto_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/auto/t_p/", help="the location of the autoencoder part prediction.", ) parser.add_argument( "--number_points", type=int, default=30000, help="number of points sampled for the chamfer distance.", ) parser.add_argument( "--epoch", type=int, default=3000, help="number of epochs per step" ) parser.add_argument( "--seed", type=int, default=0, help="Setting for the random seed." ) parser.add_argument( "--env_batch_size", type=int, default=3, help="Size of the batch." ) parser.add_argument( "--use_img", action="store_true", default=False, help="To use the image." ) parser.add_argument( "--loss_coeff", type=float, default=9000.0, help="Coefficient for loss term." ) parser.add_argument( "--num_grasps", type=int, default=5, help="Number of grasps to train with. " ) parser.add_argument( "--num_actions", type=int, default=50, help="number of action options" ) parser.add_argument( "--eval", action="store_true", default=False, help="for evaluating on test set" ) parser.add_argument( "--budget", type=int, default=5, help="number of graspsp to perform" ) parser.add_argument( "--exp_id", type=str, default="test", help="The experiment name." ) parser.add_argument( "--exp_type", type=str, default="test", help="The experiment type." ) parser.add_argument( "--layers", type=int, default=4, help="Number of layers in the q network" ) parser.add_argument( "--patience", type=int, default=25, help="number of epochs without progress before stopping", ) parser.add_argument( "--training_actions", type=int, default=5, help="number of action values learned for each object in each iteration", ) parser.add_argument( "--hidden_dim", type=int, default=200, help="hidden dimension size in layers in the q network", ) parser.add_argument( "--train_steps", type=int, default=200, help="number of training steps per epoch", ) parser.add_argument( "--normalize", type=int, default=0, help="number of training steps per epoch" ) parser.add_argument( "--lr", type=float, default=0.001, help="Initial learning rate." ) parser.add_argument( "--visualize", action="store_true", default=False, help="visualize predictions and actions while evaluating", ) parser.add_argument( "--pretrained_recon", action="store_true", default=False, help="use the pretrained reconstruction models to train", ) parser.add_argument( "--pretrained", action="store_true", default=False, help="use the pretrained policy", ) args = parser.parse_args() args.use_recon = False args.use_latent = True trainer = Engine(args) trainer()
Active-3D-Vision-and-Touch-main
pterotactyl/policies/supervised/train.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import random import torch import torch.nn as nn import torch.optim as optim from pterotactyl.policies.DDQN import model from pterotactyl.policies.baselines import baselines # DDQN training module class DDQN(nn.Module): def __init__(self, args, adj_info, replay): super().__init__() self.args = args self.model = self.get_model(adj_info) self.replay = replay self.optimizer = optim.Adam(self.model.parameters(), lr=args.lr) self.args = args self.random_sampler = baselines.random_sampler(self.args) # set the value of perfromaed action to never be selected def penalise_actions(self, values, obs): values[obs["mask"] > 0] = -1e10 return values # select the model type required def get_model(self, adj): if self.args.pretrained: if self.args.use_latent: if self.args.use_img: if self.args.finger: self.args.hidden_dim = 300 self.args.layers = 5 else: self.args.hidden_dim = 300 self.args.layers = 5 else: if self.args.finger: self.args.hidden_dim = 300 self.args.layers = 5 else: self.args.hidden_dim = 300 self.args.layers = 2 else: if self.args.use_img: if self.args.finger: self.args.hidden_dim = 100 self.args.layers = 5 else: self.args.hidden_dim = 100 self.args.layers = 5 else: if self.args.finger: self.args.hidden_dim = 100 self.args.layers = 5 else: self.args.hidden_dim = 100 self.args.layers = 2 if self.args.use_latent: return model.Latent_Model(self.args).cuda() elif self.args.use_recon: return model.Graph_Model(self.args, adj).cuda() else: print("No Model type selected") exit() # decrease the epsilon value def update_epsilon(self, epsilon, args): return max(args.epsilon_end, epsilon * args.epsilon_decay) # add the observed transition to the replay buffer def add_experience(self, action, observation, next_observation, reward): self.replay.push(action, observation, next_observation, reward) # update the parameters of the model using DDQN update rule def update_parameters(self, target_net): self.model.train() batch = self.replay.sample() if batch is None: return None # get observations not_done_mask = batch["mask"].cuda().sum(dim=1) < self.args.budget - 1 actions = batch["actions"].cuda() rewards = batch["rewards"].cuda() cur_score = batch["score"].cuda() first_score = batch["first_score"].cuda() # normalize if needed if self.args.normalization == "first": rewards = rewards / first_score elif self.args.normalization == "current": rewards = rewards / cur_score # Standard DDQN update rule all_q_values_cur = self.forward(batch, penalize=False) q_values = all_q_values_cur.gather(1, actions.unsqueeze(1).long()).squeeze() with torch.no_grad(): best_next_action = self.forward(batch, next=True).detach().max(1)[1] target_values = target_net.forward( batch, next=True, penalize=False ).detach() all_q_values_next = torch.zeros((q_values.shape[0])).cuda() for i in range(q_values.shape[0]): if not_done_mask[i]: all_q_values_next[i] = target_values[i][best_next_action[i]] target_values = (self.args.gamma * all_q_values_next) + rewards loss = ((q_values - target_values) ** 2).mean() # backprop self.optimizer.zero_grad() loss.backward() for param in self.parameters(): if param.grad is not None: param.grad.data.clamp_(-1, 1) self.optimizer.step() return loss.item() def forward(self, obs, next=False, penalize=True): value = self.model(obs, next=next) if penalize: value = self.penalise_actions(value, obs) return value def get_action(self, obs, eps_threshold, give_random=False): sample = random.random() if sample < eps_threshold or give_random: return self.random_sampler.get_action(obs["mask"]) else: with torch.no_grad(): self.model.eval() q_values = self(obs) actions = torch.argmax(q_values, dim=1).data.cpu().numpy() return actions
Active-3D-Vision-and-Touch-main
pterotactyl/policies/DDQN/ddqn.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch.nn as nn import torch from torch.nn.parameter import Parameter import torch.nn.functional as F import numpy as np from pterotactyl.utility import utils # DDQN Q network which makes use of a pertrained latent space of predicted objects class Latent_Model(nn.Module): def __init__(self, args): super().__init__() self.args = args latent_size = utils.load_model_config(self.args.auto_location)[0].encoding_size # for embedding previously performed actions layers = [] layers.append(nn.Sequential(nn.Linear(self.args.num_actions, 200), nn.ReLU())) layers.append(nn.Sequential(nn.Linear(200, 100), nn.ReLU())) layers.append(nn.Sequential(nn.Linear(100, latent_size))) self.action_model = nn.Sequential(*layers) # MLP taking as input embedding of actions, a latent embedding of first prediction, and current prediction # and predicts a value for every action hidden_sizes = ( [latent_size * 3] + [args.hidden_dim for _ in range(args.layers - 1)] + [self.args.num_actions] ) layers = [] for i in range(args.layers): if i < args.layers - 1: layers.append( nn.Sequential( nn.Linear(hidden_sizes[i], hidden_sizes[i + 1]), nn.ReLU() ) ) else: layers.append( nn.Sequential(nn.Linear(hidden_sizes[i], hidden_sizes[i + 1])) ) self.model = nn.Sequential(*layers) self.args = args def forward(self, obs, next=False): if next: action_input = self.action_model(obs["mask_n"].float().cuda()) shape_input_1 = obs["latent_n"].float().cuda() else: action_input = self.action_model(obs["mask"].float().cuda()) shape_input_1 = obs["latent"].float().cuda() shape_input_2 = obs["first_latent"].float().cuda() full_input = torch.cat((action_input, shape_input_1, shape_input_2), dim=-1) value = self.model(full_input) return value # DDQN Q network which makes use of full mesh prediction class Graph_Model(nn.Module): def __init__(self, args, adj): super().__init__() self.adj = adj["adj"].data.cpu().cuda() self.args = args self.num_layers = args.layers input_size = 100 # for embedding previously performed actions layers = [] layers.append(nn.Sequential(nn.Linear(50, 200), nn.ReLU())) layers.append(nn.Sequential(nn.Linear(200, 100), nn.ReLU())) layers.append(nn.Sequential(nn.Linear(100, input_size))) self.action_model = nn.Sequential(*layers) # embedding of vertex positions and masks self.positional_embedding = Positional_Encoder(input_size) self.mask_embedding = Mask_Encoder(input_size) # GCN for predicting actions values from input mesh hidden_sizes = ( [input_size * 3] + [args.hidden_dim for _ in range(args.layers - 1)] + [self.args.num_actions] ) layers = [] for i in range(args.layers): layers.append( GCN_layer( hidden_sizes[i], hidden_sizes[i + 1], cut=self.args.cut, do_cut=(i != self.num_layers - 1), ) ) self.layers = nn.ModuleList(layers) def forward(self, obs, next=False): if next: action_embedding = self.action_model(obs["mask_n"].float().cuda()) mesh = obs["mesh_n"][:, :, :3].float().cuda() mask = obs["mesh_n"][:, :, 3:].float().cuda() else: action_embedding = self.action_model(obs["mask"].float().cuda()) mesh = obs["mesh"][:, :, :3].float().cuda() mask = obs["mesh"][:, :, 3:].float().cuda() positional_embedding = self.positional_embedding(mesh) mask_embedding = self.mask_embedding(mask) action_embedding = action_embedding.unsqueeze(1).repeat(1, mesh.shape[1], 1) vertex_features = torch.cat( (action_embedding, positional_embedding, mask_embedding), dim=-1 ) # iterate through GCN layers x = self.layers[0](vertex_features, self.adj, F.relu) for i in range(1, self.num_layers): x = self.layers[i]( x, self.adj, F.relu if (i != self.num_layers - 1) else lambda x: x ) value = torch.max(x, dim=1)[0] return value # Graph convolutional network layer class GCN_layer(nn.Module): def __init__(self, in_features, out_features, cut=0.33, do_cut=True): super(GCN_layer, self).__init__() self.weight = Parameter(torch.Tensor(1, in_features, out_features)) self.bias = Parameter(torch.Tensor(out_features)) self.reset_parameters() self.cut_size = cut self.do_cut = do_cut def reset_parameters(self): stdv = 6.0 / math.sqrt((self.weight.size(1) + self.weight.size(0))) stdv *= 0.3 self.weight.data.uniform_(-stdv, stdv) self.bias.data.uniform_(-0.1, 0.1) def forward(self, features, adj, activation): features = torch.matmul(features, self.weight) # uf we want to only share a subset of features with neighbors if self.do_cut: length = round(features.shape[-1] * self.cut_size) output = torch.matmul(adj, features[:, :, :length]) output = torch.cat((output, features[:, :, length:]), dim=-1) output[:, :, :length] += self.bias[:length] else: output = torch.matmul(adj, features) output = output + self.bias return activation(output) # encode the positional information of vertices using Nerf Embeddings class Positional_Encoder(nn.Module): def __init__(self, input_size): super(Positional_Encoder, self).__init__() layers = [] layers.append( nn.Linear(63, input_size // 4) ) # 10 nerf layers + original positions layers.append(nn.ReLU(inplace=True)) layers.append(nn.Linear(input_size // 4, input_size // 2)) layers.append(nn.ReLU(inplace=True)) layers.append(nn.Linear(input_size // 2, input_size)) self.model = nn.Sequential(*layers) # apply nerf embedding of the positional information def nerf_embedding(self, points): embeddings = [] for i in range(10): if i == 0: embeddings.append(torch.sin(np.pi * points)) embeddings.append(torch.cos(np.pi * points)) else: embeddings.append(torch.sin(np.pi * 2 * i * points)) embeddings.append(torch.cos(np.pi * 2 * i * points)) embeddings = torch.cat(embeddings, dim=-1) return embeddings def forward(self, positions): shape = positions.shape positions = positions.contiguous().view(shape[0] * shape[1], -1) # combine nerf embedding with origional positions positions = torch.cat((self.nerf_embedding((positions)), positions), dim=-1) embeding = self.model(positions).view(shape[0], shape[1], -1) return embeding # embedding network for vetex masks class Mask_Encoder(nn.Module): def __init__(self, input_size): super(Mask_Encoder, self).__init__() layers_mask = [] layers_mask.append(nn.Embedding(4, input_size)) self.model = nn.Sequential(*layers_mask) def forward(self, mask): shape = mask.shape mask = mask.contiguous().view(-1, 1) embeding_mask = self.model(mask.long()).view(shape[0], shape[1], -1) return embeding_mask
Active-3D-Vision-and-Touch-main
pterotactyl/policies/DDQN/model.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from torch.utils.tensorboard import SummaryWriter from torch.utils.data import DataLoader import torch import argparse from submitit.helpers import Checkpointable from tqdm import tqdm from pterotactyl.policies.DDQN import ddqn from pterotactyl.policies import environment from pterotactyl.policies import replay from pterotactyl.utility import utils from pterotactyl import pretrained # module for training the DDQN models class Engine(Checkpointable): def __init__(self, args): self.args = args self.steps = 0 self.episode = 0 self.epoch = 0 self.cur_loss = 10000 self.best_loss = 10000 self.epsilon = self.args.epsilon_start self.results_dir = os.path.join("results", args.exp_type, args.exp_id) if not os.path.exists(self.results_dir): os.makedirs(self.results_dir) self.checkpoint_dir = os.path.join( "experiments/checkpoint/", self.args.exp_type, self.args.exp_id ) if not os.path.exists((self.checkpoint_dir)): os.makedirs(self.checkpoint_dir) utils.save_config(self.checkpoint_dir, args) def __call__(self): # initialize the learning environment self.env = environment.ActiveTouch(self.args) self.replay_memory = replay.ReplayMemory(self.args) self.policy = ddqn.DDQN(self.args, self.env.mesh_info, self.replay_memory) self.target_net = ddqn.DDQN(self.args, self.env.mesh_info, None) self.target_net.load_state_dict(self.policy.state_dict()) self.target_net.eval() self.writer = SummaryWriter( os.path.join("experiments/tensorboard/", self.args.exp_type) ) self.window_size = 1000 self.ave_reward = torch.zeros((self.window_size)).cuda() self.ave_recon = torch.zeros((self.window_size)).cuda() train_loader, valid_loaders = self.get_loaders() if self.args.eval: self.load(best=True) self.validate(valid_loaders) return self.resume() # training loop for epoch in range(self.epoch, self.args.epochs): self.train(train_loader) self.env.reset_pybullet() if self.steps >= self.args.burn_in: with torch.no_grad(): self.validate(valid_loaders) self.env.reset_pybullet() self.check_values_and_save() self.epoch += 1 # load the environment data into pytorch dataloaders def get_loaders(self): if self.args.eval: train_loader = "" else: train_loader = DataLoader( self.env.train_data, batch_size=self.args.env_batch_size, shuffle=True, num_workers=4, collate_fn=self.env.train_data.collate, ) valid_loader = DataLoader( self.env.valid_data, batch_size=self.args.env_batch_size, shuffle=False, num_workers=4, collate_fn=self.env.valid_data.collate, ) return train_loader, valid_loader # training iteration def train(self, dataloader): for v, batch in enumerate(tqdm(dataloader, total=self.args.train_steps)): if v > self.args.train_steps - 1: break obs = self.env.reset(batch) all_done = False total_reward = 0 while not all_done: # update epsilon if self.steps >= self.args.burn_in: self.epsilon = self.policy.update_epsilon(self.epsilon, self.args) # get action get_random_action = self.steps < self.args.burn_in action = self.policy.get_action( obs, eps_threshold=self.epsilon, give_random=get_random_action ) # perform action with torch.no_grad(): next_obs, reward, all_done = self.env.step(action) # save experiance self.policy.add_experience(action, obs, next_obs, reward) # update policy if self.steps >= self.args.burn_in: self.policy.update_parameters(self.target_net) # update target network if ( self.steps % self.args.target_update == 0 and self.steps >= self.args.burn_in ): print("+" * 5 + " updating target " "+" * 5) self.target_net.load_state_dict(self.policy.state_dict()) torch.cuda.empty_cache() obs = next_obs self.steps += 1 # logs recon = float((obs["score"] / obs["first_score"]).mean().item()) reward = float( ((obs["first_score"] - obs["score"]) / obs["first_score"]).mean().item() ) self.ave_reward[self.episode % self.window_size] = reward self.ave_recon[self.episode % self.window_size] = float( (obs["score"] / obs["first_score"]).mean().item() ) ave_reward = self.ave_reward[: self.episode + 1].mean() ave_recon = self.ave_recon[: self.episode + 1].mean() message = ( f"T Epoch: {self.epoch} Ep: {self.episode}, recon: {recon:.2f}, " f"reward: {reward:.2f}, a_recon: {ave_recon:.2f}, a_reward: {ave_reward:.2f}, " f" eps: {self.epsilon:.3f}, best: {self.best_loss:.3f}" ) tqdm.write(message) self.episode += 1 # logs if self.steps >= self.args.burn_in: self.writer.add_scalars( "train_recon_|_", {self.args.exp_id: ave_recon}, self.steps ) self.writer.add_scalars( "train_reward_|_", {self.args.exp_id: ave_reward}, self.steps ) # validation iteration def validate(self, dataloader): observations = [] scores = [] actions = [] names = [] print("*" * 30) print("Doing Validation") total = self.args.train_steps if not self.args.eval else None for v, batch in enumerate(tqdm(dataloader, total=total)): names += batch["names"] if v > self.args.valid_steps - 1 and not self.args.eval: break obs = self.env.reset(batch) all_done = False cur_scores = [obs["score"]] cur_actions = [] while not all_done: # select actions action = self.policy.get_action( obs, eps_threshold=-1, give_random=False ) # perform actions with torch.no_grad(): next_obs, reward, all_done = self.env.step(action) # record actions torch.cuda.empty_cache() obs = next_obs cur_scores.append(obs["score"]) cur_actions.append(torch.FloatTensor(action)) observations.append(obs["mesh"]) scores.append(torch.stack(cur_scores).permute(1, 0)) actions.append(torch.stack(cur_actions).permute(1, 0)) print_score = (scores[-1][:, -1] / scores[-1][:, 0]).mean() print_reward = ( (scores[-1][:, 0] - scores[-1][:, -1]) / scores[-1][:, 0] ).mean() message = f"Valid || E: {self.epoch}, score: {print_score:.2f}, best score: {self.best_loss:.2f} " message += f"reward = {print_reward:.2f}" tqdm.write(message) if self.args.visualize and v == 5 and self.args.eval: meshes = torch.cat(observations, dim=0)[:, :, :3] utils.visualize_prediction( self.results_dir, meshes, self.env.mesh_info["faces"], names ) self.env.reset_pybullet() scores = torch.cat(scores) actions = torch.cat(actions) rewards = ((scores[:, 0] - scores[:, -1]) / scores[:, 0]).mean() variation = torch.std(actions, dim=0).mean() self.current_loss = (scores[:, -1] / scores[:, 0]).mean() print("*" * 30) message = f"Total Valid || E: {self.epoch}, score: {self.current_loss:.4f}, best score: {self.best_loss:.4f} " message += f"reward = {rewards.mean():.2f}" tqdm.write("*" * len(message)) tqdm.write(message) tqdm.write("*" * len(message)) if not self.args.eval: self.writer.add_scalars( f"Valid_recon_|_", {self.args.exp_id: self.current_loss}, self.steps ) self.writer.add_scalars( f"Valid_reward_|_", {self.args.exp_id: rewards.mean()}, self.steps ) self.writer.add_scalars( "epsilon_|_", {self.args.exp_id: self.epsilon}, self.steps ) self.writer.add_scalars( f"Valid_variation_|_", {self.args.exp_id: variation}, self.steps ) if self.args.visualize and self.args.eval: utils.visualize_actions(self.results_dir, actions, self.args) # check if the new validation score if better and save checkpoint def check_values_and_save(self): if self.best_loss >= self.current_loss: improvement = self.best_loss - self.current_loss print( f"Saving with {improvement:.3f} improvement in Chamfer Distance on Validation Set " ) self.best_loss = self.current_loss self.save(best=True) print(f"Saving DQN checkpoint") self.save(best=False) print("Saving replay memory.") self.replay_memory.save(self.checkpoint_dir) # resume training def resume(self): path = self.checkpoint_dir + "/recent" if os.path.exists(path + "_model"): print(f"Loading DQN checkpoint") self.load(best=False) print("Loading replay memory.") self.replay_memory.load(path) # save current state of training def save(self, best=False): if best: path = self.checkpoint_dir + "/best" else: path = self.checkpoint_dir + "/recent" self.replay_memory.save(path) torch.save( { "dqn_weights": self.policy.state_dict(), "target_weights": self.target_net.state_dict(), "args": self.args, "episode": self.episode, "steps": self.steps, "ave_reward": self.ave_reward, "ave_recon": self.ave_recon, "epsilon": self.epsilon, "epoch": self.epoch, }, path + "_model", ) # load previous state of training def load(self, best=True): if self.args.pretrained: prefix = "l" if self.args.use_latent else "g" if self.args.use_img: if self.args.finger: path = ( os.path.dirname(pretrained.__file__) + f"/policies/DDQN/{prefix}_v_t_p" ) else: path = ( os.path.dirname(pretrained.__file__) + f"/policies/DDQN/{prefix}_v_t_g" ) else: if self.args.finger: path = ( os.path.dirname(pretrained.__file__) + f"/policies/DDQN/{prefix}_t_p" ) else: path = ( os.path.dirname(pretrained.__file__) + f"/policies/DDQN/{prefix}_t_g" ) checkpoint = torch.load(path) self.policy.load_state_dict(checkpoint["dqn_weights"]) else: if best: path = self.checkpoint_dir + "/best_model" else: path = self.checkpoint_dir + "/recent_model" checkpoint = torch.load(path) self.policy.load_state_dict(checkpoint["dqn_weights"]) self.episode = checkpoint["episode"] + 1 if not self.args.eval: self.target_net.load_state_dict(checkpoint["target_weights"]) self.steps = checkpoint["steps"] self.ave_reward = checkpoint["ave_reward"] self.ave_recon = checkpoint["ave_recon"] self.epsilon = checkpoint["epsilon"] self.epoch = checkpoint["epoch"] + 1 if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--cut", type=float, default=0.33, help="The shared size of features in the GCN.", ) parser.add_argument( "--layers", type=int, default=4, help="Number of layers in the q network" ) parser.add_argument( "--hidden_dim", type=int, default=200, help="hidden dimension size in layers in the q network", ) parser.add_argument( "--epochs", type=int, default=1000, help="Number of epochs to use." ) parser.add_argument( "--limit_data", action="store_true", default=False, help="use less data, for debugging.", ) parser.add_argument( "--finger", action="store_true", default=False, help="use only one finger." ) parser.add_argument( "--eval", action="store_true", default=False, help="Evaluate the trained model on the test set.", ) parser.add_argument( "--touch_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/touch/best/", help="the location of the touch part prediction.", ) parser.add_argument( "--vision_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_p/", help="the location of the touch part prediction.", ) parser.add_argument( "--auto_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/auto/t_p/", help="the location of the autoencoder part prediction.", ) parser.add_argument( "--number_points", type=int, default=30000, help="number of points sampled for the chamfer distance.", ) parser.add_argument( "--seed", type=int, default=0, help="Setting for the random seed." ) parser.add_argument( "--lr", type=float, default=0.0003, help="Initial learning rate." ) parser.add_argument( "--env_batch_size", type=int, default=3, help="Size of the batch of objects sampled from the environment", ) parser.add_argument( "--train_batch_size", type=int, default=16, help="Size of the batch of transitions sampled for training the q network.", ) parser.add_argument( "--exp_id", type=str, default="test", help="The experiment name." ) parser.add_argument( "--exp_type", type=str, default="test", help="The experiment group." ) parser.add_argument( "--use_img", action="store_true", default=False, help="To use the image." ) parser.add_argument( "--patience", type=int, default=70, help="How many epochs without imporvement before training stops.", ) parser.add_argument( "--loss_coeff", type=float, default=9000.0, help="Coefficient for loss term." ) parser.add_argument( "--num_grasps", type=int, default=5, help="Number of grasps to train with. " ) parser.add_argument("--budget", type=int, default=5) parser.add_argument( "--normalization", type=str, choices=["first", "current", "none"], default="first", help="how to normalize the reward for the q network update ", ) parser.add_argument( "--mem_capacity", type=int, default=300, help="the size of the replay buffer" ) parser.add_argument("--burn_in", type=int, default=20, help="ddqn burn in time") parser.add_argument( "--num_actions", type=int, default=50, help=" number of possible actions" ) parser.add_argument("--gamma", type=float, default=0, help="ddqn gamma value") parser.add_argument( "--epsilon_start", type=float, default=1.0, help="ddqn initial epsilon value" ) parser.add_argument( "--epsilon_decay", type=float, default=0.9999, help="ddqn epsilon decay value" ) parser.add_argument( "--epsilon_end", type=float, default=0.01, help="ddqn minimum epsilon value" ) parser.add_argument( "--train_steps", type=int, default=20, help="number of training iterations per epoch", ) parser.add_argument( "--valid_steps", type=int, default=10, help="number of validation iterations per epoch", ) parser.add_argument( "--target_update", type=int, default=3000, help="frequency of target network updates", ) parser.add_argument( "--use_latent", action="store_true", default=False, help="if the latent embedding of objects is to be used", ) parser.add_argument( "--use_recon", action="store_true", default=False, help="if the object prediction is to be directly used", ) parser.add_argument( "--visualize", action="store_true", default=False, help="visualize predictions and actions while evaluating", ) parser.add_argument( "--pretrained_recon", action="store_true", default=False, help="use the pretrained reconstruction models to train", ) parser.add_argument( "--pretrained", action="store_true", default=False, help="use the pretrained policy", ) args = parser.parse_args() trainer = Engine(args) trainer()
Active-3D-Vision-and-Touch-main
pterotactyl/policies/DDQN/train.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import random from tqdm import tqdm from torch.utils.data import DataLoader import torch import argparse import numpy as np from submitit.helpers import Checkpointable from pterotactyl.policies import environment from pterotactyl.utility import utils from pterotactyl import pretrained class Engine(Checkpointable): def __init__(self, args): self.args = args def __call__(self): # setup the environment, policy and data self.env = environment.ActiveTouch(self.args) self.spot = 0 self.actions = [] self.latents = [] train_loaders, valid_loaders = self.get_loaders() self.results_dir = os.path.join("results", self.args.exp_type) if not os.path.exists(self.results_dir): os.makedirs(self.results_dir) self.checkpoint_dir = os.path.join( "experiments/checkpoint/", self.args.exp_type ) if not os.path.exists((self.checkpoint_dir)): os.makedirs(self.checkpoint_dir) self.checkpoint = self.checkpoint_dir + "actions.npy" # evaluate the policy with torch.no_grad(): self.load() if self.args.eval: self.validate(valid_loaders) else: self.train(train_loaders) self.save() # load data using pytorch dataloader def get_loaders(self): if not self.args.eval: train_loader = DataLoader( self.env.train_data, batch_size=self.args.env_batch_size, shuffle=False, num_workers=4, collate_fn=self.env.train_data.collate, ) else: train_loader = [] valid_loader = DataLoader( self.env.valid_data, batch_size=self.args.env_batch_size, shuffle=False, num_workers=4, collate_fn=self.env.valid_data.collate, ) return train_loader, valid_loader # compute the lowest error action for the current step def train(self, dataloader): # for all training data training_length = len(dataloader) random.seed(self.args.seed) training_instances = random.sample( range(training_length), int(training_length * 0.4) ) for v, batch in enumerate(tqdm(dataloader)): if v < self.spot: continue if v not in training_instances: continue self.spot = v obs = self.env.reset(batch) for i in range(self.args.budget): # find best action action, next_obs, reward, all_done = self.env.best_step( greedy_checks=self.args.greedy_checks ) # record action, embedding correspondence for i in range(self.args.env_batch_size): self.actions.append(action[i]) self.latents.append(obs["latent"][i]) obs = next_obs if v % 3 == 0: self.save() # perfrom the validation def validate(self, dataloader): self.latents = torch.stack(self.latents).cuda() observations = [] scores = [] actions = [] names = [] for v, batch in enumerate(tqdm(dataloader)): names += batch["names"] obs = self.env.reset(batch) all_done = False cur_scores = [obs["score"]] cur_actions = [] while not all_done: action = [] for i in range(self.args.env_batch_size): latent_distance = ( (self.latents - obs["latent"][i].cuda()) ** 2 ).mean(dim=1) smallest_idxs = torch.topk( latent_distance, self.args.num_grasps * 5, largest=False, sorted=True, )[1] for idx in smallest_idxs: possible_action = self.actions[idx] if len(cur_actions) == 0: action.append(possible_action) break seen_actions = list( torch.stack(cur_actions)[:, i].data.cpu().numpy() ) if possible_action not in seen_actions: action.append(possible_action) break action = np.array(action) next_obs, reward, all_done = self.env.step(action) # record observation obs = next_obs cur_scores.append(obs["score"]) cur_actions.append(torch.FloatTensor(action)) observations.append(obs["mesh"]) scores.append(torch.stack(cur_scores).permute(1, 0)) actions.append(torch.stack(cur_actions).permute(1, 0)) print_score = (scores[-1][:, -1] / scores[-1][:, 0]).mean() print_reward = ( (scores[-1][:, 0] - scores[-1][:, -1]) / scores[-1][:, 0] ).mean() message = f"Valid || score: {print_score:.4f}, " message += f"reward = {print_reward:.4f}" tqdm.write(message) if self.args.visualize and v == 5: meshes = torch.cat(observations, dim=0)[:, :, :3] utils.visualize_prediction( self.results_dir, meshes, self.env.mesh_info["faces"], names ) self.env.reset_pybullet() scores = torch.cat(scores) rewards = ((scores[:, 0] - scores[:, -1]) / scores[:, 0]).mean() current_loss = (scores[:, -1] / scores[:, 0]).mean() if self.args.visualize: actions = torch.stack(actions).view(-1, self.args.budget) utils.visualize_actions(self.results_dir, actions, self.args) print("*" * 30) message = f"Total Valid || score: {current_loss:.4f}, " message += f"reward = {rewards.mean():.4f}" tqdm.write("*" * len(message)) tqdm.write(message) tqdm.write("*" * len(message)) def load(self): if self.args.pretrained: if self.args.use_img: if self.args.finger: location = ( os.path.dirname(pretrained.__file__) + "/policies/NearestNeighbor/v_t_p.npy" ) else: location = ( os.path.dirname(pretrained.__file__) + "/policies/NearestNeighbor/v_t_g.npy" ) else: if self.args.finger: location = ( os.path.dirname(pretrained.__file__) + "/policies/NearestNeighbor/t_p.npy" ) else: location = ( os.path.dirname(pretrained.__file__) + "/policies/NearestNeighbor/t_g.npy" ) data = np.load(location, allow_pickle=True).item() self.actions = list(data["actions"]) self.latents = [torch.FloatTensor(d) for d in data["latents"]] self.spot = data["spot"] else: try: data = np.load(self.checkpoint, allow_pickle=True).item() self.actions = list(data["actions"]) self.latents = [torch.FloatTensor(d) for d in data["latents"]] self.spot = data["spot"] except: return def save(self): actions = np.array(self.actions) latents = torch.stack(self.latents).data.cpu().numpy() data = {"actions": actions, "latents": latents, "spot": self.spot} np.save(self.checkpoint, data) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--limit_data", action="store_true", default=False, help="use less data, for debugging.", ) parser.add_argument( "--finger", action="store_true", default=False, help="use only one finger." ) parser.add_argument( "--touch_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/touch/best/", help="the location of the touch part prediction.", ) parser.add_argument( "--vision_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_p/", help="the location of the touch part prediction.", ) parser.add_argument( "--auto_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/auto/t_p/", help="the location of the autoencoder part prediction.", ) parser.add_argument( "--number_points", type=int, default=30000, help="number of points sampled for the chamfer distance.", ) parser.add_argument( "--seed", type=int, default=0, help="Setting for the random seed." ) parser.add_argument( "--env_batch_size", type=int, default=3, help="Size of the batch." ) parser.add_argument( "--use_img", action="store_true", default=False, help="To use the image." ) parser.add_argument( "--loss_coeff", type=float, default=9000.0, help="Coefficient for loss term." ) parser.add_argument( "--num_grasps", type=int, default=5, help="Number of grasps to train with. " ) parser.add_argument( "--num_actions", type=int, default=50, help="number of action options" ) parser.add_argument( "--eval", action="store_true", default=False, help="for evaluating on test set" ) parser.add_argument( "--budget", type=int, default=5, help="number of graspsp to perform" ) parser.add_argument( "--visualize", action="store_true", default=False, help="visualize predictions and actions while evaluating", ) parser.add_argument( "--exp_type", type=str, default="test", help="The experiment group." ) parser.add_argument( "--greedy_checks", type=int, default=50, help="Number of actions to check at each time step", ) parser.add_argument( "--pretrained_recon", action="store_true", default=False, help="use the pretrained reconstruction models to train", ) parser.add_argument( "--pretrained", action="store_true", default=False, help="use the pretrained policy", ) args = parser.parse_args() args.use_recon = False args.use_latent = True trainer = Engine(args) trainer()
Active-3D-Vision-and-Touch-main
pterotactyl/policies/NearestNeighbor/train.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import random # class for getting radnom samples from the space of action class random_sampler: def __init__(self, args): super().__init__() self.args = args def get_action(self, mask): batch_size = mask.shape[0] actions = [] for b in range(batch_size): propositions = list(np.arange(self.args.num_actions)) indexes = list(np.where(mask[b] > 0)[0]) if len(indexes) > 0: for index in sorted(indexes, reverse=True): del propositions[index] actions.append(random.choice(propositions)) return np.array(actions) # class for evenly spaced samples from the space of actions class even_sampler: def __init__(self, args): super().__init__() self.args = args self.generate_points() # precompute the actions to be used in the trajectory def generate_points(self): self.angles = [] for i in range(self.args.env_batch_size): spacing = self.args.num_actions // self.args.num_grasps set = [spacing * i for i in range(self.args.num_grasps)] update_num = random.choice(range(self.args.num_actions)) choice = [] for j in range(self.args.num_grasps): choice.append((set[j] + update_num) % self.args.num_actions) self.angles.append(choice) # reset the precomputed actions def reset(self): self.generate_points() def get_action(self, mask): batch_size = mask.shape[0] actions = [] for b in range(batch_size): actions.append(self.angles[b][0]) del self.angles[b][0] return np.array(actions)
Active-3D-Vision-and-Touch-main
pterotactyl/policies/baselines/baselines.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from tqdm import tqdm import os from torch.utils.data import DataLoader import torch import argparse from pterotactyl.policies import environment from pterotactyl.policies.baselines import baselines from pterotactyl.utility import utils from pterotactyl import pretrained class Engine: def __init__(self, args): self.args = args def __call__(self): # set up environment and policy and data utils.set_seeds(self.args.seed) self.env = environment.ActiveTouch(self.args) self.policy = baselines.even_sampler(self.args) valid_loaders = self.get_loaders() self.results_dir = os.path.join("results", self.args.exp_type) if not os.path.exists(self.results_dir): os.makedirs(self.results_dir) # compute accuracy with torch.no_grad(): self.validate(valid_loaders) # load data with pytorch dataloader def get_loaders(self): valid_loader = DataLoader( self.env.valid_data, batch_size=self.args.env_batch_size, shuffle=False, num_workers=10, collate_fn=self.env.valid_data.collate, ) return valid_loader # perform the even policy def validate(self, dataloader): observations = [] scores = [] actions = [] names = [] for v, batch in enumerate(tqdm(dataloader)): names += batch["names"] obs = self.env.reset(batch) self.policy.reset() all_done = False cur_observations = [obs] cur_scores = [obs["score"]] cur_actions = [] while not all_done: # select actions action = self.policy.get_action(obs["mask"]) # perform actions with torch.no_grad(): next_obs, reward, all_done = self.env.step(action) # record actions torch.cuda.empty_cache() obs = next_obs cur_scores.append(obs["score"]) cur_actions.append(torch.FloatTensor(action)) observations.append(obs["mesh"]) scores.append(torch.stack(cur_scores).permute(1, 0)) actions.append(torch.stack(cur_actions).permute(1, 0)) print_score = (scores[-1][:, -1] / scores[-1][:, 0]).mean() print_reward = ( (scores[-1][:, 0] - scores[-1][:, -1]) / scores[-1][:, 0] ).mean() temp_scored = torch.cat(scores) current_loss = (temp_scored[:, -1] / temp_scored[:, 0]).mean() message = f"Valid || score: {print_score:.4f} " message += f"reward = {print_reward:.4f} ave: {100*current_loss:.4f} %" tqdm.write(message) if self.args.visualize and v == 5: meshes = torch.cat(observations, dim=0)[:, :, :3] utils.visualize_prediction( self.results_dir, meshes, self.env.mesh_info["faces"], names ) self.env.reset_pybullet() if self.args.visualize: actions = torch.stack(actions).view(-1, self.args.budget) utils.visualize_actions(self.results_dir, actions, self.args) scores = torch.cat(scores) rewards = ((scores[:, 0] - scores[:, -1]) / scores[:, 0]).mean() current_loss = (scores[:, -1] / scores[:, 0]).mean() print("*" * 30) message = f"Total Valid || score: {current_loss:.4f}, " message += f"reward = {rewards.mean():.4f}" tqdm.write("*" * len(message)) tqdm.write(message) tqdm.write("*" * len(message)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--limit_data", action="store_true", default=False, help="use less data, for debugging.", ) parser.add_argument( "--finger", action="store_true", default=False, help="use only one finger." ) parser.add_argument( "--touch_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/touch/best/", help="the location of the touch part prediction.", ) parser.add_argument( "--vision_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_p/", help="the location of the vision part prediction.", ) parser.add_argument( "--number_points", type=int, default=30000, help="number of points sampled for the chamfer distance.", ) parser.add_argument( "--seed", type=int, default=0, help="Setting for the random seed." ) parser.add_argument( "--env_batch_size", type=int, default=3, help="Size of the batch." ) parser.add_argument( "--use_img", action="store_true", default=False, help="To use the image." ) parser.add_argument( "--loss_coeff", type=float, default=9000.0, help="Coefficient for loss term." ) parser.add_argument( "--num_grasps", type=int, default=5, help="Number of grasps to train with. " ) parser.add_argument("--num_actions", type=int, default=50) parser.add_argument("--use_latent", action="store_true", default=False) parser.add_argument("--use_recon", action="store_true", default=False) parser.add_argument( "--eval", type=bool, default=True, help="for evaluating on test set" ) parser.add_argument( "--budget", type=int, default=5, help="number of graspsp to perform" ) parser.add_argument( "--visualize", action="store_true", default=False, help="visualize predictions and actions while evaluating", ) parser.add_argument( "--exp_type", type=str, default="test", help="The experiment group." ) parser.add_argument( "--pretrained_recon", action="store_true", default=False, help="use the pretrained reconstruction models to train", ) args = parser.parse_args() trainer = Engine(args) trainer()
Active-3D-Vision-and-Touch-main
pterotactyl/policies/baselines/even.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from tqdm import tqdm import os from torch.utils.data import DataLoader import torch import argparse from pterotactyl.policies import environment from pterotactyl.policies.baselines import baselines from pterotactyl.utility import utils from pterotactyl import pretrained class Engine: def __init__(self, args): self.args = args def __call__(self): # setup the environment, policy and data utils.set_seeds(self.args.seed) self.env = environment.ActiveTouch(self.args) self.policy = baselines.even_sampler(self.args) self.results_dir = os.path.join("results", self.args.exp_type) if not os.path.exists(self.results_dir): os.makedirs(self.results_dir) valid_loaders = self.get_loaders() # evaluate the policy with torch.no_grad(): self.validate(valid_loaders) # load data using pytorch dataloader def get_loaders(self): valid_loader = DataLoader( self.env.valid_data, batch_size=self.args.env_batch_size, shuffle=False, num_workers=4, collate_fn=self.env.valid_data.collate, ) return valid_loader # perfrom the validation def validate(self, dataloader): observations = [] scores = [] actions = [] names = [] for v, batch in enumerate(tqdm(dataloader)): names += batch["names"] obs = self.env.reset(batch) self.policy.reset() all_done = False cur_scores = [obs["score"]] cur_actions = [] while not all_done: # perform actions with torch.no_grad(): action, next_obs, reward, all_done = self.env.best_step( greedy_checks=self.args.greedy_checks ) # record observation torch.cuda.empty_cache() obs = next_obs cur_scores.append(obs["score"]) cur_actions.append(torch.FloatTensor(action)) observations.append(obs["mesh"]) scores.append(torch.stack(cur_scores).permute(1, 0)) actions.append(torch.stack(cur_actions).permute(1, 0)) print_score = (scores[-1][:, -1] / scores[-1][:, 0]).mean() print_reward = ( (scores[-1][:, 0] - scores[-1][:, -1]) / scores[-1][:, 0] ).mean() temp_scored = torch.cat(scores) current_loss = (temp_scored[:, -1] / temp_scored[:, 0]).mean() message = f"Valid || score: {print_score:.4f} " message += f"reward = {print_reward:.4f} ave: {100 * current_loss:.4f} %" tqdm.write(message) if self.args.visualize and v == 5: meshes = torch.cat(observations, dim=0)[:, :, :3] utils.visualize_prediction( self.results_dir, meshes, self.env.mesh_info["faces"], names ) self.env.reset_pybullet() if self.args.visualize: actions = torch.stack(actions).view(-1, self.args.budget) utils.visualize_actions(self.results_dir, actions, self.args) scores = torch.cat(scores) rewards = ((scores[:, 0] - scores[:, -1]) / scores[:, 0]).mean() current_loss = (scores[:, -1] / scores[:, 0]).mean() print("*" * 30) message = f"Total Valid || score: {current_loss:.4f}, " message += f"reward = {rewards.mean():.4f}" tqdm.write("*" * len(message)) tqdm.write(message) tqdm.write("*" * len(message)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--limit_data", action="store_true", default=False, help="use less data, for debugging.", ) parser.add_argument( "--finger", action="store_true", default=False, help="use only one finger." ) parser.add_argument( "--touch_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/touch/best/", help="the location of the touch part prediction.", ) parser.add_argument( "--vision_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_p/", help="the location of the touch part prediction.", ) parser.add_argument( "--number_points", type=int, default=30000, help="number of points sampled for the chamfer distance.", ) parser.add_argument( "--seed", type=int, default=0, help="Setting for the random seed." ) parser.add_argument( "--env_batch_size", type=int, default=3, help="Size of the batch." ) parser.add_argument( "--use_img", action="store_true", default=False, help="To use the image." ) parser.add_argument( "--loss_coeff", type=float, default=9000.0, help="Coefficient for loss term." ) parser.add_argument( "--num_grasps", type=int, default=5, help="Number of grasps to train with. " ) parser.add_argument( "--greedy_checks", type=int, default=50, help="Number of actions to check at each time step", ) parser.add_argument( "--num_actions", type=int, default=50, help="number of action options" ) parser.add_argument("--use_latent", action="store_true", default=False) parser.add_argument("--use_recon", action="store_true", default=False) parser.add_argument( "--eval", type=bool, default=True, help="for evaluating on test set" ) parser.add_argument( "--budget", type=int, default=5, help="number of graspsp to perform" ) parser.add_argument( "--visualize", action="store_true", default=False, help="visualize predictions and actions while evaluating", ) parser.add_argument( "--exp_type", type=str, default="test", help="The experiment group." ) parser.add_argument( "--pretrained_recon", action="store_true", default=False, help="use the pretrained reconstruction models to train", ) args = parser.parse_args() trainer = Engine(args) trainer()
Active-3D-Vision-and-Touch-main
pterotactyl/policies/baselines/greedy.py
Active-3D-Vision-and-Touch-main
pterotactyl/policies/baselines/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from tqdm import tqdm from torch.utils.data import DataLoader import torch import argparse from pterotactyl.policies import environment from pterotactyl.policies.baselines import baselines from pterotactyl.utility import utils from pterotactyl import pretrained class Engine: def __init__(self, args): self.args = args def __call__(self): # set up environment and policy and data utils.set_seeds(self.args.seed) self.env = environment.ActiveTouch(self.args) self.policy = baselines.random_sampler(self.args) valid_loaders = self.get_loaders() self.results_dir = os.path.join("results", self.args.exp_type) if not os.path.exists(self.results_dir): os.makedirs(self.results_dir) # compute accuracy with torch.no_grad(): self.validate(valid_loaders) # load data with pytorch dataloader def get_loaders(self): valid_loader = DataLoader( self.env.valid_data, batch_size=self.args.env_batch_size, shuffle=False, num_workers=4, collate_fn=self.env.valid_data.collate, ) return valid_loader # perform the random policy def validate(self, dataloader): observations = [] scores = [] actions = [] names = [] for v, batch in enumerate(tqdm(dataloader)): names += batch["names"] obs = self.env.reset(batch) all_done = False cur_scores = [obs["score"]] cur_actions = [] while not all_done: # select actions action = self.policy.get_action(obs["mask"]) # perform actions with torch.no_grad(): next_obs, reward, all_done = self.env.step(action) # record observations torch.cuda.empty_cache() obs = next_obs cur_scores.append(obs["score"]) cur_actions.append(torch.FloatTensor(action)) observations.append(obs["mesh"]) scores.append(torch.stack(cur_scores).permute(1, 0)) actions.append(torch.stack(cur_actions).permute(1, 0)) print_score = (scores[-1][:, -1] / scores[-1][:, 0]).mean() print_reward = ( (scores[-1][:, 0] - scores[-1][:, -1]) / scores[-1][:, 0] ).mean() temp_scored = torch.cat(scores) current_loss = (temp_scored[:, -1] / temp_scored[:, 0]).mean() message = f"Valid || score: {print_score:.4f} " message += f"reward = {print_reward:.4f} ave: {100 * current_loss:.4f} %" tqdm.write(message) if self.args.visualize and v == 5: meshes = torch.cat(observations, dim=0)[:, :, :3] utils.visualize_prediction( self.results_dir, meshes, self.env.mesh_info["faces"], names ) self.env.reset_pybullet() scores = torch.cat(scores) rewards = ((scores[:, 0] - scores[:, -1]) / scores[:, 0]).mean() current_loss = (scores[:, -1] / scores[:, 0]).mean() if self.args.visualize: print("visualizing") actions = torch.stack(actions).view(-1, self.args.budget) utils.visualize_actions(self.results_dir, actions, self.args) print("*" * 30) message = f"Total Valid || score: {current_loss:.4f}, " message += f"reward = {rewards.mean():.4f}" tqdm.write("*" * len(message)) tqdm.write(message) tqdm.write("*" * len(message)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--limit_data", action="store_true", default=False, help="use less data, for debugging.", ) parser.add_argument( "--finger", action="store_true", default=False, help="use only one finger." ) parser.add_argument( "--touch_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/touch/best", help="the location of the touch part prediction.", ) parser.add_argument( "--vision_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_p/", help="the location of the vision part prediction.", ) parser.add_argument( "--number_points", type=int, default=30000, help="number of points sampled for the chamfer distance.", ) parser.add_argument( "--seed", type=int, default=0, help="Setting for the random seed." ) parser.add_argument( "--env_batch_size", type=int, default=3, help="Size of the batch." ) parser.add_argument( "--use_img", action="store_true", default=False, help="To use the image." ) parser.add_argument( "--loss_coeff", type=float, default=9000.0, help="Coefficient for loss term." ) parser.add_argument( "--num_grasps", type=int, default=5, help="Number of grasps to train with. " ) parser.add_argument("--num_actions", type=int, default=50) parser.add_argument("--use_latent", action="store_true", default=False) parser.add_argument("--use_recon", action="store_true", default=False) parser.add_argument( "--eval", type=bool, default=True, help="for evaluating on test set" ) parser.add_argument( "--budget", type=int, default=5, help="number of graspsp to perform" ) parser.add_argument( "--visualize", action="store_true", default=False, help="visualize predictions and actions while evaluating", ) parser.add_argument( "--exp_type", type=str, default="test", help="The experiment group." ) parser.add_argument( "--pretrained_recon", action="store_true", default=False, help="use the pretrained reconstruction models to train", ) args = parser.parse_args() trainer = Engine(args) trainer()
Active-3D-Vision-and-Touch-main
pterotactyl/policies/baselines/rand.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import random from tqdm import tqdm import numpy as np from torch.utils.data import DataLoader import torch import argparse from submitit.helpers import Checkpointable from pterotactyl.policies import environment from pterotactyl.utility import utils from pterotactyl import pretrained class Engine(Checkpointable): def __init__(self, args): self.args = args def __call__(self): # setup the environment, and data self.env = environment.ActiveTouch(self.args) data_loaders, valid_loaders = self.get_loaders() self.chosen_actions = [] self.step = 0 self.spot = 0 self.counts = np.array([0.0 for i in range(self.args.num_actions)]) # save location for the computed trajectory self.results_dir = os.path.join("results", self.args.exp_type) if not os.path.exists(self.results_dir): os.makedirs(self.results_dir) self.checkpoint_dir = os.path.join( "experiments/checkpoint/", "MFBA", self.args.exp_type ) if not os.path.exists((self.checkpoint_dir)): os.makedirs(self.checkpoint_dir) self.checkpoint = self.checkpoint_dir + "actions.npy" with torch.no_grad(): self.load() if self.args.eval: self.validate(valid_loaders) else: # find the best action at every step for i in range(self.step, self.args.num_grasps): self.train(data_loaders) self.save() # load data using pytorch dataloader def get_loaders(self): if not self.args.eval: train_loader = DataLoader( self.env.train_data, batch_size=self.args.env_batch_size, shuffle=False, num_workers=4, collate_fn=self.env.train_data.collate, ) else: train_loader = [] valid_loader = DataLoader( self.env.valid_data, batch_size=self.args.env_batch_size, shuffle=False, num_workers=4, collate_fn=self.env.valid_data.collate, ) return train_loader, valid_loader # compute the lowest error action for the current step def train(self, dataloader): print(f"Getting best action for step {len(self.chosen_actions)+1}") training_length = len(dataloader) random.seed(self.args.seed) training_instances = random.sample( range(training_length), int(training_length * 0.4) ) for v, batch in enumerate(tqdm(dataloader)): if v < self.spot: continue if v not in training_instances: continue self.spot = v self.env.reset(batch) # check the accuracy of every action for action in self.chosen_actions: actions = np.array([action for _ in range(self.args.env_batch_size)]) self.env.step(actions) actions, _, _, _ = self.env.best_step(greedy_checks=self.args.greedy_checks) # update the count for most successful action for a in actions: self.counts[a] += 1 if v % 20 == 0: self.save() self.chosen_actions.append(np.argmax(self.counts)) self.counts = np.array( [ 0 if i not in self.chosen_actions else -1e20 for i in range(self.args.num_actions) ] ) self.spot = 0 self.step += 1 # evaluate the policy def validate(self, dataloader): observations = [] scores = [] actions = [] names = [] for v, batch in enumerate(tqdm(dataloader)): names += batch["names"] obs = self.env.reset(batch) cur_scores = [obs["score"]] cur_actions = [] for action in self.chosen_actions: best_actions = np.array( [action for _ in range(self.args.env_batch_size)] ) # perform actions with torch.no_grad(): next_obs, _, _ = self.env.step(best_actions) # record actions torch.cuda.empty_cache() obs = next_obs cur_scores.append(obs["score"]) cur_actions.append(torch.FloatTensor(best_actions)) observations.append(obs["mesh"]) scores.append(torch.stack(cur_scores).permute(1, 0)) actions.append(torch.stack(cur_actions).permute(1, 0)) print_score = (scores[-1][:, -1] / scores[-1][:, 0]).mean() print_reward = ( (scores[-1][:, 0] - scores[-1][:, -1]) / scores[-1][:, 0] ).mean() message = f"Valid || score: {print_score:.4f}, " message += f"reward = {print_reward:.4f}" tqdm.write(message) if self.args.visualize and v == 5: meshes = torch.cat(observations, dim=0)[:, :, :3] utils.visualize_prediction( self.results_dir, meshes, self.env.mesh_info["faces"], names ) self.env.reset_pybullet() scores = torch.cat(scores) rewards = ((scores[:, 0] - scores[:, -1]) / scores[:, 0]).mean() current_loss = (scores[:, -1] / scores[:, 0]).mean() if self.args.visualize: actions = torch.stack(actions).view(-1, self.args.budget) utils.visualize_actions(self.results_dir, actions, self.args) print("*" * 30) message = f"Total Valid || score: {current_loss:.4f}, " message += f"reward = {rewards.mean():.4f}" tqdm.write("*" * len(message)) tqdm.write(message) tqdm.write("*" * len(message)) def load(self): if self.args.pretrained: if self.args.use_img: if self.args.finger: location = ( os.path.dirname(pretrained.__file__) + "/policies/dataset_specific/MFBA_v_t_p.npy" ) else: location = ( os.path.dirname(pretrained.__file__) + "/policies/dataset_specific/MFBA_v_t_g.npy" ) else: if self.args.finger: location = ( os.path.dirname(pretrained.__file__) + "/policies/dataset_specific/MFBA_t_p.npy" ) else: location = ( os.path.dirname(pretrained.__file__) + "/policies/dataset_specific/MFBA_t_g.npy" ) data = np.load(location, allow_pickle=True).item() self.counts = data["counts"] self.chosen_actions = data["chosen_actions"] self.spot = data["spot"] self.step = data["step"] else: try: data = np.load(self.checkpoint, allow_pickle=True).item() self.counts = data["counts"] self.chosen_actions = data["chosen_actions"] self.spot = data["spot"] self.step = data["step"] except: return def save(self): data = { "counts": self.counts, "chosen_actions": self.chosen_actions, "step": self.step, "spot": self.spot, } np.save(self.checkpoint, data) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--limit_data", action="store_true", default=False, help="use less data, for debugging.", ) parser.add_argument( "--finger", action="store_true", default=False, help="use only one finger." ) parser.add_argument( "--touch_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/touch/best/", help="the location of the touch part prediction.", ) parser.add_argument( "--vision_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_p/", help="the location of the touch part prediction.", ) parser.add_argument( "--number_points", type=int, default=30000, help="number of points sampled for the chamfer distance.", ) parser.add_argument( "--seed", type=int, default=0, help="Setting for the random seed." ) parser.add_argument( "--env_batch_size", type=int, default=3, help="Size of the batch." ) parser.add_argument( "--use_img", action="store_true", default=False, help="To use the image." ) parser.add_argument( "--loss_coeff", type=float, default=9000.0, help="Coefficient for loss term." ) parser.add_argument( "--num_grasps", type=int, default=5, help="Number of grasps to train with. " ) parser.add_argument("--num_actions", type=int, default=50) parser.add_argument("--use_latent", action="store_true", default=False) parser.add_argument("--use_recon", action="store_true", default=False) parser.add_argument( "--eval", action="store_true", default=False, help="Evaluate the trained model on the test set.", ) parser.add_argument( "--budget", type=int, default=5, help="number of graspsp to perform" ) parser.add_argument( "--visualize", action="store_true", default=False, help="visualize predictions and actions while evaluating", ) parser.add_argument( "--exp_type", type=str, default="test", help="The experiment group." ) parser.add_argument( "--greedy_checks", type=int, default=50, help="Number of actions to check at each time step", ) parser.add_argument( "--pretrained_recon", action="store_true", default=False, help="use the pretrained reconstruction models to train", ) parser.add_argument( "--pretrained", action="store_true", default=False, help="use the pretrained policy", ) args = parser.parse_args() trainer = Engine(args) trainer()
Active-3D-Vision-and-Touch-main
pterotactyl/policies/dataset_specific/MFBA.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import random from tqdm.notebook import tqdm import numpy as np from torch.utils.data import DataLoader import torch import argparse from submitit.helpers import Checkpointable from pterotactyl.policies import environment from pterotactyl.utility import utils from pterotactyl import pretrained class Engine(Checkpointable): def __init__(self, args): self.args = args def __call__(self) -> float: # setup the environment, and data self.env = environment.ActiveTouch(self.args) data_loaders, valid_loaders = self.get_loaders() self.chosen_actions = [] self.step = 0 self.spot = 0 self.action_scores = np.array( [ 1e10 if i not in self.chosen_actions else 1e20 for i in range(self.args.num_actions) ] ) self.checks = np.array([1.0 for i in range(self.args.num_actions)]) # save location for the computed trajectory self.results_dir = os.path.join("results", self.args.exp_type) if not os.path.exists(self.results_dir): os.makedirs(self.results_dir) self.checkpoint_dir = os.path.join( "experiments/checkpoint/", "LEBA", self.args.exp_type ) if not os.path.exists((self.checkpoint_dir)): os.makedirs(self.checkpoint_dir) self.checkpoint = self.checkpoint_dir + "actions.npy" with torch.no_grad(): self.load() if self.args.eval: self.validate(valid_loaders) else: # find the best action at every step for i in range(self.step, self.args.num_grasps): self.train(data_loaders) self.save() # load data using pytorch dataloader def get_loaders(self): if not self.args.eval: train_loader = DataLoader( self.env.train_data, batch_size=self.args.env_batch_size, shuffle=False, num_workers=4, collate_fn=self.env.train_data.collate, ) else: train_loader = [] valid_loader = DataLoader( self.env.valid_data, batch_size=self.args.env_batch_size, shuffle=False, num_workers=4, collate_fn=self.env.valid_data.collate, ) return train_loader, valid_loader # compute the lowest error action for the current step def train(self, dataloader): print(f"Getting best action for step {len(self.chosen_actions)+1}") # for all training data training_length = len(dataloader) random.seed(self.args.seed) training_instances = random.sample( range(training_length), int(training_length * 0.4) ) for v, batch in enumerate(tqdm(dataloader)): if v < self.spot: continue if v not in training_instances: continue self.spot = v self.env.reset(batch) # check the accuracy of every action for action in self.chosen_actions: actions = np.array([action for _ in range(self.args.env_batch_size)]) self.env.step(actions) remaining_actions = [ i for i in range(self.args.num_actions) if i not in self.chosen_actions ] remaining_actions = [ remaining_actions for i in range(self.args.env_batch_size) ] if self.args.greedy_checks < self.args.num_actions: for i in range(self.args.env_batch_size): remaining_actions[i] = random.sample( remaining_actions[i], self.args.greedy_checks ) for i in range(len(remaining_actions[0])): actions = np.array( [remaining_actions[j][i] for j in range(self.args.env_batch_size)] ) scores = ( self.env.check_step(actions)["score"] / self.env.check_step(actions)["first_score"] ) for action, score in zip(actions, scores): if self.action_scores[action] == 1e10: self.action_scores[action] = score else: self.action_scores[action] += score self.checks[action] += 1.0 if v % 20 == 0: self.save() # record the lowest error action action_scores = self.action_scores / self.checks self.chosen_actions.append(np.argmin(action_scores)) self.action_scores = np.array( [ 1e10 if i not in self.chosen_actions else 1e20 for i in range(self.args.num_actions) ] ) self.checks = np.array([1.0 for i in range(self.args.num_actions)]) self.spot = 0 self.step += 1 # validate the chosen trajectory def validate(self, dataloader): observations = [] scores = [] actions = [] names = [] for v, batch in enumerate(tqdm(dataloader)): names += batch["names"] obs = self.env.reset(batch) cur_scores = [obs["score"]] cur_actions = [] for action in self.chosen_actions: best_actions = np.array( [action for _ in range(self.args.env_batch_size)] ) # perform actions with torch.no_grad(): next_obs, _, _ = self.env.step(best_actions) # record actions torch.cuda.empty_cache() obs = next_obs cur_scores.append(obs["score"]) cur_actions.append(torch.FloatTensor(best_actions)) observations.append(obs["mesh"]) scores.append(torch.stack(cur_scores).permute(1, 0)) actions.append(torch.stack(cur_actions).permute(1, 0)) print_score = (scores[-1][:, -1] / scores[-1][:, 0]).mean() print_reward = ( (scores[-1][:, 0] - scores[-1][:, -1]) / scores[-1][:, 0] ).mean() message = f"Valid || score: {print_score:.4f}, " message += f"reward = {print_reward:.4f}" tqdm.write(message) if self.args.visualize and v == 5: meshes = torch.cat(observations, dim=0)[:, :, :3] utils.visualize_prediction( self.results_dir, meshes, self.env.mesh_info["faces"], names ) self.env.reset_pybullet() scores = torch.cat(scores) rewards = ((scores[:, 0] - scores[:, -1]) / scores[:, 0]).mean() current_loss = (scores[:, -1] / scores[:, 0]).mean() if self.args.visualize: actions = torch.stack(actions).view(-1, self.args.budget) utils.visualize_actions(self.results_dir, actions, self.args) print("*" * 30) message = f"Total Valid || score: {current_loss:.4f}, " message += f"reward = {rewards.mean():.4f}" tqdm.write("*" * len(message)) tqdm.write(message) tqdm.write("*" * len(message)) def load(self): if self.args.pretrained: if self.args.use_img: if self.args.finger: location = ( os.path.dirname(pretrained.__file__) + "/policies/dataset_specific/LEBA_v_t_p.npy" ) else: location = ( os.path.dirname(pretrained.__file__) + "/policies/dataset_specific/LEBA_v_t_g.npy" ) else: if self.args.finger: location = ( os.path.dirname(pretrained.__file__) + "/policies/dataset_specific/LEBA_t_p.npy" ) else: location = ( os.path.dirname(pretrained.__file__) + "/policies/dataset_specific/LEBA_t_g.npy" ) data = np.load(location, allow_pickle=True).item() self.action_scores = data["action_scores"] self.checks = data["checks"] self.chosen_actions = data["chosen_actions"] self.spot = data["spot"] self.step = data["step"] else: try: data = np.load(self.checkpoint, allow_pickle=True).item() self.action_scores = data["action_scores"] self.checks = data["checks"] self.chosen_actions = data["chosen_actions"] self.spot = data["spot"] self.step = data["step"] except: return def save(self): data = { "action_scores": self.action_scores, "checks": self.checks, "chosen_actions": self.chosen_actions, "step": self.step, "spot": self.spot, } np.save(self.checkpoint, data) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--limit_data", action="store_true", default=False, help="use less data, for debugging.", ) parser.add_argument( "--finger", action="store_true", default=False, help="use only one finger." ) parser.add_argument( "--touch_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/touch/best/", help="the location of the touch part prediction.", ) parser.add_argument( "--vision_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_p/", help="the location of the touch part prediction.", ) parser.add_argument( "--number_points", type=int, default=30000, help="number of points sampled for the chamfer distance.", ) parser.add_argument( "--seed", type=int, default=0, help="Setting for the random seed." ) parser.add_argument( "--env_batch_size", type=int, default=3, help="Size of the batch." ) parser.add_argument( "--use_img", action="store_true", default=False, help="To use the image." ) parser.add_argument( "--loss_coeff", type=float, default=9000.0, help="Coefficient for loss term." ) parser.add_argument( "--num_grasps", type=int, default=5, help="Number of grasps to train with. " ) parser.add_argument("--num_actions", type=int, default=50) parser.add_argument("--use_latent", action="store_true", default=False) parser.add_argument("--use_recon", action="store_true", default=False) parser.add_argument( "--eval", action="store_true", default=False, help="Evaluate the trained model on the test set.", ) parser.add_argument( "--budget", type=int, default=5, help="number of graspsp to perform" ) parser.add_argument( "--visualize", action="store_true", default=False, help="visualize predictions and actions while evaluating", ) parser.add_argument( "--exp_type", type=str, default="test", help="The experiment group." ) parser.add_argument( "--greedy_checks", type=int, default=50, help="Number of actions to check at each time step", ) parser.add_argument( "--pretrained_recon", action="store_true", default=False, help="use the pretrained reconstruction models to train", ) parser.add_argument( "--pretrained", action="store_true", default=False, help="use the pretrained policy", ) args = parser.parse_args() trainer = Engine(args) trainer()
Active-3D-Vision-and-Touch-main
pterotactyl/policies/dataset_specific/LEBA.py
Active-3D-Vision-and-Touch-main
pterotactyl/simulator/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os os.environ["PYOPENGL_PLATFORM"] = "egl" import numpy as np from scipy.spatial.transform import Rotation as R import pyrender import trimesh import pterotactyl.objects as objects from pterotactyl.utility import utils from random import randrange HAND_COLOUR = [119, 136, 153, 255] DIGIT_COLOUR = [119, 225, 153, 175] class Renderer: def __init__(self, hand, pb, cameraResolution=[256, 256]): self.scene = self.init_scene() self.hand = hand self.pb = pb self.hand_nodes = [] self.object_nodes = [] self.init_camera() self.init_hand() self.update_hand() self.r = pyrender.OffscreenRenderer(cameraResolution[0], cameraResolution[1]) # scene is initialized with fixed lights, this can be easily changed to match the desired environment def init_scene(self): scene = pyrender.Scene(ambient_light=[0.3, 0.3, 0.3]) light_pose = utils.euler2matrix( angles=[0, 0, 0], translation=[0, -0.8, 0.3], xyz="xyz", degrees=False ) light = pyrender.PointLight(color=np.ones(3), intensity=1.0) scene.add(light, pose=light_pose) light_pose = utils.euler2matrix( angles=[0, 0, 0], translation=[0, 0.8, 0.3], xyz="xyz", degrees=False ) light = pyrender.PointLight(color=np.ones(3), intensity=1.0) scene.add(light, pose=light_pose) light_pose = utils.euler2matrix( angles=[0, 0, 0], translation=[-1, 0, 1], xyz="xyz", degrees=False ) light = pyrender.PointLight(color=np.ones(3), intensity=1.0) scene.add(light, pose=light_pose) light_pose = utils.euler2matrix( angles=[0, 0, 0], translation=[1, 0, 1], xyz="xyz", degrees=False ) light = pyrender.PointLight(color=np.ones(3), intensity=1.0) scene.add(light, pose=light_pose) return scene def init_camera(self): # initializes the camera parameters camera = pyrender.PerspectiveCamera( yfov=60.0 / 180.0 * np.pi, znear=0.01, zfar=10.0, aspectRatio=1.0 ) camera_pose = utils.euler2matrix( xyz="xyz", angles=[0, 0, 0], translation=[0, 0, 0], degrees=True ) camera_node = pyrender.Node(camera=camera, matrix=camera_pose) self.scene.add_node(camera_node) self.scene.main_camera_node = camera_node self.camera = camera_node # this viewpoint is used in the paper # if you change this, you will need to update the camaera parameter matrix in the reconstruction model as well initial_matrix = R.from_euler("xyz", [45.0, 0, 270.0], degrees=True).as_matrix() self.update_camera_pose([-0.3, 0, 0.3], initial_matrix) def add_object( self, mesh, position=[0, 0, 0], orientation=[0, 0, 0], colour=[228, 217, 111, 255], ): mesh.visual.vertex_colors = colour mesh = pyrender.Mesh.from_trimesh(mesh) pose = utils.euler2matrix(angles=orientation, translation=position) obj_node = pyrender.Node(mesh=mesh, matrix=pose) self.scene.add_node(obj_node) self.object_nodes.append(obj_node) # defines the hand in the scene def init_hand(self): hand_location = os.path.join( os.path.dirname(objects.__file__), "hand/meshes_obj/" ) base_obj = trimesh.load(hand_location + "0_base.obj") base_obj = trimesh.Trimesh(vertices=base_obj.vertices, faces=base_obj.faces) base_obj.visual.vertex_colors = HAND_COLOUR self.add_hand_obj(base_obj) for _ in range(3): for i in range(1, 5): element = trimesh.load(hand_location + f"{i}_finger.obj") element = trimesh.Trimesh( vertices=element.vertices, faces=element.faces ) element.visual.vertex_colors = HAND_COLOUR self.add_hand_obj(element) element = trimesh.load(hand_location + "5_digit.obj") element = trimesh.Trimesh(vertices=element.vertices, faces=element.faces) element.visual.vertex_colors = DIGIT_COLOUR self.add_hand_obj(element) for i in range(6, 10): element = trimesh.load(hand_location + f"{i}_thumb.obj") element = trimesh.Trimesh(vertices=element.vertices, faces=element.faces) element.visual.vertex_colors = HAND_COLOUR self.add_hand_obj(element) element = trimesh.load(hand_location + "5_digit.obj") element = trimesh.Trimesh(vertices=element.vertices, faces=element.faces) element.visual.vertex_colors = DIGIT_COLOUR self.add_hand_obj(element) def add_hand_obj(self, obj_location): mesh = pyrender.Mesh.from_trimesh(obj_location) pose = utils.euler2matrix(angles=[0, 0, 0], translation=[0, 0, 0]) obj_node = pyrender.Node(mesh=mesh, matrix=pose) self.scene.add_node(obj_node) self.hand_nodes.append(obj_node) # gets the various hand element's position and orientation and uses them to update the hand in the scene def update_hand(self): # base of the hand position, orientation = self.pb.getBasePositionAndOrientation(self.hand) orientation = self.pb.getEulerFromQuaternion(orientation) pose = utils.euler2matrix(angles=orientation, translation=position) self.scene.set_pose(self.hand_nodes[0], pose=pose) indices = [ 0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, ] # all other elements for node, index in zip(self.hand_nodes[1:], indices): position, orientation = self.pb.getLinkState(self.hand, index)[:2] orientation = self.pb.getEulerFromQuaternion(orientation) pose = utils.euler2matrix(angles=orientation, translation=position) self.scene.set_pose(node, pose=pose) # moves the hand our of the perspective of the camera def remove_hand(self): for node in self.hand_nodes: pose = utils.euler2matrix(angles=[0, 0, 0], translation=[0, 0, -10.0]) self.scene.set_pose(node, pose=pose) def remove_objects(self): for obj in self.object_nodes: self.scene.remove_node(obj) self.object_nodes = [] def update_camera_pose(self, position, orientation): pose = np.eye(4) if np.array(orientation).shape == (3,): orientation = R.from_euler("xyz", orientation, degrees=True).as_matrix() pose[:3, 3] = position pose[:3, :3] = orientation self.camera.matrix = pose def render(self, get_depth=False): colour, depth = self.r.render(self.scene) if get_depth: return colour, depth return colour
Active-3D-Vision-and-Touch-main
pterotactyl/simulator/rendering/vision_renderer.py
Active-3D-Vision-and-Touch-main
pterotactyl/simulator/rendering/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os os.environ["PYOPENGL_PLATFORM"] = "egl" import numpy as np import cv2 import pyrender import trimesh from scipy.spatial.transform import Rotation as R from pterotactyl.utility import utils class Renderer: def __init__(self, cameraResolution=[120, 160]): """ :param width: scalar :param height: scalar """ self.width = cameraResolution[0] self.height = cameraResolution[1] self._background_real = None self.force_enabled = False self._init_pyrender() def _init_pyrender(self): """ Initialize pyrender """ # Create scene for pybullet sync self.scene = pyrender.Scene() self.object_nodes = [] self.current_light_nodes = [] self.cam_light_ids = None self._init_gel() self._init_camera() self._init_light() self.r = pyrender.OffscreenRenderer(self.width, self.height) colors, depths = self.render(noise=False, calibration=False) self._background_sim = colors def _init_gel(self): """ Add gel surface in the scene """ # Create gel surface (flat/curve surface based on config file) gel_trimesh = self._generate_gel_trimesh() mesh_gel = pyrender.Mesh.from_trimesh(gel_trimesh, smooth=False) self.gel_pose0 = np.eye(4) self.gel_node = pyrender.Node(mesh=mesh_gel, matrix=self.gel_pose0) self.scene.add_node(self.gel_node) def _generate_gel_trimesh(self): # Load config origin = [0.022, 0, 0.015] X0, Y0, Z0 = origin[0], origin[1], origin[2] W, H = 0.02, 0.03 # Curved gel surface N = 100 M = int(N * H / W) R = 0.1 zrange = 0.005 y = np.linspace(Y0 - W / 2, Y0 + W / 2, N) z = np.linspace(Z0 - H / 2, Z0 + H / 2, M) yy, zz = np.meshgrid(y, z) h = R - np.maximum(0, R ** 2 - (yy - Y0) ** 2 - (zz - Z0) ** 2) ** 0.5 xx = X0 - zrange * h / h.max() gel_trimesh = self._generate_trimesh_from_depth(xx) return gel_trimesh def _generate_trimesh_from_depth(self, depth): # Load config origin = [0.022, 0, 0.015] _, Y0, Z0 = origin[0], origin[1], origin[2] W, H = 0.02, 0.03 N = depth.shape[1] M = depth.shape[0] # Create grid mesh vertices = [] faces = [] y = np.linspace(Y0 - W / 2, Y0 + W / 2, N) z = np.linspace(Z0 - H / 2, Z0 + H / 2, M) yy, zz = np.meshgrid(y, z) # Vertex format: [x, y, z] vertices = np.zeros([N * M, 3]) # Add x, y, z position to vertex vertices[:, 0] = depth.reshape([-1]) vertices[:, 1] = yy.reshape([-1]) vertices[:, 2] = zz.reshape([-1]) # Create faces faces = np.zeros([(N - 1) * (M - 1) * 6], dtype=np.uint) # calculate id for each vertex: (i, j) => i * m + j xid = np.arange(N) yid = np.arange(M) yyid, xxid = np.meshgrid(xid, yid) ids = yyid[:-1, :-1].reshape([-1]) + xxid[:-1, :-1].reshape([-1]) * N # create upper triangle faces[::6] = ids # (i, j) faces[1::6] = ids + N # (i+1, j) faces[2::6] = ids + 1 # (i, j+1) # create lower triangle faces[3::6] = ids + 1 # (i, j+1) faces[4::6] = ids + N # (i+1, j) faces[5::6] = ids + N + 1 # (i+1, j+1) faces = faces.reshape([-1, 3]) # camera_pose = utils.euler2matrix( # angles=np.deg2rad([90, 0, -90]), translation=[0, 0, 0.015], # ) vertices = vertices - np.array([0, 0, 0.015]).reshape(1, 3) orientation = R.from_euler("xyz", [90, 0, -90], degrees=True).as_matrix() vertices = vertices.dot(orientation) # position = [0, 0, 0.015] gel_trimesh = trimesh.Trimesh(vertices=vertices, faces=faces, process=False) return gel_trimesh def _init_camera(self): """ Set up camera """ camera = pyrender.PerspectiveCamera(yfov=np.deg2rad(60), znear=0.001) camera_pose = utils.euler2matrix( angles=np.deg2rad([0, 0, 0]), translation=[0, 0, -0.0035] ) self.camera_pose = camera_pose # Add camera node into scene camera_node = pyrender.Node(camera=camera, matrix=camera_pose) self.scene.add_node(camera_node) self.camera = camera_node self.cam_light_ids = list([0, 1, 2]) def _init_light(self): """ Set up light """ # Load light from config file origin = np.array([0.005, 0, 0.015]) xyz = [] # Apply polar coordinates thetas = [30, 150, 270] rs = [0.02, 0.02, 0.02] xs = [0, 0, 0] for i in range(len(thetas)): theta = np.pi / 180 * thetas[i] xyz.append([xs[i], rs[i] * np.cos(theta), rs[i] * np.sin(theta)]) colors = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) intensities = [1, 1, 1] # Save light nodes self.light_nodes = [] self.light_poses0 = [] for i in range(len(colors)): color = colors[i] position = xyz[i] + origin - np.array([0, 0, 0.015]) orientation = R.from_euler("xyz", [90, 0, -90], degrees=True).as_matrix() position = position.dot(orientation) orientation = np.deg2rad([90, 0, -90]) light_pose_0 = utils.euler2matrix(angles=orientation, translation=position) light = pyrender.PointLight(color=color, intensity=intensities[i]) light_node = pyrender.Node(light=light, matrix=light_pose_0) self.scene.add_node(light_node) self.light_nodes.append(light_node) self.light_poses0.append(light_pose_0) self.current_light_nodes.append(light_node) def add_object(self, objTrimesh, position=[0, 0, 0], orientation=[0, 0, 0]): mesh = trimesh.Trimesh( vertices=objTrimesh.vertices, faces=objTrimesh.faces, process=False ) mesh = pyrender.Mesh.from_trimesh(mesh, smooth=False) pose = utils.euler2matrix(angles=orientation, translation=position) objNode = pyrender.Node(mesh=mesh, matrix=pose) self.scene.add_node(objNode) self.object_nodes.append(objNode) def update_camera_pose(self, position, orientation): pose = np.eye(4) pose[:3, 3] = position pose[:3, :3] = orientation self.camera.matrix = pose.dot(self.camera_pose) # Update gel gel_pose = pose.dot(self.gel_pose0) self.gel_node.matrix = gel_pose # Update light for i in range(len(self.light_nodes)): light_pose = pose.dot(self.light_poses0[i]) light_node = self.light_nodes[i] light_node.matrix = light_pose def update_objects_pose(self, position, orientation): pose = utils.euler2matrix(angles=orientation, translation=position) for obj in self.object_nodes: self.scene.set_pose(obj, pose=pose) def remove_objects(self): for obj in self.object_nodes: self.scene.remove_node(obj) self.object_nodes = [] def update_light(self, lightIDList): """ Update the light node based on lightIDList, remove the previous light """ # Remove previous light nodes for node in self.current_light_nodes: self.scene.remove_node(node) # Add light nodes self.current_light_nodes = [] for i in lightIDList: light_node = self.light_nodes[i] self.scene.add_node(light_node) self.current_light_nodes.append(light_node) def _add_noise(self, color): """ Add Gaussian noise to the RGB image :param color: :return: """ # Add noise to the RGB image mean = 0 std = 7 noise = np.random.normal(mean, std, color.shape) # Gaussian noise color = np.clip(color + noise, 0, 255).astype(np.uint8) # Add noise and clip return color def _calibrate(self, color): if self._background_real is not None: # Simulated difference image, with scaling factor 0.5 diff = (color.astype(np.float) - self._background_sim) * 0.5 # Add low-pass filter to match real readings diff = cv2.GaussianBlur(diff, (7, 7), 0) # Combine the simulated difference image with real background image color = np.clip((diff[:, :, :3] + self._background_real), 0, 255).astype( np.uint8 ) return color def _post_process(self, color, depth, noise=True, calibration=True): if calibration: color = self._calibrate(color) if noise: color = self._add_noise(color) return color, depth def render(self, noise=True, calibration=True): self.scene.main_camera_node = self.camera self.update_light(self.cam_light_ids) color, depth = self.r.render(self.scene) color, depth = self._post_process(color, depth, noise, calibration) return color, depth
Active-3D-Vision-and-Touch-main
pterotactyl/simulator/rendering/tacto_renderer.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os os.environ["PYOPENGL_PLATFORM"] = "egl" import numpy as np import pyrender from pterotactyl.utility import utils class Renderer: def __init__(self, cameraResolution=[120, 160]): self.scene = pyrender.Scene(ambient_light=[0.1, 0.1, 0.1]) self.object_nodes = [] self.initialize_camera() self.r = pyrender.OffscreenRenderer(cameraResolution[0], cameraResolution[1]) def initialize_camera(self): camera = pyrender.PerspectiveCamera( yfov=40.0 / 180.0 * np.pi, znear=0.0001, zfar=10.0 ) self.camera_pose = utils.euler2matrix( xyz="xyz", angles=[0, 0, 0], translation=[0, 0, 0], degrees=True ) # Add camera node into scene camera_node = pyrender.Node(camera=camera, matrix=self.camera_pose) self.scene.add_node(camera_node) self.camera = camera_node def add_object(self, objTrimesh, position=[0, 0, 0], orientation=[0, 0, 0]): mesh = pyrender.Mesh.from_trimesh(objTrimesh) pose = utils.euler2matrix(angles=orientation, translation=position) objNode = pyrender.Node(mesh=mesh, matrix=pose) self.scene.add_node(objNode) self.object_nodes.append(objNode) def update_objects_pose(self, position, orientation): pose = utils.euler2matrix(angles=orientation, translation=position) for obj in self.object_nodes: self.scene.set_pose(obj, pose=pose) def remove_objects(self): for obj in self.object_nodes: self.scene.remove_node(obj) self.object_nodes = [] def update_camera_pose(self, position, orientation): pose = np.eye(4) pose[:3, 3] = position pose[:3, :3] = orientation self.camera.matrix = pose.dot(self.camera_pose) def render(self): self.scene.main_camera_node = self.camera _, depth = self.r.render(self.scene) return depth
Active-3D-Vision-and-Touch-main
pterotactyl/simulator/rendering/touch_renderer.py
Active-3D-Vision-and-Touch-main
pterotactyl/simulator/physics/__init__.py
#Copyright (c) Facebook, Inc. and its affiliates. #All rights reserved. #This source code is licensed under the license found in the #LICENSE file in the root directory of this source tree. import numpy as np import trimesh from scipy.spatial.transform import Rotation as R from scipy.spatial import ConvexHull from pterotactyl.utility import utils class Agnostic_Grasp: def __init__(self, pb, hand): self.pb = pb self.hand = hand self.directions = -utils.get_circle(50).points.data.numpy() self.convex_mesh = None self.verts = None def set_object(self, verts, faces): hull = ConvexHull(verts.data.numpy()) self.convex_mesh = trimesh.Trimesh( vertices=verts, faces=hull.simplices, process=False ) self.verts = verts.data.numpy() def remove_object(self): self.convex_mesh = None self.verts = None # converts selected action into the corresponding hand rotation def action_to_params( self, action ): # converts action selection into hand parameters direction = self.directions[action] rotation = 0 return direction, rotation def grasp(self, action): self.reset_hand() direction, rotation = self.action_to_params( action ) # convert action into grasping parameters success = self.set_hand_hull( direction, rotation ) # identify point on convex hull which intersection the chosen hand direction # if no intersection is found if not success: return False else: # set all joint angles to maximum to perfrom grasp joint_angles = [10 for _ in range(28)] self.pb.setJointMotorControlArray( self.hand, range(28), self.pb.POSITION_CONTROL, targetPositions=joint_angles, ) for i in range(5): self.pb.stepSimulation() return True def set_hand_hull(self, direction, rotation, hand_distance=0.013): # define ray from the center of the object to outwards in the chosen direction ray_origins = np.array([[0, 0, 0]]) ray_directions = np.array([direction]) # find intersection with ray and convex hull locations, index_ray, index_tri = self.convex_mesh.ray.intersects_location( ray_origins=ray_origins, ray_directions=ray_directions ) # if no intersection were found if len(locations) == 0: return False else: # find furtherest interesection from the ceneter of the object test_locations = np.array(locations) test_locations = (test_locations ** 2).sum(axis=-1) max_location = np.argmax(test_locations) point = locations[max_location] face = self.convex_mesh.faces[index_tri[0]] # place the hand above the convex hull at the intersection point hand_position, surface_normal = self.get_position_on_hull( self.verts, face, point, hand_distance ) hand_orientation = self.pb.getQuaternionFromEuler([rotation, 0, 0]) surface_normal -= 0.001 handUpdateOrientation = utils.quats_from_vectors([-1, 0, 0], surface_normal) hand_orientation = utils.combine_quats( handUpdateOrientation, hand_orientation ) # place the middle finger tip on the point instead of the hand center # displacement of the fingertip from the center of the hand v = [0, 0, 0.133] matrix = (R.from_quat(hand_orientation)).as_matrix() hand_position -= matrix.dot(v) # transfrom the hand self.pb.resetBasePositionAndOrientation( self.hand, hand_position, hand_orientation ) return True # find the normal face which the ray intersections with, and a point just above the siurface in this direction def get_position_on_hull(self, verts, face, point, distance): p1, p2, p3 = verts[face[0]], verts[face[1]], verts[face[2]] normal = utils.normal_from_triangle(p1, p2, p3) p1 = np.array([0, 0, 0]) p2 = point p3 = point + normal * 0.0001 # check the normal is pointing away from the mesh if ((p1 - p2) ** 2).sum() > ((p1 - p3) ** 2).sum(): normal = normal * -1 # move position of the finger to slightly above the mesh point = point + normal * distance return point, normal def reset_hand(self): # moves hand away from the object to avoid intersections self.pb.resetBasePositionAndOrientation(self.hand, [20, 0, 0], [1, 0, 0, 0]) # sets all joints to the initial angles joint_angles = [0 for _ in range(28)] # sets thumb as oppositng fingers joint_angles[20] = 1.2 joint_angles[22] = 0.7 for i in range(28): self.pb.resetJointState(self.hand, i, joint_angles[i])
Active-3D-Vision-and-Touch-main
pterotactyl/simulator/physics/grasping.py
#Copyright (c) Facebook, Inc. and its affiliates. #All rights reserved. #This source code is licensed under the license found in the #LICENSE file in the root directory of this source tree. import os import pybullet as pb import numpy as np import trimesh import torch from scipy.spatial.transform import Rotation as R from scipy import ndimage from pterotactyl.simulator.rendering import touch_renderer from pterotactyl.simulator.rendering import tacto_renderer from pterotactyl.simulator.rendering import vision_renderer from pterotactyl.utility import utils import pterotactyl.objects as objects class Scene: def __init__( self, grasp_class, max_depth=0.025, conn=pb, vision=True, resolution=[256, 256], object_colour=[228, 217, 111, 255], TACTO=False, ): hand_location = os.path.join( os.path.dirname(objects.__file__), "hand/allegro_hand.urdf" ) self.hand = conn.loadURDF( hand_location, [0, 0, 0], conn.getQuaternionFromEuler([0, 0, 0]), useFixedBase=1, ) # the indices of the hand definition which correspond to the finger's perspective self.touch_cameras = [6, 13, 20, 27] # furthest distance from the fingers which is obseravble by the touch sensors self.max_depth = max_depth if TACTO: self.max_depth = min(self.max_depth, 0.015) self.pb = conn self.obj = None self.grasper = grasp_class(self.pb, self.hand) self.depths = None self.TACTO = TACTO # if vision signals are desired self.vision = vision if self.vision: self.object_colour = object_colour self.camera_renderer = vision_renderer.Renderer( self.hand, pb, cameraResolution=resolution ) if self.TACTO: self.touch_renderer = tacto_renderer.Renderer(cameraResolution=[121, 121]) else: self.touch_renderer = touch_renderer.Renderer(cameraResolution=[121, 121]) def grasp(self, action): return self.grasper.grasp(action) def get_hand_pose(self): poses = [] for i in range(28): poses.append(self.get_pose(self.hand, i)) return poses def get_pose(self, objID, linkID): if linkID <= 0: position, orientation = self.pb.getBasePositionAndOrientation(objID) else: position, orientation = self.pb.getLinkState( objID, linkID, computeLinkVelocity=False, computeForwardKinematics=True )[:2] orientation = self.pb.getEulerFromQuaternion(orientation) return position, orientation def load_obj(self, verts, faces, urdf_location): # adding repeating faces to ensure they are observed faces = utils.add_faces(faces) # loading into pybullet self.obj = self.pb.loadURDF( urdf_location, [0, 0, 0], [0, 0, 0, 1], useFixedBase=1 ) # loading into pyrender mesh = trimesh.Trimesh(vertices=verts, faces=faces, process=False) self.touch_renderer.add_object(mesh, position=[0, 0, 0], orientation=[0, 0, 0]) if self.vision: self.camera_renderer.add_object( mesh, position=[0, 0, 0], orientation=[0, 0, 0], colour=self.object_colour, ) # loading into grasp function self.obj_verts = torch.FloatTensor(verts) self.obj_faces = torch.LongTensor(faces) self.grasper.set_object(self.obj_verts, self.obj_faces) def remove_obj(self): if self.obj is not None: self.pb.removeBody(self.obj) self.touch_renderer.remove_objects() self.obj = None self.hull_faces = None if self.vision: self.camera_renderer.remove_objects() self.grasper.remove_object() # render depth from the perspective of each finger def render_depth(self): statuses = [] depths = [] colours = [] for i in range(4): # update position of the scene camera position, orientation = self.get_pose(self.hand, self.touch_cameras[i]) rot_off_finger = R.from_euler("xyz", [0, -90, 0], degrees=True).as_matrix() rot_finger = R.from_euler("xyz", orientation, degrees=False).as_matrix() orientation_update = np.matmul(rot_finger, rot_off_finger) self.touch_renderer.update_camera_pose( position=position, orientation=orientation_update ) # render depth if self.TACTO: colour, depth = self.touch_renderer.render() colours.append(colour) else: depth = self.touch_renderer.render() # check if object is close enough to register on touch sensor if (depth <= self.max_depth).sum() - (depth == 0).sum() > 0: statuses.append("touch") else: statuses.append("no_touch") depths.append(depth) self.depths = depths self.statuses = statuses if self.TACTO: self.colours = colours return statuses # converts depth map into point cloud in the reference frame of the object def depth_to_points(self): if self.TACTO: fov = 60.0 / 180.0 * np.pi # intrinsic camera parameter else: fov = 40.0 / 180.0 * np.pi # intrinsic camera parameter points = [] depths = np.array(self.depths) out_of_range = depths > self.max_depth # sets depth beyond touch sensor to 1 depths[out_of_range] = 1.0 # sets infinite depth to 1 instead of 0 depths[depths == 0] = 1 for i in range(4): if self.statuses[i] == "touch": depth = depths[i] # creates grid of points ys = np.arange(0, 121) ys = np.tile(ys, (121, 1)) - 60 ys = ys.transpose() xs = ys.transpose() # updates grid with depth point_cloud = np.zeros((121, 121, 3)) angle = np.arctan((np.abs(xs) / 60.0) * np.tan(fov / 2.0)) point_cloud[:, :, 0] = depth * np.tan(angle) * np.sign(xs) angle = np.arctan((np.abs(ys) / 60.0) * np.tan(fov / 2.0)) point_cloud[:, :, 1] = depth * np.tan(angle) * -np.sign(ys) point_cloud[:, :, 2] = -depth # removes depth beyond sensor range point_cloud = point_cloud[depth < 1.0] point_cloud = point_cloud.reshape((-1, 3)) # transforms points to reference frame of the finger position, orientation = self.get_pose(self.hand, self.touch_cameras[i]) rot_z = np.array([0, -90.0, 0]) r1 = R.from_euler("xyz", rot_z, degrees=True).as_matrix() r2 = R.from_euler("xyz", orientation, degrees=False).as_matrix() orientation = np.matmul(r2, r1) if self.TACTO: point_cloud[:, -1] = point_cloud[:, -1] - 0.0035 point_cloud = orientation.dot(point_cloud.T).T + position points.append(point_cloud) else: points.append(np.array([])) return points # simulates touch signal from depth def depth_to_touch(self, depth): # set depth which werent obsevred to 1 instead of zero out_of_range = depth > self.max_depth depth[out_of_range] = 1.0 depth[depth == 0] = 1 dim = depth.shape[-1] zeros = depth >= self.max_depth depth = -(depth - self.max_depth) depth[zeros] = 0 gel_depths = depth * 6 / self.max_depth # smooth depth values depth = gel_depths / (30.0) + 0.4 filter_size = 7 k = np.ones((filter_size, filter_size)) / (filter_size ** 2) depth_smoothed = ndimage.convolve(depth, k, mode="reflect") # fix "infinite" depths to zeros depth[zeros] = depth_smoothed[zeros] # add rgb and ambient lights light_positions = np.array( [[-0.5, 0.5, 1.0], [1.3, -0.4, 1.0], [1.3, 1.4, 1.0]] ) # set to zero, qulitativly better ambient_intensity = np.array([0.0, 0.0, 0.0]) diffuse_constant = 2.0 touch = np.zeros((dim, dim, 3)) touch[:, :] += ambient_intensity # calculate normal of surface zy, zx = np.gradient(depth) normal = np.dstack((-zx, -zy, np.ones_like(depth))) normal = utils.normalize_vector(normal) # calc depth positions depth_positions = np.arange(dim).repeat(dim).reshape(dim, dim) / float(dim) depth_positions = np.stack( (depth_positions, depth_positions.transpose(), depth) ).transpose((1, 2, 0)) # compute intensity from light normal using phong model, assuming no specularity for i in range(3): light_direction = light_positions[i] - depth_positions light_direction = utils.normalize_vector(light_direction) touch[:, :, i] += np.clip( diffuse_constant * np.multiply(normal, light_direction).sum(-1), 0, 1 ) touch = np.clip(touch * 255.0, 0, 255) # clip within reasonable range return touch def render_touch(self): touches = [] depths = np.array(self.depths) if self.TACTO: return self.colours else: for depth in depths: touches.append(self.depth_to_touch(depth)) return touches def get_finger_frame(self): positions = [] rots = [] for i in range(4): position, orientation = self.get_pose(self.hand, self.touch_cameras[i]) rot = R.from_euler("xyz", orientation, degrees=False).as_matrix() positions.append(position) rots.append(rot) frame = {"pos": torch.FloatTensor(positions), "rot_M": torch.FloatTensor(rots)} return frame def scene_render(self, occluded=True, parameters=None): if occluded: self.camera_renderer.update_hand() else: self.camera_renderer.remove_hand() if parameters is not None: self.camera_renderer.update_camera_pose(parameters[0], parameters[1]) image = self.camera_renderer.render() return image
Active-3D-Vision-and-Touch-main
pterotactyl/simulator/scene/instance.py
Active-3D-Vision-and-Touch-main
pterotactyl/simulator/scene/__init__.py
#Copyright (c) Facebook, Inc. and its affiliates. #All rights reserved. #This source code is licensed under the license found in the #LICENSE file in the root directory of this source tree. import os import numpy as np import pybullet_utils.bullet_client as bc import pybullet as pb import pybullet_data import torch from pterotactyl.simulator.scene import instance from pterotactyl.utility import utils class Sampler: def __init__( self, grasp_class, bs=1, vision=True, max_depth=0.025, object_colours=[228, 217, 111, 255], resolution=[256, 256], TACTO=False, ): self.pybullet_connections = [] self.pybullet_scenes = [] self.bs = bs self.vision = vision # make a connection for every element in the batch for i in range(bs): self.pybullet_connections.append(bc.BulletClient(connection_mode=pb.DIRECT)) self.pybullet_connections[i].setAdditionalSearchPath( pybullet_data.getDataPath() ) if np.array(object_colours).shape == (4,): colour = object_colours else: colour = object_colours[i] self.pybullet_scenes.append( instance.Scene( grasp_class, max_depth=max_depth, conn=self.pybullet_connections[i], vision=self.vision, object_colour=colour, resolution=resolution, TACTO=TACTO, ) ) # disconnets the pybullet threads def disconnect(self): for i in range(self.bs): self.pybullet_connections[i].disconnect() # loads the objects into each pybullet thread def load_objects(self, batch, from_dataset=True, scale=3.1): self.remove_objects() assert len(batch) == self.bs for i in range(self.bs): obj_location = batch[i] # if the object information has already been extracted if from_dataset: verts = np.load(obj_location + "_verts.npy") faces = np.load(obj_location + "_faces.npy") faces = utils.add_faces(faces) urdf_location = obj_location + ".urdf" # extract and record the object information else: obj_location = obj_location + ".obj" urdf_location = obj_location + ".urdf" verts, faces = utils.get_obj_data(obj_location, scale=scale) utils.make_urdf(verts, faces, urdf_location) self.pybullet_scenes[i].load_obj(verts, faces, urdf_location) def remove_objects(self): for i in range(self.bs): self.pybullet_scenes[i].remove_obj() def grasp(self, i, actions): return self.pybullet_scenes[i].grasp(actions[i]) # perfrom the grasp and extracted the requested information def sample( self, actions, touch=True, touch_point_cloud=False, vision=False, vision_occluded=False, parameters=None, ): success = [] poses = [] dict = {} # check if the grasps are feasible for i in range(self.bs): # perfrom the grasps success.append(self.grasp(i, actions)) if success[-1]: poses.append(self.pybullet_scenes[i].get_hand_pose()) else: poses.append(None) dict["hand_pose"] = poses # get touch signal from grasp if touch: touch_status = [ ["no_intersection" for _ in range(4)] for _ in range(self.bs) ] touch_signal = torch.zeros((self.bs, 4, 121, 121, 3)) depths = torch.zeros((self.bs, 4, 121, 121)) finger_transform_pos = torch.zeros((self.bs, 4, 3)) finger_transform_rot_M = torch.zeros((self.bs, 4, 3, 3)) for i in range(self.bs): if success[i]: # depth from camera touch_status[i] = self.pybullet_scenes[i].render_depth() # simulated touch from depth touch = self.pybullet_scenes[i].render_touch() ref_frame = self.pybullet_scenes[i].get_finger_frame() touch_signal[i] = torch.FloatTensor(touch) depths[i] = torch.FloatTensor(self.pybullet_scenes[i].depths) finger_transform_pos[i] = torch.FloatTensor(ref_frame["pos"]) finger_transform_rot_M[i] = torch.FloatTensor(ref_frame["rot_M"]) dict["touch_status"] = touch_status dict["touch_signal"] = touch_signal dict["depths"] = depths dict["finger_transfrom_pos"] = finger_transform_pos dict["finger_transform_rot_M"] = finger_transform_rot_M # get pointcloud of touch site in the object frame of reference if touch_point_cloud: point_clouds = [] for i in range(self.bs): point_clouds.append(self.pybullet_scenes[i].depth_to_points()) dict["touch_point_cloud"] = point_clouds # get image of the grasp if vision_occluded: vision_occluded_imgs = [] for i in range(self.bs): if parameters is not None: param = parameters[i] else: param = None img = self.pybullet_scenes[i].scene_render( occluded=True, parameters=param ) vision_occluded_imgs.append(img) dict["vision_occluded"] = vision_occluded_imgs # get image of the object if vision: vision_imgs = [] for i in range(self.bs): if parameters is not None: param = parameters[i] else: param = None img = self.pybullet_scenes[i].scene_render( occluded=False, parameters=param ) vision_imgs.append(img) dict["vision"] = vision_imgs return dict
Active-3D-Vision-and-Touch-main
pterotactyl/simulator/scene/sampler.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
Active-3D-Vision-and-Touch-main
pterotactyl/object_data/__init__.py
Active-3D-Vision-and-Touch-main
pterotactyl/reconstruction/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch.nn as nn import torch import numpy as np from torch.nn.parameter import Parameter import torch.nn.functional as F # class for the autoencoder # for extracting latent vector from predicted shape class AutoEncoder(nn.Module): def __init__(self, adj_info, inital_positions, args, only_encode=False): super(AutoEncoder, self).__init__() self.adj_info = adj_info self.initial_positions = inital_positions self.args = args # feature size passed to the GCN input_size = 50 self.only_encode = only_encode self.positional_encoder = Positional_Encoder(input_size) self.mask_encoder = Mask_Encoder(input_size) self.encoder = Encoder(input_size, args) if not self.only_encode: self.decoder = Decoder(args).cuda() def forward(self, verts, mask, only_encode=False): positional_features = self.positional_encoder(verts) mask_features = self.mask_encoder(mask) # combine mesh features vertex_features = positional_features + mask_features latent = self.encoder(vertex_features, self.adj_info) if self.only_encode or only_encode: return latent pred_points = self.decoder(latent) return pred_points.permute(0, 2, 1), latent # encoder for the auto encoder class Encoder(nn.Module): def __init__(self, input_features, args): super(Encoder, self).__init__() self.num_layers = args.num_GCN_layers # define output sizes for each GCN layer hidden_values = [input_features] + [ args.hidden_GCN_size for _ in range(self.num_layers) ] # define layers layers = [] for i in range(self.num_layers): layers.append( GCN_layer( hidden_values[i], hidden_values[i + 1], args.cut, do_cut=i < self.num_layers - 1, ) ) self.layers = nn.ModuleList(layers) # MLP layers hidden_values = [args.hidden_GCN_size, 500, 400, 300, args.encoding_size] num_layers = len(hidden_values) - 1 layers = [] for i in range(num_layers): if i < num_layers - 1: layers.append( nn.Sequential( nn.Linear(hidden_values[i], hidden_values[i + 1]), nn.ReLU() ) ) else: layers.append( nn.Sequential(nn.Linear(hidden_values[i], hidden_values[i + 1])) ) self.mlp = nn.Sequential(*layers) def forward(self, features, adj_info): adj = adj_info["adj"] for i in range(self.num_layers): activation = F.relu if i < self.num_layers - 1 else lambda x: x features = self.layers[i](features, adj, activation) features = features.max(dim=1)[0] features = self.mlp(features) return features # Graph convolutional network layer class GCN_layer(nn.Module): def __init__(self, in_features, out_features, cut=0.33, do_cut=True): super(GCN_layer, self).__init__() self.weight = Parameter(torch.Tensor(1, in_features, out_features)) self.bias = Parameter(torch.Tensor(out_features)) self.reset_parameters() self.cut_size = cut self.do_cut = do_cut def reset_parameters(self): stdv = 6.0 / math.sqrt((self.weight.size(1) + self.weight.size(0))) stdv *= 0.3 self.weight.data.uniform_(-stdv, stdv) self.bias.data.uniform_(-0.1, 0.1) def forward(self, features, adj, activation): features = torch.matmul(features, self.weight) # if we want to only share a subset of features with neighbors if self.do_cut: length = round(features.shape[-1] * self.cut_size) output = torch.matmul(adj, features[:, :, :length]) output = torch.cat((output, features[:, :, length:]), dim=-1) output[:, :, :length] += self.bias[:length] else: output = torch.matmul(adj, features) output = output + self.bias return activation(output) # decoder for the autoencoder # this is just Foldingnet class Decoder(nn.Module): def __init__(self, args, rank=0): super(Decoder, self).__init__() self.model = FoldingNetDec(rank=rank) self.initial = nn.Linear(args.encoding_size, 512) def forward(self, features): features = self.initial(features) points = self.model(features) return points # foldingnet definition class FoldingNetDecFold1(nn.Module): def __init__(self): super(FoldingNetDecFold1, self).__init__() self.conv1 = nn.Conv1d(514, 512, 1) self.conv2 = nn.Conv1d(512, 512, 1) self.conv3 = nn.Conv1d(512, 3, 1) self.relu = nn.ReLU() def forward(self, x): x = self.relu(self.conv1(x)) x = self.relu(self.conv2(x)) x = self.conv3(x) return x # foldingnet definition def GridSamplingLayer(batch_size, meshgrid): ret = np.meshgrid(*[np.linspace(it[0], it[1], num=it[2]) for it in meshgrid]) ndim = len(meshgrid) grid = np.zeros( (np.prod([it[2] for it in meshgrid]), ndim), dtype=np.float32 ) # MxD for d in range(ndim): grid[:, d] = np.reshape(ret[d], -1) g = np.repeat(grid[np.newaxis, ...], repeats=batch_size, axis=0) return g # foldingnet definition class FoldingNetDecFold2(nn.Module): def __init__(self): super(FoldingNetDecFold2, self).__init__() self.conv1 = nn.Conv1d(515, 512, 1) self.conv2 = nn.Conv1d(512, 512, 1) self.conv3 = nn.Conv1d(512, 3, 1) self.relu = nn.ReLU() def forward(self, x): # input x = batch,515,45^2 x = self.relu(self.conv1(x)) x = self.relu(self.conv2(x)) x = self.conv3(x) return x # foldingnet definition class FoldingNetDec(nn.Module): def __init__(self, rank=0): super(FoldingNetDec, self).__init__() self.rank = rank self.fold1 = FoldingNetDecFold1() self.fold2 = FoldingNetDecFold2() def forward(self, x): batch_size = x.size(0) x = torch.unsqueeze(x, 1) # x = batch,1,512 x = x.repeat(1, 80 ** 2, 1) # x = batch,45^2,512 code = x.transpose(2, 1) # x = batch,512,45^2 meshgrid = [[-0.5, 0.5, 80], [-0.5, 0.5, 80]] grid = GridSamplingLayer(batch_size, meshgrid) # grid = batch,45^2,2 grid = torch.from_numpy(grid).cuda(self.rank) x = torch.cat((x, grid), 2) # x = batch,45^2,514 x = x.transpose(2, 1) # x = batch,514,45^2 x = self.fold1(x) # x = batch,3,45^2 x = torch.cat((code, x), 1) # x = batch,515,45^2 x = self.fold2(x) # x = batch,3,45^2 return x # encode the positional information of vertices using Nerf Embeddings class Positional_Encoder(nn.Module): def __init__(self, input_size): super(Positional_Encoder, self).__init__() layers = [] layers.append( nn.Linear(63, input_size // 4) ) # 10 nerf layers + original positions layers.append(nn.ReLU(inplace=True)) layers.append(nn.Linear(input_size // 4, input_size // 2)) layers.append(nn.ReLU(inplace=True)) layers.append(nn.Linear(input_size // 2, input_size)) self.model = nn.Sequential(*layers) # apply nerf embedding of the positional information def nerf_embedding(self, points): embeddings = [] for i in range(10): if i == 0: embeddings.append(torch.sin(np.pi * points)) embeddings.append(torch.cos(np.pi * points)) else: embeddings.append(torch.sin(np.pi * 2 * i * points)) embeddings.append(torch.cos(np.pi * 2 * i * points)) embeddings = torch.cat(embeddings, dim=-1) return embeddings def forward(self, positions): shape = positions.shape positions = positions.contiguous().view(shape[0] * shape[1], -1) # combine nerf embedding with origional positions positions = torch.cat((self.nerf_embedding((positions)), positions), dim=-1) embeding = self.model(positions).view(shape[0], shape[1], -1) return embeding # make embedding token of the mask information for each vertex class Mask_Encoder(nn.Module): def __init__(self, input_size): super(Mask_Encoder, self).__init__() layers_mask = [] layers_mask.append(nn.Embedding(4, input_size)) self.model = nn.Sequential(*layers_mask) def forward(self, mask): shape = mask.shape mask = mask.contiguous().view(-1, 1) embeding_mask = self.model(mask.long()).view(shape[0], shape[1], -1) return embeding_mask
Active-3D-Vision-and-Touch-main
pterotactyl/reconstruction/autoencoder/model.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import torch import numpy as np from tqdm import tqdm import argparse import random from PIL import Image from torch.utils.tensorboard import SummaryWriter import torch.optim as optim from torch.utils.data import DataLoader from pterotactyl.reconstruction.autoencoder import model from pterotactyl.utility import utils from pterotactyl.utility import data_loaders from pterotactyl.reconstruction.vision import model as vision_model import pterotactyl.objects as objects from pterotactyl import pretrained import pterotactyl.object_data as object_data IMAGE_LOCATION = os.path.join(os.path.dirname(object_data.__file__), "images_colourful/") class Engine: def __init__(self, args): # set seeds np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) # set initial data values self.epoch = 0 self.best_loss = 10000 self.args = args self.last_improvement = 0 self.vision_chart_location = os.path.join( os.path.dirname(objects.__file__), "vision_charts.obj" ) self.checkpoint_dir = os.path.join( "experiments/checkpoint/", args.exp_type, args.exp_id ) if not os.path.exists(self.checkpoint_dir): os.makedirs(self.checkpoint_dir) self.results_dir = os.path.join("results", self.args.exp_type, self.args.exp_id) if not os.path.exists(self.results_dir): os.makedirs(self.results_dir) utils.save_config(self.checkpoint_dir, args) def __call__(self) -> float: # define the model and optimizer vision_args, weights = utils.load_model_config(self.args.vision_location) self.mesh_info, self.initial_mesh = utils.load_mesh_vision( vision_args, self.vision_chart_location ) self.initial_mesh = self.initial_mesh.cuda() self.n_vision_charts = self.initial_mesh.shape[0] self.deform = vision_model.Deformation( self.mesh_info, self.initial_mesh, vision_args ).cuda() self.deform.load_state_dict(torch.load(weights)) self.auto_encoder = model.AutoEncoder( self.mesh_info, self.initial_mesh, self.args ) params = list(self.auto_encoder.parameters()) self.auto_encoder.cuda() self.optimizer = optim.Adam(params, lr=self.args.lr, weight_decay=0) self.load() # logging information writer = SummaryWriter( os.path.join("experiments/tensorboard/", self.args.exp_type) ) self.train_loss = 0 # get data train_loader, valid_loaders = self.get_loaders() # evaluate on the test set if self.args.eval: self.load() with torch.no_grad(): self.validate(valid_loaders, writer) return # train and validate for epoch in range(0, self.args.epochs): self.epoch = epoch self.train(train_loader, writer) with torch.no_grad(): self.validate(valid_loaders, writer) self.check_values() # get dataloaders def get_loaders(self): train_loader, valid_loader = "", "" # training loader if not self.args.eval: train_data = data_loaders.mesh_loader_vision( self.args, set_type="auto_train" ) train_loader = DataLoader( train_data, batch_size=self.args.batch_size, shuffle=True, num_workers=16, collate_fn=train_data.collate, ) # evaluation loaders set_type = "test" if self.args.eval else "valid" valid_data = data_loaders.mesh_loader_vision(self.args, set_type=set_type) valid_loader = DataLoader( valid_data, batch_size=self.args.batch_size, shuffle=False, num_workers=16, collate_fn=valid_data.collate, ) return train_loader, valid_loader def train(self, data, writer): total_loss = 0 iterations = 0 self.auto_encoder.train() for k, batch in enumerate(tqdm(data, smoothing=0)): self.optimizer.zero_grad() # initialize data img = batch["img"].cuda() # inference with torch.no_grad(): charts = vision_model.prepare_mesh(batch, self.initial_mesh, self.args) verts, mask = self.deform(img, charts) pred_points, latent = self.auto_encoder(verts.detach(), mask) loss = utils.chamfer_distance( verts.detach(), self.mesh_info["faces"], pred_points, num=self.args.number_points, ) loss = self.args.loss_coeff * loss.mean() # backprop loss.backward() self.optimizer.step() # log message = f"Train || Epoch: {self.epoch}, loss: {loss.item():.2f}, b_ptp: {self.best_loss:.2f}" tqdm.write(message) total_loss += loss.item() iterations += 1.0 self.train_loss = total_loss / iterations writer.add_scalars( "train_loss", {self.args.exp_id: total_loss / iterations}, self.epoch ) def validate(self, valid_loader, writer): total_loss = 0 self.auto_encoder.eval() num_examples = 0 latents = [] names = [] for v, batch in enumerate(tqdm(valid_loader)): self.optimizer.zero_grad() # initialize data img = batch["img"].cuda() batch_size = img.shape[0] # inference charts = vision_model.prepare_mesh(batch, self.initial_mesh, self.args) verts, mask = self.deform(img, charts) pred_points, latent = self.auto_encoder(verts.detach(), mask) names += batch["names"] latents.append(latent) loss = utils.chamfer_distance( verts.detach(), self.mesh_info["faces"], pred_points, num=self.args.number_points, ) loss = self.args.loss_coeff * loss.mean() * batch_size # logs num_examples += float(batch_size) total_loss += loss total_loss = total_loss / num_examples message = f"Valid || Epoch: {self.epoch}, train loss: {self.train_loss:.4f}, val loss: {total_loss:.4f}, b_ptp: {self.best_loss:.4f}" tqdm.write(message) print("*******************************************************") print(f"Validation Accuracy: {total_loss}") print("*******************************************************") if not self.args.eval: writer.add_scalars("valid_ptp", {self.args.exp_id: total_loss}, self.epoch) self.current_loss = total_loss if self.args.eval: latents = torch.cat(latents) self.cluster(latents, names) # save the model def save(self): torch.save(self.auto_encoder.state_dict(), self.checkpoint_dir + "/model") torch.save(self.optimizer.state_dict(), self.checkpoint_dir + "/optim") # load the model def load(self): if self.args.eval and self.args.pretrained: if self.args.use_img: if self.args.finger: location_vision = ( os.path.dirname(pretrained.__file__) + "/reconstruction/vision/v_t_p/" ) location_auto = ( os.path.dirname(pretrained.__file__) + "/reconstruction/auto/v_t_p/" ) else: location_vision = ( os.path.dirname(pretrained.__file__) + "/reconstruction/vision/v_t_g/" ) location_auto = ( os.path.dirname(pretrained.__file__) + "/reconstruction/auto/v_t_g/" ) else: if self.args.finger: location_vision = ( os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_p/" ) location_auto = ( os.path.dirname(pretrained.__file__) + "/reconstruction/auto/t_p/" ) else: location_vision = ( os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_g/" ) location_auto = ( os.path.dirname(pretrained.__file__) + "/reconstruction/auto/t_g/" ) # define the vision model vision_args, _ = utils.load_model_config(location_vision) weights = location_vision + 'model' self.mesh_info, self.initial_mesh = utils.load_mesh_vision( vision_args, self.vision_chart_location ) self.initial_mesh = self.initial_mesh.cuda() self.n_vision_charts = self.initial_mesh.shape[0] self.deform = vision_model.Deformation( self.mesh_info, self.initial_mesh, vision_args ) self.deform.cuda() self.deform.load_state_dict(torch.load(weights)) self.deform.eval() # define the autoencoder model auto_args, _ = utils.load_model_config(location_auto) weights = location_auto + '/model' self.auto_encoder = model.AutoEncoder( self.mesh_info, self.initial_mesh, auto_args ) self.auto_encoder.cuda() self.auto_encoder.load_state_dict(torch.load(weights)) else: try: self.auto_encoder.load_state_dict( torch.load(self.checkpoint_dir + "/model") ) self.optimizer.load_state_dict( torch.load(self.checkpoint_dir + "/optim") ) except: return # check if current validation is better, and if so save model def check_values(self): if self.best_loss >= self.current_loss: improvement = self.best_loss - self.current_loss print( f"Saving with {improvement:.3f} improvement in Chamfer Distance on Validation Set " ) self.best_loss = self.current_loss self.last_improvement = 0 self.save() else: self.last_improvement += 1 if self.last_improvement >= self.args.patience: print(f"Over {self.args.patience} steps since last imporvement") print("Exiting now") exit() def cluster(self, latents, names): example_nums = 20 crop = 20 img_dim = 256 examples = random.choices(range(latents.shape[0]), k=example_nums) collage = Image.new( "RGB", ((img_dim - crop * 2) * 5, (img_dim - crop * 2) * example_nums) ) for v, e in enumerate(examples): new_im = Image.new("RGB", (img_dim * 5, img_dim)) l = latents[e] main_obj = names[e][0].split("/")[-1] imgs = [os.path.join(IMAGE_LOCATION, main_obj + ".npy")] seen = [main_obj] compare_latents = latents - l.unsqueeze(0) compare_latents = (compare_latents ** 2).sum(-1) closest = torch.topk(compare_latents, 25, largest=False)[1][1:] for c in closest: obj = names[c][0].split("/")[-1] if obj in seen: continue seen.append(obj) imgs.append(os.path.join(IMAGE_LOCATION, obj + ".npy")) for i in range(5): im = Image.fromarray(np.load(imgs[i])) new_im.paste(im, (i * img_dim, 0)) new_im.save(f"{self.results_dir}/valid_{v}.png") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--cut", type=float, default=0.33, help="The shared size of features in the GCN.", ) parser.add_argument( "--limit_data", action="store_true", default=False, help="use less data, for debugging.", ) parser.add_argument( "--finger", action="store_true", default=False, help="use only one finger." ) parser.add_argument( "--vision_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_p/", help="the location of the deformation prediction.", ) parser.add_argument( "--number_points", type=int, default=30000, help="number of points sampled for the chamfer distance.", ) parser.add_argument( "--encoding_size", type=int, default=200, help="size of the latent vector" ) parser.add_argument( "--seed", type=int, default=0, help="Setting for the random seed." ) parser.add_argument( "--lr", type=float, default=0.0003, help="Initial learning rate." ) parser.add_argument( "--eval", action="store_true", default=False, help="Evaluate the trained model on the test set.", ) parser.add_argument("--batch_size", type=int, default=16, help="Size of the batch.") parser.add_argument( "--val_grasps", type=int, default=-1, help="number of grasps to use during validation.", ) parser.add_argument( "--exp_id", type=str, default="test", help="The experiment name." ) parser.add_argument( "--exp_type", type=str, default="test", help="The experiment group." ) parser.add_argument( "--use_img", action="store_true", default=False, help="To use the image." ) parser.add_argument( "--use_touch", action="store_true", default=False, help="To use the touch information.", ) parser.add_argument( "--patience", type=int, default=70, help="How many epochs without imporvement before training stops.", ) parser.add_argument( "--loss_coeff", type=float, default=9000.0, help="Coefficient for loss term." ) parser.add_argument( "--num_GCN_layers", type=int, default=20, help="Number of GCN layers in the mesh deformation network.", ) parser.add_argument( "--hidden_GCN_size", type=int, default=300, help="Size of the feature vector for each GCN layer in the mesh deformation network.", ) parser.add_argument( "--num_grasps", type=int, default=5, help="Number of grasps to train with. " ) parser.add_argument( "--epochs", type=int, default=1000, help="Number of epochs to use." ) parser.add_argument( "--pretrained", action="store_true", default=False, help="load the pretrained model", ) args = parser.parse_args() trainer = Engine(args) trainer()
Active-3D-Vision-and-Touch-main
pterotactyl/reconstruction/autoencoder/train.py
Active-3D-Vision-and-Touch-main
pterotactyl/reconstruction/touch/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn # CNN block class DoubleConv(nn.Module): def __init__(self, in_channels, out_channels, last=False): super().__init__() self.last = last self.double_conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=5, padding=2, stride=2), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, kernel_size=5, padding=2), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, kernel_size=5, padding=2), ) self.activation = nn.Sequential( nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True) ) def forward(self, x): x = self.double_conv(x) if not self.last: x = self.activation(x) return x # Model for predicting touch chart shape class Encoder(nn.Module): def __init__(self): super(Encoder, self).__init__() # CNN CNN_layers = [] CNN_layers.append(DoubleConv(3, 16)) CNN_layers.append(DoubleConv(16, 32)) CNN_layers.append(DoubleConv(32, 32)) CNN_layers.append(DoubleConv(32, 64)) CNN_layers.append(DoubleConv(64, 128)) CNN_layers.append(DoubleConv(128, 128, last=True)) self.CNN_layers = nn.Sequential(*CNN_layers) # MLP layers = [] layers.append(nn.Sequential(nn.Linear(512, 256), nn.ReLU())) layers.append(nn.Sequential(nn.Linear(256, 128), nn.ReLU())) layers.append(nn.Sequential(nn.Linear(128, 75))) self.fc = nn.Sequential(*layers) def predict_verts(self, touch): for layer in self.CNN_layers: touch = layer(touch) points = touch.contiguous().view(-1, 512) points = self.fc(points) return points # tranform the predicted shape into the reference frame of the sensro def transform_verts(self, verts, ref): pos = ref["pos"].cuda().view(-1, 1, 3).repeat(1, verts.shape[1], 1) rot = ref["rot"].cuda() verts = torch.bmm(rot, verts.permute(0, 2, 1)).permute(0, 2, 1) verts += pos return verts def forward(self, gel, ref_frame, verts): verts = verts + self.predict_verts(gel).view(-1, verts.shape[1], 3) verts = self.transform_verts(verts, ref_frame) return verts
Active-3D-Vision-and-Touch-main
pterotactyl/reconstruction/touch/model.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import torch from tqdm import tqdm import argparse from torch.utils.tensorboard import SummaryWriter import torch.optim as optim from torch.utils.data import DataLoader from pterotactyl.reconstruction.touch import model from pterotactyl.utility import utils from pterotactyl.utility import data_loaders import pterotactyl.objects as objects from pterotactyl import pretrained class Engine: def __init__(self, args): utils.set_seeds(args.seed) self.epoch = 0 self.best_loss = 10000 self.args = args self.last_improvement = 0 self.checkpoint_dir = os.path.join( "experiments/checkpoint/", args.exp_type, args.exp_id ) if not os.path.exists(self.checkpoint_dir): os.makedirs(self.checkpoint_dir) utils.save_config(self.checkpoint_dir, args) chart_location = os.path.join( os.path.dirname(objects.__file__), "touch_chart.obj" ) self.verts, self.faces = utils.load_mesh_touch(chart_location) self.verts = self.verts.view(1, self.verts.shape[0], 3).repeat( args.batch_size, 1, 1 ) def __call__(self): self.encoder = model.Encoder() self.encoder.cuda() params = list(self.encoder.parameters()) self.optimizer = optim.Adam(params, lr=self.args.lr) writer = SummaryWriter( os.path.join("experiments/tensorboard/", self.args.exp_type) ) train_loader, valid_loader = self.get_loaders() # evaluate if self.args.eval: self.load() with torch.no_grad(): self.validate(valid_loader, writer) return # train and validate else: for epoch in range(self.args.epochs): self.epoch = epoch self.train(train_loader, writer) with torch.no_grad(): self.validate(valid_loader, writer) self.check_values() # get the dataloaders def get_loaders(self): train_loader, valid_loader = "", "" # dataloader for training if not self.args.eval: train_data = data_loaders.mesh_loader_touch( self.args, set_type="recon_train" ) train_loader = DataLoader( train_data, batch_size=self.args.batch_size, shuffle=True, num_workers=16, collate_fn=train_data.collate, ) # dataloader for evaluation set_type = "test" if self.args.eval else "valid" valid_data = data_loaders.mesh_loader_touch(self.args, set_type=set_type) valid_loader = DataLoader( valid_data, batch_size=self.args.batch_size, shuffle=False, num_workers=16, collate_fn=valid_data.collate, ) return train_loader, valid_loader def train(self, data, writer): total_loss = 0 iterations = 0 self.encoder.train() for k, batch in enumerate(tqdm(data)): # initialize self.optimizer.zero_grad() sim_touch = batch["sim_touch"].cuda() ref_frame = batch["ref"] gt_points = batch["samples"].cuda() batch_size = gt_points.shape[0] # inference pred_verts = self.encoder( sim_touch, ref_frame, self.verts.clone()[:batch_size] ) loss = self.args.loss_coeff * utils.chamfer_distance( pred_verts, self.faces, gt_points, self.args.num_samples ) loss = loss.mean() total_loss += loss.data.cpu().numpy() # backprop loss.backward() self.optimizer.step() # log message = f"Train || Epoch: {self.epoch}, loss: {loss.item():.5f} " message += f"|| best_loss: {self.best_loss :.5f}" tqdm.write(message) iterations += 1.0 writer.add_scalars( "train", {self.args.exp_id: total_loss / iterations}, self.epoch ) def validate(self, valid_loader, writer): total_loss = 0 self.encoder.eval() num_examples = 0 for k, batch in enumerate(tqdm(valid_loader)): # initialize data sim_touch = batch["sim_touch"].cuda() ref_frame = batch["ref"] gt_points = batch["samples"].cuda() batch_size = gt_points.shape[0] # inference pred_verts = self.encoder( sim_touch, ref_frame, self.verts.clone()[:batch_size] ) # back prop loss = self.args.loss_coeff * utils.chamfer_distance( pred_verts, self.faces, gt_points, self.args.num_samples ) loss = loss.mean() num_examples += float(batch_size) total_loss += loss * float(batch_size) total_loss = total_loss / float(num_examples) # log print("*******************************************************") print(f"Total validation loss: {total_loss}") print("*******************************************************") if not self.args.eval: writer.add_scalars("valid", {self.args.exp_id: total_loss}, self.epoch) self.current_loss = total_loss # save the model def save(self): torch.save(self.encoder.state_dict(), self.checkpoint_dir + "/model") torch.save(self.optimizer.state_dict(), self.checkpoint_dir + "/optim") # check if the latest validation is better, save if so def check_values(self): if self.best_loss >= self.current_loss: improvement = self.best_loss - self.current_loss self.best_loss = self.current_loss print(f"Saving Model with a {improvement} improvement in point loss") self.save() self.last_improvement = 0 else: self.last_improvement += 1 if self.last_improvement == self.args.patience: print(f"Over {self.args.patience} steps since last imporvement") print("Exiting now") exit() print("*******************************************************") # load the model def load(self): if self.args.eval and self.args.pretrained: location = ( os.path.dirname(pretrained.__file__) + "/reconstruction/touch/best/model" ) self.encoder.load_state_dict(torch.load(location)) else: self.encoder.load_state_dict(torch.load(self.checkpoint_dir + "/model")) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--seed", type=int, default=0, help="Setting for the random seed." ) parser.add_argument( "--limit_data", action="store_true", default=False, help="reduces the number of data examples", ) parser.add_argument( "--epochs", type=int, default=1000, help="Number of epochs to use." ) parser.add_argument( "--lr", type=float, default=0.0001, help="Initial learning rate." ) parser.add_argument( "--eval", action="store_true", default=False, help="Evaluate the trained model on the test set.", ) parser.add_argument("--batch_size", type=int, default=64, help="Size of the batch.") parser.add_argument( "--num_samples", type=int, default=4000, help="Number of points in the predicted point cloud.", ) parser.add_argument( "--patience", type=int, default=70, help="How many epochs without imporvement before training stops.", ) parser.add_argument( "--loss_coeff", type=float, default=9000.0, help="Coefficient for loss term." ) parser.add_argument( "--exp_id", type=str, default="test", help="The experiment name" ) parser.add_argument( "--exp_type", type=str, default="test", help="The experiment group" ) parser.add_argument( "--pretrained", action="store_true", default=False, help="load the pretrained model", ) args = parser.parse_args() trainer = Engine(args) trainer()
Active-3D-Vision-and-Touch-main
pterotactyl/reconstruction/touch/train.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch.nn as nn import torch import numpy as np from torch.nn.parameter import Parameter import torch.nn.functional as F from PIL import Image # basic CNN layer template def CNN_layer(f_in, f_out, k, stride=1, simple=False, padding=1): layers = [] if not simple: layers.append(nn.BatchNorm2d(int(f_in))) layers.append(nn.ReLU(inplace=True)) layers.append( nn.Conv2d(int(f_in), int(f_out), kernel_size=k, padding=padding, stride=stride) ) return nn.Sequential(*layers) # network for making image features for vertex feature vectors class Image_Encoder(nn.Module): def __init__(self, args): super(Image_Encoder, self).__init__() # CNN sizes cur_size = 3 next_size = 16 # layers for the CNN layers = [] layers.append( CNN_layer(cur_size, cur_size, args.CNN_ker_size, stride=1, simple=True) ) for i in range(args.num_CNN_blocks): layers.append(CNN_layer(cur_size, next_size, args.CNN_ker_size, stride=2)) cur_size = next_size next_size = next_size * 2 for j in range(args.layers_per_block - 1): layers.append(CNN_layer(cur_size, cur_size, args.CNN_ker_size)) self.args = args self.layers = nn.ModuleList(layers) # camera parameters f = 221.7025 RT = np.array( [ [ -7.587616579485257e-08, -1.0000001192092896, 0.0, -2.2762851159541242e-08, ], [-0.7071068286895752, 7.587616579485257e-08, -0.7071068286895752, 0.0], [0.7071068286895752, 0.0, -0.7071067690849304, 0.4242640733718872], ] ) K = np.array([[f, 0, 128.0], [0, f, 128.0], [0, 0, 1]]) # projection matrix self.matrix = torch.FloatTensor(K.dot(RT)).cuda() # defines image features over vertices from vertex positions, and feature mpas from vision def pooling(self, blocks, verts_pos): # convert vertex positions to x,y coordinates in the image, scaled to fractions of image dimension ext_verts_pos = torch.cat( ( verts_pos, torch.FloatTensor( np.ones([verts_pos.shape[0], verts_pos.shape[1], 1]) ).cuda(), ), dim=-1, ) ext_verts_pos = torch.matmul(ext_verts_pos, self.matrix.permute(1, 0)) ext_verts_pos[:, :, 2][ext_verts_pos[:, :, 2] == 0] = 0.1 xs = ext_verts_pos[:, :, 1] / ext_verts_pos[:, :, 2] / 256.0 xs[torch.isinf(xs)] = 0.5 ys = ext_verts_pos[:, :, 0] / ext_verts_pos[:, :, 2] / 256.0 ys[torch.isinf(ys)] = 0.5 full_features = None xs = xs.unsqueeze(2).unsqueeze(3) ys = ys.unsqueeze(2).unsqueeze(3) grid = torch.cat([ys, xs], 3) grid = grid * 2 - 1 # extract image features based on vertex projected positions for block in blocks: features = torch.nn.functional.grid_sample(block, grid, align_corners=True) if full_features is None: full_features = features else: full_features = torch.cat((full_features, features), dim=1) vert_image_features = full_features[:, :, :, 0].permute(0, 2, 1) return vert_image_features # Examines the projection of points into image space and displayes the image # This is only for debugging purposes def debug_pooling(self, img, points): # convert vertex positions to x,y coordinates in the image, scaled to fractions of image dimension ext_verts_pos = torch.cat( ( points, torch.FloatTensor( np.ones([points.shape[0], points.shape[1], 1]) ).cuda(), ), dim=-1, ) ext_verts_pos = torch.matmul(ext_verts_pos, self.matrix.permute(1, 0)) xs = ext_verts_pos[:, :, 1] / ext_verts_pos[:, :, 2] / 256.0 ys = ext_verts_pos[:, :, 0] / ext_verts_pos[:, :, 2] / 256.0 for xses, yses, i in zip(xs, ys, img): i = (255 * i.permute(1, 2, 0)).data.cpu().numpy().astype(np.uint8) for x, y in zip(xses, yses): x = int(x * 255) if x > 255: x = 255 if x < 0: x = 0 y = int(y * 255) if y > 255: y = 255 if y < 0: y = 0 i[x, y, 0] = 255.0 i[x, y, 1] = 0 i[x, y, 2] = 0 Image.fromarray(i).save("debug_img.png") print("Image of point projection has been saved to debug_img.png") print("press enter to continue") input() print("*" * 15) print() exit() def forward(self, img): x = img features = [] # layers to select image features from layer_selections = [ len(self.layers) - 1 - (i + 1) * self.args.layers_per_block for i in range(3) ] for e, layer in enumerate(self.layers): # if too many layers are applied the map size will be lower then then kernel size if x.shape[-1] < self.args.CNN_ker_size: break x = layer(x) # collect feature maps if e in layer_selections: features.append(x) features.append(x) return features # Class for defroming the charts into the traget shape class Deformation(nn.Module): def __init__( self, adj_info, inital_positions, args, return_img=False, pass_img=False ): super(Deformation, self).__init__() self.adj_info = adj_info self.initial_positions = inital_positions self.args = args self.return_img = return_img self.pass_img = pass_img # add image encoder and get image feature size if args.use_img: self.img_encoder_global = Image_Encoder(args).cuda() self.img_encoder_local = Image_Encoder(args).cuda() with torch.no_grad(): img_features = self.img_encoder_global( torch.zeros(1, 3, 256, 256).cuda() ) vert_positions = torch.zeros(1, 1, 3).cuda() input_size = self.img_encoder_global.pooling( img_features, vert_positions ).shape[-1] else: # if no image features fix the feature size at 50 input_size = 50 # add positional and mask enocoder and GCN deformation networks self.positional_encoder = Positional_Encoder(input_size) self.mask_encoder = Mask_Encoder(input_size) self.mesh_deform_1 = GCN( input_size, args, ignore_touch_matrix=args.use_img ).cuda() self.mesh_deform_2 = GCN(input_size, args).cuda() def forward(self, img, charts, img_features=None): # number of vision charts vc_length = charts["vision_charts"].clone().shape[1] # get image features if self.pass_img and img_features is not None: global_img_features, local_img_features = img_features elif self.args.use_img: global_img_features = self.img_encoder_global(img) local_img_features = self.img_encoder_local(img) else: global_img_features, local_img_features = [], [] ##### first iteration ##### # if we are using only touch then we need to use touch information immediately if self.args.use_touch and not self.args.use_img: # use touch information vertices = torch.cat( (charts["vision_charts"].clone(), charts["touch_charts"].clone()), dim=1 ) mask = torch.cat( (charts["vision_masks"].clone(), charts["touch_masks"].clone()), dim=1 ) positional_features = self.positional_encoder(vertices) mask_features = self.mask_encoder(mask) vertex_features = positional_features + mask_features # in all other setting we only use vision else: vertices = charts["vision_charts"].clone() mask = charts["vision_masks"].clone() positional_features = self.positional_encoder(vertices) mask_features = self.mask_encoder(mask) vertex_features = positional_features + mask_features # use vision information if self.args.use_img: img_features = self.img_encoder_global.pooling( global_img_features, vertices ) vertex_features += img_features # perfrom the first deformation update = self.mesh_deform_1(vertex_features, self.adj_info) # update positions of vision charts only vertices[:, :vc_length] = vertices[:, :vc_length] + update[:, :vc_length] ##### second loop ##### # add touch information if not already present if self.args.use_touch and self.args.use_img: vertices = torch.cat((vertices, charts["touch_charts"].clone()), dim=1) mask = torch.cat( (charts["vision_masks"].clone(), charts["touch_masks"].clone()), dim=1 ) mask_features = self.mask_encoder(mask) positional_features = self.positional_encoder(vertices) vertex_features = positional_features + mask_features # add image information if self.args.use_img: img_features = self.img_encoder_global.pooling(local_img_features, vertices) vertex_features += img_features # perfrom the second deformation update = self.mesh_deform_2(vertex_features, self.adj_info) # update positions of vision charts only vertices[:, :vc_length] = vertices[:, :vc_length] + update[:, :vc_length] ##### third loop ##### positional_features = self.positional_encoder(vertices) mask_features = self.mask_encoder(mask) vertex_features = positional_features + mask_features if self.args.use_img: img_features = self.img_encoder_global.pooling(local_img_features, vertices) vertex_features += img_features # perfrom the third deformation update = self.mesh_deform_2(vertex_features, self.adj_info) # update positions of vision charts only vertices[:, :vc_length] = vertices[:, :vc_length] + update[:, :vc_length] if self.return_img: return vertices, mask, [global_img_features, local_img_features] return vertices, mask # Graph convolutional network class for predicting mesh deformation class GCN(nn.Module): def __init__(self, input_features, args, ignore_touch_matrix=False): super(GCN, self).__init__() # self.ignore_touch_matrix = ignore_touch_matrix self.num_layers = args.num_GCN_layers # define output sizes for each GCN layer hidden_values = ( [input_features] + [args.hidden_GCN_size for _ in range(self.num_layers - 1)] + [3] ) # define layers layers = [] for i in range(self.num_layers): layers.append( GCN_layer( hidden_values[i], hidden_values[i + 1], args.cut, do_cut=i < self.num_layers - 1, ) ) self.layers = nn.ModuleList(layers) def forward(self, features, adj_info): if self.ignore_touch_matrix: adj = adj_info["origional"] else: adj = adj_info["adj"] # iterate through GCN layers for i in range(self.num_layers): activation = F.relu if i < self.num_layers - 1 else lambda x: x features = self.layers[i](features, adj, activation) if torch.isnan(features).any(): print(features) print("here", i, self.num_layers) input() return features # Graph convolutional network layer class GCN_layer(nn.Module): def __init__(self, in_features, out_features, cut=0.33, do_cut=True): super(GCN_layer, self).__init__() self.weight = Parameter(torch.Tensor(1, in_features, out_features)) self.bias = Parameter(torch.Tensor(out_features)) self.reset_parameters() self.cut_size = cut self.do_cut = do_cut def reset_parameters(self): stdv = 6.0 / math.sqrt((self.weight.size(1) + self.weight.size(0))) stdv *= 0.3 self.weight.data.uniform_(-stdv, stdv) self.bias.data.uniform_(-0.1, 0.1) def forward(self, features, adj, activation): features = torch.matmul(features, self.weight) # uf we want to only share a subset of features with neighbors if self.do_cut: length = round(features.shape[-1] * self.cut_size) output = torch.matmul(adj, features[:, :, :length]) output = torch.cat((output, features[:, :, length:]), dim=-1) output[:, :, :length] += self.bias[:length] else: output = torch.matmul(adj, features) output = output + self.bias return activation(output) # encode the positional information of vertices using Nerf Embeddings class Positional_Encoder(nn.Module): def __init__(self, input_size): super(Positional_Encoder, self).__init__() layers = [] layers.append( nn.Linear(63, input_size // 4) ) # 10 nerf layers + original positions layers.append(nn.ReLU(inplace=True)) layers.append(nn.Linear(input_size // 4, input_size // 2)) layers.append(nn.ReLU(inplace=True)) layers.append(nn.Linear(input_size // 2, input_size)) self.model = nn.Sequential(*layers) # apply nerf embedding of the positional information def nerf_embedding(self, points): embeddings = [] for i in range(10): if i == 0: embeddings.append(torch.sin(np.pi * points)) embeddings.append(torch.cos(np.pi * points)) else: embeddings.append(torch.sin(np.pi * 2 * i * points)) embeddings.append(torch.cos(np.pi * 2 * i * points)) embeddings = torch.cat(embeddings, dim=-1) return embeddings def forward(self, positions): shape = positions.shape positions = positions.contiguous().view(shape[0] * shape[1], -1) # combine nerf embedding with origional positions positions = torch.cat((self.nerf_embedding((positions)), positions), dim=-1) embeding = self.model(positions).view(shape[0], shape[1], -1) return embeding # make embedding token of the mask information for each vertex class Mask_Encoder(nn.Module): def __init__(self, input_size): super(Mask_Encoder, self).__init__() layers_mask = [] layers_mask.append(nn.Embedding(4, input_size)) self.model = nn.Sequential(*layers_mask) def forward(self, mask): shape = mask.shape mask = mask.contiguous().view(-1, 1) embeding_mask = self.model(mask.long()).view(shape[0], shape[1], -1) return embeding_mask # takes as input the touch information, and makes it a mart of the input mesh def prepare_mesh(batch, vision_mesh, args): s1 = batch["img"].shape[0] if args.use_touch: touch_info = batch["touch_charts"].cuda().view(s1, -1, 4) touch_charts = touch_info[:, :, :3] touch_masks = touch_info[:, :, 3:] # combine vision charts into a single mesh vision_charts = vision_mesh.unsqueeze(0).repeat(s1, 1, 1) vision_masks = 3 * torch.ones(vision_charts.shape[:-1]).cuda().unsqueeze(-1) charts = { "touch_charts": touch_charts, "vision_charts": vision_charts, "touch_masks": touch_masks, "vision_masks": vision_masks, } else: # combine vision charts into a single mesh vision_charts = vision_mesh.unsqueeze(0).repeat(s1, 1, 1) vision_masks = 3 * torch.ones(vision_charts.shape[:-1]).cuda().unsqueeze(-1) charts = {"vision_charts": vision_charts, "vision_masks": vision_masks} return charts
Active-3D-Vision-and-Touch-main
pterotactyl/reconstruction/vision/model.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import torch import numpy as np from tqdm import tqdm import argparse from torch.utils.tensorboard import SummaryWriter import torch.optim as optim from torch.utils.data import DataLoader from submitit.helpers import Checkpointable from pterotactyl.reconstruction.vision import model from pterotactyl.utility import utils from pterotactyl.utility import data_loaders import pterotactyl.objects as objects from pterotactyl import pretrained class Engine(Checkpointable): def __init__(self, args): # set seeds np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) # set initial data values self.epoch = 0 self.best_loss = 10000 self.args = args self.last_improvement = 0 self.vision_chart_location = os.path.join( os.path.dirname(objects.__file__), "vision_charts.obj" ) self.results_dir = os.path.join("results", args.exp_type, args.exp_id) if not os.path.exists(self.results_dir): os.makedirs(self.results_dir) self.checkpoint_dir = os.path.join( "experiments/checkpoint/", args.exp_type, args.exp_id ) if not os.path.exists(self.checkpoint_dir): os.makedirs(self.checkpoint_dir) if not self.args.eval: utils.save_config(self.checkpoint_dir, args) def __call__(self) -> float: # compute mesh statistics self.mesh_info, self.initial_mesh = utils.load_mesh_vision( self.args, self.vision_chart_location ) self.initial_mesh = self.initial_mesh.cuda() self.n_vision_charts = self.initial_mesh.shape[0] # define the model and optimizer self.encoder = model.Deformation(self.mesh_info, self.initial_mesh, self.args) self.encoder.cuda() if not self.args.eval: params = list(self.encoder.parameters()) self.optimizer = optim.Adam(params, lr=self.args.lr, weight_decay=0) # logging information writer = SummaryWriter( os.path.join("experiments/tensorboard/", self.args.exp_type) ) # get data train_loader, valid_loaders = self.get_loaders() # evaluate of the test set if self.args.eval: self.load() with torch.no_grad(): self.validate(valid_loaders, writer) return # train and validate else: self.load() for epoch in range(self.epoch, self.args.epochs): self.epoch = epoch self.train(train_loader, writer) with torch.no_grad(): self.validate(valid_loaders, writer) self.check_values() # get dataloaders def get_loaders(self): train_loader, valid_loader = "", "" if not self.args.eval: # training dataloader train_data = data_loaders.mesh_loader_vision( self.args, set_type="recon_train" ) train_loader = DataLoader( train_data, batch_size=self.args.batch_size, shuffle=True, num_workers=16, collate_fn=train_data.collate, ) # evaluation dataloder set_type = "test" if self.args.eval else "valid" valid_data = data_loaders.mesh_loader_vision(self.args, set_type=set_type) valid_loader = DataLoader( valid_data, batch_size=self.args.batch_size, shuffle=False, num_workers=16, collate_fn=valid_data.collate, ) return train_loader, valid_loader def train(self, data, writer): total_loss = 0 iterations = 0 self.encoder.train() for k, batch in enumerate(tqdm(data, smoothing=0)): self.optimizer.zero_grad() # initialize data img = batch["img"].cuda() gt_points = batch["gt_points"].cuda() # for debugging , if you want to change the camera view, reach out to [email protected] # self.encoder.img_encoder_global.debug_pooling(img, gt_points) # self.encoder.img_encoder_global.debug_pooling(img, self.initial_mesh.unsqueeze(0).repeat(img.shape[0], 1, 1)) # inference with torch.no_grad(): charts = model.prepare_mesh(batch, self.initial_mesh, self.args) verts = self.encoder(img, charts)[0] loss = utils.chamfer_distance( verts, self.mesh_info["faces"], gt_points, num=self.args.number_points ) loss = self.args.loss_coeff * loss.mean() # backprop loss.backward() self.optimizer.step() # log message = f"Train || Epoch: {self.epoch}, loss: {loss.item():.2f}, b_ptp: {self.best_loss:.2f}" tqdm.write(message) total_loss += loss.item() iterations += 1.0 writer.add_scalars( "train_loss", {self.args.exp_id: total_loss / iterations}, self.epoch ) def validate(self, valid_loader, writer): total_loss = 0 self.encoder.eval() num_examples = 0 observations = [] names = [] for v, batch in enumerate(tqdm(valid_loader)): # initialize data names += batch["names"] img = batch["img"].cuda() gt_points = batch["gt_points"].cuda() batch_size = img.shape[0] # inference charts = model.prepare_mesh(batch, self.initial_mesh, self.args) ps = list(self.encoder.parameters()) ps = torch.cat([p.flatten() for p in ps]) verts = self.encoder(img, charts)[0] observations.append(verts) loss = utils.chamfer_distance( verts, self.mesh_info["faces"], gt_points, num=self.args.number_points ) loss = self.args.loss_coeff * loss.sum() # logs num_examples += float(batch_size) total_loss += loss message = f"Valid || Epoch: {self.epoch}, ave: {total_loss / num_examples:.4f}, b_ptp: {self.best_loss:.2f}" tqdm.write(message) if self.args.visualize and v == 5 and self.args.eval: meshes = torch.cat(observations, dim=0)[:, :, :3] names = [n[0] for n in names] utils.visualize_prediction( self.results_dir, meshes, self.mesh_info["faces"], names ) total_loss = total_loss / num_examples print("*******************************************************") print(f"Validation Accuracy: {total_loss}") print("*******************************************************") if not self.args.eval: writer.add_scalars("valid_ptp", {self.args.exp_id: total_loss}, self.epoch) self.current_loss = total_loss # save the model def save(self): torch.save(self.encoder.state_dict(), self.checkpoint_dir + "/model") torch.save(self.optimizer.state_dict(), self.checkpoint_dir + "/optim") np.save(self.checkpoint_dir + "/epoch.npy", np.array([self.epoch + 1])) # load the model def load(self): if self.args.eval and self.args.pretrained: if self.args.use_img: if self.args.finger: location = ( os.path.dirname(pretrained.__file__) + "/reconstruction/vision/v_t_p/" ) else: location = ( os.path.dirname(pretrained.__file__) + "/reconstruction/vision/v_t_g/" ) else: if self.args.finger: location = ( os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_p/" ) else: location = ( os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_g/" ) vision_args, _ = utils.load_model_config(location) weights = location + 'model' self.mesh_info, self.initial_mesh = utils.load_mesh_vision( vision_args, self.vision_chart_location ) self.initial_mesh = self.initial_mesh.cuda() self.n_vision_charts = self.initial_mesh.shape[0] # define the model and optimizer self.encoder = model.Deformation( self.mesh_info, self.initial_mesh, vision_args ) self.encoder.cuda() self.encoder.load_state_dict(torch.load(weights)) else: try: self.encoder.load_state_dict(torch.load(self.checkpoint_dir + "/model")) self.optimizer.load_state_dict( torch.load(self.checkpoint_dir + "/optim") ) self.epoch = np.load(self.checkpoint_dir + "/epoch.npy")[0] except: return # check if the latest validation beats the previous, and save model if so def check_values(self): if self.best_loss >= self.current_loss: improvement = self.best_loss - self.current_loss print( f"Saving with {improvement:.3f} improvement in Chamfer Distance on Validation Set " ) self.best_loss = self.current_loss self.last_improvement = 0 self.save() else: self.last_improvement += 1 if self.last_improvement >= self.args.patience: print(f"Over {self.args.patience} steps since last imporvement") print("Exiting now") exit() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--cut", type=float, default=0.33, help="The shared size of features in the GCN.", ) parser.add_argument( "--epochs", type=int, default=1000, help="Number of epochs to use." ) parser.add_argument( "--limit_data", action="store_true", default=False, help="use less data, for debugging.", ) parser.add_argument( "--finger", action="store_true", default=False, help="use only one finger." ) parser.add_argument( "--number_points", type=int, default=30000, help="number of points sampled for the chamfer distance.", ) parser.add_argument( "--seed", type=int, default=0, help="Setting for the random seed." ) parser.add_argument( "--lr", type=float, default=0.0003, help="Initial learning rate." ) parser.add_argument( "--eval", action="store_true", default=False, help="Evaluate the trained model on the test set.", ) parser.add_argument("--batch_size", type=int, default=16, help="Size of the batch.") parser.add_argument( "--val_grasps", type=int, default=-1, help="number of grasps to use during validation.", ) parser.add_argument( "--exp_id", type=str, default="test", help="The experiment name." ) parser.add_argument( "--exp_type", type=str, default="test", help="The experiment group." ) parser.add_argument( "--use_img", action="store_true", default=False, help="To use the image." ) parser.add_argument( "--use_touch", action="store_true", default=False, help="To use the touch information.", ) parser.add_argument( "--patience", type=int, default=70, help="How many epochs without imporvement before training stops.", ) parser.add_argument( "--loss_coeff", type=float, default=9000.0, help="Coefficient for loss term." ) parser.add_argument( "--num_CNN_blocks", type=int, default=6, help="Number of image blocks in the CNN.", ) parser.add_argument( "--layers_per_block", type=int, default=3, help="Number of image layers in each block in the CNN.", ) parser.add_argument( "--CNN_ker_size", type=int, default=5, help="Size of the image kernel in each CNN layer.", ) parser.add_argument( "--num_GCN_layers", type=int, default=20, help="Number of GCN layers in the mesh deformation network.", ) parser.add_argument( "--hidden_GCN_size", type=int, default=300, help="Size of the feature vector for each GCN layer in the mesh deformation network.", ) parser.add_argument( "--num_grasps", type=int, default=5, help="Number of grasps to train with. " ) parser.add_argument( "--visualize", action="store_true", default=False, help="visualize predictions and actions while evaluating", ) parser.add_argument( "--pretrained", action="store_true", default=False, help="load the pretrained model", ) args = parser.parse_args() trainer = Engine(args) trainer()
Active-3D-Vision-and-Touch-main
pterotactyl/reconstruction/vision/train.py
Active-3D-Vision-and-Touch-main
pterotactyl/pretrained/__init__.py
Active-3D-Vision-and-Touch-main
pterotactyl/utility/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import random from glob import glob from tqdm import tqdm import numpy as np import torch from torchvision import transforms import pterotactyl.objects as objects import pterotactyl.object_data as object_data POINT_CLOUD_LOCATION = os.path.join( os.path.dirname(object_data.__file__), "point_cloud_info/" ) GRASP_LOCATION = os.path.join(os.path.dirname(object_data.__file__), "grasp_info/") TOUCH_LOCATION = os.path.join(os.path.dirname(object_data.__file__), "touch_charts/") IMAGE_LOCATION = os.path.join( os.path.dirname(object_data.__file__), "images_colourful/" ) DATA_SPLIT = np.load( os.path.join(os.path.dirname(objects.__file__), "data_split.npy"), allow_pickle=True ).item() OBJ_LOCATION = os.path.join(os.path.dirname(object_data.__file__), "object_info/") preprocess = transforms.Compose([transforms.Resize((256, 256)), transforms.ToTensor()]) def get_finger_transforms(obj, grasp, finger): ref_location = os.path.join( GRASP_LOCATION, obj, str(grasp), f"{finger}_ref_frame.npy" ) touch_info = np.load(ref_location, allow_pickle=True).item() rot = touch_info["rot"] pos = touch_info["pos"] return torch.FloatTensor(rot), torch.FloatTensor(pos) # class used for obtaining an instance of the dataset for training touch chart prediction # to be passed to a pytorch dataloader class mesh_loader_touch(object): def __init__(self, args, set_type="train"): # initialization of data locations self.args = args self.set_type = set_type object_names = [ f.split("/")[-1].split(".")[0] for f in glob(f"{IMAGE_LOCATION}/*.npy") ] self.object_names = [] if self.args.limit_data: random.shuffle(object_names) object_names = object_names[:3000] for n in tqdm(object_names): if os.path.exists(POINT_CLOUD_LOCATION + n + ".npy"): if os.path.exists(GRASP_LOCATION + n): if n in DATA_SPLIT[self.set_type]: successful_touches = glob( os.path.join(GRASP_LOCATION, n, "*", "*_touch.npy") ) if self.args.limit_data: random.shuffle(successful_touches) successful_touches = successful_touches[:7] for touch in successful_touches: grasp_number = touch.split("/")[-2] finger_number = touch.split("/")[-1].split("_")[0] self.object_names.append([n, grasp_number, finger_number]) print(f"The number of {set_type} set objects found : {len(self.object_names)}") def __len__(self): return len(self.object_names) def standerdize_point_size(self, points): np.random.shuffle(points) points = torch.FloatTensor(points) while points.shape[0] < self.args.num_samples: points = torch.cat((points, points, points, points)) perm = torch.randperm(points.shape[0]) idx = perm[: self.args.num_samples] return points[idx] def __getitem__(self, index): object_name, grasp, finger = self.object_names[index] # meta data data = {} data["names"] = object_name, grasp, finger # hand infomation data["rot"], data["pos"] = get_finger_transforms(object_name, grasp, finger) # simulated touch information touch = np.load( os.path.join(GRASP_LOCATION, object_name, grasp, f"{finger}_touch.npy") ) data["sim_touch"] = ( torch.FloatTensor(touch).permute(2, 0, 1).contiguous().view(3, 121, 121) / 255.0 ) # point cloud information points = np.load( os.path.join(GRASP_LOCATION, object_name, grasp, f"{finger}_points.npy") ) data["samples"] = self.standerdize_point_size(points) return data def collate(self, batch): data = {} data["names"] = [item["names"] for item in batch] data["samples"] = torch.cat([item["samples"].unsqueeze(0) for item in batch]) data["sim_touch"] = torch.cat( [item["sim_touch"].unsqueeze(0) for item in batch] ) data["ref"] = {} data["ref"]["rot"] = torch.cat([item["rot"].unsqueeze(0) for item in batch]) data["ref"]["pos"] = torch.cat([item["pos"].unsqueeze(0) for item in batch]) return data # class used for obtaining an instance of the dataset for training chart deformation # to be passed to a pytorch dataloader class mesh_loader_vision(object): def __init__(self, args, set_type="train"): # initialization of data locations self.args = args self.set_type = set_type object_names = [ f.split("/")[-1].split(".")[0] for f in glob(f"{IMAGE_LOCATION}/*.npy") ] if self.set_type == "recon_train" or self.set_type == "auto_train": self.get_instance = self.get_training_instance else: self.get_instance = self.get_validation_instance self.object_names = [] # for debuggin use less data if args.limit_data: random.Random(0).shuffle(object_names) object_names = object_names[:2000] seed = 0 for n in tqdm(object_names): if os.path.exists(POINT_CLOUD_LOCATION + n + ".npy"): if os.path.exists(TOUCH_LOCATION + n): if n in DATA_SPLIT[self.set_type]: iters = ( 1 if ( self.set_type == "recon_train" or self.set_type == "auto_train" ) else 5 ) for _ in range(iters): self.object_names.append([n, seed]) seed += 1 print(f"The number of {set_type} set objects found : {len(self.object_names)}") def __len__(self): return len(self.object_names) def get_training_instance(self, index): obj, seed = random.choice(self.object_names) num_grasps_choice = random.choice(range(0, self.args.num_grasps + 1)) grasp_choices = [i for i in range(50)] random.shuffle(grasp_choices) grasps = grasp_choices[:num_grasps_choice] return obj, grasps def get_validation_instance(self, index): obj, seed = self.object_names[index] grasp_choices = [i for i in range(50)] if self.args.val_grasps >= 0 and self.args.eval: num_grasps_choice = self.args.val_grasps else: num_grasps_choice = random.Random(seed).choice( range(0, self.args.num_grasps + 1) ) random.Random(seed).shuffle(grasp_choices) grasps = grasp_choices[:num_grasps_choice] return obj, grasps # load object point cloud def get_points(self, obj): point_location = os.path.join(POINT_CLOUD_LOCATION, obj + ".npy") samples = np.load(point_location) np.random.shuffle(samples) gt_points = torch.FloatTensor(samples[: self.args.number_points]) return gt_points # load image of object def get_image(self, obj): img = torch.empty((1)) if self.args.use_img: img_location = os.path.join(IMAGE_LOCATION, obj + ".npy") img = torch.FloatTensor(np.load(img_location)).permute(2, 0, 1) / 255.0 return torch.FloatTensor(img) # load touch infomation from the object def get_touch_info(self, obj, grasps): touch_charts = torch.ones((1)) if self.args.use_touch: remaining = self.args.num_grasps - len(grasps) all_touch_charts = torch.FloatTensor( np.load(TOUCH_LOCATION + obj + "/touch_charts.npy") ).view(50, 4, 25, 4) if self.args.finger: touch_charts = all_touch_charts[grasps][:, 1] touch_charts = torch.cat((touch_charts, torch.zeros(remaining, 25, 4))) else: touch_charts = all_touch_charts[grasps] touch_charts = torch.cat( (touch_charts, torch.zeros(remaining, 4, 25, 4)) ) return touch_charts def __getitem__(self, index): obj, grasps = self.get_instance(index) data = {} # meta data data["names"] = OBJ_LOCATION + obj, grasps # load sampled ground truth points data["gt_points"] = self.get_points(obj) # load images data["img"] = self.get_image(obj) # get touch information data["touch_charts"] = self.get_touch_info(obj, grasps) return data def collate(self, batch): data = {} data["names"] = [item["names"] for item in batch] data["gt_points"] = torch.cat( [item["gt_points"].unsqueeze(0) for item in batch] ) data["img"] = torch.cat([item["img"].unsqueeze(0) for item in batch]) data["touch_charts"] = torch.cat( [item["touch_charts"].unsqueeze(0) for item in batch] ) return data # class used for obtaining an instance of the dataset for training chart deformation # to be passed to a pytorch dataloader class mesh_loader_active(object): def __init__(self, args, set_type="RL_train"): # initialization of data locations self.args = args self.set_type = set_type object_names = [ f.split("/")[-1].split(".")[0] for f in glob(f"{IMAGE_LOCATION}/*.npy") ] self.object_names = [] # for debuggin use less data if args.limit_data: random.Random(0).shuffle(object_names) object_names = object_names[:400] for n in tqdm(object_names): if os.path.exists(POINT_CLOUD_LOCATION + n + ".npy"): if n in DATA_SPLIT[self.set_type]: self.object_names.append(n) print(f"The number of {set_type} set objects found : {len(self.object_names)}") def __len__(self): return ( len(self.object_names) // self.args.env_batch_size ) * self.args.env_batch_size def get_instance(self, index): obj = self.object_names[index] num_grasps_choice = random.choice(range(0, self.args.num_grasps + 1)) grasp_choices = [i for i in range(50)] random.shuffle(grasp_choices) grasps = grasp_choices[:num_grasps_choice] return obj, grasps # load object point cloud def get_points(self, obj): point_location = os.path.join(POINT_CLOUD_LOCATION, obj + ".npy") samples = np.load(point_location) np.random.shuffle(samples) gt_points = torch.FloatTensor(samples[: self.args.number_points]) return gt_points # load image of object def get_image(self, obj): img = torch.empty((1)) if self.args.use_img: img_location = os.path.join(IMAGE_LOCATION, obj + ".npy") img = torch.FloatTensor(np.load(img_location)).permute(2, 0, 1) / 255.0 return torch.FloatTensor(img) def __getitem__(self, index): obj = self.object_names[index] data = {} # meta data data["names"] = OBJ_LOCATION + obj # load sampled ground truth points data["gt_points"] = self.get_points(obj) # load images data["img"] = self.get_image(obj) return data def collate(self, batch): data = {} data["names"] = [item["names"] for item in batch] data["gt_points"] = torch.cat( [item["gt_points"].unsqueeze(0) for item in batch] ) data["img"] = torch.cat([item["img"].unsqueeze(0) for item in batch]) return data
Active-3D-Vision-and-Touch-main
pterotactyl/utility/data_loaders.py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import random import os from PIL import Image import math import json import numpy as np import torch import torch.nn.functional as F import matplotlib.pyplot as plt from scipy.spatial.transform import Rotation as R import xml.etree.ElementTree as ET from scipy import ndimage from collections import namedtuple from pytorch3d.loss import chamfer_distance as cuda_cd from pytorch3d.ops.mesh_face_areas_normals import mesh_face_areas_normals from pytorch3d.ops.sample_points_from_meshes import _rand_barycentric_coords from pytorch3d.io.obj_io import load_obj, save_obj from pterotactyl.utility import pretty_render import pterotactyl.objects as objects def load_mesh_vision(args, obj): # load obj file verts, faces = load_mesh_touch(obj) # get adjacency matrix infomation adj_info = adj_init(verts, faces, args) return adj_info, verts # set seeds for consistency def set_seeds(seed): np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) random.seed(seed) # normalizes symetric, binary adj matrix such that sum of each row is 1 def normalize_adj(mx): rowsum = mx.sum(1) r_inv = (1. / rowsum).view(-1) r_inv[r_inv != r_inv] = 0. mx = torch.mm(torch.eye(r_inv.shape[0]).to(mx.device) * r_inv, mx) return mx # defines the adjacecny matrix for an object def adj_init(verts, faces, args): # get generic adjacency matrix for vision charts adj = calc_adj(faces) adj_info = {} adj_info['origional'] = normalize_adj(adj.clone()) # this combines the adjacency information of touch and vision charts # the output adj matrix has the first k rows corresponding to vision charts, and the last |V| - k # corresponding to touch charts. Similarly the first l faces are correspond to vision charts, and the # remaining correspond to touch charts if args.use_touch: adj, faces = adj_fuse_touch(verts, faces, adj, args) adj = normalize_adj(adj) adj_info['adj'] = adj adj_info['faces'] = faces return adj_info # combines graph for vision and touch charts to define a fused adjacency matrix def adj_fuse_touch(verts, faces, adj, args): verts = verts.data.cpu().numpy() hash = {} number_of_grasps = args.num_grasps # find vertices which have the same 3D position for e, v in enumerate(verts): if v.tobytes() in hash: hash[v.tobytes()].append(e) else: hash[v.tobytes()] = [e] # load object information for generic touch chart if args.use_touch: chart_location = os.path.join( os.path.dirname(objects.__file__), "touch_chart.obj" ) sheet_verts, sheet_faces = load_mesh_touch(chart_location) sheet_adj = calc_adj(sheet_faces) # central vertex for each touch chart that will communicate with all vision charts central_point = 4 fingers = 1 if args.finger else 4 central_points = [central_point + (i * sheet_adj.shape[0]) + adj.shape[0] for i in range(fingers * number_of_grasps)] # define and fill new adjacency matrix with vision and touch charts new_dim = adj.shape[0] + (fingers * number_of_grasps * sheet_adj.shape[0]) new_adj = torch.zeros((new_dim, new_dim)).cuda() new_adj[: adj.shape[0], :adj.shape[0]] = adj.clone() for i in range(fingers * number_of_grasps): start = adj.shape[0] + (sheet_adj.shape[0] * i) end = adj.shape[0] + (sheet_adj.shape[0] * (i + 1)) new_adj[start: end, start:end] = sheet_adj.clone() adj = new_adj # define new faces with vision and touch charts all_faces = [faces] for i in range(fingers * number_of_grasps): temp_sheet_faces = sheet_faces.clone() + verts.shape[0] temp_sheet_faces += i * sheet_verts.shape[0] all_faces.append(temp_sheet_faces) faces = torch.cat(all_faces) # update adjacency matrix to allow communication between vision and touch charts for key in hash.keys(): cur_verts = hash[key] if len(cur_verts) > 1: for v1 in cur_verts: for v2 in cur_verts: # vertices on the boundary of vision charts can communicate adj[v1, v2] = 1 if args.use_touch: for c in central_points: # touch and vision charts can communicate adj[v1, c] = 1 adj[c, v1] = 1 return adj, faces # computes adjacemcy matrix from face information def calc_adj(faces): v1 = faces[:, 0] v2 = faces[:, 1] v3 = faces[:, 2] num_verts = int(faces.max()) adj = torch.eye(num_verts + 1).to(faces.device) adj[(v1, v2)] = 1 adj[(v1, v3)] = 1 adj[(v2, v1)] = 1 adj[(v2, v3)] = 1 adj[(v3, v1)] = 1 adj[(v3, v2)] = 1 return adj # sample points from a batch of meshes def batch_sample(verts, faces, num=10000): # Pytorch3D based code bs = verts.shape[0] face_dim = faces.shape[0] vert_dim = verts.shape[1] # following pytorch3D convention shift faces to correctly index flatten vertices F = faces.unsqueeze(0).repeat(bs, 1, 1) F += vert_dim * torch.arange(0, bs).unsqueeze(-1).unsqueeze(-1).to(F.device) # flatten vertices and faces F = F.reshape(-1, 3) V = verts.reshape(-1, 3) with torch.no_grad(): areas, _ = mesh_face_areas_normals(V, F) Ar = areas.reshape(bs, -1) Ar[Ar != Ar] = 0 Ar = torch.abs(Ar / Ar.sum(1).unsqueeze(1)) Ar[Ar != Ar] = 1 sample_face_idxs = Ar.multinomial(num, replacement=True) sample_face_idxs += face_dim * torch.arange(0, bs).unsqueeze(-1).to(Ar.device) # Get the vertex coordinates of the sampled faces. face_verts = V[F] v0, v1, v2 = face_verts[:, 0], face_verts[:, 1], face_verts[:, 2] # Randomly generate barycentric coords. w0, w1, w2 = _rand_barycentric_coords(bs, num, V.dtype, V.device) # Use the barycentric coords to get a point on each sampled face. A = v0[sample_face_idxs] # (N, num_samples, 3) B = v1[sample_face_idxs] C = v2[sample_face_idxs] samples = w0[:, :, None] * A + w1[:, :, None] * B + w2[:, :, None] * C return samples # implemented from: # https://github.com/EdwardSmith1884/GEOMetrics/blob/master/utils.py # MIT License # loads the initial mesh and returns vertex, and face information def load_mesh_touch(obj): obj_info = load_obj(obj) verts = obj_info[0] faces = obj_info[1].verts_idx verts = torch.FloatTensor(verts).cuda() faces = torch.LongTensor(faces).cuda() return verts, faces # returns the chamfer distance between a mesh and a point cloud def chamfer_distance(verts, faces, gt_points, num=1000, repeat=3): pred_points= batch_sample(verts, faces, num=num) cd, _ = cuda_cd(pred_points, gt_points, batch_reduction=None) if repeat > 1: cds = [cd] for i in range(repeat - 1): pred_points = batch_sample(verts, faces, num=num) cd, _ = cuda_cd(pred_points, gt_points, batch_reduction=None) cds.append(cd) cds = torch.stack(cds) cd = cds.mean(dim=0) return cd # saves a point cloud as a .obj file def save_points(file, points): location = f'{file}.obj' try: write_obj(location, points.data.cpu().numpy(), []) except: write_obj(location, points, []) # converts a voxel object to a point cloud def extract_surface(voxel): conv_filter = torch.ones((1, 1, 3, 3, 3)).cuda() local_occupancy = F.conv3d(voxel.unsqueeze( 0).unsqueeze(0), conv_filter, padding=1) local_occupancy = local_occupancy.squeeze(0).squeeze(0) # only elements with exposed faces surface_positions = (local_occupancy < 27) * (local_occupancy > 0) points = torch.where(surface_positions) points = torch.stack(points) points = points.permute(1, 0) return points.type(torch.cuda.FloatTensor) # saves a mesh as an .obj file def write_obj(filename, verts, faces): """ write the verts and faces on file.""" with open(filename, 'w') as f: # write vertices f.write('g\n# %d vertex\n' % len(verts)) for vert in verts: f.write('v %f %f %f\n' % tuple(vert)) # write faces f.write('# %d faces\n' % len(faces)) for face in faces: f.write('f %d %d %d\n' % tuple(face)) # makes the sphere of actions class get_circle(object): def __init__(self, num_points, rank=0): action_position = [] a = 4 * np.pi / float(num_points) d = math.sqrt(a) M_t = round(np.pi / d) d_t = np.pi / M_t d_phi = a / d_t sphere_positions = [] for i in range(0, M_t): theta = np.pi * (i + .5) / M_t M_phi = round(2 * np.pi * math.sin(theta) / d_phi) for j in range(0, M_phi): phi = 2 * np.pi * j / M_phi point = self.get_point(theta, phi) sphere_positions.append([theta, phi]) action_position.append(point) self.points = torch.stack(action_position) self.sphere_points = sphere_positions if num_points != self.points.shape[0]: print(f' we have {self.points.shape} points but want {num_points}') exit() def get_point(self, a, b): x = math.sin(a) * math.cos(b) y = math.sin(a) * math.sin(b) z = math.cos(a) return torch.FloatTensor([x, y, z]) # get the normal of a 3D traingle def normal_from_triangle(a, b, c): A = b - a B = c - a normal = np.cross(A, B) normal = normalize_vector(normal.reshape(1, 1, 3)) return normal.reshape(3) # normalizes a vector def normalize_vector(vector): n = np.linalg.norm(vector, axis=2) vector[:, :, 0] /= n vector[:, :, 1] /= n vector[:, :, 2] /= n return vector # combines 2 3D rotations and converts to a quaternion def quats_from_vectors(vec1, vec2): vec1 = np.array(vec1) vec2 = np.array(vec2) a, b = (vec1 / np.linalg.norm(vec1)).reshape(3), (vec2 / np.linalg.norm(vec2)).reshape(3) v = np.cross(a, b) c = np.dot(a, b) s = np.linalg.norm(v) if s == 0: s = 1 kmat = np.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]]) rotation_matrix = np.eye(3) + kmat + kmat.dot(kmat) * ((1 - c) / (s ** 2)) quat = R.from_matrix(rotation_matrix).as_quat() return quat # combines two quaternions def combine_quats(q1, q2): r1 = R.from_quat(q1).as_matrix() r2 = R.from_quat(q2).as_matrix() new_q = R.from_matrix(np.matmul(r1, r2)).as_quat() return new_q # converts a euler rotation to a rotation matrix def euler2matrix(angles=[0, 0, 0], translation=[0, 0, 0], xyz="xyz", degrees=False): r = R.from_euler(xyz, angles, degrees=degrees) pose = np.eye(4) pose[:3, 3] = translation pose[:3, :3] = r.as_matrix() return pose # adds redundent faces def add_faces(faces): f1 = np.array(faces[:, 0]).reshape(-1, 1) f2 = np.array(faces[:, 1]).reshape(-1, 1) f3 = np.array(faces[:, 2]).reshape(-1, 1) faces_2 = np.concatenate((f1, f3, f2), axis=-1) faces_3 = np.concatenate((f3, f2, f1), axis=-1) faces = np.concatenate((faces, faces_2, faces_3), axis=0) return faces # centers a pointcloud and scales to defined size def scale_points(points, scale = 1.): for i in range(3): points[:,i] -= points[:,i].min() points = points / points.max() points = points / scale for i in range(3): verts_range = points[:, i].max() points[:, i] -= verts_range / 2. return points # makes a urdf file pointing to a mesh def make_urdf(verts, faces, urdf_location): obj_location = urdf_location.replace('.urdf', '.obj') faces = add_faces(faces) save_obj(obj_location, torch.FloatTensor(verts), torch.LongTensor(faces), 4) blank_location = os.path.join(os.path.dirname(objects.__file__), 'blank.urdf') tree = ET.parse(blank_location) root = tree.getroot() root.attrib['name'] = 'object.urdf' root[0][2][1][0].attrib['filename'] = obj_location root[0][3][1][0].attrib['filename'] = obj_location tree.write(urdf_location) # loads a obj file and scales it def get_obj_data(obj_location, scale = 1.): obj_info = load_obj(obj_location) verts = obj_info[0].data.numpy() verts = scale_points(verts, scale) faces = obj_info[1].verts_idx.data.numpy() return verts, faces # converts a mesh to a voxel array by subdeviding the mesh def mesh_to_voxel(verts, faces, resolution): # maximum side lentghs of the subdevided triangles smallest_side = (1. / resolution) ** 2 # center the mesh and scales to unit verts_max = verts.max() verts_min = verts.min() verts = (verts - verts_min) / (verts_max - verts_min) - 0.5 # get all of the mesh triangles faces = faces.clone() v1 = torch.index_select(verts, 0, faces[:, 0]) v2 = torch.index_select(verts, 0, faces[:, 1]) v3 = torch.index_select(verts, 0, faces[:, 2]) # defined points as swt of all vertices points = torch.cat((v1, v2, v3)) while True: # get maximum side length of all traingles side_1 = (torch.abs(v1 - v2) ** 2).sum(dim=1).unsqueeze(1) side_2 = (torch.abs(v2 - v3) ** 2).sum(dim=1).unsqueeze(1) side_3 = (torch.abs(v3 - v1) ** 2).sum(dim=1).unsqueeze(1) sides = torch.cat((side_1, side_2, side_3), dim=1) sides = sides.max(dim=1)[0] # identify triangles which are small enough keep = sides > smallest_side if keep.sum() == 0: break # remove triangles which are small enough v1 = v1[keep] v2 = v2[keep] v3 = v3[keep] v4 = (v1 + v3) / 2. v5 = (v1 + v2) / 2. v6 = (v2 + v3) / 2. del (side_1, side_2, side_3, keep, sides) # add new vertices to set of points points = torch.cat((points, v4, v5, v6)) # add subdevided traingles to list of triagnles vertex_set = [v1, v2, v3, v4, v5, v6] new_traingles = [[0, 3, 4], [4, 1, 5], [4, 3, 5], [3, 2, 5]] new_verts = [] for i in range(4): for j in range(3): if i == 0: new_verts.append(vertex_set[new_traingles[i][j]]) else: new_verts[j] = torch.cat( (new_verts[j], vertex_set[new_traingles[i][j]])) v1, v2, v3 = new_verts del (v4, v5, v6, vertex_set, new_verts) del (v1, v2, v3) if points is None: return None # scales points points = ((points + .5) * (resolution - 1)).long() points = torch.split(points.permute(1, 0), 1, dim=0) points = [m.unsqueeze(0) for m in points] # set grid points to on if a point exists inside them voxel = torch.zeros((resolution, resolution, resolution)).cuda() voxel[points] = 1 return voxel # converts a voxel grid to a pointcloud def voxel_to_pointcloud(voxel): voxel = voxel.float() off_positions = voxel == 0 conv_filter = torch.ones((1, 1, 3, 3, 3)) surface_voxel = torch.zeros(voxel.shape).cuda() conv_filter = conv_filter.cuda() local_occupancy = F.conv3d(voxel.unsqueeze(0).unsqueeze(0), conv_filter, padding=1) local_occupancy = local_occupancy.squeeze(0).squeeze(0) surface_positions = (local_occupancy < 27) * (local_occupancy > 0) surface_voxel[surface_positions] = 1 surface_voxel[off_positions] = 0 points = torch.where(surface_voxel != 0) points = torch.stack(points).permute(1, 0).float() return points # implemented from: # https://github.com/EdwardSmith1884/GEOMetrics/blob/master/utils.py # MIT License def extract_ODMs(voxels): voxels = voxels.data.cpu().numpy() dim = voxels.shape[0] a, b, c = np.where(voxels == 1) large = int(dim * 1.5) big_list = [[[[-1, large] for j in range(dim)] for i in range(dim)] for k in range(3)] # over the whole object extract for each face the first and last occurance of a voxel at each pixel # we take highest for convinience for i, j, k in zip(a, b, c): big_list[0][i][j][0] = (max(k, big_list[0][i][j][0])) big_list[0][i][j][1] = (min(k, big_list[0][i][j][1])) big_list[1][i][k][0] = (max(j, big_list[1][i][k][0])) big_list[1][i][k][1] = (min(j, big_list[1][i][k][1])) big_list[2][j][k][0] = (max(i, big_list[2][j][k][0])) big_list[2][j][k][1] = (min(i, big_list[2][j][k][1])) ODMs = np.zeros((6, dim, dim)) # will hold odms for i in range(dim): for j in range(dim): ODMs[0, i, j] = dim - 1 - big_list[0][i][j][0] if big_list[0][i][j][0] > -1 else dim ODMs[1, i, j] = big_list[0][i][j][1] if big_list[0][i][j][1] < large else dim ODMs[2, i, j] = dim - 1 - big_list[1][i][j][0] if big_list[1][i][j][0] > -1 else dim ODMs[3, i, j] = big_list[1][i][j][1] if big_list[1][i][j][1] < large else dim ODMs[4, i, j] = dim - 1 - big_list[2][i][j][0] if big_list[2][i][j][0] > -1 else dim ODMs[5, i, j] = big_list[2][i][j][1] if big_list[2][i][j][1] < large else dim return ODMs # implemented from: # https://github.com/EdwardSmith1884/GEOMetrics/blob/master/utils.py # MIT License # use orthographic depth maps to do space carving def apply_ODMs(ODMs, dim): voxel = np.ones((dim, dim, dim)) a, b, c = np.where(ODMs > 0) for x, i, j in zip(a, b, c): pos = int(ODMs[x, i, j]) if x == 0: voxel[i, j, -pos:] = 0 if x == 1: voxel[i, j, :pos] = 0 if x == 2: voxel[i, -pos:, j] = 0 if x == 3: voxel[i, :pos, j] = 0 if x == 4: voxel[-pos:, i, j] = 0 if x == 5: voxel[:pos, i, j] = 0 voxel[ndimage.binary_fill_holes(voxel)] = 1 return torch.LongTensor(voxel).cuda() # aligns a pointcloud to the size of a mesh def realign_points(points, verts): points = points.float() verts = verts for i in range(3): points[:, i] = points[:, i] - ((points[:, i].max() + points[:, i].min()) / 2.) v_range = verts[:, i].max() - verts[:, i].min() p_range = points[:, i].max() + 1 - points[:, i].min() points[:, i] = points[:, i] * v_range / p_range return points # saves arguments for a experiment def save_config(location, args): abs_path = os.path.abspath(location) args = vars(args) args['check_point'] = abs_path config_location = f'{location}/config.json' with open(config_location, 'w') as fp: json.dump(args, fp, indent=4) return config_location # loads arguments from an experiment and the model weights def load_model_config(location): config_location = f'{location}/config.json' with open(config_location) as json_file: data = json.load(json_file) weight_location = data['check_point'] + '/model' args = namedtuple("ObjectName", data.keys())(*data.values()) return args, weight_location # for nicely visualizing dpeth images def visualize_depth(depth, max_depth=0.025): depth[depth > max_depth] = 0 depth = 255 * (depth / max_depth) depth = depth.astype(np.uint8) return depth # visualize the actions used by the policy def visualize_actions(location, actions, args): actions = actions.view(-1).long().data.cpu().numpy() circle = get_circle(args.num_actions) plt.hist(actions, bins=np.arange(0, args.num_actions+ 1 )) plt.title("actions histogram") plt.savefig(location + '/histogram.png') plt.close() array = np.zeros([args.num_actions * 2, args.num_actions * 4, 3]) for i in range(args.num_actions): x, y, z = circle.points[i] x = math.atan2(-x, y); x = (x + np.pi / 2.0) / (np.pi * 2.0) + np.pi * (28.670 / 360.0); y = math.acos(z) / np.pi; x_co = int(y * args.num_actions * 12 / (2 * np.pi)) y_co = int(x * args.num_actions * 24 / (2 * np.pi)) for i in range(3): for j in range(3): array[x_co - 1 + i, y_co - 1 + j] += 1. for a in actions: x, y, z = circle.points[a] x = math.atan2(-x, y); x = (x + np.pi / 2.0) / (np.pi * 2.0) + np.pi * (28.670 / 360.0); y = math.acos(z) / np.pi; x_co = int(y * args.num_actions * 12 / (2 * np.pi)) y_co = int(x * args.num_actions * 24 / (2 * np.pi)) for i in range(3): for j in range(3): array[x_co - 1 + i, y_co - 1 + j] += 1. array = array * 255. / array.max() if args.use_img: visible_location = os.path.join( os.path.dirname(objects.__file__), "visible.obj" ) seen_points = np.array(load_obj(visible_location)[0]) seen_points = seen_points / np.sqrt(((seen_points ** 2).sum(axis=1))).reshape(-1, 1) for point in seen_points: x, y, z = point x = math.atan2(-x, y); x = (x + np.pi / 2.0) / (np.pi * 2.0) + np.pi * (28.670 / 360.0); y = math.acos(z) / np.pi; x_co = int(y * args.num_actions * 12 / (2 * np.pi)) y_co = int(x * args.num_actions * 24 / (2 * np.pi)) for i in range(5): for j in range(5): if array[x_co - 2 + i, y_co - 2 + j].sum() == 0: array[x_co - 2 + i, y_co - 2 + j] = (255, 127, 80) array[np.all(array == (0, 0, 0), axis=-1)] = (0, 204, 204) check_array = np.zeros([args.num_actions * 2, args.num_actions * 4]) for point in seen_points: x, y, z = point x = math.atan2(-x, y); x = (x + np.pi / 2.0) / (np.pi * 2.0) + np.pi * (28.670 / 360.0); y = math.acos(z) / np.pi; x_co = int(y * args.num_actions * 12 / (2 * np.pi)) y_co = int(x * args.num_actions * 24 / (2 * np.pi)) for i in range(3): for j in range(3): check_array[x_co - 1 + i, y_co - 1 + j] = 100 on = 0. off = 0. for a in actions: x, y, z = circle.points[a] x = math.atan2(-x, y); x = (x + np.pi / 2.0) / (np.pi * 2.0) + np.pi * (28.670 / 360.0); y = math.acos(z) / np.pi; x_co = int(y * args.num_actions * 12 / (2 * np.pi)) y_co = int(x * args.num_actions * 24 / (2 * np.pi)) if check_array[x_co, y_co] > 0: on += 1 else: off += 1 print(f'percentage in vision is {on * 100 / (on+off):.2f} % for policy') else: array[np.all(array == (0, 0, 0), axis=-1)] = (0, 204, 204) array = array.astype(np.uint8) Image.fromarray(array).save(location + '/sphere_projection.png') # visualize the actions used by the policy def visualize_prediction(location, meshes, faces, names): data = {} meshes = meshes.data.cpu().numpy() faces = faces.data.cpu().numpy() locations = [] for n in names: n = '/'+ n.split('/')[-1] + '/' locations.append(location + n) if not os.path.exists(locations[-1]): os.makedirs(locations[-1]) data['locations'] = locations pretty_render.render_representations(locations, names, meshes, faces)
Active-3D-Vision-and-Touch-main
pterotactyl/utility/utils.py
#Copyright (c) Facebook, Inc. and its affiliates. #All rights reserved. #This source code is licensed under the license found in the #LICENSE file in the root directory of this source tree. import os os.environ["PYOPENGL_PLATFORM"] = "egl" import numpy as np import trimesh from scipy.spatial.transform import Rotation as R import pyrender from PIL import Image import torch from tqdm.contrib import tzip from pterotactyl.utility import utils class CameraRenderer: def __init__(self, cameraResolution=[512, 512]): self.W = cameraResolution[0] self.H = cameraResolution[1] self._init_pyrender() def _init_pyrender(self): self.scene = self._init_scene() self.objectNodes = [] self.handNodes = [] self._init_camera() self.r = pyrender.OffscreenRenderer(self.W, self.H) def _init_scene(self): scene = pyrender.Scene(ambient_light=[0.3, 0.3, 0.3]) light_pose = utils.euler2matrix( angles=[0, 0, 0], translation=[0, -0.8, 0.3], xyz="xyz", degrees=False ) light = pyrender.PointLight(color=np.ones(3), intensity=1.8) scene.add(light, pose=light_pose) light_pose = utils.euler2matrix( angles=[0, 0, 0], translation=[0, 0.8, 0.3], xyz="xyz", degrees=False ) light = pyrender.PointLight(color=np.ones(3), intensity=1.8) scene.add(light, pose=light_pose) light_pose = utils.euler2matrix( angles=[0, 0, 0], translation=[-1, 0, 1], xyz="xyz", degrees=False ) light = pyrender.PointLight(color=np.ones(3), intensity=1.8) scene.add(light, pose=light_pose) light_pose = utils.euler2matrix( angles=[0, 0, 0], translation=[1, 0, 1], xyz="xyz", degrees=False ) light = pyrender.PointLight(color=np.ones(3), intensity=1.8) scene.add(light, pose=light_pose) return scene def _init_camera(self): camera = pyrender.PerspectiveCamera( yfov=60.0 / 180.0 * np.pi, znear=0.01, zfar=10.0, aspectRatio=1.0 ) cameraPose0 = utils.euler2matrix( xyz="xyz", angles=[0, 0, 0], translation=[0, 0, 0], degrees=True ) # Add camera node into scene cameraNode = pyrender.Node(camera=camera, matrix=cameraPose0) self.scene.add_node(cameraNode) self.scene.main_camera_node = cameraNode self.camera = cameraNode initial_matrix = R.from_euler("xyz", [45.0, 0, 180.0], degrees=True).as_matrix() self.update_camera_pose([0, 0.6, 0.6], initial_matrix) def update_camera_pose(self, position, orientation): """ Update digit pose (including camera, lighting, and gel surface) """ pose = np.eye(4) pose[:3, 3] = position pose[:3, :3] = orientation self.camera.matrix = pose def add_object(self, objTrimesh, position=[0, 0, 0], orientation=[0, 0, 0]): mesh = pyrender.Mesh.from_trimesh(objTrimesh) pose = utils.euler2matrix(angles=orientation, translation=position) objNode = pyrender.Node(mesh=mesh, matrix=pose) self.scene.add_node(objNode) self.objectNodes.append(objNode) def add_points(self, points, radius, colour=[0, 0, 0]): sm = trimesh.creation.uv_sphere(radius=radius) sm.visual.vertex_colors = colour tfs = np.tile(np.eye(4), (points.shape[0], 1, 1)) tfs[:, :3, 3] = points m = pyrender.Mesh.from_trimesh(sm, poses=tfs) objNode = pyrender.Node(mesh=m) self.scene.add_node(objNode) self.objectNodes.append(objNode) def remove_objects(self): for obj in self.objectNodes: self.scene.remove_node(obj) self.objectNodes = [] def render(self): colour, depth = self.r.render(self.scene) colour = np.clip((np.array(colour)), 0, 255).astype(np.uint8) colour = Image.fromarray(colour) return colour # renders the predicted mesh along with the ground truth mesh def render_representations(locations, names, meshes, faces): recon_face = utils.add_faces(faces) scene = CameraRenderer() message = "rendering the predicted objects" print("*" * len(message)) print(message) print("*" * len(message)) for verts, name, location in tzip(meshes, names, locations): ###### render mesh ####### mesh = trimesh.Trimesh(verts, recon_face) mesh.visual.vertex_colors = [228, 217, 111, 255] scene.add_object(mesh) img = scene.render() img.save(f"{location}/mesh.png") scene.remove_objects() ##### render point clouds ####### verts = torch.FloatTensor(verts).cuda() faces = torch.LongTensor(recon_face).cuda() points = ( utils.batch_sample(verts.unsqueeze(0), faces, num=100000)[0] .data.cpu() .numpy() ) scene.add_points(points, 0.01, [228, 217, 111]) img = scene.render() img.save(f"{location}/points.png") scene.remove_objects() ######## render real object ######### verts = np.load(name + "_verts.npy") faces = np.load(name + "_faces.npy") faces = utils.add_faces(faces) mesh = trimesh.Trimesh(vertices=verts, faces=faces, process=False) mesh.visual.vertex_colors = [228, 217, 111, 255] scene.add_object(mesh) img = scene.render() img.save(f"{location}/ground_truth.png") scene.remove_objects()
Active-3D-Vision-and-Touch-main
pterotactyl/utility/pretty_render.py
#Copyright (c) Facebook, Inc. and its affiliates. #All rights reserved. #This source code is licensed under the license found in the #LICENSE file in the root directory of this source tree. import os import numpy as np from tqdm import tqdm from glob import glob import random from pathlib import Path import torch import pterotactyl.object_data as object_data import pterotactyl.objects as objects from pterotactyl.utility import utils from pterotactyl.simulator.scene import sampler from pterotactyl.simulator.physics import grasping def make_data_split(): data_location = os.path.join( os.path.dirname(object_data.__file__), "initial_objects/*" ) split_destination = os.path.join( os.path.dirname(objects.__file__), "data_split.npy" ) object_files = glob(data_location) object_files = [o.split("/")[-1].split(".")[0] for o in object_files] object_files.sort() random.Random(0).shuffle(object_files) recon_train = object_files[:7700] auto_train = object_files[7700 : 2 * 7700] RL_train = object_files[2 * 7700 : 3 * 7700] valid = object_files[3 * 7700 : 3 * 7700 + 2000] test = object_files[3 * 7700 + 2000 : 3 * 7700 + 3000] dict = { "recon_train": recon_train, "auto_train": auto_train, "RL_train": RL_train, "valid": valid, "test": test, } np.save(split_destination, dict) # produces a pointcloud from the surface of an object def extract_points(verts, faces, dim=128, num_points=30000): verts = torch.FloatTensor(verts).cuda() faces = torch.LongTensor(faces).cuda() # converts the mesh to a voxel grid voxel = utils.mesh_to_voxel(verts, faces, dim) if voxel is None: return None # extracts orthographic depth maps from the voxel grid ODMs = utils.extract_ODMs(voxel) # reprojects the depth maps to a voxel grid to remove internal structure voxel = utils.apply_ODMs(ODMs, dim) # extracts a point cloud from the voxel grid points = utils.voxel_to_pointcloud(voxel) # aligns the pointcloud to the origional mesh points = utils.realign_points(points, verts.clone()) # make the point cloud of uniform size while points.shape[0] < num_points: points = torch.cat((points, points)) choices = np.random.choice(points.shape[0], num_points, replace=False) points = points[choices] return points # extract the object information from mesh def save_object_info(): data_location = os.path.join( os.path.dirname(object_data.__file__), "initial_objects/*" ) data_destination = os.path.join( os.path.dirname(object_data.__file__), "object_info/" ) if not os.path.exists(data_destination): os.makedirs(data_destination) object_files = glob(data_location) pbar = tqdm(object_files, smoothing=0.0) pbar.set_description(f"Saving object information for quick loading") for file in pbar: file_destination = data_destination + file.split("/")[-1].split(".")[0] # scale meshes and extract vertices and faces verts, faces = utils.get_obj_data(file, scale=3.1) np.save(file_destination + "_verts.npy", verts) np.save(file_destination + "_faces.npy", faces) # save the new object as a mesh and reference it in a urdf file for pybullet utils.make_urdf(verts, faces, file_destination + ".urdf") # extracts a point cloud from the object and saves it def save_point_info(): data_location = os.path.join( os.path.dirname(object_data.__file__), "object_info/*.obj" ) data_destination = os.path.join(os.path.dirname(object_data.__file__), "/") if not os.path.exists(data_destination): os.makedirs(data_destination) object_files = glob(data_location) pbar = tqdm(object_files, smoothing=0.0) pbar.set_description(f"Extracting surface point cloud") for file in pbar: destination = data_destination + file.split("/")[-1].split(".")[0] + ".npy" verts = np.load(file.replace(".obj", "_verts.npy")) faces = np.load(file.replace(".obj", "_faces.npy")) # extract the point cloud points = extract_points(verts, faces) if points is None: continue np.save(destination, points.data.cpu().numpy()) # simulates the graps of an object for all possible actions def save_simulation(): data_location = os.path.join( os.path.dirname(object_data.__file__), "object_info/*.obj" ) grasp_destination_dir = os.path.join( os.path.dirname(object_data.__file__), "grasp_info/" ) image_destination_dir = os.path.join( os.path.dirname(object_data.__file__), "images_colourful/" ) if not os.path.exists(grasp_destination_dir): os.makedirs(grasp_destination_dir) if not os.path.exists(image_destination_dir): os.makedirs(image_destination_dir) object_files = glob(data_location) simulation_infomation = {} # defines the sampling function for simulation s = sampler.Sampler(grasping.Agnostic_Grasp, bs=1, vision=True) pbar = tqdm(object_files, smoothing=0.0) pbar.set_description(f"Extracting grasp information") set = [0, 0, 0, 0] file_num = 0 for file in pbar: file_number = file.split("/")[-1].split(".")[0] grasp_destination = grasp_destination_dir + file_number + "/" image_destination = image_destination_dir + file_number + ".npy" batch = [file.replace(".obj", "")] statuses = [] try: s.load_objects(batch, from_dataset=True) except: continue # save an image of the object signals = s.sample( [0], touch=False, touch_point_cloud=False, vision=True, vision_occluded=False, ) img = signals["vision"][0] np.save(image_destination, img) for i in range(50): # simulate the object signals = s.sample( [i], touch=True, touch_point_cloud=True, vision=False, vision_occluded=False, ) status = signals["touch_status"][0] good = 0 for k in range(4): if status[k] == "touch": good += 1 for k in range(good): set[k] += 1 statuses.append(status) # extracts the touch information for each of the 4 fingers for j in range(4): instance_grasp_destination = os.path.join( grasp_destination, str(i), str(j) ) Path(instance_grasp_destination).mkdir(parents=True, exist_ok=True) if status[j] == "touch": touch_signal = ( signals["touch_signal"][0][j].data.numpy().astype(np.uint8) ) touch_points = signals["touch_point_cloud"][0][j] np.save(instance_grasp_destination + "_touch.npy", touch_signal) np.save(instance_grasp_destination + "_points.npy", touch_points) if status[j] != "no_intersection": ref_frame_pos = signals["finger_transfrom_pos"][0][j].data.numpy() ref_frame_rot_M = signals["finger_transform_rot_M"][0][ j ].data.numpy() ref_frame = {"pos": ref_frame_pos, "rot": ref_frame_rot_M} np.save(instance_grasp_destination + "_ref_frame.npy", ref_frame) s.remove_objects() file_num += 0.5 simulation_infomation[file_number] = statuses if __name__ == "__main__": save_object_info() save_point_info() save_simulation() make_data_split()
Active-3D-Vision-and-Touch-main
pterotactyl/utility/data_making.py
import nltk import textstat from nltk.tree import Tree import benepar, spacy import json import numpy as np nlp = spacy.load('en_core_web_md') nlp.add_pipe(benepar.BeneparComponent("benepar_en3")) import torch, transformers tokenizer = transformers.AutoTokenizer.from_pretrained('../training/checkpoint-all-nli-100000') model = transformers.AutoModelForSequenceClassification.from_pretrained('../training/checkpoint-all-nli-100000') model = model.eval().cuda() # helpers for computing syntactic complexity def calc_words(t): if type(t) == str: return 1 else: val = 0 for child in t: val += calc_words(child) return val def calc_yngve(t, par): if type(t) == str: return par else: val = 0 for i, child in enumerate(reversed(t)): val += calc_yngve(child, par+i) return val def compute_syntactic_complexity(sentence): doc = nlp(sentence) sent = list(doc.sents)[0] line = sent._.parse_string t = Tree.fromstring(line) words = calc_words(t) yngve = calc_yngve(t, 0) return round(float(yngve)/words, 2) def compute_stats(contexts, hypotheses, labels): readability_scores = [] yngve_scores = [] sentence_lengths = [] model_fooled = [] for idx, (context, hypothesis, label) in enumerate(zip(contexts, hypotheses, labels)): readability_scores.append(textstat.flesch_kincaid_grade(hypothesis)) yngve_scores.append(compute_syntactic_complexity(hypothesis)) sentence_lengths.append(len(nltk.word_tokenize(hypothesis))) tokens = tokenizer.encode(context, hypothesis, return_tensors='pt').cuda() model_pred = model(tokens).logits.detach() if torch.argmax(model_pred).item() == 2 and label == 'contradiction' or torch.argmax(model_pred).item() == 1 and label == 'entailment': model_fooled.append(1) else: model_fooled.append(0) return readability_scores, yngve_scores, sentence_lengths, model_fooled datasets = ['../data/non-adversarial-with-rounds.jsonl', '../data/static-adversarial-with-rounds.jsonl', '../data/dynamic-adversarial-with-rounds.jsonl'] for dataset in datasets: contexts = [] hypotheses = [] labels = [] for line in open(dataset,'rb'): myjson = json.loads(line) contexts.append(myjson['sentence1']) hypotheses.append(myjson['sentence2'].strip()) labels.append(myjson['label']) readability_scores, yngve_scores, sentence_lengths, model_fooled = compute_stats(contexts, hypotheses, labels) print("Dataset", dataset) print('Num Examples', len(hypotheses)) print('Readability Scores', np.mean(readability_scores)) print('Yngve Scores', np.mean(yngve_scores)) print('Sentence Lengths', np.mean(sentence_lengths)) print('Fooling Rate All-NLI Model', np.mean(model_fooled))
dadc-limit-main
analysis/complexity.py
import nltk import json from tqdm import tqdm import numpy as np def compute_stats(contexts, hypotheses, labels): high_overlap_rates_entailment = [] high_overlap_rates_contradiction = [] for context, hypothesis, label in tqdm(zip(contexts, hypotheses, labels)): context_tokens = nltk.word_tokenize(context) hypothesis_tokens = [h for h in nltk.word_tokenize(hypothesis) if h != '.'] overlap_rate = sum([h in context_tokens for h in hypothesis_tokens]) / len(hypothesis_tokens) if overlap_rate > 0.9: if label == 'entailment': high_overlap_rates_entailment.append(1) elif label == 'contradiction': high_overlap_rates_contradiction.append(1) else: exit('label not in set') else: if label == 'contradiction': high_overlap_rates_contradiction.append(0) if label == 'entailment': high_overlap_rates_entailment.append(0) return np.array(high_overlap_rates_entailment), np.array(high_overlap_rates_contradiction) datasets = ['../data/non-adversarial-with-rounds.jsonl', '../data/static-adversarial-with-rounds.jsonl', '../data/dynamic-adversarial-with-rounds.jsonl'] for dataset in datasets: contexts = [] hypotheses = [] labels = [] for line in open(dataset,'rb'): myjson = json.loads(line) contexts.append(myjson['sentence1']) hypotheses.append(myjson['sentence2'].strip()) labels.append(myjson['label']) high_overlap_rates_entailment, high_overlap_rates_contradiction = compute_stats(contexts, hypotheses, labels) print("Dataset", dataset) print('High Overlap Entailment Count', sum(high_overlap_rates_entailment)) print('High Overlap Contradiction Count', sum(high_overlap_rates_contradiction)) print('High Overlap Entailment %', sum(high_overlap_rates_entailment) / (sum(high_overlap_rates_entailment) + sum(high_overlap_rates_contradiction)))
dadc-limit-main
analysis/artifacts.py
import nltk import json import numpy as np from sacrebleu.metrics import BLEU from tqdm import tqdm from collections import defaultdict import random def interbleu(hypotheses, labels): bleu = BLEU() avg_score = 0.0 total = 0.0 random.shuffle(hypotheses) for hypothesis1_idx, hypothesis1 in tqdm(enumerate(hypotheses)): if hypothesis1_idx > 1000: continue max_score = 0.0 best_sentence = None curr_label = labels[hypothesis1_idx] for hypothesis2_idx, hypothesis2 in enumerate(hypotheses): if hypothesis1_idx == hypothesis2_idx: continue if labels[hypothesis2_idx] != curr_label: continue score = bleu.corpus_score([hypothesis1], [[hypothesis2]]).score if score > max_score: max_score = score best_sentence = hypothesis2 avg_score += max_score total += 1 return avg_score / total def compute_stats(contexts, hypotheses, labels): words = set() bigrams = set() for hypothesis, label in tqdm(zip(hypotheses, labels)): for word in nltk.word_tokenize(hypothesis): words.add(word.lower()) for bigram in list(nltk.bigrams(list(nltk.word_tokenize(hypothesis)))): bigrams.add(bigram) interbleu_scores = interbleu(hypotheses, labels) contradiction_rate = np.mean(np.array([a == 'contradiction' for a in labels])) context_counts = defaultdict(int) for context in contexts: context_counts[context] += 1 return words, bigrams, interbleu_scores, contradiction_rate, context_counts datasets = ['../data/non-adversarial-with-rounds.jsonl', '../data/static-adversarial-with-rounds.jsonl', '../data/dynamic-adversarial-with-rounds.jsonl'] for dataset in datasets: contexts = [] hypotheses = [] labels = [] for line in open(dataset,'rb'): myjson = json.loads(line) contexts.append(myjson['sentence1']) hypotheses.append(myjson['sentence2'].strip()) labels.append(myjson['label']) words, bigrams, interbleu_scores, contradiction_rate, context_counts = compute_stats(contexts, hypotheses, labels) print("Dataset", dataset) print('Num Unique Words', len(words)) print('Num Unique Bigrams', len(bigrams)) print('Inter-BLEU', interbleu_scores) print('Contradiction %', contradiction_rate) print('Num Examples Per Context', context_counts)
dadc-limit-main
analysis/diversity.py
# Copyright (c) Meta Platforms, Inc. All Rights Reserved import argparse import os import numpy as np import torch from human_body_prior.body_model.body_model import BodyModel from human_body_prior.tools.rotation_tools import aa2matrot, local2global_pose from tqdm import tqdm from utils import utils_transform def main(args, bm): for dataroot_subset in ["BioMotionLab_NTroje", "CMU", "MPI_HDM05"]: print(dataroot_subset) for phase in ["train", "test"]: print(phase) savedir = os.path.join(args.save_dir, dataroot_subset, phase) if not os.path.exists(savedir): os.makedirs(savedir) split_file = os.path.join( "prepare_data/data_split", dataroot_subset, phase + "_split.txt" ) with open(split_file, "r") as f: filepaths = [line.strip() for line in f] rotation_local_full_gt_list = [] hmd_position_global_full_gt_list = [] body_parms_list = [] head_global_trans_list = [] idx = 0 for filepath in tqdm(filepaths): data = {} bdata = np.load( os.path.join(args.root_dir, filepath), allow_pickle=True ) if "mocap_framerate" in bdata: framerate = bdata["mocap_framerate"] else: continue idx += 1 if framerate == 120: stride = 2 elif framerate == 60: stride = 1 else: raise AssertionError( "Please check your AMASS data, should only have 2 types of framerate, either 120 or 60!!!" ) bdata_poses = bdata["poses"][::stride, ...] bdata_trans = bdata["trans"][::stride, ...] subject_gender = bdata["gender"] body_parms = { "root_orient": torch.Tensor( bdata_poses[:, :3] ), # .to(comp_device), # controls the global root orientation "pose_body": torch.Tensor( bdata_poses[:, 3:66] ), # .to(comp_device), # controls the body "trans": torch.Tensor( bdata_trans ), # .to(comp_device), # controls the global body position } body_parms_list = body_parms body_pose_world = bm( **{ k: v for k, v in body_parms.items() if k in ["pose_body", "root_orient", "trans"] } ) output_aa = torch.Tensor(bdata_poses[:, :66]).reshape(-1, 3) output_6d = utils_transform.aa2sixd(output_aa).reshape( bdata_poses.shape[0], -1 ) rotation_local_full_gt_list = output_6d[1:] rotation_local_matrot = aa2matrot( torch.tensor(bdata_poses).reshape(-1, 3) ).reshape(bdata_poses.shape[0], -1, 9) rotation_global_matrot = local2global_pose( rotation_local_matrot, bm.kintree_table[0].long() ) # rotation of joints relative to the origin head_rotation_global_matrot = rotation_global_matrot[:, [15], :, :] rotation_global_6d = utils_transform.matrot2sixd( rotation_global_matrot.reshape(-1, 3, 3) ).reshape(rotation_global_matrot.shape[0], -1, 6) input_rotation_global_6d = rotation_global_6d[1:, [15, 20, 21], :] rotation_velocity_global_matrot = torch.matmul( torch.inverse(rotation_global_matrot[:-1]), rotation_global_matrot[1:], ) rotation_velocity_global_6d = utils_transform.matrot2sixd( rotation_velocity_global_matrot.reshape(-1, 3, 3) ).reshape(rotation_velocity_global_matrot.shape[0], -1, 6) input_rotation_velocity_global_6d = rotation_velocity_global_6d[ :, [15, 20, 21], : ] position_global_full_gt_world = body_pose_world.Jtr[ :, :22, : ] # position of joints relative to the world origin position_head_world = position_global_full_gt_world[ :, 15, : ] # world position of head head_global_trans = torch.eye(4).repeat( position_head_world.shape[0], 1, 1 ) head_global_trans[:, :3, :3] = head_rotation_global_matrot.squeeze() head_global_trans[:, :3, 3] = position_global_full_gt_world[:, 15, :] head_global_trans_list = head_global_trans[1:] num_frames = position_global_full_gt_world.shape[0] - 1 hmd_position_global_full_gt_list = torch.cat( [ input_rotation_global_6d.reshape(num_frames, -1), input_rotation_velocity_global_6d.reshape(num_frames, -1), position_global_full_gt_world[1:, [15, 20, 21], :].reshape( num_frames, -1 ), position_global_full_gt_world[1:, [15, 20, 21], :].reshape( num_frames, -1 ) - position_global_full_gt_world[:-1, [15, 20, 21], :].reshape( num_frames, -1 ), ], dim=-1, ) data["rotation_local_full_gt_list"] = rotation_local_full_gt_list data[ "hmd_position_global_full_gt_list" ] = hmd_position_global_full_gt_list data["body_parms_list"] = body_parms_list data["head_global_trans_list"] = head_global_trans_list data["position_global_full_gt_world"] = ( position_global_full_gt_world[1:].cpu().float() ) data["framerate"] = 60 data["gender"] = subject_gender data["filepath"] = filepath torch.save(data, os.path.join(savedir, "{}.pt".format(idx))) if __name__ == "__main__": parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--support_dir", type=str, default=None, help="=dir where you put your smplh and dmpls dirs", ) parser.add_argument( "--save_dir", type=str, default=None, help="=dir where you want to save your generated data", ) parser.add_argument( "--root_dir", type=str, default=None, help="=dir where you put your AMASS data" ) args = parser.parse_args() # Here we follow the AvatarPoser paper and use male model for all sequences bm_fname_male = os.path.join(args.support_dir, "smplh/{}/model.npz".format("male")) dmpl_fname_male = os.path.join( args.support_dir, "dmpls/{}/model.npz".format("male") ) num_betas = 16 # number of body parameters num_dmpls = 8 # number of DMPL parameters bm_male = BodyModel( bm_fname=bm_fname_male, num_betas=num_betas, num_dmpls=num_dmpls, dmpl_fname=dmpl_fname_male, ) main(args, bm_male)
AGRoL-main
prepare_data.py
# Copyright (c) Meta Platforms, Inc. All Rights Reserved import math import os import random import numpy as np import torch from data_loaders.dataloader import load_data, TestDataset from human_body_prior.body_model.body_model import BodyModel as BM from model.networks import PureMLP from tqdm import tqdm from utils import utils_transform, utils_visualize from utils.metrics import get_metric_function from utils.model_util import create_model_and_diffusion, load_model_wo_clip from utils.parser_util import sample_args device = torch.device("cuda") ##################### RADIANS_TO_DEGREES = 360.0 / (2 * math.pi) METERS_TO_CENTIMETERS = 100.0 pred_metrics = [ "mpjre", "mpjpe", "mpjve", "handpe", "upperpe", "lowerpe", "rootpe", "pred_jitter", ] gt_metrics = [ "gt_jitter", ] all_metrics = pred_metrics + gt_metrics RADIANS_TO_DEGREES = 360.0 / (2 * math.pi) # 57.2958 grads metrics_coeffs = { "mpjre": RADIANS_TO_DEGREES, "mpjpe": METERS_TO_CENTIMETERS, "mpjve": METERS_TO_CENTIMETERS, "handpe": METERS_TO_CENTIMETERS, "upperpe": METERS_TO_CENTIMETERS, "lowerpe": METERS_TO_CENTIMETERS, "rootpe": METERS_TO_CENTIMETERS, "pred_jitter": 1.0, "gt_jitter": 1.0, "gt_mpjpe": METERS_TO_CENTIMETERS, "gt_mpjve": METERS_TO_CENTIMETERS, "gt_handpe": METERS_TO_CENTIMETERS, "gt_rootpe": METERS_TO_CENTIMETERS, "gt_upperpe": METERS_TO_CENTIMETERS, "gt_lowerpe": METERS_TO_CENTIMETERS, } ##################### class BodyModel(torch.nn.Module): def __init__(self, support_dir): super().__init__() device = torch.device("cuda") subject_gender = "male" bm_fname = os.path.join( support_dir, "smplh/{}/model.npz".format(subject_gender) ) dmpl_fname = os.path.join( support_dir, "dmpls/{}/model.npz".format(subject_gender) ) num_betas = 16 # number of body parameters num_dmpls = 8 # number of DMPL parameters body_model = BM( bm_fname=bm_fname, num_betas=num_betas, num_dmpls=num_dmpls, dmpl_fname=dmpl_fname, ).to(device) self.body_model = body_model.eval() def forward(self, body_params): with torch.no_grad(): body_pose = self.body_model( **{ k: v for k, v in body_params.items() if k in ["pose_body", "trans", "root_orient"] } ) return body_pose def non_overlapping_test( args, data, sample_fn, dataset, model, num_per_batch=256, model_type="mlp", ): gt_data, sparse_original, body_param, head_motion, filename = ( data[0], data[1], data[2], data[3], data[4], ) gt_data = gt_data.cuda().float() sparse_original = sparse_original.cuda().float() head_motion = head_motion.cuda().float() num_frames = head_motion.shape[0] output_samples = [] count = 0 sparse_splits = [] flag_index = None if args.input_motion_length <= num_frames: while count < num_frames: if count + args.input_motion_length > num_frames: tmp_k = num_frames - args.input_motion_length sub_sparse = sparse_original[ :, tmp_k : tmp_k + args.input_motion_length ] flag_index = count - tmp_k else: sub_sparse = sparse_original[ :, count : count + args.input_motion_length ] sparse_splits.append(sub_sparse) count += args.input_motion_length else: flag_index = args.input_motion_length - num_frames tmp_init = sparse_original[:, :1].repeat(1, flag_index, 1).clone() sub_sparse = torch.concat([tmp_init, sparse_original], dim=1) sparse_splits = [sub_sparse] n_steps = len(sparse_splits) // num_per_batch if len(sparse_splits) % num_per_batch > 0: n_steps += 1 # Split the sequence into n_steps non-overlapping batches if args.fix_noise: # fix noise seed for every frame noise = torch.randn(1, 1, 1).cuda() noise = noise.repeat(1, args.input_motion_length, args.motion_nfeat) else: noise = None for step_index in range(n_steps): sparse_per_batch = torch.cat( sparse_splits[ step_index * num_per_batch : (step_index + 1) * num_per_batch ], dim=0, ) new_batch_size = sparse_per_batch.shape[0] if model_type == "diffusion": sample = sample_fn( model, (new_batch_size, args.input_motion_length, args.motion_nfeat), sparse=sparse_per_batch, clip_denoised=False, model_kwargs=None, skip_timesteps=0, init_image=None, progress=False, dump_steps=None, noise=noise, const_noise=False, ) elif model_type == "mlp": sample = model(sparse_per_batch) if flag_index is not None and step_index == n_steps - 1: last_batch = sample[-1] last_batch = last_batch[flag_index:] sample = sample[:-1].reshape(-1, args.motion_nfeat) sample = torch.cat([sample, last_batch], dim=0) else: sample = sample.reshape(-1, args.motion_nfeat) if not args.no_normalization: output_samples.append(dataset.inv_transform(sample.cpu().float())) else: output_samples.append(sample.cpu().float()) return output_samples, body_param, head_motion, filename def overlapping_test( args, data, sample_fn, dataset, model, sld_wind_size=70, model_type="diffusion", ): assert ( model_type == "diffusion" ), "currently only diffusion model supports overlapping test!!!" gt_data, sparse_original, body_param, head_motion, filename = ( data[0], data[1], data[2], data[3], data[4], ) gt_data = gt_data.cuda().float() sparse_original = sparse_original.cuda().float() head_motion = head_motion.cuda().float() num_frames = head_motion.shape[0] output_samples = [] count = 0 sparse_splits = [] flag_index = None if num_frames < args.input_motion_length: flag_index = args.input_motion_length - num_frames tmp_init = sparse_original[:, :1].repeat(1, flag_index, 1).clone() sub_sparse = torch.concat([tmp_init, sparse_original], dim=1) sparse_splits = [sub_sparse] else: while count + args.input_motion_length <= num_frames: if count == 0: sub_sparse = sparse_original[ :, count : count + args.input_motion_length ] tmp_idx = 0 else: sub_sparse = sparse_original[ :, count : count + args.input_motion_length ] tmp_idx = args.input_motion_length - sld_wind_size sparse_splits.append([sub_sparse, tmp_idx]) count += sld_wind_size if count < num_frames: sub_sparse = sparse_original[:, -args.input_motion_length :] tmp_idx = args.input_motion_length - ( num_frames - (count - sld_wind_size + args.input_motion_length) ) sparse_splits.append([sub_sparse, tmp_idx]) memory = None # init memory if args.fix_noise: # fix noise seed for every frame noise = torch.randn(1, 1, 1).cuda() noise = noise.repeat(1, args.input_motion_length, args.motion_nfeat) else: noise = None for step_index in range(len(sparse_splits)): sparse_per_batch = sparse_splits[step_index][0] memory_end_index = sparse_splits[step_index][1] new_batch_size = sparse_per_batch.shape[0] assert new_batch_size == 1 if memory is not None: model_kwargs = {} model_kwargs["y"] = {} model_kwargs["y"]["inpainting_mask"] = torch.zeros( ( new_batch_size, args.input_motion_length, args.motion_nfeat, ) ).cuda() model_kwargs["y"]["inpainting_mask"][:, :memory_end_index, :] = 1 model_kwargs["y"]["inpainted_motion"] = torch.zeros( ( new_batch_size, args.input_motion_length, args.motion_nfeat, ) ).cuda() model_kwargs["y"]["inpainted_motion"][:, :memory_end_index, :] = memory[ :, -memory_end_index:, : ] else: model_kwargs = None sample = sample_fn( model, (new_batch_size, args.input_motion_length, args.motion_nfeat), sparse=sparse_per_batch, clip_denoised=False, model_kwargs=None, skip_timesteps=0, init_image=None, progress=False, dump_steps=None, noise=noise, const_noise=False, ) memory = sample.clone().detach() if flag_index is not None: sample = sample[:, flag_index:].cpu().reshape(-1, args.motion_nfeat) else: sample = sample[:, memory_end_index:].reshape(-1, args.motion_nfeat) if not args.no_normalization: output_samples.append(dataset.inv_transform(sample.cpu().float())) else: output_samples.append(sample.cpu().float()) return output_samples, body_param, head_motion, filename def evaluate_prediction( args, metrics, sample, body_model, sample_index, head_motion, body_param, fps, filename, ): motion_pred = sample.squeeze().cuda() # Get the prediction from the model model_rot_input = ( utils_transform.sixd2aa(motion_pred.reshape(-1, 6).detach()) .reshape(motion_pred.shape[0], -1) .float() ) T_head2world = head_motion.clone().cuda() t_head2world = T_head2world[:, :3, 3].clone() # Get the offset between the head and other joints using forward kinematic model body_pose_local = body_model( { "pose_body": model_rot_input[..., 3:66], "root_orient": model_rot_input[..., :3], } ).Jtr # Get the offset in global coordiante system between head and body_world. t_head2root = -body_pose_local[:, 15, :] t_root2world = t_head2root + t_head2world.cuda() predicted_body = body_model( { "pose_body": model_rot_input[..., 3:66], "root_orient": model_rot_input[..., :3], "trans": t_root2world, } ) predicted_position = predicted_body.Jtr[:, :22, :] # Get the predicted position and rotation predicted_angle = model_rot_input for k, v in body_param.items(): body_param[k] = v.squeeze().cuda() body_param[k] = body_param[k][-predicted_angle.shape[0] :, ...] # Get the ground truth position from the model gt_body = body_model(body_param) gt_position = gt_body.Jtr[:, :22, :] # Create animation if args.vis: video_dir = args.output_dir if not os.path.exists(video_dir): os.makedirs(video_dir) save_filename = filename.split(".")[0].replace("/", "-") save_video_path = os.path.join(video_dir, save_filename + ".mp4") utils_visualize.save_animation( body_pose=predicted_body, savepath=save_video_path, bm=body_model.body_model, fps=fps, resolution=(800, 800), ) save_video_path_gt = os.path.join(video_dir, save_filename + "_gt.mp4") if not os.path.exists(save_video_path_gt): utils_visualize.save_animation( body_pose=gt_body, savepath=save_video_path_gt, bm=body_model.body_model, fps=fps, resolution=(800, 800), ) gt_angle = body_param["pose_body"] gt_root_angle = body_param["root_orient"] predicted_root_angle = predicted_angle[:, :3] predicted_angle = predicted_angle[:, 3:] upper_index = [3, 6, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] lower_index = [0, 1, 2, 4, 5, 7, 8, 10, 11] eval_log = {} for metric in metrics: eval_log[metric] = ( get_metric_function(metric)( predicted_position, predicted_angle, predicted_root_angle, gt_position, gt_angle, gt_root_angle, upper_index, lower_index, fps, ) .cpu() .numpy() ) torch.cuda.empty_cache() return eval_log def load_diffusion_model(args): print("Creating model and diffusion...") args.arch = args.arch[len("diffusion_") :] model, diffusion = create_model_and_diffusion(args) print(f"Loading checkpoints from [{args.model_path}]...") state_dict = torch.load(args.model_path, map_location="cpu") load_model_wo_clip(model, state_dict) model.to("cuda:0") # dist_util.dev()) model.eval() # disable random masking return model, diffusion def load_mlp_model(args): model = PureMLP( args.latent_dim, args.input_motion_length, args.layers, args.sparse_dim, args.motion_nfeat, ) model.eval() state_dict = torch.load(args.model_path, map_location="cpu") model.load_state_dict(state_dict) model.to("cuda:0") return model, None def main(): args = sample_args() torch.backends.cudnn.benchmark = False random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) fps = 60 # AMASS dataset requires 60 frames per second body_model = BodyModel(args.support_dir) print("Loading dataset...") filename_list, all_info, mean, std = load_data( args.dataset, args.dataset_path, "test", ) dataset = TestDataset( args.dataset, mean, std, all_info, filename_list, ) log = {} for metric in all_metrics: log[metric] = 0 model_type = args.arch.split("_")[0] if model_type == "diffusion": model, diffusion = load_diffusion_model(args) sample_fn = diffusion.p_sample_loop elif model_type == "mlp": model, _ = load_mlp_model(args) sample_fn = None else: raise ValueError(f"Unknown model type {model_type}") if not args.overlapping_test: test_func = non_overlapping_test # batch size in the case of non-overlapping testing n_testframe = args.num_per_batch else: print("Overlapping testing...") test_func = overlapping_test # sliding window size in case of overlapping testing n_testframe = args.sld_wind_size for sample_index in tqdm(range(len(dataset))): output, body_param, head_motion, filename = test_func( args, dataset[sample_index], sample_fn, dataset, model, n_testframe, model_type=model_type, ) sample = torch.cat(output, axis=0) instance_log = evaluate_prediction( args, all_metrics, sample, body_model, sample_index, head_motion, body_param, fps, filename, ) for key in instance_log: log[key] += instance_log[key] # Print the value for all the metrics print("Metrics for the predictions") for metric in pred_metrics: print(log[metric] / len(dataset) * metrics_coeffs[metric]) print("Metrics for the ground truth") for metric in gt_metrics: print(metric, log[metric] / len(dataset) * metrics_coeffs[metric]) if __name__ == "__main__": main()
AGRoL-main
test.py
# Copyright (c) Meta Platforms, Inc. All Rights Reserved import json import os import random import numpy as np import torch from data_loaders.dataloader import get_dataloader, load_data, TrainDataset from model.networks import PureMLP from runner.train_mlp import train_step from runner.training_loop import TrainLoop from utils import dist_util from utils.model_util import create_model_and_diffusion from utils.parser_util import train_args def train_diffusion_model(args, dataloader): print("creating model and diffusion...") args.arch = args.arch[len("diffusion_") :] num_gpus = torch.cuda.device_count() args.num_workers = args.num_workers * num_gpus model, diffusion = create_model_and_diffusion(args) if num_gpus > 1: print("Let's use", torch.cuda.device_count(), "GPUs!") dist_util.setup_dist() model = torch.nn.DataParallel(model).cuda() print( "Total params: %.2fM" % (sum(p.numel() for p in model.module.parameters()) / 1000000.0) ) else: dist_util.setup_dist(args.device) model.to(dist_util.dev()) print( "Total params: %.2fM" % (sum(p.numel() for p in model.parameters()) / 1000000.0) ) print("Training...") TrainLoop(args, model, diffusion, dataloader).run_loop() print("Done.") def train_mlp_model(args, dataloader): print("creating MLP model...") args.arch = args.arch[len("mlp_") :] num_gpus = torch.cuda.device_count() args.num_workers = args.num_workers * num_gpus model = PureMLP( args.latent_dim, args.input_motion_length, args.layers, args.sparse_dim, args.motion_nfeat, ) model.train() if num_gpus > 1: print("Let's use", torch.cuda.device_count(), "GPUs!") dist_util.setup_dist() model = torch.nn.DataParallel(model).cuda() print( "Total params: %.2fM" % (sum(p.numel() for p in model.module.parameters()) / 1000000.0) ) else: dist_util.setup_dist(args.device) model.to(dist_util.dev()) print( "Total params: %.2fM" % (sum(p.numel() for p in model.parameters()) / 1000000.0) ) # initialize optimizer optimizer = torch.optim.Adam( model.parameters(), lr=args.lr, weight_decay=args.weight_decay ) nb_iter = 0 avg_loss = 0.0 avg_lr = 0.0 while (nb_iter + 1) < args.num_steps: for (motion_target, motion_input) in dataloader: loss, optimizer, current_lr = train_step( motion_input, motion_target, model, optimizer, nb_iter, args.num_steps, args.lr, args.lr / 10.0, dist_util.dev(), args.lr_anneal_steps, ) avg_loss += loss avg_lr += current_lr if (nb_iter + 1) % args.log_interval == 0: avg_loss = avg_loss / args.log_interval avg_lr = avg_lr / args.log_interval print("Iter {} Summary: ".format(nb_iter + 1)) print(f"\t lr: {avg_lr} \t Training loss: {avg_loss}") avg_loss = 0 avg_lr = 0 if (nb_iter + 1) == args.num_steps: break nb_iter += 1 with open( os.path.join(args.save_dir, "model-iter-" + str(nb_iter + 1) + ".pth"), "wb", ) as f: torch.save(model.state_dict(), f) def main(): args = train_args() torch.backends.cudnn.benchmark = False random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.save_dir is None: raise FileNotFoundError("save_dir was not specified.") elif os.path.exists(args.save_dir) and not args.overwrite: raise FileExistsError("save_dir [{}] already exists.".format(args.save_dir)) elif not os.path.exists(args.save_dir): os.makedirs(args.save_dir) args_path = os.path.join(args.save_dir, "args.json") with open(args_path, "w") as fw: json.dump(vars(args), fw, indent=4, sort_keys=True) print("creating data loader...") motions, sparses, mean, std = load_data( args.dataset, args.dataset_path, "train", input_motion_length=args.input_motion_length, ) dataset = TrainDataset( args.dataset, mean, std, motions, sparses, args.input_motion_length, args.train_dataset_repeat_times, args.no_normalization, ) dataloader = get_dataloader( dataset, "train", batch_size=args.batch_size, num_workers=args.num_workers ) # args.lr_anneal_steps = ( # args.lr_anneal_steps // args.train_dataset_repeat_times # ) * len( # dataloader # ) # the input lr_anneal_steps is by epoch, here convert it to the number of steps model_type = args.arch.split("_")[0] if model_type == "diffusion": train_diffusion_model(args, dataloader) elif model_type == "mlp": train_mlp_model(args, dataloader) if __name__ == "__main__": main()
AGRoL-main
train.py
# MIT License # Copyright (c) 2021 OpenAI # # This code is based on https://github.com/openai/guided-diffusion # MIT License # Copyright (c) 2022 Guy Tevet # # This code is based on https://github.com/GuyTevet/motion-diffusion-model # Copyright (c) Meta Platforms, Inc. All Rights Reserved import functools import os import torch from diffusion import logger from diffusion.fp16_util import MixedPrecisionTrainer from diffusion.resample import create_named_schedule_sampler, LossAwareSampler from torch.optim import AdamW from tqdm import tqdm from utils import dist_util class TrainLoop: def __init__(self, args, model, diffusion, data): self.args = args self.dataset = args.dataset self.model = model self.diffusion = diffusion self.data = data self.batch_size = args.batch_size self.lr = args.lr self.log_interval = args.log_interval self.save_interval = args.save_interval self.resume_checkpoint = args.resume_checkpoint self.load_optimizer = args.load_optimizer self.use_fp16 = False self.fp16_scale_growth = 1e-3 self.weight_decay = args.weight_decay self.lr_anneal_steps = args.lr_anneal_steps self.step = 0 self.resume_step = 0 self.global_batch = self.batch_size self.num_steps = args.num_steps self.num_epochs = self.num_steps // len(self.data) + 1 self.sync_cuda = torch.cuda.is_available() self._load_and_sync_parameters() self.mp_trainer = MixedPrecisionTrainer( model=self.model, use_fp16=self.use_fp16, fp16_scale_growth=self.fp16_scale_growth, ) self.save_dir = args.save_dir self.overwrite = args.overwrite self.opt = AdamW( self.mp_trainer.master_params, lr=self.lr, weight_decay=self.weight_decay ) if self.resume_step and self.load_optimizer: self._load_optimizer_state() self.device = torch.device("cpu") if torch.cuda.is_available() and dist_util.dev() != "cpu": self.device = torch.device(dist_util.dev()) self.schedule_sampler_type = "uniform" self.schedule_sampler = create_named_schedule_sampler( self.schedule_sampler_type, diffusion ) self.eval_wrapper, self.eval_data, self.eval_gt_data = None, None, None self.use_ddp = False self.ddp_model = self.model def _load_and_sync_parameters(self): resume_checkpoint = self.resume_checkpoint if resume_checkpoint: self.resume_step = parse_resume_step_from_filename(resume_checkpoint) logger.log(f"loading model from checkpoint: {resume_checkpoint}...") self.model.load_state_dict( dist_util.load_state_dict( resume_checkpoint, map_location=dist_util.dev(), ) ) def _load_optimizer_state(self): main_checkpoint = self.resume_checkpoint opt_checkpoint = os.path.join( os.path.dirname(main_checkpoint), f"opt{self.resume_step:09}.pt" ) logger.log(f"loading optimizer state from checkpoint: {opt_checkpoint}") assert os.path.exists(opt_checkpoint), "optimiser states does not exist." state_dict = dist_util.load_state_dict( opt_checkpoint, map_location=dist_util.dev() ) self.opt.load_state_dict(state_dict) def run_loop(self): for epoch in range(self.num_epochs): print(f"Starting epoch {epoch}") for motion, cond in tqdm(self.data): motion = motion.to(self.device) cond = cond.to(self.device) self.run_step(motion, cond) self.step += 1 if epoch % self.save_interval == 0: self.save() if epoch % self.log_interval == 0: for k, v in logger.get_current().name2val.items(): if k == "loss": print("epoch[{}]: loss[{:0.5f}]".format(epoch, v)) print("lr:", self.lr) # Save the last checkpoint if it wasn't already saved. if (self.step - 1) % self.save_interval != 0: self.save() def run_step(self, batch, cond): self.forward_backward(batch, cond) self.mp_trainer.optimize(self.opt) self._step_lr() self.log_step() def forward_backward(self, batch, cond): self.mp_trainer.zero_grad() t, weights = self.schedule_sampler.sample(batch.shape[0], dist_util.dev()) compute_losses = functools.partial( self.diffusion.training_losses, self.ddp_model, batch, t, cond, dataset=self.data.dataset, ) losses = compute_losses() if isinstance(self.schedule_sampler, LossAwareSampler): self.schedule_sampler.update_with_local_losses(t, losses["loss"].detach()) loss = (losses["loss"] * weights).mean() log_loss_dict(self.diffusion, t, {k: v * weights for k, v in losses.items()}) self.mp_trainer.backward(loss) def _anneal_lr(self): if not self.lr_anneal_steps: return frac_done = (self.step + self.resume_step) / self.lr_anneal_steps lr = self.lr * (1 - frac_done) for param_group in self.opt.param_groups: param_group["lr"] = lr def _step_lr(self): # One-step learning rate decay if needed. if not self.lr_anneal_steps: return if (self.step + self.resume_step) > self.lr_anneal_steps: self.lr = self.lr / 30.0 self.lr_anneal_steps = False else: self.lr = self.lr for param_group in self.opt.param_groups: param_group["lr"] = self.lr def log_step(self): logger.logkv("step", self.step + self.resume_step) logger.logkv("samples", (self.step + self.resume_step + 1) * self.global_batch) def ckpt_file_name(self): return f"model{(self.step+self.resume_step):09d}.pt" def save(self): def save_checkpoint(params): state_dict = self.mp_trainer.master_params_to_state_dict(params) logger.log("saving model...") filename = self.ckpt_file_name() if not os.path.exists(self.save_dir): os.makedirs(self.save_dir) with open( os.path.join(self.save_dir, filename), "wb", ) as f: torch.save(state_dict, f) save_checkpoint(self.mp_trainer.master_params) with open( os.path.join(self.save_dir, f"opt{(self.step+self.resume_step):09d}.pt"), "wb", ) as f: torch.save(self.opt.state_dict(), f) def parse_resume_step_from_filename(filename): """ Parse filenames of the form path/to/modelNNNNNN.pt, where NNNNNN is the checkpoint's number of steps. """ split = filename.split("model") if len(split) < 2: return 0 split1 = split[-1].split(".")[0] try: return int(split1) except ValueError: return 0 def log_loss_dict(diffusion, ts, losses): for key, values in losses.items(): logger.logkv_mean(key, values.mean().item()) # Log the quantiles (four quartiles, in particular). for sub_t, sub_loss in zip(ts.cpu().numpy(), values.detach().cpu().numpy()): quartile = int(4 * sub_t / diffusion.num_timesteps) logger.logkv_mean(f"{key}_q{quartile}", sub_loss)
AGRoL-main
runner/training_loop.py
# Copyright (c) Meta Platforms, Inc. All Rights Reserved import torch def update_lr_multistep( nb_iter, total_iter, max_lr, min_lr, optimizer, lr_anneal_steps ): if nb_iter > lr_anneal_steps: current_lr = min_lr else: current_lr = max_lr for param_group in optimizer.param_groups: param_group["lr"] = current_lr return optimizer, current_lr def train_step( motion_input, motion_target, model, optimizer, nb_iter, total_iter, max_lr, min_lr, device, lr_anneal_steps, ): motion_input = motion_input.to(device) motion_target = motion_target.to(device) motion_pred = model(motion_input) loss = torch.mean( torch.norm( (motion_pred - motion_target).reshape(-1, 6), 2, 1, ) ) optimizer.zero_grad() loss.backward() optimizer.step() optimizer, current_lr = update_lr_multistep( nb_iter, total_iter, max_lr, min_lr, optimizer, lr_anneal_steps ) return loss.item(), optimizer, current_lr
AGRoL-main
runner/train_mlp.py
# Copyright (c) Meta Platforms, Inc. All Rights Reserved # Metric functions with same inputs import numpy as np import torch def pred_jitter( predicted_position, predicted_angle, predicted_root_angle, gt_position, gt_angle, gt_root_angle, upper_index, lower_index, fps, ): pred_jitter = ( ( ( predicted_position[3:] - 3 * predicted_position[2:-1] + 3 * predicted_position[1:-2] - predicted_position[:-3] ) * (fps**3) ) .norm(dim=2) .mean() ) return pred_jitter def gt_jitter( predicted_position, predicted_angle, predicted_root_angle, gt_position, gt_angle, gt_root_angle, upper_index, lower_index, fps, ): gt_jitter = ( ( ( gt_position[3:] - 3 * gt_position[2:-1] + 3 * gt_position[1:-2] - gt_position[:-3] ) * (fps**3) ) .norm(dim=2) .mean() ) return gt_jitter def mpjre( predicted_position, predicted_angle, predicted_root_angle, gt_position, gt_angle, gt_root_angle, upper_index, lower_index, fps, ): diff = gt_angle - predicted_angle diff[diff > np.pi] = diff[diff > np.pi] - 2 * np.pi diff[diff < -np.pi] = diff[diff < -np.pi] + 2 * np.pi rot_error = torch.mean(torch.absolute(diff)) return rot_error def mpjpe( predicted_position, predicted_angle, predicted_root_angle, gt_position, gt_angle, gt_root_angle, upper_index, lower_index, fps, ): pos_error = torch.mean( torch.sqrt(torch.sum(torch.square(gt_position - predicted_position), axis=-1)) ) return pos_error def handpe( predicted_position, predicted_angle, predicted_root_angle, gt_position, gt_angle, gt_root_angle, upper_index, lower_index, fps, ): pos_error_hands = torch.mean( torch.sqrt(torch.sum(torch.square(gt_position - predicted_position), axis=-1))[ ..., [20, 21] ] ) return pos_error_hands def upperpe( predicted_position, predicted_angle, predicted_root_angle, gt_position, gt_angle, gt_root_angle, upper_index, lower_index, fps, ): upper_body_error = torch.mean( torch.sqrt(torch.sum(torch.square(gt_position - predicted_position), axis=-1))[ ..., upper_index ] ) return upper_body_error def lowerpe( predicted_position, predicted_angle, predicted_root_angle, gt_position, gt_angle, gt_root_angle, upper_index, lower_index, fps, ): lower_body_error = torch.mean( torch.sqrt(torch.sum(torch.square(gt_position - predicted_position), axis=-1))[ ..., lower_index ] ) return lower_body_error def rootpe( predicted_position, predicted_angle, predicted_root_angle, gt_position, gt_angle, gt_root_angle, upper_index, lower_index, fps, ): pos_error_root = torch.mean( torch.sqrt(torch.sum(torch.square(gt_position - predicted_position), axis=-1))[ ..., [0] ] ) return pos_error_root def mpjve( predicted_position, predicted_angle, predicted_root_angle, gt_position, gt_angle, gt_root_angle, upper_index, lower_index, fps, ): gt_velocity = (gt_position[1:, ...] - gt_position[:-1, ...]) * fps predicted_velocity = ( predicted_position[1:, ...] - predicted_position[:-1, ...] ) * fps vel_error = torch.mean( torch.sqrt(torch.sum(torch.square(gt_velocity - predicted_velocity), axis=-1)) ) return vel_error metric_funcs_dict = { "mpjre": mpjre, "mpjpe": mpjpe, "mpjve": mpjve, "handpe": handpe, "upperpe": upperpe, "lowerpe": lowerpe, "rootpe": rootpe, "pred_jitter": pred_jitter, "gt_jitter": gt_jitter, } def get_metric_function(metric): return metric_funcs_dict[metric]
AGRoL-main
utils/metrics.py
import os SMPL_DATA_PATH = "./body_models/smpl" SMPL_KINTREE_PATH = os.path.join(SMPL_DATA_PATH, "kintree_table.pkl") SMPL_MODEL_PATH = os.path.join(SMPL_DATA_PATH, "SMPL_NEUTRAL.pkl") JOINT_REGRESSOR_TRAIN_EXTRA = os.path.join(SMPL_DATA_PATH, "J_regressor_extra.npy") ROT_CONVENTION_TO_ROT_NUMBER = { "legacy": 23, "no_hands": 21, "full_hands": 51, "mitten_hands": 33, } GENDERS = ["neutral", "male", "female"] NUM_BETAS = 10
AGRoL-main
utils/config.py
# MIT License # Copyright (c) 2022 Guy Tevet # # This code is based on https://github.com/GuyTevet/motion-diffusion-model # Copyright (c) Meta Platforms, Inc. All Rights Reserved from diffusion import gaussian_diffusion as gd from diffusion.respace import space_timesteps, SpacedDiffusion from model.meta_model import MetaModel def load_model_wo_clip(model, state_dict): missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) if len(unexpected_keys) != 0: state_dict_new = {} for key in state_dict.keys(): state_dict_new[key.replace("module.", "")] = state_dict[key] missing_keys, unexpected_keys = model.load_state_dict( state_dict_new, strict=False ) assert len(unexpected_keys) == 0 assert all([k.startswith("clip_model.") for k in missing_keys]) def create_model_and_diffusion(args): model = MetaModel(**get_model_args(args)) diffusion = create_gaussian_diffusion(args) return model, diffusion def get_model_args(args): return { "arch": args.arch, "nfeats": args.motion_nfeat, "latent_dim": args.latent_dim, "sparse_dim": args.sparse_dim, "num_layers": args.layers, "dropout": 0.1, "cond_mask_prob": args.cond_mask_prob, "dataset": args.dataset, "input_motion_length": args.input_motion_length, } def create_gaussian_diffusion(args): predict_xstart = True steps = args.diffusion_steps # 1000 scale_beta = 1.0 timestep_respacing = args.timestep_respacing learn_sigma = False rescale_timesteps = False betas = gd.get_named_beta_schedule(args.noise_schedule, steps, scale_beta) loss_type = gd.LossType.MSE if not timestep_respacing: timestep_respacing = [steps] return SpacedDiffusion( dataset=args.dataset, use_timesteps=space_timesteps(steps, timestep_respacing), betas=betas, model_mean_type=( gd.ModelMeanType.EPSILON if not predict_xstart else gd.ModelMeanType.START_X ), model_var_type=( ( gd.ModelVarType.FIXED_LARGE if not args.sigma_small else gd.ModelVarType.FIXED_SMALL ) if not learn_sigma else gd.ModelVarType.LEARNED_RANGE ), loss_type=loss_type, rescale_timesteps=rescale_timesteps, )
AGRoL-main
utils/model_util.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # Check PYTORCH3D_LICENCE before use import functools from typing import Optional import torch import torch.nn.functional as F """ The transformation matrices returned from the functions in this file assume the points on which the transformation will be applied are column vectors. i.e. the R matrix is structured as R = [ [Rxx, Rxy, Rxz], [Ryx, Ryy, Ryz], [Rzx, Rzy, Rzz], ] # (3, 3) This matrix can be applied to column vectors by post multiplication by the points e.g. points = [[0], [1], [2]] # (3 x 1) xyz coordinates of a point transformed_points = R * points To apply the same matrix to points which are row vectors, the R matrix can be transposed and pre multiplied by the points: e.g. points = [[0, 1, 2]] # (1 x 3) xyz coordinates of a point transformed_points = points * R.transpose(1, 0) """ def quaternion_to_matrix(quaternions): """ Convert rotations given as quaternions to rotation matrices. Args: quaternions: quaternions with real part first, as tensor of shape (..., 4). Returns: Rotation matrices as tensor of shape (..., 3, 3). """ r, i, j, k = torch.unbind(quaternions, -1) two_s = 2.0 / (quaternions * quaternions).sum(-1) o = torch.stack( ( 1 - two_s * (j * j + k * k), two_s * (i * j - k * r), two_s * (i * k + j * r), two_s * (i * j + k * r), 1 - two_s * (i * i + k * k), two_s * (j * k - i * r), two_s * (i * k - j * r), two_s * (j * k + i * r), 1 - two_s * (i * i + j * j), ), -1, ) return o.reshape(quaternions.shape[:-1] + (3, 3)) def _copysign(a, b): """ Return a tensor where each element has the absolute value taken from the, corresponding element of a, with sign taken from the corresponding element of b. This is like the standard copysign floating-point operation, but is not careful about negative 0 and NaN. Args: a: source tensor. b: tensor whose signs will be used, of the same shape as a. Returns: Tensor of the same shape as a with the signs of b. """ signs_differ = (a < 0) != (b < 0) return torch.where(signs_differ, -a, a) def _sqrt_positive_part(x): """ Returns torch.sqrt(torch.max(0, x)) but with a zero subgradient where x is 0. """ ret = torch.zeros_like(x) positive_mask = x > 0 ret[positive_mask] = torch.sqrt(x[positive_mask]) return ret def matrix_to_quaternion(matrix): """ Convert rotations given as rotation matrices to quaternions. Args: matrix: Rotation matrices as tensor of shape (..., 3, 3). Returns: quaternions with real part first, as tensor of shape (..., 4). """ if matrix.size(-1) != 3 or matrix.size(-2) != 3: raise ValueError(f"Invalid rotation matrix shape f{matrix.shape}.") m00 = matrix[..., 0, 0] m11 = matrix[..., 1, 1] m22 = matrix[..., 2, 2] o0 = 0.5 * _sqrt_positive_part(1 + m00 + m11 + m22) x = 0.5 * _sqrt_positive_part(1 + m00 - m11 - m22) y = 0.5 * _sqrt_positive_part(1 - m00 + m11 - m22) z = 0.5 * _sqrt_positive_part(1 - m00 - m11 + m22) o1 = _copysign(x, matrix[..., 2, 1] - matrix[..., 1, 2]) o2 = _copysign(y, matrix[..., 0, 2] - matrix[..., 2, 0]) o3 = _copysign(z, matrix[..., 1, 0] - matrix[..., 0, 1]) return torch.stack((o0, o1, o2, o3), -1) def _axis_angle_rotation(axis: str, angle): """ Return the rotation matrices for one of the rotations about an axis of which Euler angles describe, for each value of the angle given. Args: axis: Axis label "X" or "Y or "Z". angle: any shape tensor of Euler angles in radians Returns: Rotation matrices as tensor of shape (..., 3, 3). """ cos = torch.cos(angle) sin = torch.sin(angle) one = torch.ones_like(angle) zero = torch.zeros_like(angle) if axis == "X": R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos) if axis == "Y": R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos) if axis == "Z": R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one) return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3)) def euler_angles_to_matrix(euler_angles, convention: str): """ Convert rotations given as Euler angles in radians to rotation matrices. Args: euler_angles: Euler angles in radians as tensor of shape (..., 3). convention: Convention string of three uppercase letters from {"X", "Y", and "Z"}. Returns: Rotation matrices as tensor of shape (..., 3, 3). """ if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3: raise ValueError("Invalid input euler angles.") if len(convention) != 3: raise ValueError("Convention must have 3 letters.") if convention[1] in (convention[0], convention[2]): raise ValueError(f"Invalid convention {convention}.") for letter in convention: if letter not in ("X", "Y", "Z"): raise ValueError(f"Invalid letter {letter} in convention string.") matrices = map(_axis_angle_rotation, convention, torch.unbind(euler_angles, -1)) return functools.reduce(torch.matmul, matrices) def _angle_from_tan( axis: str, other_axis: str, data, horizontal: bool, tait_bryan: bool ): """ Extract the first or third Euler angle from the two members of the matrix which are positive constant times its sine and cosine. Args: axis: Axis label "X" or "Y or "Z" for the angle we are finding. other_axis: Axis label "X" or "Y or "Z" for the middle axis in the convention. data: Rotation matrices as tensor of shape (..., 3, 3). horizontal: Whether we are looking for the angle for the third axis, which means the relevant entries are in the same row of the rotation matrix. If not, they are in the same column. tait_bryan: Whether the first and third axes in the convention differ. Returns: Euler Angles in radians for each matrix in dataset as a tensor of shape (...). """ i1, i2 = {"X": (2, 1), "Y": (0, 2), "Z": (1, 0)}[axis] if horizontal: i2, i1 = i1, i2 even = (axis + other_axis) in ["XY", "YZ", "ZX"] if horizontal == even: return torch.atan2(data[..., i1], data[..., i2]) if tait_bryan: return torch.atan2(-data[..., i2], data[..., i1]) return torch.atan2(data[..., i2], -data[..., i1]) def _index_from_letter(letter: str): if letter == "X": return 0 if letter == "Y": return 1 if letter == "Z": return 2 def matrix_to_euler_angles(matrix, convention: str): """ Convert rotations given as rotation matrices to Euler angles in radians. Args: matrix: Rotation matrices as tensor of shape (..., 3, 3). convention: Convention string of three uppercase letters. Returns: Euler angles in radians as tensor of shape (..., 3). """ if len(convention) != 3: raise ValueError("Convention must have 3 letters.") if convention[1] in (convention[0], convention[2]): raise ValueError(f"Invalid convention {convention}.") for letter in convention: if letter not in ("X", "Y", "Z"): raise ValueError(f"Invalid letter {letter} in convention string.") if matrix.size(-1) != 3 or matrix.size(-2) != 3: raise ValueError(f"Invalid rotation matrix shape f{matrix.shape}.") i0 = _index_from_letter(convention[0]) i2 = _index_from_letter(convention[2]) tait_bryan = i0 != i2 if tait_bryan: central_angle = torch.asin( matrix[..., i0, i2] * (-1.0 if i0 - i2 in [-1, 2] else 1.0) ) else: central_angle = torch.acos(matrix[..., i0, i0]) o = ( _angle_from_tan( convention[0], convention[1], matrix[..., i2], False, tait_bryan ), central_angle, _angle_from_tan( convention[2], convention[1], matrix[..., i0, :], True, tait_bryan ), ) return torch.stack(o, -1) def random_quaternions( n: int, dtype: Optional[torch.dtype] = None, device=None, requires_grad=False ): """ Generate random quaternions representing rotations, i.e. versors with nonnegative real part. Args: n: Number of quaternions in a batch to return. dtype: Type to return. device: Desired device of returned tensor. Default: uses the current device for the default tensor type. requires_grad: Whether the resulting tensor should have the gradient flag set. Returns: Quaternions as tensor of shape (N, 4). """ o = torch.randn((n, 4), dtype=dtype, device=device, requires_grad=requires_grad) s = (o * o).sum(1) o = o / _copysign(torch.sqrt(s), o[:, 0])[:, None] return o def random_rotations( n: int, dtype: Optional[torch.dtype] = None, device=None, requires_grad=False ): """ Generate random rotations as 3x3 rotation matrices. Args: n: Number of rotation matrices in a batch to return. dtype: Type to return. device: Device of returned tensor. Default: if None, uses the current device for the default tensor type. requires_grad: Whether the resulting tensor should have the gradient flag set. Returns: Rotation matrices as tensor of shape (n, 3, 3). """ quaternions = random_quaternions( n, dtype=dtype, device=device, requires_grad=requires_grad ) return quaternion_to_matrix(quaternions) def random_rotation( dtype: Optional[torch.dtype] = None, device=None, requires_grad=False ): """ Generate a single random 3x3 rotation matrix. Args: dtype: Type to return device: Device of returned tensor. Default: if None, uses the current device for the default tensor type requires_grad: Whether the resulting tensor should have the gradient flag set Returns: Rotation matrix as tensor of shape (3, 3). """ return random_rotations(1, dtype, device, requires_grad)[0] def standardize_quaternion(quaternions): """ Convert a unit quaternion to a standard form: one in which the real part is non negative. Args: quaternions: Quaternions with real part first, as tensor of shape (..., 4). Returns: Standardized quaternions as tensor of shape (..., 4). """ return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions) def quaternion_raw_multiply(a, b): """ Multiply two quaternions. Usual torch rules for broadcasting apply. Args: a: Quaternions as tensor of shape (..., 4), real part first. b: Quaternions as tensor of shape (..., 4), real part first. Returns: The product of a and b, a tensor of quaternions shape (..., 4). """ aw, ax, ay, az = torch.unbind(a, -1) bw, bx, by, bz = torch.unbind(b, -1) ow = aw * bw - ax * bx - ay * by - az * bz ox = aw * bx + ax * bw + ay * bz - az * by oy = aw * by - ax * bz + ay * bw + az * bx oz = aw * bz + ax * by - ay * bx + az * bw return torch.stack((ow, ox, oy, oz), -1) def quaternion_multiply(a, b): """ Multiply two quaternions representing rotations, returning the quaternion representing their composition, i.e. the versor with nonnegative real part. Usual torch rules for broadcasting apply. Args: a: Quaternions as tensor of shape (..., 4), real part first. b: Quaternions as tensor of shape (..., 4), real part first. Returns: The product of a and b, a tensor of quaternions of shape (..., 4). """ ab = quaternion_raw_multiply(a, b) return standardize_quaternion(ab) def quaternion_invert(quaternion): """ Given a quaternion representing rotation, get the quaternion representing its inverse. Args: quaternion: Quaternions as tensor of shape (..., 4), with real part first, which must be versors (unit quaternions). Returns: The inverse, a tensor of quaternions of shape (..., 4). """ return quaternion * quaternion.new_tensor([1, -1, -1, -1]) def quaternion_apply(quaternion, point): """ Apply the rotation given by a quaternion to a 3D point. Usual torch rules for broadcasting apply. Args: quaternion: Tensor of quaternions, real part first, of shape (..., 4). point: Tensor of 3D points of shape (..., 3). Returns: Tensor of rotated points of shape (..., 3). """ if point.size(-1) != 3: raise ValueError(f"Points are not in 3D, f{point.shape}.") real_parts = point.new_zeros(point.shape[:-1] + (1,)) point_as_quaternion = torch.cat((real_parts, point), -1) out = quaternion_raw_multiply( quaternion_raw_multiply(quaternion, point_as_quaternion), quaternion_invert(quaternion), ) return out[..., 1:] def axis_angle_to_matrix(axis_angle): """ Convert rotations given as axis/angle to rotation matrices. Args: axis_angle: Rotations given as a vector in axis angle form, as a tensor of shape (..., 3), where the magnitude is the angle turned anticlockwise in radians around the vector's direction. Returns: Rotation matrices as tensor of shape (..., 3, 3). """ return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle)) def matrix_to_axis_angle(matrix): """ Convert rotations given as rotation matrices to axis/angle. Args: matrix: Rotation matrices as tensor of shape (..., 3, 3). Returns: Rotations given as a vector in axis angle form, as a tensor of shape (..., 3), where the magnitude is the angle turned anticlockwise in radians around the vector's direction. """ return quaternion_to_axis_angle(matrix_to_quaternion(matrix)) def axis_angle_to_quaternion(axis_angle): """ Convert rotations given as axis/angle to quaternions. Args: axis_angle: Rotations given as a vector in axis angle form, as a tensor of shape (..., 3), where the magnitude is the angle turned anticlockwise in radians around the vector's direction. Returns: quaternions with real part first, as tensor of shape (..., 4). """ angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True) half_angles = 0.5 * angles eps = 1e-6 small_angles = angles.abs() < eps sin_half_angles_over_angles = torch.empty_like(angles) sin_half_angles_over_angles[~small_angles] = ( torch.sin(half_angles[~small_angles]) / angles[~small_angles] ) # for x small, sin(x/2) is about x/2 - (x/2)^3/6 # so sin(x/2)/x is about 1/2 - (x*x)/48 sin_half_angles_over_angles[small_angles] = ( 0.5 - (angles[small_angles] * angles[small_angles]) / 48 ) quaternions = torch.cat( [torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1 ) return quaternions def quaternion_to_axis_angle(quaternions): """ Convert rotations given as quaternions to axis/angle. Args: quaternions: quaternions with real part first, as tensor of shape (..., 4). Returns: Rotations given as a vector in axis angle form, as a tensor of shape (..., 3), where the magnitude is the angle turned anticlockwise in radians around the vector's direction. """ norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True) half_angles = torch.atan2(norms, quaternions[..., :1]) angles = 2 * half_angles eps = 1e-6 small_angles = angles.abs() < eps sin_half_angles_over_angles = torch.empty_like(angles) sin_half_angles_over_angles[~small_angles] = ( torch.sin(half_angles[~small_angles]) / angles[~small_angles] ) # for x small, sin(x/2) is about x/2 - (x/2)^3/6 # so sin(x/2)/x is about 1/2 - (x*x)/48 sin_half_angles_over_angles[small_angles] = ( 0.5 - (angles[small_angles] * angles[small_angles]) / 48 ) return quaternions[..., 1:] / sin_half_angles_over_angles def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor: """ Converts 6D rotation representation by Zhou et al. [1] to rotation matrix using Gram--Schmidt orthogonalisation per Section B of [1]. Args: d6: 6D rotation representation, of size (*, 6) Returns: batch of rotation matrices of size (*, 3, 3) [1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H. On the Continuity of Rotation Representations in Neural Networks. IEEE Conference on Computer Vision and Pattern Recognition, 2019. Retrieved from http://arxiv.org/abs/1812.07035 """ a1, a2 = d6[..., :3], d6[..., 3:] b1 = F.normalize(a1, dim=-1) b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1 b2 = F.normalize(b2, dim=-1) b3 = torch.cross(b1, b2, dim=-1) return torch.stack((b1, b2, b3), dim=-2) def matrix_to_rotation_6d(matrix: torch.Tensor) -> torch.Tensor: """ Converts rotation matrices to 6D rotation representation by Zhou et al. [1] by dropping the last row. Note that 6D representation is not unique. Args: matrix: batch of rotation matrices of size (*, 3, 3) Returns: 6D rotation representation, of size (*, 6) [1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H. On the Continuity of Rotation Representations in Neural Networks. IEEE Conference on Computer Vision and Pattern Recognition, 2019. Retrieved from http://arxiv.org/abs/1812.07035 """ return matrix[..., :2, :].clone().reshape(*matrix.size()[:-2], 6)
AGRoL-main
utils/rotation_conversions.py
# MIT License # Copyright (c) 2022 Guy Tevet # # This code is based on https://github.com/GuyTevet/motion-diffusion-model # Copyright (c) Meta Platforms, Inc. All Rights Reserved import argparse import json import os from argparse import ArgumentParser def parse_and_load_from_model(parser): # args according to the loaded model # do not try to specify them from cmd line since they will be overwritten add_data_options(parser) add_model_options(parser) add_diffusion_options(parser) args = parser.parse_args() args_to_overwrite = [] for group_name in ["dataset", "model", "diffusion"]: args_to_overwrite += get_args_per_group_name(parser, args, group_name) # load args from model model_path = get_model_path_from_args() args_path = os.path.join(os.path.dirname(model_path), "args.json") assert os.path.exists(args_path), "Arguments json file was not found!" with open(args_path, "r") as fr: model_args = json.load(fr) for a in args_to_overwrite: if a in model_args.keys(): # Use the chosen dataset, or use the dataset that is used to train the model if a == "dataset": if args.__dict__[a] is None: args.__dict__[a] = model_args[a] elif a == "input_motion_length": continue else: args.__dict__[a] = model_args[a] else: print( "Warning: was not able to load [{}], using default value [{}] instead.".format( a, args.__dict__[a] ) ) return args def get_args_per_group_name(parser, args, group_name): for group in parser._action_groups: if group.title == group_name: group_dict = { a.dest: getattr(args, a.dest, None) for a in group._group_actions } return list(argparse.Namespace(**group_dict).__dict__.keys()) return ValueError("group_name was not found.") def get_model_path_from_args(): try: dummy_parser = ArgumentParser() dummy_parser.add_argument("model_path") dummy_args, _ = dummy_parser.parse_known_args() return dummy_args.model_path except Exception: raise ValueError("model_path argument must be specified.") def add_base_options(parser): group = parser.add_argument_group("base") group.add_argument( "--cuda", default=True, type=bool, help="Use cuda device, otherwise use CPU." ) group.add_argument("--device", default=0, type=int, help="Device id to use.") group.add_argument("--seed", default=10, type=int, help="For fixing random seed.") group.add_argument( "--batch_size", default=64, type=int, help="Batch size during training." ) group.add_argument( "--timestep_respacing", default="", type=str, help="ddim timestep respacing." ) def add_diffusion_options(parser): group = parser.add_argument_group("diffusion") group.add_argument( "--noise_schedule", default="cosine", choices=["linear", "cosine"], type=str, help="Noise schedule type", ) group.add_argument( "--diffusion_steps", default=1000, type=int, help="Number of diffusion steps (denoted T in the paper)", ) group.add_argument( "--sigma_small", default=True, type=bool, help="Use smaller sigma values." ) def add_model_options(parser): group = parser.add_argument_group("model") group.add_argument( "--arch", default="DiffMLP", type=str, help="Architecture types as reported in the paper.", ) group.add_argument( "--motion_nfeat", default=132, type=int, help="motion feature dimension" ) group.add_argument( "--sparse_dim", default=54, type=int, help="sparse signal feature dimension" ) group.add_argument("--layers", default=8, type=int, help="Number of layers.") group.add_argument( "--latent_dim", default=512, type=int, help="Transformer/GRU width." ) group.add_argument( "--cond_mask_prob", default=0.0, type=float, help="The probability of masking the condition during training." " For classifier-free guidance learning.", ) group.add_argument( "--input_motion_length", default=196, type=int, help="Limit for the maximal number of frames.", ) group.add_argument( "--no_normalization", action="store_true", help="no data normalisation for the 6d motions", ) def add_data_options(parser): group = parser.add_argument_group("dataset") group.add_argument( "--dataset", default=None, choices=[ "amass", ], type=str, help="Dataset name (choose from list).", ) group.add_argument( "--dataset_path", default="./dataset/AMASS/", type=str, help="Dataset path", ) def add_training_options(parser): group = parser.add_argument_group("training") group.add_argument( "--save_dir", required=True, type=str, help="Path to save checkpoints and results.", ) group.add_argument( "--overwrite", action="store_true", help="If True, will enable to use an already existing save_dir.", ) group.add_argument( "--train_platform_type", default="NoPlatform", choices=["NoPlatform", "ClearmlPlatform", "TensorboardPlatform"], type=str, help="Choose platform to log results. NoPlatform means no logging.", ) group.add_argument("--lr", default=2e-4, type=float, help="Learning rate.") group.add_argument( "--weight_decay", default=0.0, type=float, help="Optimizer weight decay." ) group.add_argument( "--lr_anneal_steps", default=0, type=int, help="Number of learning rate anneal steps.", ) group.add_argument( "--train_dataset_repeat_times", default=1000, type=int, help="Repeat the training dataset to save training time", ) group.add_argument( "--eval_during_training", action="store_true", help="If True, will run evaluation during training.", ) group.add_argument( "--log_interval", default=100, type=int, help="Log losses each N steps" ) group.add_argument( "--save_interval", default=5000, type=int, help="Save checkpoints and run evaluation each N steps", ) group.add_argument( "--num_steps", default=6000000, type=int, help="Training will stop after the specified number of steps.", ) group.add_argument( "--resume_checkpoint", default="", type=str, help="If not empty, will start from the specified checkpoint (path to model###.pt file).", ) group.add_argument( "--load_optimizer", action="store_true", help="If True, will also load the saved optimizer state for network initialization", ) group.add_argument( "--num_workers", default=8, type=int, help="Number of dataloader workers.", ) def add_sampling_options(parser): group = parser.add_argument_group("sampling") group.add_argument( "--overlapping_test", action="store_true", help="enabling overlapping test", ) group.add_argument( "--num_per_batch", default=256, type=int, help="the batch size of each split during non-overlapping testing", ) group.add_argument( "--sld_wind_size", default=70, type=int, help="the sliding window size", ) group.add_argument( "--vis", action="store_true", help="visualize the output", ) group.add_argument( "--fix_noise", action="store_true", help="fix init noise for the output", ) group.add_argument( "--fps", default=30, type=int, help="FPS", ) group.add_argument( "--model_path", required=True, type=str, help="Path to model####.pt file to be sampled.", ) group.add_argument( "--output_dir", default="", type=str, help="Path to results dir (auto created by the script). " "If empty, will create dir in parallel to checkpoint.", ) group.add_argument( "--support_dir", type=str, help="the dir that you store your smplh and dmpls dirs", ) def add_evaluation_options(parser): group = parser.add_argument_group("eval") group.add_argument( "--model_path", required=True, type=str, help="Path to model####.pt file to be sampled.", ) def train_args(): parser = ArgumentParser() add_base_options(parser) add_data_options(parser) add_model_options(parser) add_diffusion_options(parser) add_training_options(parser) return parser.parse_args() def sample_args(): parser = ArgumentParser() # args specified by the user: (all other will be loaded from the model) add_base_options(parser) add_sampling_options(parser) return parse_and_load_from_model(parser) def evaluation_parser(): parser = ArgumentParser() # args specified by the user: (all other will be loaded from the model) add_base_options(parser) add_evaluation_options(parser) return parse_and_load_from_model(parser)
AGRoL-main
utils/parser_util.py
# MIT License # Copyright (c) 2022 ETH Sensing, Interaction & Perception Lab # # This code is based on https://github.com/eth-siplab/AvatarPoser # Copyright (c) Meta Platforms, Inc. All Rights Reserved import os import cv2 import numpy as np import trimesh from body_visualizer.mesh.mesh_viewer import MeshViewer from body_visualizer.tools.vis_tools import colors from human_body_prior.tools.omni_tools import copy2cpu as c2c from tqdm import tqdm os.environ["PYOPENGL_PLATFORM"] = "egl" class CheckerBoard: def __init__(self, white=(247, 246, 244), black=(146, 163, 171)): self.white = np.array(white) / 255.0 self.black = np.array(black) / 255.0 self.verts, self.faces, self.texts = None, None, None self.offset = None @staticmethod def gen_checker_xy(black, white, square_size=0.5, xlength=50.0, ylength=50.0): """ generate a checker board in parallel to x-y plane starting from (0, 0) to (xlength, ylength), in meters return: trimesh.Trimesh """ xsquares = int(xlength / square_size) ysquares = int(ylength / square_size) verts, faces, texts = [], [], [] fcount = 0 for i in range(xsquares): for j in range(ysquares): p1 = np.array([i * square_size, j * square_size, 0]) p2 = np.array([(i + 1) * square_size, j * square_size, 0]) p3 = np.array([(i + 1) * square_size, (j + 1) * square_size, 0]) verts.extend([p1, p2, p3]) faces.append([fcount * 3, fcount * 3 + 1, fcount * 3 + 2]) fcount += 1 p1 = np.array([i * square_size, j * square_size, 0]) p2 = np.array([(i + 1) * square_size, (j + 1) * square_size, 0]) p3 = np.array([i * square_size, (j + 1) * square_size, 0]) verts.extend([p1, p2, p3]) faces.append([fcount * 3, fcount * 3 + 1, fcount * 3 + 2]) fcount += 1 if (i + j) % 2 == 0: texts.append(black) texts.append(black) else: texts.append(white) texts.append(white) # now compose as mesh mesh = trimesh.Trimesh( vertices=np.array(verts) + np.array([-5, -5, 0]), faces=np.array(faces), process=False, face_colors=np.array(texts)) return mesh """ # -------------------------------- # Visualize avatar using body pose information and body model # -------------------------------- """ def save_animation(body_pose, savepath, bm, fps=60, resolution=(800, 800)): imw, imh = resolution mv = MeshViewer(width=imw, height=imh, use_offscreen=True) faces = c2c(bm.f) img_array = [] for fId in tqdm(range(body_pose.v.shape[0])): body_mesh = trimesh.Trimesh( vertices=c2c(body_pose.v[fId]), faces=faces, vertex_colors=np.tile(colors["purple"], (6890, 1)), ) generator = CheckerBoard() checker_mesh = generator.gen_checker_xy(generator.black, generator.white) body_mesh.apply_transform( trimesh.transformations.rotation_matrix(-90, (0, 0, 10)) ) body_mesh.apply_transform( trimesh.transformations.rotation_matrix(30, (10, 0, 0)) ) body_mesh.apply_transform(trimesh.transformations.scale_matrix(0.5)) checker_mesh.apply_transform( trimesh.transformations.rotation_matrix(-90, (0, 0, 10)) ) checker_mesh.apply_transform( trimesh.transformations.rotation_matrix(30, (10, 0, 0)) ) checker_mesh.apply_transform(trimesh.transformations.scale_matrix(0.5)) mv.set_static_meshes([checker_mesh, body_mesh]) body_image = mv.render(render_wireframe=False) body_image = body_image.astype(np.uint8) body_image = cv2.cvtColor(body_image, cv2.COLOR_BGR2RGB) img_array.append(body_image) out = cv2.VideoWriter(savepath, cv2.VideoWriter_fourcc(*"DIVX"), fps, resolution) for i in range(len(img_array)): out.write(img_array[i]) out.release()
AGRoL-main
utils/utils_visualize.py
# MIT License # Copyright (c) 2022 ETH Sensing, Interaction & Perception Lab # # This code is based on https://github.com/eth-siplab/AvatarPoser # Copyright (c) Meta Platforms, Inc. All Rights Reserved import torch from human_body_prior.tools import tgm_conversion as tgm from human_body_prior.tools.rotation_tools import aa2matrot, matrot2aa from torch.nn import functional as F def bgs(d6s): d6s = d6s.reshape(-1, 2, 3).permute(0, 2, 1) bsz = d6s.shape[0] b1 = F.normalize(d6s[:, :, 0], p=2, dim=1) a2 = d6s[:, :, 1] c = torch.bmm(b1.view(bsz, 1, -1), a2.view(bsz, -1, 1)).view(bsz, 1) * b1 b2 = F.normalize(a2 - c, p=2, dim=1) b3 = torch.cross(b1, b2, dim=1) return torch.stack([b1, b2, b3], dim=-1) def matrot2sixd(pose_matrot): """ :param pose_matrot: Nx3x3 :return: pose_6d: Nx6 """ pose_6d = torch.cat([pose_matrot[:, :3, 0], pose_matrot[:, :3, 1]], dim=1) return pose_6d def aa2sixd(pose_aa): """ :param pose_aa Nx3 :return: pose_6d: Nx6 """ pose_matrot = aa2matrot(pose_aa) pose_6d = matrot2sixd(pose_matrot) return pose_6d def sixd2matrot(pose_6d): """ :param pose_6d: Nx6 :return: pose_matrot: Nx3x3 """ rot_vec_1 = pose_6d[:, :3] rot_vec_2 = pose_6d[:, 3:6] rot_vec_3 = torch.cross(rot_vec_1, rot_vec_2) pose_matrot = torch.stack([rot_vec_1, rot_vec_2, rot_vec_3], dim=-1) return pose_matrot def sixd2aa(pose_6d, batch=False): """ :param pose_6d: Nx6 :return: pose_aa: Nx3 """ if batch: B, J, C = pose_6d.shape pose_6d = pose_6d.reshape(-1, 6) pose_matrot = sixd2matrot(pose_6d) pose_aa = matrot2aa(pose_matrot) if batch: pose_aa = pose_aa.reshape(B, J, 3) return pose_aa def sixd2quat(pose_6d): """ :param pose_6d: Nx6 :return: pose_quaternion: Nx4 """ pose_mat = sixd2matrot(pose_6d) pose_mat_34 = torch.cat( (pose_mat, torch.zeros(pose_mat.size(0), pose_mat.size(1), 1)), dim=-1 ) pose_quaternion = tgm.rotation_matrix_to_quaternion(pose_mat_34) return pose_quaternion def quat2aa(pose_quat): """ :param pose_quat: Nx4 :return: pose_aa: Nx3 """ return tgm.quaternion_to_angle_axis(pose_quat)
AGRoL-main
utils/utils_transform.py
# MIT License # Copyright (c) 2021 OpenAI # # This code is based on https://github.com/openai/guided-diffusion """ Helpers for distributed training. """ import socket import torch as th import torch.distributed as dist # Change this to reflect your cluster layout. # The GPU for a given rank is (rank % GPUS_PER_NODE). GPUS_PER_NODE = 8 SETUP_RETRY_COUNT = 3 used_device = 0 def setup_dist(device=0): """ Setup a distributed process group. """ global used_device used_device = device if dist.is_initialized(): return def dev(): """ Get the device to use for torch.distributed. """ global used_device if th.cuda.is_available() and used_device >= 0: return th.device(f"cuda:{used_device}") return th.device("cpu") def load_state_dict(path, **kwargs): """ Load a PyTorch file without redundant fetches across MPI ranks. """ return th.load(path, **kwargs) def sync_params(params): """ Synchronize a sequence of Tensors across ranks from rank 0. """ for p in params: with th.no_grad(): dist.broadcast(p, 0) def _find_free_port(): try: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind(("", 0)) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) return s.getsockname()[1] finally: s.close()
AGRoL-main
utils/dist_util.py
# MIT License # Copyright (c) 2021 OpenAI # # This code is based on https://github.com/openai/guided-diffusion # MIT License # Copyright (c) 2022 Guy Tevet # # This code is based on https://github.com/GuyTevet/motion-diffusion-model # Copyright (c) Meta Platforms, Inc. All Rights Reserved import numpy as np import torch as th from .diffusion_model import DiffusionModel def space_timesteps(num_timesteps, section_counts): """ Create a list of timesteps to use from an original diffusion process, given the number of timesteps we want to take from equally-sized portions of the original process. For example, if there's 300 timesteps and the section counts are [10,15,20] then the first 100 timesteps are strided to be 10 timesteps, the second 100 are strided to be 15 timesteps, and the final 100 are strided to be 20. If the stride is a string starting with "ddim", then the fixed striding from the DDIM paper is used, and only one section is allowed. :param num_timesteps: the number of diffusion steps in the original process to divide up. :param section_counts: either a list of numbers, or a string containing comma-separated numbers, indicating the step count per section. As a special case, use "ddimN" where N is a number of steps to use the striding from the DDIM paper. :return: a set of diffusion steps from the original process to use. """ if isinstance(section_counts, str): if section_counts.startswith("ddim"): desired_count = int(section_counts[len("ddim") :]) for i in range(1, num_timesteps): if len(range(0, num_timesteps, i)) == desired_count: return set(range(0, num_timesteps, i)) raise ValueError( f"cannot create exactly {num_timesteps} steps with an integer stride" ) section_counts = [int(x) for x in section_counts.split(",")] size_per = num_timesteps // len(section_counts) extra = num_timesteps % len(section_counts) start_idx = 0 all_steps = [] for i, section_count in enumerate(section_counts): size = size_per + (1 if i < extra else 0) if size < section_count: raise ValueError( f"cannot divide section of {size} steps into {section_count}" ) if section_count <= 1: frac_stride = 1 else: frac_stride = (size - 1) / (section_count - 1) cur_idx = 0.0 taken_steps = [] for _ in range(section_count): taken_steps.append(start_idx + round(cur_idx)) cur_idx += frac_stride all_steps += taken_steps start_idx += size return set(all_steps) class SpacedDiffusion(DiffusionModel): """ A diffusion process which can skip steps in a base diffusion process. :param use_timesteps: a collection (sequence or set) of timesteps from the original diffusion process to retain. :param kwargs: the kwargs to create the base diffusion process. """ def __init__(self, use_timesteps, **kwargs): self.use_timesteps = set(use_timesteps) self.timestep_map = [] self.original_num_steps = len(kwargs["betas"]) base_diffusion = DiffusionModel(**kwargs) last_alpha_cumprod = 1.0 new_betas = [] for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod): if i in self.use_timesteps: new_betas.append(1 - alpha_cumprod / last_alpha_cumprod) last_alpha_cumprod = alpha_cumprod self.timestep_map.append(i) kwargs["betas"] = np.array(new_betas) super().__init__(**kwargs) def p_mean_variance( self, model, *args, **kwargs ): # pylint: disable=signature-differs return super().p_mean_variance(self._wrap_model(model), *args, **kwargs) def training_losses( self, model, *args, **kwargs ): # pylint: disable=signature-differs return super().training_losses(self._wrap_model(model), *args, **kwargs) def condition_mean(self, cond_fn, *args, **kwargs): return super().condition_mean(self._wrap_model(cond_fn), *args, **kwargs) def condition_score(self, cond_fn, *args, **kwargs): return super().condition_score(self._wrap_model(cond_fn), *args, **kwargs) def _wrap_model(self, model): if isinstance(model, _WrappedModel): return model return _WrappedModel( model, self.timestep_map, self.rescale_timesteps, self.original_num_steps ) def _scale_timesteps(self, t): # Scaling is done by the wrapped model. return t class _WrappedModel: def __init__(self, model, timestep_map, rescale_timesteps, original_num_steps): self.model = model self.timestep_map = timestep_map self.rescale_timesteps = rescale_timesteps self.original_num_steps = original_num_steps def __call__(self, x, ts, sparse, **kwargs): map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype) new_ts = map_tensor[ts] if self.rescale_timesteps: new_ts = new_ts.float() * (1000.0 / self.original_num_steps) return self.model(x, new_ts, sparse, **kwargs)
AGRoL-main
diffusion/respace.py