python_code
stringlengths 0
4.04M
| repo_name
stringlengths 7
58
| file_path
stringlengths 5
147
|
---|---|---|
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Train a network across multiple GPUs.
"""
import contextlib
import logging
import sys
import time
from argparse import Namespace
from itertools import chain
from typing import Any, Dict, List
import torch
from fairseq import checkpoint_utils, distributed_utils, models, optim, utils
from fairseq.dataclass.configs import FairseqConfig
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.file_io import PathManager
from fairseq.logging import meters, metrics
from fairseq.nan_detector import NanDetector
from fairseq.optim import lr_scheduler
logger = logging.getLogger(__name__)
class Trainer(object):
"""Main class for data parallel training.
This class supports synchronous distributed data parallel training,
where multiple workers each have a full model replica and gradients
are accumulated across workers before each update. We use
:class:`~torch.nn.parallel.DistributedDataParallel` to handle
communication of the gradients across workers.
"""
def __init__(self, cfg: FairseqConfig, task, model, criterion, quantizer=None):
if isinstance(cfg, Namespace):
logger.warning(
"argparse.Namespace configuration is deprecated! Automatically converting to OmegaConf"
)
cfg = convert_namespace_to_omegaconf(cfg)
self.cfg = cfg
self.task = task
# catalog shared parameters
shared_params = _catalog_shared_params(model)
self.tpu = cfg.common.tpu
self.cuda = torch.cuda.is_available() and not cfg.common.cpu and not self.tpu
if self.cuda:
self.device = torch.device("cuda")
elif self.tpu:
self.device = utils.get_tpu_device()
else:
self.device = torch.device("cpu")
# copy model and criterion to current device/dtype
self._criterion = criterion
self._model = model
if cfg.common.fp16:
self._criterion = self._criterion.half()
self._model = self._model.half()
elif cfg.common.bf16:
self._criterion = self._criterion.to(dtype=torch.bfloat16)
self._model = self._model.to(dtype=torch.bfloat16)
if not cfg.distributed_training.pipeline_model_parallel:
self._criterion = self._criterion.to(device=self.device)
self._model = self._model.to(device=self.device)
self.pipeline_model_parallel = cfg.distributed_training.pipeline_model_parallel
self.last_device = None
if self.cuda and self.pipeline_model_parallel:
self.last_device = torch.device(
cfg.distributed_training.pipeline_devices[-1]
)
# check that shared parameters are preserved after device transfer
for shared_param in shared_params:
ref = _get_module_by_path(self._model, shared_param[0])
for path in shared_param[1:]:
logger.info(
"detected shared parameter: {} <- {}".format(shared_param[0], path)
)
_set_module_by_path(self._model, path, ref)
self._dummy_batch = None # indicates we don't have a dummy batch at first
self._lr_scheduler = None
self._num_updates = 0
self._num_xla_compiles = 0 # for TPUs
self._optim_history = None
self._optimizer = None
self._warn_once = set()
self._wrapped_criterion = None
self._wrapped_model = None
# TODO(myleott): support tpu
if self.cuda and self.data_parallel_world_size > 1:
self._grad_norm_buf = torch.cuda.DoubleTensor(self.data_parallel_world_size)
else:
self._grad_norm_buf = None
self.quantizer = quantizer
if self.quantizer is not None:
self.quantizer.set_trainer(self)
# get detailed cuda environment
if self.cuda:
self.cuda_env = utils.CudaEnvironment()
if self.data_parallel_world_size > 1:
self.cuda_env_arr = distributed_utils.all_gather_list(
self.cuda_env, group=distributed_utils.get_global_group()
)
else:
self.cuda_env_arr = [self.cuda_env]
if self.data_parallel_rank == 0:
utils.CudaEnvironment.pretty_print_cuda_env_list(self.cuda_env_arr)
else:
self.cuda_env = None
self.cuda_env_arr = None
metrics.log_start_time("wall", priority=790, round=0)
self._start_time = time.time()
self._previous_training_time = 0
self._cumulative_training_time = None
def reinitialize(self):
"""Reinitialize the Trainer, typically after model params change."""
self._lr_scheduler = None
self._optimizer = None
self._wrapped_criterion = None
self._wrapped_model = None
@property
def data_parallel_world_size(self):
if self.cfg.distributed_training.distributed_world_size == 1:
return 1
return distributed_utils.get_data_parallel_world_size()
@property
def data_parallel_process_group(self):
return distributed_utils.get_data_parallel_group()
@property
def data_parallel_rank(self):
if self.cfg.distributed_training.distributed_world_size == 1:
return 0
return distributed_utils.get_data_parallel_rank()
@property
def is_data_parallel_master(self):
# NOTE: this returns true for all model parallel replicas with data
# parallel rank 0
return self.data_parallel_rank == 0
@property
def criterion(self):
if self._wrapped_criterion is None:
if (
utils.has_parameters(self._criterion)
and self.data_parallel_world_size > 1
and not self.cfg.optimization.use_bmuf
):
self._wrapped_criterion = models.DistributedFairseqModel(
self.cfg.distributed_training,
self._criterion,
process_group=self.data_parallel_process_group,
)
else:
self._wrapped_criterion = self._criterion
return self._wrapped_criterion
@property
def model(self):
if self._wrapped_model is None:
if self.data_parallel_world_size > 1 and not self.cfg.optimization.use_bmuf:
self._wrapped_model = models.DistributedFairseqModel(
self.cfg.distributed_training,
self._model,
process_group=self.data_parallel_process_group,
)
else:
self._wrapped_model = self._model
return self._wrapped_model
@property
def optimizer(self):
if self._optimizer is None:
self._build_optimizer()
return self._optimizer
@property
def lr_scheduler(self):
if self._lr_scheduler is None:
self._build_optimizer() # this will initialize self._lr_scheduler
return self._lr_scheduler
def _build_optimizer(self):
params = list(
filter(
lambda p: p.requires_grad,
chain(self.model.parameters(), self.criterion.parameters()),
)
)
if self.cfg.common.fp16 or self.cfg.common.bf16:
if self.cuda and torch.cuda.get_device_capability(0)[0] < 7:
logger.info(
"NOTE: your device does NOT support faster training with --fp16, "
"please switch to FP32 which is likely to be faster"
)
if (
self.cfg.common.memory_efficient_fp16
or self.cfg.common.memory_efficient_bf16
):
self._optimizer = optim.MemoryEfficientFP16Optimizer.build_optimizer(
self.cfg, params
)
else:
self._optimizer = optim.FP16Optimizer.build_optimizer(self.cfg, params)
else:
if self.cuda and torch.cuda.get_device_capability(0)[0] >= 7:
logger.info("NOTE: your device may support faster training with --fp16")
self._optimizer = optim.build_optimizer(self.cfg.optimizer, params)
if self.cfg.optimization.use_bmuf:
self._optimizer = optim.FairseqBMUF(
self.cfg.bmuf,
self._optimizer,
)
if self.cfg.distributed_training.zero_sharding == "os":
if (
self.cfg.common.fp16
and not self.cfg.common.memory_efficient_fp16
and not self.cfg.common.memory_efficient_bf16
) and not self.cfg.common.fp16_no_flatten_grads:
raise ValueError(
"ZeRO is incomptabile with fp16 and flattened grads. "
"Please use --fp16-no-flatten-grads"
)
else:
optim.shard_(self._optimizer, self.data_parallel_process_group)
# We should initialize the learning rate scheduler immediately after
# building the optimizer, so that the initial learning rate is set.
self._lr_scheduler = lr_scheduler.build_lr_scheduler(
self.cfg.lr_scheduler,
self.optimizer,
)
self._lr_scheduler.step_update(0)
def consolidate_optimizer(self):
"""For OSS, we need to consolidate the state dict."""
if hasattr(self.optimizer.optimizer, "consolidate_state_dict"):
self.optimizer.optimizer.consolidate_state_dict()
def save_checkpoint(self, filename, extra_state):
"""Save all training state in a checkpoint file."""
if self.is_data_parallel_master: # only save one checkpoint
logger.info(
f"Preparing to save checkpoint to {filename} after "
f"{self.get_num_updates()} updates"
)
extra_state["metrics"] = metrics.state_dict()
extra_state["previous_training_time"] = self.cumulative_training_time()
checkpoint_utils.save_state(
filename,
self.cfg,
self.get_model().state_dict(),
self.get_criterion(),
self.optimizer,
self.lr_scheduler,
self.get_num_updates(),
self._optim_history,
extra_state,
)
logger.info(f"Finished saving checkpoint to {filename}")
def load_checkpoint(
self,
filename,
reset_optimizer=False,
reset_lr_scheduler=False,
optimizer_overrides=None,
reset_meters=False,
):
"""
Load all training state from a checkpoint file.
rank = 0 will load the checkpoint, and then broadcast it to all
other ranks.
"""
extra_state, self._optim_history, last_optim_state = None, [], None
bexists = PathManager.isfile(filename)
if bexists:
load_on_all_ranks = (
self.cfg.checkpoint.load_checkpoint_on_all_dp_ranks
# TPUs don't support broadcast yet, so load checkpoints
# on every worker for now
or self.tpu
)
if load_on_all_ranks or self.data_parallel_rank == 0:
state = checkpoint_utils.load_checkpoint_to_cpu(filename)
last_optim_state = state.get("last_optimizer_state", None)
# If doing zero_sharding, do not broadcast global optimizer
# state. Later we will broadcast sharded states to each rank
# to avoid memory from exploding.
if (
not load_on_all_ranks
and self.cfg.distributed_training.zero_sharding == "os"
and "last_optimizer_state" in state
and self.data_parallel_world_size > 1
):
state["last_optimizer_state"] = "SHARDED"
else:
last_optim_state = None
state = None
if self.data_parallel_world_size > 1 and not load_on_all_ranks:
state = distributed_utils.broadcast_object(
state,
src_rank=0,
group=self.data_parallel_process_group,
dist_device=self.device,
)
if self.data_parallel_rank > 0:
last_optim_state = state.get("last_optimizer_state", None)
# load model parameters
try:
state = checkpoint_utils.expand_embedding_matrix(state, self.get_model())
self.get_model().load_state_dict(
state["model"], strict=False, model_cfg=self.cfg.model
) #
if utils.has_parameters(self.get_criterion()):
self.get_criterion().load_state_dict(
state["criterion"], strict=True
)
except Exception:
raise Exception(
"Cannot load model parameters from checkpoint {}; "
"please ensure that the architectures match.".format(filename)
)
extra_state = state["extra_state"]
self._optim_history = state["optimizer_history"]
if last_optim_state is not None and not reset_optimizer:
# rebuild optimizer after loading model, since params may have changed
self._build_optimizer()
# only reload optimizer and lr_scheduler if they match
last_optim = self._optim_history[-1]
assert (
last_optim["criterion_name"] == self.get_criterion().__class__.__name__
), "Criterion does not match; please reset the optimizer (--reset-optimizer)."
assert (
last_optim["optimizer_name"] == self.optimizer.__class__.__name__
), "Optimizer does not match; please reset the optimizer (--reset-optimizer)."
if not reset_lr_scheduler:
self.lr_scheduler.load_state_dict(last_optim["lr_scheduler_state"])
if not load_on_all_ranks and self.data_parallel_world_size > 1:
last_optim_state = self.optimizer.broadcast_global_state_dict(
last_optim_state
)
self.optimizer.load_state_dict(last_optim_state, optimizer_overrides)
self.set_num_updates(last_optim["num_updates"])
if extra_state is not None:
epoch = extra_state["train_iterator"]["epoch"]
logger.info(
"loaded checkpoint {} (epoch {} @ {} updates)".format(
filename, epoch, self.get_num_updates()
)
)
if "previous_training_time" in extra_state:
self._previous_training_time = extra_state["previous_training_time"]
self._start_time = time.time()
self.lr_step(epoch)
if "metrics" in extra_state and not reset_meters:
metrics.load_state_dict(extra_state["metrics"])
# reset TimeMeters, since their start times don't make sense anymore
for meter in metrics.get_meters("default"):
if isinstance(meter, meters.TimeMeter):
meter.reset()
else:
logger.info("no existing checkpoint found {}".format(filename))
return extra_state
def get_train_iterator(
self,
epoch,
combine=True,
load_dataset=True,
data_selector=None,
shard_batch_itr=True,
disable_iterator_cache=False,
):
"""Return an EpochBatchIterator over the training set for a given epoch."""
if load_dataset:
logger.info("loading train data for epoch {}".format(epoch))
self.task.load_dataset(
self.cfg.dataset.train_subset,
epoch=epoch,
combine=combine,
data_selector=data_selector,
)
batch_iterator = self.task.get_batch_iterator(
dataset=self.task.dataset(self.cfg.dataset.train_subset),
max_tokens=self.cfg.dataset.max_tokens,
max_sentences=self.cfg.dataset.batch_size,
max_positions=utils.resolve_max_positions(
self.task.max_positions(),
self.model.max_positions(),
self.cfg.dataset.max_tokens,
),
ignore_invalid_inputs=True,
required_batch_size_multiple=self.cfg.dataset.required_batch_size_multiple,
seed=self.cfg.common.seed,
num_shards=self.data_parallel_world_size if shard_batch_itr else 1,
shard_id=self.data_parallel_rank if shard_batch_itr else 0,
num_workers=self.cfg.dataset.num_workers,
epoch=epoch,
data_buffer_size=self.cfg.dataset.data_buffer_size,
disable_iterator_cache=disable_iterator_cache,
)
self.reset_dummy_batch(batch_iterator.first_batch)
return batch_iterator
def get_valid_iterator(
self,
subset,
disable_iterator_cache=False,
):
"""Return an EpochBatchIterator over given validation subset for a given epoch."""
batch_iterator = self.task.get_batch_iterator(
dataset=self.task.dataset(subset),
max_tokens=self.cfg.dataset.max_tokens_valid,
max_sentences=self.cfg.dataset.batch_size_valid,
max_positions=utils.resolve_max_positions(
self.task.max_positions(),
self.model.max_positions(),
),
ignore_invalid_inputs=self.cfg.dataset.skip_invalid_size_inputs_valid_test,
required_batch_size_multiple=self.cfg.dataset.required_batch_size_multiple,
seed=self.cfg.common.seed,
num_shards=self.data_parallel_world_size,
shard_id=self.data_parallel_rank,
num_workers=self.cfg.dataset.num_workers,
data_buffer_size=self.cfg.dataset.data_buffer_size,
disable_iterator_cache=disable_iterator_cache,
)
self.reset_dummy_batch(batch_iterator.first_batch)
return batch_iterator
def begin_epoch(self, epoch):
"""Called at the beginning of each epoch."""
logger.info("begin training epoch {}".format(epoch))
self.lr_step_begin_epoch(epoch)
if self.quantizer is not None:
self.quantizer.begin_epoch(epoch)
# task specific setup per epoch
self.task.begin_epoch(epoch, self.get_model())
if self.tpu:
import torch_xla.core.xla_model as xm
xm.rendezvous("begin_epoch") # wait for all workers
xm.mark_step()
def begin_valid_epoch(self, epoch):
"""Called at the beginning of each validation epoch."""
# task specific setup per validation epoch
self.task.begin_valid_epoch(epoch, self.get_model())
def reset_dummy_batch(self, batch):
self._dummy_batch = batch
@metrics.aggregate("train")
def train_step(self, samples, raise_oom=False, epoch=1):
"""Do forward, backward and parameter update."""
self._set_seed()
self.model.train()
self.criterion.train()
self.zero_grad()
metrics.log_start_time("train_wall", priority=800, round=0)
# forward and backward pass
logging_outputs, sample_size, ooms = [], 0, 0
for i, sample in enumerate(samples):
sample, is_dummy_batch = self._prepare_sample(sample)
def maybe_no_sync():
"""
Whenever *samples* contains more than one mini-batch, we
want to accumulate gradients locally and only call
all-reduce in the last backwards pass.
"""
if (
self.data_parallel_world_size > 1
and hasattr(self.model, "no_sync")
and i < len(samples) - 1
):
return self.model.no_sync()
else:
return contextlib.ExitStack() # dummy contextmanager
try:
with maybe_no_sync():
# forward and backward
loss, sample_size_i, logging_output = self.task.train_step(
sample=sample,
model=self.model,
criterion=self.criterion,
optimizer=self.optimizer,
update_num=self.get_num_updates(),
ignore_grad=is_dummy_batch,
epoch = epoch
)
del loss
logging_outputs.append(logging_output)
sample_size += sample_size_i
# emptying the CUDA cache after the first step can
# reduce the chance of OOM
if self.cuda and self.get_num_updates() == 0:
torch.cuda.empty_cache()
except RuntimeError as e:
if "out of memory" in str(e):
self._log_oom(e)
if raise_oom:
raise e
logger.warning(
"attempting to recover from OOM in forward/backward pass"
)
ooms += 1
self.zero_grad()
if self.cuda:
torch.cuda.empty_cache()
if self.cfg.distributed_training.distributed_world_size == 1:
return None
else:
raise e
if self.tpu and i < len(samples) - 1:
# tpu-comment: every XLA operation before marking step is
# appended to the IR graph, and processing too many batches
# before marking step can lead to OOM errors.
# To handle gradient accumulation use case, we explicitly
# mark step here for every forward pass without a backward pass
import torch_xla.core.xla_model as xm
xm.mark_step()
if is_dummy_batch:
if torch.is_tensor(sample_size):
sample_size.zero_()
else:
sample_size *= 0.0
if torch.is_tensor(sample_size):
sample_size = sample_size.float()
else:
sample_size = float(sample_size)
# gather logging outputs from all replicas
if self._sync_stats():
train_time = self._local_cumulative_training_time()
logging_outputs, (
sample_size,
ooms,
total_train_time,
) = self._aggregate_logging_outputs(
logging_outputs,
sample_size,
ooms,
train_time,
ignore=is_dummy_batch,
)
self._cumulative_training_time = (
total_train_time / self.data_parallel_world_size
)
overflow = False
try:
with torch.autograd.profiler.record_function("reduce-grads"):
self.optimizer.all_reduce_grads(self.model)
if utils.has_parameters(self.criterion):
self.optimizer.all_reduce_grads(self.criterion)
with torch.autograd.profiler.record_function("multiply-grads"):
# multiply gradients by (data_parallel_size / sample_size) since
# DDP already normalizes by the number of data parallel workers.
# Thus we get (sum_of_gradients / sample_size) at the end.
if not self.cfg.optimization.use_bmuf:
self.optimizer.multiply_grads(
self.data_parallel_world_size / sample_size
)
elif sample_size > 0: # BMUF needs to check sample size
num = self.data_parallel_world_size if self._sync_stats() else 1
self.optimizer.multiply_grads(num / sample_size)
with torch.autograd.profiler.record_function("clip-grads"):
# clip grads
grad_norm = self.clip_grad_norm(self.cfg.optimization.clip_norm)
# check that grad norms are consistent across workers
# on tpu check tensor is slow
if not self.tpu:
if (
not self.cfg.optimization.use_bmuf
and self.cfg.distributed_training.distributed_wrapper != "SlowMo"
):
self._check_grad_norms(grad_norm)
if not torch.isfinite(grad_norm).all():
# check local gradnorm single GPU case, trigger NanDetector
raise FloatingPointError("gradients are Nan/Inf")
with torch.autograd.profiler.record_function("optimizer"):
# take an optimization step
self.task.optimizer_step(
self.optimizer, model=self.model, update_num=self.get_num_updates()
)
except FloatingPointError:
# re-run the forward and backward pass with hooks attached to print
# out where it fails
self.zero_grad()
with NanDetector(self.get_model()):
for _, sample in enumerate(samples):
sample, _ = self._prepare_sample(sample)
self.task.train_step(
sample,
self.model,
self.criterion,
self.optimizer,
self.get_num_updates(),
ignore_grad=False,
)
raise
except OverflowError as e:
overflow = True
logger.info("NOTE: overflow detected, " + str(e))
grad_norm = torch.tensor(0.0).cuda()
self.zero_grad()
except RuntimeError as e:
if "out of memory" in str(e):
self._log_oom(e)
logger.error("OOM during optimization, irrecoverable")
raise e
# Some distributed wrappers (e.g., SlowMo) need access to the optimizer after the step
if hasattr(self.model, "perform_additional_optimizer_actions"):
if hasattr(self.optimizer, "fp32_params"):
self.model.perform_additional_optimizer_actions(
self.optimizer.optimizer, self.optimizer.fp32_params
)
else:
self.model.perform_additional_optimizer_actions(
self.optimizer.optimizer
)
logging_output = None
if (
not overflow
or self.cfg.distributed_training.distributed_wrapper == "SlowMo"
):
self.set_num_updates(self.get_num_updates() + 1)
if self.tpu:
# mark step on TPUs
import torch_xla.core.xla_model as xm
xm.mark_step()
# only log stats every log_interval steps
# this causes wps to be misreported when log_interval > 1
logging_output = {}
if self.get_num_updates() % self.cfg.common.log_interval == 0:
# log memory usage
mem_info = xm.get_memory_info(self.device)
gb_free = mem_info["kb_free"] / 1024 / 1024
gb_total = mem_info["kb_total"] / 1024 / 1024
metrics.log_scalar(
"gb_free",
gb_free,
priority=1500,
round=1,
weight=0,
)
metrics.log_scalar(
"gb_total",
gb_total,
priority=1600,
round=1,
weight=0,
)
logging_output = self._reduce_and_log_stats(
logging_outputs,
sample_size,
grad_norm,
)
# log whenever there's an XLA compilation, since these
# slow down training and may indicate opportunities for
# optimization
self._check_xla_compilation()
else:
# log stats
logging_output = self._reduce_and_log_stats(
logging_outputs,
sample_size,
grad_norm,
)
# clear CUDA cache to reduce memory fragmentation
if (
self.cuda
and self.cfg.common.empty_cache_freq > 0
and (
(self.get_num_updates() + self.cfg.common.empty_cache_freq - 1)
% self.cfg.common.empty_cache_freq
)
== 0
):
torch.cuda.empty_cache()
if self.cfg.common.fp16:
metrics.log_scalar(
"loss_scale",
self.optimizer.scaler.loss_scale,
priority=700,
round=4,
weight=0,
)
metrics.log_stop_time("train_wall")
return logging_output
@metrics.aggregate("valid")
def valid_step(self, sample, raise_oom=False):
"""Do forward pass in evaluation mode."""
if self.tpu:
import torch_xla.core.xla_model as xm
xm.rendezvous("valid_step") # wait for all workers
xm.mark_step()
with torch.no_grad():
self.model.eval()
self.criterion.eval()
sample, is_dummy_batch = self._prepare_sample(sample)
try:
_loss, sample_size, logging_output = self.task.valid_step(
sample, self.model, self.criterion
)
except RuntimeError as e:
if "out of memory" in str(e):
self._log_oom(e)
if not raise_oom:
logger.warning(
"ran out of memory in validation step, retrying batch"
)
for p in self.model.parameters():
if p.grad is not None:
p.grad = None # free some memory
if self.cuda:
torch.cuda.empty_cache()
return self.valid_step(sample, raise_oom=True)
raise e
logging_outputs = [logging_output]
if is_dummy_batch:
if torch.is_tensor(sample_size):
sample_size.zero_()
else:
sample_size *= 0.0
# gather logging outputs from all replicas
if self.data_parallel_world_size > 1:
logging_outputs, (sample_size,) = self._aggregate_logging_outputs(
logging_outputs,
sample_size,
ignore=is_dummy_batch,
)
# log validation stats
logging_output = self._reduce_and_log_stats(logging_outputs, sample_size)
return logging_output
def zero_grad(self):
self.optimizer.zero_grad()
def lr_step_begin_epoch(self, epoch):
"""Adjust the learning rate at the beginning of the epoch."""
self.lr_scheduler.step_begin_epoch(epoch)
# prefer updating the LR based on the number of steps
return self.lr_step_update()
def lr_step(self, epoch, val_loss=None):
"""Adjust the learning rate at the end of the epoch."""
self.lr_scheduler.step(epoch, val_loss)
# prefer updating the LR based on the number of steps
return self.lr_step_update()
def lr_step_update(self):
"""Update the learning rate after each update."""
new_lr = self.lr_scheduler.step_update(self.get_num_updates())
if isinstance(new_lr, dict):
for k, v in new_lr.items():
metrics.log_scalar(f"lr_{k}", v, weight=0, priority=300)
new_lr = new_lr.get("default", next(iter(new_lr.values())))
else:
metrics.log_scalar("lr", new_lr, weight=0, priority=300)
return new_lr
def get_lr(self):
"""Get the current learning rate."""
return self.optimizer.get_lr()
def get_model(self):
"""Get the (non-wrapped) model instance."""
return self._model
def get_criterion(self):
"""Get the (non-wrapped) criterion instance."""
return self._criterion
def get_meter(self, name):
"""[deprecated] Get a specific meter by name."""
from fairseq import meters
if "get_meter" not in self._warn_once:
self._warn_once.add("get_meter")
utils.deprecation_warning(
"Trainer.get_meter is deprecated. Please use fairseq.metrics instead."
)
train_meters = metrics.get_meters("train")
if train_meters is None:
train_meters = {}
if name == "train_loss" and "loss" in train_meters:
return train_meters["loss"]
elif name == "train_nll_loss":
# support for legacy train.py, which assumed this meter is
# always initialized
m = train_meters.get("nll_loss", None)
return m or meters.AverageMeter()
elif name == "wall":
# support for legacy train.py, which assumed this meter is
# always initialized
m = metrics.get_meter("default", "wall")
return m or meters.TimeMeter()
elif name == "wps":
m = metrics.get_meter("train", "wps")
return m or meters.TimeMeter()
elif name in {"valid_loss", "valid_nll_loss"}:
# support for legacy train.py, which assumed these meters
# are always initialized
k = name[len("valid_") :]
m = metrics.get_meter("valid", k)
return m or meters.AverageMeter()
elif name == "oom":
return meters.AverageMeter()
elif name in train_meters:
return train_meters[name]
return None
def get_num_updates(self):
"""Get the number of parameters updates."""
return self._num_updates
def set_num_updates(self, num_updates):
"""Set the number of parameters updates."""
self._num_updates = num_updates
self.lr_step_update()
if self.quantizer:
self.quantizer.step_update(self._num_updates)
metrics.log_scalar("num_updates", self._num_updates, weight=0, priority=200)
def clip_grad_norm(self, clip_norm):
return self.optimizer.clip_grad_norm(clip_norm, aggregate_norm_fn=None)
def cumulative_training_time(self):
if self._cumulative_training_time is None:
# single GPU
return self._local_cumulative_training_time()
else:
return self._cumulative_training_time
def _local_cumulative_training_time(self):
"""Aggregate training time in seconds."""
return time.time() - self._start_time + self._previous_training_time
def _prepare_sample(self, sample, is_dummy=False):
if sample == "DUMMY":
raise Exception(
"Trying to use an uninitialized 'dummy' batch. This usually indicates "
"that the total number of batches is smaller than the number of "
"participating GPUs. Try reducing the batch size or using fewer GPUs."
)
if sample is None or len(sample) == 0:
assert (
self._dummy_batch is not None and len(self._dummy_batch) > 0
), "Invalid dummy batch: {}".format(self._dummy_batch)
sample, _ = self._prepare_sample(self._dummy_batch, is_dummy=True)
return sample, True
if self.cuda:
if self.pipeline_model_parallel:
if "target" in sample:
sample["target"] = utils.move_to_cuda(
sample["target"], device=self.last_device
)
else:
sample = utils.move_to_cuda(sample)
elif self.tpu and is_dummy:
# the dummy batch may not be on the appropriate device
sample = utils.move_to_cuda(sample, device=self.device)
def apply_half(t):
if t.dtype is torch.float32:
return t.half()
return t
def apply_bfloat16(t):
if t.dtype is torch.float32:
return t.to(dtype=torch.bfloat16)
return t
if self.cfg.common.fp16:
sample = utils.apply_to_sample(apply_half, sample)
if self.cfg.common.bf16:
sample = utils.apply_to_sample(apply_bfloat16, sample)
if self._dummy_batch == "DUMMY":
self._dummy_batch = sample
return sample, False
def _set_seed(self):
# Set seed based on args.seed and the update number so that we get
# reproducible results when resuming from checkpoints
seed = self.cfg.common.seed + self.get_num_updates()
utils.set_torch_seed(seed)
def _sync_stats(self):
# Return True if it's using multiple GPUs and DDP or multiple GPUs with
# BMUF and it's a bmuf sync with warmup iterations completed before.
if self.data_parallel_world_size == 1:
return False
elif self.cfg.optimization.use_bmuf:
return (
self.get_num_updates() + 1
) % self.cfg.bmuf.global_sync_iter == 0 and (
self.get_num_updates() + 1
) > self.cfg.bmuf.warmup_iterations
else:
return True
def _log_oom(self, exc):
msg = "OOM: Ran out of memory with exception: {}".format(exc)
logger.warning(msg)
if torch.cuda.is_available() and hasattr(torch.cuda, "memory_summary"):
for device_idx in range(torch.cuda.device_count()):
logger.warning(torch.cuda.memory_summary(device=device_idx))
sys.stderr.flush()
def _aggregate_logging_outputs(
self,
logging_outputs: List[Dict[str, Any]],
*extra_stats_to_sum,
ignore=False,
):
if self.task.__class__.logging_outputs_can_be_summed(self.get_criterion()):
return self._fast_stat_sync_sum(
logging_outputs, *extra_stats_to_sum, ignore=ignore
)
else:
return self._all_gather_list_sync(
logging_outputs, *extra_stats_to_sum, ignore=ignore
)
def _all_gather_list_sync(
self,
logging_outputs: List[Dict[str, Any]],
*extra_stats_to_sum,
ignore=False,
):
"""
Sync logging outputs across workers. all_gather_list_sync is
suitable when logging outputs are complex types.
"""
if self.tpu:
raise NotImplementedError
if ignore:
logging_outputs = []
results = list(
zip(
*distributed_utils.all_gather_list(
[logging_outputs] + list(extra_stats_to_sum),
max_size=getattr(self.cfg.common, "all_gather_list_size", 16384),
group=self.data_parallel_process_group,
)
)
)
logging_outputs, extra_stats_to_sum = results[0], results[1:]
logging_outputs = list(chain.from_iterable(logging_outputs))
extra_stats_to_sum = [sum(s) for s in extra_stats_to_sum]
return logging_outputs, extra_stats_to_sum
def _fast_stat_sync_sum(
self,
logging_outputs: List[Dict[str, Any]],
*extra_stats_to_sum,
ignore=False,
):
"""
Sync logging outputs across workers. fast_stat_sync_sum is
faster than all_gather_list_sync, but is only suitable when
logging outputs are scalars and can be summed. Note that
*logging_outputs* cannot contain any nested dicts/lists.
"""
data = {}
for i, stat in enumerate(extra_stats_to_sum):
data["extra_stats_" + str(i)] = stat
if len(logging_outputs) > 0:
log_keys = list(logging_outputs[0].keys())
for k in log_keys:
if not ignore:
v = sum(log[k] for log in logging_outputs if k in log)
else:
v = logging_outputs[0][k]
v = torch.zeros_like(v) if torch.is_tensor(v) else 0
data["logging_outputs_" + k] = v
else:
log_keys = None
data = distributed_utils.all_reduce_dict(
data, device=self.device, group=self.data_parallel_process_group
)
extra_stats_to_sum = [
data["extra_stats_" + str(i)] for i in range(len(extra_stats_to_sum))
]
if log_keys is not None:
logging_outputs = [{k: data["logging_outputs_" + k] for k in log_keys}]
else:
logging_outputs = []
return logging_outputs, extra_stats_to_sum
def _check_grad_norms(self, grad_norm):
"""Check that grad norms are consistent across workers."""
if self._grad_norm_buf is not None:
self._grad_norm_buf.zero_()
self._grad_norm_buf[self.data_parallel_rank] = grad_norm
distributed_utils.all_reduce(
self._grad_norm_buf, group=self.data_parallel_process_group
)
def is_consistent(tensor):
max_abs_diff = torch.max(torch.abs(tensor - tensor[0]))
return (
torch.isfinite(tensor).all()
or (max_abs_diff / (tensor[0] + 1e-6) < 1e-6).all()
)
if not is_consistent(self._grad_norm_buf):
pretty_detail = "\n".join(
"rank {:3d} = {:.8f}".format(r, n)
for r, n in enumerate(self._grad_norm_buf.tolist())
)
error_detail = "grad_norm across the workers:\n{}\n".format(
pretty_detail
)
# use FloatingPointError to trigger NanDetector
raise FloatingPointError(
"Fatal error: gradients are inconsistent between workers. "
"Try --ddp-backend=no_c10d. "
"Or are you mixing up different generation of GPUs in training?"
+ "\n"
+ "-" * 80
+ "\n{}\n".format(error_detail)
+ "-" * 80
)
def _reduce_and_log_stats(self, logging_outputs, sample_size, grad_norm=None):
if grad_norm is not None and (
not torch.is_tensor(grad_norm) or torch.isfinite(grad_norm)
):
metrics.log_speed("ups", 1.0, priority=100, round=2)
metrics.log_scalar("gnorm", grad_norm, priority=400, round=3)
if self.cfg.optimization.clip_norm > 0:
metrics.log_scalar(
"clip",
torch.where(
grad_norm > self.cfg.optimization.clip_norm,
grad_norm.new_tensor(100),
grad_norm.new_tensor(0),
),
priority=500,
round=1,
)
with metrics.aggregate() as agg:
if logging_outputs is not None:
self.task.reduce_metrics(logging_outputs, self.get_criterion())
del logging_outputs
# extra warning for criterions that don't properly log a loss value
if "loss" not in agg:
if "loss" not in self._warn_once:
self._warn_once.add("loss")
logger.warning(
"Criterion.reduce_metrics did not log a 'loss' value, "
"which may break some functionality"
)
metrics.log_scalar("loss", -1)
# support legacy interface
if self.tpu:
logging_output = {}
else:
logging_output = agg.get_smoothed_values()
logging_output["sample_size"] = sample_size
for key_to_delete in ["ppl", "wps", "wpb", "bsz"]:
if key_to_delete in logging_output:
del logging_output[key_to_delete]
return logging_output
def _check_xla_compilation(self):
import torch_xla.debug.metrics as met
compile_stats = met.metric_data("CompileTime")
if compile_stats is None:
return
num_xla_compiles = compile_stats[0]
if num_xla_compiles > self._num_xla_compiles:
logger.warning(
"XLA compilation detected on device #{}; too many of these can lead "
"to slow training, but we expect a few in the beginning".format(
self.cfg.distributed_training.distributed_rank
)
)
self._num_xla_compiles = num_xla_compiles
def _catalog_shared_params(module, memo=None, prefix=""):
if memo is None:
first_call = True
memo = {}
else:
first_call = False
for name, param in module._parameters.items():
param_prefix = prefix + ("." if prefix else "") + name
if param not in memo:
memo[param] = []
memo[param].append(param_prefix)
for name, m in module._modules.items():
if m is None:
continue
submodule_prefix = prefix + ("." if prefix else "") + name
_catalog_shared_params(m, memo, submodule_prefix)
if first_call:
return [x for x in memo.values() if len(x) > 1]
def _get_module_by_path(module, path):
path = path.split(".")
for name in path:
module = getattr(module, name)
return module
def _set_module_by_path(module, path, value):
path = path.split(".")
for name in path[:-1]:
module = getattr(module, name)
setattr(module, path[-1], value)
| data2vec_vision-main | deltalm/src/fairseq/trainer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import torch
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=None, reduce=True):
if target.dim() == lprobs.dim() - 1:
target = target.unsqueeze(-1)
nll_loss = -lprobs.gather(dim=-1, index=target)
smooth_loss = -lprobs.sum(dim=-1, keepdim=True)
if ignore_index is not None:
pad_mask = target.eq(ignore_index)
nll_loss.masked_fill_(pad_mask, 0.0)
smooth_loss.masked_fill_(pad_mask, 0.0)
else:
nll_loss = nll_loss.squeeze(-1)
smooth_loss = smooth_loss.squeeze(-1)
if reduce:
nll_loss = nll_loss.sum()
smooth_loss = smooth_loss.sum()
eps_i = epsilon / lprobs.size(-1)
loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
return loss, nll_loss
@register_criterion("label_smoothed_cross_entropy_with_sparse")
class LabelSmoothedCrossEntropyWithSparseCriterion(FairseqCriterion):
def __init__(
self,
task,
sentence_avg,
label_smoothing,
ignore_prefix_size=0,
report_accuracy=False,
):
super().__init__(task)
self.sentence_avg = sentence_avg
self.eps = label_smoothing
self.ignore_prefix_size = ignore_prefix_size
self.report_accuracy = report_accuracy
self.sim_weight = task.args.sim_weight
@staticmethod
def add_args(parser):
"""Add criterion-specific arguments to the parser."""
# fmt: off
parser.add_argument('--label-smoothing', default=0., type=float, metavar='D',
help='epsilon for label smoothing, 0 means no label smoothing')
parser.add_argument('--report-accuracy', action='store_true',
help='report accuracy metric')
parser.add_argument('--ignore-prefix-size', default=0, type=int,
help='Ignore first N tokens')
parser.add_argument('--sim-weight', default=1., type=float,
help='')
# fmt: on
def forward(self, model, sample, reduce=True, epoch=1):
"""Compute the loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
net_output = model(**sample["net_input"], epoch=epoch)
loss, nll_loss = self.compute_loss(model, net_output, sample, reduce=reduce)
sample_size = (
sample["target"].size(0) if self.sentence_avg else sample["ntokens"]
)
logging_output = {
"loss": loss.data,
"nll_loss": nll_loss.data,
"ntokens": sample["ntokens"],
"nsentences": sample["target"].size(0),
"sample_size": sample_size,
"src_lang_id": int(sample["net_input"]["src_lang_id"][0].cpu()) if "src_lang_id" in sample["net_input"].keys() else None,
"tgt_lang_id": int(sample["net_input"]["tgt_lang_id"][0].cpu()) if "tgt_lang_id" in sample["net_input"].keys() else None,
}
total_loss = loss + self.sim_weight * net_output[1]["lang_weight_sim"].float()
if self.report_accuracy:
n_correct, total = self.compute_accuracy(model, net_output, sample)
logging_output["n_correct"] = utils.item(n_correct.data)
logging_output["total"] = utils.item(total.data)
return total_loss, sample_size, logging_output
def get_lprobs_and_target(self, model, net_output, sample):
lprobs = model.get_normalized_probs(net_output, log_probs=True)
target = model.get_targets(sample, net_output)
if self.ignore_prefix_size > 0:
if getattr(lprobs, "batch_first", False):
lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous()
target = target[:, self.ignore_prefix_size :].contiguous()
else:
lprobs = lprobs[self.ignore_prefix_size :, :, :].contiguous()
target = target[self.ignore_prefix_size :, :].contiguous()
return lprobs.view(-1, lprobs.size(-1)), target.view(-1)
def compute_loss(self, model, net_output, sample, reduce=True):
lprobs, target = self.get_lprobs_and_target(model, net_output, sample)
loss, nll_loss = label_smoothed_nll_loss(
lprobs,
target,
self.eps,
ignore_index=self.padding_idx,
reduce=reduce,
)
return loss, nll_loss
def compute_accuracy(self, model, net_output, sample):
lprobs, target = self.get_lprobs_and_target(model, net_output, sample)
mask = target.ne(self.padding_idx)
n_correct = torch.sum(
lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask))
)
total = torch.sum(mask)
return n_correct, total
@classmethod
def reduce_metrics(cls, logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs)
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
metrics.log_scalar(
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3
)
metrics.log_scalar(
"nll_loss", nll_loss_sum / ntokens / math.log(2), ntokens, round=3
)
metrics.log_derived(
"ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
)
total = utils.item(sum(log.get("total", 0) for log in logging_outputs))
if total > 0:
metrics.log_scalar("total", total)
n_correct = utils.item(
sum(log.get("n_correct", 0) for log in logging_outputs)
)
metrics.log_scalar("n_correct", n_correct)
metrics.log_derived(
"accuracy",
lambda meters: round(
meters["n_correct"].sum * 100.0 / meters["total"].sum, 3
)
if meters["total"].sum > 0
else float("nan"),
)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return True
| data2vec_vision-main | deltalm/src/fairseq/label_smoothed_cross_entropy_with_sparse.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
from collections import Counter
import torch
from fairseq.file_io import PathManager
from fairseq.tokenizer import tokenize_line
def safe_readline(f):
pos = f.tell()
while True:
try:
return f.readline()
except UnicodeDecodeError:
pos -= 1
f.seek(pos) # search where this character begins
class Binarizer:
@staticmethod
def binarize(
filename,
dict,
consumer,
tokenize=tokenize_line,
append_eos=True,
reverse_order=False,
offset=0,
end=-1,
already_numberized=False,
):
nseq, ntok = 0, 0
replaced = Counter()
def replaced_consumer(word, idx):
if idx == dict.unk_index and word != dict.unk_word:
replaced.update([word])
with open(PathManager.get_local_path(filename), "r", encoding="utf-8") as f:
f.seek(offset)
# next(f) breaks f.tell(), hence readline() must be used
line = safe_readline(f)
while line:
if end > 0 and f.tell() > end:
break
if already_numberized:
id_strings = line.strip().split()
id_list = [int(id_string) for id_string in id_strings]
if reverse_order:
id_list.reverse()
if append_eos:
id_list.append(dict.eos())
ids = torch.IntTensor(id_list)
else:
ids = dict.encode_line(
line=line,
line_tokenizer=tokenize,
add_if_not_exist=False,
consumer=replaced_consumer,
append_eos=append_eos,
reverse_order=reverse_order,
)
nseq += 1
ntok += len(ids)
consumer(ids)
line = f.readline()
return {
"nseq": nseq,
"nunk": sum(replaced.values()),
"ntok": ntok,
"replaced": replaced,
}
@staticmethod
def binarize_alignments(filename, alignment_parser, consumer, offset=0, end=-1):
nseq = 0
with open(PathManager.get_local_path(filename), "r") as f:
f.seek(offset)
line = safe_readline(f)
while line:
if end > 0 and f.tell() > end:
break
ids = alignment_parser(line)
nseq += 1
consumer(ids)
line = f.readline()
return {"nseq": nseq}
@staticmethod
def find_offsets(filename, num_chunks):
with open(PathManager.get_local_path(filename), "r", encoding="utf-8") as f:
size = os.fstat(f.fileno()).st_size
chunk_size = size // num_chunks
offsets = [0 for _ in range(num_chunks + 1)]
for i in range(1, num_chunks):
f.seek(chunk_size * i)
safe_readline(f)
offsets[i] = f.tell()
return offsets
| data2vec_vision-main | deltalm/src/fairseq/binarizer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""Implements tracking of constraints for a beam item.
A list of constraints is given as a list of one or more token
sequences, each of length at least one token. For example, for an input sentence
> Die maschinelle Übersetzung ist schwer zu kontrollieren.
We could have the constraints:
* to influence
* hard
There are two implementations:
* OrderedConstraintState: Tracks progress through an ordered list of multitoken constraints.
* UnorderedConstraintState: Tracks progress through an unordered list of multitoken constraints.
The difference is that in the first, the constraints are assumed to be
in order; the algorithm will permit zero or more tokens between them.
In the second, the constraints are not ordered, so many orderings will
be explored.
The same sequence can be present any number of times, and will appear
that many times in the output.
"""
from collections import Counter
from typing import List, Optional, Set, Tuple
import torch
class ConstraintState:
def __init__(self):
pass
def pack_constraints(batch_constraints: List[List[torch.Tensor]]) -> torch.Tensor:
"""Takes a list of list of constraints in tensor form (a list of
tensor constraints for each sentence) and transforms it into a
packed Tensor. For example, here is a batch of size 3 with 3, 0,
and 1 constraints:
[ [ [3 1 2], [3], [4 5 6 7], ]
[],
[ [1 8 9 10 1 4 11 12], ]
]
Its corresponding packed structure is:
[ [ 3 3 1 2 0 3 0 4 5 6 7 0],
[ 0 0 0 0 0 0 0 0 0 0 0 0],
[ 1 1 8 9 10 1 4 11 12 0 0 0] ]
The packed tensor has shape (batch size, maxlen), where
maxlen is defined below. Each row contains concatenated
constraint tokens for that sentence, with 0 appended after
each constraint. The first item in each row is the number
of constraints for that sentence. So maxlen is the maximum
of
(number of constraints) + (sum length of constraints) + 1.
across all sentences in the batch.
"""
# The maximum word length of concatenated constraints for any sentence
max_constraints_len = 1
for sentence_constraints in batch_constraints:
if len(sentence_constraints):
# number of constraints, plus sum of constrain lens, plus a zero after each
constraints_len = (
1
+ sum([c.size(0) for c in sentence_constraints])
+ len(sentence_constraints)
)
max_constraints_len = max(max_constraints_len, constraints_len)
batch_size = len(batch_constraints)
constraints_tensor = torch.zeros((batch_size, max_constraints_len)).long()
for i, sentence_constraints in enumerate(batch_constraints):
constraints_tensor[i, 0] = len(sentence_constraints)
offset = 1
for j, constraint in enumerate(sentence_constraints):
this_len = constraint.size(0)
constraints_tensor[i, offset : offset + this_len] = constraint
offset += this_len + 1
return constraints_tensor.long()
def unpack_constraints(constraint_tensor: torch.Tensor) -> List[torch.Tensor]:
"""
Transforms *one row* of a packed constraint tensor (e.g., for one
sentence in the batch) into a list of constraint tensors.
"""
constraint_list = []
num_constraints = constraint_tensor[0]
constraints = constraint_tensor.tolist()
offset = 1
for i in range(num_constraints):
where = constraints.index(0, offset)
constraint_list.append(constraint_tensor[offset:where])
offset = where + 1
return constraint_list
class ConstraintNode:
"""
Represents a node in a trie managing unordered constraints.
"""
def __init__(self, token: int = None, parent=None):
# The token associate with this node (None for the root)
self.token = int(token) if token is not None else None
# The parent (None at the root)
self.parent = parent
# Whether this node is a completed constraint
self.terminal = 0
# List of child nodes
self.children = {}
# The cumulative number of constraints from this point in the
# trie forward
self.num_constraints = 0
@property
def id(self):
return self.token
def __str__(self):
term = self.terminal != 0
return f"[{self.token}].{term}#{self.num_constraints}"
def __getitem__(self, key: int):
return self.children.get(key, None)
def next_tokens(self) -> Set[int]:
"""The set of child labels."""
return set(self.children.keys())
@staticmethod
def create(constraints: List[List[int]]):
root = ConstraintNode()
for sequence in constraints:
root.add_sequence(sequence)
return root
@staticmethod
def print_graph(node: "ConstraintNode"):
if len(node.children) == 0:
return str(node)
else:
s = f"({node}"
for child in node.children.values():
s += " " + ConstraintNode.print_graph(child)
s += ")"
return s
def token_counts(self) -> Counter:
"""Returns a counter of the number of times each token is used
in a constraint.
"""
token_counts = Counter()
kids = list(self.children.values())
while len(kids) > 0:
kid = kids.pop()
token_counts[kid.id] += kid.num_constraints
kids += list(kid.children.values())
return token_counts
def tokens(self) -> Set[int]:
"""Returns the set of tokens in constraints."""
return set(self.token_counts().keys())
def add_sequence(self, sequence: List[int]):
"""Adds a constraint, represented as a list of integers, to
the trie."""
assert len(sequence) > 0
token = int(sequence[0])
if token not in self.children:
self.children[token] = ConstraintNode(token, parent=self)
node = self.children[token]
if len(sequence) == 1:
node.terminal += 1
node.num_constraints += 1
parent = node.parent
while parent is not None:
parent.num_constraints += 1
parent = parent.parent
else:
node.add_sequence(sequence[1:])
class UnorderedConstraintState(ConstraintState):
"""
Records progress through the set of constraints for each item in the beam
using a trie.
"""
def __init__(self, node: ConstraintNode, copy_from: "ConstraintState" = None):
self.node = node
if copy_from is None:
# The root node
self.root = node
# The set of states in the graph that have been completed
self.completed = Counter()
# The...
self.generated = Counter()
# The list of tokens we need to generate
self.needed_tokens = self.root.tokens()
else:
self.completed = Counter(copy_from.completed)
self.generated = Counter(copy_from.generated)
self.root = copy_from.root
# Mark the node as generated
if self.node != self.root:
self.generated[node] += 1
@staticmethod
def create(constraint_tensor: torch.Tensor):
constraint_list = unpack_constraints(constraint_tensor)
constraint_trie_root = ConstraintNode.create(constraint_list)
return UnorderedConstraintState(constraint_trie_root)
def __str__(self):
gen_str = ",".join([str(node) for node in self.generated])
return f"{self.name}/{self.bank}({gen_str})x{self.num_completed}"
def __copy__(self):
copied_state = UnorderedConstraintState(self.node, copy_from=self)
return copied_state
def copy(self):
return self.__copy__()
@property
def name(self):
if self.node.id is None:
return "ROOT"
else:
return str(self.node.id)
@property
def is_root(self):
return self.node == self.root
@property
def bank(self):
return sum(self.generated.values())
@property
def num_completed(self):
"""The number of constraints (not constraint tokens) that are completed.
In addition to the already-completed states, we need to account for the
current state, which might get marked as completed when another token
is generated.
"""
in_final = self.node.terminal and self.completed[self.node] < self.node.terminal
return sum(self.completed.values()) + in_final
@property
def finished(self):
return self.root.num_constraints - self.num_completed == 0
@property
def token_counts(self):
return self.root.token_counts()
@property
def tokens(self):
return self.root.tokens()
@property
def num_constraint_tokens(self):
return sum(self.token_counts.values())
def next_tokens(self) -> Set[int]:
"""Returns the list of tokens that could come next.
These are (a) all tokens extending the root state and, for
non-root states, additionally all tokens extending the current
state."""
if self.node != self.root:
return self.root.next_tokens().union(self.node.next_tokens())
else:
return self.root.next_tokens()
def advance(self, token: int):
"""Reads in a token and advances the state. Here's how it works.
We can advance to the next state if:
- there is a matching child
- its path isn't blocked
A path is blocked when all constraints that are descendants of
that node have already been generated, in the current state.
If we are not able to advance from the current state, we "fall
off the graph" and return to the root state. There, we again
try to advance, checking the same criteria.
In any case, when falling off the graph, we need to do some
bookkeeping. We:
- check whether any constraints were met (all prefixes of
current state)
- if one is found, mark it as completed
- adjust visited nodes accordingly
"""
token = int(token)
next_state = None
child = self.node[token]
if child is not None and self.generated[child] < child.num_constraints:
next_state = UnorderedConstraintState(child, copy_from=self)
def rewind():
"""If we're mid-trie and an "illegal" token is chosen next, we need
to reset our state to the root state. However, along the way, we need
to check whether a prefix of the current trie state represents a state
we could mark as completed.
"""
node = self.node
while node != self.root:
if node.terminal and self.completed[node] < node.terminal:
next_state.completed[node] += 1
return
next_state.generated[node] -= 1
node = node.parent
# Fall off the graph, check the root
if next_state is None and token in self.root.next_tokens():
child = self.root[token]
# We can only traverse this edge if it's not saturated
if self.generated[child] < child.num_constraints:
next_state = UnorderedConstraintState(child, copy_from=self)
else:
next_state = UnorderedConstraintState(self.root, copy_from=self)
# Rewind
rewind()
elif next_state is None:
next_state = UnorderedConstraintState(self.root, copy_from=self)
# Rewind
rewind()
return next_state
class ConstraintSequence:
def __init__(self, sequences: List[List[int]]):
"""Represents a set of possibly multitoken constraints by
concatenating them and internally recording the end points.
"""
self.sequences = []
self.endpoints = []
self.num_tokens = 0
self.tokens = set()
for sequence in sequences:
for token in sequence:
self.tokens.add(token)
self.num_tokens += len(sequence)
self.endpoints += [False for x in range(len(sequence) - 1)] + [True]
self.sequences += sequence
def __getitem__(self, key: int):
return self.sequences[key]
def __len__(self):
return len(self.sequences)
def __str__(self):
return str(self.sequences)
class OrderedConstraintState(ConstraintState):
"""
Records progress through the set of linear nonbranching constraints with gaps.
"""
def __init__(self, sequence: ConstraintSequence, state: int = -1):
self.sequence = sequence
self.state = state
@staticmethod
def create(constraint_tensor: torch.Tensor):
constraint_list = unpack_constraints(constraint_tensor)
return OrderedConstraintState(ConstraintSequence(constraint_list), -1)
def __str__(self):
return f"{self.state}/{self.bank}x{self.num_completed}"
def __copy__(self):
return OrderedConstraintState(self.sequence, self.state)
def copy(self):
return self.__copy__()
@property
def num_completed(self):
if self.state == -1:
return 0
count = len(
list(filter(lambda x: x, self.sequence.endpoints[0 : self.state + 1]))
)
return count
@property
def is_root(self):
return self.state == -1
@property
def name(self):
if self.state == -1:
return "ROOT"
else:
return str(self.sequence[self.state])
@property
def bank(self) -> int:
return self.state + 1
@property
def finished(self):
return self.state + 1 == len(self.sequence)
@property
def token_counts(self):
return self.sequence.token_counts()
@property
def tokens(self):
return self.sequence.tokens
@property
def num_constraint_tokens(self):
return sum(self.token_counts.values())
def next_tokens(self) -> Set[int]:
"""Returns the list of tokens that could come next.
These are (a) all tokens extending the root state and, for
non-root states, additionally all tokens extending the current
state."""
tokens = set()
if self.state > 0:
tokens.add(self.sequence[0])
if not self.finished:
tokens.add(self.sequence[self.state + 1])
return tokens
def advance(self, token: int):
"""Reads in a token and advances the state. Here's how it works.
We can advance to the next state if:
- there is a matching child
- its path isn't blocked
A path is blocked when all constraints that are descendants of
that node have already been generated, in the current state.
If we are not able to advance from the current state, we "fall
off the graph" and return to the root state. There, we again
try to advance, checking the same criteria.
In any case, when falling off the graph, we need to do some
bookkeeping. We:
- check whether any constraints were met (all prefixes of
current state)
- if one is found, mark it as completed
- adjust visited nodes accordingly
"""
token = int(token)
# print(f"{self} ADVANCE({token}) {self.sequence} -> ", end="")
if self.finished:
# Accept anything
next_state = self.copy()
elif self.sequence[self.state + 1] == token:
# Advance to the next token
next_state = OrderedConstraintState(self.sequence, self.state + 1)
elif self.sequence.endpoints[self.state]:
# Accept anything between constraints (*)
next_state = self.copy()
elif token == self.sequence[0]:
# Start over having generated the first token
next_state = OrderedConstraintState(self.sequence, 0)
else:
# Start over from the root
next_state = OrderedConstraintState(self.sequence, -1)
return next_state
| data2vec_vision-main | deltalm/src/fairseq/token_generation_constraints.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import numpy as np
import torch
from fairseq.data import Dictionary, FairseqDataset
from fairseq.tasks import LegacyFairseqTask, register_task
logger = logging.getLogger(__name__)
@register_task("dummy_masked_lm")
class DummyMaskedLMTask(LegacyFairseqTask):
@staticmethod
def add_args(parser):
"""Add task-specific arguments to the parser."""
parser.add_argument("--dict-size", default=49995, type=int)
parser.add_argument("--dataset-size", default=100000, type=int)
parser.add_argument(
"--tokens-per-sample",
default=512,
type=int,
help="max number of total tokens over all segments "
"per sample for BERT dataset",
)
def __init__(self, args, dictionary):
super().__init__(args)
self.dictionary = dictionary
# add mask token
self.mask_idx = dictionary.add_symbol("<mask>")
dictionary.pad_to_multiple_(8) # often faster if divisible by 8
mask_idx = 0
pad_idx = 1
seq = torch.arange(args.tokens_per_sample) + pad_idx + 1
mask = torch.arange(2, args.tokens_per_sample, 7) # ~15%
src = seq.clone()
src[mask] = mask_idx
tgt = torch.full_like(seq, pad_idx)
tgt[mask] = seq[mask]
self.dummy_src = src
self.dummy_tgt = tgt
@classmethod
def setup_task(cls, args, **kwargs):
"""Setup the task. """
dictionary = Dictionary()
for i in range(args.dict_size):
dictionary.add_symbol("word{}".format(i))
logger.info("dictionary: {} types".format(len(dictionary)))
return cls(args, dictionary)
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
"""
if self.args.batch_size is not None:
bsz = self.args.batch_size
else:
bsz = max(1, self.args.max_tokens // self.args.tokens_per_sample)
self.datasets[split] = DummyDataset(
{
"id": 1,
"net_input": {
"src_tokens": torch.stack([self.dummy_src for _ in range(bsz)]),
"src_lengths": torch.full(
(bsz,), self.args.tokens_per_sample, dtype=torch.long
),
},
"target": torch.stack([self.dummy_tgt for _ in range(bsz)]),
"nsentences": bsz,
"ntokens": bsz * self.args.tokens_per_sample,
},
num_items=self.args.dataset_size,
item_size=self.args.tokens_per_sample,
)
@property
def source_dictionary(self):
return self.dictionary
@property
def target_dictionary(self):
return self.dictionary
class DummyDataset(FairseqDataset):
def __init__(self, batch, num_items, item_size):
super().__init__()
self.batch = batch
self.num_items = num_items
self.item_size = item_size
def __getitem__(self, index):
return index
def __len__(self):
return self.num_items
def collater(self, samples):
return self.batch
@property
def sizes(self):
return np.array([self.item_size] * self.num_items)
def num_tokens(self, index):
return self.item_size
def size(self, index):
return self.item_size
def ordered_indices(self):
return np.arange(self.num_items)
@property
def supports_prefetch(self):
return False
| data2vec_vision-main | deltalm/src/fairseq/benchmark/dummy_masked_lm.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
import torch
from fairseq.data import Dictionary, FairseqDataset
from fairseq.dataclass import FairseqDataclass
from fairseq.tasks import FairseqTask, register_task
from omegaconf import II
logger = logging.getLogger(__name__)
@dataclass
class DummyLMConfig(FairseqDataclass):
dict_size: int = 49996
dataset_size: int = 100000
tokens_per_sample: int = field(
default=512, metadata={"help": "max sequence length"}
)
add_bos_token: bool = False
batch_size: Optional[int] = II("dataset.batch_size")
max_tokens: Optional[int] = II("dataset.max_tokens")
max_target_positions: int = II("task.tokens_per_sample")
@register_task("dummy_lm", dataclass=DummyLMConfig)
class DummyLMTask(FairseqTask):
def __init__(self, cfg: DummyLMConfig):
super().__init__(cfg)
# load dictionary
self.dictionary = Dictionary()
for i in range(cfg.dict_size):
self.dictionary.add_symbol("word{}".format(i))
self.dictionary.pad_to_multiple_(8) # often faster if divisible by 8
logger.info("dictionary: {} types".format(len(self.dictionary)))
seq = torch.arange(cfg.tokens_per_sample + 1) + self.dictionary.pad() + 1
self.dummy_src = seq[:-1]
self.dummy_tgt = seq[1:]
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
"""
if self.cfg.batch_size is not None:
bsz = self.cfg.batch_size
else:
bsz = max(1, self.cfg.max_tokens // self.cfg.tokens_per_sample)
self.datasets[split] = DummyDataset(
{
"id": 1,
"net_input": {
"src_tokens": torch.stack([self.dummy_src for _ in range(bsz)]),
"src_lengths": torch.full(
(bsz,), self.cfg.tokens_per_sample, dtype=torch.long
),
},
"target": torch.stack([self.dummy_tgt for _ in range(bsz)]),
"nsentences": bsz,
"ntokens": bsz * self.cfg.tokens_per_sample,
},
num_items=self.cfg.dataset_size,
item_size=self.cfg.tokens_per_sample,
)
@property
def source_dictionary(self):
return self.dictionary
@property
def target_dictionary(self):
return self.dictionary
class DummyDataset(FairseqDataset):
def __init__(self, batch, num_items, item_size):
super().__init__()
self.batch = batch
self.num_items = num_items
self.item_size = item_size
def __getitem__(self, index):
return index
def __len__(self):
return self.num_items
def collater(self, samples):
return self.batch
@property
def sizes(self):
return np.array([self.item_size] * self.num_items)
def num_tokens(self, index):
return self.item_size
def size(self, index):
return self.item_size
def ordered_indices(self):
return np.arange(self.num_items)
@property
def supports_prefetch(self):
return False
| data2vec_vision-main | deltalm/src/fairseq/benchmark/dummy_lm.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import numpy as np
import torch
from fairseq.data import Dictionary, FairseqDataset
from fairseq.tasks import LegacyFairseqTask, register_task
logger = logging.getLogger(__name__)
@register_task("dummy_mt")
class DummyMTTask(LegacyFairseqTask):
@staticmethod
def add_args(parser):
"""Add task-specific arguments to the parser."""
parser.add_argument("--dict-size", default=49996, type=int)
parser.add_argument("--dataset-size", default=100000, type=int)
parser.add_argument("--src-len", default=30, type=int)
parser.add_argument("--tgt-len", default=30, type=int)
def __init__(self, args, dictionary):
super().__init__(args)
self.dictionary = dictionary
self.seed = args.seed
dictionary.pad_to_multiple_(8) # often faster if divisible by 8
self.dummy_src = torch.arange(args.src_len + 1) + dictionary.pad() + 1
self.dummy_tgt = torch.arange(args.tgt_len + 1) + dictionary.pad() + 1
@classmethod
def setup_task(cls, args, **kwargs):
"""Setup the task. """
dictionary = Dictionary()
for i in range(args.dict_size):
dictionary.add_symbol("word{}".format(i))
logger.info("dictionary: {} types".format(len(dictionary)))
args.max_source_positions = args.src_len + dictionary.pad() + 2
args.max_target_positions = args.tgt_len + dictionary.pad() + 2
return cls(args, dictionary)
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
"""
item_size = max(self.args.src_len, self.args.tgt_len)
if self.args.batch_size is not None:
bsz = self.args.batch_size
else:
bsz = max(1, self.args.max_tokens // item_size)
tgt = torch.stack([self.dummy_tgt for _ in range(bsz)])
self.datasets[split] = DummyDataset(
{
"id": 1,
"net_input": {
"src_tokens": torch.stack([self.dummy_src for _ in range(bsz)]),
"src_lengths": torch.full(
(bsz,), self.args.src_len, dtype=torch.long
),
"prev_output_tokens": tgt.clone(),
},
"target": tgt,
"nsentences": bsz,
"ntokens": bsz * self.args.tgt_len,
},
num_items=self.args.dataset_size,
item_size=item_size,
)
@property
def source_dictionary(self):
return self.dictionary
@property
def target_dictionary(self):
return self.dictionary
class DummyDataset(FairseqDataset):
def __init__(self, batch, num_items, item_size):
super().__init__()
self.batch = batch
self.num_items = num_items
self.item_size = item_size
def __getitem__(self, index):
return index
def __len__(self):
return self.num_items
def collater(self, samples):
return self.batch
@property
def sizes(self):
return np.array([self.item_size] * self.num_items)
def num_tokens(self, index):
return self.item_size
def size(self, index):
return self.item_size
def ordered_indices(self):
return np.arange(self.num_items)
@property
def supports_prefetch(self):
return False
| data2vec_vision-main | deltalm/src/fairseq/benchmark/dummy_mt.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# import models/tasks to register them
from . import dummy_lm, dummy_masked_lm, dummy_model, dummy_mt # noqa
| data2vec_vision-main | deltalm/src/fairseq/benchmark/__init__.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch.nn as nn
import torch.nn.functional as F
from fairseq.data import Dictionary
from fairseq.models import (
FairseqDecoder,
FairseqLanguageModel,
register_model,
register_model_architecture,
)
@register_model("dummy_model")
class DummyModel(FairseqLanguageModel):
def __init__(self, args, encoder):
super().__init__(encoder)
self.args = args
@staticmethod
def add_args(parser):
parser.add_argument("--num-layers", type=int, default=24)
parser.add_argument("--embed-dim", type=int, default=1024)
@classmethod
def build_model(cls, args, task):
encoder = DummyEncoder(
num_embed=len(task.target_dictionary),
embed_dim=args.embed_dim,
num_layers=args.num_layers,
)
return cls(args, encoder)
def forward(self, src_tokens, masked_tokens=None, **kwargs):
return self.decoder(src_tokens, masked_tokens=masked_tokens)
class DummyEncoder(FairseqDecoder):
def __init__(self, num_embed=50000, embed_dim=1024, num_layers=24):
super().__init__(Dictionary())
self.embed = nn.Embedding(
num_embeddings=num_embed, embedding_dim=embed_dim, padding_idx=0
)
self.layers_a = nn.ModuleList(
[
nn.Sequential(
nn.LayerNorm(embed_dim),
nn.Linear(embed_dim, 3 * embed_dim), # q, k, v input projection
nn.Linear(3 * embed_dim, embed_dim), # skip self-attention
nn.Linear(embed_dim, embed_dim), # output projection
nn.Dropout(),
)
for i in range(num_layers)
]
)
self.layers_b = nn.ModuleList(
[
nn.Sequential(
nn.LayerNorm(embed_dim),
nn.Linear(embed_dim, 4 * embed_dim), # FFN
nn.ReLU(),
nn.Linear(4 * embed_dim, embed_dim), # FFN
nn.Dropout(0.1),
)
for i in range(num_layers)
]
)
self.out_proj = nn.Linear(embed_dim, num_embed)
def forward(self, tokens, masked_tokens=None):
x = self.embed(tokens)
for layer_a, layer_b in zip(self.layers_a, self.layers_b):
x = x + layer_a(x)
x = x + layer_b(x)
x = self.out_proj(x)
if masked_tokens is not None:
x = x[masked_tokens]
return (x,)
def max_positions(self):
return 1024
def get_normalized_probs(self, net_output, log_probs, sample=None):
logits = net_output[0].float()
if log_probs:
return F.log_softmax(logits, dim=-1)
else:
return F.softmax(logits, dim=-1)
@register_model_architecture("dummy_model", "dummy_model")
def base_architecture(args):
pass
| data2vec_vision-main | deltalm/src/fairseq/benchmark/dummy_model.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import warnings
from argparse import Namespace
from typing import List
import torch
from fairseq import metrics, search, tokenizer, utils
from fairseq.data import Dictionary, FairseqDataset, data_utils, encoders, iterators
from fairseq.dataclass import FairseqDataclass
from fairseq.dataclass.utils import gen_parser_from_dataclass
from omegaconf import DictConfig
logger = logging.getLogger(__name__)
class FairseqTask(object):
"""
Tasks store dictionaries and provide helpers for loading/iterating over
Datasets, initializing the Model/Criterion and calculating the loss.
"""
@classmethod
def add_args(cls, parser):
"""Add task-specific arguments to the parser."""
dc = getattr(cls, "__dataclass", None)
if dc is not None:
gen_parser_from_dataclass(parser, dc())
@staticmethod
def logging_outputs_can_be_summed(criterion) -> bool:
"""
Whether the logging outputs returned by `train_step` and `valid_step` can
be summed across workers prior to calling `aggregate_logging_outputs`.
Setting this to True will improves distributed training speed.
"""
return criterion.logging_outputs_can_be_summed()
def __init__(self, cfg: FairseqDataclass, **kwargs):
self.cfg = cfg
self.datasets = {}
self.dataset_to_epoch_iter = {}
@classmethod
def load_dictionary(cls, filename):
"""Load the dictionary from the filename
Args:
filename (str): the filename
"""
return Dictionary.load(filename)
@classmethod
def build_dictionary(
cls, filenames, workers=1, threshold=-1, nwords=-1, padding_factor=8
):
"""Build the dictionary
Args:
filenames (list): list of filenames
workers (int): number of concurrent workers
threshold (int): defines the minimum word count
nwords (int): defines the total number of words in the final dictionary,
including special symbols
padding_factor (int): can be used to pad the dictionary size to be a
multiple of 8, which is important on some hardware (e.g., Nvidia
Tensor Cores).
"""
d = Dictionary()
for filename in filenames:
Dictionary.add_file_to_dictionary(
filename, d, tokenizer.tokenize_line, workers
)
d.finalize(threshold=threshold, nwords=nwords, padding_factor=padding_factor)
return d
@classmethod
def setup_task(cls, cfg: DictConfig, **kwargs):
"""Setup the task (e.g., load dictionaries).
Args:
cfg (omegaconf.DictConfig): parsed command-line arguments
"""
return cls(cfg, **kwargs)
def has_sharded_data(self, split):
return os.pathsep in getattr(self.cfg, "data", "")
def load_dataset(
self,
split: str,
combine: bool = False,
task_cfg: FairseqDataclass = None,
**kwargs
):
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
combine (bool): combines a split segmented into pieces into one dataset
task_cfg (FairseqDataclass): optional task configuration stored in the checkpoint that can be used
to load datasets
"""
raise NotImplementedError
def dataset(self, split):
"""
Return a loaded dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
Returns:
a :class:`~fairseq.data.FairseqDataset` corresponding to *split*
"""
from fairseq.data import FairseqDataset
if split not in self.datasets:
raise KeyError("Dataset not loaded: " + split)
if not isinstance(self.datasets[split], FairseqDataset):
raise TypeError("Datasets are expected to be of type FairseqDataset")
return self.datasets[split]
def filter_indices_by_size(
self, indices, dataset, max_positions=None, ignore_invalid_inputs=False
):
"""
Filter examples that are too large
Args:
indices (np.array): original array of sample indices
dataset (~fairseq.data.FairseqDataset): dataset to batch
max_positions (optional): max sentence length supported by the
model (default: None).
ignore_invalid_inputs (bool, optional): don't raise Exception for
sentences that are too long (default: False).
Returns:
np.array: array of filtered sample indices
"""
indices, ignored = dataset.filter_indices_by_size(indices, max_positions)
if len(ignored) > 0:
if not ignore_invalid_inputs:
raise Exception(
(
"Size of sample #{} is invalid (={}) since max_positions={}, "
"skip this example with --skip-invalid-size-inputs-valid-test"
).format(ignored[0], dataset.size(ignored[0]), max_positions)
)
logger.warning(
(
"{} samples have invalid sizes and will be skipped, "
"max_positions={}, first few sample ids={}"
).format(len(ignored), max_positions, ignored[:10])
)
return indices
def can_reuse_epoch_itr(self, dataset):
# We can reuse the epoch iterator across epochs as long as the dataset
# hasn't disabled it. We default to ``False`` here, although in practice
# this will be ``True`` for most datasets that inherit from
# ``FairseqDataset`` due to the base implementation there.
return getattr(dataset, "can_reuse_epoch_itr_across_epochs", False)
def get_batch_iterator(
self,
dataset,
max_tokens=None,
max_sentences=None,
max_positions=None,
ignore_invalid_inputs=False,
required_batch_size_multiple=1,
seed=1,
num_shards=1,
shard_id=0,
num_workers=0,
epoch=1,
data_buffer_size=0,
disable_iterator_cache=False,
):
"""
Get an iterator that yields batches of data from the given dataset.
Args:
dataset (~fairseq.data.FairseqDataset): dataset to batch
max_tokens (int, optional): max number of tokens in each batch
(default: None).
max_sentences (int, optional): max number of sentences in each
batch (default: None).
max_positions (optional): max sentence length supported by the
model (default: None).
ignore_invalid_inputs (bool, optional): don't raise Exception for
sentences that are too long (default: False).
required_batch_size_multiple (int, optional): require batch size to
be a multiple of N (default: 1).
seed (int, optional): seed for random number generator for
reproducibility (default: 1).
num_shards (int, optional): shard the data iterator into N
shards (default: 1).
shard_id (int, optional): which shard of the data iterator to
return (default: 0).
num_workers (int, optional): how many subprocesses to use for data
loading. 0 means the data will be loaded in the main process
(default: 0).
epoch (int, optional): the epoch to start the iterator from
(default: 1).
data_buffer_size (int, optional): number of batches to
preload (default: 0).
disable_iterator_cache (bool, optional): don't cache the
EpochBatchIterator (ignores `FairseqTask::can_reuse_epoch_itr`)
(default: False).
Returns:
~fairseq.iterators.EpochBatchIterator: a batched iterator over the
given dataset split
"""
can_reuse_epoch_itr = not disable_iterator_cache and self.can_reuse_epoch_itr(
dataset
)
if can_reuse_epoch_itr and dataset in self.dataset_to_epoch_iter:
logger.debug("reusing EpochBatchIterator for epoch {}".format(epoch))
return self.dataset_to_epoch_iter[dataset]
assert isinstance(dataset, FairseqDataset)
# initialize the dataset with the correct starting epoch
dataset.set_epoch(epoch)
# get indices ordered by example size
with data_utils.numpy_seed(seed):
indices = dataset.ordered_indices()
# filter examples that are too large
if max_positions is not None:
indices = self.filter_indices_by_size(
indices, dataset, max_positions, ignore_invalid_inputs
)
# create mini-batches with given size constraints
batch_sampler = dataset.batch_by_size(
indices,
max_tokens=max_tokens,
max_sentences=max_sentences,
required_batch_size_multiple=required_batch_size_multiple,
)
# return a reusable, sharded iterator
epoch_iter = iterators.EpochBatchIterator(
dataset=dataset,
collate_fn=dataset.collater,
batch_sampler=batch_sampler,
seed=seed,
num_shards=num_shards,
shard_id=shard_id,
num_workers=num_workers,
epoch=epoch,
buffer_size=data_buffer_size,
)
if can_reuse_epoch_itr:
self.dataset_to_epoch_iter[dataset] = epoch_iter
return epoch_iter
def build_model(self, cfg: FairseqDataclass):
"""
Build the :class:`~fairseq.models.BaseFairseqModel` instance for this
task.
Args:
cfg (FairseqDataclass): configuration object
Returns:
a :class:`~fairseq.models.BaseFairseqModel` instance
"""
from fairseq import models, quantization_utils
model = models.build_model(cfg, self)
if getattr(cfg, "tpu", False):
model.prepare_for_tpu_()
model = quantization_utils.quantize_model_scalar(model, cfg)
return model
def build_criterion(self, cfg: DictConfig):
"""
Build the :class:`~fairseq.criterions.FairseqCriterion` instance for
this task.
Args:
cfg (omegaconf.DictConfig): configration object
Returns:
a :class:`~fairseq.criterions.FairseqCriterion` instance
"""
from fairseq import criterions
return criterions.build_criterion(cfg, self)
def build_generator(
self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None
):
if getattr(args, "score_reference", False):
from fairseq.sequence_scorer import SequenceScorer
return SequenceScorer(
self.target_dictionary,
compute_alignment=getattr(args, "print_alignment", False),
)
from fairseq.sequence_generator import (
SequenceGenerator,
SequenceGeneratorWithAlignment,
)
# Choose search strategy. Defaults to Beam Search.
sampling = getattr(args, "sampling", False)
sampling_topk = getattr(args, "sampling_topk", -1)
sampling_topp = getattr(args, "sampling_topp", -1.0)
diverse_beam_groups = getattr(args, "diverse_beam_groups", -1)
diverse_beam_strength = getattr(args, "diverse_beam_strength", 0.5)
match_source_len = getattr(args, "match_source_len", False)
diversity_rate = getattr(args, "diversity_rate", -1)
constrained = getattr(args, "constraints", False)
prefix_allowed_tokens_fn = getattr(args, "prefix_allowed_tokens_fn", None)
if (
sum(
int(cond)
for cond in [
sampling,
diverse_beam_groups > 0,
match_source_len,
diversity_rate > 0,
]
)
> 1
):
raise ValueError("Provided Search parameters are mutually exclusive.")
assert sampling_topk < 0 or sampling, "--sampling-topk requires --sampling"
assert sampling_topp < 0 or sampling, "--sampling-topp requires --sampling"
if sampling:
search_strategy = search.Sampling(
self.target_dictionary, sampling_topk, sampling_topp
)
elif diverse_beam_groups > 0:
search_strategy = search.DiverseBeamSearch(
self.target_dictionary, diverse_beam_groups, diverse_beam_strength
)
elif match_source_len:
# this is useful for tagging applications where the output
# length should match the input length, so we hardcode the
# length constraints for simplicity
search_strategy = search.LengthConstrainedBeamSearch(
self.target_dictionary,
min_len_a=1,
min_len_b=0,
max_len_a=1,
max_len_b=0,
)
elif diversity_rate > -1:
search_strategy = search.DiverseSiblingsSearch(
self.target_dictionary, diversity_rate
)
elif constrained:
search_strategy = search.LexicallyConstrainedBeamSearch(
self.target_dictionary, args.constraints
)
elif prefix_allowed_tokens_fn:
search_strategy = search.PrefixConstrainedBeamSearch(
self.target_dictionary, prefix_allowed_tokens_fn
)
else:
search_strategy = search.BeamSearch(self.target_dictionary)
if seq_gen_cls is None:
if getattr(args, "print_alignment", False):
seq_gen_cls = SequenceGeneratorWithAlignment
else:
seq_gen_cls = SequenceGenerator
extra_gen_cls_kwargs = extra_gen_cls_kwargs or {}
return seq_gen_cls(
models,
self.target_dictionary,
beam_size=getattr(args, "beam", 5),
max_len_a=getattr(args, "max_len_a", 0),
max_len_b=getattr(args, "max_len_b", 200),
min_len=getattr(args, "min_len", 1),
normalize_scores=(not getattr(args, "unnormalized", False)),
len_penalty=getattr(args, "lenpen", 1),
unk_penalty=getattr(args, "unkpen", 0),
temperature=getattr(args, "temperature", 1.0),
match_source_len=getattr(args, "match_source_len", False),
no_repeat_ngram_size=getattr(args, "no_repeat_ngram_size", 0),
search_strategy=search_strategy,
**extra_gen_cls_kwargs,
)
def train_step(
self, sample, model, criterion, optimizer, update_num, ignore_grad=False
):
"""
Do forward and backward, and return the loss as computed by *criterion*
for the given *model* and *sample*.
Args:
sample (dict): the mini-batch. The format is defined by the
:class:`~fairseq.data.FairseqDataset`.
model (~fairseq.models.BaseFairseqModel): the model
criterion (~fairseq.criterions.FairseqCriterion): the criterion
optimizer (~fairseq.optim.FairseqOptimizer): the optimizer
update_num (int): the current update
ignore_grad (bool): multiply loss by 0 if this is set to True
Returns:
tuple:
- the loss
- the sample size, which is used as the denominator for the
gradient
- logging outputs to display while training
"""
model.train()
model.set_num_updates(update_num)
with torch.autograd.profiler.record_function("forward"):
loss, sample_size, logging_output = criterion(model, sample)
if ignore_grad:
loss *= 0
with torch.autograd.profiler.record_function("backward"):
optimizer.backward(loss)
return loss, sample_size, logging_output
def valid_step(self, sample, model, criterion):
model.eval()
with torch.no_grad():
loss, sample_size, logging_output = criterion(model, sample)
return loss, sample_size, logging_output
def optimizer_step(self, optimizer, model, update_num):
optimizer.step()
def build_dataset_for_inference(
self, src_tokens: List[torch.Tensor], src_lengths: List[int], **kwargs
) -> torch.utils.data.Dataset:
raise NotImplementedError
def inference_step(
self, generator, models, sample, prefix_tokens=None, constraints=None
):
with torch.no_grad():
return generator.generate(
models, sample, prefix_tokens=prefix_tokens, constraints=constraints
)
def begin_epoch(self, epoch, model):
"""Hook function called before the start of each epoch."""
pass
def begin_valid_epoch(self, epoch, model):
"""Hook function called before the start of each validation epoch."""
pass
def aggregate_logging_outputs(self, logging_outputs, criterion):
"""[deprecated] Aggregate logging outputs from data parallel training."""
utils.deprecation_warning(
"The aggregate_logging_outputs API is deprecated. "
"Please use the reduce_metrics API instead."
)
with metrics.aggregate() as agg:
self.reduce_metrics(logging_outputs, criterion)
return agg.get_smoothed_values()
def reduce_metrics(self, logging_outputs, criterion):
"""Aggregate logging outputs from data parallel training."""
# backward compatibility for tasks that override aggregate_logging_outputs
base_func = FairseqTask.aggregate_logging_outputs
self_func = getattr(self, "aggregate_logging_outputs").__func__
if self_func is not base_func:
utils.deprecation_warning(
"Tasks should implement the reduce_metrics API. "
"Falling back to deprecated aggregate_logging_outputs API."
)
agg_logging_outputs = self.aggregate_logging_outputs(
logging_outputs, criterion
)
for k, v in agg_logging_outputs.items():
metrics.log_scalar(k, v)
return
if not any("ntokens" in log for log in logging_outputs):
warnings.warn(
"ntokens not found in Criterion logging outputs, cannot log wpb or wps"
)
else:
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
metrics.log_scalar("wpb", ntokens, priority=180, round=1)
metrics.log_speed("wps", ntokens, priority=90, round=1)
if not any("nsentences" in log for log in logging_outputs):
warnings.warn(
"nsentences not found in Criterion logging outputs, cannot log bsz"
)
else:
nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
metrics.log_scalar("bsz", nsentences, priority=190, round=1)
criterion.__class__.reduce_metrics(logging_outputs)
def max_positions(self):
"""Return the max input length allowed by the task."""
return None
@property
def source_dictionary(self):
"""Return the source :class:`~fairseq.data.Dictionary` (if applicable
for this task)."""
raise NotImplementedError
@property
def target_dictionary(self):
"""Return the target :class:`~fairseq.data.Dictionary` (if applicable
for this task)."""
raise NotImplementedError
def build_tokenizer(self, args):
"""Build the pre-tokenizer for this task."""
return encoders.build_tokenizer(args)
def build_bpe(self, args):
"""Build the tokenizer for this task."""
return encoders.build_bpe(args)
class LegacyFairseqTask(FairseqTask):
def __init__(self, args: Namespace):
self.args = args
self.datasets = {}
self.dataset_to_epoch_iter = {}
@classmethod
def setup_task(cls, args: Namespace, **kwargs):
"""Setup the task (e.g., load dictionaries).
Args:
args (argparse.Namespace): parsed command-line arguments
"""
return cls(args, **kwargs)
def has_sharded_data(self, split):
return os.pathsep in getattr(self.args, "data", "")
def build_model(self, args: Namespace):
"""
Build the :class:`~fairseq.models.BaseFairseqModel` instance for this
task.
Args:
args (argparse.Namespace): parsed command-line arguments
Returns:
a :class:`~fairseq.models.BaseFairseqModel` instance
"""
from fairseq import models, quantization_utils
model = models.build_model(args, self)
if getattr(args, "tpu", False):
model.prepare_for_tpu_()
model = quantization_utils.quantize_model_scalar(model, args)
return model
def build_criterion(self, args: Namespace):
"""
Build the :class:`~fairseq.criterions.FairseqCriterion` instance for
this task.
Args:
args (argparse.Namespace): parsed command-line arguments
Returns:
a :class:`~fairseq.criterions.FairseqCriterion` instance
"""
from fairseq import criterions
return criterions.build_criterion(args, self)
| data2vec_vision-main | deltalm/src/fairseq/tasks/fairseq_task.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import numpy as np
from fairseq.data import (
AppendTokenDataset,
ConcatDataset,
DenoisingDataset,
Dictionary,
PrependTokenDataset,
ResamplingDataset,
SortDataset,
TokenBlockDataset,
data_utils,
)
from fairseq.data.encoders.utils import get_whole_word_mask
from fairseq.tasks import register_task
from .denoising import DenoisingTask
logger = logging.getLogger(__name__)
@register_task("multilingual_denoising")
class MultilingualDenoisingTask(DenoisingTask):
@staticmethod
def add_args(parser):
DenoisingTask.add_args(parser)
parser.add_argument(
"--multilang-sampling-alpha",
type=float,
default=1.0,
help="smoothing alpha for sample ratios across multiple datasets",
)
parser.add_argument("--add-lang-token", default=False, action="store_true")
parser.add_argument(
"--langs", type=str, help="language ids we are considering", default=None
)
parser.add_argument(
"--no-whole-word-mask-langs",
type=str,
default="",
metavar="N",
help="languages without spacing between words dont support whole word masking",
)
@classmethod
def setup_task(cls, args, **kwargs):
"""Setup the task."""
paths = args.data.split(":")
assert len(paths) > 0
dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt"))
data_path = paths[0]
if args.langs is None:
languages = sorted(
[
name
for name in os.listdir(data_path)
if os.path.isdir(os.path.join(data_path, name))
]
)
else:
languages = args.langs.split(",")
if args.add_lang_token:
for lang in languages:
dictionary.add_symbol("[{}]".format(lang))
logger.info("dictionary: {} types".format(len(dictionary)))
if not hasattr(args, "shuffle_instance"):
args.shuffle_instance = False
return cls(args, dictionary)
def __init__(self, args, dictionary):
super().__init__(args, dictionary)
self.dictionary = dictionary
self.seed = args.seed
# add mask token
self.mask_idx = self.dictionary.add_symbol("<mask>")
self.langs = args.langs
self.args = args
def _get_sample_prob(self, dataset_lens):
"""
Get smoothed sampling porbability by languages. This helps low resource
languages by upsampling them.
"""
prob = dataset_lens / dataset_lens.sum()
smoothed_prob = prob ** self.args.multilang_sampling_alpha
smoothed_prob = smoothed_prob / smoothed_prob.sum()
return smoothed_prob
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
"""
paths = self.args.data.split(":")
assert len(paths) > 0
data_path = paths[(epoch - 1) % len(paths)]
split_path = os.path.join(data_path, split)
if self.langs is None:
languages = sorted(
[
name
for name in os.listdir(data_path)
if os.path.isdir(os.path.join(data_path, name))
]
)
else:
languages = self.langs.split(",")
for name in languages:
p = os.path.join(data_path, name)
assert os.path.exists(p), "data not found: {}".format(p)
logger.info("Training on {0} languages: {1}".format(len(languages), languages))
logger.info(
"Language to id mapping: ", {lang: id for id, lang in enumerate(languages)}
)
mask_whole_words = get_whole_word_mask(self.args, self.dictionary)
language_without_segmentations = self.args.no_whole_word_mask_langs.split(",")
lang_datasets = []
for language in languages:
split_path = os.path.join(data_path, language, split)
dataset = data_utils.load_indexed_dataset(
split_path,
self.source_dictionary,
self.args.dataset_impl,
combine=combine,
)
if dataset is None:
raise FileNotFoundError(
"Dataset not found: {} ({})".format(split, split_path)
)
end_token = (
self.source_dictionary.index("[{}]".format(language))
if self.args.add_lang_token
else self.source_dictionary.eos()
)
# create continuous blocks of tokens
dataset = TokenBlockDataset(
dataset,
dataset.sizes,
self.args.tokens_per_sample - 2, # one less for <s>
pad=self.source_dictionary.pad(),
eos=end_token,
break_mode=self.args.sample_break_mode,
)
logger.info("loaded {} blocks from: {}".format(len(dataset), split_path))
# prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT)
dataset = PrependTokenDataset(dataset, self.source_dictionary.bos())
dataset = AppendTokenDataset(dataset, end_token)
lang_mask_whole_words = (
mask_whole_words
if language not in language_without_segmentations
else None
)
lang_dataset = DenoisingDataset(
dataset,
dataset.sizes,
self.dictionary,
self.mask_idx,
lang_mask_whole_words,
shuffle=self.args.shuffle_instance,
seed=self.seed,
args=self.args,
eos=None
if not self.args.add_lang_token
else self.source_dictionary.index("[{}]".format(language)),
)
lang_datasets.append(lang_dataset)
dataset_lengths = np.array(
[len(d) for d in lang_datasets],
dtype=float,
)
logger.info(
"loaded total {} blocks for all languages".format(
int(dataset_lengths.sum()),
)
)
if split == self.args.train_subset:
# For train subset, additionally up or down sample languages.
sample_probs = self._get_sample_prob(dataset_lengths)
logger.info(
"Sample probability by language: {}".format(
{
lang: "{0:.4f}".format(sample_probs[id])
for id, lang in enumerate(languages)
}
)
)
size_ratio = (sample_probs * dataset_lengths.sum()) / dataset_lengths
logger.info(
"Up/Down Sampling ratio by language: {}".format(
{
lang: "{0:.2f}".format(size_ratio[id])
for id, lang in enumerate(languages)
}
)
)
resampled_lang_datasets = [
ResamplingDataset(
lang_datasets[i],
size_ratio=size_ratio[i],
seed=self.args.seed,
epoch=epoch,
replace=size_ratio[i] >= 1.0,
)
for i, d in enumerate(lang_datasets)
]
dataset = ConcatDataset(
resampled_lang_datasets,
)
else:
dataset = ConcatDataset(lang_datasets)
lang_splits = [split]
for lang_id, lang_dataset in enumerate(lang_datasets):
split_name = split + "_" + languages[lang_id]
lang_splits.append(split_name)
self.datasets[split_name] = lang_dataset
if split in self.args.valid_subset:
self.args.valid_subset = self.args.valid_subset.replace(
split, ",".join(lang_splits)
)
with data_utils.numpy_seed(self.args.seed + epoch):
shuffle = np.random.permutation(len(dataset))
self.datasets[split] = SortDataset(
dataset,
sort_order=[
shuffle,
dataset.sizes,
],
)
| data2vec_vision-main | deltalm/src/fairseq/tasks/multilingual_denoising.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
from fairseq import utils
from fairseq.data import (
AppendTokenDataset,
DenoisingDataset,
Dictionary,
IdDataset,
NestedDictionaryDataset,
NumelDataset,
PadDataset,
PrependTokenDataset,
StripTokenDataset,
TokenBlockDataset,
data_utils,
)
from fairseq.data.encoders.utils import get_whole_word_mask
from fairseq.tasks import LegacyFairseqTask, register_task
import numpy as np
logger = logging.getLogger(__name__)
@register_task("denoising")
class DenoisingTask(LegacyFairseqTask):
"""
Denoising task for applying sequence to sequence denoising. (ie. BART)
"""
@staticmethod
def add_args(parser):
"""Add task-specific arguments to the parser."""
parser.add_argument("data", help="path to data directory")
parser.add_argument(
"--tokens-per-sample",
default=512,
type=int,
help="max number of total tokens over all segments"
" per sample for dataset",
)
parser.add_argument(
"--sample-break-mode",
default="complete_doc",
type=str,
help="mode for breaking sentence",
)
parser.add_argument(
"--mask",
default=0.0,
type=float,
help="fraction of words/subwords that will be masked",
)
parser.add_argument(
"--mask-random",
default=0.0,
type=float,
help="instead of using [MASK], use random token this often",
)
parser.add_argument(
"--insert",
default=0.0,
type=float,
help="insert this percentage of additional random tokens",
)
parser.add_argument(
"--permute",
default=0.0,
type=float,
help="take this proportion of subwords and permute them",
)
parser.add_argument(
"--rotate",
default=0.5,
type=float,
help="rotate this proportion of inputs",
)
parser.add_argument(
"--poisson-lambda",
default=3.0,
type=float,
help="randomly shuffle sentences for this proportion of inputs",
)
parser.add_argument(
"--permute-sentences",
default=0.0,
type=float,
help="shuffle this proportion of sentences in all inputs",
)
parser.add_argument(
"--mask-length",
default="subword",
type=str,
choices=["subword", "word", "span-poisson"],
help="mask length to choose",
)
parser.add_argument(
"--replace-length",
default=-1,
type=int,
help="when masking N tokens, replace with 0, 1, or N tokens (use -1 for N)",
)
parser.add_argument(
"--max-source-positions",
default=1024,
type=int,
metavar="N",
help="max number of tokens in the source sequence",
)
parser.add_argument(
"--max-target-positions",
default=1024,
type=int,
metavar="N",
help="max number of tokens in the target sequence",
)
def __init__(self, args, dictionary):
super().__init__(args)
self.dictionary = dictionary
self.seed = args.seed
# add mask token
self.mask_idx = self.dictionary.add_symbol("<mask>")
@classmethod
def setup_task(cls, args, **kwargs):
"""Setup the task."""
dictionary = Dictionary.load(os.path.join(args.data, "dict.txt"))
logger.info("dictionary: {} types".format(len(dictionary)))
if not hasattr(args, "shuffle_instance"):
args.shuffle_instance = False
return cls(args, dictionary)
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
"""
paths = utils.split_paths(self.args.data)
assert len(paths) > 0
data_path = paths[(epoch - 1) % len(paths)]
split_path = os.path.join(data_path, split)
dataset = data_utils.load_indexed_dataset(
split_path,
self.dictionary,
self.args.dataset_impl,
combine=combine,
)
if dataset is None:
raise FileNotFoundError(
"Dataset not found: {} ({})".format(split, split_path)
)
dataset = StripTokenDataset(dataset, self.dictionary.eos())
# create continuous blocks of tokens
dataset = TokenBlockDataset(
dataset,
dataset.sizes,
self.args.tokens_per_sample - 2, # one less for <s> and one for </s>
pad=self.dictionary.pad(),
eos=self.dictionary.eos(),
break_mode=self.args.sample_break_mode,
document_sep_len=0,
)
# prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT)
dataset = PrependTokenDataset(dataset, self.source_dictionary.bos())
dataset = AppendTokenDataset(dataset, self.source_dictionary.eos())
mask_whole_words = (
get_whole_word_mask(self.args, self.source_dictionary)
if self.args.mask_length != "subword"
else None
)
self.datasets[split] = DenoisingDataset(
dataset,
dataset.sizes,
self.dictionary,
self.mask_idx,
mask_whole_words,
shuffle=self.args.shuffle_instance,
seed=self.seed,
args=self.args,
)
logger.info(
"Split: {0}, Loaded {1} samples of denoising_dataset".format(
split,
len(self.datasets[split]),
)
)
def build_dataset_for_inference(self, src_tokens, src_lengths, **kwargs):
"""
Generate batches for inference. We assume that the input begins with a
bos symbol (`<s>`) and ends with an eos symbol (`</s>`).
"""
pad = self.source_dictionary.pad()
eos = self.source_dictionary.eos()
src_dataset = TokenBlockDataset(
src_tokens,
src_lengths,
block_size=self.args.tokens_per_sample - 2, # for <s> and </s>
pad=pad,
eos=eos,
break_mode=self.args.sample_break_mode,
document_sep_len=0,
)
prev_output_tokens = PrependTokenDataset(
StripTokenDataset(src_dataset, eos), eos
)
src_dataset = PadDataset(src_dataset, pad_idx=pad, left_pad=False)
return NestedDictionaryDataset(
{
"id": IdDataset(),
"net_input": {
"src_tokens": src_dataset,
"src_lengths": NumelDataset(src_dataset, reduce=False),
"prev_output_tokens": PadDataset(
prev_output_tokens, pad_idx=pad, left_pad=False
),
},
"target": src_dataset,
},
sizes=[np.array(src_lengths)],
)
def max_positions(self):
"""Return the max sentence length allowed by the task."""
return (self.args.max_source_positions, self.args.max_target_positions)
@property
def source_dictionary(self):
"""Return the source :class:`~fairseq.data.Dictionary`."""
return self.dictionary
@property
def target_dictionary(self):
"""Return the target :class:`~fairseq.data.Dictionary`."""
return self.dictionary
| data2vec_vision-main | deltalm/src/fairseq/tasks/denoising.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import contextlib
import logging
import os
from collections import OrderedDict
import torch
from fairseq import metrics, options, utils
from fairseq.data import (
Dictionary,
LanguagePairDataset,
RoundRobinZipDatasets,
TransformEosLangPairDataset,
)
from fairseq.models import FairseqMultiModel
from fairseq.tasks.translation import load_langpair_dataset
from . import LegacyFairseqTask, register_task
logger = logging.getLogger(__name__)
def _lang_token(lang: str):
return "__{}__".format(lang)
def _lang_token_index(dic: Dictionary, lang: str):
"""Return language token index."""
idx = dic.index(_lang_token(lang))
assert idx != dic.unk_index, "cannot find language token for lang {}".format(lang)
return idx
@register_task("multilingual_translation")
class MultilingualTranslationTask(LegacyFairseqTask):
"""A task for training multiple translation models simultaneously.
We iterate round-robin over batches from multiple language pairs, ordered
according to the `--lang-pairs` argument.
The training loop is roughly:
for i in range(len(epoch)):
for lang_pair in args.lang_pairs:
batch = next_batch_for_lang_pair(lang_pair)
loss = criterion(model_for_lang_pair(lang_pair), batch)
loss.backward()
optimizer.step()
In practice, `next_batch_for_lang_pair` is abstracted in a FairseqDataset
(e.g., `RoundRobinZipDatasets`) and `model_for_lang_pair` is a model that
implements the `FairseqMultiModel` interface.
During inference it is required to specify a single `--source-lang` and
`--target-lang`, which indicates the inference langauge direction.
`--lang-pairs`, `--encoder-langtok`, `--decoder-langtok` have to be set to
the same value as training.
"""
@staticmethod
def add_args(parser):
"""Add task-specific arguments to the parser."""
# fmt: off
parser.add_argument('data', metavar='DIR', help='path to data directory')
parser.add_argument('--lang-pairs', default=None, metavar='PAIRS',
help='comma-separated list of language pairs (in training order): en-de,en-fr,de-fr')
parser.add_argument('-s', '--source-lang', default=None, metavar='SRC',
help='source language (only needed for inference)')
parser.add_argument('-t', '--target-lang', default=None, metavar='TARGET',
help='target language (only needed for inference)')
parser.add_argument('--left-pad-source', default='True', type=str, metavar='BOOL',
help='pad the source on the left (default: True)')
parser.add_argument('--left-pad-target', default='False', type=str, metavar='BOOL',
help='pad the target on the left (default: False)')
parser.add_argument('--max-source-positions', default=1024, type=int, metavar='N',
help='max number of tokens in the source sequence')
parser.add_argument('--max-target-positions', default=1024, type=int, metavar='N',
help='max number of tokens in the target sequence')
parser.add_argument('--upsample-primary', default=1, type=int,
help='amount to upsample primary dataset')
parser.add_argument('--encoder-langtok', default=None, type=str, choices=['src', 'tgt'],
metavar='SRCTGT',
help='replace beginning-of-sentence in source sentence with source or target '
'language token. (src/tgt)')
parser.add_argument('--decoder-langtok', action='store_true',
help='replace beginning-of-sentence in target sentence with target language token')
# fmt: on
def __init__(self, args, dicts, training):
super().__init__(args)
self.dicts = dicts
self.training = training
if training:
self.lang_pairs = args.lang_pairs
else:
self.lang_pairs = ["{}-{}".format(args.source_lang, args.target_lang)]
# eval_lang_pairs for multilingual translation is usually all of the
# lang_pairs. However for other multitask settings or when we want to
# optimize for certain languages we want to use a different subset. Thus
# the eval_lang_pairs class variable is provided for classes that extend
# this class.
self.eval_lang_pairs = self.lang_pairs
# model_lang_pairs will be used to build encoder-decoder model pairs in
# models.build_model(). This allows multitask type of sub-class can
# build models other than the input lang_pairs
self.model_lang_pairs = self.lang_pairs
self.langs = list(dicts.keys())
@classmethod
def setup_task(cls, args, **kwargs):
dicts, training = cls.prepare(args, **kwargs)
return cls(args, dicts, training)
@classmethod
def update_args(cls, args):
args.left_pad_source = utils.eval_bool(args.left_pad_source)
args.left_pad_target = utils.eval_bool(args.left_pad_target)
if args.lang_pairs is None:
raise ValueError(
"--lang-pairs is required. List all the language pairs in the training objective."
)
if isinstance(args.lang_pairs, str):
args.lang_pairs = args.lang_pairs.split(",")
@classmethod
def prepare(cls, args, **kargs):
cls.update_args(args)
sorted_langs = sorted(
list({x for lang_pair in args.lang_pairs for x in lang_pair.split("-")})
)
if args.source_lang is not None or args.target_lang is not None:
training = False
else:
training = True
# load dictionaries
dicts = OrderedDict()
for lang in sorted_langs:
paths = utils.split_paths(args.data)
assert len(paths) > 0
dicts[lang] = cls.load_dictionary(
os.path.join(paths[0], "dict.{}.txt".format(lang))
)
if len(dicts) > 0:
assert dicts[lang].pad() == dicts[sorted_langs[0]].pad()
assert dicts[lang].eos() == dicts[sorted_langs[0]].eos()
assert dicts[lang].unk() == dicts[sorted_langs[0]].unk()
if args.encoder_langtok is not None or args.decoder_langtok:
for lang_to_add in sorted_langs:
dicts[lang].add_symbol(_lang_token(lang_to_add))
logger.info("[{}] dictionary: {} types".format(lang, len(dicts[lang])))
return dicts, training
def get_encoder_langtok(self, src_lang, tgt_lang):
if self.args.encoder_langtok is None:
return self.dicts[src_lang].eos()
if self.args.encoder_langtok == "src":
return _lang_token_index(self.dicts[src_lang], src_lang)
else:
return _lang_token_index(self.dicts[src_lang], tgt_lang)
def get_decoder_langtok(self, tgt_lang):
if not self.args.decoder_langtok:
return self.dicts[tgt_lang].eos()
return _lang_token_index(self.dicts[tgt_lang], tgt_lang)
def alter_dataset_langtok(
self,
lang_pair_dataset,
src_eos=None,
src_lang=None,
tgt_eos=None,
tgt_lang=None,
):
if self.args.encoder_langtok is None and not self.args.decoder_langtok:
return lang_pair_dataset
new_src_eos = None
if (
self.args.encoder_langtok is not None
and src_eos is not None
and src_lang is not None
and tgt_lang is not None
):
new_src_eos = self.get_encoder_langtok(src_lang, tgt_lang)
else:
src_eos = None
new_tgt_bos = None
if self.args.decoder_langtok and tgt_eos is not None and tgt_lang is not None:
new_tgt_bos = self.get_decoder_langtok(tgt_lang)
else:
tgt_eos = None
return TransformEosLangPairDataset(
lang_pair_dataset,
src_eos=src_eos,
new_src_eos=new_src_eos,
tgt_bos=tgt_eos,
new_tgt_bos=new_tgt_bos,
)
def load_dataset(self, split, epoch=1, **kwargs):
"""Load a dataset split."""
paths = utils.split_paths(self.args.data)
assert len(paths) > 0
data_path = paths[(epoch - 1) % len(paths)]
def language_pair_dataset(lang_pair):
src, tgt = lang_pair.split("-")
langpair_dataset = load_langpair_dataset(
data_path,
split,
src,
self.dicts[src],
tgt,
self.dicts[tgt],
combine=True,
dataset_impl=self.args.dataset_impl,
upsample_primary=self.args.upsample_primary,
left_pad_source=self.args.left_pad_source,
left_pad_target=self.args.left_pad_target,
max_source_positions=self.args.max_source_positions,
max_target_positions=self.args.max_target_positions,
)
return self.alter_dataset_langtok(
langpair_dataset,
src_eos=self.dicts[src].eos(),
src_lang=src,
tgt_eos=self.dicts[tgt].eos(),
tgt_lang=tgt,
)
self.datasets[split] = RoundRobinZipDatasets(
OrderedDict(
[
(lang_pair, language_pair_dataset(lang_pair))
for lang_pair in self.lang_pairs
]
),
eval_key=None
if self.training
else "%s-%s" % (self.args.source_lang, self.args.target_lang),
)
def build_dataset_for_inference(self, src_tokens, src_lengths, constraints=None):
if constraints is not None:
raise NotImplementedError(
"Constrained decoding with the multilingual_translation task is not supported"
)
lang_pair = "%s-%s" % (self.args.source_lang, self.args.target_lang)
return RoundRobinZipDatasets(
OrderedDict(
[
(
lang_pair,
self.alter_dataset_langtok(
LanguagePairDataset(
src_tokens, src_lengths, self.source_dictionary
),
src_eos=self.source_dictionary.eos(),
src_lang=self.args.source_lang,
tgt_eos=self.target_dictionary.eos(),
tgt_lang=self.args.target_lang,
),
)
]
),
eval_key=lang_pair,
)
def build_model(self, args):
def check_args():
messages = []
if (
len(set(self.args.lang_pairs).symmetric_difference(args.lang_pairs))
!= 0
):
messages.append(
"--lang-pairs should include all the language pairs {}.".format(
args.lang_pairs
)
)
if self.args.encoder_langtok != args.encoder_langtok:
messages.append(
"--encoder-langtok should be {}.".format(args.encoder_langtok)
)
if self.args.decoder_langtok != args.decoder_langtok:
messages.append(
"--decoder-langtok should {} be set.".format(
"" if args.decoder_langtok else "not"
)
)
if len(messages) > 0:
raise ValueError(" ".join(messages))
# Update args -> the fact that the constructor here
# changes the args object doesn't mean you get the same one here
self.update_args(args)
# Check if task args are consistant with model args
check_args()
from fairseq import models
model = models.build_model(args, self)
if not isinstance(model, FairseqMultiModel):
raise ValueError(
"MultilingualTranslationTask requires a FairseqMultiModel architecture"
)
return model
def _per_lang_pair_train_loss(
self, lang_pair, model, update_num, criterion, sample, optimizer, ignore_grad
):
loss, sample_size, logging_output = criterion(
model.models[lang_pair], sample[lang_pair]
)
if ignore_grad:
loss *= 0
optimizer.backward(loss)
return loss, sample_size, logging_output
def train_step(
self, sample, model, criterion, optimizer, update_num, ignore_grad=False
):
model.train()
from collections import defaultdict
agg_loss, agg_sample_size, agg_logging_output = 0.0, 0.0, defaultdict(float)
curr_lang_pairs = [
lang_pair
for lang_pair in self.model_lang_pairs
if sample[lang_pair] is not None and len(sample[lang_pair]) != 0
]
for idx, lang_pair in enumerate(curr_lang_pairs):
def maybe_no_sync():
if (
self.args.distributed_world_size > 1
and hasattr(model, "no_sync")
and idx < len(curr_lang_pairs) - 1
):
return model.no_sync()
else:
return contextlib.ExitStack() # dummy contextmanager
with maybe_no_sync():
loss, sample_size, logging_output = self._per_lang_pair_train_loss(
lang_pair,
model,
update_num,
criterion,
sample,
optimizer,
ignore_grad,
)
agg_loss += loss.detach().item()
# TODO make summing of the sample sizes configurable
agg_sample_size += sample_size
for k in logging_output:
agg_logging_output[k] += logging_output[k]
agg_logging_output[f"{lang_pair}:{k}"] += logging_output[k]
return agg_loss, agg_sample_size, agg_logging_output
def _per_lang_pair_valid_loss(self, lang_pair, model, criterion, sample):
return criterion(model.models[lang_pair], sample[lang_pair])
def valid_step(self, sample, model, criterion):
model.eval()
with torch.no_grad():
from collections import defaultdict
agg_loss, agg_sample_size, agg_logging_output = 0.0, 0.0, defaultdict(float)
for lang_pair in self.eval_lang_pairs:
if (
lang_pair not in sample
or sample[lang_pair] is None
or len(sample[lang_pair]) == 0
):
continue
loss, sample_size, logging_output = self._per_lang_pair_valid_loss(
lang_pair, model, criterion, sample
)
agg_loss += loss.data.item()
# TODO make summing of the sample sizes configurable
agg_sample_size += sample_size
for k in logging_output:
agg_logging_output[k] += logging_output[k]
agg_logging_output[f"{lang_pair}:{k}"] += logging_output[k]
return agg_loss, agg_sample_size, agg_logging_output
def inference_step(
self, generator, models, sample, prefix_tokens=None, constraints=None
):
with torch.no_grad():
if self.args.decoder_langtok:
bos_token = _lang_token_index(
self.target_dictionary, self.args.target_lang
)
else:
bos_token = self.target_dictionary.eos()
return generator.generate(
models,
sample,
prefix_tokens=prefix_tokens,
constraints=constraints,
bos_token=bos_token,
)
def reduce_metrics(self, logging_outputs, criterion):
with metrics.aggregate():
# pass 'sample_size', 'nsentences', 'ntokens' stats to fairseq_task
super().reduce_metrics(logging_outputs, criterion)
for k in ["sample_size", "nsentences", "ntokens"]:
metrics.log_scalar(k, sum(l[k] for l in logging_outputs))
@property
def source_dictionary(self):
if self.training:
return next(iter(self.dicts.values()))
else:
return self.dicts[self.args.source_lang]
@property
def target_dictionary(self):
if self.training:
return next(iter(self.dicts.values()))
else:
return self.dicts[self.args.target_lang]
def max_positions(self):
"""Return the max sentence length allowed by the task."""
if len(self.datasets.values()) == 0:
return {
"%s-%s"
% (self.args.source_lang, self.args.target_lang): (
self.args.max_source_positions,
self.args.max_target_positions,
)
}
return OrderedDict(
[
(key, (self.args.max_source_positions, self.args.max_target_positions))
for split in self.datasets.keys()
for key in self.datasets[split].datasets.keys()
]
)
| data2vec_vision-main | deltalm/src/fairseq/tasks/multilingual_translation.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from fairseq import utils
from fairseq.data import LanguagePairDataset
from . import register_task
from .translation import TranslationTask, load_langpair_dataset
@register_task("translation_from_pretrained_bart")
class TranslationFromPretrainedBARTTask(TranslationTask):
"""
Translate from source language to target language with a model initialized with a multilingual pretrain.
Args:
src_dict (~fairseq.data.Dictionary): dictionary for the source language
tgt_dict (~fairseq.data.Dictionary): dictionary for the target language
.. note::
The translation task is compatible with :mod:`fairseq-train`,
:mod:`fairseq-generate` and :mod:`fairseq-interactive`.
The translation task provides the following additional command-line
arguments:
.. argparse::
:ref: fairseq.tasks.translation_parser
:prog:
"""
@staticmethod
def add_args(parser):
"""Add task-specific arguments to the parser."""
# fmt: off
TranslationTask.add_args(parser)
parser.add_argument('--langs', required=True, metavar='LANG',
help='comma-separated list of monolingual language, '
'for example, "en,de,fr". These should match the '
'langs from pretraining (and be in the same order). '
'You should always add all pretraining language idx '
'during finetuning.')
parser.add_argument('--prepend-bos', action='store_true',
help='prepend bos token to each sentence, which matches '
'mBART pretraining')
# fmt: on
def __init__(self, args, src_dict, tgt_dict):
super().__init__(args, src_dict, tgt_dict)
self.langs = args.langs.split(",")
for d in [src_dict, tgt_dict]:
for l in self.langs:
d.add_symbol("[{}]".format(l))
d.add_symbol("<mask>")
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
"""
paths = utils.split_paths(self.args.data)
assert len(paths) > 0
data_path = paths[(epoch - 1) % len(paths)]
# infer langcode
src, tgt = self.args.source_lang, self.args.target_lang
self.datasets[split] = load_langpair_dataset(
data_path,
split,
src,
self.src_dict,
tgt,
self.tgt_dict,
combine=combine,
dataset_impl=self.args.dataset_impl,
upsample_primary=self.args.upsample_primary,
left_pad_source=self.args.left_pad_source,
left_pad_target=self.args.left_pad_target,
max_source_positions=getattr(self.args, "max_source_positions", 1024),
max_target_positions=getattr(self.args, "max_target_positions", 1024),
load_alignments=self.args.load_alignments,
prepend_bos=getattr(self.args, "prepend_bos", False),
append_source_id=True,
)
def build_generator(self, models, args, **unused):
if getattr(args, "score_reference", False):
from fairseq.sequence_scorer import SequenceScorer
return SequenceScorer(
self.target_dictionary,
eos=self.tgt_dict.index("[{}]".format(self.args.target_lang)),
)
else:
from fairseq.sequence_generator import SequenceGenerator
return SequenceGenerator(
models,
self.target_dictionary,
beam_size=getattr(args, "beam", 5),
max_len_a=getattr(args, "max_len_a", 0),
max_len_b=getattr(args, "max_len_b", 200),
min_len=getattr(args, "min_len", 1),
normalize_scores=(not getattr(args, "unnormalized", False)),
len_penalty=getattr(args, "lenpen", 1),
unk_penalty=getattr(args, "unkpen", 0),
temperature=getattr(args, "temperature", 1.0),
match_source_len=getattr(args, "match_source_len", False),
no_repeat_ngram_size=getattr(args, "no_repeat_ngram_size", 0),
eos=self.tgt_dict.index("[{}]".format(self.args.target_lang)),
)
def build_dataset_for_inference(self, src_tokens, src_lengths, constraints=None):
src_lang_id = self.source_dictionary.index("[{}]".format(self.args.source_lang))
source_tokens = []
for s_t in src_tokens:
s_t = torch.cat([s_t, s_t.new(1).fill_(src_lang_id)])
source_tokens.append(s_t)
dataset = LanguagePairDataset(
source_tokens,
src_lengths,
self.source_dictionary,
tgt_dict=self.target_dictionary,
constraints=constraints,
)
return dataset
| data2vec_vision-main | deltalm/src/fairseq/tasks/translation_from_pretrained_bart.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import torch
from fairseq import utils
from fairseq.data import LanguagePairDataset
from fairseq.tasks import register_task
from fairseq.tasks.translation import TranslationTask, load_langpair_dataset
from fairseq.utils import new_arange
@register_task("translation_lev")
class TranslationLevenshteinTask(TranslationTask):
"""
Translation (Sequence Generation) task for Levenshtein Transformer
See `"Levenshtein Transformer" <https://arxiv.org/abs/1905.11006>`_.
"""
@staticmethod
def add_args(parser):
"""Add task-specific arguments to the parser."""
# fmt: off
TranslationTask.add_args(parser)
parser.add_argument(
'--noise',
default='random_delete',
choices=['random_delete', 'random_mask', 'no_noise', 'full_mask'])
# fmt: on
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
"""
paths = utils.split_paths(self.args.data)
assert len(paths) > 0
data_path = paths[(epoch - 1) % len(paths)]
# infer langcode
src, tgt = self.args.source_lang, self.args.target_lang
self.datasets[split] = load_langpair_dataset(
data_path,
split,
src,
self.src_dict,
tgt,
self.tgt_dict,
combine=combine,
dataset_impl=self.args.dataset_impl,
upsample_primary=self.args.upsample_primary,
left_pad_source=self.args.left_pad_source,
left_pad_target=self.args.left_pad_target,
max_source_positions=self.args.max_source_positions,
max_target_positions=self.args.max_target_positions,
prepend_bos=True,
)
def inject_noise(self, target_tokens):
def _random_delete(target_tokens):
pad = self.tgt_dict.pad()
bos = self.tgt_dict.bos()
eos = self.tgt_dict.eos()
max_len = target_tokens.size(1)
target_mask = target_tokens.eq(pad)
target_score = target_tokens.clone().float().uniform_()
target_score.masked_fill_(
target_tokens.eq(bos) | target_tokens.eq(eos), 0.0
)
target_score.masked_fill_(target_mask, 1)
target_score, target_rank = target_score.sort(1)
target_length = target_mask.size(1) - target_mask.float().sum(
1, keepdim=True
)
# do not delete <bos> and <eos> (we assign 0 score for them)
target_cutoff = (
2
+ (
(target_length - 2)
* target_score.new_zeros(target_score.size(0), 1).uniform_()
).long()
)
target_cutoff = target_score.sort(1)[1] >= target_cutoff
prev_target_tokens = (
target_tokens.gather(1, target_rank)
.masked_fill_(target_cutoff, pad)
.gather(1, target_rank.masked_fill_(target_cutoff, max_len).sort(1)[1])
)
prev_target_tokens = prev_target_tokens[
:, : prev_target_tokens.ne(pad).sum(1).max()
]
return prev_target_tokens
def _random_mask(target_tokens):
pad = self.tgt_dict.pad()
bos = self.tgt_dict.bos()
eos = self.tgt_dict.eos()
unk = self.tgt_dict.unk()
target_masks = (
target_tokens.ne(pad) & target_tokens.ne(bos) & target_tokens.ne(eos)
)
target_score = target_tokens.clone().float().uniform_()
target_score.masked_fill_(~target_masks, 2.0)
target_length = target_masks.sum(1).float()
target_length = target_length * target_length.clone().uniform_()
target_length = target_length + 1 # make sure to mask at least one token.
_, target_rank = target_score.sort(1)
target_cutoff = new_arange(target_rank) < target_length[:, None].long()
prev_target_tokens = target_tokens.masked_fill(
target_cutoff.scatter(1, target_rank, target_cutoff), unk
)
return prev_target_tokens
def _full_mask(target_tokens):
pad = self.tgt_dict.pad()
bos = self.tgt_dict.bos()
eos = self.tgt_dict.eos()
unk = self.tgt_dict.unk()
target_mask = (
target_tokens.eq(bos) | target_tokens.eq(eos) | target_tokens.eq(pad)
)
return target_tokens.masked_fill(~target_mask, unk)
if self.args.noise == "random_delete":
return _random_delete(target_tokens)
elif self.args.noise == "random_mask":
return _random_mask(target_tokens)
elif self.args.noise == "full_mask":
return _full_mask(target_tokens)
elif self.args.noise == "no_noise":
return target_tokens
else:
raise NotImplementedError
def build_generator(self, models, args, **unused):
# add models input to match the API for SequenceGenerator
from fairseq.iterative_refinement_generator import IterativeRefinementGenerator
return IterativeRefinementGenerator(
self.target_dictionary,
eos_penalty=getattr(args, "iter_decode_eos_penalty", 0.0),
max_iter=getattr(args, "iter_decode_max_iter", 10),
beam_size=getattr(args, "iter_decode_with_beam", 1),
reranking=getattr(args, "iter_decode_with_external_reranker", False),
decoding_format=getattr(args, "decoding_format", None),
adaptive=not getattr(args, "iter_decode_force_max_iter", False),
retain_history=getattr(args, "retain_iter_history", False),
)
def build_dataset_for_inference(self, src_tokens, src_lengths, constraints=None):
if constraints is not None:
# Though see Susanto et al. (ACL 2020): https://www.aclweb.org/anthology/2020.acl-main.325/
raise NotImplementedError(
"Constrained decoding with the translation_lev task is not supported"
)
return LanguagePairDataset(
src_tokens, src_lengths, self.source_dictionary, append_bos=True
)
def train_step(
self, sample, model, criterion, optimizer, update_num, ignore_grad=False
):
model.train()
sample["prev_target"] = self.inject_noise(sample["target"])
loss, sample_size, logging_output = criterion(model, sample)
if ignore_grad:
loss *= 0
optimizer.backward(loss)
return loss, sample_size, logging_output
def valid_step(self, sample, model, criterion):
model.eval()
with torch.no_grad():
sample["prev_target"] = self.inject_noise(sample["target"])
loss, sample_size, logging_output = criterion(model, sample)
return loss, sample_size, logging_output
| data2vec_vision-main | deltalm/src/fairseq/tasks/translation_lev.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
import torch
from fairseq import utils
from fairseq.data import (
AppendTokenDataset,
Dictionary,
IdDataset,
MonolingualDataset,
NestedDictionaryDataset,
NumelDataset,
PadDataset,
PrependTokenDataset,
StripTokenDataset,
TokenBlockDataset,
TruncatedDictionary,
data_utils,
)
from fairseq.data.indexed_dataset import get_available_dataset_impl
from fairseq.data.shorten_dataset import maybe_shorten_dataset
from fairseq.dataclass import ChoiceEnum, FairseqDataclass
from fairseq.tasks import LegacyFairseqTask, register_task
from omegaconf import II
SAMPLE_BREAK_MODE_CHOICES = ChoiceEnum(["none", "complete", "complete_doc", "eos"])
SHORTEN_METHOD_CHOICES = ChoiceEnum(["none", "truncate", "random_crop"])
logger = logging.getLogger(__name__)
@dataclass
class LanguageModelingConfig(FairseqDataclass):
data: Optional[str] = field(
default=None, metadata={"help": "path to data directory"}
)
sample_break_mode: SAMPLE_BREAK_MODE_CHOICES = field(
default="none",
metadata={
"help": 'If omitted or "none", fills each sample with tokens-per-sample '
'tokens. If set to "complete", splits samples only at the end '
"of sentence, but may include multiple sentences per sample. "
'"complete_doc" is similar but respects doc boundaries. '
'If set to "eos", includes only one sentence per sample.'
},
)
tokens_per_sample: int = field(
default=1024,
metadata={"help": "max number of tokens per sample for LM dataset"},
)
output_dictionary_size: int = field(
default=-1, metadata={"help": "limit the size of output dictionary"}
)
self_target: bool = field(default=False, metadata={"help": "include self target"})
future_target: bool = field(
default=False, metadata={"help": "include future target"}
)
past_target: bool = field(default=False, metadata={"help": "include past target"})
add_bos_token: bool = field(
default=False, metadata={"help": "prepend beginning of sentence token (<s>)"}
)
max_target_positions: Optional[int] = field(
default=None, metadata={"help": "max number of tokens in the target sequence"}
)
shorten_method: SHORTEN_METHOD_CHOICES = field(
default="none",
metadata={
"help": "if not none, shorten sequences that exceed --tokens-per-sample"
},
)
shorten_data_split_list: str = field(
default="",
metadata={
"help": "comma-separated list of dataset splits to apply shortening to, "
'e.g., "train,valid" (default: all dataset splits)'
},
)
# TODO common vars below add to parent
seed: int = II("common.seed")
dataset_impl: Optional[ChoiceEnum(get_available_dataset_impl())] = II(
"dataset.dataset_impl"
)
data_buffer_size: int = II("dataset.data_buffer_size")
tpu: bool = II("common.tpu")
@register_task("language_modeling", dataclass=LanguageModelingConfig)
class LanguageModelingTask(LegacyFairseqTask):
"""
Train a language model.
Args:
dictionary (~fairseq.data.Dictionary): the dictionary for the input of
the language model
output_dictionary (~fairseq.data.Dictionary): the dictionary for the
output of the language model. In most cases it will be the same as
*dictionary*, but could possibly be a more limited version of the
dictionary (if ``--output-dictionary-size`` is used).
targets (List[str]): list of the target types that the language model
should predict. Can be one of "self", "future", and "past".
Defaults to "future".
.. note::
The language modeling task is compatible with :mod:`fairseq-train`,
:mod:`fairseq-generate`, :mod:`fairseq-interactive` and
:mod:`fairseq-eval-lm`.
The language modeling task provides the following additional command-line
arguments:
.. argparse::
:ref: fairseq.tasks.language_modeling_parser
:prog:
"""
def __init__(self, args, dictionary, output_dictionary=None, targets=None):
super().__init__(args)
self.dictionary = dictionary
self.output_dictionary = output_dictionary or dictionary
if targets is None:
targets = ["future"]
self.targets = targets
@classmethod
def setup_dictionary(cls, args, **kwargs):
dictionary = None
output_dictionary = None
if args.data:
paths = utils.split_paths(args.data)
assert len(paths) > 0
dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt"))
logger.info("dictionary: {} types".format(len(dictionary)))
output_dictionary = dictionary
if args.output_dictionary_size >= 0:
output_dictionary = TruncatedDictionary(
dictionary, args.output_dictionary_size
)
return (dictionary, output_dictionary)
@classmethod
def setup_task(cls, args, **kwargs):
"""Setup the task (e.g., load dictionaries).
Args:
args (argparse.Namespace): parsed command-line arguments
"""
dictionary, output_dictionary = cls.setup_dictionary(args, **kwargs)
# upgrade old checkpoints
if getattr(args, "exclude_self_target", False):
args.self_target = False
targets = []
if getattr(args, "self_target", False):
targets.append("self")
if getattr(args, "future_target", False):
targets.append("future")
if getattr(args, "past_target", False):
targets.append("past")
if len(targets) == 0:
# standard language modeling
targets = ["future"]
return cls(args, dictionary, output_dictionary, targets=targets)
def build_model(self, args):
model = super().build_model(args)
for target in self.targets:
if target not in model.supported_targets:
raise ValueError(
"Unsupported language modeling target: {}".format(target)
)
return model
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
"""
paths = utils.split_paths(self.args.data)
assert len(paths) > 0
data_path = paths[(epoch - 1) % len(paths)]
split_path = os.path.join(data_path, split)
dataset = data_utils.load_indexed_dataset(
split_path, self.dictionary, self.args.dataset_impl, combine=combine
)
if dataset is None:
raise FileNotFoundError(
"Dataset not found: {} ({})".format(split, split_path)
)
dataset = maybe_shorten_dataset(
dataset,
split,
self.args.shorten_data_split_list,
self.args.shorten_method,
self.args.tokens_per_sample,
self.args.seed,
)
dataset = TokenBlockDataset(
dataset,
dataset.sizes,
self.args.tokens_per_sample,
pad=self.dictionary.pad(),
eos=self.dictionary.eos(),
break_mode=self.args.sample_break_mode,
include_targets=True,
)
add_eos_for_other_targets = (
self.args.sample_break_mode is not None
and self.args.sample_break_mode != "none"
)
self.datasets[split] = self._initialize_dataset(
dataset=dataset,
sizes=dataset.sizes,
src_vocab=self.dictionary,
tgt_vocab=self.output_dictionary,
add_eos_for_other_targets=add_eos_for_other_targets,
shuffle=True,
targets=self.targets,
add_bos_token=self.args.add_bos_token,
)
def _initialize_dataset(self, **kwargs):
return MonolingualDataset(**kwargs)
def build_dataset_for_inference(self, src_tokens, src_lengths, **kwargs):
"""
Generate batches for inference. We prepend an eos token to src_tokens
(or bos if `--add-bos-token` is set) and we append a <pad> to target.
This is convenient both for generation with a prefix and LM scoring.
"""
dataset = StripTokenDataset(
TokenBlockDataset(
src_tokens,
src_lengths,
block_size=None, # ignored for "eos" break mode
pad=self.source_dictionary.pad(),
eos=self.source_dictionary.eos(),
break_mode="eos",
),
# remove eos from (end of) target sequence
self.source_dictionary.eos(),
)
src_dataset = PrependTokenDataset(
dataset,
token=(
self.source_dictionary.bos()
if getattr(self.args, "add_bos_token", False)
else self.source_dictionary.eos()
),
)
tgt_dataset = AppendTokenDataset(dataset, token=self.source_dictionary.pad())
return NestedDictionaryDataset(
{
"id": IdDataset(),
"net_input": {
"src_tokens": PadDataset(
src_dataset,
pad_idx=self.source_dictionary.pad(),
left_pad=False,
),
"src_lengths": NumelDataset(src_dataset, reduce=False),
},
"target": PadDataset(
tgt_dataset, pad_idx=self.source_dictionary.pad(), left_pad=False
),
},
sizes=[np.array(src_lengths)],
)
def inference_step(
self, generator, models, sample, prefix_tokens=None, constraints=None
):
with torch.no_grad():
# Generation will always be conditioned on bos_token
if getattr(self.args, "add_bos_token", False):
bos_token = self.source_dictionary.bos()
else:
bos_token = self.source_dictionary.eos()
if constraints is not None:
raise NotImplementedError(
"Constrained decoding with the language_modeling task is not supported"
)
# SequenceGenerator doesn't use src_tokens directly, we need to
# pass the `prefix_tokens` argument instead
if prefix_tokens is None and sample["net_input"]["src_tokens"].nelement():
prefix_tokens = sample["net_input"]["src_tokens"]
if prefix_tokens[:, 0].eq(bos_token).all():
prefix_tokens = prefix_tokens[:, 1:]
return generator.generate(
models, sample, prefix_tokens=prefix_tokens, bos_token=bos_token
)
@property
def source_dictionary(self):
"""Return the :class:`~fairseq.data.Dictionary` for the language
model."""
return self.dictionary
@property
def target_dictionary(self):
"""Return the :class:`~fairseq.data.Dictionary` for the language
model."""
return self.output_dictionary
| data2vec_vision-main | deltalm/src/fairseq/tasks/language_modeling.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os.path as op
from argparse import Namespace
from fairseq.data import Dictionary, encoders
from fairseq.data.audio.speech_to_text_dataset import (
S2TDataConfig,
SpeechToTextDataset,
SpeechToTextDatasetCreator,
)
from fairseq.tasks import LegacyFairseqTask, register_task
logger = logging.getLogger(__name__)
@register_task("speech_to_text")
class SpeechToTextTask(LegacyFairseqTask):
@staticmethod
def add_args(parser):
parser.add_argument("data", help="manifest root path")
parser.add_argument(
"--config-yaml",
type=str,
default="config.yaml",
help="Configuration YAML filename (under manifest root)",
)
parser.add_argument(
"--max-source-positions",
default=6000,
type=int,
metavar="N",
help="max number of tokens in the source sequence",
)
parser.add_argument(
"--max-target-positions",
default=1024,
type=int,
metavar="N",
help="max number of tokens in the target sequence",
)
def __init__(self, args, tgt_dict):
super().__init__(args)
self.tgt_dict = tgt_dict
self.data_cfg = S2TDataConfig(op.join(args.data, args.config_yaml))
@classmethod
def setup_task(cls, args, **kwargs):
data_cfg = S2TDataConfig(op.join(args.data, args.config_yaml))
dict_path = op.join(args.data, data_cfg.vocab_filename)
if not op.isfile(dict_path):
raise FileNotFoundError(f"Dict not found: {dict_path}")
tgt_dict = Dictionary.load(dict_path)
logger.info(
f"dictionary size ({data_cfg.vocab_filename}): " f"{len(tgt_dict):,}"
)
if getattr(args, "train_subset", None) is not None:
if not all(s.startswith("train") for s in args.train_subset.split(",")):
raise ValueError('Train splits should be named like "train*".')
return cls(args, tgt_dict)
def build_criterion(self, args):
from fairseq import criterions
if self.data_cfg.prepend_tgt_lang_tag and args.ignore_prefix_size != 1:
raise ValueError(
'Please set "--ignore-prefix-size 1" since '
"target language ID token is prepended as BOS."
)
return criterions.build_criterion(args, self)
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
is_train_split = split.startswith("train")
pre_tokenizer = self.build_tokenizer(self.args)
bpe_tokenizer = self.build_bpe(self.args)
self.datasets[split] = SpeechToTextDatasetCreator.from_tsv(
self.args.data,
self.data_cfg,
split,
self.tgt_dict,
pre_tokenizer,
bpe_tokenizer,
is_train_split=is_train_split,
epoch=epoch,
seed=self.args.seed,
)
@property
def target_dictionary(self):
return self.tgt_dict
@property
def source_dictionary(self):
return None
def max_positions(self):
return self.args.max_source_positions, self.args.max_target_positions
def build_model(self, args):
args.input_feat_per_channel = self.data_cfg.input_feat_per_channel
args.input_channels = self.data_cfg.input_channels
return super(SpeechToTextTask, self).build_model(args)
def build_generator(
self,
models,
args,
seq_gen_cls=None,
extra_gen_cls_kwargs=None,
):
if self.data_cfg.prepend_tgt_lang_tag and args.prefix_size != 1:
raise ValueError(
'Please set "--prefix-size 1" since '
"target language ID token is prepended as BOS."
)
lang_token_ids = {
i
for s, i in self.tgt_dict.indices.items()
if SpeechToTextDataset.is_lang_tag(s)
}
extra_gen_cls_kwargs = {"symbols_to_strip_from_output": lang_token_ids}
return super().build_generator(
models, args, seq_gen_cls=None, extra_gen_cls_kwargs=extra_gen_cls_kwargs
)
def build_tokenizer(self, args):
logger.info(f"pre-tokenizer: {self.data_cfg.pre_tokenizer}")
return encoders.build_tokenizer(Namespace(**self.data_cfg.pre_tokenizer))
def build_bpe(self, args):
logger.info(f"tokenizer: {self.data_cfg.bpe_tokenizer}")
return encoders.build_bpe(Namespace(**self.data_cfg.bpe_tokenizer))
@classmethod
def build_dataset_for_inference(cls, audio_paths, n_frames):
return SpeechToTextDataset("interactive", False, {}, audio_paths, n_frames)
| data2vec_vision-main | deltalm/src/fairseq/tasks/speech_to_text.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import itertools
import logging
import os
import numpy as np
from fairseq import tokenizer, utils
from fairseq.data import ConcatDataset, Dictionary, data_utils, indexed_dataset
from fairseq.data.legacy.block_pair_dataset import BlockPairDataset
from fairseq.data.legacy.masked_lm_dataset import MaskedLMDataset
from fairseq.data.legacy.masked_lm_dictionary import BertDictionary
from fairseq.tasks import LegacyFairseqTask, register_task
logger = logging.getLogger(__name__)
@register_task("legacy_masked_lm")
class LegacyMaskedLMTask(LegacyFairseqTask):
"""
Task for training Masked LM (BERT) model.
Args:
dictionary (Dictionary): the dictionary for the input of the task
"""
@staticmethod
def add_args(parser):
"""Add task-specific arguments to the parser."""
parser.add_argument(
"data",
help="colon separated path to data directories list, \
will be iterated upon during epochs in round-robin manner",
)
parser.add_argument(
"--tokens-per-sample",
default=512,
type=int,
help="max number of total tokens over all segments"
" per sample for BERT dataset",
)
parser.add_argument(
"--break-mode", default="doc", type=str, help="mode for breaking sentence"
)
parser.add_argument("--shuffle-dataset", action="store_true", default=False)
def __init__(self, args, dictionary):
super().__init__(args)
self.dictionary = dictionary
self.seed = args.seed
@classmethod
def load_dictionary(cls, filename):
return BertDictionary.load(filename)
@classmethod
def build_dictionary(
cls, filenames, workers=1, threshold=-1, nwords=-1, padding_factor=8
):
d = BertDictionary()
for filename in filenames:
Dictionary.add_file_to_dictionary(
filename, d, tokenizer.tokenize_line, workers
)
d.finalize(threshold=threshold, nwords=nwords, padding_factor=padding_factor)
return d
@property
def target_dictionary(self):
return self.dictionary
@classmethod
def setup_task(cls, args, **kwargs):
"""Setup the task."""
paths = utils.split_paths(args.data)
assert len(paths) > 0
dictionary = BertDictionary.load(os.path.join(paths[0], "dict.txt"))
logger.info("dictionary: {} types".format(len(dictionary)))
return cls(args, dictionary)
def load_dataset(self, split, epoch=1, combine=False):
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
"""
loaded_datasets = []
paths = utils.split_paths(self.args.data)
assert len(paths) > 0
data_path = paths[(epoch - 1) % len(paths)]
logger.info("data_path", data_path)
for k in itertools.count():
split_k = split + (str(k) if k > 0 else "")
path = os.path.join(data_path, split_k)
ds = indexed_dataset.make_dataset(
path,
impl=self.args.dataset_impl,
fix_lua_indexing=True,
dictionary=self.dictionary,
)
if ds is None:
if k > 0:
break
else:
raise FileNotFoundError(
"Dataset not found: {} ({})".format(split, data_path)
)
with data_utils.numpy_seed(self.seed + k):
loaded_datasets.append(
BlockPairDataset(
ds,
self.dictionary,
ds.sizes,
self.args.tokens_per_sample,
break_mode=self.args.break_mode,
doc_break_size=1,
)
)
logger.info(
"{} {} {} examples".format(data_path, split_k, len(loaded_datasets[-1]))
)
if not combine:
break
if len(loaded_datasets) == 1:
dataset = loaded_datasets[0]
sizes = dataset.sizes
else:
dataset = ConcatDataset(loaded_datasets)
sizes = np.concatenate([ds.sizes for ds in loaded_datasets])
self.datasets[split] = MaskedLMDataset(
dataset=dataset,
sizes=sizes,
vocab=self.dictionary,
pad_idx=self.dictionary.pad(),
mask_idx=self.dictionary.mask(),
classif_token_idx=self.dictionary.cls(),
sep_token_idx=self.dictionary.sep(),
shuffle=self.args.shuffle_dataset,
seed=self.seed,
)
| data2vec_vision-main | deltalm/src/fairseq/tasks/legacy_masked_lm.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""isort:skip_file"""
import argparse
import importlib
import os
from fairseq.dataclass import FairseqDataclass
from fairseq.dataclass.utils import merge_with_parent, populate_dataclass
from hydra.core.config_store import ConfigStore
from .fairseq_task import FairseqTask, LegacyFairseqTask # noqa
# register dataclass
TASK_DATACLASS_REGISTRY = {}
TASK_REGISTRY = {}
TASK_CLASS_NAMES = set()
def setup_task(cfg: FairseqDataclass, **kwargs):
task = None
task_name = getattr(cfg, "task", None)
if isinstance(task_name, str):
# legacy tasks
task = TASK_REGISTRY[task_name]
if task_name in TASK_DATACLASS_REGISTRY:
dc = TASK_DATACLASS_REGISTRY[task_name]
cfg = populate_dataclass(dc(), cfg)
else:
task_name = getattr(cfg, "_name", None)
if task_name and task_name in TASK_DATACLASS_REGISTRY:
dc = TASK_DATACLASS_REGISTRY[task_name]
cfg = merge_with_parent(dc(), cfg)
task = TASK_REGISTRY[task_name]
assert task is not None, f"Could not infer task type from {cfg}"
return task.setup_task(cfg, **kwargs)
def register_task(name, dataclass=None):
"""
New tasks can be added to fairseq with the
:func:`~fairseq.tasks.register_task` function decorator.
For example::
@register_task('classification')
class ClassificationTask(FairseqTask):
(...)
.. note::
All Tasks must implement the :class:`~fairseq.tasks.FairseqTask`
interface.
Args:
name (str): the name of the task
"""
def register_task_cls(cls):
if name in TASK_REGISTRY:
raise ValueError("Cannot register duplicate task ({})".format(name))
if not issubclass(cls, FairseqTask):
raise ValueError(
"Task ({}: {}) must extend FairseqTask".format(name, cls.__name__)
)
if cls.__name__ in TASK_CLASS_NAMES:
raise ValueError(
"Cannot register task with duplicate class name ({})".format(
cls.__name__
)
)
TASK_REGISTRY[name] = cls
TASK_CLASS_NAMES.add(cls.__name__)
if dataclass is not None and not issubclass(dataclass, FairseqDataclass):
raise ValueError(
"Dataclass {} must extend FairseqDataclass".format(dataclass)
)
cls.__dataclass = dataclass
if dataclass is not None:
TASK_DATACLASS_REGISTRY[name] = dataclass
cs = ConfigStore.instance()
node = dataclass()
node._name = name
cs.store(name=name, group="task", node=node, provider="fairseq")
return cls
return register_task_cls
def get_task(name):
return TASK_REGISTRY[name]
# automatically import any Python files in the tasks/ directory
tasks_dir = os.path.dirname(__file__)
for file in os.listdir(tasks_dir):
path = os.path.join(tasks_dir, file)
if (
not file.startswith("_")
and not file.startswith(".")
and (file.endswith(".py") or os.path.isdir(path))
):
task_name = file[: file.find(".py")] if file.endswith(".py") else file
module = importlib.import_module("fairseq.tasks." + task_name)
# expose `task_parser` for sphinx
if task_name in TASK_REGISTRY:
parser = argparse.ArgumentParser(add_help=False)
group_task = parser.add_argument_group("Task name")
# fmt: off
group_task.add_argument('--task', metavar=task_name,
help='Enable this task with: ``--task=' + task_name + '``')
# fmt: on
group_args = parser.add_argument_group("Additional command-line arguments")
TASK_REGISTRY[task_name].add_args(group_args)
globals()[task_name + "_parser"] = parser
| data2vec_vision-main | deltalm/src/fairseq/tasks/__init__.py |
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
import os
import sys
import torch
from argparse import Namespace
from dataclasses import dataclass, field
from typing import Optional, Any
from omegaconf import MISSING
from fairseq.data import AddTargetDataset, Dictionary, FileAudioDataset, encoders
from fairseq.data.data_utils import post_process
from fairseq.dataclass import FairseqDataclass
from fairseq.dataclass.configs import GenerationConfig
from . import FairseqTask, register_task
from .. import utils
from ..logging import metrics
class LabelEncoder(object):
def __init__(self, dictionary):
self.dictionary = dictionary
def __call__(self, label):
return self.dictionary.encode_line(
label, append_eos=False, add_if_not_exist=False
)
@dataclass
class AudioPretrainingConfig(FairseqDataclass):
data: str = field(default=MISSING, metadata={"help": "path to data directory"})
labels: Optional[str] = field(
default=None,
metadata={"help": "extension of the label file to load, used for fine-tuning"},
)
sample_rate: int = field(
default=16_000,
metadata={
"help": "target sample rate. audio files will be up/down sampled to this rate"
},
)
normalize: bool = field(
default=False,
metadata={"help": "if set, normalizes input to have 0 mean and unit variance"},
)
enable_padding: bool = field(
default=False, metadata={"help": "pad shorter samples instead of cropping"}
)
max_sample_size: Optional[int] = field(
default=None, metadata={"help": "max sample size to crop to for batching"}
)
min_sample_size: Optional[int] = field(
default=None, metadata={"help": "min sample size to crop to for batching"}
)
# Options for reporting WER metrics during validation. Only applicable to
# Seq2Seq models during fine-tuning
eval_wer: bool = field(
default=False, metadata={"help": "compute WER for Seq2Seq models"}
)
eval_wer_config: GenerationConfig = field(
default_factory=lambda: GenerationConfig(),
metadata={"help": "beam search config for evaluating wer during training"},
)
eval_wer_tokenizer: Any = field(
default=None,
metadata={"help": "tokenizer config for evaluating wer during training"},
)
eval_wer_post_process: str = field(
default="letter",
metadata={
"help": "remove BPE tokens before scoring (can be sentencepiece, letter, and more)"
},
)
autoregressive: bool = field(
default=False,
metadata={
"help": "required for autoregressive decoders (like seq2seq models); "
"adds 'prev_output_tokens' to input and appends eos to target"
},
)
@register_task("audio_pretraining", dataclass=AudioPretrainingConfig)
class AudioPretrainingTask(FairseqTask):
""""""
cfg: AudioPretrainingConfig
def __init__(
self,
cfg: AudioPretrainingConfig,
source_dictionary=None,
target_dictionary=None,
):
super().__init__(cfg)
self._target_dictionary = target_dictionary
self._source_dictionary = source_dictionary
if cfg.eval_wer:
assert cfg.labels is not None, "eval_wer can only be set during fine-tuning"
self.blank_symbol = "<s>"
@classmethod
def setup_task(cls, cfg: AudioPretrainingConfig, **kwargs):
"""Setup the task (e.g., load dictionaries).
Args:
cfg (AudioPretrainingConfig): configuration of this task
"""
if cfg.labels:
dict_path = os.path.join(cfg.data, f"dict.{cfg.labels}.txt")
target_dictionary = Dictionary.load(dict_path)
else:
target_dictionary = None
return cls(cfg, target_dictionary=target_dictionary)
def load_dataset(self, split: str, task_cfg: FairseqDataclass = None, **kwargs):
data_path = self.cfg.data
task_cfg = task_cfg or self.cfg
# upgrade old task
if isinstance(task_cfg, Namespace):
if not hasattr(task_cfg, "autoregressive"):
task_cfg.autoregressive = not task_cfg.criterion == 'ctc'
manifest = os.path.join(data_path, "{}.tsv".format(split))
self.datasets[split] = FileAudioDataset(
manifest,
sample_rate=task_cfg.sample_rate,
max_sample_size=self.cfg.max_sample_size,
min_sample_size=self.cfg.max_sample_size,
min_length=self.cfg.min_sample_size,
pad=task_cfg.labels is not None or task_cfg.enable_padding,
normalize=task_cfg.normalize,
)
if task_cfg.labels:
label_path = os.path.join(data_path, f"{split}.{task_cfg.labels}")
labels = []
with open(label_path, "r") as f:
for line in f:
labels.append(line)
process_label = LabelEncoder(self.target_dictionary)
self.datasets[split] = AddTargetDataset(
self.datasets[split],
labels,
pad=self.target_dictionary.pad(),
eos=self.target_dictionary.eos(),
batch_targets=True,
process_label=process_label,
add_to_input=task_cfg.autoregressive,
)
@property
def source_dictionary(self):
return self._source_dictionary
@property
def target_dictionary(self):
"""Return the :class:`~fairseq.data.Dictionary` for the language
model."""
return self._target_dictionary
def max_positions(self):
"""Maximum input length supported by the encoder."""
return (sys.maxsize, sys.maxsize)
def filter_indices_by_size(
self,
indices,
dataset,
max_positions=None,
ignore_invalid_inputs=False,
):
# we do not need to filter by size in this task as dataloaders take care of this
return indices
def valid_step(self, sample, model, criterion):
loss, sample_size, logging_output = super().valid_step(sample, model, criterion)
if self.cfg.eval_wer and self.cfg.autoregressive:
metrics = self._inference_with_wer(self.sequence_generator, sample, model)
logging_output["_num_char_errors"] = metrics["num_char_errors"]
logging_output["_num_chars"] = metrics["num_chars"]
logging_output["_num_word_errors"] = metrics["num_word_errors"]
logging_output["_num_words"] = metrics["num_words"]
return loss, sample_size, logging_output
def build_model(self, model_cfg: FairseqDataclass):
model = super().build_model(model_cfg)
if self.cfg.eval_wer and self.cfg.autoregressive:
self.sequence_generator = self.build_generator(
[model],
self.cfg.eval_wer_config,
)
if self.cfg.eval_wer_tokenizer:
self.tokenizer = encoders.build_tokenizer(self.cfg.eval_wer_tokenizer)
else:
self.tokenizer = None
return model
def _inference_with_wer(self, generator, sample, model):
import editdistance
def decode(toks):
s = self.target_dictionary.string(
toks.int().cpu(),
self.cfg.eval_wer_post_process,
escape_unk=True,
)
if self.tokenizer:
s = self.tokenizer.decode(s)
return s
num_word_errors, num_char_errors = 0, 0
num_chars, num_words = 0, 0
gen_out = self.inference_step(generator, [model], sample, None)
for i in range(len(gen_out)):
hyp = decode(gen_out[i][0]["tokens"])
ref = decode(
utils.strip_pad(sample["target"][i], self.target_dictionary.pad()),
)
num_char_errors += editdistance.eval(hyp, ref)
num_chars += len(ref)
hyp_words = hyp.split()
ref_words = ref.split()
num_word_errors += editdistance.eval(hyp_words, ref_words)
num_words += len(ref_words)
return {
"num_char_errors": num_char_errors,
"num_chars": num_chars,
"num_word_errors": num_word_errors,
"num_words": num_words,
}
def reduce_metrics(self, logging_outputs, criterion):
super().reduce_metrics(logging_outputs, criterion)
zero = torch.scalar_tensor(0.0)
num_char_errors = sum(
log.get("_num_char_errors", zero) for log in logging_outputs
)
num_chars = sum(log.get("_num_chars", zero) for log in logging_outputs)
num_word_errors = sum(
log.get("_num_word_errors", zero) for log in logging_outputs
)
num_words = sum(log.get("_num_words", zero) for log in logging_outputs)
metrics.log_scalar("_num_char_errors", num_char_errors)
metrics.log_scalar("_num_chars", num_chars)
metrics.log_scalar("_num_word_errors", num_word_errors)
metrics.log_scalar("_num_words", num_words)
if num_words > 0:
metrics.log_derived(
"uer",
lambda meters: meters["_num_char_errors"].sum
* 100.0
/ meters["_num_chars"].sum
if meters["_num_chars"].sum > 0
else float("nan"),
)
metrics.log_derived(
"wer",
lambda meters: meters["_num_word_errors"].sum
* 100.0
/ meters["_num_words"].sum
if meters["_num_words"].sum > 0
else float("nan"),
)
| data2vec_vision-main | deltalm/src/fairseq/tasks/audio_pretraining.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import itertools
import json
import logging
import os
from argparse import Namespace
import numpy as np
from fairseq import metrics, options, utils
from fairseq.data import (
AppendTokenDataset,
ConcatDataset,
LanguagePairDataset,
PrependTokenDataset,
StripTokenDataset,
TruncateDataset,
data_utils,
encoders,
indexed_dataset,
)
from fairseq.tasks import LegacyFairseqTask, register_task
EVAL_BLEU_ORDER = 4
logger = logging.getLogger(__name__)
def load_langpair_dataset(
data_path,
split,
src,
src_dict,
tgt,
tgt_dict,
combine,
dataset_impl,
upsample_primary,
left_pad_source,
left_pad_target,
max_source_positions,
max_target_positions,
prepend_bos=False,
load_alignments=False,
truncate_source=False,
append_source_id=False,
num_buckets=0,
shuffle=True,
pad_to_multiple=1,
):
def split_exists(split, src, tgt, lang, data_path):
filename = os.path.join(data_path, "{}.{}-{}.{}".format(split, src, tgt, lang))
return indexed_dataset.dataset_exists(filename, impl=dataset_impl)
src_datasets = []
tgt_datasets = []
for k in itertools.count():
split_k = split + (str(k) if k > 0 else "")
# infer langcode
if split_exists(split_k, src, tgt, src, data_path):
prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, src, tgt))
elif split_exists(split_k, tgt, src, src, data_path):
prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, tgt, src))
else:
if k > 0:
break
else:
raise FileNotFoundError(
"Dataset not found: {} ({})".format(split, data_path)
)
src_dataset = data_utils.load_indexed_dataset(
prefix + src, src_dict, dataset_impl
)
if truncate_source:
src_dataset = AppendTokenDataset(
TruncateDataset(
StripTokenDataset(src_dataset, src_dict.eos()),
max_source_positions - 1,
),
src_dict.eos(),
)
src_datasets.append(src_dataset)
tgt_dataset = data_utils.load_indexed_dataset(
prefix + tgt, tgt_dict, dataset_impl
)
if tgt_dataset is not None:
tgt_datasets.append(tgt_dataset)
logger.info(
"{} {} {}-{} {} examples".format(
data_path, split_k, src, tgt, len(src_datasets[-1])
)
)
if not combine:
break
assert len(src_datasets) == len(tgt_datasets) or len(tgt_datasets) == 0
if len(src_datasets) == 1:
src_dataset = src_datasets[0]
tgt_dataset = tgt_datasets[0] if len(tgt_datasets) > 0 else None
else:
sample_ratios = [1] * len(src_datasets)
sample_ratios[0] = upsample_primary
src_dataset = ConcatDataset(src_datasets, sample_ratios)
if len(tgt_datasets) > 0:
tgt_dataset = ConcatDataset(tgt_datasets, sample_ratios)
else:
tgt_dataset = None
if prepend_bos:
assert hasattr(src_dict, "bos_index") and hasattr(tgt_dict, "bos_index")
src_dataset = PrependTokenDataset(src_dataset, src_dict.bos())
if tgt_dataset is not None:
tgt_dataset = PrependTokenDataset(tgt_dataset, tgt_dict.bos())
eos = None
if append_source_id:
src_dataset = AppendTokenDataset(
src_dataset, src_dict.index("[{}]".format(src))
)
if tgt_dataset is not None:
tgt_dataset = AppendTokenDataset(
tgt_dataset, tgt_dict.index("[{}]".format(tgt))
)
eos = tgt_dict.index("[{}]".format(tgt))
align_dataset = None
if load_alignments:
align_path = os.path.join(data_path, "{}.align.{}-{}".format(split, src, tgt))
if indexed_dataset.dataset_exists(align_path, impl=dataset_impl):
align_dataset = data_utils.load_indexed_dataset(
align_path, None, dataset_impl
)
tgt_dataset_sizes = tgt_dataset.sizes if tgt_dataset is not None else None
return LanguagePairDataset(
src_dataset,
src_dataset.sizes,
src_dict,
tgt_dataset,
tgt_dataset_sizes,
tgt_dict,
left_pad_source=left_pad_source,
left_pad_target=left_pad_target,
align_dataset=align_dataset,
eos=eos,
num_buckets=num_buckets,
shuffle=shuffle,
pad_to_multiple=pad_to_multiple,
)
@register_task("translation")
class TranslationTask(LegacyFairseqTask):
"""
Translate from one (source) language to another (target) language.
Args:
src_dict (~fairseq.data.Dictionary): dictionary for the source language
tgt_dict (~fairseq.data.Dictionary): dictionary for the target language
.. note::
The translation task is compatible with :mod:`fairseq-train`,
:mod:`fairseq-generate` and :mod:`fairseq-interactive`.
The translation task provides the following additional command-line
arguments:
.. argparse::
:ref: fairseq.tasks.translation_parser
:prog:
"""
@staticmethod
def add_args(parser):
"""Add task-specific arguments to the parser."""
# fmt: off
parser.add_argument('data', help='colon separated path to data directories list, \
will be iterated upon during epochs in round-robin manner; \
however, valid and test data are always in the first directory to \
avoid the need for repeating them in all directories')
parser.add_argument('-s', '--source-lang', default=None, metavar='SRC',
help='source language')
parser.add_argument('-t', '--target-lang', default=None, metavar='TARGET',
help='target language')
parser.add_argument('--load-alignments', action='store_true',
help='load the binarized alignments')
parser.add_argument('--left-pad-source', default='False', type=str, metavar='BOOL',
help='pad the source on the left')
parser.add_argument('--left-pad-target', default='False', type=str, metavar='BOOL',
help='pad the target on the left')
parser.add_argument('--max-source-positions', default=1024, type=int, metavar='N',
help='max number of tokens in the source sequence')
parser.add_argument('--max-target-positions', default=1024, type=int, metavar='N',
help='max number of tokens in the target sequence')
parser.add_argument('--upsample-primary', default=1, type=int,
help='amount to upsample primary dataset')
parser.add_argument('--truncate-source', action='store_true', default=False,
help='truncate source to max-source-positions')
parser.add_argument('--num-batch-buckets', default=0, type=int, metavar='N',
help='if >0, then bucket source and target lengths into N '
'buckets and pad accordingly; this is useful on TPUs '
'to minimize the number of compilations')
# options for reporting BLEU during validation
parser.add_argument('--eval-bleu', action='store_true',
help='evaluation with BLEU scores')
parser.add_argument('--eval-bleu-detok', type=str, default="space",
help='detokenize before computing BLEU (e.g., "moses"); '
'required if using --eval-bleu; use "space" to '
'disable detokenization; see fairseq.data.encoders '
'for other options')
parser.add_argument('--eval-bleu-detok-args', type=str, metavar='JSON',
help='args for building the tokenizer, if needed')
parser.add_argument('--eval-tokenized-bleu', action='store_true', default=False,
help='compute tokenized BLEU instead of sacrebleu')
parser.add_argument('--eval-bleu-remove-bpe', nargs='?', const='@@ ', default=None,
help='remove BPE before computing BLEU')
parser.add_argument('--eval-bleu-args', type=str, metavar='JSON',
help='generation args for BLUE scoring, '
'e.g., \'{"beam": 4, "lenpen": 0.6}\'')
parser.add_argument('--eval-bleu-print-samples', action='store_true',
help='print sample generations during validation')
# fmt: on
def __init__(self, args, src_dict, tgt_dict):
super().__init__(args)
self.src_dict = src_dict
self.tgt_dict = tgt_dict
@classmethod
def setup_task(cls, args, **kwargs):
"""Setup the task (e.g., load dictionaries).
Args:
args (argparse.Namespace): parsed command-line arguments
"""
args.left_pad_source = utils.eval_bool(args.left_pad_source)
args.left_pad_target = utils.eval_bool(args.left_pad_target)
paths = utils.split_paths(args.data)
assert len(paths) > 0
# find language pair automatically
if args.source_lang is None or args.target_lang is None:
args.source_lang, args.target_lang = data_utils.infer_language_pair(
paths[0]
)
if args.source_lang is None or args.target_lang is None:
raise Exception(
"Could not infer language pair, please provide it explicitly"
)
# load dictionaries
src_dict = cls.load_dictionary(
os.path.join(paths[0], "dict.{}.txt".format(args.source_lang))
)
tgt_dict = cls.load_dictionary(
os.path.join(paths[0], "dict.{}.txt".format(args.target_lang))
)
assert src_dict.pad() == tgt_dict.pad()
assert src_dict.eos() == tgt_dict.eos()
assert src_dict.unk() == tgt_dict.unk()
logger.info("[{}] dictionary: {} types".format(args.source_lang, len(src_dict)))
logger.info("[{}] dictionary: {} types".format(args.target_lang, len(tgt_dict)))
return cls(args, src_dict, tgt_dict)
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
"""
paths = utils.split_paths(self.args.data)
assert len(paths) > 0
if split != getattr(self.args, "train_subset", None):
# if not training data set, use the first shard for valid and test
paths = paths[:1]
data_path = paths[(epoch - 1) % len(paths)]
# infer langcode
src, tgt = self.args.source_lang, self.args.target_lang
self.datasets[split] = load_langpair_dataset(
data_path,
split,
src,
self.src_dict,
tgt,
self.tgt_dict,
combine=combine,
dataset_impl=self.args.dataset_impl,
upsample_primary=self.args.upsample_primary,
left_pad_source=self.args.left_pad_source,
left_pad_target=self.args.left_pad_target,
max_source_positions=self.args.max_source_positions,
max_target_positions=self.args.max_target_positions,
load_alignments=self.args.load_alignments,
truncate_source=self.args.truncate_source,
num_buckets=self.args.num_batch_buckets,
shuffle=(split != "test"),
pad_to_multiple=self.args.required_seq_len_multiple,
)
def build_dataset_for_inference(self, src_tokens, src_lengths, constraints=None):
return LanguagePairDataset(
src_tokens,
src_lengths,
self.source_dictionary,
tgt_dict=self.target_dictionary,
constraints=constraints,
)
def build_model(self, args):
model = super().build_model(args)
if getattr(args, "eval_bleu", False):
assert getattr(args, "eval_bleu_detok", None) is not None, (
"--eval-bleu-detok is required if using --eval-bleu; "
"try --eval-bleu-detok=moses (or --eval-bleu-detok=space "
"to disable detokenization, e.g., when using sentencepiece)"
)
detok_args = json.loads(getattr(args, "eval_bleu_detok_args", "{}") or "{}")
self.tokenizer = encoders.build_tokenizer(
Namespace(
tokenizer=getattr(args, "eval_bleu_detok", None), **detok_args
)
)
gen_args = json.loads(getattr(args, "eval_bleu_args", "{}") or "{}")
self.sequence_generator = self.build_generator(
[model], Namespace(**gen_args)
)
return model
def valid_step(self, sample, model, criterion):
loss, sample_size, logging_output = super().valid_step(sample, model, criterion)
if self.args.eval_bleu:
bleu = self._inference_with_bleu(self.sequence_generator, sample, model)
logging_output["_bleu_sys_len"] = bleu.sys_len
logging_output["_bleu_ref_len"] = bleu.ref_len
# we split counts into separate entries so that they can be
# summed efficiently across workers using fast-stat-sync
assert len(bleu.counts) == EVAL_BLEU_ORDER
for i in range(EVAL_BLEU_ORDER):
logging_output["_bleu_counts_" + str(i)] = bleu.counts[i]
logging_output["_bleu_totals_" + str(i)] = bleu.totals[i]
return loss, sample_size, logging_output
def reduce_metrics(self, logging_outputs, criterion):
super().reduce_metrics(logging_outputs, criterion)
if self.args.eval_bleu:
def sum_logs(key):
return sum(log.get(key, 0) for log in logging_outputs)
counts, totals = [], []
for i in range(EVAL_BLEU_ORDER):
counts.append(sum_logs("_bleu_counts_" + str(i)))
totals.append(sum_logs("_bleu_totals_" + str(i)))
if max(totals) > 0:
# log counts as numpy arrays -- log_scalar will sum them correctly
metrics.log_scalar("_bleu_counts", np.array(counts))
metrics.log_scalar("_bleu_totals", np.array(totals))
metrics.log_scalar("_bleu_sys_len", sum_logs("_bleu_sys_len"))
metrics.log_scalar("_bleu_ref_len", sum_logs("_bleu_ref_len"))
def compute_bleu(meters):
import inspect
import sacrebleu
fn_sig = inspect.getfullargspec(sacrebleu.compute_bleu)[0]
if "smooth_method" in fn_sig:
smooth = {"smooth_method": "exp"}
else:
smooth = {"smooth": "exp"}
bleu = sacrebleu.compute_bleu(
correct=meters["_bleu_counts"].sum,
total=meters["_bleu_totals"].sum,
sys_len=meters["_bleu_sys_len"].sum,
ref_len=meters["_bleu_ref_len"].sum,
**smooth
)
return round(bleu.score, 2)
metrics.log_derived("bleu", compute_bleu)
def max_positions(self):
"""Return the max sentence length allowed by the task."""
return (self.args.max_source_positions, self.args.max_target_positions)
@property
def source_dictionary(self):
"""Return the source :class:`~fairseq.data.Dictionary`."""
return self.src_dict
@property
def target_dictionary(self):
"""Return the target :class:`~fairseq.data.Dictionary`."""
return self.tgt_dict
def _inference_with_bleu(self, generator, sample, model):
import sacrebleu
def decode(toks, escape_unk=False):
s = self.tgt_dict.string(
toks.int().cpu(),
self.args.eval_bleu_remove_bpe,
# The default unknown string in fairseq is `<unk>`, but
# this is tokenized by sacrebleu as `< unk >`, inflating
# BLEU scores. Instead, we use a somewhat more verbose
# alternative that is unlikely to appear in the real
# reference, but doesn't get split into multiple tokens.
unk_string=("UNKNOWNTOKENINREF" if escape_unk else "UNKNOWNTOKENINHYP"),
)
if self.tokenizer:
s = self.tokenizer.decode(s)
return s
gen_out = self.inference_step(generator, [model], sample, prefix_tokens=None)
hyps, refs = [], []
for i in range(len(gen_out)):
hyps.append(decode(gen_out[i][0]["tokens"]))
refs.append(
decode(
utils.strip_pad(sample["target"][i], self.tgt_dict.pad()),
escape_unk=True, # don't count <unk> as matches to the hypo
)
)
if self.args.eval_bleu_print_samples:
logger.info("example hypothesis: " + hyps[0])
logger.info("example reference: " + refs[0])
if self.args.eval_tokenized_bleu:
return sacrebleu.corpus_bleu(hyps, [refs], tokenize="none")
else:
return sacrebleu.corpus_bleu(hyps, [refs])
| data2vec_vision-main | deltalm/src/fairseq/tasks/translation.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
from collections import OrderedDict
from fairseq import utils
from fairseq.data import (
BacktranslationDataset,
IndexedCachedDataset,
IndexedDataset,
IndexedRawTextDataset,
LanguagePairDataset,
NoisingDataset,
RoundRobinZipDatasets,
data_utils,
indexed_dataset,
)
from fairseq.models import FairseqMultiModel
from fairseq.sequence_generator import SequenceGenerator
from . import register_task
from .multilingual_translation import MultilingualTranslationTask
logger = logging.getLogger(__name__)
def _get_bt_dataset_key(lang_pair):
return "bt:" + lang_pair
def _get_denoising_dataset_key(lang_pair):
return "denoising:" + lang_pair
# ported from UnsupervisedMT
def parse_lambda_config(x):
"""
Parse the configuration of lambda coefficient (for scheduling).
x = "3" # lambda will be a constant equal to x
x = "0:1,1000:0" # lambda will start from 1 and linearly decrease
# to 0 during the first 1000 iterations
x = "0:0,1000:0,2000:1" # lambda will be equal to 0 for the first 1000
# iterations, then will linearly increase to 1 until iteration 2000
"""
split = x.split(",")
if len(split) == 1:
return float(x), None
else:
split = [s.split(os.pathsep) for s in split]
assert all(len(s) == 2 for s in split)
assert all(k.isdigit() for k, _ in split)
assert all(
int(split[i][0]) < int(split[i + 1][0]) for i in range(len(split) - 1)
)
return float(split[0][1]), [(int(k), float(v)) for k, v in split]
@register_task("semisupervised_translation")
class SemisupervisedTranslationTask(MultilingualTranslationTask):
"""A task for training multiple translation models simultaneously.
We iterate round-robin over batches from multiple language pairs, ordered
according to the `--lang-pairs` argument.
The training loop is roughly:
for i in range(len(epoch)):
for lang_pair in args.lang_pairs:
batch = next_batch_for_lang_pair(lang_pair)
loss = criterion(model_for_lang_pair(lang_pair), batch)
loss.backward()
optimizer.step()
In practice, `next_batch_for_lang_pair` is abstracted in a FairseqDataset
(e.g., `RoundRobinZipDatasets`) and `model_for_lang_pair` is a model that
implements the `FairseqMultiModel` interface.
During inference it is required to specify a single `--source-lang` and
`--target-lang`, instead of `--lang-pairs`.
"""
@staticmethod
def add_args(parser):
"""Add task-specific arguments to the parser."""
# fmt: off
MultilingualTranslationTask.add_args(parser)
parser.add_argument('--lambda-parallel-config', default="1.0", type=str, metavar='CONFIG',
help='cross-entropy reconstruction coefficient (parallel data). '
'use fixed weight during training if set to floating point number. '
'use piecewise linear function over number of updates to schedule the '
'weight with the format: w0:step0,w1:step1,...')
parser.add_argument('--lambda-denoising-config', default="0.0", type=str, metavar='CONFIG',
help='Cross-entropy reconstruction coefficient (denoising autoencoding)'
'use fixed weight during training if set to floating point number. '
'use piecewise linear function over number of updates to schedule the '
'weight with the format: w0:step0,w1:step1,...')
parser.add_argument('--lambda-otf-bt-config', default="0.0", type=str, metavar='CONFIG',
help='cross-entropy reconstruction coefficient (on-the-fly back-translation parallel data)'
'use fixed weight during training if set to floating point number. '
'use piecewise linear function over number of updates to schedule the '
'weight with the format: w0:step0,w1:step1,...')
parser.add_argument('--bt-max-len-a', default=1.1, type=float, metavar='N',
help='generate back-translated sequences of maximum length ax + b, where x is the '
'source length')
parser.add_argument('--bt-max-len-b', default=10.0, type=float, metavar='N',
help='generate back-translated sequences of maximum length ax + b, where x is the '
'source length')
parser.add_argument('--bt-beam-size', default=1, type=int, metavar='N',
help='beam size used in beam search of online back-translation')
parser.add_argument('--max-word-shuffle-distance', default=3.0, type=float, metavar='N',
help='maximum word shuffle distance for denoising autoencoding data generation')
parser.add_argument('--word-dropout-prob', default=0.1, type=float, metavar='N',
help='word dropout probability for denoising autoencoding data generation')
parser.add_argument('--word-blanking-prob', default=0.2, type=float, metavar='N',
help='word blanking probability for denoising autoencoding data generation')
# fmt: on
def __init__(self, args, dicts, training):
super().__init__(args, dicts, training)
self.lambda_parallel, self.lambda_parallel_steps = parse_lambda_config(
args.lambda_parallel_config
)
self.lambda_otf_bt, self.lambda_otf_bt_steps = parse_lambda_config(
args.lambda_otf_bt_config
)
self.lambda_denoising, self.lambda_denoising_steps = parse_lambda_config(
args.lambda_denoising_config
)
if self.lambda_denoising > 0.0 or self.lambda_denoising_steps is not None:
denoising_lang_pairs = [
"%s-%s" % (tgt, tgt)
for tgt in {lang_pair.split("-")[1] for lang_pair in args.lang_pairs}
]
self.model_lang_pairs = self.model_lang_pairs + denoising_lang_pairs
self.backtranslate_datasets = {}
self.backtranslators = {}
@classmethod
def setup_task(cls, args, **kwargs):
dicts, training = MultilingualTranslationTask.prepare(args, **kwargs)
return cls(args, dicts, training)
def load_dataset(self, split, epoch=1, **kwargs):
"""Load a dataset split."""
paths = utils.split_paths(self.args.data)
assert len(paths) > 0
data_path = paths[(epoch - 1) % len(paths)]
def split_exists(split, src, tgt, lang):
if src is not None:
filename = os.path.join(
data_path, "{}.{}-{}.{}".format(split, src, tgt, lang)
)
else:
filename = os.path.join(
data_path, "{}.{}-None.{}".format(split, src, tgt)
)
return indexed_dataset.dataset_exists(filename, impl=self.args.dataset_impl)
def load_indexed_dataset(path, dictionary):
return data_utils.load_indexed_dataset(
path, dictionary, self.args.dataset_impl
)
# load parallel datasets
src_datasets, tgt_datasets = {}, {}
if (
self.lambda_parallel > 0.0
or self.lambda_parallel_steps is not None
or not split.startswith("train")
):
for lang_pair in self.lang_pairs:
src, tgt = lang_pair.split("-")
if split_exists(split, src, tgt, src):
prefix = os.path.join(
data_path, "{}.{}-{}.".format(split, src, tgt)
)
elif split_exists(split, tgt, src, src):
prefix = os.path.join(
data_path, "{}.{}-{}.".format(split, tgt, src)
)
else:
continue
src_datasets[lang_pair] = load_indexed_dataset(
prefix + src, self.dicts[src]
)
tgt_datasets[lang_pair] = load_indexed_dataset(
prefix + tgt, self.dicts[tgt]
)
logger.info(
"parallel-{} {} {} examples".format(
data_path, split, len(src_datasets[lang_pair])
)
)
if len(src_datasets) == 0:
raise FileNotFoundError(
"Dataset not found: {} ({})".format(split, data_path)
)
# back translation datasets
backtranslate_datasets = {}
if (
self.lambda_otf_bt > 0.0 or self.lambda_otf_bt_steps is not None
) and split.startswith("train"):
for lang_pair in self.lang_pairs:
src, tgt = lang_pair.split("-")
if not split_exists(split, tgt, None, tgt):
raise FileNotFoundError(
"Dataset not found: backtranslation {} ({})".format(
split, data_path
)
)
filename = os.path.join(
data_path, "{}.{}-None.{}".format(split, tgt, tgt)
)
dataset = load_indexed_dataset(filename, self.dicts[tgt])
lang_pair_dataset_tgt = LanguagePairDataset(
dataset,
dataset.sizes,
self.dicts[tgt],
left_pad_source=self.args.left_pad_source,
left_pad_target=self.args.left_pad_target,
)
lang_pair_dataset = LanguagePairDataset(
dataset,
dataset.sizes,
src_dict=self.dicts[src],
tgt=dataset,
tgt_sizes=dataset.sizes,
tgt_dict=self.dicts[tgt],
left_pad_source=self.args.left_pad_source,
left_pad_target=self.args.left_pad_target,
)
backtranslate_datasets[lang_pair] = BacktranslationDataset(
tgt_dataset=self.alter_dataset_langtok(
lang_pair_dataset_tgt,
src_eos=self.dicts[tgt].eos(),
src_lang=tgt,
tgt_lang=src,
),
backtranslation_fn=self.backtranslators[lang_pair],
src_dict=self.dicts[src],
tgt_dict=self.dicts[tgt],
output_collater=self.alter_dataset_langtok(
lang_pair_dataset=lang_pair_dataset,
src_eos=self.dicts[src].eos(),
src_lang=src,
tgt_eos=self.dicts[tgt].eos(),
tgt_lang=tgt,
).collater,
)
logger.info(
"backtranslate-{}: {} {} {} examples".format(
tgt,
data_path,
split,
len(backtranslate_datasets[lang_pair]),
)
)
self.backtranslate_datasets[lang_pair] = backtranslate_datasets[
lang_pair
]
# denoising autoencoder
noising_datasets = {}
if (
self.lambda_denoising > 0.0 or self.lambda_denoising_steps is not None
) and split.startswith("train"):
for lang_pair in self.lang_pairs:
_, tgt = lang_pair.split("-")
if not split_exists(split, tgt, None, tgt):
continue
filename = os.path.join(
data_path, "{}.{}-None.{}".format(split, tgt, tgt)
)
tgt_dataset1 = load_indexed_dataset(filename, self.dicts[tgt])
tgt_dataset2 = load_indexed_dataset(filename, self.dicts[tgt])
noising_dataset = NoisingDataset(
tgt_dataset1,
self.dicts[tgt],
seed=1,
max_word_shuffle_distance=self.args.max_word_shuffle_distance,
word_dropout_prob=self.args.word_dropout_prob,
word_blanking_prob=self.args.word_blanking_prob,
)
noising_datasets[lang_pair] = self.alter_dataset_langtok(
LanguagePairDataset(
noising_dataset,
tgt_dataset1.sizes,
self.dicts[tgt],
tgt_dataset2,
tgt_dataset2.sizes,
self.dicts[tgt],
left_pad_source=self.args.left_pad_source,
left_pad_target=self.args.left_pad_target,
),
src_eos=self.dicts[tgt].eos(),
src_lang=tgt,
tgt_eos=self.dicts[tgt].eos(),
tgt_lang=tgt,
)
logger.info(
"denoising-{}: {} {} {} examples".format(
tgt,
data_path,
split,
len(noising_datasets[lang_pair]),
)
)
def language_pair_dataset(lang_pair):
src, tgt = lang_pair.split("-")
src_dataset, tgt_dataset = src_datasets[lang_pair], tgt_datasets[lang_pair]
return self.alter_dataset_langtok(
LanguagePairDataset(
src_dataset,
src_dataset.sizes,
self.dicts[src],
tgt_dataset,
tgt_dataset.sizes,
self.dicts[tgt],
left_pad_source=self.args.left_pad_source,
left_pad_target=self.args.left_pad_target,
),
self.dicts[src].eos(),
src,
self.dicts[tgt].eos(),
tgt,
)
self.datasets[split] = RoundRobinZipDatasets(
OrderedDict(
[
(lang_pair, language_pair_dataset(lang_pair))
for lang_pair in src_datasets.keys()
]
+ [
(_get_bt_dataset_key(lang_pair), dataset)
for lang_pair, dataset in backtranslate_datasets.items()
]
+ [
(_get_denoising_dataset_key(lang_pair), dataset)
for lang_pair, dataset in noising_datasets.items()
]
),
eval_key=None
if self.training
else "%s-%s" % (self.args.source_lang, self.args.target_lang),
)
def build_model(self, args):
from fairseq import models
model = models.build_model(args, self)
if not isinstance(model, FairseqMultiModel):
raise ValueError(
"SemisupervisedTranslationTask requires a FairseqMultiModel architecture"
)
# create SequenceGenerator for each model that has backtranslation dependency on it
self.sequence_generators = {}
if (
self.lambda_otf_bt > 0.0 or self.lambda_otf_bt_steps is not None
) and self.training:
for lang_pair in self.lang_pairs:
src, tgt = lang_pair.split("-")
key = "{}-{}".format(tgt, src)
self.sequence_generators[key] = SequenceGenerator(
[model.models[key]],
tgt_dict=self.dicts[src],
beam_size=args.bt_beam_size,
max_len_a=args.bt_max_len_a,
max_len_b=args.bt_max_len_b,
)
decoder_lang_tok_idx = self.get_decoder_langtok(src)
def backtranslate_fn(
sample,
model=model.models[key],
bos_token=decoder_lang_tok_idx,
sequence_generator=self.sequence_generators[key],
):
return sequence_generator.generate(
[model],
sample,
bos_token=bos_token,
)
self.backtranslators[lang_pair] = backtranslate_fn
return model
def train_step(
self, sample, model, criterion, optimizer, update_num, ignore_grad=False
):
model.train()
if update_num > 0:
self.update_step(update_num)
agg_loss, agg_sample_size, agg_logging_output = 0.0, 0.0, {}
def forward_backward(model, samples, logging_output_key, weight):
nonlocal agg_loss, agg_sample_size, agg_logging_output
if samples is None or len(samples) == 0:
return
loss, sample_size, logging_output = criterion(model, samples)
if ignore_grad:
loss *= 0
else:
loss *= weight
optimizer.backward(loss)
agg_loss += loss.detach().item()
# TODO make summing of the sample sizes configurable
agg_sample_size += sample_size
for k in logging_output:
agg_logging_output[k] += logging_output[k]
agg_logging_output[logging_output_key] += logging_output[k]
if self.lambda_parallel > 0.0:
for lang_pair in self.lang_pairs:
forward_backward(
model.models[lang_pair],
sample[lang_pair],
lang_pair,
self.lambda_parallel,
)
if self.lambda_otf_bt > 0.0:
for lang_pair in self.lang_pairs:
sample_key = _get_bt_dataset_key(lang_pair)
forward_backward(
model.models[lang_pair],
sample[sample_key],
sample_key,
self.lambda_otf_bt,
)
if self.lambda_denoising > 0.0:
for lang_pair in self.lang_pairs:
_, tgt = lang_pair.split("-")
sample_key = _get_denoising_dataset_key(lang_pair)
forward_backward(
model.models["{0}-{0}".format(tgt)],
sample[sample_key],
sample_key,
self.lambda_denoising,
)
return agg_loss, agg_sample_size, agg_logging_output
def update_step(self, num_updates):
def lambda_step_func(config, n_iter):
"""
Update a lambda value according to its schedule configuration.
"""
ranges = [
i
for i in range(len(config) - 1)
if config[i][0] <= n_iter < config[i + 1][0]
]
if len(ranges) == 0:
assert n_iter >= config[-1][0]
return config[-1][1]
assert len(ranges) == 1
i = ranges[0]
x_a, y_a = config[i]
x_b, y_b = config[i + 1]
return y_a + (n_iter - x_a) * float(y_b - y_a) / float(x_b - x_a)
if self.lambda_parallel_steps is not None:
self.lambda_parallel = lambda_step_func(
self.lambda_parallel_steps, num_updates
)
if self.lambda_denoising_steps is not None:
self.lambda_denoising = lambda_step_func(
self.lambda_denoising_steps, num_updates
)
if self.lambda_otf_bt_steps is not None:
self.lambda_otf_bt = lambda_step_func(self.lambda_otf_bt_steps, num_updates)
| data2vec_vision-main | deltalm/src/fairseq/tasks/semisupervised_translation.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import numpy as np
from fairseq import utils
from fairseq.data import (
ConcatSentencesDataset,
Dictionary,
IdDataset,
NestedDictionaryDataset,
NumelDataset,
NumSamplesDataset,
OffsetTokensDataset,
PrependTokenDataset,
RawLabelDataset,
RightPadDataset,
RollDataset,
SortDataset,
StripTokenDataset,
data_utils,
)
from fairseq.data.shorten_dataset import maybe_shorten_dataset
from fairseq.tasks import LegacyFairseqTask, register_task
logger = logging.getLogger(__name__)
@register_task("sentence_prediction")
class SentencePredictionTask(LegacyFairseqTask):
"""
Sentence (or sentence pair) prediction (classification or regression) task.
Args:
dictionary (Dictionary): the dictionary for the input of the task
"""
@staticmethod
def add_args(parser):
"""Add task-specific arguments to the parser."""
parser.add_argument("data", metavar="FILE", help="file prefix for data")
parser.add_argument(
"--num-classes",
type=int,
default=-1,
help="number of classes or regression targets",
)
parser.add_argument(
"--init-token",
type=int,
default=None,
help="add token at the beginning of each batch item",
)
parser.add_argument(
"--separator-token",
type=int,
default=None,
help="add separator token between inputs",
)
parser.add_argument("--regression-target", action="store_true", default=False)
parser.add_argument("--no-shuffle", action="store_true", default=False)
parser.add_argument(
"--shorten-method",
default="none",
choices=["none", "truncate", "random_crop"],
help="if not none, shorten sequences that exceed --tokens-per-sample",
)
parser.add_argument(
"--shorten-data-split-list",
default="",
help="comma-separated list of dataset splits to apply shortening to, "
'e.g., "train,valid" (default: all dataset splits)',
)
parser.add_argument(
"--add-prev-output-tokens",
action="store_true",
default=False,
help="add prev_output_tokens to sample, used for encoder-decoder arch",
)
def __init__(self, args, data_dictionary, label_dictionary):
super().__init__(args)
self.dictionary = data_dictionary
self._label_dictionary = label_dictionary
if not hasattr(args, "max_positions"):
self._max_positions = (
args.max_source_positions,
args.max_target_positions,
)
else:
self._max_positions = args.max_positions
args.tokens_per_sample = self._max_positions
@classmethod
def load_dictionary(cls, args, filename, source=True):
"""Load the dictionary from the filename
Args:
filename (str): the filename
"""
dictionary = Dictionary.load(filename)
dictionary.add_symbol("<mask>")
return dictionary
@classmethod
def setup_task(cls, args, **kwargs):
assert args.num_classes > 0, "Must set --num-classes"
# load data dictionary
data_dict = cls.load_dictionary(
args,
os.path.join(args.data, "input0", "dict.txt"),
source=True,
)
logger.info("[input] dictionary: {} types".format(len(data_dict)))
label_dict = None
if not args.regression_target:
# load label dictionary
label_dict = cls.load_dictionary(
args,
os.path.join(args.data, "label", "dict.txt"),
source=False,
)
logger.info("[label] dictionary: {} types".format(len(label_dict)))
else:
label_dict = data_dict
return cls(args, data_dict, label_dict)
def load_dataset(self, split, combine=False, **kwargs):
"""Load a given dataset split (e.g., train, valid, test)."""
def get_path(key, split):
return os.path.join(self.args.data, key, split)
def make_dataset(key, dictionary):
split_path = get_path(key, split)
dataset = data_utils.load_indexed_dataset(
split_path,
dictionary,
self.args.dataset_impl,
combine=combine,
)
return dataset
input0 = make_dataset("input0", self.source_dictionary)
assert input0 is not None, "could not find dataset: {}".format(
get_path("input0", split)
)
input1 = make_dataset("input1", self.source_dictionary)
if self.args.init_token is not None:
input0 = PrependTokenDataset(input0, self.args.init_token)
if input1 is None:
src_tokens = input0
else:
if self.args.separator_token is not None:
input1 = PrependTokenDataset(input1, self.args.separator_token)
src_tokens = ConcatSentencesDataset(input0, input1)
with data_utils.numpy_seed(self.args.seed):
shuffle = np.random.permutation(len(src_tokens))
src_tokens = maybe_shorten_dataset(
src_tokens,
split,
self.args.shorten_data_split_list,
self.args.shorten_method,
self.args.max_positions,
self.args.seed,
)
dataset = {
"id": IdDataset(),
"net_input": {
"src_tokens": RightPadDataset(
src_tokens,
pad_idx=self.source_dictionary.pad(),
),
"src_lengths": NumelDataset(src_tokens, reduce=False),
},
"nsentences": NumSamplesDataset(),
"ntokens": NumelDataset(src_tokens, reduce=True),
}
if self.args.add_prev_output_tokens:
prev_tokens_dataset = RightPadDataset(
RollDataset(src_tokens, 1),
pad_idx=self.dictionary.pad(),
)
dataset["net_input"].update(
prev_output_tokens=prev_tokens_dataset,
)
if not self.args.regression_target:
label_dataset = make_dataset("label", self.label_dictionary)
if label_dataset is not None:
dataset.update(
target=OffsetTokensDataset(
StripTokenDataset(
label_dataset,
id_to_strip=self.label_dictionary.eos(),
),
offset=-self.label_dictionary.nspecial,
)
)
else:
label_path = "{0}.label".format(get_path("label", split))
if os.path.exists(label_path):
def parse_regression_target(i, line):
values = line.split()
assert (
len(values) == self.args.num_classes
), f'expected num_classes={self.args.num_classes} regression target values on line {i}, found: "{line}"'
return [float(x) for x in values]
with open(label_path) as h:
dataset.update(
target=RawLabelDataset(
[
parse_regression_target(i, line.strip())
for i, line in enumerate(h.readlines())
]
)
)
nested_dataset = NestedDictionaryDataset(
dataset,
sizes=[src_tokens.sizes],
)
if self.args.no_shuffle:
dataset = nested_dataset
else:
dataset = SortDataset(
nested_dataset,
# shuffle
sort_order=[shuffle],
)
logger.info("Loaded {0} with #samples: {1}".format(split, len(dataset)))
self.datasets[split] = dataset
return self.datasets[split]
def build_model(self, args):
from fairseq import models
model = models.build_model(args, self)
model.register_classification_head(
getattr(args, "classification_head_name", "sentence_classification_head"),
num_classes=self.args.num_classes,
)
return model
def max_positions(self):
return self._max_positions
@property
def source_dictionary(self):
return self.dictionary
@property
def target_dictionary(self):
return self.dictionary
@property
def label_dictionary(self):
return self._label_dictionary
| data2vec_vision-main | deltalm/src/fairseq/tasks/sentence_prediction.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import itertools
import logging
import os
from collections import OrderedDict
import numpy as np
from fairseq import tokenizer, utils
from fairseq.data import ConcatDataset, Dictionary, TokenBlockDataset, data_utils
from fairseq.data.legacy.masked_lm_dataset import MaskedLMDataset
from fairseq.data.legacy.masked_lm_dictionary import MaskedLMDictionary
from fairseq.data.multi_corpus_sampled_dataset import MultiCorpusSampledDataset
from fairseq.tasks import LegacyFairseqTask, register_task
logger = logging.getLogger(__name__)
@register_task("cross_lingual_lm")
class CrossLingualLMTask(LegacyFairseqTask):
"""
Task for training cross-lingual language models.
For more details look at: https://arxiv.org/pdf/1901.07291.pdf
Args:
dictionary (Dictionary): the dictionary for the input of the task
"""
@staticmethod
def add_args(parser):
"""Add task-specific arguments to the parser."""
parser.add_argument(
"data",
help="colon separated path to data directories list, \
will be iterated upon during epochs in round-robin manner",
)
parser.add_argument(
"--tokens-per-sample",
default=512,
type=int,
help="max number of total tokens over all segments" " per sample",
)
parser.add_argument(
"--monolingual-langs",
default="en",
type=str,
help="comma separated list of languages for which we"
" want to train XLM on",
)
parser.add_argument(
"--shuffle",
action="store_true",
help="shuffle each monolingual dataset while" " training",
)
def __init__(self, args, dictionary):
super().__init__(args)
self.dictionary = dictionary
self.seed = args.seed
self.distributed_world_size = args.distributed_world_size
self.langs2id = self._lang_to_id(args.monolingual_langs)
def _lang_to_id(self, languages: str):
"""
Build a map from languages to ids. These ids are used as segment labels
for cross-lingual LM training.
"""
lang2id = {}
langs = [l.strip() for l in languages.split(",")]
for id, lang in enumerate(langs):
lang2id[lang] = id
return lang2id
@classmethod
def load_dictionary(cls, filename):
return MaskedLMDictionary.load(filename)
@classmethod
def build_dictionary(
cls, filenames, workers=1, threshold=-1, nwords=-1, padding_factor=8
):
d = MaskedLMDictionary()
for filename in filenames:
Dictionary.add_file_to_dictionary(
filename, d, tokenizer.tokenize_line, workers
)
d.finalize(threshold=threshold, nwords=nwords, padding_factor=padding_factor)
return d
@property
def target_dictionary(self):
return self.dictionary
@classmethod
def setup_task(cls, args, **kwargs):
"""Setup the task."""
dictionary = MaskedLMDictionary.load(os.path.join(args.data, "dict.txt"))
logger.info("dictionary: {} types".format(len(dictionary)))
return cls(args, dictionary)
def _load_single_lang_dataset(self, split, epoch):
loaded_datasets = []
paths = utils.split_paths(self.args.data)
assert len(paths) > 0
data_path = paths[(epoch - 1) % len(paths)]
for k in itertools.count():
split_k = split + (str(k) if k > 0 else "")
path = os.path.join(data_path, split_k)
ds = data_utils.load_indexed_dataset(
path, self.dictionary, self.args.dataset_impl
)
if ds is None:
if k > 0:
break
else:
raise FileNotFoundError(
"Dataset not found: {} ({})".format(split, data_path)
)
# Since we append each block with the classification_token,
# we need to effectively create blocks of length
# tokens_per_sample-1
loaded_datasets.append(
TokenBlockDataset(
ds,
ds.sizes,
self.args.tokens_per_sample - 1,
pad=self.dictionary.pad(),
eos=self.dictionary.eos(),
)
)
logger.info(
"{} {} {} examples".format(data_path, split_k, len(loaded_datasets[-1]))
)
if len(loaded_datasets) == 1:
dataset = loaded_datasets[0]
sizes = dataset.sizes
else:
dataset = ConcatDataset(loaded_datasets)
sizes = np.concatenate([ds.sizes for ds in loaded_datasets])
return dataset, sizes
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
"""
dataset_map = OrderedDict()
for lang in self.langs2id.keys():
# Datasets are expected to be in "split.lang" format (Eg: train.en)
language_split = "{}.{}".format(split, lang)
block_dataset, sizes = self._load_single_lang_dataset(
split=language_split, epoch=epoch
)
dataset_map[lang] = MaskedLMDataset(
dataset=block_dataset,
sizes=sizes,
vocab=self.dictionary,
pad_idx=self.dictionary.pad(),
mask_idx=self.dictionary.mask(),
classif_token_idx=self.dictionary.eos(),
sep_token_idx=self.dictionary.eos(),
shuffle=getattr(self.args, "shuffle", False),
has_pairs=False,
segment_id=self.langs2id[lang],
seed=self.seed,
)
self.datasets[split] = MultiCorpusSampledDataset(dataset_map)
logger.info(
"{} {} {} examples".format(
utils.split_paths(self.args.data)[epoch - 1],
split,
len(self.datasets[split]),
)
)
| data2vec_vision-main | deltalm/src/fairseq/tasks/cross_lingual_lm.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from fairseq.data.legacy.masked_lm_dictionary import MaskedLMDictionary
from fairseq.tasks.translation import TranslationTask
from . import register_task
@register_task("translation_from_pretrained_xlm")
class TranslationFromPretrainedXLMTask(TranslationTask):
"""
Same as TranslationTask except use the MaskedLMDictionary class so that
we can load data that was binarized with the MaskedLMDictionary class.
This task should be used for the entire training pipeline when we want to
train an NMT model from a pretrained XLM checkpoint: binarizing NMT data,
training NMT with the pretrained XLM checkpoint, and subsequent evaluation
of that trained model.
"""
@classmethod
def load_dictionary(cls, filename):
"""Load the masked LM dictionary from the filename
Args:
filename (str): the filename
"""
return MaskedLMDictionary.load(filename)
| data2vec_vision-main | deltalm/src/fairseq/tasks/translation_from_pretrained_xlm.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import numpy as np
from fairseq import utils
from fairseq.data import (
Dictionary,
IdDataset,
MaskTokensDataset,
NestedDictionaryDataset,
NumelDataset,
NumSamplesDataset,
PrependTokenDataset,
RightPadDataset,
SortDataset,
TokenBlockDataset,
data_utils,
)
from fairseq.data.encoders.utils import get_whole_word_mask
from fairseq.data.shorten_dataset import maybe_shorten_dataset
from fairseq.tasks import LegacyFairseqTask, register_task
logger = logging.getLogger(__name__)
@register_task("masked_lm")
class MaskedLMTask(LegacyFairseqTask):
"""Task for training masked language models (e.g., BERT, RoBERTa)."""
@staticmethod
def add_args(parser):
"""Add task-specific arguments to the parser."""
parser.add_argument(
"data",
help="colon separated path to data directories list, \
will be iterated upon during epochs in round-robin manner",
)
parser.add_argument(
"--sample-break-mode",
default="complete",
choices=["none", "complete", "complete_doc", "eos"],
help='If omitted or "none", fills each sample with tokens-per-sample '
'tokens. If set to "complete", splits samples only at the end '
"of sentence, but may include multiple sentences per sample. "
'"complete_doc" is similar but respects doc boundaries. '
'If set to "eos", includes only one sentence per sample.',
)
parser.add_argument(
"--tokens-per-sample",
default=512,
type=int,
help="max number of total tokens over all segments "
"per sample for BERT dataset",
)
parser.add_argument(
"--mask-prob",
default=0.15,
type=float,
help="probability of replacing a token with mask",
)
parser.add_argument(
"--leave-unmasked-prob",
default=0.1,
type=float,
help="probability that a masked token is unmasked",
)
parser.add_argument(
"--random-token-prob",
default=0.1,
type=float,
help="probability of replacing a token with a random token",
)
parser.add_argument(
"--freq-weighted-replacement",
default=False,
action="store_true",
help="sample random replacement words based on word frequencies",
)
parser.add_argument(
"--mask-whole-words",
default=False,
action="store_true",
help="mask whole words; you may also want to set --bpe",
)
parser.add_argument(
"--mask-multiple-length",
default=1,
type=int,
help="repeat the mask indices multiple times",
)
parser.add_argument(
"--mask-stdev", default=0.0, type=float, help="stdev of the mask length"
)
parser.add_argument(
"--shorten-method",
default="none",
choices=["none", "truncate", "random_crop"],
help="if not none, shorten sequences that exceed --tokens-per-sample",
)
parser.add_argument(
"--shorten-data-split-list",
default="",
help="comma-separated list of dataset splits to apply shortening to, "
'e.g., "train,valid" (default: all dataset splits)',
)
def __init__(self, args, dictionary):
super().__init__(args)
self.dictionary = dictionary
self.seed = args.seed
# add mask token
self.mask_idx = dictionary.add_symbol("<mask>")
@classmethod
def setup_task(cls, args, **kwargs):
paths = utils.split_paths(args.data)
assert len(paths) > 0
dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt"))
logger.info("dictionary: {} types".format(len(dictionary)))
return cls(args, dictionary)
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
"""
paths = utils.split_paths(self.args.data)
assert len(paths) > 0
data_path = paths[(epoch - 1) % len(paths)]
split_path = os.path.join(data_path, split)
dataset = data_utils.load_indexed_dataset(
split_path,
self.source_dictionary,
self.args.dataset_impl,
combine=combine,
)
if dataset is None:
raise FileNotFoundError(
"Dataset not found: {} ({})".format(split, split_path)
)
dataset = maybe_shorten_dataset(
dataset,
split,
self.args.shorten_data_split_list,
self.args.shorten_method,
self.args.tokens_per_sample,
self.args.seed,
)
# create continuous blocks of tokens
dataset = TokenBlockDataset(
dataset,
dataset.sizes,
self.args.tokens_per_sample - 1, # one less for <s>
pad=self.source_dictionary.pad(),
eos=self.source_dictionary.eos(),
break_mode=self.args.sample_break_mode,
)
logger.info("loaded {} blocks from: {}".format(len(dataset), split_path))
# prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT)
dataset = PrependTokenDataset(dataset, self.source_dictionary.bos())
# create masked input and targets
mask_whole_words = (
get_whole_word_mask(self.args, self.source_dictionary)
if self.args.mask_whole_words
else None
)
src_dataset, tgt_dataset = MaskTokensDataset.apply_mask(
dataset,
self.source_dictionary,
pad_idx=self.source_dictionary.pad(),
mask_idx=self.mask_idx,
seed=self.args.seed,
mask_prob=self.args.mask_prob,
leave_unmasked_prob=self.args.leave_unmasked_prob,
random_token_prob=self.args.random_token_prob,
freq_weighted_replacement=self.args.freq_weighted_replacement,
mask_whole_words=mask_whole_words,
mask_multiple_length=self.args.mask_multiple_length,
mask_stdev=self.args.mask_stdev,
)
with data_utils.numpy_seed(self.args.seed + epoch):
shuffle = np.random.permutation(len(src_dataset))
self.datasets[split] = SortDataset(
NestedDictionaryDataset(
{
"id": IdDataset(),
"net_input": {
"src_tokens": RightPadDataset(
src_dataset,
pad_idx=self.source_dictionary.pad(),
),
"src_lengths": NumelDataset(src_dataset, reduce=False),
},
"target": RightPadDataset(
tgt_dataset,
pad_idx=self.source_dictionary.pad(),
),
"nsentences": NumSamplesDataset(),
"ntokens": NumelDataset(src_dataset, reduce=True),
},
sizes=[src_dataset.sizes],
),
sort_order=[
shuffle,
src_dataset.sizes,
],
)
def build_dataset_for_inference(self, src_tokens, src_lengths, sort=True):
src_dataset = RightPadDataset(
TokenBlockDataset(
src_tokens,
src_lengths,
self.args.tokens_per_sample - 1, # one less for <s>
pad=self.source_dictionary.pad(),
eos=self.source_dictionary.eos(),
break_mode="eos",
),
pad_idx=self.source_dictionary.pad(),
)
src_dataset = PrependTokenDataset(src_dataset, self.source_dictionary.bos())
src_dataset = NestedDictionaryDataset(
{
"id": IdDataset(),
"net_input": {
"src_tokens": src_dataset,
"src_lengths": NumelDataset(src_dataset, reduce=False),
},
},
sizes=src_lengths,
)
if sort:
src_dataset = SortDataset(src_dataset, sort_order=[src_lengths])
return src_dataset
@property
def source_dictionary(self):
return self.dictionary
@property
def target_dictionary(self):
return self.dictionary
| data2vec_vision-main | deltalm/src/fairseq/tasks/masked_lm.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import numpy as np
from fairseq import utils
from fairseq.data import (
ConcatSentencesDataset,
Dictionary,
IdDataset,
NestedDictionaryDataset,
NumelDataset,
NumSamplesDataset,
PrependTokenDataset,
RawLabelDataset,
RightPadDataset,
SortDataset,
TruncateDataset,
data_utils,
)
from fairseq.data.shorten_dataset import maybe_shorten_dataset
from fairseq.tasks import LegacyFairseqTask, register_task
logger = logging.getLogger(__name__)
@register_task("sentence_ranking")
class SentenceRankingTask(LegacyFairseqTask):
"""
Ranking task on multiple sentences.
Args:
dictionary (Dictionary): the dictionary for the input of the task
"""
@staticmethod
def add_args(parser):
"""Add task-specific arguments to the parser."""
parser.add_argument("data", metavar="FILE", help="file prefix for data")
parser.add_argument(
"--num-classes", type=int, help="number of sentences to be ranked"
)
parser.add_argument(
"--init-token",
type=int,
help="add token at the beginning of each batch item",
)
parser.add_argument(
"--separator-token", type=int, help="add separator token between inputs"
)
parser.add_argument("--no-shuffle", action="store_true")
parser.add_argument(
"--shorten-method",
default="none",
choices=["none", "truncate", "random_crop"],
help="if not none, shorten sequences that exceed --tokens-per-sample",
)
parser.add_argument(
"--shorten-data-split-list",
default="",
help="comma-separated list of dataset splits to apply shortening to, "
'e.g., "train,valid" (default: all dataset splits)',
)
parser.add_argument(
"--max-option-length", type=int, help="max length for each option"
)
def __init__(self, args, dictionary):
super().__init__(args)
self.dictionary = dictionary
@classmethod
def load_dictionary(cls, args, filename, source=True):
"""Load the dictionary from the filename
Args:
filename (str): the filename
"""
dictionary = Dictionary.load(filename)
dictionary.add_symbol("<mask>")
return dictionary
@classmethod
def setup_task(cls, args, **kwargs):
assert (
args.criterion == "sentence_ranking"
), "Must set --criterion=sentence_ranking"
# load data dictionary
data_dict = cls.load_dictionary(
args,
os.path.join(args.data, "input0", "dict.txt"),
source=True,
)
logger.info("[input] dictionary: {} types".format(len(data_dict)))
return SentenceRankingTask(args, data_dict)
def load_dataset(self, split, combine=False, **kwargs):
"""Load a given dataset split (e.g., train, valid, test)."""
def get_path(type, split):
return os.path.join(self.args.data, type, split)
def make_dataset(type, dictionary):
split_path = get_path(type, split)
dataset = data_utils.load_indexed_dataset(
split_path,
self.source_dictionary,
self.args.dataset_impl,
combine=combine,
)
return dataset
input0 = make_dataset("input0", self.source_dictionary)
input_options = [
make_dataset("input{idx}".format(idx=idx + 1), self.source_dictionary)
for idx in range(self.args.num_classes)
]
if self.args.separator_token is not None:
input0 = PrependTokenDataset(input0, self.args.separator_token)
src_tokens = []
for input_option in input_options:
if self.args.init_token is not None:
input_option = PrependTokenDataset(input_option, self.args.init_token)
if self.args.max_option_length is not None:
input_option = TruncateDataset(
input_option, self.args.max_option_length
)
src_token = ConcatSentencesDataset(input_option, input0)
src_token = maybe_shorten_dataset(
src_token,
split,
self.args.shorten_data_split_list,
self.args.shorten_method,
self.args.max_positions,
self.args.seed,
)
src_tokens.append(src_token)
with data_utils.numpy_seed(self.args.seed):
shuffle = np.random.permutation(len(src_tokens[0]))
dataset = {
"id": IdDataset(),
"nsentences": NumSamplesDataset(),
"ntokens": NumelDataset(src_tokens[0], reduce=True),
}
for src_token_idx in range(len(src_tokens)):
dataset.update(
{
"net_input{idx}".format(idx=src_token_idx + 1): {
"src_tokens": RightPadDataset(
src_tokens[src_token_idx],
pad_idx=self.source_dictionary.pad(),
),
"src_lengths": NumelDataset(
src_tokens[src_token_idx], reduce=False
),
}
}
)
label_path = "{}.label".format(get_path("label", split))
if os.path.exists(label_path):
with open(label_path) as h:
dataset.update(
target=RawLabelDataset([int(x.strip()) for x in h.readlines()])
)
nested_dataset = NestedDictionaryDataset(
dataset,
sizes=[np.maximum.reduce([src_token.sizes for src_token in src_tokens])],
)
if self.args.no_shuffle:
dataset = nested_dataset
else:
dataset = SortDataset(
nested_dataset,
# shuffle
sort_order=[shuffle],
)
logger.info("Loaded {0} with #samples: {1}".format(split, len(dataset)))
self.datasets[split] = dataset
return self.datasets[split]
def build_model(self, args):
from fairseq import models
model = models.build_model(args, self)
model.register_classification_head(
getattr(args, "ranking_head_name", "sentence_classification_head"),
num_classes=1,
)
return model
def max_positions(self):
return self.args.max_positions
@property
def source_dictionary(self):
return self.dictionary
@property
def target_dictionary(self):
return self.dictionary
| data2vec_vision-main | deltalm/src/fairseq/tasks/sentence_ranking.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import datetime
import logging
import time
import torch
from fairseq.data import (
FairseqDataset,
LanguagePairDataset,
ListDataset,
data_utils,
iterators,
)
from fairseq.data.multilingual.multilingual_data_manager import (
MultilingualDatasetManager,
)
from fairseq.data.multilingual.sampling_method import SamplingMethod
from fairseq.tasks import LegacyFairseqTask, register_task
from fairseq.utils import FileContentsAction
###
def get_time_gap(s, e):
return (
datetime.datetime.fromtimestamp(e) - datetime.datetime.fromtimestamp(s)
).__str__()
###
logger = logging.getLogger(__name__)
@register_task("translation_multi_simple_epoch")
class TranslationMultiSimpleEpochTask(LegacyFairseqTask):
"""
Translate from one (source) language to another (target) language.
Args:
langs (List[str]): a list of languages that are being supported
dicts (Dict[str, fairseq.data.Dictionary]): mapping from supported languages to their dictionaries
training (bool): whether the task should be configured for training or not
.. note::
The translation task is compatible with :mod:`fairseq-train`,
:mod:`fairseq-generate` and :mod:`fairseq-interactive`.
The translation task provides the following additional command-line
arguments:
.. argparse::
:ref: fairseq.tasks.translation_parser
:prog:
"""
@staticmethod
def add_args(parser):
"""Add task-specific arguments to the parser."""
# fmt: off
parser.add_argument('-s', '--source-lang', default=None, metavar='SRC',
help='inference source language')
parser.add_argument('-t', '--target-lang', default=None, metavar='TARGET',
help='inference target language')
parser.add_argument('--lang-pairs', default=None, metavar='PAIRS',
help='comma-separated list of language pairs (in training order): en-de,en-fr,de-fr',
action=FileContentsAction)
parser.add_argument('--keep-inference-langtok', action='store_true',
help='keep language tokens in inference output (e.g. for analysis or debugging)')
parser.add_argument('--debug', action='store_true',
help='')
SamplingMethod.add_arguments(parser)
MultilingualDatasetManager.add_args(parser)
# fmt: on
def __init__(self, args, langs, dicts, training):
super().__init__(args)
self.langs = langs
self.dicts = dicts
self.training = training
if training:
self.lang_pairs = args.lang_pairs
else:
self.lang_pairs = ["{}-{}".format(args.source_lang, args.target_lang)]
# eval_lang_pairs for multilingual translation is usually all of the
# lang_pairs. However for other multitask settings or when we want to
# optimize for certain languages we want to use a different subset. Thus
# the eval_lang_pairs class variable is provided for classes that extend
# this class.
self.eval_lang_pairs = self.lang_pairs
# model_lang_pairs will be used to build encoder-decoder model pairs in
# models.build_model(). This allows multitask type of sub-class can
# build models other than the input lang_pairs
self.model_lang_pairs = self.lang_pairs
self.source_langs = [d.split("-")[0] for d in self.lang_pairs]
self.target_langs = [d.split("-")[1] for d in self.lang_pairs]
self.check_dicts(self.dicts, self.source_langs, self.target_langs)
self.sampling_method = SamplingMethod.build_sampler(args, self)
self.data_manager = MultilingualDatasetManager.setup_data_manager(
args, self.lang_pairs, langs, dicts, self.sampling_method
)
@classmethod
def check_dicts(cls, dicts, source_langs, target_langs):
src_dict = dicts[source_langs[0]]
tgt_dict = dicts[target_langs[0]]
for src_lang in source_langs:
assert (
src_dict == dicts[src_lang]
), "Diffrent dictionary are specified for different source languages; "
"TranslationMultiSimpleEpochTask only supports one shared dictionary across all source languages"
for tgt_lang in target_langs:
assert (
tgt_dict == dicts[tgt_lang]
), "Diffrent dictionary are specified for different target languages; "
"TranslationMultiSimpleEpochTask only supports one shared dictionary across all target languages"
@classmethod
def setup_task(cls, args, **kwargs):
langs, dicts, training = MultilingualDatasetManager.prepare(
cls.load_dictionary, args, **kwargs
)
return cls(args, langs, dicts, training)
def has_sharded_data(self, split):
return self.data_manager.has_sharded_data(split)
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
"""
shard_epoch = epoch
if split in self.datasets:
dataset = self.datasets[split]
if self.has_sharded_data(split):
if self.args.virtual_epoch_size is not None:
if dataset.load_next_shard:
shard_epoch = dataset.shard_epoch
else:
# no need to load next shard so skip loading
# also this avoid always loading from beginning of the data
return
else:
shard_epoch = epoch
else:
# estimate the shard epoch from virtual data size and virtual epoch size
shard_epoch = self.data_manager.estimate_global_pass_epoch(epoch)
logger.info(f"loading data for {split} epoch={epoch}/{shard_epoch}")
logger.info(f"mem usage: {data_utils.get_mem_usage()}")
if split in self.datasets:
del self.datasets[split]
logger.info("old dataset deleted manually")
logger.info(f"mem usage: {data_utils.get_mem_usage()}")
self.datasets[split] = self.data_manager.load_dataset(
split,
self.training,
epoch=epoch,
combine=combine,
shard_epoch=shard_epoch,
**kwargs,
)
def build_dataset_for_inference(self, src_tokens, src_lengths, constraints=None):
if constraints is not None:
raise NotImplementedError(
"Constrained decoding with the multilingual_translation task is not supported"
)
src_data = ListDataset(src_tokens, src_lengths)
dataset = LanguagePairDataset(src_data, src_lengths, self.source_dictionary)
src_langtok_spec, tgt_langtok_spec = self.args.langtoks["main"]
if self.args.lang_tok_replacing_bos_eos:
dataset = self.data_manager.alter_dataset_langtok(
dataset,
src_eos=self.source_dictionary.eos(),
src_lang=self.args.source_lang,
tgt_eos=self.target_dictionary.eos(),
tgt_lang=self.args.target_lang,
src_langtok_spec=src_langtok_spec,
tgt_langtok_spec=tgt_langtok_spec,
)
else:
dataset.src = self.data_manager.src_dataset_tranform_func(
self.args.source_lang,
self.args.target_lang,
dataset=dataset.src,
spec=src_langtok_spec,
)
return dataset
def build_generator(
self,
models,
args,
seq_gen_cls=None,
extra_gen_cls_kwargs=None,
):
if not getattr(args, "keep_inference_langtok", False):
_, tgt_langtok_spec = self.args.langtoks["main"]
if tgt_langtok_spec and self.args.target_lang is not None:
tgt_lang_tok = self.data_manager.get_decoder_langtok(
self.args.target_lang, tgt_langtok_spec
)
extra_gen_cls_kwargs = extra_gen_cls_kwargs or {}
extra_gen_cls_kwargs["symbols_to_strip_from_output"] = {tgt_lang_tok}
else: #Added By JianYang to be compatible with handler3.py
extra_gen_cls_kwargs = extra_gen_cls_kwargs or {}
extra_gen_cls_kwargs["symbols_to_strip_from_output"] = set()
for target_lang in self.target_langs:
tgt_lang_tok = self.data_manager.get_decoder_langtok(
target_lang, tgt_langtok_spec
)
extra_gen_cls_kwargs["symbols_to_strip_from_output"].add(tgt_lang_tok)
return super().build_generator(
models, args, seq_gen_cls=None, extra_gen_cls_kwargs=extra_gen_cls_kwargs
)
def build_model(self, args):
args.lang_id = self.data_manager.lang_id
return super().build_model(args)
def train_step(
self, sample, model, criterion, optimizer, update_num, ignore_grad=False, epoch=1
):
"""
Do forward and backward, and return the loss as computed by *criterion*
for the given *model* and *sample*.
Args:
sample (dict): the mini-batch. The format is defined by the
:class:`~fairseq.data.FairseqDataset`.
model (~fairseq.models.BaseFairseqModel): the model
criterion (~fairseq.criterions.FairseqCriterion): the criterion
optimizer (~fairseq.optim.FairseqOptimizer): the optimizer
update_num (int): the current update
ignore_grad (bool): multiply loss by 0 if this is set to True
Returns:
tuple:
- the loss
- the sample size, which is used as the denominator for the
gradient
- logging outputs to display while training
"""
model.train()
model.set_num_updates(update_num)
with torch.autograd.profiler.record_function("forward"):
loss, sample_size, logging_output = criterion(model, sample, epoch=epoch)
if ignore_grad:
loss *= 0
with torch.autograd.profiler.record_function("backward"):
optimizer.backward(loss)
return loss, sample_size, logging_output
def valid_step(self, sample, model, criterion):
loss, sample_size, logging_output = super().valid_step(sample, model, criterion)
# if "src_lang_id" in logging_output.keys() and "tgt_lang_id" in logging_output.keys():
# logging_output["src_lang"] = self.data_manager.lang_dict.symbols[logging_output["src_lang_id"]]
# logging_output["tgt_lang"] = self.data_manager.lang_dict.symbols[logging_output["tgt_lang_id"]]
# logging_output["lang_pair"] = "{}->{}".format(logging_output["src_lang"], logging_output["tgt_lang"])
# del logging_output["src_lang_id"]
# del logging_output["tgt_lang_id"]
return loss, sample_size, logging_output
def inference_step(
self, generator, models, sample, prefix_tokens=None, constraints=None
):
with torch.no_grad():
_, tgt_langtok_spec = self.args.langtoks["main"]
if not self.args.lang_tok_replacing_bos_eos:
if prefix_tokens is None and tgt_langtok_spec:
tgt_lang_tok = self.data_manager.get_decoder_langtok(
self.args.target_lang, tgt_langtok_spec
)
src_tokens = sample["net_input"]["src_tokens"]
bsz = src_tokens.size(0)
prefix_tokens = (
torch.LongTensor([[tgt_lang_tok]]).expand(bsz, 1).to(src_tokens)
)
return generator.generate(
models,
sample,
prefix_tokens=prefix_tokens,
constraints=constraints,
)
else:
return generator.generate(
models,
sample,
prefix_tokens=prefix_tokens,
bos_token=self.data_manager.get_decoder_langtok(
self.args.target_lang, tgt_langtok_spec
)
if tgt_langtok_spec
else self.target_dictionary.eos(),
)
def reduce_metrics(self, logging_outputs, criterion):
super().reduce_metrics(logging_outputs, criterion)
def max_positions(self):
"""Return the max sentence length allowed by the task."""
return (self.args.max_source_positions, self.args.max_target_positions)
@property
def source_dictionary(self):
return self.dicts[self.source_langs[0]]
@property
def target_dictionary(self):
return self.dicts[self.target_langs[0]]
def create_batch_sampler_func(
self,
max_positions,
ignore_invalid_inputs,
max_tokens,
max_sentences,
required_batch_size_multiple=1,
seed=1,
):
def construct_batch_sampler(dataset, epoch):
splits = [
s for s, _ in self.datasets.items() if self.datasets[s] == dataset
]
split = splits[0] if len(splits) > 0 else None
# NEW implementation
if epoch is not None:
# initialize the dataset with the correct starting epoch
dataset.set_epoch(epoch)
# get indices ordered by example size
start_time = time.time()
logger.info(f"start batch sampler: mem usage: {data_utils.get_mem_usage()}")
with data_utils.numpy_seed(seed):
indices = dataset.ordered_indices()
logger.info(
f"[{split}] @batch_sampler order indices time: {get_time_gap(start_time, time.time())}"
)
logger.info(f"mem usage: {data_utils.get_mem_usage()}")
# filter examples that are too large
if max_positions is not None:
my_time = time.time()
indices = self.filter_indices_by_size(
indices, dataset, max_positions, ignore_invalid_inputs
)
logger.info(
f"[{split}] @batch_sampler filter_by_size time: {get_time_gap(my_time, time.time())}"
)
logger.info(f"mem usage: {data_utils.get_mem_usage()}")
# create mini-batches with given size constraints
my_time = time.time()
batch_sampler = dataset.batch_by_size(
indices,
max_tokens=max_tokens,
max_sentences=max_sentences,
required_batch_size_multiple=required_batch_size_multiple,
)
logger.info(
f"[{split}] @batch_sampler batch_by_size time: {get_time_gap(my_time, time.time())}"
)
logger.info(
f"[{split}] per epoch batch_sampler set-up time: {get_time_gap(start_time, time.time())}"
)
logger.info(f"mem usage: {data_utils.get_mem_usage()}")
return batch_sampler
return construct_batch_sampler
# we need to override get_batch_iterator because we want to reset the epoch iterator each time
def get_batch_iterator(
self,
dataset,
max_tokens=None,
max_sentences=None,
max_positions=None,
ignore_invalid_inputs=False,
required_batch_size_multiple=1,
seed=1,
num_shards=1,
shard_id=0,
num_workers=0,
epoch=1,
data_buffer_size=0,
disable_iterator_cache=False,
):
"""
Get an iterator that yields batches of data from the given dataset.
Args:
dataset (~fairseq.data.FairseqDataset): dataset to batch
max_tokens (int, optional): max number of tokens in each batch
(default: None).
max_sentences (int, optional): max number of sentences in each
batch (default: None).
max_positions (optional): max sentence length supported by the
model (default: None).
ignore_invalid_inputs (bool, optional): don't raise Exception for
sentences that are too long (default: False).
required_batch_size_multiple (int, optional): require batch size to
be a multiple of N (default: 1).
seed (int, optional): seed for random number generator for
reproducibility (default: 1).
num_shards (int, optional): shard the data iterator into N
shards (default: 1).
shard_id (int, optional): which shard of the data iterator to
return (default: 0).
num_workers (int, optional): how many subprocesses to use for data
loading. 0 means the data will be loaded in the main process
(default: 0).
epoch (int, optional): the epoch to start the iterator from
(default: 0).
data_buffer_size (int, optional): number of batches to
preload (default: 0).
disable_iterator_cache (bool, optional): don't cache the
EpochBatchIterator (ignores `FairseqTask::can_reuse_epoch_itr`)
(default: False).
Returns:
~fairseq.iterators.EpochBatchIterator: a batched iterator over the
given dataset split
"""
# initialize the dataset with the correct starting epoch
assert isinstance(dataset, FairseqDataset)
if dataset in self.dataset_to_epoch_iter:
return self.dataset_to_epoch_iter[dataset]
if self.args.sampling_method == "RoundRobin":
batch_iter = super().get_batch_iterator(
dataset,
max_tokens=max_tokens,
max_sentences=max_sentences,
max_positions=max_positions,
ignore_invalid_inputs=ignore_invalid_inputs,
required_batch_size_multiple=required_batch_size_multiple,
seed=seed,
num_shards=num_shards,
shard_id=shard_id,
num_workers=num_workers,
epoch=epoch,
data_buffer_size=data_buffer_size,
disable_iterator_cache=disable_iterator_cache,
)
self.dataset_to_epoch_iter[dataset] = batch_iter
return batch_iter
construct_batch_sampler = self.create_batch_sampler_func(
max_positions,
ignore_invalid_inputs,
max_tokens,
max_sentences,
required_batch_size_multiple=required_batch_size_multiple,
seed=seed,
)
epoch_iter = iterators.EpochBatchIterator(
dataset=dataset,
collate_fn=dataset.collater,
batch_sampler=construct_batch_sampler,
seed=seed,
num_shards=num_shards,
shard_id=shard_id,
num_workers=num_workers,
epoch=epoch,
)
return epoch_iter
| data2vec_vision-main | deltalm/src/fairseq/tasks/translation_multi_simple_epoch.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import numpy as np
import torch
from fairseq import utils
from fairseq.data import (
ConcatDataset,
Dictionary,
IdDataset,
MaskTokensDataset,
NestedDictionaryDataset,
NumelDataset,
NumSamplesDataset,
PadDataset,
PrependTokenDataset,
RawLabelDataset,
ResamplingDataset,
SortDataset,
TokenBlockDataset,
data_utils,
encoders,
)
from fairseq.tasks import LegacyFairseqTask, register_task
logger = logging.getLogger(__name__)
@register_task("multilingual_masked_lm")
class MultiLingualMaskedLMTask(LegacyFairseqTask):
"""Task for training masked language models (e.g., BERT, RoBERTa)."""
@staticmethod
def add_args(parser):
"""Add task-specific arguments to the parser."""
parser.add_argument(
"data",
help="colon separated path to data directories list, \
will be iterated upon during epochs in round-robin manner",
)
parser.add_argument(
"--sample-break-mode",
default="complete",
choices=["none", "complete", "complete_doc", "eos"],
help='If omitted or "none", fills each sample with tokens-per-sample '
'tokens. If set to "complete", splits samples only at the end '
"of sentence, but may include multiple sentences per sample. "
'"complete_doc" is similar but respects doc boundaries. '
'If set to "eos", includes only one sentence per sample.',
)
parser.add_argument(
"--tokens-per-sample",
default=512,
type=int,
help="max number of total tokens over all segments "
"per sample for BERT dataset",
)
parser.add_argument(
"--mask-prob",
default=0.15,
type=float,
help="probability of replacing a token with mask",
)
parser.add_argument(
"--leave-unmasked-prob",
default=0.1,
type=float,
help="probability that a masked token is unmasked",
)
parser.add_argument(
"--random-token-prob",
default=0.1,
type=float,
help="probability of replacing a token with a random token",
)
parser.add_argument(
"--freq-weighted-replacement",
action="store_true",
help="sample random replacement words based on word frequencies",
)
parser.add_argument(
"--mask-whole-words",
default=False,
action="store_true",
help="mask whole words; you may also want to set --bpe",
)
parser.add_argument(
"--multilang-sampling-alpha",
type=float,
default=1.0,
help="smoothing alpha for sample rations across multiple datasets",
)
def __init__(self, args, dictionary):
super().__init__(args)
self.dictionary = dictionary
self.seed = args.seed
# add mask token
self.mask_idx = dictionary.add_symbol("<mask>")
@classmethod
def setup_task(cls, args, **kwargs):
paths = utils.split_paths(args.data)
assert len(paths) > 0
dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt"))
logger.info("dictionary: {} types".format(len(dictionary)))
return cls(args, dictionary)
def _get_whole_word_mask(self):
# create masked input and targets
if self.args.mask_whole_words:
bpe = encoders.build_bpe(self.args)
if bpe is not None:
def is_beginning_of_word(i):
if i < self.source_dictionary.nspecial:
# special elements are always considered beginnings
return True
tok = self.source_dictionary[i]
if tok.startswith("madeupword"):
return True
try:
return bpe.is_beginning_of_word(tok)
except ValueError:
return True
mask_whole_words = torch.ByteTensor(
list(map(is_beginning_of_word, range(len(self.source_dictionary))))
)
else:
mask_whole_words = None
return mask_whole_words
def _get_sample_prob(self, dataset_lens):
"""
Get smoothed sampling porbability by languages. This helps low resource
languages by upsampling them.
"""
prob = dataset_lens / dataset_lens.sum()
smoothed_prob = prob ** self.args.multilang_sampling_alpha
smoothed_prob = smoothed_prob / smoothed_prob.sum()
return smoothed_prob
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
"""
paths = utils.split_paths(self.args.data)
assert len(paths) > 0
data_path = paths[(epoch - 1) % len(paths)]
languages = sorted(
name
for name in os.listdir(data_path)
if os.path.isdir(os.path.join(data_path, name))
)
logger.info("Training on {0} languages: {1}".format(len(languages), languages))
logger.info(
"Language to id mapping: ", {lang: id for id, lang in enumerate(languages)}
)
mask_whole_words = self._get_whole_word_mask()
lang_datasets = []
for lang_id, language in enumerate(languages):
split_path = os.path.join(data_path, language, split)
dataset = data_utils.load_indexed_dataset(
split_path,
self.source_dictionary,
self.args.dataset_impl,
combine=combine,
)
if dataset is None:
raise FileNotFoundError(
"Dataset not found: {} ({})".format(split, split_path)
)
# create continuous blocks of tokens
dataset = TokenBlockDataset(
dataset,
dataset.sizes,
self.args.tokens_per_sample - 1, # one less for <s>
pad=self.source_dictionary.pad(),
eos=self.source_dictionary.eos(),
break_mode=self.args.sample_break_mode,
)
logger.info("loaded {} blocks from: {}".format(len(dataset), split_path))
# prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT)
dataset = PrependTokenDataset(dataset, self.source_dictionary.bos())
src_dataset, tgt_dataset = MaskTokensDataset.apply_mask(
dataset,
self.source_dictionary,
pad_idx=self.source_dictionary.pad(),
mask_idx=self.mask_idx,
seed=self.args.seed,
mask_prob=self.args.mask_prob,
leave_unmasked_prob=self.args.leave_unmasked_prob,
random_token_prob=self.args.random_token_prob,
freq_weighted_replacement=self.args.freq_weighted_replacement,
mask_whole_words=mask_whole_words,
)
lang_dataset = NestedDictionaryDataset(
{
"net_input": {
"src_tokens": PadDataset(
src_dataset,
pad_idx=self.source_dictionary.pad(),
left_pad=False,
),
"src_lengths": NumelDataset(src_dataset, reduce=False),
},
"target": PadDataset(
tgt_dataset,
pad_idx=self.source_dictionary.pad(),
left_pad=False,
),
"nsentences": NumSamplesDataset(),
"ntokens": NumelDataset(src_dataset, reduce=True),
"lang_id": RawLabelDataset([lang_id] * src_dataset.sizes.shape[0]),
},
sizes=[src_dataset.sizes],
)
lang_datasets.append(lang_dataset)
dataset_lengths = np.array(
[len(d) for d in lang_datasets],
dtype=float,
)
logger.info(
"loaded total {} blocks for all languages".format(
dataset_lengths.sum(),
)
)
if split == self.args.train_subset:
# For train subset, additionally up or down sample languages.
sample_probs = self._get_sample_prob(dataset_lengths)
logger.info(
"Sample probability by language: ",
{
lang: "{0:.4f}".format(sample_probs[id])
for id, lang in enumerate(languages)
},
)
size_ratio = (sample_probs * dataset_lengths.sum()) / dataset_lengths
logger.info(
"Up/Down Sampling ratio by language: ",
{
lang: "{0:.2f}".format(size_ratio[id])
for id, lang in enumerate(languages)
},
)
resampled_lang_datasets = [
ResamplingDataset(
lang_datasets[i],
size_ratio=size_ratio[i],
seed=self.args.seed,
epoch=epoch,
replace=size_ratio[i] >= 1.0,
)
for i, d in enumerate(lang_datasets)
]
dataset = ConcatDataset(resampled_lang_datasets)
else:
dataset = ConcatDataset(lang_datasets)
lang_splits = [split]
for lang_id, lang_dataset in enumerate(lang_datasets):
split_name = split + "_" + languages[lang_id]
lang_splits.append(split_name)
self.datasets[split_name] = lang_dataset
# [TODO]: This is hacky for now to print validation ppl for each
# language individually. Maybe need task API changes to allow it
# in more generic ways.
if split in self.args.valid_subset:
self.args.valid_subset = self.args.valid_subset.replace(
split, ",".join(lang_splits)
)
with data_utils.numpy_seed(self.args.seed + epoch):
shuffle = np.random.permutation(len(dataset))
self.datasets[split] = SortDataset(
dataset,
sort_order=[
shuffle,
dataset.sizes,
],
)
def build_dataset_for_inference(self, src_tokens, src_lengths, sort=True):
src_dataset = PadDataset(
TokenBlockDataset(
src_tokens,
src_lengths,
self.args.tokens_per_sample - 1, # one less for <s>
pad=self.source_dictionary.pad(),
eos=self.source_dictionary.eos(),
break_mode="eos",
),
pad_idx=self.source_dictionary.pad(),
left_pad=False,
)
src_dataset = PrependTokenDataset(src_dataset, self.source_dictionary.bos())
src_dataset = NestedDictionaryDataset(
{
"id": IdDataset(),
"net_input": {
"src_tokens": src_dataset,
"src_lengths": NumelDataset(src_dataset, reduce=False),
},
},
sizes=src_lengths,
)
if sort:
src_dataset = SortDataset(src_dataset, sort_order=[src_lengths])
return src_dataset
@property
def source_dictionary(self):
return self.dictionary
@property
def target_dictionary(self):
return self.dictionary
| data2vec_vision-main | deltalm/src/fairseq/tasks/multilingual_masked_lm.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
| data2vec_vision-main | deltalm/src/fairseq/config/__init__.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from collections.abc import Collection
from dataclasses import dataclass, field
from typing import List
import torch
from fairseq.dataclass import FairseqDataclass
from omegaconf import II, DictConfig
from torch.optim.optimizer import Optimizer, required
from . import FairseqOptimizer, register_optimizer
@dataclass
class FairseqNAGConfig(FairseqDataclass):
momentum: float = field(default=0.99, metadata={"help": "momentum factor"})
weight_decay: float = field(default=0.0, metadata={"help": "weight decay"})
# TODO common vars in parent class
lr: List[float] = II("optimization.lr")
@register_optimizer("nag", dataclass=FairseqNAGConfig)
class FairseqNAG(FairseqOptimizer):
def __init__(self, cfg: DictConfig, params):
super().__init__(cfg)
self._optimizer = NAG(params, **self.optimizer_config)
@property
def optimizer_config(self):
"""
Return a kwarg dictionary that will be used to override optimizer
args stored in checkpoints. This allows us to load a checkpoint and
resume training using a different set of optimizer args, e.g., with a
different learning rate.
"""
return {
"lr": self.cfg.lr[0]
if isinstance(self.cfg.lr, Collection)
else self.cfg.lr,
"momentum": self.cfg.momentum,
"weight_decay": self.cfg.weight_decay,
}
class NAG(Optimizer):
def __init__(self, params, lr=required, momentum=0, weight_decay=0):
defaults = dict(lr=lr, lr_old=lr, momentum=momentum, weight_decay=weight_decay)
super(NAG, self).__init__(params, defaults)
@property
def supports_memory_efficient_fp16(self):
return True
@property
def supports_flat_params(self):
return True
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
weight_decay = group["weight_decay"]
momentum = group["momentum"]
lr = group["lr"]
lr_old = group.get("lr_old", lr)
lr_correct = lr / lr_old if lr_old > 0 else lr
for p in group["params"]:
if p.grad is None:
continue
p_data_fp32 = p.data
if p_data_fp32.dtype in {torch.float16, torch.bfloat16}:
p_data_fp32 = p_data_fp32.float()
d_p = p.grad.data.float()
param_state = self.state[p]
if "momentum_buffer" not in param_state:
param_state["momentum_buffer"] = torch.zeros_like(d_p)
else:
param_state["momentum_buffer"] = param_state["momentum_buffer"].to(
d_p
)
buf = param_state["momentum_buffer"]
if weight_decay != 0:
p_data_fp32.mul_(1 - lr * weight_decay)
p_data_fp32.add_(buf, alpha=momentum * momentum * lr_correct)
p_data_fp32.add_(d_p, alpha=-(1 + momentum) * lr)
buf.mul_(momentum * lr_correct).add_(d_p, alpha=-lr)
if p.data.dtype in {torch.float16, torch.bfloat16}:
p.data.copy_(p_data_fp32)
group["lr_old"] = lr
return loss
| data2vec_vision-main | deltalm/src/fairseq/optim/nag.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import types
import torch
def get_fused_adam_class():
"""
Look for the FusedAdam optimizer from apex. We first try to load the
"contrib" interface, which is a bit faster than the main interface,
but is technically deprecated.
"""
try:
# The "deprecated" interface in recent versions of apex is a bit
# faster than the main interface, since we don't use the apex
# optimizer. This can be installed by passing the
# `--deprecated_fused_adam` option when building apex.
global fused_adam_cuda
import importlib
fused_adam_cuda = importlib.import_module("fused_adam_cuda")
return FusedAdamV1
except ImportError:
try:
# fallback to the newer interface
from apex.optimizers import FusedAdam as _FusedAdam # noqa
from apex.multi_tensor_apply import multi_tensor_applier
if multi_tensor_applier.available:
return FusedAdamV2
except ImportError:
pass
return None
class FusedAdamV1(torch.optim.Optimizer):
"""
Implements Adam algorithm. Currently GPU-only. Requires Apex to be installed via
``python setup.py install --cuda_ext --cpp_ext``.
It has been proposed in `Adam: A Method for Stochastic Optimization`_.
Compared to the original version in Apex, the fairseq version casts grads
and params to FP32 internally to support ``--memory-efficient-fp16``.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups.
lr (float, optional): learning rate. (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square. (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability. (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
(default: False) NOT SUPPORTED in FusedAdam!
eps_inside_sqrt (boolean, optional): in the 'update parameters' step,
adds eps to the bias-corrected second moment estimate before
evaluating square root instead of adding it to the square root of
second moment estimate as in the original paper. (default: False)
.. _Adam: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""
def __init__(
self,
params,
lr=1e-3,
bias_correction=True,
betas=(0.9, 0.999),
eps=1e-8,
eps_inside_sqrt=False,
weight_decay=0.0,
max_grad_norm=0.0,
amsgrad=False,
):
global fused_adam_cuda
import importlib
fused_adam_cuda = importlib.import_module("fused_adam_cuda")
if amsgrad:
raise RuntimeError("FusedAdam does not support the AMSGrad variant.")
defaults = {
"lr": lr,
"bias_correction": bias_correction,
"betas": betas,
"eps": eps,
"weight_decay": weight_decay,
"max_grad_norm": max_grad_norm,
}
super().__init__(params, defaults)
self.eps_mode = 0 if eps_inside_sqrt else 1
@property
def supports_memory_efficient_fp16(self):
return True
@property
def supports_flat_params(self):
return True
@property
def supports_step_with_scale(self):
return True
def step(self, closure=None, grads=None, scale=1.0, grad_norms=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
grads (list of tensors, optional): weight gradient to use for the
optimizer update. If gradients have type torch.half, parameters
are expected to be in type torch.float. (default: None)
output params (list of tensors, optional): A reduced precision copy
of the updated weights written out in addition to the regular
updated weights. Have to be of same type as gradients. (default: None)
scale (float, optional): factor to divide gradient tensor values
by before applying to weights. (default: 1)
"""
loss = None
if closure is not None:
loss = closure()
if grads is None:
grads_group = [None] * len(self.param_groups)
# backward compatibility
# assuming a list/generator of parameter means single group
elif isinstance(grads, types.GeneratorType):
grads_group = [grads]
elif type(grads[0]) != list:
grads_group = [grads]
else:
grads_group = grads
if grad_norms is None:
grad_norms = [None] * len(self.param_groups)
for group, grads_this_group, grad_norm in zip(
self.param_groups, grads_group, grad_norms
):
if grads_this_group is None:
grads_this_group = [None] * len(group["params"])
# compute combined scale factor for this group
combined_scale = scale
if group.get("max_grad_norm", 0) > 0:
# norm is in fact norm*scale
clip = ((grad_norm / scale) + 1e-6) / group["max_grad_norm"]
if clip > 1:
combined_scale = clip * scale
bias_correction = 1 if group.get("bias_correction", 1) else 0
for p, grad in zip(group["params"], grads_this_group):
# note: p.grad should not ever be set for correct
# operation of mixed precision optimizer that sometimes
# sends None gradients
if p.grad is None and grad is None:
continue
if grad is None:
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError(
"FusedAdam does not support sparse gradients, "
"please consider SparseAdam instead"
)
p_data_fp32 = p.data.float()
state = self.state[p]
# State initialization
if len(state) == 0:
state["step"] = 0
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(p_data_fp32)
# Exponential moving average of squared gradient values
state["exp_avg_sq"] = torch.zeros_like(p_data_fp32)
else:
state["exp_avg"] = state["exp_avg"].to(p_data_fp32)
state["exp_avg_sq"] = state["exp_avg_sq"].to(p_data_fp32)
exp_avg = state["exp_avg"]
exp_avg_sq = state["exp_avg_sq"]
beta1, beta2 = group["betas"]
state["step"] += 1
out_p = p.data
with torch.cuda.device(p.device):
fused_adam_cuda.adam(
p_data_fp32,
out_p,
exp_avg,
exp_avg_sq,
grad,
group["lr"],
beta1,
beta2,
group["eps"],
combined_scale,
state["step"],
self.eps_mode,
bias_correction,
group["weight_decay"],
)
return loss
try:
from apex.optimizers import FusedAdam
from apex.multi_tensor_apply import multi_tensor_applier
class FusedAdamV2(FusedAdam):
"""
Compared to the original version in Apex, the fairseq version casts grads
and params to FP32 internally to support ``--memory-efficient-fp16``.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if not hasattr(self, "multi_tensor_adam"):
raise Exception(
"Apex installation is outdated. Please install an updated version of apex."
)
@property
def supports_memory_efficient_fp16(self):
return True
@property
def supports_flat_params(self):
return True
def step(
self,
closure=None,
grads=None,
output_params=None,
scale=None,
grad_norms=None,
):
"""Performs a single optimization step."""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
bias_correction = 1 if group["bias_correction"] else 0
beta1, beta2 = group["betas"]
# assume same step across group now to simplify things
# per parameter step can be easily support by making it tensor, or pass list into kernel
if "step" in group:
group["step"] += 1
else:
group["step"] = 1
# create lists for multi-tensor apply
g_16, p_16, orig_p_16, m_16, v_16 = [], [], [], [], []
g_32, p_32, m_32, v_32 = [], [], [], []
for p in group["params"]:
if p.grad is None:
continue
if p.grad.data.is_sparse:
raise RuntimeError(
"FusedAdam does not support sparse gradients, "
"please consider SparseAdam instead"
)
state = self.state[p]
# State initialization
if len(state) == 0:
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(p.data, dtype=torch.float)
# Exponential moving average of squared gradient values
state["exp_avg_sq"] = torch.zeros_like(
p.data, dtype=torch.float
)
else:
state["exp_avg"] = state["exp_avg"].to(
device=p.data.device, dtype=torch.float
)
state["exp_avg_sq"] = state["exp_avg_sq"].to(
device=p.data.device, dtype=torch.float
)
if p.dtype == torch.float16:
g_16.append(p.grad.data.float())
p_16.append(p.data.float())
orig_p_16.append(p.data)
m_16.append(state["exp_avg"])
v_16.append(state["exp_avg_sq"])
elif p.dtype == torch.float32:
g_32.append(p.grad.data)
p_32.append(p.data)
m_32.append(state["exp_avg"])
v_32.append(state["exp_avg_sq"])
else:
raise RuntimeError("FusedAdam only support fp16 and fp32.")
with torch.cuda.device(p.device):
if len(g_16) > 0:
multi_tensor_applier(
self.multi_tensor_adam,
self._dummy_overflow_buf,
[g_16, p_16, m_16, v_16],
group["lr"],
beta1,
beta2,
group["eps"],
group["step"],
self.adam_w_mode,
bias_correction,
group["weight_decay"],
)
for orig_p, p in zip(orig_p_16, p_16):
orig_p.copy_(p.data)
if len(g_32) > 0:
multi_tensor_applier(
self.multi_tensor_adam,
self._dummy_overflow_buf,
[g_32, p_32, m_32, v_32],
group["lr"],
beta1,
beta2,
group["eps"],
group["step"],
self.adam_w_mode,
bias_correction,
group["weight_decay"],
)
return loss
except ImportError:
pass
| data2vec_vision-main | deltalm/src/fairseq/optim/fused_adam.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
import torch
import torch.distributed as dist
from fairseq.dataclass.configs import FairseqBMUFConfig
from fairseq.dataclass.utils import gen_parser_from_dataclass
from fairseq.optim.fairseq_optimizer import FairseqOptimizer
class FairseqBMUF(FairseqOptimizer):
"""
Implements incremental block distributed data parallelism similar to
https://ieeexplore.ieee.org/document/7472805
Paper title: Scalable training of deep learning machines by incremental
block training with intra-block parallel optimization and blockwise
model-update filtering
"""
def __init__(self, cfg: FairseqBMUFConfig, optimizer):
super().__init__(cfg)
self._optimizer = optimizer
self._num_updates = 0
self.sync_iter = cfg.global_sync_iter
self.block_momentum = cfg.block_momentum
self.block_lr = cfg.block_lr
self._reset_local_data()
self.warmup_iteration = cfg.warmup_iterations
self.use_nbm = cfg.use_nbm
self.initial_state = self._optimizer.state_dict()
self.average_sync = self.cfg.average_sync
self.world_size = self.cfg.distributed_world_size
@staticmethod
def add_args(parser):
"""Add optimizer-specific arguments to the parser."""
gen_parser_from_dataclass(parser, FairseqBMUFConfig())
@property
def optimizer(self):
return self._optimizer.optimizer
@property
def optimizer_config(self):
return self._optimizer.optimizer_config
def get_lr(self):
return self._optimizer.get_lr()
def set_lr(self, lr):
self._optimizer.set_lr(lr)
def state_dict(self):
return self._optimizer.state_dict()
def load_state_dict(self, state_dict, optimizer_overrides=None):
self._optimizer.load_state_dict(state_dict, optimizer_overrides)
self.initial_state = self._optimizer.state_dict()
def multiply_grads(self, c):
"""Multiplies grads by a constant *c*."""
self._optimizer.multiply_grads(c)
def clip_grad_norm(self, max_norm, aggregate_norm_fn=None):
"""Clips gradient norm."""
return self._optimizer.clip_grad_norm(max_norm, aggregate_norm_fn)
def average_params(self):
self._optimizer.average_params()
def _block_sync(self):
if self.world_size <= 1:
return
# Update the global model using local models from all GPUs
# (Step-1) Calculate grad between previously synced model and
# currrent local model
if self.block_momentum != 0:
self._calc_grad()
# (Step-2) Average gradient from all GPUs
self._avg_grad_from_all_gpus()
# (Step-3) Calculate global momentum and update the global model
if self.block_momentum != 0:
self._update_global_model()
# (Step-4) Average local optimizer params
if self.average_sync:
self.average_params()
def _is_warmup_end(self):
# Check whether train iterations is equal to warmup iter
if self.get_num_updates() == self.warmup_iteration:
return True
return False
def _is_bmuf_iter(self):
# Check whether train iterations is equal to bmuf sync iter
if (self.get_num_updates() > self.warmup_iteration) and (
self.get_num_updates() % self.sync_iter == 0
):
return True
return False
def _warmup_sync(self, root_rank=0):
if self.world_size <= 1:
return
# Broadcast the local model to all gpus
for param in self.params:
dist.broadcast(param.data, src=root_rank)
# Update local optimizer state
if self.average_sync:
self._optimizer.average_params()
else:
self._optimizer.load_state_dict(self.initial_state)
self._reset_local_data()
def step(self, closure=None):
"""Performs a single optimization step."""
self._optimizer.step(closure)
self.set_num_updates(self.get_num_updates() + 1)
if self._is_warmup_end():
self._warmup_sync()
elif self._is_bmuf_iter():
self._block_sync()
def zero_grad(self):
"""Clears the gradients of all optimized parameters."""
self._optimizer.zero_grad()
def get_num_updates(self):
"""Get the number of parameters updates."""
return self._num_updates
def set_num_updates(self, num_updates):
"""Set the number of parameters updates."""
self._num_updates = num_updates
@torch.no_grad()
def _reset_local_data(self):
# (Step-0) Initialize global momentum parameters and store global copy on each gpu
self.global_params = [torch.zeros_like(p.data) for p in self.params]
self.smoothed_grads = [p.data.new_zeros(p.data.size()) for p in self.params]
self.grads = [p.data.new_zeros(p.data.size()) for p in self.params]
# saving the global model locally for calculating gradient during bmuf sync
for param, global_param in zip(self.params, self.global_params):
global_param.copy_(param.data)
@torch.no_grad()
def _calc_grad(self):
# global_params is basically the global copy from the previously finished
# synchronisation. param.data is local parameter after block_sync_freq
# for the local gpu. so grad is difference between previously synced
# model and currrent local model.
for index, (param, global_param) in enumerate(
zip(self.params, self.global_params)
):
self.grads[index] = global_param - param.data
def _avg_grad_from_all_gpus(self):
for index, param in enumerate(self.params):
sync_para = param.data if self.block_momentum == 0 else self.grads[index]
sync_para /= float(dist.get_world_size())
dist.all_reduce(sync_para, op=dist.ReduceOp.SUM)
@torch.no_grad()
def _update_global_model(self):
for index, (param, global_param, smoothed_grad, grad) in enumerate(
zip(
self.params,
self.global_params,
self.smoothed_grads,
# all gpus would share the same value of smoothed_grad, since it is
# always computed on synchronized gradients.
self.grads,
)
):
# global_param is basically last syncrhornized parameter. though
# smoothed_grad is local, all processes will have same value of
# smoothed_grad and hence param is globally synchronized copy.
# smoothed_grad(t) = BM * smoothed_grad(t-1) + BM_lr * grad(t)
smoothed_grad = self.block_momentum * smoothed_grad + self.block_lr * grad
param.data.copy_(global_param - smoothed_grad)
# A Nesterov momentum here is to do a partial weight update before
# calculating the gradient
if self.use_nbm:
param.data.copy_(param.data - self.block_momentum * smoothed_grad)
# backup for the next synchronization.
self.smoothed_grads[index] = smoothed_grad
global_param.copy_(param.data)
| data2vec_vision-main | deltalm/src/fairseq/optim/bmuf.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
class DynamicLossScaler(object):
def __init__(
self,
init_scale=2.0 ** 15,
scale_factor=2.0,
scale_window=2000,
tolerance=0.05,
threshold=None,
min_loss_scale=1e-4,
):
self.loss_scale = init_scale
self.scale_factor = scale_factor
self.scale_window = scale_window
self.tolerance = tolerance
self.threshold = threshold
self._iter = 0
self._last_overflow_iter = -1
self._last_rescale_iter = -1
self._overflows_since_rescale = 0
self.min_loss_scale = min_loss_scale
def scale(self, outputs):
return self.loss_scale * outputs
def update(self):
if (self._iter - self._last_overflow_iter) % self.scale_window == 0:
self.loss_scale *= self.scale_factor
self._last_rescale_iter = self._iter
self._iter += 1
def _decrease_loss_scale(self):
self.loss_scale /= self.scale_factor
if self.threshold is not None:
self.loss_scale = max(self.loss_scale, self.threshold)
def check_overflow(self, grad_norm):
# detect inf and nan
if grad_norm == float("inf") or grad_norm != grad_norm:
# overflow has occured
prev_scale = self.loss_scale
iter_since_rescale = self._iter - self._last_rescale_iter
self._last_overflow_iter = self._iter
self._overflows_since_rescale += 1
pct_overflow = self._overflows_since_rescale / float(iter_since_rescale)
if pct_overflow >= self.tolerance:
self._decrease_loss_scale()
self._last_rescale_iter = self._iter
self._overflows_since_rescale = 0
if self.loss_scale <= self.min_loss_scale:
# Use FloatingPointError as an uncommon error that parent
# functions can safely catch to stop training.
self.loss_scale = prev_scale
raise FloatingPointError(
(
"Minimum loss scale reached ({}). Your loss is probably exploding. "
"Try lowering the learning rate, using gradient clipping or "
"increasing the batch size."
).format(self.min_loss_scale)
)
self._iter += 1
raise OverflowError("setting loss scale to: " + str(self.loss_scale))
| data2vec_vision-main | deltalm/src/fairseq/optim/dynamic_loss_scaler.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import torch
import torch.optim
from . import LegacyFairseqOptimizer, register_optimizer
@register_optimizer("adafactor")
class FairseqAdafactor(LegacyFairseqOptimizer):
def __init__(self, args, params):
super().__init__(args)
self._optimizer = Adafactor(params, **self.optimizer_config)
@staticmethod
def add_args(parser):
"""Add optimizer-specific arguments to the parser."""
# fmt: off
parser.add_argument('--adafactor-eps', default='(1e-30, 1e-3)', metavar="E",
help='epsilons for Adafactor optimizer')
parser.add_argument('--clip-threshold', type=float, default=1.0, metavar="C",
help='threshold for clipping update root mean square')
parser.add_argument('--decay-rate', type=float, default=-0.8, metavar="D",
help='decay rate of the second moment estimator')
parser.add_argument('--beta1', type=float, default=None, metavar="B",
help='beta for first moment estimator. Optional')
parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD',
help='weight decay')
parser.add_argument('--scale-parameter', action='store_true',
help='scale learning rate by root mean square of parameter')
parser.add_argument('--relative-step', action='store_true',
help='set learning rate to inverse square root of timestep,'
'otherwise use external learning rate')
parser.add_argument('--warmup-init', action='store_true',
help='use relative step for warm-up learning rate schedule')
# fmt: on
@property
def optimizer_config(self):
"""
Return a kwarg dictionary that will be used to override optimizer
args stored in checkpoints. This allows us to load a checkpoint and
resume training using a different set of optimizer args, e.g., with a
different learning rate.
Note : Convergence issues empirically observed with fp16 on.
Might require search for appropriate configuration.
"""
return {
"lr": self.args.lr[0],
"eps": eval(self.args.adafactor_eps),
"clip_threshold": self.args.clip_threshold,
"decay_rate": self.args.decay_rate,
"beta1": self.args.beta1,
"weight_decay": self.args.weight_decay,
"scale_parameter": self.args.scale_parameter, # defaults to False
"relative_step": self.args.relative_step, # defaults to False
"warmup_init": self.args.warmup_init,
}
class Adafactor(torch.optim.Optimizer):
"""Implements Adafactor algorithm.
This implementation is based on:
`Adafactor: Adaptive Learning Rates with Sublinear Memory Cost`
(see https://arxiv.org/abs/1804.04235)
Note that this optimizer internally adjusts the learning rate
depending on the *scale_parameter*, *relative_step* and
*warmup_init* options. To use a manual (external) learning rate
schedule you should set `scale_parameter=False` and
`relative_step=False`.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): external learning rate (default: None)
eps (tuple[float, float]): regularization constans for square gradient
and parameter scale respectively (default: (1e-30, 1e-3))
clip_threshold (float): threshold of root mean square of
final gradient update (default: 1.0)
decay_rate (float): coefficient used to compute running averages of square
gradient (default: -0.8)
beta1 (float): coefficient used for computing running averages of gradient
(default: None)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
scale_parameter (bool): if True, learning rate is scaled by root mean square of
parameter (default: True)
relative_step (bool): if True, time-dependent learning rate is computed
instead of external learning rate (default: True)
warmup_init (bool): time-dependent learning rate computation depends on
whether warm-up initialization is being used (default: False)
"""
def __init__(
self,
params,
lr=None,
eps=(1e-30, 1e-3),
clip_threshold=1.0,
decay_rate=-0.8,
beta1=None,
weight_decay=0.0,
scale_parameter=True,
relative_step=True,
warmup_init=False,
):
if lr is not None and relative_step:
raise ValueError("Cannot combine manual lr and relative_step options")
if warmup_init and not relative_step:
raise ValueError("warmup_init requires relative_step=True")
defaults = dict(
lr=lr,
eps=eps,
clip_threshold=clip_threshold,
decay_rate=decay_rate,
beta1=beta1,
weight_decay=weight_decay,
scale_parameter=scale_parameter,
relative_step=relative_step,
warmup_init=warmup_init,
)
super(Adafactor, self).__init__(params, defaults)
@property
def supports_memory_efficient_fp16(self):
return True
@property
def supports_flat_params(self):
return False
def _get_lr(self, param_group, param_state):
rel_step_sz = param_group["lr"]
if param_group["relative_step"]:
min_step = (
1e-6 * param_state["step"] if param_group["warmup_init"] else 1e-2
)
rel_step_sz = min(min_step, 1.0 / math.sqrt(param_state["step"]))
param_scale = 1.0
if param_group["scale_parameter"]:
param_scale = max(param_group["eps"][1], param_state["RMS"])
return param_scale * rel_step_sz
def _get_options(self, param_group, param_shape):
factored = len(param_shape) >= 2
use_first_moment = param_group["beta1"] is not None
return factored, use_first_moment
def _rms(self, tensor):
return tensor.norm(2) / (tensor.numel() ** 0.5)
def _approx_sq_grad(self, exp_avg_sq_row, exp_avg_sq_col):
r_factor = (
(exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True))
.rsqrt_()
.unsqueeze(-1)
)
c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt()
return torch.mul(r_factor, c_factor)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data
if grad.dtype in {torch.float16, torch.bfloat16}:
grad = grad.float()
if grad.is_sparse:
raise RuntimeError("Adafactor does not support sparse gradients.")
state = self.state[p]
grad_shape = grad.shape
factored, use_first_moment = self._get_options(group, grad_shape)
# State Initialization
if len(state) == 0:
state["step"] = 0
if use_first_moment:
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(grad)
if factored:
state["exp_avg_sq_row"] = torch.zeros(grad_shape[:-1]).to(grad)
state["exp_avg_sq_col"] = torch.zeros(
grad_shape[:-2] + grad_shape[-1:]
).to(grad)
else:
state["exp_avg_sq"] = torch.zeros_like(grad)
state["RMS"] = 0
else:
if use_first_moment:
state["exp_avg"] = state["exp_avg"].to(grad)
if factored:
state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad)
state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad)
else:
state["exp_avg_sq"] = state["exp_avg_sq"].to(grad)
p_data_fp32 = p.data
if p.data.dtype in {torch.float16, torch.bfloat16}:
p_data_fp32 = p_data_fp32.float()
state["step"] += 1
state["RMS"] = self._rms(p_data_fp32)
group["lr"] = self._get_lr(group, state)
beta2t = 1.0 - math.pow(state["step"], group["decay_rate"])
update = (grad ** 2) + group["eps"][0]
if factored:
exp_avg_sq_row = state["exp_avg_sq_row"]
exp_avg_sq_col = state["exp_avg_sq_col"]
exp_avg_sq_row.mul_(beta2t).add_(
update.mean(dim=-1), alpha=1.0 - beta2t
)
exp_avg_sq_col.mul_(beta2t).add_(
update.mean(dim=-2), alpha=1.0 - beta2t
)
# Approximation of exponential moving average of square of gradient
update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col)
update.mul_(grad)
else:
exp_avg_sq = state["exp_avg_sq"]
exp_avg_sq.mul_(beta2t).add_(update, alpha=1.0 - beta2t)
update = exp_avg_sq.rsqrt().mul_(grad)
update.div_(
(self._rms(update) / group["clip_threshold"]).clamp_(min=1.0)
)
update.mul_(group["lr"])
if use_first_moment:
exp_avg = state["exp_avg"]
exp_avg.mul_(group["beta1"]).add_(update, alpha=1 - group["beta1"])
update = exp_avg
if group["weight_decay"] != 0:
p_data_fp32.add_(
p_data_fp32, alpha=-group["weight_decay"] * group["lr"]
)
p_data_fp32.add_(-update)
if p.data.dtype in {torch.float16, torch.bfloat16}:
p.data.copy_(p_data_fp32)
return loss
| data2vec_vision-main | deltalm/src/fairseq/optim/adafactor.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch.optim
from . import LegacyFairseqOptimizer, register_optimizer
@register_optimizer("sgd")
class SGD(LegacyFairseqOptimizer):
def __init__(self, args, params):
super().__init__(args)
self._optimizer = torch.optim.SGD(params, **self.optimizer_config)
@staticmethod
def add_args(parser):
"""Add optimizer-specific arguments to the parser."""
# fmt: off
parser.add_argument('--momentum', default=0.0, type=float, metavar='M',
help='momentum factor')
parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD',
help='weight decay')
# fmt: on
@property
def optimizer_config(self):
"""
Return a kwarg dictionary that will be used to override optimizer
args stored in checkpoints. This allows us to load a checkpoint and
resume training using a different set of optimizer args, e.g., with a
different learning rate.
"""
return {
"lr": self.args.lr[0],
"momentum": self.args.momentum,
"weight_decay": self.args.weight_decay,
}
@property
def supports_flat_params(self):
return True
| data2vec_vision-main | deltalm/src/fairseq/optim/sgd.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from fairseq import utils
from fairseq.dataclass.utils import gen_parser_from_dataclass
class FairseqOptimizer(object):
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
@classmethod
def add_args(cls, parser):
"""Add optimizer-specific arguments to the parser."""
dc = getattr(cls, "__dataclass", None)
if dc is not None:
gen_parser_from_dataclass(parser, dc())
@property
def optimizer(self):
"""Return a torch.optim.optimizer.Optimizer instance."""
if not hasattr(self, "_optimizer"):
raise NotImplementedError
if not isinstance(self._optimizer, torch.optim.Optimizer):
raise ValueError("_optimizer must be an instance of torch.optim.Optimizer")
return self._optimizer
@optimizer.setter
def optimizer(self, optimizer):
"""Reset optimizer instance."""
if not hasattr(self, "_optimizer"):
raise NotImplementedError
if not isinstance(self._optimizer, torch.optim.Optimizer):
raise ValueError("_optimizer must be an instance of torch.optim.Optimizer")
self._optimizer = optimizer
@property
def optimizer_config(self):
"""
Return a kwarg dictionary that will be used to override optimizer
args stored in checkpoints. This allows us to load a checkpoint and
resume training using a different set of optimizer args, e.g., with a
different learning rate.
"""
raise NotImplementedError
@property
def params(self):
"""Return an iterable of the parameters held by the optimizer."""
for param_group in self.param_groups:
for p in param_group["params"]:
yield p
@property
def param_groups(self):
return self.optimizer.param_groups
def __getstate__(self):
return self._optimizer.__getstate__()
def get_lr(self):
"""Return the current learning rate."""
return self.param_groups[0]["lr"]
def set_lr(self, lr):
"""Set the learning rate."""
for param_group in self.param_groups:
param_group["lr"] = lr
def state_dict(self):
"""Return the optimizer's state dict."""
return self.optimizer.state_dict()
def load_state_dict(self, state_dict, optimizer_overrides=None):
"""Load an optimizer state dict.
In general we should prefer the configuration of the existing optimizer
instance (e.g., learning rate) over that found in the state_dict. This
allows us to resume training from a checkpoint using a new set of
optimizer args.
"""
self.optimizer.load_state_dict(state_dict)
if optimizer_overrides is not None and len(optimizer_overrides) > 0:
# override learning rate, momentum, etc. with latest values
for group in self.param_groups:
group.update(optimizer_overrides)
def backward(self, loss):
"""Computes the sum of gradients of the given tensor w.r.t. graph leaves."""
loss.backward()
def all_reduce_grads(self, module):
"""Manually all-reduce gradients (if required)."""
if hasattr(module, "all_reduce_grads"):
module.all_reduce_grads()
def multiply_grads(self, c):
"""Multiplies grads by a constant *c*."""
for p in self.params:
if p.grad is not None:
p.grad.data.mul_(c)
def clip_grad_norm(self, max_norm, aggregate_norm_fn=None):
"""Clips gradient norm."""
return utils.clip_grad_norm_(self.params, max_norm, aggregate_norm_fn)
def step(self, closure=None, scale=1.0, groups=None):
"""Performs a single optimization step."""
if self.supports_step_with_scale:
self.optimizer.step(closure, scale=scale)
if self.supports_groups:
self.optimizer.step(closure, scale=scale, groups=groups)
else:
self.optimizer.step(closure, scale=scale)
else:
if scale != 1.0:
self.multiply_grads(1.0 / scale)
if self.supports_groups:
self.optimizer.step(closure, groups=groups)
else:
self.optimizer.step(closure)
def zero_grad(self):
"""Clears the gradients of all optimized parameters."""
for p in self.params:
p.grad = None
self.optimizer.zero_grad()
@property
def supports_memory_efficient_fp16(self):
if hasattr(self.optimizer, "supports_memory_efficient_fp16"):
return self.optimizer.supports_memory_efficient_fp16
return False
@property
def supports_step_with_scale(self):
if hasattr(self.optimizer, "supports_step_with_scale"):
return self.optimizer.supports_step_with_scale
return False
@property
def supports_groups(self):
if hasattr(self.optimizer, "supports_groups"):
return self.optimizer.supports_groups
return False
@property
def supports_flat_params(self):
"""
Whether the optimizer supports collapsing of the model
parameters/gradients into a single contiguous Tensor.
"""
if hasattr(self.optimizer, "supports_flat_params"):
return self.optimizer.supports_flat_params
return False
def average_params(self):
pass
def broadcast_global_state_dict(self, state_dict):
"""
Broadcasts a global state dict to all ranks.
Useful for optimizers that shard state between ranks.
"""
if hasattr(self.optimizer, "broadcast_global_state_dict"):
return self.optimizer.broadcast_global_state_dict(state_dict)
else:
return state_dict
class LegacyFairseqOptimizer(FairseqOptimizer):
def __init__(self, args):
self.args = args
| data2vec_vision-main | deltalm/src/fairseq/optim/fairseq_optimizer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""isort:skip_file"""
import importlib
import os
from fairseq import registry
from fairseq.optim.bmuf import FairseqBMUF # noqa
from fairseq.optim.fairseq_optimizer import ( # noqa
FairseqOptimizer,
LegacyFairseqOptimizer,
)
from fairseq.optim.fp16_optimizer import FP16Optimizer, MemoryEfficientFP16Optimizer
from fairseq.optim.shard import shard_
from omegaconf import DictConfig
__all__ = [
"FairseqOptimizer",
"FP16Optimizer",
"MemoryEfficientFP16Optimizer",
"shard_",
]
(
_build_optimizer,
register_optimizer,
OPTIMIZER_REGISTRY,
OPTIMIZER_DATACLASS_REGISTRY,
) = registry.setup_registry("--optimizer", base_class=FairseqOptimizer, required=True)
def build_optimizer(cfg: DictConfig, params, *extra_args, **extra_kwargs):
if all(isinstance(p, dict) for p in params):
params = [t for p in params for t in p.values()]
params = list(filter(lambda p: p.requires_grad, params))
return _build_optimizer(cfg, params, *extra_args, **extra_kwargs)
# automatically import any Python files in the optim/ directory
for file in os.listdir(os.path.dirname(__file__)):
if file.endswith(".py") and not file.startswith("_"):
file_name = file[: file.find(".py")]
importlib.import_module("fairseq.optim." + file_name)
| data2vec_vision-main | deltalm/src/fairseq/optim/__init__.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.optim
from . import LegacyFairseqOptimizer, register_optimizer
@register_optimizer("adamax")
class FairseqAdamax(LegacyFairseqOptimizer):
def __init__(self, args, params):
super().__init__(args)
self._optimizer = Adamax(params, **self.optimizer_config)
@staticmethod
def add_args(parser):
"""Add optimizer-specific arguments to the parser."""
# fmt: off
parser.add_argument('--adamax-betas', default='(0.9, 0.999)', metavar='B',
help='betas for Adam optimizer')
parser.add_argument('--adamax-eps', type=float, default=1e-8, metavar='D',
help='epsilon for Adam optimizer')
parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD',
help='weight decay')
parser.add_argument('--no-bias-correction', default=False, action='store_true',
help='disable bias correction')
# fmt: on
@property
def optimizer_config(self):
"""
Return a kwarg dictionary that will be used to override optimizer
args stored in checkpoints. This allows us to load a checkpoint and
resume training using a different set of optimizer args, e.g., with a
different learning rate.
"""
return {
"lr": self.args.lr[0],
"betas": eval(self.args.adamax_betas),
"eps": self.args.adamax_eps,
"weight_decay": self.args.weight_decay,
"bias_correction": not self.args.no_bias_correction,
}
class Adamax(torch.optim.Optimizer):
"""Implements Adamax algorithm (a variant of Adam based on infinity norm).
It has been proposed in `Adam: A Method for Stochastic Optimization`__.
Compared to the version in PyTorch, this version implements a fix for weight decay.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 2e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
bias_correction (bool, optional): enable bias correction (default: True)
__ https://arxiv.org/abs/1412.6980
"""
def __init__(
self,
params,
lr=2e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
bias_correction=True,
):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(
lr=lr,
betas=betas,
eps=eps,
weight_decay=weight_decay,
bias_correction=bias_correction,
)
super(Adamax, self).__init__(params, defaults)
@property
def supports_memory_efficient_fp16(self):
return True
@property
def supports_flat_params(self):
return True
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data.float()
if grad.is_sparse:
raise RuntimeError("Adamax does not support sparse gradients")
p_data_fp32 = p.data
if p.data.dtype in {torch.float16, torch.bfloat16}:
p_data_fp32 = p_data_fp32.float()
state = self.state[p]
# State initialization
if len(state) == 0:
state["step"] = 0
state["exp_avg"] = torch.zeros_like(p_data_fp32)
state["exp_inf"] = torch.zeros_like(p_data_fp32)
else:
state["exp_avg"] = state["exp_avg"].to(p_data_fp32)
state["exp_inf"] = state["exp_inf"].to(p_data_fp32)
exp_avg, exp_inf = state["exp_avg"], state["exp_inf"]
beta1, beta2 = group["betas"]
eps = group["eps"]
state["step"] += 1
# Update biased first moment estimate.
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
# Update the exponentially weighted infinity norm.
torch.max(
exp_inf.mul_(beta2),
grad.abs_(),
out=exp_inf,
)
step_size = group["lr"]
if group["bias_correction"]:
bias_correction = 1 - beta1 ** state["step"]
step_size /= bias_correction
if group["weight_decay"] != 0:
p_data_fp32.add_(
p_data_fp32, alpha=-group["weight_decay"] * group["lr"]
)
p_data_fp32.addcdiv_(exp_avg, exp_inf.add(eps), value=-step_size)
if p.data.dtype in {torch.float16, torch.bfloat16}:
p.data.copy_(p_data_fp32)
return loss
| data2vec_vision-main | deltalm/src/fairseq/optim/adamax.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from collections import defaultdict
from itertools import chain
import torch
from fairseq import optim
from omegaconf import DictConfig
from .dynamic_loss_scaler import DynamicLossScaler
class _FP16OptimizerMixin(object):
def __init__(self, *args, **kwargs):
# forward __init__ call to the next class in mro(method resolution order)
super().__init__(*args, **kwargs)
self._multiply_factor = 1.0
@property
def has_flat_params(self):
return torch.is_tensor(self.fp32_params) or (
isinstance(self.fp32_params, dict)
and all(torch.is_tensor(t) for t in self.fp32_params.values())
)
@classmethod
def build_fp32_params(cls, args, params, flatten=True):
# create FP32 copy of parameters and grads
if flatten:
is_pipeline_parallel = getattr(
args, "pipeline_model_parallel", False
) and getattr(args, "distributed_no_spawn", False)
total_param_size = sum(p.data.numel() for p in params)
devices = [torch.cuda.current_device()]
if is_pipeline_parallel:
devices = list(set(args.pipeline_devices))
fp32_params = {}
for device in devices:
if is_pipeline_parallel:
device_param_size = sum(
p.data.numel() for p in params if p.device.index == device
)
device_params = [p for p in params if p.device.index == device]
else:
device_param_size = total_param_size
device_params = params
fp32_params[device] = (
device_params[0].new(0).float().new(device_param_size)
)
offset = 0
for p in device_params:
numel = p.data.numel()
fp32_params[device][offset : offset + numel].copy_(p.data.view(-1))
offset += numel
fp32_params[device] = torch.nn.Parameter(fp32_params[device])
fp32_params[device].grad = fp32_params[device].data.new(
device_param_size
)
return fp32_params
else:
fp32_params = []
for p in params:
p32 = torch.nn.Parameter(p.data.float())
p32.grad = torch.zeros_like(p32.data)
if hasattr(p, "param_group"):
p32.param_group = p.param_group
fp32_params.append(p32)
return fp32_params
def state_dict(self):
"""Return the optimizer's state dict."""
state_dict = self.fp32_optimizer.state_dict()
if self.scaler is not None:
state_dict["loss_scale"] = self.scaler.loss_scale
return state_dict
def load_state_dict(self, state_dict, optimizer_overrides=None):
"""Load an optimizer state dict.
In general we should prefer the configuration of the existing optimizer
instance (e.g., learning rate) over that found in the state_dict. This
allows us to resume training from a checkpoint using a new set of
optimizer args.
"""
if "loss_scale" in state_dict and self.scaler is not None:
self.scaler.loss_scale = state_dict["loss_scale"]
self.fp32_optimizer.load_state_dict(state_dict, optimizer_overrides)
def backward(self, loss):
"""Computes the sum of gradients of the given tensor w.r.t. graph leaves.
Compared to :func:`fairseq.optim.FairseqOptimizer.backward`, this
function additionally dynamically scales the loss to avoid gradient
underflow.
"""
if self.scaler is not None:
loss = self.scaler.scale(loss)
loss.backward()
self._needs_sync = True
def _sync_fp16_grads_to_fp32(self):
if self._needs_sync:
# copy FP16 grads to FP32
if self.has_flat_params:
devices = list(self.fp32_params.keys())
device_params_dict = defaultdict(list)
for p in self.fp16_params:
if p.requires_grad:
device_params_dict[p.device.index].append(p)
for device in devices:
device_params = device_params_dict[device]
offset = 0
for p in device_params:
grad_data = (
p.grad.data
if p.grad is not None
else p.data.new_zeros(p.data.shape)
)
numel = grad_data.numel()
self.fp32_params[device].grad.data[
offset : offset + numel
].copy_(grad_data.view(-1))
offset += numel
else:
for p, p32 in zip(self.fp16_params, self.fp32_params):
if not p.requires_grad:
continue
if p.grad is not None:
if p32.grad is None:
p32.grad = p.grad.data.float()
else:
p32.grad.data.copy_(p.grad.data)
else:
p32.grad = torch.zeros_like(p.data, dtype=torch.float)
self._needs_sync = False
def _sync_fp32_params_to_fp16(self):
# copy FP32 params back into FP16 model
if self.has_flat_params:
devices = list(self.fp32_params.keys())
device_params_dict = defaultdict(list)
for p in self.fp16_params:
device_params_dict[p.device.index].append(p)
for device in devices:
device_params = device_params_dict[device]
offset = 0
for p in device_params:
numel = p.data.numel()
p.data.copy_(
self.fp32_params[device]
.data[offset : offset + numel]
.view_as(p.data)
)
offset += numel
else:
for p, p32 in zip(self.fp16_params, self.fp32_params):
if not p.requires_grad:
continue
p.data.copy_(p32.data)
def _unscale_grads(self):
self._sync_fp16_grads_to_fp32()
if (
# Skip the multiplication if it's a no-op (i.e., if _multiply_factor
# is 1.0). At the same time, we want to avoid the device-to-host
# transfer by comparing it to 1.0. Since _multiply_factor starts as
# a Python float, we roughly assume that if it's a tensor then it's
# probably not =1.0 anymore and we do the multiplication. Otherwise
# we can safely check the value without a D2H transfer.
torch.is_tensor(self._multiply_factor)
or self._multiply_factor != 1.0
):
self.fp32_optimizer.multiply_grads(self._multiply_factor)
self._multiply_factor = 1.0
def multiply_grads(self, c):
"""Multiplies grads by a constant ``c``."""
self._multiply_factor *= c
def clip_grad_norm(self, max_norm, aggregate_norm_fn=None):
"""Clips gradient norm and updates dynamic loss scaler."""
self._sync_fp16_grads_to_fp32()
grad_norm = self._multiply_factor * self.fp32_optimizer.clip_grad_norm(
0, aggregate_norm_fn
)
if self.scaler is not None:
if grad_norm > max_norm > 0.0:
self._multiply_factor *= max_norm / grad_norm
self.scaler.check_overflow(grad_norm)
elif max_norm > 0.0:
clip_coef = (max_norm / (grad_norm + 1e-6)).clamp_(max=1)
self._multiply_factor *= clip_coef
return grad_norm
def step(self, closure=None, groups=None):
"""Performs a single optimization step."""
self._sync_fp16_grads_to_fp32()
if getattr(self, "supports_step_with_scale", False):
self.fp32_optimizer.step(closure, scale=(1.0 / self._multiply_factor), groups=groups)
else:
self._unscale_grads()
self.fp32_optimizer.step(closure, groups=groups)
if self.scaler is not None:
self.scaler.update()
self._sync_fp32_params_to_fp16()
def zero_grad(self):
"""Clears the gradients of all optimized parameters."""
for p in self.fp16_params:
p.grad = None
if self.has_flat_params:
if torch.is_tensor(self.fp32_params):
self.fp32_params.grad.zero_()
elif isinstance(self.fp32_params, dict):
for fp32_params in self.fp32_params.values():
fp32_params.grad.zero_()
else:
raise RuntimeError("self.fp32_params must be a tensor or dict")
else:
for p32 in self.fp32_params:
if p32.grad is not None:
p32.grad.zero_()
self._needs_sync = False
if self.scaler is not None:
self._multiply_factor = 1.0 / float(self.scaler.loss_scale)
class FP16Optimizer(_FP16OptimizerMixin, optim.FairseqOptimizer):
"""
Wrap an *optimizer* to support FP16 (mixed precision) training.
"""
def __init__(self, cfg: DictConfig, params, fp32_optimizer, fp32_params, **kwargs):
super().__init__(cfg.optimizer)
self.fp16_params = params
self.fp32_optimizer = fp32_optimizer
self.fp32_params = fp32_params
if getattr(cfg.common, "fp16_scale_window", None) is None:
if len(cfg.optimization.update_freq) > 1:
raise ValueError(
"--fp16-scale-window must be given explicitly when using a "
"custom --update-freq schedule"
)
data_parallel_size = int(
cfg.distributed_training.distributed_world_size
/ cfg.common.model_parallel_size
)
scale_window = int(
2 ** 14 / data_parallel_size / cfg.optimization.update_freq[0]
)
else:
scale_window = cfg.common.fp16_scale_window
if not getattr(cfg.common, "bf16", False):
self.scaler = DynamicLossScaler(
init_scale=cfg.common.fp16_init_scale,
scale_window=scale_window,
tolerance=cfg.common.fp16_scale_tolerance,
threshold=cfg.common.threshold_loss_scale,
min_loss_scale=cfg.common.min_loss_scale,
)
else:
# disable loss scaling for bfloat16
self.scaler = None
@classmethod
def build_optimizer(cls, cfg: DictConfig, params, **kwargs):
"""
Args:
cfg (omegaconf.DictConfig): fairseq args
params (iterable): iterable of parameters to optimize
"""
flatten = not getattr(cfg.common, "fp16_no_flatten_grads", False)
if getattr(cfg.common, "bf16", False):
flatten = False # mixed precision is faster on TPUs without flat grads
fp32_params = cls.build_fp32_params(cfg.optimizer, params, flatten=flatten)
if flatten:
fp32_optimizer = optim.build_optimizer(cfg.optimizer, [fp32_params])
else:
fp32_optimizer = optim.build_optimizer(cfg.optimizer, fp32_params)
if flatten and not fp32_optimizer.supports_flat_params:
raise RuntimeError(
f"chosen optimizer {fp32_optimizer.__class__.__name__} does not support flat params, please set --fp16-no-flatten-grads"
)
return cls(cfg, params, fp32_optimizer, fp32_params, **kwargs)
@property
def optimizer(self):
return self.fp32_optimizer.optimizer
@optimizer.setter
def optimizer(self, optimizer):
self.fp32_optimizer.optimizer = optimizer
@property
def lr_scheduler(self):
return getattr(self.fp32_optimizer, "lr_scheduler", None)
@property
def optimizer_config(self):
return self.fp32_optimizer.optimizer_config
def get_lr(self):
return self.fp32_optimizer.get_lr()
def set_lr(self, lr):
self.fp32_optimizer.set_lr(lr)
def all_reduce_grads(self, module):
self.fp32_optimizer.all_reduce_grads(module)
class _MemoryEfficientFP16OptimizerMixin(object):
def __init__(self, *args, **kwargs):
# forward __init__ call to the next class in MRO (method resolution order)
super().__init__(*args, **kwargs)
self._multiply_factor = 1.0
@property
def has_flat_params(self):
return False
def state_dict(self):
"""Return the optimizer's state dict."""
state_dict = self.wrapped_optimizer.state_dict()
if self.scaler is not None:
state_dict["loss_scale"] = self.scaler.loss_scale
return state_dict
def load_state_dict(self, state_dict, optimizer_overrides=None):
"""Load an optimizer state dict.
In general we should prefer the configuration of the existing optimizer
instance (e.g., learning rate) over that found in the state_dict. This
allows us to resume training from a checkpoint using a new set of
optimizer args.
"""
if "loss_scale" in state_dict and self.scaler is not None:
self.scaler.loss_scale = state_dict["loss_scale"]
self.wrapped_optimizer.load_state_dict(state_dict, optimizer_overrides)
# Hack: PyTorch automatically casts the optimizer state to match the
# type of the current parameters. But with --memory-efficient-fp16 the
# params are FP16 while the optimizer state is FP32 and we don't want
# to cast. A workaround is to manually copy back the original state
# after the optimizer has been loaded.
if not getattr(self.optimizer, "disable_mem_eff_fp16_loading_hack", False):
groups = self.optimizer.param_groups
saved_groups = state_dict["param_groups"]
id_map = {
old_id: p
for old_id, p in zip(
chain(*(g["params"] for g in saved_groups)),
chain(*(g["params"] for g in groups)),
)
}
for k, v in state_dict["state"].items():
if k in id_map:
param = id_map[k]
self.optimizer.state[param] = v
def backward(self, loss):
"""Computes the sum of gradients of the given tensor w.r.t. graph leaves.
Compared to :func:`fairseq.optim.FairseqOptimizer.backward`, this
function additionally dynamically scales the loss to avoid gradient
underflow.
"""
if self.scaler is not None:
loss = self.scaler.scale(loss)
loss.backward()
def _unscale_grads(self):
if (
# Skip the multiplication if it's a no-op (i.e., if _multiply_factor
# is 1.0). At the same time, we want to avoid the device-to-host
# transfer by comparing it to 1.0. Since _multiply_factor starts as
# a Python float, we roughly assume that if it's a tensor then it's
# probably not =1.0 anymore and we do the multiplication. Otherwise
# we can safely check the value without a D2H transfer.
torch.is_tensor(self._multiply_factor)
or self._multiply_factor != 1.0
):
self.wrapped_optimizer.multiply_grads(self._multiply_factor)
self._multiply_factor = 1.0
def multiply_grads(self, c):
"""Multiplies grads by a constant *c*."""
self._multiply_factor *= c
def clip_grad_norm(self, max_norm, aggregate_norm_fn=None):
"""Clips gradient norm and updates dynamic loss scaler."""
max_norm = float(max_norm)
grad_norm = self._multiply_factor * self.wrapped_optimizer.clip_grad_norm(
0, aggregate_norm_fn
)
if self.scaler is not None:
grad_norm_cpu = float(grad_norm)
if grad_norm_cpu > max_norm > 0.0:
self._multiply_factor *= max_norm / grad_norm_cpu
# detect overflow and adjust loss scale
self.scaler.check_overflow(grad_norm_cpu)
elif max_norm > 0.0:
clip_coef = (max_norm / (grad_norm + 1e-6)).clamp_(max=1)
self._multiply_factor *= clip_coef
return grad_norm
def step(self, closure=None, groups=None):
"""Performs a single optimization step."""
if getattr(self, "supports_step_with_scale", False):
# NOTE(msb) optimizer divides by scale factor
self.wrapped_optimizer.step(closure, scale=(1.0 / self._multiply_factor), groups=groups)
else:
self._unscale_grads()
self.wrapped_optimizer.step(closure, groups=groups)
if self.scaler is not None:
self.scaler.update()
def zero_grad(self):
"""Clears the gradients of all optimized parameters."""
self.wrapped_optimizer.zero_grad()
if self.scaler is not None:
self._multiply_factor = 1.0 / float(self.scaler.loss_scale)
else:
self._multiply_factor = 1.0
class MemoryEfficientFP16Optimizer(
_MemoryEfficientFP16OptimizerMixin, optim.FairseqOptimizer
):
"""
Wrap an *optimizer* to support FP16 (mixed precision) training.
Compared to :class:`fairseq.optim.FP16Optimizer`, this version does not
maintain an FP32 copy of the model. We instead expect the optimizer to
convert the gradients to FP32 internally and sync the results back to the
FP16 model params. This significantly reduces memory usage but slightly
increases the time spent in the optimizer.
Since this wrapper depends on specific functionality in the wrapped
optimizer (i.e., on-the-fly conversion of grads to FP32), only certain
optimizers can be wrapped. This is determined by the
*supports_memory_efficient_fp16* property.
"""
def __init__(self, cfg: DictConfig, params, optimizer, **kwargs):
if not optimizer.supports_memory_efficient_fp16:
raise ValueError(
"Unsupported optimizer: {}".format(optimizer.__class__.__name__)
)
super().__init__(cfg.optimizer)
self.wrapped_optimizer = optimizer
if getattr(cfg.common, "fp16_scale_window", None) is None:
if len(cfg.optimization.update_freq) > 1:
raise ValueError(
"--fp16-scale-window must be given explicitly when using a "
"custom --update-freq schedule"
)
data_parallel_size = int(
cfg.distributed_training.distributed_world_size
/ cfg.common.model_parallel_size
)
scale_window = (
2 ** 14 / data_parallel_size / cfg.optimization.update_freq[0]
)
else:
scale_window = cfg.common.fp16_scale_window
if not getattr(cfg.common, "bf16", False):
self.scaler = DynamicLossScaler(
init_scale=cfg.common.fp16_init_scale,
scale_window=scale_window,
tolerance=cfg.common.fp16_scale_tolerance,
threshold=cfg.common.threshold_loss_scale,
min_loss_scale=cfg.common.min_loss_scale,
)
else:
# disable loss scaling for bfloat16
self.scaler = None
@classmethod
def build_optimizer(cls, cfg: DictConfig, params, **kwargs):
"""
Args:
args (argparse.Namespace): fairseq args
params (iterable): iterable of parameters to optimize
"""
fp16_optimizer = optim.build_optimizer(cfg.optimizer, params)
return cls(cfg, params, fp16_optimizer, **kwargs)
@property
def optimizer(self):
return self.wrapped_optimizer.optimizer
@optimizer.setter
def optimizer(self, optimizer):
self.wrapped_optimizer.optimizer = optimizer
@property
def optimizer_config(self):
return self.wrapped_optimizer.optimizer_config
@property
def lr_scheduler(self):
return getattr(self.wrapped_optimizer, "lr_scheduler", None)
def get_lr(self):
return self.wrapped_optimizer.get_lr()
def set_lr(self, lr):
self.wrapped_optimizer.set_lr(lr)
def all_reduce_grads(self, module):
self.wrapped_optimizer.all_reduce_grads(module)
| data2vec_vision-main | deltalm/src/fairseq/optim/fp16_optimizer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch.optim
from . import LegacyFairseqOptimizer, register_optimizer
@register_optimizer("adagrad")
class Adagrad(LegacyFairseqOptimizer):
def __init__(self, args, params):
super().__init__(args)
self._optimizer = torch.optim.Adagrad(params, **self.optimizer_config)
@staticmethod
def add_args(parser):
"""Add optimizer-specific arguments to the parser."""
# fmt: off
parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD',
help='weight decay')
# fmt: on
@property
def optimizer_config(self):
"""
Return a kwarg dictionary that will be used to override optimizer
args stored in checkpoints. This allows us to load a checkpoint and
resume training using a different set of optimizer args, e.g., with a
different learning rate.
"""
return {
"lr": self.args.lr[0],
"weight_decay": self.args.weight_decay,
}
@property
def supports_flat_params(self):
return True
| data2vec_vision-main | deltalm/src/fairseq/optim/adagrad.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Any, Dict
import torch
try:
from fairscale.optim import OSS, utils
_has_fairscale = True
except ImportError:
_has_fairscale = False
def shard_(optimizer, group):
if not _has_fairscale:
raise ImportError(
"\n\nPlease install the fairscale package:" "\n\n pip install fairscale"
)
class FairseqOSS(OSS):
@property
def disable_mem_eff_fp16_loading_hack(self):
return True
def __getattr__(self, name):
if name.startswith("supports") and hasattr(self.optim, name):
return getattr(self.optim, name)
raise AttributeError(
"'FairseqOSS' object has no attribute {0!r}".format(name)
)
def broadcast_global_state_dict(
self, state_dict: Dict[str, Any]
) -> Dict[str, Any]:
"""
Broadcasts the relevant parts of a global state dict from rank 0 to
all other ranks.
"""
if self.rank == 0:
# Create template state dict for all other keys not related to sharding
template_state_dict = {
key: state_dict[key]
for key in state_dict
if key not in ("param_groups", "state")
}
template_state_dict["local_state_dict"] = True
for dst_rank in range(self.world_size):
# Get the dst_rank's param_groups shard
send_state = {
"param_groups": state_dict["param_groups"][
state_dict["partition"][dst_rank][0] : state_dict[
"partition"
][dst_rank][1]
],
"state": state_dict["state"][dst_rank],
}
send_state.update(template_state_dict)
if dst_rank == 0:
recv_state = send_state
else:
utils.broadcast_object(
send_state,
src_rank=0,
group=self.group,
dist_device=self._device,
)
else:
empty_buffer = torch.tensor([0], dtype=torch.uint8, device=self._device)
for dst_rank in range(1, self.world_size):
state = utils.broadcast_object(
empty_buffer,
src_rank=0,
group=self.group,
dist_device=self._device,
)
if dst_rank == self.rank:
recv_state = state
return recv_state
torch_optimizer = optimizer.optimizer
optim_cls = type(torch_optimizer)
optimizer.optimizer = FairseqOSS(
torch_optimizer.param_groups,
optim_cls,
group=group,
**optimizer.optimizer_config
)
| data2vec_vision-main | deltalm/src/fairseq/optim/shard.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import math
from collections.abc import Collection
from dataclasses import dataclass, field
from typing import List
import torch
import torch.distributed as dist
import torch.optim
from fairseq.dataclass import FairseqDataclass
from fairseq.optim import FairseqOptimizer, register_optimizer
from fairseq.optim.fused_adam import get_fused_adam_class
from omegaconf import II, DictConfig
logger = logging.getLogger(__name__)
@dataclass
class FairseqAdamConfig(FairseqDataclass):
adam_betas: str = field(
default="(0.9, 0.999)", metadata={"help": "betas for Adam optimizer"}
)
adam_eps: float = field(
default=1e-8, metadata={"help": "epsilon for Adam optimizer"}
)
weight_decay: float = field(default=0.0, metadata={"help": "weight decay"})
use_old_adam: bool = field(
default=False, metadata={"help": "Use fairseq.optim.adam.Adam"}
)
# TODO common vars below in parent
tpu: bool = II("common.tpu")
lr: List[float] = II("optimization.lr")
@register_optimizer("adam", dataclass=FairseqAdamConfig)
class FairseqAdam(FairseqOptimizer):
"""Adam optimizer for fairseq.
Important note: this optimizer corresponds to the "AdamW" variant of
Adam in its weight decay behavior. As such, it is most closely
analogous to torch.optim.AdamW from PyTorch.
"""
def __init__(self, cfg: DictConfig, params):
super().__init__(cfg)
fused_adam_cls = get_fused_adam_class()
use_fused_adam = (
not getattr(cfg, "use_old_adam", False)
and fused_adam_cls is not None
and torch.cuda.is_available()
)
if getattr(cfg, "tpu", False):
# on TPUs we use the Adam defined here, since it
# automatically casts gradients to FP32
self._optimizer = Adam(params, **self.optimizer_config)
elif use_fused_adam:
logger.info("using FusedAdam")
self._optimizer = fused_adam_cls(params, **self.optimizer_config)
else:
self._optimizer = Adam(params, **self.optimizer_config)
@property
def optimizer_config(self):
"""
Return a kwarg dictionary that will be used to override optimizer
args stored in checkpoints. This allows us to load a checkpoint and
resume training using a different set of optimizer args, e.g., with a
different learning rate.
"""
return {
"lr": self.cfg.lr[0]
if isinstance(self.cfg.lr, Collection)
else self.cfg.lr,
"betas": eval(self.cfg.adam_betas),
"eps": self.cfg.adam_eps,
"weight_decay": self.cfg.weight_decay,
}
def average_params(self):
"""Reduce Params is only used during BMUF distributed training."""
state_dict = self.optimizer.state_dict()
total_gpus = float(dist.get_world_size())
for _, value in state_dict["state"].items():
value["exp_avg"] /= total_gpus
value["exp_avg_sq"] /= total_gpus
dist.all_reduce(value["exp_avg"], op=dist.ReduceOp.SUM)
dist.all_reduce(value["exp_avg_sq"], op=dist.ReduceOp.SUM)
class Adam(torch.optim.Optimizer):
r"""Implements Adam algorithm.
This implementation is modified from torch.optim.Adam based on:
`Fixed Weight Decay Regularization in Adam`
(see https://arxiv.org/abs/1711.05101)
It has been proposed in `Adam: A Method for Stochastic Optimization`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
.. _Adam\: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
):
defaults = dict(
lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad
)
super(Adam, self).__init__(params, defaults)
@property
def supports_memory_efficient_fp16(self):
return True
@property
def supports_flat_params(self):
return True
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data
if grad.dtype in {torch.float16, torch.bfloat16}:
grad = grad.float()
if grad.is_sparse:
raise RuntimeError(
"Adam does not support sparse gradients, please consider SparseAdam instead"
)
amsgrad = group.get("amsgrad", False)
p_data_fp32 = p.data
if p.data.dtype in {torch.float16, torch.bfloat16}:
p_data_fp32 = p_data_fp32.float()
state = self.state[p]
# State initialization
if len(state) == 0:
state["step"] = 0
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(p_data_fp32)
# Exponential moving average of squared gradient values
state["exp_avg_sq"] = torch.zeros_like(p_data_fp32)
if amsgrad:
# Maintains max of all exp. moving avg. of sq. grad. values
state["max_exp_avg_sq"] = torch.zeros_like(p_data_fp32)
else:
state["exp_avg"] = state["exp_avg"].to(p_data_fp32)
state["exp_avg_sq"] = state["exp_avg_sq"].to(p_data_fp32)
if amsgrad:
state["max_exp_avg_sq"] = state["max_exp_avg_sq"].to(
p_data_fp32
)
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
if amsgrad:
max_exp_avg_sq = state["max_exp_avg_sq"]
beta1, beta2 = group["betas"]
state["step"] += 1
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
if amsgrad:
# Maintains the maximum of all 2nd moment running avg. till now
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
# Use the max. for normalizing running avg. of gradient
denom = max_exp_avg_sq.sqrt().add_(group["eps"])
else:
denom = exp_avg_sq.sqrt().add_(group["eps"])
bias_correction1 = 1 - beta1 ** state["step"]
bias_correction2 = 1 - beta2 ** state["step"]
step_size = group["lr"] * math.sqrt(bias_correction2) / bias_correction1
if group["weight_decay"] != 0:
p_data_fp32.add_(
p_data_fp32, alpha=-group["weight_decay"] * group["lr"]
)
p_data_fp32.addcdiv_(exp_avg, denom, value=-step_size)
if p.data.dtype in {torch.float16, torch.bfloat16}:
p.data.copy_(p_data_fp32)
return loss
| data2vec_vision-main | deltalm/src/fairseq/optim/adam.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
from collections import defaultdict
from dataclasses import dataclass, field
from typing import Dict, Any, List, Optional
import torch.optim
from fairseq.dataclass import FairseqDataclass
from fairseq.optim import FairseqOptimizer, register_optimizer, _build_optimizer
from fairseq.optim.lr_scheduler import FairseqLRScheduler, build_lr_scheduler
from omegaconf import II, open_dict
logger = logging.getLogger(__name__)
@dataclass
class OptimizerAndSchedulerConfig(FairseqDataclass):
optimizer: Any = None
lr_scheduler: Optional[Any] = None
lr: List[float] = II("optimization.lr")
@dataclass
class CompositeOptimizerConfig(FairseqDataclass):
groups: Dict[str, OptimizerAndSchedulerConfig] = field(
default_factory=lambda: {},
metadata={
"help": "optimizer name -> optimizer OptimizerAndSchedulerConfig. "
"Configures a different optimizer and (optionally) lr scheduler for each parameter group"
},
)
@register_optimizer("composite", dataclass=CompositeOptimizerConfig)
class FairseqCompositeOptimizer(FairseqOptimizer):
optimizers: Dict[str, FairseqOptimizer] = {}
lr_schedulers: Dict[str, FairseqLRScheduler] = {}
lr_scheduler: FairseqLRScheduler = None
_optimizer: torch.optim.Optimizer
def __init__(self, cfg: CompositeOptimizerConfig, params):
super().__init__(cfg)
assert (
len(params) > 1
), "Composite optimizer only works when there are multiple parameter groups (try fp16_no_flatten_grads: true)"
groupped_params = defaultdict(list)
for p in params:
group = getattr(p, "param_group", "default")
groupped_params[group].append(p)
assert groupped_params.keys() == cfg.groups.keys(), (
f"Parameter groups {groupped_params.keys()} and optimizer groups {cfg.groups.keys()} are not the same! "
"Try setting 'param_group' on your parameters in the model."
)
for group, group_params in groupped_params.items():
group_cfg = cfg.groups[group]
with open_dict(group_cfg):
group_cfg.optimizer.lr = group_cfg.lr
group_cfg.lr_scheduler.lr = group_cfg.lr
self.optimizers[group] = _build_optimizer(group_cfg.optimizer, group_params)
if group_cfg.lr_scheduler is not None:
self.lr_schedulers[group] = build_lr_scheduler(
group_cfg.lr_scheduler, self.optimizers[group]
)
if len(self.lr_schedulers) > 0:
assert len(self.lr_schedulers) == len(self.optimizers), (
f"Please provide an lr scheduler for each optimizer to use pass_through scheduler. "
f"Optimizers: {self.optimizers}; Lr scheds: {self.lr_schedulers}"
)
self.lr_scheduler = CompositeLRScheduler(self.lr_schedulers)
self._optimizer = CompositeOptimizer(self.optimizers)
@property
def supports_groups(self):
return True
@property
def param_groups(self):
for opt in self.optimizers.values():
for group in opt.param_groups:
yield group
def get_lr(self):
"""Return the current learning rate."""
k = (
"default"
if "default" in self.optimizers
else next(iter(self.optimizers.keys()))
)
return self.optimizers[k].param_groups[0]["lr"]
def state_dict(self):
"""Return the LR scheduler state dict."""
return {k: s.state_dict() for k, s in self.optimizers.items()}
def load_state_dict(self, state_dict, optimizer_overrides=None):
"""Load an LR scheduler state dict."""
for k, state in state_dict.items():
if k not in self.optimizers:
# skip extra keys like "loss_scale" added by fp16 optimizer
continue
overrides = (
optimizer_overrides[k]
if isinstance(optimizer_overrides, dict) and k in optimizer_overrides
else None
)
self.optimizers[k].load_state_dict(state, optimizer_overrides=overrides)
class CompositeOptimizer(torch.optim.Optimizer):
def __init__(self, optimizers: Dict[str, FairseqOptimizer]):
self.optimizers = optimizers
@property
def supports_memory_efficient_fp16(self):
return all(o.supports_memory_efficient_fp16 for o in self.optimizers.values())
@property
def supports_flat_params(self):
return all(o.supports_flat_params for o in self.optimizers.values())
def step(self, closure=None, groups=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for k, opt in self.optimizers.items():
if groups is None or k in groups:
opt.step()
return loss
def zero_grad(self):
for opt in self.optimizers.values():
opt.zero_grad()
class CompositeLRScheduler(FairseqLRScheduler):
def __init__(self, lr_schedulers):
super().__init__(None, None)
self.lr_schedulers = lr_schedulers
def state_dict(self):
"""Return the LR scheduler state dict."""
return {k: s.state_dict() for k, s in self.lr_schedulers.items()}
def load_state_dict(self, state_dict):
"""Load an LR scheduler state dict."""
for k, state in state_dict.items():
self.lr_schedulers[k].load_state_dict(state)
def step_begin_epoch(self, epoch):
"""Update the learning rate at the beginning of the given epoch."""
for s in self.lr_schedulers.values():
s.step_begin_epoch(epoch)
def step(self, epoch, val_loss=None):
"""Update the learning rate at the end of the given epoch."""
for s in self.lr_schedulers.values():
s.step(epoch)
def step_update(self, num_updates):
"""Update the learning rate after each update."""
return {k: s.step_update(num_updates) for k, s in self.lr_schedulers.items()}
| data2vec_vision-main | deltalm/src/fairseq/optim/composite.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from fairseq.optim import LegacyFairseqOptimizer, register_optimizer
@register_optimizer("lamb")
class FairseqLAMB(LegacyFairseqOptimizer):
"""LAMB optimizer."""
def __init__(self, args, params):
super().__init__(args)
try:
from apex.optimizers import FusedLAMB
self._optimizer = FusedLAMB(params, **self.optimizer_config)
except ImportError:
raise ImportError("Please install apex to use LAMB optimizer")
@staticmethod
def add_args(parser):
"""Add optimizer-specific arguments to the parser."""
# fmt: off
parser.add_argument('--lamb-betas', default='(0.9, 0.999)', metavar='B',
help='betas for LAMB optimizer')
parser.add_argument('--lamb-eps', type=float, default=1e-8, metavar='D',
help='epsilon for LAMB optimizer')
parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD',
help='weight decay')
# fmt: on
@property
def optimizer_config(self):
"""
Return a kwarg dictionary that will be used to override optimizer
args stored in checkpoints. This allows us to load a checkpoint and
resume training using a different set of optimizer args, e.g., with a
different learning rate.
"""
return {
"lr": self.args.lr[0],
"betas": eval(self.args.lamb_betas),
"eps": self.args.lamb_eps,
"weight_decay": self.args.weight_decay,
}
@property
def supports_flat_params(self):
return False
| data2vec_vision-main | deltalm/src/fairseq/optim/fused_lamb.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch.optim
from . import LegacyFairseqOptimizer, register_optimizer
@register_optimizer("adadelta")
class Adadelta(LegacyFairseqOptimizer):
def __init__(self, args, params):
super().__init__(args)
self._optimizer = torch.optim.Adadelta(params, **self.optimizer_config)
@staticmethod
def add_args(parser):
"""Add optimizer-specific arguments to the parser."""
# fmt: off
parser.add_argument('--adadelta-rho', type=float, default=0.9, metavar='RHO',
help='coefficient used for computing a running average of squared gradients')
parser.add_argument('--adadelta-eps', type=float, default=1e-6, metavar='EPS',
help='term added to the denominator to improve numerical stability')
parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD',
help='weight decay')
parser.add_argument('--anneal-eps', action='store_true', help='flag to anneal eps')
# fmt: on
@property
def optimizer_config(self):
"""
Return a kwarg dictionary that will be used to override optimizer
args stored in checkpoints. This allows us to load a checkpoint and
resume training using a different set of optimizer args, e.g., with a
different learning rate.
"""
return {
"lr": self.args.lr[0],
"rho": self.args.adadelta_rho,
"eps": self.args.adadelta_eps,
"weight_decay": self.args.weight_decay,
}
@property
def supports_flat_params(self):
return True
| data2vec_vision-main | deltalm/src/fairseq/optim/adadelta.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from collections import Collection
from dataclasses import dataclass, field
from typing import List
from omegaconf import II
from fairseq.dataclass import FairseqDataclass
from fairseq.optim.lr_scheduler import FairseqLRScheduler, register_lr_scheduler
@dataclass
class VaswaniInverseSquareRootLRScheduleConfig(FairseqDataclass):
warmup_updates: int = field(
default=4000,
metadata={"help": "warmup the learning rate linearly for the first N updates"},
)
warmup_init_lr: float = field(
default=-1,
metadata={
"help": "initial learning rate during warmup phase; default is cfg.lr"
},
)
encoder_embed_dim: float = field(
default=512,
metadata={
"help": "initial learning rate during warmup phase; default is cfg.lr"
},
)
lr: List[float] = II("optimization.lr")
@register_lr_scheduler("vaswani_inverse_sqrt", dataclass=VaswaniInverseSquareRootLRScheduleConfig)
class VaswaniInverseSquareRootSchedule(FairseqLRScheduler):
"""Decay the LR based on the inverse square root of the update number.
We also support a warmup phase where we linearly increase the learning rate
from some initial learning rate (``--warmup-init-lr``) until the configured
learning rate (``--lr``). Thereafter we decay proportional to the number of
updates, with a decay factor set to align with the configured learning rate.
During warmup::
lrs = torch.linspace(cfg.warmup_init_lr, cfg.lr, cfg.warmup_updates)
lr = lrs[update_num]
After warmup::
decay_factor = cfg.lr * sqrt(cfg.warmup_updates)
lr = decay_factor / sqrt(update_num)
"""
def __init__(self, cfg: VaswaniInverseSquareRootLRScheduleConfig, optimizer):
super().__init__(cfg, optimizer)
if isinstance(cfg.lr, Collection) and len(cfg.lr) > 1:
raise ValueError(
"Cannot use a fixed learning rate schedule with inverse_sqrt."
" Consider --lr-scheduler=fixed instead."
)
self.warmup_end_lr = cfg.lr[0] if isinstance(cfg.lr, Collection) else cfg.lr
# then, decay prop. to the inverse square root of the update number
num_updates = 0
self.warmup_updates = cfg.warmup_updates
self.multiplier = 10 * (cfg.encoder_embed_dim ** -0.5)
self.decay_factor = self.multiplier * min((num_updates + 1) * (self.warmup_updates ** -1.5), (num_updates + 1) ** -0.5)
self.lr = self.decay_factor * self.warmup_end_lr
print("Initial learning rate: {}".format(self.lr))
# initial learning rate
self.optimizer.set_lr(self.lr)
def step(self, epoch, val_loss=None):
"""Update the learning rate at the end of the given epoch."""
super().step(epoch, val_loss)
# we don't change the learning rate at epoch boundaries
return self.optimizer.get_lr()
def step_update(self, num_updates):
"""Update the learning rate after each update."""
self.decay_factor = self.multiplier * min((num_updates + 1) * (self.warmup_updates ** -1.5), (num_updates + 1) ** -0.5)
self.lr = self.decay_factor * self.warmup_end_lr
self.optimizer.set_lr(self.lr)
return self.lr
| data2vec_vision-main | deltalm/src/fairseq/optim/lr_scheduler/vaswani_lr_scheduler.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass
from fairseq.dataclass import FairseqDataclass
from fairseq.optim.lr_scheduler import FairseqLRScheduler, register_lr_scheduler
@dataclass
class PassThroughScheduleConfig(FairseqDataclass):
pass
@register_lr_scheduler("pass_through", dataclass=PassThroughScheduleConfig)
class PassThroughScheduleSchedule(FairseqLRScheduler):
"""Delegate lr scheduling to the optimizer."""
def __init__(self, cfg: PassThroughScheduleConfig, optimizer):
super().__init__(cfg, optimizer)
assert (
hasattr(optimizer, "lr_scheduler") and optimizer.lr_scheduler is not None
), "Pass-through schedule can only be used with optimizers with their own schedulers"
def state_dict(self):
return self.optimizer.lr_scheduler.state_dict()
def load_state_dict(self, state_dict):
self.optimizer.lr_scheduler.load_state_dict(state_dict)
def step_begin_epoch(self, epoch):
"""Update the learning rate at the beginning of the given epoch."""
return self.optimizer.lr_scheduler.step_begin_epoch(epoch)
def step_update(self, num_updates):
"""Update the learning rate after each update."""
return self.optimizer.lr_scheduler.step_update(num_updates)
| data2vec_vision-main | deltalm/src/fairseq/optim/lr_scheduler/pass_through.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from . import LegacyFairseqLRScheduler, register_lr_scheduler
import logging
import ast
logger = logging.getLogger(__name__)
logger.setLevel(logging.WARNING)
@register_lr_scheduler("manual")
class ManualSchedule(LegacyFairseqLRScheduler):
"""Decay the LR on a manual schedule."""
def __init__(self, args, optimizer):
super().__init__(args, optimizer)
self.epoch2lr = self.parse_manuallr_args(args.epoch2lr)
self.update2lr = self.parse_manuallr_args(args.update2lr)
logger.info("@@@ ManualSchedule epoch2lr={}".format(self.epoch2lr))
logger.info("@@@ ManualSchedule update2lr={}".format(self.update2lr))
if 1 in self.epoch2lr:
self.lr = self.epoch2lr[1]
elif 1 in self.update2lr:
self.lr = self.update2lr[1]
else:
self.lr = args.lr[0]
self.optimizer.set_lr(self.lr) # Set the beginning of the epoch.
def parse_manuallr_args(self, lr_args_str):
lr_dict = ast.literal_eval(lr_args_str.replace(' ', ''))
if not isinstance(lr_dict, dict):
raise ValueError("epoch2lr/update2lr must be abel to evaluated to a dict")
lr_args = {}
logger.info("@@@ after parsing input dictionary lr_dict = {}".format(lr_dict))
for key, val in lr_dict.items():
if "," in key:
for k in key.split(","):
lr_args[int(k)] = float(val)
elif "-" in key:
s = int(key.split("-")[0])
e = int(key.split("-")[1])
for k in range(s, e + 1, 1):
lr_args[k] = float(val)
else:
lr_args[int(key)] = float(val)
return lr_args
@staticmethod
def add_args(parser):
"""Add arguments to the parser for this LR scheduler."""
# fmt: off
parser.add_argument(
"--epoch2lr",
type=str,
metavar="DICT",
default="{}",
help="a dictionary used to set lr for each epoch manually",
)
parser.add_argument(
"--update2lr",
type=str,
metavar="DICT",
default="{}",
help="a dictionary used to set lr for each update manually",
)
# fmt: on
def state_dict(self):
return {"lr": self.lr}
def load_state_dict(self, state_dict):
if "lr" in state_dict:
self.lr = state_dict["lr"]
def get_next_lr(self, epoch):
manual_keys = [k for k in self.epoch2lr if k <= epoch]
if manual_keys:
manual_lr = self.epoch2lr[max(manual_keys)]
else:
logger.warning("@@@ epoch={} does not exist in manual lr input. epoch2lr={}...".format(
epoch, list(self.epoch2lr.items())[:min(10, len(self.epoch2lr.keys())-1)]
))
manual_lr = self.optimizer.get_lr()
return manual_lr
def step_begin_epoch(self, epoch):
"""Update the learning rate at the beginning of the given epoch."""
self.lr = self.get_next_lr(epoch)
self.optimizer.set_lr(self.lr)
return self.optimizer.get_lr()
def step_update(self, num_updates):
"""Update the learning rate after each update."""
manual_keys = [k for k in self.update2lr if k <= num_updates]
if manual_keys:
manual_lr = self.update2lr[max(manual_keys)]
else:
logger.warning("epoch={} does not exist in manual lr input update2lr={}...".format(
num_updates, list(self.update2lr.items())[:min(10, len(self.update2lr.keys())-1)]))
manual_lr = self.optimizer.get_lr()
self.optimizer.set_lr(manual_lr)
return self.optimizer.get_lr()
| data2vec_vision-main | deltalm/src/fairseq/optim/lr_scheduler/manual_lr_scheduler.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
from typing import Optional, List
from omegaconf import II
from fairseq.dataclass import FairseqDataclass
from fairseq.optim.lr_scheduler import FairseqLRScheduler, register_lr_scheduler
@dataclass
class FixedLRScheduleConfig(FairseqDataclass):
force_anneal: Optional[int] = field(
default=None,
metadata={"help": "force annealing at specified epoch"},
)
lr_shrink: float = field(
default=0.1,
metadata={"help": "shrink factor for annealing, lr_new = (lr * lr_shrink)"},
)
warmup_updates: int = field(
default=0,
metadata={"help": "warmup the learning rate linearly for the first N updates"},
)
lr: List[float] = II("optimization.lr")
@register_lr_scheduler("fixed", dataclass=FixedLRScheduleConfig)
class FixedLRSchedule(FairseqLRScheduler):
"""Decay the LR on a fixed schedule."""
def __init__(self, cfg: FixedLRScheduleConfig, optimizer):
super().__init__(cfg, optimizer)
self.lr = cfg.lr[0]
if cfg.warmup_updates > 0:
self.warmup_factor = 1.0 / cfg.warmup_updates
else:
self.warmup_factor = 1
def state_dict(self):
return {"lr": self.lr}
def load_state_dict(self, state_dict):
if "lr" in state_dict:
self.lr = state_dict["lr"]
def get_next_lr(self, epoch):
lrs = self.cfg.lr
if self.cfg.force_anneal is None or epoch < self.cfg.force_anneal:
# use fixed LR schedule
next_lr = lrs[min(epoch - 1, len(lrs) - 1)]
else:
# annneal based on lr_shrink
next_lr = lrs[-1] * self.cfg.lr_shrink ** (
epoch + 1 - self.cfg.force_anneal
)
return next_lr
def step_begin_epoch(self, epoch):
"""Update the learning rate at the beginning of the given epoch."""
self.lr = self.get_next_lr(epoch)
self.optimizer.set_lr(self.warmup_factor * self.lr)
return self.optimizer.get_lr()
def step_update(self, num_updates):
"""Update the learning rate after each update."""
if self.cfg.warmup_updates > 0 and num_updates < self.cfg.warmup_updates:
self.warmup_factor = (num_updates + 1) / float(self.cfg.warmup_updates)
self.optimizer.set_lr(self.warmup_factor * self.lr)
else:
self.optimizer.set_lr(self.lr)
return self.optimizer.get_lr()
| data2vec_vision-main | deltalm/src/fairseq/optim/lr_scheduler/fixed_schedule.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
from typing import List
import torch.optim.lr_scheduler
from omegaconf import II
from fairseq.dataclass import FairseqDataclass
from fairseq.optim.lr_scheduler import FairseqLRScheduler, register_lr_scheduler
@dataclass
class ReduceLROnPlateauLRScheduleConfig(FairseqDataclass):
lr_shrink: float = field(
default=0.1, metadata={"help": "shrink factor for annealing"}
)
lr_threshold: float = field(
default=1e-4,
metadata={
"help": (
"threshold for measuring the new optimum, to only focus on "
"significant changes"
)
},
)
lr_patience: int = field(
default=0,
metadata={
"help": (
"number of epochs with no improvement after which learning rate will "
"be reduced"
)
},
)
warmup_updates: int = field(
default=0,
metadata={"help": "warmup the learning rate linearly for the first N updates"},
)
warmup_init_lr: float = field(
default=-1,
metadata={
"help": "initial learning rate during warmup phase; default is cfg.lr"
},
)
lr: List[float] = II("optimization.lr")
maximize_best_checkpoint_metric: bool = II(
"checkpoint.maximize_best_checkpoint_metric"
)
@register_lr_scheduler(
"reduce_lr_on_plateau", dataclass=ReduceLROnPlateauLRScheduleConfig
)
class ReduceLROnPlateauLRSchedule(FairseqLRScheduler):
"""
Decay the LR by a factor every time the validation loss plateaus.
Also comes with optional warmup phase, where we linearly increase
the learning rate from some initial learning rate
(``--warmup-init-lr``) until the configured learning rate
(``--lr``). Thereafter the lr is adjusted according to original
reduce_on_plateau scheme.
During warmup::
lrs = torch.linspace(
cfg.warmup_init_lr, cfg.lr, cfg.warmup_updates
)
lr = lrs[update_num]
"""
def __init__(self, cfg: ReduceLROnPlateauLRScheduleConfig, optimizer):
super().__init__(cfg, optimizer)
if len(cfg.lr) > 1:
raise ValueError(
"Cannot use a fixed learning rate schedule with reduce_lr_on_plateau."
" Consider --lr-scheduler=fixed instead."
)
self.lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
self.optimizer.optimizer,
patience=cfg.lr_patience,
factor=cfg.lr_shrink,
mode="max" if cfg.maximize_best_checkpoint_metric else "min",
threshold=cfg.lr_threshold,
)
warmup_end_lr = cfg.lr[0]
# if no warm up, sets initial lr to be cfg.lr[0]
if cfg.warmup_init_lr < 0:
cfg.warmup_init_lr = 0 if cfg.warmup_updates > 0 else warmup_end_lr
# linearly warmup for the first cfg.warmup_updates
if cfg.warmup_updates > 0:
self.lr_step = (warmup_end_lr - cfg.warmup_init_lr) / cfg.warmup_updates
# this flag is either set from arg when no warm up, or set by
# step_update() when warmup finishes
self.warmup_end = True if cfg.warmup_updates <= 0 else False
# initial learning rate
# this self.lr is used only during init and/or warm up period
self.lr = cfg.warmup_init_lr
self.optimizer.set_lr(self.lr)
def state_dict(self):
"""Return the LR scheduler state dict."""
return {
"best": self.lr_scheduler.best,
"last_epoch": self.lr_scheduler.last_epoch,
}
def load_state_dict(self, state_dict):
"""Load an LR scheduler state dict."""
self.lr_scheduler.best = state_dict["best"]
if "last_epoch" in state_dict:
self.lr_scheduler.last_epoch = state_dict["last_epoch"]
def step(self, epoch, val_loss=None):
"""
Update the learning rate at the end of the given epoch if warmup
finishes otherwise no update of lr on epoch boundaries
"""
if val_loss is not None and self.warmup_end is True:
self.lr_scheduler.step(val_loss)
else:
self.lr_scheduler.last_epoch = epoch
return self.optimizer.get_lr()
def step_update(self, num_updates):
"""
Update the learning rate after each update."""
# if there is warmup
if self.cfg.warmup_updates > 0:
if num_updates <= self.cfg.warmup_updates:
self.lr = self.cfg.warmup_init_lr + num_updates * self.lr_step
self.optimizer.set_lr(self.lr)
else:
if self.warmup_end is False:
self.warmup_end = True
# else do nothing
return self.optimizer.get_lr()
| data2vec_vision-main | deltalm/src/fairseq/optim/lr_scheduler/reduce_lr_on_plateau.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""isort:skip_file"""
import importlib
import os
from fairseq import registry
from fairseq.optim.lr_scheduler.fairseq_lr_scheduler import ( # noqa
FairseqLRScheduler,
LegacyFairseqLRScheduler,
)
from omegaconf import DictConfig
(
build_lr_scheduler_,
register_lr_scheduler,
LR_SCHEDULER_REGISTRY,
LR_SCHEDULER_DATACLASS_REGISTRY,
) = registry.setup_registry(
"--lr-scheduler", base_class=FairseqLRScheduler, default="fixed"
)
def build_lr_scheduler(cfg: DictConfig, optimizer):
return build_lr_scheduler_(cfg, optimizer)
# automatically import any Python files in the optim/lr_scheduler/ directory
for file in os.listdir(os.path.dirname(__file__)):
if file.endswith(".py") and not file.startswith("_"):
file_name = file[: file.find(".py")]
importlib.import_module("fairseq.optim.lr_scheduler." + file_name)
| data2vec_vision-main | deltalm/src/fairseq/optim/lr_scheduler/__init__.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
from typing import Optional, List
from omegaconf import II
from fairseq.dataclass import FairseqDataclass
from fairseq.optim.lr_scheduler import FairseqLRScheduler, register_lr_scheduler
@dataclass
class PolynomialDecayLRScheduleConfig(FairseqDataclass):
warmup_updates: int = field(
default=0,
metadata={"help": "warmup the learning rate linearly for the first N updates"},
)
force_anneal: Optional[int] = field(
default=None,
metadata={"help": "force annealing at specified epoch"},
)
end_learning_rate: float = field(
default=0.0,
metadata={"help": "learning rate to decay to"},
)
power: float = field(
default=1.0,
metadata={"help": "decay exponent"},
)
total_num_update: float = field(
default=II("optimization.max_update"),
metadata={"help": "total number of updates over which to decay learning rate"},
)
lr: List[float] = II("optimization.lr")
@register_lr_scheduler("polynomial_decay", dataclass=PolynomialDecayLRScheduleConfig)
class PolynomialDecayLRSchedule(FairseqLRScheduler):
"""Decay the LR on a fixed schedule."""
def __init__(self, cfg: PolynomialDecayLRScheduleConfig, optimizer):
super().__init__(cfg, optimizer)
assert cfg.total_num_update > 0
self.lr = cfg.lr[0]
if cfg.warmup_updates > 0:
self.warmup_factor = 1.0 / cfg.warmup_updates
else:
self.warmup_factor = 1
self.end_learning_rate = cfg.end_learning_rate
self.total_num_update = cfg.total_num_update
self.power = cfg.power
self.optimizer.set_lr(self.warmup_factor * self.lr)
def get_next_lr(self, epoch):
lrs = self.cfg.lr
if self.cfg.force_anneal is None or epoch < self.cfg.force_anneal:
# use fixed LR schedule
next_lr = lrs[min(epoch, len(lrs) - 1)]
else:
# annneal based on lr_shrink
next_lr = self.optimizer.get_lr()
return next_lr
def step_begin_epoch(self, epoch):
"""Update the learning rate at the beginning of the given epoch."""
self.lr = self.get_next_lr(epoch)
self.optimizer.set_lr(self.warmup_factor * self.lr)
return self.optimizer.get_lr()
def step_update(self, num_updates):
"""Update the learning rate after each update."""
if self.cfg.warmup_updates > 0 and num_updates <= self.cfg.warmup_updates:
self.warmup_factor = num_updates / float(self.cfg.warmup_updates)
lr = self.warmup_factor * self.lr
elif num_updates >= self.total_num_update:
lr = self.end_learning_rate
else:
warmup = self.cfg.warmup_updates
lr_range = self.lr - self.end_learning_rate
pct_remaining = 1 - (num_updates - warmup) / (
self.total_num_update - warmup
)
lr = lr_range * pct_remaining ** (self.power) + self.end_learning_rate
self.optimizer.set_lr(lr)
return self.optimizer.get_lr()
| data2vec_vision-main | deltalm/src/fairseq/optim/lr_scheduler/polynomial_decay_schedule.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from collections import Collection
from dataclasses import dataclass, field
from typing import List
from omegaconf import II
from fairseq.dataclass import FairseqDataclass
from fairseq.optim.lr_scheduler import FairseqLRScheduler, register_lr_scheduler
@dataclass
class InverseSquareRootLRScheduleConfig(FairseqDataclass):
warmup_updates: int = field(
default=4000,
metadata={"help": "warmup the learning rate linearly for the first N updates"},
)
warmup_init_lr: float = field(
default=-1,
metadata={
"help": "initial learning rate during warmup phase; default is cfg.lr"
},
)
lr: List[float] = II("optimization.lr")
@register_lr_scheduler("inverse_sqrt", dataclass=InverseSquareRootLRScheduleConfig)
class InverseSquareRootSchedule(FairseqLRScheduler):
"""Decay the LR based on the inverse square root of the update number.
We also support a warmup phase where we linearly increase the learning rate
from some initial learning rate (``--warmup-init-lr``) until the configured
learning rate (``--lr``). Thereafter we decay proportional to the number of
updates, with a decay factor set to align with the configured learning rate.
During warmup::
lrs = torch.linspace(cfg.warmup_init_lr, cfg.lr, cfg.warmup_updates)
lr = lrs[update_num]
After warmup::
decay_factor = cfg.lr * sqrt(cfg.warmup_updates)
lr = decay_factor / sqrt(update_num)
"""
def __init__(self, cfg: InverseSquareRootLRScheduleConfig, optimizer):
super().__init__(cfg, optimizer)
if isinstance(cfg.lr, Collection) and len(cfg.lr) > 1:
raise ValueError(
"Cannot use a fixed learning rate schedule with inverse_sqrt."
" Consider --lr-scheduler=fixed instead."
)
warmup_end_lr = cfg.lr[0] if isinstance(cfg.lr, Collection) else cfg.lr
if cfg.warmup_init_lr < 0:
cfg.warmup_init_lr = 0 if cfg.warmup_updates > 0 else warmup_end_lr
# linearly warmup for the first cfg.warmup_updates
self.lr_step = (warmup_end_lr - cfg.warmup_init_lr) / cfg.warmup_updates
# then, decay prop. to the inverse square root of the update number
self.decay_factor = warmup_end_lr * cfg.warmup_updates ** 0.5
# initial learning rate
self.lr = cfg.warmup_init_lr
self.optimizer.set_lr(self.lr)
def step(self, epoch, val_loss=None):
"""Update the learning rate at the end of the given epoch."""
super().step(epoch, val_loss)
# we don't change the learning rate at epoch boundaries
return self.optimizer.get_lr()
def step_update(self, num_updates):
"""Update the learning rate after each update."""
if num_updates < self.cfg.warmup_updates:
self.lr = self.cfg.warmup_init_lr + num_updates * self.lr_step
else:
self.lr = self.decay_factor * num_updates ** -0.5
self.optimizer.set_lr(self.lr)
return self.lr
| data2vec_vision-main | deltalm/src/fairseq/optim/lr_scheduler/inverse_square_root_schedule.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from argparse import Namespace
from fairseq.dataclass.utils import gen_parser_from_dataclass
from fairseq.optim import FairseqOptimizer
class FairseqLRScheduler(object):
def __init__(self, cfg, optimizer):
super().__init__()
if optimizer is not None and not isinstance(optimizer, FairseqOptimizer):
raise ValueError("optimizer must be an instance of FairseqOptimizer")
self.cfg = cfg
self.optimizer = optimizer
self.best = None
@classmethod
def add_args(cls, parser):
"""Add arguments to the parser for this LR scheduler."""
dc = getattr(cls, "__dataclass", None)
if dc is not None:
gen_parser_from_dataclass(parser, dc())
def state_dict(self):
"""Return the LR scheduler state dict."""
return {"best": self.best}
def load_state_dict(self, state_dict):
"""Load an LR scheduler state dict."""
self.best = state_dict["best"]
def step_begin_epoch(self, epoch):
"""Update the learning rate at the beginning of the given epoch."""
pass
def step(self, epoch, val_loss=None):
"""Update the learning rate at the end of the given epoch."""
if val_loss is not None:
if self.best is None:
self.best = val_loss
else:
self.best = min(self.best, val_loss)
def step_update(self, num_updates):
"""Update the learning rate after each update."""
return self.optimizer.get_lr()
class LegacyFairseqLRScheduler(FairseqLRScheduler):
def __init__(self, args: Namespace, optimizer):
if not isinstance(optimizer, FairseqOptimizer):
raise ValueError("optimizer must be an instance of FairseqOptimizer")
self.args = args
self.optimizer = optimizer
self.best = None
| data2vec_vision-main | deltalm/src/fairseq/optim/lr_scheduler/fairseq_lr_scheduler.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from dataclasses import dataclass, field
from typing import Optional, List, Tuple
from omegaconf import II
from fairseq.dataclass import FairseqDataclass
from fairseq.optim.lr_scheduler import FairseqLRScheduler, register_lr_scheduler
@dataclass
class TriStageLRScheduleConfig(FairseqDataclass):
warmup_steps: int = field(
default=0,
metadata={"help": "warmup the learning rate linearly for the first N updates"},
)
hold_steps: int = field(
default=0,
metadata={"help": "steps in hold stage"},
)
decay_steps: int = field(
default=0,
metadata={"help": "steps in decay stages"},
)
phase_ratio: Optional[Tuple[float, float, float]] = field(
default=None,
metadata={
"help": (
"if set, automatically sets warmup/hold/decay steps to the ratio "
"specified here from max_updates. the ratios must add up to 1.0"
)
},
)
init_lr_scale: float = field(
default=0.01,
metadata={"help": "initial learning rate scale during warmup phase"},
)
final_lr_scale: float = field(
default=0.01,
metadata={"help": "final learning rate scale"},
)
max_update: float = II("optimization.max_update")
lr: List[float] = II("optimization.lr")
@register_lr_scheduler("tri_stage", dataclass=TriStageLRScheduleConfig)
class TriStageLRSchedule(FairseqLRScheduler):
"""Tristage learning rate schedulr
Implement the learning rate scheduler in https://arxiv.org/pdf/1904.08779.pdf
Similar to inverse_squre_root scheduler, but tri_stage learning rate employs
three stages LR scheduling:
- warmup stage, starting from `lr` * `init_lr_scale`, linearly
increased to `lr` in `warmup_steps` iterations
- hold stage, after `warmup_steps`, keep the LR as `lr` for `hold_steps`
iterations
- decay stage, after hold stage, decay LR exponetially to
`lr` * `final_lr_scale` in `decay_steps`;
after that LR is keep as `final_lr_scale` * `lr`
During warmup::
init_lr = cfg.init_lr_scale * cfg.lr
lrs = torch.linspace(init_lr, cfg.lr, cfg.warmup_steps)
lr = lrs[update_num]
During hold::
lr = cfg.lr
During decay::
decay_factor = - math.log(cfg.final_lr_scale) / cfg.decay_steps
lr = cfg.lr * exp(- (update_num - warmup_steps - decay_steps) * decay_factor)
After that::
lr = cfg.lr * cfg.final_lr_scale
"""
def __init__(self, cfg: TriStageLRScheduleConfig, optimizer):
super().__init__(cfg, optimizer)
if len(cfg.lr) > 1:
raise ValueError(
"Cannot use a fixed learning rate schedule with tri-stage lr."
" Consider --lr-scheduler=fixed instead."
)
# calculate LR at each point
self.peak_lr = cfg.lr[0]
self.init_lr = cfg.init_lr_scale * cfg.lr[0]
self.final_lr = cfg.final_lr_scale * cfg.lr[0]
if cfg.phase_ratio is not None:
assert cfg.max_update > 0
assert sum(cfg.phase_ratio) == 1, "phase ratios must add up to 1"
self.warmup_steps = int(cfg.max_update * cfg.phase_ratio[0])
self.hold_steps = int(cfg.max_update * cfg.phase_ratio[1])
self.decay_steps = int(cfg.max_update * cfg.phase_ratio[2])
else:
self.warmup_steps = cfg.warmup_steps
self.hold_steps = cfg.hold_steps
self.decay_steps = cfg.decay_steps
assert (
self.warmup_steps + self.hold_steps + self.decay_steps > 0
), "please specify steps or phase_ratio"
self.warmup_rate = (
(self.peak_lr - self.init_lr) / self.warmup_steps
if self.warmup_steps != 0
else 0
)
self.decay_factor = -math.log(cfg.final_lr_scale) / self.decay_steps
# initial learning rate
self.lr = self.init_lr
self.optimizer.set_lr(self.lr)
def _decide_stage(self, update_step):
"""
return stage, and the corresponding steps within the current stage
"""
if update_step < self.warmup_steps:
# warmup state
return 0, update_step
offset = self.warmup_steps
if update_step < offset + self.hold_steps:
# hold stage
return 1, update_step - offset
offset += self.hold_steps
if update_step <= offset + self.decay_steps:
# decay stage
return 2, update_step - offset
offset += self.decay_steps
# still here ? constant lr stage
return 3, update_step - offset
def step(self, epoch, val_loss=None):
"""Update the learning rate at the end of the given epoch."""
super().step(epoch, val_loss)
# we don't change the learning rate at epoch boundaries
return self.optimizer.get_lr()
def step_update(self, num_updates):
"""Update the learning rate after each update."""
stage, steps_in_stage = self._decide_stage(num_updates)
if stage == 0:
self.lr = self.init_lr + self.warmup_rate * steps_in_stage
elif stage == 1:
self.lr = self.peak_lr
elif stage == 2:
self.lr = self.peak_lr * math.exp(-self.decay_factor * steps_in_stage)
elif stage == 3:
self.lr = self.final_lr
else:
raise ValueError("Undefined stage")
self.optimizer.set_lr(self.lr)
return self.lr
| data2vec_vision-main | deltalm/src/fairseq/optim/lr_scheduler/tri_stage_lr_scheduler.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from collections import Collection
from dataclasses import dataclass, field
from typing import List
from omegaconf import II
from fairseq.dataclass import FairseqDataclass
from fairseq.optim.lr_scheduler import FairseqLRScheduler, register_lr_scheduler
@dataclass
class CosineLRScheduleConfig(FairseqDataclass):
warmup_updates: int = field(
default=0,
metadata={"help": "warmup the learning rate linearly for the first N updates"},
)
warmup_init_lr: float = field(
default=-1,
metadata={
"help": "initial learning rate during warmup phase; default is cfg.lr"
},
)
lr: List[float] = field(
default=II("optimization.lr"),
metadata={"help": "max learning rate, must be more than cfg.min_lr"},
)
min_lr: float = field(default=0.0, metadata={"help": "min learning rate"})
t_mult: float = field(
default=1.0, metadata={"help": "factor to grow the length of each period"}
)
lr_period_updates: float = field(
default=-1, metadata={"help": "initial number of updates per period"}
)
lr_shrink: float = field(
default=0.1, metadata={"help": "shrink factor for annealing"}
)
# This is not required, but is for convenience in inferring lr_period_updates
max_update: int = II("optimization.max_update")
@register_lr_scheduler("cosine", dataclass=CosineLRScheduleConfig)
class CosineLRSchedule(FairseqLRScheduler):
"""Assign LR based on a cyclical schedule that follows the cosine function.
See https://arxiv.org/pdf/1608.03983.pdf for details.
We also support a warmup phase where we linearly increase the learning rate
from some initial learning rate (``--warmup-init-lr``) until the configured
max learning rate (``--lr``).
During warmup::
lrs = torch.linspace(cfg.warmup_init_lr, cfg.lr, cfg.warmup_updates)
lr = lrs[update_num]
After warmup::
lr = cfg.min_lr + 0.5*(cfg.lr - cfg.min_lr)*(1 + cos(t_curr / t_i))
where ``t_curr`` is current percentage of updates within the current period
range and ``t_i`` is the current period range, which is scaled by ``t_mul``
after every iteration.
"""
def __init__(self, cfg: CosineLRScheduleConfig, fairseq_optimizer):
super().__init__(cfg, fairseq_optimizer)
if isinstance(cfg.lr, Collection) and len(cfg.lr) > 1:
raise ValueError(
"Cannot use a fixed learning rate schedule with cosine."
f" Consider --lr-scheduler=fixed instead. ({cfg.lr})"
)
self.max_lr = cfg.lr[0] if isinstance(cfg.lr, Collection) else cfg.lr
assert (
self.max_lr > cfg.min_lr
), f"max_lr (={cfg.lr}) must be more than min_lr (={cfg.min_lr})"
warmup_end_lr = self.max_lr
if cfg.warmup_init_lr < 0:
cfg.warmup_init_lr = cfg.min_lr
self.t_mult = cfg.t_mult
self.period = cfg.lr_period_updates
if self.period <= 0:
assert (
cfg.max_update > 0
), "Either --max_update or --lr-period-updates must be set"
self.period = cfg.max_update - cfg.warmup_updates
if cfg.warmup_updates > 0:
# linearly warmup for the first cfg.warmup_updates
self.lr_step = (warmup_end_lr - cfg.warmup_init_lr) / cfg.warmup_updates
else:
self.lr_step = 1
self.warmup_updates = cfg.warmup_updates
self.lr_shrink = cfg.lr_shrink
# initial learning rate
self.lr = cfg.warmup_init_lr
self.optimizer.set_lr(self.lr)
def step(self, epoch, val_loss=None):
"""Update the learning rate at the end of the given epoch."""
super().step(epoch, val_loss)
# we don't change the learning rate at epoch boundaries
return self.optimizer.get_lr()
def step_update(self, num_updates):
"""Update the learning rate after each update."""
if num_updates < self.cfg.warmup_updates:
self.lr = self.cfg.warmup_init_lr + num_updates * self.lr_step
else:
curr_updates = num_updates - self.cfg.warmup_updates
if self.t_mult != 1:
i = math.floor(
math.log(
1 - curr_updates / self.period * (1 - self.t_mult), self.t_mult
)
)
t_i = self.t_mult ** i * self.period
t_curr = (
curr_updates
- (1 - self.t_mult ** i) / (1 - self.t_mult) * self.period
)
else:
i = math.floor(curr_updates / self.period)
t_i = self.period
t_curr = curr_updates - (self.period * i)
lr_shrink = self.lr_shrink ** i
min_lr = self.cfg.min_lr * lr_shrink
max_lr = self.max_lr * lr_shrink
self.lr = min_lr + 0.5 * (max_lr - min_lr) * (
1 + math.cos(math.pi * t_curr / t_i)
)
self.optimizer.set_lr(self.lr)
return self.lr
| data2vec_vision-main | deltalm/src/fairseq/optim/lr_scheduler/cosine_lr_scheduler.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from dataclasses import dataclass, field
from typing import List
from omegaconf import II
from fairseq.dataclass import FairseqDataclass
from fairseq.optim.lr_scheduler import FairseqLRScheduler, register_lr_scheduler
@dataclass
class TriangularLRScheduleConfig(FairseqDataclass):
max_lr: float = field(
default="???", metadata={"help": "max learning rate, must be more than cfg.lr"}
)
lr_period_updates: float = field(
default=5000,
metadata={"help": "initial number of updates per period (cycle length)"},
)
lr_shrink: float = field(
default=0.1, metadata={"help": "shrink factor for annealing"}
)
shrink_min: bool = field(
default=False, metadata={"help": "if set, also shrinks min lr"}
)
lr: List[float] = II("optimization.lr")
@register_lr_scheduler("triangular", dataclass=TriangularLRScheduleConfig)
class TriangularLRSchedule(FairseqLRScheduler):
"""Assign LR based on a triangular cyclical schedule.
See https://arxiv.org/pdf/1506.01186.pdf for details.
"""
def __init__(self, cfg: TriangularLRScheduleConfig, optimizer):
super().__init__(cfg, optimizer)
if len(cfg.lr) > 1:
raise ValueError(
"Cannot use a fixed learning rate schedule with triangular."
" Consider --lr-scheduler=fixed instead."
)
lr = cfg.lr[0]
assert cfg.max_lr > lr, "max_lr must be more than lr"
self.min_lr = lr
self.max_lr = cfg.max_lr
self.stepsize = cfg.lr_period_updates // 2
self.lr_shrink = cfg.lr_shrink
self.shrink_min = cfg.shrink_min
# initial learning rate
self.lr = self.min_lr
self.optimizer.set_lr(self.lr)
def step(self, epoch, val_loss=None):
"""Update the learning rate at the end of the given epoch."""
super().step(epoch, val_loss)
# we don't change the learning rate at epoch boundaries
return self.optimizer.get_lr()
def step_update(self, num_updates):
"""Update the learning rate after each update."""
cycle = math.floor(num_updates / (2 * self.stepsize))
lr_shrink = self.lr_shrink ** cycle
max_lr = self.max_lr * lr_shrink
if self.shrink_min:
min_lr = self.min_lr * lr_shrink
else:
min_lr = self.min_lr
x = abs(num_updates / self.stepsize - 2 * (cycle + 1) + 1)
self.lr = min_lr + (max_lr - min_lr) * max(0, (1 - x))
self.optimizer.set_lr(self.lr)
return self.lr
| data2vec_vision-main | deltalm/src/fairseq/optim/lr_scheduler/triangular_lr_scheduler.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import List, Optional
import torch
from torch import Tensor
@torch.jit.script
def script_skip_tensor_list(x: List[Tensor], mask):
res = [xi[mask] if xi.size(0) == mask.size(0) else xi[:, mask] for xi in x]
outputs = []
for i, t in enumerate(res):
if t.numel() != 0:
outputs.append(t)
else:
outputs.append(x[i])
return outputs
@torch.jit.script
def script_skip_tensor(x: Tensor, mask):
# None case
if x.size(0) == 0:
return x
res = x[mask] if x.size(0) == mask.size(0) else x[:, mask]
if res.numel() == 0:
return x
else:
return res
@torch.jit.script
def expand_2d_or_3d_tensor(x, trg_dim: int, padding_idx: int):
"""
Expand 2D/3D tensor on dim=1
"""
if x is None:
return None
assert x.dim() == 2 or x.dim() == 3
assert trg_dim >= x.size(1), (trg_dim, x.size())
if trg_dim == x.size(1):
return x
dims = [x.size(0), trg_dim - x.size(1)]
if x.dim() == 3:
dims.append(x.size(2))
x = torch.cat([x, torch.zeros(dims).to(x).fill_(padding_idx)], 1)
return x
@torch.jit.script
def coalesce(x: Optional[Tensor], y: Tensor) -> Tensor:
return x if x is not None else y
@torch.jit.script
def fill_tensors(
x: Optional[Tensor], mask, y: Optional[Tensor], padding_idx: int
) -> Optional[Tensor]:
"""
Filling tensor x with y at masked positions (dim=0).
"""
if x is None or x.size()[0] == 0 or y is None:
return x
assert x.dim() == y.dim() and mask.size(0) == x.size(0)
assert x.dim() == 2 or (x.dim() == 3 and x.size(2) == y.size(2))
n_selected = mask.sum()
if n_selected == 0:
return x
assert n_selected == y.size(0)
if n_selected == x.size(0):
return y
if x.size(1) < y.size(1):
x = expand_2d_or_3d_tensor(x, y.size(1), padding_idx)
x[mask] = y
elif x.size(1) > y.size(1):
x[mask] = torch.tensor(padding_idx).type_as(x)
if x.dim() == 2:
x[mask, : y.size(1)] = y
else:
x[mask, : y.size(1), :] = y
else:
x[mask] = y
return x
| data2vec_vision-main | deltalm/src/fairseq/models/model_utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Base classes for various fairseq models.
"""
import logging
from argparse import Namespace
from typing import Dict, List, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import utils
from fairseq.checkpoint_utils import prune_state_dict
from fairseq.data import Dictionary
from fairseq.dataclass.utils import (
convert_namespace_to_omegaconf,
gen_parser_from_dataclass,
)
from fairseq.models import FairseqDecoder, FairseqEncoder
from omegaconf import DictConfig
from torch import Tensor
logger = logging.getLogger(__name__)
class BaseFairseqModel(nn.Module):
"""Base class for fairseq models."""
def __init__(self):
super().__init__()
self._is_generation_fast = False
@classmethod
def add_args(cls, parser):
"""Add model-specific arguments to the parser."""
dc = getattr(cls, "__dataclass", None)
if dc is not None:
# do not set defaults so that settings defaults from various architectures still works
gen_parser_from_dataclass(parser, dc(), delete_default=True)
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
raise NotImplementedError("Model must implement the build_model method")
def get_targets(self, sample, net_output):
"""Get targets from either the sample or the net's output."""
return sample["target"]
def get_normalized_probs(
self,
net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
log_probs: bool,
sample: Optional[Dict[str, Tensor]] = None,
):
"""Get normalized probabilities (or log probs) from a net's output."""
return self.get_normalized_probs_scriptable(net_output, log_probs, sample)
# TorchScript doesn't support super() method so that the scriptable Subclass
# can't access the base class model in Torchscript.
# Current workaround is to add a helper function with different name and
# call the helper function from scriptable Subclass.
def get_normalized_probs_scriptable(
self,
net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
log_probs: bool,
sample: Optional[Dict[str, Tensor]] = None,
):
"""Scriptable helper function for get_normalized_probs in ~BaseFairseqModel"""
if hasattr(self, "decoder"):
return self.decoder.get_normalized_probs(net_output, log_probs, sample)
elif torch.is_tensor(net_output):
# syntactic sugar for simple models which don't have a decoder
# (e.g., the classification tutorial)
logits = net_output.float()
if log_probs:
return F.log_softmax(logits, dim=-1)
else:
return F.softmax(logits, dim=-1)
raise NotImplementedError
def extract_features(self, *args, **kwargs):
"""Similar to *forward* but only return features."""
return self(*args, **kwargs)
def max_positions(self):
"""Maximum length supported by the model."""
return None
def load_state_dict(
self,
state_dict,
strict=True,
model_cfg: Optional[DictConfig] = None,
args: Optional[Namespace] = None,
):
"""Copies parameters and buffers from *state_dict* into this module and
its descendants.
Overrides the method in :class:`nn.Module`. Compared with that method
this additionally "upgrades" *state_dicts* from old checkpoints.
"""
if model_cfg is None and args is not None:
logger.warn("using 'args' is deprecated, please update your code to use dataclass config")
model_cfg = convert_namespace_to_omegaconf(args).model
self.upgrade_state_dict(state_dict)
new_state_dict = prune_state_dict(state_dict, model_cfg)
return super().load_state_dict(new_state_dict, strict)
def upgrade_state_dict(self, state_dict):
"""Upgrade old state dicts to work with newer code."""
self.upgrade_state_dict_named(state_dict, "")
def upgrade_state_dict_named(self, state_dict, name):
"""Upgrade old state dicts to work with newer code.
Args:
state_dict (dict): state dictionary to upgrade, in place
name (str): the state dict key corresponding to the current module
"""
assert state_dict is not None
def do_upgrade(m, prefix):
if len(prefix) > 0:
prefix += "."
for n, c in m.named_children():
name = prefix + n
if hasattr(c, "upgrade_state_dict_named"):
c.upgrade_state_dict_named(state_dict, name)
elif hasattr(c, "upgrade_state_dict"):
c.upgrade_state_dict(state_dict)
do_upgrade(c, name)
do_upgrade(self, name)
def set_num_updates(self, num_updates):
"""State from trainer to pass along to model at every update."""
def _apply(m):
if hasattr(m, "set_num_updates") and m != self:
m.set_num_updates(num_updates)
self.apply(_apply)
def prepare_for_inference_(self, cfg: DictConfig):
"""Prepare model for inference."""
kwargs = {}
kwargs["beamable_mm_beam_size"] = (
None
if getattr(cfg.generation, "no_beamable_mm", False)
else getattr(cfg.generation, "beam", 5)
)
kwargs["need_attn"] = getattr(cfg.generation, "print_alignment", False)
if getattr(cfg.generation, "retain_dropout", False):
kwargs["retain_dropout"] = cfg.generation.retain_dropout
kwargs["retain_dropout_modules"] = cfg.generation.retain_dropout_modules
self.make_generation_fast_(**kwargs)
def make_generation_fast_(self, **kwargs):
"""
Legacy entry point to optimize model for faster generation.
Prefer prepare_for_inference_.
"""
if self._is_generation_fast:
return # only apply once
self._is_generation_fast = True
# remove weight norm from all modules in the network
def apply_remove_weight_norm(module):
try:
nn.utils.remove_weight_norm(module)
except (AttributeError, ValueError): # this module didn't have weight norm
return
self.apply(apply_remove_weight_norm)
def apply_make_generation_fast_(module, prefix):
if len(prefix) > 0:
prefix += "."
base_func = BaseFairseqModel.make_generation_fast_
for n, m in module.named_modules():
if (
m != self
and hasattr(m, "make_generation_fast_")
# don't call this implementation again, e.g., if
# children modules also inherit from BaseFairseqModel
and m.make_generation_fast_.__func__ is not base_func
):
name = prefix + n
m.make_generation_fast_(name=name, **kwargs)
apply_make_generation_fast_(self, "")
def train(mode=True):
if mode:
raise RuntimeError("cannot train after make_generation_fast")
# this model should no longer be used for training
self.eval()
self.train = train
def prepare_for_onnx_export_(self, **kwargs):
"""Make model exportable via ONNX trace."""
seen = set()
def apply_prepare_for_onnx_export_(module):
if (
module != self
and hasattr(module, "prepare_for_onnx_export_")
and module not in seen
):
seen.add(module)
module.prepare_for_onnx_export_(**kwargs)
self.apply(apply_prepare_for_onnx_export_)
def prepare_for_tpu_(self, **kwargs):
"""Optionally modify model for use on TPUs."""
seen = set()
def apply_prepare_for_tpu_(module):
if (
module != self
and hasattr(module, "prepare_for_tpu_")
and module not in seen
):
seen.add(module)
module.prepare_for_tpu_(**kwargs)
self.apply(apply_prepare_for_tpu_)
@classmethod
def from_pretrained(
cls,
model_name_or_path,
checkpoint_file="model.pt",
data_name_or_path=".",
**kwargs,
):
"""
Load a :class:`~fairseq.models.FairseqModel` from a pre-trained model
file. Downloads and caches the pre-trained model file if needed.
The base implementation returns a
:class:`~fairseq.hub_utils.GeneratorHubInterface`, which can be used to
generate translations or sample from language models. The underlying
:class:`~fairseq.models.FairseqModel` can be accessed via the
*generator.models* attribute.
Other models may override this to implement custom hub interfaces.
Args:
model_name_or_path (str): either the name of a pre-trained model to
load or a path/URL to a pre-trained model state dict
checkpoint_file (str, optional): colon-separated list of checkpoint
files in the model archive to ensemble (default: 'model.pt')
data_name_or_path (str, optional): point args.data to the archive
at the given path/URL. Can start with '.' or './' to reuse the
model archive path.
"""
from fairseq import hub_utils
x = hub_utils.from_pretrained(
model_name_or_path,
checkpoint_file,
data_name_or_path,
archive_map=cls.hub_models(),
**kwargs,
)
logger.info(x["args"])
return hub_utils.GeneratorHubInterface(x["args"], x["task"], x["models"])
@classmethod
def hub_models(cls):
return {}
class FairseqEncoderDecoderModel(BaseFairseqModel):
"""Base class for encoder-decoder models.
Args:
encoder (FairseqEncoder): the encoder
decoder (FairseqDecoder): the decoder
"""
def __init__(self, encoder, decoder):
super().__init__()
self.encoder = encoder
self.decoder = decoder
assert isinstance(self.decoder, FairseqDecoder)
def forward(self, src_tokens, src_lengths, prev_output_tokens, **kwargs):
"""
Run the forward pass for an encoder-decoder model.
First feed a batch of source tokens through the encoder. Then, feed the
encoder output and previous decoder outputs (i.e., teacher forcing) to
the decoder to produce the next outputs::
encoder_out = self.encoder(src_tokens, src_lengths)
return self.decoder(prev_output_tokens, encoder_out)
Args:
src_tokens (LongTensor): tokens in the source language of shape
`(batch, src_len)`
src_lengths (LongTensor): source sentence lengths of shape `(batch)`
prev_output_tokens (LongTensor): previous decoder outputs of shape
`(batch, tgt_len)`, for teacher forcing
Returns:
tuple:
- the decoder's output of shape `(batch, tgt_len, vocab)`
- a dictionary with any model-specific outputs
"""
encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs)
decoder_out = self.decoder(
prev_output_tokens, encoder_out=encoder_out, **kwargs
)
return decoder_out
def forward_decoder(self, prev_output_tokens, **kwargs):
return self.decoder(prev_output_tokens, **kwargs)
def extract_features(self, src_tokens, src_lengths, prev_output_tokens, **kwargs):
"""
Similar to *forward* but only return features.
Returns:
tuple:
- the decoder's features of shape `(batch, tgt_len, embed_dim)`
- a dictionary with any model-specific outputs
"""
encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs)
features = self.decoder.extract_features(
prev_output_tokens, encoder_out=encoder_out, **kwargs
)
return features
def output_layer(self, features, **kwargs):
"""Project features to the default output size (typically vocabulary size)."""
return self.decoder.output_layer(features, **kwargs)
def max_positions(self):
"""Maximum length supported by the model."""
return (self.encoder.max_positions(), self.decoder.max_positions())
def max_decoder_positions(self):
"""Maximum length supported by the decoder."""
return self.decoder.max_positions()
class FairseqModel(FairseqEncoderDecoderModel):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
utils.deprecation_warning(
"FairseqModel is deprecated, please use FairseqEncoderDecoderModel "
"or BaseFairseqModel instead",
stacklevel=4,
)
class FairseqMultiModel(BaseFairseqModel):
"""Base class for combining multiple encoder-decoder models."""
def __init__(self, encoders, decoders):
super().__init__()
assert encoders.keys() == decoders.keys()
self.keys = list(encoders.keys())
for key in self.keys:
assert isinstance(encoders[key], FairseqEncoder)
assert isinstance(decoders[key], FairseqDecoder)
self.models = nn.ModuleDict(
{
key: FairseqEncoderDecoderModel(encoders[key], decoders[key])
for key in self.keys
}
)
@staticmethod
def build_shared_embeddings(
dicts: Dict[str, Dictionary],
langs: List[str],
embed_dim: int,
build_embedding: callable,
pretrained_embed_path: Optional[str] = None,
):
"""
Helper function to build shared embeddings for a set of languages after
checking that all dicts corresponding to those languages are equivalent.
Args:
dicts: Dict of lang_id to its corresponding Dictionary
langs: languages that we want to share embeddings for
embed_dim: embedding dimension
build_embedding: callable function to actually build the embedding
pretrained_embed_path: Optional path to load pretrained embeddings
"""
shared_dict = dicts[langs[0]]
if any(dicts[lang] != shared_dict for lang in langs):
raise ValueError(
"--share-*-embeddings requires a joined dictionary: "
"--share-encoder-embeddings requires a joined source "
"dictionary, --share-decoder-embeddings requires a joined "
"target dictionary, and --share-all-embeddings requires a "
"joint source + target dictionary."
)
return build_embedding(shared_dict, embed_dim, pretrained_embed_path)
def forward(self, src_tokens, src_lengths, prev_output_tokens, **kwargs):
raise NotImplementedError
def max_positions(self):
"""Maximum length supported by the model."""
return {
key: (
self.models[key].encoder.max_positions(),
self.models[key].decoder.max_positions(),
)
for key in self.keys
}
def max_decoder_positions(self):
"""Maximum length supported by the decoder."""
return min(model.decoder.max_positions() for model in self.models.values())
@property
def encoder(self):
return self.models[self.keys[0]].encoder
@property
def decoder(self):
return self.models[self.keys[0]].decoder
def forward_decoder(self, prev_output_tokens, **kwargs):
return self.decoder(prev_output_tokens, **kwargs)
def load_state_dict(
self,
state_dict,
strict=True,
model_cfg=None,
args: Optional[Namespace] = None,
):
"""Copies parameters and buffers from *state_dict* into this module and
its descendants.
Overrides the method in :class:`nn.Module`. Compared with that method
this additionally "upgrades" *state_dicts* from old checkpoints.
"""
if model_cfg is None and args is not None:
logger.warn("using 'args' is deprecated, please update your code to use dataclass config")
model_cfg = convert_namespace_to_omegaconf(args).model
self.upgrade_state_dict(state_dict)
new_state_dict = prune_state_dict(state_dict, model_cfg)
return super().load_state_dict(new_state_dict, strict)
class FairseqLanguageModel(BaseFairseqModel):
"""Base class for decoder-only models.
Args:
decoder (FairseqDecoder): the decoder
"""
def __init__(self, decoder):
super().__init__()
self.decoder = decoder
assert isinstance(self.decoder, FairseqDecoder)
def forward(self, src_tokens, **kwargs):
"""
Run the forward pass for a decoder-only model.
Feeds a batch of tokens through the decoder to predict the next tokens.
Args:
src_tokens (LongTensor): tokens on which to condition the decoder,
of shape `(batch, tgt_len)`
src_lengths (LongTensor): source sentence lengths of shape `(batch)`
Returns:
tuple:
- the decoder's output of shape `(batch, seq_len, vocab)`
- a dictionary with any model-specific outputs
"""
return self.decoder(src_tokens, **kwargs)
def forward_decoder(self, prev_output_tokens, **kwargs):
return self.decoder(prev_output_tokens, **kwargs)
def extract_features(self, src_tokens, **kwargs):
"""
Similar to *forward* but only return features.
Returns:
tuple:
- the decoder's features of shape `(batch, seq_len, embed_dim)`
- a dictionary with any model-specific outputs
"""
return self.decoder.extract_features(src_tokens, **kwargs)
def output_layer(self, features, **kwargs):
"""Project features to the default output size (typically vocabulary size)."""
return self.decoder.output_layer(features, **kwargs)
def max_positions(self):
"""Maximum length supported by the model."""
return self.decoder.max_positions()
def max_decoder_positions(self):
"""Maximum length supported by the decoder."""
return self.decoder.max_positions()
@property
def supported_targets(self):
return {"future"}
class FairseqEncoderModel(BaseFairseqModel):
"""Base class for encoder-only models.
Args:
encoder (FairseqEncoder): the encoder
"""
def __init__(self, encoder):
super().__init__()
self.encoder = encoder
assert isinstance(self.encoder, FairseqEncoder)
def forward(self, src_tokens, src_lengths, **kwargs):
"""
Run the forward pass for a encoder-only model.
Feeds a batch of tokens through the encoder to generate features.
Args:
src_tokens (LongTensor): input tokens of shape `(batch, src_len)`
src_lengths (LongTensor): source sentence lengths of shape `(batch)`
Returns:
the encoder's output, typically of shape `(batch, src_len, features)`
"""
return self.encoder(src_tokens, src_lengths, **kwargs)
def get_normalized_probs(self, net_output, log_probs, sample=None):
"""Get normalized probabilities (or log probs) from a net's output."""
encoder_out = net_output["encoder_out"]
if torch.is_tensor(encoder_out):
logits = encoder_out.float()
if log_probs:
return F.log_softmax(logits, dim=-1)
else:
return F.softmax(logits, dim=-1)
raise NotImplementedError
def max_positions(self):
"""Maximum length supported by the model."""
return self.encoder.max_positions()
| data2vec_vision-main | deltalm/src/fairseq/models/fairseq_model.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Dict, List, NamedTuple, Optional
import torch
import torch.nn as nn
from torch import Tensor
EncoderOut = NamedTuple(
"EncoderOut",
[
("encoder_out", Tensor), # T x B x C
("encoder_padding_mask", Optional[Tensor]), # B x T
("encoder_embedding", Optional[Tensor]), # B x T x C
("encoder_states", Optional[List[Tensor]]), # List[T x B x C]
("src_tokens", Optional[Tensor]), # B x T
("src_lengths", Optional[Tensor]), # B x 1
],
)
class FairseqEncoder(nn.Module):
"""Base class for encoders."""
def __init__(self, dictionary):
super().__init__()
self.dictionary = dictionary
def forward(self, src_tokens, src_lengths=None, **kwargs):
"""
Args:
src_tokens (LongTensor): tokens in the source language of shape
`(batch, src_len)`
src_lengths (LongTensor): lengths of each source sentence of shape
`(batch)`
"""
raise NotImplementedError
def forward_torchscript(self, net_input: Dict[str, Tensor], **kwargs):
"""A TorchScript-compatible version of forward.
Encoders which use additional arguments may want to override
this method for TorchScript compatibility.
"""
if torch.jit.is_scripting():
return self.forward(
src_tokens=net_input["src_tokens"],
src_lengths=net_input["src_lengths"],
)
else:
return self.forward_non_torchscript(net_input)
@torch.jit.unused
def forward_non_torchscript(self, net_input: Dict[str, Tensor], **kwargs):
encoder_input = {
k: v for k, v in net_input.items() if k != "prev_output_tokens"
}
return self.forward(**encoder_input)
def reorder_encoder_out(self, encoder_out, new_order):
"""
Reorder encoder output according to `new_order`.
Args:
encoder_out: output from the ``forward()`` method
new_order (LongTensor): desired order
Returns:
`encoder_out` rearranged according to `new_order`
"""
raise NotImplementedError
def max_positions(self):
"""Maximum input length supported by the encoder."""
return 1e6 # an arbitrary large number
def upgrade_state_dict(self, state_dict):
"""Upgrade a (possibly old) state dict for new versions of fairseq."""
return state_dict
def set_num_updates(self, num_updates):
"""State from trainer to pass along to model at every update."""
def _apply(m):
if hasattr(m, "set_num_updates") and m != self:
m.set_num_updates(num_updates)
self.apply(_apply)
| data2vec_vision-main | deltalm/src/fairseq/models/fairseq_encoder.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import math
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import checkpoint_utils
from fairseq.incremental_decoding_utils import with_incremental_state
from fairseq.models import (
CompositeEncoder,
FairseqDecoder,
FairseqEncoder,
FairseqEncoderDecoderModel,
register_model,
register_model_architecture,
)
from fairseq.modules import (
DownsampledMultiHeadAttention,
FairseqDropout,
GradMultiply,
LayerNorm,
LearnedPositionalEmbedding,
LinearizedConvolution,
)
logger = logging.getLogger(__name__)
@register_model("fconv_self_att")
class FConvModelSelfAtt(FairseqEncoderDecoderModel):
@classmethod
def hub_models(cls):
return {
"conv.stories.pretrained": {
"path": "https://dl.fbaipublicfiles.com/fairseq/models/stories_checkpoint.tar.gz",
"checkpoint_file": "pretrained_checkpoint.pt",
"tokenizer": "nltk",
},
"conv.stories": {
"path": "https://dl.fbaipublicfiles.com/fairseq/models/stories_checkpoint.tar.gz",
"checkpoint_file": "fusion_checkpoint.pt",
"tokenizer": "nltk",
"pretrained": "True",
"pretrained_checkpoint": "./pretrained_checkpoint.pt",
},
# Test set containing dictionaries
"data.stories": "https://dl.fbaipublicfiles.com/fairseq/data/stories_test.tar.bz2",
}
def __init__(self, encoder, decoder, pretrained_encoder=None):
super().__init__(encoder, decoder)
self.encoder.num_attention_layers = sum(
layer is not None for layer in decoder.attention
)
self.pretrained_encoder = pretrained_encoder
if self.pretrained_encoder is None:
encoders = {"encoder": encoder}
else:
encoders = {"encoder": encoder, "pretrained": self.pretrained_encoder}
# for fusion model, CompositeEncoder contains both pretrained and training encoders
# these are forwarded and then combined in the decoder
self.encoder = CompositeEncoder(encoders)
@staticmethod
def add_args(parser):
"""Add model-specific arguments to the parser."""
# fmt: off
parser.add_argument('--dropout', type=float, metavar='D',
help='dropout probability')
parser.add_argument('--encoder-embed-dim', type=int, metavar='N',
help='encoder embedding dimension')
parser.add_argument('--encoder-layers', type=str, metavar='EXPR',
help='encoder layers [(dim, kernel_size), ...]')
parser.add_argument('--decoder-embed-dim', type=int, metavar='N',
help='decoder embedding dimension')
parser.add_argument('--decoder-layers', type=str, metavar='EXPR',
help='decoder layers [(dim, kernel_size), ...]')
parser.add_argument('--decoder-out-embed-dim', type=int, metavar='N',
help='decoder output embedding dimension')
parser.add_argument('--decoder-attention', type=str, metavar='EXPR',
help='decoder attention [True, ...]')
parser.add_argument('--self-attention', type=str, metavar='EXPR',
help='decoder self-attention layers, ex: [True] + [False]*5')
parser.add_argument('--multihead-attention-nheads', type=int,
help='Number of heads to use in attention')
parser.add_argument('--multihead-self-attention-nheads', type=int,
help='Number of heads to use in self-attention')
parser.add_argument('--encoder-attention', type=str, metavar='EXPR',
help='encoder attention [True, ...]')
parser.add_argument('--encoder-attention-nheads', type=int,
help='Number of heads to use in encoder attention')
parser.add_argument('--project-input', type=str, metavar='EXPR',
help='Use projections in self-attention [True, ...]')
parser.add_argument('--gated-attention', type=str, metavar='EXPR',
help='Use GLU layers in self-attention projections [True, ...]')
parser.add_argument('--downsample', type=str, metavar='EXPR',
help='Use downsampling in self-attention [True, ...]')
parser.add_argument('--pretrained-checkpoint', metavar='DIR',
help='path to load checkpoint from pretrained model')
parser.add_argument('--pretrained', type=str, metavar='EXPR',
help='use pretrained model when training [True, ...]')
# fmt: on
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
trained_encoder, trained_decoder = None, None
pretrained = eval(args.pretrained)
if pretrained:
logger.info("loading pretrained model")
if not os.path.exists(args.pretrained_checkpoint):
new_pretrained_checkpoint = os.path.join(
args.data, args.pretrained_checkpoint
)
if os.path.exists(new_pretrained_checkpoint):
args.pretrained_checkpoint = new_pretrained_checkpoint
trained_model = checkpoint_utils.load_model_ensemble(
filenames=[args.pretrained_checkpoint],
task=task,
)[0][0]
trained_decoder = list(trained_model.children())[1]
trained_encoder = list(trained_model.children())[0]
# freeze pretrained model
for param in trained_decoder.parameters():
param.requires_grad = False
for param in trained_encoder.parameters():
param.requires_grad = False
encoder = FConvEncoder(
task.source_dictionary,
embed_dim=args.encoder_embed_dim,
convolutions=eval(args.encoder_layers),
dropout=args.dropout,
max_positions=args.max_source_positions,
attention=eval(args.encoder_attention),
attention_nheads=args.encoder_attention_nheads,
)
decoder = FConvDecoder(
task.target_dictionary,
embed_dim=args.decoder_embed_dim,
convolutions=eval(args.decoder_layers),
out_embed_dim=args.decoder_out_embed_dim,
attention=eval(args.decoder_attention),
dropout=args.dropout,
max_positions=args.max_target_positions,
selfattention=eval(args.self_attention),
attention_nheads=args.multihead_attention_nheads,
selfattention_nheads=args.multihead_self_attention_nheads,
project_input=eval(args.project_input),
gated_attention=eval(args.gated_attention),
downsample=eval(args.downsample),
pretrained=pretrained,
trained_decoder=trained_decoder,
)
model = FConvModelSelfAtt(encoder, decoder, trained_encoder)
return model
@property
def pretrained(self):
return self.pretrained_encoder is not None
class FConvEncoder(FairseqEncoder):
"""Convolutional encoder"""
def __init__(
self,
dictionary,
embed_dim=512,
max_positions=1024,
convolutions=((512, 3),) * 20,
dropout=0.1,
attention=False,
attention_nheads=1,
):
super().__init__(dictionary)
self.dropout_module = FairseqDropout(
dropout, module_name=self.__class__.__name__
)
self.num_attention_layers = None
num_embeddings = len(dictionary)
self.padding_idx = dictionary.pad()
self.embed_tokens = Embedding(num_embeddings, embed_dim, self.padding_idx)
self.embed_positions = PositionalEmbedding(
max_positions,
embed_dim,
self.padding_idx,
)
def expand_bool_array(val):
if isinstance(val, bool):
# expand True into [True, True, ...] and do the same with False
return [val] * len(convolutions)
return val
attention = expand_bool_array(attention)
in_channels = convolutions[0][0]
self.fc1 = Linear(embed_dim, in_channels, dropout=dropout)
self.projections = nn.ModuleList()
self.convolutions = nn.ModuleList()
self.attention = nn.ModuleList()
self.attproj = nn.ModuleList()
for i, (out_channels, kernel_size) in enumerate(convolutions):
self.projections.append(
Linear(in_channels, out_channels)
if in_channels != out_channels
else None
)
self.convolutions.append(
ConvTBC(in_channels, out_channels * 2, kernel_size, dropout=dropout)
)
self.attention.append(
SelfAttention(out_channels, embed_dim, attention_nheads)
if attention[i]
else None
)
in_channels = out_channels
self.fc2 = Linear(in_channels, embed_dim)
def forward(self, src_tokens, src_lengths):
# embed tokens and positions
x = self.embed_tokens(src_tokens) + self.embed_positions(src_tokens)
x = self.dropout_module(x)
input_embedding = x.transpose(0, 1)
# project to size of convolution
x = self.fc1(x)
encoder_padding_mask = src_tokens.eq(self.padding_idx).t() # -> T x B
if not encoder_padding_mask.any():
encoder_padding_mask = None
# B x T x C -> T x B x C
x = x.transpose(0, 1)
# temporal convolutions
for proj, conv, attention in zip(
self.projections, self.convolutions, self.attention
):
residual = x if proj is None else proj(x)
if encoder_padding_mask is not None:
x = x.masked_fill(encoder_padding_mask.unsqueeze(-1), 0)
x = self.dropout_module(x)
padding_l = (conv.kernel_size[0] - 1) // 2
padding_r = conv.kernel_size[0] // 2
x = F.pad(x, (0, 0, 0, 0, padding_l, padding_r))
x = conv(x)
x = F.glu(x, dim=2)
if attention is not None:
x = attention(x)
x = (x + residual) * math.sqrt(0.5)
# T x B x C -> B x T x C
x = x.transpose(1, 0)
# project back to size of embedding
x = self.fc2(x)
if encoder_padding_mask is not None:
encoder_padding_mask = encoder_padding_mask.t() # -> B x T
x = x.masked_fill(encoder_padding_mask.unsqueeze(-1), 0)
# scale gradients (this only affects backward, not forward)
x = GradMultiply.apply(x, 1.0 / (2.0 * self.num_attention_layers))
# add output to input embedding for attention
y = (x + input_embedding.transpose(0, 1)) * math.sqrt(0.5)
return {
"encoder_out": (x, y),
"encoder_padding_mask": encoder_padding_mask, # B x T
}
def reorder_encoder_out(self, encoder_out, new_order):
encoder_out["encoder_out"] = tuple(
eo.index_select(0, new_order) for eo in encoder_out["encoder_out"]
)
if encoder_out["encoder_padding_mask"] is not None:
encoder_out["encoder_padding_mask"] = encoder_out[
"encoder_padding_mask"
].index_select(0, new_order)
if "pretrained" in encoder_out:
encoder_out["pretrained"]["encoder_out"] = tuple(
eo.index_select(0, new_order)
for eo in encoder_out["pretrained"]["encoder_out"]
)
return encoder_out
def max_positions(self):
"""Maximum input length supported by the encoder."""
return self.embed_positions.max_positions
@with_incremental_state
class FConvDecoder(FairseqDecoder):
"""Convolutional decoder"""
def __init__(
self,
dictionary,
embed_dim=512,
out_embed_dim=256,
max_positions=1024,
convolutions=((512, 3),) * 8,
attention=True,
dropout=0.1,
selfattention=False,
attention_nheads=1,
selfattention_nheads=1,
project_input=False,
gated_attention=False,
downsample=False,
pretrained=False,
trained_decoder=None,
):
super().__init__(dictionary)
self.register_buffer("version", torch.Tensor([2]))
self.pretrained = pretrained
self.pretrained_decoder = trained_decoder
self.dropout_module = FairseqDropout(
dropout, module_name=self.__class__.__name__
)
self.need_attn = True
in_channels = convolutions[0][0]
def expand_bool_array(val):
if isinstance(val, bool):
# expand True into [True, True, ...] and do the same with False
return [val] * len(convolutions)
return val
attention = expand_bool_array(attention)
selfattention = expand_bool_array(selfattention)
if not isinstance(attention, list) or len(attention) != len(convolutions):
raise ValueError(
"Attention is expected to be a list of booleans of "
"length equal to the number of layers."
)
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
self.embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx)
self.embed_positions = PositionalEmbedding(
max_positions,
embed_dim,
padding_idx,
)
self.fc1 = Linear(embed_dim, in_channels, dropout=dropout)
self.projections = nn.ModuleList()
self.convolutions = nn.ModuleList()
self.attention = nn.ModuleList()
self.selfattention = nn.ModuleList()
self.attproj = nn.ModuleList()
for i, (out_channels, kernel_size) in enumerate(convolutions):
self.projections.append(
Linear(in_channels, out_channels)
if in_channels != out_channels
else None
)
self.convolutions.append(
LinearizedConv1d(
in_channels,
out_channels * 2,
kernel_size,
padding=(kernel_size - 1),
dropout=dropout,
)
)
self.attention.append(
DownsampledMultiHeadAttention(
out_channels,
embed_dim,
attention_nheads,
project_input=project_input,
gated=False,
downsample=False,
)
if attention[i]
else None
)
self.attproj.append(
Linear(out_channels, embed_dim, dropout=dropout)
if attention[i]
else None
)
self.selfattention.append(
SelfAttention(
out_channels,
embed_dim,
selfattention_nheads,
project_input=project_input,
gated=gated_attention,
downsample=downsample,
)
if selfattention[i]
else None
)
in_channels = out_channels
self.fc2 = Linear(in_channels, out_embed_dim)
self.fc3 = Linear(out_embed_dim, num_embeddings, dropout=dropout)
# model fusion
if self.pretrained:
# independent gates are learned from the concatenated input
self.gate1 = nn.Sequential(
Linear(out_embed_dim * 2, out_embed_dim), nn.Sigmoid()
)
self.gate2 = nn.Sequential(
Linear(out_embed_dim * 2, out_embed_dim), nn.Sigmoid()
)
# pretrained and trained models are joined
self.joining = nn.Sequential(
Linear(out_embed_dim * 2, out_embed_dim * 2),
LayerNorm(out_embed_dim * 2),
nn.GLU(),
Linear(out_embed_dim, out_embed_dim * 2),
LayerNorm(out_embed_dim * 2),
nn.GLU(),
Linear(out_embed_dim, out_embed_dim),
LayerNorm(out_embed_dim),
)
# pretrained model contains an output layer that is nhid -> vocab size
# but the models are combined in their hidden state
# the hook stores the output of the pretrained model forward
self.pretrained_outputs = {}
def save_output():
def hook(a, b, output):
self.pretrained_outputs["out"] = output
return hook
self.pretrained_decoder.fc2.register_forward_hook(save_output())
def forward(self, prev_output_tokens, encoder_out):
trained_encoder_out = encoder_out["pretrained"] if self.pretrained else None
encoder_out = encoder_out["encoder"]["encoder_out"]
encoder_a, encoder_b = self._split_encoder_out(encoder_out)
# embed positions
positions = self.embed_positions(prev_output_tokens)
# embed tokens and positions
x = self.embed_tokens(prev_output_tokens) + positions
x = self.dropout_module(x)
target_embedding = x.transpose(0, 1)
# project to size of convolution
x = self.fc1(x)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
# temporal convolutions
avg_attn_scores = None
for proj, conv, attention, selfattention, attproj in zip(
self.projections,
self.convolutions,
self.attention,
self.selfattention,
self.attproj,
):
residual = x if proj is None else proj(x)
x = self.dropout_module(x)
x = conv(x)
x = F.glu(x, dim=2)
# attention
if attention is not None:
r = x
x, attn_scores = attention(
attproj(x) + target_embedding, encoder_a, encoder_b
)
x = x + r
if not self.training and self.need_attn:
if avg_attn_scores is None:
avg_attn_scores = attn_scores
else:
avg_attn_scores.add_(attn_scores)
if selfattention is not None:
x = selfattention(x)
x = (x + residual) * math.sqrt(0.5)
# T x B x C -> B x T x C
x = x.transpose(0, 1)
# project back to size of vocabulary
x = self.fc2(x)
x = self.dropout_module(x)
if not self.pretrained:
x = self.fc3(x)
# fusion gating
if self.pretrained:
trained_x, _ = self.pretrained_decoder.forward(
prev_output_tokens, trained_encoder_out
)
y = torch.cat([x, self.pretrained_outputs["out"]], dim=-1)
gate1 = self.gate1(y)
gate2 = self.gate2(y)
gated_x1 = gate1 * x
gated_x2 = gate2 * self.pretrained_outputs["out"]
fusion = torch.cat([gated_x1, gated_x2], dim=-1)
fusion = self.joining(fusion)
fusion_output = self.fc3(fusion)
return fusion_output, avg_attn_scores
else:
return x, avg_attn_scores
def max_positions(self):
"""Maximum output length supported by the decoder."""
return self.embed_positions.max_positions
def make_generation_fast_(self, need_attn=False, **kwargs):
self.need_attn = need_attn
def _split_encoder_out(self, encoder_out):
"""Split and transpose encoder outputs."""
# transpose only once to speed up attention layers
encoder_a, encoder_b = encoder_out
encoder_a = encoder_a.transpose(0, 1).contiguous()
encoder_b = encoder_b.transpose(0, 1).contiguous()
result = (encoder_a, encoder_b)
return result
class SelfAttention(nn.Module):
def __init__(
self,
out_channels,
embed_dim,
num_heads,
project_input=False,
gated=False,
downsample=False,
):
super().__init__()
self.attention = DownsampledMultiHeadAttention(
out_channels,
embed_dim,
num_heads,
dropout=0,
bias=True,
project_input=project_input,
gated=gated,
downsample=downsample,
)
self.in_proj_q = Linear(out_channels, embed_dim)
self.in_proj_k = Linear(out_channels, embed_dim)
self.in_proj_v = Linear(out_channels, embed_dim)
self.ln = LayerNorm(out_channels)
def forward(self, x):
residual = x
query = self.in_proj_q(x)
key = self.in_proj_k(x)
value = self.in_proj_v(x)
x, _ = self.attention(
query, key, value, mask_future_timesteps=True, use_scalar_bias=True
)
return self.ln(x + residual)
def Embedding(num_embeddings, embedding_dim, padding_idx):
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
m.weight.data.normal_(0, 0.1)
return m
def PositionalEmbedding(num_embeddings, embedding_dim, padding_idx):
m = LearnedPositionalEmbedding(num_embeddings, embedding_dim, padding_idx)
m.weight.data.normal_(0, 0.1)
return m
def Linear(in_features, out_features, dropout=0.0):
"""Weight-normalized Linear layer (input: N x T x C)"""
m = nn.Linear(in_features, out_features)
m.weight.data.normal_(mean=0, std=math.sqrt((1 - dropout) / in_features))
m.bias.data.zero_()
return m
def LinearizedConv1d(in_channels, out_channels, kernel_size, dropout=0.0, **kwargs):
"""Weight-normalized Conv1d layer optimized for decoding"""
m = LinearizedConvolution(in_channels, out_channels, kernel_size, **kwargs)
std = math.sqrt((4 * (1.0 - dropout)) / (m.kernel_size[0] * in_channels))
m.weight.data.normal_(mean=0, std=std)
m.bias.data.zero_()
return m
def ConvTBC(in_channels, out_channels, kernel_size, dropout=0.0, **kwargs):
"""Weight-normalized Conv1d layer"""
from fairseq.modules import ConvTBC
m = ConvTBC(in_channels, out_channels, kernel_size, **kwargs)
std = math.sqrt((4 * (1.0 - dropout)) / (m.kernel_size[0] * in_channels))
m.weight.data.normal_(mean=0, std=std)
m.bias.data.zero_()
return m
@register_model_architecture("fconv_self_att", "fconv_self_att")
def base_architecture(args):
args.dropout = getattr(args, "dropout", 0.1)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
args.encoder_layers = getattr(args, "encoder_layers", "[(512, 3)] * 3")
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
args.decoder_layers = getattr(args, "decoder_layers", "[(512, 3)] * 8")
args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 256)
args.decoder_attention = getattr(args, "decoder_attention", "True")
args.self_attention = getattr(args, "self_attention", "False")
args.encoder_attention = getattr(args, "encoder_attention", "False")
args.multihead_attention_nheads = getattr(args, "multihead_attention_nheads", 1)
args.multihead_self_attention_nheads = getattr(
args, "multihead_self_attention_nheads", 1
)
args.encoder_attention_nheads = getattr(args, "encoder_attention_nheads", 1)
args.project_input = getattr(args, "project_input", "False")
args.gated_attention = getattr(args, "gated_attention", "False")
args.downsample = getattr(args, "downsample", "False")
args.pretrained_checkpoint = getattr(args, "pretrained_checkpoint", "")
args.pretrained = getattr(args, "pretrained", "False")
@register_model_architecture("fconv_self_att", "fconv_self_att_wp")
def fconv_self_att_wp(args):
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 256)
args.encoder_layers = getattr(
args, "encoder_layers", "[(128, 3)] * 2 + [(512,3)] * 1"
)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 256)
args.decoder_layers = getattr(
args, "decoder_layers", "[(512, 4)] * 4 + [(768, 4)] * 2 + [(1024, 4)] * 1"
)
args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 256)
args.self_attention = getattr(args, "self_attention", "True")
args.multihead_self_attention_nheads = getattr(
args, "multihead_self_attention_nheads", 4
)
args.project_input = getattr(args, "project_input", "True")
args.gated_attention = getattr(args, "gated_attention", "True")
args.downsample = getattr(args, "downsample", "True")
base_architecture(args)
| data2vec_vision-main | deltalm/src/fairseq/models/fconv_self_att.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
from typing import Any, Dict
import torch
from fairseq import checkpoint_utils
from fairseq.data.legacy.masked_lm_dictionary import MaskedLMDictionary
from fairseq.models import register_model, register_model_architecture
from fairseq.models.transformer import (
TransformerDecoder,
TransformerEncoder,
TransformerModel,
base_architecture as transformer_base_architecture,
)
from fairseq.file_io import PathManager
@register_model("transformer_from_pretrained_infoxlm")
class TransformerFromPretrainedInfoXLMModel(TransformerModel):
@staticmethod
def add_args(parser):
"""Add model-specific arguments to the parser."""
TransformerModel.add_args(parser)
parser.add_argument(
"--pretrained-infoxlm-checkpoint",
type=str,
metavar="STR",
help="InfoXLM model to use for initializing transformer encoder and/or decoder",
)
parser.add_argument(
"--init-encoder-only",
action="store_true",
help="if set, don't load the InfoXLM weights and embeddings into decoder",
)
parser.add_argument(
"--init-decoder-only",
action="store_true",
help="if set, don't load the InfoXLM weights and embeddings into encoder",
)
@classmethod
def build_model(self, args, task, cls_dictionary=MaskedLMDictionary):
# assert hasattr(args, "pretrained_infoxlm_checkpoint"), (
# "You must specify a path for --pretrained-infoxlm-checkpoint to use "
# "--arch transformer_from_pretrained_infoxlm"
# )
# assert isinstance(task.source_dictionary, cls_dictionary) and isinstance(
# task.target_dictionary, cls_dictionary
# ), (
# "You should use a MaskedLMDictionary when using --arch "
# "transformer_from_pretrained_xlm because the pretrained XLM model "
# "was trained using data binarized with MaskedLMDictionary. "
# "For translation, you may want to use --task "
# "translation_from_pretrained_xlm"
# )
# assert not (
# getattr(args, "init_encoder_only", False)
# and getattr(args, "init_decoder_only", False)
# ), "Only one of --init-encoder-only and --init-decoder-only can be set."
return super().build_model(args, task)
@classmethod
def build_encoder(cls, args, src_dict, embed_tokens):
return TransformerEncoderFromPretrainedInfoXLM(args, src_dict, embed_tokens)
@classmethod
def build_decoder(cls, args, tgt_dict, embed_tokens):
return TransformerDecoderFromPretrainedInfoXLM(args, tgt_dict, embed_tokens, no_encoder_attn=getattr(args, "no_cross_attention", False))
def upgrade_state_dict_with_infoxlm_weights(
state_dict: Dict[str, Any], pretrained_infoxlm_checkpoint: str, num_layers: int, shared_cross_attn: bool=False
) -> Dict[str, Any]:
"""
Load XLM weights into a Transformer encoder or decoder model.
Args:
state_dict: state dict for either TransformerEncoder or
TransformerDecoder
pretrained_infoxlm_checkpoint: checkpoint to load XLM weights from
Raises:
AssertionError: If architecture (num layers, attention heads, etc.)
does not match between the current Transformer encoder or
decoder and the pretrained_xlm_checkpoint
"""
if not os.path.exists(pretrained_infoxlm_checkpoint):
raise IOError("Model file not found: {}".format(pretrained_infoxlm_checkpoint))
# state = checkpoint_utils.load_checkpoint_to_cpu(pretrained_infoxlm_checkpoint)
with open(PathManager.get_local_path(pretrained_infoxlm_checkpoint), "rb") as f:
state = torch.load(f, map_location=torch.device("cpu"))
infoxlm_state_dict = state["model"]
# print(state_dict.keys())
for key in infoxlm_state_dict.keys():
if 'layers' in key and int(key.split('.')[3]) > num_layers-1:
continue
if not key.startswith('decoder.'):
continue
if 'lm_head' not in key:
if 'in_proj_weight' in key:
q, k ,v = infoxlm_state_dict[key].chunk(3, dim=0)
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'q_proj.weight')] = q
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'k_proj.weight')] = k
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'v_proj.weight')] = v
if shared_cross_attn:
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'q_proj.weight').replace('self_attn', 'encoder_attn')] = q
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'k_proj.weight').replace('self_attn', 'encoder_attn')] = k
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'v_proj.weight').replace('self_attn', 'encoder_attn')] = v
elif 'in_proj_bias' in key:
q, k ,v = infoxlm_state_dict[key].chunk(3, dim=0)
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'q_proj.bias')] = q
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'k_proj.bias')] = k
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'v_proj.bias')] = v
if shared_cross_attn:
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'q_proj.bias').replace('self_attn', 'encoder_attn')] = q
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'k_proj.bias').replace('self_attn', 'encoder_attn')] = k
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'v_proj.bias').replace('self_attn', 'encoder_attn')] = v
elif 'emb_layer_norm' in key:
state_dict[key.replace('decoder.sentence_encoder.emb_layer_norm', 'layernorm_embedding')] = infoxlm_state_dict[key]
elif 'embed_positions' in key:
state_dict[key.replace('decoder.sentence_encoder.', '')] = infoxlm_state_dict[key][:state_dict[key.replace('decoder.sentence_encoder.', '')].size(0)]
elif 'embed_tokens' in key:
state_dict[key.replace('decoder.sentence_encoder.', '')][:infoxlm_state_dict[key].size(0)] = infoxlm_state_dict[key]
else:
state_dict[key.replace('decoder.sentence_encoder.', '')] = infoxlm_state_dict[key]
return state_dict
class TransformerEncoderFromPretrainedInfoXLM(TransformerEncoder):
def __init__(self, args, dictionary, embed_tokens):
super().__init__(args, dictionary, embed_tokens)
if not getattr(args, "init_encoder_only", False):
return
assert hasattr(args, "pretrained_infoxlm_checkpoint"), (
"--pretrained-infoxlm-checkpoint must be specified to load Transformer "
"encoder from pretrained XLM"
)
if hasattr(args, "pretrained_infoxlm_checkpoint") and os.path.exists(args.pretrained_infoxlm_checkpoint):
infoxlm_loaded_state_dict = upgrade_state_dict_with_infoxlm_weights(
state_dict=self.state_dict(),
pretrained_infoxlm_checkpoint=args.pretrained_infoxlm_checkpoint,
num_layers=args.encoder_layers,
)
self.load_state_dict(infoxlm_loaded_state_dict, strict=False)
print("Loading encoder from {0}".format(args.pretrained_infoxlm_checkpoint))
class TransformerDecoderFromPretrainedInfoXLM(TransformerDecoder):
def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False):
super().__init__(args, dictionary, embed_tokens, no_encoder_attn)
if not getattr(args, "init_decoder_only", False):
return
assert hasattr(args, "pretrained_infoxlm_checkpoint"), (
"--pretrained-infoxlm-checkpoint must be specified to load Transformer "
"decoder from pretrained XLM"
)
if hasattr(args, "pretrained_infoxlm_checkpoint") and os.path.exists(args.pretrained_infoxlm_checkpoint):
infoxlm_loaded_state_dict = upgrade_state_dict_with_infoxlm_weights(
state_dict=self.state_dict(),
pretrained_infoxlm_checkpoint=args.pretrained_infoxlm_checkpoint,
num_layers=args.decoder_layers,
)
self.load_state_dict(infoxlm_loaded_state_dict, strict=False)
print("Loading decoder from {0}".format(args.pretrained_infoxlm_checkpoint))
@register_model_architecture(
"transformer_from_pretrained_infoxlm", "transformer_from_pretrained_infoxlm"
)
def base_architecture(args):
args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 3072)
args.encoder_layers = getattr(args, "encoder_layers", 12)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True)
args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
args.decoder_ffn_embed_dim = getattr(
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
)
args.decoder_layers = getattr(args, "decoder_layers", 6)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 12)
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", True)
args.attention_dropout = getattr(args, "attention_dropout", 0.0)
args.activation_dropout = getattr(args, "activation_dropout", 0.0)
args.activation_fn = getattr(args, "activation_fn", "gelu")
args.dropout = getattr(args, "dropout", 0.1)
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
args.share_decoder_input_output_embed = getattr(
args, "share_decoder_input_output_embed", False
)
args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
args.no_token_positional_embeddings = getattr(
args, "no_token_positional_embeddings", False
)
args.adaptive_input = getattr(args, "adaptive_input", False)
args.no_cross_attention = getattr(args, "no_cross_attention", False)
args.cross_self_attention = getattr(args, "cross_self_attention", False)
args.layer_wise_attention = getattr(args, "layer_wise_attention", False)
args.decoder_output_dim = getattr(
args, "decoder_output_dim", args.decoder_embed_dim
)
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
args.no_scale_embedding = getattr(args, "no_scale_embedding", True)
args.layernorm_embedding = getattr(args, "layernorm_embedding", True)
args.init_encoder_only = getattr(args, "init_encoder_only", False)
args.init_decoder_only = getattr(args, "init_decoder_only", False)
args.max_positions = getattr(args, "max_positions", 512)
| data2vec_vision-main | deltalm/src/fairseq/models/transformer_from_pretrained_infoxlm.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from fairseq import utils
from fairseq.models import (
FairseqLanguageModel,
register_model,
register_model_architecture,
)
from fairseq.models.fconv import FConvDecoder
@register_model("fconv_lm")
class FConvLanguageModel(FairseqLanguageModel):
def __init__(self, decoder):
super().__init__(decoder)
@staticmethod
def add_args(parser):
"""Add model-specific arguments to the parser."""
parser.add_argument(
"--dropout", type=float, metavar="D", help="dropout probability"
)
parser.add_argument(
"--decoder-embed-dim",
type=int,
metavar="N",
help="decoder embedding dimension",
)
parser.add_argument(
"--decoder-layers",
type=str,
metavar="EXPR",
help="decoder layers [(dim, kernel_size), ...]",
)
parser.add_argument(
"--decoder-out-embed-dim",
type=int,
metavar="N",
help="decoder output embedding dimension",
)
parser.add_argument(
"--adaptive-softmax-cutoff",
metavar="EXPR",
help="comma separated list of adaptive softmax cutoff points. "
"Must be used with adaptive_loss criterion",
)
parser.add_argument(
"--adaptive-softmax-dropout",
type=float,
metavar="D",
help="sets adaptive softmax dropout for the tail projections",
)
parser.add_argument(
"--decoder-attention",
type=str,
metavar="EXPR",
help="decoder attention [True, ...]",
)
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
# make sure all arguments are present in older models
base_lm_architecture(args)
if hasattr(args, "max_target_positions") and not hasattr(
args, "tokens_per_sample"
):
args.tokens_per_sample = args.max_target_positions
decoder = FConvDecoder(
dictionary=task.target_dictionary,
embed_dim=args.decoder_embed_dim,
convolutions=eval(args.decoder_layers),
out_embed_dim=args.decoder_embed_dim,
attention=eval(args.decoder_attention),
dropout=args.dropout,
max_positions=args.tokens_per_sample,
share_embed=False,
positional_embeddings=False,
adaptive_softmax_cutoff=(
utils.eval_str_list(args.adaptive_softmax_cutoff, type=int)
if args.criterion == "adaptive_loss"
else None
),
adaptive_softmax_dropout=args.adaptive_softmax_dropout,
)
return FConvLanguageModel(decoder)
@register_model_architecture("fconv_lm", "fconv_lm")
def base_lm_architecture(args):
args.dropout = getattr(args, "dropout", 0.1)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 128)
args.decoder_layers = getattr(args, "decoder_layers", "[(1268, 4)] * 13")
args.decoder_attention = getattr(args, "decoder_attention", "False")
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
@register_model_architecture("fconv_lm", "fconv_lm_dauphin_wikitext103")
def fconv_lm_dauphin_wikitext103(args):
layers = "[(850, 6)] * 3"
layers += " + [(850, 1)] * 1"
layers += " + [(850, 5)] * 4"
layers += " + [(850, 1)] * 1"
layers += " + [(850, 4)] * 3"
layers += " + [(1024, 4)] * 1"
layers += " + [(2048, 4)] * 1"
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 280)
args.decoder_layers = getattr(args, "decoder_layers", layers)
args.decoder_attention = getattr(args, "decoder_attention", "False")
args.adaptive_softmax_cutoff = getattr(
args, "adaptive_softmax_cutoff", "10000,20000,200000"
)
base_lm_architecture(args)
@register_model_architecture("fconv_lm", "fconv_lm_dauphin_gbw")
def fconv_lm_dauphin_gbw(args):
layers = "[(512, 5)]"
layers += " + [(128, 1, 0), (128, 5, 0), (512, 1, 3)] * 3"
layers += " + [(512, 1, 0), (512, 5, 0), (1024, 1, 3)] * 3"
layers += " + [(1024, 1, 0), (1024, 5, 0), (2048, 1, 3)] * 6"
layers += " + [(1024, 1, 0), (1024, 5, 0), (4096, 1, 3)]"
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 128)
args.decoder_layers = getattr(args, "decoder_layers", layers)
args.decoder_attention = getattr(args, "decoder_attention", "False")
args.adaptive_softmax_cutoff = getattr(
args, "adaptive_softmax_cutoff", "10000,50000,200000"
)
base_lm_architecture(args)
| data2vec_vision-main | deltalm/src/fairseq/models/fconv_lm.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from fairseq import utils
from fairseq.models import (
FairseqLanguageModel,
register_model,
register_model_architecture,
)
from fairseq.models.lstm import Embedding, LSTMDecoder
DEFAULT_MAX_TARGET_POSITIONS = 1e5
@register_model("lstm_lm")
class LSTMLanguageModel(FairseqLanguageModel):
def __init__(self, decoder):
super().__init__(decoder)
@staticmethod
def add_args(parser):
"""Add model-specific arguments to the parser."""
# fmt: off
parser.add_argument('--dropout', type=float, metavar='D',
help='dropout probability')
parser.add_argument('--decoder-embed-dim', type=int, metavar='N',
help='decoder embedding dimension')
parser.add_argument('--decoder-embed-path', type=str, metavar='STR',
help='path to pre-trained decoder embedding')
parser.add_argument('--decoder-hidden-size', type=int, metavar='N',
help='decoder hidden size')
parser.add_argument('--decoder-layers', type=int, metavar='N',
help='number of decoder layers')
parser.add_argument('--decoder-out-embed-dim', type=int, metavar='N',
help='decoder output embedding dimension')
parser.add_argument('--decoder-attention', type=str, metavar='BOOL',
help='decoder attention')
parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR',
help='comma separated list of adaptive softmax cutoff points. '
'Must be used with adaptive_loss criterion')
parser.add_argument('--residuals', default=False,
action='store_true',
help='applying residuals between LSTM layers')
# Granular dropout settings (if not specified these default to --dropout)
parser.add_argument('--decoder-dropout-in', type=float, metavar='D',
help='dropout probability for decoder input embedding')
parser.add_argument('--decoder-dropout-out', type=float, metavar='D',
help='dropout probability for decoder output')
parser.add_argument('--share-decoder-input-output-embed', default=False,
action='store_true',
help='share decoder input and output embeddings')
# fmt: on
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
# make sure all arguments are present in older models
base_architecture(args)
if getattr(args, "max_target_positions", None) is not None:
max_target_positions = args.max_target_positions
else:
max_target_positions = getattr(
args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS
)
def load_pretrained_embedding_from_file(embed_path, dictionary, embed_dim):
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx)
embed_dict = utils.parse_embedding(embed_path)
utils.print_embed_overlap(embed_dict, dictionary)
return utils.load_embedding(embed_dict, dictionary, embed_tokens)
pretrained_decoder_embed = None
if args.decoder_embed_path:
pretrained_decoder_embed = load_pretrained_embedding_from_file(
args.decoder_embed_path, task.target_dictionary, args.decoder_embed_dim
)
if args.share_decoder_input_output_embed:
# double check all parameters combinations are valid
if task.source_dictionary != task.target_dictionary:
raise ValueError(
"--share-decoder-input-output-embeddings requires a joint dictionary"
)
if args.decoder_embed_dim != args.decoder_out_embed_dim:
raise ValueError(
"--share-decoder-input-output-embeddings requires "
"--decoder-embed-dim to match --decoder-out-embed-dim"
)
decoder = LSTMDecoder(
dictionary=task.dictionary,
embed_dim=args.decoder_embed_dim,
hidden_size=args.decoder_hidden_size,
out_embed_dim=args.decoder_out_embed_dim,
num_layers=args.decoder_layers,
dropout_in=args.decoder_dropout_in,
dropout_out=args.decoder_dropout_out,
attention=False, # decoder-only language model doesn't support attention
encoder_output_units=0,
pretrained_embed=pretrained_decoder_embed,
share_input_output_embed=args.share_decoder_input_output_embed,
adaptive_softmax_cutoff=(
utils.eval_str_list(args.adaptive_softmax_cutoff, type=int)
if args.criterion == "adaptive_loss"
else None
),
max_target_positions=max_target_positions,
residuals=args.residuals,
)
return cls(decoder)
@register_model_architecture("lstm_lm", "lstm_lm")
def base_architecture(args):
args.dropout = getattr(args, "dropout", 0.1)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
args.decoder_hidden_size = getattr(
args, "decoder_hidden_size", args.decoder_embed_dim
)
args.decoder_layers = getattr(args, "decoder_layers", 1)
args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 512)
args.decoder_attention = getattr(args, "decoder_attention", "0")
args.decoder_dropout_in = getattr(args, "decoder_dropout_in", args.dropout)
args.decoder_dropout_out = getattr(args, "decoder_dropout_out", args.dropout)
args.share_decoder_input_output_embed = getattr(
args, "share_decoder_input_output_embed", False
)
args.adaptive_softmax_cutoff = getattr(
args, "adaptive_softmax_cutoff", "10000,50000,200000"
)
args.residuals = getattr(args, "residuals", False)
| data2vec_vision-main | deltalm/src/fairseq/models/lstm_lm.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from collections import OrderedDict
from fairseq import utils
from fairseq.models import (
FairseqMultiModel,
register_model,
register_model_architecture,
)
from fairseq.models.transformer import (
Embedding,
TransformerDecoder,
TransformerEncoder,
TransformerModel,
base_architecture,
)
@register_model("multilingual_transformer")
class MultilingualTransformerModel(FairseqMultiModel):
"""Train Transformer models for multiple language pairs simultaneously.
Requires `--task multilingual_translation`.
We inherit all arguments from TransformerModel and assume that all language
pairs use a single Transformer architecture. In addition, we provide several
options that are specific to the multilingual setting.
Args:
--share-encoder-embeddings: share encoder embeddings across all source languages
--share-decoder-embeddings: share decoder embeddings across all target languages
--share-encoders: share all encoder params (incl. embeddings) across all source languages
--share-decoders: share all decoder params (incl. embeddings) across all target languages
"""
def __init__(self, encoders, decoders):
super().__init__(encoders, decoders)
@staticmethod
def add_args(parser):
"""Add model-specific arguments to the parser."""
TransformerModel.add_args(parser)
parser.add_argument(
"--share-encoder-embeddings",
action="store_true",
help="share encoder embeddings across languages",
)
parser.add_argument(
"--share-decoder-embeddings",
action="store_true",
help="share decoder embeddings across languages",
)
parser.add_argument(
"--share-encoders",
action="store_true",
help="share encoders across languages",
)
parser.add_argument(
"--share-decoders",
action="store_true",
help="share decoders across languages",
)
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
from fairseq.tasks.multilingual_translation import MultilingualTranslationTask
assert isinstance(task, MultilingualTranslationTask)
# make sure all arguments are present in older models
base_multilingual_architecture(args)
if not hasattr(args, "max_source_positions"):
args.max_source_positions = 1024
if not hasattr(args, "max_target_positions"):
args.max_target_positions = 1024
src_langs = [lang_pair.split("-")[0] for lang_pair in task.model_lang_pairs]
tgt_langs = [lang_pair.split("-")[1] for lang_pair in task.model_lang_pairs]
if args.share_encoders:
args.share_encoder_embeddings = True
if args.share_decoders:
args.share_decoder_embeddings = True
def build_embedding(dictionary, embed_dim, path=None):
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
emb = Embedding(num_embeddings, embed_dim, padding_idx)
# if provided, load from preloaded dictionaries
if path:
embed_dict = utils.parse_embedding(path)
utils.load_embedding(embed_dict, dictionary, emb)
return emb
# build shared embeddings (if applicable)
shared_encoder_embed_tokens, shared_decoder_embed_tokens = None, None
if args.share_all_embeddings:
if args.encoder_embed_dim != args.decoder_embed_dim:
raise ValueError(
"--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim"
)
if args.decoder_embed_path and (
args.decoder_embed_path != args.encoder_embed_path
):
raise ValueError(
"--share-all-embeddings not compatible with --decoder-embed-path"
)
shared_encoder_embed_tokens = FairseqMultiModel.build_shared_embeddings(
dicts=task.dicts,
langs=task.langs,
embed_dim=args.encoder_embed_dim,
build_embedding=build_embedding,
pretrained_embed_path=args.encoder_embed_path,
)
shared_decoder_embed_tokens = shared_encoder_embed_tokens
args.share_decoder_input_output_embed = True
else:
if args.share_encoder_embeddings:
shared_encoder_embed_tokens = FairseqMultiModel.build_shared_embeddings(
dicts=task.dicts,
langs=src_langs,
embed_dim=args.encoder_embed_dim,
build_embedding=build_embedding,
pretrained_embed_path=args.encoder_embed_path,
)
if args.share_decoder_embeddings:
shared_decoder_embed_tokens = FairseqMultiModel.build_shared_embeddings(
dicts=task.dicts,
langs=tgt_langs,
embed_dim=args.decoder_embed_dim,
build_embedding=build_embedding,
pretrained_embed_path=args.decoder_embed_path,
)
# encoders/decoders for each language
lang_encoders, lang_decoders = {}, {}
def get_encoder(lang):
if lang not in lang_encoders:
if shared_encoder_embed_tokens is not None:
encoder_embed_tokens = shared_encoder_embed_tokens
else:
encoder_embed_tokens = build_embedding(
task.dicts[lang],
args.encoder_embed_dim,
args.encoder_embed_path,
)
lang_encoders[lang] = cls._get_module_class(
True, args, task.dicts[lang], encoder_embed_tokens, src_langs
)
return lang_encoders[lang]
def get_decoder(lang):
if lang not in lang_decoders:
if shared_decoder_embed_tokens is not None:
decoder_embed_tokens = shared_decoder_embed_tokens
else:
decoder_embed_tokens = build_embedding(
task.dicts[lang],
args.decoder_embed_dim,
args.decoder_embed_path,
)
lang_decoders[lang] = cls._get_module_class(
False, args, task.dicts[lang], decoder_embed_tokens, tgt_langs
)
return lang_decoders[lang]
# shared encoders/decoders (if applicable)
shared_encoder, shared_decoder = None, None
if args.share_encoders:
shared_encoder = get_encoder(src_langs[0])
if args.share_decoders:
shared_decoder = get_decoder(tgt_langs[0])
encoders, decoders = OrderedDict(), OrderedDict()
for lang_pair, src, tgt in zip(task.model_lang_pairs, src_langs, tgt_langs):
encoders[lang_pair] = (
shared_encoder if shared_encoder is not None else get_encoder(src)
)
decoders[lang_pair] = (
shared_decoder if shared_decoder is not None else get_decoder(tgt)
)
return MultilingualTransformerModel(encoders, decoders)
@classmethod
def _get_module_class(cls, is_encoder, args, lang_dict, embed_tokens, langs):
module_class = TransformerEncoder if is_encoder else TransformerDecoder
return module_class(args, lang_dict, embed_tokens)
def load_state_dict(self, state_dict, strict=True, model_cfg=None):
state_dict_subset = state_dict.copy()
for k, _ in state_dict.items():
assert k.startswith("models.")
lang_pair = k.split(".")[1]
if lang_pair not in self.models:
del state_dict_subset[k]
super().load_state_dict(state_dict_subset, strict=strict, model_cfg=model_cfg)
@register_model_architecture("multilingual_transformer", "multilingual_transformer")
def base_multilingual_architecture(args):
base_architecture(args)
args.share_encoder_embeddings = getattr(args, "share_encoder_embeddings", False)
args.share_decoder_embeddings = getattr(args, "share_decoder_embeddings", False)
args.share_encoders = getattr(args, "share_encoders", False)
args.share_decoders = getattr(args, "share_decoders", False)
@register_model_architecture(
"multilingual_transformer", "multilingual_transformer_iwslt_de_en"
)
def multilingual_transformer_iwslt_de_en(args):
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4)
args.encoder_layers = getattr(args, "encoder_layers", 6)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 1024)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4)
args.decoder_layers = getattr(args, "decoder_layers", 6)
base_multilingual_architecture(args)
| data2vec_vision-main | deltalm/src/fairseq/models/multilingual_transformer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Dict, List, Optional, Tuple
import torch.nn as nn
from fairseq import utils
from torch import Tensor
class FairseqDecoder(nn.Module):
"""Base class for decoders."""
def __init__(self, dictionary):
super().__init__()
self.dictionary = dictionary
self.onnx_trace = False
def forward(self, prev_output_tokens, encoder_out=None, **kwargs):
"""
Args:
prev_output_tokens (LongTensor): shifted output tokens of shape
`(batch, tgt_len)`, for teacher forcing
encoder_out (dict, optional): output from the encoder, used for
encoder-side attention
Returns:
tuple:
- the decoder's output of shape `(batch, tgt_len, vocab)`
- a dictionary with any model-specific outputs
"""
x, extra = self.extract_features(
prev_output_tokens, encoder_out=encoder_out, **kwargs
)
x = self.output_layer(x)
return x, extra
def extract_features(self, prev_output_tokens, encoder_out=None, **kwargs):
"""
Returns:
tuple:
- the decoder's features of shape `(batch, tgt_len, embed_dim)`
- a dictionary with any model-specific outputs
"""
raise NotImplementedError
def output_layer(self, features, **kwargs):
"""
Project features to the default output size, e.g., vocabulary size.
Args:
features (Tensor): features returned by *extract_features*.
"""
raise NotImplementedError
def get_normalized_probs(
self,
net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
log_probs: bool,
sample: Optional[Dict[str, Tensor]] = None,
):
"""Get normalized probabilities (or log probs) from a net's output."""
if hasattr(self, "adaptive_softmax") and self.adaptive_softmax is not None:
if sample is not None:
assert "target" in sample
target = sample["target"]
else:
target = None
out = self.adaptive_softmax.get_log_prob(net_output[0], target=target)
return out.exp_() if not log_probs else out
logits = net_output[0]
if log_probs:
return utils.log_softmax(logits, dim=-1, onnx_trace=self.onnx_trace)
else:
return utils.softmax(logits, dim=-1, onnx_trace=self.onnx_trace)
def max_positions(self):
"""Maximum input length supported by the decoder."""
return 1e6 # an arbitrary large number
def upgrade_state_dict(self, state_dict):
"""Upgrade a (possibly old) state dict for new versions of fairseq."""
return state_dict
def prepare_for_onnx_export_(self):
self.onnx_trace = True
| data2vec_vision-main | deltalm/src/fairseq/models/fairseq_decoder.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""isort:skip_file"""
import argparse
import importlib
import os
from fairseq.dataclass import FairseqDataclass
from fairseq.dataclass.utils import merge_with_parent, populate_dataclass
from hydra.core.config_store import ConfigStore
from .composite_encoder import CompositeEncoder
from .distributed_fairseq_model import DistributedFairseqModel
from .fairseq_decoder import FairseqDecoder
from .fairseq_encoder import FairseqEncoder
from .fairseq_incremental_decoder import FairseqIncrementalDecoder
from .fairseq_model import (
BaseFairseqModel,
FairseqEncoderDecoderModel,
FairseqEncoderModel,
FairseqLanguageModel,
FairseqModel,
FairseqMultiModel,
)
MODEL_REGISTRY = {}
MODEL_DATACLASS_REGISTRY = {}
ARCH_MODEL_REGISTRY = {}
ARCH_MODEL_NAME_REGISTRY = {}
ARCH_MODEL_INV_REGISTRY = {}
ARCH_CONFIG_REGISTRY = {}
__all__ = [
"BaseFairseqModel",
"CompositeEncoder",
"DistributedFairseqModel",
"FairseqDecoder",
"FairseqEncoder",
"FairseqEncoderDecoderModel",
"FairseqEncoderModel",
"FairseqIncrementalDecoder",
"FairseqLanguageModel",
"FairseqModel",
"FairseqMultiModel",
]
def build_model(cfg: FairseqDataclass, task):
model = None
model_type = getattr(cfg, "_name", None) or getattr(cfg, "arch", None)
if not model_type and len(cfg) == 1:
# this is hit if config object is nested in directory that is named after model type
model_type = next(iter(cfg))
if model_type in MODEL_DATACLASS_REGISTRY:
cfg = cfg[model_type]
else:
raise Exception(
"Could not infer model type from directory. Please add _name field to indicate model type. "
"Available models: "
+ str(MODEL_DATACLASS_REGISTRY.keys())
+ " Requested model type: "
+ model_type
)
if model_type in ARCH_MODEL_REGISTRY:
# case 1: legacy models
model = ARCH_MODEL_REGISTRY[model_type]
elif model_type in MODEL_DATACLASS_REGISTRY:
# case 2: config-driven models
model = MODEL_REGISTRY[model_type]
if model_type in MODEL_DATACLASS_REGISTRY:
# set defaults from dataclass. note that arch name and model name can be the same
dc = MODEL_DATACLASS_REGISTRY[model_type]
if isinstance(cfg, argparse.Namespace):
cfg = populate_dataclass(dc(), cfg)
else:
cfg = merge_with_parent(dc(), cfg)
assert model is not None, (
f"Could not infer model type from {cfg}. "
f"Available models: "
+ str(MODEL_DATACLASS_REGISTRY.keys())
+ " Requested model type: "
+ model_type
)
return model.build_model(cfg, task)
def register_model(name, dataclass=None):
"""
New model types can be added to fairseq with the :func:`register_model`
function decorator.
For example::
@register_model('lstm')
class LSTM(FairseqEncoderDecoderModel):
(...)
.. note:: All models must implement the :class:`BaseFairseqModel` interface.
Typically you will extend :class:`FairseqEncoderDecoderModel` for
sequence-to-sequence tasks or :class:`FairseqLanguageModel` for
language modeling tasks.
Args:
name (str): the name of the model
"""
def register_model_cls(cls):
if name in MODEL_REGISTRY:
raise ValueError("Cannot register duplicate model ({})".format(name))
if not issubclass(cls, BaseFairseqModel):
raise ValueError(
"Model ({}: {}) must extend BaseFairseqModel".format(name, cls.__name__)
)
MODEL_REGISTRY[name] = cls
if dataclass is not None and not issubclass(dataclass, FairseqDataclass):
raise ValueError(
"Dataclass {} must extend FairseqDataclass".format(dataclass)
)
cls.__dataclass = dataclass
if dataclass is not None:
MODEL_DATACLASS_REGISTRY[name] = dataclass
cs = ConfigStore.instance()
node = dataclass()
node._name = name
cs.store(name=name, group="model", node=node, provider="fairseq")
@register_model_architecture(name, name)
def noop(_):
pass
return cls
return register_model_cls
def register_model_architecture(model_name, arch_name):
"""
New model architectures can be added to fairseq with the
:func:`register_model_architecture` function decorator. After registration,
model architectures can be selected with the ``--arch`` command-line
argument.
For example::
@register_model_architecture('lstm', 'lstm_luong_wmt_en_de')
def lstm_luong_wmt_en_de(cfg):
args.encoder_embed_dim = getattr(cfg.model, 'encoder_embed_dim', 1000)
(...)
The decorated function should take a single argument *cfg*, which is a
:class:`omegaconf.DictConfig`. The decorated function should modify these
arguments in-place to match the desired architecture.
Args:
model_name (str): the name of the Model (Model must already be
registered)
arch_name (str): the name of the model architecture (``--arch``)
"""
def register_model_arch_fn(fn):
if model_name not in MODEL_REGISTRY:
raise ValueError(
"Cannot register model architecture for unknown model type ({})".format(
model_name
)
)
if arch_name in ARCH_MODEL_REGISTRY:
raise ValueError(
"Cannot register duplicate model architecture ({})".format(arch_name)
)
if not callable(fn):
raise ValueError(
"Model architecture must be callable ({})".format(arch_name)
)
ARCH_MODEL_REGISTRY[arch_name] = MODEL_REGISTRY[model_name]
ARCH_MODEL_NAME_REGISTRY[arch_name] = model_name
ARCH_MODEL_INV_REGISTRY.setdefault(model_name, []).append(arch_name)
ARCH_CONFIG_REGISTRY[arch_name] = fn
return fn
return register_model_arch_fn
# automatically import any Python files in the models/ directory
models_dir = os.path.dirname(__file__)
for file in os.listdir(models_dir):
path = os.path.join(models_dir, file)
if (
not file.startswith("_")
and not file.startswith(".")
and (file.endswith(".py") or os.path.isdir(path))
):
model_name = file[: file.find(".py")] if file.endswith(".py") else file
module = importlib.import_module("fairseq.models." + model_name)
# extra `model_parser` for sphinx
if model_name in MODEL_REGISTRY:
parser = argparse.ArgumentParser(add_help=False)
group_archs = parser.add_argument_group("Named architectures")
group_archs.add_argument(
"--arch", choices=ARCH_MODEL_INV_REGISTRY[model_name]
)
group_args = parser.add_argument_group("Additional command-line arguments")
MODEL_REGISTRY[model_name].add_args(group_args)
globals()[model_name + "_parser"] = parser
| data2vec_vision-main | deltalm/src/fairseq/models/__init__.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
from typing import Any, Dict, List, Optional, Tuple
import torch
import torch.nn as nn
from torch import Tensor
from fairseq import checkpoint_utils
from fairseq.data.legacy.masked_lm_dictionary import MaskedLMDictionary
from fairseq.models import register_model, register_model_architecture
from fairseq.models.transformer import (
TransformerDecoder,
TransformerEncoder,
)
from fairseq.models.transformer_from_pretrained_infoxlm import (
TransformerFromPretrainedInfoXLMModel,
upgrade_state_dict_with_infoxlm_weights
)
from fairseq.modules.transformer_layer import (
TransformerDecoderLayer
)
from fairseq.modules.multihead_attention import MultiheadAttention
from fairseq.modules import LayerNorm
from fairseq.modules.fairseq_dropout import FairseqDropout
from fairseq.modules.quant_noise import quant_noise
from fairseq import utils
from fairseq.file_io import PathManager
from fairseq.checkpoint_utils import expand_embedding_matrix_v2
import logging
logger = logging.getLogger(__name__)
def upgrade_state_dict_for_two_ffn(
state_dict: Dict[str, Any], pretrained_infoxlm_checkpoint: str, num_layers: int
) -> Dict[str, Any]:
if not os.path.exists(pretrained_infoxlm_checkpoint):
raise IOError("Model file not found: {}".format(pretrained_infoxlm_checkpoint))
# state = checkpoint_utils.load_checkpoint_to_cpu(pretrained_infoxlm_checkpoint)
with open(PathManager.get_local_path(pretrained_infoxlm_checkpoint), "rb") as f:
state = torch.load(f, map_location=torch.device("cpu"))
infoxlm_state_dict = state["model"]
for key in infoxlm_state_dict.keys():
if 'layers' in key and int(key.split('.')[3]) > 2*num_layers-1:
continue
if not key.startswith('decoder.'):
continue
if 'lm_head' not in key:
if 'in_proj_weight' in key:
q, k ,v = infoxlm_state_dict[key].chunk(3, dim=0)
i_layer = int(key.split('.')[3])
if i_layer % 2 == 0:
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'q_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}')] = q
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'k_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}')] = k
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'v_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}')] = v
else:
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'q_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = q
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'k_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = k
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'v_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = v
elif 'in_proj_bias' in key:
q, k ,v = infoxlm_state_dict[key].chunk(3, dim=0)
i_layer = int(key.split('.')[3])
if i_layer % 2 == 0:
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'q_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}')] = q
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'k_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}')] = k
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'v_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}')] = v
else:
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'q_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = q
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'k_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = k
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'v_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = v
elif 'fc1' in key:
i_layer = int(key.split('.')[3])
if i_layer % 2 == 0:
state_dict[key.replace('decoder.sentence_encoder.', '').replace('fc1', 'fc3').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
else:
state_dict[key.replace('decoder.sentence_encoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
elif 'fc2' in key:
i_layer = int(key.split('.')[3])
if i_layer % 2 == 0:
state_dict[key.replace('decoder.sentence_encoder.', '').replace('fc2', 'fc4').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
else:
state_dict[key.replace('decoder.sentence_encoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
elif 'final_layer_norm' in key:
i_layer = int(key.split('.')[3])
if i_layer % 2 == 0:
state_dict[key.replace('decoder.sentence_encoder.', '').replace('final_layer_norm', 'ffn_layer_norm').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
else:
state_dict[key.replace('decoder.sentence_encoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
elif 'self_attn.out_proj' in key:
i_layer = int(key.split('.')[3])
if i_layer % 2 == 1:
state_dict[key.replace('decoder.sentence_encoder.', '').replace('self_attn.out_proj', 'encoder_attn.out_proj').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
else:
state_dict[key.replace('decoder.sentence_encoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
elif 'self_attn.k_proj' in key or 'self_attn.v_proj' in key or 'self_attn.q_proj' in key:
i_layer = int(key.split('.')[3])
if i_layer % 2 == 1:
state_dict[key.replace('decoder.sentence_encoder.', '').replace('self_attn', 'encoder_attn').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
else:
state_dict[key.replace('decoder.sentence_encoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
elif 'self_attn_layer_norm' in key:
i_layer = int(key.split('.')[3])
if i_layer % 2 == 1:
state_dict[key.replace('decoder.sentence_encoder.', '').replace('self_attn_layer_norm', 'encoder_attn_layer_norm').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
else:
state_dict[key.replace('decoder.sentence_encoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
elif 'emb_layer_norm' in key:
state_dict[key.replace('decoder.sentence_encoder.emb_layer_norm', 'layernorm_embedding')] = infoxlm_state_dict[key]
elif 'embed_positions' in key:
state_dict[key.replace('decoder.sentence_encoder.', '')] = infoxlm_state_dict[key][:state_dict[key.replace('decoder.sentence_encoder.', '')].size(0)]
elif 'embed_tokens' in key:
state_dict[key.replace('decoder.sentence_encoder.', '')][:infoxlm_state_dict[key].size(0)] = infoxlm_state_dict[key]
else:
state_dict[key.replace('decoder.sentence_encoder.', '')] = infoxlm_state_dict[key]
return state_dict
def upgrade_gpt_state_dict_for_two_ffn(
state_dict: Dict[str, Any], pretrained_infoxlm_checkpoint: str, num_layers: int, use_adapter=False
) -> Dict[str, Any]:
if not os.path.exists(pretrained_infoxlm_checkpoint):
raise IOError("Model file not found: {}".format(pretrained_infoxlm_checkpoint))
# state = checkpoint_utils.load_checkpoint_to_cpu(pretrained_infoxlm_checkpoint)
with open(PathManager.get_local_path(pretrained_infoxlm_checkpoint), "rb") as f:
state = torch.load(f, map_location=torch.device("cpu"))
infoxlm_state_dict = state["model"]
for key in infoxlm_state_dict.keys():
if 'layers' in key and int(key.split('.')[2]) > 2 * num_layers - 1:
continue
if not key.startswith('decoder.'):
continue
if 'lm_head' not in key:
if "adapter" in key and use_adapter:
state_dict[key.replace('decoder.', '')] = infoxlm_state_dict[key]
elif 'in_proj_weight' in key:
q, k, v = infoxlm_state_dict[key].chunk(3, dim=0)
i_layer = int(key.split('.')[2])
if i_layer % 2 == 0:
state_dict[key.replace('decoder.', '').replace('in_proj_weight', 'q_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}')] = q
state_dict[key.replace('decoder.', '').replace('in_proj_weight', 'k_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}')] = k
state_dict[key.replace('decoder.', '').replace('in_proj_weight', 'v_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}')] = v
else:
state_dict[key.replace('decoder.', '').replace('in_proj_weight', 'q_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = q
state_dict[key.replace('decoder.', '').replace('in_proj_weight', 'k_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = k
state_dict[key.replace('decoder.', '').replace('in_proj_weight', 'v_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = v
elif 'in_proj_bias' in key:
q, k, v = infoxlm_state_dict[key].chunk(3, dim=0)
i_layer = int(key.split('.')[2])
if i_layer % 2 == 0:
state_dict[key.replace('decoder.', '').replace('in_proj_bias', 'q_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}')] = q
state_dict[key.replace('decoder.', '').replace('in_proj_bias', 'k_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}')] = k
state_dict[key.replace('decoder.', '').replace('in_proj_bias', 'v_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}')] = v
else:
state_dict[key.replace('decoder.', '').replace('in_proj_bias', 'q_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = q
state_dict[key.replace('decoder.', '').replace('in_proj_bias', 'k_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = k
state_dict[key.replace('decoder.', '').replace('in_proj_bias', 'v_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = v
elif 'fc1' in key:
i_layer = int(key.split('.')[2])
if i_layer % 2 == 0:
state_dict[key.replace('decoder.', '').replace('fc1', 'fc3').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
else:
state_dict[key.replace('decoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
elif 'fc2' in key:
i_layer = int(key.split('.')[2])
if i_layer % 2 == 0:
state_dict[key.replace('decoder.', '').replace('fc2', 'fc4').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
else:
state_dict[key.replace('decoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
elif 'final_layer_norm' in key:
i_layer = int(key.split('.')[2])
if i_layer % 2 == 0:
state_dict[key.replace('decoder.', '').replace('final_layer_norm', 'ffn_layer_norm').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
else:
state_dict[key.replace('decoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
elif 'self_attn.out_proj' in key:
i_layer = int(key.split('.')[2])
if i_layer % 2 == 1:
state_dict[key.replace('decoder.', '').replace('self_attn.out_proj', 'encoder_attn.out_proj').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
else:
state_dict[key.replace('decoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
elif 'self_attn.k_proj' in key or 'self_attn.v_proj' in key or 'self_attn.q_proj' in key:
i_layer = int(key.split('.')[2])
if i_layer % 2 == 1:
state_dict[key.replace('decoder.', '').replace('self_attn', 'encoder_attn').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
else:
state_dict[key.replace('decoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
elif 'self_attn_layer_norm' in key:
i_layer = int(key.split('.')[2])
if i_layer % 2 == 1:
state_dict[key.replace('decoder.', '').replace('self_attn_layer_norm', 'encoder_attn_layer_norm').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
else:
state_dict[key.replace('decoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
elif 'emb_layer_norm' in key:
state_dict[key.replace('decoder.emb_layer_norm', 'layernorm_embedding')] = infoxlm_state_dict[key]
elif 'embed_positions' in key:
state_dict[key.replace('decoder.', '')] = infoxlm_state_dict[key][:state_dict[key.replace('decoder.', '')].size(0)]
elif 'embed_tokens' in key:
state_dict[key.replace('decoder.', '')][:infoxlm_state_dict[key].size(0)] = infoxlm_state_dict[key]
else:
state_dict[key.replace('decoder.', '')] = infoxlm_state_dict[key]
return state_dict
def upgrade_gpt_state_dict(
state_dict: Dict[str, Any], pretrained_infoxlm_checkpoint: str, num_layers: int
) -> Dict[str, Any]:
if not os.path.exists(pretrained_infoxlm_checkpoint):
raise IOError("Model file not found: {}".format(pretrained_infoxlm_checkpoint))
# state = checkpoint_utils.load_checkpoint_to_cpu(pretrained_infoxlm_checkpoint)
with open(PathManager.get_local_path(pretrained_infoxlm_checkpoint), "rb") as f:
state = torch.load(f, map_location=torch.device("cpu"))
infoxlm_state_dict = state["model"]
for key in infoxlm_state_dict.keys():
if 'layers' in key and int(key.split('.')[2]) > num_layers - 1:
continue
if not key.startswith('decoder.'):
continue
state_dict[key.replace('decoder.', '')] = infoxlm_state_dict[key]
return state_dict
def upgrade_state_dict_for_ca_first_two_ffn(
state_dict: Dict[str, Any], pretrained_infoxlm_checkpoint: str, num_layers: int
) -> Dict[str, Any]:
if not os.path.exists(pretrained_infoxlm_checkpoint):
raise IOError("Model file not found: {}".format(pretrained_infoxlm_checkpoint))
# state = checkpoint_utils.load_checkpoint_to_cpu(pretrained_infoxlm_checkpoint)
with open(PathManager.get_local_path(pretrained_infoxlm_checkpoint), "rb") as f:
state = torch.load(f, map_location=torch.device("cpu"))
infoxlm_state_dict = state["model"]
for key in infoxlm_state_dict.keys():
if 'layers' in key and int(key.split('.')[3]) > 2*num_layers-1:
continue
if not key.startswith('decoder.'):
continue
if 'lm_head' not in key:
if 'in_proj_weight' in key:
q, k ,v = infoxlm_state_dict[key].chunk(3, dim=0)
i_layer = int(key.split('.')[3])
if i_layer % 2 == 1:
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'q_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}')] = q
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'k_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}')] = k
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'v_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}')] = v
else:
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'q_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = q
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'k_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = k
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'v_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = v
elif 'in_proj_bias' in key:
q, k ,v = infoxlm_state_dict[key].chunk(3, dim=0)
i_layer = int(key.split('.')[3])
if i_layer % 2 == 1:
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'q_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}')] = q
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'k_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}')] = k
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'v_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}')] = v
else:
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'q_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = q
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'k_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = k
state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'v_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = v
elif 'fc1' in key:
i_layer = int(key.split('.')[3])
if i_layer % 2 == 0:
state_dict[key.replace('decoder.sentence_encoder.', '').replace('fc1', 'fc3').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
else:
state_dict[key.replace('decoder.sentence_encoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
elif 'fc2' in key:
i_layer = int(key.split('.')[3])
if i_layer % 2 == 0:
state_dict[key.replace('decoder.sentence_encoder.', '').replace('fc2', 'fc4').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
else:
state_dict[key.replace('decoder.sentence_encoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
elif 'final_layer_norm' in key:
i_layer = int(key.split('.')[3])
if i_layer % 2 == 0:
state_dict[key.replace('decoder.sentence_encoder.', '').replace('final_layer_norm', 'ffn_layer_norm').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
else:
state_dict[key.replace('decoder.sentence_encoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
elif 'self_attn.out_proj' in key:
i_layer = int(key.split('.')[3])
if i_layer % 2 == 0:
state_dict[key.replace('decoder.sentence_encoder.', '').replace('self_attn.out_proj', 'encoder_attn.out_proj').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
else:
state_dict[key.replace('decoder.sentence_encoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
elif 'self_attn.k_proj' in key or 'self_attn.v_proj' in key or 'self_attn.q_proj' in key:
i_layer = int(key.split('.')[3])
if i_layer % 2 == 0:
state_dict[key.replace('decoder.sentence_encoder.', '').replace('self_attn', 'encoder_attn').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
else:
state_dict[key.replace('decoder.sentence_encoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
elif 'self_attn_layer_norm' in key:
i_layer = int(key.split('.')[3])
if i_layer % 2 == 0:
state_dict[key.replace('decoder.sentence_encoder.', '').replace('self_attn_layer_norm', 'encoder_attn_layer_norm').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
else:
state_dict[key.replace('decoder.sentence_encoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key]
elif 'emb_layer_norm' in key:
state_dict[key.replace('decoder.sentence_encoder.emb_layer_norm', 'layernorm_embedding')] = infoxlm_state_dict[key]
elif 'embed_positions' in key:
state_dict[key.replace('decoder.sentence_encoder.', '')] = infoxlm_state_dict[key][:state_dict[key.replace('decoder.sentence_encoder.', '')].size(0)]
elif 'embed_tokens' in key:
state_dict[key.replace('decoder.sentence_encoder.', '')][:infoxlm_state_dict[key].size(0)] = infoxlm_state_dict[key]
else:
state_dict[key.replace('decoder.sentence_encoder.', '')] = infoxlm_state_dict[key]
return state_dict
def upgrade_deltalm_state_for_xlmt_model(
state_dict: Dict[str, Any], pretrained_deltalm_checkpoint: str, encoder: TransformerEncoder
) -> Dict[str, Any]:
if not os.path.exists(pretrained_deltalm_checkpoint):
raise IOError("Model file not found: {}".format(pretrained_deltalm_checkpoint))
# state = checkpoint_utils.load_checkpoint_to_cpu(pretrained_infoxlm_checkpoint)
with open(PathManager.get_local_path(pretrained_deltalm_checkpoint), "rb") as f:
state = torch.load(f, map_location=torch.device("cpu"))
mt_state_dict = state["weights"]
for key in mt_state_dict.keys():
if 'src_embedding' in key:
new_key = key.replace('src_embedding', 'encoder')
state_dict[new_key] = mt_state_dict[key][:state_dict[new_key].size(0)]
assert new_key in state_dict.keys()
elif 'tgt_embedding' in key:
new_key = key.replace('tgt_embedding', 'decoder')
assert new_key in state_dict.keys()
state_dict[new_key] = mt_state_dict[key][:state_dict[new_key].size(0)]
state_dict['decoder.output_projection.weight'] = state_dict['decoder.embed_tokens.weight']
elif 'ffn_1.fc1' in key:
new_key = key.replace('ffn_1.fc1', 'fc1')
if new_key in state_dict.keys():
state_dict[new_key] = mt_state_dict[key]
else:
logger.info("Skipping {}".format(new_key))
elif 'ffn_1.fc2' in key:
new_key = key.replace('ffn_1.fc2', 'fc2')
if new_key in state_dict.keys():
state_dict[new_key] = mt_state_dict[key]
else:
logger.info("Skipping {}".format(new_key))
elif 'ffn_2.fc1' in key:
new_key = key.replace('ffn_2.fc1', 'fc3')
if new_key in state_dict.keys():
state_dict[new_key] = mt_state_dict[key]
else:
logger.info("Skipping {}".format(new_key))
elif 'ffn_2.fc2' in key:
new_key = key.replace('ffn_2.fc2', 'fc4')
if new_key in state_dict.keys():
state_dict[new_key] = mt_state_dict[key]
else:
logger.info("Skipping {}".format(new_key))
elif 'ffn.fc' in key:
new_key = key.replace('ffn.fc', 'fc')
if new_key in state_dict.keys():
state_dict[new_key] = mt_state_dict[key]
else:
logger.info("Skipping {}".format(new_key))
elif key in state_dict.keys():
state_dict[key] = mt_state_dict[key]
else:
logger.info("Skipping {}".format(key))
state_dict = expand_embedding_matrix_v2(state_dict, encoder, 'random')
return state_dict
@register_model("xlmt_decoder_variant")
class XLMTDecoderVariantModel(TransformerFromPretrainedInfoXLMModel):
@staticmethod
def add_args(parser):
"""Add model-specific arguments to the parser."""
TransformerFromPretrainedInfoXLMModel.add_args(parser)
parser.add_argument(
"--variant",
type=str,
metavar="STR",
)
parser.add_argument(
"--pretrained-deltalm-checkpoint",
type=str,
metavar="STR",
)
@classmethod
def build_encoder(cls, args, tgt_dict, embed_tokens):
return XLMTEncoder(args, tgt_dict, embed_tokens)
@classmethod
def build_decoder(cls, args, tgt_dict, embed_tokens):
return XLMTDecoder(args, tgt_dict, embed_tokens)
def __init__(self, args, encoder, decoder):
super().__init__(args, encoder, decoder)
# Loading from Delta-LM Pretrained Model
if hasattr(args, "pretrained_deltalm_checkpoint") and os.path.exists(args.pretrained_deltalm_checkpoint):
deltalm_loaded_state_dict = upgrade_deltalm_state_for_xlmt_model(
state_dict=self.state_dict(),
pretrained_deltalm_checkpoint=args.pretrained_deltalm_checkpoint,
encoder=encoder
)
logger.info("Loading pretrained_deltalm_checkpoint from {0}".format(args.pretrained_deltalm_checkpoint))
self.load_state_dict(deltalm_loaded_state_dict, strict=True)
else:
logger.info("Can not Load pretrained_deltalm_checkpoint !")
# End #
def forward(
self,
src_tokens,
src_lengths,
prev_output_tokens,
return_all_hiddens: bool = True,
features_only: bool = False,
alignment_layer: Optional[int] = None,
alignment_heads: Optional[int] = None,
**extra_args
):
encoder_out = self.encoder(
src_tokens, src_lengths=src_lengths, return_all_hiddens=return_all_hiddens
)
decoder_out = self.decoder(
prev_output_tokens,
encoder_out=encoder_out,
features_only=features_only,
alignment_layer=alignment_layer,
alignment_heads=alignment_heads,
src_lengths=src_lengths,
return_all_hiddens=return_all_hiddens,
src_lang_id = extra_args["src_lang_id"] if "src_lang_id" in extra_args else None,
tgt_lang_id = extra_args["tgt_lang_id"] if "tgt_lang_id" in extra_args else None,
)
return decoder_out
class XLMTEncoder(TransformerEncoder):
def __init__(self, args, dictionary, embed_tokens):
super().__init__(args, dictionary, embed_tokens)
if not getattr(args, "init_encoder_only", False):
return
if hasattr(args, "pretrained_infoxlm_checkpoint") and os.path.exists(args.pretrained_infoxlm_checkpoint):
infoxlm_loaded_state_dict = upgrade_state_dict_with_infoxlm_weights(
state_dict=self.state_dict(),
pretrained_infoxlm_checkpoint=args.pretrained_infoxlm_checkpoint,
num_layers=args.encoder_layers,
)
self.load_state_dict(infoxlm_loaded_state_dict, strict=False)
print("Loading encoder from {0}".format(args.pretrained_infoxlm_checkpoint))
if getattr(args, 'freeze_encoder', False):
for param in self.layers.parameters():
param.requires_grad = False
class XLMTDecoder(TransformerDecoder):
def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False):
super().__init__(args, dictionary, embed_tokens, no_encoder_attn)
if not getattr(args, "init_decoder_only", False):
return
args.pretrained_infoxlm_checkpoint = getattr(args, "pretrained_infoxlm_checkpoint", "")
if os.path.exists(args.pretrained_infoxlm_checkpoint):
if args.variant == 'addffn':
infoxlm_loaded_state_dict = upgrade_state_dict_for_two_ffn(
state_dict=self.state_dict(),
pretrained_infoxlm_checkpoint=args.pretrained_infoxlm_checkpoint,
num_layers=args.decoder_layers,
)
print("Loading decoder from {0}".format(args.pretrained_infoxlm_checkpoint))
elif args.variant == 'gpt-addffn':
infoxlm_loaded_state_dict = upgrade_gpt_state_dict_for_two_ffn(
state_dict=self.state_dict(),
pretrained_infoxlm_checkpoint=args.pretrained_gpt_checkpoint,
num_layers=args.decoder_layers,
use_adapter=self.use_adapter
)
print("Loading decoder from {0}".format(args.pretrained_gpt_checkpoint))
elif args.variant == 'gpt-two-attn':
infoxlm_loaded_state_dict = upgrade_gpt_state_dict(
state_dict=self.state_dict(),
pretrained_infoxlm_checkpoint=args.pretrained_gpt_checkpoint,
num_layers=args.decoder_layers,
)
print("Loading decoder from {0}".format(args.pretrained_gpt_checkpoint))
elif args.variant == 'cafirst_addffn':
infoxlm_loaded_state_dict = upgrade_state_dict_for_ca_first_two_ffn(
state_dict=self.state_dict(),
pretrained_infoxlm_checkpoint=args.pretrained_infoxlm_checkpoint,
num_layers=args.decoder_layers,
)
print("Loading decoder from {0}".format(args.pretrained_infoxlm_checkpoint))
else:
infoxlm_loaded_state_dict = upgrade_state_dict_with_infoxlm_weights(
state_dict=self.state_dict(),
pretrained_infoxlm_checkpoint=args.pretrained_infoxlm_checkpoint,
num_layers=args.decoder_layers,
)
print("Loading decoder from {0}".format(args.pretrained_infoxlm_checkpoint))
self.load_state_dict(infoxlm_loaded_state_dict, strict=False)
def build_decoder_layer(self, args, no_encoder_attn=False):
if args.variant == 'first':
layer = XLMTCrossAttnFirstLayer(args, no_encoder_attn)
elif args.variant == 'large':
layer = XLMTCrossAttnLargeLayer(args, no_encoder_attn)
elif args.variant == 'halfffn':
layer = XLMTTwoHalfFFN(args, no_encoder_attn)
elif args.variant == 'addffn' or args.variant == 'gpt-addffn':
layer = XLMTAddFFN(args, no_encoder_attn)
elif args.variant == 'gpt-two-attn':
layer = TransformerDecoderLayer(args, no_encoder_attn)
elif args.variant == 'first_large_halfffn':
layer = XLMTCaFirstQKLargeTwoHalfFFN(args, no_encoder_attn)
elif args.variant == 'ca_sa_large':
layer = XLMTCrossAttnSelfAttnLargeLayer(args, no_encoder_attn)
elif args.variant == 'cafirst_addffn':
layer = XLMTCaFirstAddFFN(args, no_encoder_attn)
else:
raise NotImplementedError
if getattr(args, "checkpoint_activations", False):
layer = checkpoint_wrapper(layer)
return layer
def forward(
self,
prev_output_tokens,
encoder_out: Optional[Dict[str, List[Tensor]]] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
features_only: bool = False,
full_context_alignment: bool = False,
alignment_layer: Optional[int] = None,
alignment_heads: Optional[int] = None,
src_lengths: Optional[Any] = None,
return_all_hiddens: bool = False,
src_lang_id = None,
tgt_lang_id = None
):
"""
Args:
prev_output_tokens (LongTensor): previous decoder outputs of shape
`(batch, tgt_len)`, for teacher forcing
encoder_out (optional): output from the encoder, used for
encoder-side attention
incremental_state (dict): dictionary used for storing state during
:ref:`Incremental decoding`
features_only (bool, optional): only return features without
applying output layer (default: False).
full_context_alignment (bool, optional): don't apply
auto-regressive mask to self-attention (default: False).
Returns:
tuple:
- the decoder's output of shape `(batch, tgt_len, vocab)`
- a dictionary with any model-specific outputs
"""
x, extra = self.extract_features(
prev_output_tokens,
encoder_out=encoder_out,
incremental_state=incremental_state,
full_context_alignment=full_context_alignment,
alignment_layer=alignment_layer,
alignment_heads=alignment_heads,
src_lang_id=src_lang_id,
tgt_lang_id=tgt_lang_id,
)
if not features_only:
x = self.output_layer(x)
return x, extra
def extract_features(
self,
prev_output_tokens,
encoder_out: Optional[Dict[str, List[Tensor]]],
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
full_context_alignment: bool = False,
alignment_layer: Optional[int] = None,
alignment_heads: Optional[int] = None,
src_lang_id = None,
tgt_lang_id = None
):
return self.extract_features_scriptable(
prev_output_tokens,
encoder_out,
incremental_state,
full_context_alignment,
alignment_layer,
alignment_heads,
src_lang_id=src_lang_id,
tgt_lang_id=tgt_lang_id
)
def extract_features_scriptable(
self,
prev_output_tokens,
encoder_out: Optional[Dict[str, List[Tensor]]],
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
full_context_alignment: bool = False,
alignment_layer: Optional[int] = None,
alignment_heads: Optional[int] = None,
src_lang_id = None,
tgt_lang_id = None
):
"""
Similar to *forward* but only return features.
Includes several features from "Jointly Learning to Align and
Translate with Transformer Models" (Garg et al., EMNLP 2019).
Args:
full_context_alignment (bool, optional): don't apply
auto-regressive mask to self-attention (default: False).
alignment_layer (int, optional): return mean alignment over
heads at this layer (default: last layer).
alignment_heads (int, optional): only average alignment over
this many heads (default: all heads).
Returns:
tuple:
- the decoder's features of shape `(batch, tgt_len, embed_dim)`
- a dictionary with any model-specific outputs
"""
if alignment_layer is None:
alignment_layer = self.num_layers - 1
# embed positions
positions = (
self.embed_positions(
prev_output_tokens, incremental_state=incremental_state
)
if self.embed_positions is not None
else None
)
if incremental_state is not None:
prev_output_tokens = prev_output_tokens[:, -1:]
if positions is not None:
positions = positions[:, -1:]
# embed tokens and positions
x = self.embed_scale * self.embed_tokens(prev_output_tokens)
if self.quant_noise is not None:
x = self.quant_noise(x)
if self.project_in_dim is not None:
x = self.project_in_dim(x)
if positions is not None:
x += positions
if self.layernorm_embedding is not None:
x = self.layernorm_embedding(x)
x = self.dropout_module(x)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
self_attn_padding_mask: Optional[Tensor] = None
if self.cross_self_attention or prev_output_tokens.eq(self.padding_idx).any():
self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx)
# decoder layers
attn: Optional[Tensor] = None
inner_states: List[Optional[Tensor]] = [x]
for idx, layer in enumerate(self.layers):
if incremental_state is None and not full_context_alignment:
self_attn_mask = self.buffered_future_mask(x)
else:
self_attn_mask = None
x, layer_attn, _ = layer(
x,
encoder_out["encoder_out"][0]
if (encoder_out is not None and len(encoder_out["encoder_out"]) > 0)
else None,
encoder_out["encoder_padding_mask"][0]
if (
encoder_out is not None
and len(encoder_out["encoder_padding_mask"]) > 0
)
else None,
incremental_state,
self_attn_mask=self_attn_mask,
self_attn_padding_mask=self_attn_padding_mask,
need_attn=bool((idx == alignment_layer)),
need_head_weights=bool((idx == alignment_layer)),
)
inner_states.append(x)
if layer_attn is not None and idx == alignment_layer:
attn = layer_attn.float().to(x)
if attn is not None:
if alignment_heads is not None:
attn = attn[:alignment_heads]
# average probabilities over heads
attn = attn.mean(dim=0)
if self.layer_norm is not None:
x = self.layer_norm(x)
# T x B x C -> B x T x C
x = x.transpose(0, 1)
if self.project_out_dim is not None:
x = self.project_out_dim(x)
return x, {"attn": [attn], "inner_states": inner_states}
class XLMTCaFirstQKLargeTwoHalfFFN(TransformerDecoderLayer):
def __init__(
self, args, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False
):
super(TransformerDecoderLayer, self).__init__()
self.embed_dim = args.decoder_embed_dim
self.dropout_module = FairseqDropout(
args.dropout, module_name=self.__class__.__name__
)
self.quant_noise = getattr(args, "quant_noise_pq", 0)
self.quant_noise_block_size = getattr(args, "quant_noise_pq_block_size", 8)
self.cross_self_attention = getattr(args, "cross_self_attention", False)
self.self_attn = self.build_self_attention(
self.embed_dim,
args,
add_bias_kv=add_bias_kv,
add_zero_attn=add_zero_attn,
)
self.activation_fn = utils.get_activation_fn(
activation=str(args.activation_fn)
if getattr(args, "activation_fn", None) is not None
else "relu"
)
activation_dropout_p = getattr(args, "activation_dropout", 0) or 0
if activation_dropout_p == 0:
# for backwards compatibility with models that use args.relu_dropout
activation_dropout_p = getattr(args, "relu_dropout", 0) or 0
self.activation_dropout_module = FairseqDropout(
float(activation_dropout_p), module_name=self.__class__.__name__
)
self.normalize_before = args.decoder_normalize_before
# use layerNorm rather than FusedLayerNorm for exporting.
# char_inputs can be used to determint this.
# TODO remove this once we update apex with the fix
export = getattr(args, "char_inputs", False)
self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=export)
if no_encoder_attn:
self.encoder_attn = None
self.encoder_attn_layer_norm = None
else:
self.encoder_attn = self.build_encoder_attention(self.embed_dim, args)
self.encoder_attn_layer_norm = LayerNorm(self.embed_dim, export=export)
self.fc1 = self.build_fc1(
self.embed_dim,
args.decoder_ffn_embed_dim // 2,
self.quant_noise,
self.quant_noise_block_size,
)
self.fc2 = self.build_fc2(
args.decoder_ffn_embed_dim // 2,
self.embed_dim,
self.quant_noise,
self.quant_noise_block_size,
)
self.fc3 = self.build_fc1(
self.embed_dim,
args.decoder_ffn_embed_dim // 2,
self.quant_noise,
self.quant_noise_block_size,
)
self.fc4 = self.build_fc2(
args.decoder_ffn_embed_dim // 2,
self.embed_dim,
self.quant_noise,
self.quant_noise_block_size,
)
self.ffn_layer_norm = LayerNorm(self.embed_dim, export=export)
self.final_layer_norm = LayerNorm(self.embed_dim, export=export)
self.need_attn = True
self.onnx_trace = False
def build_encoder_attention(self, embed_dim, args):
return MultiheadAttention(
embed_dim,
args.decoder_attention_heads,
kdim=embed_dim,
vdim=embed_dim,
qdim=embed_dim,
outdim=embed_dim,
qkprojdim=1152,
dropout=args.attention_dropout,
encoder_decoder_attention=True,
q_noise=self.quant_noise,
qn_block_size=self.quant_noise_block_size,
)
def forward(
self,
x,
encoder_out: Optional[torch.Tensor] = None,
encoder_padding_mask: Optional[torch.Tensor] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
prev_self_attn_state: Optional[List[torch.Tensor]] = None,
prev_attn_state: Optional[List[torch.Tensor]] = None,
self_attn_mask: Optional[torch.Tensor] = None,
self_attn_padding_mask: Optional[torch.Tensor] = None,
need_attn: bool = False,
need_head_weights: bool = False,
):
"""
Args:
x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_padding_mask (ByteTensor, optional): binary
ByteTensor of shape `(batch, src_len)` where padding
elements are indicated by ``1``.
need_attn (bool, optional): return attention weights
need_head_weights (bool, optional): return attention weights
for each head (default: return average over heads).
Returns:
encoded output of shape `(seq_len, batch, embed_dim)`
"""
if need_head_weights:
need_attn = True
###############################################
if self.encoder_attn is not None and encoder_out is not None:
residual = x
if self.normalize_before:
x = self.encoder_attn_layer_norm(x)
if prev_attn_state is not None:
prev_key, prev_value = prev_attn_state[:2]
saved_state: Dict[str, Optional[Tensor]] = {
"prev_key": prev_key,
"prev_value": prev_value,
}
if len(prev_attn_state) >= 3:
saved_state["prev_key_padding_mask"] = prev_attn_state[2]
assert incremental_state is not None
self.encoder_attn._set_input_buffer(incremental_state, saved_state)
x, attn = self.encoder_attn(
query=x,
key=encoder_out,
value=encoder_out,
key_padding_mask=encoder_padding_mask,
incremental_state=incremental_state,
static_kv=True,
need_weights=need_attn or (not self.training and self.need_attn),
need_head_weights=need_head_weights,
)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.encoder_attn_layer_norm(x)
###############################################
residual = x
if self.normalize_before:
x = self.ffn_layer_norm(x)
x = self.activation_fn(self.fc3(x))
x = self.activation_dropout_module(x)
x = self.fc4(x)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.ffn_layer_norm(x)
###############################################
residual = x
if self.normalize_before:
x = self.self_attn_layer_norm(x)
if prev_self_attn_state is not None:
prev_key, prev_value = prev_self_attn_state[:2]
saved_state: Dict[str, Optional[Tensor]] = {
"prev_key": prev_key,
"prev_value": prev_value,
}
if len(prev_self_attn_state) >= 3:
saved_state["prev_key_padding_mask"] = prev_self_attn_state[2]
assert incremental_state is not None
self.self_attn._set_input_buffer(incremental_state, saved_state)
_self_attn_input_buffer = self.self_attn._get_input_buffer(incremental_state)
if self.cross_self_attention and not (
incremental_state is not None
and _self_attn_input_buffer is not None
and "prev_key" in _self_attn_input_buffer
):
if self_attn_mask is not None:
assert encoder_out is not None
self_attn_mask = torch.cat(
(x.new_zeros(x.size(0), encoder_out.size(0)), self_attn_mask), dim=1
)
if self_attn_padding_mask is not None:
if encoder_padding_mask is None:
assert encoder_out is not None
encoder_padding_mask = self_attn_padding_mask.new_zeros(
encoder_out.size(1), encoder_out.size(0)
)
self_attn_padding_mask = torch.cat(
(encoder_padding_mask, self_attn_padding_mask), dim=1
)
assert encoder_out is not None
y = torch.cat((encoder_out, x), dim=0)
else:
y = x
x, attn = self.self_attn(
query=x,
key=y,
value=y,
key_padding_mask=self_attn_padding_mask,
incremental_state=incremental_state,
need_weights=False,
attn_mask=self_attn_mask,
)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.self_attn_layer_norm(x)
###############################################
residual = x
if self.normalize_before:
x = self.final_layer_norm(x)
x = self.activation_fn(self.fc1(x))
x = self.activation_dropout_module(x)
x = self.fc2(x)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.final_layer_norm(x)
###############################################
if self.onnx_trace and incremental_state is not None:
saved_state = self.self_attn._get_input_buffer(incremental_state)
assert saved_state is not None
if self_attn_padding_mask is not None:
self_attn_state = [
saved_state["prev_key"],
saved_state["prev_value"],
saved_state["prev_key_padding_mask"],
]
else:
self_attn_state = [saved_state["prev_key"], saved_state["prev_value"]]
return x, attn, self_attn_state
return x, attn, None
class XLMTCaFirstAddFFN(TransformerDecoderLayer):
def __init__(
self, args, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False
):
super(TransformerDecoderLayer, self).__init__()
self.embed_dim = args.decoder_embed_dim
self.dropout_module = FairseqDropout(
args.dropout, module_name=self.__class__.__name__
)
self.quant_noise = getattr(args, "quant_noise_pq", 0)
self.quant_noise_block_size = getattr(args, "quant_noise_pq_block_size", 8)
self.cross_self_attention = getattr(args, "cross_self_attention", False)
self.self_attn = self.build_self_attention(
self.embed_dim,
args,
add_bias_kv=add_bias_kv,
add_zero_attn=add_zero_attn,
)
self.activation_fn = utils.get_activation_fn(
activation=str(args.activation_fn)
if getattr(args, "activation_fn", None) is not None
else "relu"
)
activation_dropout_p = getattr(args, "activation_dropout", 0) or 0
if activation_dropout_p == 0:
# for backwards compatibility with models that use args.relu_dropout
activation_dropout_p = getattr(args, "relu_dropout", 0) or 0
self.activation_dropout_module = FairseqDropout(
float(activation_dropout_p), module_name=self.__class__.__name__
)
self.normalize_before = args.decoder_normalize_before
# use layerNorm rather than FusedLayerNorm for exporting.
# char_inputs can be used to determint this.
# TODO remove this once we update apex with the fix
export = getattr(args, "char_inputs", False)
self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=export)
if no_encoder_attn:
self.encoder_attn = None
self.encoder_attn_layer_norm = None
else:
self.encoder_attn = self.build_encoder_attention(self.embed_dim, args)
self.encoder_attn_layer_norm = LayerNorm(self.embed_dim, export=export)
self.fc1 = self.build_fc1(
self.embed_dim,
args.decoder_ffn_embed_dim,
self.quant_noise,
self.quant_noise_block_size,
)
self.fc2 = self.build_fc2(
args.decoder_ffn_embed_dim,
self.embed_dim,
self.quant_noise,
self.quant_noise_block_size,
)
self.fc3 = self.build_fc1(
self.embed_dim,
args.decoder_ffn_embed_dim,
self.quant_noise,
self.quant_noise_block_size,
)
self.fc4 = self.build_fc2(
args.decoder_ffn_embed_dim,
self.embed_dim,
self.quant_noise,
self.quant_noise_block_size,
)
self.ffn_layer_norm = LayerNorm(self.embed_dim, export=export)
self.final_layer_norm = LayerNorm(self.embed_dim, export=export)
self.need_attn = True
self.onnx_trace = False
def forward(
self,
x,
encoder_out: Optional[torch.Tensor] = None,
encoder_padding_mask: Optional[torch.Tensor] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
prev_self_attn_state: Optional[List[torch.Tensor]] = None,
prev_attn_state: Optional[List[torch.Tensor]] = None,
self_attn_mask: Optional[torch.Tensor] = None,
self_attn_padding_mask: Optional[torch.Tensor] = None,
need_attn: bool = False,
need_head_weights: bool = False,
src_lang_id = None,
tgt_lang_id = None
):
"""
Args:
x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_padding_mask (ByteTensor, optional): binary
ByteTensor of shape `(batch, src_len)` where padding
elements are indicated by ``1``.
need_attn (bool, optional): return attention weights
need_head_weights (bool, optional): return attention weights
for each head (default: return average over heads).
Returns:
encoded output of shape `(seq_len, batch, embed_dim)`
"""
if need_head_weights:
need_attn = True
###############################################
if self.encoder_attn is not None and encoder_out is not None:
residual = x
if self.normalize_before:
x = self.encoder_attn_layer_norm(x)
if prev_attn_state is not None:
prev_key, prev_value = prev_attn_state[:2]
saved_state: Dict[str, Optional[Tensor]] = {
"prev_key": prev_key,
"prev_value": prev_value,
}
if len(prev_attn_state) >= 3:
saved_state["prev_key_padding_mask"] = prev_attn_state[2]
assert incremental_state is not None
self.encoder_attn._set_input_buffer(incremental_state, saved_state)
x, attn = self.encoder_attn(
query=x,
key=encoder_out,
value=encoder_out,
key_padding_mask=encoder_padding_mask,
incremental_state=incremental_state,
static_kv=True,
need_weights=need_attn or (not self.training and self.need_attn),
need_head_weights=need_head_weights,
)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.encoder_attn_layer_norm(x)
###############################################
residual = x
if self.normalize_before:
x = self.ffn_layer_norm(x)
x = self.activation_fn(self.fc3(x))
x = self.activation_dropout_module(x)
x = self.fc4(x)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.ffn_layer_norm(x)
###############################################
residual = x
if self.normalize_before:
x = self.self_attn_layer_norm(x)
if prev_self_attn_state is not None:
prev_key, prev_value = prev_self_attn_state[:2]
saved_state: Dict[str, Optional[Tensor]] = {
"prev_key": prev_key,
"prev_value": prev_value,
}
if len(prev_self_attn_state) >= 3:
saved_state["prev_key_padding_mask"] = prev_self_attn_state[2]
assert incremental_state is not None
self.self_attn._set_input_buffer(incremental_state, saved_state)
_self_attn_input_buffer = self.self_attn._get_input_buffer(incremental_state)
if self.cross_self_attention and not (
incremental_state is not None
and _self_attn_input_buffer is not None
and "prev_key" in _self_attn_input_buffer
):
if self_attn_mask is not None:
assert encoder_out is not None
self_attn_mask = torch.cat(
(x.new_zeros(x.size(0), encoder_out.size(0)), self_attn_mask), dim=1
)
if self_attn_padding_mask is not None:
if encoder_padding_mask is None:
assert encoder_out is not None
encoder_padding_mask = self_attn_padding_mask.new_zeros(
encoder_out.size(1), encoder_out.size(0)
)
self_attn_padding_mask = torch.cat(
(encoder_padding_mask, self_attn_padding_mask), dim=1
)
assert encoder_out is not None
y = torch.cat((encoder_out, x), dim=0)
else:
y = x
x, attn = self.self_attn(
query=x,
key=y,
value=y,
key_padding_mask=self_attn_padding_mask,
incremental_state=incremental_state,
need_weights=False,
attn_mask=self_attn_mask,
)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.self_attn_layer_norm(x)
###############################################
residual = x
if self.normalize_before:
x = self.final_layer_norm(x)
x = self.activation_fn(self.fc1(x))
x = self.activation_dropout_module(x)
x = self.fc2(x)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.final_layer_norm(x)
if self.onnx_trace and incremental_state is not None:
saved_state = self.self_attn._get_input_buffer(incremental_state)
assert saved_state is not None
if self_attn_padding_mask is not None:
self_attn_state = [
saved_state["prev_key"],
saved_state["prev_value"],
saved_state["prev_key_padding_mask"],
]
else:
self_attn_state = [saved_state["prev_key"], saved_state["prev_value"]]
return x, attn, self_attn_state
return x, attn, None
class XLMTAddFFN(TransformerDecoderLayer):
def __init__(
self, args, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False
):
super(TransformerDecoderLayer, self).__init__()
self.embed_dim = args.decoder_embed_dim
self.dropout_module = FairseqDropout(
args.dropout, module_name=self.__class__.__name__
)
self.quant_noise = getattr(args, "quant_noise_pq", 0)
self.quant_noise_block_size = getattr(args, "quant_noise_pq_block_size", 8)
self.cross_self_attention = getattr(args, "cross_self_attention", False)
self.self_attn = self.build_self_attention(
self.embed_dim,
args,
add_bias_kv=add_bias_kv,
add_zero_attn=add_zero_attn,
)
self.activation_fn = utils.get_activation_fn(
activation=str(args.activation_fn)
if getattr(args, "activation_fn", None) is not None
else "relu"
)
activation_dropout_p = getattr(args, "activation_dropout", 0) or 0
if activation_dropout_p == 0:
# for backwards compatibility with models that use args.relu_dropout
activation_dropout_p = getattr(args, "relu_dropout", 0) or 0
self.activation_dropout_module = FairseqDropout(
float(activation_dropout_p), module_name=self.__class__.__name__
)
self.normalize_before = args.decoder_normalize_before
# use layerNorm rather than FusedLayerNorm for exporting.
# char_inputs can be used to determint this.
# TODO remove this once we update apex with the fix
export = getattr(args, "char_inputs", False)
self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=export)
if no_encoder_attn:
self.encoder_attn = None
self.encoder_attn_layer_norm = None
else:
self.encoder_attn = self.build_encoder_attention(self.embed_dim, args)
self.encoder_attn_layer_norm = LayerNorm(self.embed_dim, export=export)
self.fc1 = self.build_fc1(
self.embed_dim,
args.decoder_ffn_embed_dim,
self.quant_noise,
self.quant_noise_block_size,
)
self.fc2 = self.build_fc2(
args.decoder_ffn_embed_dim,
self.embed_dim,
self.quant_noise,
self.quant_noise_block_size,
)
self.fc3 = self.build_fc1(
self.embed_dim,
args.decoder_ffn_embed_dim,
self.quant_noise,
self.quant_noise_block_size,
)
self.fc4 = self.build_fc2(
args.decoder_ffn_embed_dim,
self.embed_dim,
self.quant_noise,
self.quant_noise_block_size,
)
self.ffn_layer_norm = LayerNorm(self.embed_dim, export=export)
self.final_layer_norm = LayerNorm(self.embed_dim, export=export)
self.need_attn = True
self.onnx_trace = False
# Language adapter (Added By JianYang)
self.adapter_dim = getattr(args, "adapter_dim", 0)
if self.adapter_dim > 0:
self.adapter_down_proj = nn.ModuleList([])
self.adapter_up_proj = nn.ModuleList([])
self.adapter_layer_norm = nn.ModuleList([])
for i in range(len(args.langs)):
self.adapter_down_proj.append(
self.build_fc1(
self.embed_dim,
self.adapter_dim,
self.quant_noise,
self.quant_noise_block_size,
))
self.adapter_up_proj.append(
self.build_fc2(
self.adapter_dim,
self.embed_dim,
self.quant_noise,
self.quant_noise_block_size,
))
self.adapter_layer_norm.append(LayerNorm(self.embed_dim))
# End #
def adapter_forward(self, x, lang_id):
residual = x
if self.normalize_before:
x = self.adapter_layer_norm[lang_id](x)
x = self.activation_fn(self.adapter_down_proj[lang_id](x))
x = self.activation_dropout_module(x)
x = self.adapter_up_proj[lang_id](x)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.adapter_layer_norm[lang_id](x)
return x
def forward(
self,
x,
encoder_out: Optional[torch.Tensor] = None,
encoder_padding_mask: Optional[torch.Tensor] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
prev_self_attn_state: Optional[List[torch.Tensor]] = None,
prev_attn_state: Optional[List[torch.Tensor]] = None,
self_attn_mask: Optional[torch.Tensor] = None,
self_attn_padding_mask: Optional[torch.Tensor] = None,
need_attn: bool = False,
need_head_weights: bool = False,
src_lang_id = None,
tgt_lang_id = None
):
"""
Args:
x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_padding_mask (ByteTensor, optional): binary
ByteTensor of shape `(batch, src_len)` where padding
elements are indicated by ``1``.
need_attn (bool, optional): return attention weights
need_head_weights (bool, optional): return attention weights
for each head (default: return average over heads).
Returns:
encoded output of shape `(seq_len, batch, embed_dim)`
"""
if need_head_weights:
need_attn = True
###############################################
residual = x
if self.normalize_before:
x = self.self_attn_layer_norm(x)
if prev_self_attn_state is not None:
prev_key, prev_value = prev_self_attn_state[:2]
saved_state: Dict[str, Optional[Tensor]] = {
"prev_key": prev_key,
"prev_value": prev_value,
}
if len(prev_self_attn_state) >= 3:
saved_state["prev_key_padding_mask"] = prev_self_attn_state[2]
assert incremental_state is not None
self.self_attn._set_input_buffer(incremental_state, saved_state)
_self_attn_input_buffer = self.self_attn._get_input_buffer(incremental_state)
if self.cross_self_attention and not (
incremental_state is not None
and _self_attn_input_buffer is not None
and "prev_key" in _self_attn_input_buffer
):
if self_attn_mask is not None:
assert encoder_out is not None
self_attn_mask = torch.cat(
(x.new_zeros(x.size(0), encoder_out.size(0)), self_attn_mask), dim=1
)
if self_attn_padding_mask is not None:
if encoder_padding_mask is None:
assert encoder_out is not None
encoder_padding_mask = self_attn_padding_mask.new_zeros(
encoder_out.size(1), encoder_out.size(0)
)
self_attn_padding_mask = torch.cat(
(encoder_padding_mask, self_attn_padding_mask), dim=1
)
assert encoder_out is not None
y = torch.cat((encoder_out, x), dim=0)
else:
y = x
x, attn = self.self_attn(
query=x,
key=y,
value=y,
key_padding_mask=self_attn_padding_mask,
incremental_state=incremental_state,
need_weights=False,
attn_mask=self_attn_mask,
)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.self_attn_layer_norm(x)
###############################################
residual = x
if self.normalize_before:
x = self.ffn_layer_norm(x)
x = self.activation_fn(self.fc3(x))
x = self.activation_dropout_module(x)
x = self.fc4(x)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.ffn_layer_norm(x)
# Parallel Adapter (Added By Jian Yang)
if self.adapter_dim > 0:
x = self.residual_connection(x, self.adapter_forward(residual, tgt_lang_id))
# End #
###############################################
if self.encoder_attn is not None and encoder_out is not None:
residual = x
if self.normalize_before:
x = self.encoder_attn_layer_norm(x)
if prev_attn_state is not None:
prev_key, prev_value = prev_attn_state[:2]
saved_state: Dict[str, Optional[Tensor]] = {
"prev_key": prev_key,
"prev_value": prev_value,
}
if len(prev_attn_state) >= 3:
saved_state["prev_key_padding_mask"] = prev_attn_state[2]
assert incremental_state is not None
self.encoder_attn._set_input_buffer(incremental_state, saved_state)
x, attn = self.encoder_attn(
query=x,
key=encoder_out,
value=encoder_out,
key_padding_mask=encoder_padding_mask,
incremental_state=incremental_state,
static_kv=True,
need_weights=need_attn or (not self.training and self.need_attn),
need_head_weights=need_head_weights,
)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.encoder_attn_layer_norm(x)
###############################################
residual = x
if self.normalize_before:
x = self.final_layer_norm(x)
x = self.activation_fn(self.fc1(x))
x = self.activation_dropout_module(x)
x = self.fc2(x)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.final_layer_norm(x)
#Parallel Adapter (Added By Jian Yang)
if self.adapter_dim > 0:
x = self.residual_connection(x, self.adapter_forward(residual, tgt_lang_id))
# End #
if self.onnx_trace and incremental_state is not None:
saved_state = self.self_attn._get_input_buffer(incremental_state)
assert saved_state is not None
if self_attn_padding_mask is not None:
self_attn_state = [
saved_state["prev_key"],
saved_state["prev_value"],
saved_state["prev_key_padding_mask"],
]
else:
self_attn_state = [saved_state["prev_key"], saved_state["prev_value"]]
return x, attn, self_attn_state
return x, attn, None
class XLMTTwoHalfFFN(TransformerDecoderLayer):
def __init__(
self, args, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False
):
super(TransformerDecoderLayer, self).__init__()
self.embed_dim = args.decoder_embed_dim
self.dropout_module = FairseqDropout(
args.dropout, module_name=self.__class__.__name__
)
self.quant_noise = getattr(args, "quant_noise_pq", 0)
self.quant_noise_block_size = getattr(args, "quant_noise_pq_block_size", 8)
self.cross_self_attention = getattr(args, "cross_self_attention", False)
self.self_attn = self.build_self_attention(
self.embed_dim,
args,
add_bias_kv=add_bias_kv,
add_zero_attn=add_zero_attn,
)
self.activation_fn = utils.get_activation_fn(
activation=str(args.activation_fn)
if getattr(args, "activation_fn", None) is not None
else "relu"
)
activation_dropout_p = getattr(args, "activation_dropout", 0) or 0
if activation_dropout_p == 0:
# for backwards compatibility with models that use args.relu_dropout
activation_dropout_p = getattr(args, "relu_dropout", 0) or 0
self.activation_dropout_module = FairseqDropout(
float(activation_dropout_p), module_name=self.__class__.__name__
)
self.normalize_before = args.decoder_normalize_before
# use layerNorm rather than FusedLayerNorm for exporting.
# char_inputs can be used to determint this.
# TODO remove this once we update apex with the fix
export = getattr(args, "char_inputs", False)
self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=export)
if no_encoder_attn:
self.encoder_attn = None
self.encoder_attn_layer_norm = None
else:
self.encoder_attn = self.build_encoder_attention(self.embed_dim, args)
self.encoder_attn_layer_norm = LayerNorm(self.embed_dim, export=export)
self.fc1 = self.build_fc1(
self.embed_dim,
args.decoder_ffn_embed_dim // 2,
self.quant_noise,
self.quant_noise_block_size,
)
self.fc2 = self.build_fc2(
args.decoder_ffn_embed_dim // 2,
self.embed_dim,
self.quant_noise,
self.quant_noise_block_size,
)
self.fc3 = self.build_fc1(
self.embed_dim,
args.decoder_ffn_embed_dim // 2,
self.quant_noise,
self.quant_noise_block_size,
)
self.fc4 = self.build_fc2(
args.decoder_ffn_embed_dim // 2,
self.embed_dim,
self.quant_noise,
self.quant_noise_block_size,
)
self.ffn_layer_norm = LayerNorm(self.embed_dim, export=export)
self.final_layer_norm = LayerNorm(self.embed_dim, export=export)
self.need_attn = True
self.onnx_trace = False
def forward(
self,
x,
encoder_out: Optional[torch.Tensor] = None,
encoder_padding_mask: Optional[torch.Tensor] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
prev_self_attn_state: Optional[List[torch.Tensor]] = None,
prev_attn_state: Optional[List[torch.Tensor]] = None,
self_attn_mask: Optional[torch.Tensor] = None,
self_attn_padding_mask: Optional[torch.Tensor] = None,
need_attn: bool = False,
need_head_weights: bool = False,
):
"""
Args:
x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_padding_mask (ByteTensor, optional): binary
ByteTensor of shape `(batch, src_len)` where padding
elements are indicated by ``1``.
need_attn (bool, optional): return attention weights
need_head_weights (bool, optional): return attention weights
for each head (default: return average over heads).
Returns:
encoded output of shape `(seq_len, batch, embed_dim)`
"""
if need_head_weights:
need_attn = True
residual = x
if self.normalize_before:
x = self.self_attn_layer_norm(x)
if prev_self_attn_state is not None:
prev_key, prev_value = prev_self_attn_state[:2]
saved_state: Dict[str, Optional[Tensor]] = {
"prev_key": prev_key,
"prev_value": prev_value,
}
if len(prev_self_attn_state) >= 3:
saved_state["prev_key_padding_mask"] = prev_self_attn_state[2]
assert incremental_state is not None
self.self_attn._set_input_buffer(incremental_state, saved_state)
_self_attn_input_buffer = self.self_attn._get_input_buffer(incremental_state)
if self.cross_self_attention and not (
incremental_state is not None
and _self_attn_input_buffer is not None
and "prev_key" in _self_attn_input_buffer
):
if self_attn_mask is not None:
assert encoder_out is not None
self_attn_mask = torch.cat(
(x.new_zeros(x.size(0), encoder_out.size(0)), self_attn_mask), dim=1
)
if self_attn_padding_mask is not None:
if encoder_padding_mask is None:
assert encoder_out is not None
encoder_padding_mask = self_attn_padding_mask.new_zeros(
encoder_out.size(1), encoder_out.size(0)
)
self_attn_padding_mask = torch.cat(
(encoder_padding_mask, self_attn_padding_mask), dim=1
)
assert encoder_out is not None
y = torch.cat((encoder_out, x), dim=0)
else:
y = x
x, attn = self.self_attn(
query=x,
key=y,
value=y,
key_padding_mask=self_attn_padding_mask,
incremental_state=incremental_state,
need_weights=False,
attn_mask=self_attn_mask,
)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.self_attn_layer_norm(x)
residual = x
if self.normalize_before:
x = self.ffn_layer_norm(x)
x = self.activation_fn(self.fc3(x))
x = self.activation_dropout_module(x)
x = self.fc4(x)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.ffn_layer_norm(x)
if self.encoder_attn is not None and encoder_out is not None:
residual = x
if self.normalize_before:
x = self.encoder_attn_layer_norm(x)
if prev_attn_state is not None:
prev_key, prev_value = prev_attn_state[:2]
saved_state: Dict[str, Optional[Tensor]] = {
"prev_key": prev_key,
"prev_value": prev_value,
}
if len(prev_attn_state) >= 3:
saved_state["prev_key_padding_mask"] = prev_attn_state[2]
assert incremental_state is not None
self.encoder_attn._set_input_buffer(incremental_state, saved_state)
x, attn = self.encoder_attn(
query=x,
key=encoder_out,
value=encoder_out,
key_padding_mask=encoder_padding_mask,
incremental_state=incremental_state,
static_kv=True,
need_weights=need_attn or (not self.training and self.need_attn),
need_head_weights=need_head_weights,
)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.encoder_attn_layer_norm(x)
residual = x
if self.normalize_before:
x = self.final_layer_norm(x)
x = self.activation_fn(self.fc1(x))
x = self.activation_dropout_module(x)
x = self.fc2(x)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.final_layer_norm(x)
if self.onnx_trace and incremental_state is not None:
saved_state = self.self_attn._get_input_buffer(incremental_state)
assert saved_state is not None
if self_attn_padding_mask is not None:
self_attn_state = [
saved_state["prev_key"],
saved_state["prev_value"],
saved_state["prev_key_padding_mask"],
]
else:
self_attn_state = [saved_state["prev_key"], saved_state["prev_value"]]
return x, attn, self_attn_state
return x, attn, None
class XLMTCrossAttnSelfAttnLargeLayer(TransformerDecoderLayer):
def build_self_attention(
self, embed_dim, args, add_bias_kv=False, add_zero_attn=False
):
return MultiheadAttention(
embed_dim,
args.decoder_attention_heads,
kdim=embed_dim,
vdim=embed_dim,
qdim=embed_dim,
outdim=embed_dim,
qkprojdim=1152,
dropout=args.attention_dropout,
add_bias_kv=add_bias_kv,
add_zero_attn=add_zero_attn,
self_attention=not getattr(args, "cross_self_attention", False),
q_noise=self.quant_noise,
qn_block_size=self.quant_noise_block_size,
)
def build_encoder_attention(self, embed_dim, args):
return MultiheadAttention(
embed_dim,
args.decoder_attention_heads,
kdim=embed_dim,
vdim=embed_dim,
qdim=embed_dim,
outdim=embed_dim,
qkprojdim=1152,
dropout=args.attention_dropout,
encoder_decoder_attention=True,
q_noise=self.quant_noise,
qn_block_size=self.quant_noise_block_size,
)
class XLMTCrossAttnLargeLayer(TransformerDecoderLayer):
def build_encoder_attention(self, embed_dim, args):
return MultiheadAttention(
embed_dim,
args.decoder_attention_heads,
kdim=embed_dim,
vdim=embed_dim,
qdim=embed_dim,
outdim=embed_dim,
qkprojdim=1152,
dropout=args.attention_dropout,
encoder_decoder_attention=True,
q_noise=self.quant_noise,
qn_block_size=self.quant_noise_block_size,
)
class XLMTCrossAttnFirstLayer(TransformerDecoderLayer):
def forward(
self,
x,
encoder_out: Optional[torch.Tensor] = None,
encoder_padding_mask: Optional[torch.Tensor] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
prev_self_attn_state: Optional[List[torch.Tensor]] = None,
prev_attn_state: Optional[List[torch.Tensor]] = None,
self_attn_mask: Optional[torch.Tensor] = None,
self_attn_padding_mask: Optional[torch.Tensor] = None,
need_attn: bool = False,
need_head_weights: bool = False,
):
"""
Args:
x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_padding_mask (ByteTensor, optional): binary
ByteTensor of shape `(batch, src_len)` where padding
elements are indicated by ``1``.
need_attn (bool, optional): return attention weights
need_head_weights (bool, optional): return attention weights
for each head (default: return average over heads).
Returns:
encoded output of shape `(seq_len, batch, embed_dim)`
"""
if need_head_weights:
need_attn = True
if self.encoder_attn is not None and encoder_out is not None:
residual = x
if self.normalize_before:
x = self.encoder_attn_layer_norm(x)
if prev_attn_state is not None:
prev_key, prev_value = prev_attn_state[:2]
saved_state: Dict[str, Optional[Tensor]] = {
"prev_key": prev_key,
"prev_value": prev_value,
}
if len(prev_attn_state) >= 3:
saved_state["prev_key_padding_mask"] = prev_attn_state[2]
assert incremental_state is not None
self.encoder_attn._set_input_buffer(incremental_state, saved_state)
x, attn = self.encoder_attn(
query=x,
key=encoder_out,
value=encoder_out,
key_padding_mask=encoder_padding_mask,
incremental_state=incremental_state,
static_kv=True,
need_weights=need_attn or (not self.training and self.need_attn),
need_head_weights=need_head_weights,
)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.encoder_attn_layer_norm(x)
residual = x
if self.normalize_before:
x = self.self_attn_layer_norm(x)
if prev_self_attn_state is not None:
prev_key, prev_value = prev_self_attn_state[:2]
saved_state: Dict[str, Optional[Tensor]] = {
"prev_key": prev_key,
"prev_value": prev_value,
}
if len(prev_self_attn_state) >= 3:
saved_state["prev_key_padding_mask"] = prev_self_attn_state[2]
assert incremental_state is not None
self.self_attn._set_input_buffer(incremental_state, saved_state)
_self_attn_input_buffer = self.self_attn._get_input_buffer(incremental_state)
if self.cross_self_attention and not (
incremental_state is not None
and _self_attn_input_buffer is not None
and "prev_key" in _self_attn_input_buffer
):
if self_attn_mask is not None:
assert encoder_out is not None
self_attn_mask = torch.cat(
(x.new_zeros(x.size(0), encoder_out.size(0)), self_attn_mask), dim=1
)
if self_attn_padding_mask is not None:
if encoder_padding_mask is None:
assert encoder_out is not None
encoder_padding_mask = self_attn_padding_mask.new_zeros(
encoder_out.size(1), encoder_out.size(0)
)
self_attn_padding_mask = torch.cat(
(encoder_padding_mask, self_attn_padding_mask), dim=1
)
assert encoder_out is not None
y = torch.cat((encoder_out, x), dim=0)
else:
y = x
x, attn = self.self_attn(
query=x,
key=y,
value=y,
key_padding_mask=self_attn_padding_mask,
incremental_state=incremental_state,
need_weights=False,
attn_mask=self_attn_mask,
)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.self_attn_layer_norm(x)
residual = x
if self.normalize_before:
x = self.final_layer_norm(x)
x = self.activation_fn(self.fc1(x))
x = self.activation_dropout_module(x)
x = self.fc2(x)
x = self.dropout_module(x)
x = self.residual_connection(x, residual)
if not self.normalize_before:
x = self.final_layer_norm(x)
if self.onnx_trace and incremental_state is not None:
saved_state = self.self_attn._get_input_buffer(incremental_state)
assert saved_state is not None
if self_attn_padding_mask is not None:
self_attn_state = [
saved_state["prev_key"],
saved_state["prev_value"],
saved_state["prev_key_padding_mask"],
]
else:
self_attn_state = [saved_state["prev_key"], saved_state["prev_value"]]
return x, attn, self_attn_state
return x, attn, None
@register_model_architecture(
"xlmt_decoder_variant", "xlmt_decoder_variant"
)
def base_architecture(args):
args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 3072)
args.encoder_layers = getattr(args, "encoder_layers", 12)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True)
args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
args.decoder_ffn_embed_dim = getattr(
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
)
args.decoder_layers = getattr(args, "decoder_layers", 6)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 12)
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", True)
args.attention_dropout = getattr(args, "attention_dropout", 0.0)
args.activation_dropout = getattr(args, "activation_dropout", 0.0)
args.activation_fn = getattr(args, "activation_fn", "gelu")
args.dropout = getattr(args, "dropout", 0.1)
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
args.share_decoder_input_output_embed = getattr(
args, "share_decoder_input_output_embed", False
)
args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
args.no_token_positional_embeddings = getattr(
args, "no_token_positional_embeddings", False
)
args.adaptive_input = getattr(args, "adaptive_input", False)
args.no_cross_attention = getattr(args, "no_cross_attention", False)
args.cross_self_attention = getattr(args, "cross_self_attention", False)
args.layer_wise_attention = getattr(args, "layer_wise_attention", False)
args.decoder_output_dim = getattr(
args, "decoder_output_dim", args.decoder_embed_dim
)
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
args.no_scale_embedding = getattr(args, "no_scale_embedding", True)
args.layernorm_embedding = getattr(args, "layernorm_embedding", True)
args.init_encoder_only = getattr(args, "init_encoder_only", False)
args.init_decoder_only = getattr(args, "init_decoder_only", False)
args.max_positions = getattr(args, "max_positions", 512)
#
args.adapter_dim = getattr(args, "adapter_dim", args.decoder_ffn_embed_dim)
args.adapter_method = getattr(args, "adapter_method", "all")
args.drop_adapter = getattr(args, "drop_adapter", -1)
@register_model_architecture(
"xlmt_decoder_variant", "xlmt_decoder_variant_large"
)
def base_architecture(args):
args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096)
args.encoder_layers = getattr(args, "encoder_layers", 24)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True)
args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
args.decoder_ffn_embed_dim = getattr(
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
)
args.decoder_layers = getattr(args, "decoder_layers", 12)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", True)
args.attention_dropout = getattr(args, "attention_dropout", 0.0)
args.activation_dropout = getattr(args, "activation_dropout", 0.0)
args.activation_fn = getattr(args, "activation_fn", "gelu")
args.dropout = getattr(args, "dropout", 0.1)
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
args.share_decoder_input_output_embed = getattr(
args, "share_decoder_input_output_embed", False
)
args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
args.no_token_positional_embeddings = getattr(
args, "no_token_positional_embeddings", False
)
args.adaptive_input = getattr(args, "adaptive_input", False)
args.no_cross_attention = getattr(args, "no_cross_attention", False)
args.cross_self_attention = getattr(args, "cross_self_attention", False)
args.layer_wise_attention = getattr(args, "layer_wise_attention", False)
args.decoder_output_dim = getattr(
args, "decoder_output_dim", args.decoder_embed_dim
)
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
args.no_scale_embedding = getattr(args, "no_scale_embedding", True)
args.layernorm_embedding = getattr(args, "layernorm_embedding", True)
args.init_encoder_only = getattr(args, "init_encoder_only", False)
args.init_decoder_only = getattr(args, "init_decoder_only", False)
args.max_positions = getattr(args, "max_positions", 512)
args.use_adapter = getattr(args, "use_adapter", False)
args.adapter_dropout = getattr(args, "adapter_dropout", args.dropout)
args.freeze_adapter = getattr(args, "freeze_adapter", False)
@register_model_architecture(
"xlmt_decoder_variant", "xlmt_decoder_variant_large_from_deltalm_postnorm"
)
def base_architecture(args):
args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096)
args.encoder_layers = getattr(args, "encoder_layers", 24)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True)
args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
args.decoder_ffn_embed_dim = getattr(
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
)
args.decoder_layers = getattr(args, "decoder_layers", 12)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", True)
args.attention_dropout = getattr(args, "attention_dropout", 0.0)
args.activation_dropout = getattr(args, "activation_dropout", 0.0)
args.activation_fn = getattr(args, "activation_fn", "gelu")
args.dropout = getattr(args, "dropout", 0.1)
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
args.share_decoder_input_output_embed = getattr(
args, "share_decoder_input_output_embed", False
)
args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
args.no_token_positional_embeddings = getattr(
args, "no_token_positional_embeddings", False
)
args.adaptive_input = getattr(args, "adaptive_input", False)
args.no_cross_attention = getattr(args, "no_cross_attention", False)
args.cross_self_attention = getattr(args, "cross_self_attention", False)
args.layer_wise_attention = getattr(args, "layer_wise_attention", False)
args.decoder_output_dim = getattr(
args, "decoder_output_dim", args.decoder_embed_dim
)
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
args.no_scale_embedding = getattr(args, "no_scale_embedding", True)
args.layernorm_embedding = getattr(args, "layernorm_embedding", False)
args.init_encoder_only = getattr(args, "init_encoder_only", False)
args.init_decoder_only = getattr(args, "init_decoder_only", False)
args.max_positions = getattr(args, "max_positions", 512)
args.use_adapter = getattr(args, "use_adapter", False)
args.adapter_dropout = getattr(args, "adapter_dropout", args.dropout)
args.freeze_adapter = getattr(args, "freeze_adapter", False)
@register_model_architecture(
"xlmt_decoder_variant", "xlmt_decoder_variant_large_from_deltalm_prenorm"
)
def base_architecture(args):
args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096)
args.encoder_layers = getattr(args, "encoder_layers", 24)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True)
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True)
args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
args.decoder_ffn_embed_dim = getattr(
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
)
args.decoder_layers = getattr(args, "decoder_layers", 12)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True)
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", True)
args.attention_dropout = getattr(args, "attention_dropout", 0.0)
args.activation_dropout = getattr(args, "activation_dropout", 0.0)
args.activation_fn = getattr(args, "activation_fn", "gelu")
args.dropout = getattr(args, "dropout", 0.1)
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
args.share_decoder_input_output_embed = getattr(
args, "share_decoder_input_output_embed", False
)
args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
args.no_token_positional_embeddings = getattr(
args, "no_token_positional_embeddings", False
)
args.adaptive_input = getattr(args, "adaptive_input", False)
args.no_cross_attention = getattr(args, "no_cross_attention", False)
args.cross_self_attention = getattr(args, "cross_self_attention", False)
args.layer_wise_attention = getattr(args, "layer_wise_attention", False)
args.decoder_output_dim = getattr(
args, "decoder_output_dim", args.decoder_embed_dim
)
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
args.no_scale_embedding = getattr(args, "no_scale_embedding", True)
args.layernorm_embedding = getattr(args, "layernorm_embedding", False)
args.init_encoder_only = getattr(args, "init_encoder_only", False)
args.init_decoder_only = getattr(args, "init_decoder_only", False)
args.max_positions = getattr(args, "max_positions", 512)
args.use_adapter = getattr(args, "use_adapter", False)
args.adapter_dropout = getattr(args, "adapter_dropout", args.dropout)
args.freeze_adapter = getattr(args, "freeze_adapter", False) | data2vec_vision-main | deltalm/src/fairseq/models/xlmt_decoder_variant.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
from typing import Any, Dict
from fairseq import checkpoint_utils
from fairseq.data.legacy.masked_lm_dictionary import MaskedLMDictionary
from fairseq.models import register_model, register_model_architecture
from fairseq.models.transformer import (
TransformerDecoder,
TransformerEncoder,
TransformerModel,
base_architecture as transformer_base_architecture,
)
@register_model("transformer_from_pretrained_xlm")
class TransformerFromPretrainedXLMModel(TransformerModel):
@staticmethod
def add_args(parser):
"""Add model-specific arguments to the parser."""
TransformerModel.add_args(parser)
parser.add_argument(
"--pretrained-xlm-checkpoint",
type=str,
metavar="STR",
help="XLM model to use for initializing transformer encoder and/or decoder",
)
parser.add_argument(
"--init-encoder-only",
action="store_true",
help="if set, don't load the XLM weights and embeddings into decoder",
)
parser.add_argument(
"--init-decoder-only",
action="store_true",
help="if set, don't load the XLM weights and embeddings into encoder",
)
@classmethod
def build_model(self, args, task, cls_dictionary=MaskedLMDictionary):
assert hasattr(args, "pretrained_xlm_checkpoint"), (
"You must specify a path for --pretrained-xlm-checkpoint to use "
"--arch transformer_from_pretrained_xlm"
)
assert isinstance(task.source_dictionary, cls_dictionary) and isinstance(
task.target_dictionary, cls_dictionary
), (
"You should use a MaskedLMDictionary when using --arch "
"transformer_from_pretrained_xlm because the pretrained XLM model "
"was trained using data binarized with MaskedLMDictionary. "
"For translation, you may want to use --task "
"translation_from_pretrained_xlm"
)
assert not (
getattr(args, "init_encoder_only", False)
and getattr(args, "init_decoder_only", False)
), "Only one of --init-encoder-only and --init-decoder-only can be set."
return super().build_model(args, task)
@classmethod
def build_encoder(cls, args, src_dict, embed_tokens):
return TransformerEncoderFromPretrainedXLM(args, src_dict, embed_tokens)
@classmethod
def build_decoder(cls, args, tgt_dict, embed_tokens):
return TransformerDecoderFromPretrainedXLM(args, tgt_dict, embed_tokens)
def upgrade_state_dict_with_xlm_weights(
state_dict: Dict[str, Any], pretrained_xlm_checkpoint: str
) -> Dict[str, Any]:
"""
Load XLM weights into a Transformer encoder or decoder model.
Args:
state_dict: state dict for either TransformerEncoder or
TransformerDecoder
pretrained_xlm_checkpoint: checkpoint to load XLM weights from
Raises:
AssertionError: If architecture (num layers, attention heads, etc.)
does not match between the current Transformer encoder or
decoder and the pretrained_xlm_checkpoint
"""
if not os.path.exists(pretrained_xlm_checkpoint):
raise IOError("Model file not found: {}".format(pretrained_xlm_checkpoint))
state = checkpoint_utils.load_checkpoint_to_cpu(pretrained_xlm_checkpoint)
xlm_state_dict = state["model"]
for key in xlm_state_dict.keys():
for search_key in ["embed_tokens", "embed_positions", "layers"]:
if search_key in key:
subkey = key[key.find(search_key) :]
assert subkey in state_dict, (
"{} Transformer encoder / decoder "
"state_dict does not contain {}. Cannot "
"load {} from pretrained XLM checkpoint "
"{} into Transformer.".format(
str(state_dict.keys()), subkey, key, pretrained_xlm_checkpoint
)
)
state_dict[subkey] = xlm_state_dict[key]
return state_dict
class TransformerEncoderFromPretrainedXLM(TransformerEncoder):
def __init__(self, args, dictionary, embed_tokens):
super().__init__(args, dictionary, embed_tokens)
if getattr(args, "init_decoder_only", False):
# Don't load XLM weights for encoder if --init-decoder-only
return
assert hasattr(args, "pretrained_xlm_checkpoint"), (
"--pretrained-xlm-checkpoint must be specified to load Transformer "
"encoder from pretrained XLM"
)
xlm_loaded_state_dict = upgrade_state_dict_with_xlm_weights(
state_dict=self.state_dict(),
pretrained_xlm_checkpoint=args.pretrained_xlm_checkpoint,
)
self.load_state_dict(xlm_loaded_state_dict, strict=True)
class TransformerDecoderFromPretrainedXLM(TransformerDecoder):
def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False):
super().__init__(args, dictionary, embed_tokens, no_encoder_attn)
if getattr(args, "init_encoder_only", False):
# Don't load XLM weights for decoder if --init-encoder-only
return
assert hasattr(args, "pretrained_xlm_checkpoint"), (
"--pretrained-xlm-checkpoint must be specified to load Transformer "
"decoder from pretrained XLM"
)
xlm_loaded_state_dict = upgrade_state_dict_with_xlm_weights(
state_dict=self.state_dict(),
pretrained_xlm_checkpoint=args.pretrained_xlm_checkpoint,
)
self.load_state_dict(xlm_loaded_state_dict, strict=True)
@register_model_architecture(
"transformer_from_pretrained_xlm", "transformer_from_pretrained_xlm"
)
def base_architecture(args):
transformer_base_architecture(args)
| data2vec_vision-main | deltalm/src/fairseq/models/transformer_from_pretrained_xlm.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import inspect
import torch
import torch.nn as nn
from fairseq import distributed_utils
from fairseq.legacy_distributed_data_parallel import LegacyDistributedDataParallel
_GOSSIP_DISABLED = False
try:
import gossip
except ImportError:
_GOSSIP_DISABLED = True
def DistributedFairseqModel(args, model, process_group):
"""
Wrap a *model* to support distributed data parallel training.
This is similar to the built-in DistributedDataParallel, but allows
additional configuration of the DistributedDataParallel class to
use, and also provides easier access to the wrapped model by
forwarding requests for missing attributes to the wrapped model.
Args:
args (argparse.Namespace): fairseq args
model (BaseFairseqModel): model to wrap
process_group: the c10d process group to be used for distributed data
parallel all-reduction.
"""
# determine which DDP class to extend
assert isinstance(model, nn.Module)
if args.tpu:
ddp_class = TPUDistributedDataParallel
init_kwargs = dict(
module=model,
process_group=process_group,
)
elif args.distributed_wrapper == "DDP" and args.ddp_backend == "c10d":
ddp_class = nn.parallel.DistributedDataParallel
init_kwargs = dict(
module=model,
device_ids=[args.device_id],
output_device=args.device_id,
broadcast_buffers=args.broadcast_buffers,
bucket_cap_mb=args.bucket_cap_mb,
process_group=process_group,
)
# Maintain backward compatibility
if "check_reduction" in inspect.getargspec(ddp_class)[0]:
init_kwargs["check_reduction"] = True
if "find_unused_parameters" in inspect.getargspec(ddp_class)[0]:
init_kwargs["find_unused_parameters"] = args.find_unused_parameters
elif args.distributed_wrapper == "DDP" and args.ddp_backend == "no_c10d":
ddp_class = LegacyDistributedDataParallel
init_kwargs = dict(
module=model,
buffer_size=2 ** 28,
process_group=process_group,
)
elif args.distributed_wrapper == "SlowMo":
if _GOSSIP_DISABLED:
raise ImportError(
"Cannot find gossip library. Please install from: "
"github.com/facebookresearch/stochastic_gradient_push"
)
ddp_class = gossip.GossipDataParallel
# The values of slowmo_momentum below were obtained by tuning on the
# En-De 16 dataset by training the transformer_wmt_en_de_large model
if args.slowmo_momentum is None:
if args.distributed_world_size <= 16:
args.slowmo_momentum = 0.0
elif args.distributed_world_size <= 32:
args.slowmo_momentum = 0.2
elif args.distributed_world_size <= 64:
args.slowmo_momentum = 0.5
else:
args.slowmo_momentum = 0.6
init_kwargs = dict(
module=model,
device_ids=[args.device_id],
output_device=args.device_id,
broadcast_buffers=args.broadcast_buffers,
nprocs_per_node=args.nprocs_per_node,
slowmo_momentum=args.slowmo_momentum,
localsgd=(args.slowmo_algorithm == "LocalSGD"),
localsgd_frequency=args.localsgd_frequency,
)
else:
raise ValueError("Unknown --ddp-backend: " + args.ddp_backend)
class _DistributedFairseqModel(ddp_class):
"""Extend DistributedDataParallel to check for missing
attributes in the wrapped module."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def __getattr__(self, name):
wrapped_module = super().__getattr__("module")
if hasattr(wrapped_module, name):
return getattr(wrapped_module, name)
return super().__getattr__(name)
return _DistributedFairseqModel(**init_kwargs)
class TPUDistributedDataParallel(nn.Module):
def __init__(self, module, process_group):
super().__init__()
self.module = module
self.process_group = process_group
self.world_size = distributed_utils.get_world_size(self.process_group)
def forward(self, *inputs, **kwargs):
return self.module(*inputs, **kwargs)
def all_reduce_grads(self):
gradients = []
for p in self.parameters():
if not p.requires_grad:
continue
if p.grad is None:
p.grad = torch.zeros_like(p)
if p.grad.requires_grad:
raise RuntimeError(
"TPUDistributedDataParallel only works with gradients that don't "
"require grad"
)
gradients.append(p.grad)
import torch_xla.core.xla_model as xm
xm.all_reduce(
'sum',
gradients,
scale=1. / self.world_size,
groups=self.process_group[1],
)
| data2vec_vision-main | deltalm/src/fairseq/models/distributed_fairseq_model.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from typing import Any, Dict, List, Optional, Tuple
import torch
import torch.nn as nn
from fairseq import utils
from fairseq.models import (
FairseqEncoder,
FairseqEncoderDecoderModel,
FairseqIncrementalDecoder,
register_model,
register_model_architecture,
)
from fairseq.modules import (
AdaptiveSoftmax,
FairseqDropout,
LayerDropModuleList,
LayerNorm,
PositionalEmbedding,
SinusoidalPositionalEmbedding,
TransformerDecoderLayer,
TransformerEncoderLayer,
)
from fairseq.modules.checkpoint_activations import checkpoint_wrapper
from fairseq.modules.quant_noise import quant_noise as apply_quant_noise_
from torch import Tensor
DEFAULT_MAX_SOURCE_POSITIONS = 1024
DEFAULT_MAX_TARGET_POSITIONS = 1024
@register_model("transformer")
class TransformerModel(FairseqEncoderDecoderModel):
"""
Transformer model from `"Attention Is All You Need" (Vaswani, et al, 2017)
<https://arxiv.org/abs/1706.03762>`_.
Args:
encoder (TransformerEncoder): the encoder
decoder (TransformerDecoder): the decoder
The Transformer model provides the following named architectures and
command-line arguments:
.. argparse::
:ref: fairseq.models.transformer_parser
:prog:
"""
@classmethod
def hub_models(cls):
# fmt: off
def moses_subword(path):
return {
'path': path,
'tokenizer': 'moses',
'bpe': 'subword_nmt',
}
def moses_fastbpe(path):
return {
'path': path,
'tokenizer': 'moses',
'bpe': 'fastbpe',
}
return {
'transformer.wmt14.en-fr': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/wmt14.en-fr.joined-dict.transformer.tar.bz2'),
'transformer.wmt16.en-de': 'https://dl.fbaipublicfiles.com/fairseq/models/wmt16.en-de.joined-dict.transformer.tar.bz2',
'transformer.wmt18.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/wmt18.en-de.ensemble.tar.gz'),
'transformer.wmt19.en-de': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-de.joined-dict.ensemble.tar.gz'),
'transformer.wmt19.en-ru': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-ru.ensemble.tar.gz'),
'transformer.wmt19.de-en': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.de-en.joined-dict.ensemble.tar.gz'),
'transformer.wmt19.ru-en': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.ru-en.ensemble.tar.gz'),
'transformer.wmt19.en-de.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-de.joined-dict.single_model.tar.gz'),
'transformer.wmt19.en-ru.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-ru.single_model.tar.gz'),
'transformer.wmt19.de-en.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.de-en.joined-dict.single_model.tar.gz'),
'transformer.wmt19.ru-en.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.ru-en.single_model.tar.gz'),
}
# fmt: on
def __init__(self, args, encoder, decoder):
super().__init__(encoder, decoder)
self.args = args
self.supports_align_args = True
@staticmethod
def add_args(parser):
"""Add model-specific arguments to the parser."""
# fmt: off
parser.add_argument('--activation-fn',
choices=utils.get_available_activation_fns(),
help='activation function to use')
parser.add_argument('--dropout', type=float, metavar='D',
help='dropout probability')
parser.add_argument('--attention-dropout', type=float, metavar='D',
help='dropout probability for attention weights')
parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D',
help='dropout probability after activation in FFN.')
parser.add_argument('--encoder-embed-path', type=str, metavar='STR',
help='path to pre-trained encoder embedding')
parser.add_argument('--encoder-embed-dim', type=int, metavar='N',
help='encoder embedding dimension')
parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N',
help='encoder embedding dimension for FFN')
parser.add_argument('--encoder-layers', type=int, metavar='N',
help='num encoder layers')
parser.add_argument('--encoder-attention-heads', type=int, metavar='N',
help='num encoder attention heads')
parser.add_argument('--encoder-normalize-before', action='store_true',
help='apply layernorm before each encoder block')
parser.add_argument('--encoder-learned-pos', action='store_true',
help='use learned positional embeddings in the encoder')
parser.add_argument('--decoder-embed-path', type=str, metavar='STR',
help='path to pre-trained decoder embedding')
parser.add_argument('--decoder-embed-dim', type=int, metavar='N',
help='decoder embedding dimension')
parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N',
help='decoder embedding dimension for FFN')
parser.add_argument('--decoder-layers', type=int, metavar='N',
help='num decoder layers')
parser.add_argument('--decoder-attention-heads', type=int, metavar='N',
help='num decoder attention heads')
parser.add_argument('--decoder-learned-pos', action='store_true',
help='use learned positional embeddings in the decoder')
parser.add_argument('--decoder-normalize-before', action='store_true',
help='apply layernorm before each decoder block')
parser.add_argument('--decoder-output-dim', type=int, metavar='N',
help='decoder output dimension (extra linear layer '
'if different from decoder embed dim')
parser.add_argument('--share-decoder-input-output-embed', action='store_true',
help='share decoder input and output embeddings')
parser.add_argument('--share-all-embeddings', action='store_true',
help='share encoder, decoder and output embeddings'
' (requires shared dictionary and embed dim)')
parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true',
help='if set, disables positional embeddings (outside self attention)')
parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR',
help='comma separated list of adaptive softmax cutoff points. '
'Must be used with adaptive_loss criterion'),
parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D',
help='sets adaptive softmax dropout for the tail projections')
parser.add_argument('--layernorm-embedding', action='store_true',
help='add layernorm to embedding')
parser.add_argument('--no-scale-embedding', action='store_true',
help='if True, dont scale embeddings')
parser.add_argument('--checkpoint-activations', action='store_true',
help='checkpoint activations at each layer, which saves GPU '
'memory usage at the cost of some additional compute')
# args for "Cross+Self-Attention for Transformer Models" (Peitz et al., 2019)
parser.add_argument('--no-cross-attention', default=False, action='store_true',
help='do not perform cross-attention')
parser.add_argument('--cross-self-attention', default=False, action='store_true',
help='perform cross+self-attention')
# args for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019)
parser.add_argument('--encoder-layerdrop', type=float, metavar='D', default=0,
help='LayerDrop probability for encoder')
parser.add_argument('--decoder-layerdrop', type=float, metavar='D', default=0,
help='LayerDrop probability for decoder')
parser.add_argument('--encoder-layers-to-keep', default=None,
help='which layers to *keep* when pruning as a comma-separated list')
parser.add_argument('--decoder-layers-to-keep', default=None,
help='which layers to *keep* when pruning as a comma-separated list')
# args for Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020)
parser.add_argument('--quant-noise-pq', type=float, metavar='D', default=0,
help='iterative PQ quantization noise at training time')
parser.add_argument('--quant-noise-pq-block-size', type=int, metavar='D', default=8,
help='block size of quantization noise at training time')
parser.add_argument('--quant-noise-scalar', type=float, metavar='D', default=0,
help='scalar quantization noise and scalar quantization at training time')
# fmt: on
@classmethod
def build_model_without_task(cls, args, src_dict, tgt_dict):
"""Build a new model instance."""
# make sure all arguments are present in older models
base_architecture(args)
if args.encoder_layers_to_keep:
args.encoder_layers = len(args.encoder_layers_to_keep.split(","))
if args.decoder_layers_to_keep:
args.decoder_layers = len(args.decoder_layers_to_keep.split(","))
if getattr(args, "max_source_positions", None) is None:
args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS
if getattr(args, "max_target_positions", None) is None:
args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS
if args.share_all_embeddings:
if src_dict != tgt_dict:
raise ValueError("--share-all-embeddings requires a joined dictionary")
if args.encoder_embed_dim != args.decoder_embed_dim:
raise ValueError(
"--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim"
)
if args.decoder_embed_path and (
args.decoder_embed_path != args.encoder_embed_path
):
raise ValueError(
"--share-all-embeddings not compatible with --decoder-embed-path"
)
encoder_embed_tokens = cls.build_embedding(
args, src_dict, args.encoder_embed_dim, args.encoder_embed_path
)
decoder_embed_tokens = encoder_embed_tokens
args.share_decoder_input_output_embed = True
else:
encoder_embed_tokens = cls.build_embedding(
args, src_dict, args.encoder_embed_dim, args.encoder_embed_path
)
decoder_embed_tokens = cls.build_embedding(
args, tgt_dict, args.decoder_embed_dim, args.decoder_embed_path
)
encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens)
decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens)
return cls(args, encoder, decoder)
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
# make sure all arguments are present in older models
base_architecture(args)
if args.encoder_layers_to_keep:
args.encoder_layers = len(args.encoder_layers_to_keep.split(","))
if args.decoder_layers_to_keep:
args.decoder_layers = len(args.decoder_layers_to_keep.split(","))
if getattr(args, "max_source_positions", None) is None:
args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS
if getattr(args, "max_target_positions", None) is None:
args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS
src_dict, tgt_dict = task.source_dictionary, task.target_dictionary
if args.share_all_embeddings:
if src_dict != tgt_dict:
raise ValueError("--share-all-embeddings requires a joined dictionary")
if args.encoder_embed_dim != args.decoder_embed_dim:
raise ValueError(
"--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim"
)
if args.decoder_embed_path and (
args.decoder_embed_path != args.encoder_embed_path
):
raise ValueError(
"--share-all-embeddings not compatible with --decoder-embed-path"
)
encoder_embed_tokens = cls.build_embedding(
args, src_dict, args.encoder_embed_dim, args.encoder_embed_path
)
decoder_embed_tokens = encoder_embed_tokens
args.share_decoder_input_output_embed = True
else:
encoder_embed_tokens = cls.build_embedding(
args, src_dict, args.encoder_embed_dim, args.encoder_embed_path
)
decoder_embed_tokens = cls.build_embedding(
args, tgt_dict, args.decoder_embed_dim, args.decoder_embed_path
)
encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens)
decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens)
return cls(args, encoder, decoder)
@classmethod
def build_embedding(cls, args, dictionary, embed_dim, path=None):
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
emb = Embedding(num_embeddings, embed_dim, padding_idx)
# if provided, load from preloaded dictionaries
if path:
embed_dict = utils.parse_embedding(path)
utils.load_embedding(embed_dict, dictionary, emb)
return emb
@classmethod
def build_encoder(cls, args, src_dict, embed_tokens):
return TransformerEncoder(args, src_dict, embed_tokens)
@classmethod
def build_decoder(cls, args, tgt_dict, embed_tokens):
return TransformerDecoder(
args,
tgt_dict,
embed_tokens,
no_encoder_attn=getattr(args, "no_cross_attention", False),
)
# TorchScript doesn't support optional arguments with variable length (**kwargs).
# Current workaround is to add union of all arguments in child classes.
def forward(
self,
src_tokens,
src_lengths,
prev_output_tokens,
return_all_hiddens: bool = True,
features_only: bool = False,
alignment_layer: Optional[int] = None,
alignment_heads: Optional[int] = None,
**extra_args
):
"""
Run the forward pass for an encoder-decoder model.
Copied from the base class, but without ``**kwargs``,
which are not supported by TorchScript.
"""
encoder_out = self.encoder(
src_tokens, src_lengths=src_lengths, return_all_hiddens=return_all_hiddens
)
decoder_out = self.decoder(
prev_output_tokens,
encoder_out=encoder_out,
features_only=features_only,
alignment_layer=alignment_layer,
alignment_heads=alignment_heads,
src_lengths=src_lengths,
return_all_hiddens=return_all_hiddens,
)
return decoder_out
# Since get_normalized_probs is in the Fairseq Model which is not scriptable,
# I rewrite the get_normalized_probs from Base Class to call the
# helper function in the Base Class.
@torch.jit.export
def get_normalized_probs(
self,
net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
log_probs: bool,
sample: Optional[Dict[str, Tensor]] = None,
):
"""Get normalized probabilities (or log probs) from a net's output."""
return self.get_normalized_probs_scriptable(net_output, log_probs, sample)
class TransformerEncoder(FairseqEncoder):
"""
Transformer encoder consisting of *args.encoder_layers* layers. Each layer
is a :class:`TransformerEncoderLayer`.
Args:
args (argparse.Namespace): parsed command-line arguments
dictionary (~fairseq.data.Dictionary): encoding dictionary
embed_tokens (torch.nn.Embedding): input embedding
"""
def __init__(self, args, dictionary, embed_tokens):
super().__init__(dictionary)
self.register_buffer("version", torch.Tensor([3]))
self.dropout_module = FairseqDropout(
args.dropout, module_name=self.__class__.__name__
)
self.encoder_layerdrop = args.encoder_layerdrop
embed_dim = embed_tokens.embedding_dim
self.padding_idx = embed_tokens.padding_idx
self.max_source_positions = args.max_source_positions
self.embed_tokens = embed_tokens
self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim)
self.embed_positions = (
PositionalEmbedding(
args.max_source_positions,
embed_dim,
self.padding_idx,
learned=args.encoder_learned_pos,
)
if not args.no_token_positional_embeddings
else None
)
if getattr(args, "layernorm_embedding", False):
self.layernorm_embedding = LayerNorm(embed_dim)
else:
self.layernorm_embedding = None
if not args.adaptive_input and args.quant_noise_pq > 0:
self.quant_noise = apply_quant_noise_(
nn.Linear(embed_dim, embed_dim, bias=False),
args.quant_noise_pq,
args.quant_noise_pq_block_size,
)
else:
self.quant_noise = None
if self.encoder_layerdrop > 0.0:
self.layers = LayerDropModuleList(p=self.encoder_layerdrop)
else:
self.layers = nn.ModuleList([])
self.layers.extend(
[self.build_encoder_layer(args) for i in range(args.encoder_layers)]
)
self.num_layers = len(self.layers)
if args.encoder_normalize_before:
self.layer_norm = LayerNorm(embed_dim)
else:
self.layer_norm = None
def build_encoder_layer(self, args):
layer = TransformerEncoderLayer(args)
if getattr(args, "checkpoint_activations", False):
layer = checkpoint_wrapper(layer)
return layer
def forward_embedding(
self, src_tokens, token_embedding: Optional[torch.Tensor] = None
):
# embed tokens and positions
if token_embedding is None:
token_embedding = self.embed_tokens(src_tokens)
x = embed = self.embed_scale * token_embedding
if self.embed_positions is not None:
x = embed + self.embed_positions(src_tokens)
if self.layernorm_embedding is not None:
x = self.layernorm_embedding(x)
x = self.dropout_module(x)
if self.quant_noise is not None:
x = self.quant_noise(x)
return x, embed
def forward(
self,
src_tokens,
src_lengths,
return_all_hiddens: bool = False,
token_embeddings: Optional[torch.Tensor] = None,
**kwargs
):
"""
Args:
src_tokens (LongTensor): tokens in the source language of shape
`(batch, src_len)`
src_lengths (torch.LongTensor): lengths of each source sentence of
shape `(batch)`
return_all_hiddens (bool, optional): also return all of the
intermediate hidden states (default: False).
token_embeddings (torch.Tensor, optional): precomputed embeddings
default `None` will recompute embeddings
Returns:
namedtuple:
- **encoder_out** (Tensor): the last encoder layer's output of
shape `(src_len, batch, embed_dim)`
- **encoder_padding_mask** (ByteTensor): the positions of
padding elements of shape `(batch, src_len)`
- **encoder_embedding** (Tensor): the (scaled) embedding lookup
of shape `(batch, src_len, embed_dim)`
- **encoder_states** (List[Tensor]): all intermediate
hidden states of shape `(src_len, batch, embed_dim)`.
Only populated if *return_all_hiddens* is True.
"""
x, encoder_embedding = self.forward_embedding(src_tokens, token_embeddings)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
# compute padding mask
encoder_padding_mask = src_tokens.eq(self.padding_idx)
encoder_states = []
# encoder layers
for layer in self.layers:
x = layer(x, encoder_padding_mask)
if return_all_hiddens:
assert encoder_states is not None
encoder_states.append(x)
if self.layer_norm is not None:
x = self.layer_norm(x)
# The Pytorch Mobile lite interpreter does not supports returning NamedTuple in
# `foward` so we use a dictionary instead.
# TorchScript does not support mixed values so the values are all lists.
# The empty list is equivalent to None.
return {
"encoder_out": [x], # T x B x C
"encoder_padding_mask": [encoder_padding_mask], # B x T
"encoder_embedding": [encoder_embedding], # B x T x C
"encoder_states": encoder_states, # List[T x B x C]
"src_tokens": [],
"src_lengths": [],
}
@torch.jit.export
def reorder_encoder_out(self, encoder_out: Dict[str, List[Tensor]], new_order):
"""
Reorder encoder output according to *new_order*.
Args:
encoder_out: output from the ``forward()`` method
new_order (LongTensor): desired order
Returns:
*encoder_out* rearranged according to *new_order*
"""
if len(encoder_out["encoder_out"]) == 0:
new_encoder_out = []
else:
new_encoder_out = [encoder_out["encoder_out"][0].index_select(1, new_order)]
if len(encoder_out["encoder_padding_mask"]) == 0:
new_encoder_padding_mask = []
else:
new_encoder_padding_mask = [
encoder_out["encoder_padding_mask"][0].index_select(0, new_order)
]
if len(encoder_out["encoder_embedding"]) == 0:
new_encoder_embedding = []
else:
new_encoder_embedding = [
encoder_out["encoder_embedding"][0].index_select(0, new_order)
]
if len(encoder_out["src_tokens"]) == 0:
src_tokens = []
else:
src_tokens = [(encoder_out["src_tokens"][0]).index_select(0, new_order)]
if len(encoder_out["src_lengths"]) == 0:
src_lengths = []
else:
src_lengths = [(encoder_out["src_lengths"][0]).index_select(0, new_order)]
encoder_states = encoder_out["encoder_states"]
if len(encoder_states) > 0:
for idx, state in enumerate(encoder_states):
encoder_states[idx] = state.index_select(1, new_order)
return {
"encoder_out": new_encoder_out, # T x B x C
"encoder_padding_mask": new_encoder_padding_mask, # B x T
"encoder_embedding": new_encoder_embedding, # B x T x C
"encoder_states": encoder_states, # List[T x B x C]
"src_tokens": src_tokens, # B x T
"src_lengths": src_lengths, # B x 1
}
def max_positions(self):
"""Maximum input length supported by the encoder."""
if self.embed_positions is None:
return self.max_source_positions
return min(self.max_source_positions, self.embed_positions.max_positions)
def upgrade_state_dict_named(self, state_dict, name):
"""Upgrade a (possibly old) state dict for new versions of fairseq."""
if isinstance(self.embed_positions, SinusoidalPositionalEmbedding):
weights_key = "{}.embed_positions.weights".format(name)
if weights_key in state_dict:
print("deleting {0}".format(weights_key))
del state_dict[weights_key]
state_dict[
"{}.embed_positions._float_tensor".format(name)
] = torch.FloatTensor(1)
for i in range(self.num_layers):
# update layer norms
self.layers[i].upgrade_state_dict_named(
state_dict, "{}.layers.{}".format(name, i)
)
version_key = "{}.version".format(name)
if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2:
# earlier checkpoints did not normalize after the stack of layers
self.layer_norm = None
self.normalize = False
state_dict[version_key] = torch.Tensor([1])
return state_dict
class TransformerDecoder(FairseqIncrementalDecoder):
"""
Transformer decoder consisting of *args.decoder_layers* layers. Each layer
is a :class:`TransformerDecoderLayer`.
Args:
args (argparse.Namespace): parsed command-line arguments
dictionary (~fairseq.data.Dictionary): decoding dictionary
embed_tokens (torch.nn.Embedding): output embedding
no_encoder_attn (bool, optional): whether to attend to encoder outputs
(default: False).
"""
def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False):
self.args = args
super().__init__(dictionary)
self.register_buffer("version", torch.Tensor([3]))
self._future_mask = torch.empty(0)
self.dropout_module = FairseqDropout(
args.dropout, module_name=self.__class__.__name__
)
self.decoder_layerdrop = args.decoder_layerdrop
self.share_input_output_embed = args.share_decoder_input_output_embed
input_embed_dim = embed_tokens.embedding_dim
embed_dim = args.decoder_embed_dim
self.embed_dim = embed_dim
self.output_embed_dim = args.decoder_output_dim
self.padding_idx = embed_tokens.padding_idx
self.max_target_positions = args.max_target_positions
self.embed_tokens = embed_tokens
self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim)
if not args.adaptive_input and args.quant_noise_pq > 0:
self.quant_noise = apply_quant_noise_(
nn.Linear(embed_dim, embed_dim, bias=False),
args.quant_noise_pq,
args.quant_noise_pq_block_size,
)
else:
self.quant_noise = None
self.project_in_dim = (
Linear(input_embed_dim, embed_dim, bias=False)
if embed_dim != input_embed_dim
else None
)
self.embed_positions = (
PositionalEmbedding(
self.max_target_positions,
embed_dim,
self.padding_idx,
learned=args.decoder_learned_pos,
)
if not args.no_token_positional_embeddings
else None
)
if getattr(args, "layernorm_embedding", False):
self.layernorm_embedding = LayerNorm(embed_dim)
else:
self.layernorm_embedding = None
self.cross_self_attention = getattr(args, "cross_self_attention", False)
if self.decoder_layerdrop > 0.0:
self.layers = LayerDropModuleList(p=self.decoder_layerdrop)
else:
self.layers = nn.ModuleList([])
self.layers.extend(
[
self.build_decoder_layer(args, no_encoder_attn)
for _ in range(args.decoder_layers)
]
)
self.num_layers = len(self.layers)
if args.decoder_normalize_before and not getattr(
args, "no_decoder_final_norm", False
):
self.layer_norm = LayerNorm(embed_dim)
else:
self.layer_norm = None
self.project_out_dim = (
Linear(embed_dim, self.output_embed_dim, bias=False)
if embed_dim != self.output_embed_dim and not args.tie_adaptive_weights
else None
)
self.adaptive_softmax = None
self.output_projection = None
if args.adaptive_softmax_cutoff is not None:
self.adaptive_softmax = AdaptiveSoftmax(
len(dictionary),
self.output_embed_dim,
utils.eval_str_list(args.adaptive_softmax_cutoff, type=int),
dropout=args.adaptive_softmax_dropout,
adaptive_inputs=embed_tokens if args.tie_adaptive_weights else None,
factor=args.adaptive_softmax_factor,
tie_proj=args.tie_adaptive_proj,
)
elif self.share_input_output_embed:
self.output_projection = nn.Linear(
self.embed_tokens.weight.shape[1],
self.embed_tokens.weight.shape[0],
bias=False,
)
self.output_projection.weight = self.embed_tokens.weight
else:
self.output_projection = nn.Linear(
self.output_embed_dim, len(dictionary), bias=False
)
nn.init.normal_(
self.output_projection.weight, mean=0, std=self.output_embed_dim ** -0.5
)
def build_decoder_layer(self, args, no_encoder_attn=False):
layer = TransformerDecoderLayer(args, no_encoder_attn)
if getattr(args, "checkpoint_activations", False):
layer = checkpoint_wrapper(layer)
return layer
def forward(
self,
prev_output_tokens,
encoder_out: Optional[Dict[str, List[Tensor]]] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
features_only: bool = False,
full_context_alignment: bool = False,
alignment_layer: Optional[int] = None,
alignment_heads: Optional[int] = None,
src_lengths: Optional[Any] = None,
return_all_hiddens: bool = False,
**extra
):
"""
Args:
prev_output_tokens (LongTensor): previous decoder outputs of shape
`(batch, tgt_len)`, for teacher forcing
encoder_out (optional): output from the encoder, used for
encoder-side attention
incremental_state (dict): dictionary used for storing state during
:ref:`Incremental decoding`
features_only (bool, optional): only return features without
applying output layer (default: False).
full_context_alignment (bool, optional): don't apply
auto-regressive mask to self-attention (default: False).
Returns:
tuple:
- the decoder's output of shape `(batch, tgt_len, vocab)`
- a dictionary with any model-specific outputs
"""
x, extra = self.extract_features(
prev_output_tokens,
encoder_out=encoder_out,
incremental_state=incremental_state,
full_context_alignment=full_context_alignment,
alignment_layer=alignment_layer,
alignment_heads=alignment_heads,
)
if not features_only:
x = self.output_layer(x)
return x, extra
def extract_features(
self,
prev_output_tokens,
encoder_out: Optional[Dict[str, List[Tensor]]],
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
full_context_alignment: bool = False,
alignment_layer: Optional[int] = None,
alignment_heads: Optional[int] = None,
):
return self.extract_features_scriptable(
prev_output_tokens,
encoder_out,
incremental_state,
full_context_alignment,
alignment_layer,
alignment_heads,
)
"""
A scriptable subclass of this class has an extract_features method and calls
super().extract_features, but super() is not supported in torchscript. A copy of
this function is made to be used in the subclass instead.
"""
def extract_features_scriptable(
self,
prev_output_tokens,
encoder_out: Optional[Dict[str, List[Tensor]]],
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
full_context_alignment: bool = False,
alignment_layer: Optional[int] = None,
alignment_heads: Optional[int] = None,
):
"""
Similar to *forward* but only return features.
Includes several features from "Jointly Learning to Align and
Translate with Transformer Models" (Garg et al., EMNLP 2019).
Args:
full_context_alignment (bool, optional): don't apply
auto-regressive mask to self-attention (default: False).
alignment_layer (int, optional): return mean alignment over
heads at this layer (default: last layer).
alignment_heads (int, optional): only average alignment over
this many heads (default: all heads).
Returns:
tuple:
- the decoder's features of shape `(batch, tgt_len, embed_dim)`
- a dictionary with any model-specific outputs
"""
if alignment_layer is None:
alignment_layer = self.num_layers - 1
# embed positions
positions = (
self.embed_positions(
prev_output_tokens, incremental_state=incremental_state
)
if self.embed_positions is not None
else None
)
if incremental_state is not None:
prev_output_tokens = prev_output_tokens[:, -1:]
if positions is not None:
positions = positions[:, -1:]
# embed tokens and positions
x = self.embed_scale * self.embed_tokens(prev_output_tokens)
if self.quant_noise is not None:
x = self.quant_noise(x)
if self.project_in_dim is not None:
x = self.project_in_dim(x)
if positions is not None:
x += positions
if self.layernorm_embedding is not None:
x = self.layernorm_embedding(x)
x = self.dropout_module(x)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
self_attn_padding_mask: Optional[Tensor] = None
if self.cross_self_attention or prev_output_tokens.eq(self.padding_idx).any():
self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx)
# decoder layers
attn: Optional[Tensor] = None
inner_states: List[Optional[Tensor]] = [x]
for idx, layer in enumerate(self.layers):
if incremental_state is None and not full_context_alignment:
self_attn_mask = self.buffered_future_mask(x)
else:
self_attn_mask = None
x, layer_attn, _ = layer(
x,
encoder_out["encoder_out"][0]
if (encoder_out is not None and len(encoder_out["encoder_out"]) > 0)
else None,
encoder_out["encoder_padding_mask"][0]
if (
encoder_out is not None
and len(encoder_out["encoder_padding_mask"]) > 0
)
else None,
incremental_state,
self_attn_mask=self_attn_mask,
self_attn_padding_mask=self_attn_padding_mask,
need_attn=bool((idx == alignment_layer)),
need_head_weights=bool((idx == alignment_layer)),
)
inner_states.append(x)
if layer_attn is not None and idx == alignment_layer:
attn = layer_attn.float().to(x)
if attn is not None:
if alignment_heads is not None:
attn = attn[:alignment_heads]
# average probabilities over heads
attn = attn.mean(dim=0)
if self.layer_norm is not None:
x = self.layer_norm(x)
# T x B x C -> B x T x C
x = x.transpose(0, 1)
if self.project_out_dim is not None:
x = self.project_out_dim(x)
return x, {"attn": [attn], "inner_states": inner_states}
def output_layer(self, features):
"""Project features to the vocabulary size."""
if self.adaptive_softmax is None:
# project back to size of vocabulary
return self.output_projection(features)
else:
return features
def max_positions(self):
"""Maximum output length supported by the decoder."""
if self.embed_positions is None:
return self.max_target_positions
return min(self.max_target_positions, self.embed_positions.max_positions)
def buffered_future_mask(self, tensor):
dim = tensor.size(0)
# self._future_mask.device != tensor.device is not working in TorchScript. This is a workaround.
if (
self._future_mask.size(0) == 0
or (not self._future_mask.device == tensor.device)
or self._future_mask.size(0) < dim
):
self._future_mask = torch.triu(
utils.fill_with_neg_inf(torch.zeros([dim, dim])), 1
)
self._future_mask = self._future_mask.to(tensor)
return self._future_mask[:dim, :dim]
def upgrade_state_dict_named(self, state_dict, name):
"""Upgrade a (possibly old) state dict for new versions of fairseq."""
if isinstance(self.embed_positions, SinusoidalPositionalEmbedding):
weights_key = "{}.embed_positions.weights".format(name)
if weights_key in state_dict:
del state_dict[weights_key]
state_dict[
"{}.embed_positions._float_tensor".format(name)
] = torch.FloatTensor(1)
if f"{name}.output_projection.weight" not in state_dict:
if self.share_input_output_embed:
embed_out_key = f"{name}.embed_tokens.weight"
else:
embed_out_key = f"{name}.embed_out"
if embed_out_key in state_dict:
state_dict[f"{name}.output_projection.weight"] = state_dict[
embed_out_key
]
if not self.share_input_output_embed:
del state_dict[embed_out_key]
for i in range(self.num_layers):
# update layer norms
layer_norm_map = {
"0": "self_attn_layer_norm",
"1": "encoder_attn_layer_norm",
"2": "final_layer_norm",
}
for old, new in layer_norm_map.items():
for m in ("weight", "bias"):
k = "{}.layers.{}.layer_norms.{}.{}".format(name, i, old, m)
if k in state_dict:
state_dict[
"{}.layers.{}.{}.{}".format(name, i, new, m)
] = state_dict[k]
del state_dict[k]
version_key = "{}.version".format(name)
if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) <= 2:
# earlier checkpoints did not normalize after the stack of layers
self.layer_norm = None
self.normalize = False
state_dict[version_key] = torch.Tensor([1])
return state_dict
def Embedding(num_embeddings, embedding_dim, padding_idx):
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5)
nn.init.constant_(m.weight[padding_idx], 0)
return m
def Linear(in_features, out_features, bias=True):
m = nn.Linear(in_features, out_features, bias)
nn.init.xavier_uniform_(m.weight)
if bias:
nn.init.constant_(m.bias, 0.0)
return m
@register_model_architecture("transformer", "transformer")
def base_architecture(args):
args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048)
args.encoder_layers = getattr(args, "encoder_layers", 6)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False)
args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
args.decoder_ffn_embed_dim = getattr(
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
)
args.decoder_layers = getattr(args, "decoder_layers", 6)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
args.attention_dropout = getattr(args, "attention_dropout", 0.0)
args.activation_dropout = getattr(args, "activation_dropout", 0.0)
args.activation_fn = getattr(args, "activation_fn", "relu")
args.dropout = getattr(args, "dropout", 0.1)
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
args.share_decoder_input_output_embed = getattr(
args, "share_decoder_input_output_embed", False
)
args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
args.no_token_positional_embeddings = getattr(
args, "no_token_positional_embeddings", False
)
args.adaptive_input = getattr(args, "adaptive_input", False)
args.no_cross_attention = getattr(args, "no_cross_attention", False)
args.cross_self_attention = getattr(args, "cross_self_attention", False)
args.decoder_output_dim = getattr(
args, "decoder_output_dim", args.decoder_embed_dim
)
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
args.no_scale_embedding = getattr(args, "no_scale_embedding", False)
args.layernorm_embedding = getattr(args, "layernorm_embedding", False)
args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False)
args.checkpoint_activations = getattr(args, "checkpoint_activations", False)
args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None)
args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None)
args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0)
args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0)
args.quant_noise_pq = getattr(args, "quant_noise_pq", 0)
args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8)
args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0)
@register_model_architecture("transformer", "transformer_iwslt_de_en")
def transformer_iwslt_de_en(args):
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4)
args.encoder_layers = getattr(args, "encoder_layers", 6)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 1024)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4)
args.decoder_layers = getattr(args, "decoder_layers", 6)
base_architecture(args)
@register_model_architecture("transformer", "transformer_wmt_en_de")
def transformer_wmt_en_de(args):
base_architecture(args)
# parameters used in the "Attention Is All You Need" paper (Vaswani et al., 2017)
@register_model_architecture("transformer", "transformer_vaswani_wmt_en_de_big")
def transformer_vaswani_wmt_en_de_big(args):
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
args.dropout = getattr(args, "dropout", 0.3)
base_architecture(args)
@register_model_architecture("transformer", "transformer_vaswani_wmt_en_fr_big")
def transformer_vaswani_wmt_en_fr_big(args):
args.dropout = getattr(args, "dropout", 0.1)
transformer_vaswani_wmt_en_de_big(args)
@register_model_architecture("transformer", "transformer_wmt_en_de_big")
def transformer_wmt_en_de_big(args):
args.attention_dropout = getattr(args, "attention_dropout", 0.1)
transformer_vaswani_wmt_en_de_big(args)
# default parameters used in tensor2tensor implementation
@register_model_architecture("transformer", "transformer_wmt_en_de_big_t2t")
def transformer_wmt_en_de_big_t2t(args):
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True)
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True)
args.attention_dropout = getattr(args, "attention_dropout", 0.1)
args.activation_dropout = getattr(args, "activation_dropout", 0.1)
transformer_vaswani_wmt_en_de_big(args)
| data2vec_vision-main | deltalm/src/fairseq/models/transformer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
from typing import Optional
from fairseq import options, utils
from fairseq.dataclass import ChoiceEnum, FairseqDataclass
from fairseq.models import (
FairseqLanguageModel,
register_model,
register_model_architecture,
)
from fairseq.models.transformer import Embedding, TransformerDecoder
from fairseq.modules import AdaptiveInput, CharacterTokenEmbedder
from omegaconf import II
DEFAULT_MAX_TARGET_POSITIONS = 1024
@dataclass
class TransformerLanguageModelConfig(FairseqDataclass):
activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field(
default="relu", metadata={"help": "activation function to use"}
)
dropout: float = field(default=0.1, metadata={"help": "dropout probability"})
attention_dropout: float = field(
default=0.0, metadata={"help": "dropout probability for attention weights"}
)
activation_dropout: float = field(
default=0.0, metadata={"help": "dropout probability after activation in FFN."}
)
relu_dropout: float = field(
default=0.0, metadata={"help": "dropout probability after activation in FFN."}
)
decoder_embed_dim: int = field(
default=512, metadata={"help": "decoder embedding dimension"}
)
decoder_output_dim: int = field(
default=512, metadata={"help": "decoder output dimension"}
)
decoder_input_dim: int = field(
default=512, metadata={"help": "decoder input dimension"}
)
decoder_ffn_embed_dim: int = field(
default=2048, metadata={"help": "decoder embedding dimension for FFN"}
)
decoder_layers: int = field(default=6, metadata={"help": "num decoder layers"})
decoder_attention_heads: int = field(
default=8, metadata={"help": "num decoder attention heads"}
)
decoder_normalize_before: bool = field(
default=False, metadata={"help": "apply layernorm before each decoder block"}
)
no_decoder_final_norm: bool = field(
default=False,
metadata={"help": "don't add an extra layernorm after the last decoder block"},
)
adaptive_softmax_cutoff: Optional[str] = field(
default=None,
metadata={
"help": "comma separated list of adaptive softmax cutoff points. "
"Must be used with adaptive_loss criterion"
},
)
adaptive_softmax_dropout: float = field(
default=0,
metadata={"help": "sets adaptive softmax dropout for the tail projections"},
)
adaptive_softmax_factor: float = field(
default=4, metadata={"help": "adaptive input factor"}
)
no_token_positional_embeddings: bool = field(
default=False,
metadata={
"help": "if set, disables positional embeddings (outside self attention)"
},
)
share_decoder_input_output_embed: bool = field(
default=False, metadata={"help": "share decoder input and output embeddings"}
)
character_embeddings: bool = field(
default=False,
metadata={
"help": "if set, uses character embedding convolutions to produce token embeddings"
},
)
character_filters: str = field(
default="[(1, 64), (2, 128), (3, 192), (4, 256), (5, 256), (6, 256), (7, 256)]",
metadata={"help": "size of character embeddings"},
)
character_embedding_dim: int = field(
default=4, metadata={"help": "size of character embeddings"}
)
char_embedder_highway_layers: int = field(
default=2,
metadata={"help": "number of highway layers for character token embeddder"},
)
adaptive_input: bool = field(
default=False, metadata={"help": "if set, uses adaptive input"}
)
adaptive_input_factor: float = field(
default=4, metadata={"help": "adaptive input factor"}
)
adaptive_input_cutoff: Optional[str] = field(
default=None,
metadata={"help": "comma separated list of adaptive input cutoff points."},
)
tie_adaptive_weights: bool = field(
default=False,
metadata={
"help": "if set, ties the weights of adaptive softmax and adaptive input"
},
)
tie_adaptive_proj: bool = field(
default=False,
metadata={
"help": "if set, ties the projection weights of adaptive softmax and adaptive input"
},
)
decoder_learned_pos: bool = field(
default=False,
metadata={"help": "use learned positional embeddings in the decoder"},
)
decoder_layerdrop: float = field(
default=0.0, metadata={"help": "LayerDrop probability for decoder"}
)
decoder_layers_to_keep: Optional[str] = field(
default=None,
metadata={
"help": "which layers to *keep* when pruning as a comma-separated list"
},
)
layernorm_embedding: bool = field(
default=False, metadata={"help": "add layernorm to embedding"}
)
no_scale_embedding: bool = field(
default=False, metadata={"help": "if True, dont scale embeddings"}
)
checkpoint_activations: bool = field(
default=False, metadata={"help": "checkpoint activations at each layer"}
)
quant_noise_pq: float = field(
default=0.0,
metadata={"help": "iterative PQ quantization noise at training time"},
)
quant_noise_pq_block_size: int = field(
default=8,
metadata={"help": "block size of quantization noise at training time"},
)
# TODO common var add to parent
quant_noise_scalar: float = field(
default=0.0,
metadata={
"help": "scalar quantization noise and scalar quantization at training time"
},
)
add_bos_token: bool = II("task.add_bos_token")
tokens_per_sample: int = II("task.tokens_per_sample")
max_target_positions: Optional[int] = II("task.max_target_positions")
tpu: bool = II("common.tpu")
@register_model("transformer_lm", dataclass=TransformerLanguageModelConfig)
class TransformerLanguageModel(FairseqLanguageModel):
@classmethod
def hub_models(cls):
def moses_fastbpe(path):
return {"path": path, "tokenizer": "moses", "bpe": "fastbpe"}
return {
"transformer_lm.gbw.adaptive_huge": "https://dl.fbaipublicfiles.com/fairseq/models/lm/adaptive_lm_gbw_huge.tar.bz2",
"transformer_lm.wiki103.adaptive": "https://dl.fbaipublicfiles.com/fairseq/models/lm/adaptive_lm_wiki103.v2.tar.bz2",
"transformer_lm.wmt19.en": moses_fastbpe(
"https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.en.tar.bz2"
),
"transformer_lm.wmt19.de": moses_fastbpe(
"https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.de.tar.bz2"
),
"transformer_lm.wmt19.ru": moses_fastbpe(
"https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.ru.tar.bz2"
),
}
def __init__(self, decoder):
super().__init__(decoder)
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
# make sure all arguments are present in older models
base_lm_architecture(args)
if args.decoder_layers_to_keep:
args.decoder_layers = len(args.decoder_layers_to_keep.split(","))
if getattr(args, "max_target_positions", None) is None:
args.max_target_positions = getattr(
args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS
)
if args.character_embeddings:
embed_tokens = CharacterTokenEmbedder(
task.source_dictionary,
eval(args.character_filters),
args.character_embedding_dim,
args.decoder_embed_dim,
args.char_embedder_highway_layers,
)
elif args.adaptive_input:
embed_tokens = AdaptiveInput(
len(task.source_dictionary),
task.source_dictionary.pad(),
args.decoder_input_dim,
args.adaptive_input_factor,
args.decoder_embed_dim,
options.eval_str_list(args.adaptive_input_cutoff, type=int),
args.quant_noise_pq,
args.quant_noise_pq_block_size,
)
else:
embed_tokens = cls.build_embedding(
args, task.source_dictionary, args.decoder_input_dim
)
if args.tie_adaptive_weights:
assert args.adaptive_input
assert args.adaptive_input_factor == args.adaptive_softmax_factor
assert (
args.adaptive_softmax_cutoff == args.adaptive_input_cutoff
), "{} != {}".format(
args.adaptive_softmax_cutoff, args.adaptive_input_cutoff
)
assert args.decoder_input_dim == args.decoder_output_dim
decoder = TransformerDecoder(
args, task.target_dictionary, embed_tokens, no_encoder_attn=True
)
return cls(decoder)
@classmethod
def build_embedding(cls, args, dictionary, embed_dim, path=None):
embed_tokens = Embedding(len(dictionary), embed_dim, dictionary.pad())
return embed_tokens
def base_lm_architecture(args):
# backward compatibility for older model checkpoints
if hasattr(args, "no_tie_adaptive_proj"):
# previous models defined --no-tie-adaptive-proj, so use the existence of
# that option to determine if this is an "old" model checkpoint
args.no_decoder_final_norm = True # old models always set this to True
if args.no_tie_adaptive_proj is False:
args.tie_adaptive_proj = True
if hasattr(args, "decoder_final_norm"):
args.no_decoder_final_norm = not args.decoder_final_norm
args.dropout = getattr(args, "dropout", 0.1)
args.attention_dropout = getattr(args, "attention_dropout", 0.0)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 2048)
args.decoder_layers = getattr(args, "decoder_layers", 6)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
args.adaptive_softmax_factor = getattr(args, "adaptive_softmax_factor", 4)
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
args.activation_fn = getattr(args, "activation_fn", "relu")
args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0)
args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None)
args.quant_noise_pq = getattr(args, "quant_noise_pq", 0)
args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8)
args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0)
args.add_bos_token = getattr(args, "add_bos_token", False)
args.no_token_positional_embeddings = getattr(
args, "no_token_positional_embeddings", False
)
args.share_decoder_input_output_embed = getattr(
args, "share_decoder_input_output_embed", False
)
args.character_embeddings = getattr(args, "character_embeddings", False)
args.decoder_output_dim = getattr(
args, "decoder_output_dim", args.decoder_embed_dim
)
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
# Model training is not stable without this
args.decoder_normalize_before = True
args.no_decoder_final_norm = getattr(args, "no_decoder_final_norm", False)
args.adaptive_input = getattr(args, "adaptive_input", False)
args.adaptive_input_factor = getattr(args, "adaptive_input_factor", 4)
args.adaptive_input_cutoff = getattr(args, "adaptive_input_cutoff", None)
args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False)
args.tie_adaptive_proj = getattr(args, "tie_adaptive_proj", False)
args.no_scale_embedding = getattr(args, "no_scale_embedding", False)
args.layernorm_embedding = getattr(args, "layernorm_embedding", False)
args.checkpoint_activations = getattr(args, "checkpoint_activations", False)
@register_model_architecture("transformer_lm", "transformer_lm_big")
def transformer_lm_big(args):
args.decoder_layers = getattr(args, "decoder_layers", 12)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
base_lm_architecture(args)
@register_model_architecture("transformer_lm", "transformer_lm_wiki103")
@register_model_architecture("transformer_lm", "transformer_lm_baevski_wiki103")
def transformer_lm_baevski_wiki103(args):
args.decoder_layers = getattr(args, "decoder_layers", 16)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
args.dropout = getattr(args, "dropout", 0.3)
args.adaptive_input = getattr(args, "adaptive_input", True)
args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", True)
args.adaptive_input_cutoff = getattr(args, "adaptive_input_cutoff", "20000,60000")
args.adaptive_softmax_cutoff = getattr(
args, "adaptive_softmax_cutoff", "20000,60000"
)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0.2)
args.attention_dropout = getattr(args, "attention_dropout", 0.1)
args.activation_dropout = getattr(args, "activation_dropout", 0.1)
args.no_decoder_final_norm = getattr(args, "no_decoder_final_norm", True)
args.tie_adaptive_proj = getattr(args, "tie_adaptive_proj", True)
transformer_lm_big(args)
@register_model_architecture("transformer_lm", "transformer_lm_gbw")
@register_model_architecture("transformer_lm", "transformer_lm_baevski_gbw")
def transformer_lm_baevski_gbw(args):
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
args.dropout = getattr(args, "dropout", 0.1)
args.attention_dropout = getattr(args, "attention_dropout", 0.1)
args.no_decoder_final_norm = getattr(args, "no_decoder_final_norm", True)
transformer_lm_big(args)
@register_model_architecture("transformer_lm", "transformer_lm_gpt")
def transformer_lm_gpt(args):
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 768)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 3072)
args.decoder_layers = getattr(args, "decoder_layers", 12)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 12)
args.dropout = getattr(args, "dropout", 0.1)
args.attention_dropout = getattr(args, "attention_dropout", 0.1)
args.activation_fn = getattr(args, "activation_fn", "gelu")
base_lm_architecture(args)
@register_model_architecture("transformer_lm", "transformer_lm_gpt2_small")
def transformer_lm_gpt2_small(args):
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096)
args.decoder_layers = getattr(args, "decoder_layers", 24)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
args.dropout = getattr(args, "dropout", 0.1)
args.attention_dropout = getattr(args, "attention_dropout", 0.1)
args.activation_fn = getattr(args, "activation_fn", "gelu")
base_lm_architecture(args)
@register_model_architecture("transformer_lm", "transformer_lm_gpt2_medium")
def transformer_lm_gpt2_medium(args):
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1280)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 5120)
args.decoder_layers = getattr(args, "decoder_layers", 36)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 20)
args.dropout = getattr(args, "dropout", 0.1)
args.attention_dropout = getattr(args, "attention_dropout", 0.1)
args.activation_fn = getattr(args, "activation_fn", "gelu")
base_lm_architecture(args)
@register_model_architecture("transformer_lm", "transformer_lm_gpt2_big")
def transformer_lm_gpt2_big(args):
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1600)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 6400)
args.decoder_layers = getattr(args, "decoder_layers", 48)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 25)
args.dropout = getattr(args, "dropout", 0.1)
args.attention_dropout = getattr(args, "attention_dropout", 0.1)
args.activation_fn = getattr(args, "activation_fn", "gelu")
base_lm_architecture(args)
| data2vec_vision-main | deltalm/src/fairseq/models/transformer_lm.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import utils
from fairseq.models import (
FairseqEncoder,
FairseqEncoderDecoderModel,
FairseqIncrementalDecoder,
register_model,
register_model_architecture,
)
from fairseq.modules import (
AdaptiveSoftmax,
BeamableMM,
FairseqDropout,
GradMultiply,
LearnedPositionalEmbedding,
LinearizedConvolution,
)
@register_model("fconv")
class FConvModel(FairseqEncoderDecoderModel):
"""
A fully convolutional model, i.e. a convolutional encoder and a
convolutional decoder, as described in `"Convolutional Sequence to Sequence
Learning" (Gehring et al., 2017) <https://arxiv.org/abs/1705.03122>`_.
Args:
encoder (FConvEncoder): the encoder
decoder (FConvDecoder): the decoder
The Convolutional model provides the following named architectures and
command-line arguments:
.. argparse::
:ref: fairseq.models.fconv_parser
:prog:
"""
@classmethod
def hub_models(cls):
def moses_subword(path):
return {
"path": path,
"tokenizer": "moses",
"bpe": "subword_nmt",
}
return {
"conv.wmt14.en-fr": moses_subword(
"https://dl.fbaipublicfiles.com/fairseq/models/wmt14.v2.en-fr.fconv-py.tar.bz2"
),
"conv.wmt14.en-de": moses_subword(
"https://dl.fbaipublicfiles.com/fairseq/models/wmt14.en-de.fconv-py.tar.bz2"
),
"conv.wmt17.en-de": moses_subword(
"https://dl.fbaipublicfiles.com/fairseq/models/wmt17.v2.en-de.fconv-py.tar.bz2"
),
}
def __init__(self, encoder, decoder):
super().__init__(encoder, decoder)
self.encoder.num_attention_layers = sum(
layer is not None for layer in decoder.attention
)
@staticmethod
def add_args(parser):
"""Add model-specific arguments to the parser."""
# fmt: off
parser.add_argument('--dropout', type=float, metavar='D',
help='dropout probability')
parser.add_argument('--encoder-embed-dim', type=int, metavar='N',
help='encoder embedding dimension')
parser.add_argument('--encoder-embed-path', type=str, metavar='STR',
help='path to pre-trained encoder embedding')
parser.add_argument('--encoder-layers', type=str, metavar='EXPR',
help='encoder layers [(dim, kernel_size), ...]')
parser.add_argument('--decoder-embed-dim', type=int, metavar='N',
help='decoder embedding dimension')
parser.add_argument('--decoder-embed-path', type=str, metavar='STR',
help='path to pre-trained decoder embedding')
parser.add_argument('--decoder-layers', type=str, metavar='EXPR',
help='decoder layers [(dim, kernel_size), ...]')
parser.add_argument('--decoder-out-embed-dim', type=int, metavar='N',
help='decoder output embedding dimension')
parser.add_argument('--decoder-attention', type=str, metavar='EXPR',
help='decoder attention [True, ...]')
parser.add_argument('--share-input-output-embed', action='store_true',
help='share input and output embeddings (requires'
' --decoder-out-embed-dim and --decoder-embed-dim'
' to be equal)')
# fmt: on
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
# make sure that all args are properly defaulted (in case there are any new ones)
base_architecture(args)
encoder_embed_dict = None
if args.encoder_embed_path:
encoder_embed_dict = utils.parse_embedding(args.encoder_embed_path)
utils.print_embed_overlap(encoder_embed_dict, task.source_dictionary)
decoder_embed_dict = None
if args.decoder_embed_path:
decoder_embed_dict = utils.parse_embedding(args.decoder_embed_path)
utils.print_embed_overlap(decoder_embed_dict, task.target_dictionary)
encoder = FConvEncoder(
dictionary=task.source_dictionary,
embed_dim=args.encoder_embed_dim,
embed_dict=encoder_embed_dict,
convolutions=eval(args.encoder_layers),
dropout=args.dropout,
max_positions=args.max_source_positions,
)
decoder = FConvDecoder(
dictionary=task.target_dictionary,
embed_dim=args.decoder_embed_dim,
embed_dict=decoder_embed_dict,
convolutions=eval(args.decoder_layers),
out_embed_dim=args.decoder_out_embed_dim,
attention=eval(args.decoder_attention),
dropout=args.dropout,
max_positions=args.max_target_positions,
share_embed=args.share_input_output_embed,
)
return FConvModel(encoder, decoder)
class FConvEncoder(FairseqEncoder):
"""
Convolutional encoder consisting of `len(convolutions)` layers.
Args:
dictionary (~fairseq.data.Dictionary): encoding dictionary
embed_dim (int, optional): embedding dimension
embed_dict (str, optional): filename from which to load pre-trained
embeddings
max_positions (int, optional): maximum supported input sequence length
convolutions (list, optional): the convolutional layer structure. Each
list item `i` corresponds to convolutional layer `i`. Layers are
given as ``(out_channels, kernel_width, [residual])``. Residual
connections are added between layers when ``residual=1`` (which is
the default behavior).
dropout (float, optional): dropout to be applied before each conv layer
"""
def __init__(
self,
dictionary,
embed_dim=512,
embed_dict=None,
max_positions=1024,
convolutions=((512, 3),) * 20,
dropout=0.1,
):
super().__init__(dictionary)
self.dropout_module = FairseqDropout(
dropout, module_name=self.__class__.__name__
)
self.num_attention_layers = None
num_embeddings = len(dictionary)
self.padding_idx = dictionary.pad()
self.embed_tokens = Embedding(num_embeddings, embed_dim, self.padding_idx)
if embed_dict:
self.embed_tokens = utils.load_embedding(
embed_dict, self.dictionary, self.embed_tokens
)
self.embed_positions = PositionalEmbedding(
max_positions,
embed_dim,
self.padding_idx,
)
convolutions = extend_conv_spec(convolutions)
in_channels = convolutions[0][0]
self.fc1 = Linear(embed_dim, in_channels, dropout=dropout)
self.projections = nn.ModuleList()
self.convolutions = nn.ModuleList()
self.residuals = []
layer_in_channels = [in_channels]
for _, (out_channels, kernel_size, residual) in enumerate(convolutions):
if residual == 0:
residual_dim = out_channels
else:
residual_dim = layer_in_channels[-residual]
self.projections.append(
Linear(residual_dim, out_channels)
if residual_dim != out_channels
else None
)
if kernel_size % 2 == 1:
padding = kernel_size // 2
else:
padding = 0
self.convolutions.append(
ConvTBC(
in_channels,
out_channels * 2,
kernel_size,
dropout=dropout,
padding=padding,
)
)
self.residuals.append(residual)
in_channels = out_channels
layer_in_channels.append(out_channels)
self.fc2 = Linear(in_channels, embed_dim)
def forward(self, src_tokens, src_lengths):
"""
Args:
src_tokens (LongTensor): tokens in the source language of shape
`(batch, src_len)`
src_lengths (LongTensor): lengths of each source sentence of shape
`(batch)`
Returns:
dict:
- **encoder_out** (tuple): a tuple with two elements, where the
first element is the last encoder layer's output and the
second element is the same quantity summed with the input
embedding (used for attention). The shape of both tensors is
`(batch, src_len, embed_dim)`.
- **encoder_padding_mask** (ByteTensor): the positions of
padding elements of shape `(batch, src_len)`
"""
# embed tokens and positions
x = self.embed_tokens(src_tokens) + self.embed_positions(src_tokens)
x = self.dropout_module(x)
input_embedding = x
# project to size of convolution
x = self.fc1(x)
# used to mask padding in input
encoder_padding_mask = src_tokens.eq(self.padding_idx).t() # -> T x B
if not encoder_padding_mask.any():
encoder_padding_mask = None
# B x T x C -> T x B x C
x = x.transpose(0, 1)
residuals = [x]
# temporal convolutions
for proj, conv, res_layer in zip(
self.projections, self.convolutions, self.residuals
):
if res_layer > 0:
residual = residuals[-res_layer]
residual = residual if proj is None else proj(residual)
else:
residual = None
if encoder_padding_mask is not None:
x = x.masked_fill(encoder_padding_mask.unsqueeze(-1), 0)
x = self.dropout_module(x)
if conv.kernel_size[0] % 2 == 1:
# padding is implicit in the conv
x = conv(x)
else:
padding_l = (conv.kernel_size[0] - 1) // 2
padding_r = conv.kernel_size[0] // 2
x = F.pad(x, (0, 0, 0, 0, padding_l, padding_r))
x = conv(x)
x = F.glu(x, dim=2)
if residual is not None:
x = (x + residual) * math.sqrt(0.5)
residuals.append(x)
# T x B x C -> B x T x C
x = x.transpose(1, 0)
# project back to size of embedding
x = self.fc2(x)
if encoder_padding_mask is not None:
encoder_padding_mask = encoder_padding_mask.t() # -> B x T
x = x.masked_fill(encoder_padding_mask.unsqueeze(-1), 0)
# scale gradients (this only affects backward, not forward)
x = GradMultiply.apply(x, 1.0 / (2.0 * self.num_attention_layers))
# add output to input embedding for attention
y = (x + input_embedding) * math.sqrt(0.5)
return {
"encoder_out": (x, y),
"encoder_padding_mask": encoder_padding_mask, # B x T
}
def reorder_encoder_out(self, encoder_out, new_order):
if encoder_out["encoder_out"] is not None:
encoder_out["encoder_out"] = (
encoder_out["encoder_out"][0].index_select(0, new_order),
encoder_out["encoder_out"][1].index_select(0, new_order),
)
if encoder_out["encoder_padding_mask"] is not None:
encoder_out["encoder_padding_mask"] = encoder_out[
"encoder_padding_mask"
].index_select(0, new_order)
return encoder_out
def max_positions(self):
"""Maximum input length supported by the encoder."""
return self.embed_positions.max_positions
class AttentionLayer(nn.Module):
def __init__(self, conv_channels, embed_dim, bmm=None):
super().__init__()
# projects from output of convolution to embedding dimension
self.in_projection = Linear(conv_channels, embed_dim)
# projects from embedding dimension to convolution size
self.out_projection = Linear(embed_dim, conv_channels)
self.bmm = bmm if bmm is not None else torch.bmm
def forward(self, x, target_embedding, encoder_out, encoder_padding_mask):
residual = x
# attention
x = (self.in_projection(x) + target_embedding) * math.sqrt(0.5)
x = self.bmm(x, encoder_out[0])
# don't attend over padding
if encoder_padding_mask is not None:
x = (
x.float()
.masked_fill(encoder_padding_mask.unsqueeze(1), float("-inf"))
.type_as(x)
) # FP16 support: cast to float and back
# softmax over last dim
sz = x.size()
x = F.softmax(x.view(sz[0] * sz[1], sz[2]), dim=1)
x = x.view(sz)
attn_scores = x
x = self.bmm(x, encoder_out[1])
# scale attention output (respecting potentially different lengths)
s = encoder_out[1].size(1)
if encoder_padding_mask is None:
x = x * (s * math.sqrt(1.0 / s))
else:
s = s - encoder_padding_mask.type_as(x).sum(
dim=1, keepdim=True
) # exclude padding
s = s.unsqueeze(-1)
x = x * (s * s.rsqrt())
# project back
x = (self.out_projection(x) + residual) * math.sqrt(0.5)
return x, attn_scores
def make_generation_fast_(self, beamable_mm_beam_size=None, **kwargs):
"""Replace torch.bmm with BeamableMM."""
if beamable_mm_beam_size is not None:
del self.bmm
self.add_module("bmm", BeamableMM(beamable_mm_beam_size))
class FConvDecoder(FairseqIncrementalDecoder):
"""Convolutional decoder"""
def __init__(
self,
dictionary,
embed_dim=512,
embed_dict=None,
out_embed_dim=256,
max_positions=1024,
convolutions=((512, 3),) * 20,
attention=True,
dropout=0.1,
share_embed=False,
positional_embeddings=True,
adaptive_softmax_cutoff=None,
adaptive_softmax_dropout=0.0,
):
super().__init__(dictionary)
self.register_buffer("version", torch.Tensor([2]))
self.dropout_module = FairseqDropout(
dropout, module_name=self.__class__.__name__
)
self.need_attn = True
convolutions = extend_conv_spec(convolutions)
in_channels = convolutions[0][0]
if isinstance(attention, bool):
# expand True into [True, True, ...] and do the same with False
attention = [attention] * len(convolutions)
if not isinstance(attention, list) or len(attention) != len(convolutions):
raise ValueError(
"Attention is expected to be a list of booleans of "
"length equal to the number of layers."
)
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
self.embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx)
if embed_dict:
self.embed_tokens = utils.load_embedding(
embed_dict, self.dictionary, self.embed_tokens
)
self.embed_positions = (
PositionalEmbedding(
max_positions,
embed_dim,
padding_idx,
)
if positional_embeddings
else None
)
self.fc1 = Linear(embed_dim, in_channels, dropout=dropout)
self.projections = nn.ModuleList()
self.convolutions = nn.ModuleList()
self.attention = nn.ModuleList()
self.residuals = []
layer_in_channels = [in_channels]
for i, (out_channels, kernel_size, residual) in enumerate(convolutions):
if residual == 0:
residual_dim = out_channels
else:
residual_dim = layer_in_channels[-residual]
self.projections.append(
Linear(residual_dim, out_channels)
if residual_dim != out_channels
else None
)
self.convolutions.append(
LinearizedConv1d(
in_channels,
out_channels * 2,
kernel_size,
padding=(kernel_size - 1),
dropout=dropout,
)
)
self.attention.append(
AttentionLayer(out_channels, embed_dim) if attention[i] else None
)
self.residuals.append(residual)
in_channels = out_channels
layer_in_channels.append(out_channels)
self.adaptive_softmax = None
self.fc2 = self.fc3 = None
if adaptive_softmax_cutoff is not None:
assert not share_embed
self.adaptive_softmax = AdaptiveSoftmax(
num_embeddings,
in_channels,
adaptive_softmax_cutoff,
dropout=adaptive_softmax_dropout,
)
else:
self.fc2 = Linear(in_channels, out_embed_dim)
if share_embed:
assert out_embed_dim == embed_dim, (
"Shared embed weights implies same dimensions "
" out_embed_dim={} vs embed_dim={}".format(out_embed_dim, embed_dim)
)
self.fc3 = nn.Linear(out_embed_dim, num_embeddings)
self.fc3.weight = self.embed_tokens.weight
else:
self.fc3 = Linear(out_embed_dim, num_embeddings, dropout=dropout)
def forward(
self, prev_output_tokens, encoder_out=None, incremental_state=None, **unused
):
if encoder_out is not None:
encoder_padding_mask = encoder_out["encoder_padding_mask"]
encoder_out = encoder_out["encoder_out"]
# split and transpose encoder outputs
encoder_a, encoder_b = self._split_encoder_out(
encoder_out, incremental_state
)
if self.embed_positions is not None:
pos_embed = self.embed_positions(prev_output_tokens, incremental_state)
else:
pos_embed = 0
if incremental_state is not None:
prev_output_tokens = prev_output_tokens[:, -1:]
x = self._embed_tokens(prev_output_tokens, incremental_state)
# embed tokens and combine with positional embeddings
x += pos_embed
x = self.dropout_module(x)
target_embedding = x
# project to size of convolution
x = self.fc1(x)
# B x T x C -> T x B x C
x = self._transpose_if_training(x, incremental_state)
# temporal convolutions
avg_attn_scores = None
num_attn_layers = len(self.attention)
residuals = [x]
for proj, conv, attention, res_layer in zip(
self.projections, self.convolutions, self.attention, self.residuals
):
if res_layer > 0:
residual = residuals[-res_layer]
residual = residual if proj is None else proj(residual)
else:
residual = None
x = self.dropout_module(x)
x = conv(x, incremental_state)
x = F.glu(x, dim=2)
# attention
if attention is not None:
x = self._transpose_if_training(x, incremental_state)
x, attn_scores = attention(
x, target_embedding, (encoder_a, encoder_b), encoder_padding_mask
)
if not self.training and self.need_attn:
attn_scores = attn_scores / num_attn_layers
if avg_attn_scores is None:
avg_attn_scores = attn_scores
else:
avg_attn_scores.add_(attn_scores)
x = self._transpose_if_training(x, incremental_state)
# residual
if residual is not None:
x = (x + residual) * math.sqrt(0.5)
residuals.append(x)
# T x B x C -> B x T x C
x = self._transpose_if_training(x, incremental_state)
# project back to size of vocabulary if not using adaptive softmax
if self.fc2 is not None and self.fc3 is not None:
x = self.fc2(x)
x = self.dropout_module(x)
x = self.fc3(x)
return x, avg_attn_scores
def reorder_incremental_state(self, incremental_state, new_order):
super().reorder_incremental_state(incremental_state, new_order)
encoder_out = utils.get_incremental_state(
self, incremental_state, "encoder_out"
)
if encoder_out is not None:
encoder_out = tuple(eo.index_select(0, new_order) for eo in encoder_out)
utils.set_incremental_state(
self, incremental_state, "encoder_out", encoder_out
)
def max_positions(self):
"""Maximum output length supported by the decoder."""
return (
self.embed_positions.max_positions
if self.embed_positions is not None
else float("inf")
)
def upgrade_state_dict(self, state_dict):
if utils.item(state_dict.get("decoder.version", torch.Tensor([1]))[0]) < 2:
# old models use incorrect weight norm dimension
for i, conv in enumerate(self.convolutions):
# reconfigure weight norm
nn.utils.remove_weight_norm(conv)
self.convolutions[i] = nn.utils.weight_norm(conv, dim=0)
state_dict["decoder.version"] = torch.Tensor([1])
return state_dict
def make_generation_fast_(self, need_attn=False, **kwargs):
self.need_attn = need_attn
def _embed_tokens(self, tokens, incremental_state):
if incremental_state is not None:
# keep only the last token for incremental forward pass
tokens = tokens[:, -1:]
return self.embed_tokens(tokens)
def _split_encoder_out(self, encoder_out, incremental_state):
"""Split and transpose encoder outputs.
This is cached when doing incremental inference.
"""
cached_result = utils.get_incremental_state(
self, incremental_state, "encoder_out"
)
if cached_result is not None:
return cached_result
# transpose only once to speed up attention layers
encoder_a, encoder_b = encoder_out
encoder_a = encoder_a.transpose(1, 2).contiguous()
result = (encoder_a, encoder_b)
if incremental_state is not None:
utils.set_incremental_state(self, incremental_state, "encoder_out", result)
return result
def _transpose_if_training(self, x, incremental_state):
if incremental_state is None:
x = x.transpose(0, 1)
return x
def extend_conv_spec(convolutions):
"""
Extends convolutional spec that is a list of tuples of 2 or 3 parameters
(kernel size, dim size and optionally how many layers behind to look for residual)
to default the residual propagation param if it is not specified
"""
extended = []
for spec in convolutions:
if len(spec) == 3:
extended.append(spec)
elif len(spec) == 2:
extended.append(spec + (1,))
else:
raise Exception(
"invalid number of parameters in convolution spec "
+ str(spec)
+ ". expected 2 or 3"
)
return tuple(extended)
def Embedding(num_embeddings, embedding_dim, padding_idx):
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
nn.init.normal_(m.weight, 0, 0.1)
nn.init.constant_(m.weight[padding_idx], 0)
return m
def PositionalEmbedding(num_embeddings, embedding_dim, padding_idx):
m = LearnedPositionalEmbedding(num_embeddings, embedding_dim, padding_idx)
nn.init.normal_(m.weight, 0, 0.1)
nn.init.constant_(m.weight[padding_idx], 0)
return m
def Linear(in_features, out_features, dropout=0.0):
"""Weight-normalized Linear layer (input: N x T x C)"""
m = nn.Linear(in_features, out_features)
nn.init.normal_(m.weight, mean=0, std=math.sqrt((1 - dropout) / in_features))
nn.init.constant_(m.bias, 0)
return nn.utils.weight_norm(m)
def LinearizedConv1d(in_channels, out_channels, kernel_size, dropout=0.0, **kwargs):
"""Weight-normalized Conv1d layer optimized for decoding"""
m = LinearizedConvolution(in_channels, out_channels, kernel_size, **kwargs)
std = math.sqrt((4 * (1.0 - dropout)) / (m.kernel_size[0] * in_channels))
nn.init.normal_(m.weight, mean=0, std=std)
nn.init.constant_(m.bias, 0)
return nn.utils.weight_norm(m, dim=2)
def ConvTBC(in_channels, out_channels, kernel_size, dropout=0.0, **kwargs):
"""Weight-normalized Conv1d layer"""
from fairseq.modules import ConvTBC
m = ConvTBC(in_channels, out_channels, kernel_size, **kwargs)
std = math.sqrt((4 * (1.0 - dropout)) / (m.kernel_size[0] * in_channels))
nn.init.normal_(m.weight, mean=0, std=std)
nn.init.constant_(m.bias, 0)
return nn.utils.weight_norm(m, dim=2)
@register_model_architecture("fconv", "fconv")
def base_architecture(args):
args.dropout = getattr(args, "dropout", 0.1)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
args.encoder_layers = getattr(args, "encoder_layers", "[(512, 3)] * 20")
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
args.decoder_layers = getattr(args, "decoder_layers", "[(512, 3)] * 20")
args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 256)
args.decoder_attention = getattr(args, "decoder_attention", "True")
args.share_input_output_embed = getattr(args, "share_input_output_embed", False)
@register_model_architecture("fconv", "fconv_iwslt_de_en")
def fconv_iwslt_de_en(args):
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 256)
args.encoder_layers = getattr(args, "encoder_layers", "[(256, 3)] * 4")
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 256)
args.decoder_layers = getattr(args, "decoder_layers", "[(256, 3)] * 3")
args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 256)
base_architecture(args)
@register_model_architecture("fconv", "fconv_wmt_en_ro")
def fconv_wmt_en_ro(args):
args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 512)
base_architecture(args)
@register_model_architecture("fconv", "fconv_wmt_en_de")
def fconv_wmt_en_de(args):
convs = "[(512, 3)] * 9" # first 9 layers have 512 units
convs += " + [(1024, 3)] * 4" # next 4 layers have 1024 units
convs += " + [(2048, 1)] * 2" # final 2 layers use 1x1 convolutions
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768)
args.encoder_layers = getattr(args, "encoder_layers", convs)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 768)
args.decoder_layers = getattr(args, "decoder_layers", convs)
args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 512)
base_architecture(args)
@register_model_architecture("fconv", "fconv_wmt_en_fr")
def fconv_wmt_en_fr(args):
convs = "[(512, 3)] * 6" # first 6 layers have 512 units
convs += " + [(768, 3)] * 4" # next 4 layers have 768 units
convs += " + [(1024, 3)] * 3" # next 3 layers have 1024 units
convs += " + [(2048, 1)] * 1" # next 1 layer uses 1x1 convolutions
convs += " + [(4096, 1)] * 1" # final 1 layer uses 1x1 convolutions
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768)
args.encoder_layers = getattr(args, "encoder_layers", convs)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 768)
args.decoder_layers = getattr(args, "decoder_layers", convs)
args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 512)
base_architecture(args)
| data2vec_vision-main | deltalm/src/fairseq/models/fconv.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Dict, List, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import utils
from fairseq.models import (
FairseqEncoder,
FairseqEncoderDecoderModel,
FairseqIncrementalDecoder,
register_model,
register_model_architecture,
)
from fairseq.modules import AdaptiveSoftmax, FairseqDropout
from torch import Tensor
DEFAULT_MAX_SOURCE_POSITIONS = 1e5
DEFAULT_MAX_TARGET_POSITIONS = 1e5
@register_model("lstm")
class LSTMModel(FairseqEncoderDecoderModel):
def __init__(self, encoder, decoder):
super().__init__(encoder, decoder)
@staticmethod
def add_args(parser):
"""Add model-specific arguments to the parser."""
# fmt: off
parser.add_argument('--dropout', type=float, metavar='D',
help='dropout probability')
parser.add_argument('--encoder-embed-dim', type=int, metavar='N',
help='encoder embedding dimension')
parser.add_argument('--encoder-embed-path', type=str, metavar='STR',
help='path to pre-trained encoder embedding')
parser.add_argument('--encoder-freeze-embed', action='store_true',
help='freeze encoder embeddings')
parser.add_argument('--encoder-hidden-size', type=int, metavar='N',
help='encoder hidden size')
parser.add_argument('--encoder-layers', type=int, metavar='N',
help='number of encoder layers')
parser.add_argument('--encoder-bidirectional', action='store_true',
help='make all layers of encoder bidirectional')
parser.add_argument('--decoder-embed-dim', type=int, metavar='N',
help='decoder embedding dimension')
parser.add_argument('--decoder-embed-path', type=str, metavar='STR',
help='path to pre-trained decoder embedding')
parser.add_argument('--decoder-freeze-embed', action='store_true',
help='freeze decoder embeddings')
parser.add_argument('--decoder-hidden-size', type=int, metavar='N',
help='decoder hidden size')
parser.add_argument('--decoder-layers', type=int, metavar='N',
help='number of decoder layers')
parser.add_argument('--decoder-out-embed-dim', type=int, metavar='N',
help='decoder output embedding dimension')
parser.add_argument('--decoder-attention', type=str, metavar='BOOL',
help='decoder attention')
parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR',
help='comma separated list of adaptive softmax cutoff points. '
'Must be used with adaptive_loss criterion')
parser.add_argument('--share-decoder-input-output-embed', default=False,
action='store_true',
help='share decoder input and output embeddings')
parser.add_argument('--share-all-embeddings', default=False, action='store_true',
help='share encoder, decoder and output embeddings'
' (requires shared dictionary and embed dim)')
# Granular dropout settings (if not specified these default to --dropout)
parser.add_argument('--encoder-dropout-in', type=float, metavar='D',
help='dropout probability for encoder input embedding')
parser.add_argument('--encoder-dropout-out', type=float, metavar='D',
help='dropout probability for encoder output')
parser.add_argument('--decoder-dropout-in', type=float, metavar='D',
help='dropout probability for decoder input embedding')
parser.add_argument('--decoder-dropout-out', type=float, metavar='D',
help='dropout probability for decoder output')
# fmt: on
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
# make sure that all args are properly defaulted (in case there are any new ones)
base_architecture(args)
if args.encoder_layers != args.decoder_layers:
raise ValueError("--encoder-layers must match --decoder-layers")
max_source_positions = getattr(
args, "max_source_positions", DEFAULT_MAX_SOURCE_POSITIONS
)
max_target_positions = getattr(
args, "max_target_positions", DEFAULT_MAX_TARGET_POSITIONS
)
def load_pretrained_embedding_from_file(embed_path, dictionary, embed_dim):
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx)
embed_dict = utils.parse_embedding(embed_path)
utils.print_embed_overlap(embed_dict, dictionary)
return utils.load_embedding(embed_dict, dictionary, embed_tokens)
if args.encoder_embed_path:
pretrained_encoder_embed = load_pretrained_embedding_from_file(
args.encoder_embed_path, task.source_dictionary, args.encoder_embed_dim
)
else:
num_embeddings = len(task.source_dictionary)
pretrained_encoder_embed = Embedding(
num_embeddings, args.encoder_embed_dim, task.source_dictionary.pad()
)
if args.share_all_embeddings:
# double check all parameters combinations are valid
if task.source_dictionary != task.target_dictionary:
raise ValueError("--share-all-embeddings requires a joint dictionary")
if args.decoder_embed_path and (
args.decoder_embed_path != args.encoder_embed_path
):
raise ValueError(
"--share-all-embed not compatible with --decoder-embed-path"
)
if args.encoder_embed_dim != args.decoder_embed_dim:
raise ValueError(
"--share-all-embeddings requires --encoder-embed-dim to "
"match --decoder-embed-dim"
)
pretrained_decoder_embed = pretrained_encoder_embed
args.share_decoder_input_output_embed = True
else:
# separate decoder input embeddings
pretrained_decoder_embed = None
if args.decoder_embed_path:
pretrained_decoder_embed = load_pretrained_embedding_from_file(
args.decoder_embed_path,
task.target_dictionary,
args.decoder_embed_dim,
)
# one last double check of parameter combinations
if args.share_decoder_input_output_embed and (
args.decoder_embed_dim != args.decoder_out_embed_dim
):
raise ValueError(
"--share-decoder-input-output-embeddings requires "
"--decoder-embed-dim to match --decoder-out-embed-dim"
)
if args.encoder_freeze_embed:
pretrained_encoder_embed.weight.requires_grad = False
if args.decoder_freeze_embed:
pretrained_decoder_embed.weight.requires_grad = False
encoder = LSTMEncoder(
dictionary=task.source_dictionary,
embed_dim=args.encoder_embed_dim,
hidden_size=args.encoder_hidden_size,
num_layers=args.encoder_layers,
dropout_in=args.encoder_dropout_in,
dropout_out=args.encoder_dropout_out,
bidirectional=args.encoder_bidirectional,
pretrained_embed=pretrained_encoder_embed,
max_source_positions=max_source_positions,
)
decoder = LSTMDecoder(
dictionary=task.target_dictionary,
embed_dim=args.decoder_embed_dim,
hidden_size=args.decoder_hidden_size,
out_embed_dim=args.decoder_out_embed_dim,
num_layers=args.decoder_layers,
dropout_in=args.decoder_dropout_in,
dropout_out=args.decoder_dropout_out,
attention=utils.eval_bool(args.decoder_attention),
encoder_output_units=encoder.output_units,
pretrained_embed=pretrained_decoder_embed,
share_input_output_embed=args.share_decoder_input_output_embed,
adaptive_softmax_cutoff=(
utils.eval_str_list(args.adaptive_softmax_cutoff, type=int)
if args.criterion == "adaptive_loss"
else None
),
max_target_positions=max_target_positions,
residuals=False,
)
return cls(encoder, decoder)
def forward(
self,
src_tokens,
src_lengths,
prev_output_tokens,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
):
encoder_out = self.encoder(src_tokens, src_lengths=src_lengths)
decoder_out = self.decoder(
prev_output_tokens,
encoder_out=encoder_out,
incremental_state=incremental_state,
)
return decoder_out
class LSTMEncoder(FairseqEncoder):
"""LSTM encoder."""
def __init__(
self,
dictionary,
embed_dim=512,
hidden_size=512,
num_layers=1,
dropout_in=0.1,
dropout_out=0.1,
bidirectional=False,
left_pad=True,
pretrained_embed=None,
padding_idx=None,
max_source_positions=DEFAULT_MAX_SOURCE_POSITIONS,
):
super().__init__(dictionary)
self.num_layers = num_layers
self.dropout_in_module = FairseqDropout(
dropout_in, module_name=self.__class__.__name__
)
self.dropout_out_module = FairseqDropout(
dropout_out, module_name=self.__class__.__name__
)
self.bidirectional = bidirectional
self.hidden_size = hidden_size
self.max_source_positions = max_source_positions
num_embeddings = len(dictionary)
self.padding_idx = padding_idx if padding_idx is not None else dictionary.pad()
if pretrained_embed is None:
self.embed_tokens = Embedding(num_embeddings, embed_dim, self.padding_idx)
else:
self.embed_tokens = pretrained_embed
self.lstm = LSTM(
input_size=embed_dim,
hidden_size=hidden_size,
num_layers=num_layers,
dropout=self.dropout_out_module.p if num_layers > 1 else 0.0,
bidirectional=bidirectional,
)
self.left_pad = left_pad
self.output_units = hidden_size
if bidirectional:
self.output_units *= 2
def forward(
self,
src_tokens: Tensor,
src_lengths: Tensor,
enforce_sorted: bool = True,
):
"""
Args:
src_tokens (LongTensor): tokens in the source language of
shape `(batch, src_len)`
src_lengths (LongTensor): lengths of each source sentence of
shape `(batch)`
enforce_sorted (bool, optional): if True, `src_tokens` is
expected to contain sequences sorted by length in a
decreasing order. If False, this condition is not
required. Default: True.
"""
if self.left_pad:
# nn.utils.rnn.pack_padded_sequence requires right-padding;
# convert left-padding to right-padding
src_tokens = utils.convert_padding_direction(
src_tokens,
torch.zeros_like(src_tokens).fill_(self.padding_idx),
left_to_right=True,
)
bsz, seqlen = src_tokens.size()
# embed tokens
x = self.embed_tokens(src_tokens)
x = self.dropout_in_module(x)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
# pack embedded source tokens into a PackedSequence
packed_x = nn.utils.rnn.pack_padded_sequence(
x, src_lengths.cpu(), enforce_sorted=enforce_sorted
)
# apply LSTM
if self.bidirectional:
state_size = 2 * self.num_layers, bsz, self.hidden_size
else:
state_size = self.num_layers, bsz, self.hidden_size
h0 = x.new_zeros(*state_size)
c0 = x.new_zeros(*state_size)
packed_outs, (final_hiddens, final_cells) = self.lstm(packed_x, (h0, c0))
# unpack outputs and apply dropout
x, _ = nn.utils.rnn.pad_packed_sequence(
packed_outs, padding_value=self.padding_idx * 1.0
)
x = self.dropout_out_module(x)
assert list(x.size()) == [seqlen, bsz, self.output_units]
if self.bidirectional:
final_hiddens = self.combine_bidir(final_hiddens, bsz)
final_cells = self.combine_bidir(final_cells, bsz)
encoder_padding_mask = src_tokens.eq(self.padding_idx).t()
return tuple(
(
x, # seq_len x batch x hidden
final_hiddens, # num_layers x batch x num_directions*hidden
final_cells, # num_layers x batch x num_directions*hidden
encoder_padding_mask, # seq_len x batch
)
)
def combine_bidir(self, outs, bsz: int):
out = outs.view(self.num_layers, 2, bsz, -1).transpose(1, 2).contiguous()
return out.view(self.num_layers, bsz, -1)
def reorder_encoder_out(self, encoder_out, new_order):
return tuple(
(
encoder_out[0].index_select(1, new_order),
encoder_out[1].index_select(1, new_order),
encoder_out[2].index_select(1, new_order),
encoder_out[3].index_select(1, new_order),
)
)
def max_positions(self):
"""Maximum input length supported by the encoder."""
return self.max_source_positions
class AttentionLayer(nn.Module):
def __init__(self, input_embed_dim, source_embed_dim, output_embed_dim, bias=False):
super().__init__()
self.input_proj = Linear(input_embed_dim, source_embed_dim, bias=bias)
self.output_proj = Linear(
input_embed_dim + source_embed_dim, output_embed_dim, bias=bias
)
def forward(self, input, source_hids, encoder_padding_mask):
# input: bsz x input_embed_dim
# source_hids: srclen x bsz x source_embed_dim
# x: bsz x source_embed_dim
x = self.input_proj(input)
# compute attention
attn_scores = (source_hids * x.unsqueeze(0)).sum(dim=2)
# don't attend over padding
if encoder_padding_mask is not None:
attn_scores = (
attn_scores.float()
.masked_fill_(encoder_padding_mask, float("-inf"))
.type_as(attn_scores)
) # FP16 support: cast to float and back
attn_scores = F.softmax(attn_scores, dim=0) # srclen x bsz
# sum weighted sources
x = (attn_scores.unsqueeze(2) * source_hids).sum(dim=0)
x = torch.tanh(self.output_proj(torch.cat((x, input), dim=1)))
return x, attn_scores
class LSTMDecoder(FairseqIncrementalDecoder):
"""LSTM decoder."""
def __init__(
self,
dictionary,
embed_dim=512,
hidden_size=512,
out_embed_dim=512,
num_layers=1,
dropout_in=0.1,
dropout_out=0.1,
attention=True,
encoder_output_units=512,
pretrained_embed=None,
share_input_output_embed=False,
adaptive_softmax_cutoff=None,
max_target_positions=DEFAULT_MAX_TARGET_POSITIONS,
residuals=False,
):
super().__init__(dictionary)
self.dropout_in_module = FairseqDropout(
dropout_in, module_name=self.__class__.__name__
)
self.dropout_out_module = FairseqDropout(
dropout_out, module_name=self.__class__.__name__
)
self.hidden_size = hidden_size
self.share_input_output_embed = share_input_output_embed
self.need_attn = True
self.max_target_positions = max_target_positions
self.residuals = residuals
self.num_layers = num_layers
self.adaptive_softmax = None
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
if pretrained_embed is None:
self.embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx)
else:
self.embed_tokens = pretrained_embed
self.encoder_output_units = encoder_output_units
if encoder_output_units != hidden_size and encoder_output_units != 0:
self.encoder_hidden_proj = Linear(encoder_output_units, hidden_size)
self.encoder_cell_proj = Linear(encoder_output_units, hidden_size)
else:
self.encoder_hidden_proj = self.encoder_cell_proj = None
# disable input feeding if there is no encoder
# input feeding is described in arxiv.org/abs/1508.04025
input_feed_size = 0 if encoder_output_units == 0 else hidden_size
self.layers = nn.ModuleList(
[
LSTMCell(
input_size=input_feed_size + embed_dim
if layer == 0
else hidden_size,
hidden_size=hidden_size,
)
for layer in range(num_layers)
]
)
if attention:
# TODO make bias configurable
self.attention = AttentionLayer(
hidden_size, encoder_output_units, hidden_size, bias=False
)
else:
self.attention = None
if hidden_size != out_embed_dim:
self.additional_fc = Linear(hidden_size, out_embed_dim)
if adaptive_softmax_cutoff is not None:
# setting adaptive_softmax dropout to dropout_out for now but can be redefined
self.adaptive_softmax = AdaptiveSoftmax(
num_embeddings,
hidden_size,
adaptive_softmax_cutoff,
dropout=dropout_out,
)
elif not self.share_input_output_embed:
self.fc_out = Linear(out_embed_dim, num_embeddings, dropout=dropout_out)
def forward(
self,
prev_output_tokens,
encoder_out: Optional[Tuple[Tensor, Tensor, Tensor, Tensor]] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
src_lengths: Optional[Tensor] = None,
):
x, attn_scores = self.extract_features(
prev_output_tokens, encoder_out, incremental_state
)
return self.output_layer(x), attn_scores
def extract_features(
self,
prev_output_tokens,
encoder_out: Optional[Tuple[Tensor, Tensor, Tensor, Tensor]] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
):
"""
Similar to *forward* but only return features.
"""
# get outputs from encoder
if encoder_out is not None:
encoder_outs = encoder_out[0]
encoder_hiddens = encoder_out[1]
encoder_cells = encoder_out[2]
encoder_padding_mask = encoder_out[3]
else:
encoder_outs = torch.empty(0)
encoder_hiddens = torch.empty(0)
encoder_cells = torch.empty(0)
encoder_padding_mask = torch.empty(0)
srclen = encoder_outs.size(0)
if incremental_state is not None and len(incremental_state) > 0:
prev_output_tokens = prev_output_tokens[:, -1:]
bsz, seqlen = prev_output_tokens.size()
# embed tokens
x = self.embed_tokens(prev_output_tokens)
x = self.dropout_in_module(x)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
# initialize previous states (or get from cache during incremental generation)
if incremental_state is not None and len(incremental_state) > 0:
prev_hiddens, prev_cells, input_feed = self.get_cached_state(
incremental_state
)
elif encoder_out is not None:
# setup recurrent cells
prev_hiddens = [encoder_hiddens[i] for i in range(self.num_layers)]
prev_cells = [encoder_cells[i] for i in range(self.num_layers)]
if self.encoder_hidden_proj is not None:
prev_hiddens = [self.encoder_hidden_proj(y) for y in prev_hiddens]
prev_cells = [self.encoder_cell_proj(y) for y in prev_cells]
input_feed = x.new_zeros(bsz, self.hidden_size)
else:
# setup zero cells, since there is no encoder
zero_state = x.new_zeros(bsz, self.hidden_size)
prev_hiddens = [zero_state for i in range(self.num_layers)]
prev_cells = [zero_state for i in range(self.num_layers)]
input_feed = None
assert (
srclen > 0 or self.attention is None
), "attention is not supported if there are no encoder outputs"
attn_scores = (
x.new_zeros(srclen, seqlen, bsz) if self.attention is not None else None
)
outs = []
for j in range(seqlen):
# input feeding: concatenate context vector from previous time step
if input_feed is not None:
input = torch.cat((x[j, :, :], input_feed), dim=1)
else:
input = x[j]
for i, rnn in enumerate(self.layers):
# recurrent cell
hidden, cell = rnn(input, (prev_hiddens[i], prev_cells[i]))
# hidden state becomes the input to the next layer
input = self.dropout_out_module(hidden)
if self.residuals:
input = input + prev_hiddens[i]
# save state for next time step
prev_hiddens[i] = hidden
prev_cells[i] = cell
# apply attention using the last layer's hidden state
if self.attention is not None:
assert attn_scores is not None
out, attn_scores[:, j, :] = self.attention(
hidden, encoder_outs, encoder_padding_mask
)
else:
out = hidden
out = self.dropout_out_module(out)
# input feeding
if input_feed is not None:
input_feed = out
# save final output
outs.append(out)
# Stack all the necessary tensors together and store
prev_hiddens_tensor = torch.stack(prev_hiddens)
prev_cells_tensor = torch.stack(prev_cells)
cache_state = torch.jit.annotate(
Dict[str, Optional[Tensor]],
{
"prev_hiddens": prev_hiddens_tensor,
"prev_cells": prev_cells_tensor,
"input_feed": input_feed,
},
)
self.set_incremental_state(incremental_state, "cached_state", cache_state)
# collect outputs across time steps
x = torch.cat(outs, dim=0).view(seqlen, bsz, self.hidden_size)
# T x B x C -> B x T x C
x = x.transpose(1, 0)
if hasattr(self, "additional_fc") and self.adaptive_softmax is None:
x = self.additional_fc(x)
x = self.dropout_out_module(x)
# srclen x tgtlen x bsz -> bsz x tgtlen x srclen
if not self.training and self.need_attn and self.attention is not None:
assert attn_scores is not None
attn_scores = attn_scores.transpose(0, 2)
else:
attn_scores = None
return x, attn_scores
def output_layer(self, x):
"""Project features to the vocabulary size."""
if self.adaptive_softmax is None:
if self.share_input_output_embed:
x = F.linear(x, self.embed_tokens.weight)
else:
x = self.fc_out(x)
return x
def get_cached_state(
self,
incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
) -> Tuple[List[Tensor], List[Tensor], Optional[Tensor]]:
cached_state = self.get_incremental_state(incremental_state, "cached_state")
assert cached_state is not None
prev_hiddens_ = cached_state["prev_hiddens"]
assert prev_hiddens_ is not None
prev_cells_ = cached_state["prev_cells"]
assert prev_cells_ is not None
prev_hiddens = [prev_hiddens_[i] for i in range(self.num_layers)]
prev_cells = [prev_cells_[j] for j in range(self.num_layers)]
input_feed = cached_state[
"input_feed"
] # can be None for decoder-only language models
return prev_hiddens, prev_cells, input_feed
def reorder_incremental_state(
self,
incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
new_order: Tensor,
):
if incremental_state is None or len(incremental_state) == 0:
return
prev_hiddens, prev_cells, input_feed = self.get_cached_state(incremental_state)
prev_hiddens = [p.index_select(0, new_order) for p in prev_hiddens]
prev_cells = [p.index_select(0, new_order) for p in prev_cells]
if input_feed is not None:
input_feed = input_feed.index_select(0, new_order)
cached_state_new = torch.jit.annotate(
Dict[str, Optional[Tensor]],
{
"prev_hiddens": torch.stack(prev_hiddens),
"prev_cells": torch.stack(prev_cells),
"input_feed": input_feed,
},
)
self.set_incremental_state(incremental_state, "cached_state", cached_state_new),
return
def max_positions(self):
"""Maximum output length supported by the decoder."""
return self.max_target_positions
def make_generation_fast_(self, need_attn=False, **kwargs):
self.need_attn = need_attn
def Embedding(num_embeddings, embedding_dim, padding_idx):
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
nn.init.uniform_(m.weight, -0.1, 0.1)
nn.init.constant_(m.weight[padding_idx], 0)
return m
def LSTM(input_size, hidden_size, **kwargs):
m = nn.LSTM(input_size, hidden_size, **kwargs)
for name, param in m.named_parameters():
if "weight" in name or "bias" in name:
param.data.uniform_(-0.1, 0.1)
return m
def LSTMCell(input_size, hidden_size, **kwargs):
m = nn.LSTMCell(input_size, hidden_size, **kwargs)
for name, param in m.named_parameters():
if "weight" in name or "bias" in name:
param.data.uniform_(-0.1, 0.1)
return m
def Linear(in_features, out_features, bias=True, dropout=0.0):
"""Linear layer (input: N x T x C)"""
m = nn.Linear(in_features, out_features, bias=bias)
m.weight.data.uniform_(-0.1, 0.1)
if bias:
m.bias.data.uniform_(-0.1, 0.1)
return m
@register_model_architecture("lstm", "lstm")
def base_architecture(args):
args.dropout = getattr(args, "dropout", 0.1)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
args.encoder_freeze_embed = getattr(args, "encoder_freeze_embed", False)
args.encoder_hidden_size = getattr(
args, "encoder_hidden_size", args.encoder_embed_dim
)
args.encoder_layers = getattr(args, "encoder_layers", 1)
args.encoder_bidirectional = getattr(args, "encoder_bidirectional", False)
args.encoder_dropout_in = getattr(args, "encoder_dropout_in", args.dropout)
args.encoder_dropout_out = getattr(args, "encoder_dropout_out", args.dropout)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
args.decoder_freeze_embed = getattr(args, "decoder_freeze_embed", False)
args.decoder_hidden_size = getattr(
args, "decoder_hidden_size", args.decoder_embed_dim
)
args.decoder_layers = getattr(args, "decoder_layers", 1)
args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 512)
args.decoder_attention = getattr(args, "decoder_attention", "1")
args.decoder_dropout_in = getattr(args, "decoder_dropout_in", args.dropout)
args.decoder_dropout_out = getattr(args, "decoder_dropout_out", args.dropout)
args.share_decoder_input_output_embed = getattr(
args, "share_decoder_input_output_embed", False
)
args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
args.adaptive_softmax_cutoff = getattr(
args, "adaptive_softmax_cutoff", "10000,50000,200000"
)
@register_model_architecture("lstm", "lstm_wiseman_iwslt_de_en")
def lstm_wiseman_iwslt_de_en(args):
args.dropout = getattr(args, "dropout", 0.1)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 256)
args.encoder_dropout_in = getattr(args, "encoder_dropout_in", 0)
args.encoder_dropout_out = getattr(args, "encoder_dropout_out", 0)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 256)
args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 256)
args.decoder_dropout_in = getattr(args, "decoder_dropout_in", 0)
args.decoder_dropout_out = getattr(args, "decoder_dropout_out", args.dropout)
base_architecture(args)
@register_model_architecture("lstm", "lstm_luong_wmt_en_de")
def lstm_luong_wmt_en_de(args):
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1000)
args.encoder_layers = getattr(args, "encoder_layers", 4)
args.encoder_dropout_out = getattr(args, "encoder_dropout_out", 0)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1000)
args.decoder_layers = getattr(args, "decoder_layers", 4)
args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 1000)
args.decoder_dropout_out = getattr(args, "decoder_dropout_out", 0)
base_architecture(args)
| data2vec_vision-main | deltalm/src/fairseq/models/lstm.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from fairseq.models import register_model, register_model_architecture
from fairseq.models.transformer import (
TransformerModel,
base_architecture,
transformer_wmt_en_de_big,
)
@register_model("transformer_align")
class TransformerAlignModel(TransformerModel):
"""
See "Jointly Learning to Align and Translate with Transformer
Models" (Garg et al., EMNLP 2019).
"""
def __init__(self, encoder, decoder, args):
super().__init__(args, encoder, decoder)
self.alignment_heads = args.alignment_heads
self.alignment_layer = args.alignment_layer
self.full_context_alignment = args.full_context_alignment
@staticmethod
def add_args(parser):
# fmt: off
super(TransformerAlignModel, TransformerAlignModel).add_args(parser)
parser.add_argument('--alignment-heads', type=int, metavar='D',
help='Number of cross attention heads per layer to supervised with alignments')
parser.add_argument('--alignment-layer', type=int, metavar='D',
help='Layer number which has to be supervised. 0 corresponding to the bottommost layer.')
parser.add_argument('--full-context-alignment', action='store_true',
help='Whether or not alignment is supervised conditioned on the full target context.')
# fmt: on
@classmethod
def build_model(cls, args, task):
# set any default arguments
transformer_align(args)
transformer_model = TransformerModel.build_model(args, task)
return TransformerAlignModel(
transformer_model.encoder, transformer_model.decoder, args
)
def forward(self, src_tokens, src_lengths, prev_output_tokens):
encoder_out = self.encoder(src_tokens, src_lengths)
return self.forward_decoder(prev_output_tokens, encoder_out)
def forward_decoder(
self,
prev_output_tokens,
encoder_out=None,
incremental_state=None,
features_only=False,
**extra_args,
):
attn_args = {
"alignment_layer": self.alignment_layer,
"alignment_heads": self.alignment_heads,
}
decoder_out = self.decoder(prev_output_tokens, encoder_out, **attn_args)
if self.full_context_alignment:
attn_args["full_context_alignment"] = self.full_context_alignment
_, alignment_out = self.decoder(
prev_output_tokens,
encoder_out,
features_only=True,
**attn_args,
**extra_args,
)
decoder_out[1]["attn"] = alignment_out["attn"]
return decoder_out
@register_model_architecture("transformer_align", "transformer_align")
def transformer_align(args):
args.alignment_heads = getattr(args, "alignment_heads", 1)
args.alignment_layer = getattr(args, "alignment_layer", 4)
args.full_context_alignment = getattr(args, "full_context_alignment", False)
base_architecture(args)
@register_model_architecture("transformer_align", "transformer_wmt_en_de_big_align")
def transformer_wmt_en_de_big_align(args):
args.alignment_heads = getattr(args, "alignment_heads", 1)
args.alignment_layer = getattr(args, "alignment_layer", 4)
transformer_wmt_en_de_big(args)
| data2vec_vision-main | deltalm/src/fairseq/models/transformer_align.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from .fairseq_encoder import FairseqEncoder
class CompositeEncoder(FairseqEncoder):
"""
A wrapper around a dictionary of :class:`FairseqEncoder` objects.
We run forward on each encoder and return a dictionary of outputs. The first
encoder's dictionary is used for initialization.
Args:
encoders (dict): a dictionary of :class:`FairseqEncoder` objects.
"""
def __init__(self, encoders):
super().__init__(next(iter(encoders.values())).dictionary)
self.encoders = encoders
for key in self.encoders:
self.add_module(key, self.encoders[key])
def forward(self, src_tokens, src_lengths):
"""
Args:
src_tokens (LongTensor): tokens in the source language of shape
`(batch, src_len)`
src_lengths (LongTensor): lengths of each source sentence of shape
`(batch)`
Returns:
dict:
the outputs from each Encoder
"""
encoder_out = {}
for key in self.encoders:
encoder_out[key] = self.encoders[key](src_tokens, src_lengths)
return encoder_out
def reorder_encoder_out(self, encoder_out, new_order):
"""Reorder encoder output according to new_order."""
for key in self.encoders:
encoder_out[key] = self.encoders[key].reorder_encoder_out(
encoder_out[key], new_order
)
return encoder_out
def max_positions(self):
return min(self.encoders[key].max_positions() for key in self.encoders)
def upgrade_state_dict(self, state_dict):
for key in self.encoders:
self.encoders[key].upgrade_state_dict(state_dict)
return state_dict
| data2vec_vision-main | deltalm/src/fairseq/models/composite_encoder.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import utils
from fairseq.models import (
FairseqEncoder,
FairseqEncoderModel,
register_model,
register_model_architecture,
)
from fairseq.modules import (
LayerNorm,
SinusoidalPositionalEmbedding,
TransformerSentenceEncoder,
)
from fairseq.modules.transformer_sentence_encoder import init_bert_params
logger = logging.getLogger(__name__)
@register_model("masked_lm")
class MaskedLMModel(FairseqEncoderModel):
"""
Class for training a Masked Language Model. It also supports an
additional sentence level prediction if the sent-loss argument is set.
"""
def __init__(self, args, encoder):
super().__init__(encoder)
self.args = args
# if specified then apply bert initialization on the model. We need
# to explictly call this to make sure that the output embeddings
# and projection layers are also correctly initialized
if getattr(args, "apply_bert_init", False):
self.apply(init_bert_params)
@staticmethod
def add_args(parser):
"""Add model-specific arguments to the parser."""
# Arguments related to dropout
parser.add_argument(
"--dropout", type=float, metavar="D", help="dropout probability"
)
parser.add_argument(
"--attention-dropout",
type=float,
metavar="D",
help="dropout probability for" " attention weights",
)
parser.add_argument(
"--act-dropout",
type=float,
metavar="D",
help="dropout probability after" " activation in FFN",
)
# Arguments related to hidden states and self-attention
parser.add_argument(
"--encoder-ffn-embed-dim",
type=int,
metavar="N",
help="encoder embedding dimension for FFN",
)
parser.add_argument(
"--encoder-layers", type=int, metavar="N", help="num encoder layers"
)
parser.add_argument(
"--encoder-attention-heads",
type=int,
metavar="N",
help="num encoder attention heads",
)
# Arguments related to input and output embeddings
parser.add_argument(
"--encoder-embed-dim",
type=int,
metavar="N",
help="encoder embedding dimension",
)
parser.add_argument(
"--share-encoder-input-output-embed",
action="store_true",
help="share encoder input" " and output embeddings",
)
parser.add_argument(
"--encoder-learned-pos",
action="store_true",
help="use learned positional embeddings in the encoder",
)
parser.add_argument(
"--no-token-positional-embeddings",
action="store_true",
help="if set, disables positional embeddings" " (outside self attention)",
)
parser.add_argument(
"--num-segment", type=int, metavar="N", help="num segment in the input"
)
parser.add_argument(
"--max-positions", type=int, help="number of positional embeddings to learn"
)
# Arguments related to sentence level prediction
parser.add_argument(
"--sentence-class-num",
type=int,
metavar="N",
help="number of classes for sentence task",
)
parser.add_argument(
"--sent-loss",
action="store_true",
help="if set," " calculate sentence level predictions",
)
# Arguments related to parameter initialization
parser.add_argument(
"--apply-bert-init",
action="store_true",
help="use custom param initialization for BERT",
)
# misc params
parser.add_argument(
"--activation-fn",
choices=utils.get_available_activation_fns(),
help="activation function to use",
)
parser.add_argument(
"--pooler-activation-fn",
choices=utils.get_available_activation_fns(),
help="Which activation function to use for pooler layer.",
)
parser.add_argument(
"--encoder-normalize-before",
action="store_true",
help="apply layernorm before each encoder block",
)
def forward(self, src_tokens, segment_labels=None, **kwargs):
return self.encoder(src_tokens, segment_labels=segment_labels, **kwargs)
def max_positions(self):
return self.encoder.max_positions
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
# make sure all arguments are present in older models
base_architecture(args)
if not hasattr(args, "max_positions"):
args.max_positions = args.tokens_per_sample
logger.info(args)
encoder = MaskedLMEncoder(args, task.dictionary)
return cls(args, encoder)
class MaskedLMEncoder(FairseqEncoder):
"""
Encoder for Masked Language Modelling.
"""
def __init__(self, args, dictionary):
super().__init__(dictionary)
self.padding_idx = dictionary.pad()
self.vocab_size = dictionary.__len__()
self.max_positions = args.max_positions
self.sentence_encoder = TransformerSentenceEncoder(
padding_idx=self.padding_idx,
vocab_size=self.vocab_size,
num_encoder_layers=args.encoder_layers,
embedding_dim=args.encoder_embed_dim,
ffn_embedding_dim=args.encoder_ffn_embed_dim,
num_attention_heads=args.encoder_attention_heads,
dropout=args.dropout,
attention_dropout=args.attention_dropout,
activation_dropout=args.act_dropout,
max_seq_len=self.max_positions,
num_segments=args.num_segment,
use_position_embeddings=not args.no_token_positional_embeddings,
encoder_normalize_before=args.encoder_normalize_before,
apply_bert_init=args.apply_bert_init,
activation_fn=args.activation_fn,
learned_pos_embedding=args.encoder_learned_pos,
)
self.share_input_output_embed = args.share_encoder_input_output_embed
self.embed_out = None
self.sentence_projection_layer = None
self.sentence_out_dim = args.sentence_class_num
self.lm_output_learned_bias = None
# Remove head is set to true during fine-tuning
self.load_softmax = not getattr(args, "remove_head", False)
self.masked_lm_pooler = nn.Linear(
args.encoder_embed_dim, args.encoder_embed_dim
)
self.pooler_activation = utils.get_activation_fn(args.pooler_activation_fn)
self.lm_head_transform_weight = nn.Linear(
args.encoder_embed_dim, args.encoder_embed_dim
)
self.activation_fn = utils.get_activation_fn(args.activation_fn)
self.layer_norm = LayerNorm(args.encoder_embed_dim)
self.lm_output_learned_bias = None
if self.load_softmax:
self.lm_output_learned_bias = nn.Parameter(torch.zeros(self.vocab_size))
if not self.share_input_output_embed:
self.embed_out = nn.Linear(
args.encoder_embed_dim, self.vocab_size, bias=False
)
if args.sent_loss:
self.sentence_projection_layer = nn.Linear(
args.encoder_embed_dim, self.sentence_out_dim, bias=False
)
def forward(self, src_tokens, segment_labels=None, masked_tokens=None, **unused):
"""
Forward pass for Masked LM encoder. This first computes the token
embedding using the token embedding matrix, position embeddings (if
specified) and segment embeddings (if specified).
Here we assume that the sentence representation corresponds to the
output of the classification_token (see bert_task or cross_lingual_lm
task for more details).
Args:
- src_tokens: B x T matrix representing sentences
- segment_labels: B x T matrix representing segment label for tokens
Returns:
- a tuple of the following:
- logits for predictions in format B x T x C to be used in
softmax afterwards
- a dictionary of additional data, where 'pooled_output' contains
the representation for classification_token and 'inner_states'
is a list of internal model states used to compute the
predictions (similar in ELMO). 'sentence_logits'
is the prediction logit for NSP task and is only computed if
this is specified in the input arguments.
"""
inner_states, sentence_rep = self.sentence_encoder(
src_tokens,
segment_labels=segment_labels,
)
x = inner_states[-1].transpose(0, 1)
# project masked tokens only
if masked_tokens is not None:
x = x[masked_tokens, :]
x = self.layer_norm(self.activation_fn(self.lm_head_transform_weight(x)))
pooled_output = self.pooler_activation(self.masked_lm_pooler(sentence_rep))
# project back to size of vocabulary
if self.share_input_output_embed and hasattr(
self.sentence_encoder.embed_tokens, "weight"
):
x = F.linear(x, self.sentence_encoder.embed_tokens.weight)
elif self.embed_out is not None:
x = self.embed_out(x)
if self.lm_output_learned_bias is not None:
x = x + self.lm_output_learned_bias
sentence_logits = None
if self.sentence_projection_layer:
sentence_logits = self.sentence_projection_layer(pooled_output)
return x, {
"inner_states": inner_states,
"pooled_output": pooled_output,
"sentence_logits": sentence_logits,
}
def max_positions(self):
"""Maximum output length supported by the encoder."""
return self.max_positions
def upgrade_state_dict_named(self, state_dict, name):
if isinstance(
self.sentence_encoder.embed_positions, SinusoidalPositionalEmbedding
):
state_dict[
name + ".sentence_encoder.embed_positions._float_tensor"
] = torch.FloatTensor(1)
if not self.load_softmax:
for k in list(state_dict.keys()):
if (
"embed_out.weight" in k
or "sentence_projection_layer.weight" in k
or "lm_output_learned_bias" in k
):
del state_dict[k]
return state_dict
@register_model_architecture("masked_lm", "masked_lm")
def base_architecture(args):
args.dropout = getattr(args, "dropout", 0.1)
args.attention_dropout = getattr(args, "attention_dropout", 0.1)
args.act_dropout = getattr(args, "act_dropout", 0.0)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096)
args.encoder_layers = getattr(args, "encoder_layers", 6)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024)
args.share_encoder_input_output_embed = getattr(
args, "share_encoder_input_output_embed", False
)
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False)
args.no_token_positional_embeddings = getattr(
args, "no_token_positional_embeddings", False
)
args.num_segment = getattr(args, "num_segment", 2)
args.sentence_class_num = getattr(args, "sentence_class_num", 2)
args.sent_loss = getattr(args, "sent_loss", False)
args.apply_bert_init = getattr(args, "apply_bert_init", False)
args.activation_fn = getattr(args, "activation_fn", "relu")
args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh")
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
@register_model_architecture("masked_lm", "bert_base")
def bert_base_architecture(args):
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768)
args.share_encoder_input_output_embed = getattr(
args, "share_encoder_input_output_embed", True
)
args.no_token_positional_embeddings = getattr(
args, "no_token_positional_embeddings", False
)
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True)
args.num_segment = getattr(args, "num_segment", 2)
args.encoder_layers = getattr(args, "encoder_layers", 12)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 3072)
args.sentence_class_num = getattr(args, "sentence_class_num", 2)
args.sent_loss = getattr(args, "sent_loss", True)
args.apply_bert_init = getattr(args, "apply_bert_init", True)
args.activation_fn = getattr(args, "activation_fn", "gelu")
args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh")
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True)
base_architecture(args)
@register_model_architecture("masked_lm", "bert_large")
def bert_large_architecture(args):
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024)
args.encoder_layers = getattr(args, "encoder_layers", 24)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096)
bert_base_architecture(args)
@register_model_architecture("masked_lm", "xlm_base")
def xlm_architecture(args):
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024)
args.share_encoder_input_output_embed = getattr(
args, "share_encoder_input_output_embed", True
)
args.no_token_positional_embeddings = getattr(
args, "no_token_positional_embeddings", False
)
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True)
args.num_segment = getattr(args, "num_segment", 1)
args.encoder_layers = getattr(args, "encoder_layers", 6)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096)
args.sent_loss = getattr(args, "sent_loss", False)
args.activation_fn = getattr(args, "activation_fn", "gelu")
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh")
args.apply_bert_init = getattr(args, "apply_bert_init", True)
base_architecture(args)
| data2vec_vision-main | deltalm/src/fairseq/models/masked_lm.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
from typing import Dict, Optional
from fairseq.incremental_decoding_utils import with_incremental_state
from fairseq.models import FairseqDecoder
from torch import Tensor
logger = logging.getLogger(__name__)
@with_incremental_state
class FairseqIncrementalDecoder(FairseqDecoder):
"""Base class for incremental decoders.
Incremental decoding is a special mode at inference time where the Model
only receives a single timestep of input corresponding to the previous
output token (for teacher forcing) and must produce the next output
*incrementally*. Thus the model must cache any long-term state that is
needed about the sequence, e.g., hidden states, convolutional states, etc.
Compared to the standard :class:`FairseqDecoder` interface, the incremental
decoder interface allows :func:`forward` functions to take an extra keyword
argument (*incremental_state*) that can be used to cache state across
time-steps.
The :class:`FairseqIncrementalDecoder` interface also defines the
:func:`reorder_incremental_state` method, which is used during beam search
to select and reorder the incremental state based on the selection of beams.
To learn more about how incremental decoding works, refer to `this blog
<http://www.telesens.co/2019/04/21/understanding-incremental-decoding-in-fairseq/>`_.
"""
def __init__(self, dictionary):
super().__init__(dictionary)
def forward(
self, prev_output_tokens, encoder_out=None, incremental_state=None, **kwargs
):
"""
Args:
prev_output_tokens (LongTensor): shifted output tokens of shape
`(batch, tgt_len)`, for teacher forcing
encoder_out (dict, optional): output from the encoder, used for
encoder-side attention
incremental_state (dict, optional): dictionary used for storing
state during :ref:`Incremental decoding`
Returns:
tuple:
- the decoder's output of shape `(batch, tgt_len, vocab)`
- a dictionary with any model-specific outputs
"""
raise NotImplementedError
def extract_features(
self, prev_output_tokens, encoder_out=None, incremental_state=None, **kwargs
):
"""
Returns:
tuple:
- the decoder's features of shape `(batch, tgt_len, embed_dim)`
- a dictionary with any model-specific outputs
"""
raise NotImplementedError
def reorder_incremental_state(
self,
incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
new_order: Tensor,
):
"""Reorder incremental state.
This will be called when the order of the input has changed from the
previous time step. A typical use case is beam search, where the input
order changes between time steps based on the selection of beams.
"""
pass
def reorder_incremental_state_scripting(
self,
incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
new_order: Tensor,
):
"""Main entry point for reordering the incremental state.
Due to limitations in TorchScript, we call this function in
:class:`fairseq.sequence_generator.SequenceGenerator` instead of
calling :func:`reorder_incremental_state` directly.
"""
for module in self.modules():
if hasattr(module, "reorder_incremental_state"):
result = module.reorder_incremental_state(incremental_state, new_order)
if result is not None:
incremental_state = result
def set_beam_size(self, beam_size):
"""Sets the beam size in the decoder and all children."""
if getattr(self, "_beam_size", -1) != beam_size:
seen = set()
def apply_set_beam_size(module):
if (
module != self
and hasattr(module, "set_beam_size")
and module not in seen
):
seen.add(module)
module.set_beam_size(beam_size)
self.apply(apply_set_beam_size)
self._beam_size = beam_size
| data2vec_vision-main | deltalm/src/fairseq/models/fairseq_incremental_decoder.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import utils
from fairseq.models import (
FairseqEncoder,
FairseqEncoderDecoderModel,
FairseqIncrementalDecoder,
register_model,
register_model_architecture,
)
from fairseq.modules import (
AdaptiveSoftmax,
DynamicConv,
FairseqDropout,
LayerNorm,
LightweightConv,
MultiheadAttention,
PositionalEmbedding,
)
@register_model("lightconv")
class LightConvModel(FairseqEncoderDecoderModel):
"""
LightConv and DynamicConv model from `"Pay Less Attention with Lightweight and Dynamic Convolutions" (Wu, et al, 2019)
<https://openreview.net/pdf?id=SkVhlh09tX>`_.
To use LightConv please set ``--encoder-conv-type lightweight --decoder-conv-type lightweight``
To use DynamicConv please set ``--encoder-conv-type dynamic --decoder-conv-type dynamic``
Args:
encoder (LightConvEncoder): the encoder
decoder (LightConvDecoder): the decoder
The LightConv model provides the following named architectures and
command-line arguments:
.. argparse::
:ref: fairseq.models.lightconv_parser
:prog:
"""
@classmethod
def hub_models(cls):
# fmt: off
def moses_subword(path):
return {
'path': path,
'tokenizer': 'moses',
'bpe': 'subword_nmt',
}
return {
'lightconv.no_glu.iwslt14.de-en': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/iwslt14.de-en.lightconv.tar.gz'),
'dynamicconv.no_glu.iwslt14.de-en': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/iwslt14.de-en.dynamicconv.tar.gz'),
'lightconv.no_glu.wmt16.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.lightconv.tar.gz'),
'dynamicconv.no_glu.wmt16.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.dynamicconv.tar.gz'),
'lightconv.glu.wmt16.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.lightconv-glu.tar.gz'),
'dynamicconv.glu.wmt16.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.dynamicconv-glu.tar.gz'),
'lightconv.glu.wmt17.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.lightconv-glu.tar.gz'),
'dynamicconv.glu.wmt17.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.dynamicconv-glu.tar.gz'),
'lightconv.glu.wmt14.en-fr': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt14.en-fr.joined-dict.lightconv-glu.tar.gz'),
'dynamicconv.glu.wmt14.en-fr': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt14.en-fr.joined-dict.dynamicconv-glu.tar.gz'),
'lightconv.glu.wmt17.zh-en': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt17.zh-en.lightconv-glu.tar.gz'),
'dynamicconv.glu.wmt17.zh-en': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt17.zh-en.dynamicconv-glu.tar.gz'),
}
# fmt: on
def __init__(self, encoder, decoder):
super().__init__(encoder, decoder)
@staticmethod
def add_args(parser):
"""Add model-specific arguments to the parser."""
parser.add_argument(
"--dropout", type=float, metavar="D", help="dropout probability"
)
parser.add_argument(
"--attention-dropout",
type=float,
metavar="D",
help="dropout probability for attention weights",
)
parser.add_argument(
"--relu-dropout",
type=float,
metavar="D",
help="dropout probability after ReLU in FFN",
)
parser.add_argument(
"--input-dropout",
type=float,
metavar="D",
help="dropout probability of the inputs",
)
parser.add_argument(
"--encoder-embed-path",
type=str,
metavar="STR",
help="path to pre-trained encoder embedding",
)
parser.add_argument(
"--encoder-embed-dim",
type=int,
metavar="N",
help="encoder embedding dimension",
)
parser.add_argument(
"--encoder-conv-dim",
type=int,
metavar="N",
help="encoder embedding dimension",
)
parser.add_argument(
"--encoder-ffn-embed-dim",
type=int,
metavar="N",
help="encoder embedding dimension for FFN",
)
parser.add_argument(
"--encoder-layers", type=int, metavar="N", help="num encoder layers"
)
parser.add_argument(
"--encoder-attention-heads",
type=int,
metavar="N",
help="num encoder attention heads or LightConv/DynamicConv heads",
)
parser.add_argument(
"--encoder-normalize-before",
action="store_true",
help="apply layernorm before each encoder block",
)
parser.add_argument(
"--encoder-learned-pos",
action="store_true",
help="use learned positional embeddings in the encoder",
)
parser.add_argument(
"--decoder-embed-path",
type=str,
metavar="STR",
help="path to pre-trained decoder embedding",
)
parser.add_argument(
"--decoder-embed-dim",
type=int,
metavar="N",
help="decoder embedding dimension",
)
parser.add_argument(
"--decoder-conv-dim",
type=int,
metavar="N",
help="decoder embedding dimension",
)
parser.add_argument(
"--decoder-ffn-embed-dim",
type=int,
metavar="N",
help="decoder embedding dimension for FFN",
)
parser.add_argument(
"--decoder-layers", type=int, metavar="N", help="num decoder layers"
)
parser.add_argument(
"--decoder-attention-heads",
type=int,
metavar="N",
help="num decoder attention heads or LightConv/DynamicConv heads",
)
parser.add_argument(
"--decoder-learned-pos",
action="store_true",
help="use learned positional embeddings in the decoder",
)
parser.add_argument(
"--decoder-normalize-before",
action="store_true",
help="apply layernorm before each decoder block",
)
parser.add_argument(
"--share-decoder-input-output-embed",
action="store_true",
help="share decoder input and output embeddings",
)
parser.add_argument(
"--share-all-embeddings",
action="store_true",
help="share encoder, decoder and output embeddings"
" (requires shared dictionary and embed dim)",
)
parser.add_argument(
"--adaptive-softmax-cutoff",
metavar="EXPR",
help="comma separated list of adaptive softmax cutoff points. "
"Must be used with adaptive_loss criterion",
),
parser.add_argument(
"--adaptive-softmax-dropout",
type=float,
metavar="D",
help="sets adaptive softmax dropout for the tail projections",
)
"""LightConv and DynamicConv arguments"""
parser.add_argument(
"--encoder-kernel-size-list",
type=lambda x: utils.eval_str_list(x, int),
help='list of kernel size (default: "[3,7,15,31,31,31,31]")',
)
parser.add_argument(
"--decoder-kernel-size-list",
type=lambda x: utils.eval_str_list(x, int),
help='list of kernel size (default: "[3,7,15,31,31,31]")',
)
parser.add_argument(
"--encoder-glu", type=utils.eval_bool, help="glu after in proj"
)
parser.add_argument(
"--decoder-glu", type=utils.eval_bool, help="glu after in proj"
)
parser.add_argument(
"--encoder-conv-type",
default="dynamic",
type=str,
choices=["dynamic", "lightweight"],
help="type of convolution",
)
parser.add_argument(
"--decoder-conv-type",
default="dynamic",
type=str,
choices=["dynamic", "lightweight"],
help="type of convolution",
)
parser.add_argument("--weight-softmax", default=True, type=utils.eval_bool)
parser.add_argument(
"--weight-dropout",
type=float,
metavar="D",
help="dropout probability for conv weights",
)
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
# make sure all arguments are present in older models
base_architecture(args)
if not hasattr(args, "max_source_positions"):
args.max_source_positions = 1024
if not hasattr(args, "max_target_positions"):
args.max_target_positions = 1024
src_dict, tgt_dict = task.source_dictionary, task.target_dictionary
def build_embedding(dictionary, embed_dim, path=None):
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
emb = Embedding(num_embeddings, embed_dim, padding_idx)
# if provided, load from preloaded dictionaries
if path:
embed_dict = utils.parse_embedding(path)
utils.load_embedding(embed_dict, dictionary, emb)
return emb
if args.share_all_embeddings:
if src_dict != tgt_dict:
raise RuntimeError(
"--share-all-embeddings requires a joined dictionary"
)
if args.encoder_embed_dim != args.decoder_embed_dim:
raise RuntimeError(
"--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim"
)
if args.decoder_embed_path and (
args.decoder_embed_path != args.encoder_embed_path
):
raise RuntimeError(
"--share-all-embeddings not compatible with --decoder-embed-path"
)
encoder_embed_tokens = build_embedding(
src_dict, args.encoder_embed_dim, args.encoder_embed_path
)
decoder_embed_tokens = encoder_embed_tokens
args.share_decoder_input_output_embed = True
else:
encoder_embed_tokens = build_embedding(
src_dict, args.encoder_embed_dim, args.encoder_embed_path
)
decoder_embed_tokens = build_embedding(
tgt_dict, args.decoder_embed_dim, args.decoder_embed_path
)
encoder = LightConvEncoder(args, src_dict, encoder_embed_tokens)
decoder = LightConvDecoder(args, tgt_dict, decoder_embed_tokens)
return LightConvModel(encoder, decoder)
class LightConvEncoder(FairseqEncoder):
"""
LightConv encoder consisting of *args.encoder_layers* layers. Each layer
is a :class:`LightConvEncoderLayer`.
Args:
args (argparse.Namespace): parsed command-line arguments
dictionary (~fairseq.data.Dictionary): encoding dictionary
embed_tokens (torch.nn.Embedding): input embedding
"""
def __init__(self, args, dictionary, embed_tokens):
super().__init__(dictionary)
self.dropout_module = FairseqDropout(
args.dropout, module_name=self.__class__.__name__
)
embed_dim = embed_tokens.embedding_dim
self.padding_idx = embed_tokens.padding_idx
self.max_source_positions = args.max_source_positions
self.embed_tokens = embed_tokens
self.embed_scale = math.sqrt(embed_dim)
self.embed_positions = (
PositionalEmbedding(
args.max_source_positions,
embed_dim,
self.padding_idx,
learned=args.encoder_learned_pos,
)
if not args.no_token_positional_embeddings
else None
)
self.layers = nn.ModuleList([])
self.layers.extend(
[
LightConvEncoderLayer(
args, kernel_size=args.encoder_kernel_size_list[i]
)
for i in range(args.encoder_layers)
]
)
self.register_buffer("version", torch.Tensor([2]))
self.normalize = args.encoder_normalize_before
if self.normalize:
self.layer_norm = LayerNorm(embed_dim)
def forward(self, src_tokens, **unused):
"""
Args:
src_tokens (LongTensor): tokens in the source language of shape
`(batch, src_len)`
Returns:
dict:
- **encoder_out** (Tensor): the last encoder layer's output of
shape `(src_len, batch, embed_dim)`
- **encoder_padding_mask** (ByteTensor): the positions of
padding elements of shape `(batch, src_len)`
"""
# embed tokens and positions
x = self.embed_scale * self.embed_tokens(src_tokens)
if self.embed_positions is not None:
x += self.embed_positions(src_tokens)
x = self.dropout_module(x)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
# compute padding mask
encoder_padding_mask = src_tokens.eq(self.padding_idx)
if not encoder_padding_mask.any():
encoder_padding_mask = None
# encoder layers
for layer in self.layers:
x = layer(x, encoder_padding_mask)
if self.normalize:
x = self.layer_norm(x)
return {
"encoder_out": x, # T x B x C
"encoder_padding_mask": encoder_padding_mask, # B x T
}
def reorder_encoder_out(self, encoder_out, new_order):
"""
Reorder encoder output according to *new_order*.
Args:
encoder_out: output from the ``forward()`` method
new_order (LongTensor): desired order
Returns:
*encoder_out* rearranged according to *new_order*
"""
if encoder_out["encoder_out"] is not None:
encoder_out["encoder_out"] = encoder_out["encoder_out"].index_select(
1, new_order
)
if encoder_out["encoder_padding_mask"] is not None:
encoder_out["encoder_padding_mask"] = encoder_out[
"encoder_padding_mask"
].index_select(0, new_order)
return encoder_out
def max_positions(self):
"""Maximum input length supported by the encoder."""
if self.embed_positions is None:
return self.max_source_positions
return min(self.max_source_positions, self.embed_positions.max_positions)
class LightConvDecoder(FairseqIncrementalDecoder):
"""
LightConv decoder consisting of *args.decoder_layers* layers. Each layer
is a :class:`LightConvDecoderLayer`.
Args:
args (argparse.Namespace): parsed command-line arguments
dictionary (~fairseq.data.Dictionary): decoding dictionary
embed_tokens (torch.nn.Embedding): output embedding
no_encoder_attn (bool, optional): whether to attend to encoder outputs.
Default: ``False``
"""
def __init__(
self, args, dictionary, embed_tokens, no_encoder_attn=False, final_norm=True
):
super().__init__(dictionary)
self.dropout_module = FairseqDropout(
args.dropout, module_name=self.__class__.__name__
)
self.share_input_output_embed = args.share_decoder_input_output_embed
input_embed_dim = embed_tokens.embedding_dim
embed_dim = args.decoder_embed_dim
output_embed_dim = args.decoder_output_dim
padding_idx = embed_tokens.padding_idx
self.max_target_positions = args.max_target_positions
self.embed_tokens = embed_tokens
self.embed_scale = math.sqrt(embed_dim) # todo: try with input_embed_dim
self.project_in_dim = (
Linear(input_embed_dim, embed_dim, bias=False)
if embed_dim != input_embed_dim
else None
)
self.embed_positions = (
PositionalEmbedding(
args.max_target_positions,
embed_dim,
padding_idx,
learned=args.decoder_learned_pos,
)
if not args.no_token_positional_embeddings
else None
)
self.layers = nn.ModuleList([])
self.layers.extend(
[
LightConvDecoderLayer(
args, no_encoder_attn, kernel_size=args.decoder_kernel_size_list[i]
)
for i in range(args.decoder_layers)
]
)
self.adaptive_softmax = None
self.project_out_dim = (
Linear(embed_dim, output_embed_dim, bias=False)
if embed_dim != output_embed_dim and not args.tie_adaptive_weights
else None
)
if args.adaptive_softmax_cutoff is not None:
self.adaptive_softmax = AdaptiveSoftmax(
len(dictionary),
output_embed_dim,
utils.eval_str_list(args.adaptive_softmax_cutoff, type=int),
dropout=args.adaptive_softmax_dropout,
adaptive_inputs=embed_tokens if args.tie_adaptive_weights else None,
factor=args.adaptive_softmax_factor,
tie_proj=args.tie_adaptive_proj,
)
elif not self.share_input_output_embed:
self.embed_out = nn.Parameter(
torch.Tensor(len(dictionary), output_embed_dim)
)
nn.init.normal_(self.embed_out, mean=0, std=output_embed_dim ** -0.5)
self.register_buffer("version", torch.Tensor([2]))
self.normalize = args.decoder_normalize_before and final_norm
if self.normalize:
self.layer_norm = LayerNorm(embed_dim)
def forward(
self, prev_output_tokens, encoder_out=None, incremental_state=None, **kwargs
):
"""
Args:
prev_output_tokens (LongTensor): previous decoder outputs of shape
`(batch, tgt_len)`, for teacher forcing
encoder_out (Tensor, optional): output from the encoder, used for
encoder-side attention
incremental_state (dict): dictionary used for storing state during
:ref:`Incremental decoding`
Returns:
tuple:
- the last decoder layer's output of shape `(batch, tgt_len,
vocab)`
- the last decoder layer's attention weights of shape `(batch,
tgt_len, src_len)`
"""
# embed positions
positions = (
self.embed_positions(
prev_output_tokens,
incremental_state=incremental_state,
)
if self.embed_positions is not None
else None
)
if incremental_state is not None:
prev_output_tokens = prev_output_tokens[:, -1:]
if positions is not None:
positions = positions[:, -1:]
# embed tokens and positions
x = self.embed_scale * self.embed_tokens(prev_output_tokens)
if self.project_in_dim is not None:
x = self.project_in_dim(x)
if positions is not None:
x += positions
x = self.dropout_module(x)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
attn = None
inner_states = [x]
# decoder layers
for layer in self.layers:
x, attn = layer(
x,
encoder_out["encoder_out"] if encoder_out is not None else None,
encoder_out["encoder_padding_mask"]
if encoder_out is not None
else None,
incremental_state,
)
inner_states.append(x)
if self.normalize:
x = self.layer_norm(x)
# T x B x C -> B x T x C
x = x.transpose(0, 1)
if self.project_out_dim is not None:
x = self.project_out_dim(x)
if self.adaptive_softmax is None:
# project back to size of vocabulary
if self.share_input_output_embed:
x = F.linear(x, self.embed_tokens.weight)
else:
x = F.linear(x, self.embed_out)
return x, {"attn": attn, "inner_states": inner_states}
def max_positions(self):
"""Maximum output length supported by the decoder."""
if self.embed_positions is None:
return self.max_target_positions
return min(self.max_target_positions, self.embed_positions.max_positions)
def buffered_future_mask(self, tensor):
dim = tensor.size(0)
if (
not hasattr(self, "_future_mask")
or self._future_mask is None
or self._future_mask.device != tensor.device
):
self._future_mask = torch.triu(
utils.fill_with_neg_inf(tensor.new(dim, dim)), 1
)
if self._future_mask.size(0) < dim:
self._future_mask = torch.triu(
utils.fill_with_neg_inf(self._future_mask.resize_(dim, dim)), 1
)
return self._future_mask[:dim, :dim]
class LightConvEncoderLayer(nn.Module):
"""Encoder layer block.
Args:
args (argparse.Namespace): parsed command-line arguments
kernel_size: kernel size of the convolution
"""
def __init__(self, args, kernel_size=0):
super().__init__()
self.embed_dim = args.encoder_embed_dim
self.conv_dim = args.encoder_conv_dim
padding_l = (
kernel_size // 2
if kernel_size % 2 == 1
else ((kernel_size - 1) // 2, kernel_size // 2)
)
if args.encoder_glu:
self.linear1 = Linear(self.embed_dim, 2 * self.conv_dim)
self.act = nn.GLU()
else:
self.linear1 = Linear(self.embed_dim, self.conv_dim)
self.act = None
if args.encoder_conv_type == "lightweight":
self.conv = LightweightConv(
self.conv_dim,
kernel_size,
padding_l=padding_l,
weight_softmax=args.weight_softmax,
num_heads=args.encoder_attention_heads,
weight_dropout=args.weight_dropout,
)
elif args.encoder_conv_type == "dynamic":
self.conv = DynamicConv(
self.conv_dim,
kernel_size,
padding_l=padding_l,
weight_softmax=args.weight_softmax,
num_heads=args.encoder_attention_heads,
weight_dropout=args.weight_dropout,
)
else:
raise NotImplementedError
self.linear2 = Linear(self.conv_dim, self.embed_dim)
self.dropout_module = FairseqDropout(
args.dropout, module_name=self.__class__.__name__
)
self.relu_dropout_module = FairseqDropout(
args.relu_dropout, module_name=self.__class__.__name__
)
self.input_dropout_module = FairseqDropout(
args.input_dropout, module_name=self.__class__.__name__
)
self.normalize_before = args.encoder_normalize_before
self.fc1 = Linear(self.embed_dim, args.encoder_ffn_embed_dim)
self.fc2 = Linear(args.encoder_ffn_embed_dim, self.embed_dim)
self.layer_norms = nn.ModuleList([LayerNorm(self.embed_dim) for _ in range(2)])
def forward(self, x, encoder_padding_mask):
"""
Args:
x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_padding_mask (ByteTensor): binary ByteTensor of shape
`(batch, src_len)` where padding elements are indicated by ``1``.
Returns:
encoded output of shape `(batch, src_len, embed_dim)`
"""
residual = x
x = self.maybe_layer_norm(0, x, before=True)
x = self.input_dropout_module(x)
x = self.linear1(x)
if self.act is not None:
x = self.act(x)
if encoder_padding_mask is not None:
x = x.masked_fill(encoder_padding_mask.transpose(0, 1).unsqueeze(2), 0)
x = self.conv(x)
x = self.linear2(x)
x = self.dropout_module(x)
x = residual + x
x = self.maybe_layer_norm(0, x, after=True)
residual = x
x = self.maybe_layer_norm(1, x, before=True)
x = F.relu(self.fc1(x))
x = self.relu_dropout_module(x)
x = self.fc2(x)
x = self.dropout_module(x)
x = residual + x
x = self.maybe_layer_norm(1, x, after=True)
return x
def maybe_layer_norm(self, i, x, before=False, after=False):
assert before ^ after
if after ^ self.normalize_before:
return self.layer_norms[i](x)
else:
return x
def extra_repr(self):
return (
"dropout={}, relu_dropout={}, input_dropout={}, normalize_before={}".format(
self.dropout_module.p,
self.relu_dropout_module.p,
self.input_dropout_module.p,
self.normalize_before,
)
)
class LightConvDecoderLayer(nn.Module):
"""Decoder layer block.
Args:
args (argparse.Namespace): parsed command-line arguments
no_encoder_attn (bool, optional): whether to attend to encoder outputs.
Default: ``False``
kernel_size: kernel size of the convolution
"""
def __init__(self, args, no_encoder_attn=False, kernel_size=0):
super().__init__()
self.embed_dim = args.decoder_embed_dim
self.conv_dim = args.decoder_conv_dim
if args.decoder_glu:
self.linear1 = Linear(self.embed_dim, 2 * self.conv_dim)
self.act = nn.GLU()
else:
self.linear1 = Linear(self.embed_dim, self.conv_dim)
self.act = None
if args.decoder_conv_type == "lightweight":
self.conv = LightweightConv(
self.conv_dim,
kernel_size,
padding_l=kernel_size - 1,
weight_softmax=args.weight_softmax,
num_heads=args.decoder_attention_heads,
weight_dropout=args.weight_dropout,
)
elif args.decoder_conv_type == "dynamic":
self.conv = DynamicConv(
self.conv_dim,
kernel_size,
padding_l=kernel_size - 1,
weight_softmax=args.weight_softmax,
num_heads=args.decoder_attention_heads,
weight_dropout=args.weight_dropout,
)
else:
raise NotImplementedError
self.linear2 = Linear(self.conv_dim, self.embed_dim)
self.dropout_module = FairseqDropout(
args.dropout, module_name=self.__class__.__name__
)
self.relu_dropout_module = FairseqDropout(
args.relu_dropout, module_name=self.__class__.__name__
)
self.input_dropout_module = FairseqDropout(
args.input_dropout, module_name=self.__class__.__name__
)
self.normalize_before = args.decoder_normalize_before
self.conv_layer_norm = LayerNorm(self.embed_dim)
if no_encoder_attn:
self.encoder_attn = None
self.encoder_attn_layer_norm = None
else:
self.encoder_attn = MultiheadAttention(
self.embed_dim,
args.decoder_attention_heads,
dropout=args.attention_dropout,
encoder_decoder_attention=True,
)
self.encoder_attn_layer_norm = LayerNorm(self.embed_dim)
self.fc1 = Linear(self.embed_dim, args.decoder_ffn_embed_dim)
self.fc2 = Linear(args.decoder_ffn_embed_dim, self.embed_dim)
self.final_layer_norm = LayerNorm(self.embed_dim)
self.need_attn = True
def forward(
self,
x,
encoder_out,
encoder_padding_mask,
incremental_state,
prev_conv_state=None,
prev_attn_state=None,
conv_mask=None,
conv_padding_mask=None,
):
"""
Args:
x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_padding_mask (ByteTensor): binary ByteTensor of shape
`(batch, src_len)` where padding elements are indicated by ``1``.
Returns:
encoded output of shape `(batch, src_len, embed_dim)`
"""
residual = x
x = self.maybe_layer_norm(self.conv_layer_norm, x, before=True)
if prev_conv_state is not None:
if incremental_state is None:
incremental_state = {}
self.conv._set_input_buffer(incremental_state, prev_conv_state)
x = self.input_dropout_module(x)
x = self.linear1(x)
if self.act is not None:
x = self.act(x)
x = self.conv(x, incremental_state=incremental_state)
x = self.linear2(x)
x = self.dropout_module(x)
x = residual + x
x = self.maybe_layer_norm(self.conv_layer_norm, x, after=True)
attn = None
if self.encoder_attn is not None:
residual = x
x = self.maybe_layer_norm(self.encoder_attn_layer_norm, x, before=True)
if prev_attn_state is not None:
if incremental_state is None:
incremental_state = {}
prev_key, prev_value = prev_attn_state
saved_state = {"prev_key": prev_key, "prev_value": prev_value}
self.encoder_attn._set_input_buffer(incremental_state, saved_state)
x, attn = self.encoder_attn(
query=x,
key=encoder_out,
value=encoder_out,
key_padding_mask=encoder_padding_mask,
incremental_state=incremental_state,
static_kv=True,
need_weights=(not self.training and self.need_attn),
)
x = self.dropout_module(x)
x = residual + x
x = self.maybe_layer_norm(self.encoder_attn_layer_norm, x, after=True)
residual = x
x = self.maybe_layer_norm(self.final_layer_norm, x, before=True)
x = F.relu(self.fc1(x))
x = self.relu_dropout_module(x)
x = self.fc2(x)
x = self.dropout_module(x)
x = residual + x
x = self.maybe_layer_norm(self.final_layer_norm, x, after=True)
return x, attn
def maybe_layer_norm(self, layer_norm, x, before=False, after=False):
assert before ^ after
if after ^ self.normalize_before:
return layer_norm(x)
else:
return x
def make_generation_fast_(self, need_attn=False, **kwargs):
self.need_attn = need_attn
def extra_repr(self):
return (
"dropout={}, relu_dropout={}, input_dropout={}, normalize_before={}".format(
self.dropout_module.p,
self.relu_dropout_module.p,
self.input_dropout_module.p,
self.normalize_before,
)
)
def Embedding(num_embeddings, embedding_dim, padding_idx):
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5)
nn.init.constant_(m.weight[padding_idx], 0)
return m
def Linear(in_features, out_features, bias=True):
m = nn.Linear(in_features, out_features, bias)
nn.init.xavier_uniform_(m.weight)
if bias:
nn.init.constant_(m.bias, 0.0)
return m
@register_model_architecture("lightconv", "lightconv")
def base_architecture(args):
args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048)
args.encoder_layers = getattr(args, "encoder_layers", 7)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False)
args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
args.decoder_ffn_embed_dim = getattr(
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
)
args.decoder_layers = getattr(args, "decoder_layers", 6)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
args.attention_dropout = getattr(args, "attention_dropout", 0.0)
args.relu_dropout = getattr(args, "relu_dropout", 0.0)
args.dropout = getattr(args, "dropout", 0.1)
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
args.share_decoder_input_output_embed = getattr(
args, "share_decoder_input_output_embed", False
)
args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
args.no_token_positional_embeddings = getattr(
args, "no_token_positional_embeddings", False
)
args.decoder_output_dim = getattr(
args, "decoder_output_dim", args.decoder_embed_dim
)
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
args.encoder_conv_dim = getattr(args, "encoder_conv_dim", args.encoder_embed_dim)
args.decoder_conv_dim = getattr(args, "decoder_conv_dim", args.decoder_embed_dim)
args.encoder_kernel_size_list = getattr(
args, "encoder_kernel_size_list", [3, 7, 15, 31, 31, 31, 31]
)
args.decoder_kernel_size_list = getattr(
args, "decoder_kernel_size_list", [3, 7, 15, 31, 31, 31]
)
if len(args.encoder_kernel_size_list) == 1:
args.encoder_kernel_size_list = (
args.encoder_kernel_size_list * args.encoder_layers
)
if len(args.decoder_kernel_size_list) == 1:
args.decoder_kernel_size_list = (
args.decoder_kernel_size_list * args.decoder_layers
)
assert (
len(args.encoder_kernel_size_list) == args.encoder_layers
), "encoder_kernel_size_list doesn't match encoder_layers"
assert (
len(args.decoder_kernel_size_list) == args.decoder_layers
), "decoder_kernel_size_list doesn't match decoder_layers"
args.encoder_glu = getattr(args, "encoder_glu", True)
args.decoder_glu = getattr(args, "decoder_glu", True)
args.input_dropout = getattr(args, "input_dropout", 0.1)
args.weight_dropout = getattr(args, "weight_dropout", args.attention_dropout)
@register_model_architecture("lightconv", "lightconv_iwslt_de_en")
def lightconv_iwslt_de_en(args):
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4)
args.encoder_layers = getattr(args, "encoder_layers", 7)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 1024)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4)
args.decoder_layers = getattr(args, "decoder_layers", 6)
args.attention_dropout = getattr(args, "attention_dropout", 0.1)
args.weight_dropout = getattr(args, "weight_dropout", 0.1)
args.encoder_glu = getattr(args, "encoder_glu", False)
args.decoder_glu = getattr(args, "decoder_glu", False)
args.input_dropout = getattr(args, "input_dropout", 0.0)
base_architecture(args)
@register_model_architecture("lightconv", "lightconv_wmt_en_de")
def lightconv_wmt_en_de(args):
base_architecture(args)
@register_model_architecture("lightconv", "lightconv_wmt_en_de_big")
def lightconv_wmt_en_de_big(args):
args.attention_dropout = getattr(args, "attention_dropout", 0.1)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
args.dropout = getattr(args, "dropout", 0.3)
base_architecture(args)
@register_model_architecture("lightconv", "lightconv_wmt_en_fr_big")
def lightconv_wmt_en_fr_big(args):
args.dropout = getattr(args, "dropout", 0.1)
lightconv_wmt_en_de_big(args)
@register_model_architecture("lightconv", "lightconv_wmt_zh_en_big")
def lightconv_wmt_zh_en_big(args):
args.dropout = getattr(args, "dropout", 0.2)
args.attention_dropout = getattr(args, "attention_dropout", 0.2)
args.weight_dropout = getattr(args, "weight_dropout", 0.2)
lightconv_wmt_en_de_big(args)
| data2vec_vision-main | deltalm/src/fairseq/models/lightconv.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from fairseq import utils
from fairseq.models import (
FairseqLanguageModel,
register_model,
register_model_architecture,
)
from fairseq.models.lightconv import Embedding, LightConvDecoder
from fairseq.modules import AdaptiveInput, CharacterTokenEmbedder
@register_model("lightconv_lm")
class LightConvLanguageModel(FairseqLanguageModel):
def __init__(self, decoder):
super().__init__(decoder)
@staticmethod
def add_args(parser):
"""Add model-specific arguments to the parser."""
parser.add_argument(
"--dropout",
default=0.1,
type=float,
metavar="D",
help="dropout probability",
)
parser.add_argument(
"--attention-dropout",
default=0.0,
type=float,
metavar="D",
help="dropout probability for attention weights",
)
parser.add_argument(
"--relu-dropout",
default=0.0,
type=float,
metavar="D",
help="dropout probability after ReLU in FFN",
)
parser.add_argument(
"--input-dropout",
type=float,
metavar="D",
help="dropout probability of the inputs",
)
parser.add_argument(
"--decoder-embed-dim",
type=int,
metavar="N",
help="decoder embedding dimension",
)
parser.add_argument(
"--decoder-output-dim",
type=int,
metavar="N",
help="decoder output dimension",
)
parser.add_argument(
"--decoder-input-dim", type=int, metavar="N", help="decoder input dimension"
)
parser.add_argument(
"--decoder-ffn-embed-dim",
type=int,
metavar="N",
help="decoder embedding dimension for FFN",
)
parser.add_argument(
"--decoder-layers", type=int, metavar="N", help="num decoder layers"
)
parser.add_argument(
"--decoder-attention-heads",
type=int,
metavar="N",
help="num decoder attention heads or LightConv/DynamicConv heads",
)
parser.add_argument(
"--decoder-normalize-before",
default=False,
action="store_true",
help="apply layernorm before each decoder block",
)
parser.add_argument(
"--adaptive-softmax-cutoff",
metavar="EXPR",
help="comma separated list of adaptive softmax cutoff points. "
"Must be used with adaptive_loss criterion",
)
parser.add_argument(
"--adaptive-softmax-dropout",
type=float,
metavar="D",
help="sets adaptive softmax dropout for the tail projections",
)
parser.add_argument(
"--adaptive-softmax-factor",
type=float,
metavar="N",
help="adaptive input factor",
)
parser.add_argument(
"--no-token-positional-embeddings",
default=False,
action="store_true",
help="if set, disables positional embeddings (outside self attention)",
)
parser.add_argument(
"--share-decoder-input-output-embed",
default=False,
action="store_true",
help="share decoder input and output embeddings",
)
parser.add_argument(
"--character-embeddings",
default=False,
action="store_true",
help="if set, uses character embedding convolutions to produce token embeddings",
)
parser.add_argument(
"--character-filters",
type=str,
metavar="LIST",
default="[(1, 64), (2, 128), (3, 192), (4, 256), (5, 256), (6, 256), (7, 256)]",
help="size of character embeddings",
)
parser.add_argument(
"--character-embedding-dim",
type=int,
metavar="N",
default=4,
help="size of character embeddings",
)
parser.add_argument(
"--char-embedder-highway-layers",
type=int,
metavar="N",
default=2,
help="number of highway layers for character token embeddder",
)
parser.add_argument(
"--adaptive-input",
default=False,
action="store_true",
help="if set, uses adaptive input",
)
parser.add_argument(
"--adaptive-input-factor",
type=float,
metavar="N",
help="adaptive input factor",
)
parser.add_argument(
"--adaptive-input-cutoff",
metavar="EXPR",
help="comma separated list of adaptive input cutoff points.",
)
parser.add_argument(
"--tie-adaptive-weights",
action="store_true",
help="if set, ties the weights of adaptive softmax and adaptive input",
)
parser.add_argument(
"--tie-adaptive-proj",
action="store_true",
help="if set, ties the projection weights of adaptive softmax and adaptive input",
)
parser.add_argument(
"--decoder-learned-pos",
action="store_true",
help="use learned positional embeddings in the decoder",
)
"""LightConv and DynamicConv arguments"""
parser.add_argument(
"--decoder-kernel-size-list",
type=lambda x: utils.eval_str_list(x, int),
help='list of kernel size (default: "[3,7,15,31,31,31]")',
)
parser.add_argument(
"--decoder-glu", type=utils.eval_bool, help="glu after in proj"
)
parser.add_argument(
"--decoder-conv-type",
default="dynamic",
type=str,
choices=["dynamic", "lightweight"],
help="type of convolution",
)
parser.add_argument("--weight-softmax", default=True, type=utils.eval_bool)
parser.add_argument(
"--weight-dropout",
type=float,
metavar="D",
help="dropout probability for conv weights",
)
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
# make sure all arguments are present in older models
base_lm_architecture(args)
if getattr(args, "max_source_positions", None) is None:
args.max_source_positions = args.tokens_per_sample
if getattr(args, "max_target_positions", None) is None:
args.max_target_positions = args.tokens_per_sample
if args.character_embeddings:
embed_tokens = CharacterTokenEmbedder(
task.dictionary,
eval(args.character_filters),
args.character_embedding_dim,
args.decoder_embed_dim,
args.char_embedder_highway_layers,
)
elif args.adaptive_input:
embed_tokens = AdaptiveInput(
len(task.dictionary),
task.dictionary.pad(),
args.decoder_input_dim,
args.adaptive_input_factor,
args.decoder_embed_dim,
utils.eval_str_list(args.adaptive_input_cutoff, type=int),
)
else:
embed_tokens = Embedding(
len(task.dictionary), args.decoder_input_dim, task.dictionary.pad()
)
if args.tie_adaptive_weights:
assert args.adaptive_input
assert args.adaptive_input_factor == args.adaptive_softmax_factor
assert (
args.adaptive_softmax_cutoff == args.adaptive_input_cutoff
), "{} != {}".format(
args.adaptive_softmax_cutoff, args.adaptive_input_cutoff
)
assert args.decoder_input_dim == args.decoder_output_dim
decoder = LightConvDecoder(
args,
task.output_dictionary,
embed_tokens,
no_encoder_attn=True,
final_norm=False,
)
return LightConvLanguageModel(decoder)
@register_model_architecture("lightconv_lm", "lightconv_lm")
def base_lm_architecture(args):
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 2048)
args.decoder_layers = getattr(args, "decoder_layers", 6)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
args.adaptive_softmax_factor = getattr(args, "adaptive_softmax_factor", 4)
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
args.character_embeddings = getattr(args, "character_embeddings", False)
args.decoder_output_dim = getattr(
args, "decoder_output_dim", args.decoder_embed_dim
)
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
args.decoder_conv_dim = getattr(args, "decoder_conv_dim", args.decoder_embed_dim)
# The model training is not stable without this
args.decoder_normalize_before = True
args.adaptive_input = getattr(args, "adaptive_input", False)
args.adaptive_input_factor = getattr(args, "adaptive_input_factor", 4)
args.adaptive_input_cutoff = getattr(args, "adaptive_input_cutoff", None)
args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False)
args.tie_adaptive_proj = getattr(args, "tie_adaptive_proj", False)
args.decoder_kernel_size_list = getattr(
args, "decoder_kernel_size_list", [3, 7, 15, 31, 31, 31]
)
if len(args.decoder_kernel_size_list) == 1:
args.decoder_kernel_size_list = (
args.decoder_kernel_size_list * args.decoder_layers
)
assert (
len(args.decoder_kernel_size_list) == args.decoder_layers
), "decoder_kernel_size_list doesn't match decoder_layers"
args.decoder_glu = getattr(args, "decoder_glu", True)
args.input_dropout = getattr(args, "input_dropout", 0.1)
args.weight_dropout = getattr(args, "weight_dropout", args.attention_dropout)
@register_model_architecture("lightconv_lm", "lightconv_lm_gbw")
def lightconv_lm_gbw(args):
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
args.dropout = getattr(args, "dropout", 0.1)
args.attention_dropout = getattr(args, "attention_dropout", 0.1)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
base_lm_architecture(args)
| data2vec_vision-main | deltalm/src/fairseq/models/lightconv_lm.py |
#!/usr/bin/env python3
from ast import literal_eval
from typing import List, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import checkpoint_utils, utils
from fairseq.data.data_utils import lengths_to_padding_mask
from fairseq.models import (
FairseqEncoder,
FairseqEncoderDecoderModel,
FairseqIncrementalDecoder,
register_model,
register_model_architecture,
)
@register_model("s2t_berard")
class BerardModel(FairseqEncoderDecoderModel):
"""Implementation of a model similar to https://arxiv.org/abs/1802.04200
Paper title: End-to-End Automatic Speech Translation of Audiobooks
An implementation is available in tensorflow at
https://github.com/eske/seq2seq
Relevant files in this implementation are the config
(https://github.com/eske/seq2seq/blob/master/config/LibriSpeech/AST.yaml)
and the model code
(https://github.com/eske/seq2seq/blob/master/translate/models.py).
The encoder and decoder try to be close to the original implementation.
The attention is an MLP as in Bahdanau et al.
(https://arxiv.org/abs/1409.0473).
There is no state initialization by averaging the encoder outputs.
"""
def __init__(self, encoder, decoder):
super().__init__(encoder, decoder)
@staticmethod
def add_args(parser):
parser.add_argument(
"--input-layers",
type=str,
metavar="EXPR",
help="List of linear layer dimensions. These "
"layers are applied to the input features and "
"are followed by tanh and possibly dropout.",
)
parser.add_argument(
"--dropout",
type=float,
metavar="D",
help="Dropout probability to use in the encoder/decoder. "
"Note that this parameters control dropout in various places, "
"there is no fine-grained control for dropout for embeddings "
"vs LSTM layers for example.",
)
parser.add_argument(
"--in-channels",
type=int,
metavar="N",
help="Number of encoder input channels. " "Typically value is 1.",
)
parser.add_argument(
"--conv-layers",
type=str,
metavar="EXPR",
help="List of conv layers " "(format: (channels, kernel, stride)).",
)
parser.add_argument(
"--num-blstm-layers",
type=int,
metavar="N",
help="Number of encoder bi-LSTM layers.",
)
parser.add_argument(
"--lstm-size", type=int, metavar="N", help="LSTM hidden size."
)
parser.add_argument(
"--decoder-embed-dim",
type=int,
metavar="N",
help="Embedding dimension of the decoder target tokens.",
)
parser.add_argument(
"--decoder-hidden-dim",
type=int,
metavar="N",
help="Decoder LSTM hidden dimension.",
)
parser.add_argument(
"--decoder-num-layers",
type=int,
metavar="N",
help="Number of decoder LSTM layers.",
)
parser.add_argument(
"--attention-dim",
type=int,
metavar="N",
help="Hidden layer dimension in MLP attention.",
)
parser.add_argument(
"--output-layer-dim",
type=int,
metavar="N",
help="Hidden layer dim for linear layer prior to output projection.",
)
parser.add_argument(
"--load-pretrained-encoder-from",
type=str,
metavar="STR",
help="model to take encoder weights from (for initialization)",
)
parser.add_argument(
"--load-pretrained-decoder-from",
type=str,
metavar="STR",
help="model to take decoder weights from (for initialization)",
)
@classmethod
def build_encoder(cls, args, task):
encoder = BerardEncoder(
input_layers=literal_eval(args.input_layers),
conv_layers=literal_eval(args.conv_layers),
in_channels=args.input_channels,
input_feat_per_channel=args.input_feat_per_channel,
num_blstm_layers=args.num_blstm_layers,
lstm_size=args.lstm_size,
dropout=args.dropout,
)
if getattr(args, "load_pretrained_encoder_from", None):
encoder = checkpoint_utils.load_pretrained_component_from_model(
component=encoder, checkpoint=args.load_pretrained_encoder_from
)
return encoder
@classmethod
def build_decoder(cls, args, task):
decoder = LSTMDecoder(
dictionary=task.target_dictionary,
embed_dim=args.decoder_embed_dim,
num_layers=args.decoder_num_layers,
hidden_size=args.decoder_hidden_dim,
dropout=args.dropout,
encoder_output_dim=2 * args.lstm_size, # bidirectional
attention_dim=args.attention_dim,
output_layer_dim=args.output_layer_dim,
)
if getattr(args, "load_pretrained_decoder_from", None):
decoder = checkpoint_utils.load_pretrained_component_from_model(
component=decoder, checkpoint=args.load_pretrained_decoder_from
)
return decoder
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
encoder = cls.build_encoder(args, task)
decoder = cls.build_decoder(args, task)
return cls(encoder, decoder)
def get_normalized_probs(self, net_output, log_probs, sample=None):
# net_output['encoder_out'] is a (B, T, D) tensor
lprobs = super().get_normalized_probs(net_output, log_probs, sample)
# lprobs is a (B, T, D) tensor
lprobs.batch_first = True
return lprobs
class BerardEncoder(FairseqEncoder):
def __init__(
self,
input_layers: List[int],
conv_layers: List[Tuple[int]],
in_channels: int,
input_feat_per_channel: int,
num_blstm_layers: int,
lstm_size: int,
dropout: float,
):
"""
Args:
input_layers: list of linear layer dimensions. These layers are
applied to the input features and are followed by tanh and
possibly dropout.
conv_layers: list of conv2d layer configurations. A configuration is
a tuple (out_channels, conv_kernel_size, stride).
in_channels: number of input channels.
input_feat_per_channel: number of input features per channel. These
are speech features, typically 40 or 80.
num_blstm_layers: number of bidirectional LSTM layers.
lstm_size: size of the LSTM hidden (and cell) size.
dropout: dropout probability. Dropout can be applied after the
linear layers and LSTM layers but not to the convolutional
layers.
"""
super().__init__(None)
self.input_layers = nn.ModuleList()
in_features = input_feat_per_channel
for out_features in input_layers:
if dropout > 0:
self.input_layers.append(
nn.Sequential(
nn.Linear(in_features, out_features), nn.Dropout(p=dropout)
)
)
else:
self.input_layers.append(nn.Linear(in_features, out_features))
in_features = out_features
self.in_channels = in_channels
self.input_dim = input_feat_per_channel
self.conv_kernel_sizes_and_strides = []
self.conv_layers = nn.ModuleList()
lstm_input_dim = input_layers[-1]
for conv_layer in conv_layers:
out_channels, conv_kernel_size, conv_stride = conv_layer
self.conv_layers.append(
nn.Conv2d(
in_channels,
out_channels,
conv_kernel_size,
stride=conv_stride,
padding=conv_kernel_size // 2,
)
)
self.conv_kernel_sizes_and_strides.append((conv_kernel_size, conv_stride))
in_channels = out_channels
lstm_input_dim //= conv_stride
lstm_input_dim *= conv_layers[-1][0]
self.lstm_size = lstm_size
self.num_blstm_layers = num_blstm_layers
self.lstm = nn.LSTM(
input_size=lstm_input_dim,
hidden_size=lstm_size,
num_layers=num_blstm_layers,
dropout=dropout,
bidirectional=True,
)
self.output_dim = 2 * lstm_size # bidirectional
if dropout > 0:
self.dropout = nn.Dropout(p=dropout)
else:
self.dropout = None
def forward(self, src_tokens, src_lengths=None, **kwargs):
"""
Args
src_tokens: padded tensor (B, T, C * feat)
src_lengths: tensor of original lengths of input utterances (B,)
"""
bsz, max_seq_len, _ = src_tokens.size()
# (B, C, T, feat)
x = (
src_tokens.view(bsz, max_seq_len, self.in_channels, self.input_dim)
.transpose(1, 2)
.contiguous()
)
for input_layer in self.input_layers:
x = input_layer(x)
x = torch.tanh(x)
for conv_layer in self.conv_layers:
x = conv_layer(x)
bsz, _, output_seq_len, _ = x.size()
# (B, C, T, feat) -> (B, T, C, feat) -> (T, B, C, feat) ->
# (T, B, C * feat)
x = x.transpose(1, 2).transpose(0, 1).contiguous().view(output_seq_len, bsz, -1)
input_lengths = src_lengths.clone()
for k, s in self.conv_kernel_sizes_and_strides:
p = k // 2
input_lengths = (input_lengths.float() + 2 * p - k) / s + 1
input_lengths = input_lengths.floor().long()
packed_x = nn.utils.rnn.pack_padded_sequence(x, input_lengths)
h0 = x.new(2 * self.num_blstm_layers, bsz, self.lstm_size).zero_()
c0 = x.new(2 * self.num_blstm_layers, bsz, self.lstm_size).zero_()
packed_outs, _ = self.lstm(packed_x, (h0, c0))
# unpack outputs and apply dropout
x, output_lengths = nn.utils.rnn.pad_packed_sequence(packed_outs)
if self.dropout is not None:
x = self.dropout(x)
encoder_padding_mask = (
lengths_to_padding_mask(output_lengths).to(src_tokens.device).t()
)
return {
"encoder_out": x, # (T, B, C)
"encoder_padding_mask": encoder_padding_mask, # (T, B)
}
def reorder_encoder_out(self, encoder_out, new_order):
encoder_out["encoder_out"] = encoder_out["encoder_out"].index_select(
1, new_order
)
encoder_out["encoder_padding_mask"] = encoder_out[
"encoder_padding_mask"
].index_select(1, new_order)
return encoder_out
class MLPAttention(nn.Module):
"""The original attention from Badhanau et al. (2014)
https://arxiv.org/abs/1409.0473, based on a Multi-Layer Perceptron.
The attention score between position i in the encoder and position j in the
decoder is: alpha_ij = V_a * tanh(W_ae * enc_i + W_ad * dec_j + b_a)
"""
def __init__(self, decoder_hidden_state_dim, context_dim, attention_dim):
super().__init__()
self.context_dim = context_dim
self.attention_dim = attention_dim
# W_ae and b_a
self.encoder_proj = nn.Linear(context_dim, self.attention_dim, bias=True)
# W_ad
self.decoder_proj = nn.Linear(
decoder_hidden_state_dim, self.attention_dim, bias=False
)
# V_a
self.to_scores = nn.Linear(self.attention_dim, 1, bias=False)
def forward(self, decoder_state, source_hids, encoder_padding_mask):
"""The expected input dimensions are:
decoder_state: bsz x decoder_hidden_state_dim
source_hids: src_len x bsz x context_dim
encoder_padding_mask: src_len x bsz
"""
src_len, bsz, _ = source_hids.size()
# (src_len*bsz) x context_dim (to feed through linear)
flat_source_hids = source_hids.view(-1, self.context_dim)
# (src_len*bsz) x attention_dim
encoder_component = self.encoder_proj(flat_source_hids)
# src_len x bsz x attention_dim
encoder_component = encoder_component.view(src_len, bsz, self.attention_dim)
# 1 x bsz x attention_dim
decoder_component = self.decoder_proj(decoder_state).unsqueeze(0)
# Sum with broadcasting and apply the non linearity
# src_len x bsz x attention_dim
hidden_att = torch.tanh(
(decoder_component + encoder_component).view(-1, self.attention_dim)
)
# Project onto the reals to get attentions scores (src_len x bsz)
attn_scores = self.to_scores(hidden_att).view(src_len, bsz)
# Mask + softmax (src_len x bsz)
if encoder_padding_mask is not None:
attn_scores = (
attn_scores.float()
.masked_fill_(encoder_padding_mask, float("-inf"))
.type_as(attn_scores)
) # FP16 support: cast to float and back
# srclen x bsz
normalized_masked_attn_scores = F.softmax(attn_scores, dim=0)
# Sum weighted sources (bsz x context_dim)
attn_weighted_context = (
source_hids * normalized_masked_attn_scores.unsqueeze(2)
).sum(dim=0)
return attn_weighted_context, normalized_masked_attn_scores
class LSTMDecoder(FairseqIncrementalDecoder):
def __init__(
self,
dictionary,
embed_dim,
num_layers,
hidden_size,
dropout,
encoder_output_dim,
attention_dim,
output_layer_dim,
):
"""
Args:
dictionary: target text dictionary.
embed_dim: embedding dimension for target tokens.
num_layers: number of LSTM layers.
hidden_size: hidden size for LSTM layers.
dropout: dropout probability. Dropout can be applied to the
embeddings, the LSTM layers, and the context vector.
encoder_output_dim: encoder output dimension (hidden size of
encoder LSTM).
attention_dim: attention dimension for MLP attention.
output_layer_dim: size of the linear layer prior to output
projection.
"""
super().__init__(dictionary)
self.num_layers = num_layers
self.hidden_size = hidden_size
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
self.embed_tokens = nn.Embedding(num_embeddings, embed_dim, padding_idx)
if dropout > 0:
self.dropout = nn.Dropout(p=dropout)
else:
self.dropout = None
self.layers = nn.ModuleList()
for layer_id in range(num_layers):
input_size = embed_dim if layer_id == 0 else encoder_output_dim
self.layers.append(
nn.LSTMCell(input_size=input_size, hidden_size=hidden_size)
)
self.context_dim = encoder_output_dim
self.attention = MLPAttention(
decoder_hidden_state_dim=hidden_size,
context_dim=encoder_output_dim,
attention_dim=attention_dim,
)
self.deep_output_layer = nn.Linear(
hidden_size + encoder_output_dim + embed_dim, output_layer_dim
)
self.output_projection = nn.Linear(output_layer_dim, num_embeddings)
def forward(
self, prev_output_tokens, encoder_out=None, incremental_state=None, **kwargs
):
encoder_padding_mask = encoder_out["encoder_padding_mask"]
encoder_outs = encoder_out["encoder_out"]
if incremental_state is not None:
prev_output_tokens = prev_output_tokens[:, -1:]
bsz, seqlen = prev_output_tokens.size()
srclen = encoder_outs.size(0)
# embed tokens
embeddings = self.embed_tokens(prev_output_tokens)
x = embeddings
if self.dropout is not None:
x = self.dropout(x)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
# initialize previous states (or get from cache during incremental
# generation)
cached_state = utils.get_incremental_state(
self, incremental_state, "cached_state"
)
if cached_state is not None:
prev_hiddens, prev_cells = cached_state
else:
prev_hiddens = [encoder_out["encoder_out"].mean(dim=0)] * self.num_layers
prev_cells = [x.new_zeros(bsz, self.hidden_size)] * self.num_layers
attn_scores = x.new_zeros(bsz, srclen)
attention_outs = []
outs = []
for j in range(seqlen):
input = x[j, :, :]
attention_out = None
for i, layer in enumerate(self.layers):
# the previous state is one layer below except for the bottom
# layer where the previous state is the state emitted by the
# top layer
hidden, cell = layer(
input,
(
prev_hiddens[(i - 1) % self.num_layers],
prev_cells[(i - 1) % self.num_layers],
),
)
if self.dropout is not None:
hidden = self.dropout(hidden)
prev_hiddens[i] = hidden
prev_cells[i] = cell
if attention_out is None:
attention_out, attn_scores = self.attention(
hidden, encoder_outs, encoder_padding_mask
)
if self.dropout is not None:
attention_out = self.dropout(attention_out)
attention_outs.append(attention_out)
input = attention_out
# collect the output of the top layer
outs.append(hidden)
# cache previous states (no-op except during incremental generation)
utils.set_incremental_state(
self, incremental_state, "cached_state", (prev_hiddens, prev_cells)
)
# collect outputs across time steps
x = torch.cat(outs, dim=0).view(seqlen, bsz, self.hidden_size)
attention_outs_concat = torch.cat(attention_outs, dim=0).view(
seqlen, bsz, self.context_dim
)
# T x B x C -> B x T x C
x = x.transpose(0, 1)
attention_outs_concat = attention_outs_concat.transpose(0, 1)
# concat LSTM output, attention output and embedding
# before output projection
x = torch.cat((x, attention_outs_concat, embeddings), dim=2)
x = self.deep_output_layer(x)
x = torch.tanh(x)
if self.dropout is not None:
x = self.dropout(x)
# project back to size of vocabulary
x = self.output_projection(x)
# to return the full attn_scores tensor, we need to fix the decoder
# to account for subsampling input frames
# return x, attn_scores
return x, None
def reorder_incremental_state(self, incremental_state, new_order):
super().reorder_incremental_state(incremental_state, new_order)
cached_state = utils.get_incremental_state(
self, incremental_state, "cached_state"
)
if cached_state is None:
return
def reorder_state(state):
if isinstance(state, list):
return [reorder_state(state_i) for state_i in state]
return state.index_select(0, new_order)
new_state = tuple(map(reorder_state, cached_state))
utils.set_incremental_state(self, incremental_state, "cached_state", new_state)
@register_model_architecture(model_name="s2t_berard", arch_name="s2t_berard")
def berard(args):
"""The original version: "End-to-End Automatic Speech Translation of
Audiobooks" (https://arxiv.org/abs/1802.04200)
"""
args.input_layers = getattr(args, "input_layers", "[256, 128]")
args.conv_layers = getattr(args, "conv_layers", "[(16, 3, 2), (16, 3, 2)]")
args.num_blstm_layers = getattr(args, "num_blstm_layers", 3)
args.lstm_size = getattr(args, "lstm_size", 256)
args.dropout = getattr(args, "dropout", 0.2)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 128)
args.decoder_num_layers = getattr(args, "decoder_num_layers", 2)
args.decoder_hidden_dim = getattr(args, "decoder_hidden_dim", 512)
args.attention_dim = getattr(args, "attention_dim", 512)
args.output_layer_dim = getattr(args, "output_layer_dim", 128)
args.load_pretrained_encoder_from = getattr(
args, "load_pretrained_encoder_from", None
)
args.load_pretrained_decoder_from = getattr(
args, "load_pretrained_decoder_from", None
)
@register_model_architecture(model_name="s2t_berard", arch_name="s2t_berard_256_3_3")
def berard_256_3_3(args):
"""Used in
* "Harnessing Indirect Training Data for End-to-End Automatic Speech
Translation: Tricks of the Trade" (https://arxiv.org/abs/1909.06515)
* "CoVoST: A Diverse Multilingual Speech-To-Text Translation Corpus"
(https://arxiv.org/pdf/2002.01320.pdf)
* "Self-Supervised Representations Improve End-to-End Speech Translation"
(https://arxiv.org/abs/2006.12124)
"""
args.decoder_num_layers = getattr(args, "decoder_num_layers", 3)
berard(args)
@register_model_architecture(model_name="s2t_berard", arch_name="s2t_berard_512_3_2")
def berard_512_3_2(args):
args.num_blstm_layers = getattr(args, "num_blstm_layers", 3)
args.lstm_size = getattr(args, "lstm_size", 512)
args.dropout = getattr(args, "dropout", 0.3)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 256)
args.decoder_num_layers = getattr(args, "decoder_num_layers", 2)
args.decoder_hidden_dim = getattr(args, "decoder_hidden_dim", 1024)
args.attention_dim = getattr(args, "attention_dim", 512)
args.output_layer_dim = getattr(args, "output_layer_dim", 256)
berard(args)
@register_model_architecture(model_name="s2t_berard", arch_name="s2t_berard_512_5_3")
def berard_512_5_3(args):
args.num_blstm_layers = getattr(args, "num_blstm_layers", 5)
args.lstm_size = getattr(args, "lstm_size", 512)
args.dropout = getattr(args, "dropout", 0.3)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 256)
args.decoder_num_layers = getattr(args, "decoder_num_layers", 3)
args.decoder_hidden_dim = getattr(args, "decoder_hidden_dim", 1024)
args.attention_dim = getattr(args, "attention_dim", 512)
args.output_layer_dim = getattr(args, "output_layer_dim", 256)
berard(args)
| data2vec_vision-main | deltalm/src/fairseq/models/speech_to_text/berard.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from .berard import * # noqa
from .s2t_transformer import * # noqa
| data2vec_vision-main | deltalm/src/fairseq/models/speech_to_text/__init__.py |
#!/usr/bin/env python3
import logging
import math
from typing import Dict, List, Optional, Tuple
import torch
import torch.nn as nn
from fairseq import checkpoint_utils, utils
from fairseq.data.data_utils import lengths_to_padding_mask
from fairseq.models import (
FairseqEncoder,
FairseqEncoderDecoderModel,
register_model,
register_model_architecture,
)
from fairseq.models.fairseq_encoder import EncoderOut
from fairseq.models.transformer import Embedding, TransformerDecoder
from fairseq.modules import (
FairseqDropout,
LayerNorm,
PositionalEmbedding,
TransformerEncoderLayer,
)
from torch import Tensor
logger = logging.getLogger(__name__)
class Conv1dSubsampler(nn.Module):
"""Convolutional subsampler: a stack of 1D convolution (along temporal
dimension) followed by non-linear activation via gated linear units
(https://arxiv.org/abs/1911.08460)
Args:
in_channels (int): the number of input channels
mid_channels (int): the number of intermediate channels
out_channels (int): the number of output channels
kernel_sizes (List[int]): the kernel size for each convolutional layer
"""
def __init__(
self,
in_channels: int,
mid_channels: int,
out_channels: int,
kernel_sizes: List[int] = (3, 3),
):
super(Conv1dSubsampler, self).__init__()
self.n_layers = len(kernel_sizes)
self.conv_layers = nn.ModuleList(
nn.Conv1d(
in_channels if i == 0 else mid_channels // 2,
mid_channels if i < self.n_layers - 1 else out_channels * 2,
k,
stride=2,
padding=k // 2,
)
for i, k in enumerate(kernel_sizes)
)
def get_out_seq_lens_tensor(self, in_seq_lens_tensor):
out = in_seq_lens_tensor.clone()
for _ in range(self.n_layers):
out = ((out.float() - 1) / 2 + 1).floor().long()
return out
def forward(self, src_tokens, src_lengths):
bsz, in_seq_len, _ = src_tokens.size() # B x T x (C x D)
x = src_tokens.transpose(1, 2).contiguous() # -> B x (C x D) x T
for conv in self.conv_layers:
x = conv(x)
x = nn.functional.glu(x, dim=1)
_, _, out_seq_len = x.size()
x = x.transpose(1, 2).transpose(0, 1).contiguous() # -> T x B x (C x D)
return x, self.get_out_seq_lens_tensor(src_lengths)
@register_model("s2t_transformer")
class S2TTransformerModel(FairseqEncoderDecoderModel):
"""Adapted Transformer model (https://arxiv.org/abs/1706.03762) for
speech-to-text tasks. The Transformer encoder/decoder remains the same.
A trainable input subsampler is prepended to the Transformer encoder to
project inputs into the encoder dimension as well as downsample input
sequence for computational efficiency."""
def __init__(self, encoder, decoder):
super().__init__(encoder, decoder)
@staticmethod
def add_args(parser):
"""Add model-specific arguments to the parser."""
# input
parser.add_argument(
"--conv-kernel-sizes",
type=str,
metavar="N",
help="kernel sizes of Conv1d subsampling layers",
)
parser.add_argument(
"--conv-channels",
type=int,
metavar="N",
help="# of channels in Conv1d subsampling layers",
)
# Transformer
parser.add_argument(
"--activation-fn",
type=str,
default="relu",
choices=utils.get_available_activation_fns(),
help="activation function to use",
)
parser.add_argument(
"--dropout", type=float, metavar="D", help="dropout probability"
)
parser.add_argument(
"--attention-dropout",
type=float,
metavar="D",
help="dropout probability for attention weights",
)
parser.add_argument(
"--activation-dropout",
"--relu-dropout",
type=float,
metavar="D",
help="dropout probability after activation in FFN.",
)
parser.add_argument(
"--encoder-embed-dim",
type=int,
metavar="N",
help="encoder embedding dimension",
)
parser.add_argument(
"--encoder-ffn-embed-dim",
type=int,
metavar="N",
help="encoder embedding dimension for FFN",
)
parser.add_argument(
"--encoder-layers", type=int, metavar="N", help="num encoder layers"
)
parser.add_argument(
"--encoder-attention-heads",
type=int,
metavar="N",
help="num encoder attention heads",
)
parser.add_argument(
"--encoder-normalize-before",
action="store_true",
help="apply layernorm before each encoder block",
)
parser.add_argument(
"--decoder-embed-dim",
type=int,
metavar="N",
help="decoder embedding dimension",
)
parser.add_argument(
"--decoder-ffn-embed-dim",
type=int,
metavar="N",
help="decoder embedding dimension for FFN",
)
parser.add_argument(
"--decoder-layers", type=int, metavar="N", help="num decoder layers"
)
parser.add_argument(
"--decoder-attention-heads",
type=int,
metavar="N",
help="num decoder attention heads",
)
parser.add_argument(
"--decoder-normalize-before",
action="store_true",
help="apply layernorm before each decoder block",
)
parser.add_argument(
"--share-decoder-input-output-embed",
action="store_true",
help="share decoder input and output embeddings",
)
parser.add_argument(
"--layernorm-embedding",
action="store_true",
help="add layernorm to embedding",
)
parser.add_argument(
"--no-scale-embedding",
action="store_true",
help="if True, dont scale embeddings",
)
parser.add_argument(
"--load-pretrained-encoder-from",
type=str,
metavar="STR",
help="model to take encoder weights from (for initialization)",
)
@classmethod
def build_encoder(cls, args):
encoder = S2TTransformerEncoder(args)
if getattr(args, "load_pretrained_encoder_from", None):
encoder = checkpoint_utils.load_pretrained_component_from_model(
component=encoder, checkpoint=args.load_pretrained_encoder_from
)
logger.info(
f"loaded pretrained encoder from: "
f"{args.load_pretrained_encoder_from}"
)
return encoder
@classmethod
def build_decoder(cls, args, task, embed_tokens):
return TransformerDecoderScriptable(args, task.target_dictionary, embed_tokens)
@classmethod
def build_model(cls, args, task):
"""Build a new model instance."""
# make sure all arguments are present in older models
base_architecture(args)
def build_embedding(dictionary, embed_dim):
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
return Embedding(num_embeddings, embed_dim, padding_idx)
decoder_embed_tokens = build_embedding(
task.target_dictionary, args.decoder_embed_dim
)
encoder = cls.build_encoder(args)
decoder = cls.build_decoder(args, task, decoder_embed_tokens)
return cls(encoder, decoder)
def get_normalized_probs(
self,
net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
log_probs: bool,
sample: Optional[Dict[str, Tensor]] = None,
):
# net_output['encoder_out'] is a (B, T, D) tensor
lprobs = self.get_normalized_probs_scriptable(net_output, log_probs, sample)
lprobs.batch_first = True
return lprobs
def forward(self, src_tokens, src_lengths, prev_output_tokens):
"""
The forward method inherited from the base class has a **kwargs
argument in its input, which is not supported in torchscript. This
method overrites the forward method definition without **kwargs.
"""
encoder_out = self.encoder(src_tokens=src_tokens, src_lengths=src_lengths)
decoder_out = self.decoder(
prev_output_tokens=prev_output_tokens, encoder_out=encoder_out
)
return decoder_out
class S2TTransformerEncoder(FairseqEncoder):
"""Speech-to-text Transformer encoder that consists of input subsampler and
Transformer encoder."""
def __init__(self, args):
super().__init__(None)
self.dropout_module = FairseqDropout(
p=args.dropout, module_name=self.__class__.__name__
)
self.embed_scale = math.sqrt(args.encoder_embed_dim)
if args.no_scale_embedding:
self.embed_scale = 1.0
self.padding_idx = 1
self.subsample = Conv1dSubsampler(
args.input_feat_per_channel * args.input_channels,
args.conv_channels,
args.encoder_embed_dim,
[int(k) for k in args.conv_kernel_sizes.split(",")],
)
self.embed_positions = PositionalEmbedding(
args.max_source_positions, args.encoder_embed_dim, self.padding_idx
)
self.transformer_layers = nn.ModuleList(
[TransformerEncoderLayer(args) for _ in range(args.encoder_layers)]
)
if args.encoder_normalize_before:
self.layer_norm = LayerNorm(args.encoder_embed_dim)
else:
self.layer_norm = None
def forward(self, src_tokens, src_lengths):
x, input_lengths = self.subsample(src_tokens, src_lengths)
x = self.embed_scale * x
encoder_padding_mask = lengths_to_padding_mask(input_lengths)
positions = self.embed_positions(encoder_padding_mask).transpose(0, 1)
x += positions
x = self.dropout_module(x)
for layer in self.transformer_layers:
x = layer(x, encoder_padding_mask)
if not encoder_padding_mask.any():
encoder_padding_mask = None
if self.layer_norm is not None:
x = self.layer_norm(x)
return EncoderOut(
encoder_out=x,
encoder_padding_mask=encoder_padding_mask,
encoder_embedding=None,
encoder_states=None,
src_tokens=None,
src_lengths=None,
)
@torch.jit.export
def reorder_encoder_out(self, encoder_out: EncoderOut, new_order):
"""
Since encoder_padding_mask and encoder_embedding are both of type
Optional[Tensor] in EncoderOut, they need to be copied as local
variables for Torchscript Optional refinement
"""
encoder_padding_mask: Optional[Tensor] = encoder_out.encoder_padding_mask
encoder_embedding: Optional[Tensor] = encoder_out.encoder_embedding
new_encoder_out = (
encoder_out.encoder_out
if encoder_out.encoder_out is None
else encoder_out.encoder_out.index_select(1, new_order)
)
new_encoder_padding_mask = (
encoder_padding_mask
if encoder_padding_mask is None
else encoder_padding_mask.index_select(0, new_order)
)
new_encoder_embedding = (
encoder_embedding
if encoder_embedding is None
else encoder_embedding.index_select(0, new_order)
)
encoder_states = encoder_out.encoder_states
if encoder_states is not None:
for idx, state in enumerate(encoder_states):
encoder_states[idx] = state.index_select(1, new_order)
return EncoderOut(
encoder_out=new_encoder_out, # T x B x C
encoder_padding_mask=new_encoder_padding_mask, # B x T
encoder_embedding=new_encoder_embedding, # B x T x C
encoder_states=encoder_states, # List[T x B x C]
src_tokens=None,
src_lengths=None,
)
class TransformerDecoderScriptable(TransformerDecoder):
def extract_features(
self,
prev_output_tokens,
encoder_out: Optional[EncoderOut] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
full_context_alignment: bool = False,
alignment_layer: Optional[int] = None,
alignment_heads: Optional[int] = None,
):
# call scriptable method from parent class
x, _ = self.extract_features_scriptable(
prev_output_tokens,
encoder_out,
incremental_state,
full_context_alignment,
alignment_layer,
alignment_heads,
)
return x, None
@register_model_architecture(model_name="s2t_transformer", arch_name="s2t_transformer")
def base_architecture(args):
# Convolutional subsampler
args.conv_kernel_sizes = getattr(args, "conv_kernel_sizes", "5,5")
args.conv_channels = getattr(args, "conv_channels", 1024)
# Transformer
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048)
args.encoder_layers = getattr(args, "encoder_layers", 12)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
args.decoder_ffn_embed_dim = getattr(
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
)
args.decoder_layers = getattr(args, "decoder_layers", 6)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True)
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
args.dropout = getattr(args, "dropout", 0.1)
args.attention_dropout = getattr(args, "attention_dropout", args.dropout)
args.activation_dropout = getattr(args, "activation_dropout", args.dropout)
args.activation_fn = getattr(args, "activation_fn", "relu")
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
args.share_decoder_input_output_embed = getattr(
args, "share_decoder_input_output_embed", True
)
args.no_token_positional_embeddings = getattr(
args, "no_token_positional_embeddings", False
)
args.adaptive_input = getattr(args, "adaptive_input", False)
args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0.0)
args.decoder_output_dim = getattr(
args, "decoder_output_dim", args.decoder_embed_dim
)
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
args.no_scale_embedding = getattr(args, "no_scale_embedding", False)
args.quant_noise_pq = getattr(args, "quant_noise_pq", 0)
@register_model_architecture("s2t_transformer", "s2t_transformer_s")
def s2t_transformer_s(args):
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 256)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 256 * 8)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4)
args.dropout = getattr(args, "dropout", 0.1)
base_architecture(args)
@register_model_architecture("s2t_transformer", "s2t_transformer_sp")
def s2t_transformer_sp(args):
args.encoder_layers = getattr(args, "encoder_layers", 16)
s2t_transformer_s(args)
@register_model_architecture("s2t_transformer", "s2t_transformer_m")
def s2t_transformer_m(args):
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 512 * 4)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
args.dropout = getattr(args, "dropout", 0.15)
base_architecture(args)
@register_model_architecture("s2t_transformer", "s2t_transformer_mp")
def s2t_transformer_mp(args):
args.encoder_layers = getattr(args, "encoder_layers", 16)
s2t_transformer_m(args)
@register_model_architecture("s2t_transformer", "s2t_transformer_l")
def s2t_transformer_l(args):
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024 * 4)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
args.dropout = getattr(args, "dropout", 0.2)
base_architecture(args)
@register_model_architecture("s2t_transformer", "s2t_transformer_lp")
def s2t_transformer_lp(args):
args.encoder_layers = getattr(args, "encoder_layers", 16)
s2t_transformer_l(args)
| data2vec_vision-main | deltalm/src/fairseq/models/speech_to_text/s2t_transformer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from fairseq.utils import new_arange
# -------------- Helper Functions --------------------------------------------------- #
def load_libnat():
try:
from fairseq import libnat_cuda
return libnat_cuda, True
except ImportError as e:
print(str(e) + "... fall back to CPU version")
try:
from fairseq import libnat
return libnat, False
except ImportError as e:
import sys
sys.stderr.write(
"ERROR: missing libnat_cuda. run `python setup.py build_ext --inplace`\n"
)
raise e
def _get_ins_targets(in_tokens, out_tokens, padding_idx, unk_idx):
libnat, use_cuda = load_libnat()
def _get_ins_targets_cuda(in_tokens, out_tokens, padding_idx, unk_idx):
in_masks = in_tokens.ne(padding_idx)
out_masks = out_tokens.ne(padding_idx)
mask_ins_targets, masked_tgt_masks = libnat.generate_insertion_labels(
out_tokens.int(),
libnat.levenshtein_distance(
in_tokens.int(),
out_tokens.int(),
in_masks.sum(1).int(),
out_masks.sum(1).int(),
),
)
masked_tgt_masks = masked_tgt_masks.bool() & out_masks
mask_ins_targets = mask_ins_targets.type_as(in_tokens)[
:, 1 : in_masks.size(1)
].masked_fill_(~in_masks[:, 1:], 0)
masked_tgt_tokens = out_tokens.masked_fill(masked_tgt_masks, unk_idx)
return masked_tgt_masks, masked_tgt_tokens, mask_ins_targets
def _get_ins_targets_cpu(in_tokens, out_tokens, padding_idx, unk_idx):
in_seq_len, out_seq_len = in_tokens.size(1), out_tokens.size(1)
in_tokens_list = [
[t for t in s if t != padding_idx] for i, s in enumerate(in_tokens.tolist())
]
out_tokens_list = [
[t for t in s if t != padding_idx]
for i, s in enumerate(out_tokens.tolist())
]
full_labels = libnat.suggested_ed2_path(
in_tokens_list, out_tokens_list, padding_idx
)
mask_inputs = [
[len(c) if c[0] != padding_idx else 0 for c in a[:-1]] for a in full_labels
]
# generate labels
masked_tgt_masks = []
for mask_input in mask_inputs:
mask_label = []
for beam_size in mask_input[1:-1]: # HACK 1:-1
mask_label += [0] + [1 for _ in range(beam_size)]
masked_tgt_masks.append(
mask_label + [0 for _ in range(out_seq_len - len(mask_label))]
)
mask_ins_targets = [
mask_input[1:-1]
+ [0 for _ in range(in_seq_len - 1 - len(mask_input[1:-1]))]
for mask_input in mask_inputs
]
# transform to tensor
masked_tgt_masks = torch.tensor(
masked_tgt_masks, device=out_tokens.device
).bool()
mask_ins_targets = torch.tensor(mask_ins_targets, device=in_tokens.device)
masked_tgt_tokens = out_tokens.masked_fill(masked_tgt_masks, unk_idx)
return masked_tgt_masks, masked_tgt_tokens, mask_ins_targets
if use_cuda:
return _get_ins_targets_cuda(in_tokens, out_tokens, padding_idx, unk_idx)
return _get_ins_targets_cpu(in_tokens, out_tokens, padding_idx, unk_idx)
def _get_del_targets(in_tokens, out_tokens, padding_idx):
libnat, use_cuda = load_libnat()
def _get_del_targets_cuda(in_tokens, out_tokens, padding_idx):
in_masks = in_tokens.ne(padding_idx)
out_masks = out_tokens.ne(padding_idx)
word_del_targets = libnat.generate_deletion_labels(
in_tokens.int(),
libnat.levenshtein_distance(
in_tokens.int(),
out_tokens.int(),
in_masks.sum(1).int(),
out_masks.sum(1).int(),
),
)
word_del_targets = word_del_targets.type_as(in_tokens).masked_fill_(
~in_masks, 0
)
return word_del_targets
def _get_del_targets_cpu(in_tokens, out_tokens, padding_idx):
out_seq_len = out_tokens.size(1)
with torch.cuda.device_of(in_tokens):
in_tokens_list = [
[t for t in s if t != padding_idx]
for i, s in enumerate(in_tokens.tolist())
]
out_tokens_list = [
[t for t in s if t != padding_idx]
for i, s in enumerate(out_tokens.tolist())
]
full_labels = libnat.suggested_ed2_path(
in_tokens_list, out_tokens_list, padding_idx
)
word_del_targets = [b[-1] for b in full_labels]
word_del_targets = [
labels + [0 for _ in range(out_seq_len - len(labels))]
for labels in word_del_targets
]
# transform to tensor
word_del_targets = torch.tensor(word_del_targets, device=out_tokens.device)
return word_del_targets
if use_cuda:
return _get_del_targets_cuda(in_tokens, out_tokens, padding_idx)
return _get_del_targets_cpu(in_tokens, out_tokens, padding_idx)
def _apply_ins_masks(
in_tokens, in_scores, mask_ins_pred, padding_idx, unk_idx, eos_idx
):
in_masks = in_tokens.ne(padding_idx)
in_lengths = in_masks.sum(1)
# HACK: hacky way to shift all the paddings to eos first.
in_tokens.masked_fill_(~in_masks, eos_idx)
mask_ins_pred.masked_fill_(~in_masks[:, 1:], 0)
out_lengths = in_lengths + mask_ins_pred.sum(1)
out_max_len = out_lengths.max()
out_masks = new_arange(out_lengths, out_max_len)[None, :] < out_lengths[:, None]
reordering = (mask_ins_pred + in_masks[:, 1:].long()).cumsum(1)
out_tokens = (
in_tokens.new_zeros(in_tokens.size(0), out_max_len)
.fill_(padding_idx)
.masked_fill_(out_masks, unk_idx)
)
out_tokens[:, 0] = in_tokens[:, 0]
out_tokens.scatter_(1, reordering, in_tokens[:, 1:])
out_scores = None
if in_scores is not None:
in_scores.masked_fill_(~in_masks, 0)
out_scores = in_scores.new_zeros(*out_tokens.size())
out_scores[:, 0] = in_scores[:, 0]
out_scores.scatter_(1, reordering, in_scores[:, 1:])
return out_tokens, out_scores
def _apply_ins_words(in_tokens, in_scores, word_ins_pred, word_ins_scores, unk_idx):
word_ins_masks = in_tokens.eq(unk_idx)
out_tokens = in_tokens.masked_scatter(word_ins_masks, word_ins_pred[word_ins_masks])
if in_scores is not None:
out_scores = in_scores.masked_scatter(
word_ins_masks, word_ins_scores[word_ins_masks]
)
else:
out_scores = None
return out_tokens, out_scores
def _apply_del_words(
in_tokens, in_scores, in_attn, word_del_pred, padding_idx, bos_idx, eos_idx
):
# apply deletion to a tensor
in_masks = in_tokens.ne(padding_idx)
bos_eos_masks = in_tokens.eq(bos_idx) | in_tokens.eq(eos_idx)
max_len = in_tokens.size(1)
word_del_pred.masked_fill_(~in_masks, 1)
word_del_pred.masked_fill_(bos_eos_masks, 0)
reordering = new_arange(in_tokens).masked_fill_(word_del_pred, max_len).sort(1)[1]
out_tokens = in_tokens.masked_fill(word_del_pred, padding_idx).gather(1, reordering)
out_scores = None
if in_scores is not None:
out_scores = in_scores.masked_fill(word_del_pred, 0).gather(1, reordering)
out_attn = None
if in_attn is not None:
_mask = word_del_pred[:, :, None].expand_as(in_attn)
_reordering = reordering[:, :, None].expand_as(in_attn)
out_attn = in_attn.masked_fill(_mask, 0.0).gather(1, _reordering)
return out_tokens, out_scores, out_attn
def _skip(x, mask):
"""
Getting sliced (dim=0) tensor by mask. Supporting tensor and list/dict of tensors.
"""
if isinstance(x, int):
return x
if x is None:
return None
if isinstance(x, torch.Tensor):
if x.size(0) == mask.size(0):
return x[mask]
elif x.size(1) == mask.size(0):
return x[:, mask]
if isinstance(x, list):
return [_skip(x_i, mask) for x_i in x]
if isinstance(x, dict):
return {k: _skip(v, mask) for k, v in x.items()}
raise NotImplementedError
def _skip_encoder_out(encoder, encoder_out, mask):
if not mask.any():
return encoder_out
else:
return encoder.reorder_encoder_out(
encoder_out, mask.nonzero(as_tuple=False).squeeze()
)
def _fill(x, mask, y, padding_idx):
"""
Filling tensor x with y at masked positions (dim=0).
"""
if x is None:
return y
assert x.dim() == y.dim() and mask.size(0) == x.size(0)
assert x.dim() == 2 or (x.dim() == 3 and x.size(2) == y.size(2))
n_selected = mask.sum()
assert n_selected == y.size(0)
if n_selected == x.size(0):
return y
if x.size(1) < y.size(1):
dims = [x.size(0), y.size(1) - x.size(1)]
if x.dim() == 3:
dims.append(x.size(2))
x = torch.cat([x, x.new_zeros(*dims).fill_(padding_idx)], 1)
x[mask] = y
elif x.size(1) > y.size(1):
x[mask] = padding_idx
if x.dim() == 2:
x[mask, : y.size(1)] = y
else:
x[mask, : y.size(1), :] = y
else:
x[mask] = y
return x
| data2vec_vision-main | deltalm/src/fairseq/models/nat/levenshtein_utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from fairseq.models import register_model, register_model_architecture
from fairseq.models.nat import NATransformerModel
def _sequential_poisoning(s, V, beta=0.33, bos=2, eos=3, pad=1):
# s: input batch
# V: vocabulary size
rand_words = torch.randint(low=4, high=V, size=s.size(), device=s.device)
choices = torch.rand(size=s.size(), device=s.device)
choices.masked_fill_((s == pad) | (s == bos) | (s == eos), 1)
replace = choices < beta / 3
repeat = (choices >= beta / 3) & (choices < beta * 2 / 3)
swap = (choices >= beta * 2 / 3) & (choices < beta)
safe = choices >= beta
for i in range(s.size(1) - 1):
rand_word = rand_words[:, i]
next_word = s[:, i + 1]
self_word = s[:, i]
replace_i = replace[:, i]
swap_i = swap[:, i] & (next_word != 3)
repeat_i = repeat[:, i] & (next_word != 3)
safe_i = safe[:, i] | ((next_word == 3) & (~replace_i))
s[:, i] = (
self_word * (safe_i | repeat_i).long()
+ next_word * swap_i.long()
+ rand_word * replace_i.long()
)
s[:, i + 1] = (
next_word * (safe_i | replace_i).long()
+ self_word * (swap_i | repeat_i).long()
)
return s
def gumbel_noise(input, TINY=1e-8):
return (
input.new_zeros(*input.size())
.uniform_()
.add_(TINY)
.log_()
.neg_()
.add_(TINY)
.log_()
.neg_()
)
@register_model("iterative_nonautoregressive_transformer")
class IterNATransformerModel(NATransformerModel):
@staticmethod
def add_args(parser):
NATransformerModel.add_args(parser)
parser.add_argument(
"--train-step",
type=int,
help="number of refinement iterations during training",
)
parser.add_argument(
"--dae-ratio",
type=float,
help="the probability of switching to the denoising auto-encoder loss",
)
parser.add_argument(
"--stochastic-approx",
action="store_true",
help="sampling from the decoder as the inputs for next iteration",
)
@classmethod
def build_model(cls, args, task):
model = super().build_model(args, task)
model.train_step = getattr(args, "train_step", 4)
model.dae_ratio = getattr(args, "dae_ratio", 0.5)
model.stochastic_approx = getattr(args, "stochastic_approx", False)
return model
def forward(
self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs
):
B, T = prev_output_tokens.size()
# encoding
encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs)
# length prediction
length_out = self.decoder.forward_length(
normalize=False, encoder_out=encoder_out
)
length_tgt = self.decoder.forward_length_prediction(
length_out, encoder_out, tgt_tokens
)
# decoding
word_ins_outs, word_ins_tgts, word_ins_masks = [], [], []
for t in range(self.train_step):
word_ins_out = self.decoder(
normalize=False,
prev_output_tokens=prev_output_tokens,
encoder_out=encoder_out,
step=t,
)
word_ins_tgt = tgt_tokens
word_ins_mask = word_ins_tgt.ne(self.pad)
word_ins_outs.append(word_ins_out)
word_ins_tgts.append(word_ins_tgt)
word_ins_masks.append(word_ins_mask)
if t < (self.train_step - 1):
# prediction for next iteration
if self.stochastic_approx:
word_ins_prediction = (
word_ins_out + gumbel_noise(word_ins_out)
).max(-1)[1]
else:
word_ins_prediction = word_ins_out.max(-1)[1]
prev_output_tokens = prev_output_tokens.masked_scatter(
word_ins_mask, word_ins_prediction[word_ins_mask]
)
if self.dae_ratio > 0:
# we do not perform denoising for the first iteration
corrputed = (
torch.rand(size=(B,), device=prev_output_tokens.device)
< self.dae_ratio
)
corrputed_tokens = _sequential_poisoning(
tgt_tokens[corrputed],
len(self.tgt_dict),
0.33,
self.bos,
self.eos,
self.pad,
)
prev_output_tokens[corrputed] = corrputed_tokens
# concat everything
word_ins_out = torch.cat(word_ins_outs, 0)
word_ins_tgt = torch.cat(word_ins_tgts, 0)
word_ins_mask = torch.cat(word_ins_masks, 0)
return {
"word_ins": {
"out": word_ins_out,
"tgt": word_ins_tgt,
"mask": word_ins_mask,
"ls": self.args.label_smoothing,
"nll_loss": True,
},
"length": {
"out": length_out,
"tgt": length_tgt,
"factor": self.decoder.length_loss_factor,
},
}
@register_model_architecture(
"iterative_nonautoregressive_transformer", "iterative_nonautoregressive_transformer"
)
def inat_base_architecture(args):
args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048)
args.encoder_layers = getattr(args, "encoder_layers", 6)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False)
args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
args.decoder_ffn_embed_dim = getattr(
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
)
args.decoder_layers = getattr(args, "decoder_layers", 6)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
args.attention_dropout = getattr(args, "attention_dropout", 0.0)
args.activation_dropout = getattr(args, "activation_dropout", 0.0)
args.activation_fn = getattr(args, "activation_fn", "relu")
args.dropout = getattr(args, "dropout", 0.1)
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
args.share_decoder_input_output_embed = getattr(
args, "share_decoder_input_output_embed", False
)
args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
args.no_token_positional_embeddings = getattr(
args, "no_token_positional_embeddings", False
)
args.adaptive_input = getattr(args, "adaptive_input", False)
args.apply_bert_init = getattr(args, "apply_bert_init", False)
args.decoder_output_dim = getattr(
args, "decoder_output_dim", args.decoder_embed_dim
)
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
# --- special arguments ---
args.sg_length_pred = getattr(args, "sg_length_pred", False)
args.pred_length_offset = getattr(args, "pred_length_offset", False)
args.length_loss_factor = getattr(args, "length_loss_factor", 0.1)
args.ngram_predictor = getattr(args, "ngram_predictor", 1)
args.src_embedding_copy = getattr(args, "src_embedding_copy", False)
args.train_step = getattr(args, "train_step", 4)
args.dae_ratio = getattr(args, "dae_ratio", 0.5)
args.stochastic_approx = getattr(args, "stochastic_approx", False)
@register_model_architecture(
"iterative_nonautoregressive_transformer",
"iterative_nonautoregressive_transformer_wmt_en_de",
)
def iter_nat_wmt_en_de(args):
inat_base_architecture(args)
| data2vec_vision-main | deltalm/src/fairseq/models/nat/iterative_nonautoregressive_transformer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import torch
from fairseq.models.transformer import (
TransformerDecoder,
TransformerEncoder,
TransformerModel,
)
from fairseq.modules.transformer_sentence_encoder import init_bert_params
def ensemble_encoder(func):
def wrapper(self, *args, **kwargs):
if self.ensemble_models is None or len(self.ensemble_models) == 1:
return func(self, *args, **kwargs)
encoder_outs = [func(model, *args, **kwargs, return_all_hiddens=True) for model in self.ensemble_models]
_encoder_out = encoder_outs[0].copy()
def stack(key):
outs = [e[key][0] for e in encoder_outs]
return [torch.stack(outs, -1) if outs[0] is not None else None]
_encoder_out["encoder_out"] = stack("encoder_out")
_encoder_out["encoder_embedding"] = stack("encoder_embedding")
num_layers = len(_encoder_out["encoder_states"])
if num_layers > 0:
_encoder_out["encoder_states"] = [
torch.stack([e["encoder_states"][i] for e in encoder_outs], -1)
for i in range(num_layers)
]
return _encoder_out
return wrapper
def ensemble_decoder(func):
def wrapper(self, normalize=False, encoder_out=None, *args, **kwargs):
if self.ensemble_models is None or len(self.ensemble_models) == 1:
return func(
self, normalize=normalize, encoder_out=encoder_out, *args, **kwargs
)
def _replace(encoder_out, new_val):
new_encoder_out = encoder_out.copy()
new_encoder_out["encoder_out"] = [new_val]
return new_encoder_out
action_outs = [
func(
model,
normalize=normalize,
encoder_out=_replace(
encoder_out,
encoder_out["encoder_out"][0][:, :, :, i]
),
*args,
**kwargs
)
for i, model in enumerate(self.ensemble_models)
]
if not isinstance(action_outs[0], tuple): # return multiple values
action_outs = [[a] for a in action_outs]
else:
action_outs = [list(a) for a in action_outs]
ensembled_outs = []
for i in range(len(action_outs[0])):
if i == 0 and normalize:
ensembled_outs += [
torch.logsumexp(
torch.stack([a[i] for a in action_outs], -1), dim=-1
)
- math.log(len(self.ensemble_models))
]
elif action_outs[0][i] is not None:
ensembled_outs += [torch.stack([a[i] for a in action_outs], -1)]
else:
ensembled_outs += [None]
if len(ensembled_outs) == 1:
return ensembled_outs[0]
return tuple(ensembled_outs)
return wrapper
class FairseqNATModel(TransformerModel):
"""
Abstract class for all nonautoregressive-based models
"""
def __init__(self, args, encoder, decoder):
super().__init__(args, encoder, decoder)
self.tgt_dict = decoder.dictionary
self.bos = decoder.dictionary.bos()
self.eos = decoder.dictionary.eos()
self.pad = decoder.dictionary.pad()
self.unk = decoder.dictionary.unk()
self.ensemble_models = None
@property
def allow_length_beam(self):
return False
@property
def allow_ensemble(self):
return True
def enable_ensemble(self, models):
self.encoder.ensemble_models = [m.encoder for m in models]
self.decoder.ensemble_models = [m.decoder for m in models]
@staticmethod
def add_args(parser):
TransformerModel.add_args(parser)
parser.add_argument(
"--apply-bert-init",
action="store_true",
help="use custom param initialization for BERT",
)
@classmethod
def build_decoder(cls, args, tgt_dict, embed_tokens):
decoder = FairseqNATDecoder(args, tgt_dict, embed_tokens)
if getattr(args, "apply_bert_init", False):
decoder.apply(init_bert_params)
return decoder
@classmethod
def build_encoder(cls, args, src_dict, embed_tokens):
encoder = FairseqNATEncoder(args, src_dict, embed_tokens)
if getattr(args, "apply_bert_init", False):
encoder.apply(init_bert_params)
return encoder
def forward_encoder(self, encoder_inputs):
return self.encoder(*encoder_inputs)
def forward_decoder(self, *args, **kwargs):
return NotImplementedError
def initialize_output_tokens(self, *args, **kwargs):
return NotImplementedError
def forward(self, *args, **kwargs):
return NotImplementedError
class FairseqNATEncoder(TransformerEncoder):
def __init__(self, args, dictionary, embed_tokens):
super().__init__(args, dictionary, embed_tokens)
self.ensemble_models = None
@ensemble_encoder
def forward(self, *args, **kwargs):
return super().forward(*args, **kwargs)
class FairseqNATDecoder(TransformerDecoder):
def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False):
super().__init__(args, dictionary, embed_tokens, no_encoder_attn)
self.ensemble_models = None
| data2vec_vision-main | deltalm/src/fairseq/models/nat/fairseq_nat_model.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""isort:skip_file"""
from .fairseq_nat_model import *
from .nonautoregressive_transformer import *
from .nat_crf_transformer import *
from .iterative_nonautoregressive_transformer import *
from .cmlm_transformer import *
from .levenshtein_transformer import *
from .insertion_transformer import *
| data2vec_vision-main | deltalm/src/fairseq/models/nat/__init__.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq.iterative_refinement_generator import DecoderOut
from fairseq.models import register_model, register_model_architecture
from fairseq.models.nat import FairseqNATDecoder, FairseqNATModel, ensemble_decoder
from fairseq.models.transformer import Embedding, TransformerDecoderLayer
from fairseq.modules.transformer_sentence_encoder import init_bert_params
from .levenshtein_utils import (
_apply_del_words,
_apply_ins_masks,
_apply_ins_words,
_fill,
_get_del_targets,
_get_ins_targets,
_skip,
_skip_encoder_out,
)
@register_model("levenshtein_transformer")
class LevenshteinTransformerModel(FairseqNATModel):
@property
def allow_length_beam(self):
return False
@staticmethod
def add_args(parser):
FairseqNATModel.add_args(parser)
parser.add_argument(
"--early-exit",
default="6,6,6",
type=str,
help="number of decoder layers before word_del, mask_ins, word_ins",
)
parser.add_argument(
"--no-share-discriminator",
action="store_true",
help="separate parameters for discriminator",
)
parser.add_argument(
"--no-share-maskpredictor",
action="store_true",
help="separate parameters for mask-predictor",
)
parser.add_argument(
"--share-discriminator-maskpredictor",
action="store_true",
help="share the parameters for both mask-predictor and discriminator",
)
parser.add_argument(
"--sampling-for-deletion",
action="store_true",
help="instead of argmax, use sampling to predict the tokens",
)
@classmethod
def build_decoder(cls, args, tgt_dict, embed_tokens):
decoder = LevenshteinTransformerDecoder(args, tgt_dict, embed_tokens)
if getattr(args, "apply_bert_init", False):
decoder.apply(init_bert_params)
return decoder
def forward(
self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs
):
assert tgt_tokens is not None, "forward function only supports training."
# encoding
encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs)
# generate training labels for insertion
masked_tgt_masks, masked_tgt_tokens, mask_ins_targets = _get_ins_targets(
prev_output_tokens, tgt_tokens, self.pad, self.unk
)
mask_ins_targets = mask_ins_targets.clamp(min=0, max=255) # for safe prediction
mask_ins_masks = prev_output_tokens[:, 1:].ne(self.pad)
mask_ins_out, _ = self.decoder.forward_mask_ins(
normalize=False,
prev_output_tokens=prev_output_tokens,
encoder_out=encoder_out,
)
word_ins_out, _ = self.decoder.forward_word_ins(
normalize=False,
prev_output_tokens=masked_tgt_tokens,
encoder_out=encoder_out,
)
# make online prediction
if self.decoder.sampling_for_deletion:
word_predictions = torch.multinomial(
F.softmax(word_ins_out, -1).view(-1, word_ins_out.size(-1)), 1
).view(word_ins_out.size(0), -1)
else:
word_predictions = F.log_softmax(word_ins_out, dim=-1).max(2)[1]
word_predictions.masked_scatter_(
~masked_tgt_masks, tgt_tokens[~masked_tgt_masks]
)
# generate training labels for deletion
word_del_targets = _get_del_targets(word_predictions, tgt_tokens, self.pad)
word_del_out, _ = self.decoder.forward_word_del(
normalize=False,
prev_output_tokens=word_predictions,
encoder_out=encoder_out,
)
word_del_masks = word_predictions.ne(self.pad)
return {
"mask_ins": {
"out": mask_ins_out,
"tgt": mask_ins_targets,
"mask": mask_ins_masks,
"ls": 0.01,
},
"word_ins": {
"out": word_ins_out,
"tgt": tgt_tokens,
"mask": masked_tgt_masks,
"ls": self.args.label_smoothing,
"nll_loss": True,
},
"word_del": {
"out": word_del_out,
"tgt": word_del_targets,
"mask": word_del_masks,
},
}
def forward_decoder(
self, decoder_out, encoder_out, eos_penalty=0.0, max_ratio=None, **kwargs
):
output_tokens = decoder_out.output_tokens
output_scores = decoder_out.output_scores
attn = decoder_out.attn
history = decoder_out.history
bsz = output_tokens.size(0)
if max_ratio is None:
max_lens = torch.zeros_like(output_tokens).fill_(255)
else:
if not encoder_out["encoder_padding_mask"]:
max_src_len = encoder_out["encoder_out"].size(0)
src_lens = encoder_out["encoder_out"].new(bsz).fill_(max_src_len)
else:
src_lens = (~encoder_out["encoder_padding_mask"][0]).sum(1)
max_lens = (src_lens * max_ratio).clamp(min=10).long()
# delete words
# do not delete tokens if it is <s> </s>
can_del_word = output_tokens.ne(self.pad).sum(1) > 2
if can_del_word.sum() != 0: # we cannot delete, skip
word_del_score, word_del_attn = self.decoder.forward_word_del(
normalize=True,
prev_output_tokens=_skip(output_tokens, can_del_word),
encoder_out=_skip_encoder_out(self.encoder, encoder_out, can_del_word),
)
word_del_pred = word_del_score.max(-1)[1].bool()
_tokens, _scores, _attn = _apply_del_words(
output_tokens[can_del_word],
output_scores[can_del_word],
word_del_attn,
word_del_pred,
self.pad,
self.bos,
self.eos,
)
output_tokens = _fill(output_tokens, can_del_word, _tokens, self.pad)
output_scores = _fill(output_scores, can_del_word, _scores, 0)
attn = _fill(attn, can_del_word, _attn, 0.0)
if history is not None:
history.append(output_tokens.clone())
# insert placeholders
can_ins_mask = output_tokens.ne(self.pad).sum(1) < max_lens
if can_ins_mask.sum() != 0:
mask_ins_score, _ = self.decoder.forward_mask_ins(
normalize=True,
prev_output_tokens=_skip(output_tokens, can_ins_mask),
encoder_out=_skip_encoder_out(self.encoder, encoder_out, can_ins_mask),
)
if eos_penalty > 0.0:
mask_ins_score[:, :, 0] = mask_ins_score[:, :, 0] - eos_penalty
mask_ins_pred = mask_ins_score.max(-1)[1]
mask_ins_pred = torch.min(
mask_ins_pred, max_lens[can_ins_mask, None].expand_as(mask_ins_pred)
)
_tokens, _scores = _apply_ins_masks(
output_tokens[can_ins_mask],
output_scores[can_ins_mask],
mask_ins_pred,
self.pad,
self.unk,
self.eos,
)
output_tokens = _fill(output_tokens, can_ins_mask, _tokens, self.pad)
output_scores = _fill(output_scores, can_ins_mask, _scores, 0)
if history is not None:
history.append(output_tokens.clone())
# insert words
can_ins_word = output_tokens.eq(self.unk).sum(1) > 0
if can_ins_word.sum() != 0:
word_ins_score, word_ins_attn = self.decoder.forward_word_ins(
normalize=True,
prev_output_tokens=_skip(output_tokens, can_ins_word),
encoder_out=_skip_encoder_out(self.encoder, encoder_out, can_ins_word),
)
word_ins_score, word_ins_pred = word_ins_score.max(-1)
_tokens, _scores = _apply_ins_words(
output_tokens[can_ins_word],
output_scores[can_ins_word],
word_ins_pred,
word_ins_score,
self.unk,
)
output_tokens = _fill(output_tokens, can_ins_word, _tokens, self.pad)
output_scores = _fill(output_scores, can_ins_word, _scores, 0)
attn = _fill(attn, can_ins_word, word_ins_attn, 0.0)
if history is not None:
history.append(output_tokens.clone())
# delete some unnecessary paddings
cut_off = output_tokens.ne(self.pad).sum(1).max()
output_tokens = output_tokens[:, :cut_off]
output_scores = output_scores[:, :cut_off]
attn = None if attn is None else attn[:, :cut_off, :]
return decoder_out._replace(
output_tokens=output_tokens,
output_scores=output_scores,
attn=attn,
history=history,
)
def initialize_output_tokens(self, encoder_out, src_tokens):
initial_output_tokens = src_tokens.new_zeros(src_tokens.size(0), 2)
initial_output_tokens[:, 0] = self.bos
initial_output_tokens[:, 1] = self.eos
initial_output_scores = initial_output_tokens.new_zeros(
*initial_output_tokens.size()
).type_as(encoder_out["encoder_out"][0])
return DecoderOut(
output_tokens=initial_output_tokens,
output_scores=initial_output_scores,
attn=None,
step=0,
max_step=0,
history=None,
)
class LevenshteinTransformerDecoder(FairseqNATDecoder):
def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False):
super().__init__(
args, dictionary, embed_tokens, no_encoder_attn=no_encoder_attn
)
self.dictionary = dictionary
self.bos = dictionary.bos()
self.unk = dictionary.unk()
self.eos = dictionary.eos()
self.sampling_for_deletion = getattr(args, "sampling_for_deletion", False)
self.embed_mask_ins = Embedding(256, self.output_embed_dim * 2, None)
self.embed_word_del = Embedding(2, self.output_embed_dim, None)
# del_word, ins_mask, ins_word
self.early_exit = [int(i) for i in args.early_exit.split(",")]
assert len(self.early_exit) == 3
# copy layers for mask-predict/deletion
self.layers_msk = None
if getattr(args, "no_share_maskpredictor", False):
self.layers_msk = nn.ModuleList(
[
TransformerDecoderLayer(args, no_encoder_attn)
for _ in range(self.early_exit[1])
]
)
self.layers_del = None
if getattr(args, "no_share_discriminator", False):
self.layers_del = nn.ModuleList(
[
TransformerDecoderLayer(args, no_encoder_attn)
for _ in range(self.early_exit[0])
]
)
if getattr(args, "share_discriminator_maskpredictor", False):
assert getattr(
args, "no_share_discriminator", False
), "must set saperate discriminator"
self.layers_msk = self.layers_del
def extract_features(
self,
prev_output_tokens,
encoder_out=None,
early_exit=None,
layers=None,
**unused
):
"""
Similar to *forward* but only return features.
Inputs:
prev_output_tokens: Tensor(B, T)
encoder_out: a dictionary of hidden states and masks
Returns:
tuple:
- the decoder's features of shape `(batch, tgt_len, embed_dim)`
- a dictionary with any model-specific outputs
the LevenshteinTransformer decoder has full-attention to all generated tokens
"""
# embed positions
positions = (
self.embed_positions(prev_output_tokens)
if self.embed_positions is not None
else None
)
# embed tokens and positions
x = self.embed_scale * self.embed_tokens(prev_output_tokens)
if self.project_in_dim is not None:
x = self.project_in_dim(x)
if positions is not None:
x += positions
x = self.dropout_module(x)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
attn = None
inner_states = [x]
# decoder layers
decoder_padding_mask = prev_output_tokens.eq(self.padding_idx)
layers = self.layers if layers is None else layers
early_exit = len(layers) if early_exit is None else early_exit
for _, layer in enumerate(layers[:early_exit]):
x, attn, _ = layer(
x,
encoder_out["encoder_out"][0]
if (encoder_out is not None and len(encoder_out["encoder_out"]) > 0)
else None,
encoder_out["encoder_padding_mask"][0]
if (
encoder_out is not None
and len(encoder_out["encoder_padding_mask"]) > 0
)
else None,
self_attn_mask=None,
self_attn_padding_mask=decoder_padding_mask,
)
inner_states.append(x)
if self.layer_norm:
x = self.layer_norm(x)
# T x B x C -> B x T x C
x = x.transpose(0, 1)
if self.project_out_dim is not None:
x = self.project_out_dim(x)
return x, {"attn": attn, "inner_states": inner_states}
@ensemble_decoder
def forward_mask_ins(self, normalize, encoder_out, prev_output_tokens, **unused):
features, extra = self.extract_features(
prev_output_tokens,
encoder_out=encoder_out,
early_exit=self.early_exit[1],
layers=self.layers_msk,
**unused
)
features_cat = torch.cat([features[:, :-1, :], features[:, 1:, :]], 2)
decoder_out = F.linear(features_cat, self.embed_mask_ins.weight)
if normalize:
return F.log_softmax(decoder_out, -1), extra["attn"]
return decoder_out, extra["attn"]
@ensemble_decoder
def forward_word_ins(self, normalize, encoder_out, prev_output_tokens, **unused):
features, extra = self.extract_features(
prev_output_tokens,
encoder_out=encoder_out,
early_exit=self.early_exit[2],
layers=self.layers,
**unused
)
decoder_out = self.output_layer(features)
if normalize:
return F.log_softmax(decoder_out, -1), extra["attn"]
return decoder_out, extra["attn"]
@ensemble_decoder
def forward_word_del(self, normalize, encoder_out, prev_output_tokens, **unused):
features, extra = self.extract_features(
prev_output_tokens,
encoder_out=encoder_out,
early_exit=self.early_exit[0],
layers=self.layers_del,
**unused
)
decoder_out = F.linear(features, self.embed_word_del.weight)
if normalize:
return F.log_softmax(decoder_out, -1), extra["attn"]
return decoder_out, extra["attn"]
@register_model_architecture("levenshtein_transformer", "levenshtein_transformer")
def levenshtein_base_architecture(args):
args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048)
args.encoder_layers = getattr(args, "encoder_layers", 6)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False)
args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
args.decoder_ffn_embed_dim = getattr(
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
)
args.decoder_layers = getattr(args, "decoder_layers", 6)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
args.attention_dropout = getattr(args, "attention_dropout", 0.0)
args.activation_dropout = getattr(args, "activation_dropout", 0.0)
args.activation_fn = getattr(args, "activation_fn", "relu")
args.dropout = getattr(args, "dropout", 0.1)
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
args.share_decoder_input_output_embed = getattr(
args, "share_decoder_input_output_embed", False
)
args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
args.no_token_positional_embeddings = getattr(
args, "no_token_positional_embeddings", False
)
args.adaptive_input = getattr(args, "adaptive_input", False)
args.apply_bert_init = getattr(args, "apply_bert_init", False)
args.decoder_output_dim = getattr(
args, "decoder_output_dim", args.decoder_embed_dim
)
args.sampling_for_deletion = getattr(args, "sampling_for_deletion", False)
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
args.early_exit = getattr(args, "early_exit", "6,6,6")
args.no_share_discriminator = getattr(args, "no_share_discriminator", False)
args.no_share_maskpredictor = getattr(args, "no_share_maskpredictor", False)
args.share_discriminator_maskpredictor = getattr(
args, "share_discriminator_maskpredictor", False
)
args.no_share_last_layer = getattr(args, "no_share_last_layer", False)
@register_model_architecture(
"levenshtein_transformer", "levenshtein_transformer_wmt_en_de"
)
def levenshtein_transformer_wmt_en_de(args):
levenshtein_base_architecture(args)
# similar parameters used in the "Attention Is All You Need" paper (Vaswani et al., 2017)
@register_model_architecture(
"levenshtein_transformer", "levenshtein_transformer_vaswani_wmt_en_de_big"
)
def levenshtein_transformer_vaswani_wmt_en_de_big(args):
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024)
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
args.dropout = getattr(args, "dropout", 0.3)
levenshtein_base_architecture(args)
# default parameters used in tensor2tensor implementation
@register_model_architecture(
"levenshtein_transformer", "levenshtein_transformer_wmt_en_de_big"
)
def levenshtein_transformer_wmt_en_de_big_t2t(args):
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True)
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True)
args.attention_dropout = getattr(args, "attention_dropout", 0.1)
args.activation_dropout = getattr(args, "activation_dropout", 0.1)
levenshtein_transformer_vaswani_wmt_en_de_big(args)
| data2vec_vision-main | deltalm/src/fairseq/models/nat/levenshtein_transformer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import torch
import torch.nn.functional as F
from fairseq.models.nat import (
_apply_del_words,
_apply_ins_masks,
_apply_ins_words,
_fill,
_skip,
_skip_encoder_out,
)
class _EnsembleModelEncoder(object):
def __init__(self, models):
self.models = models
def reorder_encoder_out(self, encoder_outs, new_order):
encoder_outs = [
model.encoder.reorder_encoder_out(encoder_out, new_order)
for model, encoder_out in zip(self.models, encoder_outs)
]
return encoder_outs
class BasicEnsembleModel(torch.nn.Module):
"""A wrapper around an ensemble of models."""
def __init__(self, models):
super().__init__()
self.models = torch.nn.ModuleList(models)
self.bos = self.models[0].decoder.dictionary.bos()
self.eos = self.models[0].decoder.dictionary.eos()
self.pad = self.models[0].decoder.dictionary.pad()
self.unk = self.models[0].decoder.dictionary.unk()
self.encoder = _EnsembleModelEncoder(self.models)
def has_encoder(self):
return hasattr(self.models[0], "encoder")
def max_decoder_positions(self):
return min(m.max_decoder_positions() for m in self.models)
@torch.no_grad()
def forward_encoder(self, encoder_input):
if not self.has_encoder():
return None
return [model.forward_encoder(encoder_input) for model in self.models]
@torch.no_grad()
def forward_decoder(self, *inputs):
raise NotImplementedError
def initialize_output_tokens(self, *inputs):
raise NotImplementedError
class EnsembleLevT(BasicEnsembleModel):
"""A wrapper around an ensemble of models."""
def __init__(self, models):
super().__init__(models)
@torch.no_grad()
def forward_decoder(
self, decoder_out, encoder_outs, eos_penalty=0.0, max_ratio=None, **kwargs
):
# LevT ensembling
# A pipeline of three steps: deletion, placeholder, and word insertion.
# We need to average scores in each step in a pipeline way because of dependence.
# deletion
output_tokens = decoder_out.output_tokens
output_scores = decoder_out.output_scores
attn = decoder_out.attn
bsz = output_tokens.size(0)
if max_ratio is None:
max_lens = output_tokens.new().fill_(255)
else:
if not encoder_outs[0]["encoder_padding_mask"]:
src_lens = (
encoder_outs[0]["encoder_out"][0].new(bsz)
.fill_(encoder_outs[0]["encoder_out"][0].size(1))
)
else:
src_lens = (~encoder_outs[0]["encoder_padding_mask"][0]).sum(1)
max_lens = (src_lens * max_ratio).clamp(min=10).long()
# delete words
# do not delete tokens if it is <s> </s>
can_del_word = output_tokens.ne(self.pad).sum(1) > 2
if can_del_word.sum() != 0: # we cannot delete, skip
output_tokens, output_scores, attn = self.forward_word_del(
encoder_outs,
output_tokens,
output_scores,
attn,
can_del_word,
)
# insert placeholders
can_ins_mask = output_tokens.ne(self.pad).sum(1) < max_lens
if can_ins_mask.sum() != 0:
output_tokens, output_scores = self.forward_mask_ins(
encoder_outs,
output_tokens,
output_scores,
can_ins_mask,
eos_penalty,
max_lens,
)
# insert words
can_ins_word = output_tokens.eq(self.unk).sum(1) > 0
if can_ins_word.sum() != 0:
output_tokens, output_scores, attn = self.forward_word_ins(
encoder_outs,
output_tokens,
output_scores,
attn,
can_ins_word,
)
# delete some unnecessary paddings
cut_off = output_tokens.ne(self.pad).sum(1).max()
output_tokens = output_tokens[:, :cut_off]
output_scores = output_scores[:, :cut_off]
attn = None if attn is None else attn[:, :cut_off, :]
return decoder_out._replace(
output_tokens=output_tokens,
output_scores=output_scores,
attn=attn,
history=None,
)
def forward_word_del(
self, encoder_outs, output_tokens, output_scores, attn, can_del_word
):
word_del_score_avg = []
word_del_attn_avg = []
for model, encoder_out in zip(self.models, encoder_outs):
word_del_out, word_del_attn = model.decoder.forward_word_del(
_skip(output_tokens, can_del_word),
_skip_encoder_out(model.encoder, encoder_out, can_del_word),
)
word_del_score = F.log_softmax(word_del_out, 2)
word_del_score_avg.append(word_del_score)
word_del_attn_avg.append(word_del_attn)
word_del_score_avg = torch.logsumexp(
torch.stack(word_del_score_avg, dim=0), dim=0
) - math.log(len(self.models))
word_del_pred = word_del_score_avg.max(-1)[1].bool()
if word_del_attn_avg[0] is not None:
word_del_attn_avg = torch.stack(word_del_attn_avg, dim=0) / len(self.models)
else:
word_del_attn_avg = None
_tokens, _scores, _attn = _apply_del_words(
output_tokens[can_del_word],
output_scores[can_del_word],
word_del_attn_avg,
word_del_pred,
self.pad,
self.bos,
self.eos,
)
output_tokens = _fill(output_tokens, can_del_word, _tokens, self.pad)
output_scores = _fill(output_scores, can_del_word, _scores, 0)
attn = _fill(attn, can_del_word, _attn, 0.0)
return output_tokens, output_scores, attn
def forward_mask_ins(
self,
encoder_outs,
output_tokens,
output_scores,
can_ins_mask,
eos_penalty,
max_lens,
):
mask_ins_score_avg = []
for model, encoder_out in zip(self.models, encoder_outs):
mask_ins_out, _ = model.decoder.forward_mask_ins(
_skip(output_tokens, can_ins_mask),
_skip_encoder_out(model.encoder, encoder_out, can_ins_mask),
)
mask_ins_score = F.log_softmax(mask_ins_out, 2)
if eos_penalty > 0.0:
mask_ins_score[:, :, 0] -= eos_penalty
mask_ins_score_avg.append(mask_ins_score)
mask_ins_score_avg = torch.logsumexp(
torch.stack(mask_ins_score_avg, dim=0), dim=0
) - math.log(len(self.models))
mask_ins_pred = mask_ins_score_avg.max(-1)[1]
mask_ins_pred = torch.min(
mask_ins_pred, max_lens[can_ins_mask, None].expand_as(mask_ins_pred)
)
_tokens, _scores = _apply_ins_masks(
output_tokens[can_ins_mask],
output_scores[can_ins_mask],
mask_ins_pred,
self.pad,
self.unk,
self.eos,
)
output_tokens = _fill(output_tokens, can_ins_mask, _tokens, self.pad)
output_scores = _fill(output_scores, can_ins_mask, _scores, 0)
return output_tokens, output_scores
def forward_word_ins(
self, encoder_outs, output_tokens, output_scores, attn, can_ins_word
):
word_ins_score_avg = []
word_ins_attn_avg = []
for model, encoder_out in zip(self.models, encoder_outs):
word_ins_out, word_ins_attn = model.decoder.forward_word_ins(
_skip(output_tokens, can_ins_word),
_skip_encoder_out(model.encoder, encoder_out, can_ins_word),
)
word_ins_score = F.log_softmax(word_ins_out, 2)
word_ins_score_avg.append(word_ins_score)
word_ins_attn_avg.append(word_ins_attn)
word_ins_score_avg = torch.logsumexp(
torch.stack(word_ins_score_avg, dim=0), dim=0
) - math.log(len(self.models))
if word_ins_attn_avg[0] is not None:
word_ins_attn_avg = torch.stack(word_ins_attn_avg, dim=0) / len(self.models)
else:
word_ins_attn_avg = None
word_ins_score_max, word_ins_pred = word_ins_score_avg.max(-1)
_tokens, _scores = _apply_ins_words(
output_tokens[can_ins_word],
output_scores[can_ins_word],
word_ins_pred,
word_ins_score_max,
self.unk,
)
output_tokens = _fill(output_tokens, can_ins_word, _tokens, self.pad)
output_scores = _fill(output_scores, can_ins_word, _scores, 0)
attn = _fill(attn, can_ins_word, word_ins_attn, 0.0)
return output_tokens, output_scores, attn
def initialize_output_tokens(self, encoder_outs, src_tokens):
# LevT doesn't do length prediction.
return self.models[0].initialize_output_tokens(encoder_outs[0], src_tokens)
| data2vec_vision-main | deltalm/src/fairseq/models/nat/nonautoregressive_ensembles.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn.functional as F
from fairseq import utils
from fairseq.iterative_refinement_generator import DecoderOut
from fairseq.models import register_model, register_model_architecture
from fairseq.models.nat import FairseqNATDecoder, FairseqNATModel, ensemble_decoder
from fairseq.models.transformer import Embedding
from fairseq.modules.transformer_sentence_encoder import init_bert_params
def _mean_pooling(enc_feats, src_masks):
# enc_feats: T x B x C
# src_masks: B x T or None
if src_masks is None:
enc_feats = enc_feats.mean(0)
else:
src_masks = (~src_masks).transpose(0, 1).type_as(enc_feats)
enc_feats = (
(enc_feats / src_masks.sum(0)[None, :, None]) * src_masks[:, :, None]
).sum(0)
return enc_feats
def _argmax(x, dim):
return (x == x.max(dim, keepdim=True)[0]).type_as(x)
def _uniform_assignment(src_lens, trg_lens):
max_trg_len = trg_lens.max()
steps = (src_lens.float() - 1) / (trg_lens.float() - 1) # step-size
# max_trg_len
index_t = utils.new_arange(trg_lens, max_trg_len).float()
index_t = steps[:, None] * index_t[None, :] # batch_size X max_trg_len
index_t = torch.round(index_t).long().detach()
return index_t
@register_model("nonautoregressive_transformer")
class NATransformerModel(FairseqNATModel):
@property
def allow_length_beam(self):
return True
@staticmethod
def add_args(parser):
FairseqNATModel.add_args(parser)
# length prediction
parser.add_argument(
"--src-embedding-copy",
action="store_true",
help="copy encoder word embeddings as the initial input of the decoder",
)
parser.add_argument(
"--pred-length-offset",
action="store_true",
help="predicting the length difference between the target and source sentences",
)
parser.add_argument(
"--sg-length-pred",
action="store_true",
help="stop the gradients back-propagated from the length predictor",
)
parser.add_argument(
"--length-loss-factor",
type=float,
help="weights on the length prediction loss",
)
@classmethod
def build_decoder(cls, args, tgt_dict, embed_tokens):
decoder = NATransformerDecoder(args, tgt_dict, embed_tokens)
if getattr(args, "apply_bert_init", False):
decoder.apply(init_bert_params)
return decoder
def forward(
self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs
):
# encoding
encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs)
# length prediction
length_out = self.decoder.forward_length(
normalize=False, encoder_out=encoder_out
)
length_tgt = self.decoder.forward_length_prediction(
length_out, encoder_out, tgt_tokens
)
# decoding
word_ins_out = self.decoder(
normalize=False,
prev_output_tokens=prev_output_tokens,
encoder_out=encoder_out,
)
return {
"word_ins": {
"out": word_ins_out,
"tgt": tgt_tokens,
"mask": tgt_tokens.ne(self.pad),
"ls": self.args.label_smoothing,
"nll_loss": True,
},
"length": {
"out": length_out,
"tgt": length_tgt,
"factor": self.decoder.length_loss_factor,
},
}
def forward_decoder(self, decoder_out, encoder_out, decoding_format=None, **kwargs):
step = decoder_out.step
output_tokens = decoder_out.output_tokens
output_scores = decoder_out.output_scores
history = decoder_out.history
# execute the decoder
output_masks = output_tokens.ne(self.pad)
_scores, _tokens = self.decoder(
normalize=True,
prev_output_tokens=output_tokens,
encoder_out=encoder_out,
step=step,
).max(-1)
output_tokens.masked_scatter_(output_masks, _tokens[output_masks])
output_scores.masked_scatter_(output_masks, _scores[output_masks])
if history is not None:
history.append(output_tokens.clone())
return decoder_out._replace(
output_tokens=output_tokens,
output_scores=output_scores,
attn=None,
history=history,
)
def initialize_output_tokens(self, encoder_out, src_tokens):
# length prediction
length_tgt = self.decoder.forward_length_prediction(
self.decoder.forward_length(normalize=True, encoder_out=encoder_out),
encoder_out=encoder_out,
)
max_length = length_tgt.clamp_(min=2).max()
idx_length = utils.new_arange(src_tokens, max_length)
initial_output_tokens = src_tokens.new_zeros(
src_tokens.size(0), max_length
).fill_(self.pad)
initial_output_tokens.masked_fill_(
idx_length[None, :] < length_tgt[:, None], self.unk
)
initial_output_tokens[:, 0] = self.bos
initial_output_tokens.scatter_(1, length_tgt[:, None] - 1, self.eos)
initial_output_scores = initial_output_tokens.new_zeros(
*initial_output_tokens.size()
).type_as(encoder_out["encoder_out"][0])
return DecoderOut(
output_tokens=initial_output_tokens,
output_scores=initial_output_scores,
attn=None,
step=0,
max_step=0,
history=None,
)
def regenerate_length_beam(self, decoder_out, beam_size):
output_tokens = decoder_out.output_tokens
length_tgt = output_tokens.ne(self.pad).sum(1)
length_tgt = (
length_tgt[:, None]
+ utils.new_arange(length_tgt, 1, beam_size)
- beam_size // 2
)
length_tgt = length_tgt.view(-1).clamp_(min=2)
max_length = length_tgt.max()
idx_length = utils.new_arange(length_tgt, max_length)
initial_output_tokens = output_tokens.new_zeros(
length_tgt.size(0), max_length
).fill_(self.pad)
initial_output_tokens.masked_fill_(
idx_length[None, :] < length_tgt[:, None], self.unk
)
initial_output_tokens[:, 0] = self.bos
initial_output_tokens.scatter_(1, length_tgt[:, None] - 1, self.eos)
initial_output_scores = initial_output_tokens.new_zeros(
*initial_output_tokens.size()
).type_as(decoder_out.output_scores)
return decoder_out._replace(
output_tokens=initial_output_tokens, output_scores=initial_output_scores
)
class NATransformerDecoder(FairseqNATDecoder):
def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False):
super().__init__(
args, dictionary, embed_tokens, no_encoder_attn=no_encoder_attn
)
self.dictionary = dictionary
self.bos = dictionary.bos()
self.unk = dictionary.unk()
self.eos = dictionary.eos()
self.encoder_embed_dim = args.encoder_embed_dim
self.sg_length_pred = getattr(args, "sg_length_pred", False)
self.pred_length_offset = getattr(args, "pred_length_offset", False)
self.length_loss_factor = getattr(args, "length_loss_factor", 0.1)
self.src_embedding_copy = getattr(args, "src_embedding_copy", False)
self.embed_length = Embedding(256, self.encoder_embed_dim, None)
@ensemble_decoder
def forward(self, normalize, encoder_out, prev_output_tokens, step=0, **unused):
features, _ = self.extract_features(
prev_output_tokens,
encoder_out=encoder_out,
embedding_copy=(step == 0) & self.src_embedding_copy,
)
decoder_out = self.output_layer(features)
return F.log_softmax(decoder_out, -1) if normalize else decoder_out
@ensemble_decoder
def forward_length(self, normalize, encoder_out):
enc_feats = encoder_out["encoder_out"][0] # T x B x C
if len(encoder_out["encoder_padding_mask"]) > 0:
src_masks = encoder_out["encoder_padding_mask"][0] # B x T
else:
src_masks = None
enc_feats = _mean_pooling(enc_feats, src_masks)
if self.sg_length_pred:
enc_feats = enc_feats.detach()
length_out = F.linear(enc_feats, self.embed_length.weight)
return F.log_softmax(length_out, -1) if normalize else length_out
def extract_features(
self,
prev_output_tokens,
encoder_out=None,
early_exit=None,
embedding_copy=False,
**unused
):
"""
Similar to *forward* but only return features.
Inputs:
prev_output_tokens: Tensor(B, T)
encoder_out: a dictionary of hidden states and masks
Returns:
tuple:
- the decoder's features of shape `(batch, tgt_len, embed_dim)`
- a dictionary with any model-specific outputs
the LevenshteinTransformer decoder has full-attention to all generated tokens
"""
# embedding
if embedding_copy:
src_embd = encoder_out["encoder_embedding"][0]
if len(encoder_out["encoder_padding_mask"]) > 0:
src_mask = encoder_out["encoder_padding_mask"][0]
else:
src_mask = None
src_mask = (
~src_mask
if src_mask is not None
else prev_output_tokens.new_ones(*src_embd.size()[:2]).bool()
)
x, decoder_padding_mask = self.forward_embedding(
prev_output_tokens,
self.forward_copying_source(
src_embd, src_mask, prev_output_tokens.ne(self.padding_idx)
),
)
else:
x, decoder_padding_mask = self.forward_embedding(prev_output_tokens)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
attn = None
inner_states = [x]
# decoder layers
for i, layer in enumerate(self.layers):
# early exit from the decoder.
if (early_exit is not None) and (i >= early_exit):
break
x, attn, _ = layer(
x,
encoder_out["encoder_out"][0]
if (encoder_out is not None and len(encoder_out["encoder_out"]) > 0)
else None,
encoder_out["encoder_padding_mask"][0]
if (
encoder_out is not None
and len(encoder_out["encoder_padding_mask"]) > 0
)
else None,
self_attn_mask=None,
self_attn_padding_mask=decoder_padding_mask,
)
inner_states.append(x)
if self.layer_norm:
x = self.layer_norm(x)
# T x B x C -> B x T x C
x = x.transpose(0, 1)
if self.project_out_dim is not None:
x = self.project_out_dim(x)
return x, {"attn": attn, "inner_states": inner_states}
def forward_embedding(self, prev_output_tokens, states=None):
# embed positions
positions = (
self.embed_positions(prev_output_tokens)
if self.embed_positions is not None
else None
)
# embed tokens and positions
if states is None:
x = self.embed_scale * self.embed_tokens(prev_output_tokens)
if self.project_in_dim is not None:
x = self.project_in_dim(x)
else:
x = states
if positions is not None:
x += positions
x = self.dropout_module(x)
decoder_padding_mask = prev_output_tokens.eq(self.padding_idx)
return x, decoder_padding_mask
def forward_copying_source(self, src_embeds, src_masks, tgt_masks):
length_sources = src_masks.sum(1)
length_targets = tgt_masks.sum(1)
mapped_inputs = _uniform_assignment(length_sources, length_targets).masked_fill(
~tgt_masks, 0
)
copied_embedding = torch.gather(
src_embeds,
1,
mapped_inputs.unsqueeze(-1).expand(
*mapped_inputs.size(), src_embeds.size(-1)
),
)
return copied_embedding
def forward_length_prediction(self, length_out, encoder_out, tgt_tokens=None):
enc_feats = encoder_out["encoder_out"][0] # T x B x C
if len(encoder_out["encoder_padding_mask"]) > 0:
src_masks = encoder_out["encoder_padding_mask"][0] # B x T
else:
src_masks = None
if self.pred_length_offset:
if src_masks is None:
src_lengs = enc_feats.new_ones(enc_feats.size(1)).fill_(
enc_feats.size(0)
)
else:
src_lengs = (~src_masks).transpose(0, 1).type_as(enc_feats).sum(0)
src_lengs = src_lengs.long()
if tgt_tokens is not None:
# obtain the length target
tgt_lengs = tgt_tokens.ne(self.padding_idx).sum(1).long()
if self.pred_length_offset:
length_tgt = tgt_lengs - src_lengs + 128
else:
length_tgt = tgt_lengs
length_tgt = length_tgt.clamp(min=0, max=255)
else:
# predict the length target (greedy for now)
# TODO: implementing length-beam
pred_lengs = length_out.max(-1)[1]
if self.pred_length_offset:
length_tgt = pred_lengs - 128 + src_lengs
else:
length_tgt = pred_lengs
return length_tgt
@register_model_architecture(
"nonautoregressive_transformer", "nonautoregressive_transformer"
)
def base_architecture(args):
args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048)
args.encoder_layers = getattr(args, "encoder_layers", 6)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False)
args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
args.decoder_ffn_embed_dim = getattr(
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
)
args.decoder_layers = getattr(args, "decoder_layers", 6)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
args.attention_dropout = getattr(args, "attention_dropout", 0.0)
args.activation_dropout = getattr(args, "activation_dropout", 0.0)
args.activation_fn = getattr(args, "activation_fn", "relu")
args.dropout = getattr(args, "dropout", 0.1)
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
args.share_decoder_input_output_embed = getattr(
args, "share_decoder_input_output_embed", False
)
args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
args.no_token_positional_embeddings = getattr(
args, "no_token_positional_embeddings", False
)
args.adaptive_input = getattr(args, "adaptive_input", False)
args.apply_bert_init = getattr(args, "apply_bert_init", False)
args.decoder_output_dim = getattr(
args, "decoder_output_dim", args.decoder_embed_dim
)
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
# --- special arguments ---
args.sg_length_pred = getattr(args, "sg_length_pred", False)
args.pred_length_offset = getattr(args, "pred_length_offset", False)
args.length_loss_factor = getattr(args, "length_loss_factor", 0.1)
args.src_embedding_copy = getattr(args, "src_embedding_copy", False)
@register_model_architecture(
"nonautoregressive_transformer", "nonautoregressive_transformer_wmt_en_de"
)
def nonautoregressive_transformer_wmt_en_de(args):
base_architecture(args)
| data2vec_vision-main | deltalm/src/fairseq/models/nat/nonautoregressive_transformer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
This file implements:
Ghazvininejad, Marjan, et al.
"Constant-time machine translation with conditional masked language models."
arXiv preprint arXiv:1904.09324 (2019).
"""
from fairseq.models import register_model, register_model_architecture
from fairseq.models.nat import NATransformerModel
from fairseq.utils import new_arange
def _skeptical_unmasking(output_scores, output_masks, p):
sorted_index = output_scores.sort(-1)[1]
boundary_len = (
(output_masks.sum(1, keepdim=True).type_as(output_scores) - 2) * p
).long()
skeptical_mask = new_arange(output_masks) < boundary_len
return skeptical_mask.scatter(1, sorted_index, skeptical_mask)
@register_model("cmlm_transformer")
class CMLMNATransformerModel(NATransformerModel):
@staticmethod
def add_args(parser):
NATransformerModel.add_args(parser)
def forward(
self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs
):
assert not self.decoder.src_embedding_copy, "do not support embedding copy."
# encoding
encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs)
# length prediction
length_out = self.decoder.forward_length(
normalize=False, encoder_out=encoder_out
)
length_tgt = self.decoder.forward_length_prediction(
length_out, encoder_out, tgt_tokens
)
# decoding
word_ins_out = self.decoder(
normalize=False,
prev_output_tokens=prev_output_tokens,
encoder_out=encoder_out,
)
word_ins_mask = prev_output_tokens.eq(self.unk)
return {
"word_ins": {
"out": word_ins_out,
"tgt": tgt_tokens,
"mask": word_ins_mask,
"ls": self.args.label_smoothing,
"nll_loss": True,
},
"length": {
"out": length_out,
"tgt": length_tgt,
"factor": self.decoder.length_loss_factor,
},
}
def forward_decoder(self, decoder_out, encoder_out, decoding_format=None, **kwargs):
step = decoder_out.step
max_step = decoder_out.max_step
output_tokens = decoder_out.output_tokens
output_scores = decoder_out.output_scores
history = decoder_out.history
# execute the decoder
output_masks = output_tokens.eq(self.unk)
_scores, _tokens = self.decoder(
normalize=True,
prev_output_tokens=output_tokens,
encoder_out=encoder_out,
).max(-1)
output_tokens.masked_scatter_(output_masks, _tokens[output_masks])
output_scores.masked_scatter_(output_masks, _scores[output_masks])
if history is not None:
history.append(output_tokens.clone())
# skeptical decoding (depend on the maximum decoding steps.)
if (step + 1) < max_step:
skeptical_mask = _skeptical_unmasking(
output_scores, output_tokens.ne(self.pad), 1 - (step + 1) / max_step
)
output_tokens.masked_fill_(skeptical_mask, self.unk)
output_scores.masked_fill_(skeptical_mask, 0.0)
if history is not None:
history.append(output_tokens.clone())
return decoder_out._replace(
output_tokens=output_tokens,
output_scores=output_scores,
attn=None,
history=history,
)
@register_model_architecture("cmlm_transformer", "cmlm_transformer")
def cmlm_base_architecture(args):
args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048)
args.encoder_layers = getattr(args, "encoder_layers", 6)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False)
args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
args.decoder_ffn_embed_dim = getattr(
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
)
args.decoder_layers = getattr(args, "decoder_layers", 6)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
args.attention_dropout = getattr(args, "attention_dropout", 0.0)
args.activation_dropout = getattr(args, "activation_dropout", 0.0)
args.activation_fn = getattr(args, "activation_fn", "relu")
args.dropout = getattr(args, "dropout", 0.1)
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
args.share_decoder_input_output_embed = getattr(
args, "share_decoder_input_output_embed", False
)
args.share_all_embeddings = getattr(args, "share_all_embeddings", True)
args.no_token_positional_embeddings = getattr(
args, "no_token_positional_embeddings", False
)
args.adaptive_input = getattr(args, "adaptive_input", False)
args.apply_bert_init = getattr(args, "apply_bert_init", False)
args.decoder_output_dim = getattr(
args, "decoder_output_dim", args.decoder_embed_dim
)
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
# --- special arguments ---
args.sg_length_pred = getattr(args, "sg_length_pred", False)
args.pred_length_offset = getattr(args, "pred_length_offset", False)
args.length_loss_factor = getattr(args, "length_loss_factor", 0.1)
args.ngram_predictor = getattr(args, "ngram_predictor", 1)
args.src_embedding_copy = getattr(args, "src_embedding_copy", False)
@register_model_architecture("cmlm_transformer", "cmlm_transformer_wmt_en_de")
def cmlm_wmt_en_de(args):
cmlm_base_architecture(args)
| data2vec_vision-main | deltalm/src/fairseq/models/nat/cmlm_transformer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from fairseq.models import register_model, register_model_architecture
from fairseq.models.nat import NATransformerModel, base_architecture
from fairseq.modules import DynamicCRF
@register_model("nacrf_transformer")
class NACRFTransformerModel(NATransformerModel):
def __init__(self, args, encoder, decoder):
super().__init__(args, encoder, decoder)
self.crf_layer = DynamicCRF(
num_embedding=len(self.tgt_dict),
low_rank=args.crf_lowrank_approx,
beam_size=args.crf_beam_approx,
)
@property
def allow_ensemble(self):
return False
@staticmethod
def add_args(parser):
NATransformerModel.add_args(parser)
parser.add_argument(
"--crf-lowrank-approx",
type=int,
help="the dimension of low-rank approximation of transition",
)
parser.add_argument(
"--crf-beam-approx",
type=int,
help="the beam size for apporixmating the normalizing factor",
)
parser.add_argument(
"--word-ins-loss-factor",
type=float,
help="weights on NAT loss used to co-training with CRF loss.",
)
def forward(
self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs
):
# encoding
encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs)
# length prediction
length_out = self.decoder.forward_length(
normalize=False, encoder_out=encoder_out
)
length_tgt = self.decoder.forward_length_prediction(
length_out, encoder_out, tgt_tokens
)
# decoding
word_ins_out = self.decoder(
normalize=False,
prev_output_tokens=prev_output_tokens,
encoder_out=encoder_out,
)
word_ins_tgt, word_ins_mask = tgt_tokens, tgt_tokens.ne(self.pad)
# compute the log-likelihood of CRF
crf_nll = -self.crf_layer(word_ins_out, word_ins_tgt, word_ins_mask)
crf_nll = (crf_nll / word_ins_mask.type_as(crf_nll).sum(-1)).mean()
return {
"word_ins": {
"out": word_ins_out,
"tgt": word_ins_tgt,
"mask": word_ins_mask,
"ls": self.args.label_smoothing,
"nll_loss": True,
"factor": self.args.word_ins_loss_factor,
},
"word_crf": {"loss": crf_nll},
"length": {
"out": length_out,
"tgt": length_tgt,
"factor": self.decoder.length_loss_factor,
},
}
def forward_decoder(self, decoder_out, encoder_out, decoding_format=None, **kwargs):
output_tokens = decoder_out.output_tokens
output_scores = decoder_out.output_scores
history = decoder_out.history
# execute the decoder and get emission scores
output_masks = output_tokens.ne(self.pad)
word_ins_out = self.decoder(
normalize=False, prev_output_tokens=output_tokens, encoder_out=encoder_out
)
# run viterbi decoding through CRF
_scores, _tokens = self.crf_layer.forward_decoder(word_ins_out, output_masks)
output_tokens.masked_scatter_(output_masks, _tokens[output_masks])
output_scores.masked_scatter_(output_masks, _scores[output_masks])
if history is not None:
history.append(output_tokens.clone())
return decoder_out._replace(
output_tokens=output_tokens,
output_scores=output_scores,
attn=None,
history=history,
)
@register_model_architecture("nacrf_transformer", "nacrf_transformer")
def nacrf_base_architecture(args):
args.crf_lowrank_approx = getattr(args, "crf_lowrank_approx", 32)
args.crf_beam_approx = getattr(args, "crf_beam_approx", 64)
args.word_ins_loss_factor = getattr(args, "word_ins_loss_factor", 0.5)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True)
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True)
base_architecture(args)
| data2vec_vision-main | deltalm/src/fairseq/models/nat/nat_crf_transformer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
import torch.nn.functional as F
from fairseq.models import register_model, register_model_architecture
from fairseq.models.nat import (
FairseqNATModel,
LevenshteinTransformerDecoder,
LevenshteinTransformerModel,
ensemble_decoder,
)
from fairseq.models.transformer import Linear
from fairseq.modules.transformer_sentence_encoder import init_bert_params
from fairseq.utils import new_arange
class NegativeDistanceScore(object):
def __init__(self):
# pre-compute some values
self.scores = {}
self.scores[0.5] = self.compute_score_full(50, 0.5)
self.scores[1.0] = self.compute_score_full(50, 1.0)
self.scores[2.0] = self.compute_score_full(50, 2.0)
def __call__(self, i, L, tau):
if (tau is None) or (tau > 1000):
return 1 / L
if tau in self.scores:
if L < self.scores[tau].shape[0]:
return self.scores[tau][L - 1, i]
return self.compute_score(L, tau)[i]
def compute_score(self, L, tau):
s = np.array([-abs(L / 2 - i) / tau for i in range(L)])
s = np.exp(s - s.max())
return s / s.sum()
def compute_score_full(self, L, tau):
s = -abs(np.arange(0, L - 1)[:, None] / 2 - np.arange(L)[None, :]) / tau
s = np.tril(s, 0) + np.triu(s - float("inf"), 1)
s = np.exp(s - s.max(1, keepdims=True))
return s / s.sum(1, keepdims=True)
neg_scorer = NegativeDistanceScore()
def _get_ins_targets(in_tokens, out_tokens, padding_idx, unk_idx, vocab_size, tau=None):
try:
from fairseq import libnat
except ImportError as e:
import sys
sys.stderr.write("ERROR: missing libnat. run `pip install --editable .`\n")
raise e
B = in_tokens.size(0)
T = in_tokens.size(1)
V = vocab_size
with torch.cuda.device_of(in_tokens):
in_tokens_list = [
[t for t in s if t != padding_idx] for i, s in enumerate(in_tokens.tolist())
]
out_tokens_list = [
[t for t in s if t != padding_idx]
for i, s in enumerate(out_tokens.tolist())
]
full_labels = libnat.suggested_ed2_path(
in_tokens_list, out_tokens_list, padding_idx
)
insert_labels = [a[:-1] for a in full_labels]
# numericalize1
insert_label_tensors = in_tokens.new_zeros(B * (T - 1) * V).float()
insert_index, insert_labels = zip(
*[
(w + (j + i * (T - 1)) * V, neg_scorer(k, len(label), tau))
for i, labels in enumerate(insert_labels)
for j, label in enumerate(labels[1:-1])
for k, w in enumerate(label)
]
) # HACK 1:-1
insert_index, insert_labels = [
torch.tensor(list(a), device=in_tokens.device)
for a in [insert_index, insert_labels]
]
insert_label_tensors.scatter_(0, insert_index.long(), insert_labels)
insert_label_tensors = insert_label_tensors.view(B, T - 1, V)
return insert_label_tensors
def _apply_ins_words(in_tokens, in_scores, word_ins_pred, word_ins_scores, padding_idx):
padding_masks = in_tokens[:, 1:].eq(padding_idx)
word_ins_scores.masked_fill_(padding_masks, 0.0)
word_ins_pred.masked_fill_(padding_masks, padding_idx)
in_coords = new_arange(in_tokens).type_as(in_scores)
# shift all padding predictions to infinite
out_coords = (in_coords[:, 1:] - 0.5).masked_fill(
word_ins_pred.eq(padding_idx), float("inf")
)
out_coords = torch.cat([in_coords, out_coords], 1).sort(-1)[1]
out_tokens = torch.cat([in_tokens, word_ins_pred], 1).gather(1, out_coords)
out_scores = torch.cat([in_scores, word_ins_scores], 1).gather(1, out_coords)
return out_tokens, out_scores
@register_model("insertion_transformer")
class InsertionTransformerModel(LevenshteinTransformerModel):
def __init__(self, args, encoder, decoder):
super().__init__(args, encoder, decoder)
@staticmethod
def add_args(parser):
FairseqNATModel.add_args(parser)
parser.add_argument("--label-tau", default=None, type=float)
@classmethod
def build_decoder(cls, args, tgt_dict, embed_tokens):
decoder = InsertionTransformerDecoder(args, tgt_dict, embed_tokens)
if getattr(args, "apply_bert_init", False):
decoder.apply(init_bert_params)
return decoder
def forward(
self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs
):
assert tgt_tokens is not None, "forward function only supports training."
# encoding
encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs)
# generate training labels for insertion
word_ins_out = self.decoder.forward_word_ins(
normalize=False,
prev_output_tokens=prev_output_tokens,
encoder_out=encoder_out,
)
word_ins_tgt = _get_ins_targets(
prev_output_tokens,
tgt_tokens,
self.pad,
self.unk,
len(self.tgt_dict),
tau=self.decoder.label_tau,
).type_as(word_ins_out)
word_ins_masks = prev_output_tokens[:, 1:].ne(self.pad)
return {
"word_ins": {
"out": word_ins_out,
"tgt": word_ins_tgt,
"mask": word_ins_masks,
"ls": self.args.label_smoothing,
"nll_loss": True,
}
}
def forward_decoder(
self, decoder_out, encoder_out, eos_penalty=0.0, max_ratio=None, **kwargs
):
output_tokens = decoder_out.output_tokens
output_scores = decoder_out.output_scores
history = decoder_out.history
# TODO: decoding for InsertionTransformer
word_ins_score = self.decoder.forward_word_ins(
normalize=True, prev_output_tokens=output_tokens, encoder_out=encoder_out
)
if eos_penalty > 0.0:
word_ins_score[:, :, self.pad] -= eos_penalty
word_ins_score, word_ins_pred = word_ins_score.max(-1)
output_tokens, output_scores = _apply_ins_words(
output_tokens, output_scores, word_ins_pred, word_ins_score, self.pad
)
# delete some unnecessary paddings
cut_off = output_tokens.ne(self.pad).sum(1).max()
output_tokens = output_tokens[:, :cut_off]
output_scores = output_scores[:, :cut_off]
if history is not None:
history.append(output_tokens.clone())
return decoder_out._replace(
output_tokens=output_tokens,
output_scores=output_scores,
attn=None,
history=history,
)
class InsertionTransformerDecoder(LevenshteinTransformerDecoder):
def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False):
# use the TransformerDecoder's __init__
super(LevenshteinTransformerDecoder, self).__init__(
args, dictionary, embed_tokens, no_encoder_attn=no_encoder_attn
)
self.dictionary = dictionary
self.bos = dictionary.bos()
self.unk = dictionary.unk()
self.eos = dictionary.eos()
self.pool_out = Linear(self.output_embed_dim * 2, self.output_embed_dim)
self.label_tau = getattr(args, "label_tau", None)
@ensemble_decoder
def forward_word_ins(self, normalize, encoder_out, prev_output_tokens):
features = self.extract_features(prev_output_tokens, encoder_out=encoder_out)[0]
features = self.pool_out(
torch.cat([features[:, :-1, :], features[:, 1:, :]], 2)
)
decoder_out = self.output_layer(features)
return F.log_softmax(decoder_out, -1) if normalize else decoder_out
def forward_mask_ins(self, *args, **kwargs):
raise NotImplementedError
def forward_word_del(self, *args, **kwargs):
raise NotImplementedError
@register_model_architecture("insertion_transformer", "insertion_transformer")
def insertion_base_architecture(args):
args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048)
args.encoder_layers = getattr(args, "encoder_layers", 6)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False)
args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
args.decoder_ffn_embed_dim = getattr(
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
)
args.decoder_layers = getattr(args, "decoder_layers", 6)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
args.attention_dropout = getattr(args, "attention_dropout", 0.0)
args.activation_dropout = getattr(args, "activation_dropout", 0.0)
args.activation_fn = getattr(args, "activation_fn", "relu")
args.dropout = getattr(args, "dropout", 0.1)
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
args.share_decoder_input_output_embed = getattr(
args, "share_decoder_input_output_embed", False
)
args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
args.no_token_positional_embeddings = getattr(
args, "no_token_positional_embeddings", False
)
args.adaptive_input = getattr(args, "adaptive_input", False)
args.apply_bert_init = getattr(args, "apply_bert_init", False)
args.decoder_output_dim = getattr(
args, "decoder_output_dim", args.decoder_embed_dim
)
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
# special for insertion transformer
args.label_tau = getattr(args, "label_tau", None)
| data2vec_vision-main | deltalm/src/fairseq/models/nat/insertion_transformer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from .hub_interface import * # noqa
from .model import * # noqa
| data2vec_vision-main | deltalm/src/fairseq/models/bart/__init__.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
BART: Denoising Sequence-to-Sequence Pre-training for
Natural Language Generation, Translation, and Comprehension
"""
from typing import Optional
import logging
import torch
import torch.nn as nn
from fairseq import utils
from fairseq.models import register_model, register_model_architecture
from fairseq.models.transformer import TransformerModel
from fairseq.modules.transformer_sentence_encoder import init_bert_params
from .hub_interface import BARTHubInterface
logger = logging.getLogger(__name__)
@register_model("bart")
class BARTModel(TransformerModel):
__jit_unused_properties__ = ["supported_targets"]
@classmethod
def hub_models(cls):
return {
"bart.base": "http://dl.fbaipublicfiles.com/fairseq/models/bart.base.tar.gz",
"bart.large": "http://dl.fbaipublicfiles.com/fairseq/models/bart.large.tar.gz",
"bart.large.mnli": "http://dl.fbaipublicfiles.com/fairseq/models/bart.large.mnli.tar.gz",
"bart.large.cnn": "http://dl.fbaipublicfiles.com/fairseq/models/bart.large.cnn.tar.gz",
"bart.large.xsum": "http://dl.fbaipublicfiles.com/fairseq/models/bart.large.xsum.tar.gz",
}
def __init__(self, args, encoder, decoder):
super().__init__(args, encoder, decoder)
# We follow BERT's random weight initialization
self.apply(init_bert_params)
self.classification_heads = nn.ModuleDict()
if hasattr(self.encoder, "dictionary"):
self.eos: int = self.encoder.dictionary.eos()
@staticmethod
def add_args(parser):
super(BARTModel, BARTModel).add_args(parser)
parser.add_argument(
"--pooler-dropout",
type=float,
metavar="D",
help="dropout probability in the masked_lm pooler layers",
)
parser.add_argument(
"--pooler-activation-fn",
choices=utils.get_available_activation_fns(),
help="activation function to use for pooler layer",
)
parser.add_argument(
"--spectral-norm-classification-head",
action="store_true",
help="Apply spectral normalization on the classification head",
)
@property
def supported_targets(self):
return {"self"}
def forward(
self,
src_tokens,
src_lengths,
prev_output_tokens,
features_only: bool = False,
classification_head_name: Optional[str] = None,
token_embeddings: Optional[torch.Tensor] = None,
return_all_hiddens: bool = True,
alignment_layer: Optional[int] = None,
alignment_heads: Optional[int] = None,
):
if classification_head_name is not None:
features_only = True
encoder_out = self.encoder(
src_tokens,
src_lengths=src_lengths,
token_embeddings=token_embeddings,
return_all_hiddens=return_all_hiddens
)
x, extra = self.decoder(
prev_output_tokens,
encoder_out=encoder_out,
features_only=features_only,
alignment_layer=alignment_layer,
alignment_heads=alignment_heads,
src_lengths=src_lengths,
return_all_hiddens=return_all_hiddens,
)
eos: int = self.eos
if classification_head_name is not None:
sentence_representation = x[
src_tokens.eq(eos), :
].view(x.size(0), -1, x.size(-1))[:, -1, :]
for k, head in self.classification_heads.items():
# for torch script only supports iteration
if k == classification_head_name:
x = head(sentence_representation)
break
return x, extra
@classmethod
def from_pretrained(
cls,
model_name_or_path,
checkpoint_file="model.pt",
data_name_or_path=".",
bpe="gpt2",
sample_break_mode="eos",
**kwargs,
):
from fairseq import hub_utils
x = hub_utils.from_pretrained(
model_name_or_path,
checkpoint_file,
data_name_or_path,
archive_map=cls.hub_models(),
bpe=bpe,
load_checkpoint_heads=True,
sample_break_mode=sample_break_mode,
**kwargs,
)
return BARTHubInterface(x["args"], x["task"], x["models"][0])
def register_classification_head(
self, name, num_classes=None, inner_dim=None, **kwargs
):
"""Register a classification head."""
logger.info("Registering classification head: {0}".format(name))
if name in self.classification_heads:
prev_num_classes = self.classification_heads[name].out_proj.out_features
prev_inner_dim = self.classification_heads[name].dense.out_features
if num_classes != prev_num_classes or inner_dim != prev_inner_dim:
logger.warning(
're-registering head "{}" with num_classes {} (prev: {}) '
"and inner_dim {} (prev: {})".format(
name, num_classes, prev_num_classes, inner_dim, prev_inner_dim
)
)
self.classification_heads[name] = BARTClassificationHead(
input_dim=self.args.encoder_embed_dim,
inner_dim=inner_dim or self.args.encoder_embed_dim,
num_classes=num_classes,
activation_fn=self.args.pooler_activation_fn,
pooler_dropout=self.args.pooler_dropout,
do_spectral_norm=getattr(
self.args, "spectral_norm_classification_head", False
),
)
def upgrade_state_dict_named(self, state_dict, name):
super().upgrade_state_dict_named(state_dict, name)
prefix = name + "." if name != "" else ""
current_head_names = (
[]
if not hasattr(self, "classification_heads")
else self.classification_heads.keys()
)
# Handle new classification heads present in the state dict.
keys_to_delete = []
for k in state_dict.keys():
if not k.startswith(prefix + "classification_heads."):
continue
head_name = k[len(prefix + "classification_heads.") :].split(".")[0]
num_classes = state_dict[
prefix + "classification_heads." + head_name + ".out_proj.weight"
].size(0)
inner_dim = state_dict[
prefix + "classification_heads." + head_name + ".dense.weight"
].size(0)
if getattr(self.args, "load_checkpoint_heads", False):
if head_name not in current_head_names:
self.register_classification_head(head_name, num_classes, inner_dim)
else:
if head_name not in current_head_names:
logger.warning(
"deleting classification head ({}) from checkpoint "
"not present in current model: {}".format(head_name, k)
)
keys_to_delete.append(k)
elif (
num_classes
!= self.classification_heads[head_name].out_proj.out_features
or inner_dim
!= self.classification_heads[head_name].dense.out_features
):
logger.warning(
"deleting classification head ({}) from checkpoint "
"with different dimensions than current model: {}".format(
head_name, k
)
)
keys_to_delete.append(k)
for k in keys_to_delete:
del state_dict[k]
def truncate_emb(key):
if key in state_dict:
state_dict[key] = state_dict[key][:-1, :]
# When finetuning on translation task, remove last row of
# embedding matrix that corresponds to mask_idx token.
loaded_dict_size = state_dict["encoder.embed_tokens.weight"].size(0)
if (
loaded_dict_size == len(self.encoder.dictionary) + 1
and "<mask>" not in self.encoder.dictionary
):
truncate_emb("encoder.embed_tokens.weight")
truncate_emb("decoder.embed_tokens.weight")
truncate_emb("encoder.output_projection.weight")
truncate_emb("decoder.output_projection.weight")
# When continued pretraining on new set of languages for mbart,
# add extra lang embeddings at the end of embed_tokens.
# Note: newly added languages are assumed to have been added at the end.
if self.args.task == "multilingual_denoising" and loaded_dict_size < len(
self.encoder.dictionary
):
logger.info(
"Adding extra language embeddings not found in pretrained model for "
"continued pretraining of MBART on new set of languages."
)
loaded_mask_token_embedding = state_dict["encoder.embed_tokens.weight"][
-1, :
]
num_langids_to_add = len(self.encoder.dictionary) - loaded_dict_size
embed_dim = state_dict["encoder.embed_tokens.weight"].size(1)
new_lang_embed_to_add = torch.zeros(num_langids_to_add, embed_dim)
nn.init.normal_(new_lang_embed_to_add, mean=0, std=embed_dim ** -0.5)
new_lang_embed_to_add = new_lang_embed_to_add.to(
dtype=state_dict["encoder.embed_tokens.weight"].dtype,
)
state_dict["encoder.embed_tokens.weight"] = torch.cat(
[
state_dict["encoder.embed_tokens.weight"][
: loaded_dict_size - 1, :
],
new_lang_embed_to_add,
loaded_mask_token_embedding.unsqueeze(0),
]
)
state_dict["decoder.embed_tokens.weight"] = torch.cat(
[
state_dict["decoder.embed_tokens.weight"][
: loaded_dict_size - 1, :
],
new_lang_embed_to_add,
loaded_mask_token_embedding.unsqueeze(0),
]
)
# Copy any newly-added classification heads into the state dict
# with their current weights.
if hasattr(self, "classification_heads"):
cur_state = self.classification_heads.state_dict()
for k, v in cur_state.items():
if prefix + "classification_heads." + k not in state_dict:
logger.info("Overwriting", prefix + "classification_heads." + k)
state_dict[prefix + "classification_heads." + k] = v
class BARTClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(
self,
input_dim,
inner_dim,
num_classes,
activation_fn,
pooler_dropout,
do_spectral_norm=False,
):
super().__init__()
self.dense = nn.Linear(input_dim, inner_dim)
self.activation_fn = utils.get_activation_fn(activation_fn)
self.dropout = nn.Dropout(p=pooler_dropout)
self.out_proj = nn.Linear(inner_dim, num_classes)
if do_spectral_norm:
self.out_proj = torch.nn.utils.spectral_norm(self.out_proj)
def forward(self, features, **kwargs):
x = features
x = self.dropout(x)
x = self.dense(x)
x = self.activation_fn(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
@register_model_architecture("bart", "bart_large")
def bart_large_architecture(args):
args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4 * 1024)
args.encoder_layers = getattr(args, "encoder_layers", 12)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True)
args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
args.decoder_ffn_embed_dim = getattr(
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
)
args.decoder_layers = getattr(args, "decoder_layers", 12)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", True)
args.attention_dropout = getattr(args, "attention_dropout", 0.0)
args.relu_dropout = getattr(args, "relu_dropout", 0.0)
args.dropout = getattr(args, "dropout", 0.1)
args.max_target_positions = getattr(args, "max_target_positions", 1024)
args.max_source_positions = getattr(args, "max_source_positions", 1024)
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
args.share_decoder_input_output_embed = getattr(
args, "share_decoder_input_output_embed", True
)
args.share_all_embeddings = getattr(args, "share_all_embeddings", True)
args.decoder_output_dim = getattr(
args, "decoder_output_dim", args.decoder_embed_dim
)
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
args.no_scale_embedding = getattr(args, "no_scale_embedding", True)
args.layernorm_embedding = getattr(args, "layernorm_embedding", True)
args.activation_fn = getattr(args, "activation_fn", "gelu")
args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh")
args.pooler_dropout = getattr(args, "pooler_dropout", 0.0)
@register_model_architecture("bart", "bart_base")
def bart_base_architecture(args):
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4 * 768)
args.encoder_layers = getattr(args, "encoder_layers", 6)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12)
args.decoder_layers = getattr(args, "decoder_layers", 6)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 12)
bart_large_architecture(args)
@register_model_architecture("bart", "mbart_large")
def mbart_large_architecture(args):
args.no_scale_embedding = getattr(args, "no_scale_embedding", False)
bart_large_architecture(args)
@register_model_architecture("bart", "mbart_base")
def mbart_base_architecture(args):
args.no_scale_embedding = getattr(args, "no_scale_embedding", False)
bart_base_architecture(args)
@register_model_architecture("bart", "mbart_base_wmt20")
def mbart_base_wmt20_architecture(args):
args.layernorm_embedding = getattr(args, "layernorm_embedding", False)
mbart_base_architecture(args)
| data2vec_vision-main | deltalm/src/fairseq/models/bart/model.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import copy
import logging
from typing import Dict, List
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import utils
from fairseq.data import encoders
from fairseq.hub_utils import GeneratorHubInterface
from omegaconf import open_dict
logger = logging.getLogger(__name__)
class BARTHubInterface(GeneratorHubInterface):
"""A simple PyTorch Hub interface to BART.
Usage: https://github.com/pytorch/fairseq/tree/master/examples/bart
"""
def __init__(self, cfg, task, model):
super().__init__(cfg, task, [model])
self.model = self.models[0]
def encode(
self, sentence: str, *addl_sentences, no_separator=True
) -> torch.LongTensor:
"""
BPE-encode a sentence (or multiple sentences).
Every sequence begins with a beginning-of-sentence (`<s>`) symbol.
Every sentence ends with an end-of-sentence (`</s>`).
Example (single sentence): `<s> a b c </s>`
Example (sentence pair): `<s> d e f </s> 1 2 3 </s>`
The BPE encoding follows GPT-2. One subtle detail is that the GPT-2 BPE
requires leading spaces. For example::
>>> bart.encode('Hello world').tolist()
[0, 31414, 232, 2]
>>> bart.encode(' world').tolist()
[0, 232, 2]
>>> bart.encode('world').tolist()
[0, 8331, 2]
"""
tokens = self.bpe.encode(sentence)
if len(tokens.split(" ")) > min(self.max_positions) - 2:
tokens = " ".join(tokens.split(" ")[: min(self.max_positions) - 2])
bpe_sentence = "<s> " + tokens + " </s>"
for s in addl_sentences:
bpe_sentence += " </s>" if not no_separator else ""
bpe_sentence += " " + self.bpe.encode(s) + " </s>"
tokens = self.task.source_dictionary.encode_line(bpe_sentence, append_eos=False)
return tokens.long()
def decode(self, tokens: torch.LongTensor):
assert tokens.dim() == 1
tokens = tokens.cpu().numpy()
if tokens[0] == self.task.source_dictionary.bos():
tokens = tokens[1:] # remove <s>
eos_mask = tokens == self.task.source_dictionary.eos()
doc_mask = eos_mask[1:] & eos_mask[:-1]
sentences = np.split(tokens, doc_mask.nonzero()[0] + 1)
sentences = [
self.bpe.decode(self.task.source_dictionary.string(s)) for s in sentences
]
if len(sentences) == 1:
return sentences[0]
return sentences
def _build_sample(self, src_tokens: List[torch.LongTensor]):
# assert torch.is_tensor(src_tokens)
dataset = self.task.build_dataset_for_inference(
src_tokens,
[x.numel() for x in src_tokens],
)
sample = dataset.collater(dataset)
sample = utils.apply_to_sample(lambda tensor: tensor.to(self.device), sample)
return sample
def generate(
self,
tokenized_sentences: List[torch.LongTensor],
*args,
inference_step_args=None,
**kwargs
) -> List[List[Dict[str, torch.Tensor]]]:
inference_step_args = inference_step_args or {}
if "prefix_tokens" in inference_step_args:
raise NotImplementedError("prefix generation not implemented for BART")
else:
bsz = len(tokenized_sentences)
inference_step_args["prefix_tokens"] = tokenized_sentences[0].new_full(
(bsz, 1), fill_value=self.task.source_dictionary.bos()
).to(device=self.device)
return super().generate(
tokenized_sentences,
*args,
inference_step_args=inference_step_args,
**kwargs
)
def extract_features(
self, tokens: torch.LongTensor, return_all_hiddens: bool = False
) -> torch.Tensor:
if tokens.dim() == 1:
tokens = tokens.unsqueeze(0)
if tokens.size(-1) > min(self.model.max_positions()):
raise ValueError(
"tokens exceeds maximum length: {} > {}".format(
tokens.size(-1), self.model.max_positions()
)
)
tokens.to(device=self.device),
prev_output_tokens = tokens.clone()
prev_output_tokens[:, 0] = tokens.gather(
1,
(tokens.ne(self.task.source_dictionary.pad()).sum(dim=1) - 1).unsqueeze(-1),
).squeeze()
prev_output_tokens[:, 1:] = tokens[:, :-1]
features, extra = self.model(
src_tokens=tokens,
src_lengths=None,
prev_output_tokens=prev_output_tokens,
features_only=True,
return_all_hiddens=return_all_hiddens,
)
if return_all_hiddens:
# convert from T x B x C -> B x T x C
inner_states = extra["inner_states"]
return [inner_state.transpose(0, 1) for inner_state in inner_states]
else:
return features # just the last layer's features
def register_classification_head(
self, name: str, num_classes: int = None, embedding_size: int = None, **kwargs
):
self.model.register_classification_head(
name, num_classes=num_classes, embedding_size=embedding_size, **kwargs
)
def predict(self, head: str, tokens: torch.LongTensor, return_logits: bool = False):
if tokens.dim() == 1:
tokens = tokens.unsqueeze(0)
features = self.extract_features(tokens.to(device=self.device))
sentence_representation = features[
tokens.eq(self.task.source_dictionary.eos()), :
].view(features.size(0), -1, features.size(-1))[:, -1, :]
logits = self.model.classification_heads[head](sentence_representation)
if return_logits:
return logits
return F.log_softmax(logits, dim=-1)
def fill_mask(
self,
masked_inputs: List[str],
topk: int = 5,
match_source_len: bool = True,
**generate_kwargs
):
masked_token = '<mask>'
batch_tokens = []
for masked_input in masked_inputs:
assert masked_token in masked_input, \
"please add one {} token for the input".format(masked_token)
text_spans = masked_input.split(masked_token)
text_spans_bpe = (' {0} '.format(masked_token)).join(
[self.bpe.encode(text_span.rstrip()) for text_span in text_spans]
).strip()
tokens = self.task.source_dictionary.encode_line(
'<s> ' + text_spans_bpe + ' </s>',
append_eos=False,
add_if_not_exist=False,
).long()
batch_tokens.append(tokens)
# ensure beam size is at least as big as topk
generate_kwargs['beam'] = max(
topk,
generate_kwargs.get('beam', -1),
)
generate_kwargs['match_source_len'] = match_source_len
batch_hypos = self.generate(batch_tokens, **generate_kwargs)
return [
[(self.decode(hypo['tokens']), hypo['score']) for hypo in hypos[:topk]]
for hypos in batch_hypos
]
| data2vec_vision-main | deltalm/src/fairseq/models/bart/hub_interface.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from .wav2vec import * # noqa
from .wav2vec2 import * # noqa
from .wav2vec2_asr import * # noqa
| data2vec_vision-main | deltalm/src/fairseq/models/wav2vec/__init__.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from argparse import Namespace
import contextlib
import copy
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from dataclasses import dataclass, field
from omegaconf import MISSING, II, open_dict
from typing import Any
from fairseq import checkpoint_utils, tasks, utils
from fairseq.dataclass import FairseqDataclass
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.tasks import FairseqTask
from fairseq.models import (
BaseFairseqModel,
FairseqEncoder,
FairseqEncoderDecoderModel,
FairseqIncrementalDecoder,
register_model,
)
from fairseq.models.wav2vec.wav2vec2 import MASKING_DISTRIBUTION_CHOICES
from fairseq.modules import LayerNorm, PositionalEmbedding, TransformerDecoderLayer
@dataclass
class Wav2Vec2AsrConfig(FairseqDataclass):
w2v_path: str = field(
default=MISSING, metadata={"help": "path to wav2vec 2.0 model"}
)
no_pretrained_weights: bool = field(
default=False, metadata={"help": "if true, does not load pretrained weights"}
)
dropout_input: float = field(
default=0.0,
metadata={"help": "dropout to apply to the input (after feat extr)"},
)
final_dropout: float = field(
default=0.0,
metadata={"help": "dropout after transformer and before final projection"},
)
dropout: float = field(
default=0.0, metadata={"help": "dropout probability inside wav2vec 2.0 model"}
)
attention_dropout: float = field(
default=0.0,
metadata={
"help": "dropout probability for attention weights inside wav2vec 2.0 model"
},
)
activation_dropout: float = field(
default=0.0,
metadata={
"help": "dropout probability after activation in FFN inside wav2vec 2.0 model"
},
)
# masking
apply_mask: bool = field(
default=False, metadata={"help": "apply masking during fine-tuning"}
)
mask_length: int = field(
default=10, metadata={"help": "repeat the mask indices multiple times"}
)
mask_prob: float = field(
default=0.5,
metadata={
"help": "probability of replacing a token with mask (normalized by length)"
},
)
mask_selection: MASKING_DISTRIBUTION_CHOICES = field(
default="static", metadata={"help": "how to choose masks"}
)
mask_other: float = field(
default=0,
metadata={
"help": "secondary mask argument (used for more complex distributions), "
"see help in compute_mask_indices"
},
)
no_mask_overlap: bool = field(
default=False, metadata={"help": "whether to allow masks to overlap"}
)
# channel masking
mask_channel_length: int = field(
default=10, metadata={"help": "length of the mask for features (channels)"}
)
mask_channel_prob: float = field(
default=0.0, metadata={"help": "probability of replacing a feature with 0"}
)
mask_channel_selection: MASKING_DISTRIBUTION_CHOICES = field(
default="static",
metadata={"help": "how to choose mask length for channel masking"},
)
mask_channel_other: float = field(
default=0,
metadata={
"help": "secondary mask argument (used for more complex distributions), "
"see help in compute_mask_indicesh"
},
)
no_mask_channel_overlap: bool = field(
default=False, metadata={"help": "whether to allow channel masks to overlap"}
)
freeze_finetune_updates: int = field(
default=0, metadata={"help": "dont finetune wav2vec for this many updates"}
)
feature_grad_mult: float = field(
default=0.0, metadata={"help": "reset feature grad mult in wav2vec 2.0 to this"}
)
layerdrop: float = field(
default=0.0, metadata={"help": "probability of dropping a layer in wav2vec 2.0"}
)
normalize: bool = II("task.normalize")
data: str = II("task.data")
# this holds the loaded wav2vec args
w2v_args: Any = None
@dataclass
class Wav2Vec2CtcConfig(Wav2Vec2AsrConfig):
pass
@register_model("wav2vec_ctc", dataclass=Wav2Vec2CtcConfig)
class Wav2VecCtc(BaseFairseqModel):
def __init__(self, cfg: Wav2Vec2CtcConfig, w2v_encoder: BaseFairseqModel):
super().__init__()
self.cfg = cfg
self.w2v_encoder = w2v_encoder
def upgrade_state_dict_named(self, state_dict, name):
super().upgrade_state_dict_named(state_dict, name)
return state_dict
@classmethod
def build_model(cls, cfg: Wav2Vec2CtcConfig, task: FairseqTask):
"""Build a new model instance."""
w2v_encoder = Wav2VecEncoder(cfg, task.target_dictionary)
return cls(cfg, w2v_encoder)
def get_normalized_probs(self, net_output, log_probs):
"""Get normalized probabilities (or log probs) from a net's output."""
logits = net_output["encoder_out"]
if log_probs:
return utils.log_softmax(logits.float(), dim=-1)
else:
return utils.softmax(logits.float(), dim=-1)
def forward(self, **kwargs):
x = self.w2v_encoder(**kwargs)
return x
@dataclass
class Wav2Vec2Seq2SeqConfig(Wav2Vec2AsrConfig):
decoder_embed_dim: int = field(
default=768, metadata={"help": "decoder embedding dimension"}
)
decoder_ffn_embed_dim: int = field(
default=3072, metadata={"help": "decoder embedding dimension for FFN"}
)
decoder_layers: int = field(default=6, metadata={"help": "num of decoder layers"})
decoder_layerdrop: float = field(
default=0.0, metadata={"help": "decoder layerdrop chance"}
)
decoder_attention_heads: int = field(
default=4, metadata={"help": "num decoder attention heads"}
)
decoder_learned_pos: bool = field(
default=False,
metadata={"help": "use learned positional embeddings in the decoder"},
)
decoder_normalize_before: bool = field(
default=False, metadata={"help": "apply layernorm before each decoder block"}
)
no_token_positional_embeddings: bool = field(
default=False,
metadata={
"help": "if set, disables positional embeddings (outside self attention)"
},
)
decoder_dropout: float = field(
default=0.0, metadata={"help": "dropout probability in the decoder"}
)
decoder_attention_dropout: float = field(
default=0.0,
metadata={
"help": "dropout probability for attention weights inside the decoder"
},
)
decoder_activation_dropout: float = field(
default=0.0,
metadata={
"help": "dropout probability after activation in FFN inside the decoder"
},
)
max_target_positions: int = field(
default=2048, metadata={"help": "max target positions"}
)
share_decoder_input_output_embed: bool = field(
default=False, metadata={"help": "share decoder input and output embeddings"}
)
@register_model("wav2vec_seq2seq", dataclass=Wav2Vec2Seq2SeqConfig)
class Wav2Vec2Seq2SeqModel(FairseqEncoderDecoderModel):
def __init__(self, encoder, decoder):
super().__init__(encoder, decoder)
@classmethod
def build_model(cls, cfg: Wav2Vec2Seq2SeqConfig, task: FairseqTask):
"""Build a new model instance."""
src_dict, tgt_dict = task.source_dictionary, task.target_dictionary
def build_embedding(dictionary, embed_dim):
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
emb = Embedding(num_embeddings, embed_dim, padding_idx)
return emb
decoder_embed_tokens = build_embedding(tgt_dict, cfg.decoder_embed_dim)
encoder = cls.build_encoder(cfg)
decoder = cls.build_decoder(cfg, tgt_dict, decoder_embed_tokens)
return Wav2Vec2Seq2SeqModel(encoder, decoder)
@classmethod
def build_encoder(cls, cfg: Wav2Vec2AsrConfig):
return Wav2VecEncoder(cfg)
@classmethod
def build_decoder(cls, cfg: Wav2Vec2Seq2SeqConfig, tgt_dict, embed_tokens):
return TransformerDecoder(cfg, tgt_dict, embed_tokens)
def forward(self, **kwargs):
encoder_out = self.encoder(tbc=False, **kwargs)
decoder_out = self.decoder(encoder_out=encoder_out, **kwargs)
return decoder_out
def upgrade_state_dict_named(self, state_dict, name):
super().upgrade_state_dict_named(state_dict, name)
return state_dict
class Wav2VecEncoder(FairseqEncoder):
def __init__(self, cfg: Wav2Vec2AsrConfig, tgt_dict=None):
self.apply_mask = cfg.apply_mask
arg_overrides = {
"dropout": cfg.dropout,
"activation_dropout": cfg.activation_dropout,
"dropout_input": cfg.dropout_input,
"attention_dropout": cfg.attention_dropout,
"mask_length": cfg.mask_length,
"mask_prob": cfg.mask_prob,
"mask_selection": cfg.mask_selection,
"mask_other": cfg.mask_other,
"no_mask_overlap": cfg.no_mask_overlap,
"mask_channel_length": cfg.mask_channel_length,
"mask_channel_prob": cfg.mask_channel_prob,
"mask_channel_selection": cfg.mask_channel_selection,
"mask_channel_other": cfg.mask_channel_other,
"no_mask_channel_overlap": cfg.no_mask_channel_overlap,
"encoder_layerdrop": cfg.layerdrop,
"feature_grad_mult": cfg.feature_grad_mult,
}
if cfg.w2v_args is None:
state = checkpoint_utils.load_checkpoint_to_cpu(cfg.w2v_path, arg_overrides)
w2v_args = state.get("cfg", None)
if w2v_args is None:
w2v_args = convert_namespace_to_omegaconf(state["args"])
cfg.w2v_args = w2v_args
else:
state = None
w2v_args = cfg.w2v_args
if isinstance(w2v_args, Namespace):
cfg.w2v_args = w2v_args = convert_namespace_to_omegaconf(w2v_args)
assert cfg.normalize == w2v_args.task.normalize, (
"Fine-tuning works best when data normalization is the same. "
"Please check that --normalize is set or unset for both pre-training and here"
)
w2v_args.task.data = cfg.data
task = tasks.setup_task(w2v_args.task)
model = task.build_model(w2v_args.model)
if state is not None and not cfg.no_pretrained_weights:
model.load_state_dict(state["model"], strict=True)
model.remove_pretraining_modules()
super().__init__(task.source_dictionary)
d = w2v_args.model.encoder_embed_dim
self.w2v_model = model
self.final_dropout = nn.Dropout(cfg.final_dropout)
self.freeze_finetune_updates = cfg.freeze_finetune_updates
self.num_updates = 0
if tgt_dict is not None:
self.proj = Linear(d, len(tgt_dict))
elif getattr(cfg, "decoder_embed_dim", d) != d:
self.proj = Linear(d, cfg.decoder_embed_dim)
else:
self.proj = None
def set_num_updates(self, num_updates):
"""Set the number of parameters updates."""
super().set_num_updates(num_updates)
self.num_updates = num_updates
def forward(self, source, padding_mask, tbc=True, **kwargs):
w2v_args = {
"source": source,
"padding_mask": padding_mask,
"mask": self.apply_mask and self.training,
}
ft = self.freeze_finetune_updates <= self.num_updates
with torch.no_grad() if not ft else contextlib.ExitStack():
x, padding_mask = self.w2v_model.extract_features(**w2v_args)
if tbc:
# B x T x C -> T x B x C
x = x.transpose(0, 1)
x = self.final_dropout(x)
if self.proj:
x = self.proj(x)
return {
"encoder_out": x, # T x B x C
"encoder_padding_mask": padding_mask, # B x T
"padding_mask": padding_mask,
}
def reorder_encoder_out(self, encoder_out, new_order):
if encoder_out["encoder_out"] is not None:
encoder_out["encoder_out"] = encoder_out["encoder_out"].index_select(
1, new_order
)
if encoder_out["encoder_padding_mask"] is not None:
encoder_out["encoder_padding_mask"] = encoder_out[
"encoder_padding_mask"
].index_select(0, new_order)
return encoder_out
def max_positions(self):
"""Maximum input length supported by the encoder."""
return None
def upgrade_state_dict_named(self, state_dict, name):
return state_dict
class TransformerDecoder(FairseqIncrementalDecoder):
"""
Transformer decoder consisting of *args.decoder_layers* layers. Each layer
is a :class:`TransformerDecoderLayer`.
Args:
args (argparse.Namespace): parsed command-line arguments
dictionary (~fairseq.data.Dictionary): decoding dictionary
embed_tokens (torch.nn.Embedding): output embedding
no_encoder_attn (bool, optional): whether to attend to encoder outputs
(default: False).
"""
def __init__(
self,
cfg: Wav2Vec2Seq2SeqConfig,
dictionary,
embed_tokens,
no_encoder_attn=False,
):
super().__init__(dictionary)
self.dropout = cfg.decoder_dropout
self.share_input_output_embed = cfg.share_decoder_input_output_embed
input_embed_dim = embed_tokens.embedding_dim
embed_dim = cfg.decoder_embed_dim
self.output_embed_dim = cfg.decoder_embed_dim
self.layerdrop = cfg.decoder_layerdrop
padding_idx = embed_tokens.padding_idx
self.max_target_positions = cfg.max_target_positions
self.embed_tokens = embed_tokens
self.embed_scale = math.sqrt(embed_dim) # todo: try with input_embed_dim
self.project_in_dim = (
Linear(input_embed_dim, embed_dim, bias=False)
if embed_dim != input_embed_dim
else None
)
self.embed_positions = (
PositionalEmbedding(
cfg.max_target_positions,
embed_dim,
padding_idx,
learned=cfg.decoder_learned_pos,
)
if not cfg.no_token_positional_embeddings
else None
)
# TODO: update this when transformer gets converted to dataclass configs
transformer_cfg = copy.deepcopy(cfg)
with open_dict(transformer_cfg):
transformer_cfg.dropout = transformer_cfg.decoder_dropout
transformer_cfg.attention_dropout = (
transformer_cfg.decoder_attention_dropout
)
transformer_cfg.activation_dropout = (
transformer_cfg.decoder_activation_dropout
)
self.layers = nn.ModuleList([])
self.layers.extend(
[
TransformerDecoderLayer(transformer_cfg, no_encoder_attn)
for _ in range(transformer_cfg.decoder_layers)
]
)
if not self.share_input_output_embed:
self.embed_out = nn.Parameter(
torch.Tensor(len(dictionary), self.output_embed_dim)
)
nn.init.normal_(self.embed_out, mean=0, std=self.output_embed_dim ** -0.5)
if transformer_cfg.decoder_normalize_before:
self.layer_norm = LayerNorm(embed_dim)
else:
self.layer_norm = None
def forward(
self, prev_output_tokens, encoder_out=None, incremental_state=None, **unused
):
"""
Args:
prev_output_tokens (LongTensor): previous decoder outputs of shape
`(batch, tgt_len)`, for teacher forcing
encoder_out (Tensor, optional): output from the encoder, used for
encoder-side attention
incremental_state (dict): dictionary used for storing state during
:ref:`Incremental decoding`
Returns:
tuple:
- the decoder's output of shape `(batch, tgt_len, vocab)`
- a dictionary with any model-specific outputs
"""
prev_output_tokens = prev_output_tokens.long()
x, extra = self.extract_features(
prev_output_tokens, encoder_out, incremental_state
)
x = self.output_layer(x)
return x, extra
def extract_features(
self, prev_output_tokens, encoder_out=None, incremental_state=None, **unused
):
"""
Similar to *forward* but only return features.
Returns:
tuple:
- the decoder's features of shape `(batch, tgt_len, embed_dim)`
- a dictionary with any model-specific outputs
"""
# embed positions
positions = (
self.embed_positions(
prev_output_tokens, incremental_state=incremental_state
)
if self.embed_positions is not None
else None
)
if incremental_state is not None:
prev_output_tokens = prev_output_tokens[:, -1:]
if positions is not None:
positions = positions[:, -1:]
# embed tokens and positions
x = self.embed_scale * self.embed_tokens(prev_output_tokens)
if self.project_in_dim is not None:
x = self.project_in_dim(x)
if positions is not None:
x += positions
x = F.dropout(x, p=self.dropout, training=self.training)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
attn = None
inner_states = [x]
# decoder layers
for layer in self.layers:
dropout_probability = np.random.random()
if not self.training or (dropout_probability > self.layerdrop):
x, attn, _ = layer(
x,
encoder_out["encoder_out"] if encoder_out is not None else None,
encoder_out["encoder_padding_mask"]
if encoder_out is not None
else None,
incremental_state,
self_attn_mask=self.buffered_future_mask(x)
if incremental_state is None
else None,
)
inner_states.append(x)
if self.layer_norm:
x = self.layer_norm(x)
# T x B x C -> B x T x C
x = x.transpose(0, 1)
return x, {"attn": attn, "inner_states": inner_states}
def output_layer(self, features, **kwargs):
"""Project features to the vocabulary size."""
# project back to size of vocabulary
if self.share_input_output_embed:
return F.linear(features, self.embed_tokens.weight)
else:
return F.linear(features, self.embed_out)
def max_positions(self):
"""Maximum output length supported by the decoder."""
if self.embed_positions is None:
return self.max_target_positions
return min(self.max_target_positions, self.embed_positions.max_positions)
def buffered_future_mask(self, tensor):
dim = tensor.size(0)
if (
not hasattr(self, "_future_mask")
or self._future_mask is None
or self._future_mask.device != tensor.device
or self._future_mask.size(0) < dim
):
self._future_mask = torch.triu(
utils.fill_with_neg_inf(tensor.new(dim, dim)), 1
)
return self._future_mask[:dim, :dim]
def upgrade_state_dict_named(self, state_dict, name):
return state_dict
def Embedding(num_embeddings, embedding_dim, padding_idx):
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5)
nn.init.constant_(m.weight[padding_idx], 0)
return m
def Linear(in_features, out_features, bias=True):
m = nn.Linear(in_features, out_features, bias)
nn.init.xavier_uniform_(m.weight)
if bias:
nn.init.constant_(m.bias, 0.0)
return m
| data2vec_vision-main | deltalm/src/fairseq/models/wav2vec/wav2vec2_asr.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from dataclasses import dataclass, field
from typing import List, Tuple
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import utils
from fairseq.data.data_utils import compute_mask_indices
from fairseq.dataclass import ChoiceEnum, FairseqDataclass
from fairseq.models import BaseFairseqModel, register_model
from fairseq.modules import (
Fp32GroupNorm,
Fp32LayerNorm,
GradMultiply,
GumbelVectorQuantizer,
LayerNorm,
MultiheadAttention,
SamePad,
TransposeLast,
)
from fairseq.modules.transformer_sentence_encoder import init_bert_params
from fairseq.utils import buffered_arange
EXTRACTOR_MODE_CHOICES = ChoiceEnum(["default", "layer_norm"])
MASKING_DISTRIBUTION_CHOICES = ChoiceEnum(["static", "uniform", "normal", "poisson"])
@dataclass
class Wav2Vec2Config(FairseqDataclass):
extractor_mode: EXTRACTOR_MODE_CHOICES = field(
default="default",
metadata={
"help": "mode for feature extractor. default has a single group norm with d "
"groups in the first conv block, whereas layer_norm has layer norms in "
"every block (meant to use with normalize=True)"
},
)
encoder_layers: int = field(
default=12, metadata={"help": "num encoder layers in the transformer"}
)
encoder_embed_dim: int = field(
default=768, metadata={"help": "encoder embedding dimension"}
)
encoder_ffn_embed_dim: int = field(
default=3072, metadata={"help": "encoder embedding dimension for FFN"}
)
encoder_attention_heads: int = field(
default=12, metadata={"help": "num encoder attention heads"}
)
activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field(
default="gelu", metadata={"help": "activation function to use"}
)
# dropouts
dropout: float = field(
default=0.1, metadata={"help": "dropout probability for the transformer"}
)
attention_dropout: float = field(
default=0.1, metadata={"help": "dropout probability for attention weights"}
)
activation_dropout: float = field(
default=0.0, metadata={"help": "dropout probability after activation in FFN"}
)
encoder_layerdrop: float = field(
default=0.0, metadata={"help": "probability of dropping a tarnsformer layer"}
)
dropout_input: float = field(
default=0.0,
metadata={"help": "dropout to apply to the input (after feat extr)"},
)
dropout_features: float = field(
default=0.0,
metadata={"help": "dropout to apply to the features (after feat extr)"},
)
final_dim: int = field(
default=0,
metadata={
"help": "project final representations and targets to this many dimensions."
"set to encoder_embed_dim is <= 0"
},
)
layer_norm_first: bool = field(
default=False, metadata={"help": "apply layernorm first in the transformer"}
)
conv_feature_layers: str = field(
default="[(512, 10, 5)] + [(512, 3, 2)] * 4 + [(512,2,2)] + [(512,2,2)]",
metadata={
"help": "string describing convolutional feature extraction layers in form of a python list that contains "
"[(dim, kernel_size, stride), ...]"
},
)
conv_bias: bool = field(
default=False, metadata={"help": "include bias in conv encoder"}
)
logit_temp: float = field(
default=0.1, metadata={"help": "temperature to divide logits by"}
)
quantize_targets: bool = field(
default=False, metadata={"help": "use quantized targets"}
)
quantize_input: bool = field(
default=False, metadata={"help": "use quantized inputs"}
)
same_quantizer: bool = field(
default=False, metadata={"help": "use same quantizer for inputs and targets"}
)
target_glu: bool = field(
default=False, metadata={"help": "adds projection + glu to targets"}
)
feature_grad_mult: float = field(
default=1.0, metadata={"help": "multiply feature extractor var grads by this"}
)
latent_vars: int = field(
default=320,
metadata={"help": "number of latent variables V in each group of the codebook"},
)
latent_groups: int = field(
default=2,
metadata={"help": "number of groups G of latent variables in the codebook"},
)
latent_dim: int = field(
default=0,
metadata={
"help": "if > 0, uses this dimensionality for latent variables. "
"otherwise uses final_dim / latent_groups"
},
)
# masking
mask_length: int = field(default=10, metadata={"help": "mask length"})
mask_prob: float = field(
default=0.65, metadata={"help": "probability of replacing a token with mask"}
)
mask_selection: MASKING_DISTRIBUTION_CHOICES = field(
default="static", metadata={"help": "how to choose mask length"}
)
mask_other: float = field(
default=0,
metadata={
"help": "secondary mask argument (used for more complex distributions), "
"see help in compute_mask_indices"
},
)
no_mask_overlap: bool = field(
default=False, metadata={"help": "whether to allow masks to overlap"}
)
mask_min_space: int = field(
default=1,
metadata={"help": "min space between spans (if no overlap is enabled)"},
)
# channel masking
mask_channel_length: int = field(
default=10, metadata={"help": "length of the mask for features (channels)"}
)
mask_channel_prob: float = field(
default=0.0, metadata={"help": "probability of replacing a feature with 0"}
)
mask_channel_selection: MASKING_DISTRIBUTION_CHOICES = field(
default="static",
metadata={"help": "how to choose mask length for channel masking"},
)
mask_channel_other: float = field(
default=0,
metadata={
"help": "secondary mask argument (used for more complex distributions), "
"see help in compute_mask_indicesh"
},
)
no_mask_channel_overlap: bool = field(
default=False, metadata={"help": "whether to allow channel masks to overlap"}
)
mask_channel_min_space: int = field(
default=1,
metadata={"help": "min space between spans (if no overlap is enabled)"},
)
# negative selection
num_negatives: int = field(
default=100,
metadata={"help": "number of negative examples from the same sample"},
)
negatives_from_everywhere: bool = field(
default=False,
metadata={"help": "sample negatives from everywhere, not just masked states"},
)
cross_sample_negatives: int = field(
default=0, metadata={"help": "number of negative examples from the any sample"}
)
codebook_negatives: int = field(
default=0, metadata={"help": "number of negative examples codebook"}
)
# positional embeddings
conv_pos: int = field(
default=128,
metadata={"help": "number of filters for convolutional positional embeddings"},
)
conv_pos_groups: int = field(
default=16,
metadata={"help": "number of groups for convolutional positional embedding"},
)
latent_temp: Tuple[float, float, float] = field(
default=(2, 0.5, 0.999995),
metadata={
"help": "temperature for latent variable sampling. "
"can be tuple of 3 values (start, end, decay)"
},
)
@register_model("wav2vec2", dataclass=Wav2Vec2Config)
class Wav2Vec2Model(BaseFairseqModel):
def __init__(self, cfg: Wav2Vec2Config):
super().__init__()
self.cfg = cfg
feature_enc_layers = eval(cfg.conv_feature_layers)
self.embed = feature_enc_layers[-1][0]
self.feature_extractor = ConvFeatureExtractionModel(
conv_layers=feature_enc_layers,
dropout=0.0,
mode=cfg.extractor_mode,
conv_bias=cfg.conv_bias,
)
self.post_extract_proj = (
nn.Linear(self.embed, cfg.encoder_embed_dim)
if self.embed != cfg.encoder_embed_dim and not cfg.quantize_input
else None
)
self.mask_prob = cfg.mask_prob
self.mask_selection = cfg.mask_selection
self.mask_other = cfg.mask_other
self.mask_length = cfg.mask_length
self.no_mask_overlap = cfg.no_mask_overlap
self.mask_min_space = cfg.mask_min_space
self.mask_channel_prob = cfg.mask_channel_prob
self.mask_channel_selection = cfg.mask_channel_selection
self.mask_channel_other = cfg.mask_channel_other
self.mask_channel_length = cfg.mask_channel_length
self.no_mask_channel_overlap = cfg.no_mask_channel_overlap
self.mask_channel_min_space = cfg.mask_channel_min_space
self.dropout_input = nn.Dropout(cfg.dropout_input)
self.dropout_features = nn.Dropout(cfg.dropout_features)
self.feature_grad_mult = cfg.feature_grad_mult
self.quantizer = None
self.input_quantizer = None
self.n_negatives = cfg.num_negatives
self.cross_sample_negatives = cfg.cross_sample_negatives
self.codebook_negatives = cfg.codebook_negatives
self.negatives_from_everywhere = cfg.negatives_from_everywhere
self.logit_temp = cfg.logit_temp
final_dim = cfg.final_dim if cfg.final_dim > 0 else cfg.encoder_embed_dim
if cfg.quantize_targets:
vq_dim = cfg.latent_dim if cfg.latent_dim > 0 else final_dim
self.quantizer = GumbelVectorQuantizer(
dim=self.embed,
num_vars=cfg.latent_vars,
temp=cfg.latent_temp,
groups=cfg.latent_groups,
combine_groups=False,
vq_dim=vq_dim,
time_first=True,
)
self.project_q = nn.Linear(vq_dim, final_dim)
else:
self.project_q = nn.Linear(self.embed, final_dim)
if cfg.quantize_input:
if cfg.same_quantizer and self.quantizer is not None:
vq_dim = final_dim
self.input_quantizer = self.quantizer
else:
vq_dim = cfg.latent_dim if cfg.latent_dim > 0 else cfg.encoder_embed_dim
self.input_quantizer = GumbelVectorQuantizer(
dim=self.embed,
num_vars=cfg.latent_vars,
temp=cfg.latent_temp,
groups=cfg.latent_groups,
combine_groups=False,
vq_dim=vq_dim,
time_first=True,
)
self.project_inp = nn.Linear(vq_dim, cfg.encoder_embed_dim)
self.mask_emb = nn.Parameter(
torch.FloatTensor(cfg.encoder_embed_dim).uniform_()
)
self.encoder = TransformerEncoder(cfg)
self.layer_norm = LayerNorm(self.embed)
self.target_glu = None
if cfg.target_glu:
self.target_glu = nn.Sequential(
nn.Linear(final_dim, final_dim * 2), nn.GLU()
)
self.final_proj = nn.Linear(cfg.encoder_embed_dim, final_dim)
def upgrade_state_dict_named(self, state_dict, name):
super().upgrade_state_dict_named(state_dict, name)
"""Upgrade a (possibly old) state dict for new versions of fairseq."""
return state_dict
@classmethod
def build_model(cls, cfg: Wav2Vec2Config, task=None):
"""Build a new model instance."""
return cls(cfg)
def apply_mask(self, x, padding_mask):
B, T, C = x.shape
if self.mask_prob > 0:
mask_indices = compute_mask_indices(
(B, T),
padding_mask,
self.mask_prob,
self.mask_length,
self.mask_selection,
self.mask_other,
min_masks=2,
no_overlap=self.no_mask_overlap,
min_space=self.mask_min_space,
)
mask_indices = torch.from_numpy(mask_indices).to(x.device)
x[mask_indices] = self.mask_emb
else:
mask_indices = None
if self.mask_channel_prob > 0:
mask_channel_indices = compute_mask_indices(
(B, C),
None,
self.mask_channel_prob,
self.mask_channel_length,
self.mask_channel_selection,
self.mask_channel_other,
no_overlap=self.no_mask_channel_overlap,
min_space=self.mask_channel_min_space,
)
mask_channel_indices = (
torch.from_numpy(mask_channel_indices)
.to(x.device)
.unsqueeze(1)
.expand(-1, T, -1)
)
x[mask_channel_indices] = 0
return x, mask_indices
def sample_negatives(self, y, num):
if self.n_negatives == 0 and self.cross_sample_negatives == 0:
return y.new(0)
bsz, tsz, fsz = y.shape
y = y.view(-1, fsz) # BTC => (BxT)C
cross_high = tsz * bsz
high = tsz
with torch.no_grad():
assert high > 1, f"{bsz,tsz,fsz}"
if self.n_negatives > 0:
tszs = (
buffered_arange(num)
.unsqueeze(-1)
.expand(-1, self.n_negatives)
.flatten()
)
neg_idxs = torch.randint(
low=0, high=high - 1, size=(bsz, self.n_negatives * num)
)
neg_idxs[neg_idxs >= tszs] += 1
if self.cross_sample_negatives > 0:
tszs = (
buffered_arange(num)
.unsqueeze(-1)
.expand(-1, self.cross_sample_negatives)
.flatten()
)
cross_neg_idxs = torch.randint(
low=0,
high=cross_high - 1,
size=(bsz, self.cross_sample_negatives * num),
)
cross_neg_idxs[cross_neg_idxs >= tszs] += 1
if self.n_negatives > 0:
for i in range(1, bsz):
neg_idxs[i] += i * high
else:
neg_idxs = cross_neg_idxs
if self.cross_sample_negatives > 0 and self.n_negatives > 0:
neg_idxs = torch.cat([neg_idxs, cross_neg_idxs], dim=1)
negs = y[neg_idxs.view(-1)]
negs = negs.view(
bsz, num, self.n_negatives + self.cross_sample_negatives, fsz
).permute(
2, 0, 1, 3
) # to NxBxTxC
return negs, neg_idxs
def compute_preds(self, x, y, negatives):
neg_is_pos = (y == negatives).all(-1)
y = y.unsqueeze(0)
targets = torch.cat([y, negatives], dim=0)
logits = torch.cosine_similarity(x.float(), targets.float(), dim=-1).type_as(x)
logits /= self.logit_temp
if neg_is_pos.any():
logits[1:][neg_is_pos] = float("-inf")
return logits
def forward(self, source, padding_mask=None, mask=True, features_only=False):
if self.feature_grad_mult > 0:
features = self.feature_extractor(source)
if self.feature_grad_mult != 1.0:
features = GradMultiply.apply(features, self.feature_grad_mult)
else:
with torch.no_grad():
features = self.feature_extractor(source)
features_pen = features.float().pow(2).mean()
features = features.transpose(1, 2)
features = self.layer_norm(features)
unmasked_features = features.clone()
if padding_mask is not None:
extra = padding_mask.size(1) % features.size(1)
if extra > 0:
padding_mask = padding_mask[:, :-extra]
padding_mask = padding_mask.view(padding_mask.size(0), features.size(1), -1)
padding_mask = padding_mask.all(-1)
if self.post_extract_proj is not None:
features = self.post_extract_proj(features)
features = self.dropout_input(features)
unmasked_features = self.dropout_features(unmasked_features)
num_vars = None
code_ppl = None
prob_ppl = None
curr_temp = None
if self.input_quantizer:
q = self.input_quantizer(features, produce_targets=False)
features = q["x"]
num_vars = q["num_vars"]
code_ppl = q["code_perplexity"]
prob_ppl = q["prob_perplexity"]
curr_temp = q["temp"]
features = self.project_inp(features)
if mask:
x, mask_indices = self.apply_mask(features, padding_mask)
if mask_indices is not None:
y = unmasked_features[mask_indices].view(
unmasked_features.size(0), -1, unmasked_features.size(-1)
)
else:
y = unmasked_features
else:
x = features
y = unmasked_features
mask_indices = None
x = self.encoder(x, padding_mask=padding_mask)
if features_only:
return {"x": x, "padding_mask": padding_mask}
if self.quantizer:
q = self.quantizer(y, produce_targets=False)
y = q["x"]
num_vars = q["num_vars"]
code_ppl = q["code_perplexity"]
prob_ppl = q["prob_perplexity"]
curr_temp = q["temp"]
y = self.project_q(y)
if self.negatives_from_everywhere:
neg_cands, *_ = self.quantizer(unmasked_features, produce_targets=False)
negs, _ = self.sample_negatives(neg_cands, y.size(1))
negs = self.project_q(negs)
else:
negs, _ = self.sample_negatives(y, y.size(1))
if self.codebook_negatives > 0:
cb_negs = self.quantizer.sample_from_codebook(
y.size(0) * y.size(1), self.codebook_negatives
)
cb_negs = cb_negs.view(
self.codebook_negatives, y.size(0), y.size(1), -1
) # order doesnt matter
cb_negs = self.project_q(cb_negs)
negs = torch.cat([negs, cb_negs], dim=0)
else:
y = self.project_q(y)
if self.negatives_from_everywhere:
negs, _ = self.sample_negatives(unmasked_features, y.size(1))
negs = self.project_q(negs)
else:
negs, _ = self.sample_negatives(y, y.size(1))
x = x[mask_indices].view(x.size(0), -1, x.size(-1))
if self.target_glu:
y = self.target_glu(y)
negs = self.target_glu(negs)
x = self.final_proj(x)
x = self.compute_preds(x, y, negs)
result = {"x": x, "padding_mask": padding_mask, "features_pen": features_pen}
if prob_ppl is not None:
result["prob_perplexity"] = prob_ppl
result["code_perplexity"] = code_ppl
result["num_vars"] = num_vars
result["temp"] = curr_temp
return result
def quantize(self, x):
assert self.quantizer is not None
x = self.feature_extractor(x)
x = x.transpose(1, 2)
x = self.layer_norm(x)
return self.quantizer.forward_idx(x)
def extract_features(self, source, padding_mask, mask=False):
res = self.forward(source, padding_mask, mask=mask, features_only=True)
return res["x"], res["padding_mask"]
def get_logits(self, net_output):
logits = net_output["x"]
logits = logits.transpose(0, 2)
logits = logits.reshape(-1, logits.size(-1))
return logits
def get_targets(self, sample, net_output, expand_steps=True):
x = net_output["x"]
return x.new_zeros(x.size(1) * x.size(2), dtype=torch.long)
def get_extra_losses(self, net_output):
pen = []
if "prob_perplexity" in net_output:
pen.append(
(net_output["num_vars"] - net_output["prob_perplexity"])
/ net_output["num_vars"]
)
if "features_pen" in net_output:
pen.append(net_output["features_pen"])
return pen
def remove_pretraining_modules(self):
self.quantizer = None
self.project_q = None
self.target_glu = None
self.final_proj = None
class ConvFeatureExtractionModel(nn.Module):
def __init__(
self,
conv_layers: List[Tuple[int, int, int]],
dropout: float = 0.0,
mode: str = "default",
conv_bias: bool = False,
):
super().__init__()
assert mode in {"default", "layer_norm"}
def block(
n_in,
n_out,
k,
stride,
is_layer_norm=False,
is_group_norm=False,
conv_bias=False,
):
def make_conv():
conv = nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias)
nn.init.kaiming_normal_(conv.weight)
return conv
assert (
is_layer_norm and is_group_norm
) == False, "layer norm and group norm are exclusive"
if is_layer_norm:
return nn.Sequential(
make_conv(),
nn.Dropout(p=dropout),
nn.Sequential(
TransposeLast(),
Fp32LayerNorm(dim, elementwise_affine=True),
TransposeLast(),
),
nn.GELU(),
)
elif is_group_norm:
return nn.Sequential(
make_conv(),
nn.Dropout(p=dropout),
Fp32GroupNorm(dim, dim, affine=True),
nn.GELU(),
)
else:
return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU())
in_d = 1
self.conv_layers = nn.ModuleList()
for i, cl in enumerate(conv_layers):
assert len(cl) == 3, "invalid conv definition: " + str(cl)
(dim, k, stride) = cl
self.conv_layers.append(
block(
in_d,
dim,
k,
stride,
is_layer_norm=mode == "layer_norm",
is_group_norm=mode == "default" and i == 0,
conv_bias=conv_bias,
)
)
in_d = dim
def forward(self, x):
# BxT -> BxCxT
x = x.unsqueeze(1)
for conv in self.conv_layers:
x = conv(x)
return x
class TransformerEncoder(nn.Module):
def __init__(self, args):
super().__init__()
self.dropout = args.dropout
self.embedding_dim = args.encoder_embed_dim
self.pos_conv = nn.Conv1d(
self.embedding_dim,
self.embedding_dim,
kernel_size=args.conv_pos,
padding=args.conv_pos // 2,
groups=args.conv_pos_groups,
)
dropout = 0
std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim))
nn.init.normal_(self.pos_conv.weight, mean=0, std=std)
nn.init.constant_(self.pos_conv.bias, 0)
self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2)
self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU())
self.layers = nn.ModuleList(
[
TransformerSentenceEncoderLayer(
embedding_dim=self.embedding_dim,
ffn_embedding_dim=args.encoder_ffn_embed_dim,
num_attention_heads=args.encoder_attention_heads,
dropout=self.dropout,
attention_dropout=args.attention_dropout,
activation_dropout=args.activation_dropout,
activation_fn=args.activation_fn,
layer_norm_first=args.layer_norm_first,
)
for _ in range(args.encoder_layers)
]
)
self.layer_norm_first = args.layer_norm_first
self.layer_norm = LayerNorm(self.embedding_dim)
self.layerdrop = args.encoder_layerdrop
self.apply(init_bert_params)
def forward(self, x, padding_mask=None):
x = self.extract_features(x, padding_mask)
if self.layer_norm_first:
x = self.layer_norm(x)
return x
def extract_features(self, x, padding_mask=None):
if padding_mask is not None:
x[padding_mask] = 0
x_conv = self.pos_conv(x.transpose(1, 2))
x_conv = x_conv.transpose(1, 2)
x += x_conv
if not self.layer_norm_first:
x = self.layer_norm(x)
x = F.dropout(x, p=self.dropout, training=self.training)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
layer_results = []
for i, layer in enumerate(self.layers):
dropout_probability = np.random.random()
if not self.training or (dropout_probability > self.layerdrop):
x, z = layer(x, self_attn_padding_mask=padding_mask, need_weights=False)
layer_results.append(x)
# T x B x C -> B x T x C
x = x.transpose(0, 1)
return x
def max_positions(self):
"""Maximum output length supported by the encoder."""
return self.args.max_positions
def upgrade_state_dict_named(self, state_dict, name):
"""Upgrade a (possibly old) state dict for new versions of fairseq."""
return state_dict
class TransformerSentenceEncoderLayer(nn.Module):
"""
Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained
models.
"""
def __init__(
self,
embedding_dim: float = 768,
ffn_embedding_dim: float = 3072,
num_attention_heads: float = 8,
dropout: float = 0.1,
attention_dropout: float = 0.1,
activation_dropout: float = 0.1,
activation_fn: str = "relu",
layer_norm_first: bool = False,
) -> None:
super().__init__()
# Initialize parameters
self.embedding_dim = embedding_dim
self.dropout = dropout
self.activation_dropout = activation_dropout
# Initialize blocks
self.activation_fn = utils.get_activation_fn(activation_fn)
self.self_attn = MultiheadAttention(
self.embedding_dim,
num_attention_heads,
dropout=attention_dropout,
self_attention=True,
)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(self.activation_dropout)
self.dropout3 = nn.Dropout(dropout)
self.layer_norm_first = layer_norm_first
# layer norm associated with the self attention layer
self.self_attn_layer_norm = LayerNorm(self.embedding_dim)
self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim)
self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim)
# layer norm associated with the position wise feed-forward NN
self.final_layer_norm = LayerNorm(self.embedding_dim)
def forward(
self,
x: torch.Tensor,
self_attn_mask: torch.Tensor = None,
self_attn_padding_mask: torch.Tensor = None,
need_weights: bool = False,
att_args=None,
):
"""
LayerNorm is applied either before or after the self-attention/ffn
modules similar to the original Transformer imlementation.
"""
residual = x
if self.layer_norm_first:
x = self.self_attn_layer_norm(x)
x, attn = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=self_attn_padding_mask,
need_weights=False,
attn_mask=self_attn_mask,
)
x = self.dropout1(x)
x = residual + x
residual = x
x = self.final_layer_norm(x)
x = self.activation_fn(self.fc1(x))
x = self.dropout2(x)
x = self.fc2(x)
x = self.dropout3(x)
x = residual + x
else:
x, attn = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=self_attn_padding_mask,
need_weights=need_weights,
)
x = self.dropout1(x)
x = residual + x
x = self.self_attn_layer_norm(x)
residual = x
x = self.activation_fn(self.fc1(x))
x = self.dropout2(x)
x = self.fc2(x)
x = self.dropout3(x)
x = residual + x
x = self.final_layer_norm(x)
return x, attn
| data2vec_vision-main | deltalm/src/fairseq/models/wav2vec/wav2vec2.py |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.