python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Train a network across multiple GPUs. """ import contextlib import logging import sys import time from argparse import Namespace from itertools import chain from typing import Any, Dict, List import torch from fairseq import checkpoint_utils, distributed_utils, models, optim, utils from fairseq.dataclass.configs import FairseqConfig from fairseq.dataclass.utils import convert_namespace_to_omegaconf from fairseq.file_io import PathManager from fairseq.logging import meters, metrics from fairseq.nan_detector import NanDetector from fairseq.optim import lr_scheduler logger = logging.getLogger(__name__) class Trainer(object): """Main class for data parallel training. This class supports synchronous distributed data parallel training, where multiple workers each have a full model replica and gradients are accumulated across workers before each update. We use :class:`~torch.nn.parallel.DistributedDataParallel` to handle communication of the gradients across workers. """ def __init__(self, cfg: FairseqConfig, task, model, criterion, quantizer=None): if isinstance(cfg, Namespace): logger.warning( "argparse.Namespace configuration is deprecated! Automatically converting to OmegaConf" ) cfg = convert_namespace_to_omegaconf(cfg) self.cfg = cfg self.task = task # catalog shared parameters shared_params = _catalog_shared_params(model) self.tpu = cfg.common.tpu self.cuda = torch.cuda.is_available() and not cfg.common.cpu and not self.tpu if self.cuda: self.device = torch.device("cuda") elif self.tpu: self.device = utils.get_tpu_device() else: self.device = torch.device("cpu") # copy model and criterion to current device/dtype self._criterion = criterion self._model = model if cfg.common.fp16: self._criterion = self._criterion.half() self._model = self._model.half() elif cfg.common.bf16: self._criterion = self._criterion.to(dtype=torch.bfloat16) self._model = self._model.to(dtype=torch.bfloat16) if not cfg.distributed_training.pipeline_model_parallel: self._criterion = self._criterion.to(device=self.device) self._model = self._model.to(device=self.device) self.pipeline_model_parallel = cfg.distributed_training.pipeline_model_parallel self.last_device = None if self.cuda and self.pipeline_model_parallel: self.last_device = torch.device( cfg.distributed_training.pipeline_devices[-1] ) # check that shared parameters are preserved after device transfer for shared_param in shared_params: ref = _get_module_by_path(self._model, shared_param[0]) for path in shared_param[1:]: logger.info( "detected shared parameter: {} <- {}".format(shared_param[0], path) ) _set_module_by_path(self._model, path, ref) self._dummy_batch = None # indicates we don't have a dummy batch at first self._lr_scheduler = None self._num_updates = 0 self._num_xla_compiles = 0 # for TPUs self._optim_history = None self._optimizer = None self._warn_once = set() self._wrapped_criterion = None self._wrapped_model = None # TODO(myleott): support tpu if self.cuda and self.data_parallel_world_size > 1: self._grad_norm_buf = torch.cuda.DoubleTensor(self.data_parallel_world_size) else: self._grad_norm_buf = None self.quantizer = quantizer if self.quantizer is not None: self.quantizer.set_trainer(self) # get detailed cuda environment if self.cuda: self.cuda_env = utils.CudaEnvironment() if self.data_parallel_world_size > 1: self.cuda_env_arr = distributed_utils.all_gather_list( self.cuda_env, group=distributed_utils.get_global_group() ) else: self.cuda_env_arr = [self.cuda_env] if self.data_parallel_rank == 0: utils.CudaEnvironment.pretty_print_cuda_env_list(self.cuda_env_arr) else: self.cuda_env = None self.cuda_env_arr = None metrics.log_start_time("wall", priority=790, round=0) self._start_time = time.time() self._previous_training_time = 0 self._cumulative_training_time = None def reinitialize(self): """Reinitialize the Trainer, typically after model params change.""" self._lr_scheduler = None self._optimizer = None self._wrapped_criterion = None self._wrapped_model = None @property def data_parallel_world_size(self): if self.cfg.distributed_training.distributed_world_size == 1: return 1 return distributed_utils.get_data_parallel_world_size() @property def data_parallel_process_group(self): return distributed_utils.get_data_parallel_group() @property def data_parallel_rank(self): if self.cfg.distributed_training.distributed_world_size == 1: return 0 return distributed_utils.get_data_parallel_rank() @property def is_data_parallel_master(self): # NOTE: this returns true for all model parallel replicas with data # parallel rank 0 return self.data_parallel_rank == 0 @property def criterion(self): if self._wrapped_criterion is None: if ( utils.has_parameters(self._criterion) and self.data_parallel_world_size > 1 and not self.cfg.optimization.use_bmuf ): self._wrapped_criterion = models.DistributedFairseqModel( self.cfg.distributed_training, self._criterion, process_group=self.data_parallel_process_group, ) else: self._wrapped_criterion = self._criterion return self._wrapped_criterion @property def model(self): if self._wrapped_model is None: if self.data_parallel_world_size > 1 and not self.cfg.optimization.use_bmuf: self._wrapped_model = models.DistributedFairseqModel( self.cfg.distributed_training, self._model, process_group=self.data_parallel_process_group, ) else: self._wrapped_model = self._model return self._wrapped_model @property def optimizer(self): if self._optimizer is None: self._build_optimizer() return self._optimizer @property def lr_scheduler(self): if self._lr_scheduler is None: self._build_optimizer() # this will initialize self._lr_scheduler return self._lr_scheduler def _build_optimizer(self): params = list( filter( lambda p: p.requires_grad, chain(self.model.parameters(), self.criterion.parameters()), ) ) if self.cfg.common.fp16 or self.cfg.common.bf16: if self.cuda and torch.cuda.get_device_capability(0)[0] < 7: logger.info( "NOTE: your device does NOT support faster training with --fp16, " "please switch to FP32 which is likely to be faster" ) if ( self.cfg.common.memory_efficient_fp16 or self.cfg.common.memory_efficient_bf16 ): self._optimizer = optim.MemoryEfficientFP16Optimizer.build_optimizer( self.cfg, params ) else: self._optimizer = optim.FP16Optimizer.build_optimizer(self.cfg, params) else: if self.cuda and torch.cuda.get_device_capability(0)[0] >= 7: logger.info("NOTE: your device may support faster training with --fp16") self._optimizer = optim.build_optimizer(self.cfg.optimizer, params) if self.cfg.optimization.use_bmuf: self._optimizer = optim.FairseqBMUF( self.cfg.bmuf, self._optimizer, ) if self.cfg.distributed_training.zero_sharding == "os": if ( self.cfg.common.fp16 and not self.cfg.common.memory_efficient_fp16 and not self.cfg.common.memory_efficient_bf16 ) and not self.cfg.common.fp16_no_flatten_grads: raise ValueError( "ZeRO is incomptabile with fp16 and flattened grads. " "Please use --fp16-no-flatten-grads" ) else: optim.shard_(self._optimizer, self.data_parallel_process_group) # We should initialize the learning rate scheduler immediately after # building the optimizer, so that the initial learning rate is set. self._lr_scheduler = lr_scheduler.build_lr_scheduler( self.cfg.lr_scheduler, self.optimizer, ) self._lr_scheduler.step_update(0) def consolidate_optimizer(self): """For OSS, we need to consolidate the state dict.""" if hasattr(self.optimizer.optimizer, "consolidate_state_dict"): self.optimizer.optimizer.consolidate_state_dict() def save_checkpoint(self, filename, extra_state): """Save all training state in a checkpoint file.""" if self.is_data_parallel_master: # only save one checkpoint logger.info( f"Preparing to save checkpoint to {filename} after " f"{self.get_num_updates()} updates" ) extra_state["metrics"] = metrics.state_dict() extra_state["previous_training_time"] = self.cumulative_training_time() checkpoint_utils.save_state( filename, self.cfg, self.get_model().state_dict(), self.get_criterion(), self.optimizer, self.lr_scheduler, self.get_num_updates(), self._optim_history, extra_state, ) logger.info(f"Finished saving checkpoint to {filename}") def load_checkpoint( self, filename, reset_optimizer=False, reset_lr_scheduler=False, optimizer_overrides=None, reset_meters=False, ): """ Load all training state from a checkpoint file. rank = 0 will load the checkpoint, and then broadcast it to all other ranks. """ extra_state, self._optim_history, last_optim_state = None, [], None bexists = PathManager.isfile(filename) if bexists: load_on_all_ranks = ( self.cfg.checkpoint.load_checkpoint_on_all_dp_ranks # TPUs don't support broadcast yet, so load checkpoints # on every worker for now or self.tpu ) if load_on_all_ranks or self.data_parallel_rank == 0: state = checkpoint_utils.load_checkpoint_to_cpu(filename) last_optim_state = state.get("last_optimizer_state", None) # If doing zero_sharding, do not broadcast global optimizer # state. Later we will broadcast sharded states to each rank # to avoid memory from exploding. if ( not load_on_all_ranks and self.cfg.distributed_training.zero_sharding == "os" and "last_optimizer_state" in state and self.data_parallel_world_size > 1 ): state["last_optimizer_state"] = "SHARDED" else: last_optim_state = None state = None if self.data_parallel_world_size > 1 and not load_on_all_ranks: state = distributed_utils.broadcast_object( state, src_rank=0, group=self.data_parallel_process_group, dist_device=self.device, ) if self.data_parallel_rank > 0: last_optim_state = state.get("last_optimizer_state", None) # load model parameters try: state = checkpoint_utils.expand_embedding_matrix(state, self.get_model()) self.get_model().load_state_dict( state["model"], strict=False, model_cfg=self.cfg.model ) # if utils.has_parameters(self.get_criterion()): self.get_criterion().load_state_dict( state["criterion"], strict=True ) except Exception: raise Exception( "Cannot load model parameters from checkpoint {}; " "please ensure that the architectures match.".format(filename) ) extra_state = state["extra_state"] self._optim_history = state["optimizer_history"] if last_optim_state is not None and not reset_optimizer: # rebuild optimizer after loading model, since params may have changed self._build_optimizer() # only reload optimizer and lr_scheduler if they match last_optim = self._optim_history[-1] assert ( last_optim["criterion_name"] == self.get_criterion().__class__.__name__ ), "Criterion does not match; please reset the optimizer (--reset-optimizer)." assert ( last_optim["optimizer_name"] == self.optimizer.__class__.__name__ ), "Optimizer does not match; please reset the optimizer (--reset-optimizer)." if not reset_lr_scheduler: self.lr_scheduler.load_state_dict(last_optim["lr_scheduler_state"]) if not load_on_all_ranks and self.data_parallel_world_size > 1: last_optim_state = self.optimizer.broadcast_global_state_dict( last_optim_state ) self.optimizer.load_state_dict(last_optim_state, optimizer_overrides) self.set_num_updates(last_optim["num_updates"]) if extra_state is not None: epoch = extra_state["train_iterator"]["epoch"] logger.info( "loaded checkpoint {} (epoch {} @ {} updates)".format( filename, epoch, self.get_num_updates() ) ) if "previous_training_time" in extra_state: self._previous_training_time = extra_state["previous_training_time"] self._start_time = time.time() self.lr_step(epoch) if "metrics" in extra_state and not reset_meters: metrics.load_state_dict(extra_state["metrics"]) # reset TimeMeters, since their start times don't make sense anymore for meter in metrics.get_meters("default"): if isinstance(meter, meters.TimeMeter): meter.reset() else: logger.info("no existing checkpoint found {}".format(filename)) return extra_state def get_train_iterator( self, epoch, combine=True, load_dataset=True, data_selector=None, shard_batch_itr=True, disable_iterator_cache=False, ): """Return an EpochBatchIterator over the training set for a given epoch.""" if load_dataset: logger.info("loading train data for epoch {}".format(epoch)) self.task.load_dataset( self.cfg.dataset.train_subset, epoch=epoch, combine=combine, data_selector=data_selector, ) batch_iterator = self.task.get_batch_iterator( dataset=self.task.dataset(self.cfg.dataset.train_subset), max_tokens=self.cfg.dataset.max_tokens, max_sentences=self.cfg.dataset.batch_size, max_positions=utils.resolve_max_positions( self.task.max_positions(), self.model.max_positions(), self.cfg.dataset.max_tokens, ), ignore_invalid_inputs=True, required_batch_size_multiple=self.cfg.dataset.required_batch_size_multiple, seed=self.cfg.common.seed, num_shards=self.data_parallel_world_size if shard_batch_itr else 1, shard_id=self.data_parallel_rank if shard_batch_itr else 0, num_workers=self.cfg.dataset.num_workers, epoch=epoch, data_buffer_size=self.cfg.dataset.data_buffer_size, disable_iterator_cache=disable_iterator_cache, ) self.reset_dummy_batch(batch_iterator.first_batch) return batch_iterator def get_valid_iterator( self, subset, disable_iterator_cache=False, ): """Return an EpochBatchIterator over given validation subset for a given epoch.""" batch_iterator = self.task.get_batch_iterator( dataset=self.task.dataset(subset), max_tokens=self.cfg.dataset.max_tokens_valid, max_sentences=self.cfg.dataset.batch_size_valid, max_positions=utils.resolve_max_positions( self.task.max_positions(), self.model.max_positions(), ), ignore_invalid_inputs=self.cfg.dataset.skip_invalid_size_inputs_valid_test, required_batch_size_multiple=self.cfg.dataset.required_batch_size_multiple, seed=self.cfg.common.seed, num_shards=self.data_parallel_world_size, shard_id=self.data_parallel_rank, num_workers=self.cfg.dataset.num_workers, data_buffer_size=self.cfg.dataset.data_buffer_size, disable_iterator_cache=disable_iterator_cache, ) self.reset_dummy_batch(batch_iterator.first_batch) return batch_iterator def begin_epoch(self, epoch): """Called at the beginning of each epoch.""" logger.info("begin training epoch {}".format(epoch)) self.lr_step_begin_epoch(epoch) if self.quantizer is not None: self.quantizer.begin_epoch(epoch) # task specific setup per epoch self.task.begin_epoch(epoch, self.get_model()) if self.tpu: import torch_xla.core.xla_model as xm xm.rendezvous("begin_epoch") # wait for all workers xm.mark_step() def begin_valid_epoch(self, epoch): """Called at the beginning of each validation epoch.""" # task specific setup per validation epoch self.task.begin_valid_epoch(epoch, self.get_model()) def reset_dummy_batch(self, batch): self._dummy_batch = batch @metrics.aggregate("train") def train_step(self, samples, raise_oom=False, epoch=1): """Do forward, backward and parameter update.""" self._set_seed() self.model.train() self.criterion.train() self.zero_grad() metrics.log_start_time("train_wall", priority=800, round=0) # forward and backward pass logging_outputs, sample_size, ooms = [], 0, 0 for i, sample in enumerate(samples): sample, is_dummy_batch = self._prepare_sample(sample) def maybe_no_sync(): """ Whenever *samples* contains more than one mini-batch, we want to accumulate gradients locally and only call all-reduce in the last backwards pass. """ if ( self.data_parallel_world_size > 1 and hasattr(self.model, "no_sync") and i < len(samples) - 1 ): return self.model.no_sync() else: return contextlib.ExitStack() # dummy contextmanager try: with maybe_no_sync(): # forward and backward loss, sample_size_i, logging_output = self.task.train_step( sample=sample, model=self.model, criterion=self.criterion, optimizer=self.optimizer, update_num=self.get_num_updates(), ignore_grad=is_dummy_batch, epoch = epoch ) del loss logging_outputs.append(logging_output) sample_size += sample_size_i # emptying the CUDA cache after the first step can # reduce the chance of OOM if self.cuda and self.get_num_updates() == 0: torch.cuda.empty_cache() except RuntimeError as e: if "out of memory" in str(e): self._log_oom(e) if raise_oom: raise e logger.warning( "attempting to recover from OOM in forward/backward pass" ) ooms += 1 self.zero_grad() if self.cuda: torch.cuda.empty_cache() if self.cfg.distributed_training.distributed_world_size == 1: return None else: raise e if self.tpu and i < len(samples) - 1: # tpu-comment: every XLA operation before marking step is # appended to the IR graph, and processing too many batches # before marking step can lead to OOM errors. # To handle gradient accumulation use case, we explicitly # mark step here for every forward pass without a backward pass import torch_xla.core.xla_model as xm xm.mark_step() if is_dummy_batch: if torch.is_tensor(sample_size): sample_size.zero_() else: sample_size *= 0.0 if torch.is_tensor(sample_size): sample_size = sample_size.float() else: sample_size = float(sample_size) # gather logging outputs from all replicas if self._sync_stats(): train_time = self._local_cumulative_training_time() logging_outputs, ( sample_size, ooms, total_train_time, ) = self._aggregate_logging_outputs( logging_outputs, sample_size, ooms, train_time, ignore=is_dummy_batch, ) self._cumulative_training_time = ( total_train_time / self.data_parallel_world_size ) overflow = False try: with torch.autograd.profiler.record_function("reduce-grads"): self.optimizer.all_reduce_grads(self.model) if utils.has_parameters(self.criterion): self.optimizer.all_reduce_grads(self.criterion) with torch.autograd.profiler.record_function("multiply-grads"): # multiply gradients by (data_parallel_size / sample_size) since # DDP already normalizes by the number of data parallel workers. # Thus we get (sum_of_gradients / sample_size) at the end. if not self.cfg.optimization.use_bmuf: self.optimizer.multiply_grads( self.data_parallel_world_size / sample_size ) elif sample_size > 0: # BMUF needs to check sample size num = self.data_parallel_world_size if self._sync_stats() else 1 self.optimizer.multiply_grads(num / sample_size) with torch.autograd.profiler.record_function("clip-grads"): # clip grads grad_norm = self.clip_grad_norm(self.cfg.optimization.clip_norm) # check that grad norms are consistent across workers # on tpu check tensor is slow if not self.tpu: if ( not self.cfg.optimization.use_bmuf and self.cfg.distributed_training.distributed_wrapper != "SlowMo" ): self._check_grad_norms(grad_norm) if not torch.isfinite(grad_norm).all(): # check local gradnorm single GPU case, trigger NanDetector raise FloatingPointError("gradients are Nan/Inf") with torch.autograd.profiler.record_function("optimizer"): # take an optimization step self.task.optimizer_step( self.optimizer, model=self.model, update_num=self.get_num_updates() ) except FloatingPointError: # re-run the forward and backward pass with hooks attached to print # out where it fails self.zero_grad() with NanDetector(self.get_model()): for _, sample in enumerate(samples): sample, _ = self._prepare_sample(sample) self.task.train_step( sample, self.model, self.criterion, self.optimizer, self.get_num_updates(), ignore_grad=False, ) raise except OverflowError as e: overflow = True logger.info("NOTE: overflow detected, " + str(e)) grad_norm = torch.tensor(0.0).cuda() self.zero_grad() except RuntimeError as e: if "out of memory" in str(e): self._log_oom(e) logger.error("OOM during optimization, irrecoverable") raise e # Some distributed wrappers (e.g., SlowMo) need access to the optimizer after the step if hasattr(self.model, "perform_additional_optimizer_actions"): if hasattr(self.optimizer, "fp32_params"): self.model.perform_additional_optimizer_actions( self.optimizer.optimizer, self.optimizer.fp32_params ) else: self.model.perform_additional_optimizer_actions( self.optimizer.optimizer ) logging_output = None if ( not overflow or self.cfg.distributed_training.distributed_wrapper == "SlowMo" ): self.set_num_updates(self.get_num_updates() + 1) if self.tpu: # mark step on TPUs import torch_xla.core.xla_model as xm xm.mark_step() # only log stats every log_interval steps # this causes wps to be misreported when log_interval > 1 logging_output = {} if self.get_num_updates() % self.cfg.common.log_interval == 0: # log memory usage mem_info = xm.get_memory_info(self.device) gb_free = mem_info["kb_free"] / 1024 / 1024 gb_total = mem_info["kb_total"] / 1024 / 1024 metrics.log_scalar( "gb_free", gb_free, priority=1500, round=1, weight=0, ) metrics.log_scalar( "gb_total", gb_total, priority=1600, round=1, weight=0, ) logging_output = self._reduce_and_log_stats( logging_outputs, sample_size, grad_norm, ) # log whenever there's an XLA compilation, since these # slow down training and may indicate opportunities for # optimization self._check_xla_compilation() else: # log stats logging_output = self._reduce_and_log_stats( logging_outputs, sample_size, grad_norm, ) # clear CUDA cache to reduce memory fragmentation if ( self.cuda and self.cfg.common.empty_cache_freq > 0 and ( (self.get_num_updates() + self.cfg.common.empty_cache_freq - 1) % self.cfg.common.empty_cache_freq ) == 0 ): torch.cuda.empty_cache() if self.cfg.common.fp16: metrics.log_scalar( "loss_scale", self.optimizer.scaler.loss_scale, priority=700, round=4, weight=0, ) metrics.log_stop_time("train_wall") return logging_output @metrics.aggregate("valid") def valid_step(self, sample, raise_oom=False): """Do forward pass in evaluation mode.""" if self.tpu: import torch_xla.core.xla_model as xm xm.rendezvous("valid_step") # wait for all workers xm.mark_step() with torch.no_grad(): self.model.eval() self.criterion.eval() sample, is_dummy_batch = self._prepare_sample(sample) try: _loss, sample_size, logging_output = self.task.valid_step( sample, self.model, self.criterion ) except RuntimeError as e: if "out of memory" in str(e): self._log_oom(e) if not raise_oom: logger.warning( "ran out of memory in validation step, retrying batch" ) for p in self.model.parameters(): if p.grad is not None: p.grad = None # free some memory if self.cuda: torch.cuda.empty_cache() return self.valid_step(sample, raise_oom=True) raise e logging_outputs = [logging_output] if is_dummy_batch: if torch.is_tensor(sample_size): sample_size.zero_() else: sample_size *= 0.0 # gather logging outputs from all replicas if self.data_parallel_world_size > 1: logging_outputs, (sample_size,) = self._aggregate_logging_outputs( logging_outputs, sample_size, ignore=is_dummy_batch, ) # log validation stats logging_output = self._reduce_and_log_stats(logging_outputs, sample_size) return logging_output def zero_grad(self): self.optimizer.zero_grad() def lr_step_begin_epoch(self, epoch): """Adjust the learning rate at the beginning of the epoch.""" self.lr_scheduler.step_begin_epoch(epoch) # prefer updating the LR based on the number of steps return self.lr_step_update() def lr_step(self, epoch, val_loss=None): """Adjust the learning rate at the end of the epoch.""" self.lr_scheduler.step(epoch, val_loss) # prefer updating the LR based on the number of steps return self.lr_step_update() def lr_step_update(self): """Update the learning rate after each update.""" new_lr = self.lr_scheduler.step_update(self.get_num_updates()) if isinstance(new_lr, dict): for k, v in new_lr.items(): metrics.log_scalar(f"lr_{k}", v, weight=0, priority=300) new_lr = new_lr.get("default", next(iter(new_lr.values()))) else: metrics.log_scalar("lr", new_lr, weight=0, priority=300) return new_lr def get_lr(self): """Get the current learning rate.""" return self.optimizer.get_lr() def get_model(self): """Get the (non-wrapped) model instance.""" return self._model def get_criterion(self): """Get the (non-wrapped) criterion instance.""" return self._criterion def get_meter(self, name): """[deprecated] Get a specific meter by name.""" from fairseq import meters if "get_meter" not in self._warn_once: self._warn_once.add("get_meter") utils.deprecation_warning( "Trainer.get_meter is deprecated. Please use fairseq.metrics instead." ) train_meters = metrics.get_meters("train") if train_meters is None: train_meters = {} if name == "train_loss" and "loss" in train_meters: return train_meters["loss"] elif name == "train_nll_loss": # support for legacy train.py, which assumed this meter is # always initialized m = train_meters.get("nll_loss", None) return m or meters.AverageMeter() elif name == "wall": # support for legacy train.py, which assumed this meter is # always initialized m = metrics.get_meter("default", "wall") return m or meters.TimeMeter() elif name == "wps": m = metrics.get_meter("train", "wps") return m or meters.TimeMeter() elif name in {"valid_loss", "valid_nll_loss"}: # support for legacy train.py, which assumed these meters # are always initialized k = name[len("valid_") :] m = metrics.get_meter("valid", k) return m or meters.AverageMeter() elif name == "oom": return meters.AverageMeter() elif name in train_meters: return train_meters[name] return None def get_num_updates(self): """Get the number of parameters updates.""" return self._num_updates def set_num_updates(self, num_updates): """Set the number of parameters updates.""" self._num_updates = num_updates self.lr_step_update() if self.quantizer: self.quantizer.step_update(self._num_updates) metrics.log_scalar("num_updates", self._num_updates, weight=0, priority=200) def clip_grad_norm(self, clip_norm): return self.optimizer.clip_grad_norm(clip_norm, aggregate_norm_fn=None) def cumulative_training_time(self): if self._cumulative_training_time is None: # single GPU return self._local_cumulative_training_time() else: return self._cumulative_training_time def _local_cumulative_training_time(self): """Aggregate training time in seconds.""" return time.time() - self._start_time + self._previous_training_time def _prepare_sample(self, sample, is_dummy=False): if sample == "DUMMY": raise Exception( "Trying to use an uninitialized 'dummy' batch. This usually indicates " "that the total number of batches is smaller than the number of " "participating GPUs. Try reducing the batch size or using fewer GPUs." ) if sample is None or len(sample) == 0: assert ( self._dummy_batch is not None and len(self._dummy_batch) > 0 ), "Invalid dummy batch: {}".format(self._dummy_batch) sample, _ = self._prepare_sample(self._dummy_batch, is_dummy=True) return sample, True if self.cuda: if self.pipeline_model_parallel: if "target" in sample: sample["target"] = utils.move_to_cuda( sample["target"], device=self.last_device ) else: sample = utils.move_to_cuda(sample) elif self.tpu and is_dummy: # the dummy batch may not be on the appropriate device sample = utils.move_to_cuda(sample, device=self.device) def apply_half(t): if t.dtype is torch.float32: return t.half() return t def apply_bfloat16(t): if t.dtype is torch.float32: return t.to(dtype=torch.bfloat16) return t if self.cfg.common.fp16: sample = utils.apply_to_sample(apply_half, sample) if self.cfg.common.bf16: sample = utils.apply_to_sample(apply_bfloat16, sample) if self._dummy_batch == "DUMMY": self._dummy_batch = sample return sample, False def _set_seed(self): # Set seed based on args.seed and the update number so that we get # reproducible results when resuming from checkpoints seed = self.cfg.common.seed + self.get_num_updates() utils.set_torch_seed(seed) def _sync_stats(self): # Return True if it's using multiple GPUs and DDP or multiple GPUs with # BMUF and it's a bmuf sync with warmup iterations completed before. if self.data_parallel_world_size == 1: return False elif self.cfg.optimization.use_bmuf: return ( self.get_num_updates() + 1 ) % self.cfg.bmuf.global_sync_iter == 0 and ( self.get_num_updates() + 1 ) > self.cfg.bmuf.warmup_iterations else: return True def _log_oom(self, exc): msg = "OOM: Ran out of memory with exception: {}".format(exc) logger.warning(msg) if torch.cuda.is_available() and hasattr(torch.cuda, "memory_summary"): for device_idx in range(torch.cuda.device_count()): logger.warning(torch.cuda.memory_summary(device=device_idx)) sys.stderr.flush() def _aggregate_logging_outputs( self, logging_outputs: List[Dict[str, Any]], *extra_stats_to_sum, ignore=False, ): if self.task.__class__.logging_outputs_can_be_summed(self.get_criterion()): return self._fast_stat_sync_sum( logging_outputs, *extra_stats_to_sum, ignore=ignore ) else: return self._all_gather_list_sync( logging_outputs, *extra_stats_to_sum, ignore=ignore ) def _all_gather_list_sync( self, logging_outputs: List[Dict[str, Any]], *extra_stats_to_sum, ignore=False, ): """ Sync logging outputs across workers. all_gather_list_sync is suitable when logging outputs are complex types. """ if self.tpu: raise NotImplementedError if ignore: logging_outputs = [] results = list( zip( *distributed_utils.all_gather_list( [logging_outputs] + list(extra_stats_to_sum), max_size=getattr(self.cfg.common, "all_gather_list_size", 16384), group=self.data_parallel_process_group, ) ) ) logging_outputs, extra_stats_to_sum = results[0], results[1:] logging_outputs = list(chain.from_iterable(logging_outputs)) extra_stats_to_sum = [sum(s) for s in extra_stats_to_sum] return logging_outputs, extra_stats_to_sum def _fast_stat_sync_sum( self, logging_outputs: List[Dict[str, Any]], *extra_stats_to_sum, ignore=False, ): """ Sync logging outputs across workers. fast_stat_sync_sum is faster than all_gather_list_sync, but is only suitable when logging outputs are scalars and can be summed. Note that *logging_outputs* cannot contain any nested dicts/lists. """ data = {} for i, stat in enumerate(extra_stats_to_sum): data["extra_stats_" + str(i)] = stat if len(logging_outputs) > 0: log_keys = list(logging_outputs[0].keys()) for k in log_keys: if not ignore: v = sum(log[k] for log in logging_outputs if k in log) else: v = logging_outputs[0][k] v = torch.zeros_like(v) if torch.is_tensor(v) else 0 data["logging_outputs_" + k] = v else: log_keys = None data = distributed_utils.all_reduce_dict( data, device=self.device, group=self.data_parallel_process_group ) extra_stats_to_sum = [ data["extra_stats_" + str(i)] for i in range(len(extra_stats_to_sum)) ] if log_keys is not None: logging_outputs = [{k: data["logging_outputs_" + k] for k in log_keys}] else: logging_outputs = [] return logging_outputs, extra_stats_to_sum def _check_grad_norms(self, grad_norm): """Check that grad norms are consistent across workers.""" if self._grad_norm_buf is not None: self._grad_norm_buf.zero_() self._grad_norm_buf[self.data_parallel_rank] = grad_norm distributed_utils.all_reduce( self._grad_norm_buf, group=self.data_parallel_process_group ) def is_consistent(tensor): max_abs_diff = torch.max(torch.abs(tensor - tensor[0])) return ( torch.isfinite(tensor).all() or (max_abs_diff / (tensor[0] + 1e-6) < 1e-6).all() ) if not is_consistent(self._grad_norm_buf): pretty_detail = "\n".join( "rank {:3d} = {:.8f}".format(r, n) for r, n in enumerate(self._grad_norm_buf.tolist()) ) error_detail = "grad_norm across the workers:\n{}\n".format( pretty_detail ) # use FloatingPointError to trigger NanDetector raise FloatingPointError( "Fatal error: gradients are inconsistent between workers. " "Try --ddp-backend=no_c10d. " "Or are you mixing up different generation of GPUs in training?" + "\n" + "-" * 80 + "\n{}\n".format(error_detail) + "-" * 80 ) def _reduce_and_log_stats(self, logging_outputs, sample_size, grad_norm=None): if grad_norm is not None and ( not torch.is_tensor(grad_norm) or torch.isfinite(grad_norm) ): metrics.log_speed("ups", 1.0, priority=100, round=2) metrics.log_scalar("gnorm", grad_norm, priority=400, round=3) if self.cfg.optimization.clip_norm > 0: metrics.log_scalar( "clip", torch.where( grad_norm > self.cfg.optimization.clip_norm, grad_norm.new_tensor(100), grad_norm.new_tensor(0), ), priority=500, round=1, ) with metrics.aggregate() as agg: if logging_outputs is not None: self.task.reduce_metrics(logging_outputs, self.get_criterion()) del logging_outputs # extra warning for criterions that don't properly log a loss value if "loss" not in agg: if "loss" not in self._warn_once: self._warn_once.add("loss") logger.warning( "Criterion.reduce_metrics did not log a 'loss' value, " "which may break some functionality" ) metrics.log_scalar("loss", -1) # support legacy interface if self.tpu: logging_output = {} else: logging_output = agg.get_smoothed_values() logging_output["sample_size"] = sample_size for key_to_delete in ["ppl", "wps", "wpb", "bsz"]: if key_to_delete in logging_output: del logging_output[key_to_delete] return logging_output def _check_xla_compilation(self): import torch_xla.debug.metrics as met compile_stats = met.metric_data("CompileTime") if compile_stats is None: return num_xla_compiles = compile_stats[0] if num_xla_compiles > self._num_xla_compiles: logger.warning( "XLA compilation detected on device #{}; too many of these can lead " "to slow training, but we expect a few in the beginning".format( self.cfg.distributed_training.distributed_rank ) ) self._num_xla_compiles = num_xla_compiles def _catalog_shared_params(module, memo=None, prefix=""): if memo is None: first_call = True memo = {} else: first_call = False for name, param in module._parameters.items(): param_prefix = prefix + ("." if prefix else "") + name if param not in memo: memo[param] = [] memo[param].append(param_prefix) for name, m in module._modules.items(): if m is None: continue submodule_prefix = prefix + ("." if prefix else "") + name _catalog_shared_params(m, memo, submodule_prefix) if first_call: return [x for x in memo.values() if len(x) > 1] def _get_module_by_path(module, path): path = path.split(".") for name in path: module = getattr(module, name) return module def _set_module_by_path(module, path, value): path = path.split(".") for name in path[:-1]: module = getattr(module, name) setattr(module, path[-1], value)
data2vec_vision-main
deltalm/src/fairseq/trainer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch from fairseq import metrics, utils from fairseq.criterions import FairseqCriterion, register_criterion def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=None, reduce=True): if target.dim() == lprobs.dim() - 1: target = target.unsqueeze(-1) nll_loss = -lprobs.gather(dim=-1, index=target) smooth_loss = -lprobs.sum(dim=-1, keepdim=True) if ignore_index is not None: pad_mask = target.eq(ignore_index) nll_loss.masked_fill_(pad_mask, 0.0) smooth_loss.masked_fill_(pad_mask, 0.0) else: nll_loss = nll_loss.squeeze(-1) smooth_loss = smooth_loss.squeeze(-1) if reduce: nll_loss = nll_loss.sum() smooth_loss = smooth_loss.sum() eps_i = epsilon / lprobs.size(-1) loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss return loss, nll_loss @register_criterion("label_smoothed_cross_entropy_with_sparse") class LabelSmoothedCrossEntropyWithSparseCriterion(FairseqCriterion): def __init__( self, task, sentence_avg, label_smoothing, ignore_prefix_size=0, report_accuracy=False, ): super().__init__(task) self.sentence_avg = sentence_avg self.eps = label_smoothing self.ignore_prefix_size = ignore_prefix_size self.report_accuracy = report_accuracy self.sim_weight = task.args.sim_weight @staticmethod def add_args(parser): """Add criterion-specific arguments to the parser.""" # fmt: off parser.add_argument('--label-smoothing', default=0., type=float, metavar='D', help='epsilon for label smoothing, 0 means no label smoothing') parser.add_argument('--report-accuracy', action='store_true', help='report accuracy metric') parser.add_argument('--ignore-prefix-size', default=0, type=int, help='Ignore first N tokens') parser.add_argument('--sim-weight', default=1., type=float, help='') # fmt: on def forward(self, model, sample, reduce=True, epoch=1): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ net_output = model(**sample["net_input"], epoch=epoch) loss, nll_loss = self.compute_loss(model, net_output, sample, reduce=reduce) sample_size = ( sample["target"].size(0) if self.sentence_avg else sample["ntokens"] ) logging_output = { "loss": loss.data, "nll_loss": nll_loss.data, "ntokens": sample["ntokens"], "nsentences": sample["target"].size(0), "sample_size": sample_size, "src_lang_id": int(sample["net_input"]["src_lang_id"][0].cpu()) if "src_lang_id" in sample["net_input"].keys() else None, "tgt_lang_id": int(sample["net_input"]["tgt_lang_id"][0].cpu()) if "tgt_lang_id" in sample["net_input"].keys() else None, } total_loss = loss + self.sim_weight * net_output[1]["lang_weight_sim"].float() if self.report_accuracy: n_correct, total = self.compute_accuracy(model, net_output, sample) logging_output["n_correct"] = utils.item(n_correct.data) logging_output["total"] = utils.item(total.data) return total_loss, sample_size, logging_output def get_lprobs_and_target(self, model, net_output, sample): lprobs = model.get_normalized_probs(net_output, log_probs=True) target = model.get_targets(sample, net_output) if self.ignore_prefix_size > 0: if getattr(lprobs, "batch_first", False): lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous() target = target[:, self.ignore_prefix_size :].contiguous() else: lprobs = lprobs[self.ignore_prefix_size :, :, :].contiguous() target = target[self.ignore_prefix_size :, :].contiguous() return lprobs.view(-1, lprobs.size(-1)), target.view(-1) def compute_loss(self, model, net_output, sample, reduce=True): lprobs, target = self.get_lprobs_and_target(model, net_output, sample) loss, nll_loss = label_smoothed_nll_loss( lprobs, target, self.eps, ignore_index=self.padding_idx, reduce=reduce, ) return loss, nll_loss def compute_accuracy(self, model, net_output, sample): lprobs, target = self.get_lprobs_and_target(model, net_output, sample) mask = target.ne(self.padding_idx) n_correct = torch.sum( lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask)) ) total = torch.sum(mask) return n_correct, total @classmethod def reduce_metrics(cls, logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) metrics.log_scalar( "loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) metrics.log_scalar( "nll_loss", nll_loss_sum / ntokens / math.log(2), ntokens, round=3 ) metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg) ) total = utils.item(sum(log.get("total", 0) for log in logging_outputs)) if total > 0: metrics.log_scalar("total", total) n_correct = utils.item( sum(log.get("n_correct", 0) for log in logging_outputs) ) metrics.log_scalar("n_correct", n_correct) metrics.log_derived( "accuracy", lambda meters: round( meters["n_correct"].sum * 100.0 / meters["total"].sum, 3 ) if meters["total"].sum > 0 else float("nan"), ) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True
data2vec_vision-main
deltalm/src/fairseq/label_smoothed_cross_entropy_with_sparse.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from collections import Counter import torch from fairseq.file_io import PathManager from fairseq.tokenizer import tokenize_line def safe_readline(f): pos = f.tell() while True: try: return f.readline() except UnicodeDecodeError: pos -= 1 f.seek(pos) # search where this character begins class Binarizer: @staticmethod def binarize( filename, dict, consumer, tokenize=tokenize_line, append_eos=True, reverse_order=False, offset=0, end=-1, already_numberized=False, ): nseq, ntok = 0, 0 replaced = Counter() def replaced_consumer(word, idx): if idx == dict.unk_index and word != dict.unk_word: replaced.update([word]) with open(PathManager.get_local_path(filename), "r", encoding="utf-8") as f: f.seek(offset) # next(f) breaks f.tell(), hence readline() must be used line = safe_readline(f) while line: if end > 0 and f.tell() > end: break if already_numberized: id_strings = line.strip().split() id_list = [int(id_string) for id_string in id_strings] if reverse_order: id_list.reverse() if append_eos: id_list.append(dict.eos()) ids = torch.IntTensor(id_list) else: ids = dict.encode_line( line=line, line_tokenizer=tokenize, add_if_not_exist=False, consumer=replaced_consumer, append_eos=append_eos, reverse_order=reverse_order, ) nseq += 1 ntok += len(ids) consumer(ids) line = f.readline() return { "nseq": nseq, "nunk": sum(replaced.values()), "ntok": ntok, "replaced": replaced, } @staticmethod def binarize_alignments(filename, alignment_parser, consumer, offset=0, end=-1): nseq = 0 with open(PathManager.get_local_path(filename), "r") as f: f.seek(offset) line = safe_readline(f) while line: if end > 0 and f.tell() > end: break ids = alignment_parser(line) nseq += 1 consumer(ids) line = f.readline() return {"nseq": nseq} @staticmethod def find_offsets(filename, num_chunks): with open(PathManager.get_local_path(filename), "r", encoding="utf-8") as f: size = os.fstat(f.fileno()).st_size chunk_size = size // num_chunks offsets = [0 for _ in range(num_chunks + 1)] for i in range(1, num_chunks): f.seek(chunk_size * i) safe_readline(f) offsets[i] = f.tell() return offsets
data2vec_vision-main
deltalm/src/fairseq/binarizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Implements tracking of constraints for a beam item. A list of constraints is given as a list of one or more token sequences, each of length at least one token. For example, for an input sentence > Die maschinelle Übersetzung ist schwer zu kontrollieren. We could have the constraints: * to influence * hard There are two implementations: * OrderedConstraintState: Tracks progress through an ordered list of multitoken constraints. * UnorderedConstraintState: Tracks progress through an unordered list of multitoken constraints. The difference is that in the first, the constraints are assumed to be in order; the algorithm will permit zero or more tokens between them. In the second, the constraints are not ordered, so many orderings will be explored. The same sequence can be present any number of times, and will appear that many times in the output. """ from collections import Counter from typing import List, Optional, Set, Tuple import torch class ConstraintState: def __init__(self): pass def pack_constraints(batch_constraints: List[List[torch.Tensor]]) -> torch.Tensor: """Takes a list of list of constraints in tensor form (a list of tensor constraints for each sentence) and transforms it into a packed Tensor. For example, here is a batch of size 3 with 3, 0, and 1 constraints: [ [ [3 1 2], [3], [4 5 6 7], ] [], [ [1 8 9 10 1 4 11 12], ] ] Its corresponding packed structure is: [ [ 3 3 1 2 0 3 0 4 5 6 7 0], [ 0 0 0 0 0 0 0 0 0 0 0 0], [ 1 1 8 9 10 1 4 11 12 0 0 0] ] The packed tensor has shape (batch size, maxlen), where maxlen is defined below. Each row contains concatenated constraint tokens for that sentence, with 0 appended after each constraint. The first item in each row is the number of constraints for that sentence. So maxlen is the maximum of (number of constraints) + (sum length of constraints) + 1. across all sentences in the batch. """ # The maximum word length of concatenated constraints for any sentence max_constraints_len = 1 for sentence_constraints in batch_constraints: if len(sentence_constraints): # number of constraints, plus sum of constrain lens, plus a zero after each constraints_len = ( 1 + sum([c.size(0) for c in sentence_constraints]) + len(sentence_constraints) ) max_constraints_len = max(max_constraints_len, constraints_len) batch_size = len(batch_constraints) constraints_tensor = torch.zeros((batch_size, max_constraints_len)).long() for i, sentence_constraints in enumerate(batch_constraints): constraints_tensor[i, 0] = len(sentence_constraints) offset = 1 for j, constraint in enumerate(sentence_constraints): this_len = constraint.size(0) constraints_tensor[i, offset : offset + this_len] = constraint offset += this_len + 1 return constraints_tensor.long() def unpack_constraints(constraint_tensor: torch.Tensor) -> List[torch.Tensor]: """ Transforms *one row* of a packed constraint tensor (e.g., for one sentence in the batch) into a list of constraint tensors. """ constraint_list = [] num_constraints = constraint_tensor[0] constraints = constraint_tensor.tolist() offset = 1 for i in range(num_constraints): where = constraints.index(0, offset) constraint_list.append(constraint_tensor[offset:where]) offset = where + 1 return constraint_list class ConstraintNode: """ Represents a node in a trie managing unordered constraints. """ def __init__(self, token: int = None, parent=None): # The token associate with this node (None for the root) self.token = int(token) if token is not None else None # The parent (None at the root) self.parent = parent # Whether this node is a completed constraint self.terminal = 0 # List of child nodes self.children = {} # The cumulative number of constraints from this point in the # trie forward self.num_constraints = 0 @property def id(self): return self.token def __str__(self): term = self.terminal != 0 return f"[{self.token}].{term}#{self.num_constraints}" def __getitem__(self, key: int): return self.children.get(key, None) def next_tokens(self) -> Set[int]: """The set of child labels.""" return set(self.children.keys()) @staticmethod def create(constraints: List[List[int]]): root = ConstraintNode() for sequence in constraints: root.add_sequence(sequence) return root @staticmethod def print_graph(node: "ConstraintNode"): if len(node.children) == 0: return str(node) else: s = f"({node}" for child in node.children.values(): s += " " + ConstraintNode.print_graph(child) s += ")" return s def token_counts(self) -> Counter: """Returns a counter of the number of times each token is used in a constraint. """ token_counts = Counter() kids = list(self.children.values()) while len(kids) > 0: kid = kids.pop() token_counts[kid.id] += kid.num_constraints kids += list(kid.children.values()) return token_counts def tokens(self) -> Set[int]: """Returns the set of tokens in constraints.""" return set(self.token_counts().keys()) def add_sequence(self, sequence: List[int]): """Adds a constraint, represented as a list of integers, to the trie.""" assert len(sequence) > 0 token = int(sequence[0]) if token not in self.children: self.children[token] = ConstraintNode(token, parent=self) node = self.children[token] if len(sequence) == 1: node.terminal += 1 node.num_constraints += 1 parent = node.parent while parent is not None: parent.num_constraints += 1 parent = parent.parent else: node.add_sequence(sequence[1:]) class UnorderedConstraintState(ConstraintState): """ Records progress through the set of constraints for each item in the beam using a trie. """ def __init__(self, node: ConstraintNode, copy_from: "ConstraintState" = None): self.node = node if copy_from is None: # The root node self.root = node # The set of states in the graph that have been completed self.completed = Counter() # The... self.generated = Counter() # The list of tokens we need to generate self.needed_tokens = self.root.tokens() else: self.completed = Counter(copy_from.completed) self.generated = Counter(copy_from.generated) self.root = copy_from.root # Mark the node as generated if self.node != self.root: self.generated[node] += 1 @staticmethod def create(constraint_tensor: torch.Tensor): constraint_list = unpack_constraints(constraint_tensor) constraint_trie_root = ConstraintNode.create(constraint_list) return UnorderedConstraintState(constraint_trie_root) def __str__(self): gen_str = ",".join([str(node) for node in self.generated]) return f"{self.name}/{self.bank}({gen_str})x{self.num_completed}" def __copy__(self): copied_state = UnorderedConstraintState(self.node, copy_from=self) return copied_state def copy(self): return self.__copy__() @property def name(self): if self.node.id is None: return "ROOT" else: return str(self.node.id) @property def is_root(self): return self.node == self.root @property def bank(self): return sum(self.generated.values()) @property def num_completed(self): """The number of constraints (not constraint tokens) that are completed. In addition to the already-completed states, we need to account for the current state, which might get marked as completed when another token is generated. """ in_final = self.node.terminal and self.completed[self.node] < self.node.terminal return sum(self.completed.values()) + in_final @property def finished(self): return self.root.num_constraints - self.num_completed == 0 @property def token_counts(self): return self.root.token_counts() @property def tokens(self): return self.root.tokens() @property def num_constraint_tokens(self): return sum(self.token_counts.values()) def next_tokens(self) -> Set[int]: """Returns the list of tokens that could come next. These are (a) all tokens extending the root state and, for non-root states, additionally all tokens extending the current state.""" if self.node != self.root: return self.root.next_tokens().union(self.node.next_tokens()) else: return self.root.next_tokens() def advance(self, token: int): """Reads in a token and advances the state. Here's how it works. We can advance to the next state if: - there is a matching child - its path isn't blocked A path is blocked when all constraints that are descendants of that node have already been generated, in the current state. If we are not able to advance from the current state, we "fall off the graph" and return to the root state. There, we again try to advance, checking the same criteria. In any case, when falling off the graph, we need to do some bookkeeping. We: - check whether any constraints were met (all prefixes of current state) - if one is found, mark it as completed - adjust visited nodes accordingly """ token = int(token) next_state = None child = self.node[token] if child is not None and self.generated[child] < child.num_constraints: next_state = UnorderedConstraintState(child, copy_from=self) def rewind(): """If we're mid-trie and an "illegal" token is chosen next, we need to reset our state to the root state. However, along the way, we need to check whether a prefix of the current trie state represents a state we could mark as completed. """ node = self.node while node != self.root: if node.terminal and self.completed[node] < node.terminal: next_state.completed[node] += 1 return next_state.generated[node] -= 1 node = node.parent # Fall off the graph, check the root if next_state is None and token in self.root.next_tokens(): child = self.root[token] # We can only traverse this edge if it's not saturated if self.generated[child] < child.num_constraints: next_state = UnorderedConstraintState(child, copy_from=self) else: next_state = UnorderedConstraintState(self.root, copy_from=self) # Rewind rewind() elif next_state is None: next_state = UnorderedConstraintState(self.root, copy_from=self) # Rewind rewind() return next_state class ConstraintSequence: def __init__(self, sequences: List[List[int]]): """Represents a set of possibly multitoken constraints by concatenating them and internally recording the end points. """ self.sequences = [] self.endpoints = [] self.num_tokens = 0 self.tokens = set() for sequence in sequences: for token in sequence: self.tokens.add(token) self.num_tokens += len(sequence) self.endpoints += [False for x in range(len(sequence) - 1)] + [True] self.sequences += sequence def __getitem__(self, key: int): return self.sequences[key] def __len__(self): return len(self.sequences) def __str__(self): return str(self.sequences) class OrderedConstraintState(ConstraintState): """ Records progress through the set of linear nonbranching constraints with gaps. """ def __init__(self, sequence: ConstraintSequence, state: int = -1): self.sequence = sequence self.state = state @staticmethod def create(constraint_tensor: torch.Tensor): constraint_list = unpack_constraints(constraint_tensor) return OrderedConstraintState(ConstraintSequence(constraint_list), -1) def __str__(self): return f"{self.state}/{self.bank}x{self.num_completed}" def __copy__(self): return OrderedConstraintState(self.sequence, self.state) def copy(self): return self.__copy__() @property def num_completed(self): if self.state == -1: return 0 count = len( list(filter(lambda x: x, self.sequence.endpoints[0 : self.state + 1])) ) return count @property def is_root(self): return self.state == -1 @property def name(self): if self.state == -1: return "ROOT" else: return str(self.sequence[self.state]) @property def bank(self) -> int: return self.state + 1 @property def finished(self): return self.state + 1 == len(self.sequence) @property def token_counts(self): return self.sequence.token_counts() @property def tokens(self): return self.sequence.tokens @property def num_constraint_tokens(self): return sum(self.token_counts.values()) def next_tokens(self) -> Set[int]: """Returns the list of tokens that could come next. These are (a) all tokens extending the root state and, for non-root states, additionally all tokens extending the current state.""" tokens = set() if self.state > 0: tokens.add(self.sequence[0]) if not self.finished: tokens.add(self.sequence[self.state + 1]) return tokens def advance(self, token: int): """Reads in a token and advances the state. Here's how it works. We can advance to the next state if: - there is a matching child - its path isn't blocked A path is blocked when all constraints that are descendants of that node have already been generated, in the current state. If we are not able to advance from the current state, we "fall off the graph" and return to the root state. There, we again try to advance, checking the same criteria. In any case, when falling off the graph, we need to do some bookkeeping. We: - check whether any constraints were met (all prefixes of current state) - if one is found, mark it as completed - adjust visited nodes accordingly """ token = int(token) # print(f"{self} ADVANCE({token}) {self.sequence} -> ", end="") if self.finished: # Accept anything next_state = self.copy() elif self.sequence[self.state + 1] == token: # Advance to the next token next_state = OrderedConstraintState(self.sequence, self.state + 1) elif self.sequence.endpoints[self.state]: # Accept anything between constraints (*) next_state = self.copy() elif token == self.sequence[0]: # Start over having generated the first token next_state = OrderedConstraintState(self.sequence, 0) else: # Start over from the root next_state = OrderedConstraintState(self.sequence, -1) return next_state
data2vec_vision-main
deltalm/src/fairseq/token_generation_constraints.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import numpy as np import torch from fairseq.data import Dictionary, FairseqDataset from fairseq.tasks import LegacyFairseqTask, register_task logger = logging.getLogger(__name__) @register_task("dummy_masked_lm") class DummyMaskedLMTask(LegacyFairseqTask): @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument("--dict-size", default=49995, type=int) parser.add_argument("--dataset-size", default=100000, type=int) parser.add_argument( "--tokens-per-sample", default=512, type=int, help="max number of total tokens over all segments " "per sample for BERT dataset", ) def __init__(self, args, dictionary): super().__init__(args) self.dictionary = dictionary # add mask token self.mask_idx = dictionary.add_symbol("<mask>") dictionary.pad_to_multiple_(8) # often faster if divisible by 8 mask_idx = 0 pad_idx = 1 seq = torch.arange(args.tokens_per_sample) + pad_idx + 1 mask = torch.arange(2, args.tokens_per_sample, 7) # ~15% src = seq.clone() src[mask] = mask_idx tgt = torch.full_like(seq, pad_idx) tgt[mask] = seq[mask] self.dummy_src = src self.dummy_tgt = tgt @classmethod def setup_task(cls, args, **kwargs): """Setup the task. """ dictionary = Dictionary() for i in range(args.dict_size): dictionary.add_symbol("word{}".format(i)) logger.info("dictionary: {} types".format(len(dictionary))) return cls(args, dictionary) def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ if self.args.batch_size is not None: bsz = self.args.batch_size else: bsz = max(1, self.args.max_tokens // self.args.tokens_per_sample) self.datasets[split] = DummyDataset( { "id": 1, "net_input": { "src_tokens": torch.stack([self.dummy_src for _ in range(bsz)]), "src_lengths": torch.full( (bsz,), self.args.tokens_per_sample, dtype=torch.long ), }, "target": torch.stack([self.dummy_tgt for _ in range(bsz)]), "nsentences": bsz, "ntokens": bsz * self.args.tokens_per_sample, }, num_items=self.args.dataset_size, item_size=self.args.tokens_per_sample, ) @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary class DummyDataset(FairseqDataset): def __init__(self, batch, num_items, item_size): super().__init__() self.batch = batch self.num_items = num_items self.item_size = item_size def __getitem__(self, index): return index def __len__(self): return self.num_items def collater(self, samples): return self.batch @property def sizes(self): return np.array([self.item_size] * self.num_items) def num_tokens(self, index): return self.item_size def size(self, index): return self.item_size def ordered_indices(self): return np.arange(self.num_items) @property def supports_prefetch(self): return False
data2vec_vision-main
deltalm/src/fairseq/benchmark/dummy_masked_lm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from fairseq.data import Dictionary, FairseqDataset from fairseq.dataclass import FairseqDataclass from fairseq.tasks import FairseqTask, register_task from omegaconf import II logger = logging.getLogger(__name__) @dataclass class DummyLMConfig(FairseqDataclass): dict_size: int = 49996 dataset_size: int = 100000 tokens_per_sample: int = field( default=512, metadata={"help": "max sequence length"} ) add_bos_token: bool = False batch_size: Optional[int] = II("dataset.batch_size") max_tokens: Optional[int] = II("dataset.max_tokens") max_target_positions: int = II("task.tokens_per_sample") @register_task("dummy_lm", dataclass=DummyLMConfig) class DummyLMTask(FairseqTask): def __init__(self, cfg: DummyLMConfig): super().__init__(cfg) # load dictionary self.dictionary = Dictionary() for i in range(cfg.dict_size): self.dictionary.add_symbol("word{}".format(i)) self.dictionary.pad_to_multiple_(8) # often faster if divisible by 8 logger.info("dictionary: {} types".format(len(self.dictionary))) seq = torch.arange(cfg.tokens_per_sample + 1) + self.dictionary.pad() + 1 self.dummy_src = seq[:-1] self.dummy_tgt = seq[1:] def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ if self.cfg.batch_size is not None: bsz = self.cfg.batch_size else: bsz = max(1, self.cfg.max_tokens // self.cfg.tokens_per_sample) self.datasets[split] = DummyDataset( { "id": 1, "net_input": { "src_tokens": torch.stack([self.dummy_src for _ in range(bsz)]), "src_lengths": torch.full( (bsz,), self.cfg.tokens_per_sample, dtype=torch.long ), }, "target": torch.stack([self.dummy_tgt for _ in range(bsz)]), "nsentences": bsz, "ntokens": bsz * self.cfg.tokens_per_sample, }, num_items=self.cfg.dataset_size, item_size=self.cfg.tokens_per_sample, ) @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary class DummyDataset(FairseqDataset): def __init__(self, batch, num_items, item_size): super().__init__() self.batch = batch self.num_items = num_items self.item_size = item_size def __getitem__(self, index): return index def __len__(self): return self.num_items def collater(self, samples): return self.batch @property def sizes(self): return np.array([self.item_size] * self.num_items) def num_tokens(self, index): return self.item_size def size(self, index): return self.item_size def ordered_indices(self): return np.arange(self.num_items) @property def supports_prefetch(self): return False
data2vec_vision-main
deltalm/src/fairseq/benchmark/dummy_lm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import numpy as np import torch from fairseq.data import Dictionary, FairseqDataset from fairseq.tasks import LegacyFairseqTask, register_task logger = logging.getLogger(__name__) @register_task("dummy_mt") class DummyMTTask(LegacyFairseqTask): @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument("--dict-size", default=49996, type=int) parser.add_argument("--dataset-size", default=100000, type=int) parser.add_argument("--src-len", default=30, type=int) parser.add_argument("--tgt-len", default=30, type=int) def __init__(self, args, dictionary): super().__init__(args) self.dictionary = dictionary self.seed = args.seed dictionary.pad_to_multiple_(8) # often faster if divisible by 8 self.dummy_src = torch.arange(args.src_len + 1) + dictionary.pad() + 1 self.dummy_tgt = torch.arange(args.tgt_len + 1) + dictionary.pad() + 1 @classmethod def setup_task(cls, args, **kwargs): """Setup the task. """ dictionary = Dictionary() for i in range(args.dict_size): dictionary.add_symbol("word{}".format(i)) logger.info("dictionary: {} types".format(len(dictionary))) args.max_source_positions = args.src_len + dictionary.pad() + 2 args.max_target_positions = args.tgt_len + dictionary.pad() + 2 return cls(args, dictionary) def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ item_size = max(self.args.src_len, self.args.tgt_len) if self.args.batch_size is not None: bsz = self.args.batch_size else: bsz = max(1, self.args.max_tokens // item_size) tgt = torch.stack([self.dummy_tgt for _ in range(bsz)]) self.datasets[split] = DummyDataset( { "id": 1, "net_input": { "src_tokens": torch.stack([self.dummy_src for _ in range(bsz)]), "src_lengths": torch.full( (bsz,), self.args.src_len, dtype=torch.long ), "prev_output_tokens": tgt.clone(), }, "target": tgt, "nsentences": bsz, "ntokens": bsz * self.args.tgt_len, }, num_items=self.args.dataset_size, item_size=item_size, ) @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary class DummyDataset(FairseqDataset): def __init__(self, batch, num_items, item_size): super().__init__() self.batch = batch self.num_items = num_items self.item_size = item_size def __getitem__(self, index): return index def __len__(self): return self.num_items def collater(self, samples): return self.batch @property def sizes(self): return np.array([self.item_size] * self.num_items) def num_tokens(self, index): return self.item_size def size(self, index): return self.item_size def ordered_indices(self): return np.arange(self.num_items) @property def supports_prefetch(self): return False
data2vec_vision-main
deltalm/src/fairseq/benchmark/dummy_mt.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import models/tasks to register them from . import dummy_lm, dummy_masked_lm, dummy_model, dummy_mt # noqa
data2vec_vision-main
deltalm/src/fairseq/benchmark/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.nn as nn import torch.nn.functional as F from fairseq.data import Dictionary from fairseq.models import ( FairseqDecoder, FairseqLanguageModel, register_model, register_model_architecture, ) @register_model("dummy_model") class DummyModel(FairseqLanguageModel): def __init__(self, args, encoder): super().__init__(encoder) self.args = args @staticmethod def add_args(parser): parser.add_argument("--num-layers", type=int, default=24) parser.add_argument("--embed-dim", type=int, default=1024) @classmethod def build_model(cls, args, task): encoder = DummyEncoder( num_embed=len(task.target_dictionary), embed_dim=args.embed_dim, num_layers=args.num_layers, ) return cls(args, encoder) def forward(self, src_tokens, masked_tokens=None, **kwargs): return self.decoder(src_tokens, masked_tokens=masked_tokens) class DummyEncoder(FairseqDecoder): def __init__(self, num_embed=50000, embed_dim=1024, num_layers=24): super().__init__(Dictionary()) self.embed = nn.Embedding( num_embeddings=num_embed, embedding_dim=embed_dim, padding_idx=0 ) self.layers_a = nn.ModuleList( [ nn.Sequential( nn.LayerNorm(embed_dim), nn.Linear(embed_dim, 3 * embed_dim), # q, k, v input projection nn.Linear(3 * embed_dim, embed_dim), # skip self-attention nn.Linear(embed_dim, embed_dim), # output projection nn.Dropout(), ) for i in range(num_layers) ] ) self.layers_b = nn.ModuleList( [ nn.Sequential( nn.LayerNorm(embed_dim), nn.Linear(embed_dim, 4 * embed_dim), # FFN nn.ReLU(), nn.Linear(4 * embed_dim, embed_dim), # FFN nn.Dropout(0.1), ) for i in range(num_layers) ] ) self.out_proj = nn.Linear(embed_dim, num_embed) def forward(self, tokens, masked_tokens=None): x = self.embed(tokens) for layer_a, layer_b in zip(self.layers_a, self.layers_b): x = x + layer_a(x) x = x + layer_b(x) x = self.out_proj(x) if masked_tokens is not None: x = x[masked_tokens] return (x,) def max_positions(self): return 1024 def get_normalized_probs(self, net_output, log_probs, sample=None): logits = net_output[0].float() if log_probs: return F.log_softmax(logits, dim=-1) else: return F.softmax(logits, dim=-1) @register_model_architecture("dummy_model", "dummy_model") def base_architecture(args): pass
data2vec_vision-main
deltalm/src/fairseq/benchmark/dummy_model.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import warnings from argparse import Namespace from typing import List import torch from fairseq import metrics, search, tokenizer, utils from fairseq.data import Dictionary, FairseqDataset, data_utils, encoders, iterators from fairseq.dataclass import FairseqDataclass from fairseq.dataclass.utils import gen_parser_from_dataclass from omegaconf import DictConfig logger = logging.getLogger(__name__) class FairseqTask(object): """ Tasks store dictionaries and provide helpers for loading/iterating over Datasets, initializing the Model/Criterion and calculating the loss. """ @classmethod def add_args(cls, parser): """Add task-specific arguments to the parser.""" dc = getattr(cls, "__dataclass", None) if dc is not None: gen_parser_from_dataclass(parser, dc()) @staticmethod def logging_outputs_can_be_summed(criterion) -> bool: """ Whether the logging outputs returned by `train_step` and `valid_step` can be summed across workers prior to calling `aggregate_logging_outputs`. Setting this to True will improves distributed training speed. """ return criterion.logging_outputs_can_be_summed() def __init__(self, cfg: FairseqDataclass, **kwargs): self.cfg = cfg self.datasets = {} self.dataset_to_epoch_iter = {} @classmethod def load_dictionary(cls, filename): """Load the dictionary from the filename Args: filename (str): the filename """ return Dictionary.load(filename) @classmethod def build_dictionary( cls, filenames, workers=1, threshold=-1, nwords=-1, padding_factor=8 ): """Build the dictionary Args: filenames (list): list of filenames workers (int): number of concurrent workers threshold (int): defines the minimum word count nwords (int): defines the total number of words in the final dictionary, including special symbols padding_factor (int): can be used to pad the dictionary size to be a multiple of 8, which is important on some hardware (e.g., Nvidia Tensor Cores). """ d = Dictionary() for filename in filenames: Dictionary.add_file_to_dictionary( filename, d, tokenizer.tokenize_line, workers ) d.finalize(threshold=threshold, nwords=nwords, padding_factor=padding_factor) return d @classmethod def setup_task(cls, cfg: DictConfig, **kwargs): """Setup the task (e.g., load dictionaries). Args: cfg (omegaconf.DictConfig): parsed command-line arguments """ return cls(cfg, **kwargs) def has_sharded_data(self, split): return os.pathsep in getattr(self.cfg, "data", "") def load_dataset( self, split: str, combine: bool = False, task_cfg: FairseqDataclass = None, **kwargs ): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) combine (bool): combines a split segmented into pieces into one dataset task_cfg (FairseqDataclass): optional task configuration stored in the checkpoint that can be used to load datasets """ raise NotImplementedError def dataset(self, split): """ Return a loaded dataset split. Args: split (str): name of the split (e.g., train, valid, test) Returns: a :class:`~fairseq.data.FairseqDataset` corresponding to *split* """ from fairseq.data import FairseqDataset if split not in self.datasets: raise KeyError("Dataset not loaded: " + split) if not isinstance(self.datasets[split], FairseqDataset): raise TypeError("Datasets are expected to be of type FairseqDataset") return self.datasets[split] def filter_indices_by_size( self, indices, dataset, max_positions=None, ignore_invalid_inputs=False ): """ Filter examples that are too large Args: indices (np.array): original array of sample indices dataset (~fairseq.data.FairseqDataset): dataset to batch max_positions (optional): max sentence length supported by the model (default: None). ignore_invalid_inputs (bool, optional): don't raise Exception for sentences that are too long (default: False). Returns: np.array: array of filtered sample indices """ indices, ignored = dataset.filter_indices_by_size(indices, max_positions) if len(ignored) > 0: if not ignore_invalid_inputs: raise Exception( ( "Size of sample #{} is invalid (={}) since max_positions={}, " "skip this example with --skip-invalid-size-inputs-valid-test" ).format(ignored[0], dataset.size(ignored[0]), max_positions) ) logger.warning( ( "{} samples have invalid sizes and will be skipped, " "max_positions={}, first few sample ids={}" ).format(len(ignored), max_positions, ignored[:10]) ) return indices def can_reuse_epoch_itr(self, dataset): # We can reuse the epoch iterator across epochs as long as the dataset # hasn't disabled it. We default to ``False`` here, although in practice # this will be ``True`` for most datasets that inherit from # ``FairseqDataset`` due to the base implementation there. return getattr(dataset, "can_reuse_epoch_itr_across_epochs", False) def get_batch_iterator( self, dataset, max_tokens=None, max_sentences=None, max_positions=None, ignore_invalid_inputs=False, required_batch_size_multiple=1, seed=1, num_shards=1, shard_id=0, num_workers=0, epoch=1, data_buffer_size=0, disable_iterator_cache=False, ): """ Get an iterator that yields batches of data from the given dataset. Args: dataset (~fairseq.data.FairseqDataset): dataset to batch max_tokens (int, optional): max number of tokens in each batch (default: None). max_sentences (int, optional): max number of sentences in each batch (default: None). max_positions (optional): max sentence length supported by the model (default: None). ignore_invalid_inputs (bool, optional): don't raise Exception for sentences that are too long (default: False). required_batch_size_multiple (int, optional): require batch size to be a multiple of N (default: 1). seed (int, optional): seed for random number generator for reproducibility (default: 1). num_shards (int, optional): shard the data iterator into N shards (default: 1). shard_id (int, optional): which shard of the data iterator to return (default: 0). num_workers (int, optional): how many subprocesses to use for data loading. 0 means the data will be loaded in the main process (default: 0). epoch (int, optional): the epoch to start the iterator from (default: 1). data_buffer_size (int, optional): number of batches to preload (default: 0). disable_iterator_cache (bool, optional): don't cache the EpochBatchIterator (ignores `FairseqTask::can_reuse_epoch_itr`) (default: False). Returns: ~fairseq.iterators.EpochBatchIterator: a batched iterator over the given dataset split """ can_reuse_epoch_itr = not disable_iterator_cache and self.can_reuse_epoch_itr( dataset ) if can_reuse_epoch_itr and dataset in self.dataset_to_epoch_iter: logger.debug("reusing EpochBatchIterator for epoch {}".format(epoch)) return self.dataset_to_epoch_iter[dataset] assert isinstance(dataset, FairseqDataset) # initialize the dataset with the correct starting epoch dataset.set_epoch(epoch) # get indices ordered by example size with data_utils.numpy_seed(seed): indices = dataset.ordered_indices() # filter examples that are too large if max_positions is not None: indices = self.filter_indices_by_size( indices, dataset, max_positions, ignore_invalid_inputs ) # create mini-batches with given size constraints batch_sampler = dataset.batch_by_size( indices, max_tokens=max_tokens, max_sentences=max_sentences, required_batch_size_multiple=required_batch_size_multiple, ) # return a reusable, sharded iterator epoch_iter = iterators.EpochBatchIterator( dataset=dataset, collate_fn=dataset.collater, batch_sampler=batch_sampler, seed=seed, num_shards=num_shards, shard_id=shard_id, num_workers=num_workers, epoch=epoch, buffer_size=data_buffer_size, ) if can_reuse_epoch_itr: self.dataset_to_epoch_iter[dataset] = epoch_iter return epoch_iter def build_model(self, cfg: FairseqDataclass): """ Build the :class:`~fairseq.models.BaseFairseqModel` instance for this task. Args: cfg (FairseqDataclass): configuration object Returns: a :class:`~fairseq.models.BaseFairseqModel` instance """ from fairseq import models, quantization_utils model = models.build_model(cfg, self) if getattr(cfg, "tpu", False): model.prepare_for_tpu_() model = quantization_utils.quantize_model_scalar(model, cfg) return model def build_criterion(self, cfg: DictConfig): """ Build the :class:`~fairseq.criterions.FairseqCriterion` instance for this task. Args: cfg (omegaconf.DictConfig): configration object Returns: a :class:`~fairseq.criterions.FairseqCriterion` instance """ from fairseq import criterions return criterions.build_criterion(cfg, self) def build_generator( self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None ): if getattr(args, "score_reference", False): from fairseq.sequence_scorer import SequenceScorer return SequenceScorer( self.target_dictionary, compute_alignment=getattr(args, "print_alignment", False), ) from fairseq.sequence_generator import ( SequenceGenerator, SequenceGeneratorWithAlignment, ) # Choose search strategy. Defaults to Beam Search. sampling = getattr(args, "sampling", False) sampling_topk = getattr(args, "sampling_topk", -1) sampling_topp = getattr(args, "sampling_topp", -1.0) diverse_beam_groups = getattr(args, "diverse_beam_groups", -1) diverse_beam_strength = getattr(args, "diverse_beam_strength", 0.5) match_source_len = getattr(args, "match_source_len", False) diversity_rate = getattr(args, "diversity_rate", -1) constrained = getattr(args, "constraints", False) prefix_allowed_tokens_fn = getattr(args, "prefix_allowed_tokens_fn", None) if ( sum( int(cond) for cond in [ sampling, diverse_beam_groups > 0, match_source_len, diversity_rate > 0, ] ) > 1 ): raise ValueError("Provided Search parameters are mutually exclusive.") assert sampling_topk < 0 or sampling, "--sampling-topk requires --sampling" assert sampling_topp < 0 or sampling, "--sampling-topp requires --sampling" if sampling: search_strategy = search.Sampling( self.target_dictionary, sampling_topk, sampling_topp ) elif diverse_beam_groups > 0: search_strategy = search.DiverseBeamSearch( self.target_dictionary, diverse_beam_groups, diverse_beam_strength ) elif match_source_len: # this is useful for tagging applications where the output # length should match the input length, so we hardcode the # length constraints for simplicity search_strategy = search.LengthConstrainedBeamSearch( self.target_dictionary, min_len_a=1, min_len_b=0, max_len_a=1, max_len_b=0, ) elif diversity_rate > -1: search_strategy = search.DiverseSiblingsSearch( self.target_dictionary, diversity_rate ) elif constrained: search_strategy = search.LexicallyConstrainedBeamSearch( self.target_dictionary, args.constraints ) elif prefix_allowed_tokens_fn: search_strategy = search.PrefixConstrainedBeamSearch( self.target_dictionary, prefix_allowed_tokens_fn ) else: search_strategy = search.BeamSearch(self.target_dictionary) if seq_gen_cls is None: if getattr(args, "print_alignment", False): seq_gen_cls = SequenceGeneratorWithAlignment else: seq_gen_cls = SequenceGenerator extra_gen_cls_kwargs = extra_gen_cls_kwargs or {} return seq_gen_cls( models, self.target_dictionary, beam_size=getattr(args, "beam", 5), max_len_a=getattr(args, "max_len_a", 0), max_len_b=getattr(args, "max_len_b", 200), min_len=getattr(args, "min_len", 1), normalize_scores=(not getattr(args, "unnormalized", False)), len_penalty=getattr(args, "lenpen", 1), unk_penalty=getattr(args, "unkpen", 0), temperature=getattr(args, "temperature", 1.0), match_source_len=getattr(args, "match_source_len", False), no_repeat_ngram_size=getattr(args, "no_repeat_ngram_size", 0), search_strategy=search_strategy, **extra_gen_cls_kwargs, ) def train_step( self, sample, model, criterion, optimizer, update_num, ignore_grad=False ): """ Do forward and backward, and return the loss as computed by *criterion* for the given *model* and *sample*. Args: sample (dict): the mini-batch. The format is defined by the :class:`~fairseq.data.FairseqDataset`. model (~fairseq.models.BaseFairseqModel): the model criterion (~fairseq.criterions.FairseqCriterion): the criterion optimizer (~fairseq.optim.FairseqOptimizer): the optimizer update_num (int): the current update ignore_grad (bool): multiply loss by 0 if this is set to True Returns: tuple: - the loss - the sample size, which is used as the denominator for the gradient - logging outputs to display while training """ model.train() model.set_num_updates(update_num) with torch.autograd.profiler.record_function("forward"): loss, sample_size, logging_output = criterion(model, sample) if ignore_grad: loss *= 0 with torch.autograd.profiler.record_function("backward"): optimizer.backward(loss) return loss, sample_size, logging_output def valid_step(self, sample, model, criterion): model.eval() with torch.no_grad(): loss, sample_size, logging_output = criterion(model, sample) return loss, sample_size, logging_output def optimizer_step(self, optimizer, model, update_num): optimizer.step() def build_dataset_for_inference( self, src_tokens: List[torch.Tensor], src_lengths: List[int], **kwargs ) -> torch.utils.data.Dataset: raise NotImplementedError def inference_step( self, generator, models, sample, prefix_tokens=None, constraints=None ): with torch.no_grad(): return generator.generate( models, sample, prefix_tokens=prefix_tokens, constraints=constraints ) def begin_epoch(self, epoch, model): """Hook function called before the start of each epoch.""" pass def begin_valid_epoch(self, epoch, model): """Hook function called before the start of each validation epoch.""" pass def aggregate_logging_outputs(self, logging_outputs, criterion): """[deprecated] Aggregate logging outputs from data parallel training.""" utils.deprecation_warning( "The aggregate_logging_outputs API is deprecated. " "Please use the reduce_metrics API instead." ) with metrics.aggregate() as agg: self.reduce_metrics(logging_outputs, criterion) return agg.get_smoothed_values() def reduce_metrics(self, logging_outputs, criterion): """Aggregate logging outputs from data parallel training.""" # backward compatibility for tasks that override aggregate_logging_outputs base_func = FairseqTask.aggregate_logging_outputs self_func = getattr(self, "aggregate_logging_outputs").__func__ if self_func is not base_func: utils.deprecation_warning( "Tasks should implement the reduce_metrics API. " "Falling back to deprecated aggregate_logging_outputs API." ) agg_logging_outputs = self.aggregate_logging_outputs( logging_outputs, criterion ) for k, v in agg_logging_outputs.items(): metrics.log_scalar(k, v) return if not any("ntokens" in log for log in logging_outputs): warnings.warn( "ntokens not found in Criterion logging outputs, cannot log wpb or wps" ) else: ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) metrics.log_scalar("wpb", ntokens, priority=180, round=1) metrics.log_speed("wps", ntokens, priority=90, round=1) if not any("nsentences" in log for log in logging_outputs): warnings.warn( "nsentences not found in Criterion logging outputs, cannot log bsz" ) else: nsentences = sum(log.get("nsentences", 0) for log in logging_outputs) metrics.log_scalar("bsz", nsentences, priority=190, round=1) criterion.__class__.reduce_metrics(logging_outputs) def max_positions(self): """Return the max input length allowed by the task.""" return None @property def source_dictionary(self): """Return the source :class:`~fairseq.data.Dictionary` (if applicable for this task).""" raise NotImplementedError @property def target_dictionary(self): """Return the target :class:`~fairseq.data.Dictionary` (if applicable for this task).""" raise NotImplementedError def build_tokenizer(self, args): """Build the pre-tokenizer for this task.""" return encoders.build_tokenizer(args) def build_bpe(self, args): """Build the tokenizer for this task.""" return encoders.build_bpe(args) class LegacyFairseqTask(FairseqTask): def __init__(self, args: Namespace): self.args = args self.datasets = {} self.dataset_to_epoch_iter = {} @classmethod def setup_task(cls, args: Namespace, **kwargs): """Setup the task (e.g., load dictionaries). Args: args (argparse.Namespace): parsed command-line arguments """ return cls(args, **kwargs) def has_sharded_data(self, split): return os.pathsep in getattr(self.args, "data", "") def build_model(self, args: Namespace): """ Build the :class:`~fairseq.models.BaseFairseqModel` instance for this task. Args: args (argparse.Namespace): parsed command-line arguments Returns: a :class:`~fairseq.models.BaseFairseqModel` instance """ from fairseq import models, quantization_utils model = models.build_model(args, self) if getattr(args, "tpu", False): model.prepare_for_tpu_() model = quantization_utils.quantize_model_scalar(model, args) return model def build_criterion(self, args: Namespace): """ Build the :class:`~fairseq.criterions.FairseqCriterion` instance for this task. Args: args (argparse.Namespace): parsed command-line arguments Returns: a :class:`~fairseq.criterions.FairseqCriterion` instance """ from fairseq import criterions return criterions.build_criterion(args, self)
data2vec_vision-main
deltalm/src/fairseq/tasks/fairseq_task.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import numpy as np from fairseq.data import ( AppendTokenDataset, ConcatDataset, DenoisingDataset, Dictionary, PrependTokenDataset, ResamplingDataset, SortDataset, TokenBlockDataset, data_utils, ) from fairseq.data.encoders.utils import get_whole_word_mask from fairseq.tasks import register_task from .denoising import DenoisingTask logger = logging.getLogger(__name__) @register_task("multilingual_denoising") class MultilingualDenoisingTask(DenoisingTask): @staticmethod def add_args(parser): DenoisingTask.add_args(parser) parser.add_argument( "--multilang-sampling-alpha", type=float, default=1.0, help="smoothing alpha for sample ratios across multiple datasets", ) parser.add_argument("--add-lang-token", default=False, action="store_true") parser.add_argument( "--langs", type=str, help="language ids we are considering", default=None ) parser.add_argument( "--no-whole-word-mask-langs", type=str, default="", metavar="N", help="languages without spacing between words dont support whole word masking", ) @classmethod def setup_task(cls, args, **kwargs): """Setup the task.""" paths = args.data.split(":") assert len(paths) > 0 dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt")) data_path = paths[0] if args.langs is None: languages = sorted( [ name for name in os.listdir(data_path) if os.path.isdir(os.path.join(data_path, name)) ] ) else: languages = args.langs.split(",") if args.add_lang_token: for lang in languages: dictionary.add_symbol("[{}]".format(lang)) logger.info("dictionary: {} types".format(len(dictionary))) if not hasattr(args, "shuffle_instance"): args.shuffle_instance = False return cls(args, dictionary) def __init__(self, args, dictionary): super().__init__(args, dictionary) self.dictionary = dictionary self.seed = args.seed # add mask token self.mask_idx = self.dictionary.add_symbol("<mask>") self.langs = args.langs self.args = args def _get_sample_prob(self, dataset_lens): """ Get smoothed sampling porbability by languages. This helps low resource languages by upsampling them. """ prob = dataset_lens / dataset_lens.sum() smoothed_prob = prob ** self.args.multilang_sampling_alpha smoothed_prob = smoothed_prob / smoothed_prob.sum() return smoothed_prob def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ paths = self.args.data.split(":") assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] split_path = os.path.join(data_path, split) if self.langs is None: languages = sorted( [ name for name in os.listdir(data_path) if os.path.isdir(os.path.join(data_path, name)) ] ) else: languages = self.langs.split(",") for name in languages: p = os.path.join(data_path, name) assert os.path.exists(p), "data not found: {}".format(p) logger.info("Training on {0} languages: {1}".format(len(languages), languages)) logger.info( "Language to id mapping: ", {lang: id for id, lang in enumerate(languages)} ) mask_whole_words = get_whole_word_mask(self.args, self.dictionary) language_without_segmentations = self.args.no_whole_word_mask_langs.split(",") lang_datasets = [] for language in languages: split_path = os.path.join(data_path, language, split) dataset = data_utils.load_indexed_dataset( split_path, self.source_dictionary, self.args.dataset_impl, combine=combine, ) if dataset is None: raise FileNotFoundError( "Dataset not found: {} ({})".format(split, split_path) ) end_token = ( self.source_dictionary.index("[{}]".format(language)) if self.args.add_lang_token else self.source_dictionary.eos() ) # create continuous blocks of tokens dataset = TokenBlockDataset( dataset, dataset.sizes, self.args.tokens_per_sample - 2, # one less for <s> pad=self.source_dictionary.pad(), eos=end_token, break_mode=self.args.sample_break_mode, ) logger.info("loaded {} blocks from: {}".format(len(dataset), split_path)) # prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT) dataset = PrependTokenDataset(dataset, self.source_dictionary.bos()) dataset = AppendTokenDataset(dataset, end_token) lang_mask_whole_words = ( mask_whole_words if language not in language_without_segmentations else None ) lang_dataset = DenoisingDataset( dataset, dataset.sizes, self.dictionary, self.mask_idx, lang_mask_whole_words, shuffle=self.args.shuffle_instance, seed=self.seed, args=self.args, eos=None if not self.args.add_lang_token else self.source_dictionary.index("[{}]".format(language)), ) lang_datasets.append(lang_dataset) dataset_lengths = np.array( [len(d) for d in lang_datasets], dtype=float, ) logger.info( "loaded total {} blocks for all languages".format( int(dataset_lengths.sum()), ) ) if split == self.args.train_subset: # For train subset, additionally up or down sample languages. sample_probs = self._get_sample_prob(dataset_lengths) logger.info( "Sample probability by language: {}".format( { lang: "{0:.4f}".format(sample_probs[id]) for id, lang in enumerate(languages) } ) ) size_ratio = (sample_probs * dataset_lengths.sum()) / dataset_lengths logger.info( "Up/Down Sampling ratio by language: {}".format( { lang: "{0:.2f}".format(size_ratio[id]) for id, lang in enumerate(languages) } ) ) resampled_lang_datasets = [ ResamplingDataset( lang_datasets[i], size_ratio=size_ratio[i], seed=self.args.seed, epoch=epoch, replace=size_ratio[i] >= 1.0, ) for i, d in enumerate(lang_datasets) ] dataset = ConcatDataset( resampled_lang_datasets, ) else: dataset = ConcatDataset(lang_datasets) lang_splits = [split] for lang_id, lang_dataset in enumerate(lang_datasets): split_name = split + "_" + languages[lang_id] lang_splits.append(split_name) self.datasets[split_name] = lang_dataset if split in self.args.valid_subset: self.args.valid_subset = self.args.valid_subset.replace( split, ",".join(lang_splits) ) with data_utils.numpy_seed(self.args.seed + epoch): shuffle = np.random.permutation(len(dataset)) self.datasets[split] = SortDataset( dataset, sort_order=[ shuffle, dataset.sizes, ], )
data2vec_vision-main
deltalm/src/fairseq/tasks/multilingual_denoising.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os from fairseq import utils from fairseq.data import ( AppendTokenDataset, DenoisingDataset, Dictionary, IdDataset, NestedDictionaryDataset, NumelDataset, PadDataset, PrependTokenDataset, StripTokenDataset, TokenBlockDataset, data_utils, ) from fairseq.data.encoders.utils import get_whole_word_mask from fairseq.tasks import LegacyFairseqTask, register_task import numpy as np logger = logging.getLogger(__name__) @register_task("denoising") class DenoisingTask(LegacyFairseqTask): """ Denoising task for applying sequence to sequence denoising. (ie. BART) """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument("data", help="path to data directory") parser.add_argument( "--tokens-per-sample", default=512, type=int, help="max number of total tokens over all segments" " per sample for dataset", ) parser.add_argument( "--sample-break-mode", default="complete_doc", type=str, help="mode for breaking sentence", ) parser.add_argument( "--mask", default=0.0, type=float, help="fraction of words/subwords that will be masked", ) parser.add_argument( "--mask-random", default=0.0, type=float, help="instead of using [MASK], use random token this often", ) parser.add_argument( "--insert", default=0.0, type=float, help="insert this percentage of additional random tokens", ) parser.add_argument( "--permute", default=0.0, type=float, help="take this proportion of subwords and permute them", ) parser.add_argument( "--rotate", default=0.5, type=float, help="rotate this proportion of inputs", ) parser.add_argument( "--poisson-lambda", default=3.0, type=float, help="randomly shuffle sentences for this proportion of inputs", ) parser.add_argument( "--permute-sentences", default=0.0, type=float, help="shuffle this proportion of sentences in all inputs", ) parser.add_argument( "--mask-length", default="subword", type=str, choices=["subword", "word", "span-poisson"], help="mask length to choose", ) parser.add_argument( "--replace-length", default=-1, type=int, help="when masking N tokens, replace with 0, 1, or N tokens (use -1 for N)", ) parser.add_argument( "--max-source-positions", default=1024, type=int, metavar="N", help="max number of tokens in the source sequence", ) parser.add_argument( "--max-target-positions", default=1024, type=int, metavar="N", help="max number of tokens in the target sequence", ) def __init__(self, args, dictionary): super().__init__(args) self.dictionary = dictionary self.seed = args.seed # add mask token self.mask_idx = self.dictionary.add_symbol("<mask>") @classmethod def setup_task(cls, args, **kwargs): """Setup the task.""" dictionary = Dictionary.load(os.path.join(args.data, "dict.txt")) logger.info("dictionary: {} types".format(len(dictionary))) if not hasattr(args, "shuffle_instance"): args.shuffle_instance = False return cls(args, dictionary) def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ paths = utils.split_paths(self.args.data) assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] split_path = os.path.join(data_path, split) dataset = data_utils.load_indexed_dataset( split_path, self.dictionary, self.args.dataset_impl, combine=combine, ) if dataset is None: raise FileNotFoundError( "Dataset not found: {} ({})".format(split, split_path) ) dataset = StripTokenDataset(dataset, self.dictionary.eos()) # create continuous blocks of tokens dataset = TokenBlockDataset( dataset, dataset.sizes, self.args.tokens_per_sample - 2, # one less for <s> and one for </s> pad=self.dictionary.pad(), eos=self.dictionary.eos(), break_mode=self.args.sample_break_mode, document_sep_len=0, ) # prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT) dataset = PrependTokenDataset(dataset, self.source_dictionary.bos()) dataset = AppendTokenDataset(dataset, self.source_dictionary.eos()) mask_whole_words = ( get_whole_word_mask(self.args, self.source_dictionary) if self.args.mask_length != "subword" else None ) self.datasets[split] = DenoisingDataset( dataset, dataset.sizes, self.dictionary, self.mask_idx, mask_whole_words, shuffle=self.args.shuffle_instance, seed=self.seed, args=self.args, ) logger.info( "Split: {0}, Loaded {1} samples of denoising_dataset".format( split, len(self.datasets[split]), ) ) def build_dataset_for_inference(self, src_tokens, src_lengths, **kwargs): """ Generate batches for inference. We assume that the input begins with a bos symbol (`<s>`) and ends with an eos symbol (`</s>`). """ pad = self.source_dictionary.pad() eos = self.source_dictionary.eos() src_dataset = TokenBlockDataset( src_tokens, src_lengths, block_size=self.args.tokens_per_sample - 2, # for <s> and </s> pad=pad, eos=eos, break_mode=self.args.sample_break_mode, document_sep_len=0, ) prev_output_tokens = PrependTokenDataset( StripTokenDataset(src_dataset, eos), eos ) src_dataset = PadDataset(src_dataset, pad_idx=pad, left_pad=False) return NestedDictionaryDataset( { "id": IdDataset(), "net_input": { "src_tokens": src_dataset, "src_lengths": NumelDataset(src_dataset, reduce=False), "prev_output_tokens": PadDataset( prev_output_tokens, pad_idx=pad, left_pad=False ), }, "target": src_dataset, }, sizes=[np.array(src_lengths)], ) def max_positions(self): """Return the max sentence length allowed by the task.""" return (self.args.max_source_positions, self.args.max_target_positions) @property def source_dictionary(self): """Return the source :class:`~fairseq.data.Dictionary`.""" return self.dictionary @property def target_dictionary(self): """Return the target :class:`~fairseq.data.Dictionary`.""" return self.dictionary
data2vec_vision-main
deltalm/src/fairseq/tasks/denoising.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import contextlib import logging import os from collections import OrderedDict import torch from fairseq import metrics, options, utils from fairseq.data import ( Dictionary, LanguagePairDataset, RoundRobinZipDatasets, TransformEosLangPairDataset, ) from fairseq.models import FairseqMultiModel from fairseq.tasks.translation import load_langpair_dataset from . import LegacyFairseqTask, register_task logger = logging.getLogger(__name__) def _lang_token(lang: str): return "__{}__".format(lang) def _lang_token_index(dic: Dictionary, lang: str): """Return language token index.""" idx = dic.index(_lang_token(lang)) assert idx != dic.unk_index, "cannot find language token for lang {}".format(lang) return idx @register_task("multilingual_translation") class MultilingualTranslationTask(LegacyFairseqTask): """A task for training multiple translation models simultaneously. We iterate round-robin over batches from multiple language pairs, ordered according to the `--lang-pairs` argument. The training loop is roughly: for i in range(len(epoch)): for lang_pair in args.lang_pairs: batch = next_batch_for_lang_pair(lang_pair) loss = criterion(model_for_lang_pair(lang_pair), batch) loss.backward() optimizer.step() In practice, `next_batch_for_lang_pair` is abstracted in a FairseqDataset (e.g., `RoundRobinZipDatasets`) and `model_for_lang_pair` is a model that implements the `FairseqMultiModel` interface. During inference it is required to specify a single `--source-lang` and `--target-lang`, which indicates the inference langauge direction. `--lang-pairs`, `--encoder-langtok`, `--decoder-langtok` have to be set to the same value as training. """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" # fmt: off parser.add_argument('data', metavar='DIR', help='path to data directory') parser.add_argument('--lang-pairs', default=None, metavar='PAIRS', help='comma-separated list of language pairs (in training order): en-de,en-fr,de-fr') parser.add_argument('-s', '--source-lang', default=None, metavar='SRC', help='source language (only needed for inference)') parser.add_argument('-t', '--target-lang', default=None, metavar='TARGET', help='target language (only needed for inference)') parser.add_argument('--left-pad-source', default='True', type=str, metavar='BOOL', help='pad the source on the left (default: True)') parser.add_argument('--left-pad-target', default='False', type=str, metavar='BOOL', help='pad the target on the left (default: False)') parser.add_argument('--max-source-positions', default=1024, type=int, metavar='N', help='max number of tokens in the source sequence') parser.add_argument('--max-target-positions', default=1024, type=int, metavar='N', help='max number of tokens in the target sequence') parser.add_argument('--upsample-primary', default=1, type=int, help='amount to upsample primary dataset') parser.add_argument('--encoder-langtok', default=None, type=str, choices=['src', 'tgt'], metavar='SRCTGT', help='replace beginning-of-sentence in source sentence with source or target ' 'language token. (src/tgt)') parser.add_argument('--decoder-langtok', action='store_true', help='replace beginning-of-sentence in target sentence with target language token') # fmt: on def __init__(self, args, dicts, training): super().__init__(args) self.dicts = dicts self.training = training if training: self.lang_pairs = args.lang_pairs else: self.lang_pairs = ["{}-{}".format(args.source_lang, args.target_lang)] # eval_lang_pairs for multilingual translation is usually all of the # lang_pairs. However for other multitask settings or when we want to # optimize for certain languages we want to use a different subset. Thus # the eval_lang_pairs class variable is provided for classes that extend # this class. self.eval_lang_pairs = self.lang_pairs # model_lang_pairs will be used to build encoder-decoder model pairs in # models.build_model(). This allows multitask type of sub-class can # build models other than the input lang_pairs self.model_lang_pairs = self.lang_pairs self.langs = list(dicts.keys()) @classmethod def setup_task(cls, args, **kwargs): dicts, training = cls.prepare(args, **kwargs) return cls(args, dicts, training) @classmethod def update_args(cls, args): args.left_pad_source = utils.eval_bool(args.left_pad_source) args.left_pad_target = utils.eval_bool(args.left_pad_target) if args.lang_pairs is None: raise ValueError( "--lang-pairs is required. List all the language pairs in the training objective." ) if isinstance(args.lang_pairs, str): args.lang_pairs = args.lang_pairs.split(",") @classmethod def prepare(cls, args, **kargs): cls.update_args(args) sorted_langs = sorted( list({x for lang_pair in args.lang_pairs for x in lang_pair.split("-")}) ) if args.source_lang is not None or args.target_lang is not None: training = False else: training = True # load dictionaries dicts = OrderedDict() for lang in sorted_langs: paths = utils.split_paths(args.data) assert len(paths) > 0 dicts[lang] = cls.load_dictionary( os.path.join(paths[0], "dict.{}.txt".format(lang)) ) if len(dicts) > 0: assert dicts[lang].pad() == dicts[sorted_langs[0]].pad() assert dicts[lang].eos() == dicts[sorted_langs[0]].eos() assert dicts[lang].unk() == dicts[sorted_langs[0]].unk() if args.encoder_langtok is not None or args.decoder_langtok: for lang_to_add in sorted_langs: dicts[lang].add_symbol(_lang_token(lang_to_add)) logger.info("[{}] dictionary: {} types".format(lang, len(dicts[lang]))) return dicts, training def get_encoder_langtok(self, src_lang, tgt_lang): if self.args.encoder_langtok is None: return self.dicts[src_lang].eos() if self.args.encoder_langtok == "src": return _lang_token_index(self.dicts[src_lang], src_lang) else: return _lang_token_index(self.dicts[src_lang], tgt_lang) def get_decoder_langtok(self, tgt_lang): if not self.args.decoder_langtok: return self.dicts[tgt_lang].eos() return _lang_token_index(self.dicts[tgt_lang], tgt_lang) def alter_dataset_langtok( self, lang_pair_dataset, src_eos=None, src_lang=None, tgt_eos=None, tgt_lang=None, ): if self.args.encoder_langtok is None and not self.args.decoder_langtok: return lang_pair_dataset new_src_eos = None if ( self.args.encoder_langtok is not None and src_eos is not None and src_lang is not None and tgt_lang is not None ): new_src_eos = self.get_encoder_langtok(src_lang, tgt_lang) else: src_eos = None new_tgt_bos = None if self.args.decoder_langtok and tgt_eos is not None and tgt_lang is not None: new_tgt_bos = self.get_decoder_langtok(tgt_lang) else: tgt_eos = None return TransformEosLangPairDataset( lang_pair_dataset, src_eos=src_eos, new_src_eos=new_src_eos, tgt_bos=tgt_eos, new_tgt_bos=new_tgt_bos, ) def load_dataset(self, split, epoch=1, **kwargs): """Load a dataset split.""" paths = utils.split_paths(self.args.data) assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] def language_pair_dataset(lang_pair): src, tgt = lang_pair.split("-") langpair_dataset = load_langpair_dataset( data_path, split, src, self.dicts[src], tgt, self.dicts[tgt], combine=True, dataset_impl=self.args.dataset_impl, upsample_primary=self.args.upsample_primary, left_pad_source=self.args.left_pad_source, left_pad_target=self.args.left_pad_target, max_source_positions=self.args.max_source_positions, max_target_positions=self.args.max_target_positions, ) return self.alter_dataset_langtok( langpair_dataset, src_eos=self.dicts[src].eos(), src_lang=src, tgt_eos=self.dicts[tgt].eos(), tgt_lang=tgt, ) self.datasets[split] = RoundRobinZipDatasets( OrderedDict( [ (lang_pair, language_pair_dataset(lang_pair)) for lang_pair in self.lang_pairs ] ), eval_key=None if self.training else "%s-%s" % (self.args.source_lang, self.args.target_lang), ) def build_dataset_for_inference(self, src_tokens, src_lengths, constraints=None): if constraints is not None: raise NotImplementedError( "Constrained decoding with the multilingual_translation task is not supported" ) lang_pair = "%s-%s" % (self.args.source_lang, self.args.target_lang) return RoundRobinZipDatasets( OrderedDict( [ ( lang_pair, self.alter_dataset_langtok( LanguagePairDataset( src_tokens, src_lengths, self.source_dictionary ), src_eos=self.source_dictionary.eos(), src_lang=self.args.source_lang, tgt_eos=self.target_dictionary.eos(), tgt_lang=self.args.target_lang, ), ) ] ), eval_key=lang_pair, ) def build_model(self, args): def check_args(): messages = [] if ( len(set(self.args.lang_pairs).symmetric_difference(args.lang_pairs)) != 0 ): messages.append( "--lang-pairs should include all the language pairs {}.".format( args.lang_pairs ) ) if self.args.encoder_langtok != args.encoder_langtok: messages.append( "--encoder-langtok should be {}.".format(args.encoder_langtok) ) if self.args.decoder_langtok != args.decoder_langtok: messages.append( "--decoder-langtok should {} be set.".format( "" if args.decoder_langtok else "not" ) ) if len(messages) > 0: raise ValueError(" ".join(messages)) # Update args -> the fact that the constructor here # changes the args object doesn't mean you get the same one here self.update_args(args) # Check if task args are consistant with model args check_args() from fairseq import models model = models.build_model(args, self) if not isinstance(model, FairseqMultiModel): raise ValueError( "MultilingualTranslationTask requires a FairseqMultiModel architecture" ) return model def _per_lang_pair_train_loss( self, lang_pair, model, update_num, criterion, sample, optimizer, ignore_grad ): loss, sample_size, logging_output = criterion( model.models[lang_pair], sample[lang_pair] ) if ignore_grad: loss *= 0 optimizer.backward(loss) return loss, sample_size, logging_output def train_step( self, sample, model, criterion, optimizer, update_num, ignore_grad=False ): model.train() from collections import defaultdict agg_loss, agg_sample_size, agg_logging_output = 0.0, 0.0, defaultdict(float) curr_lang_pairs = [ lang_pair for lang_pair in self.model_lang_pairs if sample[lang_pair] is not None and len(sample[lang_pair]) != 0 ] for idx, lang_pair in enumerate(curr_lang_pairs): def maybe_no_sync(): if ( self.args.distributed_world_size > 1 and hasattr(model, "no_sync") and idx < len(curr_lang_pairs) - 1 ): return model.no_sync() else: return contextlib.ExitStack() # dummy contextmanager with maybe_no_sync(): loss, sample_size, logging_output = self._per_lang_pair_train_loss( lang_pair, model, update_num, criterion, sample, optimizer, ignore_grad, ) agg_loss += loss.detach().item() # TODO make summing of the sample sizes configurable agg_sample_size += sample_size for k in logging_output: agg_logging_output[k] += logging_output[k] agg_logging_output[f"{lang_pair}:{k}"] += logging_output[k] return agg_loss, agg_sample_size, agg_logging_output def _per_lang_pair_valid_loss(self, lang_pair, model, criterion, sample): return criterion(model.models[lang_pair], sample[lang_pair]) def valid_step(self, sample, model, criterion): model.eval() with torch.no_grad(): from collections import defaultdict agg_loss, agg_sample_size, agg_logging_output = 0.0, 0.0, defaultdict(float) for lang_pair in self.eval_lang_pairs: if ( lang_pair not in sample or sample[lang_pair] is None or len(sample[lang_pair]) == 0 ): continue loss, sample_size, logging_output = self._per_lang_pair_valid_loss( lang_pair, model, criterion, sample ) agg_loss += loss.data.item() # TODO make summing of the sample sizes configurable agg_sample_size += sample_size for k in logging_output: agg_logging_output[k] += logging_output[k] agg_logging_output[f"{lang_pair}:{k}"] += logging_output[k] return agg_loss, agg_sample_size, agg_logging_output def inference_step( self, generator, models, sample, prefix_tokens=None, constraints=None ): with torch.no_grad(): if self.args.decoder_langtok: bos_token = _lang_token_index( self.target_dictionary, self.args.target_lang ) else: bos_token = self.target_dictionary.eos() return generator.generate( models, sample, prefix_tokens=prefix_tokens, constraints=constraints, bos_token=bos_token, ) def reduce_metrics(self, logging_outputs, criterion): with metrics.aggregate(): # pass 'sample_size', 'nsentences', 'ntokens' stats to fairseq_task super().reduce_metrics(logging_outputs, criterion) for k in ["sample_size", "nsentences", "ntokens"]: metrics.log_scalar(k, sum(l[k] for l in logging_outputs)) @property def source_dictionary(self): if self.training: return next(iter(self.dicts.values())) else: return self.dicts[self.args.source_lang] @property def target_dictionary(self): if self.training: return next(iter(self.dicts.values())) else: return self.dicts[self.args.target_lang] def max_positions(self): """Return the max sentence length allowed by the task.""" if len(self.datasets.values()) == 0: return { "%s-%s" % (self.args.source_lang, self.args.target_lang): ( self.args.max_source_positions, self.args.max_target_positions, ) } return OrderedDict( [ (key, (self.args.max_source_positions, self.args.max_target_positions)) for split in self.datasets.keys() for key in self.datasets[split].datasets.keys() ] )
data2vec_vision-main
deltalm/src/fairseq/tasks/multilingual_translation.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from fairseq import utils from fairseq.data import LanguagePairDataset from . import register_task from .translation import TranslationTask, load_langpair_dataset @register_task("translation_from_pretrained_bart") class TranslationFromPretrainedBARTTask(TranslationTask): """ Translate from source language to target language with a model initialized with a multilingual pretrain. Args: src_dict (~fairseq.data.Dictionary): dictionary for the source language tgt_dict (~fairseq.data.Dictionary): dictionary for the target language .. note:: The translation task is compatible with :mod:`fairseq-train`, :mod:`fairseq-generate` and :mod:`fairseq-interactive`. The translation task provides the following additional command-line arguments: .. argparse:: :ref: fairseq.tasks.translation_parser :prog: """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" # fmt: off TranslationTask.add_args(parser) parser.add_argument('--langs', required=True, metavar='LANG', help='comma-separated list of monolingual language, ' 'for example, "en,de,fr". These should match the ' 'langs from pretraining (and be in the same order). ' 'You should always add all pretraining language idx ' 'during finetuning.') parser.add_argument('--prepend-bos', action='store_true', help='prepend bos token to each sentence, which matches ' 'mBART pretraining') # fmt: on def __init__(self, args, src_dict, tgt_dict): super().__init__(args, src_dict, tgt_dict) self.langs = args.langs.split(",") for d in [src_dict, tgt_dict]: for l in self.langs: d.add_symbol("[{}]".format(l)) d.add_symbol("<mask>") def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ paths = utils.split_paths(self.args.data) assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] # infer langcode src, tgt = self.args.source_lang, self.args.target_lang self.datasets[split] = load_langpair_dataset( data_path, split, src, self.src_dict, tgt, self.tgt_dict, combine=combine, dataset_impl=self.args.dataset_impl, upsample_primary=self.args.upsample_primary, left_pad_source=self.args.left_pad_source, left_pad_target=self.args.left_pad_target, max_source_positions=getattr(self.args, "max_source_positions", 1024), max_target_positions=getattr(self.args, "max_target_positions", 1024), load_alignments=self.args.load_alignments, prepend_bos=getattr(self.args, "prepend_bos", False), append_source_id=True, ) def build_generator(self, models, args, **unused): if getattr(args, "score_reference", False): from fairseq.sequence_scorer import SequenceScorer return SequenceScorer( self.target_dictionary, eos=self.tgt_dict.index("[{}]".format(self.args.target_lang)), ) else: from fairseq.sequence_generator import SequenceGenerator return SequenceGenerator( models, self.target_dictionary, beam_size=getattr(args, "beam", 5), max_len_a=getattr(args, "max_len_a", 0), max_len_b=getattr(args, "max_len_b", 200), min_len=getattr(args, "min_len", 1), normalize_scores=(not getattr(args, "unnormalized", False)), len_penalty=getattr(args, "lenpen", 1), unk_penalty=getattr(args, "unkpen", 0), temperature=getattr(args, "temperature", 1.0), match_source_len=getattr(args, "match_source_len", False), no_repeat_ngram_size=getattr(args, "no_repeat_ngram_size", 0), eos=self.tgt_dict.index("[{}]".format(self.args.target_lang)), ) def build_dataset_for_inference(self, src_tokens, src_lengths, constraints=None): src_lang_id = self.source_dictionary.index("[{}]".format(self.args.source_lang)) source_tokens = [] for s_t in src_tokens: s_t = torch.cat([s_t, s_t.new(1).fill_(src_lang_id)]) source_tokens.append(s_t) dataset = LanguagePairDataset( source_tokens, src_lengths, self.source_dictionary, tgt_dict=self.target_dictionary, constraints=constraints, ) return dataset
data2vec_vision-main
deltalm/src/fairseq/tasks/translation_from_pretrained_bart.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import torch from fairseq import utils from fairseq.data import LanguagePairDataset from fairseq.tasks import register_task from fairseq.tasks.translation import TranslationTask, load_langpair_dataset from fairseq.utils import new_arange @register_task("translation_lev") class TranslationLevenshteinTask(TranslationTask): """ Translation (Sequence Generation) task for Levenshtein Transformer See `"Levenshtein Transformer" <https://arxiv.org/abs/1905.11006>`_. """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" # fmt: off TranslationTask.add_args(parser) parser.add_argument( '--noise', default='random_delete', choices=['random_delete', 'random_mask', 'no_noise', 'full_mask']) # fmt: on def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ paths = utils.split_paths(self.args.data) assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] # infer langcode src, tgt = self.args.source_lang, self.args.target_lang self.datasets[split] = load_langpair_dataset( data_path, split, src, self.src_dict, tgt, self.tgt_dict, combine=combine, dataset_impl=self.args.dataset_impl, upsample_primary=self.args.upsample_primary, left_pad_source=self.args.left_pad_source, left_pad_target=self.args.left_pad_target, max_source_positions=self.args.max_source_positions, max_target_positions=self.args.max_target_positions, prepend_bos=True, ) def inject_noise(self, target_tokens): def _random_delete(target_tokens): pad = self.tgt_dict.pad() bos = self.tgt_dict.bos() eos = self.tgt_dict.eos() max_len = target_tokens.size(1) target_mask = target_tokens.eq(pad) target_score = target_tokens.clone().float().uniform_() target_score.masked_fill_( target_tokens.eq(bos) | target_tokens.eq(eos), 0.0 ) target_score.masked_fill_(target_mask, 1) target_score, target_rank = target_score.sort(1) target_length = target_mask.size(1) - target_mask.float().sum( 1, keepdim=True ) # do not delete <bos> and <eos> (we assign 0 score for them) target_cutoff = ( 2 + ( (target_length - 2) * target_score.new_zeros(target_score.size(0), 1).uniform_() ).long() ) target_cutoff = target_score.sort(1)[1] >= target_cutoff prev_target_tokens = ( target_tokens.gather(1, target_rank) .masked_fill_(target_cutoff, pad) .gather(1, target_rank.masked_fill_(target_cutoff, max_len).sort(1)[1]) ) prev_target_tokens = prev_target_tokens[ :, : prev_target_tokens.ne(pad).sum(1).max() ] return prev_target_tokens def _random_mask(target_tokens): pad = self.tgt_dict.pad() bos = self.tgt_dict.bos() eos = self.tgt_dict.eos() unk = self.tgt_dict.unk() target_masks = ( target_tokens.ne(pad) & target_tokens.ne(bos) & target_tokens.ne(eos) ) target_score = target_tokens.clone().float().uniform_() target_score.masked_fill_(~target_masks, 2.0) target_length = target_masks.sum(1).float() target_length = target_length * target_length.clone().uniform_() target_length = target_length + 1 # make sure to mask at least one token. _, target_rank = target_score.sort(1) target_cutoff = new_arange(target_rank) < target_length[:, None].long() prev_target_tokens = target_tokens.masked_fill( target_cutoff.scatter(1, target_rank, target_cutoff), unk ) return prev_target_tokens def _full_mask(target_tokens): pad = self.tgt_dict.pad() bos = self.tgt_dict.bos() eos = self.tgt_dict.eos() unk = self.tgt_dict.unk() target_mask = ( target_tokens.eq(bos) | target_tokens.eq(eos) | target_tokens.eq(pad) ) return target_tokens.masked_fill(~target_mask, unk) if self.args.noise == "random_delete": return _random_delete(target_tokens) elif self.args.noise == "random_mask": return _random_mask(target_tokens) elif self.args.noise == "full_mask": return _full_mask(target_tokens) elif self.args.noise == "no_noise": return target_tokens else: raise NotImplementedError def build_generator(self, models, args, **unused): # add models input to match the API for SequenceGenerator from fairseq.iterative_refinement_generator import IterativeRefinementGenerator return IterativeRefinementGenerator( self.target_dictionary, eos_penalty=getattr(args, "iter_decode_eos_penalty", 0.0), max_iter=getattr(args, "iter_decode_max_iter", 10), beam_size=getattr(args, "iter_decode_with_beam", 1), reranking=getattr(args, "iter_decode_with_external_reranker", False), decoding_format=getattr(args, "decoding_format", None), adaptive=not getattr(args, "iter_decode_force_max_iter", False), retain_history=getattr(args, "retain_iter_history", False), ) def build_dataset_for_inference(self, src_tokens, src_lengths, constraints=None): if constraints is not None: # Though see Susanto et al. (ACL 2020): https://www.aclweb.org/anthology/2020.acl-main.325/ raise NotImplementedError( "Constrained decoding with the translation_lev task is not supported" ) return LanguagePairDataset( src_tokens, src_lengths, self.source_dictionary, append_bos=True ) def train_step( self, sample, model, criterion, optimizer, update_num, ignore_grad=False ): model.train() sample["prev_target"] = self.inject_noise(sample["target"]) loss, sample_size, logging_output = criterion(model, sample) if ignore_grad: loss *= 0 optimizer.backward(loss) return loss, sample_size, logging_output def valid_step(self, sample, model, criterion): model.eval() with torch.no_grad(): sample["prev_target"] = self.inject_noise(sample["target"]) loss, sample_size, logging_output = criterion(model, sample) return loss, sample_size, logging_output
data2vec_vision-main
deltalm/src/fairseq/tasks/translation_lev.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from fairseq import utils from fairseq.data import ( AppendTokenDataset, Dictionary, IdDataset, MonolingualDataset, NestedDictionaryDataset, NumelDataset, PadDataset, PrependTokenDataset, StripTokenDataset, TokenBlockDataset, TruncatedDictionary, data_utils, ) from fairseq.data.indexed_dataset import get_available_dataset_impl from fairseq.data.shorten_dataset import maybe_shorten_dataset from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.tasks import LegacyFairseqTask, register_task from omegaconf import II SAMPLE_BREAK_MODE_CHOICES = ChoiceEnum(["none", "complete", "complete_doc", "eos"]) SHORTEN_METHOD_CHOICES = ChoiceEnum(["none", "truncate", "random_crop"]) logger = logging.getLogger(__name__) @dataclass class LanguageModelingConfig(FairseqDataclass): data: Optional[str] = field( default=None, metadata={"help": "path to data directory"} ) sample_break_mode: SAMPLE_BREAK_MODE_CHOICES = field( default="none", metadata={ "help": 'If omitted or "none", fills each sample with tokens-per-sample ' 'tokens. If set to "complete", splits samples only at the end ' "of sentence, but may include multiple sentences per sample. " '"complete_doc" is similar but respects doc boundaries. ' 'If set to "eos", includes only one sentence per sample.' }, ) tokens_per_sample: int = field( default=1024, metadata={"help": "max number of tokens per sample for LM dataset"}, ) output_dictionary_size: int = field( default=-1, metadata={"help": "limit the size of output dictionary"} ) self_target: bool = field(default=False, metadata={"help": "include self target"}) future_target: bool = field( default=False, metadata={"help": "include future target"} ) past_target: bool = field(default=False, metadata={"help": "include past target"}) add_bos_token: bool = field( default=False, metadata={"help": "prepend beginning of sentence token (<s>)"} ) max_target_positions: Optional[int] = field( default=None, metadata={"help": "max number of tokens in the target sequence"} ) shorten_method: SHORTEN_METHOD_CHOICES = field( default="none", metadata={ "help": "if not none, shorten sequences that exceed --tokens-per-sample" }, ) shorten_data_split_list: str = field( default="", metadata={ "help": "comma-separated list of dataset splits to apply shortening to, " 'e.g., "train,valid" (default: all dataset splits)' }, ) # TODO common vars below add to parent seed: int = II("common.seed") dataset_impl: Optional[ChoiceEnum(get_available_dataset_impl())] = II( "dataset.dataset_impl" ) data_buffer_size: int = II("dataset.data_buffer_size") tpu: bool = II("common.tpu") @register_task("language_modeling", dataclass=LanguageModelingConfig) class LanguageModelingTask(LegacyFairseqTask): """ Train a language model. Args: dictionary (~fairseq.data.Dictionary): the dictionary for the input of the language model output_dictionary (~fairseq.data.Dictionary): the dictionary for the output of the language model. In most cases it will be the same as *dictionary*, but could possibly be a more limited version of the dictionary (if ``--output-dictionary-size`` is used). targets (List[str]): list of the target types that the language model should predict. Can be one of "self", "future", and "past". Defaults to "future". .. note:: The language modeling task is compatible with :mod:`fairseq-train`, :mod:`fairseq-generate`, :mod:`fairseq-interactive` and :mod:`fairseq-eval-lm`. The language modeling task provides the following additional command-line arguments: .. argparse:: :ref: fairseq.tasks.language_modeling_parser :prog: """ def __init__(self, args, dictionary, output_dictionary=None, targets=None): super().__init__(args) self.dictionary = dictionary self.output_dictionary = output_dictionary or dictionary if targets is None: targets = ["future"] self.targets = targets @classmethod def setup_dictionary(cls, args, **kwargs): dictionary = None output_dictionary = None if args.data: paths = utils.split_paths(args.data) assert len(paths) > 0 dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt")) logger.info("dictionary: {} types".format(len(dictionary))) output_dictionary = dictionary if args.output_dictionary_size >= 0: output_dictionary = TruncatedDictionary( dictionary, args.output_dictionary_size ) return (dictionary, output_dictionary) @classmethod def setup_task(cls, args, **kwargs): """Setup the task (e.g., load dictionaries). Args: args (argparse.Namespace): parsed command-line arguments """ dictionary, output_dictionary = cls.setup_dictionary(args, **kwargs) # upgrade old checkpoints if getattr(args, "exclude_self_target", False): args.self_target = False targets = [] if getattr(args, "self_target", False): targets.append("self") if getattr(args, "future_target", False): targets.append("future") if getattr(args, "past_target", False): targets.append("past") if len(targets) == 0: # standard language modeling targets = ["future"] return cls(args, dictionary, output_dictionary, targets=targets) def build_model(self, args): model = super().build_model(args) for target in self.targets: if target not in model.supported_targets: raise ValueError( "Unsupported language modeling target: {}".format(target) ) return model def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ paths = utils.split_paths(self.args.data) assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] split_path = os.path.join(data_path, split) dataset = data_utils.load_indexed_dataset( split_path, self.dictionary, self.args.dataset_impl, combine=combine ) if dataset is None: raise FileNotFoundError( "Dataset not found: {} ({})".format(split, split_path) ) dataset = maybe_shorten_dataset( dataset, split, self.args.shorten_data_split_list, self.args.shorten_method, self.args.tokens_per_sample, self.args.seed, ) dataset = TokenBlockDataset( dataset, dataset.sizes, self.args.tokens_per_sample, pad=self.dictionary.pad(), eos=self.dictionary.eos(), break_mode=self.args.sample_break_mode, include_targets=True, ) add_eos_for_other_targets = ( self.args.sample_break_mode is not None and self.args.sample_break_mode != "none" ) self.datasets[split] = self._initialize_dataset( dataset=dataset, sizes=dataset.sizes, src_vocab=self.dictionary, tgt_vocab=self.output_dictionary, add_eos_for_other_targets=add_eos_for_other_targets, shuffle=True, targets=self.targets, add_bos_token=self.args.add_bos_token, ) def _initialize_dataset(self, **kwargs): return MonolingualDataset(**kwargs) def build_dataset_for_inference(self, src_tokens, src_lengths, **kwargs): """ Generate batches for inference. We prepend an eos token to src_tokens (or bos if `--add-bos-token` is set) and we append a <pad> to target. This is convenient both for generation with a prefix and LM scoring. """ dataset = StripTokenDataset( TokenBlockDataset( src_tokens, src_lengths, block_size=None, # ignored for "eos" break mode pad=self.source_dictionary.pad(), eos=self.source_dictionary.eos(), break_mode="eos", ), # remove eos from (end of) target sequence self.source_dictionary.eos(), ) src_dataset = PrependTokenDataset( dataset, token=( self.source_dictionary.bos() if getattr(self.args, "add_bos_token", False) else self.source_dictionary.eos() ), ) tgt_dataset = AppendTokenDataset(dataset, token=self.source_dictionary.pad()) return NestedDictionaryDataset( { "id": IdDataset(), "net_input": { "src_tokens": PadDataset( src_dataset, pad_idx=self.source_dictionary.pad(), left_pad=False, ), "src_lengths": NumelDataset(src_dataset, reduce=False), }, "target": PadDataset( tgt_dataset, pad_idx=self.source_dictionary.pad(), left_pad=False ), }, sizes=[np.array(src_lengths)], ) def inference_step( self, generator, models, sample, prefix_tokens=None, constraints=None ): with torch.no_grad(): # Generation will always be conditioned on bos_token if getattr(self.args, "add_bos_token", False): bos_token = self.source_dictionary.bos() else: bos_token = self.source_dictionary.eos() if constraints is not None: raise NotImplementedError( "Constrained decoding with the language_modeling task is not supported" ) # SequenceGenerator doesn't use src_tokens directly, we need to # pass the `prefix_tokens` argument instead if prefix_tokens is None and sample["net_input"]["src_tokens"].nelement(): prefix_tokens = sample["net_input"]["src_tokens"] if prefix_tokens[:, 0].eq(bos_token).all(): prefix_tokens = prefix_tokens[:, 1:] return generator.generate( models, sample, prefix_tokens=prefix_tokens, bos_token=bos_token ) @property def source_dictionary(self): """Return the :class:`~fairseq.data.Dictionary` for the language model.""" return self.dictionary @property def target_dictionary(self): """Return the :class:`~fairseq.data.Dictionary` for the language model.""" return self.output_dictionary
data2vec_vision-main
deltalm/src/fairseq/tasks/language_modeling.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os.path as op from argparse import Namespace from fairseq.data import Dictionary, encoders from fairseq.data.audio.speech_to_text_dataset import ( S2TDataConfig, SpeechToTextDataset, SpeechToTextDatasetCreator, ) from fairseq.tasks import LegacyFairseqTask, register_task logger = logging.getLogger(__name__) @register_task("speech_to_text") class SpeechToTextTask(LegacyFairseqTask): @staticmethod def add_args(parser): parser.add_argument("data", help="manifest root path") parser.add_argument( "--config-yaml", type=str, default="config.yaml", help="Configuration YAML filename (under manifest root)", ) parser.add_argument( "--max-source-positions", default=6000, type=int, metavar="N", help="max number of tokens in the source sequence", ) parser.add_argument( "--max-target-positions", default=1024, type=int, metavar="N", help="max number of tokens in the target sequence", ) def __init__(self, args, tgt_dict): super().__init__(args) self.tgt_dict = tgt_dict self.data_cfg = S2TDataConfig(op.join(args.data, args.config_yaml)) @classmethod def setup_task(cls, args, **kwargs): data_cfg = S2TDataConfig(op.join(args.data, args.config_yaml)) dict_path = op.join(args.data, data_cfg.vocab_filename) if not op.isfile(dict_path): raise FileNotFoundError(f"Dict not found: {dict_path}") tgt_dict = Dictionary.load(dict_path) logger.info( f"dictionary size ({data_cfg.vocab_filename}): " f"{len(tgt_dict):,}" ) if getattr(args, "train_subset", None) is not None: if not all(s.startswith("train") for s in args.train_subset.split(",")): raise ValueError('Train splits should be named like "train*".') return cls(args, tgt_dict) def build_criterion(self, args): from fairseq import criterions if self.data_cfg.prepend_tgt_lang_tag and args.ignore_prefix_size != 1: raise ValueError( 'Please set "--ignore-prefix-size 1" since ' "target language ID token is prepended as BOS." ) return criterions.build_criterion(args, self) def load_dataset(self, split, epoch=1, combine=False, **kwargs): is_train_split = split.startswith("train") pre_tokenizer = self.build_tokenizer(self.args) bpe_tokenizer = self.build_bpe(self.args) self.datasets[split] = SpeechToTextDatasetCreator.from_tsv( self.args.data, self.data_cfg, split, self.tgt_dict, pre_tokenizer, bpe_tokenizer, is_train_split=is_train_split, epoch=epoch, seed=self.args.seed, ) @property def target_dictionary(self): return self.tgt_dict @property def source_dictionary(self): return None def max_positions(self): return self.args.max_source_positions, self.args.max_target_positions def build_model(self, args): args.input_feat_per_channel = self.data_cfg.input_feat_per_channel args.input_channels = self.data_cfg.input_channels return super(SpeechToTextTask, self).build_model(args) def build_generator( self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None, ): if self.data_cfg.prepend_tgt_lang_tag and args.prefix_size != 1: raise ValueError( 'Please set "--prefix-size 1" since ' "target language ID token is prepended as BOS." ) lang_token_ids = { i for s, i in self.tgt_dict.indices.items() if SpeechToTextDataset.is_lang_tag(s) } extra_gen_cls_kwargs = {"symbols_to_strip_from_output": lang_token_ids} return super().build_generator( models, args, seq_gen_cls=None, extra_gen_cls_kwargs=extra_gen_cls_kwargs ) def build_tokenizer(self, args): logger.info(f"pre-tokenizer: {self.data_cfg.pre_tokenizer}") return encoders.build_tokenizer(Namespace(**self.data_cfg.pre_tokenizer)) def build_bpe(self, args): logger.info(f"tokenizer: {self.data_cfg.bpe_tokenizer}") return encoders.build_bpe(Namespace(**self.data_cfg.bpe_tokenizer)) @classmethod def build_dataset_for_inference(cls, audio_paths, n_frames): return SpeechToTextDataset("interactive", False, {}, audio_paths, n_frames)
data2vec_vision-main
deltalm/src/fairseq/tasks/speech_to_text.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import itertools import logging import os import numpy as np from fairseq import tokenizer, utils from fairseq.data import ConcatDataset, Dictionary, data_utils, indexed_dataset from fairseq.data.legacy.block_pair_dataset import BlockPairDataset from fairseq.data.legacy.masked_lm_dataset import MaskedLMDataset from fairseq.data.legacy.masked_lm_dictionary import BertDictionary from fairseq.tasks import LegacyFairseqTask, register_task logger = logging.getLogger(__name__) @register_task("legacy_masked_lm") class LegacyMaskedLMTask(LegacyFairseqTask): """ Task for training Masked LM (BERT) model. Args: dictionary (Dictionary): the dictionary for the input of the task """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument( "data", help="colon separated path to data directories list, \ will be iterated upon during epochs in round-robin manner", ) parser.add_argument( "--tokens-per-sample", default=512, type=int, help="max number of total tokens over all segments" " per sample for BERT dataset", ) parser.add_argument( "--break-mode", default="doc", type=str, help="mode for breaking sentence" ) parser.add_argument("--shuffle-dataset", action="store_true", default=False) def __init__(self, args, dictionary): super().__init__(args) self.dictionary = dictionary self.seed = args.seed @classmethod def load_dictionary(cls, filename): return BertDictionary.load(filename) @classmethod def build_dictionary( cls, filenames, workers=1, threshold=-1, nwords=-1, padding_factor=8 ): d = BertDictionary() for filename in filenames: Dictionary.add_file_to_dictionary( filename, d, tokenizer.tokenize_line, workers ) d.finalize(threshold=threshold, nwords=nwords, padding_factor=padding_factor) return d @property def target_dictionary(self): return self.dictionary @classmethod def setup_task(cls, args, **kwargs): """Setup the task.""" paths = utils.split_paths(args.data) assert len(paths) > 0 dictionary = BertDictionary.load(os.path.join(paths[0], "dict.txt")) logger.info("dictionary: {} types".format(len(dictionary))) return cls(args, dictionary) def load_dataset(self, split, epoch=1, combine=False): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ loaded_datasets = [] paths = utils.split_paths(self.args.data) assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] logger.info("data_path", data_path) for k in itertools.count(): split_k = split + (str(k) if k > 0 else "") path = os.path.join(data_path, split_k) ds = indexed_dataset.make_dataset( path, impl=self.args.dataset_impl, fix_lua_indexing=True, dictionary=self.dictionary, ) if ds is None: if k > 0: break else: raise FileNotFoundError( "Dataset not found: {} ({})".format(split, data_path) ) with data_utils.numpy_seed(self.seed + k): loaded_datasets.append( BlockPairDataset( ds, self.dictionary, ds.sizes, self.args.tokens_per_sample, break_mode=self.args.break_mode, doc_break_size=1, ) ) logger.info( "{} {} {} examples".format(data_path, split_k, len(loaded_datasets[-1])) ) if not combine: break if len(loaded_datasets) == 1: dataset = loaded_datasets[0] sizes = dataset.sizes else: dataset = ConcatDataset(loaded_datasets) sizes = np.concatenate([ds.sizes for ds in loaded_datasets]) self.datasets[split] = MaskedLMDataset( dataset=dataset, sizes=sizes, vocab=self.dictionary, pad_idx=self.dictionary.pad(), mask_idx=self.dictionary.mask(), classif_token_idx=self.dictionary.cls(), sep_token_idx=self.dictionary.sep(), shuffle=self.args.shuffle_dataset, seed=self.seed, )
data2vec_vision-main
deltalm/src/fairseq/tasks/legacy_masked_lm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """isort:skip_file""" import argparse import importlib import os from fairseq.dataclass import FairseqDataclass from fairseq.dataclass.utils import merge_with_parent, populate_dataclass from hydra.core.config_store import ConfigStore from .fairseq_task import FairseqTask, LegacyFairseqTask # noqa # register dataclass TASK_DATACLASS_REGISTRY = {} TASK_REGISTRY = {} TASK_CLASS_NAMES = set() def setup_task(cfg: FairseqDataclass, **kwargs): task = None task_name = getattr(cfg, "task", None) if isinstance(task_name, str): # legacy tasks task = TASK_REGISTRY[task_name] if task_name in TASK_DATACLASS_REGISTRY: dc = TASK_DATACLASS_REGISTRY[task_name] cfg = populate_dataclass(dc(), cfg) else: task_name = getattr(cfg, "_name", None) if task_name and task_name in TASK_DATACLASS_REGISTRY: dc = TASK_DATACLASS_REGISTRY[task_name] cfg = merge_with_parent(dc(), cfg) task = TASK_REGISTRY[task_name] assert task is not None, f"Could not infer task type from {cfg}" return task.setup_task(cfg, **kwargs) def register_task(name, dataclass=None): """ New tasks can be added to fairseq with the :func:`~fairseq.tasks.register_task` function decorator. For example:: @register_task('classification') class ClassificationTask(FairseqTask): (...) .. note:: All Tasks must implement the :class:`~fairseq.tasks.FairseqTask` interface. Args: name (str): the name of the task """ def register_task_cls(cls): if name in TASK_REGISTRY: raise ValueError("Cannot register duplicate task ({})".format(name)) if not issubclass(cls, FairseqTask): raise ValueError( "Task ({}: {}) must extend FairseqTask".format(name, cls.__name__) ) if cls.__name__ in TASK_CLASS_NAMES: raise ValueError( "Cannot register task with duplicate class name ({})".format( cls.__name__ ) ) TASK_REGISTRY[name] = cls TASK_CLASS_NAMES.add(cls.__name__) if dataclass is not None and not issubclass(dataclass, FairseqDataclass): raise ValueError( "Dataclass {} must extend FairseqDataclass".format(dataclass) ) cls.__dataclass = dataclass if dataclass is not None: TASK_DATACLASS_REGISTRY[name] = dataclass cs = ConfigStore.instance() node = dataclass() node._name = name cs.store(name=name, group="task", node=node, provider="fairseq") return cls return register_task_cls def get_task(name): return TASK_REGISTRY[name] # automatically import any Python files in the tasks/ directory tasks_dir = os.path.dirname(__file__) for file in os.listdir(tasks_dir): path = os.path.join(tasks_dir, file) if ( not file.startswith("_") and not file.startswith(".") and (file.endswith(".py") or os.path.isdir(path)) ): task_name = file[: file.find(".py")] if file.endswith(".py") else file module = importlib.import_module("fairseq.tasks." + task_name) # expose `task_parser` for sphinx if task_name in TASK_REGISTRY: parser = argparse.ArgumentParser(add_help=False) group_task = parser.add_argument_group("Task name") # fmt: off group_task.add_argument('--task', metavar=task_name, help='Enable this task with: ``--task=' + task_name + '``') # fmt: on group_args = parser.add_argument_group("Additional command-line arguments") TASK_REGISTRY[task_name].add_args(group_args) globals()[task_name + "_parser"] = parser
data2vec_vision-main
deltalm/src/fairseq/tasks/__init__.py
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import os import sys import torch from argparse import Namespace from dataclasses import dataclass, field from typing import Optional, Any from omegaconf import MISSING from fairseq.data import AddTargetDataset, Dictionary, FileAudioDataset, encoders from fairseq.data.data_utils import post_process from fairseq.dataclass import FairseqDataclass from fairseq.dataclass.configs import GenerationConfig from . import FairseqTask, register_task from .. import utils from ..logging import metrics class LabelEncoder(object): def __init__(self, dictionary): self.dictionary = dictionary def __call__(self, label): return self.dictionary.encode_line( label, append_eos=False, add_if_not_exist=False ) @dataclass class AudioPretrainingConfig(FairseqDataclass): data: str = field(default=MISSING, metadata={"help": "path to data directory"}) labels: Optional[str] = field( default=None, metadata={"help": "extension of the label file to load, used for fine-tuning"}, ) sample_rate: int = field( default=16_000, metadata={ "help": "target sample rate. audio files will be up/down sampled to this rate" }, ) normalize: bool = field( default=False, metadata={"help": "if set, normalizes input to have 0 mean and unit variance"}, ) enable_padding: bool = field( default=False, metadata={"help": "pad shorter samples instead of cropping"} ) max_sample_size: Optional[int] = field( default=None, metadata={"help": "max sample size to crop to for batching"} ) min_sample_size: Optional[int] = field( default=None, metadata={"help": "min sample size to crop to for batching"} ) # Options for reporting WER metrics during validation. Only applicable to # Seq2Seq models during fine-tuning eval_wer: bool = field( default=False, metadata={"help": "compute WER for Seq2Seq models"} ) eval_wer_config: GenerationConfig = field( default_factory=lambda: GenerationConfig(), metadata={"help": "beam search config for evaluating wer during training"}, ) eval_wer_tokenizer: Any = field( default=None, metadata={"help": "tokenizer config for evaluating wer during training"}, ) eval_wer_post_process: str = field( default="letter", metadata={ "help": "remove BPE tokens before scoring (can be sentencepiece, letter, and more)" }, ) autoregressive: bool = field( default=False, metadata={ "help": "required for autoregressive decoders (like seq2seq models); " "adds 'prev_output_tokens' to input and appends eos to target" }, ) @register_task("audio_pretraining", dataclass=AudioPretrainingConfig) class AudioPretrainingTask(FairseqTask): """""" cfg: AudioPretrainingConfig def __init__( self, cfg: AudioPretrainingConfig, source_dictionary=None, target_dictionary=None, ): super().__init__(cfg) self._target_dictionary = target_dictionary self._source_dictionary = source_dictionary if cfg.eval_wer: assert cfg.labels is not None, "eval_wer can only be set during fine-tuning" self.blank_symbol = "<s>" @classmethod def setup_task(cls, cfg: AudioPretrainingConfig, **kwargs): """Setup the task (e.g., load dictionaries). Args: cfg (AudioPretrainingConfig): configuration of this task """ if cfg.labels: dict_path = os.path.join(cfg.data, f"dict.{cfg.labels}.txt") target_dictionary = Dictionary.load(dict_path) else: target_dictionary = None return cls(cfg, target_dictionary=target_dictionary) def load_dataset(self, split: str, task_cfg: FairseqDataclass = None, **kwargs): data_path = self.cfg.data task_cfg = task_cfg or self.cfg # upgrade old task if isinstance(task_cfg, Namespace): if not hasattr(task_cfg, "autoregressive"): task_cfg.autoregressive = not task_cfg.criterion == 'ctc' manifest = os.path.join(data_path, "{}.tsv".format(split)) self.datasets[split] = FileAudioDataset( manifest, sample_rate=task_cfg.sample_rate, max_sample_size=self.cfg.max_sample_size, min_sample_size=self.cfg.max_sample_size, min_length=self.cfg.min_sample_size, pad=task_cfg.labels is not None or task_cfg.enable_padding, normalize=task_cfg.normalize, ) if task_cfg.labels: label_path = os.path.join(data_path, f"{split}.{task_cfg.labels}") labels = [] with open(label_path, "r") as f: for line in f: labels.append(line) process_label = LabelEncoder(self.target_dictionary) self.datasets[split] = AddTargetDataset( self.datasets[split], labels, pad=self.target_dictionary.pad(), eos=self.target_dictionary.eos(), batch_targets=True, process_label=process_label, add_to_input=task_cfg.autoregressive, ) @property def source_dictionary(self): return self._source_dictionary @property def target_dictionary(self): """Return the :class:`~fairseq.data.Dictionary` for the language model.""" return self._target_dictionary def max_positions(self): """Maximum input length supported by the encoder.""" return (sys.maxsize, sys.maxsize) def filter_indices_by_size( self, indices, dataset, max_positions=None, ignore_invalid_inputs=False, ): # we do not need to filter by size in this task as dataloaders take care of this return indices def valid_step(self, sample, model, criterion): loss, sample_size, logging_output = super().valid_step(sample, model, criterion) if self.cfg.eval_wer and self.cfg.autoregressive: metrics = self._inference_with_wer(self.sequence_generator, sample, model) logging_output["_num_char_errors"] = metrics["num_char_errors"] logging_output["_num_chars"] = metrics["num_chars"] logging_output["_num_word_errors"] = metrics["num_word_errors"] logging_output["_num_words"] = metrics["num_words"] return loss, sample_size, logging_output def build_model(self, model_cfg: FairseqDataclass): model = super().build_model(model_cfg) if self.cfg.eval_wer and self.cfg.autoregressive: self.sequence_generator = self.build_generator( [model], self.cfg.eval_wer_config, ) if self.cfg.eval_wer_tokenizer: self.tokenizer = encoders.build_tokenizer(self.cfg.eval_wer_tokenizer) else: self.tokenizer = None return model def _inference_with_wer(self, generator, sample, model): import editdistance def decode(toks): s = self.target_dictionary.string( toks.int().cpu(), self.cfg.eval_wer_post_process, escape_unk=True, ) if self.tokenizer: s = self.tokenizer.decode(s) return s num_word_errors, num_char_errors = 0, 0 num_chars, num_words = 0, 0 gen_out = self.inference_step(generator, [model], sample, None) for i in range(len(gen_out)): hyp = decode(gen_out[i][0]["tokens"]) ref = decode( utils.strip_pad(sample["target"][i], self.target_dictionary.pad()), ) num_char_errors += editdistance.eval(hyp, ref) num_chars += len(ref) hyp_words = hyp.split() ref_words = ref.split() num_word_errors += editdistance.eval(hyp_words, ref_words) num_words += len(ref_words) return { "num_char_errors": num_char_errors, "num_chars": num_chars, "num_word_errors": num_word_errors, "num_words": num_words, } def reduce_metrics(self, logging_outputs, criterion): super().reduce_metrics(logging_outputs, criterion) zero = torch.scalar_tensor(0.0) num_char_errors = sum( log.get("_num_char_errors", zero) for log in logging_outputs ) num_chars = sum(log.get("_num_chars", zero) for log in logging_outputs) num_word_errors = sum( log.get("_num_word_errors", zero) for log in logging_outputs ) num_words = sum(log.get("_num_words", zero) for log in logging_outputs) metrics.log_scalar("_num_char_errors", num_char_errors) metrics.log_scalar("_num_chars", num_chars) metrics.log_scalar("_num_word_errors", num_word_errors) metrics.log_scalar("_num_words", num_words) if num_words > 0: metrics.log_derived( "uer", lambda meters: meters["_num_char_errors"].sum * 100.0 / meters["_num_chars"].sum if meters["_num_chars"].sum > 0 else float("nan"), ) metrics.log_derived( "wer", lambda meters: meters["_num_word_errors"].sum * 100.0 / meters["_num_words"].sum if meters["_num_words"].sum > 0 else float("nan"), )
data2vec_vision-main
deltalm/src/fairseq/tasks/audio_pretraining.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import itertools import json import logging import os from argparse import Namespace import numpy as np from fairseq import metrics, options, utils from fairseq.data import ( AppendTokenDataset, ConcatDataset, LanguagePairDataset, PrependTokenDataset, StripTokenDataset, TruncateDataset, data_utils, encoders, indexed_dataset, ) from fairseq.tasks import LegacyFairseqTask, register_task EVAL_BLEU_ORDER = 4 logger = logging.getLogger(__name__) def load_langpair_dataset( data_path, split, src, src_dict, tgt, tgt_dict, combine, dataset_impl, upsample_primary, left_pad_source, left_pad_target, max_source_positions, max_target_positions, prepend_bos=False, load_alignments=False, truncate_source=False, append_source_id=False, num_buckets=0, shuffle=True, pad_to_multiple=1, ): def split_exists(split, src, tgt, lang, data_path): filename = os.path.join(data_path, "{}.{}-{}.{}".format(split, src, tgt, lang)) return indexed_dataset.dataset_exists(filename, impl=dataset_impl) src_datasets = [] tgt_datasets = [] for k in itertools.count(): split_k = split + (str(k) if k > 0 else "") # infer langcode if split_exists(split_k, src, tgt, src, data_path): prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, src, tgt)) elif split_exists(split_k, tgt, src, src, data_path): prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, tgt, src)) else: if k > 0: break else: raise FileNotFoundError( "Dataset not found: {} ({})".format(split, data_path) ) src_dataset = data_utils.load_indexed_dataset( prefix + src, src_dict, dataset_impl ) if truncate_source: src_dataset = AppendTokenDataset( TruncateDataset( StripTokenDataset(src_dataset, src_dict.eos()), max_source_positions - 1, ), src_dict.eos(), ) src_datasets.append(src_dataset) tgt_dataset = data_utils.load_indexed_dataset( prefix + tgt, tgt_dict, dataset_impl ) if tgt_dataset is not None: tgt_datasets.append(tgt_dataset) logger.info( "{} {} {}-{} {} examples".format( data_path, split_k, src, tgt, len(src_datasets[-1]) ) ) if not combine: break assert len(src_datasets) == len(tgt_datasets) or len(tgt_datasets) == 0 if len(src_datasets) == 1: src_dataset = src_datasets[0] tgt_dataset = tgt_datasets[0] if len(tgt_datasets) > 0 else None else: sample_ratios = [1] * len(src_datasets) sample_ratios[0] = upsample_primary src_dataset = ConcatDataset(src_datasets, sample_ratios) if len(tgt_datasets) > 0: tgt_dataset = ConcatDataset(tgt_datasets, sample_ratios) else: tgt_dataset = None if prepend_bos: assert hasattr(src_dict, "bos_index") and hasattr(tgt_dict, "bos_index") src_dataset = PrependTokenDataset(src_dataset, src_dict.bos()) if tgt_dataset is not None: tgt_dataset = PrependTokenDataset(tgt_dataset, tgt_dict.bos()) eos = None if append_source_id: src_dataset = AppendTokenDataset( src_dataset, src_dict.index("[{}]".format(src)) ) if tgt_dataset is not None: tgt_dataset = AppendTokenDataset( tgt_dataset, tgt_dict.index("[{}]".format(tgt)) ) eos = tgt_dict.index("[{}]".format(tgt)) align_dataset = None if load_alignments: align_path = os.path.join(data_path, "{}.align.{}-{}".format(split, src, tgt)) if indexed_dataset.dataset_exists(align_path, impl=dataset_impl): align_dataset = data_utils.load_indexed_dataset( align_path, None, dataset_impl ) tgt_dataset_sizes = tgt_dataset.sizes if tgt_dataset is not None else None return LanguagePairDataset( src_dataset, src_dataset.sizes, src_dict, tgt_dataset, tgt_dataset_sizes, tgt_dict, left_pad_source=left_pad_source, left_pad_target=left_pad_target, align_dataset=align_dataset, eos=eos, num_buckets=num_buckets, shuffle=shuffle, pad_to_multiple=pad_to_multiple, ) @register_task("translation") class TranslationTask(LegacyFairseqTask): """ Translate from one (source) language to another (target) language. Args: src_dict (~fairseq.data.Dictionary): dictionary for the source language tgt_dict (~fairseq.data.Dictionary): dictionary for the target language .. note:: The translation task is compatible with :mod:`fairseq-train`, :mod:`fairseq-generate` and :mod:`fairseq-interactive`. The translation task provides the following additional command-line arguments: .. argparse:: :ref: fairseq.tasks.translation_parser :prog: """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" # fmt: off parser.add_argument('data', help='colon separated path to data directories list, \ will be iterated upon during epochs in round-robin manner; \ however, valid and test data are always in the first directory to \ avoid the need for repeating them in all directories') parser.add_argument('-s', '--source-lang', default=None, metavar='SRC', help='source language') parser.add_argument('-t', '--target-lang', default=None, metavar='TARGET', help='target language') parser.add_argument('--load-alignments', action='store_true', help='load the binarized alignments') parser.add_argument('--left-pad-source', default='False', type=str, metavar='BOOL', help='pad the source on the left') parser.add_argument('--left-pad-target', default='False', type=str, metavar='BOOL', help='pad the target on the left') parser.add_argument('--max-source-positions', default=1024, type=int, metavar='N', help='max number of tokens in the source sequence') parser.add_argument('--max-target-positions', default=1024, type=int, metavar='N', help='max number of tokens in the target sequence') parser.add_argument('--upsample-primary', default=1, type=int, help='amount to upsample primary dataset') parser.add_argument('--truncate-source', action='store_true', default=False, help='truncate source to max-source-positions') parser.add_argument('--num-batch-buckets', default=0, type=int, metavar='N', help='if >0, then bucket source and target lengths into N ' 'buckets and pad accordingly; this is useful on TPUs ' 'to minimize the number of compilations') # options for reporting BLEU during validation parser.add_argument('--eval-bleu', action='store_true', help='evaluation with BLEU scores') parser.add_argument('--eval-bleu-detok', type=str, default="space", help='detokenize before computing BLEU (e.g., "moses"); ' 'required if using --eval-bleu; use "space" to ' 'disable detokenization; see fairseq.data.encoders ' 'for other options') parser.add_argument('--eval-bleu-detok-args', type=str, metavar='JSON', help='args for building the tokenizer, if needed') parser.add_argument('--eval-tokenized-bleu', action='store_true', default=False, help='compute tokenized BLEU instead of sacrebleu') parser.add_argument('--eval-bleu-remove-bpe', nargs='?', const='@@ ', default=None, help='remove BPE before computing BLEU') parser.add_argument('--eval-bleu-args', type=str, metavar='JSON', help='generation args for BLUE scoring, ' 'e.g., \'{"beam": 4, "lenpen": 0.6}\'') parser.add_argument('--eval-bleu-print-samples', action='store_true', help='print sample generations during validation') # fmt: on def __init__(self, args, src_dict, tgt_dict): super().__init__(args) self.src_dict = src_dict self.tgt_dict = tgt_dict @classmethod def setup_task(cls, args, **kwargs): """Setup the task (e.g., load dictionaries). Args: args (argparse.Namespace): parsed command-line arguments """ args.left_pad_source = utils.eval_bool(args.left_pad_source) args.left_pad_target = utils.eval_bool(args.left_pad_target) paths = utils.split_paths(args.data) assert len(paths) > 0 # find language pair automatically if args.source_lang is None or args.target_lang is None: args.source_lang, args.target_lang = data_utils.infer_language_pair( paths[0] ) if args.source_lang is None or args.target_lang is None: raise Exception( "Could not infer language pair, please provide it explicitly" ) # load dictionaries src_dict = cls.load_dictionary( os.path.join(paths[0], "dict.{}.txt".format(args.source_lang)) ) tgt_dict = cls.load_dictionary( os.path.join(paths[0], "dict.{}.txt".format(args.target_lang)) ) assert src_dict.pad() == tgt_dict.pad() assert src_dict.eos() == tgt_dict.eos() assert src_dict.unk() == tgt_dict.unk() logger.info("[{}] dictionary: {} types".format(args.source_lang, len(src_dict))) logger.info("[{}] dictionary: {} types".format(args.target_lang, len(tgt_dict))) return cls(args, src_dict, tgt_dict) def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ paths = utils.split_paths(self.args.data) assert len(paths) > 0 if split != getattr(self.args, "train_subset", None): # if not training data set, use the first shard for valid and test paths = paths[:1] data_path = paths[(epoch - 1) % len(paths)] # infer langcode src, tgt = self.args.source_lang, self.args.target_lang self.datasets[split] = load_langpair_dataset( data_path, split, src, self.src_dict, tgt, self.tgt_dict, combine=combine, dataset_impl=self.args.dataset_impl, upsample_primary=self.args.upsample_primary, left_pad_source=self.args.left_pad_source, left_pad_target=self.args.left_pad_target, max_source_positions=self.args.max_source_positions, max_target_positions=self.args.max_target_positions, load_alignments=self.args.load_alignments, truncate_source=self.args.truncate_source, num_buckets=self.args.num_batch_buckets, shuffle=(split != "test"), pad_to_multiple=self.args.required_seq_len_multiple, ) def build_dataset_for_inference(self, src_tokens, src_lengths, constraints=None): return LanguagePairDataset( src_tokens, src_lengths, self.source_dictionary, tgt_dict=self.target_dictionary, constraints=constraints, ) def build_model(self, args): model = super().build_model(args) if getattr(args, "eval_bleu", False): assert getattr(args, "eval_bleu_detok", None) is not None, ( "--eval-bleu-detok is required if using --eval-bleu; " "try --eval-bleu-detok=moses (or --eval-bleu-detok=space " "to disable detokenization, e.g., when using sentencepiece)" ) detok_args = json.loads(getattr(args, "eval_bleu_detok_args", "{}") or "{}") self.tokenizer = encoders.build_tokenizer( Namespace( tokenizer=getattr(args, "eval_bleu_detok", None), **detok_args ) ) gen_args = json.loads(getattr(args, "eval_bleu_args", "{}") or "{}") self.sequence_generator = self.build_generator( [model], Namespace(**gen_args) ) return model def valid_step(self, sample, model, criterion): loss, sample_size, logging_output = super().valid_step(sample, model, criterion) if self.args.eval_bleu: bleu = self._inference_with_bleu(self.sequence_generator, sample, model) logging_output["_bleu_sys_len"] = bleu.sys_len logging_output["_bleu_ref_len"] = bleu.ref_len # we split counts into separate entries so that they can be # summed efficiently across workers using fast-stat-sync assert len(bleu.counts) == EVAL_BLEU_ORDER for i in range(EVAL_BLEU_ORDER): logging_output["_bleu_counts_" + str(i)] = bleu.counts[i] logging_output["_bleu_totals_" + str(i)] = bleu.totals[i] return loss, sample_size, logging_output def reduce_metrics(self, logging_outputs, criterion): super().reduce_metrics(logging_outputs, criterion) if self.args.eval_bleu: def sum_logs(key): return sum(log.get(key, 0) for log in logging_outputs) counts, totals = [], [] for i in range(EVAL_BLEU_ORDER): counts.append(sum_logs("_bleu_counts_" + str(i))) totals.append(sum_logs("_bleu_totals_" + str(i))) if max(totals) > 0: # log counts as numpy arrays -- log_scalar will sum them correctly metrics.log_scalar("_bleu_counts", np.array(counts)) metrics.log_scalar("_bleu_totals", np.array(totals)) metrics.log_scalar("_bleu_sys_len", sum_logs("_bleu_sys_len")) metrics.log_scalar("_bleu_ref_len", sum_logs("_bleu_ref_len")) def compute_bleu(meters): import inspect import sacrebleu fn_sig = inspect.getfullargspec(sacrebleu.compute_bleu)[0] if "smooth_method" in fn_sig: smooth = {"smooth_method": "exp"} else: smooth = {"smooth": "exp"} bleu = sacrebleu.compute_bleu( correct=meters["_bleu_counts"].sum, total=meters["_bleu_totals"].sum, sys_len=meters["_bleu_sys_len"].sum, ref_len=meters["_bleu_ref_len"].sum, **smooth ) return round(bleu.score, 2) metrics.log_derived("bleu", compute_bleu) def max_positions(self): """Return the max sentence length allowed by the task.""" return (self.args.max_source_positions, self.args.max_target_positions) @property def source_dictionary(self): """Return the source :class:`~fairseq.data.Dictionary`.""" return self.src_dict @property def target_dictionary(self): """Return the target :class:`~fairseq.data.Dictionary`.""" return self.tgt_dict def _inference_with_bleu(self, generator, sample, model): import sacrebleu def decode(toks, escape_unk=False): s = self.tgt_dict.string( toks.int().cpu(), self.args.eval_bleu_remove_bpe, # The default unknown string in fairseq is `<unk>`, but # this is tokenized by sacrebleu as `< unk >`, inflating # BLEU scores. Instead, we use a somewhat more verbose # alternative that is unlikely to appear in the real # reference, but doesn't get split into multiple tokens. unk_string=("UNKNOWNTOKENINREF" if escape_unk else "UNKNOWNTOKENINHYP"), ) if self.tokenizer: s = self.tokenizer.decode(s) return s gen_out = self.inference_step(generator, [model], sample, prefix_tokens=None) hyps, refs = [], [] for i in range(len(gen_out)): hyps.append(decode(gen_out[i][0]["tokens"])) refs.append( decode( utils.strip_pad(sample["target"][i], self.tgt_dict.pad()), escape_unk=True, # don't count <unk> as matches to the hypo ) ) if self.args.eval_bleu_print_samples: logger.info("example hypothesis: " + hyps[0]) logger.info("example reference: " + refs[0]) if self.args.eval_tokenized_bleu: return sacrebleu.corpus_bleu(hyps, [refs], tokenize="none") else: return sacrebleu.corpus_bleu(hyps, [refs])
data2vec_vision-main
deltalm/src/fairseq/tasks/translation.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os from collections import OrderedDict from fairseq import utils from fairseq.data import ( BacktranslationDataset, IndexedCachedDataset, IndexedDataset, IndexedRawTextDataset, LanguagePairDataset, NoisingDataset, RoundRobinZipDatasets, data_utils, indexed_dataset, ) from fairseq.models import FairseqMultiModel from fairseq.sequence_generator import SequenceGenerator from . import register_task from .multilingual_translation import MultilingualTranslationTask logger = logging.getLogger(__name__) def _get_bt_dataset_key(lang_pair): return "bt:" + lang_pair def _get_denoising_dataset_key(lang_pair): return "denoising:" + lang_pair # ported from UnsupervisedMT def parse_lambda_config(x): """ Parse the configuration of lambda coefficient (for scheduling). x = "3" # lambda will be a constant equal to x x = "0:1,1000:0" # lambda will start from 1 and linearly decrease # to 0 during the first 1000 iterations x = "0:0,1000:0,2000:1" # lambda will be equal to 0 for the first 1000 # iterations, then will linearly increase to 1 until iteration 2000 """ split = x.split(",") if len(split) == 1: return float(x), None else: split = [s.split(os.pathsep) for s in split] assert all(len(s) == 2 for s in split) assert all(k.isdigit() for k, _ in split) assert all( int(split[i][0]) < int(split[i + 1][0]) for i in range(len(split) - 1) ) return float(split[0][1]), [(int(k), float(v)) for k, v in split] @register_task("semisupervised_translation") class SemisupervisedTranslationTask(MultilingualTranslationTask): """A task for training multiple translation models simultaneously. We iterate round-robin over batches from multiple language pairs, ordered according to the `--lang-pairs` argument. The training loop is roughly: for i in range(len(epoch)): for lang_pair in args.lang_pairs: batch = next_batch_for_lang_pair(lang_pair) loss = criterion(model_for_lang_pair(lang_pair), batch) loss.backward() optimizer.step() In practice, `next_batch_for_lang_pair` is abstracted in a FairseqDataset (e.g., `RoundRobinZipDatasets`) and `model_for_lang_pair` is a model that implements the `FairseqMultiModel` interface. During inference it is required to specify a single `--source-lang` and `--target-lang`, instead of `--lang-pairs`. """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" # fmt: off MultilingualTranslationTask.add_args(parser) parser.add_argument('--lambda-parallel-config', default="1.0", type=str, metavar='CONFIG', help='cross-entropy reconstruction coefficient (parallel data). ' 'use fixed weight during training if set to floating point number. ' 'use piecewise linear function over number of updates to schedule the ' 'weight with the format: w0:step0,w1:step1,...') parser.add_argument('--lambda-denoising-config', default="0.0", type=str, metavar='CONFIG', help='Cross-entropy reconstruction coefficient (denoising autoencoding)' 'use fixed weight during training if set to floating point number. ' 'use piecewise linear function over number of updates to schedule the ' 'weight with the format: w0:step0,w1:step1,...') parser.add_argument('--lambda-otf-bt-config', default="0.0", type=str, metavar='CONFIG', help='cross-entropy reconstruction coefficient (on-the-fly back-translation parallel data)' 'use fixed weight during training if set to floating point number. ' 'use piecewise linear function over number of updates to schedule the ' 'weight with the format: w0:step0,w1:step1,...') parser.add_argument('--bt-max-len-a', default=1.1, type=float, metavar='N', help='generate back-translated sequences of maximum length ax + b, where x is the ' 'source length') parser.add_argument('--bt-max-len-b', default=10.0, type=float, metavar='N', help='generate back-translated sequences of maximum length ax + b, where x is the ' 'source length') parser.add_argument('--bt-beam-size', default=1, type=int, metavar='N', help='beam size used in beam search of online back-translation') parser.add_argument('--max-word-shuffle-distance', default=3.0, type=float, metavar='N', help='maximum word shuffle distance for denoising autoencoding data generation') parser.add_argument('--word-dropout-prob', default=0.1, type=float, metavar='N', help='word dropout probability for denoising autoencoding data generation') parser.add_argument('--word-blanking-prob', default=0.2, type=float, metavar='N', help='word blanking probability for denoising autoencoding data generation') # fmt: on def __init__(self, args, dicts, training): super().__init__(args, dicts, training) self.lambda_parallel, self.lambda_parallel_steps = parse_lambda_config( args.lambda_parallel_config ) self.lambda_otf_bt, self.lambda_otf_bt_steps = parse_lambda_config( args.lambda_otf_bt_config ) self.lambda_denoising, self.lambda_denoising_steps = parse_lambda_config( args.lambda_denoising_config ) if self.lambda_denoising > 0.0 or self.lambda_denoising_steps is not None: denoising_lang_pairs = [ "%s-%s" % (tgt, tgt) for tgt in {lang_pair.split("-")[1] for lang_pair in args.lang_pairs} ] self.model_lang_pairs = self.model_lang_pairs + denoising_lang_pairs self.backtranslate_datasets = {} self.backtranslators = {} @classmethod def setup_task(cls, args, **kwargs): dicts, training = MultilingualTranslationTask.prepare(args, **kwargs) return cls(args, dicts, training) def load_dataset(self, split, epoch=1, **kwargs): """Load a dataset split.""" paths = utils.split_paths(self.args.data) assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] def split_exists(split, src, tgt, lang): if src is not None: filename = os.path.join( data_path, "{}.{}-{}.{}".format(split, src, tgt, lang) ) else: filename = os.path.join( data_path, "{}.{}-None.{}".format(split, src, tgt) ) return indexed_dataset.dataset_exists(filename, impl=self.args.dataset_impl) def load_indexed_dataset(path, dictionary): return data_utils.load_indexed_dataset( path, dictionary, self.args.dataset_impl ) # load parallel datasets src_datasets, tgt_datasets = {}, {} if ( self.lambda_parallel > 0.0 or self.lambda_parallel_steps is not None or not split.startswith("train") ): for lang_pair in self.lang_pairs: src, tgt = lang_pair.split("-") if split_exists(split, src, tgt, src): prefix = os.path.join( data_path, "{}.{}-{}.".format(split, src, tgt) ) elif split_exists(split, tgt, src, src): prefix = os.path.join( data_path, "{}.{}-{}.".format(split, tgt, src) ) else: continue src_datasets[lang_pair] = load_indexed_dataset( prefix + src, self.dicts[src] ) tgt_datasets[lang_pair] = load_indexed_dataset( prefix + tgt, self.dicts[tgt] ) logger.info( "parallel-{} {} {} examples".format( data_path, split, len(src_datasets[lang_pair]) ) ) if len(src_datasets) == 0: raise FileNotFoundError( "Dataset not found: {} ({})".format(split, data_path) ) # back translation datasets backtranslate_datasets = {} if ( self.lambda_otf_bt > 0.0 or self.lambda_otf_bt_steps is not None ) and split.startswith("train"): for lang_pair in self.lang_pairs: src, tgt = lang_pair.split("-") if not split_exists(split, tgt, None, tgt): raise FileNotFoundError( "Dataset not found: backtranslation {} ({})".format( split, data_path ) ) filename = os.path.join( data_path, "{}.{}-None.{}".format(split, tgt, tgt) ) dataset = load_indexed_dataset(filename, self.dicts[tgt]) lang_pair_dataset_tgt = LanguagePairDataset( dataset, dataset.sizes, self.dicts[tgt], left_pad_source=self.args.left_pad_source, left_pad_target=self.args.left_pad_target, ) lang_pair_dataset = LanguagePairDataset( dataset, dataset.sizes, src_dict=self.dicts[src], tgt=dataset, tgt_sizes=dataset.sizes, tgt_dict=self.dicts[tgt], left_pad_source=self.args.left_pad_source, left_pad_target=self.args.left_pad_target, ) backtranslate_datasets[lang_pair] = BacktranslationDataset( tgt_dataset=self.alter_dataset_langtok( lang_pair_dataset_tgt, src_eos=self.dicts[tgt].eos(), src_lang=tgt, tgt_lang=src, ), backtranslation_fn=self.backtranslators[lang_pair], src_dict=self.dicts[src], tgt_dict=self.dicts[tgt], output_collater=self.alter_dataset_langtok( lang_pair_dataset=lang_pair_dataset, src_eos=self.dicts[src].eos(), src_lang=src, tgt_eos=self.dicts[tgt].eos(), tgt_lang=tgt, ).collater, ) logger.info( "backtranslate-{}: {} {} {} examples".format( tgt, data_path, split, len(backtranslate_datasets[lang_pair]), ) ) self.backtranslate_datasets[lang_pair] = backtranslate_datasets[ lang_pair ] # denoising autoencoder noising_datasets = {} if ( self.lambda_denoising > 0.0 or self.lambda_denoising_steps is not None ) and split.startswith("train"): for lang_pair in self.lang_pairs: _, tgt = lang_pair.split("-") if not split_exists(split, tgt, None, tgt): continue filename = os.path.join( data_path, "{}.{}-None.{}".format(split, tgt, tgt) ) tgt_dataset1 = load_indexed_dataset(filename, self.dicts[tgt]) tgt_dataset2 = load_indexed_dataset(filename, self.dicts[tgt]) noising_dataset = NoisingDataset( tgt_dataset1, self.dicts[tgt], seed=1, max_word_shuffle_distance=self.args.max_word_shuffle_distance, word_dropout_prob=self.args.word_dropout_prob, word_blanking_prob=self.args.word_blanking_prob, ) noising_datasets[lang_pair] = self.alter_dataset_langtok( LanguagePairDataset( noising_dataset, tgt_dataset1.sizes, self.dicts[tgt], tgt_dataset2, tgt_dataset2.sizes, self.dicts[tgt], left_pad_source=self.args.left_pad_source, left_pad_target=self.args.left_pad_target, ), src_eos=self.dicts[tgt].eos(), src_lang=tgt, tgt_eos=self.dicts[tgt].eos(), tgt_lang=tgt, ) logger.info( "denoising-{}: {} {} {} examples".format( tgt, data_path, split, len(noising_datasets[lang_pair]), ) ) def language_pair_dataset(lang_pair): src, tgt = lang_pair.split("-") src_dataset, tgt_dataset = src_datasets[lang_pair], tgt_datasets[lang_pair] return self.alter_dataset_langtok( LanguagePairDataset( src_dataset, src_dataset.sizes, self.dicts[src], tgt_dataset, tgt_dataset.sizes, self.dicts[tgt], left_pad_source=self.args.left_pad_source, left_pad_target=self.args.left_pad_target, ), self.dicts[src].eos(), src, self.dicts[tgt].eos(), tgt, ) self.datasets[split] = RoundRobinZipDatasets( OrderedDict( [ (lang_pair, language_pair_dataset(lang_pair)) for lang_pair in src_datasets.keys() ] + [ (_get_bt_dataset_key(lang_pair), dataset) for lang_pair, dataset in backtranslate_datasets.items() ] + [ (_get_denoising_dataset_key(lang_pair), dataset) for lang_pair, dataset in noising_datasets.items() ] ), eval_key=None if self.training else "%s-%s" % (self.args.source_lang, self.args.target_lang), ) def build_model(self, args): from fairseq import models model = models.build_model(args, self) if not isinstance(model, FairseqMultiModel): raise ValueError( "SemisupervisedTranslationTask requires a FairseqMultiModel architecture" ) # create SequenceGenerator for each model that has backtranslation dependency on it self.sequence_generators = {} if ( self.lambda_otf_bt > 0.0 or self.lambda_otf_bt_steps is not None ) and self.training: for lang_pair in self.lang_pairs: src, tgt = lang_pair.split("-") key = "{}-{}".format(tgt, src) self.sequence_generators[key] = SequenceGenerator( [model.models[key]], tgt_dict=self.dicts[src], beam_size=args.bt_beam_size, max_len_a=args.bt_max_len_a, max_len_b=args.bt_max_len_b, ) decoder_lang_tok_idx = self.get_decoder_langtok(src) def backtranslate_fn( sample, model=model.models[key], bos_token=decoder_lang_tok_idx, sequence_generator=self.sequence_generators[key], ): return sequence_generator.generate( [model], sample, bos_token=bos_token, ) self.backtranslators[lang_pair] = backtranslate_fn return model def train_step( self, sample, model, criterion, optimizer, update_num, ignore_grad=False ): model.train() if update_num > 0: self.update_step(update_num) agg_loss, agg_sample_size, agg_logging_output = 0.0, 0.0, {} def forward_backward(model, samples, logging_output_key, weight): nonlocal agg_loss, agg_sample_size, agg_logging_output if samples is None or len(samples) == 0: return loss, sample_size, logging_output = criterion(model, samples) if ignore_grad: loss *= 0 else: loss *= weight optimizer.backward(loss) agg_loss += loss.detach().item() # TODO make summing of the sample sizes configurable agg_sample_size += sample_size for k in logging_output: agg_logging_output[k] += logging_output[k] agg_logging_output[logging_output_key] += logging_output[k] if self.lambda_parallel > 0.0: for lang_pair in self.lang_pairs: forward_backward( model.models[lang_pair], sample[lang_pair], lang_pair, self.lambda_parallel, ) if self.lambda_otf_bt > 0.0: for lang_pair in self.lang_pairs: sample_key = _get_bt_dataset_key(lang_pair) forward_backward( model.models[lang_pair], sample[sample_key], sample_key, self.lambda_otf_bt, ) if self.lambda_denoising > 0.0: for lang_pair in self.lang_pairs: _, tgt = lang_pair.split("-") sample_key = _get_denoising_dataset_key(lang_pair) forward_backward( model.models["{0}-{0}".format(tgt)], sample[sample_key], sample_key, self.lambda_denoising, ) return agg_loss, agg_sample_size, agg_logging_output def update_step(self, num_updates): def lambda_step_func(config, n_iter): """ Update a lambda value according to its schedule configuration. """ ranges = [ i for i in range(len(config) - 1) if config[i][0] <= n_iter < config[i + 1][0] ] if len(ranges) == 0: assert n_iter >= config[-1][0] return config[-1][1] assert len(ranges) == 1 i = ranges[0] x_a, y_a = config[i] x_b, y_b = config[i + 1] return y_a + (n_iter - x_a) * float(y_b - y_a) / float(x_b - x_a) if self.lambda_parallel_steps is not None: self.lambda_parallel = lambda_step_func( self.lambda_parallel_steps, num_updates ) if self.lambda_denoising_steps is not None: self.lambda_denoising = lambda_step_func( self.lambda_denoising_steps, num_updates ) if self.lambda_otf_bt_steps is not None: self.lambda_otf_bt = lambda_step_func(self.lambda_otf_bt_steps, num_updates)
data2vec_vision-main
deltalm/src/fairseq/tasks/semisupervised_translation.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import numpy as np from fairseq import utils from fairseq.data import ( ConcatSentencesDataset, Dictionary, IdDataset, NestedDictionaryDataset, NumelDataset, NumSamplesDataset, OffsetTokensDataset, PrependTokenDataset, RawLabelDataset, RightPadDataset, RollDataset, SortDataset, StripTokenDataset, data_utils, ) from fairseq.data.shorten_dataset import maybe_shorten_dataset from fairseq.tasks import LegacyFairseqTask, register_task logger = logging.getLogger(__name__) @register_task("sentence_prediction") class SentencePredictionTask(LegacyFairseqTask): """ Sentence (or sentence pair) prediction (classification or regression) task. Args: dictionary (Dictionary): the dictionary for the input of the task """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument("data", metavar="FILE", help="file prefix for data") parser.add_argument( "--num-classes", type=int, default=-1, help="number of classes or regression targets", ) parser.add_argument( "--init-token", type=int, default=None, help="add token at the beginning of each batch item", ) parser.add_argument( "--separator-token", type=int, default=None, help="add separator token between inputs", ) parser.add_argument("--regression-target", action="store_true", default=False) parser.add_argument("--no-shuffle", action="store_true", default=False) parser.add_argument( "--shorten-method", default="none", choices=["none", "truncate", "random_crop"], help="if not none, shorten sequences that exceed --tokens-per-sample", ) parser.add_argument( "--shorten-data-split-list", default="", help="comma-separated list of dataset splits to apply shortening to, " 'e.g., "train,valid" (default: all dataset splits)', ) parser.add_argument( "--add-prev-output-tokens", action="store_true", default=False, help="add prev_output_tokens to sample, used for encoder-decoder arch", ) def __init__(self, args, data_dictionary, label_dictionary): super().__init__(args) self.dictionary = data_dictionary self._label_dictionary = label_dictionary if not hasattr(args, "max_positions"): self._max_positions = ( args.max_source_positions, args.max_target_positions, ) else: self._max_positions = args.max_positions args.tokens_per_sample = self._max_positions @classmethod def load_dictionary(cls, args, filename, source=True): """Load the dictionary from the filename Args: filename (str): the filename """ dictionary = Dictionary.load(filename) dictionary.add_symbol("<mask>") return dictionary @classmethod def setup_task(cls, args, **kwargs): assert args.num_classes > 0, "Must set --num-classes" # load data dictionary data_dict = cls.load_dictionary( args, os.path.join(args.data, "input0", "dict.txt"), source=True, ) logger.info("[input] dictionary: {} types".format(len(data_dict))) label_dict = None if not args.regression_target: # load label dictionary label_dict = cls.load_dictionary( args, os.path.join(args.data, "label", "dict.txt"), source=False, ) logger.info("[label] dictionary: {} types".format(len(label_dict))) else: label_dict = data_dict return cls(args, data_dict, label_dict) def load_dataset(self, split, combine=False, **kwargs): """Load a given dataset split (e.g., train, valid, test).""" def get_path(key, split): return os.path.join(self.args.data, key, split) def make_dataset(key, dictionary): split_path = get_path(key, split) dataset = data_utils.load_indexed_dataset( split_path, dictionary, self.args.dataset_impl, combine=combine, ) return dataset input0 = make_dataset("input0", self.source_dictionary) assert input0 is not None, "could not find dataset: {}".format( get_path("input0", split) ) input1 = make_dataset("input1", self.source_dictionary) if self.args.init_token is not None: input0 = PrependTokenDataset(input0, self.args.init_token) if input1 is None: src_tokens = input0 else: if self.args.separator_token is not None: input1 = PrependTokenDataset(input1, self.args.separator_token) src_tokens = ConcatSentencesDataset(input0, input1) with data_utils.numpy_seed(self.args.seed): shuffle = np.random.permutation(len(src_tokens)) src_tokens = maybe_shorten_dataset( src_tokens, split, self.args.shorten_data_split_list, self.args.shorten_method, self.args.max_positions, self.args.seed, ) dataset = { "id": IdDataset(), "net_input": { "src_tokens": RightPadDataset( src_tokens, pad_idx=self.source_dictionary.pad(), ), "src_lengths": NumelDataset(src_tokens, reduce=False), }, "nsentences": NumSamplesDataset(), "ntokens": NumelDataset(src_tokens, reduce=True), } if self.args.add_prev_output_tokens: prev_tokens_dataset = RightPadDataset( RollDataset(src_tokens, 1), pad_idx=self.dictionary.pad(), ) dataset["net_input"].update( prev_output_tokens=prev_tokens_dataset, ) if not self.args.regression_target: label_dataset = make_dataset("label", self.label_dictionary) if label_dataset is not None: dataset.update( target=OffsetTokensDataset( StripTokenDataset( label_dataset, id_to_strip=self.label_dictionary.eos(), ), offset=-self.label_dictionary.nspecial, ) ) else: label_path = "{0}.label".format(get_path("label", split)) if os.path.exists(label_path): def parse_regression_target(i, line): values = line.split() assert ( len(values) == self.args.num_classes ), f'expected num_classes={self.args.num_classes} regression target values on line {i}, found: "{line}"' return [float(x) for x in values] with open(label_path) as h: dataset.update( target=RawLabelDataset( [ parse_regression_target(i, line.strip()) for i, line in enumerate(h.readlines()) ] ) ) nested_dataset = NestedDictionaryDataset( dataset, sizes=[src_tokens.sizes], ) if self.args.no_shuffle: dataset = nested_dataset else: dataset = SortDataset( nested_dataset, # shuffle sort_order=[shuffle], ) logger.info("Loaded {0} with #samples: {1}".format(split, len(dataset))) self.datasets[split] = dataset return self.datasets[split] def build_model(self, args): from fairseq import models model = models.build_model(args, self) model.register_classification_head( getattr(args, "classification_head_name", "sentence_classification_head"), num_classes=self.args.num_classes, ) return model def max_positions(self): return self._max_positions @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary @property def label_dictionary(self): return self._label_dictionary
data2vec_vision-main
deltalm/src/fairseq/tasks/sentence_prediction.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import itertools import logging import os from collections import OrderedDict import numpy as np from fairseq import tokenizer, utils from fairseq.data import ConcatDataset, Dictionary, TokenBlockDataset, data_utils from fairseq.data.legacy.masked_lm_dataset import MaskedLMDataset from fairseq.data.legacy.masked_lm_dictionary import MaskedLMDictionary from fairseq.data.multi_corpus_sampled_dataset import MultiCorpusSampledDataset from fairseq.tasks import LegacyFairseqTask, register_task logger = logging.getLogger(__name__) @register_task("cross_lingual_lm") class CrossLingualLMTask(LegacyFairseqTask): """ Task for training cross-lingual language models. For more details look at: https://arxiv.org/pdf/1901.07291.pdf Args: dictionary (Dictionary): the dictionary for the input of the task """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument( "data", help="colon separated path to data directories list, \ will be iterated upon during epochs in round-robin manner", ) parser.add_argument( "--tokens-per-sample", default=512, type=int, help="max number of total tokens over all segments" " per sample", ) parser.add_argument( "--monolingual-langs", default="en", type=str, help="comma separated list of languages for which we" " want to train XLM on", ) parser.add_argument( "--shuffle", action="store_true", help="shuffle each monolingual dataset while" " training", ) def __init__(self, args, dictionary): super().__init__(args) self.dictionary = dictionary self.seed = args.seed self.distributed_world_size = args.distributed_world_size self.langs2id = self._lang_to_id(args.monolingual_langs) def _lang_to_id(self, languages: str): """ Build a map from languages to ids. These ids are used as segment labels for cross-lingual LM training. """ lang2id = {} langs = [l.strip() for l in languages.split(",")] for id, lang in enumerate(langs): lang2id[lang] = id return lang2id @classmethod def load_dictionary(cls, filename): return MaskedLMDictionary.load(filename) @classmethod def build_dictionary( cls, filenames, workers=1, threshold=-1, nwords=-1, padding_factor=8 ): d = MaskedLMDictionary() for filename in filenames: Dictionary.add_file_to_dictionary( filename, d, tokenizer.tokenize_line, workers ) d.finalize(threshold=threshold, nwords=nwords, padding_factor=padding_factor) return d @property def target_dictionary(self): return self.dictionary @classmethod def setup_task(cls, args, **kwargs): """Setup the task.""" dictionary = MaskedLMDictionary.load(os.path.join(args.data, "dict.txt")) logger.info("dictionary: {} types".format(len(dictionary))) return cls(args, dictionary) def _load_single_lang_dataset(self, split, epoch): loaded_datasets = [] paths = utils.split_paths(self.args.data) assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] for k in itertools.count(): split_k = split + (str(k) if k > 0 else "") path = os.path.join(data_path, split_k) ds = data_utils.load_indexed_dataset( path, self.dictionary, self.args.dataset_impl ) if ds is None: if k > 0: break else: raise FileNotFoundError( "Dataset not found: {} ({})".format(split, data_path) ) # Since we append each block with the classification_token, # we need to effectively create blocks of length # tokens_per_sample-1 loaded_datasets.append( TokenBlockDataset( ds, ds.sizes, self.args.tokens_per_sample - 1, pad=self.dictionary.pad(), eos=self.dictionary.eos(), ) ) logger.info( "{} {} {} examples".format(data_path, split_k, len(loaded_datasets[-1])) ) if len(loaded_datasets) == 1: dataset = loaded_datasets[0] sizes = dataset.sizes else: dataset = ConcatDataset(loaded_datasets) sizes = np.concatenate([ds.sizes for ds in loaded_datasets]) return dataset, sizes def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ dataset_map = OrderedDict() for lang in self.langs2id.keys(): # Datasets are expected to be in "split.lang" format (Eg: train.en) language_split = "{}.{}".format(split, lang) block_dataset, sizes = self._load_single_lang_dataset( split=language_split, epoch=epoch ) dataset_map[lang] = MaskedLMDataset( dataset=block_dataset, sizes=sizes, vocab=self.dictionary, pad_idx=self.dictionary.pad(), mask_idx=self.dictionary.mask(), classif_token_idx=self.dictionary.eos(), sep_token_idx=self.dictionary.eos(), shuffle=getattr(self.args, "shuffle", False), has_pairs=False, segment_id=self.langs2id[lang], seed=self.seed, ) self.datasets[split] = MultiCorpusSampledDataset(dataset_map) logger.info( "{} {} {} examples".format( utils.split_paths(self.args.data)[epoch - 1], split, len(self.datasets[split]), ) )
data2vec_vision-main
deltalm/src/fairseq/tasks/cross_lingual_lm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq.data.legacy.masked_lm_dictionary import MaskedLMDictionary from fairseq.tasks.translation import TranslationTask from . import register_task @register_task("translation_from_pretrained_xlm") class TranslationFromPretrainedXLMTask(TranslationTask): """ Same as TranslationTask except use the MaskedLMDictionary class so that we can load data that was binarized with the MaskedLMDictionary class. This task should be used for the entire training pipeline when we want to train an NMT model from a pretrained XLM checkpoint: binarizing NMT data, training NMT with the pretrained XLM checkpoint, and subsequent evaluation of that trained model. """ @classmethod def load_dictionary(cls, filename): """Load the masked LM dictionary from the filename Args: filename (str): the filename """ return MaskedLMDictionary.load(filename)
data2vec_vision-main
deltalm/src/fairseq/tasks/translation_from_pretrained_xlm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import numpy as np from fairseq import utils from fairseq.data import ( Dictionary, IdDataset, MaskTokensDataset, NestedDictionaryDataset, NumelDataset, NumSamplesDataset, PrependTokenDataset, RightPadDataset, SortDataset, TokenBlockDataset, data_utils, ) from fairseq.data.encoders.utils import get_whole_word_mask from fairseq.data.shorten_dataset import maybe_shorten_dataset from fairseq.tasks import LegacyFairseqTask, register_task logger = logging.getLogger(__name__) @register_task("masked_lm") class MaskedLMTask(LegacyFairseqTask): """Task for training masked language models (e.g., BERT, RoBERTa).""" @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument( "data", help="colon separated path to data directories list, \ will be iterated upon during epochs in round-robin manner", ) parser.add_argument( "--sample-break-mode", default="complete", choices=["none", "complete", "complete_doc", "eos"], help='If omitted or "none", fills each sample with tokens-per-sample ' 'tokens. If set to "complete", splits samples only at the end ' "of sentence, but may include multiple sentences per sample. " '"complete_doc" is similar but respects doc boundaries. ' 'If set to "eos", includes only one sentence per sample.', ) parser.add_argument( "--tokens-per-sample", default=512, type=int, help="max number of total tokens over all segments " "per sample for BERT dataset", ) parser.add_argument( "--mask-prob", default=0.15, type=float, help="probability of replacing a token with mask", ) parser.add_argument( "--leave-unmasked-prob", default=0.1, type=float, help="probability that a masked token is unmasked", ) parser.add_argument( "--random-token-prob", default=0.1, type=float, help="probability of replacing a token with a random token", ) parser.add_argument( "--freq-weighted-replacement", default=False, action="store_true", help="sample random replacement words based on word frequencies", ) parser.add_argument( "--mask-whole-words", default=False, action="store_true", help="mask whole words; you may also want to set --bpe", ) parser.add_argument( "--mask-multiple-length", default=1, type=int, help="repeat the mask indices multiple times", ) parser.add_argument( "--mask-stdev", default=0.0, type=float, help="stdev of the mask length" ) parser.add_argument( "--shorten-method", default="none", choices=["none", "truncate", "random_crop"], help="if not none, shorten sequences that exceed --tokens-per-sample", ) parser.add_argument( "--shorten-data-split-list", default="", help="comma-separated list of dataset splits to apply shortening to, " 'e.g., "train,valid" (default: all dataset splits)', ) def __init__(self, args, dictionary): super().__init__(args) self.dictionary = dictionary self.seed = args.seed # add mask token self.mask_idx = dictionary.add_symbol("<mask>") @classmethod def setup_task(cls, args, **kwargs): paths = utils.split_paths(args.data) assert len(paths) > 0 dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt")) logger.info("dictionary: {} types".format(len(dictionary))) return cls(args, dictionary) def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ paths = utils.split_paths(self.args.data) assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] split_path = os.path.join(data_path, split) dataset = data_utils.load_indexed_dataset( split_path, self.source_dictionary, self.args.dataset_impl, combine=combine, ) if dataset is None: raise FileNotFoundError( "Dataset not found: {} ({})".format(split, split_path) ) dataset = maybe_shorten_dataset( dataset, split, self.args.shorten_data_split_list, self.args.shorten_method, self.args.tokens_per_sample, self.args.seed, ) # create continuous blocks of tokens dataset = TokenBlockDataset( dataset, dataset.sizes, self.args.tokens_per_sample - 1, # one less for <s> pad=self.source_dictionary.pad(), eos=self.source_dictionary.eos(), break_mode=self.args.sample_break_mode, ) logger.info("loaded {} blocks from: {}".format(len(dataset), split_path)) # prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT) dataset = PrependTokenDataset(dataset, self.source_dictionary.bos()) # create masked input and targets mask_whole_words = ( get_whole_word_mask(self.args, self.source_dictionary) if self.args.mask_whole_words else None ) src_dataset, tgt_dataset = MaskTokensDataset.apply_mask( dataset, self.source_dictionary, pad_idx=self.source_dictionary.pad(), mask_idx=self.mask_idx, seed=self.args.seed, mask_prob=self.args.mask_prob, leave_unmasked_prob=self.args.leave_unmasked_prob, random_token_prob=self.args.random_token_prob, freq_weighted_replacement=self.args.freq_weighted_replacement, mask_whole_words=mask_whole_words, mask_multiple_length=self.args.mask_multiple_length, mask_stdev=self.args.mask_stdev, ) with data_utils.numpy_seed(self.args.seed + epoch): shuffle = np.random.permutation(len(src_dataset)) self.datasets[split] = SortDataset( NestedDictionaryDataset( { "id": IdDataset(), "net_input": { "src_tokens": RightPadDataset( src_dataset, pad_idx=self.source_dictionary.pad(), ), "src_lengths": NumelDataset(src_dataset, reduce=False), }, "target": RightPadDataset( tgt_dataset, pad_idx=self.source_dictionary.pad(), ), "nsentences": NumSamplesDataset(), "ntokens": NumelDataset(src_dataset, reduce=True), }, sizes=[src_dataset.sizes], ), sort_order=[ shuffle, src_dataset.sizes, ], ) def build_dataset_for_inference(self, src_tokens, src_lengths, sort=True): src_dataset = RightPadDataset( TokenBlockDataset( src_tokens, src_lengths, self.args.tokens_per_sample - 1, # one less for <s> pad=self.source_dictionary.pad(), eos=self.source_dictionary.eos(), break_mode="eos", ), pad_idx=self.source_dictionary.pad(), ) src_dataset = PrependTokenDataset(src_dataset, self.source_dictionary.bos()) src_dataset = NestedDictionaryDataset( { "id": IdDataset(), "net_input": { "src_tokens": src_dataset, "src_lengths": NumelDataset(src_dataset, reduce=False), }, }, sizes=src_lengths, ) if sort: src_dataset = SortDataset(src_dataset, sort_order=[src_lengths]) return src_dataset @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary
data2vec_vision-main
deltalm/src/fairseq/tasks/masked_lm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import numpy as np from fairseq import utils from fairseq.data import ( ConcatSentencesDataset, Dictionary, IdDataset, NestedDictionaryDataset, NumelDataset, NumSamplesDataset, PrependTokenDataset, RawLabelDataset, RightPadDataset, SortDataset, TruncateDataset, data_utils, ) from fairseq.data.shorten_dataset import maybe_shorten_dataset from fairseq.tasks import LegacyFairseqTask, register_task logger = logging.getLogger(__name__) @register_task("sentence_ranking") class SentenceRankingTask(LegacyFairseqTask): """ Ranking task on multiple sentences. Args: dictionary (Dictionary): the dictionary for the input of the task """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument("data", metavar="FILE", help="file prefix for data") parser.add_argument( "--num-classes", type=int, help="number of sentences to be ranked" ) parser.add_argument( "--init-token", type=int, help="add token at the beginning of each batch item", ) parser.add_argument( "--separator-token", type=int, help="add separator token between inputs" ) parser.add_argument("--no-shuffle", action="store_true") parser.add_argument( "--shorten-method", default="none", choices=["none", "truncate", "random_crop"], help="if not none, shorten sequences that exceed --tokens-per-sample", ) parser.add_argument( "--shorten-data-split-list", default="", help="comma-separated list of dataset splits to apply shortening to, " 'e.g., "train,valid" (default: all dataset splits)', ) parser.add_argument( "--max-option-length", type=int, help="max length for each option" ) def __init__(self, args, dictionary): super().__init__(args) self.dictionary = dictionary @classmethod def load_dictionary(cls, args, filename, source=True): """Load the dictionary from the filename Args: filename (str): the filename """ dictionary = Dictionary.load(filename) dictionary.add_symbol("<mask>") return dictionary @classmethod def setup_task(cls, args, **kwargs): assert ( args.criterion == "sentence_ranking" ), "Must set --criterion=sentence_ranking" # load data dictionary data_dict = cls.load_dictionary( args, os.path.join(args.data, "input0", "dict.txt"), source=True, ) logger.info("[input] dictionary: {} types".format(len(data_dict))) return SentenceRankingTask(args, data_dict) def load_dataset(self, split, combine=False, **kwargs): """Load a given dataset split (e.g., train, valid, test).""" def get_path(type, split): return os.path.join(self.args.data, type, split) def make_dataset(type, dictionary): split_path = get_path(type, split) dataset = data_utils.load_indexed_dataset( split_path, self.source_dictionary, self.args.dataset_impl, combine=combine, ) return dataset input0 = make_dataset("input0", self.source_dictionary) input_options = [ make_dataset("input{idx}".format(idx=idx + 1), self.source_dictionary) for idx in range(self.args.num_classes) ] if self.args.separator_token is not None: input0 = PrependTokenDataset(input0, self.args.separator_token) src_tokens = [] for input_option in input_options: if self.args.init_token is not None: input_option = PrependTokenDataset(input_option, self.args.init_token) if self.args.max_option_length is not None: input_option = TruncateDataset( input_option, self.args.max_option_length ) src_token = ConcatSentencesDataset(input_option, input0) src_token = maybe_shorten_dataset( src_token, split, self.args.shorten_data_split_list, self.args.shorten_method, self.args.max_positions, self.args.seed, ) src_tokens.append(src_token) with data_utils.numpy_seed(self.args.seed): shuffle = np.random.permutation(len(src_tokens[0])) dataset = { "id": IdDataset(), "nsentences": NumSamplesDataset(), "ntokens": NumelDataset(src_tokens[0], reduce=True), } for src_token_idx in range(len(src_tokens)): dataset.update( { "net_input{idx}".format(idx=src_token_idx + 1): { "src_tokens": RightPadDataset( src_tokens[src_token_idx], pad_idx=self.source_dictionary.pad(), ), "src_lengths": NumelDataset( src_tokens[src_token_idx], reduce=False ), } } ) label_path = "{}.label".format(get_path("label", split)) if os.path.exists(label_path): with open(label_path) as h: dataset.update( target=RawLabelDataset([int(x.strip()) for x in h.readlines()]) ) nested_dataset = NestedDictionaryDataset( dataset, sizes=[np.maximum.reduce([src_token.sizes for src_token in src_tokens])], ) if self.args.no_shuffle: dataset = nested_dataset else: dataset = SortDataset( nested_dataset, # shuffle sort_order=[shuffle], ) logger.info("Loaded {0} with #samples: {1}".format(split, len(dataset))) self.datasets[split] = dataset return self.datasets[split] def build_model(self, args): from fairseq import models model = models.build_model(args, self) model.register_classification_head( getattr(args, "ranking_head_name", "sentence_classification_head"), num_classes=1, ) return model def max_positions(self): return self.args.max_positions @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary
data2vec_vision-main
deltalm/src/fairseq/tasks/sentence_ranking.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import datetime import logging import time import torch from fairseq.data import ( FairseqDataset, LanguagePairDataset, ListDataset, data_utils, iterators, ) from fairseq.data.multilingual.multilingual_data_manager import ( MultilingualDatasetManager, ) from fairseq.data.multilingual.sampling_method import SamplingMethod from fairseq.tasks import LegacyFairseqTask, register_task from fairseq.utils import FileContentsAction ### def get_time_gap(s, e): return ( datetime.datetime.fromtimestamp(e) - datetime.datetime.fromtimestamp(s) ).__str__() ### logger = logging.getLogger(__name__) @register_task("translation_multi_simple_epoch") class TranslationMultiSimpleEpochTask(LegacyFairseqTask): """ Translate from one (source) language to another (target) language. Args: langs (List[str]): a list of languages that are being supported dicts (Dict[str, fairseq.data.Dictionary]): mapping from supported languages to their dictionaries training (bool): whether the task should be configured for training or not .. note:: The translation task is compatible with :mod:`fairseq-train`, :mod:`fairseq-generate` and :mod:`fairseq-interactive`. The translation task provides the following additional command-line arguments: .. argparse:: :ref: fairseq.tasks.translation_parser :prog: """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" # fmt: off parser.add_argument('-s', '--source-lang', default=None, metavar='SRC', help='inference source language') parser.add_argument('-t', '--target-lang', default=None, metavar='TARGET', help='inference target language') parser.add_argument('--lang-pairs', default=None, metavar='PAIRS', help='comma-separated list of language pairs (in training order): en-de,en-fr,de-fr', action=FileContentsAction) parser.add_argument('--keep-inference-langtok', action='store_true', help='keep language tokens in inference output (e.g. for analysis or debugging)') parser.add_argument('--debug', action='store_true', help='') SamplingMethod.add_arguments(parser) MultilingualDatasetManager.add_args(parser) # fmt: on def __init__(self, args, langs, dicts, training): super().__init__(args) self.langs = langs self.dicts = dicts self.training = training if training: self.lang_pairs = args.lang_pairs else: self.lang_pairs = ["{}-{}".format(args.source_lang, args.target_lang)] # eval_lang_pairs for multilingual translation is usually all of the # lang_pairs. However for other multitask settings or when we want to # optimize for certain languages we want to use a different subset. Thus # the eval_lang_pairs class variable is provided for classes that extend # this class. self.eval_lang_pairs = self.lang_pairs # model_lang_pairs will be used to build encoder-decoder model pairs in # models.build_model(). This allows multitask type of sub-class can # build models other than the input lang_pairs self.model_lang_pairs = self.lang_pairs self.source_langs = [d.split("-")[0] for d in self.lang_pairs] self.target_langs = [d.split("-")[1] for d in self.lang_pairs] self.check_dicts(self.dicts, self.source_langs, self.target_langs) self.sampling_method = SamplingMethod.build_sampler(args, self) self.data_manager = MultilingualDatasetManager.setup_data_manager( args, self.lang_pairs, langs, dicts, self.sampling_method ) @classmethod def check_dicts(cls, dicts, source_langs, target_langs): src_dict = dicts[source_langs[0]] tgt_dict = dicts[target_langs[0]] for src_lang in source_langs: assert ( src_dict == dicts[src_lang] ), "Diffrent dictionary are specified for different source languages; " "TranslationMultiSimpleEpochTask only supports one shared dictionary across all source languages" for tgt_lang in target_langs: assert ( tgt_dict == dicts[tgt_lang] ), "Diffrent dictionary are specified for different target languages; " "TranslationMultiSimpleEpochTask only supports one shared dictionary across all target languages" @classmethod def setup_task(cls, args, **kwargs): langs, dicts, training = MultilingualDatasetManager.prepare( cls.load_dictionary, args, **kwargs ) return cls(args, langs, dicts, training) def has_sharded_data(self, split): return self.data_manager.has_sharded_data(split) def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ shard_epoch = epoch if split in self.datasets: dataset = self.datasets[split] if self.has_sharded_data(split): if self.args.virtual_epoch_size is not None: if dataset.load_next_shard: shard_epoch = dataset.shard_epoch else: # no need to load next shard so skip loading # also this avoid always loading from beginning of the data return else: shard_epoch = epoch else: # estimate the shard epoch from virtual data size and virtual epoch size shard_epoch = self.data_manager.estimate_global_pass_epoch(epoch) logger.info(f"loading data for {split} epoch={epoch}/{shard_epoch}") logger.info(f"mem usage: {data_utils.get_mem_usage()}") if split in self.datasets: del self.datasets[split] logger.info("old dataset deleted manually") logger.info(f"mem usage: {data_utils.get_mem_usage()}") self.datasets[split] = self.data_manager.load_dataset( split, self.training, epoch=epoch, combine=combine, shard_epoch=shard_epoch, **kwargs, ) def build_dataset_for_inference(self, src_tokens, src_lengths, constraints=None): if constraints is not None: raise NotImplementedError( "Constrained decoding with the multilingual_translation task is not supported" ) src_data = ListDataset(src_tokens, src_lengths) dataset = LanguagePairDataset(src_data, src_lengths, self.source_dictionary) src_langtok_spec, tgt_langtok_spec = self.args.langtoks["main"] if self.args.lang_tok_replacing_bos_eos: dataset = self.data_manager.alter_dataset_langtok( dataset, src_eos=self.source_dictionary.eos(), src_lang=self.args.source_lang, tgt_eos=self.target_dictionary.eos(), tgt_lang=self.args.target_lang, src_langtok_spec=src_langtok_spec, tgt_langtok_spec=tgt_langtok_spec, ) else: dataset.src = self.data_manager.src_dataset_tranform_func( self.args.source_lang, self.args.target_lang, dataset=dataset.src, spec=src_langtok_spec, ) return dataset def build_generator( self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None, ): if not getattr(args, "keep_inference_langtok", False): _, tgt_langtok_spec = self.args.langtoks["main"] if tgt_langtok_spec and self.args.target_lang is not None: tgt_lang_tok = self.data_manager.get_decoder_langtok( self.args.target_lang, tgt_langtok_spec ) extra_gen_cls_kwargs = extra_gen_cls_kwargs or {} extra_gen_cls_kwargs["symbols_to_strip_from_output"] = {tgt_lang_tok} else: #Added By JianYang to be compatible with handler3.py extra_gen_cls_kwargs = extra_gen_cls_kwargs or {} extra_gen_cls_kwargs["symbols_to_strip_from_output"] = set() for target_lang in self.target_langs: tgt_lang_tok = self.data_manager.get_decoder_langtok( target_lang, tgt_langtok_spec ) extra_gen_cls_kwargs["symbols_to_strip_from_output"].add(tgt_lang_tok) return super().build_generator( models, args, seq_gen_cls=None, extra_gen_cls_kwargs=extra_gen_cls_kwargs ) def build_model(self, args): args.lang_id = self.data_manager.lang_id return super().build_model(args) def train_step( self, sample, model, criterion, optimizer, update_num, ignore_grad=False, epoch=1 ): """ Do forward and backward, and return the loss as computed by *criterion* for the given *model* and *sample*. Args: sample (dict): the mini-batch. The format is defined by the :class:`~fairseq.data.FairseqDataset`. model (~fairseq.models.BaseFairseqModel): the model criterion (~fairseq.criterions.FairseqCriterion): the criterion optimizer (~fairseq.optim.FairseqOptimizer): the optimizer update_num (int): the current update ignore_grad (bool): multiply loss by 0 if this is set to True Returns: tuple: - the loss - the sample size, which is used as the denominator for the gradient - logging outputs to display while training """ model.train() model.set_num_updates(update_num) with torch.autograd.profiler.record_function("forward"): loss, sample_size, logging_output = criterion(model, sample, epoch=epoch) if ignore_grad: loss *= 0 with torch.autograd.profiler.record_function("backward"): optimizer.backward(loss) return loss, sample_size, logging_output def valid_step(self, sample, model, criterion): loss, sample_size, logging_output = super().valid_step(sample, model, criterion) # if "src_lang_id" in logging_output.keys() and "tgt_lang_id" in logging_output.keys(): # logging_output["src_lang"] = self.data_manager.lang_dict.symbols[logging_output["src_lang_id"]] # logging_output["tgt_lang"] = self.data_manager.lang_dict.symbols[logging_output["tgt_lang_id"]] # logging_output["lang_pair"] = "{}->{}".format(logging_output["src_lang"], logging_output["tgt_lang"]) # del logging_output["src_lang_id"] # del logging_output["tgt_lang_id"] return loss, sample_size, logging_output def inference_step( self, generator, models, sample, prefix_tokens=None, constraints=None ): with torch.no_grad(): _, tgt_langtok_spec = self.args.langtoks["main"] if not self.args.lang_tok_replacing_bos_eos: if prefix_tokens is None and tgt_langtok_spec: tgt_lang_tok = self.data_manager.get_decoder_langtok( self.args.target_lang, tgt_langtok_spec ) src_tokens = sample["net_input"]["src_tokens"] bsz = src_tokens.size(0) prefix_tokens = ( torch.LongTensor([[tgt_lang_tok]]).expand(bsz, 1).to(src_tokens) ) return generator.generate( models, sample, prefix_tokens=prefix_tokens, constraints=constraints, ) else: return generator.generate( models, sample, prefix_tokens=prefix_tokens, bos_token=self.data_manager.get_decoder_langtok( self.args.target_lang, tgt_langtok_spec ) if tgt_langtok_spec else self.target_dictionary.eos(), ) def reduce_metrics(self, logging_outputs, criterion): super().reduce_metrics(logging_outputs, criterion) def max_positions(self): """Return the max sentence length allowed by the task.""" return (self.args.max_source_positions, self.args.max_target_positions) @property def source_dictionary(self): return self.dicts[self.source_langs[0]] @property def target_dictionary(self): return self.dicts[self.target_langs[0]] def create_batch_sampler_func( self, max_positions, ignore_invalid_inputs, max_tokens, max_sentences, required_batch_size_multiple=1, seed=1, ): def construct_batch_sampler(dataset, epoch): splits = [ s for s, _ in self.datasets.items() if self.datasets[s] == dataset ] split = splits[0] if len(splits) > 0 else None # NEW implementation if epoch is not None: # initialize the dataset with the correct starting epoch dataset.set_epoch(epoch) # get indices ordered by example size start_time = time.time() logger.info(f"start batch sampler: mem usage: {data_utils.get_mem_usage()}") with data_utils.numpy_seed(seed): indices = dataset.ordered_indices() logger.info( f"[{split}] @batch_sampler order indices time: {get_time_gap(start_time, time.time())}" ) logger.info(f"mem usage: {data_utils.get_mem_usage()}") # filter examples that are too large if max_positions is not None: my_time = time.time() indices = self.filter_indices_by_size( indices, dataset, max_positions, ignore_invalid_inputs ) logger.info( f"[{split}] @batch_sampler filter_by_size time: {get_time_gap(my_time, time.time())}" ) logger.info(f"mem usage: {data_utils.get_mem_usage()}") # create mini-batches with given size constraints my_time = time.time() batch_sampler = dataset.batch_by_size( indices, max_tokens=max_tokens, max_sentences=max_sentences, required_batch_size_multiple=required_batch_size_multiple, ) logger.info( f"[{split}] @batch_sampler batch_by_size time: {get_time_gap(my_time, time.time())}" ) logger.info( f"[{split}] per epoch batch_sampler set-up time: {get_time_gap(start_time, time.time())}" ) logger.info(f"mem usage: {data_utils.get_mem_usage()}") return batch_sampler return construct_batch_sampler # we need to override get_batch_iterator because we want to reset the epoch iterator each time def get_batch_iterator( self, dataset, max_tokens=None, max_sentences=None, max_positions=None, ignore_invalid_inputs=False, required_batch_size_multiple=1, seed=1, num_shards=1, shard_id=0, num_workers=0, epoch=1, data_buffer_size=0, disable_iterator_cache=False, ): """ Get an iterator that yields batches of data from the given dataset. Args: dataset (~fairseq.data.FairseqDataset): dataset to batch max_tokens (int, optional): max number of tokens in each batch (default: None). max_sentences (int, optional): max number of sentences in each batch (default: None). max_positions (optional): max sentence length supported by the model (default: None). ignore_invalid_inputs (bool, optional): don't raise Exception for sentences that are too long (default: False). required_batch_size_multiple (int, optional): require batch size to be a multiple of N (default: 1). seed (int, optional): seed for random number generator for reproducibility (default: 1). num_shards (int, optional): shard the data iterator into N shards (default: 1). shard_id (int, optional): which shard of the data iterator to return (default: 0). num_workers (int, optional): how many subprocesses to use for data loading. 0 means the data will be loaded in the main process (default: 0). epoch (int, optional): the epoch to start the iterator from (default: 0). data_buffer_size (int, optional): number of batches to preload (default: 0). disable_iterator_cache (bool, optional): don't cache the EpochBatchIterator (ignores `FairseqTask::can_reuse_epoch_itr`) (default: False). Returns: ~fairseq.iterators.EpochBatchIterator: a batched iterator over the given dataset split """ # initialize the dataset with the correct starting epoch assert isinstance(dataset, FairseqDataset) if dataset in self.dataset_to_epoch_iter: return self.dataset_to_epoch_iter[dataset] if self.args.sampling_method == "RoundRobin": batch_iter = super().get_batch_iterator( dataset, max_tokens=max_tokens, max_sentences=max_sentences, max_positions=max_positions, ignore_invalid_inputs=ignore_invalid_inputs, required_batch_size_multiple=required_batch_size_multiple, seed=seed, num_shards=num_shards, shard_id=shard_id, num_workers=num_workers, epoch=epoch, data_buffer_size=data_buffer_size, disable_iterator_cache=disable_iterator_cache, ) self.dataset_to_epoch_iter[dataset] = batch_iter return batch_iter construct_batch_sampler = self.create_batch_sampler_func( max_positions, ignore_invalid_inputs, max_tokens, max_sentences, required_batch_size_multiple=required_batch_size_multiple, seed=seed, ) epoch_iter = iterators.EpochBatchIterator( dataset=dataset, collate_fn=dataset.collater, batch_sampler=construct_batch_sampler, seed=seed, num_shards=num_shards, shard_id=shard_id, num_workers=num_workers, epoch=epoch, ) return epoch_iter
data2vec_vision-main
deltalm/src/fairseq/tasks/translation_multi_simple_epoch.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import numpy as np import torch from fairseq import utils from fairseq.data import ( ConcatDataset, Dictionary, IdDataset, MaskTokensDataset, NestedDictionaryDataset, NumelDataset, NumSamplesDataset, PadDataset, PrependTokenDataset, RawLabelDataset, ResamplingDataset, SortDataset, TokenBlockDataset, data_utils, encoders, ) from fairseq.tasks import LegacyFairseqTask, register_task logger = logging.getLogger(__name__) @register_task("multilingual_masked_lm") class MultiLingualMaskedLMTask(LegacyFairseqTask): """Task for training masked language models (e.g., BERT, RoBERTa).""" @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument( "data", help="colon separated path to data directories list, \ will be iterated upon during epochs in round-robin manner", ) parser.add_argument( "--sample-break-mode", default="complete", choices=["none", "complete", "complete_doc", "eos"], help='If omitted or "none", fills each sample with tokens-per-sample ' 'tokens. If set to "complete", splits samples only at the end ' "of sentence, but may include multiple sentences per sample. " '"complete_doc" is similar but respects doc boundaries. ' 'If set to "eos", includes only one sentence per sample.', ) parser.add_argument( "--tokens-per-sample", default=512, type=int, help="max number of total tokens over all segments " "per sample for BERT dataset", ) parser.add_argument( "--mask-prob", default=0.15, type=float, help="probability of replacing a token with mask", ) parser.add_argument( "--leave-unmasked-prob", default=0.1, type=float, help="probability that a masked token is unmasked", ) parser.add_argument( "--random-token-prob", default=0.1, type=float, help="probability of replacing a token with a random token", ) parser.add_argument( "--freq-weighted-replacement", action="store_true", help="sample random replacement words based on word frequencies", ) parser.add_argument( "--mask-whole-words", default=False, action="store_true", help="mask whole words; you may also want to set --bpe", ) parser.add_argument( "--multilang-sampling-alpha", type=float, default=1.0, help="smoothing alpha for sample rations across multiple datasets", ) def __init__(self, args, dictionary): super().__init__(args) self.dictionary = dictionary self.seed = args.seed # add mask token self.mask_idx = dictionary.add_symbol("<mask>") @classmethod def setup_task(cls, args, **kwargs): paths = utils.split_paths(args.data) assert len(paths) > 0 dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt")) logger.info("dictionary: {} types".format(len(dictionary))) return cls(args, dictionary) def _get_whole_word_mask(self): # create masked input and targets if self.args.mask_whole_words: bpe = encoders.build_bpe(self.args) if bpe is not None: def is_beginning_of_word(i): if i < self.source_dictionary.nspecial: # special elements are always considered beginnings return True tok = self.source_dictionary[i] if tok.startswith("madeupword"): return True try: return bpe.is_beginning_of_word(tok) except ValueError: return True mask_whole_words = torch.ByteTensor( list(map(is_beginning_of_word, range(len(self.source_dictionary)))) ) else: mask_whole_words = None return mask_whole_words def _get_sample_prob(self, dataset_lens): """ Get smoothed sampling porbability by languages. This helps low resource languages by upsampling them. """ prob = dataset_lens / dataset_lens.sum() smoothed_prob = prob ** self.args.multilang_sampling_alpha smoothed_prob = smoothed_prob / smoothed_prob.sum() return smoothed_prob def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ paths = utils.split_paths(self.args.data) assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] languages = sorted( name for name in os.listdir(data_path) if os.path.isdir(os.path.join(data_path, name)) ) logger.info("Training on {0} languages: {1}".format(len(languages), languages)) logger.info( "Language to id mapping: ", {lang: id for id, lang in enumerate(languages)} ) mask_whole_words = self._get_whole_word_mask() lang_datasets = [] for lang_id, language in enumerate(languages): split_path = os.path.join(data_path, language, split) dataset = data_utils.load_indexed_dataset( split_path, self.source_dictionary, self.args.dataset_impl, combine=combine, ) if dataset is None: raise FileNotFoundError( "Dataset not found: {} ({})".format(split, split_path) ) # create continuous blocks of tokens dataset = TokenBlockDataset( dataset, dataset.sizes, self.args.tokens_per_sample - 1, # one less for <s> pad=self.source_dictionary.pad(), eos=self.source_dictionary.eos(), break_mode=self.args.sample_break_mode, ) logger.info("loaded {} blocks from: {}".format(len(dataset), split_path)) # prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT) dataset = PrependTokenDataset(dataset, self.source_dictionary.bos()) src_dataset, tgt_dataset = MaskTokensDataset.apply_mask( dataset, self.source_dictionary, pad_idx=self.source_dictionary.pad(), mask_idx=self.mask_idx, seed=self.args.seed, mask_prob=self.args.mask_prob, leave_unmasked_prob=self.args.leave_unmasked_prob, random_token_prob=self.args.random_token_prob, freq_weighted_replacement=self.args.freq_weighted_replacement, mask_whole_words=mask_whole_words, ) lang_dataset = NestedDictionaryDataset( { "net_input": { "src_tokens": PadDataset( src_dataset, pad_idx=self.source_dictionary.pad(), left_pad=False, ), "src_lengths": NumelDataset(src_dataset, reduce=False), }, "target": PadDataset( tgt_dataset, pad_idx=self.source_dictionary.pad(), left_pad=False, ), "nsentences": NumSamplesDataset(), "ntokens": NumelDataset(src_dataset, reduce=True), "lang_id": RawLabelDataset([lang_id] * src_dataset.sizes.shape[0]), }, sizes=[src_dataset.sizes], ) lang_datasets.append(lang_dataset) dataset_lengths = np.array( [len(d) for d in lang_datasets], dtype=float, ) logger.info( "loaded total {} blocks for all languages".format( dataset_lengths.sum(), ) ) if split == self.args.train_subset: # For train subset, additionally up or down sample languages. sample_probs = self._get_sample_prob(dataset_lengths) logger.info( "Sample probability by language: ", { lang: "{0:.4f}".format(sample_probs[id]) for id, lang in enumerate(languages) }, ) size_ratio = (sample_probs * dataset_lengths.sum()) / dataset_lengths logger.info( "Up/Down Sampling ratio by language: ", { lang: "{0:.2f}".format(size_ratio[id]) for id, lang in enumerate(languages) }, ) resampled_lang_datasets = [ ResamplingDataset( lang_datasets[i], size_ratio=size_ratio[i], seed=self.args.seed, epoch=epoch, replace=size_ratio[i] >= 1.0, ) for i, d in enumerate(lang_datasets) ] dataset = ConcatDataset(resampled_lang_datasets) else: dataset = ConcatDataset(lang_datasets) lang_splits = [split] for lang_id, lang_dataset in enumerate(lang_datasets): split_name = split + "_" + languages[lang_id] lang_splits.append(split_name) self.datasets[split_name] = lang_dataset # [TODO]: This is hacky for now to print validation ppl for each # language individually. Maybe need task API changes to allow it # in more generic ways. if split in self.args.valid_subset: self.args.valid_subset = self.args.valid_subset.replace( split, ",".join(lang_splits) ) with data_utils.numpy_seed(self.args.seed + epoch): shuffle = np.random.permutation(len(dataset)) self.datasets[split] = SortDataset( dataset, sort_order=[ shuffle, dataset.sizes, ], ) def build_dataset_for_inference(self, src_tokens, src_lengths, sort=True): src_dataset = PadDataset( TokenBlockDataset( src_tokens, src_lengths, self.args.tokens_per_sample - 1, # one less for <s> pad=self.source_dictionary.pad(), eos=self.source_dictionary.eos(), break_mode="eos", ), pad_idx=self.source_dictionary.pad(), left_pad=False, ) src_dataset = PrependTokenDataset(src_dataset, self.source_dictionary.bos()) src_dataset = NestedDictionaryDataset( { "id": IdDataset(), "net_input": { "src_tokens": src_dataset, "src_lengths": NumelDataset(src_dataset, reduce=False), }, }, sizes=src_lengths, ) if sort: src_dataset = SortDataset(src_dataset, sort_order=[src_lengths]) return src_dataset @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary
data2vec_vision-main
deltalm/src/fairseq/tasks/multilingual_masked_lm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
data2vec_vision-main
deltalm/src/fairseq/config/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections.abc import Collection from dataclasses import dataclass, field from typing import List import torch from fairseq.dataclass import FairseqDataclass from omegaconf import II, DictConfig from torch.optim.optimizer import Optimizer, required from . import FairseqOptimizer, register_optimizer @dataclass class FairseqNAGConfig(FairseqDataclass): momentum: float = field(default=0.99, metadata={"help": "momentum factor"}) weight_decay: float = field(default=0.0, metadata={"help": "weight decay"}) # TODO common vars in parent class lr: List[float] = II("optimization.lr") @register_optimizer("nag", dataclass=FairseqNAGConfig) class FairseqNAG(FairseqOptimizer): def __init__(self, cfg: DictConfig, params): super().__init__(cfg) self._optimizer = NAG(params, **self.optimizer_config) @property def optimizer_config(self): """ Return a kwarg dictionary that will be used to override optimizer args stored in checkpoints. This allows us to load a checkpoint and resume training using a different set of optimizer args, e.g., with a different learning rate. """ return { "lr": self.cfg.lr[0] if isinstance(self.cfg.lr, Collection) else self.cfg.lr, "momentum": self.cfg.momentum, "weight_decay": self.cfg.weight_decay, } class NAG(Optimizer): def __init__(self, params, lr=required, momentum=0, weight_decay=0): defaults = dict(lr=lr, lr_old=lr, momentum=momentum, weight_decay=weight_decay) super(NAG, self).__init__(params, defaults) @property def supports_memory_efficient_fp16(self): return True @property def supports_flat_params(self): return True def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: weight_decay = group["weight_decay"] momentum = group["momentum"] lr = group["lr"] lr_old = group.get("lr_old", lr) lr_correct = lr / lr_old if lr_old > 0 else lr for p in group["params"]: if p.grad is None: continue p_data_fp32 = p.data if p_data_fp32.dtype in {torch.float16, torch.bfloat16}: p_data_fp32 = p_data_fp32.float() d_p = p.grad.data.float() param_state = self.state[p] if "momentum_buffer" not in param_state: param_state["momentum_buffer"] = torch.zeros_like(d_p) else: param_state["momentum_buffer"] = param_state["momentum_buffer"].to( d_p ) buf = param_state["momentum_buffer"] if weight_decay != 0: p_data_fp32.mul_(1 - lr * weight_decay) p_data_fp32.add_(buf, alpha=momentum * momentum * lr_correct) p_data_fp32.add_(d_p, alpha=-(1 + momentum) * lr) buf.mul_(momentum * lr_correct).add_(d_p, alpha=-lr) if p.data.dtype in {torch.float16, torch.bfloat16}: p.data.copy_(p_data_fp32) group["lr_old"] = lr return loss
data2vec_vision-main
deltalm/src/fairseq/optim/nag.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import types import torch def get_fused_adam_class(): """ Look for the FusedAdam optimizer from apex. We first try to load the "contrib" interface, which is a bit faster than the main interface, but is technically deprecated. """ try: # The "deprecated" interface in recent versions of apex is a bit # faster than the main interface, since we don't use the apex # optimizer. This can be installed by passing the # `--deprecated_fused_adam` option when building apex. global fused_adam_cuda import importlib fused_adam_cuda = importlib.import_module("fused_adam_cuda") return FusedAdamV1 except ImportError: try: # fallback to the newer interface from apex.optimizers import FusedAdam as _FusedAdam # noqa from apex.multi_tensor_apply import multi_tensor_applier if multi_tensor_applier.available: return FusedAdamV2 except ImportError: pass return None class FusedAdamV1(torch.optim.Optimizer): """ Implements Adam algorithm. Currently GPU-only. Requires Apex to be installed via ``python setup.py install --cuda_ext --cpp_ext``. It has been proposed in `Adam: A Method for Stochastic Optimization`_. Compared to the original version in Apex, the fairseq version casts grads and params to FP32 internally to support ``--memory-efficient-fp16``. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups. lr (float, optional): learning rate. (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square. (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability. (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) NOT SUPPORTED in FusedAdam! eps_inside_sqrt (boolean, optional): in the 'update parameters' step, adds eps to the bias-corrected second moment estimate before evaluating square root instead of adding it to the square root of second moment estimate as in the original paper. (default: False) .. _Adam: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__( self, params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-8, eps_inside_sqrt=False, weight_decay=0.0, max_grad_norm=0.0, amsgrad=False, ): global fused_adam_cuda import importlib fused_adam_cuda = importlib.import_module("fused_adam_cuda") if amsgrad: raise RuntimeError("FusedAdam does not support the AMSGrad variant.") defaults = { "lr": lr, "bias_correction": bias_correction, "betas": betas, "eps": eps, "weight_decay": weight_decay, "max_grad_norm": max_grad_norm, } super().__init__(params, defaults) self.eps_mode = 0 if eps_inside_sqrt else 1 @property def supports_memory_efficient_fp16(self): return True @property def supports_flat_params(self): return True @property def supports_step_with_scale(self): return True def step(self, closure=None, grads=None, scale=1.0, grad_norms=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. grads (list of tensors, optional): weight gradient to use for the optimizer update. If gradients have type torch.half, parameters are expected to be in type torch.float. (default: None) output params (list of tensors, optional): A reduced precision copy of the updated weights written out in addition to the regular updated weights. Have to be of same type as gradients. (default: None) scale (float, optional): factor to divide gradient tensor values by before applying to weights. (default: 1) """ loss = None if closure is not None: loss = closure() if grads is None: grads_group = [None] * len(self.param_groups) # backward compatibility # assuming a list/generator of parameter means single group elif isinstance(grads, types.GeneratorType): grads_group = [grads] elif type(grads[0]) != list: grads_group = [grads] else: grads_group = grads if grad_norms is None: grad_norms = [None] * len(self.param_groups) for group, grads_this_group, grad_norm in zip( self.param_groups, grads_group, grad_norms ): if grads_this_group is None: grads_this_group = [None] * len(group["params"]) # compute combined scale factor for this group combined_scale = scale if group.get("max_grad_norm", 0) > 0: # norm is in fact norm*scale clip = ((grad_norm / scale) + 1e-6) / group["max_grad_norm"] if clip > 1: combined_scale = clip * scale bias_correction = 1 if group.get("bias_correction", 1) else 0 for p, grad in zip(group["params"], grads_this_group): # note: p.grad should not ever be set for correct # operation of mixed precision optimizer that sometimes # sends None gradients if p.grad is None and grad is None: continue if grad is None: grad = p.grad.data if grad.is_sparse: raise RuntimeError( "FusedAdam does not support sparse gradients, " "please consider SparseAdam instead" ) p_data_fp32 = p.data.float() state = self.state[p] # State initialization if len(state) == 0: state["step"] = 0 # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(p_data_fp32) # Exponential moving average of squared gradient values state["exp_avg_sq"] = torch.zeros_like(p_data_fp32) else: state["exp_avg"] = state["exp_avg"].to(p_data_fp32) state["exp_avg_sq"] = state["exp_avg_sq"].to(p_data_fp32) exp_avg = state["exp_avg"] exp_avg_sq = state["exp_avg_sq"] beta1, beta2 = group["betas"] state["step"] += 1 out_p = p.data with torch.cuda.device(p.device): fused_adam_cuda.adam( p_data_fp32, out_p, exp_avg, exp_avg_sq, grad, group["lr"], beta1, beta2, group["eps"], combined_scale, state["step"], self.eps_mode, bias_correction, group["weight_decay"], ) return loss try: from apex.optimizers import FusedAdam from apex.multi_tensor_apply import multi_tensor_applier class FusedAdamV2(FusedAdam): """ Compared to the original version in Apex, the fairseq version casts grads and params to FP32 internally to support ``--memory-efficient-fp16``. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if not hasattr(self, "multi_tensor_adam"): raise Exception( "Apex installation is outdated. Please install an updated version of apex." ) @property def supports_memory_efficient_fp16(self): return True @property def supports_flat_params(self): return True def step( self, closure=None, grads=None, output_params=None, scale=None, grad_norms=None, ): """Performs a single optimization step.""" loss = None if closure is not None: loss = closure() for group in self.param_groups: bias_correction = 1 if group["bias_correction"] else 0 beta1, beta2 = group["betas"] # assume same step across group now to simplify things # per parameter step can be easily support by making it tensor, or pass list into kernel if "step" in group: group["step"] += 1 else: group["step"] = 1 # create lists for multi-tensor apply g_16, p_16, orig_p_16, m_16, v_16 = [], [], [], [], [] g_32, p_32, m_32, v_32 = [], [], [], [] for p in group["params"]: if p.grad is None: continue if p.grad.data.is_sparse: raise RuntimeError( "FusedAdam does not support sparse gradients, " "please consider SparseAdam instead" ) state = self.state[p] # State initialization if len(state) == 0: # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(p.data, dtype=torch.float) # Exponential moving average of squared gradient values state["exp_avg_sq"] = torch.zeros_like( p.data, dtype=torch.float ) else: state["exp_avg"] = state["exp_avg"].to( device=p.data.device, dtype=torch.float ) state["exp_avg_sq"] = state["exp_avg_sq"].to( device=p.data.device, dtype=torch.float ) if p.dtype == torch.float16: g_16.append(p.grad.data.float()) p_16.append(p.data.float()) orig_p_16.append(p.data) m_16.append(state["exp_avg"]) v_16.append(state["exp_avg_sq"]) elif p.dtype == torch.float32: g_32.append(p.grad.data) p_32.append(p.data) m_32.append(state["exp_avg"]) v_32.append(state["exp_avg_sq"]) else: raise RuntimeError("FusedAdam only support fp16 and fp32.") with torch.cuda.device(p.device): if len(g_16) > 0: multi_tensor_applier( self.multi_tensor_adam, self._dummy_overflow_buf, [g_16, p_16, m_16, v_16], group["lr"], beta1, beta2, group["eps"], group["step"], self.adam_w_mode, bias_correction, group["weight_decay"], ) for orig_p, p in zip(orig_p_16, p_16): orig_p.copy_(p.data) if len(g_32) > 0: multi_tensor_applier( self.multi_tensor_adam, self._dummy_overflow_buf, [g_32, p_32, m_32, v_32], group["lr"], beta1, beta2, group["eps"], group["step"], self.adam_w_mode, bias_correction, group["weight_decay"], ) return loss except ImportError: pass
data2vec_vision-main
deltalm/src/fairseq/optim/fused_adam.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field import torch import torch.distributed as dist from fairseq.dataclass.configs import FairseqBMUFConfig from fairseq.dataclass.utils import gen_parser_from_dataclass from fairseq.optim.fairseq_optimizer import FairseqOptimizer class FairseqBMUF(FairseqOptimizer): """ Implements incremental block distributed data parallelism similar to https://ieeexplore.ieee.org/document/7472805 Paper title: Scalable training of deep learning machines by incremental block training with intra-block parallel optimization and blockwise model-update filtering """ def __init__(self, cfg: FairseqBMUFConfig, optimizer): super().__init__(cfg) self._optimizer = optimizer self._num_updates = 0 self.sync_iter = cfg.global_sync_iter self.block_momentum = cfg.block_momentum self.block_lr = cfg.block_lr self._reset_local_data() self.warmup_iteration = cfg.warmup_iterations self.use_nbm = cfg.use_nbm self.initial_state = self._optimizer.state_dict() self.average_sync = self.cfg.average_sync self.world_size = self.cfg.distributed_world_size @staticmethod def add_args(parser): """Add optimizer-specific arguments to the parser.""" gen_parser_from_dataclass(parser, FairseqBMUFConfig()) @property def optimizer(self): return self._optimizer.optimizer @property def optimizer_config(self): return self._optimizer.optimizer_config def get_lr(self): return self._optimizer.get_lr() def set_lr(self, lr): self._optimizer.set_lr(lr) def state_dict(self): return self._optimizer.state_dict() def load_state_dict(self, state_dict, optimizer_overrides=None): self._optimizer.load_state_dict(state_dict, optimizer_overrides) self.initial_state = self._optimizer.state_dict() def multiply_grads(self, c): """Multiplies grads by a constant *c*.""" self._optimizer.multiply_grads(c) def clip_grad_norm(self, max_norm, aggregate_norm_fn=None): """Clips gradient norm.""" return self._optimizer.clip_grad_norm(max_norm, aggregate_norm_fn) def average_params(self): self._optimizer.average_params() def _block_sync(self): if self.world_size <= 1: return # Update the global model using local models from all GPUs # (Step-1) Calculate grad between previously synced model and # currrent local model if self.block_momentum != 0: self._calc_grad() # (Step-2) Average gradient from all GPUs self._avg_grad_from_all_gpus() # (Step-3) Calculate global momentum and update the global model if self.block_momentum != 0: self._update_global_model() # (Step-4) Average local optimizer params if self.average_sync: self.average_params() def _is_warmup_end(self): # Check whether train iterations is equal to warmup iter if self.get_num_updates() == self.warmup_iteration: return True return False def _is_bmuf_iter(self): # Check whether train iterations is equal to bmuf sync iter if (self.get_num_updates() > self.warmup_iteration) and ( self.get_num_updates() % self.sync_iter == 0 ): return True return False def _warmup_sync(self, root_rank=0): if self.world_size <= 1: return # Broadcast the local model to all gpus for param in self.params: dist.broadcast(param.data, src=root_rank) # Update local optimizer state if self.average_sync: self._optimizer.average_params() else: self._optimizer.load_state_dict(self.initial_state) self._reset_local_data() def step(self, closure=None): """Performs a single optimization step.""" self._optimizer.step(closure) self.set_num_updates(self.get_num_updates() + 1) if self._is_warmup_end(): self._warmup_sync() elif self._is_bmuf_iter(): self._block_sync() def zero_grad(self): """Clears the gradients of all optimized parameters.""" self._optimizer.zero_grad() def get_num_updates(self): """Get the number of parameters updates.""" return self._num_updates def set_num_updates(self, num_updates): """Set the number of parameters updates.""" self._num_updates = num_updates @torch.no_grad() def _reset_local_data(self): # (Step-0) Initialize global momentum parameters and store global copy on each gpu self.global_params = [torch.zeros_like(p.data) for p in self.params] self.smoothed_grads = [p.data.new_zeros(p.data.size()) for p in self.params] self.grads = [p.data.new_zeros(p.data.size()) for p in self.params] # saving the global model locally for calculating gradient during bmuf sync for param, global_param in zip(self.params, self.global_params): global_param.copy_(param.data) @torch.no_grad() def _calc_grad(self): # global_params is basically the global copy from the previously finished # synchronisation. param.data is local parameter after block_sync_freq # for the local gpu. so grad is difference between previously synced # model and currrent local model. for index, (param, global_param) in enumerate( zip(self.params, self.global_params) ): self.grads[index] = global_param - param.data def _avg_grad_from_all_gpus(self): for index, param in enumerate(self.params): sync_para = param.data if self.block_momentum == 0 else self.grads[index] sync_para /= float(dist.get_world_size()) dist.all_reduce(sync_para, op=dist.ReduceOp.SUM) @torch.no_grad() def _update_global_model(self): for index, (param, global_param, smoothed_grad, grad) in enumerate( zip( self.params, self.global_params, self.smoothed_grads, # all gpus would share the same value of smoothed_grad, since it is # always computed on synchronized gradients. self.grads, ) ): # global_param is basically last syncrhornized parameter. though # smoothed_grad is local, all processes will have same value of # smoothed_grad and hence param is globally synchronized copy. # smoothed_grad(t) = BM * smoothed_grad(t-1) + BM_lr * grad(t) smoothed_grad = self.block_momentum * smoothed_grad + self.block_lr * grad param.data.copy_(global_param - smoothed_grad) # A Nesterov momentum here is to do a partial weight update before # calculating the gradient if self.use_nbm: param.data.copy_(param.data - self.block_momentum * smoothed_grad) # backup for the next synchronization. self.smoothed_grads[index] = smoothed_grad global_param.copy_(param.data)
data2vec_vision-main
deltalm/src/fairseq/optim/bmuf.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. class DynamicLossScaler(object): def __init__( self, init_scale=2.0 ** 15, scale_factor=2.0, scale_window=2000, tolerance=0.05, threshold=None, min_loss_scale=1e-4, ): self.loss_scale = init_scale self.scale_factor = scale_factor self.scale_window = scale_window self.tolerance = tolerance self.threshold = threshold self._iter = 0 self._last_overflow_iter = -1 self._last_rescale_iter = -1 self._overflows_since_rescale = 0 self.min_loss_scale = min_loss_scale def scale(self, outputs): return self.loss_scale * outputs def update(self): if (self._iter - self._last_overflow_iter) % self.scale_window == 0: self.loss_scale *= self.scale_factor self._last_rescale_iter = self._iter self._iter += 1 def _decrease_loss_scale(self): self.loss_scale /= self.scale_factor if self.threshold is not None: self.loss_scale = max(self.loss_scale, self.threshold) def check_overflow(self, grad_norm): # detect inf and nan if grad_norm == float("inf") or grad_norm != grad_norm: # overflow has occured prev_scale = self.loss_scale iter_since_rescale = self._iter - self._last_rescale_iter self._last_overflow_iter = self._iter self._overflows_since_rescale += 1 pct_overflow = self._overflows_since_rescale / float(iter_since_rescale) if pct_overflow >= self.tolerance: self._decrease_loss_scale() self._last_rescale_iter = self._iter self._overflows_since_rescale = 0 if self.loss_scale <= self.min_loss_scale: # Use FloatingPointError as an uncommon error that parent # functions can safely catch to stop training. self.loss_scale = prev_scale raise FloatingPointError( ( "Minimum loss scale reached ({}). Your loss is probably exploding. " "Try lowering the learning rate, using gradient clipping or " "increasing the batch size." ).format(self.min_loss_scale) ) self._iter += 1 raise OverflowError("setting loss scale to: " + str(self.loss_scale))
data2vec_vision-main
deltalm/src/fairseq/optim/dynamic_loss_scaler.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.optim from . import LegacyFairseqOptimizer, register_optimizer @register_optimizer("adafactor") class FairseqAdafactor(LegacyFairseqOptimizer): def __init__(self, args, params): super().__init__(args) self._optimizer = Adafactor(params, **self.optimizer_config) @staticmethod def add_args(parser): """Add optimizer-specific arguments to the parser.""" # fmt: off parser.add_argument('--adafactor-eps', default='(1e-30, 1e-3)', metavar="E", help='epsilons for Adafactor optimizer') parser.add_argument('--clip-threshold', type=float, default=1.0, metavar="C", help='threshold for clipping update root mean square') parser.add_argument('--decay-rate', type=float, default=-0.8, metavar="D", help='decay rate of the second moment estimator') parser.add_argument('--beta1', type=float, default=None, metavar="B", help='beta for first moment estimator. Optional') parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD', help='weight decay') parser.add_argument('--scale-parameter', action='store_true', help='scale learning rate by root mean square of parameter') parser.add_argument('--relative-step', action='store_true', help='set learning rate to inverse square root of timestep,' 'otherwise use external learning rate') parser.add_argument('--warmup-init', action='store_true', help='use relative step for warm-up learning rate schedule') # fmt: on @property def optimizer_config(self): """ Return a kwarg dictionary that will be used to override optimizer args stored in checkpoints. This allows us to load a checkpoint and resume training using a different set of optimizer args, e.g., with a different learning rate. Note : Convergence issues empirically observed with fp16 on. Might require search for appropriate configuration. """ return { "lr": self.args.lr[0], "eps": eval(self.args.adafactor_eps), "clip_threshold": self.args.clip_threshold, "decay_rate": self.args.decay_rate, "beta1": self.args.beta1, "weight_decay": self.args.weight_decay, "scale_parameter": self.args.scale_parameter, # defaults to False "relative_step": self.args.relative_step, # defaults to False "warmup_init": self.args.warmup_init, } class Adafactor(torch.optim.Optimizer): """Implements Adafactor algorithm. This implementation is based on: `Adafactor: Adaptive Learning Rates with Sublinear Memory Cost` (see https://arxiv.org/abs/1804.04235) Note that this optimizer internally adjusts the learning rate depending on the *scale_parameter*, *relative_step* and *warmup_init* options. To use a manual (external) learning rate schedule you should set `scale_parameter=False` and `relative_step=False`. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): external learning rate (default: None) eps (tuple[float, float]): regularization constans for square gradient and parameter scale respectively (default: (1e-30, 1e-3)) clip_threshold (float): threshold of root mean square of final gradient update (default: 1.0) decay_rate (float): coefficient used to compute running averages of square gradient (default: -0.8) beta1 (float): coefficient used for computing running averages of gradient (default: None) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) scale_parameter (bool): if True, learning rate is scaled by root mean square of parameter (default: True) relative_step (bool): if True, time-dependent learning rate is computed instead of external learning rate (default: True) warmup_init (bool): time-dependent learning rate computation depends on whether warm-up initialization is being used (default: False) """ def __init__( self, params, lr=None, eps=(1e-30, 1e-3), clip_threshold=1.0, decay_rate=-0.8, beta1=None, weight_decay=0.0, scale_parameter=True, relative_step=True, warmup_init=False, ): if lr is not None and relative_step: raise ValueError("Cannot combine manual lr and relative_step options") if warmup_init and not relative_step: raise ValueError("warmup_init requires relative_step=True") defaults = dict( lr=lr, eps=eps, clip_threshold=clip_threshold, decay_rate=decay_rate, beta1=beta1, weight_decay=weight_decay, scale_parameter=scale_parameter, relative_step=relative_step, warmup_init=warmup_init, ) super(Adafactor, self).__init__(params, defaults) @property def supports_memory_efficient_fp16(self): return True @property def supports_flat_params(self): return False def _get_lr(self, param_group, param_state): rel_step_sz = param_group["lr"] if param_group["relative_step"]: min_step = ( 1e-6 * param_state["step"] if param_group["warmup_init"] else 1e-2 ) rel_step_sz = min(min_step, 1.0 / math.sqrt(param_state["step"])) param_scale = 1.0 if param_group["scale_parameter"]: param_scale = max(param_group["eps"][1], param_state["RMS"]) return param_scale * rel_step_sz def _get_options(self, param_group, param_shape): factored = len(param_shape) >= 2 use_first_moment = param_group["beta1"] is not None return factored, use_first_moment def _rms(self, tensor): return tensor.norm(2) / (tensor.numel() ** 0.5) def _approx_sq_grad(self, exp_avg_sq_row, exp_avg_sq_col): r_factor = ( (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True)) .rsqrt_() .unsqueeze(-1) ) c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt() return torch.mul(r_factor, c_factor) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group["params"]: if p.grad is None: continue grad = p.grad.data if grad.dtype in {torch.float16, torch.bfloat16}: grad = grad.float() if grad.is_sparse: raise RuntimeError("Adafactor does not support sparse gradients.") state = self.state[p] grad_shape = grad.shape factored, use_first_moment = self._get_options(group, grad_shape) # State Initialization if len(state) == 0: state["step"] = 0 if use_first_moment: # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(grad) if factored: state["exp_avg_sq_row"] = torch.zeros(grad_shape[:-1]).to(grad) state["exp_avg_sq_col"] = torch.zeros( grad_shape[:-2] + grad_shape[-1:] ).to(grad) else: state["exp_avg_sq"] = torch.zeros_like(grad) state["RMS"] = 0 else: if use_first_moment: state["exp_avg"] = state["exp_avg"].to(grad) if factored: state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad) state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad) else: state["exp_avg_sq"] = state["exp_avg_sq"].to(grad) p_data_fp32 = p.data if p.data.dtype in {torch.float16, torch.bfloat16}: p_data_fp32 = p_data_fp32.float() state["step"] += 1 state["RMS"] = self._rms(p_data_fp32) group["lr"] = self._get_lr(group, state) beta2t = 1.0 - math.pow(state["step"], group["decay_rate"]) update = (grad ** 2) + group["eps"][0] if factored: exp_avg_sq_row = state["exp_avg_sq_row"] exp_avg_sq_col = state["exp_avg_sq_col"] exp_avg_sq_row.mul_(beta2t).add_( update.mean(dim=-1), alpha=1.0 - beta2t ) exp_avg_sq_col.mul_(beta2t).add_( update.mean(dim=-2), alpha=1.0 - beta2t ) # Approximation of exponential moving average of square of gradient update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col) update.mul_(grad) else: exp_avg_sq = state["exp_avg_sq"] exp_avg_sq.mul_(beta2t).add_(update, alpha=1.0 - beta2t) update = exp_avg_sq.rsqrt().mul_(grad) update.div_( (self._rms(update) / group["clip_threshold"]).clamp_(min=1.0) ) update.mul_(group["lr"]) if use_first_moment: exp_avg = state["exp_avg"] exp_avg.mul_(group["beta1"]).add_(update, alpha=1 - group["beta1"]) update = exp_avg if group["weight_decay"] != 0: p_data_fp32.add_( p_data_fp32, alpha=-group["weight_decay"] * group["lr"] ) p_data_fp32.add_(-update) if p.data.dtype in {torch.float16, torch.bfloat16}: p.data.copy_(p_data_fp32) return loss
data2vec_vision-main
deltalm/src/fairseq/optim/adafactor.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.optim from . import LegacyFairseqOptimizer, register_optimizer @register_optimizer("sgd") class SGD(LegacyFairseqOptimizer): def __init__(self, args, params): super().__init__(args) self._optimizer = torch.optim.SGD(params, **self.optimizer_config) @staticmethod def add_args(parser): """Add optimizer-specific arguments to the parser.""" # fmt: off parser.add_argument('--momentum', default=0.0, type=float, metavar='M', help='momentum factor') parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD', help='weight decay') # fmt: on @property def optimizer_config(self): """ Return a kwarg dictionary that will be used to override optimizer args stored in checkpoints. This allows us to load a checkpoint and resume training using a different set of optimizer args, e.g., with a different learning rate. """ return { "lr": self.args.lr[0], "momentum": self.args.momentum, "weight_decay": self.args.weight_decay, } @property def supports_flat_params(self): return True
data2vec_vision-main
deltalm/src/fairseq/optim/sgd.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from fairseq import utils from fairseq.dataclass.utils import gen_parser_from_dataclass class FairseqOptimizer(object): def __init__(self, cfg): super().__init__() self.cfg = cfg @classmethod def add_args(cls, parser): """Add optimizer-specific arguments to the parser.""" dc = getattr(cls, "__dataclass", None) if dc is not None: gen_parser_from_dataclass(parser, dc()) @property def optimizer(self): """Return a torch.optim.optimizer.Optimizer instance.""" if not hasattr(self, "_optimizer"): raise NotImplementedError if not isinstance(self._optimizer, torch.optim.Optimizer): raise ValueError("_optimizer must be an instance of torch.optim.Optimizer") return self._optimizer @optimizer.setter def optimizer(self, optimizer): """Reset optimizer instance.""" if not hasattr(self, "_optimizer"): raise NotImplementedError if not isinstance(self._optimizer, torch.optim.Optimizer): raise ValueError("_optimizer must be an instance of torch.optim.Optimizer") self._optimizer = optimizer @property def optimizer_config(self): """ Return a kwarg dictionary that will be used to override optimizer args stored in checkpoints. This allows us to load a checkpoint and resume training using a different set of optimizer args, e.g., with a different learning rate. """ raise NotImplementedError @property def params(self): """Return an iterable of the parameters held by the optimizer.""" for param_group in self.param_groups: for p in param_group["params"]: yield p @property def param_groups(self): return self.optimizer.param_groups def __getstate__(self): return self._optimizer.__getstate__() def get_lr(self): """Return the current learning rate.""" return self.param_groups[0]["lr"] def set_lr(self, lr): """Set the learning rate.""" for param_group in self.param_groups: param_group["lr"] = lr def state_dict(self): """Return the optimizer's state dict.""" return self.optimizer.state_dict() def load_state_dict(self, state_dict, optimizer_overrides=None): """Load an optimizer state dict. In general we should prefer the configuration of the existing optimizer instance (e.g., learning rate) over that found in the state_dict. This allows us to resume training from a checkpoint using a new set of optimizer args. """ self.optimizer.load_state_dict(state_dict) if optimizer_overrides is not None and len(optimizer_overrides) > 0: # override learning rate, momentum, etc. with latest values for group in self.param_groups: group.update(optimizer_overrides) def backward(self, loss): """Computes the sum of gradients of the given tensor w.r.t. graph leaves.""" loss.backward() def all_reduce_grads(self, module): """Manually all-reduce gradients (if required).""" if hasattr(module, "all_reduce_grads"): module.all_reduce_grads() def multiply_grads(self, c): """Multiplies grads by a constant *c*.""" for p in self.params: if p.grad is not None: p.grad.data.mul_(c) def clip_grad_norm(self, max_norm, aggregate_norm_fn=None): """Clips gradient norm.""" return utils.clip_grad_norm_(self.params, max_norm, aggregate_norm_fn) def step(self, closure=None, scale=1.0, groups=None): """Performs a single optimization step.""" if self.supports_step_with_scale: self.optimizer.step(closure, scale=scale) if self.supports_groups: self.optimizer.step(closure, scale=scale, groups=groups) else: self.optimizer.step(closure, scale=scale) else: if scale != 1.0: self.multiply_grads(1.0 / scale) if self.supports_groups: self.optimizer.step(closure, groups=groups) else: self.optimizer.step(closure) def zero_grad(self): """Clears the gradients of all optimized parameters.""" for p in self.params: p.grad = None self.optimizer.zero_grad() @property def supports_memory_efficient_fp16(self): if hasattr(self.optimizer, "supports_memory_efficient_fp16"): return self.optimizer.supports_memory_efficient_fp16 return False @property def supports_step_with_scale(self): if hasattr(self.optimizer, "supports_step_with_scale"): return self.optimizer.supports_step_with_scale return False @property def supports_groups(self): if hasattr(self.optimizer, "supports_groups"): return self.optimizer.supports_groups return False @property def supports_flat_params(self): """ Whether the optimizer supports collapsing of the model parameters/gradients into a single contiguous Tensor. """ if hasattr(self.optimizer, "supports_flat_params"): return self.optimizer.supports_flat_params return False def average_params(self): pass def broadcast_global_state_dict(self, state_dict): """ Broadcasts a global state dict to all ranks. Useful for optimizers that shard state between ranks. """ if hasattr(self.optimizer, "broadcast_global_state_dict"): return self.optimizer.broadcast_global_state_dict(state_dict) else: return state_dict class LegacyFairseqOptimizer(FairseqOptimizer): def __init__(self, args): self.args = args
data2vec_vision-main
deltalm/src/fairseq/optim/fairseq_optimizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """isort:skip_file""" import importlib import os from fairseq import registry from fairseq.optim.bmuf import FairseqBMUF # noqa from fairseq.optim.fairseq_optimizer import ( # noqa FairseqOptimizer, LegacyFairseqOptimizer, ) from fairseq.optim.fp16_optimizer import FP16Optimizer, MemoryEfficientFP16Optimizer from fairseq.optim.shard import shard_ from omegaconf import DictConfig __all__ = [ "FairseqOptimizer", "FP16Optimizer", "MemoryEfficientFP16Optimizer", "shard_", ] ( _build_optimizer, register_optimizer, OPTIMIZER_REGISTRY, OPTIMIZER_DATACLASS_REGISTRY, ) = registry.setup_registry("--optimizer", base_class=FairseqOptimizer, required=True) def build_optimizer(cfg: DictConfig, params, *extra_args, **extra_kwargs): if all(isinstance(p, dict) for p in params): params = [t for p in params for t in p.values()] params = list(filter(lambda p: p.requires_grad, params)) return _build_optimizer(cfg, params, *extra_args, **extra_kwargs) # automatically import any Python files in the optim/ directory for file in os.listdir(os.path.dirname(__file__)): if file.endswith(".py") and not file.startswith("_"): file_name = file[: file.find(".py")] importlib.import_module("fairseq.optim." + file_name)
data2vec_vision-main
deltalm/src/fairseq/optim/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.optim from . import LegacyFairseqOptimizer, register_optimizer @register_optimizer("adamax") class FairseqAdamax(LegacyFairseqOptimizer): def __init__(self, args, params): super().__init__(args) self._optimizer = Adamax(params, **self.optimizer_config) @staticmethod def add_args(parser): """Add optimizer-specific arguments to the parser.""" # fmt: off parser.add_argument('--adamax-betas', default='(0.9, 0.999)', metavar='B', help='betas for Adam optimizer') parser.add_argument('--adamax-eps', type=float, default=1e-8, metavar='D', help='epsilon for Adam optimizer') parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD', help='weight decay') parser.add_argument('--no-bias-correction', default=False, action='store_true', help='disable bias correction') # fmt: on @property def optimizer_config(self): """ Return a kwarg dictionary that will be used to override optimizer args stored in checkpoints. This allows us to load a checkpoint and resume training using a different set of optimizer args, e.g., with a different learning rate. """ return { "lr": self.args.lr[0], "betas": eval(self.args.adamax_betas), "eps": self.args.adamax_eps, "weight_decay": self.args.weight_decay, "bias_correction": not self.args.no_bias_correction, } class Adamax(torch.optim.Optimizer): """Implements Adamax algorithm (a variant of Adam based on infinity norm). It has been proposed in `Adam: A Method for Stochastic Optimization`__. Compared to the version in PyTorch, this version implements a fix for weight decay. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 2e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) bias_correction (bool, optional): enable bias correction (default: True) __ https://arxiv.org/abs/1412.6980 """ def __init__( self, params, lr=2e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, bias_correction=True, ): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) if not 0.0 <= weight_decay: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) defaults = dict( lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, bias_correction=bias_correction, ) super(Adamax, self).__init__(params, defaults) @property def supports_memory_efficient_fp16(self): return True @property def supports_flat_params(self): return True def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group["params"]: if p.grad is None: continue grad = p.grad.data.float() if grad.is_sparse: raise RuntimeError("Adamax does not support sparse gradients") p_data_fp32 = p.data if p.data.dtype in {torch.float16, torch.bfloat16}: p_data_fp32 = p_data_fp32.float() state = self.state[p] # State initialization if len(state) == 0: state["step"] = 0 state["exp_avg"] = torch.zeros_like(p_data_fp32) state["exp_inf"] = torch.zeros_like(p_data_fp32) else: state["exp_avg"] = state["exp_avg"].to(p_data_fp32) state["exp_inf"] = state["exp_inf"].to(p_data_fp32) exp_avg, exp_inf = state["exp_avg"], state["exp_inf"] beta1, beta2 = group["betas"] eps = group["eps"] state["step"] += 1 # Update biased first moment estimate. exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) # Update the exponentially weighted infinity norm. torch.max( exp_inf.mul_(beta2), grad.abs_(), out=exp_inf, ) step_size = group["lr"] if group["bias_correction"]: bias_correction = 1 - beta1 ** state["step"] step_size /= bias_correction if group["weight_decay"] != 0: p_data_fp32.add_( p_data_fp32, alpha=-group["weight_decay"] * group["lr"] ) p_data_fp32.addcdiv_(exp_avg, exp_inf.add(eps), value=-step_size) if p.data.dtype in {torch.float16, torch.bfloat16}: p.data.copy_(p_data_fp32) return loss
data2vec_vision-main
deltalm/src/fairseq/optim/adamax.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import defaultdict from itertools import chain import torch from fairseq import optim from omegaconf import DictConfig from .dynamic_loss_scaler import DynamicLossScaler class _FP16OptimizerMixin(object): def __init__(self, *args, **kwargs): # forward __init__ call to the next class in mro(method resolution order) super().__init__(*args, **kwargs) self._multiply_factor = 1.0 @property def has_flat_params(self): return torch.is_tensor(self.fp32_params) or ( isinstance(self.fp32_params, dict) and all(torch.is_tensor(t) for t in self.fp32_params.values()) ) @classmethod def build_fp32_params(cls, args, params, flatten=True): # create FP32 copy of parameters and grads if flatten: is_pipeline_parallel = getattr( args, "pipeline_model_parallel", False ) and getattr(args, "distributed_no_spawn", False) total_param_size = sum(p.data.numel() for p in params) devices = [torch.cuda.current_device()] if is_pipeline_parallel: devices = list(set(args.pipeline_devices)) fp32_params = {} for device in devices: if is_pipeline_parallel: device_param_size = sum( p.data.numel() for p in params if p.device.index == device ) device_params = [p for p in params if p.device.index == device] else: device_param_size = total_param_size device_params = params fp32_params[device] = ( device_params[0].new(0).float().new(device_param_size) ) offset = 0 for p in device_params: numel = p.data.numel() fp32_params[device][offset : offset + numel].copy_(p.data.view(-1)) offset += numel fp32_params[device] = torch.nn.Parameter(fp32_params[device]) fp32_params[device].grad = fp32_params[device].data.new( device_param_size ) return fp32_params else: fp32_params = [] for p in params: p32 = torch.nn.Parameter(p.data.float()) p32.grad = torch.zeros_like(p32.data) if hasattr(p, "param_group"): p32.param_group = p.param_group fp32_params.append(p32) return fp32_params def state_dict(self): """Return the optimizer's state dict.""" state_dict = self.fp32_optimizer.state_dict() if self.scaler is not None: state_dict["loss_scale"] = self.scaler.loss_scale return state_dict def load_state_dict(self, state_dict, optimizer_overrides=None): """Load an optimizer state dict. In general we should prefer the configuration of the existing optimizer instance (e.g., learning rate) over that found in the state_dict. This allows us to resume training from a checkpoint using a new set of optimizer args. """ if "loss_scale" in state_dict and self.scaler is not None: self.scaler.loss_scale = state_dict["loss_scale"] self.fp32_optimizer.load_state_dict(state_dict, optimizer_overrides) def backward(self, loss): """Computes the sum of gradients of the given tensor w.r.t. graph leaves. Compared to :func:`fairseq.optim.FairseqOptimizer.backward`, this function additionally dynamically scales the loss to avoid gradient underflow. """ if self.scaler is not None: loss = self.scaler.scale(loss) loss.backward() self._needs_sync = True def _sync_fp16_grads_to_fp32(self): if self._needs_sync: # copy FP16 grads to FP32 if self.has_flat_params: devices = list(self.fp32_params.keys()) device_params_dict = defaultdict(list) for p in self.fp16_params: if p.requires_grad: device_params_dict[p.device.index].append(p) for device in devices: device_params = device_params_dict[device] offset = 0 for p in device_params: grad_data = ( p.grad.data if p.grad is not None else p.data.new_zeros(p.data.shape) ) numel = grad_data.numel() self.fp32_params[device].grad.data[ offset : offset + numel ].copy_(grad_data.view(-1)) offset += numel else: for p, p32 in zip(self.fp16_params, self.fp32_params): if not p.requires_grad: continue if p.grad is not None: if p32.grad is None: p32.grad = p.grad.data.float() else: p32.grad.data.copy_(p.grad.data) else: p32.grad = torch.zeros_like(p.data, dtype=torch.float) self._needs_sync = False def _sync_fp32_params_to_fp16(self): # copy FP32 params back into FP16 model if self.has_flat_params: devices = list(self.fp32_params.keys()) device_params_dict = defaultdict(list) for p in self.fp16_params: device_params_dict[p.device.index].append(p) for device in devices: device_params = device_params_dict[device] offset = 0 for p in device_params: numel = p.data.numel() p.data.copy_( self.fp32_params[device] .data[offset : offset + numel] .view_as(p.data) ) offset += numel else: for p, p32 in zip(self.fp16_params, self.fp32_params): if not p.requires_grad: continue p.data.copy_(p32.data) def _unscale_grads(self): self._sync_fp16_grads_to_fp32() if ( # Skip the multiplication if it's a no-op (i.e., if _multiply_factor # is 1.0). At the same time, we want to avoid the device-to-host # transfer by comparing it to 1.0. Since _multiply_factor starts as # a Python float, we roughly assume that if it's a tensor then it's # probably not =1.0 anymore and we do the multiplication. Otherwise # we can safely check the value without a D2H transfer. torch.is_tensor(self._multiply_factor) or self._multiply_factor != 1.0 ): self.fp32_optimizer.multiply_grads(self._multiply_factor) self._multiply_factor = 1.0 def multiply_grads(self, c): """Multiplies grads by a constant ``c``.""" self._multiply_factor *= c def clip_grad_norm(self, max_norm, aggregate_norm_fn=None): """Clips gradient norm and updates dynamic loss scaler.""" self._sync_fp16_grads_to_fp32() grad_norm = self._multiply_factor * self.fp32_optimizer.clip_grad_norm( 0, aggregate_norm_fn ) if self.scaler is not None: if grad_norm > max_norm > 0.0: self._multiply_factor *= max_norm / grad_norm self.scaler.check_overflow(grad_norm) elif max_norm > 0.0: clip_coef = (max_norm / (grad_norm + 1e-6)).clamp_(max=1) self._multiply_factor *= clip_coef return grad_norm def step(self, closure=None, groups=None): """Performs a single optimization step.""" self._sync_fp16_grads_to_fp32() if getattr(self, "supports_step_with_scale", False): self.fp32_optimizer.step(closure, scale=(1.0 / self._multiply_factor), groups=groups) else: self._unscale_grads() self.fp32_optimizer.step(closure, groups=groups) if self.scaler is not None: self.scaler.update() self._sync_fp32_params_to_fp16() def zero_grad(self): """Clears the gradients of all optimized parameters.""" for p in self.fp16_params: p.grad = None if self.has_flat_params: if torch.is_tensor(self.fp32_params): self.fp32_params.grad.zero_() elif isinstance(self.fp32_params, dict): for fp32_params in self.fp32_params.values(): fp32_params.grad.zero_() else: raise RuntimeError("self.fp32_params must be a tensor or dict") else: for p32 in self.fp32_params: if p32.grad is not None: p32.grad.zero_() self._needs_sync = False if self.scaler is not None: self._multiply_factor = 1.0 / float(self.scaler.loss_scale) class FP16Optimizer(_FP16OptimizerMixin, optim.FairseqOptimizer): """ Wrap an *optimizer* to support FP16 (mixed precision) training. """ def __init__(self, cfg: DictConfig, params, fp32_optimizer, fp32_params, **kwargs): super().__init__(cfg.optimizer) self.fp16_params = params self.fp32_optimizer = fp32_optimizer self.fp32_params = fp32_params if getattr(cfg.common, "fp16_scale_window", None) is None: if len(cfg.optimization.update_freq) > 1: raise ValueError( "--fp16-scale-window must be given explicitly when using a " "custom --update-freq schedule" ) data_parallel_size = int( cfg.distributed_training.distributed_world_size / cfg.common.model_parallel_size ) scale_window = int( 2 ** 14 / data_parallel_size / cfg.optimization.update_freq[0] ) else: scale_window = cfg.common.fp16_scale_window if not getattr(cfg.common, "bf16", False): self.scaler = DynamicLossScaler( init_scale=cfg.common.fp16_init_scale, scale_window=scale_window, tolerance=cfg.common.fp16_scale_tolerance, threshold=cfg.common.threshold_loss_scale, min_loss_scale=cfg.common.min_loss_scale, ) else: # disable loss scaling for bfloat16 self.scaler = None @classmethod def build_optimizer(cls, cfg: DictConfig, params, **kwargs): """ Args: cfg (omegaconf.DictConfig): fairseq args params (iterable): iterable of parameters to optimize """ flatten = not getattr(cfg.common, "fp16_no_flatten_grads", False) if getattr(cfg.common, "bf16", False): flatten = False # mixed precision is faster on TPUs without flat grads fp32_params = cls.build_fp32_params(cfg.optimizer, params, flatten=flatten) if flatten: fp32_optimizer = optim.build_optimizer(cfg.optimizer, [fp32_params]) else: fp32_optimizer = optim.build_optimizer(cfg.optimizer, fp32_params) if flatten and not fp32_optimizer.supports_flat_params: raise RuntimeError( f"chosen optimizer {fp32_optimizer.__class__.__name__} does not support flat params, please set --fp16-no-flatten-grads" ) return cls(cfg, params, fp32_optimizer, fp32_params, **kwargs) @property def optimizer(self): return self.fp32_optimizer.optimizer @optimizer.setter def optimizer(self, optimizer): self.fp32_optimizer.optimizer = optimizer @property def lr_scheduler(self): return getattr(self.fp32_optimizer, "lr_scheduler", None) @property def optimizer_config(self): return self.fp32_optimizer.optimizer_config def get_lr(self): return self.fp32_optimizer.get_lr() def set_lr(self, lr): self.fp32_optimizer.set_lr(lr) def all_reduce_grads(self, module): self.fp32_optimizer.all_reduce_grads(module) class _MemoryEfficientFP16OptimizerMixin(object): def __init__(self, *args, **kwargs): # forward __init__ call to the next class in MRO (method resolution order) super().__init__(*args, **kwargs) self._multiply_factor = 1.0 @property def has_flat_params(self): return False def state_dict(self): """Return the optimizer's state dict.""" state_dict = self.wrapped_optimizer.state_dict() if self.scaler is not None: state_dict["loss_scale"] = self.scaler.loss_scale return state_dict def load_state_dict(self, state_dict, optimizer_overrides=None): """Load an optimizer state dict. In general we should prefer the configuration of the existing optimizer instance (e.g., learning rate) over that found in the state_dict. This allows us to resume training from a checkpoint using a new set of optimizer args. """ if "loss_scale" in state_dict and self.scaler is not None: self.scaler.loss_scale = state_dict["loss_scale"] self.wrapped_optimizer.load_state_dict(state_dict, optimizer_overrides) # Hack: PyTorch automatically casts the optimizer state to match the # type of the current parameters. But with --memory-efficient-fp16 the # params are FP16 while the optimizer state is FP32 and we don't want # to cast. A workaround is to manually copy back the original state # after the optimizer has been loaded. if not getattr(self.optimizer, "disable_mem_eff_fp16_loading_hack", False): groups = self.optimizer.param_groups saved_groups = state_dict["param_groups"] id_map = { old_id: p for old_id, p in zip( chain(*(g["params"] for g in saved_groups)), chain(*(g["params"] for g in groups)), ) } for k, v in state_dict["state"].items(): if k in id_map: param = id_map[k] self.optimizer.state[param] = v def backward(self, loss): """Computes the sum of gradients of the given tensor w.r.t. graph leaves. Compared to :func:`fairseq.optim.FairseqOptimizer.backward`, this function additionally dynamically scales the loss to avoid gradient underflow. """ if self.scaler is not None: loss = self.scaler.scale(loss) loss.backward() def _unscale_grads(self): if ( # Skip the multiplication if it's a no-op (i.e., if _multiply_factor # is 1.0). At the same time, we want to avoid the device-to-host # transfer by comparing it to 1.0. Since _multiply_factor starts as # a Python float, we roughly assume that if it's a tensor then it's # probably not =1.0 anymore and we do the multiplication. Otherwise # we can safely check the value without a D2H transfer. torch.is_tensor(self._multiply_factor) or self._multiply_factor != 1.0 ): self.wrapped_optimizer.multiply_grads(self._multiply_factor) self._multiply_factor = 1.0 def multiply_grads(self, c): """Multiplies grads by a constant *c*.""" self._multiply_factor *= c def clip_grad_norm(self, max_norm, aggregate_norm_fn=None): """Clips gradient norm and updates dynamic loss scaler.""" max_norm = float(max_norm) grad_norm = self._multiply_factor * self.wrapped_optimizer.clip_grad_norm( 0, aggregate_norm_fn ) if self.scaler is not None: grad_norm_cpu = float(grad_norm) if grad_norm_cpu > max_norm > 0.0: self._multiply_factor *= max_norm / grad_norm_cpu # detect overflow and adjust loss scale self.scaler.check_overflow(grad_norm_cpu) elif max_norm > 0.0: clip_coef = (max_norm / (grad_norm + 1e-6)).clamp_(max=1) self._multiply_factor *= clip_coef return grad_norm def step(self, closure=None, groups=None): """Performs a single optimization step.""" if getattr(self, "supports_step_with_scale", False): # NOTE(msb) optimizer divides by scale factor self.wrapped_optimizer.step(closure, scale=(1.0 / self._multiply_factor), groups=groups) else: self._unscale_grads() self.wrapped_optimizer.step(closure, groups=groups) if self.scaler is not None: self.scaler.update() def zero_grad(self): """Clears the gradients of all optimized parameters.""" self.wrapped_optimizer.zero_grad() if self.scaler is not None: self._multiply_factor = 1.0 / float(self.scaler.loss_scale) else: self._multiply_factor = 1.0 class MemoryEfficientFP16Optimizer( _MemoryEfficientFP16OptimizerMixin, optim.FairseqOptimizer ): """ Wrap an *optimizer* to support FP16 (mixed precision) training. Compared to :class:`fairseq.optim.FP16Optimizer`, this version does not maintain an FP32 copy of the model. We instead expect the optimizer to convert the gradients to FP32 internally and sync the results back to the FP16 model params. This significantly reduces memory usage but slightly increases the time spent in the optimizer. Since this wrapper depends on specific functionality in the wrapped optimizer (i.e., on-the-fly conversion of grads to FP32), only certain optimizers can be wrapped. This is determined by the *supports_memory_efficient_fp16* property. """ def __init__(self, cfg: DictConfig, params, optimizer, **kwargs): if not optimizer.supports_memory_efficient_fp16: raise ValueError( "Unsupported optimizer: {}".format(optimizer.__class__.__name__) ) super().__init__(cfg.optimizer) self.wrapped_optimizer = optimizer if getattr(cfg.common, "fp16_scale_window", None) is None: if len(cfg.optimization.update_freq) > 1: raise ValueError( "--fp16-scale-window must be given explicitly when using a " "custom --update-freq schedule" ) data_parallel_size = int( cfg.distributed_training.distributed_world_size / cfg.common.model_parallel_size ) scale_window = ( 2 ** 14 / data_parallel_size / cfg.optimization.update_freq[0] ) else: scale_window = cfg.common.fp16_scale_window if not getattr(cfg.common, "bf16", False): self.scaler = DynamicLossScaler( init_scale=cfg.common.fp16_init_scale, scale_window=scale_window, tolerance=cfg.common.fp16_scale_tolerance, threshold=cfg.common.threshold_loss_scale, min_loss_scale=cfg.common.min_loss_scale, ) else: # disable loss scaling for bfloat16 self.scaler = None @classmethod def build_optimizer(cls, cfg: DictConfig, params, **kwargs): """ Args: args (argparse.Namespace): fairseq args params (iterable): iterable of parameters to optimize """ fp16_optimizer = optim.build_optimizer(cfg.optimizer, params) return cls(cfg, params, fp16_optimizer, **kwargs) @property def optimizer(self): return self.wrapped_optimizer.optimizer @optimizer.setter def optimizer(self, optimizer): self.wrapped_optimizer.optimizer = optimizer @property def optimizer_config(self): return self.wrapped_optimizer.optimizer_config @property def lr_scheduler(self): return getattr(self.wrapped_optimizer, "lr_scheduler", None) def get_lr(self): return self.wrapped_optimizer.get_lr() def set_lr(self, lr): self.wrapped_optimizer.set_lr(lr) def all_reduce_grads(self, module): self.wrapped_optimizer.all_reduce_grads(module)
data2vec_vision-main
deltalm/src/fairseq/optim/fp16_optimizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.optim from . import LegacyFairseqOptimizer, register_optimizer @register_optimizer("adagrad") class Adagrad(LegacyFairseqOptimizer): def __init__(self, args, params): super().__init__(args) self._optimizer = torch.optim.Adagrad(params, **self.optimizer_config) @staticmethod def add_args(parser): """Add optimizer-specific arguments to the parser.""" # fmt: off parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD', help='weight decay') # fmt: on @property def optimizer_config(self): """ Return a kwarg dictionary that will be used to override optimizer args stored in checkpoints. This allows us to load a checkpoint and resume training using a different set of optimizer args, e.g., with a different learning rate. """ return { "lr": self.args.lr[0], "weight_decay": self.args.weight_decay, } @property def supports_flat_params(self): return True
data2vec_vision-main
deltalm/src/fairseq/optim/adagrad.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Dict import torch try: from fairscale.optim import OSS, utils _has_fairscale = True except ImportError: _has_fairscale = False def shard_(optimizer, group): if not _has_fairscale: raise ImportError( "\n\nPlease install the fairscale package:" "\n\n pip install fairscale" ) class FairseqOSS(OSS): @property def disable_mem_eff_fp16_loading_hack(self): return True def __getattr__(self, name): if name.startswith("supports") and hasattr(self.optim, name): return getattr(self.optim, name) raise AttributeError( "'FairseqOSS' object has no attribute {0!r}".format(name) ) def broadcast_global_state_dict( self, state_dict: Dict[str, Any] ) -> Dict[str, Any]: """ Broadcasts the relevant parts of a global state dict from rank 0 to all other ranks. """ if self.rank == 0: # Create template state dict for all other keys not related to sharding template_state_dict = { key: state_dict[key] for key in state_dict if key not in ("param_groups", "state") } template_state_dict["local_state_dict"] = True for dst_rank in range(self.world_size): # Get the dst_rank's param_groups shard send_state = { "param_groups": state_dict["param_groups"][ state_dict["partition"][dst_rank][0] : state_dict[ "partition" ][dst_rank][1] ], "state": state_dict["state"][dst_rank], } send_state.update(template_state_dict) if dst_rank == 0: recv_state = send_state else: utils.broadcast_object( send_state, src_rank=0, group=self.group, dist_device=self._device, ) else: empty_buffer = torch.tensor([0], dtype=torch.uint8, device=self._device) for dst_rank in range(1, self.world_size): state = utils.broadcast_object( empty_buffer, src_rank=0, group=self.group, dist_device=self._device, ) if dst_rank == self.rank: recv_state = state return recv_state torch_optimizer = optimizer.optimizer optim_cls = type(torch_optimizer) optimizer.optimizer = FairseqOSS( torch_optimizer.param_groups, optim_cls, group=group, **optimizer.optimizer_config )
data2vec_vision-main
deltalm/src/fairseq/optim/shard.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import math from collections.abc import Collection from dataclasses import dataclass, field from typing import List import torch import torch.distributed as dist import torch.optim from fairseq.dataclass import FairseqDataclass from fairseq.optim import FairseqOptimizer, register_optimizer from fairseq.optim.fused_adam import get_fused_adam_class from omegaconf import II, DictConfig logger = logging.getLogger(__name__) @dataclass class FairseqAdamConfig(FairseqDataclass): adam_betas: str = field( default="(0.9, 0.999)", metadata={"help": "betas for Adam optimizer"} ) adam_eps: float = field( default=1e-8, metadata={"help": "epsilon for Adam optimizer"} ) weight_decay: float = field(default=0.0, metadata={"help": "weight decay"}) use_old_adam: bool = field( default=False, metadata={"help": "Use fairseq.optim.adam.Adam"} ) # TODO common vars below in parent tpu: bool = II("common.tpu") lr: List[float] = II("optimization.lr") @register_optimizer("adam", dataclass=FairseqAdamConfig) class FairseqAdam(FairseqOptimizer): """Adam optimizer for fairseq. Important note: this optimizer corresponds to the "AdamW" variant of Adam in its weight decay behavior. As such, it is most closely analogous to torch.optim.AdamW from PyTorch. """ def __init__(self, cfg: DictConfig, params): super().__init__(cfg) fused_adam_cls = get_fused_adam_class() use_fused_adam = ( not getattr(cfg, "use_old_adam", False) and fused_adam_cls is not None and torch.cuda.is_available() ) if getattr(cfg, "tpu", False): # on TPUs we use the Adam defined here, since it # automatically casts gradients to FP32 self._optimizer = Adam(params, **self.optimizer_config) elif use_fused_adam: logger.info("using FusedAdam") self._optimizer = fused_adam_cls(params, **self.optimizer_config) else: self._optimizer = Adam(params, **self.optimizer_config) @property def optimizer_config(self): """ Return a kwarg dictionary that will be used to override optimizer args stored in checkpoints. This allows us to load a checkpoint and resume training using a different set of optimizer args, e.g., with a different learning rate. """ return { "lr": self.cfg.lr[0] if isinstance(self.cfg.lr, Collection) else self.cfg.lr, "betas": eval(self.cfg.adam_betas), "eps": self.cfg.adam_eps, "weight_decay": self.cfg.weight_decay, } def average_params(self): """Reduce Params is only used during BMUF distributed training.""" state_dict = self.optimizer.state_dict() total_gpus = float(dist.get_world_size()) for _, value in state_dict["state"].items(): value["exp_avg"] /= total_gpus value["exp_avg_sq"] /= total_gpus dist.all_reduce(value["exp_avg"], op=dist.ReduceOp.SUM) dist.all_reduce(value["exp_avg_sq"], op=dist.ReduceOp.SUM) class Adam(torch.optim.Optimizer): r"""Implements Adam algorithm. This implementation is modified from torch.optim.Adam based on: `Fixed Weight Decay Regularization in Adam` (see https://arxiv.org/abs/1711.05101) It has been proposed in `Adam: A Method for Stochastic Optimization`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ .. _Adam\: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__( self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, ): defaults = dict( lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad ) super(Adam, self).__init__(params, defaults) @property def supports_memory_efficient_fp16(self): return True @property def supports_flat_params(self): return True def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group["params"]: if p.grad is None: continue grad = p.grad.data if grad.dtype in {torch.float16, torch.bfloat16}: grad = grad.float() if grad.is_sparse: raise RuntimeError( "Adam does not support sparse gradients, please consider SparseAdam instead" ) amsgrad = group.get("amsgrad", False) p_data_fp32 = p.data if p.data.dtype in {torch.float16, torch.bfloat16}: p_data_fp32 = p_data_fp32.float() state = self.state[p] # State initialization if len(state) == 0: state["step"] = 0 # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(p_data_fp32) # Exponential moving average of squared gradient values state["exp_avg_sq"] = torch.zeros_like(p_data_fp32) if amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values state["max_exp_avg_sq"] = torch.zeros_like(p_data_fp32) else: state["exp_avg"] = state["exp_avg"].to(p_data_fp32) state["exp_avg_sq"] = state["exp_avg_sq"].to(p_data_fp32) if amsgrad: state["max_exp_avg_sq"] = state["max_exp_avg_sq"].to( p_data_fp32 ) exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] if amsgrad: max_exp_avg_sq = state["max_exp_avg_sq"] beta1, beta2 = group["betas"] state["step"] += 1 # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) if amsgrad: # Maintains the maximum of all 2nd moment running avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = max_exp_avg_sq.sqrt().add_(group["eps"]) else: denom = exp_avg_sq.sqrt().add_(group["eps"]) bias_correction1 = 1 - beta1 ** state["step"] bias_correction2 = 1 - beta2 ** state["step"] step_size = group["lr"] * math.sqrt(bias_correction2) / bias_correction1 if group["weight_decay"] != 0: p_data_fp32.add_( p_data_fp32, alpha=-group["weight_decay"] * group["lr"] ) p_data_fp32.addcdiv_(exp_avg, denom, value=-step_size) if p.data.dtype in {torch.float16, torch.bfloat16}: p.data.copy_(p_data_fp32) return loss
data2vec_vision-main
deltalm/src/fairseq/optim/adam.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from collections import defaultdict from dataclasses import dataclass, field from typing import Dict, Any, List, Optional import torch.optim from fairseq.dataclass import FairseqDataclass from fairseq.optim import FairseqOptimizer, register_optimizer, _build_optimizer from fairseq.optim.lr_scheduler import FairseqLRScheduler, build_lr_scheduler from omegaconf import II, open_dict logger = logging.getLogger(__name__) @dataclass class OptimizerAndSchedulerConfig(FairseqDataclass): optimizer: Any = None lr_scheduler: Optional[Any] = None lr: List[float] = II("optimization.lr") @dataclass class CompositeOptimizerConfig(FairseqDataclass): groups: Dict[str, OptimizerAndSchedulerConfig] = field( default_factory=lambda: {}, metadata={ "help": "optimizer name -> optimizer OptimizerAndSchedulerConfig. " "Configures a different optimizer and (optionally) lr scheduler for each parameter group" }, ) @register_optimizer("composite", dataclass=CompositeOptimizerConfig) class FairseqCompositeOptimizer(FairseqOptimizer): optimizers: Dict[str, FairseqOptimizer] = {} lr_schedulers: Dict[str, FairseqLRScheduler] = {} lr_scheduler: FairseqLRScheduler = None _optimizer: torch.optim.Optimizer def __init__(self, cfg: CompositeOptimizerConfig, params): super().__init__(cfg) assert ( len(params) > 1 ), "Composite optimizer only works when there are multiple parameter groups (try fp16_no_flatten_grads: true)" groupped_params = defaultdict(list) for p in params: group = getattr(p, "param_group", "default") groupped_params[group].append(p) assert groupped_params.keys() == cfg.groups.keys(), ( f"Parameter groups {groupped_params.keys()} and optimizer groups {cfg.groups.keys()} are not the same! " "Try setting 'param_group' on your parameters in the model." ) for group, group_params in groupped_params.items(): group_cfg = cfg.groups[group] with open_dict(group_cfg): group_cfg.optimizer.lr = group_cfg.lr group_cfg.lr_scheduler.lr = group_cfg.lr self.optimizers[group] = _build_optimizer(group_cfg.optimizer, group_params) if group_cfg.lr_scheduler is not None: self.lr_schedulers[group] = build_lr_scheduler( group_cfg.lr_scheduler, self.optimizers[group] ) if len(self.lr_schedulers) > 0: assert len(self.lr_schedulers) == len(self.optimizers), ( f"Please provide an lr scheduler for each optimizer to use pass_through scheduler. " f"Optimizers: {self.optimizers}; Lr scheds: {self.lr_schedulers}" ) self.lr_scheduler = CompositeLRScheduler(self.lr_schedulers) self._optimizer = CompositeOptimizer(self.optimizers) @property def supports_groups(self): return True @property def param_groups(self): for opt in self.optimizers.values(): for group in opt.param_groups: yield group def get_lr(self): """Return the current learning rate.""" k = ( "default" if "default" in self.optimizers else next(iter(self.optimizers.keys())) ) return self.optimizers[k].param_groups[0]["lr"] def state_dict(self): """Return the LR scheduler state dict.""" return {k: s.state_dict() for k, s in self.optimizers.items()} def load_state_dict(self, state_dict, optimizer_overrides=None): """Load an LR scheduler state dict.""" for k, state in state_dict.items(): if k not in self.optimizers: # skip extra keys like "loss_scale" added by fp16 optimizer continue overrides = ( optimizer_overrides[k] if isinstance(optimizer_overrides, dict) and k in optimizer_overrides else None ) self.optimizers[k].load_state_dict(state, optimizer_overrides=overrides) class CompositeOptimizer(torch.optim.Optimizer): def __init__(self, optimizers: Dict[str, FairseqOptimizer]): self.optimizers = optimizers @property def supports_memory_efficient_fp16(self): return all(o.supports_memory_efficient_fp16 for o in self.optimizers.values()) @property def supports_flat_params(self): return all(o.supports_flat_params for o in self.optimizers.values()) def step(self, closure=None, groups=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for k, opt in self.optimizers.items(): if groups is None or k in groups: opt.step() return loss def zero_grad(self): for opt in self.optimizers.values(): opt.zero_grad() class CompositeLRScheduler(FairseqLRScheduler): def __init__(self, lr_schedulers): super().__init__(None, None) self.lr_schedulers = lr_schedulers def state_dict(self): """Return the LR scheduler state dict.""" return {k: s.state_dict() for k, s in self.lr_schedulers.items()} def load_state_dict(self, state_dict): """Load an LR scheduler state dict.""" for k, state in state_dict.items(): self.lr_schedulers[k].load_state_dict(state) def step_begin_epoch(self, epoch): """Update the learning rate at the beginning of the given epoch.""" for s in self.lr_schedulers.values(): s.step_begin_epoch(epoch) def step(self, epoch, val_loss=None): """Update the learning rate at the end of the given epoch.""" for s in self.lr_schedulers.values(): s.step(epoch) def step_update(self, num_updates): """Update the learning rate after each update.""" return {k: s.step_update(num_updates) for k, s in self.lr_schedulers.items()}
data2vec_vision-main
deltalm/src/fairseq/optim/composite.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq.optim import LegacyFairseqOptimizer, register_optimizer @register_optimizer("lamb") class FairseqLAMB(LegacyFairseqOptimizer): """LAMB optimizer.""" def __init__(self, args, params): super().__init__(args) try: from apex.optimizers import FusedLAMB self._optimizer = FusedLAMB(params, **self.optimizer_config) except ImportError: raise ImportError("Please install apex to use LAMB optimizer") @staticmethod def add_args(parser): """Add optimizer-specific arguments to the parser.""" # fmt: off parser.add_argument('--lamb-betas', default='(0.9, 0.999)', metavar='B', help='betas for LAMB optimizer') parser.add_argument('--lamb-eps', type=float, default=1e-8, metavar='D', help='epsilon for LAMB optimizer') parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD', help='weight decay') # fmt: on @property def optimizer_config(self): """ Return a kwarg dictionary that will be used to override optimizer args stored in checkpoints. This allows us to load a checkpoint and resume training using a different set of optimizer args, e.g., with a different learning rate. """ return { "lr": self.args.lr[0], "betas": eval(self.args.lamb_betas), "eps": self.args.lamb_eps, "weight_decay": self.args.weight_decay, } @property def supports_flat_params(self): return False
data2vec_vision-main
deltalm/src/fairseq/optim/fused_lamb.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.optim from . import LegacyFairseqOptimizer, register_optimizer @register_optimizer("adadelta") class Adadelta(LegacyFairseqOptimizer): def __init__(self, args, params): super().__init__(args) self._optimizer = torch.optim.Adadelta(params, **self.optimizer_config) @staticmethod def add_args(parser): """Add optimizer-specific arguments to the parser.""" # fmt: off parser.add_argument('--adadelta-rho', type=float, default=0.9, metavar='RHO', help='coefficient used for computing a running average of squared gradients') parser.add_argument('--adadelta-eps', type=float, default=1e-6, metavar='EPS', help='term added to the denominator to improve numerical stability') parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD', help='weight decay') parser.add_argument('--anneal-eps', action='store_true', help='flag to anneal eps') # fmt: on @property def optimizer_config(self): """ Return a kwarg dictionary that will be used to override optimizer args stored in checkpoints. This allows us to load a checkpoint and resume training using a different set of optimizer args, e.g., with a different learning rate. """ return { "lr": self.args.lr[0], "rho": self.args.adadelta_rho, "eps": self.args.adadelta_eps, "weight_decay": self.args.weight_decay, } @property def supports_flat_params(self): return True
data2vec_vision-main
deltalm/src/fairseq/optim/adadelta.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import Collection from dataclasses import dataclass, field from typing import List from omegaconf import II from fairseq.dataclass import FairseqDataclass from fairseq.optim.lr_scheduler import FairseqLRScheduler, register_lr_scheduler @dataclass class VaswaniInverseSquareRootLRScheduleConfig(FairseqDataclass): warmup_updates: int = field( default=4000, metadata={"help": "warmup the learning rate linearly for the first N updates"}, ) warmup_init_lr: float = field( default=-1, metadata={ "help": "initial learning rate during warmup phase; default is cfg.lr" }, ) encoder_embed_dim: float = field( default=512, metadata={ "help": "initial learning rate during warmup phase; default is cfg.lr" }, ) lr: List[float] = II("optimization.lr") @register_lr_scheduler("vaswani_inverse_sqrt", dataclass=VaswaniInverseSquareRootLRScheduleConfig) class VaswaniInverseSquareRootSchedule(FairseqLRScheduler): """Decay the LR based on the inverse square root of the update number. We also support a warmup phase where we linearly increase the learning rate from some initial learning rate (``--warmup-init-lr``) until the configured learning rate (``--lr``). Thereafter we decay proportional to the number of updates, with a decay factor set to align with the configured learning rate. During warmup:: lrs = torch.linspace(cfg.warmup_init_lr, cfg.lr, cfg.warmup_updates) lr = lrs[update_num] After warmup:: decay_factor = cfg.lr * sqrt(cfg.warmup_updates) lr = decay_factor / sqrt(update_num) """ def __init__(self, cfg: VaswaniInverseSquareRootLRScheduleConfig, optimizer): super().__init__(cfg, optimizer) if isinstance(cfg.lr, Collection) and len(cfg.lr) > 1: raise ValueError( "Cannot use a fixed learning rate schedule with inverse_sqrt." " Consider --lr-scheduler=fixed instead." ) self.warmup_end_lr = cfg.lr[0] if isinstance(cfg.lr, Collection) else cfg.lr # then, decay prop. to the inverse square root of the update number num_updates = 0 self.warmup_updates = cfg.warmup_updates self.multiplier = 10 * (cfg.encoder_embed_dim ** -0.5) self.decay_factor = self.multiplier * min((num_updates + 1) * (self.warmup_updates ** -1.5), (num_updates + 1) ** -0.5) self.lr = self.decay_factor * self.warmup_end_lr print("Initial learning rate: {}".format(self.lr)) # initial learning rate self.optimizer.set_lr(self.lr) def step(self, epoch, val_loss=None): """Update the learning rate at the end of the given epoch.""" super().step(epoch, val_loss) # we don't change the learning rate at epoch boundaries return self.optimizer.get_lr() def step_update(self, num_updates): """Update the learning rate after each update.""" self.decay_factor = self.multiplier * min((num_updates + 1) * (self.warmup_updates ** -1.5), (num_updates + 1) ** -0.5) self.lr = self.decay_factor * self.warmup_end_lr self.optimizer.set_lr(self.lr) return self.lr
data2vec_vision-main
deltalm/src/fairseq/optim/lr_scheduler/vaswani_lr_scheduler.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass from fairseq.dataclass import FairseqDataclass from fairseq.optim.lr_scheduler import FairseqLRScheduler, register_lr_scheduler @dataclass class PassThroughScheduleConfig(FairseqDataclass): pass @register_lr_scheduler("pass_through", dataclass=PassThroughScheduleConfig) class PassThroughScheduleSchedule(FairseqLRScheduler): """Delegate lr scheduling to the optimizer.""" def __init__(self, cfg: PassThroughScheduleConfig, optimizer): super().__init__(cfg, optimizer) assert ( hasattr(optimizer, "lr_scheduler") and optimizer.lr_scheduler is not None ), "Pass-through schedule can only be used with optimizers with their own schedulers" def state_dict(self): return self.optimizer.lr_scheduler.state_dict() def load_state_dict(self, state_dict): self.optimizer.lr_scheduler.load_state_dict(state_dict) def step_begin_epoch(self, epoch): """Update the learning rate at the beginning of the given epoch.""" return self.optimizer.lr_scheduler.step_begin_epoch(epoch) def step_update(self, num_updates): """Update the learning rate after each update.""" return self.optimizer.lr_scheduler.step_update(num_updates)
data2vec_vision-main
deltalm/src/fairseq/optim/lr_scheduler/pass_through.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import LegacyFairseqLRScheduler, register_lr_scheduler import logging import ast logger = logging.getLogger(__name__) logger.setLevel(logging.WARNING) @register_lr_scheduler("manual") class ManualSchedule(LegacyFairseqLRScheduler): """Decay the LR on a manual schedule.""" def __init__(self, args, optimizer): super().__init__(args, optimizer) self.epoch2lr = self.parse_manuallr_args(args.epoch2lr) self.update2lr = self.parse_manuallr_args(args.update2lr) logger.info("@@@ ManualSchedule epoch2lr={}".format(self.epoch2lr)) logger.info("@@@ ManualSchedule update2lr={}".format(self.update2lr)) if 1 in self.epoch2lr: self.lr = self.epoch2lr[1] elif 1 in self.update2lr: self.lr = self.update2lr[1] else: self.lr = args.lr[0] self.optimizer.set_lr(self.lr) # Set the beginning of the epoch. def parse_manuallr_args(self, lr_args_str): lr_dict = ast.literal_eval(lr_args_str.replace(' ', '')) if not isinstance(lr_dict, dict): raise ValueError("epoch2lr/update2lr must be abel to evaluated to a dict") lr_args = {} logger.info("@@@ after parsing input dictionary lr_dict = {}".format(lr_dict)) for key, val in lr_dict.items(): if "," in key: for k in key.split(","): lr_args[int(k)] = float(val) elif "-" in key: s = int(key.split("-")[0]) e = int(key.split("-")[1]) for k in range(s, e + 1, 1): lr_args[k] = float(val) else: lr_args[int(key)] = float(val) return lr_args @staticmethod def add_args(parser): """Add arguments to the parser for this LR scheduler.""" # fmt: off parser.add_argument( "--epoch2lr", type=str, metavar="DICT", default="{}", help="a dictionary used to set lr for each epoch manually", ) parser.add_argument( "--update2lr", type=str, metavar="DICT", default="{}", help="a dictionary used to set lr for each update manually", ) # fmt: on def state_dict(self): return {"lr": self.lr} def load_state_dict(self, state_dict): if "lr" in state_dict: self.lr = state_dict["lr"] def get_next_lr(self, epoch): manual_keys = [k for k in self.epoch2lr if k <= epoch] if manual_keys: manual_lr = self.epoch2lr[max(manual_keys)] else: logger.warning("@@@ epoch={} does not exist in manual lr input. epoch2lr={}...".format( epoch, list(self.epoch2lr.items())[:min(10, len(self.epoch2lr.keys())-1)] )) manual_lr = self.optimizer.get_lr() return manual_lr def step_begin_epoch(self, epoch): """Update the learning rate at the beginning of the given epoch.""" self.lr = self.get_next_lr(epoch) self.optimizer.set_lr(self.lr) return self.optimizer.get_lr() def step_update(self, num_updates): """Update the learning rate after each update.""" manual_keys = [k for k in self.update2lr if k <= num_updates] if manual_keys: manual_lr = self.update2lr[max(manual_keys)] else: logger.warning("epoch={} does not exist in manual lr input update2lr={}...".format( num_updates, list(self.update2lr.items())[:min(10, len(self.update2lr.keys())-1)])) manual_lr = self.optimizer.get_lr() self.optimizer.set_lr(manual_lr) return self.optimizer.get_lr()
data2vec_vision-main
deltalm/src/fairseq/optim/lr_scheduler/manual_lr_scheduler.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field from typing import Optional, List from omegaconf import II from fairseq.dataclass import FairseqDataclass from fairseq.optim.lr_scheduler import FairseqLRScheduler, register_lr_scheduler @dataclass class FixedLRScheduleConfig(FairseqDataclass): force_anneal: Optional[int] = field( default=None, metadata={"help": "force annealing at specified epoch"}, ) lr_shrink: float = field( default=0.1, metadata={"help": "shrink factor for annealing, lr_new = (lr * lr_shrink)"}, ) warmup_updates: int = field( default=0, metadata={"help": "warmup the learning rate linearly for the first N updates"}, ) lr: List[float] = II("optimization.lr") @register_lr_scheduler("fixed", dataclass=FixedLRScheduleConfig) class FixedLRSchedule(FairseqLRScheduler): """Decay the LR on a fixed schedule.""" def __init__(self, cfg: FixedLRScheduleConfig, optimizer): super().__init__(cfg, optimizer) self.lr = cfg.lr[0] if cfg.warmup_updates > 0: self.warmup_factor = 1.0 / cfg.warmup_updates else: self.warmup_factor = 1 def state_dict(self): return {"lr": self.lr} def load_state_dict(self, state_dict): if "lr" in state_dict: self.lr = state_dict["lr"] def get_next_lr(self, epoch): lrs = self.cfg.lr if self.cfg.force_anneal is None or epoch < self.cfg.force_anneal: # use fixed LR schedule next_lr = lrs[min(epoch - 1, len(lrs) - 1)] else: # annneal based on lr_shrink next_lr = lrs[-1] * self.cfg.lr_shrink ** ( epoch + 1 - self.cfg.force_anneal ) return next_lr def step_begin_epoch(self, epoch): """Update the learning rate at the beginning of the given epoch.""" self.lr = self.get_next_lr(epoch) self.optimizer.set_lr(self.warmup_factor * self.lr) return self.optimizer.get_lr() def step_update(self, num_updates): """Update the learning rate after each update.""" if self.cfg.warmup_updates > 0 and num_updates < self.cfg.warmup_updates: self.warmup_factor = (num_updates + 1) / float(self.cfg.warmup_updates) self.optimizer.set_lr(self.warmup_factor * self.lr) else: self.optimizer.set_lr(self.lr) return self.optimizer.get_lr()
data2vec_vision-main
deltalm/src/fairseq/optim/lr_scheduler/fixed_schedule.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field from typing import List import torch.optim.lr_scheduler from omegaconf import II from fairseq.dataclass import FairseqDataclass from fairseq.optim.lr_scheduler import FairseqLRScheduler, register_lr_scheduler @dataclass class ReduceLROnPlateauLRScheduleConfig(FairseqDataclass): lr_shrink: float = field( default=0.1, metadata={"help": "shrink factor for annealing"} ) lr_threshold: float = field( default=1e-4, metadata={ "help": ( "threshold for measuring the new optimum, to only focus on " "significant changes" ) }, ) lr_patience: int = field( default=0, metadata={ "help": ( "number of epochs with no improvement after which learning rate will " "be reduced" ) }, ) warmup_updates: int = field( default=0, metadata={"help": "warmup the learning rate linearly for the first N updates"}, ) warmup_init_lr: float = field( default=-1, metadata={ "help": "initial learning rate during warmup phase; default is cfg.lr" }, ) lr: List[float] = II("optimization.lr") maximize_best_checkpoint_metric: bool = II( "checkpoint.maximize_best_checkpoint_metric" ) @register_lr_scheduler( "reduce_lr_on_plateau", dataclass=ReduceLROnPlateauLRScheduleConfig ) class ReduceLROnPlateauLRSchedule(FairseqLRScheduler): """ Decay the LR by a factor every time the validation loss plateaus. Also comes with optional warmup phase, where we linearly increase the learning rate from some initial learning rate (``--warmup-init-lr``) until the configured learning rate (``--lr``). Thereafter the lr is adjusted according to original reduce_on_plateau scheme. During warmup:: lrs = torch.linspace( cfg.warmup_init_lr, cfg.lr, cfg.warmup_updates ) lr = lrs[update_num] """ def __init__(self, cfg: ReduceLROnPlateauLRScheduleConfig, optimizer): super().__init__(cfg, optimizer) if len(cfg.lr) > 1: raise ValueError( "Cannot use a fixed learning rate schedule with reduce_lr_on_plateau." " Consider --lr-scheduler=fixed instead." ) self.lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( self.optimizer.optimizer, patience=cfg.lr_patience, factor=cfg.lr_shrink, mode="max" if cfg.maximize_best_checkpoint_metric else "min", threshold=cfg.lr_threshold, ) warmup_end_lr = cfg.lr[0] # if no warm up, sets initial lr to be cfg.lr[0] if cfg.warmup_init_lr < 0: cfg.warmup_init_lr = 0 if cfg.warmup_updates > 0 else warmup_end_lr # linearly warmup for the first cfg.warmup_updates if cfg.warmup_updates > 0: self.lr_step = (warmup_end_lr - cfg.warmup_init_lr) / cfg.warmup_updates # this flag is either set from arg when no warm up, or set by # step_update() when warmup finishes self.warmup_end = True if cfg.warmup_updates <= 0 else False # initial learning rate # this self.lr is used only during init and/or warm up period self.lr = cfg.warmup_init_lr self.optimizer.set_lr(self.lr) def state_dict(self): """Return the LR scheduler state dict.""" return { "best": self.lr_scheduler.best, "last_epoch": self.lr_scheduler.last_epoch, } def load_state_dict(self, state_dict): """Load an LR scheduler state dict.""" self.lr_scheduler.best = state_dict["best"] if "last_epoch" in state_dict: self.lr_scheduler.last_epoch = state_dict["last_epoch"] def step(self, epoch, val_loss=None): """ Update the learning rate at the end of the given epoch if warmup finishes otherwise no update of lr on epoch boundaries """ if val_loss is not None and self.warmup_end is True: self.lr_scheduler.step(val_loss) else: self.lr_scheduler.last_epoch = epoch return self.optimizer.get_lr() def step_update(self, num_updates): """ Update the learning rate after each update.""" # if there is warmup if self.cfg.warmup_updates > 0: if num_updates <= self.cfg.warmup_updates: self.lr = self.cfg.warmup_init_lr + num_updates * self.lr_step self.optimizer.set_lr(self.lr) else: if self.warmup_end is False: self.warmup_end = True # else do nothing return self.optimizer.get_lr()
data2vec_vision-main
deltalm/src/fairseq/optim/lr_scheduler/reduce_lr_on_plateau.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """isort:skip_file""" import importlib import os from fairseq import registry from fairseq.optim.lr_scheduler.fairseq_lr_scheduler import ( # noqa FairseqLRScheduler, LegacyFairseqLRScheduler, ) from omegaconf import DictConfig ( build_lr_scheduler_, register_lr_scheduler, LR_SCHEDULER_REGISTRY, LR_SCHEDULER_DATACLASS_REGISTRY, ) = registry.setup_registry( "--lr-scheduler", base_class=FairseqLRScheduler, default="fixed" ) def build_lr_scheduler(cfg: DictConfig, optimizer): return build_lr_scheduler_(cfg, optimizer) # automatically import any Python files in the optim/lr_scheduler/ directory for file in os.listdir(os.path.dirname(__file__)): if file.endswith(".py") and not file.startswith("_"): file_name = file[: file.find(".py")] importlib.import_module("fairseq.optim.lr_scheduler." + file_name)
data2vec_vision-main
deltalm/src/fairseq/optim/lr_scheduler/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field from typing import Optional, List from omegaconf import II from fairseq.dataclass import FairseqDataclass from fairseq.optim.lr_scheduler import FairseqLRScheduler, register_lr_scheduler @dataclass class PolynomialDecayLRScheduleConfig(FairseqDataclass): warmup_updates: int = field( default=0, metadata={"help": "warmup the learning rate linearly for the first N updates"}, ) force_anneal: Optional[int] = field( default=None, metadata={"help": "force annealing at specified epoch"}, ) end_learning_rate: float = field( default=0.0, metadata={"help": "learning rate to decay to"}, ) power: float = field( default=1.0, metadata={"help": "decay exponent"}, ) total_num_update: float = field( default=II("optimization.max_update"), metadata={"help": "total number of updates over which to decay learning rate"}, ) lr: List[float] = II("optimization.lr") @register_lr_scheduler("polynomial_decay", dataclass=PolynomialDecayLRScheduleConfig) class PolynomialDecayLRSchedule(FairseqLRScheduler): """Decay the LR on a fixed schedule.""" def __init__(self, cfg: PolynomialDecayLRScheduleConfig, optimizer): super().__init__(cfg, optimizer) assert cfg.total_num_update > 0 self.lr = cfg.lr[0] if cfg.warmup_updates > 0: self.warmup_factor = 1.0 / cfg.warmup_updates else: self.warmup_factor = 1 self.end_learning_rate = cfg.end_learning_rate self.total_num_update = cfg.total_num_update self.power = cfg.power self.optimizer.set_lr(self.warmup_factor * self.lr) def get_next_lr(self, epoch): lrs = self.cfg.lr if self.cfg.force_anneal is None or epoch < self.cfg.force_anneal: # use fixed LR schedule next_lr = lrs[min(epoch, len(lrs) - 1)] else: # annneal based on lr_shrink next_lr = self.optimizer.get_lr() return next_lr def step_begin_epoch(self, epoch): """Update the learning rate at the beginning of the given epoch.""" self.lr = self.get_next_lr(epoch) self.optimizer.set_lr(self.warmup_factor * self.lr) return self.optimizer.get_lr() def step_update(self, num_updates): """Update the learning rate after each update.""" if self.cfg.warmup_updates > 0 and num_updates <= self.cfg.warmup_updates: self.warmup_factor = num_updates / float(self.cfg.warmup_updates) lr = self.warmup_factor * self.lr elif num_updates >= self.total_num_update: lr = self.end_learning_rate else: warmup = self.cfg.warmup_updates lr_range = self.lr - self.end_learning_rate pct_remaining = 1 - (num_updates - warmup) / ( self.total_num_update - warmup ) lr = lr_range * pct_remaining ** (self.power) + self.end_learning_rate self.optimizer.set_lr(lr) return self.optimizer.get_lr()
data2vec_vision-main
deltalm/src/fairseq/optim/lr_scheduler/polynomial_decay_schedule.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import Collection from dataclasses import dataclass, field from typing import List from omegaconf import II from fairseq.dataclass import FairseqDataclass from fairseq.optim.lr_scheduler import FairseqLRScheduler, register_lr_scheduler @dataclass class InverseSquareRootLRScheduleConfig(FairseqDataclass): warmup_updates: int = field( default=4000, metadata={"help": "warmup the learning rate linearly for the first N updates"}, ) warmup_init_lr: float = field( default=-1, metadata={ "help": "initial learning rate during warmup phase; default is cfg.lr" }, ) lr: List[float] = II("optimization.lr") @register_lr_scheduler("inverse_sqrt", dataclass=InverseSquareRootLRScheduleConfig) class InverseSquareRootSchedule(FairseqLRScheduler): """Decay the LR based on the inverse square root of the update number. We also support a warmup phase where we linearly increase the learning rate from some initial learning rate (``--warmup-init-lr``) until the configured learning rate (``--lr``). Thereafter we decay proportional to the number of updates, with a decay factor set to align with the configured learning rate. During warmup:: lrs = torch.linspace(cfg.warmup_init_lr, cfg.lr, cfg.warmup_updates) lr = lrs[update_num] After warmup:: decay_factor = cfg.lr * sqrt(cfg.warmup_updates) lr = decay_factor / sqrt(update_num) """ def __init__(self, cfg: InverseSquareRootLRScheduleConfig, optimizer): super().__init__(cfg, optimizer) if isinstance(cfg.lr, Collection) and len(cfg.lr) > 1: raise ValueError( "Cannot use a fixed learning rate schedule with inverse_sqrt." " Consider --lr-scheduler=fixed instead." ) warmup_end_lr = cfg.lr[0] if isinstance(cfg.lr, Collection) else cfg.lr if cfg.warmup_init_lr < 0: cfg.warmup_init_lr = 0 if cfg.warmup_updates > 0 else warmup_end_lr # linearly warmup for the first cfg.warmup_updates self.lr_step = (warmup_end_lr - cfg.warmup_init_lr) / cfg.warmup_updates # then, decay prop. to the inverse square root of the update number self.decay_factor = warmup_end_lr * cfg.warmup_updates ** 0.5 # initial learning rate self.lr = cfg.warmup_init_lr self.optimizer.set_lr(self.lr) def step(self, epoch, val_loss=None): """Update the learning rate at the end of the given epoch.""" super().step(epoch, val_loss) # we don't change the learning rate at epoch boundaries return self.optimizer.get_lr() def step_update(self, num_updates): """Update the learning rate after each update.""" if num_updates < self.cfg.warmup_updates: self.lr = self.cfg.warmup_init_lr + num_updates * self.lr_step else: self.lr = self.decay_factor * num_updates ** -0.5 self.optimizer.set_lr(self.lr) return self.lr
data2vec_vision-main
deltalm/src/fairseq/optim/lr_scheduler/inverse_square_root_schedule.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from argparse import Namespace from fairseq.dataclass.utils import gen_parser_from_dataclass from fairseq.optim import FairseqOptimizer class FairseqLRScheduler(object): def __init__(self, cfg, optimizer): super().__init__() if optimizer is not None and not isinstance(optimizer, FairseqOptimizer): raise ValueError("optimizer must be an instance of FairseqOptimizer") self.cfg = cfg self.optimizer = optimizer self.best = None @classmethod def add_args(cls, parser): """Add arguments to the parser for this LR scheduler.""" dc = getattr(cls, "__dataclass", None) if dc is not None: gen_parser_from_dataclass(parser, dc()) def state_dict(self): """Return the LR scheduler state dict.""" return {"best": self.best} def load_state_dict(self, state_dict): """Load an LR scheduler state dict.""" self.best = state_dict["best"] def step_begin_epoch(self, epoch): """Update the learning rate at the beginning of the given epoch.""" pass def step(self, epoch, val_loss=None): """Update the learning rate at the end of the given epoch.""" if val_loss is not None: if self.best is None: self.best = val_loss else: self.best = min(self.best, val_loss) def step_update(self, num_updates): """Update the learning rate after each update.""" return self.optimizer.get_lr() class LegacyFairseqLRScheduler(FairseqLRScheduler): def __init__(self, args: Namespace, optimizer): if not isinstance(optimizer, FairseqOptimizer): raise ValueError("optimizer must be an instance of FairseqOptimizer") self.args = args self.optimizer = optimizer self.best = None
data2vec_vision-main
deltalm/src/fairseq/optim/lr_scheduler/fairseq_lr_scheduler.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from dataclasses import dataclass, field from typing import Optional, List, Tuple from omegaconf import II from fairseq.dataclass import FairseqDataclass from fairseq.optim.lr_scheduler import FairseqLRScheduler, register_lr_scheduler @dataclass class TriStageLRScheduleConfig(FairseqDataclass): warmup_steps: int = field( default=0, metadata={"help": "warmup the learning rate linearly for the first N updates"}, ) hold_steps: int = field( default=0, metadata={"help": "steps in hold stage"}, ) decay_steps: int = field( default=0, metadata={"help": "steps in decay stages"}, ) phase_ratio: Optional[Tuple[float, float, float]] = field( default=None, metadata={ "help": ( "if set, automatically sets warmup/hold/decay steps to the ratio " "specified here from max_updates. the ratios must add up to 1.0" ) }, ) init_lr_scale: float = field( default=0.01, metadata={"help": "initial learning rate scale during warmup phase"}, ) final_lr_scale: float = field( default=0.01, metadata={"help": "final learning rate scale"}, ) max_update: float = II("optimization.max_update") lr: List[float] = II("optimization.lr") @register_lr_scheduler("tri_stage", dataclass=TriStageLRScheduleConfig) class TriStageLRSchedule(FairseqLRScheduler): """Tristage learning rate schedulr Implement the learning rate scheduler in https://arxiv.org/pdf/1904.08779.pdf Similar to inverse_squre_root scheduler, but tri_stage learning rate employs three stages LR scheduling: - warmup stage, starting from `lr` * `init_lr_scale`, linearly increased to `lr` in `warmup_steps` iterations - hold stage, after `warmup_steps`, keep the LR as `lr` for `hold_steps` iterations - decay stage, after hold stage, decay LR exponetially to `lr` * `final_lr_scale` in `decay_steps`; after that LR is keep as `final_lr_scale` * `lr` During warmup:: init_lr = cfg.init_lr_scale * cfg.lr lrs = torch.linspace(init_lr, cfg.lr, cfg.warmup_steps) lr = lrs[update_num] During hold:: lr = cfg.lr During decay:: decay_factor = - math.log(cfg.final_lr_scale) / cfg.decay_steps lr = cfg.lr * exp(- (update_num - warmup_steps - decay_steps) * decay_factor) After that:: lr = cfg.lr * cfg.final_lr_scale """ def __init__(self, cfg: TriStageLRScheduleConfig, optimizer): super().__init__(cfg, optimizer) if len(cfg.lr) > 1: raise ValueError( "Cannot use a fixed learning rate schedule with tri-stage lr." " Consider --lr-scheduler=fixed instead." ) # calculate LR at each point self.peak_lr = cfg.lr[0] self.init_lr = cfg.init_lr_scale * cfg.lr[0] self.final_lr = cfg.final_lr_scale * cfg.lr[0] if cfg.phase_ratio is not None: assert cfg.max_update > 0 assert sum(cfg.phase_ratio) == 1, "phase ratios must add up to 1" self.warmup_steps = int(cfg.max_update * cfg.phase_ratio[0]) self.hold_steps = int(cfg.max_update * cfg.phase_ratio[1]) self.decay_steps = int(cfg.max_update * cfg.phase_ratio[2]) else: self.warmup_steps = cfg.warmup_steps self.hold_steps = cfg.hold_steps self.decay_steps = cfg.decay_steps assert ( self.warmup_steps + self.hold_steps + self.decay_steps > 0 ), "please specify steps or phase_ratio" self.warmup_rate = ( (self.peak_lr - self.init_lr) / self.warmup_steps if self.warmup_steps != 0 else 0 ) self.decay_factor = -math.log(cfg.final_lr_scale) / self.decay_steps # initial learning rate self.lr = self.init_lr self.optimizer.set_lr(self.lr) def _decide_stage(self, update_step): """ return stage, and the corresponding steps within the current stage """ if update_step < self.warmup_steps: # warmup state return 0, update_step offset = self.warmup_steps if update_step < offset + self.hold_steps: # hold stage return 1, update_step - offset offset += self.hold_steps if update_step <= offset + self.decay_steps: # decay stage return 2, update_step - offset offset += self.decay_steps # still here ? constant lr stage return 3, update_step - offset def step(self, epoch, val_loss=None): """Update the learning rate at the end of the given epoch.""" super().step(epoch, val_loss) # we don't change the learning rate at epoch boundaries return self.optimizer.get_lr() def step_update(self, num_updates): """Update the learning rate after each update.""" stage, steps_in_stage = self._decide_stage(num_updates) if stage == 0: self.lr = self.init_lr + self.warmup_rate * steps_in_stage elif stage == 1: self.lr = self.peak_lr elif stage == 2: self.lr = self.peak_lr * math.exp(-self.decay_factor * steps_in_stage) elif stage == 3: self.lr = self.final_lr else: raise ValueError("Undefined stage") self.optimizer.set_lr(self.lr) return self.lr
data2vec_vision-main
deltalm/src/fairseq/optim/lr_scheduler/tri_stage_lr_scheduler.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from collections import Collection from dataclasses import dataclass, field from typing import List from omegaconf import II from fairseq.dataclass import FairseqDataclass from fairseq.optim.lr_scheduler import FairseqLRScheduler, register_lr_scheduler @dataclass class CosineLRScheduleConfig(FairseqDataclass): warmup_updates: int = field( default=0, metadata={"help": "warmup the learning rate linearly for the first N updates"}, ) warmup_init_lr: float = field( default=-1, metadata={ "help": "initial learning rate during warmup phase; default is cfg.lr" }, ) lr: List[float] = field( default=II("optimization.lr"), metadata={"help": "max learning rate, must be more than cfg.min_lr"}, ) min_lr: float = field(default=0.0, metadata={"help": "min learning rate"}) t_mult: float = field( default=1.0, metadata={"help": "factor to grow the length of each period"} ) lr_period_updates: float = field( default=-1, metadata={"help": "initial number of updates per period"} ) lr_shrink: float = field( default=0.1, metadata={"help": "shrink factor for annealing"} ) # This is not required, but is for convenience in inferring lr_period_updates max_update: int = II("optimization.max_update") @register_lr_scheduler("cosine", dataclass=CosineLRScheduleConfig) class CosineLRSchedule(FairseqLRScheduler): """Assign LR based on a cyclical schedule that follows the cosine function. See https://arxiv.org/pdf/1608.03983.pdf for details. We also support a warmup phase where we linearly increase the learning rate from some initial learning rate (``--warmup-init-lr``) until the configured max learning rate (``--lr``). During warmup:: lrs = torch.linspace(cfg.warmup_init_lr, cfg.lr, cfg.warmup_updates) lr = lrs[update_num] After warmup:: lr = cfg.min_lr + 0.5*(cfg.lr - cfg.min_lr)*(1 + cos(t_curr / t_i)) where ``t_curr`` is current percentage of updates within the current period range and ``t_i`` is the current period range, which is scaled by ``t_mul`` after every iteration. """ def __init__(self, cfg: CosineLRScheduleConfig, fairseq_optimizer): super().__init__(cfg, fairseq_optimizer) if isinstance(cfg.lr, Collection) and len(cfg.lr) > 1: raise ValueError( "Cannot use a fixed learning rate schedule with cosine." f" Consider --lr-scheduler=fixed instead. ({cfg.lr})" ) self.max_lr = cfg.lr[0] if isinstance(cfg.lr, Collection) else cfg.lr assert ( self.max_lr > cfg.min_lr ), f"max_lr (={cfg.lr}) must be more than min_lr (={cfg.min_lr})" warmup_end_lr = self.max_lr if cfg.warmup_init_lr < 0: cfg.warmup_init_lr = cfg.min_lr self.t_mult = cfg.t_mult self.period = cfg.lr_period_updates if self.period <= 0: assert ( cfg.max_update > 0 ), "Either --max_update or --lr-period-updates must be set" self.period = cfg.max_update - cfg.warmup_updates if cfg.warmup_updates > 0: # linearly warmup for the first cfg.warmup_updates self.lr_step = (warmup_end_lr - cfg.warmup_init_lr) / cfg.warmup_updates else: self.lr_step = 1 self.warmup_updates = cfg.warmup_updates self.lr_shrink = cfg.lr_shrink # initial learning rate self.lr = cfg.warmup_init_lr self.optimizer.set_lr(self.lr) def step(self, epoch, val_loss=None): """Update the learning rate at the end of the given epoch.""" super().step(epoch, val_loss) # we don't change the learning rate at epoch boundaries return self.optimizer.get_lr() def step_update(self, num_updates): """Update the learning rate after each update.""" if num_updates < self.cfg.warmup_updates: self.lr = self.cfg.warmup_init_lr + num_updates * self.lr_step else: curr_updates = num_updates - self.cfg.warmup_updates if self.t_mult != 1: i = math.floor( math.log( 1 - curr_updates / self.period * (1 - self.t_mult), self.t_mult ) ) t_i = self.t_mult ** i * self.period t_curr = ( curr_updates - (1 - self.t_mult ** i) / (1 - self.t_mult) * self.period ) else: i = math.floor(curr_updates / self.period) t_i = self.period t_curr = curr_updates - (self.period * i) lr_shrink = self.lr_shrink ** i min_lr = self.cfg.min_lr * lr_shrink max_lr = self.max_lr * lr_shrink self.lr = min_lr + 0.5 * (max_lr - min_lr) * ( 1 + math.cos(math.pi * t_curr / t_i) ) self.optimizer.set_lr(self.lr) return self.lr
data2vec_vision-main
deltalm/src/fairseq/optim/lr_scheduler/cosine_lr_scheduler.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from dataclasses import dataclass, field from typing import List from omegaconf import II from fairseq.dataclass import FairseqDataclass from fairseq.optim.lr_scheduler import FairseqLRScheduler, register_lr_scheduler @dataclass class TriangularLRScheduleConfig(FairseqDataclass): max_lr: float = field( default="???", metadata={"help": "max learning rate, must be more than cfg.lr"} ) lr_period_updates: float = field( default=5000, metadata={"help": "initial number of updates per period (cycle length)"}, ) lr_shrink: float = field( default=0.1, metadata={"help": "shrink factor for annealing"} ) shrink_min: bool = field( default=False, metadata={"help": "if set, also shrinks min lr"} ) lr: List[float] = II("optimization.lr") @register_lr_scheduler("triangular", dataclass=TriangularLRScheduleConfig) class TriangularLRSchedule(FairseqLRScheduler): """Assign LR based on a triangular cyclical schedule. See https://arxiv.org/pdf/1506.01186.pdf for details. """ def __init__(self, cfg: TriangularLRScheduleConfig, optimizer): super().__init__(cfg, optimizer) if len(cfg.lr) > 1: raise ValueError( "Cannot use a fixed learning rate schedule with triangular." " Consider --lr-scheduler=fixed instead." ) lr = cfg.lr[0] assert cfg.max_lr > lr, "max_lr must be more than lr" self.min_lr = lr self.max_lr = cfg.max_lr self.stepsize = cfg.lr_period_updates // 2 self.lr_shrink = cfg.lr_shrink self.shrink_min = cfg.shrink_min # initial learning rate self.lr = self.min_lr self.optimizer.set_lr(self.lr) def step(self, epoch, val_loss=None): """Update the learning rate at the end of the given epoch.""" super().step(epoch, val_loss) # we don't change the learning rate at epoch boundaries return self.optimizer.get_lr() def step_update(self, num_updates): """Update the learning rate after each update.""" cycle = math.floor(num_updates / (2 * self.stepsize)) lr_shrink = self.lr_shrink ** cycle max_lr = self.max_lr * lr_shrink if self.shrink_min: min_lr = self.min_lr * lr_shrink else: min_lr = self.min_lr x = abs(num_updates / self.stepsize - 2 * (cycle + 1) + 1) self.lr = min_lr + (max_lr - min_lr) * max(0, (1 - x)) self.optimizer.set_lr(self.lr) return self.lr
data2vec_vision-main
deltalm/src/fairseq/optim/lr_scheduler/triangular_lr_scheduler.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import List, Optional import torch from torch import Tensor @torch.jit.script def script_skip_tensor_list(x: List[Tensor], mask): res = [xi[mask] if xi.size(0) == mask.size(0) else xi[:, mask] for xi in x] outputs = [] for i, t in enumerate(res): if t.numel() != 0: outputs.append(t) else: outputs.append(x[i]) return outputs @torch.jit.script def script_skip_tensor(x: Tensor, mask): # None case if x.size(0) == 0: return x res = x[mask] if x.size(0) == mask.size(0) else x[:, mask] if res.numel() == 0: return x else: return res @torch.jit.script def expand_2d_or_3d_tensor(x, trg_dim: int, padding_idx: int): """ Expand 2D/3D tensor on dim=1 """ if x is None: return None assert x.dim() == 2 or x.dim() == 3 assert trg_dim >= x.size(1), (trg_dim, x.size()) if trg_dim == x.size(1): return x dims = [x.size(0), trg_dim - x.size(1)] if x.dim() == 3: dims.append(x.size(2)) x = torch.cat([x, torch.zeros(dims).to(x).fill_(padding_idx)], 1) return x @torch.jit.script def coalesce(x: Optional[Tensor], y: Tensor) -> Tensor: return x if x is not None else y @torch.jit.script def fill_tensors( x: Optional[Tensor], mask, y: Optional[Tensor], padding_idx: int ) -> Optional[Tensor]: """ Filling tensor x with y at masked positions (dim=0). """ if x is None or x.size()[0] == 0 or y is None: return x assert x.dim() == y.dim() and mask.size(0) == x.size(0) assert x.dim() == 2 or (x.dim() == 3 and x.size(2) == y.size(2)) n_selected = mask.sum() if n_selected == 0: return x assert n_selected == y.size(0) if n_selected == x.size(0): return y if x.size(1) < y.size(1): x = expand_2d_or_3d_tensor(x, y.size(1), padding_idx) x[mask] = y elif x.size(1) > y.size(1): x[mask] = torch.tensor(padding_idx).type_as(x) if x.dim() == 2: x[mask, : y.size(1)] = y else: x[mask, : y.size(1), :] = y else: x[mask] = y return x
data2vec_vision-main
deltalm/src/fairseq/models/model_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Base classes for various fairseq models. """ import logging from argparse import Namespace from typing import Dict, List, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.checkpoint_utils import prune_state_dict from fairseq.data import Dictionary from fairseq.dataclass.utils import ( convert_namespace_to_omegaconf, gen_parser_from_dataclass, ) from fairseq.models import FairseqDecoder, FairseqEncoder from omegaconf import DictConfig from torch import Tensor logger = logging.getLogger(__name__) class BaseFairseqModel(nn.Module): """Base class for fairseq models.""" def __init__(self): super().__init__() self._is_generation_fast = False @classmethod def add_args(cls, parser): """Add model-specific arguments to the parser.""" dc = getattr(cls, "__dataclass", None) if dc is not None: # do not set defaults so that settings defaults from various architectures still works gen_parser_from_dataclass(parser, dc(), delete_default=True) @classmethod def build_model(cls, args, task): """Build a new model instance.""" raise NotImplementedError("Model must implement the build_model method") def get_targets(self, sample, net_output): """Get targets from either the sample or the net's output.""" return sample["target"] def get_normalized_probs( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): """Get normalized probabilities (or log probs) from a net's output.""" return self.get_normalized_probs_scriptable(net_output, log_probs, sample) # TorchScript doesn't support super() method so that the scriptable Subclass # can't access the base class model in Torchscript. # Current workaround is to add a helper function with different name and # call the helper function from scriptable Subclass. def get_normalized_probs_scriptable( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): """Scriptable helper function for get_normalized_probs in ~BaseFairseqModel""" if hasattr(self, "decoder"): return self.decoder.get_normalized_probs(net_output, log_probs, sample) elif torch.is_tensor(net_output): # syntactic sugar for simple models which don't have a decoder # (e.g., the classification tutorial) logits = net_output.float() if log_probs: return F.log_softmax(logits, dim=-1) else: return F.softmax(logits, dim=-1) raise NotImplementedError def extract_features(self, *args, **kwargs): """Similar to *forward* but only return features.""" return self(*args, **kwargs) def max_positions(self): """Maximum length supported by the model.""" return None def load_state_dict( self, state_dict, strict=True, model_cfg: Optional[DictConfig] = None, args: Optional[Namespace] = None, ): """Copies parameters and buffers from *state_dict* into this module and its descendants. Overrides the method in :class:`nn.Module`. Compared with that method this additionally "upgrades" *state_dicts* from old checkpoints. """ if model_cfg is None and args is not None: logger.warn("using 'args' is deprecated, please update your code to use dataclass config") model_cfg = convert_namespace_to_omegaconf(args).model self.upgrade_state_dict(state_dict) new_state_dict = prune_state_dict(state_dict, model_cfg) return super().load_state_dict(new_state_dict, strict) def upgrade_state_dict(self, state_dict): """Upgrade old state dicts to work with newer code.""" self.upgrade_state_dict_named(state_dict, "") def upgrade_state_dict_named(self, state_dict, name): """Upgrade old state dicts to work with newer code. Args: state_dict (dict): state dictionary to upgrade, in place name (str): the state dict key corresponding to the current module """ assert state_dict is not None def do_upgrade(m, prefix): if len(prefix) > 0: prefix += "." for n, c in m.named_children(): name = prefix + n if hasattr(c, "upgrade_state_dict_named"): c.upgrade_state_dict_named(state_dict, name) elif hasattr(c, "upgrade_state_dict"): c.upgrade_state_dict(state_dict) do_upgrade(c, name) do_upgrade(self, name) def set_num_updates(self, num_updates): """State from trainer to pass along to model at every update.""" def _apply(m): if hasattr(m, "set_num_updates") and m != self: m.set_num_updates(num_updates) self.apply(_apply) def prepare_for_inference_(self, cfg: DictConfig): """Prepare model for inference.""" kwargs = {} kwargs["beamable_mm_beam_size"] = ( None if getattr(cfg.generation, "no_beamable_mm", False) else getattr(cfg.generation, "beam", 5) ) kwargs["need_attn"] = getattr(cfg.generation, "print_alignment", False) if getattr(cfg.generation, "retain_dropout", False): kwargs["retain_dropout"] = cfg.generation.retain_dropout kwargs["retain_dropout_modules"] = cfg.generation.retain_dropout_modules self.make_generation_fast_(**kwargs) def make_generation_fast_(self, **kwargs): """ Legacy entry point to optimize model for faster generation. Prefer prepare_for_inference_. """ if self._is_generation_fast: return # only apply once self._is_generation_fast = True # remove weight norm from all modules in the network def apply_remove_weight_norm(module): try: nn.utils.remove_weight_norm(module) except (AttributeError, ValueError): # this module didn't have weight norm return self.apply(apply_remove_weight_norm) def apply_make_generation_fast_(module, prefix): if len(prefix) > 0: prefix += "." base_func = BaseFairseqModel.make_generation_fast_ for n, m in module.named_modules(): if ( m != self and hasattr(m, "make_generation_fast_") # don't call this implementation again, e.g., if # children modules also inherit from BaseFairseqModel and m.make_generation_fast_.__func__ is not base_func ): name = prefix + n m.make_generation_fast_(name=name, **kwargs) apply_make_generation_fast_(self, "") def train(mode=True): if mode: raise RuntimeError("cannot train after make_generation_fast") # this model should no longer be used for training self.eval() self.train = train def prepare_for_onnx_export_(self, **kwargs): """Make model exportable via ONNX trace.""" seen = set() def apply_prepare_for_onnx_export_(module): if ( module != self and hasattr(module, "prepare_for_onnx_export_") and module not in seen ): seen.add(module) module.prepare_for_onnx_export_(**kwargs) self.apply(apply_prepare_for_onnx_export_) def prepare_for_tpu_(self, **kwargs): """Optionally modify model for use on TPUs.""" seen = set() def apply_prepare_for_tpu_(module): if ( module != self and hasattr(module, "prepare_for_tpu_") and module not in seen ): seen.add(module) module.prepare_for_tpu_(**kwargs) self.apply(apply_prepare_for_tpu_) @classmethod def from_pretrained( cls, model_name_or_path, checkpoint_file="model.pt", data_name_or_path=".", **kwargs, ): """ Load a :class:`~fairseq.models.FairseqModel` from a pre-trained model file. Downloads and caches the pre-trained model file if needed. The base implementation returns a :class:`~fairseq.hub_utils.GeneratorHubInterface`, which can be used to generate translations or sample from language models. The underlying :class:`~fairseq.models.FairseqModel` can be accessed via the *generator.models* attribute. Other models may override this to implement custom hub interfaces. Args: model_name_or_path (str): either the name of a pre-trained model to load or a path/URL to a pre-trained model state dict checkpoint_file (str, optional): colon-separated list of checkpoint files in the model archive to ensemble (default: 'model.pt') data_name_or_path (str, optional): point args.data to the archive at the given path/URL. Can start with '.' or './' to reuse the model archive path. """ from fairseq import hub_utils x = hub_utils.from_pretrained( model_name_or_path, checkpoint_file, data_name_or_path, archive_map=cls.hub_models(), **kwargs, ) logger.info(x["args"]) return hub_utils.GeneratorHubInterface(x["args"], x["task"], x["models"]) @classmethod def hub_models(cls): return {} class FairseqEncoderDecoderModel(BaseFairseqModel): """Base class for encoder-decoder models. Args: encoder (FairseqEncoder): the encoder decoder (FairseqDecoder): the decoder """ def __init__(self, encoder, decoder): super().__init__() self.encoder = encoder self.decoder = decoder assert isinstance(self.decoder, FairseqDecoder) def forward(self, src_tokens, src_lengths, prev_output_tokens, **kwargs): """ Run the forward pass for an encoder-decoder model. First feed a batch of source tokens through the encoder. Then, feed the encoder output and previous decoder outputs (i.e., teacher forcing) to the decoder to produce the next outputs:: encoder_out = self.encoder(src_tokens, src_lengths) return self.decoder(prev_output_tokens, encoder_out) Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (LongTensor): source sentence lengths of shape `(batch)` prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) decoder_out = self.decoder( prev_output_tokens, encoder_out=encoder_out, **kwargs ) return decoder_out def forward_decoder(self, prev_output_tokens, **kwargs): return self.decoder(prev_output_tokens, **kwargs) def extract_features(self, src_tokens, src_lengths, prev_output_tokens, **kwargs): """ Similar to *forward* but only return features. Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs """ encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) features = self.decoder.extract_features( prev_output_tokens, encoder_out=encoder_out, **kwargs ) return features def output_layer(self, features, **kwargs): """Project features to the default output size (typically vocabulary size).""" return self.decoder.output_layer(features, **kwargs) def max_positions(self): """Maximum length supported by the model.""" return (self.encoder.max_positions(), self.decoder.max_positions()) def max_decoder_positions(self): """Maximum length supported by the decoder.""" return self.decoder.max_positions() class FairseqModel(FairseqEncoderDecoderModel): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) utils.deprecation_warning( "FairseqModel is deprecated, please use FairseqEncoderDecoderModel " "or BaseFairseqModel instead", stacklevel=4, ) class FairseqMultiModel(BaseFairseqModel): """Base class for combining multiple encoder-decoder models.""" def __init__(self, encoders, decoders): super().__init__() assert encoders.keys() == decoders.keys() self.keys = list(encoders.keys()) for key in self.keys: assert isinstance(encoders[key], FairseqEncoder) assert isinstance(decoders[key], FairseqDecoder) self.models = nn.ModuleDict( { key: FairseqEncoderDecoderModel(encoders[key], decoders[key]) for key in self.keys } ) @staticmethod def build_shared_embeddings( dicts: Dict[str, Dictionary], langs: List[str], embed_dim: int, build_embedding: callable, pretrained_embed_path: Optional[str] = None, ): """ Helper function to build shared embeddings for a set of languages after checking that all dicts corresponding to those languages are equivalent. Args: dicts: Dict of lang_id to its corresponding Dictionary langs: languages that we want to share embeddings for embed_dim: embedding dimension build_embedding: callable function to actually build the embedding pretrained_embed_path: Optional path to load pretrained embeddings """ shared_dict = dicts[langs[0]] if any(dicts[lang] != shared_dict for lang in langs): raise ValueError( "--share-*-embeddings requires a joined dictionary: " "--share-encoder-embeddings requires a joined source " "dictionary, --share-decoder-embeddings requires a joined " "target dictionary, and --share-all-embeddings requires a " "joint source + target dictionary." ) return build_embedding(shared_dict, embed_dim, pretrained_embed_path) def forward(self, src_tokens, src_lengths, prev_output_tokens, **kwargs): raise NotImplementedError def max_positions(self): """Maximum length supported by the model.""" return { key: ( self.models[key].encoder.max_positions(), self.models[key].decoder.max_positions(), ) for key in self.keys } def max_decoder_positions(self): """Maximum length supported by the decoder.""" return min(model.decoder.max_positions() for model in self.models.values()) @property def encoder(self): return self.models[self.keys[0]].encoder @property def decoder(self): return self.models[self.keys[0]].decoder def forward_decoder(self, prev_output_tokens, **kwargs): return self.decoder(prev_output_tokens, **kwargs) def load_state_dict( self, state_dict, strict=True, model_cfg=None, args: Optional[Namespace] = None, ): """Copies parameters and buffers from *state_dict* into this module and its descendants. Overrides the method in :class:`nn.Module`. Compared with that method this additionally "upgrades" *state_dicts* from old checkpoints. """ if model_cfg is None and args is not None: logger.warn("using 'args' is deprecated, please update your code to use dataclass config") model_cfg = convert_namespace_to_omegaconf(args).model self.upgrade_state_dict(state_dict) new_state_dict = prune_state_dict(state_dict, model_cfg) return super().load_state_dict(new_state_dict, strict) class FairseqLanguageModel(BaseFairseqModel): """Base class for decoder-only models. Args: decoder (FairseqDecoder): the decoder """ def __init__(self, decoder): super().__init__() self.decoder = decoder assert isinstance(self.decoder, FairseqDecoder) def forward(self, src_tokens, **kwargs): """ Run the forward pass for a decoder-only model. Feeds a batch of tokens through the decoder to predict the next tokens. Args: src_tokens (LongTensor): tokens on which to condition the decoder, of shape `(batch, tgt_len)` src_lengths (LongTensor): source sentence lengths of shape `(batch)` Returns: tuple: - the decoder's output of shape `(batch, seq_len, vocab)` - a dictionary with any model-specific outputs """ return self.decoder(src_tokens, **kwargs) def forward_decoder(self, prev_output_tokens, **kwargs): return self.decoder(prev_output_tokens, **kwargs) def extract_features(self, src_tokens, **kwargs): """ Similar to *forward* but only return features. Returns: tuple: - the decoder's features of shape `(batch, seq_len, embed_dim)` - a dictionary with any model-specific outputs """ return self.decoder.extract_features(src_tokens, **kwargs) def output_layer(self, features, **kwargs): """Project features to the default output size (typically vocabulary size).""" return self.decoder.output_layer(features, **kwargs) def max_positions(self): """Maximum length supported by the model.""" return self.decoder.max_positions() def max_decoder_positions(self): """Maximum length supported by the decoder.""" return self.decoder.max_positions() @property def supported_targets(self): return {"future"} class FairseqEncoderModel(BaseFairseqModel): """Base class for encoder-only models. Args: encoder (FairseqEncoder): the encoder """ def __init__(self, encoder): super().__init__() self.encoder = encoder assert isinstance(self.encoder, FairseqEncoder) def forward(self, src_tokens, src_lengths, **kwargs): """ Run the forward pass for a encoder-only model. Feeds a batch of tokens through the encoder to generate features. Args: src_tokens (LongTensor): input tokens of shape `(batch, src_len)` src_lengths (LongTensor): source sentence lengths of shape `(batch)` Returns: the encoder's output, typically of shape `(batch, src_len, features)` """ return self.encoder(src_tokens, src_lengths, **kwargs) def get_normalized_probs(self, net_output, log_probs, sample=None): """Get normalized probabilities (or log probs) from a net's output.""" encoder_out = net_output["encoder_out"] if torch.is_tensor(encoder_out): logits = encoder_out.float() if log_probs: return F.log_softmax(logits, dim=-1) else: return F.softmax(logits, dim=-1) raise NotImplementedError def max_positions(self): """Maximum length supported by the model.""" return self.encoder.max_positions()
data2vec_vision-main
deltalm/src/fairseq/models/fairseq_model.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, List, NamedTuple, Optional import torch import torch.nn as nn from torch import Tensor EncoderOut = NamedTuple( "EncoderOut", [ ("encoder_out", Tensor), # T x B x C ("encoder_padding_mask", Optional[Tensor]), # B x T ("encoder_embedding", Optional[Tensor]), # B x T x C ("encoder_states", Optional[List[Tensor]]), # List[T x B x C] ("src_tokens", Optional[Tensor]), # B x T ("src_lengths", Optional[Tensor]), # B x 1 ], ) class FairseqEncoder(nn.Module): """Base class for encoders.""" def __init__(self, dictionary): super().__init__() self.dictionary = dictionary def forward(self, src_tokens, src_lengths=None, **kwargs): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (LongTensor): lengths of each source sentence of shape `(batch)` """ raise NotImplementedError def forward_torchscript(self, net_input: Dict[str, Tensor], **kwargs): """A TorchScript-compatible version of forward. Encoders which use additional arguments may want to override this method for TorchScript compatibility. """ if torch.jit.is_scripting(): return self.forward( src_tokens=net_input["src_tokens"], src_lengths=net_input["src_lengths"], ) else: return self.forward_non_torchscript(net_input) @torch.jit.unused def forward_non_torchscript(self, net_input: Dict[str, Tensor], **kwargs): encoder_input = { k: v for k, v in net_input.items() if k != "prev_output_tokens" } return self.forward(**encoder_input) def reorder_encoder_out(self, encoder_out, new_order): """ Reorder encoder output according to `new_order`. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: `encoder_out` rearranged according to `new_order` """ raise NotImplementedError def max_positions(self): """Maximum input length supported by the encoder.""" return 1e6 # an arbitrary large number def upgrade_state_dict(self, state_dict): """Upgrade a (possibly old) state dict for new versions of fairseq.""" return state_dict def set_num_updates(self, num_updates): """State from trainer to pass along to model at every update.""" def _apply(m): if hasattr(m, "set_num_updates") and m != self: m.set_num_updates(num_updates) self.apply(_apply)
data2vec_vision-main
deltalm/src/fairseq/models/fairseq_encoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import math import os import torch import torch.nn as nn import torch.nn.functional as F from fairseq import checkpoint_utils from fairseq.incremental_decoding_utils import with_incremental_state from fairseq.models import ( CompositeEncoder, FairseqDecoder, FairseqEncoder, FairseqEncoderDecoderModel, register_model, register_model_architecture, ) from fairseq.modules import ( DownsampledMultiHeadAttention, FairseqDropout, GradMultiply, LayerNorm, LearnedPositionalEmbedding, LinearizedConvolution, ) logger = logging.getLogger(__name__) @register_model("fconv_self_att") class FConvModelSelfAtt(FairseqEncoderDecoderModel): @classmethod def hub_models(cls): return { "conv.stories.pretrained": { "path": "https://dl.fbaipublicfiles.com/fairseq/models/stories_checkpoint.tar.gz", "checkpoint_file": "pretrained_checkpoint.pt", "tokenizer": "nltk", }, "conv.stories": { "path": "https://dl.fbaipublicfiles.com/fairseq/models/stories_checkpoint.tar.gz", "checkpoint_file": "fusion_checkpoint.pt", "tokenizer": "nltk", "pretrained": "True", "pretrained_checkpoint": "./pretrained_checkpoint.pt", }, # Test set containing dictionaries "data.stories": "https://dl.fbaipublicfiles.com/fairseq/data/stories_test.tar.bz2", } def __init__(self, encoder, decoder, pretrained_encoder=None): super().__init__(encoder, decoder) self.encoder.num_attention_layers = sum( layer is not None for layer in decoder.attention ) self.pretrained_encoder = pretrained_encoder if self.pretrained_encoder is None: encoders = {"encoder": encoder} else: encoders = {"encoder": encoder, "pretrained": self.pretrained_encoder} # for fusion model, CompositeEncoder contains both pretrained and training encoders # these are forwarded and then combined in the decoder self.encoder = CompositeEncoder(encoders) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # fmt: off parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability') parser.add_argument('--encoder-embed-dim', type=int, metavar='N', help='encoder embedding dimension') parser.add_argument('--encoder-layers', type=str, metavar='EXPR', help='encoder layers [(dim, kernel_size), ...]') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--decoder-layers', type=str, metavar='EXPR', help='decoder layers [(dim, kernel_size), ...]') parser.add_argument('--decoder-out-embed-dim', type=int, metavar='N', help='decoder output embedding dimension') parser.add_argument('--decoder-attention', type=str, metavar='EXPR', help='decoder attention [True, ...]') parser.add_argument('--self-attention', type=str, metavar='EXPR', help='decoder self-attention layers, ex: [True] + [False]*5') parser.add_argument('--multihead-attention-nheads', type=int, help='Number of heads to use in attention') parser.add_argument('--multihead-self-attention-nheads', type=int, help='Number of heads to use in self-attention') parser.add_argument('--encoder-attention', type=str, metavar='EXPR', help='encoder attention [True, ...]') parser.add_argument('--encoder-attention-nheads', type=int, help='Number of heads to use in encoder attention') parser.add_argument('--project-input', type=str, metavar='EXPR', help='Use projections in self-attention [True, ...]') parser.add_argument('--gated-attention', type=str, metavar='EXPR', help='Use GLU layers in self-attention projections [True, ...]') parser.add_argument('--downsample', type=str, metavar='EXPR', help='Use downsampling in self-attention [True, ...]') parser.add_argument('--pretrained-checkpoint', metavar='DIR', help='path to load checkpoint from pretrained model') parser.add_argument('--pretrained', type=str, metavar='EXPR', help='use pretrained model when training [True, ...]') # fmt: on @classmethod def build_model(cls, args, task): """Build a new model instance.""" trained_encoder, trained_decoder = None, None pretrained = eval(args.pretrained) if pretrained: logger.info("loading pretrained model") if not os.path.exists(args.pretrained_checkpoint): new_pretrained_checkpoint = os.path.join( args.data, args.pretrained_checkpoint ) if os.path.exists(new_pretrained_checkpoint): args.pretrained_checkpoint = new_pretrained_checkpoint trained_model = checkpoint_utils.load_model_ensemble( filenames=[args.pretrained_checkpoint], task=task, )[0][0] trained_decoder = list(trained_model.children())[1] trained_encoder = list(trained_model.children())[0] # freeze pretrained model for param in trained_decoder.parameters(): param.requires_grad = False for param in trained_encoder.parameters(): param.requires_grad = False encoder = FConvEncoder( task.source_dictionary, embed_dim=args.encoder_embed_dim, convolutions=eval(args.encoder_layers), dropout=args.dropout, max_positions=args.max_source_positions, attention=eval(args.encoder_attention), attention_nheads=args.encoder_attention_nheads, ) decoder = FConvDecoder( task.target_dictionary, embed_dim=args.decoder_embed_dim, convolutions=eval(args.decoder_layers), out_embed_dim=args.decoder_out_embed_dim, attention=eval(args.decoder_attention), dropout=args.dropout, max_positions=args.max_target_positions, selfattention=eval(args.self_attention), attention_nheads=args.multihead_attention_nheads, selfattention_nheads=args.multihead_self_attention_nheads, project_input=eval(args.project_input), gated_attention=eval(args.gated_attention), downsample=eval(args.downsample), pretrained=pretrained, trained_decoder=trained_decoder, ) model = FConvModelSelfAtt(encoder, decoder, trained_encoder) return model @property def pretrained(self): return self.pretrained_encoder is not None class FConvEncoder(FairseqEncoder): """Convolutional encoder""" def __init__( self, dictionary, embed_dim=512, max_positions=1024, convolutions=((512, 3),) * 20, dropout=0.1, attention=False, attention_nheads=1, ): super().__init__(dictionary) self.dropout_module = FairseqDropout( dropout, module_name=self.__class__.__name__ ) self.num_attention_layers = None num_embeddings = len(dictionary) self.padding_idx = dictionary.pad() self.embed_tokens = Embedding(num_embeddings, embed_dim, self.padding_idx) self.embed_positions = PositionalEmbedding( max_positions, embed_dim, self.padding_idx, ) def expand_bool_array(val): if isinstance(val, bool): # expand True into [True, True, ...] and do the same with False return [val] * len(convolutions) return val attention = expand_bool_array(attention) in_channels = convolutions[0][0] self.fc1 = Linear(embed_dim, in_channels, dropout=dropout) self.projections = nn.ModuleList() self.convolutions = nn.ModuleList() self.attention = nn.ModuleList() self.attproj = nn.ModuleList() for i, (out_channels, kernel_size) in enumerate(convolutions): self.projections.append( Linear(in_channels, out_channels) if in_channels != out_channels else None ) self.convolutions.append( ConvTBC(in_channels, out_channels * 2, kernel_size, dropout=dropout) ) self.attention.append( SelfAttention(out_channels, embed_dim, attention_nheads) if attention[i] else None ) in_channels = out_channels self.fc2 = Linear(in_channels, embed_dim) def forward(self, src_tokens, src_lengths): # embed tokens and positions x = self.embed_tokens(src_tokens) + self.embed_positions(src_tokens) x = self.dropout_module(x) input_embedding = x.transpose(0, 1) # project to size of convolution x = self.fc1(x) encoder_padding_mask = src_tokens.eq(self.padding_idx).t() # -> T x B if not encoder_padding_mask.any(): encoder_padding_mask = None # B x T x C -> T x B x C x = x.transpose(0, 1) # temporal convolutions for proj, conv, attention in zip( self.projections, self.convolutions, self.attention ): residual = x if proj is None else proj(x) if encoder_padding_mask is not None: x = x.masked_fill(encoder_padding_mask.unsqueeze(-1), 0) x = self.dropout_module(x) padding_l = (conv.kernel_size[0] - 1) // 2 padding_r = conv.kernel_size[0] // 2 x = F.pad(x, (0, 0, 0, 0, padding_l, padding_r)) x = conv(x) x = F.glu(x, dim=2) if attention is not None: x = attention(x) x = (x + residual) * math.sqrt(0.5) # T x B x C -> B x T x C x = x.transpose(1, 0) # project back to size of embedding x = self.fc2(x) if encoder_padding_mask is not None: encoder_padding_mask = encoder_padding_mask.t() # -> B x T x = x.masked_fill(encoder_padding_mask.unsqueeze(-1), 0) # scale gradients (this only affects backward, not forward) x = GradMultiply.apply(x, 1.0 / (2.0 * self.num_attention_layers)) # add output to input embedding for attention y = (x + input_embedding.transpose(0, 1)) * math.sqrt(0.5) return { "encoder_out": (x, y), "encoder_padding_mask": encoder_padding_mask, # B x T } def reorder_encoder_out(self, encoder_out, new_order): encoder_out["encoder_out"] = tuple( eo.index_select(0, new_order) for eo in encoder_out["encoder_out"] ) if encoder_out["encoder_padding_mask"] is not None: encoder_out["encoder_padding_mask"] = encoder_out[ "encoder_padding_mask" ].index_select(0, new_order) if "pretrained" in encoder_out: encoder_out["pretrained"]["encoder_out"] = tuple( eo.index_select(0, new_order) for eo in encoder_out["pretrained"]["encoder_out"] ) return encoder_out def max_positions(self): """Maximum input length supported by the encoder.""" return self.embed_positions.max_positions @with_incremental_state class FConvDecoder(FairseqDecoder): """Convolutional decoder""" def __init__( self, dictionary, embed_dim=512, out_embed_dim=256, max_positions=1024, convolutions=((512, 3),) * 8, attention=True, dropout=0.1, selfattention=False, attention_nheads=1, selfattention_nheads=1, project_input=False, gated_attention=False, downsample=False, pretrained=False, trained_decoder=None, ): super().__init__(dictionary) self.register_buffer("version", torch.Tensor([2])) self.pretrained = pretrained self.pretrained_decoder = trained_decoder self.dropout_module = FairseqDropout( dropout, module_name=self.__class__.__name__ ) self.need_attn = True in_channels = convolutions[0][0] def expand_bool_array(val): if isinstance(val, bool): # expand True into [True, True, ...] and do the same with False return [val] * len(convolutions) return val attention = expand_bool_array(attention) selfattention = expand_bool_array(selfattention) if not isinstance(attention, list) or len(attention) != len(convolutions): raise ValueError( "Attention is expected to be a list of booleans of " "length equal to the number of layers." ) num_embeddings = len(dictionary) padding_idx = dictionary.pad() self.embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx) self.embed_positions = PositionalEmbedding( max_positions, embed_dim, padding_idx, ) self.fc1 = Linear(embed_dim, in_channels, dropout=dropout) self.projections = nn.ModuleList() self.convolutions = nn.ModuleList() self.attention = nn.ModuleList() self.selfattention = nn.ModuleList() self.attproj = nn.ModuleList() for i, (out_channels, kernel_size) in enumerate(convolutions): self.projections.append( Linear(in_channels, out_channels) if in_channels != out_channels else None ) self.convolutions.append( LinearizedConv1d( in_channels, out_channels * 2, kernel_size, padding=(kernel_size - 1), dropout=dropout, ) ) self.attention.append( DownsampledMultiHeadAttention( out_channels, embed_dim, attention_nheads, project_input=project_input, gated=False, downsample=False, ) if attention[i] else None ) self.attproj.append( Linear(out_channels, embed_dim, dropout=dropout) if attention[i] else None ) self.selfattention.append( SelfAttention( out_channels, embed_dim, selfattention_nheads, project_input=project_input, gated=gated_attention, downsample=downsample, ) if selfattention[i] else None ) in_channels = out_channels self.fc2 = Linear(in_channels, out_embed_dim) self.fc3 = Linear(out_embed_dim, num_embeddings, dropout=dropout) # model fusion if self.pretrained: # independent gates are learned from the concatenated input self.gate1 = nn.Sequential( Linear(out_embed_dim * 2, out_embed_dim), nn.Sigmoid() ) self.gate2 = nn.Sequential( Linear(out_embed_dim * 2, out_embed_dim), nn.Sigmoid() ) # pretrained and trained models are joined self.joining = nn.Sequential( Linear(out_embed_dim * 2, out_embed_dim * 2), LayerNorm(out_embed_dim * 2), nn.GLU(), Linear(out_embed_dim, out_embed_dim * 2), LayerNorm(out_embed_dim * 2), nn.GLU(), Linear(out_embed_dim, out_embed_dim), LayerNorm(out_embed_dim), ) # pretrained model contains an output layer that is nhid -> vocab size # but the models are combined in their hidden state # the hook stores the output of the pretrained model forward self.pretrained_outputs = {} def save_output(): def hook(a, b, output): self.pretrained_outputs["out"] = output return hook self.pretrained_decoder.fc2.register_forward_hook(save_output()) def forward(self, prev_output_tokens, encoder_out): trained_encoder_out = encoder_out["pretrained"] if self.pretrained else None encoder_out = encoder_out["encoder"]["encoder_out"] encoder_a, encoder_b = self._split_encoder_out(encoder_out) # embed positions positions = self.embed_positions(prev_output_tokens) # embed tokens and positions x = self.embed_tokens(prev_output_tokens) + positions x = self.dropout_module(x) target_embedding = x.transpose(0, 1) # project to size of convolution x = self.fc1(x) # B x T x C -> T x B x C x = x.transpose(0, 1) # temporal convolutions avg_attn_scores = None for proj, conv, attention, selfattention, attproj in zip( self.projections, self.convolutions, self.attention, self.selfattention, self.attproj, ): residual = x if proj is None else proj(x) x = self.dropout_module(x) x = conv(x) x = F.glu(x, dim=2) # attention if attention is not None: r = x x, attn_scores = attention( attproj(x) + target_embedding, encoder_a, encoder_b ) x = x + r if not self.training and self.need_attn: if avg_attn_scores is None: avg_attn_scores = attn_scores else: avg_attn_scores.add_(attn_scores) if selfattention is not None: x = selfattention(x) x = (x + residual) * math.sqrt(0.5) # T x B x C -> B x T x C x = x.transpose(0, 1) # project back to size of vocabulary x = self.fc2(x) x = self.dropout_module(x) if not self.pretrained: x = self.fc3(x) # fusion gating if self.pretrained: trained_x, _ = self.pretrained_decoder.forward( prev_output_tokens, trained_encoder_out ) y = torch.cat([x, self.pretrained_outputs["out"]], dim=-1) gate1 = self.gate1(y) gate2 = self.gate2(y) gated_x1 = gate1 * x gated_x2 = gate2 * self.pretrained_outputs["out"] fusion = torch.cat([gated_x1, gated_x2], dim=-1) fusion = self.joining(fusion) fusion_output = self.fc3(fusion) return fusion_output, avg_attn_scores else: return x, avg_attn_scores def max_positions(self): """Maximum output length supported by the decoder.""" return self.embed_positions.max_positions def make_generation_fast_(self, need_attn=False, **kwargs): self.need_attn = need_attn def _split_encoder_out(self, encoder_out): """Split and transpose encoder outputs.""" # transpose only once to speed up attention layers encoder_a, encoder_b = encoder_out encoder_a = encoder_a.transpose(0, 1).contiguous() encoder_b = encoder_b.transpose(0, 1).contiguous() result = (encoder_a, encoder_b) return result class SelfAttention(nn.Module): def __init__( self, out_channels, embed_dim, num_heads, project_input=False, gated=False, downsample=False, ): super().__init__() self.attention = DownsampledMultiHeadAttention( out_channels, embed_dim, num_heads, dropout=0, bias=True, project_input=project_input, gated=gated, downsample=downsample, ) self.in_proj_q = Linear(out_channels, embed_dim) self.in_proj_k = Linear(out_channels, embed_dim) self.in_proj_v = Linear(out_channels, embed_dim) self.ln = LayerNorm(out_channels) def forward(self, x): residual = x query = self.in_proj_q(x) key = self.in_proj_k(x) value = self.in_proj_v(x) x, _ = self.attention( query, key, value, mask_future_timesteps=True, use_scalar_bias=True ) return self.ln(x + residual) def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) m.weight.data.normal_(0, 0.1) return m def PositionalEmbedding(num_embeddings, embedding_dim, padding_idx): m = LearnedPositionalEmbedding(num_embeddings, embedding_dim, padding_idx) m.weight.data.normal_(0, 0.1) return m def Linear(in_features, out_features, dropout=0.0): """Weight-normalized Linear layer (input: N x T x C)""" m = nn.Linear(in_features, out_features) m.weight.data.normal_(mean=0, std=math.sqrt((1 - dropout) / in_features)) m.bias.data.zero_() return m def LinearizedConv1d(in_channels, out_channels, kernel_size, dropout=0.0, **kwargs): """Weight-normalized Conv1d layer optimized for decoding""" m = LinearizedConvolution(in_channels, out_channels, kernel_size, **kwargs) std = math.sqrt((4 * (1.0 - dropout)) / (m.kernel_size[0] * in_channels)) m.weight.data.normal_(mean=0, std=std) m.bias.data.zero_() return m def ConvTBC(in_channels, out_channels, kernel_size, dropout=0.0, **kwargs): """Weight-normalized Conv1d layer""" from fairseq.modules import ConvTBC m = ConvTBC(in_channels, out_channels, kernel_size, **kwargs) std = math.sqrt((4 * (1.0 - dropout)) / (m.kernel_size[0] * in_channels)) m.weight.data.normal_(mean=0, std=std) m.bias.data.zero_() return m @register_model_architecture("fconv_self_att", "fconv_self_att") def base_architecture(args): args.dropout = getattr(args, "dropout", 0.1) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_layers = getattr(args, "encoder_layers", "[(512, 3)] * 3") args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_layers = getattr(args, "decoder_layers", "[(512, 3)] * 8") args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 256) args.decoder_attention = getattr(args, "decoder_attention", "True") args.self_attention = getattr(args, "self_attention", "False") args.encoder_attention = getattr(args, "encoder_attention", "False") args.multihead_attention_nheads = getattr(args, "multihead_attention_nheads", 1) args.multihead_self_attention_nheads = getattr( args, "multihead_self_attention_nheads", 1 ) args.encoder_attention_nheads = getattr(args, "encoder_attention_nheads", 1) args.project_input = getattr(args, "project_input", "False") args.gated_attention = getattr(args, "gated_attention", "False") args.downsample = getattr(args, "downsample", "False") args.pretrained_checkpoint = getattr(args, "pretrained_checkpoint", "") args.pretrained = getattr(args, "pretrained", "False") @register_model_architecture("fconv_self_att", "fconv_self_att_wp") def fconv_self_att_wp(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 256) args.encoder_layers = getattr( args, "encoder_layers", "[(128, 3)] * 2 + [(512,3)] * 1" ) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 256) args.decoder_layers = getattr( args, "decoder_layers", "[(512, 4)] * 4 + [(768, 4)] * 2 + [(1024, 4)] * 1" ) args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 256) args.self_attention = getattr(args, "self_attention", "True") args.multihead_self_attention_nheads = getattr( args, "multihead_self_attention_nheads", 4 ) args.project_input = getattr(args, "project_input", "True") args.gated_attention = getattr(args, "gated_attention", "True") args.downsample = getattr(args, "downsample", "True") base_architecture(args)
data2vec_vision-main
deltalm/src/fairseq/models/fconv_self_att.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from typing import Any, Dict import torch from fairseq import checkpoint_utils from fairseq.data.legacy.masked_lm_dictionary import MaskedLMDictionary from fairseq.models import register_model, register_model_architecture from fairseq.models.transformer import ( TransformerDecoder, TransformerEncoder, TransformerModel, base_architecture as transformer_base_architecture, ) from fairseq.file_io import PathManager @register_model("transformer_from_pretrained_infoxlm") class TransformerFromPretrainedInfoXLMModel(TransformerModel): @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" TransformerModel.add_args(parser) parser.add_argument( "--pretrained-infoxlm-checkpoint", type=str, metavar="STR", help="InfoXLM model to use for initializing transformer encoder and/or decoder", ) parser.add_argument( "--init-encoder-only", action="store_true", help="if set, don't load the InfoXLM weights and embeddings into decoder", ) parser.add_argument( "--init-decoder-only", action="store_true", help="if set, don't load the InfoXLM weights and embeddings into encoder", ) @classmethod def build_model(self, args, task, cls_dictionary=MaskedLMDictionary): # assert hasattr(args, "pretrained_infoxlm_checkpoint"), ( # "You must specify a path for --pretrained-infoxlm-checkpoint to use " # "--arch transformer_from_pretrained_infoxlm" # ) # assert isinstance(task.source_dictionary, cls_dictionary) and isinstance( # task.target_dictionary, cls_dictionary # ), ( # "You should use a MaskedLMDictionary when using --arch " # "transformer_from_pretrained_xlm because the pretrained XLM model " # "was trained using data binarized with MaskedLMDictionary. " # "For translation, you may want to use --task " # "translation_from_pretrained_xlm" # ) # assert not ( # getattr(args, "init_encoder_only", False) # and getattr(args, "init_decoder_only", False) # ), "Only one of --init-encoder-only and --init-decoder-only can be set." return super().build_model(args, task) @classmethod def build_encoder(cls, args, src_dict, embed_tokens): return TransformerEncoderFromPretrainedInfoXLM(args, src_dict, embed_tokens) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): return TransformerDecoderFromPretrainedInfoXLM(args, tgt_dict, embed_tokens, no_encoder_attn=getattr(args, "no_cross_attention", False)) def upgrade_state_dict_with_infoxlm_weights( state_dict: Dict[str, Any], pretrained_infoxlm_checkpoint: str, num_layers: int, shared_cross_attn: bool=False ) -> Dict[str, Any]: """ Load XLM weights into a Transformer encoder or decoder model. Args: state_dict: state dict for either TransformerEncoder or TransformerDecoder pretrained_infoxlm_checkpoint: checkpoint to load XLM weights from Raises: AssertionError: If architecture (num layers, attention heads, etc.) does not match between the current Transformer encoder or decoder and the pretrained_xlm_checkpoint """ if not os.path.exists(pretrained_infoxlm_checkpoint): raise IOError("Model file not found: {}".format(pretrained_infoxlm_checkpoint)) # state = checkpoint_utils.load_checkpoint_to_cpu(pretrained_infoxlm_checkpoint) with open(PathManager.get_local_path(pretrained_infoxlm_checkpoint), "rb") as f: state = torch.load(f, map_location=torch.device("cpu")) infoxlm_state_dict = state["model"] # print(state_dict.keys()) for key in infoxlm_state_dict.keys(): if 'layers' in key and int(key.split('.')[3]) > num_layers-1: continue if not key.startswith('decoder.'): continue if 'lm_head' not in key: if 'in_proj_weight' in key: q, k ,v = infoxlm_state_dict[key].chunk(3, dim=0) state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'q_proj.weight')] = q state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'k_proj.weight')] = k state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'v_proj.weight')] = v if shared_cross_attn: state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'q_proj.weight').replace('self_attn', 'encoder_attn')] = q state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'k_proj.weight').replace('self_attn', 'encoder_attn')] = k state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'v_proj.weight').replace('self_attn', 'encoder_attn')] = v elif 'in_proj_bias' in key: q, k ,v = infoxlm_state_dict[key].chunk(3, dim=0) state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'q_proj.bias')] = q state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'k_proj.bias')] = k state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'v_proj.bias')] = v if shared_cross_attn: state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'q_proj.bias').replace('self_attn', 'encoder_attn')] = q state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'k_proj.bias').replace('self_attn', 'encoder_attn')] = k state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'v_proj.bias').replace('self_attn', 'encoder_attn')] = v elif 'emb_layer_norm' in key: state_dict[key.replace('decoder.sentence_encoder.emb_layer_norm', 'layernorm_embedding')] = infoxlm_state_dict[key] elif 'embed_positions' in key: state_dict[key.replace('decoder.sentence_encoder.', '')] = infoxlm_state_dict[key][:state_dict[key.replace('decoder.sentence_encoder.', '')].size(0)] elif 'embed_tokens' in key: state_dict[key.replace('decoder.sentence_encoder.', '')][:infoxlm_state_dict[key].size(0)] = infoxlm_state_dict[key] else: state_dict[key.replace('decoder.sentence_encoder.', '')] = infoxlm_state_dict[key] return state_dict class TransformerEncoderFromPretrainedInfoXLM(TransformerEncoder): def __init__(self, args, dictionary, embed_tokens): super().__init__(args, dictionary, embed_tokens) if not getattr(args, "init_encoder_only", False): return assert hasattr(args, "pretrained_infoxlm_checkpoint"), ( "--pretrained-infoxlm-checkpoint must be specified to load Transformer " "encoder from pretrained XLM" ) if hasattr(args, "pretrained_infoxlm_checkpoint") and os.path.exists(args.pretrained_infoxlm_checkpoint): infoxlm_loaded_state_dict = upgrade_state_dict_with_infoxlm_weights( state_dict=self.state_dict(), pretrained_infoxlm_checkpoint=args.pretrained_infoxlm_checkpoint, num_layers=args.encoder_layers, ) self.load_state_dict(infoxlm_loaded_state_dict, strict=False) print("Loading encoder from {0}".format(args.pretrained_infoxlm_checkpoint)) class TransformerDecoderFromPretrainedInfoXLM(TransformerDecoder): def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False): super().__init__(args, dictionary, embed_tokens, no_encoder_attn) if not getattr(args, "init_decoder_only", False): return assert hasattr(args, "pretrained_infoxlm_checkpoint"), ( "--pretrained-infoxlm-checkpoint must be specified to load Transformer " "decoder from pretrained XLM" ) if hasattr(args, "pretrained_infoxlm_checkpoint") and os.path.exists(args.pretrained_infoxlm_checkpoint): infoxlm_loaded_state_dict = upgrade_state_dict_with_infoxlm_weights( state_dict=self.state_dict(), pretrained_infoxlm_checkpoint=args.pretrained_infoxlm_checkpoint, num_layers=args.decoder_layers, ) self.load_state_dict(infoxlm_loaded_state_dict, strict=False) print("Loading decoder from {0}".format(args.pretrained_infoxlm_checkpoint)) @register_model_architecture( "transformer_from_pretrained_infoxlm", "transformer_from_pretrained_infoxlm" ) def base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 3072) args.encoder_layers = getattr(args, "encoder_layers", 12) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 12) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", True) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "gelu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.no_cross_attention = getattr(args, "no_cross_attention", False) args.cross_self_attention = getattr(args, "cross_self_attention", False) args.layer_wise_attention = getattr(args, "layer_wise_attention", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.no_scale_embedding = getattr(args, "no_scale_embedding", True) args.layernorm_embedding = getattr(args, "layernorm_embedding", True) args.init_encoder_only = getattr(args, "init_encoder_only", False) args.init_decoder_only = getattr(args, "init_decoder_only", False) args.max_positions = getattr(args, "max_positions", 512)
data2vec_vision-main
deltalm/src/fairseq/models/transformer_from_pretrained_infoxlm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq import utils from fairseq.models import ( FairseqLanguageModel, register_model, register_model_architecture, ) from fairseq.models.fconv import FConvDecoder @register_model("fconv_lm") class FConvLanguageModel(FairseqLanguageModel): def __init__(self, decoder): super().__init__(decoder) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" parser.add_argument( "--dropout", type=float, metavar="D", help="dropout probability" ) parser.add_argument( "--decoder-embed-dim", type=int, metavar="N", help="decoder embedding dimension", ) parser.add_argument( "--decoder-layers", type=str, metavar="EXPR", help="decoder layers [(dim, kernel_size), ...]", ) parser.add_argument( "--decoder-out-embed-dim", type=int, metavar="N", help="decoder output embedding dimension", ) parser.add_argument( "--adaptive-softmax-cutoff", metavar="EXPR", help="comma separated list of adaptive softmax cutoff points. " "Must be used with adaptive_loss criterion", ) parser.add_argument( "--adaptive-softmax-dropout", type=float, metavar="D", help="sets adaptive softmax dropout for the tail projections", ) parser.add_argument( "--decoder-attention", type=str, metavar="EXPR", help="decoder attention [True, ...]", ) @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_lm_architecture(args) if hasattr(args, "max_target_positions") and not hasattr( args, "tokens_per_sample" ): args.tokens_per_sample = args.max_target_positions decoder = FConvDecoder( dictionary=task.target_dictionary, embed_dim=args.decoder_embed_dim, convolutions=eval(args.decoder_layers), out_embed_dim=args.decoder_embed_dim, attention=eval(args.decoder_attention), dropout=args.dropout, max_positions=args.tokens_per_sample, share_embed=False, positional_embeddings=False, adaptive_softmax_cutoff=( utils.eval_str_list(args.adaptive_softmax_cutoff, type=int) if args.criterion == "adaptive_loss" else None ), adaptive_softmax_dropout=args.adaptive_softmax_dropout, ) return FConvLanguageModel(decoder) @register_model_architecture("fconv_lm", "fconv_lm") def base_lm_architecture(args): args.dropout = getattr(args, "dropout", 0.1) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 128) args.decoder_layers = getattr(args, "decoder_layers", "[(1268, 4)] * 13") args.decoder_attention = getattr(args, "decoder_attention", "False") args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) @register_model_architecture("fconv_lm", "fconv_lm_dauphin_wikitext103") def fconv_lm_dauphin_wikitext103(args): layers = "[(850, 6)] * 3" layers += " + [(850, 1)] * 1" layers += " + [(850, 5)] * 4" layers += " + [(850, 1)] * 1" layers += " + [(850, 4)] * 3" layers += " + [(1024, 4)] * 1" layers += " + [(2048, 4)] * 1" args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 280) args.decoder_layers = getattr(args, "decoder_layers", layers) args.decoder_attention = getattr(args, "decoder_attention", "False") args.adaptive_softmax_cutoff = getattr( args, "adaptive_softmax_cutoff", "10000,20000,200000" ) base_lm_architecture(args) @register_model_architecture("fconv_lm", "fconv_lm_dauphin_gbw") def fconv_lm_dauphin_gbw(args): layers = "[(512, 5)]" layers += " + [(128, 1, 0), (128, 5, 0), (512, 1, 3)] * 3" layers += " + [(512, 1, 0), (512, 5, 0), (1024, 1, 3)] * 3" layers += " + [(1024, 1, 0), (1024, 5, 0), (2048, 1, 3)] * 6" layers += " + [(1024, 1, 0), (1024, 5, 0), (4096, 1, 3)]" args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 128) args.decoder_layers = getattr(args, "decoder_layers", layers) args.decoder_attention = getattr(args, "decoder_attention", "False") args.adaptive_softmax_cutoff = getattr( args, "adaptive_softmax_cutoff", "10000,50000,200000" ) base_lm_architecture(args)
data2vec_vision-main
deltalm/src/fairseq/models/fconv_lm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq import utils from fairseq.models import ( FairseqLanguageModel, register_model, register_model_architecture, ) from fairseq.models.lstm import Embedding, LSTMDecoder DEFAULT_MAX_TARGET_POSITIONS = 1e5 @register_model("lstm_lm") class LSTMLanguageModel(FairseqLanguageModel): def __init__(self, decoder): super().__init__(decoder) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # fmt: off parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--decoder-embed-path', type=str, metavar='STR', help='path to pre-trained decoder embedding') parser.add_argument('--decoder-hidden-size', type=int, metavar='N', help='decoder hidden size') parser.add_argument('--decoder-layers', type=int, metavar='N', help='number of decoder layers') parser.add_argument('--decoder-out-embed-dim', type=int, metavar='N', help='decoder output embedding dimension') parser.add_argument('--decoder-attention', type=str, metavar='BOOL', help='decoder attention') parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR', help='comma separated list of adaptive softmax cutoff points. ' 'Must be used with adaptive_loss criterion') parser.add_argument('--residuals', default=False, action='store_true', help='applying residuals between LSTM layers') # Granular dropout settings (if not specified these default to --dropout) parser.add_argument('--decoder-dropout-in', type=float, metavar='D', help='dropout probability for decoder input embedding') parser.add_argument('--decoder-dropout-out', type=float, metavar='D', help='dropout probability for decoder output') parser.add_argument('--share-decoder-input-output-embed', default=False, action='store_true', help='share decoder input and output embeddings') # fmt: on @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_architecture(args) if getattr(args, "max_target_positions", None) is not None: max_target_positions = args.max_target_positions else: max_target_positions = getattr( args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS ) def load_pretrained_embedding_from_file(embed_path, dictionary, embed_dim): num_embeddings = len(dictionary) padding_idx = dictionary.pad() embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx) embed_dict = utils.parse_embedding(embed_path) utils.print_embed_overlap(embed_dict, dictionary) return utils.load_embedding(embed_dict, dictionary, embed_tokens) pretrained_decoder_embed = None if args.decoder_embed_path: pretrained_decoder_embed = load_pretrained_embedding_from_file( args.decoder_embed_path, task.target_dictionary, args.decoder_embed_dim ) if args.share_decoder_input_output_embed: # double check all parameters combinations are valid if task.source_dictionary != task.target_dictionary: raise ValueError( "--share-decoder-input-output-embeddings requires a joint dictionary" ) if args.decoder_embed_dim != args.decoder_out_embed_dim: raise ValueError( "--share-decoder-input-output-embeddings requires " "--decoder-embed-dim to match --decoder-out-embed-dim" ) decoder = LSTMDecoder( dictionary=task.dictionary, embed_dim=args.decoder_embed_dim, hidden_size=args.decoder_hidden_size, out_embed_dim=args.decoder_out_embed_dim, num_layers=args.decoder_layers, dropout_in=args.decoder_dropout_in, dropout_out=args.decoder_dropout_out, attention=False, # decoder-only language model doesn't support attention encoder_output_units=0, pretrained_embed=pretrained_decoder_embed, share_input_output_embed=args.share_decoder_input_output_embed, adaptive_softmax_cutoff=( utils.eval_str_list(args.adaptive_softmax_cutoff, type=int) if args.criterion == "adaptive_loss" else None ), max_target_positions=max_target_positions, residuals=args.residuals, ) return cls(decoder) @register_model_architecture("lstm_lm", "lstm_lm") def base_architecture(args): args.dropout = getattr(args, "dropout", 0.1) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_hidden_size = getattr( args, "decoder_hidden_size", args.decoder_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 1) args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 512) args.decoder_attention = getattr(args, "decoder_attention", "0") args.decoder_dropout_in = getattr(args, "decoder_dropout_in", args.dropout) args.decoder_dropout_out = getattr(args, "decoder_dropout_out", args.dropout) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.adaptive_softmax_cutoff = getattr( args, "adaptive_softmax_cutoff", "10000,50000,200000" ) args.residuals = getattr(args, "residuals", False)
data2vec_vision-main
deltalm/src/fairseq/models/lstm_lm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import OrderedDict from fairseq import utils from fairseq.models import ( FairseqMultiModel, register_model, register_model_architecture, ) from fairseq.models.transformer import ( Embedding, TransformerDecoder, TransformerEncoder, TransformerModel, base_architecture, ) @register_model("multilingual_transformer") class MultilingualTransformerModel(FairseqMultiModel): """Train Transformer models for multiple language pairs simultaneously. Requires `--task multilingual_translation`. We inherit all arguments from TransformerModel and assume that all language pairs use a single Transformer architecture. In addition, we provide several options that are specific to the multilingual setting. Args: --share-encoder-embeddings: share encoder embeddings across all source languages --share-decoder-embeddings: share decoder embeddings across all target languages --share-encoders: share all encoder params (incl. embeddings) across all source languages --share-decoders: share all decoder params (incl. embeddings) across all target languages """ def __init__(self, encoders, decoders): super().__init__(encoders, decoders) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" TransformerModel.add_args(parser) parser.add_argument( "--share-encoder-embeddings", action="store_true", help="share encoder embeddings across languages", ) parser.add_argument( "--share-decoder-embeddings", action="store_true", help="share decoder embeddings across languages", ) parser.add_argument( "--share-encoders", action="store_true", help="share encoders across languages", ) parser.add_argument( "--share-decoders", action="store_true", help="share decoders across languages", ) @classmethod def build_model(cls, args, task): """Build a new model instance.""" from fairseq.tasks.multilingual_translation import MultilingualTranslationTask assert isinstance(task, MultilingualTranslationTask) # make sure all arguments are present in older models base_multilingual_architecture(args) if not hasattr(args, "max_source_positions"): args.max_source_positions = 1024 if not hasattr(args, "max_target_positions"): args.max_target_positions = 1024 src_langs = [lang_pair.split("-")[0] for lang_pair in task.model_lang_pairs] tgt_langs = [lang_pair.split("-")[1] for lang_pair in task.model_lang_pairs] if args.share_encoders: args.share_encoder_embeddings = True if args.share_decoders: args.share_decoder_embeddings = True def build_embedding(dictionary, embed_dim, path=None): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) # if provided, load from preloaded dictionaries if path: embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) return emb # build shared embeddings (if applicable) shared_encoder_embed_tokens, shared_decoder_embed_tokens = None, None if args.share_all_embeddings: if args.encoder_embed_dim != args.decoder_embed_dim: raise ValueError( "--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim" ) if args.decoder_embed_path and ( args.decoder_embed_path != args.encoder_embed_path ): raise ValueError( "--share-all-embeddings not compatible with --decoder-embed-path" ) shared_encoder_embed_tokens = FairseqMultiModel.build_shared_embeddings( dicts=task.dicts, langs=task.langs, embed_dim=args.encoder_embed_dim, build_embedding=build_embedding, pretrained_embed_path=args.encoder_embed_path, ) shared_decoder_embed_tokens = shared_encoder_embed_tokens args.share_decoder_input_output_embed = True else: if args.share_encoder_embeddings: shared_encoder_embed_tokens = FairseqMultiModel.build_shared_embeddings( dicts=task.dicts, langs=src_langs, embed_dim=args.encoder_embed_dim, build_embedding=build_embedding, pretrained_embed_path=args.encoder_embed_path, ) if args.share_decoder_embeddings: shared_decoder_embed_tokens = FairseqMultiModel.build_shared_embeddings( dicts=task.dicts, langs=tgt_langs, embed_dim=args.decoder_embed_dim, build_embedding=build_embedding, pretrained_embed_path=args.decoder_embed_path, ) # encoders/decoders for each language lang_encoders, lang_decoders = {}, {} def get_encoder(lang): if lang not in lang_encoders: if shared_encoder_embed_tokens is not None: encoder_embed_tokens = shared_encoder_embed_tokens else: encoder_embed_tokens = build_embedding( task.dicts[lang], args.encoder_embed_dim, args.encoder_embed_path, ) lang_encoders[lang] = cls._get_module_class( True, args, task.dicts[lang], encoder_embed_tokens, src_langs ) return lang_encoders[lang] def get_decoder(lang): if lang not in lang_decoders: if shared_decoder_embed_tokens is not None: decoder_embed_tokens = shared_decoder_embed_tokens else: decoder_embed_tokens = build_embedding( task.dicts[lang], args.decoder_embed_dim, args.decoder_embed_path, ) lang_decoders[lang] = cls._get_module_class( False, args, task.dicts[lang], decoder_embed_tokens, tgt_langs ) return lang_decoders[lang] # shared encoders/decoders (if applicable) shared_encoder, shared_decoder = None, None if args.share_encoders: shared_encoder = get_encoder(src_langs[0]) if args.share_decoders: shared_decoder = get_decoder(tgt_langs[0]) encoders, decoders = OrderedDict(), OrderedDict() for lang_pair, src, tgt in zip(task.model_lang_pairs, src_langs, tgt_langs): encoders[lang_pair] = ( shared_encoder if shared_encoder is not None else get_encoder(src) ) decoders[lang_pair] = ( shared_decoder if shared_decoder is not None else get_decoder(tgt) ) return MultilingualTransformerModel(encoders, decoders) @classmethod def _get_module_class(cls, is_encoder, args, lang_dict, embed_tokens, langs): module_class = TransformerEncoder if is_encoder else TransformerDecoder return module_class(args, lang_dict, embed_tokens) def load_state_dict(self, state_dict, strict=True, model_cfg=None): state_dict_subset = state_dict.copy() for k, _ in state_dict.items(): assert k.startswith("models.") lang_pair = k.split(".")[1] if lang_pair not in self.models: del state_dict_subset[k] super().load_state_dict(state_dict_subset, strict=strict, model_cfg=model_cfg) @register_model_architecture("multilingual_transformer", "multilingual_transformer") def base_multilingual_architecture(args): base_architecture(args) args.share_encoder_embeddings = getattr(args, "share_encoder_embeddings", False) args.share_decoder_embeddings = getattr(args, "share_decoder_embeddings", False) args.share_encoders = getattr(args, "share_encoders", False) args.share_decoders = getattr(args, "share_decoders", False) @register_model_architecture( "multilingual_transformer", "multilingual_transformer_iwslt_de_en" ) def multilingual_transformer_iwslt_de_en(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4) args.encoder_layers = getattr(args, "encoder_layers", 6) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 1024) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4) args.decoder_layers = getattr(args, "decoder_layers", 6) base_multilingual_architecture(args)
data2vec_vision-main
deltalm/src/fairseq/models/multilingual_transformer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, List, Optional, Tuple import torch.nn as nn from fairseq import utils from torch import Tensor class FairseqDecoder(nn.Module): """Base class for decoders.""" def __init__(self, dictionary): super().__init__() self.dictionary = dictionary self.onnx_trace = False def forward(self, prev_output_tokens, encoder_out=None, **kwargs): """ Args: prev_output_tokens (LongTensor): shifted output tokens of shape `(batch, tgt_len)`, for teacher forcing encoder_out (dict, optional): output from the encoder, used for encoder-side attention Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ x, extra = self.extract_features( prev_output_tokens, encoder_out=encoder_out, **kwargs ) x = self.output_layer(x) return x, extra def extract_features(self, prev_output_tokens, encoder_out=None, **kwargs): """ Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs """ raise NotImplementedError def output_layer(self, features, **kwargs): """ Project features to the default output size, e.g., vocabulary size. Args: features (Tensor): features returned by *extract_features*. """ raise NotImplementedError def get_normalized_probs( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): """Get normalized probabilities (or log probs) from a net's output.""" if hasattr(self, "adaptive_softmax") and self.adaptive_softmax is not None: if sample is not None: assert "target" in sample target = sample["target"] else: target = None out = self.adaptive_softmax.get_log_prob(net_output[0], target=target) return out.exp_() if not log_probs else out logits = net_output[0] if log_probs: return utils.log_softmax(logits, dim=-1, onnx_trace=self.onnx_trace) else: return utils.softmax(logits, dim=-1, onnx_trace=self.onnx_trace) def max_positions(self): """Maximum input length supported by the decoder.""" return 1e6 # an arbitrary large number def upgrade_state_dict(self, state_dict): """Upgrade a (possibly old) state dict for new versions of fairseq.""" return state_dict def prepare_for_onnx_export_(self): self.onnx_trace = True
data2vec_vision-main
deltalm/src/fairseq/models/fairseq_decoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """isort:skip_file""" import argparse import importlib import os from fairseq.dataclass import FairseqDataclass from fairseq.dataclass.utils import merge_with_parent, populate_dataclass from hydra.core.config_store import ConfigStore from .composite_encoder import CompositeEncoder from .distributed_fairseq_model import DistributedFairseqModel from .fairseq_decoder import FairseqDecoder from .fairseq_encoder import FairseqEncoder from .fairseq_incremental_decoder import FairseqIncrementalDecoder from .fairseq_model import ( BaseFairseqModel, FairseqEncoderDecoderModel, FairseqEncoderModel, FairseqLanguageModel, FairseqModel, FairseqMultiModel, ) MODEL_REGISTRY = {} MODEL_DATACLASS_REGISTRY = {} ARCH_MODEL_REGISTRY = {} ARCH_MODEL_NAME_REGISTRY = {} ARCH_MODEL_INV_REGISTRY = {} ARCH_CONFIG_REGISTRY = {} __all__ = [ "BaseFairseqModel", "CompositeEncoder", "DistributedFairseqModel", "FairseqDecoder", "FairseqEncoder", "FairseqEncoderDecoderModel", "FairseqEncoderModel", "FairseqIncrementalDecoder", "FairseqLanguageModel", "FairseqModel", "FairseqMultiModel", ] def build_model(cfg: FairseqDataclass, task): model = None model_type = getattr(cfg, "_name", None) or getattr(cfg, "arch", None) if not model_type and len(cfg) == 1: # this is hit if config object is nested in directory that is named after model type model_type = next(iter(cfg)) if model_type in MODEL_DATACLASS_REGISTRY: cfg = cfg[model_type] else: raise Exception( "Could not infer model type from directory. Please add _name field to indicate model type. " "Available models: " + str(MODEL_DATACLASS_REGISTRY.keys()) + " Requested model type: " + model_type ) if model_type in ARCH_MODEL_REGISTRY: # case 1: legacy models model = ARCH_MODEL_REGISTRY[model_type] elif model_type in MODEL_DATACLASS_REGISTRY: # case 2: config-driven models model = MODEL_REGISTRY[model_type] if model_type in MODEL_DATACLASS_REGISTRY: # set defaults from dataclass. note that arch name and model name can be the same dc = MODEL_DATACLASS_REGISTRY[model_type] if isinstance(cfg, argparse.Namespace): cfg = populate_dataclass(dc(), cfg) else: cfg = merge_with_parent(dc(), cfg) assert model is not None, ( f"Could not infer model type from {cfg}. " f"Available models: " + str(MODEL_DATACLASS_REGISTRY.keys()) + " Requested model type: " + model_type ) return model.build_model(cfg, task) def register_model(name, dataclass=None): """ New model types can be added to fairseq with the :func:`register_model` function decorator. For example:: @register_model('lstm') class LSTM(FairseqEncoderDecoderModel): (...) .. note:: All models must implement the :class:`BaseFairseqModel` interface. Typically you will extend :class:`FairseqEncoderDecoderModel` for sequence-to-sequence tasks or :class:`FairseqLanguageModel` for language modeling tasks. Args: name (str): the name of the model """ def register_model_cls(cls): if name in MODEL_REGISTRY: raise ValueError("Cannot register duplicate model ({})".format(name)) if not issubclass(cls, BaseFairseqModel): raise ValueError( "Model ({}: {}) must extend BaseFairseqModel".format(name, cls.__name__) ) MODEL_REGISTRY[name] = cls if dataclass is not None and not issubclass(dataclass, FairseqDataclass): raise ValueError( "Dataclass {} must extend FairseqDataclass".format(dataclass) ) cls.__dataclass = dataclass if dataclass is not None: MODEL_DATACLASS_REGISTRY[name] = dataclass cs = ConfigStore.instance() node = dataclass() node._name = name cs.store(name=name, group="model", node=node, provider="fairseq") @register_model_architecture(name, name) def noop(_): pass return cls return register_model_cls def register_model_architecture(model_name, arch_name): """ New model architectures can be added to fairseq with the :func:`register_model_architecture` function decorator. After registration, model architectures can be selected with the ``--arch`` command-line argument. For example:: @register_model_architecture('lstm', 'lstm_luong_wmt_en_de') def lstm_luong_wmt_en_de(cfg): args.encoder_embed_dim = getattr(cfg.model, 'encoder_embed_dim', 1000) (...) The decorated function should take a single argument *cfg*, which is a :class:`omegaconf.DictConfig`. The decorated function should modify these arguments in-place to match the desired architecture. Args: model_name (str): the name of the Model (Model must already be registered) arch_name (str): the name of the model architecture (``--arch``) """ def register_model_arch_fn(fn): if model_name not in MODEL_REGISTRY: raise ValueError( "Cannot register model architecture for unknown model type ({})".format( model_name ) ) if arch_name in ARCH_MODEL_REGISTRY: raise ValueError( "Cannot register duplicate model architecture ({})".format(arch_name) ) if not callable(fn): raise ValueError( "Model architecture must be callable ({})".format(arch_name) ) ARCH_MODEL_REGISTRY[arch_name] = MODEL_REGISTRY[model_name] ARCH_MODEL_NAME_REGISTRY[arch_name] = model_name ARCH_MODEL_INV_REGISTRY.setdefault(model_name, []).append(arch_name) ARCH_CONFIG_REGISTRY[arch_name] = fn return fn return register_model_arch_fn # automatically import any Python files in the models/ directory models_dir = os.path.dirname(__file__) for file in os.listdir(models_dir): path = os.path.join(models_dir, file) if ( not file.startswith("_") and not file.startswith(".") and (file.endswith(".py") or os.path.isdir(path)) ): model_name = file[: file.find(".py")] if file.endswith(".py") else file module = importlib.import_module("fairseq.models." + model_name) # extra `model_parser` for sphinx if model_name in MODEL_REGISTRY: parser = argparse.ArgumentParser(add_help=False) group_archs = parser.add_argument_group("Named architectures") group_archs.add_argument( "--arch", choices=ARCH_MODEL_INV_REGISTRY[model_name] ) group_args = parser.add_argument_group("Additional command-line arguments") MODEL_REGISTRY[model_name].add_args(group_args) globals()[model_name + "_parser"] = parser
data2vec_vision-main
deltalm/src/fairseq/models/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from typing import Any, Dict, List, Optional, Tuple import torch import torch.nn as nn from torch import Tensor from fairseq import checkpoint_utils from fairseq.data.legacy.masked_lm_dictionary import MaskedLMDictionary from fairseq.models import register_model, register_model_architecture from fairseq.models.transformer import ( TransformerDecoder, TransformerEncoder, ) from fairseq.models.transformer_from_pretrained_infoxlm import ( TransformerFromPretrainedInfoXLMModel, upgrade_state_dict_with_infoxlm_weights ) from fairseq.modules.transformer_layer import ( TransformerDecoderLayer ) from fairseq.modules.multihead_attention import MultiheadAttention from fairseq.modules import LayerNorm from fairseq.modules.fairseq_dropout import FairseqDropout from fairseq.modules.quant_noise import quant_noise from fairseq import utils from fairseq.file_io import PathManager from fairseq.checkpoint_utils import expand_embedding_matrix_v2 import logging logger = logging.getLogger(__name__) def upgrade_state_dict_for_two_ffn( state_dict: Dict[str, Any], pretrained_infoxlm_checkpoint: str, num_layers: int ) -> Dict[str, Any]: if not os.path.exists(pretrained_infoxlm_checkpoint): raise IOError("Model file not found: {}".format(pretrained_infoxlm_checkpoint)) # state = checkpoint_utils.load_checkpoint_to_cpu(pretrained_infoxlm_checkpoint) with open(PathManager.get_local_path(pretrained_infoxlm_checkpoint), "rb") as f: state = torch.load(f, map_location=torch.device("cpu")) infoxlm_state_dict = state["model"] for key in infoxlm_state_dict.keys(): if 'layers' in key and int(key.split('.')[3]) > 2*num_layers-1: continue if not key.startswith('decoder.'): continue if 'lm_head' not in key: if 'in_proj_weight' in key: q, k ,v = infoxlm_state_dict[key].chunk(3, dim=0) i_layer = int(key.split('.')[3]) if i_layer % 2 == 0: state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'q_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}')] = q state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'k_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}')] = k state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'v_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}')] = v else: state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'q_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = q state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'k_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = k state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'v_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = v elif 'in_proj_bias' in key: q, k ,v = infoxlm_state_dict[key].chunk(3, dim=0) i_layer = int(key.split('.')[3]) if i_layer % 2 == 0: state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'q_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}')] = q state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'k_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}')] = k state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'v_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}')] = v else: state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'q_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = q state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'k_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = k state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'v_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = v elif 'fc1' in key: i_layer = int(key.split('.')[3]) if i_layer % 2 == 0: state_dict[key.replace('decoder.sentence_encoder.', '').replace('fc1', 'fc3').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] else: state_dict[key.replace('decoder.sentence_encoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] elif 'fc2' in key: i_layer = int(key.split('.')[3]) if i_layer % 2 == 0: state_dict[key.replace('decoder.sentence_encoder.', '').replace('fc2', 'fc4').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] else: state_dict[key.replace('decoder.sentence_encoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] elif 'final_layer_norm' in key: i_layer = int(key.split('.')[3]) if i_layer % 2 == 0: state_dict[key.replace('decoder.sentence_encoder.', '').replace('final_layer_norm', 'ffn_layer_norm').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] else: state_dict[key.replace('decoder.sentence_encoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] elif 'self_attn.out_proj' in key: i_layer = int(key.split('.')[3]) if i_layer % 2 == 1: state_dict[key.replace('decoder.sentence_encoder.', '').replace('self_attn.out_proj', 'encoder_attn.out_proj').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] else: state_dict[key.replace('decoder.sentence_encoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] elif 'self_attn.k_proj' in key or 'self_attn.v_proj' in key or 'self_attn.q_proj' in key: i_layer = int(key.split('.')[3]) if i_layer % 2 == 1: state_dict[key.replace('decoder.sentence_encoder.', '').replace('self_attn', 'encoder_attn').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] else: state_dict[key.replace('decoder.sentence_encoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] elif 'self_attn_layer_norm' in key: i_layer = int(key.split('.')[3]) if i_layer % 2 == 1: state_dict[key.replace('decoder.sentence_encoder.', '').replace('self_attn_layer_norm', 'encoder_attn_layer_norm').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] else: state_dict[key.replace('decoder.sentence_encoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] elif 'emb_layer_norm' in key: state_dict[key.replace('decoder.sentence_encoder.emb_layer_norm', 'layernorm_embedding')] = infoxlm_state_dict[key] elif 'embed_positions' in key: state_dict[key.replace('decoder.sentence_encoder.', '')] = infoxlm_state_dict[key][:state_dict[key.replace('decoder.sentence_encoder.', '')].size(0)] elif 'embed_tokens' in key: state_dict[key.replace('decoder.sentence_encoder.', '')][:infoxlm_state_dict[key].size(0)] = infoxlm_state_dict[key] else: state_dict[key.replace('decoder.sentence_encoder.', '')] = infoxlm_state_dict[key] return state_dict def upgrade_gpt_state_dict_for_two_ffn( state_dict: Dict[str, Any], pretrained_infoxlm_checkpoint: str, num_layers: int, use_adapter=False ) -> Dict[str, Any]: if not os.path.exists(pretrained_infoxlm_checkpoint): raise IOError("Model file not found: {}".format(pretrained_infoxlm_checkpoint)) # state = checkpoint_utils.load_checkpoint_to_cpu(pretrained_infoxlm_checkpoint) with open(PathManager.get_local_path(pretrained_infoxlm_checkpoint), "rb") as f: state = torch.load(f, map_location=torch.device("cpu")) infoxlm_state_dict = state["model"] for key in infoxlm_state_dict.keys(): if 'layers' in key and int(key.split('.')[2]) > 2 * num_layers - 1: continue if not key.startswith('decoder.'): continue if 'lm_head' not in key: if "adapter" in key and use_adapter: state_dict[key.replace('decoder.', '')] = infoxlm_state_dict[key] elif 'in_proj_weight' in key: q, k, v = infoxlm_state_dict[key].chunk(3, dim=0) i_layer = int(key.split('.')[2]) if i_layer % 2 == 0: state_dict[key.replace('decoder.', '').replace('in_proj_weight', 'q_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}')] = q state_dict[key.replace('decoder.', '').replace('in_proj_weight', 'k_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}')] = k state_dict[key.replace('decoder.', '').replace('in_proj_weight', 'v_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}')] = v else: state_dict[key.replace('decoder.', '').replace('in_proj_weight', 'q_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = q state_dict[key.replace('decoder.', '').replace('in_proj_weight', 'k_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = k state_dict[key.replace('decoder.', '').replace('in_proj_weight', 'v_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = v elif 'in_proj_bias' in key: q, k, v = infoxlm_state_dict[key].chunk(3, dim=0) i_layer = int(key.split('.')[2]) if i_layer % 2 == 0: state_dict[key.replace('decoder.', '').replace('in_proj_bias', 'q_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}')] = q state_dict[key.replace('decoder.', '').replace('in_proj_bias', 'k_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}')] = k state_dict[key.replace('decoder.', '').replace('in_proj_bias', 'v_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}')] = v else: state_dict[key.replace('decoder.', '').replace('in_proj_bias', 'q_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = q state_dict[key.replace('decoder.', '').replace('in_proj_bias', 'k_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = k state_dict[key.replace('decoder.', '').replace('in_proj_bias', 'v_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = v elif 'fc1' in key: i_layer = int(key.split('.')[2]) if i_layer % 2 == 0: state_dict[key.replace('decoder.', '').replace('fc1', 'fc3').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] else: state_dict[key.replace('decoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] elif 'fc2' in key: i_layer = int(key.split('.')[2]) if i_layer % 2 == 0: state_dict[key.replace('decoder.', '').replace('fc2', 'fc4').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] else: state_dict[key.replace('decoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] elif 'final_layer_norm' in key: i_layer = int(key.split('.')[2]) if i_layer % 2 == 0: state_dict[key.replace('decoder.', '').replace('final_layer_norm', 'ffn_layer_norm').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] else: state_dict[key.replace('decoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] elif 'self_attn.out_proj' in key: i_layer = int(key.split('.')[2]) if i_layer % 2 == 1: state_dict[key.replace('decoder.', '').replace('self_attn.out_proj', 'encoder_attn.out_proj').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] else: state_dict[key.replace('decoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] elif 'self_attn.k_proj' in key or 'self_attn.v_proj' in key or 'self_attn.q_proj' in key: i_layer = int(key.split('.')[2]) if i_layer % 2 == 1: state_dict[key.replace('decoder.', '').replace('self_attn', 'encoder_attn').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] else: state_dict[key.replace('decoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] elif 'self_attn_layer_norm' in key: i_layer = int(key.split('.')[2]) if i_layer % 2 == 1: state_dict[key.replace('decoder.', '').replace('self_attn_layer_norm', 'encoder_attn_layer_norm').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] else: state_dict[key.replace('decoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] elif 'emb_layer_norm' in key: state_dict[key.replace('decoder.emb_layer_norm', 'layernorm_embedding')] = infoxlm_state_dict[key] elif 'embed_positions' in key: state_dict[key.replace('decoder.', '')] = infoxlm_state_dict[key][:state_dict[key.replace('decoder.', '')].size(0)] elif 'embed_tokens' in key: state_dict[key.replace('decoder.', '')][:infoxlm_state_dict[key].size(0)] = infoxlm_state_dict[key] else: state_dict[key.replace('decoder.', '')] = infoxlm_state_dict[key] return state_dict def upgrade_gpt_state_dict( state_dict: Dict[str, Any], pretrained_infoxlm_checkpoint: str, num_layers: int ) -> Dict[str, Any]: if not os.path.exists(pretrained_infoxlm_checkpoint): raise IOError("Model file not found: {}".format(pretrained_infoxlm_checkpoint)) # state = checkpoint_utils.load_checkpoint_to_cpu(pretrained_infoxlm_checkpoint) with open(PathManager.get_local_path(pretrained_infoxlm_checkpoint), "rb") as f: state = torch.load(f, map_location=torch.device("cpu")) infoxlm_state_dict = state["model"] for key in infoxlm_state_dict.keys(): if 'layers' in key and int(key.split('.')[2]) > num_layers - 1: continue if not key.startswith('decoder.'): continue state_dict[key.replace('decoder.', '')] = infoxlm_state_dict[key] return state_dict def upgrade_state_dict_for_ca_first_two_ffn( state_dict: Dict[str, Any], pretrained_infoxlm_checkpoint: str, num_layers: int ) -> Dict[str, Any]: if not os.path.exists(pretrained_infoxlm_checkpoint): raise IOError("Model file not found: {}".format(pretrained_infoxlm_checkpoint)) # state = checkpoint_utils.load_checkpoint_to_cpu(pretrained_infoxlm_checkpoint) with open(PathManager.get_local_path(pretrained_infoxlm_checkpoint), "rb") as f: state = torch.load(f, map_location=torch.device("cpu")) infoxlm_state_dict = state["model"] for key in infoxlm_state_dict.keys(): if 'layers' in key and int(key.split('.')[3]) > 2*num_layers-1: continue if not key.startswith('decoder.'): continue if 'lm_head' not in key: if 'in_proj_weight' in key: q, k ,v = infoxlm_state_dict[key].chunk(3, dim=0) i_layer = int(key.split('.')[3]) if i_layer % 2 == 1: state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'q_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}')] = q state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'k_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}')] = k state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'v_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}')] = v else: state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'q_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = q state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'k_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = k state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_weight', 'v_proj.weight').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = v elif 'in_proj_bias' in key: q, k ,v = infoxlm_state_dict[key].chunk(3, dim=0) i_layer = int(key.split('.')[3]) if i_layer % 2 == 1: state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'q_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}')] = q state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'k_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}')] = k state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'v_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}')] = v else: state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'q_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = q state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'k_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = k state_dict[key.replace('decoder.sentence_encoder.', '').replace('in_proj_bias', 'v_proj.bias').replace(f'.{i_layer}', f'.{i_layer // 2}').replace('self_attn', 'encoder_attn')] = v elif 'fc1' in key: i_layer = int(key.split('.')[3]) if i_layer % 2 == 0: state_dict[key.replace('decoder.sentence_encoder.', '').replace('fc1', 'fc3').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] else: state_dict[key.replace('decoder.sentence_encoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] elif 'fc2' in key: i_layer = int(key.split('.')[3]) if i_layer % 2 == 0: state_dict[key.replace('decoder.sentence_encoder.', '').replace('fc2', 'fc4').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] else: state_dict[key.replace('decoder.sentence_encoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] elif 'final_layer_norm' in key: i_layer = int(key.split('.')[3]) if i_layer % 2 == 0: state_dict[key.replace('decoder.sentence_encoder.', '').replace('final_layer_norm', 'ffn_layer_norm').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] else: state_dict[key.replace('decoder.sentence_encoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] elif 'self_attn.out_proj' in key: i_layer = int(key.split('.')[3]) if i_layer % 2 == 0: state_dict[key.replace('decoder.sentence_encoder.', '').replace('self_attn.out_proj', 'encoder_attn.out_proj').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] else: state_dict[key.replace('decoder.sentence_encoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] elif 'self_attn.k_proj' in key or 'self_attn.v_proj' in key or 'self_attn.q_proj' in key: i_layer = int(key.split('.')[3]) if i_layer % 2 == 0: state_dict[key.replace('decoder.sentence_encoder.', '').replace('self_attn', 'encoder_attn').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] else: state_dict[key.replace('decoder.sentence_encoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] elif 'self_attn_layer_norm' in key: i_layer = int(key.split('.')[3]) if i_layer % 2 == 0: state_dict[key.replace('decoder.sentence_encoder.', '').replace('self_attn_layer_norm', 'encoder_attn_layer_norm').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] else: state_dict[key.replace('decoder.sentence_encoder.', '').replace(f'.{i_layer}', f'.{i_layer // 2}')] = infoxlm_state_dict[key] elif 'emb_layer_norm' in key: state_dict[key.replace('decoder.sentence_encoder.emb_layer_norm', 'layernorm_embedding')] = infoxlm_state_dict[key] elif 'embed_positions' in key: state_dict[key.replace('decoder.sentence_encoder.', '')] = infoxlm_state_dict[key][:state_dict[key.replace('decoder.sentence_encoder.', '')].size(0)] elif 'embed_tokens' in key: state_dict[key.replace('decoder.sentence_encoder.', '')][:infoxlm_state_dict[key].size(0)] = infoxlm_state_dict[key] else: state_dict[key.replace('decoder.sentence_encoder.', '')] = infoxlm_state_dict[key] return state_dict def upgrade_deltalm_state_for_xlmt_model( state_dict: Dict[str, Any], pretrained_deltalm_checkpoint: str, encoder: TransformerEncoder ) -> Dict[str, Any]: if not os.path.exists(pretrained_deltalm_checkpoint): raise IOError("Model file not found: {}".format(pretrained_deltalm_checkpoint)) # state = checkpoint_utils.load_checkpoint_to_cpu(pretrained_infoxlm_checkpoint) with open(PathManager.get_local_path(pretrained_deltalm_checkpoint), "rb") as f: state = torch.load(f, map_location=torch.device("cpu")) mt_state_dict = state["weights"] for key in mt_state_dict.keys(): if 'src_embedding' in key: new_key = key.replace('src_embedding', 'encoder') state_dict[new_key] = mt_state_dict[key][:state_dict[new_key].size(0)] assert new_key in state_dict.keys() elif 'tgt_embedding' in key: new_key = key.replace('tgt_embedding', 'decoder') assert new_key in state_dict.keys() state_dict[new_key] = mt_state_dict[key][:state_dict[new_key].size(0)] state_dict['decoder.output_projection.weight'] = state_dict['decoder.embed_tokens.weight'] elif 'ffn_1.fc1' in key: new_key = key.replace('ffn_1.fc1', 'fc1') if new_key in state_dict.keys(): state_dict[new_key] = mt_state_dict[key] else: logger.info("Skipping {}".format(new_key)) elif 'ffn_1.fc2' in key: new_key = key.replace('ffn_1.fc2', 'fc2') if new_key in state_dict.keys(): state_dict[new_key] = mt_state_dict[key] else: logger.info("Skipping {}".format(new_key)) elif 'ffn_2.fc1' in key: new_key = key.replace('ffn_2.fc1', 'fc3') if new_key in state_dict.keys(): state_dict[new_key] = mt_state_dict[key] else: logger.info("Skipping {}".format(new_key)) elif 'ffn_2.fc2' in key: new_key = key.replace('ffn_2.fc2', 'fc4') if new_key in state_dict.keys(): state_dict[new_key] = mt_state_dict[key] else: logger.info("Skipping {}".format(new_key)) elif 'ffn.fc' in key: new_key = key.replace('ffn.fc', 'fc') if new_key in state_dict.keys(): state_dict[new_key] = mt_state_dict[key] else: logger.info("Skipping {}".format(new_key)) elif key in state_dict.keys(): state_dict[key] = mt_state_dict[key] else: logger.info("Skipping {}".format(key)) state_dict = expand_embedding_matrix_v2(state_dict, encoder, 'random') return state_dict @register_model("xlmt_decoder_variant") class XLMTDecoderVariantModel(TransformerFromPretrainedInfoXLMModel): @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" TransformerFromPretrainedInfoXLMModel.add_args(parser) parser.add_argument( "--variant", type=str, metavar="STR", ) parser.add_argument( "--pretrained-deltalm-checkpoint", type=str, metavar="STR", ) @classmethod def build_encoder(cls, args, tgt_dict, embed_tokens): return XLMTEncoder(args, tgt_dict, embed_tokens) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): return XLMTDecoder(args, tgt_dict, embed_tokens) def __init__(self, args, encoder, decoder): super().__init__(args, encoder, decoder) # Loading from Delta-LM Pretrained Model if hasattr(args, "pretrained_deltalm_checkpoint") and os.path.exists(args.pretrained_deltalm_checkpoint): deltalm_loaded_state_dict = upgrade_deltalm_state_for_xlmt_model( state_dict=self.state_dict(), pretrained_deltalm_checkpoint=args.pretrained_deltalm_checkpoint, encoder=encoder ) logger.info("Loading pretrained_deltalm_checkpoint from {0}".format(args.pretrained_deltalm_checkpoint)) self.load_state_dict(deltalm_loaded_state_dict, strict=True) else: logger.info("Can not Load pretrained_deltalm_checkpoint !") # End # def forward( self, src_tokens, src_lengths, prev_output_tokens, return_all_hiddens: bool = True, features_only: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, **extra_args ): encoder_out = self.encoder( src_tokens, src_lengths=src_lengths, return_all_hiddens=return_all_hiddens ) decoder_out = self.decoder( prev_output_tokens, encoder_out=encoder_out, features_only=features_only, alignment_layer=alignment_layer, alignment_heads=alignment_heads, src_lengths=src_lengths, return_all_hiddens=return_all_hiddens, src_lang_id = extra_args["src_lang_id"] if "src_lang_id" in extra_args else None, tgt_lang_id = extra_args["tgt_lang_id"] if "tgt_lang_id" in extra_args else None, ) return decoder_out class XLMTEncoder(TransformerEncoder): def __init__(self, args, dictionary, embed_tokens): super().__init__(args, dictionary, embed_tokens) if not getattr(args, "init_encoder_only", False): return if hasattr(args, "pretrained_infoxlm_checkpoint") and os.path.exists(args.pretrained_infoxlm_checkpoint): infoxlm_loaded_state_dict = upgrade_state_dict_with_infoxlm_weights( state_dict=self.state_dict(), pretrained_infoxlm_checkpoint=args.pretrained_infoxlm_checkpoint, num_layers=args.encoder_layers, ) self.load_state_dict(infoxlm_loaded_state_dict, strict=False) print("Loading encoder from {0}".format(args.pretrained_infoxlm_checkpoint)) if getattr(args, 'freeze_encoder', False): for param in self.layers.parameters(): param.requires_grad = False class XLMTDecoder(TransformerDecoder): def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False): super().__init__(args, dictionary, embed_tokens, no_encoder_attn) if not getattr(args, "init_decoder_only", False): return args.pretrained_infoxlm_checkpoint = getattr(args, "pretrained_infoxlm_checkpoint", "") if os.path.exists(args.pretrained_infoxlm_checkpoint): if args.variant == 'addffn': infoxlm_loaded_state_dict = upgrade_state_dict_for_two_ffn( state_dict=self.state_dict(), pretrained_infoxlm_checkpoint=args.pretrained_infoxlm_checkpoint, num_layers=args.decoder_layers, ) print("Loading decoder from {0}".format(args.pretrained_infoxlm_checkpoint)) elif args.variant == 'gpt-addffn': infoxlm_loaded_state_dict = upgrade_gpt_state_dict_for_two_ffn( state_dict=self.state_dict(), pretrained_infoxlm_checkpoint=args.pretrained_gpt_checkpoint, num_layers=args.decoder_layers, use_adapter=self.use_adapter ) print("Loading decoder from {0}".format(args.pretrained_gpt_checkpoint)) elif args.variant == 'gpt-two-attn': infoxlm_loaded_state_dict = upgrade_gpt_state_dict( state_dict=self.state_dict(), pretrained_infoxlm_checkpoint=args.pretrained_gpt_checkpoint, num_layers=args.decoder_layers, ) print("Loading decoder from {0}".format(args.pretrained_gpt_checkpoint)) elif args.variant == 'cafirst_addffn': infoxlm_loaded_state_dict = upgrade_state_dict_for_ca_first_two_ffn( state_dict=self.state_dict(), pretrained_infoxlm_checkpoint=args.pretrained_infoxlm_checkpoint, num_layers=args.decoder_layers, ) print("Loading decoder from {0}".format(args.pretrained_infoxlm_checkpoint)) else: infoxlm_loaded_state_dict = upgrade_state_dict_with_infoxlm_weights( state_dict=self.state_dict(), pretrained_infoxlm_checkpoint=args.pretrained_infoxlm_checkpoint, num_layers=args.decoder_layers, ) print("Loading decoder from {0}".format(args.pretrained_infoxlm_checkpoint)) self.load_state_dict(infoxlm_loaded_state_dict, strict=False) def build_decoder_layer(self, args, no_encoder_attn=False): if args.variant == 'first': layer = XLMTCrossAttnFirstLayer(args, no_encoder_attn) elif args.variant == 'large': layer = XLMTCrossAttnLargeLayer(args, no_encoder_attn) elif args.variant == 'halfffn': layer = XLMTTwoHalfFFN(args, no_encoder_attn) elif args.variant == 'addffn' or args.variant == 'gpt-addffn': layer = XLMTAddFFN(args, no_encoder_attn) elif args.variant == 'gpt-two-attn': layer = TransformerDecoderLayer(args, no_encoder_attn) elif args.variant == 'first_large_halfffn': layer = XLMTCaFirstQKLargeTwoHalfFFN(args, no_encoder_attn) elif args.variant == 'ca_sa_large': layer = XLMTCrossAttnSelfAttnLargeLayer(args, no_encoder_attn) elif args.variant == 'cafirst_addffn': layer = XLMTCaFirstAddFFN(args, no_encoder_attn) else: raise NotImplementedError if getattr(args, "checkpoint_activations", False): layer = checkpoint_wrapper(layer) return layer def forward( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, features_only: bool = False, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, src_lengths: Optional[Any] = None, return_all_hiddens: bool = False, src_lang_id = None, tgt_lang_id = None ): """ Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing encoder_out (optional): output from the encoder, used for encoder-side attention incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` features_only (bool, optional): only return features without applying output layer (default: False). full_context_alignment (bool, optional): don't apply auto-regressive mask to self-attention (default: False). Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ x, extra = self.extract_features( prev_output_tokens, encoder_out=encoder_out, incremental_state=incremental_state, full_context_alignment=full_context_alignment, alignment_layer=alignment_layer, alignment_heads=alignment_heads, src_lang_id=src_lang_id, tgt_lang_id=tgt_lang_id, ) if not features_only: x = self.output_layer(x) return x, extra def extract_features( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]], incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, src_lang_id = None, tgt_lang_id = None ): return self.extract_features_scriptable( prev_output_tokens, encoder_out, incremental_state, full_context_alignment, alignment_layer, alignment_heads, src_lang_id=src_lang_id, tgt_lang_id=tgt_lang_id ) def extract_features_scriptable( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]], incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, src_lang_id = None, tgt_lang_id = None ): """ Similar to *forward* but only return features. Includes several features from "Jointly Learning to Align and Translate with Transformer Models" (Garg et al., EMNLP 2019). Args: full_context_alignment (bool, optional): don't apply auto-regressive mask to self-attention (default: False). alignment_layer (int, optional): return mean alignment over heads at this layer (default: last layer). alignment_heads (int, optional): only average alignment over this many heads (default: all heads). Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs """ if alignment_layer is None: alignment_layer = self.num_layers - 1 # embed positions positions = ( self.embed_positions( prev_output_tokens, incremental_state=incremental_state ) if self.embed_positions is not None else None ) if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] # embed tokens and positions x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.quant_noise is not None: x = self.quant_noise(x) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions if self.layernorm_embedding is not None: x = self.layernorm_embedding(x) x = self.dropout_module(x) # B x T x C -> T x B x C x = x.transpose(0, 1) self_attn_padding_mask: Optional[Tensor] = None if self.cross_self_attention or prev_output_tokens.eq(self.padding_idx).any(): self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx) # decoder layers attn: Optional[Tensor] = None inner_states: List[Optional[Tensor]] = [x] for idx, layer in enumerate(self.layers): if incremental_state is None and not full_context_alignment: self_attn_mask = self.buffered_future_mask(x) else: self_attn_mask = None x, layer_attn, _ = layer( x, encoder_out["encoder_out"][0] if (encoder_out is not None and len(encoder_out["encoder_out"]) > 0) else None, encoder_out["encoder_padding_mask"][0] if ( encoder_out is not None and len(encoder_out["encoder_padding_mask"]) > 0 ) else None, incremental_state, self_attn_mask=self_attn_mask, self_attn_padding_mask=self_attn_padding_mask, need_attn=bool((idx == alignment_layer)), need_head_weights=bool((idx == alignment_layer)), ) inner_states.append(x) if layer_attn is not None and idx == alignment_layer: attn = layer_attn.float().to(x) if attn is not None: if alignment_heads is not None: attn = attn[:alignment_heads] # average probabilities over heads attn = attn.mean(dim=0) if self.layer_norm is not None: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) if self.project_out_dim is not None: x = self.project_out_dim(x) return x, {"attn": [attn], "inner_states": inner_states} class XLMTCaFirstQKLargeTwoHalfFFN(TransformerDecoderLayer): def __init__( self, args, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False ): super(TransformerDecoderLayer, self).__init__() self.embed_dim = args.decoder_embed_dim self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) self.quant_noise = getattr(args, "quant_noise_pq", 0) self.quant_noise_block_size = getattr(args, "quant_noise_pq_block_size", 8) self.cross_self_attention = getattr(args, "cross_self_attention", False) self.self_attn = self.build_self_attention( self.embed_dim, args, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, ) self.activation_fn = utils.get_activation_fn( activation=str(args.activation_fn) if getattr(args, "activation_fn", None) is not None else "relu" ) activation_dropout_p = getattr(args, "activation_dropout", 0) or 0 if activation_dropout_p == 0: # for backwards compatibility with models that use args.relu_dropout activation_dropout_p = getattr(args, "relu_dropout", 0) or 0 self.activation_dropout_module = FairseqDropout( float(activation_dropout_p), module_name=self.__class__.__name__ ) self.normalize_before = args.decoder_normalize_before # use layerNorm rather than FusedLayerNorm for exporting. # char_inputs can be used to determint this. # TODO remove this once we update apex with the fix export = getattr(args, "char_inputs", False) self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=export) if no_encoder_attn: self.encoder_attn = None self.encoder_attn_layer_norm = None else: self.encoder_attn = self.build_encoder_attention(self.embed_dim, args) self.encoder_attn_layer_norm = LayerNorm(self.embed_dim, export=export) self.fc1 = self.build_fc1( self.embed_dim, args.decoder_ffn_embed_dim // 2, self.quant_noise, self.quant_noise_block_size, ) self.fc2 = self.build_fc2( args.decoder_ffn_embed_dim // 2, self.embed_dim, self.quant_noise, self.quant_noise_block_size, ) self.fc3 = self.build_fc1( self.embed_dim, args.decoder_ffn_embed_dim // 2, self.quant_noise, self.quant_noise_block_size, ) self.fc4 = self.build_fc2( args.decoder_ffn_embed_dim // 2, self.embed_dim, self.quant_noise, self.quant_noise_block_size, ) self.ffn_layer_norm = LayerNorm(self.embed_dim, export=export) self.final_layer_norm = LayerNorm(self.embed_dim, export=export) self.need_attn = True self.onnx_trace = False def build_encoder_attention(self, embed_dim, args): return MultiheadAttention( embed_dim, args.decoder_attention_heads, kdim=embed_dim, vdim=embed_dim, qdim=embed_dim, outdim=embed_dim, qkprojdim=1152, dropout=args.attention_dropout, encoder_decoder_attention=True, q_noise=self.quant_noise, qn_block_size=self.quant_noise_block_size, ) def forward( self, x, encoder_out: Optional[torch.Tensor] = None, encoder_padding_mask: Optional[torch.Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, prev_self_attn_state: Optional[List[torch.Tensor]] = None, prev_attn_state: Optional[List[torch.Tensor]] = None, self_attn_mask: Optional[torch.Tensor] = None, self_attn_padding_mask: Optional[torch.Tensor] = None, need_attn: bool = False, need_head_weights: bool = False, ): """ Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor, optional): binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. need_attn (bool, optional): return attention weights need_head_weights (bool, optional): return attention weights for each head (default: return average over heads). Returns: encoded output of shape `(seq_len, batch, embed_dim)` """ if need_head_weights: need_attn = True ############################################### if self.encoder_attn is not None and encoder_out is not None: residual = x if self.normalize_before: x = self.encoder_attn_layer_norm(x) if prev_attn_state is not None: prev_key, prev_value = prev_attn_state[:2] saved_state: Dict[str, Optional[Tensor]] = { "prev_key": prev_key, "prev_value": prev_value, } if len(prev_attn_state) >= 3: saved_state["prev_key_padding_mask"] = prev_attn_state[2] assert incremental_state is not None self.encoder_attn._set_input_buffer(incremental_state, saved_state) x, attn = self.encoder_attn( query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=incremental_state, static_kv=True, need_weights=need_attn or (not self.training and self.need_attn), need_head_weights=need_head_weights, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.encoder_attn_layer_norm(x) ############################################### residual = x if self.normalize_before: x = self.ffn_layer_norm(x) x = self.activation_fn(self.fc3(x)) x = self.activation_dropout_module(x) x = self.fc4(x) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.ffn_layer_norm(x) ############################################### residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) if prev_self_attn_state is not None: prev_key, prev_value = prev_self_attn_state[:2] saved_state: Dict[str, Optional[Tensor]] = { "prev_key": prev_key, "prev_value": prev_value, } if len(prev_self_attn_state) >= 3: saved_state["prev_key_padding_mask"] = prev_self_attn_state[2] assert incremental_state is not None self.self_attn._set_input_buffer(incremental_state, saved_state) _self_attn_input_buffer = self.self_attn._get_input_buffer(incremental_state) if self.cross_self_attention and not ( incremental_state is not None and _self_attn_input_buffer is not None and "prev_key" in _self_attn_input_buffer ): if self_attn_mask is not None: assert encoder_out is not None self_attn_mask = torch.cat( (x.new_zeros(x.size(0), encoder_out.size(0)), self_attn_mask), dim=1 ) if self_attn_padding_mask is not None: if encoder_padding_mask is None: assert encoder_out is not None encoder_padding_mask = self_attn_padding_mask.new_zeros( encoder_out.size(1), encoder_out.size(0) ) self_attn_padding_mask = torch.cat( (encoder_padding_mask, self_attn_padding_mask), dim=1 ) assert encoder_out is not None y = torch.cat((encoder_out, x), dim=0) else: y = x x, attn = self.self_attn( query=x, key=y, value=y, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, need_weights=False, attn_mask=self_attn_mask, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.self_attn_layer_norm(x) ############################################### residual = x if self.normalize_before: x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = self.activation_dropout_module(x) x = self.fc2(x) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.final_layer_norm(x) ############################################### if self.onnx_trace and incremental_state is not None: saved_state = self.self_attn._get_input_buffer(incremental_state) assert saved_state is not None if self_attn_padding_mask is not None: self_attn_state = [ saved_state["prev_key"], saved_state["prev_value"], saved_state["prev_key_padding_mask"], ] else: self_attn_state = [saved_state["prev_key"], saved_state["prev_value"]] return x, attn, self_attn_state return x, attn, None class XLMTCaFirstAddFFN(TransformerDecoderLayer): def __init__( self, args, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False ): super(TransformerDecoderLayer, self).__init__() self.embed_dim = args.decoder_embed_dim self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) self.quant_noise = getattr(args, "quant_noise_pq", 0) self.quant_noise_block_size = getattr(args, "quant_noise_pq_block_size", 8) self.cross_self_attention = getattr(args, "cross_self_attention", False) self.self_attn = self.build_self_attention( self.embed_dim, args, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, ) self.activation_fn = utils.get_activation_fn( activation=str(args.activation_fn) if getattr(args, "activation_fn", None) is not None else "relu" ) activation_dropout_p = getattr(args, "activation_dropout", 0) or 0 if activation_dropout_p == 0: # for backwards compatibility with models that use args.relu_dropout activation_dropout_p = getattr(args, "relu_dropout", 0) or 0 self.activation_dropout_module = FairseqDropout( float(activation_dropout_p), module_name=self.__class__.__name__ ) self.normalize_before = args.decoder_normalize_before # use layerNorm rather than FusedLayerNorm for exporting. # char_inputs can be used to determint this. # TODO remove this once we update apex with the fix export = getattr(args, "char_inputs", False) self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=export) if no_encoder_attn: self.encoder_attn = None self.encoder_attn_layer_norm = None else: self.encoder_attn = self.build_encoder_attention(self.embed_dim, args) self.encoder_attn_layer_norm = LayerNorm(self.embed_dim, export=export) self.fc1 = self.build_fc1( self.embed_dim, args.decoder_ffn_embed_dim, self.quant_noise, self.quant_noise_block_size, ) self.fc2 = self.build_fc2( args.decoder_ffn_embed_dim, self.embed_dim, self.quant_noise, self.quant_noise_block_size, ) self.fc3 = self.build_fc1( self.embed_dim, args.decoder_ffn_embed_dim, self.quant_noise, self.quant_noise_block_size, ) self.fc4 = self.build_fc2( args.decoder_ffn_embed_dim, self.embed_dim, self.quant_noise, self.quant_noise_block_size, ) self.ffn_layer_norm = LayerNorm(self.embed_dim, export=export) self.final_layer_norm = LayerNorm(self.embed_dim, export=export) self.need_attn = True self.onnx_trace = False def forward( self, x, encoder_out: Optional[torch.Tensor] = None, encoder_padding_mask: Optional[torch.Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, prev_self_attn_state: Optional[List[torch.Tensor]] = None, prev_attn_state: Optional[List[torch.Tensor]] = None, self_attn_mask: Optional[torch.Tensor] = None, self_attn_padding_mask: Optional[torch.Tensor] = None, need_attn: bool = False, need_head_weights: bool = False, src_lang_id = None, tgt_lang_id = None ): """ Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor, optional): binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. need_attn (bool, optional): return attention weights need_head_weights (bool, optional): return attention weights for each head (default: return average over heads). Returns: encoded output of shape `(seq_len, batch, embed_dim)` """ if need_head_weights: need_attn = True ############################################### if self.encoder_attn is not None and encoder_out is not None: residual = x if self.normalize_before: x = self.encoder_attn_layer_norm(x) if prev_attn_state is not None: prev_key, prev_value = prev_attn_state[:2] saved_state: Dict[str, Optional[Tensor]] = { "prev_key": prev_key, "prev_value": prev_value, } if len(prev_attn_state) >= 3: saved_state["prev_key_padding_mask"] = prev_attn_state[2] assert incremental_state is not None self.encoder_attn._set_input_buffer(incremental_state, saved_state) x, attn = self.encoder_attn( query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=incremental_state, static_kv=True, need_weights=need_attn or (not self.training and self.need_attn), need_head_weights=need_head_weights, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.encoder_attn_layer_norm(x) ############################################### residual = x if self.normalize_before: x = self.ffn_layer_norm(x) x = self.activation_fn(self.fc3(x)) x = self.activation_dropout_module(x) x = self.fc4(x) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.ffn_layer_norm(x) ############################################### residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) if prev_self_attn_state is not None: prev_key, prev_value = prev_self_attn_state[:2] saved_state: Dict[str, Optional[Tensor]] = { "prev_key": prev_key, "prev_value": prev_value, } if len(prev_self_attn_state) >= 3: saved_state["prev_key_padding_mask"] = prev_self_attn_state[2] assert incremental_state is not None self.self_attn._set_input_buffer(incremental_state, saved_state) _self_attn_input_buffer = self.self_attn._get_input_buffer(incremental_state) if self.cross_self_attention and not ( incremental_state is not None and _self_attn_input_buffer is not None and "prev_key" in _self_attn_input_buffer ): if self_attn_mask is not None: assert encoder_out is not None self_attn_mask = torch.cat( (x.new_zeros(x.size(0), encoder_out.size(0)), self_attn_mask), dim=1 ) if self_attn_padding_mask is not None: if encoder_padding_mask is None: assert encoder_out is not None encoder_padding_mask = self_attn_padding_mask.new_zeros( encoder_out.size(1), encoder_out.size(0) ) self_attn_padding_mask = torch.cat( (encoder_padding_mask, self_attn_padding_mask), dim=1 ) assert encoder_out is not None y = torch.cat((encoder_out, x), dim=0) else: y = x x, attn = self.self_attn( query=x, key=y, value=y, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, need_weights=False, attn_mask=self_attn_mask, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.self_attn_layer_norm(x) ############################################### residual = x if self.normalize_before: x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = self.activation_dropout_module(x) x = self.fc2(x) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.final_layer_norm(x) if self.onnx_trace and incremental_state is not None: saved_state = self.self_attn._get_input_buffer(incremental_state) assert saved_state is not None if self_attn_padding_mask is not None: self_attn_state = [ saved_state["prev_key"], saved_state["prev_value"], saved_state["prev_key_padding_mask"], ] else: self_attn_state = [saved_state["prev_key"], saved_state["prev_value"]] return x, attn, self_attn_state return x, attn, None class XLMTAddFFN(TransformerDecoderLayer): def __init__( self, args, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False ): super(TransformerDecoderLayer, self).__init__() self.embed_dim = args.decoder_embed_dim self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) self.quant_noise = getattr(args, "quant_noise_pq", 0) self.quant_noise_block_size = getattr(args, "quant_noise_pq_block_size", 8) self.cross_self_attention = getattr(args, "cross_self_attention", False) self.self_attn = self.build_self_attention( self.embed_dim, args, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, ) self.activation_fn = utils.get_activation_fn( activation=str(args.activation_fn) if getattr(args, "activation_fn", None) is not None else "relu" ) activation_dropout_p = getattr(args, "activation_dropout", 0) or 0 if activation_dropout_p == 0: # for backwards compatibility with models that use args.relu_dropout activation_dropout_p = getattr(args, "relu_dropout", 0) or 0 self.activation_dropout_module = FairseqDropout( float(activation_dropout_p), module_name=self.__class__.__name__ ) self.normalize_before = args.decoder_normalize_before # use layerNorm rather than FusedLayerNorm for exporting. # char_inputs can be used to determint this. # TODO remove this once we update apex with the fix export = getattr(args, "char_inputs", False) self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=export) if no_encoder_attn: self.encoder_attn = None self.encoder_attn_layer_norm = None else: self.encoder_attn = self.build_encoder_attention(self.embed_dim, args) self.encoder_attn_layer_norm = LayerNorm(self.embed_dim, export=export) self.fc1 = self.build_fc1( self.embed_dim, args.decoder_ffn_embed_dim, self.quant_noise, self.quant_noise_block_size, ) self.fc2 = self.build_fc2( args.decoder_ffn_embed_dim, self.embed_dim, self.quant_noise, self.quant_noise_block_size, ) self.fc3 = self.build_fc1( self.embed_dim, args.decoder_ffn_embed_dim, self.quant_noise, self.quant_noise_block_size, ) self.fc4 = self.build_fc2( args.decoder_ffn_embed_dim, self.embed_dim, self.quant_noise, self.quant_noise_block_size, ) self.ffn_layer_norm = LayerNorm(self.embed_dim, export=export) self.final_layer_norm = LayerNorm(self.embed_dim, export=export) self.need_attn = True self.onnx_trace = False # Language adapter (Added By JianYang) self.adapter_dim = getattr(args, "adapter_dim", 0) if self.adapter_dim > 0: self.adapter_down_proj = nn.ModuleList([]) self.adapter_up_proj = nn.ModuleList([]) self.adapter_layer_norm = nn.ModuleList([]) for i in range(len(args.langs)): self.adapter_down_proj.append( self.build_fc1( self.embed_dim, self.adapter_dim, self.quant_noise, self.quant_noise_block_size, )) self.adapter_up_proj.append( self.build_fc2( self.adapter_dim, self.embed_dim, self.quant_noise, self.quant_noise_block_size, )) self.adapter_layer_norm.append(LayerNorm(self.embed_dim)) # End # def adapter_forward(self, x, lang_id): residual = x if self.normalize_before: x = self.adapter_layer_norm[lang_id](x) x = self.activation_fn(self.adapter_down_proj[lang_id](x)) x = self.activation_dropout_module(x) x = self.adapter_up_proj[lang_id](x) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.adapter_layer_norm[lang_id](x) return x def forward( self, x, encoder_out: Optional[torch.Tensor] = None, encoder_padding_mask: Optional[torch.Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, prev_self_attn_state: Optional[List[torch.Tensor]] = None, prev_attn_state: Optional[List[torch.Tensor]] = None, self_attn_mask: Optional[torch.Tensor] = None, self_attn_padding_mask: Optional[torch.Tensor] = None, need_attn: bool = False, need_head_weights: bool = False, src_lang_id = None, tgt_lang_id = None ): """ Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor, optional): binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. need_attn (bool, optional): return attention weights need_head_weights (bool, optional): return attention weights for each head (default: return average over heads). Returns: encoded output of shape `(seq_len, batch, embed_dim)` """ if need_head_weights: need_attn = True ############################################### residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) if prev_self_attn_state is not None: prev_key, prev_value = prev_self_attn_state[:2] saved_state: Dict[str, Optional[Tensor]] = { "prev_key": prev_key, "prev_value": prev_value, } if len(prev_self_attn_state) >= 3: saved_state["prev_key_padding_mask"] = prev_self_attn_state[2] assert incremental_state is not None self.self_attn._set_input_buffer(incremental_state, saved_state) _self_attn_input_buffer = self.self_attn._get_input_buffer(incremental_state) if self.cross_self_attention and not ( incremental_state is not None and _self_attn_input_buffer is not None and "prev_key" in _self_attn_input_buffer ): if self_attn_mask is not None: assert encoder_out is not None self_attn_mask = torch.cat( (x.new_zeros(x.size(0), encoder_out.size(0)), self_attn_mask), dim=1 ) if self_attn_padding_mask is not None: if encoder_padding_mask is None: assert encoder_out is not None encoder_padding_mask = self_attn_padding_mask.new_zeros( encoder_out.size(1), encoder_out.size(0) ) self_attn_padding_mask = torch.cat( (encoder_padding_mask, self_attn_padding_mask), dim=1 ) assert encoder_out is not None y = torch.cat((encoder_out, x), dim=0) else: y = x x, attn = self.self_attn( query=x, key=y, value=y, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, need_weights=False, attn_mask=self_attn_mask, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.self_attn_layer_norm(x) ############################################### residual = x if self.normalize_before: x = self.ffn_layer_norm(x) x = self.activation_fn(self.fc3(x)) x = self.activation_dropout_module(x) x = self.fc4(x) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.ffn_layer_norm(x) # Parallel Adapter (Added By Jian Yang) if self.adapter_dim > 0: x = self.residual_connection(x, self.adapter_forward(residual, tgt_lang_id)) # End # ############################################### if self.encoder_attn is not None and encoder_out is not None: residual = x if self.normalize_before: x = self.encoder_attn_layer_norm(x) if prev_attn_state is not None: prev_key, prev_value = prev_attn_state[:2] saved_state: Dict[str, Optional[Tensor]] = { "prev_key": prev_key, "prev_value": prev_value, } if len(prev_attn_state) >= 3: saved_state["prev_key_padding_mask"] = prev_attn_state[2] assert incremental_state is not None self.encoder_attn._set_input_buffer(incremental_state, saved_state) x, attn = self.encoder_attn( query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=incremental_state, static_kv=True, need_weights=need_attn or (not self.training and self.need_attn), need_head_weights=need_head_weights, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.encoder_attn_layer_norm(x) ############################################### residual = x if self.normalize_before: x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = self.activation_dropout_module(x) x = self.fc2(x) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.final_layer_norm(x) #Parallel Adapter (Added By Jian Yang) if self.adapter_dim > 0: x = self.residual_connection(x, self.adapter_forward(residual, tgt_lang_id)) # End # if self.onnx_trace and incremental_state is not None: saved_state = self.self_attn._get_input_buffer(incremental_state) assert saved_state is not None if self_attn_padding_mask is not None: self_attn_state = [ saved_state["prev_key"], saved_state["prev_value"], saved_state["prev_key_padding_mask"], ] else: self_attn_state = [saved_state["prev_key"], saved_state["prev_value"]] return x, attn, self_attn_state return x, attn, None class XLMTTwoHalfFFN(TransformerDecoderLayer): def __init__( self, args, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False ): super(TransformerDecoderLayer, self).__init__() self.embed_dim = args.decoder_embed_dim self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) self.quant_noise = getattr(args, "quant_noise_pq", 0) self.quant_noise_block_size = getattr(args, "quant_noise_pq_block_size", 8) self.cross_self_attention = getattr(args, "cross_self_attention", False) self.self_attn = self.build_self_attention( self.embed_dim, args, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, ) self.activation_fn = utils.get_activation_fn( activation=str(args.activation_fn) if getattr(args, "activation_fn", None) is not None else "relu" ) activation_dropout_p = getattr(args, "activation_dropout", 0) or 0 if activation_dropout_p == 0: # for backwards compatibility with models that use args.relu_dropout activation_dropout_p = getattr(args, "relu_dropout", 0) or 0 self.activation_dropout_module = FairseqDropout( float(activation_dropout_p), module_name=self.__class__.__name__ ) self.normalize_before = args.decoder_normalize_before # use layerNorm rather than FusedLayerNorm for exporting. # char_inputs can be used to determint this. # TODO remove this once we update apex with the fix export = getattr(args, "char_inputs", False) self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=export) if no_encoder_attn: self.encoder_attn = None self.encoder_attn_layer_norm = None else: self.encoder_attn = self.build_encoder_attention(self.embed_dim, args) self.encoder_attn_layer_norm = LayerNorm(self.embed_dim, export=export) self.fc1 = self.build_fc1( self.embed_dim, args.decoder_ffn_embed_dim // 2, self.quant_noise, self.quant_noise_block_size, ) self.fc2 = self.build_fc2( args.decoder_ffn_embed_dim // 2, self.embed_dim, self.quant_noise, self.quant_noise_block_size, ) self.fc3 = self.build_fc1( self.embed_dim, args.decoder_ffn_embed_dim // 2, self.quant_noise, self.quant_noise_block_size, ) self.fc4 = self.build_fc2( args.decoder_ffn_embed_dim // 2, self.embed_dim, self.quant_noise, self.quant_noise_block_size, ) self.ffn_layer_norm = LayerNorm(self.embed_dim, export=export) self.final_layer_norm = LayerNorm(self.embed_dim, export=export) self.need_attn = True self.onnx_trace = False def forward( self, x, encoder_out: Optional[torch.Tensor] = None, encoder_padding_mask: Optional[torch.Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, prev_self_attn_state: Optional[List[torch.Tensor]] = None, prev_attn_state: Optional[List[torch.Tensor]] = None, self_attn_mask: Optional[torch.Tensor] = None, self_attn_padding_mask: Optional[torch.Tensor] = None, need_attn: bool = False, need_head_weights: bool = False, ): """ Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor, optional): binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. need_attn (bool, optional): return attention weights need_head_weights (bool, optional): return attention weights for each head (default: return average over heads). Returns: encoded output of shape `(seq_len, batch, embed_dim)` """ if need_head_weights: need_attn = True residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) if prev_self_attn_state is not None: prev_key, prev_value = prev_self_attn_state[:2] saved_state: Dict[str, Optional[Tensor]] = { "prev_key": prev_key, "prev_value": prev_value, } if len(prev_self_attn_state) >= 3: saved_state["prev_key_padding_mask"] = prev_self_attn_state[2] assert incremental_state is not None self.self_attn._set_input_buffer(incremental_state, saved_state) _self_attn_input_buffer = self.self_attn._get_input_buffer(incremental_state) if self.cross_self_attention and not ( incremental_state is not None and _self_attn_input_buffer is not None and "prev_key" in _self_attn_input_buffer ): if self_attn_mask is not None: assert encoder_out is not None self_attn_mask = torch.cat( (x.new_zeros(x.size(0), encoder_out.size(0)), self_attn_mask), dim=1 ) if self_attn_padding_mask is not None: if encoder_padding_mask is None: assert encoder_out is not None encoder_padding_mask = self_attn_padding_mask.new_zeros( encoder_out.size(1), encoder_out.size(0) ) self_attn_padding_mask = torch.cat( (encoder_padding_mask, self_attn_padding_mask), dim=1 ) assert encoder_out is not None y = torch.cat((encoder_out, x), dim=0) else: y = x x, attn = self.self_attn( query=x, key=y, value=y, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, need_weights=False, attn_mask=self_attn_mask, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.self_attn_layer_norm(x) residual = x if self.normalize_before: x = self.ffn_layer_norm(x) x = self.activation_fn(self.fc3(x)) x = self.activation_dropout_module(x) x = self.fc4(x) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.ffn_layer_norm(x) if self.encoder_attn is not None and encoder_out is not None: residual = x if self.normalize_before: x = self.encoder_attn_layer_norm(x) if prev_attn_state is not None: prev_key, prev_value = prev_attn_state[:2] saved_state: Dict[str, Optional[Tensor]] = { "prev_key": prev_key, "prev_value": prev_value, } if len(prev_attn_state) >= 3: saved_state["prev_key_padding_mask"] = prev_attn_state[2] assert incremental_state is not None self.encoder_attn._set_input_buffer(incremental_state, saved_state) x, attn = self.encoder_attn( query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=incremental_state, static_kv=True, need_weights=need_attn or (not self.training and self.need_attn), need_head_weights=need_head_weights, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.encoder_attn_layer_norm(x) residual = x if self.normalize_before: x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = self.activation_dropout_module(x) x = self.fc2(x) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.final_layer_norm(x) if self.onnx_trace and incremental_state is not None: saved_state = self.self_attn._get_input_buffer(incremental_state) assert saved_state is not None if self_attn_padding_mask is not None: self_attn_state = [ saved_state["prev_key"], saved_state["prev_value"], saved_state["prev_key_padding_mask"], ] else: self_attn_state = [saved_state["prev_key"], saved_state["prev_value"]] return x, attn, self_attn_state return x, attn, None class XLMTCrossAttnSelfAttnLargeLayer(TransformerDecoderLayer): def build_self_attention( self, embed_dim, args, add_bias_kv=False, add_zero_attn=False ): return MultiheadAttention( embed_dim, args.decoder_attention_heads, kdim=embed_dim, vdim=embed_dim, qdim=embed_dim, outdim=embed_dim, qkprojdim=1152, dropout=args.attention_dropout, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, self_attention=not getattr(args, "cross_self_attention", False), q_noise=self.quant_noise, qn_block_size=self.quant_noise_block_size, ) def build_encoder_attention(self, embed_dim, args): return MultiheadAttention( embed_dim, args.decoder_attention_heads, kdim=embed_dim, vdim=embed_dim, qdim=embed_dim, outdim=embed_dim, qkprojdim=1152, dropout=args.attention_dropout, encoder_decoder_attention=True, q_noise=self.quant_noise, qn_block_size=self.quant_noise_block_size, ) class XLMTCrossAttnLargeLayer(TransformerDecoderLayer): def build_encoder_attention(self, embed_dim, args): return MultiheadAttention( embed_dim, args.decoder_attention_heads, kdim=embed_dim, vdim=embed_dim, qdim=embed_dim, outdim=embed_dim, qkprojdim=1152, dropout=args.attention_dropout, encoder_decoder_attention=True, q_noise=self.quant_noise, qn_block_size=self.quant_noise_block_size, ) class XLMTCrossAttnFirstLayer(TransformerDecoderLayer): def forward( self, x, encoder_out: Optional[torch.Tensor] = None, encoder_padding_mask: Optional[torch.Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, prev_self_attn_state: Optional[List[torch.Tensor]] = None, prev_attn_state: Optional[List[torch.Tensor]] = None, self_attn_mask: Optional[torch.Tensor] = None, self_attn_padding_mask: Optional[torch.Tensor] = None, need_attn: bool = False, need_head_weights: bool = False, ): """ Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor, optional): binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. need_attn (bool, optional): return attention weights need_head_weights (bool, optional): return attention weights for each head (default: return average over heads). Returns: encoded output of shape `(seq_len, batch, embed_dim)` """ if need_head_weights: need_attn = True if self.encoder_attn is not None and encoder_out is not None: residual = x if self.normalize_before: x = self.encoder_attn_layer_norm(x) if prev_attn_state is not None: prev_key, prev_value = prev_attn_state[:2] saved_state: Dict[str, Optional[Tensor]] = { "prev_key": prev_key, "prev_value": prev_value, } if len(prev_attn_state) >= 3: saved_state["prev_key_padding_mask"] = prev_attn_state[2] assert incremental_state is not None self.encoder_attn._set_input_buffer(incremental_state, saved_state) x, attn = self.encoder_attn( query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=incremental_state, static_kv=True, need_weights=need_attn or (not self.training and self.need_attn), need_head_weights=need_head_weights, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.encoder_attn_layer_norm(x) residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) if prev_self_attn_state is not None: prev_key, prev_value = prev_self_attn_state[:2] saved_state: Dict[str, Optional[Tensor]] = { "prev_key": prev_key, "prev_value": prev_value, } if len(prev_self_attn_state) >= 3: saved_state["prev_key_padding_mask"] = prev_self_attn_state[2] assert incremental_state is not None self.self_attn._set_input_buffer(incremental_state, saved_state) _self_attn_input_buffer = self.self_attn._get_input_buffer(incremental_state) if self.cross_self_attention and not ( incremental_state is not None and _self_attn_input_buffer is not None and "prev_key" in _self_attn_input_buffer ): if self_attn_mask is not None: assert encoder_out is not None self_attn_mask = torch.cat( (x.new_zeros(x.size(0), encoder_out.size(0)), self_attn_mask), dim=1 ) if self_attn_padding_mask is not None: if encoder_padding_mask is None: assert encoder_out is not None encoder_padding_mask = self_attn_padding_mask.new_zeros( encoder_out.size(1), encoder_out.size(0) ) self_attn_padding_mask = torch.cat( (encoder_padding_mask, self_attn_padding_mask), dim=1 ) assert encoder_out is not None y = torch.cat((encoder_out, x), dim=0) else: y = x x, attn = self.self_attn( query=x, key=y, value=y, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, need_weights=False, attn_mask=self_attn_mask, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.self_attn_layer_norm(x) residual = x if self.normalize_before: x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = self.activation_dropout_module(x) x = self.fc2(x) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.final_layer_norm(x) if self.onnx_trace and incremental_state is not None: saved_state = self.self_attn._get_input_buffer(incremental_state) assert saved_state is not None if self_attn_padding_mask is not None: self_attn_state = [ saved_state["prev_key"], saved_state["prev_value"], saved_state["prev_key_padding_mask"], ] else: self_attn_state = [saved_state["prev_key"], saved_state["prev_value"]] return x, attn, self_attn_state return x, attn, None @register_model_architecture( "xlmt_decoder_variant", "xlmt_decoder_variant" ) def base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 3072) args.encoder_layers = getattr(args, "encoder_layers", 12) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 12) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", True) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "gelu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.no_cross_attention = getattr(args, "no_cross_attention", False) args.cross_self_attention = getattr(args, "cross_self_attention", False) args.layer_wise_attention = getattr(args, "layer_wise_attention", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.no_scale_embedding = getattr(args, "no_scale_embedding", True) args.layernorm_embedding = getattr(args, "layernorm_embedding", True) args.init_encoder_only = getattr(args, "init_encoder_only", False) args.init_decoder_only = getattr(args, "init_decoder_only", False) args.max_positions = getattr(args, "max_positions", 512) # args.adapter_dim = getattr(args, "adapter_dim", args.decoder_ffn_embed_dim) args.adapter_method = getattr(args, "adapter_method", "all") args.drop_adapter = getattr(args, "drop_adapter", -1) @register_model_architecture( "xlmt_decoder_variant", "xlmt_decoder_variant_large" ) def base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) args.encoder_layers = getattr(args, "encoder_layers", 24) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 12) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", True) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "gelu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.no_cross_attention = getattr(args, "no_cross_attention", False) args.cross_self_attention = getattr(args, "cross_self_attention", False) args.layer_wise_attention = getattr(args, "layer_wise_attention", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.no_scale_embedding = getattr(args, "no_scale_embedding", True) args.layernorm_embedding = getattr(args, "layernorm_embedding", True) args.init_encoder_only = getattr(args, "init_encoder_only", False) args.init_decoder_only = getattr(args, "init_decoder_only", False) args.max_positions = getattr(args, "max_positions", 512) args.use_adapter = getattr(args, "use_adapter", False) args.adapter_dropout = getattr(args, "adapter_dropout", args.dropout) args.freeze_adapter = getattr(args, "freeze_adapter", False) @register_model_architecture( "xlmt_decoder_variant", "xlmt_decoder_variant_large_from_deltalm_postnorm" ) def base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) args.encoder_layers = getattr(args, "encoder_layers", 24) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 12) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", True) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "gelu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.no_cross_attention = getattr(args, "no_cross_attention", False) args.cross_self_attention = getattr(args, "cross_self_attention", False) args.layer_wise_attention = getattr(args, "layer_wise_attention", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.no_scale_embedding = getattr(args, "no_scale_embedding", True) args.layernorm_embedding = getattr(args, "layernorm_embedding", False) args.init_encoder_only = getattr(args, "init_encoder_only", False) args.init_decoder_only = getattr(args, "init_decoder_only", False) args.max_positions = getattr(args, "max_positions", 512) args.use_adapter = getattr(args, "use_adapter", False) args.adapter_dropout = getattr(args, "adapter_dropout", args.dropout) args.freeze_adapter = getattr(args, "freeze_adapter", False) @register_model_architecture( "xlmt_decoder_variant", "xlmt_decoder_variant_large_from_deltalm_prenorm" ) def base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) args.encoder_layers = getattr(args, "encoder_layers", 24) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 12) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", True) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "gelu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.no_cross_attention = getattr(args, "no_cross_attention", False) args.cross_self_attention = getattr(args, "cross_self_attention", False) args.layer_wise_attention = getattr(args, "layer_wise_attention", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.no_scale_embedding = getattr(args, "no_scale_embedding", True) args.layernorm_embedding = getattr(args, "layernorm_embedding", False) args.init_encoder_only = getattr(args, "init_encoder_only", False) args.init_decoder_only = getattr(args, "init_decoder_only", False) args.max_positions = getattr(args, "max_positions", 512) args.use_adapter = getattr(args, "use_adapter", False) args.adapter_dropout = getattr(args, "adapter_dropout", args.dropout) args.freeze_adapter = getattr(args, "freeze_adapter", False)
data2vec_vision-main
deltalm/src/fairseq/models/xlmt_decoder_variant.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from typing import Any, Dict from fairseq import checkpoint_utils from fairseq.data.legacy.masked_lm_dictionary import MaskedLMDictionary from fairseq.models import register_model, register_model_architecture from fairseq.models.transformer import ( TransformerDecoder, TransformerEncoder, TransformerModel, base_architecture as transformer_base_architecture, ) @register_model("transformer_from_pretrained_xlm") class TransformerFromPretrainedXLMModel(TransformerModel): @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" TransformerModel.add_args(parser) parser.add_argument( "--pretrained-xlm-checkpoint", type=str, metavar="STR", help="XLM model to use for initializing transformer encoder and/or decoder", ) parser.add_argument( "--init-encoder-only", action="store_true", help="if set, don't load the XLM weights and embeddings into decoder", ) parser.add_argument( "--init-decoder-only", action="store_true", help="if set, don't load the XLM weights and embeddings into encoder", ) @classmethod def build_model(self, args, task, cls_dictionary=MaskedLMDictionary): assert hasattr(args, "pretrained_xlm_checkpoint"), ( "You must specify a path for --pretrained-xlm-checkpoint to use " "--arch transformer_from_pretrained_xlm" ) assert isinstance(task.source_dictionary, cls_dictionary) and isinstance( task.target_dictionary, cls_dictionary ), ( "You should use a MaskedLMDictionary when using --arch " "transformer_from_pretrained_xlm because the pretrained XLM model " "was trained using data binarized with MaskedLMDictionary. " "For translation, you may want to use --task " "translation_from_pretrained_xlm" ) assert not ( getattr(args, "init_encoder_only", False) and getattr(args, "init_decoder_only", False) ), "Only one of --init-encoder-only and --init-decoder-only can be set." return super().build_model(args, task) @classmethod def build_encoder(cls, args, src_dict, embed_tokens): return TransformerEncoderFromPretrainedXLM(args, src_dict, embed_tokens) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): return TransformerDecoderFromPretrainedXLM(args, tgt_dict, embed_tokens) def upgrade_state_dict_with_xlm_weights( state_dict: Dict[str, Any], pretrained_xlm_checkpoint: str ) -> Dict[str, Any]: """ Load XLM weights into a Transformer encoder or decoder model. Args: state_dict: state dict for either TransformerEncoder or TransformerDecoder pretrained_xlm_checkpoint: checkpoint to load XLM weights from Raises: AssertionError: If architecture (num layers, attention heads, etc.) does not match between the current Transformer encoder or decoder and the pretrained_xlm_checkpoint """ if not os.path.exists(pretrained_xlm_checkpoint): raise IOError("Model file not found: {}".format(pretrained_xlm_checkpoint)) state = checkpoint_utils.load_checkpoint_to_cpu(pretrained_xlm_checkpoint) xlm_state_dict = state["model"] for key in xlm_state_dict.keys(): for search_key in ["embed_tokens", "embed_positions", "layers"]: if search_key in key: subkey = key[key.find(search_key) :] assert subkey in state_dict, ( "{} Transformer encoder / decoder " "state_dict does not contain {}. Cannot " "load {} from pretrained XLM checkpoint " "{} into Transformer.".format( str(state_dict.keys()), subkey, key, pretrained_xlm_checkpoint ) ) state_dict[subkey] = xlm_state_dict[key] return state_dict class TransformerEncoderFromPretrainedXLM(TransformerEncoder): def __init__(self, args, dictionary, embed_tokens): super().__init__(args, dictionary, embed_tokens) if getattr(args, "init_decoder_only", False): # Don't load XLM weights for encoder if --init-decoder-only return assert hasattr(args, "pretrained_xlm_checkpoint"), ( "--pretrained-xlm-checkpoint must be specified to load Transformer " "encoder from pretrained XLM" ) xlm_loaded_state_dict = upgrade_state_dict_with_xlm_weights( state_dict=self.state_dict(), pretrained_xlm_checkpoint=args.pretrained_xlm_checkpoint, ) self.load_state_dict(xlm_loaded_state_dict, strict=True) class TransformerDecoderFromPretrainedXLM(TransformerDecoder): def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False): super().__init__(args, dictionary, embed_tokens, no_encoder_attn) if getattr(args, "init_encoder_only", False): # Don't load XLM weights for decoder if --init-encoder-only return assert hasattr(args, "pretrained_xlm_checkpoint"), ( "--pretrained-xlm-checkpoint must be specified to load Transformer " "decoder from pretrained XLM" ) xlm_loaded_state_dict = upgrade_state_dict_with_xlm_weights( state_dict=self.state_dict(), pretrained_xlm_checkpoint=args.pretrained_xlm_checkpoint, ) self.load_state_dict(xlm_loaded_state_dict, strict=True) @register_model_architecture( "transformer_from_pretrained_xlm", "transformer_from_pretrained_xlm" ) def base_architecture(args): transformer_base_architecture(args)
data2vec_vision-main
deltalm/src/fairseq/models/transformer_from_pretrained_xlm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import inspect import torch import torch.nn as nn from fairseq import distributed_utils from fairseq.legacy_distributed_data_parallel import LegacyDistributedDataParallel _GOSSIP_DISABLED = False try: import gossip except ImportError: _GOSSIP_DISABLED = True def DistributedFairseqModel(args, model, process_group): """ Wrap a *model* to support distributed data parallel training. This is similar to the built-in DistributedDataParallel, but allows additional configuration of the DistributedDataParallel class to use, and also provides easier access to the wrapped model by forwarding requests for missing attributes to the wrapped model. Args: args (argparse.Namespace): fairseq args model (BaseFairseqModel): model to wrap process_group: the c10d process group to be used for distributed data parallel all-reduction. """ # determine which DDP class to extend assert isinstance(model, nn.Module) if args.tpu: ddp_class = TPUDistributedDataParallel init_kwargs = dict( module=model, process_group=process_group, ) elif args.distributed_wrapper == "DDP" and args.ddp_backend == "c10d": ddp_class = nn.parallel.DistributedDataParallel init_kwargs = dict( module=model, device_ids=[args.device_id], output_device=args.device_id, broadcast_buffers=args.broadcast_buffers, bucket_cap_mb=args.bucket_cap_mb, process_group=process_group, ) # Maintain backward compatibility if "check_reduction" in inspect.getargspec(ddp_class)[0]: init_kwargs["check_reduction"] = True if "find_unused_parameters" in inspect.getargspec(ddp_class)[0]: init_kwargs["find_unused_parameters"] = args.find_unused_parameters elif args.distributed_wrapper == "DDP" and args.ddp_backend == "no_c10d": ddp_class = LegacyDistributedDataParallel init_kwargs = dict( module=model, buffer_size=2 ** 28, process_group=process_group, ) elif args.distributed_wrapper == "SlowMo": if _GOSSIP_DISABLED: raise ImportError( "Cannot find gossip library. Please install from: " "github.com/facebookresearch/stochastic_gradient_push" ) ddp_class = gossip.GossipDataParallel # The values of slowmo_momentum below were obtained by tuning on the # En-De 16 dataset by training the transformer_wmt_en_de_large model if args.slowmo_momentum is None: if args.distributed_world_size <= 16: args.slowmo_momentum = 0.0 elif args.distributed_world_size <= 32: args.slowmo_momentum = 0.2 elif args.distributed_world_size <= 64: args.slowmo_momentum = 0.5 else: args.slowmo_momentum = 0.6 init_kwargs = dict( module=model, device_ids=[args.device_id], output_device=args.device_id, broadcast_buffers=args.broadcast_buffers, nprocs_per_node=args.nprocs_per_node, slowmo_momentum=args.slowmo_momentum, localsgd=(args.slowmo_algorithm == "LocalSGD"), localsgd_frequency=args.localsgd_frequency, ) else: raise ValueError("Unknown --ddp-backend: " + args.ddp_backend) class _DistributedFairseqModel(ddp_class): """Extend DistributedDataParallel to check for missing attributes in the wrapped module.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __getattr__(self, name): wrapped_module = super().__getattr__("module") if hasattr(wrapped_module, name): return getattr(wrapped_module, name) return super().__getattr__(name) return _DistributedFairseqModel(**init_kwargs) class TPUDistributedDataParallel(nn.Module): def __init__(self, module, process_group): super().__init__() self.module = module self.process_group = process_group self.world_size = distributed_utils.get_world_size(self.process_group) def forward(self, *inputs, **kwargs): return self.module(*inputs, **kwargs) def all_reduce_grads(self): gradients = [] for p in self.parameters(): if not p.requires_grad: continue if p.grad is None: p.grad = torch.zeros_like(p) if p.grad.requires_grad: raise RuntimeError( "TPUDistributedDataParallel only works with gradients that don't " "require grad" ) gradients.append(p.grad) import torch_xla.core.xla_model as xm xm.all_reduce( 'sum', gradients, scale=1. / self.world_size, groups=self.process_group[1], )
data2vec_vision-main
deltalm/src/fairseq/models/distributed_fairseq_model.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from typing import Any, Dict, List, Optional, Tuple import torch import torch.nn as nn from fairseq import utils from fairseq.models import ( FairseqEncoder, FairseqEncoderDecoderModel, FairseqIncrementalDecoder, register_model, register_model_architecture, ) from fairseq.modules import ( AdaptiveSoftmax, FairseqDropout, LayerDropModuleList, LayerNorm, PositionalEmbedding, SinusoidalPositionalEmbedding, TransformerDecoderLayer, TransformerEncoderLayer, ) from fairseq.modules.checkpoint_activations import checkpoint_wrapper from fairseq.modules.quant_noise import quant_noise as apply_quant_noise_ from torch import Tensor DEFAULT_MAX_SOURCE_POSITIONS = 1024 DEFAULT_MAX_TARGET_POSITIONS = 1024 @register_model("transformer") class TransformerModel(FairseqEncoderDecoderModel): """ Transformer model from `"Attention Is All You Need" (Vaswani, et al, 2017) <https://arxiv.org/abs/1706.03762>`_. Args: encoder (TransformerEncoder): the encoder decoder (TransformerDecoder): the decoder The Transformer model provides the following named architectures and command-line arguments: .. argparse:: :ref: fairseq.models.transformer_parser :prog: """ @classmethod def hub_models(cls): # fmt: off def moses_subword(path): return { 'path': path, 'tokenizer': 'moses', 'bpe': 'subword_nmt', } def moses_fastbpe(path): return { 'path': path, 'tokenizer': 'moses', 'bpe': 'fastbpe', } return { 'transformer.wmt14.en-fr': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/wmt14.en-fr.joined-dict.transformer.tar.bz2'), 'transformer.wmt16.en-de': 'https://dl.fbaipublicfiles.com/fairseq/models/wmt16.en-de.joined-dict.transformer.tar.bz2', 'transformer.wmt18.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/wmt18.en-de.ensemble.tar.gz'), 'transformer.wmt19.en-de': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-de.joined-dict.ensemble.tar.gz'), 'transformer.wmt19.en-ru': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-ru.ensemble.tar.gz'), 'transformer.wmt19.de-en': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.de-en.joined-dict.ensemble.tar.gz'), 'transformer.wmt19.ru-en': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.ru-en.ensemble.tar.gz'), 'transformer.wmt19.en-de.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-de.joined-dict.single_model.tar.gz'), 'transformer.wmt19.en-ru.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-ru.single_model.tar.gz'), 'transformer.wmt19.de-en.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.de-en.joined-dict.single_model.tar.gz'), 'transformer.wmt19.ru-en.single_model': moses_fastbpe('https://dl.fbaipublicfiles.com/fairseq/models/wmt19.ru-en.single_model.tar.gz'), } # fmt: on def __init__(self, args, encoder, decoder): super().__init__(encoder, decoder) self.args = args self.supports_align_args = True @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # fmt: off parser.add_argument('--activation-fn', choices=utils.get_available_activation_fns(), help='activation function to use') parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability') parser.add_argument('--attention-dropout', type=float, metavar='D', help='dropout probability for attention weights') parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D', help='dropout probability after activation in FFN.') parser.add_argument('--encoder-embed-path', type=str, metavar='STR', help='path to pre-trained encoder embedding') parser.add_argument('--encoder-embed-dim', type=int, metavar='N', help='encoder embedding dimension') parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N', help='encoder embedding dimension for FFN') parser.add_argument('--encoder-layers', type=int, metavar='N', help='num encoder layers') parser.add_argument('--encoder-attention-heads', type=int, metavar='N', help='num encoder attention heads') parser.add_argument('--encoder-normalize-before', action='store_true', help='apply layernorm before each encoder block') parser.add_argument('--encoder-learned-pos', action='store_true', help='use learned positional embeddings in the encoder') parser.add_argument('--decoder-embed-path', type=str, metavar='STR', help='path to pre-trained decoder embedding') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N', help='decoder embedding dimension for FFN') parser.add_argument('--decoder-layers', type=int, metavar='N', help='num decoder layers') parser.add_argument('--decoder-attention-heads', type=int, metavar='N', help='num decoder attention heads') parser.add_argument('--decoder-learned-pos', action='store_true', help='use learned positional embeddings in the decoder') parser.add_argument('--decoder-normalize-before', action='store_true', help='apply layernorm before each decoder block') parser.add_argument('--decoder-output-dim', type=int, metavar='N', help='decoder output dimension (extra linear layer ' 'if different from decoder embed dim') parser.add_argument('--share-decoder-input-output-embed', action='store_true', help='share decoder input and output embeddings') parser.add_argument('--share-all-embeddings', action='store_true', help='share encoder, decoder and output embeddings' ' (requires shared dictionary and embed dim)') parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true', help='if set, disables positional embeddings (outside self attention)') parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR', help='comma separated list of adaptive softmax cutoff points. ' 'Must be used with adaptive_loss criterion'), parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D', help='sets adaptive softmax dropout for the tail projections') parser.add_argument('--layernorm-embedding', action='store_true', help='add layernorm to embedding') parser.add_argument('--no-scale-embedding', action='store_true', help='if True, dont scale embeddings') parser.add_argument('--checkpoint-activations', action='store_true', help='checkpoint activations at each layer, which saves GPU ' 'memory usage at the cost of some additional compute') # args for "Cross+Self-Attention for Transformer Models" (Peitz et al., 2019) parser.add_argument('--no-cross-attention', default=False, action='store_true', help='do not perform cross-attention') parser.add_argument('--cross-self-attention', default=False, action='store_true', help='perform cross+self-attention') # args for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019) parser.add_argument('--encoder-layerdrop', type=float, metavar='D', default=0, help='LayerDrop probability for encoder') parser.add_argument('--decoder-layerdrop', type=float, metavar='D', default=0, help='LayerDrop probability for decoder') parser.add_argument('--encoder-layers-to-keep', default=None, help='which layers to *keep* when pruning as a comma-separated list') parser.add_argument('--decoder-layers-to-keep', default=None, help='which layers to *keep* when pruning as a comma-separated list') # args for Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020) parser.add_argument('--quant-noise-pq', type=float, metavar='D', default=0, help='iterative PQ quantization noise at training time') parser.add_argument('--quant-noise-pq-block-size', type=int, metavar='D', default=8, help='block size of quantization noise at training time') parser.add_argument('--quant-noise-scalar', type=float, metavar='D', default=0, help='scalar quantization noise and scalar quantization at training time') # fmt: on @classmethod def build_model_without_task(cls, args, src_dict, tgt_dict): """Build a new model instance.""" # make sure all arguments are present in older models base_architecture(args) if args.encoder_layers_to_keep: args.encoder_layers = len(args.encoder_layers_to_keep.split(",")) if args.decoder_layers_to_keep: args.decoder_layers = len(args.decoder_layers_to_keep.split(",")) if getattr(args, "max_source_positions", None) is None: args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS if getattr(args, "max_target_positions", None) is None: args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS if args.share_all_embeddings: if src_dict != tgt_dict: raise ValueError("--share-all-embeddings requires a joined dictionary") if args.encoder_embed_dim != args.decoder_embed_dim: raise ValueError( "--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim" ) if args.decoder_embed_path and ( args.decoder_embed_path != args.encoder_embed_path ): raise ValueError( "--share-all-embeddings not compatible with --decoder-embed-path" ) encoder_embed_tokens = cls.build_embedding( args, src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = encoder_embed_tokens args.share_decoder_input_output_embed = True else: encoder_embed_tokens = cls.build_embedding( args, src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = cls.build_embedding( args, tgt_dict, args.decoder_embed_dim, args.decoder_embed_path ) encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens) decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens) return cls(args, encoder, decoder) @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_architecture(args) if args.encoder_layers_to_keep: args.encoder_layers = len(args.encoder_layers_to_keep.split(",")) if args.decoder_layers_to_keep: args.decoder_layers = len(args.decoder_layers_to_keep.split(",")) if getattr(args, "max_source_positions", None) is None: args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS if getattr(args, "max_target_positions", None) is None: args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS src_dict, tgt_dict = task.source_dictionary, task.target_dictionary if args.share_all_embeddings: if src_dict != tgt_dict: raise ValueError("--share-all-embeddings requires a joined dictionary") if args.encoder_embed_dim != args.decoder_embed_dim: raise ValueError( "--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim" ) if args.decoder_embed_path and ( args.decoder_embed_path != args.encoder_embed_path ): raise ValueError( "--share-all-embeddings not compatible with --decoder-embed-path" ) encoder_embed_tokens = cls.build_embedding( args, src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = encoder_embed_tokens args.share_decoder_input_output_embed = True else: encoder_embed_tokens = cls.build_embedding( args, src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = cls.build_embedding( args, tgt_dict, args.decoder_embed_dim, args.decoder_embed_path ) encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens) decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens) return cls(args, encoder, decoder) @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) # if provided, load from preloaded dictionaries if path: embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) return emb @classmethod def build_encoder(cls, args, src_dict, embed_tokens): return TransformerEncoder(args, src_dict, embed_tokens) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): return TransformerDecoder( args, tgt_dict, embed_tokens, no_encoder_attn=getattr(args, "no_cross_attention", False), ) # TorchScript doesn't support optional arguments with variable length (**kwargs). # Current workaround is to add union of all arguments in child classes. def forward( self, src_tokens, src_lengths, prev_output_tokens, return_all_hiddens: bool = True, features_only: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, **extra_args ): """ Run the forward pass for an encoder-decoder model. Copied from the base class, but without ``**kwargs``, which are not supported by TorchScript. """ encoder_out = self.encoder( src_tokens, src_lengths=src_lengths, return_all_hiddens=return_all_hiddens ) decoder_out = self.decoder( prev_output_tokens, encoder_out=encoder_out, features_only=features_only, alignment_layer=alignment_layer, alignment_heads=alignment_heads, src_lengths=src_lengths, return_all_hiddens=return_all_hiddens, ) return decoder_out # Since get_normalized_probs is in the Fairseq Model which is not scriptable, # I rewrite the get_normalized_probs from Base Class to call the # helper function in the Base Class. @torch.jit.export def get_normalized_probs( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): """Get normalized probabilities (or log probs) from a net's output.""" return self.get_normalized_probs_scriptable(net_output, log_probs, sample) class TransformerEncoder(FairseqEncoder): """ Transformer encoder consisting of *args.encoder_layers* layers. Each layer is a :class:`TransformerEncoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): encoding dictionary embed_tokens (torch.nn.Embedding): input embedding """ def __init__(self, args, dictionary, embed_tokens): super().__init__(dictionary) self.register_buffer("version", torch.Tensor([3])) self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) self.encoder_layerdrop = args.encoder_layerdrop embed_dim = embed_tokens.embedding_dim self.padding_idx = embed_tokens.padding_idx self.max_source_positions = args.max_source_positions self.embed_tokens = embed_tokens self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim) self.embed_positions = ( PositionalEmbedding( args.max_source_positions, embed_dim, self.padding_idx, learned=args.encoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) if getattr(args, "layernorm_embedding", False): self.layernorm_embedding = LayerNorm(embed_dim) else: self.layernorm_embedding = None if not args.adaptive_input and args.quant_noise_pq > 0: self.quant_noise = apply_quant_noise_( nn.Linear(embed_dim, embed_dim, bias=False), args.quant_noise_pq, args.quant_noise_pq_block_size, ) else: self.quant_noise = None if self.encoder_layerdrop > 0.0: self.layers = LayerDropModuleList(p=self.encoder_layerdrop) else: self.layers = nn.ModuleList([]) self.layers.extend( [self.build_encoder_layer(args) for i in range(args.encoder_layers)] ) self.num_layers = len(self.layers) if args.encoder_normalize_before: self.layer_norm = LayerNorm(embed_dim) else: self.layer_norm = None def build_encoder_layer(self, args): layer = TransformerEncoderLayer(args) if getattr(args, "checkpoint_activations", False): layer = checkpoint_wrapper(layer) return layer def forward_embedding( self, src_tokens, token_embedding: Optional[torch.Tensor] = None ): # embed tokens and positions if token_embedding is None: token_embedding = self.embed_tokens(src_tokens) x = embed = self.embed_scale * token_embedding if self.embed_positions is not None: x = embed + self.embed_positions(src_tokens) if self.layernorm_embedding is not None: x = self.layernorm_embedding(x) x = self.dropout_module(x) if self.quant_noise is not None: x = self.quant_noise(x) return x, embed def forward( self, src_tokens, src_lengths, return_all_hiddens: bool = False, token_embeddings: Optional[torch.Tensor] = None, **kwargs ): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (torch.LongTensor): lengths of each source sentence of shape `(batch)` return_all_hiddens (bool, optional): also return all of the intermediate hidden states (default: False). token_embeddings (torch.Tensor, optional): precomputed embeddings default `None` will recompute embeddings Returns: namedtuple: - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` - **encoder_embedding** (Tensor): the (scaled) embedding lookup of shape `(batch, src_len, embed_dim)` - **encoder_states** (List[Tensor]): all intermediate hidden states of shape `(src_len, batch, embed_dim)`. Only populated if *return_all_hiddens* is True. """ x, encoder_embedding = self.forward_embedding(src_tokens, token_embeddings) # B x T x C -> T x B x C x = x.transpose(0, 1) # compute padding mask encoder_padding_mask = src_tokens.eq(self.padding_idx) encoder_states = [] # encoder layers for layer in self.layers: x = layer(x, encoder_padding_mask) if return_all_hiddens: assert encoder_states is not None encoder_states.append(x) if self.layer_norm is not None: x = self.layer_norm(x) # The Pytorch Mobile lite interpreter does not supports returning NamedTuple in # `foward` so we use a dictionary instead. # TorchScript does not support mixed values so the values are all lists. # The empty list is equivalent to None. return { "encoder_out": [x], # T x B x C "encoder_padding_mask": [encoder_padding_mask], # B x T "encoder_embedding": [encoder_embedding], # B x T x C "encoder_states": encoder_states, # List[T x B x C] "src_tokens": [], "src_lengths": [], } @torch.jit.export def reorder_encoder_out(self, encoder_out: Dict[str, List[Tensor]], new_order): """ Reorder encoder output according to *new_order*. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: *encoder_out* rearranged according to *new_order* """ if len(encoder_out["encoder_out"]) == 0: new_encoder_out = [] else: new_encoder_out = [encoder_out["encoder_out"][0].index_select(1, new_order)] if len(encoder_out["encoder_padding_mask"]) == 0: new_encoder_padding_mask = [] else: new_encoder_padding_mask = [ encoder_out["encoder_padding_mask"][0].index_select(0, new_order) ] if len(encoder_out["encoder_embedding"]) == 0: new_encoder_embedding = [] else: new_encoder_embedding = [ encoder_out["encoder_embedding"][0].index_select(0, new_order) ] if len(encoder_out["src_tokens"]) == 0: src_tokens = [] else: src_tokens = [(encoder_out["src_tokens"][0]).index_select(0, new_order)] if len(encoder_out["src_lengths"]) == 0: src_lengths = [] else: src_lengths = [(encoder_out["src_lengths"][0]).index_select(0, new_order)] encoder_states = encoder_out["encoder_states"] if len(encoder_states) > 0: for idx, state in enumerate(encoder_states): encoder_states[idx] = state.index_select(1, new_order) return { "encoder_out": new_encoder_out, # T x B x C "encoder_padding_mask": new_encoder_padding_mask, # B x T "encoder_embedding": new_encoder_embedding, # B x T x C "encoder_states": encoder_states, # List[T x B x C] "src_tokens": src_tokens, # B x T "src_lengths": src_lengths, # B x 1 } def max_positions(self): """Maximum input length supported by the encoder.""" if self.embed_positions is None: return self.max_source_positions return min(self.max_source_positions, self.embed_positions.max_positions) def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = "{}.embed_positions.weights".format(name) if weights_key in state_dict: print("deleting {0}".format(weights_key)) del state_dict[weights_key] state_dict[ "{}.embed_positions._float_tensor".format(name) ] = torch.FloatTensor(1) for i in range(self.num_layers): # update layer norms self.layers[i].upgrade_state_dict_named( state_dict, "{}.layers.{}".format(name, i) ) version_key = "{}.version".format(name) if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2: # earlier checkpoints did not normalize after the stack of layers self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict class TransformerDecoder(FairseqIncrementalDecoder): """ Transformer decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`TransformerDecoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False): self.args = args super().__init__(dictionary) self.register_buffer("version", torch.Tensor([3])) self._future_mask = torch.empty(0) self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) self.decoder_layerdrop = args.decoder_layerdrop self.share_input_output_embed = args.share_decoder_input_output_embed input_embed_dim = embed_tokens.embedding_dim embed_dim = args.decoder_embed_dim self.embed_dim = embed_dim self.output_embed_dim = args.decoder_output_dim self.padding_idx = embed_tokens.padding_idx self.max_target_positions = args.max_target_positions self.embed_tokens = embed_tokens self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim) if not args.adaptive_input and args.quant_noise_pq > 0: self.quant_noise = apply_quant_noise_( nn.Linear(embed_dim, embed_dim, bias=False), args.quant_noise_pq, args.quant_noise_pq_block_size, ) else: self.quant_noise = None self.project_in_dim = ( Linear(input_embed_dim, embed_dim, bias=False) if embed_dim != input_embed_dim else None ) self.embed_positions = ( PositionalEmbedding( self.max_target_positions, embed_dim, self.padding_idx, learned=args.decoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) if getattr(args, "layernorm_embedding", False): self.layernorm_embedding = LayerNorm(embed_dim) else: self.layernorm_embedding = None self.cross_self_attention = getattr(args, "cross_self_attention", False) if self.decoder_layerdrop > 0.0: self.layers = LayerDropModuleList(p=self.decoder_layerdrop) else: self.layers = nn.ModuleList([]) self.layers.extend( [ self.build_decoder_layer(args, no_encoder_attn) for _ in range(args.decoder_layers) ] ) self.num_layers = len(self.layers) if args.decoder_normalize_before and not getattr( args, "no_decoder_final_norm", False ): self.layer_norm = LayerNorm(embed_dim) else: self.layer_norm = None self.project_out_dim = ( Linear(embed_dim, self.output_embed_dim, bias=False) if embed_dim != self.output_embed_dim and not args.tie_adaptive_weights else None ) self.adaptive_softmax = None self.output_projection = None if args.adaptive_softmax_cutoff is not None: self.adaptive_softmax = AdaptiveSoftmax( len(dictionary), self.output_embed_dim, utils.eval_str_list(args.adaptive_softmax_cutoff, type=int), dropout=args.adaptive_softmax_dropout, adaptive_inputs=embed_tokens if args.tie_adaptive_weights else None, factor=args.adaptive_softmax_factor, tie_proj=args.tie_adaptive_proj, ) elif self.share_input_output_embed: self.output_projection = nn.Linear( self.embed_tokens.weight.shape[1], self.embed_tokens.weight.shape[0], bias=False, ) self.output_projection.weight = self.embed_tokens.weight else: self.output_projection = nn.Linear( self.output_embed_dim, len(dictionary), bias=False ) nn.init.normal_( self.output_projection.weight, mean=0, std=self.output_embed_dim ** -0.5 ) def build_decoder_layer(self, args, no_encoder_attn=False): layer = TransformerDecoderLayer(args, no_encoder_attn) if getattr(args, "checkpoint_activations", False): layer = checkpoint_wrapper(layer) return layer def forward( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, features_only: bool = False, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, src_lengths: Optional[Any] = None, return_all_hiddens: bool = False, **extra ): """ Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing encoder_out (optional): output from the encoder, used for encoder-side attention incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` features_only (bool, optional): only return features without applying output layer (default: False). full_context_alignment (bool, optional): don't apply auto-regressive mask to self-attention (default: False). Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ x, extra = self.extract_features( prev_output_tokens, encoder_out=encoder_out, incremental_state=incremental_state, full_context_alignment=full_context_alignment, alignment_layer=alignment_layer, alignment_heads=alignment_heads, ) if not features_only: x = self.output_layer(x) return x, extra def extract_features( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]], incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, ): return self.extract_features_scriptable( prev_output_tokens, encoder_out, incremental_state, full_context_alignment, alignment_layer, alignment_heads, ) """ A scriptable subclass of this class has an extract_features method and calls super().extract_features, but super() is not supported in torchscript. A copy of this function is made to be used in the subclass instead. """ def extract_features_scriptable( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]], incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, ): """ Similar to *forward* but only return features. Includes several features from "Jointly Learning to Align and Translate with Transformer Models" (Garg et al., EMNLP 2019). Args: full_context_alignment (bool, optional): don't apply auto-regressive mask to self-attention (default: False). alignment_layer (int, optional): return mean alignment over heads at this layer (default: last layer). alignment_heads (int, optional): only average alignment over this many heads (default: all heads). Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs """ if alignment_layer is None: alignment_layer = self.num_layers - 1 # embed positions positions = ( self.embed_positions( prev_output_tokens, incremental_state=incremental_state ) if self.embed_positions is not None else None ) if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] # embed tokens and positions x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.quant_noise is not None: x = self.quant_noise(x) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions if self.layernorm_embedding is not None: x = self.layernorm_embedding(x) x = self.dropout_module(x) # B x T x C -> T x B x C x = x.transpose(0, 1) self_attn_padding_mask: Optional[Tensor] = None if self.cross_self_attention or prev_output_tokens.eq(self.padding_idx).any(): self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx) # decoder layers attn: Optional[Tensor] = None inner_states: List[Optional[Tensor]] = [x] for idx, layer in enumerate(self.layers): if incremental_state is None and not full_context_alignment: self_attn_mask = self.buffered_future_mask(x) else: self_attn_mask = None x, layer_attn, _ = layer( x, encoder_out["encoder_out"][0] if (encoder_out is not None and len(encoder_out["encoder_out"]) > 0) else None, encoder_out["encoder_padding_mask"][0] if ( encoder_out is not None and len(encoder_out["encoder_padding_mask"]) > 0 ) else None, incremental_state, self_attn_mask=self_attn_mask, self_attn_padding_mask=self_attn_padding_mask, need_attn=bool((idx == alignment_layer)), need_head_weights=bool((idx == alignment_layer)), ) inner_states.append(x) if layer_attn is not None and idx == alignment_layer: attn = layer_attn.float().to(x) if attn is not None: if alignment_heads is not None: attn = attn[:alignment_heads] # average probabilities over heads attn = attn.mean(dim=0) if self.layer_norm is not None: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) if self.project_out_dim is not None: x = self.project_out_dim(x) return x, {"attn": [attn], "inner_states": inner_states} def output_layer(self, features): """Project features to the vocabulary size.""" if self.adaptive_softmax is None: # project back to size of vocabulary return self.output_projection(features) else: return features def max_positions(self): """Maximum output length supported by the decoder.""" if self.embed_positions is None: return self.max_target_positions return min(self.max_target_positions, self.embed_positions.max_positions) def buffered_future_mask(self, tensor): dim = tensor.size(0) # self._future_mask.device != tensor.device is not working in TorchScript. This is a workaround. if ( self._future_mask.size(0) == 0 or (not self._future_mask.device == tensor.device) or self._future_mask.size(0) < dim ): self._future_mask = torch.triu( utils.fill_with_neg_inf(torch.zeros([dim, dim])), 1 ) self._future_mask = self._future_mask.to(tensor) return self._future_mask[:dim, :dim] def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = "{}.embed_positions.weights".format(name) if weights_key in state_dict: del state_dict[weights_key] state_dict[ "{}.embed_positions._float_tensor".format(name) ] = torch.FloatTensor(1) if f"{name}.output_projection.weight" not in state_dict: if self.share_input_output_embed: embed_out_key = f"{name}.embed_tokens.weight" else: embed_out_key = f"{name}.embed_out" if embed_out_key in state_dict: state_dict[f"{name}.output_projection.weight"] = state_dict[ embed_out_key ] if not self.share_input_output_embed: del state_dict[embed_out_key] for i in range(self.num_layers): # update layer norms layer_norm_map = { "0": "self_attn_layer_norm", "1": "encoder_attn_layer_norm", "2": "final_layer_norm", } for old, new in layer_norm_map.items(): for m in ("weight", "bias"): k = "{}.layers.{}.layer_norms.{}.{}".format(name, i, old, m) if k in state_dict: state_dict[ "{}.layers.{}.{}.{}".format(name, i, new, m) ] = state_dict[k] del state_dict[k] version_key = "{}.version".format(name) if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) <= 2: # earlier checkpoints did not normalize after the stack of layers self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) nn.init.constant_(m.weight[padding_idx], 0) return m def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.0) return m @register_model_architecture("transformer", "transformer") def base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.no_cross_attention = getattr(args, "no_cross_attention", False) args.cross_self_attention = getattr(args, "cross_self_attention", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.layernorm_embedding = getattr(args, "layernorm_embedding", False) args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False) args.checkpoint_activations = getattr(args, "checkpoint_activations", False) args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None) args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None) args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0) args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0) args.quant_noise_pq = getattr(args, "quant_noise_pq", 0) args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8) args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0) @register_model_architecture("transformer", "transformer_iwslt_de_en") def transformer_iwslt_de_en(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4) args.encoder_layers = getattr(args, "encoder_layers", 6) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 1024) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4) args.decoder_layers = getattr(args, "decoder_layers", 6) base_architecture(args) @register_model_architecture("transformer", "transformer_wmt_en_de") def transformer_wmt_en_de(args): base_architecture(args) # parameters used in the "Attention Is All You Need" paper (Vaswani et al., 2017) @register_model_architecture("transformer", "transformer_vaswani_wmt_en_de_big") def transformer_vaswani_wmt_en_de_big(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) args.dropout = getattr(args, "dropout", 0.3) base_architecture(args) @register_model_architecture("transformer", "transformer_vaswani_wmt_en_fr_big") def transformer_vaswani_wmt_en_fr_big(args): args.dropout = getattr(args, "dropout", 0.1) transformer_vaswani_wmt_en_de_big(args) @register_model_architecture("transformer", "transformer_wmt_en_de_big") def transformer_wmt_en_de_big(args): args.attention_dropout = getattr(args, "attention_dropout", 0.1) transformer_vaswani_wmt_en_de_big(args) # default parameters used in tensor2tensor implementation @register_model_architecture("transformer", "transformer_wmt_en_de_big_t2t") def transformer_wmt_en_de_big_t2t(args): args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_dropout = getattr(args, "activation_dropout", 0.1) transformer_vaswani_wmt_en_de_big(args)
data2vec_vision-main
deltalm/src/fairseq/models/transformer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field from typing import Optional from fairseq import options, utils from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.models import ( FairseqLanguageModel, register_model, register_model_architecture, ) from fairseq.models.transformer import Embedding, TransformerDecoder from fairseq.modules import AdaptiveInput, CharacterTokenEmbedder from omegaconf import II DEFAULT_MAX_TARGET_POSITIONS = 1024 @dataclass class TransformerLanguageModelConfig(FairseqDataclass): activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( default="relu", metadata={"help": "activation function to use"} ) dropout: float = field(default=0.1, metadata={"help": "dropout probability"}) attention_dropout: float = field( default=0.0, metadata={"help": "dropout probability for attention weights"} ) activation_dropout: float = field( default=0.0, metadata={"help": "dropout probability after activation in FFN."} ) relu_dropout: float = field( default=0.0, metadata={"help": "dropout probability after activation in FFN."} ) decoder_embed_dim: int = field( default=512, metadata={"help": "decoder embedding dimension"} ) decoder_output_dim: int = field( default=512, metadata={"help": "decoder output dimension"} ) decoder_input_dim: int = field( default=512, metadata={"help": "decoder input dimension"} ) decoder_ffn_embed_dim: int = field( default=2048, metadata={"help": "decoder embedding dimension for FFN"} ) decoder_layers: int = field(default=6, metadata={"help": "num decoder layers"}) decoder_attention_heads: int = field( default=8, metadata={"help": "num decoder attention heads"} ) decoder_normalize_before: bool = field( default=False, metadata={"help": "apply layernorm before each decoder block"} ) no_decoder_final_norm: bool = field( default=False, metadata={"help": "don't add an extra layernorm after the last decoder block"}, ) adaptive_softmax_cutoff: Optional[str] = field( default=None, metadata={ "help": "comma separated list of adaptive softmax cutoff points. " "Must be used with adaptive_loss criterion" }, ) adaptive_softmax_dropout: float = field( default=0, metadata={"help": "sets adaptive softmax dropout for the tail projections"}, ) adaptive_softmax_factor: float = field( default=4, metadata={"help": "adaptive input factor"} ) no_token_positional_embeddings: bool = field( default=False, metadata={ "help": "if set, disables positional embeddings (outside self attention)" }, ) share_decoder_input_output_embed: bool = field( default=False, metadata={"help": "share decoder input and output embeddings"} ) character_embeddings: bool = field( default=False, metadata={ "help": "if set, uses character embedding convolutions to produce token embeddings" }, ) character_filters: str = field( default="[(1, 64), (2, 128), (3, 192), (4, 256), (5, 256), (6, 256), (7, 256)]", metadata={"help": "size of character embeddings"}, ) character_embedding_dim: int = field( default=4, metadata={"help": "size of character embeddings"} ) char_embedder_highway_layers: int = field( default=2, metadata={"help": "number of highway layers for character token embeddder"}, ) adaptive_input: bool = field( default=False, metadata={"help": "if set, uses adaptive input"} ) adaptive_input_factor: float = field( default=4, metadata={"help": "adaptive input factor"} ) adaptive_input_cutoff: Optional[str] = field( default=None, metadata={"help": "comma separated list of adaptive input cutoff points."}, ) tie_adaptive_weights: bool = field( default=False, metadata={ "help": "if set, ties the weights of adaptive softmax and adaptive input" }, ) tie_adaptive_proj: bool = field( default=False, metadata={ "help": "if set, ties the projection weights of adaptive softmax and adaptive input" }, ) decoder_learned_pos: bool = field( default=False, metadata={"help": "use learned positional embeddings in the decoder"}, ) decoder_layerdrop: float = field( default=0.0, metadata={"help": "LayerDrop probability for decoder"} ) decoder_layers_to_keep: Optional[str] = field( default=None, metadata={ "help": "which layers to *keep* when pruning as a comma-separated list" }, ) layernorm_embedding: bool = field( default=False, metadata={"help": "add layernorm to embedding"} ) no_scale_embedding: bool = field( default=False, metadata={"help": "if True, dont scale embeddings"} ) checkpoint_activations: bool = field( default=False, metadata={"help": "checkpoint activations at each layer"} ) quant_noise_pq: float = field( default=0.0, metadata={"help": "iterative PQ quantization noise at training time"}, ) quant_noise_pq_block_size: int = field( default=8, metadata={"help": "block size of quantization noise at training time"}, ) # TODO common var add to parent quant_noise_scalar: float = field( default=0.0, metadata={ "help": "scalar quantization noise and scalar quantization at training time" }, ) add_bos_token: bool = II("task.add_bos_token") tokens_per_sample: int = II("task.tokens_per_sample") max_target_positions: Optional[int] = II("task.max_target_positions") tpu: bool = II("common.tpu") @register_model("transformer_lm", dataclass=TransformerLanguageModelConfig) class TransformerLanguageModel(FairseqLanguageModel): @classmethod def hub_models(cls): def moses_fastbpe(path): return {"path": path, "tokenizer": "moses", "bpe": "fastbpe"} return { "transformer_lm.gbw.adaptive_huge": "https://dl.fbaipublicfiles.com/fairseq/models/lm/adaptive_lm_gbw_huge.tar.bz2", "transformer_lm.wiki103.adaptive": "https://dl.fbaipublicfiles.com/fairseq/models/lm/adaptive_lm_wiki103.v2.tar.bz2", "transformer_lm.wmt19.en": moses_fastbpe( "https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.en.tar.bz2" ), "transformer_lm.wmt19.de": moses_fastbpe( "https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.de.tar.bz2" ), "transformer_lm.wmt19.ru": moses_fastbpe( "https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.ru.tar.bz2" ), } def __init__(self, decoder): super().__init__(decoder) @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_lm_architecture(args) if args.decoder_layers_to_keep: args.decoder_layers = len(args.decoder_layers_to_keep.split(",")) if getattr(args, "max_target_positions", None) is None: args.max_target_positions = getattr( args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS ) if args.character_embeddings: embed_tokens = CharacterTokenEmbedder( task.source_dictionary, eval(args.character_filters), args.character_embedding_dim, args.decoder_embed_dim, args.char_embedder_highway_layers, ) elif args.adaptive_input: embed_tokens = AdaptiveInput( len(task.source_dictionary), task.source_dictionary.pad(), args.decoder_input_dim, args.adaptive_input_factor, args.decoder_embed_dim, options.eval_str_list(args.adaptive_input_cutoff, type=int), args.quant_noise_pq, args.quant_noise_pq_block_size, ) else: embed_tokens = cls.build_embedding( args, task.source_dictionary, args.decoder_input_dim ) if args.tie_adaptive_weights: assert args.adaptive_input assert args.adaptive_input_factor == args.adaptive_softmax_factor assert ( args.adaptive_softmax_cutoff == args.adaptive_input_cutoff ), "{} != {}".format( args.adaptive_softmax_cutoff, args.adaptive_input_cutoff ) assert args.decoder_input_dim == args.decoder_output_dim decoder = TransformerDecoder( args, task.target_dictionary, embed_tokens, no_encoder_attn=True ) return cls(decoder) @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): embed_tokens = Embedding(len(dictionary), embed_dim, dictionary.pad()) return embed_tokens def base_lm_architecture(args): # backward compatibility for older model checkpoints if hasattr(args, "no_tie_adaptive_proj"): # previous models defined --no-tie-adaptive-proj, so use the existence of # that option to determine if this is an "old" model checkpoint args.no_decoder_final_norm = True # old models always set this to True if args.no_tie_adaptive_proj is False: args.tie_adaptive_proj = True if hasattr(args, "decoder_final_norm"): args.no_decoder_final_norm = not args.decoder_final_norm args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 2048) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.adaptive_softmax_factor = getattr(args, "adaptive_softmax_factor", 4) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.activation_fn = getattr(args, "activation_fn", "relu") args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0) args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None) args.quant_noise_pq = getattr(args, "quant_noise_pq", 0) args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8) args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0) args.add_bos_token = getattr(args, "add_bos_token", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.character_embeddings = getattr(args, "character_embeddings", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) # Model training is not stable without this args.decoder_normalize_before = True args.no_decoder_final_norm = getattr(args, "no_decoder_final_norm", False) args.adaptive_input = getattr(args, "adaptive_input", False) args.adaptive_input_factor = getattr(args, "adaptive_input_factor", 4) args.adaptive_input_cutoff = getattr(args, "adaptive_input_cutoff", None) args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False) args.tie_adaptive_proj = getattr(args, "tie_adaptive_proj", False) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.layernorm_embedding = getattr(args, "layernorm_embedding", False) args.checkpoint_activations = getattr(args, "checkpoint_activations", False) @register_model_architecture("transformer_lm", "transformer_lm_big") def transformer_lm_big(args): args.decoder_layers = getattr(args, "decoder_layers", 12) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) base_lm_architecture(args) @register_model_architecture("transformer_lm", "transformer_lm_wiki103") @register_model_architecture("transformer_lm", "transformer_lm_baevski_wiki103") def transformer_lm_baevski_wiki103(args): args.decoder_layers = getattr(args, "decoder_layers", 16) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.dropout = getattr(args, "dropout", 0.3) args.adaptive_input = getattr(args, "adaptive_input", True) args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", True) args.adaptive_input_cutoff = getattr(args, "adaptive_input_cutoff", "20000,60000") args.adaptive_softmax_cutoff = getattr( args, "adaptive_softmax_cutoff", "20000,60000" ) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0.2) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_dropout = getattr(args, "activation_dropout", 0.1) args.no_decoder_final_norm = getattr(args, "no_decoder_final_norm", True) args.tie_adaptive_proj = getattr(args, "tie_adaptive_proj", True) transformer_lm_big(args) @register_model_architecture("transformer_lm", "transformer_lm_gbw") @register_model_architecture("transformer_lm", "transformer_lm_baevski_gbw") def transformer_lm_baevski_gbw(args): args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.no_decoder_final_norm = getattr(args, "no_decoder_final_norm", True) transformer_lm_big(args) @register_model_architecture("transformer_lm", "transformer_lm_gpt") def transformer_lm_gpt(args): args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 768) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 3072) args.decoder_layers = getattr(args, "decoder_layers", 12) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 12) args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_fn = getattr(args, "activation_fn", "gelu") base_lm_architecture(args) @register_model_architecture("transformer_lm", "transformer_lm_gpt2_small") def transformer_lm_gpt2_small(args): args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096) args.decoder_layers = getattr(args, "decoder_layers", 24) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_fn = getattr(args, "activation_fn", "gelu") base_lm_architecture(args) @register_model_architecture("transformer_lm", "transformer_lm_gpt2_medium") def transformer_lm_gpt2_medium(args): args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1280) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 5120) args.decoder_layers = getattr(args, "decoder_layers", 36) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 20) args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_fn = getattr(args, "activation_fn", "gelu") base_lm_architecture(args) @register_model_architecture("transformer_lm", "transformer_lm_gpt2_big") def transformer_lm_gpt2_big(args): args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1600) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 6400) args.decoder_layers = getattr(args, "decoder_layers", 48) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 25) args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_fn = getattr(args, "activation_fn", "gelu") base_lm_architecture(args)
data2vec_vision-main
deltalm/src/fairseq/models/transformer_lm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.models import ( FairseqEncoder, FairseqEncoderDecoderModel, FairseqIncrementalDecoder, register_model, register_model_architecture, ) from fairseq.modules import ( AdaptiveSoftmax, BeamableMM, FairseqDropout, GradMultiply, LearnedPositionalEmbedding, LinearizedConvolution, ) @register_model("fconv") class FConvModel(FairseqEncoderDecoderModel): """ A fully convolutional model, i.e. a convolutional encoder and a convolutional decoder, as described in `"Convolutional Sequence to Sequence Learning" (Gehring et al., 2017) <https://arxiv.org/abs/1705.03122>`_. Args: encoder (FConvEncoder): the encoder decoder (FConvDecoder): the decoder The Convolutional model provides the following named architectures and command-line arguments: .. argparse:: :ref: fairseq.models.fconv_parser :prog: """ @classmethod def hub_models(cls): def moses_subword(path): return { "path": path, "tokenizer": "moses", "bpe": "subword_nmt", } return { "conv.wmt14.en-fr": moses_subword( "https://dl.fbaipublicfiles.com/fairseq/models/wmt14.v2.en-fr.fconv-py.tar.bz2" ), "conv.wmt14.en-de": moses_subword( "https://dl.fbaipublicfiles.com/fairseq/models/wmt14.en-de.fconv-py.tar.bz2" ), "conv.wmt17.en-de": moses_subword( "https://dl.fbaipublicfiles.com/fairseq/models/wmt17.v2.en-de.fconv-py.tar.bz2" ), } def __init__(self, encoder, decoder): super().__init__(encoder, decoder) self.encoder.num_attention_layers = sum( layer is not None for layer in decoder.attention ) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # fmt: off parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability') parser.add_argument('--encoder-embed-dim', type=int, metavar='N', help='encoder embedding dimension') parser.add_argument('--encoder-embed-path', type=str, metavar='STR', help='path to pre-trained encoder embedding') parser.add_argument('--encoder-layers', type=str, metavar='EXPR', help='encoder layers [(dim, kernel_size), ...]') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--decoder-embed-path', type=str, metavar='STR', help='path to pre-trained decoder embedding') parser.add_argument('--decoder-layers', type=str, metavar='EXPR', help='decoder layers [(dim, kernel_size), ...]') parser.add_argument('--decoder-out-embed-dim', type=int, metavar='N', help='decoder output embedding dimension') parser.add_argument('--decoder-attention', type=str, metavar='EXPR', help='decoder attention [True, ...]') parser.add_argument('--share-input-output-embed', action='store_true', help='share input and output embeddings (requires' ' --decoder-out-embed-dim and --decoder-embed-dim' ' to be equal)') # fmt: on @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure that all args are properly defaulted (in case there are any new ones) base_architecture(args) encoder_embed_dict = None if args.encoder_embed_path: encoder_embed_dict = utils.parse_embedding(args.encoder_embed_path) utils.print_embed_overlap(encoder_embed_dict, task.source_dictionary) decoder_embed_dict = None if args.decoder_embed_path: decoder_embed_dict = utils.parse_embedding(args.decoder_embed_path) utils.print_embed_overlap(decoder_embed_dict, task.target_dictionary) encoder = FConvEncoder( dictionary=task.source_dictionary, embed_dim=args.encoder_embed_dim, embed_dict=encoder_embed_dict, convolutions=eval(args.encoder_layers), dropout=args.dropout, max_positions=args.max_source_positions, ) decoder = FConvDecoder( dictionary=task.target_dictionary, embed_dim=args.decoder_embed_dim, embed_dict=decoder_embed_dict, convolutions=eval(args.decoder_layers), out_embed_dim=args.decoder_out_embed_dim, attention=eval(args.decoder_attention), dropout=args.dropout, max_positions=args.max_target_positions, share_embed=args.share_input_output_embed, ) return FConvModel(encoder, decoder) class FConvEncoder(FairseqEncoder): """ Convolutional encoder consisting of `len(convolutions)` layers. Args: dictionary (~fairseq.data.Dictionary): encoding dictionary embed_dim (int, optional): embedding dimension embed_dict (str, optional): filename from which to load pre-trained embeddings max_positions (int, optional): maximum supported input sequence length convolutions (list, optional): the convolutional layer structure. Each list item `i` corresponds to convolutional layer `i`. Layers are given as ``(out_channels, kernel_width, [residual])``. Residual connections are added between layers when ``residual=1`` (which is the default behavior). dropout (float, optional): dropout to be applied before each conv layer """ def __init__( self, dictionary, embed_dim=512, embed_dict=None, max_positions=1024, convolutions=((512, 3),) * 20, dropout=0.1, ): super().__init__(dictionary) self.dropout_module = FairseqDropout( dropout, module_name=self.__class__.__name__ ) self.num_attention_layers = None num_embeddings = len(dictionary) self.padding_idx = dictionary.pad() self.embed_tokens = Embedding(num_embeddings, embed_dim, self.padding_idx) if embed_dict: self.embed_tokens = utils.load_embedding( embed_dict, self.dictionary, self.embed_tokens ) self.embed_positions = PositionalEmbedding( max_positions, embed_dim, self.padding_idx, ) convolutions = extend_conv_spec(convolutions) in_channels = convolutions[0][0] self.fc1 = Linear(embed_dim, in_channels, dropout=dropout) self.projections = nn.ModuleList() self.convolutions = nn.ModuleList() self.residuals = [] layer_in_channels = [in_channels] for _, (out_channels, kernel_size, residual) in enumerate(convolutions): if residual == 0: residual_dim = out_channels else: residual_dim = layer_in_channels[-residual] self.projections.append( Linear(residual_dim, out_channels) if residual_dim != out_channels else None ) if kernel_size % 2 == 1: padding = kernel_size // 2 else: padding = 0 self.convolutions.append( ConvTBC( in_channels, out_channels * 2, kernel_size, dropout=dropout, padding=padding, ) ) self.residuals.append(residual) in_channels = out_channels layer_in_channels.append(out_channels) self.fc2 = Linear(in_channels, embed_dim) def forward(self, src_tokens, src_lengths): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (LongTensor): lengths of each source sentence of shape `(batch)` Returns: dict: - **encoder_out** (tuple): a tuple with two elements, where the first element is the last encoder layer's output and the second element is the same quantity summed with the input embedding (used for attention). The shape of both tensors is `(batch, src_len, embed_dim)`. - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` """ # embed tokens and positions x = self.embed_tokens(src_tokens) + self.embed_positions(src_tokens) x = self.dropout_module(x) input_embedding = x # project to size of convolution x = self.fc1(x) # used to mask padding in input encoder_padding_mask = src_tokens.eq(self.padding_idx).t() # -> T x B if not encoder_padding_mask.any(): encoder_padding_mask = None # B x T x C -> T x B x C x = x.transpose(0, 1) residuals = [x] # temporal convolutions for proj, conv, res_layer in zip( self.projections, self.convolutions, self.residuals ): if res_layer > 0: residual = residuals[-res_layer] residual = residual if proj is None else proj(residual) else: residual = None if encoder_padding_mask is not None: x = x.masked_fill(encoder_padding_mask.unsqueeze(-1), 0) x = self.dropout_module(x) if conv.kernel_size[0] % 2 == 1: # padding is implicit in the conv x = conv(x) else: padding_l = (conv.kernel_size[0] - 1) // 2 padding_r = conv.kernel_size[0] // 2 x = F.pad(x, (0, 0, 0, 0, padding_l, padding_r)) x = conv(x) x = F.glu(x, dim=2) if residual is not None: x = (x + residual) * math.sqrt(0.5) residuals.append(x) # T x B x C -> B x T x C x = x.transpose(1, 0) # project back to size of embedding x = self.fc2(x) if encoder_padding_mask is not None: encoder_padding_mask = encoder_padding_mask.t() # -> B x T x = x.masked_fill(encoder_padding_mask.unsqueeze(-1), 0) # scale gradients (this only affects backward, not forward) x = GradMultiply.apply(x, 1.0 / (2.0 * self.num_attention_layers)) # add output to input embedding for attention y = (x + input_embedding) * math.sqrt(0.5) return { "encoder_out": (x, y), "encoder_padding_mask": encoder_padding_mask, # B x T } def reorder_encoder_out(self, encoder_out, new_order): if encoder_out["encoder_out"] is not None: encoder_out["encoder_out"] = ( encoder_out["encoder_out"][0].index_select(0, new_order), encoder_out["encoder_out"][1].index_select(0, new_order), ) if encoder_out["encoder_padding_mask"] is not None: encoder_out["encoder_padding_mask"] = encoder_out[ "encoder_padding_mask" ].index_select(0, new_order) return encoder_out def max_positions(self): """Maximum input length supported by the encoder.""" return self.embed_positions.max_positions class AttentionLayer(nn.Module): def __init__(self, conv_channels, embed_dim, bmm=None): super().__init__() # projects from output of convolution to embedding dimension self.in_projection = Linear(conv_channels, embed_dim) # projects from embedding dimension to convolution size self.out_projection = Linear(embed_dim, conv_channels) self.bmm = bmm if bmm is not None else torch.bmm def forward(self, x, target_embedding, encoder_out, encoder_padding_mask): residual = x # attention x = (self.in_projection(x) + target_embedding) * math.sqrt(0.5) x = self.bmm(x, encoder_out[0]) # don't attend over padding if encoder_padding_mask is not None: x = ( x.float() .masked_fill(encoder_padding_mask.unsqueeze(1), float("-inf")) .type_as(x) ) # FP16 support: cast to float and back # softmax over last dim sz = x.size() x = F.softmax(x.view(sz[0] * sz[1], sz[2]), dim=1) x = x.view(sz) attn_scores = x x = self.bmm(x, encoder_out[1]) # scale attention output (respecting potentially different lengths) s = encoder_out[1].size(1) if encoder_padding_mask is None: x = x * (s * math.sqrt(1.0 / s)) else: s = s - encoder_padding_mask.type_as(x).sum( dim=1, keepdim=True ) # exclude padding s = s.unsqueeze(-1) x = x * (s * s.rsqrt()) # project back x = (self.out_projection(x) + residual) * math.sqrt(0.5) return x, attn_scores def make_generation_fast_(self, beamable_mm_beam_size=None, **kwargs): """Replace torch.bmm with BeamableMM.""" if beamable_mm_beam_size is not None: del self.bmm self.add_module("bmm", BeamableMM(beamable_mm_beam_size)) class FConvDecoder(FairseqIncrementalDecoder): """Convolutional decoder""" def __init__( self, dictionary, embed_dim=512, embed_dict=None, out_embed_dim=256, max_positions=1024, convolutions=((512, 3),) * 20, attention=True, dropout=0.1, share_embed=False, positional_embeddings=True, adaptive_softmax_cutoff=None, adaptive_softmax_dropout=0.0, ): super().__init__(dictionary) self.register_buffer("version", torch.Tensor([2])) self.dropout_module = FairseqDropout( dropout, module_name=self.__class__.__name__ ) self.need_attn = True convolutions = extend_conv_spec(convolutions) in_channels = convolutions[0][0] if isinstance(attention, bool): # expand True into [True, True, ...] and do the same with False attention = [attention] * len(convolutions) if not isinstance(attention, list) or len(attention) != len(convolutions): raise ValueError( "Attention is expected to be a list of booleans of " "length equal to the number of layers." ) num_embeddings = len(dictionary) padding_idx = dictionary.pad() self.embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx) if embed_dict: self.embed_tokens = utils.load_embedding( embed_dict, self.dictionary, self.embed_tokens ) self.embed_positions = ( PositionalEmbedding( max_positions, embed_dim, padding_idx, ) if positional_embeddings else None ) self.fc1 = Linear(embed_dim, in_channels, dropout=dropout) self.projections = nn.ModuleList() self.convolutions = nn.ModuleList() self.attention = nn.ModuleList() self.residuals = [] layer_in_channels = [in_channels] for i, (out_channels, kernel_size, residual) in enumerate(convolutions): if residual == 0: residual_dim = out_channels else: residual_dim = layer_in_channels[-residual] self.projections.append( Linear(residual_dim, out_channels) if residual_dim != out_channels else None ) self.convolutions.append( LinearizedConv1d( in_channels, out_channels * 2, kernel_size, padding=(kernel_size - 1), dropout=dropout, ) ) self.attention.append( AttentionLayer(out_channels, embed_dim) if attention[i] else None ) self.residuals.append(residual) in_channels = out_channels layer_in_channels.append(out_channels) self.adaptive_softmax = None self.fc2 = self.fc3 = None if adaptive_softmax_cutoff is not None: assert not share_embed self.adaptive_softmax = AdaptiveSoftmax( num_embeddings, in_channels, adaptive_softmax_cutoff, dropout=adaptive_softmax_dropout, ) else: self.fc2 = Linear(in_channels, out_embed_dim) if share_embed: assert out_embed_dim == embed_dim, ( "Shared embed weights implies same dimensions " " out_embed_dim={} vs embed_dim={}".format(out_embed_dim, embed_dim) ) self.fc3 = nn.Linear(out_embed_dim, num_embeddings) self.fc3.weight = self.embed_tokens.weight else: self.fc3 = Linear(out_embed_dim, num_embeddings, dropout=dropout) def forward( self, prev_output_tokens, encoder_out=None, incremental_state=None, **unused ): if encoder_out is not None: encoder_padding_mask = encoder_out["encoder_padding_mask"] encoder_out = encoder_out["encoder_out"] # split and transpose encoder outputs encoder_a, encoder_b = self._split_encoder_out( encoder_out, incremental_state ) if self.embed_positions is not None: pos_embed = self.embed_positions(prev_output_tokens, incremental_state) else: pos_embed = 0 if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] x = self._embed_tokens(prev_output_tokens, incremental_state) # embed tokens and combine with positional embeddings x += pos_embed x = self.dropout_module(x) target_embedding = x # project to size of convolution x = self.fc1(x) # B x T x C -> T x B x C x = self._transpose_if_training(x, incremental_state) # temporal convolutions avg_attn_scores = None num_attn_layers = len(self.attention) residuals = [x] for proj, conv, attention, res_layer in zip( self.projections, self.convolutions, self.attention, self.residuals ): if res_layer > 0: residual = residuals[-res_layer] residual = residual if proj is None else proj(residual) else: residual = None x = self.dropout_module(x) x = conv(x, incremental_state) x = F.glu(x, dim=2) # attention if attention is not None: x = self._transpose_if_training(x, incremental_state) x, attn_scores = attention( x, target_embedding, (encoder_a, encoder_b), encoder_padding_mask ) if not self.training and self.need_attn: attn_scores = attn_scores / num_attn_layers if avg_attn_scores is None: avg_attn_scores = attn_scores else: avg_attn_scores.add_(attn_scores) x = self._transpose_if_training(x, incremental_state) # residual if residual is not None: x = (x + residual) * math.sqrt(0.5) residuals.append(x) # T x B x C -> B x T x C x = self._transpose_if_training(x, incremental_state) # project back to size of vocabulary if not using adaptive softmax if self.fc2 is not None and self.fc3 is not None: x = self.fc2(x) x = self.dropout_module(x) x = self.fc3(x) return x, avg_attn_scores def reorder_incremental_state(self, incremental_state, new_order): super().reorder_incremental_state(incremental_state, new_order) encoder_out = utils.get_incremental_state( self, incremental_state, "encoder_out" ) if encoder_out is not None: encoder_out = tuple(eo.index_select(0, new_order) for eo in encoder_out) utils.set_incremental_state( self, incremental_state, "encoder_out", encoder_out ) def max_positions(self): """Maximum output length supported by the decoder.""" return ( self.embed_positions.max_positions if self.embed_positions is not None else float("inf") ) def upgrade_state_dict(self, state_dict): if utils.item(state_dict.get("decoder.version", torch.Tensor([1]))[0]) < 2: # old models use incorrect weight norm dimension for i, conv in enumerate(self.convolutions): # reconfigure weight norm nn.utils.remove_weight_norm(conv) self.convolutions[i] = nn.utils.weight_norm(conv, dim=0) state_dict["decoder.version"] = torch.Tensor([1]) return state_dict def make_generation_fast_(self, need_attn=False, **kwargs): self.need_attn = need_attn def _embed_tokens(self, tokens, incremental_state): if incremental_state is not None: # keep only the last token for incremental forward pass tokens = tokens[:, -1:] return self.embed_tokens(tokens) def _split_encoder_out(self, encoder_out, incremental_state): """Split and transpose encoder outputs. This is cached when doing incremental inference. """ cached_result = utils.get_incremental_state( self, incremental_state, "encoder_out" ) if cached_result is not None: return cached_result # transpose only once to speed up attention layers encoder_a, encoder_b = encoder_out encoder_a = encoder_a.transpose(1, 2).contiguous() result = (encoder_a, encoder_b) if incremental_state is not None: utils.set_incremental_state(self, incremental_state, "encoder_out", result) return result def _transpose_if_training(self, x, incremental_state): if incremental_state is None: x = x.transpose(0, 1) return x def extend_conv_spec(convolutions): """ Extends convolutional spec that is a list of tuples of 2 or 3 parameters (kernel size, dim size and optionally how many layers behind to look for residual) to default the residual propagation param if it is not specified """ extended = [] for spec in convolutions: if len(spec) == 3: extended.append(spec) elif len(spec) == 2: extended.append(spec + (1,)) else: raise Exception( "invalid number of parameters in convolution spec " + str(spec) + ". expected 2 or 3" ) return tuple(extended) def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.normal_(m.weight, 0, 0.1) nn.init.constant_(m.weight[padding_idx], 0) return m def PositionalEmbedding(num_embeddings, embedding_dim, padding_idx): m = LearnedPositionalEmbedding(num_embeddings, embedding_dim, padding_idx) nn.init.normal_(m.weight, 0, 0.1) nn.init.constant_(m.weight[padding_idx], 0) return m def Linear(in_features, out_features, dropout=0.0): """Weight-normalized Linear layer (input: N x T x C)""" m = nn.Linear(in_features, out_features) nn.init.normal_(m.weight, mean=0, std=math.sqrt((1 - dropout) / in_features)) nn.init.constant_(m.bias, 0) return nn.utils.weight_norm(m) def LinearizedConv1d(in_channels, out_channels, kernel_size, dropout=0.0, **kwargs): """Weight-normalized Conv1d layer optimized for decoding""" m = LinearizedConvolution(in_channels, out_channels, kernel_size, **kwargs) std = math.sqrt((4 * (1.0 - dropout)) / (m.kernel_size[0] * in_channels)) nn.init.normal_(m.weight, mean=0, std=std) nn.init.constant_(m.bias, 0) return nn.utils.weight_norm(m, dim=2) def ConvTBC(in_channels, out_channels, kernel_size, dropout=0.0, **kwargs): """Weight-normalized Conv1d layer""" from fairseq.modules import ConvTBC m = ConvTBC(in_channels, out_channels, kernel_size, **kwargs) std = math.sqrt((4 * (1.0 - dropout)) / (m.kernel_size[0] * in_channels)) nn.init.normal_(m.weight, mean=0, std=std) nn.init.constant_(m.bias, 0) return nn.utils.weight_norm(m, dim=2) @register_model_architecture("fconv", "fconv") def base_architecture(args): args.dropout = getattr(args, "dropout", 0.1) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_layers = getattr(args, "encoder_layers", "[(512, 3)] * 20") args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_layers = getattr(args, "decoder_layers", "[(512, 3)] * 20") args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 256) args.decoder_attention = getattr(args, "decoder_attention", "True") args.share_input_output_embed = getattr(args, "share_input_output_embed", False) @register_model_architecture("fconv", "fconv_iwslt_de_en") def fconv_iwslt_de_en(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 256) args.encoder_layers = getattr(args, "encoder_layers", "[(256, 3)] * 4") args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 256) args.decoder_layers = getattr(args, "decoder_layers", "[(256, 3)] * 3") args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 256) base_architecture(args) @register_model_architecture("fconv", "fconv_wmt_en_ro") def fconv_wmt_en_ro(args): args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 512) base_architecture(args) @register_model_architecture("fconv", "fconv_wmt_en_de") def fconv_wmt_en_de(args): convs = "[(512, 3)] * 9" # first 9 layers have 512 units convs += " + [(1024, 3)] * 4" # next 4 layers have 1024 units convs += " + [(2048, 1)] * 2" # final 2 layers use 1x1 convolutions args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768) args.encoder_layers = getattr(args, "encoder_layers", convs) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 768) args.decoder_layers = getattr(args, "decoder_layers", convs) args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 512) base_architecture(args) @register_model_architecture("fconv", "fconv_wmt_en_fr") def fconv_wmt_en_fr(args): convs = "[(512, 3)] * 6" # first 6 layers have 512 units convs += " + [(768, 3)] * 4" # next 4 layers have 768 units convs += " + [(1024, 3)] * 3" # next 3 layers have 1024 units convs += " + [(2048, 1)] * 1" # next 1 layer uses 1x1 convolutions convs += " + [(4096, 1)] * 1" # final 1 layer uses 1x1 convolutions args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768) args.encoder_layers = getattr(args, "encoder_layers", convs) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 768) args.decoder_layers = getattr(args, "decoder_layers", convs) args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 512) base_architecture(args)
data2vec_vision-main
deltalm/src/fairseq/models/fconv.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, List, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.models import ( FairseqEncoder, FairseqEncoderDecoderModel, FairseqIncrementalDecoder, register_model, register_model_architecture, ) from fairseq.modules import AdaptiveSoftmax, FairseqDropout from torch import Tensor DEFAULT_MAX_SOURCE_POSITIONS = 1e5 DEFAULT_MAX_TARGET_POSITIONS = 1e5 @register_model("lstm") class LSTMModel(FairseqEncoderDecoderModel): def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # fmt: off parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability') parser.add_argument('--encoder-embed-dim', type=int, metavar='N', help='encoder embedding dimension') parser.add_argument('--encoder-embed-path', type=str, metavar='STR', help='path to pre-trained encoder embedding') parser.add_argument('--encoder-freeze-embed', action='store_true', help='freeze encoder embeddings') parser.add_argument('--encoder-hidden-size', type=int, metavar='N', help='encoder hidden size') parser.add_argument('--encoder-layers', type=int, metavar='N', help='number of encoder layers') parser.add_argument('--encoder-bidirectional', action='store_true', help='make all layers of encoder bidirectional') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--decoder-embed-path', type=str, metavar='STR', help='path to pre-trained decoder embedding') parser.add_argument('--decoder-freeze-embed', action='store_true', help='freeze decoder embeddings') parser.add_argument('--decoder-hidden-size', type=int, metavar='N', help='decoder hidden size') parser.add_argument('--decoder-layers', type=int, metavar='N', help='number of decoder layers') parser.add_argument('--decoder-out-embed-dim', type=int, metavar='N', help='decoder output embedding dimension') parser.add_argument('--decoder-attention', type=str, metavar='BOOL', help='decoder attention') parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR', help='comma separated list of adaptive softmax cutoff points. ' 'Must be used with adaptive_loss criterion') parser.add_argument('--share-decoder-input-output-embed', default=False, action='store_true', help='share decoder input and output embeddings') parser.add_argument('--share-all-embeddings', default=False, action='store_true', help='share encoder, decoder and output embeddings' ' (requires shared dictionary and embed dim)') # Granular dropout settings (if not specified these default to --dropout) parser.add_argument('--encoder-dropout-in', type=float, metavar='D', help='dropout probability for encoder input embedding') parser.add_argument('--encoder-dropout-out', type=float, metavar='D', help='dropout probability for encoder output') parser.add_argument('--decoder-dropout-in', type=float, metavar='D', help='dropout probability for decoder input embedding') parser.add_argument('--decoder-dropout-out', type=float, metavar='D', help='dropout probability for decoder output') # fmt: on @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure that all args are properly defaulted (in case there are any new ones) base_architecture(args) if args.encoder_layers != args.decoder_layers: raise ValueError("--encoder-layers must match --decoder-layers") max_source_positions = getattr( args, "max_source_positions", DEFAULT_MAX_SOURCE_POSITIONS ) max_target_positions = getattr( args, "max_target_positions", DEFAULT_MAX_TARGET_POSITIONS ) def load_pretrained_embedding_from_file(embed_path, dictionary, embed_dim): num_embeddings = len(dictionary) padding_idx = dictionary.pad() embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx) embed_dict = utils.parse_embedding(embed_path) utils.print_embed_overlap(embed_dict, dictionary) return utils.load_embedding(embed_dict, dictionary, embed_tokens) if args.encoder_embed_path: pretrained_encoder_embed = load_pretrained_embedding_from_file( args.encoder_embed_path, task.source_dictionary, args.encoder_embed_dim ) else: num_embeddings = len(task.source_dictionary) pretrained_encoder_embed = Embedding( num_embeddings, args.encoder_embed_dim, task.source_dictionary.pad() ) if args.share_all_embeddings: # double check all parameters combinations are valid if task.source_dictionary != task.target_dictionary: raise ValueError("--share-all-embeddings requires a joint dictionary") if args.decoder_embed_path and ( args.decoder_embed_path != args.encoder_embed_path ): raise ValueError( "--share-all-embed not compatible with --decoder-embed-path" ) if args.encoder_embed_dim != args.decoder_embed_dim: raise ValueError( "--share-all-embeddings requires --encoder-embed-dim to " "match --decoder-embed-dim" ) pretrained_decoder_embed = pretrained_encoder_embed args.share_decoder_input_output_embed = True else: # separate decoder input embeddings pretrained_decoder_embed = None if args.decoder_embed_path: pretrained_decoder_embed = load_pretrained_embedding_from_file( args.decoder_embed_path, task.target_dictionary, args.decoder_embed_dim, ) # one last double check of parameter combinations if args.share_decoder_input_output_embed and ( args.decoder_embed_dim != args.decoder_out_embed_dim ): raise ValueError( "--share-decoder-input-output-embeddings requires " "--decoder-embed-dim to match --decoder-out-embed-dim" ) if args.encoder_freeze_embed: pretrained_encoder_embed.weight.requires_grad = False if args.decoder_freeze_embed: pretrained_decoder_embed.weight.requires_grad = False encoder = LSTMEncoder( dictionary=task.source_dictionary, embed_dim=args.encoder_embed_dim, hidden_size=args.encoder_hidden_size, num_layers=args.encoder_layers, dropout_in=args.encoder_dropout_in, dropout_out=args.encoder_dropout_out, bidirectional=args.encoder_bidirectional, pretrained_embed=pretrained_encoder_embed, max_source_positions=max_source_positions, ) decoder = LSTMDecoder( dictionary=task.target_dictionary, embed_dim=args.decoder_embed_dim, hidden_size=args.decoder_hidden_size, out_embed_dim=args.decoder_out_embed_dim, num_layers=args.decoder_layers, dropout_in=args.decoder_dropout_in, dropout_out=args.decoder_dropout_out, attention=utils.eval_bool(args.decoder_attention), encoder_output_units=encoder.output_units, pretrained_embed=pretrained_decoder_embed, share_input_output_embed=args.share_decoder_input_output_embed, adaptive_softmax_cutoff=( utils.eval_str_list(args.adaptive_softmax_cutoff, type=int) if args.criterion == "adaptive_loss" else None ), max_target_positions=max_target_positions, residuals=False, ) return cls(encoder, decoder) def forward( self, src_tokens, src_lengths, prev_output_tokens, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, ): encoder_out = self.encoder(src_tokens, src_lengths=src_lengths) decoder_out = self.decoder( prev_output_tokens, encoder_out=encoder_out, incremental_state=incremental_state, ) return decoder_out class LSTMEncoder(FairseqEncoder): """LSTM encoder.""" def __init__( self, dictionary, embed_dim=512, hidden_size=512, num_layers=1, dropout_in=0.1, dropout_out=0.1, bidirectional=False, left_pad=True, pretrained_embed=None, padding_idx=None, max_source_positions=DEFAULT_MAX_SOURCE_POSITIONS, ): super().__init__(dictionary) self.num_layers = num_layers self.dropout_in_module = FairseqDropout( dropout_in, module_name=self.__class__.__name__ ) self.dropout_out_module = FairseqDropout( dropout_out, module_name=self.__class__.__name__ ) self.bidirectional = bidirectional self.hidden_size = hidden_size self.max_source_positions = max_source_positions num_embeddings = len(dictionary) self.padding_idx = padding_idx if padding_idx is not None else dictionary.pad() if pretrained_embed is None: self.embed_tokens = Embedding(num_embeddings, embed_dim, self.padding_idx) else: self.embed_tokens = pretrained_embed self.lstm = LSTM( input_size=embed_dim, hidden_size=hidden_size, num_layers=num_layers, dropout=self.dropout_out_module.p if num_layers > 1 else 0.0, bidirectional=bidirectional, ) self.left_pad = left_pad self.output_units = hidden_size if bidirectional: self.output_units *= 2 def forward( self, src_tokens: Tensor, src_lengths: Tensor, enforce_sorted: bool = True, ): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (LongTensor): lengths of each source sentence of shape `(batch)` enforce_sorted (bool, optional): if True, `src_tokens` is expected to contain sequences sorted by length in a decreasing order. If False, this condition is not required. Default: True. """ if self.left_pad: # nn.utils.rnn.pack_padded_sequence requires right-padding; # convert left-padding to right-padding src_tokens = utils.convert_padding_direction( src_tokens, torch.zeros_like(src_tokens).fill_(self.padding_idx), left_to_right=True, ) bsz, seqlen = src_tokens.size() # embed tokens x = self.embed_tokens(src_tokens) x = self.dropout_in_module(x) # B x T x C -> T x B x C x = x.transpose(0, 1) # pack embedded source tokens into a PackedSequence packed_x = nn.utils.rnn.pack_padded_sequence( x, src_lengths.cpu(), enforce_sorted=enforce_sorted ) # apply LSTM if self.bidirectional: state_size = 2 * self.num_layers, bsz, self.hidden_size else: state_size = self.num_layers, bsz, self.hidden_size h0 = x.new_zeros(*state_size) c0 = x.new_zeros(*state_size) packed_outs, (final_hiddens, final_cells) = self.lstm(packed_x, (h0, c0)) # unpack outputs and apply dropout x, _ = nn.utils.rnn.pad_packed_sequence( packed_outs, padding_value=self.padding_idx * 1.0 ) x = self.dropout_out_module(x) assert list(x.size()) == [seqlen, bsz, self.output_units] if self.bidirectional: final_hiddens = self.combine_bidir(final_hiddens, bsz) final_cells = self.combine_bidir(final_cells, bsz) encoder_padding_mask = src_tokens.eq(self.padding_idx).t() return tuple( ( x, # seq_len x batch x hidden final_hiddens, # num_layers x batch x num_directions*hidden final_cells, # num_layers x batch x num_directions*hidden encoder_padding_mask, # seq_len x batch ) ) def combine_bidir(self, outs, bsz: int): out = outs.view(self.num_layers, 2, bsz, -1).transpose(1, 2).contiguous() return out.view(self.num_layers, bsz, -1) def reorder_encoder_out(self, encoder_out, new_order): return tuple( ( encoder_out[0].index_select(1, new_order), encoder_out[1].index_select(1, new_order), encoder_out[2].index_select(1, new_order), encoder_out[3].index_select(1, new_order), ) ) def max_positions(self): """Maximum input length supported by the encoder.""" return self.max_source_positions class AttentionLayer(nn.Module): def __init__(self, input_embed_dim, source_embed_dim, output_embed_dim, bias=False): super().__init__() self.input_proj = Linear(input_embed_dim, source_embed_dim, bias=bias) self.output_proj = Linear( input_embed_dim + source_embed_dim, output_embed_dim, bias=bias ) def forward(self, input, source_hids, encoder_padding_mask): # input: bsz x input_embed_dim # source_hids: srclen x bsz x source_embed_dim # x: bsz x source_embed_dim x = self.input_proj(input) # compute attention attn_scores = (source_hids * x.unsqueeze(0)).sum(dim=2) # don't attend over padding if encoder_padding_mask is not None: attn_scores = ( attn_scores.float() .masked_fill_(encoder_padding_mask, float("-inf")) .type_as(attn_scores) ) # FP16 support: cast to float and back attn_scores = F.softmax(attn_scores, dim=0) # srclen x bsz # sum weighted sources x = (attn_scores.unsqueeze(2) * source_hids).sum(dim=0) x = torch.tanh(self.output_proj(torch.cat((x, input), dim=1))) return x, attn_scores class LSTMDecoder(FairseqIncrementalDecoder): """LSTM decoder.""" def __init__( self, dictionary, embed_dim=512, hidden_size=512, out_embed_dim=512, num_layers=1, dropout_in=0.1, dropout_out=0.1, attention=True, encoder_output_units=512, pretrained_embed=None, share_input_output_embed=False, adaptive_softmax_cutoff=None, max_target_positions=DEFAULT_MAX_TARGET_POSITIONS, residuals=False, ): super().__init__(dictionary) self.dropout_in_module = FairseqDropout( dropout_in, module_name=self.__class__.__name__ ) self.dropout_out_module = FairseqDropout( dropout_out, module_name=self.__class__.__name__ ) self.hidden_size = hidden_size self.share_input_output_embed = share_input_output_embed self.need_attn = True self.max_target_positions = max_target_positions self.residuals = residuals self.num_layers = num_layers self.adaptive_softmax = None num_embeddings = len(dictionary) padding_idx = dictionary.pad() if pretrained_embed is None: self.embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx) else: self.embed_tokens = pretrained_embed self.encoder_output_units = encoder_output_units if encoder_output_units != hidden_size and encoder_output_units != 0: self.encoder_hidden_proj = Linear(encoder_output_units, hidden_size) self.encoder_cell_proj = Linear(encoder_output_units, hidden_size) else: self.encoder_hidden_proj = self.encoder_cell_proj = None # disable input feeding if there is no encoder # input feeding is described in arxiv.org/abs/1508.04025 input_feed_size = 0 if encoder_output_units == 0 else hidden_size self.layers = nn.ModuleList( [ LSTMCell( input_size=input_feed_size + embed_dim if layer == 0 else hidden_size, hidden_size=hidden_size, ) for layer in range(num_layers) ] ) if attention: # TODO make bias configurable self.attention = AttentionLayer( hidden_size, encoder_output_units, hidden_size, bias=False ) else: self.attention = None if hidden_size != out_embed_dim: self.additional_fc = Linear(hidden_size, out_embed_dim) if adaptive_softmax_cutoff is not None: # setting adaptive_softmax dropout to dropout_out for now but can be redefined self.adaptive_softmax = AdaptiveSoftmax( num_embeddings, hidden_size, adaptive_softmax_cutoff, dropout=dropout_out, ) elif not self.share_input_output_embed: self.fc_out = Linear(out_embed_dim, num_embeddings, dropout=dropout_out) def forward( self, prev_output_tokens, encoder_out: Optional[Tuple[Tensor, Tensor, Tensor, Tensor]] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, src_lengths: Optional[Tensor] = None, ): x, attn_scores = self.extract_features( prev_output_tokens, encoder_out, incremental_state ) return self.output_layer(x), attn_scores def extract_features( self, prev_output_tokens, encoder_out: Optional[Tuple[Tensor, Tensor, Tensor, Tensor]] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, ): """ Similar to *forward* but only return features. """ # get outputs from encoder if encoder_out is not None: encoder_outs = encoder_out[0] encoder_hiddens = encoder_out[1] encoder_cells = encoder_out[2] encoder_padding_mask = encoder_out[3] else: encoder_outs = torch.empty(0) encoder_hiddens = torch.empty(0) encoder_cells = torch.empty(0) encoder_padding_mask = torch.empty(0) srclen = encoder_outs.size(0) if incremental_state is not None and len(incremental_state) > 0: prev_output_tokens = prev_output_tokens[:, -1:] bsz, seqlen = prev_output_tokens.size() # embed tokens x = self.embed_tokens(prev_output_tokens) x = self.dropout_in_module(x) # B x T x C -> T x B x C x = x.transpose(0, 1) # initialize previous states (or get from cache during incremental generation) if incremental_state is not None and len(incremental_state) > 0: prev_hiddens, prev_cells, input_feed = self.get_cached_state( incremental_state ) elif encoder_out is not None: # setup recurrent cells prev_hiddens = [encoder_hiddens[i] for i in range(self.num_layers)] prev_cells = [encoder_cells[i] for i in range(self.num_layers)] if self.encoder_hidden_proj is not None: prev_hiddens = [self.encoder_hidden_proj(y) for y in prev_hiddens] prev_cells = [self.encoder_cell_proj(y) for y in prev_cells] input_feed = x.new_zeros(bsz, self.hidden_size) else: # setup zero cells, since there is no encoder zero_state = x.new_zeros(bsz, self.hidden_size) prev_hiddens = [zero_state for i in range(self.num_layers)] prev_cells = [zero_state for i in range(self.num_layers)] input_feed = None assert ( srclen > 0 or self.attention is None ), "attention is not supported if there are no encoder outputs" attn_scores = ( x.new_zeros(srclen, seqlen, bsz) if self.attention is not None else None ) outs = [] for j in range(seqlen): # input feeding: concatenate context vector from previous time step if input_feed is not None: input = torch.cat((x[j, :, :], input_feed), dim=1) else: input = x[j] for i, rnn in enumerate(self.layers): # recurrent cell hidden, cell = rnn(input, (prev_hiddens[i], prev_cells[i])) # hidden state becomes the input to the next layer input = self.dropout_out_module(hidden) if self.residuals: input = input + prev_hiddens[i] # save state for next time step prev_hiddens[i] = hidden prev_cells[i] = cell # apply attention using the last layer's hidden state if self.attention is not None: assert attn_scores is not None out, attn_scores[:, j, :] = self.attention( hidden, encoder_outs, encoder_padding_mask ) else: out = hidden out = self.dropout_out_module(out) # input feeding if input_feed is not None: input_feed = out # save final output outs.append(out) # Stack all the necessary tensors together and store prev_hiddens_tensor = torch.stack(prev_hiddens) prev_cells_tensor = torch.stack(prev_cells) cache_state = torch.jit.annotate( Dict[str, Optional[Tensor]], { "prev_hiddens": prev_hiddens_tensor, "prev_cells": prev_cells_tensor, "input_feed": input_feed, }, ) self.set_incremental_state(incremental_state, "cached_state", cache_state) # collect outputs across time steps x = torch.cat(outs, dim=0).view(seqlen, bsz, self.hidden_size) # T x B x C -> B x T x C x = x.transpose(1, 0) if hasattr(self, "additional_fc") and self.adaptive_softmax is None: x = self.additional_fc(x) x = self.dropout_out_module(x) # srclen x tgtlen x bsz -> bsz x tgtlen x srclen if not self.training and self.need_attn and self.attention is not None: assert attn_scores is not None attn_scores = attn_scores.transpose(0, 2) else: attn_scores = None return x, attn_scores def output_layer(self, x): """Project features to the vocabulary size.""" if self.adaptive_softmax is None: if self.share_input_output_embed: x = F.linear(x, self.embed_tokens.weight) else: x = self.fc_out(x) return x def get_cached_state( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], ) -> Tuple[List[Tensor], List[Tensor], Optional[Tensor]]: cached_state = self.get_incremental_state(incremental_state, "cached_state") assert cached_state is not None prev_hiddens_ = cached_state["prev_hiddens"] assert prev_hiddens_ is not None prev_cells_ = cached_state["prev_cells"] assert prev_cells_ is not None prev_hiddens = [prev_hiddens_[i] for i in range(self.num_layers)] prev_cells = [prev_cells_[j] for j in range(self.num_layers)] input_feed = cached_state[ "input_feed" ] # can be None for decoder-only language models return prev_hiddens, prev_cells, input_feed def reorder_incremental_state( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], new_order: Tensor, ): if incremental_state is None or len(incremental_state) == 0: return prev_hiddens, prev_cells, input_feed = self.get_cached_state(incremental_state) prev_hiddens = [p.index_select(0, new_order) for p in prev_hiddens] prev_cells = [p.index_select(0, new_order) for p in prev_cells] if input_feed is not None: input_feed = input_feed.index_select(0, new_order) cached_state_new = torch.jit.annotate( Dict[str, Optional[Tensor]], { "prev_hiddens": torch.stack(prev_hiddens), "prev_cells": torch.stack(prev_cells), "input_feed": input_feed, }, ) self.set_incremental_state(incremental_state, "cached_state", cached_state_new), return def max_positions(self): """Maximum output length supported by the decoder.""" return self.max_target_positions def make_generation_fast_(self, need_attn=False, **kwargs): self.need_attn = need_attn def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.uniform_(m.weight, -0.1, 0.1) nn.init.constant_(m.weight[padding_idx], 0) return m def LSTM(input_size, hidden_size, **kwargs): m = nn.LSTM(input_size, hidden_size, **kwargs) for name, param in m.named_parameters(): if "weight" in name or "bias" in name: param.data.uniform_(-0.1, 0.1) return m def LSTMCell(input_size, hidden_size, **kwargs): m = nn.LSTMCell(input_size, hidden_size, **kwargs) for name, param in m.named_parameters(): if "weight" in name or "bias" in name: param.data.uniform_(-0.1, 0.1) return m def Linear(in_features, out_features, bias=True, dropout=0.0): """Linear layer (input: N x T x C)""" m = nn.Linear(in_features, out_features, bias=bias) m.weight.data.uniform_(-0.1, 0.1) if bias: m.bias.data.uniform_(-0.1, 0.1) return m @register_model_architecture("lstm", "lstm") def base_architecture(args): args.dropout = getattr(args, "dropout", 0.1) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_freeze_embed = getattr(args, "encoder_freeze_embed", False) args.encoder_hidden_size = getattr( args, "encoder_hidden_size", args.encoder_embed_dim ) args.encoder_layers = getattr(args, "encoder_layers", 1) args.encoder_bidirectional = getattr(args, "encoder_bidirectional", False) args.encoder_dropout_in = getattr(args, "encoder_dropout_in", args.dropout) args.encoder_dropout_out = getattr(args, "encoder_dropout_out", args.dropout) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_freeze_embed = getattr(args, "decoder_freeze_embed", False) args.decoder_hidden_size = getattr( args, "decoder_hidden_size", args.decoder_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 1) args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 512) args.decoder_attention = getattr(args, "decoder_attention", "1") args.decoder_dropout_in = getattr(args, "decoder_dropout_in", args.dropout) args.decoder_dropout_out = getattr(args, "decoder_dropout_out", args.dropout) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.adaptive_softmax_cutoff = getattr( args, "adaptive_softmax_cutoff", "10000,50000,200000" ) @register_model_architecture("lstm", "lstm_wiseman_iwslt_de_en") def lstm_wiseman_iwslt_de_en(args): args.dropout = getattr(args, "dropout", 0.1) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 256) args.encoder_dropout_in = getattr(args, "encoder_dropout_in", 0) args.encoder_dropout_out = getattr(args, "encoder_dropout_out", 0) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 256) args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 256) args.decoder_dropout_in = getattr(args, "decoder_dropout_in", 0) args.decoder_dropout_out = getattr(args, "decoder_dropout_out", args.dropout) base_architecture(args) @register_model_architecture("lstm", "lstm_luong_wmt_en_de") def lstm_luong_wmt_en_de(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1000) args.encoder_layers = getattr(args, "encoder_layers", 4) args.encoder_dropout_out = getattr(args, "encoder_dropout_out", 0) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1000) args.decoder_layers = getattr(args, "decoder_layers", 4) args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 1000) args.decoder_dropout_out = getattr(args, "decoder_dropout_out", 0) base_architecture(args)
data2vec_vision-main
deltalm/src/fairseq/models/lstm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq.models import register_model, register_model_architecture from fairseq.models.transformer import ( TransformerModel, base_architecture, transformer_wmt_en_de_big, ) @register_model("transformer_align") class TransformerAlignModel(TransformerModel): """ See "Jointly Learning to Align and Translate with Transformer Models" (Garg et al., EMNLP 2019). """ def __init__(self, encoder, decoder, args): super().__init__(args, encoder, decoder) self.alignment_heads = args.alignment_heads self.alignment_layer = args.alignment_layer self.full_context_alignment = args.full_context_alignment @staticmethod def add_args(parser): # fmt: off super(TransformerAlignModel, TransformerAlignModel).add_args(parser) parser.add_argument('--alignment-heads', type=int, metavar='D', help='Number of cross attention heads per layer to supervised with alignments') parser.add_argument('--alignment-layer', type=int, metavar='D', help='Layer number which has to be supervised. 0 corresponding to the bottommost layer.') parser.add_argument('--full-context-alignment', action='store_true', help='Whether or not alignment is supervised conditioned on the full target context.') # fmt: on @classmethod def build_model(cls, args, task): # set any default arguments transformer_align(args) transformer_model = TransformerModel.build_model(args, task) return TransformerAlignModel( transformer_model.encoder, transformer_model.decoder, args ) def forward(self, src_tokens, src_lengths, prev_output_tokens): encoder_out = self.encoder(src_tokens, src_lengths) return self.forward_decoder(prev_output_tokens, encoder_out) def forward_decoder( self, prev_output_tokens, encoder_out=None, incremental_state=None, features_only=False, **extra_args, ): attn_args = { "alignment_layer": self.alignment_layer, "alignment_heads": self.alignment_heads, } decoder_out = self.decoder(prev_output_tokens, encoder_out, **attn_args) if self.full_context_alignment: attn_args["full_context_alignment"] = self.full_context_alignment _, alignment_out = self.decoder( prev_output_tokens, encoder_out, features_only=True, **attn_args, **extra_args, ) decoder_out[1]["attn"] = alignment_out["attn"] return decoder_out @register_model_architecture("transformer_align", "transformer_align") def transformer_align(args): args.alignment_heads = getattr(args, "alignment_heads", 1) args.alignment_layer = getattr(args, "alignment_layer", 4) args.full_context_alignment = getattr(args, "full_context_alignment", False) base_architecture(args) @register_model_architecture("transformer_align", "transformer_wmt_en_de_big_align") def transformer_wmt_en_de_big_align(args): args.alignment_heads = getattr(args, "alignment_heads", 1) args.alignment_layer = getattr(args, "alignment_layer", 4) transformer_wmt_en_de_big(args)
data2vec_vision-main
deltalm/src/fairseq/models/transformer_align.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .fairseq_encoder import FairseqEncoder class CompositeEncoder(FairseqEncoder): """ A wrapper around a dictionary of :class:`FairseqEncoder` objects. We run forward on each encoder and return a dictionary of outputs. The first encoder's dictionary is used for initialization. Args: encoders (dict): a dictionary of :class:`FairseqEncoder` objects. """ def __init__(self, encoders): super().__init__(next(iter(encoders.values())).dictionary) self.encoders = encoders for key in self.encoders: self.add_module(key, self.encoders[key]) def forward(self, src_tokens, src_lengths): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (LongTensor): lengths of each source sentence of shape `(batch)` Returns: dict: the outputs from each Encoder """ encoder_out = {} for key in self.encoders: encoder_out[key] = self.encoders[key](src_tokens, src_lengths) return encoder_out def reorder_encoder_out(self, encoder_out, new_order): """Reorder encoder output according to new_order.""" for key in self.encoders: encoder_out[key] = self.encoders[key].reorder_encoder_out( encoder_out[key], new_order ) return encoder_out def max_positions(self): return min(self.encoders[key].max_positions() for key in self.encoders) def upgrade_state_dict(self, state_dict): for key in self.encoders: self.encoders[key].upgrade_state_dict(state_dict) return state_dict
data2vec_vision-main
deltalm/src/fairseq/models/composite_encoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.models import ( FairseqEncoder, FairseqEncoderModel, register_model, register_model_architecture, ) from fairseq.modules import ( LayerNorm, SinusoidalPositionalEmbedding, TransformerSentenceEncoder, ) from fairseq.modules.transformer_sentence_encoder import init_bert_params logger = logging.getLogger(__name__) @register_model("masked_lm") class MaskedLMModel(FairseqEncoderModel): """ Class for training a Masked Language Model. It also supports an additional sentence level prediction if the sent-loss argument is set. """ def __init__(self, args, encoder): super().__init__(encoder) self.args = args # if specified then apply bert initialization on the model. We need # to explictly call this to make sure that the output embeddings # and projection layers are also correctly initialized if getattr(args, "apply_bert_init", False): self.apply(init_bert_params) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # Arguments related to dropout parser.add_argument( "--dropout", type=float, metavar="D", help="dropout probability" ) parser.add_argument( "--attention-dropout", type=float, metavar="D", help="dropout probability for" " attention weights", ) parser.add_argument( "--act-dropout", type=float, metavar="D", help="dropout probability after" " activation in FFN", ) # Arguments related to hidden states and self-attention parser.add_argument( "--encoder-ffn-embed-dim", type=int, metavar="N", help="encoder embedding dimension for FFN", ) parser.add_argument( "--encoder-layers", type=int, metavar="N", help="num encoder layers" ) parser.add_argument( "--encoder-attention-heads", type=int, metavar="N", help="num encoder attention heads", ) # Arguments related to input and output embeddings parser.add_argument( "--encoder-embed-dim", type=int, metavar="N", help="encoder embedding dimension", ) parser.add_argument( "--share-encoder-input-output-embed", action="store_true", help="share encoder input" " and output embeddings", ) parser.add_argument( "--encoder-learned-pos", action="store_true", help="use learned positional embeddings in the encoder", ) parser.add_argument( "--no-token-positional-embeddings", action="store_true", help="if set, disables positional embeddings" " (outside self attention)", ) parser.add_argument( "--num-segment", type=int, metavar="N", help="num segment in the input" ) parser.add_argument( "--max-positions", type=int, help="number of positional embeddings to learn" ) # Arguments related to sentence level prediction parser.add_argument( "--sentence-class-num", type=int, metavar="N", help="number of classes for sentence task", ) parser.add_argument( "--sent-loss", action="store_true", help="if set," " calculate sentence level predictions", ) # Arguments related to parameter initialization parser.add_argument( "--apply-bert-init", action="store_true", help="use custom param initialization for BERT", ) # misc params parser.add_argument( "--activation-fn", choices=utils.get_available_activation_fns(), help="activation function to use", ) parser.add_argument( "--pooler-activation-fn", choices=utils.get_available_activation_fns(), help="Which activation function to use for pooler layer.", ) parser.add_argument( "--encoder-normalize-before", action="store_true", help="apply layernorm before each encoder block", ) def forward(self, src_tokens, segment_labels=None, **kwargs): return self.encoder(src_tokens, segment_labels=segment_labels, **kwargs) def max_positions(self): return self.encoder.max_positions @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_architecture(args) if not hasattr(args, "max_positions"): args.max_positions = args.tokens_per_sample logger.info(args) encoder = MaskedLMEncoder(args, task.dictionary) return cls(args, encoder) class MaskedLMEncoder(FairseqEncoder): """ Encoder for Masked Language Modelling. """ def __init__(self, args, dictionary): super().__init__(dictionary) self.padding_idx = dictionary.pad() self.vocab_size = dictionary.__len__() self.max_positions = args.max_positions self.sentence_encoder = TransformerSentenceEncoder( padding_idx=self.padding_idx, vocab_size=self.vocab_size, num_encoder_layers=args.encoder_layers, embedding_dim=args.encoder_embed_dim, ffn_embedding_dim=args.encoder_ffn_embed_dim, num_attention_heads=args.encoder_attention_heads, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.act_dropout, max_seq_len=self.max_positions, num_segments=args.num_segment, use_position_embeddings=not args.no_token_positional_embeddings, encoder_normalize_before=args.encoder_normalize_before, apply_bert_init=args.apply_bert_init, activation_fn=args.activation_fn, learned_pos_embedding=args.encoder_learned_pos, ) self.share_input_output_embed = args.share_encoder_input_output_embed self.embed_out = None self.sentence_projection_layer = None self.sentence_out_dim = args.sentence_class_num self.lm_output_learned_bias = None # Remove head is set to true during fine-tuning self.load_softmax = not getattr(args, "remove_head", False) self.masked_lm_pooler = nn.Linear( args.encoder_embed_dim, args.encoder_embed_dim ) self.pooler_activation = utils.get_activation_fn(args.pooler_activation_fn) self.lm_head_transform_weight = nn.Linear( args.encoder_embed_dim, args.encoder_embed_dim ) self.activation_fn = utils.get_activation_fn(args.activation_fn) self.layer_norm = LayerNorm(args.encoder_embed_dim) self.lm_output_learned_bias = None if self.load_softmax: self.lm_output_learned_bias = nn.Parameter(torch.zeros(self.vocab_size)) if not self.share_input_output_embed: self.embed_out = nn.Linear( args.encoder_embed_dim, self.vocab_size, bias=False ) if args.sent_loss: self.sentence_projection_layer = nn.Linear( args.encoder_embed_dim, self.sentence_out_dim, bias=False ) def forward(self, src_tokens, segment_labels=None, masked_tokens=None, **unused): """ Forward pass for Masked LM encoder. This first computes the token embedding using the token embedding matrix, position embeddings (if specified) and segment embeddings (if specified). Here we assume that the sentence representation corresponds to the output of the classification_token (see bert_task or cross_lingual_lm task for more details). Args: - src_tokens: B x T matrix representing sentences - segment_labels: B x T matrix representing segment label for tokens Returns: - a tuple of the following: - logits for predictions in format B x T x C to be used in softmax afterwards - a dictionary of additional data, where 'pooled_output' contains the representation for classification_token and 'inner_states' is a list of internal model states used to compute the predictions (similar in ELMO). 'sentence_logits' is the prediction logit for NSP task and is only computed if this is specified in the input arguments. """ inner_states, sentence_rep = self.sentence_encoder( src_tokens, segment_labels=segment_labels, ) x = inner_states[-1].transpose(0, 1) # project masked tokens only if masked_tokens is not None: x = x[masked_tokens, :] x = self.layer_norm(self.activation_fn(self.lm_head_transform_weight(x))) pooled_output = self.pooler_activation(self.masked_lm_pooler(sentence_rep)) # project back to size of vocabulary if self.share_input_output_embed and hasattr( self.sentence_encoder.embed_tokens, "weight" ): x = F.linear(x, self.sentence_encoder.embed_tokens.weight) elif self.embed_out is not None: x = self.embed_out(x) if self.lm_output_learned_bias is not None: x = x + self.lm_output_learned_bias sentence_logits = None if self.sentence_projection_layer: sentence_logits = self.sentence_projection_layer(pooled_output) return x, { "inner_states": inner_states, "pooled_output": pooled_output, "sentence_logits": sentence_logits, } def max_positions(self): """Maximum output length supported by the encoder.""" return self.max_positions def upgrade_state_dict_named(self, state_dict, name): if isinstance( self.sentence_encoder.embed_positions, SinusoidalPositionalEmbedding ): state_dict[ name + ".sentence_encoder.embed_positions._float_tensor" ] = torch.FloatTensor(1) if not self.load_softmax: for k in list(state_dict.keys()): if ( "embed_out.weight" in k or "sentence_projection_layer.weight" in k or "lm_output_learned_bias" in k ): del state_dict[k] return state_dict @register_model_architecture("masked_lm", "masked_lm") def base_architecture(args): args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.act_dropout = getattr(args, "act_dropout", 0.0) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.share_encoder_input_output_embed = getattr( args, "share_encoder_input_output_embed", False ) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.num_segment = getattr(args, "num_segment", 2) args.sentence_class_num = getattr(args, "sentence_class_num", 2) args.sent_loss = getattr(args, "sent_loss", False) args.apply_bert_init = getattr(args, "apply_bert_init", False) args.activation_fn = getattr(args, "activation_fn", "relu") args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh") args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) @register_model_architecture("masked_lm", "bert_base") def bert_base_architecture(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768) args.share_encoder_input_output_embed = getattr( args, "share_encoder_input_output_embed", True ) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True) args.num_segment = getattr(args, "num_segment", 2) args.encoder_layers = getattr(args, "encoder_layers", 12) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 3072) args.sentence_class_num = getattr(args, "sentence_class_num", 2) args.sent_loss = getattr(args, "sent_loss", True) args.apply_bert_init = getattr(args, "apply_bert_init", True) args.activation_fn = getattr(args, "activation_fn", "gelu") args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh") args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True) base_architecture(args) @register_model_architecture("masked_lm", "bert_large") def bert_large_architecture(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_layers = getattr(args, "encoder_layers", 24) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) bert_base_architecture(args) @register_model_architecture("masked_lm", "xlm_base") def xlm_architecture(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.share_encoder_input_output_embed = getattr( args, "share_encoder_input_output_embed", True ) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True) args.num_segment = getattr(args, "num_segment", 1) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) args.sent_loss = getattr(args, "sent_loss", False) args.activation_fn = getattr(args, "activation_fn", "gelu") args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh") args.apply_bert_init = getattr(args, "apply_bert_init", True) base_architecture(args)
data2vec_vision-main
deltalm/src/fairseq/models/masked_lm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from typing import Dict, Optional from fairseq.incremental_decoding_utils import with_incremental_state from fairseq.models import FairseqDecoder from torch import Tensor logger = logging.getLogger(__name__) @with_incremental_state class FairseqIncrementalDecoder(FairseqDecoder): """Base class for incremental decoders. Incremental decoding is a special mode at inference time where the Model only receives a single timestep of input corresponding to the previous output token (for teacher forcing) and must produce the next output *incrementally*. Thus the model must cache any long-term state that is needed about the sequence, e.g., hidden states, convolutional states, etc. Compared to the standard :class:`FairseqDecoder` interface, the incremental decoder interface allows :func:`forward` functions to take an extra keyword argument (*incremental_state*) that can be used to cache state across time-steps. The :class:`FairseqIncrementalDecoder` interface also defines the :func:`reorder_incremental_state` method, which is used during beam search to select and reorder the incremental state based on the selection of beams. To learn more about how incremental decoding works, refer to `this blog <http://www.telesens.co/2019/04/21/understanding-incremental-decoding-in-fairseq/>`_. """ def __init__(self, dictionary): super().__init__(dictionary) def forward( self, prev_output_tokens, encoder_out=None, incremental_state=None, **kwargs ): """ Args: prev_output_tokens (LongTensor): shifted output tokens of shape `(batch, tgt_len)`, for teacher forcing encoder_out (dict, optional): output from the encoder, used for encoder-side attention incremental_state (dict, optional): dictionary used for storing state during :ref:`Incremental decoding` Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ raise NotImplementedError def extract_features( self, prev_output_tokens, encoder_out=None, incremental_state=None, **kwargs ): """ Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs """ raise NotImplementedError def reorder_incremental_state( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], new_order: Tensor, ): """Reorder incremental state. This will be called when the order of the input has changed from the previous time step. A typical use case is beam search, where the input order changes between time steps based on the selection of beams. """ pass def reorder_incremental_state_scripting( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], new_order: Tensor, ): """Main entry point for reordering the incremental state. Due to limitations in TorchScript, we call this function in :class:`fairseq.sequence_generator.SequenceGenerator` instead of calling :func:`reorder_incremental_state` directly. """ for module in self.modules(): if hasattr(module, "reorder_incremental_state"): result = module.reorder_incremental_state(incremental_state, new_order) if result is not None: incremental_state = result def set_beam_size(self, beam_size): """Sets the beam size in the decoder and all children.""" if getattr(self, "_beam_size", -1) != beam_size: seen = set() def apply_set_beam_size(module): if ( module != self and hasattr(module, "set_beam_size") and module not in seen ): seen.add(module) module.set_beam_size(beam_size) self.apply(apply_set_beam_size) self._beam_size = beam_size
data2vec_vision-main
deltalm/src/fairseq/models/fairseq_incremental_decoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.models import ( FairseqEncoder, FairseqEncoderDecoderModel, FairseqIncrementalDecoder, register_model, register_model_architecture, ) from fairseq.modules import ( AdaptiveSoftmax, DynamicConv, FairseqDropout, LayerNorm, LightweightConv, MultiheadAttention, PositionalEmbedding, ) @register_model("lightconv") class LightConvModel(FairseqEncoderDecoderModel): """ LightConv and DynamicConv model from `"Pay Less Attention with Lightweight and Dynamic Convolutions" (Wu, et al, 2019) <https://openreview.net/pdf?id=SkVhlh09tX>`_. To use LightConv please set ``--encoder-conv-type lightweight --decoder-conv-type lightweight`` To use DynamicConv please set ``--encoder-conv-type dynamic --decoder-conv-type dynamic`` Args: encoder (LightConvEncoder): the encoder decoder (LightConvDecoder): the decoder The LightConv model provides the following named architectures and command-line arguments: .. argparse:: :ref: fairseq.models.lightconv_parser :prog: """ @classmethod def hub_models(cls): # fmt: off def moses_subword(path): return { 'path': path, 'tokenizer': 'moses', 'bpe': 'subword_nmt', } return { 'lightconv.no_glu.iwslt14.de-en': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/iwslt14.de-en.lightconv.tar.gz'), 'dynamicconv.no_glu.iwslt14.de-en': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/iwslt14.de-en.dynamicconv.tar.gz'), 'lightconv.no_glu.wmt16.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.lightconv.tar.gz'), 'dynamicconv.no_glu.wmt16.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.dynamicconv.tar.gz'), 'lightconv.glu.wmt16.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.lightconv-glu.tar.gz'), 'dynamicconv.glu.wmt16.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.dynamicconv-glu.tar.gz'), 'lightconv.glu.wmt17.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.lightconv-glu.tar.gz'), 'dynamicconv.glu.wmt17.en-de': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt16.en-de.joined-dict.dynamicconv-glu.tar.gz'), 'lightconv.glu.wmt14.en-fr': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt14.en-fr.joined-dict.lightconv-glu.tar.gz'), 'dynamicconv.glu.wmt14.en-fr': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt14.en-fr.joined-dict.dynamicconv-glu.tar.gz'), 'lightconv.glu.wmt17.zh-en': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt17.zh-en.lightconv-glu.tar.gz'), 'dynamicconv.glu.wmt17.zh-en': moses_subword('https://dl.fbaipublicfiles.com/fairseq/models/dynamicconv/wmt17.zh-en.dynamicconv-glu.tar.gz'), } # fmt: on def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" parser.add_argument( "--dropout", type=float, metavar="D", help="dropout probability" ) parser.add_argument( "--attention-dropout", type=float, metavar="D", help="dropout probability for attention weights", ) parser.add_argument( "--relu-dropout", type=float, metavar="D", help="dropout probability after ReLU in FFN", ) parser.add_argument( "--input-dropout", type=float, metavar="D", help="dropout probability of the inputs", ) parser.add_argument( "--encoder-embed-path", type=str, metavar="STR", help="path to pre-trained encoder embedding", ) parser.add_argument( "--encoder-embed-dim", type=int, metavar="N", help="encoder embedding dimension", ) parser.add_argument( "--encoder-conv-dim", type=int, metavar="N", help="encoder embedding dimension", ) parser.add_argument( "--encoder-ffn-embed-dim", type=int, metavar="N", help="encoder embedding dimension for FFN", ) parser.add_argument( "--encoder-layers", type=int, metavar="N", help="num encoder layers" ) parser.add_argument( "--encoder-attention-heads", type=int, metavar="N", help="num encoder attention heads or LightConv/DynamicConv heads", ) parser.add_argument( "--encoder-normalize-before", action="store_true", help="apply layernorm before each encoder block", ) parser.add_argument( "--encoder-learned-pos", action="store_true", help="use learned positional embeddings in the encoder", ) parser.add_argument( "--decoder-embed-path", type=str, metavar="STR", help="path to pre-trained decoder embedding", ) parser.add_argument( "--decoder-embed-dim", type=int, metavar="N", help="decoder embedding dimension", ) parser.add_argument( "--decoder-conv-dim", type=int, metavar="N", help="decoder embedding dimension", ) parser.add_argument( "--decoder-ffn-embed-dim", type=int, metavar="N", help="decoder embedding dimension for FFN", ) parser.add_argument( "--decoder-layers", type=int, metavar="N", help="num decoder layers" ) parser.add_argument( "--decoder-attention-heads", type=int, metavar="N", help="num decoder attention heads or LightConv/DynamicConv heads", ) parser.add_argument( "--decoder-learned-pos", action="store_true", help="use learned positional embeddings in the decoder", ) parser.add_argument( "--decoder-normalize-before", action="store_true", help="apply layernorm before each decoder block", ) parser.add_argument( "--share-decoder-input-output-embed", action="store_true", help="share decoder input and output embeddings", ) parser.add_argument( "--share-all-embeddings", action="store_true", help="share encoder, decoder and output embeddings" " (requires shared dictionary and embed dim)", ) parser.add_argument( "--adaptive-softmax-cutoff", metavar="EXPR", help="comma separated list of adaptive softmax cutoff points. " "Must be used with adaptive_loss criterion", ), parser.add_argument( "--adaptive-softmax-dropout", type=float, metavar="D", help="sets adaptive softmax dropout for the tail projections", ) """LightConv and DynamicConv arguments""" parser.add_argument( "--encoder-kernel-size-list", type=lambda x: utils.eval_str_list(x, int), help='list of kernel size (default: "[3,7,15,31,31,31,31]")', ) parser.add_argument( "--decoder-kernel-size-list", type=lambda x: utils.eval_str_list(x, int), help='list of kernel size (default: "[3,7,15,31,31,31]")', ) parser.add_argument( "--encoder-glu", type=utils.eval_bool, help="glu after in proj" ) parser.add_argument( "--decoder-glu", type=utils.eval_bool, help="glu after in proj" ) parser.add_argument( "--encoder-conv-type", default="dynamic", type=str, choices=["dynamic", "lightweight"], help="type of convolution", ) parser.add_argument( "--decoder-conv-type", default="dynamic", type=str, choices=["dynamic", "lightweight"], help="type of convolution", ) parser.add_argument("--weight-softmax", default=True, type=utils.eval_bool) parser.add_argument( "--weight-dropout", type=float, metavar="D", help="dropout probability for conv weights", ) @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_architecture(args) if not hasattr(args, "max_source_positions"): args.max_source_positions = 1024 if not hasattr(args, "max_target_positions"): args.max_target_positions = 1024 src_dict, tgt_dict = task.source_dictionary, task.target_dictionary def build_embedding(dictionary, embed_dim, path=None): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) # if provided, load from preloaded dictionaries if path: embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) return emb if args.share_all_embeddings: if src_dict != tgt_dict: raise RuntimeError( "--share-all-embeddings requires a joined dictionary" ) if args.encoder_embed_dim != args.decoder_embed_dim: raise RuntimeError( "--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim" ) if args.decoder_embed_path and ( args.decoder_embed_path != args.encoder_embed_path ): raise RuntimeError( "--share-all-embeddings not compatible with --decoder-embed-path" ) encoder_embed_tokens = build_embedding( src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = encoder_embed_tokens args.share_decoder_input_output_embed = True else: encoder_embed_tokens = build_embedding( src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = build_embedding( tgt_dict, args.decoder_embed_dim, args.decoder_embed_path ) encoder = LightConvEncoder(args, src_dict, encoder_embed_tokens) decoder = LightConvDecoder(args, tgt_dict, decoder_embed_tokens) return LightConvModel(encoder, decoder) class LightConvEncoder(FairseqEncoder): """ LightConv encoder consisting of *args.encoder_layers* layers. Each layer is a :class:`LightConvEncoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): encoding dictionary embed_tokens (torch.nn.Embedding): input embedding """ def __init__(self, args, dictionary, embed_tokens): super().__init__(dictionary) self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) embed_dim = embed_tokens.embedding_dim self.padding_idx = embed_tokens.padding_idx self.max_source_positions = args.max_source_positions self.embed_tokens = embed_tokens self.embed_scale = math.sqrt(embed_dim) self.embed_positions = ( PositionalEmbedding( args.max_source_positions, embed_dim, self.padding_idx, learned=args.encoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) self.layers = nn.ModuleList([]) self.layers.extend( [ LightConvEncoderLayer( args, kernel_size=args.encoder_kernel_size_list[i] ) for i in range(args.encoder_layers) ] ) self.register_buffer("version", torch.Tensor([2])) self.normalize = args.encoder_normalize_before if self.normalize: self.layer_norm = LayerNorm(embed_dim) def forward(self, src_tokens, **unused): """ Args: src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` Returns: dict: - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` """ # embed tokens and positions x = self.embed_scale * self.embed_tokens(src_tokens) if self.embed_positions is not None: x += self.embed_positions(src_tokens) x = self.dropout_module(x) # B x T x C -> T x B x C x = x.transpose(0, 1) # compute padding mask encoder_padding_mask = src_tokens.eq(self.padding_idx) if not encoder_padding_mask.any(): encoder_padding_mask = None # encoder layers for layer in self.layers: x = layer(x, encoder_padding_mask) if self.normalize: x = self.layer_norm(x) return { "encoder_out": x, # T x B x C "encoder_padding_mask": encoder_padding_mask, # B x T } def reorder_encoder_out(self, encoder_out, new_order): """ Reorder encoder output according to *new_order*. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: *encoder_out* rearranged according to *new_order* """ if encoder_out["encoder_out"] is not None: encoder_out["encoder_out"] = encoder_out["encoder_out"].index_select( 1, new_order ) if encoder_out["encoder_padding_mask"] is not None: encoder_out["encoder_padding_mask"] = encoder_out[ "encoder_padding_mask" ].index_select(0, new_order) return encoder_out def max_positions(self): """Maximum input length supported by the encoder.""" if self.embed_positions is None: return self.max_source_positions return min(self.max_source_positions, self.embed_positions.max_positions) class LightConvDecoder(FairseqIncrementalDecoder): """ LightConv decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`LightConvDecoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding no_encoder_attn (bool, optional): whether to attend to encoder outputs. Default: ``False`` """ def __init__( self, args, dictionary, embed_tokens, no_encoder_attn=False, final_norm=True ): super().__init__(dictionary) self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) self.share_input_output_embed = args.share_decoder_input_output_embed input_embed_dim = embed_tokens.embedding_dim embed_dim = args.decoder_embed_dim output_embed_dim = args.decoder_output_dim padding_idx = embed_tokens.padding_idx self.max_target_positions = args.max_target_positions self.embed_tokens = embed_tokens self.embed_scale = math.sqrt(embed_dim) # todo: try with input_embed_dim self.project_in_dim = ( Linear(input_embed_dim, embed_dim, bias=False) if embed_dim != input_embed_dim else None ) self.embed_positions = ( PositionalEmbedding( args.max_target_positions, embed_dim, padding_idx, learned=args.decoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) self.layers = nn.ModuleList([]) self.layers.extend( [ LightConvDecoderLayer( args, no_encoder_attn, kernel_size=args.decoder_kernel_size_list[i] ) for i in range(args.decoder_layers) ] ) self.adaptive_softmax = None self.project_out_dim = ( Linear(embed_dim, output_embed_dim, bias=False) if embed_dim != output_embed_dim and not args.tie_adaptive_weights else None ) if args.adaptive_softmax_cutoff is not None: self.adaptive_softmax = AdaptiveSoftmax( len(dictionary), output_embed_dim, utils.eval_str_list(args.adaptive_softmax_cutoff, type=int), dropout=args.adaptive_softmax_dropout, adaptive_inputs=embed_tokens if args.tie_adaptive_weights else None, factor=args.adaptive_softmax_factor, tie_proj=args.tie_adaptive_proj, ) elif not self.share_input_output_embed: self.embed_out = nn.Parameter( torch.Tensor(len(dictionary), output_embed_dim) ) nn.init.normal_(self.embed_out, mean=0, std=output_embed_dim ** -0.5) self.register_buffer("version", torch.Tensor([2])) self.normalize = args.decoder_normalize_before and final_norm if self.normalize: self.layer_norm = LayerNorm(embed_dim) def forward( self, prev_output_tokens, encoder_out=None, incremental_state=None, **kwargs ): """ Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing encoder_out (Tensor, optional): output from the encoder, used for encoder-side attention incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` Returns: tuple: - the last decoder layer's output of shape `(batch, tgt_len, vocab)` - the last decoder layer's attention weights of shape `(batch, tgt_len, src_len)` """ # embed positions positions = ( self.embed_positions( prev_output_tokens, incremental_state=incremental_state, ) if self.embed_positions is not None else None ) if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] # embed tokens and positions x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions x = self.dropout_module(x) # B x T x C -> T x B x C x = x.transpose(0, 1) attn = None inner_states = [x] # decoder layers for layer in self.layers: x, attn = layer( x, encoder_out["encoder_out"] if encoder_out is not None else None, encoder_out["encoder_padding_mask"] if encoder_out is not None else None, incremental_state, ) inner_states.append(x) if self.normalize: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) if self.project_out_dim is not None: x = self.project_out_dim(x) if self.adaptive_softmax is None: # project back to size of vocabulary if self.share_input_output_embed: x = F.linear(x, self.embed_tokens.weight) else: x = F.linear(x, self.embed_out) return x, {"attn": attn, "inner_states": inner_states} def max_positions(self): """Maximum output length supported by the decoder.""" if self.embed_positions is None: return self.max_target_positions return min(self.max_target_positions, self.embed_positions.max_positions) def buffered_future_mask(self, tensor): dim = tensor.size(0) if ( not hasattr(self, "_future_mask") or self._future_mask is None or self._future_mask.device != tensor.device ): self._future_mask = torch.triu( utils.fill_with_neg_inf(tensor.new(dim, dim)), 1 ) if self._future_mask.size(0) < dim: self._future_mask = torch.triu( utils.fill_with_neg_inf(self._future_mask.resize_(dim, dim)), 1 ) return self._future_mask[:dim, :dim] class LightConvEncoderLayer(nn.Module): """Encoder layer block. Args: args (argparse.Namespace): parsed command-line arguments kernel_size: kernel size of the convolution """ def __init__(self, args, kernel_size=0): super().__init__() self.embed_dim = args.encoder_embed_dim self.conv_dim = args.encoder_conv_dim padding_l = ( kernel_size // 2 if kernel_size % 2 == 1 else ((kernel_size - 1) // 2, kernel_size // 2) ) if args.encoder_glu: self.linear1 = Linear(self.embed_dim, 2 * self.conv_dim) self.act = nn.GLU() else: self.linear1 = Linear(self.embed_dim, self.conv_dim) self.act = None if args.encoder_conv_type == "lightweight": self.conv = LightweightConv( self.conv_dim, kernel_size, padding_l=padding_l, weight_softmax=args.weight_softmax, num_heads=args.encoder_attention_heads, weight_dropout=args.weight_dropout, ) elif args.encoder_conv_type == "dynamic": self.conv = DynamicConv( self.conv_dim, kernel_size, padding_l=padding_l, weight_softmax=args.weight_softmax, num_heads=args.encoder_attention_heads, weight_dropout=args.weight_dropout, ) else: raise NotImplementedError self.linear2 = Linear(self.conv_dim, self.embed_dim) self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) self.relu_dropout_module = FairseqDropout( args.relu_dropout, module_name=self.__class__.__name__ ) self.input_dropout_module = FairseqDropout( args.input_dropout, module_name=self.__class__.__name__ ) self.normalize_before = args.encoder_normalize_before self.fc1 = Linear(self.embed_dim, args.encoder_ffn_embed_dim) self.fc2 = Linear(args.encoder_ffn_embed_dim, self.embed_dim) self.layer_norms = nn.ModuleList([LayerNorm(self.embed_dim) for _ in range(2)]) def forward(self, x, encoder_padding_mask): """ Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor): binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. Returns: encoded output of shape `(batch, src_len, embed_dim)` """ residual = x x = self.maybe_layer_norm(0, x, before=True) x = self.input_dropout_module(x) x = self.linear1(x) if self.act is not None: x = self.act(x) if encoder_padding_mask is not None: x = x.masked_fill(encoder_padding_mask.transpose(0, 1).unsqueeze(2), 0) x = self.conv(x) x = self.linear2(x) x = self.dropout_module(x) x = residual + x x = self.maybe_layer_norm(0, x, after=True) residual = x x = self.maybe_layer_norm(1, x, before=True) x = F.relu(self.fc1(x)) x = self.relu_dropout_module(x) x = self.fc2(x) x = self.dropout_module(x) x = residual + x x = self.maybe_layer_norm(1, x, after=True) return x def maybe_layer_norm(self, i, x, before=False, after=False): assert before ^ after if after ^ self.normalize_before: return self.layer_norms[i](x) else: return x def extra_repr(self): return ( "dropout={}, relu_dropout={}, input_dropout={}, normalize_before={}".format( self.dropout_module.p, self.relu_dropout_module.p, self.input_dropout_module.p, self.normalize_before, ) ) class LightConvDecoderLayer(nn.Module): """Decoder layer block. Args: args (argparse.Namespace): parsed command-line arguments no_encoder_attn (bool, optional): whether to attend to encoder outputs. Default: ``False`` kernel_size: kernel size of the convolution """ def __init__(self, args, no_encoder_attn=False, kernel_size=0): super().__init__() self.embed_dim = args.decoder_embed_dim self.conv_dim = args.decoder_conv_dim if args.decoder_glu: self.linear1 = Linear(self.embed_dim, 2 * self.conv_dim) self.act = nn.GLU() else: self.linear1 = Linear(self.embed_dim, self.conv_dim) self.act = None if args.decoder_conv_type == "lightweight": self.conv = LightweightConv( self.conv_dim, kernel_size, padding_l=kernel_size - 1, weight_softmax=args.weight_softmax, num_heads=args.decoder_attention_heads, weight_dropout=args.weight_dropout, ) elif args.decoder_conv_type == "dynamic": self.conv = DynamicConv( self.conv_dim, kernel_size, padding_l=kernel_size - 1, weight_softmax=args.weight_softmax, num_heads=args.decoder_attention_heads, weight_dropout=args.weight_dropout, ) else: raise NotImplementedError self.linear2 = Linear(self.conv_dim, self.embed_dim) self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) self.relu_dropout_module = FairseqDropout( args.relu_dropout, module_name=self.__class__.__name__ ) self.input_dropout_module = FairseqDropout( args.input_dropout, module_name=self.__class__.__name__ ) self.normalize_before = args.decoder_normalize_before self.conv_layer_norm = LayerNorm(self.embed_dim) if no_encoder_attn: self.encoder_attn = None self.encoder_attn_layer_norm = None else: self.encoder_attn = MultiheadAttention( self.embed_dim, args.decoder_attention_heads, dropout=args.attention_dropout, encoder_decoder_attention=True, ) self.encoder_attn_layer_norm = LayerNorm(self.embed_dim) self.fc1 = Linear(self.embed_dim, args.decoder_ffn_embed_dim) self.fc2 = Linear(args.decoder_ffn_embed_dim, self.embed_dim) self.final_layer_norm = LayerNorm(self.embed_dim) self.need_attn = True def forward( self, x, encoder_out, encoder_padding_mask, incremental_state, prev_conv_state=None, prev_attn_state=None, conv_mask=None, conv_padding_mask=None, ): """ Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor): binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. Returns: encoded output of shape `(batch, src_len, embed_dim)` """ residual = x x = self.maybe_layer_norm(self.conv_layer_norm, x, before=True) if prev_conv_state is not None: if incremental_state is None: incremental_state = {} self.conv._set_input_buffer(incremental_state, prev_conv_state) x = self.input_dropout_module(x) x = self.linear1(x) if self.act is not None: x = self.act(x) x = self.conv(x, incremental_state=incremental_state) x = self.linear2(x) x = self.dropout_module(x) x = residual + x x = self.maybe_layer_norm(self.conv_layer_norm, x, after=True) attn = None if self.encoder_attn is not None: residual = x x = self.maybe_layer_norm(self.encoder_attn_layer_norm, x, before=True) if prev_attn_state is not None: if incremental_state is None: incremental_state = {} prev_key, prev_value = prev_attn_state saved_state = {"prev_key": prev_key, "prev_value": prev_value} self.encoder_attn._set_input_buffer(incremental_state, saved_state) x, attn = self.encoder_attn( query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=incremental_state, static_kv=True, need_weights=(not self.training and self.need_attn), ) x = self.dropout_module(x) x = residual + x x = self.maybe_layer_norm(self.encoder_attn_layer_norm, x, after=True) residual = x x = self.maybe_layer_norm(self.final_layer_norm, x, before=True) x = F.relu(self.fc1(x)) x = self.relu_dropout_module(x) x = self.fc2(x) x = self.dropout_module(x) x = residual + x x = self.maybe_layer_norm(self.final_layer_norm, x, after=True) return x, attn def maybe_layer_norm(self, layer_norm, x, before=False, after=False): assert before ^ after if after ^ self.normalize_before: return layer_norm(x) else: return x def make_generation_fast_(self, need_attn=False, **kwargs): self.need_attn = need_attn def extra_repr(self): return ( "dropout={}, relu_dropout={}, input_dropout={}, normalize_before={}".format( self.dropout_module.p, self.relu_dropout_module.p, self.input_dropout_module.p, self.normalize_before, ) ) def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) nn.init.constant_(m.weight[padding_idx], 0) return m def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.0) return m @register_model_architecture("lightconv", "lightconv") def base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 7) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.relu_dropout = getattr(args, "relu_dropout", 0.0) args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.encoder_conv_dim = getattr(args, "encoder_conv_dim", args.encoder_embed_dim) args.decoder_conv_dim = getattr(args, "decoder_conv_dim", args.decoder_embed_dim) args.encoder_kernel_size_list = getattr( args, "encoder_kernel_size_list", [3, 7, 15, 31, 31, 31, 31] ) args.decoder_kernel_size_list = getattr( args, "decoder_kernel_size_list", [3, 7, 15, 31, 31, 31] ) if len(args.encoder_kernel_size_list) == 1: args.encoder_kernel_size_list = ( args.encoder_kernel_size_list * args.encoder_layers ) if len(args.decoder_kernel_size_list) == 1: args.decoder_kernel_size_list = ( args.decoder_kernel_size_list * args.decoder_layers ) assert ( len(args.encoder_kernel_size_list) == args.encoder_layers ), "encoder_kernel_size_list doesn't match encoder_layers" assert ( len(args.decoder_kernel_size_list) == args.decoder_layers ), "decoder_kernel_size_list doesn't match decoder_layers" args.encoder_glu = getattr(args, "encoder_glu", True) args.decoder_glu = getattr(args, "decoder_glu", True) args.input_dropout = getattr(args, "input_dropout", 0.1) args.weight_dropout = getattr(args, "weight_dropout", args.attention_dropout) @register_model_architecture("lightconv", "lightconv_iwslt_de_en") def lightconv_iwslt_de_en(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4) args.encoder_layers = getattr(args, "encoder_layers", 7) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 1024) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4) args.decoder_layers = getattr(args, "decoder_layers", 6) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.weight_dropout = getattr(args, "weight_dropout", 0.1) args.encoder_glu = getattr(args, "encoder_glu", False) args.decoder_glu = getattr(args, "decoder_glu", False) args.input_dropout = getattr(args, "input_dropout", 0.0) base_architecture(args) @register_model_architecture("lightconv", "lightconv_wmt_en_de") def lightconv_wmt_en_de(args): base_architecture(args) @register_model_architecture("lightconv", "lightconv_wmt_en_de_big") def lightconv_wmt_en_de_big(args): args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) args.dropout = getattr(args, "dropout", 0.3) base_architecture(args) @register_model_architecture("lightconv", "lightconv_wmt_en_fr_big") def lightconv_wmt_en_fr_big(args): args.dropout = getattr(args, "dropout", 0.1) lightconv_wmt_en_de_big(args) @register_model_architecture("lightconv", "lightconv_wmt_zh_en_big") def lightconv_wmt_zh_en_big(args): args.dropout = getattr(args, "dropout", 0.2) args.attention_dropout = getattr(args, "attention_dropout", 0.2) args.weight_dropout = getattr(args, "weight_dropout", 0.2) lightconv_wmt_en_de_big(args)
data2vec_vision-main
deltalm/src/fairseq/models/lightconv.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq import utils from fairseq.models import ( FairseqLanguageModel, register_model, register_model_architecture, ) from fairseq.models.lightconv import Embedding, LightConvDecoder from fairseq.modules import AdaptiveInput, CharacterTokenEmbedder @register_model("lightconv_lm") class LightConvLanguageModel(FairseqLanguageModel): def __init__(self, decoder): super().__init__(decoder) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" parser.add_argument( "--dropout", default=0.1, type=float, metavar="D", help="dropout probability", ) parser.add_argument( "--attention-dropout", default=0.0, type=float, metavar="D", help="dropout probability for attention weights", ) parser.add_argument( "--relu-dropout", default=0.0, type=float, metavar="D", help="dropout probability after ReLU in FFN", ) parser.add_argument( "--input-dropout", type=float, metavar="D", help="dropout probability of the inputs", ) parser.add_argument( "--decoder-embed-dim", type=int, metavar="N", help="decoder embedding dimension", ) parser.add_argument( "--decoder-output-dim", type=int, metavar="N", help="decoder output dimension", ) parser.add_argument( "--decoder-input-dim", type=int, metavar="N", help="decoder input dimension" ) parser.add_argument( "--decoder-ffn-embed-dim", type=int, metavar="N", help="decoder embedding dimension for FFN", ) parser.add_argument( "--decoder-layers", type=int, metavar="N", help="num decoder layers" ) parser.add_argument( "--decoder-attention-heads", type=int, metavar="N", help="num decoder attention heads or LightConv/DynamicConv heads", ) parser.add_argument( "--decoder-normalize-before", default=False, action="store_true", help="apply layernorm before each decoder block", ) parser.add_argument( "--adaptive-softmax-cutoff", metavar="EXPR", help="comma separated list of adaptive softmax cutoff points. " "Must be used with adaptive_loss criterion", ) parser.add_argument( "--adaptive-softmax-dropout", type=float, metavar="D", help="sets adaptive softmax dropout for the tail projections", ) parser.add_argument( "--adaptive-softmax-factor", type=float, metavar="N", help="adaptive input factor", ) parser.add_argument( "--no-token-positional-embeddings", default=False, action="store_true", help="if set, disables positional embeddings (outside self attention)", ) parser.add_argument( "--share-decoder-input-output-embed", default=False, action="store_true", help="share decoder input and output embeddings", ) parser.add_argument( "--character-embeddings", default=False, action="store_true", help="if set, uses character embedding convolutions to produce token embeddings", ) parser.add_argument( "--character-filters", type=str, metavar="LIST", default="[(1, 64), (2, 128), (3, 192), (4, 256), (5, 256), (6, 256), (7, 256)]", help="size of character embeddings", ) parser.add_argument( "--character-embedding-dim", type=int, metavar="N", default=4, help="size of character embeddings", ) parser.add_argument( "--char-embedder-highway-layers", type=int, metavar="N", default=2, help="number of highway layers for character token embeddder", ) parser.add_argument( "--adaptive-input", default=False, action="store_true", help="if set, uses adaptive input", ) parser.add_argument( "--adaptive-input-factor", type=float, metavar="N", help="adaptive input factor", ) parser.add_argument( "--adaptive-input-cutoff", metavar="EXPR", help="comma separated list of adaptive input cutoff points.", ) parser.add_argument( "--tie-adaptive-weights", action="store_true", help="if set, ties the weights of adaptive softmax and adaptive input", ) parser.add_argument( "--tie-adaptive-proj", action="store_true", help="if set, ties the projection weights of adaptive softmax and adaptive input", ) parser.add_argument( "--decoder-learned-pos", action="store_true", help="use learned positional embeddings in the decoder", ) """LightConv and DynamicConv arguments""" parser.add_argument( "--decoder-kernel-size-list", type=lambda x: utils.eval_str_list(x, int), help='list of kernel size (default: "[3,7,15,31,31,31]")', ) parser.add_argument( "--decoder-glu", type=utils.eval_bool, help="glu after in proj" ) parser.add_argument( "--decoder-conv-type", default="dynamic", type=str, choices=["dynamic", "lightweight"], help="type of convolution", ) parser.add_argument("--weight-softmax", default=True, type=utils.eval_bool) parser.add_argument( "--weight-dropout", type=float, metavar="D", help="dropout probability for conv weights", ) @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_lm_architecture(args) if getattr(args, "max_source_positions", None) is None: args.max_source_positions = args.tokens_per_sample if getattr(args, "max_target_positions", None) is None: args.max_target_positions = args.tokens_per_sample if args.character_embeddings: embed_tokens = CharacterTokenEmbedder( task.dictionary, eval(args.character_filters), args.character_embedding_dim, args.decoder_embed_dim, args.char_embedder_highway_layers, ) elif args.adaptive_input: embed_tokens = AdaptiveInput( len(task.dictionary), task.dictionary.pad(), args.decoder_input_dim, args.adaptive_input_factor, args.decoder_embed_dim, utils.eval_str_list(args.adaptive_input_cutoff, type=int), ) else: embed_tokens = Embedding( len(task.dictionary), args.decoder_input_dim, task.dictionary.pad() ) if args.tie_adaptive_weights: assert args.adaptive_input assert args.adaptive_input_factor == args.adaptive_softmax_factor assert ( args.adaptive_softmax_cutoff == args.adaptive_input_cutoff ), "{} != {}".format( args.adaptive_softmax_cutoff, args.adaptive_input_cutoff ) assert args.decoder_input_dim == args.decoder_output_dim decoder = LightConvDecoder( args, task.output_dictionary, embed_tokens, no_encoder_attn=True, final_norm=False, ) return LightConvLanguageModel(decoder) @register_model_architecture("lightconv_lm", "lightconv_lm") def base_lm_architecture(args): args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 2048) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.adaptive_softmax_factor = getattr(args, "adaptive_softmax_factor", 4) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.character_embeddings = getattr(args, "character_embeddings", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.decoder_conv_dim = getattr(args, "decoder_conv_dim", args.decoder_embed_dim) # The model training is not stable without this args.decoder_normalize_before = True args.adaptive_input = getattr(args, "adaptive_input", False) args.adaptive_input_factor = getattr(args, "adaptive_input_factor", 4) args.adaptive_input_cutoff = getattr(args, "adaptive_input_cutoff", None) args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False) args.tie_adaptive_proj = getattr(args, "tie_adaptive_proj", False) args.decoder_kernel_size_list = getattr( args, "decoder_kernel_size_list", [3, 7, 15, 31, 31, 31] ) if len(args.decoder_kernel_size_list) == 1: args.decoder_kernel_size_list = ( args.decoder_kernel_size_list * args.decoder_layers ) assert ( len(args.decoder_kernel_size_list) == args.decoder_layers ), "decoder_kernel_size_list doesn't match decoder_layers" args.decoder_glu = getattr(args, "decoder_glu", True) args.input_dropout = getattr(args, "input_dropout", 0.1) args.weight_dropout = getattr(args, "weight_dropout", args.attention_dropout) @register_model_architecture("lightconv_lm", "lightconv_lm_gbw") def lightconv_lm_gbw(args): args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) base_lm_architecture(args)
data2vec_vision-main
deltalm/src/fairseq/models/lightconv_lm.py
#!/usr/bin/env python3 from ast import literal_eval from typing import List, Tuple import torch import torch.nn as nn import torch.nn.functional as F from fairseq import checkpoint_utils, utils from fairseq.data.data_utils import lengths_to_padding_mask from fairseq.models import ( FairseqEncoder, FairseqEncoderDecoderModel, FairseqIncrementalDecoder, register_model, register_model_architecture, ) @register_model("s2t_berard") class BerardModel(FairseqEncoderDecoderModel): """Implementation of a model similar to https://arxiv.org/abs/1802.04200 Paper title: End-to-End Automatic Speech Translation of Audiobooks An implementation is available in tensorflow at https://github.com/eske/seq2seq Relevant files in this implementation are the config (https://github.com/eske/seq2seq/blob/master/config/LibriSpeech/AST.yaml) and the model code (https://github.com/eske/seq2seq/blob/master/translate/models.py). The encoder and decoder try to be close to the original implementation. The attention is an MLP as in Bahdanau et al. (https://arxiv.org/abs/1409.0473). There is no state initialization by averaging the encoder outputs. """ def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @staticmethod def add_args(parser): parser.add_argument( "--input-layers", type=str, metavar="EXPR", help="List of linear layer dimensions. These " "layers are applied to the input features and " "are followed by tanh and possibly dropout.", ) parser.add_argument( "--dropout", type=float, metavar="D", help="Dropout probability to use in the encoder/decoder. " "Note that this parameters control dropout in various places, " "there is no fine-grained control for dropout for embeddings " "vs LSTM layers for example.", ) parser.add_argument( "--in-channels", type=int, metavar="N", help="Number of encoder input channels. " "Typically value is 1.", ) parser.add_argument( "--conv-layers", type=str, metavar="EXPR", help="List of conv layers " "(format: (channels, kernel, stride)).", ) parser.add_argument( "--num-blstm-layers", type=int, metavar="N", help="Number of encoder bi-LSTM layers.", ) parser.add_argument( "--lstm-size", type=int, metavar="N", help="LSTM hidden size." ) parser.add_argument( "--decoder-embed-dim", type=int, metavar="N", help="Embedding dimension of the decoder target tokens.", ) parser.add_argument( "--decoder-hidden-dim", type=int, metavar="N", help="Decoder LSTM hidden dimension.", ) parser.add_argument( "--decoder-num-layers", type=int, metavar="N", help="Number of decoder LSTM layers.", ) parser.add_argument( "--attention-dim", type=int, metavar="N", help="Hidden layer dimension in MLP attention.", ) parser.add_argument( "--output-layer-dim", type=int, metavar="N", help="Hidden layer dim for linear layer prior to output projection.", ) parser.add_argument( "--load-pretrained-encoder-from", type=str, metavar="STR", help="model to take encoder weights from (for initialization)", ) parser.add_argument( "--load-pretrained-decoder-from", type=str, metavar="STR", help="model to take decoder weights from (for initialization)", ) @classmethod def build_encoder(cls, args, task): encoder = BerardEncoder( input_layers=literal_eval(args.input_layers), conv_layers=literal_eval(args.conv_layers), in_channels=args.input_channels, input_feat_per_channel=args.input_feat_per_channel, num_blstm_layers=args.num_blstm_layers, lstm_size=args.lstm_size, dropout=args.dropout, ) if getattr(args, "load_pretrained_encoder_from", None): encoder = checkpoint_utils.load_pretrained_component_from_model( component=encoder, checkpoint=args.load_pretrained_encoder_from ) return encoder @classmethod def build_decoder(cls, args, task): decoder = LSTMDecoder( dictionary=task.target_dictionary, embed_dim=args.decoder_embed_dim, num_layers=args.decoder_num_layers, hidden_size=args.decoder_hidden_dim, dropout=args.dropout, encoder_output_dim=2 * args.lstm_size, # bidirectional attention_dim=args.attention_dim, output_layer_dim=args.output_layer_dim, ) if getattr(args, "load_pretrained_decoder_from", None): decoder = checkpoint_utils.load_pretrained_component_from_model( component=decoder, checkpoint=args.load_pretrained_decoder_from ) return decoder @classmethod def build_model(cls, args, task): """Build a new model instance.""" encoder = cls.build_encoder(args, task) decoder = cls.build_decoder(args, task) return cls(encoder, decoder) def get_normalized_probs(self, net_output, log_probs, sample=None): # net_output['encoder_out'] is a (B, T, D) tensor lprobs = super().get_normalized_probs(net_output, log_probs, sample) # lprobs is a (B, T, D) tensor lprobs.batch_first = True return lprobs class BerardEncoder(FairseqEncoder): def __init__( self, input_layers: List[int], conv_layers: List[Tuple[int]], in_channels: int, input_feat_per_channel: int, num_blstm_layers: int, lstm_size: int, dropout: float, ): """ Args: input_layers: list of linear layer dimensions. These layers are applied to the input features and are followed by tanh and possibly dropout. conv_layers: list of conv2d layer configurations. A configuration is a tuple (out_channels, conv_kernel_size, stride). in_channels: number of input channels. input_feat_per_channel: number of input features per channel. These are speech features, typically 40 or 80. num_blstm_layers: number of bidirectional LSTM layers. lstm_size: size of the LSTM hidden (and cell) size. dropout: dropout probability. Dropout can be applied after the linear layers and LSTM layers but not to the convolutional layers. """ super().__init__(None) self.input_layers = nn.ModuleList() in_features = input_feat_per_channel for out_features in input_layers: if dropout > 0: self.input_layers.append( nn.Sequential( nn.Linear(in_features, out_features), nn.Dropout(p=dropout) ) ) else: self.input_layers.append(nn.Linear(in_features, out_features)) in_features = out_features self.in_channels = in_channels self.input_dim = input_feat_per_channel self.conv_kernel_sizes_and_strides = [] self.conv_layers = nn.ModuleList() lstm_input_dim = input_layers[-1] for conv_layer in conv_layers: out_channels, conv_kernel_size, conv_stride = conv_layer self.conv_layers.append( nn.Conv2d( in_channels, out_channels, conv_kernel_size, stride=conv_stride, padding=conv_kernel_size // 2, ) ) self.conv_kernel_sizes_and_strides.append((conv_kernel_size, conv_stride)) in_channels = out_channels lstm_input_dim //= conv_stride lstm_input_dim *= conv_layers[-1][0] self.lstm_size = lstm_size self.num_blstm_layers = num_blstm_layers self.lstm = nn.LSTM( input_size=lstm_input_dim, hidden_size=lstm_size, num_layers=num_blstm_layers, dropout=dropout, bidirectional=True, ) self.output_dim = 2 * lstm_size # bidirectional if dropout > 0: self.dropout = nn.Dropout(p=dropout) else: self.dropout = None def forward(self, src_tokens, src_lengths=None, **kwargs): """ Args src_tokens: padded tensor (B, T, C * feat) src_lengths: tensor of original lengths of input utterances (B,) """ bsz, max_seq_len, _ = src_tokens.size() # (B, C, T, feat) x = ( src_tokens.view(bsz, max_seq_len, self.in_channels, self.input_dim) .transpose(1, 2) .contiguous() ) for input_layer in self.input_layers: x = input_layer(x) x = torch.tanh(x) for conv_layer in self.conv_layers: x = conv_layer(x) bsz, _, output_seq_len, _ = x.size() # (B, C, T, feat) -> (B, T, C, feat) -> (T, B, C, feat) -> # (T, B, C * feat) x = x.transpose(1, 2).transpose(0, 1).contiguous().view(output_seq_len, bsz, -1) input_lengths = src_lengths.clone() for k, s in self.conv_kernel_sizes_and_strides: p = k // 2 input_lengths = (input_lengths.float() + 2 * p - k) / s + 1 input_lengths = input_lengths.floor().long() packed_x = nn.utils.rnn.pack_padded_sequence(x, input_lengths) h0 = x.new(2 * self.num_blstm_layers, bsz, self.lstm_size).zero_() c0 = x.new(2 * self.num_blstm_layers, bsz, self.lstm_size).zero_() packed_outs, _ = self.lstm(packed_x, (h0, c0)) # unpack outputs and apply dropout x, output_lengths = nn.utils.rnn.pad_packed_sequence(packed_outs) if self.dropout is not None: x = self.dropout(x) encoder_padding_mask = ( lengths_to_padding_mask(output_lengths).to(src_tokens.device).t() ) return { "encoder_out": x, # (T, B, C) "encoder_padding_mask": encoder_padding_mask, # (T, B) } def reorder_encoder_out(self, encoder_out, new_order): encoder_out["encoder_out"] = encoder_out["encoder_out"].index_select( 1, new_order ) encoder_out["encoder_padding_mask"] = encoder_out[ "encoder_padding_mask" ].index_select(1, new_order) return encoder_out class MLPAttention(nn.Module): """The original attention from Badhanau et al. (2014) https://arxiv.org/abs/1409.0473, based on a Multi-Layer Perceptron. The attention score between position i in the encoder and position j in the decoder is: alpha_ij = V_a * tanh(W_ae * enc_i + W_ad * dec_j + b_a) """ def __init__(self, decoder_hidden_state_dim, context_dim, attention_dim): super().__init__() self.context_dim = context_dim self.attention_dim = attention_dim # W_ae and b_a self.encoder_proj = nn.Linear(context_dim, self.attention_dim, bias=True) # W_ad self.decoder_proj = nn.Linear( decoder_hidden_state_dim, self.attention_dim, bias=False ) # V_a self.to_scores = nn.Linear(self.attention_dim, 1, bias=False) def forward(self, decoder_state, source_hids, encoder_padding_mask): """The expected input dimensions are: decoder_state: bsz x decoder_hidden_state_dim source_hids: src_len x bsz x context_dim encoder_padding_mask: src_len x bsz """ src_len, bsz, _ = source_hids.size() # (src_len*bsz) x context_dim (to feed through linear) flat_source_hids = source_hids.view(-1, self.context_dim) # (src_len*bsz) x attention_dim encoder_component = self.encoder_proj(flat_source_hids) # src_len x bsz x attention_dim encoder_component = encoder_component.view(src_len, bsz, self.attention_dim) # 1 x bsz x attention_dim decoder_component = self.decoder_proj(decoder_state).unsqueeze(0) # Sum with broadcasting and apply the non linearity # src_len x bsz x attention_dim hidden_att = torch.tanh( (decoder_component + encoder_component).view(-1, self.attention_dim) ) # Project onto the reals to get attentions scores (src_len x bsz) attn_scores = self.to_scores(hidden_att).view(src_len, bsz) # Mask + softmax (src_len x bsz) if encoder_padding_mask is not None: attn_scores = ( attn_scores.float() .masked_fill_(encoder_padding_mask, float("-inf")) .type_as(attn_scores) ) # FP16 support: cast to float and back # srclen x bsz normalized_masked_attn_scores = F.softmax(attn_scores, dim=0) # Sum weighted sources (bsz x context_dim) attn_weighted_context = ( source_hids * normalized_masked_attn_scores.unsqueeze(2) ).sum(dim=0) return attn_weighted_context, normalized_masked_attn_scores class LSTMDecoder(FairseqIncrementalDecoder): def __init__( self, dictionary, embed_dim, num_layers, hidden_size, dropout, encoder_output_dim, attention_dim, output_layer_dim, ): """ Args: dictionary: target text dictionary. embed_dim: embedding dimension for target tokens. num_layers: number of LSTM layers. hidden_size: hidden size for LSTM layers. dropout: dropout probability. Dropout can be applied to the embeddings, the LSTM layers, and the context vector. encoder_output_dim: encoder output dimension (hidden size of encoder LSTM). attention_dim: attention dimension for MLP attention. output_layer_dim: size of the linear layer prior to output projection. """ super().__init__(dictionary) self.num_layers = num_layers self.hidden_size = hidden_size num_embeddings = len(dictionary) padding_idx = dictionary.pad() self.embed_tokens = nn.Embedding(num_embeddings, embed_dim, padding_idx) if dropout > 0: self.dropout = nn.Dropout(p=dropout) else: self.dropout = None self.layers = nn.ModuleList() for layer_id in range(num_layers): input_size = embed_dim if layer_id == 0 else encoder_output_dim self.layers.append( nn.LSTMCell(input_size=input_size, hidden_size=hidden_size) ) self.context_dim = encoder_output_dim self.attention = MLPAttention( decoder_hidden_state_dim=hidden_size, context_dim=encoder_output_dim, attention_dim=attention_dim, ) self.deep_output_layer = nn.Linear( hidden_size + encoder_output_dim + embed_dim, output_layer_dim ) self.output_projection = nn.Linear(output_layer_dim, num_embeddings) def forward( self, prev_output_tokens, encoder_out=None, incremental_state=None, **kwargs ): encoder_padding_mask = encoder_out["encoder_padding_mask"] encoder_outs = encoder_out["encoder_out"] if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] bsz, seqlen = prev_output_tokens.size() srclen = encoder_outs.size(0) # embed tokens embeddings = self.embed_tokens(prev_output_tokens) x = embeddings if self.dropout is not None: x = self.dropout(x) # B x T x C -> T x B x C x = x.transpose(0, 1) # initialize previous states (or get from cache during incremental # generation) cached_state = utils.get_incremental_state( self, incremental_state, "cached_state" ) if cached_state is not None: prev_hiddens, prev_cells = cached_state else: prev_hiddens = [encoder_out["encoder_out"].mean(dim=0)] * self.num_layers prev_cells = [x.new_zeros(bsz, self.hidden_size)] * self.num_layers attn_scores = x.new_zeros(bsz, srclen) attention_outs = [] outs = [] for j in range(seqlen): input = x[j, :, :] attention_out = None for i, layer in enumerate(self.layers): # the previous state is one layer below except for the bottom # layer where the previous state is the state emitted by the # top layer hidden, cell = layer( input, ( prev_hiddens[(i - 1) % self.num_layers], prev_cells[(i - 1) % self.num_layers], ), ) if self.dropout is not None: hidden = self.dropout(hidden) prev_hiddens[i] = hidden prev_cells[i] = cell if attention_out is None: attention_out, attn_scores = self.attention( hidden, encoder_outs, encoder_padding_mask ) if self.dropout is not None: attention_out = self.dropout(attention_out) attention_outs.append(attention_out) input = attention_out # collect the output of the top layer outs.append(hidden) # cache previous states (no-op except during incremental generation) utils.set_incremental_state( self, incremental_state, "cached_state", (prev_hiddens, prev_cells) ) # collect outputs across time steps x = torch.cat(outs, dim=0).view(seqlen, bsz, self.hidden_size) attention_outs_concat = torch.cat(attention_outs, dim=0).view( seqlen, bsz, self.context_dim ) # T x B x C -> B x T x C x = x.transpose(0, 1) attention_outs_concat = attention_outs_concat.transpose(0, 1) # concat LSTM output, attention output and embedding # before output projection x = torch.cat((x, attention_outs_concat, embeddings), dim=2) x = self.deep_output_layer(x) x = torch.tanh(x) if self.dropout is not None: x = self.dropout(x) # project back to size of vocabulary x = self.output_projection(x) # to return the full attn_scores tensor, we need to fix the decoder # to account for subsampling input frames # return x, attn_scores return x, None def reorder_incremental_state(self, incremental_state, new_order): super().reorder_incremental_state(incremental_state, new_order) cached_state = utils.get_incremental_state( self, incremental_state, "cached_state" ) if cached_state is None: return def reorder_state(state): if isinstance(state, list): return [reorder_state(state_i) for state_i in state] return state.index_select(0, new_order) new_state = tuple(map(reorder_state, cached_state)) utils.set_incremental_state(self, incremental_state, "cached_state", new_state) @register_model_architecture(model_name="s2t_berard", arch_name="s2t_berard") def berard(args): """The original version: "End-to-End Automatic Speech Translation of Audiobooks" (https://arxiv.org/abs/1802.04200) """ args.input_layers = getattr(args, "input_layers", "[256, 128]") args.conv_layers = getattr(args, "conv_layers", "[(16, 3, 2), (16, 3, 2)]") args.num_blstm_layers = getattr(args, "num_blstm_layers", 3) args.lstm_size = getattr(args, "lstm_size", 256) args.dropout = getattr(args, "dropout", 0.2) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 128) args.decoder_num_layers = getattr(args, "decoder_num_layers", 2) args.decoder_hidden_dim = getattr(args, "decoder_hidden_dim", 512) args.attention_dim = getattr(args, "attention_dim", 512) args.output_layer_dim = getattr(args, "output_layer_dim", 128) args.load_pretrained_encoder_from = getattr( args, "load_pretrained_encoder_from", None ) args.load_pretrained_decoder_from = getattr( args, "load_pretrained_decoder_from", None ) @register_model_architecture(model_name="s2t_berard", arch_name="s2t_berard_256_3_3") def berard_256_3_3(args): """Used in * "Harnessing Indirect Training Data for End-to-End Automatic Speech Translation: Tricks of the Trade" (https://arxiv.org/abs/1909.06515) * "CoVoST: A Diverse Multilingual Speech-To-Text Translation Corpus" (https://arxiv.org/pdf/2002.01320.pdf) * "Self-Supervised Representations Improve End-to-End Speech Translation" (https://arxiv.org/abs/2006.12124) """ args.decoder_num_layers = getattr(args, "decoder_num_layers", 3) berard(args) @register_model_architecture(model_name="s2t_berard", arch_name="s2t_berard_512_3_2") def berard_512_3_2(args): args.num_blstm_layers = getattr(args, "num_blstm_layers", 3) args.lstm_size = getattr(args, "lstm_size", 512) args.dropout = getattr(args, "dropout", 0.3) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 256) args.decoder_num_layers = getattr(args, "decoder_num_layers", 2) args.decoder_hidden_dim = getattr(args, "decoder_hidden_dim", 1024) args.attention_dim = getattr(args, "attention_dim", 512) args.output_layer_dim = getattr(args, "output_layer_dim", 256) berard(args) @register_model_architecture(model_name="s2t_berard", arch_name="s2t_berard_512_5_3") def berard_512_5_3(args): args.num_blstm_layers = getattr(args, "num_blstm_layers", 5) args.lstm_size = getattr(args, "lstm_size", 512) args.dropout = getattr(args, "dropout", 0.3) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 256) args.decoder_num_layers = getattr(args, "decoder_num_layers", 3) args.decoder_hidden_dim = getattr(args, "decoder_hidden_dim", 1024) args.attention_dim = getattr(args, "attention_dim", 512) args.output_layer_dim = getattr(args, "output_layer_dim", 256) berard(args)
data2vec_vision-main
deltalm/src/fairseq/models/speech_to_text/berard.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .berard import * # noqa from .s2t_transformer import * # noqa
data2vec_vision-main
deltalm/src/fairseq/models/speech_to_text/__init__.py
#!/usr/bin/env python3 import logging import math from typing import Dict, List, Optional, Tuple import torch import torch.nn as nn from fairseq import checkpoint_utils, utils from fairseq.data.data_utils import lengths_to_padding_mask from fairseq.models import ( FairseqEncoder, FairseqEncoderDecoderModel, register_model, register_model_architecture, ) from fairseq.models.fairseq_encoder import EncoderOut from fairseq.models.transformer import Embedding, TransformerDecoder from fairseq.modules import ( FairseqDropout, LayerNorm, PositionalEmbedding, TransformerEncoderLayer, ) from torch import Tensor logger = logging.getLogger(__name__) class Conv1dSubsampler(nn.Module): """Convolutional subsampler: a stack of 1D convolution (along temporal dimension) followed by non-linear activation via gated linear units (https://arxiv.org/abs/1911.08460) Args: in_channels (int): the number of input channels mid_channels (int): the number of intermediate channels out_channels (int): the number of output channels kernel_sizes (List[int]): the kernel size for each convolutional layer """ def __init__( self, in_channels: int, mid_channels: int, out_channels: int, kernel_sizes: List[int] = (3, 3), ): super(Conv1dSubsampler, self).__init__() self.n_layers = len(kernel_sizes) self.conv_layers = nn.ModuleList( nn.Conv1d( in_channels if i == 0 else mid_channels // 2, mid_channels if i < self.n_layers - 1 else out_channels * 2, k, stride=2, padding=k // 2, ) for i, k in enumerate(kernel_sizes) ) def get_out_seq_lens_tensor(self, in_seq_lens_tensor): out = in_seq_lens_tensor.clone() for _ in range(self.n_layers): out = ((out.float() - 1) / 2 + 1).floor().long() return out def forward(self, src_tokens, src_lengths): bsz, in_seq_len, _ = src_tokens.size() # B x T x (C x D) x = src_tokens.transpose(1, 2).contiguous() # -> B x (C x D) x T for conv in self.conv_layers: x = conv(x) x = nn.functional.glu(x, dim=1) _, _, out_seq_len = x.size() x = x.transpose(1, 2).transpose(0, 1).contiguous() # -> T x B x (C x D) return x, self.get_out_seq_lens_tensor(src_lengths) @register_model("s2t_transformer") class S2TTransformerModel(FairseqEncoderDecoderModel): """Adapted Transformer model (https://arxiv.org/abs/1706.03762) for speech-to-text tasks. The Transformer encoder/decoder remains the same. A trainable input subsampler is prepended to the Transformer encoder to project inputs into the encoder dimension as well as downsample input sequence for computational efficiency.""" def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # input parser.add_argument( "--conv-kernel-sizes", type=str, metavar="N", help="kernel sizes of Conv1d subsampling layers", ) parser.add_argument( "--conv-channels", type=int, metavar="N", help="# of channels in Conv1d subsampling layers", ) # Transformer parser.add_argument( "--activation-fn", type=str, default="relu", choices=utils.get_available_activation_fns(), help="activation function to use", ) parser.add_argument( "--dropout", type=float, metavar="D", help="dropout probability" ) parser.add_argument( "--attention-dropout", type=float, metavar="D", help="dropout probability for attention weights", ) parser.add_argument( "--activation-dropout", "--relu-dropout", type=float, metavar="D", help="dropout probability after activation in FFN.", ) parser.add_argument( "--encoder-embed-dim", type=int, metavar="N", help="encoder embedding dimension", ) parser.add_argument( "--encoder-ffn-embed-dim", type=int, metavar="N", help="encoder embedding dimension for FFN", ) parser.add_argument( "--encoder-layers", type=int, metavar="N", help="num encoder layers" ) parser.add_argument( "--encoder-attention-heads", type=int, metavar="N", help="num encoder attention heads", ) parser.add_argument( "--encoder-normalize-before", action="store_true", help="apply layernorm before each encoder block", ) parser.add_argument( "--decoder-embed-dim", type=int, metavar="N", help="decoder embedding dimension", ) parser.add_argument( "--decoder-ffn-embed-dim", type=int, metavar="N", help="decoder embedding dimension for FFN", ) parser.add_argument( "--decoder-layers", type=int, metavar="N", help="num decoder layers" ) parser.add_argument( "--decoder-attention-heads", type=int, metavar="N", help="num decoder attention heads", ) parser.add_argument( "--decoder-normalize-before", action="store_true", help="apply layernorm before each decoder block", ) parser.add_argument( "--share-decoder-input-output-embed", action="store_true", help="share decoder input and output embeddings", ) parser.add_argument( "--layernorm-embedding", action="store_true", help="add layernorm to embedding", ) parser.add_argument( "--no-scale-embedding", action="store_true", help="if True, dont scale embeddings", ) parser.add_argument( "--load-pretrained-encoder-from", type=str, metavar="STR", help="model to take encoder weights from (for initialization)", ) @classmethod def build_encoder(cls, args): encoder = S2TTransformerEncoder(args) if getattr(args, "load_pretrained_encoder_from", None): encoder = checkpoint_utils.load_pretrained_component_from_model( component=encoder, checkpoint=args.load_pretrained_encoder_from ) logger.info( f"loaded pretrained encoder from: " f"{args.load_pretrained_encoder_from}" ) return encoder @classmethod def build_decoder(cls, args, task, embed_tokens): return TransformerDecoderScriptable(args, task.target_dictionary, embed_tokens) @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_architecture(args) def build_embedding(dictionary, embed_dim): num_embeddings = len(dictionary) padding_idx = dictionary.pad() return Embedding(num_embeddings, embed_dim, padding_idx) decoder_embed_tokens = build_embedding( task.target_dictionary, args.decoder_embed_dim ) encoder = cls.build_encoder(args) decoder = cls.build_decoder(args, task, decoder_embed_tokens) return cls(encoder, decoder) def get_normalized_probs( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): # net_output['encoder_out'] is a (B, T, D) tensor lprobs = self.get_normalized_probs_scriptable(net_output, log_probs, sample) lprobs.batch_first = True return lprobs def forward(self, src_tokens, src_lengths, prev_output_tokens): """ The forward method inherited from the base class has a **kwargs argument in its input, which is not supported in torchscript. This method overrites the forward method definition without **kwargs. """ encoder_out = self.encoder(src_tokens=src_tokens, src_lengths=src_lengths) decoder_out = self.decoder( prev_output_tokens=prev_output_tokens, encoder_out=encoder_out ) return decoder_out class S2TTransformerEncoder(FairseqEncoder): """Speech-to-text Transformer encoder that consists of input subsampler and Transformer encoder.""" def __init__(self, args): super().__init__(None) self.dropout_module = FairseqDropout( p=args.dropout, module_name=self.__class__.__name__ ) self.embed_scale = math.sqrt(args.encoder_embed_dim) if args.no_scale_embedding: self.embed_scale = 1.0 self.padding_idx = 1 self.subsample = Conv1dSubsampler( args.input_feat_per_channel * args.input_channels, args.conv_channels, args.encoder_embed_dim, [int(k) for k in args.conv_kernel_sizes.split(",")], ) self.embed_positions = PositionalEmbedding( args.max_source_positions, args.encoder_embed_dim, self.padding_idx ) self.transformer_layers = nn.ModuleList( [TransformerEncoderLayer(args) for _ in range(args.encoder_layers)] ) if args.encoder_normalize_before: self.layer_norm = LayerNorm(args.encoder_embed_dim) else: self.layer_norm = None def forward(self, src_tokens, src_lengths): x, input_lengths = self.subsample(src_tokens, src_lengths) x = self.embed_scale * x encoder_padding_mask = lengths_to_padding_mask(input_lengths) positions = self.embed_positions(encoder_padding_mask).transpose(0, 1) x += positions x = self.dropout_module(x) for layer in self.transformer_layers: x = layer(x, encoder_padding_mask) if not encoder_padding_mask.any(): encoder_padding_mask = None if self.layer_norm is not None: x = self.layer_norm(x) return EncoderOut( encoder_out=x, encoder_padding_mask=encoder_padding_mask, encoder_embedding=None, encoder_states=None, src_tokens=None, src_lengths=None, ) @torch.jit.export def reorder_encoder_out(self, encoder_out: EncoderOut, new_order): """ Since encoder_padding_mask and encoder_embedding are both of type Optional[Tensor] in EncoderOut, they need to be copied as local variables for Torchscript Optional refinement """ encoder_padding_mask: Optional[Tensor] = encoder_out.encoder_padding_mask encoder_embedding: Optional[Tensor] = encoder_out.encoder_embedding new_encoder_out = ( encoder_out.encoder_out if encoder_out.encoder_out is None else encoder_out.encoder_out.index_select(1, new_order) ) new_encoder_padding_mask = ( encoder_padding_mask if encoder_padding_mask is None else encoder_padding_mask.index_select(0, new_order) ) new_encoder_embedding = ( encoder_embedding if encoder_embedding is None else encoder_embedding.index_select(0, new_order) ) encoder_states = encoder_out.encoder_states if encoder_states is not None: for idx, state in enumerate(encoder_states): encoder_states[idx] = state.index_select(1, new_order) return EncoderOut( encoder_out=new_encoder_out, # T x B x C encoder_padding_mask=new_encoder_padding_mask, # B x T encoder_embedding=new_encoder_embedding, # B x T x C encoder_states=encoder_states, # List[T x B x C] src_tokens=None, src_lengths=None, ) class TransformerDecoderScriptable(TransformerDecoder): def extract_features( self, prev_output_tokens, encoder_out: Optional[EncoderOut] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, full_context_alignment: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, ): # call scriptable method from parent class x, _ = self.extract_features_scriptable( prev_output_tokens, encoder_out, incremental_state, full_context_alignment, alignment_layer, alignment_heads, ) return x, None @register_model_architecture(model_name="s2t_transformer", arch_name="s2t_transformer") def base_architecture(args): # Convolutional subsampler args.conv_kernel_sizes = getattr(args, "conv_kernel_sizes", "5,5") args.conv_channels = getattr(args, "conv_channels", 1024) # Transformer args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 12) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", args.dropout) args.activation_dropout = getattr(args, "activation_dropout", args.dropout) args.activation_fn = getattr(args, "activation_fn", "relu") args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", True ) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0.0) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.quant_noise_pq = getattr(args, "quant_noise_pq", 0) @register_model_architecture("s2t_transformer", "s2t_transformer_s") def s2t_transformer_s(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 256) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 256 * 8) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4) args.dropout = getattr(args, "dropout", 0.1) base_architecture(args) @register_model_architecture("s2t_transformer", "s2t_transformer_sp") def s2t_transformer_sp(args): args.encoder_layers = getattr(args, "encoder_layers", 16) s2t_transformer_s(args) @register_model_architecture("s2t_transformer", "s2t_transformer_m") def s2t_transformer_m(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 512 * 4) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.dropout = getattr(args, "dropout", 0.15) base_architecture(args) @register_model_architecture("s2t_transformer", "s2t_transformer_mp") def s2t_transformer_mp(args): args.encoder_layers = getattr(args, "encoder_layers", 16) s2t_transformer_m(args) @register_model_architecture("s2t_transformer", "s2t_transformer_l") def s2t_transformer_l(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024 * 4) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) args.dropout = getattr(args, "dropout", 0.2) base_architecture(args) @register_model_architecture("s2t_transformer", "s2t_transformer_lp") def s2t_transformer_lp(args): args.encoder_layers = getattr(args, "encoder_layers", 16) s2t_transformer_l(args)
data2vec_vision-main
deltalm/src/fairseq/models/speech_to_text/s2t_transformer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from fairseq.utils import new_arange # -------------- Helper Functions --------------------------------------------------- # def load_libnat(): try: from fairseq import libnat_cuda return libnat_cuda, True except ImportError as e: print(str(e) + "... fall back to CPU version") try: from fairseq import libnat return libnat, False except ImportError as e: import sys sys.stderr.write( "ERROR: missing libnat_cuda. run `python setup.py build_ext --inplace`\n" ) raise e def _get_ins_targets(in_tokens, out_tokens, padding_idx, unk_idx): libnat, use_cuda = load_libnat() def _get_ins_targets_cuda(in_tokens, out_tokens, padding_idx, unk_idx): in_masks = in_tokens.ne(padding_idx) out_masks = out_tokens.ne(padding_idx) mask_ins_targets, masked_tgt_masks = libnat.generate_insertion_labels( out_tokens.int(), libnat.levenshtein_distance( in_tokens.int(), out_tokens.int(), in_masks.sum(1).int(), out_masks.sum(1).int(), ), ) masked_tgt_masks = masked_tgt_masks.bool() & out_masks mask_ins_targets = mask_ins_targets.type_as(in_tokens)[ :, 1 : in_masks.size(1) ].masked_fill_(~in_masks[:, 1:], 0) masked_tgt_tokens = out_tokens.masked_fill(masked_tgt_masks, unk_idx) return masked_tgt_masks, masked_tgt_tokens, mask_ins_targets def _get_ins_targets_cpu(in_tokens, out_tokens, padding_idx, unk_idx): in_seq_len, out_seq_len = in_tokens.size(1), out_tokens.size(1) in_tokens_list = [ [t for t in s if t != padding_idx] for i, s in enumerate(in_tokens.tolist()) ] out_tokens_list = [ [t for t in s if t != padding_idx] for i, s in enumerate(out_tokens.tolist()) ] full_labels = libnat.suggested_ed2_path( in_tokens_list, out_tokens_list, padding_idx ) mask_inputs = [ [len(c) if c[0] != padding_idx else 0 for c in a[:-1]] for a in full_labels ] # generate labels masked_tgt_masks = [] for mask_input in mask_inputs: mask_label = [] for beam_size in mask_input[1:-1]: # HACK 1:-1 mask_label += [0] + [1 for _ in range(beam_size)] masked_tgt_masks.append( mask_label + [0 for _ in range(out_seq_len - len(mask_label))] ) mask_ins_targets = [ mask_input[1:-1] + [0 for _ in range(in_seq_len - 1 - len(mask_input[1:-1]))] for mask_input in mask_inputs ] # transform to tensor masked_tgt_masks = torch.tensor( masked_tgt_masks, device=out_tokens.device ).bool() mask_ins_targets = torch.tensor(mask_ins_targets, device=in_tokens.device) masked_tgt_tokens = out_tokens.masked_fill(masked_tgt_masks, unk_idx) return masked_tgt_masks, masked_tgt_tokens, mask_ins_targets if use_cuda: return _get_ins_targets_cuda(in_tokens, out_tokens, padding_idx, unk_idx) return _get_ins_targets_cpu(in_tokens, out_tokens, padding_idx, unk_idx) def _get_del_targets(in_tokens, out_tokens, padding_idx): libnat, use_cuda = load_libnat() def _get_del_targets_cuda(in_tokens, out_tokens, padding_idx): in_masks = in_tokens.ne(padding_idx) out_masks = out_tokens.ne(padding_idx) word_del_targets = libnat.generate_deletion_labels( in_tokens.int(), libnat.levenshtein_distance( in_tokens.int(), out_tokens.int(), in_masks.sum(1).int(), out_masks.sum(1).int(), ), ) word_del_targets = word_del_targets.type_as(in_tokens).masked_fill_( ~in_masks, 0 ) return word_del_targets def _get_del_targets_cpu(in_tokens, out_tokens, padding_idx): out_seq_len = out_tokens.size(1) with torch.cuda.device_of(in_tokens): in_tokens_list = [ [t for t in s if t != padding_idx] for i, s in enumerate(in_tokens.tolist()) ] out_tokens_list = [ [t for t in s if t != padding_idx] for i, s in enumerate(out_tokens.tolist()) ] full_labels = libnat.suggested_ed2_path( in_tokens_list, out_tokens_list, padding_idx ) word_del_targets = [b[-1] for b in full_labels] word_del_targets = [ labels + [0 for _ in range(out_seq_len - len(labels))] for labels in word_del_targets ] # transform to tensor word_del_targets = torch.tensor(word_del_targets, device=out_tokens.device) return word_del_targets if use_cuda: return _get_del_targets_cuda(in_tokens, out_tokens, padding_idx) return _get_del_targets_cpu(in_tokens, out_tokens, padding_idx) def _apply_ins_masks( in_tokens, in_scores, mask_ins_pred, padding_idx, unk_idx, eos_idx ): in_masks = in_tokens.ne(padding_idx) in_lengths = in_masks.sum(1) # HACK: hacky way to shift all the paddings to eos first. in_tokens.masked_fill_(~in_masks, eos_idx) mask_ins_pred.masked_fill_(~in_masks[:, 1:], 0) out_lengths = in_lengths + mask_ins_pred.sum(1) out_max_len = out_lengths.max() out_masks = new_arange(out_lengths, out_max_len)[None, :] < out_lengths[:, None] reordering = (mask_ins_pred + in_masks[:, 1:].long()).cumsum(1) out_tokens = ( in_tokens.new_zeros(in_tokens.size(0), out_max_len) .fill_(padding_idx) .masked_fill_(out_masks, unk_idx) ) out_tokens[:, 0] = in_tokens[:, 0] out_tokens.scatter_(1, reordering, in_tokens[:, 1:]) out_scores = None if in_scores is not None: in_scores.masked_fill_(~in_masks, 0) out_scores = in_scores.new_zeros(*out_tokens.size()) out_scores[:, 0] = in_scores[:, 0] out_scores.scatter_(1, reordering, in_scores[:, 1:]) return out_tokens, out_scores def _apply_ins_words(in_tokens, in_scores, word_ins_pred, word_ins_scores, unk_idx): word_ins_masks = in_tokens.eq(unk_idx) out_tokens = in_tokens.masked_scatter(word_ins_masks, word_ins_pred[word_ins_masks]) if in_scores is not None: out_scores = in_scores.masked_scatter( word_ins_masks, word_ins_scores[word_ins_masks] ) else: out_scores = None return out_tokens, out_scores def _apply_del_words( in_tokens, in_scores, in_attn, word_del_pred, padding_idx, bos_idx, eos_idx ): # apply deletion to a tensor in_masks = in_tokens.ne(padding_idx) bos_eos_masks = in_tokens.eq(bos_idx) | in_tokens.eq(eos_idx) max_len = in_tokens.size(1) word_del_pred.masked_fill_(~in_masks, 1) word_del_pred.masked_fill_(bos_eos_masks, 0) reordering = new_arange(in_tokens).masked_fill_(word_del_pred, max_len).sort(1)[1] out_tokens = in_tokens.masked_fill(word_del_pred, padding_idx).gather(1, reordering) out_scores = None if in_scores is not None: out_scores = in_scores.masked_fill(word_del_pred, 0).gather(1, reordering) out_attn = None if in_attn is not None: _mask = word_del_pred[:, :, None].expand_as(in_attn) _reordering = reordering[:, :, None].expand_as(in_attn) out_attn = in_attn.masked_fill(_mask, 0.0).gather(1, _reordering) return out_tokens, out_scores, out_attn def _skip(x, mask): """ Getting sliced (dim=0) tensor by mask. Supporting tensor and list/dict of tensors. """ if isinstance(x, int): return x if x is None: return None if isinstance(x, torch.Tensor): if x.size(0) == mask.size(0): return x[mask] elif x.size(1) == mask.size(0): return x[:, mask] if isinstance(x, list): return [_skip(x_i, mask) for x_i in x] if isinstance(x, dict): return {k: _skip(v, mask) for k, v in x.items()} raise NotImplementedError def _skip_encoder_out(encoder, encoder_out, mask): if not mask.any(): return encoder_out else: return encoder.reorder_encoder_out( encoder_out, mask.nonzero(as_tuple=False).squeeze() ) def _fill(x, mask, y, padding_idx): """ Filling tensor x with y at masked positions (dim=0). """ if x is None: return y assert x.dim() == y.dim() and mask.size(0) == x.size(0) assert x.dim() == 2 or (x.dim() == 3 and x.size(2) == y.size(2)) n_selected = mask.sum() assert n_selected == y.size(0) if n_selected == x.size(0): return y if x.size(1) < y.size(1): dims = [x.size(0), y.size(1) - x.size(1)] if x.dim() == 3: dims.append(x.size(2)) x = torch.cat([x, x.new_zeros(*dims).fill_(padding_idx)], 1) x[mask] = y elif x.size(1) > y.size(1): x[mask] = padding_idx if x.dim() == 2: x[mask, : y.size(1)] = y else: x[mask, : y.size(1), :] = y else: x[mask] = y return x
data2vec_vision-main
deltalm/src/fairseq/models/nat/levenshtein_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from fairseq.models import register_model, register_model_architecture from fairseq.models.nat import NATransformerModel def _sequential_poisoning(s, V, beta=0.33, bos=2, eos=3, pad=1): # s: input batch # V: vocabulary size rand_words = torch.randint(low=4, high=V, size=s.size(), device=s.device) choices = torch.rand(size=s.size(), device=s.device) choices.masked_fill_((s == pad) | (s == bos) | (s == eos), 1) replace = choices < beta / 3 repeat = (choices >= beta / 3) & (choices < beta * 2 / 3) swap = (choices >= beta * 2 / 3) & (choices < beta) safe = choices >= beta for i in range(s.size(1) - 1): rand_word = rand_words[:, i] next_word = s[:, i + 1] self_word = s[:, i] replace_i = replace[:, i] swap_i = swap[:, i] & (next_word != 3) repeat_i = repeat[:, i] & (next_word != 3) safe_i = safe[:, i] | ((next_word == 3) & (~replace_i)) s[:, i] = ( self_word * (safe_i | repeat_i).long() + next_word * swap_i.long() + rand_word * replace_i.long() ) s[:, i + 1] = ( next_word * (safe_i | replace_i).long() + self_word * (swap_i | repeat_i).long() ) return s def gumbel_noise(input, TINY=1e-8): return ( input.new_zeros(*input.size()) .uniform_() .add_(TINY) .log_() .neg_() .add_(TINY) .log_() .neg_() ) @register_model("iterative_nonautoregressive_transformer") class IterNATransformerModel(NATransformerModel): @staticmethod def add_args(parser): NATransformerModel.add_args(parser) parser.add_argument( "--train-step", type=int, help="number of refinement iterations during training", ) parser.add_argument( "--dae-ratio", type=float, help="the probability of switching to the denoising auto-encoder loss", ) parser.add_argument( "--stochastic-approx", action="store_true", help="sampling from the decoder as the inputs for next iteration", ) @classmethod def build_model(cls, args, task): model = super().build_model(args, task) model.train_step = getattr(args, "train_step", 4) model.dae_ratio = getattr(args, "dae_ratio", 0.5) model.stochastic_approx = getattr(args, "stochastic_approx", False) return model def forward( self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs ): B, T = prev_output_tokens.size() # encoding encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) # length prediction length_out = self.decoder.forward_length( normalize=False, encoder_out=encoder_out ) length_tgt = self.decoder.forward_length_prediction( length_out, encoder_out, tgt_tokens ) # decoding word_ins_outs, word_ins_tgts, word_ins_masks = [], [], [] for t in range(self.train_step): word_ins_out = self.decoder( normalize=False, prev_output_tokens=prev_output_tokens, encoder_out=encoder_out, step=t, ) word_ins_tgt = tgt_tokens word_ins_mask = word_ins_tgt.ne(self.pad) word_ins_outs.append(word_ins_out) word_ins_tgts.append(word_ins_tgt) word_ins_masks.append(word_ins_mask) if t < (self.train_step - 1): # prediction for next iteration if self.stochastic_approx: word_ins_prediction = ( word_ins_out + gumbel_noise(word_ins_out) ).max(-1)[1] else: word_ins_prediction = word_ins_out.max(-1)[1] prev_output_tokens = prev_output_tokens.masked_scatter( word_ins_mask, word_ins_prediction[word_ins_mask] ) if self.dae_ratio > 0: # we do not perform denoising for the first iteration corrputed = ( torch.rand(size=(B,), device=prev_output_tokens.device) < self.dae_ratio ) corrputed_tokens = _sequential_poisoning( tgt_tokens[corrputed], len(self.tgt_dict), 0.33, self.bos, self.eos, self.pad, ) prev_output_tokens[corrputed] = corrputed_tokens # concat everything word_ins_out = torch.cat(word_ins_outs, 0) word_ins_tgt = torch.cat(word_ins_tgts, 0) word_ins_mask = torch.cat(word_ins_masks, 0) return { "word_ins": { "out": word_ins_out, "tgt": word_ins_tgt, "mask": word_ins_mask, "ls": self.args.label_smoothing, "nll_loss": True, }, "length": { "out": length_out, "tgt": length_tgt, "factor": self.decoder.length_loss_factor, }, } @register_model_architecture( "iterative_nonautoregressive_transformer", "iterative_nonautoregressive_transformer" ) def inat_base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.apply_bert_init = getattr(args, "apply_bert_init", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) # --- special arguments --- args.sg_length_pred = getattr(args, "sg_length_pred", False) args.pred_length_offset = getattr(args, "pred_length_offset", False) args.length_loss_factor = getattr(args, "length_loss_factor", 0.1) args.ngram_predictor = getattr(args, "ngram_predictor", 1) args.src_embedding_copy = getattr(args, "src_embedding_copy", False) args.train_step = getattr(args, "train_step", 4) args.dae_ratio = getattr(args, "dae_ratio", 0.5) args.stochastic_approx = getattr(args, "stochastic_approx", False) @register_model_architecture( "iterative_nonautoregressive_transformer", "iterative_nonautoregressive_transformer_wmt_en_de", ) def iter_nat_wmt_en_de(args): inat_base_architecture(args)
data2vec_vision-main
deltalm/src/fairseq/models/nat/iterative_nonautoregressive_transformer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch from fairseq.models.transformer import ( TransformerDecoder, TransformerEncoder, TransformerModel, ) from fairseq.modules.transformer_sentence_encoder import init_bert_params def ensemble_encoder(func): def wrapper(self, *args, **kwargs): if self.ensemble_models is None or len(self.ensemble_models) == 1: return func(self, *args, **kwargs) encoder_outs = [func(model, *args, **kwargs, return_all_hiddens=True) for model in self.ensemble_models] _encoder_out = encoder_outs[0].copy() def stack(key): outs = [e[key][0] for e in encoder_outs] return [torch.stack(outs, -1) if outs[0] is not None else None] _encoder_out["encoder_out"] = stack("encoder_out") _encoder_out["encoder_embedding"] = stack("encoder_embedding") num_layers = len(_encoder_out["encoder_states"]) if num_layers > 0: _encoder_out["encoder_states"] = [ torch.stack([e["encoder_states"][i] for e in encoder_outs], -1) for i in range(num_layers) ] return _encoder_out return wrapper def ensemble_decoder(func): def wrapper(self, normalize=False, encoder_out=None, *args, **kwargs): if self.ensemble_models is None or len(self.ensemble_models) == 1: return func( self, normalize=normalize, encoder_out=encoder_out, *args, **kwargs ) def _replace(encoder_out, new_val): new_encoder_out = encoder_out.copy() new_encoder_out["encoder_out"] = [new_val] return new_encoder_out action_outs = [ func( model, normalize=normalize, encoder_out=_replace( encoder_out, encoder_out["encoder_out"][0][:, :, :, i] ), *args, **kwargs ) for i, model in enumerate(self.ensemble_models) ] if not isinstance(action_outs[0], tuple): # return multiple values action_outs = [[a] for a in action_outs] else: action_outs = [list(a) for a in action_outs] ensembled_outs = [] for i in range(len(action_outs[0])): if i == 0 and normalize: ensembled_outs += [ torch.logsumexp( torch.stack([a[i] for a in action_outs], -1), dim=-1 ) - math.log(len(self.ensemble_models)) ] elif action_outs[0][i] is not None: ensembled_outs += [torch.stack([a[i] for a in action_outs], -1)] else: ensembled_outs += [None] if len(ensembled_outs) == 1: return ensembled_outs[0] return tuple(ensembled_outs) return wrapper class FairseqNATModel(TransformerModel): """ Abstract class for all nonautoregressive-based models """ def __init__(self, args, encoder, decoder): super().__init__(args, encoder, decoder) self.tgt_dict = decoder.dictionary self.bos = decoder.dictionary.bos() self.eos = decoder.dictionary.eos() self.pad = decoder.dictionary.pad() self.unk = decoder.dictionary.unk() self.ensemble_models = None @property def allow_length_beam(self): return False @property def allow_ensemble(self): return True def enable_ensemble(self, models): self.encoder.ensemble_models = [m.encoder for m in models] self.decoder.ensemble_models = [m.decoder for m in models] @staticmethod def add_args(parser): TransformerModel.add_args(parser) parser.add_argument( "--apply-bert-init", action="store_true", help="use custom param initialization for BERT", ) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): decoder = FairseqNATDecoder(args, tgt_dict, embed_tokens) if getattr(args, "apply_bert_init", False): decoder.apply(init_bert_params) return decoder @classmethod def build_encoder(cls, args, src_dict, embed_tokens): encoder = FairseqNATEncoder(args, src_dict, embed_tokens) if getattr(args, "apply_bert_init", False): encoder.apply(init_bert_params) return encoder def forward_encoder(self, encoder_inputs): return self.encoder(*encoder_inputs) def forward_decoder(self, *args, **kwargs): return NotImplementedError def initialize_output_tokens(self, *args, **kwargs): return NotImplementedError def forward(self, *args, **kwargs): return NotImplementedError class FairseqNATEncoder(TransformerEncoder): def __init__(self, args, dictionary, embed_tokens): super().__init__(args, dictionary, embed_tokens) self.ensemble_models = None @ensemble_encoder def forward(self, *args, **kwargs): return super().forward(*args, **kwargs) class FairseqNATDecoder(TransformerDecoder): def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False): super().__init__(args, dictionary, embed_tokens, no_encoder_attn) self.ensemble_models = None
data2vec_vision-main
deltalm/src/fairseq/models/nat/fairseq_nat_model.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """isort:skip_file""" from .fairseq_nat_model import * from .nonautoregressive_transformer import * from .nat_crf_transformer import * from .iterative_nonautoregressive_transformer import * from .cmlm_transformer import * from .levenshtein_transformer import * from .insertion_transformer import *
data2vec_vision-main
deltalm/src/fairseq/models/nat/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from fairseq.iterative_refinement_generator import DecoderOut from fairseq.models import register_model, register_model_architecture from fairseq.models.nat import FairseqNATDecoder, FairseqNATModel, ensemble_decoder from fairseq.models.transformer import Embedding, TransformerDecoderLayer from fairseq.modules.transformer_sentence_encoder import init_bert_params from .levenshtein_utils import ( _apply_del_words, _apply_ins_masks, _apply_ins_words, _fill, _get_del_targets, _get_ins_targets, _skip, _skip_encoder_out, ) @register_model("levenshtein_transformer") class LevenshteinTransformerModel(FairseqNATModel): @property def allow_length_beam(self): return False @staticmethod def add_args(parser): FairseqNATModel.add_args(parser) parser.add_argument( "--early-exit", default="6,6,6", type=str, help="number of decoder layers before word_del, mask_ins, word_ins", ) parser.add_argument( "--no-share-discriminator", action="store_true", help="separate parameters for discriminator", ) parser.add_argument( "--no-share-maskpredictor", action="store_true", help="separate parameters for mask-predictor", ) parser.add_argument( "--share-discriminator-maskpredictor", action="store_true", help="share the parameters for both mask-predictor and discriminator", ) parser.add_argument( "--sampling-for-deletion", action="store_true", help="instead of argmax, use sampling to predict the tokens", ) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): decoder = LevenshteinTransformerDecoder(args, tgt_dict, embed_tokens) if getattr(args, "apply_bert_init", False): decoder.apply(init_bert_params) return decoder def forward( self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs ): assert tgt_tokens is not None, "forward function only supports training." # encoding encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) # generate training labels for insertion masked_tgt_masks, masked_tgt_tokens, mask_ins_targets = _get_ins_targets( prev_output_tokens, tgt_tokens, self.pad, self.unk ) mask_ins_targets = mask_ins_targets.clamp(min=0, max=255) # for safe prediction mask_ins_masks = prev_output_tokens[:, 1:].ne(self.pad) mask_ins_out, _ = self.decoder.forward_mask_ins( normalize=False, prev_output_tokens=prev_output_tokens, encoder_out=encoder_out, ) word_ins_out, _ = self.decoder.forward_word_ins( normalize=False, prev_output_tokens=masked_tgt_tokens, encoder_out=encoder_out, ) # make online prediction if self.decoder.sampling_for_deletion: word_predictions = torch.multinomial( F.softmax(word_ins_out, -1).view(-1, word_ins_out.size(-1)), 1 ).view(word_ins_out.size(0), -1) else: word_predictions = F.log_softmax(word_ins_out, dim=-1).max(2)[1] word_predictions.masked_scatter_( ~masked_tgt_masks, tgt_tokens[~masked_tgt_masks] ) # generate training labels for deletion word_del_targets = _get_del_targets(word_predictions, tgt_tokens, self.pad) word_del_out, _ = self.decoder.forward_word_del( normalize=False, prev_output_tokens=word_predictions, encoder_out=encoder_out, ) word_del_masks = word_predictions.ne(self.pad) return { "mask_ins": { "out": mask_ins_out, "tgt": mask_ins_targets, "mask": mask_ins_masks, "ls": 0.01, }, "word_ins": { "out": word_ins_out, "tgt": tgt_tokens, "mask": masked_tgt_masks, "ls": self.args.label_smoothing, "nll_loss": True, }, "word_del": { "out": word_del_out, "tgt": word_del_targets, "mask": word_del_masks, }, } def forward_decoder( self, decoder_out, encoder_out, eos_penalty=0.0, max_ratio=None, **kwargs ): output_tokens = decoder_out.output_tokens output_scores = decoder_out.output_scores attn = decoder_out.attn history = decoder_out.history bsz = output_tokens.size(0) if max_ratio is None: max_lens = torch.zeros_like(output_tokens).fill_(255) else: if not encoder_out["encoder_padding_mask"]: max_src_len = encoder_out["encoder_out"].size(0) src_lens = encoder_out["encoder_out"].new(bsz).fill_(max_src_len) else: src_lens = (~encoder_out["encoder_padding_mask"][0]).sum(1) max_lens = (src_lens * max_ratio).clamp(min=10).long() # delete words # do not delete tokens if it is <s> </s> can_del_word = output_tokens.ne(self.pad).sum(1) > 2 if can_del_word.sum() != 0: # we cannot delete, skip word_del_score, word_del_attn = self.decoder.forward_word_del( normalize=True, prev_output_tokens=_skip(output_tokens, can_del_word), encoder_out=_skip_encoder_out(self.encoder, encoder_out, can_del_word), ) word_del_pred = word_del_score.max(-1)[1].bool() _tokens, _scores, _attn = _apply_del_words( output_tokens[can_del_word], output_scores[can_del_word], word_del_attn, word_del_pred, self.pad, self.bos, self.eos, ) output_tokens = _fill(output_tokens, can_del_word, _tokens, self.pad) output_scores = _fill(output_scores, can_del_word, _scores, 0) attn = _fill(attn, can_del_word, _attn, 0.0) if history is not None: history.append(output_tokens.clone()) # insert placeholders can_ins_mask = output_tokens.ne(self.pad).sum(1) < max_lens if can_ins_mask.sum() != 0: mask_ins_score, _ = self.decoder.forward_mask_ins( normalize=True, prev_output_tokens=_skip(output_tokens, can_ins_mask), encoder_out=_skip_encoder_out(self.encoder, encoder_out, can_ins_mask), ) if eos_penalty > 0.0: mask_ins_score[:, :, 0] = mask_ins_score[:, :, 0] - eos_penalty mask_ins_pred = mask_ins_score.max(-1)[1] mask_ins_pred = torch.min( mask_ins_pred, max_lens[can_ins_mask, None].expand_as(mask_ins_pred) ) _tokens, _scores = _apply_ins_masks( output_tokens[can_ins_mask], output_scores[can_ins_mask], mask_ins_pred, self.pad, self.unk, self.eos, ) output_tokens = _fill(output_tokens, can_ins_mask, _tokens, self.pad) output_scores = _fill(output_scores, can_ins_mask, _scores, 0) if history is not None: history.append(output_tokens.clone()) # insert words can_ins_word = output_tokens.eq(self.unk).sum(1) > 0 if can_ins_word.sum() != 0: word_ins_score, word_ins_attn = self.decoder.forward_word_ins( normalize=True, prev_output_tokens=_skip(output_tokens, can_ins_word), encoder_out=_skip_encoder_out(self.encoder, encoder_out, can_ins_word), ) word_ins_score, word_ins_pred = word_ins_score.max(-1) _tokens, _scores = _apply_ins_words( output_tokens[can_ins_word], output_scores[can_ins_word], word_ins_pred, word_ins_score, self.unk, ) output_tokens = _fill(output_tokens, can_ins_word, _tokens, self.pad) output_scores = _fill(output_scores, can_ins_word, _scores, 0) attn = _fill(attn, can_ins_word, word_ins_attn, 0.0) if history is not None: history.append(output_tokens.clone()) # delete some unnecessary paddings cut_off = output_tokens.ne(self.pad).sum(1).max() output_tokens = output_tokens[:, :cut_off] output_scores = output_scores[:, :cut_off] attn = None if attn is None else attn[:, :cut_off, :] return decoder_out._replace( output_tokens=output_tokens, output_scores=output_scores, attn=attn, history=history, ) def initialize_output_tokens(self, encoder_out, src_tokens): initial_output_tokens = src_tokens.new_zeros(src_tokens.size(0), 2) initial_output_tokens[:, 0] = self.bos initial_output_tokens[:, 1] = self.eos initial_output_scores = initial_output_tokens.new_zeros( *initial_output_tokens.size() ).type_as(encoder_out["encoder_out"][0]) return DecoderOut( output_tokens=initial_output_tokens, output_scores=initial_output_scores, attn=None, step=0, max_step=0, history=None, ) class LevenshteinTransformerDecoder(FairseqNATDecoder): def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False): super().__init__( args, dictionary, embed_tokens, no_encoder_attn=no_encoder_attn ) self.dictionary = dictionary self.bos = dictionary.bos() self.unk = dictionary.unk() self.eos = dictionary.eos() self.sampling_for_deletion = getattr(args, "sampling_for_deletion", False) self.embed_mask_ins = Embedding(256, self.output_embed_dim * 2, None) self.embed_word_del = Embedding(2, self.output_embed_dim, None) # del_word, ins_mask, ins_word self.early_exit = [int(i) for i in args.early_exit.split(",")] assert len(self.early_exit) == 3 # copy layers for mask-predict/deletion self.layers_msk = None if getattr(args, "no_share_maskpredictor", False): self.layers_msk = nn.ModuleList( [ TransformerDecoderLayer(args, no_encoder_attn) for _ in range(self.early_exit[1]) ] ) self.layers_del = None if getattr(args, "no_share_discriminator", False): self.layers_del = nn.ModuleList( [ TransformerDecoderLayer(args, no_encoder_attn) for _ in range(self.early_exit[0]) ] ) if getattr(args, "share_discriminator_maskpredictor", False): assert getattr( args, "no_share_discriminator", False ), "must set saperate discriminator" self.layers_msk = self.layers_del def extract_features( self, prev_output_tokens, encoder_out=None, early_exit=None, layers=None, **unused ): """ Similar to *forward* but only return features. Inputs: prev_output_tokens: Tensor(B, T) encoder_out: a dictionary of hidden states and masks Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs the LevenshteinTransformer decoder has full-attention to all generated tokens """ # embed positions positions = ( self.embed_positions(prev_output_tokens) if self.embed_positions is not None else None ) # embed tokens and positions x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions x = self.dropout_module(x) # B x T x C -> T x B x C x = x.transpose(0, 1) attn = None inner_states = [x] # decoder layers decoder_padding_mask = prev_output_tokens.eq(self.padding_idx) layers = self.layers if layers is None else layers early_exit = len(layers) if early_exit is None else early_exit for _, layer in enumerate(layers[:early_exit]): x, attn, _ = layer( x, encoder_out["encoder_out"][0] if (encoder_out is not None and len(encoder_out["encoder_out"]) > 0) else None, encoder_out["encoder_padding_mask"][0] if ( encoder_out is not None and len(encoder_out["encoder_padding_mask"]) > 0 ) else None, self_attn_mask=None, self_attn_padding_mask=decoder_padding_mask, ) inner_states.append(x) if self.layer_norm: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) if self.project_out_dim is not None: x = self.project_out_dim(x) return x, {"attn": attn, "inner_states": inner_states} @ensemble_decoder def forward_mask_ins(self, normalize, encoder_out, prev_output_tokens, **unused): features, extra = self.extract_features( prev_output_tokens, encoder_out=encoder_out, early_exit=self.early_exit[1], layers=self.layers_msk, **unused ) features_cat = torch.cat([features[:, :-1, :], features[:, 1:, :]], 2) decoder_out = F.linear(features_cat, self.embed_mask_ins.weight) if normalize: return F.log_softmax(decoder_out, -1), extra["attn"] return decoder_out, extra["attn"] @ensemble_decoder def forward_word_ins(self, normalize, encoder_out, prev_output_tokens, **unused): features, extra = self.extract_features( prev_output_tokens, encoder_out=encoder_out, early_exit=self.early_exit[2], layers=self.layers, **unused ) decoder_out = self.output_layer(features) if normalize: return F.log_softmax(decoder_out, -1), extra["attn"] return decoder_out, extra["attn"] @ensemble_decoder def forward_word_del(self, normalize, encoder_out, prev_output_tokens, **unused): features, extra = self.extract_features( prev_output_tokens, encoder_out=encoder_out, early_exit=self.early_exit[0], layers=self.layers_del, **unused ) decoder_out = F.linear(features, self.embed_word_del.weight) if normalize: return F.log_softmax(decoder_out, -1), extra["attn"] return decoder_out, extra["attn"] @register_model_architecture("levenshtein_transformer", "levenshtein_transformer") def levenshtein_base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.apply_bert_init = getattr(args, "apply_bert_init", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.sampling_for_deletion = getattr(args, "sampling_for_deletion", False) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.early_exit = getattr(args, "early_exit", "6,6,6") args.no_share_discriminator = getattr(args, "no_share_discriminator", False) args.no_share_maskpredictor = getattr(args, "no_share_maskpredictor", False) args.share_discriminator_maskpredictor = getattr( args, "share_discriminator_maskpredictor", False ) args.no_share_last_layer = getattr(args, "no_share_last_layer", False) @register_model_architecture( "levenshtein_transformer", "levenshtein_transformer_wmt_en_de" ) def levenshtein_transformer_wmt_en_de(args): levenshtein_base_architecture(args) # similar parameters used in the "Attention Is All You Need" paper (Vaswani et al., 2017) @register_model_architecture( "levenshtein_transformer", "levenshtein_transformer_vaswani_wmt_en_de_big" ) def levenshtein_transformer_vaswani_wmt_en_de_big(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 1024) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 4096) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) args.dropout = getattr(args, "dropout", 0.3) levenshtein_base_architecture(args) # default parameters used in tensor2tensor implementation @register_model_architecture( "levenshtein_transformer", "levenshtein_transformer_wmt_en_de_big" ) def levenshtein_transformer_wmt_en_de_big_t2t(args): args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_dropout = getattr(args, "activation_dropout", 0.1) levenshtein_transformer_vaswani_wmt_en_de_big(args)
data2vec_vision-main
deltalm/src/fairseq/models/nat/levenshtein_transformer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn.functional as F from fairseq.models.nat import ( _apply_del_words, _apply_ins_masks, _apply_ins_words, _fill, _skip, _skip_encoder_out, ) class _EnsembleModelEncoder(object): def __init__(self, models): self.models = models def reorder_encoder_out(self, encoder_outs, new_order): encoder_outs = [ model.encoder.reorder_encoder_out(encoder_out, new_order) for model, encoder_out in zip(self.models, encoder_outs) ] return encoder_outs class BasicEnsembleModel(torch.nn.Module): """A wrapper around an ensemble of models.""" def __init__(self, models): super().__init__() self.models = torch.nn.ModuleList(models) self.bos = self.models[0].decoder.dictionary.bos() self.eos = self.models[0].decoder.dictionary.eos() self.pad = self.models[0].decoder.dictionary.pad() self.unk = self.models[0].decoder.dictionary.unk() self.encoder = _EnsembleModelEncoder(self.models) def has_encoder(self): return hasattr(self.models[0], "encoder") def max_decoder_positions(self): return min(m.max_decoder_positions() for m in self.models) @torch.no_grad() def forward_encoder(self, encoder_input): if not self.has_encoder(): return None return [model.forward_encoder(encoder_input) for model in self.models] @torch.no_grad() def forward_decoder(self, *inputs): raise NotImplementedError def initialize_output_tokens(self, *inputs): raise NotImplementedError class EnsembleLevT(BasicEnsembleModel): """A wrapper around an ensemble of models.""" def __init__(self, models): super().__init__(models) @torch.no_grad() def forward_decoder( self, decoder_out, encoder_outs, eos_penalty=0.0, max_ratio=None, **kwargs ): # LevT ensembling # A pipeline of three steps: deletion, placeholder, and word insertion. # We need to average scores in each step in a pipeline way because of dependence. # deletion output_tokens = decoder_out.output_tokens output_scores = decoder_out.output_scores attn = decoder_out.attn bsz = output_tokens.size(0) if max_ratio is None: max_lens = output_tokens.new().fill_(255) else: if not encoder_outs[0]["encoder_padding_mask"]: src_lens = ( encoder_outs[0]["encoder_out"][0].new(bsz) .fill_(encoder_outs[0]["encoder_out"][0].size(1)) ) else: src_lens = (~encoder_outs[0]["encoder_padding_mask"][0]).sum(1) max_lens = (src_lens * max_ratio).clamp(min=10).long() # delete words # do not delete tokens if it is <s> </s> can_del_word = output_tokens.ne(self.pad).sum(1) > 2 if can_del_word.sum() != 0: # we cannot delete, skip output_tokens, output_scores, attn = self.forward_word_del( encoder_outs, output_tokens, output_scores, attn, can_del_word, ) # insert placeholders can_ins_mask = output_tokens.ne(self.pad).sum(1) < max_lens if can_ins_mask.sum() != 0: output_tokens, output_scores = self.forward_mask_ins( encoder_outs, output_tokens, output_scores, can_ins_mask, eos_penalty, max_lens, ) # insert words can_ins_word = output_tokens.eq(self.unk).sum(1) > 0 if can_ins_word.sum() != 0: output_tokens, output_scores, attn = self.forward_word_ins( encoder_outs, output_tokens, output_scores, attn, can_ins_word, ) # delete some unnecessary paddings cut_off = output_tokens.ne(self.pad).sum(1).max() output_tokens = output_tokens[:, :cut_off] output_scores = output_scores[:, :cut_off] attn = None if attn is None else attn[:, :cut_off, :] return decoder_out._replace( output_tokens=output_tokens, output_scores=output_scores, attn=attn, history=None, ) def forward_word_del( self, encoder_outs, output_tokens, output_scores, attn, can_del_word ): word_del_score_avg = [] word_del_attn_avg = [] for model, encoder_out in zip(self.models, encoder_outs): word_del_out, word_del_attn = model.decoder.forward_word_del( _skip(output_tokens, can_del_word), _skip_encoder_out(model.encoder, encoder_out, can_del_word), ) word_del_score = F.log_softmax(word_del_out, 2) word_del_score_avg.append(word_del_score) word_del_attn_avg.append(word_del_attn) word_del_score_avg = torch.logsumexp( torch.stack(word_del_score_avg, dim=0), dim=0 ) - math.log(len(self.models)) word_del_pred = word_del_score_avg.max(-1)[1].bool() if word_del_attn_avg[0] is not None: word_del_attn_avg = torch.stack(word_del_attn_avg, dim=0) / len(self.models) else: word_del_attn_avg = None _tokens, _scores, _attn = _apply_del_words( output_tokens[can_del_word], output_scores[can_del_word], word_del_attn_avg, word_del_pred, self.pad, self.bos, self.eos, ) output_tokens = _fill(output_tokens, can_del_word, _tokens, self.pad) output_scores = _fill(output_scores, can_del_word, _scores, 0) attn = _fill(attn, can_del_word, _attn, 0.0) return output_tokens, output_scores, attn def forward_mask_ins( self, encoder_outs, output_tokens, output_scores, can_ins_mask, eos_penalty, max_lens, ): mask_ins_score_avg = [] for model, encoder_out in zip(self.models, encoder_outs): mask_ins_out, _ = model.decoder.forward_mask_ins( _skip(output_tokens, can_ins_mask), _skip_encoder_out(model.encoder, encoder_out, can_ins_mask), ) mask_ins_score = F.log_softmax(mask_ins_out, 2) if eos_penalty > 0.0: mask_ins_score[:, :, 0] -= eos_penalty mask_ins_score_avg.append(mask_ins_score) mask_ins_score_avg = torch.logsumexp( torch.stack(mask_ins_score_avg, dim=0), dim=0 ) - math.log(len(self.models)) mask_ins_pred = mask_ins_score_avg.max(-1)[1] mask_ins_pred = torch.min( mask_ins_pred, max_lens[can_ins_mask, None].expand_as(mask_ins_pred) ) _tokens, _scores = _apply_ins_masks( output_tokens[can_ins_mask], output_scores[can_ins_mask], mask_ins_pred, self.pad, self.unk, self.eos, ) output_tokens = _fill(output_tokens, can_ins_mask, _tokens, self.pad) output_scores = _fill(output_scores, can_ins_mask, _scores, 0) return output_tokens, output_scores def forward_word_ins( self, encoder_outs, output_tokens, output_scores, attn, can_ins_word ): word_ins_score_avg = [] word_ins_attn_avg = [] for model, encoder_out in zip(self.models, encoder_outs): word_ins_out, word_ins_attn = model.decoder.forward_word_ins( _skip(output_tokens, can_ins_word), _skip_encoder_out(model.encoder, encoder_out, can_ins_word), ) word_ins_score = F.log_softmax(word_ins_out, 2) word_ins_score_avg.append(word_ins_score) word_ins_attn_avg.append(word_ins_attn) word_ins_score_avg = torch.logsumexp( torch.stack(word_ins_score_avg, dim=0), dim=0 ) - math.log(len(self.models)) if word_ins_attn_avg[0] is not None: word_ins_attn_avg = torch.stack(word_ins_attn_avg, dim=0) / len(self.models) else: word_ins_attn_avg = None word_ins_score_max, word_ins_pred = word_ins_score_avg.max(-1) _tokens, _scores = _apply_ins_words( output_tokens[can_ins_word], output_scores[can_ins_word], word_ins_pred, word_ins_score_max, self.unk, ) output_tokens = _fill(output_tokens, can_ins_word, _tokens, self.pad) output_scores = _fill(output_scores, can_ins_word, _scores, 0) attn = _fill(attn, can_ins_word, word_ins_attn, 0.0) return output_tokens, output_scores, attn def initialize_output_tokens(self, encoder_outs, src_tokens): # LevT doesn't do length prediction. return self.models[0].initialize_output_tokens(encoder_outs[0], src_tokens)
data2vec_vision-main
deltalm/src/fairseq/models/nat/nonautoregressive_ensembles.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn.functional as F from fairseq import utils from fairseq.iterative_refinement_generator import DecoderOut from fairseq.models import register_model, register_model_architecture from fairseq.models.nat import FairseqNATDecoder, FairseqNATModel, ensemble_decoder from fairseq.models.transformer import Embedding from fairseq.modules.transformer_sentence_encoder import init_bert_params def _mean_pooling(enc_feats, src_masks): # enc_feats: T x B x C # src_masks: B x T or None if src_masks is None: enc_feats = enc_feats.mean(0) else: src_masks = (~src_masks).transpose(0, 1).type_as(enc_feats) enc_feats = ( (enc_feats / src_masks.sum(0)[None, :, None]) * src_masks[:, :, None] ).sum(0) return enc_feats def _argmax(x, dim): return (x == x.max(dim, keepdim=True)[0]).type_as(x) def _uniform_assignment(src_lens, trg_lens): max_trg_len = trg_lens.max() steps = (src_lens.float() - 1) / (trg_lens.float() - 1) # step-size # max_trg_len index_t = utils.new_arange(trg_lens, max_trg_len).float() index_t = steps[:, None] * index_t[None, :] # batch_size X max_trg_len index_t = torch.round(index_t).long().detach() return index_t @register_model("nonautoregressive_transformer") class NATransformerModel(FairseqNATModel): @property def allow_length_beam(self): return True @staticmethod def add_args(parser): FairseqNATModel.add_args(parser) # length prediction parser.add_argument( "--src-embedding-copy", action="store_true", help="copy encoder word embeddings as the initial input of the decoder", ) parser.add_argument( "--pred-length-offset", action="store_true", help="predicting the length difference between the target and source sentences", ) parser.add_argument( "--sg-length-pred", action="store_true", help="stop the gradients back-propagated from the length predictor", ) parser.add_argument( "--length-loss-factor", type=float, help="weights on the length prediction loss", ) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): decoder = NATransformerDecoder(args, tgt_dict, embed_tokens) if getattr(args, "apply_bert_init", False): decoder.apply(init_bert_params) return decoder def forward( self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs ): # encoding encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) # length prediction length_out = self.decoder.forward_length( normalize=False, encoder_out=encoder_out ) length_tgt = self.decoder.forward_length_prediction( length_out, encoder_out, tgt_tokens ) # decoding word_ins_out = self.decoder( normalize=False, prev_output_tokens=prev_output_tokens, encoder_out=encoder_out, ) return { "word_ins": { "out": word_ins_out, "tgt": tgt_tokens, "mask": tgt_tokens.ne(self.pad), "ls": self.args.label_smoothing, "nll_loss": True, }, "length": { "out": length_out, "tgt": length_tgt, "factor": self.decoder.length_loss_factor, }, } def forward_decoder(self, decoder_out, encoder_out, decoding_format=None, **kwargs): step = decoder_out.step output_tokens = decoder_out.output_tokens output_scores = decoder_out.output_scores history = decoder_out.history # execute the decoder output_masks = output_tokens.ne(self.pad) _scores, _tokens = self.decoder( normalize=True, prev_output_tokens=output_tokens, encoder_out=encoder_out, step=step, ).max(-1) output_tokens.masked_scatter_(output_masks, _tokens[output_masks]) output_scores.masked_scatter_(output_masks, _scores[output_masks]) if history is not None: history.append(output_tokens.clone()) return decoder_out._replace( output_tokens=output_tokens, output_scores=output_scores, attn=None, history=history, ) def initialize_output_tokens(self, encoder_out, src_tokens): # length prediction length_tgt = self.decoder.forward_length_prediction( self.decoder.forward_length(normalize=True, encoder_out=encoder_out), encoder_out=encoder_out, ) max_length = length_tgt.clamp_(min=2).max() idx_length = utils.new_arange(src_tokens, max_length) initial_output_tokens = src_tokens.new_zeros( src_tokens.size(0), max_length ).fill_(self.pad) initial_output_tokens.masked_fill_( idx_length[None, :] < length_tgt[:, None], self.unk ) initial_output_tokens[:, 0] = self.bos initial_output_tokens.scatter_(1, length_tgt[:, None] - 1, self.eos) initial_output_scores = initial_output_tokens.new_zeros( *initial_output_tokens.size() ).type_as(encoder_out["encoder_out"][0]) return DecoderOut( output_tokens=initial_output_tokens, output_scores=initial_output_scores, attn=None, step=0, max_step=0, history=None, ) def regenerate_length_beam(self, decoder_out, beam_size): output_tokens = decoder_out.output_tokens length_tgt = output_tokens.ne(self.pad).sum(1) length_tgt = ( length_tgt[:, None] + utils.new_arange(length_tgt, 1, beam_size) - beam_size // 2 ) length_tgt = length_tgt.view(-1).clamp_(min=2) max_length = length_tgt.max() idx_length = utils.new_arange(length_tgt, max_length) initial_output_tokens = output_tokens.new_zeros( length_tgt.size(0), max_length ).fill_(self.pad) initial_output_tokens.masked_fill_( idx_length[None, :] < length_tgt[:, None], self.unk ) initial_output_tokens[:, 0] = self.bos initial_output_tokens.scatter_(1, length_tgt[:, None] - 1, self.eos) initial_output_scores = initial_output_tokens.new_zeros( *initial_output_tokens.size() ).type_as(decoder_out.output_scores) return decoder_out._replace( output_tokens=initial_output_tokens, output_scores=initial_output_scores ) class NATransformerDecoder(FairseqNATDecoder): def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False): super().__init__( args, dictionary, embed_tokens, no_encoder_attn=no_encoder_attn ) self.dictionary = dictionary self.bos = dictionary.bos() self.unk = dictionary.unk() self.eos = dictionary.eos() self.encoder_embed_dim = args.encoder_embed_dim self.sg_length_pred = getattr(args, "sg_length_pred", False) self.pred_length_offset = getattr(args, "pred_length_offset", False) self.length_loss_factor = getattr(args, "length_loss_factor", 0.1) self.src_embedding_copy = getattr(args, "src_embedding_copy", False) self.embed_length = Embedding(256, self.encoder_embed_dim, None) @ensemble_decoder def forward(self, normalize, encoder_out, prev_output_tokens, step=0, **unused): features, _ = self.extract_features( prev_output_tokens, encoder_out=encoder_out, embedding_copy=(step == 0) & self.src_embedding_copy, ) decoder_out = self.output_layer(features) return F.log_softmax(decoder_out, -1) if normalize else decoder_out @ensemble_decoder def forward_length(self, normalize, encoder_out): enc_feats = encoder_out["encoder_out"][0] # T x B x C if len(encoder_out["encoder_padding_mask"]) > 0: src_masks = encoder_out["encoder_padding_mask"][0] # B x T else: src_masks = None enc_feats = _mean_pooling(enc_feats, src_masks) if self.sg_length_pred: enc_feats = enc_feats.detach() length_out = F.linear(enc_feats, self.embed_length.weight) return F.log_softmax(length_out, -1) if normalize else length_out def extract_features( self, prev_output_tokens, encoder_out=None, early_exit=None, embedding_copy=False, **unused ): """ Similar to *forward* but only return features. Inputs: prev_output_tokens: Tensor(B, T) encoder_out: a dictionary of hidden states and masks Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs the LevenshteinTransformer decoder has full-attention to all generated tokens """ # embedding if embedding_copy: src_embd = encoder_out["encoder_embedding"][0] if len(encoder_out["encoder_padding_mask"]) > 0: src_mask = encoder_out["encoder_padding_mask"][0] else: src_mask = None src_mask = ( ~src_mask if src_mask is not None else prev_output_tokens.new_ones(*src_embd.size()[:2]).bool() ) x, decoder_padding_mask = self.forward_embedding( prev_output_tokens, self.forward_copying_source( src_embd, src_mask, prev_output_tokens.ne(self.padding_idx) ), ) else: x, decoder_padding_mask = self.forward_embedding(prev_output_tokens) # B x T x C -> T x B x C x = x.transpose(0, 1) attn = None inner_states = [x] # decoder layers for i, layer in enumerate(self.layers): # early exit from the decoder. if (early_exit is not None) and (i >= early_exit): break x, attn, _ = layer( x, encoder_out["encoder_out"][0] if (encoder_out is not None and len(encoder_out["encoder_out"]) > 0) else None, encoder_out["encoder_padding_mask"][0] if ( encoder_out is not None and len(encoder_out["encoder_padding_mask"]) > 0 ) else None, self_attn_mask=None, self_attn_padding_mask=decoder_padding_mask, ) inner_states.append(x) if self.layer_norm: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) if self.project_out_dim is not None: x = self.project_out_dim(x) return x, {"attn": attn, "inner_states": inner_states} def forward_embedding(self, prev_output_tokens, states=None): # embed positions positions = ( self.embed_positions(prev_output_tokens) if self.embed_positions is not None else None ) # embed tokens and positions if states is None: x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.project_in_dim is not None: x = self.project_in_dim(x) else: x = states if positions is not None: x += positions x = self.dropout_module(x) decoder_padding_mask = prev_output_tokens.eq(self.padding_idx) return x, decoder_padding_mask def forward_copying_source(self, src_embeds, src_masks, tgt_masks): length_sources = src_masks.sum(1) length_targets = tgt_masks.sum(1) mapped_inputs = _uniform_assignment(length_sources, length_targets).masked_fill( ~tgt_masks, 0 ) copied_embedding = torch.gather( src_embeds, 1, mapped_inputs.unsqueeze(-1).expand( *mapped_inputs.size(), src_embeds.size(-1) ), ) return copied_embedding def forward_length_prediction(self, length_out, encoder_out, tgt_tokens=None): enc_feats = encoder_out["encoder_out"][0] # T x B x C if len(encoder_out["encoder_padding_mask"]) > 0: src_masks = encoder_out["encoder_padding_mask"][0] # B x T else: src_masks = None if self.pred_length_offset: if src_masks is None: src_lengs = enc_feats.new_ones(enc_feats.size(1)).fill_( enc_feats.size(0) ) else: src_lengs = (~src_masks).transpose(0, 1).type_as(enc_feats).sum(0) src_lengs = src_lengs.long() if tgt_tokens is not None: # obtain the length target tgt_lengs = tgt_tokens.ne(self.padding_idx).sum(1).long() if self.pred_length_offset: length_tgt = tgt_lengs - src_lengs + 128 else: length_tgt = tgt_lengs length_tgt = length_tgt.clamp(min=0, max=255) else: # predict the length target (greedy for now) # TODO: implementing length-beam pred_lengs = length_out.max(-1)[1] if self.pred_length_offset: length_tgt = pred_lengs - 128 + src_lengs else: length_tgt = pred_lengs return length_tgt @register_model_architecture( "nonautoregressive_transformer", "nonautoregressive_transformer" ) def base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.apply_bert_init = getattr(args, "apply_bert_init", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) # --- special arguments --- args.sg_length_pred = getattr(args, "sg_length_pred", False) args.pred_length_offset = getattr(args, "pred_length_offset", False) args.length_loss_factor = getattr(args, "length_loss_factor", 0.1) args.src_embedding_copy = getattr(args, "src_embedding_copy", False) @register_model_architecture( "nonautoregressive_transformer", "nonautoregressive_transformer_wmt_en_de" ) def nonautoregressive_transformer_wmt_en_de(args): base_architecture(args)
data2vec_vision-main
deltalm/src/fairseq/models/nat/nonautoregressive_transformer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ This file implements: Ghazvininejad, Marjan, et al. "Constant-time machine translation with conditional masked language models." arXiv preprint arXiv:1904.09324 (2019). """ from fairseq.models import register_model, register_model_architecture from fairseq.models.nat import NATransformerModel from fairseq.utils import new_arange def _skeptical_unmasking(output_scores, output_masks, p): sorted_index = output_scores.sort(-1)[1] boundary_len = ( (output_masks.sum(1, keepdim=True).type_as(output_scores) - 2) * p ).long() skeptical_mask = new_arange(output_masks) < boundary_len return skeptical_mask.scatter(1, sorted_index, skeptical_mask) @register_model("cmlm_transformer") class CMLMNATransformerModel(NATransformerModel): @staticmethod def add_args(parser): NATransformerModel.add_args(parser) def forward( self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs ): assert not self.decoder.src_embedding_copy, "do not support embedding copy." # encoding encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) # length prediction length_out = self.decoder.forward_length( normalize=False, encoder_out=encoder_out ) length_tgt = self.decoder.forward_length_prediction( length_out, encoder_out, tgt_tokens ) # decoding word_ins_out = self.decoder( normalize=False, prev_output_tokens=prev_output_tokens, encoder_out=encoder_out, ) word_ins_mask = prev_output_tokens.eq(self.unk) return { "word_ins": { "out": word_ins_out, "tgt": tgt_tokens, "mask": word_ins_mask, "ls": self.args.label_smoothing, "nll_loss": True, }, "length": { "out": length_out, "tgt": length_tgt, "factor": self.decoder.length_loss_factor, }, } def forward_decoder(self, decoder_out, encoder_out, decoding_format=None, **kwargs): step = decoder_out.step max_step = decoder_out.max_step output_tokens = decoder_out.output_tokens output_scores = decoder_out.output_scores history = decoder_out.history # execute the decoder output_masks = output_tokens.eq(self.unk) _scores, _tokens = self.decoder( normalize=True, prev_output_tokens=output_tokens, encoder_out=encoder_out, ).max(-1) output_tokens.masked_scatter_(output_masks, _tokens[output_masks]) output_scores.masked_scatter_(output_masks, _scores[output_masks]) if history is not None: history.append(output_tokens.clone()) # skeptical decoding (depend on the maximum decoding steps.) if (step + 1) < max_step: skeptical_mask = _skeptical_unmasking( output_scores, output_tokens.ne(self.pad), 1 - (step + 1) / max_step ) output_tokens.masked_fill_(skeptical_mask, self.unk) output_scores.masked_fill_(skeptical_mask, 0.0) if history is not None: history.append(output_tokens.clone()) return decoder_out._replace( output_tokens=output_tokens, output_scores=output_scores, attn=None, history=history, ) @register_model_architecture("cmlm_transformer", "cmlm_transformer") def cmlm_base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", True) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.apply_bert_init = getattr(args, "apply_bert_init", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) # --- special arguments --- args.sg_length_pred = getattr(args, "sg_length_pred", False) args.pred_length_offset = getattr(args, "pred_length_offset", False) args.length_loss_factor = getattr(args, "length_loss_factor", 0.1) args.ngram_predictor = getattr(args, "ngram_predictor", 1) args.src_embedding_copy = getattr(args, "src_embedding_copy", False) @register_model_architecture("cmlm_transformer", "cmlm_transformer_wmt_en_de") def cmlm_wmt_en_de(args): cmlm_base_architecture(args)
data2vec_vision-main
deltalm/src/fairseq/models/nat/cmlm_transformer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq.models import register_model, register_model_architecture from fairseq.models.nat import NATransformerModel, base_architecture from fairseq.modules import DynamicCRF @register_model("nacrf_transformer") class NACRFTransformerModel(NATransformerModel): def __init__(self, args, encoder, decoder): super().__init__(args, encoder, decoder) self.crf_layer = DynamicCRF( num_embedding=len(self.tgt_dict), low_rank=args.crf_lowrank_approx, beam_size=args.crf_beam_approx, ) @property def allow_ensemble(self): return False @staticmethod def add_args(parser): NATransformerModel.add_args(parser) parser.add_argument( "--crf-lowrank-approx", type=int, help="the dimension of low-rank approximation of transition", ) parser.add_argument( "--crf-beam-approx", type=int, help="the beam size for apporixmating the normalizing factor", ) parser.add_argument( "--word-ins-loss-factor", type=float, help="weights on NAT loss used to co-training with CRF loss.", ) def forward( self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs ): # encoding encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) # length prediction length_out = self.decoder.forward_length( normalize=False, encoder_out=encoder_out ) length_tgt = self.decoder.forward_length_prediction( length_out, encoder_out, tgt_tokens ) # decoding word_ins_out = self.decoder( normalize=False, prev_output_tokens=prev_output_tokens, encoder_out=encoder_out, ) word_ins_tgt, word_ins_mask = tgt_tokens, tgt_tokens.ne(self.pad) # compute the log-likelihood of CRF crf_nll = -self.crf_layer(word_ins_out, word_ins_tgt, word_ins_mask) crf_nll = (crf_nll / word_ins_mask.type_as(crf_nll).sum(-1)).mean() return { "word_ins": { "out": word_ins_out, "tgt": word_ins_tgt, "mask": word_ins_mask, "ls": self.args.label_smoothing, "nll_loss": True, "factor": self.args.word_ins_loss_factor, }, "word_crf": {"loss": crf_nll}, "length": { "out": length_out, "tgt": length_tgt, "factor": self.decoder.length_loss_factor, }, } def forward_decoder(self, decoder_out, encoder_out, decoding_format=None, **kwargs): output_tokens = decoder_out.output_tokens output_scores = decoder_out.output_scores history = decoder_out.history # execute the decoder and get emission scores output_masks = output_tokens.ne(self.pad) word_ins_out = self.decoder( normalize=False, prev_output_tokens=output_tokens, encoder_out=encoder_out ) # run viterbi decoding through CRF _scores, _tokens = self.crf_layer.forward_decoder(word_ins_out, output_masks) output_tokens.masked_scatter_(output_masks, _tokens[output_masks]) output_scores.masked_scatter_(output_masks, _scores[output_masks]) if history is not None: history.append(output_tokens.clone()) return decoder_out._replace( output_tokens=output_tokens, output_scores=output_scores, attn=None, history=history, ) @register_model_architecture("nacrf_transformer", "nacrf_transformer") def nacrf_base_architecture(args): args.crf_lowrank_approx = getattr(args, "crf_lowrank_approx", 32) args.crf_beam_approx = getattr(args, "crf_beam_approx", 64) args.word_ins_loss_factor = getattr(args, "word_ins_loss_factor", 0.5) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True) base_architecture(args)
data2vec_vision-main
deltalm/src/fairseq/models/nat/nat_crf_transformer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch import torch.nn.functional as F from fairseq.models import register_model, register_model_architecture from fairseq.models.nat import ( FairseqNATModel, LevenshteinTransformerDecoder, LevenshteinTransformerModel, ensemble_decoder, ) from fairseq.models.transformer import Linear from fairseq.modules.transformer_sentence_encoder import init_bert_params from fairseq.utils import new_arange class NegativeDistanceScore(object): def __init__(self): # pre-compute some values self.scores = {} self.scores[0.5] = self.compute_score_full(50, 0.5) self.scores[1.0] = self.compute_score_full(50, 1.0) self.scores[2.0] = self.compute_score_full(50, 2.0) def __call__(self, i, L, tau): if (tau is None) or (tau > 1000): return 1 / L if tau in self.scores: if L < self.scores[tau].shape[0]: return self.scores[tau][L - 1, i] return self.compute_score(L, tau)[i] def compute_score(self, L, tau): s = np.array([-abs(L / 2 - i) / tau for i in range(L)]) s = np.exp(s - s.max()) return s / s.sum() def compute_score_full(self, L, tau): s = -abs(np.arange(0, L - 1)[:, None] / 2 - np.arange(L)[None, :]) / tau s = np.tril(s, 0) + np.triu(s - float("inf"), 1) s = np.exp(s - s.max(1, keepdims=True)) return s / s.sum(1, keepdims=True) neg_scorer = NegativeDistanceScore() def _get_ins_targets(in_tokens, out_tokens, padding_idx, unk_idx, vocab_size, tau=None): try: from fairseq import libnat except ImportError as e: import sys sys.stderr.write("ERROR: missing libnat. run `pip install --editable .`\n") raise e B = in_tokens.size(0) T = in_tokens.size(1) V = vocab_size with torch.cuda.device_of(in_tokens): in_tokens_list = [ [t for t in s if t != padding_idx] for i, s in enumerate(in_tokens.tolist()) ] out_tokens_list = [ [t for t in s if t != padding_idx] for i, s in enumerate(out_tokens.tolist()) ] full_labels = libnat.suggested_ed2_path( in_tokens_list, out_tokens_list, padding_idx ) insert_labels = [a[:-1] for a in full_labels] # numericalize1 insert_label_tensors = in_tokens.new_zeros(B * (T - 1) * V).float() insert_index, insert_labels = zip( *[ (w + (j + i * (T - 1)) * V, neg_scorer(k, len(label), tau)) for i, labels in enumerate(insert_labels) for j, label in enumerate(labels[1:-1]) for k, w in enumerate(label) ] ) # HACK 1:-1 insert_index, insert_labels = [ torch.tensor(list(a), device=in_tokens.device) for a in [insert_index, insert_labels] ] insert_label_tensors.scatter_(0, insert_index.long(), insert_labels) insert_label_tensors = insert_label_tensors.view(B, T - 1, V) return insert_label_tensors def _apply_ins_words(in_tokens, in_scores, word_ins_pred, word_ins_scores, padding_idx): padding_masks = in_tokens[:, 1:].eq(padding_idx) word_ins_scores.masked_fill_(padding_masks, 0.0) word_ins_pred.masked_fill_(padding_masks, padding_idx) in_coords = new_arange(in_tokens).type_as(in_scores) # shift all padding predictions to infinite out_coords = (in_coords[:, 1:] - 0.5).masked_fill( word_ins_pred.eq(padding_idx), float("inf") ) out_coords = torch.cat([in_coords, out_coords], 1).sort(-1)[1] out_tokens = torch.cat([in_tokens, word_ins_pred], 1).gather(1, out_coords) out_scores = torch.cat([in_scores, word_ins_scores], 1).gather(1, out_coords) return out_tokens, out_scores @register_model("insertion_transformer") class InsertionTransformerModel(LevenshteinTransformerModel): def __init__(self, args, encoder, decoder): super().__init__(args, encoder, decoder) @staticmethod def add_args(parser): FairseqNATModel.add_args(parser) parser.add_argument("--label-tau", default=None, type=float) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): decoder = InsertionTransformerDecoder(args, tgt_dict, embed_tokens) if getattr(args, "apply_bert_init", False): decoder.apply(init_bert_params) return decoder def forward( self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs ): assert tgt_tokens is not None, "forward function only supports training." # encoding encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) # generate training labels for insertion word_ins_out = self.decoder.forward_word_ins( normalize=False, prev_output_tokens=prev_output_tokens, encoder_out=encoder_out, ) word_ins_tgt = _get_ins_targets( prev_output_tokens, tgt_tokens, self.pad, self.unk, len(self.tgt_dict), tau=self.decoder.label_tau, ).type_as(word_ins_out) word_ins_masks = prev_output_tokens[:, 1:].ne(self.pad) return { "word_ins": { "out": word_ins_out, "tgt": word_ins_tgt, "mask": word_ins_masks, "ls": self.args.label_smoothing, "nll_loss": True, } } def forward_decoder( self, decoder_out, encoder_out, eos_penalty=0.0, max_ratio=None, **kwargs ): output_tokens = decoder_out.output_tokens output_scores = decoder_out.output_scores history = decoder_out.history # TODO: decoding for InsertionTransformer word_ins_score = self.decoder.forward_word_ins( normalize=True, prev_output_tokens=output_tokens, encoder_out=encoder_out ) if eos_penalty > 0.0: word_ins_score[:, :, self.pad] -= eos_penalty word_ins_score, word_ins_pred = word_ins_score.max(-1) output_tokens, output_scores = _apply_ins_words( output_tokens, output_scores, word_ins_pred, word_ins_score, self.pad ) # delete some unnecessary paddings cut_off = output_tokens.ne(self.pad).sum(1).max() output_tokens = output_tokens[:, :cut_off] output_scores = output_scores[:, :cut_off] if history is not None: history.append(output_tokens.clone()) return decoder_out._replace( output_tokens=output_tokens, output_scores=output_scores, attn=None, history=history, ) class InsertionTransformerDecoder(LevenshteinTransformerDecoder): def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False): # use the TransformerDecoder's __init__ super(LevenshteinTransformerDecoder, self).__init__( args, dictionary, embed_tokens, no_encoder_attn=no_encoder_attn ) self.dictionary = dictionary self.bos = dictionary.bos() self.unk = dictionary.unk() self.eos = dictionary.eos() self.pool_out = Linear(self.output_embed_dim * 2, self.output_embed_dim) self.label_tau = getattr(args, "label_tau", None) @ensemble_decoder def forward_word_ins(self, normalize, encoder_out, prev_output_tokens): features = self.extract_features(prev_output_tokens, encoder_out=encoder_out)[0] features = self.pool_out( torch.cat([features[:, :-1, :], features[:, 1:, :]], 2) ) decoder_out = self.output_layer(features) return F.log_softmax(decoder_out, -1) if normalize else decoder_out def forward_mask_ins(self, *args, **kwargs): raise NotImplementedError def forward_word_del(self, *args, **kwargs): raise NotImplementedError @register_model_architecture("insertion_transformer", "insertion_transformer") def insertion_base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.apply_bert_init = getattr(args, "apply_bert_init", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) # special for insertion transformer args.label_tau = getattr(args, "label_tau", None)
data2vec_vision-main
deltalm/src/fairseq/models/nat/insertion_transformer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .hub_interface import * # noqa from .model import * # noqa
data2vec_vision-main
deltalm/src/fairseq/models/bart/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension """ from typing import Optional import logging import torch import torch.nn as nn from fairseq import utils from fairseq.models import register_model, register_model_architecture from fairseq.models.transformer import TransformerModel from fairseq.modules.transformer_sentence_encoder import init_bert_params from .hub_interface import BARTHubInterface logger = logging.getLogger(__name__) @register_model("bart") class BARTModel(TransformerModel): __jit_unused_properties__ = ["supported_targets"] @classmethod def hub_models(cls): return { "bart.base": "http://dl.fbaipublicfiles.com/fairseq/models/bart.base.tar.gz", "bart.large": "http://dl.fbaipublicfiles.com/fairseq/models/bart.large.tar.gz", "bart.large.mnli": "http://dl.fbaipublicfiles.com/fairseq/models/bart.large.mnli.tar.gz", "bart.large.cnn": "http://dl.fbaipublicfiles.com/fairseq/models/bart.large.cnn.tar.gz", "bart.large.xsum": "http://dl.fbaipublicfiles.com/fairseq/models/bart.large.xsum.tar.gz", } def __init__(self, args, encoder, decoder): super().__init__(args, encoder, decoder) # We follow BERT's random weight initialization self.apply(init_bert_params) self.classification_heads = nn.ModuleDict() if hasattr(self.encoder, "dictionary"): self.eos: int = self.encoder.dictionary.eos() @staticmethod def add_args(parser): super(BARTModel, BARTModel).add_args(parser) parser.add_argument( "--pooler-dropout", type=float, metavar="D", help="dropout probability in the masked_lm pooler layers", ) parser.add_argument( "--pooler-activation-fn", choices=utils.get_available_activation_fns(), help="activation function to use for pooler layer", ) parser.add_argument( "--spectral-norm-classification-head", action="store_true", help="Apply spectral normalization on the classification head", ) @property def supported_targets(self): return {"self"} def forward( self, src_tokens, src_lengths, prev_output_tokens, features_only: bool = False, classification_head_name: Optional[str] = None, token_embeddings: Optional[torch.Tensor] = None, return_all_hiddens: bool = True, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, ): if classification_head_name is not None: features_only = True encoder_out = self.encoder( src_tokens, src_lengths=src_lengths, token_embeddings=token_embeddings, return_all_hiddens=return_all_hiddens ) x, extra = self.decoder( prev_output_tokens, encoder_out=encoder_out, features_only=features_only, alignment_layer=alignment_layer, alignment_heads=alignment_heads, src_lengths=src_lengths, return_all_hiddens=return_all_hiddens, ) eos: int = self.eos if classification_head_name is not None: sentence_representation = x[ src_tokens.eq(eos), : ].view(x.size(0), -1, x.size(-1))[:, -1, :] for k, head in self.classification_heads.items(): # for torch script only supports iteration if k == classification_head_name: x = head(sentence_representation) break return x, extra @classmethod def from_pretrained( cls, model_name_or_path, checkpoint_file="model.pt", data_name_or_path=".", bpe="gpt2", sample_break_mode="eos", **kwargs, ): from fairseq import hub_utils x = hub_utils.from_pretrained( model_name_or_path, checkpoint_file, data_name_or_path, archive_map=cls.hub_models(), bpe=bpe, load_checkpoint_heads=True, sample_break_mode=sample_break_mode, **kwargs, ) return BARTHubInterface(x["args"], x["task"], x["models"][0]) def register_classification_head( self, name, num_classes=None, inner_dim=None, **kwargs ): """Register a classification head.""" logger.info("Registering classification head: {0}".format(name)) if name in self.classification_heads: prev_num_classes = self.classification_heads[name].out_proj.out_features prev_inner_dim = self.classification_heads[name].dense.out_features if num_classes != prev_num_classes or inner_dim != prev_inner_dim: logger.warning( 're-registering head "{}" with num_classes {} (prev: {}) ' "and inner_dim {} (prev: {})".format( name, num_classes, prev_num_classes, inner_dim, prev_inner_dim ) ) self.classification_heads[name] = BARTClassificationHead( input_dim=self.args.encoder_embed_dim, inner_dim=inner_dim or self.args.encoder_embed_dim, num_classes=num_classes, activation_fn=self.args.pooler_activation_fn, pooler_dropout=self.args.pooler_dropout, do_spectral_norm=getattr( self.args, "spectral_norm_classification_head", False ), ) def upgrade_state_dict_named(self, state_dict, name): super().upgrade_state_dict_named(state_dict, name) prefix = name + "." if name != "" else "" current_head_names = ( [] if not hasattr(self, "classification_heads") else self.classification_heads.keys() ) # Handle new classification heads present in the state dict. keys_to_delete = [] for k in state_dict.keys(): if not k.startswith(prefix + "classification_heads."): continue head_name = k[len(prefix + "classification_heads.") :].split(".")[0] num_classes = state_dict[ prefix + "classification_heads." + head_name + ".out_proj.weight" ].size(0) inner_dim = state_dict[ prefix + "classification_heads." + head_name + ".dense.weight" ].size(0) if getattr(self.args, "load_checkpoint_heads", False): if head_name not in current_head_names: self.register_classification_head(head_name, num_classes, inner_dim) else: if head_name not in current_head_names: logger.warning( "deleting classification head ({}) from checkpoint " "not present in current model: {}".format(head_name, k) ) keys_to_delete.append(k) elif ( num_classes != self.classification_heads[head_name].out_proj.out_features or inner_dim != self.classification_heads[head_name].dense.out_features ): logger.warning( "deleting classification head ({}) from checkpoint " "with different dimensions than current model: {}".format( head_name, k ) ) keys_to_delete.append(k) for k in keys_to_delete: del state_dict[k] def truncate_emb(key): if key in state_dict: state_dict[key] = state_dict[key][:-1, :] # When finetuning on translation task, remove last row of # embedding matrix that corresponds to mask_idx token. loaded_dict_size = state_dict["encoder.embed_tokens.weight"].size(0) if ( loaded_dict_size == len(self.encoder.dictionary) + 1 and "<mask>" not in self.encoder.dictionary ): truncate_emb("encoder.embed_tokens.weight") truncate_emb("decoder.embed_tokens.weight") truncate_emb("encoder.output_projection.weight") truncate_emb("decoder.output_projection.weight") # When continued pretraining on new set of languages for mbart, # add extra lang embeddings at the end of embed_tokens. # Note: newly added languages are assumed to have been added at the end. if self.args.task == "multilingual_denoising" and loaded_dict_size < len( self.encoder.dictionary ): logger.info( "Adding extra language embeddings not found in pretrained model for " "continued pretraining of MBART on new set of languages." ) loaded_mask_token_embedding = state_dict["encoder.embed_tokens.weight"][ -1, : ] num_langids_to_add = len(self.encoder.dictionary) - loaded_dict_size embed_dim = state_dict["encoder.embed_tokens.weight"].size(1) new_lang_embed_to_add = torch.zeros(num_langids_to_add, embed_dim) nn.init.normal_(new_lang_embed_to_add, mean=0, std=embed_dim ** -0.5) new_lang_embed_to_add = new_lang_embed_to_add.to( dtype=state_dict["encoder.embed_tokens.weight"].dtype, ) state_dict["encoder.embed_tokens.weight"] = torch.cat( [ state_dict["encoder.embed_tokens.weight"][ : loaded_dict_size - 1, : ], new_lang_embed_to_add, loaded_mask_token_embedding.unsqueeze(0), ] ) state_dict["decoder.embed_tokens.weight"] = torch.cat( [ state_dict["decoder.embed_tokens.weight"][ : loaded_dict_size - 1, : ], new_lang_embed_to_add, loaded_mask_token_embedding.unsqueeze(0), ] ) # Copy any newly-added classification heads into the state dict # with their current weights. if hasattr(self, "classification_heads"): cur_state = self.classification_heads.state_dict() for k, v in cur_state.items(): if prefix + "classification_heads." + k not in state_dict: logger.info("Overwriting", prefix + "classification_heads." + k) state_dict[prefix + "classification_heads." + k] = v class BARTClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__( self, input_dim, inner_dim, num_classes, activation_fn, pooler_dropout, do_spectral_norm=False, ): super().__init__() self.dense = nn.Linear(input_dim, inner_dim) self.activation_fn = utils.get_activation_fn(activation_fn) self.dropout = nn.Dropout(p=pooler_dropout) self.out_proj = nn.Linear(inner_dim, num_classes) if do_spectral_norm: self.out_proj = torch.nn.utils.spectral_norm(self.out_proj) def forward(self, features, **kwargs): x = features x = self.dropout(x) x = self.dense(x) x = self.activation_fn(x) x = self.dropout(x) x = self.out_proj(x) return x @register_model_architecture("bart", "bart_large") def bart_large_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4 * 1024) args.encoder_layers = getattr(args, "encoder_layers", 12) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 12) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", True) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.relu_dropout = getattr(args, "relu_dropout", 0.0) args.dropout = getattr(args, "dropout", 0.1) args.max_target_positions = getattr(args, "max_target_positions", 1024) args.max_source_positions = getattr(args, "max_source_positions", 1024) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", True ) args.share_all_embeddings = getattr(args, "share_all_embeddings", True) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.no_scale_embedding = getattr(args, "no_scale_embedding", True) args.layernorm_embedding = getattr(args, "layernorm_embedding", True) args.activation_fn = getattr(args, "activation_fn", "gelu") args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh") args.pooler_dropout = getattr(args, "pooler_dropout", 0.0) @register_model_architecture("bart", "bart_base") def bart_base_architecture(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4 * 768) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 12) bart_large_architecture(args) @register_model_architecture("bart", "mbart_large") def mbart_large_architecture(args): args.no_scale_embedding = getattr(args, "no_scale_embedding", False) bart_large_architecture(args) @register_model_architecture("bart", "mbart_base") def mbart_base_architecture(args): args.no_scale_embedding = getattr(args, "no_scale_embedding", False) bart_base_architecture(args) @register_model_architecture("bart", "mbart_base_wmt20") def mbart_base_wmt20_architecture(args): args.layernorm_embedding = getattr(args, "layernorm_embedding", False) mbart_base_architecture(args)
data2vec_vision-main
deltalm/src/fairseq/models/bart/model.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import copy import logging from typing import Dict, List import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.data import encoders from fairseq.hub_utils import GeneratorHubInterface from omegaconf import open_dict logger = logging.getLogger(__name__) class BARTHubInterface(GeneratorHubInterface): """A simple PyTorch Hub interface to BART. Usage: https://github.com/pytorch/fairseq/tree/master/examples/bart """ def __init__(self, cfg, task, model): super().__init__(cfg, task, [model]) self.model = self.models[0] def encode( self, sentence: str, *addl_sentences, no_separator=True ) -> torch.LongTensor: """ BPE-encode a sentence (or multiple sentences). Every sequence begins with a beginning-of-sentence (`<s>`) symbol. Every sentence ends with an end-of-sentence (`</s>`). Example (single sentence): `<s> a b c </s>` Example (sentence pair): `<s> d e f </s> 1 2 3 </s>` The BPE encoding follows GPT-2. One subtle detail is that the GPT-2 BPE requires leading spaces. For example:: >>> bart.encode('Hello world').tolist() [0, 31414, 232, 2] >>> bart.encode(' world').tolist() [0, 232, 2] >>> bart.encode('world').tolist() [0, 8331, 2] """ tokens = self.bpe.encode(sentence) if len(tokens.split(" ")) > min(self.max_positions) - 2: tokens = " ".join(tokens.split(" ")[: min(self.max_positions) - 2]) bpe_sentence = "<s> " + tokens + " </s>" for s in addl_sentences: bpe_sentence += " </s>" if not no_separator else "" bpe_sentence += " " + self.bpe.encode(s) + " </s>" tokens = self.task.source_dictionary.encode_line(bpe_sentence, append_eos=False) return tokens.long() def decode(self, tokens: torch.LongTensor): assert tokens.dim() == 1 tokens = tokens.cpu().numpy() if tokens[0] == self.task.source_dictionary.bos(): tokens = tokens[1:] # remove <s> eos_mask = tokens == self.task.source_dictionary.eos() doc_mask = eos_mask[1:] & eos_mask[:-1] sentences = np.split(tokens, doc_mask.nonzero()[0] + 1) sentences = [ self.bpe.decode(self.task.source_dictionary.string(s)) for s in sentences ] if len(sentences) == 1: return sentences[0] return sentences def _build_sample(self, src_tokens: List[torch.LongTensor]): # assert torch.is_tensor(src_tokens) dataset = self.task.build_dataset_for_inference( src_tokens, [x.numel() for x in src_tokens], ) sample = dataset.collater(dataset) sample = utils.apply_to_sample(lambda tensor: tensor.to(self.device), sample) return sample def generate( self, tokenized_sentences: List[torch.LongTensor], *args, inference_step_args=None, **kwargs ) -> List[List[Dict[str, torch.Tensor]]]: inference_step_args = inference_step_args or {} if "prefix_tokens" in inference_step_args: raise NotImplementedError("prefix generation not implemented for BART") else: bsz = len(tokenized_sentences) inference_step_args["prefix_tokens"] = tokenized_sentences[0].new_full( (bsz, 1), fill_value=self.task.source_dictionary.bos() ).to(device=self.device) return super().generate( tokenized_sentences, *args, inference_step_args=inference_step_args, **kwargs ) def extract_features( self, tokens: torch.LongTensor, return_all_hiddens: bool = False ) -> torch.Tensor: if tokens.dim() == 1: tokens = tokens.unsqueeze(0) if tokens.size(-1) > min(self.model.max_positions()): raise ValueError( "tokens exceeds maximum length: {} > {}".format( tokens.size(-1), self.model.max_positions() ) ) tokens.to(device=self.device), prev_output_tokens = tokens.clone() prev_output_tokens[:, 0] = tokens.gather( 1, (tokens.ne(self.task.source_dictionary.pad()).sum(dim=1) - 1).unsqueeze(-1), ).squeeze() prev_output_tokens[:, 1:] = tokens[:, :-1] features, extra = self.model( src_tokens=tokens, src_lengths=None, prev_output_tokens=prev_output_tokens, features_only=True, return_all_hiddens=return_all_hiddens, ) if return_all_hiddens: # convert from T x B x C -> B x T x C inner_states = extra["inner_states"] return [inner_state.transpose(0, 1) for inner_state in inner_states] else: return features # just the last layer's features def register_classification_head( self, name: str, num_classes: int = None, embedding_size: int = None, **kwargs ): self.model.register_classification_head( name, num_classes=num_classes, embedding_size=embedding_size, **kwargs ) def predict(self, head: str, tokens: torch.LongTensor, return_logits: bool = False): if tokens.dim() == 1: tokens = tokens.unsqueeze(0) features = self.extract_features(tokens.to(device=self.device)) sentence_representation = features[ tokens.eq(self.task.source_dictionary.eos()), : ].view(features.size(0), -1, features.size(-1))[:, -1, :] logits = self.model.classification_heads[head](sentence_representation) if return_logits: return logits return F.log_softmax(logits, dim=-1) def fill_mask( self, masked_inputs: List[str], topk: int = 5, match_source_len: bool = True, **generate_kwargs ): masked_token = '<mask>' batch_tokens = [] for masked_input in masked_inputs: assert masked_token in masked_input, \ "please add one {} token for the input".format(masked_token) text_spans = masked_input.split(masked_token) text_spans_bpe = (' {0} '.format(masked_token)).join( [self.bpe.encode(text_span.rstrip()) for text_span in text_spans] ).strip() tokens = self.task.source_dictionary.encode_line( '<s> ' + text_spans_bpe + ' </s>', append_eos=False, add_if_not_exist=False, ).long() batch_tokens.append(tokens) # ensure beam size is at least as big as topk generate_kwargs['beam'] = max( topk, generate_kwargs.get('beam', -1), ) generate_kwargs['match_source_len'] = match_source_len batch_hypos = self.generate(batch_tokens, **generate_kwargs) return [ [(self.decode(hypo['tokens']), hypo['score']) for hypo in hypos[:topk]] for hypos in batch_hypos ]
data2vec_vision-main
deltalm/src/fairseq/models/bart/hub_interface.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .wav2vec import * # noqa from .wav2vec2 import * # noqa from .wav2vec2_asr import * # noqa
data2vec_vision-main
deltalm/src/fairseq/models/wav2vec/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from argparse import Namespace import contextlib import copy import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from dataclasses import dataclass, field from omegaconf import MISSING, II, open_dict from typing import Any from fairseq import checkpoint_utils, tasks, utils from fairseq.dataclass import FairseqDataclass from fairseq.dataclass.utils import convert_namespace_to_omegaconf from fairseq.tasks import FairseqTask from fairseq.models import ( BaseFairseqModel, FairseqEncoder, FairseqEncoderDecoderModel, FairseqIncrementalDecoder, register_model, ) from fairseq.models.wav2vec.wav2vec2 import MASKING_DISTRIBUTION_CHOICES from fairseq.modules import LayerNorm, PositionalEmbedding, TransformerDecoderLayer @dataclass class Wav2Vec2AsrConfig(FairseqDataclass): w2v_path: str = field( default=MISSING, metadata={"help": "path to wav2vec 2.0 model"} ) no_pretrained_weights: bool = field( default=False, metadata={"help": "if true, does not load pretrained weights"} ) dropout_input: float = field( default=0.0, metadata={"help": "dropout to apply to the input (after feat extr)"}, ) final_dropout: float = field( default=0.0, metadata={"help": "dropout after transformer and before final projection"}, ) dropout: float = field( default=0.0, metadata={"help": "dropout probability inside wav2vec 2.0 model"} ) attention_dropout: float = field( default=0.0, metadata={ "help": "dropout probability for attention weights inside wav2vec 2.0 model" }, ) activation_dropout: float = field( default=0.0, metadata={ "help": "dropout probability after activation in FFN inside wav2vec 2.0 model" }, ) # masking apply_mask: bool = field( default=False, metadata={"help": "apply masking during fine-tuning"} ) mask_length: int = field( default=10, metadata={"help": "repeat the mask indices multiple times"} ) mask_prob: float = field( default=0.5, metadata={ "help": "probability of replacing a token with mask (normalized by length)" }, ) mask_selection: MASKING_DISTRIBUTION_CHOICES = field( default="static", metadata={"help": "how to choose masks"} ) mask_other: float = field( default=0, metadata={ "help": "secondary mask argument (used for more complex distributions), " "see help in compute_mask_indices" }, ) no_mask_overlap: bool = field( default=False, metadata={"help": "whether to allow masks to overlap"} ) # channel masking mask_channel_length: int = field( default=10, metadata={"help": "length of the mask for features (channels)"} ) mask_channel_prob: float = field( default=0.0, metadata={"help": "probability of replacing a feature with 0"} ) mask_channel_selection: MASKING_DISTRIBUTION_CHOICES = field( default="static", metadata={"help": "how to choose mask length for channel masking"}, ) mask_channel_other: float = field( default=0, metadata={ "help": "secondary mask argument (used for more complex distributions), " "see help in compute_mask_indicesh" }, ) no_mask_channel_overlap: bool = field( default=False, metadata={"help": "whether to allow channel masks to overlap"} ) freeze_finetune_updates: int = field( default=0, metadata={"help": "dont finetune wav2vec for this many updates"} ) feature_grad_mult: float = field( default=0.0, metadata={"help": "reset feature grad mult in wav2vec 2.0 to this"} ) layerdrop: float = field( default=0.0, metadata={"help": "probability of dropping a layer in wav2vec 2.0"} ) normalize: bool = II("task.normalize") data: str = II("task.data") # this holds the loaded wav2vec args w2v_args: Any = None @dataclass class Wav2Vec2CtcConfig(Wav2Vec2AsrConfig): pass @register_model("wav2vec_ctc", dataclass=Wav2Vec2CtcConfig) class Wav2VecCtc(BaseFairseqModel): def __init__(self, cfg: Wav2Vec2CtcConfig, w2v_encoder: BaseFairseqModel): super().__init__() self.cfg = cfg self.w2v_encoder = w2v_encoder def upgrade_state_dict_named(self, state_dict, name): super().upgrade_state_dict_named(state_dict, name) return state_dict @classmethod def build_model(cls, cfg: Wav2Vec2CtcConfig, task: FairseqTask): """Build a new model instance.""" w2v_encoder = Wav2VecEncoder(cfg, task.target_dictionary) return cls(cfg, w2v_encoder) def get_normalized_probs(self, net_output, log_probs): """Get normalized probabilities (or log probs) from a net's output.""" logits = net_output["encoder_out"] if log_probs: return utils.log_softmax(logits.float(), dim=-1) else: return utils.softmax(logits.float(), dim=-1) def forward(self, **kwargs): x = self.w2v_encoder(**kwargs) return x @dataclass class Wav2Vec2Seq2SeqConfig(Wav2Vec2AsrConfig): decoder_embed_dim: int = field( default=768, metadata={"help": "decoder embedding dimension"} ) decoder_ffn_embed_dim: int = field( default=3072, metadata={"help": "decoder embedding dimension for FFN"} ) decoder_layers: int = field(default=6, metadata={"help": "num of decoder layers"}) decoder_layerdrop: float = field( default=0.0, metadata={"help": "decoder layerdrop chance"} ) decoder_attention_heads: int = field( default=4, metadata={"help": "num decoder attention heads"} ) decoder_learned_pos: bool = field( default=False, metadata={"help": "use learned positional embeddings in the decoder"}, ) decoder_normalize_before: bool = field( default=False, metadata={"help": "apply layernorm before each decoder block"} ) no_token_positional_embeddings: bool = field( default=False, metadata={ "help": "if set, disables positional embeddings (outside self attention)" }, ) decoder_dropout: float = field( default=0.0, metadata={"help": "dropout probability in the decoder"} ) decoder_attention_dropout: float = field( default=0.0, metadata={ "help": "dropout probability for attention weights inside the decoder" }, ) decoder_activation_dropout: float = field( default=0.0, metadata={ "help": "dropout probability after activation in FFN inside the decoder" }, ) max_target_positions: int = field( default=2048, metadata={"help": "max target positions"} ) share_decoder_input_output_embed: bool = field( default=False, metadata={"help": "share decoder input and output embeddings"} ) @register_model("wav2vec_seq2seq", dataclass=Wav2Vec2Seq2SeqConfig) class Wav2Vec2Seq2SeqModel(FairseqEncoderDecoderModel): def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @classmethod def build_model(cls, cfg: Wav2Vec2Seq2SeqConfig, task: FairseqTask): """Build a new model instance.""" src_dict, tgt_dict = task.source_dictionary, task.target_dictionary def build_embedding(dictionary, embed_dim): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) return emb decoder_embed_tokens = build_embedding(tgt_dict, cfg.decoder_embed_dim) encoder = cls.build_encoder(cfg) decoder = cls.build_decoder(cfg, tgt_dict, decoder_embed_tokens) return Wav2Vec2Seq2SeqModel(encoder, decoder) @classmethod def build_encoder(cls, cfg: Wav2Vec2AsrConfig): return Wav2VecEncoder(cfg) @classmethod def build_decoder(cls, cfg: Wav2Vec2Seq2SeqConfig, tgt_dict, embed_tokens): return TransformerDecoder(cfg, tgt_dict, embed_tokens) def forward(self, **kwargs): encoder_out = self.encoder(tbc=False, **kwargs) decoder_out = self.decoder(encoder_out=encoder_out, **kwargs) return decoder_out def upgrade_state_dict_named(self, state_dict, name): super().upgrade_state_dict_named(state_dict, name) return state_dict class Wav2VecEncoder(FairseqEncoder): def __init__(self, cfg: Wav2Vec2AsrConfig, tgt_dict=None): self.apply_mask = cfg.apply_mask arg_overrides = { "dropout": cfg.dropout, "activation_dropout": cfg.activation_dropout, "dropout_input": cfg.dropout_input, "attention_dropout": cfg.attention_dropout, "mask_length": cfg.mask_length, "mask_prob": cfg.mask_prob, "mask_selection": cfg.mask_selection, "mask_other": cfg.mask_other, "no_mask_overlap": cfg.no_mask_overlap, "mask_channel_length": cfg.mask_channel_length, "mask_channel_prob": cfg.mask_channel_prob, "mask_channel_selection": cfg.mask_channel_selection, "mask_channel_other": cfg.mask_channel_other, "no_mask_channel_overlap": cfg.no_mask_channel_overlap, "encoder_layerdrop": cfg.layerdrop, "feature_grad_mult": cfg.feature_grad_mult, } if cfg.w2v_args is None: state = checkpoint_utils.load_checkpoint_to_cpu(cfg.w2v_path, arg_overrides) w2v_args = state.get("cfg", None) if w2v_args is None: w2v_args = convert_namespace_to_omegaconf(state["args"]) cfg.w2v_args = w2v_args else: state = None w2v_args = cfg.w2v_args if isinstance(w2v_args, Namespace): cfg.w2v_args = w2v_args = convert_namespace_to_omegaconf(w2v_args) assert cfg.normalize == w2v_args.task.normalize, ( "Fine-tuning works best when data normalization is the same. " "Please check that --normalize is set or unset for both pre-training and here" ) w2v_args.task.data = cfg.data task = tasks.setup_task(w2v_args.task) model = task.build_model(w2v_args.model) if state is not None and not cfg.no_pretrained_weights: model.load_state_dict(state["model"], strict=True) model.remove_pretraining_modules() super().__init__(task.source_dictionary) d = w2v_args.model.encoder_embed_dim self.w2v_model = model self.final_dropout = nn.Dropout(cfg.final_dropout) self.freeze_finetune_updates = cfg.freeze_finetune_updates self.num_updates = 0 if tgt_dict is not None: self.proj = Linear(d, len(tgt_dict)) elif getattr(cfg, "decoder_embed_dim", d) != d: self.proj = Linear(d, cfg.decoder_embed_dim) else: self.proj = None def set_num_updates(self, num_updates): """Set the number of parameters updates.""" super().set_num_updates(num_updates) self.num_updates = num_updates def forward(self, source, padding_mask, tbc=True, **kwargs): w2v_args = { "source": source, "padding_mask": padding_mask, "mask": self.apply_mask and self.training, } ft = self.freeze_finetune_updates <= self.num_updates with torch.no_grad() if not ft else contextlib.ExitStack(): x, padding_mask = self.w2v_model.extract_features(**w2v_args) if tbc: # B x T x C -> T x B x C x = x.transpose(0, 1) x = self.final_dropout(x) if self.proj: x = self.proj(x) return { "encoder_out": x, # T x B x C "encoder_padding_mask": padding_mask, # B x T "padding_mask": padding_mask, } def reorder_encoder_out(self, encoder_out, new_order): if encoder_out["encoder_out"] is not None: encoder_out["encoder_out"] = encoder_out["encoder_out"].index_select( 1, new_order ) if encoder_out["encoder_padding_mask"] is not None: encoder_out["encoder_padding_mask"] = encoder_out[ "encoder_padding_mask" ].index_select(0, new_order) return encoder_out def max_positions(self): """Maximum input length supported by the encoder.""" return None def upgrade_state_dict_named(self, state_dict, name): return state_dict class TransformerDecoder(FairseqIncrementalDecoder): """ Transformer decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`TransformerDecoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__( self, cfg: Wav2Vec2Seq2SeqConfig, dictionary, embed_tokens, no_encoder_attn=False, ): super().__init__(dictionary) self.dropout = cfg.decoder_dropout self.share_input_output_embed = cfg.share_decoder_input_output_embed input_embed_dim = embed_tokens.embedding_dim embed_dim = cfg.decoder_embed_dim self.output_embed_dim = cfg.decoder_embed_dim self.layerdrop = cfg.decoder_layerdrop padding_idx = embed_tokens.padding_idx self.max_target_positions = cfg.max_target_positions self.embed_tokens = embed_tokens self.embed_scale = math.sqrt(embed_dim) # todo: try with input_embed_dim self.project_in_dim = ( Linear(input_embed_dim, embed_dim, bias=False) if embed_dim != input_embed_dim else None ) self.embed_positions = ( PositionalEmbedding( cfg.max_target_positions, embed_dim, padding_idx, learned=cfg.decoder_learned_pos, ) if not cfg.no_token_positional_embeddings else None ) # TODO: update this when transformer gets converted to dataclass configs transformer_cfg = copy.deepcopy(cfg) with open_dict(transformer_cfg): transformer_cfg.dropout = transformer_cfg.decoder_dropout transformer_cfg.attention_dropout = ( transformer_cfg.decoder_attention_dropout ) transformer_cfg.activation_dropout = ( transformer_cfg.decoder_activation_dropout ) self.layers = nn.ModuleList([]) self.layers.extend( [ TransformerDecoderLayer(transformer_cfg, no_encoder_attn) for _ in range(transformer_cfg.decoder_layers) ] ) if not self.share_input_output_embed: self.embed_out = nn.Parameter( torch.Tensor(len(dictionary), self.output_embed_dim) ) nn.init.normal_(self.embed_out, mean=0, std=self.output_embed_dim ** -0.5) if transformer_cfg.decoder_normalize_before: self.layer_norm = LayerNorm(embed_dim) else: self.layer_norm = None def forward( self, prev_output_tokens, encoder_out=None, incremental_state=None, **unused ): """ Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing encoder_out (Tensor, optional): output from the encoder, used for encoder-side attention incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ prev_output_tokens = prev_output_tokens.long() x, extra = self.extract_features( prev_output_tokens, encoder_out, incremental_state ) x = self.output_layer(x) return x, extra def extract_features( self, prev_output_tokens, encoder_out=None, incremental_state=None, **unused ): """ Similar to *forward* but only return features. Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs """ # embed positions positions = ( self.embed_positions( prev_output_tokens, incremental_state=incremental_state ) if self.embed_positions is not None else None ) if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] # embed tokens and positions x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) attn = None inner_states = [x] # decoder layers for layer in self.layers: dropout_probability = np.random.random() if not self.training or (dropout_probability > self.layerdrop): x, attn, _ = layer( x, encoder_out["encoder_out"] if encoder_out is not None else None, encoder_out["encoder_padding_mask"] if encoder_out is not None else None, incremental_state, self_attn_mask=self.buffered_future_mask(x) if incremental_state is None else None, ) inner_states.append(x) if self.layer_norm: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) return x, {"attn": attn, "inner_states": inner_states} def output_layer(self, features, **kwargs): """Project features to the vocabulary size.""" # project back to size of vocabulary if self.share_input_output_embed: return F.linear(features, self.embed_tokens.weight) else: return F.linear(features, self.embed_out) def max_positions(self): """Maximum output length supported by the decoder.""" if self.embed_positions is None: return self.max_target_positions return min(self.max_target_positions, self.embed_positions.max_positions) def buffered_future_mask(self, tensor): dim = tensor.size(0) if ( not hasattr(self, "_future_mask") or self._future_mask is None or self._future_mask.device != tensor.device or self._future_mask.size(0) < dim ): self._future_mask = torch.triu( utils.fill_with_neg_inf(tensor.new(dim, dim)), 1 ) return self._future_mask[:dim, :dim] def upgrade_state_dict_named(self, state_dict, name): return state_dict def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) nn.init.constant_(m.weight[padding_idx], 0) return m def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.0) return m
data2vec_vision-main
deltalm/src/fairseq/models/wav2vec/wav2vec2_asr.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from dataclasses import dataclass, field from typing import List, Tuple import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.data.data_utils import compute_mask_indices from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.models import BaseFairseqModel, register_model from fairseq.modules import ( Fp32GroupNorm, Fp32LayerNorm, GradMultiply, GumbelVectorQuantizer, LayerNorm, MultiheadAttention, SamePad, TransposeLast, ) from fairseq.modules.transformer_sentence_encoder import init_bert_params from fairseq.utils import buffered_arange EXTRACTOR_MODE_CHOICES = ChoiceEnum(["default", "layer_norm"]) MASKING_DISTRIBUTION_CHOICES = ChoiceEnum(["static", "uniform", "normal", "poisson"]) @dataclass class Wav2Vec2Config(FairseqDataclass): extractor_mode: EXTRACTOR_MODE_CHOICES = field( default="default", metadata={ "help": "mode for feature extractor. default has a single group norm with d " "groups in the first conv block, whereas layer_norm has layer norms in " "every block (meant to use with normalize=True)" }, ) encoder_layers: int = field( default=12, metadata={"help": "num encoder layers in the transformer"} ) encoder_embed_dim: int = field( default=768, metadata={"help": "encoder embedding dimension"} ) encoder_ffn_embed_dim: int = field( default=3072, metadata={"help": "encoder embedding dimension for FFN"} ) encoder_attention_heads: int = field( default=12, metadata={"help": "num encoder attention heads"} ) activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( default="gelu", metadata={"help": "activation function to use"} ) # dropouts dropout: float = field( default=0.1, metadata={"help": "dropout probability for the transformer"} ) attention_dropout: float = field( default=0.1, metadata={"help": "dropout probability for attention weights"} ) activation_dropout: float = field( default=0.0, metadata={"help": "dropout probability after activation in FFN"} ) encoder_layerdrop: float = field( default=0.0, metadata={"help": "probability of dropping a tarnsformer layer"} ) dropout_input: float = field( default=0.0, metadata={"help": "dropout to apply to the input (after feat extr)"}, ) dropout_features: float = field( default=0.0, metadata={"help": "dropout to apply to the features (after feat extr)"}, ) final_dim: int = field( default=0, metadata={ "help": "project final representations and targets to this many dimensions." "set to encoder_embed_dim is <= 0" }, ) layer_norm_first: bool = field( default=False, metadata={"help": "apply layernorm first in the transformer"} ) conv_feature_layers: str = field( default="[(512, 10, 5)] + [(512, 3, 2)] * 4 + [(512,2,2)] + [(512,2,2)]", metadata={ "help": "string describing convolutional feature extraction layers in form of a python list that contains " "[(dim, kernel_size, stride), ...]" }, ) conv_bias: bool = field( default=False, metadata={"help": "include bias in conv encoder"} ) logit_temp: float = field( default=0.1, metadata={"help": "temperature to divide logits by"} ) quantize_targets: bool = field( default=False, metadata={"help": "use quantized targets"} ) quantize_input: bool = field( default=False, metadata={"help": "use quantized inputs"} ) same_quantizer: bool = field( default=False, metadata={"help": "use same quantizer for inputs and targets"} ) target_glu: bool = field( default=False, metadata={"help": "adds projection + glu to targets"} ) feature_grad_mult: float = field( default=1.0, metadata={"help": "multiply feature extractor var grads by this"} ) latent_vars: int = field( default=320, metadata={"help": "number of latent variables V in each group of the codebook"}, ) latent_groups: int = field( default=2, metadata={"help": "number of groups G of latent variables in the codebook"}, ) latent_dim: int = field( default=0, metadata={ "help": "if > 0, uses this dimensionality for latent variables. " "otherwise uses final_dim / latent_groups" }, ) # masking mask_length: int = field(default=10, metadata={"help": "mask length"}) mask_prob: float = field( default=0.65, metadata={"help": "probability of replacing a token with mask"} ) mask_selection: MASKING_DISTRIBUTION_CHOICES = field( default="static", metadata={"help": "how to choose mask length"} ) mask_other: float = field( default=0, metadata={ "help": "secondary mask argument (used for more complex distributions), " "see help in compute_mask_indices" }, ) no_mask_overlap: bool = field( default=False, metadata={"help": "whether to allow masks to overlap"} ) mask_min_space: int = field( default=1, metadata={"help": "min space between spans (if no overlap is enabled)"}, ) # channel masking mask_channel_length: int = field( default=10, metadata={"help": "length of the mask for features (channels)"} ) mask_channel_prob: float = field( default=0.0, metadata={"help": "probability of replacing a feature with 0"} ) mask_channel_selection: MASKING_DISTRIBUTION_CHOICES = field( default="static", metadata={"help": "how to choose mask length for channel masking"}, ) mask_channel_other: float = field( default=0, metadata={ "help": "secondary mask argument (used for more complex distributions), " "see help in compute_mask_indicesh" }, ) no_mask_channel_overlap: bool = field( default=False, metadata={"help": "whether to allow channel masks to overlap"} ) mask_channel_min_space: int = field( default=1, metadata={"help": "min space between spans (if no overlap is enabled)"}, ) # negative selection num_negatives: int = field( default=100, metadata={"help": "number of negative examples from the same sample"}, ) negatives_from_everywhere: bool = field( default=False, metadata={"help": "sample negatives from everywhere, not just masked states"}, ) cross_sample_negatives: int = field( default=0, metadata={"help": "number of negative examples from the any sample"} ) codebook_negatives: int = field( default=0, metadata={"help": "number of negative examples codebook"} ) # positional embeddings conv_pos: int = field( default=128, metadata={"help": "number of filters for convolutional positional embeddings"}, ) conv_pos_groups: int = field( default=16, metadata={"help": "number of groups for convolutional positional embedding"}, ) latent_temp: Tuple[float, float, float] = field( default=(2, 0.5, 0.999995), metadata={ "help": "temperature for latent variable sampling. " "can be tuple of 3 values (start, end, decay)" }, ) @register_model("wav2vec2", dataclass=Wav2Vec2Config) class Wav2Vec2Model(BaseFairseqModel): def __init__(self, cfg: Wav2Vec2Config): super().__init__() self.cfg = cfg feature_enc_layers = eval(cfg.conv_feature_layers) self.embed = feature_enc_layers[-1][0] self.feature_extractor = ConvFeatureExtractionModel( conv_layers=feature_enc_layers, dropout=0.0, mode=cfg.extractor_mode, conv_bias=cfg.conv_bias, ) self.post_extract_proj = ( nn.Linear(self.embed, cfg.encoder_embed_dim) if self.embed != cfg.encoder_embed_dim and not cfg.quantize_input else None ) self.mask_prob = cfg.mask_prob self.mask_selection = cfg.mask_selection self.mask_other = cfg.mask_other self.mask_length = cfg.mask_length self.no_mask_overlap = cfg.no_mask_overlap self.mask_min_space = cfg.mask_min_space self.mask_channel_prob = cfg.mask_channel_prob self.mask_channel_selection = cfg.mask_channel_selection self.mask_channel_other = cfg.mask_channel_other self.mask_channel_length = cfg.mask_channel_length self.no_mask_channel_overlap = cfg.no_mask_channel_overlap self.mask_channel_min_space = cfg.mask_channel_min_space self.dropout_input = nn.Dropout(cfg.dropout_input) self.dropout_features = nn.Dropout(cfg.dropout_features) self.feature_grad_mult = cfg.feature_grad_mult self.quantizer = None self.input_quantizer = None self.n_negatives = cfg.num_negatives self.cross_sample_negatives = cfg.cross_sample_negatives self.codebook_negatives = cfg.codebook_negatives self.negatives_from_everywhere = cfg.negatives_from_everywhere self.logit_temp = cfg.logit_temp final_dim = cfg.final_dim if cfg.final_dim > 0 else cfg.encoder_embed_dim if cfg.quantize_targets: vq_dim = cfg.latent_dim if cfg.latent_dim > 0 else final_dim self.quantizer = GumbelVectorQuantizer( dim=self.embed, num_vars=cfg.latent_vars, temp=cfg.latent_temp, groups=cfg.latent_groups, combine_groups=False, vq_dim=vq_dim, time_first=True, ) self.project_q = nn.Linear(vq_dim, final_dim) else: self.project_q = nn.Linear(self.embed, final_dim) if cfg.quantize_input: if cfg.same_quantizer and self.quantizer is not None: vq_dim = final_dim self.input_quantizer = self.quantizer else: vq_dim = cfg.latent_dim if cfg.latent_dim > 0 else cfg.encoder_embed_dim self.input_quantizer = GumbelVectorQuantizer( dim=self.embed, num_vars=cfg.latent_vars, temp=cfg.latent_temp, groups=cfg.latent_groups, combine_groups=False, vq_dim=vq_dim, time_first=True, ) self.project_inp = nn.Linear(vq_dim, cfg.encoder_embed_dim) self.mask_emb = nn.Parameter( torch.FloatTensor(cfg.encoder_embed_dim).uniform_() ) self.encoder = TransformerEncoder(cfg) self.layer_norm = LayerNorm(self.embed) self.target_glu = None if cfg.target_glu: self.target_glu = nn.Sequential( nn.Linear(final_dim, final_dim * 2), nn.GLU() ) self.final_proj = nn.Linear(cfg.encoder_embed_dim, final_dim) def upgrade_state_dict_named(self, state_dict, name): super().upgrade_state_dict_named(state_dict, name) """Upgrade a (possibly old) state dict for new versions of fairseq.""" return state_dict @classmethod def build_model(cls, cfg: Wav2Vec2Config, task=None): """Build a new model instance.""" return cls(cfg) def apply_mask(self, x, padding_mask): B, T, C = x.shape if self.mask_prob > 0: mask_indices = compute_mask_indices( (B, T), padding_mask, self.mask_prob, self.mask_length, self.mask_selection, self.mask_other, min_masks=2, no_overlap=self.no_mask_overlap, min_space=self.mask_min_space, ) mask_indices = torch.from_numpy(mask_indices).to(x.device) x[mask_indices] = self.mask_emb else: mask_indices = None if self.mask_channel_prob > 0: mask_channel_indices = compute_mask_indices( (B, C), None, self.mask_channel_prob, self.mask_channel_length, self.mask_channel_selection, self.mask_channel_other, no_overlap=self.no_mask_channel_overlap, min_space=self.mask_channel_min_space, ) mask_channel_indices = ( torch.from_numpy(mask_channel_indices) .to(x.device) .unsqueeze(1) .expand(-1, T, -1) ) x[mask_channel_indices] = 0 return x, mask_indices def sample_negatives(self, y, num): if self.n_negatives == 0 and self.cross_sample_negatives == 0: return y.new(0) bsz, tsz, fsz = y.shape y = y.view(-1, fsz) # BTC => (BxT)C cross_high = tsz * bsz high = tsz with torch.no_grad(): assert high > 1, f"{bsz,tsz,fsz}" if self.n_negatives > 0: tszs = ( buffered_arange(num) .unsqueeze(-1) .expand(-1, self.n_negatives) .flatten() ) neg_idxs = torch.randint( low=0, high=high - 1, size=(bsz, self.n_negatives * num) ) neg_idxs[neg_idxs >= tszs] += 1 if self.cross_sample_negatives > 0: tszs = ( buffered_arange(num) .unsqueeze(-1) .expand(-1, self.cross_sample_negatives) .flatten() ) cross_neg_idxs = torch.randint( low=0, high=cross_high - 1, size=(bsz, self.cross_sample_negatives * num), ) cross_neg_idxs[cross_neg_idxs >= tszs] += 1 if self.n_negatives > 0: for i in range(1, bsz): neg_idxs[i] += i * high else: neg_idxs = cross_neg_idxs if self.cross_sample_negatives > 0 and self.n_negatives > 0: neg_idxs = torch.cat([neg_idxs, cross_neg_idxs], dim=1) negs = y[neg_idxs.view(-1)] negs = negs.view( bsz, num, self.n_negatives + self.cross_sample_negatives, fsz ).permute( 2, 0, 1, 3 ) # to NxBxTxC return negs, neg_idxs def compute_preds(self, x, y, negatives): neg_is_pos = (y == negatives).all(-1) y = y.unsqueeze(0) targets = torch.cat([y, negatives], dim=0) logits = torch.cosine_similarity(x.float(), targets.float(), dim=-1).type_as(x) logits /= self.logit_temp if neg_is_pos.any(): logits[1:][neg_is_pos] = float("-inf") return logits def forward(self, source, padding_mask=None, mask=True, features_only=False): if self.feature_grad_mult > 0: features = self.feature_extractor(source) if self.feature_grad_mult != 1.0: features = GradMultiply.apply(features, self.feature_grad_mult) else: with torch.no_grad(): features = self.feature_extractor(source) features_pen = features.float().pow(2).mean() features = features.transpose(1, 2) features = self.layer_norm(features) unmasked_features = features.clone() if padding_mask is not None: extra = padding_mask.size(1) % features.size(1) if extra > 0: padding_mask = padding_mask[:, :-extra] padding_mask = padding_mask.view(padding_mask.size(0), features.size(1), -1) padding_mask = padding_mask.all(-1) if self.post_extract_proj is not None: features = self.post_extract_proj(features) features = self.dropout_input(features) unmasked_features = self.dropout_features(unmasked_features) num_vars = None code_ppl = None prob_ppl = None curr_temp = None if self.input_quantizer: q = self.input_quantizer(features, produce_targets=False) features = q["x"] num_vars = q["num_vars"] code_ppl = q["code_perplexity"] prob_ppl = q["prob_perplexity"] curr_temp = q["temp"] features = self.project_inp(features) if mask: x, mask_indices = self.apply_mask(features, padding_mask) if mask_indices is not None: y = unmasked_features[mask_indices].view( unmasked_features.size(0), -1, unmasked_features.size(-1) ) else: y = unmasked_features else: x = features y = unmasked_features mask_indices = None x = self.encoder(x, padding_mask=padding_mask) if features_only: return {"x": x, "padding_mask": padding_mask} if self.quantizer: q = self.quantizer(y, produce_targets=False) y = q["x"] num_vars = q["num_vars"] code_ppl = q["code_perplexity"] prob_ppl = q["prob_perplexity"] curr_temp = q["temp"] y = self.project_q(y) if self.negatives_from_everywhere: neg_cands, *_ = self.quantizer(unmasked_features, produce_targets=False) negs, _ = self.sample_negatives(neg_cands, y.size(1)) negs = self.project_q(negs) else: negs, _ = self.sample_negatives(y, y.size(1)) if self.codebook_negatives > 0: cb_negs = self.quantizer.sample_from_codebook( y.size(0) * y.size(1), self.codebook_negatives ) cb_negs = cb_negs.view( self.codebook_negatives, y.size(0), y.size(1), -1 ) # order doesnt matter cb_negs = self.project_q(cb_negs) negs = torch.cat([negs, cb_negs], dim=0) else: y = self.project_q(y) if self.negatives_from_everywhere: negs, _ = self.sample_negatives(unmasked_features, y.size(1)) negs = self.project_q(negs) else: negs, _ = self.sample_negatives(y, y.size(1)) x = x[mask_indices].view(x.size(0), -1, x.size(-1)) if self.target_glu: y = self.target_glu(y) negs = self.target_glu(negs) x = self.final_proj(x) x = self.compute_preds(x, y, negs) result = {"x": x, "padding_mask": padding_mask, "features_pen": features_pen} if prob_ppl is not None: result["prob_perplexity"] = prob_ppl result["code_perplexity"] = code_ppl result["num_vars"] = num_vars result["temp"] = curr_temp return result def quantize(self, x): assert self.quantizer is not None x = self.feature_extractor(x) x = x.transpose(1, 2) x = self.layer_norm(x) return self.quantizer.forward_idx(x) def extract_features(self, source, padding_mask, mask=False): res = self.forward(source, padding_mask, mask=mask, features_only=True) return res["x"], res["padding_mask"] def get_logits(self, net_output): logits = net_output["x"] logits = logits.transpose(0, 2) logits = logits.reshape(-1, logits.size(-1)) return logits def get_targets(self, sample, net_output, expand_steps=True): x = net_output["x"] return x.new_zeros(x.size(1) * x.size(2), dtype=torch.long) def get_extra_losses(self, net_output): pen = [] if "prob_perplexity" in net_output: pen.append( (net_output["num_vars"] - net_output["prob_perplexity"]) / net_output["num_vars"] ) if "features_pen" in net_output: pen.append(net_output["features_pen"]) return pen def remove_pretraining_modules(self): self.quantizer = None self.project_q = None self.target_glu = None self.final_proj = None class ConvFeatureExtractionModel(nn.Module): def __init__( self, conv_layers: List[Tuple[int, int, int]], dropout: float = 0.0, mode: str = "default", conv_bias: bool = False, ): super().__init__() assert mode in {"default", "layer_norm"} def block( n_in, n_out, k, stride, is_layer_norm=False, is_group_norm=False, conv_bias=False, ): def make_conv(): conv = nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias) nn.init.kaiming_normal_(conv.weight) return conv assert ( is_layer_norm and is_group_norm ) == False, "layer norm and group norm are exclusive" if is_layer_norm: return nn.Sequential( make_conv(), nn.Dropout(p=dropout), nn.Sequential( TransposeLast(), Fp32LayerNorm(dim, elementwise_affine=True), TransposeLast(), ), nn.GELU(), ) elif is_group_norm: return nn.Sequential( make_conv(), nn.Dropout(p=dropout), Fp32GroupNorm(dim, dim, affine=True), nn.GELU(), ) else: return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU()) in_d = 1 self.conv_layers = nn.ModuleList() for i, cl in enumerate(conv_layers): assert len(cl) == 3, "invalid conv definition: " + str(cl) (dim, k, stride) = cl self.conv_layers.append( block( in_d, dim, k, stride, is_layer_norm=mode == "layer_norm", is_group_norm=mode == "default" and i == 0, conv_bias=conv_bias, ) ) in_d = dim def forward(self, x): # BxT -> BxCxT x = x.unsqueeze(1) for conv in self.conv_layers: x = conv(x) return x class TransformerEncoder(nn.Module): def __init__(self, args): super().__init__() self.dropout = args.dropout self.embedding_dim = args.encoder_embed_dim self.pos_conv = nn.Conv1d( self.embedding_dim, self.embedding_dim, kernel_size=args.conv_pos, padding=args.conv_pos // 2, groups=args.conv_pos_groups, ) dropout = 0 std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim)) nn.init.normal_(self.pos_conv.weight, mean=0, std=std) nn.init.constant_(self.pos_conv.bias, 0) self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2) self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU()) self.layers = nn.ModuleList( [ TransformerSentenceEncoderLayer( embedding_dim=self.embedding_dim, ffn_embedding_dim=args.encoder_ffn_embed_dim, num_attention_heads=args.encoder_attention_heads, dropout=self.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_fn=args.activation_fn, layer_norm_first=args.layer_norm_first, ) for _ in range(args.encoder_layers) ] ) self.layer_norm_first = args.layer_norm_first self.layer_norm = LayerNorm(self.embedding_dim) self.layerdrop = args.encoder_layerdrop self.apply(init_bert_params) def forward(self, x, padding_mask=None): x = self.extract_features(x, padding_mask) if self.layer_norm_first: x = self.layer_norm(x) return x def extract_features(self, x, padding_mask=None): if padding_mask is not None: x[padding_mask] = 0 x_conv = self.pos_conv(x.transpose(1, 2)) x_conv = x_conv.transpose(1, 2) x += x_conv if not self.layer_norm_first: x = self.layer_norm(x) x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) layer_results = [] for i, layer in enumerate(self.layers): dropout_probability = np.random.random() if not self.training or (dropout_probability > self.layerdrop): x, z = layer(x, self_attn_padding_mask=padding_mask, need_weights=False) layer_results.append(x) # T x B x C -> B x T x C x = x.transpose(0, 1) return x def max_positions(self): """Maximum output length supported by the encoder.""" return self.args.max_positions def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" return state_dict class TransformerSentenceEncoderLayer(nn.Module): """ Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained models. """ def __init__( self, embedding_dim: float = 768, ffn_embedding_dim: float = 3072, num_attention_heads: float = 8, dropout: float = 0.1, attention_dropout: float = 0.1, activation_dropout: float = 0.1, activation_fn: str = "relu", layer_norm_first: bool = False, ) -> None: super().__init__() # Initialize parameters self.embedding_dim = embedding_dim self.dropout = dropout self.activation_dropout = activation_dropout # Initialize blocks self.activation_fn = utils.get_activation_fn(activation_fn) self.self_attn = MultiheadAttention( self.embedding_dim, num_attention_heads, dropout=attention_dropout, self_attention=True, ) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(self.activation_dropout) self.dropout3 = nn.Dropout(dropout) self.layer_norm_first = layer_norm_first # layer norm associated with the self attention layer self.self_attn_layer_norm = LayerNorm(self.embedding_dim) self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim) self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim) # layer norm associated with the position wise feed-forward NN self.final_layer_norm = LayerNorm(self.embedding_dim) def forward( self, x: torch.Tensor, self_attn_mask: torch.Tensor = None, self_attn_padding_mask: torch.Tensor = None, need_weights: bool = False, att_args=None, ): """ LayerNorm is applied either before or after the self-attention/ffn modules similar to the original Transformer imlementation. """ residual = x if self.layer_norm_first: x = self.self_attn_layer_norm(x) x, attn = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, need_weights=False, attn_mask=self_attn_mask, ) x = self.dropout1(x) x = residual + x residual = x x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = self.dropout2(x) x = self.fc2(x) x = self.dropout3(x) x = residual + x else: x, attn = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, need_weights=need_weights, ) x = self.dropout1(x) x = residual + x x = self.self_attn_layer_norm(x) residual = x x = self.activation_fn(self.fc1(x)) x = self.dropout2(x) x = self.fc2(x) x = self.dropout3(x) x = residual + x x = self.final_layer_norm(x) return x, attn
data2vec_vision-main
deltalm/src/fairseq/models/wav2vec/wav2vec2.py