python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field import logging import math from typing import Optional, Tuple from omegaconf import II import sys import torch import torch.nn as nn import torch.nn.functional as F from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.models import BaseFairseqModel, register_model from fairseq.modules import ( Fp32GroupNorm, Fp32LayerNorm, GumbelVectorQuantizer, KmeansVectorQuantizer, TransposeLast, ) from fairseq.tasks import FairseqTask from fairseq.utils import buffered_arange logger = logging.getLogger(__name__) AGGREGATOR_CHOICES = ChoiceEnum(["cnn", "gru"]) PROJECT_FEATURES_CHOICES = ChoiceEnum(["none", "same", "new"]) ACTIVATION_CHOICES = ChoiceEnum(["relu", "gelu"]) VQ_TYPE_CHOICES = ChoiceEnum(["none", "gumbel", "kmeans"]) @dataclass class Wav2VecConfig(FairseqDataclass): prediction_steps: int = field( default=12, metadata={"help": "number of steps ahead to predict"} ) sample_distance: Optional[int] = field( default=None, metadata={ "help": "sample distance from target. does not work properly with cross-sampling" }, ) cross_sample_negatives: int = field( default=0, metadata={"help": "num of cross sampled negatives"} ) num_negatives: int = field( default=10, metadata={"help": "num of cross sampled negatives"} ) conv_feature_layers: str = field( default="[(512, 10, 5), (512, 8, 4), (512, 4, 2), (512, 4, 2), (512, 4, 2), (512, 1, 1), (512, 1, 1), (512, 1, 1)]", metadata={ "help": "convolutional feature extraction layers [(dim, kernel_size, stride), ...]" }, ) conv_aggregator_layers: str = field( default="[(512, 2, 1), (512, 3, 1), (512, 4, 1), (512, 5, 1), (512, 6, 1), (512, 7, 1), (512, 8, 1), (512, 9, 1), (512, 10, 1), (512, 11, 1), (512, 12, 1), (512, 13, 1)]", metadata={ "help": "convolutional aggregator layers [(dim, kernel_size, stride), ...]" }, ) dropout: float = field( default=0.0, metadata={"help": "dropout to apply within the model"} ) dropout_features: float = field( default=0.0, metadata={"help": "dropout to apply to the features"} ) dropout_agg: float = field( default=0.0, metadata={"help": "dropout to apply after aggregation step"} ) aggregator: AGGREGATOR_CHOICES = field( default="cnn", metadata={"help": "type of aggregator to use"} ) gru_dim: int = field(default=512, metadata={"help": "GRU dimensionality"}) no_conv_bias: bool = field( default=False, metadata={"help": "if set, does not learn bias for conv layers"} ) agg_zero_pad: bool = field( default=False, metadata={"help": "if set, zero pads in aggregator instead of repl pad"}, ) skip_connections_feat: bool = field( default=False, metadata={"help": "if set, adds skip connections to the feature extractor"}, ) skip_connections_agg: bool = field( default=True, metadata={"help": "if set, adds skip connections to the aggregator"}, ) residual_scale: float = field( default=0.5, metadata={"help": "scales residual by sqrt(value)"} ) log_compression: bool = field( default=True, metadata={"help": "if set, adds a log compression to feature extractor"}, ) balanced_classes: bool = field( default=False, metadata={"help": "if set, loss is scaled to balance for number of negatives"}, ) project_features: PROJECT_FEATURES_CHOICES = field( default="none", metadata={ "help": "if not none, features are projected using the (same or new) aggregator" }, ) non_affine_group_norm: bool = field( default=False, metadata={"help": "if set, group norm is not affine"} ) offset: str = field( default="auto", metadata={ "help": "if set to 'auto', it is computed automatically from the receptive field, else set to int value" }, ) activation: ACTIVATION_CHOICES = field( default="relu", metadata={ "help": "if set to 'auto', it is computed automatically from the receptive field, else set to int value" }, ) vq_type: VQ_TYPE_CHOICES = field( default="none", metadata={"help": "which type of quantizer to use"} ) vq_vars: int = field( default=320, metadata={"help": "project to this many vector quantized variables per group"}, ) vq_groups: int = field( default=2, metadata={"help": "number of groups of latent variables"} ) vq_dim: int = field( default=0, metadata={ "help": "uses this dimensionality for quantized vectors. 0 to use model dim // groups" }, ) vq_depth: int = field( default=1, metadata={"help": "number of layers for vq weight projection"} ) combine_groups: bool = field( default=False, metadata={"help": "if set, variables are shared among groups"} ) vq_temp: Tuple[float, float, float] = field( default=(2.0, 0.5, 0.999995), metadata={ "help": "temperature for latent variable sampling with gumbel softmax. should be a tuple of 3 values (start, end, decay)" }, ) vq_gamma: float = field( default=0.25, metadata={"help": "gamma parameter for kmeans style vector quantization"}, ) infonce: bool = II("criterion.infonce") @register_model("wav2vec", dataclass=Wav2VecConfig) class Wav2VecModel(BaseFairseqModel): @classmethod def build_model(cls, cfg: Wav2VecConfig, task: FairseqTask): """Build a new model instance.""" model = Wav2VecModel(cfg) logger.info(model) return model def __init__(self, cfg: Wav2VecConfig): super().__init__() self.prediction_steps = cfg.prediction_steps offset = cfg.offset if cfg.activation == "relu": activation = nn.ReLU() elif cfg.activation == "gelu": activation = nn.GELU() else: raise Exception("unknown activation " + cfg.activation) feature_enc_layers = eval(cfg.conv_feature_layers) self.feature_extractor = ConvFeatureExtractionModel( conv_layers=feature_enc_layers, dropout=0.0, log_compression=cfg.log_compression, skip_connections=cfg.skip_connections_feat, residual_scale=cfg.residual_scale, non_affine_group_norm=cfg.non_affine_group_norm, activation=activation, ) embed = feature_enc_layers[-1][0] self.vector_quantizer = None if cfg.vq_type == "gumbel": self.vector_quantizer = GumbelVectorQuantizer( dim=embed, num_vars=cfg.vq_vars, temp=cfg.vq_temp, groups=cfg.vq_groups, combine_groups=cfg.combine_groups, vq_dim=cfg.vq_dim if cfg.vq_dim > 0 else embed, time_first=False, activation=activation, weight_proj_depth=cfg.vq_depth, weight_proj_factor=2, ) elif cfg.vq_type == "kmeans": self.vector_quantizer = KmeansVectorQuantizer( dim=embed, num_vars=cfg.vq_vars, groups=cfg.vq_groups, combine_groups=cfg.combine_groups, vq_dim=cfg.vq_dim if cfg.vq_dim > 0 else embed, time_first=False, gamma=cfg.vq_gamma, ) else: assert ( cfg.vq_type == "none" or cfg.vq_type is None ), "Unknown quantizer type" if cfg.offset == "auto": jin = 0 rin = 0 for _, k, stride in feature_enc_layers: if rin == 0: rin = k rin = rin + (k - 1) * jin if jin == 0: jin = stride else: jin *= stride offset = math.ceil(rin / jin) offset = int(offset) def make_aggregator(): if cfg.aggregator == "cnn": agg_layers = eval(cfg.conv_aggregator_layers) agg_dim = agg_layers[-1][0] feature_aggregator = ConvAggegator( conv_layers=agg_layers, embed=embed, dropout=cfg.dropout, skip_connections=cfg.skip_connections_agg, residual_scale=cfg.residual_scale, non_affine_group_norm=cfg.non_affine_group_norm, conv_bias=not cfg.no_conv_bias, zero_pad=cfg.agg_zero_pad, activation=activation, ) elif cfg.aggregator == "gru": agg_dim = cfg.gru_dim feature_aggregator = nn.Sequential( TransposeLast(), nn.GRU( input_size=embed, hidden_size=agg_dim, num_layers=1, dropout=cfg.dropout, ), TransposeLast(deconstruct_idx=0), ) else: raise Exception("unknown aggregator type " + cfg.aggregator) return feature_aggregator, agg_dim self.feature_aggregator, agg_dim = make_aggregator() self.wav2vec_predictions = Wav2VecPredictionsModel( in_dim=agg_dim, out_dim=embed, prediction_steps=cfg.prediction_steps, n_negatives=cfg.num_negatives, cross_sample_negatives=cfg.cross_sample_negatives, sample_distance=cfg.sample_distance, dropout=cfg.dropout, offset=offset, balanced_classes=cfg.balanced_classes, infonce=cfg.infonce, ) self.dropout_feats = nn.Dropout(p=cfg.dropout_features) self.dropout_agg = nn.Dropout(p=cfg.dropout_agg) if cfg.project_features == "none": self.project_features = None elif cfg.project_features == "same": self.project_features = self.feature_aggregator elif cfg.project_features == "new": self.project_features, _ = make_aggregator() def forward(self, source): result = {} features = self.feature_extractor(source) if self.vector_quantizer: q_res = self.vector_quantizer(features) features = q_res["x"] for k in q_res.keys(): if k != "x": result[k] = q_res[k] x = self.dropout_feats(features) x = self.feature_aggregator(x) x = self.dropout_agg(x) if self.project_features is not None: features = self.project_features(features) x, targets = self.wav2vec_predictions(x, features) result["cpc_logits"] = x result["cpc_targets"] = targets return result def upgrade_state_dict_named(self, state_dict, name): super().upgrade_state_dict_named(state_dict, name) def max_positions(self): """Maximum length supported by the model.""" return sys.maxsize def get_logits(self, net_output): logits = net_output["cpc_logits"] return logits def get_targets(self, sample, net_output): t = net_output["cpc_targets"] if isinstance(t, tuple): t = t[0] return t.contiguous() def get_target_weights(self, targets, net_output): targets = net_output["cpc_targets"] if isinstance(targets, tuple) and targets[-1] is not None: return targets[-1] return None def get_extra_losses(self, net_output): loss = None if "prob_perplexity" in net_output: loss = net_output["num_vars"] - net_output["prob_perplexity"] elif "kmeans_loss" in net_output: loss = net_output["kmeans_loss"] return loss def norm_block(is_layer_norm, dim, affine=True): if is_layer_norm: mod = nn.Sequential( TransposeLast(), Fp32LayerNorm(dim, elementwise_affine=affine), TransposeLast(), ) else: mod = Fp32GroupNorm(1, dim, affine=affine) return mod class ConvFeatureExtractionModel(nn.Module): def __init__( self, conv_layers, dropout, log_compression, skip_connections, residual_scale, non_affine_group_norm, activation, ): super().__init__() def block(n_in, n_out, k, stride): return nn.Sequential( nn.Conv1d(n_in, n_out, k, stride=stride, bias=False), nn.Dropout(p=dropout), norm_block( is_layer_norm=False, dim=n_out, affine=not non_affine_group_norm ), activation, ) in_d = 1 self.conv_layers = nn.ModuleList() for dim, k, stride in conv_layers: self.conv_layers.append(block(in_d, dim, k, stride)) in_d = dim self.log_compression = log_compression self.skip_connections = skip_connections self.residual_scale = math.sqrt(residual_scale) def forward(self, x): # BxT -> BxCxT x = x.unsqueeze(1) for conv in self.conv_layers: residual = x x = conv(x) if self.skip_connections and x.size(1) == residual.size(1): tsz = x.size(2) r_tsz = residual.size(2) residual = residual[..., :: r_tsz // tsz][..., :tsz] x = (x + residual) * self.residual_scale if self.log_compression: x = x.abs() x = x + 1 x = x.log() return x class ZeroPad1d(nn.Module): def __init__(self, pad_left, pad_right): super().__init__() self.pad_left = pad_left self.pad_right = pad_right def forward(self, x): return F.pad(x, (self.pad_left, self.pad_right)) class ConvAggegator(nn.Module): def __init__( self, conv_layers, embed, dropout, skip_connections, residual_scale, non_affine_group_norm, conv_bias, zero_pad, activation, ): super().__init__() def block(n_in, n_out, k, stride): # padding dims only really make sense for stride = 1 ka = k // 2 kb = ka - 1 if k % 2 == 0 else ka pad = ( ZeroPad1d(ka + kb, 0) if zero_pad else nn.ReplicationPad1d((ka + kb, 0)) ) return nn.Sequential( pad, nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias), nn.Dropout(p=dropout), norm_block(False, n_out, affine=not non_affine_group_norm), activation, ) in_d = embed self.conv_layers = nn.ModuleList() self.residual_proj = nn.ModuleList() for dim, k, stride in conv_layers: if in_d != dim and skip_connections: self.residual_proj.append(nn.Conv1d(in_d, dim, 1, bias=False)) else: self.residual_proj.append(None) self.conv_layers.append(block(in_d, dim, k, stride)) in_d = dim self.conv_layers = nn.Sequential(*self.conv_layers) self.skip_connections = skip_connections self.residual_scale = math.sqrt(residual_scale) def forward(self, x): for rproj, conv in zip(self.residual_proj, self.conv_layers): residual = x x = conv(x) if self.skip_connections: if rproj is not None: residual = rproj(residual) x = (x + residual) * self.residual_scale return x class Wav2VecPredictionsModel(nn.Module): def __init__( self, in_dim, out_dim, prediction_steps, n_negatives, cross_sample_negatives, sample_distance, dropout, offset, balanced_classes, infonce, ): super().__init__() self.n_negatives = n_negatives self.cross_sample_negatives = cross_sample_negatives self.sample_distance = sample_distance self.project_to_steps = nn.ConvTranspose2d( in_dim, out_dim, (1, prediction_steps) ) self.dropout = nn.Dropout(p=dropout) self.offset = offset self.balanced_classes = balanced_classes self.infonce = infonce def sample_negatives(self, y): bsz, fsz, tsz = y.shape y = y.transpose(0, 1) # BCT -> CBT y = y.contiguous().view(fsz, -1) # CBT => C(BxT) cross_high = tsz * bsz high = tsz if self.sample_distance is None else min(tsz, self.sample_distance) assert high > 1 neg_idxs = torch.randint(low=0, high=high, size=(bsz, self.n_negatives * tsz)) with torch.no_grad(): if self.n_negatives > 0: tszs = ( buffered_arange(tsz) .unsqueeze(-1) .expand(-1, self.n_negatives) .flatten() ) neg_idxs = torch.randint( low=0, high=high - 1, size=(bsz, self.n_negatives * tsz) ) neg_idxs[neg_idxs >= tszs] += 1 if self.cross_sample_negatives > 0: tszs = ( buffered_arange(tsz) .unsqueeze(-1) .expand(-1, self.cross_sample_negatives) .flatten() ) cross_neg_idxs = torch.randint( low=0, high=cross_high - 1, size=(bsz, self.cross_sample_negatives * tsz), ) cross_neg_idxs[cross_neg_idxs >= tszs] += 1 if self.n_negatives > 0: for i in range(1, bsz): neg_idxs[i] += i * high else: neg_idxs = cross_neg_idxs if self.cross_sample_negatives > 0 and self.n_negatives > 0: neg_idxs = torch.cat([neg_idxs, cross_neg_idxs], dim=1) negs = y[..., neg_idxs.view(-1)] negs = negs.view( fsz, bsz, self.n_negatives + self.cross_sample_negatives, tsz ).permute( 2, 1, 0, 3 ) # to NxBxCxT return negs def forward(self, x, y): x = x.unsqueeze(-1) x = self.project_to_steps(x) # BxCxTxS x = self.dropout(x) negatives = self.sample_negatives(y) y = y.unsqueeze(0) targets = torch.cat([y, negatives], dim=0) # Copies x B x C x T copies = targets.size(0) bsz, dim, tsz, steps = x.shape steps = min(steps, tsz - self.offset) predictions = x.new( bsz * copies * (tsz - self.offset + 1) * steps - ((steps + 1) * steps // 2) * copies * bsz ) if self.infonce: labels = predictions.new_full( (predictions.shape[0] // copies,), 0, dtype=torch.long ) else: labels = torch.zeros_like(predictions) weights = ( torch.full_like(labels, 1 / self.n_negatives) if self.balanced_classes and not self.infonce else None ) start = end = 0 for i in range(steps): offset = i + self.offset end = start + (tsz - offset) * bsz * copies if self.infonce: predictions[start:end] = torch.einsum( "bct,nbct->tbn", x[..., :-offset, i], targets[..., offset:] ).flatten() else: pos_num = (end - start) // copies predictions[start:end] = torch.einsum( "bct,nbct->nbt", x[..., :-offset, i], targets[..., offset:] ).flatten() labels[start : start + pos_num] = 1.0 if weights is not None: weights[start : start + pos_num] = 1.0 start = end assert end == predictions.numel(), "{} != {}".format(end, predictions.numel()) if self.infonce: predictions = predictions.view(-1, copies) else: if weights is not None: labels = (labels, weights) return predictions, labels
data2vec_vision-main
deltalm/src/fairseq/models/wav2vec/wav2vec.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Unsupervised Cross-lingual Representation Learning at Scale """ from fairseq.models import register_model from .hub_interface import RobertaHubInterface from .model import RobertaModel @register_model("xlmr") class XLMRModel(RobertaModel): @classmethod def hub_models(cls): return { "xlmr.base": "http://dl.fbaipublicfiles.com/fairseq/models/xlmr.base.tar.gz", "xlmr.large": "http://dl.fbaipublicfiles.com/fairseq/models/xlmr.large.tar.gz", } @classmethod def from_pretrained( cls, model_name_or_path, checkpoint_file="model.pt", data_name_or_path=".", bpe="sentencepiece", **kwargs ): from fairseq import hub_utils x = hub_utils.from_pretrained( model_name_or_path, checkpoint_file, data_name_or_path, archive_map=cls.hub_models(), bpe=bpe, load_checkpoint_heads=True, **kwargs, ) return RobertaHubInterface(x["args"], x["task"], x["models"][0])
data2vec_vision-main
deltalm/src/fairseq/models/roberta/model_xlmr.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import Counter from typing import List import torch def align_bpe_to_words(roberta, bpe_tokens: torch.LongTensor, other_tokens: List[str]): """ Helper to align GPT-2 BPE to other tokenization formats (e.g., spaCy). Args: roberta (RobertaHubInterface): RoBERTa instance bpe_tokens (torch.LongTensor): GPT-2 BPE tokens of shape `(T_bpe)` other_tokens (List[str]): other tokens of shape `(T_words)` Returns: List[str]: mapping from *other_tokens* to corresponding *bpe_tokens*. """ assert bpe_tokens.dim() == 1 assert bpe_tokens[0] == 0 def clean(text): return text.strip() # remove whitespaces to simplify alignment bpe_tokens = [roberta.task.source_dictionary.string([x]) for x in bpe_tokens] bpe_tokens = [ clean(roberta.bpe.decode(x) if x not in {"<s>", ""} else x) for x in bpe_tokens ] other_tokens = [clean(str(o)) for o in other_tokens] # strip leading <s> bpe_tokens = bpe_tokens[1:] assert "".join(bpe_tokens) == "".join(other_tokens) # create alignment from every word to a list of BPE tokens alignment = [] bpe_toks = filter(lambda item: item[1] != "", enumerate(bpe_tokens, start=1)) j, bpe_tok = next(bpe_toks) for other_tok in other_tokens: bpe_indices = [] while True: if other_tok.startswith(bpe_tok): bpe_indices.append(j) other_tok = other_tok[len(bpe_tok) :] try: j, bpe_tok = next(bpe_toks) except StopIteration: j, bpe_tok = None, None elif bpe_tok.startswith(other_tok): # other_tok spans multiple BPE tokens bpe_indices.append(j) bpe_tok = bpe_tok[len(other_tok) :] other_tok = "" else: raise Exception('Cannot align "{}" and "{}"'.format(other_tok, bpe_tok)) if other_tok == "": break assert len(bpe_indices) > 0 alignment.append(bpe_indices) assert len(alignment) == len(other_tokens) return alignment def align_features_to_words(roberta, features, alignment): """ Align given features to words. Args: roberta (RobertaHubInterface): RoBERTa instance features (torch.Tensor): features to align of shape `(T_bpe x C)` alignment: alignment between BPE tokens and words returned by func:`align_bpe_to_words`. """ assert features.dim() == 2 bpe_counts = Counter(j for bpe_indices in alignment for j in bpe_indices) assert bpe_counts[0] == 0 # <s> shouldn't be aligned denom = features.new([bpe_counts.get(j, 1) for j in range(len(features))]) weighted_features = features / denom.unsqueeze(-1) output = [weighted_features[0]] largest_j = -1 for bpe_indices in alignment: output.append(weighted_features[bpe_indices].sum(dim=0)) largest_j = max(largest_j, *bpe_indices) for j in range(largest_j + 1, len(features)): output.append(weighted_features[j]) output = torch.stack(output) assert torch.all(torch.abs(output.sum(dim=0) - features.sum(dim=0)) < 1e-4) return output def spacy_nlp(): if getattr(spacy_nlp, "_nlp", None) is None: try: from spacy.lang.en import English spacy_nlp._nlp = English() except ImportError: raise ImportError("Please install spacy with: pip install spacy") return spacy_nlp._nlp def spacy_tokenizer(): if getattr(spacy_tokenizer, "_tokenizer", None) is None: try: nlp = spacy_nlp() spacy_tokenizer._tokenizer = nlp.Defaults.create_tokenizer(nlp) except ImportError: raise ImportError("Please install spacy with: pip install spacy") return spacy_tokenizer._tokenizer
data2vec_vision-main
deltalm/src/fairseq/models/roberta/alignment_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .hub_interface import * # noqa from .model import * # noqa from .model_camembert import * # noqa from .model_xlmr import * # noqa
data2vec_vision-main
deltalm/src/fairseq/models/roberta/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ RoBERTa: A Robustly Optimized BERT Pretraining Approach. """ import logging import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.models import ( FairseqEncoder, FairseqEncoderModel, register_model, register_model_architecture, ) from fairseq.modules import LayerNorm, TransformerSentenceEncoder from fairseq.modules.quant_noise import quant_noise as apply_quant_noise_ from fairseq.modules.transformer_sentence_encoder import init_bert_params from .hub_interface import RobertaHubInterface logger = logging.getLogger(__name__) @register_model("roberta") class RobertaModel(FairseqEncoderModel): @classmethod def hub_models(cls): return { "roberta.base": "http://dl.fbaipublicfiles.com/fairseq/models/roberta.base.tar.gz", "roberta.large": "http://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz", "roberta.large.mnli": "http://dl.fbaipublicfiles.com/fairseq/models/roberta.large.mnli.tar.gz", "roberta.large.wsc": "http://dl.fbaipublicfiles.com/fairseq/models/roberta.large.wsc.tar.gz", } def __init__(self, args, encoder): super().__init__(encoder) self.args = args # We follow BERT's random weight initialization self.apply(init_bert_params) self.classification_heads = nn.ModuleDict() @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" parser.add_argument( "--encoder-layers", type=int, metavar="L", help="num encoder layers" ) parser.add_argument( "--encoder-embed-dim", type=int, metavar="H", help="encoder embedding dimension", ) parser.add_argument( "--encoder-ffn-embed-dim", type=int, metavar="F", help="encoder embedding dimension for FFN", ) parser.add_argument( "--encoder-attention-heads", type=int, metavar="A", help="num encoder attention heads", ) parser.add_argument( "--activation-fn", choices=utils.get_available_activation_fns(), help="activation function to use", ) parser.add_argument( "--pooler-activation-fn", choices=utils.get_available_activation_fns(), help="activation function to use for pooler layer", ) parser.add_argument( "--encoder-normalize-before", action="store_true", help="apply layernorm before each encoder block", ) parser.add_argument( "--dropout", type=float, metavar="D", help="dropout probability" ) parser.add_argument( "--attention-dropout", type=float, metavar="D", help="dropout probability for attention weights", ) parser.add_argument( "--activation-dropout", type=float, metavar="D", help="dropout probability after activation in FFN", ) parser.add_argument( "--pooler-dropout", type=float, metavar="D", help="dropout probability in the masked_lm pooler layers", ) parser.add_argument( "--max-positions", type=int, help="number of positional embeddings to learn" ) parser.add_argument( "--load-checkpoint-heads", action="store_true", help="(re-)register and load heads when loading checkpoints", ) # args for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019) parser.add_argument( "--encoder-layerdrop", type=float, metavar="D", default=0, help="LayerDrop probability for encoder", ) parser.add_argument( "--encoder-layers-to-keep", default=None, help="which layers to *keep* when pruning as a comma-separated list", ) # args for Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020) parser.add_argument( "--quant-noise-pq", type=float, metavar="D", default=0, help="iterative PQ quantization noise at training time", ) parser.add_argument( "--quant-noise-pq-block-size", type=int, metavar="D", default=8, help="block size of quantization noise at training time", ) parser.add_argument( "--quant-noise-scalar", type=float, metavar="D", default=0, help="scalar quantization noise and scalar quantization at training time", ) parser.add_argument( "--untie-weights-roberta", action="store_true", help="Untie weights between embeddings and classifiers in RoBERTa", ) parser.add_argument( "--spectral-norm-classification-head", action="store_true", default=False, help="Apply spectral normalization on the classification head", ) @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present base_architecture(args) if not hasattr(args, "max_positions"): args.max_positions = args.tokens_per_sample encoder = RobertaEncoder(args, task.source_dictionary) return cls(args, encoder) def forward( self, src_tokens, features_only=False, return_all_hiddens=False, classification_head_name=None, **kwargs ): if classification_head_name is not None: features_only = True x, extra = self.encoder(src_tokens, features_only, return_all_hiddens, **kwargs) if classification_head_name is not None: x = self.classification_heads[classification_head_name](x) return x, extra def get_normalized_probs(self, net_output, log_probs, sample=None): """Get normalized probabilities (or log probs) from a net's output.""" logits = net_output[0].float() if log_probs: return F.log_softmax(logits, dim=-1) else: return F.softmax(logits, dim=-1) def register_classification_head( self, name, num_classes=None, inner_dim=None, **kwargs ): """Register a classification head.""" if name in self.classification_heads: prev_num_classes = self.classification_heads[name].out_proj.out_features prev_inner_dim = self.classification_heads[name].dense.out_features if num_classes != prev_num_classes or inner_dim != prev_inner_dim: logger.warning( 're-registering head "{}" with num_classes {} (prev: {}) ' "and inner_dim {} (prev: {})".format( name, num_classes, prev_num_classes, inner_dim, prev_inner_dim ) ) self.classification_heads[name] = RobertaClassificationHead( input_dim=self.args.encoder_embed_dim, inner_dim=inner_dim or self.args.encoder_embed_dim, num_classes=num_classes, activation_fn=self.args.pooler_activation_fn, pooler_dropout=self.args.pooler_dropout, q_noise=self.args.quant_noise_pq, qn_block_size=self.args.quant_noise_pq_block_size, do_spectral_norm=self.args.spectral_norm_classification_head, ) @property def supported_targets(self): return {"self"} @classmethod def from_pretrained( cls, model_name_or_path, checkpoint_file="model.pt", data_name_or_path=".", bpe="gpt2", **kwargs ): from fairseq import hub_utils x = hub_utils.from_pretrained( model_name_or_path, checkpoint_file, data_name_or_path, archive_map=cls.hub_models(), bpe=bpe, load_checkpoint_heads=True, **kwargs, ) logger.info(x["args"]) return RobertaHubInterface(x["args"], x["task"], x["models"][0]) def upgrade_state_dict_named(self, state_dict, name): prefix = name + "." if name != "" else "" # rename decoder -> encoder before upgrading children modules for k in list(state_dict.keys()): if k.startswith(prefix + "decoder"): new_k = prefix + "encoder" + k[len(prefix + "decoder") :] state_dict[new_k] = state_dict[k] del state_dict[k] # upgrade children modules super().upgrade_state_dict_named(state_dict, name) # Handle new classification heads present in the state dict. current_head_names = ( [] if not hasattr(self, "classification_heads") else self.classification_heads.keys() ) keys_to_delete = [] for k in state_dict.keys(): if not k.startswith(prefix + "classification_heads."): continue head_name = k[len(prefix + "classification_heads.") :].split(".")[0] num_classes = state_dict[ prefix + "classification_heads." + head_name + ".out_proj.weight" ].size(0) inner_dim = state_dict[ prefix + "classification_heads." + head_name + ".dense.weight" ].size(0) if getattr(self.args, "load_checkpoint_heads", False): if head_name not in current_head_names: self.register_classification_head(head_name, num_classes, inner_dim) else: if head_name not in current_head_names: logger.warning( "deleting classification head ({}) from checkpoint " "not present in current model: {}".format(head_name, k) ) keys_to_delete.append(k) elif ( num_classes != self.classification_heads[head_name].out_proj.out_features or inner_dim != self.classification_heads[head_name].dense.out_features ): logger.warning( "deleting classification head ({}) from checkpoint " "with different dimensions than current model: {}".format( head_name, k ) ) keys_to_delete.append(k) for k in keys_to_delete: del state_dict[k] # Copy any newly-added classification heads into the state dict # with their current weights. if hasattr(self, "classification_heads"): cur_state = self.classification_heads.state_dict() for k, v in cur_state.items(): if prefix + "classification_heads." + k not in state_dict: logger.info("Overwriting " + prefix + "classification_heads." + k) state_dict[prefix + "classification_heads." + k] = v class RobertaLMHead(nn.Module): """Head for masked language modeling.""" def __init__(self, embed_dim, output_dim, activation_fn, weight=None): super().__init__() self.dense = nn.Linear(embed_dim, embed_dim) self.activation_fn = utils.get_activation_fn(activation_fn) self.layer_norm = LayerNorm(embed_dim) if weight is None: weight = nn.Linear(embed_dim, output_dim, bias=False).weight self.weight = weight self.bias = nn.Parameter(torch.zeros(output_dim)) def forward(self, features, masked_tokens=None, **kwargs): # Only project the masked tokens while training, # saves both memory and computation if masked_tokens is not None: features = features[masked_tokens, :] x = self.dense(features) x = self.activation_fn(x) x = self.layer_norm(x) # project back to size of vocabulary with bias x = F.linear(x, self.weight) + self.bias return x class RobertaClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__( self, input_dim, inner_dim, num_classes, activation_fn, pooler_dropout, q_noise=0, qn_block_size=8, do_spectral_norm=False, ): super().__init__() self.dense = nn.Linear(input_dim, inner_dim) self.activation_fn = utils.get_activation_fn(activation_fn) self.dropout = nn.Dropout(p=pooler_dropout) self.out_proj = apply_quant_noise_( nn.Linear(inner_dim, num_classes), q_noise, qn_block_size ) if do_spectral_norm: if q_noise != 0: raise NotImplementedError( "Attempting to use Spectral Normalization with Quant Noise. This is not officially supported" ) self.out_proj = torch.nn.utils.spectral_norm(self.out_proj) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = self.activation_fn(x) x = self.dropout(x) x = self.out_proj(x) return x class RobertaEncoder(FairseqEncoder): """RoBERTa encoder.""" def __init__(self, args, dictionary): super().__init__(dictionary) # set any missing default values base_architecture(args) self.args = args if args.encoder_layers_to_keep: args.encoder_layers = len(args.encoder_layers_to_keep.split(",")) self.sentence_encoder = TransformerSentenceEncoder( padding_idx=dictionary.pad(), vocab_size=len(dictionary), num_encoder_layers=args.encoder_layers, embedding_dim=args.encoder_embed_dim, ffn_embedding_dim=args.encoder_ffn_embed_dim, num_attention_heads=args.encoder_attention_heads, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, layerdrop=args.encoder_layerdrop, max_seq_len=args.max_positions, num_segments=0, encoder_normalize_before=True, apply_bert_init=True, activation_fn=args.activation_fn, q_noise=args.quant_noise_pq, qn_block_size=args.quant_noise_pq_block_size, ) self.lm_head = RobertaLMHead( embed_dim=args.encoder_embed_dim, output_dim=len(dictionary), activation_fn=args.activation_fn, weight=( self.sentence_encoder.embed_tokens.weight if not args.untie_weights_roberta else None ), ) def forward( self, src_tokens, features_only=False, return_all_hiddens=False, masked_tokens=None, **unused ): """ Args: src_tokens (LongTensor): input tokens of shape `(batch, src_len)` features_only (bool, optional): skip LM head and just return features. If True, the output will be of shape `(batch, src_len, embed_dim)`. return_all_hiddens (bool, optional): also return all of the intermediate hidden states (default: False). Returns: tuple: - the LM output of shape `(batch, src_len, vocab)` - a dictionary of additional data, where 'inner_states' is a list of hidden states. Note that the hidden states have shape `(src_len, batch, vocab)`. """ x, extra = self.extract_features( src_tokens, return_all_hiddens=return_all_hiddens ) if not features_only: x = self.output_layer(x, masked_tokens=masked_tokens) return x, extra def extract_features(self, src_tokens, return_all_hiddens=False, **kwargs): inner_states, _ = self.sentence_encoder( src_tokens, last_state_only=not return_all_hiddens, token_embeddings=kwargs.get("token_embeddings", None), ) features = inner_states[-1].transpose(0, 1) # T x B x C -> B x T x C return features, {"inner_states": inner_states if return_all_hiddens else None} def output_layer(self, features, masked_tokens=None, **unused): return self.lm_head(features, masked_tokens) def max_positions(self): """Maximum output length supported by the encoder.""" return self.args.max_positions @register_model_architecture("roberta", "roberta") def base_architecture(args): args.encoder_layers = getattr(args, "encoder_layers", 12) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 3072) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12) args.activation_fn = getattr(args, "activation_fn", "gelu") args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh") args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.pooler_dropout = getattr(args, "pooler_dropout", 0.0) args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None) args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0.0) args.untie_weights_roberta = getattr(args, "untie_weights_roberta", False) args.spectral_norm_classification_head = getattr( args, "spectral_norm_classification_head", False ) @register_model_architecture("roberta", "roberta_base") def roberta_base_architecture(args): base_architecture(args) @register_model_architecture("roberta", "roberta_large") def roberta_large_architecture(args): args.encoder_layers = getattr(args, "encoder_layers", 24) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) base_architecture(args) @register_model_architecture("roberta", "xlm") def xlm_architecture(args): args.encoder_layers = getattr(args, "encoder_layers", 16) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1280) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1280 * 4) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) base_architecture(args)
data2vec_vision-main
deltalm/src/fairseq/models/roberta/model.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ CamemBERT: a Tasty French Language Model """ from fairseq.models import register_model from .hub_interface import RobertaHubInterface from .model import RobertaModel @register_model("camembert") class CamembertModel(RobertaModel): @classmethod def hub_models(cls): return { "camembert": "http://dl.fbaipublicfiles.com/fairseq/models/camembert-base.tar.gz", "camembert.v0": "http://dl.fbaipublicfiles.com/fairseq/models/camembert-base.tar.gz", "camembert-base": "http://dl.fbaipublicfiles.com/fairseq/models/camembert-base.tar.gz", "camembert-large": "http://dl.fbaipublicfiles.com/fairseq/models/camembert-large.tar.gz", "camembert-base-ccnet": "http://dl.fbaipublicfiles.com/fairseq/models/camembert-base-ccnet.tar.gz", "camembert-base-ccnet-4gb": "http://dl.fbaipublicfiles.com/fairseq/models/camembert-base-ccnet-4gb.tar.gz", "camembert-base-wikipedia-4gb": "http://dl.fbaipublicfiles.com/fairseq/models/camembert-base-wikipedia-4gb.tar.gz", "camembert-base-oscar-4gb": "http://dl.fbaipublicfiles.com/fairseq/models/camembert-base-oscar-4gb.tar.gz", } @classmethod def from_pretrained( cls, model_name_or_path, checkpoint_file="model.pt", data_name_or_path=".", bpe="sentencepiece", **kwargs ): from fairseq import hub_utils x = hub_utils.from_pretrained( model_name_or_path, checkpoint_file, data_name_or_path, archive_map=cls.hub_models(), bpe=bpe, load_checkpoint_heads=True, **kwargs, ) return RobertaHubInterface(x["args"], x["task"], x["models"][0])
data2vec_vision-main
deltalm/src/fairseq/models/roberta/model_camembert.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.data import encoders class RobertaHubInterface(nn.Module): """A simple PyTorch Hub interface to RoBERTa. Usage: https://github.com/pytorch/fairseq/tree/master/examples/roberta """ def __init__(self, cfg, task, model): super().__init__() self.cfg = cfg self.task = task self.model = model self.bpe = encoders.build_bpe(cfg.bpe) # this is useful for determining the device self.register_buffer("_float_tensor", torch.tensor([0], dtype=torch.float)) @property def device(self): return self._float_tensor.device def encode( self, sentence: str, *addl_sentences, no_separator=False ) -> torch.LongTensor: """ BPE-encode a sentence (or multiple sentences). Every sequence begins with a beginning-of-sentence (`<s>`) symbol. Every sentence ends with an end-of-sentence (`</s>`) and we use an extra end-of-sentence (`</s>`) as a separator. Example (single sentence): `<s> a b c </s>` Example (sentence pair): `<s> d e f </s> </s> 1 2 3 </s>` The BPE encoding follows GPT-2. One subtle detail is that the GPT-2 BPE requires leading spaces. For example:: >>> roberta.encode('Hello world').tolist() [0, 31414, 232, 2] >>> roberta.encode(' world').tolist() [0, 232, 2] >>> roberta.encode('world').tolist() [0, 8331, 2] """ bpe_sentence = "<s> " + self.bpe.encode(sentence) + " </s>" for s in addl_sentences: bpe_sentence += " </s>" if not no_separator else "" bpe_sentence += " " + self.bpe.encode(s) + " </s>" tokens = self.task.source_dictionary.encode_line( bpe_sentence, append_eos=False, add_if_not_exist=False ) return tokens.long() def decode(self, tokens: torch.LongTensor): assert tokens.dim() == 1 tokens = tokens.numpy() if tokens[0] == self.task.source_dictionary.bos(): tokens = tokens[1:] # remove <s> eos_mask = tokens == self.task.source_dictionary.eos() doc_mask = eos_mask[1:] & eos_mask[:-1] sentences = np.split(tokens, doc_mask.nonzero()[0] + 1) sentences = [ self.bpe.decode(self.task.source_dictionary.string(s)) for s in sentences ] if len(sentences) == 1: return sentences[0] return sentences def extract_features( self, tokens: torch.LongTensor, return_all_hiddens: bool = False ) -> torch.Tensor: if tokens.dim() == 1: tokens = tokens.unsqueeze(0) if tokens.size(-1) > self.model.max_positions(): raise ValueError( "tokens exceeds maximum length: {} > {}".format( tokens.size(-1), self.model.max_positions() ) ) features, extra = self.model( tokens.to(device=self.device), features_only=True, return_all_hiddens=return_all_hiddens, ) if return_all_hiddens: # convert from T x B x C -> B x T x C inner_states = extra["inner_states"] return [inner_state.transpose(0, 1) for inner_state in inner_states] else: return features # just the last layer's features def register_classification_head( self, name: str, num_classes: int = None, embedding_size: int = None, **kwargs ): self.model.register_classification_head( name, num_classes=num_classes, embedding_size=embedding_size, **kwargs ) def predict(self, head: str, tokens: torch.LongTensor, return_logits: bool = False): features = self.extract_features(tokens.to(device=self.device)) logits = self.model.classification_heads[head](features) if return_logits: return logits return F.log_softmax(logits, dim=-1) def extract_features_aligned_to_words( self, sentence: str, return_all_hiddens: bool = False ) -> torch.Tensor: """Extract RoBERTa features, aligned to spaCy's word-level tokenizer.""" from fairseq.models.roberta import alignment_utils from spacy.tokens import Doc nlp = alignment_utils.spacy_nlp() tokenizer = alignment_utils.spacy_tokenizer() # tokenize both with GPT-2 BPE and spaCy bpe_toks = self.encode(sentence) spacy_toks = tokenizer(sentence) spacy_toks_ws = [t.text_with_ws for t in tokenizer(sentence)] alignment = alignment_utils.align_bpe_to_words(self, bpe_toks, spacy_toks_ws) # extract features and align them features = self.extract_features( bpe_toks, return_all_hiddens=return_all_hiddens ) features = features.squeeze(0) aligned_feats = alignment_utils.align_features_to_words( self, features, alignment ) # wrap in spaCy Doc doc = Doc( nlp.vocab, words=["<s>"] + [x.text for x in spacy_toks] + ["</s>"], spaces=[True] + [x.endswith(" ") for x in spacy_toks_ws[:-1]] + [True, False], ) assert len(doc) == aligned_feats.size(0) doc.user_token_hooks["vector"] = lambda token: aligned_feats[token.i] return doc def fill_mask(self, masked_input: str, topk: int = 5): masked_token = "<mask>" assert ( masked_token in masked_input and masked_input.count(masked_token) == 1 ), "Please add one {0} token for the input, eg: 'He is a {0} guy'".format( masked_token ) text_spans = masked_input.split(masked_token) text_spans_bpe = ( (" {0} ".format(masked_token)) .join([self.bpe.encode(text_span.rstrip()) for text_span in text_spans]) .strip() ) tokens = self.task.source_dictionary.encode_line( "<s> " + text_spans_bpe + " </s>", append_eos=False, add_if_not_exist=False, ) masked_index = (tokens == self.task.mask_idx).nonzero() if tokens.dim() == 1: tokens = tokens.unsqueeze(0) with utils.model_eval(self.model): features, extra = self.model( tokens.long().to(device=self.device), features_only=False, return_all_hiddens=False, ) logits = features[0, masked_index, :].squeeze() prob = logits.softmax(dim=0) values, index = prob.topk(k=topk, dim=0) topk_predicted_token_bpe = self.task.source_dictionary.string(index) topk_filled_outputs = [] for index, predicted_token_bpe in enumerate( topk_predicted_token_bpe.split(" ") ): predicted_token = self.bpe.decode(predicted_token_bpe) # Quick hack to fix https://github.com/pytorch/fairseq/issues/1306 if predicted_token_bpe.startswith("\u2581"): predicted_token = " " + predicted_token if " {0}".format(masked_token) in masked_input: topk_filled_outputs.append( ( masked_input.replace( " {0}".format(masked_token), predicted_token ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(masked_token, predicted_token), values[index].item(), predicted_token, ) ) return topk_filled_outputs def disambiguate_pronoun(self, sentence: str) -> bool: """ Usage:: >>> disambiguate_pronoun('The _trophy_ would not fit in the brown suitcase because [it] was too big.') True >>> disambiguate_pronoun('The trophy would not fit in the brown suitcase because [it] was too big.') 'The trophy' """ assert hasattr( self.task, "disambiguate_pronoun" ), "roberta.disambiguate_pronoun() requires a model trained with the WSC task." with utils.model_eval(self.model): return self.task.disambiguate_pronoun( self.model, sentence, use_cuda=self.device.type == "cuda" )
data2vec_vision-main
deltalm/src/fairseq/models/roberta/hub_interface.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import importlib import os # automatically import any Python files in the models/huggingface/ directory models_dir = os.path.dirname(__file__) for file in os.listdir(models_dir): path = os.path.join(models_dir, file) if ( not file.startswith("_") and not file.startswith(".") and (file.endswith(".py") or os.path.isdir(path)) ): model_name = file[: file.find(".py")] if file.endswith(".py") else file module = importlib.import_module("fairseq.models.huggingface." + model_name)
data2vec_vision-main
deltalm/src/fairseq/models/huggingface/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import sys from typing import Dict, List, Optional import torch from fairseq.models import ( FairseqIncrementalDecoder, FairseqLanguageModel, register_model, register_model_architecture, ) logger = logging.getLogger(__name__) DEFAULT_MAX_TARGET_POSITIONS = 1024 @register_model("hf_gpt2") class HuggingFaceGPT2LanguageModel(FairseqLanguageModel): def __init__(self, decoder): super().__init__(decoder) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # fmt: off parser.add_argument('--embed-dim', type=int, metavar='N', help='embedding dimension') parser.add_argument('--num-attention-heads', type=int, metavar='N', help='num attention heads') parser.add_argument('--num-layers', type=int, metavar='N', help='num layers') parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability for all fully connected layers ' 'in the embeddings, encoder, and pooler') parser.add_argument('--attention-dropout', type=float, metavar='D', help='dropout probability for attention weights') # fmt: on @classmethod def build_model(cls, args, task): """Build a new model instance.""" default_architecture(args) return cls(HuggingFaceGPT2Decoder(args, task)) class HuggingFaceGPT2Decoder(FairseqIncrementalDecoder): def __init__(self, args, task): try: from transformers import GPT2Config, GPT2LMHeadModel except ImportError: raise ImportError( "\n\nPlease install huggingface/transformers with:" "\n\n pip install transformers" ) super().__init__(task.target_dictionary) config = GPT2Config( vocab_size=len(task.target_dictionary), n_positions=args.max_target_positions + 1, n_ctx=args.max_target_positions, n_embd=args.embed_dim, n_layer=args.num_layers, n_head=args.num_attention_heads, resid_pdrop=args.dropout, embd_pdrop=args.dropout, attn_pdrop=args.attention_dropout, layer_norm_epsilon=1e-6, ) self.model = GPT2LMHeadModel(config) # set zero embedding for padding symbol self.pad_idx = task.target_dictionary.pad() self.model.transformer.wte.weight.data[self.pad_idx].zero_() self.model.transformer.wpe.weight.data[0].zero_() def forward( self, prev_output_tokens, src_lengths=None, incremental_state: Optional[Dict[str, List[torch.Tensor]]] = None, encoder_out=None, ): features = self.extract_features(prev_output_tokens, incremental_state) lm_logits = self.model.lm_head(features) return (lm_logits,) def extract_features( self, prev_output_tokens, incremental_state: Optional[Dict[str, List[torch.Tensor]]] = None, ): if incremental_state: past = self.get_incremental_state("past") else: past = None # don't attend to padding symbols attention_mask = prev_output_tokens.ne(self.pad_idx).int() # set position ids to exclude padding symbols position_ids = attention_mask * ( torch.arange(1, 1 + prev_output_tokens.size(1)) .to(prev_output_tokens) .repeat(prev_output_tokens.size(0), 1) ) outputs = self.model.transformer( input_ids=prev_output_tokens, past=past, attention_mask=attention_mask, position_ids=position_ids, ) last_hidden_states = outputs[0] if incremental_state: self.set_incremental_state(incremental_state, "past", outputs[1]) return last_hidden_states def max_positions(self): return self.model.config.n_positions - 1 @register_model_architecture("hf_gpt2", "hf_gpt2") def default_architecture(args): if getattr(args, "max_target_positions", None) is None: args.max_target_positions = getattr( args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS ) args.embed_dim = getattr(args, "embed_dim", 768) args.num_attention_heads = getattr(args, "num_attention_heads", 12) args.num_layers = getattr(args, "num_layers", 12) args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) @register_model_architecture("hf_gpt2", "hf_gpt2_medium") def hf_gpt2_medium(args): args.embed_dim = getattr(args, "embed_dim", 1024) args.num_attention_heads = getattr(args, "num_attention_heads", 16) args.num_layers = getattr(args, "num_layers", 24) default_architecture(args) @register_model_architecture("hf_gpt2", "hf_gpt2_large") def hf_gpt2_large(args): args.embed_dim = getattr(args, "embed_dim", 1280) args.num_attention_heads = getattr(args, "num_attention_heads", 20) args.num_layers = getattr(args, "num_layers", 36) default_architecture(args) @register_model_architecture("hf_gpt2", "hf_gpt2_xl") def hf_gpt2_xl(args): args.embed_dim = getattr(args, "embed_dim", 1600) args.num_attention_heads = getattr(args, "num_attention_heads", 25) args.num_layers = getattr(args, "num_layers", 48) default_architecture(args)
data2vec_vision-main
deltalm/src/fairseq/models/huggingface/hf_gpt2.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Train a network across multiple GPUs. """ from fairseq import distributed_utils from fairseq.trainer import Trainer from fairseq.dataclass.configs import FairseqConfig try: from fairseq.model_parallel.megatron.mpu import ( get_data_parallel_rank, get_data_parallel_world_size, get_model_parallel_src_rank, get_cuda_rng_tracker, ) has_megatron_submodule = True except (ImportError, ModuleNotFoundError): has_megatron_submodule = False class MegatronTrainer(Trainer): """Main class for model parallel with data parallel training.""" def __init__(self, cfg: FairseqConfig, task, model, criterion, **kwargs): if not has_megatron_submodule: raise ImportError( "\n\nPlease install the megatron submodule:" "\n\n git submodule update --init " "fairseq/model_parallel/megatron" ) super().__init__(cfg, task, model, criterion, **kwargs) def clip_grad_norm(self, clip_norm): def _aggregate_model_parallel_grad_norm(total_norm): total_norm = total_norm ** 2 distributed_utils.all_reduce( total_norm, group=distributed_utils.get_model_parallel_group() ) total_norm = total_norm ** 0.5 return total_norm return self.optimizer.clip_grad_norm( clip_norm, aggregate_norm_fn=_aggregate_model_parallel_grad_norm, ) def save_checkpoint(self, filename, extra_state): """Save all training state in a checkpoint file.""" extra_state['rng_tracker_states'] \ = get_cuda_rng_tracker().get_states() super().save_checkpoint(filename, extra_state) def load_checkpoint( self, filename, reset_optimizer=False, reset_lr_scheduler=False, optimizer_overrides=None, reset_meters=False, ): extra_state = super().load_checkpoint(filename, reset_optimizer=reset_optimizer, reset_lr_scheduler=reset_lr_scheduler, optimizer_overrides=optimizer_overrides, reset_meters=reset_meters) if extra_state is not None and 'rng_tracker_states' in extra_state: get_cuda_rng_tracker().set_states( extra_state['rng_tracker_states']) return extra_state
data2vec_vision-main
deltalm/src/fairseq/model_parallel/megatron_trainer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import criterions, models, modules # noqa
data2vec_vision-main
deltalm/src/fairseq/model_parallel/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import importlib import os # automatically import any Python files in the models/ directory models_dir = os.path.dirname(__file__) for file in os.listdir(models_dir): path = os.path.join(models_dir, file) if ( not file.startswith("_") and not file.startswith(".") and (file.endswith(".py") or os.path.isdir(path)) ): model_name = file[: file.find(".py")] if file.endswith(".py") else file module = importlib.import_module("fairseq.model_parallel.models." + model_name)
data2vec_vision-main
deltalm/src/fairseq/model_parallel/models/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import torch.nn as nn import torch.nn.functional as F from fairseq.model_parallel.modules import ( ModelParallelTransformerDecoderLayer, ModelParallelTransformerEncoderLayer, ) from fairseq.models import register_model from fairseq.models.transformer import ( TransformerDecoder, TransformerEncoder, TransformerModel, ) try: from fairseq.model_parallel.megatron.mpu import ( copy_to_model_parallel_region, gather_from_model_parallel_region, VocabParallelEmbedding, ) has_megatron_submodule = True except (ImportError, ModuleNotFoundError): has_megatron_submodule = False logger = logging.getLogger(__name__) @register_model("model_parallel_transformer") class ModelParallelTransformerModel(TransformerModel): """ Model parallel Transformer model. """ @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): if not has_megatron_submodule: raise ImportError( "\n\nPlease install the megatron submodule:" "\n\n git submodule update --init " "fairseq/model_parallel/megatron" ) dictionary.pad_to_multiple_(args.model_parallel_size * 8) num_embeddings = len(dictionary) padding_idx = dictionary.pad() def _vocab_init(tensor, **kwargs): nn.init.normal_(tensor, mean=0, std=num_embeddings ** -0.5) nn.init.constant_(tensor[1], 0) emb = VocabParallelEmbedding( num_embeddings, embed_dim, padding_idx, init_method=_vocab_init ) # if provided, load from preloaded dictionaries if path: raise NotImplementedError( "Loading of embedding from path is not supported for model parallel" ) return emb @classmethod def build_encoder(cls, args, src_dict, embed_tokens): return ModelParallelTransformerEncoder(args, src_dict, embed_tokens) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): return ModelParallelTransformerDecoder( args, tgt_dict, embed_tokens, no_encoder_attn=getattr(args, "no_cross_attention", False), ) class ModelParallelTransformerEncoder(TransformerEncoder): """ Model parallel Transformer encoder consisting of *args.encoder_layers* layers. Each layer is a :class:`ModelParallelTransformerEncoderLayer`. """ def build_encoder_layer(self, args): return ModelParallelTransformerEncoderLayer(args) class ModelParallelTransformerDecoder(TransformerDecoder): """ Model Parallel Transformer decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`ModelParallelTransformerDecoderLayer`. """ def build_decoder_layer(self, args, no_encoder_attn=False): return ModelParallelTransformerDecoderLayer(args, no_encoder_attn) def output_layer(self, features, **kwargs): """Project features to the vocabulary size.""" if not self.share_input_output_embed: raise NotImplementedError( "Model parallel training currently requires --share-decoder-input-output-embed" ) features = copy_to_model_parallel_region(features) # project back to size of vocabulary x = self.output_projection(features) if getattr(self.args, "criterion") != "vocab_parallel_cross_entropy": x = gather_from_model_parallel_region(x).contiguous() return x
data2vec_vision-main
deltalm/src/fairseq/model_parallel/models/transformer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.nn as nn from fairseq.model_parallel.models.transformer import ModelParallelTransformerDecoder from fairseq.models import register_model, register_model_architecture from fairseq.models.transformer_lm import TransformerLanguageModel try: from fairseq.model_parallel.megatron.mpu import VocabParallelEmbedding has_megatron_submodule = True except (ImportError, ModuleNotFoundError): has_megatron_submodule = False DEFAULT_MAX_TARGET_POSITIONS = 1024 @register_model("model_parallel_transformer_lm") class ModelParallelTransformerLanguageModel(TransformerLanguageModel): @staticmethod def add_args(parser): TransformerLanguageModel.add_args(parser) @classmethod def build_model(cls, args, task): """Build a new model instance.""" if not has_megatron_submodule: raise ImportError( "\n\nPlease install the megatron submodule:" "\n\n git submodule update --init " "fairseq/model_parallel/megatron" ) # make sure all arguments are present in older models base_lm_architecture(args) task.source_dictionary.pad_to_multiple_(args.model_parallel_size * 8) task.target_dictionary.pad_to_multiple_(args.model_parallel_size * 8) if args.decoder_layers_to_keep: args.decoder_layers = len(args.decoder_layers_to_keep.split(",")) if getattr(args, "max_target_positions", None) is None: args.max_target_positions = getattr( args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS ) if args.character_embeddings: raise NotImplementedError( "Character embeddings is not supported for model parallel" ) elif args.adaptive_input: raise NotImplementedError( "Adaptive input is not supported for model parallel" ) else: embed_tokens = cls.build_embedding( args, task.source_dictionary, args.decoder_input_dim ) decoder = ModelParallelTransformerDecoder( args, task.target_dictionary, embed_tokens, no_encoder_attn=True, ) return cls(decoder) @staticmethod def add_args(parser): TransformerLanguageModel.add_args(parser) @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): def _vocab_init(tensor, **kwargs): nn.init.normal_(tensor, mean=0, std=embed_dim ** -0.5) nn.init.constant_(tensor[1], 0) embed_tokens = VocabParallelEmbedding( len(dictionary), embed_dim, dictionary.pad(), init_method=_vocab_init ) return embed_tokens def base_lm_architecture(args): # backward compatibility for older model checkpoints if hasattr(args, "no_tie_adaptive_proj"): # previous models defined --no-tie-adaptive-proj, so use the existence of # that option to determine if this is an "old" model checkpoint args.no_decoder_final_norm = True # old models always set this to True if args.no_tie_adaptive_proj is False: args.tie_adaptive_proj = True if hasattr(args, "decoder_final_norm"): args.no_decoder_final_norm = not args.decoder_final_norm args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.relu_dropout = getattr(args, "relu_dropout", 0.0) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 2048) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) # Model training is not stable without this args.decoder_normalize_before = True args.no_decoder_final_norm = getattr(args, "no_decoder_final_norm", False) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.adaptive_softmax_factor = getattr(args, "adaptive_softmax_factor", 4) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.character_embeddings = getattr(args, "character_embeddings", False) args.character_filters = getattr( args, "character_filters", "[(1, 64), (2, 128), (3, 192), (4, 256), (5, 256), (6, 256), (7, 256)]", ) args.character_embedding_dim = getattr(args, "character_embedding_dim", 4) args.char_embedder_highway_layers = getattr(args, "char_embedder_highway_layers", 2) args.adaptive_input = getattr(args, "adaptive_input", False) args.adaptive_input_factor = getattr(args, "adaptive_input_factor", 4) args.adaptive_input_cutoff = getattr(args, "adaptive_input_cutoff", None) args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False) args.tie_adaptive_proj = getattr(args, "tie_adaptive_proj", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0.0) args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None) args.layernorm_embedding = getattr(args, "layernorm_embedding", False) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.quant_noise_pq = getattr(args, "quant_noise_pq", 0.0) args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8) args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0.0) args.add_bos_token = getattr(args, "add_bos_token", False) @register_model_architecture("model_parallel_transformer_lm", "transformer_lm_megatron") def transformer_lm_megatron(args): args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 3072) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 3072 * 4) args.decoder_layers = getattr(args, "decoder_layers", 72) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 32) args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_fn = getattr(args, "activation_fn", "gelu") base_lm_architecture(args) @register_model_architecture( "model_parallel_transformer_lm", "transformer_lm_megatron_11b" ) def transformer_lm_megatron_11b(args): args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 3072) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 3072 * 6) args.decoder_layers = getattr(args, "decoder_layers", 72) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 32) args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_fn = getattr(args, "activation_fn", "gelu") base_lm_architecture(args)
data2vec_vision-main
deltalm/src/fairseq/model_parallel/models/transformer_lm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .model import * # noqa
data2vec_vision-main
deltalm/src/fairseq/model_parallel/models/pipeline_parallel_transformer/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.model_parallel.models.pipeline_parallel_transformer.layers import ( Embedding, TransformerDecoderEmbedding, TransformerDecoderLayer, TransformerDecoderOutputLayer, TransformerEncoderEmbedding, TransformerEncoderLayer, TransformerEncoderLayerNorm, ) from fairseq.models import ( BaseFairseqModel, FairseqDecoder, FairseqEncoder, register_model, register_model_architecture, ) from fairseq.models.fairseq_encoder import EncoderOut from fairseq.models.transformer import ( base_architecture, transformer_iwslt_de_en, transformer_wmt_en_de_big, ) from fairseq.modules import SinusoidalPositionalEmbedding logger = logging.getLogger(__name__) DEFAULT_MAX_SOURCE_POSITIONS = 1024 DEFAULT_MAX_TARGET_POSITIONS = 1024 @register_model("pipeline_parallel_transformer") class PipelineParallelTransformerModel(BaseFairseqModel): def __init__(self, encoder, decoder, balance, devices, chunks, checkpoint): try: from fairscale.nn import Pipe except ImportError: raise ImportError("Please install fairscale with: pip install fairscale") super().__init__() assert isinstance(encoder, FairseqEncoder) assert isinstance(decoder, FairseqDecoder) encoder_module_list = ( [encoder.embedding_layer] + list(encoder.encoder_layers) + [encoder.final_layer_norm] ) self.num_encoder_modules = len(encoder_module_list) decoder_module_list = ( [decoder.embedding_layer] + list(decoder.decoder_layers) + [decoder.decoder_output_layer] ) self.num_decoder_modules = len(decoder_module_list) module_list = encoder_module_list + decoder_module_list self.devices = devices self.model = Pipe( nn.Sequential(*module_list), balance=balance, devices=devices, chunks=chunks, checkpoint=checkpoint, ) self.encoder_max_positions = self.max_positions_helper( encoder.embedding_layer, "max_source_positions" ) self.decoder_max_positions = self.max_positions_helper( decoder.embedding_layer, "max_target_positions" ) self.adaptive_softmax = getattr(decoder, "adaptive_softmax", None) # Note: To be populated during inference self.encoder = None self.decoder = None def forward(self, src_tokens, src_lengths, prev_output_tokens): if self.training: input_lst = [src_tokens, src_lengths, prev_output_tokens] input = tuple(i.to(self.devices[0], non_blocking=True) for i in input_lst) return self.model(input) else: assert self.encoder is not None and self.decoder is not None, ( "encoder and decoder need to be initialized by " + "calling the `prepare_for_inference_()` method" ) encoder_output_tuple = self.encoder(input) return self.decoder(encoder_output_tuple) def prepare_for_inference_(self, cfg): if self.encoder is not None and self.decoder is not None: logger.info("Encoder and Decoder already initialized") return encoder_module_list = [] decoder_module_list = [] module_count = 0 for partition in self.model.partitions: for module in partition: if module_count < self.num_encoder_modules: encoder_module_list.append(module) else: decoder_module_list.append(module) module_count += 1 self.model = None self.encoder = TransformerEncoder(cfg.distributed_training, None, None, encoder_module_list) self.decoder = TransformerDecoder( cfg.distributed_training, None, None, decoder_module_list=decoder_module_list ) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # fmt: off parser.add_argument('--activation-fn', choices=utils.get_available_activation_fns(), help='activation function to use') parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability') parser.add_argument('--attention-dropout', type=float, metavar='D', help='dropout probability for attention weights') parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D', help='dropout probability after activation in FFN.') parser.add_argument('--encoder-embed-path', type=str, metavar='STR', help='path to pre-trained encoder embedding') parser.add_argument('--encoder-embed-dim', type=int, metavar='N', help='encoder embedding dimension') parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N', help='encoder embedding dimension for FFN') parser.add_argument('--encoder-layers', type=int, metavar='N', help='num encoder layers') parser.add_argument('--encoder-attention-heads', type=int, metavar='N', help='num encoder attention heads') parser.add_argument('--encoder-normalize-before', action='store_true', help='apply layernorm before each encoder block') parser.add_argument('--encoder-learned-pos', action='store_true', help='use learned positional embeddings in the encoder') parser.add_argument('--decoder-embed-path', type=str, metavar='STR', help='path to pre-trained decoder embedding') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N', help='decoder embedding dimension for FFN') parser.add_argument('--decoder-layers', type=int, metavar='N', help='num decoder layers') parser.add_argument('--decoder-attention-heads', type=int, metavar='N', help='num decoder attention heads') parser.add_argument('--decoder-learned-pos', action='store_true', help='use learned positional embeddings in the decoder') parser.add_argument('--decoder-normalize-before', action='store_true', help='apply layernorm before each decoder block') parser.add_argument('--share-decoder-input-output-embed', action='store_true', help='share decoder input and output embeddings') parser.add_argument('--share-all-embeddings', action='store_true', help='share encoder, decoder and output embeddings' ' (requires shared dictionary and embed dim)') parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true', help='if set, disables positional embeddings (outside self attention)') parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR', help='comma separated list of adaptive softmax cutoff points. ' 'Must be used with adaptive_loss criterion'), parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D', help='sets adaptive softmax dropout for the tail projections') parser.add_argument('--num-embedding-chunks', type=int, metavar='N', default=1, help='Number of embedding layer chunks (enables more even distribution' 'of optimizer states across data parallel nodes' 'when using optimizer state sharding and' 'a big embedding vocabulary)') # fmt: on @classmethod def build_model_base(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_architecture(args) if not hasattr(args, "max_source_positions"): args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS if not hasattr(args, "max_target_positions"): args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS src_dict, tgt_dict = task.source_dictionary, task.target_dictionary def build_embedding(dictionary, embed_dim, path=None, num_embed_chunks=1): assert embed_dim % num_embed_chunks == 0, ( f"Number of embedding chunks = {num_embed_chunks} should be " + f"divisible by the embedding dimension = {embed_dim}" ) assert path is None or num_embed_chunks == 1, ( "Loading embedding from a path with number of embedding chunks > 1" + " is not yet supported" ) num_embeddings = len(dictionary) padding_idx = dictionary.pad() # if provided, load from preloaded dictionaries if path: emb = Embedding(num_embeddings, embed_dim, padding_idx) embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) else: embed_chunk_dim = embed_dim // num_embed_chunks emb = nn.ModuleList() for i in range(num_embed_chunks): emb.append(Embedding(num_embeddings, embed_chunk_dim, padding_idx)) return emb num_embed_chunks = args.num_embedding_chunks if args.share_all_embeddings: if src_dict != tgt_dict: raise ValueError("--share-all-embeddings requires a joined dictionary") if args.encoder_embed_dim != args.decoder_embed_dim: raise ValueError( "--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim" ) if args.decoder_embed_path and ( args.decoder_embed_path != args.encoder_embed_path ): raise ValueError( "--share-all-embeddings not compatible with --decoder-embed-path" ) encoder_embed_tokens = build_embedding( src_dict, args.encoder_embed_dim, args.encoder_embed_path, num_embed_chunks, ) decoder_embed_tokens = encoder_embed_tokens args.share_decoder_input_output_embed = True else: assert args.share_decoder_input_output_embed or num_embed_chunks == 1, ( "Not sharing decoder I/O embeddings is not yet supported with number of " + "embedding chunks > 1" ) encoder_embed_tokens = build_embedding( src_dict, args.encoder_embed_dim, args.encoder_embed_path, num_embed_chunks, ) decoder_embed_tokens = build_embedding( tgt_dict, args.decoder_embed_dim, args.decoder_embed_path, num_embed_chunks, ) encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens) decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens) return (encoder, decoder) @classmethod def build_encoder(cls, args, src_dict, embed_tokens): return TransformerEncoder(args, src_dict, embed_tokens) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): return TransformerDecoder(args, tgt_dict, embed_tokens) @classmethod def build_model(cls, args, task): encoder, decoder = cls.build_model_base(args, task) return PipelineParallelTransformerModel( encoder=encoder, decoder=decoder, balance=utils.eval_str_list(args.pipeline_balance, type=int), devices=utils.eval_str_list(args.pipeline_devices, type=int), chunks=args.pipeline_chunks, checkpoint=args.pipeline_checkpoint, ) def output_layer(self, features, **kwargs): """Project features to the default output size (typically vocabulary size).""" return self.decoder.output_layer(features, **kwargs) def max_positions(self): """Maximum length supported by the model.""" return (self.encoder_max_positions, self.decoder_max_positions) def max_positions_helper( self, embedding_layer, max_positions_field="max_source_positions" ): """Maximum input length supported by the encoder or decoder.""" if embedding_layer.embed_positions is None: return getattr(embedding_layer, max_positions_field) return min( getattr(embedding_layer, max_positions_field), embedding_layer.embed_positions.max_positions, ) def get_normalized_probs(self, net_output, log_probs, sample=None): """Get normalized probabilities (or log probs) from a net's output.""" if hasattr(self, "adaptive_softmax") and self.adaptive_softmax is not None: if sample is not None: assert "target" in sample target = sample["target"] else: target = None out = self.adaptive_softmax.get_log_prob(net_output, target=target) return out.exp_() if not log_probs else out # A Pipe() module returns a tuple of tensors as the output. # In this case, the tuple has one element - the output tensor of logits logits = net_output if isinstance(net_output, torch.Tensor) else net_output[0] if log_probs: return utils.log_softmax(logits, dim=-1, onnx_trace=False) else: return utils.softmax(logits, dim=-1, onnx_trace=False) def max_decoder_positions(self): """Maximum length supported by the decoder.""" return self.decoder_max_positions def load_state_dict(self, state_dict, strict=True, model_cfg=None): """Copies parameters and buffers from *state_dict* into this module and its descendants. Overrides the method in :class:`nn.Module`. Compared with that method this additionally "upgrades" *state_dicts* from old checkpoints. """ self.upgrade_state_dict(state_dict) is_regular_transformer = not any("model.partitions" in k for k in state_dict) if is_regular_transformer: state_dict = self.convert_to_pipeline_parallel_state_dict(state_dict) return super().load_state_dict(state_dict, strict) def convert_to_pipeline_parallel_state_dict(self, state_dict): new_state_dict = self.state_dict() encoder_layer_idx = 0 decoder_layer_idx = 0 encoder_key_suffixes = [ "self_attn.k_proj.weight", "self_attn.k_proj.bias", "self_attn.v_proj.weight", "self_attn.v_proj.bias", "self_attn.q_proj.weight", "self_attn.q_proj.bias", "self_attn.out_proj.weight", "self_attn.out_proj.bias", "self_attn_layer_norm.weight", "self_attn_layer_norm.bias", "fc1.weight", "fc1.bias", "fc2.weight", "fc2.bias", "final_layer_norm.weight", "final_layer_norm.bias", ] decoder_key_suffixes = [ "self_attn.k_proj.weight", "self_attn.k_proj.bias", "self_attn.v_proj.weight", "self_attn.v_proj.bias", "self_attn.q_proj.weight", "self_attn.q_proj.bias", "self_attn.out_proj.weight", "self_attn.out_proj.bias", "self_attn_layer_norm.weight", "self_attn_layer_norm.bias", "encoder_attn.k_proj.weight", "encoder_attn.k_proj.bias", "encoder_attn.v_proj.weight", "encoder_attn.v_proj.bias", "encoder_attn.q_proj.weight", "encoder_attn.q_proj.bias", "encoder_attn.out_proj.weight", "encoder_attn.out_proj.bias", "encoder_attn_layer_norm.weight", "encoder_attn_layer_norm.bias", "fc1.weight", "fc1.bias", "fc2.weight", "fc2.bias", "final_layer_norm.weight", "final_layer_norm.bias", ] for pid, partition in enumerate(self.model.partitions): logger.info(f"Begin Partition {pid}") for mid, module in enumerate(partition): # fmt: off if isinstance(module, TransformerEncoderEmbedding): new_state_dict[f'model.partitions.{pid}.{mid}.embed_tokens.weight'] = state_dict['encoder.embed_tokens.weight'] new_state_dict[f'model.partitions.{pid}.{mid}.embed_positions._float_tensor'] = state_dict['encoder.embed_positions._float_tensor'] if isinstance(module, TransformerEncoderLayer): for suffix in encoder_key_suffixes: new_state_dict[f'model.partitions.{pid}.{mid}.{suffix}'] = state_dict[f'encoder.layers.{encoder_layer_idx}.{suffix}'] encoder_layer_idx += 1 if isinstance(module, TransformerDecoderLayer): for suffix in decoder_key_suffixes: new_state_dict[f'model.partitions.{pid}.{mid}.{suffix}'] = state_dict[f'decoder.layers.{decoder_layer_idx}.{suffix}'] decoder_layer_idx += 1 if isinstance(module, TransformerEncoderLayerNorm): if 'encoder.layer_norm.weight' in state_dict: new_state_dict[f'model.partitions.{pid}.{mid}.layer_norm.weight'] = state_dict['encoder.layer_norm.weight'] new_state_dict[f'model.partitions.{pid}.{mid}.layer_norm.bias'] = state_dict['encoder.layer_norm.bias'] if isinstance(module, TransformerDecoderEmbedding): new_state_dict[f'model.partitions.{pid}.{mid}.embed_tokens.weight'] = state_dict['decoder.embed_tokens.weight'] new_state_dict[f'model.partitions.{pid}.{mid}.embed_positions._float_tensor'] = state_dict['decoder.embed_positions._float_tensor'] if isinstance(module, TransformerDecoderOutputLayer): new_state_dict[f'model.partitions.{pid}.{mid}.output_projection.weight'] = state_dict['decoder.output_projection.weight'] # fmt: on return new_state_dict class TransformerEncoder(FairseqEncoder): """ Transformer encoder consisting of *args.encoder_layers* layers. Each layer is a :class:`TransformerEncoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): encoding dictionary embed_tokens (torch.nn.Embedding): input embedding """ def __init__(self, args, dictionary, embed_tokens, encoder_module_list=None): super().__init__(dictionary) self.register_buffer("version", torch.Tensor([3])) try: from fairscale.nn import Pipe except ImportError: raise ImportError("Please install fairscale with: pip install fairscale") self.use_pipeline = encoder_module_list is not None if not self.use_pipeline: self.embedding_layer = TransformerEncoderEmbedding(args, embed_tokens) self.encoder_layers = nn.Sequential(*[TransformerEncoderLayer(args) for i in range(args.encoder_layers)]) if isinstance(embed_tokens, nn.ModuleList): emb_dim = sum(e.embedding_dim for e in embed_tokens) else: emb_dim = embed_tokens.embedding_dim self.final_layer_norm = TransformerEncoderLayerNorm(args, emb_dim) else: encoder_balance = utils.eval_str_list( args.pipeline_encoder_balance, type=int ) encoder_devices = utils.eval_str_list( args.pipeline_encoder_devices, type=int ) assert sum(encoder_balance) == len(encoder_module_list), ( f"Sum of encoder_balance={encoder_balance} is not equal " + f"to num_encoder_modules={len(encoder_module_list)}" ) self.model = Pipe( module=nn.Sequential(*encoder_module_list), balance=encoder_balance, devices=encoder_devices, chunks=args.pipeline_chunks, checkpoint=args.pipeline_checkpoint, ) def forward(self, src_tokens, src_lengths): """ Args: input_tuple( src_tokens (LongTensor): tokens in the source language of shape `(batch, src_len)` src_lengths (torch.LongTensor): lengths of each source sentence of shape `(batch)` ) Returns: output_tuple( - **encoder_out** (Tensor): the last encoder layer's output of shape `(src_len, batch, embed_dim)` - **encoder_padding_mask** (ByteTensor): the positions of padding elements of shape `(batch, src_len)` - prev_output_tokens - **encoder_states** (List[Tensor]): all intermediate hidden states of shape `(src_len, batch, embed_dim)`. Only populated if *return_all_hiddens* is True. ) """ dummy_prev_output_tokens = torch.zeros( 1, dtype=src_tokens.dtype, device=src_tokens.device ) input_tuple = (src_tokens, src_lengths, dummy_prev_output_tokens) if self.use_pipeline: input_tuple = tuple(i.to(self.model.devices[0]) for i in input_tuple) encoder_out = self.model(input_tuple) else: encoder_embed_output_tuple = self.embedding_layer(input_tuple) encoder_layers_output = self.encoder_layers(encoder_embed_output_tuple) encoder_out = self.final_layer_norm(encoder_layers_output) # first element is the encoder output # second element is the encoder padding mask # the remaining elements of EncoderOut are not computed by # the PipelineParallelTransformer return EncoderOut(encoder_out[0], encoder_out[1], None, None, None, None) def reorder_encoder_out(self, encoder_out, new_order): """ Reorder encoder output according to *new_order*. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: *encoder_out* rearranged according to *new_order* """ if encoder_out.encoder_out is not None: encoder_out = encoder_out._replace( encoder_out=encoder_out.encoder_out.index_select(1, new_order) ) if encoder_out.encoder_padding_mask is not None: encoder_out = encoder_out._replace( encoder_padding_mask=encoder_out.encoder_padding_mask.index_select( 0, new_order ) ) if encoder_out.encoder_embedding is not None: encoder_out = encoder_out._replace( encoder_embedding=encoder_out.encoder_embedding.index_select( 0, new_order ) ) if encoder_out.encoder_states is not None: for idx, state in enumerate(encoder_out.encoder_states): encoder_out.encoder_states[idx] = state.index_select(1, new_order) return encoder_out def max_positions(self): """Maximum input length supported by the encoder.""" if self.embedding_layer.embed_positions is None: return self.embedding_layer.max_source_positions return min( self.embedding_layer.max_source_positions, self.embedding_layer.embed_positions.max_positions, ) class TransformerDecoder(FairseqDecoder): """ Transformer decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`TransformerDecoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__( self, args, dictionary, embed_tokens, no_encoder_attn=False, decoder_module_list=None, ): super().__init__(dictionary) self.register_buffer("version", torch.Tensor([3])) try: from fairscale.nn import Pipe except ImportError: raise ImportError("Please install fairscale with: pip install fairscale") self.use_pipeline = decoder_module_list is not None if not self.use_pipeline: self.embedding_layer = TransformerDecoderEmbedding(args, embed_tokens) self.decoder_layers = nn.Sequential(*[ TransformerDecoderLayer(args, no_encoder_attn) for _ in range(args.decoder_layers) ]) self.decoder_output_layer = TransformerDecoderOutputLayer( args, embed_tokens, dictionary ) else: decoder_balance = utils.eval_str_list( args.pipeline_decoder_balance, type=int ) decoder_devices = utils.eval_str_list( args.pipeline_decoder_devices, type=int ) assert sum(decoder_balance) == len(decoder_module_list), ( f"Sum of decoder_balance={decoder_balance} is not equal " + f"to num_decoder_modules={len(decoder_module_list)}" ) self.model = Pipe( module=nn.Sequential(*decoder_module_list), balance=decoder_balance, devices=decoder_devices, chunks=args.pipeline_chunks, checkpoint=args.pipeline_checkpoint, ) def forward( self, prev_output_tokens, encoder_out=None, ): """ Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing encoder_out (optional): output from the encoder, used for encoder-side attention incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` features_only (bool, optional): only return features without applying output layer (default: False). Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ input_tuple = ( encoder_out.encoder_out, encoder_out.encoder_padding_mask, prev_output_tokens, ) if self.use_pipeline: input_tuple = tuple(i.to(self.model.devices[0]) for i in input_tuple) return (self.model(input_tuple),) else: embed_layer_output = self.embedding_layer(input_tuple) state = self.decoder_layers(embed_layer_output) return (self.decoder_output_layer(state),) def output_layer(self, features, **kwargs): """Project features to the vocabulary size.""" if self.adaptive_softmax is None: # project back to size of vocabulary if self.share_input_output_embed: return F.linear(features, self.embed_tokens.weight) else: return F.linear(features, self.embed_out) else: return features def max_positions(self): """Maximum output length supported by the decoder.""" if self.embedding_layer.embed_positions is None: return self.embedding_layer.max_target_positions return min( self.embedding_layer.max_target_positions, self.embedding_layer.embed_positions.max_positions, ) def buffered_future_mask(self, tensor): dim = tensor.size(0) if ( not hasattr(self, "_future_mask") or self._future_mask is None or self._future_mask.device != tensor.device or self._future_mask.size(0) < dim ): self._future_mask = torch.triu( utils.fill_with_neg_inf(tensor.new(dim, dim)), 1 ) return self._future_mask[:dim, :dim] def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): weights_key = "{}.embed_positions.weights".format(name) if weights_key in state_dict: del state_dict[weights_key] state_dict[ "{}.embed_positions._float_tensor".format(name) ] = torch.FloatTensor(1) for i in range(len(self.layers)): # update layer norms layer_norm_map = { "0": "self_attn_layer_norm", "1": "encoder_attn_layer_norm", "2": "final_layer_norm", } for old, new in layer_norm_map.items(): for m in ("weight", "bias"): k = "{}.layers.{}.layer_norms.{}.{}".format(name, i, old, m) if k in state_dict: state_dict[ "{}.layers.{}.{}.{}".format(name, i, new, m) ] = state_dict[k] del state_dict[k] version_key = "{}.version".format(name) if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) <= 2: # earlier checkpoints did not normalize after the stack of layers self.layer_norm = None self.normalize = False state_dict[version_key] = torch.Tensor([1]) return state_dict @register_model_architecture( "pipeline_parallel_transformer", "transformer_iwslt_de_en_pipeline_parallel" ) def transformer_iwslt_de_en_dist(args): transformer_iwslt_de_en(args) @register_model_architecture( "pipeline_parallel_transformer", "transformer_wmt_en_de_big_pipeline_parallel" ) def transformer_wmt_en_de_big_dist(args): transformer_wmt_en_de_big(args)
data2vec_vision-main
deltalm/src/fairseq/model_parallel/models/pipeline_parallel_transformer/model.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from collections import namedtuple import torch import torch.nn as nn import torch.nn.functional as F from fairseq import options, utils from fairseq.modules import ( AdaptiveSoftmax, LayerNorm, MultiheadAttention, PositionalEmbedding, ) EncoderOut = namedtuple( "TransformerEncoderOut", [ "encoder_out", # T x B x C "encoder_padding_mask", # B x T "encoder_embedding", # B x T x C "encoder_states", # List[T x B x C] ], ) class TransformerEncoderEmbedding(nn.Module): """ Encoder Embedding + Positional Embedding """ def __init__(self, args, embed_tokens): super().__init__() self.dropout = args.dropout self.max_source_positions = args.max_source_positions self.embed_tokens = embed_tokens if isinstance(embed_tokens, nn.ModuleList): self.padding_idx = embed_tokens[0].padding_idx embed_dim = sum(e.embedding_dim for e in embed_tokens) else: self.padding_idx = embed_tokens.padding_idx embed_dim = embed_tokens.embedding_dim self.embed_scale = math.sqrt(embed_dim) self.embed_positions = ( PositionalEmbedding( args.max_source_positions, embed_dim, self.padding_idx, learned=args.encoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) if getattr(args, "layernorm_embedding", False): self.layernorm_embedding = LayerNorm(embed_dim) else: self.layernorm_embedding = None def forward(self, input): # embed tokens and positions src_tokens = input[0] prev_output_tokens = input[2] if isinstance(self.embed_tokens, nn.ModuleList): x_embed_list = [] for embed_tokens_part in self.embed_tokens: x_embed_list.append(embed_tokens_part(src_tokens)) embedded = torch.cat(x_embed_list, dim=-1) else: embedded = self.embed_tokens(src_tokens) x = embed = self.embed_scale * embedded if self.embed_positions is not None: x = embed + self.embed_positions(src_tokens) if self.layernorm_embedding: x = self.layernorm_embedding(x) x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) # compute padding mask encoder_padding_mask = src_tokens.eq(self.padding_idx) return (x, encoder_padding_mask, prev_output_tokens) class TransformerEncoderLayerNorm(nn.Module): """ Layer norm at the the end of all encoder layers if args.encoder_enormalize_before = True """ def __init__(self, args, embed_dim): super().__init__() if args.encoder_normalize_before: self.layer_norm = LayerNorm(embed_dim) else: self.layer_norm = None def forward(self, input): x = input[0] encoder_padding_mask = input[1] prev_output_tokens = input[2] if self.layer_norm: x = self.layer_norm(x) # keeping track of the incremental_state is not supported yet return (x, encoder_padding_mask, prev_output_tokens) class TransformerDecoderEmbedding(nn.Module): """ Decoder Embedding + Positional Embedding """ def __init__(self, args, embed_tokens): super().__init__() self.dropout = args.dropout self.share_input_output_embed = args.share_decoder_input_output_embed input_embed_dim = ( sum(e.embedding_dim for e in embed_tokens) if isinstance(embed_tokens, nn.ModuleList) else embed_tokens.embedding_dim ) embed_dim = args.decoder_embed_dim self.output_embed_dim = args.decoder_output_dim padding_idx = ( embed_tokens[0].padding_idx if isinstance(embed_tokens, nn.ModuleList) else embed_tokens.padding_idx ) self.max_target_positions = args.max_target_positions self.embed_tokens = embed_tokens self.embed_scale = math.sqrt(embed_dim) # todo: try with input_embed_dim self.project_in_dim = ( Linear(input_embed_dim, embed_dim, bias=False) if embed_dim != input_embed_dim else None ) self.embed_positions = ( PositionalEmbedding( args.max_target_positions, embed_dim, padding_idx, learned=args.decoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) def forward(self, input): mt_task = False if isinstance(input, tuple): if len(input) == 3: encoder_out = input[0] encoder_padding_mask = input[1] prev_output_tokens = input[2] incremental_state = None # Hardcoding to avoid passing of None objects mt_task = True else: # HACK for now, need to fix (TODO sidgoyal) prev_output_tokens = input[0] # discard "src_lengths" encoder_out = None encoder_padding_mask = None incremental_state = None else: prev_output_tokens = input encoder_out = None encoder_padding_mask = None incremental_state = None positions = ( self.embed_positions( prev_output_tokens, incremental_state=incremental_state, ) if self.embed_positions is not None else None ) if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] # embed tokens and positions if isinstance(self.embed_tokens, nn.ModuleList): x_embed_list = [] for embed_tokens_part in self.embed_tokens: x_embed_list.append(embed_tokens_part(prev_output_tokens)) x = self.embed_scale * torch.cat(x_embed_list, dim=-1) else: x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) if mt_task: return (x, encoder_out, encoder_padding_mask) return x class TransformerDecoderOutputLayer(nn.Module): def __init__(self, args, embed_tokens, dictionary): super().__init__() self.share_input_output_embed = args.share_decoder_input_output_embed self.embed_tokens = embed_tokens self.output_embed_dim = args.decoder_output_dim embed_dim = args.decoder_embed_dim self.project_out_dim = ( Linear(embed_dim, self.output_embed_dim, bias=False) if embed_dim != self.output_embed_dim and not args.tie_adaptive_weights else None ) self.adaptive_softmax = None if args.adaptive_softmax_cutoff is not None: assert not isinstance(embed_tokens, nn.ModuleList) self.adaptive_softmax = AdaptiveSoftmax( len(dictionary), self.output_embed_dim, options.eval_str_list(args.adaptive_softmax_cutoff, type=int), dropout=args.adaptive_softmax_dropout, adaptive_inputs=embed_tokens if args.tie_adaptive_weights else None, factor=args.adaptive_softmax_factor, tie_proj=args.tie_adaptive_proj, ) elif not self.share_input_output_embed: self.embed_tokens = nn.Parameter( torch.Tensor(len(dictionary), self.output_embed_dim) ) nn.init.normal_( self.embed_tokens, mean=0, std=self.output_embed_dim ** -0.5 ) if args.decoder_normalize_before and not getattr( args, "no_decoder_final_norm", False ): self.layer_norm = LayerNorm(embed_dim) else: self.layer_norm = None def forward(self, input, apply_final_proj=True): if isinstance(input, tuple): x = input[0] else: x = input if self.layer_norm: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) if self.project_out_dim is not None: x = self.project_out_dim(x) if apply_final_proj: x = self.output_layer(x) return x def output_layer(self, features, **kwargs): """Project features to the vocabulary size.""" if self.adaptive_softmax is None: # project back to size of vocabulary if self.share_input_output_embed: if isinstance(self.embed_tokens, nn.ModuleList): output = None for i, emb in enumerate(self.embed_tokens): sidx = i * emb.embedding_dim eidx = (i + 1) * emb.embedding_dim if output is None: output = F.linear(features[:, :, sidx:eidx], emb.weight) else: output += F.linear(features[:, :, sidx:eidx], emb.weight) return output else: return F.linear(features, self.embed_tokens.weight) else: return F.linear(features, self.embed_tokens) else: return features class TransformerEncoderLayer(nn.Module): """Encoder layer block. In the original paper each operation (multi-head attention or FFN) is postprocessed with: `dropout -> add residual -> layernorm`. In the tensor2tensor code they suggest that learning is more robust when preprocessing each layer with layernorm and postprocessing with: `dropout -> add residual`. We default to the approach in the paper, but the tensor2tensor approach can be enabled by setting *args.encoder_normalize_before* to ``True``. Args: args (argparse.Namespace): parsed command-line arguments """ def __init__(self, args): super().__init__() self.embed_dim = args.encoder_embed_dim self.self_attn = MultiheadAttention( self.embed_dim, args.encoder_attention_heads, dropout=args.attention_dropout, self_attention=True, ) self.self_attn_layer_norm = LayerNorm(self.embed_dim) self.dropout = args.dropout self.activation_fn = utils.get_activation_fn( activation=getattr(args, "activation_fn", "relu") ) self.activation_dropout = getattr(args, "activation_dropout", 0) if self.activation_dropout == 0: # for backwards compatibility with models that use args.relu_dropout self.activation_dropout = getattr(args, "relu_dropout", 0) self.normalize_before = args.encoder_normalize_before self.fc1 = Linear(self.embed_dim, args.encoder_ffn_embed_dim) self.fc2 = Linear(args.encoder_ffn_embed_dim, self.embed_dim) self.final_layer_norm = LayerNorm(self.embed_dim) def upgrade_state_dict_named(self, state_dict, name): """ Rename layer norm states from `...layer_norms.0.weight` to `...self_attn_layer_norm.weight` and `...layer_norms.1.weight` to `...final_layer_norm.weight` """ layer_norm_map = {"0": "self_attn_layer_norm", "1": "final_layer_norm"} for old, new in layer_norm_map.items(): for m in ("weight", "bias"): k = "{}.layer_norms.{}.{}".format(name, old, m) if k in state_dict: state_dict["{}.{}.{}".format(name, new, m)] = state_dict[k] del state_dict[k] def forward(self, input): """ Args: input (Tuple): input[0] (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` input[1] (ByteTensor/FloatTensor): encoder padding mask - binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. input[2] (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing) Returns: output (Tuple): output[0] (Tensor): encoded output of shape `(batch, src_len, embed_dim)` output[1] (ByteTensor/FloatTensor): encoder padding mask output[2] (LongTensor): previous decoder outputs """ x = input[0] encoder_padding_mask = input[1] prev_output_tokens = input[2] residual = x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, before=True) x, _ = self.self_attn( query=x, key=x, value=x, key_padding_mask=encoder_padding_mask ) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, after=True) residual = x x = self.maybe_layer_norm(self.final_layer_norm, x, before=True) x = self.activation_fn(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.maybe_layer_norm(self.final_layer_norm, x, after=True) return (x, encoder_padding_mask, prev_output_tokens) def maybe_layer_norm(self, layer_norm, x, before=False, after=False): assert before ^ after if after ^ self.normalize_before: return layer_norm(x) else: return x class TransformerDecoderLayer(nn.Module): """Decoder layer block. In the original paper each operation (multi-head attention, encoder attention or FFN) is postprocessed with: `dropout -> add residual -> layernorm`. In the tensor2tensor code they suggest that learning is more robust when preprocessing each layer with layernorm and postprocessing with: `dropout -> add residual`. We default to the approach in the paper, but the tensor2tensor approach can be enabled by setting *args.decoder_normalize_before* to ``True``. Args: args (argparse.Namespace): parsed command-line arguments no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__( self, args, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False ): super().__init__() self.embed_dim = args.decoder_embed_dim self.self_attn = MultiheadAttention( embed_dim=self.embed_dim, num_heads=args.decoder_attention_heads, dropout=args.attention_dropout, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, self_attention=True, ) self.dropout = args.dropout self.activation_fn = utils.get_activation_fn( activation=getattr(args, "activation_fn", "relu") ) self.activation_dropout = getattr(args, "activation_dropout", 0) if self.activation_dropout == 0: # for backwards compatibility with models that use args.relu_dropout self.activation_dropout = getattr(args, "relu_dropout", 0) self.normalize_before = args.decoder_normalize_before # use layerNorm rather than FusedLayerNorm for exporting. # char_inputs can be used to determint this. # TODO remove this once we update apex with the fix export = getattr(args, "char_inputs", False) self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=export) if no_encoder_attn: self.encoder_attn = None self.encoder_attn_layer_norm = None else: self.encoder_attn = MultiheadAttention( self.embed_dim, args.decoder_attention_heads, kdim=getattr(args, "encoder_embed_dim", None), vdim=getattr(args, "encoder_embed_dim", None), dropout=args.attention_dropout, encoder_decoder_attention=True, ) self.encoder_attn_layer_norm = LayerNorm(self.embed_dim, export=export) self.fc1 = Linear(self.embed_dim, args.decoder_ffn_embed_dim) self.fc2 = Linear(args.decoder_ffn_embed_dim, self.embed_dim) self.final_layer_norm = LayerNorm(self.embed_dim, export=export) self.need_attn = True self.onnx_trace = False def prepare_for_onnx_export_(self): self.onnx_trace = True def forward(self, input): """ Args: input (Tuple): input[0] (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` input[1] (Tensor): encoder output of shape `(batch, src_len, embed_dim)` input[2] (ByteTensor/FloatTensor): encoder padding mask - binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. Returns: output (Tuple): output[0] (Tensor): encoded output of shape `(batch, src_len, embed_dim)` output[1] (ByteTensor/FloatTensor): encoder padding mask output[2] (LongTensor): previous decoder outputs """ # Note: incremental state is not yet supported mt_task = False if isinstance(input, tuple): x = input[0] encoder_out = input[1] encoder_padding_mask = input[2] incremental_state = None mt_task = True else: x = input encoder_out = None encoder_padding_mask = None incremental_state = None if incremental_state is None: self_attn_mask = self.buffered_future_mask(x) else: self_attn_mask = None # TODO: add back prev_self_attn_state, prev_attn_state, # self_attn_padding_mask prev_self_attn_state = None prev_attn_state = None self_attn_padding_mask = None residual = x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, before=True) if prev_self_attn_state is not None: if incremental_state is None: incremental_state = {} prev_key, prev_value = prev_self_attn_state saved_state = {"prev_key": prev_key, "prev_value": prev_value} self.self_attn._set_input_buffer(incremental_state, saved_state) x, attn = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, need_weights=False, attn_mask=self_attn_mask, ) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.maybe_layer_norm(self.self_attn_layer_norm, x, after=True) if self.encoder_attn is not None: residual = x x = self.maybe_layer_norm(self.encoder_attn_layer_norm, x, before=True) if prev_attn_state is not None: if incremental_state is None: incremental_state = {} prev_key, prev_value = prev_attn_state saved_state = {"prev_key": prev_key, "prev_value": prev_value} self.encoder_attn._set_input_buffer(incremental_state, saved_state) x, attn = self.encoder_attn( query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=incremental_state, static_kv=True, need_weights=(not self.training and self.need_attn), ) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.maybe_layer_norm(self.encoder_attn_layer_norm, x, after=True) residual = x x = self.maybe_layer_norm(self.final_layer_norm, x, before=True) x = self.activation_fn(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x x = self.maybe_layer_norm(self.final_layer_norm, x, after=True) if mt_task: return (x, encoder_out, encoder_padding_mask) return x def buffered_future_mask(self, tensor): dim = tensor.size(0) if ( not hasattr(self, "_future_mask") or self._future_mask is None or self._future_mask.device != tensor.device ): self._future_mask = torch.triu( utils.fill_with_neg_inf(tensor.new(dim, dim)), 1 ) if self._future_mask.size(0) < dim: self._future_mask = torch.triu( utils.fill_with_neg_inf(self._future_mask.resize_(dim, dim)), 1 ) return self._future_mask[:dim, :dim] def maybe_layer_norm(self, layer_norm, x, before=False, after=False): assert before ^ after if after ^ self.normalize_before: return layer_norm(x) else: return x def make_generation_fast_(self, need_attn=False, **kwargs): self.need_attn = need_attn def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) nn.init.constant_(m.weight[padding_idx], 0) return m def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.0) return m
data2vec_vision-main
deltalm/src/fairseq/model_parallel/models/pipeline_parallel_transformer/layers.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .model import * # noqa
data2vec_vision-main
deltalm/src/fairseq/model_parallel/models/roberta/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ RoBERTa: A Robustly Optimized BERT Pretraining Approach. """ import logging import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.model_parallel.modules import ModelParallelTransformerSentenceEncoder from fairseq.models import FairseqEncoder, register_model, register_model_architecture from fairseq.models.roberta import ( RobertaClassificationHead, RobertaEncoder, RobertaLMHead, RobertaModel, ) from fairseq.modules import LayerNorm, TransformerSentenceEncoder from fairseq.modules.transformer_sentence_encoder import init_bert_params try: from fairseq.model_parallel.megatron.mpu import ( copy_to_model_parallel_region, gather_from_model_parallel_region, ColumnParallelLinear, RowParallelLinear, ) has_megatron_submodule = True except (ImportError, ModuleNotFoundError): has_megatron_submodule = False logger = logging.getLogger(__name__) @register_model("model_parallel_roberta") class ModelParallelRobertaModel(RobertaModel): def __init__(self, args, encoder): super().__init__(args, encoder) self.classification_heads = nn.ModuleDict() @staticmethod def add_args(parser): super(ModelParallelRobertaModel, ModelParallelRobertaModel).add_args(parser) @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present base_architecture(args) task.source_dictionary.pad_to_multiple_(args.model_parallel_size * 8) task.target_dictionary.pad_to_multiple_(args.model_parallel_size * 8) if not hasattr(args, "max_positions"): args.max_positions = args.tokens_per_sample if getattr(args, "untie_weights_roberta", False): raise NotImplementedError( "--untie-weights-roberta is not supported in model parallel mode" ) encoder = ModelParallelRobertaEncoder(args, task.source_dictionary) return cls(args, encoder) def forward( self, src_tokens, features_only=False, return_all_hiddens=False, classification_head_name=None, **kwargs ): if classification_head_name is not None: features_only = True x, extra = self.encoder(src_tokens, features_only, return_all_hiddens, **kwargs) if classification_head_name is not None: x = self.classification_heads[classification_head_name](x) return x, extra def register_classification_head( self, name, num_classes=None, inner_dim=None, **kwargs ): """Register a classification head.""" if name in self.classification_heads: prev_num_classes = self.classification_heads[name].out_proj.out_features prev_inner_dim = self.classification_heads[name].dense.out_features if num_classes != prev_num_classes or inner_dim != prev_inner_dim: logger.warning( 're-registering head "{}" with num_classes {} (prev: {}) ' "and inner_dim {} (prev: {})".format( name, num_classes, prev_num_classes, inner_dim, prev_inner_dim ) ) self.classification_heads[name] = ModelParallelRobertaClassificationHead( self.args.encoder_embed_dim, inner_dim or self.args.encoder_embed_dim, num_classes, self.args.pooler_activation_fn, self.args.pooler_dropout, ) class ModelParallelRobertaLMHead(nn.Module): """Head for masked language modeling.""" def __init__(self, embed_dim, output_dim, activation_fn, weight=None): super().__init__() self.dense = ColumnParallelLinear(embed_dim, embed_dim, gather_output=True) self.activation_fn = utils.get_activation_fn(activation_fn) self.layer_norm = LayerNorm(embed_dim) if weight is None: weight = nn.Linear(embed_dim, output_dim, bias=False).weight self.weight = weight self.bias = nn.Parameter(torch.zeros(output_dim)) def forward(self, features, masked_tokens=None, **kwargs): # Only project the unmasked tokens while training, # saves both memory and computation if masked_tokens is not None: features = features[masked_tokens, :] x = self.dense(features) x = self.activation_fn(x) x = self.layer_norm(x) x = copy_to_model_parallel_region(x) # project back to size of vocabulary with bias x = F.linear(x, self.weight) x = gather_from_model_parallel_region(x).contiguous() x = x + self.bias return x class ModelParallelRobertaClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__( self, input_dim, inner_dim, num_classes, activation_fn, pooler_dropout ): super().__init__() self.dense = ColumnParallelLinear(input_dim, inner_dim, gather_output=True) self.activation_fn = utils.get_activation_fn(activation_fn) self.dropout = nn.Dropout(p=pooler_dropout) self.out_proj = nn.Linear(inner_dim, num_classes) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = self.activation_fn(x) x = self.dropout(x) x = self.out_proj(x) return x class ModelParallelRobertaEncoder(FairseqEncoder): """RoBERTa encoder. Implements the :class:`~fairseq.models.FairseqDecoder` interface required by :class:`~fairseq.models.FairseqLanguageModel`. """ def __init__(self, args, dictionary): super().__init__(dictionary) self.args = args # RoBERTa is a sentence encoder model, so users will intuitively trim # encoder layers. However, the implementation uses the fairseq decoder, # so we fix here. if args.encoder_layers_to_keep: args.encoder_layers = len(args.encoder_layers_to_keep.split(",")) args.decoder_layers_to_keep = args.encoder_layers_to_keep args.encoder_layers_to_keep = None self.sentence_encoder = ModelParallelTransformerSentenceEncoder( padding_idx=dictionary.pad(), vocab_size=len(dictionary), num_encoder_layers=args.encoder_layers, embedding_dim=args.encoder_embed_dim, ffn_embedding_dim=args.encoder_ffn_embed_dim, num_attention_heads=args.encoder_attention_heads, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, layerdrop=args.encoder_layerdrop, max_seq_len=args.max_positions, num_segments=0, encoder_normalize_before=False, apply_bert_init=False, activation_fn=args.activation_fn, ) self.lm_head = ModelParallelRobertaLMHead( embed_dim=args.encoder_embed_dim, output_dim=len(dictionary), activation_fn=args.activation_fn, weight=self.sentence_encoder.embed_tokens.weight, ) def forward( self, src_tokens, features_only=False, return_all_hiddens=False, masked_tokens=None, **unused ): """ Args: src_tokens (LongTensor): input tokens of shape `(batch, src_len)` features_only (bool, optional): skip LM head and just return features. If True, the output will be of shape `(batch, src_len, embed_dim)`. return_all_hiddens (bool, optional): also return all of the intermediate hidden states (default: False). Returns: tuple: - the LM output of shape `(batch, src_len, vocab)` - a dictionary of additional data, where 'inner_states' is a list of hidden states. Note that the hidden states have shape `(src_len, batch, vocab)`. """ x, extra = self.extract_features( src_tokens, return_all_hiddens=return_all_hiddens ) if not features_only: x = self.output_layer(x, masked_tokens=masked_tokens) return x, extra def extract_features(self, src_tokens, return_all_hiddens=False, **unused): inner_states, _ = self.sentence_encoder( src_tokens, last_state_only=not return_all_hiddens, ) features = inner_states[-1].transpose(0, 1) # T x B x C -> B x T x C return features, {"inner_states": inner_states if return_all_hiddens else None} def output_layer(self, features, masked_tokens=None, **unused): return self.lm_head(features, masked_tokens) def max_positions(self): """Maximum output length supported by the encoder.""" return self.args.max_positions @register_model_architecture("model_parallel_roberta", "model_parallel_roberta") def base_architecture(args): args.encoder_layers = getattr(args, "encoder_layers", 12) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 3072) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12) args.activation_fn = getattr(args, "activation_fn", "gelu") args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh") args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.pooler_dropout = getattr(args, "pooler_dropout", 0.0) args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None) args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0.0) @register_model_architecture("model_parallel_roberta", "model_parallel_roberta_base") def roberta_base_architecture(args): base_architecture(args) @register_model_architecture("model_parallel_roberta", "model_parallel_roberta_large") def roberta_large_architecture(args): args.encoder_layers = getattr(args, "encoder_layers", 24) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4096) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) base_architecture(args)
data2vec_vision-main
deltalm/src/fairseq/model_parallel/models/roberta/model.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, Optional, Tuple import torch import torch.nn.functional as F from fairseq import utils from fairseq.incremental_decoding_utils import with_incremental_state from fairseq.modules.fairseq_dropout import FairseqDropout from torch import Tensor, nn try: from fairseq.model_parallel.megatron.mpu import ( get_cuda_rng_tracker, get_model_parallel_world_size, ColumnParallelLinear, RowParallelLinear, ) has_megatron_submodule = True except (ImportError, ModuleNotFoundError): has_megatron_submodule = False @with_incremental_state class ModelParallelMultiheadAttention(nn.Module): """Model parallel Multi-headed attention. This performs the Multi-headed attention over multiple gpus. See "Megatron-LM: https://arxiv.org/pdf/1909.08053.pdf" for more details. """ def __init__( self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0.0, bias=True, self_attention=False, encoder_decoder_attention=False, ): super().__init__() if not has_megatron_submodule: raise ImportError( "\n\nPlease install the megatron submodule:" "\n\n git submodule update --init " "fairseq/model_parallel/megatron" ) self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim self.model_parallel_size = get_model_parallel_world_size() self.num_heads_partition = num_heads // self.model_parallel_size assert ( self.num_heads_partition * self.model_parallel_size == num_heads ), "Number of heads must be divisible by model parallel size" self.dropout_module = FairseqDropout( dropout, module_name=self.__class__.__name__ ) self.head_dim = embed_dim // num_heads assert ( self.head_dim * num_heads == self.embed_dim ), "embed_dim must be divisible by num_heads" self.scaling = self.head_dim ** -0.5 self.self_attention = self_attention self.encoder_decoder_attention = encoder_decoder_attention assert ( not self.self_attention or self.qkv_same_dim ), "Self-attention requires query, key and value to be of the same size" self.k_proj = ColumnParallelLinear( self.kdim, embed_dim, bias=bias, gather_output=False ) self.v_proj = ColumnParallelLinear( self.vdim, embed_dim, bias=bias, gather_output=False ) self.q_proj = ColumnParallelLinear( embed_dim, embed_dim, bias=bias, gather_output=False ) self.out_proj = RowParallelLinear( embed_dim, embed_dim, bias=bias, input_is_parallel=True ) self.tpu = False def prepare_for_tpu_(self, **kwargs): self.tpu = True def forward( self, query, key: Optional[Tensor], value: Optional[Tensor], key_padding_mask: Optional[Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, static_kv: bool = False, attn_mask: Optional[Tensor] = None, **unused_kwargs, ) -> Tuple[Tensor, Optional[Tensor]]: """Input shape: Time x Batch x Channel Args: key_padding_mask (ByteTensor, optional): mask to exclude keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. attn_mask (ByteTensor, optional): typically used to implement causal attention, where the mask prevents the attention from looking forward in time (default: None). """ tgt_len, bsz, embed_dim = query.size() assert embed_dim == self.embed_dim assert list(query.size()) == [tgt_len, bsz, embed_dim] if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) if saved_state is not None and "prev_key" in saved_state: # previous time steps are cached - no need to recompute # key and value if they are static if static_kv: assert self.encoder_decoder_attention and not self.self_attention key = value = None else: saved_state = None if self.self_attention: q = self.q_proj(query) k = self.k_proj(query) v = self.v_proj(query) elif self.encoder_decoder_attention: # encoder-decoder attention q = self.q_proj(query) if key is None: assert value is None k = v = None else: k = self.k_proj(key) v = self.v_proj(key) else: assert key is not None and value is not None q = self.q_proj(query) k = self.k_proj(key) v = self.v_proj(value) q *= self.scaling q = ( q.contiguous() .view(tgt_len, bsz * self.num_heads_partition, self.head_dim) .transpose(0, 1) ) if k is not None: k = ( k.contiguous() .view(-1, bsz * self.num_heads_partition, self.head_dim) .transpose(0, 1) ) if v is not None: v = ( v.contiguous() .view(-1, bsz * self.num_heads_partition, self.head_dim) .transpose(0, 1) ) if saved_state is not None: # saved states are stored with shape (bsz, num_heads_partition, seq_len, head_dim) if "prev_key" in saved_state: _prev_key = saved_state["prev_key"] assert _prev_key is not None prev_key = _prev_key.view( bsz * self.num_heads_partition, -1, self.head_dim ) if static_kv: k = prev_key else: assert k is not None k = torch.cat([prev_key, k], dim=1) if "prev_value" in saved_state: _prev_value = saved_state["prev_value"] assert _prev_value is not None prev_value = _prev_value.view( bsz * self.num_heads_partition, -1, self.head_dim ) if static_kv: v = prev_value else: assert v is not None v = torch.cat([prev_value, v], dim=1) prev_key_padding_mask: Optional[Tensor] = None if "prev_key_padding_mask" in saved_state: prev_key_padding_mask = saved_state["prev_key_padding_mask"] assert k is not None and v is not None key_padding_mask = ( ModelParallelMultiheadAttention._append_prev_key_padding_mask( key_padding_mask=key_padding_mask, prev_key_padding_mask=prev_key_padding_mask, batch_size=bsz, src_len=k.size(1), static_kv=static_kv, ) ) saved_state["prev_key"] = k.view( bsz, self.num_heads_partition, -1, self.head_dim ) saved_state["prev_value"] = v.view( bsz, self.num_heads_partition, -1, self.head_dim ) saved_state["prev_key_padding_mask"] = key_padding_mask # In this branch incremental_state is never None assert incremental_state is not None incremental_state = self._set_input_buffer(incremental_state, saved_state) assert k is not None src_len = k.size(1) # This is part of a workaround to get around fork/join parallelism # not supporting Optional types. if key_padding_mask is not None and key_padding_mask.dim() == 0: key_padding_mask = None if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len attn_weights = torch.bmm(q, k.transpose(1, 2)) assert list(attn_weights.size()) == [ bsz * self.num_heads_partition, tgt_len, src_len, ] if attn_mask is not None: attn_mask = attn_mask.unsqueeze(0) attn_weights += attn_mask if key_padding_mask is not None: # don't attend to padding symbols attn_weights = attn_weights.view( bsz, self.num_heads_partition, tgt_len, src_len ) if not self.tpu: attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf"), ) else: attn_weights = attn_weights.transpose(0, 2) attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf")) attn_weights = attn_weights.transpose(0, 2) attn_weights = attn_weights.view( bsz * self.num_heads_partition, tgt_len, src_len ) attn_weights_float = utils.softmax(attn_weights, dim=-1) attn_weights = attn_weights_float.type_as(attn_weights) with get_cuda_rng_tracker().fork(): attn_probs = self.dropout_module(attn_weights) assert v is not None attn = torch.bmm(attn_probs, v) assert list(attn.size()) == [ bsz * self.num_heads_partition, tgt_len, self.head_dim, ] embed_dim_partition = embed_dim // self.model_parallel_size attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim_partition) attn = self.out_proj(attn) # return attn_weights None to keep the return type same as single gpu multihead attention # This will be deprecated. attn_weights: Optional[Tensor] = None return attn, attn_weights @staticmethod def _append_prev_key_padding_mask( key_padding_mask: Optional[Tensor], prev_key_padding_mask: Optional[Tensor], batch_size: int, src_len: int, static_kv: bool, ) -> Optional[Tensor]: # saved key padding masks have shape (bsz, seq_len) if prev_key_padding_mask is not None and static_kv: new_key_padding_mask = prev_key_padding_mask elif prev_key_padding_mask is not None and key_padding_mask is not None: new_key_padding_mask = torch.cat( [prev_key_padding_mask.float(), key_padding_mask.float()], dim=1 ) # During incremental decoding, as the padding token enters and # leaves the frame, there will be a time when prev or current # is None elif prev_key_padding_mask is not None: filler = torch.zeros(batch_size, src_len - prev_key_padding_mask.size(1)) if prev_key_padding_mask.is_cuda: filler = filler.cuda() new_key_padding_mask = torch.cat( [prev_key_padding_mask.float(), filler.float()], dim=1 ) elif key_padding_mask is not None: filler = torch.zeros(batch_size, src_len - key_padding_mask.size(1)) if key_padding_mask.is_cuda: filler = filler.cuda() new_key_padding_mask = torch.cat( [filler.float(), key_padding_mask.float()], dim=1 ) else: new_key_padding_mask = prev_key_padding_mask return new_key_padding_mask def reorder_incremental_state( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], new_order ): """Reorder buffered internal state (for incremental generation).""" input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: for k in input_buffer.keys(): if input_buffer[k] is not None: input_buffer[k] = input_buffer[k].index_select(0, new_order) incremental_state = self._set_input_buffer(incremental_state, input_buffer) return incremental_state def _get_input_buffer( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] ) -> Dict[str, Optional[Tensor]]: result = self.get_incremental_state(incremental_state, "attn_state") if result is not None: return result else: empty_result: Dict[str, Optional[Tensor]] = {} return empty_result def _set_input_buffer( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], buffer: Dict[str, Optional[Tensor]], ): return self.set_incremental_state(incremental_state, "attn_state", buffer)
data2vec_vision-main
deltalm/src/fairseq/model_parallel/modules/multihead_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import random from typing import Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from fairseq.model_parallel.modules import ModelParallelTransformerSentenceEncoderLayer from fairseq.modules import ( LayerNorm, MultiheadAttention, PositionalEmbedding, TransformerSentenceEncoder, ) try: from fairseq.model_parallel.megatron.mpu import VocabParallelEmbedding has_megatron_submodule = True except (ImportError, ModuleNotFoundError): has_megatron_submodule = False class ModelParallelTransformerSentenceEncoder(TransformerSentenceEncoder): """ Implementation for a Model Parallel Bi-directional Transformer based Sentence Encoder used in BERT/XLM style pre-trained models. """ def build_embedding(self, vocab_size, embedding_dim, padding_idx): return VocabParallelEmbedding(vocab_size, embedding_dim, padding_idx) def build_transformer_sentence_encoder_layer( self, embedding_dim, ffn_embedding_dim, num_attention_heads, dropout, attention_dropout, activation_dropout, activation_fn, export, **unused, ): return ModelParallelTransformerSentenceEncoderLayer( embedding_dim=embedding_dim, ffn_embedding_dim=ffn_embedding_dim, num_attention_heads=num_attention_heads, dropout=dropout, attention_dropout=attention_dropout, activation_dropout=activation_dropout, activation_fn=activation_fn, export=export, )
data2vec_vision-main
deltalm/src/fairseq/model_parallel/modules/transformer_sentence_encoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """isort:skip_file""" from .multihead_attention import ModelParallelMultiheadAttention from .transformer_layer import ( ModelParallelTransformerEncoderLayer, ModelParallelTransformerDecoderLayer, ) from .transformer_sentence_encoder_layer import ( ModelParallelTransformerSentenceEncoderLayer, ) from .transformer_sentence_encoder import ModelParallelTransformerSentenceEncoder __all__ = [ "ModelParallelMultiheadAttention", "ModelParallelTransformerEncoderLayer", "ModelParallelTransformerDecoderLayer", "ModelParallelTransformerSentenceEncoder", "ModelParallelTransformerSentenceEncoderLayer", ]
data2vec_vision-main
deltalm/src/fairseq/model_parallel/modules/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq.model_parallel.modules import ModelParallelMultiheadAttention from fairseq.modules import TransformerDecoderLayer, TransformerEncoderLayer try: from fairseq.model_parallel.megatron.mpu import ( ColumnParallelLinear, RowParallelLinear, ) has_megatron_submodule = True except (ImportError, ModuleNotFoundError): has_megatron_submodule = False class ModelParallelTransformerEncoderLayer(TransformerEncoderLayer): """Encoder layer block over multiple gpus. See "Megatron-LM: https://arxiv.org/pdf/1909.08053.pdf" for more details. """ def build_fc1(self, input_dim, output_dim, q_noise, qn_block_size): if q_noise > 0: raise NotImplementedError return ColumnParallelLinear(input_dim, output_dim, gather_output=False) def build_fc2(self, input_dim, output_dim, q_noise, qn_block_size): if q_noise > 0: raise NotImplementedError return RowParallelLinear(input_dim, output_dim, input_is_parallel=True) def build_self_attention(self, embed_dim, args, **unused_kwargs): return ModelParallelMultiheadAttention( embed_dim, args.encoder_attention_heads, dropout=args.attention_dropout, self_attention=True, ) class ModelParallelTransformerDecoderLayer(TransformerDecoderLayer): """Decoder layer block. See "Megatron-LM: https://arxiv.org/pdf/1909.08053.pdf" for more details. """ def build_fc1(self, input_dim, output_dim, q_noise, qn_block_size): if q_noise > 0: raise NotImplementedError return ColumnParallelLinear(input_dim, output_dim, gather_output=False) def build_fc2(self, input_dim, output_dim, q_noise, qn_block_size): if q_noise > 0: raise NotImplementedError return RowParallelLinear(input_dim, output_dim, input_is_parallel=True) def build_self_attention(self, embed_dim, args, **unused_kwargs): return ModelParallelMultiheadAttention( embed_dim=embed_dim, num_heads=args.decoder_attention_heads, dropout=args.attention_dropout, self_attention=not getattr(args, "cross_self_attention", False), ) def build_encoder_attention(self, embed_dim, args, **unused_kwargs): return ModelParallelMultiheadAttention( embed_dim=embed_dim, num_heads=args.decoder_attention_heads, kdim=getattr(args, "encoder_embed_dim", None), vdim=getattr(args, "encoder_embed_dim", None), dropout=args.attention_dropout, encoder_decoder_attention=True, )
data2vec_vision-main
deltalm/src/fairseq/model_parallel/modules/transformer_layer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn.functional as F from fairseq import utils from fairseq.model_parallel.modules import ModelParallelMultiheadAttention from fairseq.modules import TransformerSentenceEncoderLayer try: from fairseq.model_parallel.megatron.mpu import ( ColumnParallelLinear, RowParallelLinear, ) has_megatron_submodule = True except (ImportError, ModuleNotFoundError): has_megatron_submodule = False class ModelParallelTransformerSentenceEncoderLayer(TransformerSentenceEncoderLayer): """ Implements a Model Parallel Transformer Encoder Layer used in BERT/XLM style pre-trained models. """ def build_fc1(self, input_dim, output_dim, **unused): return ColumnParallelLinear(input_dim, output_dim, gather_output=False) def build_fc2(self, input_dim, output_dim, **unused): return RowParallelLinear(input_dim, output_dim, input_is_parallel=True) def build_self_attention( self, embed_dim, num_attention_heads, dropout, **kwargs, ): return ModelParallelMultiheadAttention( embed_dim, num_attention_heads, dropout=dropout, self_attention=True ) def forward( self, x: torch.Tensor, self_attn_mask: torch.Tensor = None, self_attn_padding_mask: torch.Tensor = None, ): """ LayerNorm is applied either before or after the self-attention/ffn modules similar to the original Transformer imlementation. """ residual = x x = self.self_attn_layer_norm(x) x, attn = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, need_weights=False, attn_mask=self_attn_mask, ) x = self.dropout_module(x) x = residual + x residual = x x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = self.activation_dropout_module(x) x = self.fc2(x) x = self.dropout_module(x) x = residual + x return x, None
data2vec_vision-main
deltalm/src/fairseq/model_parallel/modules/transformer_sentence_encoder_layer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from fairseq import metrics, utils from fairseq.criterions import FairseqCriterion, register_criterion try: from fairseq.model_parallel.megatron.mpu.cross_entropy import ( vocab_parallel_cross_entropy, ) has_megatron_submodule = True except (ImportError, ModuleNotFoundError): has_megatron_submodule = False @register_criterion("vocab_parallel_cross_entropy") class VocabParallelCrossEntropyCriterion(FairseqCriterion): def __init__(self, task, sentence_avg): super().__init__(task) self.sentence_avg = sentence_avg if not has_megatron_submodule: raise ImportError( "\n\nPlease install the megatron submodule:" "\n\n git submodule update --init " "fairseq/model_parallel/megatron" ) def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ net_output = model(**sample["net_input"]) target = sample["target"] loss = vocab_parallel_cross_entropy(net_output[0].float(), target) loss = (loss * (target != self.padding_idx)).sum() sample_size = ( sample["target"].size(0) if self.sentence_avg else sample["ntokens"] ) logging_output = { "loss": utils.item(loss.data) if reduce else loss.data, "ntokens": sample["ntokens"], "nsentences": sample["target"].size(0), "sample_size": sample_size, } return loss, sample_size, logging_output @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) metrics.log_scalar( "loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) if sample_size != ntokens: metrics.log_scalar( "nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3 ) metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg) ) else: metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["loss"].avg) ) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True
data2vec_vision-main
deltalm/src/fairseq/model_parallel/criterions/vocab_parallel_cross_entropy.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import importlib import os # automatically import any Python files in the criterions/ directory for file in os.listdir(os.path.dirname(__file__)): if file.endswith(".py") and not file.startswith("_"): module = file[: file.find(".py")] importlib.import_module("fairseq.model_parallel.criterions." + module)
data2vec_vision-main
deltalm/src/fairseq/model_parallel/criterions/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import ctypes import math import sys from dataclasses import dataclass, field import torch from fairseq.dataclass import FairseqDataclass from fairseq.scoring import BaseScorer, register_scorer from fairseq.scoring.tokenizer import EvaluationTokenizer class BleuStat(ctypes.Structure): _fields_ = [ ("reflen", ctypes.c_size_t), ("predlen", ctypes.c_size_t), ("match1", ctypes.c_size_t), ("count1", ctypes.c_size_t), ("match2", ctypes.c_size_t), ("count2", ctypes.c_size_t), ("match3", ctypes.c_size_t), ("count3", ctypes.c_size_t), ("match4", ctypes.c_size_t), ("count4", ctypes.c_size_t), ] @dataclass class SacrebleuConfig(FairseqDataclass): sacrebleu_tokenizer: EvaluationTokenizer.ALL_TOKENIZER_TYPES = field( default="13a", metadata={"help": "tokenizer"} ) sacrebleu_lowercase: bool = field( default=False, metadata={"help": "apply lowercasing"} ) sacrebleu_char_level: bool = field( default=False, metadata={"help": "evaluate at character level"} ) @register_scorer("sacrebleu", dataclass=SacrebleuConfig) class SacrebleuScorer(BaseScorer): def __init__(self, cfg): super(SacrebleuScorer, self).__init__(cfg) import sacrebleu self.sacrebleu = sacrebleu self.tokenizer = EvaluationTokenizer( tokenizer_type=cfg.sacrebleu_tokenizer, lowercase=cfg.sacrebleu_lowercase, character_tokenization=cfg.sacrebleu_char_level, ) def add_string(self, ref, pred): self.ref.append(self.tokenizer.tokenize(ref)) self.pred.append(self.tokenizer.tokenize(pred)) def score(self, order=4): return self.result_string(order).score def result_string(self, order=4): if order != 4: raise NotImplementedError # tokenization and lowercasing are performed by self.tokenizer instead. return self.sacrebleu.corpus_bleu( self.pred, [self.ref], tokenize="none" ).format() @dataclass class BleuConfig(FairseqDataclass): pad: int = field(default=1, metadata={"help": "padding index"}) eos: int = field(default=2, metadata={"help": "eos index"}) unk: int = field(default=3, metadata={"help": "unk index"}) @register_scorer("bleu", dataclass=BleuConfig) class Scorer(object): def __init__(self, cfg): self.stat = BleuStat() self.pad = cfg.pad self.eos = cfg.eos self.unk = cfg.unk try: from fairseq import libbleu except ImportError as e: sys.stderr.write( "ERROR: missing libbleu.so. run `pip install --editable .`\n" ) raise e self.C = ctypes.cdll.LoadLibrary(libbleu.__file__) self.reset() def reset(self, one_init=False): if one_init: self.C.bleu_one_init(ctypes.byref(self.stat)) else: self.C.bleu_zero_init(ctypes.byref(self.stat)) def add(self, ref, pred): if not isinstance(ref, torch.IntTensor): raise TypeError("ref must be a torch.IntTensor (got {})".format(type(ref))) if not isinstance(pred, torch.IntTensor): raise TypeError("pred must be a torch.IntTensor(got {})".format(type(pred))) # don't match unknown words rref = ref.clone() assert not rref.lt(0).any() rref[rref.eq(self.unk)] = -999 rref = rref.contiguous().view(-1) pred = pred.contiguous().view(-1) self.C.bleu_add( ctypes.byref(self.stat), ctypes.c_size_t(rref.size(0)), ctypes.c_void_p(rref.data_ptr()), ctypes.c_size_t(pred.size(0)), ctypes.c_void_p(pred.data_ptr()), ctypes.c_int(self.pad), ctypes.c_int(self.eos), ) def score(self, order=4): psum = sum( math.log(p) if p > 0 else float("-Inf") for p in self.precision()[:order] ) return self.brevity() * math.exp(psum / order) * 100 def precision(self): def ratio(a, b): return a / b if b > 0 else 0 return [ ratio(self.stat.match1, self.stat.count1), ratio(self.stat.match2, self.stat.count2), ratio(self.stat.match3, self.stat.count3), ratio(self.stat.match4, self.stat.count4), ] def brevity(self): r = self.stat.reflen / self.stat.predlen return min(1, math.exp(1 - r)) def result_string(self, order=4): assert order <= 4, "BLEU scores for order > 4 aren't supported" fmt = "BLEU{} = {:2.2f}, {:2.1f}" for _ in range(1, order): fmt += "/{:2.1f}" fmt += " (BP={:.3f}, ratio={:.3f}, syslen={}, reflen={})" bleup = [p * 100 for p in self.precision()[:order]] return fmt.format( order, self.score(order=order), *bleup, self.brevity(), self.stat.predlen / self.stat.reflen, self.stat.predlen, self.stat.reflen )
data2vec_vision-main
deltalm/src/fairseq/scoring/bleu.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import importlib import os from abc import ABC, abstractmethod from fairseq import registry from omegaconf import DictConfig class BaseScorer(ABC): def __init__(self, cfg): self.cfg = cfg self.ref = [] self.pred = [] def add_string(self, ref, pred): self.ref.append(ref) self.pred.append(pred) @abstractmethod def score(self) -> float: pass @abstractmethod def result_string(self) -> str: pass _build_scorer, register_scorer, SCORER_REGISTRY, _ = registry.setup_registry( "--scoring", default="bleu" ) def build_scorer(choice, tgt_dict): if isinstance(choice, DictConfig): choice = choice._name if choice == "bleu": from fairseq.scoring import bleu return bleu.Scorer( bleu.BleuConfig(pad=tgt_dict.pad(), eos=tgt_dict.eos(), unk=tgt_dict.unk()) ) return _build_scorer(choice) # automatically import any Python files in the current directory for file in os.listdir(os.path.dirname(__file__)): if file.endswith(".py") and not file.startswith("_"): module = file[: file.find(".py")] importlib.import_module("fairseq.scoring." + module)
data2vec_vision-main
deltalm/src/fairseq/scoring/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field from fairseq.dataclass import FairseqDataclass from fairseq.scoring import BaseScorer, register_scorer from fairseq.scoring.tokenizer import EvaluationTokenizer @dataclass class WerScorerConfig(FairseqDataclass): wer_tokenizer: EvaluationTokenizer.ALL_TOKENIZER_TYPES = field( default="none", metadata={"help": "sacreBLEU tokenizer to use for evaluation"} ) wer_remove_punct: bool = field( default=False, metadata={"help": "remove punctuation"} ) wer_char_level: bool = field( default=False, metadata={"help": "evaluate at character level"} ) wer_lowercase: bool = field(default=False, metadata={"help": "lowercasing"}) @register_scorer("wer", dataclass=WerScorerConfig) class WerScorer(BaseScorer): def __init__(self, cfg): super().__init__(cfg) self.reset() try: import editdistance as ed except ImportError: raise ImportError("Please install editdistance to use WER scorer") self.ed = ed self.tokenizer = EvaluationTokenizer( tokenizer_type=self.cfg.wer_tokenizer, lowercase=self.cfg.wer_lowercase, punctuation_removal=self.cfg.wer_remove_punct, character_tokenization=self.cfg.wer_char_level, ) def reset(self): self.distance = 0 self.ref_length = 0 def add_string(self, ref, pred): ref_items = self.tokenizer.tokenize(ref).split() pred_items = self.tokenizer.tokenize(pred).split() self.distance += self.ed.eval(ref_items, pred_items) self.ref_length += len(ref_items) def result_string(self): return f"WER: {self.score():.2f}" def score(self): return 100.0 * self.distance / self.ref_length if self.ref_length > 0 else 0
data2vec_vision-main
deltalm/src/fairseq/scoring/wer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unicodedata from fairseq.dataclass import ChoiceEnum class EvaluationTokenizer(object): """A generic evaluation-time tokenizer, which leverages built-in tokenizers in sacreBLEU (https://github.com/mjpost/sacrebleu). It additionally provides lowercasing, punctuation removal and character tokenization, which are applied after sacreBLEU tokenization. Args: tokenizer_type (str): the type of sacreBLEU tokenizer to apply. lowercase (bool): lowercase the text. punctuation_removal (bool): remove punctuation (based on unicode category) from text. character_tokenization (bool): tokenize the text to characters. """ SPACE = chr(32) SPACE_ESCAPE = chr(9601) ALL_TOKENIZER_TYPES = ChoiceEnum(["none", "13a", "intl", "zh", "ja-mecab"]) def __init__( self, tokenizer_type: str = "13a", lowercase: bool = False, punctuation_removal: bool = False, character_tokenization: bool = False, ): from sacrebleu.tokenizers import TOKENIZERS assert tokenizer_type in TOKENIZERS, f"{tokenizer_type}, {TOKENIZERS}" self.lowercase = lowercase self.punctuation_removal = punctuation_removal self.character_tokenization = character_tokenization self.tokenizer = TOKENIZERS[tokenizer_type] @classmethod def remove_punctuation(cls, sent: str): """Remove punctuation based on Unicode category.""" return cls.SPACE.join( t for t in sent.split(cls.SPACE) if not all(unicodedata.category(c)[0] == "P" for c in t) ) def tokenize(self, sent: str): tokenized = self.tokenizer()(sent) if self.punctuation_removal: tokenized = self.remove_punctuation(tokenized) if self.character_tokenization: tokenized = self.SPACE.join( list(tokenized.replace(self.SPACE, self.SPACE_ESCAPE)) ) if self.lowercase: tokenized = tokenized.lower() return tokenized
data2vec_vision-main
deltalm/src/fairseq/scoring/tokenizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq.scoring import BaseScorer, register_scorer @register_scorer("chrf") class ChrFScorer(BaseScorer): def __init__(self, args): super(ChrFScorer, self).__init__(args) import sacrebleu self.sacrebleu = sacrebleu def add_string(self, ref, pred): self.ref.append(ref) self.pred.append(pred) def score(self, order=4): return self.result_string(order).score def result_string(self, order=4): if order != 4: raise NotImplementedError return self.sacrebleu.corpus_chrf(self.pred, [self.ref]).format()
data2vec_vision-main
deltalm/src/fairseq/scoring/chrf.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import sys from dataclasses import _MISSING_TYPE, dataclass, field from typing import Any, List, Optional import torch from fairseq.dataclass.constants import ( DATASET_IMPL_CHOICES, DDP_BACKEND_CHOICES, DISTRIBUTED_WRAPPER_CHOICES, GENERATION_CONSTRAINTS_CHOICES, GENERATION_DECODING_FORMAT_CHOICES, LOG_FORMAT_CHOICES, PIPELINE_CHECKPOINT_CHOICES, ZERO_SHARDING_CHOICES, ) from omegaconf import II, MISSING @dataclass class FairseqDataclass: """fairseq base dataclass that supported fetching attributes and metas""" _name: Optional[str] = None @staticmethod def name(): return None def _get_all_attributes(self) -> List[str]: return [k for k in self.__dataclass_fields__.keys()] def _get_meta( self, attribute_name: str, meta: str, default: Optional[Any] = None ) -> Any: return self.__dataclass_fields__[attribute_name].metadata.get(meta, default) def _get_name(self, attribute_name: str) -> str: return self.__dataclass_fields__[attribute_name].name def _get_default(self, attribute_name: str) -> Any: if hasattr(self, attribute_name): if str(getattr(self, attribute_name)).startswith("${"): return str(getattr(self, attribute_name)) elif str(self.__dataclass_fields__[attribute_name].default).startswith( "${" ): return str(self.__dataclass_fields__[attribute_name].default) elif ( getattr(self, attribute_name) != self.__dataclass_fields__[attribute_name].default ): return getattr(self, attribute_name) f = self.__dataclass_fields__[attribute_name] if not isinstance(f.default_factory, _MISSING_TYPE): return f.default_factory() return f.default def _get_type(self, attribute_name: str) -> Any: return self.__dataclass_fields__[attribute_name].type def _get_help(self, attribute_name: str) -> Any: return self._get_meta(attribute_name, "help") def _get_argparse_const(self, attribute_name: str) -> Any: return self._get_meta(attribute_name, "argparse_const") def _get_argparse_alias(self, attribute_name: str) -> Any: return self._get_meta(attribute_name, "argparse_alias") def _get_choices(self, attribute_name: str) -> Any: return self._get_meta(attribute_name, "choices") @dataclass class CommonConfig(FairseqDataclass): # This is the core dataclass including common parameters shared by all different jobs. Please append your params to other dataclasses if they were # used for a particular purpose or task, such as those dedicated for `distributed training`, `optimization`, etc. no_progress_bar: bool = field( default=False, metadata={"help": "disable progress bar"} ) log_interval: int = field( default=100, metadata={ "help": "log progress every N batches (when progress bar is disabled)" }, ) log_format: Optional[LOG_FORMAT_CHOICES] = field( default=None, metadata={"help": "log format to use"} ) tensorboard_logdir: Optional[str] = field( default=None, metadata={ "help": "path to save logs for tensorboard, should match --logdir " "of running tensorboard (default: no tensorboard logging)" }, ) wandb_project: Optional[str] = field( default=None, metadata={ "help": "Weights and Biases project name to use for logging" }, ) seed: int = field( default=1, metadata={"help": "pseudo random number generator seed"} ) cpu: bool = field(default=False, metadata={"help": "use CPU instead of CUDA"}) tpu: bool = field(default=False, metadata={"help": "use TPU instead of CUDA"}) bf16: bool = field(default=False, metadata={"help": "use bfloat16; implies --tpu"}) memory_efficient_bf16: bool = field( default=False, metadata={ "help": "use a memory-efficient version of BF16 training; implies --bf16" }, ) fp16: bool = field(default=False, metadata={"help": "use FP16"}) memory_efficient_fp16: bool = field( default=False, metadata={ "help": "use a memory-efficient version of FP16 training; implies --fp16" }, ) fp16_no_flatten_grads: bool = field( default=False, metadata={"help": "don't flatten FP16 grads tensor"} ) fp16_init_scale: int = field( default=2 ** 7, metadata={"help": "default FP16 loss scale"} ) fp16_scale_window: Optional[int] = field( default=None, metadata={"help": "number of updates before increasing loss scale"}, ) fp16_scale_tolerance: float = field( default=0.0, metadata={ "help": "pct of updates that can overflow before decreasing the loss scale" }, ) min_loss_scale: float = field( default=1e-4, metadata={"help": "minimum FP16 loss scale, after which training is stopped"}, ) threshold_loss_scale: Optional[float] = field( default=None, metadata={"help": "threshold FP16 loss scale from below"} ) user_dir: Optional[str] = field( default=None, metadata={ "help": "path to a python module containing custom extensions (tasks and/or architectures)" }, ) empty_cache_freq: int = field( default=0, metadata={"help": "how often to clear the PyTorch CUDA cache (0 to disable)"}, ) all_gather_list_size: int = field( default=16384, metadata={"help": "number of bytes reserved for gathering stats from workers"}, ) model_parallel_size: int = field( default=1, metadata={"help": "total number of GPUs to parallelize model over"} ) quantization_config_path: Optional[str] = field( default=None, metadata={"help": "path to quantization config file"} ) profile: bool = field( default=False, metadata={"help": "enable autograd profiler emit_nvtx"} ) reset_logging: bool = field( default=True, metadata={ "help": "when using Hydra, reset the logging at the beginning of training" }, ) @dataclass class DistributedTrainingConfig(FairseqDataclass): distributed_world_size: int = field( default=max(1, torch.cuda.device_count()), metadata={ "help": "total number of GPUs across all nodes (default: all visible GPUs)" }, ) distributed_rank: Optional[int] = field( default=0, metadata={"help": "rank of the current worker"} ) distributed_backend: str = field( default="nccl", metadata={"help": "distributed backend"} ) distributed_init_method: Optional[str] = field( default=None, metadata={ "help": "typically tcp://hostname:port that will be used to " "establish initial connetion" }, ) distributed_port: int = field( default=-1, metadata={ "help": "port number (not required if using --distributed-init-method)" }, ) device_id: int = field( default=0, metadata={ "help": "which GPU to use (usually configured automatically)", "argparse_alias": "--local_rank", }, ) distributed_no_spawn: bool = field( default=False, metadata={ "help": "do not spawn multiple processes even if multiple GPUs are visible" }, ) ddp_backend: DDP_BACKEND_CHOICES = field( default="c10d", metadata={"help": "DistributedDataParallel backend"} ) bucket_cap_mb: int = field( default=25, metadata={"help": "bucket size for reduction"} ) fix_batches_to_gpus: bool = field( default=False, metadata={ "help": "don't shuffle batches between GPUs; this reduces overall " "randomness and may affect precision but avoids the cost of re-reading the data" }, ) find_unused_parameters: bool = field( default=True, metadata={ "help": "disable unused parameter detection (not applicable to " "no_c10d ddp-backend" }, ) fast_stat_sync: bool = field( default=False, metadata={"help": "[deprecated] this is now defined per Criterion"}, ) broadcast_buffers: bool = field( default=False, metadata={ "help": "Copy non-trainable parameters between GPUs, such as " "batchnorm population statistics" }, ) distributed_wrapper: DISTRIBUTED_WRAPPER_CHOICES = field( default="DDP", metadata={"help": "DistributedDataParallel backend"} ) slowmo_momentum: Optional[float] = field( default=None, metadata={ "help": "SlowMo momentum term; by default use 0.0 for 16 GPUs, " "0.2 for 32 GPUs; 0.5 for 64 GPUs, 0.6 for > 64 GPUs" }, ) slowmo_algorithm: str = field( default="LocalSGD", metadata={"help": "whether to use LocalSGD or SGP"} ) localsgd_frequency: int = field( default=3, metadata={"help": "Local SGD allreduce frequency"} ) nprocs_per_node: int = field( default=max(1, torch.cuda.device_count()), metadata={ "help": "number of GPUs in each node. An allreduce operation across GPUs in " "a node is very fast. Hence, we do allreduce across GPUs in a node, " "and gossip across different nodes" }, ) pipeline_model_parallel: bool = field( default=False, metadata={"help": "if set, use pipeline model parallelism across GPUs"}, ) pipeline_balance: Optional[str] = field( default=None, metadata={ "help": "partition the model into N_K pieces, where each piece " "contains N_i layers. The sum(args.pipeline_balance) " "should equal the total number of layers in the model" }, ) pipeline_devices: Optional[str] = field( default=None, metadata={ "help": "a list of device indices indicating which device to place " "each of the N_K partitions. The length of this list should " "equal the length of the --pipeline-balance argument" }, ) pipeline_chunks: Optional[int] = field( default=0, metadata={"help": "microbatch count for pipeline model parallelism"} ) pipeline_encoder_balance: Optional[str] = field( default=None, metadata={ "help": "partition the pipeline parallel encoder into N_K pieces, where each piece " "contains N_i layers. The sum(args.pipeline_encoder_balance) " "should equal the total number of encoder layers in the model" }, ) pipeline_encoder_devices: Optional[str] = field( default=None, metadata={ "help": "a list of device indices indicating which device to place " "each of the N_K partitions. The length of this list should " "equal the length of the --pipeline-encoder-balance argument" }, ) pipeline_decoder_balance: Optional[str] = field( default=None, metadata={ "help": "partition the pipeline parallel decoder into N_K pieces, where each piece " "contains N_i layers. The sum(args.pipeline_decoder_balance) " "should equal the total number of decoder layers in the model" }, ) pipeline_decoder_devices: Optional[str] = field( default=None, metadata={ "help": "a list of device indices indicating which device to place " "each of the N_K partitions. The length of this list should " "equal the length of the --pipeline-decoder-balance argument" }, ) pipeline_checkpoint: PIPELINE_CHECKPOINT_CHOICES = field( default="never", metadata={"help": "checkpointing mode for pipeline model parallelism"}, ) zero_sharding: ZERO_SHARDING_CHOICES = field( default="none", metadata={"help": "ZeRO sharding"} ) tpu: bool = II("common.tpu") @dataclass class DatasetConfig(FairseqDataclass): num_workers: int = field( default=1, metadata={"help": "how many subprocesses to use for data loading"} ) skip_invalid_size_inputs_valid_test: bool = field( default=False, metadata={"help": "ignore too long or too short lines in valid and test set"}, ) max_tokens: Optional[int] = field( default=None, metadata={"help": "maximum number of tokens in a batch"} ) batch_size: Optional[int] = field( default=None, metadata={ "help": "number of examples in a batch", "argparse_alias": "--max-sentences", }, ) required_batch_size_multiple: int = field( default=8, metadata={"help": "batch size will be a multiplier of this value"} ) required_seq_len_multiple: int = field( default=1, metadata={ "help": "maximum sequence length in batch will be a multiplier of this value" }, ) dataset_impl: Optional[DATASET_IMPL_CHOICES] = field( default=None, metadata={"help": "output dataset implementation"} ) data_buffer_size: int = field( default=10, metadata={"help": "Number of batches to preload"} ) train_subset: str = field( default="train", metadata={"help": "data subset to use for training (e.g. train, valid, test)"}, ) valid_subset: str = field( default="valid", metadata={ "help": "comma separated list of data subsets to use for validation" " (e.g. train, valid, test)" }, ) validate_interval: int = field( default=1, metadata={"help": "validate every N epochs"} ) validate_interval_updates: int = field( default=0, metadata={"help": "validate every N updates"} ) validate_after_updates: int = field( default=0, metadata={"help": "dont validate until reaching this many updates"} ) fixed_validation_seed: Optional[int] = field( default=None, metadata={"help": "specified random seed for validation"} ) disable_validation: bool = field( default=False, metadata={"help": "disable validation"} ) max_tokens_valid: Optional[int] = field( default=II("dataset.max_tokens"), metadata={ "help": "maximum number of tokens in a validation batch" " (defaults to --max-tokens)" }, ) batch_size_valid: Optional[int] = field( default=II("dataset.batch_size"), metadata={ "help": "batch size of the validation batch (defaults to --batch-size)", "argparse_alias": "--max-sentences-valid", }, ) curriculum: int = field( default=0, metadata={"help": "don't shuffle batches for first N epochs"} ) gen_subset: str = field( default="test", metadata={"help": "data subset to generate (train, valid, test)"}, ) num_shards: int = field( default=1, metadata={"help": "shard generation over N shards"} ) shard_id: int = field( default=0, metadata={"help": "id of the shard to generate (id < num_shards)"} ) @dataclass class OptimizationConfig(FairseqDataclass): max_epoch: int = field( default=0, metadata={"help": "force stop training at specified epoch"} ) max_update: int = field( default=0, metadata={"help": "force stop training at specified update"} ) stop_time_hours: float = field( default=0, metadata={ "help": "force stop training after specified cumulative time (if >0)" }, ) clip_norm: float = field( default=0.0, metadata={"help": "clip threshold of gradients"} ) sentence_avg: bool = field( default=False, metadata={ "help": "normalize gradients by the number of sentences in a batch" " (default is to normalize by number of tokens)" }, ) update_freq: List[int] = field( default_factory=lambda: [1], metadata={"help": "update parameters every N_i batches, when in epoch i"}, ) lr: List[float] = field( default_factory=lambda: [0.25], metadata={ "help": "learning rate for the first N epochs; all epochs >N using LR_N" " (note: this may be interpreted differently depending on --lr-scheduler)" }, ) stop_min_lr: float = field( default=-1.0, metadata={"help": "stop training when the learning rate reaches this minimum"}, ) use_bmuf: bool = field( default=False, metadata={ "help": "specify global optimizer for syncing models on different GPUs/shards" }, ) @dataclass class CheckpointConfig(FairseqDataclass): save_dir: str = field( default="checkpoints", metadata={"help": "path to save checkpoints"} ) restore_file: str = field( default="checkpoint_last.pt", metadata={ "help": "filename from which to load checkpoint " "(default: <save-dir>/checkpoint_last.pt" }, ) finetune_from_model: Optional[str] = field( default=None, metadata={ "help": "finetune from a pretrained model; note that meters and lr scheduler will be reset" }, ) reset_dataloader: bool = field( default=False, metadata={ "help": "if set, does not reload dataloader state from the checkpoint" }, ) reset_lr_scheduler: bool = field( default=False, metadata={ "help": "if set, does not load lr scheduler state from the checkpoint" }, ) reset_meters: bool = field( default=False, metadata={"help": "if set, does not load meters from the checkpoint"}, ) reset_optimizer: bool = field( default=False, metadata={"help": "if set, does not load optimizer state from the checkpoint"}, ) optimizer_overrides: str = field( default="{}", metadata={ "help": "a dictionary used to override optimizer args when loading a checkpoint" }, ) save_interval: int = field( default=1, metadata={"help": "save a checkpoint every N epochs"} ) save_interval_updates: int = field( default=0, metadata={"help": "save a checkpoint (and validate) every N updates"} ) keep_interval_updates: int = field( default=-1, metadata={ "help": "keep the last N checkpoints saved with --save-interval-updates" }, ) keep_last_epochs: int = field( default=-1, metadata={"help": "keep last N epoch checkpoints"} ) keep_best_checkpoints: int = field( default=-1, metadata={"help": "keep best N checkpoints based on scores"} ) no_save: bool = field( default=False, metadata={"help": "don't save models or checkpoints"} ) no_epoch_checkpoints: bool = field( default=False, metadata={"help": "only store last and best checkpoints"} ) no_last_checkpoints: bool = field( default=False, metadata={"help": "don't store last checkpoints"} ) no_save_optimizer_state: bool = field( default=False, metadata={"help": "don't save optimizer-state as part of checkpoint"}, ) best_checkpoint_metric: str = field( default="loss", metadata={"help": 'metric to use for saving "best" checkpoints'} ) maximize_best_checkpoint_metric: bool = field( default=False, metadata={ "help": 'select the largest metric value for saving "best" checkpoints' }, ) patience: int = field( default=-1, metadata={ "help": ( "early stop training if valid performance doesn't " "improve for N consecutive validation runs; note " "that this is influenced by --validate-interval" ) }, ) checkpoint_suffix: str = field( default="", metadata={"help": "suffix to add to the checkpoint file name"} ) checkpoint_shard_count: int = field( default=1, metadata={ "help": "Number of shards containing the checkpoint - " "if the checkpoint is over 300GB, it is preferable " "to split it into shards to prevent OOM on CPU while loading " "the checkpoint" }, ) load_checkpoint_on_all_dp_ranks: bool = field( default=False, metadata={ "help": "load checkpoints on all data parallel devices " "(default: only load on rank 0 and broadcast to other devices)" }, ) model_parallel_size: int = II("common.model_parallel_size") distributed_rank: int = II("distributed_training.distributed_rank") @dataclass class FairseqBMUFConfig(FairseqDataclass): block_lr: float = field( default=1, metadata={"help": "block learning rate for bmuf"} ) block_momentum: float = field( default=0.875, metadata={"help": "block momentum for bmuf"} ) global_sync_iter: int = field( default=50, metadata={"help": "Iteration for syncing global model"} ) warmup_iterations: int = field( default=500, metadata={"help": "warmup iterations for model to broadcast"} ) use_nbm: bool = field( default=False, metadata={"help": "Specify whether you want to use classical BM / Nesterov BM"}, ) average_sync: bool = field( default=False, metadata={ "help": "Specify whether you want to average the local momentum after each sync" }, ) distributed_world_size: int = II("distributed_training.distributed_world_size") @dataclass class GenerationConfig(FairseqDataclass): beam: int = field( default=5, metadata={"help": "beam size"}, ) nbest: int = field( default=1, metadata={"help": "number of hypotheses to output"}, ) max_len_a: float = field( default=0, metadata={ "help": "generate sequences of maximum length ax + b, where x is the source length" }, ) max_len_b: int = field( default=1024, metadata={ "help": "generate sequences of maximum length ax + b, where x is the source length" }, ) min_len: int = field( default=1, metadata={"help": "minimum generation length"}, ) match_source_len: bool = field( default=False, metadata={"help": "generations should match the source length"}, ) unnormalized: bool = field( default=False, metadata={"help": "compare unnormalized hypothesis scores"}, ) no_early_stop: bool = field( default=False, metadata={"help": "deprecated"}, ) no_beamable_mm: bool = field( default=False, metadata={"help": "don't use BeamableMM in attention layers"}, ) lenpen: float = field( default=1, metadata={ "help": "length penalty: <1.0 favors shorter, >1.0 favors longer sentences" }, ) unkpen: float = field( default=0, metadata={ "help": "unknown word penalty: <0 produces more unks, >0 produces fewer" }, ) replace_unk: Optional[str] = field( default=None, metadata={ "help": "perform unknown replacement (optionally with alignment dictionary)", "argparse_const": "@@ ", }, ) sacrebleu: bool = field( default=False, metadata={"help": "score with sacrebleu"}, ) score_reference: bool = field( default=False, metadata={"help": "just score the reference translation"}, ) prefix_size: int = field( default=0, metadata={"help": "initialize generation by target prefix of given length"}, ) no_repeat_ngram_size: int = field( default=0, metadata={ "help": "ngram blocking such that this size ngram cannot be repeated in the generation" }, ) sampling: bool = field( default=False, metadata={"help": "sample hypotheses instead of using beam search"}, ) sampling_topk: int = field( default=-1, metadata={"help": "sample from top K likely next words instead of all words"}, ) sampling_topp: float = field( default=-1.0, metadata={ "help": "sample from the smallest set whose cumulative probability mass exceeds p for next words" }, ) constraints: Optional[GENERATION_CONSTRAINTS_CHOICES] = field( default=None, metadata={ "help": "enables lexically constrained decoding", "argparse_const": "ordered", }, ) temperature: float = field( default=1.0, metadata={"help": "temperature for generation"}, ) diverse_beam_groups: int = field( default=-1, metadata={"help": "number of groups for Diverse Beam Search"}, ) diverse_beam_strength: float = field( default=0.5, metadata={"help": "strength of diversity penalty for Diverse Beam Search"}, ) diversity_rate: float = field( default=-1.0, metadata={"help": "strength of diversity penalty for Diverse Siblings Search"}, ) print_alignment: bool = field( default=False, metadata={ "help": "if set, uses attention feedback to compute and print alignment to source tokens" }, ) print_step: bool = field( default=False, metadata={"help": "print steps"}, ) lm_path: Optional[str] = field( default=None, metadata={"help": "path to lm checkpoint for lm fusion"}, ) lm_weight: float = field( default=0.0, metadata={"help": "weight for lm probs for lm fusion"}, ) # arguments for iterative refinement generator iter_decode_eos_penalty: float = field( default=0.0, metadata={"help": "if > 0.0, it penalized early-stopping in decoding."}, ) iter_decode_max_iter: int = field( default=10, metadata={"help": "maximum iterations for iterative refinement."}, ) iter_decode_force_max_iter: bool = field( default=False, metadata={ "help": "if set, run exact the maximum number of iterations without early stop" }, ) iter_decode_with_beam: int = field( default=1, metadata={ "help": "if > 1, model will generate translations varying by the lengths." }, ) iter_decode_with_external_reranker: bool = field( default=False, metadata={ "help": "if set, the last checkpoint are assumed to be a reranker to rescore the translations" }, ) retain_iter_history: bool = field( default=False, metadata={ "help": "if set, decoding returns the whole history of iterative refinement" }, ) retain_dropout: bool = field( default=False, metadata={"help": "Use dropout at inference time"}, ) # temporarily set to Any until https://github.com/facebookresearch/hydra/issues/1117 is fixed # retain_dropout_modules: Optional[List[str]] = field( retain_dropout_modules: Any = field( default=None, metadata={ "help": "if set, only retain dropout for the specified modules; " "if not set, then dropout will be retained for all modules" }, ) # special decoding format for advanced decoding. decoding_format: Optional[GENERATION_DECODING_FORMAT_CHOICES] = field( default=None, metadata={"help": "special decoding format for advanced decoding."}, ) no_seed_provided: bool = field( default=False, metadata={"help": "if set, dont use seed for initializing random generators"}, ) @dataclass class CommonEvalConfig(FairseqDataclass): path: Optional[str] = field( default=None, metadata={"help": "path(s) to model file(s), colon separated"}, ) post_process: Optional[str] = field( default=None, metadata={ "help": "post-process text by removing pre-processing such as BPE, letter segmentation, etc " "(valid options are: sentencepiece, wordpiece, letter, _EOW, none, otherwise treated as BPE symbol)", "argparse_const": "@@ ", "argparse_alias": "--remove-bpe", }, ) quiet: bool = field(default=False, metadata={"help": "only print final scores"}) model_overrides: str = field( default="{}", metadata={ "help": "a dictionary used to override model args at generation that were used during model training" }, ) results_path: Optional[str] = field( default=None, metadata={"help": "path to save eval results (optional)"} ) @dataclass class EvalLMConfig(FairseqDataclass): output_word_probs: bool = field( default=False, metadata={ "help": "if set, outputs words and their predicted log probabilities to standard output" }, ) output_word_stats: bool = field( default=False, metadata={ "help": "if set, outputs word statistics such as word count, average probability, etc" }, ) context_window: int = field( default=0, metadata={ "help": "ensures that every evaluated token has access to a context of at least this size, if possible" }, ) softmax_batch: int = field( default=sys.maxsize, metadata={ "help": "if BxT is more than this, will batch the softmax over vocab to this amount of tokens, in order to fit into GPU memory" }, ) @dataclass class InteractiveConfig(FairseqDataclass): buffer_size: int = field( default=0, metadata={ "help": "read this many sentences into a buffer before processing them" }, ) input: str = field( default="-", metadata={"help": "file to read from; use - for stdin"}, ) @dataclass class FairseqConfig(FairseqDataclass): common: CommonConfig = CommonConfig() common_eval: CommonEvalConfig = CommonEvalConfig() distributed_training: DistributedTrainingConfig = DistributedTrainingConfig() dataset: DatasetConfig = DatasetConfig() optimization: OptimizationConfig = OptimizationConfig() checkpoint: CheckpointConfig = CheckpointConfig() bmuf: FairseqBMUFConfig = FairseqBMUFConfig() generation: GenerationConfig = GenerationConfig() eval_lm: EvalLMConfig = EvalLMConfig() interactive: InteractiveConfig = InteractiveConfig() model: Any = MISSING task: Any = None criterion: Any = None optimizer: Any = None lr_scheduler: Any = None scoring: Any = None bpe: Any = None tokenizer: Any = None
data2vec_vision-main
deltalm/src/fairseq/dataclass/configs.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """isort:skip_file""" import logging from typing import Dict, Any from hydra.core.config_store import ConfigStore from fairseq.dataclass.configs import FairseqConfig logger = logging.getLogger(__name__) def hydra_init(cfg_name="config") -> None: cs = ConfigStore.instance() cs.store(name=cfg_name, node=FairseqConfig) for k in FairseqConfig.__dataclass_fields__: v = FairseqConfig.__dataclass_fields__[k].default try: cs.store(name=k, node=v) except BaseException: logger.error(f"{k} - {v}") raise
data2vec_vision-main
deltalm/src/fairseq/dataclass/initialize.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from enum import Enum, EnumMeta from typing import List class StrEnumMeta(EnumMeta): # this is workaround for submitit pickling leading to instance checks failing in hydra for StrEnum, see # https://github.com/facebookresearch/hydra/issues/1156 @classmethod def __instancecheck__(cls, other): return "enum" in str(type(other)) class StrEnum(Enum, metaclass=StrEnumMeta): def __str__(self): return self.value def __eq__(self, other: str): return self.value == other def __repr__(self): return self.value def __hash__(self): return hash(str(self)) def ChoiceEnum(choices: List[str]): """return the Enum class used to enforce list of choices""" return StrEnum("Choices", {k: k for k in choices}) LOG_FORMAT_CHOICES = ChoiceEnum(["json", "none", "simple", "tqdm"]) DDP_BACKEND_CHOICES = ChoiceEnum(["c10d", "no_c10d"]) DATASET_IMPL_CHOICES = ChoiceEnum(["raw", "lazy", "cached", "mmap", "fasta"]) DISTRIBUTED_WRAPPER_CHOICES = ChoiceEnum(["DDP", "SlowMo"]) GENERATION_CONSTRAINTS_CHOICES = ChoiceEnum(["ordered", "unordered"]) GENERATION_DECODING_FORMAT_CHOICES = ChoiceEnum( ["unigram", "ensemble", "vote", "dp", "bs"] ) ZERO_SHARDING_CHOICES = ChoiceEnum(["none", "os"]) PIPELINE_CHECKPOINT_CHOICES = ChoiceEnum(["always", "never", "except_last"])
data2vec_vision-main
deltalm/src/fairseq/dataclass/constants.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .configs import FairseqDataclass from .constants import ChoiceEnum __all__ = [ "FairseqDataclass", "ChoiceEnum", ]
data2vec_vision-main
deltalm/src/fairseq/dataclass/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import ast import inspect import logging import os import re from argparse import ArgumentError, ArgumentParser, Namespace from dataclasses import _MISSING_TYPE, MISSING from enum import Enum from typing import Any, Dict, List, Tuple, Type from fairseq.dataclass import FairseqDataclass from fairseq.dataclass.configs import FairseqConfig from hydra.core.global_hydra import GlobalHydra from hydra.experimental import compose, initialize from omegaconf import DictConfig, OmegaConf, open_dict logger = logging.getLogger(__name__) def eval_str_list(x, x_type=float): if x is None: return None if isinstance(x, str): if len(x) == 0: return [] x = ast.literal_eval(x) try: return list(map(x_type, x)) except TypeError: return [x_type(x)] def interpret_dc_type(field_type): if isinstance(field_type, str): raise RuntimeError("field should be a type") if field_type == Any: return str typestring = str(field_type) if re.match(r"(typing.|^)Union\[(.*), NoneType\]$", typestring): return field_type.__args__[0] return field_type def gen_parser_from_dataclass( parser: ArgumentParser, dataclass_instance: FairseqDataclass, delete_default: bool = False, ) -> None: """convert a dataclass instance to tailing parser arguments""" def argparse_name(name: str): if name == "data": # normally data is positional args return name if name == "_name": # private member, skip return None return "--" + name.replace("_", "-") def get_kwargs_from_dc( dataclass_instance: FairseqDataclass, k: str ) -> Dict[str, Any]: """k: dataclass attributes""" kwargs = {} field_type = dataclass_instance._get_type(k) inter_type = interpret_dc_type(field_type) field_default = dataclass_instance._get_default(k) if isinstance(inter_type, type) and issubclass(inter_type, Enum): field_choices = [t.value for t in list(inter_type)] else: field_choices = None field_help = dataclass_instance._get_help(k) field_const = dataclass_instance._get_argparse_const(k) if isinstance(field_default, str) and field_default.startswith("${"): kwargs["default"] = field_default else: if field_default is MISSING: kwargs["required"] = True if field_choices is not None: kwargs["choices"] = field_choices if ( isinstance(inter_type, type) and (issubclass(inter_type, List) or issubclass(inter_type, Tuple)) ) or ("List" in str(inter_type) or "Tuple" in str(inter_type)): if "int" in str(inter_type): kwargs["type"] = lambda x: eval_str_list(x, int) elif "float" in str(inter_type): kwargs["type"] = lambda x: eval_str_list(x, float) elif "str" in str(inter_type): kwargs["type"] = lambda x: eval_str_list(x, str) else: raise NotImplementedError( "parsing of type " + str(inter_type) + " is not implemented" ) if field_default is not MISSING: kwargs["default"] = ( ",".join(map(str, field_default)) if field_default is not None else None ) elif ( isinstance(inter_type, type) and issubclass(inter_type, Enum) ) or "Enum" in str(inter_type): kwargs["type"] = str if field_default is not MISSING: if isinstance(field_default, Enum): kwargs["default"] = field_default.value else: kwargs["default"] = field_default elif inter_type is bool: kwargs["action"] = ( "store_false" if field_default is True else "store_true" ) kwargs["default"] = field_default else: kwargs["type"] = inter_type if field_default is not MISSING: kwargs["default"] = field_default kwargs["help"] = field_help if field_const is not None: kwargs["const"] = field_const kwargs["nargs"] = "?" return kwargs for k in dataclass_instance._get_all_attributes(): field_name = argparse_name(dataclass_instance._get_name(k)) field_type = dataclass_instance._get_type(k) if field_name is None: continue elif inspect.isclass(field_type) and issubclass(field_type, FairseqDataclass): gen_parser_from_dataclass(parser, field_type(), delete_default) continue kwargs = get_kwargs_from_dc(dataclass_instance, k) field_args = [field_name] alias = dataclass_instance._get_argparse_alias(k) if alias is not None: field_args.append(alias) if "default" in kwargs: if isinstance(kwargs["default"], str) and kwargs["default"].startswith( "${" ): if kwargs["help"] is None: # this is a field with a name that will be added elsewhere continue else: del kwargs["default"] if delete_default: del kwargs["default"] try: parser.add_argument(*field_args, **kwargs) except ArgumentError: pass def _set_legacy_defaults(args, cls): """Helper to set default arguments based on *add_args*.""" if not hasattr(cls, "add_args"): return import argparse parser = argparse.ArgumentParser( argument_default=argparse.SUPPRESS, allow_abbrev=False ) cls.add_args(parser) # copied from argparse.py: defaults = argparse.Namespace() for action in parser._actions: if action.dest is not argparse.SUPPRESS: if not hasattr(defaults, action.dest): if action.default is not argparse.SUPPRESS: setattr(defaults, action.dest, action.default) for key, default_value in vars(defaults).items(): if not hasattr(args, key): setattr(args, key, default_value) def _override_attr( sub_node: str, data_class: Type[FairseqDataclass], args: Namespace ) -> List[str]: overrides = [] if not inspect.isclass(data_class) or not issubclass(data_class, FairseqDataclass): return overrides def get_default(f): if not isinstance(f.default_factory, _MISSING_TYPE): return f.default_factory() return f.default for k, v in data_class.__dataclass_fields__.items(): if k.startswith("_"): # private member, skip continue val = get_default(v) if not hasattr(args, k) else getattr(args, k) field_type = interpret_dc_type(v.type) if ( isinstance(val, str) and not val.startswith("${") # not interpolation and field_type != str and ( not inspect.isclass(field_type) or not issubclass(field_type, Enum) ) # not choices enum ): # upgrade old models that stored complex parameters as string val = ast.literal_eval(val) if isinstance(val, tuple): val = list(val) if ( getattr(v.type, "__origin__", None) is List # skip interpolation and not (isinstance(val, str) and val.startswith("${")) ): # if type is int but val is float, then we will crash later - try to convert here t_args = v.type.__args__ if len(t_args) == 1: val = list(map(t_args[0], val)) elif val is not None and (field_type is int or field_type is bool or field_type is float): try: val = field_type(val) except: pass # ignore errors here, they are often from interpolation args if val is None: overrides.append("{}.{}=null".format(sub_node, k)) elif val == "": overrides.append("{}.{}=''".format(sub_node, k)) elif isinstance(val, str): val = val.replace("'", r"\'") overrides.append("{}.{}='{}'".format(sub_node, k, val)) elif isinstance(val, FairseqDataclass): overrides += _override_attr(f"{sub_node}.{k}", type(val), args) elif isinstance(val, Namespace): sub_overrides, _ = override_module_args(val) for so in sub_overrides: overrides.append(f"{sub_node}.{k}.{so}") else: overrides.append("{}.{}={}".format(sub_node, k, val)) return overrides def migrate_registry( name, value, registry, args, overrides, deletes, use_name_as_val=False ): if value in registry: overrides.append("{}={}".format(name, value)) overrides.append("{}._name={}".format(name, value)) overrides.extend(_override_attr(name, registry[value], args)) elif use_name_as_val and value is not None: overrides.append("{}={}".format(name, value)) else: deletes.append(name) def override_module_args(args: Namespace) -> Tuple[List[str], List[str]]: """use the field in args to overrides those in cfg""" overrides = [] deletes = [] for k in FairseqConfig.__dataclass_fields__.keys(): overrides.extend( _override_attr(k, FairseqConfig.__dataclass_fields__[k].type, args) ) if args is not None: if hasattr(args, "task"): from fairseq.tasks import TASK_DATACLASS_REGISTRY migrate_registry( "task", args.task, TASK_DATACLASS_REGISTRY, args, overrides, deletes ) else: deletes.append("task") # these options will be set to "None" if they have not yet been migrated # so we can populate them with the entire flat args CORE_REGISTRIES = {"criterion", "optimizer", "lr_scheduler"} from fairseq.registry import REGISTRIES for k, v in REGISTRIES.items(): if hasattr(args, k): migrate_registry( k, getattr(args, k), v["dataclass_registry"], args, overrides, deletes, use_name_as_val=k not in CORE_REGISTRIES, ) else: deletes.append(k) no_dc = True if hasattr(args, "arch"): from fairseq.models import ARCH_MODEL_REGISTRY, ARCH_MODEL_NAME_REGISTRY if args.arch in ARCH_MODEL_REGISTRY: m_cls = ARCH_MODEL_REGISTRY[args.arch] dc = getattr(m_cls, "__dataclass", None) if dc is not None: m_name = ARCH_MODEL_NAME_REGISTRY[args.arch] overrides.append("model={}".format(m_name)) overrides.append("model._name={}".format(args.arch)) # override model params with those exist in args overrides.extend(_override_attr("model", dc, args)) no_dc = False if no_dc: deletes.append("model") return overrides, deletes def convert_namespace_to_omegaconf(args: Namespace) -> DictConfig: """Convert a flat argparse.Namespace to a structured DictConfig.""" # Here we are using field values provided in args to override counterparts inside config object overrides, deletes = override_module_args(args) # configs will be in fairseq/config after installation config_path = os.path.join("..", "config") GlobalHydra.instance().clear() with initialize(config_path=config_path): try: composed_cfg = compose("config", overrides=overrides, strict=False) #composed_cfg = compose("config", overrides=overrides) except: logger.error("Error when composing. Overrides: " + str(overrides)) raise for k in deletes: composed_cfg[k] = None cfg = OmegaConf.create( OmegaConf.to_container(composed_cfg, resolve=True, enum_to_str=True) ) # hack to be able to set Namespace in dict config. this should be removed when we update to newer # omegaconf version that supports object flags, or when we migrate all existing models from omegaconf import _utils old_primitive = _utils.is_primitive_type _utils.is_primitive_type = lambda _: True if cfg.task is None and getattr(args, "task", None): cfg.task = Namespace(**vars(args)) from fairseq.tasks import TASK_REGISTRY _set_legacy_defaults(cfg.task, TASK_REGISTRY[args.task]) cfg.task._name = args.task if cfg.model is None and getattr(args, "arch", None): cfg.model = Namespace(**vars(args)) from fairseq.models import ARCH_MODEL_REGISTRY _set_legacy_defaults(cfg.model, ARCH_MODEL_REGISTRY[args.arch]) cfg.model._name = args.arch if cfg.optimizer is None and getattr(args, "optimizer", None): cfg.optimizer = Namespace(**vars(args)) from fairseq.optim import OPTIMIZER_REGISTRY _set_legacy_defaults(cfg.optimizer, OPTIMIZER_REGISTRY[args.optimizer]) cfg.optimizer._name = args.optimizer if cfg.lr_scheduler is None and getattr(args, "lr_scheduler", None): cfg.lr_scheduler = Namespace(**vars(args)) from fairseq.optim.lr_scheduler import LR_SCHEDULER_REGISTRY _set_legacy_defaults(cfg.lr_scheduler, LR_SCHEDULER_REGISTRY[args.lr_scheduler]) cfg.lr_scheduler._name = args.lr_scheduler if cfg.criterion is None and getattr(args, "criterion", None): cfg.criterion = Namespace(**vars(args)) from fairseq.criterions import CRITERION_REGISTRY _set_legacy_defaults(cfg.criterion, CRITERION_REGISTRY[args.criterion]) cfg.criterion._name = args.criterion _utils.is_primitive_type = old_primitive OmegaConf.set_struct(cfg, True) return cfg def populate_dataclass( dataclass: FairseqDataclass, args: Namespace, ) -> FairseqDataclass: for k in dataclass.__dataclass_fields__.keys(): if k.startswith("_"): # private member, skip continue if hasattr(args, k): setattr(dataclass, k, getattr(args, k)) return dataclass def overwrite_args_by_name(cfg: DictConfig, overrides: Dict[str, any]): # this will be deprecated when we get rid of argparse and model_overrides logic from fairseq.registry import REGISTRIES with open_dict(cfg): for k in cfg.keys(): # "k in cfg" will return false if its a "mandatory value (e.g. ???)" if k in cfg and isinstance(cfg[k], DictConfig): overwrite_args_by_name(cfg[k], overrides) elif k in cfg and isinstance(cfg[k], Namespace): for override_key, val in overrides.items(): setattr(cfg[k], override_key, val) elif k in overrides: if ( k in REGISTRIES and overrides[k] in REGISTRIES[k]["dataclass_registry"] ): cfg[k] = DictConfig( REGISTRIES[k]["dataclass_registry"][overrides[k]] ) overwrite_args_by_name(cfg[k], overrides) cfg[k]._name = overrides[k] else: cfg[k] = overrides[k] def merge_with_parent(dc: FairseqDataclass, cfg: FairseqDataclass): merged_cfg = OmegaConf.merge(dc, cfg) merged_cfg.__dict__["_parent"] = cfg.__dict__["_parent"] OmegaConf.set_struct(merged_cfg, True) return merged_cfg
data2vec_vision-main
deltalm/src/fairseq/dataclass/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn class BeamableMM(nn.Module): """This module provides an optimized MM for beam decoding with attention. It leverage the fact that the source-side of the input is replicated beam times and the target-side of the input is of width one. This layer speeds up inference by replacing the inputs {(bsz x 1 x nhu), (bsz x sz2 x nhu)} with smaller inputs {(bsz/beam x beam x nhu), (bsz/beam x sz2 x nhu)}. """ def __init__(self, beam_size=None): super(BeamableMM, self).__init__() self.beam_size = beam_size def forward(self, input1, input2): if ( not self.training and self.beam_size is not None # test mode and input1.dim() == 3 # beam size is set and input1.size(1) # only support batched input == 1 # single time step update ): bsz, beam = input1.size(0), self.beam_size # bsz x 1 x nhu --> bsz/beam x beam x nhu input1 = input1[:, 0, :].unfold(0, beam, beam).transpose(2, 1) # bsz x sz2 x nhu --> bsz/beam x sz2 x nhu input2 = input2.unfold(0, beam, beam)[:, :, :, 0] # use non batched operation if bsz = beam if input1.size(0) == 1: output = torch.mm(input1[0, :, :], input2[0, :, :]) else: output = input1.bmm(input2) return output.view(bsz, 1, -1) else: return input1.bmm(input2) def set_beam_size(self, beam_size): self.beam_size = beam_size
data2vec_vision-main
deltalm/src/fairseq/modules/beamable_mm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import math import torch import torch.nn as nn import torch.nn.functional as F from fairseq.modules.fairseq_dropout import FairseqDropout from fairseq.modules.scalar_bias import scalar_bias class SingleHeadAttention(nn.Module): """ Single-head attention that supports Gating and Downsampling """ def __init__( self, out_channels, embed_dim, head_dim, head_index, dropout=0.0, bias=True, project_input=True, gated=False, downsample=False, num_heads=1, ): super().__init__() self.embed_dim = embed_dim self.dropout_module = FairseqDropout( dropout, module_name=self.__class__.__name__ ) self.head_index = head_index self.head_dim = head_dim self.project_input = project_input self.gated = gated self.downsample = downsample self.num_heads = num_heads self.projection = None k_layers = [] v_layers = [] if self.downsample: k_layers.append(Downsample(self.head_index)) v_layers.append(Downsample(self.head_index)) out_proj_size = self.head_dim else: out_proj_size = self.head_dim * self.num_heads if self.gated: k_layers.append(GatedLinear(self.embed_dim, out_proj_size, bias=bias)) self.in_proj_q = GatedLinear(self.embed_dim, out_proj_size, bias=bias) v_layers.append(GatedLinear(self.embed_dim, out_proj_size, bias=bias)) else: k_layers.append(Linear(self.embed_dim, out_proj_size, bias=bias)) self.in_proj_q = Linear(self.embed_dim, out_proj_size, bias=bias) v_layers.append(Linear(self.embed_dim, out_proj_size, bias=bias)) self.in_proj_k = nn.Sequential(*k_layers) self.in_proj_v = nn.Sequential(*v_layers) if self.downsample: self.out_proj = Linear(out_proj_size, self.head_dim, bias=bias) else: self.out_proj = Linear(out_proj_size, out_channels, bias=bias) self.scaling = self.head_dim ** -0.5 def forward( self, query, key, value, mask_future_timesteps=False, key_padding_mask=None, use_scalar_bias=False, ): """Input shape: Time x Batch x Channel Self-attention can be implemented by passing in the same arguments for query, key and value. Future timesteps can be masked with the `mask_future_timesteps` argument. Padding elements can be excluded from the key by passing a binary ByteTensor (`key_padding_mask`) with shape: batch x src_len, where padding elements are indicated by 1s. """ src_len, bsz, out_channels = key.size() tgt_len = query.size(0) assert list(query.size()) == [tgt_len, bsz, out_channels] assert key.size() == value.size() if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if self.downsample: size = bsz else: size = bsz * self.num_heads k = key v = value q = query if self.project_input: q = self.in_proj_q(q) k = self.in_proj_k(k) v = self.in_proj_v(v) src_len = k.size()[0] q *= self.scaling if not self.downsample: q = q.view(tgt_len, size, self.head_dim) k = k.view(src_len, size, self.head_dim) v = v.view(src_len, size, self.head_dim) q = q.transpose(0, 1) k = k.transpose(0, 1) v = v.transpose(0, 1) attn_weights = torch.bmm(q, k.transpose(1, 2)) if mask_future_timesteps: assert ( query.size() == key.size() ), "mask_future_timesteps only applies to self-attention" attn_weights *= torch.tril( attn_weights.data.new([1]).expand(tgt_len, tgt_len).clone(), diagonal=-1, )[:, :: self.head_index + 1 if self.downsample else 1].unsqueeze(0) attn_weights += torch.triu( attn_weights.data.new([-math.inf]).expand(tgt_len, tgt_len).clone(), diagonal=0, )[:, :: self.head_index + 1 if self.downsample else 1].unsqueeze(0) tgt_size = tgt_len if use_scalar_bias: attn_weights = scalar_bias(attn_weights, 2) v = scalar_bias(v, 1) tgt_size += 1 if key_padding_mask is not None: # don't attend to padding symbols if key_padding_mask.max() > 0: if self.downsample: attn_weights = attn_weights.view(bsz, 1, tgt_len, src_len) else: attn_weights = attn_weights.view( size, self.num_heads, tgt_len, src_len ) attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2), -math.inf, ) attn_weights = attn_weights.view(size, tgt_len, src_len) attn_weights = F.softmax(attn_weights, dim=-1) attn_weights = self.dropout_module(attn_weights) attn = torch.bmm(attn_weights, v) if self.downsample: attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, self.head_dim) else: attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, self.embed_dim) attn = self.out_proj(attn) return attn, attn_weights class DownsampledMultiHeadAttention(nn.ModuleList): """ Multi-headed attention with Gating and Downsampling """ def __init__( self, out_channels, embed_dim, num_heads, dropout=0.0, bias=True, project_input=True, gated=False, downsample=False, ): self.embed_dim = embed_dim self.num_heads = num_heads self.head_dim = embed_dim // num_heads self.downsample = downsample self.gated = gated self.project_input = project_input assert self.head_dim * num_heads == embed_dim if self.downsample: attention_heads = [] for index in range(self.num_heads): attention_heads.append( SingleHeadAttention( out_channels, self.embed_dim, self.head_dim, index, dropout, bias, self.project_input, self.gated, self.downsample, self.num_heads, ) ) super().__init__(modules=attention_heads) self.out_proj = Linear(embed_dim, out_channels, bias=bias) else: # either we have a list of attention heads, or just one attention head # if not being downsampled, we can do the heads with one linear layer instead of separate ones super().__init__() self.attention_module = SingleHeadAttention( out_channels, self.embed_dim, self.head_dim, 1, dropout, bias, self.project_input, self.gated, self.downsample, self.num_heads, ) def forward( self, query, key, value, mask_future_timesteps=False, key_padding_mask=None, use_scalar_bias=False, ): src_len, bsz, embed_dim = key.size() tgt_len = query.size(0) assert embed_dim == self.embed_dim assert list(query.size()) == [tgt_len, bsz, embed_dim] assert key.size() == value.size() tgt_size = tgt_len if use_scalar_bias: tgt_size += 1 attn = [] attn_weights = [] if self.downsample: for attention_head_number in range(self.num_heads): # call the forward of each attention head _attn, _attn_weight = self[attention_head_number]( query, key, value, mask_future_timesteps, key_padding_mask, use_scalar_bias, ) attn.append(_attn) attn_weights.append(_attn_weight) full_attn = torch.cat(attn, dim=2) full_attn = self.out_proj(full_attn) return full_attn, attn_weights[0].clone() else: _attn, _attn_weight = self.attention_module( query, key, value, mask_future_timesteps, key_padding_mask, use_scalar_bias, ) attn.append(_attn) attn_weights.append(_attn_weight) full_attn = torch.cat(attn, dim=2) full_attn_weights = torch.cat(attn_weights) full_attn_weights = full_attn_weights.view( bsz, self.num_heads, tgt_size, src_len ) full_attn_weights = full_attn_weights.sum(dim=1) / self.num_heads return full_attn, full_attn_weights class Downsample(nn.Module): """ Selects every nth element, where n is the index """ def __init__(self, index): super().__init__() self.index = index def forward(self, x): return x[:: self.index + 1] def Linear(in_features, out_features, dropout=0.0, bias=True): """Weight-normalized Linear layer (input: B x T x C)""" m = nn.Linear(in_features, out_features, bias=bias) m.weight.data.normal_(mean=0, std=math.sqrt((1 - dropout) / in_features)) m.bias.data.zero_() return nn.utils.weight_norm(m) def GatedLinear(in_features, out_features, dropout=0.0, bias=True): """Weight-normalized Linear layer (input: B x T x C) with interspersed GLU units""" return nn.Sequential( Linear(in_features, out_features * 4, dropout, bias), nn.GLU(), Linear(out_features * 2, out_features * 2, dropout, bias), nn.GLU(), Linear(out_features, out_features, dropout, bias), )
data2vec_vision-main
deltalm/src/fairseq/modules/downsampled_multihead_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import torch import torch.nn.functional as F logger = logging.getLogger(__name__) def _cross_entropy_pytorch(logits, target, ignore_index=None, reduction="mean"): lprobs = F.log_softmax(logits, dim=-1, dtype=torch.float32) return F.nll_loss( lprobs, target, ignore_index=ignore_index, reduction=reduction, ) try: import xentropy_cuda from apex.contrib import xentropy def cross_entropy(logits, target, ignore_index=-100, reduction="mean"): if logits.device == torch.device("cpu"): return _cross_entropy_pytorch(logits, target, ignore_index, reduction) else: if not getattr(cross_entropy, "_has_logged_once", False): logger.info("using fused cross entropy") cross_entropy._has_logged_once = True half_to_float = logits.dtype == torch.half losses = xentropy.SoftmaxCrossEntropyLoss.apply( logits, target, 0.0, ignore_index, half_to_float, ) if reduction == "sum": return losses.sum() elif reduction == "mean": if ignore_index >= 0: return losses.sum() / target.ne(ignore_index).sum() else: return losses.mean() elif reduction == "none": return losses else: raise NotImplementedError except ImportError: def cross_entropy(logits, target, ignore_index=-100, reduction="mean"): return _cross_entropy_pytorch(logits, target, ignore_index, reduction)
data2vec_vision-main
deltalm/src/fairseq/modules/cross_entropy.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from typing import Dict, Optional, Tuple import torch import torch.nn.functional as F from fairseq import utils from fairseq.incremental_decoding_utils import with_incremental_state from fairseq.modules.fairseq_dropout import FairseqDropout from fairseq.modules.quant_noise import quant_noise from torch import Tensor, nn from torch.nn import Parameter @with_incremental_state class MultiheadAttention(nn.Module): """Multi-headed attention. See "Attention Is All You Need" for more details. """ def __init__( self, embed_dim, num_heads, kdim=None, vdim=None, qdim=None, outdim=None, qkprojdim=None, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, self_attention=False, encoder_decoder_attention=False, q_noise=0.0, qn_block_size=8, ): super().__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self.qdim = qdim if qdim is not None else embed_dim self.outdim = outdim if outdim is not None else embed_dim self.qkprojdim = qkprojdim if qkprojdim is not None else embed_dim self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout_module = FairseqDropout( dropout, module_name=self.__class__.__name__ ) self.head_dim = embed_dim // num_heads self.qk_head_dim = self.qkprojdim // num_heads assert ( self.head_dim * num_heads == self.embed_dim ), "embed_dim must be divisible by num_heads" assert ( self.qk_head_dim * num_heads == self.qkprojdim ), "qk_embed_dim must be divisible by num_heads" self.scaling = self.qk_head_dim ** -0.5 self.self_attention = self_attention self.encoder_decoder_attention = encoder_decoder_attention assert not self.self_attention or self.qkv_same_dim, ( "Self-attention requires query, key and " "value to be of the same size" ) self.k_proj = quant_noise( nn.Linear(self.kdim, self.qkprojdim, bias=bias), q_noise, qn_block_size ) self.v_proj = quant_noise( nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size ) self.q_proj = quant_noise( nn.Linear(self.qdim, self.qkprojdim, bias=bias), q_noise, qn_block_size ) self.out_proj = quant_noise( nn.Linear(embed_dim, self.outdim, bias=bias), q_noise, qn_block_size ) if add_bias_kv: self.bias_k = Parameter(torch.Tensor(1, 1, self.qkprojdim)) self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self.reset_parameters() self.onnx_trace = False self.tpu = False def prepare_for_onnx_export_(self): self.onnx_trace = True def prepare_for_tpu_(self, **kwargs): self.tpu = True def reset_parameters(self): if self.qkv_same_dim: # Empirically observed the convergence to be much better with # the scaled initialization nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2)) else: nn.init.xavier_uniform_(self.k_proj.weight) nn.init.xavier_uniform_(self.v_proj.weight) nn.init.xavier_uniform_(self.q_proj.weight) nn.init.xavier_uniform_(self.out_proj.weight) if self.out_proj.bias is not None: nn.init.constant_(self.out_proj.bias, 0.0) if self.bias_k is not None: nn.init.xavier_normal_(self.bias_k) if self.bias_v is not None: nn.init.xavier_normal_(self.bias_v) def forward( self, query, key: Optional[Tensor], value: Optional[Tensor], key_padding_mask: Optional[Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, need_weights: bool = True, static_kv: bool = False, attn_mask: Optional[Tensor] = None, before_softmax: bool = False, need_head_weights: bool = False, ) -> Tuple[Tensor, Optional[Tensor]]: """Input shape: Time x Batch x Channel Args: key_padding_mask (ByteTensor, optional): mask to exclude keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. need_weights (bool, optional): return the attention weights, averaged over heads (default: False). attn_mask (ByteTensor, optional): typically used to implement causal attention, where the mask prevents the attention from looking forward in time (default: None). before_softmax (bool, optional): return the raw attention weights and values before the attention softmax. need_head_weights (bool, optional): return the attention weights for each head. Implies *need_weights*. Default: return the average attention weights over all heads. """ if need_head_weights: need_weights = True tgt_len, bsz, qdim = query.size() assert qdim == self.qdim assert list(query.size()) == [tgt_len, bsz, qdim] if ( not self.onnx_trace and not self.tpu # don't use PyTorch version on TPUs and incremental_state is None and not static_kv # A workaround for quantization to work. Otherwise JIT compilation # treats bias in linear module as method. and not torch.jit.is_scripting() and self.qkprojdim == self.embed_dim ): assert key is not None and value is not None return F.multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, torch.empty([0]), torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)), self.bias_k, self.bias_v, self.add_zero_attn, self.dropout_module.p, self.out_proj.weight, self.out_proj.bias, self.training or self.dropout_module.apply_during_inference, key_padding_mask, need_weights, attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, ) if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) if saved_state is not None and "prev_key" in saved_state: # previous time steps are cached - no need to recompute # key and value if they are static if static_kv: assert self.encoder_decoder_attention and not self.self_attention key = value = None else: saved_state = None if self.self_attention: q = self.q_proj(query) k = self.k_proj(query) v = self.v_proj(query) elif self.encoder_decoder_attention: # encoder-decoder attention q = self.q_proj(query) if key is None: assert value is None k = v = None else: k = self.k_proj(key) v = self.v_proj(key) else: assert key is not None and value is not None q = self.q_proj(query) k = self.k_proj(key) v = self.v_proj(value) q *= self.scaling if self.bias_k is not None: assert self.bias_v is not None k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = torch.cat( [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 ) if key_padding_mask is not None: key_padding_mask = torch.cat( [ key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1), ], dim=1, ) q = ( q.contiguous() .view(tgt_len, bsz * self.num_heads, self.qk_head_dim) .transpose(0, 1) ) if k is not None: k = ( k.contiguous() .view(-1, bsz * self.num_heads, self.qk_head_dim) .transpose(0, 1) ) if v is not None: v = ( v.contiguous() .view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if saved_state is not None: # saved states are stored with shape (bsz, num_heads, seq_len, head_dim) if "prev_key" in saved_state: _prev_key = saved_state["prev_key"] assert _prev_key is not None prev_key = _prev_key.view(bsz * self.num_heads, -1, self.qk_head_dim) if static_kv: k = prev_key else: assert k is not None k = torch.cat([prev_key, k], dim=1) if "prev_value" in saved_state: _prev_value = saved_state["prev_value"] assert _prev_value is not None prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim) if static_kv: v = prev_value else: assert v is not None v = torch.cat([prev_value, v], dim=1) prev_key_padding_mask: Optional[Tensor] = None if "prev_key_padding_mask" in saved_state: prev_key_padding_mask = saved_state["prev_key_padding_mask"] assert k is not None and v is not None key_padding_mask = MultiheadAttention._append_prev_key_padding_mask( key_padding_mask=key_padding_mask, prev_key_padding_mask=prev_key_padding_mask, batch_size=bsz, src_len=k.size(1), static_kv=static_kv, ) saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.qk_head_dim) saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim) saved_state["prev_key_padding_mask"] = key_padding_mask # In this branch incremental_state is never None assert incremental_state is not None incremental_state = self._set_input_buffer(incremental_state, saved_state) assert k is not None src_len = k.size(1) # This is part of a workaround to get around fork/join parallelism # not supporting Optional types. if key_padding_mask is not None and key_padding_mask.dim() == 0: key_padding_mask = None if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if self.add_zero_attn: assert v is not None src_len += 1 k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) if attn_mask is not None: attn_mask = torch.cat( [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 ) if key_padding_mask is not None: key_padding_mask = torch.cat( [ key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as( key_padding_mask ), ], dim=1, ) attn_weights = torch.bmm(q, k.transpose(1, 2)) attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] if attn_mask is not None: attn_mask = attn_mask.unsqueeze(0) if self.onnx_trace: attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1) attn_weights += attn_mask if key_padding_mask is not None: # don't attend to padding symbols attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) if not self.tpu: attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf"), ) else: attn_weights = attn_weights.transpose(0, 2) attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf")) attn_weights = attn_weights.transpose(0, 2) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if before_softmax: return attn_weights, v attn_weights_float = utils.softmax( attn_weights, dim=-1, onnx_trace=self.onnx_trace ) attn_weights = attn_weights_float.type_as(attn_weights) attn_probs = self.dropout_module(attn_weights) assert v is not None attn = torch.bmm(attn_probs, v) assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] if self.onnx_trace and attn.size(1) == 1: # when ONNX tracing a single decoder step (sequence length == 1) # the transpose is a no-op copy before view, thus unnecessary attn = attn.contiguous().view(tgt_len, bsz, self.embed_dim) else: attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, self.embed_dim) attn = self.out_proj(attn) attn_weights: Optional[Tensor] = None if need_weights: attn_weights = attn_weights_float.view( bsz, self.num_heads, tgt_len, src_len ).transpose(1, 0) if not need_head_weights: # average attention weights over heads attn_weights = attn_weights.mean(dim=0) return attn, attn_weights @staticmethod def _append_prev_key_padding_mask( key_padding_mask: Optional[Tensor], prev_key_padding_mask: Optional[Tensor], batch_size: int, src_len: int, static_kv: bool, ) -> Optional[Tensor]: # saved key padding masks have shape (bsz, seq_len) if prev_key_padding_mask is not None and static_kv: new_key_padding_mask = prev_key_padding_mask elif prev_key_padding_mask is not None and key_padding_mask is not None: new_key_padding_mask = torch.cat( [prev_key_padding_mask.float(), key_padding_mask.float()], dim=1 ) # During incremental decoding, as the padding token enters and # leaves the frame, there will be a time when prev or current # is None elif prev_key_padding_mask is not None: filler = torch.zeros( (batch_size, src_len - prev_key_padding_mask.size(1)), device=prev_key_padding_mask.device, ) new_key_padding_mask = torch.cat( [prev_key_padding_mask.float(), filler.float()], dim=1 ) elif key_padding_mask is not None: filler = torch.zeros( (batch_size, src_len - key_padding_mask.size(1)), device=key_padding_mask.device, ) new_key_padding_mask = torch.cat( [filler.float(), key_padding_mask.float()], dim=1 ) else: new_key_padding_mask = prev_key_padding_mask return new_key_padding_mask @torch.jit.export def reorder_incremental_state( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], new_order: Tensor, ): """Reorder buffered internal state (for incremental generation).""" input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: for k in input_buffer.keys(): input_buffer_k = input_buffer[k] if input_buffer_k is not None: if self.encoder_decoder_attention and input_buffer_k.size( 0 ) == new_order.size(0): break input_buffer[k] = input_buffer_k.index_select(0, new_order) incremental_state = self._set_input_buffer(incremental_state, input_buffer) return incremental_state def _get_input_buffer( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] ) -> Dict[str, Optional[Tensor]]: result = self.get_incremental_state(incremental_state, "attn_state") if result is not None: return result else: empty_result: Dict[str, Optional[Tensor]] = {} return empty_result def _set_input_buffer( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], buffer: Dict[str, Optional[Tensor]], ): return self.set_incremental_state(incremental_state, "attn_state", buffer) def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int): return attn_weights def upgrade_state_dict_named(self, state_dict, name): prefix = name + "." if name != "" else "" items_to_add = {} keys_to_remove = [] for k in state_dict.keys(): if k.endswith(prefix + "in_proj_weight"): # in_proj_weight used to be q + k + v with same dimensions dim = int(state_dict[k].shape[0] / 3) items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim] items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim] items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :] keys_to_remove.append(k) k_bias = prefix + "in_proj_bias" if k_bias in state_dict.keys(): dim = int(state_dict[k].shape[0] / 3) items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim] items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][ dim : 2 * dim ] items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :] keys_to_remove.append(prefix + "in_proj_bias") for k in keys_to_remove: del state_dict[k] for key, value in items_to_add.items(): state_dict[key] = value
data2vec_vision-main
deltalm/src/fairseq/modules/multihead_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import, division, print_function, unicode_literals from collections.abc import Iterable from itertools import repeat import torch import torch.nn as nn def _pair(v): if isinstance(v, Iterable): assert len(v) == 2, "len(v) != 2" return v return tuple(repeat(v, 2)) def infer_conv_output_dim(conv_op, input_dim, sample_inchannel): sample_seq_len = 200 sample_bsz = 10 x = torch.randn(sample_bsz, sample_inchannel, sample_seq_len, input_dim) # N x C x H x W # N: sample_bsz, C: sample_inchannel, H: sample_seq_len, W: input_dim x = conv_op(x) # N x C x H x W x = x.transpose(1, 2) # N x H x C x W bsz, seq = x.size()[:2] per_channel_dim = x.size()[3] # bsz: N, seq: H, CxW the rest return x.contiguous().view(bsz, seq, -1).size(-1), per_channel_dim class VGGBlock(torch.nn.Module): """ VGG motibated cnn module https://arxiv.org/pdf/1409.1556.pdf Args: in_channels: (int) number of input channels (typically 1) out_channels: (int) number of output channels conv_kernel_size: convolution channels pooling_kernel_size: the size of the pooling window to take a max over num_conv_layers: (int) number of convolution layers input_dim: (int) input dimension conv_stride: the stride of the convolving kernel. Can be a single number or a tuple (sH, sW) Default: 1 padding: implicit paddings on both sides of the input. Can be a single number or a tuple (padH, padW). Default: None layer_norm: (bool) if layer norm is going to be applied. Default: False Shape: Input: BxCxTxfeat, i.e. (batch_size, input_size, timesteps, features) Output: BxCxTxfeat, i.e. (batch_size, input_size, timesteps, features) """ def __init__( self, in_channels, out_channels, conv_kernel_size, pooling_kernel_size, num_conv_layers, input_dim, conv_stride=1, padding=None, layer_norm=False, ): assert ( input_dim is not None ), "Need input_dim for LayerNorm and infer_conv_output_dim" super(VGGBlock, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.conv_kernel_size = _pair(conv_kernel_size) self.pooling_kernel_size = _pair(pooling_kernel_size) self.num_conv_layers = num_conv_layers self.padding = ( tuple(e // 2 for e in self.conv_kernel_size) if padding is None else _pair(padding) ) self.conv_stride = _pair(conv_stride) self.layers = nn.ModuleList() for layer in range(num_conv_layers): conv_op = nn.Conv2d( in_channels if layer == 0 else out_channels, out_channels, self.conv_kernel_size, stride=self.conv_stride, padding=self.padding, ) self.layers.append(conv_op) if layer_norm: conv_output_dim, per_channel_dim = infer_conv_output_dim( conv_op, input_dim, in_channels if layer == 0 else out_channels ) self.layers.append(nn.LayerNorm(per_channel_dim)) input_dim = per_channel_dim self.layers.append(nn.ReLU()) if self.pooling_kernel_size is not None: pool_op = nn.MaxPool2d(kernel_size=self.pooling_kernel_size, ceil_mode=True) self.layers.append(pool_op) self.total_output_dim, self.output_dim = infer_conv_output_dim( pool_op, input_dim, out_channels ) def forward(self, x): for i, _ in enumerate(self.layers): x = self.layers[i](x) return x
data2vec_vision-main
deltalm/src/fairseq/modules/vggblock.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, Optional import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from torch import Tensor class LearnedPositionalEmbedding(nn.Embedding): """ This module learns positional embeddings up to a fixed maximum size. Padding ids are ignored by either offsetting based on padding_idx or by setting padding_idx to None and ensuring that the appropriate position ids are passed to the forward function. """ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int): super().__init__(num_embeddings, embedding_dim, padding_idx) self.onnx_trace = False if self.padding_idx is not None: self.max_positions = self.num_embeddings - self.padding_idx - 1 else: self.max_positions = self.num_embeddings def forward( self, input: Tensor, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, positions: Optional[Tensor] = None, ): """Input is expected to be of size [bsz x seqlen].""" assert (positions is None) or ( self.padding_idx is None ), "If positions is pre-computed then padding_idx should not be set." if positions is None: if incremental_state is not None: # positions is the same for every token when decoding a single step # Without the int() cast, it doesn't work in some cases when exporting to ONNX positions = torch.zeros( (1, 1), device=input.device, dtype=input.dtype ).fill_(int(self.padding_idx + input.size(1))) else: positions = utils.make_positions( input, self.padding_idx, onnx_trace=self.onnx_trace ) return F.embedding( positions, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, )
data2vec_vision-main
deltalm/src/fairseq/modules/learned_positional_embedding.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch class GradMultiply(torch.autograd.Function): @staticmethod def forward(ctx, x, scale): ctx.scale = scale res = x.new(x) return res @staticmethod def backward(ctx, grad): return grad * ctx.scale, None
data2vec_vision-main
deltalm/src/fairseq/modules/grad_multiply.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from typing import List, Tuple import torch import torch.nn.functional as F from fairseq.data import Dictionary from torch import nn CHAR_PAD_IDX = 0 CHAR_EOS_IDX = 257 logger = logging.getLogger(__name__) class CharacterTokenEmbedder(torch.nn.Module): def __init__( self, vocab: Dictionary, filters: List[Tuple[int, int]], char_embed_dim: int, word_embed_dim: int, highway_layers: int, max_char_len: int = 50, char_inputs: bool = False, ): super(CharacterTokenEmbedder, self).__init__() self.onnx_trace = False self.embedding_dim = word_embed_dim self.max_char_len = max_char_len self.char_embeddings = nn.Embedding(257, char_embed_dim, padding_idx=0) self.symbol_embeddings = nn.Parameter(torch.FloatTensor(2, word_embed_dim)) self.eos_idx, self.unk_idx = 0, 1 self.char_inputs = char_inputs self.convolutions = nn.ModuleList() for width, out_c in filters: self.convolutions.append( nn.Conv1d(char_embed_dim, out_c, kernel_size=width) ) last_dim = sum(f[1] for f in filters) self.highway = Highway(last_dim, highway_layers) if highway_layers > 0 else None self.projection = nn.Linear(last_dim, word_embed_dim) assert ( vocab is not None or char_inputs ), "vocab must be set if not using char inputs" self.vocab = None if vocab is not None: self.set_vocab(vocab, max_char_len) self.reset_parameters() def prepare_for_onnx_export_(self): self.onnx_trace = True def set_vocab(self, vocab, max_char_len): word_to_char = torch.LongTensor(len(vocab), max_char_len) truncated = 0 for i in range(len(vocab)): if i < vocab.nspecial: char_idxs = [0] * max_char_len else: chars = vocab[i].encode() # +1 for padding char_idxs = [c + 1 for c in chars] + [0] * (max_char_len - len(chars)) if len(char_idxs) > max_char_len: truncated += 1 char_idxs = char_idxs[:max_char_len] word_to_char[i] = torch.LongTensor(char_idxs) if truncated > 0: logger.info( "truncated {} words longer than {} characters".format( truncated, max_char_len ) ) self.vocab = vocab self.word_to_char = word_to_char @property def padding_idx(self): return Dictionary().pad() if self.vocab is None else self.vocab.pad() def reset_parameters(self): nn.init.xavier_normal_(self.char_embeddings.weight) nn.init.xavier_normal_(self.symbol_embeddings) nn.init.xavier_uniform_(self.projection.weight) nn.init.constant_( self.char_embeddings.weight[self.char_embeddings.padding_idx], 0.0 ) nn.init.constant_(self.projection.bias, 0.0) def forward( self, input: torch.Tensor, ): if self.char_inputs: chars = input.view(-1, self.max_char_len) pads = chars[:, 0].eq(CHAR_PAD_IDX) eos = chars[:, 0].eq(CHAR_EOS_IDX) if eos.any(): if self.onnx_trace: chars = torch.where(eos.unsqueeze(1), chars.new_zeros(1), chars) else: chars[eos] = 0 unk = None else: flat_words = input.view(-1) chars = self.word_to_char[flat_words.type_as(self.word_to_char)].type_as( input ) pads = flat_words.eq(self.vocab.pad()) eos = flat_words.eq(self.vocab.eos()) unk = flat_words.eq(self.vocab.unk()) word_embs = self._convolve(chars) if self.onnx_trace: if pads.any(): word_embs = torch.where( pads.unsqueeze(1), word_embs.new_zeros(1), word_embs ) if eos.any(): word_embs = torch.where( eos.unsqueeze(1), self.symbol_embeddings[self.eos_idx], word_embs ) if unk is not None and unk.any(): word_embs = torch.where( unk.unsqueeze(1), self.symbol_embeddings[self.unk_idx], word_embs ) else: if pads.any(): word_embs[pads] = 0 if eos.any(): word_embs[eos] = self.symbol_embeddings[self.eos_idx] if unk is not None and unk.any(): word_embs[unk] = self.symbol_embeddings[self.unk_idx] return word_embs.view(input.size()[:2] + (-1,)) def _convolve( self, char_idxs: torch.Tensor, ): char_embs = self.char_embeddings(char_idxs) char_embs = char_embs.transpose(1, 2) # BTC -> BCT conv_result = [] for conv in self.convolutions: x = conv(char_embs) x, _ = torch.max(x, -1) x = F.relu(x) conv_result.append(x) x = torch.cat(conv_result, dim=-1) if self.highway is not None: x = self.highway(x) x = self.projection(x) return x class Highway(torch.nn.Module): """ A `Highway layer <https://arxiv.org/abs/1505.00387>`_. Adopted from the AllenNLP implementation. """ def __init__(self, input_dim: int, num_layers: int = 1): super(Highway, self).__init__() self.input_dim = input_dim self.layers = nn.ModuleList( [nn.Linear(input_dim, input_dim * 2) for _ in range(num_layers)] ) self.activation = nn.ReLU() self.reset_parameters() def reset_parameters(self): for layer in self.layers: # As per comment in AllenNLP: # We should bias the highway layer to just carry its input forward. We do that by # setting the bias on `B(x)` to be positive, because that means `g` will be biased to # be high, so we will carry the input forward. The bias on `B(x)` is the second half # of the bias vector in each Linear layer. nn.init.constant_(layer.bias[self.input_dim :], 1) nn.init.constant_(layer.bias[: self.input_dim], 0) nn.init.xavier_normal_(layer.weight) def forward(self, x: torch.Tensor): for layer in self.layers: projection = layer(x) proj_x, gate = projection.chunk(2, dim=-1) proj_x = self.activation(proj_x) gate = torch.sigmoid(gate) x = gate * x + (gate.new_tensor([1]) - gate) * proj_x return x
data2vec_vision-main
deltalm/src/fairseq/modules/character_token_embedder.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Dict, List, Tuple, Union import torch import torch.utils.checkpoint as checkpoint from fairseq import utils def checkpoint_wrapper(m): """ A friendlier wrapper for performing activation checkpointing. Compared to the PyTorch version, this version: - wraps an nn.Module, so that all subsequent calls will use checkpointing - handles keyword arguments in the forward - handles non-Tensor outputs from the forward Usage:: checkpointed_module = checkpoint_wrapper(my_module) a, b = checkpointed_module(x, y=3, z=torch.Tensor([1])) """ original_forward = m.forward def _checkpointed_forward(*args, **kwargs): # Autograd Functions in PyTorch work best with positional args, since # the backward must return gradients (or None) for every input argument. # We can flatten keyword arguments to make this easier. kwarg_keys, flat_args = pack_kwargs(*args, **kwargs) parent_ctx_dict = {} output = CheckpointFunction.apply( original_forward, parent_ctx_dict, kwarg_keys, *flat_args ) if isinstance(output, torch.Tensor): return output else: packed_non_tensor_outputs = parent_ctx_dict["packed_non_tensor_outputs"] if packed_non_tensor_outputs: output = unpack_non_tensors(output, packed_non_tensor_outputs) return output m.forward = _checkpointed_forward return m def pack_kwargs(*args, **kwargs) -> Tuple[List[str], List[Any]]: """ Usage:: kwarg_keys, flat_args = pack_kwargs(1, 2, a=3, b=4) args, kwargs = unpack_kwargs(kwarg_keys, flat_args) assert args == [1, 2] assert kwargs == {"a": 3, "b": 4} """ kwarg_keys = [] flat_args = list(args) for k, v in kwargs.items(): kwarg_keys.append(k) flat_args.append(v) return kwarg_keys, flat_args def unpack_kwargs( kwarg_keys: List[str], flat_args: List[Any] ) -> Tuple[List[Any], Dict[str, Any]]: if len(kwarg_keys) == 0: return flat_args, {} args = flat_args[: -len(kwarg_keys)] kwargs = {k: v for k, v in zip(kwarg_keys, flat_args[-len(kwarg_keys) :])} return args, kwargs def split_non_tensors( mixed: Union[torch.Tensor, Tuple[Any]] ) -> Tuple[Tuple[torch.Tensor], Dict[str, List[Any]]]: """ Usage:: x = torch.Tensor([1]) y = torch.Tensor([2]) tensors, packed_non_tensors = split_non_tensors((x, y, None, 3)) recon = unpack_non_tensors(tensors, packed_non_tensors) assert recon == (x, y, None, 3) """ if isinstance(mixed, torch.Tensor): return (mixed,), None tensors = [] packed_non_tensors = {"is_tensor": [], "objects": []} for o in mixed: if isinstance(o, torch.Tensor): packed_non_tensors["is_tensor"].append(True) tensors.append(o) else: packed_non_tensors["is_tensor"].append(False) packed_non_tensors["objects"].append(o) return tuple(tensors), packed_non_tensors def unpack_non_tensors( tensors: Tuple[torch.Tensor], packed_non_tensors: Dict[str, List[Any]], ) -> Tuple[Any]: if packed_non_tensors is None: return tensors assert isinstance(packed_non_tensors, dict) mixed = [] is_tensor_list = packed_non_tensors["is_tensor"] objects = packed_non_tensors["objects"] assert len(tensors) + len(objects) == len(is_tensor_list) obj_i = tnsr_i = 0 for is_tensor in is_tensor_list: if is_tensor: mixed.append(tensors[tnsr_i]) tnsr_i += 1 else: mixed.append(objects[obj_i]) obj_i += 1 return tuple(mixed) class CheckpointFunction(torch.autograd.Function): """Similar to the torch version, but support non-Tensor outputs. The caller is expected to provide a dict (*parent_ctx_dict*) that will hold the non-Tensor outputs. These should be combined with the Tensor *outputs* by calling ``unpack_non_tensors``. """ @staticmethod def forward(ctx, run_function, parent_ctx_dict, kwarg_keys, *args): if torch.is_grad_enabled(): # grad may be disabled, e.g., during validation checkpoint.check_backward_validity(args) ctx.run_function = run_function ctx.kwarg_keys = kwarg_keys ctx.fwd_rng_state = utils.get_rng_state() tensor_inputs, packed_non_tensor_inputs = split_non_tensors(args) ctx.save_for_backward(*tensor_inputs) ctx.packed_non_tensor_inputs = packed_non_tensor_inputs with torch.no_grad(): unpacked_args, unpacked_kwargs = unpack_kwargs(kwarg_keys, args) outputs = run_function(*unpacked_args, **unpacked_kwargs) if isinstance(outputs, torch.Tensor): return outputs else: # Autograd Functions don't like non-Tensor outputs. We can split the # non-Tensor and Tensor outputs, returning the former by reference # through *parent_ctx_dict* and returning the latter directly. outputs, packed_non_tensor_outputs = split_non_tensors(outputs) parent_ctx_dict["packed_non_tensor_outputs"] = packed_non_tensor_outputs return outputs @staticmethod def backward(ctx, *args): if not torch.autograd._is_checkpoint_valid(): raise RuntimeError( "Checkpointing is not compatible with .grad(), please use .backward() if possible" ) tensor_inputs = ctx.saved_tensors tensor_inputs = checkpoint.detach_variable(tensor_inputs) inputs = unpack_non_tensors(tensor_inputs, ctx.packed_non_tensor_inputs) # Store the current states. bwd_rng_state = utils.get_rng_state() # Set the states to what it used to be before the forward pass. utils.set_rng_state(ctx.fwd_rng_state) with torch.enable_grad(): unpacked_args, unpacked_kwargs = unpack_kwargs(ctx.kwarg_keys, inputs) outputs = ctx.run_function(*unpacked_args, **unpacked_kwargs) tensor_outputs, _ = split_non_tensors(outputs) # Set the states back to what it was at the start of this function. utils.set_rng_state(bwd_rng_state) # Run backward() with only Tensors that require grad outputs_with_grad = [] args_with_grad = [] for i in range(len(tensor_outputs)): if tensor_outputs[i].requires_grad: outputs_with_grad.append(tensor_outputs[i]) args_with_grad.append(args[i]) if len(outputs_with_grad) == 0: raise RuntimeError( "None of the outputs have requires_grad=True, " "this checkpoint() is not necessary" ) torch.autograd.backward(outputs_with_grad, args_with_grad) grads = tuple( inp.grad if isinstance(inp, torch.Tensor) else None for inp in inputs ) return (None, None, None) + grads
data2vec_vision-main
deltalm/src/fairseq/modules/checkpoint_activations.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq.modules import TransformerSentenceEncoderLayer from fairseq.modules.sparse_multihead_attention import SparseMultiheadAttention class SparseTransformerSentenceEncoderLayer(TransformerSentenceEncoderLayer): """ Implements a Sprase Transformer Encoder Layer (see SparseMultiheadAttention) """ def __init__( self, embedding_dim: int = 768, ffn_embedding_dim: int = 3072, num_attention_heads: int = 8, dropout: float = 0.1, attention_dropout: float = 0.1, activation_dropout: float = 0.1, activation_fn: str = "relu", export: bool = False, is_bidirectional: bool = True, stride: int = 32, expressivity: int = 8, ) -> None: super().__init__( embedding_dim, ffn_embedding_dim, num_attention_heads, dropout, attention_dropout, activation_dropout, activation_fn, export, ) self.self_attn = SparseMultiheadAttention( self.embedding_dim, num_attention_heads, dropout=attention_dropout, add_bias_kv=False, add_zero_attn=False, self_attention=True, is_bidirectional=is_bidirectional, stride=stride, expressivity=expressivity, )
data2vec_vision-main
deltalm/src/fairseq/modules/sparse_transformer_sentence_encoder_layer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import functools import operator import torch import torch.nn.functional as F from fairseq.modules.fairseq_dropout import FairseqDropout from fairseq.modules.quant_noise import quant_noise from torch import nn class TiedLinear(nn.Module): def __init__(self, weight, transpose): super().__init__() self.weight = weight self.transpose = transpose def forward(self, input): return F.linear(input, self.weight.t() if self.transpose else self.weight) class TiedHeadModule(nn.Module): def __init__(self, weights, input_dim, num_classes, q_noise, qn_block_size): super().__init__() tied_emb, _ = weights self.num_words, emb_dim = tied_emb.size() self.word_proj = quant_noise( TiedLinear(tied_emb, transpose=False), q_noise, qn_block_size ) if input_dim != emb_dim: self.word_proj = nn.Sequential( quant_noise( nn.Linear(input_dim, emb_dim, bias=False), q_noise, qn_block_size ), self.word_proj, ) self.class_proj = quant_noise( nn.Linear(input_dim, num_classes, bias=False), q_noise, qn_block_size ) self.out_dim = self.num_words + num_classes self.register_buffer("_float_tensor", torch.FloatTensor(1)) def forward(self, input): inp_sz = functools.reduce(operator.mul, input.shape[:-1], 1) out = self._float_tensor.new(inp_sz, self.out_dim) out[:, : self.num_words] = self.word_proj(input.view(inp_sz, -1)) out[:, self.num_words :] = self.class_proj(input.view(inp_sz, -1)) return out class AdaptiveSoftmax(nn.Module): """ This is an implementation of the efficient softmax approximation for graphical processing units (GPU), described in the paper "Efficient softmax approximation for GPUs" (http://arxiv.org/abs/1609.04309). """ def __init__( self, vocab_size, input_dim, cutoff, dropout, factor=4.0, adaptive_inputs=None, tie_proj=False, q_noise=0, qn_block_size=8, ): super().__init__() if vocab_size > cutoff[-1]: cutoff = cutoff + [vocab_size] else: assert ( vocab_size == cutoff[-1] ), "cannot specify cutoff larger than vocab size" output_dim = cutoff[0] + len(cutoff) - 1 self.vocab_size = vocab_size self.cutoff = cutoff self.dropout_module = FairseqDropout( dropout, module_name=self.__class__.__name__ ) self.input_dim = input_dim self.factor = factor self.q_noise = q_noise self.qn_block_size = qn_block_size self.lsm = nn.LogSoftmax(dim=1) if adaptive_inputs is not None: self.head = TiedHeadModule( adaptive_inputs.weights_for_band(0), input_dim, len(cutoff) - 1, self.q_noise, self.qn_block_size, ) else: self.head = quant_noise( nn.Linear(input_dim, output_dim, bias=False), self.q_noise, self.qn_block_size, ) self._make_tail(adaptive_inputs, tie_proj) def init_weights(m): if ( hasattr(m, "weight") and not isinstance(m, TiedLinear) and not isinstance(m, TiedHeadModule) ): nn.init.xavier_uniform_(m.weight) self.apply(init_weights) self.register_buffer("version", torch.LongTensor([1])) def _make_tail(self, adaptive_inputs=None, tie_proj=False): self.tail = nn.ModuleList() for i in range(len(self.cutoff) - 1): dim = int(self.input_dim // self.factor ** (i + 1)) tied_emb, tied_proj = ( adaptive_inputs.weights_for_band(i + 1) if adaptive_inputs is not None else (None, None) ) if tied_proj is not None: if tie_proj: proj = quant_noise( TiedLinear(tied_proj, transpose=True), self.q_noise, self.qn_block_size, ) else: proj = quant_noise( nn.Linear(tied_proj.size(0), tied_proj.size(1), bias=False), self.q_noise, self.qn_block_size, ) else: proj = quant_noise( nn.Linear(self.input_dim, dim, bias=False), self.q_noise, self.qn_block_size, ) if tied_emb is None: out_proj = nn.Linear( dim, self.cutoff[i + 1] - self.cutoff[i], bias=False ) else: out_proj = TiedLinear(tied_emb, transpose=False) m = nn.Sequential( proj, nn.Dropout(self.dropout_module.p), quant_noise(out_proj, self.q_noise, self.qn_block_size), ) self.tail.append(m) def upgrade_state_dict_named(self, state_dict, name): version_name = name + ".version" if version_name not in state_dict: raise Exception("This version of the model is no longer supported") def adapt_target(self, target): """ In order to be efficient, the AdaptiveSoftMax does not compute the scores for all the word of the vocabulary for all the examples. It is thus necessary to call the method adapt_target of the AdaptiveSoftMax layer inside each forward pass. """ target = target.view(-1) new_target = [target.clone()] target_idxs = [] for i in range(len(self.cutoff) - 1): mask = target.ge(self.cutoff[i]).mul(target.lt(self.cutoff[i + 1])) new_target[0][mask] = self.cutoff[0] + i if mask.any(): target_idxs.append(mask.nonzero(as_tuple=False).squeeze(1)) new_target.append(target[mask].add(-self.cutoff[i])) else: target_idxs.append(None) new_target.append(None) return new_target, target_idxs def forward(self, input, target): """ Args: input: (b x t x d) target: (b x t) Returns: 2 lists: output for each cutoff section and new targets by cut off """ input = input.contiguous().view(-1, input.size(-1)) input = self.dropout_module(input) new_target, target_idxs = self.adapt_target(target) output = [self.head(input)] for i in range(len(target_idxs)): if target_idxs[i] is not None: output.append(self.tail[i](input.index_select(0, target_idxs[i]))) else: output.append(None) return output, new_target def get_log_prob(self, input, target): """ Computes the log probabilities for all the words of the vocabulary, given a 2D tensor of hidden vectors. """ bsz, length, dim = input.size() input = input.contiguous().view(-1, dim) if target is not None: _, target_idxs = self.adapt_target(target) else: target_idxs = None head_y = self.head(input) log_probs = head_y.new_zeros(input.size(0), self.vocab_size) head_sz = self.cutoff[0] + len(self.tail) log_probs[:, :head_sz] = self.lsm(head_y) tail_priors = log_probs[:, self.cutoff[0] : head_sz].clone() for i in range(len(self.tail)): start = self.cutoff[i] end = self.cutoff[i + 1] if target_idxs is None: tail_out = log_probs[:, start:end] tail_out.copy_(self.tail[i](input)) log_probs[:, start:end] = self.lsm(tail_out).add_( tail_priors[:, i, None] ) elif target_idxs[i] is not None: idxs = target_idxs[i] tail_out = log_probs[idxs, start:end] tail_out.copy_(self.tail[i](input[idxs])) log_probs[idxs, start:end] = self.lsm(tail_out).add_( tail_priors[idxs, i, None] ) log_probs = log_probs.view(bsz, length, -1) return log_probs
data2vec_vision-main
deltalm/src/fairseq/modules/adaptive_softmax.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from torch.nn.modules.utils import _single class ConvTBC(torch.nn.Module): """1D convolution over an input of shape (time x batch x channel) The implementation uses gemm to perform the convolution. This implementation is faster than cuDNN for small kernel sizes. """ def __init__(self, in_channels, out_channels, kernel_size, padding=0): super(ConvTBC, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = _single(kernel_size) self.padding = _single(padding) self.weight = torch.nn.Parameter( torch.Tensor(self.kernel_size[0], in_channels, out_channels) ) self.bias = torch.nn.Parameter(torch.Tensor(out_channels)) def forward(self, input): return torch.conv_tbc( input.contiguous(), self.weight, self.bias, self.padding[0] ) def __repr__(self): s = ( "{name}({in_channels}, {out_channels}, kernel_size={kernel_size}" ", padding={padding}" ) if self.bias is None: s += ", bias=False" s += ")" return s.format(name=self.__class__.__name__, **self.__dict__)
data2vec_vision-main
deltalm/src/fairseq/modules/conv_tbc.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.nn.functional as F def unfold1d(x, kernel_size, padding_l, pad_value=0): """unfold T x B x C to T x B x C x K""" if kernel_size > 1: T, B, C = x.size() x = F.pad( x, (0, 0, 0, 0, padding_l, kernel_size - 1 - padding_l), value=pad_value ) x = x.as_strided((T, B, C, kernel_size), (B * C, C, 1, B * C)) else: x = x.unsqueeze(3) return x
data2vec_vision-main
deltalm/src/fairseq/modules/unfold.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ This file is to re-implemented the low-rank and beam approximation of CRF layer Proposed by: Sun, Zhiqing, et al. Fast Structured Decoding for Sequence Models https://arxiv.org/abs/1910.11555 The CRF implementation is mainly borrowed from https://github.com/kmkurn/pytorch-crf/blob/master/torchcrf/__init__.py """ import numpy as np import torch import torch.nn as nn def logsumexp(x, dim=1): return torch.logsumexp(x.float(), dim=dim).type_as(x) class DynamicCRF(nn.Module): """Dynamic CRF layer is used to approximate the traditional Conditional Random Fields (CRF) $P(y | x) = 1/Z(x) exp(sum_i s(y_i, x) + sum_i t(y_{i-1}, y_i, x))$ where in this function, we assume the emition scores (s) are given, and the transition score is a |V| x |V| matrix $M$ in the following two aspects: (1) it used a low-rank approximation for the transition matrix: $M = E_1 E_2^T$ (2) it used a beam to estimate the normalizing factor Z(x) """ def __init__(self, num_embedding, low_rank=32, beam_size=64): super().__init__() self.E1 = nn.Embedding(num_embedding, low_rank) self.E2 = nn.Embedding(num_embedding, low_rank) self.vocb = num_embedding self.rank = low_rank self.beam = beam_size def extra_repr(self): return "vocab_size={}, low_rank={}, beam_size={}".format( self.vocb, self.rank, self.beam ) def forward(self, emissions, targets, masks, beam=None): """ Compute the conditional log-likelihood of a sequence of target tokens given emission scores Args: emissions (`~torch.Tensor`): Emission score are usually the unnormalized decoder output ``(batch_size, seq_len, vocab_size)``. We assume batch-first targets (`~torch.LongTensor`): Sequence of target token indices ``(batch_size, seq_len) masks (`~torch.ByteTensor`): Mask tensor with the same size as targets Returns: `~torch.Tensor`: approximated log-likelihood """ numerator = self._compute_score(emissions, targets, masks) denominator = self._compute_normalizer(emissions, targets, masks, beam) return numerator - denominator def forward_decoder(self, emissions, masks=None, beam=None): """ Find the most likely output sequence using Viterbi algorithm. Args: emissions (`~torch.Tensor`): Emission score are usually the unnormalized decoder output ``(batch_size, seq_len, vocab_size)``. We assume batch-first masks (`~torch.ByteTensor`): Mask tensor with the same size as targets Returns: `~torch.LongTensor`: decoded sequence from the CRF model """ return self._viterbi_decode(emissions, masks, beam) def _compute_score(self, emissions, targets, masks=None): batch_size, seq_len = targets.size() emission_scores = emissions.gather(2, targets[:, :, None])[:, :, 0] # B x T transition_scores = (self.E1(targets[:, :-1]) * self.E2(targets[:, 1:])).sum(2) scores = emission_scores scores[:, 1:] += transition_scores if masks is not None: scores = scores * masks.type_as(scores) return scores.sum(-1) def _compute_normalizer(self, emissions, targets=None, masks=None, beam=None): # HACK: we include "target" which is a hueristic for training # HACK: we use a beam of tokens to approximate the normalizing factor (which is bad?) beam = beam if beam is not None else self.beam batch_size, seq_len = emissions.size()[:2] if targets is not None: _emissions = emissions.scatter(2, targets[:, :, None], np.float("inf")) beam_targets = _emissions.topk(beam, 2)[1] beam_emission_scores = emissions.gather(2, beam_targets) else: beam_emission_scores, beam_targets = emissions.topk(beam, 2) beam_transition_score1 = self.E1(beam_targets[:, :-1]) # B x (T-1) x K x D beam_transition_score2 = self.E2(beam_targets[:, 1:]) # B x (T-1) x K x D beam_transition_matrix = torch.bmm( beam_transition_score1.view(-1, beam, self.rank), beam_transition_score2.view(-1, beam, self.rank).transpose(1, 2), ) beam_transition_matrix = beam_transition_matrix.view(batch_size, -1, beam, beam) # compute the normalizer in the log-space score = beam_emission_scores[:, 0] # B x K for i in range(1, seq_len): next_score = score[:, :, None] + beam_transition_matrix[:, i - 1] next_score = logsumexp(next_score, dim=1) + beam_emission_scores[:, i] if masks is not None: score = torch.where(masks[:, i : i + 1], next_score, score) else: score = next_score # Sum (log-sum-exp) over all possible tags return logsumexp(score, dim=1) def _viterbi_decode(self, emissions, masks=None, beam=None): # HACK: we use a beam of tokens to approximate the normalizing factor (which is bad?) beam = beam if beam is not None else self.beam batch_size, seq_len = emissions.size()[:2] beam_emission_scores, beam_targets = emissions.topk(beam, 2) beam_transition_score1 = self.E1(beam_targets[:, :-1]) # B x (T-1) x K x D beam_transition_score2 = self.E2(beam_targets[:, 1:]) # B x (T-1) x K x D beam_transition_matrix = torch.bmm( beam_transition_score1.view(-1, beam, self.rank), beam_transition_score2.view(-1, beam, self.rank).transpose(1, 2), ) beam_transition_matrix = beam_transition_matrix.view(batch_size, -1, beam, beam) traj_tokens, traj_scores = [], [] finalized_tokens, finalized_scores = [], [] # compute the normalizer in the log-space score = beam_emission_scores[:, 0] # B x K dummy = ( torch.arange(beam, device=score.device).expand(*score.size()).contiguous() ) for i in range(1, seq_len): traj_scores.append(score) _score = score[:, :, None] + beam_transition_matrix[:, i - 1] _score, _index = _score.max(dim=1) _score = _score + beam_emission_scores[:, i] if masks is not None: score = torch.where(masks[:, i : i + 1], _score, score) index = torch.where(masks[:, i : i + 1], _index, dummy) else: score, index = _score, _index traj_tokens.append(index) # now running the back-tracing and find the best best_score, best_index = score.max(dim=1) finalized_tokens.append(best_index[:, None]) finalized_scores.append(best_score[:, None]) for idx, scs in zip(reversed(traj_tokens), reversed(traj_scores)): previous_index = finalized_tokens[-1] finalized_tokens.append(idx.gather(1, previous_index)) finalized_scores.append(scs.gather(1, previous_index)) finalized_tokens.reverse() finalized_tokens = torch.cat(finalized_tokens, 1) finalized_tokens = beam_targets.gather(2, finalized_tokens[:, :, None])[:, :, 0] finalized_scores.reverse() finalized_scores = torch.cat(finalized_scores, 1) finalized_scores[:, 1:] = finalized_scores[:, 1:] - finalized_scores[:, :-1] return finalized_scores, finalized_tokens
data2vec_vision-main
deltalm/src/fairseq/modules/dynamic_crf_layer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ See "Gaussian Error Linear Units (GELUs)" by Dan Hendrycks and Kevin Gimpel with the corresponding GitHub repo: https://github.com/hendrycks/GELUs """ import math import torch import torch.nn as nn def gelu_accurate(x): if not hasattr(gelu_accurate, "_a"): gelu_accurate._a = math.sqrt(2 / math.pi) return ( 0.5 * x * (1 + torch.tanh(gelu_accurate._a * (x + 0.044715 * torch.pow(x, 3)))) ) def gelu(x: torch.Tensor) -> torch.Tensor: return torch.nn.functional.gelu(x.float()).type_as(x)
data2vec_vision-main
deltalm/src/fairseq/modules/gelu.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ LayerDrop as described in https://arxiv.org/abs/1909.11556. """ import torch import torch.nn as nn class LayerDropModuleList(nn.ModuleList): """ A LayerDrop implementation based on :class:`torch.nn.ModuleList`. We refresh the choice of which layers to drop every time we iterate over the LayerDropModuleList instance. During evaluation we always iterate over all layers. Usage:: layers = LayerDropList(p=0.5, modules=[layer1, layer2, layer3]) for layer in layers: # this might iterate over layers 1 and 3 x = layer(x) for layer in layers: # this might iterate over all layers x = layer(x) for layer in layers: # this might not iterate over any layers x = layer(x) Args: p (float): probability of dropping out each layer modules (iterable, optional): an iterable of modules to add """ def __init__(self, p, modules=None): super().__init__(modules) self.p = p def __iter__(self): dropout_probs = torch.empty(len(self)).uniform_() for i, m in enumerate(super().__iter__()): if not self.training or (dropout_probs[i] > self.p): yield m
data2vec_vision-main
deltalm/src/fairseq/modules/layer_drop.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Optional, Tuple import torch import torch.nn as nn from fairseq.modules import ( FairseqDropout, LayerDropModuleList, LayerNorm, MultiheadAttention, PositionalEmbedding, TransformerSentenceEncoderLayer, ) from fairseq.modules.quant_noise import quant_noise as apply_quant_noise_ def init_bert_params(module): """ Initialize the weights specific to the BERT Model. This overrides the default initializations depending on the specified arguments. 1. If normal_init_linear_weights is set then weights of linear layer will be initialized using the normal distribution and bais will be set to the specified value. 2. If normal_init_embed_weights is set then weights of embedding layer will be initialized using the normal distribution. 3. If normal_init_proj_weights is set then weights of in_project_weight for MultiHeadAttention initialized using the normal distribution (to be validated). """ if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=0.02) if module.bias is not None: module.bias.data.zero_() if isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=0.02) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() if isinstance(module, MultiheadAttention): module.q_proj.weight.data.normal_(mean=0.0, std=0.02) module.k_proj.weight.data.normal_(mean=0.0, std=0.02) module.v_proj.weight.data.normal_(mean=0.0, std=0.02) class TransformerSentenceEncoder(nn.Module): """ Implementation for a Bi-directional Transformer based Sentence Encoder used in BERT/XLM style pre-trained models. This first computes the token embedding using the token embedding matrix, position embeddings (if specified) and segment embeddings (if specified). After applying the specified number of TransformerEncoderLayers, it outputs all the internal states of the encoder as well as the final representation associated with the first token (usually CLS token). Input: - tokens: B x T matrix representing sentences - segment_labels: B x T matrix representing segment label for tokens Output: - a tuple of the following: - a list of internal model states used to compute the predictions where each tensor has shape T x B x C - sentence representation associated with first input token in format B x C. """ def __init__( self, padding_idx: int, vocab_size: int, num_encoder_layers: int = 6, embedding_dim: int = 768, ffn_embedding_dim: int = 3072, num_attention_heads: int = 8, dropout: float = 0.1, attention_dropout: float = 0.1, activation_dropout: float = 0.1, layerdrop: float = 0.0, max_seq_len: int = 256, num_segments: int = 2, use_position_embeddings: bool = True, offset_positions_by_padding: bool = True, encoder_normalize_before: bool = False, apply_bert_init: bool = False, activation_fn: str = "relu", learned_pos_embedding: bool = True, embed_scale: float = None, freeze_embeddings: bool = False, n_trans_layers_to_freeze: int = 0, export: bool = False, traceable: bool = False, q_noise: float = 0.0, qn_block_size: int = 8, ) -> None: super().__init__() self.padding_idx = padding_idx self.vocab_size = vocab_size self.dropout_module = FairseqDropout( dropout, module_name=self.__class__.__name__ ) self.layerdrop = layerdrop self.max_seq_len = max_seq_len self.embedding_dim = embedding_dim self.num_segments = num_segments self.use_position_embeddings = use_position_embeddings self.apply_bert_init = apply_bert_init self.learned_pos_embedding = learned_pos_embedding self.traceable = traceable self.tpu = False # whether we're on TPU self.embed_tokens = self.build_embedding( self.vocab_size, self.embedding_dim, self.padding_idx ) self.embed_scale = embed_scale if q_noise > 0: self.quant_noise = apply_quant_noise_( nn.Linear(self.embedding_dim, self.embedding_dim, bias=False), q_noise, qn_block_size, ) else: self.quant_noise = None self.segment_embeddings = ( nn.Embedding(self.num_segments, self.embedding_dim, padding_idx=None) if self.num_segments > 0 else None ) self.embed_positions = ( PositionalEmbedding( self.max_seq_len, self.embedding_dim, padding_idx=(self.padding_idx if offset_positions_by_padding else None), learned=self.learned_pos_embedding, ) if self.use_position_embeddings else None ) if self.layerdrop > 0.0: self.layers = LayerDropModuleList(p=self.layerdrop) else: self.layers = nn.ModuleList([]) self.layers.extend( [ self.build_transformer_sentence_encoder_layer( embedding_dim=self.embedding_dim, ffn_embedding_dim=ffn_embedding_dim, num_attention_heads=num_attention_heads, dropout=self.dropout_module.p, attention_dropout=attention_dropout, activation_dropout=activation_dropout, activation_fn=activation_fn, export=export, q_noise=q_noise, qn_block_size=qn_block_size, ) for _ in range(num_encoder_layers) ] ) if encoder_normalize_before: self.emb_layer_norm = LayerNorm(self.embedding_dim, export=export) else: self.emb_layer_norm = None # Apply initialization of model params after building the model if self.apply_bert_init: self.apply(init_bert_params) def freeze_module_params(m): if m is not None: for p in m.parameters(): p.requires_grad = False if freeze_embeddings: freeze_module_params(self.embed_tokens) freeze_module_params(self.segment_embeddings) freeze_module_params(self.embed_positions) freeze_module_params(self.emb_layer_norm) for layer in range(n_trans_layers_to_freeze): freeze_module_params(self.layers[layer]) def build_embedding(self, vocab_size, embedding_dim, padding_idx): return nn.Embedding(vocab_size, embedding_dim, padding_idx) def build_transformer_sentence_encoder_layer( self, embedding_dim, ffn_embedding_dim, num_attention_heads, dropout, attention_dropout, activation_dropout, activation_fn, export, q_noise, qn_block_size, ): return TransformerSentenceEncoderLayer( embedding_dim=embedding_dim, ffn_embedding_dim=ffn_embedding_dim, num_attention_heads=num_attention_heads, dropout=dropout, attention_dropout=attention_dropout, activation_dropout=activation_dropout, activation_fn=activation_fn, export=export, q_noise=q_noise, qn_block_size=qn_block_size, ) def prepare_for_tpu_(self, **kwargs): self.tpu = True def forward( self, tokens: torch.Tensor, segment_labels: torch.Tensor = None, last_state_only: bool = False, positions: Optional[torch.Tensor] = None, token_embeddings: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: # compute padding mask. This is needed for multi-head attention padding_mask = tokens.eq(self.padding_idx) if not self.traceable and not self.tpu and not padding_mask.any(): padding_mask = None if token_embeddings is not None: x = token_embeddings else: x = self.embed_tokens(tokens) if self.embed_scale is not None: x = x * self.embed_scale if self.embed_positions is not None: x = x + self.embed_positions(tokens, positions=positions) if self.segment_embeddings is not None and segment_labels is not None: x = x + self.segment_embeddings(segment_labels) if self.quant_noise is not None: x = self.quant_noise(x) if self.emb_layer_norm is not None: x = self.emb_layer_norm(x) x = self.dropout_module(x) # account for padding while computing the representation if padding_mask is not None: x = x * (1 - padding_mask.unsqueeze(-1).type_as(x)) # B x T x C -> T x B x C x = x.transpose(0, 1) inner_states = [] if not last_state_only: inner_states.append(x) for layer in self.layers: x, _ = layer(x, self_attn_padding_mask=padding_mask) if not last_state_only: inner_states.append(x) sentence_rep = x[0, :, :] if last_state_only: inner_states = [x] if self.traceable: return torch.stack(inner_states), sentence_rep else: return inner_states, sentence_rep
data2vec_vision-main
deltalm/src/fairseq/modules/transformer_sentence_encoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """isort:skip_file""" from .adaptive_input import AdaptiveInput from .adaptive_softmax import AdaptiveSoftmax from .beamable_mm import BeamableMM from .character_token_embedder import CharacterTokenEmbedder from .conv_tbc import ConvTBC from .cross_entropy import cross_entropy from .downsampled_multihead_attention import DownsampledMultiHeadAttention from .dynamic_convolution import DynamicConv, DynamicConv1dTBC from .dynamic_crf_layer import DynamicCRF from .fairseq_dropout import FairseqDropout from .fp32_group_norm import Fp32GroupNorm from .gelu import gelu, gelu_accurate from .grad_multiply import GradMultiply from .gumbel_vector_quantizer import GumbelVectorQuantizer from .kmeans_vector_quantizer import KmeansVectorQuantizer from .layer_drop import LayerDropModuleList from .layer_norm import Fp32LayerNorm, LayerNorm from .learned_positional_embedding import LearnedPositionalEmbedding from .lightweight_convolution import LightweightConv, LightweightConv1dTBC from .linearized_convolution import LinearizedConvolution from .multihead_attention import MultiheadAttention from .positional_embedding import PositionalEmbedding from .same_pad import SamePad from .scalar_bias import ScalarBias from .sinusoidal_positional_embedding import SinusoidalPositionalEmbedding from .transformer_sentence_encoder_layer import TransformerSentenceEncoderLayer from .transformer_sentence_encoder import TransformerSentenceEncoder from .transpose_last import TransposeLast from .unfold import unfold1d from .transformer_layer import TransformerDecoderLayer, TransformerEncoderLayer from .vggblock import VGGBlock __all__ = [ "AdaptiveInput", "AdaptiveSoftmax", "BeamableMM", "CharacterTokenEmbedder", "ConvTBC", "cross_entropy", "DownsampledMultiHeadAttention", "DynamicConv1dTBC", "DynamicConv", "DynamicCRF", "FairseqDropout", "Fp32GroupNorm", "Fp32LayerNorm", "gelu", "gelu_accurate", "GradMultiply", "GumbelVectorQuantizer", "KmeansVectorQuantizer", "LayerDropModuleList", "LayerNorm", "LearnedPositionalEmbedding", "LightweightConv1dTBC", "LightweightConv", "LinearizedConvolution", "MultiheadAttention", "PositionalEmbedding", "SamePad", "ScalarBias", "SinusoidalPositionalEmbedding", "TransformerSentenceEncoderLayer", "TransformerSentenceEncoder", "TransformerDecoderLayer", "TransformerEncoderLayer", "TransposeLast", "VGGBlock", "unfold1d", ]
data2vec_vision-main
deltalm/src/fairseq/modules/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.nn as nn from fairseq.modules import TransformerSentenceEncoder from fairseq.modules.sparse_transformer_sentence_encoder_layer import ( SparseTransformerSentenceEncoderLayer, ) class SparseTransformerSentenceEncoder(TransformerSentenceEncoder): """ Sparse implementation of the TransformerSentenceEncoder - see SparseMultiheadAttention """ def __init__( self, padding_idx: int, vocab_size: int, num_encoder_layers: int = 6, embedding_dim: int = 768, ffn_embedding_dim: int = 3072, num_attention_heads: int = 8, dropout: float = 0.1, attention_dropout: float = 0.1, activation_dropout: float = 0.1, max_seq_len: int = 256, num_segments: int = 2, use_position_embeddings: bool = True, offset_positions_by_padding: bool = True, encoder_normalize_before: bool = False, apply_bert_init: bool = False, activation_fn: str = "relu", learned_pos_embedding: bool = True, embed_scale: float = None, freeze_embeddings: bool = False, n_trans_layers_to_freeze: int = 0, export: bool = False, is_bidirectional: bool = True, stride: int = 32, expressivity: int = 8, ) -> None: super().__init__( padding_idx, vocab_size, num_encoder_layers, embedding_dim, ffn_embedding_dim, num_attention_heads, dropout, attention_dropout, activation_dropout, max_seq_len, num_segments, use_position_embeddings, offset_positions_by_padding, encoder_normalize_before, apply_bert_init, activation_fn, learned_pos_embedding, embed_scale, freeze_embeddings, n_trans_layers_to_freeze, export, ) self.layers = nn.ModuleList( [ SparseTransformerSentenceEncoderLayer( embedding_dim=self.embedding_dim, ffn_embedding_dim=ffn_embedding_dim, num_attention_heads=num_attention_heads, dropout=dropout, attention_dropout=attention_dropout, activation_dropout=activation_dropout, activation_fn=activation_fn, export=export, is_bidirectional=is_bidirectional, stride=stride, expressivity=expressivity, ) for _ in range(num_encoder_layers) ] ) def freeze_module_params(m): if m is not None: for p in m.parameters(): p.requires_grad = False for layer in range(n_trans_layers_to_freeze): freeze_module_params(self.layers[layer])
data2vec_vision-main
deltalm/src/fairseq/modules/sparse_transformer_sentence_encoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn.functional as F from fairseq import utils from fairseq.incremental_decoding_utils import with_incremental_state from .conv_tbc import ConvTBC @with_incremental_state class LinearizedConvolution(ConvTBC): """An optimized version of nn.Conv1d. At training time, this module uses ConvTBC, which is an optimized version of Conv1d. At inference time, it optimizes incremental generation (i.e., one time step at a time) by replacing the convolutions with linear layers. Note that the input order changes from training to inference. """ def __init__(self, in_channels, out_channels, kernel_size, **kwargs): super().__init__(in_channels, out_channels, kernel_size, **kwargs) self._linearized_weight = None self.register_backward_hook(self._clear_linearized_weight) def state_dict(self, destination=None, prefix="", keep_vars=False): state = ConvTBC.state_dict(self, destination, prefix, keep_vars=keep_vars) # don't store redundant _linearized_weight in checkpoints if prefix + "_linearized_weight" in state: del state[prefix + "_linearized_weight"] return state def upgrade_state_dict_named(self, state_dict, name): prefix = name + "." if name != "" else "" if prefix + "_linearized_weight" in state_dict: del state_dict[prefix + "_linearized_weight"] @torch.jit.ignore def forward(self, input, incremental_state=None): """ Args: incremental_state: Used to buffer signal; if not None, then input is expected to contain a single frame. If the input order changes between time steps, call reorder_incremental_state. Input: Time x Batch x Channel during training Batch x Time x Channel during inference """ if incremental_state is None: output = super().forward(input) if self.kernel_size[0] > 1 and self.padding[0] > 0: # remove future timesteps added by padding output = output[: -self.padding[0], :, :] return output # reshape weight weight = self._get_linearized_weight() kw = self.kernel_size[0] bsz = input.size(0) # input: bsz x len x dim if kw > 1: input = input.data input_buffer = self._get_input_buffer(incremental_state) if input_buffer is None: input_buffer = input.new(bsz, kw, input.size(2)).zero_() self._set_input_buffer(incremental_state, input_buffer) else: # shift buffer input_buffer[:, :-1, :] = input_buffer[:, 1:, :].clone() # append next input input_buffer[:, -1, :] = input[:, -1, :] input = input_buffer with torch.no_grad(): output = F.linear(input.view(bsz, -1), weight, self.bias) return output.view(bsz, 1, -1) def reorder_incremental_state(self, incremental_state, new_order): input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: input_buffer = input_buffer.index_select(0, new_order) self._set_input_buffer(incremental_state, input_buffer) def _get_input_buffer(self, incremental_state): return utils.get_incremental_state(self, incremental_state, "input_buffer") def _set_input_buffer(self, incremental_state, new_buffer): return utils.set_incremental_state( self, incremental_state, "input_buffer", new_buffer ) def _get_linearized_weight(self): if self._linearized_weight is None: kw = self.kernel_size[0] weight = self.weight.transpose(2, 1).transpose(1, 0).contiguous() assert weight.size() == (self.out_channels, kw, self.in_channels) self._linearized_weight = torch.nn.Parameter( weight.view(self.out_channels, -1) ) return self._linearized_weight def _clear_linearized_weight(self, *args): self._linearized_weight = None
data2vec_vision-main
deltalm/src/fairseq/modules/linearized_convolution.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, List, Optional import torch import torch.nn as nn from fairseq import utils from fairseq.modules import LayerNorm, MultiheadAttention from fairseq.modules.fairseq_dropout import FairseqDropout from fairseq.modules.quant_noise import quant_noise from torch import Tensor class TransformerEncoderLayer(nn.Module): """Encoder layer block. In the original paper each operation (multi-head attention or FFN) is postprocessed with: `dropout -> add residual -> layernorm`. In the tensor2tensor code they suggest that learning is more robust when preprocessing each layer with layernorm and postprocessing with: `dropout -> add residual`. We default to the approach in the paper, but the tensor2tensor approach can be enabled by setting *args.encoder_normalize_before* to ``True``. Args: args (argparse.Namespace): parsed command-line arguments """ def __init__(self, args): super().__init__() self.embed_dim = args.encoder_embed_dim self.quant_noise = getattr(args, 'quant_noise_pq', 0) self.quant_noise_block_size = getattr(args, 'quant_noise_pq_block_size', 8) or 8 self.self_attn = self.build_self_attention(self.embed_dim, args) self.self_attn_layer_norm = LayerNorm(self.embed_dim) self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) self.activation_fn = utils.get_activation_fn( activation=getattr(args, 'activation_fn', 'relu') or "relu" ) activation_dropout_p = getattr(args, "activation_dropout", 0) or 0 if activation_dropout_p == 0: # for backwards compatibility with models that use args.relu_dropout activation_dropout_p = getattr(args, "relu_dropout", 0) or 0 self.activation_dropout_module = FairseqDropout( float(activation_dropout_p), module_name=self.__class__.__name__ ) self.normalize_before = args.encoder_normalize_before self.fc1 = self.build_fc1( self.embed_dim, args.encoder_ffn_embed_dim, self.quant_noise, self.quant_noise_block_size, ) self.fc2 = self.build_fc2( args.encoder_ffn_embed_dim, self.embed_dim, self.quant_noise, self.quant_noise_block_size, ) self.final_layer_norm = LayerNorm(self.embed_dim) def build_fc1(self, input_dim, output_dim, q_noise, qn_block_size): return quant_noise( nn.Linear(input_dim, output_dim), p=q_noise, block_size=qn_block_size ) def build_fc2(self, input_dim, output_dim, q_noise, qn_block_size): return quant_noise( nn.Linear(input_dim, output_dim), p=q_noise, block_size=qn_block_size ) def build_self_attention(self, embed_dim, args): return MultiheadAttention( embed_dim, args.encoder_attention_heads, dropout=args.attention_dropout, self_attention=True, q_noise=self.quant_noise, qn_block_size=self.quant_noise_block_size, ) def residual_connection(self, x, residual): return residual + x def upgrade_state_dict_named(self, state_dict, name): """ Rename layer norm states from `...layer_norms.0.weight` to `...self_attn_layer_norm.weight` and `...layer_norms.1.weight` to `...final_layer_norm.weight` """ layer_norm_map = {"0": "self_attn_layer_norm", "1": "final_layer_norm"} for old, new in layer_norm_map.items(): for m in ("weight", "bias"): k = "{}.layer_norms.{}.{}".format(name, old, m) if k in state_dict: state_dict["{}.{}.{}".format(name, new, m)] = state_dict[k] del state_dict[k] def forward(self, x, encoder_padding_mask, attn_mask: Optional[Tensor] = None): """ Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor): binary ByteTensor of shape `(batch, seq_len)` where padding elements are indicated by ``1``. attn_mask (ByteTensor): binary tensor of shape `(tgt_len, src_len)`, where `tgt_len` is the length of output and `src_len` is the length of input, though here both are equal to `seq_len`. `attn_mask[tgt_i, src_j] = 1` means that when calculating the embedding for `tgt_i`, we exclude (mask out) `src_j`. This is useful for strided self-attention. Returns: encoded output of shape `(seq_len, batch, embed_dim)` """ # anything in original attn_mask = 1, becomes -1e8 # anything in original attn_mask = 0, becomes 0 # Note that we cannot use -inf here, because at some edge cases, # the attention weight (before softmax) for some padded element in query # will become -inf, which results in NaN in model parameters if attn_mask is not None: attn_mask = attn_mask.masked_fill(attn_mask.to(torch.bool), -1e8) residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) x, _ = self.self_attn( query=x, key=x, value=x, key_padding_mask=encoder_padding_mask, attn_mask=attn_mask, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.self_attn_layer_norm(x) residual = x if self.normalize_before: x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = self.activation_dropout_module(x) x = self.fc2(x) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.final_layer_norm(x) return x class TransformerDecoderLayer(nn.Module): """Decoder layer block. In the original paper each operation (multi-head attention, encoder attention or FFN) is postprocessed with: `dropout -> add residual -> layernorm`. In the tensor2tensor code they suggest that learning is more robust when preprocessing each layer with layernorm and postprocessing with: `dropout -> add residual`. We default to the approach in the paper, but the tensor2tensor approach can be enabled by setting *args.decoder_normalize_before* to ``True``. Args: args (argparse.Namespace): parsed command-line arguments no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__( self, args, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False ): super().__init__() self.embed_dim = args.decoder_embed_dim self.dropout_module = FairseqDropout( args.dropout, module_name=self.__class__.__name__ ) self.quant_noise = getattr(args, "quant_noise_pq", 0) self.quant_noise_block_size = getattr(args, "quant_noise_pq_block_size", 8) self.cross_self_attention = getattr(args, "cross_self_attention", False) self.self_attn = self.build_self_attention( self.embed_dim, args, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, ) self.activation_fn = utils.get_activation_fn( activation=str(args.activation_fn) if getattr(args, "activation_fn", None) is not None else "relu" ) activation_dropout_p = getattr(args, "activation_dropout", 0) or 0 if activation_dropout_p == 0: # for backwards compatibility with models that use args.relu_dropout activation_dropout_p = getattr(args, "relu_dropout", 0) or 0 self.activation_dropout_module = FairseqDropout( float(activation_dropout_p), module_name=self.__class__.__name__ ) self.normalize_before = args.decoder_normalize_before # use layerNorm rather than FusedLayerNorm for exporting. # char_inputs can be used to determint this. # TODO remove this once we update apex with the fix export = getattr(args, "char_inputs", False) self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=export) if no_encoder_attn: self.encoder_attn = None self.encoder_attn_layer_norm = None else: self.encoder_attn = self.build_encoder_attention(self.embed_dim, args) self.encoder_attn_layer_norm = LayerNorm(self.embed_dim, export=export) self.fc1 = self.build_fc1( self.embed_dim, args.decoder_ffn_embed_dim, self.quant_noise, self.quant_noise_block_size, ) self.fc2 = self.build_fc2( args.decoder_ffn_embed_dim, self.embed_dim, self.quant_noise, self.quant_noise_block_size, ) self.final_layer_norm = LayerNorm(self.embed_dim, export=export) self.need_attn = True self.onnx_trace = False def build_fc1(self, input_dim, output_dim, q_noise, qn_block_size): return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size) def build_fc2(self, input_dim, output_dim, q_noise, qn_block_size): return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size) def build_self_attention( self, embed_dim, args, add_bias_kv=False, add_zero_attn=False ): return MultiheadAttention( embed_dim, args.decoder_attention_heads, dropout=args.attention_dropout, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, self_attention=not getattr(args, "cross_self_attention", False), q_noise=self.quant_noise, qn_block_size=self.quant_noise_block_size, ) def build_encoder_attention(self, embed_dim, args): return MultiheadAttention( embed_dim, args.decoder_attention_heads, kdim=getattr(args, "encoder_embed_dim", None), vdim=getattr(args, "encoder_embed_dim", None), dropout=args.attention_dropout, encoder_decoder_attention=True, q_noise=self.quant_noise, qn_block_size=self.quant_noise_block_size, ) def prepare_for_onnx_export_(self): self.onnx_trace = True def residual_connection(self, x, residual): return residual + x def forward( self, x, encoder_out: Optional[torch.Tensor] = None, encoder_padding_mask: Optional[torch.Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, prev_self_attn_state: Optional[List[torch.Tensor]] = None, prev_attn_state: Optional[List[torch.Tensor]] = None, self_attn_mask: Optional[torch.Tensor] = None, self_attn_padding_mask: Optional[torch.Tensor] = None, need_attn: bool = False, need_head_weights: bool = False, ): """ Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` encoder_padding_mask (ByteTensor, optional): binary ByteTensor of shape `(batch, src_len)` where padding elements are indicated by ``1``. need_attn (bool, optional): return attention weights need_head_weights (bool, optional): return attention weights for each head (default: return average over heads). Returns: encoded output of shape `(seq_len, batch, embed_dim)` """ if need_head_weights: need_attn = True residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) if prev_self_attn_state is not None: prev_key, prev_value = prev_self_attn_state[:2] saved_state: Dict[str, Optional[Tensor]] = { "prev_key": prev_key, "prev_value": prev_value, } if len(prev_self_attn_state) >= 3: saved_state["prev_key_padding_mask"] = prev_self_attn_state[2] assert incremental_state is not None self.self_attn._set_input_buffer(incremental_state, saved_state) _self_attn_input_buffer = self.self_attn._get_input_buffer(incremental_state) if self.cross_self_attention and not ( incremental_state is not None and _self_attn_input_buffer is not None and "prev_key" in _self_attn_input_buffer ): if self_attn_mask is not None: assert encoder_out is not None self_attn_mask = torch.cat( (x.new_zeros(x.size(0), encoder_out.size(0)), self_attn_mask), dim=1 ) if self_attn_padding_mask is not None: if encoder_padding_mask is None: assert encoder_out is not None encoder_padding_mask = self_attn_padding_mask.new_zeros( encoder_out.size(1), encoder_out.size(0) ) self_attn_padding_mask = torch.cat( (encoder_padding_mask, self_attn_padding_mask), dim=1 ) assert encoder_out is not None y = torch.cat((encoder_out, x), dim=0) else: y = x x, attn = self.self_attn( query=x, key=y, value=y, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, need_weights=False, attn_mask=self_attn_mask, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.self_attn_layer_norm(x) if self.encoder_attn is not None and encoder_out is not None: residual = x if self.normalize_before: x = self.encoder_attn_layer_norm(x) if prev_attn_state is not None: prev_key, prev_value = prev_attn_state[:2] saved_state: Dict[str, Optional[Tensor]] = { "prev_key": prev_key, "prev_value": prev_value, } if len(prev_attn_state) >= 3: saved_state["prev_key_padding_mask"] = prev_attn_state[2] assert incremental_state is not None self.encoder_attn._set_input_buffer(incremental_state, saved_state) x, attn = self.encoder_attn( query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=incremental_state, static_kv=True, need_weights=need_attn or (not self.training and self.need_attn), need_head_weights=need_head_weights, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.encoder_attn_layer_norm(x) residual = x if self.normalize_before: x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = self.activation_dropout_module(x) x = self.fc2(x) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.final_layer_norm(x) if self.onnx_trace and incremental_state is not None: saved_state = self.self_attn._get_input_buffer(incremental_state) assert saved_state is not None if self_attn_padding_mask is not None: self_attn_state = [ saved_state["prev_key"], saved_state["prev_value"], saved_state["prev_key_padding_mask"], ] else: self_attn_state = [saved_state["prev_key"], saved_state["prev_value"]] return x, attn, self_attn_state return x, attn, None def make_generation_fast_(self, need_attn: bool = False, **kwargs): self.need_attn = need_attn
data2vec_vision-main
deltalm/src/fairseq/modules/transformer_layer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Callable, Optional import torch import torch.nn as nn from fairseq import utils from fairseq.modules import LayerNorm, MultiheadAttention from fairseq.modules.fairseq_dropout import FairseqDropout from fairseq.modules.quant_noise import quant_noise class TransformerSentenceEncoderLayer(nn.Module): """ Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained models. """ def __init__( self, embedding_dim: int = 768, ffn_embedding_dim: int = 3072, num_attention_heads: int = 8, dropout: float = 0.1, attention_dropout: float = 0.1, activation_dropout: float = 0.1, activation_fn: str = "relu", export: bool = False, q_noise: float = 0.0, qn_block_size: int = 8, init_fn: Callable = None, ) -> None: super().__init__() if init_fn is not None: init_fn() # Initialize parameters self.embedding_dim = embedding_dim self.dropout_module = FairseqDropout( dropout, module_name=self.__class__.__name__ ) self.activation_dropout_module = FairseqDropout( activation_dropout, module_name=self.__class__.__name__ ) # Initialize blocks self.activation_fn = utils.get_activation_fn(activation_fn) self.self_attn = self.build_self_attention( self.embedding_dim, num_attention_heads, dropout=attention_dropout, self_attention=True, q_noise=q_noise, qn_block_size=qn_block_size, ) # layer norm associated with the self attention layer self.self_attn_layer_norm = LayerNorm(self.embedding_dim, export=export) self.fc1 = self.build_fc1( self.embedding_dim, ffn_embedding_dim, q_noise=q_noise, qn_block_size=qn_block_size, ) self.fc2 = self.build_fc2( ffn_embedding_dim, self.embedding_dim, q_noise=q_noise, qn_block_size=qn_block_size, ) # layer norm associated with the position wise feed-forward NN self.final_layer_norm = LayerNorm(self.embedding_dim, export=export) def build_fc1(self, input_dim, output_dim, q_noise, qn_block_size): return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size) def build_fc2(self, input_dim, output_dim, q_noise, qn_block_size): return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size) def build_self_attention( self, embed_dim, num_attention_heads, dropout, self_attention, q_noise, qn_block_size, ): return MultiheadAttention( embed_dim, num_attention_heads, dropout=dropout, self_attention=True, q_noise=q_noise, qn_block_size=qn_block_size, ) def forward( self, x: torch.Tensor, self_attn_mask: Optional[torch.Tensor] = None, self_attn_padding_mask: Optional[torch.Tensor] = None, ): """ LayerNorm is applied either before or after the self-attention/ffn modules similar to the original Transformer implementation. """ residual = x x, attn = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, need_weights=False, attn_mask=self_attn_mask, ) x = self.dropout_module(x) x = residual + x x = self.self_attn_layer_norm(x) residual = x x = self.activation_fn(self.fc1(x)) x = self.activation_dropout_module(x) x = self.fc2(x) x = self.dropout_module(x) x = residual + x x = self.final_layer_norm(x) return x, attn
data2vec_vision-main
deltalm/src/fairseq/modules/transformer_sentence_encoder_layer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn def quant_noise(module, p, block_size): """ Wraps modules and applies quantization noise to the weights for subsequent quantization with Iterative Product Quantization as described in "Training with Quantization Noise for Extreme Model Compression" Args: - module: nn.Module - p: amount of Quantization Noise - block_size: size of the blocks for subsequent quantization with iPQ Remarks: - Module weights must have the right sizes wrt the block size - Only Linear, Embedding and Conv2d modules are supported for the moment - For more detail on how to quantize by blocks with convolutional weights, see "And the Bit Goes Down: Revisiting the Quantization of Neural Networks" - We implement the simplest form of noise here as stated in the paper which consists in randomly dropping blocks """ # if no quantization noise, don't register hook if p <= 0: return module # supported modules assert isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d)) # test whether module.weight has the right sizes wrt block_size is_conv = module.weight.ndim == 4 # 2D matrix if not is_conv: assert ( module.weight.size(1) % block_size == 0 ), "Input features must be a multiple of block sizes" # 4D matrix else: # 1x1 convolutions if module.kernel_size == (1, 1): assert ( module.in_channels % block_size == 0 ), "Input channels must be a multiple of block sizes" # regular convolutions else: k = module.kernel_size[0] * module.kernel_size[1] assert k % block_size == 0, "Kernel size must be a multiple of block size" def _forward_pre_hook(mod, input): # no noise for evaluation if mod.training: if not is_conv: # gather weight and sizes weight = mod.weight in_features = weight.size(1) out_features = weight.size(0) # split weight matrix into blocks and randomly drop selected blocks mask = torch.zeros( in_features // block_size * out_features, device=weight.device ) mask.bernoulli_(p) mask = mask.repeat_interleave(block_size, -1).view(-1, in_features) else: # gather weight and sizes weight = mod.weight in_channels = mod.in_channels out_channels = mod.out_channels # split weight matrix into blocks and randomly drop selected blocks if mod.kernel_size == (1, 1): mask = torch.zeros( int(in_channels // block_size * out_channels), device=weight.device, ) mask.bernoulli_(p) mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels) else: mask = torch.zeros( weight.size(0), weight.size(1), device=weight.device ) mask.bernoulli_(p) mask = ( mask.unsqueeze(2) .unsqueeze(3) .repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1]) ) # scale weights and apply mask mask = mask.to( torch.bool ) # x.bool() is not currently supported in TorchScript s = 1 / (1 - p) mod.weight.data = s * weight.masked_fill(mask, 0) module.register_forward_pre_hook(_forward_pre_hook) return module
data2vec_vision-main
deltalm/src/fairseq/modules/quant_noise.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Layer norm done in fp32 (for fp16 training) """ import torch.nn as nn import torch.nn.functional as F class Fp32GroupNorm(nn.GroupNorm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def forward(self, input): output = F.group_norm( input.float(), self.num_groups, self.weight.float() if self.weight is not None else None, self.bias.float() if self.bias is not None else None, self.eps, ) return output.type_as(input)
data2vec_vision-main
deltalm/src/fairseq/modules/fp32_group_norm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.incremental_decoding_utils import with_incremental_state from fairseq.modules.fairseq_dropout import FairseqDropout from .unfold import unfold1d def DynamicConv( input_size, kernel_size=1, padding_l=None, num_heads=1, weight_dropout=0.0, weight_softmax=False, renorm_padding=False, bias=False, conv_bias=False, query_size=None, in_proj=False, ): if torch.cuda.is_available(): try: from fairseq.modules.dynamicconv_layer import DynamicconvLayer return DynamicconvLayer( input_size, kernel_size=kernel_size, padding_l=padding_l, num_heads=num_heads, weight_dropout=weight_dropout, weight_softmax=weight_softmax, bias=bias, ) except ImportError as e: print(e) return DynamicConv1dTBC( input_size, kernel_size=kernel_size, padding_l=padding_l, num_heads=num_heads, weight_dropout=weight_dropout, weight_softmax=weight_softmax, bias=bias, ) def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.0) return m @with_incremental_state class DynamicConv1dTBC(nn.Module): """Dynamic lightweight convolution taking T x B x C inputs Args: input_size: # of channels of the input kernel_size: convolution channels padding_l: padding to the left when using "same" padding num_heads: number of heads used. The weight is of shape (num_heads, 1, kernel_size) weight_dropout: the drop rate of the DropConnect to drop the weight weight_softmax: normalize the weight with softmax before the convolution renorm_padding: re-normalize the filters to ignore the padded part (only the non-padding parts sum up to 1) bias: use bias conv_bias: bias of the convolution query_size: specified when feeding a different input as the query in_proj: project the input and generate the filter together Shape: Input: TxBxC, i.e. (timesteps, batch_size, input_size) Output: TxBxC, i.e. (timesteps, batch_size, input_size) Attributes: weight: the learnable weights of the module of shape `(num_heads, 1, kernel_size)` bias: the learnable bias of the module of shape `(input_size)` """ def __init__( self, input_size, kernel_size=1, padding_l=None, num_heads=1, weight_dropout=0.0, weight_softmax=False, renorm_padding=False, bias=False, conv_bias=False, query_size=None, in_proj=False, ): super().__init__() self.input_size = input_size self.query_size = input_size if query_size is None else query_size self.kernel_size = kernel_size self.padding_l = padding_l self.num_heads = num_heads self.weight_dropout_module = FairseqDropout( weight_dropout, module_name=self.__class__.__name__ ) self.weight_softmax = weight_softmax self.renorm_padding = renorm_padding if in_proj: self.weight_linear = Linear( self.input_size, self.input_size + num_heads * kernel_size * 1 ) else: self.weight_linear = Linear( self.query_size, num_heads * kernel_size * 1, bias=bias ) if conv_bias: self.conv_bias = nn.Parameter(torch.Tensor(input_size)) else: self.conv_bias = None self.reset_parameters() @property def in_proj(self): return ( self.weight_linear.out_features == self.input_size + self.num_heads * self.kernel_size ) def reset_parameters(self): self.weight_linear.reset_parameters() if self.conv_bias is not None: nn.init.constant_(self.conv_bias, 0.0) def forward(self, x, incremental_state=None, query=None, unfold=None): """Assuming the input, x, of the shape T x B x C and producing an output in the shape T x B x C args: x: Input of shape T x B x C, i.e. (timesteps, batch_size, input_size) incremental_state: A dict to keep the state unfold: unfold the input or not. If not, we use the matrix trick instead query: use the specified query to predict the conv filters """ unfold = ( x.size(0) > 512 if unfold is None else unfold ) # use unfold mode as default for long sequence to save memory unfold = unfold or (incremental_state is not None) assert query is None or not self.in_proj if query is None: query = x if unfold: output = self._forward_unfolded(x, incremental_state, query) else: output = self._forward_expanded(x, incremental_state, query) if self.conv_bias is not None: output = output + self.conv_bias.view(1, 1, -1) return output def _forward_unfolded(self, x, incremental_state, query): """The conventional implementation of convolutions. Unfolding the input by having a window shifting to the right.""" T, B, C = x.size() K, H = self.kernel_size, self.num_heads R = C // H assert R * H == C == self.input_size if self.in_proj: proj = self.weight_linear(x) x = proj.narrow(2, 0, self.input_size).contiguous() weight = ( proj.narrow(2, self.input_size, H * K).contiguous().view(T * B * H, -1) ) else: weight = self.weight_linear(query).view(T * B * H, -1) # renorm_padding is only implemented in _forward_expanded assert not self.renorm_padding or incremental_state is not None if incremental_state is not None: input_buffer = self._get_input_buffer(incremental_state) if input_buffer is None: input_buffer = x.new() x_unfold = torch.cat([input_buffer, x.unsqueeze(3)], dim=3) if self.kernel_size > 1: self._set_input_buffer( incremental_state, x_unfold[:, :, :, -self.kernel_size + 1 :] ) x_unfold = x_unfold.view(T * B * H, R, -1) else: padding_l = self.padding_l if K > T and padding_l == K - 1: weight = weight.narrow(1, K - T, T) K, padding_l = T, T - 1 # unfold the input: T x B x C --> T' x B x C x K x_unfold = unfold1d(x, K, padding_l, 0) x_unfold = x_unfold.view(T * B * H, R, K) if self.weight_softmax and not self.renorm_padding: weight = F.softmax(weight, dim=1) weight = weight.narrow(1, 0, K) if incremental_state is not None: weight = weight[:, -x_unfold.size(2) :] K = weight.size(1) if self.weight_softmax and self.renorm_padding: weight = F.softmax(weight, dim=1) weight = self.weight_dropout_module(weight, inplace=False) output = torch.bmm(x_unfold, weight.unsqueeze(2)) # T*B*H x R x 1 output = output.view(T, B, C) return output def _forward_expanded(self, x, incremental_stat, query): """Turn the convolution filters into band matrices and do matrix multiplication. This is faster when the sequence is short, but less memory efficient. This is not used in the decoder during inference. """ T, B, C = x.size() K, H = self.kernel_size, self.num_heads R = C // H assert R * H == C == self.input_size if self.in_proj: proj = self.weight_linear(x) x = proj.narrow(2, 0, self.input_size).contiguous() weight = ( proj.narrow(2, self.input_size, H * K).contiguous().view(T * B * H, -1) ) else: weight = self.weight_linear(query).view(T * B * H, -1) if not self.renorm_padding: if self.weight_softmax: weight = F.softmax(weight, dim=1) weight = self.weight_dropout_module(weight, inplace=False) weight = weight.narrow(1, 0, K).contiguous() weight = weight.view(T, B * H, K).transpose(0, 1) x = x.view(T, B * H, R).transpose(0, 1) if self.weight_softmax and self.renorm_padding: # turn the convolution filters into band matrices weight_expanded = weight.new(B * H, T, T + K - 1).fill_(float("-inf")) weight_expanded.as_strided( (B * H, T, K), (T * (T + K - 1), T + K, 1) ).copy_(weight) weight_expanded = weight_expanded.narrow(2, self.padding_l, T) # normalize the weight over valid positions like self-attention weight_expanded = F.softmax(weight_expanded, dim=2) weight_expanded = self.weight_dropout_module(weight_expanded, inplace=False) else: P = self.padding_l # For efficieny, we cut the kernel size and reduce the padding when the kernel is larger than the length if K > T and P == K - 1: weight = weight.narrow(2, K - T, T) K, P = T, T - 1 # turn the convolution filters into band matrices weight_expanded = weight.new_zeros(B * H, T, T + K - 1, requires_grad=False) weight_expanded.as_strided( (B * H, T, K), (T * (T + K - 1), T + K, 1) ).copy_(weight) weight_expanded = weight_expanded.narrow(2, P, T) # B*H x T x T output = torch.bmm(weight_expanded, x) output = output.transpose(0, 1).contiguous().view(T, B, C) return output def reorder_incremental_state(self, incremental_state, new_order): input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: input_buffer = input_buffer.index_select(1, new_order) self._set_input_buffer(incremental_state, input_buffer) def _get_input_buffer(self, incremental_state): return utils.get_incremental_state(self, incremental_state, "input_buffer") def _set_input_buffer(self, incremental_state, new_buffer): return utils.set_incremental_state( self, incremental_state, "input_buffer", new_buffer ) def extra_repr(self): s = "{}, kernel_size={}, padding_l={}, num_heads={}, weight_softmax={}, conv_bias={}, renorm_padding={}, in_proj={}".format( self.input_size, self.kernel_size, self.padding_l, self.num_heads, self.weight_softmax, self.conv_bias is not None, self.renorm_padding, self.in_proj, ) if self.query_size != self.input_size: s += ", query_size={}".format(self.query_size) if self.weight_dropout_module.p > 0.0: s += ", weight_dropout={}".format(self.weight_dropout_module.p) return s
data2vec_vision-main
deltalm/src/fairseq/modules/dynamic_convolution.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from typing import List, Optional import torch.nn as nn import torch.nn.functional as F logger = logging.getLogger(__name__) class FairseqDropout(nn.Module): def __init__(self, p, module_name=None): super().__init__() self.p = p self.module_name = module_name self.apply_during_inference = False def forward(self, x, inplace: bool = False): if self.training or self.apply_during_inference: return F.dropout(x, p=self.p, training=True, inplace=inplace) else: return x def make_generation_fast_( self, name: str, retain_dropout: bool = False, retain_dropout_modules: Optional[List[str]] = None, **kwargs ): if retain_dropout: if retain_dropout_modules is not None and self.module_name is None: logger.warning( "Cannot enable dropout during inference for module {} " "because module_name was not set".format(name) ) elif ( retain_dropout_modules is None # if None, apply to all modules or self.module_name in retain_dropout_modules ): logger.info( "Enabling dropout during inference for module: {}".format(name) ) self.apply_during_inference = True else: logger.info("Disabling dropout for module: {}".format(name))
data2vec_vision-main
deltalm/src/fairseq/modules/fairseq_dropout.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F class GumbelVectorQuantizer(nn.Module): def __init__( self, dim, num_vars, temp, groups, combine_groups, vq_dim, time_first, activation=nn.GELU(), weight_proj_depth=1, weight_proj_factor=1, ): """Vector quantization using gumbel softmax Args: dim: input dimension (channels) num_vars: number of quantized vectors per group temp: temperature for training. this should be a tuple of 3 elements: (start, stop, decay factor) groups: number of groups for vector quantization combine_groups: whether to use the vectors for all groups vq_dim: dimensionality of the resulting quantized vector time_first: if true, expect input in BxTxC format, otherwise in BxCxT activation: what activation to use (should be a module). this is only used if weight_proj_depth is > 1 weight_proj_depth: number of layers (with activation in between) to project input before computing logits weight_proj_factor: this is used only if weight_proj_depth is > 1. scales the inner dimensionality of projections by this factor """ super().__init__() self.groups = groups self.combine_groups = combine_groups self.input_dim = dim self.num_vars = num_vars self.time_first = time_first assert ( vq_dim % groups == 0 ), f"dim {vq_dim} must be divisible by groups {groups} for concatenation" var_dim = vq_dim // groups num_groups = groups if not combine_groups else 1 self.vars = nn.Parameter(torch.FloatTensor(1, num_groups * num_vars, var_dim)) nn.init.uniform_(self.vars) if weight_proj_depth > 1: def block(input_dim, output_dim): return nn.Sequential(nn.Linear(input_dim, output_dim), activation) inner_dim = self.input_dim * weight_proj_factor self.weight_proj = nn.Sequential( *[ block(self.input_dim if i == 0 else inner_dim, inner_dim) for i in range(weight_proj_depth - 1) ], nn.Linear(inner_dim, groups * num_vars), ) else: self.weight_proj = nn.Linear(self.input_dim, groups * num_vars) nn.init.normal_(self.weight_proj.weight, mean=0, std=1) nn.init.zeros_(self.weight_proj.bias) if isinstance(temp, str): import ast temp = ast.literal_eval(temp) assert len(temp) == 3, f"{temp}, {len(temp)}" self.max_temp, self.min_temp, self.temp_decay = temp self.curr_temp = self.max_temp self.codebook_indices = None def set_num_updates(self, num_updates): self.curr_temp = max( self.max_temp * self.temp_decay ** num_updates, self.min_temp ) def get_codebook_indices(self): if self.codebook_indices is None: from itertools import product p = [range(self.num_vars)] * self.groups inds = list(product(*p)) self.codebook_indices = torch.tensor( inds, dtype=torch.long, device=self.vars.device ).flatten() if not self.combine_groups: self.codebook_indices = self.codebook_indices.view( self.num_vars ** self.groups, -1 ) for b in range(1, self.groups): self.codebook_indices[:, b] += self.num_vars * b self.codebook_indices = self.codebook_indices.flatten() return self.codebook_indices def codebook(self): indices = self.get_codebook_indices() return ( self.vars.squeeze(0) .index_select(0, indices) .view(self.num_vars ** self.groups, -1) ) def sample_from_codebook(self, b, n): indices = self.get_codebook_indices() indices = indices.view(-1, self.groups) cb_size = indices.size(0) assert ( n < cb_size ), f"sample size {n} is greater than size of codebook {cb_size}" sample_idx = torch.randint(low=0, high=cb_size, size=(b * n,)) indices = indices[sample_idx] z = self.vars.squeeze(0).index_select(0, indices.flatten()).view(b, n, -1) return z def to_codebook_index(self, indices): res = indices.new_full(indices.shape[:-1], 0) for i in range(self.groups): exponent = self.groups - i - 1 res += indices[..., i] * (self.num_vars ** exponent) return res def forward_idx(self, x): res = self.forward(x, produce_targets=True) return res["x"], res["targets"] def forward(self, x, produce_targets=False): result = {"num_vars": self.num_vars * self.groups} if not self.time_first: x = x.transpose(1, 2) bsz, tsz, fsz = x.shape x = x.reshape(-1, fsz) x = self.weight_proj(x) x = x.view(bsz * tsz * self.groups, -1) _, k = x.max(-1) hard_x = ( x.new_zeros(*x.shape) .scatter_(-1, k.view(-1, 1), 1.0) .view(bsz * tsz, self.groups, -1) ) hard_probs = torch.mean(hard_x.float(), dim=0) result["code_perplexity"] = torch.exp( -torch.sum(hard_probs * torch.log(hard_probs + 1e-7), dim=-1) ).sum() avg_probs = torch.softmax( x.view(bsz * tsz, self.groups, -1).float(), dim=-1 ).mean(dim=0) result["prob_perplexity"] = torch.exp( -torch.sum(avg_probs * torch.log(avg_probs + 1e-7), dim=-1) ).sum() result["temp"] = self.curr_temp if self.training: x = F.gumbel_softmax(x.float(), tau=self.curr_temp, hard=True).type_as(x) else: x = hard_x x = x.view(bsz * tsz, -1) vars = self.vars if self.combine_groups: vars = vars.repeat(1, self.groups, 1) if produce_targets: result["targets"] = ( x.view(bsz * tsz * self.groups, -1) .argmax(dim=-1) .view(bsz, tsz, self.groups) .detach() ) x = x.unsqueeze(-1) * vars x = x.view(bsz * tsz, self.groups, self.num_vars, -1) x = x.sum(-2) x = x.view(bsz, tsz, -1) if not self.time_first: x = x.transpose(1, 2) # BTC -> BCT result["x"] = x return result
data2vec_vision-main
deltalm/src/fairseq/modules/gumbel_vector_quantizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn from fairseq.modules import Fp32GroupNorm class KmeansVectorQuantizer(nn.Module): def __init__( self, dim, num_vars, groups, combine_groups, vq_dim, time_first, gamma=0.25 ): """Vector quantization using straight pass-through estimator (i.e. kmeans) Args: dim: input dimension (channels) num_vars: number of quantized vectors per group groups: number of groups for vector quantization combine_groups: whether to use the vectors for all groups vq_dim: dimensionality of the resulting quantized vector time_first: if true, expect input in BxTxC format, otherwise in BxCxT gamma: commitment loss coefficient """ super().__init__() self.groups = groups self.combine_groups = combine_groups self.input_dim = dim self.num_vars = num_vars self.vq_dim = vq_dim self.time_first = time_first assert ( vq_dim % groups == 0 ), f"dim {vq_dim} must be divisible by groups {groups} for concatenation" self.var_dim = vq_dim // groups num_groups = groups if not combine_groups else 1 self.embedding = nn.Parameter( 0.01 * torch.randn(num_vars, num_groups, self.var_dim) ) self.projection = nn.Sequential( nn.Conv1d(dim, dim, kernel_size=1, groups=groups, bias=False), Fp32GroupNorm(groups, dim), ) self.gamma = gamma self.mse_mean = nn.MSELoss(reduction="mean") def _pass_grad(self, x, y): """Manually set gradient for backward pass. for y = f(x), ensure that during the backward pass, dL/dy = dL/dx regardless of f(x). Returns: y, with the gradient forced to be dL/dy = dL/dx. """ return y.detach() + (x - x.detach()) @property def expand_embedding(self): if self.combine_groups: return self.embedding.expand(self.num_vars, self.groups, self.var_dim) return self.embedding def forward_idx(self, x): res = self.forward(x, produce_targets=True) return res["x"], res["targets"] def forward(self, x, produce_targets=False): result = {"num_vars": self.num_vars} if self.time_first: x = x.transpose(1, 2) bsz, fsz, tsz = x.shape ze = self.projection(x) ze_ = ze.view(bsz, self.groups, self.var_dim, tsz).permute(0, 3, 1, 2) d = ( (ze_.unsqueeze(0) - self.expand_embedding.unsqueeze(1).unsqueeze(1)) .view(self.num_vars, bsz, tsz, self.groups, -1) .norm(dim=-1, p=2) ) idx = d.argmin(dim=0) zq = ( torch.stack( [ self.expand_embedding[idx[..., group], group] for group in range(self.groups) ], dim=-2, ) .view(bsz, tsz, self.groups * self.var_dim) .permute(0, 2, 1) ) assert ze.shape == zq.shape, (ze.shape, zq.shape) x = self._pass_grad(ze, zq) hard_x = ( idx.new_zeros(bsz * tsz * self.groups, self.num_vars) .scatter_(-1, idx.view(-1, 1), 1.0) .view(bsz * tsz, self.groups, -1) ) hard_probs = torch.mean(hard_x.float(), dim=0) result["code_perplexity"] = torch.exp( -torch.sum(hard_probs * torch.log(hard_probs + 1e-7), dim=-1) ).sum() if produce_targets: result["targets"] = idx if self.time_first: x = x.transpose(1, 2) # BCT -> BTC result["x"] = x ze = ze.float() zq = zq.float() latent_loss = self.mse_mean(zq, ze.detach()) commitment_loss = self.mse_mean(ze, zq.detach()) result["kmeans_loss"] = latent_loss + self.gamma * commitment_loss return result
data2vec_vision-main
deltalm/src/fairseq/modules/kmeans_vector_quantizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import List import torch from fairseq.modules.quant_noise import quant_noise from torch import nn class AdaptiveInput(nn.Module): def __init__( self, vocab_size: int, padding_idx: int, initial_dim: int, factor: float, output_dim: int, cutoff: List[int], q_noise: float = 0, qn_block_size: int = 8, ): super().__init__() if vocab_size > cutoff[-1]: cutoff = cutoff + [vocab_size] else: assert ( vocab_size == cutoff[-1] ), "cannot specify cutoff larger than vocab size" self.cutoff = cutoff self.embedding_dim = output_dim self.padding_idx = padding_idx self.embeddings = nn.ModuleList() for i in range(len(self.cutoff)): prev = self.cutoff[i - 1] if i > 0 else 0 size = self.cutoff[i] - prev dim = int(initial_dim // (factor ** i)) seq = nn.Sequential( nn.Embedding(size, dim, self.padding_idx), quant_noise( nn.Linear(dim, output_dim, bias=False), q_noise, qn_block_size ), ) self.embeddings.append(seq) self.padding_idx = None self.padding_idx = padding_idx def init_weights(m): if isinstance(m, nn.Embedding): nn.init.normal_(m.weight, mean=0, std=m.weight.shape[1] ** -0.5) nn.init.constant_(m.weight[padding_idx], 0) elif hasattr(m, "weight"): nn.init.xavier_uniform_(m.weight) self.apply(init_weights) self.register_buffer("_float_tensor", torch.FloatTensor(1)) def weights_for_band(self, band: int): return self.embeddings[band][0].weight, self.embeddings[band][1].weight def forward(self, input: torch.Tensor): result = self._float_tensor.new(input.shape + (self.embedding_dim,)) for i in range(len(self.cutoff)): mask = input.lt(self.cutoff[i]) if i > 0: mask.mul_(input.ge(self.cutoff[i - 1])) chunk_input = input[mask] - self.cutoff[i - 1] else: chunk_input = input[mask] if mask.any(): result[mask] = self.embeddings[i](chunk_input) return result
data2vec_vision-main
deltalm/src/fairseq/modules/adaptive_input.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.incremental_decoding_utils import with_incremental_state from fairseq.modules.fairseq_dropout import FairseqDropout from fairseq.modules.unfold import unfold1d def LightweightConv( input_size, kernel_size=1, padding_l=None, num_heads=1, weight_dropout=0.0, weight_softmax=False, bias=False, ): if torch.cuda.is_available(): try: from fairseq.modules.lightconv_layer import LightconvLayer return LightconvLayer( input_size, kernel_size=kernel_size, padding_l=padding_l, num_heads=num_heads, weight_dropout=weight_dropout, weight_softmax=weight_softmax, bias=bias, ) except ImportError as e: print(e) return LightweightConv1dTBC( input_size, kernel_size=kernel_size, padding_l=padding_l, num_heads=num_heads, weight_dropout=weight_dropout, weight_softmax=weight_softmax, bias=bias, ) class LightweightConv1d(nn.Module): """Lightweight Convolution assuming the input is BxCxT This is just an example that explains LightConv clearer than the TBC version. We don't use this module in the model. Args: input_size: # of channels of the input and output kernel_size: convolution channels padding: padding num_heads: number of heads used. The weight is of shape `(num_heads, 1, kernel_size)` weight_softmax: normalize the weight with softmax before the convolution Shape: Input: BxCxT, i.e. (batch_size, input_size, timesteps) Output: BxCxT, i.e. (batch_size, input_size, timesteps) Attributes: weight: the learnable weights of the module of shape `(num_heads, 1, kernel_size)` bias: the learnable bias of the module of shape `(input_size)` """ def __init__( self, input_size, kernel_size=1, padding=0, num_heads=1, weight_softmax=False, bias=False, weight_dropout=0.0, ): super().__init__() self.input_size = input_size self.kernel_size = kernel_size self.num_heads = num_heads self.padding = padding self.weight_softmax = weight_softmax self.weight = nn.Parameter(torch.Tensor(num_heads, 1, kernel_size)) if bias: self.bias = nn.Parameter(torch.Tensor(input_size)) else: self.bias = None self.weight_dropout_module = FairseqDropout( weight_dropout, module_name=self.__class__.__name__ ) self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.weight) if self.bias is not None: nn.init.constant_(self.bias, 0.0) def forward(self, input): """ input size: B x C x T output size: B x C x T """ B, C, T = input.size() H = self.num_heads weight = self.weight if self.weight_softmax: weight = F.softmax(weight, dim=-1) weight = self.weight_dropout_module(weight) # Merge every C/H entries into the batch dimension (C = self.input_size) # B x C x T -> (B * C/H) x H x T # One can also expand the weight to C x 1 x K by a factor of C/H # and do not reshape the input instead, which is slow though input = input.view(-1, H, T) output = F.conv1d(input, weight, padding=self.padding, groups=self.num_heads) output = output.view(B, C, T) if self.bias is not None: output = output + self.bias.view(1, -1, 1) return output @with_incremental_state class LightweightConv1dTBC(nn.Module): """Lightweight Convolution assuming the input is TxBxC Args: input_size: # of channels of the input kernel_size: convolution channels padding_l: padding to the left when using "same" padding num_heads: number of heads used. The weight is of shape (num_heads, 1, kernel_size) weight_dropout: the drop rate of the DropConnect to drop the weight weight_softmax: normalize the weight with softmax before the convolution bias: use bias Shape: Input: TxBxC, i.e. (timesteps, batch_size, input_size) Output: TxBxC, i.e. (timesteps, batch_size, input_size) Attributes: weight: the learnable weights of the module of shape `(num_heads, 1, kernel_size)` bias: the learnable bias of the module of shape `(input_size)` """ def __init__( self, input_size, kernel_size=1, padding_l=None, num_heads=1, weight_dropout=0.0, weight_softmax=False, bias=False, ): super().__init__() self.input_size = input_size self.kernel_size = kernel_size self.padding_l = padding_l self.num_heads = num_heads self.weight_dropout_module = FairseqDropout( weight_dropout, module_name=self.__class__.__name__ ) self.weight_softmax = weight_softmax self.weight = nn.Parameter(torch.Tensor(num_heads, 1, kernel_size)) if bias: self.bias = nn.Parameter(torch.Tensor(input_size)) else: self.bias = None self.reset_parameters() self.onnx_trace = False def reset_parameters(self): nn.init.xavier_uniform_(self.weight) if self.bias is not None: nn.init.constant_(self.bias, 0.0) def forward(self, x, incremental_state=None, unfold=False): """Assuming the input, x, of the shape T x B x C and producing an output in the shape T x B x C args: x: Input of shape T x B x C, i.e. (timesteps, batch_size, input_size) incremental_state: A dict to keep the state unfold: unfold the input or not. If not, we use the matrix trick instead """ unfold = unfold or (incremental_state is not None) if unfold: output = self._forward_unfolded(x, incremental_state) else: output = self._forward_expanded(x, incremental_state) if self.bias is not None: output = output + self.bias.view(1, 1, -1) return output def prepare_for_onnx_export_(self): self.onnx_trace = True def _forward_unfolded(self, x, incremental_state): """The conventional implementation of convolutions. Unfolding the input by having a window shifting to the right.""" T, B, C = x.size() K, H = self.kernel_size, self.num_heads R = C // H assert R * H == C == self.input_size weight = self.weight.view(H, K) if incremental_state is not None: input_buffer = self._get_input_buffer(incremental_state) if input_buffer is None: input_buffer = x.new() x_unfold = torch.cat([input_buffer, x.unsqueeze(3)], dim=3) if self.kernel_size > 1: self._set_input_buffer( incremental_state, x_unfold[:, :, :, -self.kernel_size + 1 :] ) x_unfold = x_unfold.view(T * B * H, R, -1) else: # unfold the input: T x B x C --> T' x B x C x K x_unfold = unfold1d(x, self.kernel_size, self.padding_l, 0) x_unfold = x_unfold.view(T * B * H, R, K) if self.weight_softmax: weight = utils.softmax(weight, dim=1, onnx_trace=self.onnx_trace).type_as( weight ) if incremental_state is not None: weight = weight[:, -x_unfold.size(2) :] K = weight.size(1) weight = ( weight.view(1, H, K).expand(T * B, H, K).contiguous().view(T * B * H, K, 1) ) weight = self.weight_dropout_module(weight) output = torch.bmm(x_unfold, weight) # T*B*H x R x 1 output = output.view(T, B, C) return output def _forward_expanded(self, x, incremental_state): """Turn the convolution filters into band matrices and do matrix multiplication. This is faster when the sequence is short, but less memory efficient. This is not used in the decoder during inference. """ T, B, C = x.size() K, H = self.kernel_size, self.num_heads R = C // H assert R * H == C == self.input_size weight = self.weight.view(H, K) if self.weight_softmax: weight = utils.softmax(weight, dim=1, onnx_trace=self.onnx_trace).type_as( weight ) weight = weight.view(1, H, K).expand(T * B, H, K).contiguous() weight = weight.view(T, B * H, K).transpose(0, 1) x = x.view(T, B * H, R).transpose(0, 1) P = self.padding_l if K > T and P == K - 1: weight = weight.narrow(2, K - T, T) K, P = T, T - 1 # turn the convolution filters into band matrices weight_expanded = weight.new_zeros(B * H, T, T + K - 1, requires_grad=False) weight_expanded.as_strided((B * H, T, K), (T * (T + K - 1), T + K, 1)).copy_( weight ) weight_expanded = weight_expanded.narrow(2, P, T) weight_expanded = self.weight_dropout_module(weight_expanded) output = torch.bmm(weight_expanded, x) output = output.transpose(0, 1).contiguous().view(T, B, C) return output def reorder_incremental_state(self, incremental_state, new_order): input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: input_buffer = input_buffer.index_select(1, new_order) self._set_input_buffer(incremental_state, input_buffer) def _get_input_buffer(self, incremental_state): return utils.get_incremental_state(self, incremental_state, "input_buffer") def _set_input_buffer(self, incremental_state, new_buffer): return utils.set_incremental_state( self, incremental_state, "input_buffer", new_buffer ) def extra_repr(self): s = "{}, kernel_size={}, padding_l={}, num_heads={}, weight_softmax={}, bias={}".format( self.input_size, self.kernel_size, self.padding_l, self.num_heads, self.weight_softmax, self.bias is not None, ) if self.weight_dropout_module.p > 0.0: s += ", weight_dropout={}".format(self.weight_dropout_module.p) return s
data2vec_vision-main
deltalm/src/fairseq/modules/lightweight_convolution.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import torch class ScalarBias(torch.autograd.Function): """ Adds a vector of scalars, used in self-attention mechanism to allow the model to optionally attend to this vector instead of the past """ @staticmethod def forward(ctx, input, dim, bias_init): size = list(input.size()) size[dim] += 1 output = input.new(*size).fill_(bias_init) output.narrow(dim, 1, size[dim] - 1).copy_(input) ctx.dim = dim return output @staticmethod def backward(ctx, grad): return grad.narrow(ctx.dim, 1, grad.size(ctx.dim) - 1), None, None def scalar_bias(input, dim, bias_init=0): return ScalarBias.apply(input, dim, bias_init)
data2vec_vision-main
deltalm/src/fairseq/modules/scalar_bias.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.nn as nn from .learned_positional_embedding import LearnedPositionalEmbedding from .sinusoidal_positional_embedding import SinusoidalPositionalEmbedding def PositionalEmbedding( num_embeddings: int, embedding_dim: int, padding_idx: int, learned: bool = False, ): if learned: # if padding_idx is specified then offset the embedding ids by # this index and adjust num_embeddings appropriately # TODO: The right place for this offset would be inside # LearnedPositionalEmbedding. Move this there for a cleaner implementation. if padding_idx is not None: num_embeddings = num_embeddings + padding_idx + 1 m = LearnedPositionalEmbedding(num_embeddings, embedding_dim, padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) if padding_idx is not None: nn.init.constant_(m.weight[padding_idx], 0) else: m = SinusoidalPositionalEmbedding( embedding_dim, padding_idx, init_size=num_embeddings + padding_idx + 1, ) return m
data2vec_vision-main
deltalm/src/fairseq/modules/positional_embedding.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch from .multihead_attention import MultiheadAttention class SparseMultiheadAttention(MultiheadAttention): """Sparse Multi-Headed Attention. "Generating Long Sequences with Sparse Transformers". Implements fixed factorized self attention, where l=stride and c=expressivity. A(1) includes all words in the stride window and A(2) takes a summary of c words from the end of each stride window. If is_bidirectional=False, we do not include any words past the current word, as in the paper. """ def __init__( self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, self_attention=False, encoder_decoder_attention=False, stride=32, expressivity=8, is_bidirectional=True, ): super().__init__( embed_dim, num_heads, kdim, vdim, dropout, bias, add_bias_kv, add_zero_attn, self_attention, encoder_decoder_attention, ) self.is_bidirectional = is_bidirectional self.stride = stride self.expressivity = expressivity assert self.stride > 0 and self.stride >= self.expressivity # Used for Ai(2) calculations - beginning of [l-c, l] range def compute_checkpoint(self, word_index): if word_index % self.stride == 0 and word_index != 0: checkpoint_index = word_index - self.expressivity else: checkpoint_index = ( math.floor(word_index / self.stride) * self.stride + self.stride - self.expressivity ) return checkpoint_index # Computes Ai(2) def compute_subset_summaries(self, absolute_max): checkpoint_index = self.compute_checkpoint(0) subset_two = set() while checkpoint_index <= absolute_max - 1: summary = set( range( checkpoint_index, min(checkpoint_index + self.expressivity + 1, absolute_max), ) ) subset_two = subset_two.union(summary) checkpoint_index = self.compute_checkpoint(checkpoint_index + self.stride) return subset_two # Sparse Transformer Fixed Attention Pattern: https://arxiv.org/pdf/1904.10509.pdf def compute_fixed_attention_subset(self, word_index, tgt_len): # +1s account for range function; [min, max) -> [min, max] if not self.is_bidirectional: absolute_max = word_index + 1 else: absolute_max = tgt_len # Subset 1 - whole window rounded_index = ( math.floor((word_index + self.stride) / self.stride) * self.stride ) if word_index % self.stride == 0 and word_index != 0: subset_one = set( range(word_index - self.stride, min(absolute_max, word_index + 1)) ) else: subset_one = set( range( max(0, rounded_index - self.stride), min(absolute_max, rounded_index + 1), ) ) # Subset 2 - summary per window # If bidirectional, subset 2 is the same for every index subset_two = set() if not self.is_bidirectional: subset_two = self.compute_subset_summaries(absolute_max) return subset_one.union(subset_two) # Compute sparse mask - if bidirectional, can pre-compute and store def buffered_sparse_mask(self, tensor, tgt_len, src_len): assert tgt_len > self.stride sparse_mask = torch.empty((tgt_len, src_len)).float().fill_(float("-inf")) # If bidirectional, subset 2 is the same for every index subset_summaries = set() if self.is_bidirectional: subset_summaries = self.compute_subset_summaries(tgt_len) for i in range(tgt_len): fixed_attention_subset = self.compute_fixed_attention_subset(i, tgt_len) fixed_attention_subset = fixed_attention_subset.union(subset_summaries) included_word_indices = torch.LongTensor(list(fixed_attention_subset)) sparse_mask[i].index_fill_(0, included_word_indices, 0) return sparse_mask.type_as(tensor) def apply_sparse_mask(self, attn_weights, tgt_len, src_len, bsz): sparse_mask = self.buffered_sparse_mask(attn_weights, tgt_len, src_len) sparse_mask = sparse_mask.unsqueeze(0).expand( bsz * self.num_heads, tgt_len, src_len ) attn_weights += sparse_mask
data2vec_vision-main
deltalm/src/fairseq/modules/sparse_multihead_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ transpose last 2 dimensions of the input """ import torch.nn as nn class TransposeLast(nn.Module): def __init__(self, deconstruct_idx=None): super().__init__() self.deconstruct_idx = deconstruct_idx def forward(self, x): if self.deconstruct_idx is not None: x = x[self.deconstruct_idx] return x.transpose(-2, -1)
data2vec_vision-main
deltalm/src/fairseq/modules/transpose_last.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from typing import Any, Optional import torch import torch.onnx.operators from fairseq import utils from torch import Tensor, nn class SinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length. Padding symbols are ignored. """ def __init__(self, embedding_dim, padding_idx, init_size=1024): super().__init__() self.embedding_dim = embedding_dim self.padding_idx = padding_idx self.weights = SinusoidalPositionalEmbedding.get_embedding( init_size, embedding_dim, padding_idx ) self.onnx_trace = False self.register_buffer("_float_tensor", torch.FloatTensor(1)) self.max_positions = int(1e5) def prepare_for_onnx_export_(self): self.onnx_trace = True @staticmethod def get_embedding( num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None ): """Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb) emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze( 1 ) * emb.unsqueeze(0) emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view( num_embeddings, -1 ) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) if padding_idx is not None: emb[padding_idx, :] = 0 return emb def forward( self, input, incremental_state: Optional[Any] = None, timestep: Optional[Tensor] = None, positions: Optional[Any] = None, ): """Input is expected to be of size [bsz x seqlen].""" bspair = torch.onnx.operators.shape_as_tensor(input) bsz, seq_len = bspair[0], bspair[1] max_pos = self.padding_idx + 1 + seq_len if self.weights is None or max_pos > self.weights.size(0): # recompute/expand embeddings if needed self.weights = SinusoidalPositionalEmbedding.get_embedding( max_pos, self.embedding_dim, self.padding_idx ) self.weights = self.weights.to(self._float_tensor) if incremental_state is not None: # positions is the same for every token when decoding a single step pos = timestep.view(-1)[0] + 1 if timestep is not None else seq_len if self.onnx_trace: return ( self.weights.index_select(index=self.padding_idx + pos, dim=0) .unsqueeze(1) .repeat(bsz, 1, 1) ) return self.weights[self.padding_idx + pos, :].expand(bsz, 1, -1) positions = utils.make_positions( input, self.padding_idx, onnx_trace=self.onnx_trace ) if self.onnx_trace: flat_embeddings = self.weights.detach().index_select(0, positions.view(-1)) embedding_shape = torch.cat( (bsz.view(1), seq_len.view(1), torch.tensor([-1], dtype=torch.long)) ) embeddings = torch.onnx.operators.reshape_from_tensor_shape( flat_embeddings, embedding_shape ) return embeddings return ( self.weights.index_select(0, positions.view(-1)) .view(bsz, seq_len, -1) .detach() )
data2vec_vision-main
deltalm/src/fairseq/modules/sinusoidal_positional_embedding.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F try: from apex.normalization import FusedLayerNorm as _FusedLayerNorm has_fused_layernorm = True class FusedLayerNorm(_FusedLayerNorm): @torch.jit.unused def forward(self, x): if not x.is_cuda: return super().forward(x) else: with torch.cuda.device(x.device): return super().forward(x) except ImportError: has_fused_layernorm = False def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True, export=False): if torch.jit.is_scripting(): export = True if not export and torch.cuda.is_available() and has_fused_layernorm: return FusedLayerNorm(normalized_shape, eps, elementwise_affine) return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine) class Fp32LayerNorm(nn.LayerNorm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def forward(self, input): output = F.layer_norm( input.float(), self.normalized_shape, self.weight.float() if self.weight is not None else None, self.bias.float() if self.bias is not None else None, self.eps, ) return output.type_as(input)
data2vec_vision-main
deltalm/src/fairseq/modules/layer_norm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from torch import nn class SamePad(nn.Module): def __init__(self, kernel_size, causal=False): super().__init__() if causal: self.remove = kernel_size - 1 else: self.remove = 1 if kernel_size % 2 == 0 else 0 def forward(self, x): if self.remove > 0: x = x[:, :, : -self.remove] return x
data2vec_vision-main
deltalm/src/fairseq/modules/same_pad.py
data2vec_vision-main
deltalm/src/fairseq/modules/quantization/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. def parse_config_yaml(yaml_data): # Initialize to default options. quantization_options = { "n_centroids": { "Linear": ["in_features", {"*": 256}], "Embedding": ["embedding_dim", {"*": 256}], }, "block_sizes": { "Linear": ["fuzzy_name", {"fc": 8, "attn": 4, "emb": 4}], "Embedding": ["fuzzy_name", {"emb": 8}], }, "layers_to_quantize": [ "decoder\\.layers\\.\\d+\\.fc[12]", "decoder\\.embed_tokens\\.embeddings\\.[012]\\.[01]", "decoder\\.layers\\.\\d+\\.self_attn\\.(k_proj|v_proj|q_proj|out_proj)", ], } if "n_centroids" in yaml_data: quantization_options["n_centroids"] = { layer: convert_yaml_to_tuple(layer_data) for layer, layer_data in yaml_data["n_centroids"].items() } if "block_sizes" in yaml_data: quantization_options["block_sizes"] = { layer: convert_yaml_to_tuple(layer_data) for layer, layer_data in yaml_data["block_sizes"].items() } if "layers_to_quantize" in yaml_data: quantization_options["layers_to_quantize"] = yaml_data["layers_to_quantize"] return quantization_options def convert_yaml_to_tuple(yaml_dictionary): """Converts a yaml dictionary with two keys: `key` and `value` into a two argument tuple of those values.""" return (yaml_dictionary["key"], yaml_dictionary["value"])
data2vec_vision-main
deltalm/src/fairseq/modules/quantization/quantization_options.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .utils import SizeTracker, quantize_model_ # NOQA
data2vec_vision-main
deltalm/src/fairseq/modules/quantization/pq/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .em import EM, EmptyClusterResolveError class PQ(EM): """ Quantizes the layer weights W with the standard Product Quantization technique. This learns a codebook of codewords or centroids of size block_size from W. For further reference on using PQ to quantize neural networks, see "And the Bit Goes Down: Revisiting the Quantization of Neural Networks", Stock et al., ICLR 2020. PQ is performed in two steps: (1) The matrix W (weights or fully-connected or convolutional layer) is reshaped to (block_size, -1). - If W is fully-connected (2D), its columns are split into blocks of size block_size. - If W is convolutional (4D), its filters are split along the spatial dimension. (2) We apply the standard EM/k-means algorithm to the resulting reshaped matrix. Args: - W: weight matrix to quantize of size (in_features x out_features) - block_size: size of the blocks (subvectors) - n_centroids: number of centroids - n_iter: number of k-means iterations - eps: for cluster reassignment when an empty cluster is found - max_tentatives for cluster reassignment when an empty cluster is found - verbose: print information after each iteration Remarks: - block_size be compatible with the shape of W """ def __init__( self, W, block_size, n_centroids=256, n_iter=20, eps=1e-6, max_tentatives=30, verbose=True, ): self.block_size = block_size W_reshaped = self._reshape(W) super(PQ, self).__init__( W_reshaped, n_centroids=n_centroids, n_iter=n_iter, eps=eps, max_tentatives=max_tentatives, verbose=verbose, ) def _reshape(self, W): """ Reshapes the matrix W as expained in step (1). """ # fully connected: by convention the weight has size out_features x in_features if len(W.size()) == 2: self.out_features, self.in_features = W.size() assert ( self.in_features % self.block_size == 0 ), "Linear: n_blocks must be a multiple of in_features" return ( W.reshape(self.out_features, -1, self.block_size) .permute(2, 1, 0) .flatten(1, 2) ) # convolutional: we reshape along the spatial dimension elif len(W.size()) == 4: self.out_channels, self.in_channels, self.k_h, self.k_w = W.size() assert ( self.in_channels * self.k_h * self.k_w ) % self.block_size == 0, ( "Conv2d: n_blocks must be a multiple of in_channels * k_h * k_w" ) return ( W.reshape(self.out_channels, -1, self.block_size) .permute(2, 1, 0) .flatten(1, 2) ) # not implemented else: raise NotImplementedError(W.size()) def encode(self): """ Performs self.n_iter EM steps. """ self.initialize_centroids() for i in range(self.n_iter): try: self.step(i) except EmptyClusterResolveError: break def decode(self): """ Returns the encoded full weight matrix. Must be called after the encode function. """ # fully connected case if "k_h" not in self.__dict__: return ( self.centroids[self.assignments] .reshape(-1, self.out_features, self.block_size) .permute(1, 0, 2) .flatten(1, 2) ) # convolutional case else: return ( self.centroids[self.assignments] .reshape(-1, self.out_channels, self.block_size) .permute(1, 0, 2) .reshape(self.out_channels, self.in_channels, self.k_h, self.k_w) )
data2vec_vision-main
deltalm/src/fairseq/modules/quantization/pq/pq.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import random from collections import Counter import torch class EM: """ EM algorithm used to quantize the columns of W to minimize ||W - W_hat||^2 Args: - W: weight matrix of size (in_features x out_features) - n_iter: number of k-means iterations - n_centroids: number of centroids (size of codebook) - eps: for cluster reassignment when an empty cluster is found - max_tentatives for cluster reassignment when an empty cluster is found - verbose: print error after each iteration Remarks: - If one cluster is empty, the most populated cluster is split into two clusters - All the relevant dimensions are specified in the code """ def __init__( self, W, n_centroids=256, n_iter=20, eps=1e-6, max_tentatives=30, verbose=True ): self.W = W self.n_centroids = n_centroids self.n_iter = n_iter self.eps = eps self.max_tentatives = max_tentatives self.verbose = verbose self.centroids = torch.Tensor() self.assignments = torch.Tensor() self.objective = [] def initialize_centroids(self): """ Initializes the centroids by sampling random columns from W. """ in_features, out_features = self.W.size() indices = torch.randint( low=0, high=out_features, size=(self.n_centroids,) ).long() self.centroids = self.W[:, indices].t() # (n_centroids x in_features) def step(self, i): """ There are two standard steps for each iteration: expectation (E) and minimization (M). The E-step (assignment) is performed with an exhaustive search and the M-step (centroid computation) is performed with the exact solution. Args: - i: step number Remarks: - The E-step heavily uses PyTorch broadcasting to speed up computations and reduce the memory overhead """ # assignments (E-step) distances = self.compute_distances() # (n_centroids x out_features) self.assignments = torch.argmin(distances, dim=0) # (out_features) n_empty_clusters = self.resolve_empty_clusters() # centroids (M-step) for k in range(self.n_centroids): W_k = self.W[:, self.assignments == k] # (in_features x size_of_cluster_k) self.centroids[k] = W_k.mean(dim=1) # (in_features) # book-keeping obj = (self.centroids[self.assignments].t() - self.W).norm(p=2).item() self.objective.append(obj) if self.verbose: logging.info( f"Iteration: {i},\t" f"objective: {obj:.6f},\t" f"resolved empty clusters: {n_empty_clusters}" ) def resolve_empty_clusters(self): """ If one cluster is empty, the most populated cluster is split into two clusters by shifting the respective centroids. This is done iteratively for a fixed number of tentatives. """ # empty clusters counts = Counter(map(lambda x: x.item(), self.assignments)) empty_clusters = set(range(self.n_centroids)) - set(counts.keys()) n_empty_clusters = len(empty_clusters) tentatives = 0 while len(empty_clusters) > 0: # given an empty cluster, find most populated cluster and split it into two k = random.choice(list(empty_clusters)) m = counts.most_common(1)[0][0] e = torch.randn_like(self.centroids[m]) * self.eps self.centroids[k] = self.centroids[m].clone() self.centroids[k] += e self.centroids[m] -= e # recompute assignments distances = self.compute_distances() # (n_centroids x out_features) self.assignments = torch.argmin(distances, dim=0) # (out_features) # check for empty clusters counts = Counter(map(lambda x: x.item(), self.assignments)) empty_clusters = set(range(self.n_centroids)) - set(counts.keys()) # increment tentatives if tentatives == self.max_tentatives: logging.info( f"Could not resolve all empty clusters, {len(empty_clusters)} remaining" ) raise EmptyClusterResolveError tentatives += 1 return n_empty_clusters def compute_distances(self): """ For every centroid m, computes ||M - m[None, :]||_2 Remarks: - We rely on PyTorch's broadcasting to speed up computations and reduce the memory overhead - Without chunking, the sizes in the broadcasting are modified as: (n_centroids x n_samples x out_features) -> (n_centroids x out_features) - The broadcasting computation is automatically chunked so that the tensors fit into the memory of the GPU """ nb_centroids_chunks = 1 while True: try: return torch.cat( [ (self.W[None, :, :] - centroids_c[:, :, None]).norm(p=2, dim=1) for centroids_c in self.centroids.chunk( nb_centroids_chunks, dim=0 ) ], dim=0, ) except RuntimeError: nb_centroids_chunks *= 2 def assign(self): """ Assigns each column of W to its closest centroid, thus essentially performing the E-step in train(). Remarks: - The function must be called after train() or after loading centroids using self.load(), otherwise it will return empty tensors """ distances = self.compute_distances() # (n_centroids x out_features) self.assignments = torch.argmin(distances, dim=0) # (out_features) def save(self, path, layer): """ Saves centroids and assignments. Args: - path: folder used to save centroids and assignments """ torch.save(self.centroids, os.path.join(path, "{}_centroids.pth".format(layer))) torch.save( self.assignments, os.path.join(path, "{}_assignments.pth".format(layer)) ) torch.save(self.objective, os.path.join(path, "{}_objective.pth".format(layer))) def load(self, path, layer): """ Loads centroids and assignments from a given path Args: - path: folder use to load centroids and assignments """ self.centroids = torch.load( os.path.join(path, "{}_centroids.pth".format(layer)) ) self.assignments = torch.load( os.path.join(path, "{}_assignments.pth".format(layer)) ) self.objective = torch.load( os.path.join(path, "{}_objective.pth".format(layer)) ) class EmptyClusterResolveError(Exception): pass
data2vec_vision-main
deltalm/src/fairseq/modules/quantization/pq/em.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import re from operator import attrgetter, itemgetter import numpy as np import torch.distributed as dist import torch.nn as nn from .modules import PQConv2d, PQEmbedding, PQLinear from .pq import PQ def quantize_model_( model, size_tracker, layers_to_quantize, block_sizes_config, n_centroids_config, step=0, n_iter=15, eps=1e-6, max_tentatives=100, verbose=True, ): """ Quantize a model in-place by stages. All the targeted layers are replaced by their quantized counterpart, and the model is ready for the finetuning of the centroids in a standard training loop (no modifications required). Note that we do not quantize biases. Args: - model: a nn.Module - size_tracker: useful for tracking quatization statistics - layers_to_quantize: a list containing regexps for filtering the layers to quantize at each stage according to their name (as in model.named_parameters()) - block_sizes_config: dict like { 'Conv2d': ('kernel_size', {'(3, 3)': 9, '(1, 1)': 4}), 'Linear': ('in_features', {'*': 8}) } For instance, all conv2d layers with kernel size 3x3 have a block size of 9 and all Linear layers are quantized with a block size of 8, irrespective of their size. - n_centroids_config: dict like { 'Conv2d': ('kernel_size', {'*': 256}), 'Linear': ('in_features', {'*': 256}) } For instance, all conv2d layers are quantized with 256 centroids - step: the layers to quantize inplace corresponding to layers_to_quantize[step] """ quantized_layers = get_layers(model, layers_to_quantize[step]) for layer in quantized_layers: # book-keeping is_master_process = (not dist.is_initialized()) or ( dist.is_initialized() and dist.get_rank() == 0 ) verbose = verbose and is_master_process # get block size and centroids module = attrgetter(layer)(model) block_size = get_param(module, layer, block_sizes_config) n_centroids = get_param(module, layer, n_centroids_config) if verbose: logging.info( f"Quantizing layer {layer} with block size {block_size} and {n_centroids} centroids" ) # quantize layer weight = module.weight.data.clone() is_bias = "bias" in [x[0] for x in module.named_parameters()] bias = module.bias.data.clone() if is_bias else None quantizer = PQ( weight, block_size, n_centroids=n_centroids, n_iter=n_iter, eps=eps, max_tentatives=max_tentatives, verbose=verbose, ) # quantization performed on all GPUs with same seed quantizer.encode() centroids = quantizer.centroids.contiguous() assignments = quantizer.assignments.contiguous() # broadcast results to make sure weights are up-to-date if dist.is_initialized(): dist.broadcast(centroids, 0) dist.broadcast(assignments, 0) # instantiate the quantized counterpart if isinstance(module, nn.Linear): out_features, in_features = map( lambda k: module.__dict__[k], ["out_features", "in_features"] ) quantized_module = PQLinear( centroids, assignments, bias, in_features, out_features ) elif isinstance(module, nn.Embedding): num_embeddings, embedding_dim = map( lambda k: module.__dict__[k], ["num_embeddings", "embedding_dim"] ) quantized_module = PQEmbedding( centroids, assignments, num_embeddings, embedding_dim ) elif isinstance(module, nn.Conv2d): out_channels, in_channels, kernel_size = map( lambda k: module.__dict__[k], ["out_channels", "in_channels", "kernel_size"], ) stride, padding, dilation, groups, padding_mode = map( lambda k: module.__dict__[k], ["stride", "padding", "dilation", "groups", "padding_mode"], ) quantized_module = PQConv2d( centroids, assignments, bias, in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, padding_mode=padding_mode, ) else: raise ValueError(f"Module {module} not yet supported for quantization") # replace layer by its quantized counterpart attrsetter(layer)(model, quantized_module) # update statistics size_tracker.update(weight, block_size, n_centroids) # return name of quantized layers return quantized_layers def get_layers(model, filter_regexp): """ Filters out the layers according to a regexp. Note that we omit biases. Args: - model: a nn.Module - filter_regexp: a regexp to filter the layers to keep according to their name in model.named_parameters(). For instance, the regexp: down_layers\\.[123456]\\.(conv[12]|identity\\.conv)) is keeping blocks down_layers from 1 to 6, and inside each block is keeping conv1, conv2 and identity.conv. Remarks: - We add (module\\.)? at the beginning of the regexp to account for the possible use of nn.parallel.DataParallel """ # get all parameter names all_layers = map(itemgetter(0), model.named_parameters()) # remove biases all_layers = filter(lambda x: "bias" not in x, all_layers) # remove .weight in all other names (or .weight_orig is spectral norm) all_layers = map(lambda x: x.replace(".weight_orig", ""), all_layers) all_layers = map(lambda x: x.replace(".weight", ""), all_layers) # return filtered layers filter_regexp = "(module\\.)?" + "(" + filter_regexp + ")" r = re.compile(filter_regexp) return list(filter(r.match, all_layers)) def get_param(module, layer_name, param_config): """ Given a quantization configuration, get the right parameter for the module to be quantized. Args: - module: a nn.Module - layer_name: the name of the layer - param_config: a dict like { 'Conv2d': ('kernel_size', {'(3, 3)': 9, '(1, 1)': 4}), 'Linear': ('in_features', {'*': 8}) } For instance, all conv2d layers with kernel size 3x3 have a block size of 9 and all Linear layers are quantized with a block size of 8, irrespective of their size. Remarks: - if 'fuzzy_name' is passed as a parameter, layers whose layer_name include 'fuzzy_name' will be assigned the given parameter. In the following example, conv.expand layers will have a block size of 9 while conv.reduce will have a block size of 4 and all other layers will have a block size of 2. { 'Conv2d': ('fuzzy_name', {'expand': 9, 'reduce': 4, '*': 2}), 'Linear': ('fuzzy_name', {'classifier': 8, 'projection': 4}) } """ layer_type = module.__class__.__name__ if layer_type not in param_config: raise KeyError(f"Layer type {layer_type} not in config for layer {module}") feature, params = param_config[module.__class__.__name__] if feature != "fuzzy_name": feature_value = str(getattr(module, feature)) if feature_value not in params: if "*" in params: feature_value = "*" else: raise KeyError( f"{feature}={feature_value} not in config for layer {module}" ) else: feature_values = [name for name in params if name in layer_name] if len(feature_values) == 0: if "*" in params: feature_value = "*" else: raise KeyError(f"name={layer_name} not in config for {module}") else: feature_value = feature_values[0] return params[feature_value] class SizeTracker(object): """ Class to keep track of the compressed network size with iPQ. Args: - model: a nn.Module Remarks: - The compressed size is the sum of three components for each layer in the network: (1) Storing the centroids given by iPQ in fp16 (2) Storing the assignments of the blocks in int8 (3) Storing all non-compressed elements such as biases - This cost in only valid if we use 256 centroids (then indexing can indeed by done with int8). """ def __init__(self, model): self.model = model self.size_non_compressed_model = self.compute_size() self.size_non_quantized = self.size_non_compressed_model self.size_index = 0 self.size_centroids = 0 self.n_quantized_layers = 0 def compute_size(self): """ Computes the size of the model (in MB). """ res = 0 for _, p in self.model.named_parameters(): res += p.numel() return res * 4 / 1024 / 1024 def update(self, W, block_size, n_centroids): """ Updates the running statistics when quantizing a new layer. """ # bits per weights bits_per_weight = np.log2(n_centroids) / block_size self.n_quantized_layers += 1 # size of indexing the subvectors of size block_size (in MB) size_index_layer = bits_per_weight * W.numel() / 8 / 1024 / 1024 self.size_index += size_index_layer # size of the centroids stored in float16 (in MB) size_centroids_layer = n_centroids * block_size * 2 / 1024 / 1024 self.size_centroids += size_centroids_layer # size of non-compressed layers, e.g. LayerNorms or biases (in MB) size_uncompressed_layer = W.numel() * 4 / 1024 / 1024 self.size_non_quantized -= size_uncompressed_layer def __repr__(self): size_compressed = ( self.size_index + self.size_centroids + self.size_non_quantized ) compression_ratio = self.size_non_compressed_model / size_compressed # NOQA return ( f"Non-compressed model size: {self.size_non_compressed_model:.2f} MB. " f"After quantizing {self.n_quantized_layers} layers, size " f"(indexing + centroids + other): {self.size_index:.2f} MB + " f"{self.size_centroids:.2f} MB + {self.size_non_quantized:.2f} MB = " f"{size_compressed:.2f} MB, compression ratio: {compression_ratio:.2f}x" ) def attrsetter(*items): def resolve_attr(obj, attr): attrs = attr.split(".") head = attrs[:-1] tail = attrs[-1] for name in head: obj = getattr(obj, name) return obj, tail def g(obj, val): for attr in items: resolved_obj, resolved_attr = resolve_attr(obj, attr) setattr(resolved_obj, resolved_attr, val) return g
data2vec_vision-main
deltalm/src/fairseq/modules/quantization/pq/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F class PQLinear(nn.Module): """ Quantized counterpart of nn.Linear module. Stores the centroid, the assignments and the non-quantized biases. The full weight is re-instantiated at each forward pass. Args: - centroids: centroids of size n_centroids x block_size - assignments: assignments of the centroids to the subvectors of size self.out_features x n_blocks - bias: the non-quantized bias Remarks: - We refer the reader to the official documentation of the nn.Linear module for the other arguments and the behavior of the module - Performance tests on GPU show that this implementation is 15% slower than the non-quantized nn.Linear module for a standard training loop. """ def __init__(self, centroids, assignments, bias, in_features, out_features): super(PQLinear, self).__init__() self.block_size = centroids.size(1) self.n_centroids = centroids.size(0) self.in_features = in_features self.out_features = out_features # check compatibility if self.in_features % self.block_size != 0: raise ValueError("Wrong PQ sizes") if len(assignments) % self.out_features != 0: raise ValueError("Wrong PQ sizes") # define parameters self.centroids = nn.Parameter(centroids, requires_grad=True) self.register_buffer("assignments", assignments) self.register_buffer("counts", torch.bincount(assignments).type_as(centroids)) if bias is not None: self.bias = nn.Parameter(bias) else: self.register_parameter("bias", None) @property def weight(self): return ( self.centroids[self.assignments] .reshape(-1, self.out_features, self.block_size) .permute(1, 0, 2) .flatten(1, 2) ) def forward(self, x): return F.linear( x, self.weight, self.bias, ) def extra_repr(self): return f"in_features={self.in_features},\ out_features={self.out_features},\ n_centroids={self.n_centroids},\ block_size={self.block_size},\ bias={self.bias is not None}"
data2vec_vision-main
deltalm/src/fairseq/modules/quantization/pq/modules/qlinear.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.modules.utils import _pair class PQConv2d(nn.Module): """ Quantized counterpart of nn.Conv2d module. Stores the centroid, the assignments and the non-quantized biases. The full weight is re-instantiated at each forward pass and autograd automatically computes the gradients with respect to the centroids. Args: - centroids: centroids of size n_centroids x block_size - assignments: assignments of the centroids to the subvectors of size self.out_channels x n_blocks - bias: the non-quantized bias, must be either torch.Tensor or None Remarks: - We refer the reader to the official documentation of the nn.Conv2d module for the other arguments and the behavior of the module. - Performance tests on GPU show that this implementation is 10% slower than the non-quantized nn.Conv2d module for a standard training loop. - During the backward, the gradients are averaged by cluster and not summed. This explains the hook registered to the centroids. """ def __init__( self, centroids, assignments, bias, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, padding_mode="zeros", ): super(PQConv2d, self).__init__() self.block_size = centroids.size(1) self.n_centroids = centroids.size(0) self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = _pair(kernel_size) self.stride = _pair(stride) self.padding = _pair(padding) self.dilation = _pair(dilation) self.groups = groups self.padding_mode = padding_mode # check compatibility if in_channels // groups * np.prod(self.kernel_size) % self.block_size != 0: raise ValueError("Wrong PQ sizes") if len(assignments) % out_channels != 0: raise ValueError("Wrong PQ sizes") if in_channels % groups != 0: raise ValueError("in_channels must be divisible by groups") if out_channels % groups != 0: raise ValueError("out_channels must be divisible by groups") # define parameters self.centroids = nn.Parameter(centroids, requires_grad=True) self.register_buffer("assignments", assignments) self.register_buffer("counts", torch.bincount(assignments).type_as(centroids)) if bias is not None: self.bias = nn.Parameter(bias) else: self.register_parameter("bias", None) # register hook for averaging gradients per centroids instead of summing self.centroids.register_hook(lambda x: x / self.counts[:, None]) @property def weight(self): return ( self.centroids[self.assignments] .reshape(-1, self.out_channels, self.block_size) .permute(1, 0, 2) .reshape( self.out_channels, self.in_channels // self.groups, *self.kernel_size ) ) def forward(self, x): return F.conv2d( x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups, ) def extra_repr(self): s = "{in_channels}, {out_channels}, kernel_size={kernel_size}, stride={stride}" if self.padding != (0,) * len(self.padding): s += ", padding={padding}" if self.dilation != (1,) * len(self.dilation): s += ", dilation={dilation}" if self.groups != 1: s += ", groups={groups}" if self.bias is None: s += ", bias=False" if self.padding_mode != "zeros": s += ", padding_mode={padding_mode}" s += ", n_centroids={n_centroids}, block_size={block_size}" return s.format(**self.__dict__)
data2vec_vision-main
deltalm/src/fairseq/modules/quantization/pq/modules/qconv.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .qconv import PQConv2d # NOQA from .qemb import PQEmbedding # NOQA from .qlinear import PQLinear # NOQA
data2vec_vision-main
deltalm/src/fairseq/modules/quantization/pq/modules/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F class PQEmbedding(nn.Module): """ Quantized counterpart of nn.Embedding module. Stores the centroids and the assignments. The full weight is re-instantiated at each forward pass. Args: - centroids: centroids of size n_centroids x block_size - assignments: assignments of the centroids to the subvectors of size self.out_features x n_blocks - bias: the non-quantized bias Remarks: - We refer the reader to the official documentation of the nn.Embedding module for the other arguments and the behavior of the module - Performance tests on GPU show that this implementation is 10% slower than the non-quantized nn.Embedding module for a standard training loop. """ def __init__( self, centroids, assignments, num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, _weight=None, ): super(PQEmbedding, self).__init__() self.block_size = centroids.size(1) self.n_centroids = centroids.size(0) self.num_embeddings = num_embeddings self.embedding_dim = embedding_dim if padding_idx is not None: if padding_idx > 0: assert ( padding_idx < self.num_embeddings ), "Padding_idx must be within num_embeddings" elif padding_idx < 0: assert ( padding_idx >= -self.num_embeddings ), "Padding_idx must be within num_embeddings" padding_idx = self.num_embeddings + padding_idx self.padding_idx = padding_idx self.max_norm = max_norm self.norm_type = norm_type self.scale_grad_by_freq = scale_grad_by_freq self.sparse = sparse # check compatibility if self.embedding_dim % self.block_size != 0: raise ValueError("Wrong PQ sizes") if len(assignments) % self.num_embeddings != 0: raise ValueError("Wrong PQ sizes") # define parameters self.centroids = nn.Parameter(centroids, requires_grad=True) self.register_buffer("assignments", assignments) self.register_buffer("counts", torch.bincount(assignments).type_as(centroids)) @property def weight(self): return ( self.centroids[self.assignments] .reshape(-1, self.num_embeddings, self.block_size) .permute(1, 0, 2) .flatten(1, 2) ) def forward(self, input): return F.embedding( input, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, ) def extra_repr(self): s = "{num_embeddings}, {embedding_dim}" if self.padding_idx is not None: s += ", padding_idx={padding_idx}" if self.max_norm is not None: s += ", max_norm={max_norm}" if self.norm_type != 2: s += ", norm_type={norm_type}" if self.scale_grad_by_freq is not False: s += ", scale_grad_by_freq={scale_grad_by_freq}" if self.sparse is not False: s += ", sparse=True" s += ", n_centroids={n_centroids}, block_size={block_size}" return s.format(**self.__dict__)
data2vec_vision-main
deltalm/src/fairseq/modules/quantization/pq/modules/qemb.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .utils import quantize_model_ # NOQA
data2vec_vision-main
deltalm/src/fairseq/modules/quantization/scalar/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch def emulate_int(w, bits, method, scale=None, zero_point=None): q = globals()[f"emulate_int{bits}_{method}"] return q(w, scale=scale, zero_point=zero_point) def quantize(w, scale, zero_point): return ( torch.clamp(torch.round(w / scale + zero_point), 0, 255) - zero_point ) * scale def emulate_int8_histogram(w, scale=None, zero_point=None): if scale is None: obs = torch.quantization.observer.HistogramObserver() _ = obs(w.float()) scale, zero_point = obs.calculate_qparams() scale = scale.cuda().type_as(w) zero_point = zero_point.cuda().type_as(w) return quantize(w, scale, zero_point), scale, zero_point def emulate_int8_channel(w, scale=None, zero_point=None): if scale is None: obs = torch.quantization.observer.PerChannelMinMaxObserver( ch_axis=-1, qscheme=torch.per_channel_symmetric ) _ = obs(w) scale, zero_point, ch_axis = obs.get_qparams() scale = scale.cuda().type_as(w) zero_point = zero_point.cuda().type_as(w) return quantize(w, scale, zero_point), scale, zero_point def emulate_int8_tensor(w, scale=None, zero_point=None): if scale is None: obs = torch.quantization.observer.MinMaxObserver() _ = obs(w) scale, zero_point = obs.calculate_qparams() scale = scale.cuda().type_as(w) zero_point = zero_point.cuda().type_as(w) return quantize(w, scale, zero_point), scale, zero_point
data2vec_vision-main
deltalm/src/fairseq/modules/quantization/scalar/ops.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from operator import attrgetter import torch.distributed as dist import torch.nn as nn from ..pq.utils import attrsetter, get_layers from .modules import ActivationQuantizer, IntConv2d, IntEmbedding, IntLinear MAPPING = {nn.Linear: IntLinear, nn.Embedding: IntEmbedding, nn.Conv2d: IntConv2d} def quantize_model_(model, p=0.2, bits=8, update_step=3000): """ Replaces all modules with their scalar quantized counterpart and registers hooks to quantize the post-ativations of those modules. Args: - model: a nn.Module - p: amount of noise (0 for no noise, 1 to quantize all the weights/activations) - bits: number of bits - update_step: update quantization parameters every update_step steps """ # quantize all layers quantized_layers = get_layers(model, "(.*?)") for layer in quantized_layers: # book-keeping is_master_process = (not dist.is_initialized()) or ( dist.is_initialized() and dist.get_rank() == 0 ) # recover module module = attrgetter(layer)(model) if is_master_process: logging.info( f"Quantizing layer {layer} with bits={bits} and QuantNoise={p}" ) # quantization params q_params = { "p": p, "update_step": update_step, "bits": bits, "method": "histogram", "counter": 0, } # instantiate the quantized counterpart if isinstance(module, tuple(MAPPING.keys())): QuantizedModule = MAPPING[module.__class__] quantized_module = QuantizedModule.__new__(QuantizedModule) params = module.__dict__ params.update(q_params) quantized_module.__dict__.update(params) else: if is_master_process: logging.info(f"Module {module} not yet supported for quantization") continue # activation quantization a_q = ActivationQuantizer(quantized_module, p=0, bits=bits, method="histogram") # replace layer by its quantized counterpart attrsetter(layer)(model, quantized_module) # return name of quantized layers return quantized_layers
data2vec_vision-main
deltalm/src/fairseq/modules/quantization/scalar/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from ..ops import emulate_int class IntLinear(nn.Module): """ Quantized counterpart of the nn.Linear module that applies QuantNoise during training. Args: - in_features: input features - out_features: output features - bias: bias or not - p: amount of noise to inject (0 = no quantization, 1 = quantize all the weights) - bits: number of bits - method: choose among {"tensor", "histogram", "channel"} - update_step: recompute scale and zero_point every update_steps iterations Remarks: - We use the straight-through estimator so that the gradients back-propagate nicely in the network, this is implemented with the detach() trick. - Parameters scale and zero_point are recomputed every update_step forward pass to reduce the overhead - At test time, the weights are fully quantized """ def __init__( self, in_features, out_features, bias=True, p=0, update_step=3000, bits=8, method="histogram", ): super(IntLinear, self).__init__() self.in_features = int(in_features) self.out_features = int(out_features) self.weight = torch.nn.Parameter(torch.Tensor(out_features, in_features)) self.chosen_bias = bias if self.chosen_bias: self.bias = torch.nn.Parameter(torch.Tensor(out_features)) else: self.register_parameter("bias", None) self.reset_parameters() # quantization parameters self.p = p self.bits = bits self.method = method self.update_step = update_step self.counter = 0 def reset_parameters(self): nn.init.xavier_uniform_(self.weight) if self.chosen_bias: nn.init.constant_(self.bias, 0.0) return def forward(self, input): # train with QuantNoise and evaluate the fully quantized network p = self.p if self.training else 1 # update parameters every 100 iterations if self.counter % self.update_step == 0: self.scale = None self.zero_point = None self.counter += 1 # quantize weight weight_quantized, self.scale, self.zero_point = emulate_int( self.weight.detach(), bits=self.bits, method=self.method, scale=self.scale, zero_point=self.zero_point, ) # mask to apply noise mask = torch.zeros_like(self.weight) mask.bernoulli_(1 - p) noise = (weight_quantized - self.weight).masked_fill(mask.bool(), 0) # using straight-through estimator (STE) clamp_low = -self.scale * self.zero_point clamp_high = self.scale * (2 ** self.bits - 1 - self.zero_point) weight = ( torch.clamp(self.weight, clamp_low.item(), clamp_high.item()) + noise.detach() ) # return output output = F.linear(input, weight, self.bias) return output def extra_repr(self): return "in_features={}, out_features={}, bias={}, quant_noise={}, bits={}, method={}".format( self.in_features, self.out_features, self.bias is not None, self.p, self.bits, self.method, )
data2vec_vision-main
deltalm/src/fairseq/modules/quantization/scalar/modules/qlinear.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn.functional as F from torch.nn.modules.conv import _ConvNd from torch.nn.modules.utils import _pair from ..ops import emulate_int class IntConv2d(_ConvNd): """ Quantized counterpart of the nn.Conv2d module that applies QuantNoise during training. Args: - standard nn.Conv2d parameters - p: amount of noise to inject (0 = no quantization, 1 = quantize all the weights) - bits: number of bits - method: choose among {"tensor", "histogram", "channel"} - update_step: recompute scale and zero_point every update_steps iterations Remarks: - We use the straight-thgourh estimator so that the gradients back-propagate nicely in the network, this is implemented with the detach() trick - Parameters scale and zero_point are recomputed every update_step forward pass to reduce the overhead - At test time, the weights are fully quantized """ def __init__( self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode="zeros", p=0, bits=8, method="histogram", update_step=1000, ): kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) super(IntConv2d, self).__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, False, _pair(0), groups, bias, padding_mode, ) # quantization parameters self.p = p self.bits = bits self.method = method self.update_step = update_step self.counter = 0 def _conv_forward(self, input, weight): if self.padding_mode != "zeros": return F.conv2d( F.pad(input, self._padding_repeated_twice, mode=self.padding_mode), weight, self.bias, self.stride, _pair(0), self.dilation, self.groups, ) return F.conv2d( input, weight, self.bias, self.stride, self.padding, self.dilation, self.groups, ) def forward(self, input): # train with QuantNoise and evaluate the fully quantized network p = self.p if self.training else 1 # update parameters every 100 iterations if self.counter % self.update_step == 0: self.scale = None self.zero_point = None self.counter += 1 # quantize weight weight_quantized, self.scale, self.zero_point = emulate_int( self.weight.detach(), bits=self.bits, method=self.method, scale=self.scale, zero_point=self.zero_point, ) # mask to apply noise mask = torch.zeros_like(self.weight) mask.bernoulli_(1 - p) noise = (weight_quantized - self.weight).masked_fill(mask.bool(), 0) # using straight-through estimator (STE) clamp_low = -self.scale * self.zero_point clamp_high = self.scale * (2 ** self.bits - 1 - self.zero_point) weight = ( torch.clamp(self.weight, clamp_low.item(), clamp_high.item()) + noise.detach() ) # return output output = self._conv_forward(input, weight) return output def extra_repr(self): return ( "in_channels={}, out_channels={}, kernel_size={}, stride={}, " "padding={}, dilation={}, groups={}, bias={}, quant_noise={}, " "bits={}, method={}".format( self.in_channels, self.out_channels, self.kernel_size, self.stride, self.padding, self.dilation, self.groups, self.bias is not None, self.p, self.bits, self.method, ) )
data2vec_vision-main
deltalm/src/fairseq/modules/quantization/scalar/modules/qconv.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .qact import ActivationQuantizer # NOQA from .qconv import IntConv2d # NOQA from .qemb import IntEmbedding # NOQA from .qlinear import IntLinear # NOQA
data2vec_vision-main
deltalm/src/fairseq/modules/quantization/scalar/modules/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from ..ops import emulate_int class IntEmbedding(nn.Module): """ Quantized counterpart of the nn.Embedding module that applies QuantNoise during training. Args: - num_embeddings: number of tokens - embedding_dim: embedding dimension - p: amount of noise to inject (0 = no quantization, 1 = quantize all the weights) - bits: number of bits - method: choose among {"tensor", "histogram", "channel"} - update_step: recompute scale and zero_point every update_steps iterations Remarks: - We use the straight-through estimator so that the gradients back-propagate nicely in the network, this is implemented with the detach() trick - Parameters scale and zero_point are recomputed every update_step forward pass to reduce the overhead - At test time, the weights are fully quantized """ def __init__( self, num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, _weight=None, p=0, update_step=1000, bits=8, method="histogram", ): super(IntEmbedding, self).__init__() self.num_embeddings = num_embeddings self.embedding_dim = embedding_dim if padding_idx is not None: if padding_idx > 0: assert ( padding_idx < self.num_embeddings ), "Padding_idx must be within num_embeddings" elif padding_idx < 0: assert ( padding_idx >= -self.num_embeddings ), "Padding_idx must be within num_embeddings" padding_idx = self.num_embeddings + padding_idx self.padding_idx = padding_idx self.max_norm = max_norm self.norm_type = norm_type self.scale_grad_by_freq = scale_grad_by_freq if _weight is None: self.weight = nn.Parameter(torch.Tensor(num_embeddings, embedding_dim)) self.reset_parameters() else: assert list(_weight.shape) == [ num_embeddings, embedding_dim, ], "Shape of weight does not match num_embeddings and embedding_dim" self.weight = nn.Parameter(_weight) self.sparse = sparse # quantization parameters self.p = p self.bits = bits self.method = method self.update_step = update_step self.counter = 0 def reset_parameters(self): nn.init.normal_(self.weight) if self.padding_idx is not None: with torch.no_grad(): self.weight[self.padding_idx].fill_(0) def forward(self, input): # train with QuantNoise and evaluate the fully quantized network p = self.p if self.training else 1 # update parameters every 1000 iterations if self.counter % self.update_step == 0: self.scale = None self.zero_point = None self.counter += 1 # quantize weight weight_quantized, self.scale, self.zero_point = emulate_int( self.weight.detach(), bits=self.bits, method=self.method, scale=self.scale, zero_point=self.zero_point, ) # mask to apply noise mask = torch.zeros_like(self.weight) mask.bernoulli_(1 - p) noise = (weight_quantized - self.weight).masked_fill(mask.bool(), 0) # using straight-through estimator (STE) clamp_low = -self.scale * self.zero_point clamp_high = self.scale * (2 ** self.bits - 1 - self.zero_point) weight = ( torch.clamp(self.weight, clamp_low.item(), clamp_high.item()) + noise.detach() ) # return output output = F.embedding( input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, ) return output def extra_repr(self): s = "{num_embeddings}, {embedding_dim}" if self.padding_idx is not None: s += ", padding_idx={padding_idx}" if self.max_norm is not None: s += ", max_norm={max_norm}" if self.norm_type != 2: s += ", norm_type={norm_type}" if self.scale_grad_by_freq is not False: s += ", scale_grad_by_freq={scale_grad_by_freq}" if self.sparse is not False: s += ", sparse=True" s += "quant_noise={p}, bits={bits}, method={method}" return s.format(**self.__dict__)
data2vec_vision-main
deltalm/src/fairseq/modules/quantization/scalar/modules/qemb.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from ..ops import emulate_int class ActivationQuantizer: """ Fake scalar quantization of the activations using a forward hook. Args: - module. a nn.Module for which we quantize the *post-activations* - p: proportion of activations to quantize, set by default to 1 - update_step: to recompute quantization parameters - bits: number of bits for quantization - method: choose among {"tensor", "histogram", "channel"} - clamp_threshold: to prevent gradients overflow Remarks: - Parameters scale and zero_point are recomputed every update_step forward pass to reduce the overhead - For the list of quantization methods and number of bits, see ops.py - To remove the hook from the module, simply call self.handle.remove() - At test time, the activations are fully quantized - We use the straight-through estimator so that the gradients back-propagate nicely in the network, this is implemented with the detach() trick - The activations are hard-clamped in [-clamp_threshold, clamp_threshold] to prevent overflow during the backward pass """ def __init__( self, module, p=1, update_step=1000, bits=8, method="histogram", clamp_threshold=5, ): self.module = module self.p = p self.update_step = update_step self.counter = 0 self.bits = bits self.method = method self.clamp_threshold = clamp_threshold self.handle = None self.register_hook() def register_hook(self): # forward hook def quantize_hook(module, x, y): # update parameters every 1000 iterations if self.counter % self.update_step == 0: self.scale = None self.zero_point = None self.counter += 1 # train with QuantNoise and evaluate the fully quantized network p = self.p if self.module.training else 1 # quantize activations y_q, self.scale, self.zero_point = emulate_int( y.detach(), bits=self.bits, method=self.method, scale=self.scale, zero_point=self.zero_point, ) # mask to apply noise mask = torch.zeros_like(y) mask.bernoulli_(1 - p) noise = (y_q - y).masked_fill(mask.bool(), 0) # using straight-through estimator (STE) clamp_low = -self.scale * self.zero_point clamp_high = self.scale * (2 ** self.bits - 1 - self.zero_point) return torch.clamp(y, clamp_low.item(), clamp_high.item()) + noise.detach() # register hook self.handle = self.module.register_forward_hook(quantize_hook)
data2vec_vision-main
deltalm/src/fairseq/modules/quantization/scalar/modules/qact.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. def gen_forward(): kernels = [3, 5, 7, 15, 31, 63, 127, 255] seqs = [32 * x for x in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]] head = """ /** * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ #include "lightconv_cuda.cuh" std::vector<at::Tensor> lightconv_cuda_forward(at::Tensor input, at::Tensor filters, int padding_l) { at::DeviceGuard g(input.device()); const auto minibatch = input.size(0); const auto numFeatures = input.size(1); const auto sequenceLength = input.size(2); const auto numHeads = filters.size(0); const auto filterSize = filters.size(1); const auto numFiltersInBlock = numFeatures / numHeads; const dim3 blocks(minibatch, numFeatures); auto output = at::zeros_like(input); auto stream = at::cuda::getCurrentCUDAStream(); """ sequence_if = """ if (sequenceLength <= {seq}) {{ switch(filterSize) {{ """ case_k = """ case {k}: """ main_block = """ if (padding_l == {pad}) {{ AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.scalar_type(), "lightconv_forward", ([&] {{ lightconv_forward_kernel<{k}, {b_size}, {pad}, scalar_t> <<<blocks, {b_size}, 0, stream>>>( input.data<scalar_t>(), filters.data<scalar_t>(), minibatch, sequenceLength, numFeatures, numFiltersInBlock, output.data<scalar_t>()); }})); }} else """ bad_padding = """ { std::cout << "WARNING: Unsupported padding size - skipping forward pass" << std::endl; } break; """ bad_filter = """ default: std::cout << "WARNING: Unsupported filter length passed - skipping forward pass" << std::endl; } """ con_else = """ } else """ final_else = """ { switch(filterSize) { """ final_return = """ } return {output}; } """ with open("lightconv_cuda_forward.cu", "w") as forward: forward.write(head) for seq in seqs: forward.write(sequence_if.format(seq=seq)) for k in kernels: forward.write(case_k.format(k=k)) for pad in [k // 2, k - 1]: forward.write(main_block.format(k=k, b_size=seq, pad=pad)) forward.write(bad_padding) forward.write(bad_filter) forward.write(con_else) forward.write(final_else) for k in kernels: forward.write(case_k.format(k=k)) for pad in [k // 2, k - 1]: forward.write(main_block.format(k=k, b_size=seq, pad=pad)) forward.write(bad_padding) forward.write(bad_filter) forward.write(final_return) def gen_backward(): head = """ /** * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ #include "lightconv_cuda.cuh" std::vector<at::Tensor> lightconv_cuda_backward( at::Tensor gradOutput, int padding_l, at::Tensor input, at::Tensor filters) { // gradWrtInput const int minibatch = input.size(0); const int numFeatures = input.size(1); const int sequenceLength = input.size(2); const int numHeads = filters.size(0); const int filterSize = filters.size(1); const dim3 gradBlocks(minibatch, numFeatures); const dim3 weightGradFirstpassShortBlocks(minibatch, numHeads); const dim3 weightGradSecondpassBlocks(numHeads, filterSize); const int numFiltersInBlock = numFeatures / numHeads; auto gradInput = at::zeros_like(input); auto gradFilters = at::zeros_like(filters); at::DeviceGuard g(input.device()); auto stream = at::cuda::getCurrentCUDAStream(); switch(filterSize) { """ sequence_if = """ if (sequenceLength <= {seq}) {{ """ case_k = """ case {k}: """ main_block = """ if (padding_l == {p}) {{ AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.scalar_type(), "lightconv_backward", ([&] {{ lightconv_grad_wrt_input_kernel<{k}, {b_size}, {p}, scalar_t> <<<gradBlocks, {b_size}, 0, stream>>>( gradOutput.data<scalar_t>(), filters.data<scalar_t>(), minibatch, sequenceLength, numFeatures, numFiltersInBlock, gradInput.data<scalar_t>()); """ weight_grad_short = """ at::Tensor tempSumGradFilters = at::zeros({{minibatch, numHeads, filterSize}}, input.options().dtype(at::kFloat)); lightconv_grad_wrt_weights_firstpass_short_kernel<{k}, {b_size}, {p}, scalar_t> <<<weightGradFirstpassShortBlocks, {b_size}, 0, stream>>>( input.data<scalar_t>(), gradOutput.data<scalar_t>(), minibatch, sequenceLength, numFeatures, numFiltersInBlock, numHeads, tempSumGradFilters.data<float>() ); lightconv_grad_wrt_weights_secondpass_short_kernel<{k}, {b_size}, scalar_t> <<<weightGradSecondpassBlocks, {b_size}, 0, stream>>>( tempSumGradFilters.data<float>(), minibatch, numFiltersInBlock, gradFilters.data<scalar_t>() ); }})); }} else """ weight_grad = """ at::Tensor tempSumGradFilters = at::zeros({{minibatch, numFeatures, filterSize}}, input.options().dtype(at::kFloat)); lightconv_grad_wrt_weights_firstpass_kernel<{k}, {b_size}, {p}, scalar_t> <<<gradBlocks, {b_size}, 0, stream>>>( input.data<scalar_t>(), gradOutput.data<scalar_t>(), minibatch, sequenceLength, numFeatures, numFiltersInBlock, tempSumGradFilters.data<float>() ); lightconv_grad_wrt_weights_secondpass_kernel<{k}, {b_size}, scalar_t> <<<weightGradSecondpassBlocks, {b_size}, 0, stream>>>( tempSumGradFilters.data<float>(), minibatch, numFiltersInBlock, gradFilters.data<scalar_t>() ); }})); }} else """ bad_padding = """ { std::cout << "WARNING: Unsupported padding size - skipping backward pass" << std::endl; } """ breakout = """ break; """ bad_filter = """ default: std::cout << "WARNING: Unsupported filter length passed - skipping backward pass" << std::endl; """ con_else = """ } else """ final_else = """ { switch(filterSize) { """ last_return = """ } return {gradInput, gradFilters}; } """ kernels = [3, 5, 7, 15, 31, 63, 127, 255] seqs = [32 * x for x in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]] thresh = [32, 32, 64, 128, 256, -1, -1, -1] max_mem = [-1, -1, -1, -1, -1, 192, 96, 64] with open("lightconv_cuda_backward.cu", "w") as backward: backward.write(head) for (k, t, mem) in zip(kernels, thresh, max_mem): backward.write(case_k.format(k=k)) for seq in seqs: if (t == -1 or seq <= t) and (mem == -1 or seq < mem): backward.write(sequence_if.format(seq=seq)) for p in [k // 2, k - 1]: backward.write(main_block.format(k=k, b_size=seq, p=p)) backward.write(weight_grad_short.format(k=k, b_size=seq, p=p)) backward.write(bad_padding) else: for p in [k // 2, k - 1]: backward.write(main_block.format(k=k, b_size=32, p=p)) backward.write(weight_grad.format(k=k, b_size=32, p=p)) backward.write(bad_padding) backward.write(breakout) break backward.write(con_else) backward.write(bad_filter) backward.write(last_return) if __name__ == "__main__": gen_forward() gen_backward()
data2vec_vision-main
deltalm/src/fairseq/modules/lightconv_layer/cuda_function_gen.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .lightconv_layer import LightconvLayer # noqa
data2vec_vision-main
deltalm/src/fairseq/modules/lightconv_layer/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import lightconv_cuda import torch import torch.nn.functional as F from fairseq import utils from fairseq.incremental_decoding_utils import with_incremental_state from fairseq.modules.fairseq_dropout import FairseqDropout from torch import nn from torch.autograd import Function class lightconvFunction(Function): @staticmethod def forward(ctx, x, weights, padding_l): ctx.padding_l = padding_l outputs = lightconv_cuda.forward(x, weights, padding_l) variables = [x, weights] ctx.save_for_backward(*variables) return outputs[0] @staticmethod def backward(ctx, grad_output): outputs = lightconv_cuda.backward( grad_output.contiguous(), ctx.padding_l, *ctx.saved_tensors ) grad_input, grad_weights = outputs return grad_input, grad_weights, None @with_incremental_state class LightconvLayer(nn.Module): def __init__( self, input_size, kernel_size=1, padding_l=None, weight_softmax=False, num_heads=1, weight_dropout=0.0, bias=False, ): super(LightconvLayer, self).__init__() self.input_size = input_size self.kernel_size = kernel_size self.padding_l = padding_l self.num_heads = num_heads self.weight_softmax = weight_softmax self.weight_dropout_module = FairseqDropout( weight_dropout, module_name=self.__class__.__name__ ) self.weight = nn.Parameter(torch.Tensor(num_heads, kernel_size)) if bias: self.bias = nn.Parameter(torch.Tensor(input_size)) else: self.bias = None self.reset_parameters() def upgrade_state_dict_named(self, state_dict, name): prefix = name + "." if name != "" else "" for k, v in state_dict.items(): if k.endswith(prefix + "weight"): if v.dim() == 3 and v.size(1) == 1: state_dict[k] = v.squeeze(1) def reset_parameters(self): nn.init.xavier_uniform_(self.weight) if self.bias is not None: nn.init.constant_(self.bias, 0.0) def forward(self, x, incremental_state=None): # during inference time, incremental BMM is faster if incremental_state is not None: T, B, C = x.size() K, H = self.kernel_size, self.num_heads R = C // H input_buffer = self._get_input_buffer(incremental_state) if input_buffer is None: input_buffer = x.new() x_unfold = torch.cat([input_buffer, x.unsqueeze(3)], dim=3) if self.kernel_size > 1: self._set_input_buffer( incremental_state, x_unfold[:, :, :, -self.kernel_size + 1 :] ) x_unfold = x_unfold.view(T * B * H, R, -1) weight = self.weight if self.weight_softmax: weight = F.softmax(weight.float(), dim=1).type_as(weight) weight = weight[:, -x_unfold.size(2) :] K = weight.size(1) weight = ( weight.view(1, H, K) .expand(T * B, H, K) .contiguous() .view(T * B * H, K, 1) ) weight = self.weight_dropout_module(weight) output = torch.bmm(x_unfold, weight) # T*B*H x R x 1 output = output.view(T, B, C) return output # during training time, use CUDA kernel else: x = x.permute(1, 2, 0).contiguous() weight = self.weight if self.weight_softmax: weight = F.softmax(self.weight, -1) if self.weight_dropout_module.p: weight = self.weight_dropout_module(weight) return lightconvFunction.apply(x, weight, self.padding_l).permute(2, 0, 1) def reorder_incremental_state(self, incremental_state, new_order): input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: input_buffer = input_buffer.index_select(1, new_order) self._set_input_buffer(incremental_state, input_buffer) def _get_input_buffer(self, incremental_state): return utils.get_incremental_state(self, incremental_state, "input_buffer") def _set_input_buffer(self, incremental_state, new_buffer): return utils.set_incremental_state( self, incremental_state, "input_buffer", new_buffer ) def half(self): return self._apply(lambda t: t.half() if t.is_floating_point() else t)
data2vec_vision-main
deltalm/src/fairseq/modules/lightconv_layer/lightconv_layer.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from setuptools import setup from torch.utils.cpp_extension import BuildExtension, CUDAExtension setup( name="lightconv_layer", ext_modules=[ CUDAExtension( "lightconv_cuda", [ "lightconv_cuda.cpp", "lightconv_cuda_kernel.cu", ], ), ], cmdclass={"build_ext": BuildExtension}, )
data2vec_vision-main
deltalm/src/fairseq/modules/lightconv_layer/setup.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. def gen_forward(): kernels = [3, 5, 7, 15, 31, 63, 127, 255] blocks = [32, 64, 128, 256] head = """ /** * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ #include "dynamicconv_cuda.cuh" std::vector<at::Tensor> dynamicconv_cuda_forward(at::Tensor input, at::Tensor weight, int padding_l) { at::DeviceGuard g(input.device()); const auto minibatch = input.size(0); const auto numFeatures = input.size(1); const auto sequenceLength = input.size(2); const auto numHeads = weight.size(1); const auto filterSize = weight.size(2); const auto numFiltersInBlock = numFeatures / numHeads; const dim3 blocks(minibatch, numFeatures); auto output = at::zeros_like(input); auto stream = at::cuda::getCurrentCUDAStream(); """ switch = """ switch(filterSize) { """ case_k = """ case {k}: """ main_block = """ if (padding_l == {pad}) {{ AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.scalar_type(), "dynamicconv_forward", ([&] {{ dynamicconv_forward_kernel<{k}, {b_size}, {pad}, scalar_t> <<<blocks, {b_size}, 0, stream>>>( input.data<scalar_t>(), weight.data<scalar_t>(), minibatch, sequenceLength, numFeatures, numFiltersInBlock, numHeads, output.data<scalar_t>()); }})); }} else """ bad_padding = """ { std::cout << "WARNING: Unsupported padding size - skipping forward pass" << std::endl; } break;\n """ end = """ default: std::cout << "WARNING: Unsupported filter length passed - skipping forward pass" << std::endl; } return {output}; } """ with open("dynamicconv_cuda_forward.cu", "w") as forward: forward.write(head) forward.write(switch) for k in kernels: b_size = 32 for b in blocks: if b > k: b_size = b break forward.write(case_k.format(k=k)) for pad in [k // 2, k - 1]: forward.write(main_block.format(k=k, b_size=b_size, pad=pad)) forward.write(bad_padding) forward.write(end) def gen_backward(): kernels = [3, 5, 7, 15, 31, 63, 127, 255] thresh = [512, 512, 512, 512, 512, 380, 256, 256] min_block = [64, 64, 64, 64, 64, 64, 128, 256] seqs = [32 * x for x in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]] head = """ /** * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ #include "dynamicconv_cuda.cuh" std::vector<at::Tensor> dynamicconv_cuda_backward(at::Tensor gradOutput, int padding_l, at::Tensor input, at::Tensor weight) { at::DeviceGuard g(input.device()); const auto minibatch = input.size(0); const auto numFeatures = input.size(1); const auto sequenceLength = input.size(2); const auto numHeads = weight.size(1); const auto filterSize = weight.size(2); const auto numFiltersInBlock = numFeatures / numHeads; auto numChunks = 1; auto gradInput = at::zeros_like(input); auto gradWeight = at::zeros_like(weight); auto stream = at::cuda::getCurrentCUDAStream(); dim3 blocks(minibatch, numHeads, numChunks); """ sequence_if = """ if (sequenceLength < {seq}) {{ switch(filterSize) {{ """ case_k = """ case {k}: """ chunks_reset = """ numChunks = int(ceilf(sequenceLength/float({b_size}))); blocks = dim3(minibatch, numHeads, numChunks); """ main_block = """ if (padding_l == {p}) {{ AT_DISPATCH_FLOATING_TYPES_AND_HALF(gradOutput.scalar_type(), "dynamicconv_backward", ([&] {{ dynamicconv_backward_kernel<{k}, {b_size}, {p}, scalar_t> <<<blocks, {b_size}, 0, stream>>>( gradOutput.data<scalar_t>(), input.data<scalar_t>(), weight.data<scalar_t>(), minibatch, sequenceLength, numFeatures, numFiltersInBlock, numHeads, gradWeight.data<scalar_t>(), gradInput.data<scalar_t>()); }})); }} else """ bad_padding = """ { std::cout << "WARNING: Unsupported padding size - skipping backward pass" << std::endl; } break;\n """ bad_filter = """ default: std::cout << "WARNING: Unsupported filter length passed - skipping backward pass" << std::endl; } """ con_else = """ } else """ final_else = """ { switch(filterSize) { """ last_return = """ } return {gradInput, gradWeight}; } """ with open("dynamicconv_cuda_backward.cu", "w") as backward: backward.write(head) for seq in seqs: backward.write(sequence_if.format(seq=seq)) for k, t, m in zip(kernels, thresh, min_block): backward.write(case_k.format(k=k)) if seq <= t: b_size = seq else: b_size = m backward.write(chunks_reset.format(b_size=b_size)) for p in [k // 2, k - 1]: backward.write(main_block.format(k=k, b_size=b_size, p=p)) backward.write(bad_padding) backward.write(bad_filter) backward.write(con_else) backward.write(final_else) for k, m in zip(kernels, min_block): backward.write(case_k.format(k=k)) backward.write(chunks_reset.format(b_size=m)) for p in [k // 2, k - 1]: backward.write(main_block.format(k=k, b_size=m, p=p)) backward.write(bad_padding) backward.write(bad_filter) backward.write(last_return) if __name__ == "__main__": gen_forward() gen_backward()
data2vec_vision-main
deltalm/src/fairseq/modules/dynamicconv_layer/cuda_function_gen.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .dynamicconv_layer import DynamicconvLayer # noqa
data2vec_vision-main
deltalm/src/fairseq/modules/dynamicconv_layer/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import dynamicconv_cuda import torch import torch.nn.functional as F from fairseq import utils from fairseq.incremental_decoding_utils import with_incremental_state from fairseq.modules.fairseq_dropout import FairseqDropout from fairseq.modules.unfold import unfold1d from torch import nn from torch.autograd import Function class dynamicconvFunction(Function): @staticmethod def forward(ctx, x, weights, padding_l): ctx.padding_l = padding_l outputs = dynamicconv_cuda.forward(x, weights, padding_l) variables = [x, weights] ctx.save_for_backward(*variables) return outputs[0] @staticmethod def backward(ctx, grad_output): outputs = dynamicconv_cuda.backward( grad_output.contiguous(), ctx.padding_l, *ctx.saved_tensors ) grad_input, grad_weights = outputs return grad_input, grad_weights, None @with_incremental_state class DynamicconvLayer(nn.Module): def __init__( self, input_size, kernel_size=1, padding_l=None, weight_softmax=False, num_heads=1, weight_dropout=0.0, bias=False, renorm_padding=False, conv_bias=False, query_size=None, ): super(DynamicconvLayer, self).__init__() self.input_size = input_size self.query_size = input_size if query_size is None else query_size self.kernel_size = kernel_size self.padding_l = padding_l self.num_heads = num_heads self.weight_softmax = weight_softmax self.weight_dropout_module = FairseqDropout( weight_dropout, module_name=self.__class__.__name__ ) self.renorm_padding = renorm_padding self.bias = bias self.weight_linear = nn.Linear(input_size, num_heads * kernel_size, bias) if conv_bias: self.conv_bias = nn.Parameter(torch.Tensor(input_size)) else: self.conv_bias = None self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.weight_linear.weight) if self.conv_bias is not None: nn.init.constant_(self.conv_bias, 0.0) nn.init.constant_(self.weight_linaer.bias, 0.0) def forward(self, x, incremental_state=None, query=None, unfold=None): T, B, C = x.size() K, H = self.kernel_size, self.num_heads # R = C // H # during inference time, incremental BMM is faster if incremental_state is not None: unfold = ( x.size(0) > 512 if unfold is None else unfold ) # use unfold mode as default for long sequence to save memory unfold = unfold or (incremental_state is not None) assert query is None if query is None: query = x if unfold: output = self._forward_unfolded(x, incremental_state, query) else: output = self._forward_expanded(x, incremental_state, query) if self.conv_bias is not None: output = output + self.conv_bias.view(1, 1, -1) return output # during training time, use CUDA kernel else: weight = self.weight_linear(x).view(T, B, H, K) if self.weight_softmax: weight = F.softmax(weight, dim=-1) if self.weight_dropout_module.p: weight = self.weight_dropout_module(weight) weight = weight.permute(1, 2, 3, 0).contiguous() self.filters = weight x = x.permute(1, 2, 0).contiguous() output = dynamicconvFunction.apply(x, weight, self.padding_l).permute( 2, 0, 1 ) if self.conv_bias is not None: output = output + self.conv_bias.view(1, 1, -1) return output def reorder_incremental_state(self, incremental_state, new_order): input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: input_buffer = input_buffer.index_select(1, new_order) self._set_input_buffer(incremental_state, input_buffer) def _get_input_buffer(self, incremental_state): return utils.get_incremental_state(self, incremental_state, "input_buffer") def _set_input_buffer(self, incremental_state, new_buffer): return utils.set_incremental_state( self, incremental_state, "input_buffer", new_buffer ) def _forward_unfolded(self, x, incremental_state, query): """The conventional implementation of convolutions. Unfolding the input by having a window shifting to the right.""" T, B, C = x.size() K, H = self.kernel_size, self.num_heads R = C // H assert R * H == C == self.input_size weight = self.weight_linear(query).view(T * B * H, -1) # renorm_padding is only implemented in _forward_expanded assert not self.renorm_padding or incremental_state is not None if incremental_state is not None: input_buffer = self._get_input_buffer(incremental_state) if input_buffer is None: input_buffer = x.new() x_unfold = torch.cat([input_buffer, x.unsqueeze(3)], dim=3) if self.kernel_size > 1: self._set_input_buffer( incremental_state, x_unfold[:, :, :, -self.kernel_size + 1 :] ) x_unfold = x_unfold.view(T * B * H, R, -1) else: padding_l = self.padding_l if K > T and padding_l == K - 1: weight = weight.narrow(1, K - T, T) K, padding_l = T, T - 1 # unfold the input: T x B x C --> T' x B x C x K x_unfold = unfold1d(x, K, padding_l, 0) x_unfold = x_unfold.view(T * B * H, R, K) if self.weight_softmax and not self.renorm_padding: weight = F.softmax(weight, dim=1) weight = weight.narrow(1, 0, K) if incremental_state is not None: weight = weight[:, -x_unfold.size(2) :] K = weight.size(1) if self.weight_softmax and self.renorm_padding: weight = F.softmax(weight, dim=1) weight = self.weight_dropout_module(weight, inplace=False) output = torch.bmm(x_unfold, weight.unsqueeze(2)) # T*B*H x R x 1 output = output.view(T, B, C) return output def _forward_expanded(self, x, incremental_stat, query): """Turn the convolution filters into band matrices and do matrix multiplication. This is faster when the sequence is short, but less memory efficient. This is not used in the decoder during inference. """ T, B, C = x.size() K, H = self.kernel_size, self.num_heads R = C // H assert R * H == C == self.input_size weight = self.weight_linear(query).view(T * B * H, -1) if not self.renorm_padding: if self.weight_softmax: weight = F.softmax(weight, dim=1) weight = self.weight_dropout_module(weight, inplace=False) weight = weight.narrow(1, 0, K).contiguous() weight = weight.view(T, B * H, K).transpose(0, 1) x = x.view(T, B * H, R).transpose(0, 1) if self.weight_softmax and self.renorm_padding: # turn the convolution filters into band matrices weight_expanded = weight.new(B * H, T, T + K - 1).fill_(float("-inf")) weight_expanded.as_strided( (B * H, T, K), (T * (T + K - 1), T + K, 1) ).copy_(weight) weight_expanded = weight_expanded.narrow(2, self.padding_l, T) # normalize the weight over valid positions like self-attention weight_expanded = F.softmax(weight_expanded, dim=2) weight_expanded = self.weight_dropout_module(weight_expanded, inplace=False) else: P = self.padding_l # For efficieny, we cut the kernel size and reduce the padding when the kernel is larger than the length if K > T and P == K - 1: weight = weight.narrow(2, K - T, T) K, P = T, T - 1 # turn the convolution filters into band matrices weight_expanded = weight.new_zeros(B * H, T, T + K - 1, requires_grad=False) weight_expanded.as_strided( (B * H, T, K), (T * (T + K - 1), T + K, 1) ).copy_(weight) weight_expanded = weight_expanded.narrow(2, P, T) # B*H x T x T output = torch.bmm(weight_expanded, x) output = output.transpose(0, 1).contiguous().view(T, B, C) return output
data2vec_vision-main
deltalm/src/fairseq/modules/dynamicconv_layer/dynamicconv_layer.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from setuptools import setup from torch.utils.cpp_extension import BuildExtension, CUDAExtension setup( name="dynamicconv_layer", ext_modules=[ CUDAExtension( name="dynamicconv_cuda", sources=[ "dynamicconv_cuda.cpp", "dynamicconv_cuda_kernel.cu", ], ), ], cmdclass={"build_ext": BuildExtension}, )
data2vec_vision-main
deltalm/src/fairseq/modules/dynamicconv_layer/setup.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import BaseWrapperDataset class OffsetTokensDataset(BaseWrapperDataset): def __init__(self, dataset, offset): super().__init__(dataset) self.offset = offset def __getitem__(self, idx): return self.dataset[idx] + self.offset
data2vec_vision-main
deltalm/src/fairseq/data/offset_tokens_dataset.py