python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
from typing import Callable import dotenv import hydra from omegaconf import OmegaConf, DictConfig # load environment variables from `.env` file if it exists # recursively searches for `.env` in all folders starting from work dir dotenv.load_dotenv(override=True) OmegaConf.register_new_resolver('eval', eval) OmegaConf.register_new_resolver('div_up', lambda x, y: (x + y - 1) // y) def dictconfig_filter_key(d: DictConfig, fn: Callable) -> DictConfig: """Only keep keys where fn(key) is True. Support nested DictConfig. """ return DictConfig({k: dictconfig_filter_key(v, fn) if isinstance(v, DictConfig) else v for k, v in d.items() if fn(k)}) @hydra.main(config_path="configs/", config_name="config.yaml") def main(config: DictConfig): # Remove config keys that start with '__'. These are meant to be used only in computing # other entries in the config. config = dictconfig_filter_key(config, lambda k: not k.startswith('__')) # Imports should be nested inside @hydra.main to optimize tab completion # Read more here: https://github.com/facebookresearch/hydra/issues/934 from src.train import train from src.eval import evaluate from src.utils import utils # A couple of optional utilities: # - disabling python warnings # - forcing debug-friendly configuration # - verifying experiment name is set when running in experiment mode # You can safely get rid of this line if you don't want those utils.extras(config) # Pretty print config using Rich library if config.get("print_config"): utils.print_config(config, resolve=True) # Train model mode = config.get('mode', 'train') if mode not in ['train', 'eval']: raise NotImplementedError(f'mode {mode} not supported') if mode == 'train': return train(config) elif mode == 'eval': return evaluate(config) if __name__ == "__main__": main()
fly-master
run.py
import math import numpy as np import torch import torch.nn.functional as F import matplotlib.pyplot as plt max_bound = 1.0 nsteps = 1000 dots = torch.linspace(-max_bound, max_bound, nsteps) d = 16 m = int(d * math.log(d)) # 44 seqlen = 1024 n_hashes = 4 # This is L in the LSH notation nbuckets = 23 # This is k in the LSH notation # We set these so that bucket_size = 1024 / (2 * 23) = 22, so Reformer has 22 * 4 = 88 parameters # Which is the same as Performer (2 * 44) sm = torch.exp(dots) performer_mse = 1 / m * torch.exp(2 * max_bound**2 + 2 * dots) * sm**2 * (1 - torch.exp(-2 * max_bound**2 - 2 * dots)) performer_mse_half = 1 / (m / 2) * torch.exp(2 * max_bound**2 + 2 * dots) * sm**2 * (1 - torch.exp(-2 * max_bound**2 - 2 * dots)) performer_hyp_mse = 1 / 2 * (1 - math.exp(-max_bound**2)) * performer_mse_half tau = torch.sqrt(2 * max_bound**2 - 2 * dots) lsh_prob = torch.exp(-tau**2 / (4 - tau**2) * math.log(d)) lsh_prob_power = 1 - (1 - lsh_prob**nbuckets)**n_hashes reformer_mse = sm**2 * (1 - lsh_prob_power) lsh_prob_power_scatterbrain = 1 - (1 - lsh_prob**(nbuckets))**(n_hashes) scatterbrain_mse = (1 - lsh_prob_power_scatterbrain) * performer_mse scatterbrain_hyp_mse = (1 - lsh_prob_power_scatterbrain) * performer_hyp_mse import matplotlib import matplotlib.pyplot as plt matplotlib.style.use(['seaborn-colorblind']) # import seaborn as sns # sns.set_theme() # sns.set_style('whitegrid') plt.figure(figsize=(6, 4)) plt.plot(dots, reformer_mse, alpha=0.7, color='blue', label='Reformer') plt.plot(dots, performer_mse, alpha=0.7, color='green', label='Performer') plt.plot(dots, scatterbrain_mse, alpha=0.7, color='red', label='Scatterbrain') plt.plot(dots, performer_hyp_mse, alpha=0.7, color='black', label='Performer hyp') plt.plot(dots, scatterbrain_hyp_mse, alpha=0.7, color='brown', label='Scatterbrain hyp') plt.xlabel(r'$q^\top k$', fontsize=14) plt.ylabel('MSE', fontsize=14) plt.xticks([-1.0, -0.5, 0.0, 0.5, 1.0]) plt.legend(fontsize=14) plt.savefig('theory_mse_new.pdf', bbox_inches='tight') plt.close()
fly-master
analysis/mse_plot.py
import os from pathlib import Path current_dir = Path(__file__).parent.absolute() import pytest import torch from src.datamodules.aan import AAN def div_up(x: int, y: int) -> int: return (x + y - 1) // y class TestAAN: @pytest.mark.parametrize('append_eos', [False, True]) @pytest.mark.parametrize('append_bos', [False, True]) def test_dims(self, append_bos, append_eos): batch_size = 57 max_length = 4000 data_dir = Path(os.getenv('DATA_DIR', current_dir.parent.parent / 'data')) / 'aan' / 'tsv_data' cache_dir = data_dir.parent / 'cache' datamodule = AAN(data_dir, cache_dir, max_length=max_length, append_bos=append_bos, append_eos=append_eos, batch_size=batch_size, shuffle=True, num_workers=4) datamodule.prepare_data() datamodule.setup(stage='fit') train_loader = datamodule.train_dataloader() val_loader = datamodule.val_dataloader() datamodule.setup(stage='test') test_loader = datamodule.test_dataloader() train_len = 147086 val_len = 18090 test_len = 17437 assert len(train_loader) == div_up(train_len, batch_size) assert len(val_loader) == div_up(val_len, batch_size) assert len(test_loader) == div_up(test_len, batch_size) assert datamodule.vocab_size <= 258 # Might need 2 extra for bos and eos for loader in [train_loader, val_loader, test_loader]: x1, x2, y, lengths1, lengths2 = next(iter(loader)) assert x1.dim() == 2 assert x1.shape[0] == batch_size and x1.shape[1] <= max_length assert x1.dtype == torch.long assert x2.dim() == 2 assert x2.shape[0] == batch_size and x2.shape[1] <= max_length assert x2.dtype == torch.long assert y.shape == (batch_size,) assert y.dtype == torch.long assert lengths1.shape == (batch_size,) assert lengths1.dtype == torch.long assert torch.all(lengths1 <= max_length) and torch.all(lengths1 <= x1.shape[1]) assert lengths2.shape == (batch_size,) assert lengths2.dtype == torch.long assert torch.all(lengths2 <= max_length) and torch.all(lengths2 <= x2.shape[1]) if append_bos: assert torch.all(x1[:, 0] == datamodule.vocab['<bos>']) assert torch.all(x2[:, 0] == datamodule.vocab['<bos>']) if append_eos: assert torch.all(x1[torch.arange(batch_size), lengths1 - 1] == datamodule.vocab['<eos>']) assert torch.all(x2[torch.arange(batch_size), lengths2 - 1] == datamodule.vocab['<eos>']) if not append_bos and not append_eos: for loader in [train_loader, val_loader, test_loader]: l1, l2 = zip(*[(lengths1, lengths2) for _, _, _, lengths1, lengths2 in loader]) l1, l2 = torch.cat(l1), torch.cat(l2) print(f"""Sequence1 length distribution: min {l1.min().item()}, max {l1.max().item()}, mean {l1.float().mean().item()}, stddev {l1.float().std().item()}""") print(f"""Sequence2 length distribution: min {l2.min().item()}, max {l2.max().item()}, mean {l2.float().mean().item()}, stddev {l2.float().std().item()}""")
fly-master
tests/datamodules/test_aan.py
import os from pathlib import Path current_dir = Path(__file__).parent.absolute() import pytest import torch from src.datamodules.cifar import CIFAR10, CIFAR100 def div_up(x: int, y: int) -> int: return (x + y - 1) // y class TestCIFAR: @pytest.mark.parametrize('normalize', [False, True]) @pytest.mark.parametrize('val_split', [0.2, 0.0]) @pytest.mark.parametrize('to_int', [False, True]) @pytest.mark.parametrize('data_augmentation', [None, 'standard', 'autoaugment']) @pytest.mark.parametrize('grayscale', [False, True]) @pytest.mark.parametrize('sequential', [False, True]) @pytest.mark.parametrize('cls', [CIFAR10, CIFAR100]) def test_dims(self, cls, sequential, grayscale, data_augmentation, to_int, val_split, normalize): if to_int and normalize: # Not compatible return batch_size = 57 seed = 2357 data_dir = Path(os.getenv('DATA_DIR', current_dir.parent.parent / 'data')) / 'cifar' datamodule = cls(data_dir, sequential=sequential, grayscale=grayscale, data_augmentation=data_augmentation, to_int=to_int, val_split=val_split, normalize=normalize, batch_size=batch_size, seed=seed, shuffle=True) datamodule.prepare_data() datamodule.setup(stage='fit') train_loader = datamodule.train_dataloader() val_loader = datamodule.val_dataloader() datamodule.setup(stage='test') test_loader = datamodule.test_dataloader() train_len = int(50000 * (1 - val_split)) val_len = int(50000 * val_split) test_len = 10000 assert len(train_loader) == div_up(train_len, batch_size) assert len(val_loader) == div_up(val_len, batch_size) assert len(test_loader) == div_up(test_len, batch_size) for loader in [train_loader] + ([] if val_split == 0.0 else [val_loader]) + [test_loader]: x, y = next(iter(loader)) assert x.shape == (batch_size,) + datamodule.dims assert x.dtype == torch.float if not to_int else torch.long assert y.shape == (batch_size,) assert y.dtype == torch.long # Check that it's actually normalized if normalize and data_augmentation is None and val_split == 0.0: xs_ys = [(x, y) for x, y in train_loader] xs, ys = zip(*xs_ys) xs, ys = torch.cat(xs), torch.cat(ys) dims_to_reduce = (0, 2, 3) if not sequential else (0, 1) x_mean, x_std = xs.mean(dim=dims_to_reduce), xs.std(dim=dims_to_reduce) assert torch.allclose(x_mean, torch.zeros_like(x_mean), atol=1e-3) assert torch.allclose(x_std, torch.ones_like(x_mean), atol=1e-3)
fly-master
tests/datamodules/test_cifar.py
import os from pathlib import Path current_dir = Path(__file__).parent.absolute() import pytest import torch from src.datamodules.listops import ListOps def div_up(x: int, y: int) -> int: return (x + y - 1) // y class TestListOps: @pytest.mark.parametrize('append_eos', [False, True]) @pytest.mark.parametrize('append_bos', [False, True]) def test_dims(self, append_bos, append_eos): batch_size = 57 max_length = 2000 data_dir = Path(os.getenv('DATA_DIR', current_dir.parent.parent / 'data')) / 'listops' / 'listops-1000' cache_dir = data_dir.parent / 'cache' datamodule = ListOps(data_dir, cache_dir, max_length=max_length, append_bos=append_bos, append_eos=append_eos, batch_size=batch_size, shuffle=True, num_workers=4) datamodule.prepare_data() datamodule.setup(stage='fit') train_loader = datamodule.train_dataloader() val_loader = datamodule.val_dataloader() datamodule.setup(stage='test') test_loader = datamodule.test_dataloader() train_len = 96000 val_len = 2000 test_len = 2000 assert len(train_loader) == div_up(train_len, batch_size) assert len(val_loader) == div_up(val_len, batch_size) assert len(test_loader) == div_up(test_len, batch_size) assert datamodule.vocab_size <= 258 # Might need 2 extra for bos and eos for loader in [train_loader, val_loader, test_loader]: x, y, lengths = next(iter(loader)) assert x.dim() == 2 assert x.shape[0] == batch_size and x.shape[1] <= max_length assert x.dtype == torch.long assert y.shape == (batch_size,) assert y.dtype == torch.long assert lengths.shape == (batch_size,) assert lengths.dtype == torch.long assert torch.all(lengths <= max_length) and torch.all(lengths <= x.shape[1]) if append_bos: assert torch.all(x[:, 0] == datamodule.vocab['<bos>']) if append_eos: assert torch.all(x[torch.arange(batch_size), lengths - 1] == datamodule.vocab['<eos>']) if not append_bos and not append_eos: for loader in [train_loader, val_loader, test_loader]: l = torch.cat([lengths for _, _, lengths in loader]) print(f"""Sequence length distribution: min {l.min().item()}, max {l.max().item()}, mean {l.float().mean().item()}, stddev {l.float().std().item()}""")
fly-master
tests/datamodules/test_listops.py
import os from pathlib import Path current_dir = Path(__file__).parent.absolute() import pytest import torch from src.datamodules.imdb import IMDB def div_up(x: int, y: int) -> int: return (x + y - 1) // y class TestIMDB: @pytest.mark.parametrize('val_split', [0.2, 0.0]) @pytest.mark.parametrize('append_eos', [False, True]) @pytest.mark.parametrize('append_bos', [False, True]) @pytest.mark.parametrize('tokenizer_type', ['word', 'char']) def test_dims(self, tokenizer_type, append_bos, append_eos, val_split): batch_size = 57 max_length = 1000 seed = 2357 vocab_min_freq = 5 if tokenizer_type == 'word' else 1 data_dir = Path(os.getenv('DATA_DIR', current_dir.parent.parent / 'data')) cache_dir = data_dir / 'imdb' / 'cache' datamodule = IMDB(data_dir, cache_dir, max_length=max_length, tokenizer_type=tokenizer_type, vocab_min_freq=vocab_min_freq, append_bos=append_bos, append_eos=append_eos, val_split=val_split, batch_size=batch_size, num_workers=4, seed=seed, shuffle=True) datamodule.prepare_data() datamodule.setup(stage='fit') train_loader = datamodule.train_dataloader() val_loader = datamodule.val_dataloader() datamodule.setup(stage='test') test_loader = datamodule.test_dataloader() train_len = int(25000 * (1 - val_split)) val_len = int(25000 * val_split) if val_split != 0.0 else 25000 test_len = 25000 assert len(train_loader) == div_up(train_len, batch_size) assert len(val_loader) == div_up(val_len, batch_size) assert len(test_loader) == div_up(test_len, batch_size) if tokenizer_type == 'char': assert datamodule.vocab_size <= 258 # Might need 2 extra for bos and eos for loader in [train_loader, val_loader, test_loader]: x, y, lengths = next(iter(loader)) assert x.dim() == 2 assert x.shape[0] == batch_size and x.shape[1] <= max_length assert x.dtype == torch.long assert y.shape == (batch_size,) assert y.dtype == torch.long assert lengths.shape == (batch_size,) assert lengths.dtype == torch.long assert torch.all(lengths <= max_length) and torch.all(lengths <= x.shape[1]) if append_bos: assert torch.all(x[:, 0] == datamodule.vocab['<bos>']) if append_eos: assert torch.all(x[torch.arange(batch_size), lengths - 1] == datamodule.vocab['<eos>']) if val_split == 0.0 and not append_bos and not append_eos: l = torch.cat([lengths for _, _, lengths in train_loader]) print(f"""Sequence length distribution: min {l.min().item()}, max {l.max().item()}, mean {l.float().mean().item()}, stddev {l.float().std().item()}""")
fly-master
tests/datamodules/test_imdb.py
import os from pathlib import Path current_dir = Path(__file__).parent.absolute() import pytest import torch from src.datamodules.pathfinder import PathFinder def div_up(x: int, y: int) -> int: return (x + y - 1) // y class TestPathFinder: @pytest.mark.parametrize('test_split', [0.1, 0.0]) @pytest.mark.parametrize('val_split', [0.1, 0.0]) @pytest.mark.parametrize('to_int', [False, True]) @pytest.mark.parametrize('sequential', [False, True]) @pytest.mark.parametrize('level', ['easy', 'intermediate', 'hard']) @pytest.mark.parametrize('resolution', [32, 64, 128, 256]) @pytest.mark.parametrize('use_tar_dataset', [False, True]) def test_dims(self, use_tar_dataset, resolution, level, sequential, to_int, val_split, test_split): batch_size = 57 seed = 2357 data_dir = (Path(os.getenv('DATA_DIR', current_dir.parent.parent / 'data')) / 'pathfinder') if use_tar_dataset: data_dir = data_dir / f'pathfinder{resolution}.tar' datamodule = PathFinder(data_dir, resolution, level, sequential=sequential, to_int=to_int, val_split=val_split, test_split=test_split, batch_size=batch_size, seed=seed, shuffle=True, num_workers=4) datamodule.prepare_data() datamodule.setup(stage='fit') train_loader = datamodule.train_dataloader() val_loader = datamodule.val_dataloader() datamodule.setup(stage='test') test_loader = datamodule.test_dataloader() # There's an empty file in the pathfinder32 easy dataset dataset_len = 199999 if resolution == 32 and level == 'easy' else 200000 assert (len(datamodule.dataset_train) + len(datamodule.dataset_val) + len(datamodule.dataset_test)) == dataset_len val_len = int(dataset_len * val_split) test_len = int(dataset_len * test_split) train_len = dataset_len - val_len - test_len assert len(train_loader) == div_up(train_len, batch_size) assert len(val_loader) == div_up(val_len, batch_size) assert len(test_loader) == div_up(test_len, batch_size) for loader in [train_loader] + (([] if val_split == 0.0 else [val_loader]) + ([] if test_split == 0.0 else [test_loader])): x, y = next(iter(loader)) assert x.shape == (batch_size,) + datamodule.dims assert x.dtype == torch.float if not to_int else torch.long assert y.shape == (batch_size,) assert y.dtype == torch.long if val_split == 0.0 and test_split == 0.0 and sequential and not to_int: xs_ys = [(x, y) for x, y in train_loader] xs, ys = zip(*xs_ys) xs, ys = torch.cat(xs), torch.cat(ys) xs = xs * 255 x_mean, x_std = xs.float().mean(), xs.float().std() print(f"Pixel distribution: mean {x_mean.item()}, stddev {x_std.item()}")
fly-master
tests/datamodules/test_pathfinder.py
import os from pathlib import Path current_dir = Path(__file__).parent.absolute() import pytest from munch import Munch import torch from src.datamodules.language_modeling import WikiText2, WikiText103 def div_up(x: int, y: int) -> int: return (x + y - 1) // y class TestWikiText2: @pytest.mark.parametrize('vocab_type', ['word', 'bpe']) def test_dims(self, vocab_type): batch_size = 32 max_length = 192 seed = 2357 num_shards = 8 data_dir = Path(os.getenv('DATA_DIR', current_dir.parent.parent / 'data')) / 'wikitext-2' datamodule = WikiText2(data_dir, vocab_type=vocab_type, batch_size=batch_size, max_length=max_length, roll_seed=seed, batch_first=True) # Fake a trainer datamodule.trainer = Munch(global_rank=2, world_size=num_shards) datamodule.prepare_data() datamodule.setup(stage='fit') train_loader = datamodule.train_dataloader() val_loader = datamodule.val_dataloader() datamodule.setup(stage='test') test_loader = datamodule.test_dataloader() if vocab_type == 'word': train_len = 2088628 val_len = 217646 test_len = 245569 # Subtract 1 because the target is 1 off from the dataset assert len(train_loader) == div_up(train_len - 1, batch_size * num_shards * max_length) assert len(val_loader) == div_up(val_len - 1, batch_size * num_shards * max_length) assert len(test_loader) == div_up(test_len - 1, batch_size * num_shards * max_length) for loader in [train_loader, val_loader, test_loader]: x, y, length, _ = next(iter(loader)) assert x.dim() == 2 assert x.shape[0] == batch_size and x.shape[1] <= max_length assert x.dtype == torch.long assert y.dim() == 2 assert y.shape[0] == batch_size and y.shape[1] <= max_length assert y.dtype == torch.long assert isinstance(length, int) assert length <= max_length and length <= x.shape[1] class TestWikiText103: @pytest.mark.parametrize('vocab_type', ['word', 'bpe']) def test_dims(self, vocab_type): batch_size = 32 max_length = 192 seed = 2357 num_shards = 8 data_dir = Path(os.getenv('DATA_DIR', current_dir.parent.parent / 'data')) / 'wikitext-103' datamodule = WikiText103(data_dir, vocab_type=vocab_type, batch_size=batch_size, max_length=max_length, roll_seed=seed, batch_first=True) # Fake a trainer datamodule.trainer = Munch(global_rank=2, world_size=num_shards) datamodule.prepare_data() datamodule.setup(stage='fit') train_loader = datamodule.train_dataloader() val_loader = datamodule.val_dataloader() datamodule.setup(stage='test') test_loader = datamodule.test_dataloader() if vocab_type == 'word': train_len = 103227021 val_len = 217646 test_len = 245569 # Subtract 1 because the target is 1 off from the dataset assert len(train_loader) == div_up(train_len - 1, batch_size * num_shards * max_length) assert len(val_loader) == div_up(val_len - 1, batch_size * num_shards * max_length) assert len(test_loader) == div_up(test_len - 1, batch_size * num_shards * max_length) for loader in [train_loader, val_loader, test_loader]: x, y, length, _ = next(iter(loader)) assert x.dim() == 2 assert x.shape[0] == batch_size and x.shape[1] <= max_length assert x.dtype == torch.long assert y.dim() == 2 assert y.shape[0] == batch_size and y.shape[1] <= max_length assert y.dtype == torch.long assert isinstance(length, int) assert length <= max_length and length <= x.shape[1]
fly-master
tests/datamodules/test_language_modeling.py
import os from pathlib import Path current_dir = Path(__file__).parent.absolute() import pytest import torch from src.datamodules.masked_language_modeling import MLMDataModule def div_up(x: int, y: int) -> int: return (x + y - 1) // y class TestMLMDataModule: def test_wikitext2(self): batch_size = 7 dataset_name = 'wikitext' dataset_config_name = 'wikitext-2-raw-v1' data_dir = Path(os.getenv('DATA_DIR', current_dir.parent.parent / 'data')) cache_dir = data_dir / 'wikitext-2' / 'cache' max_length = 512 dupe_factor = 2 datamodule = MLMDataModule(dataset_name, tokenizer_name='bert-base-uncased', dataset_config_name=dataset_config_name, max_length=max_length, cache_dir=cache_dir, dupe_factor=dupe_factor, batch_size=batch_size, num_workers_preprocess=4) datamodule.prepare_data() datamodule.setup(stage='fit') train_loader = datamodule.train_dataloader() val_loader = datamodule.val_dataloader() datamodule.setup(stage='test') test_loader = datamodule.test_dataloader() train_len = 69293 val_len = 7222 test_len = 8353 assert len(train_loader) == div_up(train_len, batch_size) assert len(val_loader) == div_up(val_len, batch_size) assert len(test_loader) == div_up(test_len, batch_size) for loader in [train_loader, val_loader, test_loader]: batch = next(iter(loader)) assert batch.keys() == {'input_ids', 'labels', 'attention_mask', 'token_type_ids', 'next_sentence_label'} seqlen = batch['input_ids'].shape[-1] assert batch['input_ids'].shape == (batch_size, seqlen) assert batch['input_ids'].dtype == torch.long assert batch['labels'].shape == (batch_size, seqlen) assert batch['labels'].dtype == torch.long assert batch['attention_mask'].shape == (batch_size, seqlen) assert batch['attention_mask'].dtype == torch.long assert batch['token_type_ids'].shape == (batch_size, seqlen) assert batch['token_type_ids'].dtype == torch.long assert batch['next_sentence_label'].shape == (batch_size,) assert batch['next_sentence_label'].dtype == torch.bool def test_wikipedia(self): batch_size = 8 dataset_name = 'wikipedia' dataset_config_name = '20200501.en' data_dir = Path(os.getenv('DATA_DIR', current_dir.parent.parent / 'data')) cache_dir = data_dir / 'wikipedia' / 'cache' max_length = 512 dupe_factor = 2 datamodule = MLMDataModule(dataset_name, tokenizer_name='bert-base-uncased', dataset_config_name=dataset_config_name, max_length=max_length, cache_dir=cache_dir, dupe_factor=dupe_factor, batch_size=batch_size, num_workers_preprocess=32) datamodule.prepare_data() datamodule.setup(stage='fit') train_loader = datamodule.train_dataloader() val_loader = datamodule.val_dataloader() datamodule.setup(stage='test') test_loader = datamodule.test_dataloader() for loader in [train_loader, val_loader, test_loader]: batch = next(iter(loader)) assert batch.keys() == {'input_ids', 'labels', 'attention_mask', 'token_type_ids', 'next_sentence_label'} seqlen = batch['input_ids'].shape[-1] assert batch['input_ids'].shape == (batch_size, seqlen) assert batch['input_ids'].dtype == torch.long assert batch['labels'].shape == (batch_size, seqlen) assert batch['labels'].dtype == torch.long assert batch['attention_mask'].shape == (batch_size, seqlen) assert batch['attention_mask'].dtype == torch.bool assert batch['token_type_ids'].shape == (batch_size, seqlen) assert batch['token_type_ids'].dtype == torch.bool assert batch['next_sentence_label'].shape == (batch_size,) assert batch['next_sentence_label'].dtype == torch.bool @pytest.mark.parametrize('max_length', [128, 512]) def test_wikipedia_from_text(self, max_length): batch_size = 8 data_dir = Path(os.getenv('DATA_DIR', current_dir.parent.parent / 'data')) / 'bert' / 'wikicorpus_text' path = str(data_dir) cache_dir = data_dir.parent / 'wikicorpus' / 'cache' dupe_factor = 5 datamodule = MLMDataModule(path, tokenizer_name='bert-base-uncased', max_length=max_length, cache_dir=cache_dir, dupe_factor=dupe_factor, batch_size=batch_size, num_workers_preprocess=64) datamodule.prepare_data() datamodule.setup(stage='fit') train_loader = datamodule.train_dataloader() val_loader = datamodule.val_dataloader() datamodule.setup(stage='test') test_loader = datamodule.test_dataloader() for loader in [train_loader, val_loader, test_loader]: batch = next(iter(loader)) assert batch.keys() == {'input_ids', 'labels', 'attention_mask', 'token_type_ids', 'next_sentence_label'} seqlen = batch['input_ids'].shape[-1] assert batch['input_ids'].shape == (batch_size, seqlen) assert batch['input_ids'].dtype == torch.long assert batch['labels'].shape == (batch_size, seqlen) assert batch['labels'].dtype == torch.long assert batch['attention_mask'].shape == (batch_size, seqlen) # Could be bool or long, depending on whether the sequences were padding by the tokenizer assert batch['attention_mask'].dtype in [torch.bool, torch.long] assert batch['token_type_ids'].shape == (batch_size, seqlen) assert batch['token_type_ids'].dtype in [torch.bool, torch.long] assert batch['next_sentence_label'].shape == (batch_size,) assert batch['next_sentence_label'].dtype == torch.bool @pytest.mark.parametrize('max_length', [128, 512]) def test_bookcorpus(self, max_length): batch_size = 8 # "bookcorpus" has already processed the books into sentences, which is not what we want dataset_name = 'bookcorpusopen' data_dir = Path(os.getenv('DATA_DIR', current_dir.parent.parent / 'data')) / 'bert' / 'bookcorpus' # cache_dir = data_dir / 'cache' cache_dir = None dupe_factor = 5 datamodule = MLMDataModule(dataset_name, tokenizer_name='bert-base-uncased', max_length=max_length, cache_dir=cache_dir, dupe_factor=dupe_factor, batch_size=batch_size, num_workers_preprocess=64) datamodule.prepare_data() datamodule.setup(stage='fit') train_loader = datamodule.train_dataloader() val_loader = datamodule.val_dataloader() datamodule.setup(stage='test') test_loader = datamodule.test_dataloader() for loader in [train_loader, val_loader, test_loader]: batch = next(iter(loader)) assert batch.keys() == {'input_ids', 'labels', 'attention_mask', 'token_type_ids', 'next_sentence_label'} seqlen = batch['input_ids'].shape[-1] assert batch['input_ids'].shape == (batch_size, seqlen) assert batch['input_ids'].dtype == torch.long assert batch['labels'].shape == (batch_size, seqlen) assert batch['labels'].dtype == torch.long assert batch['attention_mask'].shape == (batch_size, seqlen) assert batch['attention_mask'].dtype in [torch.bool, torch.long] assert batch['token_type_ids'].shape == (batch_size, seqlen) assert batch['token_type_ids'].dtype in [torch.bool, torch.long] assert batch['next_sentence_label'].shape == (batch_size,) assert batch['next_sentence_label'].dtype == torch.bool @pytest.mark.parametrize('max_length', [128, 512]) def test_wikibook_from_text(self, max_length): batch_size = 8 data_dir_common = Path(os.getenv('DATA_DIR', current_dir.parent.parent / 'data')) / 'bert' path = [str(data_dir_common / 'wikicorpus_text'), 'bookcorpusopen'] cache_dir = [data_dir_common / 'wikicorpus' / 'cache', data_dir_common / 'bookcorpus' / 'cache'] dupe_factor = 5 datamodule = MLMDataModule(path, tokenizer_name='bert-base-uncased', max_length=max_length, cache_dir=cache_dir, dupe_factor=dupe_factor, batch_size=batch_size, num_workers_preprocess=64) datamodule.prepare_data() datamodule.setup(stage='fit') train_loader = datamodule.train_dataloader() val_loader = datamodule.val_dataloader() datamodule.setup(stage='test') test_loader = datamodule.test_dataloader() for loader in [train_loader, val_loader, test_loader]: batch = next(iter(loader)) assert batch.keys() == {'input_ids', 'labels', 'attention_mask', 'token_type_ids', 'next_sentence_label'} seqlen = batch['input_ids'].shape[-1] assert batch['input_ids'].shape == (batch_size, seqlen) assert batch['input_ids'].dtype == torch.long assert batch['labels'].shape == (batch_size, seqlen) assert batch['labels'].dtype == torch.long assert batch['attention_mask'].shape == (batch_size, seqlen) assert batch['attention_mask'].dtype in [torch.bool, torch.long] assert batch['token_type_ids'].shape == (batch_size, seqlen) assert batch['token_type_ids'].dtype in [torch.bool, torch.long] assert batch['next_sentence_label'].shape == (batch_size,) assert batch['next_sentence_label'].dtype == torch.bool
fly-master
tests/datamodules/test_masked_language_modeling.py
import os from pathlib import Path current_dir = Path(__file__).parent.absolute() import pytest import torch from src.datamodules.language_modeling_hf import LMDataModule def div_up(x: int, y: int) -> int: return (x + y - 1) // y class TestLMDataModule: def test_wikitext2(self): batch_size = 7 dataset_name = 'wikitext' dataset_config_name = 'wikitext-2-raw-v1' data_dir = Path(os.getenv('DATA_DIR', current_dir.parent.parent / 'data')) cache_dir = data_dir / 'wikitext-2' / 'cache' max_length = 1024 datamodule = LMDataModule(dataset_name, tokenizer_name='gpt2', dataset_config_name=dataset_config_name, max_length=max_length, cache_dir=cache_dir, add_eos=False, batch_size=batch_size, num_workers=4) datamodule.prepare_data() datamodule.setup(stage='fit') train_loader = datamodule.train_dataloader() val_loader = datamodule.val_dataloader() datamodule.setup(stage='test') test_loader = datamodule.test_dataloader() train_len = 2391884 val_len = 247289 test_len = 283287 assert len(train_loader) == div_up((train_len - 1) // max_length, batch_size) assert len(val_loader) == div_up((val_len - 1) // max_length, batch_size) assert len(test_loader) == div_up((test_len - 1) // max_length, batch_size) for loader in [train_loader, val_loader, test_loader]: x, y = next(iter(loader)) assert x.dim() == 2 assert x.shape == (batch_size, max_length) assert x.dtype == torch.long assert torch.allclose(x[:, 1:], y[:, :-1]) def test_wikitext103(self): batch_size = 7 dataset_name = 'wikitext' dataset_config_name = 'wikitext-103-raw-v1' data_dir = Path(os.getenv('DATA_DIR', current_dir.parent.parent / 'data')) cache_dir = data_dir / 'wikitext-103' / 'cache' max_length = 1024 datamodule = LMDataModule(dataset_name, tokenizer_name='gpt2', dataset_config_name=dataset_config_name, max_length=max_length, cache_dir=cache_dir, add_eos=False, batch_size=batch_size, num_workers=4) datamodule.prepare_data() datamodule.setup(stage='fit') train_loader = datamodule.train_dataloader() val_loader = datamodule.val_dataloader() datamodule.setup(stage='test') test_loader = datamodule.test_dataloader() train_len = 117920140 val_len = 247289 test_len = 283287 assert len(train_loader) == div_up((train_len - 1) // max_length, batch_size) assert len(val_loader) == div_up((val_len - 1) // max_length, batch_size) assert len(test_loader) == div_up((test_len - 1) // max_length, batch_size) for loader in [train_loader, val_loader, test_loader]: x, y = next(iter(loader)) assert x.dim() == 2 assert x.shape == (batch_size, max_length) assert x.dtype == torch.long assert torch.allclose(x[:, 1:], y[:, :-1]) def test_openwebtext(self): batch_size = 8 dataset_name = 'openwebtext' dataset_config_name = None data_dir = Path(os.getenv('DATA_DIR', current_dir.parent.parent / 'data')) cache_dir = data_dir / 'openwebtext' / 'cache' max_length = 1024 datamodule = LMDataModule(dataset_name, tokenizer_name='gpt2', dataset_config_name=dataset_config_name, max_length=max_length, cache_dir=cache_dir, add_eos=True, batch_size=batch_size, num_workers=64) datamodule.prepare_data() datamodule.setup(stage='fit') train_loader = datamodule.train_dataloader() val_loader = datamodule.val_dataloader() datamodule.setup(stage='test') test_loader = datamodule.test_dataloader() train_len = 9035582198 val_len = 4434897 test_len = 4434897 assert len(train_loader) == div_up((train_len - 1) // max_length, batch_size) assert len(val_loader) == div_up((val_len - 1) // max_length, batch_size) assert len(test_loader) == div_up((test_len - 1) // max_length, batch_size) for loader in [train_loader, val_loader, test_loader]: x, y = next(iter(loader)) assert x.dim() == 2 assert x.shape == (batch_size, max_length) assert x.dtype == torch.long assert torch.allclose(x[:, 1:], y[:, :-1])
fly-master
tests/datamodules/test_language_modeling_hf.py
import pytest import torch from timm.scheduler import CosineLRScheduler from src.optim.timm_lr_scheduler import TimmCosineLRScheduler def test_lr(): n_epochs = 310 model = torch.nn.Linear(3, 3) optimizer = torch.optim.AdamW(model.parameters(), lr=1e-3, weight_decay=0.03) kwargs = dict(t_initial=300, lr_min=1e-5, decay_rate=0.1, warmup_lr_init=1e-6, warmup_t=10, cycle_limit=1) scheduler_timm = CosineLRScheduler(optimizer, **kwargs) scheduler_timm.step(epoch=0) lrs_timm = [] for epoch in range(n_epochs): lrs_timm.append(optimizer.param_groups[0]['lr']) scheduler_timm.step(epoch = epoch + 1) lrs_timm = torch.tensor(lrs_timm) optimizer = torch.optim.AdamW(model.parameters(), lr=1e-3, weight_decay=0.03) scheduler_mine = TimmCosineLRScheduler(optimizer, **kwargs) lrs_mine = [] for epoch in range(n_epochs): lrs_mine.append(optimizer.param_groups[0]['lr']) scheduler_mine.step() lrs_mine = torch.tensor(lrs_mine) assert torch.allclose(lrs_timm, lrs_mine, atol=1e-7, rtol=1e-5)
fly-master
tests/optim/test_timm_lr_schedulers.py
import math import pytest import torch import torch.nn as nn import torch.nn.functional as F from einops import repeat # from triton.ops.blocksparse import matmul, softmax from triton.ops.blocksparse import softmax from deepspeed.ops.sparse_attention import FixedSparsityConfig from src.models.modules.masking import FullMask, LengthMask from src.models.attention.full_attention import FullAttention from src.models.attention.blocksparse_attention import BlockSparseAttention from src.models.attention.blocksparse_utils import sparsify_tensor, densify_tensor from src.models.attention.blocksparse_utils import mask_tensor from src.utils.padding import pad_to_multiple from src.models.attention.blocksparse_matmul import matmul def seed_cpu_cuda(seed): torch.manual_seed(seed) torch.cuda.manual_seed(seed) class TestBlockSparseAttention: # Adapted from https://github.com/openai/triton/blob/8bedcce9befbbe95d8fe0a082718edc4050e2831/python/test/operators/test_blocksparse.py#L13 def test_blocksparse_matmul(self): seed = 2357 block_size = 16 batch_size = 2 n_head = 3 seqlen_q = 64 seqlen_k = 48 dim = 32 softmax_temp = 0.23 # create inputs seed_cpu_cuda(seed) q = torch.randn((batch_size, n_head, seqlen_q, dim), device="cuda", requires_grad=True) k = torch.randn((batch_size, n_head, seqlen_k, dim), device="cuda", requires_grad=True) v = torch.randn((batch_size, n_head, seqlen_k, dim), device="cuda", requires_grad=True) shape = (seqlen_q, seqlen_k) p, r = shape[0] // block_size, shape[1] // block_size layout = torch.randint(2, (n_head, p, r)) # On cpu nnz = layout.bool().sum() # triton result matmul_sdd_op = matmul(layout, block_size, 'sdd', trans_a=False, trans_b=True) qk_sparse = matmul_sdd_op(q, k) qk_dense = densify_tensor(qk_sparse, layout) assert qk_sparse.shape == (batch_size, nnz, block_size, block_size) assert qk_dense.shape == (batch_size, n_head, seqlen_q, seqlen_k) softmax_op = softmax(layout, block_size) attn = softmax_op(qk_sparse.clone(), scale=softmax_temp) matmul_dsd_op = matmul(layout, block_size, 'dsd', trans_a=False, trans_b=False) out = matmul_dsd_op(attn, v) # torch result qk_dense_pt = q @ k.transpose(-1, -2) qk_dense_masked_pt = mask_tensor(qk_dense_pt, layout) qk_sparse_pt = sparsify_tensor(qk_dense_pt, layout) assert qk_sparse_pt.shape == (batch_size, nnz, block_size, block_size) assert qk_dense_masked_pt.shape == (batch_size, n_head, seqlen_q, seqlen_k) qk_dense_inf_filled_pt = mask_tensor(qk_dense_pt, layout, value=float('-inf')) attn_pt = torch.softmax(qk_dense_inf_filled_pt * softmax_temp, dim=-1) # Some rows could be all zero, and torch.softmax will fill those with NaNs zero_rows = (~(layout.to(attn_pt.device).bool())).all(dim=-1, keepdims=True) zero_rows = repeat(zero_rows, 'h p 1 -> h (p blk_sz) 1', blk_sz=block_size) attn_pt.masked_fill_(zero_rows, 0.0) out_pt = attn_pt @ v # Compare results assert torch.allclose(qk_dense, qk_dense_masked_pt) assert torch.allclose(qk_sparse, qk_sparse_pt) assert torch.allclose(densify_tensor(attn, layout), attn_pt) assert torch.allclose(out, out_pt, rtol=1e-5, atol=1e-7) @pytest.mark.parametrize('device', ['cuda']) @pytest.mark.parametrize('softmax_temp', [None, 0.1, 0.235]) @pytest.mark.parametrize('dim', [15, 33, 51]) @pytest.mark.parametrize('num_local_blocks', [1, 3, 4]) @pytest.mark.parametrize('block_size', [16, 32]) def test_output(self, block_size, num_local_blocks, dim, softmax_temp, device): seed = 2357 embed_dim = dim v_dim = 17 num_heads = 7 batch_size = 18 q_seqlen = 235 k_seqlen = 179 q_seqlen_padded = int(math.ceil(q_seqlen / block_size) * block_size) k_seqlen_padded = int(math.ceil(k_seqlen / block_size) * block_size) seed_cpu_cuda(seed) attn_mask = FullMask(torch.randint(low=0, high=2, size=(q_seqlen, k_seqlen), dtype=torch.bool, device=device)) # attn_mask = None key_padding_mask = LengthMask(torch.randint(low=0, high=k_seqlen, size=(batch_size,), device=device), max_len=k_seqlen) # key_padding_mask = None sparsity_config = dict( _target_='deepspeed.ops.sparse_attention.FixedSparsityConfig', num_heads=num_heads, block=block_size, num_local_blocks=num_local_blocks ) # sparsity_config = FixedSparsityConfig(num_heads = num_heads, block=block_size, # num_local_blocks=num_local_blocks) blocksparse_attn = BlockSparseAttention( sparsity_config, softmax_temp=softmax_temp, attention_dropout=0.0, max_seq_length=max(q_seqlen_padded, k_seqlen_padded) ).to(device) full_attn = FullAttention(softmax_temp=softmax_temp, attention_dropout=0.0).to(device) q = torch.randn(batch_size, q_seqlen, num_heads, embed_dim, device=device) k = torch.randn(batch_size, k_seqlen, num_heads, embed_dim, device=device) v = torch.randn(batch_size, k_seqlen, num_heads, v_dim, device=device) layout = blocksparse_attn.get_layout(q_seqlen_padded, k_seqlen_padded) out_bs, A_bs = blocksparse_attn(q, k, v, attn_mask, key_padding_mask, need_weights=True) assert out_bs.shape == (batch_size, q_seqlen, num_heads, v_dim) assert A_bs.shape == (batch_size, num_heads, q_seqlen, k_seqlen) assert torch.all(A_bs >= 0) # Sum of each row should be either 0.0 or 1.0 A_bs_sum = A_bs.sum(dim=-1) assert torch.all(torch.isclose(A_bs_sum, torch.ones_like(A_bs_sum)) | torch.isclose(A_bs_sum, torch.zeros_like(A_bs_sum))) assert torch.allclose(out_bs, torch.einsum('bhts,bshd->bthd', A_bs, v), rtol=1e-6, atol=1e-7) _, A_full = full_attn(q, k, v, attn_mask, key_padding_mask, need_weights=True) A_full.nan_to_num_() # Test that A_bs is equivalent to zero-ing out some blocks in A_full and then # re-normalize so each row sums to 1 A_full_padded = pad_to_multiple(A_full, block_size, dims=(-1, -2)) A_full_padded_masked = mask_tensor(A_full_padded, layout) A_full_bs = F.normalize(A_full_padded_masked, p=1, dim=-1, eps=1e-8)[:, :, :q_seqlen, :k_seqlen] assert torch.allclose(A_bs, A_full_bs, rtol=1e-4, atol=1e-6)
fly-master
tests/models/attention/test_blocksparse_attention.py
import pytest import math import torch import torch.nn as nn import torch.nn.functional as F from einops import repeat, rearrange from src.models.modules.masking import LengthMask, TriangularCausalMask from src.models.attention.full_attention import FullAttention from src.models.attention.sbsmyrf_attention import SBSmyrfAttention def seed_cpu_cuda(seed): torch.manual_seed(seed) torch.cuda.manual_seed(seed) class TestSBSmyrfAttention: @pytest.mark.parametrize('device', ['cpu', 'cuda']) @pytest.mark.parametrize('softmax_temp', [None, 1.0, 0.235]) @pytest.mark.parametrize('nb_features', [73, 26, 30000]) @pytest.mark.parametrize('n_clusters', [4, 6, 8]) @pytest.mark.parametrize('n_hashes', [1, 2, 3]) # @pytest.mark.parametrize('causal', [False, True]) @pytest.mark.parametrize('causal', [False]) def test_output(self, causal, n_hashes, n_clusters, nb_features, softmax_temp, device): if nb_features > 10000 and device == 'cpu': # Would be too slow on CPU return # TODO: test causal masks seed = 2357 embed_dim = 21 v_dim = 17 num_heads = 7 batch_size = 18 q_seqlen = 47 k_seqlen = 39 if not causal else q_seqlen seed_cpu_cuda(seed) attn_mask = None if not causal else TriangularCausalMask(q_seqlen, device=device) key_padding_mask = LengthMask(torch.randint(low=k_seqlen // 4, high=k_seqlen, size=(batch_size,), device=device), max_len=k_seqlen) key_padding_mask = None q_cluster_size = (q_seqlen + n_clusters - 1) // n_clusters k_cluster_size = (k_seqlen + n_clusters - 1) // n_clusters sbsmyrf_attn = SBSmyrfAttention(n_hashes, q_cluster_size, k_cluster_size, embed_dim, nb_features=nb_features, softmax_temp=softmax_temp, attention_dropout=0.0, causal=causal).to(device) q = torch.randn(batch_size, q_seqlen, num_heads, embed_dim, device=device) k = torch.randn(batch_size, k_seqlen, num_heads, embed_dim, device=device) v = torch.randn(batch_size, k_seqlen, num_heads, v_dim, device=device) # key_padding_mask = LengthMask(k.new_full((k.shape[0],), k.shape[1], dtype=torch.long)) out_sbsmyrf, (A_sbsmyrf, A_sbsmyrf_unnormalized, A_lr_unnormalized, smyrf_mask) = sbsmyrf_attn( q, k, v, attn_mask=attn_mask, key_padding_mask=key_padding_mask, need_weights=True, return_attn_unnormalized=True ) assert out_sbsmyrf.shape == (batch_size, q_seqlen, num_heads, v_dim) assert A_sbsmyrf.shape == (batch_size, num_heads, q_seqlen, k_seqlen) assert torch.all(A_sbsmyrf >= 0) # Sum of each row should be either 0.0 or 1.0 A_sbsmyrf_sum = A_sbsmyrf.sum(dim=-1) assert torch.all(torch.isclose(A_sbsmyrf_sum, torch.ones_like(A_sbsmyrf_sum), atol=1e-2) | torch.isclose(A_sbsmyrf_sum, torch.zeros_like(A_sbsmyrf_sum), atol=1e-2)) # For some reason if nb_features is large this fails, # maybe because of clamping the normalization if nb_features < 1000: assert torch.allclose(out_sbsmyrf, torch.einsum('bhts,bshd->bthd', A_sbsmyrf, v), rtol=1e-3, atol=1e-3) temperature = 1 / math.sqrt(embed_dim) if softmax_temp is None else softmax_temp A_full_unnormalized = torch.exp(torch.einsum('bthe,bshe->bhts', q * temperature, k)) if attn_mask is not None: A_full_unnormalized.masked_fill_(~attn_mask.bool_matrix, 0.0) if key_padding_mask is not None: A_full_unnormalized.masked_fill_(rearrange(~key_padding_mask.bool_matrix, 'b s -> b 1 1 s'), 0.0) # Test that A_sbsmyrf_unnormalized matches A_full_unnormalized on the smyrf indices # and A_lr_unnormalized on the non-smyrf indices. rel_error = ((A_sbsmyrf_unnormalized - A_full_unnormalized) / A_full_unnormalized.clamp_min_(1e-6)).abs().mean() if device == 'cuda': print(f'Relative error of attention matrix: {rel_error}') # For some reason if nb_features is large this fails, # maybe because of clamping the normalization if nb_features < 1000: assert torch.allclose(A_sbsmyrf_unnormalized.masked_select(smyrf_mask), A_full_unnormalized.masked_select(smyrf_mask), rtol=1e-3, atol=1e-4) assert torch.allclose(A_sbsmyrf_unnormalized.masked_select(~smyrf_mask), A_lr_unnormalized.masked_select(~smyrf_mask), rtol=1e-3, atol=1e-4) # If nb_features is large, test that A_sbsmyrf_unnormalized is close to A_full_unnormalized if nb_features > 10000 and (softmax_temp is None): assert torch.allclose(rel_error, torch.zeros(1, device=device), atol=0.2)
fly-master
tests/models/attention/test_sbsmyrf_attention.py
import pytest import torch import torch.nn as nn import torch.nn.functional as F from einops import repeat, rearrange from src.models.modules.masking import FullMask, LengthMask from src.models.attention.linformer_attention import LinformerAttention def seed_cpu_cuda(seed): torch.manual_seed(seed) torch.cuda.manual_seed(seed) class TestLinformerAttention: @pytest.mark.parametrize('device', ['cpu', 'cuda']) @pytest.mark.parametrize('softmax_temp', [None, 1.0, 0.235]) @pytest.mark.parametrize('share_kv', [False, True]) @pytest.mark.parametrize('proj_dim_k', [13, 47, 88]) @pytest.mark.parametrize('seq_len', [127, 28, 468]) def test_output(self, seq_len, proj_dim_k, share_kv, softmax_temp, device): seed = 2357 embed_dim = 21 v_dim = 17 num_heads = 7 batch_size = 18 q_seqlen = 47 # [2021-08-08] local_dot_product_cuda has a bug when q_seqlen != k_seqlen # https://github.com/idiap/fast-transformers/issues/98 k_seqlen = seq_len seed_cpu_cuda(seed) key_padding_mask = LengthMask(torch.randint(low=0, high=k_seqlen, size=(batch_size,), device=device), max_len=k_seqlen) lin_attn = LinformerAttention(seq_len, k=proj_dim_k, share_kv=share_kv, softmax_temp=softmax_temp, attention_dropout=0.0).to(device) q = torch.randn(batch_size, q_seqlen, num_heads, embed_dim, device=device) k = torch.randn(batch_size, k_seqlen, num_heads, embed_dim, device=device) v = torch.randn(batch_size, k_seqlen, num_heads, v_dim, device=device) out_lin, A_lin = lin_attn(q, k, v, key_padding_mask=key_padding_mask, need_weights=True) assert out_lin.shape == (batch_size, q_seqlen, num_heads, v_dim) assert A_lin.shape == (batch_size, num_heads, q_seqlen, proj_dim_k) assert torch.all(A_lin >= 0) # Sum of each row should be either 0.0 or 1.0 A_local_sum = A_lin.sum(dim=-1) assert torch.all(torch.isclose(A_local_sum, torch.ones_like(A_local_sum)) | torch.isclose(A_local_sum, torch.zeros_like(A_local_sum)))
fly-master
tests/models/attention/test_linformer_attention.py
import pytest import torch import torch.nn as nn import torch.nn.functional as F from einops import repeat, rearrange from src.models.modules.masking import FullMask, LengthMask from src.models.attention.reformer_attention import ReformerAttention def seed_cpu_cuda(seed): torch.manual_seed(seed) torch.cuda.manual_seed(seed) class TestReformerAttention: @pytest.mark.parametrize('device', ['cpu', 'cuda']) @pytest.mark.parametrize('softmax_temp', [None, 1.0, 0.235]) @pytest.mark.parametrize('bucket_size', [16, 32, 64]) @pytest.mark.parametrize('n_hashes', [1, 2, 3]) def test_output(self, n_hashes, bucket_size, softmax_temp, device): seed = 2357 embed_dim = 21 v_dim = 17 # num_heads = 7 # batch_size = 18 num_heads = 1 # batch_size = 18 batch_size = 1 # seqlen = 213 seqlen = 64 seed_cpu_cuda(seed) # attn_mask = None attn_mask = FullMask(torch.randint(low=0, high=2, size=(seqlen, seqlen), dtype=torch.bool, device=device)) # key_padding_mask = None key_padding_mask = LengthMask(torch.randint(low=0, high=seqlen, size=(batch_size,), device=device), max_len=seqlen) reformer_attn = ReformerAttention(n_hashes=n_hashes, bucket_size=bucket_size, allow_duplicate_attention=False, softmax_temp=softmax_temp, attention_dropout=0.0).to(device) q = torch.randn(batch_size, seqlen, num_heads, embed_dim, device=device) k = q v = torch.randn(batch_size, seqlen, num_heads, v_dim, device=device) out_reformer, A_reformer = reformer_attn(q, k, v, attn_mask, key_padding_mask, need_weights=True) assert out_reformer.shape == (batch_size, seqlen, num_heads, v_dim) assert A_reformer.shape == (batch_size, num_heads, seqlen, seqlen) assert torch.all(A_reformer >= 0) # Sum of each row should be either 0.0 or 1.0 # A_smyrf_sum = A_reformer.sum(dim=-1) # assert torch.all(torch.isclose(A_smyrf_sum, torch.ones_like(A_smyrf_sum)) # | torch.isclose(A_smyrf_sum, torch.zeros_like(A_smyrf_sum))) assert torch.allclose(out_reformer, torch.einsum('bhts,bshd->bthd', A_reformer, v), rtol=1e-5, atol=1e-6)
fly-master
tests/models/attention/test_reformer_attention.py
import torch import triton import pytest from src.models.attention.blocksparse_sum import blocksparse_sum from src.models.attention.blocksparse_utils import sparsify_tensor, mask_tensor @pytest.mark.parametrize( "BLOCK, WIDTH", [(block, width) for block in [16, 32] for width in [256, 576, 1024, 1792]], ) def test_logsumexp(BLOCK, WIDTH, DTYPE=torch.float32): # set seed torch.random.manual_seed(0) Z, H, M, N = 2, 4, WIDTH, WIDTH scale = 0.4 # create inputs layout = torch.randint(2, (H, M // BLOCK, N // BLOCK)) x = torch.randn((Z, H, M, N), dtype=DTYPE, requires_grad=True, device="cuda") # triton result op = blocksparse_sum(layout, BLOCK) tx = sparsify_tensor(x, layout) ty = op(tx * scale) grad = torch.randn_like(ty) tdx, = torch.autograd.grad(ty, x, grad) # torch result rx = mask_tensor(x, layout, value=0) ry = torch.sum(rx * scale, -1) rdx, = torch.autograd.grad(ry, x, grad) # compare assert torch.allclose(ry, ty, rtol=1e-4, atol=1e-5) assert torch.allclose(rdx, tdx)
fly-master
tests/models/attention/test_blocksparse_sum.py
import pytest import torch import torch.nn as nn import torch.nn.functional as F from einops import repeat, rearrange from src.models.modules.masking import FullMask, LengthMask from src.models.attention.full_attention import FullAttention from src.models.attention.local_attention import LocalAttention def seed_cpu_cuda(seed): torch.manual_seed(seed) torch.cuda.manual_seed(seed) class TestLocalAttention: def test_local_dot_product(self): """Test if we can import and run local_dot_product at all """ from fast_transformers.local_product import local_dot_product, local_weighted_average batch_size = 1 num_heads = 3 seqlen = 10 embed_dim = 7 local_context = 5 q = torch.randn(batch_size, num_heads, seqlen, embed_dim, requires_grad=True) k = torch.randn(batch_size, num_heads, seqlen, embed_dim, requires_grad=True) v = torch.randn(batch_size, num_heads, seqlen, embed_dim, requires_grad=True) attn_additive_mask = torch.zeros(10, 10) lengths = torch.full((1,), 10) qk = local_dot_product(q, k, attn_additive_mask, lengths, local_context) qk.sum().backward() assert qk.shape == (batch_size, num_heads, seqlen, local_context) qk = local_dot_product(q.cuda(), k.cuda(), attn_additive_mask.cuda(), lengths.cuda(), local_context) assert qk.shape == (batch_size, num_heads, seqlen, local_context) A = torch.softmax(1.5 * qk, dim=-1) out = local_weighted_average(A, v.cuda()) out.sum().backward() # Test that backward also runs assert out.shape == (batch_size, num_heads, seqlen, embed_dim) @pytest.mark.parametrize('device', ['cpu', 'cuda']) @pytest.mark.parametrize('softmax_temp', [None, 1.0, 0.235]) @pytest.mark.parametrize('local_context', [3, 4, 28, 33]) def test_output(self, local_context, softmax_temp, device): seed = 2357 embed_dim = 21 v_dim = 17 num_heads = 7 batch_size = 18 q_seqlen = 47 # [2021-08-08] local_dot_product_cuda has a bug when q_seqlen != k_seqlen # https://github.com/idiap/fast-transformers/issues/98 k_seqlen = 39 if device == 'cpu' else q_seqlen seed_cpu_cuda(seed) # For arbitrary attn_mask, we could have a row with no valid keys. That row should actually # be zero but for implementation simplicity we don't correct it. # Therefore we're only testing with full attn_mask. # attn_mask = FullMask(torch.randint(low=0, high=2, size=(q_seqlen, k_seqlen), # dtype=torch.bool, device=device)) attn_mask = None key_padding_mask = LengthMask(torch.randint(low=0, high=k_seqlen, size=(batch_size,), device=device), max_len=k_seqlen) # key_padding_mask = LengthMask(torch.ones(batch_size, dtype=torch.long) * 3, max_len=k_seqlen) local_attn = LocalAttention(local_context, softmax_temp=softmax_temp, attention_dropout=0.0).to(device) full_attn = FullAttention(softmax_temp=softmax_temp, attention_dropout=0.0).to(device) q = torch.randn(batch_size, q_seqlen, num_heads, embed_dim, device=device) k = torch.randn(batch_size, k_seqlen, num_heads, embed_dim, device=device) v = torch.randn(batch_size, k_seqlen, num_heads, v_dim, device=device) out_local, A_local = local_attn(q, k, v, attn_mask, key_padding_mask, need_weights=True) assert out_local.shape == (batch_size, q_seqlen, num_heads, v_dim) assert A_local.shape == (batch_size, num_heads, q_seqlen, k_seqlen) assert torch.all(A_local >= 0) # Sum of each row should be either 0.0 or 1.0 A_local_sum = A_local.sum(dim=-1) assert torch.all(torch.isclose(A_local_sum, torch.ones_like(A_local_sum)) | torch.isclose(A_local_sum, torch.zeros_like(A_local_sum))) assert torch.all((A_local >= 1e-6).sum(dim=-1) <= local_context) assert torch.allclose(out_local, torch.einsum('bhts,bshd->bthd', A_local, v), rtol=1e-6, atol=1e-7) _, A_full = full_attn(q, k, v, attn_mask, key_padding_mask, need_weights=True) # Test that A_local is equivalent to zero-ing out non-local elements A_full and then # re-normalize so each row sums to 1 i = rearrange(torch.arange(q_seqlen, device=q.device), 't -> 1 1 t 1') j = torch.arange(k_seqlen, device=k.device) idx = j - i local_mask = ((idx >= -(local_context // 2)) & (idx < (local_context + 1) // 2) & (j < rearrange(key_padding_mask.lengths, 'b -> b 1 1 1'))) A_full_local = F.normalize(A_full.masked_fill(~local_mask, 0.0), p=1, dim=-1) assert torch.allclose(A_local, A_full_local, rtol=1e-5, atol=1e-7)
fly-master
tests/models/attention/test_local_attention.py
import torch import triton import pytest # from triton.ops.blocksparse import matmul from src.models.attention.blocksparse_matmul import matmul @pytest.mark.parametrize( "MODE, TRANS_A, TRANS_B, BLOCK, DTYPE", [ (mode, at, bt, block, dtype) for dtype in ["float32"] for mode in ["sdd"] for at in [False] for bt in [True] for block in [16] ], ) # def test_matmul(MODE, TRANS_A, TRANS_B, BLOCK, DTYPE, Z=3, H=2, M=512, N=384, K=256): def test_matmul(MODE, TRANS_A, TRANS_B, BLOCK, DTYPE, Z=3, H=2, M=64, N=64, K=48): DTYPE = {"float16": torch.float16, "float32": torch.float32}[DTYPE] # set seed torch.random.manual_seed(0) # create inputs a = torch.randn((Z, H, K, M) if TRANS_A else (Z, H, M, K), dtype=DTYPE, device="cuda") b = torch.randn((Z, H, N, K) if TRANS_B else (Z, H, K, N), dtype=DTYPE, device="cuda") shape = { "sdd": (M, N), "dsd": (a.shape[2], a.shape[3]), "dds": (b.shape[2], b.shape[3]), }[MODE] layout = torch.randint(2, (H, shape[0] // BLOCK, shape[1] // BLOCK)) # triton result op = matmul(layout, BLOCK, MODE, trans_a=TRANS_A, trans_b=TRANS_B) ra = triton.testing.sparsify_tensor(a, layout, BLOCK) if MODE == "dsd" else a rb = triton.testing.sparsify_tensor(b, layout, BLOCK) if MODE == "dds" else b rc = triton.testing.catch_oor(lambda : op(ra, rb), pytest) # torch result ta = triton.testing.mask_tensor(a, layout, BLOCK) if MODE == "dsd" else a tb = triton.testing.mask_tensor(b, layout, BLOCK) if MODE == "dds" else b ta = ta.transpose(2, 3) if TRANS_A else ta tb = tb.transpose(2, 3) if TRANS_B else tb tc = torch.matmul(ta, tb) tc = triton.testing.mask_tensor(tc, layout, BLOCK) if MODE == "sdd" else tc tc = triton.testing.sparsify_tensor(tc, layout, BLOCK) if MODE == "sdd" else tc # compare assert torch.allclose(rc, tc)
fly-master
tests/models/attention/test_triton.py
import torch import triton import pytest from src.models.attention.blocksparse_logsumexp import logsumexp from src.models.attention.blocksparse_utils import sparsify_tensor, mask_tensor @pytest.mark.parametrize( "BLOCK, WIDTH", [(block, width) for block in [16, 32] for width in [256, 576, 1024, 1792]], ) def test_logsumexp(BLOCK, WIDTH, DTYPE=torch.float32): # set seed torch.random.manual_seed(0) Z, H, M, N = 2, 4, WIDTH, WIDTH scale = 0.4 # create inputs layout = torch.randint(2, (H, M // BLOCK, N // BLOCK)) x = torch.randn((Z, H, M, N), dtype=DTYPE, requires_grad=True, device="cuda") # triton result op = logsumexp(layout, BLOCK) tx = sparsify_tensor(x, layout) ty = op(tx * scale) grad = torch.randn_like(ty) tdx, = torch.autograd.grad(ty, x, grad) # torch result rx = mask_tensor(x, layout, value=float("-inf")) ry = torch.logsumexp(rx * scale, -1) rdx, = torch.autograd.grad(ry, x, grad) # compare assert torch.allclose(ry, ty) assert torch.allclose(rdx, tdx)
fly-master
tests/models/attention/test_blocksparse_logsumexp.py
import pytest import math import torch import torch.nn as nn import torch.nn.functional as F from einops import repeat, rearrange from fast_transformers.masking import LengthMask, TriangularCausalMask from src.models.attention.full_attention import FullAttention from src.models.attention.sbblocksparse_attention import SBBlockSparseAttention from src.models.attention.blocksparse_utils import mask_tensor def seed_cpu_cuda(seed): torch.manual_seed(seed) torch.cuda.manual_seed(seed) class TestSBBlockSparseAttention: @pytest.mark.parametrize('device', ['cuda']) @pytest.mark.parametrize('softmax_temp', [None, 1.0, 0.235]) @pytest.mark.parametrize('nb_features', [80, 32, 1024]) @pytest.mark.parametrize('num_local_blocks', [1, 3, 4]) @pytest.mark.parametrize('block_size', [16]) @pytest.mark.parametrize('causal', [False]) def test_output(self, causal, block_size, num_local_blocks, nb_features, softmax_temp, device): if nb_features > 10000 and device == 'cpu': # Would be too slow on CPU return # TODO: test causal masks seed = 2357 embed_dim = 32 v_dim = 48 num_heads = 7 batch_size = 18 q_seqlen = 240 # [2021-08-08] local_dot_product_cuda has a bug when q_seqlen != k_seqlen # https://github.com/idiap/fast-transformers/issues/98 k_seqlen = 64 if device == 'cpu' or not causal else q_seqlen q_seqlen_padded = int(math.ceil(q_seqlen / block_size) * block_size) k_seqlen_padded = int(math.ceil(k_seqlen / block_size) * block_size) seed_cpu_cuda(seed) attn_mask = None if not causal else TriangularCausalMask(q_seqlen, device=device) # key_padding_mask = LengthMask(torch.randint(low=k_seqlen // 4, high=k_seqlen, # size=(batch_size,), device=device), # max_len=k_seqlen) key_padding_mask = None sparsity_config = dict( _target_='deepspeed.ops.sparse_attention.FixedSparsityConfig', num_heads=num_heads, block=block_size, num_local_blocks=num_local_blocks ) sbblocksparse_attn = SBBlockSparseAttention(sparsity_config, embed_dim, nb_features, softmax_temp=softmax_temp, attention_dropout=0.0, causal=causal, max_seq_length=max(q_seqlen, k_seqlen)).to(device) q = torch.randn(batch_size, q_seqlen, num_heads, embed_dim, device=device) k = torch.randn(batch_size, k_seqlen, num_heads, embed_dim, device=device) v = torch.randn(batch_size, k_seqlen, num_heads, v_dim, device=device) layout = sbblocksparse_attn.get_layout(q_seqlen_padded, k_seqlen_padded) # key_padding_mask = LengthMask(k.new_full((k.shape[0],), k.shape[1], dtype=torch.long)) out_sblocal, (A_sbblocksparse, A_sbblocksparse_unnormalized, A_lr_unnormalized) = sbblocksparse_attn( q, k, v, attn_mask=attn_mask, key_padding_mask=key_padding_mask, need_weights=True, return_attn_unnormalized=True ) assert out_sblocal.shape == (batch_size, q_seqlen, num_heads, v_dim) assert A_sbblocksparse.shape == (batch_size, num_heads, q_seqlen, k_seqlen) assert torch.all(A_sbblocksparse >= 0) # Sum of each row should be either 0.0 or 1.0 A_sblocal_sum = A_sbblocksparse.sum(dim=-1) assert torch.all(torch.isclose(A_sblocal_sum, torch.ones_like(A_sblocal_sum), atol=1e-2) | torch.isclose(A_sblocal_sum, torch.zeros_like(A_sblocal_sum), atol=1e-2)) assert torch.allclose(out_sblocal, torch.einsum('bhts,bshd->bthd', A_sbblocksparse, v), rtol=1e-3, atol=1e-3) temperature = 1 / math.sqrt(embed_dim) if softmax_temp is None else softmax_temp A_full_unnormalized = torch.exp(torch.einsum('bthe,bshe->bhts', q * temperature, k)) if attn_mask is not None: A_full_unnormalized.masked_fill_(~attn_mask.bool_matrix, 0.0) if key_padding_mask is not None: A_full_unnormalized.masked_fill_(rearrange(~key_padding_mask.bool_matrix, 'b s -> b 1 1 s'), 0.0) # Test that A_sbblocksparse_unnormalized matches A_full_unnormalized on the block sparse # indices and A_lr_unnormalized on the non-block sparse indices. blocksparse_mask = mask_tensor(torch.ones_like(A_full_unnormalized), layout).bool() assert torch.allclose(A_sbblocksparse_unnormalized.masked_select(blocksparse_mask), A_full_unnormalized.masked_select(blocksparse_mask), rtol=1e-3, atol=1e-4) assert torch.allclose(A_sbblocksparse_unnormalized.masked_select(~blocksparse_mask), A_lr_unnormalized.masked_select(~blocksparse_mask), rtol=1e-3, atol=1e-4) rel_error = ((A_sbblocksparse_unnormalized - A_full_unnormalized) / A_full_unnormalized.clamp_min_(1e-6)).abs().mean() if device == 'cuda': print(f'Relative error of attention matrix: {rel_error}')
fly-master
tests/models/attention/test_sbblocksparse_attention.py
import pytest import torch import torch.nn as nn import torch.nn.functional as F from einops import repeat, rearrange from src.models.modules.masking import FullMask, LengthMask from src.models.attention.full_attention import FullAttention from src.models.attention.smyrf_attention import SmyrfAttention def seed_cpu_cuda(seed): torch.manual_seed(seed) torch.cuda.manual_seed(seed) class TestSmyrfAttention: @pytest.mark.parametrize('device', ['cpu', 'cuda']) @pytest.mark.parametrize('softmax_temp', [None, 1.0, 0.235]) @pytest.mark.parametrize('n_clusters', [4, 6, 8]) @pytest.mark.parametrize('n_hashes', [1, 2, 3]) def test_output(self, n_hashes, n_clusters, softmax_temp, device): seed = 2357 embed_dim = 21 v_dim = 17 num_heads = 7 batch_size = 18 q_seqlen = 257 k_seqlen = 173 seed_cpu_cuda(seed) attn_mask = None key_padding_mask = LengthMask(torch.randint(low=0, high=k_seqlen, size=(batch_size,), device=device), max_len=k_seqlen) q_cluster_size = (q_seqlen + n_clusters - 1) // n_clusters k_cluster_size = (k_seqlen + n_clusters - 1) // n_clusters smyrf_attn = SmyrfAttention(n_hashes, q_cluster_size, k_cluster_size, softmax_temp=softmax_temp, attention_dropout=0.0).to(device) full_attn = FullAttention(softmax_temp=softmax_temp, attention_dropout=0.0).to(device) q = torch.randn(batch_size, q_seqlen, num_heads, embed_dim, device=device) k = torch.randn(batch_size, k_seqlen, num_heads, embed_dim, device=device) v = torch.randn(batch_size, k_seqlen, num_heads, v_dim, device=device) out_smyrf, A_smyrf = smyrf_attn(q, k, v, attn_mask, key_padding_mask, need_weights=True) assert out_smyrf.shape == (batch_size, q_seqlen, num_heads, v_dim) assert A_smyrf.shape == (batch_size, num_heads, q_seqlen, k_seqlen) assert torch.all(A_smyrf >= 0) # Sum of each row should be either 0.0 or 1.0 A_smyrf_sum = A_smyrf.sum(dim=-1) assert torch.all(torch.isclose(A_smyrf_sum, torch.ones_like(A_smyrf_sum)) | torch.isclose(A_smyrf_sum, torch.zeros_like(A_smyrf_sum))) assert torch.allclose(out_smyrf, torch.einsum('bhts,bshd->bthd', A_smyrf, v), rtol=1e-5, atol=1e-6) # Test that A_smyrf is equivalent to zero-ing out some elements A_full and then # re-normalize so each row sums to 1 if n_hashes == 1: _, A_full = full_attn(q, k, v, attn_mask, key_padding_mask, need_weights=True) smyrf_mask = A_smyrf > 0.0 A_full_smyrf = F.normalize(A_full.masked_fill(~smyrf_mask, 0.0), p=1, dim=-1) assert torch.allclose(A_smyrf, A_full_smyrf, rtol=1e-5, atol=1e-6)
fly-master
tests/models/attention/test_smyrf_attention.py
import pytest import math import torch import torch.nn as nn import torch.nn.functional as F from einops import repeat, rearrange from src.models.modules.masking import LengthMask, TriangularCausalMask from src.models.attention.full_attention import FullAttention from src.models.attention.sblocal_attention import SBLocalAttention def seed_cpu_cuda(seed): torch.manual_seed(seed) torch.cuda.manual_seed(seed) class TestSBLocalAttention: @pytest.mark.parametrize('device', ['cpu', 'cuda']) @pytest.mark.parametrize('softmax_temp', [None, 1.0, 0.235]) @pytest.mark.parametrize('nb_features', [73, 26, 30000]) @pytest.mark.parametrize('local_context', [3, 4, 28, 33]) # @pytest.mark.parametrize('causal', [False, True]) @pytest.mark.parametrize('causal', [False]) def test_output(self, causal, local_context, nb_features, softmax_temp, device): if nb_features > 10000 and device == 'cpu': # Would be too slow on CPU return # TODO: test causal masks seed = 2357 embed_dim = 21 v_dim = 17 num_heads = 7 batch_size = 18 q_seqlen = 47 # [2021-08-08] local_dot_product_cuda has a bug when q_seqlen != k_seqlen # https://github.com/idiap/fast-transformers/issues/98 k_seqlen = 39 if device == 'cpu' or not causal else q_seqlen seed_cpu_cuda(seed) attn_mask = None if not causal else TriangularCausalMask(q_seqlen, device=device) key_padding_mask = LengthMask(torch.randint(low=k_seqlen // 4, high=k_seqlen, size=(batch_size,), device=device), max_len=k_seqlen) sblocal_attn = SBLocalAttention(local_context, embed_dim, nb_features, softmax_temp=softmax_temp, attention_dropout=0.0, causal=causal).to(device) q = torch.randn(batch_size, q_seqlen, num_heads, embed_dim, device=device) k = torch.randn(batch_size, k_seqlen, num_heads, embed_dim, device=device) v = torch.randn(batch_size, k_seqlen, num_heads, v_dim, device=device) # key_padding_mask = LengthMask(k.new_full((k.shape[0],), k.shape[1], dtype=torch.long)) out_sblocal, (A_sblocal, A_sblocal_unnormalized, A_lr_unnormalized) = sblocal_attn( q, k, v, attn_mask=attn_mask, key_padding_mask=key_padding_mask, need_weights=True, return_attn_unnormalized=True ) assert out_sblocal.shape == (batch_size, q_seqlen, num_heads, v_dim) assert A_sblocal.shape == (batch_size, num_heads, q_seqlen, k_seqlen) assert torch.all(A_sblocal >= 0) # Sum of each row should be either 0.0 or 1.0 A_sblocal_sum = A_sblocal.sum(dim=-1) assert torch.all(torch.isclose(A_sblocal_sum, torch.ones_like(A_sblocal_sum), atol=1e-2) | torch.isclose(A_sblocal_sum, torch.zeros_like(A_sblocal_sum), atol=1e-2)) assert torch.allclose(out_sblocal, torch.einsum('bhts,bshd->bthd', A_sblocal, v), rtol=1e-3, atol=1e-3) temperature = 1 / math.sqrt(embed_dim) if softmax_temp is None else softmax_temp A_full_unnormalized = torch.exp(torch.einsum('bthe,bshe->bhts', q * temperature, k)) if attn_mask is not None: A_full_unnormalized.masked_fill_(~attn_mask.bool_matrix, 0.0) A_full_unnormalized.masked_fill_(rearrange(~key_padding_mask.bool_matrix, 'b s -> b 1 1 s'), 0.0) # Test that A_sblocal_unnormalized matches A_full_unnormalized on the local indices # and A_lr_unnormalized on the non-local indices. i = rearrange(torch.arange(q_seqlen, device=q.device), 't -> 1 1 t 1') j = torch.arange(k_seqlen, device=k.device) idx = j - i local_mask = ((idx >= -(local_context // 2)) & (idx < (local_context + 1) // 2) & (j < rearrange(key_padding_mask.lengths, 'b -> b 1 1 1'))) assert torch.allclose(A_sblocal_unnormalized.masked_select(local_mask), A_full_unnormalized.masked_select(local_mask), rtol=1e-3, atol=1e-4) assert torch.allclose(A_sblocal_unnormalized.masked_select(~local_mask), A_lr_unnormalized.masked_select(~local_mask), rtol=1e-3, atol=1e-4) rel_error = ((A_sblocal_unnormalized - A_full_unnormalized) / A_full_unnormalized.clamp_min_(1e-6)).abs().mean() if device == 'cuda': print(f'Relative error of attention matrix: {rel_error}') # If nb_features is large, test that A_sblocal_unnormalized is close to A_full_unnormalized if nb_features > 10000 and local_context > 10 and (softmax_temp is None or softmax_temp < 1.0): assert torch.allclose(rel_error, torch.zeros(1, device=device), atol=0.2)
fly-master
tests/models/attention/test_sblocal_attention.py
import math import pytest import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange, repeat from deepspeed.ops.sparse_attention import FixedSparsityConfig from src.models.layers.blocksparse_linear import BlockSparseLinear from src.models.layers.fastlinear import NinjaTurtleLinear, ButterflyGlobalLinear from src.models.attention.blocksparse_utils import sparsify_tensor, densify_tensor from src.utils.padding import pad_to_multiple from src.models.attention.blocksparse_matmul import matmul def seed_cpu_cuda(seed): torch.manual_seed(seed) torch.cuda.manual_seed(seed) def setup(batch_size, in_features, out_features, block_size): x = torch.randn(batch_size, in_features, requires_grad=True, device='cuda') kwargs = dict(window_size=block_size, stripes=1, step=2, gtoken=block_size) sparsity_config = dict( _target_='src.models.layers.fastlinear.NinjaTurtleSparsityConfig', block=block_size, **kwargs ) bs_linear = BlockSparseLinear(in_features, out_features, sparsity_config, bias=True).to('cuda') bs_fake_linear = NinjaTurtleLinear(in_features, out_features, bias=True, **kwargs).to('cuda') return x, bs_linear, bs_fake_linear class TestBlockSparseLinear: @pytest.mark.parametrize('block_size', [16, 32]) @pytest.mark.parametrize('out_features', [698, 3081]) @pytest.mark.parametrize('in_features', [497, 149]) def test_init(self, in_features, out_features, block_size): batch_size = 128 x, bs_linear, bs_fake_linear = setup(batch_size, in_features, out_features, block_size) assert torch.allclose(bs_linear.weight.mean(), bs_fake_linear.weight.mean(), atol=1e-3) assert torch.allclose(bs_linear.weight.std(), bs_fake_linear.weight.std(), atol=1e-2) assert torch.allclose(bs_linear.bias.mean(), bs_fake_linear.bias.mean(), atol=1e-2) assert torch.allclose(bs_linear.bias.std(), bs_fake_linear.bias.std(), atol=1e-2) output = bs_linear.to('cuda')(x) - bs_linear.bias assert output.mean().abs().item() < 1e-2 assert 0.3 < output.std().item() < 3.0 @pytest.mark.parametrize('out_features', [698, 3081]) @pytest.mark.parametrize('in_features', [497, 149]) def test_backends(self, in_features, out_features): """The two backends (huggingface and triton) should yield the same output and gradients. """ block_size = 32 batch_size = 128 x = torch.randn(batch_size, in_features, requires_grad=True, device='cuda') kwargs = dict(window_size=block_size, stripes=1, step=2, gtoken=block_size) sparsity_config = dict( _target_='src.models.layers.fastlinear.NinjaTurtleSparsityConfig', block=block_size, **kwargs ) bs_linear_triton = BlockSparseLinear(in_features, out_features, sparsity_config, bias=True, backend='triton').to('cuda') bs_linear_hf = BlockSparseLinear(in_features, out_features, sparsity_config, bias=True, backend='huggingface').to('cuda') with torch.no_grad(): bs_linear_hf.weight.copy_(rearrange(bs_linear_triton.weight, '1 nnz blksz blksz1 -> (nnz blksz1) blksz')) bs_linear_hf.bias.copy_(bs_linear_triton.bias) out_triton = bs_linear_triton(x) grad = torch.randn_like(out_triton) grad_x_triton, grad_weight_triton = torch.autograd.grad(out_triton, (x, bs_linear_triton.weight), grad) x = x.clone().detach().requires_grad_(True) out_hf = bs_linear_hf(x) grad_x_hf, grad_weight_hf = torch.autograd.grad(out_hf, (x, bs_linear_hf.weight), grad) assert torch.allclose(out_triton, out_hf, rtol=1e-5, atol=1e-6) assert torch.allclose(grad_x_triton, grad_x_hf, rtol=1e-4, atol=1e-5) assert torch.allclose(rearrange(grad_weight_triton, '1 nnz blksz blksz1 -> (nnz blksz1) blksz'), grad_weight_hf, rtol=1e-4, atol=1e-5) @pytest.mark.parametrize('block_size', [16, 32]) @pytest.mark.parametrize('out_features', [698, 1280, 3081]) @pytest.mark.parametrize('in_features', [640, 497, 149]) def test_output(self, in_features, out_features, block_size): """With the same weight, the fast implementation (BlockSparseLinear) should yield the same output and gradient as the slow implementation. """ batch_size = 128 x, bs_linear, bs_fake_linear = setup(batch_size, in_features, out_features, block_size) with torch.no_grad(): if in_features % block_size != 0 or out_features % block_size != 0: # Make sparse_mask block-aligned in these cases sparse_mask = bs_linear.layout sparse_mask = repeat(sparse_mask, 'p r -> (p blksz) (r blksz1)', blksz=block_size, blksz1=block_size) sparse_mask = sparse_mask[:out_features, :in_features] bs_fake_linear.sparse_mask = sparse_mask weight_dense = pad_to_multiple(bs_fake_linear.weight, multiple=block_size, dims=(0, 1)) weight_sparse = sparsify_tensor(rearrange(weight_dense, 'd2 d1 -> 1 d2 d1'), bs_linear.layout) layout = rearrange(bs_linear.layout, 'd1 d2 -> 1 d1 d2') assert torch.allclose(densify_tensor(weight_sparse, layout)[:, :, :out_features, :in_features] * bs_fake_linear.sparse_mask, bs_fake_linear.weight * bs_fake_linear.sparse_mask) if bs_linear.backend == 'triton': bs_linear.weight.copy_(weight_sparse) elif bs_linear.backend == 'huggingface': bs_linear.weight.copy_(rearrange(weight_sparse, '1 nnz blksz blksz1 -> (nnz blksz1) blksz')) bs_linear.bias.copy_(bs_fake_linear.bias) out = bs_linear(x) grad = torch.randn_like(out) grad_x, grad_weight = torch.autograd.grad(out, (x, bs_linear.weight), grad) x = x.clone().detach().requires_grad_(True) out_slow = bs_fake_linear(x) grad_x_slow, grad_weight_slow = torch.autograd.grad(out_slow, (x, bs_fake_linear.weight), grad) assert torch.allclose(out, out_slow, rtol=1e-4, atol=1e-5) assert torch.allclose(grad_x, grad_x_slow, rtol=1e-4, atol=1e-5) if bs_linear.backend == 'huggingface': grad_weight = rearrange(grad_weight, '(nnz blksz1) blksz -> 1 nnz blksz blksz1', blksz=block_size, blksz1=block_size) grad_weight_dense = densify_tensor(grad_weight, layout) assert torch.allclose(grad_weight_dense, pad_to_multiple(grad_weight_slow, multiple=block_size, dims=(0, 1)), rtol=1e-4, atol=1e-5)
fly-master
tests/models/layers/test_blocksparse_linear.py
import math import pytest import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange, repeat from src.models.layers.blocksparse_linear import BlockSparseLinear, FlatBlockButterflySparsityConfig class TestFlatBlockButterflySparsityConfig: @pytest.mark.parametrize('butterfly_size,n_factors,block_size', [(32, 3, 16), (16, 2, 32), (16, 3, 32), (16, 4, 32), (8, 2, 32), (8, 3, 32)]) def test_parameters_512(self, butterfly_size, n_factors, block_size): in_features, out_features = 512, 2048 self = FlatBlockButterflySparsityConfig(butterfly_size, n_factors, block=block_size, global_size=0) mask = self.make_layout(out_features, in_features) print(f'Saving: {mask.float().mean().item()}') batch_size = 3 x = torch.randn(batch_size, in_features) s_cfg = {'_target_': 'src.models.layers.blocksparse_linear.FlatBlockButterflySparsityConfig', 'butterfly_size': butterfly_size, 'n_factors': n_factors, 'block': block_size} self = BlockSparseLinear(in_features, out_features, s_cfg, backend='dense') out = self(x) assert out.shape == (batch_size, out_features) @pytest.mark.parametrize('butterfly_size,n_factors,block_size', [(32, 3, 8), (16, 2, 16), (16, 3, 16), (16, 4, 16), (8, 2, 32), (8, 3, 32)]) def test_parameters_768(self, butterfly_size, n_factors, block_size): in_features, out_features = 768, 3072 self = FlatBlockButterflySparsityConfig(butterfly_size, n_factors, block=block_size, global_size=0) mask = self.make_layout(out_features, in_features) print(f'Saving: {mask.float().mean().item()}') batch_size = 3 x = torch.randn(batch_size, in_features) s_cfg = {'_target_': 'src.models.layers.blocksparse_linear.FlatBlockButterflySparsityConfig', 'butterfly_size': butterfly_size, 'n_factors': n_factors, 'block': block_size} self = BlockSparseLinear(in_features, out_features, s_cfg, backend='dense') out = self(x) assert out.shape == (batch_size, out_features)
fly-master
tests/models/layers/test_flatblockbutterfly_sparsity.py
import math import torch import pytest from src.models.layers.block_butterfly_multiply import block_butterfly_multiply from src.models.layers.block_butterfly_multiply import block_butterfly_factor_multiply @pytest.mark.parametrize('device', ['cpu', 'cuda']) @pytest.mark.parametrize('nstacks', [1, 2, 3]) @pytest.mark.parametrize('nblocks', [1, 2, 3]) @pytest.mark.parametrize('increasing_stride', [True, False]) @pytest.mark.parametrize('log_n', [3, 4, 5]) @pytest.mark.parametrize('block_size', [1, 2, 4, 6]) def test_block_butterfly_multiply(block_size, log_n, increasing_stride, nblocks, nstacks, device): # set seed torch.random.manual_seed(0) n = 1 << log_n batch_size = 3 twiddle = torch.randn(nstacks, nblocks, log_n, n // 2, 2, 2, block_size, block_size, device=device) input = torch.randn(batch_size, nstacks, block_size * n, device=device) increasing_stride = True output_size = None output = block_butterfly_multiply(twiddle, input, increasing_stride=increasing_stride, output_size=output_size) assert output.shape == (batch_size, nstacks, block_size * n) @pytest.mark.parametrize('device', ['cpu', 'cuda']) @pytest.mark.parametrize('nstacks', [1, 2, 3]) @pytest.mark.parametrize('increasing_stride', [True, False]) @pytest.mark.parametrize('log_n', [3, 4, 5]) @pytest.mark.parametrize('block_size', [1, 2, 4, 6]) def test_block_butterfly_factor_multiply(block_size, log_n, increasing_stride, nstacks, device): # set seed torch.random.manual_seed(0) nblocks = 1 n = 8 batch_size = 3 log_n = int(math.log2(n)) twiddle = torch.randn(nstacks, nblocks, log_n, n // 2, 2, 2, block_size, block_size, device=device) input = torch.randn(batch_size, nstacks, block_size * n, device=device) increasing_stride = True output = block_butterfly_multiply(twiddle, input, increasing_stride=increasing_stride) assert output.shape == (batch_size, nstacks, block_size * n) output_factor = input for idx in range(log_n): output_factor = block_butterfly_factor_multiply(twiddle[:, 0], output_factor, idx, increasing_stride=increasing_stride) assert torch.allclose(output, output_factor)
fly-master
tests/models/layers/test_block_butterfly_multiply.py
import math import torch import pytest from src.models.layers.blockdiag_butterfly_multiply import blockdiag_butterfly_multiply from src.models.layers.blockdiag_butterfly_multiply import blockdiag_butterfly_multiply_reference @pytest.mark.parametrize('dtype', [torch.float32, torch.complex64]) @pytest.mark.parametrize('device', ['cpu', 'cuda']) @pytest.mark.parametrize('log_n', [4, 10, 12]) def test_block_diag_butterfly_multiply_reference(log_n, device, dtype): # set seed torch.random.manual_seed(0) n = 1 << log_n sqrtn = 1 << (log_n // 2) batch_size = 3 x = torch.randn(batch_size, n, device=device, dtype=dtype, requires_grad=True) w1_bfly = torch.randn(sqrtn, sqrtn, sqrtn, device=x.device, dtype=x.dtype, requires_grad=True) w2_bfly = torch.randn(sqrtn, sqrtn, sqrtn, device=x.device, dtype=x.dtype, requires_grad=True) out1 = blockdiag_butterfly_multiply_reference(x, w1_bfly, w2_bfly, version=1) out2 = blockdiag_butterfly_multiply_reference(x, w1_bfly, w2_bfly, version=2) out3 = blockdiag_butterfly_multiply_reference(x, w1_bfly, w2_bfly, version=3) assert torch.allclose(out1, out2, rtol=1e-4, atol=1e-4) assert torch.allclose(out2, out3, rtol=1e-4, atol=1e-4) @pytest.mark.parametrize('dtype', [torch.float32, torch.complex64]) @pytest.mark.parametrize('device', ['cpu', 'cuda']) def test_block_diag_butterfly_multiply_reference_rectangular(device, dtype): # set seed torch.random.manual_seed(0) n = 768 batch_size = 3 x = torch.randn(batch_size, n, device=device, dtype=dtype, requires_grad=True) w1_bfly = torch.randn(8, 96 * 2, 96, device=x.device, dtype=x.dtype, requires_grad=True) w2_bfly = torch.randn(24, 16, 64, device=x.device, dtype=x.dtype, requires_grad=True) out2 = blockdiag_butterfly_multiply_reference(x, w1_bfly, w2_bfly, version=2) out3 = blockdiag_butterfly_multiply_reference(x, w1_bfly, w2_bfly, version=3) assert torch.allclose(out2, out3, rtol=1e-4, atol=1e-4) @pytest.mark.parametrize('dtype', [torch.float32, torch.complex64]) @pytest.mark.parametrize('device', ['cpu', 'cuda']) @pytest.mark.parametrize('log_n', [4, 10, 12]) def test_block_diag_butterfly_multiply(log_n, device, dtype): # set seed torch.random.manual_seed(0) n = 1 << log_n sqrtn = 1 << (log_n // 2) batch_size = 3 x = torch.randn(batch_size, n, device=device, dtype=dtype, requires_grad=True) w1_bfly = torch.randn(sqrtn, sqrtn, sqrtn, device=x.device, dtype=x.dtype, requires_grad=True) w2_bfly = torch.randn(sqrtn, sqrtn, sqrtn, device=x.device, dtype=x.dtype, requires_grad=True) out = blockdiag_butterfly_multiply(x, w1_bfly, w2_bfly) grad = torch.randn_like(out) dx, dw1_bfly, dw2_bfly = torch.autograd.grad(out, (x, w1_bfly, w2_bfly), grad, retain_graph=True) assert out.shape == (batch_size, n) out_ref = blockdiag_butterfly_multiply_reference(x, w1_bfly, w2_bfly) dx_ref, dw1_bfly_ref, dw2_bfly_ref = torch.autograd.grad(out_ref, (x, w1_bfly, w2_bfly), grad, retain_graph=True) assert torch.allclose(out, out_ref, rtol=1e-4, atol=1e-4) assert torch.allclose(dx, dx_ref, rtol=1e-4, atol=1e-4) assert torch.allclose(dw1_bfly, dw1_bfly_ref, rtol=1e-4, atol=1e-4) assert torch.allclose(dw2_bfly, dw2_bfly_ref, rtol=1e-4, atol=1e-4) @pytest.mark.parametrize('dtype', [torch.float32, torch.complex64]) @pytest.mark.parametrize('device', ['cpu', 'cuda']) def test_block_diag_butterfly_multiply_rectangular(device, dtype): # set seed torch.random.manual_seed(0) n = 768 batch_size = 3 x = torch.randn(batch_size, n, device=device, dtype=dtype, requires_grad=True) w1_bfly = torch.randn(8, 96 * 2, 96, device=x.device, dtype=x.dtype, requires_grad=True) w2_bfly = torch.randn(24, 16, 64, device=x.device, dtype=x.dtype, requires_grad=True) out = blockdiag_butterfly_multiply(x, w1_bfly, w2_bfly) grad = torch.randn_like(out) dx, dw1_bfly, dw2_bfly = torch.autograd.grad(out, (x, w1_bfly, w2_bfly), grad, retain_graph=True) assert out.shape == (batch_size, 24 * 16) out_ref = blockdiag_butterfly_multiply_reference(x, w1_bfly, w2_bfly) dx_ref, dw1_bfly_ref, dw2_bfly_ref = torch.autograd.grad(out_ref, (x, w1_bfly, w2_bfly), grad, retain_graph=True) assert torch.allclose(out, out_ref, rtol=1e-4, atol=1e-4) assert torch.allclose(dx, dx_ref, rtol=1e-4, atol=1e-4) assert torch.allclose(dw1_bfly, dw1_bfly_ref, rtol=1e-4, atol=1e-4) assert torch.allclose(dw2_bfly, dw2_bfly_ref, rtol=1e-4, atol=1e-4)
fly-master
tests/models/layers/test_blockdiag_butterfly_multiply.py
import pytest import torch import torch.nn as nn from einops import rearrange, reduce from fast_transformers.masking import FullMask, LengthMask from src.models.modules.multihead_attention import MultiheadAttention from src.models.attention.full_attention import FullAttention def seed_cpu_cuda(seed): torch.manual_seed(seed) torch.cuda.manual_seed(seed) class TestMultiheadAttention: @pytest.mark.parametrize('device', ['cpu', 'cuda']) @pytest.mark.parametrize('batch_first', [True, False]) @pytest.mark.parametrize('add_zero_attn', [True, False]) @pytest.mark.parametrize('add_bias_kv', [True, False]) @pytest.mark.parametrize('bias', [True, False]) @pytest.mark.parametrize('dropout', [0.0, 0.3]) @pytest.mark.parametrize('same_kv', [True, False]) @pytest.mark.parametrize('same_qk', [True, False]) def test_output(self, same_qk, same_kv, dropout, bias, add_bias_kv, add_zero_attn, batch_first, device): seed = 2357 embed_dim = 21 num_heads = 3 batch_size = 5 q_seqlen = 47 k_seqlen = 37 if not same_qk else q_seqlen seed_cpu_cuda(seed) attn_mask = FullMask(torch.randint(low=0, high=2, size=(q_seqlen, k_seqlen), dtype=torch.bool, device=device)) key_padding_mask = LengthMask(torch.randint(low=0, high=k_seqlen, size=(batch_size,), device=device), max_len=k_seqlen) seed_cpu_cuda(seed) mha_pt = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout, bias=bias, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, batch_first=batch_first).to(device) seed_cpu_cuda(seed) mha = MultiheadAttention(embed_dim, num_heads, bias=bias, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, batch_first=batch_first).to(device) full_attn = FullAttention(attention_dropout=dropout) q = torch.randn(batch_size, q_seqlen, embed_dim, device=device) k = q if same_qk else torch.randn(batch_size, k_seqlen, embed_dim, device=device) v = k if same_kv else torch.randn(batch_size, k_seqlen, embed_dim, device=device) if not batch_first: q, k, v = [rearrange(x, 'b s d -> s b d').contiguous() for x in [q, k, v]] for training in [True, False]: seed_cpu_cuda(seed + 1) mha_pt.train(training) # Pytorch uses a different convention for the mask: 1 means ignore and 0 means keep output_pt, attn_pt = mha_pt(q, k, v, attn_mask=~attn_mask.bool_matrix, key_padding_mask=~key_padding_mask.bool_matrix ) seed_cpu_cuda(seed + 1) mha.train(training) full_attn.train(training) output, attn = mha(full_attn, q, k, v, attn_mask=attn_mask, key_padding_mask=key_padding_mask, need_weights=(dropout == 0.0)) assert output.shape == ((batch_size, q_seqlen, embed_dim) if batch_first else (q_seqlen, batch_size, embed_dim)) if attn is not None: assert attn.shape == (batch_size, num_heads, q_seqlen, k_seqlen + int(add_bias_kv) + int(add_zero_attn)) # We put the bias_k/v and the zero_k/v in a different position compared to Pytorch's # implementation, so the dropout mask would be different. if not (dropout != 0.0 and (add_bias_kv or add_zero_attn)): assert torch.allclose(output, output_pt, rtol=1e-5, atol=1e-6, equal_nan=True) # Our FullAttention returns the attention weight *before* dropout, while PyTorch # returns the attention weight *after* dropout, so we don't expect them to be equal. # Also we return the attention weights for all heads, while Pytorch takes the mean. if dropout == 0.0 and not add_bias_kv and not add_zero_attn: attn_mean = reduce(attn, 'b h t s -> b t s', 'mean') assert torch.allclose(attn_mean, attn_pt, rtol=1e-5, atol=1e-6, equal_nan=True) @pytest.mark.parametrize('device', ['cpu', 'cuda']) @pytest.mark.parametrize('batch_first', [True, False]) @pytest.mark.parametrize('add_zero_attn', [True, False]) @pytest.mark.parametrize('add_bias_kv', [True, False]) @pytest.mark.parametrize('bias', [True, False]) @pytest.mark.parametrize('dropout', [0.0, 0.3]) @pytest.mark.parametrize('same_kv', [True, False]) @pytest.mark.parametrize('same_qk', [True, False]) def test_kdim_vdim(self, same_qk, same_kv, dropout, bias, add_bias_kv, add_zero_attn, batch_first, device): """ Because of our different interpretation of kdim and vdim compared to Pytorch, we only test the output shape and don't compare to Pytorch's output. """ seed = 2357 embed_dim = 21 kdim = 33 vdim = 18 num_heads = 3 batch_size = 5 q_seqlen = 47 k_seqlen = 37 if not same_qk else q_seqlen seed_cpu_cuda(seed) attn_mask = FullMask(torch.randint(low=0, high=2, size=(q_seqlen, k_seqlen), dtype=torch.bool, device=device)) key_padding_mask = LengthMask(torch.randint(low=0, high=k_seqlen, size=(batch_size,), device=device), max_len=k_seqlen) seed_cpu_cuda(seed) mha = MultiheadAttention(embed_dim, num_heads, bias=bias, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, kdim=kdim, vdim=vdim, batch_first=batch_first).to(device) full_attn = FullAttention(attention_dropout=dropout) q = torch.randn(batch_size, q_seqlen, embed_dim, device=device) k = q if same_qk else torch.randn(batch_size, k_seqlen, embed_dim, device=device) v = k if same_kv else torch.randn(batch_size, k_seqlen, embed_dim, device=device) if not batch_first: q, k, v = [rearrange(x, 'b s d -> s b d').contiguous() for x in [q, k, v]] for training in [True, False]: mha.train(training) full_attn.train(training) output, attn = mha(full_attn, q, k, v, attn_mask=attn_mask, key_padding_mask=key_padding_mask, need_weights=(dropout == 0.0)) assert output.shape == ((batch_size, q_seqlen, embed_dim) if batch_first else (q_seqlen, batch_size, embed_dim)) if attn is not None: assert attn.shape == (batch_size, num_heads, q_seqlen, k_seqlen + int(add_bias_kv) + int(add_zero_attn))
fly-master
tests/models/modules/test_multihead_attention.py
import math import torch import pytest from src.models.layers.blockdiag_butterfly_multiply import blockdiag_butterfly_multiply_reference from src.models.layers.blockdiag_butterfly_multiply import blockdiag_butterfly_multiply from src.ops.blockdiag_butterfly_einsum import ( blockdiag_butterfly_multiply_einsum_simple, blockdiag_butterfly_project_einsum_simple, blockdiag_butterfly_multiply_einsum, blockdiag_butterfly_project_einsum, blockdiag_butterfly_multiply_einsum_rank, blockdiag_butterfly_project_einsum_rank ) @pytest.mark.parametrize('dtype', [torch.float32, torch.complex64]) @pytest.mark.parametrize('device', ['cpu', 'cuda']) @pytest.mark.parametrize('log_n', [4, 10, 12]) def test_block_diag_butterfly_multiply_einsum_simple(log_n, device, dtype): # set seed torch.random.manual_seed(0) n = 1 << log_n sqrtn = 1 << (log_n // 2) batch_size = 3 x = torch.randn(batch_size, n, device=device, dtype=dtype, requires_grad=True) w1_bfly = torch.randn(sqrtn, sqrtn, sqrtn, device=x.device, dtype=x.dtype, requires_grad=True) w2_bfly = torch.randn(sqrtn, sqrtn, sqrtn, device=x.device, dtype=x.dtype, requires_grad=True) out1 = blockdiag_butterfly_multiply_reference(x, w1_bfly, w2_bfly, version=2) out2 = blockdiag_butterfly_multiply_einsum_simple(x, w1_bfly, w2_bfly) assert torch.allclose(out1, out2, rtol=1e-4, atol=1e-4) @pytest.mark.parametrize('dtype', [torch.float32, torch.complex64]) @pytest.mark.parametrize('device', ['cpu', 'cuda']) def test_block_diag_butterfly_multiply_einsum_simple_rectangular(device, dtype): # set seed torch.random.manual_seed(0) n = 768 batch_size = 3 x = torch.randn(batch_size, n, device=device, dtype=dtype, requires_grad=True) w1_bfly = torch.randn(8, 96 * 2, 96, device=x.device, dtype=x.dtype, requires_grad=True) w2_bfly = torch.randn(96 * 2, 16, 8, device=x.device, dtype=x.dtype, requires_grad=True) out2 = blockdiag_butterfly_multiply_reference(x, w1_bfly, w2_bfly, version=2) out3 = blockdiag_butterfly_multiply_einsum_simple(x, w1_bfly, w2_bfly) assert torch.allclose(out2, out3, rtol=1e-4, atol=1e-4) @pytest.mark.parametrize('device', ['cpu', 'cuda']) @pytest.mark.parametrize('log_n', [2, 4, 10]) def test_block_diag_butterfly_project_einsum_sqrtn(log_n, device): # set seed torch.random.manual_seed(0) n = 1 << log_n sqrtn = 1 << (log_n // 2) x = torch.eye(n, device=device) w1_bfly = torch.randn(sqrtn, sqrtn, sqrtn, device=x.device, dtype=x.dtype, requires_grad=True) w2_bfly = torch.randn(sqrtn, sqrtn, sqrtn, device=x.device, dtype=x.dtype, requires_grad=True) bfly = blockdiag_butterfly_multiply(x, w1_bfly, w2_bfly).t() w1_bfly_projected, w2_bfly_projected = blockdiag_butterfly_project_einsum_simple(bfly, nblocks1=sqrtn, nblocks2=sqrtn) bfly_projected = blockdiag_butterfly_multiply(x, w1_bfly_projected, w2_bfly_projected).t() print((bfly_projected - bfly).abs().max()) assert torch.allclose(bfly_projected, bfly, rtol=1e-4, atol=1e-4) @pytest.mark.parametrize('device', ['cpu', 'cuda']) def test_block_diag_butterfly_project_einsum_simple(device): # set seed torch.random.manual_seed(0) n = 768 x = torch.eye(n, device=device) nblocks1, nblocks2 = 8, 96 * 2 w1_bfly = torch.randn(nblocks1, nblocks2, 96, device=x.device, dtype=x.dtype, requires_grad=True) w2_bfly = torch.randn(nblocks2, 16, nblocks1, device=x.device, dtype=x.dtype, requires_grad=True) bfly = blockdiag_butterfly_multiply(x, w1_bfly, w2_bfly).t() w1_bfly_projected, w2_bfly_projected = blockdiag_butterfly_project_einsum_simple(bfly, nblocks1=nblocks1, nblocks2=nblocks2) assert w1_bfly_projected.shape == w1_bfly.shape assert w2_bfly_projected.shape == w2_bfly.shape bfly_projected = blockdiag_butterfly_multiply(x, w1_bfly_projected, w2_bfly_projected).t() print((bfly_projected - bfly).abs().max()) assert torch.allclose(bfly_projected, bfly, rtol=1e-4, atol=1e-4) @pytest.mark.parametrize('device', ['cpu', 'cuda']) def test_block_diag_butterfly_project_einsum(device): # set seed torch.random.manual_seed(0) n = 768 x = torch.eye(n, device=device) nblocks1, nblocks2 = 8, 24 b1, b2 = 8, 2 w1_bfly = torch.randn(nblocks1, nblocks2 * b1, 96, device=x.device, dtype=x.dtype, requires_grad=True) w2_bfly = torch.randn(nblocks2, 16, nblocks1 * b1, device=x.device, dtype=x.dtype, requires_grad=True) bfly = blockdiag_butterfly_multiply_einsum(x, w1_bfly, w2_bfly, b2=b2).t() w1_bfly_projected, w2_bfly_projected = blockdiag_butterfly_project_einsum(bfly, nblocks1=nblocks1, nblocks2=nblocks2, b1=b1, b2=b2) assert w1_bfly_projected.shape == w1_bfly.shape assert w2_bfly_projected.shape == w2_bfly.shape bfly_projected = blockdiag_butterfly_multiply_einsum(x, w1_bfly_projected, w2_bfly_projected, b2=b2).t() print((bfly_projected - bfly).abs().max()) assert torch.allclose(bfly_projected, bfly, rtol=1e-4, atol=1e-4) @pytest.mark.parametrize('device', ['cpu', 'cuda']) def test_block_diag_butterfly_project_einsum_rank(device): # set seed torch.random.manual_seed(0) n = 768 x = torch.eye(n, device=device) nblocks1, nblocks2 = 8, 24 rank = 8 w1_bfly = torch.randn(nblocks1, nblocks2 * rank, 96, device=x.device, dtype=x.dtype, requires_grad=True) w2_bfly = torch.randn(nblocks2, 16, nblocks1 * rank, device=x.device, dtype=x.dtype, requires_grad=True) bfly = blockdiag_butterfly_multiply_einsum_rank(x, w1_bfly, w2_bfly).t() w1_bfly_projected, w2_bfly_projected = blockdiag_butterfly_project_einsum_rank(bfly, nblocks1=nblocks1, nblocks2=nblocks2, rank=rank) assert w1_bfly_projected.shape == w1_bfly.shape assert w2_bfly_projected.shape == w2_bfly.shape bfly_projected = blockdiag_butterfly_multiply_einsum_rank(x, w1_bfly_projected, w2_bfly_projected).t() print((bfly_projected - bfly).abs().max()) assert torch.allclose(bfly_projected, bfly, rtol=1e-4, atol=1e-4)
fly-master
tests/ops/test_blockdiag_butterfly_einsum.py
import math import torch import pytest from einops import rearrange from src.models.layers.blockdiag_butterfly_multiply import blockdiag_butterfly_multiply from src.ops.blockdiag_butterfly_projection import blockdiag_butterfly_project, factors from src.ops.blockdiag_butterfly_projection import ButterflyFFT, ButterflyFFT2 # from src.ops.permutation import bitreversal_permutation @pytest.mark.parametrize('device', ['cpu', 'cuda']) @pytest.mark.parametrize('log_n', [2, 4, 10, 12]) def test_block_diag_butterfly_project_sqrtn(log_n, device): # set seed torch.random.manual_seed(0) n = 1 << log_n sqrtn = 1 << (log_n // 2) x = torch.eye(n, device=device) w1_bfly = torch.randn(sqrtn, sqrtn, sqrtn, device=x.device, dtype=x.dtype, requires_grad=True) w2_bfly = torch.randn(sqrtn, sqrtn, sqrtn, device=x.device, dtype=x.dtype, requires_grad=True) bfly = blockdiag_butterfly_multiply(x, w1_bfly, w2_bfly).t() w1_bfly_projected, w2_bfly_projected = blockdiag_butterfly_project(bfly) bfly_projected = blockdiag_butterfly_multiply(x, w1_bfly_projected, w2_bfly_projected).t() print((bfly_projected - bfly).abs().max()) assert torch.allclose(bfly_projected, bfly, rtol=1e-4, atol=1e-4) @pytest.mark.parametrize('direction', ['fft', 'ifft']) @pytest.mark.parametrize('device', ['cpu', 'cuda']) @pytest.mark.parametrize('log_n', [2, 4, 10]) def test_block_diag_butterfly_project_fft_sqrtn(log_n, device, direction): # set seed torch.random.manual_seed(0) n = 1 << log_n sqrtn = 1 << (log_n // 2) batch_size = 3 eye = torch.eye(n, dtype=torch.complex64, device=device) transform = torch.fft.fft if direction == 'fft' else torch.fft.ifft dft = transform(eye, norm='ortho').t() # perm = bitreversal_permutation(n) # We don't actually need the bitreversal permutation, any permutation that swap # the axes of the sqrtn x sqrtn input will work. perm = rearrange(torch.arange(n, device=device), '(i j) -> (j i)', i=sqrtn) # The BP (butterfly - permutation) decomposition of FFT / iFFT # Converting to complex128 makes the approximation an order of magnitude more accurate w1_fft_projected, w2_fft_projected = blockdiag_butterfly_project(dft[:, perm].cdouble()) w1_fft_projected, w2_fft_projected = w1_fft_projected.cfloat(), w2_fft_projected.cfloat() fft_projected = blockdiag_butterfly_multiply(eye, w1_fft_projected, w2_fft_projected).t() print((fft_projected - dft[:, perm]).abs().max()) assert torch.allclose(fft_projected, dft[:, perm], rtol=1e-4, atol=1e-4) x = torch.randn(batch_size, n, dtype=torch.complex64, device=device) out_fft = transform(x, norm='ortho') out = blockdiag_butterfly_multiply(x[:, perm], w1_fft_projected, w2_fft_projected) assert torch.allclose(out, out_fft, rtol=1e-4, atol=1e-4) @pytest.mark.parametrize('direction', ['fft', 'ifft']) @pytest.mark.parametrize('device', ['cpu', 'cuda']) @pytest.mark.parametrize('norm', ['ortho', None]) @pytest.mark.parametrize('n', [15, 36, 196, 27, 48, 42, 85, 168, 512]) def test_block_diag_butterfly_project_fft_rectangular(n, norm, device, direction): # set seed torch.random.manual_seed(0) batch_size = 3 eye = torch.eye(n, dtype=torch.complex64, device=device) transform = torch.fft.fft if direction == 'fft' else torch.fft.ifft dft = transform(eye, norm=norm).t() sizes = factors(n)[-1] sizes = (sizes[1], sizes[0]) perm = rearrange(torch.arange(n, device=device), '(i j) -> (j i)', j=sizes[0]) # The BP (butterfly - permutation) decomposition of FFT / iFFT # Converting to complex128 makes the approximation an order of magnitude more accurate w1_fft_projected, w2_fft_projected = blockdiag_butterfly_project(dft[:, perm].cdouble(), sizes=sizes) w1_fft_projected, w2_fft_projected = w1_fft_projected.cfloat(), w2_fft_projected.cfloat() fft_projected = blockdiag_butterfly_multiply(eye, w1_fft_projected, w2_fft_projected).t() print((fft_projected - dft[:, perm]).abs().max()) assert torch.allclose(fft_projected, dft[:, perm], rtol=1e-4, atol=1e-4) x = torch.randn(batch_size, n, dtype=torch.complex64, device=device) out_fft = transform(x, norm=norm) out = blockdiag_butterfly_multiply(x[:, perm], w1_fft_projected, w2_fft_projected) assert torch.allclose(out, out_fft, rtol=1e-4, atol=1e-4) bfly_fft = ButterflyFFT(n, direction=direction, norm=norm).to(device=device) out_module = bfly_fft(x) assert torch.allclose(out_module, out_fft, rtol=1e-4, atol=1e-4) @pytest.mark.parametrize('direction', ['fft', 'ifft']) @pytest.mark.parametrize('device', ['cpu', 'cuda']) @pytest.mark.parametrize('norm', ['ortho', None]) @pytest.mark.parametrize('n2', [85, 512]) @pytest.mark.parametrize('n1', [42, 160, 161]) def test_butterflyfft2(n1, n2, norm, device, direction): # set seed torch.random.manual_seed(0) batch_size = 3 x = torch.randn(batch_size, n1, n2, dtype=torch.complex64, device=device) transform = torch.fft.fft2 if direction == 'fft' else torch.fft.ifft2 out_fft = transform(x, norm=norm) bfly_fft = ButterflyFFT2(n1, n2, direction=direction, norm=norm).to(device=device) out = bfly_fft(x) assert torch.allclose(out, out_fft, rtol=1e-4, atol=1e-4)
fly-master
tests/ops/test_blockdiag_butterfly_projection.py
import math import torch import torch.nn.functional as F import pytest from einops import rearrange, repeat from src.ops.fused_softmax_dropout import _fused_softmax_dropout @pytest.mark.parametrize('dtype', [torch.float16]) @pytest.mark.parametrize('seqlen', [128, 512, 1024]) def test_softmax_dropout(seqlen, dtype): device = 'cuda' dropout_prob = 0.37 rtol, atol = (1e-5, 1e-6) if dtype == torch.float32 else (1e-3, 3e-4) # set seed torch.random.manual_seed(0) batch_size = 16 nheads = 2 x = torch.randn(batch_size, nheads, seqlen, seqlen, device=device, dtype=dtype, requires_grad=True) lengths = torch.randint(seqlen - 20, seqlen, (batch_size, 1), device=device) attention_mask_bool = repeat(torch.arange(seqlen, device=device), 's -> b s', b=batch_size) < lengths attention_mask = torch.zeros(batch_size, seqlen, device=device, dtype=dtype) attention_mask[~attention_mask_bool] = -10000.0 attention_mask = rearrange(attention_mask, 'b s -> b 1 1 s') torch.random.manual_seed(0) out, dropout_mask = _fused_softmax_dropout.apply(x, dropout_prob, attention_mask, True) out_pt = F.softmax(x + attention_mask, dim=-1, dtype=x.dtype) * dropout_mask / (1 - dropout_prob) assert torch.allclose(out, out_pt, rtol=rtol, atol=atol) g = torch.randn_like(out) dx, = torch.autograd.grad(out, x, g) dx_pt, = torch.autograd.grad(out_pt, x, g) assert torch.allclose(dx, dx_pt, rtol=rtol, atol=atol)
fly-master
tests/ops/test_fused_softmax_dropout.py
import math import torch import pytest from einops import rearrange from src.ops.blockdiag_multiply import blockdiag_multiply_reference, blockdiag_multiply @pytest.mark.parametrize('dtype', [torch.float32, torch.complex64]) @pytest.mark.parametrize('device', ['cpu', 'cuda']) def test_blockdiag_multiply(device, dtype): # set seed torch.random.manual_seed(0) n = 768 batch_size = 3 x = torch.randn(batch_size, n, device=device, dtype=dtype, requires_grad=True) weight = torch.randn(8, 96 * 2, 96, device=x.device, dtype=x.dtype, requires_grad=True) out = blockdiag_multiply(x, weight) grad = torch.randn_like(out) dx, dweight = torch.autograd.grad(out, (x, weight), grad, retain_graph=True) assert out.shape == (batch_size, 8 * 96 * 2) out_ref = blockdiag_multiply_reference(x, weight) dx_ref, dweight_bfly = torch.autograd.grad(out_ref, (x, weight), grad, retain_graph=True) assert torch.allclose(out, out_ref, rtol=1e-4, atol=1e-4) assert torch.allclose(dx, dx_ref, rtol=1e-4, atol=1e-4) assert torch.allclose(dweight, dweight_bfly, rtol=1e-4, atol=1e-4)
fly-master
tests/ops/test_blockdiag_multiply.py
import math import torch import torch.nn.functional as F import pytest from einops import rearrange, repeat from src.ops.triton.softmax_dropout import softmax_dropout @pytest.mark.parametrize('dtype', [torch.float32, torch.float16]) @pytest.mark.parametrize('seqlen', [128, 512, 1024]) def test_softmax_dropout(seqlen, dtype): device = 'cuda' dropout_prob = 0.37 rtol, atol = (1e-5, 1e-6) if dtype == torch.float32 else (1e-3, 3e-4) # set seed torch.random.manual_seed(0) batch_size = 16 nheads = 2 x = torch.randn(batch_size, nheads, seqlen, seqlen, device=device, dtype=dtype, requires_grad=True) lengths = torch.randint(seqlen - 20, seqlen, (batch_size, 1), device=device) attention_mask_bool = repeat(torch.arange(seqlen, device=device), 's -> b s', b=batch_size) < lengths attention_mask = torch.zeros(batch_size, seqlen, device=device, dtype=dtype) attention_mask[~attention_mask_bool] = -10000.0 attention_mask = rearrange(attention_mask, 'b s -> b 1 1 s') torch.random.manual_seed(0) out_pt = F.dropout(F.softmax(x + attention_mask, dim=-1, dtype=x.dtype), dropout_prob) torch.random.manual_seed(0) out = softmax_dropout(x, dropout_prob, mask=attention_mask, mask_type='bk') assert torch.allclose(out, out_pt, rtol=rtol, atol=atol) g = torch.randn_like(out) dx, = torch.autograd.grad(out, x, g.clone()) # Need to clone as the backward is in-place. dx_pt, = torch.autograd.grad(out_pt, x, g) assert torch.allclose(dx, dx_pt, rtol=rtol, atol=atol)
fly-master
tests/ops/triton/test_softmax_dropout.py
"""Convert T2T-ViT checkpoints to be compatible with our rewrite """ import re import sys import shutil from pathlib import Path import numpy as np import torch def main(): for file_name in sys.argv[1:]: path = Path(file_name).expanduser() if not str(path).endswith('.og'): # Back up original checkpoint path_og = Path(str(path) + '.og') shutil.copy2(path, path_og) state_dict = torch.load(path, map_location='cpu') # T2T-ViT checkpoint is nested in the key 'state_dict_ema' if state_dict.keys() == {'state_dict_ema'}: state_dict = state_dict['state_dict_ema'] # Replace the names of some of the submodules def key_mapping(key): if key == 'pos_embed': return 'pos_embed.pe' elif key.startswith('tokens_to_token.'): return re.sub('^tokens_to_token.', 'patch_embed.', key) else: return key state_dict = {key_mapping(k): v for k, v in state_dict.items()} torch.save(state_dict, path) if __name__ == '__main__': main()
fly-master
scripts/convert_checkpoint_t2t_vit.py
fly-master
src/__init__.py
from typing import List, Optional from pathlib import Path import hydra from omegaconf import OmegaConf, DictConfig from pytorch_lightning import ( Callback, LightningDataModule, LightningModule, Trainer, seed_everything, ) from pytorch_lightning.loggers import LightningLoggerBase from src.utils import utils log = utils.get_logger(__name__) def train(config: DictConfig) -> Optional[float]: """Contains training pipeline. Instantiates all PyTorch Lightning objects from config. Args: config (DictConfig): Configuration composed by Hydra. Returns: Optional[float]: Metric score for hyperparameter optimization. """ # Set seed for random number generators in pytorch, numpy and python.random if config.get("seed"): seed_everything(config.seed, workers=True) # We want to add fields to config so need to call OmegaConf.set_struct OmegaConf.set_struct(config, False) # Init lightning model model: LightningModule = hydra.utils.instantiate(config.task, cfg=config, _recursive_=False) datamodule: LightningDataModule = model._datamodule # Init lightning callbacks callbacks: List[Callback] = [] if "callbacks" in config: for _, cb_conf in config.callbacks.items(): if cb_conf is not None and "_target_" in cb_conf: log.info(f"Instantiating callback <{cb_conf._target_}>") callbacks.append(hydra.utils.instantiate(cb_conf)) # Init lightning loggers logger: List[LightningLoggerBase] = [] if "logger" in config: for _, lg_conf in config.logger.items(): if "_target_" in lg_conf: log.info(f"Instantiating logger <{lg_conf._target_}>") logger.append(hydra.utils.instantiate(lg_conf)) if config.get('resume'): try: checkpoint_path = Path(config.callbacks.model_checkpoint.dirpath) if checkpoint_path.is_dir(): checkpoint_path /= 'last.ckpt' if checkpoint_path.is_file(): config.trainer.resume_from_checkpoint = str(checkpoint_path) else: log.info(f'Checkpoint file {str(checkpoint_path)} not found. Will start training from scratch') except KeyError: pass # Init lightning trainer log.info(f"Instantiating trainer <{config.trainer._target_}>") trainer: Trainer = hydra.utils.instantiate( config.trainer, callbacks=callbacks, logger=logger, _convert_="partial" ) # Train the model log.info("Starting training!") trainer.fit(model=model, datamodule=datamodule) # Evaluate model on test set, using the best model achieved during training if config.get("test_after_training") and not config.trainer.get("fast_dev_run"): log.info("Starting testing!") trainer.test() # Make sure everything closed properly log.info("Finalizing!") utils.finish( config=config, model=model, datamodule=datamodule, trainer=trainer, callbacks=callbacks, logger=logger, ) # Print path to best checkpoint if not config.trainer.get("fast_dev_run"): log.info(f"Best model ckpt: {trainer.checkpoint_callback.best_model_path}") # Return metric score for hyperparameter optimization optimized_metric = config.get("optimized_metric") if optimized_metric: return trainer.callback_metrics[optimized_metric]
fly-master
src/train.py
from typing import List, Optional from pathlib import Path import torch import hydra from omegaconf import OmegaConf, DictConfig from pytorch_lightning import ( Callback, LightningDataModule, LightningModule, Trainer, seed_everything, ) from pytorch_lightning.loggers import LightningLoggerBase from src.utils import utils log = utils.get_logger(__name__) def load_checkpoint(path, device='cpu'): path = Path(path).expanduser() if path.is_dir(): path /= 'checkpoint_last.pt' # dst = f'cuda:{torch.cuda.current_device()}' log.info(f'Loading checkpoint from {str(path)}') state_dict = torch.load(path, map_location=device) # T2T-ViT checkpoint is nested in the key 'state_dict_ema' if state_dict.keys() == {'state_dict_ema'}: state_dict = state_dict['state_dict_ema'] return state_dict def evaluate(config: DictConfig) -> None: """Example of inference with trained model. It loads trained image classification model from checkpoint. Then it loads example image and predicts its label. """ # load model from checkpoint # model __init__ parameters will be loaded from ckpt automatically # you can also pass some parameter explicitly to override it # We want to add fields to config so need to call OmegaConf.set_struct OmegaConf.set_struct(config, False) # load Lightning model checkpoint_type = config.eval.get('checkpoint_type', 'lightning') if checkpoint_type not in ['lightning', 'pytorch']: raise NotImplementedError(f'checkpoint_type ${checkpoint_type} not supported') if checkpoint_type == 'lightning': cls = hydra.utils.get_class(config.task._target_) trained_model = cls.load_from_checkpoint(checkpoint_path=config.eval.ckpt) else: trained_model: LightningModule = hydra.utils.instantiate(config.task, cfg=config, _recursive_=False) load_return = trained_model.model.load_state_dict(load_checkpoint(config.eval.ckpt, device=trained_model.device), strict=False) log.info(load_return) # datamodule: LightningDataModule = hydra.utils.instantiate(config.datamodule) datamodule: LightningDataModule = trained_model._datamodule datamodule.prepare_data() datamodule.setup() # print model hyperparameters log.info(f'Model hyperparameters: {trained_model.hparams}') # Init Lightning callbacks callbacks: List[Callback] = [] if "callbacks" in config: for _, cb_conf in config["callbacks"].items(): if "_target_" in cb_conf: log.info(f"Instantiating callback <{cb_conf._target_}>") callbacks.append(hydra.utils.instantiate(cb_conf)) # Init Lightning loggers logger: List[LightningLoggerBase] = [] if "logger" in config: for _, lg_conf in config["logger"].items(): if "_target_" in lg_conf: log.info(f"Instantiating logger <{lg_conf._target_}>") logger.append(hydra.utils.instantiate(lg_conf)) # Init Lightning trainer log.info(f"Instantiating trainer <{config.trainer._target_}>") trainer: Trainer = hydra.utils.instantiate( config.trainer, callbacks=callbacks, logger=logger, _convert_="partial" ) # Evaluate the model log.info("Starting evaluation!") if config.eval.get('run_val', True): trainer.validate(model=trained_model, datamodule=datamodule) if config.eval.get('run_test', True): trainer.test(model=trained_model, datamodule=datamodule) # Make sure everything closed properly log.info("Finalizing!") utils.finish( config=config, model=trained_model, datamodule=datamodule, trainer=trainer, callbacks=callbacks, logger=logger, )
fly-master
src/eval.py
# Inspired by https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/nlp/metrics/sequence_perplexity.py # But we compute the perplexity correctly: exp(average(nll)), not average(exp(nll)) import torch import torch.nn.functional as F from torchmetrics import Metric __all__ = ['Perplexity'] class Perplexity(Metric): """ This class computes mean perplexity across the batches of sequences. You have to provide ``logits`` (float tensor of shape [batch_size x seq_length x vocab_size]) and ``labels`` (int tensor of shape [batch_size x seq_length] with values from the range [0, vocab_size-1]) to the :meth:`update` method. If some of the sequences are shorter than seq_length, you can also provide an optional argument ``mask`` (bool tensor of shape [batch_size x seq_length]) which masks out tokens not participating in perplexity computation. See :doc:`PyTorch Lightning Metrics<pytorch-lightning:metrics>` for the metric usage instructions. Args: compute_on_step: Forward only calls ``update()`` and returns ``None`` if this is set to ``False``. default: ``True`` dist_sync_on_step: Synchronize metric state across processes at each ``forward()`` before returning the value at the step. process_group: Specify the process group on which synchronization is called. default: ``None`` (which selects the entire world) dist_sync_fn: Callback that performs the allgather operation on the metric state. When ``None``, DDP will be used to perform the allgather. """ def __init__(self, compute_on_step=True, dist_sync_on_step=False, process_group=None, dist_sync_fn=None): super().__init__( compute_on_step=compute_on_step, dist_sync_on_step=dist_sync_on_step, process_group=process_group, dist_sync_fn=dist_sync_fn, ) # Total sum of exponentiated average negative log likelihoods self.add_state('nll_mean', default=torch.tensor(0.0, dtype=torch.float64), dist_reduce_fx='mean') # Total number of sequences in all batches self.add_state('numel', default=torch.tensor(0, dtype=torch.int64), dist_reduce_fx='sum') def update(self, logits: torch.Tensor, labels: torch.Tensor, mask=None): # if mask is None: # mask = torch.ones_like(labels) # mask = mask.to(logits.dtype) # log_probs = torch.log_softmax(logits, dim=-1) # target_log_probs = log_probs.gather(-1, labels.unsqueeze(-1)).squeeze(-1) # nll = -(target_log_probs * mask).sum() # self.numel += mask.sum().long() # self.nll_sum += nll # TODO: ignoring mask rn current_sum = self.nll_mean.double() * self.numel self.numel += labels.numel() loss = F.cross_entropy(logits, labels) self.nll_mean = (current_sum + loss.double() * labels.numel()) / self.numel def compute(self): """ Returns perplexity across all workers and resets to 0 :attr:`nll_sum` and :attr:`numel`. """ if self.numel.eq(0): return None # return (self.nll_sum / self.numel).exp() return self.nll_mean.exp()
fly-master
src/metrics/perplexity.py
import torch from torch import Tensor from torchmetrics import Metric, Accuracy class AccuracyMine(Accuracy): """Wrap torchmetrics.Accuracy to take argmax of y in case of Mixup. """ def update(self, preds: Tensor, target: Tensor) -> None: # type: ignore super().update(preds, target.argmax(dim=-1) if target.is_floating_point() else target) # TD [2022-02-10] torchmetrics.Accuracy doesn't work with negative ignore_index yet # https://github.com/PyTorchLightning/metrics/pull/362 class AccuracyIgnoreIndex(Metric): def __init__(self, ignore_index=None, compute_on_step=True, dist_sync_on_step=False, process_group=None, dist_sync_fn=None): super().__init__( compute_on_step=compute_on_step, dist_sync_on_step=dist_sync_on_step, process_group=process_group, dist_sync_fn=dist_sync_fn, ) self.ignore_index = ignore_index # Total number of sequences in all batches self.add_state('total', default=torch.tensor(0, dtype=torch.int64), dist_reduce_fx='sum') # Total number of correct predictions self.add_state('correct', default=torch.tensor(0, dtype=torch.int64), dist_reduce_fx='sum') def update(self, preds: torch.Tensor, target: torch.Tensor): if preds.is_floating_point(): preds = preds.argmax(dim=-1) matched = (preds == target) if self.ignore_index is not None: matched = matched[target != self.ignore_index] self.total += matched.numel() self.correct += matched.count_nonzero() def compute(self): """ Returns perplexity across all workers and resets to 0 :attr:`nll_sum` and :attr:`total`. """ if self.total.eq(0): return None return self.correct / self.total
fly-master
src/metrics/accuracy.py
import torch import torch.nn as nn from einops import rearrange class RelativeL2(nn.Module): def forward(self, x, y): x = rearrange(x, 'b ... -> b (...)') y = rearrange(y, 'b ... -> b (...)') diff_norms = torch.linalg.norm(x - y, ord=2, dim=-1) y_norms = torch.linalg.norm(y, ord=2, dim=-1) return (diff_norms / y_norms).mean()
fly-master
src/losses/relative_l2.py
# Copied from https://github.com/HobbitLong/SupContrast/blob/master/losses.py """ Author: Yonglong Tian ([email protected]) Date: May 07, 2020 """ from __future__ import print_function import torch import torch.nn as nn class SupConLoss(nn.Module): """Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf. It also supports the unsupervised contrastive loss in SimCLR""" def __init__(self, temperature=0.07, contrast_mode='all', base_temperature=0.07): super(SupConLoss, self).__init__() self.temperature = temperature self.contrast_mode = contrast_mode self.base_temperature = base_temperature def forward(self, features, labels=None, mask=None): """Compute loss for model. If both `labels` and `mask` are None, it degenerates to SimCLR unsupervised loss: https://arxiv.org/pdf/2002.05709.pdf Args: features: hidden vector of shape [bsz, n_views, ...]. labels: ground truth of shape [bsz]. mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j has the same class as sample i. Can be asymmetric. Returns: A loss scalar. """ device = (torch.device('cuda') if features.is_cuda else torch.device('cpu')) if len(features.shape) < 3: raise ValueError('`features` needs to be [bsz, n_views, ...],' 'at least 3 dimensions are required') if len(features.shape) > 3: features = features.view(features.shape[0], features.shape[1], -1) batch_size = features.shape[0] if labels is not None and mask is not None: raise ValueError('Cannot define both `labels` and `mask`') elif labels is None and mask is None: mask = torch.eye(batch_size, dtype=torch.float32).to(device) elif labels is not None: labels = labels.contiguous().view(-1, 1) if labels.shape[0] != batch_size: raise ValueError('Num of labels does not match num of features') mask = torch.eq(labels, labels.T).float().to(device) else: mask = mask.float().to(device) contrast_count = features.shape[1] contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0) if self.contrast_mode == 'one': anchor_feature = features[:, 0] anchor_count = 1 elif self.contrast_mode == 'all': anchor_feature = contrast_feature anchor_count = contrast_count else: raise ValueError('Unknown mode: {}'.format(self.contrast_mode)) # compute logits anchor_dot_contrast = torch.div( torch.matmul(anchor_feature, contrast_feature.T), self.temperature) # for numerical stability logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True) logits = anchor_dot_contrast - logits_max.detach() # tile mask mask = mask.repeat(anchor_count, contrast_count) # mask-out self-contrast cases logits_mask = torch.scatter( torch.ones_like(mask), 1, torch.arange(batch_size * anchor_count).view(-1, 1).to(device), 0 ) mask = mask * logits_mask # compute log_prob exp_logits = torch.exp(logits) * logits_mask log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True)) # compute mean of log-likelihood over positive mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1) # loss loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos loss = loss.view(anchor_count, batch_size).mean() return loss
fly-master
src/losses/supcon.py
from typing import Any, List import torch import hydra from pytorch_lightning import LightningModule, LightningDataModule from torchmetrics import MetricCollection from einops import rearrange from omegaconf import OmegaConf from src.utils.utils import get_logger from src.optim.param_grouping import group_parameters_for_optimizer from src.utils.checkpoint import load_checkpoint logger = get_logger(__name__) class SequenceModel(LightningModule): def __init__(self, cfg, model_cfg=None): """If model_cfg is passed, it will take precedence over cfg.model """ super().__init__() # this line ensures params passed to LightningModule will be saved to ckpt # it also allows to access params with 'self.hparams' attribute self.save_hyperparameters(cfg) self.cfg = cfg self.model_cfg = model_cfg or self.cfg.model self.instantiate_datamodule() self.instantiate_model() self.warmstart() self.instantiate_loss() self.instantiate_metrics() def instantiate_datamodule(self): logger.info(f"Instantiating datamodule <{self.cfg.datamodule._target_}>") # Calling this self.datamodule will mess with PL since it also assigns self.datamodule self._datamodule: LightningDataModule = hydra.utils.instantiate(self.cfg.datamodule) self._datamodule.prepare_data() self._datamodule.setup() def instantiate_model(self): if hasattr(self._datamodule, 'num_classes'): self.model_cfg.num_classes = self._datamodule.num_classes if (hasattr(self._datamodule, 'vocab_size') and self.model_cfg.get('embedding_cfg', None) is not None): self.model_cfg.embedding_cfg.num_embeddings = self._datamodule.vocab_size logger.info(f"Instantiating model <{self.model_cfg._target_}>") recursive = getattr(self.model_cfg, '_recursive_', False) self.model = hydra.utils.instantiate(self.model_cfg, _recursive_=recursive) def instantiate_loss(self): loss_fn_cfg = self.cfg.train.get('loss_fn', {'_target_': 'torch.nn.CrossEntropyLoss'}) self.loss_fn = hydra.utils.instantiate(loss_fn_cfg) loss_fn_val_cfg = self.cfg.train.get('loss_fn_val', loss_fn_cfg) self.loss_fn_val = hydra.utils.instantiate(loss_fn_val_cfg) def instantiate_metrics(self): # use separate metric instance for train, val and test step # to ensure a proper reduction over the epoch if 'eval' in self.cfg and 'metrics' in self.cfg.eval: metrics_cfg = self.cfg.eval.metrics else: metrics_cfg = {'acc': {'_target_': 'torchmetrics.Accuracy'}} metrics = MetricCollection({name: hydra.utils.instantiate(cfg) for name, cfg in metrics_cfg.items()}) self.train_metrics = metrics.clone(prefix='train/') self.val_metrics = metrics.clone(prefix='val/') self.test_metrics = metrics.clone(prefix='test/') def warmstart(self): if self.cfg.train.get('warmstart', None) is not None: logger.info(f"Warm-starting with weights from {self.cfg.train.warmstart.path}") strict = self.cfg.train.warmstart.get('strict', True) state_dict = load_checkpoint(self.cfg.train.warmstart.path) if self.cfg.train.warmstart.get('post_process', None) is not None: state_dict = hydra.utils.instantiate(self.cfg.train.warmstart.post_process, state_dict) load_return = self.model.load_state_dict(state_dict, strict=False) logger.info(load_return) def forward(self, *args, **kwargs): return self.model(*args, **kwargs) def step(self, batch: Any, is_train=True): try: x, y, lengths = batch except ValueError: x, y = batch lengths = None output = self.forward(x) if lengths is None else self.forward(x, lengths=lengths) loss = self.loss_fn(output, y) if is_train else self.loss_fn_val(output, y) return loss, output, y def shared_step(self, batch: Any, batch_idx: int, phase='train'): loss, output, targets = self.step(batch, is_train=(phase == 'train')) with torch.no_grad(): metrics = getattr(self, f'{phase}_metrics')(output, targets) self.log(f"{phase}/loss", loss, on_step=False, on_epoch=True, prog_bar=False, sync_dist=True) self.log_dict(metrics, on_step=False, on_epoch=True, prog_bar=True, sync_dist=True) return {"loss": loss, "output": output, "targets": targets} def training_step(self, batch: Any, batch_idx: int): return self.shared_step(batch, batch_idx, phase='train') def validation_step(self, batch: Any, batch_idx: int): return self.shared_step(batch, batch_idx, phase='val') def test_step(self, batch: Any, batch_idx: int): return self.shared_step(batch, batch_idx, phase='test') def configure_optimizers(self): if 'optimizer_param_grouping' in self.cfg.train: # Set zero weight decay for some params parameters = group_parameters_for_optimizer(self.model, self.cfg.train.optimizer, **self.cfg.train.optimizer_param_grouping) else: # parameters = self.model.parameters() parameters = self.parameters() # [21-09-08] AG: this will train task specific parameters such as Retrieval head for AAN optimizer = hydra.utils.instantiate(self.cfg.train.optimizer, parameters) # Log optimizer info for i, g in enumerate(optimizer.param_groups): ntensors = len(g['params']) nparams = sum(p.numel() for p in g['params']) hparams = {k: v for k, v in g.items() if k != 'params'} logger.info(f'Optimizer group {i}: {ntensors} tensors, {nparams} parameters, {hparams}') if 'scheduler' not in self.cfg.train: return optimizer else: # lr_scheduler should be called either every step (default) or every epoch lr_scheduler = hydra.utils.instantiate(self.cfg.train.scheduler, optimizer) return [optimizer], {'scheduler': lr_scheduler, 'interval': self.cfg.train.get('scheduler_interval', 'step'), 'monitor': self.cfg.train.get('scheduler_monitor', 'val/loss')} class SequenceDualModel(SequenceModel): def step(self, batch: Any, is_train=True): x1, x2, y, lengths1, lengths2 = batch output = self.forward(x1, x2, lengths1=lengths1, lengths2=lengths2) loss = self.loss_fn(output, y) if is_train else self.loss_fn_val(output, y) output = torch.argmax(output, dim=1) return loss, output, y class SequenceLMModel(SequenceModel): def instantiate_model(self): if (hasattr(self._datamodule, 'vocab_size') and self.model_cfg.get('embedding_cfg', None) is not None): self.model_cfg.embedding_cfg.num_embeddings = self._datamodule.vocab_size logger.info(f"Instantiating model <{self.model_cfg._target_}>") # Huggingface models need the config object to be instantiated first config = hydra.utils.instantiate(self.model_cfg.pop('config'), _recursive_=False) self.model = hydra.utils.instantiate(self.model_cfg, config, _recursive_=False) def step(self, batch: Any, is_train=True): x, y = batch output = self.forward(x).logits output = rearrange(output, '... C -> (...) C') y = rearrange(y, '... -> (...)') loss = self.loss_fn(output, y) if is_train else self.loss_fn_val(output, y) return loss, output, y
fly-master
src/tasks/seq.py
# Adapted from https://github.com/rwightman/pytorch-image-models/blob/master/benchmark.py from typing import Any, List, Sequence from pytorch_lightning import Callback, Trainer, LightningModule from pytorch_lightning.utilities import rank_zero_only from pytorch_lightning.utilities.parsing import AttributeDict from src.utils.flops import has_deepspeed_profiling, has_fvcore_profiling from src.utils.flops import profile_deepspeed, profile_fvcore class FlopCount(Callback): """Counter the number of FLOPs used by the model """ def __init__(self, profilers: List[str] = ['fvcore', 'deepspeed'], input_size: tuple = (3, 224, 224), device=None): if not isinstance(profilers, Sequence): profilers = [profilers] if any(p not in ['fvcore', 'deepspeed'] for p in profilers): raise NotImplementedError('Only support fvcore and deepspeed profilers') if 'fvcore' in profilers and not has_fvcore_profiling: raise ImportError('fvcore is not installed. Install it by running `pip install fvcore`') elif 'deepspeed' in profilers and not has_deepspeed_profiling: raise ImportError('deepspeed is not installed') super().__init__() self.profilers = profilers self.input_size = tuple(input_size) self.device = device @rank_zero_only def on_fit_start(self, trainer: Trainer, pl_module: LightningModule) -> None: if 'fvcore' in self.profilers: _, macs, _, acts = profile_fvcore(pl_module.to(self.device), input_size=self.input_size, detailed=True) trainer.logger.log_hyperparams({'GMACs': macs * 1e-9, 'MActs': acts * 1e-6}) if 'deepspeed' in self.profilers: macs, _= profile_deepspeed(pl_module.to(self.device), input_size=self.input_size, detailed=True) if 'fvcore' not in self.profilers: # fvcore's MACs seem more accurate trainer.logger.log_hyperparams({'GMACs': macs * 1e-9})
fly-master
src/callbacks/flop_count.py
import subprocess from pathlib import Path from typing import List import matplotlib.pyplot as plt import seaborn as sn import torch import wandb from pytorch_lightning import Callback, Trainer from pytorch_lightning.loggers import LoggerCollection, WandbLogger from pytorch_lightning.utilities import rank_zero_only from sklearn import metrics from sklearn.metrics import f1_score, precision_score, recall_score def get_wandb_logger(trainer: Trainer) -> WandbLogger: """Safely get Weights&Biases logger from Trainer.""" if trainer.fast_dev_run: raise Exception( "Cannot use wandb callbacks since pytorch lightning disables loggers in `fast_dev_run=true` mode." ) if isinstance(trainer.logger, WandbLogger): return trainer.logger if isinstance(trainer.logger, LoggerCollection): for logger in trainer.logger: if isinstance(logger, WandbLogger): return logger raise Exception( "You are using wandb related callback, but WandbLogger was not found for some reason..." ) class WatchModel(Callback): """Make wandb watch model at the beginning of the run.""" def __init__(self, log: str = "gradients", log_freq: int = 100): self.log = log self.log_freq = log_freq @rank_zero_only def on_train_start(self, trainer, pl_module): logger = get_wandb_logger(trainer=trainer) logger.watch(model=trainer.model, log=self.log, log_freq=self.log_freq) class UploadCodeAsArtifact(Callback): """Upload all code files to wandb as an artifact, at the beginning of the run.""" def __init__(self, code_dir: str, use_git: bool = True): """ Args: code_dir: the code directory use_git: if using git, then upload all files that are not ignored by git. if not using git, then upload all '*.py' file """ self.code_dir = code_dir self.use_git = use_git @rank_zero_only def on_train_start(self, trainer, pl_module): logger = get_wandb_logger(trainer=trainer) experiment = logger.experiment code = wandb.Artifact("project-source", type="code") if self.use_git: # get .git folder # https://alexwlchan.net/2020/11/a-python-function-to-ignore-a-path-with-git-info-exclude/ git_dir_path = Path( subprocess.check_output(["git", "rev-parse", "--git-dir"]).strip().decode("utf8") ).resolve() for path in Path(self.code_dir).resolve().rglob("*"): if ( path.is_file() # ignore files in .git and not str(path).startswith(str(git_dir_path)) # noqa: W503 # ignore files ignored by git and ( # noqa: W503 subprocess.run(["git", "check-ignore", "-q", str(path)]).returncode == 1 ) ): code.add_file(str(path), name=str(path.relative_to(self.code_dir))) else: for path in Path(self.code_dir).resolve().rglob("*.py"): code.add_file(str(path), name=str(path.relative_to(self.code_dir))) experiment.log_artifact(code) class UploadCheckpointsAsArtifact(Callback): """Upload checkpoints to wandb as an artifact, at the end of run.""" def __init__(self, ckpt_dir: str = "checkpoints/", upload_best_only: bool = False): self.ckpt_dir = ckpt_dir self.upload_best_only = upload_best_only @rank_zero_only def on_keyboard_interrupt(self, trainer, pl_module): self.on_train_end(trainer, pl_module) @rank_zero_only def on_train_end(self, trainer, pl_module): logger = get_wandb_logger(trainer=trainer) experiment = logger.experiment ckpts = wandb.Artifact("experiment-ckpts", type="checkpoints") if self.upload_best_only: ckpts.add_file(trainer.checkpoint_callback.best_model_path) else: for path in Path(self.ckpt_dir).rglob("*.ckpt"): ckpts.add_file(str(path)) experiment.log_artifact(ckpts) class LogConfusionMatrix(Callback): """Generate confusion matrix every epoch and send it to wandb. Expects validation step to return predictions and targets. """ def __init__(self): self.preds = [] self.targets = [] self.ready = True def on_sanity_check_start(self, trainer, pl_module) -> None: self.ready = False def on_sanity_check_end(self, trainer, pl_module): """Start executing this callback only after all validation sanity checks end.""" self.ready = True def on_validation_batch_end( self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx ): """Gather data from single batch.""" if self.ready: self.preds.append(outputs["preds"]) self.targets.append(outputs["targets"]) def on_validation_epoch_end(self, trainer, pl_module): """Generate confusion matrix.""" if self.ready: logger = get_wandb_logger(trainer) experiment = logger.experiment preds = torch.cat(self.preds).cpu().numpy() targets = torch.cat(self.targets).cpu().numpy() confusion_matrix = metrics.confusion_matrix(y_true=targets, y_pred=preds) # set figure size plt.figure(figsize=(14, 8)) # set labels size sn.set(font_scale=1.4) # set font size sn.heatmap(confusion_matrix, annot=True, annot_kws={"size": 8}, fmt="g") # names should be uniqe or else charts from different experiments in wandb will overlap experiment.log({f"confusion_matrix/{experiment.name}": wandb.Image(plt)}, commit=False) # according to wandb docs this should also work but it crashes # experiment.log(f{"confusion_matrix/{experiment.name}": plt}) # reset plot plt.clf() self.preds.clear() self.targets.clear() class LogF1PrecRecHeatmap(Callback): """Generate f1, precision, recall heatmap every epoch and send it to wandb. Expects validation step to return predictions and targets. """ def __init__(self, class_names: List[str] = None): self.preds = [] self.targets = [] self.ready = True def on_sanity_check_start(self, trainer, pl_module): self.ready = False def on_sanity_check_end(self, trainer, pl_module): """Start executing this callback only after all validation sanity checks end.""" self.ready = True def on_validation_batch_end( self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx ): """Gather data from single batch.""" if self.ready: self.preds.append(outputs["preds"]) self.targets.append(outputs["targets"]) def on_validation_epoch_end(self, trainer, pl_module): """Generate f1, precision and recall heatmap.""" if self.ready: logger = get_wandb_logger(trainer=trainer) experiment = logger.experiment preds = torch.cat(self.preds).cpu().numpy() targets = torch.cat(self.targets).cpu().numpy() f1 = f1_score(targets, preds, average=None) r = recall_score(targets, preds, average=None) p = precision_score(targets, preds, average=None) data = [f1, p, r] # set figure size plt.figure(figsize=(14, 3)) # set labels size sn.set(font_scale=1.2) # set font size sn.heatmap( data, annot=True, annot_kws={"size": 10}, fmt=".3f", yticklabels=["F1", "Precision", "Recall"], ) # names should be uniqe or else charts from different experiments in wandb will overlap experiment.log({f"f1_p_r_heatmap/{experiment.name}": wandb.Image(plt)}, commit=False) # reset plot plt.clf() self.preds.clear() self.targets.clear() class LogImagePredictions(Callback): """Logs a validation batch and their predictions to wandb. Example adapted from: https://wandb.ai/wandb/wandb-lightning/reports/Image-Classification-using-PyTorch-Lightning--VmlldzoyODk1NzY """ def __init__(self, num_samples: int = 8): super().__init__() self.num_samples = num_samples self.ready = True def on_sanity_check_start(self, trainer, pl_module): self.ready = False def on_sanity_check_end(self, trainer, pl_module): """Start executing this callback only after all validation sanity checks end.""" self.ready = True def on_validation_epoch_end(self, trainer, pl_module): if self.ready: logger = get_wandb_logger(trainer=trainer) experiment = logger.experiment # get a validation batch from the validation dat loader val_samples = next(iter(trainer.datamodule.val_dataloader())) val_imgs, val_labels = val_samples # run the batch through the network val_imgs = val_imgs.to(device=pl_module.device) logits = pl_module(val_imgs) preds = torch.argmax(logits, dim=-1) # log the images as wandb Image experiment.log( { f"Images/{experiment.name}": [ wandb.Image(x, caption=f"Pred:{pred}, Label:{y}") for x, pred, y in zip( val_imgs[: self.num_samples], preds[: self.num_samples], val_labels[: self.num_samples], ) ] } )
fly-master
src/callbacks/wandb_callbacks.py
import torch from pytorch_lightning import Callback, Trainer, LightningModule import logging log = logging.getLogger(__name__) # We want a logger for each process, not just the rank 0 def l2_promote(): import ctypes _libcudart = ctypes.CDLL('libcudart.so') # Set device limit on the current device # cudaLimitMaxL2FetchGranularity = 0x05 pValue = ctypes.cast((ctypes.c_int*1)(), ctypes.POINTER(ctypes.c_int)) _libcudart.cudaDeviceSetLimit(ctypes.c_int(0x05), ctypes.c_int(128)) _libcudart.cudaDeviceGetLimit(pValue, ctypes.c_int(0x05)) assert pValue.contents.value == 128 def set_affinity(trainer): try: from src.utils.gpu_affinity import set_affinity nproc_per_node = torch.cuda.device_count() affinity = set_affinity(trainer.local_rank, nproc_per_node, 'socket_unique_continuous') log.info(f'{trainer.local_rank}: thread affinity: {affinity}') # TD [2022-05-07] Somehow calling this causes GPU 0 to allocate extra ~800MB of memory per # number of GPUs (e.g., 6.4GB of extra memory in a 8-GPU setup). H/t Dan. # l2_promote() except: pass class GpuAffinity(Callback): """Set GPU affinity and increase the L2 fetch granularity. Adapted from https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/Transformer-XL """ # Setting on init so that the affinity is correct at the start, but after that it seems to change. # Setting on setup so that the affinity remains correct. def setup(self, trainer: Trainer, pl_module: LightningModule, stage=None) -> None: set_affinity(trainer) def on_init_start(self, trainer: Trainer) -> None: set_affinity(trainer)
fly-master
src/callbacks/gpu_affinity.py
# Inspired by https://github.com/Lightning-AI/lightning/blob/master/src/pytorch_lightning/utilities/grads.py # However, they compute grad at every iteration (I think), and the .item() calls incur a lot of overhead # (6-7% slow down on GPT-2 small). Instead we only compute for iterations where we need to log, and don't # call .item() explicitly. from typing import Any from collections import OrderedDict from pytorch_lightning import Callback, Trainer from pytorch_lightning.utilities import rank_zero_only import torch import torch.nn as nn try: from apex.contrib.layer_norm import FastLayerNorm except ImportError: FastLayerNorm = None class NormMonitor(Callback): """Monitor the scales of weights and gradients. """ def __init__(self, layer_norm_only: bool = False): super().__init__() self.layer_norm_only = layer_norm_only # Use on_before_optimizer_step instead of on_train_batch_start since there might be # gradient accumulation and we only care about scale when it could change (i.e., optimizer.step). @rank_zero_only def on_before_optimizer_step(self, trainer: Trainer, pl_module, *args: Any, **kwargs: Any) -> None: if not trainer._logger_connector.should_update_logs: return model = pl_module.model named_parameters = {} if self.layer_norm_only: ln_modules = (nn.LayerNorm, nn.Embedding) if FastLayerNorm is not None: ln_modules += (FastLayerNorm,) for mn, m in model.named_modules(): if isinstance(m, ln_modules): for pn, p in m.named_parameters(): fpn = '%s.%s' % (mn, pn) if mn else pn # full param name named_parameters[fpn] = p else: named_parameters = dict(model.named_parameters()) stats = {} param_l1_norm, grad_l1_norm = [], [] for param_name, param in named_parameters.items(): param_abs = param.abs() param_abs_mean = param_abs.mean() stats[f'stats/{param_name}_max'] = param_abs.max() stats[f'stats/{param_name}_mean'] = param_abs_mean param_l1_norm.append(param_abs_mean * param.numel()) if param.grad is not None: # Gradient is already unscaled by the AMP loss scaler at this point # https://github.com/Lightning-AI/lightning/pull/9606 param_grad_abs = param.grad.abs() param_grad_abs_mean = param_grad_abs.mean() stats[f'stats/{param_name}_grad_max'] = param_grad_abs.max() stats[f'stats/{param_name}_grad_mean'] = param_grad_abs_mean grad_l1_norm.append(param_grad_abs_mean * param.grad.numel()) stats['total_param_l1_norm'] = torch.stack(param_l1_norm).sum() if grad_l1_norm: stats['total_grad_l1_norm'] = torch.stack(grad_l1_norm).sum() # Sort by params name stats = OrderedDict(sorted(stats.items())) if trainer.loggers is not None: for logger in trainer.loggers: logger.log_metrics(stats, step=trainer.fit_loop.epoch_loop._batches_that_stepped)
fly-master
src/callbacks/norm_monitor.py
# Inspired by https://github.com/PyTorchLightning/pytorch-lightning/blob/master/pytorch_lightning/callbacks/stochastic_weight_avg.py # https://github.com/PyTorchLightning/Lightning-Bolts/blob/master/pl_bolts/callbacks/byol_updates.py # https://forums.pytorchlightning.ai/t/adopting-exponential-moving-average-ema-for-pl-pipeline/488/2 # https://github.com/PyTorchLightning/pytorch-lightning/issues/8100 from typing import Dict, Any from pytorch_lightning import Callback, Trainer from pytorch_lightning.utilities import rank_zero_only from pytorch_lightning.utilities.parsing import AttributeDict from pytorch_lightning.utilities.types import STEP_OUTPUT from src.utils.ema import ExponentialMovingAverage class EMACallback(Callback): """TD [2021-08-31]: saving and loading from checkpoint should work. """ def __init__(self, decay: float, use_num_updates: bool = True): """ decay: The exponential decay. use_num_updates: Whether to use number of updates when computing averages. """ super().__init__() self.decay = decay self.use_num_updates = use_num_updates self.ema = None def on_train_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule"): # It's possible that we already loaded EMA from the checkpoint if self.ema is None: self.ema = ExponentialMovingAverage([p for p in pl_module.parameters() if p.requires_grad], decay=self.decay, use_num_updates=self.use_num_updates) # Ideally we want on_after_optimizer_step but pytorch-lightning doesn't have it # We only want to update when parameters are changing. # Because of gradient accumulation, this doesn't happen every training step. # https://github.com/PyTorchLightning/pytorch-lightning/issues/11688 def on_train_batch_end( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", outputs: STEP_OUTPUT, batch: Any, batch_idx: int, dataloader_idx: int, ) -> None: if (batch_idx + 1) % trainer.accumulate_grad_batches == 0: self.ema.update() def on_validation_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: # During the initial validation we don't have self.ema yet if self.ema is not None: self.ema.store() self.ema.copy_to() def on_validation_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: if self.ema is not None: self.ema.restore() def on_test_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: if self.ema is not None: self.ema.store() self.ema.copy_to() def on_test_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: if self.ema is not None: self.ema.restore() def on_save_checkpoint( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", checkpoint: Dict[str, Any] ) -> Dict[str, Any]: return self.ema.state_dict() def on_load_checkpoint( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", callback_state: Dict[str, Any] ) -> None: if self.ema is None: self.ema = ExponentialMovingAverage([p for p in pl_module.parameters() if p.requires_grad], decay=self.decay, use_num_updates=self.use_num_updates) self.ema.load_state_dict(callback_state)
fly-master
src/callbacks/ema.py
# Adapted from https://pytorch-lightning.readthedocs.io/en/latest/_modules/pytorch_lightning/callbacks/gpu_stats_monitor.html#GPUStatsMonitor # We only need the speed monitoring, not the GPU monitoring import time from typing import Any from pytorch_lightning import Callback, Trainer from pytorch_lightning.utilities import rank_zero_only from pytorch_lightning.utilities.parsing import AttributeDict from pytorch_lightning.utilities.types import STEP_OUTPUT class SpeedMonitor(Callback): """Monitor the speed of each step and each epoch. """ def __init__(self, intra_step_time: bool = True, inter_step_time: bool = True, epoch_time: bool = True, verbose=False): super().__init__() self._log_stats = AttributeDict( { 'intra_step_time': intra_step_time, 'inter_step_time': inter_step_time, 'epoch_time': epoch_time, } ) self.verbose = verbose def on_train_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: self._snap_epoch_time = None def on_train_epoch_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: self._snap_intra_step_time = None self._snap_inter_step_time = None self._snap_epoch_time = time.time() def on_validation_epoch_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: self._snap_inter_step_time = None def on_test_epoch_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: self._snap_inter_step_time = None @rank_zero_only def on_train_batch_start( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", batch: Any, batch_idx: int, dataloader_idx: int ) -> None: if self._log_stats.intra_step_time: self._snap_intra_step_time = time.time() if not trainer._logger_connector.should_update_logs: return logs = {} if self._log_stats.inter_step_time and self._snap_inter_step_time: # First log at beginning of second step logs["time/inter_step (ms)"] = (time.time() - self._snap_inter_step_time) * 1000 if trainer.logger is not None: trainer.logger.log_metrics(logs, step=trainer.global_step) @rank_zero_only def on_train_batch_end( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", outputs: STEP_OUTPUT, batch: Any, batch_idx: int, dataloader_idx: int, ) -> None: if self._log_stats.inter_step_time: self._snap_inter_step_time = time.time() if self.verbose and self._log_stats.intra_step_time and self._snap_intra_step_time: pl_module.print(f"time/intra_step (ms): {(time.time() - self._snap_intra_step_time) * 1000}") if not trainer._logger_connector.should_update_logs: return logs = {} if self._log_stats.intra_step_time and self._snap_intra_step_time: logs["time/intra_step (ms)"] = (time.time() - self._snap_intra_step_time) * 1000 if trainer.logger is not None: trainer.logger.log_metrics(logs, step=trainer.global_step) @rank_zero_only def on_train_epoch_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule",) -> None: logs = {} if self._log_stats.epoch_time and self._snap_epoch_time: logs["time/epoch (s)"] = time.time() - self._snap_epoch_time if trainer.logger is not None: trainer.logger.log_metrics(logs, step=trainer.global_step)
fly-master
src/callbacks/speed_monitor.py
fly-master
src/callbacks/__init__.py
# Adapted from https://github.com/Lightning-AI/lightning/blob/master/src/pytorch_lightning/callbacks/fault_tolerance.py from typing import Any from pathlib import Path import pytorch_lightning as pl class ModelCheckpointMine(pl.callbacks.model_checkpoint.ModelCheckpoint): def __init__(self, *args, fault_tolerant=False, **kwargs): super().__init__(*args, **kwargs) self.fault_tolerant = fault_tolerant def on_exception(self, trainer: "pl.Trainer", *_: Any, **__: Any) -> None: if self.fault_tolerant: # overwrite if necessary trainer.save_checkpoint(str(Path(self.dirpath) / '.pl_auto_save.ckpt')) def teardown(self, trainer: "pl.Trainer", *_: Any, **__: Any) -> None: if self.fault_tolerant: trainer.strategy.remove_checkpoint(str(Path(self.dirpath) / '.pl_auto_save.ckpt')) # TD [2022-07-17] I was trying to make resuming from standard checkpoint fault-tolerant. # However, when it resumes it's off by 1 iteration. My attempt to fix it in seq.py (below) didn't work. # So I decided to just copy _FaultToleranceCheckpoint and just save on_exception. # def on_save_checkpoint(self, checkpoint): # # TD [2022-07-12] The "completed" counter is off by 1 so when it resumes # # it's off by 1 iteration. However, the data is still off by 1 iteration, probably # # because the dataloader_state_dict['counter'] is off by @batch_size, and idk how # # to fix it cleanly. # checkpoint['loops']['fit_loop']['epoch_loop.batch_progress']['total']['completed'] += 1 # checkpoint['loops']['fit_loop']['epoch_loop.batch_progress']['current']['completed'] += 1 # checkpoint['loops']['fit_loop']['epoch_loop.state_dict']['_batches_that_stepped'] += 1 # checkpoint['loops']['fit_loop']['epoch_loop.state_dict']['dataloader_state_dict'][0]['state'][0]['num_batches_fetched'] += 1
fly-master
src/callbacks/model_checkpoint.py
from typing import Any from pytorch_lightning import Callback, Trainer, LightningModule from pytorch_lightning.utilities import rank_zero_only from pytorch_lightning.utilities.parsing import AttributeDict class ParamsLog(Callback): """Log the number of parameters of the model """ def __init__(self, total_params_log: bool = True, trainable_params_log: bool = True, non_trainable_params_log: bool = True): super().__init__() self._log_stats = AttributeDict( { 'total_params_log': total_params_log, 'trainable_params_log': trainable_params_log, 'non_trainable_params_log': non_trainable_params_log, } ) @rank_zero_only def on_fit_start(self, trainer: Trainer, pl_module: LightningModule) -> None: logs = {} if self._log_stats.total_params_log: logs["model/params_total"] = sum(p.numel() for p in pl_module.parameters()) if self._log_stats.trainable_params_log: logs["model/params_trainable"] = sum(p.numel() for p in pl_module.parameters() if p.requires_grad) if self._log_stats.non_trainable_params_log: logs["model/params_not_trainable"] = sum(p.numel() for p in pl_module.parameters() if not p.requires_grad) if trainer.logger is not None: trainer.logger.log_hyperparams(logs)
fly-master
src/callbacks/params_log.py
# Adapted from https://github.com/Lightning-AI/lightning/blob/master/src/pytorch_lightning/callbacks/lr_monitor.py. from typing import Any from pytorch_lightning import Callback, Trainer from pytorch_lightning.utilities import rank_zero_only class LossScaleMonitor(Callback): """Monitor the loss scale for AMP (fp16). """ # Use on_before_optimizer_step instead of on_train_batch_start since there might be # gradient accumulation and we only care about the loss scale when it could change (i.e., # optimizer.step). @rank_zero_only def on_before_optimizer_step(self, trainer: Trainer, *args: Any, **kwargs: Any) -> None: if not trainer._logger_connector.should_update_logs: return if hasattr(trainer, 'precision_plugin') and hasattr(trainer.precision_plugin, 'scaler'): scaler = trainer.precision_plugin.scaler if scaler is not None: stats = { 'scaler/scale': scaler.get_scale(), 'scaler/growth_tracker': scaler._get_growth_tracker(), } if trainer.loggers is not None: for logger in trainer.loggers: logger.log_metrics(stats, step=trainer.fit_loop.epoch_loop._batches_that_stepped)
fly-master
src/callbacks/loss_scale_monitor.py
from typing import Any, List, Dict, Tuple, Union, Optional, Callable, cast from pathlib import Path, PurePath from PIL import Image from fs.tarfs import TarFS import torch import torch.nn as nn from torch.utils.data import DataLoader, Dataset, random_split, get_worker_info from einops.layers.torch import Rearrange, Reduce # [2021-08-19] TD: Somehow I get segfault if I import pytorch_lightning *after* torchvision from pytorch_lightning import LightningDataModule from torchvision import transforms from torchvision.datasets import ImageFolder from torchvision.datasets.folder import has_file_allowed_extension # There's an empty file in the dataset PATHFINDER_BLACKLIST = {'pathfinder32/curv_baseline/imgs/0/sample_172.png'} def pil_loader_grayscale(path: str) -> Image.Image: # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835) with open(path, 'rb') as f: return Image.open(f).convert('L') class PathFinderDataset(ImageFolder): """Path Finder dataset.""" def __init__( self, root: str, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, is_valid_file: Optional[Callable[[str], bool]] = None, ) -> None: super().__init__(root, loader=pil_loader_grayscale, transform=transform, target_transform=target_transform, is_valid_file=is_valid_file) def find_classes(self, directory: str) -> Tuple[List[str], Dict[str, int]]: """Override this so it doesn't call the parent's method """ return [], {} @staticmethod def make_dataset( directory: str, class_to_idx: Dict[str, int], extensions: Optional[Tuple[str, ...]] = None, is_valid_file: Optional[Callable[[str], bool]] = None, ) -> List[Tuple[str, int]]: """Generates a list of samples of a form (path_to_sample, class). This can be overridden to e.g. read files from a compressed zip file instead of from the disk. Args: directory (str): root dataset directory, corresponding to ``self.root``. class_to_idx (Dict[str, int]): Dictionary mapping class name to class index. extensions (optional): A list of allowed extensions. Either extensions or is_valid_file should be passed. Defaults to None. is_valid_file (optional): A function that takes path of a file and checks if the file is a valid file (used to check of corrupt files) both extensions and is_valid_file should not be passed. Defaults to None. Raises: ValueError: In case ``class_to_idx`` is empty. ValueError: In case ``extensions`` and ``is_valid_file`` are None or both are not None. FileNotFoundError: In case no valid file was found for any class. Returns: List[Tuple[str, int]]: samples of a form (path_to_sample, class) """ # We ignore class_to_idx directory = Path(directory).expanduser() both_none = extensions is None and is_valid_file is None both_something = extensions is not None and is_valid_file is not None if both_none or both_something: raise ValueError("Both extensions and is_valid_file cannot be None or not None at the same time") if extensions is not None: def is_valid_file(x: str) -> bool: return has_file_allowed_extension(x, cast(Tuple[str, ...], extensions)) is_valid_file = cast(Callable[[str], bool], is_valid_file) path_list = sorted(list((directory / 'metadata').glob('*.npy')), key=lambda path: int(path.stem)) if not path_list: raise FileNotFoundError(f'No metadata found at {str(directory)}') # Get the 'pathfinder32/curv_baseline part of data_dir data_dir_stem = Path().joinpath(*directory.parts[-2:]) instances = [] for metadata_file in path_list: with open(metadata_file, 'r') as f: for metadata in f.read().splitlines(): metadata = metadata.split() image_path = Path(metadata[0]) / metadata[1] if (is_valid_file(str(image_path)) and str(data_dir_stem / image_path) not in PATHFINDER_BLACKLIST): label = int(metadata[3]) instances.append((str(directory / image_path), label)) return instances class PathFinderTarDataset(PathFinderDataset): """Path Finder dataset.""" def __init__( self, archive: str, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, is_valid_file: Optional[Callable[[str], bool]] = None, root_in_archive: str = '', ) -> None: self.root_in_archive = PurePath(root_in_archive) # open tar file. in a multiprocessing setting (e.g. DataLoader workers), we # have to open one file handle per worker (stored as the tar_obj dict), since # when the multiprocessing method is 'fork', the workers share this TarDataset. # we want one file handle per worker because TarFile is not thread-safe. # As done in https://github.com/jotaf98/simple-tar-dataset/blob/master/tardataset.py worker = get_worker_info() worker = worker.id if worker else None self.tar_fs = {worker: TarFS(str(Path(archive).expanduser()))} ImageFolder.__init__(self, archive, loader=None, transform=transform, target_transform=target_transform, is_valid_file=is_valid_file) def make_dataset( self, directory: str, class_to_idx: Dict[str, int], extensions: Optional[Tuple[str, ...]] = None, is_valid_file: Optional[Callable[[str], bool]] = None, ) -> List[Tuple[str, int]]: """Generates a list of samples of a form (path_to_sample, class). This can be overridden to e.g. read files from a compressed zip file instead of from the disk. Args: directory (str): archive dataset directory, corresponding to ``self.archive``. class_to_idx (Dict[str, int]): Dictionary mapping class name to class index. extensions (optional): A list of allowed extensions. Either extensions or is_valid_file should be passed. Defaults to None. is_valid_file (optional): A function that takes path of a file and checks if the file is a valid file (used to check of corrupt files) both extensions and is_valid_file should not be passed. Defaults to None. Raises: ValueError: In case ``class_to_idx`` is empty. ValueError: In case ``extensions`` and ``is_valid_file`` are None or both are not None. FileNotFoundError: In case no valid file was found for any class. Returns: List[Tuple[str, int]]: samples of a form (path_to_sample, class) """ # We ignore directory and class_to_idx both_none = extensions is None and is_valid_file is None both_something = extensions is not None and is_valid_file is not None if both_none or both_something: raise ValueError("Both extensions and is_valid_file cannot be None or not None at the same time") if extensions is not None: def is_valid_file(x: str) -> bool: return has_file_allowed_extension(x, cast(Tuple[str, ...], extensions)) is_valid_file = cast(Callable[[str], bool], is_valid_file) metadata_fs = self.get_tar_fs().opendir(str(self.root_in_archive / 'metadata')) path_list = sorted(list(metadata_fs.filterdir('/', files=['*.npy'])), key=lambda path_info: int(path_info.stem)) if not path_list: raise FileNotFoundError(f'No metadata found in {str(self.root)}') # Get the 'pathfinder32/curv_baseline part of data_dir data_dir_stem = PurePath().joinpath(*self.root_in_archive.parts[-2:]) instances = [] for metadata_file in path_list: for metadata in metadata_fs.readtext(metadata_file.name).splitlines(): metadata = metadata.split() image_path = PurePath(metadata[0]) / metadata[1] if (is_valid_file(str(image_path)) and str(data_dir_stem / image_path) not in PATHFINDER_BLACKLIST): label = int(metadata[3]) instances.append((str(self.root_in_archive / image_path), label)) return instances def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (sample, target) where target is class_index of the target class. """ path, target = self.samples[index] with self.get_tar_fs().openbin(path) as f: sample = Image.open(f).convert('L') # Open in grayscale if self.transform is not None: sample = self.transform(sample) if self.target_transform is not None: target = self.target_transform(target) return sample, target def get_tar_fs(self): worker = get_worker_info() worker = worker.id if worker else None if worker not in self.tar_fs: self.tar_fs[worker] = TarFS(str(Path(self.root).expanduser())) return self.tar_fs[worker] def __del__(self): """Close the TarFile file handles on exit.""" for o in self.tar_fs.values(): o.close() def __getstate__(self): """Serialize without the TarFile references, for multiprocessing compatibility.""" state = dict(self.__dict__) state['tar_fs'] = {} return state class PathFinder(LightningDataModule): num_classes = 2 def __init__(self, data_dir, resolution, level, sequential=False, to_int=False, pool=1, val_split=0.1, test_split=0.1, batch_size=32, num_workers=1, seed=42, shuffle=False, pin_memory=False, drop_last=False, **kwargs): """If data_dir points to a tar file (e.g., pathfinder/pathfinder.tar), we support reading directly from that tar file without extraction. That tar file should have the same structure as the pathfinder dir: e.g., it should contain pathfinder32/curv_contour_length_14 in the archive. """ super().__init__(**kwargs) assert resolution in [32, 64, 128, 256] self.resolution = resolution assert level in ['easy', 'intermediate', 'hard'] self.level = level level_dir = {'easy': 'curv_baseline', 'intermediate': 'curv_contour_length_9', 'hard': 'curv_contour_length_14'}[level] self.prefix_dir = Path(f'pathfinder{resolution}') / level_dir self.data_dir = Path(data_dir).expanduser() self.use_tar_dataset = self.data_dir.suffix == '.tar' self.sequential = sequential self.to_int = to_int self.pool = pool self.val_split = val_split self.test_split = test_split self.batch_size = batch_size self.num_workers = num_workers self.seed = seed self.shuffle = shuffle self.pin_memory = pin_memory self.drop_last = drop_last if not sequential: self.dims = (1, resolution, resolution) else: self.dims = (resolution * resolution, 1) if not to_int else (resolution * resolution,) if to_int: self.vocab_size = 256 def default_transforms(self): transform_list = [transforms.ToTensor()] if self.pool > 1: transform_list.append(Reduce('1 (h h2) (w w2) -> 1 h w', 'mean', h2=self.pool, w2=self.pool)) if self.to_int: transform_list.append(transforms.Lambda(lambda x: (x * 255).long())) if self.sequential: # If to_int, it makes more sense to get rid of the channel dimension transform_list.append(Rearrange('1 h w -> (h w)') if self.to_int else Rearrange('1 h w -> (h w) 1')) return transforms.Compose(transform_list) def prepare_data(self): if self.use_tar_dataset: if not self.data_dir.is_file(): raise FileNotFoundError(f""" Tar file {str(self.data_dir)} not found. To get the dataset, download lra_release.gz from https://github.com/google-research/long-range-arena, then unzip it with tar -xvf lra_release.gz. Then compress the pathfinderX (X=32, 64, 128, 256) directory into a tar file: tar -cvf pathfinder32.tar pathfinder32 Then point data_dir to the pathfinder32.tar file. """) else: if not (self.data_dir / self.prefix_dir).is_dir(): raise FileNotFoundError(f""" Directory {str(self.data_dir / self.prefix_dir)} not found. To get the dataset, download lra_release.gz from https://github.com/google-research/long-range-arena, then unzip it with tar -xvf lra_release.gz. Then point data_dir to the directory that contains pathfinderX, where X is the resolution (either 32, 64, 128, or 256). """) def setup(self, stage=None): if stage == 'test' and hasattr(self, 'dataset_test'): return # [2021-08-18] TD: I ran into RuntimeError: Too many open files. # https://github.com/pytorch/pytorch/issues/11201 torch.multiprocessing.set_sharing_strategy('file_system') if self.use_tar_dataset: dataset = PathFinderTarDataset(str(self.data_dir), root_in_archive=str(self.prefix_dir), transform=self.default_transforms()) else: dataset = PathFinderDataset(self.data_dir / self.prefix_dir, transform=self.default_transforms()) len_dataset = len(dataset) val_len = int(self.val_split * len_dataset) test_len = int(self.test_split * len_dataset) train_len = len_dataset - val_len - test_len self.dataset_train, self.dataset_val, self.dataset_test = random_split( dataset, [train_len, val_len, test_len], generator=torch.Generator().manual_seed(self.seed) ) def train_dataloader(self, *args: Any, **kwargs: Any) -> DataLoader: """ The train dataloader """ return self._data_loader(self.dataset_train, shuffle=self.shuffle) def val_dataloader(self, *args: Any, **kwargs: Any) -> Union[DataLoader, List[DataLoader]]: """ The val dataloader """ return self._data_loader(self.dataset_val) def test_dataloader(self, *args: Any, **kwargs: Any) -> Union[DataLoader, List[DataLoader]]: """ The test dataloader """ return self._data_loader(self.dataset_test) def _data_loader(self, dataset: Dataset, shuffle: bool = False) -> DataLoader: return DataLoader( dataset, batch_size=self.batch_size, shuffle=shuffle, num_workers=self.num_workers, drop_last=self.drop_last, pin_memory=self.pin_memory )
fly-master
src/datamodules/pathfinder.py
# Adapted from https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_clm.py from itertools import chain from pathlib import Path import pickle from typing import Any, List, Union from multiprocessing.shared_memory import SharedMemory import numpy as np import torch from torch.utils.data.dataloader import DataLoader, Dataset from transformers import AutoTokenizer from datasets import load_dataset from pytorch_lightning import LightningDataModule from src.datamodules.datasets.lm_dataset import LMDataset from src.datamodules.fault_tolerant_sampler import RandomFaultTolerantSampler from src.datamodules.fault_tolerant_sampler import FaultTolerantDistributedSampler from src.datamodules.datasets.detokenizer import DATASET_TOKENIZATION_REGISTRY from src.utils.utils import get_logger logger = get_logger() # https://github.com/numpy/numpy/issues/18294 class SHMArray(np.ndarray): #copied from https://numpy.org/doc/stable/user/basics.subclassing.html#slightly-more-realistic-example-attribute-added-to-existing-array def __new__(cls, input_array, shm=None): obj = np.asarray(input_array).view(cls) obj.shm = shm return obj def __array_finalize__(self, obj): if obj is None: return self.shm = getattr(obj, 'shm', None) class LMDataModule(LightningDataModule): def __init__(self, dataset_name, tokenizer_name, dataset_config_name=None, max_length=1024, cache_dir=None, val_ratio=0.0005, val_split_seed=2357, add_eos=True, detokenize=False, batch_size=32, batch_size_eval=None, num_workers=1, shuffle=False, pin_memory=False, drop_last=False, fault_tolerant=False): super().__init__() self.dataset_name = dataset_name self.dataset_config_name = dataset_config_name self.tokenizer_name = tokenizer_name self.cache_dir = None if cache_dir is None else Path(cache_dir).expanduser() self.max_length = max_length self.val_ratio = val_ratio self.val_split_seed = val_split_seed self.add_eos = add_eos self.detokenize = detokenize self.batch_size = batch_size self.batch_size_eval = batch_size_eval if batch_size_eval is not None else self.batch_size self.num_workers = num_workers self.shuffle = shuffle self.pin_memory = pin_memory self.drop_last = drop_last if fault_tolerant: assert self.shuffle self.fault_tolerant = fault_tolerant def prepare_data(self): if self.cache_dir is None: # Just download the dataset load_dataset(self.dataset_name, self.dataset_config_name) else: # Process the dataset and save it self.process_dataset() def setup(self, stage=None): if stage == 'test' and hasattr(self, 'dataset_test'): return concat_ids, self.tokenizer = self.process_dataset() self.vocab_size = len(self.tokenizer) # Create all splits self.dataset_train, self.dataset_val, self.dataset_test = [ LMDataset(concat_ids[split], seq_len=self.max_length) for split in ['train', 'validation', 'test'] ] def process_dataset(self): cache_dir = None if self.cache_dir is None else self.cache_dir / self._cache_dir_name if cache_dir is not None: if cache_dir.is_dir(): return self._load_from_cache(cache_dir) raw_datasets = load_dataset(self.dataset_name, self.dataset_config_name) # https://github.com/stanford-crfm/mistral/blob/main/src/corpora/auto.py if 'validation' not in raw_datasets: assert "train" in raw_datasets, "You must have train in raw_datasets to make a validation raw_datasets" raw_datasets = raw_datasets["train"].train_test_split( test_size=self.val_ratio, seed=self.val_split_seed, shuffle=True # Otherwise test will be at the end of the dataset ) raw_datasets['validation'] = raw_datasets['test'] # [2021-12-25] TD: Running the detokenizer on wikitext-103 makes ppl worse # (GPT2-small val ppl after 10 epochs ~22 -> ~25) # However, it's useful for zero-shot transfer from Openwebtext, # as after detokenization it's closer to Openwebtext's format. # https://github.com/stanford-crfm/mistral/issues/12 if self.detokenize: if self.dataset_name in DATASET_TOKENIZATION_REGISTRY: detokenizer = DATASET_TOKENIZATION_REGISTRY[self.dataset_name] raw_datasets = raw_datasets.map( lambda example: {'text': detokenizer(example['text'])}, num_proc=max(self.num_workers, 1), desc='Running detokenizer on dataset' ) tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_name, use_fast=True) # Preprocessing the datasets. # First we tokenize all the texts. column_names = raw_datasets["train"].column_names text_column_name = "text" if "text" in column_names else column_names[0] # [2021-12-25] TD: For wikitext, don't need to add the EOS since each example already ends # with '\n', and there are no other '\n' in the examples. # assert all([t.count('\n') == 1 for t in raw_datasets['train']['text'] if t]) # Add EOS token to the end of the text if the text is not empty # https://github.com/stanford-crfm/mistral/issues/91 # https://github.com/stanford-crfm/mistral/pull/98 if self.add_eos: add_eos = lambda seq: (seq + tokenizer.eos_token) if seq else seq add_eos_batched = lambda seqs: [add_eos(seq) for seq in seqs] tokenize = lambda example: tokenizer(add_eos_batched(example[text_column_name])) else: tokenize = lambda example: tokenizer(example[text_column_name]) # tokenized_datasets = raw_datasets.map( # tokenize, # batched=True, # num_proc=max(self.num_workers, 1), # remove_columns=column_names, # desc="Running tokenizer on dataset", # ) dtype = np.uint16 if tokenizer.vocab_size < 64 * 1024 else np.int32 def tokenize_concat(examples): # We just need 'input_ids', not 'attention_mask' (since it's all 1) input_ids = np.fromiter(chain(*tokenize(examples)['input_ids']), dtype=dtype) # Need to return a list since we're doing batched processing return {'input_ids': [input_ids], 'len': [len(input_ids)]} tokenized_datasets = raw_datasets.map( tokenize_concat, batched=True, num_proc=max(self.num_workers, 1), remove_columns=column_names, desc="Running tokenizer on dataset", ) # Concatenate all input_ids into an array in shared memory def write_ids_to_shm(example, shm_name, array_len): shm = SharedMemory(name=shm_name) shm_arr = np.ndarray((array_len,), dtype=dtype, buffer=shm.buf) start_idx = example['len_offset'] - len(example['input_ids']) shm_arr[start_idx:example['len_offset']] = example['input_ids'] shm.close() concat_ids = {} for name, ds in tokenized_datasets.items(): tokenized_datasets[name] = ds.add_column('len_offset', np.cumsum(ds['len'])) array_len = tokenized_datasets[name][-1]['len_offset'] shm = SharedMemory(create=True, size=array_len * np.dtype(dtype).itemsize) shm_name = shm.name tokenized_datasets[name].map( write_ids_to_shm, fn_kwargs={'shm_name': shm_name, 'array_len': array_len}, batched=False, num_proc=max(self.num_workers, 1), desc="Concatenating examples", ) shm_arr = np.ndarray((array_len,), dtype=dtype, buffer=shm.buf) # We need to keep a reference to the shared memory, otherwise it gets garbage-collected # when it goes out of scope, and that memory is gone. # https://github.com/numpy/numpy/issues/18294 concat_ids[name] = SHMArray(shm_arr, shm=shm) if cache_dir is not None: self._save_to_cache(concat_ids, tokenizer, cache_dir) return concat_ids, tokenizer def _save_to_cache(self, concat_ids, tokenizer, cache_dir): cache_dir.mkdir(parents=True, exist_ok=True) logger.info(f'Saving to cache at {str(cache_dir)}') for k, v in concat_ids.items(): np.save(cache_dir / f'{k}.npy', v) with open(cache_dir / 'tokenizer.pkl', 'wb') as f: pickle.dump(tokenizer, f) def _load_from_cache(self, cache_dir): assert cache_dir.is_dir() logger.info(f'Load from cache at {str(cache_dir)}') concat_ids = {split: np.load(cache_dir / f'{split}.npy', mmap_mode='r') for split in ['train', 'validation', 'test']} with open(cache_dir / 'tokenizer.pkl', 'rb') as f: tokenizer = pickle.load(f) return concat_ids, tokenizer @property def _cache_dir_name(self): return f'tokenizer_name-{self.tokenizer_name}-val_ratio-{self.val_ratio}-val_split_seed-{self.val_split_seed}-add_eos-{self.add_eos}-detokenize-{self.detokenize}' def train_dataloader(self, *args: Any, **kwargs: Any) -> DataLoader: """ The train dataloader """ if self.shuffle and self.fault_tolerant: # sampler = RandomFaultTolerantSampler(self.dataset_train) sampler = FaultTolerantDistributedSampler(self.dataset_train) shuffle = False else: sampler = None shuffle = self.shuffle return self._data_loader(self.dataset_train, batch_size=self.batch_size, shuffle=shuffle, sampler=sampler) def val_dataloader(self, *args: Any, **kwargs: Any) -> Union[DataLoader, List[DataLoader]]: """ The val dataloader """ return self._data_loader(self.dataset_val, batch_size=self.batch_size_eval) def test_dataloader(self, *args: Any, **kwargs: Any) -> Union[DataLoader, List[DataLoader]]: """ The test dataloader """ return self._data_loader(self.dataset_test, batch_size=self.batch_size_eval) def _data_loader(self, dataset: Dataset, batch_size: int, shuffle: bool = False, sampler=None) -> DataLoader: return DataLoader( dataset, batch_size=batch_size, num_workers=1, # Data is already in memory, we don't need many workers shuffle=shuffle, sampler=sampler, drop_last=self.drop_last, pin_memory=self.pin_memory, persistent_workers=True )
fly-master
src/datamodules/language_modeling_hf.py
from pathlib import Path current_dir = Path(__file__).parent.absolute() import pickle import logging from typing import Any, List, Union import torch import torch.nn as nn from torch.utils.data import DataLoader, Dataset import torchtext from datasets import load_dataset, DatasetDict, Value from pytorch_lightning import LightningDataModule class AAN(LightningDataModule): num_classes = 2 def __init__(self, data_dir=current_dir, cache_dir=None, max_length=4000, append_bos=False, append_eos=False, batch_size=32, num_workers=1, shuffle=False, pin_memory=False, drop_last=False, **kwargs): super().__init__(**kwargs) self.data_dir = Path(data_dir).expanduser() self.cache_dir = None if cache_dir is None else Path(cache_dir).expanduser() self.max_length = max_length self.append_bos = append_bos self.append_eos = append_eos self.batch_size = batch_size self.num_workers = num_workers self.shuffle = shuffle self.pin_memory = pin_memory self.drop_last = drop_last def prepare_data(self): if self.cache_dir is None: for split in ['train', 'eval', 'test']: split_path = self.data_dir / f'new_aan_pairs.{split}.tsv' if not split_path.is_file(): raise FileNotFoundError(f""" File {str(split_path)} not found. To get the dataset, download lra_release.gz from https://github.com/google-research/long-range-arena, then unzip it with tar -xvf lra_release.gz. Then point data_dir to the tsv_data directory. """) else: # Process the dataset and save it self.process_dataset() def setup(self, stage=None): if stage == 'test' and hasattr(self, 'dataset_test'): return # [2021-08-18] TD: I ran into RuntimeError: Too many open files. # https://github.com/pytorch/pytorch/issues/11201 torch.multiprocessing.set_sharing_strategy('file_system') dataset, self.tokenizer, self.vocab = self.process_dataset() self.vocab_size = len(self.vocab) dataset.set_format(type='torch', columns=['input_ids1', 'input_ids2', 'label']) self.dataset_train, self.dataset_val, self.dataset_test = ( dataset['train'], dataset['val'], dataset['test'] ) def collate_batch(batch): xs1, xs2, ys = zip(*[(data['input_ids1'], data['input_ids2'], data['label']) for data in batch]) lengths1 = torch.tensor([len(x) for x in xs1]) lengths2 = torch.tensor([len(x) for x in xs2]) xs1 = nn.utils.rnn.pad_sequence(xs1, padding_value=self.vocab['<pad>'], batch_first=True) xs2 = nn.utils.rnn.pad_sequence(xs2, padding_value=self.vocab['<pad>'], batch_first=True) ys = torch.tensor(ys) return xs1, xs2, ys, lengths1, lengths2 self.collate_fn = collate_batch def process_dataset(self): cache_dir = None if self.cache_dir is None else self.cache_dir / self._cache_dir_name if cache_dir is not None: if cache_dir.is_dir(): return self._load_from_cache(cache_dir) dataset = load_dataset('csv', data_files={'train': str(self.data_dir / 'new_aan_pairs.train.tsv'), 'val': str(self.data_dir / 'new_aan_pairs.eval.tsv'), 'test': str(self.data_dir / 'new_aan_pairs.test.tsv')}, delimiter='\t', column_names=['label', 'input1_id', 'input2_id', 'text1', 'text2'], keep_in_memory=True) dataset = dataset.remove_columns(['input1_id', 'input2_id']) new_features = dataset['train'].features.copy() new_features['label'] = Value('int32') dataset = dataset.cast(new_features) tokenizer = list # Just convert a string to a list of chars # Account for <bos> and <eos> tokens max_length = self.max_length - int(self.append_bos) - int(self.append_eos) tokenize = lambda example: {'tokens1': tokenizer(example['text1'])[:max_length], 'tokens2': tokenizer(example['text2'])[:max_length]} dataset = dataset.map(tokenize, remove_columns=['text1', 'text2'], keep_in_memory=True, load_from_cache_file=False, num_proc=max(self.num_workers, 1)) vocab = torchtext.vocab.build_vocab_from_iterator( dataset['train']['tokens1'] + dataset['train']['tokens2'], specials=(['<pad>', '<unk>'] + (['<bos>'] if self.append_bos else []) + (['<eos>'] if self.append_eos else [])) ) vocab.set_default_index(vocab['<unk>']) encode = lambda text: vocab( (['<bos>'] if self.append_bos else []) + text + (['<eos>'] if self.append_eos else []) ) numericalize = lambda example: {'input_ids1': encode(example['tokens1']), 'input_ids2': encode(example['tokens2'])} dataset = dataset.map(numericalize, remove_columns=['tokens1', 'tokens2'], keep_in_memory=True, load_from_cache_file=False, num_proc=max(self.num_workers, 1)) if cache_dir is not None: self._save_to_cache(dataset, tokenizer, vocab, cache_dir) return dataset, tokenizer, vocab def _save_to_cache(self, dataset, tokenizer, vocab, cache_dir): cache_dir = self.cache_dir / self._cache_dir_name logger = logging.getLogger(__name__) logger.info(f'Saving to cache at {str(cache_dir)}') dataset.save_to_disk(str(cache_dir)) with open(cache_dir / 'tokenizer.pkl', 'wb') as f: pickle.dump(tokenizer, f) with open(cache_dir / 'vocab.pkl', 'wb') as f: pickle.dump(vocab, f) def _load_from_cache(self, cache_dir): assert cache_dir.is_dir() logger = logging.getLogger(__name__) logger.info(f'Load from cache at {str(cache_dir)}') dataset = DatasetDict.load_from_disk(str(cache_dir)) with open(cache_dir / 'tokenizer.pkl', 'rb') as f: tokenizer = pickle.load(f) with open(cache_dir / 'vocab.pkl', 'rb') as f: vocab = pickle.load(f) return dataset, tokenizer, vocab @property def _cache_dir_name(self): return f'max_length-{self.max_length}-append_bos-{self.append_bos}-append_eos-{self.append_eos}' def train_dataloader(self, *args: Any, **kwargs: Any) -> DataLoader: """ The train dataloader """ return self._data_loader(self.dataset_train, shuffle=self.shuffle) def val_dataloader(self, *args: Any, **kwargs: Any) -> Union[DataLoader, List[DataLoader]]: """ The val dataloader """ return self._data_loader(self.dataset_val) def test_dataloader(self, *args: Any, **kwargs: Any) -> Union[DataLoader, List[DataLoader]]: """ The test dataloader """ return self._data_loader(self.dataset_test) def _data_loader(self, dataset: Dataset, shuffle: bool = False) -> DataLoader: return DataLoader( dataset, collate_fn=self.collate_fn, batch_size=self.batch_size, shuffle=shuffle, num_workers=self.num_workers, drop_last=self.drop_last, pin_memory=self.pin_memory )
fly-master
src/datamodules/aan.py
# Adapted from https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/Transformer-XL/pytorch/data_utils.py # https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/data_utils.py # https://github.com/pytorch/examples/blob/master/word_language_model/main.py # https://github.com/HazyResearch/hippo/blob/master/dataloaders/lm.py import subprocess from pathlib import Path current_dir = Path(__file__).parent.absolute() import numpy as np import torch from pytorch_lightning import LightningDataModule from src.datamodules.datasets.vocabulary import OpenAIVocab, Vocab from src.utils.distributed import sync_workers from src.utils.utils import get_logger logger = get_logger() class LMOrderedIterator(object): def __init__(self, data, bsz, bptt, device='cpu', mem_len=None, ext_len=None, warmup=True, roll_seed=None, # roll data based on seed batch_first=False, shard_id=0, num_shards=1, # For distributed training ): """ data -- LongTensor -- the LongTensor is strictly ordered bsz; batch size *per shard* (i.e. per GPU) """ self.bsz = bsz self.bptt = bptt self.ext_len = ext_len if ext_len is not None else 0 self.mem_len = mem_len self.warmup = warmup self.shard_id = shard_id self.num_shards = num_shards self.roll_seed = roll_seed self.batch_first = batch_first self.device = device total_bsz = bsz * num_shards # Work out how cleanly we can divide the dataset into total_bsz parts. n_step = data.size(0) // total_bsz # Trim off any extra elements that wouldn't cleanly fit (remainders). data = data[:n_step * total_bsz] # Evenly divide the data across the bsz batches. self.data = data.view(total_bsz, -1).t().contiguous().pin_memory() # (..., batch_size) if mem_len and warmup: self.warmup_batches = (mem_len + bptt - 1) // bptt self.warmup_elems = self.warmup_batches * bptt warmup_data = self.data.roll((self.warmup_elems, 1), (0, 1))[:self.warmup_elems] self.data = torch.cat((warmup_data, self.data)) # Partition data for DistributedDataParallel self.data = self.data.chunk(num_shards, dim=1)[shard_id] # Number of mini-batches # Need to subtract 1 because target is data shifted by 1 self.n_batch = (self.data.size(0) - 1 + self.bptt - 1) // self.bptt self.last_iter = None self.epoch = -1 def roll(self, seed): rng = torch.Generator() rng.manual_seed(seed) for i in range(self.data.size(1)): row = self.data[:, i] shift = torch.randint(0, self.data.size(0), (1,), generator=rng) row = torch.cat((row[shift:], row[:shift])) self.data[:, i] = row def get_batch(self, i, bptt=None): """ Get batch starting at token index i """ if bptt is None: bptt = self.bptt seq_len = min(bptt, self.data.size(0) - 1 - i) end_idx = i + seq_len beg_idx = max(0, i - self.ext_len) data = self.data[beg_idx:end_idx].to(self.device, non_blocking=True) target = self.data[i+1:i+1+seq_len].to(self.device, non_blocking=True) if self.mem_len and self.warmup: warm = i >= self.warmup_elems else: warm = True if self.batch_first: return data.t(), target.t(), seq_len, warm else: return data, target, seq_len, warm def get_fixlen_iter(self, start=0): if start != 0: start += self.bptt for i in range(start, self.data.size(0) - 1, self.bptt): self.last_iter = i yield self.get_batch(i) def get_varlen_iter(self, start=0, std=5, min_len=5, max_deviation=3): max_length = self.bptt + max_deviation * std i = start while True: bptt = self.bptt if np.random.random() < 0.95 else self.bptt / 2. bptt = min(max_length, max(min_len, int(np.random.normal(bptt, std)))) data, target, seq_len = self.get_batch(i, bptt) i += seq_len if self.batch_first: yield data.t(), target.t(), seq_len else: yield data, target, seq_len if i >= self.data.size(0) - 2: break def __iter__(self): self.epoch += 1 if self.roll_seed is not None: self.roll(self.roll_seed + self.epoch) return self.get_fixlen_iter() def __len__(self): return self.n_batch class WikiText2(LightningDataModule): name = 'wt2' vocab_kwargs = {'special': ['<eos>'], 'lower_case': False} encode_kwargs = {'ordered': True} def __init__(self, data_dir, vocab_type='word', batch_size=32, max_length=1024, val_batch_size=None, val_max_length=None, roll_seed=None, batch_first=False): super().__init__() self.data_dir = Path(data_dir).expanduser() if vocab_type not in ['word', 'bpe']: raise RuntimeError('Unsupported vocab') self.vocab_type = vocab_type self.batch_size = batch_size self.max_length = max_length self.val_batch_size = val_batch_size if val_batch_size is not None else self.batch_size self.val_max_length = val_max_length if val_max_length is not None else self.max_length self.roll_seed = roll_seed self.batch_first = batch_first def prepare_data(self): if not self.data_dir.is_dir(): subprocess.run([str(current_dir / 'datasets' / 'getdata.sh'), self.name, str(self.data_dir.parent.absolute())], check=True) if not (self.data_dir / self._cache_file_name).is_file(): self.process_dataset() def setup(self, stage=None): if stage == 'test' and hasattr(self, 'dataset_test'): return self.vocab, self.dataset_train, self.dataset_val, self.dataset_test = self.process_dataset() def process_dataset(self): if (self.data_dir / self._cache_file_name).is_file(): return self._load_from_cache() else: logger.info(f'Producing dataset {self.name}...') if self.vocab_type == 'word': vocab = Vocab(**self.vocab_kwargs) elif self.vocab_type == 'bpe': vocab = OpenAIVocab() else: raise RuntimeError('Unsupported vocab') vocab = self._vocab_count(vocab) vocab.build_vocab() train = vocab.encode_file(str(self.data_dir / 'train.txt'), **self.encode_kwargs) val = vocab.encode_file(str(self.data_dir / 'valid.txt'), **self.encode_kwargs) test = vocab.encode_file(str(self.data_dir / 'test.txt'), **self.encode_kwargs) self._save_to_cache((vocab, train, val, test)) return vocab, train, val, test def _vocab_count(self, vocab): vocab.count_file(self.data_dir / 'train.txt') vocab.count_file(self.data_dir / 'valid.txt') vocab.count_file(self.data_dir / 'test.txt') return vocab def _save_to_cache(self, obj): cache_path = self.data_dir / self._cache_file_name with sync_workers() as rank: if rank == 0: try: torch.save(obj, cache_path) logger.info(f'Saved dataset to {cache_path}') except: pass def _load_from_cache(self): cache_path = self.data_dir / self._cache_file_name if cache_path.is_file(): logger.info(f'Loading cached dataset from {str(cache_path)}') return torch.load(cache_path) else: raise FileNotFoundError(f'Cache file {str(cache_path)} does not exist.') @property def _cache_file_name(self): return f'cache.{self.vocab_type}.pt' def train_dataloader(self, *args, **kwargs): shard_id = self.trainer.global_rank num_shards = self.trainer.world_size return LMOrderedIterator(self.dataset_train, bsz=self.batch_size, bptt=self.max_length, roll_seed=self.roll_seed, batch_first=self.batch_first, shard_id=shard_id, num_shards=num_shards) def val_dataloader(self, *args, **kwargs): shard_id = self.trainer.global_rank num_shards = self.trainer.world_size return LMOrderedIterator(self.dataset_val, bsz=self.val_batch_size, bptt=self.val_max_length, batch_first=self.batch_first, shard_id=shard_id, num_shards=num_shards) def test_dataloader(self, *args, **kwargs): shard_id = self.trainer.global_rank num_shards = self.trainer.world_size return LMOrderedIterator(self.dataset_test, bsz=self.val_batch_size, bptt=self.val_max_length, batch_first=self.batch_first, shard_id=shard_id, num_shards=num_shards) class WikiText103(WikiText2): name = 'wt103' def _vocab_count(self, vocab): vocab.count_file(self.data_dir / 'train.txt') return vocab
fly-master
src/datamodules/language_modeling.py
# Adapted from https://github.com/PyTorchLightning/lightning-bolts/blob/master/pl_bolts/datamodules/imagenet_datamodule.py import os from pathlib import Path from typing import Any, List, Union, Callable, Optional from torch.utils.data import Dataset, DataLoader from pytorch_lightning import LightningDataModule from pl_bolts.transforms.dataset_normalizations import imagenet_normalization from torchvision import transforms from torchvision.datasets import ImageFolder class ImagenetDataModule(LightningDataModule): """ .. figure:: https://3qeqpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2017/08/ Sample-of-Images-from-the-ImageNet-Dataset-used-in-the-ILSVRC-Challenge.png :width: 400 :alt: Imagenet Specs: - 1000 classes - Each image is (3 x varies x varies) (here we default to 3 x 224 x 224) Imagenet train, val and test dataloaders. The train set is the imagenet train. The val set is taken from the train set with `num_imgs_per_val_class` images per class. For example if `num_imgs_per_val_class=2` then there will be 2,000 images in the validation set. The test set is the official imagenet validation set. Example:: from pl_bolts.datamodules import ImagenetDataModule dm = ImagenetDataModule(IMAGENET_PATH) model = LitModel() Trainer().fit(model, datamodule=dm) """ name = "imagenet" def __init__( self, data_dir: str, cache_dir: Optional[str] = None, image_size: int = 224, num_workers: int = 0, batch_size: int = 32, shuffle: bool = True, pin_memory: bool = True, drop_last: bool = False, dali: Optional[str] = None, *args: Any, **kwargs: Any, ) -> None: """ Args: data_dir: path to the imagenet dataset file num_imgs_per_val_class: how many images per class for the validation set image_size: final image size num_workers: how many data workers batch_size: batch_size shuffle: If true shuffles the data every epoch pin_memory: If true, the data loader will copy Tensors into CUDA pinned memory before returning them drop_last: If true drops the last incomplete batch """ super().__init__(*args, **kwargs) self.image_size = image_size self.dims = (3, self.image_size, self.image_size) self.data_dir = Path(data_dir).expanduser() self.cache_dir = cache_dir self.use_archive_dataset = (self.data_dir.suffix == '.tar' or self.data_dir.suffix == '.zip') self.num_workers = num_workers self.batch_size = batch_size self.shuffle = shuffle self.pin_memory = pin_memory self.drop_last = drop_last assert dali in [None, 'cpu', 'gpu'] if dali is not None and self.use_archive_dataset: raise NotImplementedError('dali is not compatible with archive dataset') self.dali = dali @property def num_classes(self) -> int: """ Return: 1000 """ return 1000 def _verify_splits(self, data_dir: str, split: str) -> None: dirs = os.listdir(data_dir) if split not in dirs: raise FileNotFoundError( f"a {split} Imagenet split was not found in {data_dir}," f" make sure the folder contains a subfolder named {split}" ) def prepare_data(self) -> None: """This method already assumes you have imagenet2012 downloaded. It validates the data using the meta.bin. .. warning:: Please download imagenet on your own first. """ if not self.use_archive_dataset: self._verify_splits(self.data_dir, "train") self._verify_splits(self.data_dir, "val") else: if not self.data_dir.is_file(): raise FileNotFoundError(f"""Archive file {str(self.data_dir)} not found.""") def setup(self, stage: Optional[str] = None) -> None: """Creates train, val, and test dataset.""" if self.dali is not None: return if stage == "fit" or stage is None: train_transforms = (self.train_transform() if self.train_transforms is None else self.train_transforms) val_transforms = (self.val_transform() if self.val_transforms is None else self.val_transforms) if not self.use_archive_dataset: self.dataset_train = ImageFolder(self.data_dir / 'train', transform=train_transforms) self.dataset_val = ImageFolder(self.data_dir / 'val', transform=val_transforms) else: from src.datamodules.datasets.archive_imagefolder import ArchiveImageFolder self.dataset_train = ArchiveImageFolder(str(self.data_dir), cache_dir=self.cache_dir, root_in_archive='train', transform=train_transforms) self.dataset_val = ArchiveImageFolder(str(self.data_dir), cache_dir=self.cache_dir, root_in_archive='val', transform=val_transforms) if stage == "test" or stage is None: test_transforms = (self.val_transform() if self.test_transforms is None else self.test_transforms) if not self.use_archive_dataset: self.dataset_test = ImageFolder(self.data_dir / 'val', transform=test_transforms) else: from src.datamodules.datasets.archive_imagefolder import ArchiveImageFolder self.dataset_test = ArchiveImageFolder(str(self.data_dir), cache_dir=self.cache_dir, root_in_archive='val', transform=test_transforms) def train_transform(self) -> Callable: """The standard imagenet transforms. .. code-block:: python transforms.Compose([ transforms.RandomResizedCrop(self.image_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ]) """ preprocessing = transforms.Compose( [ transforms.RandomResizedCrop(self.image_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), imagenet_normalization(), ] ) return preprocessing def val_transform(self) -> Callable: """The standard imagenet transforms for validation. .. code-block:: python transforms.Compose([ transforms.Resize(self.image_size + 32), transforms.CenterCrop(self.image_size), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ]) """ preprocessing = transforms.Compose( [ transforms.Resize(self.image_size + 32), transforms.CenterCrop(self.image_size), transforms.ToTensor(), imagenet_normalization(), ] ) return preprocessing def train_dataloader(self, *args: Any, **kwargs: Any) -> DataLoader: """ The train dataloader """ if self.dali is None: return self._data_loader(self.dataset_train, shuffle=self.shuffle) else: return self._dali_loader(is_train=True, shuffle=self.shuffle) def val_dataloader(self, *args: Any, **kwargs: Any) -> Union[DataLoader, List[DataLoader]]: """ The val dataloader """ if self.dali is None: return self._data_loader(self.dataset_val) else: return self._dali_loader(is_train=False) def test_dataloader(self, *args: Any, **kwargs: Any) -> Union[DataLoader, List[DataLoader]]: """ The test dataloader """ if self.dali is None: return self._data_loader(self.dataset_test) else: return self._dali_loader(is_train=False) def _data_loader(self, dataset: Dataset, shuffle: bool = False) -> DataLoader: return DataLoader( dataset, batch_size=self.batch_size, shuffle=shuffle, num_workers=self.num_workers, drop_last=self.drop_last, pin_memory=self.pin_memory, # Spinning up worker is slow if we use archive dataset # When we don't use archive dataset, I get crashes if I don't set this to True # https://github.com/PyTorchLightning/pytorch-lightning/issues/4471 # https://github.com/PyTorchLightning/pytorch-lightning/issues/8821 # TD [2021-09-01] I think this bug is finally fixed in pytorch-lightning 1.4.5 # https://github.com/PyTorchLightning/pytorch-lightning/pull/9239 persistent_workers=True ) def _dali_loader(self, is_train: bool, shuffle: bool = False) -> DataLoader: from src.datamodules.imagenet_dali_loader import get_dali_loader # (TD): [2021-08-28] I'm not sure but I think these DALI settings only work with DDP device_id = self.trainer.local_rank shard_id = self.trainer.global_rank num_shards = self.trainer.world_size return get_dali_loader(data_dir=self.data_dir / ('train' if is_train else 'val'), crop=self.image_size, size=self.image_size + 32, is_train=is_train, batch_size=self.batch_size, shuffle=shuffle, drop_last=self.drop_last, num_threads=self.num_workers, device_id=device_id, shard_id=shard_id, num_shards=num_shards, dali_cpu=self.dali == 'cpu')
fly-master
src/datamodules/imagenet.py
fly-master
src/datamodules/__init__.py
from pathlib import Path current_dir = Path(__file__).parent.absolute() import pickle import logging from typing import Any, List, Union import torch import torch.nn as nn from torch.utils.data import DataLoader, Dataset import torchtext from datasets import load_dataset, DatasetDict from pytorch_lightning import LightningDataModule # LRA tokenizer renames ']' to 'X' and delete parentheses as their tokenizer removes # non-alphanumeric characters. # https://github.com/google-research/long-range-arena/blob/264227cbf9591e39dd596d2dc935297a2070bdfe/lra_benchmarks/listops/input_pipeline.py#L46 def listops_tokenizer(s): return s.translate({ord(']'): ord('X'), ord('('): None, ord(')'): None}).split() class ListOps(LightningDataModule): num_classes = 10 def __init__(self, data_dir=current_dir, cache_dir=None, max_length=2000, append_bos=False, append_eos=False, batch_size=32, num_workers=1, shuffle=False, pin_memory=False, drop_last=False, **kwargs): super().__init__(**kwargs) self.data_dir = Path(data_dir).expanduser() self.cache_dir = None if cache_dir is None else Path(cache_dir).expanduser() self.max_length = max_length self.append_bos = append_bos self.append_eos = append_eos self.batch_size = batch_size self.num_workers = num_workers self.shuffle = shuffle self.pin_memory = pin_memory self.drop_last = drop_last def prepare_data(self): if self.cache_dir is None: for split in ['train', 'val', 'test']: split_path = self.data_dir / f'basic_{split}.tsv' if not split_path.is_file(): raise FileNotFoundError(f""" File {str(split_path)} not found. To get the dataset, download lra_release.gz from https://github.com/google-research/long-range-arena, then unzip it with tar -xvf lra_release.gz. Then point data_dir to the listops-1000 directory. """) else: # Process the dataset and save it self.process_dataset() def setup(self, stage=None): if stage == 'test' and hasattr(self, 'dataset_test'): return dataset, self.tokenizer, self.vocab = self.process_dataset() self.vocab_size = len(self.vocab) dataset.set_format(type='torch', columns=['input_ids', 'Target']) self.dataset_train, self.dataset_val, self.dataset_test = ( dataset['train'], dataset['val'], dataset['test'] ) def collate_batch(batch): xs, ys = zip(*[(data['input_ids'], data['Target']) for data in batch]) lengths = torch.tensor([len(x) for x in xs]) xs = nn.utils.rnn.pad_sequence(xs, padding_value=self.vocab['<pad>'], batch_first=True) ys = torch.tensor(ys) return xs, ys, lengths self.collate_fn = collate_batch def process_dataset(self): cache_dir = None if self.cache_dir is None else self.cache_dir / self._cache_dir_name if cache_dir is not None: if cache_dir.is_dir(): return self._load_from_cache(cache_dir) dataset = load_dataset('csv', data_files={'train': str(self.data_dir / 'basic_train.tsv'), 'val': str(self.data_dir / 'basic_val.tsv'), 'test': str(self.data_dir / 'basic_test.tsv')}, delimiter='\t', keep_in_memory=True) tokenizer = listops_tokenizer # Account for <bos> and <eos> tokens max_length = self.max_length - int(self.append_bos) - int(self.append_eos) tokenize = lambda example: {'tokens': tokenizer(example['Source'])[:max_length]} dataset = dataset.map(tokenize, remove_columns=['Source'], keep_in_memory=True, load_from_cache_file=False, num_proc=max(self.num_workers, 1)) vocab = torchtext.vocab.build_vocab_from_iterator( dataset['train']['tokens'], specials=(['<pad>', '<unk>'] + (['<bos>'] if self.append_bos else []) + (['<eos>'] if self.append_eos else [])) ) vocab.set_default_index(vocab['<unk>']) numericalize = lambda example: {'input_ids': vocab( (['<bos>'] if self.append_bos else []) + example['tokens'] + (['<eos>'] if self.append_eos else []) )} dataset = dataset.map(numericalize, remove_columns=['tokens'], keep_in_memory=True, load_from_cache_file=False, num_proc=max(self.num_workers, 1)) if cache_dir is not None: self._save_to_cache(dataset, tokenizer, vocab, cache_dir) return dataset, tokenizer, vocab def _save_to_cache(self, dataset, tokenizer, vocab, cache_dir): cache_dir = self.cache_dir / self._cache_dir_name logger = logging.getLogger(__name__) logger.info(f'Saving to cache at {str(cache_dir)}') dataset.save_to_disk(str(cache_dir)) with open(cache_dir / 'tokenizer.pkl', 'wb') as f: pickle.dump(tokenizer, f) with open(cache_dir / 'vocab.pkl', 'wb') as f: pickle.dump(vocab, f) def _load_from_cache(self, cache_dir): assert cache_dir.is_dir() logger = logging.getLogger(__name__) logger.info(f'Load from cache at {str(cache_dir)}') dataset = DatasetDict.load_from_disk(str(cache_dir)) with open(cache_dir / 'tokenizer.pkl', 'rb') as f: tokenizer = pickle.load(f) with open(cache_dir / 'vocab.pkl', 'rb') as f: vocab = pickle.load(f) return dataset, tokenizer, vocab @property def _cache_dir_name(self): return f'max_length-{self.max_length}-append_bos-{self.append_bos}-append_eos-{self.append_eos}' def train_dataloader(self, *args: Any, **kwargs: Any) -> DataLoader: """ The train dataloader """ return self._data_loader(self.dataset_train, shuffle=self.shuffle) def val_dataloader(self, *args: Any, **kwargs: Any) -> Union[DataLoader, List[DataLoader]]: """ The val dataloader """ return self._data_loader(self.dataset_val) def test_dataloader(self, *args: Any, **kwargs: Any) -> Union[DataLoader, List[DataLoader]]: """ The test dataloader """ return self._data_loader(self.dataset_test) def _data_loader(self, dataset: Dataset, shuffle: bool = False) -> DataLoader: return DataLoader( dataset, collate_fn=self.collate_fn, batch_size=self.batch_size, shuffle=shuffle, num_workers=self.num_workers, drop_last=self.drop_last, pin_memory=self.pin_memory )
fly-master
src/datamodules/listops.py
import torch from timm.data import Mixup from timm.data.mixup import mixup_target class TimmMixup(Mixup): """ Wrap timm.data.Mixup that avoids the assert that batch size must be even. """ def __call__(self, x, target): if self.mode == 'elem': lam = self._mix_elem(x) elif self.mode == 'pair': # We move the assert from the beginning of the function to here assert len(x) % 2 == 0, 'Batch size should be even when using this' lam = self._mix_pair(x) else: lam = self._mix_batch(x) # Another change is to set the right device here target = mixup_target(target, self.num_classes, lam, self.label_smoothing, device=target.device) return x, target
fly-master
src/datamodules/timm_mixup.py
from pathlib import Path current_dir = Path(__file__).parent.absolute() import pickle import logging from typing import Any, List, Union import torch import torch.nn as nn from torch.utils.data import DataLoader, Dataset import torchtext from datasets import load_dataset, DatasetDict from pytorch_lightning import LightningDataModule # Adapted from https://github.com/bentrevett/pytorch-sentiment-analysis/blob/master/2_lstm.ipynb class IMDB(LightningDataModule): dataset_name = 'imdb' num_classes = 2 def __init__(self, data_dir=current_dir, cache_dir=None, max_length=512, tokenizer_type='word', vocab_min_freq=1, append_bos=False, append_eos=False, val_split=0.0, batch_size=32, num_workers=1, seed=42, shuffle=False, pin_memory=False, drop_last=False, **kwargs): """If cache_dir is not None, we'll cache the processed dataset there. """ super().__init__(**kwargs) self.data_dir = Path(data_dir).expanduser() self.cache_dir = None if cache_dir is None else Path(cache_dir).expanduser() self.max_length = max_length assert tokenizer_type in ['word', 'char'], f'tokenizer_type {tokenizer_type} not supported' self.tokenizer_type = tokenizer_type self.vocab_min_freq = vocab_min_freq self.append_bos = append_bos self.append_eos = append_eos self.val_split = val_split self.batch_size = batch_size self.num_workers = num_workers self.seed = seed self.shuffle = shuffle self.pin_memory = pin_memory self.drop_last = drop_last def prepare_data(self): if self.cache_dir is None: # Just download the dataset load_dataset(self.dataset_name, cache_dir=self.data_dir) else: # Process the dataset and save it self.process_dataset() def setup(self, stage=None): if stage == 'test' and hasattr(self, 'dataset_test'): return dataset, self.tokenizer, self.vocab = self.process_dataset() self.vocab_size = len(self.vocab) dataset.set_format(type='torch', columns=['input_ids', 'label']) # Create all splits dataset_train, dataset_test = dataset['train'], dataset['test'] if self.val_split == 0.0: # Use test set as val set, as done in the LRA paper self.dataset_train, self.dataset_val = dataset_train, dataset_test else: train_val = dataset_train.train_test_split(test_size=self.val_split, seed=self.seed) self.dataset_train, self.dataset_val = train_val['train'], train_val['test'] self.dataset_test = dataset_test def collate_batch(batch): xs, ys = zip(*[(data['input_ids'], data['label']) for data in batch]) lengths = torch.tensor([len(x) for x in xs]) xs = nn.utils.rnn.pad_sequence(xs, padding_value=self.vocab['<pad>'], batch_first=True) ys = torch.tensor(ys) return xs, ys, lengths self.collate_fn = collate_batch def process_dataset(self): cache_dir = None if self.cache_dir is None else self.cache_dir / self._cache_dir_name if cache_dir is not None: if cache_dir.is_dir(): return self._load_from_cache(cache_dir) dataset = load_dataset(self.dataset_name, cache_dir=self.data_dir) dataset = DatasetDict(train=dataset['train'], test=dataset['test']) if self.tokenizer_type == 'word': tokenizer = torchtext.data.utils.get_tokenizer('spacy', language='en_core_web_sm') else: # self.tokenizer_type == 'char' tokenizer = list # Just convert a string to a list of chars # Account for <bos> and <eos> tokens max_length = self.max_length - int(self.append_bos) - int(self.append_eos) tokenize = lambda example: {'tokens': tokenizer(example['text'])[:max_length]} dataset = dataset.map(tokenize, remove_columns=['text'], keep_in_memory=True, load_from_cache_file=False, num_proc=max(self.num_workers, 1)) vocab = torchtext.vocab.build_vocab_from_iterator( dataset['train']['tokens'], min_freq=self.vocab_min_freq, specials=(['<pad>', '<unk>'] + (['<bos>'] if self.append_bos else []) + (['<eos>'] if self.append_eos else [])) ) vocab.set_default_index(vocab['<unk>']) numericalize = lambda example: {'input_ids': vocab( (['<bos>'] if self.append_bos else []) + example['tokens'] + (['<eos>'] if self.append_eos else []) )} dataset = dataset.map(numericalize, remove_columns=['tokens'], keep_in_memory=True, load_from_cache_file=False, num_proc=max(self.num_workers, 1)) if cache_dir is not None: self._save_to_cache(dataset, tokenizer, vocab, cache_dir) return dataset, tokenizer, vocab def _save_to_cache(self, dataset, tokenizer, vocab, cache_dir): cache_dir = self.cache_dir / self._cache_dir_name logger = logging.getLogger(__name__) logger.info(f'Saving to cache at {str(cache_dir)}') dataset.save_to_disk(str(cache_dir)) with open(cache_dir / 'tokenizer.pkl', 'wb') as f: pickle.dump(tokenizer, f) with open(cache_dir / 'vocab.pkl', 'wb') as f: pickle.dump(vocab, f) def _load_from_cache(self, cache_dir): assert cache_dir.is_dir() logger = logging.getLogger(__name__) logger.info(f'Load from cache at {str(cache_dir)}') dataset = DatasetDict.load_from_disk(str(cache_dir)) with open(cache_dir / 'tokenizer.pkl', 'rb') as f: tokenizer = pickle.load(f) with open(cache_dir / 'vocab.pkl', 'rb') as f: vocab = pickle.load(f) return dataset, tokenizer, vocab @property def _cache_dir_name(self): return f'max_length-{self.max_length}-tokenizer_type-{self.tokenizer_type}-vocab_min_freq-{self.vocab_min_freq}-append_bos-{self.append_bos}-append_eos-{self.append_eos}' def train_dataloader(self, *args: Any, **kwargs: Any) -> DataLoader: """ The train dataloader """ return self._data_loader(self.dataset_train, shuffle=self.shuffle) def val_dataloader(self, *args: Any, **kwargs: Any) -> Union[DataLoader, List[DataLoader]]: """ The val dataloader """ return self._data_loader(self.dataset_val) def test_dataloader(self, *args: Any, **kwargs: Any) -> Union[DataLoader, List[DataLoader]]: """ The test dataloader """ return self._data_loader(self.dataset_test) def _data_loader(self, dataset: Dataset, shuffle: bool = False) -> DataLoader: return DataLoader( dataset, collate_fn=self.collate_fn, batch_size=self.batch_size, shuffle=shuffle, num_workers=self.num_workers, drop_last=self.drop_last, pin_memory=self.pin_memory )
fly-master
src/datamodules/imdb.py
# Adapted from https://github.com/Lightning-AI/lightning/blob/2845e7565dbe6b765ae32870e7d2bc456529c30a/tests/tests_pytorch/utilities/test_auto_restart.py#L1397 from typing import Iterator import torch from torch.utils.data import RandomSampler, DistributedSampler class RandomFaultTolerantSampler(RandomSampler): def __init__(self, *args, generator=None, **kwargs): # generator = torch.Generator().manual_seed(seed) # super().__init__(*args, generator=generator, **kwargs) # TD [2022-07-17]: We don't force the seed to be zero. We generate random seed, # which should be reproducible if pl.seed_everything was called before hand. # This means that changing the seed of the experiment will also change the # sampling order. if generator is None: seed = int(torch.empty((), dtype=torch.int64).random_().item()) generator = torch.Generator().manual_seed(seed) super().__init__(*args, generator=generator, **kwargs) self.counter = 0 self.restarting = False def state_dict(self): return {"random_state": self.state, "counter": self.counter} def load_state_dict(self, state_dict): self.generator.set_state(state_dict.get("random_state")) self.counter = state_dict["counter"] self.restarting = True def __len__(self): return len(self.data_source) - self.counter def __iter__(self) -> Iterator[int]: n = len(self.data_source) self.state = self.generator.get_state() indices = torch.randperm(n, generator=self.generator).tolist() if not self.restarting: self.counter = 0 else: indices = indices[self.counter:] self.restarting = False for index in indices: self.counter += 1 yield index self.counter = 0 class FaultTolerantDistributedSampler(DistributedSampler): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.counter = 0 self.restarting = False def state_dict(self): return {"epoch": self.epoch, "counter": self.counter} def load_state_dict(self, state_dict): self.epoch = state_dict["epoch"] self.counter = state_dict["counter"] self.restarting = True def __len__(self) -> int: return self.num_samples - self.counter def __iter__(self): if self.shuffle: # deterministically shuffle based on epoch and seed g = torch.Generator() g.manual_seed(self.seed + self.epoch) indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore[arg-type] else: indices = list(range(len(self.dataset))) # type: ignore[arg-type] if not self.drop_last: # add extra samples to make it evenly divisible padding_size = self.total_size - len(indices) if padding_size <= len(indices): indices += indices[:padding_size] else: indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size] else: # remove tail of data to make it evenly divisible. indices = indices[:self.total_size] assert len(indices) == self.total_size # subsample indices = indices[self.rank:self.total_size:self.num_replicas] assert len(indices) == self.num_samples if not self.restarting: self.counter = 0 else: indices = indices[self.counter:] self.restarting = False for index in indices: self.counter += 1 yield index # class DistributedSampler(Sampler): # r"""Sampler that restricts data loading to a subset of the dataset. # It is especially useful in conjunction with # :class:`torch.nn.parallel.DistributedDataParallel`. In such a case, each # process can pass a :class:`~torch.utils.data.DistributedSampler` instance as a # :class:`~torch.utils.data.DataLoader` sampler, and load a subset of the # original dataset that is exclusive to it. # .. note:: # Dataset is assumed to be of constant size and that any instance of it always # returns the same elements in the same order. # Args: # dataset: Dataset used for sampling. # num_replicas (int, optional): Number of processes participating in # distributed training. By default, :attr:`world_size` is retrieved from the # current distributed group. # rank (int, optional): Rank of the current process within :attr:`num_replicas`. # By default, :attr:`rank` is retrieved from the current distributed # group. # shuffle (bool, optional): If ``True`` (default), sampler will shuffle the # indices. # seed (int, optional): random seed used to shuffle the sampler if # :attr:`shuffle=True`. This number should be identical across all # processes in the distributed group. Default: ``0``. # drop_last (bool, optional): if ``True``, then the sampler will drop the # tail of the data to make it evenly divisible across the number of # replicas. If ``False``, the sampler will add extra indices to make # the data evenly divisible across the replicas. Default: ``False``. # .. warning:: # In distributed mode, calling the :meth:`set_epoch` method at # the beginning of each epoch **before** creating the :class:`DataLoader` iterator # is necessary to make shuffling work properly across multiple epochs. Otherwise, # the same ordering will be always used. # Example:: # >>> sampler = DistributedSampler(dataset) if is_distributed else None # >>> loader = DataLoader(dataset, shuffle=(sampler is None), # ... sampler=sampler) # >>> for epoch in range(start_epoch, n_epochs): # ... if is_distributed: # ... sampler.set_epoch(epoch) # ... train(loader) # """ # def __init__(self, dataset: Dataset, num_replicas: Optional[int] = None, # rank: Optional[int] = None, shuffle: bool = True, # seed: int = 0, drop_last: bool = False) -> None: # if num_replicas is None: # if not dist.is_available(): # raise RuntimeError("Requires distributed package to be available") # num_replicas = dist.get_world_size() # if rank is None: # if not dist.is_available(): # raise RuntimeError("Requires distributed package to be available") # rank = dist.get_rank() # if rank >= num_replicas or rank < 0: # raise ValueError( # "Invalid rank {}, rank should be in the interval" # " [0, {}]".format(rank, num_replicas - 1)) # self.dataset = dataset # self.num_replicas = num_replicas # self.rank = rank # self.epoch = 0 # self.drop_last = drop_last # # If the dataset length is evenly divisible by # of replicas, then there # # is no need to drop any data, since the dataset will be split equally. # if self.drop_last and len(self.dataset) % self.num_replicas != 0: # type: ignore[arg-type] # # Split to nearest available length that is evenly divisible. # # This is to ensure each rank receives the same amount of data when # # using this Sampler. # self.num_samples = math.ceil( # (len(self.dataset) - self.num_replicas) / self.num_replicas # type: ignore[arg-type] # ) # else: # self.num_samples = math.ceil(len(self.dataset) / self.num_replicas) # type: ignore[arg-type] # self.total_size = self.num_samples * self.num_replicas # self.shuffle = shuffle # self.seed = seed # def __iter__(self) -> Iterator[T_co]: # if self.shuffle: # # deterministically shuffle based on epoch and seed # g = torch.Generator() # g.manual_seed(self.seed + self.epoch) # indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore[arg-type] # else: # indices = list(range(len(self.dataset))) # type: ignore[arg-type] # if not self.drop_last: # # add extra samples to make it evenly divisible # padding_size = self.total_size - len(indices) # if padding_size <= len(indices): # indices += indices[:padding_size] # else: # indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size] # else: # # remove tail of data to make it evenly divisible. # indices = indices[:self.total_size] # assert len(indices) == self.total_size # # subsample # indices = indices[self.rank:self.total_size:self.num_replicas] # assert len(indices) == self.num_samples # return iter(indices) # def __len__(self) -> int: # return self.num_samples # class RandomSampler(Sampler[int]): # r"""Samples elements randomly. If without replacement, then sample from a shuffled dataset. # If with replacement, then user can specify :attr:`num_samples` to draw. # Args: # data_source (Dataset): dataset to sample from # replacement (bool): samples are drawn on-demand with replacement if ``True``, default=``False`` # num_samples (int): number of samples to draw, default=`len(dataset)`. # generator (Generator): Generator used in sampling. # """ # data_source: Sized # def __init__(self, data_source: Sized, num_samples: Optional[int] = None, generator=None) -> None: # self.data_source = data_source # self._num_samples = num_samples # self.generator = generator # @property # def num_samples(self) -> int: # # dataset size might change at runtime # if self._num_samples is None: # return len(self.data_source) # return self._num_samples # def __iter__(self) -> Iterator[int]: # n = len(self.data_source) # if self.generator is None: # seed = int(torch.empty((), dtype=torch.int64).random_().item()) # generator = torch.Generator() # generator.manual_seed(seed) # else: # generator = self.generator # for _ in range(self.num_samples // n): # yield from torch.randperm(n, generator=generator).tolist() # yield from torch.randperm(n, generator=generator).tolist()[:self.num_samples % n] # def __len__(self) -> int: # return self.num_samples # @pytest.mark.parametrize( # ["train_dataset_cls", "val_dataset_cls"], # [ # ([RandomFaultTolerantDataset, RandomFaultTolerantDataset], [RandomFaultTolerantDataset]), # ], # ) # @pytest.mark.parametrize("val_check_interval", [0.5]) # @mock.patch.dict(os.environ, {"PL_FAULT_TOLERANT_TRAINING": "2"}) # def test_fault_tolerant_manual_mode(val_check_interval, train_dataset_cls, val_dataset_cls, tmpdir): # class TestModel(BoringModel): # def __init__(self, should_fail: bool = False): # super().__init__() # self.layer = torch.nn.Linear(1, 2) # self.should_fail = should_fail # self.batches = [] # def training_step(self, batch, batch_idx): # if self.should_fail and batch_idx == 7: # raise CustomException # self.batches.append(batch) # losses = [] # for b in batch: # losses.append(super().training_step(b, batch_idx)["loss"]) # return torch.stack(losses).mean() # def validation_step(self, batch, batch_idx, dataloader_idx=0): # pass # validation_epoch_end = None # def _create_dataloader_kwargs(self, dataset_class, dataset_len, seed, num_workers): # dl_kwargs = {} # dl_kwargs["dataset"] = dataset_class(dataset_len, 1, seed=seed) # dl_kwargs["sampler"] = RandomFaultTolerantSampler(dl_kwargs["dataset"], seed=seed) # dl_kwargs["num_workers"] = num_workers # dl_kwargs["batch_size"] = 1 # return dl_kwargs # def train_dataloader(self): # return [ # DataLoader( # **self._create_dataloader_kwargs( # dataset_class, 10, seed, seed + 1 if val_check_interval == 1.0 else 0 # ) # ) # for seed, dataset_class in enumerate(train_dataset_cls) # ] # def val_dataloader(self): # return [ # DataLoader(**self._create_dataloader_kwargs(dataset_class, 1, seed, 0)) # for seed, dataset_class in enumerate(val_dataset_cls) # ] # def configure_optimizers(self): # optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.001) # lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1) # return [optimizer], [lr_scheduler] # seed_everything(42) # model = TestModel() # trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, val_check_interval=val_check_interval) # trainer.fit(model) # total_batches = model.batches # total_weight = deepcopy(model.layer.weight) # trainer.train_dataloader = None # seed_everything(42) # model = TestModel(should_fail=True) # trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, val_check_interval=val_check_interval) # with pytest.raises(CustomException): # trainer.fit(model) # trainer.train_dataloader = None # failed_batches = model.batches # failed_weight = deepcopy(model.layer.weight) # checkpoint_path = str(tmpdir / ".pl_auto_save.ckpt") # assert os.path.exists(checkpoint_path) # seed_everything(42) # model = TestModel() # trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, val_check_interval=val_check_interval) # trainer.fit(model, ckpt_path=checkpoint_path) # trainer.train_dataloader = None # restart_batches = model.batches # torch_test_assert_close(total_batches, failed_batches + restart_batches) # assert not torch.equal(total_weight, failed_weight) # assert torch.equal(total_weight, model.layer.weight)
fly-master
src/datamodules/fault_tolerant_sampler.py
from typing import Optional, Tuple import torch from pytorch_lightning import LightningDataModule from torch.utils.data import ConcatDataset, DataLoader, Dataset, random_split from torchvision.datasets import MNIST from torchvision.transforms import transforms class MNISTDataModule(LightningDataModule): """ Example of LightningDataModule for MNIST dataset. A DataModule implements 5 key methods: - prepare_data (things to do on 1 GPU/TPU, not on every GPU/TPU in distributed mode) - setup (things to do on every accelerator in distributed mode) - train_dataloader (the training dataloader) - val_dataloader (the validation dataloader(s)) - test_dataloader (the test dataloader(s)) This allows you to share a full dataset without explaining how to download, split, transform and process the data. Read the docs: https://pytorch-lightning.readthedocs.io/en/latest/extensions/datamodules.html """ def __init__( self, data_dir: str = "data/", train_val_test_split: Tuple[int, int, int] = (55_000, 5_000, 10_000), batch_size: int = 64, num_workers: int = 0, pin_memory: bool = False, ): super().__init__() self.data_dir = data_dir self.train_val_test_split = train_val_test_split self.batch_size = batch_size self.num_workers = num_workers self.pin_memory = pin_memory self.transforms = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] ) # self.dims is returned when you call datamodule.size() self.dims = (1, 28, 28) self.data_train: Optional[Dataset] = None self.data_val: Optional[Dataset] = None self.data_test: Optional[Dataset] = None @property def num_classes(self) -> int: return 10 def prepare_data(self): """Download data if needed. This method is called only from a single GPU. Do not use it to assign state (self.x = y).""" MNIST(self.data_dir, train=True, download=True) MNIST(self.data_dir, train=False, download=True) def setup(self, stage: Optional[str] = None): """Load data. Set variables: `self.data_train`, `self.data_val`, `self.data_test`. This method is called by lightning separately when using `trainer.fit()` and `trainer.test()`! The `stage` can be used to differentiate whether the `setup()` is called before trainer.fit()` or `trainer.test()`.""" if not self.data_train or not self.data_val or not self.data_test: trainset = MNIST(self.data_dir, train=True, transform=self.transforms) testset = MNIST(self.data_dir, train=False, transform=self.transforms) dataset = ConcatDataset(datasets=[trainset, testset]) self.data_train, self.data_val, self.data_test = random_split( dataset, self.train_val_test_split, generator=torch.Generator().manual_seed(42) ) def train_dataloader(self): return DataLoader( dataset=self.data_train, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory, shuffle=True, ) def val_dataloader(self): return DataLoader( dataset=self.data_val, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory, shuffle=False, ) def test_dataloader(self): return DataLoader( dataset=self.data_test, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory, shuffle=False, )
fly-master
src/datamodules/mnist_datamodule.py
from pathlib import Path current_dir = Path(__file__).parent.absolute() import torch import torch.nn as nn from einops.layers.torch import Rearrange # [2021-06-30] TD: Somehow I get segfault if I import pl_bolts *after* torchvision from pl_bolts.datamodules import CIFAR10DataModule from torchvision import transforms, datasets from src.utils.utils import get_logger from src.utils.tuples import to_2tuple # From https://github.com/PyTorchLightning/lightning-bolts/blob/bd392ad858039290c72c20cc3f10df39384e90b9/pl_bolts/transforms/dataset_normalizations.py#L20 def cifar10_normalization(): return transforms.Normalize( mean=[x / 255.0 for x in [125.3, 123.0, 113.9]], std=[x / 255.0 for x in [63.0, 62.1, 66.7]], ) def cifar10_grayscale_normalization(): return transforms.Normalize(mean=122.6 / 255.0, std=61.0 / 255.0) def cifar100_normalization(): return transforms.Normalize( mean=[x / 255.0 for x in [129.3, 124.1, 112.4]], std=[x / 255.0 for x in [68.2, 65.4, 70.4]], ) def cifar100_grayscale_normalization(): return transforms.Normalize(mean=124.3 / 255.0, std=63.9 / 255.0) # Adapted from https://github.com/PyTorchLightning/lightning-bolts/blob/master/pl_bolts/datamodules/cifar10_datamodule.py class CIFAR10(CIFAR10DataModule): default_image_size = (32, 32) def __init__(self, data_dir=current_dir, sequential=False, grayscale=False, data_augmentation=None, image_size=32, to_int=False, **kwargs): super().__init__(data_dir, **kwargs) self.data_augmentation = data_augmentation self.grayscale = grayscale self.sequential = sequential self.to_int = to_int self.image_size = to_2tuple(image_size) logger = get_logger() logger.info(f'Datamodule {self.__class__}: normalize={self.normalize}') if to_int: assert not self.normalize, 'to_int option is not compatible with normalize option' self._set_augmentation() self.dims = self._calculate_dimensions() if to_int and grayscale: self.vocab_size = 256 def default_transforms(self): transform_list = [] if not self.grayscale else [transforms.Grayscale()] transform_list.append(transforms.ToTensor()) if self.normalize: transform_list.append(self.normalize_fn()) if self.to_int: transform_list.append(transforms.Lambda(lambda x: (x * 255).long())) if self.sequential: # If grayscale and to_int, it makes more sense to get rid of the channel dimension transform_list.append(Rearrange('1 h w -> (h w)') if self.grayscale and self.to_int else Rearrange('c h w -> (h w) c')) return transforms.Compose(transform_list) def normalize_fn(self): return cifar10_normalization() if not self.grayscale else cifar10_grayscale_normalization() def _set_augmentation(self, data_augmentation=None): assert data_augmentation in [None, 'standard', 'autoaugment'] augment_list = [] if self.image_size != self.default_image_size: augment_list.append(transforms.Resize(self.image_size)) self.val_transforms = self.test_transforms = transforms.Compose( augment_list + self.default_transforms().transforms ) if data_augmentation is not None: if data_augmentation == 'standard': augment_list += [ transforms.RandomCrop(self.image_size, padding=4), transforms.RandomHorizontalFlip(), ] elif data_augmentation == 'autoaugment': from src.utils.autoaug import CIFAR10Policy augment_list += [CIFAR10Policy()] # By default it only converts to Tensor and normalizes self.train_transforms = transforms.Compose(augment_list + self.default_transforms().transforms) def _calculate_dimensions(self): nchannels = 3 if not self.grayscale else 1 if not self.sequential: return (nchannels, self.image_size[0], self.image_size[1]) else: length = self.image_size[0] * self.image_size[1] return (length, nchannels) if not (self.grayscale and self.to_int) else (length,) class CIFAR100(CIFAR10): dataset_cls = datasets.CIFAR100 @property def num_classes(self): return 100 def normalize_fn(self): return (cifar100_normalization() if not self.grayscale else cifar100_grayscale_normalization())
fly-master
src/datamodules/cifar.py
# Adapted from https://github.com/NVIDIA/DALI/blob/main/docs/examples/use_cases/pytorch/resnet50/main.py # and https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/Classification/ConvNets/image_classification/dataloaders.py # and https://docs.nvidia.com/deeplearning/dali/user-guide/docs/examples/frameworks/pytorch/pytorch-lightning.html try: from nvidia.dali.plugin.pytorch import DALIClassificationIterator, LastBatchPolicy from nvidia.dali.pipeline import pipeline_def import nvidia.dali.types as types import nvidia.dali.fn as fn except ImportError: raise ImportError("Please install DALI from https://www.github.com/NVIDIA/DALI.") @pipeline_def def create_dali_pipeline(data_dir, crop, size, shard_id, num_shards, dali_cpu=False, is_train=True, shuffle=False): images, labels = fn.readers.file(file_root=data_dir, shard_id=shard_id, num_shards=num_shards, random_shuffle=shuffle, pad_last_batch=True, name="Reader") dali_device = 'cpu' if dali_cpu else 'gpu' decoder_device = 'cpu' if dali_cpu else 'mixed' # ask nvJPEG to preallocate memory for the biggest sample in ImageNet for CPU and GPU to avoid reallocations in runtime device_memory_padding = 211025920 if decoder_device == 'mixed' else 0 host_memory_padding = 140544512 if decoder_device == 'mixed' else 0 # ask HW NVJPEG to allocate memory ahead for the biggest image in the data set to avoid reallocations in runtime preallocate_width_hint = 5980 if decoder_device == 'mixed' else 0 preallocate_height_hint = 6430 if decoder_device == 'mixed' else 0 if is_train: images = fn.decoders.image_random_crop(images, device=decoder_device, output_type=types.RGB, device_memory_padding=device_memory_padding, host_memory_padding=host_memory_padding, preallocate_width_hint=preallocate_width_hint, preallocate_height_hint=preallocate_height_hint, random_aspect_ratio=[0.75, 4.0 / 3.0], random_area=[0.08, 1.0], num_attempts=100) # INTERP_TRIANGULAR produces results much closer to torchvision default (bilinear) mode. # For example, on T2T-ViT-7, I get 71.576 if using torchvision loader, 71.574 if using # INTERP_TRIANGULAR, and 71.0 if using INTERP_LINEAR. images = fn.resize(images, device=dali_device, resize_x=crop, resize_y=crop, interp_type=types.INTERP_TRIANGULAR) mirror = fn.random.coin_flip(probability=0.5) else: images = fn.decoders.image(images, device=decoder_device, output_type=types.RGB) images = fn.resize(images, device=dali_device, size=size, mode="not_smaller", interp_type=types.INTERP_TRIANGULAR) mirror = False images = fn.crop_mirror_normalize(images.gpu(), dtype=types.FLOAT, output_layout="CHW", crop=(crop, crop), mean=[0.485 * 255, 0.456 * 255, 0.406 * 255], std=[0.229 * 255, 0.224 * 255, 0.225 * 255], mirror=mirror) labels = labels.gpu() return images, labels class DALIClassificationIteratorWrapper(DALIClassificationIterator): """Wrap it to return tuple instead of dictionary, and to squeeze the labels. """ def __init__(self, *kargs, is_train=True, **kvargs): super().__init__(*kargs, **kvargs) self._is_train = is_train def __next__(self): out = super().__next__() # DDP is used so only one pipeline per process # also we need to transform dict returned by DALIClassificationIterator to iterable # and squeeze the labels out = out[0] # TD [2021-08-28] Without .clone(), I get garbage results (acc=0.1%). # I think it's because DALI replaces the buffer content with the next batch before the # backward pass. return out['data'].clone(), out['label'].squeeze(-1).long().clone() # HACK: TD [2021-08-29] Pytorch-lightning relies on the length of the dataloader to count # how many times to advance the dataloader (but only for evaluation). However, DALI iterator # requires advancing to the end every time before resetting. # So there's a bug here. Suppose that there are 10 batches. # PL will only advance 10 times, but DALI iterator requires calling __next__ 11 times. On the 11th # time, the DALI iterator will raise StopIteration. This means that from PL's perspective, # the val loader has 10 batches on epoch 1, but 0 batches on epoch 2, and 10 batches on epoch 3, # etc. As a result, validation is run every 2 epochs instead of every epoch. # We fake the length (increase by 1) to trick PL into calling __next__ 11 times each epoch, so # that it plays well with DALI iterator. def __len__(self): return super().__len__() + int(not self._is_train) def get_dali_loader(data_dir, crop, size, is_train, batch_size, shuffle, drop_last, num_threads, device_id, shard_id, num_shards, dali_cpu): pipe = create_dali_pipeline(data_dir=data_dir, crop=crop, size=size, is_train=is_train, batch_size=batch_size, shuffle=shuffle, seed=12 + device_id, num_threads=num_threads, device_id=device_id, shard_id=shard_id, num_shards=num_shards, dali_cpu=dali_cpu) pipe.build() last_batch_policy = LastBatchPolicy.DROP if drop_last else LastBatchPolicy.PARTIAL return DALIClassificationIteratorWrapper(pipe, is_train=is_train, reader_name="Reader", last_batch_policy=last_batch_policy, auto_reset=True)
fly-master
src/datamodules/imagenet_dali_loader.py
# Copied from https://github.com/jotaf98/simple-tar-dataset/blob/master/tardataset.py import tarfile from io import BytesIO from PIL import Image, ImageFile from torch.utils.data import Dataset, get_worker_info try: # make torchvision optional from torchvision.transforms.functional import to_tensor except: to_tensor = None ImageFile.LOAD_TRUNCATED_IMAGES = True class TarDataset(Dataset): """Dataset that supports Tar archives (uncompressed). Args: archive (string or TarDataset): Path to the Tar file containing the dataset. Alternatively, pass in a TarDataset object to reuse its cached information; this is useful for loading different subsets within the same archive. extensions (tuple): Extensions (strings starting with a dot), only files with these extensions will be iterated. Default: png/jpg/jpeg. is_valid_file (callable): Optional function that takes file information as input (tarfile.TarInfo) and outputs True for files that need to be iterated; overrides extensions argument. Example: lambda m: m.isfile() and m.name.endswith('.png') transform (callable): Function applied to each image by __getitem__ (see torchvision.transforms). Default: ToTensor (convert PIL image to tensor). Attributes: members_by_name (dict): Members (files and folders) found in the Tar archive, with their names as keys and their tarfile.TarInfo structures as values. samples (list): Items to iterate (can be ignored by overriding __getitem__ and __len__). Author: Joao F. Henriques """ def __init__(self, archive, transform=to_tensor, extensions=('.png', '.jpg', '.jpeg'), is_valid_file=None): if not isinstance(archive, TarDataset): # open tar file. in a multiprocessing setting (e.g. DataLoader workers), we # have to open one file handle per worker (stored as the tar_obj dict), since # when the multiprocessing method is 'fork', the workers share this TarDataset. # we want one file handle per worker because TarFile is not thread-safe. worker = get_worker_info() worker = worker.id if worker else None self.tar_obj = {worker: tarfile.open(archive)} self.archive = archive # store headers of all files and folders by name members = sorted(self.tar_obj[worker].getmembers(), key=lambda m: m.name) self.members_by_name = {m.name: m for m in members} else: # passed a TarDataset into the constructor, reuse the same tar contents. # no need to copy explicitly since this dict will not be modified again. self.members_by_name = archive.members_by_name self.archive = archive.archive # the original path to the Tar file self.tar_obj = {} # will get filled by get_file on first access # also store references to the iterated samples (a subset of the above) self.filter_samples(is_valid_file, extensions) self.transform = transform def filter_samples(self, is_valid_file=None, extensions=('.png', '.jpg', '.jpeg')): """Filter the Tar archive's files/folders to obtain the list of samples. Args: extensions (tuple): Extensions (strings starting with a dot), only files with these extensions will be iterated. Default: png/jpg/jpeg. is_valid_file (callable): Optional function that takes file information as input (tarfile.TarInfo) and outputs True for files that need to be iterated; overrides extensions argument. Example: lambda m: m.isfile() and m.name.endswith('.png') """ # by default, filter files by extension if is_valid_file is None: def is_valid_file(m): return (m.isfile() and m.name.lower().endswith(extensions)) # filter the files to create the samples list self.samples = [m.name for m in self.members_by_name.values() if is_valid_file(m)] def __getitem__(self, index): """Return a single sample. Should be overriden by a subclass to support custom data other than images (e.g. class labels). The methods get_image/get_file can be used to read from the Tar archive, and a dict of files/folders is held in the property members_by_name. By default, this simply applies the given transforms or converts the image to a tensor if none are specified. Args: index (int): Index of item. Returns: Tensor: The image. """ image = self.get_image(self.samples[index], pil=True) image = image.convert('RGB') # if it's grayscale, convert to RGB if self.transform: # apply any custom transforms image = self.transform(image) return image def __len__(self): """Return the length of the dataset (length of self.samples) Returns: int: Number of samples. """ return len(self.samples) def get_image(self, name, pil=False): """Read an image from the Tar archive, returned as a PIL image or PyTorch tensor. Args: name (str): File name to retrieve. pil (bool): If true, a PIL image is returned (default is a PyTorch tensor). Returns: Image or Tensor: The image, possibly in PIL format. """ image = Image.open(BytesIO(self.get_file(name).read())) if pil: return image return to_tensor(image) def get_text_file(self, name, encoding='utf-8'): """Read a text file from the Tar archive, returned as a string. Args: name (str): File name to retrieve. encoding (str): Encoding of file, default is utf-8. Returns: str: Content of text file. """ return self.get_file(name).read().decode(encoding) def get_file(self, name): """Read an arbitrary file from the Tar archive. Args: name (str): File name to retrieve. Returns: io.BufferedReader: Object used to read the file's content. """ # ensure a unique file handle per worker, in multiprocessing settings worker = get_worker_info() worker = worker.id if worker else None if worker not in self.tar_obj: self.tar_obj[worker] = tarfile.open(self.archive) return self.tar_obj[worker].extractfile(self.members_by_name[name]) def __del__(self): """Close the TarFile file handles on exit.""" for o in self.tar_obj.values(): o.close() def __getstate__(self): """Serialize without the TarFile references, for multiprocessing compatibility.""" state = dict(self.__dict__) state['tar_obj'] = {} return state
fly-master
src/datamodules/datasets/tardataset.py
# Copied from https://github.com/stanford-crfm/mistral/blob/main/src/corpora/detokenization.py # Which was originally from https://github.com/NVIDIA/Megatron-LM/blob/aed2f75e209e525c842aec7c044af7acae2a4614/tasks/zeroshot_gpt/detokenizer.py """ Handle detokenization for different dataset for zero-shot LM evaluation. """ import re def wikitext_detokenize(string: str) -> str: """ Wikitext is whitespace tokenized and we remove these whitespaces. Taken from https://github.com/NVIDIA/Megatron-LM/blob/main/tasks/zeroshot_gpt2/detokenizer.py """ # Contractions string = string.replace("s '", "s'") string = re.sub(r"/' [0-9]/", r"/'[0-9]/", string) # Number Separators string = string.replace(" @-@ ", "-") string = string.replace(" @,@ ", ",") string = string.replace(" @.@ ", ".") # Punctuation string = string.replace(" : ", ": ") string = string.replace(" ; ", "; ") string = string.replace(" . ", ". ") string = string.replace(" ! ", "! ") string = string.replace(" ? ", "? ") string = string.replace(" , ", ", ") # Double Brackets string = re.sub(r"\(\s*([^\)]*?)\s*\)", r"(\1)", string) string = re.sub(r"\[\s*([^\]]*?)\s*\]", r"[\1]", string) string = re.sub(r"{\s*([^}]*?)\s*}", r"{\1}", string) string = re.sub(r"\"\s*([^\"]*?)\s*\"", r'"\1"', string) string = re.sub(r"'\s*([^']*?)\s*'", r"'\1'", string) # Miscellaneous string = string.replace("= = = =", "====") string = string.replace("= = =", "===") string = string.replace("= =", "==") string = string.replace(" " + chr(176) + " ", chr(176)) string = string.replace(" \n", "\n") string = string.replace("\n ", "\n") string = string.replace(" N ", " 1 ") string = string.replace(" 's", "'s") return string # Set Registry for Various Datasets DATASET_TOKENIZATION_REGISTRY = {"wikitext": wikitext_detokenize}
fly-master
src/datamodules/datasets/detokenizer.py
from typing import Any, List, Dict, Tuple, Optional, Callable, cast import logging import time import pickle from pathlib import Path, PurePath from PIL import Image from fs.tarfs import TarFS from fs.zipfs import ZipFS from torch.utils.data import get_worker_info from torchvision.datasets import ImageFolder from torchvision.datasets.folder import has_file_allowed_extension # https://www.python.org/dev/peps/pep-0616/ def removeprefix(self: str, prefix: str, /) -> str: if self.startswith(prefix): return self[len(prefix):] else: return self[:] class ArchiveImageFolder(ImageFolder): """Dataset that supports Tar/Zip archives (uncompressed), with a folder per class. Similarly to torchvision.datasets.ImageFolder, assumes that the images inside the Tar archive are arranged in this way by default: root/dog/xxx.png root/dog/xxy.png root/dog/[...]/xxz.png root/cat/123.png root/cat/nsdf3.png root/cat/[...]/asd932_.png Args: archive (string or TarDataset): Path to the Tar file containing the dataset. Alternatively, pass in a TarDataset object to reuse its cached information; this is useful for loading different subsets within the same archive. root_in_archive (string): Root folder within the archive, directly below the folders with class names. extensions (tuple): Extensions (strings starting with a dot), only files with these extensions will be iterated. Default: png/jpg/jpeg. is_valid_file (callable): Optional function that takes file information as input (tarfile.TarInfo) and outputs True for files that need to be iterated; overrides extensions argument. Example: lambda m: m.isfile() and m.name.endswith('.png') transform (callable): Function applied to each image by __getitem__ (see torchvision.transforms). Default: ToTensor (convert PIL image to tensor). Attributes: samples (list): Image file names to iterate. targets (list): Numeric label corresponding to each image. class_to_idx (dict): Maps class names to numeric labels. idx_to_class (dict): Maps numeric labels to class names. """ def __init__( self, archive: str, cache_dir: Optional[str] = None, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, is_valid_file: Optional[Callable[[str], bool]] = None, root_in_archive: str = '', ) -> None: assert archive.endswith('.tar') or archive.endswith('.zip'), 'Only .tar and .zip are supported' self._fs_cls = TarFS if archive.endswith('.tar') else ZipFS self.root_in_archive = PurePath(root_in_archive) self.cache_dir = None if cache_dir is None else Path(cache_dir).expanduser() # open tar/zip file. in a multiprocessing setting (e.g. DataLoader workers), we # have to open one file handle per worker (stored as the tar_obj dict), since # when the multiprocessing method is 'fork', the workers share this TarDataset. # we want one file handle per worker because TarFile is not thread-safe. # As done in https://github.com/jotaf98/simple-tar-dataset/blob/master/tardataset.py logger = logging.getLogger(__name__) logger.info(f'Reading archive headers from {str(archive)} with root_in_archive {root_in_archive}') t = time.time() worker = get_worker_info() worker = worker.id if worker else None self.archive_fs = {worker: self._fs_cls(str(Path(archive).expanduser()))} super().__init__(archive, loader=None, transform=transform, target_transform=target_transform, is_valid_file=is_valid_file) logger.info(f'Done in {float(time.time() - t):.1f} seconds.') def find_classes(self, directory: str) -> Tuple[List[str], Dict[str, int]]: """Finds the class folders in a dataset. See :class:`DatasetFolder` for details. """ # We ignore directory and assume that directory == self.root if self.cache_dir is not None: try: return load_from_cache(self.cache_dir / self._cache_dir_name / 'classes.pkl') except FileNotFoundError: pass archive_fs = self.get_archive_fs().opendir(str(self.root_in_archive)) classes = sorted(entry.name for entry in archive_fs.scandir('/') if entry.is_dir) if not classes: raise FileNotFoundError(f"Couldn't find any class folder in {str(self.root_in_archive)} inside {self.root}.") class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)} if self.cache_dir is not None: save_to_cache(self.cache_dir / self._cache_dir_name / 'classes.pkl', (classes, class_to_idx)) return classes, class_to_idx # Adapted from https://github.com/pytorch/vision/blob/main/torchvision/datasets/folder.py def make_dataset( self, directory: str, class_to_idx: Dict[str, int], extensions: Optional[Tuple[str, ...]] = None, is_valid_file: Optional[Callable[[str], bool]] = None, ) -> List[Tuple[str, int]]: """Generates a list of samples of a form (path_to_sample, class). This can be overridden to e.g. read files from a compressed zip file instead of from the disk. Args: directory (str): archive dataset directory, corresponding to ``self.archive``. class_to_idx (Dict[str, int]): Dictionary mapping class name to class index. extensions (optional): A list of allowed extensions. Either extensions or is_valid_file should be passed. Defaults to None. is_valid_file (optional): A function that takes path of a file and checks if the file is a valid file (used to check of corrupt files) both extensions and is_valid_file should not be passed. Defaults to None. Raises: ValueError: In case ``class_to_idx`` is empty. ValueError: In case ``extensions`` and ``is_valid_file`` are None or both are not None. FileNotFoundError: In case no valid file was found for any class. Returns: List[Tuple[str, int]]: samples of a form (path_to_sample, class) """ # We ignore directory and assume that directory == self.root if self.cache_dir is not None: try: return load_from_cache(self.cache_dir / self._cache_dir_name / 'samples.pkl') except FileNotFoundError: pass if class_to_idx is None: _, class_to_idx = self.find_classes(directory) elif not class_to_idx: raise ValueError("'class_to_index' must have at least one entry to collect any samples.") both_none = extensions is None and is_valid_file is None both_something = extensions is not None and is_valid_file is not None if both_none or both_something: raise ValueError("Both extensions and is_valid_file cannot be None or not None at the same time") if extensions is not None: def is_valid_file(x: str) -> bool: return has_file_allowed_extension(x, cast(Tuple[str, ...], extensions)) is_valid_file = cast(Callable[[str], bool], is_valid_file) archive_fs = self.get_archive_fs().opendir(str(self.root_in_archive)) instances = [] available_classes = set() for target_class in sorted(class_to_idx.keys()): class_index = class_to_idx[target_class] target_dir_info = archive_fs.getinfo(target_class) if not target_dir_info.is_dir: continue for root, _, fnames in sorted(archive_fs.walk(target_class)): # root starts with '/' because it's the root in this directory # That messes up the path joining, so we remove the '/' root = removeprefix(root, '/') for fname in sorted(fnames, key=lambda info: info.name): if is_valid_file(fname.name): path = self.root_in_archive / root / fname.name item = str(path), class_index instances.append(item) if target_class not in available_classes: available_classes.add(target_class) empty_classes = set(class_to_idx.keys()) - available_classes if empty_classes: msg = f"Found no valid file for the classes {', '.join(sorted(empty_classes))}. " if extensions is not None: msg += f"Supported extensions are: {', '.join(extensions)}" raise FileNotFoundError(msg) if self.cache_dir is not None: save_to_cache(self.cache_dir / self._cache_dir_name / 'samples.pkl', instances) return instances def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (sample, target) where target is class_index of the target class. """ path, target = self.samples[index] with self.get_archive_fs().openbin(path) as f: sample = Image.open(f).convert('RGB') if self.transform is not None: sample = self.transform(sample) if self.target_transform is not None: target = self.target_transform(target) return sample, target @property def _cache_dir_name(self): return f'root_in_archive-{str(self.root_in_archive)}' def get_archive_fs(self): worker = get_worker_info() worker = worker.id if worker else None if worker not in self.archive_fs: self.archive_fs[worker] = self._fs_cls(str(Path(self.root).expanduser())) return self.archive_fs[worker] def __del__(self): """Close the TarFile file handles on exit.""" for o in self.archive_fs.values(): o.close() def __getstate__(self): """Serialize without the TarFile references, for multiprocessing compatibility.""" state = dict(self.__dict__) state['archive_fs'] = {} return state def save_to_cache(path, obj): path = Path(path) logger = logging.getLogger(__name__) logger.info(f'Saving to cache at {str(path)}') path.parent.mkdir(exist_ok=True) with open(path, 'wb') as f: pickle.dump(obj, f) def load_from_cache(path): path = Path(path) if not path.is_file(): raise FileNotFoundError(f'File {str(path)} not found') logger = logging.getLogger(__name__) logger.info(f'Load from cache at {str(path)}') with open(path, 'rb') as f: return pickle.load(f)
fly-master
src/datamodules/datasets/archive_imagefolder.py
fly-master
src/datamodules/datasets/__init__.py
# Copied from https://github.com/jotaf98/simple-tar-dataset/blob/master/tarimagefolder.py from .tardataset import TarDataset try: # make torchvision optional from torchvision.transforms.functional import to_tensor except: to_tensor = None class TarImageFolder(TarDataset): """Dataset that supports Tar archives (uncompressed), with a folder per class. Similarly to torchvision.datasets.ImageFolder, assumes that the images inside the Tar archive are arranged in this way by default: root/dog/xxx.png root/dog/xxy.png root/dog/[...]/xxz.png root/cat/123.png root/cat/nsdf3.png root/cat/[...]/asd932_.png Args: archive (string or TarDataset): Path to the Tar file containing the dataset. Alternatively, pass in a TarDataset object to reuse its cached information; this is useful for loading different subsets within the same archive. root_in_archive (string): Root folder within the archive, directly below the folders with class names. extensions (tuple): Extensions (strings starting with a dot), only files with these extensions will be iterated. Default: png/jpg/jpeg. is_valid_file (callable): Optional function that takes file information as input (tarfile.TarInfo) and outputs True for files that need to be iterated; overrides extensions argument. Example: lambda m: m.isfile() and m.name.endswith('.png') transform (callable): Function applied to each image by __getitem__ (see torchvision.transforms). Default: ToTensor (convert PIL image to tensor). Attributes: samples (list): Image file names to iterate. targets (list): Numeric label corresponding to each image. class_to_idx (dict): Maps class names to numeric labels. idx_to_class (dict): Maps numeric labels to class names. members_by_name (dict): Members (files and folders) found in the Tar archive, with their names as keys and their tarfile.TarInfo structures as values. Author: Joao F. Henriques """ def __init__(self, archive, transform=to_tensor, extensions=('.png', '.jpg', '.jpeg'), is_valid_file=None, root_in_archive=''): # ensure the root path ends with a slash if root_in_archive and not root_in_archive.endswith('/'): root_in_archive = root_in_archive + '/' self.root_in_archive = root_in_archive # load the archive meta information, and filter the samples super().__init__(archive=archive, transform=transform, is_valid_file=is_valid_file) # assign a label to each image, based on its top-level folder name self.class_to_idx = {} self.targets = [] for filename in self.samples: # extract the class name from the file's path inside the Tar archive if self.root_in_archive: assert filename.startswith(root_in_archive) # sanity check (filter_samples should ensure this) filename = filename[len(root_in_archive):] # make path relative to root (class_name, _, _) = filename.partition('/') # first folder level # assign increasing label indexes to each class name label = self.class_to_idx.setdefault(class_name, len(self.class_to_idx)) self.targets.append(label) if len(self.class_to_idx) == 0: raise IOError("No classes (top-level folders) were found with the given criteria. The given\n" "extensions, is_valid_file or root_in_archive are too strict, or the archive is empty.") elif len(self.class_to_idx) == 1: raise IOError(f"Only one class (top-level folder) was found: {next(iter(self.class_to_idx))}.\n" f"To choose the correct path in the archive where the label folders are located, specify\n" f"root_in_archive in the TarImageFolder's constructor.") # the inverse mapping is often useful self.idx_to_class = {v: k for k, v in self.class_to_idx.items()} def filter_samples(self, is_valid_file=None, extensions=('.png', '.jpg', '.jpeg')): """In addition to TarDataset's filtering by extension (or user-supplied), filter further to select only samples within the given root path.""" super().filter_samples(is_valid_file, extensions) self.samples = [filename for filename in self.samples if filename.startswith(self.root_in_archive)] def __getitem__(self, index): """Return a single sample. By default, this simply applies the given transforms or converts the image to a tensor if none are specified. Args: index (int): Index of item. Returns: tuple[Tensor, int]: The image and the corresponding label index. """ image = self.get_image(self.samples[index], pil=True) image = image.convert('RGB') # if it's grayscale, convert to RGB if self.transform: # apply any custom transforms image = self.transform(image) label = self.targets[index] return (image, label)
fly-master
src/datamodules/datasets/tarimagefolder.py
# Inspired by https://github.com/NVIDIA/Megatron-LM/blob/main/tasks/zeroshot_gpt/datasets.py # Except we don't pad the last block and don't use overlapping eval # And we return both the input and the target import math import numpy as np import torch class LMDataset(torch.utils.data.Dataset): def __init__(self, tokens, seq_len, drop_last=True): """tokens should be a numpy array """ self.seq_len = seq_len ntokens = len(tokens) if drop_last: ntokens = ((ntokens - 1) // seq_len) * seq_len + 1 self.ntokens = ntokens # We're careful not to slice tokens, since it could be a memmap'ed array or H5 dataset, # and slicing would load it to memory. self.tokens = tokens self.total_sequences = math.ceil((self.ntokens - 1) / self.seq_len) def __len__(self): return self.total_sequences def __getitem__(self, idx): start_idx = idx * self.seq_len seq_len = min(self.seq_len, self.ntokens - 1 - start_idx) data = torch.as_tensor(self.tokens[start_idx:(start_idx + seq_len + 1)].astype(np.int64)) return data[:-1], data[1:].clone()
fly-master
src/datamodules/datasets/lm_dataset.py
# Copied from https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/Transformer-XL/pytorch/utils/vocabulary.py # Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import os from collections import Counter from collections import OrderedDict import torch from src.utils.distributed import sync_workers class Vocab(object): def __init__(self, special=[], min_freq=0, max_size=None, lower_case=True, delimiter=None, vocab_file=None): self.counter = Counter() self.special = special self.min_freq = min_freq self.max_size = max_size self.lower_case = lower_case self.delimiter = delimiter self.vocab_file = vocab_file def tokenize(self, line, add_eos=False, add_double_eos=False): line = line.strip() # convert to lower case if self.lower_case: line = line.lower() # empty delimiter '' will evaluate False if self.delimiter == '': symbols = line else: symbols = line.split(self.delimiter) if add_double_eos: # lm1b return ['<S>'] + symbols + ['<S>'] elif add_eos: return symbols + ['<eos>'] else: return symbols def count_file(self, path, verbose=False, add_eos=False): if verbose: print('counting file {} ...'.format(path)) assert os.path.exists(path) sents = [] with open(path, 'r', encoding='utf-8') as f: for idx, line in enumerate(f): if verbose and idx > 0 and idx % 500000 == 0: print(' line {}'.format(idx)) symbols = self.tokenize(line, add_eos=add_eos) self.counter.update(symbols) sents.append(symbols) return sents def count_sents(self, sents, verbose=False): """ sents : a list of sentences, each a list of tokenized symbols """ if verbose: print('counting {} sents ...'.format(len(sents))) for idx, symbols in enumerate(sents): if verbose and idx > 0 and idx % 500000 == 0: print(' line {}'.format(idx)) self.counter.update(symbols) def _build_from_file(self, vocab_file): self.idx2sym = [] self.sym2idx = OrderedDict() with open(vocab_file, 'r', encoding='utf-8') as f: for line in f: symb = line.strip().split()[0] self.add_symbol(symb) self.unk_idx = self.sym2idx['<UNK>'] def build_vocab(self): if self.vocab_file: print('building vocab from {}'.format(self.vocab_file)) self._build_from_file(self.vocab_file) print('final vocab size {}'.format(len(self))) else: print('building vocab with min_freq={}, max_size={}'.format( self.min_freq, self.max_size)) self.idx2sym = [] self.sym2idx = OrderedDict() for sym in self.special: self.add_special(sym) for sym, cnt in self.counter.most_common(self.max_size): if cnt < self.min_freq: break self.add_symbol(sym) print('final vocab size {} from {} unique tokens'.format( len(self), len(self.counter))) def encode_file(self, path, ordered=False, verbose=False, add_eos=True, add_double_eos=False): if verbose: print('encoding file {} ...'.format(path)) assert os.path.exists(path) encoded = [] with open(path, 'r', encoding='utf-8') as f: for idx, line in enumerate(f): if verbose and idx > 0 and idx % 500000 == 0: print(' line {}'.format(idx)) symbols = self.tokenize(line, add_eos=add_eos, add_double_eos=add_double_eos) encoded.append(self.convert_to_tensor(symbols)) if ordered: encoded = torch.cat(encoded) return encoded def encode_sents(self, sents, ordered=False, verbose=False): if verbose: print('encoding {} sents ...'.format(len(sents))) encoded = [] for idx, symbols in enumerate(sents): if verbose and idx > 0 and idx % 500000 == 0: print(' line {}'.format(idx)) encoded.append(self.convert_to_tensor(symbols)) if ordered: encoded = torch.cat(encoded) return encoded def add_special(self, sym): if sym not in self.sym2idx: self.idx2sym.append(sym) self.sym2idx[sym] = len(self.idx2sym) - 1 setattr(self, '{}_idx'.format(sym.strip('<>')), self.sym2idx[sym]) def add_symbol(self, sym): if sym not in self.sym2idx: self.idx2sym.append(sym) self.sym2idx[sym] = len(self.idx2sym) - 1 def get_sym(self, idx): assert 0 <= idx < len(self), 'Index {} out of range'.format(idx) return self.idx2sym[idx] def get_idx(self, sym): if sym in self.sym2idx: return self.sym2idx[sym] else: # print('encounter unk {}'.format(sym)) assert '<eos>' not in sym assert hasattr(self, 'unk_idx') return self.sym2idx.get(sym, self.unk_idx) def get_symbols(self, indices): return [self.get_sym(idx) for idx in indices] def get_indices(self, symbols): return [self.get_idx(sym) for sym in symbols] def convert_to_tensor(self, symbols): return torch.LongTensor(self.get_indices(symbols)) def convert_to_sent(self, indices, exclude=None): if exclude is None: return ' '.join([self.get_sym(idx) for idx in indices]) else: return ' '.join([self.get_sym(idx) for idx in indices if idx not in exclude]) def __len__(self): return len(self.idx2sym) # Class OpenAIVocab has been adapted from # https://github.com/cybertronai/transformer-xl/blob/master/utils/vocabulary.py class OpenAIVocab(Vocab): def __init__(self, max_size=None, vocab_file=None): from transformers import GPT2Tokenizer self.tokenizer = GPT2Tokenizer.from_pretrained('gpt2') self.EOT = self.tokenizer.encoder['<|endoftext|>'] self.max_size = max_size self.vocab_file = vocab_file pad = 8 vocab_size = len(self.tokenizer) padded_vocab_size = (vocab_size + pad - 1) // pad * pad for i in range(0, padded_vocab_size - vocab_size): token = f'madeupword{i:09d}' self.tokenizer.add_tokens([token]) def __len__(self): return len(self.tokenizer) def count_file(self, path, verbose=False, add_eos=False): # TODO: train from scratch, respect self.max_size pass def build_vocab(self): pass def encode_file(self, path, ordered=False, verbose=False, add_eos=True, add_double_eos=False) -> torch.LongTensor: cached = path + '.bpe' if os.path.exists(cached): return torch.load(cached) print(f'encoding file {path} ...') assert os.path.exists(path), f"{path} doesn't exist" with open(path, encoding='utf-8') as f: # Suppress warnings about length. with open(os.devnull, "w") as devnull, contextlib.redirect_stderr(devnull): out = torch.LongTensor(self.tokenizer.encode(f.read()) + [self.EOT]) with sync_workers() as rank: if rank == 0: torch.save(out, cached) return out def tokenize(self, line, add_eos=False, add_double_eos=False): return self.tokenizer.encode(line) def convert_to_tensor(self, symbols): return torch.LongTensor(symbols)
fly-master
src/datamodules/datasets/vocabulary.py
import torch from torch.optim import Optimizer def InvSqrt(optimizer: Optimizer, num_warmup_steps: int): """ Originally used for Transformer (in Attention is all you need) We use the formula from the original paper. Refer to other implementations: - Nvidia: https://github.com/NVIDIA/DeepLearningExamples/blob/233287038c96734bf5c94a3adf5f3d08f54838d8/PyTorch/LanguageModeling/Transformer-XL/pytorch/train.py#L915 - LRA: https://github.com/google-research/long-range-arena/blob/264227cbf9591e39dd596d2dc935297a2070bdfe/lra_benchmarks/utils/train_utils.py#L87 Note that the max learning rate is then original_lr / num_warmup_steps ** 0.5, *not* original_lr. Fairseq has a different implementation where the max learning rate is original_lr (I think): https://github.com/pytorch/fairseq/blob/master/fairseq/optim/lr_scheduler/inverse_square_root_schedule.py """ def lr_lambda(current_step): # return a multiplier instead of a learning rate if current_step == 0 and num_warmup_steps == 0: return 1. else: return (1. / (current_step ** 0.5) if current_step > num_warmup_steps else current_step / (num_warmup_steps ** 1.5)) return torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_lambda)
fly-master
src/optim/lr_scheduler.py
import inspect import torch.nn as nn import hydra try: from apex.contrib.layer_norm import FastLayerNorm except ImportError: FastLayerNorm = None from src.models.modules.seq_common import PositionalEncoding def group_parameters_for_optimizer(model, optimizer_cfg, bias_weight_decay=False, normalization_weight_decay=False): """Set weight_decay=0.0 for parameters in model.no_weight_decay, for parameters with attribute _no_weight_decay==True, for bias parameters if bias_weight_decay==False, for normalization parameters if normalization_weight_decay==False """ # Get the weight decay from the config, or from the default value of the optimizer constructor # if it's not specified in the config. if 'weight_decay' in optimizer_cfg: weight_decay = optimizer_cfg.weight_decay else: # https://stackoverflow.com/questions/12627118/get-a-function-arguments-default-value signature = inspect.signature(hydra.utils.get_class(optimizer_cfg._target_)) if 'weight_decay' in signature.parameters: weight_decay = signature.parameters['weight_decay'].default if weight_decay is inspect.Parameter.empty: weight_decay = 0.0 else: weight_decay = 0.0 # If none of the parameters have weight decay anyway, and there are no parameters with special # optimization params if weight_decay == 0.0 and not any(hasattr(p, '_optim') for p in model.parameters()): return model.parameters() skip = model.no_weight_decay() if hasattr(model, 'no_weight_decay') else set() skip_keywords = (model.no_weight_decay_keywords() if hasattr(model, 'no_weight_decay_keywords') else set()) # Adapted from https://github.com/karpathy/minGPT/blob/master/mingpt/model.py#L134 """ This long function is unfortunately doing something very simple and is being very defensive: We are separating out all parameters of the model into two buckets: those that will experience weight decay for regularization and those that won't (biases, and layernorm/embedding weights). We are then returning the PyTorch optimizer object. """ # separate out all parameters to those that will and won't experience regularizing weight decay decay = set() no_decay = set() special = set() whitelist_weight_modules = (nn.Linear, ) blacklist_weight_modules = (nn.Embedding, PositionalEncoding) if not normalization_weight_decay: blacklist_weight_modules += (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, nn.LazyBatchNorm1d, nn.LazyBatchNorm2d, nn.LazyBatchNorm3d, nn.GroupNorm, nn.SyncBatchNorm, nn.InstanceNorm1d, nn.InstanceNorm2d, nn.InstanceNorm3d, nn.LayerNorm, nn.LocalResponseNorm) if FastLayerNorm is not None: blacklist_weight_modules += (FastLayerNorm,) param_dict = {pn: p for pn, p in model.named_parameters() if p.requires_grad} for mn, m in model.named_modules(): for pn, p in m.named_parameters(): fpn = '%s.%s' % (mn, pn) if mn else pn # full param name # In case of parameter sharing, some parameters show up here but are not in # param_dict.keys() if not p.requires_grad or fpn not in param_dict: continue # frozen weights if hasattr(p, '_optim'): special.add(fpn) elif fpn in skip or any(skip_keyword in fpn for skip_keyword in skip_keywords): no_decay.add(fpn) elif getattr(p, '_no_weight_decay', False): no_decay.add(fpn) elif not bias_weight_decay and pn.endswith('bias'): no_decay.add(fpn) elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules): # weights of whitelist modules will be weight decayed decay.add(fpn) elif isinstance(m, blacklist_weight_modules): # weights of blacklist modules will NOT be weight decayed no_decay.add(fpn) decay |= (param_dict.keys() - no_decay - special) # validate that we considered every parameter inter_params = decay & no_decay union_params = decay | no_decay assert len(inter_params) == 0, f"Parameters {str(inter_params)} made it into both decay/no_decay sets!" assert len(param_dict.keys() - special - union_params) == 0, f"parameters {str(param_dict.keys() - union_params)} were not separated into either decay/no_decay set!" if weight_decay == 0.0 or not no_decay: param_groups = [{"params": [param_dict[pn] for pn in sorted(list(no_decay | decay))], "weight_decay": weight_decay}] else: # We need sorted(list()) so that the order is deterministic. Otherwise when we resume # the order could change and resume will fail. [H/t Albert] param_groups = [ {"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": weight_decay}, {"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0}, ] # Add parameters with special hyperparameters # Unique dicts hps = [dict(s) for s in set(frozenset(param_dict[pn]._optim.items()) for pn in special)] for hp in hps: params = [param_dict[pn] for pn in sorted(list(special)) if param_dict[pn]._optim == hp] param_groups.append({"params": params, **hp}) return param_groups
fly-master
src/optim/param_grouping.py
import torch from torch.optim import Optimizer from timm.scheduler import CosineLRScheduler # We need to subclass torch.optim.lr_scheduler._LRScheduler, or Pytorch-lightning will complain class TimmCosineLRScheduler(CosineLRScheduler, torch.optim.lr_scheduler._LRScheduler): """ Wrap timm.scheduler.CosineLRScheduler so we can call scheduler.step() without passing in epoch. It supports resuming as well. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._last_epoch = -1 self.step(epoch=0) def step(self, epoch=None): if epoch is None: self._last_epoch += 1 else: self._last_epoch = epoch # We call either step or step_update, depending on whether we're using the scheduler every # epoch or every step. # Otherwise, lightning will always call step (i.e., meant for each epoch), and if we set # scheduler interval to "step", then the learning rate update will be wrong. if self.t_in_epochs: super().step(epoch=self._last_epoch) else: super().step_update(num_updates=self._last_epoch)
fly-master
src/optim/timm_lr_scheduler.py
# Credits to DeepVoltaire # github:DeepVoltaire/AutoAugment from PIL import Image, ImageEnhance, ImageOps import random class ShearX(object): def __init__(self, fillcolor=(128, 128, 128)): self.fillcolor = fillcolor def __call__(self, x, magnitude): return x.transform( x.size, Image.AFFINE, (1, magnitude * random.choice([-1, 1]), 0, 0, 1, 0), Image.BICUBIC, fillcolor=self.fillcolor) class ShearY(object): def __init__(self, fillcolor=(128, 128, 128)): self.fillcolor = fillcolor def __call__(self, x, magnitude): return x.transform( x.size, Image.AFFINE, (1, 0, 0, magnitude * random.choice([-1, 1]), 1, 0), Image.BICUBIC, fillcolor=self.fillcolor) class TranslateX(object): def __init__(self, fillcolor=(128, 128, 128)): self.fillcolor = fillcolor def __call__(self, x, magnitude): return x.transform( x.size, Image.AFFINE, (1, 0, magnitude * x.size[0] * random.choice([-1, 1]), 0, 1, 0), fillcolor=self.fillcolor) class TranslateY(object): def __init__(self, fillcolor=(128, 128, 128)): self.fillcolor = fillcolor def __call__(self, x, magnitude): return x.transform( x.size, Image.AFFINE, (1, 0, 0, 0, 1, magnitude * x.size[1] * random.choice([-1, 1])), fillcolor=self.fillcolor) class Rotate(object): # from https://stackoverflow.com/questions/ # 5252170/specify-image-filling-color-when-rotating-in-python-with-pil-and-setting-expand def __call__(self, x, magnitude): rot = x.convert("RGBA").rotate(magnitude) return Image.composite(rot, Image.new("RGBA", rot.size, (128,) * 4), rot).convert(x.mode) class Color(object): def __call__(self, x, magnitude): return ImageEnhance.Color(x).enhance(1 + magnitude * random.choice([-1, 1])) class Posterize(object): def __call__(self, x, magnitude): return ImageOps.posterize(x, magnitude) class Solarize(object): def __call__(self, x, magnitude): return ImageOps.solarize(x, magnitude) class Contrast(object): def __call__(self, x, magnitude): return ImageEnhance.Contrast(x).enhance(1 + magnitude * random.choice([-1, 1])) class Sharpness(object): def __call__(self, x, magnitude): return ImageEnhance.Sharpness(x).enhance(1 + magnitude * random.choice([-1, 1])) class Brightness(object): def __call__(self, x, magnitude): return ImageEnhance.Brightness(x).enhance(1 + magnitude * random.choice([-1, 1])) class AutoContrast(object): def __call__(self, x, magnitude): return ImageOps.autocontrast(x) class Equalize(object): def __call__(self, x, magnitude): return ImageOps.equalize(x) class Invert(object): def __call__(self, x, magnitude): return ImageOps.invert(x)
fly-master
src/utils/transforms.py
from itertools import repeat import collections.abc # Copied from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/helpers.py # From PyTorch internals def _ntuple(n): def parse(x): if isinstance(x, collections.abc.Iterable): return x return tuple(repeat(x, n)) return parse to_1tuple = _ntuple(1) to_2tuple = _ntuple(2) to_3tuple = _ntuple(3) to_4tuple = _ntuple(4) to_ntuple = _ntuple
fly-master
src/utils/tuples.py
import collections import math import os import pathlib import re import pynvml pynvml.nvmlInit() def systemGetDriverVersion(): return pynvml.nvmlSystemGetDriverVersion() def deviceGetCount(): return pynvml.nvmlDeviceGetCount() class device: # assume nvml returns list of 64 bit ints _nvml_affinity_elements = math.ceil(os.cpu_count() / 64) def __init__(self, device_idx): super().__init__() self.handle = pynvml.nvmlDeviceGetHandleByIndex(device_idx) def getName(self): return pynvml.nvmlDeviceGetName(self.handle) def getCpuAffinity(self): affinity_string = '' for j in pynvml.nvmlDeviceGetCpuAffinity( self.handle, device._nvml_affinity_elements ): # assume nvml returns list of 64 bit ints affinity_string = '{:064b}'.format(j) + affinity_string affinity_list = [int(x) for x in affinity_string] affinity_list.reverse() # so core 0 is in 0th element of list ret = [i for i, e in enumerate(affinity_list) if e != 0] return ret def set_socket_affinity(gpu_id): dev = device(gpu_id) affinity = dev.getCpuAffinity() os.sched_setaffinity(0, affinity) def set_single_affinity(gpu_id): dev = device(gpu_id) affinity = dev.getCpuAffinity() os.sched_setaffinity(0, affinity[:1]) def set_single_unique_affinity(gpu_id, nproc_per_node): devices = [device(i) for i in range(nproc_per_node)] socket_affinities = [dev.getCpuAffinity() for dev in devices] siblings_list = get_thread_siblings_list() siblings_dict = dict(siblings_list) # remove siblings for idx, socket_affinity in enumerate(socket_affinities): socket_affinities[idx] = list(set(socket_affinity) - set(siblings_dict.values())) affinities = [] assigned = [] for socket_affinity in socket_affinities: for core in socket_affinity: if core not in assigned: affinities.append([core]) assigned.append(core) break os.sched_setaffinity(0, affinities[gpu_id]) def set_socket_unique_affinity(gpu_id, nproc_per_node, mode): device_ids = [device(i) for i in range(nproc_per_node)] socket_affinities = [dev.getCpuAffinity() for dev in device_ids] siblings_list = get_thread_siblings_list() siblings_dict = dict(siblings_list) # remove siblings for idx, socket_affinity in enumerate(socket_affinities): socket_affinities[idx] = list(set(socket_affinity) - set(siblings_dict.values())) socket_affinities_to_device_ids = collections.defaultdict(list) for idx, socket_affinity in enumerate(socket_affinities): socket_affinities_to_device_ids[tuple(socket_affinity)].append(idx) for socket_affinity, device_ids in socket_affinities_to_device_ids.items(): devices_per_group = len(device_ids) cores_per_device = len(socket_affinity) // devices_per_group for group_id, device_id in enumerate(device_ids): if device_id == gpu_id: if mode == 'interleaved': affinity = list(socket_affinity[group_id::devices_per_group]) elif mode == 'continuous': affinity = list(socket_affinity[group_id*cores_per_device:(group_id+1)*cores_per_device]) else: raise RuntimeError('Unknown set_socket_unique_affinity mode') # reintroduce siblings affinity += [siblings_dict[aff] for aff in affinity if aff in siblings_dict] os.sched_setaffinity(0, affinity) def get_thread_siblings_list(): path = '/sys/devices/system/cpu/cpu*/topology/thread_siblings_list' thread_siblings_list = [] pattern = re.compile(r'(\d+)\D(\d+)') for fname in pathlib.Path(path[0]).glob(path[1:]): with open(fname) as f: content = f.read().strip() res = pattern.findall(content) if res: pair = tuple(map(int, res[0])) thread_siblings_list.append(pair) return thread_siblings_list def set_affinity(gpu_id, nproc_per_node, mode='socket'): if mode == 'socket': set_socket_affinity(gpu_id) elif mode == 'single': set_single_affinity(gpu_id) elif mode == 'single_unique': set_single_unique_affinity(gpu_id, nproc_per_node) elif mode == 'socket_unique_interleaved': set_socket_unique_affinity(gpu_id, nproc_per_node, 'interleaved') elif mode == 'socket_unique_continuous': set_socket_unique_affinity(gpu_id, nproc_per_node, 'continuous') else: raise RuntimeError('Unknown affinity mode') affinity = os.sched_getaffinity(0) return affinity
fly-master
src/utils/gpu_affinity.py
import re from pathlib import Path import torch def load_checkpoint(path, device='cpu'): path = Path(path).expanduser() is_deepspeed = False if path.is_dir(): # DeepSpeed checkpoint is_deepspeed = True latest_path = path / 'latest' if latest_path.is_file(): with open(latest_path, 'r') as fd: tag = fd.read().strip() else: raise ValueError(f"Unable to find 'latest' file at {latest_path}") path /= f'{tag}/mp_rank_00_model_states.pt' state_dict = torch.load(path, map_location=device) if is_deepspeed: state_dict = state_dict['module'] # Replace the names of some of the submodules def key_mapping(key): return re.sub(r'^module.model.', '', key) state_dict = {key_mapping(k): v for k, v in state_dict.items()} return state_dict def blockdiag_to_dense_mlp_bert(state_dict): from src.ops.blockdiag_multiply import blockdiag_weight_to_dense_weight names = {name for name in state_dict if re.match('bert.encoder.layer.(\d+).(mlp.fc(1|2)|(intermediate|output).dense).weight', name)} for name in names: state_dict[name] = blockdiag_weight_to_dense_weight(state_dict[name]) return state_dict
fly-master
src/utils/checkpoint.py
# Copied from https://github.com/fadel/pytorch_ema/blob/master/torch_ema/ema.py from __future__ import division from __future__ import unicode_literals from typing import Iterable, Optional import weakref import copy import contextlib import torch def to_float_maybe(x): return x.float() if x.dtype in [torch.float16, torch.bfloat16] else x # Partially based on: # https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/python/training/moving_averages.py class ExponentialMovingAverage: """ Maintains (exponential) moving average of a set of parameters. Args: parameters: Iterable of `torch.nn.Parameter` (typically from `model.parameters()`). decay: The exponential decay. use_num_updates: Whether to use number of updates when computing averages. """ def __init__( self, parameters: Iterable[torch.nn.Parameter], decay: float, use_num_updates: bool = True ): if decay < 0.0 or decay > 1.0: raise ValueError('Decay must be between 0 and 1') self.decay = decay self.num_updates = 0 if use_num_updates else None parameters = list(parameters) self.shadow_params = [to_float_maybe(p.clone().detach()) for p in parameters if p.requires_grad] self.collected_params = None # By maintaining only a weakref to each parameter, # we maintain the old GC behaviour of ExponentialMovingAverage: # if the model goes out of scope but the ExponentialMovingAverage # is kept, no references to the model or its parameters will be # maintained, and the model will be cleaned up. self._params_refs = [weakref.ref(p) for p in parameters] def _get_parameters( self, parameters: Optional[Iterable[torch.nn.Parameter]] ) -> Iterable[torch.nn.Parameter]: if parameters is None: parameters = [p() for p in self._params_refs] if any(p is None for p in parameters): raise ValueError( "(One of) the parameters with which this " "ExponentialMovingAverage " "was initialized no longer exists (was garbage collected);" " please either provide `parameters` explicitly or keep " "the model to which they belong from being garbage " "collected." ) return parameters else: parameters = list(parameters) if len(parameters) != len(self.shadow_params): raise ValueError( "Number of parameters passed as argument is different " "from number of shadow parameters maintained by this " "ExponentialMovingAverage" ) return parameters def update( self, parameters: Optional[Iterable[torch.nn.Parameter]] = None ) -> None: """ Update currently maintained parameters. Call this every time the parameters are updated, such as the result of the `optimizer.step()` call. Args: parameters: Iterable of `torch.nn.Parameter`; usually the same set of parameters used to initialize this object. If `None`, the parameters with which this `ExponentialMovingAverage` was initialized will be used. """ parameters = self._get_parameters(parameters) decay = self.decay if self.num_updates is not None: self.num_updates += 1 decay = min( decay, (1 + self.num_updates) / (10 + self.num_updates) ) one_minus_decay = 1.0 - decay with torch.no_grad(): parameters = [p for p in parameters if p.requires_grad] for s_param, param in zip(self.shadow_params, parameters): torch.lerp(s_param, param.to(dtype=s_param.dtype), one_minus_decay, out=s_param) def copy_to( self, parameters: Optional[Iterable[torch.nn.Parameter]] = None ) -> None: """ Copy current averaged parameters into given collection of parameters. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be updated with the stored moving averages. If `None`, the parameters with which this `ExponentialMovingAverage` was initialized will be used. """ parameters = self._get_parameters(parameters) for s_param, param in zip(self.shadow_params, parameters): if param.requires_grad: param.data.copy_(s_param.data) def store( self, parameters: Optional[Iterable[torch.nn.Parameter]] = None ) -> None: """ Save the current parameters for restoring later. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be temporarily stored. If `None`, the parameters of with which this `ExponentialMovingAverage` was initialized will be used. """ parameters = self._get_parameters(parameters) self.collected_params = [ param.clone() for param in parameters if param.requires_grad ] def restore( self, parameters: Optional[Iterable[torch.nn.Parameter]] = None ) -> None: """ Restore the parameters stored with the `store` method. Useful to validate the model with EMA parameters without affecting the original optimization process. Store the parameters before the `copy_to` method. After validation (or model saving), use this to restore the former parameters. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be updated with the stored parameters. If `None`, the parameters with which this `ExponentialMovingAverage` was initialized will be used. """ if self.collected_params is None: raise RuntimeError( "This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) parameters = self._get_parameters(parameters) for c_param, param in zip(self.collected_params, parameters): if param.requires_grad: param.data.copy_(c_param.data) @contextlib.contextmanager def average_parameters( self, parameters: Optional[Iterable[torch.nn.Parameter]] = None ): r""" Context manager for validation/inference with averaged parameters. Equivalent to: ema.store() ema.copy_to() try: ... finally: ema.restore() Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be updated with the stored parameters. If `None`, the parameters with which this `ExponentialMovingAverage` was initialized will be used. """ parameters = self._get_parameters(parameters) self.store(parameters) self.copy_to(parameters) try: yield finally: self.restore(parameters) def to(self, device=None, dtype=None) -> None: r"""Move internal buffers of the ExponentialMovingAverage to `device`. Args: device: like `device` argument to `torch.Tensor.to` """ # .to() on the tensors handles None correctly self.shadow_params = [ p.to(device=device, dtype=dtype) if p.is_floating_point() else p.to(device=device) for p in self.shadow_params ] if self.collected_params is not None: self.collected_params = [ p.to(device=device, dtype=dtype) if p.is_floating_point() else p.to(device=device) for p in self.collected_params ] return def state_dict(self) -> dict: r"""Returns the state of the ExponentialMovingAverage as a dict.""" # Following PyTorch conventions, references to tensors are returned: # "returns a reference to the state and not its copy!" - # https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict return { "decay": self.decay, "num_updates": self.num_updates, "shadow_params": self.shadow_params, "collected_params": self.collected_params } def load_state_dict(self, state_dict: dict) -> None: r"""Loads the ExponentialMovingAverage state. Args: state_dict (dict): EMA state. Should be an object returned from a call to :meth:`state_dict`. """ # deepcopy, to be consistent with module API state_dict = copy.deepcopy(state_dict) self.decay = state_dict["decay"] if self.decay < 0.0 or self.decay > 1.0: raise ValueError('Decay must be between 0 and 1') self.num_updates = state_dict["num_updates"] assert self.num_updates is None or isinstance(self.num_updates, int), \ "Invalid num_updates" self.shadow_params = state_dict["shadow_params"] assert isinstance(self.shadow_params, list), \ "shadow_params must be a list" assert all( isinstance(p, torch.Tensor) for p in self.shadow_params ), "shadow_params must all be Tensors" self.collected_params = state_dict["collected_params"] if self.collected_params is not None: assert isinstance(self.collected_params, list), \ "collected_params must be a list" assert all( isinstance(p, torch.Tensor) for p in self.collected_params ), "collected_params must all be Tensors" assert len(self.collected_params) == len(self.shadow_params), \ "collected_params and shadow_params had different lengths" if len(self.shadow_params) == len(self._params_refs): # Consistent with torch.optim.Optimizer, cast things to consistent # device and dtype with the parameters params = [p() for p in self._params_refs] # If parameters have been garbage collected, just load the state # we were given without change. if not any(p is None for p in params): # ^ parameter references are still good for i, p in enumerate(params): self.shadow_params[i] = to_float_maybe(self.shadow_params[i].to( device=p.device, dtype=p.dtype )) if self.collected_params is not None: self.collected_params[i] = self.collected_params[i].to( device=p.device, dtype=p.dtype ) else: raise ValueError( "Tried to `load_state_dict()` with the wrong number of " "parameters in the saved state." )
fly-master
src/utils/ema.py
fly-master
src/utils/__init__.py
# Adapted from https://github.com/rwightman/pytorch-image-models/blob/master/benchmark.py import torch try: from deepspeed.profiling.flops_profiler import get_model_profile has_deepspeed_profiling = True except ImportError as e: has_deepspeed_profiling = False try: from fvcore.nn import FlopCountAnalysis, flop_count_str, flop_count_table from fvcore.nn import ActivationCountAnalysis has_fvcore_profiling = True except ImportError as e: FlopCountAnalysis = None ActivationCountAnalysis = None has_fvcore_profiling = False def profile_deepspeed(model, input_size=(3, 224, 224), batch_size=1, detailed=False): macs, _ = get_model_profile( model=model, input_res=(batch_size,) + input_size, # input shape or input to the input_constructor input_constructor=None, # if specified, a constructor taking input_res is used as input to the model print_profile=detailed, # prints the model graph with the measured profile attached to each module detailed=detailed, # print the detailed profile warm_up=10, # the number of warm-ups before measuring the time of each module as_string=False, # print raw numbers (e.g. 1000) or as human-readable strings (e.g. 1k) output_file=None, # path to the output file. If None, the profiler prints to stdout. ignore_modules=None) # the list of modules to ignore in the profiling return macs, 0 # no activation count in DS def profile_fvcore(model, input_size=(3, 224, 224), input_dtype=torch.float32, max_depth=4, batch_size=1, detailed=False, force_cpu=False): if force_cpu: model = model.to('cpu') device, dtype = next(model.parameters()).device, next(model.parameters()).dtype example_input = torch.ones((batch_size,) + input_size, device=device, dtype=input_dtype) fca = FlopCountAnalysis(model, example_input) aca = ActivationCountAnalysis(model, example_input) if detailed: print(flop_count_table(fca, max_depth=max_depth)) return fca, fca.total(), aca, aca.total()
fly-master
src/utils/flops.py
# Copied from https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/Transformer-XL/pytorch/utils/distributed.py # Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from contextlib import contextmanager import torch def init_distributed(cuda): """ Initializes distributed backend. :param cuda: (bool) if True initializes nccl backend, if False initializes gloo backend """ world_size = int(os.environ.get('WORLD_SIZE', 1)) distributed = (world_size > 1) if distributed: backend = 'nccl' if cuda else 'gloo' torch.distributed.init_process_group(backend=backend, init_method='env://') assert torch.distributed.is_initialized() return distributed def barrier(): """ Call torch.distributed.barrier() if distritubed is in use """ if torch.distributed.is_available() and torch.distributed.is_initialized(): torch.distributed.barrier() def get_rank(): """ Gets distributed rank or returns zero if distributed is not initialized. """ if torch.distributed.is_available() and torch.distributed.is_initialized(): rank = torch.distributed.get_rank() else: rank = 0 return rank def get_world_size(): """ Gets total number of distributed workers or returns one if distributed is not initialized. """ if torch.distributed.is_available() and torch.distributed.is_initialized(): world_size = torch.distributed.get_world_size() else: world_size = 1 return world_size def all_reduce_item(value, op='sum'): """ All-reduces single scalar value if distributed is in use """ if torch.distributed.is_available() and torch.distributed.is_initialized(): if op == 'sum' or op == 'mean': dop = torch.distributed.ReduceOp.SUM elif op == 'min': dop = torch.distributed.ReduceOp.MIN elif op == 'max': dop = torch.distributed.ReduceOp.MAX elif op == 'product': dop = torch.distributed.ReduceOp.PRODUCT else: raise RuntimeError('Unsupported reduce op') backend = torch.distributed.get_backend() if backend == torch.distributed.Backend.NCCL: device = torch.device('cuda') elif backend == torch.distributed.Backend.GLOO: device = torch.device('cpu') else: raise RuntimeError('Unsupported distributed backend') tensor = torch.tensor(value, device=device) torch.distributed.all_reduce(tensor, dop) if op == 'mean': tensor /= get_world_size() ret = tensor.item() else: ret = value return ret @contextmanager def sync_workers(): """ Yields distributed rank and synchronizes all workers on exit. """ rank = get_rank() yield rank barrier()
fly-master
src/utils/distributed.py
import logging import warnings from typing import List, Sequence import pytorch_lightning as pl import rich.syntax import rich.tree from omegaconf import DictConfig, OmegaConf from pytorch_lightning.utilities import rank_zero_only # Copied from https://docs.python.org/3/howto/logging-cookbook.html#using-a-context-manager-for-selective-logging class LoggingContext: def __init__(self, logger, level=None, handler=None, close=True): self.logger = logger self.level = level self.handler = handler self.close = close def __enter__(self): if self.level is not None: self.old_level = self.logger.level self.logger.setLevel(self.level) if self.handler: self.logger.addHandler(self.handler) def __exit__(self, et, ev, tb): if self.level is not None: self.logger.setLevel(self.old_level) if self.handler: self.logger.removeHandler(self.handler) if self.handler and self.close: self.handler.close() # implicit return of None => don't swallow exceptions def get_logger(name=__name__) -> logging.Logger: """Initializes multi-GPU-friendly python logger.""" logger = logging.getLogger(name) # this ensures all logging levels get marked with the rank zero decorator # otherwise logs would get multiplied for each GPU process in multi-GPU setup for level in ("debug", "info", "warning", "error", "exception", "fatal", "critical"): setattr(logger, level, rank_zero_only(getattr(logger, level))) return logger def extras(config: DictConfig) -> None: """A couple of optional utilities, controlled by main config file: - disabling warnings - forcing debug friendly configuration - verifying experiment name is set when running in experiment mode Modifies DictConfig in place. Args: config (DictConfig): Configuration composed by Hydra. """ log = get_logger(__name__) # disable python warnings if <config.ignore_warnings=True> if config.get("ignore_warnings"): log.info("Disabling python warnings! <config.ignore_warnings=True>") warnings.filterwarnings("ignore") # verify experiment name is set when running in experiment mode if config.get("experiment_mode") and not config.get("name"): log.info( "Running in experiment mode without the experiment name specified! " "Use `python run.py mode=exp name=experiment_name`" ) log.info("Exiting...") exit() # force debugger friendly configuration if <config.trainer.fast_dev_run=True> # debuggers don't like GPUs and multiprocessing if config.trainer.get("fast_dev_run"): log.info("Forcing debugger friendly configuration! <config.trainer.fast_dev_run=True>") if config.trainer.get("gpus"): config.trainer.gpus = 0 if config.datamodule.get("pin_memory"): config.datamodule.pin_memory = False if config.datamodule.get("num_workers"): config.datamodule.num_workers = 0 @rank_zero_only def print_config( config: DictConfig, fields: Sequence[str] = ( "trainer", "model", "datamodule", "train", "eval", "callbacks", "logger", "seed", "name", ), resolve: bool = True, ) -> None: """Prints content of DictConfig using Rich library and its tree structure. Args: config (DictConfig): Configuration composed by Hydra. fields (Sequence[str], optional): Determines which main fields from config will be printed and in what order. resolve (bool, optional): Whether to resolve reference fields of DictConfig. """ style = "dim" tree = rich.tree.Tree("CONFIG", style=style, guide_style=style) for field in fields: branch = tree.add(field, style=style, guide_style=style) config_section = config.get(field) branch_content = str(config_section) if isinstance(config_section, DictConfig): branch_content = OmegaConf.to_yaml(config_section, resolve=resolve) branch.add(rich.syntax.Syntax(branch_content, "yaml")) rich.print(tree) with open("config_tree.txt", "w") as fp: rich.print(tree, file=fp) def finish( config: DictConfig, model: pl.LightningModule, datamodule: pl.LightningDataModule, trainer: pl.Trainer, callbacks: List[pl.Callback], logger: List[pl.loggers.LightningLoggerBase], ) -> None: """Makes sure everything closed properly.""" # without this sweeps with wandb logger might crash! for lg in logger: if isinstance(lg, pl.loggers.wandb.WandbLogger): import wandb wandb.finish()
fly-master
src/utils/utils.py
# Credits to DeepVoltaire # github:DeepVoltaire/AutoAugment import numpy as np from src.utils.transforms import * class ImageNetPolicy(object): """ Randomly choose one of the best 24 Sub-policies on ImageNet. Example: >>> policy = ImageNetPolicy() >>> transformed = policy(image) Example as a PyTorch Transform: >>> transform=transforms.Compose([ >>> transforms.Resize(256), >>> ImageNetPolicy(), >>> transforms.ToTensor()]) """ def __init__(self, fillcolor=(128, 128, 128)): self.policies = [ SubPolicy(0.4, "posterize", 8, 0.6, "rotate", 9, fillcolor), SubPolicy(0.6, "solarize", 5, 0.6, "autocontrast", 5, fillcolor), SubPolicy(0.8, "equalize", 8, 0.6, "equalize", 3, fillcolor), SubPolicy(0.6, "posterize", 7, 0.6, "posterize", 6, fillcolor), SubPolicy(0.4, "equalize", 7, 0.2, "solarize", 4, fillcolor), SubPolicy(0.4, "equalize", 4, 0.8, "rotate", 8, fillcolor), SubPolicy(0.6, "solarize", 3, 0.6, "equalize", 7, fillcolor), SubPolicy(0.8, "posterize", 5, 1.0, "equalize", 2, fillcolor), SubPolicy(0.2, "rotate", 3, 0.6, "solarize", 8, fillcolor), SubPolicy(0.6, "equalize", 8, 0.4, "posterize", 6, fillcolor), SubPolicy(0.8, "rotate", 8, 0.4, "color", 0, fillcolor), SubPolicy(0.4, "rotate", 9, 0.6, "equalize", 2, fillcolor), SubPolicy(0.0, "equalize", 7, 0.8, "equalize", 8, fillcolor), SubPolicy(0.6, "invert", 4, 1.0, "equalize", 8, fillcolor), SubPolicy(0.6, "color", 4, 1.0, "contrast", 8, fillcolor), SubPolicy(0.8, "rotate", 8, 1.0, "color", 2, fillcolor), SubPolicy(0.8, "color", 8, 0.8, "solarize", 7, fillcolor), SubPolicy(0.4, "sharpness", 7, 0.6, "invert", 8, fillcolor), SubPolicy(0.6, "shearX", 5, 1.0, "equalize", 9, fillcolor), SubPolicy(0.4, "color", 0, 0.6, "equalize", 3, fillcolor), SubPolicy(0.4, "equalize", 7, 0.2, "solarize", 4, fillcolor), SubPolicy(0.6, "solarize", 5, 0.6, "autocontrast", 5, fillcolor), SubPolicy(0.6, "invert", 4, 1.0, "equalize", 8, fillcolor), SubPolicy(0.6, "color", 4, 1.0, "contrast", 8, fillcolor), SubPolicy(0.8, "equalize", 8, 0.6, "equalize", 3, fillcolor) ] def __call__(self, img): policy_idx = random.randint(0, len(self.policies) - 1) return self.policies[policy_idx](img) def __repr__(self): return "AutoAugment ImageNet Policy" class CIFAR10Policy(object): """ Randomly choose one of the best 25 Sub-policies on CIFAR10. Example: >>> policy = CIFAR10Policy() >>> transformed = policy(image) Example as a PyTorch Transform: >>> transform=transforms.Compose([ >>> transforms.Resize(256), >>> CIFAR10Policy(), >>> transforms.ToTensor()]) """ def __init__(self, fillcolor=(128, 128, 128)): self.policies = [ SubPolicy(0.1, "invert", 7, 0.2, "contrast", 6, fillcolor), SubPolicy(0.7, "rotate", 2, 0.3, "translateX", 9, fillcolor), SubPolicy(0.8, "sharpness", 1, 0.9, "sharpness", 3, fillcolor), SubPolicy(0.5, "shearY", 8, 0.7, "translateY", 9, fillcolor), SubPolicy(0.5, "autocontrast", 8, 0.9, "equalize", 2, fillcolor), SubPolicy(0.2, "shearY", 7, 0.3, "posterize", 7, fillcolor), SubPolicy(0.4, "color", 3, 0.6, "brightness", 7, fillcolor), SubPolicy(0.3, "sharpness", 9, 0.7, "brightness", 9, fillcolor), SubPolicy(0.6, "equalize", 5, 0.5, "equalize", 1, fillcolor), SubPolicy(0.6, "contrast", 7, 0.6, "sharpness", 5, fillcolor), SubPolicy(0.7, "color", 7, 0.5, "translateX", 8, fillcolor), SubPolicy(0.3, "equalize", 7, 0.4, "autocontrast", 8, fillcolor), SubPolicy(0.4, "translateY", 3, 0.2, "sharpness", 6, fillcolor), SubPolicy(0.9, "brightness", 6, 0.2, "color", 8, fillcolor), SubPolicy(0.5, "solarize", 2, 0.0, "invert", 3, fillcolor), SubPolicy(0.2, "equalize", 0, 0.6, "autocontrast", 0, fillcolor), SubPolicy(0.2, "equalize", 8, 0.6, "equalize", 4, fillcolor), SubPolicy(0.9, "color", 9, 0.6, "equalize", 6, fillcolor), SubPolicy(0.8, "autocontrast", 4, 0.2, "solarize", 8, fillcolor), SubPolicy(0.1, "brightness", 3, 0.7, "color", 0, fillcolor), SubPolicy(0.4, "solarize", 5, 0.9, "autocontrast", 3, fillcolor), SubPolicy(0.9, "translateY", 9, 0.7, "translateY", 9, fillcolor), SubPolicy(0.9, "autocontrast", 2, 0.8, "solarize", 3, fillcolor), SubPolicy(0.8, "equalize", 8, 0.1, "invert", 3, fillcolor), SubPolicy(0.7, "translateY", 9, 0.9, "autocontrast", 1, fillcolor) ] def __call__(self, img): policy_idx = random.randint(0, len(self.policies) - 1) return self.policies[policy_idx](img) def __repr__(self): return "AutoAugment CIFAR10 Policy" class SubPolicy(object): def __init__(self, p1, operation1, magnitude_idx1, p2, operation2, magnitude_idx2, fillcolor=(128, 128, 128)): ranges = { "shearX": np.linspace(0, 0.3, 10), "shearY": np.linspace(0, 0.3, 10), "translateX": np.linspace(0, 150 / 331, 10), "translateY": np.linspace(0, 150 / 331, 10), "rotate": np.linspace(0, 30, 10), "color": np.linspace(0.0, 0.9, 10), "posterize": np.round(np.linspace(8, 4, 10), 0).astype(np.int), "solarize": np.linspace(256, 0, 10), "contrast": np.linspace(0.0, 0.9, 10), "sharpness": np.linspace(0.0, 0.9, 10), "brightness": np.linspace(0.0, 0.9, 10), "autocontrast": [0] * 10, "equalize": [0] * 10, "invert": [0] * 10 } func = { "shearX": ShearX(fillcolor=fillcolor), "shearY": ShearY(fillcolor=fillcolor), "translateX": TranslateX(fillcolor=fillcolor), "translateY": TranslateY(fillcolor=fillcolor), "rotate": Rotate(), "color": Color(), "posterize": Posterize(), "solarize": Solarize(), "contrast": Contrast(), "sharpness": Sharpness(), "brightness": Brightness(), "autocontrast": AutoContrast(), "equalize": Equalize(), "invert": Invert() } self.p1 = p1 self.operation1 = func[operation1] self.magnitude1 = ranges[operation1][magnitude_idx1] self.p2 = p2 self.operation2 = func[operation2] self.magnitude2 = ranges[operation2][magnitude_idx2] def __call__(self, img): if random.random() < self.p1: img = self.operation1(img, self.magnitude1) if random.random() < self.p2: img = self.operation2(img, self.magnitude2) return img
fly-master
src/utils/autoaug.py
import torch import torch.nn.functional as F # Adapted from https://github.com/lucidrains/reformer-pytorch/blob/master/reformer_pytorch/autopadder.py def pad_to_multiple(tensor, multiple, dims=-1, value=0): try: dims = list(dims) # If dims is an iterable (e.g., List, Tuple) except: dims = [dims] # convert dims from negative to positive dims = [d if d >= 0 else tensor.ndim + d for d in dims] padding = [0] * (2 * tensor.ndim) for d in dims: size = tensor.size(d) # Pytorch's JIT doesn't like divmod # m, remainder = divmod(size, multiple) m = size // multiple remainder = size - m * multiple if remainder != 0: padding[2 * (tensor.ndim - d - 1) + 1] = multiple - remainder if all(p == 0 for p in padding): return tensor else: return F.pad(tensor, tuple(padding), value=value)
fly-master
src/utils/padding.py
from typing import Any, List import torch from pytorch_lightning import LightningModule from torchmetrics.classification.accuracy import Accuracy from src.models.modules.simple_dense_net import SimpleDenseNet class MNISTLitModel(LightningModule): """ Example of LightningModule for MNIST classification. A LightningModule organizes your PyTorch code into 5 sections: - Computations (init). - Train loop (training_step) - Validation loop (validation_step) - Test loop (test_step) - Optimizers (configure_optimizers) Read the docs: https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html """ def __init__( self, input_size: int = 784, lin1_size: int = 256, lin2_size: int = 256, lin3_size: int = 256, output_size: int = 10, lr: float = 0.001, weight_decay: float = 0.0005, ): super().__init__() # this line ensures params passed to LightningModule will be saved to ckpt # it also allows to access params with 'self.hparams' attribute self.save_hyperparameters() self.model = SimpleDenseNet(hparams=self.hparams) # loss function self.criterion = torch.nn.CrossEntropyLoss() # use separate metric instance for train, val and test step # to ensure a proper reduction over the epoch self.train_accuracy = Accuracy() self.val_accuracy = Accuracy() self.test_accuracy = Accuracy() def forward(self, x: torch.Tensor): return self.model(x) def step(self, batch: Any): x, y = batch logits = self.forward(x) loss = self.criterion(logits, y) preds = torch.argmax(logits, dim=1) return loss, preds, y def training_step(self, batch: Any, batch_idx: int): loss, preds, targets = self.step(batch) # log train metrics acc = self.train_accuracy(preds, targets) self.log("train/loss", loss, on_step=False, on_epoch=True, prog_bar=False) self.log("train/acc", acc, on_step=False, on_epoch=True, prog_bar=True) # we can return here dict with any tensors # and then read it in some callback or in training_epoch_end() below # remember to always return loss from training_step, or else backpropagation will fail! return {"loss": loss, "preds": preds, "targets": targets} def training_epoch_end(self, outputs: List[Any]): # `outputs` is a list of dicts returned from `training_step()` pass def validation_step(self, batch: Any, batch_idx: int): loss, preds, targets = self.step(batch) # log val metrics acc = self.val_accuracy(preds, targets) self.log("val/loss", loss, on_step=False, on_epoch=True, prog_bar=False) self.log("val/acc", acc, on_step=False, on_epoch=True, prog_bar=True) return {"loss": loss, "preds": preds, "targets": targets} def validation_epoch_end(self, outputs: List[Any]): pass def test_step(self, batch: Any, batch_idx: int): loss, preds, targets = self.step(batch) # log test metrics acc = self.test_accuracy(preds, targets) self.log("test/loss", loss, on_step=False, on_epoch=True) self.log("test/acc", acc, on_step=False, on_epoch=True) return {"loss": loss, "preds": preds, "targets": targets} def test_epoch_end(self, outputs: List[Any]): pass def configure_optimizers(self): """Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you'd need one. But in the case of GANs or similar you might have multiple. See examples here: https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html#configure-optimizers """ return torch.optim.Adam( params=self.parameters(), lr=self.hparams.lr, weight_decay=self.hparams.weight_decay )
fly-master
src/models/mnist_model.py
# coding=utf-8 # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch OpenAI GPT-2 model.""" import math import os from dataclasses import dataclass from typing import Optional, Tuple import torch import torch.utils.checkpoint from packaging import version from torch import nn from torch.nn import CrossEntropyLoss, MSELoss import hydra from einops import rearrange if version.parse(torch.__version__) >= version.parse("1.6"): is_amp_available = True from torch.cuda.amp import autocast else: is_amp_available = False import transformers from transformers.activations import ACT2FN from transformers.file_utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from transformers.modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions, SequenceClassifierOutputWithPast, TokenClassifierOutput, ) from transformers.modeling_utils import ( Conv1D, PreTrainedModel, SequenceSummary, find_pruneable_heads_and_indices, prune_conv1d_layer, ) from transformers.utils import logging from transformers.utils.model_parallel_utils import assert_device_map, get_device_map from transformers.models.gpt2.configuration_gpt2 import GPT2Config from transformers.models.gpt2.modeling_gpt2 import GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING from transformers.models.gpt2.modeling_gpt2 import PARALLELIZE_DOCSTRING, DEPARALLELIZE_DOCSTRING from transformers.models.gpt2.modeling_gpt2 import load_tf_weights_in_gpt2 from src.ops.triton.softmax import softmax as softmax_triton from src.models.layers.rotary import RotaryEmbedding USE_TRITON_SOFTMAX = True logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "gpt2" _CONFIG_FOR_DOC = "GPT2Config" _TOKENIZER_FOR_DOC = "GPT2Tokenizer" GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = [ "gpt2", "gpt2-medium", "gpt2-large", "gpt2-xl", "distilgpt2", # See all GPT-2 models at https://huggingface.co/models?filter=gpt2 ] class GPT2Attention(nn.Module): def __init__(self, config, is_cross_attention=False, layer_idx=None): super().__init__() max_positions = config.max_position_embeddings self.register_buffer( "bias", torch.tril(torch.ones((max_positions, max_positions), dtype=torch.uint8)).view( 1, 1, max_positions, max_positions ), ) self.register_buffer("masked_bias", torch.tensor(-1e4)) self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = getattr(config, 'head_dim', self.hidden_size // self.num_heads) self.embed_dim = self.head_dim * self.num_heads self.split_size = self.embed_dim if self.head_dim * self.num_heads != self.split_size: raise ValueError( f"`split_size` must be divisible by num_heads (got `split_size`: {self.split_size} and `num_heads`: {self.num_heads})." ) self.scale_attn_weights = config.scale_attn_weights self.is_cross_attention = is_cross_attention # Layer-wise attention scaling, reordering, and upcasting self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx self.layer_idx = layer_idx self.reorder_and_upcast_attn = config.reorder_and_upcast_attn self.use_rotary_emb = getattr(config, 'use_rotary_emb', False) if self.use_rotary_emb: self.rotary_emb = RotaryEmbedding(self.head_dim) if self.is_cross_attention: self.c_attn = Conv1D(2 * self.embed_dim, self.hidden_size) self.q_attn = Conv1D(self.embed_dim, self.hidden_size) else: self.c_attn = Conv1D(3 * self.embed_dim, self.hidden_size) self.c_proj = Conv1D(self.hidden_size, self.embed_dim) self.attn_dropout = nn.Dropout(config.attn_pdrop) self.resid_dropout = nn.Dropout(config.resid_pdrop) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads) index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)]) # Prune conv1d layers self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1) self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0) # Update hyper params self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads)) self.num_heads = self.num_heads - len(heads) self.pruned_heads = self.pruned_heads.union(heads) def _attn(self, query, key, value, attention_mask=None, head_mask=None): # Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM) bsz, num_heads, q_seq_len, dk = query.size() _, _, k_seq_len, _ = key.size() # Compute Scale Factor scale_factor = 1.0 if self.scale_attn_weights: scale_factor /= float(value.size(-1)) ** 0.5 if self.scale_attn_by_inverse_layer_idx: scale_factor /= float(self.layer_idx + 1) q = rearrange(query, 'b h t d -> (b h) t d') k = rearrange(key, 'b h s d -> (b h) d s') # Preallocate attn_weights for `baddbmm` attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=query.dtype, device=query.device) attn_weights = rearrange(torch.baddbmm(attn_weights, q, k, beta=0, alpha=scale_factor), '(b h) t s -> b h t s', h=num_heads) if USE_TRITON_SOFTMAX: attn_weights = softmax_triton(attn_weights, mask=attention_mask, causal=not self.is_cross_attention) else: if not self.is_cross_attention: # if only "normal" attention layer implements causal mask query_length, key_length = query.size(-2), key.size(-2) causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length].bool() attn_weights.masked_fill_(~causal_mask, self.masked_bias) if attention_mask is not None: # Apply the attention mask attn_weights = attn_weights + attention_mask # Downcast (if necessary) back to V's dtype (if in mixed-precision) attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=value.dtype) attn_weights = self.attn_dropout(attn_weights) # Mask heads if we want to if head_mask is not None: attn_weights = attn_weights * head_mask attn_output = torch.matmul(attn_weights, value) return attn_output, attn_weights def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None): # Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM) bsz, num_heads, q_seq_len, dk = query.size() _, _, k_seq_len, _ = key.size() # Preallocate attn_weights for `baddbmm` attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device) # Compute Scale Factor scale_factor = 1.0 if self.scale_attn_weights: scale_factor /= float(value.size(-1)) ** 0.5 if self.scale_attn_by_inverse_layer_idx: scale_factor /= float(self.layer_idx + 1) # Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk)) if is_amp_available: with autocast(enabled=False): q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len) attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor) attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len) else: q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len) attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor) attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len) if not self.is_cross_attention: # if only "normal" attention layer implements causal mask query_length, key_length = query.size(-2), key.size(-2) causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length].bool() attn_weights = torch.where(causal_mask, attn_weights, self.masked_bias.to(attn_weights.dtype)) if attention_mask is not None: # Apply the attention mask attn_weights = attn_weights + attention_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1) # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise if attn_weights.dtype != torch.float32: raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32") attn_weights = attn_weights.type(value.dtype) attn_weights = self.attn_dropout(attn_weights) # Mask heads if we want to if head_mask is not None: attn_weights = attn_weights * head_mask attn_output = torch.matmul(attn_weights, value) return attn_output, attn_weights def _split_heads(self, tensor, num_heads, attn_head_size): """ Splits hidden_size dim into attn_head_size and num_heads """ new_shape = tensor.size()[:-1] + (num_heads, attn_head_size) tensor = tensor.view(*new_shape) return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features) def _merge_heads(self, tensor, num_heads, attn_head_size): """ Merges attn_head_size dim and num_attn_heads dim into hidden_size """ tensor = tensor.permute(0, 2, 1, 3).contiguous() new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,) return tensor.view(new_shape) def forward( self, hidden_states, layer_past=None, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, use_cache=False, output_attentions=False, ): if encoder_hidden_states is not None: if not hasattr(self, "q_attn"): raise ValueError( "If class is used as cross attention, the weights `q_attn` have to be defined. " "Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`." ) query = self.q_attn(hidden_states) key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2) attention_mask = encoder_attention_mask else: query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2) query = self._split_heads(query, self.num_heads, self.head_dim) key = self._split_heads(key, self.num_heads, self.head_dim) value = self._split_heads(value, self.num_heads, self.head_dim) if layer_past is not None: past_key, past_value = layer_past key = torch.cat((past_key, key), dim=-2) value = torch.cat((past_value, value), dim=-2) if use_cache is True: present = (key, value) else: present = None if self.use_rotary_emb: query, key = self.rotary_emb(query, key) if self.reorder_and_upcast_attn: attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask) else: attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim) attn_output = self.c_proj(attn_output) attn_output = self.resid_dropout(attn_output) outputs = (attn_output, present) if output_attentions: outputs += (attn_weights,) return outputs # a, present, (attentions) class GPT2MLP(nn.Module): def __init__(self, intermediate_size, config): super().__init__() embed_dim = config.hidden_size self.c_fc = Conv1D(intermediate_size, embed_dim) self.c_proj = Conv1D(embed_dim, intermediate_size) self.act = ACT2FN[config.activation_function] self.dropout = nn.Dropout(config.resid_pdrop) def forward(self, hidden_states): hidden_states = self.c_fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.c_proj(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class GPT2Block(nn.Module): def __init__(self, config, layer_idx=None, mlp_cfg=None): super().__init__() hidden_size = config.hidden_size inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.attn = GPT2Attention(config, layer_idx=layer_idx) self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) if config.add_cross_attention: self.crossattention = GPT2Attention(config, is_cross_attention=True) self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) if mlp_cfg is None: self.mlp = GPT2MLP(inner_dim, config) else: self.mlp = hydra.utils.instantiate(mlp_cfg, in_features=config.hidden_size, hidden_features=inner_dim, drop=config.resid_pdrop, _recursive_=False) def forward( self, hidden_states, layer_past=None, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, use_cache=False, output_attentions=False, ): residual = hidden_states hidden_states = self.ln_1(hidden_states) attn_outputs = self.attn( hidden_states, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) attn_output = attn_outputs[0] # output_attn: a, present, (attentions) outputs = attn_outputs[1:] # residual connection hidden_states = attn_output + residual if encoder_hidden_states is not None: # add one self-attention block for cross-attention if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with " "cross-attention layers by setting `config.add_cross_attention=True`" ) residual = hidden_states hidden_states = self.ln_cross_attn(hidden_states) cross_attn_outputs = self.crossattention( hidden_states, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, ) attn_output = cross_attn_outputs[0] # residual connection hidden_states = residual + attn_output outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights residual = hidden_states hidden_states = self.ln_2(hidden_states) feed_forward_hidden_states = self.mlp(hidden_states) # residual connection hidden_states = residual + feed_forward_hidden_states if use_cache: outputs = (hidden_states,) + outputs else: outputs = (hidden_states,) + outputs[1:] return outputs # hidden_states, present, (attentions, cross_attentions) class GPT2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = GPT2Config load_tf_weights = load_tf_weights_in_gpt2 base_model_prefix = "transformer" is_parallelizable = True supports_gradient_checkpointing = True def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs) def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, (nn.Linear, Conv1D)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme: # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers. # > -- GPT-2 :: https://openai.com/blog/better-language-models/ # # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py for name, p in module.named_parameters(): if "c_proj" in name and "weight" in name: # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer))) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, GPT2Model): module.gradient_checkpointing = value @add_start_docstrings( "The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.", GPT2_START_DOCSTRING, ) class GPT2Model(GPT2PreTrainedModel): _keys_to_ignore_on_load_missing = ["attn.masked_bias"] def __init__(self, config, mlp_cfg=None): super().__init__(config) self.embed_dim = config.hidden_size self.wte = nn.Embedding(config.vocab_size, self.embed_dim) self.use_rotary_emb = getattr(config, 'use_rotary_emb', False) if not self.use_rotary_emb: self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim) self.drop = nn.Dropout(config.embd_pdrop) self.h = nn.ModuleList([GPT2Block(config, layer_idx=i, mlp_cfg=mlp_cfg) for i in range(config.num_hidden_layers)]) self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) # Model parallel self.model_parallel = False self.device_map = None self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def tie_weights(self): super().tie_weights() if getattr(self.config, 'tie_weights', False): group_size = getattr(self.config, 'tie_weights_group_size', len(self.h)) assert len(self.h) % group_size == 0 for block_idx, block in enumerate(self.h): ref_block_idx = (block_idx // group_size) * group_size ref_block = self.h[ref_block_idx] block.attn.c_attn.weight = ref_block.attn.c_attn.weight block.attn.c_proj.weight = ref_block.attn.c_proj.weight block.mlp.fc1.weight = ref_block.mlp.fc1.weight block.mlp.fc2.weight = ref_block.mlp.fc2.weight @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): # Check validity of device_map self.device_map = ( get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.h)) self.model_parallel = True self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys())) self.last_device = "cuda:" + str(max(self.device_map.keys())) self.wte = self.wte.to(self.first_device) self.wpe = self.wpe.to(self.first_device) # Load onto devices for k, v in self.device_map.items(): for block in v: cuda_device = "cuda:" + str(k) self.h[block] = self.h[block].to(cuda_device) # ln_f to last self.ln_f = self.ln_f.to(self.last_device) @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): self.model_parallel = False self.device_map = None self.first_device = "cpu" self.last_device = "cpu" self.wte = self.wte.to("cpu") self.wpe = self.wpe.to("cpu") for index in range(len(self.h)): self.h[index] = self.h[index].to("cpu") self.ln_f = self.ln_f.to("cpu") torch.cuda.empty_cache() def get_input_embeddings(self): return self.wte def set_input_embeddings(self, new_embeddings): self.wte = new_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} """ for layer, heads in heads_to_prune.items(): self.h[layer].attn.prune_heads(heads) @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPastAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) batch_size = input_ids.shape[0] elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size = inputs_embeds.shape[0] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, input_shape[-1]) if position_ids is not None: position_ids = position_ids.view(-1, input_shape[-1]) if past_key_values is None: past_length = 0 past_key_values = tuple([None] * len(self.h)) else: past_length = past_key_values[0][0].size(-2) if position_ids is None: position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) # GPT2Attention mask. if attention_mask is not None: if batch_size <= 0: raise ValueError("batch_size has to be defined and > 0") attention_mask = attention_mask.view(batch_size, -1) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask = attention_mask[:, None, None, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility attention_mask = (1.0 - attention_mask) * -10000.0 # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.add_cross_attention and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # head_mask has shape n_layer x batch x n_heads x N x N head_mask = self.get_head_mask(head_mask, self.config.n_layer) if inputs_embeds is None: inputs_embeds = self.wte(input_ids) if not self.use_rotary_emb: position_embeds = self.wpe(position_ids) hidden_states = inputs_embeds + position_embeds else: hidden_states = inputs_embeds if token_type_ids is not None: token_type_embeds = self.wte(token_type_ids) hidden_states = hidden_states + token_type_embeds hidden_states = self.drop(hidden_states) output_shape = input_shape + (hidden_states.size(-1),) presents = () if use_cache else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None all_hidden_states = () if output_hidden_states else None for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): # Model parallel if self.model_parallel: torch.cuda.set_device(hidden_states.device) # Ensure layer_past is on same device as hidden_states (might not be correct) if layer_past is not None: layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past) # Ensure that attention_mask is always on the same device as hidden_states if attention_mask is not None: attention_mask = attention_mask.to(hidden_states.device) if isinstance(head_mask, torch.Tensor): head_mask = head_mask.to(hidden_states.device) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, use_cache, output_attentions) return custom_forward outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, None, attention_mask, head_mask[i], encoder_hidden_states, encoder_attention_mask, ) else: outputs = block( hidden_states, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask[i], encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],) # Model Parallel: If it's the last layer for that device, put things on the next device if self.model_parallel: for k, v in self.device_map.items(): if i == v[-1] and "cuda:" + str(k) != self.last_device: hidden_states = hidden_states.to("cuda:" + str(k + 1)) hidden_states = self.ln_f(hidden_states) hidden_states = hidden_states.view(*output_shape) # Add last hidden state if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) @add_start_docstrings( """ The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, GPT2_START_DOCSTRING, ) class GPT2LMHeadModel(GPT2PreTrainedModel): _keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"attn.bias", r"lm_head.weight"] def __init__(self, config, mlp_cfg=None): super().__init__(config) self.transformer = GPT2Model(config, mlp_cfg=mlp_cfg) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) # Model parallel self.model_parallel = False self.device_map = None # Initialize weights and apply final processing self.post_init() @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): self.device_map = ( get_device_map(len(self.transformer.h), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.transformer.h)) self.transformer.parallelize(self.device_map) self.lm_head = self.lm_head.to(self.transformer.first_device) self.model_parallel = True @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): self.transformer.deparallelize() self.transformer = self.transformer.to("cpu") self.lm_head = self.lm_head.to("cpu") self.model_parallel = False torch.cuda.empty_cache() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs): token_type_ids = kwargs.get("token_type_ids", None) # only last token for inputs_ids if past is defined in kwargs if past: input_ids = input_ids[:, -1].unsqueeze(-1) if token_type_ids is not None: token_type_ids = token_type_ids[:, -1].unsqueeze(-1) attention_mask = kwargs.get("attention_mask", None) position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past: position_ids = position_ids[:, -1].unsqueeze(-1) else: position_ids = None return { "input_ids": input_ids, "past_key_values": past, "use_cache": kwargs.get("use_cache"), "position_ids": position_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set ``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size]`` All labels set to ``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]`` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] # Set device for model parallelism if self.model_parallel: torch.cuda.set_device(self.transformer.first_device) hidden_states = hidden_states.to(self.lm_head.weight.device) lm_logits = self.lm_head(hidden_states) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, cross_attentions=transformer_outputs.cross_attentions, ) @staticmethod def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]: """ This function is used to re-order the :obj:`past_key_values` cache if :meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. """ return tuple( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) for layer_past in past )
fly-master
src/models/gpt2.py
# Copied from https://github.com/HobbitLong/SupContrast/blob/master/networks/resnet_big.py """ResNet in PyTorch. ImageNet-Style ResNet [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Deep Residual Learning for Image Recognition. arXiv:1512.03385 Adapted from: https://github.com/bearpaw/pytorch-classification """ import torch import torch.nn as nn import torch.nn.functional as F class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1, is_last=False): super(BasicBlock, self).__init__() self.is_last = is_last self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) preact = out out = F.relu(out) if self.is_last: return out, preact else: return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1, is_last=False): super(Bottleneck, self).__init__() self.is_last = is_last self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(self.expansion * planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out += self.shortcut(x) preact = out out = F.relu(out) if self.is_last: return out, preact else: return out class ResNet(nn.Module): def __init__(self, block, num_blocks, in_channel=3, zero_init_residual=False): super(ResNet, self).__init__() self.in_planes = 64 self.conv1 = nn.Conv2d(in_channel, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves # like an identity. This improves the model by 0.2~0.3% according to: # https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for i in range(num_blocks): stride = strides[i] layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x, layer=100): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avgpool(out) out = torch.flatten(out, 1) return out def resnet18(**kwargs): return ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) def resnet34(**kwargs): return ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) def resnet50(**kwargs): return ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) def resnet101(**kwargs): return ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) model_dict = { 'resnet18': [resnet18, 512], 'resnet34': [resnet34, 512], 'resnet50': [resnet50, 2048], 'resnet101': [resnet101, 2048], } class LinearBatchNorm(nn.Module): """Implements BatchNorm1d by BatchNorm2d, for SyncBN purpose""" def __init__(self, dim, affine=True): super(LinearBatchNorm, self).__init__() self.dim = dim self.bn = nn.BatchNorm2d(dim, affine=affine) def forward(self, x): x = x.view(-1, self.dim, 1, 1) x = self.bn(x) x = x.view(-1, self.dim) return x class SupConResNet(nn.Module): """backbone + projection head""" def __init__(self, name='resnet50', head='mlp', feat_dim=128): super(SupConResNet, self).__init__() model_fun, dim_in = model_dict[name] self.encoder = model_fun() if head == 'linear': self.head = nn.Linear(dim_in, feat_dim) elif head == 'mlp': self.head = nn.Sequential( nn.Linear(dim_in, dim_in), nn.ReLU(inplace=True), nn.Linear(dim_in, feat_dim) ) else: raise NotImplementedError( 'head not supported: {}'.format(head)) def forward(self, x): feat = self.encoder(x) feat = F.normalize(self.head(feat), dim=1) return feat class SupCEResNet(nn.Module): """encoder + classifier""" def __init__(self, name='resnet50', num_classes=10): super(SupCEResNet, self).__init__() model_fun, dim_in = model_dict[name] self.encoder = model_fun() self.fc = nn.Linear(dim_in, num_classes) def forward(self, x): return self.fc(self.encoder(x)) class LinearClassifier(nn.Module): """Linear classifier""" def __init__(self, name='resnet50', num_classes=10): super(LinearClassifier, self).__init__() _, feat_dim = model_dict[name] self.fc = nn.Linear(feat_dim, num_classes) def forward(self, features): return self.fc(features)
fly-master
src/models/resnet_supcon.py
import copy from typing import Optional, Union, Callable import torch import torch.nn as nn from torch.nn import functional as F from torch import Tensor from einops import rearrange import hydra from src.models.modules.masking import LengthMask from src.models.modules.seq_common import ClassificationHead, PositionalEncoding, Mlp from src.models.modules.s4 import S4 # Adapted from https://pytorch.org/docs/stable/_modules/torch/nn/modules/transformer.html#S4EncoderLayer class S4EncoderLayer(nn.Module): __constants__ = ['batch_first', 'norm_first'] def __init__(self, d_model, d_inner=2048, ffn_cfg=None, dropout=0.1, activation=F.relu, layer_norm_eps=1e-5, batch_first=False, norm_first=False, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.norm_first = norm_first self.s4 = S4(H=d_model, l_max=1024, transposed=True, dropout=dropout) # Legacy string support for activation function. if isinstance(activation, str): self.activation = _get_activation_fn(activation) else: self.activation = activation # Implementation of Feedforward model if ffn_cfg is None: self.ff = Mlp(d_model, hidden_features=d_inner, act_fn=self.activation, drop=dropout, **factory_kwargs) else: self.ff = hydra.utils.instantiate(ffn_cfg, **factory_kwargs, _recursive_=False) self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs) if not isinstance(self.ff, nn.Identity): self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs) self.dropout1 = nn.Dropout2d(dropout) def __setstate__(self, state): if 'activation' not in state: state['activation'] = F.relu super(S4EncoderLayer, self).__setstate__(state) def forward(self, src: Tensor, **kwargs) -> Tensor: r"""Pass the input through the encoder layer. Args: src: the sequence to the encoder layer (required). src_mask: the mask for the src sequence (optional). src_key_padding_mask: the mask for the src keys per batch (optional). Shape: see the docs in S4Sequence class. """ x = src if self.norm_first: out, _ = self.s4(rearrange(self.norm1(x)), '... L d -> ... d L') out = self.dropout1(out) x = x + rearrange(out, '... d L -> ... L d') if not isinstance(self.ff, nn.Identity): x = x + self.ff(self.norm2(x)) else: out, _ = self.s4(rearrange(x, '... L d -> ... d L')) out = self.dropout1(out) x = self.norm1(x + rearrange(out, '... d L -> ... L d')) if not isinstance(self.ff, nn.Identity): x = self.norm2(x + self.ff(x)) return x class S4Encoder(nn.Module): r"""S4Encoder is a stack of N encoder layers Args: encoder_layer: an instance of the S4EncoderLayer() class (required). num_layers: the number of sub-encoder-layers in the encoder (required). norm: the layer normalization component (optional). Examples:: >>> encoder_layer = nn.S4EncoderLayer(d_model=512) >>> transformer_encoder = nn.S4Encoder(encoder_layer, num_layers=6) >>> src = torch.rand(10, 32, 512) >>> out = transformer_encoder(src) """ __constants__ = ['norm'] def __init__(self, encoder_layer, num_layers, norm=None): super().__init__() # self.layers = _get_clones(encoder_layer, num_layers) self.layers = nn.ModuleList([encoder_layer() for i in range(num_layers)]) self.num_layers = num_layers self.norm = norm def forward(self, src: Tensor, **kwargs) -> Tensor: r"""Pass the input through the encoder layers in turn. Args: src: the sequence to the encoder (required). mask: the mask for the src sequence (optional). src_key_padding_mask: the mask for the src keys per batch (optional). Shape: see the docs in S4Sequence class. """ output = src for mod in self.layers: output = mod(output, **kwargs) if self.norm is not None: output = self.norm(output) return output class S4Sequence(nn.Module): r""" Args: d_model: the number of expected features in the encoder/decoder inputs (default=512). n_layer: the number of sub-encoder-layers in the encoder (default=6). d_inner: the dimension of the feedforward network model (default=2048). dropout: the dropout value (default=0.1). activation: the activation function of encoder/decoder intermediate layer, can be a string ("relu" or "gelu") or a unary callable. Default: relu custom_encoder: custom encoder (default=None). custom_decoder: custom decoder (default=None). layer_norm_eps: the eps value in layer normalization components (default=1e-5). batch_first: If ``True``, then the input and output tensors are provided as (batch, seq, feature). Default: ``False`` (seq, batch, feature). norm_first: if ``True``, encoder and decoder layers will perform LayerNorms before other attention and feedforward operations, otherwise after. Default: ``False`` (after). Examples:: >>> transformer_model = nn.S4Sequence(n_layer=12) >>> src = torch.rand((10, 32, 512)) >>> tgt = torch.rand((20, 32, 512)) >>> out = transformer_model(src, tgt) Note: A full example to apply nn.S4Sequence module for the word language model is available in https://github.com/pytorch/examples/tree/master/word_language_model """ def __init__(self, d_model: int = 512, n_layer: int = 6, d_inner: int = 2048, ffn_cfg=None, dropout: float = 0.1, activation: Union[str, Callable[[Tensor], Tensor]] = F.relu, layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.d_model = d_model self.batch_first = batch_first encoder_layer = lambda : S4EncoderLayer(d_model, d_inner=d_inner, ffn_cfg=ffn_cfg, dropout=dropout, activation=activation, layer_norm_eps=layer_norm_eps, batch_first=batch_first, norm_first=norm_first, **factory_kwargs) # encoder_norm = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs) encoder_norm = None self.encoder = S4Encoder(encoder_layer, n_layer, encoder_norm) def forward(self, src: Tensor, **kwargs) -> Tensor: r"""Take in and process masked source/target sequences. Args: src: the sequence to the encoder (required). tgt: the sequence to the decoder (required). src_mask: the additive mask for the src sequence (optional). tgt_mask: the additive mask for the tgt sequence (optional). memory_mask: the additive mask for the encoder output (optional). src_key_padding_mask: the ByteTensor mask for src keys per batch (optional). tgt_key_padding_mask: the ByteTensor mask for tgt keys per batch (optional). memory_key_padding_mask: the ByteTensor mask for memory keys per batch (optional). Shape: - src: :math:`(S, N, E)`, `(N, S, E)` if batch_first. - tgt: :math:`(T, N, E)`, `(N, T, E)` if batch_first. - src_mask: :math:`(S, S)`. - tgt_mask: :math:`(T, T)`. - memory_mask: :math:`(T, S)`. - src_key_padding_mask: :math:`(N, S)`. - tgt_key_padding_mask: :math:`(N, T)`. - memory_key_padding_mask: :math:`(N, S)`. Note: [src/tgt/memory]_mask ensures that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. [src/tgt/memory]_key_padding_mask provides specified elements in the key to be ignored by the attention. If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - output: :math:`(T, N, E)`, `(N, T, E)` if batch_first. Note: Due to the multi-head attention architecture in the transformer model, the output sequence length of a transformer is same as the input sequence (i.e. target) length of the decode. where S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number Examples: >>> output = transformer_model(src, tgt, src_mask=src_mask, tgt_mask=tgt_mask) """ output = self.encoder(src) return output class S4Classifier(nn.Module): def __init__(self, d_model: int, n_layer: int, d_inner: int, num_classes: int, ffn_cfg=None, embedding_cfg=None, classifier_cfg=None, norm_first=False, dropout: float = 0.1, activation: str = "relu", layer_norm_eps: float = 1e-5, batch_first: bool = False, pooling_mode='MEAN') -> None: super().__init__() assert pooling_mode in ['MEAN', 'SUM'], 'pooling_mode not supported' self.pooling_mode = pooling_mode self.embedding = (nn.Identity() if embedding_cfg is None else hydra.utils.instantiate(embedding_cfg, _recursive_=False)) self.batch_first = batch_first self.s4seq = S4Sequence(d_model, n_layer, d_inner, ffn_cfg, dropout, activation, layer_norm_eps, batch_first, norm_first) if classifier_cfg is None: self.classifier = ClassificationHead(d_model, d_inner, num_classes, pooling_mode=pooling_mode, batch_first=batch_first) else: self.classifier = hydra.utils.instantiate( classifier_cfg, d_model=d_model, d_inner=d_inner, num_classes=num_classes, pooling_mode=pooling_mode, batch_first=batch_first, _recursive_=False ) def forward_features(self, src: Tensor, lengths=None, **kwargs) -> Tensor: if lengths is not None: src_key_padding_mask = LengthMask(lengths, max_len=src.size(1 if self.batch_first else 0), device=src.device) else: src_key_padding_mask = None src = self.embedding(src) features = self.s4seq(src, **kwargs) return features, src_key_padding_mask def forward(self, src: Tensor, lengths=None, **kwargs) -> Tensor: features, src_key_padding_mask = self.forward_features(src, lengths=lengths, **kwargs) return self.classifier(features, key_padding_mask=src_key_padding_mask) class S4DualClassifier(S4Classifier): def forward(self, src1: Tensor, src2: Tensor, lengths1=None, lengths2=None, **kwargs) -> Tensor: features1, src1_key_padding_mask = self.forward_features(src1, lengths=lengths1, **kwargs) features2, src2_key_padding_mask = self.forward_features(src2, lengths=lengths2, **kwargs) return self.classifier(features1, features2, key_padding_mask1=src1_key_padding_mask, key_padding_mask2=src2_key_padding_mask) def _get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) def _get_activation_fn(activation): if activation == "relu": return F.relu elif activation == "gelu": return F.gelu raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
fly-master
src/models/s4_seq.py
from torch import nn class SimpleDenseNet(nn.Module): def __init__(self, hparams: dict): super().__init__() self.model = nn.Sequential( nn.Linear(hparams["input_size"], hparams["lin1_size"]), nn.BatchNorm1d(hparams["lin1_size"]), nn.ReLU(), nn.Linear(hparams["lin1_size"], hparams["lin2_size"]), nn.BatchNorm1d(hparams["lin2_size"]), nn.ReLU(), nn.Linear(hparams["lin2_size"], hparams["lin3_size"]), nn.BatchNorm1d(hparams["lin3_size"]), nn.ReLU(), nn.Linear(hparams["lin3_size"], hparams["output_size"]), ) def forward(self, x): batch_size, channels, width, height = x.size() # (batch, 1, width, height) -> (batch, 1*width*height) x = x.view(batch_size, -1) return self.model(x)
fly-master
src/models/simple_dense_net.py
fly-master
src/models/__init__.py
# Adapted from https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py # -------------------------------------------------------- # Swin Transformer # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ze Liu # -------------------------------------------------------- import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from torchvision.ops import StochasticDepth from timm.models.layers import to_2tuple, trunc_normal_ from einops import rearrange from src.models.modules.seq_common import Mlp from src.models.swin_transformer import PatchMerging, PatchEmbed class SwinMLPBlock(nn.Module): r""" Swin MLP Block. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resulotion. num_heads (int): Number of attention heads. window_size (int): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. drop (float, optional): Dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, mlp_ratio=4., drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.dim = dim self.input_resolution = input_resolution self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio if min(self.input_resolution) <= self.window_size: # if window size is larger than input resolution, we don't partition windows self.shift_size = 0 self.window_size = min(self.input_resolution) assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" self.padding = [self.window_size - self.shift_size, self.shift_size, self.window_size - self.shift_size, self.shift_size] # P_l,P_r,P_t,P_b self.norm1 = norm_layer(dim) # use group convolution to implement multi-head MLP self.spatial_mlp = nn.Conv1d(self.num_heads * self.window_size ** 2, self.num_heads * self.window_size ** 2, kernel_size=1, groups=self.num_heads) self.drop_path = StochasticDepth(drop_path, mode='row') self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): H, W = self.input_resolution B, L, C = x.shape assert L == H * W, "input feature has wrong size" shortcut = x x = self.norm1(x) x = x.view(B, H, W, C) # shift if self.shift_size > 0: P_l, P_r, P_t, P_b = self.padding shifted_x = F.pad(x, [0, 0, P_l, P_r, P_t, P_b], "constant", 0) else: shifted_x = x _, _H, _W, _ = shifted_x.shape # partition windows x_windows_heads = rearrange(shifted_x, 'b (h_div_wsz wsz) (w_div_wsz wsz1) (nhead c)' '-> (b h_div_wsz w_div_wsz) (nhead wsz wsz1) c', wsz=self.window_size, wsz1=self.window_size, nhead=self.num_heads) spatial_mlp_windows = self.spatial_mlp(x_windows_heads) # nW*B, nH*window_size*window_size, C//nH # # merge windows shifted_x = rearrange(spatial_mlp_windows, '(b h_div_wsz w_div_wsz) (nhead wsz wsz1) c' '-> b (h_div_wsz wsz) (w_div_wsz wsz1) (nhead c)', h_div_wsz=_H // self.window_size, w_div_wsz=_W // self.window_size, wsz=self.window_size, wsz1=self.window_size, nhead=self.num_heads) # reverse shift if self.shift_size > 0: P_l, P_r, P_t, P_b = self.padding x = shifted_x[:, P_t:-P_b, P_l:-P_r, :].contiguous() else: x = shifted_x x = x.view(B, H * W, C) # FFN x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) return x def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" def flops(self): flops = 0 H, W = self.input_resolution # norm1 flops += self.dim * H * W # Window/Shifted-Window Spatial MLP if self.shift_size > 0: nW = (H / self.window_size + 1) * (W / self.window_size + 1) else: nW = H * W / self.window_size / self.window_size flops += nW * self.dim * (self.window_size * self.window_size) * (self.window_size * self.window_size) # mlp flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio # norm2 flops += self.dim * H * W return flops class BasicLayer(nn.Module): """ A basic Swin MLP layer for one stage. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. drop (float, optional): Dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. """ def __init__(self, dim, input_resolution, depth, num_heads, window_size, mlp_ratio=4., drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False): super().__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList([ SwinMLPBlock(dim=dim, input_resolution=input_resolution, num_heads=num_heads, window_size=window_size, shift_size=0 if (i % 2 == 0) else window_size // 2, mlp_ratio=mlp_ratio, drop=drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer) for i in range(depth)]) # patch merging layer if downsample is not None: self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) else: self.downsample = None def forward(self, x): for blk in self.blocks: if self.use_checkpoint: x = checkpoint.checkpoint(blk, x) else: x = blk(x) if self.downsample is not None: x = self.downsample(x) return x def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" def flops(self): flops = 0 for blk in self.blocks: flops += blk.flops() if self.downsample is not None: flops += self.downsample.flops() return flops class SwinMLP(nn.Module): r""" Swin MLP Args: img_size (int | tuple(int)): Input image size. Default 224 patch_size (int | tuple(int)): Patch size. Default: 4 in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 embed_dim (int): Patch embedding dimension. Default: 96 depths (tuple(int)): Depth of each Swin MLP layer. num_heads (tuple(int)): Number of attention heads in different layers. window_size (int): Window size. Default: 7 mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 drop_rate (float): Dropout rate. Default: 0 drop_path_rate (float): Stochastic depth rate. Default: 0.1 norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. ape (bool): If True, add absolute position embedding to the patch embedding. Default: False patch_norm (bool): If True, add normalization after patch embedding. Default: True use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False """ def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4., drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, use_checkpoint=False, **kwargs): super().__init__() self.num_classes = num_classes self.num_layers = len(depths) self.embed_dim = embed_dim self.ape = ape self.patch_norm = patch_norm self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) self.mlp_ratio = mlp_ratio # split image into non-overlapping patches self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None) num_patches = self.patch_embed.num_patches patches_resolution = self.patch_embed.patches_resolution self.patches_resolution = patches_resolution # absolute position embedding if self.ape: self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) trunc_normal_(self.absolute_pos_embed, std=.02) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule # build layers self.layers = nn.ModuleList() for i_layer in range(self.num_layers): layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer), input_resolution=(patches_resolution[0] // (2 ** i_layer), patches_resolution[1] // (2 ** i_layer)), depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=self.mlp_ratio, drop=drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], norm_layer=norm_layer, downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, use_checkpoint=use_checkpoint) self.layers.append(layer) self.norm = norm_layer(self.num_features) self.avgpool = nn.AdaptiveAvgPool1d(1) self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, (nn.Linear, nn.Conv1d)): trunc_normal_(m.weight, std=.02) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'absolute_pos_embed'} @torch.jit.ignore def no_weight_decay_keywords(self): return {'relative_position_bias_table'} def forward_features(self, x): x = self.patch_embed(x) if self.ape: x = x + self.absolute_pos_embed x = self.pos_drop(x) for layer in self.layers: x = layer(x) x = self.norm(x) # B L C x = self.avgpool(x.transpose(1, 2)) # B C 1 x = torch.flatten(x, 1) return x def forward(self, x): x = self.forward_features(x) x = self.head(x) return x def flops(self): flops = 0 flops += self.patch_embed.flops() for i, layer in enumerate(self.layers): flops += layer.flops() flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers) flops += self.num_features * self.num_classes return flops
fly-master
src/models/swin_mlp.py
import functools import math import copy from typing import Optional, Union, Callable import torch import torch.nn as nn from torch.nn import functional as F from torch import Tensor from src.models.modules.masking import FullMask, LengthMask from einops import repeat import hydra from src.models.modules.seq_common import ClassificationHead, PositionalEncoding, Mlp from src.models.modules.multihead_attention import MultiheadAttention # Adapted from https://pytorch.org/docs/stable/_modules/torch/nn/modules/transformer.html#TransformerEncoderLayer class TransformerEncoderLayer(nn.Module): r"""TransformerEncoderLayer is made up of self-attn and feedforward network. This standard encoder layer is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000-6010. Users may modify or implement in a different way during application. Args: d_model: the number of expected features in the input (required). n_head: the number of heads in the multiheadattention models (required). d_inner: the dimension of the feedforward network model (default=2048). dropout: the dropout value (default=0.1). activation: the activation function of the intermediate layer, can be a string ("relu" or "gelu") or a unary callable. Default: relu layer_norm_eps: the eps value in layer normalization components (default=1e-5). batch_first: If ``True``, then the input and output tensors are provided as (batch, seq, feature). Default: ``False``. norm_first: if ``True``, layer norm is done prior to attention and feedforward operations, respectivaly. Otherwise it's done after. Default: ``False`` (after). Examples:: >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, n_head=8) >>> src = torch.rand(10, 32, 512) >>> out = encoder_layer(src) Alternatively, when ``batch_first`` is ``True``: >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, n_head=8, batch_first=True) >>> src = torch.rand(32, 10, 512) >>> out = encoder_layer(src) """ __constants__ = ['batch_first', 'norm_first'] def __init__(self, d_model, n_head, d_inner=2048, mha_cfg=None, attn_cfg=None, ffn_cfg=None, dropout=0.1, activation=F.relu, layer_norm_eps=1e-5, batch_first=False, norm_first=False, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.norm_first = norm_first if mha_cfg is None: mha_cfg = {} if attn_cfg is None: self.self_attn = nn.MultiheadAttention(d_model, n_head, dropout=dropout, batch_first=batch_first, **mha_cfg, **factory_kwargs) self.attention_layer = None else: self.self_attn = MultiheadAttention(d_model, n_head, batch_first=batch_first, **mha_cfg, **factory_kwargs) self.attention_layer = hydra.utils.instantiate(attn_cfg, **factory_kwargs, _recursive_=False) # Legacy string support for activation function. if isinstance(activation, str): self.activation = _get_activation_fn(activation) else: self.activation = activation # Implementation of Feedforward model if ffn_cfg is None: self.ff = Mlp(d_model, hidden_features=d_inner, act_fn=self.activation, drop=dropout, **factory_kwargs) else: self.ff = hydra.utils.instantiate(ffn_cfg, **factory_kwargs, _recursive_=False) self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs) self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs) self.dropout1 = nn.Dropout(dropout) def __setstate__(self, state): if 'activation' not in state: state['activation'] = F.relu super(TransformerEncoderLayer, self).__setstate__(state) def forward(self, src: Tensor, src_mask=None, src_key_padding_mask: Optional[Tensor] = None, **kwargs) -> Tensor: r"""Pass the input through the encoder layer. Args: src: the sequence to the encoder layer (required). src_mask: the mask for the src sequence (optional). src_key_padding_mask: the mask for the src keys per batch (optional). Shape: see the docs in Transformer class. """ x = src if self.norm_first: x = x + self._sa_block(self.norm1(x), attn_mask=src_mask, key_padding_mask=src_key_padding_mask, **kwargs) x = x + self.ff(self.norm2(x)) else: x = self.norm1(x + self._sa_block(x, attn_mask=src_mask, key_padding_mask=src_key_padding_mask, **kwargs)) x = self.norm2(x + self.ff(x)) return x # self-attention block def _sa_block(self, x: Tensor, attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor], **kwargs) -> Tensor: if self.attention_layer is None: x, _ = self.self_attn(x, x, x, attn_mask=attn_mask, key_padding_mask=key_padding_mask, need_weights=False, **kwargs) else: x, _ = self.self_attn(self.attention_layer, x, x, x, attn_mask=attn_mask, key_padding_mask=key_padding_mask, need_weights=False, **kwargs) return self.dropout1(x) # Adapted from https://pytorch.org/docs/stable/_modules/torch/nn/modules/transformer.html#TransformerEncoder class TransformerEncoder(nn.Module): r"""TransformerEncoder is a stack of N encoder layers Args: encoder_layer: an instance of the TransformerEncoderLayer() class (required). num_layers: the number of sub-encoder-layers in the encoder (required). norm: the layer normalization component (optional). Examples:: >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, n_head=8) >>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6) >>> src = torch.rand(10, 32, 512) >>> out = transformer_encoder(src) """ __constants__ = ['norm'] def __init__(self, encoder_layer, num_layers, norm=None): super().__init__() self.layers = _get_clones(encoder_layer, num_layers) self.num_layers = num_layers self.norm = norm def forward(self, src: Tensor, mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, **kwargs) -> Tensor: r"""Pass the input through the encoder layers in turn. Args: src: the sequence to the encoder (required). mask: the mask for the src sequence (optional). src_key_padding_mask: the mask for the src keys per batch (optional). Shape: see the docs in Transformer class. """ output = src for mod in self.layers: output = mod(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, **kwargs) if self.norm is not None: output = self.norm(output) return output # Adapted from https://pytorch.org/docs/stable/_modules/torch/nn/modules/transformer.html#Transformer class Transformer(nn.Module): r"""A transformer model. User is able to modify the attributes as needed. The architecture is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000-6010. Users can build the BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters. Args: d_model: the number of expected features in the encoder/decoder inputs (default=512). n_head: the number of heads in the multiheadattention models (default=8). n_layer: the number of sub-encoder-layers in the encoder (default=6). num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6). d_inner: the dimension of the feedforward network model (default=2048). dropout: the dropout value (default=0.1). activation: the activation function of encoder/decoder intermediate layer, can be a string ("relu" or "gelu") or a unary callable. Default: relu custom_encoder: custom encoder (default=None). custom_decoder: custom decoder (default=None). layer_norm_eps: the eps value in layer normalization components (default=1e-5). batch_first: If ``True``, then the input and output tensors are provided as (batch, seq, feature). Default: ``False`` (seq, batch, feature). norm_first: if ``True``, encoder and decoder layers will perform LayerNorms before other attention and feedforward operations, otherwise after. Default: ``False`` (after). Examples:: >>> transformer_model = nn.Transformer(n_head=16, n_layer=12) >>> src = torch.rand((10, 32, 512)) >>> tgt = torch.rand((20, 32, 512)) >>> out = transformer_model(src, tgt) Note: A full example to apply nn.Transformer module for the word language model is available in https://github.com/pytorch/examples/tree/master/word_language_model """ def __init__(self, d_model: int = 512, n_head: int = 8, n_layer: int = 6, d_inner: int = 2048, mha_cfg=None, attn_cfg=None, ffn_cfg=None, dropout: float = 0.1, activation: Union[str, Callable[[Tensor], Tensor]] = F.relu, layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.d_model = d_model self.n_head = n_head self.batch_first = batch_first encoder_layer = TransformerEncoderLayer(d_model, n_head, d_inner=d_inner, mha_cfg=mha_cfg, attn_cfg=attn_cfg, ffn_cfg=ffn_cfg, dropout=dropout, activation=activation, layer_norm_eps=layer_norm_eps, batch_first=batch_first, norm_first=norm_first, **factory_kwargs) encoder_norm = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs) self.encoder = TransformerEncoder(encoder_layer, n_layer, encoder_norm) self._reset_parameters() def forward(self, src: Tensor, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, **kwargs) -> Tensor: r"""Take in and process masked source/target sequences. Args: src: the sequence to the encoder (required). tgt: the sequence to the decoder (required). src_mask: the additive mask for the src sequence (optional). tgt_mask: the additive mask for the tgt sequence (optional). memory_mask: the additive mask for the encoder output (optional). src_key_padding_mask: the ByteTensor mask for src keys per batch (optional). tgt_key_padding_mask: the ByteTensor mask for tgt keys per batch (optional). memory_key_padding_mask: the ByteTensor mask for memory keys per batch (optional). Shape: - src: :math:`(S, N, E)`, `(N, S, E)` if batch_first. - tgt: :math:`(T, N, E)`, `(N, T, E)` if batch_first. - src_mask: :math:`(S, S)`. - tgt_mask: :math:`(T, T)`. - memory_mask: :math:`(T, S)`. - src_key_padding_mask: :math:`(N, S)`. - tgt_key_padding_mask: :math:`(N, T)`. - memory_key_padding_mask: :math:`(N, S)`. Note: [src/tgt/memory]_mask ensures that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. [src/tgt/memory]_key_padding_mask provides specified elements in the key to be ignored by the attention. If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - output: :math:`(T, N, E)`, `(N, T, E)` if batch_first. Note: Due to the multi-head attention architecture in the transformer model, the output sequence length of a transformer is same as the input sequence (i.e. target) length of the decode. where S is the source sequence length, T is the target sequence length, N is the batch size, E is the feature number Examples: >>> output = transformer_model(src, tgt, src_mask=src_mask, tgt_mask=tgt_mask) """ output = self.encoder(src, mask=src_mask, src_key_padding_mask=src_key_padding_mask) return output def _reset_parameters(self): r"""Initiate parameters in the transformer model.""" for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) class TransformerClassifier(nn.Module): def __init__(self, d_model: int, n_head: int, n_layer: int, d_inner: int, num_classes: int, mha_cfg=None, attn_cfg=None, ffn_cfg=None, embedding_cfg=None, pos_encoding_cfg=None, classifier_cfg=None, norm_first=False, dropout: float = 0.1, activation: str = "relu", layer_norm_eps: float = 1e-5, batch_first: bool = False, pooling_mode='MEAN') -> None: super().__init__() assert pooling_mode in ['MEAN', 'SUM', 'CLS'], 'pooling_mode not supported' self.pooling_mode = pooling_mode if pooling_mode == 'CLS': self.cls = nn.Parameter(torch.zeros(1, 1, d_model)) if pos_encoding_cfg is not None and 'max_len' in pos_encoding_cfg: pos_encoding_cfg.max_len += 1 self.word_emb = (nn.Identity() if embedding_cfg is None else hydra.utils.instantiate(embedding_cfg, _recursive_=False)) if pos_encoding_cfg is None: self.pos_encoder = PositionalEncoding(d_model, dropout, batch_first=batch_first) else: self.pos_encoder = hydra.utils.instantiate(pos_encoding_cfg, d_model, batch_first=batch_first, _recursive_=False) self.batch_first = batch_first self.transformer = Transformer(d_model, n_head, n_layer, d_inner, mha_cfg, attn_cfg, ffn_cfg, dropout, activation, layer_norm_eps, batch_first, norm_first) if classifier_cfg is None: self.classifier = ClassificationHead(d_model, d_inner, num_classes, pooling_mode=pooling_mode, batch_first=batch_first) else: self.classifier = hydra.utils.instantiate( classifier_cfg, d_model=d_model, d_inner=d_inner, num_classes=num_classes, pooling_mode=pooling_mode, batch_first=batch_first, _recursive_=False ) def forward_features(self, src: Tensor, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, lengths=None, **kwargs) -> Tensor: if lengths is not None: src_key_padding_mask = LengthMask(lengths, max_len=src.size(1 if self.batch_first else 0), device=src.device) src = self.word_emb(src) if self.pooling_mode == 'CLS': cls = repeat(self.cls, '1 1 d -> b 1 d' if self.batch_first else '1 1 d -> 1 b d', b=src.shape[0 if self.batch_first else 1]) src = torch.cat([cls, src], dim=1 if self.batch_first else 0) # Adjust masks if src_key_padding_mask is not None: assert isinstance(src_key_padding_mask, LengthMask) src_key_padding_mask = LengthMask(src_key_padding_mask._lengths + 1, max_len=src_key_padding_mask._max_len + 1, device=src_key_padding_mask._lengths.device) if src_mask is not None: assert isinstance(src_mask, FullMask) src_mask = FullMask(F.pad(src_mask._mask, (1, 0, 1, 0), value=True)) src = self.pos_encoder(src) features = self.transformer(src, src_mask=src_mask, src_key_padding_mask=src_key_padding_mask, **kwargs) return features, src_key_padding_mask def forward(self, src: Tensor, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, lengths=None, **kwargs) -> Tensor: features, src_key_padding_mask = self.forward_features( src, src_mask=src_mask, src_key_padding_mask=src_key_padding_mask, lengths=lengths, **kwargs ) return self.classifier(features, key_padding_mask=src_key_padding_mask) class TransformerDualClassifier(TransformerClassifier): def forward(self, src1: Tensor, src2: Tensor, src1_mask: Optional[Tensor] = None, src2_mask: Optional[Tensor] = None, src1_key_padding_mask: Optional[Tensor] = None, src2_key_padding_mask: Optional[Tensor] = None, lengths1=None, lengths2=None, **kwargs) -> Tensor: features1, src1_key_padding_mask = self.forward_features( src1, src_mask=src1_mask, src_key_padding_mask=src1_key_padding_mask, lengths=lengths1, **kwargs ) features2, src2_key_padding_mask = self.forward_features( src2, src_mask=src2_mask, src_key_padding_mask=src2_key_padding_mask, lengths=lengths2, **kwargs ) return self.classifier(features1, features2, key_padding_mask1=src1_key_padding_mask, key_padding_mask2=src2_key_padding_mask) def _get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) def _get_activation_fn(activation): if activation == "relu": return F.relu elif activation == "gelu": return F.gelu raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
fly-master
src/models/transformer.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch BERT model.""" import math import os import warnings from dataclasses import dataclass from typing import Optional, Tuple import torch import torch.utils.checkpoint from packaging import version from torch import nn import torch.nn.functional as F from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from einops import rearrange, repeat import transformers from transformers.activations import ACT2FN from transformers.file_utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from transformers.modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, NextSentencePredictorOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from transformers.modeling_utils import ( PreTrainedModel, apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer, ) from transformers.utils import logging from transformers.models.bert.configuration_bert import BertConfig from transformers.models.bert.modeling_bert import load_tf_weights_in_bert from transformers.models.bert.modeling_bert import BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING import hydra from src.ops.bert_padding import unpad_input, pad_input, index_first_axis from src.ops.triton.softmax_dropout import softmax_dropout from src.ops.fused_dropout_add import fused_dropout_add, fused_bias_dropout_add from src.ops.gelu_activation import bias_gelu_impl, fast_gelu_impl ACT2FN['fast_gelu'] = fast_gelu_impl try: from src.ops.fused_softmax_dropout import fused_softmax_dropout except ImportError: fused_softmax_dropout = None try: from src.ops.bert_fmha import fmha_func except ImportError: fmha_func = None try: from src.ops.fused_dense import FusedDenseMine except ImportError: FusedDenseMine = None try: from apex.contrib.layer_norm import FastLayerNorm as BertLayerNorm except ImportError: BertLayerNorm = nn.LayerNorm logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "bert-base-uncased" _CONFIG_FOR_DOC = "BertConfig" _TOKENIZER_FOR_DOC = "BertTokenizer" BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "bert-base-uncased", "bert-large-uncased", "bert-base-cased", "bert-large-cased", "bert-base-multilingual-uncased", "bert-base-multilingual-cased", "bert-base-chinese", "bert-base-german-cased", "bert-large-uncased-whole-word-masking", "bert-large-cased-whole-word-masking", "bert-large-uncased-whole-word-masking-finetuned-squad", "bert-large-cased-whole-word-masking-finetuned-squad", "bert-base-cased-finetuned-mrpc", "bert-base-german-dbmdz-cased", "bert-base-german-dbmdz-uncased", "cl-tohoku/bert-base-japanese", "cl-tohoku/bert-base-japanese-whole-word-masking", "cl-tohoku/bert-base-japanese-char", "cl-tohoku/bert-base-japanese-char-whole-word-masking", "TurkuNLP/bert-base-finnish-cased-v1", "TurkuNLP/bert-base-finnish-uncased-v1", "wietsedv/bert-base-dutch-cased", # See all BERT models at https://huggingface.co/models?filter=bert ] torch._C._jit_set_nvfuser_enabled(True) torch._C._jit_set_texpr_fuser_enabled(False) torch._C._jit_set_profiling_executor(True) torch._C._jit_set_profiling_mode(True) torch._C._jit_override_can_fuse_on_cpu(False) torch._C._jit_override_can_fuse_on_gpu(False) class BertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) if version.parse(torch.__version__) > version.parse("1.6.0"): self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False, ) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class BertSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.softmax_impl = getattr(config, 'softmax_impl', 'pytorch') if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) seq_length = hidden_states.size()[1] position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) else: bsz, num_heads, q_seq_len, _ = query_layer.shape _, _, k_seq_len, _ = key_layer.shape q = rearrange(query_layer, 'b h t d -> (b h) t d') k = rearrange(key_layer, 'b h s d -> (b h) d s') # Preallocate attention_scores for `baddbmm` attention_scores = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=q.dtype, device=q.device) attention_scores = torch.baddbmm(attention_scores, q, k, beta=0, alpha=self.attention_head_size ** (-0.5)) # (b h) t s attention_scores = rearrange(attention_scores, '(b h) t s -> b h t s', h=self.num_attention_heads) if self.softmax_impl == 'triton': mask = None if attention_mask is None else attention_mask.to(dtype=attention_scores.dtype) attention_probs = softmax_dropout(attention_scores, self.dropout.p if self.training else 0.0, mask=mask, mask_type='bk') elif self.softmax_impl == 'fused': if fused_softmax_dropout is None: raise ImportError('Failed to import fused_softmax_dropout. Please install the ' 'softmaxlib CUDA extension') mask = None if attention_mask is None else attention_mask.to(dtype=attention_scores.dtype) attention_probs = fused_softmax_dropout( attention_scores, self.dropout.p if self.training else 0.0, mask=mask ) else: if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask.to(dtype=attention_scores.dtype) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1, dtype=value_layer.dtype) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs class FMHABertSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.p_dropout = config.attention_probs_dropout_prob self.fuse_bias = getattr(config, 'fused_bias_mha', False) linear_cls = nn.Linear if not self.fuse_bias else FusedDenseMine self.Wqkv = linear_cls(self.all_head_size, 3 * config.hidden_size) def forward(self, hidden_states, cu_seqlens, max_seqlen_in_batch): """ Arguments: hidden_states: (total_nnz, dim) cu_seqlens: (batch + 1,), torch.int32 max_seqlen_in_batch: int Return: context: (total_nnz, dim) """ qkv = self.Wqkv(hidden_states) # (total_nnz, 3 * dim) qkv = rearrange(qkv, 'nnz (t h d) -> nnz t h d', t=3, h=self.num_attention_heads) context = fmha_func(qkv, cu_seqlens, self.p_dropout, max_seqlen_in_batch, self.training) return rearrange(context, 'nnz h d -> nnz (h d)') class BertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.fuse_bias = getattr(config, 'fused_bias_mha', False) self.fused_dropout_add = getattr(config, 'fused_dropout_add', False) linear_cls = nn.Linear if not self.fuse_bias else FusedDenseMine self.dense = linear_cls(config.hidden_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) if not self.fused_dropout_add: hidden_states = self.dropout(hidden_states) + input_tensor else: hidden_states = fused_dropout_add(hidden_states, input_tensor, self.dropout.p, self.training) hidden_states = self.LayerNorm(hidden_states) return hidden_states class BertAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = BertSelfAttention(config, position_embedding_type=position_embedding_type) self.output = BertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class FMHABertAttention(nn.Module): def __init__(self, config): super().__init__() self.self = FMHABertSelfAttention(config) self.output = BertSelfOutput(config) def forward(self, input_tensor, cu_seqlens, max_s, subset_idx=None): """subset_idx: set of indices whose values we care about at the end of the layer (e.g., the masked tokens, if this is the final layer). """ self_output = self.self(input_tensor, cu_seqlens, max_s) if subset_idx is not None: # return self.output(self_output[subset_idx], input_tensor[subset_idx]) return self.output(index_first_axis(self_output, subset_idx), index_first_axis(input_tensor, subset_idx)) else: return self.output(self_output, input_tensor) class BertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.fuse_bias = getattr(config, 'fused_bias_fc', False) self.fused_gelu_bias = getattr(config, 'fused_gelu_bias', False) linear_cfg = getattr(config, 'linear1_cfg', None) if linear_cfg is None: linear_cls = nn.Linear if not self.fuse_bias else FusedDenseMine self.dense = linear_cls(config.hidden_size, config.intermediate_size) else: self.dense = hydra.utils.instantiate(linear_cfg, config.hidden_size, config.intermediate_size) if self.fused_gelu_bias: self.intermediate_act_fn = bias_gelu_impl assert isinstance(self.dense, nn.Linear) or hasattr(self.dense, 'forward_matmul') else: if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states): if not self.fused_gelu_bias: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) else: if isinstance(self.dense, nn.Linear): hidden_states = F.linear(hidden_states, self.dense.weight) else: hidden_states = self.dense.forward_matmul(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states, self.dense.bias) return hidden_states class BertOutput(nn.Module): def __init__(self, config): super().__init__() self.fuse_bias = getattr(config, 'fused_bias_fc', False) self.fused_dropout_add = getattr(config, 'fused_dropout_add', False) self.fused_bias_dropout_add = getattr(config, 'fused_bias_dropout_add', False) linear_cfg = getattr(config, 'linear2_cfg', None) if linear_cfg is None: linear_cls = nn.Linear if not self.fuse_bias else FusedDenseMine self.dense = linear_cls(config.intermediate_size, config.hidden_size) else: self.dense = hydra.utils.instantiate(linear_cfg, config.intermediate_size, config.hidden_size) if self.fused_bias_dropout_add: assert isinstance(self.dense, nn.Linear) or hasattr(self.dense, 'forward_matmul') self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): if not self.fused_bias_dropout_add: hidden_states = self.dense(hidden_states) if not self.fused_dropout_add: hidden_states = self.dropout(hidden_states) + input_tensor else: hidden_states = fused_dropout_add(hidden_states, input_tensor, self.dropout.p, self.training) else: if isinstance(self.dense, nn.Linear): hidden_states = F.linear(hidden_states, self.dense.weight) else: hidden_states = self.dense.forward_matmul(hidden_states) hidden_states = fused_bias_dropout_add(hidden_states, self.dense.bias, input_tensor, self.dropout.p, self.training) hidden_states = self.LayerNorm(hidden_states) return hidden_states class BertLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = BertAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = BertAttention(config, position_embedding_type="absolute") if getattr(config, 'mlp_cfg', None) is None: self.intermediate = BertIntermediate(config) self.output = BertOutput(config) self.mlp = None else: self.mlp = hydra.utils.instantiate(config.mlp_cfg, in_features=config.hidden_size, hidden_features=config.intermediate_size, drop=config.hidden_dropout_prob, _recursive_=False) self.layer_norm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): if self.mlp is None: intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) else: layer_output = self.layer_norm(attention_output + self.mlp(attention_output)) return layer_output class BertLayerUnpad(nn.Module): def __init__(self, config): super().__init__() self.attention = FMHABertAttention(config) self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward(self, hidden_states, attention_mask, seqlen, subset_idx=None): """subset_idx: set of indices whose values we care about at the end of the layer (e.g., the masked tokens, if this is the final layer). """ attention_output = self.attention(hidden_states, attention_mask, seqlen, subset_idx) intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class BertEncoder(nn.Module): def __init__(self, config): super().__init__() self.unpad_fmha = getattr(config, 'unpad_fmha', False) self.config = config layer_cls = BertLayer if not self.unpad_fmha else BertLayerUnpad self.layer = nn.ModuleList([layer_cls(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=True, subset_mask=None ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None if self.unpad_fmha: attention_mask_bool = rearrange(attention_mask, 'b 1 1 s -> b s') == 0.0 batch, seqlen = hidden_states.shape[:2] hidden_states, indices, cu_seqlens, max_seqlen_in_batch = unpad_input( hidden_states, attention_mask_bool ) if subset_mask is None: for layer_module in self.layer: hidden_states = layer_module(hidden_states, cu_seqlens, max_seqlen_in_batch) hidden_states = pad_input(hidden_states, indices, batch, seqlen) else: for layer_module in self.layer[:-1]: hidden_states = layer_module(hidden_states, cu_seqlens, max_seqlen_in_batch) subset_idx = torch.nonzero(subset_mask[attention_mask_bool], as_tuple=False).flatten() hidden_states = self.layer[-1](hidden_states, cu_seqlens, max_seqlen_in_batch, subset_idx=subset_idx) else: for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, past_key_value, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) class BertPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states, pool=True): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] if pool else hidden_states pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class BertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act # TD [2022-02-25] Somehow using FastLayerNorm here gives CUDA error: misaligned address self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class BertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.fused_fc = getattr(config, 'fused_bias_fc_loss_head', False) self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. linear_cls = nn.Linear if not self.fused_fc else FusedDenseMine self.decoder = linear_cls(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states class BertOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = BertLMPredictionHead(config) def forward(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores class BertOnlyNSPHead(nn.Module): def __init__(self, config): super().__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score class BertPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = BertLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class BertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BertConfig load_tf_weights = load_tf_weights_in_bert base_model_prefix = "bert" supports_gradient_checkpointing = True _keys_to_ignore_on_load_missing = [r"position_ids"] def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, (nn.LayerNorm, BertLayerNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, BertEncoder): module.gradient_checkpointing = value @dataclass class BertForPreTrainingOutput(ModelOutput): """ Output type of [`BertForPreTraining`]. Args: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None seq_relationship_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @add_start_docstrings( "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.", BERT_START_DOCSTRING, ) class BertModel(BertPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = BertEmbeddings(config) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, masked_tokens_mask=None ): r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) if masked_tokens_mask is not None: # We also need the first column for the CLS token first_col_mask = torch.zeros(batch_size, seq_length, dtype=torch.bool, device=device) first_col_mask[:, 0] = True subset_mask = masked_tokens_mask | first_col_mask else: subset_mask = None encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, subset_mask=subset_mask ) if masked_tokens_mask is None: sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None else: # TD [2022-03-01]: the indexing here is very tricky. attention_mask_bool = attention_mask > 0 subset_idx = subset_mask[attention_mask_bool] sequence_output = encoder_outputs[0][masked_tokens_mask[attention_mask_bool][subset_idx]] pool_input = encoder_outputs[0][first_col_mask[attention_mask_bool][subset_idx]] pooled_output = (self.pooler(pool_input, pool=False) if self.pooler is not None else None) if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( """ Bert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, BERT_START_DOCSTRING, ) class BertForPreTraining(BertPreTrainedModel): def __init__(self, config): super().__init__(config) # Padding for divisibility by 8 self.pad_vocab_size_multiple_8 = getattr(config, 'pad_vocab_size_multiple_8', False) if self.pad_vocab_size_multiple_8: if config.vocab_size % 8 != 0: config.vocab_size += 8 - (config.vocab_size % 8) self.bert = BertModel(config) self.cls = BertPreTrainingHeads(config) # if dense_seq_output, prediction scores are only computed for masked tokens, # and the (bs, seqlen) dimensions are flattened self.dense_seq_output = getattr(config, 'dense_seq_output', False) # If last_layer_subset, we only need the compute the last layer for a subset of tokens # (e.g., the tokens we need to compute the masked LM loss and the next-sentence prediction). self.last_layer_subset = getattr(config, 'last_layer_subset', False) if self.last_layer_subset: assert getattr(config, 'unpad_fmha', False) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=BertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, next_sentence_label=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. kwargs (`Dict[str, any]`, optional, defaults to *{}*): Used to hide legacy arguments that have been deprecated. Returns: Example: ```python >>> from transformers import BertTokenizer, BertForPreTraining >>> import torch >>> tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") >>> model = BertForPreTraining.from_pretrained("bert-base-uncased") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict masked_tokens_mask = labels >= 0 if (self.last_layer_subset and labels is not None) else None outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, masked_tokens_mask=masked_tokens_mask ) sequence_output, pooled_output = outputs[:2] if self.dense_seq_output and labels is not None: masked_token_idx = torch.nonzero(labels.flatten() >= 0, as_tuple=False).flatten() if not self.last_layer_subset: sequence_output = index_first_axis(rearrange(sequence_output, 'b s d -> (b s) d'), masked_token_idx) prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss() if masked_token_idx is not None: # prediction_scores are already flattened masked_lm_loss = loss_fct(prediction_scores, labels.flatten()[masked_token_idx]) else: masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return BertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """Bert Model with a `language modeling` head on top for CLM fine-tuning.""", BERT_START_DOCSTRING ) class BertLMHeadModel(BertPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `BertLMHeadModel` as a standalone, add `is_decoder=True.`") self.bert = BertModel(config, add_pooling_layer=False) self.cls = BertOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Example: ```python >>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig >>> import torch >>> tokenizer = BertTokenizer.from_pretrained("bert-base-cased") >>> config = BertConfig.from_pretrained("bert-base-cased") >>> config.is_decoder = True >>> model = BertLMHeadModel.from_pretrained("bert-base-cased", config=config) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # cut decoder_input_ids if past is used if past is not None: input_ids = input_ids[:, -1:] return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past} def _reorder_cache(self, past, beam_idx): reordered_past = () for layer_past in past: reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) return reordered_past @add_start_docstrings("""Bert Model with a `language modeling` head on top.""", BERT_START_DOCSTRING) class BertForMaskedLM(BertPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.bert = BertModel(config, add_pooling_layer=False) self.cls = BertOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): input_shape = input_ids.shape effective_batch_size = input_shape[0] # add a dummy token if self.config.pad_token_id is None: raise ValueError("The PAD token should be defined for generation") attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) dummy_token = torch.full( (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device ) input_ids = torch.cat([input_ids, dummy_token], dim=1) return {"input_ids": input_ids, "attention_mask": attention_mask} @add_start_docstrings( """Bert Model with a `next sentence prediction (classification)` head on top.""", BERT_START_DOCSTRING, ) class BertForNextSentencePrediction(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = BertModel(config) self.cls = BertOnlyNSPHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs, ): r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring). Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Example: ```python >>> from transformers import BertTokenizer, BertForNextSentencePrediction >>> import torch >>> tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") >>> model = BertForNextSentencePrediction.from_pretrained("bert-base-uncased") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") >>> outputs = model(**encoding, labels=torch.LongTensor([1])) >>> logits = outputs.logits >>> assert logits[0, 0] < logits[0, 1] # next sentence was random ``` """ if "next_sentence_label" in kwargs: warnings.warn( "The `next_sentence_label` argument is deprecated and will be removed in a future version, use `labels` instead.", FutureWarning, ) labels = kwargs.pop("next_sentence_label") return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] seq_relationship_scores = self.cls(pooled_output) next_sentence_loss = None if labels is not None: loss_fct = CrossEntropyLoss() next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1)) if not return_dict: output = (seq_relationship_scores,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return NextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, BERT_START_DOCSTRING, ) class BertForSequenceClassification(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.bert = BertModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, BERT_START_DOCSTRING, ) class BertForMultipleChoice(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = BertModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, BERT_START_DOCSTRING, ) class BertForTokenClassification(BertPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = BertModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels) active_labels = torch.where( active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) ) loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, BERT_START_DOCSTRING, ) class BertForQuestionAnswering(BertPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = BertModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( processor_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
fly-master
src/models/bert.py
# Adapted from https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py # -------------------------------------------------------- # Swin Transformer # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ze Liu # -------------------------------------------------------- import torch import torch.nn as nn import torch.utils.checkpoint as checkpoint from torchvision.ops import StochasticDepth from timm.models.layers import to_2tuple, trunc_normal_ from einops import rearrange from src.models.modules.seq_common import Mlp class WindowAttention(nn.Module): r""" Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. Args: dim (int): Number of input channels. window_size (tuple[int]): The height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 """ def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.dim = dim self.window_size = window_size # Wh, Ww self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 # define a parameter table of relative position bias self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww self.register_buffer("relative_position_index", relative_position_index) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) trunc_normal_(self.relative_position_bias_table, std=.02) self.softmax = nn.Softmax(dim=-1) def forward(self, x, mask=None): """ Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None """ B_, N, C = x.shape qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1)) relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nW = mask.shape[0] attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B_, N, C) x = self.proj(x) x = self.proj_drop(x) return x def extra_repr(self) -> str: return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}' def flops(self, N): # calculate flops for 1 window with token length of N flops = 0 # qkv = self.qkv(x) flops += N * self.dim * 3 * self.dim # attn = (q @ k.transpose(-2, -1)) flops += self.num_heads * N * (self.dim // self.num_heads) * N # x = (attn @ v) flops += self.num_heads * N * N * (self.dim // self.num_heads) # x = self.proj(x) flops += N * self.dim * self.dim return flops class SwinTransformerBlock(nn.Module): r""" Swin Transformer Block. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resulotion. num_heads (int): Number of attention heads. window_size (int): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.dim = dim self.input_resolution = input_resolution self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio if min(self.input_resolution) <= self.window_size: # if window size is larger than input resolution, we don't partition windows self.shift_size = 0 self.window_size = min(self.input_resolution) assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" self.norm1 = norm_layer(dim) self.attn = WindowAttention( dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.drop_path = StochasticDepth(drop_path, mode='row') self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) if self.shift_size > 0: # calculate attention mask for SW-MSA H, W = self.input_resolution img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 h_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) w_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) cnt = 0 for h in h_slices: for w in w_slices: img_mask[:, h, w, :] = cnt cnt += 1 mask_windows = rearrange(img_mask, 'b (h_div_wsz wsz) (w_div_wsz wsz1) 1' '-> (b h_div_wsz w_div_wsz) (wsz wsz1)', wsz=self.window_size, wsz1=self.window_size) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) else: attn_mask = None self.register_buffer("attn_mask", attn_mask) def forward(self, x): H, W = self.input_resolution B, L, C = x.shape assert L == H * W, "input feature has wrong size" shortcut = x x = self.norm1(x) x = x.view(B, H, W, C) # cyclic shift if self.shift_size > 0: shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) else: shifted_x = x # partition windows x_windows = rearrange(shifted_x, 'b (h_div_wsz wsz) (w_div_wsz wsz1) c' '-> (b h_div_wsz w_div_wsz) (wsz wsz1) c', wsz=self.window_size, wsz1=self.window_size) # W-MSA/SW-MSA attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C # merge windows shifted_x = rearrange(attn_windows, '(b h_div_wsz w_div_wsz) (wsz wsz1) c' '-> b (h_div_wsz wsz) (w_div_wsz wsz1) c', h_div_wsz=H // self.window_size, w_div_wsz=W // self.window_size, wsz=self.window_size) # reverse cyclic shift if self.shift_size > 0: x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: x = shifted_x x = x.view(B, H * W, C) # FFN x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) return x def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" def flops(self): flops = 0 H, W = self.input_resolution # norm1 flops += self.dim * H * W # W-MSA/SW-MSA nW = H * W / self.window_size / self.window_size flops += nW * self.attn.flops(self.window_size * self.window_size) # mlp flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio # norm2 flops += self.dim * H * W return flops class PatchMerging(nn.Module): r""" Patch Merging Layer. Args: input_resolution (tuple[int]): Resolution of input feature. dim (int): Number of input channels. norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): super().__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(4 * dim) def forward(self, x): """ x: B, H*W, C """ H, W = self.input_resolution B, L, C = x.shape assert L == H * W, "input feature has wrong size" assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." x = x.view(B, H, W, C) # TD [2021-12-09] Idk why they swap the order of p and p1, but they should be equivalent. x = rearrange(x, 'b (h p) (w p1) c -> b (h w) (p1 p c)', p=2, p1=2) x = self.norm(x) x = self.reduction(x) return x def extra_repr(self) -> str: return f"input_resolution={self.input_resolution}, dim={self.dim}" def flops(self): H, W = self.input_resolution flops = H * W * self.dim flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim return flops class BasicLayer(nn.Module): """ A basic Swin Transformer layer for one stage. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. """ def __init__(self, dim, input_resolution, depth, num_heads, window_size, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False): super().__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList([ SwinTransformerBlock(dim=dim, input_resolution=input_resolution, num_heads=num_heads, window_size=window_size, shift_size=0 if (i % 2 == 0) else window_size // 2, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer) for i in range(depth)]) # patch merging layer if downsample is not None: self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) else: self.downsample = None def forward(self, x): for blk in self.blocks: if self.use_checkpoint: x = checkpoint.checkpoint(blk, x) else: x = blk(x) if self.downsample is not None: x = self.downsample(x) return x def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" def flops(self): flops = 0 for blk in self.blocks: flops += blk.flops() if self.downsample is not None: flops += self.downsample.flops() return flops class PatchEmbed(nn.Module): r""" Image to Patch Embedding Args: img_size (int): Image size. Default: 224. patch_size (int): Patch token size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Module, optional): Normalization layer. Default: None """ def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] self.img_size = img_size self.patch_size = patch_size self.patches_resolution = patches_resolution self.num_patches = patches_resolution[0] * patches_resolution[1] self.in_chans = in_chans self.embed_dim = embed_dim self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): B, C, H, W = x.shape # FIXME look at relaxing size constraints assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C if self.norm is not None: x = self.norm(x) return x def flops(self): Ho, Wo = self.patches_resolution flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) if self.norm is not None: flops += Ho * Wo * self.embed_dim return flops class SwinTransformer(nn.Module): r""" Swin Transformer A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - https://arxiv.org/pdf/2103.14030 Args: img_size (int | tuple(int)): Input image size. Default 224 patch_size (int | tuple(int)): Patch size. Default: 4 in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 embed_dim (int): Patch embedding dimension. Default: 96 depths (tuple(int)): Depth of each Swin Transformer layer. num_heads (tuple(int)): Number of attention heads in different layers. window_size (int): Window size. Default: 7 mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None drop_rate (float): Dropout rate. Default: 0 attn_drop_rate (float): Attention dropout rate. Default: 0 drop_path_rate (float): Stochastic depth rate. Default: 0.1 norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. ape (bool): If True, add absolute position embedding to the patch embedding. Default: False patch_norm (bool): If True, add normalization after patch embedding. Default: True use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False """ def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, use_checkpoint=False, **kwargs): super().__init__() self.num_classes = num_classes self.num_layers = len(depths) self.embed_dim = embed_dim self.ape = ape self.patch_norm = patch_norm self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) self.mlp_ratio = mlp_ratio # split image into non-overlapping patches self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None) num_patches = self.patch_embed.num_patches patches_resolution = self.patch_embed.patches_resolution self.patches_resolution = patches_resolution # absolute position embedding if self.ape: self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) trunc_normal_(self.absolute_pos_embed, std=.02) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule # build layers self.layers = nn.ModuleList() for i_layer in range(self.num_layers): layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer), input_resolution=(patches_resolution[0] // (2 ** i_layer), patches_resolution[1] // (2 ** i_layer)), depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=self.mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], norm_layer=norm_layer, downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, use_checkpoint=use_checkpoint) self.layers.append(layer) self.norm = norm_layer(self.num_features) self.avgpool = nn.AdaptiveAvgPool1d(1) self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'absolute_pos_embed'} @torch.jit.ignore def no_weight_decay_keywords(self): return {'relative_position_bias_table'} def forward_features(self, x): x = self.patch_embed(x) if self.ape: x = x + self.absolute_pos_embed x = self.pos_drop(x) for layer in self.layers: x = layer(x) x = self.norm(x) # B L C x = self.avgpool(x.transpose(1, 2)) # B C 1 x = torch.flatten(x, 1) return x def forward(self, x): x = self.forward_features(x) x = self.head(x) return x def flops(self): flops = 0 flops += self.patch_embed.flops() for i, layer in enumerate(self.layers): flops += layer.flops() flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers) flops += self.num_features * self.num_classes return flops
fly-master
src/models/swin_transformer.py
# Copied from https://github.com/zongyi-li/fourier_neural_operator/blob/master/fourier_1d.py import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange, repeat from src.models.layers.spectral_conv import SpectralConv1d, SpectralConv2d class FourierOperator1d(nn.Module): def __init__(self, modes, width): super().__init__() self.modes = modes self.width = width self.conv = SpectralConv1d(self.width, self.width, self.modes) self.w = nn.Conv1d(self.width, self.width, 1) def forward(self, x): return F.gelu(self.conv(x) + self.w(x)) class FNO1d(nn.Module): def __init__(self, modes, width, nlayers=4, padding=0): super(FNO1d, self).__init__() """ The overall network. It contains 4 layers of the Fourier layer. 1. Lift the input to the desire channel dimension by self.fc0 . 2. 4 layers of the integral operators u' = (W + K)(u). W defined by self.w; K defined by self.conv . 3. Project from the channel space to the output space by self.fc1 and self.fc2 . input: the solution of the initial condition and location (a(x), x) input shape: (batchsize, x=s, c=2) output: the solution of a later timestep output shape: (batchsize, x=s, c=1) """ self.modes1 = modes self.width = width self.nlayers = nlayers self.padding = padding # pad the domain if input is non-periodic self.fc0 = nn.Linear(2, self.width) # input channel is 2: (a(x), x) self.layers = nn.Sequential(*[FourierOperator1d(self.modes1, self.width) for _ in range(self.nlayers)]) self.fc1 = nn.Linear(self.width, 128) self.fc2 = nn.Linear(128, 1) def forward(self, x): grid = self.get_grid(x.shape, x.device) x = torch.stack([x, grid], dim=-1) x = self.fc0(x) x = rearrange(x, 'b x c -> b c x') if self.padding != 0: x = F.pad(x, [0,self.padding]) # pad the domain if input is non-periodic # FNO code doesn't apply activation on the last block, but we do for code's simplicity. # Performance seems about the same. x = self.layers(x) if self.padding != 0: x = x[..., :-self.padding] # pad the domain if input is non-periodic x = rearrange(x, 'b c x -> b x c') x = self.fc2(F.gelu(self.fc1(x))) return rearrange(x, 'b x 1 -> b x') def get_grid(self, shape, device): batchsize, size_x = shape[0], shape[1] return repeat(torch.linspace(0, 1, size_x, dtype=torch.float, device=device), 'x -> b x', b=batchsize) class FourierOperator2d(nn.Module): def __init__(self, modes1, modes2, width): super().__init__() self.modes1 = modes1 self.modes2 = modes2 self.width = width self.conv = SpectralConv2d(self.width, self.width, self.modes1, self.modes2) self.w = nn.Conv2d(self.width, self.width, 1) def forward(self, x): return F.gelu(self.conv(x) + self.w(x)) class FNO2d(nn.Module): def __init__(self, modes1, modes2, width, nlayers=4, padding=0): super(FNO2d, self).__init__() """ The overall network. It contains 4 layers of the Fourier layer. 1. Lift the input to the desire channel dimension by self.fc0 . 2. 4 layers of the integral operators u' = (W + K)(u). W defined by self.w; K defined by self.conv . 3. Project from the channel space to the output space by self.fc1 and self.fc2 . input: the solution of the coefficient function and locations (a(x, y), x, y) input shape: (batchsize, x=s, y=s, c=3) output: the solution output shape: (batchsize, x=s, y=s, c=1) """ self.modes1 = modes1 self.modes2 = modes2 self.width = width self.nlayers = nlayers self.padding = padding # pad the domain if input is non-periodic self.fc0 = nn.Linear(3, self.width) # input channel is 3: (a(x, y), x, y) self.layers = nn.Sequential(*[FourierOperator2d(self.modes1, self.modes2, self.width) for _ in range(self.nlayers)]) self.fc1 = nn.Linear(self.width, 128) self.fc2 = nn.Linear(128, 1) def forward(self, x): grid = self.get_grid(x.shape, x.device) x = torch.cat((rearrange(x, 'b x y -> b x y 1'), grid), dim=-1) x = self.fc0(x) x = rearrange(x, 'b x y c -> b c x y') if self.padding != 0: x = F.pad(x, [0, self.padding, 0, self.padding]) # FNO code doesn't apply activation on the last block, but we do for code's simplicity. # Performance seems about the same x = self.layers(x) if self.padding != 0: x = x[..., :-self.padding, :-self.padding] x = rearrange(x, 'b c x y -> b x y c') x = self.fc2(F.gelu(self.fc1(x))) return rearrange(x, 'b x y 1 -> b x y') def get_grid(self, shape, device): batchsize, size_x, size_y = shape[0], shape[1], shape[2] gridx = repeat(torch.linspace(0, 1, size_x, dtype=torch.float, device=device), 'x -> b x y', b=batchsize, y=size_y) gridy = repeat(torch.linspace(0, 1, size_y, dtype=torch.float, device=device), 'y -> b x y', b=batchsize, x=size_x) return torch.stack([gridx, gridy], dim=-1)
fly-master
src/models/fno.py
# Adapted from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/mlp_mixer.py """ MLP-Mixer, ResMLP, and gMLP in PyTorch This impl originally based on MLP-Mixer paper. Official JAX impl: https://github.com/google-research/vision_transformer/blob/linen/vit_jax/models_mixer.py Paper: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2105.01601 @article{tolstikhin2021, title={MLP-Mixer: An all-MLP Architecture for Vision}, author={Tolstikhin, Ilya and Houlsby, Neil and Kolesnikov, Alexander and Beyer, Lucas and Zhai, Xiaohua and Unterthiner, Thomas and Yung, Jessica and Keysers, Daniel and Uszkoreit, Jakob and Lucic, Mario and Dosovitskiy, Alexey}, journal={arXiv preprint arXiv:2105.01601}, year={2021} } Also supporting ResMlp, and a preliminary (not verified) implementations of gMLP Code: https://github.com/facebookresearch/deit Paper: `ResMLP: Feedforward networks for image classification...` - https://arxiv.org/abs/2105.03404 @misc{touvron2021resmlp, title={ResMLP: Feedforward networks for image classification with data-efficient training}, author={Hugo Touvron and Piotr Bojanowski and Mathilde Caron and Matthieu Cord and Alaaeldin El-Nouby and Edouard Grave and Armand Joulin and Gabriel Synnaeve and Jakob Verbeek and Hervé Jégou}, year={2021}, eprint={2105.03404}, } Paper: `Pay Attention to MLPs` - https://arxiv.org/abs/2105.08050 @misc{liu2021pay, title={Pay Attention to MLPs}, author={Hanxiao Liu and Zihang Dai and David R. So and Quoc V. Le}, year={2021}, eprint={2105.08050}, } A thank you to paper authors for releasing code and weights. Hacked together by / Copyright 2021 Ross Wightman """ import math from copy import deepcopy from functools import partial import torch import torch.nn as nn from torchvision.ops import StochasticDepth from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.models.helpers import build_model_with_cfg, named_apply from timm.models.layers import PatchEmbed, Mlp, GluMlp, GatedMlp, lecun_normal_, to_2tuple from timm.models.registry import register_model import hydra from src.models.layers.fastlinear import LowRank, SparseLRLinear from src.models.layers.blocksparse_linear import BlockSparseLinear from src.models.layers.blockdiag_linear import BlockdiagLinear def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': 0.875, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), 'first_conv': 'stem.proj', 'classifier': 'head', **kwargs } default_cfgs = dict( mixer_s32_224=_cfg(), mixer_s16_224=_cfg(), mixer_b32_224=_cfg(), mixer_b16_224=_cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_mixer_b16_224-76587d61.pth', ), mixer_b16_224_in21k=_cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_mixer_b16_224_in21k-617b3de2.pth', num_classes=21843 ), mixer_l32_224=_cfg(), mixer_l16_224=_cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_mixer_l16_224-92f9adc4.pth', ), mixer_l16_224_in21k=_cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_mixer_l16_224_in21k-846aa33c.pth', num_classes=21843 ), # Mixer ImageNet-21K-P pretraining mixer_b16_224_miil_in21k=_cfg( url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm/mixer_b16_224_miil_in21k.pth', mean=(0, 0, 0), std=(1, 1, 1), crop_pct=0.875, interpolation='bilinear', num_classes=11221, ), mixer_b16_224_miil=_cfg( url='https://miil-public-eu.oss-eu-central-1.aliyuncs.com/model-zoo/ImageNet_21K_P/models/timm/mixer_b16_224_miil.pth', mean=(0, 0, 0), std=(1, 1, 1), crop_pct=0.875, interpolation='bilinear', ), gmixer_12_224=_cfg(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), gmixer_24_224=_cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gmixer_24_224_raa-7daf7ae6.pth', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), resmlp_12_224=_cfg( url='https://dl.fbaipublicfiles.com/deit/resmlp_12_no_dist.pth', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), resmlp_24_224=_cfg( url='https://dl.fbaipublicfiles.com/deit/resmlp_24_no_dist.pth', #url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resmlp_24_224_raa-a8256759.pth', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), resmlp_36_224=_cfg( url='https://dl.fbaipublicfiles.com/deit/resmlp_36_no_dist.pth', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), resmlp_big_24_224=_cfg( url='https://dl.fbaipublicfiles.com/deit/resmlpB_24_no_dist.pth', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), resmlp_12_distilled_224=_cfg( url='https://dl.fbaipublicfiles.com/deit/resmlp_12_dist.pth', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), resmlp_24_distilled_224=_cfg( url='https://dl.fbaipublicfiles.com/deit/resmlp_24_dist.pth', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), resmlp_36_distilled_224=_cfg( url='https://dl.fbaipublicfiles.com/deit/resmlp_36_dist.pth', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), resmlp_big_24_distilled_224=_cfg( url='https://dl.fbaipublicfiles.com/deit/resmlpB_24_dist.pth', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), resmlp_big_24_224_in22ft1k=_cfg( url='https://dl.fbaipublicfiles.com/deit/resmlpB_24_22k.pth', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), gmlp_ti16_224=_cfg(), gmlp_s16_224=_cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gmlp_s16_224_raa-10536d42.pth', ), gmlp_b16_224=_cfg(), ) class MixerBlock(nn.Module): """ Residual Block w/ token mixing and channel MLPs Based on: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2105.01601 """ def __init__( self, dim, seq_len, mlp_ratio=(0.5, 4.0), mlp_layer=Mlp, token_mlp_cfg=None, channel_mlp_cfg=None, norm_layer=partial(nn.LayerNorm, eps=1e-6), act_layer=nn.GELU, drop=0., drop_path=0.): super().__init__() tokens_dim, channels_dim = [int(x * dim) for x in to_2tuple(mlp_ratio)] self.norm1 = norm_layer(dim) if token_mlp_cfg is None: self.mlp_tokens = mlp_layer(seq_len, tokens_dim, act_layer=act_layer, drop=drop) else: self.mlp_tokens = hydra.utils.instantiate(token_mlp_cfg, in_features=seq_len, hidden_features=tokens_dim, act_layer=act_layer, drop=drop, _recursive_=False) self.drop_path = StochasticDepth(drop_path, mode='row') self.norm2 = norm_layer(dim) if channel_mlp_cfg is None: self.mlp_channels = mlp_layer(dim, channels_dim, act_layer=act_layer, drop=drop) else: self.mlp_channels = hydra.utils.instantiate(channel_mlp_cfg, in_features=dim, hidden_features=channels_dim, act_layer=act_layer, drop=drop, _recursive_=False) def forward(self, x): x = x + self.drop_path(self.mlp_tokens(self.norm1(x).transpose(1, 2)).transpose(1, 2)) x = x + self.drop_path(self.mlp_channels(self.norm2(x))) return x class Affine(nn.Module): def __init__(self, dim): super().__init__() self.alpha = nn.Parameter(torch.ones((1, 1, dim))) self.beta = nn.Parameter(torch.zeros((1, 1, dim))) def forward(self, x): return torch.addcmul(self.beta, self.alpha, x) class ResBlock(nn.Module): """ Residual MLP block w/ LayerScale and Affine 'norm' Based on: `ResMLP: Feedforward networks for image classification...` - https://arxiv.org/abs/2105.03404 """ def __init__( self, dim, seq_len, mlp_ratio=4, mlp_layer=Mlp, norm_layer=Affine, act_layer=nn.GELU, init_values=1e-4, drop=0., drop_path=0.): super().__init__() channel_dim = int(dim * mlp_ratio) self.norm1 = norm_layer(dim) self.linear_tokens = nn.Linear(seq_len, seq_len) self.drop_path = StochasticDepth(drop_path, mode='row') self.norm2 = norm_layer(dim) self.mlp_channels = mlp_layer(dim, channel_dim, act_layer=act_layer, drop=drop) self.ls1 = nn.Parameter(init_values * torch.ones(dim)) self.ls2 = nn.Parameter(init_values * torch.ones(dim)) def forward(self, x): x = x + self.drop_path(self.ls1 * self.linear_tokens(self.norm1(x).transpose(1, 2)).transpose(1, 2)) x = x + self.drop_path(self.ls2 * self.mlp_channels(self.norm2(x))) return x class SpatialGatingUnit(nn.Module): """ Spatial Gating Unit Based on: `Pay Attention to MLPs` - https://arxiv.org/abs/2105.08050 """ def __init__(self, dim, seq_len, norm_layer=nn.LayerNorm): super().__init__() gate_dim = dim // 2 self.norm = norm_layer(gate_dim) self.proj = nn.Linear(seq_len, seq_len) def init_weights(self): # special init for the projection gate, called as override by base model init nn.init.normal_(self.proj.weight, std=1e-6) nn.init.ones_(self.proj.bias) def forward(self, x): u, v = x.chunk(2, dim=-1) v = self.norm(v) v = self.proj(v.transpose(-1, -2)) return u * v.transpose(-1, -2) class SpatialGatingBlock(nn.Module): """ Residual Block w/ Spatial Gating Based on: `Pay Attention to MLPs` - https://arxiv.org/abs/2105.08050 """ def __init__( self, dim, seq_len, mlp_ratio=4, mlp_layer=GatedMlp, norm_layer=partial(nn.LayerNorm, eps=1e-6), act_layer=nn.GELU, drop=0., drop_path=0.): super().__init__() channel_dim = int(dim * mlp_ratio) self.norm = norm_layer(dim) sgu = partial(SpatialGatingUnit, seq_len=seq_len) self.mlp_channels = mlp_layer(dim, channel_dim, act_layer=act_layer, gate_layer=sgu, drop=drop) self.drop_path = StochasticDepth(drop_path, mode='row') def forward(self, x): x = x + self.drop_path(self.mlp_channels(self.norm(x))) return x class MlpMixer(nn.Module): def __init__( self, num_classes=1000, img_size=224, in_chans=3, patch_size=16, num_blocks=8, embed_dim=512, mlp_ratio=(0.5, 4.0), block_layer=MixerBlock, mlp_layer=Mlp, token_mlp_cfg=None, channel_mlp_cfg=None, norm_layer=partial(nn.LayerNorm, eps=1e-6), act_layer=nn.GELU, drop_rate=0., drop_path_rate=0., nlhb=False, stem_norm=False, ): super().__init__() self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.stem = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if stem_norm else None) # FIXME drop_path (stochastic depth scaling rule or all the same?) self.blocks = nn.Sequential(*[ block_layer( embed_dim, self.stem.num_patches, mlp_ratio, mlp_layer=mlp_layer, token_mlp_cfg=token_mlp_cfg, channel_mlp_cfg=channel_mlp_cfg, norm_layer=norm_layer, act_layer=act_layer, drop=drop_rate, drop_path=drop_path_rate) for _ in range(num_blocks)]) self.norm = norm_layer(embed_dim) self.head = nn.Linear(embed_dim, self.num_classes) if num_classes > 0 else nn.Identity() self.init_weights(nlhb=nlhb) def init_weights(self, nlhb=False): head_bias = -math.log(self.num_classes) if nlhb else 0. named_apply(partial(_init_weights, head_bias=head_bias), module=self) # depth-first def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): x = self.stem(x) x = self.blocks(x) x = self.norm(x) x = x.mean(dim=1) return x def forward(self, x): x = self.forward_features(x) x = self.head(x) return x def _init_weights(module: nn.Module, name: str, head_bias: float = 0., flax=False): """ Mixer weight initialization (trying to match Flax defaults) """ if isinstance(module, (nn.Linear, BlockSparseLinear, BlockdiagLinear, LowRank, SparseLRLinear)): if name.startswith('head') and isinstance(module, nn.Linear): nn.init.zeros_(module.weight) nn.init.constant_(module.bias, head_bias) else: if flax: # Flax defaults lecun_normal_(module.weight) if module.bias is not None: nn.init.zeros_(module.bias) else: # like MLP init in vit (my original init) if module.bias is not None: if 'mlp' in name: nn.init.normal_(module.bias, std=1e-6) else: nn.init.zeros_(module.bias) dense_init_fn_ = nn.init.xavier_uniform_ if isinstance(module, nn.Linear): dense_init_fn_(module.weight) elif isinstance(module, (BlockSparseLinear, BlockdiagLinear, LowRank)): module.set_weights_from_dense_init(dense_init_fn_) elif isinstance(module, nn.Conv2d): lecun_normal_(module.weight) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, (nn.LayerNorm, nn.BatchNorm2d, nn.GroupNorm)): nn.init.ones_(module.weight) nn.init.zeros_(module.bias) elif hasattr(module, 'init_weights'): # NOTE if a parent module contains init_weights method, it can override the init of the # child modules as this will be called in depth-first order. module.init_weights() def checkpoint_filter_fn(state_dict, model): """ Remap checkpoints if needed """ if 'patch_embed.proj.weight' in state_dict: # Remap FB ResMlp models -> timm out_dict = {} for k, v in state_dict.items(): k = k.replace('patch_embed.', 'stem.') k = k.replace('attn.', 'linear_tokens.') k = k.replace('mlp.', 'mlp_channels.') k = k.replace('gamma_', 'ls') if k.endswith('.alpha') or k.endswith('.beta'): v = v.reshape(1, 1, -1) out_dict[k] = v return out_dict return state_dict def _create_mixer(variant, pretrained=False, **kwargs): if kwargs.get('features_only', None): raise RuntimeError('features_only not implemented for MLP-Mixer models.') model = build_model_with_cfg( MlpMixer, variant, pretrained, default_cfg=default_cfgs[variant], pretrained_filter_fn=checkpoint_filter_fn, **kwargs) return model @register_model def mixer_s32_224(pretrained=False, **kwargs): """ Mixer-S/32 224x224 Paper: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2105.01601 """ model_args = dict(patch_size=32, num_blocks=8, embed_dim=512, **kwargs) model = _create_mixer('mixer_s32_224', pretrained=pretrained, **model_args) return model @register_model def mixer_s16_224(pretrained=False, **kwargs): """ Mixer-S/16 224x224 Paper: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2105.01601 """ model_args = dict(patch_size=16, num_blocks=8, embed_dim=512, **kwargs) model = _create_mixer('mixer_s16_224', pretrained=pretrained, **model_args) return model @register_model def mixer_b32_224(pretrained=False, **kwargs): """ Mixer-B/32 224x224 Paper: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2105.01601 """ model_args = dict(patch_size=32, num_blocks=12, embed_dim=768, **kwargs) model = _create_mixer('mixer_b32_224', pretrained=pretrained, **model_args) return model @register_model def mixer_b16_224(pretrained=False, **kwargs): """ Mixer-B/16 224x224. ImageNet-1k pretrained weights. Paper: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2105.01601 """ model_args = dict(patch_size=16, num_blocks=12, embed_dim=768, **kwargs) model = _create_mixer('mixer_b16_224', pretrained=pretrained, **model_args) return model @register_model def mixer_b16_224_in21k(pretrained=False, **kwargs): """ Mixer-B/16 224x224. ImageNet-21k pretrained weights. Paper: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2105.01601 """ model_args = dict(patch_size=16, num_blocks=12, embed_dim=768, **kwargs) model = _create_mixer('mixer_b16_224_in21k', pretrained=pretrained, **model_args) return model @register_model def mixer_l32_224(pretrained=False, **kwargs): """ Mixer-L/32 224x224. Paper: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2105.01601 """ model_args = dict(patch_size=32, num_blocks=24, embed_dim=1024, **kwargs) model = _create_mixer('mixer_l32_224', pretrained=pretrained, **model_args) return model @register_model def mixer_l16_224(pretrained=False, **kwargs): """ Mixer-L/16 224x224. ImageNet-1k pretrained weights. Paper: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2105.01601 """ model_args = dict(patch_size=16, num_blocks=24, embed_dim=1024, **kwargs) model = _create_mixer('mixer_l16_224', pretrained=pretrained, **model_args) return model @register_model def mixer_l16_224_in21k(pretrained=False, **kwargs): """ Mixer-L/16 224x224. ImageNet-21k pretrained weights. Paper: 'MLP-Mixer: An all-MLP Architecture for Vision' - https://arxiv.org/abs/2105.01601 """ model_args = dict(patch_size=16, num_blocks=24, embed_dim=1024, **kwargs) model = _create_mixer('mixer_l16_224_in21k', pretrained=pretrained, **model_args) return model @register_model def mixer_b16_224_miil(pretrained=False, **kwargs): """ Mixer-B/16 224x224. ImageNet-21k pretrained weights. Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K """ model_args = dict(patch_size=16, num_blocks=12, embed_dim=768, **kwargs) model = _create_mixer('mixer_b16_224_miil', pretrained=pretrained, **model_args) return model @register_model def mixer_b16_224_miil_in21k(pretrained=False, **kwargs): """ Mixer-B/16 224x224. ImageNet-1k pretrained weights. Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K """ model_args = dict(patch_size=16, num_blocks=12, embed_dim=768, **kwargs) model = _create_mixer('mixer_b16_224_miil_in21k', pretrained=pretrained, **model_args) return model @register_model def gmixer_12_224(pretrained=False, **kwargs): """ Glu-Mixer-12 224x224 Experiment by Ross Wightman, adding (Si)GLU to MLP-Mixer """ model_args = dict( patch_size=16, num_blocks=12, embed_dim=384, mlp_ratio=(1.0, 4.0), mlp_layer=GluMlp, act_layer=nn.SiLU, **kwargs) model = _create_mixer('gmixer_12_224', pretrained=pretrained, **model_args) return model @register_model def gmixer_24_224(pretrained=False, **kwargs): """ Glu-Mixer-24 224x224 Experiment by Ross Wightman, adding (Si)GLU to MLP-Mixer """ model_args = dict( patch_size=16, num_blocks=24, embed_dim=384, mlp_ratio=(1.0, 4.0), mlp_layer=GluMlp, act_layer=nn.SiLU, **kwargs) model = _create_mixer('gmixer_24_224', pretrained=pretrained, **model_args) return model @register_model def resmlp_12_224(pretrained=False, **kwargs): """ ResMLP-12 Paper: `ResMLP: Feedforward networks for image classification...` - https://arxiv.org/abs/2105.03404 """ model_args = dict( patch_size=16, num_blocks=12, embed_dim=384, mlp_ratio=4, block_layer=ResBlock, norm_layer=Affine, **kwargs) model = _create_mixer('resmlp_12_224', pretrained=pretrained, **model_args) return model @register_model def resmlp_24_224(pretrained=False, **kwargs): """ ResMLP-24 Paper: `ResMLP: Feedforward networks for image classification...` - https://arxiv.org/abs/2105.03404 """ model_args = dict( patch_size=16, num_blocks=24, embed_dim=384, mlp_ratio=4, block_layer=partial(ResBlock, init_values=1e-5), norm_layer=Affine, **kwargs) model = _create_mixer('resmlp_24_224', pretrained=pretrained, **model_args) return model @register_model def resmlp_36_224(pretrained=False, **kwargs): """ ResMLP-36 Paper: `ResMLP: Feedforward networks for image classification...` - https://arxiv.org/abs/2105.03404 """ model_args = dict( patch_size=16, num_blocks=36, embed_dim=384, mlp_ratio=4, block_layer=partial(ResBlock, init_values=1e-6), norm_layer=Affine, **kwargs) model = _create_mixer('resmlp_36_224', pretrained=pretrained, **model_args) return model @register_model def resmlp_big_24_224(pretrained=False, **kwargs): """ ResMLP-B-24 Paper: `ResMLP: Feedforward networks for image classification...` - https://arxiv.org/abs/2105.03404 """ model_args = dict( patch_size=8, num_blocks=24, embed_dim=768, mlp_ratio=4, block_layer=partial(ResBlock, init_values=1e-6), norm_layer=Affine, **kwargs) model = _create_mixer('resmlp_big_24_224', pretrained=pretrained, **model_args) return model @register_model def resmlp_12_distilled_224(pretrained=False, **kwargs): """ ResMLP-12 Paper: `ResMLP: Feedforward networks for image classification...` - https://arxiv.org/abs/2105.03404 """ model_args = dict( patch_size=16, num_blocks=12, embed_dim=384, mlp_ratio=4, block_layer=ResBlock, norm_layer=Affine, **kwargs) model = _create_mixer('resmlp_12_distilled_224', pretrained=pretrained, **model_args) return model @register_model def resmlp_24_distilled_224(pretrained=False, **kwargs): """ ResMLP-24 Paper: `ResMLP: Feedforward networks for image classification...` - https://arxiv.org/abs/2105.03404 """ model_args = dict( patch_size=16, num_blocks=24, embed_dim=384, mlp_ratio=4, block_layer=partial(ResBlock, init_values=1e-5), norm_layer=Affine, **kwargs) model = _create_mixer('resmlp_24_distilled_224', pretrained=pretrained, **model_args) return model @register_model def resmlp_36_distilled_224(pretrained=False, **kwargs): """ ResMLP-36 Paper: `ResMLP: Feedforward networks for image classification...` - https://arxiv.org/abs/2105.03404 """ model_args = dict( patch_size=16, num_blocks=36, embed_dim=384, mlp_ratio=4, block_layer=partial(ResBlock, init_values=1e-6), norm_layer=Affine, **kwargs) model = _create_mixer('resmlp_36_distilled_224', pretrained=pretrained, **model_args) return model @register_model def resmlp_big_24_distilled_224(pretrained=False, **kwargs): """ ResMLP-B-24 Paper: `ResMLP: Feedforward networks for image classification...` - https://arxiv.org/abs/2105.03404 """ model_args = dict( patch_size=8, num_blocks=24, embed_dim=768, mlp_ratio=4, block_layer=partial(ResBlock, init_values=1e-6), norm_layer=Affine, **kwargs) model = _create_mixer('resmlp_big_24_distilled_224', pretrained=pretrained, **model_args) return model @register_model def resmlp_big_24_224_in22ft1k(pretrained=False, **kwargs): """ ResMLP-B-24 Paper: `ResMLP: Feedforward networks for image classification...` - https://arxiv.org/abs/2105.03404 """ model_args = dict( patch_size=8, num_blocks=24, embed_dim=768, mlp_ratio=4, block_layer=partial(ResBlock, init_values=1e-6), norm_layer=Affine, **kwargs) model = _create_mixer('resmlp_big_24_224_in22ft1k', pretrained=pretrained, **model_args) return model @register_model def gmlp_ti16_224(pretrained=False, **kwargs): """ gMLP-Tiny Paper: `Pay Attention to MLPs` - https://arxiv.org/abs/2105.08050 """ model_args = dict( patch_size=16, num_blocks=30, embed_dim=128, mlp_ratio=6, block_layer=SpatialGatingBlock, mlp_layer=GatedMlp, **kwargs) model = _create_mixer('gmlp_ti16_224', pretrained=pretrained, **model_args) return model @register_model def gmlp_s16_224(pretrained=False, **kwargs): """ gMLP-Small Paper: `Pay Attention to MLPs` - https://arxiv.org/abs/2105.08050 """ model_args = dict( patch_size=16, num_blocks=30, embed_dim=256, mlp_ratio=6, block_layer=SpatialGatingBlock, mlp_layer=GatedMlp, **kwargs) model = _create_mixer('gmlp_s16_224', pretrained=pretrained, **model_args) return model @register_model def gmlp_b16_224(pretrained=False, **kwargs): """ gMLP-Base Paper: `Pay Attention to MLPs` - https://arxiv.org/abs/2105.08050 """ model_args = dict( patch_size=16, num_blocks=30, embed_dim=512, mlp_ratio=6, block_layer=SpatialGatingBlock, mlp_layer=GatedMlp, **kwargs) model = _create_mixer('gmlp_b16_224', pretrained=pretrained, **model_args) return model
fly-master
src/models/mlp_mixer.py
# Adapted from https://github.com/lucidrains/performer-pytorch/blob/main/performer_pytorch/performer_pytorch.py import math import torch from torch import nn from torch.cuda.amp import autocast from einops import rearrange, repeat from functools import partial from contextlib import contextmanager try: from apex import amp APEX_AVAILABLE = True except: APEX_AVAILABLE = False # helpers @contextmanager def null_context(): yield # kernel functions # transcribed from jax to pytorch from # https://github.com/google-research/google-research/blob/master/performer/fast_attention/jax/fast_attention.py def softmax_kernel(data, *, projection_matrix, is_query, softmax_temp=None, eps=1e-4): """For key, we expect shape (b, h, s, d) where s is the sequence dimension """ b, h, _, d = data.shape if softmax_temp is None: softmax_temp = 1 / math.sqrt(d) data_normalizer = math.sqrt(softmax_temp) ratio = (projection_matrix.shape[0] ** -0.5) projection = repeat(projection_matrix, 'j d -> b h j d', b = b, h = h) projection = projection.type_as(data) data_dash = torch.einsum('...id,...jd->...ij', (data_normalizer * data), projection) diag_data = data ** 2 diag_data = torch.sum(diag_data, dim=-1) diag_data = (diag_data / 2.0) * (data_normalizer ** 2) diag_data = diag_data.unsqueeze(dim=-1) if is_query: data_dash = ratio * ( torch.exp(data_dash - diag_data - torch.amax(data_dash, dim=-1, keepdim=True)) + eps) else: data_dash = ratio * ( torch.exp(data_dash - diag_data - torch.amax(data_dash, dim=(-1, -2), keepdim=True)) + eps) return data_dash.type_as(data) def generalized_kernel(data, *, projection_matrix, kernel_fn=nn.ReLU(), kernel_epsilon=0.001, normalize_data=True): b, h, *_ = data.shape data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1. if projection_matrix is None: return kernel_fn(data_normalizer * data) + kernel_epsilon projection = repeat(projection_matrix, 'j d -> b h j d', b = b, h = h) projection = projection.type_as(data) data_dash = torch.einsum('...id,...jd->...ij', (data_normalizer * data), projection) data_prime = kernel_fn(data_dash) + kernel_epsilon return data_prime.type_as(data) # linear attention classes with softmax kernel # non-causal linear attention # By default Performer uses eps=0.0 here def linear_attention(q, k, v, eps=0.0, need_weights=False): k_cumsum = k.sum(dim=-2) D_inv = 1. / (torch.einsum('...nd,...d->...n', q, k_cumsum.type_as(q)) + eps) context = torch.einsum('...nd,...ne->...de', k, v) out = torch.einsum('...de,...nd,...n->...ne', context, q, D_inv) attn = None if not need_weights else torch.einsum('...te,...se,...s->...ts', q, k, D_inv) return out, attn # efficient causal linear attention, created by EPFL def causal_linear_attention(q, k, v, eps=1e-6, need_weights=False): from fast_transformers.causal_product import CausalDotProduct autocast_enabled = torch.is_autocast_enabled() is_half = isinstance(q, torch.cuda.HalfTensor) assert not is_half or APEX_AVAILABLE, 'half tensors can only be used if nvidia apex is available' cuda_context = null_context if not autocast_enabled else partial(autocast, enabled = False) causal_dot_product_fn = amp.float_function(CausalDotProduct.apply) if is_half else CausalDotProduct.apply k_cumsum = k.cumsum(dim=-2) + eps D_inv = 1. / torch.einsum('...nd,...nd->...n', q, k_cumsum.type_as(q)) with cuda_context(): if autocast_enabled: q, k, v = map(lambda t: t.float(), (q, k, v)) out = causal_dot_product_fn(q, k, v) if need_weights: attn = torch.einsum('...te,...se,...s', q, k, D_inv) causal_mask = torch.triu(torch.ones(q.shape[-2], k.shape[-2], dtype=torch.bool, device=k.device), diagonal=1) attn.masked_fill_(causal_mask, 0.0) else: attn = None out = torch.einsum('...nd,...n->...nd', out, D_inv) return out, None # inefficient causal linear attention, without cuda code, for reader's reference # not being used def causal_linear_attention_noncuda(q, k, v, chunk_size = 128, eps = 1e-6, need_weights=False): assert not need_weights, 'causal_linear_attention_noncuda does not support need_weights' last_k_cumsum = 0 last_context_cumsum = 0 outs = [] for q, k, v in zip(*map(lambda t: t.chunk(chunk_size, dim = -2), (q, k, v))): k_cumsum = last_k_cumsum + k.cumsum(dim=-2) D_inv = 1. / torch.einsum('...nd,...nd->...n', q, k_cumsum.type_as(q) + eps) context = torch.einsum('...nd,...ne->...nde', k, v) context_cumsum = last_context_cumsum + context.cumsum(dim=-3) out = torch.einsum('...nde,...nd,...n->...ne', context_cumsum, q, D_inv) last_k_cumsum = k_cumsum[:, :, -1:] last_context_cumsum = context_cumsum[:, :, -1:] outs.append(out) return torch.cat(outs, dim = -2)
fly-master
src/models/attention/performer_utils.py
# Adapted from https://github.com/lucidrains/linformer/blob/master/linformer/linformer.py # and https://github.com/tatp22/linformer-pytorch import math import torch import torch.nn as nn from einops import rearrange class LinformerAttention(nn.Module): """ Arguments --------- softmax_temp: The temperature to use for the softmax attention. (default: 1/sqrt(d_keys) where d_keys is computed at runtime) attention_dropout: The dropout rate to apply to the attention (default: 0.1) """ def __init__(self, seq_len, k=256, share_kv=False, softmax_temp=None, attention_dropout=0.0, device=None, dtype=None): super().__init__() self.seq_len = seq_len self.share_kv = share_kv self.proj_k = nn.Parameter(torch.empty(seq_len, k, device=device, dtype=dtype)) if not share_kv: self.proj_v = nn.Parameter(torch.empty(seq_len, k, device=device, dtype=dtype)) self.softmax_temp = softmax_temp self.dropout = nn.Dropout(attention_dropout) self.reset_parameters() def reset_parameters(self): dim = self.proj_k.shape[-1] # If we're using the random projection interpretation, then we should initialize as # normal with std 1/sqrt(dim) (not 1/dim as in https://github.com/tatp22/linformer-pytorch/blob/master/linformer_pytorch/linformer_pytorch.py) std = 1 / math.sqrt(dim) nn.init.normal_(self.proj_k, mean=0.0, std=std) if not self.share_kv: nn.init.normal_(self.proj_v, mean=0.0, std=std) def forward(self, query, key, value, attn_mask=None, key_padding_mask=None, need_weights=False): if attn_mask is not None: raise NotImplementedError('Linformer does not support attn_mask') # Extract some shapes and compute the temperature B, T, H, E = query.shape _, S_k, _, D = key.shape _, S_v, _, D = value.shape softmax_temp = self.softmax_temp or 1 / math.sqrt(E) assert S_k <= self.seq_len and S_v <= self.seq_len, f'the sequence length of the key / value must be at most {self.seq_len}' if key_padding_mask is not None and not key_padding_mask.all_ones: key = key.masked_fill(rearrange(~key_padding_mask.bool_matrix, 'b s -> b s 1 1'), 0.0) value = value.masked_fill(rearrange(~key_padding_mask.bool_matrix, 'b s -> b s 1 1'), 0.0) # Scale the key instead of applying the softmax temperature to the # dot products key = torch.einsum('bshd,sk->bkhd', key, self.proj_k[:S_k] * softmax_temp) value = torch.einsum('bshe,sk->bkhe', value, self.proj_k[:S_v] if self.share_kv else self.proj_v[:S_v]) # Compute the unnormalized attention and apply the masks QK = torch.einsum("bthe,bkhe->bhtk", query, key) # Compute the attention and the weighted average attn = torch.softmax(QK, dim=-1) A = self.dropout(attn) output = torch.einsum("bhtk,bkhd->bthd", A, value) return output, attn if need_weights else None
fly-master
src/models/attention/linformer_attention.py
# This is a copy of https://github.com/openai/triton/blob/master/python/triton/ops/blocksparse/matmul.py # with a one-line fix the bug https://github.com/openai/triton/issues/266 import triton import triton.language as tl import triton._C.libtriton as libtriton import torch @triton.jit def _kernel( A, B, C, stride_za, stride_ha, stride_ma, stride_ka, stride_zb, stride_hb, stride_kb, stride_nb, stride_zc, stride_hc, stride_mc, stride_nc, DS0, DS1, SDD_K, SDD_off_width, lut, locks, nlocks, **meta ): TM = meta['TM'] TN = meta['TN'] TK = meta['TK'] TZ = meta['TZ'] BLOCK = meta['BLOCK'] #------------# #- Prologue -# #------------# pid0 = tl.program_id(0) pid1 = tl.program_id(1) pidz = tl.program_id(2) if meta['SDD']: pid1 = pid1 + SDD_off_width blockidm = tl.arange(0, TM) // BLOCK blockidn = tl.arange(0, TN) // BLOCK offlutm = blockidm * (TN // BLOCK) * 4 offlutn = blockidn * 4 header = lut + pid1 * (TM // BLOCK) * (TN // BLOCK) * 4 z = tl.load(header + 0) i = tl.load(header + 1 + offlutm) j = tl.load(header + 2 + offlutn) AS1 = SDD_K // TZ lockid = tl.where(TZ > 1, 1, 0) offka = pid0 * AS1 offkb = pid0 * AS1 offmc = 0 offnc = 0 offpa = 0 offpb = 0 maxid = TZ offhc = 0 offha = z offhb = z ram = i * BLOCK + (tl.arange(0, TM) % BLOCK) rbn = j * BLOCK + (tl.arange(0, TN) % BLOCK) else: header = lut + pid0 * 6 offset = tl.load(header + 0) AS1 = tl.load(header + 1) column = tl.load(header + 2) depth = tl.load(header + 3) lockid = tl.load(header + 4) maxid = tl.load(header + 5) pinc = lut + offset offhc = depth if meta['DSD']: # output offset offnc = pid1 * TN offmc = column * TM offpc = 0 # dense input offset offnb = pid1 * TN offkb = tl.load(pinc) offkb = tl.multiple_of(offkb, 8) # compiler hint offpb = 0 # sparse input offset offma = 0 offka = 0 offpa = tl.load(pinc + 1) offpa = tl.multiple_of(offpa, 8) # compiler hint offpa = offpa * BLOCK * BLOCK offha = 0 offhb = depth else: # output offset offmc = pid1 * TM offnc = column * TN offpc = 0 # dense input offset offma = pid1 * TM offka = tl.load(pinc) offka = tl.multiple_of(offka, 8) # compiler hint offpa = 0 # sparse input offset offnb = 0 offkb = 0 offpb = tl.load(pinc + 1) offpb = tl.multiple_of(offpb, 8) # compiler hint offpb = offpb * BLOCK * BLOCK offha = depth offhb = 0 ram = offma + tl.arange(0, TM) rbn = offnb + tl.arange(0, TN) # initialize a, b pointers rka = offka + tl.arange(0, TK) rkb = offkb + tl.arange(0, TK) pa = A + pidz * stride_za + offha * stride_ha + offpa + ram[:, None] * stride_ma + rka[None, :] * stride_ka pb = B + pidz * stride_zb + offhb * stride_hb + offpb + rbn[None, :] * stride_nb + rkb[:, None] * stride_kb if meta['DDS']: checkam = ram[:, None] < DS0 else: checkam = AS1 > 0 if meta['DSD']: checkbn = rbn[None, :] < DS0 else: checkbn = AS1 > 0 a = tl.load(pa, mask=checkam, other=0.) b = tl.load(pb, mask=checkbn, other=0.) ## ---------------- ## ## Inner Loop ## ## ---------------- ## acc = tl.zeros((TM, TN), dtype=tl.float32) for k in range(AS1, 0, -TK): acc += tl.dot(a, b) if meta['SDD']: inc_a = TK * stride_ka inc_b = TK * stride_kb else: pinc += 2 if meta['DSD']: inc_b = tl.load(pinc) inc_a = tl.load(pinc + 1) inc_b = tl.multiple_of(inc_b, 8) inc_a = tl.multiple_of(inc_a, 8) inc_b = inc_b * stride_kb if meta['DDS']: inc_a = tl.load(pinc) inc_b = tl.load(pinc + 1) inc_a = tl.multiple_of(inc_a, 8) inc_b = tl.multiple_of(inc_b, 8) inc_a = inc_a * stride_ka pa += inc_a pb += inc_b # pre-fetch checkak = k > TK checkbk = k > TK checka = checkam & checkak checkb = checkbn & checkbk a = tl.load(pa, mask=checka) b = tl.load(pb, mask=checkb) c = acc.to(C.dtype.element_ty) if meta['SDD']: checkc = True rr_blockidm = tl.arange(0, TM) // BLOCK rr_blockidn = tl.arange(0, TN) // BLOCK rr_offlutm = rr_blockidm * (TN // BLOCK) * 4 rr_offlutn = rr_blockidn * 4 off_bkid = 3 + rr_offlutm[:, None] + rr_offlutn[None, :] bkid = tl.load(header + off_bkid) offpc = bkid * BLOCK * BLOCK rcm = tl.arange(0, TM) % BLOCK rcn = tl.arange(0, TN) % BLOCK else: rcm = offmc + tl.arange(0, TM) rcn = offnc + tl.arange(0, TN) if meta['DSD']: checkc = rcn[None, :] < DS0 if meta['DDS']: checkc = rcm[:, None] < DS0 pc = C + offpc + offhc * stride_hc + pidz * stride_zc + rcm[:, None] * stride_mc + rcn[None, :] * stride_nc # write-back directly if lockid == 0: tl.store(pc, c, mask=checkc) # accumulate partial results using spin-locks else: plock = locks + tl.program_id(2) * nlocks * tl.num_programs(1) + tl.program_id(1) * nlocks + lockid - 1 pcount = plock + tl.num_programs(2) * tl.num_programs(1) * nlocks while tl.atomic_cas(plock, 0, 1) == 1: pass count = tl.load(pcount) if count == 0: tl.store(pc, c, mask=checkc) else: d = tl.load(pc, mask=checkc) tl.store(pc, d + c, mask=checkc) tl.atomic_xchg(pcount, (count + 1) % maxid) tl.atomic_xchg(plock, 0) ############## # MAIN API # ############## class _matmul(torch.autograd.Function): sdd_cache = dict() dsd_cache = dict() dds_cache = dict() locks = dict() # Given an array sizes representing reduction size for each # column of a block-mode matrix multiplication, # performs load-balancing to achieve more smaller reductions # between `seg_size` elements @staticmethod def load_balance(sizes): # segment size # heuristics taken from OpenAI blocksparse code # https://github.com/openai/blocksparse/blob/master/blocksparse/matmul.py#L95 max_size = sizes.max() min_size = sizes[sizes != 0].min() #if max_size > min_size * 2.0: # seg_max = max(triton.cdiv(max_size, 4), min_size*2) #else: # seg_max = max_size seg_max = max_size seg_min = max(triton.cdiv(seg_max, 4), 4) # split reduction into segments div = sizes // seg_max rem = sizes % seg_max packs = div + (sizes < seg_min).long() + (rem >= seg_min).long() width = packs.sum() segments = torch.empty(width, dtype=sizes.dtype) column = torch.empty_like(segments) lockid = torch.zeros_like(segments) maxid = torch.zeros_like(segments) nlocks = 0 current = 0 col_idx = 0 for i in range(len(sizes)): d, r = div[i], rem[i] isempty = sizes[i] < seg_min last = current + d + (r >= seg_min) + isempty # column id column[current:last] = col_idx # lock id if d > 1 or (d == 1 and r >= seg_min): nlocks += 1 lockid[current:last] = nlocks maxid[current:last] = last - current # segment size segments[current:current + d] = seg_max if r < seg_min and not isempty: segments[current + d - 1] += r if r >= seg_min or isempty: segments[current + d] = r current = last col_idx += 1 offsets = torch.zeros_like(segments) offsets[1:] = torch.cumsum(segments[:-1], dim=0) return segments, column, lockid, maxid, offsets @staticmethod def get_locks(size, dev): if dev not in _matmul.locks or \ size > _matmul.locks[dev].size(0): _matmul.locks[dev] = torch.zeros(size, dtype=torch.int32, device=dev) return _matmul.locks[dev] ########################## # SPARSE = DENSE x DENSE # ########################## @staticmethod def make_sdd_lut(layout, block, device): # start_width = 128 // block # [2021-09-23] TD: This seems to produce the wrong shape for certain cases start_width = 1 layout = layout.type(torch.int32) superblocks = libtriton.superblock(layout.data_ptr(), layout.shape[0], layout.shape[1], layout.shape[2], start_width) luts, widths, packs = [], [], [] for size, nnz in superblocks: nnz = nnz.reshape(-1, 4) width = nnz.shape[0] // (size * size) luts.append(torch.from_numpy(nnz).type(torch.int32).to(device)) widths.append(width) packs.append(size) # create locks return luts, None, widths, packs @staticmethod def _sdd_matmul(a, b, trans_a, trans_b, trans_c, spdims, block, luts, num_locks, widths, packs): # (A * B)^T = (B^T * A^T) if trans_c: a, b = b, a trans_a, trans_b = not trans_b, not trans_a # Shape check a_dim = -2 if trans_a else -1 b_dim = -1 if trans_b else -2 a_inner, b_inner = a.shape[a_dim], b.shape[b_dim] if a_inner != b_inner: raise ValueError(f"Size of tensor A along the {_dim_to_name(a_dim)} dim ({a_inner}) must match size " f"of tensor B along the {_dim_to_name(b_dim)} dim ({b_inner})") if a_inner % 16 != 0: raise ValueError('Reduction size for SDD must be a multiple of 16') batch_size = a.size(0) a_outer = a.size(3 if trans_a else 2) dtype = a.dtype device = a.device # create kernel total_width = sum([width * pack * pack for width, pack in zip(widths, packs)]) c = torch.zeros((batch_size, total_width, block, block), dtype=dtype, device=device) for lut, width, pack in zip(luts, widths, packs): num_lock = 1 # [2021-09-06] TD: This line is the fix for the bug where the result is wrong if # block == 16 and the inner dimension is an odd multiple of 16. # https://github.com/openai/triton/issues/266 TK = 16 if block == 16 and (a_inner // 16) % 2 == 1 else 32 meta = {'TM': block * pack, 'TN': block * pack, 'BLOCK': block, 'TK': TK, 'TZ': 1, 'SDD': True, 'DSD': False, 'DDS': False} # create output locks = _matmul.get_locks(2 * width * batch_size * num_lock, a.device) # maximum grid size is 65535 # so operation might be decomposed into multiple # kernel calls max_width = 49152 for off_width in range(0, width, max_width): grid = lambda meta: [meta['TZ'], min(max_width, width - off_width), batch_size] _kernel[grid]( a, b, c, a.stride(0), a.stride(1), a.stride(3 if trans_a else 2), a.stride(2 if trans_a else 3), b.stride(0), b.stride(1), b.stride(3 if trans_b else 2), b.stride(2 if trans_b else 3), c.stride(0), c.stride(0), c.stride(2), c.stride(3), a_outer, a_outer, a_inner, off_width, lut, locks, num_lock, num_warps=4, **meta ) # save for backward pass return c ########################## # DENSE = DENSE x SPARSE # # DENSE = SPARSE x DENSE # ########################## # Given a binary layout of 0s and 1s, # Construct look-up table for efficient execution on GPUs @staticmethod def make_dxx_lut(layout, block, step, trans, device, transform=lambda idx: idx): # load-balancing _empty = torch.tensor([], dtype=torch.int64, device=layout.device) segments = _empty.clone() column = _empty.clone() depth = _empty.clone() lockid = _empty.clone() maxid = _empty.clone() offsets = _empty.clone() current_offset = 0 current_maxid = 0 for z in range(layout.size(0)): if trans: sizes = torch.sum(layout[z, :, :], 1) else: sizes = torch.sum(layout[z, :, :], 0) z_segments, z_column, z_lockid, z_maxid, z_offsets = _matmul.load_balance(sizes) z_depth = z * torch.ones_like(z_segments) z_lockid[z_lockid > 0] += current_maxid current_maxid = z_lockid.max() # concatenate depth segments = torch.cat((segments, z_segments)) column = torch.cat((column, z_column)) depth = torch.cat((depth, z_depth)) maxid = torch.cat((maxid, z_maxid)) offsets = torch.cat((offsets, current_offset + z_offsets)) lockid = torch.cat((lockid, z_lockid)) current_offset += layout[z, :, :].sum() segments *= step # pointer increments if trans: nnz = layout.nonzero(as_tuple=False) else: nnz = layout.transpose(1, 2).nonzero(as_tuple=False) num_blocks = nnz.size(0) offsets = torch.min(offsets, (num_blocks - 1) * torch.ones_like(offsets)) idx = transform(nnz[:, 2] * block) xincs = idx.clone() xincs[1:] -= idx[:-1] # divide block into multiple steps div = block // step xincs = xincs.view(-1, 1).repeat(1, div) xincs[:, 1:] = step xincs[:, 0] -= (div - 1) * step # first increment for each reduction is actually the offset xincs[offsets[segments > 0], 0] = idx[offsets[segments > 0]] xincs = xincs.view(-1) # block-mode input increments if trans: widx = torch.arange(num_blocks) else: widx = _empty.clone() current_offset = 0 for z in range(layout.size(0)): layoutw = layout[z, :, :].clone() msum = layoutw.sum() layoutw[layoutw > 0] = 1 + torch.arange(msum) widx = torch.cat((widx, current_offset + layoutw.T[layoutw.T > 0] - 1)) current_offset += msum widx = widx wincs = widx * block * block wincs[1:] -= widx[:-1] * block * block wincs = wincs.view(-1, 1).repeat(1, div) if trans: wincs[:, 1:] = step wincs[:, 0] -= (div - 1) * step else: wincs[:, 1:] = step * block wincs[:, 0] -= (div - 1) * step * block wincs[offsets[segments > 0], 0] = widx[offsets[segments > 0]] wincs = wincs.view(-1) # adjust offset and segment size offsets *= 2 * div segments *= div # create header width = column.size(0) offsets += 6 * width header = torch.stack((offsets, segments, column, depth, lockid, maxid), dim=1).view(-1).contiguous() incs = torch.stack((xincs, wincs), dim=1).view(-1).contiguous() incs = torch.cat((incs, torch.zeros(2, device=incs.device, dtype=incs.dtype))) # create lut lut = torch.cat((header, incs)) lut = lut.type(torch.int32).to(device) # create locks num_locks = max(1, lockid.max()) return lut, num_locks, width, None @staticmethod def _dds_matmul(a, b, trans_a, trans_b, trans_c, spdims, block, lut, num_locks, width, packs): # shapes / dtypes AS0 = a.size(0) AS1 = a.size(1) AS2 = a.size(3 if trans_a else 2) BS2 = block * spdims[1 if trans_b else 2] dtype = a.dtype # kernel meta = {'TN': block, 'TM': 128, 'TK': 16, 'BLOCK': block, 'TZ': 1, 'SDD': False, 'DSD': False, 'DDS': True} # output CS0 = AS0 CS1 = AS1 CS2 = BS2 if trans_c else AS2 CS3 = AS2 if trans_c else BS2 locks = _matmul.get_locks(2 * AS0 * AS2 // 32 * num_locks, a.device) c = torch.empty((CS0, CS1, CS2, CS3), dtype=dtype, device=a.device) grid = lambda meta: [width, triton.cdiv(AS2, meta['TM']), AS0] _kernel[grid]( a, b, c, a.stride(0), a.stride(1), a.stride(3 if trans_a else 2), a.stride(2 if trans_a else 3), b.stride(0), b.stride(1), b.stride(3 if trans_b else 2), b.stride(2 if trans_b else 3), c.stride(0), c.stride(1), c.stride(3 if trans_c else 2), c.stride(2 if trans_c else 3), AS2, BS2, 0, 0, lut, locks, num_locks, num_warps=4, **meta ) return c @staticmethod def _dsd_matmul(a, b, trans_a, trans_b, trans_c, spdims, block, lut, num_locks, width, packs): # shapes / dtypes AS1 = block * spdims[2 if trans_a else 1] BS0 = b.size(0) BS1 = b.size(1) BS3 = b.size(2 if trans_b else 3) dtype = a.dtype # kernel meta = {'TM': block, 'TN': 128, 'TK': 16, 'BLOCK': block, 'TZ': 1, 'SDD': False, 'DSD': True, 'DDS': False} # output CS0 = BS0 CS1 = BS1 CS2 = BS3 if trans_c else AS1 CS3 = AS1 if trans_c else BS3 locks = _matmul.get_locks(2 * BS0 * BS3 // 32 * num_locks, a.device) c = torch.empty((CS0, CS1, CS2, CS3), dtype=dtype, device=a.device) grid = lambda meta: [width, triton.cdiv(BS3, meta['TN']), BS0] _kernel[grid]( a, b, c, a.stride(0), a.stride(1), a.stride(3 if trans_a else 2), a.stride(2 if trans_a else 3), b.stride(0), b.stride(1), b.stride(3 if trans_b else 2), b.stride(2 if trans_b else 3), c.stride(0), c.stride(1), c.stride(3 if trans_c else 2), c.stride(2 if trans_c else 3), BS3, AS1, 0, 0, lut, locks, num_locks, num_warps=4, **meta ) return c fn = {'sdd': _sdd_matmul.__get__(object), 'dsd': _dsd_matmul.__get__(object), 'dds': _dds_matmul.__get__(object)} @staticmethod def forward( ctx, a, b, trans_a, trans_b, trans_c, mode, spdims, block, c_lut, c_num_locks, c_width, c_packs, da_lut, da_num_locks, da_width, da_packs, db_lut, db_num_locks, db_width, db_packs ): c = _matmul.fn[mode](a, b, trans_a, trans_b, trans_c, spdims, block, c_lut, c_num_locks, c_width, c_packs) # save for backward ctx.save_for_backward(a, b) ctx.da_num_locks = da_num_locks ctx.da_lut = da_lut ctx.da_width = da_width ctx.da_packs = da_packs ctx.db_lut = db_lut ctx.db_num_locks = db_num_locks ctx.db_width = db_width ctx.db_packs = db_packs ctx.mode = mode ctx.spdims = spdims ctx.block = block ctx.trans_a = trans_a ctx.trans_b = trans_b return c @staticmethod def backward(ctx, dc): # saved for backward a, b = ctx.saved_tensors da, db = None, None mode = ctx.mode # gradients w.r.t. a if ctx.needs_input_grad[0]: mode_da = mode[1] + mode[0] + mode[2] da = _matmul.fn[mode_da]( dc, b, False, not ctx.trans_b, ctx.trans_a, ctx.spdims, ctx.block, ctx.da_lut, ctx.da_num_locks, ctx.da_width, ctx.da_packs ) # gradients w.r.t. b if ctx.needs_input_grad[1]: mode_db = mode[2] + mode[1] + mode[0] db = _matmul.fn[mode_db]( a, dc, not ctx.trans_a, False, ctx.trans_b, ctx.spdims, ctx.block, ctx.db_lut, ctx.db_num_locks, ctx.db_width, ctx.db_packs ) return da, db, None, None, None,\ None, None, None, None,\ None, None, None, None, None, None,\ None, None, None, None, None, None,\ None, None, None, None, None, None class matmul: def make_lut(self, dtype, device): key = (dtype, device) if key in self.lut_cache: return self.lut_cache[key] # C look-up table layout, block = self.layout, self.block step = 16 if self.mode == 'sdd': c_lut, c_num_locks, c_width, c_packs = _matmul.make_sdd_lut(layout, block, device) elif self.mode == 'dsd': c_lut, c_num_locks, c_width, c_packs = _matmul.make_dxx_lut(layout, block, step, not self.trans_a, device) elif self.mode == 'dds': c_lut, c_num_locks, c_width, c_packs = _matmul.make_dxx_lut(layout, block, step, self.trans_b, device) # DA look-up table if self.mode == 'sdd': da_lut, da_num_locks, da_width, da_packs = _matmul.make_dxx_lut(layout, block, step, True, device) elif self.mode == 'dsd': da_lut, da_num_locks, da_width, da_packs = _matmul.make_sdd_lut(layout, block, device) elif self.mode == 'dds': da_lut, da_num_locks, da_width, da_packs = _matmul.make_dxx_lut(layout, block, step, not self.trans_b, device) # DB look-up table if self.mode == 'sdd': db_lut, db_num_locks, db_width, db_packs = _matmul.make_dxx_lut(layout, block, step, False, device) elif self.mode == 'dsd': db_lut, db_num_locks, db_width, db_packs = _matmul.make_dxx_lut(layout, block, step, self.trans_a, device) elif self.mode == 'dds': db_lut, db_num_locks, db_width, db_packs = _matmul.make_sdd_lut(layout, block, device) self.lut_cache[key] = (c_lut, c_num_locks, c_width, c_packs, da_lut, da_num_locks, da_width, da_packs, db_lut, db_num_locks, db_width, db_packs) return self.lut_cache[key] def __init__(self, layout, block, mode, trans_a=False, trans_b=False): if mode not in ['sdd', 'dsd', 'dds']: raise NotImplementedError('Supported modes are: sdd, dsd, dds') # look-up table cache self.lut_cache = dict() # attributes self.block = block self.mode = mode self.trans_a = trans_a self.trans_b = trans_b layout_dim = layout.ndim assert layout_dim in (2, 3), "Layout should be a 2 or 3 dimensional tensor of 0s and 1s" if not mode == 'sdd': # Dims to be reduced on the 'inside' of the matmul, either -1 or -2 trans_dense, trans_sparse, sparse_inner = (trans_b, trans_a, -1) if mode == 'dsd' else (trans_a, trans_b, -2) self.dense_inner_dim = -((sparse_inner % 2) + 1) if not trans_dense else sparse_inner sparse_inner = sparse_inner if not trans_sparse else -((sparse_inner % 2) + 1) # Inner dim of the dense input should be equal to the inner dim of the sparse input self.dense_inner_size = layout.shape[sparse_inner] * block # Expected shape for sparse inputs self.sparse_shape = (layout.sum().item(), block, block) # Support using the same layout across attention heads etc. if layout_dim == 2: layout = layout.unsqueeze(0) layout = layout.long() # Above code assumes the layout tensor is an integral type self.layout = layout self.spdims = layout.shape def __call__(self, a, b): c_lut, c_num_locks, c_width, c_packs,\ da_lut, da_num_locks, da_width, da_packs,\ db_lut, db_num_locks, db_width, db_packs = self.make_lut(a.dtype, a.device) # If we don't check for invalid shapes, devices, & dtypes here, they will lead to undefined behavior # and potential illegal memory accesses original_dims = max(a.ndim, b.ndim) a, b = self._validate_inputs(a, b) # execute c = _matmul.apply( a, b, self.trans_a, self.trans_b, False, self.mode, self.spdims, self.block, c_lut, c_num_locks, c_width, c_packs, da_lut, da_num_locks, da_width, da_packs, db_lut, db_num_locks, db_width, db_packs ) # This removes any leading singleton dimensions we may have added to the tensor that weren't in the input dims_to_trim = c.ndim - original_dims for _ in range(dims_to_trim): c = c.squeeze(0) return c def _validate_inputs(self, a, b): if a.device != b.device: raise ValueError(f"Inputs must be on the same device; got {a.device} for tensor A " f"and {b.device} for tensor B") if not a.is_cuda: raise ValueError("Only GPU devices are supported for now") # When autocast is enabled, torch.matmul autocasts to float16, so we do the same here if torch.is_autocast_enabled(): a, b = a.half(), b.half() elif a.dtype != b.dtype: raise ValueError(f"Inputs must be the same dtype; got {a.dtype} for A and {b.dtype} for B") mode, trans_a, trans_b = self.mode, self.trans_a, self.trans_b if mode != 'sdd': # One input is sparse dense, dense_name, sparse, sparse_name = (a, 'A', b, 'B') if mode == 'dds' else (b, 'B', a, 'A') dense_inner = dense.shape[self.dense_inner_dim] if dense_inner != self.dense_inner_size: raise ValueError(f"Expected tensor {dense_name} to have size {self.dense_inner_size} at dim " f"{self.dense_inner_dim % dense.ndim}, got {dense_inner}.") if sparse.shape[-len(self.sparse_shape):] != self.sparse_shape: raise ValueError(f"Expected tensor with trailing dimensions of shape {self.sparse_shape} for argument " f"{sparse_name}, got {sparse.shape}") def add_extra_dims(x): # Add extra leading singleton dimensions if needed dims_needed = 4 - x.ndim if dims_needed > 0: singletons = [1] * dims_needed x = x.view(*singletons, *x.shape) elif dims_needed < 0: raise ValueError("Tensors with more than 4 dimensions are not currently supported") return x # Pad shapes with leading singleton dimensions a = add_extra_dims(a) b = add_extra_dims(b) return a, b def _dim_to_name(x): # assert x in (-1, -2) return "last" if x == -1 else "second to last"
fly-master
src/models/attention/blocksparse_matmul.py