python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from interactivity import INTERACTIVE, try_magic, try_cd try_cd('~/dev/drawmodel/nkcodraw') #%% assert __name__ == "__main__", "Training script should not be imported!" #%% import numpy as np from pathlib import Path import torch import torch.cuda import torch.nn as nn import torch.nn.functional as F from nkfb_util import logsumexp, cuda_if_available import codraw_data from codraw_data import AbstractScene, Clipart import abs_render from abs_metric import scene_similarity, clipart_similarity from episode import Episode, Transcriber, respond_to import model from model import make_fns, eval_fns from model import Model from baseline2_models import load_baseline2 from datagen import SceneToSeqData from baseline3_models import SceneToSeqTeller # %% # scenes_and_scripts_dev = codraw_data.get_scenes_and_scripts('dev') # transcribe = Transcriber( # 'baseline3_train.py' if INTERACTIVE else __file__, # scenes_and_scripts=scenes_and_scripts_dev[::110], # scenes_description="scenes_and_scripts_dev[::110]") # %% models_baseline2 = load_baseline2() # %% drawer_lstmaddonly_a = models_baseline2['drawer_lstmaddonly_a'] drawer_lstmaddonly_b = models_baseline2['drawer_lstmaddonly_b'] # %% data_scene2seq_a = SceneToSeqData('a') data_scene2seq_b = SceneToSeqData('b') # %% def train_teller(split, teller_pair, num_epochs=50, limit=100): splits_pair = split + 'a', split + 'b' if split == 'a': teller = teller_pair[0] elif split == 'b': teller = teller_pair[1] else: assert False optimizer = torch.optim.Adam(teller.parameters()) print('perplexity-dev', model.calc_perplexity(teller)) print('perplexity-a', model.calc_perplexity(teller, 'a')) print('avg-loss-dev', teller.calc_split_loss()) print('avg-loss-a', teller.calc_split_loss('a')) for epoch in range(num_epochs): teller.train() for num, ex in enumerate(teller.datagen.get_examples_batch()): optimizer.zero_grad() loss = teller(ex) loss.backward() optimizer.step() print(f'Done epoch {epoch} loss {float(loss)}') if epoch % 5 == 0: del ex, loss # clean up memory print('perplexity-dev', model.calc_perplexity(teller)) print('perplexity-a', model.calc_perplexity(teller, 'a')) print('avg-loss-dev', teller.calc_split_loss()) print('avg-loss-a', teller.calc_split_loss('a')) for splits in splits_pair: sims = eval_fns(make_fns(splits, teller_pair, (drawer_lstmaddonly_a, drawer_lstmaddonly_b)), limit=limit) print(splits, sims.mean()) # %% teller_scene2seq_a = SceneToSeqTeller(data_scene2seq_a, prediction_loss_scale=0) teller_scene2seq_b = SceneToSeqTeller(data_scene2seq_b, prediction_loss_scale=0) train_teller('a', (teller_scene2seq_a, teller_scene2seq_b)) train_teller('b', (teller_scene2seq_a, teller_scene2seq_b)) # %% scene2seq with intermediate supervision for all clipart ids teller_scene2seq_aux_a = SceneToSeqTeller(data_scene2seq_a) teller_scene2seq_aux_b = SceneToSeqTeller(data_scene2seq_b) train_teller('a', (teller_scene2seq_aux_a, teller_scene2seq_aux_b)) train_teller('b', (teller_scene2seq_aux_a, teller_scene2seq_aux_b)) # %% scene2seq with intermediate supervision only for present cliparts teller_scene2seq_aux2_a = SceneToSeqTeller(data_scene2seq_a, predict_for_full_library=False, prediction_loss_scale=6.) teller_scene2seq_aux2_b = SceneToSeqTeller(data_scene2seq_b, predict_for_full_library=False, prediction_loss_scale=6.) train_teller('a', (teller_scene2seq_aux2_a, teller_scene2seq_aux2_b), num_epochs=40) train_teller('b', (teller_scene2seq_aux2_a, teller_scene2seq_aux2_b), num_epochs=40) # %% scene2seq_specs = dict( teller_scene2seq_a = teller_scene2seq_a.spec, teller_scene2seq_b = teller_scene2seq_b.spec, teller_scene2seq_aux_a = teller_scene2seq_aux_a.spec, teller_scene2seq_aux_b = teller_scene2seq_aux_b.spec, teller_scene2seq_aux2_a = teller_scene2seq_aux2_a.spec, teller_scene2seq_aux2_b = teller_scene2seq_aux2_b.spec, ) # %% print() print() print("Saving models") torch.save(scene2seq_specs, Path('models/scene2seq.pt')) # %% print() print("Final evaluation on full dev set (scene2seq)") for splits in ('aa', 'ab', 'ba', 'bb'): sims = eval_fns(make_fns(splits, (teller_scene2seq_a, teller_scene2seq_b), (drawer_lstmaddonly_a, drawer_lstmaddonly_b)), limit=None) print(splits, sims.mean()) print("Final evaluation on full dev set (scene2seq_aux)") for splits in ('aa', 'ab', 'ba', 'bb'): sims = eval_fns(make_fns(splits, (teller_scene2seq_aux_a, teller_scene2seq_aux_b), (drawer_lstmaddonly_a, drawer_lstmaddonly_b)), limit=None) print(splits, sims.mean()) print("Final evaluation on full dev set (scene2seq_aux2)") for splits in ('aa', 'ab', 'ba', 'bb'): sims = eval_fns(make_fns(splits, (teller_scene2seq_aux2_a, teller_scene2seq_aux2_b), (drawer_lstmaddonly_a, drawer_lstmaddonly_b)), limit=None) print(splits, sims.mean())
codraw-models-master
baseline3_train.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from interactivity import INTERACTIVE, try_magic, try_cd try_cd('~/dev/drawmodel/nkcodraw') #%% import numpy as np from pathlib import Path import editdistance import torch import torch.cuda import torch.nn as nn import torch.nn.functional as F from nkfb_util import logsumexp, cuda_if_available import codraw_data from codraw_data import AbstractScene, Clipart import abs_render from abs_metric import scene_similarity, clipart_similarity from episode import Episode, Transcriber, respond_to, response_partial import model from model import make_fns, eval_fns from saved_models import load_models, make_pairs # %% def print_human(limit=None, split='dev'): human_sims = np.array([ scene_similarity(human_scene, true_scene) for true_scene, human_scene in codraw_data.get_truth_and_human_scenes('test')[:limit] ]) print(f"Human scene similarity [{split}]: mean={human_sims.mean():.2f} std={human_sims.std():.2f} median={np.median(human_sims):.2f}") # %% def print_pairwise(tellers, drawers, teller_splits='ab', drawer_splits='ab', limit=None, split='dev'): print(f"Teller \t Drawer \t Scene similarity [{split}]") for splits_group in [('ab', 'ba'), ('aa', 'bb')]: for teller_name, teller_pair in tellers: for drawer_name, drawer_pair in drawers: for splits in splits_group: if splits[0] not in teller_splits or splits[1] not in drawer_splits: continue sims = eval_fns(make_fns(splits, teller_pair, drawer_pair), limit=limit, split=split) teller_caption = f"{teller_name}_{splits[0]}" drawer_caption = f"{drawer_name}_{splits[1]}" print(f"{teller_caption:17s}\t {drawer_caption:17s}\t {sims.mean():.2f}") print() # %% def print_script(drawers, drawer_splits='ab', limit=None, split='dev'): print("Drawer evaluations against script") print(f"Drawer \t Scene similarity [{split}]") for drawer_name, drawer_pair in drawers: for drawer_split in drawer_splits: sims = eval_fns(make_fns(drawer_split, model.scripted_tell, drawer_pair), limit=limit, split=split) drawer_caption = f"{drawer_name}_{drawer_split}" print(f"{drawer_caption:17s}\t {sims.mean():.2f}") # %% component_evaluator = model.ComponentEvaluator.get() # %% def print_components_pairwise(tellers, drawers, teller_splits='ab', drawer_splits='ab', limit=None, split='dev'): print(f"Component evaluations [{split}]") print("Teller \t Drawer \t Dir \t Expr(human)\t Pose(human)\t Depth \t xy (sq.)\t x-only \t y-only") for splits_group in [('ab', 'ba'), ('aa', 'bb')]: for teller_name, teller_pair in tellers: for drawer_name, drawer_pair in drawers: for splits in splits_group: if splits[0] not in teller_splits or splits[1] not in drawer_splits: continue components = component_evaluator.eval_fns(make_fns(splits, teller_pair, drawer_pair), limit=limit, split=split) teller_caption = f"{teller_name}_{splits[0]}" drawer_caption = f"{drawer_name}_{splits[1]}" print(f"{teller_caption:17s}\t {drawer_caption:17s}\t", "\t".join(f"{num: .6f}" for num in components)) print() def print_components_script(drawers, drawer_splits='ab', limit=None, split='dev'): print(f"Drawer evaluations against script [{split}]") print("Drawer \t Dir \t Expr(human)\t Pose(human)\t Depth \t xy (sq.)\t x-only \t y-only") for drawer_name, drawer_pair in drawers: for drawer_split in drawer_splits: components = component_evaluator.eval_fns(make_fns(drawer_split, model.scripted_tell, drawer_pair), limit=limit, split=split) drawer_caption = f"{drawer_name}_{drawer_split}" print(f"{drawer_caption:17s}\t", "\t".join(f"{num: .6f}" for num in components)) # %% def print_eval( tellers=None, drawers=None, teller_splits='ab', drawer_splits='ab', limit=None, split='dev', do_all=False, do_human=False, do_pairwise=False, do_script=False, do_components_pairwise=False, do_components_script=False, ): if do_all: do_human = True do_pairwise = True do_script = True do_components_pairwise = True do_components_script = True print() if do_human: print_human(limit=limit, split=split) print() print() if do_pairwise: print_pairwise(tellers, drawers, teller_splits=teller_splits, drawer_splits=drawer_splits, limit=limit, split=split) print() print() if do_script: print_script(drawers, drawer_splits=drawer_splits, limit=limit, split=split) print() print() if do_components_pairwise: print_components_pairwise(tellers, drawers, teller_splits=teller_splits, drawer_splits=drawer_splits, limit=limit, split=split) print() print() if do_components_script: print_components_script(drawers, drawer_splits=drawer_splits, limit=limit, split=split) print() print() # %% if __name__ == '__main__': models = load_models() # %% if __name__ == '__main__': tellers = make_pairs(models, 'teller_nn', # 'teller_pragmaticnn', 'teller_scene2seq', 'teller_scene2seq_aux2', 'teller_rl', ) drawers_for_script = make_pairs(models, 'drawer_nn', # 'drawer_bowcanvas2bce', 'drawer_lstmaddonly', ) drawers_for_pairwise = make_pairs(models, 'drawer_lstmaddonly', ) limit=None split='test' print_eval(limit=limit, split=split, do_human=True) print_eval(tellers, drawers_for_pairwise, teller_splits='a', drawer_splits='b', limit=limit, split=split, do_pairwise=True) print_eval(tellers, drawers_for_script, teller_splits='a', drawer_splits='b', limit=limit, split=split, do_script=True) # %% # %% # %% # %% # %% # %%
codraw-models-master
eval_automatic.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from interactivity import INTERACTIVE, try_magic, try_cd try_cd('~/dev/drawmodel/nkcodraw') #%% import numpy as np from pathlib import Path import editdistance import torch import torch.cuda import torch.nn as nn import torch.nn.functional as F from nkfb_util import logsumexp, cuda_if_available import codraw_data from codraw_data import AbstractScene, Clipart import abs_render from abs_metric import scene_similarity, clipart_similarity from episode import Episode, Transcriber, respond_to, response_partial from baseline1_models import load_baseline1 from baseline2_models import load_baseline2 from baseline3_models import load_baseline3 import model from model import make_fns, eval_fns # %% compontent_evaluator = model.ComponentEvaluator.get() # %% models_baseline1 = load_baseline1() models_baseline2 = load_baseline2() models_baseline3 = load_baseline3() # %% tellers = [ # ('teller_nn', (models_baseline1['teller_nn_a'], models_baseline1['teller_nn_b'])), # ('teller_c2seq', (models_baseline1['teller_c2seq_a'], models_baseline1['teller_c2seq_b'])), # ('teller_pragmaticnn', (models_baseline2['teller_pragmaticnn_a'], models_baseline2['teller_pragmaticnn_b'])), ('teller_scene2seq', (models_baseline3['teller_scene2seq_a'], models_baseline3['teller_scene2seq_b'])), ('teller_scene2seq_aux', (models_baseline3['teller_scene2seq_aux_a'], models_baseline3['teller_scene2seq_aux_b'])), ('teller_scene2seq_aux2', (models_baseline3['teller_scene2seq_aux2_a'], models_baseline3['teller_scene2seq_aux2_b'])), ] drawers = [ # ('drawer_nn', (models_baseline1['drawer_nn_a'], models_baseline1['drawer_nn_b'])), # ('drawer_sim', (models_baseline1['drawer_sim_a'], models_baseline1['drawer_sim_b'])), # ('drawer_bow2c', (models_baseline1['drawer_bow2c_a'], models_baseline1['drawer_bow2c_b'])), # ('drawer_bow2bce', (models_baseline1['drawer_bow2bce_a'], models_baseline1['drawer_bow2bce_b'])), # ('drawer_bowcanvas2bce', (models_baseline1['drawer_bowcanvas2bce_a'], models_baseline1['drawer_bowcanvas2bce_b'])), ('drawer_lstmaddonly', (models_baseline2['drawer_lstmaddonly_a'], models_baseline2['drawer_lstmaddonly_b'])), ] # %% print() human_sims = np.array([ scene_similarity(human_scene, true_scene) for true_scene, human_scene in codraw_data.get_truth_and_human_scenes('dev') ]) print(f"Human scene similarity: mean={human_sims.mean():.6f} std={human_sims.std():.6f} median={np.median(human_sims):.6f}") # %% print() print() # %% limit = None print("Teller \t Drawer \t Scene similarity") for splits_group in [('ab', 'ba'), ('aa', 'bb')]: for teller_name, teller_pair in tellers: for drawer_name, drawer_pair in drawers: for splits in splits_group: sims = eval_fns(make_fns(splits, teller_pair, drawer_pair), limit=limit) teller_caption = f"{teller_name}_{splits[0]}" drawer_caption = f"{drawer_name}_{splits[1]}" print(f"{teller_caption:17s}\t {drawer_caption:17s}\t", sims.mean()) print() # %% print() print() # %% limit = None print("Drawer evaluations against script") print("Drawer \t Scene similarity") for drawer_name, drawer_pair in drawers: for split in ('a', 'b'): sims = eval_fns(make_fns(split, model.scripted_tell, drawer_pair), limit=limit) drawer_caption = f"{drawer_name}_{split}" print(f"{drawer_caption:17s}\t", sims.mean()) # %% print() print() # %% limit = None print("Teller \t Drawer \t Dir \t Expr(human)\t Pose(human)\t Depth \t xy (sq.)\t x-only \t y-only") for splits_group in [('ab', 'ba'), ('aa', 'bb')]: for teller_name, teller_pair in tellers: for drawer_name, drawer_pair in drawers: for splits in splits_group: components = compontent_evaluator.eval_fns(make_fns(splits, teller_pair, drawer_pair), limit=limit) teller_caption = f"{teller_name}_{splits[0]}" drawer_caption = f"{drawer_name}_{splits[1]}" print(f"{teller_caption:17s}\t {drawer_caption:17s}\t", "\t".join(f"{num: .6f}" for num in components)) print() # %% print() print() # %% limit = None print("Drawer evaluations against script") print("Drawer \t Dir \t Expr(human)\t Pose(human)\t Depth \t xy (sq.)\t x-only \t y-only") for drawer_name, drawer_pair in drawers: for split in ('a', 'b'): components = compontent_evaluator.eval_fns(make_fns(split, model.scripted_tell, drawer_pair), limit=limit) drawer_caption = f"{drawer_name}_{split}" print(f"{drawer_caption:17s}\t", "\t".join(f"{num: .6f}" for num in components))
codraw-models-master
baseline3_eval.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ Abstract Scene (abs) utilities copied from the original CoDraw codebase """ import math import torch from torch.autograd import Variable import math class AbsUtil: """AbsUtil ported from AbsUtil.js""" # Various variables setting up the appearence of the interface CANVAS_WIDTH = 500 CANVAS_HEIGHT = 400 NOT_USED = -10000 numClipArts = 58 numTypes = 8 numProps = 6 numClasses = [58,35,3,2,1,1] Null = 0 def __init__(self, str): # Each object type has its own prefix, the ordering of the object types affects the # order in which they are rendered. That is the "t" type (toys) will be rendered on top # of the "hb0" (boy) category assuming they have the same depth. self.prefix = ['s','p','hb0','hb1','a','c','e','t'] # Total number of clipart for each type self.typeTotalCt = [8,10,35,35,6,10,7,15] # Total number of clipart to be randomly selected for each type # The sum should equal numClipart self.typeCt = [3,4,5,5,2,3,2,4] self.str = str self.obj = self.preprocess(str) # Preprocess given CSV into 7Val format, which is # 1. clipartIdx integer [0-57] # ~~2. clipartType integer [0-7]~~ # 3. clipartSubType integer [0-34] # 4. depth integer [0-2] # 5. flip integer [0-1] # 6. x-position float [1-500] # 7. y-position float [1-400] def preprocess(self, str, verbose=False): idx = 1; val = []; if not str or len(str) < 1: return None results = str.split(',') numClipArts = int(results[0]) for i in range(numClipArts): v = list() idx = idx + 1 # png filename idx = idx + 1 # clip art local index _clipArtObjectIdx = int(results[idx]); idx = idx + 1 _clipArtTypeIdx = int(results[idx]); idx = idx + 1 # This code was originally used to read the dataset from Python _clipArtX = int(round(float(results[idx]))); idx = idx + 1 _clipArtY = int(round(float(results[idx]))); idx = idx + 1 # The javascript code, however, used parseInt instead. This has # slightly different rounding behavior, which can be recreated by # using the following Python code instead: # _clipArtX = float(results[idx]); idx = idx + 1 # _clipArtY = float(results[idx]); idx = idx + 1 # _clipArtX = int(math.floor(_clipArtX)) if _clipArtX >= 0 else -int(math.floor(-_clipArtX)) # _clipArtY = int(math.floor(_clipArtY)) if _clipArtY >= 0 else -int(math.floor(-_clipArtY)) _clipArtZ = int(results[idx]); idx = idx + 1 _clipArtFlip = int(results[idx]); idx = idx + 1 if not verbose and (_clipArtX==AbsUtil.NOT_USED or _clipArtY==AbsUtil.NOT_USED): continue v.append(self.getClipArtIdx(_clipArtObjectIdx, _clipArtTypeIdx)) # v.append(_clipArtTypeIdx); # remove this redundant feature v.append(_clipArtObjectIdx if (_clipArtTypeIdx==2 or _clipArtTypeIdx==3) else 0) v.append(_clipArtZ) v.append(_clipArtFlip) v.append(_clipArtX) v.append(_clipArtY) val.append(v) return val def asTensor(self): if None==self.obj: return None # notice that position (x & y) is rounded as LongTensor t = torch.LongTensor(AbsUtil.numClipArts, 6).fill_(AbsUtil.Null) # clipartIdx & clipartSubType are starting with 1 t[:,:2].add_(-1) for v in self.obj: clipartIdx = v[0] t[clipartIdx].copy_(torch.LongTensor(v)) t[:,:2].add_(1) return t def __repr__(self): return self.obj.__repr__() def getClipArtIdx(self, clipArtObjectIdx, clipArtTypeIdx): typeTotalPos = [0,8,18,19,20,26,36,43] offset = 0 if (clipArtTypeIdx==2 or clipArtTypeIdx==3) else clipArtObjectIdx return typeTotalPos[clipArtTypeIdx] + offset # Static methods ############################################################# # Sample clipart from idx(abs_d - abs_b)>0 # @param abs_b Tensor(bx58x6) # @param abs_d Tensor(bx58x6) # @output Tensor(bx6) # @output Tensor(bx58) @staticmethod def sample_abs_c(abs_b, abs_d): # using Tensors directly abs_b = abs_b.data abs_d = abs_d.data # bx58 abs_c_mask = (abs_d - abs_b).abs().sum(2)!=0 # updated cliparts # bx58x6 mask = abs_c_mask.unsqueeze(2).expand_as(abs_d) # collapsed x 6 abs_c = abs_d[mask.byte()].view(-1, abs_d.size(-1)) return abs_c, abs_c_mask # Get abs_c mask, if `r_mask` is given, masked over it. # @param abs_b (long, bx58x6): latest drawn scene before prev teller's message # @param abs_d (long, bx58x6): latest drawn scene before next teller's message # @param r_mask (byte, optional, b) # #output c_mask (byte, b): batch mask whether drawn scene is changed or not @staticmethod def get_c_mask(abs_b, abs_d, r_mask=None): if Variable==type(r_mask): r_mask = r_mask.data _, abs_c_mask = AbsUtil.sample_abs_c(abs_b, abs_d) # _, bx58 c_mask = abs_c_mask.sum(1).byte()>0 if r_mask is not None: c_mask = c_mask.mul(r_mask) return c_mask
codraw-models-master
abs_util_orig.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from interactivity import INTERACTIVE, try_magic, try_cd try_cd('~/dev/drawmodel/nkcodraw') #%% import numpy as np from pathlib import Path import editdistance import torch import torch.cuda import torch.nn as nn import torch.nn.functional as F from nkfb_util import logsumexp, cuda_if_available import codraw_data from codraw_data import AbstractScene, Clipart import abs_render from abs_metric import scene_similarity, clipart_similarity from episode import Episode, respond_to, response_partial from datagen import NearestNeighborData, MessageSimilarityData, BOWtoClipartData, ClipartToSeqData, BOWplusCanvasToMultiData from model import Model, select_clipart_to_tell, drawer_observe_canvas, make_fns, eval_fns from model import scripted_tell, scripted_tell_before_peek, scripted_tell_after_peek, draw_nothing from baseline1_models import load_baseline1 # %% models = load_baseline1() # %% tellers = [ ('teller_nn', (models['teller_nn_a'], models['teller_nn_b'])), ('teller_c2seq', (models['teller_c2seq_a'], models['teller_c2seq_b'])), ] drawers = [ ('drawer_nn', (models['drawer_nn_a'], models['drawer_nn_b'])), ('drawer_sim', (models['drawer_sim_a'], models['drawer_sim_b'])), ('drawer_bow2c', (models['drawer_bow2c_a'], models['drawer_bow2c_b'])), ('drawer_bow2bce', (models['drawer_bow2bce_a'], models['drawer_bow2bce_b'])), ('drawer_bowcanvas2bce', (models['drawer_bowcanvas2bce_a'], models['drawer_bowcanvas2bce_b'])), ] # %% limit = None print("Drawer evaluations against script") for drawer_name, drawer_pair in drawers: for split in ('a', 'b'): sims = eval_fns(make_fns(split, scripted_tell, drawer_pair), limit=limit) print(f"{drawer_name}_{split}", sims.mean()) # %% limit = None print("Drawer evaluations against script before peek") for drawer_name, drawer_pair in drawers: for split in ('a', 'b'): sims = eval_fns(make_fns(split, scripted_tell_before_peek, drawer_pair), limit=limit) print(f"{drawer_name}_{split}", sims.mean()) # %% limit = None print("Drawer evaluations against script after peek") sims = eval_fns(make_fns('', scripted_tell_after_peek, draw_nothing), limit=limit) print("draw_nothing", sims.mean()) for drawer_name, drawer_pair in drawers: for split in ('a', 'b'): sims = eval_fns(make_fns(split, scripted_tell_after_peek, drawer_pair), limit=limit) print(f"{drawer_name}_{split}", sims.mean()) # %% limit = None print("Teller/Drawer pair evaluations") for teller_name, teller_pair in tellers: for drawer_name, drawer_pair in drawers: for splits in ('aa', 'ab', 'ba', 'bb'): sims = eval_fns(make_fns(splits, teller_pair, drawer_pair), limit=limit) print(f"{teller_name}_{splits[0]} {drawer_name}_{splits[1]}", sims.mean())
codraw-models-master
baseline1_eval.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. try: get_ipython() INTERACTIVE=True except: INTERACTIVE=False def try_magic(*args, **kwargs): if not INTERACTIVE: return return get_ipython().magic(*args, **kwargs) def try_cd(loc): if not INTERACTIVE: return return get_ipython().magic(f'%cd {loc}')
codraw-models-master
interactivity.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ Scene-level nearest-neighbor teller """ from interactivity import INTERACTIVE, try_magic, try_cd try_cd('~/dev/drawmodel/nkcodraw') #%% import numpy as np from pathlib import Path import codraw_data from codraw_data import AbstractScene, Clipart import abs_render from abs_metric import scene_similarity, clipart_similarity from episode import Episode, Transcriber, respond_to import model from model import make_fns, eval_fns from model import Model from baseline2_models import load_baseline2 # %% scenes_and_scripts_dev = codraw_data.get_scenes_and_scripts('dev') transcribe = Transcriber( 'exp28_scenenn.py' if INTERACTIVE else __file__, scenes_and_scripts=scenes_and_scripts_dev[::110], scenes_description="scenes_and_scripts_dev[::110]") # %% models_baseline2 = load_baseline2() # %% drawer_lstmaddonly_a = models_baseline2['drawer_lstmaddonly_a'] drawer_lstmaddonly_b = models_baseline2['drawer_lstmaddonly_b'] # %% from datagen import Datagen class SceneNearestNeighborData(Datagen): def init_full(self): self.build_dicts() def init_from_spec(self): self.build_dicts() def build_dicts(self): self.scene_to_msgs = {} # calculate events events = codraw_data.get_contextual_place_many(self.split) scene = None msgs = None it = iter(events) for event in it: if isinstance(event, codraw_data.ObserveTruth): if scene is not None and msgs is not None: self.scene_to_msgs[tuple(scene)] = msgs scene = event.scene msgs = [] elif isinstance(event, codraw_data.TellGroup): msgs.append(event.msg) if scene is not None and msgs is not None: self.scene_to_msgs[tuple(scene)] = msgs # %% class SceneNearestNeighborTeller(Model): datagen_cls = SceneNearestNeighborData def prepare(self, episode): scene = episode.get_last(codraw_data.ObserveTruth).scene best_similarity = -1 best_msgs = [] best_scene_tuple = None for cand_scene_tuple in self.datagen.scene_to_msgs: cand_sim = scene_similarity(cand_scene_tuple, scene) if cand_sim > best_similarity: best_similarity = cand_sim best_msgs = self.datagen.scene_to_msgs[cand_scene_tuple] best_scene_tuple = cand_scene_tuple # display(AbstractScene(scene)) # display(AbstractScene(best_scene_tuple)) # display(best_similarity) episode.to_tell = best_msgs[::] # make a copy! @respond_to(codraw_data.ObserveTruth) @respond_to(codraw_data.ReplyGroup) def tell(self, episode): if not hasattr(episode, 'to_tell'): self.prepare(episode) if episode.to_tell: msg = episode.to_tell.pop(0) episode.append(codraw_data.TellGroup(msg)) def get_action_fns(self): return [self.tell] # %% data_scenenn_a = SceneNearestNeighborData('a') data_scenenn_b = SceneNearestNeighborData('b') # %% teller_scenenn_a = SceneNearestNeighborTeller(data_scenenn_a) teller_scenenn_b = SceneNearestNeighborTeller(data_scenenn_b) # %% # Episode.run(codraw_data.get_scenes('dev')[0], make_fns('aa', (teller_scenenn_a, teller_scenenn_b), (drawer_lstmaddonly_a, drawer_lstmaddonly_b))).display() # %% # %% # %% print() print() print("Final evaluation on full dev set") # %% for splits in ('aa', 'ab', 'ba', 'bb'): sims = eval_fns(make_fns(splits, (teller_scenenn_a, teller_scenenn_b), (drawer_lstmaddonly_a, drawer_lstmaddonly_b)), limit=None) print(splits, sims.mean()) # aa 1.3095491909624886 # ab 1.3115692170881366 # nohier aa 2.229799264350204 # nohier ab 2.255167911899865 # %% for splits in ('ba', 'bb'): sims = eval_fns(make_fns(splits, (teller_scenenn_a, teller_scenenn_b), (drawer_lstmaddonly_a, drawer_lstmaddonly_b)), limit=None) print(splits, sims.mean()) # %% transcribe("exp28_scenenn", aa=make_fns('aa', (teller_scenenn_a, teller_scenenn_b), (drawer_lstmaddonly_a, drawer_lstmaddonly_b)), ab=make_fns('ab', (teller_scenenn_a, teller_scenenn_b), (drawer_lstmaddonly_a, drawer_lstmaddonly_b)), ) # %% # hieraddonlyseq = dict( # drawer_hieraddonlyseq_a = drawer_hieraddonlyseq_a.spec, # drawer_hieraddonlyseq_b = drawer_hieraddonlyseq_b.spec, # ) #%% # torch.save(hieraddonlyseq, Path('models/hieraddonlyseq.pt')) # %% # %% # %% # %%
codraw-models-master
exp28_scenenn.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. #%% import numpy as np from pathlib import Path import editdistance import torch import torch.cuda import torch.nn as nn import torch.nn.functional as F from nkfb_util import logsumexp, cuda_if_available, torch_load import codraw_data from codraw_data import AbstractScene, Clipart import abs_render from abs_metric import scene_similarity, clipart_similarity from episode import Episode, respond_to, response_partial from datagen import NearestNeighborData, MessageSimilarityData, BOWtoClipartData, ClipartToSeqData, BOWplusCanvasToMultiData from model import Model, select_clipart_to_tell, drawer_observe_canvas, make_fns, eval_fns, scripted_tell # %% class NearestNeighborTeller(Model): datagen_cls = NearestNeighborData @respond_to(codraw_data.SelectClipart) def tell(self, episode): clipart = episode.get_last(codraw_data.SelectClipart).clipart best_similarity = -1 best_msg = "" for cand_clipart in self.datagen.clipart_to_msg: cand_sim = clipart_similarity(cand_clipart, clipart) if cand_sim > best_similarity: best_similarity = cand_sim best_msg = self.datagen.clipart_to_msg[cand_clipart] episode.append(codraw_data.TellGroup(best_msg)) def get_action_fns(self): return [select_clipart_to_tell, self.tell] #%% class CharNeighborDrawer(Model): datagen_cls = NearestNeighborData @respond_to(codraw_data.TellGroup) def draw(self, episode): msg = episode.get_last(codraw_data.TellGroup).msg best_distance = float('inf') best_clipart = None for cand_msg in self.datagen.msg_to_clipart: cand_dist = editdistance.eval(cand_msg, msg) if cand_dist < best_distance: best_distance = cand_dist best_clipart = self.datagen.msg_to_clipart[cand_msg] episode.append(codraw_data.DrawClipart(best_clipart)) episode.append(codraw_data.ReplyGroup("ok")) def get_action_fns(self): return [self.draw] #%% class BOWNeighborDrawer(Model, torch.nn.Module): datagen_cls = MessageSimilarityData def init_full(self, d_embeddings=512): self.d_embeddings = d_embeddings self.word_embs = torch.nn.EmbeddingBag(len(self.datagen.vocabulary_dict), d_embeddings) self.msg_vecs = [] self.msg_vecs_cliparts = [] self.null_clipart = None def post_init_from_spec(self): self.prepare_for_inference() def get_spec(self): return dict(d_embeddings=self.d_embeddings) def forward(self, example_batch): bow_feats = self.word_embs(example_batch['words'], example_batch['offsets']).reshape(-1,21,self.d_embeddings) # assert np.isfinite(bow_feats.data.numpy()).all() bow_feats_src = bow_feats[:,0,:] bow_feats_tgt = bow_feats[:,1:,:] similarity_scores = torch.bmm(bow_feats_tgt, bow_feats_src[:,:,None])[:,:,0] loss = F.cross_entropy(similarity_scores, torch.zeros(similarity_scores.shape[0], dtype=torch.long, device=cuda_if_available)) return loss def vec_for_msg(self, msg): if msg == "": return None words = [self.datagen.vocabulary_dict.get(word, None) for word in msg.split()] words = [word for word in words if word is not None] if not words: return None return self.word_embs(torch.tensor([words], dtype=torch.long, device=self.word_embs.weight.device))[0,:].cpu().detach().numpy() def prepare_for_inference(self): self.msg_vecs = [] self.msg_vecs_cliparts = [] # sorting is important for deterministic serialization for msg in sorted(self.datagen.msg_to_clipart.keys()): clipart = self.datagen.msg_to_clipart[msg] vec = self.vec_for_msg(msg) if vec is not None: self.msg_vecs.append(vec) self.msg_vecs_cliparts.append(clipart) else: self.null_clipart = clipart if self.null_clipart is None: self.null_clipart = self.msg_vecs_cliparts[0] self.msg_vecs = np.array(self.msg_vecs).T self.eval() @respond_to(codraw_data.TellGroup) def draw(self, episode): msg = episode.get_last(codraw_data.TellGroup).msg vec = self.vec_for_msg(msg) if vec is not None: best_clipart = self.msg_vecs_cliparts[np.argmax(vec @ self.msg_vecs)] else: best_clipart = self.null_clipart episode.append(codraw_data.DrawClipart(best_clipart)) episode.append(codraw_data.ReplyGroup("ok")) def get_action_fns(self): return [self.draw] #%% class BOWtoClipartDrawer(Model, torch.nn.Module): datagen_cls = BOWtoClipartData NUM_INDEX = 58 NUM_SUBTYPES = 35 NUM_DEPTH = 3 NUM_FLIP = 2 NUM_CATEGORICAL = 35 + 3 + 2 NUM_NUMERICAL = 2 # x, y NUM_ALL = NUM_CATEGORICAL + NUM_NUMERICAL def init_full(self, d_embeddings=512, d_hidden=1024): self.d_embeddings = d_embeddings self.d_hidden = d_hidden self.word_embs = torch.nn.EmbeddingBag(len(self.datagen.vocabulary_dict), d_embeddings) # Sigmoid is used to prevent drawing cliparts far off the canvas self.sigmoid_coeff = 2. # Scaling coefficient so that the sigmoid doesn't always saturate self.vals_coeff = 1. / 5. d_out = self.NUM_INDEX * (self.NUM_ALL + 1) self.lang_to_clipart = nn.Sequential( nn.Linear(d_embeddings, d_hidden), nn.Dropout(0.4), nn.ReLU(), nn.Linear(d_hidden, d_out), ) self.to(cuda_if_available) def get_spec(self): return dict(d_embeddings=self.d_embeddings, d_hidden=self.d_hidden) def forward(self, example_batch): bow_feats = self.word_embs(example_batch['msg_idxs'], example_batch['offsets']) clipart_scores = self.lang_to_clipart(bow_feats).reshape(-1, self.NUM_INDEX, (self.NUM_ALL + 1)) correct_index = example_batch['clipart_index'] logits_index = clipart_scores[:,:,0] correct_scores = clipart_scores[torch.arange(correct_index.shape[0], dtype=torch.long, device=cuda_if_available), correct_index][:,1:] (logits_subtype, logits_depth, logits_flip, vals_numerical) = torch.split(correct_scores, [self.NUM_SUBTYPES, self.NUM_DEPTH, self.NUM_FLIP, self.NUM_NUMERICAL], dim=1) vals_numerical = self.sigmoid_coeff * F.sigmoid(self.vals_coeff * vals_numerical) correct_categorical = example_batch['clipart_categorical'] correct_numerical = example_batch['clipart_numerical'] loss = ( F.cross_entropy(logits_index, correct_index) + F.cross_entropy(logits_subtype, correct_categorical[:,0]) + F.cross_entropy(logits_depth, correct_categorical[:,1]) + F.cross_entropy(logits_flip, correct_categorical[:,2]) + F.mse_loss(vals_numerical, correct_numerical) ) return loss @respond_to(codraw_data.TellGroup) def draw(self, episode): msg = episode.get_last(codraw_data.TellGroup).msg words = [self.datagen.vocabulary_dict.get(word, None) for word in msg.split()] words = [word for word in words if word is not None] if not words: # XXX(nikita): this is using DrawGroup, while normally DrawClipart is used episode.append(codraw_data.DrawGroup([])) episode.append(codraw_data.ReplyGroup("ok")) return msg_idxs = torch.tensor(words).to(cuda_if_available) bow_feats = self.word_embs(msg_idxs[None,:]) clipart_scores = self.lang_to_clipart(bow_feats).reshape(-1, self.NUM_INDEX, (self.NUM_ALL + 1))[0,:,:] best_idx = int(clipart_scores[:,0].argmax()) (logits_subtype, logits_depth, logits_flip, vals_numerical) = torch.split(clipart_scores[best_idx,1:], [self.NUM_SUBTYPES, self.NUM_DEPTH, self.NUM_FLIP, self.NUM_NUMERICAL]) vals_numerical = self.sigmoid_coeff * F.sigmoid(self.vals_coeff * vals_numerical) nx, ny = vals_numerical.cpu().detach().numpy() clipart = Clipart(best_idx, int(logits_subtype.argmax()), int(logits_depth.argmax()), int(logits_flip.argmax()), normed_x=nx, normed_y=ny) episode.append(codraw_data.DrawClipart(clipart)) episode.append(codraw_data.ReplyGroup("ok")) def get_action_fns(self): return [self.draw] #%% class ClipartToSeqTeller(Model, torch.nn.Module): datagen_cls = ClipartToSeqData def init_full(self, d_word_emb=256, d_clipart_binary=256, d_clipart_numerical=256, d_clipart_hidden=1024, d_hidden=1024): self._args = dict( d_word_emb=d_word_emb, d_clipart_binary=d_clipart_binary, d_clipart_numerical=d_clipart_numerical, d_clipart_hidden=d_clipart_hidden, d_hidden=d_hidden) self.word_embs = nn.Embedding(len(self.datagen.vocabulary_dict), d_word_emb) self.binary_feature_embs = nn.Linear(self.datagen.NUM_BINARY, d_clipart_binary, bias=False) self.numerical_transform = nn.Sequential( nn.Linear(self.datagen.NUM_NUMERICAL, d_clipart_numerical), nn.ReLU(), ) self.clipart_transform = nn.Sequential( nn.Linear(d_clipart_numerical + d_clipart_binary, d_clipart_hidden), nn.ReLU(), nn.Linear(d_clipart_hidden, d_hidden), ) self.lstm = nn.LSTM(d_word_emb, d_hidden, num_layers=2) self.word_project = nn.Linear(d_hidden, len(self.datagen.vocabulary_dict)) self.to(cuda_if_available) def get_spec(self): return self._args def forward(self, example_batch): binary_feats = self.binary_feature_embs(example_batch['clipart_binary']) numerical_feats = self.numerical_transform(example_batch['clipart_numerical']) clipart_feats = self.clipart_transform(torch.cat([binary_feats, numerical_feats], -1)) msg_embedded = nn.utils.rnn.PackedSequence(self.word_embs(example_batch['msg_in'].data), example_batch['msg_in'].batch_sizes) initial_state = torch.stack([clipart_feats] * self.lstm.num_layers) lstm_out, _ = self.lstm(msg_embedded, (initial_state, initial_state)) word_logits = self.word_project(lstm_out.data) per_word_losses = nn.utils.rnn.PackedSequence(F.cross_entropy(word_logits, example_batch['msg_out'].data, reduce=False), example_batch['msg_out'].batch_sizes) per_example_losses = nn.utils.rnn.pad_packed_sequence(per_word_losses)[0].sum(-1) loss = per_example_losses.mean() return loss @respond_to(codraw_data.SelectClipart) def tell(self, episode): clipart = episode.get_last(codraw_data.SelectClipart).clipart x = clipart.normed_x y = clipart.normed_y clipart_numerical = torch.tensor([x, y], dtype=torch.float) clipart_binary = torch.zeros(self.datagen.NUM_BINARY) for val, offset in zip([clipart.idx, clipart.subtype, clipart.depth, clipart.flip], self.datagen.BINARY_OFFSETS): clipart_binary[val + offset] = 1. binary_feats = self.binary_feature_embs(clipart_binary[None,:].to(cuda_if_available)) numerical_feats = self.numerical_transform(clipart_numerical[None,:].to(cuda_if_available)) clipart_feats = self.clipart_transform(torch.cat([binary_feats, numerical_feats], -1)) token_idxs = [self.datagen.vocabulary_dict['<S>']] # lstm_state = (F.tanh(clipart_feats[None,:,:]), clipart_feats[None,:,:]) lstm_state = torch.stack([clipart_feats] * self.lstm.num_layers) lstm_state = (lstm_state, lstm_state) for _ in range(200): token_emb = self.word_embs(torch.tensor(token_idxs[-1], dtype=torch.long).to(cuda_if_available))[None,None,:] lstm_out, lstm_state = self.lstm(token_emb, lstm_state) next_token = int(self.word_project(lstm_out[0,0,:]).argmax()) token_idxs.append(next_token) if next_token == self.datagen.vocabulary_dict['</S>']: break msg = " ".join([self.datagen.vocabulary[i] for i in token_idxs[1:-1]]) episode.append(codraw_data.TellGroup(msg)) def get_action_fns(self): return [select_clipart_to_tell, self.tell] #%% class BOWtoMultiBCEDrawer(Model, torch.nn.Module): datagen_cls = BOWplusCanvasToMultiData def init_full(self, d_embeddings=512, d_hidden=1024): self._args = dict( d_embeddings=d_embeddings, d_hidden=d_hidden, ) self.d_embeddings = d_embeddings self.word_embs = torch.nn.EmbeddingBag(len(self.datagen.vocabulary_dict), d_embeddings) # Sigmoid is used to prevent drawing cliparts far off the canvas self.sigmoid_coeff = 2. # Scaling coefficient so that the sigmoid doesn't always saturate self.vals_coeff = 1. / 5. dg = self.datagen d_out = dg.NUM_INDEX * (dg.NUM_ALL + 1) self.lang_to_clipart = nn.Sequential( nn.Linear(d_embeddings, d_hidden), # nn.Dropout(0.4), nn.ReLU(), nn.Linear(d_hidden, d_out), ) self.to(cuda_if_available) def get_spec(self): return self._args def forward(self, example_batch): dg = self.datagen bow_feats = self.word_embs(example_batch['msg_idxs'], example_batch['offsets']) assert np.isfinite(bow_feats.cpu().detach().numpy()).all() clipart_scores = self.lang_to_clipart(bow_feats).view(-1, dg.NUM_INDEX, dg.NUM_ALL + 1) clipart_idx_scores = clipart_scores[:,:,0] idx_losses = F.binary_cross_entropy_with_logits(clipart_idx_scores, example_batch['clipart_chosen_mask'].to(torch.float), reduce=False) # idx_losses = torch.where(example_batch['clipart_chosen_mask'], 3. * idx_losses, idx_losses) per_example_idx_loss = idx_losses.sum(1) flat_scores = clipart_scores[:,:,1:].view((-1, dg.NUM_ALL)) (logits_subtype, logits_depth, logits_flip, vals_numerical) = torch.split(flat_scores, [dg.NUM_SUBTYPES, dg.NUM_DEPTH, dg.NUM_FLIP, dg.NUM_NUMERICAL], dim=1) vals_numerical = self.sigmoid_coeff * F.sigmoid(self.vals_coeff * vals_numerical) correct_categorical = example_batch['clipart_categorical'] correct_numerical = example_batch['clipart_numerical'] subtype_losses = F.cross_entropy(logits_subtype, correct_categorical[:,:,0].view((-1,)), reduce=False).view_as(correct_categorical[:,:,0]) depth_losses = F.cross_entropy(logits_depth, correct_categorical[:,:,1].view((-1,)), reduce=False).view_as(correct_categorical[:,:,1]) flip_losses = F.cross_entropy(logits_flip, correct_categorical[:,:,2].view((-1,)), reduce=False).view_as(correct_categorical[:,:,2]) vals_losses = F.mse_loss(vals_numerical, correct_numerical.view((-1, dg.NUM_NUMERICAL)), reduce=False).view_as(correct_numerical).sum(-1) all_losses = torch.stack([subtype_losses, depth_losses, flip_losses, vals_losses], -1).sum(-1) per_example_loss = torch.where(example_batch['clipart_chosen_mask'], all_losses, all_losses.new_zeros(1)).sum(-1) loss = per_example_idx_loss.mean() + per_example_loss.mean() return loss @respond_to(codraw_data.TellGroup) def draw(self, episode): dg = self.datagen msg = episode.get_last(codraw_data.TellGroup).msg # assert msg != "" words = [self.datagen.vocabulary_dict.get(word, None) for word in msg.split()] words = [word for word in words if word is not None] if not words: episode.append(codraw_data.DrawGroup([])) episode.append(codraw_data.ReplyGroup("ok")) return msg_idxs = torch.tensor(words).to(cuda_if_available) bow_feats = self.word_embs(msg_idxs[None,:]) assert np.isfinite(bow_feats.cpu().detach().numpy()).all() clipart_scores = self.lang_to_clipart(bow_feats).view(-1, dg.NUM_INDEX, (dg.NUM_ALL + 1)) flat_scores = clipart_scores[:,:,1:].view((-1, dg.NUM_ALL)) (logits_subtype, logits_depth, logits_flip, vals_numerical) = torch.split(flat_scores, [dg.NUM_SUBTYPES, dg.NUM_DEPTH, dg.NUM_FLIP, dg.NUM_NUMERICAL], dim=1) vals_numerical = self.sigmoid_coeff * F.sigmoid(self.vals_coeff * vals_numerical) vals_numerical = vals_numerical.cpu().detach().numpy() clipart_idx_scores = clipart_scores[0,:,0].cpu().detach().numpy() cliparts = [] for idx in np.where(clipart_idx_scores > 0)[0]: nx, ny = vals_numerical[idx,:] clipart = Clipart(idx, int(logits_subtype[idx,:].argmax()), int(logits_depth[idx,:].argmax()), int(logits_flip[idx,:].argmax()), normed_x=nx, normed_y=ny) cliparts.append(clipart) episode.append(codraw_data.DrawGroup(cliparts)) episode.append(codraw_data.ReplyGroup("ok")) def get_action_fns(self): return [self.draw] # %% class BOWplusCanvasDrawer(Model, torch.nn.Module): datagen_cls = BOWplusCanvasToMultiData def init_full(self, d_embeddings=512, d_hidden=512): self._args = dict( d_embeddings=d_embeddings, d_hidden=d_hidden, ) self.d_embeddings = d_embeddings self.word_embs = torch.nn.EmbeddingBag(len(self.datagen.vocabulary_dict), d_embeddings) # Helps overcome class imbalance (most cliparts are not drawn most of # the time) self.positive_scaling_coeff = 3. # Sigmoid is used to prevent drawing cliparts far off the canvas self.sigmoid_coeff = 2. # Scaling coefficient so that the sigmoid doesn't always saturate self.vals_coeff = 1. / 5. dg = self.datagen self.lang_to_hidden = nn.Linear(d_embeddings, d_hidden) self.canvas_binary_to_hidden = nn.Sequential( nn.Dropout(0.2), nn.Linear(dg.NUM_BINARY, d_hidden, bias=False), ) self.canvas_numerical_to_hidden = nn.Sequential( nn.Linear(dg.NUM_INDEX * dg.NUM_NUMERICAL, d_hidden, bias=False), ) d_out = dg.NUM_INDEX * (dg.NUM_ALL + 1) self.hidden_to_clipart = nn.Sequential( nn.Dropout(0.4), nn.ReLU(), nn.Linear(d_hidden, d_out), ) self.to(cuda_if_available) def forward(self, example_batch): dg = self.datagen bow_feats = self.word_embs(example_batch['msg_idxs'], example_batch['offsets']) assert np.isfinite(bow_feats.cpu().detach().numpy()).all() hidden_feats = ( self.lang_to_hidden(bow_feats) + self.canvas_binary_to_hidden(example_batch['canvas_binary'].float()) + self.canvas_numerical_to_hidden(example_batch['canvas_numerical']) ) clipart_scores = self.hidden_to_clipart(hidden_feats).view(-1, dg.NUM_INDEX, dg.NUM_ALL + 1) clipart_idx_scores = clipart_scores[:,:,0] idx_losses = F.binary_cross_entropy_with_logits(clipart_idx_scores, example_batch['clipart_chosen_mask'].to(torch.float), reduce=False) idx_losses = torch.where(example_batch['clipart_chosen_mask'], self.positive_scaling_coeff * idx_losses, idx_losses) per_example_idx_loss = idx_losses.sum(1) flat_scores = clipart_scores[:,:,1:].view((-1, dg.NUM_ALL)) (logits_subtype, logits_depth, logits_flip, vals_numerical) = torch.split(flat_scores, [dg.NUM_SUBTYPES, dg.NUM_DEPTH, dg.NUM_FLIP, dg.NUM_NUMERICAL], dim=1) vals_numerical = self.sigmoid_coeff * F.sigmoid(self.vals_coeff * vals_numerical) correct_categorical = example_batch['clipart_categorical'] correct_numerical = example_batch['clipart_numerical'] subtype_losses = F.cross_entropy(logits_subtype, correct_categorical[:,:,0].view((-1,)), reduce=False).view_as(correct_categorical[:,:,0]) depth_losses = F.cross_entropy(logits_depth, correct_categorical[:,:,1].view((-1,)), reduce=False).view_as(correct_categorical[:,:,1]) flip_losses = F.cross_entropy(logits_flip, correct_categorical[:,:,2].view((-1,)), reduce=False).view_as(correct_categorical[:,:,2]) vals_losses = F.mse_loss(vals_numerical, correct_numerical.view((-1, dg.NUM_NUMERICAL)), reduce=False).view_as(correct_numerical).sum(-1) all_losses = torch.stack([subtype_losses, depth_losses, flip_losses, vals_losses], -1).sum(-1) per_example_loss = torch.where(example_batch['clipart_chosen_mask'], all_losses, all_losses.new_zeros(1)).sum(-1) loss = per_example_idx_loss.mean() + per_example_loss.mean() return loss @respond_to(codraw_data.ObserveCanvas) def draw(self, episode): dg = self.datagen msg = episode.get_last(codraw_data.TellGroup).msg # assert msg != "" words = [self.datagen.vocabulary_dict.get(word, None) for word in msg.split()] words = [word for word in words if word is not None] if not words: episode.append(codraw_data.DrawGroup([])) episode.append(codraw_data.ReplyGroup("ok")) return msg_idxs = torch.tensor(words).to(cuda_if_available) canvas_context = episode.get_last(codraw_data.ObserveCanvas).scene canvas_binary = np.zeros((dg.NUM_INDEX, 1 + dg.NUM_DEPTH + dg.NUM_FLIP), dtype=bool) canvas_pose = np.zeros((2, dg.NUM_SUBTYPES), dtype=bool) canvas_numerical = np.zeros((dg.NUM_INDEX, dg.NUM_NUMERICAL)) for clipart in canvas_context: if clipart.idx in Clipart.HUMAN_IDXS: canvas_pose[clipart.human_idx, clipart.subtype] = True canvas_binary[clipart.idx, 0] = True canvas_binary[clipart.idx, 1 + clipart.depth] = True canvas_binary[clipart.idx, 1 + dg.NUM_DEPTH + clipart.flip] = True canvas_numerical[clipart.idx, 0] = clipart.normed_x canvas_numerical[clipart.idx, 1] = clipart.normed_y canvas_binary = np.concatenate([canvas_binary.reshape((-1,)), canvas_pose.reshape((-1,))]) canvas_numerical = canvas_numerical.reshape((-1,)) canvas_binary = torch.tensor(canvas_binary.astype(np.uint8), dtype=torch.uint8)[None,:].to(cuda_if_available) canvas_numerical = torch.tensor(canvas_numerical, dtype=torch.float)[None,:].to(cuda_if_available) bow_feats = self.word_embs(msg_idxs[None,:]) assert np.isfinite(bow_feats.cpu().detach().numpy()).all() hidden_feats = ( self.lang_to_hidden(bow_feats) + self.canvas_binary_to_hidden(canvas_binary.float()) + self.canvas_numerical_to_hidden(canvas_numerical) ) clipart_scores = self.hidden_to_clipart(hidden_feats).view(-1, dg.NUM_INDEX, (dg.NUM_ALL + 1)) flat_scores = clipart_scores[:,:,1:].view((-1, dg.NUM_ALL)) (logits_subtype, logits_depth, logits_flip, vals_numerical) = torch.split(flat_scores, [dg.NUM_SUBTYPES, dg.NUM_DEPTH, dg.NUM_FLIP, dg.NUM_NUMERICAL], dim=1) vals_numerical = self.sigmoid_coeff * F.sigmoid(self.vals_coeff * vals_numerical) vals_numerical = vals_numerical.cpu().detach().numpy() clipart_idx_scores = clipart_scores[0,:,0].cpu().detach().numpy() cliparts = [] prior_idxs = set([c.idx for c in canvas_context]) for idx in np.where(clipart_idx_scores > 0)[0]: if idx in prior_idxs: # XXX: break ties in favor of earlier actions continue nx, ny = vals_numerical[idx,:] clipart = Clipart(idx, int(logits_subtype[idx,:].argmax()), int(logits_depth[idx,:].argmax()), int(logits_flip[idx,:].argmax()), normed_x=nx, normed_y=ny) cliparts.append(clipart) episode.append(codraw_data.DrawGroup(cliparts)) episode.append(codraw_data.ReplyGroup("ok")) def get_action_fns(self): return [drawer_observe_canvas, self.draw] #%% def load_baseline1(): baseline1_specs = torch_load(Path('models/baseline1_may31.pt')) models = {} for k, spec in baseline1_specs.items(): print(k) models[k] = globals()[spec['class']](spec=spec) return models
codraw-models-master
baseline1_models.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from interactivity import INTERACTIVE, try_magic, try_cd try_cd('~/dev/drawmodel/nkcodraw') #%% assert __name__ == "__main__", "Training script should not be imported!" #%% import numpy as np from pathlib import Path import torch import torch.cuda import torch.nn as nn import torch.nn.functional as F from nkfb_util import logsumexp, cuda_if_available, torch_load from attention import AttentionSeqToMasked import codraw_data from codraw_data import AbstractScene, Clipart import abs_render from abs_metric import scene_similarity, clipart_similarity from episode import Episode, Transcriber, respond_to from model import make_fns, eval_fns from model import Model from baseline2_models import load_baseline2 from baseline3_models import load_baseline3 from baseline4_models import RLSceneToSeqTeller, collect_episodes # %% models_baseline2 = load_baseline2() models_baseline3 = load_baseline3() # %% drawer_lstmaddonly_a, drawer_lstmaddonly_b = models_baseline2['drawer_lstmaddonly_a'], models_baseline2['drawer_lstmaddonly_b'] teller_scene2seq_aux2_a, teller_scene2seq_aux2_b = models_baseline3['teller_scene2seq_aux2_a'], models_baseline3['teller_scene2seq_aux2_b'] # %% def train_teller(split, teller_pair, scenes, utterance_penalty=0.1, gamma=0.999, uninformative_penalty=0.3, batch_size=16, num_batches=12500, eval_every=2000, lr=0.00007, limit=100, base_name="scene2seq_rl", ): print("Training hyperparameters:") for param in ['utterance_penalty', 'gamma', 'uninformative_penalty', 'batch_size', 'num_batches', 'lr', 'limit', ]: print(param, '=', locals()[param]) drawer_pair = drawer_lstmaddonly_a, drawer_lstmaddonly_b splits_pair = split + 'a', split + 'b' if split == 'a': teller = teller_pair[0] elif split == 'b': teller = teller_pair[1] else: assert False teller.disable_dropout() fns = make_fns(split + split, teller_pair, drawer_pair) optimizer = torch.optim.Adam(teller.parameters(), lr=lr) def validate(): for inference_method in ['greedy', 'sample']: teller.inference_method = inference_method for splits in splits_pair: sims = eval_fns(make_fns(splits, teller_pair, drawer_pair), limit=limit) print(splits, f'[{inference_method}]', sims.mean()) validate() teller.inference_method = 'sample' for batch_num in range(num_batches): optimizer.zero_grad() teller.eval() episodes, ex = collect_episodes( fns, teller.datagen, scenes=scenes, batch_size=batch_size, utterance_penalty=utterance_penalty, gamma=gamma, uninformative_penalty=uninformative_penalty, ) teller.train() loss = teller.calc_rl_loss(ex) loss.backward() # grad_norm = nn.utils.clip_grad_norm_(teller.parameters(), float('inf')) # XXX(nikita): clip gradients in an attempt to stabilize. Need to see if # there's an underlying bug, though. grad_norm = nn.utils.clip_grad_norm_(teller.parameters(), 1.5) optimizer.step() mean_reward = float(ex['brw_rewards'].sum().item() / ex['b_scene_mask'].shape[0]) mean_len = np.mean([ len([event for event in episode if isinstance(event, codraw_data.TellGroup)]) for episode in episodes]) sims = np.array([episode.scene_similarity() for episode in episodes]) mean_sim = sims.mean() std_sim = sims.std() print(f'batch {batch_num} mean-reward {mean_reward} loss {float(loss)} grad {float(grad_norm)} mean-len {mean_len} mean-sim {mean_sim} std-sim {std_sim}') if batch_num % 5 == 0: for event in episodes[-1]: if isinstance(event, codraw_data.TellGroup): print(' >', event.msg) if batch_num % 50 == 0: del episodes, ex, loss # clean up memory validate() if batch_num > 0 and batch_num % eval_every == 0: teller.eval() print("Printing representative sampled dialogs") teller.inference_method = 'sample' episodes, ex = collect_episodes(fns, teller.datagen, scenes=scenes[:1], batch_size=5) for episode in episodes: for event in episode: if isinstance(event, codraw_data.TellGroup): print(' >', event.msg) print('similarity', episode.scene_similarity()) print('-----') print("Evaluating on the full dev set") for inference_method in ['greedy', 'sample']: teller.inference_method = inference_method for splits in splits_pair: sims = eval_fns(make_fns(splits, (teller_rl_a, teller_rl_b), (drawer_lstmaddonly_a, drawer_lstmaddonly_b)), limit=None) print(splits, f'[{inference_method}]', sims.mean()) if base_name is not None: print("Serializing teller to disk") torch.save(teller.spec, Path(f'rl_models/{base_name}_{split}_{batch_num}.pt')) # %% # Change this to train a different teller TELLER_SPLIT = 'a' # TELLER_SPLIT = 'b' # Reduce entropy: the uncertainty in the pre-trained model isn't ideal for # starting RL. It may be possible to adjust label smoothing in the pre-training, # but for now just reweigh the linear layer prior to the softmax SOFTMAX_RESCALE = 3. # %% teller_rl_a, teller_rl_b = None, None if TELLER_SPLIT == 'a': teller_rl_a = RLSceneToSeqTeller(spec=teller_scene2seq_aux2_a.spec) teller_rl_a.word_project.weight.data *= SOFTMAX_RESCALE teller_rl_a.word_project.bias.data *= SOFTMAX_RESCALE else: teller_rl_b = RLSceneToSeqTeller(spec=teller_scene2seq_aux2_b.spec) teller_rl_b.word_project.weight.data *= SOFTMAX_RESCALE teller_rl_b.word_project.bias.data *= SOFTMAX_RESCALE # %% print(f"Info: training on partition {TELLER_SPLIT}") scenes = np.asarray(codraw_data.get_scenes(TELLER_SPLIT)) train_teller( TELLER_SPLIT, (teller_rl_a, teller_rl_b), scenes, utterance_penalty=0.0, gamma=0.995, uninformative_penalty=0.3, batch_size=16, num_batches=60000, eval_every=2000, lr=0.00003, limit=100, base_name="b5_utt0_lr3_clip15", )
codraw-models-master
baseline4_train.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import ast from itertools import chain import logging import math import os import sys import json import hashlib import editdistance from argparse import Namespace import numpy as np import torch from fairseq import checkpoint_utils, options, tasks, utils, distributed_utils from fairseq.dataclass.utils import convert_namespace_to_omegaconf from fairseq.logging import progress_bar from fairseq.logging.meters import StopwatchMeter, TimeMeter from fairseq.models import FairseqLanguageModel from omegaconf import DictConfig from pathlib import Path import hydra from hydra.core.config_store import ConfigStore from fairseq.dataclass.configs import ( CheckpointConfig, CommonConfig, CommonEvalConfig, DatasetConfig, DistributedTrainingConfig, GenerationConfig, FairseqDataclass, ) from dataclasses import dataclass, field, is_dataclass from typing import Any, Dict, List, Optional, Tuple, Union from omegaconf import OmegaConf logging.root.setLevel(logging.INFO) logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) config_path = Path(__file__).resolve().parent / "conf" @dataclass class OverrideConfig(FairseqDataclass): noise_wav: Optional[str] = field(default=None, metadata={'help': 'noise wav file'}) noise_prob: float = field(default=0, metadata={'help': 'noise probability'}) noise_snr: float = field(default=0, metadata={'help': 'noise SNR in audio'}) modalities: List[str] = field(default_factory=lambda: [""], metadata={'help': 'which modality to use'}) data: Optional[str] = field(default=None, metadata={'help': 'path to test data directory'}) label_dir: Optional[str] = field(default=None, metadata={'help': 'path to test label directory'}) @dataclass class InferConfig(FairseqDataclass): task: Any = None generation: GenerationConfig = GenerationConfig() common: CommonConfig = CommonConfig() common_eval: CommonEvalConfig = CommonEvalConfig() checkpoint: CheckpointConfig = CheckpointConfig() distributed_training: DistributedTrainingConfig = DistributedTrainingConfig() dataset: DatasetConfig = DatasetConfig() override: OverrideConfig = OverrideConfig() is_ax: bool = field( default=False, metadata={ "help": "if true, assumes we are using ax for tuning and returns a tuple for ax to consume" }, ) def main(cfg: DictConfig): if isinstance(cfg, Namespace): cfg = convert_namespace_to_omegaconf(cfg) assert cfg.common_eval.path is not None, "--path required for recognition!" assert ( not cfg.generation.sampling or cfg.generation.nbest == cfg.generation.beam ), "--sampling requires --nbest to be equal to --beam" if cfg.common_eval.results_path is not None: os.makedirs(cfg.common_eval.results_path, exist_ok=True) output_path = os.path.join(cfg.common_eval.results_path, "decode.log") with open(output_path, "w", buffering=1, encoding="utf-8") as h: return _main(cfg, h) return _main(cfg, sys.stdout) def get_symbols_to_strip_from_output(generator): if hasattr(generator, "symbols_to_strip_from_output"): return generator.symbols_to_strip_from_output else: return {generator.eos, generator.pad} def _main(cfg, output_file): logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=output_file, ) logger = logging.getLogger("hybrid.speech_recognize") if output_file is not sys.stdout: # also print to stdout logger.addHandler(logging.StreamHandler(sys.stdout)) utils.import_user_module(cfg.common) models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task([cfg.common_eval.path]) models = [model.eval().cuda() for model in models] saved_cfg.task.modalities = cfg.override.modalities task = tasks.setup_task(saved_cfg.task) task.build_tokenizer(saved_cfg.tokenizer) task.build_bpe(saved_cfg.bpe) logger.info(cfg) # Fix seed for stochastic decoding if cfg.common.seed is not None and not cfg.generation.no_seed_provided: np.random.seed(cfg.common.seed) utils.set_torch_seed(cfg.common.seed) use_cuda = torch.cuda.is_available() # Set dictionary dictionary = task.target_dictionary # loading the dataset should happen after the checkpoint has been loaded so we can give it the saved task config task.cfg.noise_prob = cfg.override.noise_prob task.cfg.noise_snr = cfg.override.noise_snr task.cfg.noise_wav = cfg.override.noise_wav if cfg.override.data is not None: task.cfg.data = cfg.override.data if cfg.override.label_dir is not None: task.cfg.label_dir = cfg.override.label_dir task.load_dataset(cfg.dataset.gen_subset, task_cfg=saved_cfg.task) lms = [None] # Optimize ensemble for generation for model in chain(models, lms): if model is None: continue if cfg.common.fp16: model.half() if use_cuda and not cfg.distributed_training.pipeline_model_parallel: model.cuda() model.prepare_for_inference_(cfg) # Load dataset (possibly sharded) itr = task.get_batch_iterator( dataset=task.dataset(cfg.dataset.gen_subset), max_tokens=cfg.dataset.max_tokens, max_sentences=cfg.dataset.batch_size, max_positions=utils.resolve_max_positions( task.max_positions(), *[m.max_positions() for m in models] ), ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test, required_batch_size_multiple=cfg.dataset.required_batch_size_multiple, seed=cfg.common.seed, num_shards=cfg.distributed_training.distributed_world_size, shard_id=cfg.distributed_training.distributed_rank, num_workers=cfg.dataset.num_workers, data_buffer_size=cfg.dataset.data_buffer_size, ).next_epoch_itr(shuffle=False) progress = progress_bar.progress_bar( itr, log_format=cfg.common.log_format, log_interval=cfg.common.log_interval, default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"), ) # Initialize generator if cfg.generation.match_source_len: logger.warning( "The option match_source_len is not applicable to speech recognition. Ignoring it." ) gen_timer = StopwatchMeter() extra_gen_cls_kwargs = { "lm_model": lms[0], "lm_weight": cfg.generation.lm_weight, } cfg.generation.score_reference = False # save_attention_plot = cfg.generation.print_alignment is not None cfg.generation.print_alignment = None # generator = task.build_generator( models, cfg.generation, extra_gen_cls_kwargs=extra_gen_cls_kwargs ) def decode_fn(x): symbols_ignore = get_symbols_to_strip_from_output(generator) symbols_ignore.add(dictionary.pad()) if hasattr(task.datasets[cfg.dataset.gen_subset].label_processors[0], 'decode'): return task.datasets[cfg.dataset.gen_subset].label_processors[0].decode(x, symbols_ignore) chars = dictionary.string(x, extra_symbols_to_ignore=symbols_ignore) words = " ".join("".join(chars.split()).replace('|', ' ').split()) return words num_sentences = 0 has_target = True wps_meter = TimeMeter() result_dict = {'utt_id': [], 'ref': [], 'hypo': []} for sample in progress: sample = utils.move_to_cuda(sample) if use_cuda else sample if "net_input" not in sample: continue prefix_tokens = None if cfg.generation.prefix_size > 0: prefix_tokens = sample["target"][:, : cfg.generation.prefix_size] constraints = None if "constraints" in sample: constraints = sample["constraints"] gen_timer.start() hypos = task.inference_step( generator, models, sample, prefix_tokens=prefix_tokens, constraints=constraints, ) num_generated_tokens = sum(len(h[0]["tokens"]) for h in hypos) gen_timer.stop(num_generated_tokens) for i in range(len(sample["id"])): result_dict['utt_id'].append(sample['utt_id'][i]) ref_sent = decode_fn(sample['target'][i].int().cpu()) result_dict['ref'].append(ref_sent) best_hypo = hypos[i][0]['tokens'].int().cpu() hypo_str = decode_fn(best_hypo) result_dict['hypo'].append(hypo_str) logger.info(f"\nREF:{ref_sent}\nHYP:{hypo_str}\n") wps_meter.update(num_generated_tokens) progress.log({"wps": round(wps_meter.avg)}) num_sentences += sample["nsentences"] if "nsentences" in sample else sample["id"].numel() logger.info("NOTE: hypothesis and token scores are output in base 2") logger.info("Recognized {:,} utterances ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)".format( num_sentences, gen_timer.n, gen_timer.sum, num_sentences / gen_timer.sum, 1. / gen_timer.avg)) yaml_str = OmegaConf.to_yaml(cfg.generation) fid = int(hashlib.md5(yaml_str.encode("utf-8")).hexdigest(), 16) fid = fid % 1000000 result_fn = f"{cfg.common_eval.results_path}/hypo-{fid}.json" json.dump(result_dict, open(result_fn, 'w'), indent=4) n_err, n_total = 0, 0 assert len(result_dict['hypo']) == len(result_dict['ref']) for hypo, ref in zip(result_dict['hypo'], result_dict['ref']): hypo, ref = hypo.strip().split(), ref.strip().split() n_err += editdistance.eval(hypo, ref) n_total += len(ref) wer = 100 * n_err / n_total wer_fn = f"{cfg.common_eval.results_path}/wer.{fid}" with open(wer_fn, "w") as fo: fo.write(f"WER: {wer}\n") fo.write(f"err / num_ref_words = {n_err} / {n_total}\n\n") fo.write(f"{yaml_str}") logger.info(f"WER: {wer}%") return @hydra.main(config_path=config_path, config_name="infer") def hydra_main(cfg: InferConfig) -> Union[float, Tuple[float, Optional[float]]]: container = OmegaConf.to_container(cfg, resolve=True, enum_to_str=True) cfg = OmegaConf.create(container) OmegaConf.set_struct(cfg, True) if cfg.common.reset_logging: reset_logging() wer = float("inf") try: if cfg.common.profile: with torch.cuda.profiler.profile(): with torch.autograd.profiler.emit_nvtx(): distributed_utils.call_main(cfg, main) else: distributed_utils.call_main(cfg, main) except BaseException as e: # pylint: disable=broad-except if not cfg.common.suppress_crashes: raise else: logger.error("Crashed! %s", str(e)) return def cli_main() -> None: try: from hydra._internal.utils import ( get_args, ) # pylint: disable=import-outside-toplevel cfg_name = get_args().config_name or "infer" except ImportError: logger.warning("Failed to get config name from hydra args") cfg_name = "infer" cs = ConfigStore.instance() cs.store(name=cfg_name, node=InferConfig) for k in InferConfig.__dataclass_fields__: if is_dataclass(InferConfig.__dataclass_fields__[k].type): v = InferConfig.__dataclass_fields__[k].default cs.store(name=k, node=v) hydra_main() # pylint: disable=no-value-for-parameter if __name__ == "__main__": cli_main()
av_hubert-main
avhubert/infer_s2s.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from argparse import Namespace import contextlib import copy import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from dataclasses import dataclass, field from omegaconf import MISSING, II, open_dict from typing import Any, Optional from fairseq import checkpoint_utils, tasks, utils from fairseq.dataclass import FairseqDataclass from fairseq.dataclass.utils import convert_namespace_to_omegaconf from fairseq.tasks import FairseqTask from fairseq.models import ( BaseFairseqModel, FairseqEncoder, FairseqEncoderDecoderModel, FairseqIncrementalDecoder, register_model, ) # from fairseq.models.wav2vec.wav2vec2 import MASKING_DISTRIBUTION_CHOICES from fairseq.modules import ( LayerNorm, PositionalEmbedding, TransformerDecoderLayer, ) class TransformerDecoder(FairseqIncrementalDecoder): """ Transformer decoder consisting of *args.decoder_layers* layers. Each layer is a :class:`TransformerDecoderLayer`. Args: args (argparse.Namespace): parsed command-line arguments dictionary (~fairseq.data.Dictionary): decoding dictionary embed_tokens (torch.nn.Embedding): output embedding no_encoder_attn (bool, optional): whether to attend to encoder outputs (default: False). """ def __init__( self, cfg, dictionary, embed_tokens, no_encoder_attn=False, ): super().__init__(dictionary) self.dropout = cfg.decoder_dropout self.share_input_output_embed = cfg.share_decoder_input_output_embed input_embed_dim = embed_tokens.embedding_dim embed_dim = cfg.decoder_embed_dim self.output_embed_dim = cfg.decoder_embed_dim self.layerdrop = cfg.decoder_layerdrop padding_idx = embed_tokens.padding_idx self.max_target_positions = cfg.max_target_positions self.embed_tokens = embed_tokens # self.embed_scale = math.sqrt(embed_dim) # todo: try with input_embed_dim self.embed_scale = 1.0 if cfg.no_scale_embedding else math.sqrt(embed_dim) self.project_in_dim = ( Linear(input_embed_dim, embed_dim, bias=False) if embed_dim != input_embed_dim else None ) self.embed_positions = ( PositionalEmbedding( cfg.max_target_positions, embed_dim, padding_idx, learned=cfg.decoder_learned_pos, ) if not cfg.no_token_positional_embeddings else None ) # TODO: update this when transformer gets converted to dataclass configs transformer_cfg = copy.deepcopy(cfg) # with open_dict(transformer_cfg): transformer_cfg.dropout = transformer_cfg.decoder_dropout transformer_cfg.attention_dropout = ( transformer_cfg.decoder_attention_dropout ) transformer_cfg.activation_dropout = ( transformer_cfg.decoder_activation_dropout ) self.layers = nn.ModuleList([]) self.layers.extend( [ TransformerDecoderLayer(transformer_cfg, no_encoder_attn) for _ in range(transformer_cfg.decoder_layers) ] ) if not self.share_input_output_embed: self.embed_out = nn.Parameter( torch.Tensor(len(dictionary), self.output_embed_dim) ) nn.init.normal_(self.embed_out, mean=0, std=self.output_embed_dim ** -0.5) if transformer_cfg.decoder_normalize_before: self.layer_norm = LayerNorm(embed_dim) else: self.layer_norm = None def forward( self, prev_output_tokens, encoder_out=None, incremental_state=None, **unused ): """ Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing encoder_out (Tensor, optional): output from the encoder, used for encoder-side attention incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ prev_output_tokens = prev_output_tokens.long() x, extra = self.extract_features( prev_output_tokens, encoder_out, incremental_state ) x = self.output_layer(x) return x, extra def extract_features( self, prev_output_tokens, encoder_out=None, incremental_state=None, **unused ): """ Similar to *forward* but only return features. Returns: tuple: - the decoder's features of shape `(batch, tgt_len, embed_dim)` - a dictionary with any model-specific outputs """ # embed positions positions = ( self.embed_positions( prev_output_tokens, incremental_state=incremental_state ) if self.embed_positions is not None else None ) if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] # embed tokens and positions x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) attn = None inner_states = [x] # decoder layers for layer in self.layers: dropout_probability = np.random.random() if not self.training or (dropout_probability > self.layerdrop): x, attn, _ = layer( x, encoder_out["encoder_out"] if encoder_out is not None else None, encoder_out["padding_mask"] if encoder_out is not None else None, incremental_state, self_attn_mask=self.buffered_future_mask(x) if incremental_state is None else None, ) inner_states.append(x) if self.layer_norm: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) return x, {"attn": attn, "inner_states": inner_states} def output_layer(self, features, **kwargs): """Project features to the vocabulary size.""" # project back to size of vocabulary emb_mat = self.embed_tokens.weight if self.share_input_output_embed else self.embed_out return torch.matmul(features, emb_mat.transpose(0, 1)) # if self.share_input_output_embed: # return F.linear(features, self.embed_tokens.weight) # else: # return F.linear(features, self.embed_out) def max_positions(self): """Maximum output length supported by the decoder.""" if self.embed_positions is None: return self.max_target_positions return min(self.max_target_positions, self.embed_positions.max_positions) def buffered_future_mask(self, tensor): dim = tensor.size(0) if ( not hasattr(self, "_future_mask") or self._future_mask is None or self._future_mask.device != tensor.device or self._future_mask.size(0) < dim ): self._future_mask = torch.triu( utils.fill_with_neg_inf(tensor.new(dim, dim)), 1 ) return self._future_mask[:dim, :dim] def upgrade_state_dict_named(self, state_dict, name): return state_dict
av_hubert-main
avhubert/decoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import logging import os, glob import sys from typing import Dict, List, Optional, Tuple import numpy as np from dataclasses import dataclass, field from fairseq import metrics, search from fairseq.data import Dictionary, encoders from fairseq.dataclass.configs import FairseqDataclass from fairseq.tasks import register_task from fairseq.tasks.fairseq_task import FairseqTask from omegaconf import MISSING, II import numpy as np from argparse import Namespace DBG=True if len(sys.argv) == 1 else False if DBG: from hubert_dataset import AVHubertDataset from sequence_generator import SequenceGenerator else: from .hubert_dataset import AVHubertDataset from .sequence_generator import SequenceGenerator logger = logging.getLogger(__name__) class LabelEncoder(object): def __init__(self, dictionary: Dictionary) -> None: self.dictionary = dictionary def __call__(self, label: str) -> List[str]: return self.dictionary.encode_line( label, append_eos=False, add_if_not_exist=False, ) class LabelEncoderS2SToken(object): def __init__(self, dictionary: Dictionary, bpe_tokenizer) -> None: self.bpe_tokenizer = bpe_tokenizer self.dictionary = dictionary def __call__(self, label: str) -> List[str]: label = self.bpe_tokenizer.encode(label.lower()) return self.dictionary.encode_line( label, append_eos=True, add_if_not_exist=False, ).long() def decode(self, tok, symbols_ignore=None): tok = self.dictionary.string(tok, extra_symbols_to_ignore=symbols_ignore) if self.bpe_tokenizer: tok = self.bpe_tokenizer.decode(tok) return tok @dataclass class AVHubertPretrainingConfig(FairseqDataclass): data: str = field( default=MISSING, metadata={"help": "path to data directory"} ) labels: List[str] = field( default_factory=lambda: ["ltr"], metadata={ "help": ( "extension of the label files to load, frame-level labels for" " pre-training, and sequence-level label for fine-tuning" ) }, ) label_dir: Optional[str] = field( default=None, metadata={ "help": "if set, looks for labels in this directory instead", }, ) label_rate: int = field( default=-1, metadata={"help": "label frame rate. -1 for sequence label"}, ) sample_rate: int = field( default=16_000, metadata={ "help": "target sample rate. audio files will be up/down " "sampled to this rate" }, ) normalize: bool = field( default=False, metadata={ "help": "if set, normalizes input to have 0 mean and unit variance" }, ) enable_padding: bool = field( default=False, metadata={"help": "pad shorter samples instead of cropping"}, ) max_sample_size: Optional[int] = field( default=None, metadata={"help": "max sample size to keep in training"}, ) min_sample_size: Optional[int] = field( default=None, metadata={"help": "min sample size to keep in training"}, ) max_trim_sample_size: Optional[int] = field( default=II("task.max_sample_size"), metadata={"help": "max sample size to trim to for batching"}, ) single_target: Optional[bool] = field( default=False, metadata={ "help": "if set, AddTargetDatasets outputs same keys " "as AddTargetDataset" }, ) random_crop: Optional[bool] = field( default=True, metadata={"help": "always crop from the beginning if false"}, ) pad_audio: Optional[bool] = field( default=False, metadata={"help": "pad audio to the longest one in the batch if true"}, ) pdb: Optional[bool] = field( default=False, metadata={"help": "pdb"}, ) stack_order_audio: int = field( default=1, metadata={"help": "concatenate n consecutive audio frames for one step"}, ) skip_verify: Optional[bool] = field( default=False, metadata={"help": "skip verifying label-audio alignment"}, ) image_aug: bool = field(default=False, metadata={'help': 'image data augmentation'}) image_crop_size: int = field( default=88, metadata={"help": "image ROI size"}) image_mean: float = field( default=0.421, metadata={"help": "image mean"}) image_std: float = field( default=0.165, metadata={"help": "image std"}) modalities: Optional[List[str]] = field(default_factory=lambda: ["audio", "video"], metadata={'help': 'modalities to load'}) is_s2s: bool=field(default=False, metadata={'help': 'seq2seq fine-tuning only'}) tokenizer_bpe_name: Optional[str] = field(default=None, metadata={'help': 'tokenizer model name'}) tokenizer_bpe_model: Optional[str] = field(default=None, metadata={'help': 'tokenizer model path'}) noise_wav: Optional[str] = field(default=None, metadata={'help': 'manifest of noise wav files (one wav file path per line)'}) noise_prob: float = field(default=0, metadata={'help': 'noise probability'}) noise_snr: Optional[str] = field(default='0', metadata={'help': 'noise SNR in audio'}) noise_num: int = field(default=1, metadata={'help': 'number of noise wav files to mix'}) fine_tuning: bool = field(default=False, metadata={"help": "set to true if fine-tuning AV-Hubert"}) @register_task("av_hubert_pretraining", dataclass=AVHubertPretrainingConfig) class AVHubertPretrainingTask(FairseqTask): cfg: AVHubertPretrainingConfig def __init__( self, cfg: AVHubertPretrainingConfig, ) -> None: super().__init__(cfg) logger.info(f"current directory is {os.getcwd()}") logger.info(f"AVHubertPretrainingTask Config {cfg}") self.fine_tuning = cfg.fine_tuning if cfg.fine_tuning: self.state.add_factory("target_dictionary", self.load_dictionaries) if cfg.is_s2s: self.state.add_factory("s2s_tokenizer", self.load_tokenizer) else: self.state.add_factory("dictionaries", self.load_dictionaries) self.blank_symbol = "<s>" @property def source_dictionary(self) -> Optional[Dictionary]: return None # self._source_dictionary @property def target_dictionary(self) -> Optional[Dictionary]: return self.state.target_dictionary # self._target_dictionary @property def dictionaries(self) -> List[Dictionary]: return self.state.dictionaries def load_dictionaries(self): label_dir = self.cfg.data if self.cfg.label_dir is None else self.cfg.label_dir dictionaries = [ Dictionary.load(f"{label_dir}/dict.{label}.txt") for label in self.cfg.labels ] return dictionaries[0] if self.cfg.fine_tuning else dictionaries def load_tokenizer(self): bpe_args = Namespace(**{'bpe': self.cfg.tokenizer_bpe_name, f"{self.cfg.tokenizer_bpe_name}_model": self.cfg.tokenizer_bpe_model}) bpe_tokenizer = encoders.build_bpe(bpe_args) return bpe_tokenizer @property def s2s_tokenizer(self): return self.state.s2s_tokenizer @classmethod def setup_task( cls, cfg: AVHubertPretrainingConfig, **kwargs ) -> "AVHubertPretrainingTask": if cfg.pdb: import pdb pdb.set_trace() return cls(cfg) def get_label_dir(self) -> str: if self.cfg.label_dir is None: return self.cfg.data return self.cfg.label_dir def load_dataset(self, split: str, **kwargs) -> None: manifest = f"{self.cfg.data}/{split}.tsv" dictionaries = [self.target_dictionary] if self.fine_tuning else self.dictionaries pad_list = [dictionary.pad() for dictionary in dictionaries] eos_list = [dictionary.eos() for dictionary in dictionaries] if not self.cfg.is_s2s: procs = [LabelEncoder(dictionary) for dictionary in dictionaries] else: logger.info(f"Using tokenizer") bpe_tokenizer = self.s2s_tokenizer procs = [LabelEncoderS2SToken(dictionary, bpe_tokenizer) for dictionary in dictionaries] paths = [ f"{self.get_label_dir()}/{split}.{l}" for l in self.cfg.labels ] image_aug = self.cfg.image_aug if split == 'train' else False noise_fn, noise_snr = f"{self.cfg.noise_wav}/{split}.tsv" if self.cfg.noise_wav is not None else None, eval(self.cfg.noise_snr) noise_num = self.cfg.noise_num # self.datasets[split] = AVHubertDataset( manifest, sample_rate=self.cfg.sample_rate, label_paths=paths, label_rates=self.cfg.label_rate, pad_list=pad_list, eos_list=eos_list, label_processors=procs, max_keep_sample_size=self.cfg.max_sample_size, min_keep_sample_size=self.cfg.min_sample_size, max_sample_size=self.cfg.max_trim_sample_size, pad_audio=self.cfg.pad_audio, normalize=self.cfg.normalize, store_labels=False, random_crop=self.cfg.random_crop, single_target=self.cfg.single_target, stack_order_audio=self.cfg.stack_order_audio, skip_verify=self.cfg.skip_verify, image_mean=self.cfg.image_mean, image_std=self.cfg.image_std, image_crop_size=self.cfg.image_crop_size, image_aug=image_aug, modalities=self.cfg.modalities, is_s2s=self.cfg.is_s2s, noise_fn=noise_fn, noise_prob=self.cfg.noise_prob, noise_snr=noise_snr, noise_num=noise_num ) def max_positions(self) -> Tuple[int, int]: return (sys.maxsize, sys.maxsize) def filter_indices_by_size( self, indices: np.array, *args, **kwargs ) -> np.array: return indices def build_generator( self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None, prefix_allowed_tokens_fn=None, ): """ Build a :class:`~fairseq.SequenceGenerator` instance for this task. Args: models (List[~fairseq.models.FairseqModel]): ensemble of models args (fairseq.dataclass.configs.GenerationConfig): configuration object (dataclass) for generation extra_gen_cls_kwargs (Dict[str, Any]): extra options to pass through to SequenceGenerator prefix_allowed_tokens_fn (Callable[[int, torch.Tensor], List[int]]): If provided, this function constrains the beam search to allowed tokens only at each step. The provided function should take 2 arguments: the batch ID (`batch_id: int`) and a unidimensional tensor of token ids (`inputs_ids: torch.Tensor`). It has to return a `List[int]` with the allowed tokens for the next generation step conditioned on the previously generated tokens (`inputs_ids`) and the batch ID (`batch_id`). This argument is useful for constrained generation conditioned on the prefix, as described in "Autoregressive Entity Retrieval" (https://arxiv.org/abs/2010.00904) and https://github.com/facebookresearch/GENRE. """ if getattr(args, "score_reference", False): from fairseq.sequence_scorer import SequenceScorer return SequenceScorer( self.target_dictionary, compute_alignment=getattr(args, "print_alignment", False), ) # Choose search strategy. Defaults to Beam Search. sampling = getattr(args, "sampling", False) sampling_topk = getattr(args, "sampling_topk", -1) sampling_topp = getattr(args, "sampling_topp", -1.0) diverse_beam_groups = getattr(args, "diverse_beam_groups", -1) diverse_beam_strength = getattr(args, "diverse_beam_strength", 0.5) match_source_len = getattr(args, "match_source_len", False) diversity_rate = getattr(args, "diversity_rate", -1) constrained = getattr(args, "constraints", False) if prefix_allowed_tokens_fn is None: prefix_allowed_tokens_fn = getattr(args, "prefix_allowed_tokens_fn", None) if ( sum( int(cond) for cond in [ sampling, diverse_beam_groups > 0, match_source_len, diversity_rate > 0, ] ) > 1 ): raise ValueError("Provided Search parameters are mutually exclusive.") assert sampling_topk < 0 or sampling, "--sampling-topk requires --sampling" assert sampling_topp < 0 or sampling, "--sampling-topp requires --sampling" if sampling: search_strategy = search.Sampling( self.target_dictionary, sampling_topk, sampling_topp ) elif diverse_beam_groups > 0: search_strategy = search.DiverseBeamSearch( self.target_dictionary, diverse_beam_groups, diverse_beam_strength ) elif match_source_len: # this is useful for tagging applications where the output # length should match the input length, so we hardcode the # length constraints for simplicity search_strategy = search.LengthConstrainedBeamSearch( self.target_dictionary, min_len_a=1, min_len_b=0, max_len_a=1, max_len_b=0, ) elif diversity_rate > -1: search_strategy = search.DiverseSiblingsSearch( self.target_dictionary, diversity_rate ) elif constrained: search_strategy = search.LexicallyConstrainedBeamSearch( self.target_dictionary, args.constraints ) elif prefix_allowed_tokens_fn: search_strategy = search.PrefixConstrainedBeamSearch( self.target_dictionary, prefix_allowed_tokens_fn ) else: search_strategy = search.BeamSearch(self.target_dictionary) extra_gen_cls_kwargs = extra_gen_cls_kwargs or {} if seq_gen_cls is None: if getattr(args, "print_alignment", False): seq_gen_cls = SequenceGeneratorWithAlignment extra_gen_cls_kwargs["print_alignment"] = args.print_alignment else: seq_gen_cls = SequenceGenerator return seq_gen_cls( models, self.target_dictionary, beam_size=getattr(args, "beam", 5), max_len_a=getattr(args, "max_len_a", 0), max_len_b=getattr(args, "max_len_b", 200), min_len=getattr(args, "min_len", 1), normalize_scores=(not getattr(args, "unnormalized", False)), len_penalty=getattr(args, "lenpen", 1), unk_penalty=getattr(args, "unkpen", 0), temperature=getattr(args, "temperature", 1.0), match_source_len=getattr(args, "match_source_len", False), no_repeat_ngram_size=getattr(args, "no_repeat_ngram_size", 0), search_strategy=search_strategy, **extra_gen_cls_kwargs, )
av_hubert-main
avhubert/hubert_pretraining.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .hubert import * # noqa from .hubert_asr import * # noqa from .hubert_dataset import * from .hubert_pretraining import * from .hubert_criterion import *
av_hubert-main
avhubert/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math from typing import Dict, List, Optional import sys import torch import torch.nn as nn from fairseq import search, utils from fairseq.data import data_utils from fairseq.models import FairseqIncrementalDecoder from torch import Tensor from fairseq.ngram_repeat_block import NGramRepeatBlock class SequenceGenerator(nn.Module): def __init__( self, models, tgt_dict, beam_size=1, max_len_a=0, max_len_b=200, max_len=0, min_len=1, normalize_scores=True, len_penalty=1.0, unk_penalty=0.0, temperature=1.0, match_source_len=False, no_repeat_ngram_size=0, search_strategy=None, eos=None, symbols_to_strip_from_output=None, lm_model=None, lm_weight=1.0, ): """Generates translations of a given source sentence. Args: models (List[~fairseq.models.FairseqModel]): ensemble of models, currently support fairseq.models.TransformerModel for scripting beam_size (int, optional): beam width (default: 1) max_len_a/b (int, optional): generate sequences of maximum length ax + b, where x is the source length max_len (int, optional): the maximum length of the generated output (not including end-of-sentence) min_len (int, optional): the minimum length of the generated output (not including end-of-sentence) normalize_scores (bool, optional): normalize scores by the length of the output (default: True) len_penalty (float, optional): length penalty, where <1.0 favors shorter, >1.0 favors longer sentences (default: 1.0) unk_penalty (float, optional): unknown word penalty, where <0 produces more unks, >0 produces fewer (default: 0.0) temperature (float, optional): temperature, where values >1.0 produce more uniform samples and values <1.0 produce sharper samples (default: 1.0) match_source_len (bool, optional): outputs should match the source length (default: False) """ super().__init__() if isinstance(models, EnsembleModel): self.model = models else: self.model = EnsembleModel(models) self.tgt_dict = tgt_dict self.pad = tgt_dict.pad() self.unk = tgt_dict.unk() self.eos = tgt_dict.eos() if eos is None else eos self.symbols_to_strip_from_output = ( symbols_to_strip_from_output.union({self.eos}) if symbols_to_strip_from_output is not None else {self.eos} ) self.vocab_size = len(tgt_dict) self.beam_size = beam_size # the max beam size is the dictionary size - 1, since we never select pad self.beam_size = min(beam_size, self.vocab_size - 1) self.max_len_a = max_len_a self.max_len_b = max_len_b self.min_len = min_len self.max_len = max_len or self.model.max_decoder_positions() self.normalize_scores = normalize_scores self.len_penalty = len_penalty self.unk_penalty = unk_penalty self.temperature = temperature self.match_source_len = match_source_len if no_repeat_ngram_size > 0: self.repeat_ngram_blocker = NGramRepeatBlock(no_repeat_ngram_size) else: self.repeat_ngram_blocker = None assert temperature > 0, "--temperature must be greater than 0" self.search = ( search.BeamSearch(tgt_dict) if search_strategy is None else search_strategy ) # We only need to set src_lengths in LengthConstrainedBeamSearch. # As a module attribute, setting it would break in multithread # settings when the model is shared. self.should_set_src_lengths = ( hasattr(self.search, "needs_src_lengths") and self.search.needs_src_lengths ) self.model.eval() self.lm_model = lm_model self.lm_weight = lm_weight if self.lm_model is not None: self.lm_model.eval() def cuda(self): self.model.cuda() return self @torch.no_grad() def forward( self, sample: Dict[str, Dict[str, Tensor]], prefix_tokens: Optional[Tensor] = None, bos_token: Optional[int] = None, ): """Generate a batch of translations. Args: sample (dict): batch prefix_tokens (torch.LongTensor, optional): force decoder to begin with these tokens bos_token (int, optional): beginning of sentence token (default: self.eos) """ return self._generate(sample, prefix_tokens, bos_token=bos_token) # TODO(myleott): unused, deprecate after pytorch-translate migration def generate_batched_itr(self, data_itr, beam_size=None, cuda=False, timer=None): """Iterate over a batched dataset and yield individual translations. Args: cuda (bool, optional): use GPU for generation timer (StopwatchMeter, optional): time generations """ for sample in data_itr: s = utils.move_to_cuda(sample) if cuda else sample if "net_input" not in s: continue input = s["net_input"] # model.forward normally channels prev_output_tokens into the decoder # separately, but SequenceGenerator directly calls model.encoder encoder_input = { k: v for k, v in input.items() if k != "prev_output_tokens" } if timer is not None: timer.start() with torch.no_grad(): hypos = self.generate(encoder_input) if timer is not None: timer.stop(sum(len(h[0]["tokens"]) for h in hypos)) for i, id in enumerate(s["id"].data): # remove padding src = utils.strip_pad(input["src_tokens"].data[i, :], self.pad) ref = ( utils.strip_pad(s["target"].data[i, :], self.pad) if s["target"] is not None else None ) yield id, src, ref, hypos[i] @torch.no_grad() def generate(self, models, sample: Dict[str, Dict[str, Tensor]], **kwargs) -> List[List[Dict[str, Tensor]]]: """Generate translations. Match the api of other fairseq generators. Args: models (List[~fairseq.models.FairseqModel]): ensemble of models sample (dict): batch prefix_tokens (torch.LongTensor, optional): force decoder to begin with these tokens constraints (torch.LongTensor, optional): force decoder to include the list of constraints bos_token (int, optional): beginning of sentence token (default: self.eos) """ return self._generate(sample, **kwargs) def _generate( self, sample: Dict[str, Dict[str, Tensor]], prefix_tokens: Optional[Tensor] = None, constraints: Optional[Tensor] = None, bos_token: Optional[int] = None, ): incremental_states = torch.jit.annotate( List[Dict[str, Dict[str, Optional[Tensor]]]], [ torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {}) for i in range(self.model.models_size) ], ) net_input = sample["net_input"] if "src_tokens" in net_input: src_tokens = net_input["src_tokens"] # length of the source text being the character length except EndOfSentence and pad src_lengths = ( (src_tokens.ne(self.eos) & src_tokens.ne(self.pad)).long().sum(dim=1) ) elif "source" in net_input: src_tokens = net_input["source"] src_lengths = ( net_input["padding_mask"].size(-1) - net_input["padding_mask"].sum(-1) if net_input["padding_mask"] is not None else torch.tensor(src_tokens.size(-1)).to(src_tokens) ) elif "features" in net_input: src_tokens = net_input["features"] src_lengths = ( net_input["padding_mask"].size(-1) - net_input["padding_mask"].sum(-1) if net_input["padding_mask"] is not None else torch.tensor(src_tokens.size(-1)).to(src_tokens) ) else: raise Exception("expected src_tokens or source in net input. input keys: " + str(net_input.keys())) # bsz: total number of sentences in beam # Note that src_tokens may have more than 2 dimensions (i.e. audio features) if src_tokens['audio'] is not None: bsz, src_len = src_tokens['audio'].size()[:2] src_device = src_tokens['audio'].device else: bsz, src_len = net_input['padding_mask'].size() src_device = src_tokens['video'].device beam_size = self.beam_size if constraints is not None and not self.search.supports_constraints: raise NotImplementedError( "Target-side constraints were provided, but search method doesn't support them" ) # Initialize constraints, when active self.search.init_constraints(constraints, beam_size) max_len: int = -1 if self.match_source_len: max_len = src_lengths.max().item() else: max_len = min( int(self.max_len_a * src_len + self.max_len_b), self.max_len - 1, ) assert ( self.min_len <= max_len ), "min_len cannot be larger than max_len, please adjust these!" # compute the encoder output for each beam encoder_outs = self.model.forward_encoder(net_input) # placeholder of indices for bsz * beam_size to hold tokens and accumulative scores new_order = torch.arange(bsz).view(-1, 1).repeat(1, beam_size).view(-1) new_order = new_order.to(src_device).long() encoder_outs = self.model.reorder_encoder_out(encoder_outs, new_order) # ensure encoder_outs is a List. assert encoder_outs is not None # initialize buffers scores = ( torch.zeros(bsz * beam_size, max_len + 1).to(src_device).float() ) # +1 for eos; pad is never chosen for scoring tokens = ( torch.zeros(bsz * beam_size, max_len + 2) .to(src_device) .long() .fill_(self.pad) ) # +2 for eos and pad tokens[:, 0] = self.eos if bos_token is None else bos_token attn: Optional[Tensor] = None # A list that indicates candidates that should be ignored. # For example, suppose we're sampling and have already finalized 2/5 # samples. Then cands_to_ignore would mark 2 positions as being ignored, # so that we only finalize the remaining 3 samples. cands_to_ignore = ( torch.zeros(bsz, beam_size).to(src_device).eq(-1) ) # forward and backward-compatible False mask # list of completed sentences finalized = torch.jit.annotate( List[List[Dict[str, Tensor]]], [torch.jit.annotate(List[Dict[str, Tensor]], []) for i in range(bsz)], ) # contains lists of dictionaries of infomation about the hypothesis being finalized at each step # a boolean array indicating if the sentence at the index is finished or not finished = [False for i in range(bsz)] num_remaining_sent = bsz # number of sentences remaining # number of candidate hypos per step cand_size = 2 * beam_size # 2 x beam size in case half are EOS # offset arrays for converting between different indexing schemes bbsz_offsets = ( (torch.arange(0, bsz) * beam_size) .unsqueeze(1) .type_as(tokens) .to(src_device) ) cand_offsets = torch.arange(0, cand_size).type_as(tokens).to(src_device) reorder_state: Optional[Tensor] = None batch_idxs: Optional[Tensor] = None original_batch_idxs: Optional[Tensor] = None if "id" in sample and isinstance(sample["id"], Tensor): original_batch_idxs = sample["id"] else: original_batch_idxs = torch.arange(0, bsz).type_as(tokens) for step in range(max_len + 1): # one extra step for EOS marker # reorder decoder internal states based on the prev choice of beams if reorder_state is not None: if batch_idxs is not None: # update beam indices to take into account removed sentences corr = batch_idxs - torch.arange(batch_idxs.numel()).type_as( batch_idxs ) reorder_state.view(-1, beam_size).add_( corr.unsqueeze(-1) * beam_size ) original_batch_idxs = original_batch_idxs[batch_idxs] self.model.reorder_incremental_state(incremental_states, reorder_state) encoder_outs = self.model.reorder_encoder_out( encoder_outs, reorder_state ) lprobs, avg_attn_scores = self.model.forward_decoder( tokens[:, : step + 1], encoder_outs, incremental_states, self.temperature, ) if self.lm_model is not None: lm_out = self.lm_model(tokens[:, : step + 1]) probs = self.lm_model.get_normalized_probs( lm_out, log_probs=True, sample=None ) probs = probs[:, -1, :] * self.lm_weight lprobs += probs lprobs[lprobs != lprobs] = torch.tensor(-math.inf).to(lprobs) lprobs[:, self.pad] = -math.inf # never select pad lprobs[:, self.unk] -= self.unk_penalty # apply unk penalty # handle max length constraint if step >= max_len: lprobs[:, : self.eos] = -math.inf lprobs[:, self.eos + 1 :] = -math.inf # handle prefix tokens (possibly with different lengths) if ( prefix_tokens is not None and step < prefix_tokens.size(1) and step < max_len ): lprobs, tokens, scores = self._prefix_tokens( step, lprobs, scores, tokens, prefix_tokens, beam_size ) elif step < self.min_len: # minimum length constraint (does not apply if using prefix_tokens) lprobs[:, self.eos] = -math.inf # Record attention scores, only support avg_attn_scores is a Tensor if avg_attn_scores is not None: if attn is None: attn = torch.empty( bsz * beam_size, avg_attn_scores.size(1), max_len + 2 ).to(scores) attn[:, :, step + 1].copy_(avg_attn_scores) scores = scores.type_as(lprobs) eos_bbsz_idx = torch.empty(0).to( tokens ) # indices of hypothesis ending with eos (finished sentences) eos_scores = torch.empty(0).to( scores ) # scores of hypothesis ending with eos (finished sentences) if self.should_set_src_lengths: self.search.set_src_lengths(src_lengths) if self.repeat_ngram_blocker is not None: lprobs = self.repeat_ngram_blocker(tokens, lprobs, bsz, beam_size, step) # Shape: (batch, cand_size) cand_scores, cand_indices, cand_beams = self.search.step( step, lprobs.view(bsz, -1, self.vocab_size), scores.view(bsz, beam_size, -1)[:, :, :step], tokens[:, : step + 1], original_batch_idxs, ) # cand_bbsz_idx contains beam indices for the top candidate # hypotheses, with a range of values: [0, bsz*beam_size), # and dimensions: [bsz, cand_size] cand_bbsz_idx = cand_beams.add(bbsz_offsets) # finalize hypotheses that end in eos # Shape of eos_mask: (batch size, beam size) eos_mask = cand_indices.eq(self.eos) & cand_scores.ne(-math.inf) eos_mask[:, :beam_size][cands_to_ignore] = torch.tensor(0).to(eos_mask) # only consider eos when it's among the top beam_size indices # Now we know what beam item(s) to finish # Shape: 1d list of absolute-numbered eos_bbsz_idx = torch.masked_select( cand_bbsz_idx[:, :beam_size], mask=eos_mask[:, :beam_size] ) finalized_sents: List[int] = [] if eos_bbsz_idx.numel() > 0: eos_scores = torch.masked_select( cand_scores[:, :beam_size], mask=eos_mask[:, :beam_size] ) finalized_sents = self.finalize_hypos( step, eos_bbsz_idx, eos_scores, tokens, scores, finalized, finished, beam_size, attn, src_lengths, max_len, ) num_remaining_sent -= len(finalized_sents) assert num_remaining_sent >= 0 if num_remaining_sent == 0: break if self.search.stop_on_max_len and step >= max_len: break assert step < max_len, f"{step} < {max_len}" # Remove finalized sentences (ones for which {beam_size} # finished hypotheses have been generated) from the batch. if len(finalized_sents) > 0: new_bsz = bsz - len(finalized_sents) # construct batch_idxs which holds indices of batches to keep for the next pass batch_mask = torch.ones( bsz, dtype=torch.bool, device=cand_indices.device ) batch_mask[finalized_sents] = False # TODO replace `nonzero(as_tuple=False)` after TorchScript supports it batch_idxs = torch.arange( bsz, device=cand_indices.device ).masked_select(batch_mask) # Choose the subset of the hypothesized constraints that will continue self.search.prune_sentences(batch_idxs) eos_mask = eos_mask[batch_idxs] cand_beams = cand_beams[batch_idxs] bbsz_offsets.resize_(new_bsz, 1) cand_bbsz_idx = cand_beams.add(bbsz_offsets) cand_scores = cand_scores[batch_idxs] cand_indices = cand_indices[batch_idxs] if prefix_tokens is not None: prefix_tokens = prefix_tokens[batch_idxs] src_lengths = src_lengths[batch_idxs] cands_to_ignore = cands_to_ignore[batch_idxs] scores = scores.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) tokens = tokens.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) if attn is not None: attn = attn.view(bsz, -1)[batch_idxs].view( new_bsz * beam_size, attn.size(1), -1 ) bsz = new_bsz else: batch_idxs = None # Set active_mask so that values > cand_size indicate eos hypos # and values < cand_size indicate candidate active hypos. # After, the min values per row are the top candidate active hypos # Rewrite the operator since the element wise or is not supported in torchscript. eos_mask[:, :beam_size] = ~((~cands_to_ignore) & (~eos_mask[:, :beam_size])) active_mask = torch.add( eos_mask.type_as(cand_offsets) * cand_size, cand_offsets[: eos_mask.size(1)], ) # get the top beam_size active hypotheses, which are just # the hypos with the smallest values in active_mask. # {active_hypos} indicates which {beam_size} hypotheses # from the list of {2 * beam_size} candidates were # selected. Shapes: (batch size, beam size) new_cands_to_ignore, active_hypos = torch.topk( active_mask, k=beam_size, dim=1, largest=False ) # update cands_to_ignore to ignore any finalized hypos. cands_to_ignore = new_cands_to_ignore.ge(cand_size)[:, :beam_size] # Make sure there is at least one active item for each sentence in the batch. assert (~cands_to_ignore).any(dim=1).all() # update cands_to_ignore to ignore any finalized hypos # {active_bbsz_idx} denotes which beam number is continued for each new hypothesis (a beam # can be selected more than once). active_bbsz_idx = torch.gather(cand_bbsz_idx, dim=1, index=active_hypos) active_scores = torch.gather(cand_scores, dim=1, index=active_hypos) active_bbsz_idx = active_bbsz_idx.view(-1) active_scores = active_scores.view(-1) # copy tokens and scores for active hypotheses # Set the tokens for each beam (can select the same row more than once) tokens[:, : step + 1] = torch.index_select( tokens[:, : step + 1], dim=0, index=active_bbsz_idx ) # Select the next token for each of them tokens.view(bsz, beam_size, -1)[:, :, step + 1] = torch.gather( cand_indices, dim=1, index=active_hypos ) if step > 0: scores[:, :step] = torch.index_select( scores[:, :step], dim=0, index=active_bbsz_idx ) scores.view(bsz, beam_size, -1)[:, :, step] = torch.gather( cand_scores, dim=1, index=active_hypos ) # Update constraints based on which candidates were selected for the next beam self.search.update_constraints(active_hypos) # copy attention for active hypotheses if attn is not None: attn[:, :, : step + 2] = torch.index_select( attn[:, :, : step + 2], dim=0, index=active_bbsz_idx ) # reorder incremental state in decoder reorder_state = active_bbsz_idx # sort by score descending for sent in range(len(finalized)): scores = torch.tensor( [float(elem["score"].item()) for elem in finalized[sent]] ) _, sorted_scores_indices = torch.sort(scores, descending=True) finalized[sent] = [finalized[sent][ssi] for ssi in sorted_scores_indices] finalized[sent] = torch.jit.annotate( List[Dict[str, Tensor]], finalized[sent] ) return finalized def _prefix_tokens( self, step: int, lprobs, scores, tokens, prefix_tokens, beam_size: int ): """Handle prefix tokens""" prefix_toks = prefix_tokens[:, step].unsqueeze(-1).repeat(1, beam_size).view(-1) prefix_lprobs = lprobs.gather(-1, prefix_toks.unsqueeze(-1)) prefix_mask = prefix_toks.ne(self.pad) lprobs[prefix_mask] = torch.tensor(-math.inf).to(lprobs) lprobs[prefix_mask] = lprobs[prefix_mask].scatter( -1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_lprobs[prefix_mask] ) # if prefix includes eos, then we should make sure tokens and # scores are the same across all beams eos_mask = prefix_toks.eq(self.eos) if eos_mask.any(): # validate that the first beam matches the prefix first_beam = tokens[eos_mask].view(-1, beam_size, tokens.size(-1))[ :, 0, 1 : step + 1 ] eos_mask_batch_dim = eos_mask.view(-1, beam_size)[:, 0] target_prefix = prefix_tokens[eos_mask_batch_dim][:, :step] assert (first_beam == target_prefix).all() # copy tokens, scores and lprobs from the first beam to all beams tokens = self.replicate_first_beam(tokens, eos_mask_batch_dim, beam_size) scores = self.replicate_first_beam(scores, eos_mask_batch_dim, beam_size) lprobs = self.replicate_first_beam(lprobs, eos_mask_batch_dim, beam_size) return lprobs, tokens, scores def replicate_first_beam(self, tensor, mask, beam_size: int): tensor = tensor.view(-1, beam_size, tensor.size(-1)) tensor[mask] = tensor[mask][:, :1, :] return tensor.view(-1, tensor.size(-1)) def finalize_hypos( self, step: int, bbsz_idx, eos_scores, tokens, scores, finalized: List[List[Dict[str, Tensor]]], finished: List[bool], beam_size: int, attn: Optional[Tensor], src_lengths, max_len: int, ): """Finalize hypothesis, store finalized information in `finalized`, and change `finished` accordingly. A sentence is finalized when {beam_size} finished items have been collected for it. Returns number of sentences (not beam items) being finalized. These will be removed from the batch and not processed further. Args: bbsz_idx (Tensor): """ assert bbsz_idx.numel() == eos_scores.numel() # clone relevant token and attention tensors. # tokens is (batch * beam, max_len). So the index_select # gets the newly EOS rows, then selects cols 1..{step + 2} tokens_clone = tokens.index_select(0, bbsz_idx)[ :, 1 : step + 2 ] # skip the first index, which is EOS tokens_clone[:, step] = self.eos attn_clone = ( attn.index_select(0, bbsz_idx)[:, :, 1 : step + 2] if attn is not None else None ) # compute scores per token position pos_scores = scores.index_select(0, bbsz_idx)[:, : step + 1] pos_scores[:, step] = eos_scores # convert from cumulative to per-position scores pos_scores[:, 1:] = pos_scores[:, 1:] - pos_scores[:, :-1] # normalize sentence-level scores if self.normalize_scores: eos_scores /= (step + 1) ** self.len_penalty # cum_unfin records which sentences in the batch are finished. # It helps match indexing between (a) the original sentences # in the batch and (b) the current, possibly-reduced set of # sentences. cum_unfin: List[int] = [] prev = 0 for f in finished: if f: prev += 1 else: cum_unfin.append(prev) # The keys here are of the form "{sent}_{unfin_idx}", where # "unfin_idx" is the index in the current (possibly reduced) # list of sentences, and "sent" is the index in the original, # unreduced batch # set() is not supported in script export sents_seen: Dict[str, Optional[Tensor]] = {} # For every finished beam item for i in range(bbsz_idx.size()[0]): idx = bbsz_idx[i] score = eos_scores[i] # sentence index in the current (possibly reduced) batch unfin_idx = idx // beam_size # sentence index in the original (unreduced) batch sent = unfin_idx + cum_unfin[unfin_idx] # Cannot create dict for key type '(int, int)' in torchscript. # The workaround is to cast int to string seen = str(sent.item()) + "_" + str(unfin_idx.item()) if seen not in sents_seen: sents_seen[seen] = None if self.match_source_len and step > src_lengths[unfin_idx]: score = torch.tensor(-math.inf).to(score) # An input sentence (among those in a batch) is finished when # beam_size hypotheses have been collected for it if len(finalized[sent]) < beam_size: if attn_clone is not None: # remove padding tokens from attn scores hypo_attn = attn_clone[i] else: hypo_attn = torch.empty(0) finalized[sent].append( { "tokens": tokens_clone[i], "score": score, "attention": hypo_attn, # src_len x tgt_len "alignment": torch.empty(0), "positional_scores": pos_scores[i], } ) newly_finished: List[int] = [] for seen in sents_seen.keys(): # check termination conditions for this sentence sent: int = int(float(seen.split("_")[0])) unfin_idx: int = int(float(seen.split("_")[1])) if not finished[sent] and self.is_finished( step, unfin_idx, max_len, len(finalized[sent]), beam_size ): finished[sent] = True newly_finished.append(unfin_idx) return newly_finished def is_finished( self, step: int, unfin_idx: int, max_len: int, finalized_sent_len: int, beam_size: int, ): """ Check whether decoding for a sentence is finished, which occurs when the list of finalized sentences has reached the beam size, or when we reach the maximum length. """ assert finalized_sent_len <= beam_size if finalized_sent_len == beam_size or step == max_len: return True return False class EnsembleModel(nn.Module): """A wrapper around an ensemble of models.""" def __init__(self, models): super().__init__() self.models_size = len(models) # method '__len__' is not supported in ModuleList for torch script self.single_model = models[0] self.models = nn.ModuleList(models) self.has_incremental: bool = False if all( hasattr(m, "decoder") and isinstance(m.decoder, FairseqIncrementalDecoder) for m in models ): self.has_incremental = True def forward(self): pass def has_encoder(self): return hasattr(self.single_model, "encoder") def has_incremental_states(self): return self.has_incremental def max_decoder_positions(self): return min([m.max_decoder_positions() for m in self.models if hasattr(m, "max_decoder_positions")] + [sys.maxsize]) @torch.jit.export def forward_encoder(self, net_input: Dict[str, Tensor]): if not self.has_encoder(): return None return [model.encoder.forward_torchscript(net_input) for model in self.models] @torch.jit.export def forward_decoder( self, tokens, encoder_outs: List[Dict[str, List[Tensor]]], incremental_states: List[Dict[str, Dict[str, Optional[Tensor]]]], temperature: float = 1.0, ): log_probs = [] avg_attn: Optional[Tensor] = None encoder_out: Optional[Dict[str, List[Tensor]]] = None for i, model in enumerate(self.models): if self.has_encoder(): encoder_out = encoder_outs[i] # decode each model if self.has_incremental_states(): decoder_out = model.decoder.forward( tokens, encoder_out=encoder_out, incremental_state=incremental_states[i], ) else: if hasattr(model, "decoder"): decoder_out = model.decoder.forward(tokens, encoder_out=encoder_out) else: decoder_out = model.forward(tokens) attn: Optional[Tensor] = None decoder_len = len(decoder_out) if decoder_len > 1 and decoder_out[1] is not None: if isinstance(decoder_out[1], Tensor): attn = decoder_out[1] else: attn_holder = decoder_out[1]["attn"] if isinstance(attn_holder, Tensor): attn = attn_holder elif attn_holder is not None: attn = attn_holder[0] if attn is not None: attn = attn[:, -1, :] decoder_out_tuple = ( decoder_out[0][:, -1:, :].div_(temperature), None if decoder_len <= 1 else decoder_out[1], ) probs = model.get_normalized_probs( decoder_out_tuple, log_probs=True, sample=None ) probs = probs[:, -1, :] if self.models_size == 1: return probs, attn log_probs.append(probs) if attn is not None: if avg_attn is None: avg_attn = attn else: avg_attn.add_(attn) avg_probs = torch.logsumexp(torch.stack(log_probs, dim=0), dim=0) - math.log( self.models_size ) if avg_attn is not None: avg_attn.div_(self.models_size) return avg_probs, avg_attn @torch.jit.export def reorder_encoder_out( self, encoder_outs: Optional[List[Dict[str, List[Tensor]]]], new_order ): """ Reorder encoder output according to *new_order*. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: *encoder_out* rearranged according to *new_order* """ new_outs: List[Dict[str, List[Tensor]]] = [] if not self.has_encoder(): return new_outs for i, model in enumerate(self.models): assert encoder_outs is not None new_outs.append( model.encoder.reorder_encoder_out(encoder_outs[i], new_order) ) return new_outs @torch.jit.export def reorder_incremental_state( self, incremental_states: List[Dict[str, Dict[str, Optional[Tensor]]]], new_order, ): if not self.has_incremental_states(): return for i, model in enumerate(self.models): model.decoder.reorder_incremental_state_scripting( incremental_states[i], new_order ) class SequenceGeneratorWithAlignment(SequenceGenerator): def __init__( self, models, tgt_dict, left_pad_target=False, print_alignment="hard", **kwargs ): """Generates translations of a given source sentence. Produces alignments following "Jointly Learning to Align and Translate with Transformer Models" (Garg et al., EMNLP 2019). Args: left_pad_target (bool, optional): Whether or not the hypothesis should be left padded or not when they are teacher forced for generating alignments. """ super().__init__(EnsembleModelWithAlignment(models), tgt_dict, **kwargs) self.left_pad_target = left_pad_target if print_alignment == "hard": self.extract_alignment = utils.extract_hard_alignment elif print_alignment == "soft": self.extract_alignment = utils.extract_soft_alignment @torch.no_grad() def generate(self, models, sample, **kwargs): finalized = super()._generate(sample, **kwargs) src_tokens = sample["net_input"]["src_tokens"] bsz = src_tokens.shape[0] beam_size = self.beam_size ( src_tokens, src_lengths, prev_output_tokens, tgt_tokens, ) = self._prepare_batch_for_alignment(sample, finalized) if any(getattr(m, "full_context_alignment", False) for m in self.model.models): attn = self.model.forward_align(src_tokens, src_lengths, prev_output_tokens) else: attn = [ finalized[i // beam_size][i % beam_size]["attention"].transpose(1, 0) for i in range(bsz * beam_size) ] if src_tokens.device != "cpu": src_tokens = src_tokens.to("cpu") tgt_tokens = tgt_tokens.to("cpu") attn = [i.to("cpu") for i in attn] # Process the attn matrix to extract hard alignments. for i in range(bsz * beam_size): alignment = self.extract_alignment( attn[i], src_tokens[i], tgt_tokens[i], self.pad, self.eos ) finalized[i // beam_size][i % beam_size]["alignment"] = alignment return finalized def _prepare_batch_for_alignment(self, sample, hypothesis): src_tokens = sample["net_input"]["src_tokens"] bsz = src_tokens.shape[0] src_tokens = ( src_tokens[:, None, :] .expand(-1, self.beam_size, -1) .contiguous() .view(bsz * self.beam_size, -1) ) src_lengths = sample["net_input"]["src_lengths"] src_lengths = ( src_lengths[:, None] .expand(-1, self.beam_size) .contiguous() .view(bsz * self.beam_size) ) prev_output_tokens = data_utils.collate_tokens( [beam["tokens"] for example in hypothesis for beam in example], self.pad, self.eos, self.left_pad_target, move_eos_to_beginning=True, ) tgt_tokens = data_utils.collate_tokens( [beam["tokens"] for example in hypothesis for beam in example], self.pad, self.eos, self.left_pad_target, move_eos_to_beginning=False, ) return src_tokens, src_lengths, prev_output_tokens, tgt_tokens class EnsembleModelWithAlignment(EnsembleModel): """A wrapper around an ensemble of models.""" def __init__(self, models): super().__init__(models) def forward_align(self, src_tokens, src_lengths, prev_output_tokens): avg_attn = None for model in self.models: decoder_out = model(src_tokens, src_lengths, prev_output_tokens) attn = decoder_out[1]["attn"][0] if avg_attn is None: avg_attn = attn else: avg_attn.add_(attn) if len(self.models) > 1: avg_attn.div_(len(self.models)) return avg_attn
av_hubert-main
avhubert/sequence_generator.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math import re from dataclasses import dataclass, field from typing import List, Optional import torch import torch.nn.functional as F from fairseq import metrics, utils from fairseq.criterions import FairseqCriterion, register_criterion from fairseq.dataclass import FairseqDataclass @dataclass class AVHubertCriterionConfig(FairseqDataclass): pred_masked_weight: float = field( default=1.0, metadata={"help": "weight for predictive loss for masked frames"}, ) pred_nomask_weight: float = field( default=0.0, metadata={"help": "weight for predictive loss for unmasked frames"}, ) loss_weights: Optional[List[float]] = field( default=None, metadata={"help": "weights for additional loss terms (not first one)"}, ) log_keys: List[str] = field( default_factory=lambda: [], metadata={"help": "output keys to log"}, ) @register_criterion("av_hubert", dataclass=AVHubertCriterionConfig) class AVHubertCriterion(FairseqCriterion): def __init__(self, task, pred_masked_weight, pred_nomask_weight, loss_weights=None, log_keys=None): super().__init__(task) self.pred_masked_weight = pred_masked_weight self.pred_nomask_weight = pred_nomask_weight self.loss_weights = loss_weights self.log_keys = [] if log_keys is None else log_keys def forward(self, model, sample, reduce=True, log_pred=False): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ net_output = model(target_list=sample["target_list"], **sample["net_input"]) loss = 0. sample_size = 0 logging_output = {} reduction = "sum" if reduce else "none" loss_m_list = [] logp_m_list, targ_m_list = net_output['logit_m_list'], net_output['target_m_list'] for i, (logp_m, targ_m) in enumerate(zip(logp_m_list, targ_m_list)): loss_m = F.cross_entropy(logp_m, targ_m, reduction=reduction) loss_m_list.append(loss_m) logging_output[f"loss_m_{i}"] = loss_m.detach().item() if self.pred_masked_weight > 0: loss += self.pred_masked_weight * sum(loss_m_list) sample_size += targ_m_list[0].numel() loss_u_list = [] logp_u_list, targ_u_list = net_output['logit_u_list'], net_output['target_u_list'] for i, (logp_u, targ_u) in enumerate(zip(logp_u_list, targ_u_list)): loss_u = F.cross_entropy(logp_u, targ_u, reduction=reduction) loss_u_list.append(loss_u) logging_output[f"loss_u_{i}"] = loss_u.detach().item() if self.pred_nomask_weight > 0: loss += self.pred_nomask_weight * sum(loss_u_list) sample_size += targ_u_list[0].numel() if self.loss_weights is not None: assert hasattr(model, "get_extra_losses") extra_losses, names = model.get_extra_losses(net_output) if torch.is_tensor(extra_losses): extra_losses = [extra_losses] names = [names] if len(self.loss_weights) == 1 and len(extra_losses) != 1: self.loss_weights = [self.loss_weights[0]] * len(extra_losses) assert len(extra_losses) == len(self.loss_weights), f"{len(extra_losses)}, {len(self.loss_weights)}" for p, n, coef in zip(extra_losses, names, self.loss_weights): if coef != 0 and p is not None: p = coef * p.float() * sample_size loss += p logging_output[f"loss_{n}"] = p.item() logging_output = { "loss": loss.item() if reduce else loss, "ntokens": sample_size, "nsentences": sample["id"].numel(), "sample_size": sample_size, **logging_output, } for lk in self.log_keys: if lk in net_output: logging_output[lk] = float((net_output[lk])) with torch.no_grad(): for i, logp_m in enumerate(logp_m_list): # corr_m, count_m = compute_correct(logp_m) if logp_m.numel() == 0: corr_m, count_m = 0, 0 else: corr_m, count_m = (logp_m.argmax(dim=-1)==targ_m_list[i]).sum().item(), len(targ_m_list[i]) logging_output[f"correct_m_{i}"] = corr_m logging_output[f"count_m_{i}"] = count_m for i, logp_u in enumerate(logp_u_list): if logp_u.numel() == 0: corr_u, count_u = 0, 0 else: corr_u, count_u = (logp_u.argmax(dim=-1)==targ_u_list[i]).sum().item(), len(targ_u_list[i]) logging_output[f"correct_u_{i}"] = corr_u logging_output[f"count_u_{i}"] = count_u return loss, sample_size, logging_output @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training (copied from normal cross entropy).""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) metrics.log_scalar("loss", loss_sum / sample_size / math.log(2), sample_size, round=3) if sample_size != ntokens: metrics.log_scalar("nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3) metrics.log_derived("ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)) else: metrics.log_derived("ppl", lambda meters: utils.get_perplexity(meters["loss"].avg)) counts = {} for lk in logging_outputs[0].keys(): if lk.startswith("count_"): val = sum(log[lk] for log in logging_outputs) metrics.log_scalar(lk, val) counts[lk] = val for lk in logging_outputs[0].keys(): if lk.startswith("loss_"): val = sum(log[lk] for log in logging_outputs) metrics.log_scalar(lk, val / sample_size / math.log(2), round=3) elif lk.startswith("correct_"): val = sum(log[lk] for log in logging_outputs) metrics.log_scalar(lk, val / counts[re.sub("correct", "count", lk)]) @staticmethod def aggregate_logging_outputs(logging_outputs): """Aggregate logging outputs from data parallel training.""" raise NotImplementedError() @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return False
av_hubert-main
avhubert/hubert_criterion.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import logging import math import torch.nn as nn import pdb logger = logging.getLogger(__name__) def conv3x3(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def downsample_basic_block( inplanes, outplanes, stride ): return nn.Sequential( nn.Conv2d(inplanes, outplanes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(outplanes), ) def downsample_basic_block_v2( inplanes, outplanes, stride ): return nn.Sequential( nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True, count_include_pad=False), nn.Conv2d(inplanes, outplanes, kernel_size=1, stride=1, bias=False), nn.BatchNorm2d(outplanes), ) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, relu_type = 'relu' ): super(BasicBlock, self).__init__() assert relu_type in ['relu','prelu'] self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) if relu_type == 'relu': self.relu1 = nn.ReLU(inplace=True) self.relu2 = nn.ReLU(inplace=True) elif relu_type == 'prelu': self.relu1 = nn.PReLU(num_parameters=planes) self.relu2 = nn.PReLU(num_parameters=planes) else: raise Exception('relu type not implemented') self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu2(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000, relu_type = 'relu', gamma_zero = False, avg_pool_downsample = False): self.inplanes = 64 self.relu_type = relu_type self.gamma_zero = gamma_zero self.downsample_block = downsample_basic_block_v2 if avg_pool_downsample else downsample_basic_block super(ResNet, self).__init__() self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AdaptiveAvgPool2d(1) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() if self.gamma_zero: for m in self.modules(): if isinstance(m, BasicBlock ): m.bn2.weight.data.zero_() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = self.downsample_block( inplanes = self.inplanes, outplanes = planes * block.expansion, stride = stride ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, relu_type = self.relu_type)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, relu_type = self.relu_type)) return nn.Sequential(*layers) def forward(self, x): x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) return x class ResEncoder(nn.Module): def __init__(self, relu_type, weights): super(ResEncoder, self).__init__() self.frontend_nout = 64 self.backend_out = 512 frontend_relu = nn.PReLU(num_parameters=self.frontend_nout) if relu_type == 'prelu' else nn.ReLU() self.frontend3D = nn.Sequential( nn.Conv3d(1, self.frontend_nout, kernel_size=(5, 7, 7), stride=(1, 2, 2), padding=(2, 3, 3), bias=False), nn.BatchNorm3d(self.frontend_nout), frontend_relu, nn.MaxPool3d( kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1))) self.trunk = ResNet(BasicBlock, [2, 2, 2, 2], relu_type=relu_type) if weights is not None: logger.info(f"Load {weights} for resnet") std = torch.load(weights, map_location=torch.device('cpu'))['model_state_dict'] frontend_std, trunk_std = OrderedDict(), OrderedDict() for key, val in std.items(): new_key = '.'.join(key.split('.')[1:]) if 'frontend3D' in key: frontend_std[new_key] = val if 'trunk' in key: trunk_std[new_key] = val self.frontend3D.load_state_dict(frontend_std) self.trunk.load_state_dict(trunk_std) def forward(self, x): B, C, T, H, W = x.size() x = self.frontend3D(x) Tnew = x.shape[2] x = self.threeD_to_2D_tensor(x) x = self.trunk(x) x = x.view(B, Tnew, x.size(1)) x = x.transpose(1, 2).contiguous() return x def threeD_to_2D_tensor(self, x): n_batch, n_channels, s_time, sx, sy = x.shape x = x.transpose(1, 2).contiguous() return x.reshape(n_batch*s_time, n_channels, sx, sy)
av_hubert-main
avhubert/resnet.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import sys,logging import contextlib import tempfile from argparse import Namespace from typing import Any, Optional import torch import torch.nn as nn from dataclasses import dataclass, field from fairseq import checkpoint_utils, tasks, utils from fairseq.dataclass import FairseqDataclass from fairseq.dataclass.utils import convert_namespace_to_omegaconf from fairseq.models import BaseFairseqModel, FairseqEncoder, FairseqEncoderDecoderModel, register_model from fairseq.models.hubert.hubert import MASKING_DISTRIBUTION_CHOICES from fairseq.tasks import FairseqTask from omegaconf import II, MISSING DBG=True if len(sys.argv) == 1 else False if DBG: from hubert import AVHubertModel from decoder import TransformerDecoder else: from .hubert import AVHubertModel from .decoder import TransformerDecoder logger = logging.getLogger(__name__) @dataclass class AVHubertAsrConfig(FairseqDataclass): w2v_path: str = field( default=MISSING, metadata={"help": "path to hubert model"} ) no_pretrained_weights: bool = field( default=False, metadata={"help": "if true, does not load pretrained weights"}, ) dropout_input: float = field( default=0.0, metadata={"help": "dropout to apply to the input (after feat extr)"}, ) final_dropout: float = field( default=0.0, metadata={ "help": "dropout after transformer and before final projection" }, ) dropout: float = field( default=0.0, metadata={"help": "dropout probability inside hubert model"}, ) attention_dropout: float = field( default=0.0, metadata={ "help": "dropout probability for attention weights " "inside hubert model" }, ) activation_dropout: float = field( default=0.0, metadata={ "help": "dropout probability after activation in FFN " "inside hubert model" }, ) # masking apply_mask: bool = field( default=False, metadata={"help": "apply masking during fine-tuning"} ) mask_length: int = field( default=10, metadata={"help": "repeat the mask indices multiple times"} ) mask_prob: float = field( default=0.5, metadata={ "help": "probability of replacing a token with mask " "(normalized by length)" }, ) mask_selection: MASKING_DISTRIBUTION_CHOICES = field( default="static", metadata={"help": "how to choose masks"} ) mask_other: float = field( default=0, metadata={ "help": "secondary mask argument " "(used for more complex distributions), " "see help in compute_mask_indices" }, ) no_mask_overlap: bool = field( default=False, metadata={"help": "whether to allow masks to overlap"} ) # channel masking mask_channel_length: int = field( default=10, metadata={"help": "length of the mask for features (channels)"}, ) mask_channel_prob: float = field( default=0.0, metadata={"help": "probability of replacing a feature with 0"}, ) mask_channel_selection: MASKING_DISTRIBUTION_CHOICES = field( default="static", metadata={"help": "how to choose mask length for channel masking"}, ) mask_channel_other: float = field( default=0, metadata={ "help": "secondary mask argument " "(used for more complex distributions), " "see help in compute_mask_indices" }, ) no_mask_channel_overlap: bool = field( default=False, metadata={"help": "whether to allow channel masks to overlap"}, ) freeze_finetune_updates: int = field( default=0, metadata={"help": "dont finetune hubert for this many updates"}, ) feature_grad_mult: float = field( default=0.0, metadata={"help": "reset feature grad mult in hubert to this"}, ) layerdrop: float = field( default=0.0, metadata={"help": "probability of dropping a layer in hubert"}, ) normalize: bool = II("task.normalize") data: str = II("task.data") # this holds the loaded hubert args w2v_args: Any = None @dataclass class AVHubertCtcConfig(AVHubertAsrConfig): pass @register_model("av_hubert_ctc", dataclass=AVHubertCtcConfig) class AVHubertCtc(BaseFairseqModel): def __init__(self, cfg: AVHubertCtcConfig, w2v_encoder: BaseFairseqModel): super().__init__() self.cfg = cfg self.w2v_encoder = w2v_encoder def upgrade_state_dict_named(self, state_dict, name): super().upgrade_state_dict_named(state_dict, name) return state_dict @classmethod def build_model(cls, cfg: AVHubertCtcConfig, task: FairseqTask): """Build a new model instance.""" w2v_encoder = HubertEncoder(cfg, task.target_dictionary) return cls(cfg, w2v_encoder) def get_normalized_probs(self, net_output, log_probs): """Get normalized probabilities (or log probs) from a net's output.""" logits = net_output["encoder_out"] if log_probs: return utils.log_softmax(logits.float(), dim=-1) else: return utils.softmax(logits.float(), dim=-1) def get_logits(self, net_output): logits = net_output["encoder_out"] padding = net_output["encoder_padding_mask"] if padding is not None and padding.any(): padding = padding.T logits[padding][..., 0] = 0 logits[padding][..., 1:] = float("-inf") return logits def forward(self, **kwargs): x = self.w2v_encoder(**kwargs) return x @dataclass class AVHubertSeq2SeqConfig(AVHubertAsrConfig): decoder_embed_dim: int = field( default=768, metadata={"help": "decoder embedding dimension"} ) decoder_ffn_embed_dim: int = field( default=3072, metadata={"help": "decoder embedding dimension for FFN"} ) decoder_layers: int = field( default=6, metadata={"help": "num of decoder layers"} ) decoder_layerdrop: float = field( default=0.0, metadata={"help": "decoder layerdrop chance"} ) decoder_attention_heads: int = field( default=4, metadata={"help": "num decoder attention heads"} ) decoder_learned_pos: bool = field( default=False, metadata={"help": "use learned positional embeddings in the decoder"}, ) decoder_normalize_before: bool = field( default=False, metadata={"help": "apply layernorm before each decoder block"}, ) no_token_positional_embeddings: bool = field( default=False, metadata={ "help": "if set, disables positional embeddings " "(outside self attention)" }, ) decoder_dropout: float = field( default=0.0, metadata={"help": "dropout probability in the decoder"} ) decoder_attention_dropout: float = field( default=0.0, metadata={ "help": "dropout probability for attention weights " "inside the decoder" }, ) decoder_activation_dropout: float = field( default=0.0, metadata={ "help": "dropout probability after activation in FFN " "inside the decoder" }, ) max_target_positions: int = field( default=2048, metadata={"help": "max target positions"} ) share_decoder_input_output_embed: bool = field( default=False, metadata={"help": "share decoder input and output embeddings"}, ) no_scale_embedding: bool = field(default=True, metadata={'help': 'scale embedding'}) class HubertEncoder(FairseqEncoder): def __init__(self, cfg: AVHubertAsrConfig, tgt_dict=None): self.apply_mask = cfg.apply_mask arg_overrides = { "dropout": cfg.dropout, "activation_dropout": cfg.activation_dropout, "dropout_input": cfg.dropout_input, "attention_dropout": cfg.attention_dropout, "mask_length": cfg.mask_length, "mask_prob": cfg.mask_prob, "mask_selection": cfg.mask_selection, "mask_other": cfg.mask_other, "no_mask_overlap": cfg.no_mask_overlap, "mask_channel_length": cfg.mask_channel_length, "mask_channel_prob": cfg.mask_channel_prob, "mask_channel_selection": cfg.mask_channel_selection, "mask_channel_other": cfg.mask_channel_other, "no_mask_channel_overlap": cfg.no_mask_channel_overlap, "encoder_layerdrop": cfg.layerdrop, "feature_grad_mult": cfg.feature_grad_mult, } if cfg.w2v_args is None: state = checkpoint_utils.load_checkpoint_to_cpu( cfg.w2v_path, arg_overrides ) w2v_args = state.get("cfg", None) if w2v_args is None: w2v_args = convert_namespace_to_omegaconf(state["args"]) cfg.w2v_args = w2v_args else: state = None w2v_args = cfg.w2v_args if isinstance(w2v_args, Namespace): cfg.w2v_args = w2v_args = convert_namespace_to_omegaconf( w2v_args ) assert cfg.normalize == w2v_args.task.normalize, ( "Fine-tuning works best when data normalization is the same. " "Please check that --normalize is set or unset for " "both pre-training and here" ) w2v_args.task.data = cfg.data task = tasks.setup_task(w2v_args.task) model = task.build_model(w2v_args.model) if state is not None and not cfg.no_pretrained_weights: # set strict=False because we omit some modules model.load_state_dict(state["model"], strict=False) model.remove_pretraining_modules() super().__init__(task.source_dictionary) d = model.encoder.embedding_dim self.w2v_model = model self.final_dropout = nn.Dropout(cfg.final_dropout) self.freeze_finetune_updates = cfg.freeze_finetune_updates self.num_updates = 0 if tgt_dict is not None: self.proj = Linear(d, len(tgt_dict)) elif getattr(cfg, "decoder_embed_dim", d) != d: self.proj = Linear(d, cfg.decoder_embed_dim) else: self.proj = None def set_num_updates(self, num_updates): """Set the number of parameters updates.""" super().set_num_updates(num_updates) self.num_updates = num_updates def forward(self, source, padding_mask, tbc=True, **kwargs): w2v_args = { "source": source, "padding_mask": padding_mask, "mask": self.apply_mask and self.training, } ft = self.freeze_finetune_updates <= self.num_updates with torch.no_grad() if not ft else contextlib.ExitStack(): x, padding_mask = self.w2v_model.extract_finetune(**w2v_args) if tbc: # B x T x C -> T x B x C x = x.transpose(0, 1) x = self.final_dropout(x) if self.proj: x = self.proj(x) return { "encoder_out": x, # T x B x C "encoder_padding_mask": padding_mask, # B x T "padding_mask": padding_mask, } def reorder_encoder_out(self, encoder_out, new_order): if encoder_out["encoder_out"] is not None: encoder_out["encoder_out"] = encoder_out[ "encoder_out" ].index_select(1, new_order) if encoder_out["encoder_padding_mask"] is not None: encoder_out["encoder_padding_mask"] = encoder_out[ "encoder_padding_mask" ].index_select(0, new_order) return encoder_out def max_positions(self): """Maximum input length supported by the encoder.""" return None def upgrade_state_dict_named(self, state_dict, name): return state_dict class HubertEncoderWrapper(FairseqEncoder): def __init__(self, w2v_model): super().__init__(None) self.w2v_model = w2v_model def forward(self, source, padding_mask, **kwargs): w2v_args = { "source": source, "padding_mask": padding_mask, } x, padding_mask = self.w2v_model.extract_finetune(**w2v_args) # B x T x C -> T x B x C x = x.transpose(0, 1) return { "encoder_out": x, # T x B x C "encoder_padding_mask": padding_mask, # B x T "padding_mask": padding_mask } def reorder_encoder_out(self, encoder_out, new_order): if encoder_out["encoder_out"] is not None: encoder_out["encoder_out"] = encoder_out[ "encoder_out" ].index_select(1, new_order) if encoder_out["encoder_padding_mask"] is not None: encoder_out["encoder_padding_mask"] = encoder_out[ "encoder_padding_mask" ].index_select(0, new_order) if encoder_out["padding_mask"] is not None: encoder_out["padding_mask"] = encoder_out[ "padding_mask" ].index_select(0, new_order) return encoder_out @register_model("av_hubert_seq2seq", dataclass=AVHubertSeq2SeqConfig) class AVHubertSeq2Seq(FairseqEncoderDecoderModel): def __init__(self, encoder, decoder, tgt_dict, cfg): super().__init__(encoder, decoder) self.cfg = cfg self.freeze_finetune_updates = cfg.freeze_finetune_updates @classmethod def build_model(cls, cfg, task): """Build a new model instance.""" arg_overrides = { "dropout": cfg.dropout, "activation_dropout": cfg.activation_dropout, "dropout_input": cfg.dropout_input, "attention_dropout": cfg.attention_dropout, "mask_length": cfg.mask_length, "mask_prob": cfg.mask_prob, "mask_selection": cfg.mask_selection, "mask_other": cfg.mask_other, "no_mask_overlap": cfg.no_mask_overlap, "mask_channel_length": cfg.mask_channel_length, "mask_channel_prob": cfg.mask_channel_prob, "mask_channel_selection": cfg.mask_channel_selection, "mask_channel_other": cfg.mask_channel_other, "no_mask_channel_overlap": cfg.no_mask_channel_overlap, "encoder_layerdrop": cfg.layerdrop, "feature_grad_mult": cfg.feature_grad_mult, } if cfg.w2v_args is None: state = checkpoint_utils.load_checkpoint_to_cpu( cfg.w2v_path, arg_overrides ) w2v_args = state.get("cfg", None) if w2v_args is None: w2v_args = convert_namespace_to_omegaconf(state["args"]) cfg.w2v_args = w2v_args else: state = None w2v_args = cfg.w2v_args if isinstance(w2v_args, Namespace): cfg.w2v_args = w2v_args = convert_namespace_to_omegaconf( w2v_args ) assert cfg.normalize == w2v_args.task.normalize, ( "Fine-tuning works best when data normalization is the same. " "Please check that --normalize is set or unset for " "both pre-training and here" ) w2v_args.task.data = cfg.data task_pretrain = tasks.setup_task(w2v_args.task) if state is not None: task_pretrain.load_state_dict(state['task_state']) encoder_ = task_pretrain.build_model(w2v_args.model) encoder = HubertEncoderWrapper(encoder_) if state is not None and not cfg.no_pretrained_weights: # set strict=False because we omit some modules del state['model']['mask_emb'] encoder.w2v_model.load_state_dict(state["model"], strict=False) encoder.w2v_model.remove_pretraining_modules() src_dict, tgt_dict = task.source_dictionary, task.target_dictionary def build_embedding(dictionary, embed_dim): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx=padding_idx) return emb decoder_embed_tokens = build_embedding(tgt_dict, cfg.decoder_embed_dim) decoder = TransformerDecoder(cfg, tgt_dict, decoder_embed_tokens) return AVHubertSeq2Seq(encoder, decoder, tgt_dict, cfg) def forward(self, **kwargs): ft = self.freeze_finetune_updates <= self.num_updates with torch.no_grad() if not ft else contextlib.ExitStack(): output = self.encoder(**kwargs) decoder_out = self.decoder(prev_output_tokens=kwargs['prev_output_tokens'], encoder_out=output) return decoder_out def upgrade_state_dict_named(self, state_dict, name): super().upgrade_state_dict_named(state_dict, name) return state_dict def set_num_updates(self, num_updates): """Set the number of parameters updates.""" super().set_num_updates(num_updates) self.num_updates = num_updates def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) nn.init.constant_(m.weight[padding_idx], 0) return m def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.0) return m
av_hubert-main
avhubert/hubert_asr.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import cv2 import torch import random import numpy as np from typing import Dict, List, Optional, Tuple def load_video(path): for i in range(3): try: cap = cv2.VideoCapture(path) frames = [] while True: ret, frame = cap.read() if ret: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) frames.append(frame) else: break frames = np.stack(frames) return frames except Exception: print(f"failed loading {path} ({i} / 3)") if i == 2: raise ValueError(f"Unable to load {path}") class Compose(object): """Compose several preprocess together. Args: preprocess (list of ``Preprocess`` objects): list of preprocess to compose. """ def __init__(self, preprocess): self.preprocess = preprocess def __call__(self, sample): for t in self.preprocess: sample = t(sample) return sample def __repr__(self): format_string = self.__class__.__name__ + '(' for t in self.preprocess: format_string += '\n' format_string += ' {0}'.format(t) format_string += '\n)' return format_string class Normalize(object): """Normalize a ndarray image with mean and standard deviation. """ def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, frames): """ Args: tensor (Tensor): Tensor image of size (C, H, W) to be normalized. Returns: Tensor: Normalized Tensor image. """ frames = (frames - self.mean) / self.std return frames def __repr__(self): return self.__class__.__name__+'(mean={0}, std={1})'.format(self.mean, self.std) class CenterCrop(object): """Crop the given image at the center """ def __init__(self, size): self.size = size def __call__(self, frames): """ Args: img (numpy.ndarray): Images to be cropped. Returns: numpy.ndarray: Cropped image. """ t, h, w = frames.shape th, tw = self.size delta_w = int(round((w - tw))/2.) delta_h = int(round((h - th))/2.) frames = frames[:, delta_h:delta_h+th, delta_w:delta_w+tw] return frames class RandomCrop(object): """Crop the given image at the center """ def __init__(self, size): self.size = size def __call__(self, frames): """ Args: img (numpy.ndarray): Images to be cropped. Returns: numpy.ndarray: Cropped image. """ t, h, w = frames.shape th, tw = self.size delta_w = random.randint(0, w-tw) delta_h = random.randint(0, h-th) frames = frames[:, delta_h:delta_h+th, delta_w:delta_w+tw] return frames def __repr__(self): return self.__class__.__name__ + '(size={0})'.format(self.size) class HorizontalFlip(object): """Flip image horizontally. """ def __init__(self, flip_ratio): self.flip_ratio = flip_ratio def __call__(self, frames): """ Args: img (numpy.ndarray): Images to be flipped with a probability flip_ratio Returns: numpy.ndarray: Cropped image. """ t, h, w = frames.shape if random.random() < self.flip_ratio: for index in range(t): frames[index] = cv2.flip(frames[index], 1) return frames def compute_mask_indices( shape: Tuple[int, int], padding_mask: Optional[torch.Tensor], mask_prob: float, mask_length: int, mask_type: str = "static", mask_other: float = 0.0, min_masks: int = 0, no_overlap: bool = False, min_space: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape Args: shape: the the shape for which to compute masks. should be of size 2 where first element is batch size and 2nd is timesteps padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by number of timesteps divided by length of mask span to mask approximately this percentage of all elements. however due to overlaps, the actual number will be smaller (unless no_overlap is True) mask_type: how to compute mask lengths static = fixed size uniform = sample from uniform distribution [mask_other, mask_length*2] normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element poisson = sample from possion distribution with lambda = mask length min_masks: minimum number of masked spans no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans """ bsz, all_sz = shape mask = np.full((bsz, all_sz), False) all_num_mask = int( # add a random number for probabilistic rounding mask_prob * all_sz / float(mask_length) + np.random.rand() ) all_num_mask = max(min_masks, all_num_mask) mask_idcs = [] for i in range(bsz): if padding_mask is not None: sz = all_sz - padding_mask[i].long().sum().item() num_mask = int( # add a random number for probabilistic rounding mask_prob * sz / float(mask_length) + np.random.rand() ) num_mask = max(min_masks, num_mask) else: sz = all_sz num_mask = all_num_mask if mask_type == "static": lengths = np.full(num_mask, mask_length) elif mask_type == "uniform": lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask) elif mask_type == "normal": lengths = np.random.normal(mask_length, mask_other, size=num_mask) lengths = [max(1, int(round(x))) for x in lengths] elif mask_type == "poisson": lengths = np.random.poisson(mask_length, size=num_mask) lengths = [int(round(x)) for x in lengths] else: raise Exception("unknown mask selection " + mask_type) if sum(lengths) == 0: lengths[0] = min(mask_length, sz - 1) if no_overlap: mask_idc = [] def arrange(s, e, length, keep_length): span_start = np.random.randint(s, e - length) mask_idc.extend(span_start + i for i in range(length)) new_parts = [] if span_start - s - min_space >= keep_length: new_parts.append((s, span_start - min_space + 1)) if e - span_start - keep_length - min_space > keep_length: new_parts.append((span_start + length + min_space, e)) return new_parts parts = [(0, sz)] min_length = min(lengths) for length in sorted(lengths, reverse=True): lens = np.fromiter( (e - s if e - s >= length + min_space else 0 for s, e in parts), np.int, ) l_sum = np.sum(lens) if l_sum == 0: break probs = lens / np.sum(lens) c = np.random.choice(len(parts), p=probs) s, e = parts.pop(c) parts.extend(arrange(s, e, length, min_length)) mask_idc = np.asarray(mask_idc) else: min_len = min(lengths) if sz - min_len <= num_mask: min_len = sz - num_mask - 1 mask_idc = np.random.choice(sz - min_len, num_mask, replace=False) mask_idc = np.asarray( [ mask_idc[j] + offset for j in range(len(mask_idc)) for offset in range(lengths[j]) ] ) mask_idcs.append(np.unique(mask_idc[mask_idc < sz])) min_len = min([len(m) for m in mask_idcs]) batch_indexes, starts, ends = [], [], [] for i, mask_idc in enumerate(mask_idcs): if len(mask_idc) > min_len: mask_idc = np.random.choice(mask_idc, min_len, replace=False) mask[i, mask_idc] = True vals, run_starts, run_lengths = find_runs(mask[i]) start_indices, lengths = run_starts[vals == True], run_lengths[vals == True] starts.append(start_indices) ends.append(start_indices+lengths) batch_indexes.append(np.zeros([len(start_indices)])+i) return mask, np.concatenate(starts).astype(np.int64), np.concatenate(ends).astype(np.int64), np.concatenate(batch_indexes).astype(np.int64) def find_runs(x): """Find runs of consecutive items in an array.""" # ensure array x = np.asanyarray(x) if x.ndim != 1: raise ValueError('only 1D array supported') n = x.shape[0] # handle empty array if n == 0: return np.array([]), np.array([]), np.array([]) else: # find run starts loc_run_start = np.empty(n, dtype=bool) loc_run_start[0] = True np.not_equal(x[:-1], x[1:], out=loc_run_start[1:]) run_starts = np.nonzero(loc_run_start)[0] # find run values run_values = x[loc_run_start] # find run lengths run_lengths = np.diff(np.append(run_starts, n)) return run_values, run_starts, run_lengths
av_hubert-main
avhubert/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import itertools import logging import os import sys import time from typing import Any, List, Optional, Union import numpy as np import torch import torch.nn.functional as F from fairseq.data import data_utils from fairseq.data.fairseq_dataset import FairseqDataset from python_speech_features import logfbank from scipy.io import wavfile DBG=True if len(sys.argv) == 1 else False if DBG: import utils as custom_utils logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "DEBUG").upper(), stream=sys.stdout, ) else: from . import utils as custom_utils logger = logging.getLogger(__name__) def load_audio_visual(manifest_path, max_keep, min_keep, frame_rate, label_paths, label_rates, tol=0.1): def is_audio_label_aligned(audio_dur, label_durs): return all([abs(audio_dur - label_dur)<tol for label_dur in label_durs]) n_long, n_short, n_unaligned = 0, 0, 0 names, inds, sizes = [], [], [] dur_from_label_list = [] is_seq_label = any([x==-1 for x in label_rates]) for label_path, label_rate in zip(label_paths, label_rates): label_lengths = [len(line.rstrip().split())/label_rate for line in open(label_path).readlines()] dur_from_label_list.append(label_lengths) dur_from_label_list = list(zip(*dur_from_label_list)) with open(manifest_path) as f: root = f.readline().strip() for ind, line in enumerate(f): items = line.strip().split("\t") sz = int(items[-2]) # if min_keep is not None and sz < min_keep: n_short += 1 elif max_keep is not None and sz > max_keep: n_long += 1 elif (not is_seq_label) and (not is_audio_label_aligned(sz/frame_rate, dur_from_label_list[ind])): n_unaligned += 1 else: video_path = items[1] audio_path = items[2] audio_id = items[0] names.append((video_path, audio_path+':'+audio_id)) inds.append(ind) sizes.append(sz) tot = ind + 1 logger.info( ( f"max_keep={max_keep}, min_keep={min_keep}, " f"loaded {len(names)}, skipped {n_short} short and {n_long} long and {n_unaligned} unaligned, " f"longest-loaded={max(sizes)}, shortest-loaded={min(sizes)}" ) ) return root, names, inds, tot, sizes def load_label(label_path, inds, tot): with open(label_path) as f: labels = [line.rstrip() for line in f] assert ( len(labels) == tot ), f"number of labels does not match ({len(labels)} != {tot})" labels = [labels[i] for i in inds] return labels def load_label_offset(label_path, inds, tot): with open(label_path) as f: code_lengths = [len(line.encode("utf-8")) for line in f] assert ( len(code_lengths) == tot ), f"number of labels does not match ({len(code_lengths)} != {tot})" offsets = list(itertools.accumulate([0] + code_lengths)) offsets = [(offsets[i], offsets[i + 1]) for i in inds] return offsets def verify_label_lengths( audio_sizes, audio_rate, label_path, label_rate, inds, tot, tol=0.1, # tolerance in seconds ): if label_rate < 0: logger.info(f"{label_path} is sequence label. skipped") return with open(label_path) as f: lengths = [len(line.rstrip().split()) for line in f] assert len(lengths) == tot lengths = [lengths[i] for i in inds] num_invalid = 0 for i, ind in enumerate(inds): dur_from_audio = audio_sizes[i] / audio_rate dur_from_label = lengths[i] / label_rate if abs(dur_from_audio - dur_from_label) > tol: logger.warning( ( f"audio and label duration differ too much " f"(|{dur_from_audio} - {dur_from_label}| > {tol}) " f"in line {ind+1} of {label_path}. Check if `label_rate` " f"is correctly set (currently {label_rate}). " f"num. of samples = {audio_sizes[i]}; " f"label length = {lengths[i]}" ) ) num_invalid += 1 if num_invalid > 0: logger.warning( f"total {num_invalid} (audio, label) pairs with mismatched lengths" ) class AVHubertDataset(FairseqDataset): def __init__( self, manifest_path: str, sample_rate: float, label_paths: List[str], label_rates: Union[List[float], float], # -1 for sequence labels pad_list: List[str], eos_list: List[str], label_processors: Optional[List[Any]] = None, max_keep_sample_size: Optional[int] = None, min_keep_sample_size: Optional[int] = None, max_sample_size: Optional[int] = None, shuffle: bool = True, pad_audio: bool = False, normalize: bool = False, store_labels: bool = True, random_crop: bool = False, single_target: bool = False, stack_order_audio: int=1, skip_verify: bool=False, image_mean: float=0, image_std: float=1, image_crop_size: int=88, image_aug: bool=False, modalities: Optional[List[str]]=None, is_s2s=False, noise_fn=None, noise_prob=0, noise_snr=0, noise_num=1 ): self.label_rates = ( [label_rates for _ in range(len(label_paths))] if isinstance(label_rates, int) else label_rates ) self.modalities = set(modalities) self.audio_root, self.names, inds, tot, self.sizes = load_audio_visual(manifest_path, max_keep_sample_size, min_keep_sample_size, frame_rate=sample_rate, label_paths=label_paths, label_rates=self.label_rates) self.sample_rate = sample_rate self.stack_order_audio = stack_order_audio self.shuffle = shuffle self.random_crop = random_crop self.num_labels = len(label_paths) self.pad_list = pad_list self.eos_list = eos_list self.label_processors = label_processors self.single_target = single_target self.store_labels = store_labels self.is_s2s = is_s2s self.noise_wav, self.noise_prob, self.noise_snr, self.noise_num = [ln.strip() for ln in open(noise_fn).readlines()] if noise_fn is not None else [], noise_prob, noise_snr, noise_num assert self.single_target == (self.label_rates[0] == -1), f"single target should be equivalent to sequence label (label_rate==-1)" if store_labels: self.label_list = [load_label(p, inds, tot) for p in label_paths] else: self.label_paths = label_paths self.label_offsets_list = [ load_label_offset(p, inds, tot) for p in label_paths ] assert ( label_processors is None or len(label_processors) == self.num_labels ) if not skip_verify: for label_path, label_rate in zip(label_paths, self.label_rates): verify_label_lengths(self.sizes, self.sample_rate, label_path, label_rate, inds, tot) else: logger.info(f"Skip label alignment verifying") self.max_sample_size = ( max_sample_size if max_sample_size is not None else sys.maxsize ) self.pad_audio = pad_audio self.normalize = normalize if image_aug: self.transform = custom_utils.Compose([ custom_utils.Normalize( 0.0,255.0 ), custom_utils.RandomCrop((image_crop_size, image_crop_size)), custom_utils.HorizontalFlip(0.5), custom_utils.Normalize(image_mean, image_std) ]) else: self.transform = custom_utils.Compose([ custom_utils.Normalize( 0.0,255.0 ), custom_utils.CenterCrop((image_crop_size, image_crop_size)), custom_utils.Normalize(image_mean, image_std) ]) logger.info(f"image transform: {self.transform}") logger.info( f"pad_audio={pad_audio}, random_crop={random_crop}, " f"normalize={normalize}, max_sample_size={self.max_sample_size}, " f"seqs2seq data={self.is_s2s},") logger.info( f"Noise wav: {noise_fn}->{len(self.noise_wav)} wav, Prob: {self.noise_prob}, SNR: {self.noise_snr}, Number of mixture: {self.noise_num}" ) def get_label(self, index, label_idx): if self.store_labels: label = self.label_list[label_idx][index] else: with open(self.label_paths[label_idx]) as f: offset_s, offset_e = self.label_offsets_list[label_idx][index] f.seek(offset_s) label = f.read(offset_e - offset_s) if self.label_processors is not None: label = self.label_processors[label_idx](label) return label def get_labels(self, index): return [self.get_label(index, i) for i in range(self.num_labels)] def load_feature(self, mix_name): """ Load image and audio feature Returns: video_feats: numpy.ndarray of shape [T, H, W, 1], audio_feats: numpy.ndarray of shape [T, F] """ def stacker(feats, stack_order): """ Concatenating consecutive audio frames Args: feats - numpy.ndarray of shape [T, F] stack_order - int (number of neighboring frames to concatenate Returns: feats - numpy.ndarray of shape [T', F'] """ feat_dim = feats.shape[1] if len(feats) % stack_order != 0: res = stack_order - len(feats) % stack_order res = np.zeros([res, feat_dim]).astype(feats.dtype) feats = np.concatenate([feats, res], axis=0) feats = feats.reshape((-1, stack_order, feat_dim)).reshape(-1, stack_order*feat_dim) return feats video_fn, audio_fn = mix_name if 'video' in self.modalities: video_feats = self.load_video(video_fn) # [T, H, W, 1] else: video_feats = None if 'audio' in self.modalities: audio_fn = audio_fn.split(':')[0] sample_rate, wav_data = wavfile.read(audio_fn) assert sample_rate == 16_000 and len(wav_data.shape) == 1 if np.random.rand() < self.noise_prob: wav_data = self.add_noise(wav_data) audio_feats = logfbank(wav_data, samplerate=sample_rate).astype(np.float32) # [T, F] audio_feats = stacker(audio_feats, self.stack_order_audio) # [T/stack_order_audio, F*stack_order_audio] else: audio_feats = None if audio_feats is not None and video_feats is not None: diff = len(audio_feats) - len(video_feats) if diff < 0: audio_feats = np.concatenate([audio_feats, np.zeros([-diff, audio_feats.shape[-1]], dtype=audio_feats.dtype)]) elif diff > 0: audio_feats = audio_feats[:-diff] return video_feats, audio_feats def load_video(self, audio_name): feats = custom_utils.load_video(os.path.join(self.audio_root, audio_name)) feats = self.transform(feats) feats = np.expand_dims(feats, axis=-1) return feats def select_noise(self): rand_indexes = np.random.randint(0, len(self.noise_wav), size=self.noise_num) noise_wav = [] for x in rand_indexes: noise_wav.append(wavfile.read(self.noise_wav[x])[1].astype(np.float32)) if self.noise_num == 1: return noise_wav[0] else: min_len = min([len(x) for x in noise_wav]) noise_wav = [x[:min_len] for x in noise_wav] noise_wav = np.floor(np.stack(noise_wav).mean(axis=0)) return noise_wav def add_noise(self, clean_wav): clean_wav = clean_wav.astype(np.float32) noise_wav = self.select_noise() if type(self.noise_snr) == int or type(self.noise_snr) == float: snr = self.noise_snr elif type(self.noise_snr) == tuple: snr = np.random.randint(self.noise_snr[0], self.noise_snr[1]+1) clean_rms = np.sqrt(np.mean(np.square(clean_wav), axis=-1)) if len(clean_wav) > len(noise_wav): ratio = int(np.ceil(len(clean_wav)/len(noise_wav))) noise_wav = np.concatenate([noise_wav for _ in range(ratio)]) if len(clean_wav) < len(noise_wav): start = 0 noise_wav = noise_wav[start: start + len(clean_wav)] noise_rms = np.sqrt(np.mean(np.square(noise_wav), axis=-1)) adjusted_noise_rms = clean_rms / (10**(snr/20)) adjusted_noise_wav = noise_wav * (adjusted_noise_rms / noise_rms) mixed = clean_wav + adjusted_noise_wav #Avoid clipping noise max_int16 = np.iinfo(np.int16).max min_int16 = np.iinfo(np.int16).min if mixed.max(axis=0) > max_int16 or mixed.min(axis=0) < min_int16: if mixed.max(axis=0) >= abs(mixed.min(axis=0)): reduction_rate = max_int16 / mixed.max(axis=0) else : reduction_rate = min_int16 / mixed.min(axis=0) mixed = mixed * (reduction_rate) mixed = mixed.astype(np.int16) return mixed def __getitem__(self, index): video_feats, audio_feats = self.load_feature(self.names[index]) audio_feats, video_feats = torch.from_numpy(audio_feats.astype(np.float32)) if audio_feats is not None else None, torch.from_numpy(video_feats.astype(np.float32)) if video_feats is not None else None if self.normalize and 'audio' in self.modalities: with torch.no_grad(): audio_feats = F.layer_norm(audio_feats, audio_feats.shape[1:]) labels = self.get_labels(index) fid = self.names[index][1].split(':')[1] return {"id": index, 'fid': fid, "video_source": video_feats, 'audio_source': audio_feats, "label_list": labels} def __len__(self): return len(self.sizes) def crop_to_max_size(self, wav, target_size, start=None): size = len(wav) diff = size - target_size if diff <= 0: return wav, 0 # longer utterances if start is None: start, end = 0, target_size if self.random_crop: start = np.random.randint(0, diff + 1) end = size - diff + start else: end = start + target_size return wav[start:end], start def collater(self, samples): samples = [s for s in samples if s["id"] is not None] if len(samples) == 0: return {} audio_source, video_source = [s["audio_source"] for s in samples], [s["video_source"] for s in samples] if audio_source[0] is None: audio_source = None if video_source[0] is None: video_source = None if audio_source is not None: audio_sizes = [len(s) for s in audio_source] else: audio_sizes = [len(s) for s in video_source] if self.pad_audio: audio_size = min(max(audio_sizes), self.max_sample_size) else: audio_size = min(min(audio_sizes), self.max_sample_size) if audio_source is not None: collated_audios, padding_mask, audio_starts = self.collater_audio(audio_source, audio_size) else: collated_audios, audio_starts = None, None if video_source is not None: collated_videos, padding_mask, audio_starts = self.collater_audio(video_source, audio_size, audio_starts) else: collated_videos = None targets_by_label = [ [s["label_list"][i] for s in samples] for i in range(self.num_labels) ] targets_list, lengths_list, ntokens_list = self.collater_label( targets_by_label, audio_size, audio_starts ) source = {"audio": collated_audios, "video": collated_videos} net_input = {"source": source, "padding_mask": padding_mask} batch = { "id": torch.LongTensor([s["id"] for s in samples]), "net_input": net_input, "utt_id": [s['fid'] for s in samples] } if self.single_target: batch["target_lengths"] = lengths_list[0] batch["ntokens"] = ntokens_list[0] if self.is_s2s: batch['target'], net_input['prev_output_tokens'] = targets_list[0][0], targets_list[0][1] else: batch["target"] = targets_list[0] else: batch["target_lengths_list"] = lengths_list batch["ntokens_list"] = ntokens_list batch["target_list"] = targets_list return batch def collater_audio(self, audios, audio_size, audio_starts=None): audio_feat_shape = list(audios[0].shape[1:]) collated_audios = audios[0].new_zeros([len(audios), audio_size]+audio_feat_shape) padding_mask = ( torch.BoolTensor(len(audios), audio_size).fill_(False) # ) start_known = audio_starts is not None audio_starts = [0 for _ in audios] if not start_known else audio_starts for i, audio in enumerate(audios): diff = len(audio) - audio_size if diff == 0: collated_audios[i] = audio elif diff < 0: assert self.pad_audio collated_audios[i] = torch.cat( [audio, audio.new_full([-diff]+audio_feat_shape, 0.0)] ) padding_mask[i, diff:] = True else: collated_audios[i], audio_starts[i] = self.crop_to_max_size( audio, audio_size, audio_starts[i] if start_known else None ) if len(audios[0].shape) == 2: collated_audios = collated_audios.transpose(1, 2) # [B, T, F] -> [B, F, T] else: collated_audios = collated_audios.permute((0, 4, 1, 2, 3)).contiguous() # [B, T, H, W, C] -> [B, C, T, H, W] return collated_audios, padding_mask, audio_starts def collater_frm_label( self, targets, audio_size, audio_starts, label_rate, pad ): assert label_rate > 0 s2f = label_rate / self.sample_rate # num label per sample frm_starts = [int(round(s * s2f)) for s in audio_starts] frm_size = int(round(audio_size * s2f)) if not self.pad_audio: rem_size = [len(t) - s for t, s in zip(targets, frm_starts)] frm_size = min(frm_size, *rem_size) targets = [t[s: s + frm_size] for t, s in zip(targets, frm_starts)] logger.debug(f"audio_starts={audio_starts}") logger.debug(f"frame_starts={frm_starts}") logger.debug(f"frame_size={frm_size}") lengths = torch.LongTensor([len(t) for t in targets]) ntokens = lengths.sum().item() targets = data_utils.collate_tokens( targets, pad_idx=pad, left_pad=False ) return targets, lengths, ntokens def collater_seq_label(self, targets, pad): lengths = torch.LongTensor([len(t) for t in targets]) ntokens = lengths.sum().item() targets = data_utils.collate_tokens( targets, pad_idx=pad, left_pad=False ) return targets, lengths, ntokens def collater_seq_label_s2s(self, targets, pad): lengths = torch.LongTensor([len(t) for t in targets]) ntokens = lengths.sum().item() pad, eos = self.label_processors[0].dictionary.pad(), self.label_processors[0].dictionary.eos() targets_ = data_utils.collate_tokens(targets, pad_idx=pad, eos_idx=eos, left_pad=False) prev_output_tokens = data_utils.collate_tokens(targets, pad_idx=pad, eos_idx=eos, left_pad=False, move_eos_to_beginning=True) return (targets_, prev_output_tokens), lengths, ntokens def collater_label(self, targets_by_label, audio_size, audio_starts): targets_list, lengths_list, ntokens_list = [], [], [] itr = zip(targets_by_label, self.label_rates, self.pad_list) for targets, label_rate, pad in itr: if label_rate == -1: if self.is_s2s: targets, lengths, ntokens = self.collater_seq_label_s2s(targets, pad) else: targets, lengths, ntokens = self.collater_seq_label(targets, pad) else: targets, lengths, ntokens = self.collater_frm_label( targets, audio_size, audio_starts, label_rate, pad ) targets_list.append(targets) lengths_list.append(lengths) ntokens_list.append(ntokens) return targets_list, lengths_list, ntokens_list def num_tokens(self, index): return self.size(index) def size(self, index): if self.pad_audio: return self.sizes[index] return min(self.sizes[index], self.max_sample_size) def ordered_indices(self): if self.shuffle: order = [np.random.permutation(len(self))] else: order = [np.arange(len(self))] order.append(self.sizes) return np.lexsort(order)[::-1]
av_hubert-main
avhubert/hubert_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os,sys import logging from typing import Dict, List, Optional, Tuple import numpy as np import torch import torch.nn as nn from dataclasses import dataclass, field from fairseq import utils from fairseq.data.data_utils import compute_mask_indices from fairseq.data.dictionary import Dictionary from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.models import BaseFairseqModel, register_model from fairseq.models.wav2vec.wav2vec2 import ( ConvFeatureExtractionModel, TransformerEncoder, ) from fairseq.modules import GradMultiply, LayerNorm from copy import deepcopy DBG=True if len(sys.argv) == 1 else False if DBG: from hubert_pretraining import ( AVHubertPretrainingConfig, AVHubertPretrainingTask, ) from resnet import ResEncoder logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) from utils import compute_mask_indices from decoder import TransformerDecoder else: from .hubert_pretraining import ( AVHubertPretrainingConfig, AVHubertPretrainingTask, ) from .resnet import ResEncoder from .utils import compute_mask_indices from .decoder import TransformerDecoder from omegaconf import II logger = logging.getLogger(__name__) EXTRACTOR_MODE_CHOICES = ChoiceEnum(["default", "layer_norm"]) MASKING_DISTRIBUTION_CHOICES = ChoiceEnum( ["static", "uniform", "normal", "poisson"] ) @dataclass class AVHubertConfig(FairseqDataclass): label_rate: int = II("task.label_rate") input_modality: str = II("task.input_modality") extractor_mode: EXTRACTOR_MODE_CHOICES = field( default="default", metadata={ "help": "mode for feature extractor. default has a single group " "norm with d groups in the first conv block, whereas layer_norm " "has layer norms in every block (meant to use with normalize=True)" }, ) encoder_layers: int = field( default=12, metadata={"help": "num encoder layers in the transformer"} ) encoder_embed_dim: int = field( default=768, metadata={"help": "encoder embedding dimension"} ) encoder_ffn_embed_dim: int = field( default=3072, metadata={"help": "encoder embedding dimension for FFN"} ) encoder_attention_heads: int = field( default=12, metadata={"help": "num encoder attention heads"} ) activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( default="gelu", metadata={"help": "activation function to use"} ) # dropouts dropout: float = field( default=0.1, metadata={"help": "dropout probability for the transformer"}, ) attention_dropout: float = field( default=0.1, metadata={"help": "dropout probability for attention weights"}, ) activation_dropout: float = field( default=0.0, metadata={"help": "dropout probability after activation in FFN"}, ) encoder_layerdrop: float = field( default=0.0, metadata={"help": "probability of dropping a tarnsformer layer"}, ) dropout_input: float = field( default=0.0, metadata={"help": "dropout to apply to the input (after feat extr)"}, ) dropout_features: float = field( default=0.0, metadata={ "help": "dropout to apply to the features (after feat extr)" }, ) final_dim: int = field( default=0, metadata={ "help": "project final representations and targets to this many " "dimensions. set to encoder_embed_dim is <= 0" }, ) untie_final_proj: bool = field( default=False, metadata={"help": "use separate projection for each target"}, ) layer_norm_first: bool = field( default=False, metadata={"help": "apply layernorm first in the transformer"}, ) conv_feature_layers: str = field( default="[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2", metadata={ "help": "string describing convolutional feature extraction " "layers in form of a python list that contains " "[(dim, kernel_size, stride), ...]" }, ) conv_bias: bool = field( default=False, metadata={"help": "include bias in conv encoder"} ) logit_temp: float = field( default=0.1, metadata={"help": "temperature to divide logits by"} ) target_glu: bool = field( default=False, metadata={"help": "adds projection + glu to targets"} ) feature_grad_mult: float = field( default=1.0, metadata={"help": "multiply feature extractor var grads by this"}, ) # masking mask_length_audio: int = field(default=10, metadata={"help": "mask length"}) mask_prob_audio: float = field( default=0.65, metadata={"help": "probability of replacing a token with mask"}, ) mask_length_image: int = field(default=10, metadata={"help": "mask length"}) mask_prob_image: float = field( default=0.65, metadata={"help": "probability of replacing a token with mask"}, ) mask_selection: MASKING_DISTRIBUTION_CHOICES = field( default="static", metadata={"help": "how to choose mask length"} ) mask_other: float = field( default=0, metadata={ "help": "secondary mask argument " "(used for more complex distributions), " "see help in compute_mask_indicesh" }, ) no_mask_overlap: bool = field( default=False, metadata={"help": "whether to allow masks to overlap"} ) mask_min_space: int = field( default=1, metadata={ "help": "min space between spans (if no overlap is enabled)" }, ) # channel masking mask_channel_length: int = field( default=10, metadata={"help": "length of the mask for features (channels)"}, ) mask_channel_prob: float = field( default=0.0, metadata={"help": "probability of replacing a feature with 0"}, ) mask_channel_selection: MASKING_DISTRIBUTION_CHOICES = field( default="static", metadata={"help": "how to choose mask length for channel masking"}, ) mask_channel_other: float = field( default=0, metadata={ "help": "secondary mask argument " "(used for more complex distributions), " "see help in compute_mask_indicesh" }, ) no_mask_channel_overlap: bool = field( default=False, metadata={"help": "whether to allow channel masks to overlap"}, ) mask_channel_min_space: int = field( default=1, metadata={ "help": "min space between spans (if no overlap is enabled)" }, ) # positional embeddings conv_pos: int = field( default=128, metadata={ "help": "number of filters for convolutional positional embeddings" }, ) conv_pos_groups: int = field( default=16, metadata={ "help": "number of groups for convolutional positional embedding" }, ) latent_temp: Tuple[float, float, float] = field( default=(2, 0.5, 0.999995), metadata={"help": "legacy (to be removed)"}, ) # loss computation skip_masked: bool = field( default=False, metadata={"help": "skip computing losses over masked frames"}, ) skip_nomask: bool = field( default=False, metadata={"help": "skip computing losses over unmasked frames"}, ) resnet_relu_type: str = field(default='prelu', metadata={"help": 'relu type for resnet'}) resnet_weights: Optional[str] = field(default=None, metadata={"help": 'resnet weights'}) sim_type: str = field(default='cosine', metadata={"help": 'similarity type'}) sub_encoder_layers: int = field(default=0, metadata={'help': 'number of transformer layers for single modality'}) audio_feat_dim: int = field(default=-1, metadata={'help': 'audio feature dimension'}) modality_dropout: float = field(default=0, metadata={'help': 'drop one modality'}) audio_dropout: float = field(default=0, metadata={'help': 'drop audio feature'}) modality_fuse: str = field(default='concat', metadata={'help': 'fusing two modalities: add,concat'}) selection_type : str = field(default='same_other_seq', metadata={'help': 'type of selectig images, same_other_seq: replace masked span with span from another sequence, same_seq: repace masked span with span of the same sequence'}) masking_type : str = field(default='input', metadata={'help': 'input or feature masking'}) decoder_embed_dim: int = field( default=768, metadata={"help": "decoder embedding dimension"} ) decoder_ffn_embed_dim: int = field( default=3072, metadata={"help": "decoder embedding dimension for FFN"} ) decoder_layers: int = field( default=6, metadata={"help": "num of decoder layers"} ) decoder_layerdrop: float = field( default=0.0, metadata={"help": "decoder layerdrop chance"} ) decoder_attention_heads: int = field( default=4, metadata={"help": "num decoder attention heads"} ) decoder_learned_pos: bool = field( default=False, metadata={"help": "use learned positional embeddings in the decoder"}, ) decoder_normalize_before: bool = field( default=False, metadata={"help": "apply layernorm before each decoder block"}, ) no_token_positional_embeddings: bool = field( default=False, metadata={ "help": "if set, disables positional embeddings " "(outside self attention)" }, ) decoder_dropout: float = field( default=0.1, metadata={"help": "dropout probability in the decoder"} ) decoder_attention_dropout: float = field( default=0.1, metadata={ "help": "dropout probability for attention weights " "inside the decoder" }, ) decoder_activation_dropout: float = field( default=0.0, metadata={ "help": "dropout probability after activation in FFN " "inside the decoder" }, ) max_target_positions: int = field( default=2048, metadata={"help": "max target positions"} ) share_decoder_input_output_embed: bool = field( default=False, metadata={"help": "share decoder input and output embeddings"}, ) no_scale_embedding: bool = field(default=True, metadata={'help': 'scale embedding'}) class SubModel(nn.Module): def __init__(self, resnet=None, input_dim=None, cfg=None): super().__init__() self.resnet = resnet self.proj = nn.Linear(input_dim, cfg.encoder_embed_dim) self.encoder = TransformerEncoder(cfg) if cfg.encoder_layers > 0 else None def forward(self, x): if self.resnet is not None: x = self.resnet(x) x = self.proj(x.transpose(1, 2)) if self.encoder is not None: x = self.encoder(x)[0].transpose(1, 2) else: x = x.transpose(1, 2) return x @register_model("av_hubert", dataclass=AVHubertConfig) class AVHubertModel(BaseFairseqModel): def __init__( self, cfg: AVHubertConfig, task_cfg: AVHubertPretrainingConfig, dictionaries: List[Dictionary], **kwargs ) -> None: super().__init__() logger.info(f"HubertModel Config: {cfg}") feature_ds_rate = 1 self.feat2tar_ratio = cfg.label_rate * feature_ds_rate / task_cfg.sample_rate sub_cfg = deepcopy(cfg) sub_cfg.encoder_layers = sub_cfg.sub_encoder_layers resnet = ResEncoder(relu_type=cfg.resnet_relu_type, weights=cfg.resnet_weights) self.feature_extractor_audio = SubModel(resnet=None, input_dim=cfg.audio_feat_dim, cfg=sub_cfg) self.feature_extractor_video = SubModel(resnet=resnet, input_dim=resnet.backend_out, cfg=sub_cfg) self.modality_dropout, self.audio_dropout = cfg.modality_dropout, cfg.audio_dropout self.modality_fuse = cfg.modality_fuse self.encoder_embed_dim = cfg.encoder_embed_dim if self.modality_fuse == 'concat': self.embed = cfg.encoder_embed_dim * 2 elif self.modality_fuse == 'add': self.embed = cfg.encoder_embed_dim self.post_extract_proj = ( nn.Linear(self.embed, cfg.encoder_embed_dim) if self.embed != cfg.encoder_embed_dim else None ) self.mask_prob_image, self.mask_prob_audio = cfg.mask_prob_image, cfg.mask_prob_audio self.mask_selection = cfg.mask_selection self.mask_other = cfg.mask_other self.mask_length_image, self.mask_length_audio = cfg.mask_length_image, cfg.mask_length_audio self.no_mask_overlap = cfg.no_mask_overlap self.mask_min_space = cfg.mask_min_space self.mask_channel_prob = cfg.mask_channel_prob self.mask_channel_selection = cfg.mask_channel_selection self.mask_channel_other = cfg.mask_channel_other self.mask_channel_length = cfg.mask_channel_length self.no_mask_channel_overlap = cfg.no_mask_channel_overlap self.mask_channel_min_space = cfg.mask_channel_min_space self.dropout_input = nn.Dropout(cfg.dropout_input) self.dropout_features = nn.Dropout(cfg.dropout_features) self.feature_grad_mult = cfg.feature_grad_mult self.logit_temp = cfg.logit_temp self.skip_masked = cfg.skip_masked self.skip_nomask = cfg.skip_nomask self.sim_type = cfg.sim_type self.selection_type = cfg.selection_type self.masking_type = cfg.masking_type final_dim = ( cfg.final_dim if cfg.final_dim > 0 else cfg.encoder_embed_dim ) self.mask_emb = nn.Parameter( torch.FloatTensor(cfg.audio_feat_dim).uniform_() if self.masking_type == 'input' else torch.FloatTensor(cfg.encoder_embed_dim).uniform_() ) self.encoder = TransformerEncoder(cfg) self.layer_norm = LayerNorm(self.embed) self.target_glu = None if cfg.target_glu: self.target_glu = nn.Sequential( nn.Linear(final_dim, final_dim * 2), nn.GLU() ) self.untie_final_proj = cfg.untie_final_proj if self.untie_final_proj: self.final_proj = nn.Linear( cfg.encoder_embed_dim, final_dim * len(dictionaries) ) else: self.final_proj = nn.Linear(cfg.encoder_embed_dim, final_dim) # modules below are not needed during fine-tuning if any([d is None for d in dictionaries]): logger.info( "cannot find dictionary. assume will be used for fine-tuning" ) else: self.num_classes = [len(d) for d in dictionaries] self.label_embs_concat = nn.Parameter( torch.FloatTensor(sum(self.num_classes), final_dim) ) nn.init.uniform_(self.label_embs_concat) def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" super().upgrade_state_dict_named(state_dict, name) return state_dict @classmethod def build_model(cls, cfg: AVHubertConfig, task: AVHubertPretrainingTask): """Build a new model instance.""" kwargs = {} model = AVHubertModel(cfg, task.cfg, task.dictionaries, **kwargs) return model def apply_input_mask(self, x, padding_mask, target_list): B, C, T = x.shape[:3] is_audio = True if len(x.shape) == 3 else False if is_audio: mask_prob, mask_length = self.mask_prob_audio, self.mask_length_audio else: mask_prob, mask_length = self.mask_prob_image, self.mask_length_image if mask_prob > 0: mask_indices, starts, ends, batch_indexes = compute_mask_indices( (B, T), padding_mask, mask_prob, mask_length, self.mask_selection, self.mask_other, min_masks=2, no_overlap=self.no_mask_overlap, min_space=self.mask_min_space, ) mask_indices_np = mask_indices mask_indices = torch.from_numpy(mask_indices).to(x.device) x = x.transpose(1, 2).contiguous() # [B, T, C, H, W] if B == 1: x[mask_indices] = 0 elif is_audio: x[mask_indices] = self.mask_emb elif self.selection_type == 'same_other_seq': perm = (torch.arange(B) + torch.randint(low=1, high=B, size=(1,))) % B x_perm = x[perm] x[mask_indices] = x_perm[mask_indices] elif self.selection_type == 'same_seq': batch_indexes_, other_indexes = [], [] for batch_index, start, end in zip(batch_indexes, starts, ends): length = end-start other_start = np.setdiff1d(np.arange(T), np.arange(max(0, start-length), end)) if len(other_start) > 0: other_start = np.random.choice(other_start, size=1) else: other_start = 0 other_end = other_start + length other_indexes.append(np.arange(other_start, other_end).clip(max=T-1)) batch_indexes_.append(np.zeros([length], dtype=np.int64)+batch_index) batch_indexes, other_indexes = np.concatenate(batch_indexes_), np.concatenate(other_indexes) x[mask_indices] = x[batch_indexes, other_indexes] x = x.transpose(1, 2).contiguous() else: mask_indices = None if self.mask_channel_prob > 0: logger.info(f"No mask channel prob for input masking") return x, mask_indices def apply_feature_mask(self, x, padding_mask, target_list): B, T, C = x.shape assert self.mask_prob_audio == self.mask_prob_image and self.mask_length_audio == self.mask_length_image, f"masking prob/length for image/audio be same for feature masking" mask_prob, mask_length = self.mask_prob_audio, self.mask_length_image if mask_prob > 0: mask_indices, _, _, _ = compute_mask_indices( (B, T), padding_mask, mask_prob, mask_length, self.mask_selection, self.mask_other, min_masks=2, no_overlap=self.no_mask_overlap, min_space=self.mask_min_space, ) mask_indices = torch.from_numpy(mask_indices).to(x.device) x[mask_indices] = self.mask_emb else: mask_indices = None if self.mask_channel_prob > 0: mask_channel_indices, _, _, _ = compute_mask_indices( (B, C), None, self.mask_channel_prob, self.mask_channel_length, self.mask_channel_selection, self.mask_channel_other, no_overlap=self.no_mask_channel_overlap, min_space=self.mask_channel_min_space, ) mask_channel_indices = ( torch.from_numpy(mask_channel_indices) .to(x.device) .unsqueeze(1) .expand(-1, T, -1) ) x[mask_channel_indices] = 0 return x, mask_indices def forward_features(self, source: torch.Tensor, modality: str) -> torch.Tensor: extractor = eval(f"self.feature_extractor_{modality}") if self.feature_grad_mult > 0: features = extractor(source) if self.feature_grad_mult != 1.0: features = GradMultiply.apply(features, self.feature_grad_mult) else: with torch.no_grad(): features = extractor(source) return features def forward_targets( self, features: torch.Tensor, mask_indices: torch.Tensor, target_list: List[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: # Trim features to ensure labels exist and then get aligned labels feat_tsz = features.size(2) targ_tsz = min([t.size(1) for t in target_list]) if self.feat2tar_ratio * feat_tsz > targ_tsz: feat_tsz = int(targ_tsz / self.feat2tar_ratio) features = features[..., :feat_tsz] if mask_indices is not None: mask_indices = mask_indices[..., :feat_tsz] target_inds = torch.arange(feat_tsz).float() * self.feat2tar_ratio target_list = [t[:, target_inds.long()] for t in target_list] return features, mask_indices, target_list def forward_padding_mask( self, features: torch.Tensor, padding_mask: torch.Tensor, ) -> torch.Tensor: extra = padding_mask.size(1) % features.size(1) if extra > 0: padding_mask = padding_mask[:, :-extra] padding_mask = padding_mask.view( padding_mask.size(0), features.size(1), -1 ) padding_mask = padding_mask.all(-1) return padding_mask def compute_logits(self, feats, emb_mat): # feats: [B, T, F], emb_mat: [V, F] if self.sim_type == 'dot': logits = torch.matmul(feats, emb_mat.transpose(0, 1)) elif self.sim_type == 'cosine': batch_size, timesteps, emb_dim = feats.size() feats_ = feats.view(-1, emb_dim) nom = (feats_.unsqueeze(dim=1) * emb_mat.unsqueeze(dim=0)).sum(dim=-1) # [B*T, V] denom = (feats_**2).sum(dim=-1).sqrt().unsqueeze(dim=1) * (emb_mat**2).sum(dim=-1).sqrt().unsqueeze(dim=0) # [B*T, V] logits = (nom/denom.clamp(min=1e-6)).view(batch_size, timesteps, -1) else: raise NotImplementedError logits = logits / self.logit_temp return logits def forward( self, source: torch.Tensor, target_list: Optional[List[torch.Tensor]] = None, padding_mask: Optional[torch.Tensor] = None, mask: bool = True, features_only: bool = False, output_layer: Optional[int] = None ) -> Dict[str, torch.Tensor]: """output layer is 1-based""" src_audio, src_video = source['audio'], source['video'] if mask and self.masking_type == 'input': src_video, mask_indices_video = self.apply_input_mask(src_video, padding_mask, target_list) src_audio, mask_indices_audio = self.apply_input_mask(src_audio, padding_mask, target_list) mask_indices = torch.logical_or(mask_indices_audio, mask_indices_video) else: src_audio, src_video, mask_indices = src_audio, src_video, None features_audio = self.forward_features(src_audio, modality='audio') # features: [B, F, T] features_video = self.forward_features(src_video, modality='video') modality_drop_prob, audio_drop_prob = np.random.random(), np.random.random() if self.training: if modality_drop_prob < self.modality_dropout: if audio_drop_prob < self.audio_dropout: features_audio = 0 * features_audio else: features_video = 0 * features_video if self.modality_fuse == 'concat': features = torch.cat([features_audio, features_video], dim=1) elif self.modality_fuse == 'add': features = features_audio + features_video if target_list is not None: features, mask_indices, target_list = self.forward_targets(features, mask_indices, target_list) features_pen = features.float().pow(2).mean() features = features.transpose(1, 2) features = self.layer_norm(features) if padding_mask is not None: padding_mask = self.forward_padding_mask(features, padding_mask) if self.post_extract_proj is not None: features = self.post_extract_proj(features) features = self.dropout_input(features) if self.masking_type == 'feature' and mask: x, mask_indices = self.apply_feature_mask(features, padding_mask, target_list) else: x = features # feature: (B, T, D), float # target: (B, T), long # x: (B, T, D), float # padding_mask: (B, T), bool # mask_indices: (B, T), bool x, _ = self.encoder( x, padding_mask=padding_mask, layer=None if output_layer is None else output_layer - 1 ) if features_only: return {"x": x, "padding_mask": padding_mask, "features": features} label_embs_list = self.label_embs_concat.split(self.num_classes, 0) proj_x = self.final_proj(x) if self.untie_final_proj: proj_x_list = proj_x.chunk(len(self.num_classes), dim=-1) else: proj_x_list = [proj_x for _ in self.num_classes] logit_list = [self.compute_logits(proj, emb).view(-1, num_class) for proj, emb, num_class in zip(proj_x_list, label_embs_list, self.num_classes)] # [[B*T, V]] mask, unmask = torch.logical_and(mask_indices, ~padding_mask).view(-1), torch.logical_and(~mask_indices, ~padding_mask).view(-1) # [B*T] logit_m_list, logit_u_list = [logit[mask] for logit in logit_list], [logit[unmask] for logit in logit_list] target_m_list, target_u_list = [target.view(-1)[mask].long() for target in target_list], [target.view(-1)[unmask].long() for target in target_list] result = { "logit_m_list": logit_m_list, "logit_u_list": logit_u_list, "target_m_list": target_m_list, "target_u_list": target_u_list, "padding_mask": padding_mask, "features_pen": features_pen, } return result def extract_features( self, source: torch.Tensor, padding_mask: Optional[torch.Tensor] = None, mask: bool = False, ret_conv: bool = False, output_layer: Optional[int] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: res = self.forward( source, padding_mask=padding_mask, mask=mask, features_only=True, output_layer=output_layer, ) feature = res["features"] if ret_conv else res["x"] return feature, res["padding_mask"] def extract_finetune(self, source, padding_mask=None, mask=False, ret_conv=False, output_layer=None): src_audio, src_video = source['audio'], source['video'] if mask and self.masking_type == 'input': src_video, mask_indices_video = self.apply_input_mask(src_video, padding_mask, target_list=None) src_audio, mask_indices_audio = self.apply_input_mask(src_audio, padding_mask, target_list=None) mask_indices = torch.logical_or(mask_indices_audio, mask_indices_video) # mask_indices not used in fine-tuning else: src_audio, src_video, mask_indices = src_audio, src_video, None if src_audio is not None and src_video is None: features_audio = self.forward_features(src_audio, modality='audio') # features: [B, F, T] features_video = features_audio.new_zeros(features_audio.size(0), self.encoder_embed_dim, features_audio.size(-1)) elif src_audio is None and src_video is not None: features_video = self.forward_features(src_video, modality='video') features_audio = features_video.new_zeros(features_video.size(0), self.encoder_embed_dim, features_video.size(-1)) elif src_audio is not None and src_video is not None: features_video = self.forward_features(src_video, modality='video') features_audio = self.forward_features(src_audio, modality='audio') # features: [B, F, T] if self.modality_fuse == 'concat': features = torch.cat([features_audio, features_video], dim=1) elif self.modality_fuse == 'add': features = features_audio + features_video features_pen = features.float().pow(2).mean() features = features.transpose(1, 2) features = self.layer_norm(features) unmasked_features = features.clone() if padding_mask is not None: padding_mask = self.forward_padding_mask(features, padding_mask) if self.post_extract_proj is not None: features = self.post_extract_proj(features) features = self.dropout_input(features) unmasked_features = self.dropout_features(unmasked_features) x = features mask_indices = None # feature: (B, T, D), float # target: (B, T), long # x: (B, T, D), float # padding_mask: (B, T), bool # mask_indices: (B, T), bool x, _ = self.encoder( x, padding_mask=padding_mask, layer=None if output_layer is None else output_layer - 1 ) return x, padding_mask def get_extra_losses(self, net_output): extra_losses = [] names = [] if "features_pen" in net_output: extra_losses.append(net_output["features_pen"]) names.append("features_pen") return extra_losses, names def remove_pretraining_modules(self): self.target_glu = None self.final_proj = None def get_logits(self, net_output, is_masked=True): raise NotImplementedError def get_targets(self, net_output, is_masked=True): raise NotImplementedError def compute_nce(self, x, pos, negs): neg_is_pos = (pos == negs).all(-1) pos = pos.unsqueeze(0) targets = torch.cat([pos, negs], dim=0) logits = torch.cosine_similarity( x.float(), targets.float(), dim=-1 ).type_as(x) logits /= self.logit_temp if neg_is_pos.any(): logits[1:][neg_is_pos] = float("-inf") logits = logits.transpose(0, 1) # (num_x, num_cls+1) return logits
av_hubert-main
avhubert/hubert.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import sys import argparse import torch from fairseq.data import Dictionary, encoders def add_task_state(ckpt_path): std = torch.load(ckpt_path) cfg = std['cfg'] if cfg['model']['_name'] == 'av_hubert': dictionaries = [Dictionary.load(f"{cfg['task']['label_dir']}/dict.{label}.txt") for label in cfg['task']['labels']] std['cfg']['task']['fine_tuning'] = False std['task_state'] = {'dictionaries': dictionaries} print(dictionaries, std['cfg']['task']) else: prt = torch.load(std['cfg']['model']['w2v_path']) std['cfg']['model']['w2v_args'] = prt['cfg'] std['cfg']['task']['fine_tuning'] = True dictionaries = [Dictionary.load(f"{prt['cfg']['task']['label_dir']}/dict.{label}.txt") for label in prt['cfg']['task']['labels']] target_dictionary = Dictionary.load(f"{cfg['task']['label_dir']}/dict.wrd.txt") tokenizer_fn = std['cfg']['task']['tokenizer_bpe_model'] bpe_args = argparse.Namespace(**{'bpe': 'sentencepiece', f"sentencepiece_model": tokenizer_fn}) bpe_tokenizer = encoders.build_bpe(bpe_args) std['task_state'] = {'dictionaries': dictionaries, 'target_dictionary': target_dictionary, 's2s_tokenizer': bpe_tokenizer} torch.save(std, ckpt_path) return if __name__ == '__main__': ckpt_paths = sys.argv[1:] for ckpt_path in ckpt_paths: add_task_state(ckpt_path)
av_hubert-main
avhubert/misc/fix_state.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import logging import os import sys import numpy as np import joblib import torch import tqdm logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) logger = logging.getLogger("dump_km_label") class ApplyKmeans(object): def __init__(self, km_path): self.km_model = joblib.load(km_path) self.C_np = self.km_model.cluster_centers_.transpose() self.Cnorm_np = (self.C_np ** 2).sum(0, keepdims=True) self.C = torch.from_numpy(self.C_np) self.Cnorm = torch.from_numpy(self.Cnorm_np) if torch.cuda.is_available(): self.C = self.C.cuda() self.Cnorm = self.Cnorm.cuda() def __call__(self, x): if isinstance(x, torch.Tensor): dist = ( x.pow(2).sum(1, keepdim=True) - 2 * torch.matmul(x, self.C) + self.Cnorm ) return dist.argmin(dim=1).cpu().numpy() else: dist = ( (x ** 2).sum(1, keepdims=True) - 2 * np.matmul(x, self.C_np) + self.Cnorm_np ) return np.argmin(dist, axis=1) def get_feat_iterator(feat_dir, split, nshard, rank): feat_path = f"{feat_dir}/{split}_{rank}_{nshard}.npy" leng_path = f"{feat_dir}/{split}_{rank}_{nshard}.len" with open(leng_path, "r") as f: lengs = [int(line.rstrip()) for line in f] offsets = [0] + np.cumsum(lengs[:-1]).tolist() def iterate(): feat = np.load(feat_path, mmap_mode="r") assert feat.shape[0] == (offsets[-1] + lengs[-1]) for offset, leng in zip(offsets, lengs): yield feat[offset: offset + leng] return iterate, len(lengs) def dump_label(feat_dir, split, km_path, nshard, rank, lab_dir): apply_kmeans = ApplyKmeans(km_path) generator, num = get_feat_iterator(feat_dir, split, nshard, rank) iterator = generator() lab_path = f"{lab_dir}/{split}_{rank}_{nshard}.km" os.makedirs(lab_dir, exist_ok=True) with open(lab_path, "w") as f: for feat in tqdm.tqdm(iterator, total=num): # feat = torch.from_numpy(feat).cuda() lab = apply_kmeans(feat).tolist() f.write(" ".join(map(str, lab)) + "\n") logger.info("finished successfully") if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("feat_dir") parser.add_argument("split") parser.add_argument("km_path") parser.add_argument("nshard", type=int) parser.add_argument("rank", type=int) parser.add_argument("lab_dir") args = parser.parse_args() logging.info(str(args)) dump_label(**vars(args))
av_hubert-main
avhubert/clustering/dump_km_label.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import logging import math import os import sys import fairseq import soundfile as sf import torch import torch.nn.functional as F import tqdm from npy_append_array import NpyAppendArray import numpy as np from python_speech_features import logfbank from scipy.io import wavfile logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) logger = logging.getLogger("dump_hubert_feature") class HubertFeatureReader(object): def __init__(self, ckpt_path, layer, max_chunk=1600000, custom_utils=None): ( model, cfg, task, ) = fairseq.checkpoint_utils.load_model_ensemble_and_task([ckpt_path]) self.model = model[0].eval().cuda() self.task = task self.layer = layer self.max_chunk = max_chunk self.stack_order_audio = self.task.cfg.stack_order_audio image_crop_size, image_mean, image_std = self.task.cfg.image_crop_size, self.task.cfg.image_mean, self.task.cfg.image_std self.transform = custom_utils.Compose([ custom_utils.Normalize( 0.0,255.0 ), custom_utils.CenterCrop((image_crop_size, image_crop_size)), custom_utils.Normalize(image_mean, image_std) ]) self.custom_utils = custom_utils logger.info(f"TASK CONFIG:\n{self.task.cfg}") logger.info(f" max_chunk = {self.max_chunk}") logger.info(f"Transform: {self.transform}") def load_feature(self, mix_name, ref_len=None): def stacker(feats, stack_order): feat_dim = feats.shape[1] if len(feats) % stack_order != 0: res = stack_order - len(feats) % stack_order res = np.zeros([res, feat_dim]).astype(feats.dtype) feats = np.concatenate([feats, res], axis=0) feats = feats.reshape((-1, stack_order, feat_dim)).reshape(-1, stack_order*feat_dim) return feats video_fn, audio_fn = mix_name video_feats = self.load_image(video_fn) audio_fn = audio_fn.split(':')[0] sample_rate, wav_data = wavfile.read(audio_fn) assert sample_rate == 16_000 and len(wav_data.shape) == 1 audio_feats = logfbank(wav_data, samplerate=sample_rate).astype(np.float32) audio_feats = stacker(audio_feats, self.stack_order_audio) diff = len(audio_feats) - len(video_feats) if diff < 0: audio_feats = np.concatenate([audio_feats, np.zeros([-diff, audio_feats.shape[-1]], dtype=audio_feats.dtype)]) elif diff > 0: audio_feats = audio_feats[:-diff] return video_feats, audio_feats def load_image(self, audio_name): feats = self.custom_utils.load_video(audio_name) feats = self.transform(feats) feats = np.expand_dims(feats, axis=-1) return feats def get_feats(self, path, ref_len=None): video_feats, audio_feats = self.load_feature(path, ref_len) with torch.no_grad(): audio_feats, video_feats = torch.from_numpy(audio_feats.astype(np.float32)).cuda(), torch.from_numpy(video_feats.astype(np.float32)).cuda() if self.task.cfg.normalize: audio_feats = F.layer_norm(audio_feats, audio_feats.shape[1:]) video_feats = video_feats.unsqueeze(dim=0).permute((0, 4, 1, 2, 3)).contiguous() audio_feats = audio_feats.unsqueeze(dim=0).transpose(1, 2) source = {'audio': audio_feats, 'video': video_feats} if self.layer == 0: ret_conv, output_layer = True, None else: ret_conv, output_layer = False, self.layer feat, _ = self.model.extract_features( source=source, padding_mask=None, mask=False, output_layer=output_layer, ret_conv=ret_conv # output_layer=self.layer, ) return feat.squeeze(dim=0) def get_path_iterator(tsv, nshard, rank): with open(tsv, "r") as f: root = f.readline().rstrip() lines = [line.rstrip() for line in f] tot = len(lines) shard_size = math.ceil(tot / nshard) start, end = rank * shard_size, min((rank + 1) * shard_size, tot) assert start < end, "start={start}, end={end}" logger.info( f"rank {rank} of {nshard}, process {end-start} " f"({start}-{end}) out of {tot}" ) lines = lines[start:end] def iterate(): for line in lines: items = line.strip().split("\t") # audio_path = f"{items[1]}:{items[0]}" yield (items[1], items[2]+':'+items[0]), int(items[3]) return iterate, len(lines) def dump_feature( tsv_dir, split, ckpt_path, layer, nshard, rank, feat_dir, max_chunk, custom_utils=None, **kwargs ): reader = HubertFeatureReader(ckpt_path, layer, max_chunk, custom_utils=custom_utils) generator, num = get_path_iterator(f"{tsv_dir}/{split}.tsv", nshard, rank) iterator = generator() feat_path = f"{feat_dir}/{split}_{rank}_{nshard}.npy" leng_path = f"{feat_dir}/{split}_{rank}_{nshard}.len" os.makedirs(feat_dir, exist_ok=True) if os.path.exists(feat_path): os.remove(feat_path) feat_f = NpyAppendArray(feat_path) with open(leng_path, "w") as leng_f: for path, nsample in tqdm.tqdm(iterator, total=num): feat = reader.get_feats(path, nsample) feat_f.append(feat.cpu().numpy()) leng_f.write(f"{len(feat)}\n") logger.info("finished successfully") if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("tsv_dir") parser.add_argument("split") parser.add_argument("ckpt_path") parser.add_argument("layer", type=int) parser.add_argument("nshard", type=int) parser.add_argument("rank", type=int) parser.add_argument("feat_dir") parser.add_argument("--max_chunk", type=int, default=1600000) parser.add_argument("--user_dir", type=str, default=None) args = parser.parse_args() logger.info(args) fairseq.utils.import_user_module(args) sys.path.append(args.user_dir) import utils as custom_utils kwargs = vars(args) kwargs.update({'custom_utils': custom_utils}) dump_feature(**kwargs)
av_hubert-main
avhubert/clustering/dump_hubert_feature.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os, subprocess import submitit import argparse from argparse import Namespace def dump_av_hubert(*args, **kwargs): from dump_hubert_feature import dump_feature import fairseq import sys av_hubert_dir = os.path.join(os.getcwd(), '..') fairseq.utils.import_user_module(Namespace(user_dir=av_hubert_dir)) sys.path.append(av_hubert_dir) import utils as custom_utils kwargs.update({'custom_utils': custom_utils}) args = args[0] dump_feature(*args, **kwargs) return def dump_mfcc(*args, **kwargs): from dump_mfcc_feature import dump_feature args = args[0] dump_feature(*args, **kwargs) return def run_kmeans(*args, **kwargs): import sys from learn_kmeans import learn_kmeans learn_kmeans(*args, **kwargs) return def apply_kmeans(*args, **kwargs): import sys from dump_km_label import dump_label args = args[0] dump_label(*args, **kwargs) return def concatenate(*args, **kwargs): from concat import main as concat_fn args = args[0] concat_fn(*args, **kwargs) return def main(): parser = argparse.ArgumentParser(description='clustering', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--tsv', type=str, help='tsv dir') parser.add_argument('--output', type=str, help='output dir (labels)') parser.add_argument('--ckpt', type=str, help='checkpoint of last iteration') parser.add_argument('--nlayer', type=int, default=12, help='layer index for clustering') parser.add_argument('--ncluster', type=int, default=500, help='number of clusters') parser.add_argument('--nshard', type=int, default=100, help='number of shards') parser.add_argument('--percent', type=float, default=0.05, help='Percentage for clustering') parser.add_argument('--mfcc', action='store_true', help='extracting MFCC feature') parser.add_argument('--slurm-partition', type=str, help='slurm partitions') args = parser.parse_args() tsv_dir = args.tsv output_dir = args.output km_dir = output_dir feat_dir = output_dir ckpt_path = args.ckpt nlayer = args.nlayer nshard = args.nshard n_clusters = args.ncluster slurm_partition = args.slurm_partition is_mfcc = args.mfcc timeout_min = 240 percent = 0.1 log_folder = "log_submit/%j" km_path = f"{km_dir}/kmeans.mdl" os.makedirs(output_dir, exist_ok=True) ext = submitit.AutoExecutor(folder=log_folder) args_array = [] if is_mfcc: print(f"Dump MFCC feature") for rank in range(nshard): args = [tsv_dir, 'train', nshard, rank, output_dir] args_array.append(args) args_array.append([tsv_dir, 'valid', 1, 0, output_dir]) ext.update_parameters(timeout_min=60, slurm_partition=slurm_partition, cpus_per_task=1, slurm_array_parallelism=100) jobs = ext.map_array(dump_mfcc, args_array) else: print(f"Dump AV-Hubert feature") for rank in range(nshard): args = [tsv_dir, 'train', ckpt_path, nlayer, nshard, rank, output_dir, 1600000] args_array.append(args) args_array.append([tsv_dir, 'valid', ckpt_path, nlayer, 1, 0, output_dir, 1600000]) ext.update_parameters(timeout_min=60, slurm_partition=slurm_partition, cpus_per_task=1, gpus_per_node=1, slurm_array_parallelism=100) jobs = ext.map_array(dump_av_hubert, args_array) [job.result() for job in jobs] print(f"Learn K-means") percent, batch_size = percent, 20000 ext.update_parameters(timeout_min=timeout_min, slurm_partition=slurm_partition, cpus_per_task=8, mem_gb=128) args, kwargs = [feat_dir, 'train', nshard, km_path, n_clusters], vars(Namespace(seed=0, percent=percent, init="k-means++", max_iter=100, batch_size=batch_size, tol=0.0, n_init=20, reassignment_ratio=0.0, max_no_improvement=100)) print(args, kwargs) job = ext.submit(run_kmeans, *args, **kwargs) job.result() print(f"Apply K-means") args_array = [] for rank in range(nshard): args = [feat_dir, 'train', km_path, nshard, rank, output_dir] args_array.append(args) args_array.append([feat_dir, 'valid', km_path, 1, 0, output_dir]) ext.update_parameters(timeout_min=10, slurm_partition=slurm_partition, cpus_per_task=1, slurm_array_parallelism=500) jobs = ext.map_array(apply_kmeans, args_array) [job.result() for job in jobs] print(f"Concatenate labels") cont = f"for rank in $(seq 0 {nshard-1}); do cat {output_dir}/train_${{rank}}_{nshard}.km; done > {output_dir}/train.km" print(cont) subprocess.call(cont, shell=True) cont = f"cp {output_dir}/valid*.km {output_dir}/valid.km" print(cont) subprocess.call(cont, shell=True) with open(f"{output_dir}/dict.km.txt", 'w') as fo: for i in range(n_clusters): fo.write(f"{i} {10000}\n") print(f"Please delete intermediate files to save space: rm {output_dir}/*npy") return if __name__ == '__main__': main()
av_hubert-main
avhubert/clustering/submit_cluster.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import logging import os import sys import numpy as np from sklearn.cluster import MiniBatchKMeans import joblib logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) logger = logging.getLogger("learn_kmeans") def get_km_model( n_clusters, init, max_iter, batch_size, tol, max_no_improvement, n_init, reassignment_ratio, ): return MiniBatchKMeans( n_clusters=n_clusters, init=init, max_iter=max_iter, batch_size=batch_size, verbose=1, compute_labels=False, tol=tol, max_no_improvement=max_no_improvement, init_size=None, n_init=n_init, reassignment_ratio=reassignment_ratio, ) def load_feature_shard(feat_dir, split, nshard, rank, percent): feat_path = f"{feat_dir}/{split}_{rank}_{nshard}.npy" leng_path = f"{feat_dir}/{split}_{rank}_{nshard}.len" with open(leng_path, "r") as f: lengs = [int(line.rstrip()) for line in f] offsets = [0] + np.cumsum(lengs[:-1]).tolist() if percent < 0: return np.load(feat_path, mmap_mode="r") else: nsample = int(np.ceil(len(lengs) * percent)) indices = np.random.choice(len(lengs), nsample, replace=False) feat = np.load(feat_path, mmap_mode="r") sampled_feat = np.concatenate( [feat[offsets[i]: offsets[i] + lengs[i]] for i in indices], axis=0 ) logger.info( ( f"sampled {nsample} utterances, {len(sampled_feat)} frames " f"from shard {rank}/{nshard}" ) ) return sampled_feat def load_feature(feat_dir, split, nshard, seed, percent): assert percent <= 1.0 feat = np.concatenate( [ load_feature_shard(feat_dir, split, nshard, r, percent) for r in range(nshard) ], axis=0, ) logging.info(f"loaded feature with dimension {feat.shape}") return feat def learn_kmeans( feat_dir, split, nshard, km_path, n_clusters, seed, percent, init, max_iter, batch_size, tol, n_init, reassignment_ratio, max_no_improvement, ): np.random.seed(seed) feat = load_feature(feat_dir, split, nshard, seed, percent) km_model = get_km_model( n_clusters, init, max_iter, batch_size, tol, max_no_improvement, n_init, reassignment_ratio, ) km_model.fit(feat) joblib.dump(km_model, km_path) inertia = -km_model.score(feat) / len(feat) logger.info("total intertia: %.5f", inertia) logger.info("finished successfully") if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("feat_dir", type=str) parser.add_argument("split", type=str) parser.add_argument("nshard", type=int) parser.add_argument("km_path", type=str) parser.add_argument("n_clusters", type=int) parser.add_argument("--seed", default=0, type=int) parser.add_argument( "--percent", default=-1, type=float, help="sample a subset; -1 for all" ) parser.add_argument("--init", default="k-means++") parser.add_argument("--max_iter", default=100, type=int) parser.add_argument("--batch_size", default=10000, type=int) parser.add_argument("--tol", default=0.0, type=float) parser.add_argument("--max_no_improvement", default=100, type=int) parser.add_argument("--n_init", default=20, type=int) parser.add_argument("--reassignment_ratio", default=0.0, type=float) args = parser.parse_args() logging.info(str(args)) learn_kmeans(**vars(args))
av_hubert-main
avhubert/clustering/learn_kmeans.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import logging import math import os import sys import soundfile as sf import torch import torchaudio import tqdm from npy_append_array import NpyAppendArray logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) logger = logging.getLogger("dump_mfcc_feature") class MfccFeatureReader(object): def __init__(self, sample_rate): self.sample_rate = sample_rate def read_audio(self, path, ref_len=None): wav, sr = sf.read(path) assert sr == self.sample_rate, sr if wav.ndim == 2: wav = wav.mean(-1) assert wav.ndim == 1, wav.ndim if ref_len is not None and abs(ref_len - len(wav)) > 160: logging.warning(f"ref {ref_len} != read {len(wav)} ({path})") return wav def get_feats(self, path, ref_len=None): x = self.read_audio(path, ref_len) with torch.no_grad(): x = torch.from_numpy(x).float() x = x.view(1, -1) mfccs = torchaudio.compliance.kaldi.mfcc( waveform=x, sample_frequency=self.sample_rate, use_energy=False, ) # (time, freq) mfccs = mfccs.transpose(0, 1) # (freq, time) deltas = torchaudio.functional.compute_deltas(mfccs) ddeltas = torchaudio.functional.compute_deltas(deltas) concat = torch.cat([mfccs, deltas, ddeltas], dim=0) concat = concat.transpose(0, 1).contiguous() # (freq, time) return concat def get_path_iterator(tsv, nshard, rank): with open(tsv, "r") as f: root = f.readline().rstrip() lines = [line.rstrip() for line in f] tot = len(lines) shard_size = math.ceil(tot / nshard) start, end = rank * shard_size, min((rank + 1) * shard_size, tot) assert start < end, "start={start}, end={end}" logger.info( f"rank {rank} of {nshard}, process {end-start} " f"({start}-{end}) out of {tot}" ) lines = lines[start:end] def iterate(): for line in lines: _, video_path, wav_path, nsample_video, nsample_wav = line.split("\t") yield f"{root}/{wav_path}", int(nsample_wav) return iterate, len(lines) def dump_feature(tsv_dir, split, nshard, rank, feat_dir, sample_rate=16_000): reader = MfccFeatureReader(sample_rate) generator, num = get_path_iterator(f"{tsv_dir}/{split}.tsv", nshard, rank) iterator = generator() feat_path = f"{feat_dir}/{split}_{rank}_{nshard}.npy" leng_path = f"{feat_dir}/{split}_{rank}_{nshard}.len" os.makedirs(feat_dir, exist_ok=True) if os.path.exists(feat_path): os.remove(feat_path) feat_f = NpyAppendArray(feat_path) with open(leng_path, "w") as leng_f: for path, nsample in tqdm.tqdm(iterator, total=num): feat = reader.get_feats(path, nsample) feat_f.append(feat.cpu().numpy()) leng_f.write(f"{len(feat)}\n") logger.info("finished successfully") if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("tsv_dir") parser.add_argument("split") parser.add_argument("nshard", type=int) parser.add_argument("rank", type=int) parser.add_argument("feat_dir") parser.add_argument("--sample_rate", type=int, default=16000) args = parser.parse_args() logger.info(args) dump_feature(**vars(args))
av_hubert-main
avhubert/clustering/dump_mfcc_feature.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import glob import shutil import subprocess from tqdm import tqdm from pathlib import Path from gen_subword import gen_vocab from tempfile import NamedTemporaryFile def main(): import argparse parser = argparse.ArgumentParser(description='LRS3 tsv preparation', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--lrs3', type=str, help='lrs3 root dir') parser.add_argument('--valid-ids', type=str, help='a list of valid ids') parser.add_argument('--vocab-size', type=int, default=1000, help='a list of valid ids') args = parser.parse_args() file_list, label_list = f"{args.lrs3}/file.list", f"{args.lrs3}/label.list" assert os.path.isfile(file_list) , f"{file_list} not exist -> run lrs3_prepare.py first" assert os.path.isfile(label_list) , f"{label_list} not exist -> run lrs3_prepare.py first" nframes_audio_file, nframes_video_file = f"{args.lrs3}/nframes.audio", f"{args.lrs3}/nframes.video" assert os.path.isfile(nframes_audio_file) , f"{nframes_audio_file} not exist -> run count_frames.py first" assert os.path.isfile(nframes_video_file) , f"{nframes_video_file} not exist -> run count_frames.py first" print(f"Generating sentencepiece units") vocab_size = args.vocab_size vocab_dir = (Path(f"{args.lrs3}")/f"spm{vocab_size}").absolute() # out_root = Path(vocab_dir).absolute() vocab_dir.mkdir(exist_ok=True) spm_filename_prefix = f"spm_unigram{vocab_size}" with NamedTemporaryFile(mode="w") as f: label_text = [ln.strip() for ln in open(label_list).readlines()] for t in label_text: f.write(t.lower() + "\n") gen_vocab(Path(f.name), vocab_dir/spm_filename_prefix, 'unigram', args.vocab_size) vocab_path = (vocab_dir/spm_filename_prefix).as_posix()+'.txt' audio_dir, video_dir = f"{args.lrs3}/audio", f"{args.lrs3}/video" def setup_target(target_dir, train, valid, test): for name, data in zip(['train', 'valid', 'test'], [train, valid, test]): with open(f"{target_dir}/{name}.tsv", 'w') as fo: fo.write('/\n') for fid, _, nf_audio, nf_video in data: fo.write('\t'.join([fid, os.path.abspath(f"{video_dir}/{fid}.mp4"), os.path.abspath(f"{audio_dir}/{fid}.wav"), str(nf_video), str(nf_audio)])+'\n') with open(f"{target_dir}/{name}.wrd", 'w') as fo: for _, label, _, _ in data: fo.write(f"{label}\n") shutil.copyfile(vocab_path, f"{target_dir}/dict.wrd.txt") return fids, labels = [x.strip() for x in open(file_list).readlines()], [x.strip().lower() for x in open(label_list).readlines()] nfs_audio, nfs_video = [x.strip() for x in open(nframes_audio_file).readlines()], [x.strip() for x in open(nframes_video_file).readlines()] valid_fids = set([x.strip() for x in open(args.valid_ids).readlines()]) train_all, train_sub, valid, test = [], [], [], [] for fid, label, nf_audio, nf_video in zip(fids, labels, nfs_audio, nfs_video): part = fid.split('/')[0] # print(part) if part == 'test': test.append([fid, label, nf_audio, nf_video]) else: if fid in valid_fids: valid.append([fid, label, nf_audio, nf_video]) else: train_all.append([fid, label, nf_audio, nf_video]) if part == 'trainval': train_sub.append([fid, label, nf_audio, nf_video]) dir_30h = f"{args.lrs3}/30h_data" print(f"Set up 30h dir") os.makedirs(dir_30h, exist_ok=True) setup_target(dir_30h, train_sub, valid, test) dir_433h = f"{args.lrs3}/433h_data" print(f"Set up 433h dir") os.makedirs(dir_433h, exist_ok=True) setup_target(dir_433h, train_all, valid, test) return if __name__ == '__main__': main()
av_hubert-main
avhubert/preparation/lrs3_manifest.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import numpy as np from scipy.io import wavfile from tqdm import tqdm def mix_audio(wav_fns): wav_data = [wavfile.read(wav_fn)[1] for wav_fn in wav_fns] wav_data_ = [] min_len = min([len(x) for x in wav_data]) for item in wav_data: wav_data_.append(item[:min_len]) wav_data = np.stack(wav_data_).mean(axis=0).astype(np.int16) return wav_data def main(): import argparse parser = argparse.ArgumentParser(description='Generating babble and speech noise from LRS3', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--lrs3', type=str, help='lrs3 root dir') args = parser.parse_args() tsv_fn = os.path.join(args.lrs3, '433h_data', 'train.tsv') output_wav = os.path.join(args.lrs3, 'noise', 'babble', 'noise.wav') output_tsvs = [os.path.join(args.lrs3, 'noise', 'babble', 'valid.tsv'), os.path.join(args.lrs3, 'noise', 'babble', 'test.tsv')] os.makedirs(os.path.dirname(output_wav), exist_ok=True) for output_tsv in output_tsvs: os.makedirs(os.path.dirname(output_tsv), exist_ok=True) print(f"Generating babble noise -> {output_tsvs}") num_samples = 30 sample_rate = 16_000 min_len = 15*sample_rate lns = open(tsv_fn).readlines()[1:] wav_fns = [(ln.strip().split('\t')[2], int(ln.strip().split('\t')[-1])) for ln in lns] wav_fns = list(filter(lambda x: x[1]>min_len, wav_fns)) indexes = np.random.permutation(len(wav_fns))[:num_samples] wav_fns = [wav_fns[i][0] for i in indexes] wav_data = mix_audio(wav_fns) wavfile.write(output_wav, sample_rate, wav_data) for output_tsv in output_tsvs: with open(output_tsv, 'w') as fo: fo.write(os.path.abspath(output_wav)+'\n') min_len = 20*sample_rate speech_tsv_dir, speech_wav_dir = os.path.join(args.lrs3, 'noise', 'speech'), os.path.join(args.lrs3, 'noise', 'speech', 'wav') os.makedirs(speech_tsv_dir, exist_ok=True) os.makedirs(speech_wav_dir, exist_ok=True) print(f'Generating speech noise -> {speech_tsv_dir}') lns = open(tsv_fn).readlines()[1:] wav_fns = [(ln.strip().split('\t')[2], int(ln.strip().split('\t')[-1])) for ln in lns] wav_fns = list(filter(lambda x: x[1]>min_len, wav_fns)) wav_fns = [x[0] for x in wav_fns] print(f"# speech noise audios: {len(wav_fns)}") noise_fns = [] for wav_fn in tqdm(wav_fns): sample_rate, wav_data = wavfile.read(wav_fn) wav_data = wav_data[:min_len] filename = '_'.join(wav_fn.split('/')[-2:]) noise_fn = f"{speech_wav_dir}/{filename}" noise_fns.append(noise_fn) wavfile.write(noise_fn, sample_rate, wav_data.astype(np.int16)) num_train, num_valid, num_test = int(len(noise_fns)*0.6), int(len(noise_fns)*0.2), int(len(noise_fns)*0.2) prev = 0 for split in ['train', 'valid', 'test']: split_fns = [] num_x, tsv_x = eval(f"num_{split}"), f"{speech_tsv_dir}/{split}.tsv" for fn in noise_fns[prev: prev+num_x]: split_fns.append(os.path.abspath(fn)) with open(tsv_x, 'w') as fo: fo.write('\n'.join(split_fns)+'\n') prev += num_x return if __name__ == '__main__': main()
av_hubert-main
avhubert/preparation/lrs3_noise.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os, sys, glob, subprocess, json, math import numpy as np from scipy.io import wavfile from os.path import basename, dirname from tqdm import tqdm import tempfile, shutil def get_filelist(root_dir): fids = [] for split in ['dev', 'test']: all_fns = glob.glob(f"{root_dir}/{split}/mp4/*/*/*mp4") for fn in all_fns: fids.append('/'.join(fn.split('/')[-5:])[:-4]) output_fn = f"{root_dir}/file.list" with open(output_fn, 'w') as fo: fo.write('\n'.join(fids)+'\n') return def prep_wav(root_dir, wav_dir, flist, ffmpeg, rank, nshard): input_dir, output_dir = root_dir, wav_dir os.makedirs(output_dir, exist_ok=True) fids = [ln.strip() for ln in open(flist).readlines()] num_per_shard = math.ceil(len(fids)/nshard) start_id, end_id = num_per_shard*rank, num_per_shard*(rank+1) fids = fids[start_id: end_id] print(f"{len(fids)} videos") for i, fid in enumerate(tqdm(fids)): video_fn = f"{input_dir}/{fid}.mp4" audio_fn = f"{output_dir}/{fid}.wav" os.makedirs(os.path.dirname(audio_fn), exist_ok=True) cmd = ffmpeg + " -i " + video_fn + " -f wav -vn -y " + audio_fn + ' -loglevel quiet' # print(cmd) subprocess.call(cmd, shell=True) # print(f"{video_fn} -> {audio_fn}") return if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='VoxCeleb2 data preparation', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--vox', type=str, help='VoxCeleb2 dir') parser.add_argument('--ffmpeg', type=str, help='ffmpeg path') parser.add_argument('--step', type=int, help='Steps(1: get file list, 2: extract audio)') parser.add_argument('--rank', type=int, help='rank id') parser.add_argument('--nshard', type=int, help='number of shards') args = parser.parse_args() if args.step == 1: print(f"Get file list") get_filelist(args.vox) elif args.step == 2: print(f"Extract audio") output_dir = f"{args.vox}/audio" manifest = f"{args.vox}/file.list" prep_wav(args.vox, output_dir, manifest, args.ffmpeg, args.rank, args.nshard)
av_hubert-main
avhubert/preparation/vox_prepare.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import cv2, math, os import submitit import tempfile import shutil from tqdm import tqdm from scipy.io import wavfile def count_frames(fids, audio_dir, video_dir): total_num_frames = [] for fid in tqdm(fids): wav_fn = f"{audio_dir}/{fid}.wav" video_fn = f"{video_dir}/{fid}.mp4" num_frames_audio = len(wavfile.read(wav_fn)[1]) cap = cv2.VideoCapture(video_fn) num_frames_video = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) total_num_frames.append([num_frames_audio, num_frames_video]) return total_num_frames def check(fids, audio_dir, video_dir): missing = [] for fid in tqdm(fids): wav_fn = f"{audio_dir}/{fid}.wav" video_fn = f"{video_dir}/{fid}.mp4" is_file = os.path.isfile(wav_fn) and os.path.isfile(video_fn) if not is_file: missing.append(fid) return missing if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='count number of frames (on slurm)', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--root', type=str, help='root dir') parser.add_argument('--manifest', type=str, help='a list of filenames') parser.add_argument('--nshard', type=int, default=1, help='number of shards') parser.add_argument('--slurm_partition', type=str, default='cpu', help='slurm partition') args = parser.parse_args() fids = [ln.strip() for ln in open(args.manifest).readlines()] print(f"{len(fids)} files") audio_dir, video_dir = f"{args.root}/audio", f"{args.root}/video" tmp_dir = tempfile.mkdtemp(dir='./') executor = submitit.AutoExecutor(folder=tmp_dir) executor.update_parameters(slurm_array_parallelism=100, slurm_partition=args.slurm_partition, timeout_min=240) ranks = list(range(0, args.nshard)) fids_arr = [] num_per_shard = math.ceil(len(fids)/args.nshard) for rank in ranks: sub_fids = fids[rank*num_per_shard: (rank+1)*num_per_shard] if len(sub_fids) > 0: fids_arr.append(sub_fids) jobs = executor.map_array(check, fids_arr, [audio_dir for _ in fids_arr], [video_dir for _ in fids_arr]) missing_fids = [job.result() for job in jobs] missing_fids = [x for item in missing_fids for x in item] if len(missing_fids) > 0: print(f"Some audio/video files not exist, see {args.root}/missing.list") with open(f"{args.root}/missing.list", 'w') as fo: fo.write('\n'.join(missing_fids)+'\n') shutil.rmtree(tmp_dir) else: jobs = executor.map_array(count_frames, fids_arr, [audio_dir for _ in fids_arr], [video_dir for _ in fids_arr]) num_frames = [job.result() for job in jobs] audio_num_frames, video_num_frames = [], [] for item in num_frames: audio_num_frames.extend([x[0] for x in item]) video_num_frames.extend([x[1] for x in item]) with open(f"{args.root}/nframes.audio", 'w') as fo: fo.write(''.join([f"{x}\n" for x in audio_num_frames])) with open(f"{args.root}/nframes.video", 'w') as fo: fo.write(''.join([f"{x}\n" for x in video_num_frames])) shutil.rmtree(tmp_dir)
av_hubert-main
avhubert/preparation/count_frames_slurm.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import sys, os, glob, subprocess, shutil, math from datetime import timedelta import tempfile from collections import OrderedDict from pydub import AudioSegment from tqdm import tqdm def read_csv(csv_file, delimit=','): lns = open(csv_file, 'r').readlines() keys = lns[0].strip().split(delimit) df = {key: [] for key in keys} for ln in lns[1:]: ln = ln.strip().split(delimit) for j, key in enumerate(keys): df[key].append(ln[j]) return df def make_short_manifest(pretrain_dir, output_fn): subdirs = os.listdir(pretrain_dir) min_interval = 0.4 max_duration = 15 df = {'fid': [], 'sent': [], 'start': [], 'end': []} for subdir in tqdm(subdirs): txt_fns = glob.glob(os.path.join(pretrain_dir, subdir+'/*txt')) for txt_fn in txt_fns: fid = os.path.relpath(txt_fn, pretrain_dir)[:-4] lns = open(txt_fn).readlines() raw_text = lns[0].strip().split(':')[-1].strip() conf = lns[1].strip().split(':')[-1].strip() word_intervals = [] for i_line, ln in enumerate(lns): if ln[:4] == 'WORD': start_index = i_line break for ln in lns[start_index+1:]: word, start, end, score = ln.strip().split() word_intervals.append([word, float(start), float(end)]) if word_intervals[-1][-1] < max_duration: df['fid'].append(fid) df['sent'].append(raw_text) df['start'].append(0) df['end'].append(-1) continue sents, cur_sent = [], [] for i_word, (word, start, end) in enumerate(word_intervals): if i_word == 0: cur_sent.append([word, start, end]) else: assert start >= cur_sent[-1][-1], f"{fid} , {word}, start-{start}, prev-{cur_sent[-1][-1]}" if start - cur_sent[-1][-1] > min_interval: sents.append(cur_sent) cur_sent = [[word, start, end]] else: cur_sent.append([word, start, end]) if len(cur_sent) > 0: sents.append(cur_sent) for i_sent, sent in enumerate(sents): df['fid'].append(fid+'_'+str(i_sent)) sent_words = ' '.join([x[0] for x in sent]) if i_sent == 0: sent_start = 0 else: sent_start = (sent[0][1] + sents[i_sent-1][-1][2])/2 if i_sent == len(sents)-1: sent_end = -1 else: sent_end = (sent[-1][2] + sents[i_sent+1][0][1])/2 df['sent'].append(sent_words) df['start'].append(sent_start) df['end'].append(sent_end) durations = [y-x for x, y in zip(df['start'], df['end'])] num_long = len(list(filter(lambda x: x > 15, durations))) print(f"Percentage of >15 second: {100*num_long/len(durations)}%") num_long = len(list(filter(lambda x: x > 20, durations))) print(f"Percentage of >20 second: {100*num_long/len(durations)}%") with open(output_fn, 'w') as fo: fo.write('id,text,start,end\n') for i in range(len(df['fid'])): fo.write(','.join([df['fid'][i], df['sent'][i], '%.3f' % (df['start'][i]), '%.3f' % (df['end'][i])])+'\n') return def trim_video_frame(csv_fn, raw_dir, output_dir, ffmpeg, rank, nshard): df = read_csv(csv_fn) raw2fid = OrderedDict() decimal, fps = 9, 25 for fid, start, end in zip(df['id'], df['start'], df['end']): if '_' in fid: raw_fid = '_'.join(fid.split('_')[:-1]) else: raw_fid = fid if raw_fid in raw2fid: raw2fid[raw_fid].append([fid, start, end]) else: raw2fid[raw_fid] = [[fid, start, end]] i_raw = -1 num_per_shard = math.ceil(len(raw2fid.keys())/nshard) start_id, end_id = num_per_shard*rank, num_per_shard*(rank+1) fid_info_shard = list(raw2fid.items())[start_id: end_id] print(f"Total videos in current shard: {len(fid_info_shard)}/{len(raw2fid.keys())}") for raw_fid, fid_info in tqdm(fid_info_shard): i_raw += 1 raw_path = os.path.join(raw_dir, raw_fid+'.mp4') tmp_dir = tempfile.mkdtemp() cmd = ffmpeg + " -i " + raw_path + " " + tmp_dir + '/%0' + str(decimal) + 'd.png -loglevel quiet' subprocess.call(cmd, shell=True) num_frames = len(glob.glob(tmp_dir+'/*png')) for fid, start_sec, end_sec in fid_info: sub_dir = os.path.join(tmp_dir, fid) os.makedirs(sub_dir, exist_ok=True) start_sec, end_sec = float(start_sec), float(end_sec) if end_sec == -1: end_sec = 24*3600 start_frame_id, end_frame_id = int(start_sec*fps), min(int(end_sec*fps), num_frames) imnames = [tmp_dir+'/'+str(x+1).zfill(decimal)+'.png' for x in range(start_frame_id, end_frame_id)] for ix, imname in enumerate(imnames): shutil.copyfile(imname, sub_dir+'/'+str(ix).zfill(decimal)+'.png') output_path = os.path.join(output_dir, fid+'.mp4') os.makedirs(os.path.dirname(output_path), exist_ok=True) cmd = [ffmpeg, "-i", sub_dir+'/%0'+str(decimal)+'d.png', "-y", "-crf", "20", output_path, "-loglevel", "quiet"] pipe = subprocess.call(cmd, stdout = subprocess.PIPE, stderr = subprocess.STDOUT) # subprocess.PIPE shutil.rmtree(tmp_dir) return def trim_audio(csv_fn, raw_dir, output_dir, ffmpeg, rank, nshard): df = read_csv(csv_fn) raw2fid = OrderedDict() for fid, start, end in zip(df['id'], df['start'], df['end']): if '_' in fid: raw_fid = '_'.join(fid.split('_')[:-1]) else: raw_fid = fid if raw_fid in raw2fid: raw2fid[raw_fid].append([fid, start, end]) else: raw2fid[raw_fid] = [[fid, start, end]] i_raw = -1 num_per_shard = math.ceil(len(raw2fid.keys())/nshard) start_id, end_id = num_per_shard*rank, num_per_shard*(rank+1) fid_info_shard = list(raw2fid.items())[start_id: end_id] print(f"Total audios in current shard: {len(fid_info_shard)}/{len(raw2fid.keys())}") for raw_fid, fid_info in tqdm(fid_info_shard): i_raw += 1 tmp_dir = tempfile.mkdtemp() wav_path = os.path.join(tmp_dir, 'tmp.wav') cmd = ffmpeg + " -i " + os.path.join(raw_dir, raw_fid+'.mp4') + " -f wav -vn -y " + wav_path + ' -loglevel quiet' subprocess.call(cmd, shell=True) raw_audio = AudioSegment.from_wav(wav_path) for fid, start_sec, end_sec in fid_info: start_sec, end_sec = float(start_sec), float(end_sec) if end_sec == -1: end_sec = 24*3600 t1, t2 = int(start_sec*1000), int(end_sec*1000) new_audio = raw_audio[t1: t2] output_path = os.path.join(output_dir, fid+'.wav') os.makedirs(os.path.dirname(output_path), exist_ok=True) new_audio.export(output_path, format="wav") shutil.rmtree(tmp_dir) return def trim_pretrain(root_dir, ffmpeg, rank=0, nshard=1, step=1): pretrain_dir = os.path.join(root_dir, 'pretrain') print(f"Trim original videos in pretrain") csv_fn = os.path.join(root_dir, 'short-pretrain.csv') if step == 1: print(f"Step 1. Make csv file {csv_fn}") make_short_manifest(pretrain_dir, csv_fn) else: print(f"Step 2. Trim video and audio") output_video_dir, output_audio_dir = os.path.join(root_dir, 'short-pretrain'), os.path.join(root_dir, 'audio/short-pretrain/') os.makedirs(output_video_dir, exist_ok=True) os.makedirs(output_audio_dir, exist_ok=True) trim_video_frame(csv_fn, pretrain_dir, output_video_dir, ffmpeg, rank, nshard) trim_audio(csv_fn, pretrain_dir, output_audio_dir, ffmpeg, rank, nshard) return def prep_wav(lrs3_root, ffmpeg, rank, nshard): output_dir = f"{lrs3_root}/audio/" video_fns = glob.glob(lrs3_root + '/trainval/*/*mp4') + glob.glob(lrs3_root + '/test/*/*mp4') video_fns = sorted(video_fns) num_per_shard = math.ceil(len(video_fns)/nshard) start_id, end_id = num_per_shard*rank, num_per_shard*(rank+1) video_fns = video_fns[start_id: end_id] print(f"{len(video_fns)} videos") # subdirs = os.listdir(input_dir) for video_fn in tqdm(video_fns): base_name = '/'.join(video_fn.split('/')[-3:]) audio_fn = os.path.join(output_dir, base_name.replace('mp4', 'wav')) os.makedirs(os.path.dirname(audio_fn), exist_ok=True) cmd = ffmpeg + " -i " + video_fn + " -f wav -vn -y " + audio_fn + ' -loglevel quiet' subprocess.call(cmd, shell=True) return def get_file_label(lrs3_root): video_ids_total, labels_total = [], [] for split in ['trainval', 'test']: subdirs = os.listdir(os.path.join(lrs3_root, split)) for subdir in tqdm(subdirs): video_fns = glob.glob(os.path.join(lrs3_root, split, subdir, '*mp4')) video_ids = ['/'.join(x.split('/')[-3:])[:-4] for x in video_fns] for video_id in video_ids: txt_fn = os.path.join(lrs3_root, video_id+'.txt') label = open(txt_fn).readlines()[0].split(':')[1].strip() labels_total.append(label) video_ids_total.append(video_id) pretrain_csv = os.path.join(lrs3_root, 'short-pretrain.csv') df = read_csv(pretrain_csv) for video_id, label in zip(df['id'], df['text']): video_ids_total.append(os.path.join('short-pretrain', video_id)) labels_total.append(label) video_id_fn, label_fn = os.path.join(lrs3_root, 'file.list'), os.path.join(lrs3_root, 'label.list') print(video_id_fn, label_fn) with open(video_id_fn, 'w') as fo: fo.write('\n'.join(video_ids_total)+'\n') with open(label_fn, 'w') as fo: fo.write('\n'.join(labels_total)+'\n') return if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='LRS3 preprocess pretrain dir', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--lrs3', type=str, help='lrs3 root dir') parser.add_argument('--ffmpeg', type=str, help='path to ffmpeg') parser.add_argument('--rank', type=int, help='rank id') parser.add_argument('--nshard', type=int, help='number of shards') parser.add_argument('--step', type=int, help='Steps (1: split labels, 2: trim video/audio, 3: prep audio for trainval/test, 4: get labels and file list)') args = parser.parse_args() if args.step <= 2: trim_pretrain(args.lrs3, args.ffmpeg, args.rank, args.nshard, step=args.step) elif args.step == 3: print(f"Extracting audio for trainval/test") prep_wav(args.lrs3, args.ffmpeg, args.rank, args.nshard) elif args.step == 4: get_file_label(args.lrs3)
av_hubert-main
avhubert/preparation/lrs3_prepare.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import sys,os,pickle,math import cv2,dlib,time import numpy as np from tqdm import tqdm def load_video(path): videogen = skvideo.io.vread(path) frames = np.array([frame for frame in videogen]) return frames def detect_face_landmarks(face_predictor_path, cnn_detector_path, root_dir, landmark_dir, flist_fn, rank, nshard): def detect_landmark(image, detector, cnn_detector, predictor): gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) rects = detector(gray, 1) if len(rects) == 0: rects = cnn_detector(gray) rects = [d.rect for d in rects] coords = None for (_, rect) in enumerate(rects): shape = predictor(gray, rect) coords = np.zeros((68, 2), dtype=np.int32) for i in range(0, 68): coords[i] = (shape.part(i).x, shape.part(i).y) return coords detector = dlib.get_frontal_face_detector() cnn_detector = dlib.cnn_face_detection_model_v1(cnn_detector_path) predictor = dlib.shape_predictor(face_predictor_path) input_dir = root_dir # output_dir = landmark_dir # fids = [ln.strip() for ln in open(flist_fn).readlines()] num_per_shard = math.ceil(len(fids)/nshard) start_id, end_id = num_per_shard*rank, num_per_shard*(rank+1) fids = fids[start_id: end_id] print(f"{len(fids)} files") for fid in tqdm(fids): output_fn = os.path.join(output_dir, fid+'.pkl') video_path = os.path.join(input_dir, fid+'.mp4') frames = load_video(video_path) landmarks = [] for frame in frames: landmark = detect_landmark(frame, detector, cnn_detector, predictor) landmarks.append(landmark) os.makedirs(os.path.dirname(output_fn), exist_ok=True) pickle.dump(landmarks, open(output_fn, 'wb')) return if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='detecting facial landmarks', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--root', type=str, help='root dir') parser.add_argument('--landmark', type=str, help='landmark dir') parser.add_argument('--manifest', type=str, help='a list of filenames') parser.add_argument('--cnn_detector', type=str, help='path to cnn detector (download and unzip from: http://dlib.net/files/mmod_human_face_detector.dat.bz2)') parser.add_argument('--face_predictor', type=str, help='path to face predictor (download and unzip from: http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2)') parser.add_argument('--rank', type=int, help='rank id') parser.add_argument('--nshard', type=int, help='number of shards') parser.add_argument('--ffmpeg', type=str, help='ffmpeg path') args = parser.parse_args() import skvideo skvideo.setFFmpegPath(os.path.dirname(args.ffmpeg)) print(skvideo.getFFmpegPath()) import skvideo.io detect_face_landmarks(args.face_predictor, args.cnn_detector, args.root, args.landmark, args.manifest, args.rank, args.nshard)
av_hubert-main
avhubert/preparation/detect_landmark.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse from tempfile import NamedTemporaryFile import csv from pathlib import Path import zipfile from functools import reduce from multiprocessing import cpu_count from typing import Any, Dict, List, Optional, Union import numpy as np # import pandas as pd import sentencepiece as sp # from fairseq.data.audio.audio_utils import ( # _convert_to_mono, _get_kaldi_fbank, _get_torchaudio_fbank # ) # import torch from tqdm import tqdm UNK_TOKEN, UNK_TOKEN_ID = "<unk>", 3 BOS_TOKEN, BOS_TOKEN_ID = "<s>", 0 EOS_TOKEN, EOS_TOKEN_ID = "</s>", 2 PAD_TOKEN, PAD_TOKEN_ID = "<pad>", 1 def gen_vocab( input_path: Path, output_path_prefix: Path, model_type="bpe", vocab_size=1000, special_symbols: Optional[List[str]] = None ): # Train SentencePiece Model arguments = [ f"--input={input_path.as_posix()}", f"--model_prefix={output_path_prefix.as_posix()}", f"--model_type={model_type}", f"--vocab_size={vocab_size}", "--character_coverage=1.0", f"--num_threads={cpu_count()}", f"--unk_id={UNK_TOKEN_ID}", f"--bos_id={BOS_TOKEN_ID}", f"--eos_id={EOS_TOKEN_ID}", f"--pad_id={PAD_TOKEN_ID}", ] if special_symbols is not None: _special_symbols = ",".join(special_symbols) arguments.append(f"--user_defined_symbols={_special_symbols}") sp.SentencePieceTrainer.Train(" ".join(arguments)) # Export fairseq dictionary spm = sp.SentencePieceProcessor() spm.Load(output_path_prefix.as_posix() + ".model") vocab = {i: spm.IdToPiece(i) for i in range(spm.GetPieceSize())} assert ( vocab.get(UNK_TOKEN_ID) == UNK_TOKEN and vocab.get(PAD_TOKEN_ID) == PAD_TOKEN and vocab.get(BOS_TOKEN_ID) == BOS_TOKEN and vocab.get(EOS_TOKEN_ID) == EOS_TOKEN ) vocab = { i: s for i, s in vocab.items() if s not in {UNK_TOKEN, BOS_TOKEN, EOS_TOKEN, PAD_TOKEN} } with open(output_path_prefix.as_posix() + ".txt", "w") as f_out: for _, s in sorted(vocab.items(), key=lambda x: x[0]): f_out.write(f"{s} 1\n") return
av_hubert-main
avhubert/preparation/gen_subword.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. ## Based on: https://github.com/mpc001/Lipreading_using_Temporal_Convolutional_Networks/blob/master/preprocessing/crop_mouth_from_video.py """ Crop Mouth ROIs from videos for lipreading""" import os,pickle,shutil,tempfile import math import cv2 import glob import subprocess import argparse import numpy as np from collections import deque import cv2 from skimage import transform as tf from tqdm import tqdm # -- Landmark interpolation: def linear_interpolate(landmarks, start_idx, stop_idx): start_landmarks = landmarks[start_idx] stop_landmarks = landmarks[stop_idx] delta = stop_landmarks - start_landmarks for idx in range(1, stop_idx-start_idx): landmarks[start_idx+idx] = start_landmarks + idx/float(stop_idx-start_idx) * delta return landmarks # -- Face Transformation def warp_img(src, dst, img, std_size): tform = tf.estimate_transform('similarity', src, dst) # find the transformation matrix warped = tf.warp(img, inverse_map=tform.inverse, output_shape=std_size) # warp warped = warped * 255 # note output from wrap is double image (value range [0,1]) warped = warped.astype('uint8') return warped, tform def apply_transform(transform, img, std_size): warped = tf.warp(img, inverse_map=transform.inverse, output_shape=std_size) warped = warped * 255 # note output from warp is double image (value range [0,1]) warped = warped.astype('uint8') return warped def get_frame_count(filename): cap = cv2.VideoCapture(filename) total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) cap.release() return total def read_video(filename): cap = cv2.VideoCapture(filename) while(cap.isOpened()): ret, frame = cap.read() # BGR if ret: yield frame else: break cap.release() # -- Crop def cut_patch(img, landmarks, height, width, threshold=5): center_x, center_y = np.mean(landmarks, axis=0) if center_y - height < 0: center_y = height if center_y - height < 0 - threshold: raise Exception('too much bias in height') if center_x - width < 0: center_x = width if center_x - width < 0 - threshold: raise Exception('too much bias in width') if center_y + height > img.shape[0]: center_y = img.shape[0] - height if center_y + height > img.shape[0] + threshold: raise Exception('too much bias in height') if center_x + width > img.shape[1]: center_x = img.shape[1] - width if center_x + width > img.shape[1] + threshold: raise Exception('too much bias in width') cutted_img = np.copy(img[ int(round(center_y) - round(height)): int(round(center_y) + round(height)), int(round(center_x) - round(width)): int(round(center_x) + round(width))]) return cutted_img def write_video_ffmpeg(rois, target_path, ffmpeg): os.makedirs(os.path.dirname(target_path), exist_ok=True) decimals = 10 fps = 25 tmp_dir = tempfile.mkdtemp() for i_roi, roi in enumerate(rois): cv2.imwrite(os.path.join(tmp_dir, str(i_roi).zfill(decimals)+'.png'), roi) list_fn = os.path.join(tmp_dir, "list") with open(list_fn, 'w') as fo: fo.write("file " + "'" + tmp_dir+'/%0'+str(decimals)+'d.png' + "'\n") ## ffmpeg if os.path.isfile(target_path): os.remove(target_path) cmd = [ffmpeg, "-f", "concat", "-safe", "0", "-i", list_fn, "-q:v", "1", "-r", str(fps), '-y', '-crf', '20', target_path] pipe = subprocess.run(cmd, stdout = subprocess.PIPE, stderr = subprocess.STDOUT) # rm tmp dir shutil.rmtree(tmp_dir) return def load_args(default_config=None): parser = argparse.ArgumentParser(description='Lipreading Pre-processing', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--video-direc', default=None, help='raw video directory') parser.add_argument('--landmark-direc', default=None, help='landmark directory') parser.add_argument('--filename-path', help='list of detected video and its subject ID') parser.add_argument('--save-direc', default=None, help='the directory of saving mouth ROIs') # -- mean face utils parser.add_argument('--mean-face', type=str, help='reference mean face (download from: https://github.com/mpc001/Lipreading_using_Temporal_Convolutional_Networks/blob/master/preprocessing/20words_mean_face.npy)') # -- mouthROIs utils parser.add_argument('--crop-width', default=96, type=int, help='the width of mouth ROIs') parser.add_argument('--crop-height', default=96, type=int, help='the height of mouth ROIs') parser.add_argument('--start-idx', default=48, type=int, help='the start of landmark index') parser.add_argument('--stop-idx', default=68, type=int, help='the end of landmark index') parser.add_argument('--window-margin', default=12, type=int, help='window margin for smoothed_landmarks') parser.add_argument('--ffmpeg', type=str, help='ffmpeg path') parser.add_argument('--rank', type=int, help='rank id') parser.add_argument('--nshard', type=int, help='number of shards') args = parser.parse_args() return args def crop_patch(video_pathname, landmarks, mean_face_landmarks, stablePntsIDs, STD_SIZE, window_margin, start_idx, stop_idx, crop_height, crop_width): """Crop mouth patch :param str video_pathname: pathname for the video_dieo :param list landmarks: interpolated landmarks """ frame_idx = 0 num_frames = get_frame_count(video_pathname) frame_gen = read_video(video_pathname) margin = min(num_frames, window_margin) while True: try: frame = frame_gen.__next__() ## -- BGR except StopIteration: break if frame_idx == 0: q_frame, q_landmarks = deque(), deque() sequence = [] q_landmarks.append(landmarks[frame_idx]) q_frame.append(frame) if len(q_frame) == margin: smoothed_landmarks = np.mean(q_landmarks, axis=0) cur_landmarks = q_landmarks.popleft() cur_frame = q_frame.popleft() # -- affine transformation trans_frame, trans = warp_img( smoothed_landmarks[stablePntsIDs, :], mean_face_landmarks[stablePntsIDs, :], cur_frame, STD_SIZE) trans_landmarks = trans(cur_landmarks) # -- crop mouth patch sequence.append( cut_patch( trans_frame, trans_landmarks[start_idx:stop_idx], crop_height//2, crop_width//2,)) if frame_idx == len(landmarks)-1: while q_frame: cur_frame = q_frame.popleft() # -- transform frame trans_frame = apply_transform( trans, cur_frame, STD_SIZE) # -- transform landmarks trans_landmarks = trans(q_landmarks.popleft()) # -- crop mouth patch sequence.append( cut_patch( trans_frame, trans_landmarks[start_idx:stop_idx], crop_height//2, crop_width//2,)) return np.array(sequence) frame_idx += 1 return None def landmarks_interpolate(landmarks): """Interpolate landmarks param list landmarks: landmarks detected in raw videos """ valid_frames_idx = [idx for idx, _ in enumerate(landmarks) if _ is not None] if not valid_frames_idx: return None for idx in range(1, len(valid_frames_idx)): if valid_frames_idx[idx] - valid_frames_idx[idx-1] == 1: continue else: landmarks = linear_interpolate(landmarks, valid_frames_idx[idx-1], valid_frames_idx[idx]) valid_frames_idx = [idx for idx, _ in enumerate(landmarks) if _ is not None] # -- Corner case: keep frames at the beginning or at the end failed to be detected. if valid_frames_idx: landmarks[:valid_frames_idx[0]] = [landmarks[valid_frames_idx[0]]] * valid_frames_idx[0] landmarks[valid_frames_idx[-1]:] = [landmarks[valid_frames_idx[-1]]] * (len(landmarks) - valid_frames_idx[-1]) valid_frames_idx = [idx for idx, _ in enumerate(landmarks) if _ is not None] assert len(valid_frames_idx) == len(landmarks), "not every frame has landmark" return landmarks if __name__ == '__main__': args = load_args() # -- mean face utils STD_SIZE = (256, 256) mean_face_landmarks = np.load(args.mean_face) stablePntsIDs = [33, 36, 39, 42, 45] lines = open(args.filename_path).readlines() fids = [ln.strip() for ln in lines] num_per_shard = math.ceil(len(fids)/args.nshard) start_id, end_id = num_per_shard*args.rank, num_per_shard*(args.rank+1) fids = fids[start_id: end_id] for filename_idx, filename in enumerate(tqdm(fids)): video_pathname = os.path.join(args.video_direc, filename+'.mp4') landmarks_pathname = os.path.join(args.landmark_direc, filename+'.pkl') dst_pathname = os.path.join(args.save_direc, filename+'.mp4') assert os.path.isfile(video_pathname), "File does not exist. Path input: {}".format(video_pathname) assert os.path.isfile(landmarks_pathname), "File does not exist. Path input: {}".format(landmarks_pathname) if os.path.exists(dst_pathname): continue landmarks = pickle.load(open(landmarks_pathname, 'rb')) # -- pre-process landmarks: interpolate frames not being detected. preprocessed_landmarks = landmarks_interpolate(landmarks) if not preprocessed_landmarks: print(f"resizing {filename}") frame_gen = read_video(video_pathname) frames = [cv2.resize(x, (args.crop_width, args.crop_height)) for x in frame_gen] write_video_ffmpeg(frames, dst_pathname, args.ffmpeg) continue # -- crop sequence = crop_patch(video_pathname, preprocessed_landmarks, mean_face_landmarks, stablePntsIDs, STD_SIZE, window_margin=args.window_margin, start_idx=args.start_idx, stop_idx=args.stop_idx, crop_height=args.crop_height, crop_width=args.crop_width) assert sequence is not None, "cannot crop from {}.".format(filename) # -- save os.makedirs(os.path.dirname(dst_pathname), exist_ok=True) write_video_ffmpeg(sequence, dst_pathname, args.ffmpeg) print('Done.')
av_hubert-main
avhubert/preparation/align_mouth.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math import tempfile import shutil import submitit import os, sys, subprocess, glob, re import numpy as np from collections import defaultdict from scipy.io import wavfile from tqdm import tqdm def split_musan(musan_root, rank, nshard): wav_fns = glob.glob(f"{musan_root}/speech/*/*wav") + glob.glob(f"{musan_root}/music/*/*wav") + glob.glob(f"{musan_root}/noise/*/*wav") num_per_shard = math.ceil(len(wav_fns)/nshard) start_id, end_id = num_per_shard*rank, num_per_shard*(rank+1) wav_fns = wav_fns[start_id: end_id] print(f"{len(wav_fns)} raw audios") output_dir = f"{musan_root}/short-musan" dur = 10 for wav_fn in tqdm(wav_fns): sample_rate, wav_data = wavfile.read(wav_fn) assert sample_rate == 16_000 and len(wav_data.shape) == 1 if len(wav_data) > dur * sample_rate: num_split = int(np.ceil(len(wav_data) / (dur*sample_rate))) for i in range(num_split): filename = '/'.join(wav_fn.split('/')[-3:])[:-4] output_wav_fn = os.path.join(output_dir, filename + f'-{i}.wav') sub_data = wav_data[i*dur*sample_rate: (i+1)*dur*sample_rate] os.makedirs(os.path.dirname(output_wav_fn), exist_ok=True) wavfile.write(output_wav_fn, sample_rate, sub_data.astype(np.int16)) return def mix_audio(wav_fns): wav_data = [wavfile.read(wav_fn)[1] for wav_fn in wav_fns] wav_data_ = [] min_len = min([len(x) for x in wav_data]) for item in wav_data: wav_data_.append(item[:min_len]) wav_data = np.stack(wav_data_).mean(axis=0).astype(np.int16) return wav_data def get_speaker_info(musan_root): wav_fns = glob.glob(f"{musan_root}/speech/*/*wav") spk2wav = {} for wav_fn in tqdm(wav_fns): speaker = '-'.join(os.path.basename(wav_fn).split('-')[:-1]) if speaker not in spk2wav: spk2wav[speaker] = [] spk2wav[speaker].append(wav_fn) speakers = sorted(list(spk2wav.keys())) print(f"{len(speakers)} speakers") np.random.shuffle(speakers) output_dir = f"{musan_root}/speech/" num_train, num_valid = int(len(speakers)*0.8), int(len(speakers)*0.1) train_speakers, valid_speakers, test_speakers = speakers[:num_train], speakers[num_train: num_train+num_valid], speakers[num_train+num_valid:] for split in ['train', 'valid', 'test']: speakers = eval(f"{split}_speakers") with open(f"{output_dir}/spk.{split}", 'w') as fo: fo.write('\n'.join(speakers)+'\n') return def make_musan_babble(musan_root, rank, nshard): babble_dir = f"{musan_root}/babble/wav/" num_per_mixture = 30 sample_rate = 16_000 num_train, num_valid, num_test = 8000, 1000, 1000 os.makedirs(babble_dir, exist_ok=True) wav_fns = glob.glob(f"{musan_root}/speech/*/*wav") spk2wav = {} for wav_fn in tqdm(wav_fns): speaker = '-'.join(os.path.basename(wav_fn).split('-')[:-1]) if speaker not in spk2wav: spk2wav[speaker] = [] spk2wav[speaker].append(wav_fn) for split in ['train', 'valid', 'test']: speakers = [ln.strip() for ln in open(f"{musan_root}/speech/spk.{split}").readlines()] num_split = eval(f"num_{split}") wav_fns = [] for x in speakers: wav_fns.extend(spk2wav[x]) print(f"{split} -> # speaker {len(speakers)}, # wav {len(wav_fns)}") num_per_shard = math.ceil(num_split/nshard) start_id, end_id = num_per_shard*rank, num_per_shard*(rank+1) for i in tqdm(range(num_split)): if not (i >= start_id and i < end_id): continue np.random.seed(i) perm = np.random.permutation(len(wav_fns))[:num_per_mixture] output_fn = f"{babble_dir}/{split}-{str(i+1).zfill(5)}.wav" wav_data = mix_audio([wav_fns[x] for x in perm]) wavfile.write(output_fn, sample_rate, wav_data) return def count_frames(wav_fns, rank, nshard): num_per_shard = math.ceil(len(wav_fns)/nshard) start_id, end_id = num_per_shard*rank, num_per_shard*(rank+1) wav_fns = wav_fns[start_id: end_id] nfs = [] for wav_fn in tqdm(wav_fns): sample_rate, wav_data = wavfile.read(wav_fn) nfs.append(len(wav_data)) return nfs if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='MUSAN audio preparation', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--musan', type=str, help='MUSAN root') parser.add_argument('--nshard', type=int, default=1, help='number of shards') parser.add_argument('--slurm_partition', type=str, default='cpu', help='slurm partition') args = parser.parse_args() tmp_dir = tempfile.mkdtemp(dir='./') executor = submitit.AutoExecutor(folder=tmp_dir) executor.update_parameters(slurm_array_parallelism=100, slurm_partition=args.slurm_partition, timeout_min=240) ranks = list(range(0, args.nshard)) print(f"Split raw audio") jobs = executor.map_array(split_musan, [args.musan for _ in ranks], ranks, [args.nshard for _ in ranks]) [job.result() for job in jobs] short_musan = os.path.join(args.musan, 'short-musan') print(f"Get speaker info") get_speaker_info(short_musan) print(f"Mix audio") jobs = executor.map_array(make_musan_babble, [short_musan for _ in ranks], ranks, [args.nshard for _ in ranks]) [job.result() for job in jobs] print(f"Count number of frames") wav_fns = glob.glob(f"{short_musan}/babble/*/*wav") + glob.glob(f"{short_musan}/music/*/*wav") + glob.glob(f"{short_musan}/noise/*/*wav") jobs = executor.map_array(count_frames, [wav_fns for _ in ranks], ranks, [args.nshard for _ in ranks]) nfs = [job.result() for job in jobs] nfs_ = [] for nf in nfs: nfs_.extend(nf) nfs = nfs_ num_frames_fn = f"{short_musan}/nframes.audio" with open(num_frames_fn, 'w') as fo: for wav_fn, nf in zip(wav_fns, nfs): fo.write(os.path.abspath(wav_fn)+'\t'+str(nf)+'\n') shutil.rmtree(tmp_dir)
av_hubert-main
avhubert/preparation/musan_prepare.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math, time import os, sys, subprocess, glob, re import numpy as np from collections import defaultdict from scipy.io import wavfile from tqdm import tqdm def make_musan_tsv(musan_root, output_dir): os.makedirs(output_dir, exist_ok=True) sample_rate = 16_000 min_dur, max_dur = 3*sample_rate, 11*sample_rate part_ratios = zip(['train', 'valid', 'test'], [0.8, 0.1, 0.1]) all_fns = {} nfs = f"{musan_root}/nframes.audio" nfs = dict([x.strip().split('\t') for x in open(nfs).readlines()]) for category in ['babble', 'music', 'noise']: wav_fns = glob.glob(f"{musan_root}/{category}/*/*wav") target_fns = [] for wav_fn in tqdm(wav_fns): dur = int(nfs[os.path.abspath(wav_fn)]) if dur >= min_dur and dur < max_dur: target_fns.append(wav_fn) print(f"{category}: {len(target_fns)}/{len(wav_fns)}") all_fns[category] = target_fns output_subdir = f"{output_dir}/{category}" os.makedirs(output_subdir, exist_ok=True) num_train, num_valid, num_test = int(0.8*len(target_fns)), int(0.1*len(target_fns)), int(0.1*len(target_fns)) if category in {'music', 'noise'}: np.random.shuffle(target_fns) train_fns, valid_fns, test_fns = target_fns[:num_train], target_fns[num_train:num_train+num_valid], target_fns[num_train+num_valid:] elif category == 'babble': train_fns, valid_fns, test_fns = [], [], [] for wav_fn in target_fns: split_id = os.path.basename(wav_fn)[:-4].split('-')[0] if split_id == 'train': train_fns.append(wav_fn) elif split_id == 'valid': valid_fns.append(wav_fn) elif split_id == 'test': test_fns.append(wav_fn) for x in ['train', 'valid', 'test']: x_fns = eval(f"{x}_fns") x_fns = [os.path.abspath(x_fn) for x_fn in x_fns] print(os.path.abspath(output_subdir), x, len(x_fns)) with open(f"{output_subdir}/{x}.tsv", 'w') as fo: fo.write('\n'.join(x_fns)+'\n') return def combine(input_tsv_dirs, output_dir): output_subdir = f"{output_dir}/all" os.makedirs(output_subdir, exist_ok=True) num_train_per_cat = 20_000 train_fns, valid_fns, test_fns = [], [], [] for input_tsv_dir in input_tsv_dirs: train_fn, valid_fn, test_fn = [ln.strip() for ln in open(f"{input_tsv_dir}/train.tsv").readlines()], [ln.strip() for ln in open(f"{input_tsv_dir}/valid.tsv").readlines()], [ln.strip() for ln in open(f"{input_tsv_dir}/test.tsv").readlines()] num_repeats = int(np.ceil(num_train_per_cat/len(train_fn))) train_fn_ = [] for i in range(num_repeats): train_fn_.extend(train_fn) train_fn = train_fn_[:num_train_per_cat] train_fns.extend(train_fn) valid_fns.extend(valid_fn) test_fns.extend(test_fn) for x in ['train', 'valid', 'test']: x_fns = eval(f"{x}_fns") print(os.path.abspath(output_subdir), x, len(x_fns)) with open(f"{output_subdir}/{x}.tsv", 'w') as fo: fo.write('\n'.join(x_fns)+'\n') return def main(): import argparse parser = argparse.ArgumentParser(description='Set up noise manifest', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--musan', type=str, help='MUSAN root') parser.add_argument('--lrs3', type=str, help='LRS3 root') args = parser.parse_args() short_musan, output_tsv_dir = f"{args.musan}/short-musan", f"{args.musan}/tsv" print(f"Make tsv for babble, music, noise") make_musan_tsv(short_musan, output_tsv_dir) print(f"Combine tsv") input_tsv_dirs = [f"{output_tsv_dir}/{x}" for x in ['noise', 'music', 'babble']] + [f"{args.lrs3}/noise/speech"] combine(input_tsv_dirs, output_tsv_dir) return if __name__ == '__main__': main()
av_hubert-main
avhubert/preparation/noise_manifest.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import cv2, math, os import tempfile import shutil from tqdm import tqdm from scipy.io import wavfile def count_frames(fids, audio_dir, video_dir): total_num_frames = [] for fid in tqdm(fids): wav_fn = f"{audio_dir}/{fid}.wav" video_fn = f"{video_dir}/{fid}.mp4" num_frames_audio = len(wavfile.read(wav_fn)[1]) cap = cv2.VideoCapture(video_fn) num_frames_video = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) total_num_frames.append([num_frames_audio, num_frames_video]) return total_num_frames def check(fids, audio_dir, video_dir): missing = [] for fid in tqdm(fids): wav_fn = f"{audio_dir}/{fid}.wav" video_fn = f"{video_dir}/{fid}.mp4" is_file = os.path.isfile(wav_fn) and os.path.isfile(video_fn) if not is_file: missing.append(fid) return missing if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='count number of frames', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--root', type=str, help='root dir') parser.add_argument('--manifest', type=str, help='a list of filenames') parser.add_argument('--nshard', type=int, default=1, help='number of shards') parser.add_argument('--rank', type=int, default=0, help='rank id') args = parser.parse_args() fids = [ln.strip() for ln in open(args.manifest).readlines()] print(f"{len(fids)} files") audio_dir, video_dir = f"{args.root}/audio", f"{args.root}/video" ranks = list(range(0, args.nshard)) fids_arr = [] num_per_shard = math.ceil(len(fids)/args.nshard) for rank in ranks: sub_fids = fids[rank*num_per_shard: (rank+1)*num_per_shard] if len(sub_fids) > 0: fids_arr.append(sub_fids) if args.rank >= len(fids_arr): open(f"{args.root}/nframes.audio.{args.rank}", 'w').write('') open(f"{args.root}/nframes.video.{args.rank}", 'w').write('') else: fids = fids_arr[args.rank] missing_fids = check(fids, audio_dir, video_dir) if len(missing_fids) > 0: print(f"Some audio/video files not exist, see {args.root}/missing.list.{args.rank}") with open(f"{args.root}/missing.list.{args.rank}", 'w') as fo: fo.write('\n'.join(missing_fids)+'\n') else: num_frames = count_frames(fids, audio_dir, video_dir) audio_num_frames = [x[0] for x in num_frames] video_num_frames = [x[1] for x in num_frames] with open(f"{args.root}/nframes.audio.{args.rank}", 'w') as fo: fo.write(''.join([f"{x}\n" for x in audio_num_frames])) with open(f"{args.root}/nframes.video.{args.rank}", 'w') as fo: fo.write(''.join([f"{x}\n" for x in video_num_frames]))
av_hubert-main
avhubert/preparation/count_frames.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import glob import shutil import subprocess from tqdm import tqdm from pathlib import Path def main(): import argparse parser = argparse.ArgumentParser(description='VoxCeleb2 tsv preparation', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--vox', type=str, help='VoxCeleb2 root dir') parser.add_argument('--en-ids', type=str, help='a list of English-utterance ids') args = parser.parse_args() file_list = f"{args.vox}/file.list" assert os.path.isfile(file_list) , f"{file_list} not exist -> run vox_prepare.py first" nframes_audio_file, nframes_video_file = f"{args.vox}/nframes.audio", f"{args.vox}/nframes.video" assert os.path.isfile(nframes_audio_file) , f"{nframes_audio_file} not exist -> run count_frames.py first" assert os.path.isfile(nframes_video_file) , f"{nframes_video_file} not exist -> run count_frames.py first" audio_dir, video_dir = f"{args.vox}/audio", f"{args.vox}/video" def setup_target(target_dir, train): for name, data in zip(['train'], [train]): with open(f"{target_dir}/{name}.tsv", 'w') as fo: fo.write('/\n') for fid, nf_audio, nf_video in data: fo.write('\t'.join([fid, os.path.abspath(f"{video_dir}/{fid}.mp4"), os.path.abspath(f"{audio_dir}/{fid}.wav"), str(nf_video), str(nf_audio)])+'\n') return fids = [x.strip() for x in open(file_list).readlines()] nfs_audio, nfs_video = [x.strip() for x in open(nframes_audio_file).readlines()], [x.strip() for x in open(nframes_video_file).readlines()] en_fids = set([x.strip() for x in open(args.en_ids).readlines()]) train_all, train_sub = [], [] for fid, nf_audio, nf_video in zip(fids, nfs_audio, nfs_video): if fid in en_fids: train_sub.append([fid, nf_audio, nf_video]) train_all.append([fid, nf_audio, nf_video]) dir_en = f"{args.vox}/en_data" print(f"Set up English-only dir") os.makedirs(dir_en, exist_ok=True) setup_target(dir_en, train_sub) dir_all = f"{args.vox}/all_data" print(f"Set up all data dir") os.makedirs(dir_all, exist_ok=True) setup_target(dir_all, train_all) return if __name__ == '__main__': main()
av_hubert-main
avhubert/preparation/vox_manifest.py
import numpy as np import torch class RandomEmbedding(torch.nn.Embedding): """A class used for efficiently storing random circulant embeddings. For a n-by-d embedding matrix, we let each d-by-d submatrix be a circulant matrix parameterized by a d-dimensional random vector. To add further variability between the rows of these circulant submatrices, we multiply each circulant submatrix by a diagonal matrix with random {+1,-1} values along the diagonal. This follows the convention of (Arora et al., 2020) and (Yu et al., 2017). Note that if d does not divide n evenly, than the final circulant submatrix will only be partially used. ... References ---------- S. Arora, A. May, J. Zhang, C. Ré. Contextual Embeddings: When Are They Worth It? ACL 2020. F. Yu, A. Bhaskara, S. Kumar, Y. Gong, S. Chang. On Binary Embedding Using Circulant Matrices. JMLR 2017. ... Attributes ---------- num_embeddings : int The size of the embedding vocabulary. embedding_dim : int The dimension of each embedding vector. avg_embedding_norm : float The average norm of a row in the embedding matrix (default 1). rand_weight : tensor (dtype = torch.float) A random and fixed float tensor storing the parameters of the circulant submatrices of the embedding matrix. Its shape is (b,embedding_dim), where b = ceil(num_embeddings/embedding_dim). Each row of rand_weight corresponds to the parameters for one of the circulant submatrices. rand_signs : tensor (dtype = torch.bool) A random and fixed boolean tensor which flips the signs of columns of the circulant matrix. Its shape is (b,embedding_dim), where b = ceil(num_embeddings/embedding_dim). For the i^th circulant submatrix, we multiply it by a diagonal matrix whose diagonal is given by the i^th row of rand_signs. ind : tensor (dtype = torch.long) A fixed tensor storing the indices [0,...,embedding_dim - 1], which is used for accessing a full row of the embedding matrix at a time in the forward method. ... Methods ------- forward(input) Takes a tensor (dtype = torch.long) of indices as input, and returns the corresponding rows of the random embedding matrix. """ def __init__(self, num_embeddings, embedding_dim, avg_embedding_norm=1): """Initializes the random circulant embedding matrix. Note that although RandomEmbedding is a subclass of nn.Embedding, this constructor ignores the padding_idx, norm_type, scale_grad_by_freq, sparse, and _weight arguments which can normally be passed to the constructor of the nn.Embedding class. Parameters ---------- num_embeddings : int The size of the embedding vocabulary. embedding_dim : int The dimension of each embedding vector. avg_embedding_norm : float The desired average L2 norm of a row in the embedding matrix (default 1). """ # we pass in a 0 for num_embeddings and embedding_dim to the superclass # constructor so that it doesn't instantiate a large embedding weight # matrix. super().__init__(0, 0) # Now we initialize num_embeddings and embedding_dim properly self.num_embeddings, self.embedding_dim = num_embeddings, embedding_dim self.avg_embedding_norm = avg_embedding_norm n, d = self.num_embeddings, self.embedding_dim # b is the number of different d-by-d circulant blocks in the matrix. b = int(np.ceil(n/d)) # self.weight is a learnable parameter in nn.Embedding. We set it to # None here because we don't need any learnable parameters. self.weight = None # Each of the b random d-dimensional rows of rand_weight represents # the parameters for one of the b circulant submatrices of the # random embedding matrix. rand_weight = torch.randn(b, d) # We now normalize rand_weight so that the average L2 row norm for # the embedding matrix is equal to avg_embedding_norm. To compute the # average norm of the rows of this circulant embedding matrix, we count # the L2 norm of each row of rand_weight[:b-1,:] d times (because # there are d rows in the embedding matrix that have the same norm as # each of these rows), and we count the L2 norm of # rand_weight[b-1,:] (n-(b-1)*d) times. This is because when d does # not divide n evenly, the last row of rand_weight will only be # repeated this many times in the embedding matrix. curr_avg_norm = (d * torch.sum(rand_weight[:b-1,:].norm(dim=1)) + (n - (b-1) * d) * rand_weight[b-1,:].norm()) / n rand_weight *= avg_embedding_norm / curr_avg_norm.item() # ind is used to access a full row of the circulant embedding # matrix at a time. # rand_signs is used to randomly change the signs of the columns of # the rows of the embedding matrix. ind = torch.arange(d) rand_signs = torch.randint(2, (b,d), dtype=torch.bool) # Register these tensors as buffers, so they stay fixed during training. self.register_buffer('rand_weight', rand_weight) self.register_buffer('ind', ind) self.register_buffer('rand_signs', rand_signs) def forward(self, input): """Returns the requested rows of the embedding matrix. Parameters ---------- input : torch.LongTensor A tensor of indices specifying which rows of the embedding matrix should be returned by the forward method. The values of input must all be between 0 and self.num_embeddings - 1. Returns ------- tensor (dtype = torch.float) A tensor containing the rows of the embedding matrix specified by the indices in the input tensor. The returned tensor has shape (input.shape, self.embedding_dim). Raises ------ TypeError If input tensor is not of type torch.long. ValueError If input tensor has any negative values, or values greater than self.num_embeddings - 1. """ if input.dtype != torch.long: raise TypeError('Input must be of type torch.long') if (torch.sum(input >= self.num_embeddings).item() != 0 or torch.sum(input < 0).item() != 0): raise ValueError('Entries of input tensor must all be non-negative ' 'integers less than self.num_embeddings') d = self.embedding_dim input_us = input.unsqueeze(-1) # Given the input tensor of indices (of shape input.shape), we must # return the corresponding d-dimensional rows of the circulant random # embedding matrix. Thus, the output of this forward # method will have shape (input.shape,d). # For each index in input, we first figure out what circulant block it # belongs to (input_us//d), and then access the corresponding row # (x_0,...,x_{d-1}) of self.rand_weight in the order # (x_i,x_{i-1},...,x_0,x_{d-1},x_{d-2}...x_{i+1}), where i is equal to # input_us % d. # After extracting this row, we multiply it entrywise by the row of the # rand_signs matrix corresponding to this circulant block. # Note that we index self.rand_weight with (input.shape,1) and # (input.shape,d) shaped index tensors, so the output has shape # (input.shape,d). Similarly, we index the first dimension of # self.rand_signs with a tensor of shape (input.shape), so the output # is also fo shape (input.shape,d). return (self.rand_weight[input_us // d, (input_us - self.ind) % d] * (self.rand_signs[input // d, :] * 2.0 - 1.0))
random_embedding-master
random_embedding.py
import unittest import time import torch import numpy as np from random_embedding import RandomEmbedding class RandomEmbeddingTest(unittest.TestCase): def test_forward(self): for device in ['cuda','cpu']: if device=='cpu' or (device=='cuda' and torch.cuda.is_available()): print(''.format(device)) t1 = time.perf_counter() for (n,d) in [(300,3),(301,3),(3,301),(30000,800)]: avg_norm = 3 emb = RandomEmbedding(n,d,avg_embedding_norm=avg_norm) if device == 'cuda': emb.cuda() x = torch.tensor(range(n), dtype=torch.int64, device=device) out = emb(x) self.check_embedding_output(emb,out,n,d,avg_norm) x2 = torch.tensor([range(n),range(n)], dtype=torch.int64, device=device) out = emb(x2) self.assertTrue(out.shape == (2,n,d)) self.check_embedding_output(emb,out[0,:],n,d,avg_norm) self.check_embedding_output(emb,out[1,:],n,d,avg_norm) t2 = time.perf_counter() print('Device: {}, time elapsed: {:.3f}s'.format(device, t2-t1)) def check_embedding_output(self,emb,out,n,d,avg_norm): num_blocks = int(np.ceil(n/d)) n_ceil = num_blocks * d # Test that shapes/dimensions are correct self.assertTrue(out.shape == (n,d)) self.assertTrue(emb.embedding_dim == d and emb.num_embeddings == n) # Ensure that the (1) number of unique elements in the output # matches what it should be for a circulant matrix (at most n_ceil), # and (2) that the average row norm of output tensor is equal to # avg_norm. self.assertTrue(torch.abs(out).unique().numel() <= n_ceil) self.assertTrue( np.isclose(torch.mean(out.norm(dim=1)).item(), avg_norm) ) # Check that in each of the d x d blocks of the output, that (1) the # diagonal always contains only a single unique absolute value, and # (2) that the # of unique absolute values in the block is <= d. for i in range(num_blocks): block = out[i*d:(i+1)*d,:] self.assertTrue( torch.abs(torch.diag(block)).unique().numel() == 1 ) self.assertTrue(torch.abs(block).unique().numel() <= d) if __name__ == "__main__": unittest.main()
random_embedding-master
random_embedding_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from transformers import BertModel, BertTokenizer import torch from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss from transformers.modeling_outputs import SequenceClassifierOutput from transformers.models.bert.modeling_bert import BertPreTrainedModel from transformers.models.bert.configuration_bert import BertConfig class_labels = [ "adoring", "amused", "angered", "approving", "excited", "saddened", "scared", ] class CAREBERT(BertPreTrainedModel): def __init__(self, config: BertConfig, model_load_path: str = "./care_bert.pth"): super().__init__(config) self.config = config self.bert = BertModel(config) if model_load_path is not None: checkpoint = torch.load(model_load_path) self.bert.load_state_dict(checkpoint["model_state_dict"]) print(f"Loaded from old {model_load_path}") classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Run predictions for a list of texts, returning a list of the list of affects predicted for each example. def predict( examples: List[str], threshold: float = 0.5, model_load_path="./care_bert.pth" ) -> List[List[str]]: model = CAREBERT.from_pretrained( "bert-base-uncased", num_labels=7, model_load_path=model_load_path, ) tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") encoding = tokenizer( examples, padding="max_length", truncation=True, max_length=256, return_tensors="pt", ) # forward pass outs = model(**encoding, return_dict=False) logits = outs[0] pred_bools = [pl > threshold for pl in logits] predictions = [] for pred_bool in pred_bools: affects = [class_labels[i] for i in range(len(pred_bool)) if pred_bool[i]] predictions.append(affects) return predictions if __name__ == "__main__": examples = ["Warriors against the Miami Heat!!!", "That was so hilarious"] print(predict(examples))
care-main
care_bert.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import re import lexicon_filtering import nltk import string from typing import List, Dict, Tuple tokenizer = nltk.data.load("tokenizers/punkt/PY3/english.pickle") lexicon_map, multi_word_phrases = lexicon_filtering.get_hardcoded_lexicon() all_AA_keys = set( list(lexicon_map.keys()) + multi_word_phrases ) # The list of all indicators # List of negation words that are not permitted. negation_words = [ "weren't", "wasn't", "don't", "aren't", "can't", "neither", "if", "couldn't", "not", "shouldn't", "wouldn't", "stop", "people think", "you think", "nobody", "no one", ] # List of exaggerators as described in line 246 of the paper. exaggerator_synonyms = ( "(?:a\s|an\s)*(" + "|".join( [ "soo*\s", "re*a*lly*\s", "ve*ry*\s", "extre*mely*\s", "su*per*\s", "pre*tty*\s", "the\smost\s", "one\sof\sthe\smost\s", "abso*lu*tely\s", "such\sa\s", "alwa*ys*\s", "ju*st*\s", "espe*cia*lly*\s", "friggin.\s", "fuckin.\s", "friggin\s", "fuckin\s", "by\sfar\sthe\smo*st\s", "probably\sthe\smo*st\s", "too*\s", "a\slittle\s", "a\s*lo*t\s", "more\s", "quite\spossibly\sthe\smo*st\s", "actually\s", "ki*nd*\sof\s", "freakin.\s", "freakin\s", "bit\s", "currently\s", "recently\s", "lately\s", "honestly\s", "truly\s", "unbelievably\s", "insanely\s", "seriously\s", ] ) + ")*(?:a\s|an\s)*" ) # Additional sub-patterns used in CARE patterns singular_subjective_pronouns = "(" + "|".join(["he", "she"]) + ")" plural_subjective_pronouns = "(" + "|".join(["they", "you", "u"]) + ")" singular_demonstrative_pronouns = "(" + "|".join(["that", "this"]) + ")" plural_demonstrative_pronouns = "(" + "|".join(["these", "those"]) + ")" beginning = r"(\.|!|but\s|however\s|oh\sno\s|oh\s|oh\sman\s|oh\ssnap\s|omg\s|wow\s|jesus|holy\scrap\s|for\ssome\sreason\s|,|^)\s*(?:funny\senough\s|holy\sshit\s|damn\s|oh\sshit\s)*" ending = "\s*([^\s]*)\s*([^\s]*)\s*([^\s]*)" # ending = "\s*([a-z]*)\s*([a-z]*)\s*([a-z]*)" # Map of CARE pattern names to their respective regular expressions. regex_name_to_pattern = { "individual": beginning + "(i)(\s|\sam\s|'m\s|m\s|'ve\s|\shave\s|\shave\snever\s.een\s)" + exaggerator_synonyms + ending, "individual_feel": beginning + "(i\sfeel\s)(like\s)*" + exaggerator_synonyms + ending, "we": beginning + "(we)(\sare|'re|re|have|'ve)\s" + exaggerator_synonyms + ending, "we_feel": beginning + "(we\sfeel\s)(like\s)" + exaggerator_synonyms + ending, "heshe": beginning + singular_subjective_pronouns + "(\sis|'s|s)\s" + exaggerator_synonyms + ending, "it": beginning + "(it)" + "(\sis|'s|s)\s" + exaggerator_synonyms + ending, "theyyou": beginning + plural_subjective_pronouns + "(\sare|'re|re)\s" + exaggerator_synonyms + ending, "this_is": beginning + "(this|that)\s(?:story\s|situation\s)*(is\s|was\s|\s)" + exaggerator_synonyms + ending, "hisher_story": beginning + "(his|her)\s(?:story\s|situation\s)*(is\s|was\s|\s)" + exaggerator_synonyms + ending, "noun_is": beginning + "(?:the\s)" + "([a-z']+)" + "\s(is)\s" + exaggerator_synonyms + ending, "this_really": beginning + singular_demonstrative_pronouns + "\s(re*a*lly*)\s" + "(is\s|was\s|\s)*" + ending, "this_makes_me": beginning + singular_demonstrative_pronouns + "\s(makes\sme\sfeel|made\sme|made\sme\sfeel|makes\sme)\s" + exaggerator_synonyms + ending, "these_are": beginning + plural_demonstrative_pronouns + "\s(are|were|)\s" + exaggerator_synonyms + ending, "these_really": beginning + plural_demonstrative_pronouns + "\s(really)" + "\s(are\s|were\s|)*" + ending, "these_make_me": beginning + plural_demonstrative_pronouns + "\s(make\sme|make\sme\sfeel|made\sme|made\sme\sfeel)\s" + exaggerator_synonyms + ending, "made_me": beginning + "(makes\sme|made\sme)\s(feel\s)*" + exaggerator_synonyms + ending, "feeling": beginning + "()()(feeling\s)" + exaggerator_synonyms + ending, "my_heart": beginning + "(my\sheart\sis)" + exaggerator_synonyms + ending, "sovery": beginning + "()()(" + "|".join(["soo*\s", "very\s", "extremely\s"]) + ")+" + ending, "what_a": beginning + "(what\s)(a|an)\s" + exaggerator_synonyms + ending, "how": beginning + "()()(how\s)" + exaggerator_synonyms + ending, "some_people": beginning + "(some\speople\s|humans\s|society\s)(is\s|are\s|make\sme\s)" + exaggerator_synonyms + ending, "freeform": beginning + "()()()" + ending, } # Helper function to skip duplicate affects that can occur from matching multiple patterns. def get_set( matches: List, affects: List[str], indicators: List[str] ) -> Tuple[List[str], List[str], List[str]]: output_matches = [] output_indicators = [] seen = set() for i, affect in enumerate(affects): if affect in seen: continue else: seen.add(affect) output_matches.append(matches[i]) output_indicators.append(indicators[i]) return output_matches, list(seen), output_indicators # Function for getting a list of all matches, all affects, and all indicators from a given piece of text. def get_regex_match_all(text: str) -> List[str]: if type(text) == list: sentences = text else: sentences = tokenizer.tokenize(text) all_matches = [] all_affects = [] all_indicators = [] for sentence in sentences: matches, affects, indicators = get_regex_match(sentence) if len(affects) > 0: matches, affects, indicators = get_set(matches, affects, indicators) all_affects.extend(affects) all_matches.extend(matches) all_indicators.extend(indicators) return all_affects # Check that the pattern and keyword combination is not forbidding. def is_valid_regex_pattern(regex_name: str, affect: str, keyword: str) -> bool: if regex_name in lexicon_filtering.affect_to_prohibited_patterns[affect]: return False if regex_name == "freeform" and len(keyword.split(" ")) == 1: return False return True # Clean the text of punctuation, numbers, and extra spaces, and make lower case. def clean_text(text: str) -> str: # remove numbers text_nonum = re.sub(r"\d+", "", text) # remove punctuations and convert characters to lower case text_nopunct = "".join( [ char.lower() for char in text_nonum if char not in string.punctuation or char == "'" or char == "," ] ) # substitute multiple whitespace with single whitespace # Also, removes leading and trailing whitespaces text_no_doublespace = re.sub("\s+", " ", text_nopunct).strip() return text_no_doublespace # Apply regular expression matching to a single sentence. def get_regex_match(sentence: str) -> Tuple[List[str], List[str], List[str]]: matches = [] affects = [] indicators = [] if "but" in sentence: sentence = sentence[sentence.index("but") + 4 :] if "however" in sentence: sentence = sentence[sentence.index("however") + 8 :] sentence = clean_text(sentence) for regex_name, regex_pattern in regex_name_to_pattern.items(): regex = re.compile(regex_pattern) match = regex.search(sentence.lower()) if match is not None and len(match.groups()) > 0: # Make sure that the given group is a noun if the regular expression name is 'noun_is'. if regex_name == "noun_is": if match.groups()[0] != "": if nltk.pos_tag([match.groups()[0]])[0][1] != "NN": if ( match.groups()[1] != "" and nltk.pos_tag([match.groups()[1]])[0][1] != "NN" ): continue elif match.groups()[0] == "": if ( match.groups()[1] != "" and nltk.pos_tag([match.groups()[1]])[0][1] != "NN" ): continue index = 4 # This is the index of the group defining the start of the indicator phrase if index > len(match.groups()): continue indicator = match.groups()[index : len(match.groups())] indicator = [ x.rstrip().lstrip() for x in indicator if x != "" and x is not None ] for negator in negation_words: if negator in indicator: joined_indicator = " ".join(indicator) if ( "can't stop laughing" in joined_indicator or "cannot stop laughing" in joined_indicator ): continue else: indicator = [] keyword = "" for i, word in enumerate(indicator): if keyword in lexicon_map: print( is_valid_regex_pattern( regex_name, lexicon_map[keyword], keyword ) ) word = word.replace(",", "").rstrip().lstrip() if word in all_AA_keys: if word in multi_word_phrases: two_words = " ".join(indicator[:-1]) if two_words in lexicon_map: keyword = two_words three_words = two_words + " " + indicator[-1] if three_words in lexicon_map: keyword = three_words elif word in lexicon_map: keyword = word if keyword != "" and is_valid_regex_pattern( regex_name, lexicon_map[keyword], keyword ): matches.append( " ".join( [ x.rstrip().lstrip() for x in match.groups() if x is not None and x != "" and x != " " ] ) ) affects.append(lexicon_map[keyword]) indicators.append(regex_name + ": " + keyword) return matches, affects, indicators return matches, affects, indicators
care-main
regex_pipeline.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import json from functools import partial import requests import pandas as pd import os from typing import Dict, List import multiprocessing import utils import argparse # Metadata parameters to save when downloading the post metadata parameters_to_save = [ "id", "num_comments", "is_original_content", "parent_id", "link_id", "subreddit", "permalink", "subreddit_type", "category", "url", "submission-type", "lang", "title", "selftext", "header_title", "submit_text", "metadata", ] # This function uses pushshift.io to download all metadata the posts in the CARE database. data_file should point to a csv containing the post ids in the CARE database. The parameter params_to_keep enumerates the parameters to save. Increase cpus_to_use if for more multiprocessing. def download_all_sub_data( sub_ids: List[str] = None, data_file: str = None, cpus_to_use: int = 2, n: int = 10, output_file: str = None, chunked_folder: str = None, params_to_keep: List[str] = utils.parameters_to_save, ) -> None: if data_file is None: data_file = "./care_db_ids_and_labels.csv" if sub_ids is None: assert os.path.exists(data_file) sub_ids_df = pd.read_csv(data_file, sep="\t") sub_ids = [x for x in list(sub_ids_df["id"]) if isinstance(x, str)] pool = multiprocessing.Pool(cpus_to_use) chunked_list = sorted([sub_ids[i : i + n] for i in range(0, len(sub_ids), n)]) func = partial( download_sub_data_one_chunk, output_file_path=chunked_folder, chunked_list=chunked_list, params_to_keep=params_to_keep, ) pool.map(func, range(len(chunked_list))) aggregate_chunks(output_file=output_file) pool.close() pool.join() # Helper function for download_all_sub_data. By defaults it saves to care/data/chunks/post_id_metadata_{index}.json def download_sub_data_one_chunk( index: int, chunked_list: List[List[str]], attempt: int = 1, output_file_path: str = None, params_to_keep: List[str] = None, ) -> bool: sub_ids = chunked_list[index] if output_file_path is None: output_file_path = f"./data/chunks/post_id_metadata_{index}.json" if os.path.exists(output_file_path): return True if not os.path.exists(os.path.dirname(os.path.abspath(output_file_path))): os.makedirs(os.path.dirname(os.path.abspath(output_file_path))) if attempt == 5: return False try: response = requests.get( "https://api.pushshift.io/reddit/submission/search?ids=" + ",".join(sub_ids) ) data = response.json()["data"] if params_to_keep is not None: filtered_data = [] for entry in data: new_entry = {} for param in params_to_keep: if param in entry: new_entry[param] = entry[param] filtered_data.append(new_entry) data = filtered_data with open(f"{output_file_path}", "w", encoding="utf8") as fh: fh.write(json.dumps(data) + "\n") return True except: download_sub_data_one_chunk( index, chunked_list, attempt=attempt + 1, output_file_path=output_file_path ) # Aggregates all the downloads into one file. By default, it saves to care/data/post_id_metadata.json def aggregate_chunks( output_file_path: str = None, chunked_output_folder: str = None ) -> None: if output_file_path is None: output_file_path = f"./data/post_id_metadata.json" if chunked_output_folder is None: chunked_output_folder = f"./data/chunks/" all_data = [] for file in os.listdir(chunked_output_folder): with open(os.path.join(chunked_output_folder, file), "r") as fin: data = json.load(fin) all_data.extend(data) with open(f"{output_file_path}", "w", encoding="utf8") as fh: for example in all_data: fh.write(json.dumps(example) + "\n") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--cpus", type=int, required=False, default=2, help=f"Number of cpus to use for multiprocessing.", ) parser.add_argument( "--n", type=int, required=False, default=10, help=f"Number of post ids for each job.", ) parser.add_argument( "--data_file", type=str, default=None, help="Path the to csv with post ids." ) parser.add_argument( "--output_file", type=str, default=None, help="Write the metadata to this file." ) parser.add_argument( "--chunk_dir", type=str, default=None, help="Write the batch metadata to this directory. This can be deleted after aggregation.", ) args = parser.parse_args() download_all_sub_data( data_file=args.data_file, cpus_to_use=args.cpus, n=args.n, output_file=args.output_file, chunked_folder=args.chunk_dir, )
care-main
download_posts.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import regex_pipeline from typing import Dict, List from collections import Counter import pandas as pd import utils # Labels posts based on if at least t comments are labeled with the same affect. def label_posts( post_id_to_comment_texts: Dict[str, List[str]], t: int = 5 ) -> pd.DataFrame: outputs = [] for post_id, comment_texts in post_id_to_comment_texts.items(): affects = [] for comment_text in comment_texts: comment_affects = regex_pipeline.get_regex_match_all(comment_text) affects.extend(comment_affects) affect_map = dict(Counter(affects)) filtered_affect_map = {} for k, v in utils.cluster_and_filter(affect_map).items(): if v >= t: filtered_affect_map[k] = v if len(filtered_affect_map) > 0: outputs.append([post_id, filtered_affect_map]) return pd.DataFrame(outputs, columns=["post_id", "affect_map"]) if __name__ == "__main__": example_dict = { "1": ["This is so funny!!", "Cannot stop laughing at this.", "So hilarious"] } print(label_posts(example_dict, t=3))
care-main
care_predict.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import Dict # Clustering into seven affective responses. CLUSTER_MAP = { "disgusted": "angered", "saddened": "saddened", "amused": "amused", "angered": "angered", "disappointed": "saddened", "interested": "amused", "impressed": "approving", "excited": "excited", "inspired": "approving", "annoyed": "angered", "admiring": "approving", "scared": "scared", "worried": "scared", "anxious": "scared", "adoring": "adoring", "approving": "approving", "attracted": "adoring", "entertained": "amused", } CORE_AFFECTS = [ "adoring", "angered", "amused", "approving", "excited", "saddened", "scared", ] # This function is for clustering according to the hierarchy defined in CLUSTER_MAP and/or filtering for the affects defined in CORE_AFFECTS. def cluster_and_filter( affect_map: Dict[str, int], cluster: bool = True, filter: bool = True ) -> Dict[str, int]: new_affect_map = {} for orig_k, orig_v in affect_map.items(): if not cluster or orig_k not in CLUSTER_MAP: k = orig_k else: k = CLUSTER_MAP[orig_k] if filter and k not in CORE_AFFECTS: continue if k not in new_affect_map: new_affect_map[k] = 0 new_affect_map[k] += orig_v return new_affect_map
care-main
utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import List, Tuple, Dict # Map of keyword in the CARE lexicon to pattern combinations that are prohibited. affect_to_prohibited_patterns = { "disgusted": [], "saddened": ["heshe", "theyyou"], "amused": ["theyyou", "it"], "angered": [], "disappointed": ["heshe", "theyyou"], "entertained": ["individual", "individual_feel", "we", "we_feel"], "interested": ["hesheit", "theyyou"], "impressed": [], "excited": ["heshe", "theyyou", "some_people"], "inspired": [], "annoyed": [], "admiring": [ "individual_feel", "we_feel", "heshe", "it", "theyyou", "this_is", "hisher_story", "noun_is", "this_really", "these_are", "these_really", "feeling", "what_a", "some_people", ], "scared": ["theyyou", "heshe"], "worried": [], "anxious": [], "adoring": [ "individual", "individual_feel", "we", "we_feel", "this_makes_me", "these_make_me", "made_me", "feeling", ], "approving": [ "individual_feel", "we", "we_feel", "this_makes_me", "these_make_me", "made_me", "feeling", ], "awed": ["heshe", "theyyou", "hisher_story", "some_people"], "attracted": [ "individual", "individual_feel", "it", "we", "we_feel", "this_is", "hisher_story", "noun_is", "this_really", "this_makes_me", "these_are", "these_really", "these_make_me", "made_me", "feeling", "sovery", "how", "some_people", ], } # Map of each class to keywords. This is the inverse mapping of the CARE lexicon, as defined in the paper. affect_to_words = { "disgusted": [ "gross", "grosses me out", "disgusting", "disgusted", "disgusts me", "nasty", "disgust", "repulsive", "repulses me", ], "saddened": [ "depressing", "that really sucks", "saddening", "saddens me", "sad", "sorry for your", "sorry for them", "sorry to hear", "heartbreaking", "heartbroken", "tragic", "painful to watch", "painful to see", "hard to see", "hard to watch", "unfortunate", "depressed", "depresses me", ], "amused": [ "hilarious", "funny", "cracks me up", "laugh", "never laughed so", "can't stop laughing", "cannot stop laughing", "the funniest thing", ], "angered": [ "why i hate", "fake", "mislead", "infuriated", "infuriating", "infuriates me", "infuriate", "fed up", "furious", "frustrate me", "frustrates me", "frustrated", "frustrating", "mad", "angry", "angers me", "pissed me off", "pisses me off", "fuck the", "fuck this", "fuck them", ], "disappointed": [ "disappointing", "disappointed", "let down", "a bummer", "letting down", ], "entertained": ["entertaining"], "interested": [ "intriguing", "intrigues me", "interesting", "curious to see", "talented", "curious to know", "intrigued", ], "impressed": [ "brilliant", "impressed", "impressive", "proud of you", "impressive", "impresses me", ], "excited": [ "happy", "ecstatic", "excited", "stoked", "exciting", "jazzed", "excites me", "excite", "looking forward to", ], "inspired": [ "forward to trying", "inspired", "inspiring", "inspiration", "inspires me", "uplift", "uplifts me", "inspire", "creative", "motivated", "encouraged", "motivates me", "encourages me", "motivation", "encouragement", ], "annoyed": [ "sick of", "annoy", "annoys me", "annoying", "annoyed", "annoyance", "irritates me", "irritating", "agitates me", "agitated", "agitation", "tired of this", "getting ridiculous", "tired of seeing", "tired of hearing", ], "admiring": ["admire you", "of admiration for", "admirable"], "scared": [ "scare me", "scared", "scares me", "freaks me out", "freak me out", "freaky", "creepy", ], "worried": ["worried", "worries me", "concerning", "concerns me"], "anxious": ["anxious", "gives me anxiety", "nervous"], "adoring": [ "adorable", "the cutest", "cute", "adorbs", "sweet", "cutest thing", ], "approving": [ "love this", "love that", "dope", "fabulous", "high five", "excellent", "amazing", "damn good", "fantastic", "epic", "wonderful", "awesome", "the best", "the greatest", ], "awed": [ "magnificent", "awe inspiring", "awe-inspiring", "spectacular", "breathtaking", "majestic", "incredible", "in awe", "awe-inspired", ], "attracted": ["beautiful", "gorgeous", "handsome"], } # Creates the word to affect lexicon and collects a list of multi-word indicators. def get_hardcoded_lexicon() -> Tuple[Dict[str, str], List[str]]: words_to_affect = {x: k for k, v in affect_to_words.items() for x in v} multi_word_phrases = [k.split(" ")[0] for k in words_to_affect.keys() if " " in k] return words_to_affect, multi_word_phrases
care-main
lexicon_filtering.py
import torch import torch.nn as nn import torch.nn.functional as F from torch.distributions.categorical import Categorical import torch_ac # Function from https://github.com/ikostrikov/pytorch-a2c-ppo-acktr/blob/master/model.py def init_params(m): classname = m.__class__.__name__ if classname.find("Linear") != -1: m.weight.data.normal_(0, 1) m.weight.data *= 1 / torch.sqrt(m.weight.data.pow(2).sum(1, keepdim=True)) if m.bias is not None: m.bias.data.fill_(0) class ACModel(nn.Module, torch_ac.RecurrentACModel): def __init__(self, obs_space, action_space, use_memory=False, use_text=False): super().__init__() # Decide which components are enabled self.use_text = use_text self.use_memory = use_memory # Define image embedding self.image_conv = nn.Sequential( nn.Conv2d(3, 16, (2, 2)), nn.ReLU(), nn.MaxPool2d((2, 2)), nn.Conv2d(16, 32, (2, 2)), nn.ReLU(), nn.Conv2d(32, 64, (2, 2)), nn.ReLU() ) n = obs_space["image"][0] m = obs_space["image"][1] self.image_embedding_size = ((n-1)//2-2)*((m-1)//2-2)*64 # Define memory if self.use_memory: self.memory_rnn = nn.LSTMCell(self.image_embedding_size, self.semi_memory_size) # Define text embedding if self.use_text: self.word_embedding_size = 32 self.word_embedding = nn.Embedding(obs_space["text"], self.word_embedding_size) self.text_embedding_size = 128 self.text_rnn = nn.GRU(self.word_embedding_size, self.text_embedding_size, batch_first=True) # Resize image embedding self.embedding_size = self.semi_memory_size if self.use_text: self.embedding_size += self.text_embedding_size # Define actor's model self.actor = nn.Sequential( nn.Linear(self.embedding_size, 64), nn.Tanh(), nn.Linear(64, action_space.n) ) # Define critic's model self.critic = nn.Sequential( nn.Linear(self.embedding_size, 64), nn.Tanh(), nn.Linear(64, 1) ) # Initialize parameters correctly self.apply(init_params) @property def memory_size(self): return 2*self.semi_memory_size @property def semi_memory_size(self): return self.image_embedding_size def forward(self, obs, memory): x = obs.image.transpose(1, 3).transpose(2, 3) x = self.image_conv(x) x = x.reshape(x.shape[0], -1) if self.use_memory: hidden = (memory[:, :self.semi_memory_size], memory[:, self.semi_memory_size:]) hidden = self.memory_rnn(x, hidden) embedding = hidden[0] memory = torch.cat(hidden, dim=1) else: embedding = x if self.use_text: embed_text = self._get_embed_text(obs.text) embedding = torch.cat((embedding, embed_text), dim=1) x = self.actor(embedding) dist = Categorical(logits=F.log_softmax(x, dim=1)) x = self.critic(embedding) value = x.squeeze(1) return dist, value, memory def _get_embed_text(self, text): _, hidden = self.text_rnn(self.word_embedding(text)) return hidden[-1]
rl-starter-files-master
model.py
import gym import gym_minigrid def make_env(env_key, seed=None): env = gym.make(env_key) env.seed(seed) return env
rl-starter-files-master
utils/env.py
from .agent import * from .env import * from .format import * from .other import * from .storage import *
rl-starter-files-master
utils/__init__.py
import random import numpy import torch import collections def seed(seed): random.seed(seed) numpy.random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) def synthesize(array): d = collections.OrderedDict() d["mean"] = numpy.mean(array) d["std"] = numpy.std(array) d["min"] = numpy.amin(array) d["max"] = numpy.amax(array) return d
rl-starter-files-master
utils/other.py
import os import json import numpy import re import torch import torch_ac import gym import utils def get_obss_preprocessor(obs_space): # Check if obs_space is an image space if isinstance(obs_space, gym.spaces.Box): obs_space = {"image": obs_space.shape} def preprocess_obss(obss, device=None): return torch_ac.DictList({ "image": preprocess_images(obss, device=device) }) # Check if it is a MiniGrid observation space elif isinstance(obs_space, gym.spaces.Dict) and list(obs_space.spaces.keys()) == ["image"]: obs_space = {"image": obs_space.spaces["image"].shape, "text": 100} vocab = Vocabulary(obs_space["text"]) def preprocess_obss(obss, device=None): return torch_ac.DictList({ "image": preprocess_images([obs["image"] for obs in obss], device=device), "text": preprocess_texts([obs["mission"] for obs in obss], vocab, device=device) }) preprocess_obss.vocab = vocab else: raise ValueError("Unknown observation space: " + str(obs_space)) return obs_space, preprocess_obss def preprocess_images(images, device=None): # Bug of Pytorch: very slow if not first converted to numpy array images = numpy.array(images) return torch.tensor(images, device=device, dtype=torch.float) def preprocess_texts(texts, vocab, device=None): var_indexed_texts = [] max_text_len = 0 for text in texts: tokens = re.findall("([a-z]+)", text.lower()) var_indexed_text = numpy.array([vocab[token] for token in tokens]) var_indexed_texts.append(var_indexed_text) max_text_len = max(len(var_indexed_text), max_text_len) indexed_texts = numpy.zeros((len(texts), max_text_len)) for i, indexed_text in enumerate(var_indexed_texts): indexed_texts[i, :len(indexed_text)] = indexed_text return torch.tensor(indexed_texts, device=device, dtype=torch.long) class Vocabulary: """A mapping from tokens to ids with a capacity of `max_size` words. It can be saved in a `vocab.json` file.""" def __init__(self, max_size): self.max_size = max_size self.vocab = {} def load_vocab(self, vocab): self.vocab = vocab def __getitem__(self, token): if not token in self.vocab.keys(): if len(self.vocab) >= self.max_size: raise ValueError("Maximum vocabulary capacity reached") self.vocab[token] = len(self.vocab) + 1 return self.vocab[token]
rl-starter-files-master
utils/format.py
import csv import os import torch import logging import sys import utils def create_folders_if_necessary(path): dirname = os.path.dirname(path) if not os.path.isdir(dirname): os.makedirs(dirname) def get_storage_dir(): if "RL_STORAGE" in os.environ: return os.environ["RL_STORAGE"] return "storage" def get_model_dir(model_name): return os.path.join(get_storage_dir(), model_name) def get_status_path(model_dir): return os.path.join(model_dir, "status.pt") def get_status(model_dir): path = get_status_path(model_dir) return torch.load(path) def save_status(status, model_dir): path = get_status_path(model_dir) utils.create_folders_if_necessary(path) torch.save(status, path) def get_vocab(model_dir): return get_status(model_dir)["vocab"] def get_model_state(model_dir): return get_status(model_dir)["model_state"] def get_txt_logger(model_dir): path = os.path.join(model_dir, "log.txt") utils.create_folders_if_necessary(path) logging.basicConfig( level=logging.INFO, format="%(message)s", handlers=[ logging.FileHandler(filename=path), logging.StreamHandler(sys.stdout) ] ) return logging.getLogger() def get_csv_logger(model_dir): csv_path = os.path.join(model_dir, "log.csv") utils.create_folders_if_necessary(csv_path) csv_file = open(csv_path, "a") return csv_file, csv.writer(csv_file)
rl-starter-files-master
utils/storage.py
import torch import utils from model import ACModel class Agent: """An agent. It is able: - to choose an action given an observation, - to analyze the feedback (i.e. reward and done state) of its action.""" def __init__(self, obs_space, action_space, model_dir, device=None, argmax=False, num_envs=1): obs_space, self.preprocess_obss = utils.get_obss_preprocessor(obs_space) self.acmodel = ACModel(obs_space, action_space) self.device = device self.argmax = argmax self.num_envs = num_envs if self.acmodel.recurrent: self.memories = torch.zeros(self.num_envs, self.acmodel.memory_size) self.acmodel.load_state_dict(utils.get_model_state(model_dir)) self.acmodel.to(self.device) self.acmodel.eval() if hasattr(self.preprocess_obss, "vocab"): self.preprocess_obss.vocab.load_vocab(utils.get_vocab(model_dir)) def get_actions(self, obss): preprocessed_obss = self.preprocess_obss(obss, device=self.device) with torch.no_grad(): if self.acmodel.recurrent: dist, _, self.memories = self.acmodel(preprocessed_obss, self.memories) else: dist, _ = self.acmodel(preprocessed_obss) if self.argmax: actions = dist.probs.max(1, keepdim=True)[1] else: actions = dist.sample() return actions.cpu().numpy() def get_action(self, obs): return self.get_actions([obs])[0] def analyze_feedbacks(self, rewards, dones): if self.acmodel.recurrent: masks = 1 - torch.tensor(dones, dtype=torch.float).unsqueeze(1) self.memories *= masks def analyze_feedback(self, reward, done): return self.analyze_feedbacks([reward], [done])
rl-starter-files-master
utils/agent.py
import argparse import time import numpy import torch import utils # Parse arguments parser = argparse.ArgumentParser() parser.add_argument("--env", required=True, help="name of the environment to be run (REQUIRED)") parser.add_argument("--model", required=True, help="name of the trained model (REQUIRED)") parser.add_argument("--seed", type=int, default=0, help="random seed (default: 0)") parser.add_argument("--shift", type=int, default=0, help="number of times the environment is reset at the beginning (default: 0)") parser.add_argument("--argmax", action="store_true", default=False, help="select the action with highest probability (default: False)") parser.add_argument("--pause", type=float, default=0.1, help="pause duration between two consequent actions of the agent (default: 0.1)") parser.add_argument("--gif", type=str, default=None, help="store output as gif with the given filename") parser.add_argument("--episodes", type=int, default=1000000, help="number of episodes to visualize") args = parser.parse_args() # Set seed for all randomness sources utils.seed(args.seed) # Set device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Device: {device}\n") # Load environment env = utils.make_env(args.env, args.seed) for _ in range(args.shift): env.reset() print("Environment loaded\n") # Load agent model_dir = utils.get_model_dir(args.model) agent = utils.Agent(env.observation_space, env.action_space, model_dir, device, args.argmax) print("Agent loaded\n") # Run the agent if args.gif: from array2gif import write_gif frames = [] # Create a window to view the environment env.render('human') for episode in range(args.episodes): obs = env.reset() while True: env.render('human') if args.gif: frames.append(numpy.moveaxis(env.render("rgb_array"), 2, 0)) action = agent.get_action(obs) obs, reward, done, _ = env.step(action) agent.analyze_feedback(reward, done) if done or env.window.closed: break if env.window.closed: break if args.gif: print("Saving gif... ", end="") write_gif(numpy.array(frames), args.gif+".gif", fps=1/args.pause) print("Done.")
rl-starter-files-master
scripts/visualize.py
import argparse import time import datetime import torch import torch_ac import tensorboardX import sys import utils from model import ACModel # Parse arguments parser = argparse.ArgumentParser() ## General parameters parser.add_argument("--algo", required=True, help="algorithm to use: a2c | ppo (REQUIRED)") parser.add_argument("--env", required=True, help="name of the environment to train on (REQUIRED)") parser.add_argument("--model", default=None, help="name of the model (default: {ENV}_{ALGO}_{TIME})") parser.add_argument("--seed", type=int, default=1, help="random seed (default: 1)") parser.add_argument("--log-interval", type=int, default=1, help="number of updates between two logs (default: 1)") parser.add_argument("--save-interval", type=int, default=10, help="number of updates between two saves (default: 10, 0 means no saving)") parser.add_argument("--procs", type=int, default=16, help="number of processes (default: 16)") parser.add_argument("--frames", type=int, default=10**7, help="number of frames of training (default: 1e7)") ## Parameters for main algorithm parser.add_argument("--epochs", type=int, default=4, help="number of epochs for PPO (default: 4)") parser.add_argument("--batch-size", type=int, default=256, help="batch size for PPO (default: 256)") parser.add_argument("--frames-per-proc", type=int, default=None, help="number of frames per process before update (default: 5 for A2C and 128 for PPO)") parser.add_argument("--discount", type=float, default=0.99, help="discount factor (default: 0.99)") parser.add_argument("--lr", type=float, default=0.001, help="learning rate (default: 0.001)") parser.add_argument("--gae-lambda", type=float, default=0.95, help="lambda coefficient in GAE formula (default: 0.95, 1 means no gae)") parser.add_argument("--entropy-coef", type=float, default=0.01, help="entropy term coefficient (default: 0.01)") parser.add_argument("--value-loss-coef", type=float, default=0.5, help="value loss term coefficient (default: 0.5)") parser.add_argument("--max-grad-norm", type=float, default=0.5, help="maximum norm of gradient (default: 0.5)") parser.add_argument("--optim-eps", type=float, default=1e-8, help="Adam and RMSprop optimizer epsilon (default: 1e-8)") parser.add_argument("--optim-alpha", type=float, default=0.99, help="RMSprop optimizer alpha (default: 0.99)") parser.add_argument("--clip-eps", type=float, default=0.2, help="clipping epsilon for PPO (default: 0.2)") parser.add_argument("--recurrence", type=int, default=1, help="number of time-steps gradient is backpropagated (default: 1). If > 1, a LSTM is added to the model to have memory.") parser.add_argument("--text", action="store_true", default=False, help="add a GRU to the model to handle text input") args = parser.parse_args() args.mem = args.recurrence > 1 # Set run dir date = datetime.datetime.now().strftime("%y-%m-%d-%H-%M-%S") default_model_name = f"{args.env}_{args.algo}_seed{args.seed}_{date}" model_name = args.model or default_model_name model_dir = utils.get_model_dir(model_name) # Load loggers and Tensorboard writer txt_logger = utils.get_txt_logger(model_dir) csv_file, csv_logger = utils.get_csv_logger(model_dir) tb_writer = tensorboardX.SummaryWriter(model_dir) # Log command and all script arguments txt_logger.info("{}\n".format(" ".join(sys.argv))) txt_logger.info("{}\n".format(args)) # Set seed for all randomness sources utils.seed(args.seed) # Set device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") txt_logger.info(f"Device: {device}\n") # Load environments envs = [] for i in range(args.procs): envs.append(utils.make_env(args.env, args.seed + 10000 * i)) txt_logger.info("Environments loaded\n") # Load training status try: status = utils.get_status(model_dir) except OSError: status = {"num_frames": 0, "update": 0} txt_logger.info("Training status loaded\n") # Load observations preprocessor obs_space, preprocess_obss = utils.get_obss_preprocessor(envs[0].observation_space) if "vocab" in status: preprocess_obss.vocab.load_vocab(status["vocab"]) txt_logger.info("Observations preprocessor loaded") # Load model acmodel = ACModel(obs_space, envs[0].action_space, args.mem, args.text) if "model_state" in status: acmodel.load_state_dict(status["model_state"]) acmodel.to(device) txt_logger.info("Model loaded\n") txt_logger.info("{}\n".format(acmodel)) # Load algo if args.algo == "a2c": algo = torch_ac.A2CAlgo(envs, acmodel, device, args.frames_per_proc, args.discount, args.lr, args.gae_lambda, args.entropy_coef, args.value_loss_coef, args.max_grad_norm, args.recurrence, args.optim_alpha, args.optim_eps, preprocess_obss) elif args.algo == "ppo": algo = torch_ac.PPOAlgo(envs, acmodel, device, args.frames_per_proc, args.discount, args.lr, args.gae_lambda, args.entropy_coef, args.value_loss_coef, args.max_grad_norm, args.recurrence, args.optim_eps, args.clip_eps, args.epochs, args.batch_size, preprocess_obss) else: raise ValueError("Incorrect algorithm name: {}".format(args.algo)) if "optimizer_state" in status: algo.optimizer.load_state_dict(status["optimizer_state"]) txt_logger.info("Optimizer loaded\n") # Train model num_frames = status["num_frames"] update = status["update"] start_time = time.time() while num_frames < args.frames: # Update model parameters update_start_time = time.time() exps, logs1 = algo.collect_experiences() logs2 = algo.update_parameters(exps) logs = {**logs1, **logs2} update_end_time = time.time() num_frames += logs["num_frames"] update += 1 # Print logs if update % args.log_interval == 0: fps = logs["num_frames"]/(update_end_time - update_start_time) duration = int(time.time() - start_time) return_per_episode = utils.synthesize(logs["return_per_episode"]) rreturn_per_episode = utils.synthesize(logs["reshaped_return_per_episode"]) num_frames_per_episode = utils.synthesize(logs["num_frames_per_episode"]) header = ["update", "frames", "FPS", "duration"] data = [update, num_frames, fps, duration] header += ["rreturn_" + key for key in rreturn_per_episode.keys()] data += rreturn_per_episode.values() header += ["num_frames_" + key for key in num_frames_per_episode.keys()] data += num_frames_per_episode.values() header += ["entropy", "value", "policy_loss", "value_loss", "grad_norm"] data += [logs["entropy"], logs["value"], logs["policy_loss"], logs["value_loss"], logs["grad_norm"]] txt_logger.info( "U {} | F {:06} | FPS {:04.0f} | D {} | rR:μσmM {:.2f} {:.2f} {:.2f} {:.2f} | F:μσmM {:.1f} {:.1f} {} {} | H {:.3f} | V {:.3f} | pL {:.3f} | vL {:.3f} | ∇ {:.3f}" .format(*data)) header += ["return_" + key for key in return_per_episode.keys()] data += return_per_episode.values() if status["num_frames"] == 0: csv_logger.writerow(header) csv_logger.writerow(data) csv_file.flush() for field, value in zip(header, data): tb_writer.add_scalar(field, value, num_frames) # Save status if args.save_interval > 0 and update % args.save_interval == 0: status = {"num_frames": num_frames, "update": update, "model_state": acmodel.state_dict(), "optimizer_state": algo.optimizer.state_dict()} if hasattr(preprocess_obss, "vocab"): status["vocab"] = preprocess_obss.vocab.vocab utils.save_status(status, model_dir) txt_logger.info("Status saved")
rl-starter-files-master
scripts/train.py
import argparse import time import torch from torch_ac.utils.penv import ParallelEnv import utils # Parse arguments parser = argparse.ArgumentParser() parser.add_argument("--env", required=True, help="name of the environment (REQUIRED)") parser.add_argument("--model", required=True, help="name of the trained model (REQUIRED)") parser.add_argument("--episodes", type=int, default=100, help="number of episodes of evaluation (default: 100)") parser.add_argument("--seed", type=int, default=0, help="random seed (default: 0)") parser.add_argument("--procs", type=int, default=16, help="number of processes (default: 16)") parser.add_argument("--argmax", action="store_true", default=False, help="action with highest probability is selected") parser.add_argument("--worst-episodes-to-show", type=int, default=10, help="how many worst episodes to show") args = parser.parse_args() # Set seed for all randomness sources utils.seed(args.seed) # Set device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Device: {device}\n") # Load environments envs = [] for i in range(args.procs): env = utils.make_env(args.env, args.seed + 10000 * i) envs.append(env) env = ParallelEnv(envs) print("Environments loaded\n") # Load agent model_dir = utils.get_model_dir(args.model) agent = utils.Agent(env.observation_space, env.action_space, model_dir, device, args.argmax, args.procs) print("Agent loaded\n") # Initialize logs logs = {"num_frames_per_episode": [], "return_per_episode": []} # Run agent start_time = time.time() obss = env.reset() log_done_counter = 0 log_episode_return = torch.zeros(args.procs, device=device) log_episode_num_frames = torch.zeros(args.procs, device=device) while log_done_counter < args.episodes: actions = agent.get_actions(obss) obss, rewards, dones, _ = env.step(actions) agent.analyze_feedbacks(rewards, dones) log_episode_return += torch.tensor(rewards, device=device, dtype=torch.float) log_episode_num_frames += torch.ones(args.procs, device=device) for i, done in enumerate(dones): if done: log_done_counter += 1 logs["return_per_episode"].append(log_episode_return[i].item()) logs["num_frames_per_episode"].append(log_episode_num_frames[i].item()) mask = 1 - torch.tensor(dones, device=device, dtype=torch.float) log_episode_return *= mask log_episode_num_frames *= mask end_time = time.time() # Print logs num_frames = sum(logs["num_frames_per_episode"]) fps = num_frames/(end_time - start_time) duration = int(end_time - start_time) return_per_episode = utils.synthesize(logs["return_per_episode"]) num_frames_per_episode = utils.synthesize(logs["num_frames_per_episode"]) print("F {} | FPS {:.0f} | D {} | R:μσmM {:.2f} {:.2f} {:.2f} {:.2f} | F:μσmM {:.1f} {:.1f} {} {}" .format(num_frames, fps, duration, *return_per_episode.values(), *num_frames_per_episode.values())) # Print worst episodes n = args.worst_episodes_to_show if n > 0: print("\n{} worst episodes:".format(n)) indexes = sorted(range(len(logs["return_per_episode"])), key=lambda k: logs["return_per_episode"][k]) for i in indexes[:n]: print("- episode {}: R={}, F={}".format(i, logs["return_per_episode"][i], logs["num_frames_per_episode"][i]))
rl-starter-files-master
scripts/evaluate.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from setuptools import setup, find_packages with open('README.md', 'r') as f: long_description = f.read() with open('requirements.txt', 'r') as f: requirements = [line.strip() for line in f] setup( name='access', version='0.2', description='Controllable Sentence Simplification', long_description=long_description, long_description_content_type='text/markdown', author='Louis Martin <[email protected]>', url='https://github.com/facebookreasearch/access', packages=find_packages(exclude=['resources']), install_requires=requirements, )
access-main
setup.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from functools import wraps import multiprocessing import random import re from joblib import Parallel, delayed import torch from access.text import to_words from access.utils.helpers import (open_files, yield_lines, yield_lines_in_parallel, get_temp_filepath, delete_files, get_temp_filepaths) def apply_line_method_to_file(line_method, input_filepath): output_filepath = get_temp_filepath() with open(input_filepath, 'r') as input_file, open(output_filepath, 'w') as output_file: for line in input_file: transformed_line = line_method(line.rstrip('\n')) if transformed_line is not None: output_file.write(transformed_line + '\n') return output_filepath def replace_lrb_rrb(text): text = re.sub(r'-lrb-', '(', text, flags=re.IGNORECASE) text = re.sub(r'-rrb-', ')', text, flags=re.IGNORECASE) text = re.sub(r'-lsb-', '[', text, flags=re.IGNORECASE) text = re.sub(r'-rsb-', ']', text, flags=re.IGNORECASE) text = re.sub(r'-lcb-', '{', text, flags=re.IGNORECASE) text = re.sub(r'-rcb-', '}', text, flags=re.IGNORECASE) return text def replace_lrb_rrb_file(filepath): return apply_line_method_to_file(replace_lrb_rrb, filepath) def to_lrb_rrb(text): # TODO: Very basic text = re.sub(r'((^| ))\( ', r'\1-lrb- ', text) text = re.sub(r' \)((^| ))', r' -rrb-\1', text) return text def replace_back_quotes(text): return text.replace('`', "'") def replace_double_quotes(text): return text.replace("''", '"') def normalize_quotes(text): return replace_double_quotes(replace_back_quotes(text)) def to_lrb_rrb_file(input_filepath): return apply_line_method_to_file(to_lrb_rrb, input_filepath) def lowercase_file(filepath): return apply_line_method_to_file(lambda line: line.lower(), filepath) def concatenate_files(input_filepaths, output_filepath): with open(output_filepath, 'w') as output_f: for input_file in input_filepaths: with open(input_file, 'r') as input_f: for line in input_f: output_f.write(line) def split_file(input_filepath, output_filepaths, round_robin=False): if not round_robin: raise NotImplementedError('Splitting files is only implemented as round robin.') with open_files(output_filepaths, 'w') as files: # We write each line to a different file in a round robin fashion for i, line in enumerate(yield_lines(input_filepath)): files[i % len(output_filepaths)].write(line + '\n') def merge_files(input_filepaths, output_filepath, round_robin=False): if not round_robin: return concatenate_files(input_filepaths, output_filepath) with open(output_filepath, 'w') as f: for lines in yield_lines_in_parallel(input_filepaths, strict=False): for line in lines: if line is None: return f.write(line + '\n') def get_real_n_jobs(n_jobs): n_cpus = multiprocessing.cpu_count() if n_jobs < 0: # Adopt same logic as joblib n_jobs = n_cpus + 1 + n_jobs if n_jobs > n_cpus: print('Setting n_jobs={n_jobs} > n_cpus={n_cpus}, setting n_jobs={n_cpus}') n_jobs = n_cpus assert 0 < n_jobs <= n_cpus return n_jobs def get_parallel_file_pair_preprocessor(file_pair_preprocessor, n_jobs): if n_jobs == 1: return file_pair_preprocessor n_jobs = get_real_n_jobs(n_jobs) @wraps(file_pair_preprocessor) def parallel_file_pair_preprocessor(complex_filepath, simple_filepath, output_complex_filepath, output_simple_filepath): temp_complex_filepaths = get_temp_filepaths(n_jobs) temp_simple_filepaths = get_temp_filepaths(n_jobs) split_file(complex_filepath, temp_complex_filepaths, round_robin=True) split_file(simple_filepath, temp_simple_filepaths, round_robin=True) preprocessed_temp_complex_filepaths = get_temp_filepaths(n_jobs) preprocessed_temp_simple_filepaths = get_temp_filepaths(n_jobs) tasks = [ delayed(file_pair_preprocessor)(*paths) for paths in zip(temp_complex_filepaths, temp_simple_filepaths, preprocessed_temp_complex_filepaths, preprocessed_temp_simple_filepaths) ] Parallel(n_jobs=n_jobs)(tasks) merge_files(preprocessed_temp_complex_filepaths, output_complex_filepath, round_robin=True) merge_files(preprocessed_temp_simple_filepaths, output_simple_filepath, round_robin=True) delete_files(temp_complex_filepaths) delete_files(temp_simple_filepaths) delete_files(preprocessed_temp_complex_filepaths) delete_files(preprocessed_temp_simple_filepaths) return parallel_file_pair_preprocessor def word_shuffle(words, max_swap=3): noise = torch.rand(len(words)).mul_(max_swap) permutation = torch.arange(len(words)).float().add_(noise).sort()[1] return [words[i] for i in permutation] def word_dropout(words, dropout_prob=0.1): keep = torch.rand(len(words)) dropped_out_words = [word for i, word in enumerate(words) if keep[i] > dropout_prob] if len(dropped_out_words) == 0: return [words[random.randint(0, len(words) - 1)]] return dropped_out_words def word_blank(words, blank_prob=0.1): keep = torch.rand(len(words)) return [word if keep[i] > blank_prob else '<BLANK>' for i, word in enumerate(words)] def add_noise(sentence): words = to_words(sentence) words = word_shuffle(words, max_swap=3) words = word_dropout(words, dropout_prob=0.1) words = word_blank(words, blank_prob=0.1) return ' '.join(words)
access-main
access/preprocess.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from functools import wraps from pathlib import Path import shutil import tempfile from imohash import hashfile from access.fairseq.base import fairseq_generate from access.preprocessors import ComposedPreprocessor, load_preprocessors from access.utils.helpers import count_lines def memoize_simplifier(simplifier): memo = {} @wraps(simplifier) def wrapped(complex_filepath, pred_filepath): complex_filehash = hashfile(complex_filepath, hexdigest=True) previous_pred_filepath = memo.get(complex_filehash) if previous_pred_filepath is not None and Path(previous_pred_filepath).exists(): assert count_lines(complex_filepath) == count_lines(previous_pred_filepath) # Reuse previous prediction shutil.copyfile(previous_pred_filepath, pred_filepath) else: simplifier(complex_filepath, pred_filepath) # Save prediction memo[complex_filehash] = pred_filepath return wrapped def get_fairseq_simplifier(exp_dir, reload_preprocessors=False, **kwargs): '''Method factory''' @memoize_simplifier def fairseq_simplifier(complex_filepath, output_pred_filepath): # Trailing spaces for markdown formatting print('simplifier_type="fairseq_simplifier" ') print(f'exp_dir="{exp_dir}" ') fairseq_generate(complex_filepath, output_pred_filepath, exp_dir, **kwargs) preprocessors = None if reload_preprocessors: preprocessors = load_preprocessors(exp_dir) if preprocessors is not None: fairseq_simplifier = get_preprocessed_simplifier(fairseq_simplifier, preprocessors) return fairseq_simplifier def get_preprocessed_simplifier(simplifier, preprocessors): composed_preprocessor = ComposedPreprocessor(preprocessors) @memoize_simplifier @wraps(simplifier) def preprocessed_simplifier(complex_filepath, output_pred_filepath): print(f'preprocessors={preprocessors}') preprocessed_complex_filepath = tempfile.mkstemp()[1] composed_preprocessor.encode_file(complex_filepath, preprocessed_complex_filepath) preprocessed_output_pred_filepath = tempfile.mkstemp()[1] simplifier(preprocessed_complex_filepath, preprocessed_output_pred_filepath) composed_preprocessor.decode_file(preprocessed_output_pred_filepath, output_pred_filepath, encoder_filepath=complex_filepath) preprocessed_simplifier.__name__ = f'{preprocessed_simplifier.__name__}_{composed_preprocessor.get_suffix()}' return preprocessed_simplifier
access-main
access/simplifiers.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from functools import lru_cache import Levenshtein import numpy as np from access.resources.paths import FASTTEXT_EMBEDDINGS_PATH from access.resources.prepare import prepare_fasttext_embeddings from access.text import (to_words, remove_punctuation_tokens, remove_stopwords, spacy_process) from access.utils.helpers import yield_lines @lru_cache(maxsize=1) def get_word2rank(vocab_size=np.inf): prepare_fasttext_embeddings() # TODO: Decrease vocab size or load from smaller file word2rank = {} line_generator = yield_lines(FASTTEXT_EMBEDDINGS_PATH) next(line_generator) # Skip the first line (header) for i, line in enumerate(line_generator): if (i + 1) > vocab_size: break word = line.split(' ')[0] word2rank[word] = i return word2rank def get_rank(word): return get_word2rank().get(word, len(get_word2rank())) def get_log_rank(word): return np.log(1 + get_rank(word)) def get_lexical_complexity_score(sentence): words = to_words(remove_stopwords(remove_punctuation_tokens(sentence))) words = [word for word in words if word in get_word2rank()] if len(words) == 0: return np.log(1 + len(get_word2rank())) # TODO: This is completely arbitrary return np.quantile([get_log_rank(word) for word in words], 0.75) def get_levenshtein_similarity(complex_sentence, simple_sentence): return Levenshtein.ratio(complex_sentence, simple_sentence) def get_dependency_tree_depth(sentence): def get_subtree_depth(node): if len(list(node.children)) == 0: return 0 return 1 + max([get_subtree_depth(child) for child in node.children]) tree_depths = [get_subtree_depth(spacy_sentence.root) for spacy_sentence in spacy_process(sentence).sents] if len(tree_depths) == 0: return 0 return max(tree_depths)
access-main
access/feature_extraction.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from abc import ABC from functools import wraps, lru_cache import hashlib from pathlib import Path import dill as pickle import re import shutil from nevergrad.instrumentation import var import numpy as np import sentencepiece as spm from access.feature_extraction import (get_lexical_complexity_score, get_levenshtein_similarity, get_dependency_tree_depth) from access.resources.paths import VARIOUS_DIR, get_data_filepath from access.utils.helpers import (write_lines_in_parallel, yield_lines_in_parallel, add_dicts, get_default_args, get_temp_filepath, safe_division, count_lines) SPECIAL_TOKEN_REGEX = r'<[a-zA-Z\-_\d\.]+>' PREPROCESSORS_REGISTRY = {} def get_preprocessor_by_name(preprocessor_name): return PREPROCESSORS_REGISTRY[preprocessor_name] def get_preprocessors(preprocessor_kwargs): preprocessors = [] for preprocessor_name, kwargs in preprocessor_kwargs.items(): preprocessors.append(get_preprocessor_by_name(preprocessor_name)(**kwargs)) return preprocessors def extract_special_tokens(sentence): '''Remove any number of token at the beginning of the sentence''' match = re.match(fr'(^(?:{SPECIAL_TOKEN_REGEX} *)+) *(.*)$', sentence) if match is None: return '', sentence special_tokens, sentence = match.groups() return special_tokens.strip(), sentence def remove_special_tokens(sentence): return extract_special_tokens(sentence)[1] def store_args(constructor): @wraps(constructor) def wrapped(self, *args, **kwargs): if not hasattr(self, 'args') or not hasattr(self, 'kwargs'): # TODO: Default args are not overwritten if provided as args self.args = args self.kwargs = add_dicts(get_default_args(constructor), kwargs) return constructor(self, *args, **kwargs) return wrapped def dump_preprocessors(preprocessors, dir_path): with open(Path(dir_path) / 'preprocessors.pickle', 'wb') as f: pickle.dump(preprocessors, f) def load_preprocessors(dir_path): path = Path(dir_path) / 'preprocessors.pickle' if not path.exists(): return None with open(path, 'rb') as f: return pickle.load(f) class AbstractPreprocessor(ABC): def __init_subclass__(cls, **kwargs): '''Register all children in registry''' super().__init_subclass__(**kwargs) PREPROCESSORS_REGISTRY[cls.__name__] = cls def __repr__(self): args = getattr(self, 'args', ()) kwargs = getattr(self, 'kwargs', {}) args_repr = [repr(arg) for arg in args] kwargs_repr = [f'{k}={repr(v)}' for k, v in sorted(kwargs.items(), key=lambda kv: kv[0])] args_kwargs_str = ', '.join(args_repr + kwargs_repr) return f'{self.__class__.__name__}({args_kwargs_str})' def get_hash_string(self): return self.__class__.__name__ def get_hash(self): return hashlib.md5(self.get_hash_string().encode()).hexdigest() def get_nevergrad_variables(self): return {} @property def prefix(self): return self.__class__.__name__.replace('Preprocessor', '') def fit(self, complex_filepath, simple_filepath): pass def encode_sentence(self, sentence, encoder_sentence=None): raise NotImplementedError def decode_sentence(self, sentence, encoder_sentence=None): raise NotImplementedError def encode_sentence_pair(self, complex_sentence, simple_sentence): if complex_sentence is not None: complex_sentence = self.encode_sentence(complex_sentence) if simple_sentence is not None: simple_sentence = self.encode_sentence(simple_sentence) return complex_sentence, simple_sentence def encode_file(self, input_filepath, output_filepath, encoder_filepath=None): if encoder_filepath is None: # We will use an empty temporary file which will yield None for each line encoder_filepath = get_temp_filepath(create=True) with open(output_filepath, 'w') as f: for input_line, encoder_line in yield_lines_in_parallel([input_filepath, encoder_filepath], strict=False): f.write(self.encode_sentence(input_line, encoder_line) + '\n') def decode_file(self, input_filepath, output_filepath, encoder_filepath=None): if encoder_filepath is None: # We will use an empty temporary file which will yield None for each line encoder_filepath = get_temp_filepath(create=True) with open(output_filepath, 'w') as f: for encoder_sentence, input_sentence in yield_lines_in_parallel([encoder_filepath, input_filepath], strict=False): decoded_sentence = self.decode_sentence(input_sentence, encoder_sentence=encoder_sentence) f.write(decoded_sentence + '\n') def encode_file_pair(self, complex_filepath, simple_filepath, output_complex_filepath, output_simple_filepath): '''Jointly encode a complex file and a simple file (can be aligned or not)''' with write_lines_in_parallel([output_complex_filepath, output_simple_filepath], strict=False) as output_files: for complex_line, simple_line in yield_lines_in_parallel([complex_filepath, simple_filepath], strict=False): output_files.write(self.encode_sentence_pair(complex_line, simple_line)) class ComposedPreprocessor(AbstractPreprocessor): @store_args def __init__(self, preprocessors, sort=False): if preprocessors is None: preprocessors = [] if sort: # Make sure preprocessors are always in the same order preprocessors = sorted(preprocessors, key=lambda preprocessor: preprocessor.__class__.__name__) self.preprocessors = preprocessors def get_hash_string(self): preprocessors_hash_strings = [preprocessor.get_hash_string() for preprocessor in self.preprocessors] return f'ComposedPreprocessor(preprocessors={preprocessors_hash_strings})' def get_suffix(self): return '_'.join([p.prefix.lower() for p in self.preprocessors]) def fit(self, complex_filepath, simple_filepath): for preprocessor in self.preprocessors: pass def encode_sentence(self, sentence, encoder_sentence=None): for preprocessor in self.preprocessors: sentence = preprocessor.encode_sentence(sentence, encoder_sentence) return sentence def decode_sentence(self, sentence, encoder_sentence=None): for preprocessor in self.preprocessors: sentence = preprocessor.decode_sentence(sentence, encoder_sentence) return sentence def encode_file(self, input_filepath, output_filepath, encoder_filepath=None): for preprocessor in self.preprocessors: intermediary_output_filepath = get_temp_filepath() preprocessor.encode_file(input_filepath, intermediary_output_filepath, encoder_filepath) input_filepath = intermediary_output_filepath shutil.copyfile(input_filepath, output_filepath) def decode_file(self, input_filepath, output_filepath, encoder_filepath=None): for preprocessor in self.preprocessors: intermediary_output_filepath = get_temp_filepath() preprocessor.decode_file(input_filepath, intermediary_output_filepath, encoder_filepath) input_filepath = intermediary_output_filepath shutil.copyfile(input_filepath, output_filepath) def encode_file_pair(self, complex_filepath, simple_filepath, output_complex_filepath, output_simple_filepath): for preprocessor in self.preprocessors: intermediary_output_complex_filepath = get_temp_filepath() intermediary_output_simple_filepath = get_temp_filepath() preprocessor.encode_file_pair(complex_filepath, simple_filepath, intermediary_output_complex_filepath, intermediary_output_simple_filepath) complex_filepath = intermediary_output_complex_filepath simple_filepath = intermediary_output_simple_filepath shutil.copyfile(complex_filepath, output_complex_filepath) shutil.copyfile(simple_filepath, output_simple_filepath) def encode_sentence_pair(self, complex_sentence, simple_sentence): for preprocessor in self.preprocessors: complex_sentence, simple_sentence = preprocessor.encode_sentence_pair(complex_sentence, simple_sentence) return complex_sentence, simple_sentence class FeaturePreprocessor(AbstractPreprocessor): '''Prepend a computed feature at the beginning of the sentence''' @store_args def __init__(self, feature_name, get_feature_value, get_target_feature_value, bucket_size=0.05, noise_std=0): self.get_feature_value = get_feature_value self.get_target_feature_value = get_target_feature_value self.bucket_size = bucket_size self.noise_std = noise_std self.feature_name = feature_name.upper() def get_hash_string(self): return (f'{self.__class__.__name__}(feature_name={repr(self.feature_name)}, bucket_size={self.bucket_size},' f'noise_std={self.noise_std})') def bucketize(self, value): '''Round value to bucket_size to reduce the number of different values''' return round(round(value / self.bucket_size) * self.bucket_size, 10) def add_noise(self, value): return value + np.random.normal(0, self.noise_std) def get_feature_token(self, feature_value): return f'<{self.feature_name}_{feature_value}>' def encode_sentence(self, sentence, encoder_sentence=None): desired_feature = self.bucketize(self.get_target_feature_value(remove_special_tokens(sentence))) return f'{self.get_feature_token(desired_feature)} {sentence}' def decode_sentence(self, sentence, encoder_sentence=None): return sentence def encode_sentence_pair(self, complex_sentence, simple_sentence): feature = self.bucketize( self.add_noise( self.get_feature_value(remove_special_tokens(complex_sentence), remove_special_tokens(simple_sentence)))) return f'{self.get_feature_token(feature)} {complex_sentence}', simple_sentence class LevenshteinPreprocessor(FeaturePreprocessor): @store_args def __init__(self, target_ratio=0.8, bucket_size=0.05, noise_std=0): self.target_ratio = target_ratio super().__init__(self.prefix.upper(), self.get_feature_value, self.get_target_feature_value, bucket_size, noise_std) def get_nevergrad_variables(self): return {'target_ratio': var.OrderedDiscrete(np.arange(0.4, 1 + 1e-6, self.bucket_size))} def get_feature_value(self, complex_sentence, simple_sentence): return get_levenshtein_similarity(complex_sentence, simple_sentence) def get_target_feature_value(self, complex_sentence): return self.target_ratio class RatioPreprocessor(FeaturePreprocessor): @store_args def __init__(self, feature_extractor, target_ratio=0.8, bucket_size=0.05, noise_std=0): self.feature_extractor = feature_extractor self.target_ratio = target_ratio super().__init__(self.prefix.upper(), self.get_feature_value, self.get_target_feature_value, bucket_size, noise_std) def get_nevergrad_variables(self): return {'target_ratio': var.OrderedDiscrete(np.arange(0.4, 1.4 + 1e-6, self.bucket_size))} def get_feature_value(self, complex_sentence, simple_sentence): return min(safe_division(self.feature_extractor(simple_sentence), self.feature_extractor(complex_sentence)), 2) def get_target_feature_value(self, complex_sentence): return self.target_ratio class LengthRatioPreprocessor(RatioPreprocessor): @store_args def __init__(self, *args, **kwargs): super().__init__(len, *args, **kwargs) class WordRankRatioPreprocessor(RatioPreprocessor): @store_args def __init__(self, *args, **kwargs): super().__init__(get_lexical_complexity_score, *args, **kwargs) class DependencyTreeDepthRatioPreprocessor(RatioPreprocessor): @store_args def __init__(self, *args, **kwargs): super().__init__(get_dependency_tree_depth, *args, **kwargs) class SentencePiecePreprocessor(AbstractPreprocessor): @store_args def __init__(self, vocab_size=10000, input_filepaths=None): self.vocab_size = vocab_size self.sentencepiece_model_path = VARIOUS_DIR / f'sentencepiece_model/sentencepiece_model_{self.vocab_size}.model' self.input_filepaths = input_filepaths if self.input_filepaths is None: self.input_filepaths = [ get_data_filepath('wikilarge', 'train', 'complex'), get_data_filepath('wikilarge', 'train', 'simple') ] self.learn_sentencepiece() @property @lru_cache(maxsize=1) def sp(self): ''' We need to use a property because SentencenPieceProcessor is cannot pickled > pickle.dumps(spm.SentencePieceProcessor()) ----> TypeError: can't pickle SwigPyObject objects ''' sp = spm.SentencePieceProcessor() sp.Load(str(self.sentencepiece_model_path)) return sp def get_hash_string(self): return f'{self.__class__.__name__}(vocab_size={self.vocab_size})' def learn_sentencepiece(self): if self.sentencepiece_model_path.exists(): return self.sentencepiece_model_path.parent.mkdir(parents=True, exist_ok=True) sentencepiece_model_prefix = self.sentencepiece_model_path.parent / self.sentencepiece_model_path.stem args_str = ' '.join([ f'--input={",".join([str(path) for path in self.input_filepaths])}', f'--model_prefix={sentencepiece_model_prefix}', f'--vocab_size={self.vocab_size}', ]) max_lines = 10**6 if sum([count_lines(filepath) for filepath in self.input_filepaths]) > max_lines: args_str += f' --input_sentence_size={max_lines} --shuffle_input_sentence=true' spm.SentencePieceTrainer.Train(args_str) def fit(self, complex_filepath, simple_filepath): # Args are not used self.learn_sentencepiece() def encode_sentence(self, sentence, encoder_sentence=None): # TODO: Do we really need to extract the tokens special_tokens, sentence = extract_special_tokens(sentence) encoded_sentence = ' '.join(self.sp.EncodeAsPieces(sentence)) if special_tokens != '': encoded_sentence = f'{special_tokens} {encoded_sentence}' return encoded_sentence def decode_sentence(self, sentence, encoder_sentence=None): return self.sp.DecodePieces(sentence.split(' '))
access-main
access/preprocessors.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from functools import lru_cache import re from string import punctuation from nltk.tokenize.nist import NISTTokenizer from nltk.corpus import stopwords as nltk_stopwords import spacy # TODO: #language_specific stopwords = set(nltk_stopwords.words('english')) @lru_cache(maxsize=100) # To speed up subsequent calls def word_tokenize(sentence): tokenizer = NISTTokenizer() sentence = ' '.join(tokenizer.tokenize(sentence)) # Rejoin special tokens that where tokenized by error: e.g. "<PERSON_1>" -> "< PERSON _ 1 >" for match in re.finditer(r'< (?:[A-Z]+ _ )+\d+ >', sentence): sentence = sentence.replace(match.group(), ''.join(match.group().split())) return sentence def to_words(sentence): return sentence.split() def remove_punctuation_characters(text): return ''.join([char for char in text if char not in punctuation]) @lru_cache(maxsize=1000) def is_punctuation(word): return remove_punctuation_characters(word) == '' @lru_cache(maxsize=100) def remove_punctuation_tokens(text): return ' '.join([w for w in to_words(text) if not is_punctuation(w)]) def remove_stopwords(text): return ' '.join([w for w in to_words(text) if w.lower() not in stopwords]) @lru_cache(maxsize=1) def get_spacy_model(): model = 'en_core_web_sm' if not spacy.util.is_package(model): spacy.cli.download(model) spacy.cli.link(model, model, force=True, model_path=spacy.util.get_package_path(model)) return spacy.load(model) # python -m spacy download en_core_web_sm` @lru_cache(maxsize=10**6) def spacy_process(text): return get_spacy_model()(str(text))
access-main
access/text.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from itertools import product from pathlib import Path REPO_DIR = Path(__file__).resolve().parent.parent.parent EXP_DIR = REPO_DIR / 'experiments' RESOURCES_DIR = REPO_DIR / 'resources' DATASETS_DIR = RESOURCES_DIR / 'datasets' VARIOUS_DIR = RESOURCES_DIR / 'various' FASTTEXT_EMBEDDINGS_PATH = VARIOUS_DIR / 'fasttext-vectors/wiki.en.vec' MODELS_DIR = RESOURCES_DIR / 'models' BEST_MODEL_DIR = MODELS_DIR / 'best_model' LANGUAGES = ['complex', 'simple'] PHASES = ['train', 'valid', 'test'] def get_dataset_dir(dataset): return DATASETS_DIR / dataset def get_data_filepath(dataset, phase, language, i=None): suffix = '' # Create suffix e.g. for multiple references if i is not None: suffix = f'.{i}' filename = f'{dataset}.{phase}.{language}{suffix}' return get_dataset_dir(dataset) / filename def get_filepaths_dict(dataset): return {(phase, language): get_data_filepath(dataset, phase, language) for phase, language in product(PHASES, LANGUAGES)}
access-main
access/resources/paths.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import hashlib from pathlib import Path from access.preprocess import get_parallel_file_pair_preprocessor from access.preprocessors import dump_preprocessors, load_preprocessors from access.resources.paths import PHASES, get_dataset_dir, get_data_filepath, get_filepaths_dict from access.utils.helpers import count_lines, read_lines, create_directory_or_skip def yield_indexes_of_lines(filepath, lines): lines = set(lines) with Path(filepath).open('r') as f: for idx, line in enumerate(f): if line.strip('\n') in lines: yield idx def sort_files_by_line_count(filepaths): return sorted(filepaths, key=lambda filepath: count_lines(filepath)) def has_lines_in_common(filepath1, filepath2): [smallest_filepath, largest_filepath] = sort_files_by_line_count([filepath1, filepath2]) for idx in yield_indexes_of_lines(largest_filepath, read_lines(smallest_filepath)): return True return False def get_preprocessed_dataset_name(dataset, preprocessor): return '_' + hashlib.md5((dataset + preprocessor.get_hash()).encode()).hexdigest() def create_preprocessed_dataset_one_preprocessor(dataset, preprocessor, n_jobs): new_dataset = get_preprocessed_dataset_name(dataset, preprocessor) with create_directory_or_skip(get_dataset_dir(new_dataset)): print(f'Creating preprocessed dataset with {preprocessor}: {dataset} -> {new_dataset}') new_dataset_dir = get_dataset_dir(new_dataset) filepaths_dict = get_filepaths_dict(dataset) new_filepaths_dict = get_filepaths_dict(new_dataset) for phase in PHASES: if not filepaths_dict[phase, 'complex'].exists() or not filepaths_dict[phase, 'complex'].exists(): continue parallel_file_pair_preprocessor = get_parallel_file_pair_preprocessor( preprocessor.encode_file_pair, n_jobs=n_jobs, ) parallel_file_pair_preprocessor(filepaths_dict[phase, 'complex'], filepaths_dict[phase, 'simple'], new_filepaths_dict[phase, 'complex'], new_filepaths_dict[phase, 'simple']) previous_preprocessors = load_preprocessors(get_dataset_dir(dataset)) if previous_preprocessors is not None: preprocessors = previous_preprocessors + [preprocessor] else: preprocessors = [preprocessor] dump_preprocessors(preprocessors, new_dataset_dir) with open(new_dataset_dir / 'original_dataset', 'w') as f: f.write(dataset + '\n') return new_dataset def create_preprocessed_dataset(dataset, preprocessors, n_jobs=1): for preprocessor in preprocessors: # Fit preprocessor on input dataset preprocessor.fit(get_data_filepath(dataset, 'train', 'complex'), get_data_filepath(dataset, 'train', 'simple')) dataset = create_preprocessed_dataset_one_preprocessor(dataset, preprocessor, n_jobs) return dataset
access-main
access/resources/datasets.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import bz2 import gzip import os from pathlib import Path import shutil import sys import tarfile import tempfile import time from urllib.request import urlretrieve import zipfile import git from tqdm import tqdm def reporthook(count, block_size, total_size): # Download progress bar global start_time if count == 0: start_time = time.time() return duration = time.time() - start_time progress_size_mb = count * block_size / (1024 * 1024) speed = progress_size_mb / duration percent = int(count * block_size * 100 / total_size) msg = f'\r... {percent}% - {int(progress_size_mb)} MB - {speed:.2f} MB/s - {int(duration)}s' sys.stdout.write(msg) def download(url, destination_path): print('Downloading...') try: urlretrieve(url, destination_path, reporthook) sys.stdout.write('\n') except (Exception, KeyboardInterrupt, SystemExit): print('Rolling back: remove partially downloaded file') os.remove(destination_path) raise def download_and_extract(url): tmp_dir = Path(tempfile.mkdtemp()) compressed_filename = url.split('/')[-1] compressed_filepath = tmp_dir / compressed_filename download(url, compressed_filepath) print('Extracting...') return extract(compressed_filepath, tmp_dir) def extract(filepath, output_dir): # Infer extract method based on extension extensions_to_methods = { '.tar.gz': untar, '.tar.bz2': untar, '.tgz': untar, '.zip': unzip, '.gz': ungzip, '.bz2': unbz2, } def get_extension(filename, extensions): possible_extensions = [ext for ext in extensions if filename.endswith(ext)] if len(possible_extensions) == 0: raise Exception(f'File {filename} has an unknown extension') # Take the longest (.tar.gz should take precedence over .gz) return max(possible_extensions, key=lambda ext: len(ext)) filename = os.path.basename(filepath) extension = get_extension(filename, list(extensions_to_methods)) extract_method = extensions_to_methods[extension] # Extract files in a temporary dir then move the extracted item back to # the ouput dir in order to get the details of what was extracted tmp_extract_dir = tempfile.mkdtemp() # Extract extract_method(filepath, output_dir=tmp_extract_dir) extracted_items = os.listdir(tmp_extract_dir) output_paths = [] for name in extracted_items: extracted_path = os.path.join(tmp_extract_dir, name) output_path = os.path.join(output_dir, name) move_with_overwrite(extracted_path, output_path) output_paths.append(output_path) return output_paths def move_with_overwrite(source_path, target_path): if os.path.isfile(target_path): os.remove(target_path) if os.path.isdir(target_path) and os.path.isdir(source_path): shutil.rmtree(target_path) shutil.move(source_path, target_path) def untar(compressed_path, output_dir): with tarfile.open(compressed_path) as f: f.extractall(output_dir) def unzip(compressed_path, output_dir): with zipfile.ZipFile(compressed_path, 'r') as f: f.extractall(output_dir) def ungzip(compressed_path, output_dir): filename = os.path.basename(compressed_path) assert filename.endswith('.gz') if not os.path.exists(output_dir): os.makedirs(output_dir) output_path = os.path.join(output_dir, filename[:-3]) with gzip.open(compressed_path, 'rb') as f_in: with open(output_path, 'wb') as f_out: shutil.copyfileobj(f_in, f_out) def unbz2(compressed_path, output_dir): extract_filename = os.path.basename(compressed_path).replace('.bz2', '') extract_path = os.path.join(output_dir, extract_filename) with bz2.BZ2File(compressed_path, 'rb') as compressed_file, open(extract_path, 'wb') as extract_file: for data in tqdm(iter(lambda: compressed_file.read(1024 * 1024), b'')): extract_file.write(data) def add_newline_at_end_of_file(file_path): with open(file_path, 'r') as f: last_character = f.readlines()[-1][-1] if last_character == '\n': return print(f'Adding newline at the end of {file_path}') with open(file_path, 'a') as f: f.write('\n') def git_clone(url, output_dir, overwrite=True): if Path(output_dir).exists(): shutil.rmtree(output_dir) git.Repo.clone_from(url, output_dir) def replace_lrb_rrb_file(filepath): tmp_filepath = filepath + '.tmp' with open(filepath, 'r') as input_file, open(tmp_filepath, 'w') as output_file: for line in input_file: output_file.write(line.replace('-lrb-', '(').replace('-rrb-', ')')) os.rename(tmp_filepath, filepath)
access-main
access/resources/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from glob import glob import os from pathlib import Path import shutil import tempfile import numpy as np from access.text import word_tokenize from access.utils.helpers import (yield_lines_in_parallel, write_lines_in_parallel, create_directory_or_skip, lock_directory) from access.preprocess import replace_lrb_rrb, replace_lrb_rrb_file, normalize_quotes from access.resources.utils import download_and_extract, add_newline_at_end_of_file, git_clone from access.resources.paths import (FASTTEXT_EMBEDDINGS_PATH, get_dataset_dir, get_data_filepath, PHASES, MODELS_DIR, BEST_MODEL_DIR) def prepare_wikilarge(): dataset = 'wikilarge' with create_directory_or_skip(get_dataset_dir(dataset)): url = 'https://github.com/louismartin/dress-data/raw/master/data-simplification.tar.bz2' extracted_path = download_and_extract(url)[0] # Only rename files and put them in local directory architecture for phase in PHASES: for (old_language_name, new_language_name) in [('src', 'complex'), ('dst', 'simple')]: old_path_glob = os.path.join(extracted_path, dataset, f'*.ori.{phase}.{old_language_name}') globs = glob(old_path_glob) assert len(globs) == 1 old_path = globs[0] new_path = get_data_filepath(dataset, phase, new_language_name) shutil.copyfile(old_path, new_path) shutil.move(replace_lrb_rrb_file(new_path), new_path) add_newline_at_end_of_file(new_path) return dataset def prepare_turkcorpus_lower(): dataset = 'turkcorpus_lower' with create_directory_or_skip(get_dataset_dir(dataset)): url = 'https://github.com/cocoxu/simplification.git' output_dir = Path(tempfile.mkdtemp()) git_clone(url, output_dir) print(output_dir) print('Processing...') # Only rename files and put them in local directory architecture turkcorpus_lower_dir = output_dir / 'data/turkcorpus' print(turkcorpus_lower_dir) for (old_phase, new_phase) in [('test', 'test'), ('tune', 'valid')]: for (old_language_name, new_language_name) in [('norm', 'complex'), ('simp', 'simple')]: old_path = turkcorpus_lower_dir / f'{old_phase}.8turkers.tok.{old_language_name}' new_path = get_data_filepath('turkcorpus_lower', new_phase, new_language_name) shutil.copyfile(old_path, new_path) add_newline_at_end_of_file(new_path) shutil.move(replace_lrb_rrb_file(new_path), new_path) for i in range(8): old_path = turkcorpus_lower_dir / f'{old_phase}.8turkers.tok.turk.{i}' new_path = get_data_filepath('turkcorpus_lower', new_phase, 'simple.turk', i=i) shutil.copyfile(old_path, new_path) add_newline_at_end_of_file(new_path) shutil.move(replace_lrb_rrb_file(new_path), new_path) print('Done.') return dataset def prepare_turkcorpus(): dataset = 'turkcorpus' with create_directory_or_skip(get_dataset_dir(dataset)): # Import here to avoid circular imports from access.feature_extraction import get_levenshtein_similarity prepare_turkcorpus_lower() url = 'https://github.com/cocoxu/simplification.git' output_dir = Path(tempfile.mkdtemp()) git_clone(url, output_dir) print('Processing...') # Only rename files and put them in local directory architecture turkcorpus_truecased_dir = output_dir / 'data/turkcorpus/truecased' for (old_phase, new_phase) in [('test', 'test'), ('tune', 'valid')]: # (1) read the .tsv for which each line is tab separated: # `idx, complex_sentence, *turk_sentences = line.split('\t')` # (2) replace lrb and rrb, tokenize # (3) Turk sentences are shuffled for each sample so need to realign them with turkcorpus lower tsv_filepath = turkcorpus_truecased_dir / f'{old_phase}.8turkers.organized.tsv' output_complex_filepath = get_data_filepath(dataset, new_phase, 'complex') output_ref_filepaths = [get_data_filepath(dataset, new_phase, 'simple.turk', i) for i in range(8)] # These files will be used to reorder the shuffled ref sentences ordered_ref_filepaths = [ get_data_filepath('turkcorpus_lower', new_phase, 'simple.turk', i) for i in range(8) ] with write_lines_in_parallel([output_complex_filepath] + output_ref_filepaths) as files: input_filepaths = [tsv_filepath] + ordered_ref_filepaths for tsv_line, *ordered_ref_sentences in yield_lines_in_parallel(input_filepaths): sample_id, complex_sentence, *shuffled_ref_sentences = [ word_tokenize(normalize_quotes(replace_lrb_rrb(s))) for s in tsv_line.split('\t') ] reordered_sentences = [] for ordered_ref_sentence in ordered_ref_sentences: # Find the position of the ref_sentence in the shuffled sentences similarities = [ get_levenshtein_similarity(ordered_ref_sentence.replace(' ', ''), shuffled_ref_sentence.lower().replace(' ', '')) for shuffled_ref_sentence in shuffled_ref_sentences ] idx = np.argmax(similarities) # A few sentences have differing punctuation marks assert similarities[idx] > 0.98, \ f'{ordered_ref_sentence} != {shuffled_ref_sentences[idx].lower()} {similarities[idx]:.2f}' reordered_sentences.append(shuffled_ref_sentences.pop(idx)) assert len(shuffled_ref_sentences) == 0 assert len(reordered_sentences) == 8 files.write([complex_sentence] + reordered_sentences) return dataset def prepare_fasttext_embeddings(): FASTTEXT_EMBEDDINGS_PATH.parent.mkdir(parents=True, exist_ok=True) with lock_directory(FASTTEXT_EMBEDDINGS_PATH.parent): if FASTTEXT_EMBEDDINGS_PATH.exists(): return url = 'https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.en.300.vec.gz' extracted_path = download_and_extract(url)[0] shutil.move(extracted_path, FASTTEXT_EMBEDDINGS_PATH) def prepare_models(): MODELS_DIR.mkdir(parents=True, exist_ok=True) if not BEST_MODEL_DIR.exists(): url = 'http://dl.fbaipublicfiles.com/access/best_model.tar.gz' extracted_path = download_and_extract(url)[0] shutil.move(extracted_path, BEST_MODEL_DIR) all_parameters_model_dir = MODELS_DIR / 'all_parameters_model' if not all_parameters_model_dir.exists(): url = 'http://dl.fbaipublicfiles.com/access/all_parameters_model.tar.gz' extracted_path = download_and_extract(url)[0] shutil.move(extracted_path, all_parameters_model_dir) return BEST_MODEL_DIR
access-main
access/resources/prepare.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from collections import defaultdict from functools import lru_cache import shutil from nevergrad.instrumentation import Instrumentation from nevergrad.optimization import optimizerlib import re from access.evaluation.general import evaluate_simplifier_on_turkcorpus from access.evaluation.utils import combine_metrics from access.fairseq.base import (fairseq_preprocess, fairseq_train, fairseq_generate, get_fairseq_exp_dir, ) from access.resources.datasets import has_lines_in_common from access.preprocessors import get_preprocessors, get_preprocessor_by_name from access.resources.datasets import create_preprocessed_dataset from access.resources.paths import get_data_filepath, get_dataset_dir from access.simplifiers import get_fairseq_simplifier, get_preprocessed_simplifier from access.utils.training import (print_method_name, print_args, print_result, print_running_time, ) from access.utils.helpers import get_allowed_kwargs def check_dataset(dataset): # Sanity check with evaluation dataset assert not has_lines_in_common(get_data_filepath(dataset, 'train', 'complex'), get_data_filepath('turkcorpus', 'valid', 'complex')) assert not has_lines_in_common(get_data_filepath(dataset, 'train', 'complex'), get_data_filepath('turkcorpus', 'test', 'complex')) def prepare_exp_dir(): exp_dir = get_fairseq_exp_dir() if exp_dir.exists(): # Remove exp dir to prevent conflicts with requeue and non deterministic args # https://github.com/fairinternal/dfoptim/issues/126 #private shutil.rmtree(exp_dir) exp_dir.mkdir(parents=True) return exp_dir def get_simplifier(exp_dir, preprocessors_kwargs, generate_kwargs): # TODO: Take kwargs as input and separate between get_preprocessors kwargs and generate_kwargs preprocessors = get_preprocessors(preprocessors_kwargs) simplifier = get_fairseq_simplifier(exp_dir, **generate_kwargs) return get_preprocessed_simplifier(simplifier, preprocessors=preprocessors) def find_best_parametrization(exp_dir, metrics_coefs, preprocessors_kwargs, parametrization_budget=64): @lru_cache() def evaluate_parametrization(**instru_kwargs): # Note that we use default generate kwargs instead of provided one because they are faster preprocessors_kwargs = instru_kwargs_to_preprocessors_kwargs(instru_kwargs) simplifier = get_simplifier(exp_dir, preprocessors_kwargs=preprocessors_kwargs, generate_kwargs={}) scores = evaluate_simplifier_on_turkcorpus(simplifier, phase='valid') return combine_metrics(scores['BLEU'], scores['SARI'], scores['FKGL'], metrics_coefs) def preprocessors_kwargs_to_instru_kwargs(preprocessors_kwargs): instru_kwargs = {} for preprocessor_name, preprocessor_kwargs in preprocessors_kwargs.items(): assert '_' not in preprocessor_name preprocessor = get_preprocessor_by_name(preprocessor_name)(**preprocessor_kwargs) # First we set the values from preprocessors_kwargs which are constant for kwarg_name, kwarg_value in preprocessor_kwargs.items(): instru_kwargs[f'{preprocessor_name}_{kwarg_name}'] = kwarg_value # Then we overwrite some of these values with nevergrad variables when necessary for kwarg_name, kwarg_value in preprocessor.get_nevergrad_variables().items(): instru_kwargs[f'{preprocessor_name}_{kwarg_name}'] = kwarg_value return instru_kwargs def instru_kwargs_to_preprocessors_kwargs(instru_kwargs): preprocessors_kwargs = defaultdict(dict) for key, value in instru_kwargs.items(): preprocessor_name, kwarg_name = re.match(r'([a-zA-Z0-9]+)_([a-z0-9_]+)', key).groups() preprocessors_kwargs[preprocessor_name][kwarg_name] = value return dict(preprocessors_kwargs) instru_kwargs = preprocessors_kwargs_to_instru_kwargs(preprocessors_kwargs) instru = Instrumentation(**instru_kwargs) if instru.dimension == 0: return preprocessors_kwargs # No need to search a lot when there is only a few parameters parametrization_budget = min(32**instru.dimension, parametrization_budget) optimizer = optimizerlib.ScrHammersleySearch(instrumentation=instru, budget=parametrization_budget, num_workers=1) recommendation = optimizer.optimize(evaluate_parametrization, verbosity=0) return instru_kwargs_to_preprocessors_kwargs(recommendation.kwargs) def check_and_resolve_args(kwargs): if kwargs.get('diverse_beam_groups_ratio', None) is not None: diverse_beam_groups = max(int(kwargs['beam'] * kwargs['diverse_beam_groups_ratio']), 1) print(f'diverse_beam_groups={diverse_beam_groups}') assert kwargs['beam'] % diverse_beam_groups == 0 kwargs['diverse_beam_groups'] = diverse_beam_groups else: diverse_beam_groups = None return kwargs @print_method_name @print_args @print_result @print_running_time def fairseq_train_and_evaluate(dataset, metrics_coefs=[1, 1, 1], parametrization_budget=64, **kwargs): check_dataset(dataset) kwargs = check_and_resolve_args(kwargs) exp_dir = prepare_exp_dir() preprocessors_kwargs = kwargs.get('preprocessors_kwargs', {}) preprocessors = get_preprocessors(preprocessors_kwargs) if len(preprocessors) > 0: dataset = create_preprocessed_dataset(dataset, preprocessors, n_jobs=1) shutil.copy(get_dataset_dir(dataset) / 'preprocessors.pickle', exp_dir) preprocessed_dir = fairseq_preprocess(dataset) train_kwargs = get_allowed_kwargs(fairseq_train, preprocessed_dir, exp_dir, **kwargs) fairseq_train(preprocessed_dir, exp_dir=exp_dir, **train_kwargs) # Evaluation generate_kwargs = get_allowed_kwargs(fairseq_generate, 'complex_filepath', 'pred_filepath', exp_dir, **kwargs) recommended_preprocessors_kwargs = find_best_parametrization(exp_dir, metrics_coefs, preprocessors_kwargs, parametrization_budget) print(f'recommended_preprocessors_kwargs={recommended_preprocessors_kwargs}') simplifier = get_simplifier(exp_dir, recommended_preprocessors_kwargs, generate_kwargs) scores = evaluate_simplifier_on_turkcorpus(simplifier, phase='valid') print(f'scores={scores}') score = combine_metrics(scores['BLEU'], scores['SARI'], scores['FKGL'], metrics_coefs) return score
access-main
access/fairseq/main.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from collections import defaultdict import os from pathlib import Path import random import re import shutil import tempfile import time from fairseq import options from fairseq_cli import preprocess, train, generate from access.resources.paths import get_dataset_dir, EXP_DIR from access.utils.helpers import (log_stdout, lock_directory, create_directory_or_skip, yield_lines, write_lines) def get_fairseq_exp_dir(job_id=None): if job_id is not None: dir_name = f'slurmjob_{job_id}' else: dir_name = f'local_{int(time.time() * 1000)}' return Path(EXP_DIR) / f'fairseq' / dir_name def fairseq_preprocess(dataset): dataset_dir = get_dataset_dir(dataset) with lock_directory(dataset_dir): preprocessed_dir = dataset_dir / 'fairseq_preprocessed' with create_directory_or_skip(preprocessed_dir): preprocessing_parser = options.get_preprocessing_parser() preprocess_args = preprocessing_parser.parse_args([ '--source-lang', 'complex', '--target-lang', 'simple', '--trainpref', os.path.join(dataset_dir, f'{dataset}.train'), '--validpref', os.path.join(dataset_dir, f'{dataset}.valid'), '--testpref', os.path.join(dataset_dir, f'{dataset}.test'), '--destdir', str(preprocessed_dir), '--output-format', 'raw', ]) preprocess.main(preprocess_args) return preprocessed_dir def fairseq_train( preprocessed_dir, exp_dir, ngpus=None, max_tokens=2000, arch='fconv_iwslt_de_en', pretrained_emb_path=None, embeddings_dim=None, # Transformer (decoder is the same as encoder for now) encoder_embed_dim=512, encoder_layers=6, encoder_attention_heads=8, # encoder_decoder_dim_ratio=1, # share_embeddings=True, max_epoch=50, warmup_updates=None, lr=0.1, min_lr=1e-9, dropout=0.2, label_smoothing=0.1, lr_scheduler='fixed', weight_decay=0.0001, criterion='label_smoothed_cross_entropy', optimizer='nag', validations_before_sari_early_stopping=10, fp16=False): exp_dir = Path(exp_dir) with log_stdout(exp_dir / 'fairseq_train.stdout'): preprocessed_dir = Path(preprocessed_dir) exp_dir.mkdir(exist_ok=True, parents=True) # Copy dictionaries to exp_dir for generation shutil.copy(preprocessed_dir / 'dict.complex.txt', exp_dir) shutil.copy(preprocessed_dir / 'dict.simple.txt', exp_dir) train_parser = options.get_training_parser() # if share_embeddings: # assert encoder_decoder_dim_ratio == 1 args = [ '--task', 'translation', preprocessed_dir, '--raw-text', '--source-lang', 'complex', '--target-lang', 'simple', '--save-dir', os.path.join(exp_dir, 'checkpoints'), '--clip-norm', 0.1, '--criterion', criterion, '--no-epoch-checkpoints', '--save-interval-updates', 5000, # Validate every n updates '--validations-before-sari-early-stopping', validations_before_sari_early_stopping, '--arch', arch, # '--decoder-out-embed-dim', int(embeddings_dim * encoder_decoder_dim_ratio), # Output dim of decoder '--max-tokens', max_tokens, '--max-epoch', max_epoch, '--lr-scheduler', lr_scheduler, '--dropout', dropout, '--lr', lr, '--lr-shrink', 0.5, # For reduce lr on plateau scheduler '--min-lr', min_lr, '--weight-decay', weight_decay, '--optimizer', optimizer, '--label-smoothing', label_smoothing, '--seed', random.randint(1, 1000), # '--force-anneal', '200', # '--distributed-world-size', '1', ] if arch == 'transformer': args.extend([ '--encoder-embed-dim', encoder_embed_dim, '--encoder-ffn-embed-dim', 4 * encoder_embed_dim, '--encoder-layers', encoder_layers, '--encoder-attention-heads', encoder_attention_heads, '--decoder-layers', encoder_layers, '--decoder-attention-heads', encoder_attention_heads, ]) if pretrained_emb_path is not None: args.extend(['--encoder-embed-path', pretrained_emb_path if pretrained_emb_path is not None else '']) args.extend(['--decoder-embed-path', pretrained_emb_path if pretrained_emb_path is not None else '']) if embeddings_dim is not None: args.extend(['--encoder-embed-dim', embeddings_dim]) # Input and output dim of encoder args.extend(['--decoder-embed-dim', embeddings_dim]) # Input dim of decoder if ngpus is not None: args.extend(['--distributed-world-size', ngpus]) # if share_embeddings: # args.append('--share-input-output-embed') if fp16: args.append('--fp16') if warmup_updates is not None: args.extend(['--warmup-updates', warmup_updates]) args = [str(arg) for arg in args] train_args = options.parse_args_and_arch(train_parser, args) train.main(train_args) def _fairseq_generate(complex_filepath, output_pred_filepath, checkpoint_paths, complex_dictionary_path, simple_dictionary_path, beam=5, hypothesis_num=1, lenpen=1., diverse_beam_groups=None, diverse_beam_strength=0.5, sampling=False, batch_size=128): # exp_dir must contain checkpoints/checkpoint_best.pt, and dict.{complex,simple}.txt # First copy input complex file to exp_dir and create dummy simple file tmp_dir = Path(tempfile.mkdtemp()) new_complex_filepath = tmp_dir / 'tmp.complex-simple.complex' dummy_simple_filepath = tmp_dir / 'tmp.complex-simple.simple' shutil.copy(complex_filepath, new_complex_filepath) shutil.copy(complex_filepath, dummy_simple_filepath) shutil.copy(complex_dictionary_path, tmp_dir / 'dict.complex.txt') shutil.copy(simple_dictionary_path, tmp_dir / 'dict.simple.txt') generate_parser = options.get_generation_parser() args = [ tmp_dir, '--path', ':'.join([str(path) for path in checkpoint_paths]), '--beam', beam, '--nbest', hypothesis_num, '--lenpen', lenpen, '--diverse-beam-groups', diverse_beam_groups if diverse_beam_groups is not None else -1, '--diverse-beam-strength', diverse_beam_strength, '--batch-size', batch_size, '--raw-text', '--print-alignment', '--gen-subset', 'tmp', # We don't want to reload pretrained embeddings '--model-overrides', { 'encoder_embed_path': None, 'decoder_embed_path': None }, ] if sampling: args.extend([ '--sampling', '--sampling-topk', 10, ]) args = [str(arg) for arg in args] generate_args = options.parse_args_and_arch(generate_parser, args) out_filepath = tmp_dir / 'generation.out' with log_stdout(out_filepath, mute_stdout=True): # evaluate model in batch mode generate.main(generate_args) # Retrieve translations def parse_all_hypotheses(out_filepath): hypotheses_dict = defaultdict(list) for line in yield_lines(out_filepath): match = re.match(r'^H-(\d+)\t-?\d+\.\d+\t(.*)$', line) if match: sample_id, hypothesis = match.groups() hypotheses_dict[int(sample_id)].append(hypothesis) # Sort in original order return [hypotheses_dict[i] for i in range(len(hypotheses_dict))] all_hypotheses = parse_all_hypotheses(out_filepath) predictions = [hypotheses[hypothesis_num - 1] for hypotheses in all_hypotheses] write_lines(predictions, output_pred_filepath) os.remove(dummy_simple_filepath) os.remove(new_complex_filepath) def fairseq_generate(complex_filepath, output_pred_filepath, exp_dir, beam=1, hypothesis_num=1, lenpen=1., diverse_beam_groups=None, diverse_beam_strength=0.5, sampling=False, batch_size=128): exp_dir = Path(exp_dir) checkpoint_path = exp_dir / 'checkpoints/checkpoint_best.pt' assert checkpoint_path.exists(), f'Generation failed, no checkpoint at {checkpoint_path}' complex_dictionary_path = exp_dir / 'dict.complex.txt' simple_dictionary_path = exp_dir / 'dict.simple.txt' _fairseq_generate(complex_filepath, output_pred_filepath, [checkpoint_path], complex_dictionary_path=complex_dictionary_path, simple_dictionary_path=simple_dictionary_path, beam=beam, hypothesis_num=hypothesis_num, lenpen=lenpen, diverse_beam_groups=diverse_beam_groups, diverse_beam_strength=diverse_beam_strength, sampling=sampling, batch_size=batch_size)
access-main
access/fairseq/base.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from contextlib import contextmanager, AbstractContextManager from fcntl import flock, LOCK_EX, LOCK_UN import inspect import io from itertools import zip_longest from pathlib import Path import shutil import sys import tempfile import numpy as np @contextmanager def open_files(filepaths, mode='r'): files = [] try: files = [Path(filepath).open(mode) for filepath in filepaths] yield files finally: [f.close() for f in files] def yield_lines_in_parallel(filepaths, strip=True, strict=True, n_lines=float('inf')): assert type(filepaths) == list with open_files(filepaths) as files: for i, parallel_lines in enumerate(zip_longest(*files)): if i >= n_lines: break if None in parallel_lines: assert not strict, f'Files don\'t have the same number of lines: {filepaths}, use strict=False' if strip: parallel_lines = [l.rstrip('\n') if l is not None else None for l in parallel_lines] yield parallel_lines class FilesWrapper: '''Write to multiple open files at the same time''' def __init__(self, files, strict=True): self.files = files self.strict = strict # Whether to raise an exception when a line is None def write(self, lines): assert len(lines) == len(self.files) for line, f in zip(lines, self.files): if line is None: assert not self.strict continue f.write(line.rstrip('\n') + '\n') @contextmanager def write_lines_in_parallel(filepaths, strict=True): with open_files(filepaths, 'w') as files: yield FilesWrapper(files, strict=strict) def write_lines(lines, filepath): filepath = Path(filepath) filepath.parent.mkdir(parents=True, exist_ok=True) with filepath.open('w') as f: for line in lines: f.write(line + '\n') def yield_lines(filepath, n_lines=float('inf'), prop=1): if prop < 1: assert n_lines == float('inf') n_lines = int(prop * count_lines(filepath)) with open(filepath, 'r') as f: for i, l in enumerate(f): if i >= n_lines: break yield l.rstrip('\n') def read_lines(filepath, n_lines=float('inf'), prop=1): return list(yield_lines(filepath, n_lines, prop)) def count_lines(filepath): n_lines = 0 with Path(filepath).open() as f: for l in f: n_lines += 1 return n_lines @contextmanager def open_with_lock(filepath, mode): with open(filepath, mode) as f: flock(f, LOCK_EX) yield f flock(f, LOCK_UN) def get_lockfile_path(path): path = Path(path) if path.is_dir(): return path / '.lockfile' if path.is_file(): return path.parent / f'.{path.name}.lockfile' @contextmanager def lock_directory(dir_path): # TODO: Locking a directory should lock all files in that directory # Right now if we lock foo/, someone else can lock foo/bar.txt # TODO: Nested with lock_directory() should not be blocking assert Path(dir_path).exists(), f'Directory does not exists: {dir_path}' lockfile_path = get_lockfile_path(dir_path) with open_with_lock(lockfile_path, 'w'): yield def safe_division(a, b): if b == 0: return 0 return a / b def harmonic_mean(values, coefs=None): if 0 in values: return 0 values = np.array(values) if coefs is None: coefs = np.ones(values.shape) values = np.array(values) coefs = np.array(coefs) return np.sum(coefs) / np.dot(coefs, 1 / values) @contextmanager def mute(mute_stdout=True, mute_stderr=True): save_stdout = sys.stdout save_stderr = sys.stderr if mute_stdout: sys.stdout = io.StringIO() if mute_stderr: sys.stderr = io.StringIO() try: yield finally: sys.stdout = save_stdout sys.stderr = save_stderr @contextmanager def log_stdout(filepath, mute_stdout=False): '''Context manager to write both to stdout and to a file''' class MultipleStreamsWriter: def __init__(self, streams): self.streams = streams def write(self, message): for stream in self.streams: stream.write(message) def flush(self): for stream in self.streams: stream.flush() save_stdout = sys.stdout log_file = open(filepath, 'w') if mute_stdout: sys.stdout = MultipleStreamsWriter([log_file]) # Write to file only else: sys.stdout = MultipleStreamsWriter([save_stdout, log_file]) # Write to both stdout and file try: yield finally: sys.stdout = save_stdout log_file.close() def add_dicts(*dicts): return {k: v for dic in dicts for k, v in dic.items()} def get_default_args(func): signature = inspect.signature(func) return {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty} def get_allowed_kwargs(func, *args, **kwargs): expected_args = inspect.getargspec(func).args allowed_kwargs = expected_args[len(args):] return {k: v for k, v in kwargs.items() if k in allowed_kwargs} class SkipWithBlock(Exception): pass class create_directory_or_skip(AbstractContextManager): '''Context manager for creating a new directory (with rollback and skipping with block if exists) In order to skip the execution of the with block if the dataset already exists, this context manager uses deep magic from https://stackoverflow.com/questions/12594148/skipping-execution-of-with-block ''' def __init__(self, dir_path, overwrite=False): self.dir_path = Path(dir_path) self.overwrite = overwrite def __enter__(self): if self.dir_path.exists(): self.directory_lock = lock_directory(self.dir_path) self.directory_lock.__enter__() files_in_directory = list(self.dir_path.iterdir()) if set(files_in_directory) in [set([]), set([self.dir_path / '.lockfile'])]: # TODO: Quick hack to remove empty directories self.directory_lock.__exit__(None, None, None) print(f'Removing empty directory {self.dir_path}') shutil.rmtree(self.dir_path) else: # Deep magic hack to skip the execution of the code inside the with block # We set the trace to a dummy function sys.settrace(lambda *args, **keys: None) # Get the calling frame (sys._getframe(0) is the current frame) frame = sys._getframe(1) # Set the calling frame's trace to the one that raises the special exception frame.f_trace = self.trace return print(f'Creating {self.dir_path}...') self.dir_path.mkdir(parents=True, exist_ok=True) self.directory_lock = lock_directory(self.dir_path) self.directory_lock.__enter__() def trace(self, frame, event, arg): # This method is called when a new local scope is entered, i.e. right when the code in the with block begins # The exception will therefore be caught by the __exit__() raise SkipWithBlock() def __exit__(self, type, value, traceback): self.directory_lock.__exit__(type, value, traceback) if type is not None: if issubclass(type, SkipWithBlock): return True # Suppress special SkipWithBlock exception if issubclass(type, BaseException): # Rollback print(f'Error: Rolling back creation of directory {self.dir_path}') shutil.rmtree(self.dir_path) return False # Reraise the exception def get_temp_filepath(create=False): temp_filepath = Path(tempfile.mkstemp()[1]) if not create: temp_filepath.unlink() return temp_filepath def get_temp_filepaths(n_filepaths, create=False): return [get_temp_filepath(create=create) for _ in range(n_filepaths)] def delete_files(filepaths): for filepath in filepaths: filepath = Path(filepath) assert filepath.is_file() filepath.unlink()
access-main
access/utils/helpers.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # TODO: Move to utils/training.py from functools import wraps import time def print_method_name(func): '''Decorator to print method name for logging purposes''' @wraps(func) # To preserve the name and path for pickling purposes def wrapped_func(*args, **kwargs): print(f"method_name='{func.__name__}'") return func(*args, **kwargs) return wrapped_func def print_args(func): '''Decorator to print arguments of method for logging purposes''' @wraps(func) # To preserve the name and path for pickling purposes def wrapped_func(*args, **kwargs): print(f'args={args}') print(f'kwargs={kwargs}') return func(*args, **kwargs) return wrapped_func def print_result(func): '''Decorator to print result of method for logging purposes''' @wraps(func) # To preserve the name and path for pickling purposes def wrapped_func(*args, **kwargs): result = func(*args, **kwargs) print(f'result={result}') return result return wrapped_func def print_running_time(func): '''Decorator to print running time of method for logging purposes''' @wraps(func) # To preserve the name and path for pickling purposes def wrapped_func(*args, **kwargs): start_time = time.time() result = func(*args, **kwargs) print(f'running_time={time.time() - start_time}') return result return wrapped_func
access-main
access/utils/training.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from access.utils.helpers import harmonic_mean # Tranforms take a value and cast it to a score between 0 and 1, the higher the better def bleu_transform(bleu): min_bleu = 0 max_bleu = 100 bleu = max(bleu, min_bleu) bleu = min(bleu, max_bleu) return (bleu - min_bleu) / (max_bleu - min_bleu) def sari_transform(sari): min_sari = 0 max_sari = 60 sari = max(sari, min_sari) sari = min(sari, max_sari) return (sari - min_sari) / (max_sari - min_sari) def fkgl_transform(fkgl): min_fkgl = 0 max_fkgl = 20 fkgl = max(fkgl, min_fkgl) fkgl = min(fkgl, max_fkgl) return 1 - (fkgl - min_fkgl) / (max_fkgl - min_fkgl) def combine_metrics(bleu, sari, fkgl, coefs): # Combine into a score between 0 and 1, LOWER the better assert len(coefs) == 3 return 1 - harmonic_mean([bleu_transform(bleu), sari_transform(sari), fkgl_transform(fkgl)], coefs)
access-main
access/evaluation/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from easse.cli import evaluate_system_output from access.preprocess import lowercase_file, to_lrb_rrb_file from access.resources.paths import get_data_filepath from access.utils.helpers import mute, get_temp_filepath '''A simplifier is a method with signature: simplifier(complex_filepath, output_pred_filepath)''' def get_prediction_on_turkcorpus(simplifier, phase): source_filepath = get_data_filepath('turkcorpus', phase, 'complex') pred_filepath = get_temp_filepath() with mute(): simplifier(source_filepath, pred_filepath) return pred_filepath def evaluate_simplifier_on_turkcorpus(simplifier, phase): pred_filepath = get_prediction_on_turkcorpus(simplifier, phase) pred_filepath = lowercase_file(pred_filepath) pred_filepath = to_lrb_rrb_file(pred_filepath) return evaluate_system_output(f'turkcorpus_{phase}_legacy', sys_sents_path=pred_filepath, metrics=['bleu', 'sari_legacy', 'fkgl'], quality_estimation=True)
access-main
access/evaluation/general.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import fileinput from access.preprocessors import get_preprocessors from access.resources.prepare import prepare_models from access.simplifiers import get_fairseq_simplifier, get_preprocessed_simplifier from access.text import word_tokenize from access.utils.helpers import yield_lines, write_lines, get_temp_filepath, mute if __name__ == '__main__': # Usage: python generate.py < my_file.complex # Read from stdin source_filepath = get_temp_filepath() write_lines([word_tokenize(line) for line in fileinput.input()], source_filepath) # Load best model best_model_dir = prepare_models() recommended_preprocessors_kwargs = { 'LengthRatioPreprocessor': {'target_ratio': 0.95}, 'LevenshteinPreprocessor': {'target_ratio': 0.75}, 'WordRankRatioPreprocessor': {'target_ratio': 0.75}, 'SentencePiecePreprocessor': {'vocab_size': 10000}, } preprocessors = get_preprocessors(recommended_preprocessors_kwargs) simplifier = get_fairseq_simplifier(best_model_dir, beam=8) simplifier = get_preprocessed_simplifier(simplifier, preprocessors=preprocessors) # Simplify pred_filepath = get_temp_filepath() with mute(): simplifier(source_filepath, pred_filepath) for line in yield_lines(pred_filepath): print(line)
access-main
scripts/generate.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from access.fairseq.main import fairseq_train_and_evaluate from access.resources.prepare import prepare_wikilarge, prepare_turkcorpus if __name__ == '__main__': print('Training a model from scratch') prepare_wikilarge() prepare_turkcorpus() kwargs = { 'arch': 'transformer', 'warmup_updates': 4000, 'parametrization_budget': 256, 'beam': 8, 'dataset': 'wikilarge', 'dropout': 0.2, 'fp16': False, 'label_smoothing': 0.54, 'lr': 0.00011, 'lr_scheduler': 'fixed', 'max_epoch': 100, 'max_tokens': 5000, 'metrics_coefs': [0, 1, 0], 'optimizer': 'adam', 'preprocessors_kwargs': { 'LengthRatioPreprocessor': { 'target_ratio': 0.8 # Default initial value }, 'LevenshteinPreprocessor': { 'target_ratio': 0.8 # Default initial value }, 'WordRankRatioPreprocessor': { 'target_ratio': 0.8 # Default initial value }, 'DependencyTreeDepthRatioPreprocessor': { 'target_ratio': 0.8 # Default initial value }, 'SentencePiecePreprocessor': { 'vocab_size': 10000 } } } fairseq_train_and_evaluate(**kwargs)
access-main
scripts/train.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from access.evaluation.general import evaluate_simplifier_on_turkcorpus from access.preprocessors import get_preprocessors from access.resources.prepare import prepare_turkcorpus, prepare_models from access.simplifiers import get_fairseq_simplifier, get_preprocessed_simplifier if __name__ == '__main__': print('Evaluating pretrained model') prepare_turkcorpus() best_model_dir = prepare_models() recommended_preprocessors_kwargs = { 'LengthRatioPreprocessor': {'target_ratio': 0.95}, 'LevenshteinPreprocessor': {'target_ratio': 0.75}, 'WordRankRatioPreprocessor': {'target_ratio': 0.75}, 'SentencePiecePreprocessor': {'vocab_size': 10000}, } preprocessors = get_preprocessors(recommended_preprocessors_kwargs) simplifier = get_fairseq_simplifier(best_model_dir, beam=8) simplifier = get_preprocessed_simplifier(simplifier, preprocessors=preprocessors) print(evaluate_simplifier_on_turkcorpus(simplifier, phase='test'))
access-main
scripts/evaluate.py
#!/usr/bin/env python3 # Copyright (c) 2021-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import click from covid19_spread.data.usa import us_recurring @click.group() def cli(): pass REGIONS = {"us": us_recurring.USARRecurring} @cli.command() @click.argument("region", type=click.Choice(REGIONS.keys())) def install(region): mod = REGIONS[region]() mod.install() @cli.command() @click.argument("region", type=click.Choice(REGIONS.keys())) def run(region): mod = REGIONS[region]() mod.refresh() if __name__ == "__main__": cli()
covid19_spread-main
recurring.py
#!/usr/bin/env python3 # Copyright (c) 2021-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import click from covid19_spread.data.usa.convert import main as us_convert, SOURCES as US_SOURCES import os SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__)) @click.group() def cli(): pass @cli.command() @click.option("--metric", default="cases", type=click.Choice(["cases", "deaths"])) @click.option("--with-features", is_flag=True) @click.option("--source", default="nyt", type=click.Choice(US_SOURCES.keys())) @click.option("--resolution", default="county", type=click.Choice(["county", "state"])) def us(metric, with_features, source, resolution): us_convert(metric, with_features, source, resolution) if __name__ == "__main__": cli()
covid19_spread-main
prepare_data.py
#!/usr/bin/env python3 # Copyright (c) 2021-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from setuptools import setup, find_packages setup( name="covid19_spread", version="0.1", py_modules=["covid19_spread"], install_requires=["Click",], packages=find_packages(), entry_points=""" [console_scripts] cv=cv:cli prepare-data=prepare_data:cli recurring=recurring:cli """, )
covid19_spread-main
setup.py
#!/usr/bin/env python3 # Copyright (c) 2021-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import copy import click import importlib import itertools import json import pandas as pd import os import random import shutil import submitit import tempfile import torch as th import re import yaml from argparse import Namespace from datetime import datetime from functools import partial from glob import glob, iglob from typing import Dict, Any, List, Optional from contextlib import nullcontext, ExitStack from covid19_spread import common from covid19_spread import metrics from covid19_spread.lib import cluster from covid19_spread.lib.click_lib import DefaultGroup from covid19_spread.lib.slurm_pool_executor import ( SlurmPoolExecutor, JobStatus, TransactionManager, ) from covid19_spread.lib.slack import post_slack_message from submitit.helpers import RsyncSnapshot from covid19_spread.cross_val import load_config import sqlite3 from ax.service.ax_client import AxClient from ax.exceptions.generation_strategy import MaxParallelismReachedException import time import queue import threading def set_dict(d: Dict[str, Any], keys: List[str], v: Any): """ update a dict using a nested list of keys. Ex: x = {'a': {'b': {'c': 2}}} set_dict(x, ['a', 'b'], 4) == {'a': {'b': 4}} """ if len(keys) > 0: d[keys[0]] = set_dict(d[keys[0]], keys[1:], v) return d else: return v def mk_executor( name: str, folder: str, extra_params: Dict[str, Any], ex=SlurmPoolExecutor, **kwargs ): executor = (ex or submitit.AutoExecutor)(folder=folder, **kwargs) executor.update_parameters( job_name=name, partition=cluster.PARTITION, gpus_per_node=extra_params.get("gpus", 0), cpus_per_task=extra_params.get("cpus", 3), mem=f'{cluster.MEM_GB(extra_params.get("memgb", 20))}GB', array_parallelism=extra_params.get("array_parallelism", 100), time=extra_params.get("timeout", 12 * 60), ) return executor def ensemble(basedirs, cfg, module, prefix, outdir): def _path(x): return os.path.join(basedir, prefix + x) means = [] stds = [] mean_deltas = [] kwargs = {"index_col": "date", "parse_dates": ["date"]} stdfile = "std_closed_form.csv" meanfile = "mean_closed_form.csv" for basedir in basedirs: if os.path.exists(_path(cfg["validation"]["output"])): means.append(pd.read_csv(_path(cfg["validation"]["output"]), **kwargs)) if os.path.exists(_path(stdfile)): stds.append(pd.read_csv(_path(stdfile), **kwargs)) mean_deltas.append(pd.read_csv(_path(meanfile), **kwargs)) if len(stds) > 0: # Average the variance, and take square root std = pd.concat(stds).pow(2).groupby(level=0).mean().pow(0.5) std.to_csv(os.path.join(outdir, prefix + stdfile)) mean_deltas = pd.concat(mean_deltas).groupby(level=0).mean() mean_deltas.to_csv(os.path.join(outdir, prefix + meanfile)) assert len(means) > 0, "All ensemble jobs failed!!!!" mod = importlib.import_module("covid19_spread." + module).CV_CLS() if len(stds) > 0: pred_interval = cfg.get("prediction_interval", {}) piv = mod.run_prediction_interval( os.path.join(outdir, prefix + meanfile), os.path.join(outdir, prefix + stdfile), pred_interval.get("intervals", [0.99, 0.95, 0.8]), ) piv.to_csv(os.path.join(outdir, prefix + "piv.csv"), index=False) mean = pd.concat(means).groupby(level=0).median() outfile = os.path.join(outdir, prefix + cfg["validation"]["output"]) mean.to_csv(outfile, index_label="date") # -- metrics -- metric_args = cfg[module].get("metrics", {}) df_val, json_val = mod.compute_metrics( cfg[module]["data"], outfile, None, metric_args ) df_val.to_csv(os.path.join(outdir, prefix + "metrics.csv")) with open(os.path.join(outdir, prefix + "metrics.json"), "w") as fout: json.dump(json_val, fout) print(df_val) def run_cv( module: str, basedir: str, cfg: Dict[str, Any], prefix="", basedate=None, executor=None, test_run: bool = False, # is this a test or validation run? ): """Runs cross validaiton for one set of hyperaparmeters""" try: basedir = basedir.replace("%j", submitit.JobEnvironment().job_id) except Exception: pass # running locally, basedir is fine... os.makedirs(basedir, exist_ok=True) print(f"CWD = {os.getcwd()}") def _path(path): return os.path.join(basedir, path) log_configs(cfg, module, _path(prefix + f"{module}.yml")) n_models = cfg[module]["train"].get("n_models", 1) if n_models > 1: launcher = map if executor is None else executor.map_array fn = partial( run_cv, module, prefix=prefix, basedate=basedate, executor=executor, test_run=test_run, ) configs = [ set_dict(copy.deepcopy(cfg), [module, "train", "n_models"], 1) for _ in range(n_models) ] basedirs = [os.path.join(basedir, f"job_{i}") for i in range(n_models)] with ExitStack() as stack: if executor is not None: stack.enter_context(executor.set_folder(os.path.join(basedir, "%j"))) jobs = list(launcher(fn, basedirs, configs)) launcher = ( ensemble if executor is None else partial(executor.submit_dependent, jobs, ensemble) ) ensemble_job = launcher(basedirs, cfg, module, prefix, basedir) if executor is not None: # Whatever jobs depend on "this" job, should be extended to the newly created jobs executor.extend_dependencies(jobs + [ensemble_job]) return jobs + [ensemble_job] # setup input/output paths dset = cfg[module]["data"] val_in = _path(prefix + "filtered_" + os.path.basename(dset)) val_test_key = "test" if test_run else "validation" val_out = _path(prefix + cfg[val_test_key]["output"]) cfg[module]["train"]["fdat"] = val_in mod = importlib.import_module("covid19_spread." + module).CV_CLS() # -- store configs to reproduce results -- log_configs(cfg, module, _path(prefix + f"{module}.yml")) ndays = 0 if test_run else cfg[val_test_key]["days"] if basedate is not None: # If we want to train from a particular basedate, then also subtract # out the different in days. Ex: if ground truth contains data up to 5/20/2020 # but the basedate is 5/10/2020, then drop an extra 10 days in addition to validation.days gt = metrics.load_ground_truth(dset) assert gt.index.max() >= basedate ndays += (gt.index.max() - basedate).days filter_validation_days(dset, val_in, ndays) # apply data pre-processing preprocessed = _path(prefix + "preprocessed_" + os.path.basename(dset)) mod.preprocess(val_in, preprocessed, cfg[module].get("preprocess", {})) mod.setup_tensorboard(basedir) # setup logging train_params = Namespace(**cfg[module]["train"]) n_models = getattr(train_params, "n_models", 1) print(f"Training {n_models} models") # -- train -- model = mod.run_train( preprocessed, train_params, _path(prefix + cfg[module]["output"]) ) # -- simulate -- with th.no_grad(): sim_params = cfg[module].get("simulate", {}) # Returns the number of new cases for each day df_forecast_deltas = mod.run_simulate( preprocessed, train_params, model, sim_params=sim_params, days=cfg[val_test_key]["days"], ) df_forecast = common.rebase_forecast_deltas(val_in, df_forecast_deltas) mod.tb_writer.close() print(f"Storing validation in {val_out}") df_forecast.to_csv(val_out, index_label="date") # -- metrics -- metric_args = cfg[module].get("metrics", {}) df_val, json_val = mod.compute_metrics( cfg[module]["data"], val_out, model, metric_args ) df_val.to_csv(_path(prefix + "metrics.csv")) with open(_path(prefix + "metrics.json"), "w") as fout: json.dump(json_val, fout) print(df_val) # -- prediction interval -- if "prediction_interval" in cfg and prefix == "final_model_": try: with th.no_grad(): # FIXME: refactor to use rebase_forecast_deltas gt = metrics.load_ground_truth(val_in) basedate = gt.index.max() prev_day = gt.loc[[basedate]] pred_interval = cfg.get("prediction_interval", {}) df_std, df_mean = mod.run_standard_deviation( preprocessed, train_params, pred_interval.get("nsamples", 100), pred_interval.get("intervals", [0.99, 0.95, 0.8]), prev_day.values.T, model, pred_interval.get("batch_size", 8), closed_form=True, ) df_std.to_csv(_path(f"{prefix}std_closed_form.csv"), index_label="date") df_mean.to_csv( _path(f"{prefix}mean_closed_form.csv"), index_label="date" ) piv = mod.run_prediction_interval( _path(f"{prefix}mean_closed_form.csv"), _path(f"{prefix}std_closed_form.csv"), pred_interval.get("intervals", [0.99, 0.95, 0.8]), ) piv.to_csv(_path(f"{prefix}piv.csv"), index=False) except NotImplementedError: pass # naive... def filter_validation_days(dset: str, val_in: str, validation_days: int): """Filters validation days and writes output to val_in path""" if dset.endswith(".csv"): common.drop_k_days_csv(dset, val_in, validation_days) elif dset.endswith(".h5"): common.drop_k_days(dset, val_in, validation_days) else: raise RuntimeError(f"Unrecognized dataset extension: {dset}") def load_model(model_pth, cv, args): chkpnt = th.load(model_pth) cv.initialize(args) cv.func.load_state_dict(chkpnt) return cv.func def copy_assets(cfg, dir): if isinstance(cfg, dict): return {k: copy_assets(v, dir) for k, v in cfg.items()} elif isinstance(cfg, list): return [copy_assets(x, dir) for x in cfg] elif isinstance(cfg, str) and os.path.exists(cfg): new_pth = os.path.join(dir, "assets", os.path.basename(cfg)) shutil.copy(cfg, new_pth) return new_pth else: return cfg def log_configs(cfg: Dict[str, Any], module: str, path: str): """Logs configs for job for reproducibility""" with open(path, "w") as f: yaml.dump(cfg[module], f) def run_best(config, module, remote, basedir, basedate=None, executor=None): mod = importlib.import_module("covid19_spread." + module).CV_CLS() sweep_config = load_config(os.path.join(basedir, "cfg.yml")) best_runs = mod.model_selection(basedir, config=sweep_config[module], module=module) if remote and executor is None: executor = mk_executor( "model_selection", basedir, config[module].get("resources", {}) ) with open(os.path.join(basedir, "model_selection.json"), "w") as fout: json.dump([x._asdict() for x in best_runs], fout) cfg = copy.deepcopy(config) best_runs_df = pd.DataFrame(best_runs) def run_cv_and_copy_results(tags, module, pth, cfg, prefix): try: jobs = run_cv( module, pth, cfg, prefix=prefix, basedate=basedate, executor=executor, test_run=True, ) def rest(): for tag in tags: shutil.copy( os.path.join(pth, f'final_model_{cfg["validation"]["output"]}'), os.path.join( os.path.dirname(pth), f"forecasts/forecast_{tag}.csv" ), ) if "prediction_interval" in cfg: piv_pth = os.path.join( pth, f'final_model_{cfg["prediction_interval"]["output_std"]}', ) if os.path.exists(piv_pth): shutil.copy( piv_pth, os.path.join( os.path.dirname(pth), f"forecasts/std_{tag}.csv" ), ) if cfg[module]["train"].get("n_models", 1) > 1 and executor is not None: executor.submit_dependent(jobs, rest) else: rest() except Exception as e: msg = f"*Final run failed for {tags}*\nbasedir = {basedir}\nException was: {e}" post_slack_message(channel="#cron_errors", text=msg) raise e for pth, tags in best_runs_df.groupby("pth")["name"].agg(list).items(): os.makedirs(os.path.join(os.path.dirname(pth), "forecasts"), exist_ok=True) name = ",".join(tags) print(f"Starting {name}: {pth}") job_config = load_config(os.path.join(pth, module + ".yml")) if "test" in cfg: job_config["train"]["test_on"] = cfg["test"]["days"] cfg[module] = job_config launcher = run_cv_and_copy_results if remote: launcher = partial(executor.submit, run_cv_and_copy_results) with executor.set_folder(pth) if remote else nullcontext(): launcher(tags, module, pth, cfg, "final_model_") @click.group(cls=DefaultGroup, default_command="cv") def cli(): pass @cli.command() @click.argument("chkpnts", nargs=-1) @click.option("-remote", is_flag=True) @click.option("-nsamples", type=click.INT) @click.option("-batchsize", type=int) @click.option("-closed-form", is_flag=True) def prediction_interval(chkpnts, remote, nsamples, batchsize, closed_form): def f(chkpnt_pth): prefix = "final_model_" if "final_model_" in chkpnt_pth else "" chkpnt = th.load(chkpnt_pth) job_pth = os.path.dirname(chkpnt_pth) cfg_pth = os.path.join(job_pth, "../cfg.yml") if not os.path.exists(cfg_pth): cfg_pth = os.path.join(job_pth, "../../cfg.yml") cfg = load_config(cfg_pth) module = cfg["this_module"] job_config = load_config(os.path.join(job_pth, f"{prefix}{module}.yml")) opt = Namespace(**job_config["train"]) mod = importlib.import_module("covid19_spread." + module).CV_CLS() new_cases, regions, basedate, device = mod.initialize(opt) model = mod.func model.load_state_dict(chkpnt) dset = os.path.join( job_pth, prefix + "preprocessed_" + os.path.basename(job_config["data"]) ) val_in = os.path.join( job_pth, prefix + "filtered_" + os.path.basename(job_config["data"]) ) gt = metrics.load_ground_truth(val_in) prev_day = gt.loc[[pd.to_datetime(basedate)]] pred_interval = cfg.get("prediction_interval", {}) df_std, df_mean = mod.run_standard_deviation( dset, opt, nsamples or pred_interval.get("nsamples", 100), pred_interval.get("intervals", [0.99, 0.95, 0.8]), prev_day.values.T, model, batchsize or pred_interval.get("batch_size", 8), closed_form=closed_form, ) suffix = "_closed_form" if closed_form else "" df_std.to_csv( os.path.join(job_pth, f"{prefix}std{suffix}.csv"), index_label="date" ) df_mean.to_csv( os.path.join(job_pth, f"{prefix}mean{suffix}.csv"), index_label="date" ) pred_intervals = mod.run_prediction_interval( os.path.join(job_pth, f"{prefix}mean{suffix}.csv"), os.path.join(job_pth, f"{prefix}std{suffix}.csv"), pred_interval.get("intervals", [0.99, 0.95, 0.8]), ) pred_intervals.to_csv( os.path.join(job_pth, f"{prefix}piv{suffix}.csv"), index=False ) if remote: now = datetime.now().strftime("%Y_%m_%d_%H_%M_%S") folder = os.path.expanduser(f"~/.covid19/logs/{now}") extra_params = {"gpus": 1, "cpus": 2, "memgb": 20, "timeout": 3600} ex = mk_executor( "prediction_interval", folder, extra_params, ex=submitit.AutoExecutor ) ex.map_array(f, chkpnts) print(folder) else: list(map(f, chkpnts)) @cli.command() @click.argument("sweep_dirs", nargs=-1) @click.argument("module") @click.option("-remote", is_flag=True) @click.option("-basedate", type=click.DateTime(), default=None) def model_selection(sweep_dirs, module, remote, basedate): executor = None for sweep_dir in sweep_dirs: cfg = load_config(os.path.join(sweep_dir, "cfg.yml")) if executor is None: executor = mk_executor( "model_selection", sweep_dir, cfg[module].get("resources", {}) ) match = re.search(r"\d{4}-\d{2}-\d{2}", os.path.basename(sweep_dir)) if basedate is None and match: basedate = pd.to_datetime(match.group(0)) run_best(cfg, module, remote, sweep_dir, basedate, executor=executor) executor.launch(sweep_dir + "/workers", workers=4) @cli.command() @click.argument("config_pth") @click.argument("module") @click.option("-validate-only", type=click.BOOL, default=False) @click.option("-remote", is_flag=True) @click.option("-array-parallelism", type=click.INT, default=20) @click.option("-max-jobs", type=click.INT, default=200) @click.option("-basedir", default=None, help="Path to sweep base directory") @click.option("-basedate", type=click.DateTime(), help="Date to treat as last date") @click.option("-ablation", is_flag=True) def cv( config_pth: str, module: str, validate_only: bool, remote: bool, array_parallelism: int, max_jobs: int, basedir: str, basedate: Optional[datetime] = None, executor=None, ablation=False, ): """ Run cross validation pipeline for a given module. """ # FIXME: This is a hack... in_backfill = executor is not None now = datetime.now().strftime("%Y_%m_%d_%H_%M_%S") user = cluster.USER cfg = load_config(config_pth) region = cfg["region"] cfg["this_module"] = module if basedir is None: if remote: basedir = f"{cluster.FS}/{user}/covid19/forecasts/{region}/{now}" else: basedir = f"/tmp/{user}/covid19/forecasts/{region}/{now}" os.makedirs(basedir, exist_ok=True) if not in_backfill: # Copy any asset files into `basedir/assets` os.makedirs(os.path.join(basedir, "assets")) cfg[module] = copy_assets(cfg[module], basedir) # Copy the dataset into the basedir shutil.copy(cfg[module]["data"], basedir) cfg[module]["data"] = os.path.join(basedir, os.path.basename(cfg[module]["data"])) with open(os.path.join(basedir, "cfg.yml"), "w") as fout: yaml.dump(cfg, fout) # if we are running an ablation, create new time features from ablation field # all list entries in are assumed to be a single ablation # all features in one list entry will be dropped from the full features to # perform the ablation if ablation: feats = [] if not any([len(x) == 0 for x in cfg[module]["train"]["ablation"]]): # Add a baseline ablation that uses all time features by default cfg[module]["train"]["ablation"].append([]) all_feats = set(cfg[module]["train"]["time_features"][0]) for x in cfg[module]["train"]["ablation"]: feats.append(list(all_feats - set(x))) cfg[module]["train"]["time_features"] = feats cfgs = [] sweep_params = [ ([module, "train", k], v) for k, v in cfg[module]["train"].items() if isinstance(v, list) ] sweep_params.extend( [ ([module, "preprocess", k], v) for k, v in cfg[module].get("preprocess", {}).items() if isinstance(v, list) ] ) if len(sweep_params) == 0: cfgs.append(cfg) else: random.seed(0) keys, values = zip(*sweep_params) for vals in itertools.product(*values): clone = copy.deepcopy(cfg) [set_dict(clone, ks, vs) for ks, vs in zip(keys, vals)] cfgs.append(clone) random.shuffle(cfgs) cfgs = cfgs[:max_jobs] print(f"Launching {len(cfgs)} jobs") if remote: extra = cfg[module].get("resources", {}) if executor is None: executor = mk_executor( f"cv_{region}", basedir + "/%j", {**extra, "array_parallelism": array_parallelism}, ) launcher = executor.map_array else: launcher = map basedirs = [os.path.join(basedir, f"job_{i}") for i in range(len(cfgs))] with ExitStack() as stack: if not in_backfill: stack.enter_context( RsyncSnapshot( snapshot_dir=basedir + "/snapshot", exclude=["notebooks/*", "tests/*"], ) ) jobs = list( launcher( partial( run_cv, module, basedate=basedate, executor=executor, test_run=False ), basedirs, cfgs, ) ) # Find the best model and retrain on the full dataset launcher = ( partial( executor.submit_dependent, jobs, run_best, executor=copy.deepcopy(executor), ) if remote else run_best ) if not validate_only: job = launcher(cfg, module, remote, basedir, basedate=basedate) jobs.append(job) if remote: executor.launch(basedir + "/workers", array_parallelism) print(basedir) return basedir, jobs @cli.command() @click.argument("config_pth") @click.argument("module") @click.option("-period", type=int, help="Number of days for sliding window") @click.option( "-start-date", type=click.DateTime(), default="2020-04-01", help="Start date" ) @click.option("-dates", default=None, multiple=True, type=click.DateTime()) @click.option("-validate-only", type=click.BOOL, default=False, is_flag=True) @click.option("-remote", is_flag=True) @click.option("-array-parallelism", type=click.INT, default=20) @click.option("-max-jobs", type=click.INT, default=200) @click.option("-ablation", is_flag=True) @click.pass_context def backfill( ctx: click.Context, config_pth: str, module: str, period: Optional[int] = None, start_date: Optional[datetime.date] = None, dates: Optional[List[datetime.date]] = None, validate_only: bool = False, remote: bool = False, array_parallelism: int = 20, max_jobs: int = 200, ablation: bool = False, ): """ Run the cross validation pipeline over multiple time points. """ config = common.mk_absolute_paths(load_config(config_pth)) # allow to set backfill dates in config (function argument overrides) if not dates and "backfill" in config: dates = list(pd.to_datetime(config["backfill"])) assert ( dates is not None or period is not None ), "Must specify either dates or period" gt = metrics.load_ground_truth(config[module]["data"]) if not dates: assert period is not None dates = pd.date_range( start=start_date, end=gt.index.max(), freq=f"{period}D", closed="left" ) print( "Running backfill for " + ", ".join(map(lambda x: x.strftime("%Y-%m-%d"), dates)) ) # setup experiment environment now = datetime.now().strftime("%Y_%m_%d_%H_%M_%S") experiment_id = f'{config["region"]}/{now}' basedir = f"{cluster.FS}/{cluster.USER}/covid19/forecasts/{experiment_id}" # setup executor extra_params = config[module].get("resources", {}) executor = mk_executor( f'backfill_{config["region"]}', basedir, {**extra_params, "array_parallelism": array_parallelism}, ) print(f"Backfilling in {basedir}") # Copy any asset files into `basedir/assets` os.makedirs(os.path.join(basedir, "assets")) config[module] = copy_assets(config[module], basedir) with RsyncSnapshot( snapshot_dir=basedir + "/snapshot", exclude=["notebooks/*", "tests/*"], ), tempfile.NamedTemporaryFile() as tfile: # Make sure that we use the CFG with absolute paths since we are now inside the snapshot directory with open(tfile.name, "w") as fout: yaml.dump(config, fout) for date in dates: print(f"Running CV for {date.date()}") cv_params = { k: v for k, v in ctx.params.items() if k in {p.name for p in cv.params} } cv_params["config_pth"] = tfile.name with executor.nest(), executor.set_folder( os.path.join(basedir, f"sweep_{date.date()}/%j") ): _, jobs = ctx.invoke( cv, basedir=os.path.join(basedir, f"sweep_{date.date()}"), basedate=date, executor=executor, **cv_params, ) if remote: executor.launch(basedir + "/workers", array_parallelism) @cli.command() @click.argument("paths", nargs=-1) def ensemble_jobs(paths): for path in paths: ms = json.load(open(os.path.join(path, "model_selection.json"))) ms = {x["name"]: x["pth"] for x in ms} jobs = [ x for x in glob(os.path.join(ms["best_mae"], "job_*")) if os.path.isdir(x) ] cfg = load_config(os.path.join(path, "cfg.yml")) cfg["prediction_interval"]["intervals"] = [0.95, 0.8, 0.5] ensemble(jobs, cfg, cfg["this_module"], "final_model_", ms["best_mae"]) @cli.command() @click.argument("sweep_dirs", nargs=-1) def progress(sweep_dirs): for sweep_dir in sweep_dirs: sweep_dir = os.path.realpath(sweep_dir) db_file = next(iglob(os.path.join(sweep_dir, "**/.job.db"), recursive=True)) db_file = os.path.realpath(db_file) conn = sqlite3.connect(db_file) df = pd.read_sql( f"SELECT status, worker_id FROM jobs WHERE id='{db_file}'", conn ) msg = { "sweep_dir": sweep_dir, "success": int((df["status"] == JobStatus.success.value).sum()), "failed": int((df["status"] == JobStatus.failure.value).sum()), "pending": int((df["status"] == JobStatus.pending.value).sum()), "running": int((df["status"] > len(JobStatus)).sum()), } print(json.dumps(msg, indent=4)) @cli.command() @click.argument("sweep_dir") @click.argument("workers", type=click.INT) def add_workers(sweep_dir, workers): DB = os.path.abspath(glob(f"{sweep_dir}/**/.job.db", recursive=True)[0]) cfg = load_config(glob(f"{sweep_dir}/**/cfg.yml", recursive=True)[0]) extra_params = cfg[cfg["this_module"]].get("resources", {}) executor = mk_executor( "add_workers", os.path.dirname(DB), extra_params, db_pth=os.path.realpath(DB) ) executor.launch(f"{sweep_dir}/workers", workers) @cli.command() @click.argument("sweep_dir") @click.option("-workers", type=click.INT) @click.option("-reset-running", is_flag=True, default=False) def repair(sweep_dir, workers=None, reset_running=False): db_file = next(iglob(os.path.join(sweep_dir, "**/.job.db"), recursive=True)) txn_manager = TransactionManager(os.path.realpath(db_file)) cond = "" if reset_running: cond = f" OR status >= {len(JobStatus)}" txn_manager.run( lambda conn: conn.execute( f""" UPDATE jobs SET status={JobStatus.pending} WHERE id='{os.path.realpath(db_file)}' AND (status={JobStatus.failure} {cond}) """ ) ) if workers is not None: cfg = load_config(next(iglob(f"{sweep_dir}/**/cfg.yml", recursive=True))) extra_params = cfg[cfg["this_module"]].get("resources", {}) executor = mk_executor( "repair", sweep_dir, extra_params, db_pth=os.path.realpath(db_file) ) executor.launch(os.path.join(sweep_dir, "workers"), workers or -1) @cli.command() @click.argument("sweep_dir") @click.option( "--type", "-t", type=click.Choice(["failure", "running", "pending", "success"]), required=True, ) def list_jobs(sweep_dir, type): db_file = next(iglob(os.path.join(sweep_dir, "**/.job.db"), recursive=True)) db_file = os.path.realpath(db_file) txn_manager = TransactionManager(db_file) if type == "running": cond = f"status >= {len(JobStatus)}" else: cond = f"status = {getattr(JobStatus, type)}" with txn_manager as cur: cur.execute( f""" SELECT pickle, worker_id FROM jobs WHERE id='{db_file}' AND {cond} """ ) for row in cur: print(row) @cli.command() @click.argument("config_pth") @click.argument("module") @click.argument("basedate", type=click.DateTime()) @click.option("--iters", type=click.INT, default=300) @click.option("--array-parallelism", type=click.INT, default=20) @click.option("--resume") def optimize(config_pth, module, basedate, iters, array_parallelism, resume): cfg = load_config(config_pth) ax_client = AxClient(enforce_sequential_optimization=False) ax_client.create_experiment( name="covid optimize", parameters=cfg[module]["optimize"], objective_name="mae", choose_generation_strategy_kwargs={ "max_parallelism_override": int(array_parallelism / 5) }, minimize=True, ) region = cfg["region"] cfg["this_module"] = module now = datetime.now().strftime("%Y_%m_%d_%H_%M_%S") user = cluster.USER if resume is not None: params_used = list( json.load(open(os.path.join(resume, "best_params.json"))).keys() ) for metrics_pth in glob(os.path.join(resume, "*", "metrics.csv")): mets = pd.read_csv(metrics_pth, index_col="Measure") mae = mets.loc["MAE"].mean() cfg_ = load_config(os.path.join(os.path.dirname(metrics_pth), "bar.yml")) params = {k: cfg_["train"][k] for k in params_used} try: _, idx = ax_client.attach_trial(params) ax_client.complete_trial(idx, {"mae": mae}) except ValueError as e: if "valid value for parameter" in str(e): continue # this trial isn't valid for this grid, skip it... raise e basedir = f"{cluster.FS}/{user}/covid19/forecasts/{region}/{now}" extra = cfg[module].get("resources", {}) executor = mk_executor( f"cv_{region}", basedir + "/%j", {**extra, "array_parallelism": array_parallelism}, ) db_pth = executor.db_pth def optimize_run(q, id, current_cfg): executor = SlurmPoolExecutor(folder=basedir + "/%j", db_pth=db_pth) executor.update_parameters( job_name=f"cv_{region}", partition=cluster.PARTITION, gpus_per_node=extra.get("gpus", 0), cpus_per_task=extra.get("cpus", 3), mem=f'{cluster.MEM_GB(extra.get("memgb", 20))}GB', array_parallelism=extra.get("array_parallelism", 100), time=extra.get("timeout", 12 * 60), ) job = executor.submit( run_cv, module=module, basedir=basedir + "/%j", cfg=current_cfg, basedate=basedate, executor=executor, test_run=True, ) result_pth = os.path.join( os.path.dirname(str(job.paths.result_pickle)), "metrics.csv" ) while not os.path.exists(os.path.join(result_pth)): time.sleep(5) metrics = pd.read_csv(result_pth, index_col="Measure") q.put({"id": id, "parameters": parameters, "mae": metrics.loc["MAE"].mean()}) return {"mae": metrics.loc["MAE"].mean()} q = queue.Queue() waiting_for = 0 launched = False for _ in range(iters): while True: try: parameters, trial_idx = ax_client.get_next_trial() break except MaxParallelismReachedException: if not launched: executor.launch( os.path.join(basedir, "workers"), workers=array_parallelism ) launched = True if waiting_for == 0 and q.qsize() == 0: break item = q.get() ax_client.complete_trial( trial_index=item["id"], raw_data={"mae": item["mae"]} ) best_parameters, values = ax_client.get_best_parameters() trials_df = ax_client.generation_strategy.trials_as_df with open(os.path.join(basedir, "best_params.json"), "w") as fout: print(json.dumps(best_parameters), file=fout) with open(os.path.join(basedir, "ax_state.json"), "w") as fout: print(json.dumps(ax_client.to_json_snapshot()), file=fout) trials_df.to_csv(os.path.join(basedir, "trials.csv"), index=False) current_cfg = copy.deepcopy(cfg) current_cfg[module]["train"] = {**cfg[module]["train"], **parameters} current_cfg[module]["train"] = { k: v[0] if isinstance(v, list) else v for k, v in current_cfg[module]["train"].items() } threading.Thread(target=optimize_run, args=(q, trial_idx, current_cfg)).start() waiting_for += 1 if __name__ == "__main__": cli()
covid19_spread-main
cv.py
#!/usr/bin/env python3 # Copyright (c) 2021-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from covid19_spread.bar import BARCV import yaml from argparse import Namespace import torch as th class TestBatchedInference: def test_batched_inference(self): with th.no_grad(): th.set_default_tensor_type(th.DoubleTensor) th.manual_seed(0) mod = BARCV() cfg = yaml.safe_load(open("cv/us.yml")) opt = Namespace( **{ k: v[0] if isinstance(v, list) else v for k, v in cfg["bar"]["train"].items() } ) opt.fdat = cfg["bar"]["data"] cases, regions, basedate, device = mod.initialize(opt) cases = cases.type(th.get_default_dtype()) tmax = cases.size(-1) # torch.bmm can give small precision differences on the CPU when comparing # batched vs. non-batched inputs. If we do too many simulation iterations, # this error can compound to highly noticiable values. Limit the number of # iterations to a small value. Interestingly, on the GPU it isn't a problem... sim = mod.func.simulate(tmax, cases, 5, deterministic=True) sim_batched = mod.func.simulate( tmax, cases.repeat(2, 1, 1).contiguous(), 5, deterministic=True ) assert (sim - sim_batched[0]).abs().max().item() < 1e-7
covid19_spread-main
tests/test_batched_bar_inference.py
#!/usr/bin/env python3 # Copyright (c) 2021-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import cv import pandas as pd from click.testing import CliRunner import pytest class TestCV: def test_load_config(self): """Checks configs are loaded correctly""" job_config = cv.load_config("cv/us.yml") assert "naive" in job_config assert job_config["region"] == "us" def test_run_cv(self, tmpdir): """Runs cv pipeline using a single set of paramters from cv/us.yml. Run is stored in temporary directory using PyTest Fixture `tmpdir` """ job_config = cv.load_config("cv/us.yml") cv.run_cv("naive", tmpdir, job_config) def test_filter_validation_days(self, tmp_path): """Tests split of validation days using tmp_path fixtures""" data_path = "covid19_spread/data/usa/data_cases.csv" output_path = tmp_path / "val.csv" cv.filter_validation_days(data_path, output_path, 7) original_df = pd.read_csv(data_path, index_col="region") filtered_df = pd.read_csv(output_path, index_col="region") assert (original_df.shape[1] - filtered_df.shape[1]) == 7 @pytest.mark.integration class TestCVIntegration: def test_cv_naive_us(self, tmpdir): """Runs integration test with tmpdir fixture that's cleaned up after tests""" runner = CliRunner() result = runner.invoke(cv.cv, f"cv/us.yml naive -basedir {tmpdir}") assert result.exit_code == 0 def test_cv_naive_basedate(self, tmpdir): """Runs integration test with tmpdir fixture that's cleaned up after tests""" runner = CliRunner() result = runner.invoke( cv.cv, f"cv/us.yml naive -basedir {tmpdir} -basedate 2020-04-01" ) assert result.exit_code == 0
covid19_spread-main
tests/test_cv.py
#!/usr/bin/env python3 # Copyright (c) 2021-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from covid19_spread import load import pandas as pd import pytest DATA_PATH_US_CSV = "covid19_spread/data/usa/data_cases.csv" DATA_PATH_NY_CSV = "covid19_spread/data/usa/data_cases_ny.csv" class TestLoad: @pytest.mark.parametrize("path", [DATA_PATH_US_CSV, DATA_PATH_NY_CSV]) def test_load_cases_by_region(self, path): """Confirms cases loaded are per region""" cases_df = load.load_confirmed_by_region(path) assert cases_df.index.name == "date" assert type(cases_df.index) == pd.core.indexes.datetimes.DatetimeIndex assert (cases_df >= 0).all().all() regions = cases_df.columns suffolk_present = ( "Suffolk County" in regions or "Suffolk County, New York" in regions ) assert suffolk_present @pytest.mark.parametrize("path", [DATA_PATH_US_CSV, DATA_PATH_NY_CSV]) def test_load_confirmed(self, path): df = load.load_confirmed(path, None) assert df.index.name == "date" assert (df >= 0).all() # should only have one column for total cases assert len(df.shape) == 1
covid19_spread-main
tests/test_load.py
#!/usr/bin/env python3 # Copyright (c) 2021-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import pandas as pd from datetime import timedelta def load_ground_truth(path): df = pd.read_csv(path) df = df.rename(columns={"region": "date"}) df.set_index("date", inplace=True) df = df.transpose() df.index = pd.to_datetime(df.index) return df def rmse(pred, gt): return (pred - gt).pow(2).mean(axis=1).pow(1.0 / 2) def mae(pred, gt): return (pred - gt).abs().mean(axis=1) def mape(pred, gt): return ((pred - gt).abs() / gt.clip(1)).mean(axis=1) def max_mae(pred, gt): return (pred - gt).abs().max(axis=1) def compute_metrics(df_true, df_pred, mincount=0, nanfill=False): if isinstance(df_true, str): df_true = load_ground_truth(df_true) if isinstance(df_pred, str): df_pred = pd.read_csv(df_pred, parse_dates=["date"], index_col="date") return _compute_metrics(df_true, df_pred, mincount, nanfill=nanfill) def _compute_metrics(df_true, df_pred, mincount=0, nanfill=False): if nanfill: cols = sorted(set(df_true.columns).difference(set(df_pred.columns))) zeros = pd.DataFrame(np.zeros((len(df_pred), len(cols))), columns=cols) zeros.index = df_pred.index df_pred = pd.concat([df_pred, zeros], axis=1) common_cols = list(set(df_true.columns).intersection(set(df_pred.columns))) df_pred = df_pred[common_cols] df_true = df_true[common_cols] z = len(df_pred) # print(df_pred.round(2)) basedate = df_pred.index.min() pdate = basedate - timedelta(1) diff = df_true.loc[pdate] - df_true.loc[basedate - timedelta(2)] naive = [df_true.loc[pdate] + d * diff for d in range(1, z + 1)] naive = pd.DataFrame(naive) naive.index = df_pred.index ix = df_pred.index.intersection(df_true.index) df_pred = df_pred.loc[ix] naive = naive.loc[ix] gt = df_true.loc[ix] # compute state level MAE state_gt = gt.transpose().groupby(lambda x: x.split(", ")[-1]).sum() state_pred = df_pred.transpose().groupby(lambda x: x.split(", ")[-1]).sum() state_mae = (state_gt.sort_index() - state_pred.sort_index()).abs().mean(axis=0) metrics = pd.DataFrame( [ rmse(df_pred, gt), mae(df_pred, gt), mape(df_pred, gt), rmse(naive, gt), mae(naive, gt), state_mae, max_mae(df_pred, gt), max_mae(naive, gt), ], columns=df_pred.index.to_numpy(), ) metrics["Measure"] = [ "RMSE", "MAE", "MAPE", "RMSE_NAIVE", "MAE_NAIVE", "STATE_MAE", "MAX_MAE", "MAX_NAIVE_MAE", ] metrics.set_index("Measure", inplace=True) if metrics.shape[1] > 0: metrics.loc["MAE_MASE"] = metrics.loc["MAE"] / metrics.loc["MAE_NAIVE"] metrics.loc["RMSE_MASE"] = metrics.loc["RMSE"] / metrics.loc["RMSE_NAIVE"] # Stack predictions onto last ground truth date. # We'll take the diff and compute MAE on the new daily counts stack = pd.concat( [df_true.loc[[df_pred.index.min() - timedelta(days=1)]], df_pred] ) stack_diff = stack.diff().loc[ix] true_diff = df_true.diff().loc[ix] metrics.loc["MAE_DELTAS"] = mae(stack_diff, true_diff) metrics.loc["RMSE_DELTAS"] = rmse(stack_diff, true_diff) return metrics
covid19_spread-main
covid19_spread/metrics.py
#!/usr/bin/env python3 # Copyright (c) 2021-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import pandas as pd from .cross_val import CV from . import load from datetime import timedelta def simulate(latest_count, latest_delta, latest_date, days): """Forecasts 7 days ahead using naive model for a single region: day_n+1 prediction = day_n + day_n * (day_n - day_n-1 confirmed) Args: latest_delta (int): day_n - day_n-1 confirmed latest_count (int): day_n confirmed latest_date (datetime): last date with confirmed cases days (int): number of days to forecast Returns: dataframe of predictions """ forecast = { -1: latest_count, 0: latest_count + latest_delta, } for day in range(1, days): delta = forecast[day - 1] - forecast[day - 2] forecast[day] = forecast[day - 1] + delta # remove latest confirmed from prediction forecast.pop(-1) return forecast_to_dataframe(forecast, latest_date, days) def forecast_to_dataframe(forecast, latest_date, days): """Converts dictionary of forecasts into dataframe with dates. forcast (dict): {0: predicted case count, 1: ...} """ prediction_end_date = latest_date + timedelta(days) dates = pd.date_range(start=latest_date, end=prediction_end_date, closed="right") forecast_list = [forecast[day] for day in range(days)] df = pd.DataFrame.from_dict(zip(dates, forecast_list)) df.columns = ["date", "total cases"] df = df.set_index("date") return df def train(region_cases_df): """Returns latest count, delta, date needed for forecasting""" latest_count = region_cases_df[-1] latest_delta = region_cases_df[-1] - region_cases_df[-2] latest_date = pd.to_datetime(region_cases_df.index.max()) return latest_count, latest_delta, latest_date def naive(data_path="data/usa/data.csv", days=7): """Performs region level naive forecasts""" cases_df = load.load_confirmed_by_region(data_path) regions = cases_df.columns forecasts = [] for region in regions: latest_count, latest_delta, latest_date = train(cases_df[region]) forecast_df = simulate(latest_count, latest_delta, latest_date, days) forecast_df = forecast_df.rename(columns={"total cases": region}) forecasts.append(forecast_df) df = pd.concat(forecasts, axis=1) return df class NaiveCV(CV): def run_train(self, dset, train_params, model_out): """Returns delta between last two days and last confirmed total. Args: dset (str): path for confirmed cases train_params (dict): training parameters model_out (str): path for saving training checkpoints Returns: list of (doubling_times (np.float64), regions (list of str)) """ def run_simulate(self, dset, train_params, model, days, sim_params): """Returns new cases count predictions""" forecast_df = naive(data_path=dset, days=days) cases_df = load.load_confirmed_by_region(dset) new_cases_forecast_df = ( pd.concat([cases_df, forecast_df]) .sort_index() .diff() .loc[forecast_df.index] ) return new_cases_forecast_df CV_CLS = NaiveCV if __name__ == "__main__": print(naive())
covid19_spread-main
covid19_spread/naive.py
#!/usr/bin/env python3 # Copyright (c) 2021-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import pandas as pd from numpy.linalg import norm import os import re from covid19_spread.lib import cluster from subprocess import check_call from covid19_spread import metrics from datetime import timedelta def mk_absolute_paths(cfg): if isinstance(cfg, dict): return {k: mk_absolute_paths(v) for k, v in cfg.items()} elif isinstance(cfg, list): return list(map(mk_absolute_paths, cfg)) else: return ( os.path.realpath(cfg) if isinstance(cfg, str) and os.path.exists(cfg) else cfg ) def rebase_forecast_deltas(val_in, df_forecast_deltas): gt = metrics.load_ground_truth(val_in) # Ground truth for the day before our first forecast prev_day = gt.loc[[df_forecast_deltas.index.min() - timedelta(days=1)]] # Stack the first day ground truth on top of the forecasts common_cols = set(df_forecast_deltas.columns).intersection(set(gt.columns)) stacked = pd.concat([prev_day[common_cols], df_forecast_deltas[common_cols]]) # Cumulative sum to compute total cases for the forecasts df_forecast = stacked.sort_index().cumsum().iloc[1:] return df_forecast def update_repo(repo, no_pull=False): user = cluster.USER match = re.search(r"([^(\/|:)]+)/([^(\/|:)]+)\.git", repo) name = f"{match.group(1)}_{match.group(2)}" data_pth = f"{cluster.FS}/{user}/covid19/data/{name}" if not os.path.exists(data_pth): check_call(["git", "clone", repo, data_pth]) if not no_pull: check_call(["git", "checkout", "master"], cwd=data_pth) check_call(["git", "pull"], cwd=data_pth) return data_pth def drop_k_days_csv(dset, outfile, days): df = pd.read_csv(dset, index_col="region") if days > 0: df = df[sorted(df.columns)[:-days]] df = drop_all_zero_csv(df) df.to_csv(outfile) def drop_all_zero_csv(df): counts = df.sum(axis=1) df = df[counts > 0] return df def smooth_csv(indset: str, outdset: str, days: int): df = pd.read_csv(indset, index_col="region").transpose() incident_cases = df.diff() smooth = np.round(incident_cases.rolling(window=days, min_periods=1).mean()) smooth.iloc[0] = df.iloc[0] smooth.cumsum(0).transpose().to_csv(outdset) smooth = smooth_csv def print_model_stats(mus, beta, S, U, V, A): C = A - np.diag(np.diag(A)) print("beta =", beta) print(f"\nNorms : U = {norm(U).item():.3f}, V = {norm(V):.3f}") print(f"Max Element: U = {np.max(U).item():.3f}, V = {np.max(V):.3f}") print(f"Avg Element: U = {np.mean(U).item():.3f}, V = {np.mean(V):.3f}") print(f"\nSelf: max = {np.max(S):.3f}, avg = {np.mean(S):.3f}") print(f"Cross: max = {np.max(C):.3f}, avg = {np.mean(C):.3f}") def standardize_county_name(county): return ( county.replace(" County", "") .replace(" Parish", "") .replace(" Municipality", "") .replace(" Municipality", "") .replace(" Borough", "") )
covid19_spread-main
covid19_spread/common.py
#!/usr/bin/env python3 # Copyright (c) 2021-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import numpy as np import pandas as pd import warnings from datetime import timedelta import torch as th import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.distributions import NegativeBinomial, Normal, Poisson from . import load from .cross_val import CV from .common import rebase_forecast_deltas import yaml from . import metrics import click import sys from scipy.stats import nbinom, norm from bisect import bisect_left, bisect_right from tqdm import tqdm import timeit from typing import List import os warnings.filterwarnings("ignore", category=UserWarning) class BetaRNN(nn.Module): def __init__(self, M, layers, dim, input_dim, dropout=0.0): # initialize parameters super(BetaRNN, self).__init__() self.h0 = nn.Parameter(th.zeros(layers, M, dim)) self.rnn = nn.RNN(input_dim, dim, layers, dropout=dropout) self.v = nn.Linear(dim, 1, bias=False) self.fpos = th.sigmoid # initialize weights nn.init.xavier_normal_(self.v.weight) for p in self.rnn.parameters(): if p.dim() == 2: nn.init.xavier_normal_(p) def forward(self, x): ht, hn = self.rnn(x, self.h0) beta = self.fpos(self.v(ht)) return beta def __repr__(self): return str(self.rnn) class BetaGRU(BetaRNN): def __init__(self, M, layers, dim, input_dim, dropout=0.0): super().__init__(M, layers, dim, input_dim, dropout) self.rnn = nn.GRU(input_dim, dim, layers, dropout=dropout) self.rnn.reset_parameters() self.h0 = nn.Parameter(th.randn(layers, M, dim)) class BetaLSTM(BetaRNN): def __init__(self, M, layers, dim, input_dim, dropout=0.0): super().__init__(M, layers, dim, input_dim, dropout) self.rnn = nn.LSTM(input_dim, dim, layers, dropout=dropout) self.rnn.reset_parameters() self.h0 = nn.Parameter(th.zeros(layers, M, dim)) self.c0 = nn.Parameter(th.randn(layers, M, dim)) def forward(self, x): ht, (hn, cn) = self.rnn(x, (self.h0, self.c0)) beta = self.fpos(self.v(ht)) return beta class BetaLatent(nn.Module): def __init__(self, fbeta, regions, tmax, time_features): """ Params ====== - regions: names of regions (list) - dim: dimensionality of hidden vector (int) - layer: number of RNN layers (int) - tmax: maximum observation time (float) - time_features: tensor of temporal features (time x region x features) """ super(BetaLatent, self).__init__() self.M = len(regions) self.tmax = tmax self.time_features = time_features input_dim = 0 if time_features is not None: input_dim += time_features.size(2) self.fbeta = fbeta(self.M, input_dim) def forward(self, t, ys): x = [] if self.time_features is not None: if self.time_features.size(0) > t.size(0): f = self.time_features.narrow(0, 0, t.size(0)) else: f = th.zeros( t.size(0), self.M, self.time_features.size(2), device=t.device ) f.copy_(self.time_features.narrow(0, -1, 1)) f.narrow(0, 0, self.time_features.size(0)).copy_(self.time_features) x.append(f) x = th.cat(x, dim=2) beta = self.fbeta(x) return beta.squeeze().t() def apply(self, x): ht, hn = self.rnn(x, self.h0) return self.fpos(self.v(ht)) def __repr__(self): return str(self.fbeta) class BAR(nn.Module): def __init__( self, regions, beta, window, dist, graph, features, self_correlation=True, cross_correlation=True, offset=None, ): super(BAR, self).__init__() self.regions = regions self.M = len(regions) self.beta = beta self.features = features self.self_correlation = self_correlation self.cross_correlation = cross_correlation self.window = window self.z = nn.Parameter(th.ones((self.M, 7)).fill_(1)) self._alphas = nn.Parameter(th.zeros((self.M, self.M)).fill_(-3)) self.nu = nn.Parameter(th.ones((self.M, 1)).fill_(8)) self.scale = nn.Parameter(th.ones((self.M, 1))) self._dist = dist self.graph = graph self.offset = offset self.neighbors = self.M self.adjdrop = nn.Dropout2d(0.1) if graph is not None: assert graph.size(0) == self.M, graph.size() assert graph.size(1) == self.M, graph.size() self.neighbors = graph.sum(axis=1) if features is not None: self.w_feat = nn.Linear(features.size(1), 1) nn.init.xavier_normal_(self.w_feat.weight) def dist(self, scores): if self._dist == "poisson": return Poisson(scores) elif self._dist == "nb": return NegativeBinomial(scores, logits=self.nu) elif self._dist == "normal": return Normal(scores, th.exp(self.nu)) else: raise RuntimeError("Unknown loss") def alphas(self): alphas = self._alphas if self.self_correlation: with th.no_grad(): alphas.fill_diagonal_(-1e10) return alphas def metapopulation_weights(self): alphas = self.alphas() W = th.sigmoid(alphas) W = W.squeeze(0).squeeze(-1).t() if self.graph is not None: W = W * self.graph return W def score(self, t, ys): assert t.size(-1) == ys.size(-1), (t.size(), ys.size()) length = ys.size(-1) - self.window + 1 # beta evolution beta = self.beta(t, ys) Z = th.zeros(0).sum() if self.self_correlation: ws = F.softplus(self.z) ws = ws.expand(self.M, self.z.size(1)) # self-correlation Z = F.conv1d( F.pad(ys.unsqueeze(0) if ys.ndim == 2 else ys, (self.z.size(1) - 1, 0)), ws.unsqueeze(1), groups=self.M, ) Z = Z.squeeze(0) Z = Z.div(float(self.z.size(1))) # cross-correlation Ys = th.zeros(0).sum(0) W = th.zeros(1, 1) if self.cross_correlation: W = self.metapopulation_weights() Ys = th.stack( [ F.pad(ys.narrow(-1, i, length), (self.window - 1, 0)) for i in range(self.window) ] ) orig_shape = Ys.shape Ys = Ys.view(-1, Ys.size(-2), Ys.size(-1)) if Ys.ndim == 4 else Ys Ys = ( th.bmm(W.unsqueeze(0).expand(Ys.size(0), self.M, self.M), Ys) .view(orig_shape) .mean(dim=0) ) with th.no_grad(): self.train_stats = (Z.mean().item(), Ys.mean().item()) if self.features is not None: Ys = Ys + F.softplus(self.w_feat(self.features)) Ys = beta * (Z + Ys) / self.neighbors return Ys, beta, W def simulate(self, tobs, ys, days, deterministic=True, return_stds=False): preds = ys.clone() self.eval() assert tobs == preds.size(-1), (tobs, preds.size()) stds = [] for d in range(days): t = th.arange(tobs + d, device=ys.device) + 1 s, _, _ = self.score(t, preds) assert (s >= 0).all(), s.squeeze() if deterministic: y = self.dist(s).mean else: y = self.dist(s).sample() assert (y >= 0).all(), y.squeeze() y = y.narrow(-1, -1, 1).clamp(min=1e-8) preds = th.cat([preds, y], dim=-1) stds.append(self.dist(s).stddev) preds = preds.narrow(-1, -days, days) self.train() if return_stds: return preds, stds return preds def __repr__(self): return f"bAR({self.window}) | {self.beta} | EX ({self.train_stats[0]:.1e}, {self.train_stats[1]:.1e})" def train(model, new_cases, regions, optimizer, checkpoint, args): print(args) days_ahead = getattr(args, "days_ahead", 1) M = len(regions) device = new_cases.device tmax = new_cases.size(1) t = th.arange(tmax, device=device) + 1 size_pred = tmax - days_ahead reg = th.tensor([0.0], device=device) target = new_cases.narrow(1, days_ahead, size_pred) start_time = timeit.default_timer() for itr in range(1, args.niters + 1): optimizer.zero_grad() scores, beta, W = model.score(t, new_cases) scores = scores.clamp(min=1e-8) assert scores.dim() == 2, scores.size() assert scores.size(1) == size_pred + 1 assert beta.size(0) == M # compute loss dist = model.dist(scores.narrow(1, days_ahead - 1, size_pred)) _loss = dist.log_prob(target) loss = -_loss.sum(axis=1).mean() stddev = model.dist(scores).stddev.mean() # loss += stddev * args.weight_decay # temporal smoothness if args.temporal > 0: reg = ( args.temporal * th.pow(beta[:, 1:] - beta[:, :-1], 2).sum(axis=1).mean() ) # back prop (loss + reg).backward() # do AdamW-like update for Granger regularization if args.granger > 0: with th.no_grad(): mu = np.log(args.granger / (1 - args.granger)) y = args.granger n = th.numel(model._alphas) ex = th.exp(-model._alphas) model._alphas.fill_diagonal_(mu) de = 2 * (model._alphas.sigmoid().mean() - y) * ex nu = n * (ex + 1) ** 2 _grad = de / nu _grad.fill_diagonal_(0) r = args.lr * args.eta * n model._alphas.copy_(model._alphas - r * _grad) # make sure we have no NaNs assert loss == loss, (loss, scores, _loss) nn.utils.clip_grad_norm_(model.parameters(), 5) # take gradient step optimizer.step() # control if itr % 500 == 0: time = timeit.default_timer() - start_time with th.no_grad(), np.printoptions(precision=3, suppress=True): length = scores.size(1) - 1 maes = th.abs(dist.mean - new_cases.narrow(1, 1, length)) z = model.z nu = th.sigmoid(model.nu) means = model.dist(scores).mean W_spread = (W * (1 - W)).mean() _err = W.mean() - args.granger print( f"[{itr:04d}] Loss {loss.item():.2f} | " f"Temporal {reg.item():.5f} | " f"MAE {maes.mean():.2f} | " f"{model} | " f"{args.loss} ({means[:, -1].min().item():.2f}, {means[:, -1].max().item():.2f}) | " f"z ({z.min().item():.2f}, {z.mean().item():.2f}, {z.max().item():.2f}) | " f"W ({W.min().item():.2f}, {W.mean().item():.2f}, {W.max().item():.2f}) | " f"W_spread {W_spread:.2f} | mu_err {_err:.3f} | " f"nu ({nu.min().item():.2f}, {nu.mean().item():.2f}, {nu.max().item():.2f}) | " f"nb_stddev ({stddev.data.mean().item():.2f}) | " f"scale ({th.exp(model.scale).mean():.2f}) | " f"time = {time:.2f}s" ) th.save(model.state_dict(), checkpoint) start_time = timeit.default_timer() print(f"Train MAE,{maes.mean():.2f}") return model def _get_arg(args, v, device, regions): if hasattr(args, v): print(getattr(args, v)) fs = [] for _file in getattr(args, v): d = th.load(_file) _fs = th.cat([d[r].unsqueeze(0) for r in regions], dim=0) fs.append(_fs) return th.cat(fs, dim=1).float().to(device) else: return None def _get_dict(args, v, device, regions): if hasattr(args, v): _feats = [] for _file in getattr(args, v): print(f"Loading {_file}") d = th.load(_file) feats = None for i, r in enumerate(regions): if r not in d: continue _f = d[r] if feats is None: feats = th.zeros(len(regions), d[r].size(0), _f.size(1)) feats[i, :, : _f.size(1)] = _f _feats.append(feats.to(device).float()) return th.cat(_feats, dim=2) else: return None class BARCV(CV): def initialize(self, args): device = th.device( "cuda" if th.cuda.is_available() and getattr(args, "cuda", True) else "cpu" ) cases, regions, basedate = load.load_confirmed_csv(args.fdat) assert (cases == cases).all(), th.where(cases != cases) # Cumulative max across time cases = np.maximum.accumulate(cases, axis=1) new_cases = th.zeros_like(cases) new_cases.narrow(1, 1, cases.size(1) - 1).copy_(cases[:, 1:] - cases[:, :-1]) assert (new_cases >= 0).all(), new_cases[th.where(new_cases < 0)] new_cases = new_cases.float().to(device)[:, args.t0 :] print("Number of Regions =", new_cases.size(0)) print("Timeseries length =", new_cases.size(1)) print( "Increase: max all = {}, max last = {}, min last = {}".format( new_cases.max().item(), new_cases[:, -1].max().item(), new_cases[:, -1].min().item(), ) ) tmax = new_cases.size(1) + 1 # adjust max window size to available data args.window = min(args.window, new_cases.size(1) - 4) # setup optional features graph = ( th.load(args.graph).to(device).float() if hasattr(args, "graph") else None ) features = _get_arg(args, "features", device, regions) time_features = _get_dict(args, "time_features", device, regions) if time_features is not None: time_features = time_features.transpose(0, 1) time_features = time_features.narrow(0, args.t0, new_cases.size(1)) print("Feature size = {} x {} x {}".format(*time_features.size())) print(time_features.min(), time_features.max()) self.weight_decay = 0 # setup beta function if args.decay.startswith("latent"): dim, layers = args.decay[6:].split("_") fbeta = lambda M, input_dim: BetaRNN( M, int(layers), int(dim), input_dim, dropout=getattr(args, "dropout", 0.0), ) beta_net = BetaLatent(fbeta, regions, tmax, time_features) self.weight_decay = args.weight_decay elif args.decay.startswith("lstm"): dim, layers = args.decay[len("lstm") :].split("_") fbeta = lambda M, input_dim: BetaLSTM( M, int(layers), int(dim), input_dim, dropout=getattr(args, "dropout", 0.0), ) beta_net = BetaLatent(fbeta, regions, tmax, time_features) self.weight_decay = args.weight_decay elif args.decay.startswith("gru"): dim, layers = args.decay[len("gru") :].split("_") fbeta = lambda M, input_dim: BetaGRU( M, int(layers), int(dim), input_dim, dropout=getattr(args, "dropout", 0.0), ) beta_net = BetaLatent(fbeta, regions, tmax, time_features) self.weight_decay = args.weight_decay else: raise ValueError("Unknown beta function") self.func = BAR( regions, beta_net, args.window, args.loss, graph, features, self_correlation=getattr(args, "self_correlation", True), cross_correlation=not getattr(args, "no_cross_correlation", False), offset=cases[:, 0].unsqueeze(1).to(device).float(), ).to(device) return new_cases, regions, basedate, device def run_train(self, dset, args, checkpoint): args.fdat = dset new_cases, regions, _, device = self.initialize(args) params = [] exclude = { "z", "nu", "_alphas", "_alpha_weights", "beta.fbeta.h0", "beta.fbeta.c0", "beta.fbeta.conv.weight", "beta.fbeta.conv.bias", "scale", } for name, p in dict(self.func.named_parameters()).items(): wd = 0 if name in exclude else args.weight_decay if wd != 0: print(f"Regularizing {name} = {wd}") params.append({"params": p, "weight_decay": wd}) optimizer = optim.AdamW(params, lr=args.lr, betas=[args.momentum, 0.999]) model = train(self.func, new_cases, regions, optimizer, checkpoint, args) return model def run_prediction_interval( self, means_pth: str, stds_pth: str, intervals: List[float], ): means = pd.read_csv(means_pth, index_col="date", parse_dates=["date"]) stds = pd.read_csv(stds_pth, index_col="date", parse_dates=["date"]) means_t = means.values stds_t = stds.values multipliers = np.array([norm.ppf(1 - (1 - x) / 2) for x in intervals]) result = np.empty((means_t.shape[0], means_t.shape[1], len(intervals), 3)) lower = means_t[:, :, None] - multipliers.reshape(1, 1, -1) * stds_t[:, :, None] upper = means_t[:, :, None] + multipliers.reshape(1, 1, -1) * stds_t[:, :, None] result = np.stack( [np.clip(lower, a_min=0, a_max=None), upper, np.ones(lower.shape)], axis=-1, ) cols = pd.MultiIndex.from_product( [means.columns, intervals, ["lower", "upper", "fallback"]] ) result_df = pd.DataFrame(result.reshape(result.shape[0], -1), columns=cols) result_df["date"] = means.index melted = result_df.melt( id_vars=["date"], var_name=["location", "interval", "lower/upper"] ) pivot = melted.pivot( index=["date", "location", "interval"], columns="lower/upper", values="value", ).reset_index() return pivot.merge( means.reset_index().melt( id_vars=["date"], var_name="location", value_name="mean" ), on=["date", "location"], ).merge( stds.reset_index().melt( id_vars=["date"], var_name="location", value_name="std" ), on=["date", "location"], ) CV_CLS = BARCV @click.group() def cli(): pass @cli.command() @click.argument("pth") def simulate(pth): chkpnt = th.load(pth) mod = BARCV() prefix = "" if "final_model" in pth: prefix = "final_model_" cfg = yaml.safe_load(open(f"{os.path.dirname(pth)}/{prefix}bar.yml")) args = argparse.Namespace(**cfg["train"]) new_cases, regions, basedate, device = mod.initialize(args) mod.func.load_state_dict(chkpnt) res = mod.func.simulate(new_cases.size(1), new_cases, args.test_on) df = pd.DataFrame(res.cpu().data.numpy().transpose(), columns=regions) df.index = pd.date_range( start=pd.to_datetime(basedate) + timedelta(days=1), periods=len(df) ) df = rebase_forecast_deltas(cfg["data"], df) gt = pd.read_csv(cfg["data"], index_col="region").transpose() gt.index = pd.to_datetime(gt.index) print(metrics._compute_metrics(gt, df, nanfill=True)) def main(args): parser = argparse.ArgumentParser("beta-AR") parser.add_argument("-fdat", help="Path to confirmed cases", required=True) parser.add_argument("-lr", type=float, default=5e-2) parser.add_argument("-weight-decay", type=float, default=0) parser.add_argument("-niters", type=int, default=2000) parser.add_argument("-amsgrad", default=False, action="store_true") parser.add_argument("-loss", default="lsq", choices=["nb", "poisson"]) parser.add_argument("-decay", default="exp") parser.add_argument("-t0", default=10, type=int) parser.add_argument("-fit-on", default=5, type=int) parser.add_argument("-test-on", default=5, type=int) parser.add_argument("-checkpoint", type=str, default="/tmp/bar_model.bin") parser.add_argument("-window", type=int, default=25) parser.add_argument("-momentum", type=float, default=0.99) args = parser.parse_args() mod = BARCV() model = mod.run_train(args.fdat, args, args.checkpoint) with th.no_grad(): forecast = mod.run_simulate(args, model) if __name__ == "__main__": if len(sys.argv) > 1 and sys.argv[1] in cli.commands: cli() else: main(sys.argv[1:])
covid19_spread-main
covid19_spread/bar.py
#!/usr/bin/env python3 # Copyright (c) 2021-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import pandas as pd import torch as th import yaml from pathlib import Path import json import os def load_confirmed_csv(path): df = pd.read_csv(path) df.set_index("region", inplace=True) basedate = df.columns[-1] nodes = df.index.to_numpy() cases = df.to_numpy() return th.from_numpy(cases), nodes, basedate def load_confirmed(path, regions): """Returns dataframe of total confirmed cases""" df = load_confirmed_by_region(path, regions=regions) return df.sum(axis=1) def load_confirmed_by_region(path, regions=None, filter_unknown=True): """Loads csv file for confirmed cases by region""" df = pd.read_csv(path, index_col=0, header=None) # transpose so dates are along rows to match h5 df = df.T # set date as index df = df.rename(columns={"region": "date"}) df = df.set_index("date") df.index = pd.to_datetime(df.index) df = df.astype(float) if regions is not None: df = df[regions] if filter_unknown: df = df.loc[:, df.columns != "Unknown"] return df def load_backfill( jobdir, model=None, indicator="model_selection.json", forecast="best_mae", ): """collect all forcasts from job dir""" forecasts = {} configs = [] for path in Path(jobdir).rglob(indicator): date = str(path).split("/")[-2] assert date.startswith("sweep_"), str(path) jobs = [m["pth"] for m in json.load(open(path)) if m["name"] == forecast] assert len(jobs) == 1, jobs job = jobs[0] date = date[6:] forecasts[date] = os.path.join(job, "final_model_validation.csv") cfg = yaml.safe_load(open(os.path.join(job, "../cfg.yml"))) cfg = yaml.safe_load( open(os.path.join(job, f"{model or cfg['this_module']}.yml")) ) cfg = cfg["train"] cfg["date"] = date cfg["job"] = job configs.append(cfg) configs = pd.DataFrame(configs) configs.set_index("date", inplace=True) return forecasts, configs
covid19_spread-main
covid19_spread/load.py
#!/usr/bin/env python3 # Copyright (c) 2021-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, Any, List, Tuple import pandas as pd from datetime import timedelta import torch as th from tqdm import tqdm import numpy as np from .common import mk_absolute_paths import yaml from tensorboardX import SummaryWriter from collections import namedtuple, defaultdict from itertools import count from . import common, metrics import os from glob import glob import shutil import json BestRun = namedtuple("BestRun", ("pth", "name")) def load_config(cfg_pth: str) -> Dict[str, Any]: return mk_absolute_paths(yaml.load(open(cfg_pth), Loader=yaml.FullLoader)) class CV: def run_simulate( self, dset: str, args: Dict[str, Any], model: Any, days: int, sim_params: Dict[str, Any], ) -> pd.DataFrame: """ Run a simulation given a trained model. This should return a pandas DataFrame with each column corresponding to a location and each row corresponding to a date. The value of each cell is the forecasted cases per day (*not* cumulative cases) """ args.fdat = dset if model is None: raise NotImplementedError cases, regions, basedate, device = self.initialize(args) tmax = cases.size(1) test_preds = model.simulate(tmax, cases, days, **sim_params) test_preds = test_preds.cpu().numpy() df = pd.DataFrame(test_preds.T, columns=regions) if basedate is not None: base = pd.to_datetime(basedate) ds = [base + timedelta(i) for i in range(1, days + 1)] df["date"] = ds df.set_index("date", inplace=True) return df def run_standard_deviation( self, dset, args, nsamples, intervals, orig_cases, model=None, batch_size=1, closed_form=False, ): with th.no_grad(): args.fdat = dset if model is None: raise NotImplementedError cases, regions, basedate, device = self.initialize(args) tmax = cases.size(1) base = pd.to_datetime(basedate) def mk_df(arr): df = pd.DataFrame(arr, columns=regions) df.index = pd.date_range(base + timedelta(days=1), periods=args.test_on) return df if closed_form: preds, stds = model.simulate( tmax, cases, args.test_on, deterministic=True, return_stds=True ) stds = th.cat([x.narrow(-1, -1, 1) for x in stds], dim=-1) return mk_df(stds.cpu().numpy().T), mk_df(preds.cpu().numpy().T) samples = [] if batch_size > 1: cases = cases.repeat(batch_size, 1, 1) nsamples = nsamples // batch_size for i in tqdm(range(nsamples)): test_preds = model.simulate(tmax, cases, args.test_on, False) test_preds = test_preds.cpu().numpy() samples.append(test_preds) samples = ( np.stack(samples, axis=0) if batch_size <= 1 else np.concatenate(samples, axis=0) ) return mk_df(np.std(samples, axis=0).T), mk_df(np.mean(samples, axis=0).T) def run_train(self, dset, model_params, model_out): """ Train a model """ ... def preprocess(self, dset: str, preprocessed: str, preprocess_args: Dict[str, Any]): """ Perform any kind of model specific pre-processing. """ if "smooth" in preprocess_args: common.smooth(dset, preprocessed, preprocess_args["smooth"]) else: shutil.copy(dset, preprocessed) def metric_df(self, basedir): runs = [] for metrics_pth in glob(os.path.join(basedir, "*/metrics.csv")): metrics = pd.read_csv(metrics_pth, index_col="Measure") runs.append( { "pth": os.path.dirname(metrics_pth), "mae": metrics.loc["MAE"][-1], "rmse": metrics.loc["RMSE"][-1], "mae_deltas": metrics.loc["MAE_DELTAS"].mean(), "rmse_deltas": metrics.loc["RMSE_DELTAS"].mean(), "state_mae": metrics.loc["STATE_MAE"][-1], } ) return pd.DataFrame(runs) def model_selection(self, basedir: str, config, module) -> List[BestRun]: """ Evaluate a sweep returning a list of models to retrain on the full dataset. """ df = self.metric_df(basedir) if "ablation" in config["train"]: ablation_map = defaultdict(count().__next__) ablations = [] for _, row in df.iterrows(): job_cfg = load_config(os.path.join(row.pth, f"{module}.yml")) if ( job_cfg["train"]["ablation"] is not None and len(job_cfg["train"]["ablation"]) > 0 ): ablation = ",".join( os.path.basename(x) for x in job_cfg["train"]["ablation"] ) else: ablation = "null" ablations.append(ablation) ablation_map[ablation] ablation_map = {k: f"ablation_{v}" for k, v in ablation_map.items()} rev_map = {v: k for k, v in ablation_map.items()} df["ablation"] = [ablation_map[x] for x in ablations] with open(os.path.join(basedir, "ablation_map.json"), "w") as fout: print(json.dumps(rev_map), file=fout) best_runs = [] for key in ["mae", "rmse", "mae_deltas", "rmse_deltas"]: best = df.loc[df.groupby("ablation")[key].idxmin()] best_runs.extend( [ BestRun(x.pth, f"best_{key}_{x.ablation}") for _, x in best.iterrows() ] ) return best_runs return [ BestRun(df.sort_values(by="mae").iloc[0].pth, "best_mae"), BestRun(df.sort_values(by="rmse").iloc[0].pth, "best_rmse"), BestRun(df.sort_values(by="mae_deltas").iloc[0].pth, "best_mae_deltas"), BestRun(df.sort_values(by="rmse_deltas").iloc[0].pth, "best_rmse_deltas"), BestRun(df.sort_values(by="state_mae").iloc[0].pth, "best_state_mae"), ] def compute_metrics( self, gt: str, forecast: str, model: Any, metric_args: Dict[str, Any] ) -> Tuple[pd.DataFrame, Dict[str, Any]]: return metrics.compute_metrics(gt, forecast).round(2), {} def setup_tensorboard(self, basedir): """ Setup dir and writer for tensorboard logging """ self.tb_writer = SummaryWriter(logdir=basedir) def run_prediction_interval( self, means_pth: str, stds_pth: str, intervals: List[float] ): ...
covid19_spread-main
covid19_spread/cross_val.py
#!/usr/bin/env python3 # Copyright (c) 2021-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import click class DefaultGroup(click.Group): ignore_unknown_options = True def __init__(self, *args, **kwargs): default_command = kwargs.pop("default_command", None) super(DefaultGroup, self).__init__(*args, **kwargs) self.default_cmd_name = None if default_command is not None: self.set_default_command(default_command) def set_default_command(self, command): if isinstance(command, str): cmd_name = command else: cmd_name = command.name self.add_command(command) self.default_cmd_name = cmd_name def parse_args(self, ctx, args): if not args and self.default_cmd_name is not None: args.insert(0, self.default_cmd_name) return super(DefaultGroup, self).parse_args(ctx, args) def get_command(self, ctx, cmd_name): if cmd_name not in self.commands and self.default_cmd_name is not None: ctx.args0 = cmd_name cmd_name = self.default_cmd_name return super(DefaultGroup, self).get_command(ctx, cmd_name) def resolve_command(self, ctx, args): cmd_name, cmd, args = super(DefaultGroup, self).resolve_command(ctx, args) args0 = getattr(ctx, "args0", None) if args0 is not None: args.insert(0, args0) return cmd_name, cmd, args class OptionNArgs(click.Option): def __init__(self, *args, **kwargs): self.save_other_options = kwargs.pop("save_other_options", True) nargs = kwargs.pop("nargs", -1) assert nargs == -1, "nargs, if set, must be -1 not {}".format(nargs) super(OptionNArgs, self).__init__(*args, **kwargs) self._previous_parser_process = None self._eat_all_parser = None def add_to_parser(self, parser, ctx): def parser_process(value, state): # method to hook to the parser.process done = False value = [value] if self.save_other_options: # grab everything up to the next option while state.rargs and not done: for prefix in self._eat_all_parser.prefixes: if state.rargs[0].startswith(prefix): done = True if not done: value.append(state.rargs.pop(0)) else: # grab everything remaining value += state.rargs state.rargs[:] = [] value = tuple(value) # call the actual process self._previous_parser_process(value, state) retval = super(OptionNArgs, self).add_to_parser(parser, ctx) for name in self.opts: our_parser = parser._long_opt.get(name) or parser._short_opt.get(name) if our_parser: self._eat_all_parser = our_parser self._previous_parser_process = our_parser.process our_parser.process = parser_process break return retval
covid19_spread-main
covid19_spread/lib/click_lib.py
#!/usr/bin/env python3 # Copyright (c) 2021-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import submitit from submitit.slurm.slurm import SlurmExecutor, SlurmJob from submitit.core import core, utils import uuid import typing as tp import time import sys import os import sqlite3 import enum import random from contextlib import ( contextmanager, redirect_stderr, redirect_stdout, AbstractContextManager, ) import traceback import itertools import timeit from covid19_spread.lib.context_managers import env_var class TransactionManager(AbstractContextManager): """ Class for managing exclusive database transactions. This locks the entire database to ensure atomicity. This allows nesting transactions, where the inner transaction is idempotent. """ def __init__(self, db_pth: str, nretries: int = 20): self.retries = nretries self.db_pth = db_pth self.conn = None self.cursor = None self.nesting = 0 self.start_time = None def __getstate__(self): state = self.__dict__.copy() state["nesting"] = 0 state["conn"] = None state["cursor"] = None return state def __setstate__(self, state): self.__dict__.update(state) def run(self, txn, ntries: int = 100): exn = None for _ in range(ntries): try: with self as conn: conn.execute("BEGIN EXCLUSIVE") return txn(conn) except Exception as e: traceback.print_exc(file=sys.stdout) sleep_time = random.randint(0, 10) print(f"Transaction failed! Sleeping for {sleep_time} seconds") time.sleep(sleep_time) exn = e print("Failed too many times!!!!") raise exn def __enter__(self): print(f"Entering transaction, nesting = {self.nesting}") self.nesting += 1 if self.conn is None: self.conn = sqlite3.connect(self.db_pth) self.cursor = self.conn.cursor() self.start_time = timeit.default_timer() return self.cursor def __exit__(self, exc_type, exc_val, tb): self.nesting -= 1 print(f"Exiting transaction, nesting = {self.nesting}") if exc_type is not None: traceback.print_exc(file=sys.stdout) if self.nesting == 0: if exc_type is None: print("committing transaction") self.conn.commit() else: print("Rolling back transaction") self.conn.rollback() self.cursor.close() self.conn.close() self.cursor = None self.conn = None print(f"Finished transaction in {timeit.default_timer() - self.start_time}") self.start_time = None class JobStatus(enum.IntEnum): pending = 0 success = 1 failure = 2 final = 3 # pending if all other jobs are finished def __conform__(self, protocol): if protocol is sqlite3.PrepareProtocol: return self.value class Worker: def __init__(self, db_pth: str, worker_id: int): self.db_pth = db_pth self.worker_id = worker_id self.sleep = 0 self.worker_finished = False self.current_job = None def fetch_ready_job(self, cur): # Select a pending job that doesn't have any unfinished dependencies query = f""" SELECT jobs.pickle, jobs.job_id, jobs.retry_count, MIN(COALESCE(j2.status, {JobStatus.success})) as min_status, MAX(COALESCE(j2.status, {JobStatus.failure})) AS max_status FROM jobs LEFT JOIN dependencies USING(pickle) LEFT JOIN jobs j2 ON dependencies.depends_on=j2.pickle WHERE jobs.status={JobStatus.pending} AND jobs.id='{self.db_pth}' AND (dependencies.id='{self.db_pth}' OR dependencies.id IS NULL) AND (j2.id='{self.db_pth}' OR j2.id IS NULL) GROUP BY jobs.pickle, jobs.job_id HAVING MIN(COALESCE(j2.status, {JobStatus.success})) >= {JobStatus.success} AND MAX(COALESCE(j2.status, {JobStatus.success})) <= {JobStatus.success} LIMIT 1 """ cur.execute(query) return cur.fetchall() def finished(self, cur): cur.execute( f""" SELECT COUNT(1) FROM jobs WHERE status NOT IN ({JobStatus.success}, {JobStatus.failure}) AND id='{self.db_pth}' """ ) return cur.fetchone()[0] == 0 def count_running(self, cur): cur.execute( f"SELECT COUNT(1) FROM jobs WHERE status > {len(JobStatus)} AND id='{self.db_pth}'" ) return cur.fetchone()[0] def get_final_jobs(self, cur): cur.execute( f"SELECT pickle, job_id, retry_count FROM jobs WHERE status={JobStatus.final} AND id='{self.db_pth}' LIMIT 1" ) return cur.fetchall() def checkpoint(self): print(f"Worker {self.worker_id} checkpointing") if self.current_job is not None: pickle, job_id, retry_count = self.current_job print(f"Worker {self.worker_id} setting {pickle} back to pending...") transaction_manager = TransactionManager(self.db_pth) # Set the job back to pending transaction_manager.run( lambda conn: conn.execute( f"UPDATE jobs SET status={JobStatus.pending} WHERE pickle='{pickle}' AND id='{self.db_pth}'" ) ) return submitit.helpers.DelayedSubmission(Worker(self.db_pth, self.worker_id)) def __call__(self): self.worker_finished = False worker_job_id = f"worker_{self.worker_id}" running_status = ( len(JobStatus) + self.worker_id + 1 ) # mark in progress with this code transaction_manager = TransactionManager(self.db_pth) while not self.worker_finished: if self.sleep > 0: print(f"Sleeping for {self.sleep} seconds...") time.sleep(self.sleep) print(f"Worker {self.worker_id} getting job to run") def txn(conn): ready = self.fetch_ready_job(conn) status = JobStatus.pending if len(ready) == 0: # no jobs ready if self.finished(conn): self.worker_finished = True return None # all jobs are finished, exiting... if self.count_running(conn) > 0: self.sleep = min(max(self.sleep * 2, 1), 30) return None ready = self.get_final_jobs(conn) status = JobStatus.final if len(ready) == 0: self.sleep = min(max(self.sleep * 2, 1), 30) return None print( f"Worker {self.worker_id} is executing final_job: {ready[0][0]}" ) pickle, job_id, retry_count = ready[0][0], ready[0][1], ready[0][2] # Mark that we're working on this job. conn.execute( f""" UPDATE jobs SET status={running_status}, worker_id='{worker_job_id}' WHERE pickle='{pickle}' AND status={status} AND id='{self.db_pth}' """ ) return pickle, job_id, retry_count res = transaction_manager.run(txn) if res is None: continue self.current_job = res self.sleep = 0 pickle, job_id, retry_count = res print(f"Worker {self.worker_id} got job to run: {pickle}") # Run the job job_dir = os.path.dirname(pickle) paths = utils.JobPaths(job_dir, job_id=job_id) with paths.stderr.open("w", buffering=1) as stderr, paths.stdout.open( "w", buffering=1 ) as stdout: with redirect_stderr(stderr), redirect_stdout(stdout): try: with env_var({"SLURM_PICKLE_PTH": str(pickle)}): dl = utils.DelayedSubmission.load(pickle) dl.result() status = JobStatus.success except Exception: retry_count -= 1 print(f"Job failed, retry_count = {retry_count}") status = ( JobStatus.failure if retry_count == 0 else JobStatus.pending ) traceback.print_exc(file=sys.stderr) print(f"Worker {self.worker_id} finished job with status {status}") transaction_manager.run( lambda conn: conn.execute( f"UPDATE jobs SET status={status.value}, retry_count={retry_count} WHERE pickle='{pickle}' AND id='{self.db_pth}'" ) ) self.current_job = None print(f"Worker {self.worker_id} updated job status") class SlurmPoolExecutor(SlurmExecutor): def __init__(self, *args, **kwargs): db_pth = kwargs.pop("db_pth", None) super().__init__(*args, **kwargs) self.launched = False self.nested = False os.makedirs(self.folder, exist_ok=True) if db_pth is None: # Place the actual database in ~/.slurm_pool/<unique_id>.db unique_filename = str(uuid.uuid4()) self.db_pth = os.path.expanduser(f"~/.slurm_pool/{unique_filename}.db") os.makedirs(os.path.dirname(self.db_pth), exist_ok=True) if not os.path.exists(os.path.join(str(self.folder), ".job.db")): os.symlink(self.db_pth, os.path.join(str(self.folder), ".job.db")) else: self.db_pth = db_pth print(self.db_pth) self.transaction_manager = TransactionManager(self.db_pth) with self.transaction_manager as conn: conn.execute( "CREATE TABLE IF NOT EXISTS jobs(status int, pickle text, job_id text, worker_id text, id TEXT, retry_count INT)" ) conn.execute("CREATE INDEX IF NOT EXISTS jobs_p_idx ON jobs(pickle)") conn.execute("CREATE INDEX IF NOT EXISTS jobs_id_idx ON jobs(id)") conn.execute( "CREATE TABLE IF NOT EXISTS dependencies(pickle text, depends_on text, id TEXT)" ) conn.execute("CREATE INDEX IF NOT EXISTS dep_p_idx ON dependencies(pickle)") conn.execute( "CREATE INDEX IF NOT EXISTS dep_d_idx ON dependencies(depends_on)" ) conn.execute("CREATE INDEX IF NOT EXISTS dep_id_idx ON dependencies(id)") def _submit_command(self, command): tmp_uuid = uuid.uuid4().hex tasks_ids = list(range(self._num_tasks())) job = self.job_class(folder=self.folder, job_id=tmp_uuid, tasks=tasks_ids) return job def _internal_process_submissions( self, delayed_submissions: tp.List[utils.DelayedSubmission] ) -> tp.List[core.Job[tp.Any]]: if len(delayed_submissions) == 1: jobs = super()._internal_process_submissions(delayed_submissions) vals = ( JobStatus.pending, str(jobs[0].paths.submitted_pickle), jobs[0].job_id, self.db_pth, 3, ) with self.transaction_manager as conn: conn.execute( "INSERT INTO jobs(status, pickle, job_id, id, retry_count) VALUES(?, ?, ?, ?, ?)", vals, ) return jobs # array folder = utils.JobPaths.get_first_id_independent_folder(self.folder) folder.mkdir(parents=True, exist_ok=True) pickle_paths = [] for d in delayed_submissions: pickle_path = folder / f"{uuid.uuid4().hex}.pkl" d.timeout_countdown = self.max_num_timeout d.dump(pickle_path) pickle_paths.append(pickle_path) n = len(delayed_submissions) self._throttle() tasks_ids = list(range(len(pickle_paths))) jobs: tp.List[core.Job[tp.Any]] = [ SlurmJob(folder=self.folder, job_id=f"job_{a}", tasks=tasks_ids) for a in range(n) ] with self.transaction_manager as conn: for job, pickle_path in zip(jobs, pickle_paths): job.paths.move_temporary_file(pickle_path, "submitted_pickle") vals = ( JobStatus.pending, str(job.paths.submitted_pickle), job.job_id, self.db_pth, 3, ) conn.execute( "INSERT INTO jobs(status, pickle, job_id, id, retry_count) VALUES(?, ?, ?, ?, ?)", vals, ) return jobs def submit( self, fn: tp.Callable[..., core.R], *args: tp.Any, **kwargs: tp.Any ) -> core.Job[core.R]: return self.transaction_manager.run( lambda conn: super(SlurmPoolExecutor, self).submit(fn, *args, **kwargs) ) def map_array( self, fn: tp.Callable[..., core.R], *iterable: tp.Iterable[tp.Any] ) -> tp.List[core.Job[core.R]]: return self.transaction_manager.run( lambda conn: super(SlurmPoolExecutor, self).map_array(fn, *iterable) ) def submit_dependent( self, depends_on: tp.List[core.Job], fn: tp.Callable[..., core.R], *args: tp.Any, **kwargs: tp.Any, ) -> core.Job[core.R]: ds = utils.DelayedSubmission(fn, *args, **kwargs) def txn(conn): job = self._internal_process_submissions([ds])[0] for dep in depends_on: vals = ( str(job.paths.submitted_pickle), str(dep.paths.submitted_pickle), self.db_pth, ) conn.execute( "INSERT INTO dependencies(pickle, depends_on, id) VALUES (?,?,?)", vals, ) return job return self.transaction_manager.run(txn) def launch(self, folder=None, workers: int = 2): if not self.nested: with self.transaction_manager as conn: vals = (self.db_pth,) conn.execute("SELECT COUNT(1) FROM jobs WHERE id=?", vals) (njobs,) = conn.fetchone() workers = njobs if workers == -1 else workers ex = SlurmExecutor(folder or self.folder) ex.update_parameters(**self.parameters) self.launched = True jobs = [] with ex.batch(): for i in range(workers): jobs.append(ex.submit(Worker(self.db_pth, i))) return jobs def extend_dependencies(self, jobs: tp.List[core.Job]): def txn(conn): conn.execute( """ SELECT pickle FROM dependencies WHERE depends_on=? AND id=? """, (os.environ["SLURM_PICKLE_PTH"], self.db_pth), ) my_deps = conn.fetchall() for (pickle,), depends_on in itertools.product(my_deps, jobs): vals = ( str(pickle), str(depends_on.paths.submitted_pickle), self.db_pth, ) conn.execute( "INSERT INTO dependencies (pickle, depends_on, id) VALUES(?,?,?)", vals, ) self.transaction_manager.run(txn) @contextmanager def nest(self): self.nested = True yield self.nested = False @contextmanager def set_folder(self, folder): old_folder = self.folder self.folder = folder yield self.folder = old_folder
covid19_spread-main
covid19_spread/lib/slurm_pool_executor.py
#!/usr/bin/env python3 # Copyright (c) 2021-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import contextlib import os import copy import sys import typing as tp @contextlib.contextmanager def env_var(key_vals: tp.Dict[str, tp.Union[str, None]]): """ Context manager for manipulating environment variables. Environment is restored upon exiting the context manager Params: key_vals - mapping of environment variables to their values. Of a value is `None`, then it is deleted from the environment. """ old_dict = {k: os.environ.get(k, None) for k in key_vals.keys()} for k, v in key_vals.items(): if v is None: if k in os.environ: del os.environ[k] else: os.environ[k] = v yield for k, v in old_dict.items(): if v: os.environ[k] = v elif k in os.environ: del os.environ[k] @contextlib.contextmanager def chdir(d): old_dir = os.getcwd() os.chdir(d) yield os.chdir(old_dir) @contextlib.contextmanager def sys_path(x): old_path = copy.deepcopy(sys.path) sys.path.insert(0, x) yield sys.path = old_path
covid19_spread-main
covid19_spread/lib/context_managers.py
#!/usr/bin/env python3 # Copyright (c) 2021-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import getpass USER = getpass.getuser() if os.path.exists(f"/checkpoint"): FS = "/checkpoint" PARTITION = "learnfair" MEM_GB = lambda x: x elif os.path.exists(f"/fsx"): FS = "/fsx" PARTITION = "compute" MEM_GB = lambda x: 0 else: FS = os.getcwd() # for CI
covid19_spread-main
covid19_spread/lib/cluster.py
#!/usr/bin/env python3 # Copyright (c) 2021-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from slack import WebClient import os import json import warnings def post_slack_message(channel, text): cred_path = os.path.expanduser("~/.credentials.json") if not os.path.exists(cred_path): msg = "Could not find ~/.credentials.json with Slack credentials, not posting message..." warnings.warn(msg, UserWarning) return credentials = json.load(open(cred_path)) if "slack" not in credentials or "bot_token" not in credentials["slack"]: warnings.warn( "Could not find Slack credentials in ~/.credentials.json", UserWarning ) return client = WebClient(token=credentials["slack"]["bot_token"]) client.chat_postMessage(channel=channel, text=text)
covid19_spread-main
covid19_spread/lib/slack.py
#!/usr/bin/env python3 # Copyright (c) 2021-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import sys import os sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "../")) import cv import tempfile from subprocess import check_call, check_output import sqlite3 import click import datetime from covid19_spread.lib.context_managers import chdir script_dir = os.path.dirname(os.path.realpath(__file__)) DB = os.path.join(script_dir, ".sweep.db") def mk_db(): if not os.path.exists(DB): conn = sqlite3.connect(DB) conn.execute( """ CREATE TABLE sweeps( path text primary key, basedate text NOT NULL, launch_time real NOT NULL, module text NOT NULL, slurm_job text, id text ); """ ) conn.execute( """ CREATE TABLE submitted( sweep_path text UNIQUE, submitted_at real NOT NULL, FOREIGN KEY(sweep_path) REFERENCES sweeps(path) ); """ ) class Recurring: script_dir = script_dir def __init__(self, force=False): self.force = force mk_db() def get_id(self) -> str: """Return a unique ID to be used in the database""" raise NotImplementedError def update_data(self) -> None: """Fetch new data (should be idempotent)""" raise NotImplementedError def command(self) -> str: """The command to run in cron""" raise NotImplementedError def latest_date(self) -> datetime.date: """"Return the latest date that we have data for""" raise NotImplementedError def module(self): """CV module to run""" return "mhp" def schedule(self) -> str: """Cron schedule""" return "*/5 * * * *" # run every 5 minutes def install(self) -> None: """Method to install cron job""" crontab = check_output(["crontab", "-l"]).decode("utf-8") marker = f"__JOB_{self.get_id()}__" if marker in crontab: raise ValueError( "Cron job already installed, cleanup crontab" " with `crontab -e` before installing again" ) envs = ( check_output(["conda", "env", "list"]).decode("utf-8").strip().split("\n") ) active = [e for e in envs if "*" in e] conda_env = None if len(active) == 1: conda_env = f"source activate {active[0].split()[0]}" with tempfile.NamedTemporaryFile() as tfile: with open(tfile.name, "w") as fout: print(crontab, file=fout) print(f"# {marker}", file=fout) user = os.environ["USER"] script = os.path.realpath(__file__) schedule = self.schedule() stdoutfile = os.path.join(self.script_dir, f".{self.get_id()}.log") stderrfile = os.path.join(self.script_dir, f".{self.get_id()}.err") home = os.path.expanduser("~") cmd = [ "source /etc/profile.d/modules.sh", f"source {home}/.profile", f"source {home}/.bash_profile", f"source {home}/.bashrc", conda_env, "slack-on-fail " + self.command(), ] cmd = [c for c in cmd if c is not None] subject = f"ERROR in recurring sweep: {self.get_id()}" envs = [ f'PATH="/usr/local/bin:/private/home/{user}/bin:/usr/sbin:$PATH"', "__PROD__=1", f"USER={user}", ] print( f'{schedule} {" ".join(envs)} bash -c "{" && ".join(cmd)} >> {stdoutfile} 2>> {stderrfile}"', file=fout, ) check_call(["crontab", tfile.name]) def refresh(self) -> None: """Check for new data, schedule a job if new data is found""" self.update_data() latest_date = self.latest_date() conn = sqlite3.connect(DB) res = conn.execute( "SELECT path, launch_time FROM sweeps WHERE basedate=? AND id=?", (str(latest_date), self.get_id()), ) if not self.force: for pth, launch_time in res: launch_time = datetime.datetime.fromtimestamp(launch_time) if os.path.exists(pth): print(f"Already launched {pth} at {launch_time}, exiting...") return # This directory got deleted, remove it from the database... conn.execute( "DELETE FROM sweeps WHERE path=? AND id=?", (pth, self.get_id()) ) conn.commit() sweep_path = self.launch_job() vals = ( sweep_path, str(latest_date), datetime.datetime.now().timestamp(), self.module(), self.get_id(), ) conn.execute( "INSERT INTO sweeps(path, basedate, launch_time, module, id) VALUES (?,?,?,?,?)", vals, ) conn.commit() def launch_job(self, **kwargs): """Launch the sweep job""" # Launch the sweep config = os.path.join(script_dir, f"../../cv/{kwargs.get('cv_config')}.yml") with chdir(f"{script_dir}/../../"): sweep_path, jobs = click.Context(cv.cv).invoke( cv.cv, config_pth=config, module=kwargs.get("module", "bar"), remote=True, array_parallelism=kwargs.get("array_parallelism", 20), ) return sweep_path
covid19_spread-main
covid19_spread/data/recurring.py
#!/usr/bin/env python3 # Copyright (c) 2021-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os from covid19_spread.common import update_repo import pandas import re import datetime def get_index(): index = pandas.read_csv( "https://storage.googleapis.com/covid19-open-data/v2/index.csv" ) index = index[index["key"].str.match(r"^US_[A-Z]+_\d{5}$").fillna(False)] index["fips"] = index["subregion2_code"].astype(str).str.zfill(5) index["name"] = index["subregion2_name"] return index def get_nyt(metric="cases"): print("NYT") data_repo = update_repo("https://github.com/nytimes/covid-19-data.git") df = pandas.read_csv( os.path.join(data_repo, "us-counties.csv"), dtype={"fips": str} ) index = get_index() df = df.merge(index[["fips", "subregion1_name", "name"]], on="fips") df["loc"] = df["subregion1_name"] + "_" + df["name"] pivot = df.pivot_table(values=metric, columns=["loc"], index="date") pivot = pivot.fillna(0) pivot.index = pandas.to_datetime(pivot.index) if metric == "deaths": return pivot # Swap out NYTimes NY state data with the NY DOH data. NYSTATE_URL = ( "https://health.data.ny.gov/api/views/xdss-u53e/rows.csv?accessType=DOWNLOAD" ) df = pandas.read_csv(NYSTATE_URL).rename( columns={"Test Date": "date", "Cumulative Number of Positives": "cases"} ) df["loc"] = "New York_" + df["County"] df = df.pivot_table(values=metric, columns=["loc"], index="date") df.columns = [x + " County" for x in df.columns] # The NYT labels each date as the date the report comes out, not the date the data corresponds to. # Add 1 day to the NYS DOH data to get it to align df.index = pandas.to_datetime(df.index) + datetime.timedelta(days=1) without_nystate = pivot[[c for c in pivot.columns if not c.startswith("New York")]] last_date = min(without_nystate.index.max(), df.index.max()) df = df[df.index <= last_date] without_nystate = without_nystate[without_nystate.index <= last_date] assert ( df.index.max() == without_nystate.index.max() ), "NYT and DOH data don't matchup yet!" # Only take NYT data up to the date for which we have nystate data without_nystate[without_nystate.index <= df.index.max()] return without_nystate.merge( df, left_index=True, right_index=True, how="outer" ).fillna(0) def get_google(metric="cases"): index = get_index() df = pandas.read_csv( "https://storage.googleapis.com/covid19-open-data/v2/epidemiology.csv", parse_dates=["date"], ) merged = df.merge(index, on="key") merged = merged[~merged["subregion2_name"].isnull()] merged["loc"] = merged["subregion1_name"] + "_" + merged["name"] value_col = "total_confirmed" if metric == "cases" else "total_deceased" pivot = merged.pivot(values=value_col, index="date", columns="loc") if pivot.iloc[-1].isnull().any(): pivot = pivot.iloc[:-1] pivot.iloc[0] = pivot.iloc[0].fillna(0) pivot = pivot.fillna(method="ffill") return pivot def get_jhu(metric="cases"): urls = { "cases": "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_US.csv", "deaths": "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_US.csv", } df = pandas.read_csv(urls[metric]) df = df[~df["FIPS"].isnull()] df["FIPS"] = df["FIPS"].apply(lambda x: str(int(x)).zfill(5)) index = get_index() index["loc"] = index["subregion1_name"] + "_" + index["name"] merged = df.merge(index[["fips", "loc"]], left_on="FIPS", right_on="fips") date_cols = [c for c in merged.columns if re.match("\d+/\d+/\d+", c)] transposed = merged[date_cols + ["loc"]].set_index("loc").transpose() transposed.index = pandas.to_datetime(transposed.index) return transposed.sort_index() SOURCES = { "nyt": get_nyt, "google": get_google, "jhu": get_jhu, }
covid19_spread-main
covid19_spread/data/usa/process_cases.py
#!/usr/bin/env python3 # Copyright (c) 2021-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import numpy as np import pandas as pd import torch as th from os import listdir from os.path import isfile, join from covid19_spread.data.usa.process_cases import SOURCES import warnings from covid19_spread.common import standardize_county_name import os import multiprocessing as mp SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__)) nyc_boroughs = [ "Bronx, New York", "Kings, New York", "Queens, New York", "New York, New York", "Richmond, New York", ] def county_id(county, state): return f"{county}, {state}" def rename_nyc_boroughs(county_name): if county_name in nyc_boroughs: return "New York City, New York" else: return county_name def merge_nyc_boroughs(df, ntypes): df["region"] = df["region"].transform(rename_nyc_boroughs) prev_len = len(df) df = df.groupby(["region", "type"]).mean() assert len(df) == prev_len - ntypes * 4, (prev_len, len(df)) df = df.reset_index() print(df[df["region"] == "New York City, New York"]) return df def process_time_features(df, pth, shift=0, merge_nyc=False, input_resolution="county"): print(f"Processing {pth} at resolution: {input_resolution}") time_features = pd.read_csv(pth) if input_resolution == "county_state": # Expand state level time features to each county in `df` idx = df.rename_axis("county").reset_index()[["county"]] idx["region"] = idx["county"].apply(lambda x: x.split(", ")[-1]) time_features = time_features.merge(idx, on="region").drop(columns="region") time_features = time_features.rename(columns={"county": "region"}) time_feature_regions = time_features["region"].unique() ncommon = len(df.index.intersection(time_feature_regions)) if ncommon != len(df): missing = set(df.index).difference(set(time_feature_regions)) warnings.warn( f"{pth}: Missing time features for the following regions: {list(missing)}" ) if ncommon != len(time_feature_regions): ignoring = set(time_feature_regions).difference(set(df.index)) warnings.warn( f"{pth}: Ignoring time features for the following regions: {list(ignoring)}" ) time_features = time_features[time_features["region"].isin(set(df.index))] if merge_nyc: time_features = merge_nyc_boroughs( time_features, len(time_features["type"].unique()) ) # Transpose to have two level columns (region, type) and dates as index time_features = time_features.set_index(["region", "type"]).transpose().sort_index() time_features.index = pd.to_datetime(time_features.index) # Trim prefix if it starts before the dates in `df` time_features = time_features.loc[time_features.index >= df.columns.min()] # Fill in dates that are missing in `time_features` that exist in `df` time_features = time_features.reindex(df.columns) # Shift time features UP by `shift` days time_features = time_features.shift(shift) # forward fill the missing values time_features = time_features.fillna(method="ffill") # Fill the beginning end with zeros if null time_features = time_features.fillna(0) time_features = time_features[time_features.columns.sort_values()] feature_tensors = { region: th.from_numpy(time_features[region].values) for region in time_features.columns.get_level_values(0).unique() } if input_resolution == "county_state": pth = pth.replace("state", "county_state") th.save(feature_tensors, pth.replace(".csv", ".pt")) def run_par(fs, args, kwargs, max_par=None): if not isinstance(fs, list): fs = [fs] * len(args) if "MAX_PARALLELISM" in os.environ: max_par = int(os.environ["MAX_PARALLELISM"]) print(f"Max parallelism = {max_par}") if max_par is not None and max_par <= 1: for _f, _args, _kwargs in zip(fs, args, kwargs): _f(*_args, **_kwargs) return with mp.Pool(max_par) as pool: results = [ pool.apply_async(f, args=a, kwds=k) for f, a, k in zip(fs, args, kwargs) ] [r.get() for r in results] def create_time_features(): from .symptom_survey import prepare as ss_prepare from .fb import prepare as fb_prepare from .google import prepare as google_prepare from .testing import prepare as testing_prepare fs = [ss_prepare, fb_prepare, google_prepare, testing_prepare] run_par(fs, [()] * len(fs), [{}] * len(fs)) def main(metric, with_features, source, resolution): df = SOURCES[source](metric) df.index = pd.to_datetime(df.index) dates = df.index df.columns = [c.split("_")[1] + ", " + c.split("_")[0] for c in df.columns] # drop all zero columns df = df[df.columns[(df.sum(axis=0) != 0).values]] df = df.transpose() # row for each county, columns correspond to dates... # make sure counts are strictly increasing df = df.cummax(axis=1) # throw away all-zero columns, i.e., days with no cases counts = df.sum(axis=0) df = df.iloc[:, np.where(counts > 0)[0]] if resolution == "state": df = df.groupby(lambda x: x.split(", ")[-1]).sum() df = df.drop( index=["Virgin Islands", "Northern Mariana Islands", "Puerto Rico", "Guam"], errors="ignore", ) county_id = {c: i for i, c in enumerate(df.index)} df.to_csv(f"{SCRIPT_DIR}/data_{metric}.csv", index_label="region") df[df.index.str.endswith("New York")].to_csv( f"{SCRIPT_DIR}/data_{metric}_ny.csv", index_label="region" ) df[df.index.str.endswith("Florida")].to_csv( f"{SCRIPT_DIR}/data_{metric}_fl.csv", index_label="region" ) if resolution == "county": # Build state graph... adj = np.zeros((len(df), len(df))) for _, g in df.groupby(lambda x: x.split(", ")[-1]): idxs = np.array([county_id[c] for c in g.index]) adj[np.ix_(idxs, idxs)] = 1 print(adj) th.save(th.from_numpy(adj), f"{SCRIPT_DIR}/state_graph.pt") if with_features: create_time_features() res = resolution merge_nyc = metric == "deaths" and res == "county" features = [ (f"{SCRIPT_DIR}/testing/ratio_features_{res}.csv", 0, res), (f"{SCRIPT_DIR}/testing/total_features_{res}.csv", 0, res), (f"{SCRIPT_DIR}/fb/mobility_features_{res}_fb.csv", 5, res), (f"{SCRIPT_DIR}/google/mobility_features_{res}_google.csv", 5, res), (f"{SCRIPT_DIR}/google/weather_features_{res}.csv", 5, res), (f"{SCRIPT_DIR}/google/epi_features_{res}.csv", 7, res), (f"{SCRIPT_DIR}/google/epi_features_{res}.csv", 7, res), ] if res == "state": features.append((f"{SCRIPT_DIR}/google/hosp_features_{res}.csv", 0, res)) features.append((f"{SCRIPT_DIR}/shifted_features_{res}.csv", 0, res)) features.append((f"{SCRIPT_DIR}/google/vaccination_state.csv", 0, "state")) else: features.append( (f"{SCRIPT_DIR}/google/vaccination_state.csv", 0, "county_state") ) for signal, lag in [ (f"{SCRIPT_DIR}/symptom_survey/doctor-visits_smoothed_adj_cli-{{}}.csv", 2), (f"{SCRIPT_DIR}/symptom_survey/fb-survey_smoothed_wcli-{{}}.csv", 0), ( f"{SCRIPT_DIR}/symptom_survey/fb-survey_smoothed_hh_cmnty_cli-{{}}.csv", 0, ), ( f"{SCRIPT_DIR}/symptom_survey/fb-survey_smoothed_wearing_mask_all-{{}}.csv", 5, ), ( f"{SCRIPT_DIR}/symptom_survey/fb-survey_smoothed_wothers_masked-{{}}.csv", 5, ), ( f"{SCRIPT_DIR}/symptom_survey/fb-survey_smoothed_wcovid_vaccinated_or_accept-{{}}.csv", 5, ), (f"{SCRIPT_DIR}/fb/mobility_features_{{}}_fb.csv", 5), (f"{SCRIPT_DIR}/google/mobility_features_{{}}_google.csv", 5), ]: if res == "county": features.append((signal.format("county"), lag, "county")) features.append((signal.format("state"), lag, "county_state")) else: features.append((signal.format("state"), lag, "state")) features = [(df, pth, lag, merge_nyc, r) for pth, lag, r in features] run_par([process_time_features] * len(features), features, [{}] * len(features)) if __name__ == "__main__": parser = argparse.ArgumentParser("US data") parser.add_argument("-metric", default="cases", choices=["cases", "deaths"]) parser.add_argument("-with-features", default=False, action="store_true") parser.add_argument("-source", choices=SOURCES.keys(), default="nyt") parser.add_argument("-resolution", choices=["county", "state"], default="county") opt = parser.parse_args() main(opt.metric, opt.with_features, opt.source, opt.resolution)
covid19_spread-main
covid19_spread/data/usa/convert.py
#!/usr/bin/env python3 # Copyright (c) 2021-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os from .. import recurring import pandas from ...lib.slack import post_slack_message from datetime import date, datetime, timedelta from .convert import main as convert SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__)) class USARRecurring(recurring.Recurring): script_dir = SCRIPT_DIR def get_id(self): return "us-bar" def command(self): return f"recurring run us" def module(self): return "bar_time_features" def schedule(self): return "*/10 * * * *" def update_data(self): convert("cases", with_features=False, source="nyt", resolution="county") def latest_date(self): df = pandas.read_csv(f"{SCRIPT_DIR}/data_cases.csv", index_col="region") max_date = pandas.to_datetime(df.columns).max().date() if max_date < (date.today() - timedelta(days=1)) and datetime.now().hour > 17: expected_date = date.today() - timedelta(days=1) msg = f"*WARNING: new data for {expected_date} is still not available!*" post_slack_message(channel="#cron_errors", text=msg) return pandas.to_datetime(df.columns).max().date() def launch_job(self, **kwargs): # Make clean with features convert("cases", with_features=True, source="nyt", resolution="county") msg = f"*New Data Available for US: {self.latest_date()}*" post_slack_message(channel="#new-data", text=msg) return super().launch_job( module="bar", cv_config="us", array_parallelism=90, **kwargs )
covid19_spread-main
covid19_spread/data/usa/us_recurring.py
#!/usr/bin/env python3 # Copyright (c) 2021-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import pandas as pd from datetime import datetime from covid19_spread.data.usa.process_cases import get_index import os SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__)) def main(): print("Getting Google mobility data...") cols = [ "date", "region", "retail_and_recreation_percent_change_from_baseline", "grocery_and_pharmacy_percent_change_from_baseline", "parks_percent_change_from_baseline", "transit_stations_percent_change_from_baseline", "workplaces_percent_change_from_baseline", "residential_percent_change_from_baseline", ] def get_county_mobility_google(fin=None): # Google LLC "Google COVID-19 Community Mobility Reports." # https://www.google.com/covid19/mobility/ Accessed: 2020-05-04. # unfortunately, this is only relative to mobility on a baseline date if fin is None: fin = "https://www.gstatic.com/covid19/mobility/Global_Mobility_Report.csv" df_Gmobility_global = pd.read_csv( fin, parse_dates=["date"], dtype={"census_fips_code": str} ) df_Gmobility_usa = df_Gmobility_global.query("country_region_code == 'US'") return df_Gmobility_usa df = get_county_mobility_google() df = df[~df["census_fips_code"].isnull()] index = get_index() index["region"] = index["subregion2_name"] + ", " + index["subregion1_name"] df = df.merge( index, left_on="census_fips_code", right_on="fips", suffixes=("", "_x") )[list(df.columns) + ["region"]] df = df[cols] val_cols = [c for c in df.columns if c not in {"region", "date"}] ratio = (1 + df.set_index(["region", "date"]) / 100).reset_index() piv = ratio.pivot(index="date", columns="region", values=val_cols) piv = piv.rolling(7, min_periods=1).mean().transpose() piv.iloc[0] = piv.iloc[0].fillna(0) piv = piv.fillna(0) dfs = [] for k in piv.index.get_level_values(0).unique(): df = piv.loc[k].copy() df["type"] = k dfs.append(df) df = pd.concat(dfs) df = df[["type"] + sorted([c for c in df.columns if isinstance(c, datetime)])] df.columns = [str(c.date()) if isinstance(c, datetime) else c for c in df.columns] df.to_csv(f"{SCRIPT_DIR}/mobility_features_county_google.csv") state = get_county_mobility_google() state = state[(~state["sub_region_1"].isnull()) & (state["sub_region_2"].isnull())] state["region"] = state["sub_region_1"] state = state[cols] ratio = (1 + state[cols].set_index(["region", "date"]) / 100).reset_index() piv = ratio.pivot(index="date", columns="region", values=val_cols) piv = piv.rolling(7, min_periods=1).mean().transpose() piv.columns = [str(x.date()) for x in sorted(piv.columns)] piv = piv.fillna(0).reset_index(level=0).rename(columns={"level_0": "type"}) piv.to_csv(f"{SCRIPT_DIR}/mobility_features_state_google.csv") if __name__ == "__main__": main()
covid19_spread-main
covid19_spread/data/usa/google/process_mobility.py
#!/usr/bin/env python3 # Copyright (c) 2021-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import pandas from datetime import datetime import os from covid19_spread.data.usa.process_cases import get_index SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__)) def main(): index = pandas.read_csv( "https://storage.googleapis.com/covid19-open-data/v2/index.csv" ) state_index = index[(index["key"].str.match("^US_[A-Z]+$")).fillna(False)] index = get_index() def zscore(piv): # z-zcore piv = (piv - piv.mean(skipna=True)) / piv.std(skipna=True) piv = piv.fillna(method="ffill").fillna(method="bfill") # piv = piv.fillna(0) return piv def zero_one(df): df = df.fillna(0) # df = df.div(df.max(axis=0), axis=1) df = df / df.max(axis=0) df = df.fillna(0) return df def process_df(df, columns, resolution, func_normalize): idx = state_index if resolution == "state" else index merged = df.merge(idx, on="key") if resolution == "state": exclude = {"US_MP", "US_AS", "US_GU", "US_VI", "US_PR"} merged = merged[~merged["key"].isin(exclude)] merged["region"] = merged["subregion1_name"] else: merged["region"] = merged["name"] + ", " + merged["subregion1_name"] piv = merged.pivot(index="date", columns="region", values=columns) if func_normalize is not None: piv = func_normalize(piv) dfs = [] for k in piv.columns.get_level_values(0).unique(): dfs.append(piv[k].transpose()) dfs[-1]["type"] = k df = pandas.concat(dfs) df = df[["type"] + [c for c in df.columns if isinstance(c, datetime)]] df.columns = [ str(c.date()) if isinstance(c, datetime) else c for c in df.columns ] return df.fillna(0) # in case all values are NaN def get_df(url): if "weather" in url: # This dataset is quite large. Iterate in chunks, and filter out non-US rows chunks = [] for chunk in pandas.read_csv(url, parse_dates=["date"], chunksize=200000): chunks.append( chunk[~chunk["key"].isnull() & chunk["key"].str.startswith("US")] ) df = pandas.concat(chunks) else: df = pandas.read_csv(url, parse_dates=["date"]) return df[~df["key"].isnull() & df["key"].str.startswith("US")] def do_feature(url, columns, resolution, func_normalize, outfile): print(f"Fetching {url}") df = get_df(url) vaccination = process_df( df, columns=columns, resolution=resolution, func_normalize=func_normalize ) vaccination = vaccination.reset_index().set_index(["region", "type"]) vaccination.to_csv(outfile, index_label=["region", "type"]) # --- Vaccination data --- do_feature( url="https://storage.googleapis.com/covid19-open-data/v2/vaccinations.csv", columns=["new_persons_vaccinated", "total_persons_vaccinated"], resolution="state", func_normalize=zero_one, outfile=os.path.join(SCRIPT_DIR, "vaccination_state.csv"), ) # --- Hospitalizations --- do_feature( url="https://storage.googleapis.com/covid19-open-data/v2/hospitalizations.csv", columns=[ "current_hospitalized", "current_intensive_care", "current_ventilator", ], resolution="state", func_normalize=lambda x: zero_one(x.clip(0, None)), outfile=os.path.join(SCRIPT_DIR, "hosp_features_state.csv"), ) # --- Weather features --- do_feature( url="https://storage.googleapis.com/covid19-open-data/v2/weather.csv", columns=[ "average_temperature", "minimum_temperature", "maximum_temperature", "rainfall", "relative_humidity", "dew_point", ], resolution="state", func_normalize=zscore, outfile=os.path.join(SCRIPT_DIR, "weather_features_state.csv"), ) do_feature( url="https://storage.googleapis.com/covid19-open-data/v2/weather.csv", columns=[ "average_temperature", "minimum_temperature", "maximum_temperature", "rainfall", "relative_humidity", "dew_point", ], resolution="county", func_normalize=zscore, outfile=os.path.join(SCRIPT_DIR, "weather_features_county.csv"), ) # --- Epi features --- do_feature( url="https://storage.googleapis.com/covid19-open-data/v2/epidemiology.csv", columns=["new_confirmed"], resolution="state", func_normalize=lambda x: zero_one(x.clip(0, None)), outfile=os.path.join(SCRIPT_DIR, "epi_features_state.csv"), ) do_feature( url="https://storage.googleapis.com/covid19-open-data/v2/epidemiology.csv", columns=["new_confirmed"], resolution="county", func_normalize=lambda x: zero_one(x.clip(0, None)), outfile=os.path.join(SCRIPT_DIR, "epi_features_county.csv"), ) # ---- Testing ----- print("Getting Google testing data...") df = get_df("https://storage.googleapis.com/covid19-open-data/v2/epidemiology.csv") testing = process_df( df, columns=["new_tested"], resolution="state", func_normalize=lambda x: zero_one(x.clip(0, None)), ) testing.round(3).to_csv(f"{SCRIPT_DIR}/tested_total_state.csv") df["ratio"] = df["new_confirmed"] / df["new_tested"] testing = process_df( df, columns=["ratio"], resolution="state", func_normalize=None, ) testing.round(3).to_csv(f"{SCRIPT_DIR}/tested_ratio_state.csv") if __name__ == "__main__": main()
covid19_spread-main
covid19_spread/data/usa/google/process_open_data.py
#!/usr/bin/env python3 # Copyright (c) 2021-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from .process_mobility import main as mobility_main from .process_open_data import main as open_data_main def prepare(): mobility_main() open_data_main()
covid19_spread-main
covid19_spread/data/usa/google/__init__.py