python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
# Adapted from https://github.com/facebookresearch/detectron2/ # Copyright (c) Facebook, Inc. and its affiliates. import argparse import glob import multiprocessing as mp import os import time import cv2 import tqdm from d2go.model_zoo import model_zoo from d2go.utils.demo_predictor import VisualizationDemo from detectron2.data.detection_utils import read_image from detectron2.utils.logger import setup_logger # constants WINDOW_NAME = "COCO detections" def setup_cfg(cfg, args): # Set score_threshold for builtin models cfg.MODEL.RETINANET.SCORE_THRESH_TEST = args.confidence_threshold cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = args.confidence_threshold cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = ( args.confidence_threshold ) cfg.freeze() return cfg def get_parser(): parser = argparse.ArgumentParser(description="Detectron2 demo for builtin configs") parser.add_argument( "--config-file", default="keypoint_rcnn_fbnetv3a_dsmask_C4.yaml", metavar="FILE", help="path to config file", ) parser.add_argument( "--webcam", action="store_true", help="Take inputs from webcam." ) parser.add_argument("--video-input", help="Path to video file.") parser.add_argument( "--input", nargs="+", help="A list of space separated input images; " "or a single glob pattern such as 'directory/*.jpg'", ) parser.add_argument( "--output", help="A file or directory to save output visualizations. " "If not given, will show output in an OpenCV window.", ) parser.add_argument( "--confidence-threshold", type=float, default=0.5, help="Minimum score for instance predictions to be shown", ) parser.add_argument( "--opts", help="Modify config options using the command-line 'KEY VALUE' pairs", default=[], nargs=argparse.REMAINDER, ) return parser def main(): mp.set_start_method("spawn", force=True) args = get_parser().parse_args() setup_logger(name="fvcore") logger = setup_logger() logger.info("Arguments: " + str(args)) cfg = model_zoo.get_config(args.config_file) cfg = setup_cfg(cfg, args) demo = VisualizationDemo(cfg, args.config_file) if args.input: if len(args.input) == 1: args.input = glob.glob(os.path.expanduser(args.input[0])) assert args.input, "The input path(s) was not found" for path in tqdm.tqdm(args.input, disable=not args.output): # use PIL, to be consistent with evaluation img = read_image(path, format="BGR") start_time = time.time() predictions, visualized_output = demo.run_on_image(img) logger.info( "{}: {} in {:.2f}s".format( path, "detected {} instances".format(len(predictions["instances"])) if "instances" in predictions else "finished", time.time() - start_time, ) ) if args.output: if os.path.isdir(args.output): assert os.path.isdir(args.output), args.output out_filename = os.path.join(args.output, os.path.basename(path)) else: assert ( len(args.input) == 1 ), "Please specify a directory with args.output" out_filename = args.output visualized_output.save(out_filename) else: cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_NORMAL) cv2.imshow(WINDOW_NAME, visualized_output.get_image()[:, :, ::-1]) if cv2.waitKey(0) == 27: break # esc to quit elif args.video_input: video = cv2.VideoCapture(args.video_input) width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) frames_per_second = video.get(cv2.CAP_PROP_FPS) num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) basename = os.path.basename(args.video_input) if args.output: if os.path.isdir(args.output): output_fname = os.path.join(args.output, basename) output_fname = os.path.splitext(output_fname)[0] + ".mkv" else: output_fname = args.output assert not os.path.isfile(output_fname), output_fname output_file = cv2.VideoWriter( filename=output_fname, # some installation of opencv may not support x264 (due to its license), # you can try other format (e.g. MPEG) fourcc=cv2.VideoWriter_fourcc(*"x264"), fps=float(frames_per_second), frameSize=(width, height), isColor=True, ) assert os.path.isfile(args.video_input) for vis_frame in tqdm.tqdm(demo.run_on_video(video), total=num_frames): if args.output: output_file.write(vis_frame) else: cv2.namedWindow(basename, cv2.WINDOW_NORMAL) cv2.imshow(basename, vis_frame) if cv2.waitKey(1) == 27: break # esc to quit video.release() if args.output: output_file.release() else: cv2.destroyAllWindows() if __name__ == "__main__": main()
d2go-main
demo/demo.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os import tempfile import unittest import d2go.projects.detr.runner as oss_runner import d2go.runner.default_runner as default_runner from d2go.utils.testing.data_loader_helper import create_local_dataset # RUN: # buck test mobile-vision/d2go/projects_oss/detr:test_detr_runner def _get_cfg(runner, output_dir, dataset_name): cfg = runner.get_default_cfg() cfg.MODEL.DEVICE = "cpu" cfg.MODEL.META_ARCHITECTURE = "Detr" cfg.DATASETS.TRAIN = (dataset_name,) cfg.DATASETS.TEST = (dataset_name,) cfg.INPUT.MIN_SIZE_TRAIN = (10,) cfg.INPUT.MIN_SIZE_TEST = (10,) cfg.SOLVER.MAX_ITER = 5 cfg.SOLVER.STEPS = [] cfg.SOLVER.WARMUP_ITERS = 1 cfg.SOLVER.CHECKPOINT_PERIOD = 1 cfg.SOLVER.IMS_PER_BATCH = 2 cfg.OUTPUT_DIR = output_dir return cfg class TestOssRunner(unittest.TestCase): def test_build_model(self): with tempfile.TemporaryDirectory() as tmp_dir: ds_name = create_local_dataset(tmp_dir, 5, 10, 10) runner = oss_runner.DETRRunner() cfg = _get_cfg(runner, tmp_dir, ds_name) model = runner.build_model(cfg) dl = runner.build_detection_train_loader(cfg) batch = next(iter(dl)) output = model(batch) self.assertIsInstance(output, dict) model.eval() output = model(batch) self.assertIsInstance(output, list) default_runner._close_all_tbx_writers() def test_runner_train(self): with tempfile.TemporaryDirectory() as tmp_dir: ds_name = create_local_dataset(tmp_dir, 5, 10, 10, num_classes=1000) runner = oss_runner.DETRRunner() cfg = _get_cfg(runner, tmp_dir, ds_name) model = runner.build_model(cfg) runner.do_train(cfg, model, True) final_model_path = os.path.join(tmp_dir, "model_final.pth") self.assertTrue(os.path.isfile(final_model_path)) default_runner._close_all_tbx_writers()
d2go-main
projects_oss/detr/test_detr_runner.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import io import unittest from typing import List import torch from detr.hub import detr_resnet50, detr_resnet50_panoptic from detr.models.backbone import Backbone from detr.models.matcher import HungarianMatcher from detr.models.position_encoding import ( PositionEmbeddingLearned, PositionEmbeddingSine, ) from detr.util import box_ops from detr.util.misc import nested_tensor_from_tensor_list from torch import nn, Tensor # onnxruntime requires python 3.5 or above try: import onnxruntime except ImportError: onnxruntime = None class Tester(unittest.TestCase): def test_box_cxcywh_to_xyxy(self): t = torch.rand(10, 4) r = box_ops.box_xyxy_to_cxcywh(box_ops.box_cxcywh_to_xyxy(t)) self.assertLess((t - r).abs().max(), 1e-5) @staticmethod def indices_torch2python(indices): return [(i.tolist(), j.tolist()) for i, j in indices] def test_hungarian(self): n_queries, n_targets, n_classes = 100, 15, 91 logits = torch.rand(1, n_queries, n_classes + 1) boxes = torch.rand(1, n_queries, 4) tgt_labels = torch.randint(high=n_classes, size=(n_targets,)) tgt_boxes = torch.rand(n_targets, 4) matcher = HungarianMatcher() targets = [{"labels": tgt_labels, "boxes": tgt_boxes}] indices_single = matcher({"pred_logits": logits, "pred_boxes": boxes}, targets) indices_batched = matcher( { "pred_logits": logits.repeat(2, 1, 1), "pred_boxes": boxes.repeat(2, 1, 1), }, targets * 2, ) self.assertEqual(len(indices_single[0][0]), n_targets) self.assertEqual(len(indices_single[0][1]), n_targets) self.assertEqual( self.indices_torch2python(indices_single), self.indices_torch2python([indices_batched[0]]), ) self.assertEqual( self.indices_torch2python(indices_single), self.indices_torch2python([indices_batched[1]]), ) # test with empty targets tgt_labels_empty = torch.randint(high=n_classes, size=(0,)) tgt_boxes_empty = torch.rand(0, 4) targets_empty = [{"labels": tgt_labels_empty, "boxes": tgt_boxes_empty}] indices = matcher( { "pred_logits": logits.repeat(2, 1, 1), "pred_boxes": boxes.repeat(2, 1, 1), }, targets + targets_empty, ) self.assertEqual(len(indices[1][0]), 0) indices = matcher( { "pred_logits": logits.repeat(2, 1, 1), "pred_boxes": boxes.repeat(2, 1, 1), }, targets_empty * 2, ) self.assertEqual(len(indices[0][0]), 0) def test_position_encoding_script(self): m1, m2 = PositionEmbeddingSine(), PositionEmbeddingLearned() mm1, mm2 = torch.jit.script(m1), torch.jit.script(m2) # noqa def test_backbone_script(self): backbone = Backbone("resnet50", True, False, False) torch.jit.script(backbone) # noqa def test_model_script_detection(self): model = detr_resnet50(pretrained=False).eval() scripted_model = torch.jit.script(model) x = nested_tensor_from_tensor_list( [torch.rand(3, 200, 200), torch.rand(3, 200, 250)] ) out = model(x) out_script = scripted_model(x) self.assertTrue(out["pred_logits"].equal(out_script["pred_logits"])) self.assertTrue(out["pred_boxes"].equal(out_script["pred_boxes"])) def test_model_script_panoptic(self): model = detr_resnet50_panoptic(pretrained=False).eval() scripted_model = torch.jit.script(model) x = nested_tensor_from_tensor_list( [torch.rand(3, 200, 200), torch.rand(3, 200, 250)] ) out = model(x) out_script = scripted_model(x) self.assertTrue(out["pred_logits"].equal(out_script["pred_logits"])) self.assertTrue(out["pred_boxes"].equal(out_script["pred_boxes"])) self.assertTrue(out["pred_masks"].equal(out_script["pred_masks"])) def test_model_detection_different_inputs(self): model = detr_resnet50(pretrained=False).eval() # support NestedTensor x = nested_tensor_from_tensor_list( [torch.rand(3, 200, 200), torch.rand(3, 200, 250)] ) out = model(x) self.assertIn("pred_logits", out) # and 4d Tensor x = torch.rand(1, 3, 200, 200) out = model(x) self.assertIn("pred_logits", out) # and List[Tensor[C, H, W]] x = torch.rand(3, 200, 200) out = model([x]) self.assertIn("pred_logits", out) def test_warpped_model_script_detection(self): class WrappedDETR(nn.Module): def __init__(self, model): super().__init__() self.model = model def forward(self, inputs: List[Tensor]): sample = nested_tensor_from_tensor_list(inputs) return self.model(sample) model = detr_resnet50(pretrained=False) wrapped_model = WrappedDETR(model) wrapped_model.eval() scripted_model = torch.jit.script(wrapped_model) x = [torch.rand(3, 200, 200), torch.rand(3, 200, 250)] out = wrapped_model(x) out_script = scripted_model(x) self.assertTrue(out["pred_logits"].equal(out_script["pred_logits"])) self.assertTrue(out["pred_boxes"].equal(out_script["pred_boxes"])) @unittest.skipIf(onnxruntime is None, "ONNX Runtime unavailable") class ONNXExporterTester(unittest.TestCase): @classmethod def setUpClass(cls): torch.manual_seed(123) def run_model( self, model, inputs_list, tolerate_small_mismatch=False, do_constant_folding=True, dynamic_axes=None, output_names=None, input_names=None, ): model.eval() onnx_io = io.BytesIO() # export to onnx with the first input torch.onnx.export( model, inputs_list[0], onnx_io, do_constant_folding=do_constant_folding, opset_version=12, dynamic_axes=dynamic_axes, input_names=input_names, output_names=output_names, ) # validate the exported model with onnx runtime for test_inputs in inputs_list: with torch.no_grad(): if isinstance(test_inputs, torch.Tensor) or isinstance( test_inputs, list ): test_inputs = (nested_tensor_from_tensor_list(test_inputs),) test_ouputs = model(*test_inputs) if isinstance(test_ouputs, torch.Tensor): test_ouputs = (test_ouputs,) self.ort_validate( onnx_io, test_inputs, test_ouputs, tolerate_small_mismatch ) def ort_validate(self, onnx_io, inputs, outputs, tolerate_small_mismatch=False): inputs, _ = torch.jit._flatten(inputs) outputs, _ = torch.jit._flatten(outputs) def to_numpy(tensor): if tensor.requires_grad: return tensor.detach().cpu().numpy() else: return tensor.cpu().numpy() inputs = list(map(to_numpy, inputs)) outputs = list(map(to_numpy, outputs)) ort_session = onnxruntime.InferenceSession(onnx_io.getvalue()) # compute onnxruntime output prediction ort_inputs = dict( (ort_session.get_inputs()[i].name, inpt) for i, inpt in enumerate(inputs) ) # noqa: C402 ort_outs = ort_session.run(None, ort_inputs) for i in range(0, len(outputs)): try: torch.testing.assert_allclose( outputs[i], ort_outs[i], rtol=1e-03, atol=1e-05 ) except AssertionError as error: if tolerate_small_mismatch: self.assertIn("(0.00%)", str(error), str(error)) else: raise def test_model_onnx_detection(self): model = detr_resnet50(pretrained=False).eval() dummy_image = torch.ones(1, 3, 800, 800) * 0.3 model(dummy_image) # Test exported model on images of different size, or dummy input self.run_model( model, [(torch.rand(1, 3, 750, 800),)], input_names=["inputs"], output_names=["pred_logits", "pred_boxes"], tolerate_small_mismatch=True, ) @unittest.skip("CI doesn't have enough memory") def test_model_onnx_detection_panoptic(self): model = detr_resnet50_panoptic(pretrained=False).eval() dummy_image = torch.ones(1, 3, 800, 800) * 0.3 model(dummy_image) # Test exported model on images of different size, or dummy input self.run_model( model, [(torch.rand(1, 3, 750, 800),)], input_names=["inputs"], output_names=["pred_logits", "pred_boxes", "pred_masks"], tolerate_small_mismatch=True, ) if __name__ == "__main__": unittest.main()
d2go-main
projects_oss/detr/test_all.py
import logging import unittest import torch from d2go.config import CfgNode as CN from detectron2.checkpoint import DetectionCheckpointer from detectron2.modeling import BACKBONE_REGISTRY from detectron2.utils.file_io import PathManager from detr.backbone.deit import add_deit_backbone_config from detr.backbone.pit import add_pit_backbone_config logger = logging.getLogger(__name__) # avoid testing on sandcastle due to access to manifold USE_CUDA = torch.cuda.device_count() > 0 class TestTransformerBackbone(unittest.TestCase): @unittest.skipIf( not USE_CUDA, "avoid testing on sandcastle due to access to manifold" ) def test_deit_model(self): cfg = CN() cfg.MODEL = CN() add_deit_backbone_config(cfg) build_model = BACKBONE_REGISTRY.get("deit_d2go_model_wrapper") deit_models = { "8X-7-RM_4": 170, "DeiT-Tiny": 224, "DeiT-Small": 224, "32X-1-RM_2": 221, "8X-7": 160, "32X-1": 256, } deit_model_weights = { "8X-7-RM_4": "manifold://mobile_vision_workflows/tree/workflows/kyungminkim/20210511/deit_[model]deit_scaling_distill_[bs]128_[mcfg]8X-7-RM_4_.OIXarYpbZw/checkpoint_best.pth", "DeiT-Tiny": "manifold://mobile_vision_workflows/tree/workflows/cl114/DeiT-official-ckpt/deit_tiny_distilled_patch16_224-b40b3cf7.pth", "DeiT-Small": "manifold://mobile_vision_workflows/tree/workflows/cl114/DeiT-official-ckpt/deit_small_distilled_patch16_224-649709d9.pth", "32X-1-RM_2": "manifold://mobile_vision_workflows/tree/workflows/kyungminkim/20210511/deit_[model]deit_scaling_distill_[bs]64_[mcfg]32X-1-RM_2_.xusuFyNMdD/checkpoint_best.pth", "8X-7": "manifold://mobile_vision_workflows/tree/workflows/cl114/scaled_best/8X-7.pth", "32X-1": "manifold://mobile_vision_workflows/tree/workflows/cl114/scaled_best/32X-1.pth", } for model_name, org_size in deit_models.items(): print("model_name", model_name) cfg.MODEL.DEIT.MODEL_CONFIG = f"manifold://mobile_vision_workflows/tree/workflows/wbc/deit/model_cfgs/{model_name}.json" cfg.MODEL.DEIT.WEIGHTS = deit_model_weights[model_name] model = build_model(cfg, None) model.eval() for input_size_h in [org_size, 192, 224, 256, 320]: for input_size_w in [org_size, 192, 224, 256, 320]: x = torch.rand(1, 3, input_size_h, input_size_w) y = model(x) print(f"x.shape: {x.shape}, y.shape: {y.shape}") @unittest.skipIf( not USE_CUDA, "avoid testing on sandcastle due to access to manifold" ) def test_pit_model(self): cfg = CN() cfg.MODEL = CN() add_pit_backbone_config(cfg) build_model = BACKBONE_REGISTRY.get("pit_d2go_model_wrapper") pit_models = { "pit_ti_ours": 160, "pit_ti": 224, "pit_s_ours_v1": 256, "pit_s": 224, } pit_model_weights = { "pit_ti_ours": "manifold://mobile_vision_workflows/tree/workflows/kyungminkim/20210515/deit_[model]pit_scalable_distilled_[bs]128_[mcfg]pit_ti_ours_.HImkjNCpJI/checkpoint_best.pth", "pit_ti": "manifold://mobile_vision_workflows/tree/workflows/kyungminkim/20210515/deit_[model]pit_scalable_distilled_[bs]128_[mcfg]pit_ti_.QJeFNUfYOD/checkpoint_best.pth", "pit_s_ours_v1": "manifold://mobile_vision_workflows/tree/workflows/kyungminkim/20210515/deit_[model]pit_scalable_distilled_[bs]64_[mcfg]pit_s_ours_v1_.LXdwyBDaNY/checkpoint_best.pth", "pit_s": "manifold://mobile_vision_workflows/tree/workflows/kyungminkim/20210515/deit_[model]pit_scalable_distilled_[bs]128_[mcfg]pit_s_.zReQLPOuJe/checkpoint_best.pth", } for model_name, org_size in pit_models.items(): print("model_name", model_name) cfg.MODEL.PIT.MODEL_CONFIG = f"manifold://mobile_vision_workflows/tree/workflows/wbc/deit/model_cfgs/{model_name}.json" cfg.MODEL.PIT.WEIGHTS = pit_model_weights[model_name] cfg.MODEL.PIT.DILATED = True model = build_model(cfg, None) model.eval() for input_size_h in [org_size, 192, 224, 256, 320]: for input_size_w in [org_size, 192, 224, 256, 320]: x = torch.rand(1, 3, input_size_h, input_size_w) y = model(x) print(f"x.shape: {x.shape}, y.shape: {y.shape}")
d2go-main
projects_oss/detr/test_deit_backbone.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import unittest import torch from d2go.runner import create_runner from detr.util.misc import nested_tensor_from_tensor_list from fvcore.nn import flop_count_table, FlopCountAnalysis class Tester(unittest.TestCase): @staticmethod def _set_detr_cfg(cfg, enc_layers, dec_layers, num_queries, dim_feedforward): cfg.MODEL.META_ARCHITECTURE = "Detr" cfg.MODEL.DETR.NUM_OBJECT_QUERIES = num_queries cfg.MODEL.DETR.ENC_LAYERS = enc_layers cfg.MODEL.DETR.DEC_LAYERS = dec_layers cfg.MODEL.DETR.DEEP_SUPERVISION = False cfg.MODEL.DETR.DIM_FEEDFORWARD = dim_feedforward # 2048 def _assert_model_output(self, model, scripted_model): x = nested_tensor_from_tensor_list( [torch.rand(3, 200, 200), torch.rand(3, 200, 250)] ) out = model(x) out_script = scripted_model(x) self.assertTrue(out["pred_logits"].equal(out_script["pred_logits"])) self.assertTrue(out["pred_boxes"].equal(out_script["pred_boxes"])) def test_detr_res50_export(self): runner = create_runner("d2go.projects.detr.runner.DETRRunner") cfg = runner.get_default_cfg() cfg.MODEL.DEVICE = "cpu" # DETR self._set_detr_cfg(cfg, 6, 6, 100, 2048) # backbone cfg.MODEL.BACKBONE.NAME = "build_resnet_backbone" cfg.MODEL.RESNETS.DEPTH = 50 cfg.MODEL.RESNETS.STRIDE_IN_1X1 = False cfg.MODEL.RESNETS.OUT_FEATURES = ["res2", "res3", "res4", "res5"] # build model model = runner.build_model(cfg).eval() model = model.detr scripted_model = torch.jit.script(model) self._assert_model_output(model, scripted_model) def test_detr_fbnet_export(self): runner = create_runner("d2go.projects.detr.runner.DETRRunner") cfg = runner.get_default_cfg() cfg.MODEL.DEVICE = "cpu" # DETR self._set_detr_cfg(cfg, 3, 3, 50, 256) # backbone cfg.MODEL.BACKBONE.NAME = "FBNetV2C4Backbone" cfg.MODEL.FBNET_V2.ARCH = "FBNetV3_A_dsmask_C5" cfg.MODEL.FBNET_V2.WIDTH_DIVISOR = 8 cfg.MODEL.FBNET_V2.OUT_FEATURES = ["trunk4"] # build model model = runner.build_model(cfg).eval() model = model.detr print(model) scripted_model = torch.jit.script(model) self._assert_model_output(model, scripted_model) # print flops table = flop_count_table(FlopCountAnalysis(model, ([torch.rand(3, 224, 320)],))) print(table)
d2go-main
projects_oss/detr/test_detr_export.py
# ------------------------------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------------------------------ # Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 # ------------------------------------------------------------------------------------------------ import glob import os import torch from setuptools import find_packages, setup from torch.utils.cpp_extension import CppExtension, CUDA_HOME, CUDAExtension requirements = ["torch", "torchvision"] def get_extensions(): this_dir = os.path.dirname(os.path.abspath(__file__)) extensions_dir = os.path.join(this_dir, "detr/src") print(f"extensions_dir: {extensions_dir}") main_file = glob.glob(os.path.join(extensions_dir, "*.cpp")) source_cpu = glob.glob(os.path.join(extensions_dir, "cpu", "*.cpp")) source_cuda = glob.glob(os.path.join(extensions_dir, "cuda", "*.cu")) print(f"main_file: {main_file}") print(f"source_cpu: {source_cpu}") print(f"source_cuda: {source_cuda}") sources = main_file + source_cpu extension = CppExtension extra_compile_args = {"cxx": []} define_macros = [] if torch.cuda.is_available() and CUDA_HOME is not None: extension = CUDAExtension sources += source_cuda define_macros += [("WITH_CUDA", None)] extra_compile_args["nvcc"] = [ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] else: raise NotImplementedError("Cuda is not availabel") sources = [os.path.join(extensions_dir, s) for s in sources] include_dirs = [extensions_dir] ext_modules = [ extension( "detr._C", sources, include_dirs=include_dirs, define_macros=define_macros, extra_compile_args=extra_compile_args, ) ] return ext_modules if __name__ == "__main__": setup( name="detr", url="https://github.com/facebookresearch/d2go/detr", license="Apache-2.0", packages=find_packages(exclude=["test_all.py"]), package_data={"detr": ["LICENSE"]}, ext_modules=get_extensions(), cmdclass={"build_ext": torch.utils.cpp_extension.BuildExtension}, )
d2go-main
projects_oss/detr/setup.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # ------------------------------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------------------------------ # Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 # ------------------------------------------------------------------------------------------------ import io import unittest from functools import wraps import torch from detr.functions.ms_deform_attn_func import ( ms_deform_attn_core_pytorch, MSDeformAttnFunction, ) from torch.autograd import gradcheck USE_CUDA = torch.cuda.device_count() > 0 N, M, D = 1, 2, 2 Lq, L, P = 2, 2, 2 if USE_CUDA: shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long).cuda() level_start_index = torch.cat( (shapes.new_zeros((1,)), shapes.prod(1).cumsum(0)[:-1]) ) S = sum([(H * W).item() for H, W in shapes]) torch.manual_seed(3) class Tester(unittest.TestCase): @unittest.skipIf(not USE_CUDA, "CI does not have gpu") @torch.no_grad() def test_forward_equal_with_pytorch_double(self): value = torch.rand(N, S, M, D).cuda() * 0.01 sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda() attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5 attention_weights /= attention_weights.sum(-1, keepdim=True).sum( -2, keepdim=True ) im2col_step = 2 output_pytorch = ( ms_deform_attn_core_pytorch( value.double(), shapes, sampling_locations.double(), attention_weights.double(), ) .detach() .cpu() ) output_cuda = ( MSDeformAttnFunction.apply( value.double(), shapes, level_start_index, sampling_locations.double(), attention_weights.double(), im2col_step, ) .detach() .cpu() ) fwdok = torch.allclose(output_cuda, output_pytorch) max_abs_err = (output_cuda - output_pytorch).abs().max() max_rel_err = ( (output_cuda - output_pytorch).abs() / output_pytorch.abs() ).max() print( f"* {fwdok} test_forward_equal_with_pytorch_double: max_abs_err {max_abs_err:.2e} max_rel_err {max_rel_err:.2e}" ) @unittest.skipIf(not USE_CUDA, "CI does not have gpu") @torch.no_grad() def test_forward_equal_with_pytorch_float(self): value = torch.rand(N, S, M, D).cuda() * 0.01 sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda() attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5 attention_weights /= attention_weights.sum(-1, keepdim=True).sum( -2, keepdim=True ) im2col_step = 2 output_pytorch = ( ms_deform_attn_core_pytorch( value, shapes, sampling_locations, attention_weights ) .detach() .cpu() ) output_cuda = ( MSDeformAttnFunction.apply( value, shapes, level_start_index, sampling_locations, attention_weights, im2col_step, ) .detach() .cpu() ) fwdok = torch.allclose(output_cuda, output_pytorch, rtol=1e-2, atol=1e-3) max_abs_err = (output_cuda - output_pytorch).abs().max() max_rel_err = ( (output_cuda - output_pytorch).abs() / output_pytorch.abs() ).max() print( f"* {fwdok} test_forward_equal_with_pytorch_float: max_abs_err {max_abs_err:.2e} max_rel_err {max_rel_err:.2e}" ) @unittest.skipIf(not USE_CUDA, "CI does not have gpu") def test_gradient_numerical( self, channels=4, grad_value=True, grad_sampling_loc=True, grad_attn_weight=True ): value = torch.rand(N, S, M, channels).cuda() * 0.01 sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda() attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5 attention_weights /= attention_weights.sum(-1, keepdim=True).sum( -2, keepdim=True ) im2col_step = 2 func = MSDeformAttnFunction.apply value.requires_grad = grad_value sampling_locations.requires_grad = grad_sampling_loc attention_weights.requires_grad = grad_attn_weight gradok = gradcheck( func, ( value.double(), shapes, level_start_index, sampling_locations.double(), attention_weights.double(), im2col_step, ), ) print(f"* {gradok} test_gradient_numerical(D={channels})") if __name__ == "__main__": unittest.main()
d2go-main
projects_oss/detr/test_op.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import argparse import datetime import json import logging import os import random import time from datetime import timedelta from pathlib import Path import detr.util.misc as utils import numpy as np import torch import torch.distributed as dist import torch.multiprocessing as mp from detectron2.engine.launch import _find_free_port from detectron2.utils.file_io import PathManager from detr import datasets from detr.datasets import build_dataset, get_coco_api_from_dataset from detr.engine import evaluate, train_one_epoch from detr.models import build_model from torch.utils.data import DataLoader, DistributedSampler DEFAULT_TIMEOUT = timedelta(minutes=30) def get_args_parser(): parser = argparse.ArgumentParser("Set transformer detector", add_help=False) parser.add_argument("--lr", default=1e-4, type=float) parser.add_argument("--lr_backbone", default=1e-5, type=float) parser.add_argument("--batch_size", default=2, type=int) parser.add_argument("--weight_decay", default=1e-4, type=float) parser.add_argument("--epochs", default=300, type=int) parser.add_argument("--lr_drop", default=200, type=int) parser.add_argument( "--clip_max_norm", default=0.1, type=float, help="gradient clipping max norm" ) # Model parameters parser.add_argument( "--frozen_weights", type=str, default=None, help="Path to the pretrained model. If set, only the mask head will be trained", ) # * Backbone parser.add_argument( "--backbone", default="resnet50", type=str, help="Name of the convolutional backbone to use", ) parser.add_argument( "--dilation", action="store_true", help="If true, we replace stride with dilation in the last convolutional block (DC5)", ) parser.add_argument( "--position_embedding", default="sine", type=str, choices=("sine", "learned"), help="Type of positional embedding to use on top of the image features", ) # * Transformer parser.add_argument( "--enc_layers", default=6, type=int, help="Number of encoding layers in the transformer", ) parser.add_argument( "--dec_layers", default=6, type=int, help="Number of decoding layers in the transformer", ) parser.add_argument( "--dim_feedforward", default=2048, type=int, help="Intermediate size of the feedforward layers in the transformer blocks", ) parser.add_argument( "--hidden_dim", default=256, type=int, help="Size of the embeddings (dimension of the transformer)", ) parser.add_argument( "--dropout", default=0.1, type=float, help="Dropout applied in the transformer" ) parser.add_argument( "--nheads", default=8, type=int, help="Number of attention heads inside the transformer's attentions", ) parser.add_argument( "--num_queries", default=100, type=int, help="Number of query slots" ) parser.add_argument("--pre_norm", action="store_true") # * Segmentation parser.add_argument( "--masks", action="store_true", help="Train segmentation head if the flag is provided", ) # Loss parser.add_argument( "--no_aux_loss", dest="aux_loss", action="store_false", help="Disables auxiliary decoding losses (loss at each layer)", ) # * Matcher parser.add_argument( "--set_cost_class", default=1, type=float, help="Class coefficient in the matching cost", ) parser.add_argument( "--set_cost_bbox", default=5, type=float, help="L1 box coefficient in the matching cost", ) parser.add_argument( "--set_cost_giou", default=2, type=float, help="giou box coefficient in the matching cost", ) # * Loss coefficients parser.add_argument("--mask_loss_coef", default=1, type=float) parser.add_argument("--dice_loss_coef", default=1, type=float) parser.add_argument("--bbox_loss_coef", default=5, type=float) parser.add_argument("--giou_loss_coef", default=2, type=float) parser.add_argument( "--eos_coef", default=0.1, type=float, help="Relative classification weight of the no-object class", ) # dataset parameters parser.add_argument("--dataset_file", default="coco") parser.add_argument( "--ade_path", type=str, default="manifold://winvision/tree/detectron2/ADEChallengeData2016/", ) parser.add_argument( "--coco_path", type=str, default="manifold://fair_vision_data/tree/" ) parser.add_argument( "--coco_panoptic_path", type=str, default="manifold://fair_vision_data/tree/" ) parser.add_argument("--remove_difficult", action="store_true") parser.add_argument( "--output-dir", default="", help="path where to save, empty for no saving" ) parser.add_argument( "--device", default="cuda", help="device to use for training / testing" ) parser.add_argument("--seed", default=42, type=int) parser.add_argument("--resume", default="", help="resume from checkpoint") parser.add_argument( "--start_epoch", default=0, type=int, metavar="N", help="start epoch" ) parser.add_argument("--eval", action="store_true") parser.add_argument("--num_workers", default=2, type=int) # distributed training parameters parser.add_argument( "--num-gpus", type=int, default=8, help="number of gpus *per machine*" ) parser.add_argument( "--num-machines", type=int, default=1, help="total number of machines" ) parser.add_argument( "--machine-rank", type=int, default=0, help="the rank of this machine (unique per machine)", ) parser.add_argument( "--dist-url", default="env://", help="url used to set up distributed training" ) return parser def main(args): # utils.init_distributed_mode(args) if args.frozen_weights is not None: assert args.masks, "Frozen training is meant for segmentation only" print(args) device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) random.seed(seed) model, criterion, postprocessors = build_model(args) model.to(device) model_without_ddp = model if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) model_without_ddp = model.module n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print("number of params:", n_parameters) param_dicts = [ { "params": [ p for n, p in model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad ] }, { "params": [ p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad ], "lr": args.lr_backbone, }, ] optimizer = torch.optim.AdamW( param_dicts, lr=args.lr, weight_decay=args.weight_decay ) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop) dataset_train = build_dataset(image_set="train", args=args) dataset_val = build_dataset(image_set="val", args=args) if args.distributed: sampler_train = DistributedSampler(dataset_train) sampler_val = DistributedSampler(dataset_val, shuffle=False) else: sampler_train = torch.utils.data.RandomSampler(dataset_train) sampler_val = torch.utils.data.SequentialSampler(dataset_val) batch_sampler_train = torch.utils.data.BatchSampler( sampler_train, args.batch_size, drop_last=True ) data_loader_train = DataLoader( dataset_train, batch_sampler=batch_sampler_train, collate_fn=utils.collate_fn, num_workers=args.num_workers, ) data_loader_val = DataLoader( dataset_val, args.batch_size, sampler=sampler_val, drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers, ) if args.dataset_file == "coco_panoptic": # We also evaluate AP during panoptic training, on original coco DS coco_val = datasets.coco.build("val", args) base_ds = get_coco_api_from_dataset(coco_val) else: base_ds = get_coco_api_from_dataset(dataset_val) if args.frozen_weights is not None: checkpoint = torch.load(args.frozen_weights, map_location="cpu") model_without_ddp.detr.load_state_dict(checkpoint["model"]) if args.resume: if args.resume.startswith("https"): checkpoint = torch.hub.load_state_dict_from_url( args.resume, map_location="cpu", check_hash=True ) else: checkpoint = torch.load(args.resume, map_location="cpu") model_without_ddp.load_state_dict(checkpoint["model"]) if ( not args.eval and "optimizer" in checkpoint and "lr_scheduler" in checkpoint and "epoch" in checkpoint ): optimizer.load_state_dict(checkpoint["optimizer"]) lr_scheduler.load_state_dict(checkpoint["lr_scheduler"]) args.start_epoch = checkpoint["epoch"] + 1 if args.eval: test_stats, coco_evaluator = evaluate( model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir, ) if args.output_dir: with PathManager.open(os.path.join(args.output_dir, "eval.pth"), "wb") as f: utils.save_on_master(coco_evaluator.coco_eval["bbox"].eval, f) return print("Start training") start_time = time.time() for epoch in range(args.start_epoch, args.epochs): if args.distributed: sampler_train.set_epoch(epoch) train_stats = train_one_epoch( model, criterion, data_loader_train, optimizer, device, epoch, args.clip_max_norm, ) lr_scheduler.step() if args.output_dir: checkpoint_paths = [] # os.path.join(args.output_dir, 'checkpoint.pth')] # extra checkpoint before LR drop and every 10 epochs if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % 10 == 0: checkpoint_paths.append( os.path.join(args.output_dir, f"checkpoint{epoch:04}.pth") ) for checkpoint_path in checkpoint_paths: with PathManager.open(checkpoint_path, "wb") as f: if args.gpu == 0 and args.machine_rank == 0: utils.save_on_master( { "model": model_without_ddp.state_dict(), "optimizer": optimizer.state_dict(), "lr_scheduler": lr_scheduler.state_dict(), "epoch": epoch, "args": args, }, f, ) test_stats, coco_evaluator = evaluate( model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir, ) log_stats = { **{f"train_{k}": v for k, v in train_stats.items()}, **{f"test_{k}": v for k, v in test_stats.items()}, "epoch": epoch, "n_parameters": n_parameters, } if args.output_dir and utils.is_main_process(): with PathManager.open(os.path.join(args.output_dir, "log.txt"), "w") as f: f.write(json.dumps(log_stats) + "\n") # for evaluation logs if coco_evaluator is not None: PathManager.mkdirs(os.path.join(args.output_dir, "eval")) if "bbox" in coco_evaluator.coco_eval: filenames = ["latest.pth"] if epoch % 50 == 0: filenames.append(f"{epoch:03}.pth") for name in filenames: with PathManager.open( os.path.join(args.output_dir, "eval", name), "wb" ) as f: torch.save(coco_evaluator.coco_eval["bbox"].eval, f) total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print("Training time {}".format(total_time_str)) def launch( main_func, num_gpus_per_machine, num_machines=1, machine_rank=0, dist_url=None, args=(), timeout=DEFAULT_TIMEOUT, ): """ Launch multi-gpu or distributed training. This function must be called on all machines involved in the training. It will spawn child processes (defined by ``num_gpus_per_machine``) on each machine. Args: main_func: a function that will be called by `main_func(*args)` num_gpus_per_machine (int): number of GPUs per machine num_machines (int): the total number of machines machine_rank (int): the rank of this machine dist_url (str): url to connect to for distributed jobs, including protocol e.g. "tcp://127.0.0.1:8686". Can be set to "auto" to automatically select a free port on localhost timeout (timedelta): timeout of the distributed workers args (tuple): arguments passed to main_func """ world_size = num_machines * num_gpus_per_machine args[0].distributed = world_size > 1 if args[0].distributed: # https://github.com/pytorch/pytorch/pull/14391 # TODO prctl in spawned processes if dist_url == "auto": assert ( num_machines == 1 ), "dist_url=auto not supported in multi-machine jobs." port = _find_free_port() dist_url = f"tcp://127.0.0.1:{port}" if num_machines > 1 and dist_url.startswith("file://"): logger = logging.getLogger(__name__) logger.warning( "file:// is not a reliable init_method in multi-machine jobs. Prefer tcp://" ) mp.spawn( _distributed_worker, nprocs=num_gpus_per_machine, args=( main_func, world_size, num_gpus_per_machine, machine_rank, dist_url, args, timeout, ), daemon=False, ) else: main_func(*args) def synchronize(): """ Helper function to synchronize (barrier) among all processes when using distributed training """ if not dist.is_available(): return if not dist.is_initialized(): return world_size = dist.get_world_size() if world_size == 1: return dist.barrier() def _distributed_worker( local_rank, main_func, world_size, num_gpus_per_machine, machine_rank, dist_url, args, timeout=DEFAULT_TIMEOUT, ): assert ( torch.cuda.is_available() ), "cuda is not available. Please check your installation." global_rank = machine_rank * num_gpus_per_machine + local_rank try: dist.init_process_group( backend="NCCL", init_method=dist_url, world_size=world_size, rank=global_rank, timeout=timeout, ) except Exception as e: logger = logging.getLogger(__name__) logger.error("Process group URL: {}".format(dist_url)) raise e # synchronize is needed here to prevent a possible timeout after calling init_process_group # See: https://github.com/facebookresearch/maskrcnn-benchmark/issues/172 synchronize() assert num_gpus_per_machine <= torch.cuda.device_count() torch.cuda.set_device(local_rank) args[0].gpu = local_rank # Setup the local process group (which contains ranks within the same machine) # assert comm._LOCAL_PROCESS_GROUP is None # num_machines = world_size // num_gpus_per_machine # for i in range(num_machines): # ranks_on_i = list(range(i * num_gpus_per_machine, (i + 1) * num_gpus_per_machine)) # pg = dist.new_group(ranks_on_i) # if i == machine_rank: # comm._LOCAL_PROCESS_GROUP = pg main_func(*args) if __name__ == "__main__": parser = argparse.ArgumentParser( "DETR training and evaluation script", parents=[get_args_parser()] ) args = parser.parse_args() if args.output_dir: PathManager.mkdirs(args.output_dir) print("Command Line Args:", args) launch( main, args.num_gpus, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), )
d2go-main
projects_oss/detr/main.py
#!/usr/bin/env python3 from d2go.config import CfgNode as CN from d2go.data.dataset_mappers.build import D2GO_DATA_MAPPER_REGISTRY from d2go.data.dataset_mappers.d2go_dataset_mapper import D2GoDatasetMapper from d2go.runner import GeneralizedRCNNRunner from detr.backbone.deit import add_deit_backbone_config from detr.backbone.pit import add_pit_backbone_config from detr.d2 import add_detr_config, DetrDatasetMapper @D2GO_DATA_MAPPER_REGISTRY.register() class DETRDatasetMapper(DetrDatasetMapper, D2GoDatasetMapper): def __init__(self, cfg, is_train=True, image_loader=None, tfm_gens=None): self.image_loader = None self.backfill_size = False self.retry = 3 self.catch_exception = True self._error_count = 0 self._total_counts = 0 self._error_types = {} super().__init__(cfg, is_train) def _original_call(self, dataset_dict): return DetrDatasetMapper.__call__(self, dataset_dict) def __call__(self, dataset_dict): return D2GoDatasetMapper.__call__(self, dataset_dict) class DETRRunner(GeneralizedRCNNRunner): @classmethod def get_default_cfg(cls): _C = super().get_default_cfg() add_detr_config(_C) add_deit_backbone_config(_C) add_pit_backbone_config(_C) return _C
d2go-main
projects_oss/detr/detr/runner.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from . import datasets, models, util __all__ = ["models", "util", "datasets"]
d2go-main
projects_oss/detr/detr/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch from detr.models.backbone import Backbone, Joiner from detr.models.detr import DETR, PostProcess from detr.models.position_encoding import PositionEmbeddingSine from detr.models.segmentation import DETRsegm, PostProcessPanoptic from detr.models.transformer import Transformer dependencies = ["torch", "torchvision"] def _make_detr(backbone_name: str, dilation=False, num_classes=91, mask=False): hidden_dim = 256 backbone = Backbone( backbone_name, train_backbone=True, return_interm_layers=mask, dilation=dilation ) pos_enc = PositionEmbeddingSine(hidden_dim // 2, normalize=True) backbone_with_pos_enc = Joiner(backbone, pos_enc) backbone_with_pos_enc.num_channels = backbone.num_channels transformer = Transformer(d_model=hidden_dim, return_intermediate_dec=True) detr = DETR( backbone_with_pos_enc, transformer, num_classes=num_classes, num_queries=100 ) if mask: return DETRsegm(detr) return detr def detr_resnet50(pretrained=False, num_classes=91, return_postprocessor=False): """ DETR R50 with 6 encoder and 6 decoder layers. Achieves 42/62.4 AP/AP50 on COCO val5k. """ model = _make_detr("resnet50", dilation=False, num_classes=num_classes) if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/detr/detr-r50-e632da11.pth", map_location="cpu", check_hash=True, ) model.load_state_dict(checkpoint["model"]) if return_postprocessor: return model, PostProcess() return model def detr_resnet50_dc5(pretrained=False, num_classes=91, return_postprocessor=False): """ DETR-DC5 R50 with 6 encoder and 6 decoder layers. The last block of ResNet-50 has dilation to increase output resolution. Achieves 43.3/63.1 AP/AP50 on COCO val5k. """ model = _make_detr("resnet50", dilation=True, num_classes=num_classes) if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/detr/detr-r50-dc5-f0fb7ef5.pth", map_location="cpu", check_hash=True, ) model.load_state_dict(checkpoint["model"]) if return_postprocessor: return model, PostProcess() return model def detr_resnet101(pretrained=False, num_classes=91, return_postprocessor=False): """ DETR-DC5 R101 with 6 encoder and 6 decoder layers. Achieves 43.5/63.8 AP/AP50 on COCO val5k. """ model = _make_detr("resnet101", dilation=False, num_classes=num_classes) if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/detr/detr-r101-2c7b67e5.pth", map_location="cpu", check_hash=True, ) model.load_state_dict(checkpoint["model"]) if return_postprocessor: return model, PostProcess() return model def detr_resnet101_dc5(pretrained=False, num_classes=91, return_postprocessor=False): """ DETR-DC5 R101 with 6 encoder and 6 decoder layers. The last block of ResNet-101 has dilation to increase output resolution. Achieves 44.9/64.7 AP/AP50 on COCO val5k. """ model = _make_detr("resnet101", dilation=True, num_classes=num_classes) if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/detr/detr-r101-dc5-a2e86def.pth", map_location="cpu", check_hash=True, ) model.load_state_dict(checkpoint["model"]) if return_postprocessor: return model, PostProcess() return model def detr_resnet50_panoptic( pretrained=False, num_classes=250, threshold=0.85, return_postprocessor=False ): """ DETR R50 with 6 encoder and 6 decoder layers. Achieves 43.4 PQ on COCO val5k. threshold is the minimum confidence required for keeping segments in the prediction """ model = _make_detr("resnet50", dilation=False, num_classes=num_classes, mask=True) is_thing_map = {i: i <= 90 for i in range(250)} if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/detr/detr-r50-panoptic-00ce5173.pth", map_location="cpu", check_hash=True, ) model.load_state_dict(checkpoint["model"]) if return_postprocessor: return model, PostProcessPanoptic(is_thing_map, threshold=threshold) return model def detr_resnet50_dc5_panoptic( pretrained=False, num_classes=250, threshold=0.85, return_postprocessor=False ): """ DETR-DC5 R50 with 6 encoder and 6 decoder layers. The last block of ResNet-50 has dilation to increase output resolution. Achieves 44.6 on COCO val5k. threshold is the minimum confidence required for keeping segments in the prediction """ model = _make_detr("resnet50", dilation=True, num_classes=num_classes, mask=True) is_thing_map = {i: i <= 90 for i in range(250)} if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/detr/detr-r50-dc5-panoptic-da08f1b1.pth", map_location="cpu", check_hash=True, ) model.load_state_dict(checkpoint["model"]) if return_postprocessor: return model, PostProcessPanoptic(is_thing_map, threshold=threshold) return model def detr_resnet101_panoptic( pretrained=False, num_classes=250, threshold=0.85, return_postprocessor=False ): """ DETR-DC5 R101 with 6 encoder and 6 decoder layers. Achieves 45.1 PQ on COCO val5k. threshold is the minimum confidence required for keeping segments in the prediction """ model = _make_detr("resnet101", dilation=False, num_classes=num_classes, mask=True) is_thing_map = {i: i <= 90 for i in range(250)} if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/detr/detr-r101-panoptic-40021d53.pth", map_location="cpu", check_hash=True, ) model.load_state_dict(checkpoint["model"]) if return_postprocessor: return model, PostProcessPanoptic(is_thing_map, threshold=threshold) return model
d2go-main
projects_oss/detr/detr/hub.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Train and eval functions used in main.py """ import math import os import sys from typing import Iterable import detr.util.misc as utils import torch from detr.datasets.coco_eval import CocoEvaluator from detr.datasets.panoptic_eval import PanopticEvaluator def train_one_epoch( model: torch.nn.Module, criterion: torch.nn.Module, data_loader: Iterable, optimizer: torch.optim.Optimizer, device: torch.device, epoch: int, max_norm: float = 0, ): model.train() criterion.train() metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value:.6f}")) metric_logger.add_meter( "class_error", utils.SmoothedValue(window_size=1, fmt="{value:.2f}") ) header = "Epoch: [{}]".format(epoch) print_freq = 10 for samples, targets in metric_logger.log_every(data_loader, print_freq, header): samples = samples.to(device) targets = [{k: v.to(device) for k, v in t.items()} for t in targets] outputs = model(samples) loss_dict = criterion(outputs, targets) weight_dict = criterion.weight_dict losses = sum( loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict ) # reduce losses over all GPUs for logging purposes loss_dict_reduced = utils.reduce_dict(loss_dict) loss_dict_reduced_unscaled = { f"{k}_unscaled": v for k, v in loss_dict_reduced.items() } loss_dict_reduced_scaled = { k: v * weight_dict[k] for k, v in loss_dict_reduced.items() if k in weight_dict } losses_reduced_scaled = sum(loss_dict_reduced_scaled.values()) loss_value = losses_reduced_scaled.item() if not math.isfinite(loss_value): print("Loss is {}, stopping training".format(loss_value)) print(loss_dict_reduced) sys.exit(1) optimizer.zero_grad() losses.backward() if max_norm > 0: torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm) optimizer.step() metric_logger.update( loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled ) metric_logger.update(class_error=loss_dict_reduced["class_error"]) metric_logger.update(lr=optimizer.param_groups[0]["lr"]) # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) return {k: meter.global_avg for k, meter in metric_logger.meters.items()} @torch.no_grad() def evaluate( model, criterion, postprocessors, data_loader, base_ds, device, output_dir ): model.eval() criterion.eval() metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter( "class_error", utils.SmoothedValue(window_size=1, fmt="{value:.2f}") ) header = "Test:" iou_types = tuple(k for k in ("segm", "bbox") if k in postprocessors.keys()) coco_evaluator = CocoEvaluator(base_ds, iou_types) # coco_evaluator.coco_eval[iou_types[0]].params.iouThrs = [0, 0.1, 0.5, 0.75] panoptic_evaluator = None if "panoptic" in postprocessors.keys(): panoptic_evaluator = PanopticEvaluator( data_loader.dataset.ann_file, data_loader.dataset.ann_folder, output_dir=os.path.join(output_dir, "panoptic_eval"), ) for samples, targets in metric_logger.log_every(data_loader, 10, header): samples = samples.to(device) targets = [{k: v.to(device) for k, v in t.items()} for t in targets] outputs = model(samples) loss_dict = criterion(outputs, targets) weight_dict = criterion.weight_dict # reduce losses over all GPUs for logging purposes loss_dict_reduced = utils.reduce_dict(loss_dict) loss_dict_reduced_scaled = { k: v * weight_dict[k] for k, v in loss_dict_reduced.items() if k in weight_dict } loss_dict_reduced_unscaled = { f"{k}_unscaled": v for k, v in loss_dict_reduced.items() } metric_logger.update( loss=sum(loss_dict_reduced_scaled.values()), **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled, ) metric_logger.update(class_error=loss_dict_reduced["class_error"]) orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0) results = postprocessors["bbox"](outputs, orig_target_sizes) if "segm" in postprocessors.keys(): target_sizes = torch.stack([t["size"] for t in targets], dim=0) results = postprocessors["segm"]( results, outputs, orig_target_sizes, target_sizes ) res = { target["image_id"].item(): output for target, output in zip(targets, results) } if coco_evaluator is not None: coco_evaluator.update(res) if panoptic_evaluator is not None: res_pano = postprocessors["panoptic"]( outputs, target_sizes, orig_target_sizes ) for i, target in enumerate(targets): image_id = target["image_id"].item() file_name = f"{image_id:012d}.png" res_pano[i]["image_id"] = image_id res_pano[i]["file_name"] = file_name panoptic_evaluator.update(res_pano) # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) if coco_evaluator is not None: coco_evaluator.synchronize_between_processes() if panoptic_evaluator is not None: panoptic_evaluator.synchronize_between_processes() # accumulate predictions from all images if coco_evaluator is not None: coco_evaluator.accumulate() coco_evaluator.summarize() panoptic_res = None if panoptic_evaluator is not None: panoptic_res = panoptic_evaluator.summarize() stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()} if coco_evaluator is not None: if "bbox" in postprocessors.keys(): stats["coco_eval_bbox"] = coco_evaluator.coco_eval["bbox"].stats.tolist() if "segm" in postprocessors.keys(): stats["coco_eval_masks"] = coco_evaluator.coco_eval["segm"].stats.tolist() if panoptic_res is not None: stats["PQ_all"] = panoptic_res["All"] stats["PQ_th"] = panoptic_res["Things"] stats["PQ_st"] = panoptic_res["Stuff"] return stats, coco_evaluator
d2go-main
projects_oss/detr/detr/engine.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Misc functions, including distributed helpers. Mostly copy-paste from torchvision references. """ import datetime import os import pickle import subprocess import time from collections import defaultdict, deque from distutils.version import LooseVersion from typing import List, Optional import torch import torch.distributed as dist # needed due to empty tensor bug in pytorch and torchvision 0.5 import torchvision from torch import Tensor if LooseVersion(torchvision.__version__) < LooseVersion("0.7.0"): from torchvision.ops import _new_empty_tensor from torchvision.ops.misc import _output_size class SmoothedValue(object): """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20, fmt=None): if fmt is None: fmt = "{median:.4f} ({global_avg:.4f})" self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 self.fmt = fmt def update(self, value, n=1): self.deque.append(value) self.count += n self.total += value * n def synchronize_between_processes(self): """ Warning: does not synchronize the deque! """ if not is_dist_avail_and_initialized(): return t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda") dist.barrier() dist.all_reduce(t) t = t.tolist() self.count = int(t[0]) self.total = t[1] @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque), dtype=torch.float32) return d.mean().item() @property def global_avg(self): return self.total / self.count @property def max(self): return max(self.deque) @property def value(self): return self.deque[-1] def __str__(self): return self.fmt.format( median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value, ) def all_gather(data): """ Run all_gather on arbitrary picklable data (not necessarily tensors) Args: data: any picklable object Returns: list[data]: list of data gathered from each rank """ world_size = get_world_size() if world_size == 1: return [data] # serialized to a Tensor buffer = pickle.dumps(data) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to("cuda") # obtain Tensor size of each rank local_size = torch.tensor([tensor.numel()], device="cuda") size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)] dist.all_gather(size_list, local_size) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) # receiving Tensor from all ranks # we pad the tensor because torch all_gather does not support # gathering tensors of different shapes tensor_list = [] for _ in size_list: tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda")) if local_size != max_size: padding = torch.empty( size=(max_size - local_size,), dtype=torch.uint8, device="cuda" ) tensor = torch.cat((tensor, padding), dim=0) dist.all_gather(tensor_list, tensor) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) # noqa return data_list def reduce_dict(input_dict, average=True): """ Args: input_dict (dict): all the values will be reduced average (bool): whether to do average or sum Reduce the values in the dictionary from all processes so that all processes have the averaged results. Returns a dict with the same fields as input_dict, after reduction. """ world_size = get_world_size() if world_size < 2: return input_dict with torch.no_grad(): names = [] values = [] # sort the keys so that they are consistent across processes for k in sorted(input_dict.keys()): names.append(k) values.append(input_dict[k]) values = torch.stack(values, dim=0) dist.all_reduce(values) if average: values /= world_size reduced_dict = {k: v for k, v in zip(names, values)} return reduced_dict class MetricLogger(object): def __init__(self, delimiter="\t"): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter def update(self, **kwargs): for k, v in kwargs.items(): if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError( "'{}' object has no attribute '{}'".format(type(self).__name__, attr) ) def __str__(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append("{}: {}".format(name, str(meter))) return self.delimiter.join(loss_str) def synchronize_between_processes(self): for meter in self.meters.values(): meter.synchronize_between_processes() def add_meter(self, name, meter): self.meters[name] = meter def log_every(self, iterable, print_freq, header=None): i = 0 if not header: header = "" start_time = time.time() end = time.time() iter_time = SmoothedValue(fmt="{avg:.4f}") data_time = SmoothedValue(fmt="{avg:.4f}") space_fmt = ":" + str(len(str(len(iterable)))) + "d" if torch.cuda.is_available(): log_msg = self.delimiter.join( [ header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}", "max mem: {memory:.0f}", ] ) else: log_msg = self.delimiter.join( [ header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}", ] ) MB = 1024.0 * 1024.0 for obj in iterable: data_time.update(time.time() - end) yield obj iter_time.update(time.time() - end) if i % print_freq == 0 or i == len(iterable) - 1: eta_seconds = iter_time.global_avg * (len(iterable) - i) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if torch.cuda.is_available(): print( log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB, ) ) else: print( log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), ) ) i += 1 end = time.time() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print( "{} Total time: {} ({:.4f} s / it)".format( header, total_time_str, total_time / len(iterable) ) ) def get_sha(): cwd = os.path.dirname(os.path.abspath(__file__)) def _run(command): return subprocess.check_output(command, cwd=cwd).decode("ascii").strip() sha = "N/A" diff = "clean" branch = "N/A" try: sha = _run(["git", "rev-parse", "HEAD"]) subprocess.check_output(["git", "diff"], cwd=cwd) diff = _run(["git", "diff-index", "HEAD"]) diff = "has uncommited changes" if diff else "clean" branch = _run(["git", "rev-parse", "--abbrev-ref", "HEAD"]) except Exception: pass message = f"sha: {sha}, status: {diff}, branch: {branch}" return message def collate_fn(batch): batch = list(zip(*batch)) batch[0] = nested_tensor_from_tensor_list(batch[0]) return tuple(batch) def _max_by_axis(the_list: "List[List[int]]") -> "List[int]": maxes = the_list[0] for sublist in the_list[1:]: for index, item in enumerate(sublist): maxes[index] = max(maxes[index], item) return maxes class NestedTensor(object): def __init__(self, tensors, mask: Optional[Tensor]): self.tensors = tensors self.mask = mask def to(self, device: torch.device) -> "NestedTensor": cast_tensor = self.tensors.to(device) mask = self.mask if mask is not None: assert mask is not None cast_mask = mask.to(device) else: cast_mask = None return NestedTensor(cast_tensor, cast_mask) def decompose(self): return self.tensors, self.mask def __repr__(self): return str(self.tensors) def nested_tensor_from_tensor_list(tensor_list: List[Tensor]): # TODO make this more general if tensor_list[0].ndim == 3: if torchvision._is_tracing(): # nested_tensor_from_tensor_list() does not export well to ONNX # call _onnx_nested_tensor_from_tensor_list() instead return _onnx_nested_tensor_from_tensor_list(tensor_list) # TODO make it support different-sized images max_size = _max_by_axis([list(img.shape) for img in tensor_list]) # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list])) batch_shape = [len(tensor_list)] + max_size b, c, h, w = batch_shape dtype = tensor_list[0].dtype device = tensor_list[0].device tensor = torch.zeros(batch_shape, dtype=dtype, device=device) mask = torch.ones((b, h, w), dtype=torch.bool, device=device) for img, pad_img, m in zip(tensor_list, tensor, mask): pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) m[: img.shape[1], : img.shape[2]] = False else: raise ValueError("not supported") return NestedTensor(tensor, mask) # _onnx_nested_tensor_from_tensor_list() is an implementation of # nested_tensor_from_tensor_list() that is supported by ONNX tracing. @torch.jit.unused def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor: max_size = [] for i in range(tensor_list[0].dim()): max_size_i = torch.max( torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32) ).to(torch.int64) max_size.append(max_size_i) max_size = tuple(max_size) # work around for # pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) # m[: img.shape[1], :img.shape[2]] = False # which is not yet supported in onnx padded_imgs = [] padded_masks = [] for img in tensor_list: padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))] padded_img = torch.nn.functional.pad( img, (0, padding[2], 0, padding[1], 0, padding[0]) ) padded_imgs.append(padded_img) m = torch.zeros_like(img[0], dtype=torch.int, device=img.device) padded_mask = torch.nn.functional.pad( m, (0, padding[2], 0, padding[1]), "constant", 1 ) padded_masks.append(padded_mask.to(torch.bool)) tensor = torch.stack(padded_imgs) mask = torch.stack(padded_masks) return NestedTensor(tensor, mask=mask) def setup_for_distributed(is_master): """ This function disables printing when not in master process """ import builtins as __builtin__ builtin_print = __builtin__.print def print(*args, **kwargs): force = kwargs.pop("force", False) if is_master or force: builtin_print(*args, **kwargs) __builtin__.print = print def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_world_size(): if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size() def get_rank(): if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def is_main_process(): return get_rank() == 0 def save_on_master(*args, **kwargs): if is_main_process(): torch.save(*args, **kwargs) def init_distributed_mode(args): if "RANK" in os.environ and "WORLD_SIZE" in os.environ: args.rank = int(os.environ["RANK"]) args.world_size = int(os.environ["WORLD_SIZE"]) args.gpu = int(os.environ["LOCAL_RANK"]) elif "SLURM_PROCID" in os.environ: args.rank = int(os.environ["SLURM_PROCID"]) args.gpu = args.rank % torch.cuda.device_count() else: print("Not using distributed mode") args.distributed = False return args.distributed = True torch.cuda.set_device(args.gpu) args.dist_backend = "nccl" print( "| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True ) torch.distributed.init_process_group( backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank, ) torch.distributed.barrier() setup_for_distributed(args.rank == 0) @torch.no_grad() def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" if target.numel() == 0: return [torch.zeros([], device=output.device)] maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res def interpolate( input: "Tensor", size: "Optional[List[int]]" = None, scale_factor: "Optional[float]" = None, mode: str = "nearest", align_corners: "Optional[bool]" = None, ) -> "Tensor": """ Equivalent to nn.functional.interpolate, but with support for empty batch sizes. This will eventually be supported natively by PyTorch, and this class can go away. """ # if float(torchvision.__version__[:3]) < 0.7: if LooseVersion(torchvision.__version__) < LooseVersion("0.7.0"): if input.numel() > 0: return torch.nn.functional.interpolate( input, size, scale_factor, mode, align_corners ) output_shape = _output_size(2, input, size, scale_factor) output_shape = list(input.shape[:-2]) + list(output_shape) return _new_empty_tensor(input, output_shape) else: return torchvision.ops.misc.interpolate( input, size, scale_factor, mode, align_corners ) def inverse_sigmoid(x, eps=1e-5): x = x.clamp(min=0, max=1) x1 = x.clamp(min=eps) x2 = (1 - x).clamp(min=eps) return torch.log(x1 / x2)
d2go-main
projects_oss/detr/detr/util/misc.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Utilities for bounding box manipulation and GIoU. """ import torch from torchvision.ops.boxes import box_area def box_cxcywh_to_xyxy(x): x_c, y_c, w, h = x.unbind(-1) b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] return torch.stack(b, dim=-1) def box_xyxy_to_cxcywh(x): x0, y0, x1, y1 = x.unbind(-1) b = [(x0 + x1) / 2, (y0 + y1) / 2, (x1 - x0), (y1 - y0)] return torch.stack(b, dim=-1) # modified from torchvision to also return the union def box_iou(boxes1, boxes2): area1 = box_area(boxes1) area2 = box_area(boxes2) lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] wh = (rb - lt).clamp(min=0) # [N,M,2] inter = wh[:, :, 0] * wh[:, :, 1] # [N,M] union = area1[:, None] + area2 - inter iou = inter / union return iou, union def generalized_box_iou(boxes1, boxes2): """ Generalized IoU from https://giou.stanford.edu/ The boxes should be in [x0, y0, x1, y1] format Returns a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2) """ # degenerate boxes gives inf / nan results # so do an early check assert (boxes1[:, 2:] >= boxes1[:, :2]).all(), f"incorrect boxes, boxes1 {boxes1}" assert (boxes2[:, 2:] >= boxes2[:, :2]).all(), f"incorrect boxes, boxes2 {boxes2}" iou, union = box_iou(boxes1, boxes2) lt = torch.min(boxes1[:, None, :2], boxes2[:, :2]) rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:]) wh = (rb - lt).clamp(min=0) # [N,M,2] area = wh[:, :, 0] * wh[:, :, 1] return iou - (area - union) / area def masks_to_boxes(masks): """Compute the bounding boxes around the provided masks The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions. Returns a [N, 4] tensors, with the boxes in xyxy format """ if masks.numel() == 0: return torch.zeros((0, 4), device=masks.device) h, w = masks.shape[-2:] y = torch.arange(0, h, dtype=torch.float) x = torch.arange(0, w, dtype=torch.float) y, x = torch.meshgrid(y, x) x_mask = masks * x.unsqueeze(0) x_max = x_mask.flatten(1).max(-1)[0] x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0] y_mask = masks * y.unsqueeze(0) y_max = y_mask.flatten(1).max(-1)[0] y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0] return torch.stack([x_min, y_min, x_max, y_max], 1)
d2go-main
projects_oss/detr/detr/util/box_ops.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
d2go-main
projects_oss/detr/detr/util/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Plotting utilities to visualize training logs. """ from pathlib import Path, PurePath import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import torch def plot_logs( logs, fields=("class_error", "loss_bbox_unscaled", "mAP"), ewm_col=0, log_name="log.txt", ): """ Function to plot specific fields from training log(s). Plots both training and test results. :: Inputs - logs = list containing Path objects, each pointing to individual dir with a log file - fields = which results to plot from each log file - plots both training and test for each field. - ewm_col = optional, which column to use as the exponential weighted smoothing of the plots - log_name = optional, name of log file if different than default 'log.txt'. :: Outputs - matplotlib plots of results in fields, color coded for each log file. - solid lines are training results, dashed lines are test results. """ func_name = "plot_utils.py::plot_logs" # verify logs is a list of Paths (list[Paths]) or single Pathlib object Path, # convert single Path to list to avoid 'not iterable' error if not isinstance(logs, list): if isinstance(logs, PurePath): logs = [logs] print( f"{func_name} info: logs param expects a list argument, converted to list[Path]." ) else: raise ValueError( f"{func_name} - invalid argument for logs parameter.\n \ Expect list[Path] or single Path obj, received {type(logs)}" ) # Quality checks - verify valid dir(s), that every item in list is Path object, and that log_name exists in each dir for _, dir in enumerate(logs): if not isinstance(dir, PurePath): raise ValueError( f"{func_name} - non-Path object in logs argument of {type(dir)}: \n{dir}" ) if not dir.exists(): raise ValueError( f"{func_name} - invalid directory in logs argument:\n{dir}" ) # verify log_name exists fn = Path(dir / log_name) if not fn.exists(): print(f"-> missing {log_name}. Have you gotten to Epoch 1 in training?") print(f"--> full path of missing log file: {fn}") return # load log file(s) and plot dfs = [pd.read_json(Path(p) / log_name, lines=True) for p in logs] fig, axs = plt.subplots(ncols=len(fields), figsize=(16, 5)) for df, color in zip(dfs, sns.color_palette(n_colors=len(logs))): for j, field in enumerate(fields): if field == "mAP": coco_eval = ( pd.DataFrame(np.stack(df.test_coco_eval_bbox.dropna().values)[:, 1]) .ewm(com=ewm_col) .mean() ) axs[j].plot(coco_eval, c=color) else: df.interpolate().ewm(com=ewm_col).mean().plot( y=[f"train_{field}", f"test_{field}"], ax=axs[j], color=[color] * 2, style=["-", "--"], ) for ax, field in zip(axs, fields): ax.legend([Path(p).name for p in logs]) ax.set_title(field) def plot_precision_recall(files, naming_scheme="iter"): if naming_scheme == "exp_id": # name becomes exp_id names = [f.parts[-3] for f in files] elif naming_scheme == "iter": names = [f.stem for f in files] else: raise ValueError(f"not supported {naming_scheme}") fig, axs = plt.subplots(ncols=2, figsize=(16, 5)) for f, color, name in zip( files, sns.color_palette("Blues", n_colors=len(files)), names ): data = torch.load(f) # precision is n_iou, n_points, n_cat, n_area, max_det precision = data["precision"] recall = data["params"].recThrs scores = data["scores"] # take precision for all classes, all areas and 100 detections precision = precision[0, :, :, 0, -1].mean(1) scores = scores[0, :, :, 0, -1].mean(1) prec = precision.mean() rec = data["recall"][0, :, 0, -1].mean() print( f"{naming_scheme} {name}: mAP@50={prec * 100: 05.1f}, " + f"score={scores.mean():0.3f}, " + f"f1={2 * prec * rec / (prec + rec + 1e-8):0.3f}" ) axs[0].plot(recall, precision, c=color) axs[1].plot(recall, scores, c=color) axs[0].set_title("Precision / Recall") axs[0].legend(names) axs[1].set_title("Scores / Recall") axs[1].legend(names) return fig, axs
d2go-main
projects_oss/detr/detr/util/plot_utils.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ COCO dataset which returns image_id for evaluation. Mostly copy-paste from https://github.com/pytorch/vision/blob/13b35ff/references/detection/coco_utils.py """ import os from pathlib import Path import detr.datasets.transforms as T import torch import torch.utils.data import torchvision from detectron2.utils.file_io import PathManager from PIL import Image from pycocotools import mask as coco_mask class CocoDetection(torchvision.datasets.CocoDetection): def __init__(self, img_folder, ann_file, transforms, return_masks): ann_file = PathManager.get_local_path(ann_file) super(CocoDetection, self).__init__(img_folder, ann_file) self._transforms = transforms self.prepare = ConvertCocoPolysToMask(return_masks) def _load_image(self, id: int) -> Image.Image: path = self.coco.loadImgs(id)[0]["file_name"] with PathManager.open(os.path.join(self.root, path), "rb") as f: image = Image.open(f).convert("RGB") return image def __getitem__(self, idx): img, target = super(CocoDetection, self).__getitem__(idx) image_id = self.ids[idx] target = {"image_id": image_id, "annotations": target} img, target = self.prepare(img, target) if self._transforms is not None: img, target = self._transforms(img, target) return img, target def convert_coco_poly_to_mask(segmentations, height, width): masks = [] for polygons in segmentations: rles = coco_mask.frPyObjects(polygons, height, width) mask = coco_mask.decode(rles) if len(mask.shape) < 3: mask = mask[..., None] mask = torch.as_tensor(mask, dtype=torch.uint8) mask = mask.any(dim=2) masks.append(mask) if masks: masks = torch.stack(masks, dim=0) else: masks = torch.zeros((0, height, width), dtype=torch.uint8) return masks class ConvertCocoPolysToMask(object): def __init__(self, return_masks=False): self.return_masks = return_masks def __call__(self, image, target): w, h = image.size image_id = target["image_id"] image_id = torch.tensor([image_id]) anno = target["annotations"] anno = [obj for obj in anno if "iscrowd" not in obj or obj["iscrowd"] == 0] boxes = [obj["bbox"] for obj in anno] # guard against no boxes via resizing boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4) boxes[:, 2:] += boxes[:, :2] boxes[:, 0::2].clamp_(min=0, max=w) boxes[:, 1::2].clamp_(min=0, max=h) classes = [obj["category_id"] for obj in anno] classes = torch.tensor(classes, dtype=torch.int64) if self.return_masks: segmentations = [obj["segmentation"] for obj in anno] masks = convert_coco_poly_to_mask(segmentations, h, w) keypoints = None if anno and "keypoints" in anno[0]: keypoints = [obj["keypoints"] for obj in anno] keypoints = torch.as_tensor(keypoints, dtype=torch.float32) num_keypoints = keypoints.shape[0] if num_keypoints: keypoints = keypoints.view(num_keypoints, -1, 3) keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0]) boxes = boxes[keep] classes = classes[keep] if self.return_masks: masks = masks[keep] if keypoints is not None: keypoints = keypoints[keep] target = {} target["boxes"] = boxes target["labels"] = classes if self.return_masks: target["masks"] = masks target["image_id"] = image_id if keypoints is not None: target["keypoints"] = keypoints # for conversion to coco api area = torch.tensor([obj["area"] for obj in anno]) iscrowd = torch.tensor( [obj["iscrowd"] if "iscrowd" in obj else 0 for obj in anno] ) target["area"] = area[keep] target["iscrowd"] = iscrowd[keep] target["orig_size"] = torch.as_tensor([int(h), int(w)]) target["size"] = torch.as_tensor([int(h), int(w)]) return image, target def make_coco_transforms(image_set): normalize = T.Compose( [T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])] ) scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800] if image_set == "train": return T.Compose( [ T.RandomHorizontalFlip(), T.RandomSelect( T.RandomResize(scales, max_size=1333), T.Compose( [ T.RandomResize([400, 500, 600]), T.RandomSizeCrop(384, 600), T.RandomResize(scales, max_size=1333), ] ), ), normalize, ] ) if image_set == "val": return T.Compose( [ T.RandomResize([800], max_size=1333), normalize, ] ) raise ValueError(f"unknown {image_set}") def build(image_set, args): if "manifold" in args.coco_path: root = args.coco_path PATHS = { "train": ( os.path.join(root, "coco_train2017"), "manifold://fair_vision_data/tree/detectron2/json_dataset_annotations/coco/instances_train2017.json", ), "val": ( os.path.join(root, "coco_val2017"), "manifold://fair_vision_data/tree/detectron2/json_dataset_annotations/coco/instances_val2017.json", ), } else: root = Path(args.coco_path) assert root.exists(), f"provided COCO path {root} does not exist" mode = "instances" PATHS = { "train": ( root / "train2017", root / "annotations" / f"{mode}_train2017.json", ), "val": (root / "val2017", root / "annotations" / f"{mode}_val2017.json"), } img_folder, ann_file = PATHS[image_set] dataset = CocoDetection( img_folder, ann_file, transforms=make_coco_transforms(image_set), return_masks=args.masks, ) return dataset
d2go-main
projects_oss/detr/detr/datasets/coco.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Transforms and data augmentation for both image + bbox. """ import random import PIL import torch import torchvision.transforms as T import torchvision.transforms.functional as F from detr.util.box_ops import box_xyxy_to_cxcywh from detr.util.misc import interpolate def crop(image, target, region): cropped_image = F.crop(image, *region) target = target.copy() i, j, h, w = region # should we do something wrt the original size? target["size"] = torch.tensor([h, w]) fields = ["labels", "area", "iscrowd"] if "boxes" in target: boxes = target["boxes"] max_size = torch.as_tensor([w, h], dtype=torch.float32) cropped_boxes = boxes - torch.as_tensor([j, i, j, i]) cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size) cropped_boxes = cropped_boxes.clamp(min=0) area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1) target["boxes"] = cropped_boxes.reshape(-1, 4) target["area"] = area fields.append("boxes") if "masks" in target: # FIXME should we update the area here if there are no boxes? target["masks"] = target["masks"][:, i : i + h, j : j + w] fields.append("masks") # remove elements for which the boxes or masks that have zero area if "boxes" in target or "masks" in target: # favor boxes selection when defining which elements to keep # this is compatible with previous implementation if "boxes" in target: cropped_boxes = target["boxes"].reshape(-1, 2, 2) keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1) else: keep = target["masks"].flatten(1).any(1) for field in fields: target[field] = target[field][keep] return cropped_image, target def hflip(image, target): flipped_image = F.hflip(image) w, h = image.size target = target.copy() if "boxes" in target: boxes = target["boxes"] boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor( [-1, 1, -1, 1] ) + torch.as_tensor([w, 0, w, 0]) target["boxes"] = boxes if "masks" in target: target["masks"] = target["masks"].flip(-1) return flipped_image, target def resize(image, target, size, max_size=None): # size can be min_size (scalar) or (w, h) tuple def get_size_with_aspect_ratio(image_size, size, max_size=None): w, h = image_size if max_size is not None: min_original_size = float(min((w, h))) max_original_size = float(max((w, h))) if max_original_size / min_original_size * size > max_size: size = int(round(max_size * min_original_size / max_original_size)) if (w <= h and w == size) or (h <= w and h == size): return (h, w) if w < h: ow = size oh = int(size * h / w) else: oh = size ow = int(size * w / h) return (oh, ow) def get_size(image_size, size, max_size=None): if isinstance(size, (list, tuple)): return size[::-1] else: return get_size_with_aspect_ratio(image_size, size, max_size) size = get_size(image.size, size, max_size) rescaled_image = F.resize(image, size) if target is None: return rescaled_image, None ratios = tuple( float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size) ) ratio_width, ratio_height = ratios target = target.copy() if "boxes" in target: boxes = target["boxes"] scaled_boxes = boxes * torch.as_tensor( [ratio_width, ratio_height, ratio_width, ratio_height] ) target["boxes"] = scaled_boxes if "area" in target: area = target["area"] scaled_area = area * (ratio_width * ratio_height) target["area"] = scaled_area h, w = size target["size"] = torch.tensor([h, w]) if "masks" in target: target["masks"] = ( interpolate(target["masks"][:, None].float(), size, mode="nearest")[:, 0] > 0.5 ) return rescaled_image, target def pad(image, target, padding): # assumes that we only pad on the bottom right corners padded_image = F.pad(image, (0, 0, padding[0], padding[1])) if target is None: return padded_image, None target = target.copy() # should we do something wrt the original size? target["size"] = torch.tensor(padded_image.size[::-1]) if "masks" in target: target["masks"] = torch.nn.functional.pad( target["masks"], (0, padding[0], 0, padding[1]) ) return padded_image, target class RandomCrop(object): def __init__(self, size): self.size = size def __call__(self, img, target): region = T.RandomCrop.get_params(img, self.size) return crop(img, target, region) class RandomSizeCrop(object): def __init__(self, min_size: int, max_size: int): self.min_size = min_size self.max_size = max_size def __call__(self, img: PIL.Image.Image, target: dict): # noqa: P210 w = random.randint(self.min_size, min(img.width, self.max_size)) h = random.randint(self.min_size, min(img.height, self.max_size)) region = T.RandomCrop.get_params(img, [h, w]) return crop(img, target, region) class CenterCrop(object): def __init__(self, size): self.size = size def __call__(self, img, target): image_width, image_height = img.size crop_height, crop_width = self.size crop_top = int(round((image_height - crop_height) / 2.0)) crop_left = int(round((image_width - crop_width) / 2.0)) return crop(img, target, (crop_top, crop_left, crop_height, crop_width)) class RandomHorizontalFlip(object): def __init__(self, p=0.5): self.p = p def __call__(self, img, target): if random.random() < self.p: return hflip(img, target) return img, target class RandomResize(object): def __init__(self, sizes, max_size=None): assert isinstance(sizes, (list, tuple)) self.sizes = sizes self.max_size = max_size def __call__(self, img, target=None): size = random.choice(self.sizes) return resize(img, target, size, self.max_size) class RandomPad(object): def __init__(self, max_pad): self.max_pad = max_pad def __call__(self, img, target): pad_x = random.randint(0, self.max_pad) pad_y = random.randint(0, self.max_pad) return pad(img, target, (pad_x, pad_y)) class RandomSelect(object): """ Randomly selects between transforms1 and transforms2, with probability p for transforms1 and (1 - p) for transforms2 """ def __init__(self, transforms1, transforms2, p=0.5): self.transforms1 = transforms1 self.transforms2 = transforms2 self.p = p def __call__(self, img, target): if random.random() < self.p: return self.transforms1(img, target) return self.transforms2(img, target) class ToTensor(object): def __call__(self, img, target): return F.to_tensor(img), target class RandomErasing(object): def __init__(self, *args, **kwargs): self.eraser = T.RandomErasing(*args, **kwargs) def __call__(self, img, target): return self.eraser(img), target class Normalize(object): def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, image, target=None): image = F.normalize(image, mean=self.mean, std=self.std) if target is None: return image, None target = target.copy() h, w = image.shape[-2:] if "boxes" in target: boxes = target["boxes"] boxes = box_xyxy_to_cxcywh(boxes) boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32) target["boxes"] = boxes return image, target class Compose(object): def __init__(self, transforms): self.transforms = transforms def __call__(self, image, target): for t in self.transforms: image, target = t(image, target) return image, target def __repr__(self): format_string = self.__class__.__name__ + "(" for t in self.transforms: format_string += "\n" format_string += " {0}".format(t) format_string += "\n)" return format_string
d2go-main
projects_oss/detr/detr/datasets/transforms.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import json import os import detr.util.misc as utils from detectron2.utils.file_io import PathManager try: from panopticapi.evaluation import pq_compute except ImportError: pass class PanopticEvaluator(object): def __init__(self, ann_file, ann_folder, output_dir="panoptic_eval"): self.gt_json = ann_file self.gt_folder = ann_folder if utils.is_main_process(): if not PathManager.exists(output_dir): PathManager.mkdir(output_dir) self.output_dir = output_dir self.predictions = [] def update(self, predictions): for p in predictions: with PathManager.open( os.path.join(self.output_dir, p["file_name"]), "wb" ) as f: f.write(p.pop("png_string")) self.predictions += predictions def synchronize_between_processes(self): all_predictions = utils.all_gather(self.predictions) merged_predictions = [] for p in all_predictions: merged_predictions += p self.predictions = merged_predictions def summarize(self): if utils.is_main_process(): json_data = {"annotations": self.predictions} predictions_json = os.path.join(self.output_dir, "predictions.json") with PathManager.open(predictions_json, "w") as f: f.write(json.dumps(json_data)) return pq_compute( self.gt_json, predictions_json, gt_folder=self.gt_folder, pred_folder=self.output_dir, ) return None
d2go-main
projects_oss/detr/detr/datasets/panoptic_eval.py
import math import os import random import sys import numpy as np import skimage.morphology as morp import torch import torch.utils.data as data import torchvision import torchvision.transforms as transform from detectron2.utils.file_io import PathManager from PIL import Image, ImageFilter, ImageOps from .coco import make_coco_transforms class ADE20KParsing(torchvision.datasets.VisionDataset): def __init__(self, root, split, transforms=None): super(ADE20KParsing, self).__init__(root) # assert exists and prepare dataset automatically assert PathManager.exists(root), "Please setup the dataset" self.images, self.masks = _get_ade20k_pairs(root, split) assert len(self.images) == len(self.masks) if len(self.images) == 0: raise ( RuntimeError( "Found 0 images in subfolders of: \ " + root + "\n" ) ) self._transforms = transforms def _mask_transform(self, mask): target = np.array(mask).astype("int64") - 1 return target def __getitem__(self, index): with PathManager.open(self.images[index], "rb") as f: img = Image.open(f).convert("RGB") with PathManager.open(self.masks[index], "rb") as f: mask = Image.open(f).convert("P") w, h = img.size ## generating bbox and masks # get different classes mask = self._mask_transform(mask) classes = np.unique(mask) if -1 in classes: classes = classes[1:] segmasks = mask == classes[:, None, None] # find connected component detr_masks = [] labels = [] for i in range(len(classes)): mask = segmasks[i] mclass = classes[i] connected, nslice = morp.label( mask, connectivity=2, background=0, return_num=True ) for j in range(1, nslice + 1): detr_masks.append(connected == j) labels.append(mclass) target = {} target["image_id"] = torch.tensor( int(os.path.basename(self.images[index])[10:-4]) ) if len(detr_masks) > 0: target["masks"] = torch.as_tensor( np.stack(detr_masks, axis=0), dtype=torch.uint8 ) target["boxes"] = masks_to_boxes(target["masks"]) else: target["masks"] = torch.as_tensor(detr_masks, dtype=torch.uint8) target["boxes"] = target["masks"] target["labels"] = torch.tensor(labels) target["orig_size"] = torch.as_tensor([int(h), int(w)]) target["size"] = torch.as_tensor([int(h), int(w)]) if self._transforms is not None: img, target = self._transforms(img, target) return img, target def __len__(self): return len(self.images) @property def pred_offset(self): return 1 def masks_to_boxes(masks): """Compute the bounding boxes around the provided masks The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions. Returns a [N, 4] tensors, with the boxes in xyxy format """ if masks.numel() == 0: return torch.zeros((0, 4), device=masks.device) h, w = masks.shape[-2:] y = torch.arange(0, h, dtype=torch.float) x = torch.arange(0, w, dtype=torch.float) y, x = torch.meshgrid(y, x) x_mask = masks * x.unsqueeze(0) x_max = x_mask.flatten(1).max(-1)[0] x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0] y_mask = masks * y.unsqueeze(0) y_max = y_mask.flatten(1).max(-1)[0] y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0] return torch.stack([x_min, y_min, x_max, y_max], 1) def _get_ade20k_pairs(folder, split="train"): def get_path_pairs(img_folder, mask_folder): img_paths = [] mask_paths = [] print("Before listing", img_folder) filenames = PathManager.ls(img_folder) for filename in filenames: print("found: ", filename) basename, _ = os.path.splitext(filename) if filename.endswith(".jpg"): imgpath = os.path.join(img_folder, filename) maskname = basename + ".png" maskpath = os.path.join(mask_folder, maskname) img_paths.append(imgpath) mask_paths.append(maskpath) # if PathManager.isfile(maskpath): # else: # print('cannot find the mask:', maskpath) return img_paths, mask_paths if split == "train": img_folder = os.path.join(folder, "images/training") mask_folder = os.path.join(folder, "annotations/training") img_paths, mask_paths = get_path_pairs(img_folder, mask_folder) print("len(img_paths):", len(img_paths)) assert len(img_paths) == 20210 elif split == "val": img_folder = os.path.join(folder, "images/validation") mask_folder = os.path.join(folder, "annotations/validation") img_paths, mask_paths = get_path_pairs(img_folder, mask_folder) assert len(img_paths) == 2000 else: assert split == "trainval" train_img_folder = os.path.join(folder, "images/training") train_mask_folder = os.path.join(folder, "annotations/training") val_img_folder = os.path.join(folder, "images/validation") val_mask_folder = os.path.join(folder, "annotations/validation") train_img_paths, train_mask_paths = get_path_pairs( train_img_folder, train_mask_folder ) val_img_paths, val_mask_paths = get_path_pairs(val_img_folder, val_mask_folder) img_paths = train_img_paths + val_img_paths mask_paths = train_mask_paths + val_mask_paths assert len(img_paths) == 22210 return img_paths, mask_paths def build(image_set, args): dataset = ADE20KParsing( args.ade_path, image_set, transforms=make_coco_transforms(image_set) ) return dataset
d2go-main
projects_oss/detr/detr/datasets/ade.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch.utils.data import torchvision from .ade import build as build_ade from .coco import build as build_coco def get_coco_api_from_dataset(dataset): for _ in range(10): # if isinstance(dataset, torchvision.datasets.CocoDetection): # break if isinstance(dataset, torch.utils.data.Subset): dataset = dataset.dataset if isinstance(dataset, torchvision.datasets.CocoDetection): return dataset.coco def build_dataset(image_set, args): if args.dataset_file == "coco": dataset = build_coco(image_set, args) elif args.dataset_file == "coco_panoptic": # to avoid making panopticapi required for coco from .coco_panoptic import build as build_coco_panoptic dataset = build_coco_panoptic(image_set, args) elif args.dataset_file == "ade": dataset = build_ade(image_set, args) else: raise ValueError(f"dataset {args.dataset_file} not supported") return dataset
d2go-main
projects_oss/detr/detr/datasets/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ COCO evaluator that works in distributed mode. Mostly copy-paste from https://github.com/pytorch/vision/blob/edfd5a7/references/detection/coco_eval.py The difference is that there is less copy-pasting from pycocotools in the end of the file, as python3 can suppress prints with contextlib """ import contextlib import copy import os import numpy as np import pycocotools.mask as mask_util import torch from detr.util.misc import all_gather from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval class CocoEvaluator(object): def __init__(self, coco_gt, iou_types): assert isinstance(iou_types, (list, tuple)) coco_gt = copy.deepcopy(coco_gt) self.coco_gt = coco_gt self.iou_types = iou_types self.coco_eval = {} for iou_type in iou_types: self.coco_eval[iou_type] = COCOeval(coco_gt, iouType=iou_type) self.img_ids = [] self.eval_imgs = {k: [] for k in iou_types} def update(self, predictions): img_ids = list(np.unique(list(predictions.keys()))) self.img_ids.extend(img_ids) for iou_type in self.iou_types: results = self.prepare(predictions, iou_type) # suppress pycocotools prints with open(os.devnull, "w") as devnull: with contextlib.redirect_stdout(devnull): coco_dt = COCO.loadRes(self.coco_gt, results) if results else COCO() coco_eval = self.coco_eval[iou_type] coco_eval.cocoDt = coco_dt coco_eval.params.imgIds = list(img_ids) img_ids, eval_imgs = evaluate(coco_eval) self.eval_imgs[iou_type].append(eval_imgs) def synchronize_between_processes(self): for iou_type in self.iou_types: self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2) create_common_coco_eval( self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type] ) def accumulate(self): for coco_eval in self.coco_eval.values(): coco_eval.accumulate() def summarize(self): for iou_type, coco_eval in self.coco_eval.items(): print("IoU metric: {}".format(iou_type)) coco_eval.summarize() def prepare(self, predictions, iou_type): if iou_type == "bbox": return self.prepare_for_coco_detection(predictions) elif iou_type == "segm": return self.prepare_for_coco_segmentation(predictions) elif iou_type == "keypoints": return self.prepare_for_coco_keypoint(predictions) else: raise ValueError("Unknown iou type {}".format(iou_type)) def prepare_for_coco_detection(self, predictions): coco_results = [] for original_id, prediction in predictions.items(): if len(prediction) == 0: continue boxes = prediction["boxes"] boxes = convert_to_xywh(boxes).tolist() scores = prediction["scores"].tolist() labels = prediction["labels"].tolist() coco_results.extend( [ { "image_id": original_id, "category_id": labels[k], "bbox": box, "score": scores[k], } for k, box in enumerate(boxes) ] ) return coco_results def prepare_for_coco_segmentation(self, predictions): coco_results = [] for original_id, prediction in predictions.items(): if len(prediction) == 0: continue scores = prediction["scores"] labels = prediction["labels"] masks = prediction["masks"] masks = masks > 0.5 scores = prediction["scores"].tolist() labels = prediction["labels"].tolist() rles = [ mask_util.encode( np.array(mask[0, :, :, np.newaxis], dtype=np.uint8, order="F") )[0] for mask in masks ] for rle in rles: rle["counts"] = rle["counts"].decode("utf-8") coco_results.extend( [ { "image_id": original_id, "category_id": labels[k], "segmentation": rle, "score": scores[k], } for k, rle in enumerate(rles) ] ) return coco_results def prepare_for_coco_keypoint(self, predictions): coco_results = [] for original_id, prediction in predictions.items(): if len(prediction) == 0: continue boxes = prediction["boxes"] boxes = convert_to_xywh(boxes).tolist() scores = prediction["scores"].tolist() labels = prediction["labels"].tolist() keypoints = prediction["keypoints"] keypoints = keypoints.flatten(start_dim=1).tolist() coco_results.extend( [ { "image_id": original_id, "category_id": labels[k], "keypoints": keypoint, "score": scores[k], } for k, keypoint in enumerate(keypoints) ] ) return coco_results def convert_to_xywh(boxes): xmin, ymin, xmax, ymax = boxes.unbind(1) return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1) def merge(img_ids, eval_imgs): all_img_ids = all_gather(img_ids) all_eval_imgs = all_gather(eval_imgs) merged_img_ids = [] for p in all_img_ids: merged_img_ids.extend(p) merged_eval_imgs = [] for p in all_eval_imgs: merged_eval_imgs.append(p) merged_img_ids = np.array(merged_img_ids) merged_eval_imgs = np.concatenate(merged_eval_imgs, 2) # keep only unique (and in sorted order) images merged_img_ids, idx = np.unique(merged_img_ids, return_index=True) merged_eval_imgs = merged_eval_imgs[..., idx] return merged_img_ids, merged_eval_imgs def create_common_coco_eval(coco_eval, img_ids, eval_imgs): img_ids, eval_imgs = merge(img_ids, eval_imgs) img_ids = list(img_ids) eval_imgs = list(eval_imgs.flatten()) coco_eval.evalImgs = eval_imgs coco_eval.params.imgIds = img_ids coco_eval._paramsEval = copy.deepcopy(coco_eval.params) ################################################################# # From pycocotools, just removed the prints and fixed # a Python3 bug about unicode not defined ################################################################# def evaluate(self): """ Run per image evaluation on given images and store results (a list of dict) in self.evalImgs :return: None """ # tic = time.time() # print('Running per image evaluation...') p = self.params # add backward compatibility if useSegm is specified in params if p.useSegm is not None: p.iouType = "segm" if p.useSegm == 1 else "bbox" print( "useSegm (deprecated) is not None. Running {} evaluation".format(p.iouType) ) # print('Evaluate annotation type *{}*'.format(p.iouType)) p.imgIds = list(np.unique(p.imgIds)) if p.useCats: p.catIds = list(np.unique(p.catIds)) p.maxDets = sorted(p.maxDets) self.params = p self._prepare() # loop through images, area range, max detection number catIds = p.catIds if p.useCats else [-1] if p.iouType == "segm" or p.iouType == "bbox": computeIoU = self.computeIoU elif p.iouType == "keypoints": computeIoU = self.computeOks self.ious = { (imgId, catId): computeIoU(imgId, catId) for imgId in p.imgIds for catId in catIds } evaluateImg = self.evaluateImg maxDet = p.maxDets[-1] evalImgs = [ evaluateImg(imgId, catId, areaRng, maxDet) for catId in catIds for areaRng in p.areaRng for imgId in p.imgIds ] # this is NOT in the pycocotools code, but could be done outside evalImgs = np.asarray(evalImgs).reshape(len(catIds), len(p.areaRng), len(p.imgIds)) self._paramsEval = copy.deepcopy(self.params) # toc = time.time() # print('DONE (t={:0.2f}s).'.format(toc-tic)) return p.imgIds, evalImgs ################################################################# # end of straight copy from pycocotools, just removing the prints #################################################################
d2go-main
projects_oss/detr/detr/datasets/coco_eval.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import json import os from pathlib import Path import numpy as np import torch from detectron2.utils.file_io import PathManager from detr.util.box_ops import masks_to_boxes from panopticapi.utils import rgb2id from PIL import Image from .coco import make_coco_transforms class CocoPanoptic: def __init__( self, img_folder, ann_folder, ann_file, transforms=None, return_masks=True ): with PathManager.open(ann_file, "r") as f: self.coco = json.load(f) # sort 'images' field so that they are aligned with 'annotations' # i.e., in alphabetical order self.coco["images"] = sorted(self.coco["images"], key=lambda x: x["id"]) # sanity check if "annotations" in self.coco: for img, ann in zip(self.coco["images"], self.coco["annotations"]): assert img["file_name"][:-4] == ann["file_name"][:-4] self.img_folder = img_folder self.ann_folder = ann_folder self.ann_file = ann_file self.transforms = transforms self.return_masks = return_masks def __getitem__(self, idx): ann_info = ( self.coco["annotations"][idx] if "annotations" in self.coco else self.coco["images"][idx] ) img_path = os.path.join( self.img_folder, ann_info["file_name"].replace(".png", ".jpg") ) ann_path = os.path.join(self.ann_folder, ann_info["file_name"]) with PathManager.open(img_path, "rb") as f: img = Image.open(f).convert("RGB") w, h = img.size if "segments_info" in ann_info: with PathManager.open(ann_path, "rb") as f: masks = np.asarray(Image.open(f), dtype=np.uint32) masks = rgb2id(masks) ids = np.array([ann["id"] for ann in ann_info["segments_info"]]) masks = masks == ids[:, None, None] masks = torch.as_tensor(masks, dtype=torch.uint8) labels = torch.tensor( [ann["category_id"] for ann in ann_info["segments_info"]], dtype=torch.int64, ) target = {} target["image_id"] = torch.tensor( [ann_info["image_id"] if "image_id" in ann_info else ann_info["id"]] ) if self.return_masks: target["masks"] = masks target["labels"] = labels target["boxes"] = masks_to_boxes(masks) target["size"] = torch.as_tensor([int(h), int(w)]) target["orig_size"] = torch.as_tensor([int(h), int(w)]) if "segments_info" in ann_info: for name in ["iscrowd", "area"]: target[name] = torch.tensor( [ann[name] for ann in ann_info["segments_info"]] ) if self.transforms is not None: img, target = self.transforms(img, target) return img, target def __len__(self): return len(self.coco["images"]) def get_height_and_width(self, idx): img_info = self.coco["images"][idx] height = img_info["height"] width = img_info["width"] return height, width def build(image_set, args): if "manifold" in args.coco_path: root = args.coco_path PATHS = { "train": ( os.path.join(root, "coco_train2017"), "manifold://fair_vision_data/tree/detectron2/json_dataset_annotations/coco/panoptic_train2017.json", ), "val": ( os.path.join(root, "coco_val2017"), "manifold://fair_vision_data/tree/detectron2/json_dataset_annotations/coco/panoptic_val2017.json", ), } img_folder_path, ann_file = PATHS[image_set] ann_folder = os.path.join(root, f"coco_panoptic_{image_set}2017") else: img_folder_root = Path(args.coco_path) ann_folder_root = Path(args.coco_panoptic_path) assert ( img_folder_root.exists() ), f"provided COCO path {img_folder_root} does not exist" assert ( ann_folder_root.exists() ), f"provided COCO path {ann_folder_root} does not exist" mode = "panoptic" PATHS = { "train": ("train2017", Path("annotations") / f"{mode}_train2017.json"), "val": ("val2017", Path("annotations") / f"{mode}_val2017.json"), } img_folder, ann_file = PATHS[image_set] img_folder_path = img_folder_root / img_folder ann_folder = ann_folder_root / f"{mode}_{img_folder}" ann_file = ann_folder_root / ann_file dataset = CocoPanoptic( img_folder_path, ann_folder, ann_file, transforms=make_coco_transforms(image_set), return_masks=args.masks, ) return dataset
d2go-main
projects_oss/detr/detr/datasets/coco_panoptic.py
from typing import Dict import numpy as np import torch import torch.nn.functional as F from detectron2.modeling import build_backbone from detectron2.utils.registry import Registry from detr.models.backbone import Joiner from detr.models.position_encoding import PositionEmbeddingSine from detr.util.misc import NestedTensor from torch import nn DETR_MODEL_REGISTRY = Registry("DETR_MODEL") def build_detr_backbone(cfg): if "resnet" in cfg.MODEL.BACKBONE.NAME.lower(): d2_backbone = ResNetMaskedBackbone(cfg) elif "fbnet" in cfg.MODEL.BACKBONE.NAME.lower(): d2_backbone = FBNetMaskedBackbone(cfg) elif cfg.MODEL.BACKBONE.SIMPLE: d2_backbone = SimpleSingleStageBackbone(cfg) else: raise NotImplementedError N_steps = cfg.MODEL.DETR.HIDDEN_DIM // 2 centered_position_encoding = cfg.MODEL.DETR.CENTERED_POSITION_ENCODIND backbone = Joiner( d2_backbone, PositionEmbeddingSine( N_steps, normalize=True, centered=centered_position_encoding ), ) backbone.num_channels = d2_backbone.num_channels return backbone def build_detr_model(cfg): name = cfg.MODEL.DETR.NAME return DETR_MODEL_REGISTRY.get(name)(cfg) class ResNetMaskedBackbone(nn.Module): """This is a thin wrapper around D2's backbone to provide padding masking""" def __init__(self, cfg): super().__init__() self.backbone = build_backbone(cfg) backbone_shape = self.backbone.output_shape() if cfg.MODEL.DETR.NUM_FEATURE_LEVELS > 1: self.strides = [8, 16, 32] else: self.strides = [32] if cfg.MODEL.RESNETS.RES5_DILATION == 2: # fix dilation from d2 self.backbone.stages[-1][0].conv2.dilation = (1, 1) self.backbone.stages[-1][0].conv2.padding = (1, 1) self.strides[-1] = self.strides[-1] // 2 self.feature_strides = [backbone_shape[f].stride for f in backbone_shape.keys()] self.num_channels = [backbone_shape[k].channels for k in backbone_shape.keys()] def forward(self, tensor_list: NestedTensor): xs = self.backbone(tensor_list.tensors) out: Dict[str, NestedTensor] = {} for name, x in xs.items(): m = tensor_list.mask assert m is not None mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0] out[name] = NestedTensor(x, mask) return out class FBNetMaskedBackbone(ResNetMaskedBackbone): """This is a thin wrapper around D2's backbone to provide padding masking""" def __init__(self, cfg): nn.Module.__init__(self) self.backbone = build_backbone(cfg) self.out_features = cfg.MODEL.FBNET_V2.OUT_FEATURES self.feature_strides = list(self.backbone._out_feature_strides.values()) self.num_channels = [ self.backbone._out_feature_channels[k] for k in self.out_features ] self.strides = [ self.backbone._out_feature_strides[k] for k in self.out_features ] class SimpleSingleStageBackbone(ResNetMaskedBackbone): """This is a simple wrapper for single stage backbone, please set the required configs: cfg.MODEL.BACKBONE.SIMPLE == True, cfg.MODEL.BACKBONE.STRIDE, cfg.MODEL.BACKBONE.CHANNEL """ def __init__(self, cfg): nn.Module.__init__(self) self.backbone = build_backbone(cfg) self.out_features = ["out"] assert cfg.MODEL.BACKBONE.SIMPLE is True self.feature_strides = [cfg.MODEL.BACKBONE.STRIDE] self.num_channels = [cfg.MODEL.BACKBONE.CHANNEL] self.strides = [cfg.MODEL.BACKBONE.STRIDE]
d2go-main
projects_oss/detr/detr/models/build.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ DETR model and criterion classes. """ import torch import torch.nn.functional as F from detectron2.config import configurable from detr.util import box_ops from detr.util.misc import ( accuracy, get_world_size, interpolate, is_dist_avail_and_initialized, nested_tensor_from_tensor_list, NestedTensor, ) from torch import nn from .backbone import build_backbone from .build import build_detr_backbone, DETR_MODEL_REGISTRY from .matcher import build_matcher from .segmentation import ( DETRsegm, dice_loss, PostProcessPanoptic, PostProcessSegm, sigmoid_focal_loss, ) from .setcriterion import SetCriterion from .transformer import build_transformer, Transformer @DETR_MODEL_REGISTRY.register() class DETR(nn.Module): """This is the DETR module that performs object detection""" @configurable def __init__( self, backbone, transformer, num_classes, num_queries, aux_loss=False, use_focal_loss=False, query_embed=None, ): """Initializes the model. Parameters: backbone: torch module of the backbone to be used. See backbone.py transformer: torch module of the transformer architecture. See transformer.py num_classes: number of object classes num_queries: number of object queries, ie detection slot. This is the maximal number of objects DETR can detect in a single image. For COCO, we recommend 100 queries. aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used. """ super().__init__() self.num_queries = num_queries self.transformer = transformer hidden_dim = transformer.d_model self.class_embed = nn.Linear( hidden_dim, num_classes if use_focal_loss else num_classes + 1 ) self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3) self.query_embed = ( query_embed if query_embed is not None else nn.Embedding(num_queries, hidden_dim) ) self.input_proj = nn.Conv2d( backbone.num_channels[-1], hidden_dim, kernel_size=1 ) self.backbone = backbone self.aux_loss = aux_loss @classmethod def from_config(cls, cfg): num_classes = cfg.MODEL.DETR.NUM_CLASSES hidden_dim = cfg.MODEL.DETR.HIDDEN_DIM num_queries = cfg.MODEL.DETR.NUM_OBJECT_QUERIES # Transformer parameters: nheads = cfg.MODEL.DETR.NHEADS dropout = cfg.MODEL.DETR.DROPOUT dim_feedforward = cfg.MODEL.DETR.DIM_FEEDFORWARD enc_layers = cfg.MODEL.DETR.ENC_LAYERS dec_layers = cfg.MODEL.DETR.DEC_LAYERS pre_norm = cfg.MODEL.DETR.PRE_NORM # Loss parameters: deep_supervision = cfg.MODEL.DETR.DEEP_SUPERVISION use_focal_loss = cfg.MODEL.DETR.USE_FOCAL_LOSS backbone = build_detr_backbone(cfg) transformer = Transformer( d_model=hidden_dim, dropout=dropout, nhead=nheads, dim_feedforward=dim_feedforward, num_encoder_layers=enc_layers, num_decoder_layers=dec_layers, normalize_before=pre_norm, return_intermediate_dec=deep_supervision, learnable_tgt=cfg.MODEL.DETR.LEARNABLE_TGT, ) if cfg.MODEL.DETR.LEARNABLE_TGT: query_embed = nn.Embedding(num_queries, hidden_dim * 2) else: query_embed = nn.Embedding(num_queries, hidden_dim) return { "backbone": backbone, "transformer": transformer, "num_classes": num_classes, "num_queries": num_queries, "query_embed": query_embed, "aux_loss": deep_supervision, "use_focal_loss": use_focal_loss, } def forward(self, samples: NestedTensor): """The forward expects a NestedTensor, which consists of: - samples.tensor: batched images, of shape [batch_size x 3 x H x W] - samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels It returns a dict with the following elements: - "pred_logits": the classification logits (including no-object) for all queries. Shape= [batch_size x num_queries x (num_classes + 1)] - "pred_boxes": The normalized boxes coordinates for all queries, represented as (center_x, center_y, height, width). These values are normalized in [0, 1], relative to the size of each individual image (disregarding possible padding). See PostProcess for information on how to retrieve the unnormalized bounding box. - "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of dictionnaries containing the two above keys for each decoder layer. """ if isinstance(samples, (list, torch.Tensor)): samples = nested_tensor_from_tensor_list(samples) features, pos = self.backbone(samples) # src shape (B, C, H, W) # mask shape (B, H, W) src, mask = features[-1].decompose() assert mask is not None # hs shape (NUM_LAYER, B, S, hidden_dim) hs = self.transformer( self.input_proj(src), mask, self.query_embed.weight, pos[-1] )[0] # shape (NUM_LAYER, B, S, NUM_CLASS + 1) outputs_class = self.class_embed(hs) # shape (NUM_LAYER, B, S, 4) outputs_coord = self.bbox_embed(hs).sigmoid() # pred_logits shape (B, S, NUM_CLASS + 1) # pred_boxes shape (B, S, 4) out = {"pred_logits": outputs_class[-1], "pred_boxes": outputs_coord[-1]} if self.aux_loss: out["aux_outputs"] = self._set_aux_loss(outputs_class, outputs_coord) return out @torch.jit.unused def _set_aux_loss(self, outputs_class, outputs_coord): # this is a workaround to make torchscript happy, as torchscript # doesn't support dictionary with non-homogeneous values, such # as a dict having both a Tensor and a list. return [ {"pred_logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1]) ] class PostProcess(nn.Module): """This module converts the model's output into the format expected by the coco api""" @torch.no_grad() def forward(self, outputs, target_sizes): """Perform the computation Parameters: outputs: raw outputs of the model target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch For evaluation, this must be the original image size (before any data augmentation) For visualization, this should be the image size after data augment, but before padding """ out_logits, out_bbox = outputs["pred_logits"], outputs["pred_boxes"] assert len(out_logits) == len(target_sizes) assert target_sizes.shape[1] == 2 prob = F.softmax(out_logits, -1) scores, labels = prob[..., :-1].max(-1) # convert to [x0, y0, x1, y1] format boxes = box_ops.box_cxcywh_to_xyxy(out_bbox) # and from relative [0, 1] to absolute [0, height] coordinates img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1) boxes = boxes * scale_fct[:, None, :] results = [ {"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes) ] return results class MLP(nn.Module): """Very simple multi-layer perceptron (also called FFN)""" def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList( nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) ) def forward(self, x): for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x def build(args): # the `num_classes` naming here is somewhat misleading. # it indeed corresponds to `max_obj_id + 1`, where max_obj_id # is the maximum id for a class in your dataset. For example, # COCO has a max_obj_id of 90, so we pass `num_classes` to be 91. # As another example, for a dataset that has a single class with id 1, # you should pass `num_classes` to be 2 (max_obj_id + 1). # For more details on this, check the following discussion # https://github.com/facebookresearch/detr/issues/108#issuecomment-650269223 num_classes = 20 if args.dataset_file != "coco" else 91 if args.dataset_file == "coco_panoptic": # for panoptic, we just add a num_classes that is large enough to hold # max_obj_id + 1, but the exact value doesn't really matter num_classes = 250 device = torch.device(args.device) backbone = build_backbone(args) transformer = build_transformer(args) model = DETR( backbone, transformer, num_classes=num_classes, num_queries=args.num_queries, aux_loss=args.aux_loss, ) if args.masks: model = DETRsegm(model, freeze_detr=(args.frozen_weights is not None)) matcher = build_matcher(args) weight_dict = {"loss_ce": 1, "loss_bbox": args.bbox_loss_coef} weight_dict["loss_giou"] = args.giou_loss_coef if args.masks: weight_dict["loss_mask"] = args.mask_loss_coef weight_dict["loss_dice"] = args.dice_loss_coef # TODO this is a hack if args.aux_loss: aux_weight_dict = {} for i in range(args.dec_layers - 1): aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()}) weight_dict.update(aux_weight_dict) losses = ["labels", "boxes", "cardinality"] if args.masks: losses += ["masks"] criterion = SetCriterion( num_classes, matcher=matcher, weight_dict=weight_dict, eos_coef=args.eos_coef, losses=losses, ) criterion.to(device) postprocessors = {"bbox": PostProcess()} if args.masks: postprocessors["segm"] = PostProcessSegm() if args.dataset_file == "coco_panoptic": is_thing_map = {i: i <= 90 for i in range(201)} postprocessors["panoptic"] = PostProcessPanoptic( is_thing_map, threshold=0.85 ) return model, criterion, postprocessors
d2go-main
projects_oss/detr/detr/models/detr.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Modules to compute the matching cost and solve the corresponding LSAP. """ import torch from detr.util.box_ops import box_cxcywh_to_xyxy, generalized_box_iou from scipy.optimize import linear_sum_assignment from torch import nn class HungarianMatcher(nn.Module): """This class computes an assignment between the targets and the predictions of the network For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are un-matched (and thus treated as non-objects). """ def __init__( self, cost_class: float = 1, cost_bbox: float = 1, cost_giou: float = 1, use_focal_loss=False, ): """Creates the matcher Params: cost_class: This is the relative weight of the classification error in the matching cost cost_bbox: This is the relative weight of the L1 error of the bounding box coordinates in the matching cost cost_giou: This is the relative weight of the giou loss of the bounding box in the matching cost """ super().__init__() self.cost_class = cost_class self.cost_bbox = cost_bbox self.cost_giou = cost_giou assert ( cost_class != 0 or cost_bbox != 0 or cost_giou != 0 ), "all costs cant be 0" self.use_focal_loss = use_focal_loss @torch.no_grad() def forward(self, outputs, targets): """Performs the matching Params: outputs: This is a dict that contains at least these entries: "pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing: "labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth objects in the target) containing the class labels "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates Returns: A list of size batch_size, containing tuples of (index_i, index_j) where: - index_i is the indices of the selected predictions (in order) - index_j is the indices of the corresponding selected targets (in order) For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) """ bs, num_queries = outputs["pred_logits"].shape[:2] # We flatten to compute the cost matrices in a batch if self.use_focal_loss: out_prob = outputs["pred_logits"].flatten(0, 1).sigmoid() else: out_prob = ( outputs["pred_logits"].flatten(0, 1).softmax(-1) ) # [batch_size * num_queries, num_classes] out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4] # Also concat the target labels and boxes tgt_ids = torch.cat([v["labels"] for v in targets]) # [\sum_b NUM-BOX_b,] tgt_bbox = torch.cat([v["boxes"] for v in targets]) # [\sum_b NUM-BOX_b, 4] # Compute the classification cost. Contrary to the loss, we don't use the NLL, # but approximate it in 1 - proba[target class]. # The 1 is a constant that doesn't change the matching, it can be omitted. if self.use_focal_loss: alpha = 0.25 gamma = 2.0 neg_cost_class = ( (1 - alpha) * (out_prob**gamma) * (-(1 - out_prob + 1e-8).log()) ) pos_cost_class = ( alpha * ((1 - out_prob) ** gamma) * (-(out_prob + 1e-8).log()) ) cost_class = pos_cost_class[:, tgt_ids] - neg_cost_class[:, tgt_ids] else: cost_class = -out_prob[ :, tgt_ids ] # shape [batch_size * num_queries, \sum_b NUM-BOX_b] # Compute the L1 cost between boxes cost_bbox = torch.cdist( out_bbox, tgt_bbox, p=1 ) # shape [batch_size * num_queries,\sum_b NUM-BOX_b] # Compute the giou cost betwen boxes # shape [batch_size * num_queries, \sum_b NUM-BOX_b] cost_giou = -generalized_box_iou( box_cxcywh_to_xyxy(out_bbox), box_cxcywh_to_xyxy(tgt_bbox) ) # Final cost matrix C = ( self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou ) C = C.view( bs, num_queries, -1 ).cpu() # shape [batch_size, num_queries, \sum_b NUM-BOX_b] sizes = [len(v["boxes"]) for v in targets] # shape [batch_size,] # each split c shape [batch_size, num_queries, NUM-BOX_b] indices = [ linear_sum_assignment(c[i]) for i, c in enumerate(C.split(sizes, -1)) ] # A list where each item is [row_indices, col_indices] return [ ( torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64), ) for i, j in indices ] def build_matcher(args): return HungarianMatcher( cost_class=args.set_cost_class, cost_bbox=args.set_cost_bbox, cost_giou=args.set_cost_giou, )
d2go-main
projects_oss/detr/detr/models/matcher.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # ------------------------------------------------------------------------ # Modified from Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # Modified from DETR (https://github.com/facebookresearch/detr) # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # ------------------------------------------------------------------------ """ Backbone modules. """ from collections import OrderedDict from typing import Dict, List import torch import torch.nn.functional as F import torchvision from detr.util.misc import is_main_process, NestedTensor from torch import nn from torchvision.models._utils import IntermediateLayerGetter from .position_encoding import build_position_encoding class FrozenBatchNorm2d(torch.nn.Module): """ BatchNorm2d where the batch statistics and the affine parameters are fixed. Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than torchvision.models.resnet[18,34,50,101] produce nans. """ def __init__(self, n, eps=1e-5): super(FrozenBatchNorm2d, self).__init__() self.register_buffer("weight", torch.ones(n)) self.register_buffer("bias", torch.zeros(n)) self.register_buffer("running_mean", torch.zeros(n)) self.register_buffer("running_var", torch.ones(n)) self.eps = eps def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ): num_batches_tracked_key = prefix + "num_batches_tracked" if num_batches_tracked_key in state_dict: del state_dict[num_batches_tracked_key] super(FrozenBatchNorm2d, self)._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ) def forward(self, x): # move reshapes to the beginning # to make it fuser-friendly w = self.weight.reshape(1, -1, 1, 1) b = self.bias.reshape(1, -1, 1, 1) rv = self.running_var.reshape(1, -1, 1, 1) rm = self.running_mean.reshape(1, -1, 1, 1) eps = self.eps scale = w * (rv + eps).rsqrt() bias = b - rm * scale return x * scale + bias class BackboneBase(nn.Module): def __init__( self, backbone: nn.Module, train_backbone: bool, return_interm_layers: bool ): super().__init__() for name, parameter in backbone.named_parameters(): if ( not train_backbone or "layer2" not in name and "layer3" not in name and "layer4" not in name ): parameter.requires_grad_(False) if return_interm_layers: return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"} # return_layers = {"layer2": "0", "layer3": "1", "layer4": "2"} self.strides = [8, 16, 32] self.num_channels = [512, 1024, 2048] else: return_layers = {"layer4": "0"} self.strides = [32] self.num_channels = [2048] self.body = IntermediateLayerGetter(backbone, return_layers=return_layers) def forward(self, tensor_list: NestedTensor): xs = self.body(tensor_list.tensors) out: Dict[str, NestedTensor] = {} for name, x in xs.items(): m = tensor_list.mask assert m is not None mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0] out[name] = NestedTensor(x, mask) return out class Backbone(BackboneBase): """ResNet backbone with frozen BatchNorm.""" def __init__( self, name: str, train_backbone: bool, return_interm_layers: bool, dilation: bool, ): norm_layer = FrozenBatchNorm2d backbone = getattr(torchvision.models, name)( replace_stride_with_dilation=[False, False, dilation], pretrained=is_main_process(), norm_layer=norm_layer, ) assert name not in ("resnet18", "resnet34"), "number of channels are hard coded" super().__init__(backbone, train_backbone, return_interm_layers) if dilation: self.strides[-1] = self.strides[-1] // 2 class Joiner(nn.Sequential): def __init__(self, backbone, position_embedding): super().__init__(backbone, position_embedding) self.strides = backbone.strides self.num_channels = backbone.num_channels def forward(self, tensor_list: NestedTensor): xs = self[0](tensor_list) out: List[NestedTensor] = [] pos = [] for name, x in xs.items(): out.append(x) # position encoding for x in out: pos.append(self[1](x).to(x.tensors.dtype)) # out: a list of NestedTensor # each tensor has shape (B, C, H, W) # each mask has shape (B, H, W) # pos: a list of tensors, each has shape (B, C, H, W) return out, pos def build_backbone(args): position_embedding = build_position_encoding(args) train_backbone = args.lr_backbone > 0 return_interm_layers = args.masks backbone = Backbone( args.backbone, train_backbone, return_interm_layers, args.dilation ) model = Joiner(backbone, position_embedding) return model
d2go-main
projects_oss/detr/detr/models/backbone.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Various positional encodings for the transformer. """ import math import torch from detr.util.misc import NestedTensor from torch import nn class PositionEmbeddingSine(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__( self, num_pos_feats=64, temperature=10000, normalize=False, scale=None, centered=False, ): super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale self.centered = centered def forward(self, tensor_list: NestedTensor): # x shape (B, C, H, W) x = tensor_list.tensors # mask shape (B, H, W) mask = tensor_list.mask assert mask is not None not_mask = ~mask y_embed = not_mask.cumsum(1, dtype=torch.float32) # shape (B, H, W) x_embed = not_mask.cumsum(2, dtype=torch.float32) if self.normalize: eps = 1e-6 if self.centered: y_embed = (y_embed - 0.5) / (y_embed[:, -1:, :] + eps) * self.scale x_embed = (x_embed - 0.5) / (x_embed[:, :, -1:] + eps) * self.scale else: y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature ** ( 2 * (dim_t // 2) / self.num_pos_feats ) # shape (N, ) pos_x = x_embed[:, :, :, None] / dim_t # shape (B, H, W, N) pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack( (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 ).flatten( 3 ) # shape (B, H, W, N) pos_y = torch.stack( (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 ).flatten( 3 ) # shape (B, H, W, N) pos = torch.cat((pos_y, pos_x), dim=3).permute( 0, 3, 1, 2 ) # shape (B, 2*N, H, W) return pos class PositionEmbeddingLearned(nn.Module): """ Absolute pos embedding, learned. """ def __init__(self, num_pos_feats=256): super().__init__() self.row_embed = nn.Embedding(50, num_pos_feats) self.col_embed = nn.Embedding(50, num_pos_feats) self.reset_parameters() def reset_parameters(self): nn.init.uniform_(self.row_embed.weight) nn.init.uniform_(self.col_embed.weight) def forward(self, tensor_list: NestedTensor): x = tensor_list.tensors h, w = x.shape[-2:] i = torch.arange(w, device=x.device) j = torch.arange(h, device=x.device) x_emb = self.col_embed(i) y_emb = self.row_embed(j) pos = ( torch.cat( [ x_emb.unsqueeze(0).repeat(h, 1, 1), y_emb.unsqueeze(1).repeat(1, w, 1), ], dim=-1, ) .permute(2, 0, 1) .unsqueeze(0) .repeat(x.shape[0], 1, 1, 1) ) return pos def build_position_encoding(args): N_steps = args.hidden_dim // 2 if args.position_embedding in ("v2", "sine"): # TODO find a better way of exposing other arguments position_embedding = PositionEmbeddingSine(N_steps, normalize=True) elif args.position_embedding in ("v3", "learned"): position_embedding = PositionEmbeddingLearned(N_steps) else: raise ValueError(f"not supported {args.position_embedding}") return position_embedding
d2go-main
projects_oss/detr/detr/models/position_encoding.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from .detr import build def build_model(args): return build(args)
d2go-main
projects_oss/detr/detr/models/__init__.py
import copy import torch import torch.nn.functional as F from torch import nn from ..util import box_ops from ..util.misc import ( accuracy, get_world_size, interpolate, is_dist_avail_and_initialized, nested_tensor_from_tensor_list, ) from .segmentation import dice_loss, sigmoid_focal_loss def _reduce_num_boxes(targets, device): # Compute the average number of target boxes accross all nodes, for normalization purposes num_boxes = sum(len(t["labels"]) for t in targets) num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=device) if is_dist_avail_and_initialized(): torch.distributed.all_reduce(num_boxes) num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item() return num_boxes class SetCriterion(nn.Module): """This class computes the loss for DETR. The process happens in two steps: 1) we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair of matched ground-truth / prediction (supervise class and box) """ def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses): """Create the criterion. Parameters: num_classes: number of object categories, omitting the special no-object category matcher: module able to compute a matching between targets and proposals weight_dict: dict containing as key the names of the losses and as values their relative weight. eos_coef: relative classification weight applied to the no-object category losses: list of all the losses to be applied. See get_loss for list of available losses. """ super().__init__() self.num_classes = num_classes self.matcher = matcher self.weight_dict = weight_dict self.eos_coef = eos_coef self.losses = losses empty_weight = torch.ones(self.num_classes + 1) empty_weight[-1] = self.eos_coef self.register_buffer("empty_weight", empty_weight) def loss_labels(self, outputs, targets, indices, num_boxes, log=True): """Classification loss (NLL) targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes] """ assert "pred_logits" in outputs # shape (batch_size, num_queries, NUM_CLASS + 1) src_logits = outputs["pred_logits"] # idx = (batch_idx, src_idx) # batch_idx shape [\sum_b num_match_b] # src_idx shape [\sum_b num_match_b] idx = self._get_src_permutation_idx(indices) # targets: List[Dict[str, torch.Tensor]]. Keys # "labels": [NUM_BOX,] # "boxes": [NUM_BOX, 4] # target_classes_o shape [batch_size * num_match] target_classes_o = torch.cat( [t["labels"][J] for t, (_, J) in zip(targets, indices)] ) # shape (batch_size, num_queries) target_classes = torch.full( src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device, ) target_classes[idx] = target_classes_o loss_ce = F.cross_entropy( src_logits.transpose(1, 2), target_classes, self.empty_weight ) losses = {"loss_ce": loss_ce} if log: # TODO this should probably be a separate loss, not hacked in this one here losses["class_error"] = 100 - accuracy(src_logits[idx], target_classes_o)[0] return losses def forground_background_loss_labels( self, outputs, targets, indices, num_boxes, log=True ): assert "pred_logits" in outputs # shape (batch_size, num_queries, 1) src_logits = outputs["pred_logits"] batch_size, num_queries = src_logits.shape[:2] assert src_logits.shape[2] == 1, f"expect 1 class {src_logits.shape[2]}" idx = self._get_src_permutation_idx(indices) target_classes_o = torch.cat( [t["labels"][J] for t, (_, J) in zip(targets, indices)] ) target_classes = torch.full( src_logits.shape[:2], 1, dtype=torch.int64, device=src_logits.device, ) target_classes[idx] = target_classes_o target_classes_onehot = torch.zeros( [src_logits.shape[0], src_logits.shape[1], 2], dtype=src_logits.dtype, layout=src_logits.layout, device=src_logits.device, ) target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1) target_classes_onehot = target_classes_onehot[:, :, :-1] loss_ce = ( sigmoid_focal_loss( src_logits, target_classes_onehot, num_boxes, alpha=self.focal_alpha, gamma=2, ) * src_logits.shape[1] ) return {"loss_ce": loss_ce} @torch.no_grad() def loss_cardinality(self, outputs, targets, indices, num_boxes): """Compute the cardinality error, ie the absolute error in the number of predicted non-empty boxes This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients """ pred_logits = outputs["pred_logits"] device = pred_logits.device tgt_lengths = torch.as_tensor( [len(v["labels"]) for v in targets], device=device ) # Count the number of predictions that are NOT "no-object" (which is the last class) card_pred = (pred_logits.argmax(-1) != pred_logits.shape[-1] - 1).sum(1) card_err = F.l1_loss(card_pred.float(), tgt_lengths.float()) losses = {"cardinality_error": card_err} return losses def loss_boxes(self, outputs, targets, indices, num_boxes): """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4] The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size. """ assert "pred_boxes" in outputs idx = self._get_src_permutation_idx(indices) # shape [\sum_b num_matches_b, 4] src_boxes = outputs["pred_boxes"][idx] # shape [\sum_b num_matches_b, 4] target_boxes = torch.cat( [t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0 ) loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction="none") losses = {} losses["loss_bbox"] = loss_bbox.sum() / num_boxes loss_giou = 1 - torch.diag( box_ops.generalized_box_iou( box_ops.box_cxcywh_to_xyxy(src_boxes), box_ops.box_cxcywh_to_xyxy(target_boxes), ) ) losses["loss_giou"] = loss_giou.sum() / num_boxes return losses def loss_masks(self, outputs, targets, indices, num_boxes): """Compute the losses related to the masks: the focal loss and the dice loss. targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w] """ assert "pred_masks" in outputs src_idx = self._get_src_permutation_idx(indices) tgt_idx = self._get_tgt_permutation_idx(indices) src_masks = outputs["pred_masks"] src_masks = src_masks[src_idx] masks = [t["masks"] for t in targets] # TODO use valid to mask invalid areas due to padding in loss target_masks, valid = nested_tensor_from_tensor_list(masks).decompose() target_masks = target_masks.to(src_masks) target_masks = target_masks[tgt_idx] # upsample predictions to the target size src_masks = interpolate( src_masks[:, None], size=target_masks.shape[-2:], mode="bilinear", align_corners=False, ) src_masks = src_masks[:, 0].flatten(1) target_masks = target_masks.flatten(1) target_masks = target_masks.view(src_masks.shape) losses = { "loss_mask": sigmoid_focal_loss(src_masks, target_masks, num_boxes), "loss_dice": dice_loss(src_masks, target_masks, num_boxes), } return losses def _get_src_permutation_idx(self, indices): # permute predictions following indices batch_idx = torch.cat( [torch.full_like(src, i) for i, (src, _) in enumerate(indices)] ) # shape [\sum_b num_match_b] src_idx = torch.cat([src for (src, _) in indices]) # shape [\sum_b num_match_b] return batch_idx, src_idx def _get_tgt_permutation_idx(self, indices): # permute targets following indices batch_idx = torch.cat( [torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)] ) # shape [\sum_b num_match_b] tgt_idx = torch.cat([tgt for (_, tgt) in indices]) # shape [\sum_b num_match_b] return batch_idx, tgt_idx def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs): loss_map = { "labels": self.loss_labels, "cardinality": self.loss_cardinality, "boxes": self.loss_boxes, "masks": self.loss_masks, } assert loss in loss_map, f"do you really want to compute {loss} loss?" return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs) def get_foreground_background_loss( self, loss, outputs, targets, indices, num_boxes, **kwargs ): loss_map = { "labels": self.forground_background_loss_labels, "cardinality": self.loss_cardinality, "boxes": self.loss_boxes, } assert loss in loss_map, f"do you really want to compute {loss} loss?" return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs) def _forward(self, outputs, outputs_without_aux, targets): # Retrieve the matching between the outputs of the last layer and the targets # A list where each item is [row_indices, col_indices] indices = self.matcher(outputs_without_aux, targets) num_boxes = _reduce_num_boxes(targets, next(iter(outputs.values())).device) # Compute all the requested losses losses = {} for loss in self.losses: losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes)) # In case of auxiliary losses, we repeat this process with the output of each intermediate layer. if "aux_outputs" in outputs: for i, aux_outputs in enumerate(outputs["aux_outputs"]): indices = self.matcher(aux_outputs, targets) for loss in self.losses: if loss == "masks": # Intermediate masks losses are too costly to compute, we ignore them. continue kwargs = {} if loss == "labels": # Logging is enabled only for the last layer kwargs = {"log": False} l_dict = self.get_loss( loss, aux_outputs, targets, indices, num_boxes, **kwargs ) l_dict = {k + f"_{i}": v for k, v in l_dict.items()} losses.update(l_dict) return losses def forward(self, outputs, targets): """This performs the loss computation. Parameters: outputs: dict of tensors, see the output specification of the model for the format targets: list of dicts, such that len(targets) == batch_size. The expected keys in each dict depends on the losses applied, see each loss' doc """ # "pred_logits" shape (B, S, NUM_CLASS + 1) # "pred_boxes" shape (B, S, 4) outputs_without_aux = {k: v for k, v in outputs.items() if k != "aux_outputs"} return self._forward(outputs, outputs_without_aux, targets) class FocalLossSetCriterion(SetCriterion): """This class computes the loss for DETR. The process happens in two steps: 1) we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair of matched ground-truth / prediction (supervise class and box) """ def __init__(self, num_classes, matcher, weight_dict, losses, focal_alpha=0.25): """Create the criterion. Parameters: num_classes: number of object categories, omitting the special no-object category matcher: module able to compute a matching between targets and proposals weight_dict: dict containing as key the names of the losses and as values their relative weight. losses: list of all the losses to be applied. See get_loss for list of available losses. focal_alpha: alpha in Focal Loss """ super().__init__(num_classes, matcher, weight_dict, 0, losses) self.focal_alpha = focal_alpha def loss_labels(self, outputs, targets, indices, num_boxes, log=True): """Classification loss (NLL) targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes] """ assert "pred_logits" in outputs # shape (batch_size, num_queries, num_classes) src_logits = outputs["pred_logits"] idx = self._get_src_permutation_idx(indices) target_classes_o = torch.cat( [t["labels"][J] for t, (_, J) in zip(targets, indices)] ) target_classes = torch.full( src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device, ) target_classes[idx] = target_classes_o target_classes_onehot = torch.zeros( [src_logits.shape[0], src_logits.shape[1], src_logits.shape[2] + 1], dtype=src_logits.dtype, layout=src_logits.layout, device=src_logits.device, ) target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1) target_classes_onehot = target_classes_onehot[:, :, :-1] loss_ce = ( sigmoid_focal_loss( src_logits, target_classes_onehot, num_boxes, alpha=self.focal_alpha, gamma=2, ) * src_logits.shape[1] ) losses = {"loss_ce": loss_ce} if log: # TODO this should probably be a separate loss, not hacked in this one here losses["class_error"] = 100 - accuracy(src_logits[idx], target_classes_o)[0] return losses def forward(self, outputs, targets): """This performs the loss computation. Parameters: outputs: dict of tensors, see the output specification of the model for the format targets: list of dicts, such that len(targets) == batch_size. The expected keys in each dict depends on the losses applied, see each loss' doc """ outputs_without_aux = { k: v for k, v in outputs.items() if k != "aux_outputs" and k != "enc_outputs" } losses = self._forward(outputs, outputs_without_aux, targets) if "enc_outputs" in outputs: num_boxes = _reduce_num_boxes(targets, next(iter(outputs.values())).device) enc_outputs = outputs["enc_outputs"] bin_targets = copy.deepcopy(targets) for bt in bin_targets: bt["labels"] = torch.zeros_like(bt["labels"]) indices = self.matcher(enc_outputs, bin_targets) for loss in self.losses: if loss == "masks": # Intermediate masks losses are too costly to compute, we ignore them. continue kwargs = {} if loss == "labels": # Logging is enabled only for the last layer kwargs["log"] = False l_dict = self.get_foreground_background_loss( loss, enc_outputs, bin_targets, indices, num_boxes, **kwargs ) l_dict = {k + "_enc": v for k, v in l_dict.items()} losses.update(l_dict) return losses
d2go-main
projects_oss/detr/detr/models/setcriterion.py
# ------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # Modified from DETR (https://github.com/facebookresearch/detr) # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # ------------------------------------------------------------------------ """ Deformable DETR model and criterion classes. """ import copy import math import torch import torch.nn.functional as F from detectron2.config import configurable from torch import nn from ..util import box_ops from ..util.misc import ( accuracy, get_world_size, interpolate, is_dist_avail_and_initialized, nested_tensor_from_tensor_list, NestedTensor, ) from .backbone import build_backbone from .build import build_detr_backbone, DETR_MODEL_REGISTRY from .deformable_transformer import DeformableTransformer from .matcher import build_matcher from .segmentation import ( DETRsegm, dice_loss, PostProcessPanoptic, PostProcessSegm, sigmoid_focal_loss, ) from .setcriterion import FocalLossSetCriterion def _get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) @DETR_MODEL_REGISTRY.register() class DeformableDETR(nn.Module): """This is the Deformable DETR module that performs object detection""" @configurable def __init__( self, backbone, transformer, num_classes, num_queries, num_feature_levels, aux_loss=True, with_box_refine=False, two_stage=False, bbox_embed_num_layers=3, ): """Initializes the model. Parameters: backbone: torch module of the backbone to be used. See backbone.py transformer: torch module of the transformer architecture. See transformer.py num_classes: number of object classes num_queries: number of object queries, ie detection slot. This is the maximal number of objects DETR can detect in a single image. For COCO, we recommend 100 queries. aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used. with_box_refine: iterative bounding box refinement two_stage: two-stage Deformable DETR bbox_embed_num_layers: number of FC layers in bbox_embed MLP """ super().__init__() self.num_queries = num_queries self.transformer = transformer hidden_dim = transformer.d_model # We will use sigmoid activation and focal loss self.class_embed = nn.Linear(hidden_dim, num_classes) self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, bbox_embed_num_layers) self.num_feature_levels = num_feature_levels if not two_stage: self.query_embed = nn.Embedding(num_queries, hidden_dim * 2) if num_feature_levels > 1: num_backbone_outs = len(backbone.strides) input_proj_list = [] for _ in range(num_backbone_outs): in_channels = backbone.num_channels[_] input_proj_list.append( nn.Sequential( nn.Conv2d(in_channels, hidden_dim, kernel_size=1), nn.GroupNorm(32, hidden_dim), ) ) for _ in range(num_feature_levels - num_backbone_outs): input_proj_list.append( nn.Sequential( nn.Conv2d( in_channels, hidden_dim, kernel_size=3, stride=2, padding=1 ), nn.GroupNorm(32, hidden_dim), ) ) in_channels = hidden_dim self.input_proj = nn.ModuleList(input_proj_list) else: self.input_proj = nn.ModuleList( [ nn.Sequential( nn.Conv2d(backbone.num_channels[0], hidden_dim, kernel_size=1), nn.GroupNorm(32, hidden_dim), ) ] ) self.backbone = backbone self.aux_loss = aux_loss self.with_box_refine = with_box_refine self.two_stage = two_stage prior_prob = 0.01 bias_value = -math.log((1 - prior_prob) / prior_prob) self.class_embed.bias.data = torch.ones(num_classes) * bias_value for proj in self.input_proj: nn.init.xavier_uniform_(proj[0].weight, gain=1) nn.init.constant_(proj[0].bias, 0) num_pred = transformer.decoder.num_layers if with_box_refine: self.class_embed = _get_clones(self.class_embed, num_pred) self.bbox_embed = _get_clones(self.bbox_embed, num_pred) # initialize the box scale height/width at the 1st scale to be 0.1 nn.init.constant_(self.bbox_embed[0].layers[-1].bias.data[2:], -2.0) # hack implementation for iterative bounding box refinement self.transformer.decoder.bbox_embed = self.bbox_embed else: nn.init.constant_(self.bbox_embed.layers[-1].bias.data[2:], -2.0) self.class_embed = nn.ModuleList( [self.class_embed for _ in range(num_pred)] ) self.bbox_embed = nn.ModuleList([self.bbox_embed for _ in range(num_pred)]) self.transformer.decoder.bbox_embed = None if two_stage: # hack implementation for two-stage # We only predict foreground/background at the output of encoder class_embed = nn.Linear(hidden_dim, 1) class_embed.bias.data = torch.ones(1) * bias_value self.transformer.encoder.class_embed = class_embed for box_embed in self.bbox_embed: nn.init.constant_(box_embed.layers[-1].bias.data[2:], 0.0) self.transformer.encoder.bbox_embed = MLP( hidden_dim, hidden_dim, 4, bbox_embed_num_layers ) @classmethod def from_config(cls, cfg): num_classes = cfg.MODEL.DETR.NUM_CLASSES hidden_dim = cfg.MODEL.DETR.HIDDEN_DIM num_queries = cfg.MODEL.DETR.NUM_OBJECT_QUERIES # Transformer parameters: nheads = cfg.MODEL.DETR.NHEADS dropout = cfg.MODEL.DETR.DROPOUT dim_feedforward = cfg.MODEL.DETR.DIM_FEEDFORWARD enc_layers = cfg.MODEL.DETR.ENC_LAYERS dec_layers = cfg.MODEL.DETR.DEC_LAYERS pre_norm = cfg.MODEL.DETR.PRE_NORM # Loss parameters: deep_supervision = cfg.MODEL.DETR.DEEP_SUPERVISION num_feature_levels = cfg.MODEL.DETR.NUM_FEATURE_LEVELS use_focal_loss = cfg.MODEL.DETR.USE_FOCAL_LOSS backbone = build_detr_backbone(cfg) transformer = DeformableTransformer( d_model=hidden_dim, nhead=nheads, num_encoder_layers=enc_layers, num_decoder_layers=dec_layers, dim_feedforward=dim_feedforward, dropout=dropout, activation="relu", return_intermediate_dec=True, num_feature_levels=num_feature_levels, dec_n_points=4, enc_n_points=4, two_stage=cfg.MODEL.DETR.TWO_STAGE, two_stage_num_proposals=num_queries, ) return { "backbone": backbone, "transformer": transformer, "num_classes": num_classes, "num_queries": num_queries, "num_feature_levels": num_feature_levels, "aux_loss": deep_supervision, "with_box_refine": cfg.MODEL.DETR.WITH_BOX_REFINE, "two_stage": cfg.MODEL.DETR.TWO_STAGE, } def forward(self, samples: NestedTensor): """The forward expects a NestedTensor, which consists of: - samples.tensor: batched images, of shape [batch_size x 3 x H x W] - samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels It returns a dict with the following elements: - "pred_logits": the classification logits (including no-object) for all queries. Shape= [batch_size x num_queries x (num_classes + 1)] - "pred_boxes": The normalized boxes coordinates for all queries, represented as (center_x, center_y, height, width). These values are normalized in [0, 1], relative to the size of each individual image (disregarding possible padding). See PostProcess for information on how to retrieve the unnormalized bounding box. - "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of dictionnaries containing the two above keys for each decoder layer. """ if isinstance(samples, (list, torch.Tensor)): samples = nested_tensor_from_tensor_list(samples) # features is a list of num_levels NestedTensor. # pos is a list of num_levels tensors. Each one has shape (B, H_l, W_l). features, pos = self.backbone(samples) # srcs is a list of num_levels tensor. Each one has shape (B, C, H_l, W_l) srcs = [] # masks is a list of num_levels tensor. Each one has shape (B, H_l, W_l) masks = [] for l, feat in enumerate(features): # src shape: (N, C, H_l, W_l) # mask shape: (N, H_l, W_l) src, mask = feat.decompose() srcs.append(self.input_proj[l](src)) masks.append(mask) assert mask is not None if self.num_feature_levels > len(srcs): N, C, H, W = samples.tensor.size() sample_mask = torch.ones((N, H, W), dtype=torch.bool, device=src.device) for idx in range(N): image_size = samples.image_sizes[idx] h, w = image_size sample_mask[idx, :h, :w] = False # sample_mask shape (1, N, H, W) sample_mask = sample_mask[None].float() _len_srcs = len(srcs) for l in range(_len_srcs, self.num_feature_levels): if l == _len_srcs: src = self.input_proj[l](features[-1].tensors) else: src = self.input_proj[l](srcs[-1]) b, _, h, w = src.size() # mask shape (batch_size, h_l, w_l) mask = F.interpolate(sample_mask, size=src.shape[-2:]).to(torch.bool)[0] pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype) srcs.append(src) masks.append(mask) pos.append(pos_l) query_embeds = None if not self.two_stage: # shape (num_queries, hidden_dim*2) query_embeds = self.query_embed.weight # hs shape: (num_layers, batch_size, num_queries, c) # init_reference shape: (batch_size, num_queries, 2) # inter_references shape: (num_layers, bs, num_queries, num_levels, 2) ( hs, init_reference, inter_references, enc_outputs_class, enc_outputs_coord_unact, ) = self.transformer(srcs, masks, pos, query_embeds) outputs_classes = [] outputs_coords = [] for lvl in range(hs.shape[0]): # reference shape: (num_queries, 2) if lvl == 0: reference = init_reference else: reference = inter_references[lvl - 1] # shape (batch_size, num_queries, num_classes) outputs_class = self.class_embed[lvl](hs[lvl]) # shape (batch_size, num_queries, 4). 4-tuple (cx, cy, w, h) tmp = self.bbox_embed[lvl](hs[lvl]) if reference.shape[-1] == 4: tmp += reference else: assert reference.shape[-1] == 2 tmp[..., :2] += reference # shape (batch_size, num_queries, 4). 4-tuple (cx, cy, w, h) outputs_coord = tmp.sigmoid() outputs_classes.append(outputs_class) outputs_coords.append(outputs_coord) # shape (num_levels, batch_size, num_queries, num_classes) outputs_class = torch.stack(outputs_classes) # shape (num_levels, batch_size, num_queries, 4) outputs_coord = torch.stack(outputs_coords) out = {"pred_logits": outputs_class[-1], "pred_boxes": outputs_coord[-1]} if self.aux_loss: out["aux_outputs"] = self._set_aux_loss(outputs_class, outputs_coord) if self.two_stage: enc_outputs_coord = enc_outputs_coord_unact.sigmoid() out["enc_outputs"] = { "pred_logits": enc_outputs_class, "pred_boxes": enc_outputs_coord, } return out @torch.jit.unused def _set_aux_loss(self, outputs_class, outputs_coord): # this is a workaround to make torchscript happy, as torchscript # doesn't support dictionary with non-homogeneous values, such # as a dict having both a Tensor and a list. return [ {"pred_logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1]) ] class PostProcess(nn.Module): """This module converts the model's output into the format expected by the coco api""" @torch.no_grad() def forward(self, outputs, target_sizes): """Perform the computation Parameters: outputs: raw outputs of the model target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch For evaluation, this must be the original image size (before any data augmentation) For visualization, this should be the image size after data augment, but before padding """ out_logits, out_bbox = outputs["pred_logits"], outputs["pred_boxes"] assert len(out_logits) == len(target_sizes) assert target_sizes.shape[1] == 2 prob = out_logits.sigmoid() topk_values, topk_indexes = torch.topk( prob.view(out_logits.shape[0], -1), 100, dim=1 ) scores = topk_values topk_boxes = topk_indexes // out_logits.shape[2] labels = topk_indexes % out_logits.shape[2] boxes = box_ops.box_cxcywh_to_xyxy(out_bbox) boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4)) # and from relative [0, 1] to absolute [0, height] coordinates img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1) boxes = boxes * scale_fct[:, None, :] results = [ {"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes) ] return results class MLP(nn.Module): """Very simple multi-layer perceptron (also called FFN)""" def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList( nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) ) # initialize FC weights and bias for i, layer in enumerate(self.layers): if i < num_layers - 1: nn.init.kaiming_uniform_(layer.weight, a=1) else: nn.init.constant_(layer.weight, 0) nn.init.constant_(layer.bias, 0) def forward(self, x): for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x
d2go-main
projects_oss/detr/detr/models/deformable_detr.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ DETR Transformer class. Copy-paste from torch.nn.Transformer with modifications: * positional encodings are passed in MHattention * extra LN at the end of encoder is removed * decoder returns a stack of activations from all decoding layers """ import copy from typing import Optional import torch import torch.nn.functional as F from torch import nn, Tensor class Transformer(nn.Module): def __init__( self, d_model=512, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False, return_intermediate_dec=False, learnable_tgt=False, ): super().__init__() encoder_layer = TransformerEncoderLayer( d_model, nhead, dim_feedforward, dropout, activation, normalize_before ) encoder_norm = nn.LayerNorm(d_model) if normalize_before else None self.encoder = TransformerEncoder( encoder_layer, num_encoder_layers, encoder_norm ) decoder_layer = TransformerDecoderLayer( d_model, nhead, dim_feedforward, dropout, activation, normalize_before ) decoder_norm = nn.LayerNorm(d_model) self.decoder = TransformerDecoder( decoder_layer, num_decoder_layers, decoder_norm, return_intermediate=return_intermediate_dec, ) self._reset_parameters() self.d_model = d_model self.nhead = nhead self.learnable_tgt = learnable_tgt def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def forward(self, src, mask, query_embed, pos_embed): # src shape (B, C, H, W) # mask shape (B, H, W) # query_embed shape (M, C) # pos_embed shape (B, C, H, W) # flatten NxCxHxW to HWxNxC bs, c, h, w = src.shape src = src.flatten(2).permute(2, 0, 1) # shape (L, B, C) pos_embed = pos_embed.flatten(2).permute(2, 0, 1) # shape (L, B, C) mask = mask.flatten(1) # shape (B, HxW) if self.learnable_tgt: query_embed, tgt = torch.split(query_embed, c, dim=1) query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1) # shape (M, B, C) tgt = tgt.unsqueeze(1).repeat(1, bs, 1) # shape (M, B, C) else: query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1) # shape (M, B, C) tgt = torch.zeros_like(query_embed) # memory shape (L, B, C) memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed) # hs shape (NUM_LEVEL, S, B, C) hs = self.decoder( tgt, memory, memory_key_padding_mask=mask, pos=pos_embed, query_pos=query_embed, ) # return shape (NUM_LEVEL, B, S, C) and (B, C, H, W) return hs.transpose(1, 2), memory.permute(1, 2, 0).view(bs, c, h, w) class TransformerEncoder(nn.Module): def __init__(self, encoder_layer, num_layers, norm=None): super().__init__() self.layers = _get_clones(encoder_layer, num_layers) self.num_layers = num_layers self.norm = norm def forward( self, src, mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, ): output = src # mask, shape (L, L) # src_key_padding_mask, shape (B, L) for layer in self.layers: output = layer( output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, pos=pos, ) if self.norm is not None: output = self.norm(output) return output class TransformerDecoder(nn.Module): def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False): super().__init__() self.layers = _get_clones(decoder_layer, num_layers) self.num_layers = num_layers self.norm = norm self.return_intermediate = return_intermediate def forward( self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, ): output = tgt intermediate = [] # tgt shape (L, B, C) # tgt_mask shape (L, L) # tgt_key_padding_mask shape (B, L) # memory_mask shape (L, S) # memory_key_padding_mask shape (B, S) for layer in self.layers: output = layer( output, memory, tgt_mask=tgt_mask, memory_mask=memory_mask, tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask, pos=pos, query_pos=query_pos, ) if self.return_intermediate: intermediate.append(self.norm(output)) if self.norm is not None: output = self.norm(output) if self.return_intermediate: intermediate.pop() intermediate.append(output) if self.return_intermediate: return torch.stack(intermediate) # return shape (NUM_LAYER, L, B, C) return output.unsqueeze(0) class TransformerEncoderLayer(nn.Module): def __init__( self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False, ): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) assert not normalize_before, "normalize_before is not supported" def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward( self, src, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, ): q = k = self.with_pos_embed(src, pos) # shape (L, B, D) # src mask, shape (L, L) # src_key_padding_mask: shape (B, L) src2 = self.self_attn( q, k, src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask )[0] src = src + self.dropout1(src2) src = self.norm1(src) src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) src = src + self.dropout2(src2) src = self.norm2(src) return src class TransformerDecoderLayer(nn.Module): def __init__( self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False, ): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.norm3 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.dropout3 = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) assert not normalize_before, "normalize_before is not supported" def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward( self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, ): # tgt shape (L, B, C) # tgt_mask shape (L, L) # tgt_key_padding_mask shape (B, L) q = k = self.with_pos_embed(tgt, query_pos) tgt2 = self.self_attn( q, k, tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask )[0] tgt = tgt + self.dropout1(tgt2) tgt = self.norm1(tgt) # memory_mask shape (L, S) # memory_key_padding_mask shape (B, S) # query_pos shape (L, B, C) tgt2 = self.multihead_attn( self.with_pos_embed(tgt, query_pos), self.with_pos_embed(memory, pos), memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask, )[0] tgt = tgt + self.dropout2(tgt2) tgt = self.norm2(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) tgt = tgt + self.dropout3(tgt2) tgt = self.norm3(tgt) # return tgt shape (L, B, C) return tgt def _get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) def build_transformer(args): return Transformer( d_model=args.hidden_dim, dropout=args.dropout, nhead=args.nheads, dim_feedforward=args.dim_feedforward, num_encoder_layers=args.enc_layers, num_decoder_layers=args.dec_layers, normalize_before=args.pre_norm, return_intermediate_dec=True, ) def _get_activation_fn(activation): """Return an activation function given a string""" if activation == "relu": return F.relu if activation == "gelu": return F.gelu if activation == "glu": return F.glu raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
d2go-main
projects_oss/detr/detr/models/transformer.py
# ------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # Modified from DETR (https://github.com/facebookresearch/detr) # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # ------------------------------------------------------------------------ import copy import math import torch import torch.nn.functional as F from torch import nn from torch.nn.init import constant_, normal_, xavier_uniform_ from ..modules import MSDeformAttn from ..util.misc import inverse_sigmoid # we do not use float("-inf") to avoid potential NaN during training NEG_INF = -10000.0 class DeformableTransformer(nn.Module): def __init__( self, d_model=256, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=1024, dropout=0.1, activation="relu", return_intermediate_dec=False, num_feature_levels=4, dec_n_points=4, enc_n_points=4, two_stage=False, two_stage_num_proposals=300, decoder_block_grad=True, ): super().__init__() self.d_model = d_model self.nhead = nhead self.two_stage = two_stage self.two_stage_num_proposals = two_stage_num_proposals encoder_layer = DeformableTransformerEncoderLayer( d_model, dim_feedforward, dropout, activation, num_feature_levels, nhead, enc_n_points, ) self.encoder = DeformableTransformerEncoder(encoder_layer, num_encoder_layers) decoder_layer = DeformableTransformerDecoderLayer( d_model, dim_feedforward, dropout, activation, num_feature_levels, nhead, dec_n_points, ) self.decoder = DeformableTransformerDecoder( decoder_layer, num_decoder_layers, return_intermediate_dec, decoder_block_grad, ) self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model)) if two_stage: self.enc_output = nn.Linear(d_model, d_model) self.enc_output_norm = nn.LayerNorm(d_model) self.pos_trans = nn.Linear(d_model * 2, d_model * 2) self.pos_trans_norm = nn.LayerNorm(d_model * 2) else: self.reference_points = nn.Linear(d_model, 2) self._reset_parameters() def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: xavier_uniform_(p) for m in self.modules(): if isinstance(m, MSDeformAttn): m._reset_parameters() if not self.two_stage: xavier_uniform_(self.reference_points.weight, gain=1.0) constant_(self.reference_points.bias, 0.0) normal_(self.level_embed) def get_proposal_pos_embed(self, proposals): """ Args proposals: shape (bs, top_k, 4). Last dimension of size 4 denotes (cx, cy, w, h) """ num_pos_feats = 128 temperature = 10000 scale = 2 * math.pi # shape (num_pos_feats) dim_t = torch.arange( num_pos_feats, dtype=torch.float32, device=proposals.device ) dim_t = temperature ** (2 * (dim_t // 2) / num_pos_feats) # N, L, 4 proposals = proposals.sigmoid() * scale # pos shape: (bs, top_k, 4, num_pos_feats) pos = proposals[:, :, :, None] / dim_t # pos shape: (bs, top_k, 4, num_pos_feats/2, 2) -> (bs, top_k, 4 * num_pos_feats) pos = torch.stack( (pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()), dim=4 ).flatten(2) # pos shape: (bs, top_k, 4 * num_pos_feats) = (bs, top_k, 512) return pos def gen_encoder_output_proposals(self, memory, memory_padding_mask, spatial_shapes): """ Args: memory: shape (bs, K, C) where K = \sum_l H_l * w_l memory_padding_mask: shape (bs, K) spatial_shapes: shape (num_levels, 2) """ N_, S_, C_ = memory.shape proposals = [] _cur = 0 base_object_scale = 0.05 for lvl, (H_, W_) in enumerate(spatial_shapes): # shape (bs, H_l * W_l) mask_flatten_ = memory_padding_mask[:, _cur : (_cur + H_ * W_)].view( N_, H_, W_, 1 ) # shape (bs, ) valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1) # shape (bs, ) valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1) # grid_y, grid_x shape (H_l, W_l) grid_y, grid_x = torch.meshgrid( torch.linspace( 0, H_ - 1, H_, dtype=torch.float32, device=memory.device ), torch.linspace( 0, W_ - 1, W_, dtype=torch.float32, device=memory.device ), ) # grid shape (H_l, W_l, 2) grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) # scale shape (bs, 1, 1, 2) scale = torch.cat([valid_W.unsqueeze(-1), valid_H.unsqueeze(-1)], 1).view( N_, 1, 1, 2 ) # grid shape (bs, H_l, W_l, 2). Value could be > 1 grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale # wh shape (bs, H_l, W_l, 2) wh = torch.ones_like(grid) * base_object_scale * (2.0**lvl) # proposal shape (bs, H_l * W_l, 4) proposal = torch.cat((grid, wh), -1).view(N_, -1, 4) proposals.append(proposal) _cur += H_ * W_ # shape (bs, K, 4) where K = \sum_l H_l * W_l output_proposals = torch.cat(proposals, 1) # shape (bs, K, 1) output_proposals_valid = ( (output_proposals > 0.01) & (output_proposals < 0.99) ).all(-1, keepdim=True) output_proposals = inverse_sigmoid(output_proposals) # memory: shape (bs, K, C) output_memory = memory # memory_padding_mask: shape (bs, K) output_memory = output_memory.masked_fill( memory_padding_mask.unsqueeze(-1), float(0) ) output_memory = output_memory.masked_fill(~output_proposals_valid, float(0)) output_memory = self.enc_output_norm(self.enc_output(output_memory)) return output_memory, output_proposals, output_proposals_valid def get_valid_ratio(self, mask): _, H, W = mask.shape # shape (bs,) valid_H = torch.sum(~mask[:, :, 0], 1) valid_W = torch.sum(~mask[:, 0, :], 1) valid_ratio_h = valid_H.float() / H valid_ratio_w = valid_W.float() / W valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1) # shape (bs, 2) return valid_ratio def forward(self, srcs, masks, pos_embeds, query_embed=None): """ Args: srcs: a list of num_levels tensors. Each has shape (N, C, H_l, W_l) masks: a list of num_levels tensors. Each has shape (N, H_l, W_l) pos_embeds: a list of num_levels tensors. Each has shape (N, C, H_l, W_l) query_embed: a tensor has shape (num_queries, C) """ assert self.two_stage or query_embed is not None # prepare input for encoder src_flatten = [] mask_flatten = [] lvl_pos_embed_flatten = [] spatial_shapes = [] for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)): bs, c, h, w = src.shape spatial_shape = (h, w) spatial_shapes.append(spatial_shape) # src shape (bs, h_l*w_l, c) src = src.flatten(2).transpose(1, 2) # mask shape (bs, h_l*w_l) mask = mask.flatten(1) # pos_embed shape (bs, h_l*w_l, c) pos_embed = pos_embed.flatten(2).transpose(1, 2) # lvl_pos_embed shape (bs, h_l*w_l, c) lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1) lvl_pos_embed_flatten.append(lvl_pos_embed) src_flatten.append(src) mask_flatten.append(mask) # src_flatten shape: (bs, K, c) where K = \sum_l H_l * w_l src_flatten = torch.cat(src_flatten, 1) # mask_flatten shape: (bs, K) mask_flatten = torch.cat(mask_flatten, 1) # lvl_pos_embed_flatten shape: (bs, K, c) lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) # spatial_shapes shape: (num_levels, 2) spatial_shapes = torch.as_tensor( spatial_shapes, dtype=torch.long, device=src_flatten.device ) # level_start_index shape: (num_levels) level_start_index = torch.cat( (spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1]) ) # valid_ratios shape: (bs, num_levels, 2) valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1) # encoder # memory shape (bs, K, C) where K = \sum_l H_l * w_l memory = self.encoder( src_flatten, spatial_shapes, level_start_index, valid_ratios, lvl_pos_embed_flatten, mask_flatten, ) # prepare input for decoder bs, _, c = memory.shape if self.two_stage: # output_memory shape (bs, K, C) # output_proposals shape (bs, K, 4) # output_proposals_valid shape (bs, K, 1) ( output_memory, output_proposals, output_proposals_valid, ) = self.gen_encoder_output_proposals(memory, mask_flatten, spatial_shapes) # hack implementation for two-stage Deformable DETR # shape (bs, K, 1) enc_outputs_class = self.encoder.class_embed(output_memory) # fill in -inf foreground logit at invalid positions so that we will never pick # top-scored proposals at those positions enc_outputs_class.masked_fill(mask_flatten.unsqueeze(-1), NEG_INF) enc_outputs_class.masked_fill(~output_proposals_valid, NEG_INF) # shape (bs, K, 4) enc_outputs_coord_unact = ( self.encoder.bbox_embed(output_memory) + output_proposals ) topk = self.two_stage_num_proposals # topk_proposals: indices of top items. Shape (bs, top_k) topk_proposals = torch.topk(enc_outputs_class[..., 0], topk, dim=1)[1] # topk_coords_unact shape (bs, top_k, 4) topk_coords_unact = torch.gather( enc_outputs_coord_unact, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4) ) topk_coords_unact = topk_coords_unact.detach() init_reference_out = topk_coords_unact # shape (bs, top_k, C=512) pos_trans_out = self.pos_trans_norm( self.pos_trans(self.get_proposal_pos_embed(topk_coords_unact)) ) # query_embed shape (bs, top_k, c) # tgt shape (bs, top_k, c) query_embed, tgt = torch.split(pos_trans_out, c, dim=2) else: # query_embed (or tgt) shape: (num_queries, c) query_embed, tgt = torch.split(query_embed, c, dim=1) # query_embed shape: (batch_size, num_queries, c) query_embed = query_embed.unsqueeze(0).expand(bs, -1, -1) # tgt shape: (batch_size, num_queries, c) tgt = tgt.unsqueeze(0).expand(bs, -1, -1) # init_reference_out shape: (batch_size, num_queries, 2) init_reference_out = self.reference_points(query_embed) # decoder # hs shape: (num_layers, batch_size, num_queries, c) # inter_references shape: (num_layers, batch_size, num_queries, num_levels, 2) hs, inter_references = self.decoder( tgt, init_reference_out, memory, spatial_shapes, level_start_index, valid_ratios, query_embed, mask_flatten, ) inter_references_out = inter_references if self.two_stage: return ( hs, init_reference_out, inter_references_out, enc_outputs_class, enc_outputs_coord_unact, ) # hs shape: (num_layers, batch_size, num_queries, c) # init_reference_out shape: (batch_size, num_queries, 2) # inter_references_out shape: (num_layers, bs, num_queries, num_levels, 2) return hs, init_reference_out, inter_references_out, None, None class DeformableTransformerEncoderLayer(nn.Module): def __init__( self, d_model=256, d_ffn=1024, dropout=0.1, activation="relu", n_levels=4, n_heads=8, n_points=4, ): super().__init__() # self attention self.self_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points) self.dropout1 = nn.Dropout(dropout) self.norm1 = nn.LayerNorm(d_model) # ffn self.linear1 = nn.Linear(d_model, d_ffn) self.activation = _get_activation_fn(activation) self.dropout2 = nn.Dropout(dropout) self.linear2 = nn.Linear(d_ffn, d_model) self.dropout3 = nn.Dropout(dropout) self.norm2 = nn.LayerNorm(d_model) @staticmethod def with_pos_embed(tensor, pos): return tensor if pos is None else tensor + pos def forward_ffn(self, src): src2 = self.linear2(self.dropout2(self.activation(self.linear1(src)))) src = src + self.dropout3(src2) src = self.norm2(src) return src def forward( self, src, pos, reference_points, spatial_shapes, level_start_index, padding_mask=None, ): """ Args: src: tensor, shape (bs, K, c) where K = \sum_l H_l * w_l pos: tensor, shape (bs, K, c) reference_points: tensor, shape (bs, K, num_levels, 2) spatial_shapes: tensor, shape (num_levels, 2) level_start_index: tensor, shape (num_levels,) padding_mask: tensor, shape: (bs, K) """ # self attention # shape: (bs, \sum_l H_l * w_l, c) src2 = self.self_attn( self.with_pos_embed(src, pos), reference_points, src, spatial_shapes, level_start_index, padding_mask, ) src = src + self.dropout1(src2) src = self.norm1(src) # ffn src = self.forward_ffn(src) return src class DeformableTransformerEncoder(nn.Module): def __init__(self, encoder_layer, num_layers): super().__init__() self.layers = _get_clones(encoder_layer, num_layers) self.num_layers = num_layers @staticmethod def get_reference_points(spatial_shapes, valid_ratios, device): reference_points_list = [] for lvl, (H_, W_) in enumerate(spatial_shapes): # ref_y shape: (H_l, W_l) # ref_x shape: (H_l, W_l) ref_y, ref_x = torch.meshgrid( torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device), torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device), ) # ref_y # shape (None, H_l*W_l) / (N, None) = (N, H_l*W_l) # value could be >1 ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_) ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_) # ref shape (N, H_l*W_l, 2) ref = torch.stack((ref_x, ref_y), -1) reference_points_list.append(ref) # shape (N, K, 2) where K = \sum_l (H_l * W_l) reference_points = torch.cat(reference_points_list, 1) # reference_points # shape (N, K, 1, 2) * (N, 1, num_levels, 2) = (N, K, num_levels, 2) # ideally, value should be <1. In practice, value coule be >= 1. Thus, clamp max to 1 reference_points = reference_points[:, :, None] * valid_ratios[:, None] reference_points = reference_points.clamp(max=1.0) return reference_points def forward( self, src, spatial_shapes, level_start_index, valid_ratios, pos=None, padding_mask=None, ): output = src reference_points = self.get_reference_points( spatial_shapes, valid_ratios, device=src.device ) for _, layer in enumerate(self.layers): output = layer( output, pos, reference_points, spatial_shapes, level_start_index, padding_mask, ) # shape (bs, K, c) where K = \sum_l H_l * w_l return output class DeformableTransformerDecoderLayer(nn.Module): def __init__( self, d_model=256, d_ffn=1024, dropout=0.1, activation="relu", n_levels=4, n_heads=8, n_points=4, ): super().__init__() # cross attention self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points) self.dropout1 = nn.Dropout(dropout) self.norm1 = nn.LayerNorm(d_model) # self attention self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout) self.dropout2 = nn.Dropout(dropout) self.norm2 = nn.LayerNorm(d_model) # ffn self.linear1 = nn.Linear(d_model, d_ffn) self.activation = _get_activation_fn(activation) self.dropout3 = nn.Dropout(dropout) self.linear2 = nn.Linear(d_ffn, d_model) self.dropout4 = nn.Dropout(dropout) self.norm3 = nn.LayerNorm(d_model) @staticmethod def with_pos_embed(tensor, pos): return tensor if pos is None else tensor + pos def forward_ffn(self, tgt): tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt)))) tgt = tgt + self.dropout4(tgt2) tgt = self.norm3(tgt) return tgt def forward( self, tgt, query_pos, reference_points, src, src_spatial_shapes, level_start_index, src_padding_mask=None, ): """ Args: tgt: tensor, shape (batch_size, num_queries, c) query_pos: tensor, shape: (batch_size, num_queries, c) reference_points: tensor, shape: (batch_size, num_queries, num_levels, 2/4). values \in (0, 1) src: tensor, shape (batch_size, K, c) where K = \sum_l H_l * w_l src_spatial_shapes: tensor, shape (num_levels, 2) level_start_index: tensor, shape (num_levels,) src_padding_mask: tensor, (batch_size, K) """ # self attention q = k = self.with_pos_embed(tgt, query_pos) tgt2 = self.self_attn( q.transpose(0, 1), k.transpose(0, 1), tgt.transpose(0, 1) )[0].transpose(0, 1) # tgt shape: (batch_size, num_queries, c) tgt = tgt + self.dropout2(tgt2) tgt = self.norm2(tgt) # cross attention tgt2 = self.cross_attn( self.with_pos_embed(tgt, query_pos), reference_points, src, src_spatial_shapes, level_start_index, src_padding_mask, ) tgt = tgt + self.dropout1(tgt2) tgt = self.norm1(tgt) # ffn tgt = self.forward_ffn(tgt) # tgt shape: (batch_size, num_queries, c) return tgt class DeformableTransformerDecoder(nn.Module): def __init__( self, decoder_layer, num_layers, return_intermediate=False, block_grad=True ): super().__init__() self.layers = _get_clones(decoder_layer, num_layers) self.num_layers = num_layers self.return_intermediate = return_intermediate # hack implementation for iterative bounding box refinement and two-stage Deformable DETR self.bbox_embed = None self.block_grad = block_grad def forward( self, tgt, reference_points_unact, src, src_spatial_shapes, src_level_start_index, src_valid_ratios, query_pos=None, src_padding_mask=None, ): """ Args: tgt: tensor, shape (batch_size, num_queries, c) reference_points_unact: tensor, shape (batch_size, num_queries, 2 or 4). values \in (0, 1) src: tensor, shape (batch_size, K, c) where K = \sum_l H_l * w_l src_spatial_shapes: tensor, shape (num_levels, 2) src_level_start_index: tensor, shape (num_levels,) src_valid_ratios: tensor, shape (batch_size, num_levels, 2) query_pos: tensor, shape: (batch_size, num_queries, c) src_padding_mask: tensor, (bs, K) """ output = tgt intermediate = [] intermediate_reference_points = [] for lid, layer in enumerate(self.layers): reference_points = reference_points_unact.sigmoid() if reference_points.shape[-1] == 4: # shape: (bs, num_queries, 1, 4) * (bs, 1, num_levels, 4) = (bs, num_queries, num_levels, 4) reference_points_input = ( reference_points[:, :, None] * torch.cat([src_valid_ratios, src_valid_ratios], -1)[:, None] ) else: assert reference_points.shape[-1] == 2 # shape (bs, num_queries, 1, 2) * (bs, 1, num_levels, 2) = (bs, num_queries, num_levels, 2) reference_points_input = ( reference_points[:, :, None] * src_valid_ratios[:, None] ) # shape: (bs, num_queries, c) output = layer( output, query_pos, reference_points_input, src, src_spatial_shapes, src_level_start_index, src_padding_mask, ) # hack implementation for iterative bounding box refinement if self.bbox_embed is not None: tmp = self.bbox_embed[lid](output) if reference_points.shape[-1] == 4: new_reference_points_unact = tmp + reference_points_unact else: assert reference_points.shape[-1] == 2 new_reference_points_unact = tmp new_reference_points_unact[..., :2] = ( tmp[..., :2] + reference_points_unact ) # block gradient backpropagation here to stabilize optimization if self.block_grad: new_reference_points_unact = new_reference_points_unact.detach() reference_points_unact = new_reference_points_unact else: new_reference_points_unact = reference_points_unact if self.return_intermediate: intermediate.append(output) intermediate_reference_points.append(new_reference_points_unact) if self.return_intermediate: # shape 1: (num_layers, batch_size, num_queries, c) # shape 2: (num_layers, bs, num_queries, num_levels, 2) return torch.stack(intermediate), torch.stack(intermediate_reference_points) # output shape: (batch_size, num_queries, c) # new_reference_points_unact shape: (bs, num_queries, num_levels, 2) return output, new_reference_points_unact def _get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) def _get_activation_fn(activation): """Return an activation function given a string""" if activation == "relu": return F.relu if activation == "gelu": return F.gelu if activation == "glu": return F.glu raise RuntimeError(f"activation should be relu/gelu, not {activation}.") def build_deforamble_transformer(args): return DeformableTransformer( d_model=args.hidden_dim, nhead=args.nheads, num_encoder_layers=args.enc_layers, num_decoder_layers=args.dec_layers, dim_feedforward=args.dim_feedforward, dropout=args.dropout, activation="relu", return_intermediate_dec=True, num_feature_levels=args.num_feature_levels, dec_n_points=args.dec_n_points, enc_n_points=args.enc_n_points, two_stage=args.two_stage, two_stage_num_proposals=args.num_queries, )
d2go-main
projects_oss/detr/detr/models/deformable_transformer.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ This file provides the definition of the convolutional heads used to predict masks, as well as the losses """ import io from collections import defaultdict from typing import List, Optional import detr.util.box_ops as box_ops import torch import torch.nn as nn import torch.nn.functional as F from detr.util.misc import interpolate, nested_tensor_from_tensor_list, NestedTensor from PIL import Image from torch import Tensor try: from panopticapi.utils import id2rgb, rgb2id except ImportError: pass class DETRsegm(nn.Module): def __init__(self, detr, freeze_detr=False): super().__init__() self.detr = detr if freeze_detr: for p in self.parameters(): p.requires_grad_(False) hidden_dim, nheads = detr.transformer.d_model, detr.transformer.nhead self.bbox_attention = MHAttentionMap( hidden_dim, hidden_dim, nheads, dropout=0.0 ) self.mask_head = MaskHeadSmallConv( hidden_dim + nheads, [1024, 512, 256], hidden_dim ) def forward(self, samples: NestedTensor): if isinstance(samples, (list, torch.Tensor)): samples = nested_tensor_from_tensor_list(samples) features, pos = self.detr.backbone(samples) bs = features[-1].tensors.shape[0] src, mask = features[-1].decompose() assert mask is not None src_proj = self.detr.input_proj(src) hs, memory = self.detr.transformer( src_proj, mask, self.detr.query_embed.weight, pos[-1] ) outputs_class = self.detr.class_embed(hs) outputs_coord = self.detr.bbox_embed(hs).sigmoid() out = {"pred_logits": outputs_class[-1], "pred_boxes": outputs_coord[-1]} if self.detr.aux_loss: out["aux_outputs"] = self.detr._set_aux_loss(outputs_class, outputs_coord) # FIXME h_boxes takes the last one computed, keep this in mind bbox_mask = self.bbox_attention(hs[-1], memory, mask=mask) seg_masks = self.mask_head( src_proj, bbox_mask, [features[2].tensors, features[1].tensors, features[0].tensors], ) outputs_seg_masks = seg_masks.view( bs, self.detr.num_queries, seg_masks.shape[-2], seg_masks.shape[-1] ) out["pred_masks"] = outputs_seg_masks return out def _expand(tensor, length: int): return tensor.unsqueeze(1).repeat(1, int(length), 1, 1, 1).flatten(0, 1) class MaskHeadSmallConv(nn.Module): """ Simple convolutional head, using group norm. Upsampling is done using a FPN approach """ def __init__(self, dim, fpn_dims, context_dim): super().__init__() inter_dims = [ dim, context_dim // 2, context_dim // 4, context_dim // 8, context_dim // 16, context_dim // 64, ] self.lay1 = torch.nn.Conv2d(dim, dim, 3, padding=1) self.gn1 = torch.nn.GroupNorm(8, dim) self.lay2 = torch.nn.Conv2d(dim, inter_dims[1], 3, padding=1) self.gn2 = torch.nn.GroupNorm(8, inter_dims[1]) self.lay3 = torch.nn.Conv2d(inter_dims[1], inter_dims[2], 3, padding=1) self.gn3 = torch.nn.GroupNorm(8, inter_dims[2]) self.lay4 = torch.nn.Conv2d(inter_dims[2], inter_dims[3], 3, padding=1) self.gn4 = torch.nn.GroupNorm(8, inter_dims[3]) self.lay5 = torch.nn.Conv2d(inter_dims[3], inter_dims[4], 3, padding=1) self.gn5 = torch.nn.GroupNorm(8, inter_dims[4]) self.out_lay = torch.nn.Conv2d(inter_dims[4], 1, 3, padding=1) self.dim = dim self.adapter1 = torch.nn.Conv2d(fpn_dims[0], inter_dims[1], 1) self.adapter2 = torch.nn.Conv2d(fpn_dims[1], inter_dims[2], 1) self.adapter3 = torch.nn.Conv2d(fpn_dims[2], inter_dims[3], 1) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_uniform_(m.weight, a=1) nn.init.constant_(m.bias, 0) def forward(self, x: Tensor, bbox_mask: Tensor, fpns: List[Tensor]): x = torch.cat([_expand(x, bbox_mask.shape[1]), bbox_mask.flatten(0, 1)], 1) x = self.lay1(x) x = self.gn1(x) x = F.relu(x) x = self.lay2(x) x = self.gn2(x) x = F.relu(x) cur_fpn = self.adapter1(fpns[0]) if cur_fpn.size(0) != x.size(0): cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0)) x = cur_fpn + F.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest") x = self.lay3(x) x = self.gn3(x) x = F.relu(x) cur_fpn = self.adapter2(fpns[1]) if cur_fpn.size(0) != x.size(0): cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0)) x = cur_fpn + F.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest") x = self.lay4(x) x = self.gn4(x) x = F.relu(x) cur_fpn = self.adapter3(fpns[2]) if cur_fpn.size(0) != x.size(0): cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0)) x = cur_fpn + F.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest") x = self.lay5(x) x = self.gn5(x) x = F.relu(x) x = self.out_lay(x) return x class MHAttentionMap(nn.Module): """This is a 2D attention module, which only returns the attention softmax (no multiplication by value)""" def __init__(self, query_dim, hidden_dim, num_heads, dropout=0.0, bias=True): super().__init__() self.num_heads = num_heads self.hidden_dim = hidden_dim self.dropout = nn.Dropout(dropout) self.q_linear = nn.Linear(query_dim, hidden_dim, bias=bias) self.k_linear = nn.Linear(query_dim, hidden_dim, bias=bias) nn.init.zeros_(self.k_linear.bias) nn.init.zeros_(self.q_linear.bias) nn.init.xavier_uniform_(self.k_linear.weight) nn.init.xavier_uniform_(self.q_linear.weight) self.normalize_fact = float(hidden_dim / self.num_heads) ** -0.5 def forward(self, q, k, mask: Optional[Tensor] = None): q = self.q_linear(q) k = F.conv2d( k, self.k_linear.weight.unsqueeze(-1).unsqueeze(-1), self.k_linear.bias ) qh = q.view( q.shape[0], q.shape[1], self.num_heads, self.hidden_dim // self.num_heads ) kh = k.view( k.shape[0], self.num_heads, self.hidden_dim // self.num_heads, k.shape[-2], k.shape[-1], ) weights = torch.einsum("bqnc,bnchw->bqnhw", qh * self.normalize_fact, kh) if mask is not None: weights.masked_fill_(mask.unsqueeze(1).unsqueeze(1), float("-inf")) weights = F.softmax(weights.flatten(2), dim=-1).view(weights.size()) weights = self.dropout(weights) return weights def dice_loss(inputs, targets, num_boxes): """ Compute the DICE loss, similar to generalized IOU for masks Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). """ inputs = inputs.sigmoid() inputs = inputs.flatten(1) numerator = 2 * (inputs * targets).sum(1) denominator = inputs.sum(-1) + targets.sum(-1) loss = 1 - (numerator + 1) / (denominator + 1) return loss.sum() / num_boxes def sigmoid_focal_loss( inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2 ): """ Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). alpha: (optional) Weighting factor in range (0,1) to balance positive vs negative examples. Default = -1 (no weighting). gamma: Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples. Returns: Loss tensor """ prob = inputs.sigmoid() ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") p_t = prob * targets + (1 - prob) * (1 - targets) loss = ce_loss * ((1 - p_t) ** gamma) if alpha >= 0: alpha_t = alpha * targets + (1 - alpha) * (1 - targets) loss = alpha_t * loss return loss.mean(1).sum() / num_boxes class PostProcessSegm(nn.Module): def __init__(self, threshold=0.5): super().__init__() self.threshold = threshold @torch.no_grad() def forward(self, results, outputs, orig_target_sizes, max_target_sizes): assert len(orig_target_sizes) == len(max_target_sizes) max_h, max_w = max_target_sizes.max(0)[0].tolist() outputs_masks = outputs["pred_masks"].squeeze(2) outputs_masks = F.interpolate( outputs_masks, size=(max_h, max_w), mode="bilinear", align_corners=False ) outputs_masks = (outputs_masks.sigmoid() > self.threshold).cpu() for i, (cur_mask, t, tt) in enumerate( zip(outputs_masks, max_target_sizes, orig_target_sizes) ): img_h, img_w = t[0], t[1] results[i]["masks"] = cur_mask[:, :img_h, :img_w].unsqueeze(1) results[i]["masks"] = F.interpolate( results[i]["masks"].float(), size=tuple(tt.tolist()), mode="nearest" ).byte() return results class PostProcessPanoptic(nn.Module): """This class converts the output of the model to the final panoptic result, in the format expected by the coco panoptic API""" def __init__(self, is_thing_map, threshold=0.85): """ Parameters: is_thing_map: This is a whose keys are the class ids, and the values a boolean indicating whether the class is a thing (True) or a stuff (False) class threshold: confidence threshold: segments with confidence lower than this will be deleted """ super().__init__() self.threshold = threshold self.is_thing_map = is_thing_map def forward(self, outputs, processed_sizes, target_sizes=None): # noqa: C901 """This function computes the panoptic prediction from the model's predictions. Parameters: outputs: This is a dict coming directly from the model. See the model doc for the content. processed_sizes: This is a list of tuples (or torch tensors) of sizes of the images that were passed to the model, ie the size after data augmentation but before batching. target_sizes: This is a list of tuples (or torch tensors) corresponding to the requested final size of each prediction. If left to None, it will default to the processed_sizes """ if target_sizes is None: target_sizes = processed_sizes assert len(processed_sizes) == len(target_sizes) out_logits, raw_masks, raw_boxes = ( outputs["pred_logits"], outputs["pred_masks"], outputs["pred_boxes"], ) assert len(out_logits) == len(raw_masks) == len(target_sizes) preds = [] def to_tuple(tup): if isinstance(tup, tuple): return tup return tuple(tup.cpu().tolist()) for cur_logits, cur_masks, cur_boxes, size, target_size in zip( out_logits, raw_masks, raw_boxes, processed_sizes, target_sizes ): # we filter empty queries and detection below threshold scores, labels = cur_logits.softmax(-1).max(-1) keep = labels.ne(outputs["pred_logits"].shape[-1] - 1) & ( scores > self.threshold ) cur_scores, cur_classes = cur_logits.softmax(-1).max(-1) cur_scores = cur_scores[keep] cur_classes = cur_classes[keep] cur_masks = cur_masks[keep] cur_masks = interpolate( cur_masks[:, None], to_tuple(size), mode="bilinear" ).squeeze(1) cur_boxes = box_ops.box_cxcywh_to_xyxy(cur_boxes[keep]) h, w = cur_masks.shape[-2:] assert len(cur_boxes) == len(cur_classes) # It may be that we have several predicted masks for the same stuff class. # In the following, we track the list of masks ids for each stuff class (they are merged later on) cur_masks = cur_masks.flatten(1) stuff_equiv_classes = defaultdict(lambda: []) for k, label in enumerate(cur_classes): if not self.is_thing_map[label.item()]: stuff_equiv_classes[label.item()].append(k) def get_ids_area(masks, scores, dedup=False): # This helper function creates the final panoptic segmentation image # It also returns the area of the masks that appears on the image m_id = masks.transpose(0, 1).softmax(-1) if m_id.shape[-1] == 0: # We didn't detect any mask :( m_id = torch.zeros((h, w), dtype=torch.long, device=m_id.device) else: m_id = m_id.argmax(-1).view(h, w) if dedup: # Merge the masks corresponding to the same stuff class for equiv in stuff_equiv_classes.values(): if len(equiv) > 1: for eq_id in equiv: m_id.masked_fill_(m_id.eq(eq_id), equiv[0]) final_h, final_w = to_tuple(target_size) seg_img = Image.fromarray(id2rgb(m_id.view(h, w).cpu().numpy())) seg_img = seg_img.resize( size=(final_w, final_h), resample=Image.NEAREST ) np_seg_img = ( torch.ByteTensor(torch.ByteStorage.from_buffer(seg_img.tobytes())) .view(final_h, final_w, 3) .numpy() ) m_id = torch.from_numpy(rgb2id(np_seg_img)) area = [] for i in range(len(scores)): area.append(m_id.eq(i).sum().item()) return area, seg_img area, seg_img = get_ids_area(cur_masks, cur_scores, dedup=True) if cur_classes.numel() > 0: # We know filter empty masks as long as we find some while True: filtered_small = torch.as_tensor( [area[i] <= 4 for i, c in enumerate(cur_classes)], dtype=torch.bool, device=keep.device, ) if filtered_small.any().item(): cur_scores = cur_scores[~filtered_small] cur_classes = cur_classes[~filtered_small] cur_masks = cur_masks[~filtered_small] area, seg_img = get_ids_area(cur_masks, cur_scores) else: break else: cur_classes = torch.ones(1, dtype=torch.long, device=cur_classes.device) segments_info = [] for i, a in enumerate(area): cat = cur_classes[i].item() segments_info.append( { "id": i, "isthing": self.is_thing_map[cat], "category_id": cat, "area": a, } ) del cur_classes with io.BytesIO() as out: seg_img.save(out, format="PNG") predictions = { "png_string": out.getvalue(), "segments_info": segments_info, } preds.append(predictions) return preds
d2go-main
projects_oss/detr/detr/models/segmentation.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import numpy as np import torch import torch.nn.functional as F from d2go.registry.builtin import META_ARCH_REGISTRY from detectron2.modeling import detector_postprocess from detectron2.structures import BitMasks, Boxes, ImageList, Instances from detr.datasets.coco import convert_coco_poly_to_mask from detr.models.backbone import Joiner from detr.models.build import build_detr_model from detr.models.deformable_detr import DeformableDETR from detr.models.deformable_transformer import DeformableTransformer from detr.models.detr import DETR from detr.models.matcher import HungarianMatcher from detr.models.position_encoding import PositionEmbeddingSine from detr.models.segmentation import DETRsegm, PostProcessSegm from detr.models.setcriterion import FocalLossSetCriterion, SetCriterion from detr.util.box_ops import box_cxcywh_to_xyxy, box_xyxy_to_cxcywh from detr.util.misc import NestedTensor from torch import nn __all__ = ["Detr"] @META_ARCH_REGISTRY.register() class Detr(nn.Module): """ Implement Detr """ def __init__(self, cfg): super().__init__() self.device = torch.device(cfg.MODEL.DEVICE) self.use_focal_loss = cfg.MODEL.DETR.USE_FOCAL_LOSS self.num_classes = cfg.MODEL.DETR.NUM_CLASSES self.mask_on = cfg.MODEL.MASK_ON dec_layers = cfg.MODEL.DETR.DEC_LAYERS # Loss parameters: giou_weight = cfg.MODEL.DETR.GIOU_WEIGHT l1_weight = cfg.MODEL.DETR.L1_WEIGHT cls_weight = cfg.MODEL.DETR.CLS_WEIGHT deep_supervision = cfg.MODEL.DETR.DEEP_SUPERVISION no_object_weight = cfg.MODEL.DETR.NO_OBJECT_WEIGHT self.detr = build_detr_model(cfg) if self.mask_on: frozen_weights = cfg.MODEL.DETR.FROZEN_WEIGHTS if frozen_weights != "": print("LOAD pre-trained weights") weight = torch.load( frozen_weights, map_location=lambda storage, loc: storage )["model"] new_weight = {} for k, v in weight.items(): if "detr." in k: new_weight[k.replace("detr.", "")] = v else: print(f"Skipping loading weight {k} from frozen model") del weight self.detr.load_state_dict(new_weight) del new_weight self.detr = DETRsegm(self.detr, freeze_detr=(frozen_weights != "")) self.seg_postprocess = PostProcessSegm self.detr.to(self.device) # building criterion matcher = HungarianMatcher( cost_class=cls_weight, cost_bbox=l1_weight, cost_giou=giou_weight, use_focal_loss=self.use_focal_loss, ) weight_dict = {"loss_ce": cls_weight, "loss_bbox": l1_weight} weight_dict["loss_giou"] = giou_weight if deep_supervision: aux_weight_dict = {} for i in range(dec_layers - 1): aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()}) weight_dict.update(aux_weight_dict) losses = ["labels", "boxes", "cardinality"] if self.mask_on: losses += ["masks"] if self.use_focal_loss: self.criterion = FocalLossSetCriterion( self.num_classes, matcher=matcher, weight_dict=weight_dict, losses=losses, ) else: self.criterion = SetCriterion( self.num_classes, matcher=matcher, weight_dict=weight_dict, eos_coef=no_object_weight, losses=losses, ) self.criterion.to(self.device) pixel_mean = torch.Tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(3, 1, 1) pixel_std = torch.Tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(3, 1, 1) self.normalizer = lambda x: (x - pixel_mean) / pixel_std self.to(self.device) def forward(self, batched_inputs): """ Args: batched_inputs: a list, batched outputs of :class:`DatasetMapper` . Each item in the list contains the inputs for one image. For now, each item in the list is a dict that contains: * image: Tensor, image in (C, H, W) format. * instances: Instances Other information that's included in the original dicts, such as: * "height", "width" (int): the output resolution of the model, used in inference. See :meth:`postprocess` for details. Returns: dict[str: Tensor]: mapping from a named loss to a tensor storing the loss. Used during training only. """ images_lists = self.preprocess_image(batched_inputs) # convert images_lists to Nested Tensor? nested_images = self.imagelist_to_nestedtensor(images_lists) output = self.detr(nested_images) if self.training: gt_instances = [x["instances"].to(self.device) for x in batched_inputs] # targets: List[Dict[str, torch.Tensor]]. Keys # "labels": [NUM_BOX,] # "boxes": [NUM_BOX, 4] targets = self.prepare_targets(gt_instances) loss_dict = self.criterion(output, targets) weight_dict = self.criterion.weight_dict for k in loss_dict.keys(): if k in weight_dict: loss_dict[k] *= weight_dict[k] return loss_dict else: box_cls = output["pred_logits"] box_pred = output["pred_boxes"] mask_pred = output["pred_masks"] if self.mask_on else None results = self.inference( box_cls, box_pred, mask_pred, images_lists.image_sizes ) processed_results = [] for results_per_image, input_per_image, image_size in zip( results, batched_inputs, images_lists.image_sizes ): height = input_per_image.get("height", image_size[0]) width = input_per_image.get("width", image_size[1]) r = detector_postprocess(results_per_image, height, width) processed_results.append({"instances": r}) return processed_results def prepare_targets(self, targets): new_targets = [] for targets_per_image in targets: h, w = targets_per_image.image_size image_size_xyxy = torch.as_tensor( [w, h, w, h], dtype=torch.float, device=self.device ) gt_classes = targets_per_image.gt_classes # shape (NUM_BOX,) gt_boxes = targets_per_image.gt_boxes.tensor / image_size_xyxy gt_boxes = box_xyxy_to_cxcywh(gt_boxes) # shape (NUM_BOX, 4) new_targets.append({"labels": gt_classes, "boxes": gt_boxes}) if self.mask_on and hasattr(targets_per_image, "gt_masks"): gt_masks = targets_per_image.gt_masks gt_masks = convert_coco_poly_to_mask(gt_masks.polygons, h, w) new_targets[-1].update({"masks": gt_masks}) return new_targets def inference(self, box_cls, box_pred, mask_pred, image_sizes): """ Arguments: box_cls (Tensor): tensor of shape (batch_size, num_queries, K). The tensor predicts the classification probability for each query. box_pred (Tensor): tensors of shape (batch_size, num_queries, 4). The tensor predicts 4-vector (x,y,w,h) box regression values for every queryx image_sizes (List[torch.Size]): the input image sizes Returns: results (List[Instances]): a list of #images elements. """ assert len(box_cls) == len(image_sizes) results = [] # For each box we assign the best class or the second best if the best on is `no_object`. if self.use_focal_loss: prob = box_cls.sigmoid() # TODO make top-100 as an option for non-focal-loss as well scores, topk_indexes = torch.topk( prob.view(box_cls.shape[0], -1), 100, dim=1 ) topk_boxes = topk_indexes // box_cls.shape[2] labels = topk_indexes % box_cls.shape[2] else: scores, labels = F.softmax(box_cls, dim=-1)[:, :, :-1].max(-1) for i, ( scores_per_image, labels_per_image, box_pred_per_image, image_size, ) in enumerate(zip(scores, labels, box_pred, image_sizes)): result = Instances(image_size) boxes = box_cxcywh_to_xyxy(box_pred_per_image) if self.use_focal_loss: boxes = torch.gather(boxes, 0, topk_boxes[i].unsqueeze(-1).repeat(1, 4)) result.pred_boxes = Boxes(boxes) result.pred_boxes.scale(scale_x=image_size[1], scale_y=image_size[0]) if self.mask_on: mask = F.interpolate( mask_pred[i].unsqueeze(0), size=image_size, mode="bilinear", align_corners=False, ) mask = mask[0].sigmoid() > 0.5 B, N, H, W = mask_pred.shape mask = BitMasks(mask.cpu()).crop_and_resize( result.pred_boxes.tensor.cpu(), 32 ) result.pred_masks = mask.unsqueeze(1).to(mask_pred[0].device) result.scores = scores_per_image result.pred_classes = labels_per_image results.append(result) return results def preprocess_image(self, batched_inputs): """ Normalize, pad and batch the input images. """ images = [self.normalizer(x["image"].to(self.device)) for x in batched_inputs] images = ImageList.from_tensors(images) return images def imagelist_to_nestedtensor(self, images): tensor = images.tensor device = tensor.device N, _, H, W = tensor.shape masks = torch.ones((N, H, W), dtype=torch.bool, device=device) for idx, (h, w) in enumerate(images.image_sizes): masks[idx, :h, :w] = False return NestedTensor(tensor, masks)
d2go-main
projects_oss/detr/detr/d2/detr.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from d2go.config import CfgNode as CN def add_detr_config(cfg): """ Add config for DETR. """ cfg.MODEL.DETR = CN() cfg.MODEL.DETR.NAME = "DETR" cfg.MODEL.DETR.NUM_CLASSES = 80 # simple backbone cfg.MODEL.BACKBONE.SIMPLE = False cfg.MODEL.BACKBONE.STRIDE = 1 cfg.MODEL.BACKBONE.CHANNEL = 0 # FBNet cfg.MODEL.FBNET_V2.OUT_FEATURES = ["trunk3"] # For Segmentation cfg.MODEL.DETR.FROZEN_WEIGHTS = "" # LOSS cfg.MODEL.DETR.DEFORMABLE = False cfg.MODEL.DETR.USE_FOCAL_LOSS = False cfg.MODEL.DETR.CENTERED_POSITION_ENCODIND = False cfg.MODEL.DETR.CLS_WEIGHT = 1.0 cfg.MODEL.DETR.NUM_FEATURE_LEVELS = 4 cfg.MODEL.DETR.GIOU_WEIGHT = 2.0 cfg.MODEL.DETR.L1_WEIGHT = 5.0 cfg.MODEL.DETR.DEEP_SUPERVISION = True cfg.MODEL.DETR.NO_OBJECT_WEIGHT = 0.1 cfg.MODEL.DETR.WITH_BOX_REFINE = False cfg.MODEL.DETR.TWO_STAGE = False cfg.MODEL.DETR.DECODER_BLOCK_GRAD = True # TRANSFORMER cfg.MODEL.DETR.NHEADS = 8 cfg.MODEL.DETR.DROPOUT = 0.1 cfg.MODEL.DETR.DIM_FEEDFORWARD = 2048 cfg.MODEL.DETR.ENC_LAYERS = 6 cfg.MODEL.DETR.DEC_LAYERS = 6 cfg.MODEL.DETR.BBOX_EMBED_NUM_LAYERS = 3 cfg.MODEL.DETR.PRE_NORM = False cfg.MODEL.DETR.HIDDEN_DIM = 256 cfg.MODEL.DETR.NUM_OBJECT_QUERIES = 100 # solver cfg.SOLVER.OPTIMIZER = "ADAMW" cfg.SOLVER.BACKBONE_MULTIPLIER = 0.1 # tgt & embeddings cfg.MODEL.DETR.LEARNABLE_TGT = False
d2go-main
projects_oss/detr/detr/d2/config.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from .config import add_detr_config from .dataset_mapper import DetrDatasetMapper from .detr import Detr __all__ = ["add_detr_config", "Detr", "DetrDatasetMapper"]
d2go-main
projects_oss/detr/detr/d2/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import copy import logging import numpy as np import torch from detectron2.data import detection_utils as utils, transforms as T __all__ = ["DetrDatasetMapper"] def build_transform_gen(cfg, is_train): """ Create a list of :class:`TransformGen` from config. Returns: list[TransformGen] """ if is_train: min_size = cfg.INPUT.MIN_SIZE_TRAIN max_size = cfg.INPUT.MAX_SIZE_TRAIN sample_style = cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING else: min_size = cfg.INPUT.MIN_SIZE_TEST max_size = cfg.INPUT.MAX_SIZE_TEST sample_style = "choice" if sample_style == "range": assert ( len(min_size) == 2 ), "more than 2 ({}) min_size(s) are provided for ranges".format(len(min_size)) logger = logging.getLogger(__name__) tfm_gens = [] if is_train: tfm_gens.append(T.RandomFlip()) tfm_gens.append(T.ResizeShortestEdge(min_size, max_size, sample_style)) if is_train: logger.info("TransformGens used in training: " + str(tfm_gens)) return tfm_gens class DetrDatasetMapper: """ A callable which takes a dataset dict in Detectron2 Dataset format, and map it into a format used by DETR. The callable currently does the following: 1. Read the image from "file_name" 2. Applies geometric transforms to the image and annotation 3. Find and applies suitable cropping to the image and annotation 4. Prepare image and annotation to Tensors """ def __init__(self, cfg, is_train=True): if cfg.INPUT.CROP.ENABLED and is_train: self.crop_gen = [ T.ResizeShortestEdge([400, 500, 600], sample_style="choice"), T.RandomCrop(cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE), ] else: self.crop_gen = None self.mask_on = cfg.MODEL.MASK_ON self.tfm_gens = build_transform_gen(cfg, is_train) logging.getLogger(__name__).info( "Full TransformGens used in training: {}, crop: {}".format( str(self.tfm_gens), str(self.crop_gen) ) ) self.img_format = cfg.INPUT.FORMAT self.is_train = is_train def __call__(self, dataset_dict): """ Args: dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format. Returns: dict: a format that builtin models in detectron2 accept """ dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below image = utils.read_image(dataset_dict["file_name"], format=self.img_format) utils.check_image_size(dataset_dict, image) if self.crop_gen is None: image, transforms = T.apply_transform_gens(self.tfm_gens, image) else: if np.random.rand() > 0.5: image, transforms = T.apply_transform_gens(self.tfm_gens, image) else: image, transforms = T.apply_transform_gens( self.tfm_gens[:-1] + self.crop_gen + self.tfm_gens[-1:], image ) image_shape = image.shape[:2] # h, w # Pytorch's dataloader is efficient on torch.Tensor due to shared-memory, # but not efficient on large generic data structures due to the use of pickle & mp.Queue. # Therefore it's important to use torch.Tensor. dataset_dict["image"] = torch.as_tensor( np.ascontiguousarray(image.transpose(2, 0, 1)) ) if not self.is_train: # USER: Modify this if you want to keep them for some reason. dataset_dict.pop("annotations", None) return dataset_dict if "annotations" in dataset_dict: # USER: Modify this if you want to keep them for some reason. for anno in dataset_dict["annotations"]: if not self.mask_on: anno.pop("segmentation", None) anno.pop("keypoints", None) # USER: Implement additional transformations if you have other types of data annos = [ utils.transform_instance_annotations(obj, transforms, image_shape) for obj in dataset_dict.pop("annotations") if obj.get("iscrowd", 0) == 0 ] instances = utils.annotations_to_instances(annos, image_shape) dataset_dict["instances"] = utils.filter_empty_instances(instances) return dataset_dict
d2go-main
projects_oss/detr/detr/d2/dataset_mapper.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # ------------------------------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------------------------------ # Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 # ------------------------------------------------------------------------------------------------ import torch import torch.nn.functional as F from detr import _C as MSDA from torch.autograd import Function from torch.autograd.function import once_differentiable from torch.cuda.amp.autocast_mode import custom_bwd, custom_fwd class MSDeformAttnFunction(Function): # The @custom_fwd and @custom_bwd decorators are used in this case to allow enabling of # Automatic Mixed Precision when we do not have implementations of custom CUDA kernels for # all the precision types. # # TODO: After implementing `ms_deform_attn` CUDA kernels for FP16, we can remove the # custom_fwd and custom_bwd decorators @staticmethod @custom_fwd(cast_inputs=torch.float32) def forward( ctx, value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, im2col_step, ): ctx.im2col_step = im2col_step output = MSDA.ms_deform_attn_forward( value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, ctx.im2col_step, ) ctx.save_for_backward( value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, ) return output @staticmethod @once_differentiable @custom_bwd def backward(ctx, grad_output): ( value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, ) = ctx.saved_tensors grad_value, grad_sampling_loc, grad_attn_weight = MSDA.ms_deform_attn_backward( value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, grad_output, ctx.im2col_step, ) return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None def ms_deform_attn_core_pytorch( value, value_spatial_shapes, sampling_locations, attention_weights ): # for debug and test only, # need to use cuda version instead # value shape (N, K, num_heads, channels_per_head) N_, S_, M_, D_ = value.shape # sampling_locations shape (N, len_q, num_heads, num_levels, num_points, 2) _, Lq_, M_, L_, P_, _ = sampling_locations.shape # a list of num_level tensors. Each has shape (N, H_l*W_l, num_heads, channels_per_head) value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1) sampling_grids = 2 * sampling_locations - 1 sampling_value_list = [] for lid_, (H_, W_) in enumerate(value_spatial_shapes): # N_, H_*W_, M_, D_ -> N_, H_*W_, M_*D_ -> N_, M_*D_, H_*W_ -> N_*M_, D_, H_, W_ value_l_ = ( value_list[lid_].flatten(2).transpose(1, 2).reshape(N_ * M_, D_, H_, W_) ) # N_, Lq_, M_, P_, 2 -> N_, M_, Lq_, P_, 2 -> N_*M_, Lq_, P_, 2 sampling_grid_l_ = sampling_grids[:, :, :, lid_].transpose(1, 2).flatten(0, 1) # N_*M_, D_, Lq_, P_ sampling_value_l_ = F.grid_sample( value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False, ) sampling_value_list.append(sampling_value_l_) # (N_, Lq_, M_, L_, P_) -> (N_, M_, Lq_, L_, P_) -> (N_, M_, 1, Lq_, L_*P_) attention_weights = attention_weights.transpose(1, 2).reshape( N_ * M_, 1, Lq_, L_ * P_ ) output = ( (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights) .sum(-1) .view(N_, M_ * D_, Lq_) ) return output.transpose(1, 2).contiguous()
d2go-main
projects_oss/detr/detr/functions/ms_deform_attn_func.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # ------------------------------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------------------------------ # Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 # ------------------------------------------------------------------------------------------------ from .ms_deform_attn_func import MSDeformAttnFunction
d2go-main
projects_oss/detr/detr/functions/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # ------------------------------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------------------------------ # Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 # ------------------------------------------------------------------------------------------------ import math import warnings import torch import torch.nn.functional as F from torch import nn from torch.nn.init import constant_, xavier_uniform_ from ..functions import MSDeformAttnFunction def _is_power_of_2(n): if (not isinstance(n, int)) or (n < 0): raise ValueError( "invalid input for _is_power_of_2: {} (type: {})".format(n, type(n)) ) return (n & (n - 1) == 0) and n != 0 class MSDeformAttn(nn.Module): def __init__(self, d_model=256, n_levels=4, n_heads=8, n_points=4): """ Multi-Scale Deformable Attention Module :param d_model hidden dimension :param n_levels number of feature levels :param n_heads number of attention heads :param n_points number of sampling points per attention head per feature level """ super().__init__() if d_model % n_heads != 0: raise ValueError( "d_model must be divisible by n_heads, but got {} and {}".format( d_model, n_heads ) ) _d_per_head = d_model // n_heads # you'd better set _d_per_head to a power of 2 which is more efficient in our CUDA implementation if not _is_power_of_2(_d_per_head): warnings.warn( "You'd better set d_model in MSDeformAttn to make the dimension of each attention head a power of 2 " "which is more efficient in our CUDA implementation." ) self.im2col_step = 64 self.d_model = d_model self.n_levels = n_levels self.n_heads = n_heads self.n_points = n_points self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2) self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points) self.value_proj = nn.Linear(d_model, d_model) self.output_proj = nn.Linear(d_model, d_model) self._reset_parameters() def _reset_parameters(self): constant_(self.sampling_offsets.weight.data, 0.0) # shape (num_heads,) thetas = torch.arange(self.n_heads, dtype=torch.float32) * ( 2.0 * math.pi / self.n_heads ) # shape (num_heads, 2) grid_init = torch.stack([thetas.cos(), thetas.sin()], -1) # shape (num_heads, num_levels, num_points, 2) grid_init = ( (grid_init / grid_init.abs().max(-1, keepdim=True)[0]) .view(self.n_heads, 1, 1, 2) .repeat(1, self.n_levels, self.n_points, 1) ) for i in range(self.n_points): grid_init[:, :, i, :] *= i + 1 with torch.no_grad(): self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1)) constant_(self.attention_weights.weight.data, 0.0) constant_(self.attention_weights.bias.data, 0.0) xavier_uniform_(self.value_proj.weight.data) constant_(self.value_proj.bias.data, 0.0) xavier_uniform_(self.output_proj.weight.data) constant_(self.output_proj.bias.data, 0.0) def forward( self, query, reference_points, input_flatten, input_spatial_shapes, input_level_start_index, input_padding_mask=None, ): """ :param query (N, Length_{query}, C) :param reference_points (N, Length_{query}, n_levels, 2), range in [0, 1], top-left (0,0), bottom-right (1, 1), including padding area or (N, Length_{query}, n_levels, 4), add additional (w, h) to form reference boxes :param input_flatten (N, \sum_{l=0}^{L-1} H_l \cdot W_l, C) :param input_spatial_shapes (n_levels, 2), [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})] :param input_level_start_index (n_levels, ), [0, H_0*W_0, H_0*W_0+H_1*W_1, H_0*W_0+H_1*W_1+H_2*W_2, ..., H_0*W_0+H_1*W_1+...+H_{L-1}*W_{L-1}] :param input_padding_mask (N, \sum_{l=0}^{L-1} H_l \cdot W_l), True for padding elements, False for non-padding elements :return output (N, Length_{query}, C) """ N, Len_q, _ = query.shape N, Len_in, _ = input_flatten.shape assert (input_spatial_shapes[:, 0] * input_spatial_shapes[:, 1]).sum() == Len_in value = self.value_proj(input_flatten) if input_padding_mask is not None: value = value.masked_fill(input_padding_mask[..., None], float(0)) value = value.view(N, Len_in, self.n_heads, self.d_model // self.n_heads) sampling_offsets = self.sampling_offsets(query).view( N, Len_q, self.n_heads, self.n_levels, self.n_points, 2 ) attention_weights = self.attention_weights(query).view( N, Len_q, self.n_heads, self.n_levels * self.n_points ) attention_weights = F.softmax(attention_weights, -1).view( N, Len_q, self.n_heads, self.n_levels, self.n_points ) # N, Len_q, n_heads, n_levels, n_points, 2 if reference_points.shape[-1] == 2: offset_normalizer = torch.stack( [input_spatial_shapes[..., 1], input_spatial_shapes[..., 0]], -1 ) sampling_locations = ( reference_points[:, :, None, :, None, :] + sampling_offsets / offset_normalizer[None, None, None, :, None, :] ) elif reference_points.shape[-1] == 4: sampling_locations = ( reference_points[:, :, None, :, None, :2] + sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5 ) else: raise ValueError( "Last dim of reference_points must be 2 or 4, but get {} instead.".format( reference_points.shape[-1] ) ) output = MSDeformAttnFunction.apply( value, input_spatial_shapes, input_level_start_index, sampling_locations, attention_weights, self.im2col_step, ) output = self.output_proj(output) return output
d2go-main
projects_oss/detr/detr/modules/ms_deform_attn.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # ------------------------------------------------------------------------------------------------ # Deformable DETR # Copyright (c) 2020 SenseTime. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------------------------------ # Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 # ------------------------------------------------------------------------------------------------ from .ms_deform_attn import MSDeformAttn
d2go-main
projects_oss/detr/detr/modules/__init__.py
# code adapt from https://www.internalfb.com/intern/diffusion/FBS/browse/master/fbcode/mobile-vision/experimental/deit/models.py # Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. import json import math from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from aml.multimodal_video.utils.einops.lib import rearrange from detectron2.modeling import Backbone, BACKBONE_REGISTRY from detectron2.utils.file_io import PathManager from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.models.layers import trunc_normal_ from timm.models.registry import register_model from timm.models.vision_transformer import PatchEmbed, VisionTransformer def monkey_patch_forward(self, x): x = self.proj(x).flatten(2).transpose(1, 2) return x PatchEmbed.forward = monkey_patch_forward class DistilledVisionTransformer(VisionTransformer, Backbone): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.dist_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) num_patches = self.patch_embed.num_patches self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 2, self.embed_dim)) self.head_dist = ( nn.Linear(self.embed_dim, self.num_classes) if self.num_classes > 0 else nn.Identity() ) trunc_normal_(self.dist_token, std=0.02) trunc_normal_(self.pos_embed, std=0.02) self.head_dist.apply(self._init_weights) self.norm = None def _get_pos_embed(self, H, W): embed_size = self.pos_embed.shape[-1] # get ride of extra tokens pos_tokens = self.pos_embed[:, 2:, :] npatchs = pos_tokens.shape[1] H0 = W0 = int(math.sqrt(npatchs)) if H0 == H and W0 == W: return self.pos_embed # reshape to 2D pos_tokens = pos_tokens.transpose(1, 2).reshape(-1, embed_size, H0, W0) # interp pos_tokens = F.interpolate( pos_tokens, size=(H, W), mode="bilinear", align_corners=False, ) # flatten and reshape back pos_tokens = pos_tokens.reshape(-1, embed_size, H * W).transpose(1, 2) pos_embed = torch.cat((self.pos_embed[:, :2, :], pos_tokens), dim=1) return pos_embed def forward_features(self, x): # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py # with slight modifications to add the dist_token patch_size = self.patch_embed.patch_size[0] H, W = x.shape[-2:] H, W = H // patch_size, W // patch_size B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand( B, -1, -1 ) # stole cls_tokens impl from Phil Wang, thanks dist_token = self.dist_token.expand(B, -1, -1) x = torch.cat((cls_tokens, dist_token, x), dim=1) # pick the spatial embed and do iterp pos_embed = self._get_pos_embed(H, W) x = x + pos_embed x = self.pos_drop(x) for blk in self.blocks: x = blk(x) # x = self.norm(x) spatial = rearrange(x[:, 2:], "b (h w) c -> b c h w", h=H, w=W) return x[:, 0], x[:, 1], spatial def forward(self, x): x, x_dist, x0 = self.forward_features(x) return x0 # x = self.head(x) # x_dist = self.head_dist(x_dist) # if self.training: # return x, x_dist # else: # # during inference, return the average of both classifier predictions # return (x + x_dist) / 2 def _cfg(input_size=224, url="", **kwargs): return { "url": url, "num_classes": 1000, "input_size": (3, input_size, input_size), "pool_size": None, "crop_pct": 0.9, "interpolation": "bilinear", "mean": IMAGENET_DEFAULT_MEAN, "std": IMAGENET_DEFAULT_STD, "first_conv": "patch_embed.proj", "classifier": "head", **kwargs, } def deit_scalable_distilled(model_config, pretrained=False, **kwargs): assert not pretrained model = DistilledVisionTransformer( img_size=model_config["I"], patch_size=model_config["p"], embed_dim=model_config["h"] * model_config["e"], depth=model_config["d"], num_heads=model_config["h"], mlp_ratio=model_config["r"], qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs, ) model.default_cfg = _cfg(input_size=model_config["I"]) print("model arch config: {}".format(model_config)) print("model train config: {}".format(model.default_cfg)) return model def add_deit_backbone_config(cfg): cfg.MODEL.DEIT = type(cfg)() cfg.MODEL.DEIT.MODEL_CONFIG = None cfg.MODEL.DEIT.WEIGHTS = None @BACKBONE_REGISTRY.register() def deit_d2go_model_wrapper(cfg, _): assert cfg.MODEL.DEIT.MODEL_CONFIG is not None with PathManager.open(cfg.MODEL.DEIT.MODEL_CONFIG) as f: model_config = json.load(f) model = deit_scalable_distilled( model_config, num_classes=0, # set num_classes=0 to avoid building cls head drop_rate=0, drop_path_rate=0.1, ) # load weights if cfg.MODEL.DEIT.WEIGHTS is not None: with PathManager.open(cfg.MODEL.DEIT.WEIGHTS, "rb") as f: state_dict = torch.load(f, map_location="cpu")["model"] rm_keys = [k for k in state_dict if "head" in k] rm_keys = rm_keys + ["norm.weight", "norm.bias"] print(rm_keys) for k in rm_keys: del state_dict[k] model.load_state_dict(state_dict) print(f"loaded weights from {cfg.MODEL.DEIT.WEIGHTS}") return model
d2go-main
projects_oss/detr/detr/backbone/deit.py
# https://www.internalfb.com/intern/diffusion/FBS/browse/master/fbcode/mobile-vision/experimental/deit/pit_models.py # PiT # Copyright 2021-present NAVER Corp. # Apache License v2.0 import json import math from functools import partial import torch import torch.nn.functional as F from aml.multimodal_video.utils.einops.lib import rearrange from detectron2.modeling import Backbone, BACKBONE_REGISTRY from detectron2.utils.file_io import PathManager from timm.models.layers import trunc_normal_ from timm.models.registry import register_model from timm.models.vision_transformer import Block as transformer_block from torch import nn class Transformer(nn.Module): def __init__( self, base_dim, depth, heads, mlp_ratio, drop_rate=0.0, attn_drop_rate=0.0, drop_path_prob=None, ): super(Transformer, self).__init__() self.layers = nn.ModuleList([]) embed_dim = base_dim * heads if drop_path_prob is None: drop_path_prob = [0.0 for _ in range(depth)] self.blocks = nn.ModuleList( [ transformer_block( dim=embed_dim, num_heads=heads, mlp_ratio=mlp_ratio, qkv_bias=True, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=drop_path_prob[i], norm_layer=partial(nn.LayerNorm, eps=1e-6), ) for i in range(depth) ] ) def forward(self, x, cls_tokens): h, w = x.shape[2:4] x = rearrange(x, "b c h w -> b (h w) c") token_length = cls_tokens.shape[1] x = torch.cat((cls_tokens, x), dim=1) for blk in self.blocks: x = blk(x) cls_tokens = x[:, :token_length] x = x[:, token_length:] x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w) return x, cls_tokens class conv_head_pooling(nn.Module): def __init__( self, in_feature, out_feature, stride, conv_type, padding_mode="zeros", dilation=1, ): super(conv_head_pooling, self).__init__() if conv_type == "depthwise": _groups = in_feature else: _groups = 1 print("_groups in conv_head_pooling: ", _groups) self.conv = nn.Conv2d( in_feature, out_feature, kernel_size=3, padding=dilation, dilation=dilation, stride=stride, padding_mode=padding_mode, groups=_groups, ) self.fc = nn.Linear(in_feature, out_feature) def forward(self, x, cls_token): x = self.conv(x) cls_token = self.fc(cls_token) return x, cls_token class conv_embedding(nn.Module): def __init__(self, in_channels, out_channels, patch_size, stride, padding): super(conv_embedding, self).__init__() self.conv = nn.Conv2d( in_channels, out_channels, kernel_size=patch_size, stride=stride, padding=padding, bias=True, ) def forward(self, x): x = self.conv(x) return x class PoolingTransformer(Backbone): def __init__( self, image_size, patch_size, stride, base_dims, depth, heads, mlp_ratio, conv_type="depthwise", num_classes=1000, in_chans=3, attn_drop_rate=0.0, drop_rate=0.0, drop_path_rate=0.0, dilated=False, ): super(PoolingTransformer, self).__init__() total_block = sum(depth) padding = 0 block_idx = 0 self.padding = padding self.stride = stride width = math.floor((image_size + 2 * padding - patch_size) / stride + 1) self.conv_type = conv_type self.base_dims = base_dims self.heads = heads self.num_classes = num_classes self.patch_size = patch_size self.pos_embed = nn.Parameter( torch.randn(1, base_dims[0] * heads[0], width, width), requires_grad=True ) self.patch_embed = conv_embedding( in_chans, base_dims[0] * heads[0], patch_size, stride, padding ) self.cls_token = nn.Parameter( torch.randn(1, 1, base_dims[0] * heads[0]), requires_grad=True ) self.pos_drop = nn.Dropout(p=drop_rate) self.transformers = nn.ModuleList([]) self.pools = nn.ModuleList([]) for stage in range(len(depth)): drop_path_prob = [ drop_path_rate * i / total_block for i in range(block_idx, block_idx + depth[stage]) ] block_idx += depth[stage] self.transformers.append( Transformer( base_dims[stage], depth[stage], heads[stage], mlp_ratio, drop_rate, attn_drop_rate, drop_path_prob, ) ) if stage < len(heads) - 1: if stage == len(heads) - 2 and dilated: pool_dilation = 2 pool_stride = 1 else: pool_dilation = 1 pool_stride = 2 self.pools.append( conv_head_pooling( base_dims[stage] * heads[stage], base_dims[stage + 1] * heads[stage + 1], stride=pool_stride, dilation=pool_dilation, conv_type=self.conv_type, ) ) # self.norm = nn.LayerNorm(base_dims[-1] * heads[-1], eps=1e-6) self.embed_dim = base_dims[-1] * heads[-1] # Classifier head if num_classes > 0: self.head = nn.Linear(base_dims[-1] * heads[-1], num_classes) else: self.head = nn.Identity() trunc_normal_(self.pos_embed, std=0.02) trunc_normal_(self.cls_token, std=0.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {"pos_embed", "cls_token"} def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=""): self.num_classes = num_classes if num_classes > 0: self.head = nn.Linear(self.embed_dim, num_classes) else: self.head = nn.Identity() def _get_pos_embed(self, H, W): H0, W0 = self.pos_embed.shape[-2:] if H0 == H and W0 == W: return self.pos_embed # interp pos_embed = F.interpolate( self.pos_embed, size=(H, W), mode="bilinear", align_corners=False, ) return pos_embed def forward_features(self, x): H, W = x.shape[-2:] x = self.patch_embed(x) # featuremap size after patch embeding H = math.floor((H + 2 * self.padding - self.patch_size) / self.stride + 1) W = math.floor((W + 2 * self.padding - self.patch_size) / self.stride + 1) pos_embed = self._get_pos_embed(H, W) x = self.pos_drop(x + pos_embed) cls_tokens = self.cls_token.expand(x.shape[0], -1, -1) for stage in range(len(self.pools)): x, cls_tokens = self.transformers[stage](x, cls_tokens) x, cls_tokens = self.pools[stage](x, cls_tokens) x, cls_tokens = self.transformers[-1](x, cls_tokens) # cls_tokens = self.norm(cls_tokens) # no gradient for layer norm, which cause failure return cls_tokens, x def forward(self, x): cls_token, _ = self.forward_features(x) cls_token = self.head(cls_token[:, 0]) return cls_token class DistilledPoolingTransformer(PoolingTransformer): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.cls_token = nn.Parameter( torch.randn(1, 2, self.base_dims[0] * self.heads[0]), requires_grad=True ) if self.num_classes > 0: self.head_dist = nn.Linear( self.base_dims[-1] * self.heads[-1], self.num_classes ) else: self.head_dist = nn.Identity() trunc_normal_(self.cls_token, std=0.02) self.head_dist.apply(self._init_weights) def forward(self, x): cls_token, x = self.forward_features(x) return x # x_cls = self.head(cls_token[:, 0]) # x_dist = self.head_dist(cls_token[:, 1]) # if self.training: # return x_cls, x_dist # else: # return (x_cls + x_dist) / 2 def pit_scalable_distilled(model_config, pretrained=False, print_info=True, **kwargs): if "conv_type" in model_config: conv_type = model_config["conv_type"] else: conv_type = "depthwise" model = DistilledPoolingTransformer( image_size=model_config["I"], patch_size=model_config["p"], stride=model_config["s"], base_dims=model_config["e"], depth=model_config["d"], heads=model_config["h"], mlp_ratio=model_config["r"], conv_type=conv_type, **kwargs, ) if print_info: print("model arch config: {}".format(model_config)) assert pretrained == False, "pretrained must be False" return model def add_pit_backbone_config(cfg): cfg.MODEL.PIT = type(cfg)() cfg.MODEL.PIT.MODEL_CONFIG = None cfg.MODEL.PIT.WEIGHTS = None cfg.MODEL.PIT.DILATED = True @BACKBONE_REGISTRY.register() def pit_d2go_model_wrapper(cfg, _): assert cfg.MODEL.PIT.MODEL_CONFIG is not None dilated = cfg.MODEL.PIT.DILATED with PathManager.open(cfg.MODEL.PIT.MODEL_CONFIG) as f: model_config = json.load(f) model = pit_scalable_distilled( model_config, num_classes=0, # set num_classes=0 to avoid building cls head drop_rate=0, drop_path_rate=0.1, dilated=dilated, ) # load weights if cfg.MODEL.PIT.WEIGHTS is not None: with PathManager.open(cfg.MODEL.PIT.WEIGHTS, "rb") as f: state_dict = torch.load(f, map_location="cpu")["model"] rm_keys = [k for k in state_dict if "head" in k] rm_keys = rm_keys + ["norm.weight", "norm.bias"] print(rm_keys) for k in rm_keys: del state_dict[k] model.load_state_dict(state_dict) print(f"loaded weights from {cfg.MODEL.PIT.WEIGHTS}") return model
d2go-main
projects_oss/detr/detr/backbone/pit.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import os from typing import Any, Dict, List, Type, Union import mobile_cv.torch.utils_pytorch.comm as comm import pytorch_lightning as pl # type: ignore from d2go.config import CfgNode from d2go.runner.callbacks.quantization import QuantizationAwareTraining from d2go.runner.lightning_task import DefaultTask from d2go.setup import basic_argument_parser, prepare_for_launch, setup_after_launch from d2go.trainer.api import TestNetOutput, TrainNetOutput from d2go.trainer.helper import parse_precision_from_string from d2go.trainer.lightning.training_loop import _do_test, _do_train from detectron2.utils.file_io import PathManager from pytorch_lightning.callbacks import Callback, LearningRateMonitor, TQDMProgressBar from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint from pytorch_lightning.loggers import TensorBoardLogger from pytorch_lightning.strategies.ddp import DDPStrategy from torch.distributed import get_rank logging.basicConfig(level=logging.INFO) logger = logging.getLogger("detectron2go.lightning.train_net") FINAL_MODEL_CKPT = f"model_final{ModelCheckpoint.FILE_EXTENSION}" def _get_trainer_callbacks(cfg: CfgNode) -> List[Callback]: """Gets the trainer callbacks based on the given D2Go Config. Args: cfg: The normalized ConfigNode for this D2Go Task. Returns: A list of configured Callbacks to be used by the Lightning Trainer. """ callbacks: List[Callback] = [ TQDMProgressBar(refresh_rate=10), # Arbitrary refresh_rate. LearningRateMonitor(logging_interval="step"), ModelCheckpoint( dirpath=cfg.OUTPUT_DIR, save_last=True, ), ] if cfg.QUANTIZATION.QAT.ENABLED: callbacks.append(QuantizationAwareTraining.from_config(cfg)) return callbacks def _get_strategy(cfg: CfgNode) -> DDPStrategy: return DDPStrategy(find_unused_parameters=cfg.MODEL.DDP_FIND_UNUSED_PARAMETERS) def _get_accelerator(use_cpu: bool) -> str: return "cpu" if use_cpu else "gpu" def get_trainer_params(cfg: CfgNode) -> Dict[str, Any]: use_cpu = cfg.MODEL.DEVICE.lower() == "cpu" strategy = _get_strategy(cfg) accelerator = _get_accelerator(use_cpu) params = { "max_epochs": -1, "max_steps": cfg.SOLVER.MAX_ITER, "val_check_interval": cfg.TEST.EVAL_PERIOD if cfg.TEST.EVAL_PERIOD > 0 else cfg.SOLVER.MAX_ITER, "num_nodes": comm.get_num_nodes(), "devices": comm.get_local_size(), "strategy": strategy, "accelerator": accelerator, "callbacks": _get_trainer_callbacks(cfg), "logger": TensorBoardLogger(save_dir=cfg.OUTPUT_DIR), "num_sanity_val_steps": 0, "replace_sampler_ddp": False, "precision": parse_precision_from_string( cfg.SOLVER.AMP.PRECISION, lightning=True ) if cfg.SOLVER.AMP.ENABLED else 32, } if cfg.SOLVER.CLIP_GRADIENTS.ENABLED: if ( cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE.lower() == "norm" and cfg.SOLVER.CLIP_GRADIENTS.NORM_TYPE != 2.0 ): raise ValueError( "D2Go Lightning backend supports only L2-norm for norm-based gradient clipping!" ) params["gradient_clip_val"] = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE params["gradient_clip_algorithm"] = cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE # Allow specifying additional trainer parameters under `LIGHTNING_TRAINER` field. # Please note that: # - the `LIGHTNING_TRAINER`` is not part of "base" config, users need to add this to their default config via `_DEFAULTS_` or `get_default_cfg`. # - this is a temporal solution due to future refactor of config system. if hasattr(cfg, "LIGHTNING_TRAINER"): params.update( { "reload_dataloaders_every_n_epochs": cfg.LIGHTNING_TRAINER.RELOAD_DATALOADERS_EVERY_N_EPOCHS, "sync_batchnorm": cfg.LIGHTNING_TRAINER.SYNC_BATCHNORM, "benchmark": cfg.LIGHTNING_TRAINER.BENCHMARK, } ) return params def main( cfg: CfgNode, output_dir: str, runner_class: Union[str, Type[DefaultTask]], eval_only: bool = False, ) -> Union[TrainNetOutput, TestNetOutput]: """Main function for launching a training with lightning trainer Args: cfg: D2go config node num_machines: Number of nodes used for distributed training num_processes: Number of processes on each node. eval_only: True if run evaluation only. """ task_cls: Type[DefaultTask] = setup_after_launch(cfg, output_dir, runner_class) task = task_cls.from_config(cfg, eval_only) trainer_params = get_trainer_params(cfg) last_checkpoint = os.path.join(cfg.OUTPUT_DIR, "last.ckpt") if PathManager.exists(last_checkpoint): # resume training from checkpoint trainer_params["resume_from_checkpoint"] = last_checkpoint logger.info(f"Resuming training from checkpoint: {last_checkpoint}.") trainer = pl.Trainer(**trainer_params) if eval_only: _do_test(trainer, task) return TestNetOutput( tensorboard_log_dir=trainer_params["logger"].log_dir, accuracy=task.eval_res, metrics=task.eval_res, ) else: model_configs = _do_train(cfg, trainer, task) return TrainNetOutput( tensorboard_log_dir=trainer_params["logger"].log_dir, accuracy=task.eval_res, metrics=task.eval_res, model_configs=model_configs, ) def argument_parser(): parser = basic_argument_parser(distributed=True, requires_output_dir=False) # Change default runner argument parser.set_defaults(runner="d2go.runner.lightning_task.GeneralizedRCNNTask") parser.add_argument( "--eval-only", action="store_true", help="perform evaluation only" ) return parser if __name__ == "__main__": args = argument_parser().parse_args() cfg, output_dir, runner_name = prepare_for_launch(args) ret = main( cfg, output_dir, runner_name, eval_only=args.eval_only, ) if get_rank() == 0: print(ret)
d2go-main
tools/lightning_train_net.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Binary to convert pytorch detectron2go model to a predictor, which contains model(s) in deployable format (such as torchscript, caffe2, ...) """ import copy import logging import sys from dataclasses import dataclass from typing import Any, Dict, List, Type, Union import mobile_cv.lut.lib.pt.flops_utils as flops_utils from d2go.config import CfgNode, temp_defrost from d2go.distributed import set_shared_context from d2go.export.exporter import convert_and_export_predictor from d2go.runner import BaseRunner from d2go.setup import ( basic_argument_parser, post_mortem_if_fail_for_main, prepare_for_launch, setup_after_launch, setup_before_launch, setup_root_logger, ) logger = logging.getLogger("d2go.tools.export") @dataclass class ExporterOutput: predictor_paths: Dict[str, str] accuracy_comparison: Dict[str, Any] def main( cfg: CfgNode, output_dir: str, runner_class: Union[str, Type[BaseRunner]], # binary specific optional arguments predictor_types: List[str], device: str = "cpu", compare_accuracy: bool = False, skip_if_fail: bool = False, ) -> ExporterOutput: if compare_accuracy: raise NotImplementedError( "compare_accuracy functionality isn't currently supported." ) # NOTE: dict for metrics of all exported models (and original pytorch model) # ret["accuracy_comparison"] = accuracy_comparison cfg = copy.deepcopy(cfg) runner = setup_after_launch(cfg, output_dir, runner_class) with temp_defrost(cfg): cfg.merge_from_list(["MODEL.DEVICE", device]) model = runner.build_model(cfg, eval_only=True) # NOTE: train dataset is used to avoid leakage since the data might be used for # running calibration for quantization. test_loader is used to make sure it follows # the inference behaviour (augmentation will not be applied). datasets = list(cfg.DATASETS.TRAIN) data_loader = runner.build_detection_test_loader(cfg, datasets) logger.info("Running the pytorch model and print FLOPS ...") first_batch = next(iter(data_loader)) input_args = (first_batch,) flops_utils.print_model_flops(model, input_args) predictor_paths: Dict[str, str] = {} for typ in predictor_types: # convert_and_export_predictor might alter the model, copy before calling it pytorch_model = copy.deepcopy(model) try: predictor_path = convert_and_export_predictor( cfg, pytorch_model, typ, output_dir, data_loader, ) logger.info(f"Predictor type {typ} has been exported to {predictor_path}") predictor_paths[typ] = predictor_path except Exception as e: logger.exception(f"Export {typ} predictor failed: {e}") if not skip_if_fail: raise e return ExporterOutput( predictor_paths=predictor_paths, accuracy_comparison={}, ) def run_with_cmdline_args(args): cfg, output_dir, runner_name = prepare_for_launch(args) shared_context = setup_before_launch(cfg, output_dir, runner_name) if shared_context is not None: set_shared_context(shared_context) main_func = main if args.disable_post_mortem else post_mortem_if_fail_for_main(main) return main_func( cfg, output_dir, runner_name, # binary specific optional arguments predictor_types=args.predictor_types, device=args.device, compare_accuracy=args.compare_accuracy, skip_if_fail=args.skip_if_fail, ) def get_parser(): parser = basic_argument_parser(distributed=False) parser.add_argument( "--predictor-types", type=str, nargs="+", help="List of strings specify the types of predictors to export", ) parser.add_argument( "--device", default="cpu", help="the device to export the model on" ) parser.add_argument( "--compare-accuracy", action="store_true", help="If true, all exported models and the original pytorch model will be" " evaluated on cfg.DATASETS.TEST", ) parser.add_argument( "--skip-if-fail", action="store_true", default=False, help="If set, suppress the exception for failed exporting and continue to" " export the next type of model", ) return parser def cli(args=None): args = sys.argv[1:] if args is None else args run_with_cmdline_args(get_parser().parse_args(args)) if __name__ == "__main__": setup_root_logger() cli()
d2go-main
tools/exporter.py
d2go-main
tools/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Tool for benchmarking data loading """ import logging import time from dataclasses import dataclass from typing import Type, Union import detectron2.utils.comm as comm import numpy as np from d2go.config import CfgNode from d2go.distributed import get_num_processes_per_machine, launch from d2go.evaluation.api import AccuracyDict, MetricsDict from d2go.runner import BaseRunner from d2go.setup import ( basic_argument_parser, post_mortem_if_fail_for_main, prepare_for_launch, setup_after_launch, ) from d2go.utils.misc import print_metrics_table from detectron2.fb.env import get_launch_environment from detectron2.utils.logger import log_every_n_seconds from fvcore.common.history_buffer import HistoryBuffer logger = logging.getLogger("d2go.tools.benchmark_data") @dataclass class BenchmarkDataOutput: accuracy: AccuracyDict[float] metrics: MetricsDict[float] def main( cfg: CfgNode, output_dir: str, runner_class: Union[str, Type[BaseRunner]], is_train: bool = True, ) -> BenchmarkDataOutput: runner = setup_after_launch(cfg, output_dir, runner_class) if is_train: data_loader = runner.build_detection_train_loader(cfg) else: assert len(cfg.DATASETS.TEST) > 0, cfg.DATASETS.TEST data_loader = runner.build_detection_test_loader(cfg, cfg.DATASETS.TEST[0]) TOTAL_BENCHMARK_TIME = ( 100 if get_launch_environment() == "local" else 600 ) # run benchmark for 10 min LOGGING_METER_WINDOW_SIZE = 20 LOGGING_METER_TIME_INTERVAL = 5 WARMUP_ITERS = 5 # initialize time_per_iter = HistoryBuffer(max_length=10000) total_time = 0 start = time.time() for no, batch in enumerate(data_loader): data_time = time.time() - start time_per_iter.update(data_time) total_time += data_time if no == 0: logger.info("Show the first batch as example:\n{}".format(batch)) # Assume batch size is constant batch_size = cfg.SOLVER.IMS_PER_BATCH // comm.get_world_size() assert len(batch) * batch_size median = time_per_iter.median(window_size=LOGGING_METER_WINDOW_SIZE) avg = time_per_iter.avg(window_size=LOGGING_METER_WINDOW_SIZE) log_every_n_seconds( logging.INFO, "iter: {};" " recent per-iter seconds: {:.4f} (avg) {:.4f} (median);" " recent per-image seconds: {:.4f} (avg) {:.4f} (median).".format( no, avg, median, avg / batch_size, median / batch_size, ), n=LOGGING_METER_TIME_INTERVAL, ) # Synchronize between processes, exit when all processes are running for enough # time. This mimic the loss.backward(), the logged time doesn't include the time # for synchronize. finished = comm.all_gather(total_time >= TOTAL_BENCHMARK_TIME) if all(x for x in finished): logger.info("Benchmarking finished after {} seconds".format(total_time)) break start = time.time() dataset_name = ":".join(cfg.DATASETS.TRAIN) if is_train else cfg.DATASETS.TEST[0] time_per_iter = [x[0] for x in time_per_iter.values()] time_per_iter = time_per_iter[ min(WARMUP_ITERS, max(len(time_per_iter) - WARMUP_ITERS, 0)) : ] results = { "environment": { "num_workers": cfg.DATALOADER.NUM_WORKERS, "world_size": comm.get_world_size(), "processes_per_machine": get_num_processes_per_machine(), }, "main_processes_stats": { "batch_size_per_process": batch_size, "per_iter_avg": np.average(time_per_iter), "per_iter_p1": np.percentile(time_per_iter, 1, interpolation="nearest"), "per_iter_p10": np.percentile(time_per_iter, 10, interpolation="nearest"), "per_iter_p50": np.percentile(time_per_iter, 50, interpolation="nearest"), "per_iter_p90": np.percentile(time_per_iter, 90, interpolation="nearest"), "per_iter_p99": np.percentile(time_per_iter, 99, interpolation="nearest"), "per_image_avg": np.average(time_per_iter) / batch_size, "per_image_p1": np.percentile(time_per_iter, 1, interpolation="nearest") / batch_size, "per_image_p10": np.percentile(time_per_iter, 10, interpolation="nearest") / batch_size, "per_image_p50": np.percentile(time_per_iter, 50, interpolation="nearest") / batch_size, "per_image_p90": np.percentile(time_per_iter, 90, interpolation="nearest") / batch_size, "per_image_p99": np.percentile(time_per_iter, 99, interpolation="nearest") / batch_size, }, "data_processes_stats": {}, # TODO: add worker stats } # Metrics follows the hierarchy of: name -> dataset -> task -> metrics -> number metrics = {"_name_": {dataset_name: results}} print_metrics_table(metrics) return BenchmarkDataOutput( accuracy=metrics, metrics=metrics, ) def run_with_cmdline_args(args): cfg, output_dir, runner_name = prepare_for_launch(args) main_func = main if args.disable_post_mortem else post_mortem_if_fail_for_main(main) launch( main_func, num_processes_per_machine=args.num_processes, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, backend=args.dist_backend, args=(cfg, output_dir, runner_name), kwargs={ "is_train": args.is_train, }, ) if __name__ == "__main__": parser = basic_argument_parser(requires_output_dir=True) parser.add_argument( "--is-train", type=bool, default=True, help="data loader is train", ) run_with_cmdline_args(parser.parse_args())
d2go-main
tools/benchmark_data.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Detection Training Script. """ import logging import sys from typing import Callable, Dict, List, Type, Union import detectron2.utils.comm as comm from d2go.config import CfgNode from d2go.distributed import distributed_worker, launch from d2go.runner import BaseRunner from d2go.setup import ( basic_argument_parser, build_basic_cli_args, post_mortem_if_fail_for_main, prepare_for_launch, setup_after_launch, setup_before_launch, setup_root_logger, ) from d2go.trainer.api import TestNetOutput, TrainNetOutput from d2go.trainer.fsdp import is_fsdp_enabled from d2go.utils.mast import gather_mast_errors, mast_error_handler from d2go.utils.misc import ( dump_trained_model_configs, print_metrics_table, save_binary_outputs, ) from detectron2.engine.defaults import create_ddp_model from torch.distributed.fsdp import FullyShardedDataParallel as FSDP logger = logging.getLogger("d2go.tools.train_net") # Make sure logging is set up centrally even for e.g. dataloading workers which # have entry points outside of D2Go. setup_root_logger() TrainOrTestNetOutput = Union[TrainNetOutput, TestNetOutput] def main( cfg: CfgNode, output_dir: str, runner_class: Union[str, Type[BaseRunner]], eval_only: bool = False, resume: bool = True, # NOTE: always enable resume when running on cluster ) -> TrainOrTestNetOutput: logger.debug(f"Entered main for d2go, {runner_class=}") runner = setup_after_launch(cfg, output_dir, runner_class) model = runner.build_model(cfg) logger.info("Model:\n{}".format(model)) if eval_only: checkpointer = runner.build_checkpointer(cfg, model, save_dir=output_dir) # checkpointer.resume_or_load() will skip all additional checkpointable # which may not be desired like ema states if resume and checkpointer.has_checkpoint(): checkpoint = checkpointer.resume_or_load(cfg.MODEL.WEIGHTS, resume=resume) else: checkpoint = checkpointer.load(cfg.MODEL.WEIGHTS) train_iter = checkpoint.get("iteration", None) model.eval() metrics = runner.do_test(cfg, model, train_iter=train_iter) print_metrics_table(metrics) return TestNetOutput( accuracy=metrics, metrics=metrics, ) # Use DDP if FSDP is not enabled # TODO (T142223289): rewrite ddp wrapping as modeling hook if not isinstance(model, FSDP): model = create_ddp_model( model, fp16_compression=cfg.MODEL.DDP_FP16_GRAD_COMPRESS, device_ids=None if cfg.MODEL.DEVICE == "cpu" else [comm.get_local_rank()], broadcast_buffers=False, find_unused_parameters=cfg.MODEL.DDP_FIND_UNUSED_PARAMETERS, gradient_as_bucket_view=cfg.MODEL.DDP_GRADIENT_AS_BUCKET_VIEW, ) logger.info("Starting train..") trained_cfgs = runner.do_train(cfg, model, resume=resume) final_eval = cfg.TEST.FINAL_EVAL if final_eval: # run evaluation after training in the same processes metrics = runner.do_test(cfg, model) print_metrics_table(metrics) else: metrics = {} # dump config files for trained models trained_model_configs = dump_trained_model_configs(cfg.OUTPUT_DIR, trained_cfgs) return TrainNetOutput( # for e2e_workflow accuracy=metrics, # for unit_workflow model_configs=trained_model_configs, metrics=metrics, ) def wrapped_main(*args, **kwargs) -> Callable[..., TrainOrTestNetOutput]: return mast_error_handler(main)(*args, **kwargs) def run_with_cmdline_args(args): cfg, output_dir, runner_name = prepare_for_launch(args) shared_context = setup_before_launch(cfg, output_dir, runner_name) main_func = ( wrapped_main if args.disable_post_mortem else post_mortem_if_fail_for_main(wrapped_main) ) if args.run_as_worker: logger.info("Running as worker") result: TrainOrTestNetOutput = distributed_worker( main_func, args=(cfg, output_dir, runner_name), kwargs={ "eval_only": args.eval_only, "resume": args.resume, }, backend=args.dist_backend, init_method=None, # init_method is env by default dist_params=None, return_save_file=None, shared_context=shared_context, ) else: outputs: Dict[int, TrainOrTestNetOutput] = launch( main_func, num_processes_per_machine=args.num_processes, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, backend=args.dist_backend, shared_context=shared_context, args=(cfg, output_dir, runner_name), kwargs={ "eval_only": args.eval_only, "resume": args.resume, }, ) # The indices of outputs are global ranks of all workers on this node, here we # use the local master result. result: TrainOrTestNetOutput = outputs[args.machine_rank * args.num_processes] # Only save result from global rank 0 for consistency. if args.save_return_file is not None and args.machine_rank == 0: logger.info(f"Operator result: {result}") logger.info(f"Writing result to {args.save_return_file}.") save_binary_outputs(args.save_return_file, result) def cli(args=None): logger.info(f"Inside CLI, {args=}") parser = basic_argument_parser(requires_output_dir=False) parser.add_argument( "--eval-only", action="store_true", help="perform evaluation only" ) parser.add_argument( "--resume", action="store_true", help="whether to attempt to resume from the checkpoint directory", ) args = sys.argv[1:] if args is None else args run_with_cmdline_args(parser.parse_args(args)) def build_cli_args( eval_only: bool = False, resume: bool = False, **kwargs, ) -> List[str]: """Returns parameters in the form of CLI arguments for train_net binary. For the list of non-train_net-specific parameters, see build_basic_cli_args.""" args = build_basic_cli_args(**kwargs) if eval_only: args += ["--eval-only"] if resume: args += ["--resume"] return args if __name__ == "__main__": gather_mast_errors(cli())
d2go-main
tools/train_net.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Binary to evaluate predictor-based model (consist of models in deployable format such torchscript, caffe2, etc.) using Detectron2Go system (dataloading, evaluation, etc). """ import logging import sys from typing import Callable, List, Optional, Type, Union import torch from d2go.config import CfgNode from d2go.distributed import launch from d2go.quantization.qconfig import smart_decode_backend from d2go.runner import BaseRunner from d2go.setup import ( basic_argument_parser, build_basic_cli_args, caffe2_global_init, post_mortem_if_fail_for_main, prepare_for_launch, setup_after_launch, setup_before_launch, setup_root_logger, ) from d2go.trainer.api import EvaluatorOutput from d2go.utils.mast import gather_mast_errors, mast_error_handler from d2go.utils.misc import print_metrics_table, save_binary_outputs from mobile_cv.predictor.api import create_predictor logger = logging.getLogger("d2go.tools.caffe2_evaluator") def main( cfg: CfgNode, output_dir: str, runner_class: Union[str, Type[BaseRunner]], # binary specific optional arguments predictor_path: str, num_threads: Optional[int] = None, caffe2_engine: Optional[int] = None, caffe2_logging_print_net_summary: int = 0, ) -> EvaluatorOutput: # FIXME: Ideally the quantization backend should be encoded in the torchscript model # or the predictor, and be used automatically during the inference, without user # manually setting the global variable. torch.backends.quantized.engine = smart_decode_backend(cfg.QUANTIZATION.BACKEND) print("run with quantized engine: ", torch.backends.quantized.engine) runner = setup_after_launch(cfg, output_dir, runner_class) caffe2_global_init(caffe2_logging_print_net_summary, num_threads) predictor = create_predictor(predictor_path) metrics = runner.do_test(cfg, predictor) print_metrics_table(metrics) return EvaluatorOutput( accuracy=metrics, metrics=metrics, ) def wrapped_main(*args, **kwargs) -> Callable: return mast_error_handler(main)(*args, **kwargs) def run_with_cmdline_args(args): cfg, output_dir, runner_name = prepare_for_launch(args) shared_context = setup_before_launch(cfg, output_dir, runner_name) main_func = ( wrapped_main if args.disable_post_mortem else post_mortem_if_fail_for_main(wrapped_main) ) outputs = launch( main_func, args.num_processes, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, backend="GLOO", always_spawn=False, shared_context=shared_context, args=(cfg, output_dir, runner_name), kwargs={ "predictor_path": args.predictor_path, "num_threads": args.num_threads, "caffe2_engine": args.caffe2_engine, "caffe2_logging_print_net_summary": args.caffe2_logging_print_net_summary, }, ) # Only save results from global rank 0 for consistency. if args.save_return_file is not None and args.machine_rank == 0: save_binary_outputs(args.save_return_file, outputs[0]) def build_cli_args( eval_only: bool = False, resume: bool = False, **kwargs, ) -> List[str]: """Returns parameters in the form of CLI arguments for evaluator binary. For the list of non-train_net-specific parameters, see build_basic_cli_args.""" args = build_basic_cli_args(**kwargs) if eval_only: args += ["--eval-only"] if resume: args += ["--resume"] return args def cli(args=None): parser = basic_argument_parser() parser.add_argument( "--predictor-path", type=str, help="Path (a directory) to the exported model that will be evaluated", ) # === performance config =========================================================== parser.add_argument( "--num-threads", type=int, default=None, help="Number of omp/mkl threads (per process) to use in Caffe2's GlobalInit", ) parser.add_argument( "--caffe2-engine", type=str, default=None, help="If set, engine of all ops will be set by this value", ) parser.add_argument( "--caffe2_logging_print_net_summary", type=int, default=0, help="Control the --caffe2_logging_print_net_summary in GlobalInit", ) args = sys.argv[1:] if args is None else args run_with_cmdline_args(parser.parse_args(args)) if __name__ == "__main__": setup_root_logger() gather_mast_errors(cli())
d2go-main
tools/evaluator.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from d2go.setup import setup_loggers setup_loggers(output_dir=None)
d2go-main
tests/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import unittest from mobile_cv.common.misc.test_utils import SubPackageInitFileTestMixin class TestSubPackageInitFile(SubPackageInitFileTestMixin, unittest.TestCase): def get_pacakge_name(self) -> str: return "d2go"
d2go-main
tests/misc/test_sub_package_init_file.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import unittest from pathlib import Path from d2go.utils.validation_monitor import fetch_checkpoints_till_final from detectron2.utils.file_io import PathManager from mobile_cv.common.misc.file_utils import make_temp_directory from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint def create_file(filename): with PathManager.open(filename, "w") as _: pass class TestValidationMonitor(unittest.TestCase): def test_fetch_checkpoints_local(self): with make_temp_directory("test") as output_dir: output_dir = Path(output_dir) for i in range(5): create_file(output_dir / f"model_{i}.pth") create_file(output_dir / "model_final.pth") checkpoints = list(fetch_checkpoints_till_final(output_dir)) assert len(checkpoints) == 6 def test_fetch_lightning_checkpoints_local(self): with make_temp_directory("test") as output_dir: output_dir = Path(output_dir) ext = ModelCheckpoint.FILE_EXTENSION for i in range(5): create_file(output_dir / f"step={i}{ext}") create_file(output_dir / f"model_final{ext}") create_file(output_dir / f"{ModelCheckpoint.CHECKPOINT_NAME_LAST}{ext}") checkpoints = list(fetch_checkpoints_till_final(output_dir)) self.assertEqual(len(checkpoints), 6)
d2go-main
tests/misc/test_validation_monitor.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os import unittest import numpy as np from d2go.config import CfgNode from d2go.config.utils import flatten_config_dict from d2go.runner.lightning_task import GeneralizedRCNNTask from d2go.tools.lightning_train_net import FINAL_MODEL_CKPT, main from d2go.utils.testing import meta_arch_helper as mah from d2go.utils.testing.helper import enable_ddp_env, tempdir class TestLightningTrainNet(unittest.TestCase): def setUp(self): # set distributed backend to none to avoid spawning child process, # which doesn't inherit the temporary dataset patcher = unittest.mock.patch( "d2go.tools.lightning_train_net._get_accelerator", return_value=None ) self.addCleanup(patcher.stop) patcher.start() def _get_cfg(self, tmp_dir) -> CfgNode: return mah.create_detection_cfg(GeneralizedRCNNTask, tmp_dir) @tempdir @enable_ddp_env() def test_train_net_main(self, root_dir): """tests the main training entry point.""" cfg = self._get_cfg(root_dir) # set distributed backend to none to avoid spawning child process, # which doesn't inherit the temporary dataset main(cfg, root_dir, GeneralizedRCNNTask) @tempdir @enable_ddp_env() def test_checkpointing(self, tmp_dir): """tests saving and loading from checkpoint.""" cfg = self._get_cfg(tmp_dir) out = main(cfg, tmp_dir, GeneralizedRCNNTask) ckpts = [f for f in os.listdir(tmp_dir) if f.endswith(".ckpt")] expected_ckpts = ("last.ckpt", FINAL_MODEL_CKPT) for ckpt in expected_ckpts: self.assertIn(ckpt, ckpts) cfg2 = cfg.clone() cfg2.defrost() # load the last checkpoint from previous training cfg2.MODEL.WEIGHTS = os.path.join(tmp_dir, "last.ckpt") output_dir = os.path.join(tmp_dir, "output") out2 = main(cfg2, output_dir, GeneralizedRCNNTask, eval_only=True) accuracy = flatten_config_dict(out.accuracy) accuracy2 = flatten_config_dict(out2.accuracy) for k in accuracy: np.testing.assert_equal(accuracy[k], accuracy2[k])
d2go-main
tests/misc/test_lightning_train_net.py
d2go-main
tests/misc/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import glob import tempfile import unittest import d2go.utils.abnormal_checker as ac import torch class Model(torch.nn.Module): def forward(self, x): return {"loss": x} class TestUtilsAbnormalChecker(unittest.TestCase): def test_utils_abnormal_checker(self): counter = 0 def _writer(all_data): nonlocal counter counter += 1 checker = ac.AbnormalLossChecker(-1, writers=[_writer]) losses = [5, 4, 3, 10, 9, 2, 5, 4] for loss in losses: checker.check_step({"loss": loss}) self.assertEqual(counter, 2) def test_utils_abnormal_checker_wrapper(self): model = Model() with tempfile.TemporaryDirectory() as tmp_dir: checker = ac.AbnormalLossChecker(-1, writers=[ac.FileWriter(tmp_dir)]) cmodel = ac.AbnormalLossCheckerWrapper(model, checker) losses = [5, 4, 3, 10, 9, 2, 5, 4] for loss in losses: cur = cmodel(loss) cur_gt = model(loss) self.assertEqual(cur, cur_gt) log_files = glob.glob(f"{tmp_dir}/*.pth") self.assertEqual(len(log_files), 2) GT_INVALID_INDICES = [3, 6] logged_indices = [] for cur_log_file in log_files: cur_log = torch.load(cur_log_file, map_location="cpu") self.assertIsInstance(cur_log, dict) self.assertIn("data", cur_log) logged_indices.append(cur_log["step"]) self.assertSetEqual(set(logged_indices), set(GT_INVALID_INDICES))
d2go-main
tests/misc/test_utils_abnormal_checker.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import glob import logging import os import unittest from d2go.config import ( auto_scale_world_size, CfgNode, load_full_config_from_file, reroute_config_path, temp_new_allowed, ) from d2go.config.utils import ( config_dict_to_list_str, flatten_config_dict, get_cfg_diff_table, get_diff_cfg, get_from_flattened_config_dict, ) from d2go.registry.builtin import CONFIG_UPDATER_REGISTRY from d2go.runner import GeneralizedRCNNRunner from d2go.utils.testing.helper import get_resource_path from mobile_cv.common.misc.file_utils import make_temp_directory logger = logging.getLogger(__name__) class TestConfig(unittest.TestCase): def test_load_configs(self): """Make sure configs are loadable""" for location in ["detectron2", "detectron2go"]: root_dir = os.path.abspath(reroute_config_path(f"{location}://.")) files = glob.glob(os.path.join(root_dir, "**/*.yaml"), recursive=True) files = [f for f in files if "fbnas" not in f] self.assertGreater(len(files), 0) for fn in sorted(files): logger.info("Loading {}...".format(fn)) GeneralizedRCNNRunner.get_default_cfg().merge_from_file(fn) def test_load_arch_defs(self): """Test arch def str-to-dict conversion compatible with merging""" default_cfg = GeneralizedRCNNRunner.get_default_cfg() cfg = default_cfg.clone() cfg.merge_from_file(get_resource_path("arch_def_merging.yaml")) with make_temp_directory("detectron2go_tmp") as tmp_dir: # Dump out config with arch def file_name = os.path.join(tmp_dir, "test_archdef_config.yaml") with open(file_name, "w") as f: f.write(cfg.dump()) # Attempt to reload the config another_cfg = default_cfg.clone() another_cfg.merge_from_file(file_name) def test_base_reroute(self): default_cfg = GeneralizedRCNNRunner.get_default_cfg() # use rerouted file as base cfg = default_cfg.clone() cfg.merge_from_file(get_resource_path("rerouted_base.yaml")) self.assertEqual(cfg.MODEL.MASK_ON, True) # base is loaded self.assertEqual(cfg.MODEL.FBNET_V2.ARCH, "test") # non-base is loaded # use multiple files as base cfg = default_cfg.clone() cfg.merge_from_file(get_resource_path("rerouted_multi_base.yaml")) self.assertEqual(cfg.MODEL.MASK_ON, True) # base is loaded self.assertEqual(cfg.MODEL.FBNET_V2.ARCH, "FBNetV3_A") # second base is loaded self.assertEqual(cfg.OUTPUT_DIR, "test") # non-base is loaded def test_temp_new_allowed(self): default_cfg = GeneralizedRCNNRunner.get_default_cfg() def set_field(cfg): cfg.THIS_BETTER_BE_A_NEW_CONFIG = 4 self.assertFalse("THIS_BETTER_BE_A_NEW_CONFIG" in default_cfg) with temp_new_allowed(default_cfg): set_field(default_cfg) self.assertTrue("THIS_BETTER_BE_A_NEW_CONFIG" in default_cfg) self.assertTrue(default_cfg.THIS_BETTER_BE_A_NEW_CONFIG == 4) def test_default_cfg_dump_and_load(self): default_cfg = GeneralizedRCNNRunner.get_default_cfg() cfg = default_cfg.clone() with make_temp_directory("detectron2go_tmp") as tmp_dir: file_name = os.path.join(tmp_dir, "config.yaml") # this is same as the one in fblearner_launch_utils_detectron2go.py with open(file_name, "w") as f: f.write(cfg.dump(default_flow_style=False)) # check if the dumped config file can be merged cfg.merge_from_file(file_name) def test_default_cfg_deprecated_keys(self): default_cfg = GeneralizedRCNNRunner.get_default_cfg() # a warning will be printed for deprecated keys default_cfg.merge_from_list(["QUANTIZATION.QAT.LOAD_PRETRAINED", True]) # exception will raise for renamed keys self.assertRaises( KeyError, default_cfg.merge_from_list, ["QUANTIZATION.QAT.BACKEND", "fbgemm"], ) def test_merge_from_list_with_new_allowed(self): """ YACS's merge_from_list doesn't take new_allowed into account, D2Go override its behavior, and this test covers it. """ # new_allowed is not set cfg = CfgNode() cfg.A = CfgNode() cfg.A.X = 1 self.assertRaises(Exception, cfg.merge_from_list, ["A.Y", "2"]) # new_allowed is set for sub key cfg = CfgNode() cfg.A = CfgNode(new_allowed=True) cfg.A.X = 1 cfg.merge_from_list(["A.Y", "2"]) self.assertEqual(cfg.A.Y, 2) # note that the string will be converted to number # however new_allowed is not set for root key self.assertRaises(Exception, cfg.merge_from_list, ["B", "3"]) class TestConfigUtils(unittest.TestCase): """Test util functions in config/utils.py""" def test_flatten_config_dict(self): """Check flatten config dict to single layer dict""" d = {"c0": {"c1": {"c2": 3}}, "b0": {"b1": "b2"}, "a0": "a1"} # reorder=True fdict = flatten_config_dict(d, reorder=True) gt = {"a0": "a1", "b0.b1": "b2", "c0.c1.c2": 3} self.assertEqual(fdict, gt) self.assertEqual(list(fdict.keys()), list(gt.keys())) # reorder=False fdict = flatten_config_dict(d, reorder=False) gt = {"c0.c1.c2": 3, "b0.b1": "b2", "a0": "a1"} self.assertEqual(fdict, gt) self.assertEqual(list(fdict.keys()), list(gt.keys())) def test_config_dict_to_list_str(self): """Check convert config dict to str list""" d = {"a0": "a1", "b0": {"b1": "b2"}, "c0": {"c1": {"c2": 3}}} str_list = config_dict_to_list_str(d) gt = ["a0", "a1", "b0.b1", "b2", "c0.c1.c2", "3"] self.assertEqual(str_list, gt) def test_get_from_flattened_config_dict(self): d = {"MODEL": {"MIN_DIM_SIZE": 360}} self.assertEqual( get_from_flattened_config_dict(d, "MODEL.MIN_DIM_SIZE"), 360 ) # exist self.assertEqual( get_from_flattened_config_dict(d, "MODEL.MODEL.INPUT_SIZE"), None ) # non-exist def test_get_diff_cfg(self): """check config that is diff from default config, no new keys""" # create base config cfg1 = CfgNode() cfg1.A = CfgNode() cfg1.A.Y = 2 # case 1: new allowed not set, new config has only old keys cfg2 = cfg1.clone() cfg2.set_new_allowed(False) cfg2.A.Y = 3 gt = CfgNode() gt.A = CfgNode() gt.A.Y = 3 self.assertEqual(gt, get_diff_cfg(cfg1, cfg2)) def test_diff_cfg_no_new_allowed(self): """check that if new_allowed is False, new keys cause key error""" # create base config cfg1 = CfgNode() cfg1.A = CfgNode() cfg1.A.set_new_allowed(False) cfg1.A.Y = 2 # case 2: new allowed not set, new config has new keys cfg2 = cfg1.clone() cfg2.A.X = 2 self.assertRaises(KeyError, get_diff_cfg, cfg1, cfg2) def test_diff_cfg_with_new_allowed(self): """diff config with new keys and new_allowed set to True""" # create base config cfg1 = CfgNode() cfg1.A = CfgNode() cfg1.A.set_new_allowed(True) cfg1.A.Y = 2 # case 3: new allowed set, new config has new keys cfg2 = cfg1.clone() cfg2.A.X = 2 gt = CfgNode() gt.A = CfgNode() gt.A.X = 2 self.assertEqual(gt, get_diff_cfg(cfg1, cfg2)) def test_get_cfg_diff_table(self): """Check compare two dicts""" d1 = {"a0": "a1", "b0": {"b1": "b2"}, "c0": {"c1": {"c2": 3}}} d2 = {"a0": "a1", "b0": {"b1": "b3"}, "c0": {"c1": {"c2": 4}}} table = get_cfg_diff_table(d1, d2) self.assertTrue("a0" not in table) # a0 are the same self.assertTrue("b0.b1" in table) # b0.b1 are different self.assertTrue("c0.c1.c2" in table) # c0.c1.c2 are different def test_get_cfg_diff_table_mismatched_keys(self): """Check compare two dicts, the keys are mismatched""" d_orig = {"a0": "a1", "b0": {"b1": "b2"}, "c0": {"c1": {"c2": 3}}} d_new = {"a0": "a1", "b0": {"b1": "b3"}, "c0": {"c4": {"c2": 4}}} table = get_cfg_diff_table(d_new, d_orig) self.assertTrue("a0" not in table) # a0 are the same self.assertTrue("b0.b1" in table) # b0.b1 are different self.assertTrue("c0.c1.c2" in table) # c0.c1.c2 key mismatched self.assertTrue("c0.c4.c2" in table) # c0.c4.c2 key mismatched self.assertTrue("Key not exists" in table) # has mismatched key class TestAutoScaleWorldSize(unittest.TestCase): def test_8gpu_to_1gpu(self): """ when scaling a 8-gpu config to 1-gpu one, the batch size will be reduced by 8x """ cfg = GeneralizedRCNNRunner.get_default_cfg() self.assertEqual(cfg.SOLVER.REFERENCE_WORLD_SIZE, 8) batch_size_x8 = cfg.SOLVER.IMS_PER_BATCH assert batch_size_x8 % 8 == 0, "default batch size is not multiple of 8" auto_scale_world_size(cfg, new_world_size=1) self.assertEqual(cfg.SOLVER.REFERENCE_WORLD_SIZE, 1) self.assertEqual(cfg.SOLVER.IMS_PER_BATCH * 8, batch_size_x8) def test_not_scale_for_zero_world_size(self): """ when reference world size is 0, no scaling should happen """ cfg = GeneralizedRCNNRunner.get_default_cfg() self.assertEqual(cfg.SOLVER.REFERENCE_WORLD_SIZE, 8) cfg.SOLVER.REFERENCE_WORLD_SIZE = 0 batch_size_x8 = cfg.SOLVER.IMS_PER_BATCH auto_scale_world_size(cfg, new_world_size=1) self.assertEqual(cfg.SOLVER.REFERENCE_WORLD_SIZE, 0) self.assertEqual(cfg.SOLVER.IMS_PER_BATCH, batch_size_x8) class TestConfigDefaultsGen(unittest.TestCase): def test_case1(self): # register in local scope @CONFIG_UPDATER_REGISTRY.register() def _test1(cfg): cfg.TEST1 = CfgNode() cfg.TEST1.X = 1 return cfg @CONFIG_UPDATER_REGISTRY.register() def _test2(cfg): cfg.TEST2 = CfgNode() cfg.TEST2.Y = 2 return cfg filename = get_resource_path("defaults_gen_case1.yaml") cfg = load_full_config_from_file(filename) default_cfg = cfg.get_default_cfg() # default value is 1 self.assertEqual(default_cfg.TEST1.X, 1) self.assertEqual(default_cfg.TEST2.Y, 2) # yaml file overwrites it to 3 self.assertEqual(cfg.TEST1.X, 3) if __name__ == "__main__": unittest.main()
d2go-main
tests/misc/test_config.py
import os import tempfile from d2go.utils.flop_calculator import dump_flops_info from d2go.utils.testing.data_loader_helper import ( create_detection_data_loader_on_toy_dataset, ) from d2go.utils.testing.rcnn_helper import RCNNBaseTestCases class TestFlopCount(RCNNBaseTestCases.TemplateTestCase): def setup_custom_test(self): super().setup_custom_test() self.cfg.merge_from_file("detectron2go://mask_rcnn_fbnetv3a_dsmask_C4.yaml") def test_flop_count(self): size_divisibility = max(self.test_model.backbone.size_divisibility, 10) h, w = size_divisibility, size_divisibility * 2 with create_detection_data_loader_on_toy_dataset( self.cfg, h, w, is_train=False ) as data_loader: inputs = (next(iter(data_loader)),) with tempfile.TemporaryDirectory(prefix="d2go_test") as output_dir: dump_flops_info(self.test_model, inputs, output_dir) for fname in [ "flops_str_mobilecv", "flops_str_fvcore", "flops_table_fvcore", ]: outf = os.path.join(output_dir, fname + ".txt") self.assertTrue(os.path.isfile(outf))
d2go-main
tests/misc/test_flop_count.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import importlib import logging import pkgutil import unittest # NOTE: don't import anything related to D2/D2Go so that the test of one registry is # isolated from others logger = logging.getLogger(__name__) # copied from https://stackoverflow.com/questions/3365740/how-to-import-all-submodules def import_submodules(package, recursive=True): """Import all submodules of a module, recursively, including subpackages :param package: package (name or actual module) :type package: str | module :rtype: dict[str, types.ModuleType] """ if isinstance(package, str): package = importlib.import_module(package) results = {} for _loader, name, is_pkg in pkgutil.walk_packages(package.__path__): full_name = package.__name__ + "." + name results[full_name] = importlib.import_module(full_name) if recursive and is_pkg: results.update(import_submodules(full_name)) return results class BaseRegistryPopulationTests(object): """ Test D2Go's core registries are populated once top-level module is imported. """ def get_registered_items(self): """return a list of registered items""" raise NotImplementedError() def import_all_modules(self): """import all related modules""" raise NotImplementedError() def test_is_polulated(self): registered_before_import_all = self.get_registered_items() self.import_all_modules() registered_after_import_all = self.get_registered_items() self.assertEqual(registered_before_import_all, registered_after_import_all) class TestMetaArchRegistryPopulation(unittest.TestCase, BaseRegistryPopulationTests): def get_registered_items(self): from d2go.registry.builtin import META_ARCH_REGISTRY return [k for k, v in META_ARCH_REGISTRY] def import_all_modules(self): import d2go.modeling import_submodules(d2go.modeling) class TestDataMapperRegistryPopulation(unittest.TestCase, BaseRegistryPopulationTests): def get_registered_items(self): from d2go.data.dataset_mappers import D2GO_DATA_MAPPER_REGISTRY return [k for k, v in D2GO_DATA_MAPPER_REGISTRY] def import_all_modules(self): import d2go.data.dataset_mappers import_submodules(d2go.data.dataset_mappers)
d2go-main
tests/misc/test_registration.py
#!/usr/bin/env python3 # pyre-unsafe import os import unittest from unittest import mock import torch from d2go.runner.callbacks.quantization import ( get_default_qat_qconfig, ModelTransform, PostTrainingQuantization, QuantizationAwareTraining, rgetattr, rhasattr, rsetattr, ) from d2go.utils.misc import mode from d2go.utils.testing.helper import tempdir from d2go.utils.testing.lightning_test_module import TestModule from pytorch_lightning import seed_everything, Trainer from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint from torch.ao.quantization.qconfig import default_dynamic_qconfig, get_default_qconfig from torch.ao.quantization.quantize_fx import convert_fx, prepare_fx, prepare_qat_fx class TestUtilities(unittest.TestCase): """Test some basic utilities we rely on.""" def test_get_set_has(self): """Trivial test for generic behavior. Only support pre-existing deeply nested values.""" class TestObject(object): def __init__(self): self.object = None self.set_to_five = 5 obj = TestObject() obj.object = TestObject() obj.object.set_to_five = 10 rsetattr(obj, "object.set_to_five", 1) self.assertTrue(rhasattr(obj, "object.set_to_five")) self.assertEqual(1, rgetattr(obj, "object.set_to_five")) self.assertEqual(5, rgetattr(obj, "set_to_five")) with self.assertRaises(AttributeError): rsetattr(obj, "object.does_not_exist.five", 5) class TestModelTransform(unittest.TestCase): """Tests ModelTransforms.""" def test_invalid_construction_type_error(self): """Validate construction of ModelTransforms. Always have fn, msg, and one of [step, interval].""" with self.assertRaises(TypeError): _ = ModelTransform() with self.assertRaises(TypeError): _ = ModelTransform(fn=lambda x: x) with self.assertRaises(TypeError): _ = ModelTransform(message="No function defined") with self.assertRaises(TypeError): _ = ModelTransform( fn=lambda x: x, message="Specified both step and interval", step=1, interval=1, ) def test_positivity_value_error(self): """Validates ModelTransforms are constructed with only valid arguments.""" def identity(x): return x with self.assertRaises(ValueError): _ = ModelTransform(fn=identity, message="Negative step", step=-1) with self.assertRaises(ValueError): _ = ModelTransform(fn=identity, message="Zero interval", interval=0) with self.assertRaises(ValueError): _ = ModelTransform(fn=identity, message="Negative interval", interval=-1) @unittest.skip( "FX Graph Mode Quantization API has been updated, re-enable the test after PyTorch 1.13 stable release" ) class TestQuantizationAwareTraining(unittest.TestCase): def test_qat_misconfiguration(self): """Tests failure when misconfiguring the QAT Callback.""" invalid_params = [ {"start_step": -1}, {"enable_observer": (42, 42)}, {"enable_observer": (42, 21)}, {"enable_observer": (-1, None)}, {"freeze_bn_step": -1}, ] for invalid_param in invalid_params: with self.assertRaises(ValueError): _ = QuantizationAwareTraining(**invalid_param) def test_qat_transforms(self): """Tests the appropropriate ModelTransforms are defined with QAT.""" qat = QuantizationAwareTraining( start_step=300, enable_observer=(350, 500), freeze_bn_step=550 ) trainer = Trainer() module = TestModule() qat.setup(trainer, module, stage="train") self.assertGreater(len(qat.transforms), 0) def assertContainsTransformsAtStep(step): """ Asserts at least one transform exists at the specified step and that it is removed after the step begins. """ self.assertGreater( len( [ transform for transform in qat.transforms if transform.step == step ] ), 0, f"step={step}", ) trainer.fit_loop.global_step = step qat.on_train_batch_start(trainer, module, batch=None, batch_idx=0) self.assertEqual( len( [ transform for transform in qat.transforms if transform.step == step ] ), 0, f"step={step}", ) assertContainsTransformsAtStep(step=300) assertContainsTransformsAtStep(step=350) assertContainsTransformsAtStep(step=500) assertContainsTransformsAtStep(step=550) @tempdir def test_qat_interval_transform(self, root_dir): """Tests an interval transform is applied multiple times.""" seed_everything(100) def linear_fn_counter(mod): if isinstance(mod, torch.nn.Linear): linear_fn_counter.count += 1 linear_fn_counter.count = 0 model = TestModule() num_epochs = 2 qat = QuantizationAwareTraining() qat.transforms.append( ModelTransform(fn=linear_fn_counter, message="Counter", interval=10) ) trainer = Trainer( default_root_dir=os.path.join(root_dir, "quantized"), enable_checkpointing=False, callbacks=[qat], max_epochs=num_epochs, logger=False, ) trainer.fit(model) # Model has 2 linear layers. self.assertEqual(linear_fn_counter.count, 2 * (trainer.global_step // 10 + 1)) @tempdir def test_module_quantized_during_train(self, root_dir): """Validate quantized aware training works as expected.""" seed_everything(100) model = TestModule() test_in = torch.randn(1, 32) before_train = model.eval()(test_in) num_epochs = 2 qat = QuantizationAwareTraining() trainer = Trainer( accelerator="cpu", devices=1, default_root_dir=os.path.join(root_dir, "quantized"), enable_checkpointing=False, callbacks=[qat], max_epochs=num_epochs, logger=False, ) trainer.fit(model) self.assertIsNotNone(qat.prepared) self.assertIsNotNone(qat.quantized) test_out = model.eval()(test_in) self.assertGreater( (test_out**2).sum(), 0.03, "With the given seend, L2^2 should be > 0.03." ) base_out = qat.quantized.eval()(test_in) self.assertTrue(torch.allclose(base_out, test_out)) # Weight changed during training. self.assertFalse(torch.allclose(before_train, test_out)) # Validate .test() call works as expected and does not change model weights. trainer.test(model) self.assertTrue(torch.allclose(test_out, model.eval()(test_in))) @tempdir def test_quantization_without_train(self, root_dir): """Validate quantization occurs even without a call to .fit() first.""" seed_everything(100) model = TestModule() num_epochs = 2 qat = QuantizationAwareTraining() trainer = Trainer( default_root_dir=os.path.join(root_dir, "quantized"), enable_checkpointing=False, callbacks=[qat], max_epochs=num_epochs, logger=False, ) trainer.test(model) self.assertIsNotNone(qat.prepared) self.assertIsNotNone(qat.quantized) @tempdir def test_attribute_preservation_qat(self, root_dir): """Validates we can preserve specified properties in module.""" seed_everything(100) model = TestModule() model.layer._added_property = 10 model._not_preserved = 15 model._added_property = 20 num_epochs = 2 qat = QuantizationAwareTraining( preserved_attrs=["_added_property", "layer._added_property"] ) trainer = Trainer( default_root_dir=os.path.join(root_dir, "quantized"), enable_checkpointing=False, callbacks=[qat], max_epochs=num_epochs, logger=False, ) trainer.fit(model) self.assertIsNotNone(qat.prepared) self.assertIsNotNone(qat.quantized) # Assert properties are maintained. self.assertTrue(hasattr(qat.prepared, "_added_property")) self.assertTrue(hasattr(qat.prepared.layer, "_added_property")) with self.assertRaises(AttributeError): qat.prepared._not_preserved @tempdir def test_quantization_and_checkpointing(self, root_dir): """Validate written checkpoints can be loaded back as expected.""" seed_everything(100) model = TestModule() num_epochs = 2 qat = QuantizationAwareTraining() checkpoint_dir = os.path.join(root_dir, "checkpoints") checkpoint = ModelCheckpoint(dirpath=checkpoint_dir, save_last=True) trainer = Trainer( default_root_dir=os.path.join(root_dir, "quantized"), callbacks=[qat, checkpoint], max_epochs=num_epochs, logger=False, ) # Mimick failing mid-training by not running on_fit_end. with mock.patch.object(qat, "on_fit_end"): trainer.fit(model) ckpt = torch.load(os.path.join(checkpoint_dir, "last.ckpt")) model.load_state_dict(ckpt["state_dict"]) @tempdir def test_custom_qat(self, root_dir): """Tests that we can customize QAT by skipping certain layers.""" class _CustomQAT(QuantizationAwareTraining): """Only quantize TestModule.another_layer.""" def prepare(self, model, configs, attrs): example_inputs = (torch.rand(1, 2),) model.another_layer = prepare_qat_fx( model.another_layer, configs[""], example_inputs ) return model def convert(self, model, submodules, attrs): model.another_layer = convert_fx(model.another_layer) return model seed_everything(100) model = TestModule() test_in = torch.randn(1, 32) before_train = model.eval()(test_in) num_epochs = 2 qat = _CustomQAT() trainer = Trainer( default_root_dir=os.path.join(root_dir, "quantized"), enable_checkpointing=False, callbacks=[qat], max_epochs=num_epochs, logger=False, ) trainer.fit(model) self.assertIsNotNone(qat.prepared) self.assertIsNotNone(qat.quantized) test_out = model.eval()(test_in) self.assertGreater( (test_out**2).sum(), 0.03, "With the given seend, L2^2 should be > 0.03." ) base_out = qat.quantized.eval()(test_in) self.assertTrue(torch.allclose(base_out, test_out)) # Weight changed during training. self.assertFalse(torch.allclose(before_train, test_out)) # Validate .test() call works as expected and does not change model weights. trainer.test(model) self.assertTrue(torch.allclose(test_out, model.eval()(test_in))) @tempdir def test_submodule_qat(self, root_dir): """Tests that we can customize QAT through exposed API.""" seed_everything(100) model = TestModule() test_in = torch.randn(1, 32) before_train = model.eval()(test_in) num_epochs = 2 qat = QuantizationAwareTraining( qconfig_dicts={"another_layer": {"": get_default_qat_qconfig()}} ) trainer = Trainer( default_root_dir=os.path.join(root_dir, "quantized"), enable_checkpointing=False, callbacks=[qat], max_epochs=num_epochs, logger=False, ) trainer.fit(model) self.assertIsNotNone(qat.prepared) self.assertIsNotNone(qat.quantized) test_out = model.eval()(test_in) self.assertGreater( (test_out**2).sum(), 0.03, "With the given seend, L2^2 should be > 0.03." ) base_out = qat.quantized.eval()(test_in) self.assertTrue(torch.allclose(base_out, test_out)) # Weight changed during training. self.assertFalse(torch.allclose(before_train, test_out)) # Validate .test() call works as expected and does not change model weights. trainer.test(model) self.assertTrue(torch.allclose(test_out, model.eval()(test_in))) @unittest.skip( "FX Graph Mode Quantization API has been updated, re-enable the test after PyTorch 1.13 stable release" ) class TestPostTrainingQuantization(unittest.TestCase): @tempdir def test_post_training_static_quantization(self, root_dir): """Validate post-training static quantization.""" seed_everything(100) model = TestModule() num_epochs = 4 static_quantization = PostTrainingQuantization( qconfig_dicts={"": {"": get_default_qconfig()}} ) trainer = Trainer( default_root_dir=os.path.join(root_dir, "quantized"), enable_checkpointing=False, callbacks=[static_quantization], max_epochs=num_epochs, logger=False, ) # This will both train the model + quantize it. trainer.fit(model) self.assertIsNotNone(static_quantization.quantized) # Default qconfig requires calibration. self.assertTrue(static_quantization.should_calibrate) test_in = torch.randn(12, 32) with mode(model, training=False) as m: base_out = m(test_in) with mode(static_quantization.quantized, training=False) as q: test_out = q(test_in) # While quantized/original won't be exact, they should be close. self.assertLess( ((((test_out - base_out) ** 2).sum(axis=1)) ** (1 / 2)).mean(), 0.015, "RMSE should be less than 0.015 between quantized and original.", ) @tempdir def test_post_training_dynamic_quantization(self, root_dir): """Validates post-training dynamic quantization.""" seed_everything(100) model = TestModule() num_epochs = 2 dynamic_quant = PostTrainingQuantization( qconfig_dicts={"": {"": default_dynamic_qconfig}} ) trainer = Trainer( default_root_dir=os.path.join(root_dir, "quantized"), enable_checkpointing=False, callbacks=[dynamic_quant], max_epochs=num_epochs, logger=False, ) # This will both train the model + quantize it. trainer.fit(model) self.assertIsNotNone(dynamic_quant.quantized) # Default qconfig requires calibration. self.assertFalse(dynamic_quant.should_calibrate) test_in = torch.randn(12, 32) with mode(model, training=False) as m: base_out = m(test_in) with mode(dynamic_quant.quantized, training=False) as q: test_out = q(test_in) # While quantized/original won't be exact, they should be close. self.assertLess( ((((test_out - base_out) ** 2).sum(axis=1)) ** (1 / 2)).mean(), 0.015, "RMSE should be less than 0.015 between quantized and original.", ) @tempdir def test_custom_post_training_static_quant(self, root_dir): """Tests that we can customize Post-Training static by skipping certain layers.""" class _CustomStaticQuant(PostTrainingQuantization): """Only quantize TestModule.another_layer.""" def prepare(self, model, configs, attrs): example_inputs = (torch.randn(1, 2),) model.another_layer = prepare_fx( model.another_layer, configs[""], example_inputs ) return model def convert(self, model, submodules, attrs): model.another_layer = convert_fx(model.another_layer) return model seed_everything(100) model = TestModule() num_epochs = 2 static_quantization = _CustomStaticQuant() trainer = Trainer( default_root_dir=os.path.join(root_dir, "quantized"), enable_checkpointing=False, callbacks=[static_quantization], max_epochs=num_epochs, logger=False, num_sanity_val_steps=0, ) trainer.fit(model) self.assertIsNotNone(static_quantization.quantized) test_in = torch.randn(12, 32) with mode(model, training=False) as m: base_out = m(test_in) with mode(static_quantization.quantized, training=False) as q: test_out = q(test_in) # While quantized/original won't be exact, they should be close. self.assertLess( ((((test_out - base_out) ** 2).sum(axis=1)) ** (1 / 2)).mean(), 0.02, "RMSE should be less than 0.007 between quantized and original.", )
d2go-main
tests/runner/test_runner_lightning_quantization.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os import unittest from copy import deepcopy from tempfile import TemporaryDirectory from typing import Dict import pytorch_lightning as pl # type: ignore import torch from d2go.config import CfgNode, temp_defrost from d2go.quantization.modeling import set_backend_and_create_qconfig from d2go.registry.builtin import META_ARCH_REGISTRY from d2go.runner import create_runner from d2go.runner.callbacks.quantization import QuantizationAwareTraining from d2go.runner.lightning_task import GeneralizedRCNNTask from d2go.utils.testing import meta_arch_helper as mah from d2go.utils.testing.helper import tempdir from detectron2.utils.events import EventStorage from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint from torch import Tensor from torch.ao.quantization.quantize_fx import convert_fx, prepare_qat_fx class TestLightningTask(unittest.TestCase): def _get_cfg(self, tmp_dir: str) -> CfgNode: cfg = mah.create_detection_cfg(GeneralizedRCNNTask, tmp_dir) cfg.TEST.EVAL_PERIOD = cfg.SOLVER.MAX_ITER return cfg def _get_trainer(self, output_dir: str) -> pl.Trainer: checkpoint_callback = ModelCheckpoint(dirpath=output_dir, save_last=True) return pl.Trainer( max_steps=1, limit_train_batches=1, num_sanity_val_steps=0, callbacks=[checkpoint_callback], logger=False, ) def _compare_state_dict( self, state1: Dict[str, Tensor], state2: Dict[str, Tensor] ) -> bool: if state1.keys() != state2.keys(): return False for k in state1: if not torch.allclose(state1[k], state2[k]): return False return True @tempdir def test_load_from_checkpoint(self, tmp_dir) -> None: task = GeneralizedRCNNTask(self._get_cfg(tmp_dir)) trainer = self._get_trainer(tmp_dir) with EventStorage() as storage: task.storage = storage trainer.fit(task) ckpt_path = os.path.join(tmp_dir, "test.ckpt") trainer.save_checkpoint(ckpt_path) self.assertTrue(os.path.exists(ckpt_path)) # load model weights from checkpoint task2 = GeneralizedRCNNTask.load_from_checkpoint(ckpt_path) self.assertTrue( self._compare_state_dict( task.model.state_dict(), task2.model.state_dict() ) ) @tempdir def test_train_ema(self, tmp_dir): cfg = self._get_cfg(tmp_dir) cfg.MODEL_EMA.ENABLED = True cfg.MODEL_EMA.DECAY = 0.7 task = GeneralizedRCNNTask(cfg) init_state = deepcopy(task.model.state_dict()) trainer = self._get_trainer(tmp_dir) with EventStorage() as storage: task.storage = storage trainer.fit(task) for k, v in task.model.state_dict().items(): init_state[k].copy_(init_state[k] * 0.7 + 0.3 * v) self.assertTrue( self._compare_state_dict(init_state, task.ema_state.state_dict()) ) @tempdir def test_load_ema_weights(self, tmp_dir) -> None: cfg = self._get_cfg(tmp_dir) cfg.MODEL_EMA.ENABLED = True task = GeneralizedRCNNTask(cfg) trainer = self._get_trainer(tmp_dir) with EventStorage() as storage: task.storage = storage trainer.fit(task) # load EMA weights from checkpoint task2 = GeneralizedRCNNTask.load_from_checkpoint( os.path.join(tmp_dir, "last.ckpt") ) self.assertTrue( self._compare_state_dict( task.ema_state.state_dict(), task2.ema_state.state_dict() ) ) # apply EMA weights to model task2.ema_state.apply_to(task2.model) self.assertTrue( self._compare_state_dict( task.ema_state.state_dict(), task2.model.state_dict() ) ) @tempdir def test_ema_eval_only_mode(self, tmp_dir: TemporaryDirectory) -> None: """Train one model for one iteration, then check if the second task is loaded correctly from config and applied to model.x""" cfg = self._get_cfg(tmp_dir) cfg.MODEL.MODELING_HOOKS = ["EMA"] cfg.MODEL_EMA.ENABLED = True task = GeneralizedRCNNTask(cfg) trainer = self._get_trainer(tmp_dir) with EventStorage() as storage: task.storage = storage trainer.fit(task) # load EMA weights from checkpoint cfg2 = self._get_cfg(tmp_dir) cfg2.MODEL.MODELING_HOOKS = ["EMA"] cfg2.MODEL_EMA.ENABLED = True cfg2.MODEL_EMA.USE_EMA_WEIGHTS_FOR_EVAL_ONLY = True cfg2.MODEL.WEIGHTS = os.path.join(tmp_dir, "last.ckpt") task2 = GeneralizedRCNNTask.from_config(cfg2) self.assertTrue(task2.ema_state, "EMA state is not loaded from checkpoint.") self.assertTrue( len(task2.ema_state.state_dict()) > 0, "EMA state should not be empty." ) self.assertTrue( self._compare_state_dict( task.ema_state.state_dict(), task2.model.state_dict() ), "Task loaded from config should apply the ema_state to the model.", ) def test_create_runner(self): task_cls = create_runner( f"{GeneralizedRCNNTask.__module__}.{GeneralizedRCNNTask.__name__}" ) self.assertTrue(task_cls == GeneralizedRCNNTask) @tempdir def test_build_model(self, tmp_dir): cfg = self._get_cfg(tmp_dir) cfg.MODEL_EMA.ENABLED = True task = GeneralizedRCNNTask(cfg) trainer = self._get_trainer(tmp_dir) with EventStorage() as storage: task.storage = storage trainer.fit(task) # test building untrained model model = GeneralizedRCNNTask.build_model(cfg) self.assertTrue(model.training) # test loading regular weights with temp_defrost(cfg): cfg.MODEL.WEIGHTS = os.path.join(tmp_dir, "last.ckpt") model = GeneralizedRCNNTask.build_model(cfg, eval_only=True) self.assertFalse(model.training) self.assertTrue( self._compare_state_dict(model.state_dict(), task.model.state_dict()) ) # test loading EMA weights with temp_defrost(cfg): cfg.MODEL.WEIGHTS = os.path.join(tmp_dir, "last.ckpt") cfg.MODEL_EMA.USE_EMA_WEIGHTS_FOR_EVAL_ONLY = True model = GeneralizedRCNNTask.build_model(cfg, eval_only=True) self.assertFalse(model.training) self.assertTrue( self._compare_state_dict( model.state_dict(), task.ema_state.state_dict() ) ) @tempdir def test_qat(self, tmp_dir): @META_ARCH_REGISTRY.register() class QuantizableDetMetaArchForTest(mah.DetMetaArchForTest): custom_config_dict = {"preserved_attributes": ["preserved_attr"]} def __init__(self, cfg): super().__init__(cfg) self.avgpool.preserved_attr = "foo" self.avgpool.not_preserved_attr = "bar" def custom_prepare_fx(self, cfg, is_qat, example_input=None): example_inputs = (torch.rand(1, 3, 3, 3),) self.avgpool = prepare_qat_fx( self.avgpool, {"": set_backend_and_create_qconfig(cfg, is_train=self.training)}, example_inputs, self.custom_config_dict, ) def convert_fx_callback(model): model.avgpool = convert_fx( model.avgpool, convert_custom_config=model.custom_config_dict ) return model return self, convert_fx_callback cfg = self._get_cfg(tmp_dir) cfg.MODEL.META_ARCHITECTURE = "QuantizableDetMetaArchForTest" cfg.QUANTIZATION.QAT.ENABLED = True cfg.QUANTIZATION.EAGER_MODE = False task = GeneralizedRCNNTask(cfg) callbacks = [ QuantizationAwareTraining.from_config(cfg), ModelCheckpoint(dirpath=task.cfg.OUTPUT_DIR, save_last=True), ] trainer = pl.Trainer( max_steps=1, limit_train_batches=1, num_sanity_val_steps=0, callbacks=callbacks, logger=False, ) with EventStorage() as storage: task.storage = storage trainer.fit(task) prepared_avgpool = task._prepared.model.avgpool self.assertEqual(prepared_avgpool.preserved_attr, "foo") self.assertFalse(hasattr(prepared_avgpool, "not_preserved_attr")) with temp_defrost(cfg): cfg.MODEL.WEIGHTS = os.path.join(tmp_dir, "last.ckpt") model = GeneralizedRCNNTask.build_model(cfg, eval_only=True) self.assertTrue(isinstance(model.avgpool, torch.fx.GraphModule)) @tempdir def test_meta_arch_training_step(self, tmp_dir): @META_ARCH_REGISTRY.register() class DetMetaArchForWithTrainingStep(mah.DetMetaArchForTest): def training_step(self, batch, batch_idx, opt, manual_backward): assert batch assert opt assert manual_backward # We step the optimizer for progress tracking to occur # This is reflected in the Trainer's global_step property # which is used to determine when to stop training # when specifying the loop bounds with Trainer(max_steps=N) opt.step() return {"total_loss": 0.4} cfg = self._get_cfg(tmp_dir) cfg.MODEL.META_ARCHITECTURE = "DetMetaArchForWithTrainingStep" task = GeneralizedRCNNTask(cfg) trainer = self._get_trainer(tmp_dir) with EventStorage() as storage: task.storage = storage trainer.fit(task)
d2go-main
tests/runner/test_runner_lightning_task.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import copy import os import tempfile import unittest import d2go.runner.default_runner as default_runner import torch from d2go.registry.builtin import META_ARCH_REGISTRY from d2go.runner import create_runner from d2go.runner.training_hooks import TRAINER_HOOKS_REGISTRY from d2go.utils.testing import helper from d2go.utils.testing.data_loader_helper import create_local_dataset from detectron2.evaluation import COCOEvaluator, RotatedCOCOEvaluator from detectron2.structures import Boxes, ImageList, Instances from mobile_cv.arch.quantization.qconfig import ( updateable_symmetric_moving_avg_minmax_config, ) from torch.nn.parallel import DistributedDataParallel @META_ARCH_REGISTRY.register() class MetaArchForTest(torch.nn.Module): def __init__(self, cfg): super().__init__() self.conv = torch.nn.Conv2d(3, 4, kernel_size=3, stride=1, padding=1) self.bn = torch.nn.BatchNorm2d(4) self.relu = torch.nn.ReLU(inplace=True) self.avgpool = torch.nn.AdaptiveAvgPool2d((1, 1)) @property def device(self): return self.conv.weight.device def forward(self, inputs): if not self.training: return self.inference(inputs) images = [x["image"] for x in inputs] images = ImageList.from_tensors(images, 1).to(self.device) ret = self.conv(images.tensor) ret = self.bn(ret) ret = self.relu(ret) ret = self.avgpool(ret) return {"loss": ret.norm()} def inference(self, inputs): instance = Instances((10, 10)) instance.pred_boxes = Boxes(torch.tensor([[2.5, 2.5, 7.5, 7.5]])) instance.scores = torch.tensor([0.9]) instance.pred_classes = torch.tensor([1], dtype=torch.int32) ret = [{"instances": instance}] return ret @META_ARCH_REGISTRY.register() class MetaArchForTestSingleValue(torch.nn.Module): def __init__(self, cfg): super().__init__() self.scale_weight = torch.nn.Parameter(torch.Tensor([1.0])) @property def device(self): return self.scale_weight.device def forward(self, inputs): if not self.training: return self.inference(inputs) ret = {"loss": self.scale_weight.norm() * 10.0} print(self.scale_weight) print(ret) return ret def inference(self, inputs): instance = Instances((10, 10)) instance.pred_boxes = Boxes( torch.tensor([[2.5, 2.5, 7.5, 7.5]], device=self.device) * self.scale_weight ) instance.scores = torch.tensor([0.9]) instance.pred_classes = torch.tensor([1], dtype=torch.int32) ret = [{"instances": instance}] return ret def _get_cfg(runner, output_dir, dataset_name): cfg = runner.get_default_cfg() cfg.MODEL.DEVICE = "cpu" cfg.MODEL.META_ARCHITECTURE = "MetaArchForTest" cfg.DATASETS.TRAIN = (dataset_name,) cfg.DATASETS.TEST = (dataset_name,) cfg.INPUT.MIN_SIZE_TRAIN = (10,) cfg.INPUT.MIN_SIZE_TEST = (10,) cfg.SOLVER.MAX_ITER = 5 cfg.SOLVER.STEPS = [] cfg.SOLVER.WARMUP_ITERS = 1 cfg.SOLVER.CHECKPOINT_PERIOD = 1 cfg.SOLVER.IMS_PER_BATCH = 2 cfg.OUTPUT_DIR = output_dir return cfg class TestDefaultRunner(unittest.TestCase): def test_d2go_runner_build_model(self): with tempfile.TemporaryDirectory() as tmp_dir: ds_name = create_local_dataset(tmp_dir, 5, 10, 10) runner = default_runner.Detectron2GoRunner() cfg = _get_cfg(runner, tmp_dir, ds_name) model = runner.build_model(cfg) dl = runner.build_detection_train_loader(cfg) batch = next(iter(dl)) output = model(batch) self.assertIsInstance(output, dict) model.eval() output = model(batch) self.assertIsInstance(output, list) default_runner._close_all_tbx_writers() def test_d2go_runner_train(self): with tempfile.TemporaryDirectory() as tmp_dir: ds_name = create_local_dataset(tmp_dir, 5, 10, 10) runner = default_runner.Detectron2GoRunner() cfg = _get_cfg(runner, tmp_dir, ds_name) model = runner.build_model(cfg) runner.do_train(cfg, model, resume=True) final_model_path = os.path.join(tmp_dir, "model_final.pth") self.assertTrue(os.path.isfile(final_model_path)) default_runner._close_all_tbx_writers() def test_d2go_runner_test(self): with tempfile.TemporaryDirectory() as tmp_dir: ds_name = create_local_dataset(tmp_dir, 5, 10, 10) runner = default_runner.Detectron2GoRunner() cfg = _get_cfg(runner, tmp_dir, ds_name) model = runner.build_model(cfg) results = runner.do_test(cfg, model) self.assertEqual(results["default"][ds_name]["bbox"]["AP"], 10.0) default_runner._close_all_tbx_writers() def test_d2go_build_evaluator(self): for rotated, evaluator in [ (True, RotatedCOCOEvaluator), (False, COCOEvaluator), ]: with tempfile.TemporaryDirectory() as tmp_dir: ds_name = create_local_dataset(tmp_dir, 5, 10, 10, is_rotated=rotated) runner = default_runner.Detectron2GoRunner() cfg = _get_cfg(runner, tmp_dir, ds_name) ds_evaluators = runner.get_evaluator(cfg, ds_name, tmp_dir) self.assertTrue(isinstance(ds_evaluators._evaluators[0], evaluator)) def test_create_runner(self): runner = create_runner( ".".join( [ default_runner.Detectron2GoRunner.__module__, default_runner.Detectron2GoRunner.__name__, ] ) ) self.assertTrue(isinstance(runner, default_runner.Detectron2GoRunner)) @helper.enable_ddp_env() def test_d2go_runner_ema(self): with tempfile.TemporaryDirectory() as tmp_dir: ds_name = create_local_dataset(tmp_dir, 5, 10, 10) runner = default_runner.Detectron2GoRunner() cfg = _get_cfg(runner, tmp_dir, ds_name) cfg.MODEL.META_ARCHITECTURE = "MetaArchForTestSingleValue" cfg.MODEL_EMA.ENABLED = True cfg.MODEL_EMA.DECAY = 0.9 cfg.MODEL_EMA.DECAY_WARM_UP_FACTOR = -1 def _run_train(cfg): cfg = copy.deepcopy(cfg) model = runner.build_model(cfg) model = DistributedDataParallel(model, broadcast_buffers=False) runner.do_train(cfg, model, True) final_model_path = os.path.join(tmp_dir, "model_final.pth") trained_weights = torch.load(final_model_path) self.assertIn("ema_state", trained_weights) default_runner._close_all_tbx_writers() return final_model_path, model.module.ema_state def _run_test(cfg, final_path, gt_ema): cfg = copy.deepcopy(cfg) cfg.MODEL.WEIGHTS = final_path model = runner.build_model(cfg, eval_only=True) self.assertGreater(len(model.ema_state.state), 0) self.assertEqual(len(model.ema_state.state), len(gt_ema.state)) self.assertTrue( _compare_state_dict( model.ema_state.state_dict(), gt_ema.state_dict() ) ) results = runner.do_test(cfg, model) self.assertEqual(results["default"][ds_name]["bbox"]["AP"], 3.0) self.assertEqual(results["ema"][ds_name]["bbox"]["AP"], 9.0) default_runner._close_all_tbx_writers() def _run_build_model_with_ema_weight(cfg, final_path, gt_ema): cfg = copy.deepcopy(cfg) cfg.MODEL.WEIGHTS = final_path cfg.MODEL_EMA.USE_EMA_WEIGHTS_FOR_EVAL_ONLY = True model = runner.build_model(cfg, eval_only=True) self.assertTrue( _compare_state_dict(model.state_dict(), gt_ema.state_dict()) ) final_model_path, gt_ema = _run_train(cfg) _run_test(cfg, final_model_path, gt_ema) _run_build_model_with_ema_weight(cfg, final_model_path, gt_ema) def test_d2go_runner_train_qat_hook_update_stat(self): """Check that the qat hook is used and updates stats""" @META_ARCH_REGISTRY.register() class MetaArchForTestQAT(MetaArchForTest): def prepare_for_quant(self, cfg): """Set the qconfig to updateable observers""" self.qconfig = updateable_symmetric_moving_avg_minmax_config return self def setup(tmp_dir): ds_name = create_local_dataset(tmp_dir, 5, 10, 10) runner = default_runner.Detectron2GoRunner() cfg = _get_cfg(runner, tmp_dir, ds_name) cfg.merge_from_list( ( ["MODEL.META_ARCHITECTURE", "MetaArchForTestQAT"] + ["QUANTIZATION.QAT.ENABLED", "True"] + ["QUANTIZATION.QAT.START_ITER", "0"] + ["QUANTIZATION.QAT.ENABLE_OBSERVER_ITER", "0"] ) ) return runner, cfg # check observers have not changed their minmax vals (stats changed) with tempfile.TemporaryDirectory() as tmp_dir: runner, cfg = setup(tmp_dir) model = runner.build_model(cfg) runner.do_train(cfg, model, resume=True) observer = model.conv.activation_post_process.activation_post_process self.assertEqual(observer.min_val, torch.tensor(float("inf"))) self.assertEqual(observer.max_val, torch.tensor(float("-inf"))) self.assertNotEqual(observer.max_stat, torch.tensor(float("inf"))) # check observer does not change if period is > max_iter with tempfile.TemporaryDirectory() as tmp_dir: runner, cfg = setup(tmp_dir) cfg.merge_from_list( ( ["QUANTIZATION.QAT.UPDATE_OBSERVER_STATS_PERIODICALLY", "True"] + ["QUANTIZATION.QAT.UPDATE_OBSERVER_STATS_PERIOD", "10"] ) ) model = runner.build_model(cfg) runner.do_train(cfg, model, resume=True) observer = model.conv.activation_post_process.activation_post_process self.assertEqual(observer.min_val, torch.tensor(float("inf"))) self.assertEqual(observer.max_val, torch.tensor(float("-inf"))) self.assertNotEqual(observer.max_stat, torch.tensor(float("inf"))) # check observer changes if period < max_iter with tempfile.TemporaryDirectory() as tmp_dir: runner, cfg = setup(tmp_dir) cfg.merge_from_list( ( ["QUANTIZATION.QAT.UPDATE_OBSERVER_STATS_PERIODICALLY", "True"] + ["QUANTIZATION.QAT.UPDATE_OBSERVER_STATS_PERIOD", "1"] ) ) model = runner.build_model(cfg) runner.do_train(cfg, model, resume=True) observer = model.conv.activation_post_process.activation_post_process self.assertNotEqual(observer.min_val, torch.tensor(float("inf"))) self.assertNotEqual(observer.max_val, torch.tensor(float("-inf"))) self.assertNotEqual(observer.max_stat, torch.tensor(float("inf"))) default_runner._close_all_tbx_writers() def test_d2go_runner_train_qat(self): """Make sure QAT runs""" @META_ARCH_REGISTRY.register() class MetaArchForTestQAT1(torch.nn.Module): def __init__(self, cfg): super().__init__() self.conv = torch.nn.Conv2d(3, 4, kernel_size=3, stride=1, padding=1) @property def device(self): return self.conv.weight.device def forward(self, inputs): images = [x["image"] for x in inputs] images = ImageList.from_tensors(images, 1) ret = self.conv(images.tensor) losses = {"loss": ret.norm()} # run the same conv again ret1 = self.conv(images.tensor) losses["ret1"] = ret1.norm() return losses def setup(tmp_dir, backend, qat_method): ds_name = create_local_dataset(tmp_dir, 5, 10, 10) runner = default_runner.Detectron2GoRunner() cfg = _get_cfg(runner, tmp_dir, ds_name) cfg.merge_from_list( ( ["MODEL.META_ARCHITECTURE", "MetaArchForTestQAT1"] + ["QUANTIZATION.QAT.ENABLED", "True"] + ["QUANTIZATION.QAT.START_ITER", "1"] + ["QUANTIZATION.QAT.ENABLE_OBSERVER_ITER", "0"] + ["QUANTIZATION.QAT.ENABLE_LEARNABLE_OBSERVER_ITER", "2"] + ["QUANTIZATION.QAT.DISABLE_OBSERVER_ITER", "4"] + ["QUANTIZATION.QAT.FREEZE_BN_ITER", "4"] + ["QUANTIZATION.BACKEND", backend] + ["QUANTIZATION.QAT.FAKE_QUANT_METHOD", qat_method] ) ) return runner, cfg # seems that fbgemm with learnable qat is not supported for backend, qat_method in [ ("fbgemm", "default"), ("qnnpack", "default"), ("qnnpack", "learnable"), ]: with self.subTest(backend=backend, qat_method=qat_method): with tempfile.TemporaryDirectory() as tmp_dir: runner, cfg = setup(tmp_dir, backend=backend, qat_method=qat_method) model = runner.build_model(cfg) print(model) runner.do_train(cfg, model, resume=True) default_runner._close_all_tbx_writers() def test_d2go_runner_trainer_hooks(self): counts = 0 @TRAINER_HOOKS_REGISTRY.register() def _check_hook_func(hooks, cfg): nonlocal counts counts = len(hooks) print(hooks) with tempfile.TemporaryDirectory() as tmp_dir: ds_name = create_local_dataset(tmp_dir, 5, 10, 10) runner = default_runner.Detectron2GoRunner() cfg = _get_cfg(runner, tmp_dir, ds_name) model = runner.build_model(cfg) runner.do_train(cfg, model, resume=True) default_runner._close_all_tbx_writers() self.assertGreater(counts, 0) def _compare_state_dict(sd1, sd2, abs_error=1e-3): if len(sd1) != len(sd2): return False if set(sd1.keys()) != set(sd2.keys()): return False for name in sd1: if sd1[name].dtype == torch.float32: if torch.abs((sd1[name] - sd2[name])).max() > abs_error: return False elif (sd1[name] != sd2[name]).any(): return False return True
d2go-main
tests/runner/test_runner_default_runner.py
d2go-main
tests/runner/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os import unittest import d2go.runner.default_runner as default_runner import torch from d2go.registry.builtin import META_ARCH_REGISTRY from d2go.utils.testing.data_loader_helper import create_local_dataset from d2go.utils.testing.helper import tempdir from detectron2.structures import ImageList TEST_CUDA: bool = torch.cuda.is_available() @META_ARCH_REGISTRY.register() class MetaArchForTestSimple(torch.nn.Module): def __init__(self, cfg): super().__init__() self.conv = torch.nn.Conv2d(3, 4, kernel_size=3, stride=1, padding=1) self.bn = torch.nn.BatchNorm2d(4) self.relu = torch.nn.ReLU(inplace=True) self.avgpool = torch.nn.AdaptiveAvgPool2d((1, 1)) @property def device(self): return self.conv.weight.device def forward(self, inputs): images = [x["image"] for x in inputs] images = ImageList.from_tensors(images, 1).to(self.device) ret = self.conv(images.tensor) ret = self.bn(ret) ret = self.relu(ret) ret = self.avgpool(ret) return {"loss": ret.norm()} def train_with_memory_profiler(output_dir, device="cpu"): ds_name = create_local_dataset(output_dir, 5, 10, 10) runner = default_runner.Detectron2GoRunner() cfg = runner.get_default_cfg() cfg.MODEL.DEVICE = device cfg.MODEL.META_ARCHITECTURE = "MetaArchForTestSimple" cfg.SOLVER.MAX_ITER = 10 cfg.DATASETS.TRAIN = (ds_name,) cfg.DATASETS.TEST = (ds_name,) cfg.OUTPUT_DIR = output_dir cfg.MEMORY_PROFILER.ENABLED = True cfg.MEMORY_PROFILER.LOG_N_STEPS = 3 cfg.MEMORY_PROFILER.LOG_DURING_TRAIN_AT = 5 # Register configs runner.register(cfg) # Create dummy data to pass to wrapper model = runner.build_model(cfg) runner.do_train(cfg, model, resume=True) return cfg class TestGPUMemoryProfiler(unittest.TestCase): @tempdir def test_gpu_memory_profiler_no_gpu(self, tmp_dir: str): # GPU memory profiler should silently pass if no CUDA is available train_with_memory_profiler(tmp_dir, device="cpu") @tempdir @unittest.skipIf(not TEST_CUDA, "no CUDA detected") def test_gpu_memory_profiler_with_gpu(self, tmp_dir: str): cfg = train_with_memory_profiler(tmp_dir, device="cuda") n = cfg.MEMORY_PROFILER.LOG_N_STEPS s = cfg.MEMORY_PROFILER.LOG_DURING_TRAIN_AT save_dir = os.path.join(tmp_dir, "memory_snapshot") self.assertTrue(os.path.exists(save_dir)) for i in [n - 1, s + n - 1]: trace_dir = os.path.join(save_dir, f"iter{i}_rank0") self.assertTrue(os.path.exists(trace_dir)) self.assertTrue(os.path.exists(os.path.join(trace_dir, "snapshot.pickle"))) self.assertTrue(os.path.exists(os.path.join(trace_dir, "trace_plot.html"))) self.assertTrue( os.path.exists(os.path.join(trace_dir, "segment_plot.html")) )
d2go-main
tests/utils/test_gpu_memory_profiler.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import copy import json import os import unittest from typing import Dict, List, Optional, Tuple import d2go.runner.default_runner as default_runner import numpy as np import torch from d2go.registry.builtin import META_ARCH_REGISTRY from d2go.utils.testing.data_loader_helper import ( create_toy_dataset, LocalImageGenerator, ) from d2go.utils.testing.helper import tempdir from d2go.utils.visualization import DataLoaderVisWrapper, VisualizerWrapper from detectron2.data import DatasetCatalog, MetadataCatalog from detectron2.structures import Boxes, Instances from detectron2.utils.events import EventStorage def create_test_images_and_dataset_json( data_dir: str, img_w: int, img_h: int, num_images: int = 10, num_classes: int = -1 ) -> Tuple[str, str]: # create image and json image_dir = os.path.join(data_dir, "images") os.makedirs(image_dir) json_dataset, meta_data = create_toy_dataset( LocalImageGenerator(image_dir, width=img_w, height=img_h), num_images=num_images, num_classes=num_classes, ) json_file = os.path.join(data_dir, "annotation.json") with open(json_file, "w") as f: json.dump(json_dataset, f) return image_dir, json_file def create_dummy_input_dict( img_w: int = 60, img_h: int = 60, bbox_list: Optional[List[List[int]]] = None ) -> Dict: # Create dummy data instance = Instances((img_w, img_h)) if bbox_list is not None: instance.gt_boxes = Boxes(torch.tensor([[10, 10, 20, 20]])) instance.gt_classes = torch.tensor([0]) input_dict = {"image": torch.zeros(3, img_w, img_h), "instances": instance} return input_dict @META_ARCH_REGISTRY.register() class DummyMetaArch(torch.nn.Module): @staticmethod def visualize_train_input(visualizer_wrapper, input_dict): return {"default": np.zeros((60, 60, 30)), "secondary": np.zeros((60, 60, 30))} class ImageDictStore: def __init__(self): self.write_buffer = [] def add_image(self, **kwargs): self.write_buffer.append(copy.deepcopy(kwargs)) class MockTbxWriter: def __init__(self): self._writer = ImageDictStore() class TestVisualization(unittest.TestCase): def setUp(self): self._builtin_datasets = set(DatasetCatalog) def tearDown(self): # Need to remove injected dataset injected_dataset = set(DatasetCatalog) - self._builtin_datasets for ds in injected_dataset: DatasetCatalog.remove(ds) MetadataCatalog.remove(ds) @tempdir def test_visualizer_wrapper(self, tmp_dir: str): image_dir, json_file = create_test_images_and_dataset_json(tmp_dir, 60, 60) # Create config data runner = default_runner.Detectron2GoRunner() cfg = runner.get_default_cfg() cfg.merge_from_list( [ "D2GO_DATA.DATASETS.COCO_INJECTION.NAMES", str(["inj_ds1"]), "D2GO_DATA.DATASETS.COCO_INJECTION.IM_DIRS", str([image_dir]), "D2GO_DATA.DATASETS.COCO_INJECTION.JSON_FILES", str([json_file]), "DATASETS.TRAIN", str(["inj_ds1"]), ] ) # Register configs runner.register(cfg) DatasetCatalog.get("inj_ds1") # Create dummy data to pass to wrapper input_dict = create_dummy_input_dict(60, 60, [[10, 10, 20, 20]]) vis_wrapper = VisualizerWrapper(cfg) vis_image = vis_wrapper.visualize_train_input(input_dict) # Visualize train by default scales input image by 2 self.assertTrue(any(vis_image[20, 20, :] != 0)) self.assertFalse(any(vis_image[30, 30, :] != 0)) self.assertTrue(any(vis_image[40, 40, :] != 0)) @tempdir def test_dataloader_visualizer_wrapper(self, tmp_dir: str): image_dir, json_file = create_test_images_and_dataset_json(tmp_dir, 60, 60) # Create config data runner = default_runner.Detectron2GoRunner() cfg = runner.get_default_cfg() cfg.merge_from_list( [ "D2GO_DATA.DATASETS.COCO_INJECTION.NAMES", str(["inj_ds2"]), "D2GO_DATA.DATASETS.COCO_INJECTION.IM_DIRS", str([image_dir]), "D2GO_DATA.DATASETS.COCO_INJECTION.JSON_FILES", str([json_file]), "DATASETS.TRAIN", str(["inj_ds2"]), ] ) # Register configs runner.register(cfg) DatasetCatalog.get("inj_ds2") with EventStorage(): # Create mock storage for writer mock_tbx_writer = MockTbxWriter() # Create a wrapper around an iterable object and run once input_dict = create_dummy_input_dict(60, 60, [[1, 1, 2, 2]]) dl_wrapper = DataLoaderVisWrapper( cfg, mock_tbx_writer, [[input_dict], [input_dict]] ) for _ in dl_wrapper: break # Check data has been written to buffer self.assertTrue(len(mock_tbx_writer._writer.write_buffer) == 1) vis_image_dict = mock_tbx_writer._writer.write_buffer[0] self.assertTrue("tag" in vis_image_dict) self.assertTrue("img_tensor" in vis_image_dict) self.assertTrue("global_step" in vis_image_dict) @tempdir def test_dict_based_dataloader_visualizer_wrapper(self, tmp_dir: str): image_dir, json_file = create_test_images_and_dataset_json(tmp_dir, 60, 60) # Create config data runner = default_runner.Detectron2GoRunner() cfg = runner.get_default_cfg() cfg.merge_from_list( [ "D2GO_DATA.DATASETS.COCO_INJECTION.NAMES", str(["inj_ds3"]), "D2GO_DATA.DATASETS.COCO_INJECTION.IM_DIRS", str([image_dir]), "D2GO_DATA.DATASETS.COCO_INJECTION.JSON_FILES", str([json_file]), "DATASETS.TRAIN", str(["inj_ds3"]), "MODEL.META_ARCHITECTURE", "DummyMetaArch", ] ) # Register configs runner.register(cfg) DatasetCatalog.get("inj_ds3") with EventStorage(): # Create mock storage for writer mock_tbx_writer = MockTbxWriter() # Create a wrapper around an iterable object and run once input_dict = create_dummy_input_dict(60, 60, [[1, 1, 2, 2]]) dl_wrapper = DataLoaderVisWrapper( cfg, mock_tbx_writer, [[input_dict], [input_dict]] ) for _ in dl_wrapper: break # Check data has been written to buffer self.assertTrue(len(mock_tbx_writer._writer.write_buffer) == 2) self.assertTrue( "train_loader_batch_0/default" in mock_tbx_writer._writer.write_buffer[0]["tag"] ) self.assertTrue( "train_loader_batch_0/secondary" in mock_tbx_writer._writer.write_buffer[1]["tag"] )
d2go-main
tests/utils/test_visualization.py
d2go-main
tests/utils/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import unittest import torch from detectron2.layers import cat from detectron2.modeling.roi_heads.fast_rcnn import fast_rcnn_inference from detectron2.structures import Boxes from mobile_cv.common.misc.oss_utils import is_oss class TestBoxWithNMSLimit(unittest.TestCase): @unittest.skipIf(is_oss(), "Caffe2 is not available for OSS") def test_caffe2_pytorch_eq(self): ims_per_batch = 8 post_nms_topk = 100 detections_per_im = 10 num_class = 80 score_thresh = 0.05 nms_thresh = 0.5 image_shapes = [torch.Size([800, 800])] * ims_per_batch batch_splits = [post_nms_topk] * ims_per_batch # NOTE: There're still some unsure minor implementation differences # (eg. ordering when equal score across classes) causing some seeds # don't pass the test. # Thus set a fixed seed to make sure this test passes consistantly. rng = torch.Generator() rng.manual_seed(42) boxes = [] for n in batch_splits: box = 1000.0 * 0.5 * torch.rand(n, num_class, 4, generator=rng) + 0.001 box[:, :, -2:] += box[:, :, :2] box = box.view(n, num_class * 4) boxes.append(box) scores = [torch.rand(n, num_class + 1, generator=rng) for n in batch_splits] ref_results, ref_kept_indices = fast_rcnn_inference( boxes, scores, image_shapes, score_thresh=score_thresh, nms_thresh=nms_thresh, topk_per_image=detections_per_im, ) for result, kept_index, score in zip(ref_results, ref_kept_indices, scores): torch.testing.assert_close( score[kept_index, result.pred_classes], result.scores, ) # clip is done in BBoxTransformOp c2_boxes = [] for box, image_shape in zip(boxes, image_shapes): num_bbox_reg_classes = box.shape[1] // 4 clipped_box = Boxes(box.reshape(-1, 4)) clipped_box.clip(image_shape) clipped_box = clipped_box.tensor.view(-1, num_bbox_reg_classes * 4) c2_boxes.append(clipped_box) c2_boxes = cat(c2_boxes) c2_scores = cat(scores) c2_batch_splits = torch.Tensor(batch_splits) nms_outputs = torch.ops._caffe2.BoxWithNMSLimit( c2_scores, c2_boxes, c2_batch_splits, score_thresh=float(score_thresh), nms=float(nms_thresh), detections_per_im=int(detections_per_im), soft_nms_enabled=False, soft_nms_method="linear", soft_nms_sigma=0.5, soft_nms_min_score_thres=0.001, rotated=False, cls_agnostic_bbox_reg=False, input_boxes_include_bg_cls=False, output_classes_include_bg_cls=False, legacy_plus_one=False, ) ( roi_score_nms, roi_bbox_nms, roi_class_nms, roi_batch_splits_nms, roi_keeps_nms, roi_keeps_size_nms, ) = nms_outputs # noqa roi_score_nms = roi_score_nms.split(roi_batch_splits_nms.int().tolist()) roi_bbox_nms = roi_bbox_nms.split(roi_batch_splits_nms.int().tolist()) roi_class_nms = roi_class_nms.split(roi_batch_splits_nms.int().tolist()) roi_keeps_nms = roi_keeps_nms.split(roi_batch_splits_nms.int().tolist()) for _score_nms, _class_nms, _keeps_nms, _score in zip( roi_score_nms, roi_class_nms, roi_keeps_nms, scores ): torch.testing.assert_close( _score[_keeps_nms.to(torch.int64), _class_nms.to(torch.int64)], _score_nms, ) for ref, s, b, c in zip( ref_results, roi_score_nms, roi_bbox_nms, roi_class_nms ): s1, i1 = s.sort() s2, i2 = ref.scores.sort() torch.testing.assert_close(s1, s2) torch.testing.assert_close(b[i1], ref.pred_boxes.tensor[i2]) torch.testing.assert_close(c.to(torch.int64)[i1], ref.pred_classes[i2]) for ref, k in zip(ref_kept_indices, roi_keeps_nms): # NOTE: order might be different due to implementation ref_set = set(ref.tolist()) k_set = set(k.tolist()) self.assertEqual(ref_set, k_set)
d2go-main
tests/modeling/test_box_with_nms_limit.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import random import unittest import d2go.runner.default_runner as default_runner import torch from d2go.optimizer.build import build_optimizer_mapper from d2go.utils.testing import helper class TestArch(torch.nn.Module): def __init__(self): super().__init__() self.conv = torch.nn.Conv2d(3, 4, kernel_size=5, stride=1, padding=1) self.bn = torch.nn.BatchNorm2d(4) self.relu = torch.nn.ReLU(inplace=True) self.avgpool = torch.nn.AdaptiveAvgPool2d((1, 1)) self.linear = torch.nn.Linear(4, 1) def forward(self, x): ret = self.conv(x) ret = self.bn(ret) ret = self.relu(ret) ret = self.avgpool(ret) ret = torch.transpose(ret, 1, 3) ret = self.linear(ret) return ret def _test_each_optimizer(cfg, cuda: bool = False): print("Solver: " + str(cfg.SOLVER.OPTIMIZER)) device = "cuda:0" if cuda else "cpu" model = TestArch().to(device) criterion = torch.nn.BCEWithLogitsLoss() optimizer = build_optimizer_mapper(cfg, model) optimizer.zero_grad() random.seed(20210912) num_iter = 500 for _ in range(num_iter): target = torch.empty(1, 1, 1, 1).fill_(random.randint(0, 1)).to(device) noise = torch.rand(1, 3, 16, 16).to(device) x = torch.add(noise, 2 * target) y_pred = model(x) loss = criterion(y_pred, target) loss.backward() optimizer.step() n_correct = 0 n_eval = 100 for _ in range(n_eval): target = torch.empty(1, 1, 1, 1).fill_(random.randint(0, 1)).to(device) x = torch.add(torch.rand(1, 3, 16, 16).to(device), 2 * target) y_pred = torch.round(torch.sigmoid(model(x))) if y_pred == target: n_correct += 1 print("Correct prediction rate {0}.".format(n_correct / n_eval)) def _check_param_group(self, group, num_params=None, **kwargs): if num_params is not None: self.assertEqual(len(group["params"]), num_params) for key, val in kwargs.items(): self.assertEqual(group[key], val) def get_optimizer_cfg( lr, weight_decay=None, weight_decay_norm=None, weight_decay_bias=None, lr_mult=None, ): runner = default_runner.Detectron2GoRunner() cfg = runner.get_default_cfg() if lr is not None: cfg.SOLVER.BASE_LR = lr if weight_decay is not None: cfg.SOLVER.WEIGHT_DECAY = weight_decay if weight_decay_norm is not None: cfg.SOLVER.WEIGHT_DECAY_NORM = weight_decay_norm if weight_decay_bias is not None: cfg.SOLVER.WEIGHT_DECAY_BIAS = weight_decay_bias if lr_mult is not None: cfg.SOLVER.LR_MULTIPLIER_OVERWRITE = [lr_mult] return cfg class TestOptimizer(unittest.TestCase): def test_create_optimizer_default(self): class Model(torch.nn.Module): def __init__(self): super().__init__() self.conv = torch.nn.Conv2d(3, 3, 1) self.bn = torch.nn.BatchNorm2d(3) def forward(self, x): return self.bn(self.conv(x)) model = Model() cfg = get_optimizer_cfg( lr=1.0, weight_decay=1.0, weight_decay_norm=1.0, weight_decay_bias=1.0 ) optimizer = build_optimizer_mapper(cfg, model) self.assertEqual(len(optimizer.param_groups), 1) _check_param_group( self, optimizer.param_groups[0], num_params=4, weight_decay=1.0, lr=1.0 ) def test_create_optimizer_lr(self): class Model(torch.nn.Module): def __init__(self): super().__init__() self.conv1 = torch.nn.Conv2d(3, 3, 1) self.conv2 = torch.nn.Conv2d(3, 3, 1) self.bn = torch.nn.BatchNorm2d(3) def forward(self, x): return self.bn(self.conv2(self.conv1(x))) model = Model() cfg = get_optimizer_cfg( lr=1.0, lr_mult={"conv1": 3.0, "conv2": 3.0}, weight_decay=2.0, weight_decay_norm=2.0, ) optimizer = build_optimizer_mapper(cfg, model) self.assertEqual(len(optimizer.param_groups), 2) _check_param_group(self, optimizer.param_groups[0], num_params=4, lr=3.0) _check_param_group(self, optimizer.param_groups[1], num_params=2, lr=1.0) def test_create_optimizer_weight_decay_norm(self): class Model(torch.nn.Module): def __init__(self): super().__init__() self.conv = torch.nn.Conv2d(3, 3, 1) self.bn = torch.nn.BatchNorm2d(3) def forward(self, x): return self.bn(self.conv(x)) model = Model() cfg = get_optimizer_cfg( lr=1.0, weight_decay=1.0, weight_decay_norm=2.0, weight_decay_bias=1.0 ) optimizer = build_optimizer_mapper(cfg, model) self.assertEqual(len(optimizer.param_groups), 2) _check_param_group( self, optimizer.param_groups[0], num_params=2, lr=1.0, weight_decay=1.0 ) _check_param_group( self, optimizer.param_groups[1], num_params=2, lr=1.0, weight_decay=2.0 ) OPTIMIZER_NAMES_PART1 = ["SGD", "AdamW", "SGD_MT"] OPTIMIZER_NAMES_PART2 = ["AdamW_MT", "Adam"] def _test_optimizers_list(self, optimizers_list, fused: bool = False): runner = default_runner.Detectron2GoRunner() cfg = runner.get_default_cfg() multipliers = [None, [{"conv": 0.1}]] for optimizer_name in optimizers_list: for mult in multipliers: cfg.SOLVER.BASE_LR = 0.01 cfg.SOLVER.FUSED = fused cfg.SOLVER.OPTIMIZER = optimizer_name cfg.SOLVER.MULTIPLIERS = mult _test_each_optimizer(cfg, cuda=fused) def test_all_optimizers_part_1(self): self._test_optimizers_list(self.OPTIMIZER_NAMES_PART1) def test_all_optimizers_part_2(self): self._test_optimizers_list(self.OPTIMIZER_NAMES_PART2) def _test_full_model_grad_clipping(self, optimizers_list): runner = default_runner.Detectron2GoRunner() cfg = runner.get_default_cfg() for optimizer_name in optimizers_list: cfg.SOLVER.BASE_LR = 0.02 cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE = 0.2 cfg.SOLVER.CLIP_GRADIENTS.ENABLED = True cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE = "full_model" cfg.SOLVER.OPTIMIZER = optimizer_name _test_each_optimizer(cfg) def test_full_model_grad_clipping_part1(self): self._test_full_model_grad_clipping(self.OPTIMIZER_NAMES_PART1) def test_full_model_grad_clipping_part2(self): self._test_full_model_grad_clipping(self.OPTIMIZER_NAMES_PART2) def test_create_optimizer_custom(self): class Model(torch.nn.Module): def __init__(self): super().__init__() self.conv = torch.nn.Conv2d(3, 3, 1) self.bn = torch.nn.BatchNorm2d(3) def forward(self, x): return self.bn(self.conv(x)) def get_optimizer_param_groups(self, _opts): ret = [ { "params": [self.conv.weight], "lr": 10.0, } ] return ret model = Model() cfg = get_optimizer_cfg(lr=1.0, weight_decay=1.0, weight_decay_norm=0.0) optimizer = build_optimizer_mapper(cfg, model) self.assertEqual(len(optimizer.param_groups), 3) _check_param_group( self, optimizer.param_groups[0], num_params=1, lr=10.0, weight_decay=1.0 ) _check_param_group( self, optimizer.param_groups[1], num_params=1, lr=1.0, weight_decay=1.0 ) _check_param_group( self, optimizer.param_groups[2], num_params=2, lr=1.0, weight_decay=0.0 ) @helper.enable_ddp_env() def test_create_optimizer_custom_ddp(self): class Model(torch.nn.Module): def __init__(self): super().__init__() self.conv = torch.nn.Conv2d(3, 3, 1) self.bn = torch.nn.BatchNorm2d(3) def forward(self, x): return self.bn(self.conv(x)) def get_optimizer_param_groups(self, _opts): ret = [ { "params": [self.conv.weight], "lr": 10.0, } ] return ret model = Model() model = torch.nn.parallel.DistributedDataParallel(model) cfg = get_optimizer_cfg(lr=1.0, weight_decay=1.0, weight_decay_norm=0.0) optimizer = build_optimizer_mapper(cfg, model) self.assertEqual(len(optimizer.param_groups), 3) _check_param_group( self, optimizer.param_groups[0], num_params=1, lr=10.0, weight_decay=1.0 ) _check_param_group( self, optimizer.param_groups[1], num_params=1, lr=1.0, weight_decay=1.0 ) _check_param_group( self, optimizer.param_groups[2], num_params=2, lr=1.0, weight_decay=0.0 )
d2go-main
tests/modeling/test_optimizer.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import copy import os import unittest import torch from d2go.export.exporter import convert_and_export_predictor from d2go.runner import GeneralizedRCNNRunner from d2go.utils.testing.data_loader_helper import ( create_detection_data_loader_on_toy_dataset, ) from d2go.utils.testing.rcnn_helper import get_quick_test_config_opts, RCNNBaseTestCases from mobile_cv.common.misc.file_utils import make_temp_directory from mobile_cv.common.misc.oss_utils import is_oss def _maybe_skip_test(self, predictor_type): if is_oss() and "@c2_ops" in predictor_type: self.skipTest("Caffe2 is not available for OSS") if not torch.cuda.is_available() and "_gpu" in predictor_type: self.skipTest("GPU is not available for exporting GPU model") class TestFBNetV3MaskRCNNFP32(RCNNBaseTestCases.TemplateTestCase): def setup_custom_test(self): super().setup_custom_test() self.cfg.merge_from_file("detectron2go://mask_rcnn_fbnetv3a_dsmask_C4.yaml") def test_inference(self): self._test_inference() @RCNNBaseTestCases.expand_parameterized_test_export( [ ["torchscript@c2_ops", True], ["torchscript", True], ["torchscript_int8@c2_ops", False], ["torchscript_int8", False], ] ) def test_export(self, predictor_type, compare_match): _maybe_skip_test(self, predictor_type) self._test_export(predictor_type, compare_match=compare_match) class TestFBNetV3MaskRCNNFPNFP32(RCNNBaseTestCases.TemplateTestCase): def setup_custom_test(self): super().setup_custom_test() self.cfg.merge_from_file("detectron2go://mask_rcnn_fbnetv3g_fpn.yaml") def test_inference(self): self._test_inference() @RCNNBaseTestCases.expand_parameterized_test_export( [ # FIXME: exporting c2_ops for FPN model might not pass this test for certain # combination of image sizes and resizing targets. data points are: # - passes before D35238890: image_size and resizing target are both 32x64 (backbone's divisibility). # - doesn't pass after D35238890: image_size are 32x64, resizing to 5x10. ["torchscript@c2_ops", False], ["torchscript", True], ["torchscript_int8@c2_ops", False], ["torchscript_int8", False], ] ) def test_export(self, predictor_type, compare_match): _maybe_skip_test(self, predictor_type) self._test_export(predictor_type, compare_match=compare_match) class TestFBNetV3MaskRCNNQATEager(RCNNBaseTestCases.TemplateTestCase): def setup_custom_test(self): super().setup_custom_test() self.cfg.merge_from_file("detectron2go://mask_rcnn_fbnetv3a_dsmask_C4.yaml") # enable QAT self.cfg.merge_from_list( [ "QUANTIZATION.BACKEND", "qnnpack", "QUANTIZATION.QAT.ENABLED", "True", ] ) # FIXME: NaiveSyncBN is not supported self.cfg.merge_from_list(["MODEL.FBNET_V2.NORM", "bn"]) def test_inference(self): self._test_inference() @RCNNBaseTestCases.expand_parameterized_test_export( [ ["torchscript_int8@c2_ops", False], # TODO: fix mismatch ["torchscript_int8", False], # TODO: fix mismatch ] ) def test_export(self, predictor_type, compare_match): _maybe_skip_test(self, predictor_type) self._test_export(predictor_type, compare_match=compare_match) class TestFBNetV3KeypointRCNNFP32(RCNNBaseTestCases.TemplateTestCase): def setup_custom_test(self): super().setup_custom_test() self.cfg.merge_from_file("detectron2go://keypoint_rcnn_fbnetv3a_dsmask_C4.yaml") # FIXME: have to use qnnpack due to follow error: # Per Channel Quantization is currently disabled for transposed conv self.cfg.merge_from_list( [ "QUANTIZATION.BACKEND", "qnnpack", ] ) def test_inference(self): self._test_inference() @RCNNBaseTestCases.expand_parameterized_test_export( [ ["torchscript_int8@c2_ops", False], # TODO: fix mismatch ["torchscript_int8", False], # TODO: fix mismatch ] ) def test_export(self, predictor_type, compare_match): if is_oss() and "@c2_ops" in predictor_type: self.skipTest("Caffe2 is not available for OSS") self._test_export(predictor_type, compare_match=compare_match) class TestTorchVisionExport(unittest.TestCase): def test_export_torchvision_format(self): runner = GeneralizedRCNNRunner() cfg = runner.get_default_cfg() cfg.merge_from_file("detectron2go://mask_rcnn_fbnetv3a_dsmask_C4.yaml") cfg.merge_from_list(get_quick_test_config_opts()) cfg.merge_from_list(["MODEL.DEVICE", "cpu"]) pytorch_model = runner.build_model(cfg, eval_only=True) from typing import Dict, List class Wrapper(torch.nn.Module): def __init__(self, model): super().__init__() self.model = model def forward(self, inputs: List[torch.Tensor]): x = inputs[0].unsqueeze(0) * 255 scale = 320.0 / min(x.shape[-2], x.shape[-1]) x = torch.nn.functional.interpolate( x, scale_factor=scale, mode="bilinear", align_corners=True, recompute_scale_factor=True, ) out = self.model(x[0]) res: Dict[str, torch.Tensor] = {} res["boxes"] = out[0] / scale res["labels"] = out[2] res["scores"] = out[1] return inputs, [res] size_divisibility = max(pytorch_model.backbone.size_divisibility, 10) h, w = size_divisibility, size_divisibility * 2 with create_detection_data_loader_on_toy_dataset( cfg, h, w, is_train=False ) as data_loader: with make_temp_directory("test_export_torchvision_format") as tmp_dir: predictor_path = convert_and_export_predictor( cfg, copy.deepcopy(pytorch_model), "torchscript", tmp_dir, data_loader, ) orig_model = torch.jit.load(os.path.join(predictor_path, "model.jit")) wrapped_model = Wrapper(orig_model) # optionally do a forward wrapped_model([torch.rand(3, 600, 600)]) scripted_model = torch.jit.script(wrapped_model) scripted_model.save(os.path.join(tmp_dir, "new_file.pt")) class TestMaskRCNNExportOptions(RCNNBaseTestCases.TemplateTestCase): def setup_custom_test(self): super().setup_custom_test() self.cfg.merge_from_file("detectron2go://mask_rcnn_fbnetv3a_dsmask_C4.yaml") def _get_test_image_sizes(self, is_train): # postprocessing requires no resize from "data loader" return self._get_test_image_size_no_resize(is_train) def test_tracing_with_postprocess(self): self.cfg.merge_from_list(["RCNN_EXPORT.INCLUDE_POSTPROCESS", True]) self._test_export("torchscript@tracing", compare_match=True) if __name__ == "__main__": unittest.main()
d2go-main
tests/modeling/test_meta_arch_rcnn.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import unittest import numpy as np import torch from detectron2.layers import nms as box_nms class TestNMS(unittest.TestCase): def test_nms_cpu(self): """Match unit test UtilsNMSTest.TestNMS in caffe2/operators/generate_proposals_op_util_nms_test.cc """ inputs = ( np.array( [ 10, 10, 50, 60, 0.5, 11, 12, 48, 60, 0.7, 8, 9, 40, 50, 0.6, 100, 100, 150, 140, 0.9, 99, 110, 155, 139, 0.8, ] ) .astype(np.float32) .reshape(-1, 5) ) boxes = torch.from_numpy(inputs[:, :4]) scores = torch.from_numpy(inputs[:, 4]) test_thresh = [0.1, 0.3, 0.5, 0.8, 0.9] gt_indices = [[1, 3], [1, 3], [1, 3], [1, 2, 3, 4], [0, 1, 2, 3, 4]] for thresh, gt_index in zip(test_thresh, gt_indices): keep_indices = box_nms(boxes, scores, thresh) keep_indices = np.sort(keep_indices) np.testing.assert_array_equal(keep_indices, np.array(gt_index)) def test_nms1_cpu(self): """Match unit test UtilsNMSTest.TestNMS1 in caffe2/operators/generate_proposals_op_util_nms_test.cc """ boxes = torch.from_numpy( np.array( [ [350.9821, 161.8200, 369.9685, 205.2372], [250.5236, 154.2844, 274.1773, 204.9810], [471.4920, 160.4118, 496.0094, 213.4244], [352.0421, 164.5933, 366.4458, 205.9624], [166.0765, 169.7707, 183.0102, 232.6606], [252.3000, 183.1449, 269.6541, 210.6747], [469.7862, 162.0192, 482.1673, 187.0053], [168.4862, 174.2567, 181.7437, 232.9379], [470.3290, 162.3442, 496.4272, 214.6296], [251.0450, 155.5911, 272.2693, 203.3675], [252.0326, 154.7950, 273.7404, 195.3671], [351.7479, 161.9567, 370.6432, 204.3047], [496.3306, 161.7157, 515.0573, 210.7200], [471.0749, 162.6143, 485.3374, 207.3448], [250.9745, 160.7633, 264.1924, 206.8350], [470.4792, 169.0351, 487.1934, 220.2984], [474.4227, 161.9546, 513.1018, 215.5193], [251.9428, 184.1950, 262.6937, 207.6416], [252.6623, 175.0252, 269.8806, 213.7584], [260.9884, 157.0351, 288.3554, 206.6027], [251.3629, 164.5101, 263.2179, 202.4203], [471.8361, 190.8142, 485.6812, 220.8586], [248.6243, 156.9628, 264.3355, 199.2767], [495.1643, 158.0483, 512.6261, 184.4192], [376.8718, 168.0144, 387.3584, 201.3210], [122.9191, 160.7433, 172.5612, 231.3837], [350.3857, 175.8806, 366.2500, 205.4329], [115.2958, 162.7822, 161.9776, 229.6147], [168.4375, 177.4041, 180.8028, 232.4551], [169.7939, 184.4330, 181.4767, 232.1220], [347.7536, 175.9356, 355.8637, 197.5586], [495.5434, 164.6059, 516.4031, 207.7053], [172.1216, 194.6033, 183.1217, 235.2653], [264.2654, 181.5540, 288.4626, 214.0170], [111.7971, 183.7748, 137.3745, 225.9724], [253.4919, 186.3945, 280.8694, 210.0731], [165.5334, 169.7344, 185.9159, 232.8514], [348.3662, 184.5187, 354.9081, 201.4038], [164.6562, 162.5724, 186.3108, 233.5010], [113.2999, 186.8410, 135.8841, 219.7642], [117.0282, 179.8009, 142.5375, 221.0736], [462.1312, 161.1004, 495.3576, 217.2208], [462.5800, 159.9310, 501.2937, 224.1655], [503.5242, 170.0733, 518.3792, 209.0113], [250.3658, 195.5925, 260.6523, 212.4679], [108.8287, 163.6994, 146.3642, 229.7261], [256.7617, 187.3123, 288.8407, 211.2013], [161.2781, 167.4801, 186.3751, 232.7133], [115.3760, 177.5859, 163.3512, 236.9660], [248.9077, 188.0919, 264.8579, 207.9718], [108.1349, 160.7851, 143.6370, 229.6243], [465.0900, 156.7555, 490.3561, 213.5704], [107.5338, 173.4323, 141.0704, 235.2910], ] ).astype(np.float32) ) scores = torch.from_numpy( np.array( [ 0.1919, 0.3293, 0.0860, 0.1600, 0.1885, 0.4297, 0.0974, 0.2711, 0.1483, 0.1173, 0.1034, 0.2915, 0.1993, 0.0677, 0.3217, 0.0966, 0.0526, 0.5675, 0.3130, 0.1592, 0.1353, 0.0634, 0.1557, 0.1512, 0.0699, 0.0545, 0.2692, 0.1143, 0.0572, 0.1990, 0.0558, 0.1500, 0.2214, 0.1878, 0.2501, 0.1343, 0.0809, 0.1266, 0.0743, 0.0896, 0.0781, 0.0983, 0.0557, 0.0623, 0.5808, 0.3090, 0.1050, 0.0524, 0.0513, 0.4501, 0.4167, 0.0623, 0.1749, ] ).astype(np.float32) ) gt_indices = np.array( [ 1, 6, 7, 8, 11, 12, 13, 14, 17, 18, 19, 21, 23, 24, 25, 26, 30, 32, 33, 34, 35, 37, 43, 44, 47, 50, ] ) keep_indices = box_nms(boxes, scores, 0.5) keep_indices = np.sort(keep_indices) np.testing.assert_array_equal(keep_indices, gt_indices) if __name__ == "__main__": unittest.main()
d2go-main
tests/modeling/test_nms.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import copy import itertools import unittest import d2go.runner.default_runner as default_runner import torch from d2go.modeling import ema from d2go.utils.testing import helper class TestArch(torch.nn.Module): def __init__(self, value=None, int_value=None): super().__init__() self.conv = torch.nn.Conv2d(3, 4, kernel_size=3, stride=1, padding=1) self.bn = torch.nn.BatchNorm2d(4) self.relu = torch.nn.ReLU(inplace=True) self.avgpool = torch.nn.AdaptiveAvgPool2d((1, 1)) if value is not None: self.set_const_weights(value, int_value) def forward(self, x): ret = self.conv(x) ret = self.bn(ret) ret = self.relu(ret) ret = self.avgpool(ret) return ret def set_const_weights(self, value, int_value=None): if int_value is None: int_value = int(value) for x in itertools.chain(self.parameters(), self.buffers()): if x.dtype == torch.float32: x.data.fill_(value) else: x.data.fill_(int_value) def _compare_state_dict(model1, model2, abs_error=1e-3): sd1 = model1.state_dict() sd2 = model2.state_dict() if len(sd1) != len(sd2): return False if set(sd1.keys()) != set(sd2.keys()): return False for name in sd1: if sd1[name].dtype == torch.float32: if torch.abs((sd1[name] - sd2[name])).max() > abs_error: return False elif (sd1[name] != sd2[name]).any(): return False return True class TestModelingModelEMA(unittest.TestCase): def test_emastate(self): model = TestArch() state = ema.EMAState.FromModel(model) # two for conv (conv.weight, conv.bias), # five for bn (bn.weight, bn.bias, bn.running_mean, bn.running_var, bn.num_batches_tracked) full_state = { "conv.weight", "conv.bias", "bn.weight", "bn.bias", "bn.running_mean", "bn.running_var", "bn.num_batches_tracked", } self.assertEqual(len(state.state), 7) self.assertTrue(set(state.state) == full_state) for _, val in state.state.items(): self.assertFalse(val.requires_grad) model1 = TestArch() self.assertFalse(_compare_state_dict(model, model1)) state.apply_to(model1) self.assertTrue(_compare_state_dict(model, model1)) # test ema state that excludes buffers and frozen parameters model.conv.weight.requires_grad = False state1 = ema.EMAState.FromModel(model, include_frozen=False) # should exclude frozen parameter: conv.weight self.assertTrue(full_state - set(state1.state) == {"conv.weight"}) state2 = ema.EMAState.FromModel(model, include_buffer=False) # should exclude buffers: bn.running_mean, bn.running_var, bn.num_batches_tracked self.assertTrue( full_state - set(state2.state) == {"bn.running_mean", "bn.running_var", "bn.num_batches_tracked"} ) state3 = ema.EMAState.FromModel( model, include_frozen=False, include_buffer=False ) # should exclude frozen param + buffers: conv.weight, bn.running_mean, bn.running_var, bn.num_batches_tracked self.assertTrue(set(state3.state) == {"conv.bias", "bn.weight", "bn.bias"}) def test_emastate_saveload(self): model = TestArch() state = ema.EMAState.FromModel(model) model1 = TestArch() self.assertFalse(_compare_state_dict(model, model1)) state1 = ema.EMAState() state1.load_state_dict(state.state_dict()) state1.apply_to(model1) self.assertTrue(_compare_state_dict(model, model1)) @helper.skip_if_no_gpu def test_emastate_crossdevice(self): model = TestArch() model.cuda() # state on gpu state = ema.EMAState.FromModel(model) self.assertEqual(state.device, torch.device("cuda:0")) # target model on cpu model1 = TestArch() state.apply_to(model1) self.assertEqual(next(model1.parameters()).device, torch.device("cpu")) self.assertTrue(_compare_state_dict(copy.deepcopy(model).cpu(), model1)) # state on cpu state1 = ema.EMAState.FromModel(model, device="cpu") self.assertEqual(state1.device, torch.device("cpu")) # target model on gpu model2 = TestArch() model2.cuda() state1.apply_to(model2) self.assertEqual(next(model2.parameters()).device, torch.device("cuda:0")) self.assertTrue(_compare_state_dict(model, model2)) def test_ema_updater(self): model = TestArch() state = ema.EMAState() updated_model = TestArch() updater = ema.EMAUpdater(state, decay=0.0) updater.init_state(model) for _ in range(3): cur = TestArch() updater.update(cur) state.apply_to(updated_model) # weight decay == 0.0, always use new model self.assertTrue(_compare_state_dict(updated_model, cur)) updater = ema.EMAUpdater(state, decay=1.0) updater.init_state(model) for _ in range(3): cur = TestArch() updater.update(cur) state.apply_to(updated_model) # weight decay == 1.0, always use init model self.assertTrue(_compare_state_dict(updated_model, model)) def test_ema_updater_decay(self): state = ema.EMAState() updater = ema.EMAUpdater(state, decay=0.7) updater.init_state(TestArch(1.0)) gt_val = 1.0 gt_val_int = 1 for idx in range(3): updater.update(TestArch(float(idx))) updated_model = state.get_ema_model(TestArch()) gt_val = gt_val * 0.7 + float(idx) * 0.3 gt_val_int = int(gt_val_int * 0.7 + float(idx) * 0.3) self.assertTrue( _compare_state_dict(updated_model, TestArch(gt_val, gt_val_int)) ) class TestModelingModelEMAHook(unittest.TestCase): def test_ema_hook(self): runner = default_runner.Detectron2GoRunner() cfg = runner.get_default_cfg() cfg.MODEL.DEVICE = "cpu" cfg.MODEL_EMA.ENABLED = True # use new model weights cfg.MODEL_EMA.DECAY = 0.0 cfg.MODEL_EMA.DECAY_WARM_UP_FACTOR = -1 model = TestArch() ema.may_build_model_ema(cfg, model) self.assertTrue(hasattr(model, "ema_state")) ema_hook = ema.EMAHook(cfg, model) ema_hook.before_train() ema_hook.before_step() model.set_const_weights(2.0) ema_hook.after_step() ema_hook.after_train() ema_checkpointers = ema.may_get_ema_checkpointer(cfg, model) self.assertEqual(len(ema_checkpointers), 1) out_model = TestArch() ema_checkpointers["ema_state"].apply_to(out_model) self.assertTrue(_compare_state_dict(out_model, model))
d2go-main
tests/modeling/test_modeling_ema.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import unittest import torch from d2go.runner import GeneralizedRCNNRunner from detectron2.modeling import build_anchor_generator, build_backbone from detectron2.modeling.proposal_generator import rpn logger = logging.getLogger(__name__) # overwrite configs if specified, otherwise default config is used RPN_CFGS = {} class TestRPNHeads(unittest.TestCase): def test_build_rpn_heads(self): """Make sure rpn heads run""" self.assertGreater(len(rpn.RPN_HEAD_REGISTRY._obj_map), 0) for name, builder in rpn.RPN_HEAD_REGISTRY._obj_map.items(): logger.info("Testing {}...".format(name)) cfg = GeneralizedRCNNRunner.get_default_cfg() if name in RPN_CFGS: cfg.merge_from_file(RPN_CFGS[name]) backbone = build_backbone(cfg) backbone_shape = backbone.output_shape() rpn_input_shape = [backbone_shape[x] for x in cfg.MODEL.RPN.IN_FEATURES] rpn_head = builder(cfg, rpn_input_shape) in_channels = list(backbone_shape.values())[0].channels num_anchors = build_anchor_generator(cfg, rpn_input_shape).num_cell_anchors[ 0 ] N, C_in, H, W = 2, in_channels, 24, 32 input = torch.rand([N, C_in, H, W], dtype=torch.float32) LAYERS = len(cfg.MODEL.RPN.IN_FEATURES) out = rpn_head([input] * LAYERS) self.assertEqual(len(out), 2) logits, bbox_reg = out for idx in range(LAYERS): self.assertEqual( logits[idx].shape, torch.Size( [input.shape[0], num_anchors, input.shape[2], input.shape[3]] ), ) self.assertEqual( bbox_reg[idx].shape, torch.Size( [ logits[idx].shape[0], num_anchors * 4, logits[idx].shape[2], logits[idx].shape[3], ] ), ) def test_build_rpn_heads_with_rotated_anchor_generator(self): """Make sure rpn heads work with rotated anchor generator""" self.assertGreater(len(rpn.RPN_HEAD_REGISTRY._obj_map), 0) for name, builder in rpn.RPN_HEAD_REGISTRY._obj_map.items(): logger.info("Testing {}...".format(name)) cfg = GeneralizedRCNNRunner.get_default_cfg() if name in RPN_CFGS: cfg.merge_from_file(RPN_CFGS[name]) cfg.MODEL.ANCHOR_GENERATOR.NAME = "RotatedAnchorGenerator" backbone = build_backbone(cfg) backbone_shape = backbone.output_shape() rpn_input_shape = [backbone_shape[x] for x in cfg.MODEL.RPN.IN_FEATURES] rpn_head = builder(cfg, rpn_input_shape) in_channels = list(backbone_shape.values())[0].channels anchor_generator = build_anchor_generator(cfg, rpn_input_shape) num_anchors = anchor_generator.num_cell_anchors[0] box_dim = anchor_generator.box_dim N, C_in, H, W = 2, in_channels, 24, 32 input = torch.rand([N, C_in, H, W], dtype=torch.float32) LAYERS = len(cfg.MODEL.RPN.IN_FEATURES) out = rpn_head([input] * LAYERS) self.assertEqual(len(out), 2) logits, bbox_reg = out for idx in range(LAYERS): self.assertEqual( logits[idx].shape, torch.Size( [input.shape[0], num_anchors, input.shape[2], input.shape[3]] ), ) self.assertEqual( bbox_reg[idx].shape, torch.Size( [ logits[idx].shape[0], num_anchors * box_dim, logits[idx].shape[2], logits[idx].shape[3], ] ), ) if __name__ == "__main__": unittest.main()
d2go-main
tests/modeling/test_rpn_heads.py
d2go-main
tests/modeling/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import unittest import numpy as np import torch from d2go.utils.testing import rcnn_helper as rh from detectron2.structures import Boxes class TestRCNNHelper(unittest.TestCase): def test_get_instances_from_image(self): boxes = Boxes(torch.Tensor([[50, 40, 100, 80], [150, 60, 200, 120]])) gt_kpts = torch.Tensor([75, 60, 1.0] * 21 + [175, 90, 1.0] * 21).reshape( 2, 21, 3 ) batched_inputs = rh.get_batched_inputs(2, boxes=boxes) instances = rh.get_detected_instances_from_image(batched_inputs) self.assertEqual(len(instances), 2) self.assertArrayEqual(instances[0].pred_boxes.tensor, boxes.tensor) self.assertArrayEqual(instances[0].pred_keypoints, gt_kpts) def test_get_instances_from_image_scale_image(self): H, W = 398, 224 all_boxes = Boxes(torch.Tensor([[50, 40, 100, 80], [150, 60, 200, 120]])) image = rh.get_batched_inputs(1, (H, W), (H, W), all_boxes)[0]["image"] boxes = rh.get_detected_instances_from_image([{"image": image}])[0].pred_boxes self.assertArrayEqual(boxes.tensor, all_boxes.tensor) # scale image by 0.5 scale_image = torch.nn.functional.interpolate( torch.unsqueeze(image, 0), scale_factor=(0.5, 0.5), mode="bilinear", align_corners=False, recompute_scale_factor=False, )[0] sub_boxes = rh.get_detected_instances_from_image([{"image": scale_image}])[ 0 ].pred_boxes self.assertArrayEqual(sub_boxes.tensor, [[25, 20, 50, 40], [75, 30, 100, 60]]) # scale image by 0.75 scale_image = torch.nn.functional.interpolate( torch.unsqueeze(image, 0), scale_factor=(0.75, 0.75), mode="bilinear", align_corners=False, recompute_scale_factor=False, )[0] sub_boxes = rh.get_detected_instances_from_image([{"image": scale_image}])[ 0 ].pred_boxes # [[37.5, 30, 75, 60], [112.5, 45, 150, 90]]) self.assertArrayEqual(sub_boxes.tensor, [[37, 30, 75, 60], [112, 45, 150, 90]]) def test_mock_rcnn_inference(self): image_size = (1920, 1080) resize_size = (398, 224) scale_xy = (1080.0 / 224, 1920.0 / 398) gt_boxes = Boxes(torch.Tensor([[50, 40, 100, 80], [150, 60, 200, 120]])) gt_kpts = torch.Tensor([75, 60, 1.0] * 21 + [175, 90, 1.0] * 21).reshape( 2, 21, 3 ) # create inputs batched_inputs = rh.get_batched_inputs(2, image_size, resize_size, gt_boxes) # create model model = rh.MockRCNNInference(image_size, resize_size) # run without post processing det_instances = model(batched_inputs, None, do_postprocess=False) self.assertArrayAllClose( det_instances[0].pred_boxes.tensor, gt_boxes.tensor, atol=1e-4, ) self.assertArrayAllClose( det_instances[0].pred_keypoints, gt_kpts, atol=1e-4, ) # run with post processing det_instances = model(batched_inputs, None, do_postprocess=True) gt_boxes_scaled = gt_boxes.clone() gt_boxes_scaled.scale(*scale_xy) gt_kpts_scaled = torch.Tensor( [75 * scale_xy[0], 60 * scale_xy[1], 1.0] * 21 + [175 * scale_xy[0], 90 * scale_xy[1], 1.0] * 21 ).reshape(2, 21, 3) self.assertArrayAllClose( det_instances[0]["instances"].pred_boxes.tensor, gt_boxes_scaled.tensor, atol=1e-4, ) self.assertArrayAllClose( det_instances[0]["instances"].pred_keypoints, gt_kpts_scaled, atol=1e-4, ) def assertArrayEqual(self, a1, a2): self.assertTrue(np.array_equal(a1, a2)) def assertArrayAllClose(self, a1, a2, rtol=1.0e-5, atol=1.0e-8): self.assertTrue(np.allclose(a1, a2, rtol=rtol, atol=atol))
d2go-main
tests/modeling/test_rcnn_helper.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os import shutil import tempfile import unittest import torch from d2go.export.exporter import convert_and_export_predictor from d2go.runner import Detectron2GoRunner from mobile_cv.predictor.api import create_predictor def _get_batch(height, width, is_train): def _get_frame(): random_image = torch.rand(3, height, width).to(torch.float32) ret = {"image": random_image} if is_train: mask_size = (height, width) random_mask = torch.randint(low=0, high=2, size=mask_size).to(torch.int64) ret["sem_seg"] = random_mask return ret batch_size = 2 if is_train else 1 return [ {"filename": "some_file", "width": 100, "height": 100, **_get_frame()} for _ in range(batch_size) ] def _get_data_loader(height, width, is_train): inputs = _get_batch(height, width, is_train) def get_data_loader(): while True: yield inputs return get_data_loader() def _get_input_dim(model): h = w = max(model.backbone.size_divisibility, 1) return h, w class BaseSemanticSegTestCase: class TemplateTestCase(unittest.TestCase): def setUp(self): self.test_dir = tempfile.mkdtemp(prefix="test_meta_arch_semantic_seg_") self.addCleanup(shutil.rmtree, self.test_dir) runner = Detectron2GoRunner() self.cfg = runner.get_default_cfg() self.setup_custom_test() self.cfg.merge_from_list(["MODEL.DEVICE", "cpu"]) self.test_model = runner.build_model(self.cfg, eval_only=True) def setup_custom_test(self): raise NotImplementedError() def test_inference(self): h, w = _get_input_dim(self.test_model) inputs = _get_batch(h, w, False) with torch.no_grad(): self.test_model(inputs) def test_train(self): h, w = _get_input_dim(self.test_model) inputs = _get_batch(h, w, True) self.test_model.train() loss_dict = self.test_model(inputs) losses = sum(loss_dict.values()) losses.backward() def _test_export(self, predictor_type, compare_match=True): h, w = _get_input_dim(self.test_model) dl = _get_data_loader(h, w, False) inputs = next(iter(dl)) output_dir = os.path.join(self.test_dir, "test_export") predictor_path = convert_and_export_predictor( self.cfg, self.test_model, predictor_type, output_dir, dl ) predictor = create_predictor(predictor_path) predicotr_outputs = predictor(inputs) self.assertEqual(len(predicotr_outputs), len(inputs)) with torch.no_grad(): pytorch_outputs = self.test_model(inputs) self.assertEqual(len(pytorch_outputs), len(inputs)) if compare_match: for predictor_output, pytorch_output in zip( predicotr_outputs, pytorch_outputs ): torch.testing.assert_close( predictor_output["sem_seg"], pytorch_output["sem_seg"] ) class TestR50FPN(BaseSemanticSegTestCase.TemplateTestCase): def setup_custom_test(self): self.cfg.merge_from_file("detectron2://Misc/semantic_R_50_FPN_1x.yaml") # discard pretrained backbone weights self.cfg.merge_from_list(["MODEL.WEIGHTS", ""]) def test_export_torchscript(self): self._test_export("torchscript", compare_match=True)
d2go-main
tests/modeling/test_meta_arch_semantic_seg.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import copy import unittest from typing import List import d2go.runner.default_runner as default_runner import torch from d2go.config import CfgNode from d2go.modeling import modeling_hook as mh from d2go.modeling.api import build_d2go_model, D2GoModelBuildResult from d2go.registry.builtin import META_ARCH_REGISTRY, MODELING_HOOK_REGISTRY @META_ARCH_REGISTRY.register() class TestArch(torch.nn.Module): def __init__(self, cfg): super().__init__() def forward(self, x): return x * 2 # create a wrapper of the model that add 1 to the output class PlusOneWrapper(torch.nn.Module): def __init__(self, model: torch.nn.Module): super().__init__() self.model = model def forward(self, x): return self.model(x) + 1 @MODELING_HOOK_REGISTRY.register() class PlusOneHook(mh.ModelingHook): def __init__(self, cfg): super().__init__(cfg) def apply(self, model: torch.nn.Module) -> torch.nn.Module: return PlusOneWrapper(model) def unapply(self, model: torch.nn.Module) -> torch.nn.Module: assert isinstance(model, PlusOneWrapper) return model.model # create a wrapper of the model that add 1 to the output class TimesTwoWrapper(torch.nn.Module): def __init__(self, model: torch.nn.Module): super().__init__() self.model = model def forward(self, x): return self.model(x) * 2 @MODELING_HOOK_REGISTRY.register() class TimesTwoHook(mh.ModelingHook): def __init__(self, cfg): super().__init__(cfg) def apply(self, model: torch.nn.Module) -> torch.nn.Module: return TimesTwoWrapper(model) def unapply(self, model: torch.nn.Module) -> torch.nn.Module: assert isinstance(model, TimesTwoWrapper) return model.model class TestModelingHook(unittest.TestCase): def test_modeling_hook_simple(self): model = TestArch(None) hook = PlusOneHook(None) model_with_hook = hook.apply(model) self.assertEqual(model_with_hook(2), 5) original_model = hook.unapply(model_with_hook) self.assertEqual(model, original_model) def test_modeling_hook_cfg(self): """Create model with modeling hook using build_model""" cfg = CfgNode() cfg.MODEL = CfgNode() cfg.MODEL.DEVICE = "cpu" cfg.MODEL.META_ARCHITECTURE = "TestArch" cfg.MODEL.MODELING_HOOKS = ["PlusOneHook", "TimesTwoHook"] model_info: D2GoModelBuildResult = build_d2go_model(cfg) model: torch.nn.Module = model_info.model modeling_hooks: List[mh.ModelingHook] = model_info.modeling_hooks self.assertEqual(model(2), 10) self.assertEqual(len(modeling_hooks), 2) self.assertTrue(hasattr(model, "_modeling_hooks")) self.assertTrue(hasattr(model, "unapply_modeling_hooks")) orig_model = model.unapply_modeling_hooks() self.assertIsInstance(orig_model, TestArch) self.assertEqual(orig_model(2), 4) def test_modeling_hook_runner(self): """Create model with modeling hook from runner""" runner = default_runner.Detectron2GoRunner() cfg = runner.get_default_cfg() cfg.MODEL.DEVICE = "cpu" cfg.MODEL.META_ARCHITECTURE = "TestArch" cfg.MODEL.MODELING_HOOKS = ["PlusOneHook", "TimesTwoHook"] model = runner.build_model(cfg) self.assertEqual(model(2), 10) self.assertTrue(hasattr(model, "_modeling_hooks")) self.assertTrue(hasattr(model, "unapply_modeling_hooks")) orig_model = model.unapply_modeling_hooks() self.assertIsInstance(orig_model, TestArch) self.assertEqual(orig_model(2), 4) default_runner._close_all_tbx_writers() def test_modeling_hook_copy(self): """Create model with modeling hook, the model could be copied""" cfg = CfgNode() cfg.MODEL = CfgNode() cfg.MODEL.DEVICE = "cpu" cfg.MODEL.META_ARCHITECTURE = "TestArch" cfg.MODEL.MODELING_HOOKS = ["PlusOneHook", "TimesTwoHook"] model_info: D2GoModelBuildResult = build_d2go_model(cfg) model: torch.nn.Module = model_info.model modeling_hooks: List[mh.ModelingHook] = model_info.modeling_hooks self.assertEqual(model(2), 10) self.assertEqual(len(modeling_hooks), 2) model_copy = copy.deepcopy(model) orig_model = model.unapply_modeling_hooks() self.assertIsInstance(orig_model, TestArch) self.assertEqual(orig_model(2), 4) orig_model_copy = model_copy.unapply_modeling_hooks() self.assertEqual(orig_model_copy(2), 4)
d2go-main
tests/modeling/test_modeling_meta_arch_modeling_hook.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import unittest import d2go.data.transforms.box_utils as bu import d2go.modeling.image_pooler as image_pooler import numpy as np import torch from d2go.utils.testing import rcnn_helper as rh from detectron2.structures import Boxes class TestModelingImagePooler(unittest.TestCase): def test_image_pooler(self): H, W = 8, 6 image = torch.zeros(3, H, W) # xyxy boxes = torch.Tensor([[2, 3, 5, 7]]) image[0, 3:7, 2:5] = 1 image[1, 3:7, 2:5] = 2 image[2, 3:7, 2:5] = 4 img_pooler = image_pooler.ImagePooler(resize_short=6, resize_max=12).eval() pooled_img, pooled_box, transforms = img_pooler(image, boxes) # check pooled images self.assertEqual(pooled_img.shape, torch.Size([3, 8, 6])) self.assertArrayEqual(torch.unique(pooled_img[0, :, :]), [1]) self.assertArrayEqual(torch.unique(pooled_img[1, :, :]), [2]) self.assertArrayEqual(torch.unique(pooled_img[2, :, :]), [4]) # check pooled boxes, in xyxy format self.assertArrayEqual(pooled_box, [[0, 0, 6, 8]]) # inverse of transforms trans_inv = transforms.inverse() # inverse of boxes, xyxy inversed_box = trans_inv.apply_box(pooled_box) self.assertArrayEqual(inversed_box, boxes) pooled_sub_box = np.array([[2, 2, 4, 6]]) inversed_sub_box = trans_inv.apply_box(pooled_sub_box) self.assertArrayEqual(inversed_sub_box, [[3, 4, 4, 6]]) def test_image_pooler_scale_box(self): H, W = 8, 6 image = torch.zeros(3, H, W) # xyxy boxes = torch.Tensor([[2, 3, 5, 7]]) image[0, 3:7, 2:5] = 1 image[1, 3:7, 2:5] = 2 image[2, 3:7, 2:5] = 4 img_pooler = image_pooler.ImagePooler( resize_type=None, box_scale_factor=4.0 ).eval() pooled_img, pooled_box, transforms = img_pooler(image, boxes) # check pooled images self.assertEqual(pooled_img.shape, torch.Size([3, 8, 6])) self.assertArrayEqual(pooled_img, image) # check pooled boxes, in xyxy format, the box before scaling self.assertArrayEqual(pooled_box, [[2, 3, 5, 7]]) def test_image_pooler_scale_box_large_crop_only(self): """Crop bbox""" H, W = 398, 224 all_boxes = Boxes(torch.Tensor([[50, 40, 100, 80], [150, 60, 200, 120]])) image = rh.get_batched_inputs(1, (H, W), (H, W), all_boxes)[0]["image"] boxes = bu.get_box_union(all_boxes) self.assertArrayEqual(boxes.tensor, [[50, 40, 200, 120]]) img_pooler = image_pooler.ImagePooler( resize_type=None, box_scale_factor=1.0 ).eval() pooled_img, pooled_box, transforms = img_pooler(image, boxes.tensor) self.assertEqual(pooled_img.shape, torch.Size([3, 80, 150])) sub_boxes = rh.get_detected_instances_from_image([{"image": pooled_img}])[ 0 ].pred_boxes self.assertArrayEqual(sub_boxes.tensor, [[0, 0, 50, 40], [100, 20, 150, 80]]) def test_image_pooler_scale_box_large_crop_and_scale(self): """Crop bbox that is scaled""" H, W = 398, 224 all_boxes = Boxes(torch.Tensor([[50, 40, 100, 80], [150, 60, 200, 120]])) image = rh.get_batched_inputs(1, (H, W), (H, W), all_boxes)[0]["image"] boxes = bu.get_box_union(all_boxes) img_pooler = image_pooler.ImagePooler( resize_type=None, box_scale_factor=1.2 ).eval() pooled_img, pooled_box, transforms = img_pooler(image, boxes.tensor) self.assertEqual(pooled_img.shape, torch.Size([3, 96, 180])) # bbox with scaling in the original space orig_crop_box = transforms.inverse().apply_box( [0, 0, pooled_img.shape[2], pooled_img.shape[1]] ) self.assertArrayEqual(orig_crop_box, [[35, 32, 215, 128]]) sub_boxes = rh.get_detected_instances_from_image([{"image": pooled_img}])[ 0 ].pred_boxes # gt_offset_xy = (50 - 35 = 15, 40 - 32 = 8) self.assertArrayEqual(sub_boxes.tensor, [[15, 8, 65, 48], [115, 28, 165, 88]]) def test_image_pooler_scale_box_large_crop_scale_and_resize(self): """Crop bbox that is scaled, resize the cropped box""" H, W = 398, 224 all_boxes = Boxes(torch.Tensor([[50, 40, 100, 80], [150, 60, 200, 120]])) image = rh.get_batched_inputs(1, (H, W), (H, W), all_boxes)[0]["image"] boxes = bu.get_box_union(all_boxes) img_pooler = image_pooler.ImagePooler( resize_type="resize_shortest", resize_short=48, resize_max=180, box_scale_factor=1.2, ).eval() pooled_img, pooled_box, transforms = img_pooler(image, boxes.tensor) self.assertEqual(pooled_img.shape, torch.Size([3, 48, 90])) # bbox with scaling in the original space orig_crop_box = transforms.inverse().apply_box( [0, 0, pooled_img.shape[2], pooled_img.shape[1]] ) self.assertArrayEqual(orig_crop_box, [[35, 32, 215, 128]]) # bbox without scaling in the original space orig_boxes = transforms.inverse().apply_box(pooled_box) self.assertArrayEqual(orig_boxes, boxes.tensor) sub_boxes = rh.get_detected_instances_from_image([{"image": pooled_img}])[ 0 ].pred_boxes # [[7.5, 4, 32.5, 24], [57.5, 14, 82.5, 44]] self.assertArrayEqual(sub_boxes.tensor, [[7, 4, 33, 24], [57, 14, 83, 44]]) def assertArrayEqual(self, a1, a2): self.assertTrue(np.array_equal(a1, a2))
d2go-main
tests/modeling/test_modeling_image_pooler.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import unittest import numpy as np import torch from d2go.modeling.kmeans_anchors import ( add_kmeans_anchors_cfg, compute_kmeans_anchors, compute_kmeans_anchors_hook, ) from d2go.runner import GeneralizedRCNNRunner from d2go.utils.testing.data_loader_helper import register_toy_coco_dataset from detectron2.data import DatasetCatalog, DatasetFromList, MapDataset from detectron2.engine.train_loop import SimpleTrainer from torch.utils.data.sampler import BatchSampler, Sampler class IntervalSampler(Sampler): def __init__(self, size: int, interval: int): self._local_indices = range(0, size, interval) def __iter__(self): yield from self._local_indices def __len__(self): return len(self._local_indices) def build_sequence_loader(cfg, dataset_name, mapper, total_samples, batch_size=1): """ Similar to `build_detection_test_loader` in the way that its sampler samples dataset_dicts in order and only loops once. """ dataset_dicts = DatasetCatalog.get(dataset_name) dataset = DatasetFromList(dataset_dicts) dataset = MapDataset(dataset, mapper) interval = max(1, int(len(dataset) / total_samples)) sampler = IntervalSampler(len(dataset), interval) batch_sampler = BatchSampler(sampler, batch_size, drop_last=False) def _trivial_batch_collator(batch): return batch data_loader = torch.utils.data.DataLoader( dataset, num_workers=cfg.DATALOADER.NUM_WORKERS, batch_sampler=batch_sampler, collate_fn=_trivial_batch_collator, ) return data_loader class TestKmeansAnchors(unittest.TestCase): def setUp(self): self.runner = GeneralizedRCNNRunner() def _get_default_cfg(self): cfg = self.runner.get_default_cfg() add_kmeans_anchors_cfg(cfg) return cfg @unittest.skip("This can only run locally and takes significant of time") def test_matching_previous_results(self): cfg = self._get_default_cfg() cfg.INPUT.MIN_SIZE_TRAIN = (144,) cfg.MODEL.KMEANS_ANCHORS.KMEANS_ANCHORS_ON = True cfg.MODEL.KMEANS_ANCHORS.NUM_CLUSTERS = 10 cfg.MODEL.KMEANS_ANCHORS.NUM_TRAINING_IMG = 512 cfg.MODEL.KMEANS_ANCHORS.DATASETS = () # NOTE: create a data loader that samples exact the same as previous # implementation. In D2Go, we will rely on the train loader instead. # NOTE: in order to load OV580_XRM dataset, change the IM_DIR to: # "/mnt/vol/gfsai-east/aml/mobile-vision//dataset/oculus/hand_tracking//torch/Segmentation/OV580_XRM_640x480_V3_new_rerun/images" # noqa data_loader = build_sequence_loader( cfg, # dataset_name="coco_2014_valminusminival", # dataset_name="OV580_XRM_640x480_V3_train", dataset_name="OV580_XRM_640x480_V3_heldOut_small_512", mapper=self.runner.get_mapper(cfg, is_train=True), total_samples=cfg.MODEL.KMEANS_ANCHORS.NUM_TRAINING_IMG, batch_size=3, ) kmeans_anchors = compute_kmeans_anchors( cfg, data_loader, sort_by_area=False, _stride=16, _legacy_plus_one=True ) # Taken from D9849940 reference_anchors = np.array( [ [-15.33554182, -15.29361029, 31.33554182, 31.29361029], # noqa [-9.34156693, -9.32553548, 25.34156693, 25.32553548], # noqa [-6.03052776, -6.02034167, 22.03052776, 22.02034167], # noqa [-2.25951741, -2.182888, 18.25951741, 18.182888], # noqa [-18.93553378, -18.93553403, 34.93553378, 34.93553403], # noqa [-12.69068356, -12.73989029, 28.69068356, 28.73989029], # noqa [-24.73489189, -24.73489246, 40.73489189, 40.73489246], # noqa [-4.06014466, -4.06014469, 20.06014466, 20.06014469], # noqa [-7.61036119, -7.60467538, 23.61036119, 23.60467538], # noqa [-10.88200579, -10.87634414, 26.88200579, 26.87634414], # noqa ] ) np.testing.assert_allclose(kmeans_anchors, reference_anchors, atol=1e-6) def test_build_model(self): cfg = self._get_default_cfg() cfg.INPUT.MIN_SIZE_TRAIN = (60,) cfg.MODEL.KMEANS_ANCHORS.KMEANS_ANCHORS_ON = True cfg.MODEL.KMEANS_ANCHORS.NUM_CLUSTERS = 3 cfg.MODEL.KMEANS_ANCHORS.NUM_TRAINING_IMG = 5 cfg.MODEL.KMEANS_ANCHORS.DATASETS = ("toy_dataset",) cfg.MODEL.DEVICE = "cpu" cfg.MODEL.ANCHOR_GENERATOR.NAME = "KMeansAnchorGenerator" with register_toy_coco_dataset( "toy_dataset", image_size=(80, 60), # w, h num_images=cfg.MODEL.KMEANS_ANCHORS.NUM_TRAINING_IMG, ): model = self.runner.build_model(cfg) trainer = SimpleTrainer(model, data_loader=[], optimizer=None) trainer_hooks = [compute_kmeans_anchors_hook(self.runner, cfg)] trainer.register_hooks(trainer_hooks) trainer.before_train() anchor_generator = model.proposal_generator.anchor_generator cell_anchors = list(anchor_generator.cell_anchors) gt_anchors = np.array( [ [-20, -15, 20, 15] # toy_dataset's bbox is half size of image for _ in range(cfg.MODEL.KMEANS_ANCHORS.NUM_CLUSTERS) ] ) np.testing.assert_allclose(cell_anchors[0], gt_anchors) if __name__ == "__main__": unittest.main()
d2go-main
tests/modeling/test_kmeans_anchors.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import unittest from typing import List from unittest import mock import numpy as np import torch import torch.nn as nn from d2go.config import CfgNode from d2go.modeling import modeling_hook as mh from d2go.modeling.distillation import ( _build_teacher, _set_device, BaseDistillationHelper, CachedLayer, compute_layer_losses, DefaultLossCombiner, DistillationModelingHook, DomainAdaptation, ExampleDistillationHelper, get_default_kd_image_classification_layer_losses, KnowledgeDistillation, LabelDistillation, LayerLossMetadata, NoopPseudoLabeler, PseudoLabeler, record_layers, register_layer_losses_and_to_device, RelabelTargetInBatch, set_cache_dict, unrecord_layers, ) from d2go.registry.builtin import ( DISTILLATION_ALGORITHM_REGISTRY, DISTILLATION_HELPER_REGISTRY, META_ARCH_REGISTRY, ) from d2go.runner.config_defaults import add_distillation_configs from d2go.runner.default_runner import BaseRunner from d2go.utils.testing import helper from detectron2.checkpoint import DetectionCheckpointer from detectron2.utils.file_io import PathManager from mobile_cv.common.misc.file_utils import make_temp_directory from mobile_cv.common.misc.mixin import dynamic_mixin, remove_dynamic_mixin class DivideInputBy2(nn.Module): def forward(self, batched_inputs: List): """Divide all targets by 2 and batch output""" return [x / 2.0 for x in batched_inputs] class DivideInputDictBy2(nn.Module): def forward(self, batched_inputs: List): """Divide all inputs by 2 and batch output Should be used with a pseudo labeler that will unpack the resulting tensor """ output = [] for d in batched_inputs: output.append(d["input"] / 2.0) return torch.stack(output) class DivideInputBy2OutputDict(nn.Module): def forward(self, batched_inputs: List): """Divide all targets by 2 and return dict output""" return {i: x / 2.0 for i, x in enumerate(batched_inputs)} class TimesTable5OutputDict(nn.Module): def forward(self, batched_inputs: List): """Return first five entries of times table for each input with a dict output""" return {i: [x * i for i in range(1, 6)] for i, x in enumerate(batched_inputs)} class ConstantStrOutput(nn.Module): def forward(self, batched_inputs: List): """Return some string""" return "Testing!" class AddOne(nn.Module): def __init__(self): super().__init__() self.weight = nn.Parameter(torch.Tensor([1])) def forward(self, x): return x + self.weight @property def device(self): return self.weight.device class AddLayers(nn.Module): def __init__(self): super().__init__() self.layer0 = AddOne() self.layer1 = AddOne() self.layer2 = AddOne() def forward(self, x): x = self.layer0(x) x = self.layer1(x) x = self.layer2(x) if not self.training: return x return {"output": x} @property def device(self): return self.layer0.weight.device class SimpleAdd(nn.Module): def forward(self, x, y): return x + y class SimpleMul(nn.Module): def forward(self, x, y): return x * y class TestLabeler(PseudoLabeler): def __init__(self, teacher): self.teacher = teacher def label(self, x): return self.teacher(x) @META_ARCH_REGISTRY.register() class TestMetaArchAddRand(nn.Module): def __init__(self, cfg): super().__init__() self.weight = nn.Parameter(torch.rand(1)) def forward(self, x): return x + self.weight @DISTILLATION_HELPER_REGISTRY.register() class TestHelper(BaseDistillationHelper): def get_pseudo_labeler(self): """Run teacher model on inputs""" return TestLabeler(self.teacher) def get_preprocess_student_input(self): return lambda x: x + 1 def get_preprocess_teacher_input(self): return lambda x: x + 2 def get_layer_losses(self, model=None): return [ LayerLossMetadata( loss=SimpleAdd(), name="add", layer0="layer0", layer1="layer0", ), LayerLossMetadata( loss=SimpleMul(), name="mul", layer0="layer1", layer1="layer1", ), ] def get_combine_losses(self): return lambda d: { "output": d["output"] * 0.1, "add": d["add"] * 0.5, "mul": d["mul"] * 10.0, } class TestDAHelper(BaseDistillationHelper): def get_preprocess_domain0_input(self): return lambda x: x["real"] def get_preprocess_domain1_input(self): return lambda x: x["synthetic"] def get_layer_losses(self, model=None): return [ LayerLossMetadata( loss=SimpleAdd(), name="add", layer0="layer0", layer1="layer0", ) ] def get_combine_losses(self): return lambda d0, d1, da, ta: { "real": d0["output"] * 0.1, "synthetic": d1["output"] * 0.5, "add": da["add"] * 10.0, } class Noop(nn.Module): def forward(self, x): return x def _get_input_data(n: int = 2, use_input_target: bool = False, requires_grad=False): """Return input data, dict if use_input_target is specified""" if not use_input_target: return torch.randn(n, requires_grad=requires_grad) return [ { "input": torch.randn(1, requires_grad=requires_grad), "target": torch.randn(1), } for _ in range(n) ] def _get_default_cfg(): cfg = CfgNode() cfg.MODEL = CfgNode() cfg.MODEL.DEVICE = "cpu" cfg.MODEL.META_ARCHITECTURE = "TestArch" add_distillation_configs(cfg) # model_ema.add_model_ema_configs(cfg) cfg.DISTILLATION.ALGORITHM = "LabelDistillation" cfg.DISTILLATION.HELPER = "BaseDistillationHelper" cfg.DISTILLATION.TEACHER.TORCHSCRIPT_FNAME = "" cfg.DISTILLATION.TEACHER.DEVICE = "" return cfg class TestDistillation(unittest.TestCase): def test_add_distillation_configs(self): """Check default config""" cfg = CfgNode() add_distillation_configs(cfg) self.assertTrue(isinstance(cfg.DISTILLATION.TEACHER, CfgNode)) # check teacher model config is clone of student model self.assertEqual(cfg.DISTILLATION.TEACHER.CONFIG_FNAME, "") def test_build_teacher_torchscript(self): """Check can build teacher using torchscript fname in config""" # create torchscript model = DivideInputBy2() traced_model = torch.jit.trace(model, torch.randn(5)) with make_temp_directory("tmp") as output_dir: fname = f"{output_dir}/tmp.pt" torch.jit.save(traced_model, fname) # create teacher cfg = _get_default_cfg() cfg.DISTILLATION.TEACHER.TORCHSCRIPT_FNAME = fname teacher = _build_teacher(cfg) batched_inputs = torch.randn(5) gt = batched_inputs / 2.0 output = teacher(batched_inputs) torch.testing.assert_close(torch.Tensor(output), gt) @helper.skip_if_no_gpu def test_build_teacher_torchscript_gpu(self): """Check teacher moved to cuda""" model = AddOne() traced_model = torch.jit.trace(model, torch.randn(5)) with make_temp_directory("tmp") as output_dir: fname = f"{output_dir}/tmp.pt" torch.jit.save(traced_model, fname) # create teacher cfg = _get_default_cfg() cfg.MODEL.DEVICE = "cuda" cfg.DISTILLATION.TEACHER.TORCHSCRIPT_FNAME = fname teacher = _build_teacher(cfg) batched_inputs = torch.randn(5).to("cuda") gt = batched_inputs + torch.Tensor([1]).to("cuda") output = teacher(batched_inputs) torch.testing.assert_close(torch.Tensor(output), gt) def test_build_teacher_config(self): """Check build pytorch model using config""" # build model cfg = _get_default_cfg() cfg.MODEL.META_ARCHITECTURE = "TestMetaArchAddRand" gt_model = BaseRunner().build_model(cfg) with make_temp_directory("tmp") as output_dir: # save model checkpointer = DetectionCheckpointer(gt_model, save_dir=output_dir) checkpointer.save("checkpoint") cfg.MODEL.WEIGHTS = f"{output_dir}/checkpoint.pth" config_fname = f"{output_dir}/config.yaml" with PathManager.open(config_fname, "w") as f: f.write(cfg.dump()) # load model and compare to gt cfg.DISTILLATION.TEACHER.TYPE = "config" cfg.DISTILLATION.TEACHER.CONFIG_FNAME = config_fname model = _build_teacher(cfg) self.assertEqual(gt_model.weight, model.weight) def test_build_teacher_none(self): """Check that we can ignore building the teacher""" # build model cfg = _get_default_cfg() cfg.MODEL.META_ARCHITECTURE = "TestMetaArchAddRand" cfg.DISTILLATION.TEACHER.TYPE = "no_teacher" model = _build_teacher(cfg) self.assertTrue(isinstance(model, nn.Module)) def test_override_teacher_config_gpu_on_cpu(self): """Teacher cuda model can be run on cpu if specified in config""" # build model where teacher is specified on gpu but user overrides cpu cfg = _get_default_cfg() cfg.MODEL.META_ARCHITECTURE = "TestMetaArchAddRand" gt_model = BaseRunner().build_model(cfg) with make_temp_directory("tmp") as output_dir: # save model checkpointer = DetectionCheckpointer(gt_model, save_dir=output_dir) checkpointer.save("checkpoint") cfg.MODEL.WEIGHTS = f"{output_dir}/checkpoint.pth" cfg.MODEL.DEVICE = "cuda" config_fname = f"{output_dir}/config.yaml" with PathManager.open(config_fname, "w") as f: f.write(cfg.dump()) # load model and compare to gt cfg.DISTILLATION.TEACHER.TYPE = "config" cfg.DISTILLATION.TEACHER.CONFIG_FNAME = config_fname cfg.DISTILLATION.TEACHER.DEVICE = "cpu" model = _build_teacher(cfg) self.assertEqual(gt_model.weight, model.weight) def test_set_device(self): """Check teacher device is set""" # without attr model = Noop() self.assertFalse(hasattr(model, "device")) device = torch.device("cpu") # without property model = _set_device(model, device) self.assertEqual(model.device, device) # with property model = AddOne() model = _set_device(model, device) self.assertEqual(model.device, device) def test_cached_layer_tensor(self): """Check cached layer saves layer output""" model = AddOne() cache = {} dynamic_mixin( model, CachedLayer, init_dict={"label": "test_layer", "cache": cache}, ) input = torch.randn(1) output = model(input) torch.testing.assert_close(output, cache["test_layer"]) def test_cached_layer_list(self): """Check cached layer saves list""" model = DivideInputBy2() cache = {} dynamic_mixin( model, CachedLayer, init_dict={"label": "test_layer", "cache": cache}, ) input = [torch.randn(1) for _ in range(2)] output = model(input) torch.testing.assert_close(output, cache["test_layer"]) def test_cached_layer_tuple(self): """Check cached layer saves list""" model = DivideInputBy2() cache = {} dynamic_mixin( model, CachedLayer, init_dict={"label": "test_layer", "cache": cache}, ) input = (torch.randn(1) for _ in range(2)) output = model(input) torch.testing.assert_close(output, cache["test_layer"]) def test_cached_layer_dict(self): """Check cached layer saves dict""" model = DivideInputBy2OutputDict() cache = {} dynamic_mixin( model, CachedLayer, init_dict={"label": "test_layer", "cache": cache}, ) input = [torch.randn(1) for _ in range(2)] output = model(input) torch.testing.assert_close(output, cache["test_layer"]) def test_cached_layer_arbitrary(self): """Check cached layer saves arbitrary nested data structure""" model = TimesTable5OutputDict() cache = {} dynamic_mixin( model, CachedLayer, init_dict={"label": "test_layer", "cache": cache}, ) input = [torch.randn(1) for _ in range(2)] output = model(input) torch.testing.assert_close(output, cache["test_layer"]) def test_cached_layer_unsupported(self): """Check cached layer doesn't save unsupported data type like strings""" model = ConstantStrOutput() cache = {} dynamic_mixin( model, CachedLayer, init_dict={"label": "test_layer", "cache": cache}, ) input = [torch.randn(1) for _ in range(2)] self.assertRaises(ValueError, model, input) def test_record_layers(self): """Check we can record specified layer""" model = AddLayers() cache = record_layers(model, ["", "layer0", "layer1", "layer2"]) input = torch.Tensor([0]) output = model(input) torch.testing.assert_close(cache["layer0"], torch.Tensor([1])) torch.testing.assert_close(cache["layer1"], torch.Tensor([2])) torch.testing.assert_close(cache["layer2"], torch.Tensor([3])) torch.testing.assert_close(cache[""], output) def test_unrecord_layers(self): """Check we can remove a recorded layer""" model = AddLayers() _ = record_layers(model, ["", "layer0", "layer1", "layer2"]) unrecord_layers(model, ["", "layer0"]) self.assertFalse(hasattr(model.layer0, "cache")) def test_compute_layer_losses(self): """Check iterating over loss dicts""" layer_losses = [ LayerLossMetadata( loss=lambda x, y: x + y, name="add", layer0="l00", layer1="l10" ), LayerLossMetadata( loss=lambda x, y: x / y, name="div", layer0="l01", layer1="l11" ), ] layer0_cache = {"l00": torch.randn(1), "l01": torch.randn(1)} layer1_cache = {"l10": torch.randn(1), "l11": torch.randn(1)} output = compute_layer_losses(layer_losses, layer0_cache, layer1_cache) torch.testing.assert_close( output["add"], layer0_cache["l00"] + layer1_cache["l10"] ) torch.testing.assert_close( output["div"], layer0_cache["l01"] / layer1_cache["l11"] ) def test_set_cache_dict(self): """Check we can swap the cache dict used when recording layers""" model = AddLayers() cache = record_layers(model, ["", "layer0", "layer1", "layer2"]) new_cache = {} set_cache_dict(model, new_cache) input = torch.Tensor([0]) output = model(input) self.assertEqual(cache, {}) torch.testing.assert_close(new_cache["layer0"], torch.Tensor([1])) torch.testing.assert_close(new_cache["layer1"], torch.Tensor([2])) torch.testing.assert_close(new_cache["layer2"], torch.Tensor([3])) torch.testing.assert_close(new_cache[""], output) def test_register_layer_losses(self): """Check losses can be registered to model""" model = AddOne() ll = [ LayerLossMetadata( loss=SimpleAdd(), name="mul", layer0="layer1", layer1="layer1", ), ] registered_losses = register_layer_losses_and_to_device(ll, model) self.assertTrue(hasattr(model, "mul")) self.assertEqual(model.mul, registered_losses[0].loss) @helper.skip_if_no_gpu def test_register_layer_losses_and_to_device(self): """Check losses can be registered to model""" model = AddOne() model = model.to("cuda") ll = [ LayerLossMetadata( loss=AddOne(), name="mul", layer0="layer1", layer1="layer1", ), ] register_layer_losses_and_to_device(ll, model) self.assertEqual(model.mul.device, model.device) class TestPseudoLabeler(unittest.TestCase): def test_noop(self): """Check noop""" pseudo_labeler = NoopPseudoLabeler() x = np.random.randn(1) output = pseudo_labeler.label(x) torch.testing.assert_close(x, output) def test_relabeltargetinbatch(self): """Check target is relabed using teacher""" teacher = DivideInputDictBy2() teacher.eval() teacher.device = torch.device("cpu") relabeler = RelabelTargetInBatch(teacher=teacher) batched_inputs = _get_input_data(n=2, use_input_target=True) gt = [{"input": d["input"], "target": d["input"] / 2.0} for d in batched_inputs] outputs = relabeler.label(batched_inputs) torch.testing.assert_close(outputs, gt) class TestDistillationHelper(unittest.TestCase): def test_registry(self): """Check base class in registry""" self.assertTrue("BaseDistillationHelper" in DISTILLATION_HELPER_REGISTRY) def test_base_distillation_helper(self): """Check base distillation helper returns input as output""" dh = BaseDistillationHelper(cfg=None, teacher=None) pseudo_labeler = dh.get_pseudo_labeler() self.assertTrue(isinstance(pseudo_labeler, NoopPseudoLabeler)) def test_example_distillation_helper(self): """Example distillation uses teacher to relabel targets""" teacher = Noop() dh = ExampleDistillationHelper(cfg=None, teacher=teacher) pseudo_labeler = dh.get_pseudo_labeler() self.assertTrue(isinstance(pseudo_labeler, RelabelTargetInBatch)) self.assertTrue(isinstance(pseudo_labeler.teacher, Noop)) class TestDistillationAlgorithm(unittest.TestCase): class LabelDistillationNoop(LabelDistillation, Noop): """Distillation should be used with dynamic mixin so we create a new class with mixin of a noop to test""" pass def test_registry(self): """Check distillation teacher in registry""" for algorithm in [ "LabelDistillation", "KnowledgeDistillation", "DomainAdaptation", ]: self.assertTrue(algorithm in DISTILLATION_ALGORITHM_REGISTRY) def test_label_distillation_inference(self): """Check inference defaults to student Use LabelDistillationNoop to set student model to noop """ batched_inputs = _get_input_data(n=2) gt = batched_inputs.detach().clone() model = self.LabelDistillationNoop() model.dynamic_mixin_init( distillation_helper=TestHelper(cfg=None, teacher=DivideInputBy2()), ) model.eval() output = model(batched_inputs) np.testing.assert_array_equal(output, gt) def test_label_distillation_training(self): """Check training uses pseudo labeler Distillation teacher should run the teacher model on the inputs and then pass to the noop """ batched_inputs = _get_input_data(n=2, requires_grad=True) gt = [x / 2.0 for x in batched_inputs] model = self.LabelDistillationNoop() model.dynamic_mixin_init( distillation_helper=TestHelper(cfg=None, teacher=DivideInputBy2()), ) model.train() output = model(batched_inputs) torch.testing.assert_close(output, gt) sum(output).backward() torch.testing.assert_close(batched_inputs.grad, torch.Tensor([0.5, 0.5])) def test_kd_inference(self): """Check inference defaults to student (and preprocessing)""" distillation_helper = TestHelper(cfg=CfgNode(), teacher=AddLayers()) model = AddLayers() dynamic_mixin( model, KnowledgeDistillation, init_dict={"distillation_helper": distillation_helper}, ) model.eval() input = torch.randn(1) output = model(input) torch.testing.assert_close(output, input + 4.0) def test_kd_train(self): """Check train pass results in updated loss output""" distillation_helper = TestHelper(cfg=CfgNode(), teacher=AddLayers()) model = AddLayers() dynamic_mixin( model, KnowledgeDistillation, init_dict={"distillation_helper": distillation_helper}, ) model.train() input = torch.randn(1) output = model(input) torch.testing.assert_close(output["output"], (input + 4.0) * 0.1) torch.testing.assert_close(output["add"], ((input + 2.0) + (input + 3.0)) * 0.5) torch.testing.assert_close(output["mul"], (input + 3.0) * (input + 4.0) * 10.0) def test_kd_remove_dynamic_mixin(self): """Check removing dynamic mixin removes cached layers""" distillation_helper = TestHelper(cfg=CfgNode(), teacher=AddLayers()) model = AddLayers() dynamic_mixin( model, KnowledgeDistillation, init_dict={"distillation_helper": distillation_helper}, ) remove_dynamic_mixin(model) for module in model.modules(): self.assertFalse(hasattr(module, "cache")) def test_da_inference(self): """Check inference defaults to student (and preprocessing)""" distillation_helper = TestDAHelper(cfg=CfgNode(), teacher=nn.Identity()) model = AddLayers() dynamic_mixin( model, DomainAdaptation, init_dict={"distillation_helper": distillation_helper}, ) model.eval() input = {"real": torch.randn(1), "synthetic": torch.randn(1)} output = model(input) torch.testing.assert_close(output, input["real"] + 3.0) def test_da_train(self): """Check train pass results in updated loss output""" distillation_helper = TestDAHelper(cfg=CfgNode(), teacher=nn.Identity()) model = AddLayers() dynamic_mixin( model, DomainAdaptation, init_dict={"distillation_helper": distillation_helper}, ) model.train() input = {"real": torch.randn(1), "synthetic": torch.randn(1)} output = model(input) self.assertEqual(set(output.keys()), {"real", "synthetic", "add"}) torch.testing.assert_close(output["real"], (input["real"] + 3.0) * 0.1) torch.testing.assert_close( output["synthetic"], (input["synthetic"] + 3.0) * 0.5 ) torch.testing.assert_close( output["add"], ((input["real"] + 1.0) + (input["synthetic"] + 1.0)) * 10.0 ) def test_da_remove_dynamic_mixin(self): """Check removing dynamic mixin removes cached layers""" distillation_helper = TestHelper(cfg=CfgNode(), teacher=nn.Identity()) model = AddLayers() dynamic_mixin( model, DomainAdaptation, init_dict={"distillation_helper": distillation_helper}, ) remove_dynamic_mixin(model) for module in model.modules(): self.assertFalse(hasattr(module, "cache")) class TestDistillationModelingHook(unittest.TestCase): _build_teacher_ref = "d2go.modeling.distillation._build_teacher" def test_exists(self): """Check that the hook is registered""" self.assertTrue("DistillationModelingHook" in mh.MODELING_HOOK_REGISTRY) def test_init(self): """Check that we can build hook""" cfg = _get_default_cfg() with mock.patch(self._build_teacher_ref): DistillationModelingHook(cfg) def test_apply(self): """Check new model has distillation methods""" model = Noop() model.test_attr = "12345" cfg = _get_default_cfg() cfg.DISTILLATION.HELPER = "TestHelper" with mock.patch(self._build_teacher_ref): hook = DistillationModelingHook(cfg) hook.apply(model) # set teacher manually to override _build_teacher model.pseudo_labeler.teacher = DivideInputBy2() # check distillation attrs self.assertTrue(isinstance(model.distillation_helper, TestHelper)) self.assertEqual(model._original_model_class, Noop) # check retains attrs self.assertTrue(hasattr(model, "test_attr")) self.assertEqual(model.test_attr, "12345") # check inference uses the baseline model which is a noop batched_inputs = _get_input_data(n=2) model.eval() gt = batched_inputs.detach().clone() output = model(batched_inputs) torch.testing.assert_close(output, gt) # check training uses the pseudo labeler model.train() gt = [x / 2.0 for x in batched_inputs] output = model(batched_inputs) torch.testing.assert_close(output, gt) def test_unapply(self): """Check removing distillation""" model = Noop() cfg = _get_default_cfg() with mock.patch(self._build_teacher_ref): hook = DistillationModelingHook(cfg) hook.apply(model) hook.unapply(model) for distillation_attr in [ "distillation_helper", "_original_model_class", ]: self.assertFalse(hasattr(model, distillation_attr)) # check forward is the original noop batched_inputs = _get_input_data(n=2) gt = batched_inputs.detach().clone() model.train() output = model(batched_inputs) torch.testing.assert_close(output, gt) class TestDistillationMiscTests(unittest.TestCase): def test_teacher_outside_updated_parameters(self): """ Check that teacher values are ignored when updating student The teacher can often be referenced in the mixed in model. A common example is when the teacher is an attributed of the distillation helper. => DistillationModel.distillation_helper.teacher This raises the question of whether the teacher model will be affected by calls to the mixed in model: DisillationModel.train() => does teacher switch to training? setup_qat(DistillationModel) => will fuse occur on the teacher modules? The answer to these questions should be no as we want the teacher to remain static during training (unless specified). This is the case as long as teacher is an attribute of a non-module class (e.g., distillation_helper). This is because modules are registered in PyTorch as part of __setattr__. __setattr__ only checks if the value is a module or parameter. If the value is an object (e.g., distillation_helper) which contains modules, these modules are ignored. https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module.register_parameter This unittest builds the teacher model and checks that only the student parameter is registered. """ cfg = _get_default_cfg() cfg.MODEL.META_ARCHITECTURE = "TestMetaArchAddRand" prebuilt_teacher = BaseRunner().build_model(cfg) with make_temp_directory("tmp") as output_dir: checkpointer = DetectionCheckpointer(prebuilt_teacher, save_dir=output_dir) checkpointer.save("checkpoint") cfg.MODEL.WEIGHTS = f"{output_dir}/checkpoint.pth" config_fname = f"{output_dir}/config.yaml" with PathManager.open(config_fname, "w") as f: f.write(cfg.dump()) cfg.DISTILLATION.TEACHER.TYPE = "config" cfg.DISTILLATION.TEACHER.CONFIG_FNAME = config_fname cfg.DISTILLATION.HELPER = "TestHelper" cfg.MODEL.MODELING_HOOKS = ["DistillationModelingHook"] distilled_model = BaseRunner().build_model(cfg) self.assertEqual(len(list(distilled_model.parameters())), 1) class TestDistillationDefaults(unittest.TestCase): def test_kd_image_classification_layer_losses(self): """Check the default returns a list of layerlossmetadata""" layer_losses = get_default_kd_image_classification_layer_losses() self.assertTrue(isinstance(layer_losses, List)) self.assertTrue(isinstance(layer_losses[0], LayerLossMetadata)) def test_default_loss_combiner(self): """Check combiner multiplies loss by weights""" weights = {"a": torch.randn(1), "b": torch.randn(1)} combiner = DefaultLossCombiner(weights) input = {"a": 1.0, "b": 10.0} output = combiner(input) torch.testing.assert_close(output["a"], input["a"] * weights["a"]) torch.testing.assert_close(output["b"], input["b"] * weights["b"])
d2go-main
tests/modeling/test_modeling_distillation.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import unittest import numpy as np import torch from detectron2.modeling.box_regression import Box2BoxTransform class TestBox2BoxTransform(unittest.TestCase): def test_box2box_transform(self): """Match unit test UtilsBoxesTest.TestBboxTransformRandom in caffe2/operators/generate_proposals_op_util_boxes_test.cc """ box2box_transform = Box2BoxTransform(weights=(1.0, 1.0, 1.0, 1.0)) bbox = torch.from_numpy( np.array( [ 175.62031555, 20.91103172, 253.352005, 155.0145874, 169.24636841, 4.85241556, 228.8605957, 105.02092743, 181.77426147, 199.82876587, 192.88427734, 214.0255127, 174.36262512, 186.75761414, 296.19091797, 231.27906799, 22.73153877, 92.02596283, 135.5695343, 208.80291748, ] ) .astype(np.float32) .reshape(-1, 4) ) deltas = torch.from_numpy( np.array( [ 0.47861834, 0.13992102, 0.14961673, 0.71495209, 0.29915856, -0.35664671, 0.89018666, 0.70815367, -0.03852064, 0.44466892, 0.49492538, 0.71409376, 0.28052918, 0.02184832, 0.65289006, 1.05060139, -0.38172557, -0.08533806, -0.60335309, 0.79052375, ] ) .astype(np.float32) .reshape(-1, 4) ) gt_bbox = ( np.array( [ 206.949539, -30.715202, 297.387665, 244.448486, 143.871216, -83.342888, 290.502289, 121.053398, 177.430283, 198.666245, 196.295273, 228.703079, 152.251892, 145.431564, 387.215454, 274.594238, 5.062420, 11.040955, 66.328903, 269.686218, ] ) .astype(np.float32) .reshape(-1, 4) ) # Detectron2 removed box plus one bbox[:, 2] += 1 bbox[:, 3] += 1 gt_bbox[:, 2] += 1 gt_bbox[:, 3] += 1 results = box2box_transform.apply_deltas(deltas, bbox) np.testing.assert_allclose(results.detach().numpy(), gt_bbox, atol=1e-4) if __name__ == "__main__": unittest.main()
d2go-main
tests/modeling/test_box2box_transform.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import unittest import torch.nn as nn from d2go.model_zoo import model_zoo class TestD2GoModelZoo(unittest.TestCase): def test_model_zoo_pretrained(self): configs = list(model_zoo._ModelZooUrls.CONFIG_PATH_TO_URL_SUFFIX.keys()) for cfgfile in configs: model = model_zoo.get(cfgfile, trained=True) self.assertTrue(isinstance(model, nn.Module)) if __name__ == "__main__": unittest.main()
d2go-main
tests/modeling/test_model_zoo.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os import unittest import torch from d2go.runner.default_runner import GeneralizedRCNNRunner from d2go.tools.exporter import main from d2go.utils.testing.data_loader_helper import create_local_dataset from d2go.utils.testing.rcnn_helper import get_quick_test_config_opts from mobile_cv.common.misc.file_utils import make_temp_directory from mobile_cv.common.misc.oss_utils import is_oss def maskrcnn_export_caffe2_vs_torchvision_opset_format_example(self): with make_temp_directory("export_demo") as tmp_dir: # use a fake dataset for ci dataset_name = create_local_dataset(tmp_dir, 5, 224, 224) config_list = [ "DATASETS.TRAIN", (dataset_name,), "DATASETS.TEST", (dataset_name,), ] # START_WIKI_EXAMPLE_TAG cfg = GeneralizedRCNNRunner.get_default_cfg() cfg.merge_from_file("detectron2go://mask_rcnn_fbnetv3a_dsmask_C4.yaml") cfg.merge_from_list(get_quick_test_config_opts()) cfg.merge_from_list(config_list) # equivalent to running: # exporter.par --runner GeneralizedRCNNRunner --config-file config.yaml --predictor-types torchscript tourchscript@c2_ops --output-dir tmp_dir _ = main( cfg, tmp_dir, GeneralizedRCNNRunner, predictor_types=["torchscript@c2_ops", "torchscript"], ) # the path can be fetched from the return of main, here just use hard-coded values torchvision_ops_model = torch.jit.load( os.path.join(tmp_dir, "torchscript", "model.jit") ) caffe2_ops_model = torch.jit.load( os.path.join(tmp_dir, "torchscript@c2_ops", "model.jit") ) # Running inference using torchvision-style format image = torch.zeros(1, 64, 96) # chw 3D tensor # The exported model can run on both cpu/gpu device = "cuda:0" if torch.cuda.is_available() else "cpu" torchvision_ops_model = torchvision_ops_model.to(device) torchvision_style_outputs = torchvision_ops_model( image ) # suppose N instances are detected # NOTE: the output are flattened tensors of the real output (which is a dict), they're # ordered by the key in dict, which is deterministic for the given model, but it might # be difficult to figure out just from model.jit file. The predictor_info.json from # the same directory contains the `outputs_schema`, which indicate how the final output # is constructed from flattened tensors. ( pred_boxes, # torch.Size([N, 4]) pred_classes, # torch.Size([N]) pred_masks, # torch.Size([N, 1, Hmask, Wmask]) scores, # torch.Size([N]) image_sizes, # torch.Size([2]) ) = torchvision_style_outputs self.assertTrue( all( x.device == torch.device(device) for x in torchvision_style_outputs[:4] ), torchvision_style_outputs, ) torch.testing.assert_close(image_sizes, torch.tensor([64, 96])) # Running inference using caffe2-style format data = torch.zeros(1, 1, 64, 96) im_info = torch.tensor([[64, 96, 1.0]]) caffe2_style_outputs = caffe2_ops_model([data, im_info]) # NOTE: the output order is determined in the order of creating the tensor during # forward function, it's also follow the order of original Caffe2 model. roi_bbox_nms = caffe2_style_outputs[0] # torch.Size([N, 4]) roi_score_nms = caffe2_style_outputs[1] # torch.Size([N]) roi_class_nms = caffe2_style_outputs[2] # torch.Size([N]) mask_fcn_probs = caffe2_style_outputs[3] # torch.Size([N, Cmask, Hmask, Wmask]) # relations between torchvision-style outputs and caffe2-style outputs torch.testing.assert_close(pred_boxes, roi_bbox_nms, check_device=False) torch.testing.assert_close( pred_classes, roi_class_nms.to(torch.int64), check_device=False ) torch.testing.assert_close( pred_masks, mask_fcn_probs[:, roi_class_nms.to(torch.int64), :, :], check_device=False, ) torch.testing.assert_close(scores, roi_score_nms, check_device=False) # END_WIKI_EXAMPLE_TAG class TestOptimizer(unittest.TestCase): @unittest.skipIf(is_oss(), "Caffe2 is not available for OSS") def test_maskrcnn_export_caffe2_vs_torchvision_opset_format_example(self): maskrcnn_export_caffe2_vs_torchvision_opset_format_example(self)
d2go-main
tests/modeling/test_rcnn_export_example.py
#!/usr/bin/env python3 import os import tempfile import unittest from collections import defaultdict import torch from d2go.evaluation.evaluator import inference_on_dataset, ResultCache from detectron2.evaluation import DatasetEvaluator, DatasetEvaluators class EvaluatorForTest(DatasetEvaluator): def __init__(self): self.results = [] def reset(self): self.results.clear() def process(self, inputs, outputs): self.results.append(outputs) def evaluate(self): return sum(self.results) class EvaluatorWithCheckpointForTest(DatasetEvaluator): def __init__(self, save_dir): self.results = [] self.result_cache = ResultCache(save_dir) self._call_count = defaultdict(int) def reset(self): self.results.clear() self._call_count["reset"] += 1 def has_finished_process(self): return self.result_cache.has_cache() def process(self, inputs, outputs): assert not self.result_cache.has_cache() self.results.append(outputs) self._call_count["process"] += 1 def evaluate(self): if not self.result_cache.has_cache(): self.result_cache.save(self.results) else: self.results = self.result_cache.load() self._call_count["evaluate"] += 1 return sum(self.results) class Model(torch.nn.Module): def forward(self, x): return x class TestEvaluator(unittest.TestCase): def test_inference(self): model = Model() evaluator = EvaluatorForTest() data_loader = [1, 2, 3, 4, 5] results = inference_on_dataset(model, data_loader, evaluator) self.assertEqual(results, 15) def test_inference_with_checkpoint(self): with tempfile.TemporaryDirectory() as save_dir: model = Model() evaluator = EvaluatorWithCheckpointForTest(save_dir) self.assertFalse(evaluator.has_finished_process()) data_loader = [1, 2, 3, 4, 5] results = inference_on_dataset(model, data_loader, evaluator) self.assertEqual(results, 15) self.assertEqual(evaluator._call_count["reset"], 1) self.assertEqual(evaluator._call_count["process"], 5) self.assertEqual(evaluator._call_count["evaluate"], 1) # run again with cache self.assertTrue(evaluator.has_finished_process()) results = inference_on_dataset(model, data_loader, evaluator) self.assertEqual(results, 15) self.assertEqual(evaluator._call_count["reset"], 2) self.assertEqual(evaluator._call_count["process"], 5) self.assertEqual(evaluator._call_count["evaluate"], 2) self.assertTrue(os.path.isfile(evaluator.result_cache.cache_file)) def test_evaluators_patch(self): with tempfile.TemporaryDirectory() as save_dir: cp_evaluator = EvaluatorWithCheckpointForTest(save_dir) evaluator = DatasetEvaluators([cp_evaluator]) self.assertFalse(evaluator.has_finished_process()) cp_evaluator.reset() cp_evaluator.process(1, 1) cp_evaluator.evaluate() self.assertTrue(evaluator.has_finished_process())
d2go-main
tests/evaluation/test_evaluator.py
d2go-main
tests/evaluation/__init__.py
#!/usr/bin/env python3 import unittest import torch from d2go.evaluation.prediction_count_evaluation import PredictionCountEvaluator from detectron2.structures.instances import Instances class TestPredictionCountEvaluation(unittest.TestCase): def setUp(self): self.evaluator = PredictionCountEvaluator() image_size = (224, 224) self.mock_outputs = [ {"instances": Instances(image_size, scores=torch.Tensor([0.9, 0.8, 0.7]))}, {"instances": Instances(image_size, scores=torch.Tensor([0.9, 0.8, 0.7]))}, {"instances": Instances(image_size, scores=torch.Tensor([0.9, 0.8]))}, {"instances": Instances(image_size, scores=torch.Tensor([0.9, 0.8]))}, {"instances": Instances(image_size, scores=torch.Tensor([0.9]))}, ] # PredictionCountEvaluator does not depend on inputs self.mock_inputs = [None] * len(self.mock_outputs) def test_process_evaluate_reset(self): self.assertEqual(len(self.evaluator.prediction_counts), 0) self.assertEqual(len(self.evaluator.confidence_scores), 0) # Test that `process` registers the outputs. self.evaluator.process(self.mock_inputs, self.mock_outputs) self.assertListEqual(self.evaluator.prediction_counts, [3, 3, 2, 2, 1]) self.assertEqual(len(self.evaluator.confidence_scores), 11) # Test that `evaluate` returns the correct metrics. output_metrics = self.evaluator.evaluate() self.assertDictAlmostEqual( output_metrics, { "false_positives": { "predictions_per_image": 11 / 5, "confidence_per_prediction": (0.9 * 5 + 0.8 * 4 + 0.7 * 2) / 11, } }, ) # Test that `reset` clears the evaluator state. self.evaluator.reset() self.assertEqual(len(self.evaluator.prediction_counts), 0) self.assertEqual(len(self.evaluator.confidence_scores), 0) def assertDictAlmostEqual(self, dict1, dict2): keys1 = list(dict1.keys()) keys2 = list(dict2.keys()) # Assert lists are equal, irrespective of ordering self.assertCountEqual(keys1, keys2) for k, v1 in dict1.items(): v2 = dict2[k] if isinstance(v2, list): self.assertListEqual(v1, v2) elif isinstance(v2, dict): self.assertDictAlmostEqual(v1, v2) else: self.assertAlmostEqual(v1, v2)
d2go-main
tests/evaluation/test_prediction_count_evaluation.py
d2go-main
tests/export/__init__.py
import unittest from d2go.export.torchscript import ( MobileOptimizationConfig, update_export_kwargs_from_export_method, ) @update_export_kwargs_from_export_method def mock_export(cls, model, input_args, save_path, export_method, **export_kwargs): # Return the export kwargs, so that we can check to make sure it's set as expected return export_kwargs class TestTorchscriptExportMethods(unittest.TestCase): def test_update_export_kwargs_from_export_method(self): _empty_export_kwargs = {} def try_mock_export(export_method: str, export_kwargs=_empty_export_kwargs): return mock_export( cls=None, model=None, input_args=None, save_path=None, export_method=export_method, **export_kwargs, ) export_method_string = "torchscript" new_export_kwargs = try_mock_export(export_method_string) self.assertNotIn("mobile_optimization", new_export_kwargs) export_method_string = "torchscript_mobile" new_export_kwargs = try_mock_export(export_method_string) self.assertIn("mobile_optimization", new_export_kwargs) self.assertEquals( type(new_export_kwargs["mobile_optimization"]), MobileOptimizationConfig, ) self.assertEquals(new_export_kwargs["mobile_optimization"].backend, "CPU") export_method_string = "torchscript_mobile-metal" new_export_kwargs = try_mock_export(export_method_string) self.assertEquals(new_export_kwargs["mobile_optimization"].backend, "metal") export_method_string = "torchscript_mobile-vulkan" new_export_kwargs = try_mock_export(export_method_string) self.assertEquals(new_export_kwargs["mobile_optimization"].backend, "vulkan") export_method_string = "torchscript_mobile@tracing" new_export_kwargs = try_mock_export(export_method_string) self.assertEquals(new_export_kwargs["jit_mode"], "trace") export_method_string = "torchscript_mobile@scripting" new_export_kwargs = try_mock_export(export_method_string) self.assertEquals(new_export_kwargs["jit_mode"], "script")
d2go-main
tests/export/test_torchscript.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os import unittest from typing import List import torch import torch.nn as nn from d2go.export.api import FuncInfo, PredictorExportConfig from d2go.export.exporter import convert_and_export_predictor from d2go.export.torchscript import ( DefaultTorchscriptExport, TracingAdaptedTorchscriptExport, ) from mobile_cv.common.misc.file_utils import make_temp_directory from mobile_cv.predictor.api import create_predictor from parameterized import parameterized class SimpleModel(nn.Module): def forward(self, x): return 2 * x def prepare_for_export(self, cfg, inputs, predictor_type): # pre/post processing and run_func are default values return PredictorExportConfig( model=self, # model(x) -> model(*(x,)) data_generator=lambda x: (x,), ) class TwoPartSimpleModel(nn.Module): """ Suppose there're some function in the middle that can't be traced, therefore we need to export the model as two parts. """ def __init__(self): super().__init__() self.part1 = SimpleModel() self.part2 = SimpleModel() def forward(self, x): x = self.part1(x) x = TwoPartSimpleModel.non_traceable_func(x) x = self.part2(x) return x def prepare_for_export(self, cfg, inputs, predictor_type): def data_generator(x): part1_args = (x,) x = self.part1(x) x = TwoPartSimpleModel.non_traceable_func(x) part2_args = (x,) return {"part1": part1_args, "part2": part2_args} return PredictorExportConfig( model={"part1": self.part1, "part2": self.part2}, data_generator=data_generator, run_func_info=FuncInfo.gen_func_info(TwoPartSimpleModel.RunFunc, params={}), ) @staticmethod def non_traceable_func(x): return x + 1 if len(x.shape) > 3 else x - 1 class RunFunc(object): def __call__(self, model, x): assert isinstance(model, dict) x = model["part1"](x) x = TwoPartSimpleModel.non_traceable_func(x) x = model["part2"](x) return x class ScriptingOnlyModel(nn.Module): """ Example of a model that requires scripting (eg. having control loop). """ def forward(self, inputs: List[torch.Tensor]) -> List[torch.Tensor]: outputs = [] for i, t in enumerate(inputs): outputs.append(t * i) return outputs def prepare_for_export(self, cfg, inputs, predictor_type): if cfg == "explicit": return PredictorExportConfig( model=self, data_generator=None, # data is not needed for scripting model_export_kwargs={ "jit_mode": "script" }, # explicitly using script mode ) elif cfg == "implicit": # Sometime user wants to switch between scripting and tracing without # touching the PredictorExportConfig return PredictorExportConfig( model=self, data_generator=None, # data is not needed for scripting ) raise NotImplementedError() class TestExportAPI(unittest.TestCase): def _export_simple_model(self, cfg, model, data, output_dir, predictor_type): predictor_path = convert_and_export_predictor( cfg, model, predictor_type=predictor_type, output_dir=output_dir, data_loader=iter([data] * 3), ) self.assertTrue(os.path.isdir(predictor_path)) # also test loading predictor predictor = create_predictor(predictor_path) return predictor def test_simple_model(self): with make_temp_directory("test_simple_model") as tmp_dir: model = SimpleModel() predictor = self._export_simple_model( None, model, torch.tensor(1), tmp_dir, predictor_type="torchscript" ) x = torch.tensor(42) self.assertEqual(predictor(x), model(x)) def test_simple_two_part_model(self): with make_temp_directory("test_simple_two_part_model") as tmp_dir: model = TwoPartSimpleModel() predictor = self._export_simple_model( None, model, torch.tensor(1), tmp_dir, predictor_type="torchscript" ) x = torch.tensor(42) self.assertEqual(predictor(x), model(x)) def test_script_only_model(self): def _validate(predictor): outputs = predictor([torch.tensor(1), torch.tensor(2), torch.tensor(3)]) self.assertEqual(len(outputs), 3) self.assertEqual( outputs, [torch.tensor(0), torch.tensor(2), torch.tensor(6)] ) # Method 1: explicitly set jit_mode to "trace" with make_temp_directory("test_test_script_only_model") as tmp_dir: model = ScriptingOnlyModel() predictor = self._export_simple_model( "explicit", model, None, tmp_dir, predictor_type="torchscript" ) _validate(predictor) # Method 2: using torchscript@scripting as predictor type with make_temp_directory("test_test_script_only_model") as tmp_dir: model = ScriptingOnlyModel() predictor = self._export_simple_model( "implicit", model, None, tmp_dir, predictor_type="torchscript@scripting" ) _validate(predictor) class MultiTensorInSingleTensorOut(nn.Module): def forward(self, x, y): return x + y @staticmethod def get_input_args(): return (torch.tensor([2]), torch.tensor([3])) @staticmethod def check_outputs(new_output, original_output): torch.testing.assert_close(new_output, torch.tensor([5])) # NOTE: caffe2 wrapper assumes tensors are fp32 class SingleListInSingleListOut(nn.Module): def forward(self, inputs): x, y = inputs return [x + y] @staticmethod def get_input_args(): inputs = [torch.tensor([2.0]), torch.tensor([3.0])] return (inputs,) @staticmethod def check_outputs(new_output, original_output): assert len(new_output) == 1 torch.testing.assert_close(new_output[0], torch.tensor([5.0])) class MultiDictInMultiDictOut(nn.Module): def forward(self, x, y): first = {"add": x["first"] + y["first"], "sub": x["first"] - y["first"]} second = {"add": x["second"] + y["second"], "sub": x["second"] - y["second"]} return [first, second] @staticmethod def get_input_args(): return ( {"first": torch.tensor([1]), "second": torch.tensor([2])}, # x {"first": torch.tensor([3]), "second": torch.tensor([4])}, # y ) @staticmethod def check_outputs(new_output, original_output): first, second = original_output torch.testing.assert_close(first["add"], torch.tensor([4])) torch.testing.assert_close(first["sub"], torch.tensor([-2])) torch.testing.assert_close(second["add"], torch.tensor([6])) torch.testing.assert_close(second["sub"], torch.tensor([-2])) MODEL_EXPORT_METHOD_TEST_CASES = [ [DefaultTorchscriptExport, MultiTensorInSingleTensorOut], [DefaultTorchscriptExport, SingleListInSingleListOut], [TracingAdaptedTorchscriptExport, MultiTensorInSingleTensorOut], [TracingAdaptedTorchscriptExport, SingleListInSingleListOut], [TracingAdaptedTorchscriptExport, MultiDictInMultiDictOut], ] try: from d2go.export.fb.caffe2 import DefaultCaffe2Export MODEL_EXPORT_METHOD_TEST_CASES.extend( [ # [DefaultCaffe2Export, MultiTensorInSingleTensorOut], # TODO: make caffe2 support this [DefaultCaffe2Export, SingleListInSingleListOut], ] ) except ImportError: pass class TestModelExportMethods(unittest.TestCase): @parameterized.expand( MODEL_EXPORT_METHOD_TEST_CASES, name_func=lambda testcase_func, param_num, param: ( "{}_{}_{}".format( testcase_func.__name__, param.args[0].__name__, param.args[1].__name__ ) ), ) def test_interface(self, model_export_method, test_model_class): model = test_model_class() input_args = test_model_class.get_input_args() output_checker = test_model_class.check_outputs model_export_method.test_export_and_load( model, input_args, None, {}, output_checker )
d2go-main
tests/export/test_api.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os import shutil import tempfile import unittest import torch from d2go.data.disk_cache import DiskCachedList, ROOT_CACHE_DIR from d2go.data.utils import configure_dataset_creation from d2go.runner import create_runner from d2go.utils.testing.data_loader_helper import ( create_detection_data_loader_on_toy_dataset, register_toy_coco_dataset, ) class TestD2GoDatasetMapper(unittest.TestCase): """ This class test D2GoDatasetMapper which is used to build data loader in GeneralizedRCNNRunner (the default runner) in Detectron2Go. """ def setUp(self): self.output_dir = tempfile.mkdtemp(prefix="TestD2GoDatasetMapper_") self.addCleanup(shutil.rmtree, self.output_dir) def test_default_dataset(self): runner = create_runner("d2go.runner.GeneralizedRCNNRunner") cfg = runner.get_default_cfg() cfg.DATASETS.TRAIN = ["default_dataset_train"] cfg.DATASETS.TEST = ["default_dataset_test"] cfg.OUTPUT_DIR = self.output_dir with register_toy_coco_dataset("default_dataset_train", num_images=3): train_loader = runner.build_detection_train_loader(cfg) for i, data in enumerate(train_loader): self.assertIsNotNone(data) # for training loader, it has infinite length if i == 6: break with register_toy_coco_dataset("default_dataset_test", num_images=3): test_loader = runner.build_detection_test_loader( cfg, dataset_name="default_dataset_test" ) all_data = [] for data in test_loader: all_data.append(data) self.assertEqual(len(all_data), 3) class _MyClass(object): def __init__(self, x): self.x = x def do_something(self): return class TestDiskCachedDataLoader(unittest.TestCase): def setUp(self): # make sure the ROOT_CACHE_DIR is empty when entering the test if os.path.exists(ROOT_CACHE_DIR): shutil.rmtree(ROOT_CACHE_DIR) self.output_dir = tempfile.mkdtemp(prefix="TestDiskCachedDataLoader_") self.addCleanup(shutil.rmtree, self.output_dir) def _count_cache_dirs(self): if not os.path.exists(ROOT_CACHE_DIR): return 0 return len(os.listdir(ROOT_CACHE_DIR)) def test_disk_cached_dataset_from_list(self): """Test the class of DiskCachedList""" # check the discache can handel different data types lst = [1, torch.tensor(2), _MyClass(3)] disk_cached_lst = DiskCachedList(lst) self.assertEqual(len(disk_cached_lst), 3) self.assertEqual(disk_cached_lst[0], 1) self.assertEqual(disk_cached_lst[1].item(), 2) self.assertEqual(disk_cached_lst[2].x, 3) # check the cache is created cache_dir = disk_cached_lst.cache_dir self.assertTrue(os.path.isdir(cache_dir)) # check the cache is properly released del disk_cached_lst self.assertFalse(os.path.isdir(cache_dir)) def test_disk_cached_dataloader(self): """Test the data loader backed by disk cache""" height = 6 width = 8 runner = create_runner("d2go.runner.GeneralizedRCNNRunner") cfg = runner.get_default_cfg() cfg.OUTPUT_DIR = self.output_dir cfg.DATALOADER.NUM_WORKERS = 2 def _test_data_loader(data_loader): first_batch = next(iter(data_loader)) self.assertTrue(first_batch[0]["height"], height) self.assertTrue(first_batch[0]["width"], width) # enable the disk cache cfg.merge_from_list(["D2GO_DATA.DATASETS.DISK_CACHE.ENABLED", "True"]) with configure_dataset_creation(cfg): # no cache dir in the beginning self.assertEqual(self._count_cache_dirs(), 0) with create_detection_data_loader_on_toy_dataset( cfg, height, width, is_train=True ) as train_loader: # train loader should create one cache dir self.assertEqual(self._count_cache_dirs(), 1) _test_data_loader(train_loader) with create_detection_data_loader_on_toy_dataset( cfg, height, width, is_train=False ) as test_loader: # test loader should create another cache dir self.assertEqual(self._count_cache_dirs(), 2) _test_data_loader(test_loader) # test loader should release its cache del test_loader self.assertEqual(self._count_cache_dirs(), 1) # no cache dir in the end del train_loader self.assertEqual(self._count_cache_dirs(), 0)
d2go-main
tests/data/test_data_loader.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import json import unittest from typing import Tuple import cv2 import numpy as np import torchvision.transforms as T from d2go.data.transforms.build import build_transform_gen from d2go.runner import Detectron2GoRunner from detectron2.data.transforms.augmentation import apply_augmentations, AugInput def generate_test_data( source_img: np.ndarray, angle: float = 0, translation: float = 0, scale: float = 1, shear: float = 0, fit_in_frame: bool = True, keep_aspect_ratio: bool = False, ) -> Tuple[str, np.ndarray]: # Augmentation dictionary aug_dict = { "prob": 1.0, "angle_range": [angle, angle], "translation_range": [translation, translation], "scale_range": [scale, scale], "shear_range": [shear, shear], "keep_aspect_ratio": keep_aspect_ratio, "fit_in_frame": fit_in_frame, } aug_str = "RandomAffineOp::" + json.dumps(aug_dict) # Get image info img_h, img_w = source_img.shape[0:2] center = [img_w / 2, img_h / 2] # Compute output_size max_size = max(img_w, img_h) out_w, out_h = (img_w, img_h) if keep_aspect_ratio else (max_size, max_size) if fit_in_frame: # Warp once to figure scale adjustment M_inv = T.functional._get_inverse_affine_matrix( center, angle, [0, 0], 1, [shear, shear] ) M_inv.extend([0.0, 0.0, 1.0]) M_inv = np.array(M_inv).reshape((3, 3)) M = np.linalg.inv(M_inv) # Center in output patch img_corners = np.array( [ [0, 0, img_w - 1, img_w - 1], [0, img_h - 1, 0, img_h - 1], [1, 1, 1, 1], ] ) new_corners = M @ img_corners x_range = np.ceil(np.amax(new_corners[0]) - np.amin(new_corners[0])) y_range = np.ceil(np.amax(new_corners[1]) - np.amin(new_corners[1])) # Apply translation and scale after centering in output patch scale_adjustment = min(out_w / x_range, out_h / y_range) scale *= scale_adjustment # Adjust output center location translation_t = [translation, translation] translation_adjustment = [(out_w - img_w) / 2, (out_h - img_h) / 2] translation_t[0] += translation_adjustment[0] translation_t[1] += translation_adjustment[1] # Test data output generation M_inv = T.functional._get_inverse_affine_matrix( center, angle, translation_t, scale, [shear, shear] ) M_inv = np.array(M_inv).reshape((2, 3)) exp_out_img = cv2.warpAffine( source_img, M_inv, (out_w, out_h), flags=cv2.WARP_INVERSE_MAP + cv2.INTER_LINEAR, borderMode=cv2.BORDER_REPLICATE, ) # Create annotations test_bbox = [0.25 * img_w, 0.25 * img_h, 0.75 * img_h, 0.75 * img_h] # Generate segmentation test data segm_mask = np.zeros_like(source_img) segm_mask[ int(test_bbox[0]) : int(test_bbox[2]), int(test_bbox[1]) : int(test_bbox[3]) ] = 255 exp_out_segm = cv2.warpAffine( segm_mask, M_inv, (out_w, out_h), flags=cv2.WARP_INVERSE_MAP + cv2.INTER_NEAREST, borderMode=cv2.BORDER_REPLICATE, ) # Generate bounding box test data M_inv = np.vstack([M_inv, [0.0, 0.0, 1.0]]) points = np.array( [ [test_bbox[0], test_bbox[0], test_bbox[2], test_bbox[2]], [test_bbox[1], test_bbox[3], test_bbox[1], test_bbox[3]], ] ).T _xp = warp_points(points, M_inv) out_bbox = [min(_xp[:, 0]), min(_xp[:, 1]), max(_xp[:, 0]), max(_xp[:, 1])] return ( aug_str, AugInput(source_img, boxes=[test_bbox], sem_seg=segm_mask), (exp_out_img, [out_bbox], exp_out_segm), ) def warp_points(coords: np.array, xfm_M: np.array): coords = coords.T ones = np.ones((1, coords.shape[1])) coords = np.vstack((coords, ones)) M = np.linalg.inv(xfm_M) coords = (M @ coords)[:2, :].T return coords class TestDataTransformsAffine(unittest.TestCase): def _validate_results(self, aug_output, exp_outputs): exp_img = exp_outputs[0] self.assertTrue( np.allclose(exp_img, aug_output.image), f"Augmented image not the same, expecting\n{exp_img[:,:,0]} \n got\n{aug_output.image[:,:,0]} ", ) exp_bboxes = exp_outputs[1] self.assertTrue( np.allclose(exp_bboxes, aug_output.boxes, atol=0.000001), f"Augmented bbox not the same, expecting\n{exp_img[:,:,0]} \n got\n{aug_output.image[:,:,0]} ", ) exp_segm = exp_outputs[2] self.assertTrue( np.allclose(exp_segm, aug_output.sem_seg), f"Augmented segm not the same, expecting\n{exp_segm} \n got\n{aug_output.sem_seg[:,:]} ", ) def test_affine_transforms_angle(self): default_cfg = Detectron2GoRunner.get_default_cfg() img_sz = 11 img = np.zeros((img_sz, img_sz, 3)).astype(np.uint8) img[((img_sz + 1) // 2) - 1, :, :] = 255 for angle in [45, 90]: aug_str, aug_input, exp_outputs = generate_test_data(img, angle=angle) default_cfg.D2GO_DATA.AUG_OPS.TRAIN = [aug_str] tfm = build_transform_gen(default_cfg, is_train=True) # Test augmentation aug_output, _ = apply_augmentations(tfm, aug_input) self._validate_results(aug_output, exp_outputs) def test_affine_transforms_translation(self): default_cfg = Detectron2GoRunner.get_default_cfg() img_sz = 11 img = np.zeros((img_sz, img_sz, 3)).astype(np.uint8) img[((img_sz + 1) // 2) - 1, :, :] = 255 for translation in [0, 1, 2]: # Test image aug_str, aug_input, exp_outputs = generate_test_data( img, translation=translation ) default_cfg.D2GO_DATA.AUG_OPS.TRAIN = [aug_str] tfm = build_transform_gen(default_cfg, is_train=True) # Test augmentation aug_output, _ = apply_augmentations(tfm, aug_input) self._validate_results(aug_output, exp_outputs) def test_affine_transforms_shear(self): default_cfg = Detectron2GoRunner.get_default_cfg() img_sz = 11 img = np.zeros((img_sz, img_sz, 3)).astype(np.uint8) img[((img_sz + 1) // 2) - 1, :, :] = 255 for shear in [0, 1, 2]: aug_str, aug_input, exp_outputs = generate_test_data(img, shear=shear) default_cfg.D2GO_DATA.AUG_OPS.TRAIN = [aug_str] tfm = build_transform_gen(default_cfg, is_train=True) # Test augmentation aug_output, _ = apply_augmentations(tfm, aug_input) self._validate_results(aug_output, exp_outputs) def test_affine_transforms_scale(self): default_cfg = Detectron2GoRunner.get_default_cfg() img_sz = 11 img = np.zeros((img_sz, img_sz, 3)).astype(np.uint8) img[((img_sz + 1) // 2) - 1, :, :] = 255 for scale in [0.9, 1, 1.1]: aug_str, aug_input, exp_outputs = generate_test_data(img, scale=scale) default_cfg.D2GO_DATA.AUG_OPS.TRAIN = [aug_str] tfm = build_transform_gen(default_cfg, is_train=True) # Test augmentation aug_output, _ = apply_augmentations(tfm, aug_input) self._validate_results(aug_output, exp_outputs) def test_affine_transforms_angle_non_square(self): default_cfg = Detectron2GoRunner.get_default_cfg() img_sz = 11 img = np.zeros((img_sz, img_sz - 2, 3)).astype(np.uint8) img[((img_sz + 1) // 2) - 1, :, :] = 255 for keep_aspect_ratio in [False, True]: aug_str, aug_input, exp_outputs = generate_test_data( img, angle=45, keep_aspect_ratio=keep_aspect_ratio ) default_cfg.D2GO_DATA.AUG_OPS.TRAIN = [aug_str] tfm = build_transform_gen(default_cfg, is_train=True) # Test augmentation aug_output, _ = apply_augmentations(tfm, aug_input) self._validate_results(aug_output, exp_outputs) def test_affine_transforms_angle_no_fit_to_frame(self): default_cfg = Detectron2GoRunner.get_default_cfg() img_sz = 11 img = np.zeros((img_sz, img_sz, 3)).astype(np.uint8) img[((img_sz + 1) // 2) - 1, :, :] = 255 aug_str, aug_input, exp_outputs = generate_test_data( img, angle=45, fit_in_frame=False ) default_cfg.D2GO_DATA.AUG_OPS.TRAIN = [aug_str] tfm = build_transform_gen(default_cfg, is_train=True) # Test augmentation aug_output, _ = apply_augmentations(tfm, aug_input) self._validate_results(aug_output, exp_outputs)
d2go-main
tests/data/test_data_transforms_affine.py
d2go-main
tests/data/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import unittest import d2go.data.transforms.box_utils as bu import numpy as np import torch from d2go.config import CfgNode from d2go.data.transforms.build import build_transform_gen def get_default_config(): cfg = CfgNode() cfg.D2GO_DATA = CfgNode() cfg.D2GO_DATA.AUG_OPS = CfgNode() return cfg class TestDataTransformsBoxUtils(unittest.TestCase): def test_min_box_ar(self): box_xywh = [4, 5, 10, 6] target_aspect_ratio = 1.0 / 2 new_box = bu.get_min_box_aspect_ratio(box_xywh, target_aspect_ratio) self.assertArrayEqual(torch.Tensor([4, -2, 10, 20]), new_box) def test_get_box_from_mask(self): img_w, img_h = 8, 6 mask = np.zeros([img_h, img_w]) self.assertEqual(mask.shape, (img_h, img_w)) mask[2:4, 3:6] = 1 box = bu.get_box_from_mask(mask) self.assertEqual(box, (3, 2, 3, 2)) def test_get_box_from_mask_union(self): img_w, img_h = 8, 6 mask = np.zeros([img_h, img_w]) self.assertEqual(mask.shape, (img_h, img_w)) mask[2:4, 1:4] = 1 mask[5:6, 4:8] = 1 box = bu.get_box_from_mask(mask) self.assertEqual(box, (1, 2, 7, 4)) def test_get_box_from_mask_empty(self): img_w, img_h = 8, 6 mask = np.zeros([img_h, img_w]) box = bu.get_box_from_mask(mask) self.assertIsNone(box) def test_scale_bbox_center(self): bbox = torch.Tensor([1, 2, 4, 5]) out_bbox = bu.scale_bbox_center(bu.scale_bbox_center(bbox, 2.0), 0.5) self.assertArrayEqual(bbox, out_bbox) def assertArrayEqual(self, a1, a2): self.assertTrue(np.array_equal(a1, a2)) def test_enlarge_bounding_box(self): default_cfg = get_default_config() default_cfg.D2GO_DATA.AUG_OPS.TRAIN = [ 'EnlargeBoundingBoxOp::{"fixed_pad": 20}', 'EnlargeBoundingBoxOp::{"percentage": 0.2}', ] enlarge_box_tfm = build_transform_gen(default_cfg, is_train=True) boxes = np.array( [[91, 46, 144, 111]], dtype=np.float64, ) transformed_bboxs = enlarge_box_tfm[0].apply_box(boxes) expected_bboxs = np.array( [[71, 26, 164, 131]], dtype=np.float64, ) err_msg = "transformed_bbox = {}, expected {}".format( transformed_bboxs, expected_bboxs ) self.assertTrue(np.allclose(transformed_bboxs, expected_bboxs), err_msg) boxes = np.array( [[91, 46, 144, 111]], dtype=np.float64, ) transformed_bboxs = enlarge_box_tfm[1].apply_box(boxes) expected_bboxs = np.array( [[85.7, 39.5, 149.3, 117.5]], dtype=np.float64, ) err_msg = "transformed_bbox = {}, expected {}".format( transformed_bboxs, expected_bboxs ) self.assertTrue(np.allclose(transformed_bboxs, expected_bboxs), err_msg) boxes = np.array( [[[91, 46], [144, 111]]], dtype=np.float64, ) transformed_bboxs = enlarge_box_tfm[1].apply_polygons(boxes) expected_bboxs = np.array( [[[85.7, 39.5], [149.3, 117.5]]], dtype=np.float64, ) err_msg = "transformed_bbox = {}, expected {}".format( transformed_bboxs, expected_bboxs ) self.assertTrue(np.allclose(transformed_bboxs, expected_bboxs), err_msg) dummy_data = np.array( [[91, 46, 144, 111]], dtype=np.float64, ) dummy_data_out = enlarge_box_tfm[1].apply_image(dummy_data) expected_out = np.array( [[91, 46, 144, 111]], dtype=np.float64, ) err_msg = "Apply image failed" self.assertTrue(np.allclose(dummy_data_out, expected_out), err_msg) default_cfg.D2GO_DATA.AUG_OPS.TRAIN = [ 'EnlargeBoundingBoxOp::{"fixed_pad": 20, "box_only": true}', ] enlarge_box_tfm = build_transform_gen(default_cfg, is_train=True) boxes = np.array([[91, 46, 144, 111]]) transformed_bboxs = enlarge_box_tfm[0].apply_coords(boxes) err_msg = "transformed_bbox = {}, expected {}".format(transformed_bboxs, boxes) self.assertTrue(np.allclose(transformed_bboxs, boxes), err_msg)
d2go-main
tests/data/test_data_transforms_box_utils.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import unittest import numpy as np from d2go.data.transforms.build import build_transform_gen from d2go.runner import Detectron2GoRunner from detectron2.data.transforms.augmentation import apply_augmentations class TestDataTransformsBlur(unittest.TestCase): def test_gaussian_blur_transforms(self): default_cfg = Detectron2GoRunner.get_default_cfg() img = np.zeros((80, 60, 3)).astype(np.uint8) img[40, 30, :] = 255 default_cfg.D2GO_DATA.AUG_OPS.TRAIN = [ 'RandomGaussianBlurOp::{"prob": 1.0, "k": 3, "sigma_range": [0.5, 0.5]}' ] tfm = build_transform_gen(default_cfg, is_train=True) trans_img, _ = apply_augmentations(tfm, img) self.assertEqual(img.shape, trans_img.shape) self.assertEqual(img.dtype, trans_img.dtype) self.assertEqual(trans_img[39, 29, 0], 3) self.assertEqual(trans_img[40, 29, 0], 21)
d2go-main
tests/data/test_data_transforms_blur.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import unittest import d2go.data.transforms.box_utils as bu import numpy as np import torch from d2go.data.transforms import crop as tf_crop class TestDataTransformsCrop(unittest.TestCase): def test_transform_crop_extent_transform(self): img_wh = (16, 11) sem_seg = np.zeros([img_wh[1], img_wh[0]], dtype=np.uint8) # h, w sem_seg[5, 4] = 1 sem_seg[10, 13] = 1 sem_seg[5:11, 4:14] = 1 # src_rect: [x0, y0, x1, y1] in pixel coordinate, output_size: [h, w] trans = tf_crop.ExtentTransform(src_rect=[4, 5, 14, 11], output_size=[6, 10]) out_mask = trans.apply_segmentation(sem_seg) self.assertArrayEqual(out_mask.shape, torch.Tensor([6, 10])) self.assertArrayEqual(np.unique(out_mask), torch.Tensor([1])) trans = tf_crop.ExtentTransform(src_rect=[3, 4, 15, 11], output_size=[7, 12]) out_mask = trans.apply_segmentation(sem_seg) self.assertArrayEqual(out_mask.shape, torch.Tensor([7, 12])) self.assertArrayEqual(np.unique(out_mask), torch.Tensor([0, 1])) self.assertArrayEqual(np.unique(out_mask[1:, 1:-1]), torch.Tensor([1])) self.assertEqual(out_mask[:, 0].sum(), 0) self.assertArrayEqual(out_mask[0, :].sum(), 0) self.assertArrayEqual(out_mask[:, -1].sum(), 0) def test_transform_crop_random_crop_fixed_aspect_ratio(self): aug = tf_crop.RandomCropFixedAspectRatio([1.0 / 2]) img_wh = (16, 11) img = np.ones([img_wh[1], img_wh[0], 3], dtype=np.uint8) sem_seg = np.zeros([img_wh[1], img_wh[0]], dtype=np.uint8) sem_seg[5, 4] = 1 sem_seg[10, 13] = 1 mask_xywh = bu.get_box_from_mask(sem_seg) self.assertArrayEqual(mask_xywh, torch.Tensor([4, 5, 10, 6])) trans = aug.get_transform(img, sem_seg) self.assertArrayEqual(trans.src_rect, torch.Tensor([4, -2, 14, 18])) self.assertArrayEqual(trans.output_size, torch.Tensor([20, 10])) out_img = trans.apply_image(img) self.assertArrayEqual(out_img.shape, torch.Tensor([20, 10, 3])) self.assertArrayEqual(np.unique(out_img[2:13, :, :]), torch.Tensor([1])) self.assertArrayEqual(np.unique(out_img[0:2, :, :]), torch.Tensor([0])) self.assertArrayEqual(np.unique(out_img[13:, :, :]), torch.Tensor([0])) out_mask = trans.apply_segmentation(sem_seg) self.assertArrayEqual(out_mask.shape, torch.Tensor([20, 10])) self.assertEqual(out_mask[7, 0], 1) self.assertEqual(out_mask[12, -1], 1) def test_transform_crop_random_crop_fixed_aspect_ratio_scale_offset(self): aug = tf_crop.RandomCropFixedAspectRatio( [1.0 / 2], scale_range=[0.5, 0.5], offset_scale_range=[-0.5, -0.5] ) img_wh = (16, 11) img = np.ones([img_wh[1], img_wh[0], 3], dtype=np.uint8) sem_seg = np.zeros([img_wh[1], img_wh[0]], dtype=np.uint8) sem_seg[5, 4] = 1 sem_seg[10, 13] = 1 sem_seg[5:11, 4:14] = 1 mask_xywh = bu.get_box_from_mask(sem_seg) self.assertArrayEqual(mask_xywh, torch.Tensor([4, 5, 10, 6])) trans = aug.get_transform(img, sem_seg) self.assertArrayEqual(trans.src_rect, torch.Tensor([1.5, 0.0, 6.5, 10.0])) self.assertArrayEqual(trans.output_size, torch.Tensor([10, 5])) out_img = trans.apply_image(img) self.assertArrayEqual(out_img.shape, torch.Tensor([10, 5, 3])) self.assertEqual(np.unique(out_img), 1) out_mask = trans.apply_segmentation(sem_seg) self.assertArrayEqual(out_mask.shape, torch.Tensor([10, 5])) self.assertEqual(np.unique(out_mask[6:, 3:]), 1) def test_transform_crop_random_crop_fixed_aspect_ratio_empty_mask(self): """The sem_mask is empty (the whole image is background)""" aug = tf_crop.RandomCropFixedAspectRatio([1.0 / 2]) img_wh = (16, 11) img = np.ones([img_wh[1], img_wh[0], 3], dtype=np.uint8) sem_seg = np.zeros([img_wh[1], img_wh[0]], dtype=np.uint8) mask_xywh = bu.get_box_from_mask(sem_seg) self.assertEqual(mask_xywh, None) trans = aug.get_transform(img, sem_seg) self.assertIsInstance(trans, tf_crop.NoOpTransform) out_img = trans.apply_image(img) self.assertArrayEqual(out_img.shape, img.shape) out_mask = trans.apply_segmentation(sem_seg) self.assertArrayEqual(out_mask.shape, sem_seg.shape) def test_pad_transform(self): crop_w, crop_h = 4, 3 full_w, full_h = 11, 9 crop_x, crop_y = 5, 6 trans = tf_crop.PadTransform(crop_x, crop_y, crop_w, crop_h, full_w, full_h) img = np.ones([crop_h, crop_w]) trans_img = trans.apply_image(img) self.assertArrayEqual(trans_img.shape, [full_h, full_w]) self.assertArrayEqual(np.unique(trans_img), [0, 1]) full_img_gt = np.zeros([full_h, full_w]) full_img_gt[crop_y : (crop_y + crop_h), crop_x : (crop_x + crop_w)] = 1 self.assertArrayEqual(full_img_gt, trans_img) def test_crop_transform_inverse(self): crop_w, crop_h = 4, 3 full_w, full_h = 11, 9 crop_x, crop_y = 5, 6 trans = tf_crop.InvertibleCropTransform( crop_x, crop_y, crop_w, crop_h, full_w, full_h ) full_img_gt = np.zeros([full_h, full_w]) full_img_gt[crop_y : (crop_y + crop_h), crop_x : (crop_x + crop_w)] = 1 crop_img_gt = np.ones([crop_h, crop_w]) self.assertArrayEqual(trans.apply_image(full_img_gt), crop_img_gt) self.assertArrayEqual(trans.inverse().apply_image(crop_img_gt), full_img_gt) self.assertArrayEqual( trans.inverse().inverse().apply_image(full_img_gt), crop_img_gt ) def test_pad_border_divisible_transform(self): img_h, img_w = 10, 7 divisibility = 8 aug = tf_crop.PadBorderDivisible(divisibility) img = np.ones([img_h, img_w, 3]) * 3 trans = aug.get_transform(img) pad_img = trans.apply_image(img) self.assertEqual(pad_img.shape, (16, 8, 3)) inverse_img = trans.inverse().apply_image(pad_img) self.assertEqual(inverse_img.shape, (10, 7, 3)) self.assertArrayEqual(img, inverse_img) mask = np.ones([img_h, img_w]) * 2 pad_mask = trans.apply_segmentation(mask) self.assertEqual(pad_mask.shape, (16, 8)) inverse_mask = trans.inverse().apply_segmentation(pad_mask) self.assertEqual(inverse_mask.shape, (10, 7)) self.assertArrayEqual(mask, inverse_mask) def test_pad_to_square_augmentation(self): img_h, img_w = 5, 3 aug = tf_crop.PadToSquare(pad_value=255) img = np.ones([img_h, img_w, 3]) trans = aug.get_transform(img) pad_img = trans.apply_image(img) self.assertEqual(pad_img.shape, (5, 5, 3)) def test_random_instance_crop(self): from detectron2.data import detection_utils as du from detectron2.data.transforms.augmentation import AugInput, AugmentationList from detectron2.structures import BoxMode aug = tf_crop.RandomInstanceCrop([1.0, 1.0]) img_w, img_h = 10, 7 annotations = [ { "category_id": 0, "bbox": [1, 1, 4, 3], "bbox_mode": BoxMode.XYWH_ABS, }, { "category_id": 0, "bbox": [2, 2, 4, 3], "bbox_mode": BoxMode.XYWH_ABS, }, { "category_id": 0, "bbox": [6, 5, 3, 2], "bbox_mode": BoxMode.XYWH_ABS, }, ] img = np.ones([img_h, img_w, 3]) * 3 inputs = AugInput(image=img) # pass additional arguments inputs.annotations = annotations transforms = AugmentationList([aug])(inputs) self.assertIn( inputs.image.shape, [torch.Size([3, 4, 3]), torch.Size([2, 3, 3])] ) # from dataset mapper unused annotations will be filtered out due to the # iscrowd flag image_shape = inputs.image.shape[:2] annos = [ du.transform_instance_annotations( obj, transforms, image_shape, ) for obj in annotations if obj.get("iscrowd", 0) == 0 ] instances = du.annotations_to_instances(annos, image_shape) filtered_instances = du.filter_empty_instances(instances) self.assertEqual(len(filtered_instances), 1) self.assertArrayEqual( filtered_instances.gt_boxes.tensor.tolist(), [[0, 0, image_shape[1], image_shape[0]]], ) def assertArrayEqual(self, a1, a2): self.assertTrue(np.array_equal(a1, a2))
d2go-main
tests/data/test_data_transforms_crop.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import unittest import numpy as np from d2go.data.transforms.build import build_transform_gen from d2go.runner import Detectron2GoRunner from detectron2.data.transforms.augmentation import apply_transform_gens class TestDataTransforms(unittest.TestCase): def test_build_transform_gen(self): default_cfg = Detectron2GoRunner.get_default_cfg() default_cfg.INPUT.MIN_SIZE_TRAIN = (30,) default_cfg.INPUT.MIN_SIZE_TEST = 30 trans_train = build_transform_gen(default_cfg, is_train=True) trans_test = build_transform_gen(default_cfg, is_train=False) img = np.zeros((80, 60, 3)) trans_img_train, tl_train = apply_transform_gens(trans_train, img) trans_img_test, tl_test = apply_transform_gens(trans_test, img) self.assertEqual(trans_img_train.shape, (40, 30, 3)) self.assertEqual(trans_img_test.shape, (40, 30, 3)) def test_build_transform_gen_resize_square(self): default_cfg = Detectron2GoRunner.get_default_cfg() default_cfg.INPUT.MIN_SIZE_TRAIN = (30,) default_cfg.INPUT.MIN_SIZE_TEST = 40 default_cfg.D2GO_DATA.AUG_OPS.TRAIN = ["ResizeShortestEdgeSquareOp"] default_cfg.D2GO_DATA.AUG_OPS.TEST = ["ResizeShortestEdgeSquareOp"] trans_train = build_transform_gen(default_cfg, is_train=True) trans_test = build_transform_gen(default_cfg, is_train=False) img = np.zeros((80, 60, 3)) trans_img_train, tl_train = apply_transform_gens(trans_train, img) trans_img_test, tl_test = apply_transform_gens(trans_test, img) self.assertEqual(trans_img_train.shape, (30, 30, 3)) self.assertEqual(trans_img_test.shape, (40, 40, 3))
d2go-main
tests/data/test_data_transforms.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import unittest import numpy as np from d2go.data.transforms.build import build_transform_gen from d2go.runner import Detectron2GoRunner from detectron2.data.transforms.augmentation import apply_augmentations class TestDataTransformsAutoAug(unittest.TestCase): def test_rand_aug_transforms(self): default_cfg = Detectron2GoRunner.get_default_cfg() img = np.concatenate( [ (np.random.uniform(0, 1, size=(80, 60, 1)) * 255).astype(np.uint8), (np.random.uniform(0, 1, size=(80, 60, 1)) * 255).astype(np.uint8), (np.random.uniform(0, 1, size=(80, 60, 1)) * 255).astype(np.uint8), ], axis=2, ) default_cfg.D2GO_DATA.AUG_OPS.TRAIN = ['RandAugmentImageOp::{"num_ops": 20}'] tfm = build_transform_gen(default_cfg, is_train=True) trans_img, _ = apply_augmentations(tfm, img) self.assertEqual(img.shape, trans_img.shape) self.assertEqual(img.dtype, trans_img.dtype) def test_trivial_aug_transforms(self): default_cfg = Detectron2GoRunner.get_default_cfg() img = np.concatenate( [ (np.random.uniform(0, 1, size=(80, 60, 1)) * 255).astype(np.uint8), ], axis=2, ) default_cfg.D2GO_DATA.AUG_OPS.TRAIN = ["TrivialAugmentWideImageOp"] tfm = build_transform_gen(default_cfg, is_train=True) trans_img, _ = apply_augmentations(tfm, img) self.assertEqual(img.shape, trans_img.shape) self.assertEqual(img.dtype, trans_img.dtype) def test_aug_mix_transforms(self): default_cfg = Detectron2GoRunner.get_default_cfg() img = np.concatenate( [ (np.random.uniform(0, 1, size=(80, 60, 1)) * 255).astype(np.uint8), (np.random.uniform(0, 1, size=(80, 60, 1)) * 255).astype(np.uint8), (np.random.uniform(0, 1, size=(80, 60, 1)) * 255).astype(np.uint8), ], axis=2, ) default_cfg.D2GO_DATA.AUG_OPS.TRAIN = ['AugMixImageOp::{"severity": 3}'] tfm = build_transform_gen(default_cfg, is_train=True) trans_img, _ = apply_augmentations(tfm, img) self.assertEqual(img.shape, trans_img.shape) self.assertEqual(img.dtype, trans_img.dtype)
d2go-main
tests/data/test_data_transforms_auto_aug.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import unittest import numpy as np from d2go.data.transforms import color_yuv as cy from d2go.data.transforms.build import build_transform_gen from d2go.runner import Detectron2GoRunner from detectron2.data.transforms.augmentation import apply_augmentations class TestDataTransformsColorYUV(unittest.TestCase): def test_yuv_color_transforms(self): default_cfg = Detectron2GoRunner.get_default_cfg() img = np.concatenate( [ np.random.uniform(0, 1, size=(80, 60, 1)), np.random.uniform(-0.5, 0.5, size=(80, 60, 1)), np.random.uniform(-0.5, 0.5, size=(80, 60, 1)), ], axis=2, ) default_cfg.D2GO_DATA.AUG_OPS.TRAIN = [ 'RandomContrastYUVOp::{"intensity_min": 0.3, "intensity_max": 0.5}', ] low_contrast_tfm = build_transform_gen(default_cfg, is_train=True) low_contrast, _ = apply_augmentations(low_contrast_tfm, img) default_cfg.D2GO_DATA.AUG_OPS.TRAIN = [ 'RandomSaturationYUVOp::{"intensity_min": 1.5, "intensity_max": 1.7}', ] high_saturation_tfm = build_transform_gen(default_cfg, is_train=True) high_saturation, _ = apply_augmentations(high_saturation_tfm, img) # Use pixel statistics to roughly check transformed images as expected # All channels have less variance self.assertLess(np.var(low_contrast[:, :, 0]), np.var(img[:, :, 0])) self.assertLess(np.var(low_contrast[:, :, 1]), np.var(img[:, :, 1])) self.assertLess(np.var(low_contrast[:, :, 2]), np.var(img[:, :, 2])) # 1st channel is unchanged (test w/ mean, var), 2nd + 3rd channels more variance self.assertAlmostEqual(np.mean(high_saturation[:, :, 0]), np.mean(img[:, :, 0])) self.assertAlmostEqual(np.var(high_saturation[:, :, 0]), np.var(img[:, :, 0])) self.assertGreater(np.var(high_saturation[:, :, 1]), np.var(img[:, :, 1])) self.assertGreater(np.var(high_saturation[:, :, 2]), np.var(img[:, :, 2])) def test_transform_color_yuv_rgbyuv_convert(self): image = np.arange(256).reshape(16, 16, 1).repeat(3, axis=2).astype(np.uint8) tf1 = cy.RGB2YUVBT601().get_transform(image) tf2 = cy.YUVBT6012RGB().get_transform(image) image_yuv = tf1.apply_image(image) image_rgb = tf2.apply_image(image_yuv) self.assertArrayEqual((image_rgb + 0.5).astype(np.uint8), image) def test_transform_color_yuv_rgbyuv_convert_invese(self): image = np.arange(256).reshape(16, 16, 1).repeat(3, axis=2).astype(np.uint8) tf = cy.RGB2YUVBT601().get_transform(image) image_yuv = tf.apply_image(image) image_rgb = tf.inverse().apply_image(image_yuv) self.assertArrayEqual((image_rgb + 0.5).astype(np.uint8), image) def assertArrayEqual(self, a1, a2): self.assertTrue(np.array_equal(a1, a2))
d2go-main
tests/data/test_data_transforms_color_yuv.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import copy import json import os import tempfile import unittest import d2go.data.extended_coco as extended_coco from d2go.data.datasets import ANN_FN, COCO_REGISTER_FUNCTION_REGISTRY, IM_DIR from d2go.data.keypoint_metadata_registry import ( get_keypoint_metadata, KEYPOINT_METADATA_REGISTRY, KeypointMetadata, ) from d2go.data.utils import ( AdhocDatasetManager, COCOWithClassesToUse, maybe_subsample_n_images, ) from d2go.runner import Detectron2GoRunner from d2go.utils.testing.data_loader_helper import ( create_toy_dataset, LocalImageGenerator, ) from d2go.utils.testing.helper import tempdir from detectron2.data import DatasetCatalog, MetadataCatalog from mobile_cv.common.misc.file_utils import make_temp_directory def create_test_images_and_dataset_json(data_dir, num_images=10, num_classes=-1): # create image and json image_dir = os.path.join(data_dir, "images") os.makedirs(image_dir) json_dataset, meta_data = create_toy_dataset( LocalImageGenerator(image_dir, width=80, height=60), num_images=num_images, num_classes=num_classes, ) json_file = os.path.join(data_dir, "annotation.json") with open(json_file, "w") as f: json.dump(json_dataset, f) return image_dir, json_file class TestD2GoDatasets(unittest.TestCase): def setUp(self): self._builtin_datasets = set(DatasetCatalog) def tearDown(self): # Need to remove injected dataset injected_dataset = set(DatasetCatalog) - self._builtin_datasets for ds in injected_dataset: DatasetCatalog.remove(ds) MetadataCatalog.remove(ds) def test_coco_conversions(self): test_data_0 = { "info": {}, "imgs": { "img_1": { "file_name": "0.jpg", "width": 600, "height": 600, "id": "img_1", } }, "anns": {0: {"id": 0, "image_id": "img_1", "bbox": [30, 30, 60, 20]}}, "imgToAnns": {"img_1": [0]}, "cats": {}, } test_data_1 = copy.deepcopy(test_data_0) test_data_1["imgs"][123] = test_data_1["imgs"].pop("img_1") test_data_1["imgs"][123]["id"] = 123 test_data_1["anns"][0]["image_id"] = 123 test_data_1["imgToAnns"][123] = test_data_1["imgToAnns"].pop("img_1") for test_data, exp_output in [(test_data_0, [0, 0]), (test_data_1, [123, 123])]: with make_temp_directory("detectron2go_tmp_dataset") as tmp_dir: src_json = os.path.join(tmp_dir, "source.json") out_json = os.path.join(tmp_dir, "output.json") with open(src_json, "w") as h_in: json.dump(test_data, h_in) out_json = extended_coco.convert_coco_text_to_coco_detection_json( src_json, out_json ) self.assertEqual(out_json["images"][0]["id"], exp_output[0]) self.assertEqual(out_json["annotations"][0]["image_id"], exp_output[1]) def test_annotation_rejection(self): img_list = [ {"id": 0, "width": 50, "height": 50, "file_name": "a.png"}, {"id": 1, "width": 50, "height": 50, "file_name": "b.png"}, {"id": 2, "width": 50, "height": 50, "file_name": "b.png"}, ] ann_list = [ [ { "id": 0, "image_id": 0, "category_id": 0, "segmentation": [[0, 0, 10, 0, 10, 10, 0, 10]], "area": 100, "bbox": [0, 0, 10, 10], }, { "id": 1, "image_id": 0, "category_id": 0, "segmentation": [[0, 0, 10, 0, 10, 10, 0, 10]], "area": 100, "bbox": [45, 45, 10, 10], }, { "id": 2, "image_id": 0, "category_id": 0, "segmentation": [[0, 0, 10, 0, 10, 10, 0, 10]], "area": 100, "bbox": [-5, -5, 10, 10], }, { "id": 3, "image_id": 0, "category_id": 0, "segmentation": [[0, 0, 10, 0, 10, 10, 0, 10]], "area": 0, "bbox": [5, 5, 0, 0], }, { "id": 4, "image_id": 0, "category_id": 0, "segmentation": [[]], "area": 25, "bbox": [5, 5, 5, 5], }, ], [ { "id": 5, "image_id": 1, "category_id": 0, "segmentation": [[]], "area": 100, "bbox": [0, 0, 0, 0], }, ], [], ] out_dict_list = extended_coco.convert_to_dict_list("", [0], img_list, ann_list) self.assertEqual(len(out_dict_list), 1) self.assertEqual(len(out_dict_list[0]["annotations"]), 1) out_dict_list = extended_coco.convert_to_dict_list( "", [0], img_list, ann_list, filter_empty_annotations=False ) self.assertEqual(len(out_dict_list), 3) @tempdir def test_coco_injection(self, tmp_dir): image_dir, json_file = create_test_images_and_dataset_json(tmp_dir) runner = Detectron2GoRunner() cfg = runner.get_default_cfg() cfg.merge_from_list( [ str(x) for x in [ "D2GO_DATA.DATASETS.COCO_INJECTION.NAMES", ["inj_ds1", "inj_ds2"], "D2GO_DATA.DATASETS.COCO_INJECTION.IM_DIRS", [image_dir, "/mnt/fair"], "D2GO_DATA.DATASETS.COCO_INJECTION.JSON_FILES", [json_file, "inj_ds2"], ] ] ) runner.register(cfg) inj_ds1 = DatasetCatalog.get("inj_ds1") self.assertEqual(len(inj_ds1), 10) for dic in inj_ds1: self.assertEqual(dic["width"], 80) self.assertEqual(dic["height"], 60) @tempdir def test_direct_copy_keys(self, tmp_dir): image_dir, json_file = create_test_images_and_dataset_json(tmp_dir) with tempfile.NamedTemporaryFile(prefix=tmp_dir, suffix=".json") as h_temp: new_json_file = h_temp.name with open(json_file, "r") as h_in: ds = json.load(h_in) for idx, x in enumerate(ds["images"]): x["key1"] = idx x["key2"] = idx with open(new_json_file, "w") as h_out: json.dump(ds, h_out) loaded_ds = extended_coco.extended_coco_load(new_json_file, image_dir) self.assertTrue("key1" not in loaded_ds[0]) self.assertTrue("key2" not in loaded_ds[0]) loaded_ds = extended_coco.extended_coco_load( new_json_file, image_dir, image_direct_copy_keys=["key1"] ) self.assertTrue("key1" in loaded_ds[0]) self.assertTrue("key2" not in loaded_ds[0]) @tempdir def test_sub_dataset(self, tmp_dir): image_dir, json_file = create_test_images_and_dataset_json(tmp_dir) runner = Detectron2GoRunner() cfg = runner.get_default_cfg() cfg.merge_from_list( [ str(x) for x in [ "D2GO_DATA.DATASETS.COCO_INJECTION.NAMES", ["inj_ds3"], "D2GO_DATA.DATASETS.COCO_INJECTION.IM_DIRS", [image_dir], "D2GO_DATA.DATASETS.COCO_INJECTION.JSON_FILES", [json_file], "DATASETS.TEST", ("inj_ds3",), "D2GO_DATA.TEST.MAX_IMAGES", 1, ] ] ) runner.register(cfg) with maybe_subsample_n_images(cfg) as new_cfg: test_loader = runner.build_detection_test_loader( new_cfg, new_cfg.DATASETS.TEST[0] ) self.assertEqual(len(test_loader), 1) def test_coco_metadata_registry(self): @KEYPOINT_METADATA_REGISTRY.register() def TriangleMetadata(): return KeypointMetadata( names=("A", "B", "C"), flip_map=( ("A", "B"), ("B", "C"), ), connection_rules=[ ("A", "B", (102, 204, 255)), ("B", "C", (51, 153, 255)), ], ) tri_md = get_keypoint_metadata("TriangleMetadata") self.assertEqual(tri_md["keypoint_names"][0], "A") self.assertEqual(tri_md["keypoint_flip_map"][0][0], "A") self.assertEqual(tri_md["keypoint_connection_rules"][0][0], "A") @tempdir def test_coco_metadata_register(self, tmp_dir): @KEYPOINT_METADATA_REGISTRY.register() def LineMetadata(): return KeypointMetadata( names=("A", "B"), flip_map=(("A", "B"),), connection_rules=[ ("A", "B", (102, 204, 255)), ], ) image_dir, json_file = create_test_images_and_dataset_json(tmp_dir) runner = Detectron2GoRunner() cfg = runner.get_default_cfg() cfg.merge_from_list( [ str(x) for x in [ "D2GO_DATA.DATASETS.COCO_INJECTION.NAMES", ["inj_ds"], "D2GO_DATA.DATASETS.COCO_INJECTION.IM_DIRS", [image_dir], "D2GO_DATA.DATASETS.COCO_INJECTION.JSON_FILES", [json_file], "D2GO_DATA.DATASETS.COCO_INJECTION.KEYPOINT_METADATA", ["LineMetadata"], ] ] ) runner.register(cfg) inj_md = MetadataCatalog.get("inj_ds") self.assertEqual(inj_md.keypoint_names[0], "A") self.assertEqual(inj_md.keypoint_flip_map[0][0], "A") self.assertEqual(inj_md.keypoint_connection_rules[0][0], "A") @tempdir def test_coco_create_adhoc_class_to_use_dataset(self, tmp_dir): image_dir, json_file = create_test_images_and_dataset_json( tmp_dir, num_classes=2 ) runner = Detectron2GoRunner() cfg = runner.get_default_cfg() cfg.merge_from_list( [ str(x) for x in [ "D2GO_DATA.DATASETS.COCO_INJECTION.NAMES", ["test_adhoc_ds", "test_adhoc_ds2"], "D2GO_DATA.DATASETS.COCO_INJECTION.IM_DIRS", [image_dir, image_dir], "D2GO_DATA.DATASETS.COCO_INJECTION.JSON_FILES", [json_file, json_file], ] ] ) runner.register(cfg) # Test adhoc classes to use AdhocDatasetManager.add(COCOWithClassesToUse("test_adhoc_ds", ["class_0"])) ds_list = DatasetCatalog.get("test_adhoc_ds@1classes") self.assertEqual(len(ds_list), 5) # Test adhoc classes to use with suffix removal AdhocDatasetManager.add( COCOWithClassesToUse("test_adhoc_ds2@1classes", ["class_0"]) ) ds_list = DatasetCatalog.get("test_adhoc_ds2@1classes") self.assertEqual(len(ds_list), 5) @tempdir def test_register_coco_dataset_registry(self, tmp_dir): dummy_buffer = [] @COCO_REGISTER_FUNCTION_REGISTRY.register() def _register_dummy_function_coco(dataset_name, split_dict): dummy_buffer.append((dataset_name, split_dict)) image_dir, json_file = create_test_images_and_dataset_json(tmp_dir) runner = Detectron2GoRunner() cfg = runner.get_default_cfg() cfg.merge_from_list( [ str(x) for x in [ "D2GO_DATA.DATASETS.COCO_INJECTION.NAMES", ["inj_test_registry"], "D2GO_DATA.DATASETS.COCO_INJECTION.IM_DIRS", [image_dir], "D2GO_DATA.DATASETS.COCO_INJECTION.JSON_FILES", [json_file], "D2GO_DATA.DATASETS.COCO_INJECTION.REGISTER_FUNCTION", "_register_dummy_function_coco", ] ] ) runner.register(cfg) self.assertTrue(len(dummy_buffer) == 1) @tempdir def test_adhoc_register_coco_dataset_registry(self, tmp_dir): dummy_buffer = [] def _dummy_load_func(): return [] @COCO_REGISTER_FUNCTION_REGISTRY.register() def _register_dummy_function_coco_adhoc(dataset_name, split_dict): json_file = split_dict[ANN_FN] image_root = split_dict[IM_DIR] DatasetCatalog.register(dataset_name, _dummy_load_func) MetadataCatalog.get(dataset_name).set( evaluator_type="coco", json_file=json_file, image_root=image_root, ) dummy_buffer.append((dataset_name, split_dict)) image_dir, json_file = create_test_images_and_dataset_json(tmp_dir) runner = Detectron2GoRunner() cfg = runner.get_default_cfg() cfg.merge_from_list( [ str(x) for x in [ "D2GO_DATA.DATASETS.COCO_INJECTION.NAMES", ["inj_test_registry_adhoc"], "D2GO_DATA.DATASETS.COCO_INJECTION.IM_DIRS", [image_dir], "D2GO_DATA.DATASETS.COCO_INJECTION.JSON_FILES", [json_file], "D2GO_DATA.DATASETS.COCO_INJECTION.REGISTER_FUNCTION", "_register_dummy_function_coco_adhoc", ] ] ) runner.register(cfg) self.assertTrue(len(dummy_buffer) == 1) # Add adhoc class that uses only the first class AdhocDatasetManager.add( COCOWithClassesToUse("inj_test_registry_adhoc", ["class_0"]) ) # Check that the correct register function is used self.assertTrue(len(dummy_buffer) == 2)
d2go-main
tests/data/test_d2go_datasets.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import unittest import numpy as np import torch from d2go.data.transforms import tensor as tensor_aug from detectron2.data.transforms.augmentation import AugmentationList class TestDataTransformsTensor(unittest.TestCase): def test_tensor_aug(self): """Data augmentation that that allows torch.Tensor as input""" img = torch.ones(3, 8, 6) augs = [tensor_aug.Tensor2Array(), tensor_aug.Array2Tensor()] inputs = tensor_aug.AugInput(image=img) transforms = AugmentationList(augs)(inputs) self.assertArrayEqual(img, inputs.image) # inverse is the same as itself out_img = transforms.inverse().apply_image(img) self.assertArrayEqual(img, out_img) def assertArrayEqual(self, a1, a2): self.assertTrue(np.array_equal(a1, a2))
d2go-main
tests/data/test_data_transforms_tensor.py
d2go-main
tests/skip_init/__init__.py