python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import importlib import sys import unittest from d2go.initializer import initialize_all from d2go.registry import bootstrap # manual initialize without bootstrap initialize_all(boostrap_registries=False) def _unimport(package_name): # remove sub modules from sys modules = [ key for key in sys.modules if ( (key == package_name or key.startswith(package_name + ".")) # previent the parent package of this file being removed and not __name__.startswith(key) ) ] for key in sorted(modules, reverse=True): sys.modules.pop(key) # invalidate the cache of removed sub modules importlib.invalidate_caches() class TestRegistryBootstrap(unittest.TestCase): def setUp(self): # NOTE: reload this file since the imported modules (eg. `d2go.registry.bootstrap`) # might be "unimported" during `tearDown`. importlib.reload(sys.modules[__name__]) def tearDown(self): # NOTE: "unimport" bootstrapped libraries, so that each test runs like starting # a new python program. # TODO: match list with the bootstrapped packages _unimport("d2go.registry") _unimport("mobile_cv") _unimport("detectron2") def test_bootstrap_core_lib(self): self.assertFalse(bootstrap._IS_BOOTSTRAPPED) bootstrap.bootstrap_registries(enable_cache=False, catch_exception=False) self.assertTrue(bootstrap._IS_BOOTSTRAPPED) def test_bootstrap_with_cache(self): self.assertFalse(bootstrap._IS_BOOTSTRAPPED) bootstrap.bootstrap_registries(enable_cache=True, catch_exception=False) self.assertTrue(bootstrap._IS_BOOTSTRAPPED)
d2go-main
tests/skip_init/test_registries_bootstrap.py
d2go-main
tests/trainer/__init__.py
#!/usr/bin/env fbpython # (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary. import os import unittest from typing import Dict, List import torch from d2go.config import CfgNode from d2go.modeling import modeling_hook as mh from d2go.registry.builtin import META_ARCH_REGISTRY from d2go.runner.default_runner import Detectron2GoRunner from d2go.trainer.activation_checkpointing import ( ActivationCheckpointModelingHook, add_activation_checkpoint_configs, ) from d2go.utils.testing.data_loader_helper import create_local_dataset from d2go.utils.testing.helper import tempdir from detectron2.structures import ImageList from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( CheckpointWrapper, ) @META_ARCH_REGISTRY.register() class MetaArchForTestAC(torch.nn.Module): def __init__(self, cfg: CfgNode) -> None: super().__init__() self.conv = torch.nn.Conv2d(3, 4, kernel_size=3, stride=1, padding=1) self.bn = torch.nn.BatchNorm2d(4) self.relu = torch.nn.ReLU(inplace=True) self.linear = torch.nn.Linear(4, 4) self.avgpool = torch.nn.AdaptiveAvgPool2d((1, 1)) @property def device(self) -> torch._C.device: return self.conv1.weight.device def forward(self, inputs: List[Dict[str, torch.Tensor]]) -> Dict[str, torch.Tensor]: images = [x["image"] for x in inputs] images = ImageList.from_tensors(images, 1) ret = self.conv(images.tensor) ret = self.bn(ret) ret = self.relu(ret) ret = self.avgpool(ret) return {"loss": ret.norm()} def _get_cfg(runner, output_dir, dataset_name): cfg = runner.get_default_cfg() cfg.MODEL.DEVICE = "cpu" cfg.MODEL.META_ARCHITECTURE = "MetaArchForTestAC" cfg.DATASETS.TRAIN = (dataset_name,) cfg.DATASETS.TEST = (dataset_name,) cfg.INPUT.MIN_SIZE_TRAIN = (10,) cfg.INPUT.MIN_SIZE_TEST = (10,) cfg.SOLVER.MAX_ITER = 3 cfg.SOLVER.STEPS = [] cfg.SOLVER.WARMUP_ITERS = 1 cfg.SOLVER.CHECKPOINT_PERIOD = 3 cfg.SOLVER.IMS_PER_BATCH = 2 cfg.MODEL_EMA.ENABLED = True cfg.OUTPUT_DIR = output_dir return cfg class TestActivationCheckpointing(unittest.TestCase): def test_ac_config(self) -> None: cfg = CfgNode() add_activation_checkpoint_configs(cfg) self.assertTrue(isinstance(cfg.ACTIVATION_CHECKPOINT, CfgNode)) self.assertEqual(cfg.ACTIVATION_CHECKPOINT.REENTRANT, False) self.assertEqual( cfg.ACTIVATION_CHECKPOINT.AUTO_WRAP_POLICY, "always_wrap_policy" ) self.assertEqual(cfg.ACTIVATION_CHECKPOINT.AUTO_WRAP_LAYER_CLS, []) def test_ac_modeling_hook_apply(self) -> None: """Check that the hook is registered""" self.assertTrue("ActivationCheckpointModelingHook" in mh.MODELING_HOOK_REGISTRY) cfg = CfgNode() add_activation_checkpoint_configs(cfg) ac_hook = ActivationCheckpointModelingHook(cfg) model = MetaArchForTestAC(cfg) ac_hook.apply(model) children = list(model.children()) self.assertTrue(len(children) == 5) for child in children: self.assertTrue(isinstance(child, CheckpointWrapper)) def test_ac_modeling_hook_autowrap(self) -> None: cfg = CfgNode() add_activation_checkpoint_configs(cfg) cfg.ACTIVATION_CHECKPOINT.AUTO_WRAP_POLICY = "layer_based_auto_wrap_policy" cfg.ACTIVATION_CHECKPOINT.AUTO_WRAP_LAYER_CLS = ["Conv2d", "BatchNorm2d"] ac_hook = ActivationCheckpointModelingHook(cfg) model = MetaArchForTestAC(cfg) ac_hook.apply(model) self.assertTrue(isinstance(model.conv, CheckpointWrapper)) self.assertTrue(isinstance(model.bn, CheckpointWrapper)) self.assertFalse(isinstance(model.linear, CheckpointWrapper)) @tempdir def test_ac_runner(self, tmp_dir) -> None: ds_name = create_local_dataset(tmp_dir, 5, 10, 10) runner = Detectron2GoRunner() cfg = _get_cfg(runner, tmp_dir, ds_name) cfg.MODEL.MODELING_HOOKS = ["ActivationCheckpointModelingHook"] cfg.ACTIVATION_CHECKPOINT.AUTO_WRAP_POLICY = "layer_based_auto_wrap_policy" cfg.ACTIVATION_CHECKPOINT.AUTO_WRAP_LAYER_CLS = ["Conv2d", "BatchNorm2d"] cfg.MODEL_EMA.DECAY_WARM_UP_FACTOR = -1 model = runner.build_model(cfg) runner.do_train(cfg, model, resume=False) self.assertTrue(os.path.exists(os.path.join(tmp_dir, "model_0000002.pth"))) # resume training onto a non-AC-wrapped model cfg.MODEL.MODELING_HOOKS = [] cfg.SOLVER.MAX_ITER = 6 model = runner.build_model(cfg) runner.do_train(cfg, model, resume=True) self.assertTrue(os.path.exists(os.path.join(tmp_dir, "model_0000005.pth")))
d2go-main
tests/trainer/test_activation_checkpointing.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os from d2go.initializer import initialize_all # NOTE: by default a list of initializations will run whenever D2Go is first imported, # so that users don't need to do any manual iniitialization other than importing `d2go`. # Environment variable can be used to skip initialization for special cases like unit test skip_initialization = os.environ.get("D2GO_IMPORT_SKIP_INITIALIZATION", "0") == "1" if not skip_initialization: initialize_all()
d2go-main
d2go/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from d2go.registry.bootstrap import bootstrap_registries from mobile_cv.common.misc.oss_utils import fb_overwritable _INITIALIZED = False def initialize_all(boostrap_registries: bool = False) -> None: global _INITIALIZED if _INITIALIZED: return _INITIALIZED = True _initialize_all(boostrap_registries=boostrap_registries) def _initialize_all(boostrap_registries: bool) -> None: _setup_env() _register_builtin_datasets() _populate_registries() if boostrap_registries: bootstrap_registries(enable_cache=True, catch_exception=True) # fmt: off @fb_overwritable() def _setup_env(): # register torch vision ops from torchvision.ops import nms # noqa # setup Detectron2 environments from detectron2.utils.env import setup_environment as setup_d2_environment # isort:skip setup_d2_environment() @fb_overwritable() def _register_builtin_datasets(): # Register D2 builtin datasets import detectron2.data # noqa F401 @fb_overwritable() def _populate_registries(): from d2go import optimizer # noqa from d2go.data import dataset_mappers # noqa from d2go.modeling.backbone import fbnet_v2 # noqa # fmt: on
d2go-main
d2go/initializer.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Extend the mobile_cv.torch.utils_pytorch.distributed_helper to add D2/D2Go specific features, functions in this module share the same signatures as the ones from mobile_cv. """ import logging from dataclasses import dataclass from datetime import timedelta from typing import Any, Callable, Dict, Optional, Tuple, TypeVar import detectron2.utils.comm as d2_comm import mobile_cv.torch.utils_pytorch.comm as mcv_comm import torch from d2go.config import CfgNode, temp_defrost from d2go.utils.launch_environment import get_launch_environment from mobile_cv.torch.utils_pytorch.comm import ( # noqa BaseSharedContext, get_shared_context, set_shared_context, ) from mobile_cv.torch.utils_pytorch.distributed_helper import ( DEFAULT_TIMEOUT, DistributedParams, enable_dist_process_groups, launch as _launch, launch_deco as _launch_deco, save_return_deco, ) logger = logging.getLogger(__name__) _RT = TypeVar("_RT") # return type @dataclass class D2GoSharedContext(BaseSharedContext): """ Shared context that can be initialied before launching the workers passed to all workers. """ runner_shared_context: Any # BC-compatible def get_local_rank() -> int: return mcv_comm.get_local_rank() # BC-compatible def get_num_processes_per_machine() -> int: return mcv_comm.get_local_size() def _maybe_convert_to_cpu_run(args, backend): if get_launch_environment() == "local" and not torch.cuda.is_available(): assert len(args) > 0, args cfg = args[0] if isinstance(cfg, CfgNode) and cfg.MODEL.DEVICE == "cuda": logger.warning( "Detected that CUDA is not available on this machine, set MODEL.DEVICE" " to cpu and backend to GLOO" ) with temp_defrost(cfg): cfg.MODEL.DEVICE = "cpu" backend = "GLOO" return args, backend # Modify mobile_cv's `default_distributed_worker` to also setup D2's comm module def distributed_worker( main_func: Callable[..., _RT], args: Tuple[Any, ...], kwargs: Dict[str, Any], backend: str, init_method: Optional[str] = None, dist_params: Optional[DistributedParams] = None, return_save_file: Optional[str] = None, timeout: timedelta = DEFAULT_TIMEOUT, shared_context: Optional[BaseSharedContext] = None, ) -> _RT: if shared_context: set_shared_context( shared_context ) # set the global shared context from the args passed in by mp spawn dist_params = dist_params or DistributedParams.from_environ() args, backend = _maybe_convert_to_cpu_run(args, backend) with enable_dist_process_groups(backend, init_method, dist_params, timeout): d2_comm._LOCAL_PROCESS_GROUP = mcv_comm._LOCAL_PROCESS_GROUP # Now the D2's comm module should be fully functional deco = save_return_deco(return_save_file, dist_params.global_rank) return deco(main_func)(*args, **kwargs) def launch_deco(**kwargs): """ launch_deco for d2go distributed worker """ return _launch_deco(launcher=launch, **kwargs) def launch( main_func: Callable[..., _RT], num_processes_per_machine: int, num_machines: int = 1, machine_rank: int = 0, dist_url: Optional[str] = None, backend: str = "NCCL", always_spawn: bool = False, launch_method: str = "multiprocessing", shared_context: Optional[D2GoSharedContext] = None, timeout: timedelta = DEFAULT_TIMEOUT, args: Tuple[Any, ...] = (), kwargs: Dict[str, Any] = None, ) -> Dict[int, _RT]: """ D2Go's specialized launch method, it does a few more things on top of mcv's launch: - Automatically convert GPU to CPU if CUDA is not available. - Add D2Go-specific initialziation in the _distributed_worker. """ args, backend = _maybe_convert_to_cpu_run(args, backend) return _launch( main_func=main_func, num_processes_per_machine=num_processes_per_machine, num_machines=num_machines, machine_rank=machine_rank, dist_url=dist_url, backend=backend, always_spawn=always_spawn, launch_method=launch_method, shared_context=shared_context, timeout=timeout, args=args, kwargs=kwargs, _distributed_worker=distributed_worker, )
d2go-main
d2go/distributed.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import argparse import logging import os import time from typing import Callable, List, Optional, Tuple, Type, TypeVar, Union import detectron2.utils.comm as comm import torch from d2go.config import ( auto_scale_world_size, CfgNode, load_full_config_from_file, reroute_config_path, temp_defrost, ) from d2go.config.utils import get_diff_cfg from d2go.distributed import ( D2GoSharedContext, get_local_rank, get_num_processes_per_machine, ) from d2go.runner import import_runner from d2go.runner.api import RunnerV2Mixin from d2go.runner.default_runner import BaseRunner from d2go.runner.lightning_task import DefaultTask from d2go.utils.helper import run_once from d2go.utils.launch_environment import get_launch_environment from d2go.utils.logging import initialize_logging, replace_print_with_logging from detectron2.utils.collect_env import collect_env_info from detectron2.utils.env import seed_all_rng from detectron2.utils.file_io import PathManager from detectron2.utils.logger import setup_logger as _setup_logger from detectron2.utils.serialize import PicklableWrapper from mobile_cv.common.misc.py import FolderLock, MultiprocessingPdb, post_mortem_if_fail logger = logging.getLogger(__name__) _RT = TypeVar("_RT") @run_once() def setup_root_logger(logging_level: int = logging.INFO) -> None: """ Sets up the D2Go root logger. When a new logger is created, it lies in a tree. If the logger being used does not have a specific level being specified, it will default to using its parent logger. In this case, by setting the root logger level to debug, or what is given, we change the default behaviour for all loggers. See https://docs.python.org/3/library/logging.html for a more in-depth description """ initialize_logging(logging_level) replace_print_with_logging() def basic_argument_parser( distributed=True, requires_output_dir=True, ): """Basic cli tool parser for Detectron2Go binaries""" parser = argparse.ArgumentParser(description="PyTorch Object Detection Training") parser.add_argument( "--runner", type=str, default="d2go.runner.GeneralizedRCNNRunner", help="Full class name, i.e. (package.)module.class", ) parser.add_argument( "--config-file", help="path to config file", default="", metavar="FILE", ) parser.add_argument( "--output-dir", help="When given, this will override the OUTPUT_DIR in the config-file", required=requires_output_dir, default=None, type=str, ) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) parser.add_argument( "--save-return-file", help="When given, the main function outputs will be serialized and saved to this file", default=None, type=str, ) parser.add_argument( "--disable-post-mortem", action="store_true", help="whether to NOT connect pdb on failure, which only works locally", ) if distributed: parser.add_argument( "--num-processes", type=int, default=1, help="number of gpus per machine" ) parser.add_argument("--num-machines", type=int, default=1) parser.add_argument("--run-as-worker", type=bool, default=False) parser.add_argument( "--machine-rank", type=int, default=0, help="the rank of this machine (unique per machine)", ) parser.add_argument( "--dist-url", default="file:///tmp/d2go_dist_file_{}".format(time.time()) ) parser.add_argument("--dist-backend", type=str, default="NCCL") return parser def build_basic_cli_args( config_path: Optional[str] = None, output_dir: Optional[str] = None, runner_name: Optional[str] = None, save_return_file: Optional[str] = None, num_processes: Optional[Union[int, str]] = None, num_machines: Optional[Union[int, str]] = None, machine_rank: Optional[Union[int, str]] = None, dist_url: Optional[str] = None, dist_backend: Optional[str] = None, disable_post_mortem: bool = False, run_as_worker: bool = False, # Evaluator args below predictor_path: Optional[str] = None, num_threads: Optional[int] = None, caffe2_engine: Optional[int] = None, caffe2_logging_print_net_summary: Optional[int] = None, ) -> List[str]: """ Returns parameters in the form of CLI arguments for the binary using basic_argument_parser to set up its argument parser. For the parameters definition and meaning, see basic_argument_parser. """ args: List[str] = [] if config_path is not None: args += ["--config-file", config_path] if output_dir is not None: args += ["--output-dir", output_dir] if runner_name is not None: args += ["--runner", runner_name] if save_return_file is not None: args += ["--save-return-file", str(save_return_file)] if disable_post_mortem: args += ["--disable-post-mortem"] if run_as_worker: args += ["--run-as-worker", str(run_as_worker)] if num_processes is not None: args += ["--num-processes", str(num_processes)] if num_machines is not None: args += ["--num-machines", str(num_machines)] if machine_rank is not None: args += ["--machine-rank", str(machine_rank)] if dist_url is not None: args += ["--dist-url", str(dist_url)] if dist_backend is not None: args += ["--dist-backend", str(dist_backend)] if predictor_path is not None: args += ["--predictor-path", predictor_path] if num_threads is not None: args += ["--num-threads", int(num_threads)] if caffe2_engine is not None: args += ["--caffe2-engine", int(caffe2_engine)] if caffe2_logging_print_net_summary is not None: args += [ "--caffe2_logging_print_net_summary", str(caffe2_logging_print_net_summary), ] return args def create_cfg_from_cli( config_file: str, overwrites: Optional[List[str]], runner_class: Union[None, str, Type[BaseRunner], Type[DefaultTask]], ) -> CfgNode: """ Centralized function to load config object from config file. It currently supports: - YACS based config (return yacs's CfgNode) """ config_file = reroute_config_path(config_file) with PathManager.open(config_file, "r") as f: # TODO: switch to logger, note that we need to initilaize logger outside of main # for running locally. print("Loaded config file {}:\n{}".format(config_file, f.read())) if isinstance(runner_class, str): print(f"Importing runner: {runner_class} ...") runner_class = import_runner(runner_class) if runner_class is None or issubclass(runner_class, RunnerV2Mixin): # Runner-less API cfg = load_full_config_from_file(config_file) else: # backward compatible for old API cfg = runner_class.get_default_cfg() cfg.merge_from_file(config_file) cfg.merge_from_list(overwrites or []) cfg.freeze() return cfg def prepare_for_launch( args, ) -> Tuple[CfgNode, str, str]: """ Load config, figure out working directory, create runner. - when args.config_file is empty, returned cfg will be the default one - returned output_dir will always be non empty, args.output_dir has higher priority than cfg.OUTPUT_DIR. """ logger.info(args) cfg = create_cfg_from_cli( config_file=args.config_file, overwrites=args.opts, runner_class=args.runner, ) # overwrite the output_dir based on config if output is not set via cli assert args.output_dir or args.config_file output_dir = args.output_dir or cfg.OUTPUT_DIR return cfg, output_dir, args.runner def maybe_override_output_dir(cfg: CfgNode, output_dir: str): if cfg.OUTPUT_DIR != output_dir: with temp_defrost(cfg): logger.warning( "Override cfg.OUTPUT_DIR ({}) to be the same as output_dir {}".format( cfg.OUTPUT_DIR, output_dir ) ) cfg.OUTPUT_DIR = output_dir def setup_before_launch( cfg: CfgNode, output_dir: str, runner_class: Union[None, str, Type[BaseRunner], Type[DefaultTask]], ) -> Union[None, D2GoSharedContext]: """ Setup logic before spawning workers. Including: - Shared context initilization to be passed to all workers """ if isinstance(runner_class, str): logger.info(f"Importing runner: {runner_class} ...") runner_class = import_runner(runner_class) if hasattr(runner_class, "create_shared_context"): return runner_class.create_shared_context(cfg) return None def setup_after_launch( cfg: CfgNode, output_dir: str, runner_class: Union[None, str, Type[BaseRunner], Type[DefaultTask]], ) -> Union[None, BaseRunner, Type[DefaultTask]]: """ Binary-level setup after entering DDP, including - creating working directory - setting up logger - logging environment - printing and dumping config - (optional) initializing runner """ create_dir_on_global_main_process(output_dir) setup_loggers(output_dir) log_system_info() cfg.freeze() maybe_override_output_dir(cfg, output_dir) logger.info("Running with full config:\n{}".format(cfg)) dump_cfg(cfg, os.path.join(output_dir, "config.yaml")) if isinstance(runner_class, str): logger.info(f"Importing runner: {runner_class} ...") runner_class = import_runner(runner_class) if issubclass(runner_class, DefaultTask): # TODO(T123679504): merge this with runner code path to return runner instance logger.info(f"Importing lightning task: {runner_class} ...") runner = runner_class elif issubclass(runner_class, BaseRunner): logger.info(f"Initializing runner: {runner_class} ...") runner = runner_class() runner = initialize_runner(runner, cfg) logger.info("Running with runner: {}".format(runner)) else: assert runner_class is None, f"Unsupported runner class: {runner_class}" runner = None # save the diff config default_cfg = ( runner_class.get_default_cfg() if runner_class and not issubclass(runner_class, RunnerV2Mixin) else cfg.get_default_cfg() ) dump_cfg( get_diff_cfg(default_cfg, cfg), os.path.join(output_dir, "diff_config.yaml"), ) # scale the config after dumping so that dumped config files keep original world size auto_scale_world_size(cfg, new_world_size=comm.get_world_size()) # avoid random pytorch and CUDA algorithms during the training if cfg.SOLVER.DETERMINISTIC: logging.warning("Using deterministic training for the reproducibility") torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False torch.use_deterministic_algorithms(True) # reference: https://docs.nvidia.com/cuda/cublas/index.html#cublasApi_reproducibility os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8" if cfg.SEED > 0: seed_all_rng(cfg.SEED) return runner def setup_logger( module_name: str, output_dir: str, abbrev_name: Optional[str] = None, color: Optional[bool] = None, ) -> logging.Logger: if not color: color = get_launch_environment() == "local" if not abbrev_name: abbrev_name = module_name logger = _setup_logger( output_dir, distributed_rank=comm.get_rank(), color=color, name=module_name, abbrev_name=abbrev_name, enable_propagation=True, configure_stdout=False, ) return logger @run_once() def setup_loggers(output_dir): # Setup logging in each of the distributed processes. setup_root_logger() setup_logger("detectron2", output_dir, abbrev_name="d2") setup_logger("fvcore", output_dir) setup_logger("d2go", output_dir) setup_logger("mobile_cv", output_dir) # NOTE: all above loggers have FileHandler pointing to the same file as d2_logger. # Those files are opened upon creation, but it seems fine in 'a' mode. def log_system_info(): num_processes = get_num_processes_per_machine() logger.info( "Using {} processes per machine. Rank of current process: {}".format( num_processes, comm.get_rank() ) ) wf_id = os.getenv("WORKFLOW_RUN_ID", None) if wf_id is not None: logger.info("FBLearner Flow Run ID: {}".format(wf_id)) logger.info("Environment info:\n" + collect_env_info()) try: from detectron2.fb.utils import print_fbcode_info print_fbcode_info() except ImportError: pass def dump_cfg(cfg: CfgNode, path: str) -> None: if comm.is_main_process(): with PathManager.open(path, "w") as f: f.write(cfg.dump()) logger.info("Full config saved to {}".format(path)) def create_dir_on_global_main_process(path: str) -> None: if comm.get_rank() == 0 and path: PathManager.mkdirs(path) # Add a barrier to make sure the existance of the dir for non-master process comm.synchronize() def initialize_runner(runner: BaseRunner, cfg: CfgNode) -> BaseRunner: assert runner is not None, "now always requires a runner instance" runner._initialize(cfg) return runner def caffe2_global_init(logging_print_net_summary=0, num_threads=None): if num_threads is None: if get_num_processes_per_machine() > 1: # by default use single thread when DDP with multiple processes num_threads = 1 else: # GlobalInit will clean PyTorch's num_threads and set it to 1, # thus keep PyTorch's default value to make it truly default. num_threads = torch.get_num_threads() if not get_local_rank() == 0: logging_print_net_summary = 0 # only enable for local main process from caffe2.python import workspace workspace.GlobalInit( [ "caffe2", "--caffe2_log_level=2", "--caffe2_logging_print_net_summary={}".format(logging_print_net_summary), "--caffe2_omp_num_threads={}".format(num_threads), "--caffe2_mkl_num_threads={}".format(num_threads), ] ) logger.info("Using {} threads after GlobalInit".format(torch.get_num_threads())) def post_mortem_if_fail_for_main(main_func: Callable[..., _RT]) -> Callable[..., _RT]: def new_main_func(cfg, output_dir, *args, **kwargs) -> _RT: pdb_ = ( MultiprocessingPdb(FolderLock(output_dir)) if comm.get_world_size() > 1 else None # fallback to use normal pdb for single process ) return post_mortem_if_fail(pdb_)(main_func)(cfg, output_dir, *args, **kwargs) return PicklableWrapper(new_main_func)
d2go-main
d2go/setup.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import uuid from contextlib import ContextDecorator from d2go.checkpoint.log_checkpoint import log_checkpoint logger = logging.getLogger(__name__) class instrument_checkpoint(ContextDecorator): def __init__( self, checkpoint_type: str, ) -> None: super().__init__() self.unique_id = uuid.uuid1().int >> 97 self.checkpoint_type = checkpoint_type def __enter__(self) -> "instrument_checkpoint": log_checkpoint( checkpoint_type=self.checkpoint_type, unique_id=self.unique_id, state="begin", ) return self def __exit__(self, exc_type, exc_value, tb) -> bool: log_checkpoint( checkpoint_type=self.checkpoint_type, unique_id=self.unique_id, state="end", ) if exc_value is not None: # Re-raising the exception, otherwise it will be swallowed raise exc_value return True
d2go-main
d2go/checkpoint/checkpoint_instrumentation.py
# (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary. import json import os from typing import Callable, cast, IO import detectron2.utils.comm as comm import torch from d2go.checkpoint.checkpoint_instrumentation import instrument_checkpoint from d2go.checkpoint.utils import ( gather_ema_state_dict, gather_optimizer_state_dict, scatter_ema_state_dict, scatter_optimizer_state_dict, ) from d2go.quantization.modeling import QATCheckpointer from d2go.trainer.fsdp import FSDPWrapper from d2go.utils.misc import _log_api_usage_on_main_process from mobile_cv.torch.utils_pytorch.distributed_helper import interleave_by_rank from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType LOG_API_IDENTIFIER = "checkpointing.FSDPCheckpointer" def get_max_checkpoint_concurrency() -> int: return comm.get_world_size() # TODO: replace FSDPCheckpointer with central D2GoCheckpointer class FSDPCheckpointer(QATCheckpointer): """ Extend the Checkpointer to support saving/loading FSDP models """ def __init__( self, *args, concurrency_limit_fetcher: Callable[[], int] = get_max_checkpoint_concurrency, **kwargs, ): super().__init__(*args, **kwargs) self._concurrency_limit_fetcher: Callable[[], int] = concurrency_limit_fetcher def is_distributed(self) -> bool: return True @instrument_checkpoint("load") def load(self, path: str, checkpointables=None): """ Add support for loading sharded optimizer states in FSDP. .. note:: Loading optimizer states from regular checkpoints into FSDP models is currently not supported. In general users should not resume non-FSDP training with FSDP. """ if isinstance(self.model, FSDPWrapper): load_path = path if path: # loading path is a directory: local or sharded state dict is used if self.path_manager.isdir(path): # Get state dict type from metadata file metadata = self._load_metadata(path) state_dict_type = ( metadata["state_dict_type"] if metadata else "LOCAL_STATE_DICT" ) assert state_dict_type in ["LOCAL_STATE_DICT", "SHARDED_STATE_DICT"] self.logger.info( f"[FSDPCheckpointer] Loading from {state_dict_type} checkpoint ..." ) self.model.load_state_dict_type = StateDictType[state_dict_type] load_path = os.path.join(path, f"rank{comm.get_rank()}.pth") # loading path is a file: full global state dict is used else: self.logger.info( "[FSDPCheckpointer] Loading from FULL_STATE_DICT checkpoint ..." ) self.model.load_state_dict_type = StateDictType.FULL_STATE_DICT _log_api_usage_on_main_process( f"{LOG_API_IDENTIFIER}.load.fsdp.{self.model.load_state_dict_type.name}" # pyre-ignore ) # Convert local ckpt to global ckpt when we load from a local ckpt but want to save to global ckpt convert_local_ckpt_to_global = ( path and self.model.load_state_dict_type == StateDictType.LOCAL_STATE_DICT and self.model.state_dict_type == StateDictType.FULL_STATE_DICT ) # Load all checkpointables from local ckpt if we want to convert to global ckpt checkpointables_iter = ( self.checkpointables.keys() if checkpointables is None or convert_local_ckpt_to_global else checkpointables ) checkpointables_filtered = [ name for name in checkpointables_iter if name not in ["optimizer", "ema_state"] ] checkpoint = super().load( load_path, checkpointables=checkpointables_filtered ) if "optimizer" in checkpointables_iter: self.logger.info( f"[FSDPCheckpointer] Loading optimizer from {load_path} ..." ) optimizer = self.checkpointables["optimizer"] osd = checkpoint.pop("optimizer") scatter_optimizer_state_dict(optimizer, osd, self.model) if "ema_state" in checkpointables_iter: self.logger.info( f"[FSDPCheckpointer] Loading ema_state from {load_path} ..." ) ema_state = checkpoint.pop("ema_state") scatter_ema_state_dict(ema_state, self.model) # Convert local ckpt by resaving the current state if convert_local_ckpt_to_global: self.logger.info( "[FSDPCheckpointer] Converting local FSDP checkpoint to global checkpoint ..." ) self.save(os.path.basename(path), tag_last_ckpt=False, **checkpoint) self.logger.info( "[FSDPCheckpointer] Local-to-global checkpoint conversion finishes" ) # return all remaining checkpoints return checkpoint else: _log_api_usage_on_main_process(f"{LOG_API_IDENTIFIER}.load.ddp") return super().load(path, checkpointables=checkpointables) @instrument_checkpoint("save") def save(self, name: str, tag_last_ckpt=True, **kwargs) -> None: """ Add support for saving sharding models and optimizers. The rest of the code is copied from implementation in the superclass """ # checkpoint_type is used to annotate preemption checkpoints for internal checkpointer. Ignore it here kwargs.pop("checkpoint_type", None) # If no sharding, only the main process enters the saving codepath; # otherwise, all processes need to call state_dict() to enable state broadcasting among ranks if not isinstance(self.model, FSDPWrapper): _log_api_usage_on_main_process(f"{LOG_API_IDENTIFIER}.save.ddp") if comm.is_main_process(): return super().save(name, **kwargs) return _log_api_usage_on_main_process( f"{LOG_API_IDENTIFIER}.save.fsdp.{self.model.state_dict_type.name}" ) data = {} # FSDP: model.state_dict() needs to be called by all ranks before saving data["model"] = self.model.state_dict() for key, obj in self.checkpointables.items(): if key == "optimizer": data[key] = gather_optimizer_state_dict(obj, self.model) elif key == "ema_state": data[key] = gather_ema_state_dict(obj, self.model) else: data[key] = obj.state_dict() data.update(kwargs) # If using full state dict, only the main process does checkpoint saving; Otherwise, all processes do if self.model.state_dict_type != StateDictType.FULL_STATE_DICT: # Main process creates directory for local saves new_save_dir = os.path.join(self.save_dir, name) if comm.is_main_process(): if not self.path_manager.exists(new_save_dir): self.path_manager.mkdirs(new_save_dir) comm.synchronize() # Saving checkpoints basename = "rank{}.pth".format(comm.get_rank()) save_file = os.path.join(new_save_dir, basename) assert os.path.basename(save_file) == basename, basename # Limit the write concurrency to avoid QPS overload with interleave_by_rank( concurrency_limit=self._concurrency_limit_fetcher() ): self._save_file(data, save_file) # Main process tags last checkpoint if no errors in all processes comm.synchronize() if comm.is_main_process(): self._save_metadata(new_save_dir) if tag_last_ckpt: self.tag_last_checkpoint(name) elif comm.is_main_process(): basename = "{}.pth".format(name) save_file = os.path.join(self.save_dir, basename) assert os.path.basename(save_file) == basename, basename self._save_file(data, save_file) if tag_last_ckpt: self.tag_last_checkpoint(basename) def _save_file(self, data, filename): self.logger.info("Saving checkpoint to {}".format(filename)) with self.path_manager.open(filename, "wb") as f: torch.save(data, cast(IO[bytes], f)) def _load_file(self, f: str): # Limit the read concurrency to avoid QPS overload with interleave_by_rank(concurrency_limit=self._concurrency_limit_fetcher()): return super()._load_file(f) def _save_metadata(self, path): metadata_file = os.path.join(path, "metadata.json") obj = {"state_dict_type": self.model.state_dict_type.name} with self.path_manager.open(metadata_file, "w") as f: json.dump(obj, f) def _load_metadata(self, path): metadata_file = os.path.join(path, "metadata.json") if self.path_manager.exists(metadata_file): with self.path_manager.open(metadata_file, "r") as f: return json.load(f) else: return None
d2go-main
d2go/checkpoint/fsdp_checkpoint.py
from d2go.checkpoint.api import is_distributed_checkpoint from d2go.checkpoint.fsdp_checkpoint import FSDPCheckpointer __all__ = [ "is_distributed_checkpoint", "FSDPCheckpointer", ]
d2go-main
d2go/checkpoint/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging from mobile_cv.common.misc.oss_utils import fb_overwritable logger = logging.getLogger(__name__) @fb_overwritable() def log_checkpoint(checkpoint_type=str, unique_id=int, state=str) -> None: logger.info(f"Checkpoint:{unique_id} {checkpoint_type} {state} ")
d2go-main
d2go/checkpoint/log_checkpoint.py
# (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary. from fvcore.common.checkpoint import Checkpointer def is_distributed_checkpoint(checkpointer: Checkpointer) -> bool: """ Check if checkpointer supports distributed checkpointing, in which case all ops need to be invoked in every rank. """ if hasattr(checkpointer, "is_distributed"): return checkpointer.is_distributed() return False
d2go-main
d2go/checkpoint/api.py
import copy from d2go.modeling.ema import EMAState from d2go.trainer.fsdp import FSDPWrapper from torch.distributed.fsdp.fully_sharded_data_parallel import ( FullyShardedDataParallel as FSDP, StateDictType, ) def gather_optimizer_state_dict(optimizer, model: FSDPWrapper): """ Get full/local optimizer state dict from an FSDP model. """ # FSDP: full_optim_state_dict() needs to be called by all ranks if model.state_dict_type == StateDictType.FULL_STATE_DICT: return FSDP.full_optim_state_dict( model, optim=optimizer, rank0_only=model.rank0_only ) elif model.state_dict_type == StateDictType.SHARDED_STATE_DICT: return FSDP.sharded_optim_state_dict(model, optim=optimizer) return optimizer.state_dict() def scatter_optimizer_state_dict(optimizer, optim_state_dict, model: FSDPWrapper): """ Load a full/local optimizer state dict to a FSDP model. If using full state dict, shard and scatter the optimizer state dict before loading """ if model.load_state_dict_type == StateDictType.FULL_STATE_DICT: optim_state_dict = FSDP.shard_full_optim_state_dict( optim_state_dict, model, optim=optimizer ) elif model.load_state_dict_type == StateDictType.SHARDED_STATE_DICT: optim_state_dict = FSDP.flatten_sharded_optim_state_dict( optim_state_dict, model, optim=optimizer ) optimizer.load_state_dict(optim_state_dict) def gather_ema_state_dict(ema_state, model: FSDPWrapper): """ Get full/local EMA state dict from an FSDP model. If using full state dict, gather local sharded EMA states from all FSDP processes and aggregate them into a full EMA state dict """ if model.state_dict_type == StateDictType.FULL_STATE_DICT: # Apply local ema states to the model and unshard them with ema_state.apply_and_restore(model): with FSDP.summon_full_params( model, writeback=False, offload_to_cpu=model.offload_to_cpu, rank0_only=model.rank0_only, ): state = EMAState.FromModel(model) return state.state elif model.state_dict_type == StateDictType.SHARDED_STATE_DICT: with ema_state.apply_and_restore(model): # must deepcopy the state dict, else we return a reference to the model state return dict(copy.deepcopy(model.state_dict())) else: return ema_state.state_dict() def scatter_ema_state_dict(ema_state_dict, model: FSDPWrapper): """ Load a full/sharded/local EMA state dict to a FSDP model. If loading full state dict, ema_state_dict needs to be properly sharded for each FSDP process to store locally Note that, at load-time, model.state_dict_type is automatically set to the type of the state dict being loaded by accessing metadata, so there's no possibility of a save-load mismatch """ if model.load_state_dict_type == StateDictType.FULL_STATE_DICT: # Store the current model state. old_local_state = EMAState.FromModel(model) # Apply ema_state as a FULL state dict to the model so it can be properly sharded # Currently only [offload_to_cpu=False, rank0_only=False] is supported with FSDP.summon_full_params( model, writeback=True, offload_to_cpu=False, rank0_only=False, ): ema_state = EMAState() ema_state.load_state_dict(ema_state_dict) ema_state.apply_to(model) # Load ema_state from model model.ema_state.save_from(model) # Restore the old model state old_local_state.apply_to(model) elif model.load_state_dict_type == StateDictType.SHARDED_STATE_DICT: # Store current model state temporarily old_state = EMAState.FromModel(model) # Load the ema state dict into the model model.load_state_dict(ema_state_dict) # Save ema state with correct FQNs via EMAState.save_from model.ema_state.save_from(model) # restore old model state old_state.apply_to(model) else: model.ema_state.load_state_dict(ema_state_dict)
d2go-main
d2go/checkpoint/utils.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import itertools import logging import os from typing import Any, Dict, List, Optional, Union import detectron2.utils.comm as comm import torch from d2go.utils.parse_module_params import iterate_module_named_parameters from detectron2.solver.build import ( maybe_add_gradient_clipping as d2_maybe_add_gradient_clipping, reduce_param_groups, ) from detectron2.utils.file_io import PathManager from detectron2.utils.registry import Registry D2GO_OPTIM_MAPPER_REGISTRY = Registry("D2GO_OPTIM_MAPPER") logger = logging.getLogger(__name__) OptimizerModelsType = Union[torch.nn.Module, torch.nn.parallel.DistributedDataParallel] def get_optimizer_param_groups(model: OptimizerModelsType, cfg): """ Get override optimizer parameter groups * Get all default parameters # Get parameter groups for normalization and bias # Get parameter groups from model if the model implements `get_optimizer_param_groups()` Parameters appear later will override parameters appear earlier """ # get all parameters that requires gradient params = get_optimizer_param_groups_default(model) # parameter groups for lr params += get_optimizer_param_groups_lr( model, base_lr=cfg.SOLVER.BASE_LR, bias_lr_factor=cfg.SOLVER.BIAS_LR_FACTOR, lr_multipliers_overwrite=_merge_dict(cfg.SOLVER.LR_MULTIPLIER_OVERWRITE), ) # parameter groups for normalization, bias, and embedding params += get_optimizer_param_groups_weight_decay( model, weight_decay=cfg.SOLVER.WEIGHT_DECAY, weight_decay_norm=cfg.SOLVER.WEIGHT_DECAY_NORM, weight_decay_bias=cfg.SOLVER.WEIGHT_DECAY_BIAS, weight_decay_embed=cfg.SOLVER.WEIGHT_DECAY_EMBED, weight_decay_overwrite=_merge_dict(cfg.SOLVER.WEIGHT_DECAY_OVERWRITE), ) # parameter groups from model function `model.get_optimizer_param_groups(opts)` if isinstance(model, torch.nn.parallel.DistributedDataParallel): model = model.module if hasattr(model, "get_optimizer_param_groups"): logger.info( "Getting optimizer parameter groups from model.get_optimizer_param_groups()" ) params += model.get_optimizer_param_groups(cfg) return reduce_param_groups(params) def get_optimizer_param_groups_default(model: OptimizerModelsType): ret = [ { "params": list( filter( lambda x: x.requires_grad, model.parameters(), ) ), "param_names": [ name for name, _param in filter( lambda x: x[1].requires_grad, model.named_parameters() ) ], } ] return ret def get_optimizer_param_groups_lr( model: OptimizerModelsType, base_lr: float, bias_lr_factor: float = 1.0, lr_multipliers_overwrite: Optional[Dict[str, float]] = None, ): """ Allow setting up lr for modules base_lr: lr for all modules bias_lr_factor: scale factor for lr for bias term lr_multipliers_overwrite (dict: str-> float): Applying different lr multiplier to a set of parameters whose names containing certain keys. For example, if lr_multipliers_overwrite={'backbone': 0.1}, the LR for the parameters whose names containing 'backbone' will be scaled to 0.1x. Set lr_multipliers_overwrite=None if no multipliers required. """ params: List[Dict[str, Any]] = [] for ( module_name, _module, module_param_name, value, ) in iterate_module_named_parameters(model): cur_lr = base_lr if module_param_name == "bias": cur_lr = base_lr * bias_lr_factor if lr_multipliers_overwrite is not None: for kname, mult in lr_multipliers_overwrite.items(): if kname in module_name: # apply multiplier for the params containing kname, e.g. backbone cur_lr = cur_lr * mult params += [ { "param_names": [module_name + "." + module_param_name], "params": [value], "lr": cur_lr, } ] return params def get_optimizer_param_groups_weight_decay( model: OptimizerModelsType, weight_decay: Optional[float], weight_decay_norm: Optional[float] = None, weight_decay_bias: Optional[float] = None, weight_decay_embed: Optional[float] = None, weight_decay_overwrite: Optional[Dict[str, float]] = None, ): """ Allow setting up weight decay for normalization, embedding and bias """ if weight_decay_norm is None: weight_decay_norm = weight_decay if weight_decay_bias is None: weight_decay_bias = weight_decay if weight_decay_embed is None: weight_decay_embed = weight_decay norm_module_types = ( torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.BatchNorm3d, torch.nn.SyncBatchNorm, torch.nn.GroupNorm, torch.nn.InstanceNorm1d, torch.nn.InstanceNorm2d, torch.nn.InstanceNorm3d, torch.nn.LayerNorm, torch.nn.LocalResponseNorm, ) params: List[Dict[str, Any]] = [] for ( module_name, module, module_param_name, value, ) in iterate_module_named_parameters(model): cur_wd = weight_decay if isinstance(module, norm_module_types): cur_wd = weight_decay_norm elif isinstance(module, torch.nn.Embedding): cur_wd = weight_decay_embed elif module_param_name == "bias": cur_wd = weight_decay_bias if weight_decay_overwrite is not None: for kname, wd in weight_decay_overwrite.items(): if kname in module_param_name: cur_wd = wd if cur_wd is not None: params += [ { "param_names": [module_name + "." + module_param_name], "params": [value], "weight_decay": cur_wd, } ] return params def get_optimizer_param_groups_override( model: OptimizerModelsType, overrides: Optional[Dict[str, Dict[str, float]]] = None, ): """ Allow setting up overrides for parameter groups overrides (dict: str -> (dict: str -> float)): if not `None`, provides values for optimizer hyperparameters (LR, weight decay) for module parameters with a given name; e.g. {"embedding": {"lr": 0.01, "weight_decay": 0.1}} will set the LR and weight decay values for all module parameters named `embedding` (default: None) """ params: List[Dict[str, Any]] = [] if overrides is None: return params for ( _module_name, _module, module_param_name, value, ) in iterate_module_named_parameters(model): schedule_params = {} if module_param_name in overrides: schedule_params.update(overrides[module_param_name]) params += [{"params": [value], **schedule_params}] return params def maybe_add_gradient_clipping(cfg, optim): # optim: the optimizer class # detectron2 doesn't have full model gradient clipping now clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE enable = ( cfg.SOLVER.CLIP_GRADIENTS.ENABLED and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model" and clip_norm_val > 0.0 ) class FullModelGradientClippingOptimizer(optim): def step(self, closure=None): all_params = itertools.chain(*[x["params"] for x in self.param_groups]) torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val) super().step(closure=closure) if enable: return FullModelGradientClippingOptimizer return d2_maybe_add_gradient_clipping(cfg, optim) def _merge_dict(in_dict): ret_dict = {} assert all(isinstance(x, dict) for x in in_dict) for dic in in_dict: ret_dict.update(dic) return ret_dict @D2GO_OPTIM_MAPPER_REGISTRY.register() def sgd(cfg, model: torch.nn.Module) -> torch.optim.Optimizer: """ Build an optimizer from config. """ params = get_optimizer_param_groups(model, cfg) return maybe_add_gradient_clipping(cfg, torch.optim.SGD)( params=params, lr=cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM, nesterov=cfg.SOLVER.NESTEROV, foreach=True, ) @D2GO_OPTIM_MAPPER_REGISTRY.register() def adam(cfg, model: torch.nn.Module) -> torch.optim.Optimizer: """ Build an optimizer from config. """ params = get_optimizer_param_groups(model, cfg) return maybe_add_gradient_clipping(cfg, torch.optim.Adam)( params=params, lr=cfg.SOLVER.BASE_LR, betas=cfg.SOLVER.BETAS, eps=cfg.SOLVER.EPS ) @D2GO_OPTIM_MAPPER_REGISTRY.register() def adamw(cfg, model: torch.nn.Module) -> torch.optim.Optimizer: """ Build an optimizer from config. """ params = get_optimizer_param_groups(model, cfg) return maybe_add_gradient_clipping(cfg, torch.optim.AdamW)( params=params, lr=cfg.SOLVER.BASE_LR, betas=cfg.SOLVER.BETAS, eps=cfg.SOLVER.EPS, foreach=True if cfg.SOLVER.FUSED is False else False, fused=True if cfg.SOLVER.FUSED else False, ) @D2GO_OPTIM_MAPPER_REGISTRY.register() def sgd_mt(cfg, model: torch.nn.Module) -> torch.optim.Optimizer: """ Build a multi_tensor SGD optimizer that works significantly faster. This version is expected to be the default implementation for SGD optimizer by end of H1'21. To benefit from the speedup, the number of parameter groups needs to be reduced using `reduce_param_groups`. """ params = get_optimizer_param_groups(model, cfg) return maybe_add_gradient_clipping(cfg, torch.optim._multi_tensor.SGD)( params=params, lr=cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM, nesterov=cfg.SOLVER.NESTEROV, ) @D2GO_OPTIM_MAPPER_REGISTRY.register() def adamw_mt(cfg, model: torch.nn.Module) -> torch.optim.Optimizer: """ Build a multi_tensor adamw optimizer that works significantly faster. This version is expected to be the default implementation for adamw optimizer by end of H1'21. To benefit from the speedup, the number of parameter groups needs to be reduced using `reduce_param_groups`. """ params = get_optimizer_param_groups(model, cfg) return maybe_add_gradient_clipping(cfg, torch.optim._multi_tensor.AdamW)( params=params, lr=cfg.SOLVER.BASE_LR, eps=cfg.SOLVER.EPS ) def build_optimizer_mapper(cfg, model): name = cfg.SOLVER.OPTIMIZER optimizer = D2GO_OPTIM_MAPPER_REGISTRY.get(name.lower())(cfg, model) def _param_group_str(group, verbose=False): ret = {x: y for x, y in group.items() if x != "params" and x != "param_names"} ret["params"] = len(group["params"]) ret = sorted(ret.items()) ret = [f"{x[0]}: {x[1]}" for x in ret] if verbose and "param_names" in group: param_name_str = "\n" + "\n".join(group["param_names"]) + "\n" ret.append(f"param_names: {param_name_str}") ret = "{" + ", ".join(ret) + "}" return ret def _param_groups_str(groups, verbose=False): ret = "" for idx, group in enumerate(groups): ret += f"Param group {idx}: {_param_group_str(group, verbose=verbose)}\n" return ret logger.info(f"Using optimizer:\n{optimizer}") logger.info( f"optimizer parameter groups:\n{_param_groups_str(optimizer.param_groups)}" ) if ( comm.is_main_process() and hasattr(cfg, "OUTPUT_DIR") and PathManager.isdir(cfg.OUTPUT_DIR) ): param_groups_str_verbose = _param_groups_str( optimizer.param_groups, verbose=True ) output_file = os.path.join(cfg.OUTPUT_DIR, "param_groups.txt") if PathManager.isfile(output_file): logger.warning("param_groups.txt already exists") else: logger.info(f"Write parameter groups to file: {output_file}") with PathManager.open(output_file, "w") as f: f.write(param_groups_str_verbose) return optimizer
d2go-main
d2go/optimizer/build.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from d2go.optimizer.build import build_optimizer_mapper __all__ = ["build_optimizer_mapper"]
d2go-main
d2go/optimizer/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import contextlib import copy import logging from typing import List from unittest import mock import yaml from d2go.config.utils import reroute_config_path, resolve_default_config from detectron2.config import CfgNode as _CfgNode from fvcore.common.registry import Registry logger = logging.getLogger(__name__) CONFIG_CUSTOM_PARSE_REGISTRY = Registry("CONFIG_CUSTOM_PARSE") def _opts_to_dict(opts: List[str]): ret = {} for full_key, v in zip(opts[0::2], opts[1::2]): keys = full_key.split(".") cur = ret for key in keys[:-1]: if key not in cur: cur[key] = {} cur = cur[key] cur[keys[-1]] = v return ret class CfgNode(_CfgNode): @classmethod def cast_from_other_class(cls, other_cfg): """Cast an instance of other CfgNode to D2Go's CfgNode (or its subclass)""" new_cfg = cls(other_cfg) # copy all fields inside __dict__, this will preserve fields like __deprecated_keys__ for k, v in other_cfg.__dict__.items(): new_cfg.__dict__[k] = v return new_cfg def merge_from_file(self, cfg_filename: str, *args, **kwargs): cfg_filename = reroute_config_path(cfg_filename) with reroute_load_yaml_with_base(): res = super().merge_from_file(cfg_filename, *args, **kwargs) self._run_custom_processing(is_dump=False) return res def merge_from_list(self, cfg_list: List[str]): # NOTE: YACS's orignal merge_from_list could not handle non-existed keys even if # new_allow is set, override the method for support this. override_cfg = _opts_to_dict(cfg_list) res = super().merge_from_other_cfg(CfgNode(override_cfg)) self._run_custom_processing(is_dump=False) return res def dump(self, *args, **kwargs): cfg = copy.deepcopy(self) cfg._run_custom_processing(is_dump=True) return super(CfgNode, cfg).dump(*args, **kwargs) @staticmethod def load_yaml_with_base(filename: str, *args, **kwargs): filename = reroute_config_path(filename) with reroute_load_yaml_with_base(): return _CfgNode.load_yaml_with_base(filename, *args, **kwargs) def __hash__(self): # dump follows alphabetical order, thus good for hash use return hash(self.dump()) def _run_custom_processing(self, is_dump=False): """Apply config load post custom processing from registry""" frozen = self.is_frozen() self.defrost() for name, process_func in CONFIG_CUSTOM_PARSE_REGISTRY: logger.info(f"Apply config processing: {name}, is_dump={is_dump}") process_func(self, is_dump) if frozen: self.freeze() def get_default_cfg(self): """Return the defaults for this instance of CfgNode""" return resolve_default_config(self) @contextlib.contextmanager def temp_defrost(cfg): is_frozen = cfg.is_frozen() if is_frozen: cfg.defrost() yield cfg if is_frozen: cfg.freeze() @contextlib.contextmanager def temp_new_allowed(cfg: CfgNode): is_new_allowed = cfg.is_new_allowed() cfg.set_new_allowed(True) yield cfg cfg.set_new_allowed(is_new_allowed) @contextlib.contextmanager def reroute_load_yaml_with_base(): BASE_KEY = "_BASE_" _safe_load = yaml.safe_load _unsafe_load = yaml.unsafe_load def _reroute_base(cfg): if BASE_KEY in cfg: if isinstance(cfg[BASE_KEY], list): cfg[BASE_KEY] = [reroute_config_path(x) for x in cfg[BASE_KEY]] else: cfg[BASE_KEY] = reroute_config_path(cfg[BASE_KEY]) return cfg def mock_safe_load(f): cfg = _safe_load(f) cfg = _reroute_base(cfg) return cfg def mock_unsafe_load(f): cfg = _unsafe_load(f) cfg = _reroute_base(cfg) return cfg with mock.patch("yaml.safe_load", side_effect=mock_safe_load): with mock.patch("yaml.unsafe_load", side_effect=mock_unsafe_load): yield CONFIG_SCALING_METHOD_REGISTRY = Registry("CONFIG_SCALING_METHOD") def auto_scale_world_size(cfg, new_world_size): """ Usually the config file is written for a specific number of devices, this method scales the config (in-place!) according to the actual world size using the pre-registered scaling methods specified as cfg.SOLVER.AUTO_SCALING_METHODS. Note for registering scaling methods: - The method will only be called when scaling is needed. It won't be called if SOLVER.REFERENCE_WORLD_SIZE is 0 or equal to target world size. Thus cfg.SOLVER.REFERENCE_WORLD_SIZE will always be positive. - The method updates cfg in-place, no return is required. - No need for changing SOLVER.REFERENCE_WORLD_SIZE. Args: cfg (CfgNode): original config which contains SOLVER.REFERENCE_WORLD_SIZE and SOLVER.AUTO_SCALING_METHODS. new_world_size: the target world size """ old_world_size = cfg.SOLVER.REFERENCE_WORLD_SIZE if old_world_size == 0 or old_world_size == new_world_size: return cfg if len(cfg.SOLVER.AUTO_SCALING_METHODS) == 0: return cfg original_cfg = cfg.clone() frozen = original_cfg.is_frozen() cfg.defrost() assert len(cfg.SOLVER.AUTO_SCALING_METHODS) > 0, cfg.SOLVER.AUTO_SCALING_METHODS for scaling_method in cfg.SOLVER.AUTO_SCALING_METHODS: logger.info("Applying auto scaling method: {}".format(scaling_method)) CONFIG_SCALING_METHOD_REGISTRY.get(scaling_method)(cfg, new_world_size) assert ( cfg.SOLVER.REFERENCE_WORLD_SIZE == cfg.SOLVER.REFERENCE_WORLD_SIZE ), "Runner's scale_world_size shouldn't change SOLVER.REFERENCE_WORLD_SIZE" cfg.SOLVER.REFERENCE_WORLD_SIZE = new_world_size if frozen: cfg.freeze() from d2go.config.utils import get_cfg_diff_table table = get_cfg_diff_table(cfg, original_cfg) logger.info("Auto-scaled the config according to the actual world size: \n" + table) def load_full_config_from_file(filename: str) -> CfgNode: loaded_cfg = CfgNode.load_yaml_with_base(filename) loaded_cfg = CfgNode(loaded_cfg) # cast Dict to CfgNode cfg = loaded_cfg.get_default_cfg() cfg.merge_from_other_cfg(loaded_cfg) return cfg def convert_cfg_to_dict(cfg): if not isinstance(cfg, CfgNode): return cfg else: cfg_dict = dict(cfg) for k, v in cfg_dict.items(): cfg_dict[k] = convert_cfg_to_dict(v) return cfg_dict
d2go-main
d2go/config/config.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # forward the namespace to avoid `d2go.config.config` from d2go.config.config import ( auto_scale_world_size, CfgNode, CONFIG_CUSTOM_PARSE_REGISTRY, CONFIG_SCALING_METHOD_REGISTRY, convert_cfg_to_dict, load_full_config_from_file, temp_defrost, temp_new_allowed, ) from d2go.config.utils import reroute_config_path __all__ = [ "CONFIG_CUSTOM_PARSE_REGISTRY", "CONFIG_SCALING_METHOD_REGISTRY", "CfgNode", "auto_scale_world_size", "convert_cfg_to_dict", "load_full_config_from_file", "reroute_config_path", "temp_defrost", "temp_new_allowed", ]
d2go-main
d2go/config/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import os from enum import Enum from typing import Any, Dict, List import pkg_resources from d2go.registry.builtin import CONFIG_UPDATER_REGISTRY from mobile_cv.common.misc.oss_utils import fb_overwritable logger = logging.getLogger(__name__) DEFAULTS_KEY = "_DEFAULTS_" def reroute_config_path(path: str) -> str: """ Supporting rerouting the config files for convenience: d2go:// -> mobile-vision/d2go/... detectron2go:// -> mobile-vision/d2go/configs/... detectron2:// -> vision/fair/detectron2/configs/... Those config are considered as code, so they'll reflect your current checkout, try using canary if you have local changes. """ assert isinstance(path, str), path if path.startswith("d2go://"): rel_path = path[len("d2go://") :] return pkg_resources.resource_filename("d2go", rel_path) elif path.startswith("detectron2go://"): rel_path = path[len("detectron2go://") :] return pkg_resources.resource_filename( "d2go", os.path.join("configs", rel_path) ) elif path.startswith("detectron2://"): rel_path = path[len("detectron2://") :] return pkg_resources.resource_filename( "detectron2.model_zoo", os.path.join("configs", rel_path) ) else: return reroute_fb_config_path(path) @fb_overwritable() def reroute_fb_config_path(path: str) -> str: return path def flatten_config_dict(dic, reorder=True): """ Flattens nested dict into single layer dict, for example: flatten_config_dict({ "MODEL": { "FBNET_V2": { "ARCH_DEF": "val0", "ARCH": "val1:, }, } }) => {"MODEL.FBNET_V2.ARCH_DEF": "val0", "MODEL.FBNET_V2.ARCH": "val1"} Args: dic (dict or CfgNode): a nested dict whose keys are strings. reorder (bool): if True, the returned dict will be sorted according to the keys; otherwise original order will be preserved. Returns: dic: a single-layer dict """ return _flatten_config_dict(dic, reorder=reorder, prefix="") def _flatten_config_dict(x, reorder, prefix): if not isinstance(x, dict): return {prefix: x} d = {} for k in sorted(x.keys()) if reorder else x.keys(): v = x[k] new_key = f"{prefix}.{k}" if prefix else k d.update(_flatten_config_dict(v, reorder, new_key)) return d def config_dict_to_list_str(config_dict: Dict) -> List[str]: """Creates a list of str given configuration dict This can be useful to generate pretraining or overwrite opts in D2Go when a user has config_dict """ d = flatten_config_dict(config_dict) str_list = [] for k, v in d.items(): str_list.append(k) str_list.append(str(v)) return str_list def get_from_flattened_config_dict(dic, flattened_key, default=None): """ Reads out a value from the nested config dict using flattened config key (i.e. all keys from each level put together with "." separator), the default value is returned if the flattened key doesn't exist. e.g. if the config dict is MODEL: TEST: SCORE_THRESHOLD: 0.7 Then to access the value of SCORE_THRESHOLD, this API should be called >> score_threshold = get_from_flattened_config_dict(cfg, "MODEL.TEST.SCORE_THRESHOLD") """ for k in flattened_key.split("."): if k not in dic: return default dic = dic[k] return dic def get_cfg_diff_table(cfg, original_cfg): """ Print the different of two config dicts side-by-side in a table """ all_old_keys = list(flatten_config_dict(original_cfg, reorder=True).keys()) all_new_keys = list(flatten_config_dict(cfg, reorder=True).keys()) diff_table = [] if all_old_keys != all_new_keys: logger = logging.getLogger(__name__) mismatched_old_keys = set(all_old_keys) - set(all_new_keys) mismatched_new_keys = set(all_new_keys) - set(all_old_keys) logger.warning( "Config key mismatched.\n" f"Mismatched old keys: {mismatched_old_keys}\n" f"Mismatched new keys: {mismatched_new_keys}" ) for old_key in mismatched_old_keys: old_value = get_from_flattened_config_dict(original_cfg, old_key) diff_table.append([old_key, old_value, "Key not exists"]) for new_key in mismatched_new_keys: new_value = get_from_flattened_config_dict(cfg, new_key) diff_table.append([new_key, "Key not exists", new_value]) # filter out mis-matched keys all_old_keys = [x for x in all_old_keys if x not in mismatched_old_keys] all_new_keys = [x for x in all_new_keys if x not in mismatched_new_keys] for full_key in all_new_keys: old_value = get_from_flattened_config_dict(original_cfg, full_key) new_value = get_from_flattened_config_dict(cfg, full_key) if old_value != new_value: diff_table.append([full_key, old_value, new_value]) from tabulate import tabulate table = tabulate( diff_table, tablefmt="pipe", headers=["config key", "old value", "new value"], ) return table def get_diff_cfg(old_cfg, new_cfg): """ outputs a CfgNode containing keys, values appearing in new_cfg and not in old_cfg. If `new_allowed` is not set, then new keys will throw a KeyError old_cfg: CfgNode, the original config, usually the dafulat new_cfg: CfgNode, the full config being passed by the user if new allowed is not set on new_cfg, key error is raised returns: CfgNode, a config containing only key, value changes between old_cfg and new_cfg example: Cfg1: SYSTEM: NUM_GPUS: 2 TRAIN: SCALES: (1, 2) DATASETS: train_2017: 17: 1 18: 1 Cfg2: SYSTEM: NUM_GPUS: 2 TRAIN: SCALES: (4, 5, 8) DATASETS: train_2017: 17: 1 18: 1 get_diff_cfg(Cfg1, Cfg2) gives: TRAIN: SCALES: (8, 16, 32) """ def get_diff_cfg_rec(old_cfg, new_cfg, out): for key in new_cfg.keys(): if key not in old_cfg.keys() and old_cfg.is_new_allowed(): out[key] = new_cfg[key] elif old_cfg[key] != new_cfg[key]: if type(new_cfg[key]) is type(out): out[key] = out.__class__() out[key] = get_diff_cfg_rec(old_cfg[key], new_cfg[key], out[key]) else: out[key] = new_cfg[key] return out out = new_cfg.__class__() diff_cfg = get_diff_cfg_rec(old_cfg, new_cfg, out) # Keep the `_DEFAULTS_` even though they should be the same old_defaults = old_cfg.get(DEFAULTS_KEY, None) new_defaults = new_cfg.get(DEFAULTS_KEY, None) assert ( old_defaults == new_defaults ), f"{DEFAULTS_KEY} doesn't match! old ({old_defaults}) vs new ({new_defaults})" if new_defaults is not None: diff_cfg[DEFAULTS_KEY] = new_defaults return diff_cfg def namedtuple_to_dict(obj: Any): """Convert NamedTuple or dataclass to dict so it can be used as config""" res = {} for k, v in obj.__dict__.items(): if isinstance(v, Enum): # in case of enum, serialize the enum value res[k] = v.value else: res[k] = v return res def resolve_default_config(cfg): if DEFAULTS_KEY not in cfg: raise ValueError( f"Can't resolved default config because `{DEFAULTS_KEY}` is" f" missing from cfg: \n{cfg}" ) updater_names: List[str] = cfg[DEFAULTS_KEY] assert isinstance(updater_names, list), updater_names assert [isinstance(x, str) for x in updater_names], updater_names logger.info(f"Resolving default config by applying updaters: {updater_names} ...") # starting from a empty CfgNode, sequentially apply the generator cfg = type(cfg)() for name in updater_names: updater = CONFIG_UPDATER_REGISTRY.get(name) cfg = updater(cfg) # the resolved default config should keep the same default generator cfg[DEFAULTS_KEY] = updater_names return cfg
d2go-main
d2go/config/utils.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging from typing import List from d2go.config import CfgNode from d2go.utils.gpu_memory_profiler import log_memory_snapshot, record_memory_history from detectron2.engine.train_loop import HookBase from detectron2.utils.registry import Registry logger = logging.getLogger(__name__) # List of functions to add hooks for trainer, all functions in the registry will # be called to add hooks # func(hooks: List[HookBase]) -> None TRAINER_HOOKS_REGISTRY = Registry("TRAINER_HOOKS_REGISTRY") def update_hooks_from_registry(hooks: List[HookBase], cfg: CfgNode): for name, hook_func in TRAINER_HOOKS_REGISTRY: logger.info(f"Update trainer hooks from {name}...") hook_func(hooks, cfg) class D2GoGpuMemorySnapshot(HookBase): """ A profiler that logs GPU memory snapshot during training. There are three places that logging could happen: 1. start of training d2go records memory snapshots before model instantiation and logs snapshots after `log_n_steps` iterations. This is to capture the typical memory peak at model instantiation and the first few iterations 2. during training d2go records memory snapshots at `log_during_train_at` iteration and logs snapshots after `log_n_steps` iterations. This is to capture the stabilized memory utilization during training. 3. OOM Right before OOM, the GPU memory snapshot will be logged to help diagnose OOM issues. """ def __init__( self, output_dir, log_n_steps: int = 3, log_during_train_at: int = 550, trace_max_entries: int = 1000000, ) -> None: self.output_dir = output_dir self.step = 0 self.log_n_steps = log_n_steps self.log_during_train_at = log_during_train_at self.trace_max_entries = trace_max_entries logger.warning( "WARNING: Memory snapshot profiler is enabled. This may cause ranks to die and training jobs to get stuck. Please use with caution." ) def before_step(self): if self.trainer.iter == self.log_during_train_at: record_memory_history(self.trace_max_entries) def after_step(self): if self.step == self.log_n_steps - 1: log_memory_snapshot(self.output_dir, file_prefix=f"iter{self.trainer.iter}") if self.trainer.iter == self.log_during_train_at + self.log_n_steps - 1: log_memory_snapshot(self.output_dir, file_prefix=f"iter{self.trainer.iter}") self.step += 1
d2go-main
d2go/runner/training_hooks.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import importlib from typing import Optional, Type, Union from d2go.runner.api import RunnerV2Mixin from d2go.runner.default_runner import ( BaseRunner, Detectron2GoRunner, GeneralizedRCNNRunner, ) from d2go.runner.lightning_task import DefaultTask from d2go.runner.training_hooks import TRAINER_HOOKS_REGISTRY __all__ = [ "RunnerV2Mixin", "BaseRunner", "Detectron2GoRunner", "GeneralizedRCNNRunner", "TRAINER_HOOKS_REGISTRY", "create_runner", "import_runner", ] # TODO: remove this function def create_runner( class_full_name: Optional[str], *args, **kwargs ) -> Union[BaseRunner, Type[DefaultTask]]: """Constructs a runner instance if class is a d2go runner. Returns class type if class is a Lightning module. """ if class_full_name is None: runner_class = GeneralizedRCNNRunner else: runner_class = import_runner(class_full_name) if issubclass(runner_class, DefaultTask): # Return runner class for Lightning module since it requires config # to construct return runner_class return runner_class(*args, **kwargs) def import_runner( class_full_name: str, check: bool = True ) -> Type[Union[BaseRunner, DefaultTask]]: runner_module_name, runner_class_name = class_full_name.rsplit(".", 1) runner_module = importlib.import_module(runner_module_name) runner_class = getattr(runner_module, runner_class_name) if check and not ( issubclass(runner_class, BaseRunner) ^ issubclass(runner_class, DefaultTask) ): raise ValueError( f"The runner must be subclass of either `BaseRunner` or `DefaultTaks`," f" found: {runner_class}" ) return runner_class
d2go-main
d2go/runner/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from typing import final from d2go.config import CfgNode class RunnerV2Mixin(object): """ Interface for (V2) Runner: - `get_default_cfg` is not a runner method anymore. """ @classmethod @final def get_default_cfg(cls) -> CfgNode: raise NotImplementedError("")
d2go-main
d2go/runner/api.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from d2go.config import CfgNode as CN from d2go.data.build import ( add_random_subset_training_sampler_default_configs, add_weighted_training_sampler_default_configs, ) from d2go.data.config import add_d2go_data_default_configs from d2go.modeling.backbone.fbnet_cfg import add_fbnet_v2_default_configs from d2go.modeling.ema import add_model_ema_configs from d2go.modeling.kmeans_anchors import add_kmeans_anchors_cfg from d2go.modeling.meta_arch.fcos import add_fcos_configs from d2go.modeling.model_freezing_utils import add_model_freezing_configs from d2go.modeling.subclass import add_subclass_configs from d2go.quantization.modeling import add_quantization_default_configs from d2go.registry.builtin import CONFIG_UPDATER_REGISTRY from d2go.trainer.activation_checkpointing import add_activation_checkpoint_configs from d2go.trainer.fsdp import add_fsdp_configs from d2go.utils.gpu_memory_profiler import ( add_memory_profiler_configs, add_zoomer_default_config, ) from d2go.utils.visualization import add_tensorboard_default_configs from detectron2.config import get_cfg as get_d2_cfg from mobile_cv.common.misc.oss_utils import fb_overwritable def _add_abnormal_checker_configs(_C: CN) -> None: _C.ABNORMAL_CHECKER = CN() # check and log the iteration with bad losses if enabled _C.ABNORMAL_CHECKER.ENABLED = False @fb_overwritable() def _add_detectron2go_runner_default_fb_cfg(_C: CN) -> None: pass @fb_overwritable() def _add_base_runner_default_fb_cfg(_C: CN) -> None: pass def add_distillation_configs(_C: CN) -> None: """Add default parameters to config The TEACHER.CONFIG field allows us to build a PyTorch model using an existing config. We can build any model that is normally supported by D2Go (e.g., FBNet) because we just use the same config """ _C.DISTILLATION = CN() _C.DISTILLATION.ALGORITHM = "LabelDistillation" _C.DISTILLATION.HELPER = "BaseDistillationHelper" _C.DISTILLATION.TEACHER = CN() _C.DISTILLATION.TEACHER.TORCHSCRIPT_FNAME = "" _C.DISTILLATION.TEACHER.DEVICE = "" _C.DISTILLATION.TEACHER.TYPE = "torchscript" _C.DISTILLATION.TEACHER.CONFIG_FNAME = "" _C.DISTILLATION.TEACHER.RUNNER_NAME = "d2go.runner.GeneralizedRCNNRunner" _C.DISTILLATION.TEACHER.OVERWRITE_OPTS = [] def _add_detectron2go_runner_default_cfg(_C: CN) -> None: # _C.MODEL.FBNET_V2... add_fbnet_v2_default_configs(_C) # _C.MODEL.FROZEN_LAYER_REG_EXP add_model_freezing_configs(_C) # _C.MODEL other models add_model_ema_configs(_C) # _C.D2GO_DATA... add_d2go_data_default_configs(_C) # _C.TENSORBOARD... add_tensorboard_default_configs(_C) # _C.MODEL.KMEANS... add_kmeans_anchors_cfg(_C) # _C.QUANTIZATION add_quantization_default_configs(_C) # _C.DATASETS.TRAIN_REPEAT_FACTOR add_weighted_training_sampler_default_configs(_C) # _C.DATALOADER.RANDOM_SUBSET_RATIO add_random_subset_training_sampler_default_configs(_C) # _C.ABNORMAL_CHECKER _add_abnormal_checker_configs(_C) # _C.MODEL.SUBCLASS add_subclass_configs(_C) # _C.MODEL.FCOS add_fcos_configs(_C) # _C.DISTILLATION add_distillation_configs(_C) # _C.FSDP add_fsdp_configs(_C) # _C.ACTIVATION_CHECKPOINT add_activation_checkpoint_configs(_C) # Set find_unused_parameters for DistributedDataParallel. _C.MODEL.DDP_FIND_UNUSED_PARAMETERS = False # Set FP16 gradient compression for DistributedDataParallel. _C.MODEL.DDP_FP16_GRAD_COMPRESS = False # Specify the gradients as views _C.MODEL.DDP_GRADIENT_AS_BUCKET_VIEW = False # Set default optimizer _C.SOLVER.OPTIMIZER = "sgd" _C.SOLVER.LR_MULTIPLIER_OVERWRITE = [] _C.SOLVER.WEIGHT_DECAY_EMBED = 0.0 _C.SOLVER.WEIGHT_DECAY_OVERWRITE = [] assert not _C.SOLVER.AMP.ENABLED # AMP precision is used by both D2 and lightning backend. Can be "float16" or "bfloat16". _C.SOLVER.AMP.PRECISION = "float16" # log the grad scalar to the output _C.SOLVER.AMP.LOG_GRAD_SCALER = False # Betas are used in the AdamW optimizer _C.SOLVER.BETAS = (0.9, 0.999) _C.SOLVER.EPS = 1e-08 _C.SOLVER.FUSED = False _C.SOLVER.DETERMINISTIC = False # RECOMPUTE_BOXES for LSJ Training _C.INPUT.RECOMPUTE_BOXES = False # Default world size in D2 is 0, which means scaling is not applied. For D2Go # auto scale is encouraged, setting it to 8 assert _C.SOLVER.REFERENCE_WORLD_SIZE == 0 _C.SOLVER.REFERENCE_WORLD_SIZE = 8 # Besides scaling default D2 configs, also scale quantization configs _C.SOLVER.AUTO_SCALING_METHODS = [ "default_scale_d2_configs", "default_scale_quantization_configs", ] # Modeling hooks # List of modeling hook names _C.MODEL.MODELING_HOOKS = [] # Profiler _C.PROFILERS = ["default_flop_counter"] # GPU memory profiler add_memory_profiler_configs(_C) # Zoomer memory profiling add_zoomer_default_config(_C) # Checkpointing-specific config _C.LOAD_CKPT_TO_GPU = False # Add FB specific configs _add_detectron2go_runner_default_fb_cfg(_C) # Specify whether to perform NUMA binding _C.NUMA_BINDING = False # Specify whether to zero the gradients before forward _C.ZERO_GRAD_BEFORE_FORWARD = False # Whether to enforce rebuilding data loaders for datasets that have expiration _C.DATALOADER.ENFORE_EXPIRATION = False def _add_rcnn_default_config(_C: CN) -> None: _C.EXPORT_CAFFE2 = CN() _C.EXPORT_CAFFE2.USE_HEATMAP_MAX_KEYPOINT = False # Options about how to export the model _C.RCNN_EXPORT = CN() # whether or not to include the postprocess (GeneralizedRCNN._postprocess) step # inside the exported model _C.RCNN_EXPORT.INCLUDE_POSTPROCESS = False _C.RCNN_PREPARE_FOR_EXPORT = "default_rcnn_prepare_for_export" _C.RCNN_PREPARE_FOR_QUANT = "default_rcnn_prepare_for_quant" _C.register_deprecated_key("RCNN_PREPARE_FOR_QUANT_CONVERT") @CONFIG_UPDATER_REGISTRY.register("BaseRunner") def get_base_runner_default_cfg(cfg: CN) -> CN: assert len(cfg) == 0, f"start from scratch, but previous cfg is non-empty: {cfg}" cfg = get_d2_cfg() # upgrade from D2's CfgNode to D2Go's CfgNode cfg = CN.cast_from_other_class(cfg) cfg.SOLVER.AUTO_SCALING_METHODS = ["default_scale_d2_configs"] # Frequency of metric gathering in trainer. cfg.GATHER_METRIC_PERIOD = 1 # Frequency of metric printer, tensorboard writer, etc. cfg.WRITER_PERIOD = 20 # Enable async writing metrics to tensorboard and logs to speed up training cfg.ASYNC_WRITE_METRICS = False # train_net specific arguments, define in runner but used in train_net # run evaluation after training is done cfg.TEST.FINAL_EVAL = True _add_base_runner_default_fb_cfg(cfg) return cfg @CONFIG_UPDATER_REGISTRY.register("Detectron2GoRunner") def get_detectron2go_runner_default_cfg(cfg: CN) -> CN: assert len(cfg) == 0, f"start from scratch, but previous cfg is non-empty: {cfg}" cfg = get_base_runner_default_cfg(cfg) _add_detectron2go_runner_default_cfg(cfg) return cfg @CONFIG_UPDATER_REGISTRY.register("GeneralizedRCNNRunner") def get_generalized_rcnn_runner_default_cfg(cfg: CN) -> CN: assert len(cfg) == 0, f"start from scratch, but previous cfg is non-empty: {cfg}" cfg = get_detectron2go_runner_default_cfg(cfg) _add_rcnn_default_config(cfg) return cfg
d2go-main
d2go/runner/config_defaults.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import contextlib import logging import os from collections import OrderedDict from functools import lru_cache from typing import Any, List, Optional, Type, Union import detectron2.utils.comm as comm import torch from d2go.checkpoint.api import is_distributed_checkpoint from d2go.checkpoint.fsdp_checkpoint import FSDPCheckpointer from d2go.config import CfgNode, CONFIG_SCALING_METHOD_REGISTRY, temp_defrost from d2go.config.utils import get_cfg_diff_table from d2go.data.build import build_d2go_train_loader from d2go.data.dataset_mappers.build import build_dataset_mapper from d2go.data.datasets import inject_coco_datasets, register_dynamic_datasets from d2go.data.transforms.build import build_transform_gen from d2go.data.utils import ( configure_dataset_creation, maybe_subsample_n_images, update_cfg_if_using_adhoc_dataset, ) from d2go.distributed import D2GoSharedContext from d2go.evaluation.evaluator import inference_on_dataset from d2go.modeling import ema from d2go.modeling.api import build_d2go_model from d2go.modeling.kmeans_anchors import compute_kmeans_anchors_hook from d2go.modeling.model_freezing_utils import freeze_matched_bn, set_requires_grad from d2go.optimizer.build import build_optimizer_mapper from d2go.quantization.modeling import QATHook, setup_qat_model from d2go.runner.config_defaults import ( get_base_runner_default_cfg, get_detectron2go_runner_default_cfg, get_generalized_rcnn_runner_default_cfg, ) from d2go.runner.training_hooks import ( D2GoGpuMemorySnapshot, TRAINER_HOOKS_REGISTRY, update_hooks_from_registry, ) from d2go.trainer.fsdp import get_grad_scaler from d2go.trainer.helper import parse_precision_from_string from d2go.utils.abnormal_checker import ( AbnormalLossChecker, AbnormalLossCheckerWrapper, get_writers, ) from d2go.utils.flop_calculator import attach_profilers from d2go.utils.gpu_memory_profiler import attach_oom_logger from d2go.utils.helper import D2Trainer, TensorboardXWriter from d2go.utils.misc import get_tensorboard_log_dir from d2go.utils.visualization import DataLoaderVisWrapper, VisualizationEvaluator from detectron2.checkpoint import DetectionCheckpointer, PeriodicCheckpointer from detectron2.data import ( build_detection_test_loader as d2_build_detection_test_loader, build_detection_train_loader as d2_build_detection_train_loader, MetadataCatalog, ) from detectron2.engine import hooks from detectron2.engine.train_loop import AMPTrainer, SimpleTrainer from detectron2.evaluation import ( COCOEvaluator, DatasetEvaluators, LVISEvaluator, print_csv_format, RotatedCOCOEvaluator, verify_results, ) from detectron2.modeling import GeneralizedRCNNWithTTA from detectron2.solver import build_lr_scheduler as d2_build_lr_scheduler from detectron2.utils.events import CommonMetricPrinter, JSONWriter from mobile_cv.common.misc.oss_utils import fb_overwritable from mobile_cv.predictor.api import PredictorWrapper from torch import nn logger = logging.getLogger(__name__) ALL_TB_WRITERS = [] @lru_cache() def _get_tbx_writer(log_dir, window_size=20): ret = TensorboardXWriter(log_dir, window_size=window_size) ALL_TB_WRITERS.append(ret) return ret def _close_all_tbx_writers(): for x in ALL_TB_WRITERS: x.close() ALL_TB_WRITERS.clear() @CONFIG_SCALING_METHOD_REGISTRY.register() def default_scale_d2_configs(cfg, new_world_size): gpu_scale = new_world_size / cfg.SOLVER.REFERENCE_WORLD_SIZE base_lr = cfg.SOLVER.BASE_LR base_lr_end = cfg.SOLVER.BASE_LR_END max_iter = cfg.SOLVER.MAX_ITER steps = cfg.SOLVER.STEPS eval_period = cfg.TEST.EVAL_PERIOD ims_per_batch_train = cfg.SOLVER.IMS_PER_BATCH warmup_iters = cfg.SOLVER.WARMUP_ITERS # lr scale lr_scales = { "sgd": gpu_scale, "sgd_mt": gpu_scale, } optim_name = cfg.SOLVER.OPTIMIZER.lower() # only scale the lr for the optimizers specified in `lr_scales` lr_scale = lr_scales.get(optim_name, 1.0) # default configs in D2 cfg.SOLVER.BASE_LR = base_lr * lr_scale cfg.SOLVER.BASE_LR_END = base_lr_end * lr_scale cfg.SOLVER.MAX_ITER = int(round(max_iter / gpu_scale)) cfg.SOLVER.STEPS = tuple(int(round(s / gpu_scale)) for s in steps) cfg.TEST.EVAL_PERIOD = int(round(eval_period / gpu_scale)) cfg.SOLVER.IMS_PER_BATCH = int(round(ims_per_batch_train * gpu_scale)) cfg.SOLVER.WARMUP_ITERS = int(round(warmup_iters / gpu_scale)) @CONFIG_SCALING_METHOD_REGISTRY.register() def default_scale_quantization_configs(cfg, new_world_size): gpu_scale = new_world_size / cfg.SOLVER.REFERENCE_WORLD_SIZE # Scale QUANTIZATION related configs cfg.QUANTIZATION.QAT.START_ITER = int( round(cfg.QUANTIZATION.QAT.START_ITER / gpu_scale) ) cfg.QUANTIZATION.QAT.ENABLE_OBSERVER_ITER = int( round(cfg.QUANTIZATION.QAT.ENABLE_OBSERVER_ITER / gpu_scale) ) cfg.QUANTIZATION.QAT.ENABLE_LEARNABLE_OBSERVER_ITER = int( round(cfg.QUANTIZATION.QAT.ENABLE_LEARNABLE_OBSERVER_ITER / gpu_scale) ) cfg.QUANTIZATION.QAT.DISABLE_OBSERVER_ITER = int( round(cfg.QUANTIZATION.QAT.DISABLE_OBSERVER_ITER / gpu_scale) ) cfg.QUANTIZATION.QAT.FREEZE_BN_ITER = int( round(cfg.QUANTIZATION.QAT.FREEZE_BN_ITER / gpu_scale) ) @TRAINER_HOOKS_REGISTRY.register() def add_memory_profiler_hook(hooks, cfg: CfgNode): # Add GPU memory snapshot profiler to diagnose GPU OOM issues and benchmark memory usage during model training if cfg.get("MEMORY_PROFILER", CfgNode()).get("ENABLED", False): hooks.append( D2GoGpuMemorySnapshot( cfg.OUTPUT_DIR, log_n_steps=cfg.MEMORY_PROFILER.LOG_N_STEPS, log_during_train_at=cfg.MEMORY_PROFILER.LOG_DURING_TRAIN_AT, trace_max_entries=cfg.MEMORY_PROFILER.TRACE_MAX_ENTRIES, ) ) @fb_overwritable() def prepare_fb_model(cfg: CfgNode, model: torch.nn.Module) -> torch.nn.Module: return model @fb_overwritable() def get_monitoring_service() -> Any: return contextlib.nullcontext() class BaseRunner(object): def __init__(self): identifier = f"D2Go.Runner.{self.__class__.__name__}" torch._C._log_api_usage_once(identifier) def _initialize(self, cfg): """Runner should be initialized in the sub-process in ddp setting""" if getattr(self, "_has_initialized", False): logger.warning("Runner has already been initialized, skip initialization.") return self._has_initialized = True self.register(cfg) def register(self, cfg): """ Override `register` in order to run customized code before other things like: - registering datasets. - registering model using Registry. """ pass @classmethod def create_shared_context(cls, cfg) -> D2GoSharedContext: """ Override `create_shared_context` in order to run customized code to create distributed shared context that can be accessed by all workers """ pass @classmethod def get_default_cfg(cls): return get_base_runner_default_cfg(CfgNode()) def build_model(self, cfg, eval_only=False) -> nn.Module: # cfg may need to be reused to build trace model again, thus clone model = build_d2go_model(cfg.clone()).model if eval_only: checkpointer = DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR) checkpointer.load(cfg.MODEL.WEIGHTS) model.eval() return model def do_test(self, *args, **kwargs): raise NotImplementedError() def do_train(self, *args, **kwargs): raise NotImplementedError() @classmethod def build_detection_test_loader(cls, *args, **kwargs): return d2_build_detection_test_loader(*args, **kwargs) @classmethod def build_detection_train_loader(cls, *args, **kwargs): return d2_build_detection_train_loader(*args, **kwargs) class D2GoDataAPIMixIn: @staticmethod def get_mapper(cfg, is_train): tfm_gens = build_transform_gen(cfg, is_train) mapper = build_dataset_mapper(cfg, is_train, tfm_gens=tfm_gens) return mapper @classmethod def build_detection_test_loader( cls, cfg, dataset_name: Union[str, List[str]], mapper=None, collate_fn=None ): logger.info( "Building detection test loader for dataset: {} ...".format(dataset_name) ) with configure_dataset_creation(cfg): mapper = mapper or cls.get_mapper(cfg, is_train=False) logger.info("Using dataset mapper:\n{}".format(mapper)) return d2_build_detection_test_loader( cfg, dataset_name, mapper=mapper, collate_fn=collate_fn ) @classmethod def build_detection_train_loader(cls, cfg, *args, mapper=None, **kwargs): with configure_dataset_creation(cfg): mapper = mapper or cls.get_mapper(cfg, is_train=True) data_loader = build_d2go_train_loader(cfg, mapper) return cls._attach_visualizer_to_data_loader(cfg, data_loader) @classmethod def _attach_visualizer_to_data_loader(cls, cfg, data_loader): if comm.is_main_process(): data_loader_type = cls.get_data_loader_vis_wrapper() if data_loader_type is not None: tbx_writer = cls.get_tbx_writer(cfg) data_loader = data_loader_type(cfg, tbx_writer, data_loader) return data_loader @classmethod def get_tbx_writer(cls, cfg): return _get_tbx_writer( get_tensorboard_log_dir(cfg.OUTPUT_DIR), window_size=cfg.get("WRITER_PERIOD", 20), ) @staticmethod def get_data_loader_vis_wrapper() -> Optional[Type[DataLoaderVisWrapper]]: return DataLoaderVisWrapper @staticmethod def get_visualization_evaluator() -> Optional[Type[VisualizationEvaluator]]: return VisualizationEvaluator class Detectron2GoRunner(D2GoDataAPIMixIn, BaseRunner): def register(self, cfg): super().register(cfg) self.original_cfg = cfg.clone() inject_coco_datasets(cfg) register_dynamic_datasets(cfg) update_cfg_if_using_adhoc_dataset(cfg) @classmethod def get_default_cfg(cls): return get_detectron2go_runner_default_cfg(CfgNode()) # temporary API def _build_model(self, cfg, eval_only=False): # build_model might modify the cfg, thus clone cfg = cfg.clone() model = build_d2go_model(cfg).model ema.may_build_model_ema(cfg, model) if cfg.QUANTIZATION.QAT.ENABLED: # Disable fake_quant and observer so that the model will be trained normally # before QAT being turned on (controlled by QUANTIZATION.QAT.START_ITER). if hasattr(model, "get_rand_input"): imsize = cfg.INPUT.MAX_SIZE_TRAIN rand_input = model.get_rand_input(imsize) example_inputs = (rand_input, {}) model = setup_qat_model( cfg, model, enable_fake_quant=eval_only, enable_observer=True, ) model(*example_inputs) else: imsize = cfg.INPUT.MAX_SIZE_TRAIN model = setup_qat_model( cfg, model, enable_fake_quant=eval_only, enable_observer=False, ) if cfg.MODEL.FROZEN_LAYER_REG_EXP: set_requires_grad(model, cfg.MODEL.FROZEN_LAYER_REG_EXP, False) model = freeze_matched_bn(model, cfg.MODEL.FROZEN_LAYER_REG_EXP) if eval_only: checkpointer = self.build_checkpointer(cfg, model, save_dir=cfg.OUTPUT_DIR) checkpointer.load(cfg.MODEL.WEIGHTS) model.eval() if cfg.MODEL_EMA.ENABLED and cfg.MODEL_EMA.USE_EMA_WEIGHTS_FOR_EVAL_ONLY: ema.apply_model_ema(model) return model def build_model(self, cfg, eval_only=False): # Attach memory profiler to GPU OOM events if cfg.get("MEMORY_PROFILER", CfgNode()).get("ENABLED", False): attach_oom_logger( cfg.OUTPUT_DIR, trace_max_entries=cfg.MEMORY_PROFILER.TRACE_MAX_ENTRIES ) model = self._build_model(cfg, eval_only) model = prepare_fb_model(cfg, model) # Note: the _visualize_model API is experimental if comm.is_main_process(): if hasattr(model, "_visualize_model"): logger.info("Adding model visualization ...") tbx_writer = self.get_tbx_writer(cfg) model._visualize_model(tbx_writer) return model def build_checkpointer(self, cfg, model, save_dir, **kwargs): kwargs.update(ema.may_get_ema_checkpointer(cfg, model)) checkpointer = FSDPCheckpointer(model, save_dir=save_dir, **kwargs) return checkpointer def build_optimizer(self, cfg, model): return build_optimizer_mapper(cfg, model) def build_lr_scheduler(self, cfg, optimizer): return d2_build_lr_scheduler(cfg, optimizer) def _create_evaluators( self, cfg, dataset_name, output_folder, train_iter, model_tag, model=None, ): evaluator = self.get_evaluator(cfg, dataset_name, output_folder=output_folder) if not isinstance(evaluator, DatasetEvaluators): evaluator = DatasetEvaluators([evaluator]) if comm.is_main_process(): # Add evaluator for visualization only to rank 0 tbx_writer = self.get_tbx_writer(cfg) logger.info("Adding visualization evaluator ...") mapper = self.get_mapper(cfg, is_train=False) vis_eval_type = self.get_visualization_evaluator() if vis_eval_type is not None: evaluator._evaluators.append( vis_eval_type( cfg, tbx_writer, mapper, dataset_name, train_iter=train_iter, tag_postfix=model_tag, ) ) return evaluator def _do_test(self, cfg, model, train_iter=None, model_tag="default"): """train_iter: Current iteration of the model, None means final iteration""" assert len(cfg.DATASETS.TEST) assert cfg.OUTPUT_DIR is_final = (train_iter is None) or (train_iter == cfg.SOLVER.MAX_ITER - 1) logger.info( f"Running evaluation for model tag {model_tag} at iter {train_iter}..." ) def _get_inference_dir_name(base_dir, inference_type, dataset_name): return os.path.join( base_dir, inference_type, model_tag, str(train_iter) if train_iter is not None else "final", dataset_name, ) attach_profilers(cfg, model) results = OrderedDict() results[model_tag] = OrderedDict() for dataset_name in cfg.DATASETS.TEST: # Evaluator will create output folder, no need to create here output_folder = _get_inference_dir_name( cfg.OUTPUT_DIR, "inference", dataset_name ) # NOTE: creating evaluator after dataset is loaded as there might be dependency. # noqa data_loader = self.build_detection_test_loader(cfg, dataset_name) evaluator = self._create_evaluators( cfg, dataset_name, output_folder, train_iter, model_tag, model.module if isinstance(model, nn.parallel.DistributedDataParallel) else model, ) results_per_dataset = inference_on_dataset(model, data_loader, evaluator) if comm.is_main_process(): results[model_tag][dataset_name] = results_per_dataset if is_final: print_csv_format(results_per_dataset) if is_final and cfg.TEST.AUG.ENABLED: # In the end of training, run an evaluation with TTA # Only support some R-CNN models. output_folder = _get_inference_dir_name( cfg.OUTPUT_DIR, "inference_TTA", dataset_name ) logger.info("Running inference with test-time augmentation ...") data_loader = self.build_detection_test_loader( cfg, dataset_name, mapper=lambda x: x ) evaluator = self.get_evaluator( cfg, dataset_name, output_folder=output_folder ) inference_on_dataset( GeneralizedRCNNWithTTA(cfg, model), data_loader, evaluator ) if is_final and cfg.TEST.EXPECTED_RESULTS and comm.is_main_process(): assert len(results) == 1, "Results verification only supports one dataset!" verify_results(cfg, results[model_tag][cfg.DATASETS.TEST[0]]) # write results to tensorboard if comm.is_main_process() and results: from detectron2.evaluation.testing import flatten_results_dict flattened_results = flatten_results_dict(results) for k, v in flattened_results.items(): tbx_writer = self.get_tbx_writer(cfg) tbx_writer._writer.add_scalar("eval_{}".format(k), v, train_iter) if comm.is_main_process(): tbx_writer = self.get_tbx_writer(cfg) tbx_writer._writer.flush() return results def do_test(self, cfg, model, train_iter=None): """do_test does not load the weights of the model. If you want to use it outside the regular training routine, you will have to load the weights through a checkpointer. """ results = OrderedDict() with maybe_subsample_n_images(cfg) as new_cfg: # default model cur_results = self._do_test( new_cfg, model, train_iter=train_iter, model_tag="default" ) results.update(cur_results) # model with ema weights if cfg.MODEL_EMA.ENABLED and not isinstance(model, PredictorWrapper): logger.info("Run evaluation with EMA.") with ema.apply_model_ema_and_restore(model): cur_results = self._do_test( new_cfg, model, train_iter=train_iter, model_tag="ema" ) results.update(cur_results) return results def _get_trainer_hooks( self, cfg, model, optimizer, scheduler, periodic_checkpointer, trainer ): return [ hooks.IterationTimer(), ema.EMAHook(cfg, model) if cfg.MODEL_EMA.ENABLED else None, self._create_data_loader_hook(cfg), self._create_after_step_hook( cfg, model, optimizer, scheduler, periodic_checkpointer ), hooks.EvalHook( cfg.TEST.EVAL_PERIOD, lambda: self.do_test(cfg, model, train_iter=trainer.iter), eval_after_train=False, # done by a separate do_test call in tools/train_net.py ), compute_kmeans_anchors_hook(self, cfg), self._create_qat_hook(cfg) if cfg.QUANTIZATION.QAT.ENABLED else None, ] def do_train(self, cfg, model, resume): with get_monitoring_service(): # Note that flops at the beginning of training is often inaccurate, # if a model has input-dependent logic attach_profilers(cfg, model) if cfg.NUMA_BINDING is True: import numa num_gpus_per_node = comm.get_local_size() num_sockets = numa.get_max_node() + 1 socket_id = torch.cuda.current_device() // ( max(num_gpus_per_node // num_sockets, 1) ) node_mask = set([socket_id]) numa.bind(node_mask) optimizer = self.build_optimizer(cfg, model) scheduler = self.build_lr_scheduler(cfg, optimizer) checkpointer = self.build_checkpointer( cfg, model, save_dir=cfg.OUTPUT_DIR, load_ckpt_to_gpu=cfg.LOAD_CKPT_TO_GPU, optimizer=optimizer, scheduler=scheduler, ) checkpoint = checkpointer.resume_or_load(cfg.MODEL.WEIGHTS, resume=resume) start_iter = ( checkpoint.get("iteration", -1) if resume and checkpointer.has_checkpoint() else -1 ) del checkpoint # The checkpoint stores the training iteration that just finished, thus we start # at the next iteration (or iter zero if there's no checkpoint). start_iter += 1 max_iter = cfg.SOLVER.MAX_ITER periodic_checkpointer = PeriodicCheckpointer( checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD, max_iter=max_iter ) data_loader = self.build_detection_train_loader(cfg) def _get_model_with_abnormal_checker(model): if not cfg.ABNORMAL_CHECKER.ENABLED: return model tbx_writer = self.get_tbx_writer(cfg) writers = get_writers(cfg, tbx_writer) checker = AbnormalLossChecker(start_iter, writers) ret = AbnormalLossCheckerWrapper(model, checker) return ret if cfg.SOLVER.AMP.ENABLED: trainer = AMPTrainer( _get_model_with_abnormal_checker(model), data_loader, optimizer, gather_metric_period=cfg.GATHER_METRIC_PERIOD, zero_grad_before_forward=cfg.ZERO_GRAD_BEFORE_FORWARD, grad_scaler=get_grad_scaler(cfg), precision=parse_precision_from_string( cfg.SOLVER.AMP.PRECISION, lightning=False ), log_grad_scaler=cfg.SOLVER.AMP.LOG_GRAD_SCALER, async_write_metrics=cfg.ASYNC_WRITE_METRICS, ) else: trainer = SimpleTrainer( _get_model_with_abnormal_checker(model), data_loader, optimizer, gather_metric_period=cfg.GATHER_METRIC_PERIOD, zero_grad_before_forward=cfg.ZERO_GRAD_BEFORE_FORWARD, async_write_metrics=cfg.ASYNC_WRITE_METRICS, ) if cfg.SOLVER.AMP.ENABLED and torch.cuda.is_available(): # Allow to use the TensorFloat32 (TF32) tensor cores, available on A100 GPUs. # For more details https://pytorch.org/docs/stable/notes/cuda.html#tf32-on-ampere. torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True elif cfg.SOLVER.DETERMINISTIC: torch.backends.cuda.matmul.allow_tf32 = False torch.backends.cudnn.allow_tf32 = False trainer_hooks = self._get_trainer_hooks( cfg, model, optimizer, scheduler, periodic_checkpointer, trainer ) if comm.is_main_process(): assert ( cfg.GATHER_METRIC_PERIOD <= cfg.WRITER_PERIOD and cfg.WRITER_PERIOD % cfg.GATHER_METRIC_PERIOD == 0 ), "WRITER_PERIOD needs to be divisible by GATHER_METRIC_PERIOD" tbx_writer = self.get_tbx_writer(cfg) writers = [ CommonMetricPrinter(max_iter, window_size=cfg.WRITER_PERIOD), JSONWriter( os.path.join(cfg.OUTPUT_DIR, "metrics.json"), window_size=cfg.WRITER_PERIOD, ), tbx_writer, ] trainer_hooks.append(hooks.PeriodicWriter(writers, cfg.WRITER_PERIOD)) update_hooks_from_registry(trainer_hooks, cfg) trainer.register_hooks(trainer_hooks) trainer.train(start_iter, max_iter) if hasattr(self, "original_cfg"): table = get_cfg_diff_table(cfg, self.original_cfg) logger.info( "GeneralizeRCNN Runner ignoring training config change: \n" + table ) trained_cfg = self.original_cfg.clone() else: trained_cfg = cfg.clone() with temp_defrost(trained_cfg): trained_cfg.MODEL.WEIGHTS = checkpointer.get_checkpoint_file() return {"model_final": trained_cfg} @staticmethod def get_evaluator(cfg, dataset_name, output_folder): evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type if evaluator_type in ["coco", "coco_panoptic_seg"]: # D2 is in the process of reducing the use of cfg. dataset_evaluators = COCOEvaluator( dataset_name, output_dir=output_folder, kpt_oks_sigmas=cfg.TEST.KEYPOINT_OKS_SIGMAS, max_dets_per_image=cfg.TEST.DETECTIONS_PER_IMAGE, ) elif evaluator_type in ["rotated_coco"]: dataset_evaluators = DatasetEvaluators( [RotatedCOCOEvaluator(dataset_name, cfg, True, output_folder)] ) elif evaluator_type in ["lvis"]: dataset_evaluators = LVISEvaluator( dataset_name, output_dir=output_folder, max_dets_per_image=cfg.TEST.DETECTIONS_PER_IMAGE, ) else: dataset_evaluators = D2Trainer.build_evaluator( cfg, dataset_name, output_folder ) if not isinstance(dataset_evaluators, DatasetEvaluators): dataset_evaluators = DatasetEvaluators([dataset_evaluators]) return dataset_evaluators @staticmethod def final_model_name(): return "model_final" def _create_after_step_hook( self, cfg, model, optimizer, scheduler, periodic_checkpointer ): """ Create a hook that performs some pre-defined tasks used in this script (evaluation, LR scheduling, checkpointing). """ def after_step_callback(trainer): trainer.storage.put_scalar( "lr", optimizer.param_groups[0]["lr"], smoothing_hint=False ) if trainer.iter < cfg.SOLVER.MAX_ITER - 1: # Since scheduler.step() is called after the backward at each iteration, # this will cause "where = 1.0" in the scheduler after the last interation, # which will trigger "IndexError: list index out of range" in StepParamScheduler. # See test_warmup_stepwithfixedgamma in vision/fair/detectron2/tests:test_scheduler for an example scheduler.step() # Note: when precise BN is enabled, some checkpoints will have more precise # statistics than others, if they are saved immediately after eval. # Note: FSDP requires all ranks to execute saving/loading logic if comm.is_main_process() or is_distributed_checkpoint( periodic_checkpointer.checkpointer ): periodic_checkpointer.step(trainer.iter) return hooks.CallbackHook(after_step=after_step_callback) def _create_data_loader_hook(self, cfg): """ Create a hook for manipulating data loader """ return None def _create_qat_hook(self, cfg) -> Optional[QATHook]: """ Create a hook to start QAT (during training) and/or change the phase of QAT. """ if not cfg.QUANTIZATION.QAT.ENABLED: return None return QATHook(cfg, self.build_detection_train_loader) class GeneralizedRCNNRunner(Detectron2GoRunner): @classmethod def get_default_cfg(cls): return get_generalized_rcnn_runner_default_cfg(CfgNode())
d2go-main
d2go/runner/default_runner.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import os from copy import deepcopy from enum import Enum from typing import Any, Dict, List, Optional, Tuple import pytorch_lightning as pl import torch from d2go.config import CfgNode from d2go.data.datasets import inject_coco_datasets, register_dynamic_datasets from d2go.data.utils import update_cfg_if_using_adhoc_dataset from d2go.modeling.api import build_meta_arch from d2go.modeling.model_freezing_utils import set_requires_grad from d2go.optimizer.build import build_optimizer_mapper from d2go.runner.api import RunnerV2Mixin from d2go.runner.callbacks.quantization import maybe_prepare_for_quantization, PREPARED from d2go.runner.default_runner import ( _get_tbx_writer, D2GoDataAPIMixIn, Detectron2GoRunner, GeneralizedRCNNRunner, ) from d2go.utils.ema_state import EMAState from d2go.utils.misc import get_tensorboard_log_dir from detectron2.engine.train_loop import HookBase from detectron2.solver import build_lr_scheduler as d2_build_lr_scheduler from mobile_cv.common.misc.oss_utils import fb_overwritable from pytorch_lightning.strategies import DDPStrategy, SingleDeviceStrategy from pytorch_lightning.utilities import rank_zero_info, rank_zero_only from pytorch_lightning.utilities.logger import _flatten_dict _STATE_DICT_KEY = "state_dict" _OLD_STATE_DICT_KEY = "model" _OLD_EMA_KEY = "ema_state" logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def _is_lightning_checkpoint(checkpoint: Dict[str, Any]) -> bool: """Returns true if we believe this checkpoint to be a Lightning checkpoint.""" return _STATE_DICT_KEY in checkpoint def _is_d2go_checkpoint(checkpoint: Dict[str, Any]) -> bool: """Returns true if we believe this to be a D2Go checkpoint.""" d2_go_keys = [_OLD_STATE_DICT_KEY, "iteration"] for key in d2_go_keys: if key not in checkpoint: return False return True def _convert_to_lightning(d2_checkpoint: Dict[str, Any]) -> None: """Converst a D2Go Checkpoint to Lightning in-place by renaming keys.""" prefix = "model" # based on DefaultTask.model. old_keys = list(d2_checkpoint[_OLD_STATE_DICT_KEY]) for key in old_keys: d2_checkpoint[_OLD_STATE_DICT_KEY][f"{prefix}.{key}"] = d2_checkpoint[ _OLD_STATE_DICT_KEY ][key] del d2_checkpoint[_OLD_STATE_DICT_KEY][key] if "model.pixel_mean" in d2_checkpoint[_OLD_STATE_DICT_KEY]: del d2_checkpoint[_OLD_STATE_DICT_KEY]["model.pixel_mean"] if "model.pixel_std" in d2_checkpoint[_OLD_STATE_DICT_KEY]: del d2_checkpoint[_OLD_STATE_DICT_KEY]["model.pixel_std"] for old, new in zip( [_OLD_STATE_DICT_KEY, "iteration"], [_STATE_DICT_KEY, "global_step"] ): d2_checkpoint[new] = d2_checkpoint[old] del d2_checkpoint[old] for old, new in zip( ["optimizer", "scheduler"], ["optimizer_states", "lr_schedulers"] ): if old not in d2_checkpoint: continue d2_checkpoint[new] = [d2_checkpoint[old]] del d2_checkpoint[old] if _OLD_EMA_KEY in d2_checkpoint: d2_checkpoint["model_ema"] = d2_checkpoint[_OLD_EMA_KEY] del d2_checkpoint[_OLD_EMA_KEY] d2_checkpoint["epoch"] = 0 class ModelTag(str, Enum): DEFAULT = "default" EMA = "ema" @fb_overwritable() def get_gpu_profiler(cfg: CfgNode) -> Optional[HookBase]: return None class DefaultTask(D2GoDataAPIMixIn, pl.LightningModule): def __init__(self, cfg: CfgNode): super().__init__() self.register(cfg) self.cfg = cfg self.model = self._build_model() self.storage = None # evaluators for validation datasets, split by model tag(default, ema), # in the order of DATASETS.TEST self.dataset_evaluators = {ModelTag.DEFAULT: []} self.save_hyperparameters() self.eval_res = None # Support custom training step in meta arch if hasattr(self.model, "training_step"): # activate manual optimization for custom training step self.automatic_optimization = False self.ema_state: Optional[EMAState] = None if cfg.MODEL_EMA.ENABLED: self.ema_state = EMAState( decay=cfg.MODEL_EMA.DECAY, device=cfg.MODEL_EMA.DEVICE or cfg.MODEL.DEVICE, ) self.dataset_evaluators[ModelTag.EMA] = [] self.gpu_profiler: Optional[HookBase] = get_gpu_profiler(cfg) def _build_model(self) -> torch.nn.Module: model = build_meta_arch(self.cfg) if self.cfg.MODEL.FROZEN_LAYER_REG_EXP: set_requires_grad(model, self.cfg.MODEL.FROZEN_LAYER_REG_EXP, value=False) return model @classmethod def from_config(cls, cfg: CfgNode, eval_only=False): """Builds Lightning module including model from config. To load weights from a pretrained checkpoint, please specify checkpoint path in `MODEL.WEIGHTS`. Args: cfg: D2go config node. eval_only: True if module should be in eval mode. """ if eval_only and not cfg.MODEL.WEIGHTS: logger.warning("MODEL.WEIGHTS is missing for eval only mode.") if cfg.MODEL.WEIGHTS: # only load model weights from checkpoint logger.info(f"Load model weights from checkpoint: {cfg.MODEL.WEIGHTS}.") task = cls.load_from_checkpoint(cfg.MODEL.WEIGHTS, cfg=cfg, strict=False) else: task = cls(cfg) if cfg.MODEL_EMA.ENABLED and cfg.MODEL_EMA.USE_EMA_WEIGHTS_FOR_EVAL_ONLY: assert task.ema_state, "EMA state is not loaded from checkpoint." task.ema_state.apply_to(task.model) if eval_only: task.eval() return task def training_step(self, batch, batch_idx): if hasattr(self.model, "training_step"): return self._meta_arch_training_step(batch, batch_idx) return self._standard_training_step(batch, batch_idx) def _standard_training_step(self, batch, batch_idx): loss_dict = self.forward(batch) losses = sum(loss_dict.values()) loss_dict["total_loss"] = losses self.storage.step() self.log_dict(loss_dict, prog_bar=True) return losses def _meta_arch_training_step(self, batch, batch_idx): opt = self.optimizers() loss_dict = self.model.training_step( batch, batch_idx, opt, self.manual_backward ) sch = self.lr_schedulers() sch.step() self.storage.step() self.log_dict(loss_dict, prog_bar=True) return loss_dict def test_step(self, batch, batch_idx: int, dataloader_idx: int = 0) -> None: self._evaluation_step(batch, batch_idx, dataloader_idx) def validation_step(self, batch, batch_idx: int, dataloader_idx: int = 0) -> None: self._evaluation_step(batch, batch_idx, dataloader_idx) def _evaluation_step(self, batch, batch_idx: int, dataloader_idx: int) -> None: if not isinstance(batch, List): batch = [batch] outputs = self.forward(batch) self.dataset_evaluators[ModelTag.DEFAULT][dataloader_idx].process( batch, outputs ) if self.ema_state: ema_outputs = self.model_ema(batch) self.dataset_evaluators[ModelTag.EMA][dataloader_idx].process( batch, ema_outputs ) def _log_dataset_evaluation_results(self) -> None: nested_res = {} for tag, evaluators in self.dataset_evaluators.items(): res = {} for idx, evaluator in enumerate(evaluators): dataset_name = self.cfg.DATASETS.TEST[idx] res[dataset_name] = evaluator.evaluate() nested_res[tag.lower()] = res self.eval_res = nested_res flattened = _flatten_dict(nested_res) if self.trainer.global_rank: assert ( len(flattened) == 0 ), "evaluation results should have been reduced on rank 0." self.log_dict(flattened, rank_zero_only=True) def test_epoch_end(self, _outputs) -> None: self._evaluation_epoch_end() def validation_epoch_end(self, _outputs) -> None: self._evaluation_epoch_end() def _evaluation_epoch_end(self) -> None: self._log_dataset_evaluation_results() self._reset_dataset_evaluators() def configure_optimizers( self, ) -> Tuple[List[torch.optim.Optimizer], List]: model = self.model if hasattr(self, PREPARED): # train the prepared model for FX quantization model = getattr(self, PREPARED) optim = build_optimizer_mapper(self.cfg, model) lr_scheduler = d2_build_lr_scheduler(self.cfg, optim) return [optim], [{"scheduler": lr_scheduler, "interval": "step"}] def train_dataloader(self): return self.build_detection_train_loader(self.cfg) def _reset_dataset_evaluators(self): """reset validation dataset evaluator to be run in EVAL_PERIOD steps""" assert isinstance(self.trainer.strategy, (SingleDeviceStrategy, DDPStrategy)), ( "Only Single Device or DDP strategies are supported," f" instead found: {self.trainer.strategy}" ) def _get_inference_dir_name( base_dir, inference_type, dataset_name, model_tag: ModelTag ): next_eval_iter = self.trainer.global_step + self.cfg.TEST.EVAL_PERIOD if self.trainer.global_step == 0: next_eval_iter -= 1 return os.path.join( base_dir, inference_type, model_tag, str(next_eval_iter), dataset_name, ) @rank_zero_only def _setup_visualization_evaluator( evaluator, dataset_name: str, model_tag: ModelTag, ) -> None: logger.info("Adding visualization evaluator ...") mapper = self.get_mapper(self.cfg, is_train=False) vis_eval_type = self.get_visualization_evaluator() # TODO: replace tbx_writter with Lightning's self.logger.experiment tbx_writter = _get_tbx_writer(get_tensorboard_log_dir(self.cfg.OUTPUT_DIR)) if vis_eval_type is not None: evaluator._evaluators.append( vis_eval_type( self.cfg, tbx_writter, mapper, dataset_name, train_iter=self.trainer.global_step, tag_postfix=model_tag, ) ) for tag, dataset_evaluators in self.dataset_evaluators.items(): dataset_evaluators.clear() assert self.cfg.OUTPUT_DIR, "Expect output_dir to be specified in config" for dataset_name in self.cfg.DATASETS.TEST: # setup evaluator for each dataset output_folder = _get_inference_dir_name( self.cfg.OUTPUT_DIR, "inference", dataset_name, tag ) evaluator = self.get_evaluator( self.cfg, dataset_name, output_folder=output_folder ) evaluator.reset() dataset_evaluators.append(evaluator) _setup_visualization_evaluator(evaluator, dataset_name, tag) def _evaluation_dataloader(self): # TODO: Support subsample n images assert len(self.cfg.DATASETS.TEST) dataloaders = [] for dataset_name in self.cfg.DATASETS.TEST: dataloaders.append(self.build_detection_test_loader(self.cfg, dataset_name)) self._reset_dataset_evaluators() return dataloaders def test_dataloader(self): return self._evaluation_dataloader() def val_dataloader(self): return self._evaluation_dataloader() def forward(self, input): return self.model(input) # --------------------------------------------------------------------------- # Runner methods # --------------------------------------------------------------------------- def register(self, cfg: CfgNode): inject_coco_datasets(cfg) register_dynamic_datasets(cfg) update_cfg_if_using_adhoc_dataset(cfg) @classmethod def build_model(cls, cfg: CfgNode, eval_only=False): """Builds D2go model instance from config. NOTE: For backward compatible with existing D2Go tools. Prefer `from_config` in other use cases. Args: cfg: D2go config node. eval_only: True if model should be in eval mode. """ task = cls.from_config(cfg, eval_only) if hasattr(task, PREPARED): task = getattr(task, PREPARED) return task.model @classmethod def get_default_cfg(cls): return Detectron2GoRunner.get_default_cfg() @staticmethod def _initialize(cfg: CfgNode): pass @staticmethod def get_evaluator(cfg: CfgNode, dataset_name: str, output_folder: str): return Detectron2GoRunner.get_evaluator( cfg=cfg, dataset_name=dataset_name, output_folder=output_folder ) # --------------------------------------------------------------------------- # Hooks # --------------------------------------------------------------------------- def on_fit_start(self) -> None: if self.cfg.MODEL_EMA.ENABLED: if self.ema_state and self.ema_state.has_inited(): # ema_state could have been loaded from checkpoint # move to the current CUDA device if not on CPU self.ema_state.to(self.ema_state.device) return self.ema_state = EMAState.from_model( self.model, decay=self.cfg.MODEL_EMA.DECAY, device=self.cfg.MODEL_EMA.DEVICE or self.cfg.MODEL.DEVICE, ) def on_train_batch_start(self, *_) -> None: if self.gpu_profiler is not None: self.gpu_profiler.before_step() def on_train_batch_end(self, *_) -> None: if self.ema_state: self.ema_state.update(self.model) if self.gpu_profiler is not None: # NOTE: keep this last in function to include all ops in this iteration of the trace self.gpu_profiler.after_step() def on_test_epoch_start(self): self._on_evaluation_epoch_start() def on_validation_epoch_start(self): self._on_evaluation_epoch_start() def _on_evaluation_epoch_start(self): if self.ema_state: self.model_ema = deepcopy(self.model) self.ema_state.apply_to(self.model_ema) def on_validation_epoch_end(self): if self.ema_state and hasattr(self, "model_ema"): del self.model_ema def on_test_epoch_end(self): if self.ema_state and hasattr(self, "model_ema"): del self.model_ema def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None: if self.ema_state: checkpoint["model_ema"] = self.ema_state.state_dict() def on_load_checkpoint(self, checkpointed_state: Dict[str, Any]) -> None: """ Called before model state is restored. Explicitly handles old model states so we can resume training from D2Go checkpoints transparently. Args: checkpointed_state: The raw checkpoint state as returned by torch.load or equivalent. """ # If this is a non-Lightning checkpoint, we need to convert it. if not _is_lightning_checkpoint(checkpointed_state) and not _is_d2go_checkpoint( checkpointed_state ): raise ValueError( f"Invalid checkpoint state with keys: {checkpointed_state.keys()}" ) if not _is_lightning_checkpoint(checkpointed_state): _convert_to_lightning(checkpointed_state) maybe_prepare_for_quantization(self, checkpointed_state) if self.ema_state: if "model_ema" not in checkpointed_state: rank_zero_info( "EMA is enabled but EMA state is not found in given checkpoint" ) else: self.ema_state = EMAState( decay=self.cfg.MODEL_EMA.DECAY, device=self.cfg.MODEL_EMA.DEVICE or self.cfg.MODEL.DEVICE, ) self.ema_state.load_state_dict(checkpointed_state["model_ema"]) rank_zero_info("Loaded EMA state from checkpoint.") # TODO(T123654122): subclass of DefaultTask will be refactored class GeneralizedRCNNTask(DefaultTask): @classmethod def get_default_cfg(cls): return GeneralizedRCNNRunner.get_default_cfg() # TODO(T123654122): subclass of DefaultTask will be refactored class GeneralizedRCNNTaskNoDefaultConfig(RunnerV2Mixin, DefaultTask): """ Similar to `GeneralizedRCNNTask` but allowing specifying default config in yaml via `_defaults_` """ pass
d2go-main
d2go/runner/lightning_task.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os import random import torch import torch.nn as nn from d2go.quantization.modeling import QATCheckpointer from d2go.runner.default_runner import BaseRunner from d2go.utils.visualization import add_tensorboard_default_configs from detectron2.utils.file_io import PathManager class DebugRunner(BaseRunner): @classmethod def get_default_cfg(cls): _C = super().get_default_cfg() # _C.TENSORBOARD... add_tensorboard_default_configs(_C) # target metric _C.TEST.TARGET_METRIC = "dataset0:dummy0:metric1" return _C def build_model(self, cfg, eval_only=False): return nn.Sequential() def do_test(self, cfg, model, train_iter=None): return { "dataset0": { "dummy0": {"metric0": random.random(), "metric1": random.random()} } } def do_train(self, cfg, model, resume): # save a dummy checkpoint file save_file = os.path.join(cfg.OUTPUT_DIR, "model_123.pth") with PathManager.open(save_file, "wb") as f: torch.save({"model": model.state_dict()}, f) save_file = os.path.join(cfg.OUTPUT_DIR, "model_12345.pth") with PathManager.open(save_file, "wb") as f: torch.save({"model": model.state_dict()}, f) save_file = os.path.join(cfg.OUTPUT_DIR, "model_final.pth") with PathManager.open(save_file, "wb") as f: torch.save({"model": model.state_dict()}, f) def build_checkpointer(self, cfg, model, save_dir, **kwargs): checkpointer = QATCheckpointer(model, save_dir=save_dir, **kwargs) return checkpointer @staticmethod def final_model_name(): return "model_final"
d2go-main
d2go/runner/debug_runner.py
# pyre-ignore-all-errors import functools from abc import ABC from copy import deepcopy from dataclasses import dataclass from types import MethodType from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union import torch from d2go.config import CfgNode from d2go.quantization.modeling import prepare_fake_quant_model from d2go.utils.misc import mode from mobile_cv.arch.quantization.observer import update_stat as observer_update_stat from pytorch_lightning import LightningModule, Trainer from pytorch_lightning.callbacks import Callback from pytorch_lightning.utilities import rank_zero_info from torch.ao.quantization.qconfig import ( get_default_qat_qconfig, get_default_qconfig, QConfig, QConfigDynamic, ) from torch.ao.quantization.quant_type import QuantType from torch.ao.quantization.quantize_fx import convert_fx, prepare_fx, prepare_qat_fx from torch.ao.quantization.utils import get_fqn_to_example_inputs, get_quant_type QConfigDicts = Dict[str, Dict[str, Union[QConfig, QConfigDynamic]]] PREPARED = "_prepared" def rsetattr(obj: Any, attr: str, val: Any) -> None: """Same as setattr but supports deeply nested objects.""" pre, _, post = attr.rpartition(".") return setattr(rgetattr(obj, pre) if pre else obj, post, val) def rgetattr(obj: Any, attr: str, *args) -> Any: """Same as getattr but supports deeply nested objects.""" def _getattr(obj, attr): return getattr(obj, attr, *args) return functools.reduce(_getattr, [obj] + attr.split(".")) def rhasattr(obj: Any, attr: str, *args) -> bool: """Same as hasattr but supports deeply nested objects.""" try: _ = rgetattr(obj, attr, *args) except AttributeError: return False return True def _quantized_forward(self, *args, **kwargs): """Forward method for a quantized module.""" if not self.training and hasattr(self, "_quantized"): return self._quantized(*args, **kwargs) return self._prepared(*args, **kwargs) def _requires_calibration(config_dicts: QConfigDicts) -> bool: """Returns whether the given config_dicts for quantization requires calibration. A config_dicts requires calibration if at least one of the configs in the dictioary is a QConfig with an activation observer. Args: config: The config dictionary to check. Returns: Boolean as described. """ for qconfig_dict in config_dicts.values(): for qconfig in qconfig_dict.values(): qtype = get_quant_type(qconfig) if qtype == QuantType.STATIC: return True return False def checkpoint_has_prepared(checkpoint: Dict[str, Any]) -> bool: return any(k.startswith(PREPARED) for k in checkpoint["state_dict"].keys()) def maybe_prepare_for_quantization(model: LightningModule, checkpoint: Dict[str, Any]): if checkpoint_has_prepared(checkpoint) and not hasattr(model, PREPARED): # model has been prepared for QAT before saving into checkpoint copied = deepcopy(model) prepared = prepare_fake_quant_model(copied.cfg, copied.model, is_qat=True) copied.model = prepared setattr(model, PREPARED, copied) class QuantizationMixin(ABC): """Mixin defining an overrideable API for quantization customization. For example, suppose our model contains traceable and non-traceable modules: >>> class MyNonTraceableModel(LightningModule): ... def __init__(self): ... self.traceable = ... ... self.non_traceable = ... ... ... def forward(self, x): ... x = self.traceable(x) ... return self.non_traceable(x) Then using FX-mode quantization, we can only quantize the traceable pieces. As such, we could do something like the below, shown here for QAT. >>> class MyQuantizationCallback(QuantizedAwareTraining): ... def prepare(self, model, config, attrs): ... model.traceable = prepare_qat_fx(model.traceable, config) ... return model ... ... def convert(self, model, attr): ... model.traceable = convert_fx(model.traceable) ... return model We can then use this callback as with any other.: Example:: >>> model = MyNonTraceableModel(...) >>> quantization = MyQuantizationCallback() >>> trainer = Trainer( ... callbacks=[quantization], ... ) >>> trainer.fit(model) """ def prepare( self, root: LightningModule, configs: QConfigDicts, attrs: Set[str] ) -> torch.nn.Module: """Prepares the root user modules for quantization. By default, this tries to prepare the entire LightningModule. If this is not possible (eg, due to traceability, etc.), the recommended method to use is to override the `prepare` method to prepare the root as appropriate, and also override the `quantize` method to only quantize the prepared pieces of the root. Args: root: The LightningModule as given to the lightning Trainer in train mode. configs: Specification to be used when preparing the model, as provided by the user. It is guaranteed that no key is a suffix of another. attrs: The list of attributes to maintain for the module. Returns: The prepared Module to be used for quantized aware training. """ is_qat = isinstance(self, QuantizationAwareTraining) self._convert_fx_callback = None if hasattr(root.model, "custom_prepare_fx"): prepared, convert_fx_callback = root.model.custom_prepare_fx( root.cfg, is_qat ) self._convert_fx_callback = convert_fx_callback root.model = prepared return root prep_fn = prepare_qat_fx if is_qat else prepare_fx old_attrs = { attr: rgetattr(root, attr) for attr in attrs if rhasattr(root, attr) } prepared = root if "" in configs: prepared = prep_fn(root, configs[""], root.example_input_array) else: fqn_to_example_inputs = get_fqn_to_example_inputs( root, root.example_input_array ) for name, config in configs.items(): submodule = rgetattr(root, name) rsetattr( root, name, prep_fn(submodule, config, fqn_to_example_inputs[name]) ) for attr, value in old_attrs.items(): rsetattr(prepared, attr, value) return prepared def convert( self, root: torch.nn.Module, submodules: Set[str], attrs: Set[str] ) -> torch.nn.Module: """Quantizes a previously prepared module (as returned by `prepare`). By default, this simply quantizes the entire root. If the `prepare` method was customized, this will need to be changed as well. Args: root: The prepared model as returned by `prepare`, after training. submodules: An iterator of fully qualified submodules names that require converting. attrs: The list of attributes to maintain for the module across this call. Returns: The quantized model. """ if self._convert_fx_callback is not None: return self._convert_fx_callback(root) old_attrs = { attr: rgetattr(root, attr) for attr in attrs if rhasattr(root, attr) } converted = root if "" in submodules: converted = convert_fx(root) else: for name in submodules: prepared = rgetattr(root, name) rsetattr(root, name, convert_fx(prepared)) for attr, value in old_attrs.items(): rsetattr(converted, attr, value) rsetattr(root, attr, value) return converted @dataclass(frozen=True) class ModelTransform: """Defines a step or interval at which fn should be .apply(fn)'ed and a message to log. Properties: fn: The function to apply. Must be passable to torch.nn.Module.apply(fn). step: Only one of `step` or `interval` must be defined. If step is defined, `fn` will be applied exactly once right before `step` step begins. interval: Only one of `step` or `interval` must be defined. If `interval` is defined, the transform will be applied periodically every `interval` steps. message: A short non-punctuated message to log in the master worker when this transform is triggered. """ fn: Callable[[torch.nn.Module], None] message: str step: Optional[int] = None interval: Optional[int] = None def __post_init__(self) -> None: """Validate a few properties for early failure.""" if (self.step is None and self.interval is None) or ( self.step is not None and self.interval is not None ): raise TypeError("Exactly one of step or interval must be defined.") if self.step is not None and self.step < 0: raise ValueError("step must be non-negative.") if self.interval is not None and self.interval <= 0: raise ValueError("interval must be positive.") class QuantizationAwareTraining(Callback, QuantizationMixin): """Enable QAT of a model using the STL Trainer. Node that this callback makes changes during training in order to properly quantize the provided LightningModule. Example:: >>> from stl.lightning.callbacks.quantization import QuantizationAwareTraining >>> from pytorch_lightning import Trainer >>> from stl.lightning.utilities.model import mode ... # MyLightningModule must define val_dataloader() which is used both for # validation as well as calibration of the quantized model. >>> model = MyLightningModule(...) >>> qat = QuantizationAwareTraining() >>> trainer = Trainer( ... callbacks=[qat], ... ) # This will convert the model into one that is quantizeable, train it, # and then quantize it after training is done. >>> trainer.fit(model) # You can use the model directly. >>> input = ... >>> with mode(model, training=False) as m: ... quantized_out = m(input) If you only wish to quantize parts of your model, please see QuantizationMixin for an example of how to do this. Properties: transforms: A list of ModelTransform's applied to the model exactly once as specified during training. Example transforms are enabling/disabling observers/quants, which are added to this list based on the init parameters to this callback. Users can further augment the list with more custom modules. prepared: If set, this is the prepared model. Only available after .fit() starts. qconfig_dicts: This is a map from the `module_qualified_name` to the corresponding QConfigDict to apply to that module. For example, suppose your LightningModule contains two submodules module.scriptable and module.not_scriptable. You'd provide a qconfig_dicts like: { "scriptable": ... } This will quantize just module.scriptable using the provided QConfigDict, or a default one. If you wish to quantize the entire LightningModule, simply use "" as the qualified name. The name should match the names returned by module.named_modules(). quantized: If set, this is the fully quantized model. Only available after .fit() finishes. """ def __init__( self, start_step: int = 0, enable_observer: Tuple[int, Optional[int]] = (0, None), freeze_bn_step: Optional[int] = None, qconfig_dicts: Optional[ Dict[str, Optional[Dict[str, Union[QConfig, QConfigDynamic]]]] ] = None, preserved_attrs: Optional[List[str]] = None, skip_conversion: bool = False, ) -> None: """ Args: start_step: The training step at which QAT is enabled. The model is always mutated with the appropriate stubs, but they are disabled until the start of this training step. See FakeQuantizeBase.fake_quant_enabled enable_observer: The half-open interval [a, b) in steps during which the observers are enabled. See FakeQuantizeBase.observer_enabled. If b is None, the observer is never disabled once enabled. freeze_bn_step: If specified, the step at which we apply freeze the collection of batch normalization layer statistics for QAT. qconfig_dicts: If given, used for quantization of the model during training. preserved_attrs: If provided, a list of attributes to preserve across quantized modules. These are preserved only if they already exists. """ if start_step < 0: raise ValueError( f"The starting step of QAT must be non-negative. Got {start_step}." ) start_observer, end_observer = enable_observer if start_observer < 0: raise ValueError( f"The starting step for the observer must be non-negative. Got {start_observer}." ) if end_observer and end_observer <= start_observer: raise ValueError( f"The observation interval must contain at least one step. Got [{start_step}, {end_observer})." ) if freeze_bn_step and freeze_bn_step < 0: raise ValueError( f"The step at which batch norm layers are frozen must be non-negative. Got {freeze_bn_step}." ) self.transforms: List[ModelTransform] = [] if start_step > 0: self.transforms.extend( [ # Enabled by default, so the assumption for > 0 is that the # user wants it disabled then enabled. ModelTransform( fn=torch.ao.quantization.disable_fake_quant, step=0, message="Disable fake quant", ), ModelTransform( fn=torch.ao.quantization.enable_fake_quant, step=start_step, message="Enable fake quant to start QAT", ), ] ) if start_observer > 0: self.transforms.extend( # See comment for start_step above. [ ModelTransform( fn=torch.ao.quantization.disable_observer, step=0, message="Disable observer", ), ModelTransform( fn=torch.ao.quantization.enable_observer, step=start_observer, message="Start observer", ), ] ) if end_observer is not None: self.transforms.append( ModelTransform( fn=torch.ao.quantization.disable_observer, step=end_observer, message="End observer", ) ) if freeze_bn_step is not None: self.transforms.append( ModelTransform( fn=torch.nn.intrinsic.qat.freeze_bn_stats, step=freeze_bn_step, message="Freeze BN", ) ) self.prepared: Optional[torch.nn.Module] = None self.preserved_attrs = set([] if preserved_attrs is None else preserved_attrs) if not qconfig_dicts: self.qconfig_dicts: QConfigDicts = {"": {"": get_default_qat_qconfig()}} else: self.qconfig_dicts: QConfigDicts = { key: value if value else {"": get_default_qat_qconfig()} for key, value in qconfig_dicts.items() } self.quantized: Optional[torch.nn.Module] = None self.skip_conversion = skip_conversion @classmethod def from_config(cls, cfg: CfgNode): qat = cfg.QUANTIZATION.QAT callback = cls( qconfig_dicts={submodule: None for submodule in cfg.QUANTIZATION.MODULES} if cfg.QUANTIZATION.MODULES else None, # We explicitly pass this to maintain properties for now. preserved_attrs=["model.backbone.size_divisibility"], start_step=qat.START_ITER, enable_observer=(qat.ENABLE_OBSERVER_ITER, qat.DISABLE_OBSERVER_ITER), freeze_bn_step=qat.FREEZE_BN_ITER, skip_conversion=True, # convert_fx will be handled by D2Go exporter ) if qat.UPDATE_OBSERVER_STATS_PERIODICALLY: callback.transforms.append( ModelTransform( interval=qat.UPDATE_OBSERVER_STATS_PERIOD, fn=observer_update_stat, message="Updating observers.", ) ) return callback def setup(self, trainer: Trainer, pl_module: LightningModule, stage: str) -> None: """Override the model with a quantized-aware version on setup. This is the earliest place we can override this model which allows for appropriate behavior when restoring from checkpoints, as well as connecting to accelerators, etc. The model is only prepared once. """ # Only prepare the model once. if hasattr(pl_module, "_prepared"): return with mode(pl_module, training=True) as train: prepared = self.prepare( deepcopy(train), configs=self.qconfig_dicts, attrs=self.preserved_attrs, ) # freeze the original model since only the prepared model will # participate in forward. for x in train.parameters(): x.requires_grad = False pl_module._prepared = prepared pl_module.forward = MethodType(_quantized_forward, pl_module) self.prepared = pl_module._prepared def on_train_batch_start( self, trainer: Trainer, pl_module: LightningModule, batch: Any, batch_idx: int, ) -> None: """Applies model transforms at as specified during training.""" apply_only_once = [] current_step = trainer.global_step for i, transform in enumerate(self.transforms): if (transform.step is not None and transform.step <= current_step) or ( transform.interval is not None and current_step % transform.interval == 0 ): self.prepared.apply(transform.fn) rank_zero_info( f"[QAT] {transform.message} at step={trainer.global_step}." ) if transform.step is not None and transform.step <= current_step: apply_only_once.append(i) if apply_only_once: self.transforms = [ transform for i, transform in enumerate(self.transforms) if i not in set(apply_only_once) ] def on_fit_end(self, trainer: Trainer, pl_module: LightningModule) -> None: """Quantize the weights since training has finalized.""" if hasattr(pl_module, "_quantized") or self.skip_conversion: return pl_module._quantized = self.convert( pl_module._prepared, self.qconfig_dicts.keys(), attrs=self.preserved_attrs ) self.quantized = pl_module._quantized def on_test_start(self, trainer: Trainer, pl_module: LightningModule) -> None: """Make sure we have a quantized version. This handles the edge case where a user does .test() without .fit() first. """ if hasattr(pl_module, "_quantized"): return pl_module._quantized = self.convert( pl_module._prepared, self.qconfig_dicts.keys(), attrs=self.preserved_attrs ) self.quantized = pl_module._quantized class PostTrainingQuantization(Callback, QuantizationMixin): """Enable post-training quantization, such as dynamic, static, and weight-only. This is an idempotent callback (to contrast with QuantizationAwareTraining). If calibration is required, we will use the validation data set provided to the STL Trainer, and this occurs on each validation run. The quantized model is made available as a property of the callback. Example:: >>> from stl.lightning.callbacks.quantization import PostTrainingQuantization >>> from pytorch_lightning import Trainer >>> from stl.lightning.utilities.model import mode ... # MyLightningModule must define val_dataloader() which is used both for # validation as well as calibration of the quantized model. >>> model = MyLightningModule(...) >>> post_training_quant = PostTrainingQuantization() >>> trainer = Trainer( ... callbacks=[post_training_quant], ... ) # This will both train the model + create a *separate* quantized version. # The original model is left unchaged. >>> trainer.fit(model) # You can access the quantized version of the model directly. >>> input = ... >>> with mode(post_training_quant.quantized, training=False) as m: ... quantized_out = m(input) If you only wish to quantize parts of your model, please see QuantizationMixin for an example of how to do this. Properties: prepared: If set, this is the prepared model which can be used for calibration. Only available after validation start. qconfig_dicts: See `QuantizedAwareTraining` for full description. quantized: If set, this is the fully quantized model calibrated using the validation data. Only available after validation has ended. """ def __init__( self, qconfig_dicts: Optional[QConfigDicts] = None, preserved_attrs: Optional[List[str]] = None, ) -> None: """Initialize the callback.""" self.qconfig_dicts = qconfig_dicts or {"": {"": get_default_qconfig()}} self.preserved_attrs = set([] if preserved_attrs is None else preserved_attrs) self.prepared: Optional[torch.nn.Module] = None self.quantized: Optional[torch.nn.Module] = None self.should_calibrate = _requires_calibration(self.qconfig_dicts) @classmethod def from_config(cls, cfg: CfgNode): return cls( qconfig_dicts={submodule: None for submodule in cfg.QUANTIZATION.MODULES} if cfg.QUANTIZATION.MODULES else None, # We explicitly pass this to maintain properties for now. preserved_attrs=["model.backbone.size_divisibility"], ) def on_validation_start(self, trainer: Trainer, pl_module: LightningModule) -> None: """ On validation start, prepare a module for quantization by adding observers and loading weights from current model. """ # Pass a copy to quantization APIs. self.prepared = self.prepare( deepcopy(pl_module).eval(), configs=self.qconfig_dicts, attrs=self.preserved_attrs, ) def on_validation_end(self, trainer: Trainer, pl_module: LightningModule) -> None: """Convert the calibrated model to its finalized quantized version.""" self.quantized = self.convert( self.prepared, self.qconfig_dicts.keys(), attrs=self.preserved_attrs ) def on_validation_batch_end( self, trainer: Trainer, pl_module: LightningModule, outputs: Any, batch: Any, batch_idx: int, dataloader_idx: int, ) -> None: """Also run the validation batch through the quantized model for calibration.""" if self.should_calibrate: with torch.no_grad(): self.prepared(batch)
d2go-main
d2go/runner/callbacks/quantization.py
d2go-main
d2go/runner/callbacks/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import builtins import logging import sys import time import uuid from functools import wraps from typing import Any, Callable, Optional, TypeVar from mobile_cv.common.misc.oss_utils import fb_overwritable # Saving the builtin print to wrap it up later. BUILTIN_PRINT = builtins.print _T = TypeVar("_T") @fb_overwritable() def initialize_logging(logging_level: int) -> None: root_logger = logging.getLogger() root_logger.setLevel(logging_level) def replace_print_with_logging() -> None: builtins.print = _print_to_logging def _print_to_logging( *objects: Any, sep: Optional[str] = " ", end: Optional[str] = "\n", file: Optional[Any] = None, flush: bool = False, ) -> None: """Wraps built-in print to replace it with using the logging module. Only writing to stdout and stderr are replaced, printing to a file will be executed unmodified. This function is on the module level because otherwise numba breaks. """ # Mimicking the behavior of Python's built-in print function. if sep is None: sep = " " if end is None: end = "\n" # Don't replace prints to files. if file is not None and file != sys.stdout and file != sys.stderr: BUILTIN_PRINT(*objects, sep=sep, end=end, file=file, flush=flush) return logging.info(sep.join(map(str, objects)), stacklevel=3) @fb_overwritable() def _log_enter(category: str, name: str, unique_id: str) -> None: logging.info(f"Entering logging context, {category=}, {name=}, {unique_id=}") @fb_overwritable() def _log_exit(category: str, name: str, unique_id: str, duration: float) -> None: logging.info( f"Exiting logging context, {category=}, {name=}, {unique_id=}, {duration=}" ) def log_interval( category: Optional[str] = None, name: Optional[str] = None ) -> Callable[[Callable[..., _T]], Callable[..., _T]]: _unique_id = uuid.uuid1().int >> 97 _overwrite_category = category _overwrite_name = name def log_interval_deco(func: Callable[..., _T]) -> Callable[..., _T]: _category = _overwrite_category or func.__qualname__.split(".")[0] _name = _overwrite_name or func.__name__ @wraps(func) def wrapper(*args, **kwargs) -> _T: _log_enter(_category, _name, _unique_id) _start = time.perf_counter() ret = func(*args, **kwargs) _log_exit(_category, _name, _unique_id, time.perf_counter() - _start) return ret return wrapper return log_interval_deco
d2go-main
d2go/utils/logging.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import os import warnings from contextlib import contextmanager from typing import Any, Callable, Dict, Iterator, Optional import detectron2.utils.comm as comm import torch from d2go.config.config import CfgNode from d2go.utils.tensorboard_log_util import get_tensorboard_log_dir # noqa: forwarding from detectron2.utils.file_io import PathManager from tabulate import tabulate logger = logging.getLogger(__name__) # Subdirectory with model configurations dumped by the training binary. TRAINED_MODEL_CONFIGS_DIR: str = "trained_model_configs" def check_version(library, min_version, warning_only=False): """Check the version of the library satisfies the provided minimum version. An exception is thrown if the check does not pass. Parameters ---------- min_version : str Minimum version warning_only : bool Printing a warning instead of throwing an exception. """ from distutils.version import LooseVersion version = library.__version__ bad_version = LooseVersion(version) < LooseVersion(min_version) if bad_version: msg = ( f"Installed {library.__name__} version {version} does not satisfy the " f"minimum required version {min_version}" ) if warning_only: warnings.warn(msg) else: raise AssertionError(msg) return False return True def metrics_dict_to_metrics_table(dic): assert isinstance(dic, dict) ret = [] for key in sorted(dic.keys()): value = dic[key] if isinstance(value, dict): for sub_metrics in metrics_dict_to_metrics_table(value): ret.append([key] + sub_metrics) else: ret.append([key, value]) return ret def print_metrics_table(metrics_dic): metrics_table = metrics_dict_to_metrics_table(metrics_dic) metrics_tabulate = tabulate( metrics_table, tablefmt="pipe", headers=["model", "dataset", "task", "metric", "score"], ) logger.info("Metrics table: \n" + metrics_tabulate) def dump_trained_model_configs( output_dir: str, trained_cfgs: Dict[str, CfgNode] ) -> Dict[str, str]: """Writes trained model config files to output_dir. Args: output_dir: output file directory. trained_cfgs: map from model name to the config of trained model. Returns: A map of model name to model config path. """ trained_model_configs = {} trained_model_config_dir = os.path.join(output_dir, TRAINED_MODEL_CONFIGS_DIR) PathManager.mkdirs(trained_model_config_dir) for name, trained_cfg in trained_cfgs.items(): config_file = os.path.join(trained_model_config_dir, "{}.yaml".format(name)) trained_model_configs[name] = config_file if comm.is_main_process(): logger.info("Dumping trained config file: {}".format(config_file)) with PathManager.open(config_file, "w") as f: f.write(trained_cfg.dump()) comm.synchronize() logger.info("Finished dumping trained config file") return trained_model_configs def save_binary_outputs(filename: str, outputs: Any) -> None: """Helper function to serialize and save function outputs in binary format.""" with PathManager.open(filename, "wb") as f: torch.save(outputs, f) def load_binary_outputs(filename: str) -> Any: """Helper function to load and deserialize function outputs saved in binary format.""" with PathManager.open(filename, "rb") as f: return torch.load(f) @contextmanager def mode(net: torch.nn.Module, training: bool) -> Iterator[torch.nn.Module]: """Temporarily switch to training/evaluation mode.""" istrain = net.training try: net.train(training) yield net finally: net.train(istrain) def _log_api_usage(identifier: str): """ Internal function used to log the usage of different d2go components inside facebook's infra. """ torch._C._log_api_usage_once("d2go." + identifier) def _log_api_usage_on_main_process(identifier: str): """ Log the usage of d2go API only on the main process. """ if comm.is_main_process(): _log_api_usage(identifier)
d2go-main
d2go/utils/misc.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved def iterate_module_named_parameters(model, check_requires_grad=True): """Iterate over all parameters for the model""" memo = set() for module_name, module in model.named_modules(): for module_param_name, value in module.named_parameters(recurse=False): if check_requires_grad and not value.requires_grad: continue # Avoid duplicating parameters if value in memo: continue memo.add(value) yield module_name, module, module_param_name, value
d2go-main
d2go/utils/parse_module_params.py
# Copyright (c) Facebook, Inc. and its affiliates. from collections import deque import cv2 import detectron2.data.transforms as T import torch from d2go.model_zoo import model_zoo from detectron2.data import MetadataCatalog from detectron2.utils.video_visualizer import VideoVisualizer from detectron2.utils.visualizer import ColorMode, Visualizer class DemoPredictor: def __init__(self, model, min_size_test=224, max_size_test=320, input_format="RGB"): self.model = model self.model.eval() self.aug = T.ResizeShortestEdge([min_size_test, min_size_test], max_size_test) self.input_format = input_format def __call__(self, original_image): """ Args: original_image (np.ndarray): an image of shape (H, W, C) (in BGR order). Returns: predictions (dict): the output of the model for one image only. See :doc:`/tutorials/models` for details about the format. """ with torch.no_grad(): # https://github.com/sphinx-doc/sphinx/issues/4258 # Apply pre-processing to image. if self.input_format == "RGB": # whether the model expects BGR inputs or RGB original_image = original_image[:, :, ::-1] height, width = original_image.shape[:2] image = self.aug.get_transform(original_image).apply_image(original_image) image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1)) inputs = {"image": image, "height": height, "width": width} predictions = self.model([inputs])[0] return predictions class VisualizationDemo(object): def __init__(self, cfg, config_file, instance_mode=ColorMode.IMAGE, parallel=False): """ Args: cfg (CfgNode): instance_mode (ColorMode): parallel (bool): whether to run the model in different processes from visualization. Useful since the visualization logic can be slow. """ self.metadata = MetadataCatalog.get( cfg.DATASETS.TEST[0] if len(cfg.DATASETS.TEST) else "__unused" ) self.cpu_device = torch.device("cpu") self.instance_mode = instance_mode self.parallel = parallel model = model_zoo.get(config_file, trained=True) # runner.build_model(cfg) self.predictor = DemoPredictor(model) def run_on_image(self, image): """ Args: image (np.ndarray): an image of shape (H, W, C) (in BGR order). This is the format used by OpenCV. Returns: predictions (dict): the output of the model. vis_output (VisImage): the visualized image output. """ vis_output = None predictions = self.predictor(image) # Convert image from OpenCV BGR format to Matplotlib RGB format. image = image[:, :, ::-1] visualizer = Visualizer(image, self.metadata, instance_mode=self.instance_mode) if "panoptic_seg" in predictions: panoptic_seg, segments_info = predictions["panoptic_seg"] vis_output = visualizer.draw_panoptic_seg_predictions( panoptic_seg.to(self.cpu_device), segments_info ) else: if "sem_seg" in predictions: vis_output = visualizer.draw_sem_seg( predictions["sem_seg"].argmax(dim=0).to(self.cpu_device) ) if "instances" in predictions: instances = predictions["instances"].to(self.cpu_device) vis_output = visualizer.draw_instance_predictions(predictions=instances) return predictions, vis_output def _frame_from_video(self, video): while video.isOpened(): success, frame = video.read() if success: yield frame else: break def run_on_video(self, video): """ Visualizes predictions on frames of the input video. Args: video (cv2.VideoCapture): a :class:`VideoCapture` object, whose source can be either a webcam or a video file. Yields: ndarray: BGR visualizations of each video frame. """ video_visualizer = VideoVisualizer(self.metadata, self.instance_mode) def process_predictions(frame, predictions): frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) if "panoptic_seg" in predictions: panoptic_seg, segments_info = predictions["panoptic_seg"] vis_frame = video_visualizer.draw_panoptic_seg_predictions( frame, panoptic_seg.to(self.cpu_device), segments_info ) elif "instances" in predictions: predictions = predictions["instances"].to(self.cpu_device) vis_frame = video_visualizer.draw_instance_predictions( frame, predictions ) elif "sem_seg" in predictions: vis_frame = video_visualizer.draw_sem_seg( frame, predictions["sem_seg"].argmax(dim=0).to(self.cpu_device) ) # Converts Matplotlib RGB format to OpenCV BGR format vis_frame = cv2.cvtColor(vis_frame.get_image(), cv2.COLOR_RGB2BGR) return vis_frame frame_gen = self._frame_from_video(video) if self.parallel: buffer_size = self.predictor.default_buffer_size frame_data = deque() for cnt, frame in enumerate(frame_gen): frame_data.append(frame) self.predictor.put(frame) if cnt >= buffer_size: frame = frame_data.popleft() predictions = self.predictor.get() yield process_predictions(frame, predictions) while len(frame_data): frame = frame_data.popleft() predictions = self.predictor.get() yield process_predictions(frame, predictions) else: for frame in frame_gen: yield process_predictions(frame, self.predictor(frame))
d2go-main
d2go/utils/demo_predictor.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import os import detectron2.utils.comm as comm import torch from d2go.utils.visualization import VisualizerWrapper from detectron2.utils.file_io import PathManager logger = logging.getLogger(__name__) def get_rel_loss_checker(rel_thres=1.0): def _loss_delta_exceeds_thresh(prev_loss, loss): if prev_loss is None: return True prev_sum = sum(prev_loss.values()) cur_sum = sum(loss.values()) if prev_sum <= 0: return True if (cur_sum - prev_sum) / prev_sum >= rel_thres: return False return True return _loss_delta_exceeds_thresh class TrainImageWriter(object): def __init__(self, cfg, tbx_writer, max_count=5): """max_count: max number of data written to tensorboard, additional call will be ignored """ self.visualizer = VisualizerWrapper(cfg) self.writer = tbx_writer self.max_count = max_count self.counter = 0 def __call__(self, all_data): if self.max_count > 0 and self.counter >= self.max_count: return data = all_data["data"] step = all_data["step"] for idx, cur_data in enumerate(data): name = f"train_abnormal_losses/{step}/img_{idx}/{cur_data['file_name']}" vis_img = self.visualizer.visualize_train_input(cur_data) self.writer._writer.add_image(name, vis_img, step, dataformats="HWC") logger.warning( "Train images with bad losses written to tensorboard 'train_abnormal_losses'" ) self.counter += 1 class FileWriter(object): def __init__(self, output_dir, max_count=5): """max_count: max number of data written to tensorboard, additional call will be ignored """ self.output_dir = output_dir self.max_count = max_count self.counter = 0 def __call__(self, all_data): if self.max_count > 0 and self.counter >= self.max_count: return output_dir = self.output_dir step = all_data["step"] losses = all_data["losses"] file_name = f"train_abnormal_losses_{step}_{comm.get_rank()}.pth" out_file = os.path.join(output_dir, file_name) with PathManager.open(out_file, "wb") as fp: torch.save(all_data, fp) logger.warning( f"Iteration {step} has bad losses {losses}. " f"all information saved to {out_file}." ) self.counter += 1 def get_writers(cfg, tbx_writer): writers = [TrainImageWriter(cfg, tbx_writer), FileWriter(cfg.OUTPUT_DIR)] return writers class AbnormalLossChecker(object): def __init__(self, start_iter, writers, valid_loss_checker=None): self.valid_loss_checker = valid_loss_checker or get_rel_loss_checker() self.writers = writers or [] assert isinstance(self.writers, list) self.prev_index = start_iter self.prev_loss = None def check_step(self, losses, data=None, model=None): with torch.no_grad(): is_valid = self.valid_loss_checker(self.prev_loss, losses) if not is_valid: self._write_invalid_info(losses, data, model) self.prev_index += 1 self.prev_loss = losses return is_valid def _write_invalid_info(self, losses, data, model): all_info = { "losses": losses, "data": data, "model": getattr(model, "module", model), "prev_loss": self.prev_loss, "step": self.prev_index + 1, } for writer in self.writers: writer(all_info) class AbnormalLossCheckerWrapper(torch.nn.Module): def __init__(self, model, checker): super().__init__() self.checker = checker self.model = model self.training = model.training def forward(self, x): losses = self.model(x) self.checker.check_step(losses, data=x, model=self.model) return losses
d2go-main
d2go/utils/abnormal_checker.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from mobile_cv.common.misc.oss_utils import fb_overwritable @fb_overwritable() def get_model_zoo_storage_prefix() -> str: return "https://mobile-cv.s3-us-west-2.amazonaws.com/d2go/models/" @fb_overwritable() def get_launch_environment(): return "local" MODEL_ZOO_STORAGE_PREFIX = get_model_zoo_storage_prefix()
d2go-main
d2go/utils/launch_environment.py
#!/usr/bin/env python3 import itertools from typing import Any, Dict, Optional import torch import torch.nn as nn class EMAState(object): """Stores Exponential Moving Average state for a model. Args: decay: EMA decay factor, should be in [0, 1]. A decay of 0 corresponds to always using the latest value (no EMA) and a decay of 1 corresponds to not updating weights after initialization. Default to 0.999. device: If not None, move model EMA state to device. """ def __init__(self, decay: float = 0.999, device: Optional[str] = None): if decay < 0 or decay > 1.0: raise ValueError(f"Decay should be in [0, 1], {decay} was given.") self.decay: float = decay self.state: Dict[str, Any] = {} self.device: Optional[str] = device @classmethod def from_model( cls, model: nn.Module, decay: float = 0.999, device: Optional[str] = None, ) -> "EMAState": """Constructs model state from the model and move to device if given.""" ret = cls(decay, device) ret.load_from(model) return ret def load_from(self, model: nn.Module) -> None: """Load state from the model.""" self.state.clear() for name, val in self._get_model_state_iterator(model): val = val.detach().clone() self.state[name] = val.to(self.device) if self.device else val def has_inited(self) -> bool: return len(self.state) > 0 def apply_to(self, model: nn.Module) -> None: """Apply EMA state to the model.""" with torch.no_grad(): for name, val in self._get_model_state_iterator(model): assert ( name in self.state ), f"Name {name} does not exist, available names are {self.state.keys()}" val.copy_(self.state[name]) def state_dict(self) -> Dict[str, Any]: return self.state def load_state_dict(self, state_dict: Dict[str, Any]) -> None: self.state.clear() for name, val in state_dict.items(): self.state[name] = val.to(self.device) if self.device else val def to(self, device: torch.device) -> None: """moves EMA state to device.""" for name, val in self.state.items(): self.state[name] = val.to(device) def _get_model_state_iterator(self, model: nn.Module): param_iter = model.named_parameters() # pyre-fixme[16]: `nn.Module` has no attribute `named_buffers`. buffer_iter = model.named_buffers() return itertools.chain(param_iter, buffer_iter) def update(self, model: nn.Module) -> None: with torch.no_grad(): for name, val in self._get_model_state_iterator(model): ema_val = self.state[name] if self.device: val = val.to(self.device) ema_val.copy_(ema_val * self.decay + val * (1.0 - self.decay))
d2go-main
d2go/utils/ema_state.py
import logging import os import pickle import torch from d2go.config import CfgNode as CN from detectron2.utils.file_io import PathManager from mobile_cv.torch.utils_pytorch import comm from torch.cuda._memory_viz import segment_plot, trace_plot logger: logging.Logger = logging.getLogger(__name__) def add_memory_profiler_configs(_C: CN): _C.MEMORY_PROFILER = CN() _C.MEMORY_PROFILER.ENABLED = False # max number of trace entries in memory snapshot _C.MEMORY_PROFILER.TRACE_MAX_ENTRIES = 1000000 # Configs to be used by d2go.utils.gpu_memory_profiler.D2GoGpuMemorySnapshot # determine the number of iterations to log memory snapshots for _C.MEMORY_PROFILER.LOG_N_STEPS = 3 # determine at what iteration to start recording gpu memory _C.MEMORY_PROFILER.LOG_DURING_TRAIN_AT = 550 def add_zoomer_default_config(_C: CN): _C.ZOOMER = CN() _C.ZOOMER.ENABLE_STACK_TRACING = ( False # Do not enable by default, since it may cause performance regression ) _C.ZOOMER.ENABLE_MEMORY_PROFILING = False def omm_logger_wrapper(output_dir): def oom_logger( device: int, alloc: int, device_alloc: int, device_free: int ) -> None: """ Log memory snapshot in the event of CUDA OOM. """ logger.info( f"Saving memory snapshot device: {device}, alloc: {alloc}, device_alloc: {device_alloc}, device_free: {device_free}" ) try: log_memory_snapshot(output_dir, file_prefix="oom") except Exception as e: logger.error(f"Failed to log memory snapshot during OOM {e}") return oom_logger def log_memory_snapshot(output_dir: str, file_prefix: str = "") -> None: """ Log memory snapshots to output_dir """ if not torch.cuda.is_available(): logger.info("CUDA unavailable. Not logging snapshot") return try: rank = comm.get_rank() save_dir = os.path.join( output_dir, "memory_snapshot", f"{file_prefix}_rank{rank}" ) logger.info(f"Logging memory snapshot to {save_dir}") snapshot = torch.cuda.memory._snapshot() dump_snapshot(save_dir, snapshot) except Exception as e: logger.error(f"Failed to log memory snapshot to {save_dir}: {e}") def dump_snapshot(save_dir: str, snapshot): """ Dump memory snapshot and useful plots to save_dir. This is a rewrite of torch.cuda.memory._dump_snapshot() with PathManager. """ if not PathManager.exists(save_dir): PathManager.mkdirs(save_dir) with PathManager.open(os.path.join(save_dir, "snapshot.pickle"), "wb") as f: pickle.dump(snapshot, f) with PathManager.open(os.path.join(save_dir, "trace_plot.html"), "w") as f: f.write(trace_plot(snapshot)) with PathManager.open(os.path.join(save_dir, "segment_plot.html"), "w") as f: f.write(segment_plot(snapshot)) logger.info(f"Saved memory snapshot to {save_dir}") def record_memory_history(trace_max_entries=1000000) -> None: """ Start recording memory history and stack traces. """ if not torch.cuda.is_available(): logger.info("CUDA unavailable. Not recording memory history") return torch.cuda.memory._record_memory_history( enabled="all", max_entries=trace_max_entries ) logger.info("Started recording memory history") def attach_oom_logger(output_dir, trace_max_entries=1000000) -> None: """ Start recording memory history and attach the OOM logger. """ if not torch.cuda.is_available(): logger.info("CUDA unavailable. Not attaching OOM logger") return record_memory_history(trace_max_entries) torch._C._cuda_attach_out_of_memory_observer(omm_logger_wrapper(output_dir)) logger.info("Attached GPU OOM logger")
d2go-main
d2go/utils/gpu_memory_profiler.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Populating registreis from d2go.utils import flop_calculator as _flop_calculator # noqa # @fb-only: from d2go.utils import fb as _fb # isort:skip # noqa
d2go-main
d2go/utils/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import copy import logging import os import traceback import detectron2.utils.comm as comm import mobile_cv.lut.lib.pt.flops_utils as flops_utils import torch from d2go.utils.helper import run_once from detectron2.utils.analysis import FlopCountAnalysis from detectron2.utils.file_io import PathManager from detectron2.utils.registry import Registry from fvcore.nn import flop_count_str, flop_count_table PROFILER_REGISTRY = Registry("PROFILER") logger = logging.getLogger(__name__) @torch.no_grad() def dump_flops_info(model, inputs, output_dir, use_eval_mode=True): """ Dump flops information about model, using the given model inputs. Information are dumped to output_dir using various flop counting tools in different formats. Only a simple table is printed to terminal. Args: inputs: a tuple of positional arguments used to call model with. use_eval_mode: turn the model into eval mode for flop counting. Otherwise, will use the original mode. It's recommended to use eval mode, because training mode typically follows a different codepath. """ if not comm.is_main_process(): return logger.info("Evaluating model's number of parameters and FLOPS") try: model = copy.deepcopy(model) except Exception: logger.info("Failed to deepcopy the model and skip FlopsEstimation.") return # Delete other forward_pre_hooks so they are not simultaneously called. # The keys are wrapped in a list to avoid mutating ordered_dict during iteration. # See https://github.com/pytorch/pytorch/issues/49739 for more details. for hook_key in list(model._forward_pre_hooks.keys()): logger.warning(f"Forward hook with key {hook_key} was removed in flop counter.") model._forward_pre_hooks.pop(hook_key) if use_eval_mode: model.eval() inputs = copy.deepcopy(inputs) # 1. using mobile_cv flop counter try: fest = flops_utils.FlopsEstimation(model) with fest.enable(): model(*inputs) fest.add_flops_info() model_str = str(model) output_file = os.path.join(output_dir, "flops_str_mobilecv.txt") with PathManager.open(output_file, "w") as f: f.write(model_str) logger.info(f"Flops info written to {output_file}") except Exception: logger.exception("Failed to estimate flops using mobile_cv's FlopsEstimation") # 2. using d2/fvcore's flop counter output_file = os.path.join(output_dir, "flops_str_fvcore.txt") try: flops = FlopCountAnalysis(model, inputs) # 2.1: dump as model str model_str = flop_count_str(flops) with PathManager.open(output_file, "w") as f: f.write(model_str) logger.info(f"Flops info written to {output_file}") # 2.2: dump as table flops_table = flop_count_table(flops, max_depth=10) output_file = os.path.join(output_dir, "flops_table_fvcore.txt") with PathManager.open(output_file, "w") as f: f.write(flops_table) logger.info(f"Flops table (full version) written to {output_file}") # 2.3: print a table with a shallow depth flops_table = flop_count_table(flops, max_depth=3) logger.info("Flops table:\n" + flops_table) except Exception: with PathManager.open(output_file, "w") as f: traceback.print_exc(file=f) logger.warning( "Failed to estimate flops using detectron2's FlopCountAnalysis. " f"Error written to {output_file}." ) flops = float("nan") return flops def add_flop_printing_hook( model, output_dir: str, ): """ Add a pytorch module forward hook that will print/save flops of the whole model at the first time the model is called. Args: output_dir: directory to save more detailed flop info """ def hook(module, input): handle.remove() dump_flops_info(module, input, output_dir) return input handle = model.register_forward_pre_hook(hook) @PROFILER_REGISTRY.register() def default_flop_counter(model, cfg): from torch.distributed.fsdp.fully_sharded_data_parallel import ( FullyShardedDataParallel as FSDP, ) # TODO: deepcopy() not supported for FSDP yet (https://github.com/pytorch/pytorch/issues/82070), so we disable flop counter for now if isinstance(model, FSDP): logger.warn( "Default flop counter is disabled because it's not supported for FSDP yet. " ) return return add_flop_printing_hook(model, cfg.OUTPUT_DIR) # NOTE: the logging can be too long and messsy when printing flops multiple # times, especially when running eval during training, thus using `run_once` # to limit it. `dump_flops_info` can log flops more concisely. @run_once() def add_print_flops_callback(cfg, model, disable_after_callback=True): def _print_flops_callback(self, model, model_data): self.add_flops_info() logger.info("Callback: model flops info:\n{}".format(model)) def _guess_batch_size(): # Inputs are meta-arch dependent, the most general solution will be # adding a function like `get_batch_size()` to each meta arch ret = 1 try: model_input_shapes = model_data(model)["input_shapes"] assert isinstance(model_input_shapes, list) assert len(model_input_shapes) > 0 # assuming the first input is a list of images ret = len(model_input_shapes[0]) except Exception: ret = cfg.SOLVER.IMS_PER_BATCH // comm.get_world_size() logger.warning( "Could not get batch size, compute from" f" `cfg.SOLVER.IMS_PER_BATCH`={ret}" ) pass return ret nparams, nflops = self.get_flops() batch_size = _guess_batch_size() nflops_single = nflops / batch_size logger.info( f"Model parameters (M): {nparams}, " f"MFlops (batch_size={batch_size}): {nflops}, " f"MFlops (batch_size=1): {nflops_single}" ) if disable_after_callback: self.set_enable(False) fest = flops_utils.FlopsEstimation(model).set_callback(_print_flops_callback) logger.info("Added callback to log flops info after the first inference") fest.set_enable(True) return fest def attach_profiler(profiler_name): return PROFILER_REGISTRY.get(profiler_name) def attach_profilers(cfg, model): for profiler in cfg.PROFILERS: attach_profiler(profiler)(model, cfg)
d2go-main
d2go/utils/flop_calculator.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import os from functools import lru_cache from mobile_cv.common.misc.oss_utils import fb_overwritable @fb_overwritable() def get_tensorboard_log_dir(output_dir): return output_dir
d2go-main
d2go/utils/tensorboard_log_util.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from typing import Optional, Type from d2go.config import CfgNode as CN from d2go.registry.builtin import META_ARCH_REGISTRY from detectron2.data import DatasetCatalog, detection_utils as utils, MetadataCatalog from detectron2.evaluation import DatasetEvaluator from detectron2.utils.events import get_event_storage from detectron2.utils.visualizer import Visualizer def add_tensorboard_default_configs(_C): _C.TENSORBOARD = CN() # Output from dataloader will be written to tensorboard at this frequency _C.TENSORBOARD.TRAIN_LOADER_VIS_WRITE_PERIOD = 20 # This controls max number of images over all batches, be considerate when # increasing this number because it takes disk space and slows down the training _C.TENSORBOARD.TRAIN_LOADER_VIS_MAX_IMAGES = 16 # This controls the max number of images to visualize each write period _C.TENSORBOARD.TRAIN_LOADER_VIS_MAX_BATCH_IMAGES = 16 # Max number of images per dataset to visualize in tensorboard during evaluation _C.TENSORBOARD.TEST_VIS_MAX_IMAGES = 16 # Frequency of sending data to tensorboard during evaluation _C.TENSORBOARD.TEST_VIS_WRITE_PERIOD = 1 # TENSORBOARD.LOG_DIR will be determined solely by OUTPUT_DIR _C.register_deprecated_key("TENSORBOARD.LOG_DIR") return _C class VisualizerWrapper(object): """ D2's Visualizer provides low-level APIs to draw common structures, such as draw_instance_predictions/draw_sem_seg/overlay_instances. This class provides the high-level interface for visualizing. """ def __init__(self, cfg, custom_visualizer: Optional[Type[Visualizer]] = None): self.cfg = cfg self.visualizer = custom_visualizer or Visualizer def _get_meta_arch_class(self): return META_ARCH_REGISTRY.get(self.cfg.MODEL.META_ARCHITECTURE) def visualize_train_input(self, input_dict): """ Visulize a single input image of model (also the output from train loader) used for training, this contains the data augmentation. """ per_image = input_dict cfg = self.cfg # customization if hasattr(self._get_meta_arch_class(), "visualize_train_input"): return self._get_meta_arch_class().visualize_train_input(self, input_dict) img = per_image["image"].permute(1, 2, 0).cpu().detach().numpy() img = utils.convert_image_to_rgb(img, cfg.INPUT.FORMAT) if "dataset_name" in input_dict: metadata = MetadataCatalog.get(input_dict["dataset_name"]) else: metadata = MetadataCatalog.get(cfg.DATASETS.TRAIN[0]) scale = 2.0 visualizer = self.visualizer(img, metadata=metadata, scale=scale) if "instances" in per_image: target_fields = per_image["instances"].get_fields() labels = [metadata.thing_classes[i] for i in target_fields["gt_classes"]] visualizer.overlay_instances( labels=labels, boxes=target_fields.get("gt_boxes", None), masks=target_fields.get("gt_masks", None), keypoints=target_fields.get("gt_keypoints", None), ) if "sem_seg" in per_image: visualizer.draw_sem_seg(per_image["sem_seg"], area_threshold=0, alpha=0.5) return visualizer.get_output().get_image() def visualize_test_output( self, dataset_name, dataset_mapper, input_dict, output_dict ): """ Visualize the output of model """ # customization if hasattr(self._get_meta_arch_class(), "visualize_test_output"): return self._get_meta_arch_class().visualize_test_output( self, dataset_name, dataset_mapper, input_dict, output_dict ) image = dataset_mapper._read_image(input_dict, "RGB") visualizer = self.visualizer(image, metadata=MetadataCatalog.get(dataset_name)) if "panoptic_seg" in output_dict: panoptic_seg, segments_info = output_dict["panoptic_seg"] visualizer.draw_panoptic_seg_predictions( panoptic_seg.to("cpu"), segments_info ) if "instances" in output_dict: visualizer.draw_instance_predictions(output_dict["instances"].to("cpu")) if "sem_seg" in output_dict: visualizer.draw_sem_seg( output_dict["sem_seg"].argmax(dim=0).to("cpu"), area_threshold=0, alpha=0.5, ) return visualizer.get_output().get_image() def visualize_dataset_dict(self, dataset_name, dataset_mapper, dataset_dict): """ Visualize the dataset_dict """ image = dataset_mapper._read_image(dataset_dict, "RGB") visualizer = self.visualizer(image, metadata=MetadataCatalog.get(dataset_name)) visualizer.draw_dataset_dict(dataset_dict) return visualizer.get_output().get_image() class DataLoaderVisWrapper: """ Wrap the data loader to visualize its output via TensorBoardX at given frequency. """ def __init__( self, cfg, tbx_writer, data_loader, visualizer: Optional[Type[VisualizerWrapper]] = None, ): self.tbx_writer = tbx_writer self.data_loader = data_loader self._visualizer = visualizer(cfg) if visualizer else VisualizerWrapper(cfg) self.log_frequency = cfg.TENSORBOARD.TRAIN_LOADER_VIS_WRITE_PERIOD self.log_limit = cfg.TENSORBOARD.TRAIN_LOADER_VIS_MAX_IMAGES self.batch_log_limit = cfg.TENSORBOARD.TRAIN_LOADER_VIS_MAX_BATCH_IMAGES assert self.log_frequency >= 0 assert self.log_limit >= 0 assert self.batch_log_limit >= 0 self._remaining = self.log_limit def __iter__(self): for data in self.data_loader: self._maybe_write_vis(data) yield data def _maybe_write_vis(self, data): try: storage = get_event_storage() except AssertionError: # wrapped data loader might be used outside EventStorage, don't visualize # anything return if ( self.log_frequency == 0 or not storage.iter % self.log_frequency == 0 or self._remaining <= 0 ): return length = min(len(data), min(self.batch_log_limit, self._remaining)) data = data[:length] self._remaining -= length for i, per_image in enumerate(data): vis_image = self._visualizer.visualize_train_input(per_image) tag = [f"train_loader_batch_{storage.iter}"] if "dataset_name" in per_image: tag += [per_image["dataset_name"]] if "file_name" in per_image: tag += [f"img_{i}", per_image["file_name"]] if isinstance(vis_image, dict): for k in vis_image: self.tbx_writer._writer.add_image( tag="/".join(tag + [k]), img_tensor=vis_image[k], global_step=storage.iter, dataformats="HWC", ) else: self.tbx_writer._writer.add_image( tag="/".join(tag), img_tensor=vis_image, global_step=storage.iter, dataformats="HWC", ) class VisualizationEvaluator(DatasetEvaluator): """ Visualize GT and prediction during evaluation. It doesn't calculate any metrics, just uses evaluator's interface as hook. """ # NOTE: the evaluator will be created for every eval (during training and # after training), so the images will be logged multiple times, use a global # counter to differentiate them in TB. _counter = 0 def __init__( self, cfg, tbx_writer, dataset_mapper, dataset_name, train_iter=None, tag_postfix=None, visualizer: Optional[Type[VisualizerWrapper]] = None, ): self.tbx_writer = tbx_writer self.dataset_mapper = dataset_mapper self.dataset_name = dataset_name self._visualizer = visualizer(cfg) if visualizer else VisualizerWrapper(cfg) self.train_iter = train_iter or VisualizationEvaluator._counter self.tag_postfix = tag_postfix or "" self.log_limit = max(cfg.TENSORBOARD.TEST_VIS_MAX_IMAGES, 0) self.log_frequency = cfg.TENSORBOARD.TEST_VIS_WRITE_PERIOD self._metadata = None self._dataset_dict = None self._file_name_to_dataset_dict = None if self.log_limit > 0: self._initialize_dataset_dict(dataset_name) VisualizationEvaluator._counter += 1 self.reset() def _initialize_dataset_dict(self, dataset_name: str) -> None: # Enable overriding defaults in case the dataset hasn't been registered. self._metadata = MetadataCatalog.get(dataset_name) # NOTE: Since there's no GT from test loader, we need to get GT from # the dataset_dict, this assumes the test data loader uses the item from # dataset_dict in the default way. self._dataset_dict = DatasetCatalog.get(dataset_name) self._file_name_to_dataset_dict = { dic["file_name"]: dic for dic in self._dataset_dict } def reset(self): self._iter = 0 self._log_remaining = self.log_limit def process(self, inputs, outputs): if ( self.log_frequency == 0 or self._iter % self.log_frequency != 0 or self._log_remaining <= 0 ): self._iter += 1 return for input, output in zip(inputs, outputs): file_name = input["file_name"] dataset_dict = self._file_name_to_dataset_dict[file_name] gt_img = self._visualizer.visualize_dataset_dict( self.dataset_name, self.dataset_mapper, dataset_dict ) pred_img = self._visualizer.visualize_test_output( self.dataset_name, self.dataset_mapper, input, output ) tag_base = f"{self.dataset_name}{self.tag_postfix}/eval_iter_{self._iter}/{file_name}" self.tbx_writer._writer.add_image( f"{tag_base}/GT", gt_img, self.train_iter, dataformats="HWC", ) if not isinstance(pred_img, dict): pred_img = {"Pred": pred_img} for img_type in pred_img.keys(): self.tbx_writer._writer.add_image( f"{tag_base}/{img_type}", pred_img[img_type], self.train_iter, dataformats="HWC", ) self._log_remaining -= 1 self._iter += 1 def has_finished_process(self): return True
d2go-main
d2go/utils/visualization.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved #!/usr/bin/python import importlib import os from functools import wraps from typing import Any, Callable, List, TypeVar import detectron2.utils.comm as comm import torch from detectron2.data import MetadataCatalog from detectron2.engine.defaults import DefaultTrainer from detectron2.evaluation import ( CityscapesInstanceEvaluator, CityscapesSemSegEvaluator, COCOEvaluator, COCOPanopticEvaluator, DatasetEvaluators, LVISEvaluator, PascalVOCDetectionEvaluator, SemSegEvaluator, ) from detectron2.utils.events import TensorboardXWriter from mobile_cv.common.misc.oss_utils import fb_overwritable T = TypeVar("T") FuncType = Callable[..., Any] F = TypeVar("F", bound=FuncType) __all__ = [ "run_once", "retryable", "get_dir_path", "TensorboardXWriter", # TODO: move to D2Go's vis utils if needed "D2Trainer", # TODO: move to trainer folder ] class MultipleFunctionCallError(Exception): pass @fb_overwritable() def run_once( raise_on_multiple: bool = False, # pyre-fixme[34]: `Variable[T]` isn't present in the function's parameters. ) -> Callable[[Callable[..., T]], Callable[..., T]]: """ A decorator to wrap a function such that it only ever runs once Useful, for example, with exit handlers that could be run via atexit or via a signal handler. The decorator will cache the result of the first call and return it on subsequent calls. If `raise_on_multiple` is set, any call to the function after the first one will raise a `MultipleFunctionCallError`. """ def decorator(func: Callable[..., T]) -> (Callable[..., T]): signal: List[T] = [] @wraps(func) def wrapper(*args, **kwargs) -> T: if signal: if raise_on_multiple: raise MultipleFunctionCallError( "Function %s was called multiple times" % func.__name__ ) return signal[0] signal.append(func(*args, **kwargs)) return signal[0] return wrapper return decorator @fb_overwritable() class retryable(object): """Fake retryable function""" def __init__(self, num_tries=1, sleep_time=0.1): pass def __call__(self, func: F) -> F: return func @fb_overwritable() def get_dir_path(relative_path): """Return a path for a directory in this package, extracting if necessary For an entire directory within the par file (zip, fastzip) or lpar structure, this function will check to see if the contents are extracted; extracting each file that has not been extracted. It returns the path of a directory containing the expected contents, making sure permissions are correct. Returns a string path, throws exeption on error """ return os.path.dirname(importlib.import_module(relative_path).__file__) class D2Trainer(DefaultTrainer): @classmethod def build_evaluator(cls, cfg, dataset_name, output_folder=None): """ Create evaluator(s) for a given dataset. This uses the special metadata "evaluator_type" associated with each builtin dataset. For your own dataset, you can simply create an evaluator manually in your script and do not have to worry about the hacky if-else logic here. """ if output_folder is None: output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") evaluator_list = [] evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type if evaluator_type in ["sem_seg", "coco_panoptic_seg"]: evaluator_list.append( SemSegEvaluator( dataset_name, distributed=True, output_dir=output_folder, ) ) if evaluator_type in ["coco", "coco_panoptic_seg"]: evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder)) if evaluator_type == "coco_panoptic_seg": evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder)) if evaluator_type == "cityscapes_instance": assert ( torch.cuda.device_count() >= comm.get_rank() ), "CityscapesEvaluator currently do not work with multiple machines." return CityscapesInstanceEvaluator(dataset_name) if evaluator_type == "cityscapes_sem_seg": assert ( torch.cuda.device_count() >= comm.get_rank() ), "CityscapesEvaluator currently do not work with multiple machines." return CityscapesSemSegEvaluator(dataset_name) elif evaluator_type == "pascal_voc": return PascalVOCDetectionEvaluator(dataset_name) elif evaluator_type == "lvis": return LVISEvaluator(dataset_name, output_dir=output_folder) if len(evaluator_list) == 0: raise NotImplementedError( "no Evaluator for the dataset {} with the type {}".format( dataset_name, evaluator_type ) ) elif len(evaluator_list) == 1: return evaluator_list[0] return DatasetEvaluators(evaluator_list)
d2go-main
d2go/utils/helper.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import os import re import time from detectron2.checkpoint import DetectionCheckpointer from detectron2.utils.file_io import PathManager from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint logger = logging.getLogger(__name__) def fetch_checkpoints_till_final(checkpoint_dir): """ A generator that yields all checkpoint paths under the given directory, it'll keep refreshing until model_final is found. """ MIN_SLEEP_INTERVAL = 1.0 # in seconds MAX_SLEEP_INTERVAL = 60.0 # in seconds sleep_interval = MIN_SLEEP_INTERVAL finished_checkpoints = set() def _add_and_log(path): finished_checkpoints.add(path) logger.info("Found checkpoint: {}".format(path)) return path def _log_and_sleep(sleep_interval): logger.info( "Sleep {} seconds while waiting for model_final.pth".format(sleep_interval) ) time.sleep(sleep_interval) return min(sleep_interval * 2, MAX_SLEEP_INTERVAL) def _get_lightning_checkpoints(path: str): return [ os.path.join(path, x) for x in PathManager.ls(path) if x.endswith(ModelCheckpoint.FILE_EXTENSION) and not x.startswith(ModelCheckpoint.CHECKPOINT_NAME_LAST) ] while True: if not PathManager.exists(checkpoint_dir): sleep_interval = _log_and_sleep(sleep_interval) continue checkpoint_paths = DetectionCheckpointer( None, save_dir=checkpoint_dir ).get_all_checkpoint_files() checkpoint_paths = [ cpt_path for cpt_path in checkpoint_paths if os.path.basename(cpt_path).startswith("model") ] checkpoint_paths.extend(_get_lightning_checkpoints(checkpoint_dir)) final_model_path = None periodic_checkpoints = [] for path in sorted(checkpoint_paths): if path.endswith("model_final.pth") or path.endswith("model_final.ckpt"): final_model_path = path continue if path.endswith(ModelCheckpoint.FILE_EXTENSION): # Lightning checkpoint model_iter = int( re.findall( r"(?<=step=)\d+(?={})".format(ModelCheckpoint.FILE_EXTENSION), path, )[0] ) else: model_iter = int(re.findall(r"(?<=model_)\d+(?=\.pth)", path)[0]) periodic_checkpoints.append((path, model_iter)) periodic_checkpoints = [ pc for pc in periodic_checkpoints if pc[0] not in finished_checkpoints ] periodic_checkpoints = sorted(periodic_checkpoints, key=lambda x: x[1]) for pc in periodic_checkpoints: yield _add_and_log(pc[0]) sleep_interval = MIN_SLEEP_INTERVAL if final_model_path is None: sleep_interval = _log_and_sleep(sleep_interval) else: yield _add_and_log(final_model_path) break
d2go-main
d2go/utils/validation_monitor.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging from typing import Callable, TypeVar from torch.distributed.elastic.multiprocessing.errors import ( _NOT_AVAILABLE, ChildFailedError, get_error_handler, ) logger = logging.getLogger(__name__) _RT = TypeVar("_RT") def mast_error_handler(func: Callable[..., _RT]) -> Callable[..., _RT]: def wrapper(*args, **kwargs) -> _RT: logger.info("Starting main") error_handler = get_error_handler() logger.debug(f"Error handler is: {type(error_handler)=}, {error_handler=}") error_handler.initialize() logger.debug("Error handler has been initialized") try: logger.debug("Entered main for d2go") return func(*args, **kwargs) except ChildFailedError as e: logger.info(f"Got a ChildFailedError: {e=}") rank, failure = e.get_first_failure() if failure.error_file != _NOT_AVAILABLE: error_handler.dump_error_file(failure.error_file, failure.exitcode) else: logger.info( ( f"local_rank {rank} FAILED with no error file." f" Decorate your entrypoint fn with @record for traceback info." f" See: https://pytorch.org/docs/stable/elastic/errors.html" ) ) raise except Exception as e: logger.info(f"Caught a generic exception: {e=}") error_handler.record_exception(e) raise return wrapper def gather_mast_errors(func: Callable[..., _RT]) -> Callable[..., _RT]: def wrapper(*args, **kwargs) -> _RT: logger.info("Starting CLI application") try: return func(*args, **kwargs) finally: logging.info("Entering final reply file generation step") import glob import os import shutil torchx_reply_files = glob.glob("/tmp/torchx_*/**/*.json", recursive=True) logger.info( f"Found the following reply files on this host: {torchx_reply_files}" ) first_reply_file = None first_reply_file_st = float("Inf") for f in torchx_reply_files: if (mtime := os.stat(f).st_mtime) < first_reply_file_st: first_reply_file = f first_reply_file_st = mtime if first_reply_file and os.environ.get("MAST_HPC_TASK_FAILURE_REPLY_FILE"): logger.info( f'Copying {first_reply_file=} to {os.environ["MAST_HPC_TASK_FAILURE_REPLY_FILE"]}' ) shutil.copyfile( first_reply_file, os.environ["MAST_HPC_TASK_FAILURE_REPLY_FILE"] ) return wrapper
d2go-main
d2go/utils/mast.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch def generate_test_input(height, width, is_train, num_classes, super_classes=None): random_image = torch.rand(3, height, width).to(torch.float32) ret = {"image": random_image} if is_train: mask_size = ( (height, width) if super_classes is None else (len(super_classes), height, width) ) random_mask = torch.randint(low=0, high=num_classes, size=mask_size).to( torch.int64 ) ret["sem_seg"] = random_mask return ret def validate_test_output(output, height, width, num_classes, super_classes=None): sem_seg_per_image = output["sem_seg"] if super_classes is None: # None MCS case detect_c_out, detect_h_out, detect_w_out = sem_seg_per_image.size() assert detect_c_out == num_classes, detect_c_out assert detect_h_out == height, (detect_h_out, height) assert detect_w_out == width, (detect_w_out, width) else: # MCS case assert isinstance(sem_seg_per_image, dict) assert all(k in super_classes for k in sem_seg_per_image), ( sem_seg_per_image.keys(), super_classes, ) for class_name, mask in sem_seg_per_image.items(): assert isinstance(class_name, str) detect_c_out, detect_h_out, detect_w_out = mask.size() assert detect_c_out == num_classes, detect_c_out assert detect_h_out == height, (detect_h_out, height) assert detect_w_out == width, (detect_w_out, width)
d2go-main
d2go/utils/testing/sem_seg_helper.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import contextlib import copy import shutil import tempfile import unittest from typing import Optional import d2go.data.transforms.box_utils as bu import torch from d2go.export.exporter import convert_and_export_predictor from d2go.runner.default_runner import GeneralizedRCNNRunner from d2go.utils.testing.data_loader_helper import ( create_detection_data_loader_on_toy_dataset, ) from detectron2.structures import Boxes, Instances from mobile_cv.predictor.api import create_predictor from parameterized import parameterized def _get_image_with_box(image_size, boxes: Optional[Boxes] = None): """Draw boxes on the image, one box per channel, use values 10, 20, ...""" ret = torch.zeros((3, image_size[0], image_size[1])) if boxes is None: return ret assert len(boxes) <= ret.shape[0] for idx, box in enumerate(boxes): x0, y0, x1, y1 = box.int().tolist() ret[idx, y0:y1, x0:x1] = (idx + 1) * 10 return ret def _get_boxes_from_image(image, scale_xy=None): """Extract boxes from image created by `_get_image_with_box()`""" cur_img_int = ((image / 10.0 + 0.5).int().float() * 10.0).int() values = torch.unique(cur_img_int) gt_values = [x * 10 for x in range(len(values))] assert set(values.tolist()) == set(gt_values) boxes = [] for idx in range(cur_img_int.shape[0]): val = torch.unique(cur_img_int[idx]).tolist() val = max(val) if val == 0: continue # mask = (cur_img_int[idx, :, :] == val).int() mask = (cur_img_int[idx, :, :] > 0).int() box_xywh = bu.get_box_from_mask(mask.numpy()) boxes.append(bu.to_boxes_from_xywh(box_xywh)) ret = Boxes.cat(boxes) if scale_xy is not None: ret.scale(*scale_xy) return ret def get_batched_inputs( num_images, image_size=(1920, 1080), resize_size=(398, 224), boxes: Optional[Boxes] = None, ): """Get batched inputs in the format from d2/d2go data mapper Draw the boxes on the images if `boxes` is not None """ ret = [] for idx in range(num_images): cur = { "file_name": f"img_{idx}.jpg", "image_id": idx, "dataset_name": "test_dataset", "height": image_size[0], "width": image_size[1], "image": _get_image_with_box(resize_size, boxes), } ret.append(cur) return ret def _get_keypoints_from_boxes(boxes: Boxes, num_keypoints: int): """Use box center as keypoints""" centers = boxes.get_centers() kpts = torch.cat((centers, torch.ones(centers.shape[0], 1)), dim=1) kpts = kpts.repeat(1, num_keypoints).reshape(len(boxes), num_keypoints, 3) return kpts def _get_scale_xy(output_size_hw, instance_size_hw): return ( output_size_hw[1] / instance_size_hw[1], output_size_hw[0] / instance_size_hw[0], ) def get_detected_instances_from_image(batched_inputs, scale_xy=None): """Get detected instances from batched_inputs, the results are in the same format as GeneralizedRCNN.inference() The images in the batched_inputs are created by `get_batched_inputs()` with `boxes` provided. """ ret = [] for item in batched_inputs: cur_img = item["image"] img_hw = cur_img.shape[1:] boxes = _get_boxes_from_image(cur_img, scale_xy=scale_xy) num_boxes = len(boxes) fields = { "pred_boxes": boxes, "scores": torch.Tensor([1.0] * num_boxes), "pred_classes": torch.Tensor([0] * num_boxes).int(), "pred_keypoints": _get_keypoints_from_boxes(boxes, 21), "pred_keypoint_heatmaps": torch.ones([num_boxes, 21, 24, 24]), } ins = Instances(img_hw, **fields) ret.append(ins) return ret def get_detected_instances(num_images, num_instances, resize_size=(392, 224)): """Create an detected instances for unit test""" assert num_instances in [1, 2] ret = [] for _idx in range(num_images): fields = { "pred_boxes": Boxes(torch.Tensor([[50, 40, 100, 80], [150, 60, 200, 120]])), "scores": torch.Tensor([1.0, 1.0]), "pred_classes": torch.Tensor([0, 0]).int(), "pred_keypoints": torch.Tensor( [70, 60, 1.5] * 21 + [180, 100, 2.0] * 21 ).reshape(2, 21, 3), "pred_keypoint_heatmaps": torch.ones([2, 21, 24, 24]), } ins = Instances(resize_size, **fields)[:num_instances] ret.append(ins) return ret class MockRCNNInference(object): """Use to mock the GeneralizedRCNN.inference()""" def __init__(self, image_size, resize_size): self.image_size = image_size self.resize_size = resize_size @property def device(self): return torch.device("cpu") def __call__( self, batched_inputs, detected_instances=None, do_postprocess: bool = True, ): return self.inference( batched_inputs, detected_instances, do_postprocess, ) def inference( self, batched_inputs, detected_instances=None, do_postprocess: bool = True, ): scale_xy = ( _get_scale_xy(self.image_size, self.resize_size) if do_postprocess else None ) results = get_detected_instances_from_image(batched_inputs, scale_xy=scale_xy) # when do_postprocess is True, the result instances is stored inside a dict if do_postprocess: results = [{"instances": r} for r in results] return results def _validate_outputs(inputs, outputs): assert len(inputs) == len(outputs) # TODO: figure out how to validate outputs def get_quick_test_config_opts( fixed_single_proposals=True, small_pooler_resolution=True, small_resize_resolution=True, ): ret = [] if fixed_single_proposals: epsilon = 1e-4 ret.extend( [ "MODEL.RPN.POST_NMS_TOPK_TEST", 1, "TEST.DETECTIONS_PER_IMAGE", 1, "MODEL.PROPOSAL_GENERATOR.MIN_SIZE", 0, "MODEL.RPN.NMS_THRESH", 1.0 + epsilon, "MODEL.ROI_HEADS.NMS_THRESH_TEST", 1.0 + epsilon, "MODEL.ROI_HEADS.SCORE_THRESH_TEST", 0.0 - epsilon, ] ) if small_pooler_resolution: ret.extend( [ "MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION", 1, "MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION", 1, "MODEL.ROI_KEYPOINT_HEAD.POOLER_RESOLUTION", 1, ] ) if small_resize_resolution: ret.extend( [ "INPUT.MIN_SIZE_TRAIN", (8,), "INPUT.MAX_SIZE_TRAIN", 9, "INPUT.MIN_SIZE_TEST", 10, "INPUT.MAX_SIZE_TEST", 11, ] ) return [str(x) for x in ret] def get_export_test_name(testcase_func, param_num, param): predictor_type, compare_match = param.args assert isinstance(predictor_type, str) assert isinstance(compare_match, bool) return "{}_{}".format( testcase_func.__name__, parameterized.to_safe_name(predictor_type) ) class RCNNBaseTestCases: @staticmethod def expand_parameterized_test_export(*args, **kwargs): if "name_func" not in kwargs: kwargs["name_func"] = get_export_test_name return parameterized.expand(*args, **kwargs) class TemplateTestCase(unittest.TestCase): # TODO: maybe subclass from TestMetaArch def setUp(self): self.setup_test_dir() assert hasattr(self, "test_dir") self.setup_custom_test() assert hasattr(self, "runner") assert hasattr(self, "cfg") self.force_apply_overwrite_opts() self.test_model = self.runner.build_model(self.cfg, eval_only=True) def setup_test_dir(self): self.test_dir = tempfile.mkdtemp(prefix="test_export_") self.addCleanup(shutil.rmtree, self.test_dir) def _get_test_image_sizes_default(self, is_train): # model should work for any size, so don't alway use power of 2 or multiple # of size_divisibility for testing. side_length = max(self.test_model.backbone.size_divisibility, 10) # make it non-square to cover error caused by messing up width & height h, w = side_length, side_length * 2 return h, w def _get_test_image_size_no_resize(self, is_train): # use cfg.INPUT to make sure data loader doesn't resize the image if is_train: assert len(self.cfg.INPUT.MAX_SIZE_TRAIN) == 1 h = self.cfg.INPUT.MIN_SIZE_TRAIN[0] w = self.cfg.INPUT.MAX_SIZE_TRAIN else: h = self.cfg.INPUT.MIN_SIZE_TEST w = self.cfg.INPUT.MAX_SIZE_TEST return h, w def _get_test_image_sizes(self, is_train): """override this method to use other image size strategy""" return self._get_test_image_sizes_default(is_train) def setup_custom_test(self): """ Override this when using different runner, using different base config file, or setting specific config for certain test. """ self.runner = GeneralizedRCNNRunner() self.cfg = self.runner.get_default_cfg() # subclass can call: self.cfg.merge_from_file(...) def force_apply_overwrite_opts(self): """ Recommend only overriding this for a group of tests, while indivisual test should have its own `setup_custom_test`. """ # update config to make the model run fast self.cfg.merge_from_list(get_quick_test_config_opts()) # forcing test on CPU self.cfg.merge_from_list(["MODEL.DEVICE", "cpu"]) @contextlib.contextmanager def _create_data_loader(self, is_train): """ Creating the data loader used for the test case. Note that it's better to use "fake" data for quick test and isolating I/O. """ image_height, image_width = self._get_test_image_sizes(is_train=False) with create_detection_data_loader_on_toy_dataset( self.cfg, image_height, image_width, is_train=is_train, runner=self.runner, ) as data_loader: yield data_loader def _test_export(self, predictor_type, compare_match=True): with self._create_data_loader(is_train=False) as data_loader: inputs = next(iter(data_loader)) # TODO: the export may change model it self, need to fix this model_to_export = copy.deepcopy(self.test_model) predictor_path = convert_and_export_predictor( self.cfg, model_to_export, predictor_type, self.test_dir, data_loader, ) predictor = create_predictor(predictor_path) predictor_outputs = predictor(inputs) _validate_outputs(inputs, predictor_outputs) if compare_match: with torch.no_grad(): pytorch_outputs = self.test_model(inputs) from detectron2.utils.testing import assert_instances_allclose assert_instances_allclose( predictor_outputs[0]["instances"], pytorch_outputs[0]["instances"], size_as_tensor=True, ) return predictor_path # TODO: add test_train def _test_inference(self): with self._create_data_loader(is_train=False) as data_loader: inputs = next(iter(data_loader)) with torch.no_grad(): outputs = self.test_model(inputs) _validate_outputs(inputs, outputs)
d2go-main
d2go/utils/testing/rcnn_helper.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch from d2go.quantization.qconfig import set_backend_and_create_qconfig from d2go.registry.builtin import META_ARCH_REGISTRY from d2go.utils.testing.data_loader_helper import create_local_dataset from detectron2.structures import Boxes, ImageList, Instances from torch.ao.quantization.quantize_fx import convert_fx, prepare_qat_fx @META_ARCH_REGISTRY.register() class DetMetaArchForTest(torch.nn.Module): def __init__(self, cfg): super().__init__() self.conv = torch.nn.Conv2d(3, 4, kernel_size=3, stride=1, padding=1) self.bn = torch.nn.BatchNorm2d(4) self.relu = torch.nn.ReLU(inplace=True) self.avgpool = torch.nn.AdaptiveAvgPool2d((1, 1)) # weights that will be updated in forward() during training, use to simulate # weight udpates in optimization step self.register_buffer("scale_weight", torch.Tensor([0.0])) @property def device(self): return self.conv.weight.device def forward(self, inputs): if not self.training: return self.inference(inputs) images = [x["image"].to(self.device) for x in inputs] images = ImageList.from_tensors(images, 1) ret = self.conv(images.tensor) ret = self.bn(ret) ret = self.relu(ret) ret = self.avgpool(ret) # simulate weight updates self.scale_weight.fill_(1.0) return {"loss": ret.norm()} def inference(self, inputs): instance = Instances((10, 10)) instance.pred_boxes = Boxes( torch.tensor([[2.5, 2.5, 7.5, 7.5]], device=self.device) * self.scale_weight ) instance.scores = torch.tensor([0.9], device=self.device) instance.pred_classes = torch.tensor([1], dtype=torch.int32, device=self.device) ret = [{"instances": instance}] return ret def custom_prepare_fx(self, cfg, is_qat, example_input=None): example_inputs = (torch.rand(1, 3, 3, 3),) self.avgpool = prepare_qat_fx( self.avgpool, {"": set_backend_and_create_qconfig(cfg, is_train=self.training)}, example_inputs, ) def convert_fx_callback(model): model.avgpool = convert_fx(model.avgpool) return model return self, convert_fx_callback def get_det_meta_arch_cfg(cfg, dataset_name, output_dir): cfg.MODEL.DEVICE = "cpu" cfg.MODEL.META_ARCHITECTURE = "DetMetaArchForTest" cfg.DATASETS.TRAIN = (dataset_name,) cfg.DATASETS.TEST = (dataset_name,) cfg.INPUT.MIN_SIZE_TRAIN = (10,) cfg.INPUT.MIN_SIZE_TEST = (10,) cfg.SOLVER.MAX_ITER = 5 cfg.SOLVER.STEPS = [2] cfg.SOLVER.WARMUP_ITERS = 1 cfg.SOLVER.CHECKPOINT_PERIOD = 1 cfg.SOLVER.IMS_PER_BATCH = 2 cfg.SOLVER.REFERENCE_WORLD_SIZE = 0 cfg.OUTPUT_DIR = output_dir return cfg def create_detection_cfg(runner, output_dir): ds_name = create_local_dataset(output_dir, 5, 10, 10) cfg = runner.get_default_cfg() return get_det_meta_arch_cfg(cfg, ds_name, output_dir)
d2go-main
d2go/utils/testing/meta_arch_helper.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
d2go-main
d2go/utils/testing/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import contextlib import itertools import json import math import os import uuid from d2go.data.datasets import register_dataset_split from d2go.runner import create_runner from detectron2.data import DatasetCatalog, MetadataCatalog from mobile_cv.common.misc.file_utils import make_temp_directory from PIL import Image IM_DIR = "image_directory" ANN_FN = "annotation_file" def create_toy_dataset( image_generator, num_images, num_classes=-1, num_keypoints=0, is_rotated=False ): """given image_generator, create a dataset with toy annotations and catagories""" categories = [] images = [] annotations = [] meta_data = {} if num_classes == -1: num_classes = num_images for i in range(num_images): image_generator.prepare_image(i) image_dict = image_generator.get_image_dict(i) width = image_dict["width"] height = image_dict["height"] images.append(image_dict) if i < num_classes: categories.append({"name": "class_{}".format(i), "id": i}) bbox = ( [width / 4, height / 4, width / 2, height / 2] # XYWH_ABS if not is_rotated else [width / 2, height / 2, width / 2, height / 2, 45] # cXcYWHO_ABS ) keypoints = list( itertools.chain.from_iterable( [ math.cos(2 * math.pi * x / num_keypoints) * width / 4 + width / 2, math.sin(2 * math.pi * x / num_keypoints) * height / 4 + height / 2, 1, ] for x in range(num_keypoints) ) ) no_pts = 10 segmentation = list( itertools.chain.from_iterable( [ math.cos(2 * math.pi * x / no_pts) * width / 4 + width / 2, math.sin(2 * math.pi * x / no_pts) * height / 4 + height / 2, ] for x in range(no_pts) ) ) annotations.append( { "image_id": i, "category_id": i % num_classes, "id": i + 1, "bbox": bbox, "keypoints": keypoints, "area": width * height, "iscrowd": 0, "ignore": 0, "segmentation": [segmentation], } ) if num_keypoints > 0: keypoint_names = [f"kp_{idx}" for idx in range(num_keypoints)] meta_data.update({"keypoint_names": keypoint_names, "keypoint_flip_map": ()}) return ( {"categories": categories, "images": images, "annotations": annotations}, meta_data, ) @contextlib.contextmanager def _register_toy_dataset( dataset_name, image_generator, num_images, num_classes=-1, num_keypoints=0 ): json_dataset, meta_data = create_toy_dataset( image_generator, num_images=num_images, num_classes=num_classes, num_keypoints=num_keypoints, ) with make_temp_directory("detectron2go_tmp_dataset") as tmp_dir: json_file = os.path.join(tmp_dir, "{}.json".format(dataset_name)) with open(json_file, "w") as f: json.dump(json_dataset, f) split_dict = { IM_DIR: image_generator.get_image_dir(), ANN_FN: json_file, "meta_data": meta_data, } register_dataset_split(dataset_name, split_dict) try: yield finally: DatasetCatalog.remove(dataset_name) MetadataCatalog.remove(dataset_name) @contextlib.contextmanager def register_toy_coco_dataset( dataset_name, num_images=3, image_size=(5, 10), num_classes=-1, num_keypoints=0 ): width, height = image_size with make_temp_directory("detectron2go_tmp_dataset") as dataset_dir: image_dir = os.path.join(dataset_dir, "images") os.makedirs(image_dir) image_generator = LocalImageGenerator(image_dir, width=width, height=height) with _register_toy_dataset( dataset_name, image_generator, num_images=num_images, num_classes=num_classes, num_keypoints=num_keypoints, ): yield def create_local_dataset( out_dir, num_images, image_width, image_height, num_classes=-1, num_keypoints=0, is_rotated=False, ): dataset_name = "_test_ds_" + str(uuid.uuid4()) img_gen = LocalImageGenerator(out_dir, image_width, image_height) json_dataset, meta_data = create_toy_dataset( img_gen, num_images=num_images, num_classes=num_classes, num_keypoints=num_keypoints, ) json_file = os.path.join(out_dir, "{}.json".format(dataset_name)) with open(json_file, "w") as f: json.dump(json_dataset, f) split_dict = { IM_DIR: img_gen.get_image_dir(), ANN_FN: json_file, "meta_data": meta_data, } if is_rotated: split_dict["evaluator_type"] = "rotated_coco" register_dataset_split(dataset_name, split_dict) return dataset_name class LocalImageGenerator: def __init__(self, image_dir, width, height): self._width = width self._height = height self._image_dir = image_dir def get_image_dir(self): return self._image_dir def get_image_dict(self, i): return { "file_name": "{}.jpg".format(i), "width": self._width, "height": self._height, "id": i, } def prepare_image(self, i): image = Image.new("RGB", (self._width, self._height)) image.save(os.path.join(self._image_dir, self.get_image_dict(i)["file_name"])) @contextlib.contextmanager def create_detection_data_loader_on_toy_dataset( cfg, height, width, is_train, runner=None ): """ Args: cfg (CfgNode): the config used to create data loader, it can control things like resizing, augmentation. height, width (int): the height/width of the image files (not the resized image size) is_train (bool): training or testing """ if runner is None: runner = create_runner("d2go.runner.GeneralizedRCNNRunner") # change dataset name to toy dataset cfg.DATASETS.TRAIN = ["_toy_dataset_train_"] cfg.DATASETS.TEST = ["_toy_dataset_test_"] if is_train: with register_toy_coco_dataset( "_toy_dataset_train_", num_images=3, image_size=(width, height) ): train_loader = runner.build_detection_train_loader(cfg) yield train_loader else: with register_toy_coco_dataset( "_toy_dataset_test_", num_images=3, image_size=(width, height) ): test_loader = runner.build_detection_test_loader( cfg, dataset_name="_toy_dataset_test_" ) yield test_loader
d2go-main
d2go/utils/testing/data_loader_helper.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import pytorch_lightning as pl # type: ignore from detectron2.utils.events import EventStorage from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint def get_lt_trainer(output_dir: str, cfg): checkpoint_callback = ModelCheckpoint(dirpath=output_dir, save_last=True) return pl.Trainer( max_epochs=10**8, max_steps=cfg.SOLVER.MAX_ITER, val_check_interval=cfg.TEST.EVAL_PERIOD if cfg.TEST.EVAL_PERIOD > 0 else cfg.SOLVER.MAX_ITER, callbacks=[checkpoint_callback], logger=False, ) def lt_train(task, trainer): with EventStorage() as storage: task.storage = storage trainer.fit(task) def lt_test(task, trainer): with EventStorage() as storage: task.storage = storage trainer.test(task) return task.eval_res
d2go-main
d2go/utils/testing/lightning_train_helper.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import importlib import os import socket import uuid from functools import wraps from tempfile import TemporaryDirectory from typing import Optional import torch from d2go.distributed import distributed_worker, DistributedParams def get_resource_path(file: Optional[str] = None): path_list = [ os.path.dirname(importlib.import_module("d2go.tests").__file__), "resources", ] if file is not None: path_list.append(file) return os.path.join(*path_list) def skip_if_no_gpu(func): """Decorator that can be used to skip GPU tests on non-GPU machines.""" func.skip_if_no_gpu = True @wraps(func) def wrapper(*args, **kwargs): if not torch.cuda.is_available(): return if torch.cuda.device_count() <= 0: return return func(*args, **kwargs) return wrapper def enable_ddp_env(backend="gloo"): def _enable_ddp_env(func): @wraps(func) def wrapper(*args, **kwargs): def find_free_port() -> str: s = socket.socket() s.bind(("localhost", 0)) # Bind to a free port provided by the host. return str(s.getsockname()[1]) os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = find_free_port() return distributed_worker( main_func=func, args=args, kwargs=kwargs, backend=backend, init_method="file:///tmp/detectron2go_test_ddp_init_{}".format( uuid.uuid4().hex ), dist_params=DistributedParams( local_rank=0, machine_rank=0, global_rank=0, num_processes_per_machine=1, world_size=1, ), return_save_file=None, # don't save file ) return wrapper return _enable_ddp_env def tempdir(func): """A decorator for creating a tempory directory that is cleaned up after function execution.""" @wraps(func) def wrapper(self, *args, **kwargs): with TemporaryDirectory() as temp: return func(self, temp, *args, **kwargs) return wrapper
d2go-main
d2go/utils/testing/helper.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # pyre-unsafe from typing import Optional import torch from pytorch_lightning import LightningModule from torch.utils.data.dataset import Dataset class RandomDataset(Dataset): def __init__(self, size, length): self.len = length self.data = torch.randn(length, size) def __getitem__(self, index): return self.data[index] def __len__(self): return self.len class TestModule(LightningModule): def __init__(self, epoch_min_loss_override: Optional[int] = None): """LightningModule for testing purposes Args: epoch_min_loss_override (int, optional): Pass in an epoch that will be set to the minimum validation loss for testing purposes (zero based). If None this is ignored. Defaults to None. """ super().__init__() self.layer = torch.nn.Linear(in_features=32, out_features=2) self.another_layer = torch.nn.Linear(in_features=2, out_features=2) self.epoch_min_loss_override = epoch_min_loss_override def forward(self, x): x = self.layer(x) return self.another_layer(x) def loss(self, batch, prediction): # An arbitrary loss to have a loss that updates the model weights during `Trainer.fit` calls return torch.nn.functional.mse_loss(prediction, torch.ones_like(prediction)) def training_step(self, batch, batch_idx): output = self.forward(batch) loss = self.loss(batch, output) return {"output": output.detach(), "loss": loss, "checkpoint_on": loss.detach()} def validation_step(self, batch, batch_idx): output = self.forward(batch) loss = self.loss(batch, output) return {"output": output.detach(), "loss": loss, "checkpoint_on": loss.detach()} def test_step(self, batch, batch_idx): output = self.forward(batch) loss = self.loss(batch, output) return {"output": output.detach(), "loss": loss} def training_epoch_end(self, outputs) -> None: avg_loss = torch.stack([x["loss"] for x in outputs]).mean() self.log("avg_loss", avg_loss) def validation_epoch_end(self, outputs) -> None: avg_val_loss = torch.stack( [torch.randn(1, requires_grad=True) for _ in outputs] ).mean() # For testing purposes allow a nominated epoch to have a low loss if self.current_epoch == self.epoch_min_loss_override: avg_val_loss -= 1e10 self.log("val_loss", avg_val_loss) self.log("checkpoint_on", avg_val_loss) def test_epoch_end(self, outputs) -> None: avg_loss = torch.stack( [torch.randn(1, requires_grad=True) for _ in outputs] ).mean() self.log("val_loss", avg_loss) def configure_optimizers(self): optimizer = torch.optim.SGD(self.parameters(), lr=0.001) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1) return [optimizer], [lr_scheduler] def train_dataloader(self): return torch.utils.data.DataLoader(RandomDataset(32, 64)) def val_dataloader(self): return torch.utils.data.DataLoader(RandomDataset(32, 64)) def test_dataloader(self): return torch.utils.data.DataLoader(RandomDataset(32, 64))
d2go-main
d2go/utils/testing/lightning_test_module.py
# Copyright (c) Facebook, Inc. and its affiliates. import os from typing import Optional import pkg_resources import torch from d2go.runner import create_runner from d2go.utils.launch_environment import MODEL_ZOO_STORAGE_PREFIX from detectron2.checkpoint import DetectionCheckpointer class _ModelZooUrls(object): """ Mapping from names to officially released D2Go pre-trained models. """ CONFIG_PATH_TO_URL_SUFFIX = { "faster_rcnn_fbnetv3a_C4.yaml": "268421013/model_final.pth", "faster_rcnn_fbnetv3a_dsmask_C4.yaml": "268412271/model_0499999.pth", "faster_rcnn_fbnetv3g_fpn.yaml": "250356938/model_0374999.pth", "mask_rcnn_fbnetv3a_C4.yaml": "268421013/model_final.pth", "mask_rcnn_fbnetv3a_dsmask_C4.yaml": "268412271/model_0499999.pth", "mask_rcnn_fbnetv3g_fpn.yaml": "287445123/model_0409999.pth", "keypoint_rcnn_fbnetv3a_dsmask_C4.yaml": "250430934/model_0389999.pth", } def get_checkpoint_url(config_path): """ Returns the URL to the model trained using the given config Args: config_path (str): config file name relative to d2go's "configs/" directory, e.g., "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml" Returns: str: a URL to the model """ name = config_path.replace(".yaml", "") if config_path in _ModelZooUrls.CONFIG_PATH_TO_URL_SUFFIX: suffix = _ModelZooUrls.CONFIG_PATH_TO_URL_SUFFIX[config_path] return MODEL_ZOO_STORAGE_PREFIX + suffix raise RuntimeError("{} not available in Model Zoo!".format(name)) def get_config_file(config_path): """ Returns path to a builtin config file. Args: config_path (str): config file name relative to d2go's "configs/" directory, e.g., "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml" Returns: str: the real path to the config file. """ cfg_file = pkg_resources.resource_filename( "d2go", os.path.join("configs", config_path) ) if not os.path.exists(cfg_file): raise RuntimeError("{} not available in Model Zoo!".format(config_path)) return cfg_file def get_config( config_path, trained: bool = False, runner="d2go.runner.GeneralizedRCNNRunner" ): """ Returns a config object for a model in model zoo. Args: config_path (str): config file name relative to d2go's "configs/" directory, e.g., "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml" trained (bool): If True, will set ``MODEL.WEIGHTS`` to trained model zoo weights. If False, the checkpoint specified in the config file's ``MODEL.WEIGHTS`` is used instead; this will typically (though not always) initialize a subset of weights using an ImageNet pre-trained model, while randomly initializing the other weights. Returns: CfgNode: a config object """ cfg_file = get_config_file(config_path) runner = create_runner(runner) cfg = runner.get_default_cfg() cfg.merge_from_file(cfg_file) if trained: cfg.MODEL.WEIGHTS = get_checkpoint_url(config_path) return cfg def get( config_path, trained: bool = False, device: Optional[str] = None, runner="d2go.runner.GeneralizedRCNNRunner", ): """ Get a model specified by relative path under Detectron2's official ``configs/`` directory. Args: config_path (str): config file name relative to d2go's "configs/" directory, e.g., "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml" trained (bool): see :func:`get_config`. device (str or None): overwrite the device in config, if given. Returns: nn.Module: a d2go model. Will be in training mode. Example: :: from d2go import model_zoo model = model_zoo.get("faster_rcnn_fbnetv3a_C4.yaml", trained=True) """ cfg = get_config(config_path, trained) if device is not None: cfg.MODEL.DEVICE = device elif not torch.cuda.is_available(): cfg.MODEL.DEVICE = "cpu" runner = create_runner(runner) model = runner.build_model(cfg) DetectionCheckpointer(model).load(cfg.MODEL.WEIGHTS) return model
d2go-main
d2go/model_zoo/model_zoo.py
d2go-main
d2go/model_zoo/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging from typing import List import detectron2.utils.comm as comm import numpy as np import torch from d2go.config import CfgNode as CN, temp_defrost from detectron2.engine import hooks from detectron2.layers import ShapeSpec from detectron2.modeling import GeneralizedRCNN from detectron2.modeling.anchor_generator import ( ANCHOR_GENERATOR_REGISTRY, BufferList, DefaultAnchorGenerator, ) from detectron2.modeling.proposal_generator.rpn import RPN from detectron2.structures.boxes import Boxes logger = logging.getLogger(__name__) def add_kmeans_anchors_cfg(_C): _C.MODEL.KMEANS_ANCHORS = CN() _C.MODEL.KMEANS_ANCHORS.KMEANS_ANCHORS_ON = False _C.MODEL.KMEANS_ANCHORS.NUM_CLUSTERS = 0 _C.MODEL.KMEANS_ANCHORS.NUM_TRAINING_IMG = 0 _C.MODEL.KMEANS_ANCHORS.DATASETS = () _C.MODEL.ANCHOR_GENERATOR.OFFSET = 0.0 _C.MODEL.KMEANS_ANCHORS.RNG_SEED = 3 return _C def compute_kmeans_anchors_hook(runner, cfg): """ This function will create a before_train hook, it will: 1: create a train loader using provided KMEANS_ANCHORS.DATASETS. 2: collecting statistics of boxes using outputs from train loader, use up to KMEANS_ANCHORS.NUM_TRAINING_IMG images. 3: compute K-means using KMEANS_ANCHORS.NUM_CLUSTERS clusters 4: update the buffers in anchor_generator. """ def before_train_callback(trainer): if not cfg.MODEL.KMEANS_ANCHORS.KMEANS_ANCHORS_ON: return new_cfg = cfg.clone() with temp_defrost(new_cfg): new_cfg.DATASETS.TRAIN = cfg.MODEL.KMEANS_ANCHORS.DATASETS data_loader = runner.build_detection_train_loader(new_cfg) anchors = compute_kmeans_anchors(cfg, data_loader) anchors = anchors.tolist() assert isinstance(trainer.model, GeneralizedRCNN) assert isinstance(trainer.model.proposal_generator, RPN) anchor_generator = trainer.model.proposal_generator.anchor_generator assert isinstance(anchor_generator, KMeansAnchorGenerator) anchor_generator.update_cell_anchors(anchors) return hooks.CallbackHook(before_train=before_train_callback) @ANCHOR_GENERATOR_REGISTRY.register() class KMeansAnchorGenerator(DefaultAnchorGenerator): """Generate anchors using pre-computed KMEANS_ANCHORS.COMPUTED_ANCHORS""" def __init__(self, cfg, input_shape: List[ShapeSpec]): torch.nn.Module.__init__(self) self.strides = [x.stride for x in input_shape] self.offset = cfg.MODEL.ANCHOR_GENERATOR.OFFSET assert 0.0 <= self.offset < 1.0, self.offset # kmeans anchors num_features = len(cfg.MODEL.RPN.IN_FEATURES) assert num_features == 1, "Doesn't support multiple feature map" # NOTE: KMEANS anchors are only computed at training time, when initialized, # set anchors to correct shape but invalid value as place holder. computed_anchors = [[float("Inf")] * 4] * cfg.MODEL.KMEANS_ANCHORS.NUM_CLUSTERS cell_anchors = [torch.Tensor(computed_anchors)] self.cell_anchors = BufferList(cell_anchors) def update_cell_anchors(self, computed_anchors): assert len(self.cell_anchors) == 1 for buf in self.cell_anchors.buffers(): assert len(buf) == len(computed_anchors) buf.data = torch.Tensor(computed_anchors).to(buf.device) logger.info("Updated cell anchors") def forward(self, *args, **kwargs): for base_anchors in self.cell_anchors: assert torch.isfinite(base_anchors).all(), ( "The anchors are not initialized yet, please providing COMPUTED_ANCHORS" " when creating the model and/or loading the valid weights." ) return super().forward(*args, **kwargs) def collect_boxes_size_stats(data_loader, max_num_imgs, _legacy_plus_one=False): logger.info( "Collecting size of boxes, loading up to {} images from data loader ...".format( max_num_imgs ) ) # data_loader might be infinite length, thus can't loop all images, using # max_num_imgs == 0 stands for 0 images instead of whole dataset assert max_num_imgs >= 0 box_sizes = [] remaining_num_imgs = max_num_imgs total_batches = 0 for i, batched_inputs in enumerate(data_loader): total_batches += len(batched_inputs) batch_size = min(remaining_num_imgs, len(batched_inputs)) batched_inputs = batched_inputs[:batch_size] for x in batched_inputs: boxes = x["instances"].gt_boxes # xyxy assert isinstance(boxes, Boxes) for t in boxes.tensor: box_sizes += [[t[2] - t[0], t[3] - t[1]]] # NOTE: previous implementation didn't apply +1, thus to match # previous (incorrect) results we have to minus the im_scale if _legacy_plus_one: # only for matching old tests im_scale = x["image"].shape[1] / x["height"] # image is chw box_sizes[-1][0] -= im_scale box_sizes[-1][1] -= im_scale estimated_iters = max_num_imgs / total_batches * (i + 1) remaining_num_imgs -= batch_size if i % max(1, int(estimated_iters / 20)) == 0: # log 20 times at most percentage = 100.0 * i / estimated_iters logger.info( "Processed batch {} ({:.2f}%) from data_loader, got {} boxes," " remaining number of images: {}/{}".format( i, percentage, len(box_sizes), remaining_num_imgs, max_num_imgs ) ) if remaining_num_imgs <= 0: assert remaining_num_imgs == 0 break box_sizes = np.array(box_sizes) logger.info( "Collected {} boxes from {} images".format(len(box_sizes), max_num_imgs) ) return box_sizes def compute_kmeans_anchors( cfg, data_loader, sort_by_area=True, _stride=0, _legacy_plus_one=False ): assert ( cfg.MODEL.KMEANS_ANCHORS.NUM_TRAINING_IMG > 0 ), "Please provide positive MODEL.KMEANS_ANCHORS.NUM_TRAINING_IMG" num_training_img = cfg.MODEL.KMEANS_ANCHORS.NUM_TRAINING_IMG div_i, mod_i = divmod(num_training_img, comm.get_world_size()) num_training_img_i = div_i + (comm.get_rank() < mod_i) box_sizes_i = collect_boxes_size_stats( data_loader, num_training_img_i, _legacy_plus_one=_legacy_plus_one, ) all_box_sizes = comm.all_gather(box_sizes_i) box_sizes = np.concatenate(all_box_sizes) logger.info("Collected {} boxes from all gpus".format(len(box_sizes))) assert ( cfg.MODEL.KMEANS_ANCHORS.NUM_CLUSTERS > 0 ), "Please provide positive MODEL.KMEANS_ANCHORS.NUM_CLUSTERS" from sklearn.cluster import KMeans # delayed import default_anchors = ( KMeans( n_clusters=cfg.MODEL.KMEANS_ANCHORS.NUM_CLUSTERS, random_state=cfg.MODEL.KMEANS_ANCHORS.RNG_SEED, ) .fit(box_sizes) .cluster_centers_ ) anchors = [] for anchor in default_anchors: w, h = anchor # center anchor boxes at (stride/2,stride/2) new_anchors = np.hstack( ( _stride / 2 - 0.5 * w, _stride / 2 - 0.5 * h, _stride / 2 + 0.5 * w, _stride / 2 + 0.5 * h, ) ) anchors.append(new_anchors) anchors = np.array(anchors) # sort anchors by area areas = (anchors[:, 2] - anchors[:, 0]) * (anchors[:, 3] - anchors[:, 1]) sqrt_areas = np.sqrt(areas) if sort_by_area: indices = np.argsort(sqrt_areas) anchors = anchors[indices] sqrt_areas = sqrt_areas[indices].tolist() display_str = "\n".join( [ s + "\t sqrt area: {:.2f}".format(a) for s, a in zip(str(anchors).split("\n"), sqrt_areas) ] ) logger.info( "Compuated kmeans anchors (sorted by area: {}):\n{}".format( sort_by_area, display_str ) ) return anchors
d2go-main
d2go/modeling/kmeans_anchors.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from abc import abstractmethod from typing import List, Tuple import torch from d2go.registry.builtin import MODELING_HOOK_REGISTRY class ModelingHook(object): """Modeling hooks provide a way to modify the model during the model building process. It is simple but allows users to modify the model by creating wrapper, override member functions, adding additional components, and loss etc.. It could be used to implement features such as QAT, model transformation for training, distillation/semi-supervised learning, and customization for loading pre-trained weights. """ def __init__(self, cfg): self.cfg = cfg @abstractmethod def apply(self, model: torch.nn.Module) -> torch.nn.Module: """This function will called during the model building process to modify the behavior of the input model. The created model will be model == create meta arch -> model_hook_1.apply(model) -> model_hook_2.apply(model) -> ... """ pass @abstractmethod def unapply(self, model: torch.nn.Module) -> torch.nn.Module: """This function will be called when the users called model.unapply_modeling_hooks() after training. The main use case of the function is to remove the changes applied to the model in `apply`. The hooks will be called in reverse order as follow: model.unapply_modeling_hooks() == model_hook_N.unapply(model) -> model_hook_N-1.unapply(model) -> ... -> model_hook_1.unapply(model) """ pass def _build_modeling_hooks(cfg, hook_names: List[str]) -> List[ModelingHook]: """Build the hooks from cfg""" ret = [MODELING_HOOK_REGISTRY.get(name)(cfg) for name in hook_names] return ret def _unapply_modeling_hook( model: torch.nn.Module, hooks: List[ModelingHook] ) -> torch.nn.Module: """Call unapply on the hooks in reversed order""" for hook in reversed(hooks): model = hook.unapply(model) return model def _apply_modeling_hooks( model: torch.nn.Module, hooks: List[ModelingHook] ) -> torch.nn.Module: """Apply hooks on the model, users could call model.unapply_modeling_hooks() to return the model that removes all the hooks """ if len(hooks) == 0: return model for hook in hooks: model = hook.apply(model) assert not hasattr(model, "_modeling_hooks") model._modeling_hooks = hooks def _unapply_modeling_hooks(self): assert hasattr(self, "_modeling_hooks") model = _unapply_modeling_hook(self, self._modeling_hooks) return model # add a function that could be used to unapply the modeling hooks assert not hasattr(model, "unapply_modeling_hooks") model.unapply_modeling_hooks = _unapply_modeling_hooks.__get__(model) return model def build_and_apply_modeling_hooks( model: torch.nn.Module, cfg, hook_names: List[str] ) -> Tuple[torch.nn.Module, List[ModelingHook]]: """Build modeling hooks from cfg and apply hooks on the model. Users could call model.unapply_modeling_hooks() to return the model that removes all the hooks. """ hooks = _build_modeling_hooks(cfg, hook_names) model = _apply_modeling_hooks(model, hooks) return model, hooks
d2go-main
d2go/modeling/modeling_hook.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # misc.py # modules that are used in different places but are not a specific type (e.g., backbone) from typing import Any, Callable, Optional import torch import torch.nn as nn class SplitAndConcat(nn.Module): """Split the data from split_dim and concatenate in concat_dim. @param split_dim from which axis the data will be chunk @param concat_dim to which axis the data will be concatenated @param chunk size of the data to be chunk/concatenated """ def __init__(self, split_dim: int = 1, concat_dim: int = 0, chunk: int = 2): super(SplitAndConcat, self).__init__() self.split_dim = split_dim self.concat_dim = concat_dim self.chunk = chunk def forward(self, x): x = torch.chunk(x, self.chunk, dim=self.split_dim) x = torch.cat(x, dim=self.concat_dim) return x def extra_repr(self): return ( f"split_dim={self.split_dim}, concat_dim={self.concat_dim}, " f"chunk={self.chunk}" ) class AddCoordChannels(nn.Module): """Appends coordinate location values to the channel dimension. @param with_r include radial distance from centroid as additional channel (default: False) """ def __init__(self, with_r: bool = False) -> None: super().__init__() self.with_r = with_r def forward(self, input_tensor): batch_size_shape, channel_in_shape, dim_y, dim_x = input_tensor.shape device = input_tensor.device xx_ones = torch.ones([1, 1, 1, dim_x], dtype=torch.int32) yy_ones = torch.ones([1, 1, 1, dim_y], dtype=torch.int32) xx_range = torch.arange(dim_y, dtype=torch.int32) yy_range = torch.arange(dim_x, dtype=torch.int32) xx_range = xx_range[None, None, :, None] yy_range = yy_range[None, None, :, None] xx_channel = torch.matmul(xx_range, xx_ones) yy_channel = torch.matmul(yy_range, yy_ones) # transpose y yy_channel = yy_channel.permute(0, 1, 3, 2) xx_channel = xx_channel.float() / (dim_y - 1) yy_channel = yy_channel.float() / (dim_x - 1) xx_channel = xx_channel * 2 - 1 yy_channel = yy_channel * 2 - 1 xx_channel = xx_channel.repeat(batch_size_shape, 1, 1, 1) yy_channel = yy_channel.repeat(batch_size_shape, 1, 1, 1) out = torch.cat( [input_tensor, xx_channel.to(device), yy_channel.to(device)], dim=1 ) if self.with_r: rr = torch.sqrt( torch.pow(xx_channel - 0.5, 2) + torch.pow(yy_channel - 0.5, 2) ) out = torch.cat([out, rr], dim=1) return out def inplace_delegate( self, api_name: str, sub_module_name: str, setter_fn: Optional[Callable], *args, **kwargs, ) -> Any: """Helper function to delegate API calls to its submodule""" sub_module = getattr(self, sub_module_name) api_name = f"delegate_{api_name}" if hasattr(sub_module, api_name): func = getattr(sub_module, api_name) orig_ret = func(*args, **kwargs) if setter_fn is None: # Assume the return of `func` will replace the submodule setattr(self, sub_module_name, orig_ret) return self else: return setter_fn(self, sub_module_name, orig_ret) else: raise RuntimeError( f"It seems the {sub_module_name} doesn't implement {api_name}," " quantization might fail." )
d2go-main
d2go/modeling/misc.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging from abc import ABC, abstractmethod from typing import Any, Dict, List import numpy as np import torch from d2go.config import CfgNode as CN from d2go.data.dataset_mappers.build import D2GO_DATA_MAPPER_REGISTRY from d2go.data.dataset_mappers.d2go_dataset_mapper import D2GoDatasetMapper from detectron2.layers import cat from detectron2.modeling import ROI_HEADS_REGISTRY, StandardROIHeads from detectron2.utils.registry import Registry from mobile_cv.torch.utils_toffee.alias import alias from torch import nn from torch.nn import functional as F logger = logging.getLogger(__name__) SUBCLASS_FETCHER_REGISTRY = Registry("SUBCLASS_FETCHER") def add_subclass_configs(cfg): _C = cfg _C.MODEL.SUBCLASS = CN() _C.MODEL.SUBCLASS.SUBCLASS_ON = False _C.MODEL.SUBCLASS.NUM_SUBCLASSES = 0 # must be set _C.MODEL.SUBCLASS.NUM_LAYERS = 1 _C.MODEL.SUBCLASS.SUBCLASS_ID_FETCHER = "SubclassFetcher" # ABC, must be set _C.MODEL.SUBCLASS.SUBCLASS_MAPPING = ( [] ) # subclass mapping from model output to annotation class SubclassFetcher(ABC): """Fetcher class to read subclass id annotations from dataset and prepare for train/eval. Subclass this and register with `@SUBCLASS_FETCHER_REGISTRY.register()` decorator to use with custom projects. """ def __init__(self, cfg): raise NotImplementedError() @property @abstractmethod def subclass_names(self) -> List[str]: """Overwrite this member with any new mappings' subclass names, which may be useful for specific evaluation purposes. len(self.subclass_names) should be equal to the expected number of subclass head outputs (cfg.MODEL.SUBCLASS.NUM_SUBCLASSES + 1). """ pass def remap(self, subclass_id: int) -> int: """Map subclass ids read from dataset to new label id""" return subclass_id def fetch_subclass_ids(self, dataset_dict: Dict[str, Any]) -> List[int]: """Get all the subclass_ids in a dataset dict""" extras_list = [anno.get("extras") for anno in dataset_dict["annotations"]] subclass_ids = [extras["subclass_id"] for extras in extras_list] return subclass_ids @D2GO_DATA_MAPPER_REGISTRY.register() class SubclassDatasetMapper(D2GoDatasetMapper): """ Wrap any dataset mapper, encode gt_subclasses to the instances. """ def __init__(self, cfg, is_train, tfm_gens=None, subclass_fetcher=None): super().__init__(cfg, is_train=is_train, tfm_gens=tfm_gens) if subclass_fetcher is None: fetcher_name = cfg.MODEL.SUBCLASS.SUBCLASS_ID_FETCHER self.subclass_fetcher = SUBCLASS_FETCHER_REGISTRY.get(fetcher_name)(cfg) logger.info( f"Initialized {self.__class__.__name__} with " f"subclass fetcher '{self.subclass_fetcher.__class__.__name__}'" ) else: assert isinstance(subclass_fetcher, SubclassFetcher), subclass_fetcher self.subclass_fetcher = subclass_fetcher logger.info(f"Set subclass fetcher to {self.subclass_fetcher}") # NOTE: field doesn't exist when loading a (old) caffe2 model. # self.subclass_on = cfg.MODEL.SUBCLASS.SUBCLASS_ON self.subclass_on = True def _original_call(self, dataset_dict): """ Map the dataset dict with D2GoDatasetMapper, then augment with subclass gt tensors. """ # Transform removes key 'annotations' from the dataset dict mapped_dataset_dict = super()._original_call(dataset_dict) if self.is_train and self.subclass_on: subclass_ids = self.subclass_fetcher.fetch_subclass_ids(dataset_dict) subclasses = torch.tensor(subclass_ids, dtype=torch.int64) mapped_dataset_dict["instances"].gt_subclasses = subclasses return mapped_dataset_dict def build_subclass_head(cfg, in_chann, out_chann): # fully connected layers: n-1 in_chann x in_chann layers, and 1 in_chann x out_chann layer layers = [ nn.Linear(in_chann, in_chann) for _ in range(cfg.MODEL.SUBCLASS.NUM_LAYERS - 1) ] layers.append(nn.Linear(in_chann, out_chann)) return nn.Sequential(*layers) @ROI_HEADS_REGISTRY.register() class StandardROIHeadsWithSubClass(StandardROIHeads): """ A Standard ROIHeads which contains an addition of subclass head. """ def __init__(self, cfg, input_shape): super().__init__(cfg, input_shape) self.subclass_on = cfg.MODEL.SUBCLASS.SUBCLASS_ON if not self.subclass_on: return self.num_subclasses = cfg.MODEL.SUBCLASS.NUM_SUBCLASSES self.subclass_head = build_subclass_head( cfg, self.box_head.output_shape.channels, self.num_subclasses + 1 ) for layer in self.subclass_head: nn.init.normal_(layer.weight, std=0.01) nn.init.constant_(layer.bias, 0.0) def forward(self, images, features, proposals, targets=None): """ Same as StandardROIHeads.forward but add logic for subclass. """ if not self.subclass_on: return super().forward(images, features, proposals, targets) # --- start copy ------------------------------------------------------- del images if self.training: proposals = self.label_and_sample_proposals(proposals, targets) # NOTE: `has_gt` = False for negatives and we must manually register `gt_subclasses`, # because custom gt_* fields will not be automatically registered in sampled proposals. for pp_per_im in proposals: if not pp_per_im.has("gt_subclasses"): background_subcls_idx = 0 pp_per_im.gt_subclasses = torch.cuda.LongTensor( len(pp_per_im) ).fill_(background_subcls_idx) del targets features_list = [features[f] for f in self.in_features] box_features = self.box_pooler( features_list, [x.proposal_boxes for x in proposals] ) box_features = self.box_head(box_features) predictions = self.box_predictor(box_features) # --- end copy --------------------------------------------------------- # NOTE: don't delete box_features, keep it temporarily # del box_features box_features = box_features.view( box_features.shape[0], np.prod(box_features.shape[1:]) ) pred_subclass_logits = self.subclass_head(box_features) if self.training: losses = self.box_predictor.losses(predictions, proposals) # During training the proposals used by the box head are # used by the mask, keypoint (and densepose) heads. losses.update(self._forward_mask(features, proposals)) losses.update(self._forward_keypoint(features, proposals)) # subclass head gt_subclasses = cat([p.gt_subclasses for p in proposals], dim=0) loss_subclass = F.cross_entropy( pred_subclass_logits, gt_subclasses, reduction="mean" ) losses.update({"loss_subclass": loss_subclass}) return proposals, losses else: pred_instances, kept_indices = self.box_predictor.inference( predictions, proposals ) # During inference cascaded prediction is used: the mask and keypoints # heads are only applied to the top scoring box detections. pred_instances = self.forward_with_given_boxes(features, pred_instances) # subclass head probs = F.softmax(pred_subclass_logits, dim=-1) for pred_instances_i, kept_indices_i in zip(pred_instances, kept_indices): pred_instances_i.pred_subclass_prob = torch.index_select( probs, dim=0, index=kept_indices_i.to(torch.int64), ) if torch.onnx.is_in_onnx_export(): assert len(pred_instances) == 1 pred_instances[0].pred_subclass_prob = alias( pred_instances[0].pred_subclass_prob, "subclass_prob_nms" ) return pred_instances, {}
d2go-main
d2go/modeling/subclass.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import copy import itertools import logging from contextlib import contextmanager from typing import Iterator, List import torch from detectron2.engine.train_loop import HookBase from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( _CHECKPOINT_PREFIX, ) logger = logging.getLogger(__name__) class EMAState(object): def __init__(self, include_frozen=True, include_buffer=True): self.include_frozen = include_frozen self.include_buffer = include_buffer self.state = {} # HACK: This hack is needed to strip checkpoint wrapper prefix from fqns so it doesn't affect loading. # TODO: Remove this hack by rewriting EMAState to use model.state_dict() self.prefix_to_remove = [_CHECKPOINT_PREFIX] @classmethod def FromModel(cls, model: torch.nn.Module, device: str = "", **kwargs): ret = cls(**kwargs) ret.save_from(model, device) return ret def save_from(self, model: torch.nn.Module, device: str = ""): """Save model state from `model` to this object""" for name, val in self.get_model_state_iterator(model): val = val.detach().clone() self.state[name] = val.to(device) if device else val def apply_to(self, model: torch.nn.Module): """Apply state to `model` from this object""" with torch.no_grad(): for name, val in self.get_model_state_iterator(model): assert ( name in self.state ), f"Name {name} not existed, available names {self.state.keys()}" val.copy_(self.state[name]) @contextmanager def apply_and_restore(self, model): old_state = EMAState.FromModel(model, self.device) self.apply_to(model) yield old_state old_state.apply_to(model) def get_ema_model(self, model): ret = copy.deepcopy(model) self.apply_to(ret) return ret @property def device(self): if not self.has_inited(): return None return next(iter(self.state.values())).device def to(self, device): for name in self.state: self.state[name] = self.state[name].to(device) return self def has_inited(self): return self.state def clear(self): self.state.clear() return self def _get_model_parameter_iterator(self, model): """ Return iterator for model parameters. Remove frozen parameters if needed. """ for name, params in model.named_parameters(): if params.requires_grad or self.include_frozen: yield name, params def get_model_state_iterator(self, model): param_iter = self._get_model_parameter_iterator(model) if self.include_buffer: param_iter = itertools.chain(param_iter, model.named_buffers()) return _remove_prefix(param_iter, self.prefix_to_remove) def state_dict(self): return self.state def load_state_dict(self, state_dict, strict: bool = True): self.clear() for x, y in state_dict.items(): self.state[x] = y return torch.nn.modules.module._IncompatibleKeys( missing_keys=[], unexpected_keys=[] ) def __repr__(self): ret = f"EMAState(state=[{','.join(self.state.keys())}])" return ret class EMAUpdater(object): """Model Exponential Moving Average Keep a moving average of everything in the model state_dict (parameters and buffers). This is intended to allow functionality like https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage Note: It's very important to set EMA for ALL network parameters (instead of parameters that require gradient), including batch-norm moving average mean and variance. This leads to significant improvement in accuracy. For example, for EfficientNetB3, with default setting (no mixup, lr exponential decay) without bn_sync, the EMA accuracy with EMA on params that requires gradient is 79.87%, while the corresponding accuracy with EMA on all params is 80.61%. Also, bn sync should be switched on for EMA. """ def __init__( self, state: EMAState, decay: float = 0.999, device: str = "", use_lerp: bool = False, decay_warm_up_factor: int = -1, ): self.decay = decay self.device = device self.state = state self.use_lerp = use_lerp self.debug_lerp = False self._num_updates: int = -1 self.decay_warm_up_factor = decay_warm_up_factor if self.decay_warm_up_factor >= 0: self._num_updates = 0 def init_state(self, model): self.state.clear() self.state.save_from(model, self.device) def update(self, model): # compute decay decay = self.decay if self._num_updates >= 0: self._num_updates += 1 decay = min( self.decay, (1 + self._num_updates) / (self.decay_warm_up_factor + self._num_updates), ) # update moving average with torch.no_grad(): ema_param_list = [] param_list = [] for name, val in self.state.get_model_state_iterator(model): ema_val = self.state.state[name] if self.device: val = val.to(self.device) if val.dtype in [torch.float32, torch.float16]: ema_param_list.append(ema_val) param_list.append(val) else: ema_val.copy_(ema_val * decay + val * (1.0 - decay)) self._ema_avg(ema_param_list, param_list, decay) def _ema_avg( self, averaged_model_parameters: List[torch.Tensor], model_parameters: List[torch.Tensor], decay: float, ) -> None: """ Function to perform exponential moving average: x_avg = alpha * x_avg + (1-alpha)* x_t """ if self.use_lerp: if self.debug_lerp: orig_averaged_model_parameters = torch._foreach_mul( averaged_model_parameters, decay ) torch._foreach_add_( orig_averaged_model_parameters, model_parameters, alpha=1 - decay ) torch._foreach_lerp_( averaged_model_parameters, model_parameters, 1.0 - decay ) if self.debug_lerp: for (orig_val, lerp_val) in zip( orig_averaged_model_parameters, averaged_model_parameters ): assert torch.allclose(orig_val, lerp_val, rtol=1e-4, atol=1e-3) else: torch._foreach_mul_(averaged_model_parameters, decay) torch._foreach_add_( averaged_model_parameters, model_parameters, alpha=1 - decay ) def add_model_ema_configs(_C): _C.MODEL_EMA = type(_C)() _C.MODEL_EMA.ENABLED = False _C.MODEL_EMA.DECAY = 0.999 # Whether to include frozen parameters in EMA _C.MODEL_EMA.INCLUDE_FROZEN = True # Whether to include model buffers in EMA _C.MODEL_EMA.INCLUDE_BUFFER = True # use the same as MODEL.DEVICE when empty _C.MODEL_EMA.DEVICE = "" # When True, loading the ema weight to the model when eval_only=True in build_model() _C.MODEL_EMA.USE_EMA_WEIGHTS_FOR_EVAL_ONLY = False # Whether to use LERP to compute EMA _C.MODEL_EMA.USE_LERP = False # Whether to put EMA to the backward pass _C.MODEL_EMA.AFTER_BACKWARD = False # Whether to warmup the EMA update process _C.MODEL_EMA.DECAY_WARM_UP_FACTOR = -1 def _remove_ddp(model): from torch.nn.parallel import DistributedDataParallel if isinstance(model, DistributedDataParallel): return model.module return model def _remove_prefix(named_iterator: Iterator, prefix_to_remove: List[str]) -> Iterator: """ Remove a list of prefix from a named_module iterator """ for name, params in named_iterator: for prefix in prefix_to_remove: name = name.replace(prefix, "") yield name, params def may_build_model_ema(cfg, model): if not cfg.MODEL_EMA.ENABLED: return model = _remove_ddp(model) assert not hasattr( model, "ema_state" ), "Name `ema_state` is reserved for model ema." model.ema_state = EMAState( include_frozen=cfg.MODEL_EMA.INCLUDE_FROZEN, include_buffer=cfg.MODEL_EMA.INCLUDE_BUFFER, ) logger.info("Using Model EMA.") def may_get_ema_checkpointer(cfg, model): if not cfg.MODEL_EMA.ENABLED: return {} model = _remove_ddp(model) return {"ema_state": model.ema_state} def get_model_ema_state(model): """Return the ema state stored in `model`""" model = _remove_ddp(model) assert hasattr(model, "ema_state") ema = model.ema_state return ema def apply_model_ema(model, state=None, save_current=False): """Apply ema stored in `model` to model and returns a function to restore the weights are applied """ model = _remove_ddp(model) if state is None: state = get_model_ema_state(model) if save_current: # save current model state old_state = EMAState.FromModel(model, state.device) state.apply_to(model) if save_current: return old_state return None @contextmanager def apply_model_ema_and_restore(model, state=None): """Apply ema stored in `model` to model and returns a function to restore the weights are applied """ model = _remove_ddp(model) if state is None: state = get_model_ema_state(model) old_state = EMAState.FromModel(model, state.device) state.apply_to(model) yield old_state old_state.apply_to(model) class EMAHook(HookBase): def __init__(self, cfg, model): model = _remove_ddp(model) assert cfg.MODEL_EMA.ENABLED assert hasattr( model, "ema_state" ), "Call `may_build_model_ema` first to initilaize the model ema" self.model = model self.ema = self.model.ema_state self.device = cfg.MODEL_EMA.DEVICE or cfg.MODEL.DEVICE self.is_after_backward = cfg.MODEL_EMA.AFTER_BACKWARD self.ema_updater = EMAUpdater( self.model.ema_state, decay=cfg.MODEL_EMA.DECAY, device=self.device, use_lerp=cfg.MODEL_EMA.USE_LERP, decay_warm_up_factor=cfg.MODEL_EMA.DECAY_WARM_UP_FACTOR, ) def before_train(self): if self.ema.has_inited(): self.ema.to(self.device) else: self.ema_updater.init_state(self.model) def after_train(self): pass def before_step(self): pass def after_backward(self): if not self.is_after_backward: return self._update() def after_step(self): if self.is_after_backward: return self._update() def _update(self): if not self.model.train: return self.ema_updater.update(self.model)
d2go-main
d2go/modeling/ema.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Populating registreis from d2go.modeling import ( # noqa backbone as _backbone, meta_arch as _meta_arch, modeldef as _modeldef, )
d2go-main
d2go/modeling/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from dataclasses import dataclass from typing import List import torch import torch.nn as nn from d2go.config import CfgNode from d2go.modeling import modeling_hook as mh from d2go.registry.builtin import META_ARCH_REGISTRY from d2go.utils.misc import _log_api_usage from detectron2.modeling import META_ARCH_REGISTRY as D2_META_ARCH_REGISTRY @dataclass class D2GoModelBuildResult: """Class to store the output of build_d2go_model. It stores the model, a key-value mapping of modeling hooks and can be further extended with other fields, e.g. state_dict. """ # Stores model with applied modeling hooks. # If modeling hooks (e.g. EMA) are not enabled in config # the modeling hook will be no-op (e.g. return original model) model: nn.Module modeling_hooks: List[mh.ModelingHook] def build_meta_arch(cfg): """ Build the whole model architecture, defined by ``cfg.MODEL.META_ARCHITECTURE``. Note that it does not load any weights from ``cfg``. """ # initialize the meta-arch and cast to the device meta_arch = cfg.MODEL.META_ARCHITECTURE # NOTE: during transition we also check if meta_arch is registered as D2 MetaArch # TODO: remove this check after Sep 2022. if meta_arch not in META_ARCH_REGISTRY and meta_arch in D2_META_ARCH_REGISTRY: raise KeyError( f"Can't find '{meta_arch}' in D2Go's META_ARCH_REGISTRY, although it is in" f" D2's META_ARCH_REGISTRY, now D2Go uses its own registry, please register" f" it in D2Go's META_ARCH_REGISTRY." ) model = META_ARCH_REGISTRY.get(meta_arch)(cfg) model.to(torch.device(cfg.MODEL.DEVICE)) _log_api_usage("modeling.meta_arch." + meta_arch) return model def build_d2go_model( cfg: CfgNode, ) -> D2GoModelBuildResult: model = build_meta_arch(cfg) modeling_hooks: List[mh.ModelingHook] = [] # apply modeling hooks # some custom projects bypass d2go's default config so may not have the # MODELING_HOOKS key if hasattr(cfg.MODEL, "MODELING_HOOKS"): hook_names = cfg.MODEL.MODELING_HOOKS model, modeling_hooks = mh.build_and_apply_modeling_hooks( model, cfg, hook_names ) return D2GoModelBuildResult(model=model, modeling_hooks=modeling_hooks)
d2go-main
d2go/modeling/api.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import re import torch.nn as nn from detectron2.layers import FrozenBatchNorm2d logger = logging.getLogger(__name__) def add_model_freezing_configs(_C): _C.MODEL.FROZEN_LAYER_REG_EXP = [] def set_requires_grad(model, reg_exps, value): total_num_parameters = 0 unmatched_parameters = [] unmatched_parameter_names = [] matched_parameters = [] matched_parameter_names = [] for name, parameter in model.named_parameters(): total_num_parameters += 1 matched = False for frozen_layers_regex in reg_exps: if re.match(frozen_layers_regex, name): matched = True parameter.requires_grad = value matched_parameter_names.append(name) matched_parameters.append(parameter) break if not matched: unmatched_parameter_names.append(name) unmatched_parameters.append(parameter) logger.info( "Matched layers (require_grad={}): {}".format(value, matched_parameter_names) ) logger.info("Unmatched layers: {}".format(unmatched_parameter_names)) return matched_parameter_names, unmatched_parameter_names def _freeze_matched_bn(module, name, reg_exps, matched_names, unmatched_names): """ Recursive function to freeze bn layers that match specified regular expressions. """ res = module # Base case: current module is a leaf node if len(list(module.children())) == 0: if isinstance(module, nn.modules.batchnorm._BatchNorm): matched = False for frozen_layers_regex in reg_exps: if re.match(frozen_layers_regex, name): matched = True matched_names.append(name) # Convert to frozen batch norm res = FrozenBatchNorm2d.convert_frozen_batchnorm(module) if not matched: unmatched_names.append(name) return res # Recursion: current module has children for child_name, child in module.named_children(): _name = name + "." + child_name if name != "" else child_name new_child = _freeze_matched_bn( child, _name, reg_exps, matched_names, unmatched_names ) if new_child is not child: res.add_module(child_name, new_child) return res def freeze_matched_bn(module, reg_exps): """ Convert matching batchnorm layers in module into FrozenBatchNorm2d. Args: module: nn.Module reg_exps: list of regular expressions to match Returns: If module is an instance of batchnorm and it matches the reg exps, returns a new FrozenBatchNorm2d module. Otherwise, in-place converts the matching batchnorm child modules to FrozenBatchNorm2d and returns the main module. """ matched_names = [] unmatched_names = [] res = _freeze_matched_bn(module, "", reg_exps, matched_names, unmatched_names) logger.info("Matched BN layers are frozen: {}".format(matched_names)) logger.info("Unmatched BN layers: {}".format(unmatched_names)) return res
d2go-main
d2go/modeling/model_freezing_utils.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import d2go.data.transforms.crop as tfm_crop import d2go.data.transforms.tensor as tfm_tensor import detectron2.data.transforms as transforms import torch from detectron2.data.transforms.augmentation import AugmentationList from torch import nn class ImagePooler(nn.Module): """Get a subset of image Returns the transforms that could be used to inverse the image/boxes/keypoints as well. Only available for inference. The code is not tracable/scriptable. """ def __init__( self, resize_type="resize_shortest", resize_short=None, resize_max=None, box_scale_factor=1.0, ): super().__init__() assert resize_type in ["resize_shortest", "resize", "None", None] resizer = None if resize_type == "resize_shortest": resizer = transforms.ResizeShortestEdge(resize_short, resize_max) elif resize_type == "resize": resizer = transforms.Resize(resize_short) self.aug = [ tfm_tensor.Tensor2Array(), tfm_crop.CropBoxAug(box_scale_factor=box_scale_factor), *([resizer] if resizer else []), tfm_tensor.Array2Tensor(), ] def forward(self, x: torch.Tensor, box: torch.Tensor): """box: 1 x 4 tensor in XYXY format""" assert not self.training assert isinstance(x, torch.Tensor) assert isinstance(box, torch.Tensor) # box: 1 x 4 in xyxy format inputs = tfm_tensor.AugInput(image=x.cpu(), boxes=box.cpu()) transforms = AugmentationList(self.aug)(inputs) return ( inputs.image.to(x.device), torch.Tensor(inputs.boxes).to(box.device), transforms, )
d2go-main
d2go/modeling/image_pooler.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # This is the main definition of distillation components in D2Go. This # includes: # DistillationModelingHook => how we update the student model to obtain # distillation methods and properties (e.g., override model.forward) # DistillationAlgorithm => how we define what occurs during distillation # (e.g., specific forward func, teacher weights updates) # DistillationHelper => main class users should use to customize their # distllation (e.g., define how to pseudo label inputs) # # We use two additional registries so that users can select their # distillation algorithms in configs: DISILLATION_ALAGORITHM, DISTILLATION_HELPER import logging from abc import abstractmethod from dataclasses import dataclass from typing import Callable, Dict, Iterable, List, Optional, Set, Tuple, Union import torch import torch.nn as nn from d2go.config import CfgNode as CN from d2go.modeling import modeling_hook as mh from d2go.registry.builtin import ( DISTILLATION_ALGORITHM_REGISTRY, DISTILLATION_HELPER_REGISTRY, MODELING_HOOK_REGISTRY, ) from detectron2.utils.file_io import PathManager from mobile_cv.common.misc.mixin import dynamic_mixin, remove_dynamic_mixin logger = logging.getLogger(__name__) ModelOutput = Union[None, torch.Tensor, Iterable["ModelOutput"]] @dataclass class LayerLossMetadata: loss: nn.Module name: str layer0: str layer1: str class PseudoLabeler: @abstractmethod def label(self, x): """ We expect all pseudolabelers to implement a func called label which will then be run on the input before passing the func output to the model This is typically something like running a teacher model on the input to generate new ground truth which we can use to override the input gt """ pass class NoopPseudoLabeler(PseudoLabeler): def label(self, x): return x class RelabelTargetInBatch(PseudoLabeler): """Run the teacher model on the batched inputs, replace targets. We expect the batched_inputs to be a list of dicts: batched_inputs = [ {"input": ..., "target": ...}, {"input": ..., "target": ...}, ... ] where there is a single label "target" that needs to be replaced The teacher can take this batch of inputs directly and return a tensor of size nchw where n corresopnds to the index of the input We return updated batched_inputs with the new target new_batched_inputs = [ {"input": ..., "target": teacher_output[0, :]}, {"input": ..., "target": teacher_output[1, :]}, ... ] Note that the output of the teacher is a tensor of NCHW while we assume the target is CHW. Create a new pseudo_labeler if a different input output is needed. """ def __init__(self, teacher: nn.Module): """Assume that a teacher is passed to the psuedolabeler As an example in distillation, the distillaiton helper should create or pass along a teacher to the psuedo labeler """ self.teacher = teacher def label(self, batched_inputs: List) -> List: batched_inputs = [ {"input": d["input"].to(self.teacher.device), "target": d["target"]} for d in batched_inputs ] with torch.no_grad(): batched_outputs = self.teacher(batched_inputs) for i, input in enumerate(batched_inputs): input["target"] = batched_outputs[i, :] return batched_inputs @DISTILLATION_HELPER_REGISTRY.register() class BaseDistillationHelper: """Example of what distillation helper can provide Users should inherit this class and replace any functions with whatever they need in order to customize their distillation given a specific distililation algorithm (e.g., user wants to change the name of the label in the inputs). The distillation helper is an object passed to the distillation algorithm so any functionality in the helper can be accessed in the algorithm """ def __init__(self, cfg: CN, teacher: nn.Module): self.cfg = cfg self.teacher = teacher def get_pseudo_labeler(self) -> PseudoLabeler: """ pseudo_labeler should update the labels in batched_inputs with teacher model results This dummy psuedo_labeler returns the batched_inputs without modification """ return NoopPseudoLabeler() def get_teacher(self) -> nn.Module: """Return a teacher that can be run by the algorithm""" return self.teacher def get_layer_losses( self, model: Optional[nn.Module] = None ) -> List[LayerLossMetadata]: """Return losses that are run on layers Layer parameters may be dependent on model parameters so option to pass in a model """ return [] def get_preprocess_student_input(self) -> Callable: """Return a function that allows user to modify the dataloader output before passing to the student The output of this function will be directly passed to the student model. Example use cases include: * dataloader returns a large image used by the teacher model but the student model needs a lower resolution version * dataloader returns both labeled and unlabeled data and the student requires labeled data """ return lambda x: x def get_preprocess_teacher_input(self) -> Callable: """Return a function that allows user to modify dataloader output before passing to teacher The output of this function will be directly passed to the teacher model. """ return lambda x: x def get_combine_losses(self) -> Callable: """Return a function that takes as input a dictionary of losses and modifies the loss as required The default trainer sums the losses at the end so typically this function is used to change the relative contribution of losses Example: def combine_losses(losses) alpha = 0.1 losses["nll"] *= alpha losses["kd_loss"] *= (1 - alpha) return losses student_losses = {"nll": ...} student_losses.update({"kl_loss": ...}) losses = combine_losses(student_losses) """ return lambda x: x def get_preprocess_domain0_input(self) -> Callable: """Return a function that allows user to modify the dataloader output before passing to the model The output of this function will be directly passed to the model. Example use cases include: * dataloader returns a dictionary of real and synthetic images. use this function to return only the real data (domain0) to the model """ return lambda x: x def get_preprocess_domain1_input(self) -> Callable: """Same as get_preprocess_domain0_input but returns domain1 inputs Example: * dataloader returns a dictionary of real and synthetic images. use this function to return only synthetic data (domain1) to the model """ return lambda x: x @DISTILLATION_HELPER_REGISTRY.register() class ExampleDistillationHelper(BaseDistillationHelper): """ This is an example of a user customizing distillation. We return a pseudo labeler that can be used with a specific project where the training input is a list of dicts with a label called target """ def get_pseudo_labeler(self) -> PseudoLabeler: return RelabelTargetInBatch(self.teacher) class BaseDistillationAlgorithm(nn.Module): """ Base distillation algorithm All distillation algorithms will be initialized with the same inputs including the teacher model, distillation helper and student class. Require user to define forward which overrides student model forward. Note that the init is unused when we use mixin. We manually set these attributes in the modeling hook. However we keep the init to make it clear what attributes the class will contain. """ def dynamic_mixin_init( self, distillation_helper: BaseDistillationHelper, ): # check if we might override user attrs with same name # add any new distillation method attrs to this list assert not hasattr( self, "distillation_helper" ), "Distillation attempting to override attribute that already exists: distillation_helper" self.distillation_helper = distillation_helper def remove_dynamic_mixin(self): del self.distillation_helper @abstractmethod def forward(self, *args, **kwargs): """User required to override forward to implement distillation""" # must call super to ensure student forward is used when calling the # super in the algorithm (i.e., DistillationAlgorithm.super().forward()) # this is because distillation algorithms inherit this base class so # the MRO of the mixin class is something like: # [DistillationAlgorithm, BaseDistillationAlgorithm, StudentModel] # DistillationAlgorithm forward uses super().forward to call the # student model but the BaseDistillationAlgorithm is the next class # in the MRO so we make sure to call super on BaseDistillationAlgorithm # so we can access the StudentModel forward. return super().forward(*args, **kwargs) @DISTILLATION_ALGORITHM_REGISTRY.register() class LabelDistillation(BaseDistillationAlgorithm): """Basic distillation uses a teacher model to generate new labels used by the student We modify the forward to replace the input labels with teacher outputs when the model is training and run the student at inference """ def dynamic_mixin_init(self, distillation_helper: BaseDistillationHelper): """Init pseudo labeler""" super().dynamic_mixin_init(distillation_helper) self.pseudo_labeler = self.distillation_helper.get_pseudo_labeler() def remove_dynamic_mixin(self): super().remove_dynamic_mixin() del self.pseudo_labeler def forward(self, batched_inputs: List): """If training, overrides input labels with teacher outputs During inference, runs the student. Note: The "student" model can be accessed by calling super(). In order to run the student forward method, we call super().forward(input) as opposed to super()(input) as super objects are not callable. We avoid calling super().__call__(input) as this leads to infinite recursion. We can call super().forward(input) without worrying about ignoring hooks as we should be calling this model as model(input) which will then activate the hooks. """ if not self.training: return super().forward(batched_inputs) new_batched_inputs = self.pseudo_labeler.label(batched_inputs) return super().forward(new_batched_inputs) @DISTILLATION_ALGORITHM_REGISTRY.register() class KnowledgeDistillation(BaseDistillationAlgorithm): """Knowledge distillation applies loss over the outputs of the student and teacher models """ def dynamic_mixin_init(self, distillation_helper: BaseDistillationHelper): """Note all variables use _ to avoid name conflicts with existing variable names in the model Consider adding a check to avoid variable name reuse """ super().dynamic_mixin_init(distillation_helper) self._teacher = WrappedTeacher(self.distillation_helper.get_teacher()) self._student_preprocess_input = ( self.distillation_helper.get_preprocess_student_input() ) self._teacher_preprocess_input = ( self.distillation_helper.get_preprocess_teacher_input() ) ll = self.distillation_helper.get_layer_losses(self) self._layer_losses = register_layer_losses_and_to_device(ll, self) self._student_cache = record_layers( self, [ll.layer0 for ll in self._layer_losses] ) self._teacher_cache = record_layers( self._teacher.model, [ll.layer1 for ll in self._layer_losses] ) self._combine_losses = self.distillation_helper.get_combine_losses() def remove_dynamic_mixin(self): super().remove_dynamic_mixin() unrecord_layers(self, [ll.layer0 for ll in self._layer_losses]) unrecord_layers(self._teacher.model, [ll.layer1 for ll in self._layer_losses]) del self._teacher del self._layer_losses del self._student_cache del self._teacher_cache del self._student_preprocess_input del self._teacher_preprocess_input del self._combine_losses def forward(self, batched_inputs: List): """Run teacher, then student and compute losses""" student_input = self._student_preprocess_input(batched_inputs) if not self.training: return super().forward(student_input) teacher_input = self._teacher_preprocess_input(batched_inputs) with torch.no_grad(): self._teacher(teacher_input) student_losses = super().forward(student_input) distillation_losses = compute_layer_losses( self._layer_losses, self._student_cache, self._teacher_cache ) student_losses.update(distillation_losses) losses = self._combine_losses(student_losses) return losses @DISTILLATION_ALGORITHM_REGISTRY.register() class DomainAdaptation(BaseDistillationAlgorithm): """Domain adaptation applies loss over the inputs of domain0 and domain1""" def dynamic_mixin_init(self, distillation_helper: BaseDistillationHelper): super().dynamic_mixin_init(distillation_helper) self._domain0_preprocess_input = ( self.distillation_helper.get_preprocess_domain0_input() ) self._domain1_preprocess_input = ( self.distillation_helper.get_preprocess_domain1_input() ) ll = self.distillation_helper.get_layer_losses(self) self._layer_losses = register_layer_losses_and_to_device(ll, self) # we ignore the cache dict returned by record_layers as we need to # manually set the dict at every iteration in the forward self._domain0_cache = {} self._domain1_cache = {} # since domain adaptation uses the same model in both domains, we # only need to add CachedLayers once record_layers(self, [ll.layer0 for ll in self._layer_losses]) self._combine_losses = self.distillation_helper.get_combine_losses() def remove_dynamic_mixin(self): super().remove_dynamic_mixin() unrecord_layers(self, [ll.layer0 for ll in self._layer_losses]) del self._layer_losses del self._domain0_cache del self._domain1_cache del self._domain0_preprocess_input del self._domain1_preprocess_input del self._combine_losses def forward(self, batched_inputs: List): """Run domain0 input, domain1 input and compute losses""" domain0_input = self._domain0_preprocess_input(batched_inputs) if not self.training: return super().forward(domain0_input) # run domain0 set_cache_dict(self, self._domain0_cache) domain0_losses = super().forward(domain0_input) # run domain1 domain1_input = self._domain1_preprocess_input(batched_inputs) set_cache_dict(self, self._domain1_cache) domain1_losses = super().forward(domain1_input) # calculate losses domain_adaptation_losses = compute_layer_losses( self._layer_losses, self._domain0_cache, self._domain1_cache ) # combine losses # note we currently assume that the loss combiner uses training iteration losses = self._combine_losses( domain0_losses, domain1_losses, domain_adaptation_losses, getattr(self, "_training_iteration", -1), ) return losses @MODELING_HOOK_REGISTRY.register() class DistillationModelingHook(mh.ModelingHook): """Wrapper hook that allows us to apply different distillation algorithms based on config This is meant to be used after creating a model: def build_model(cfg): model = d2_build_model(cfg) distillation_modeling_hook = DistillationModelingHook(cfg) d2go.modeling_hook.apply_modeling_hooks(model, distillation_modeling_hook) The udpated model will then be updated with a forward func that corresponds to the distillation method in the cfg as well as any new methods """ def __init__(self, cfg): """ Set the three major components distillation_algorithm_class => the distillation algorithm to be used, we only get the class as the apply() will mixin the class distillation_helper => user customization of the algorithm teacher => all distillation algorithms utilize an additional model to modify inputs """ super().__init__(cfg) self.teacher = _build_teacher(cfg) self.distillation_algorithm_class = DISTILLATION_ALGORITHM_REGISTRY.get( cfg.DISTILLATION.ALGORITHM ) self.distillation_helper = DISTILLATION_HELPER_REGISTRY.get( cfg.DISTILLATION.HELPER )(cfg, self.teacher) def apply(self, model: nn.Module) -> nn.Module: """Use dynamic mixin to apply the distillation class As opposed to wrapping the model, dynamic mixin allows us to override the model methods so that the model retains all existing attributes the user expects (e.g., if the user thinks their is an attr called model.my_attr then dynamic mixin retains that property). This has the advantage over directly overriding the model forward as we can still call the original model forward using super: old_model: MyModel new_model: MyDistillationClass = DistillationModelingHook(...).apply(old_model) class MyDistillationClass: def forward(self, ...): # do some processing ... super().forward(...) # call MyModel.forward ... """ logger.info("Applying distillation") dynamic_mixin( model, self.distillation_algorithm_class, init_dict={ "distillation_helper": self.distillation_helper, }, ) return model def unapply(self, model: nn.Module) -> nn.Module: """Remove distillation class using dynamic mixin with saved original class""" remove_dynamic_mixin(model) return model def _build_teacher(cfg) -> nn.Module: """Create teacher using config settings Supports torchscript or creating pytorch model using config. """ _validate_teacher_config(cfg) if cfg.DISTILLATION.TEACHER.TYPE == "torchscript": with PathManager.open(cfg.DISTILLATION.TEACHER.TORCHSCRIPT_FNAME, "rb") as f: model = torch.jit.load(f) elif cfg.DISTILLATION.TEACHER.TYPE == "config": from d2go.runner import import_runner from d2go.setup import create_cfg_from_cli # teacher config may be set to cuda # if user wants to run teacher on cpu only machine by specifying teacher.device, # need to override device to cpu before building model if cfg.DISTILLATION.TEACHER.DEVICE: cfg.DISTILLATION.TEACHER.OVERWRITE_OPTS.extend( ["MODEL.DEVICE", cfg.DISTILLATION.TEACHER.DEVICE] ) teacher_cfg = create_cfg_from_cli( cfg.DISTILLATION.TEACHER.CONFIG_FNAME, cfg.DISTILLATION.TEACHER.OVERWRITE_OPTS, cfg.DISTILLATION.TEACHER.RUNNER_NAME, ) runner = import_runner(cfg.DISTILLATION.TEACHER.RUNNER_NAME)() model = runner.build_model(teacher_cfg, eval_only=True) elif cfg.DISTILLATION.TEACHER.TYPE == "no_teacher": model = nn.Identity() else: raise ValueError(f"Unexpected teacher type: {cfg.DISTILLATION.TEACHER.TYPE}") # move teacher to same device as student unless specified device = torch.device(cfg.DISTILLATION.TEACHER.DEVICE or cfg.MODEL.DEVICE) model = _set_device(model, device) model.eval() return model def _set_device(model: nn.Module, device: torch.device) -> nn.Module: """Set the device of the model Some D2Go models have device as a property of the model (e.g., GeneralizedRCNN) whereas others are missing this attribute which is assumed by distillation to exist (e.g., we may call teacher.device to move inputs) This helper function guarantees that the model.device attribute exists and runs model.to(device) """ model = model.to(device) if not hasattr(model, "device"): model.device = device return model def _validate_teacher_config(cfg: CN) -> None: """We support torchscript or PyTorch checkpoint as teacher models If torchscript, need: * torchscript_filename If config, needs: * config_fname Bypass allowed if setting teacher.type = "no_teacher". This can be useful in cases where we only have the student model (e.g., domain adaptation) """ if cfg.DISTILLATION.TEACHER.TYPE == "torchscript": assert ( cfg.DISTILLATION.TEACHER.TORCHSCRIPT_FNAME ), "Trying to load torchscript model without fname" elif cfg.DISTILLATION.TEACHER.TYPE == "config": assert ( cfg.DISTILLATION.TEACHER.CONFIG_FNAME ), "Trying to load D2Go teacher model without config" elif cfg.DISTILLATION.TEACHER.TYPE == "no_teacher": pass else: raise ValueError( f"Unrecognized DISTILLATION.TEACHER.TYPE: {cfg.DISTILLATION.TEACHER.TYPE}" ) class CachedLayer(nn.Module): """Cached layer records the output of a layer This is meant to be used with dynamic mixin. The layer overrides the forward of the original layer such that the input and the output is the same but the output of the layer is saved to a dict that can be retrieved later """ def dynamic_mixin_init( self, label: str, cache: Dict[str, ModelOutput], ): self.label = label self.cache = cache def remove_dynamic_mixin(self): del self.label del self.cache def forward(self, *args, **kwargs): """Run the original layer and save the output We clone the output to avoid the case where a subsequent module runs an inplace operation. However, this limits what the cache can support as we can only run clone on a tensor so we need to check the type of the output. Support of the output type is limited to None type and arbitrary nested collections of List, Tuple and Dict of tensor. """ output = super().forward(*args, **kwargs) self.cache[self.label] = CachedLayer._clone(output) return output @staticmethod def _clone(output: ModelOutput) -> ModelOutput: if output is None: return None elif isinstance(output, torch.Tensor): return output.clone() elif isinstance(output, List) or isinstance(output, Tuple): cloned_output = [] for x in output: cloned_output.append(CachedLayer._clone(x)) if isinstance(output, Tuple): return tuple(cloned_output) return cloned_output elif isinstance(output, Dict): cloned_output = {} for k, v in output.items(): cloned_output[k] = CachedLayer._clone(v) return cloned_output else: raise ValueError(f"Unexpected type to save: {type(output)}") def set_cache_dict(model: nn.Module, cache: ModelOutput) -> None: """Sets the cache in all CachedLayers to input cache""" for module in model.modules(): if isinstance(module, CachedLayer): module.cache = cache def record_layers(model: nn.Module, layer_names: Set[str]) -> ModelOutput: """Save the outputs of layer_names in model Iterates over all named layers in model, applies cached layer to layers in layer_names. Returns dict which is used by the cached layers. """ cache = {} for name, module in model.named_modules(): if name in layer_names: dynamic_mixin( module, CachedLayer, init_dict={"label": name, "cache": cache}, ) return cache def unrecord_layers(model: nn.Module, layer_names: Set[str]) -> None: """Remove cached layers based on the layer_names""" for name, module in model.named_modules(): if name in layer_names: remove_dynamic_mixin(module) def compute_layer_losses( layer_losses: List[LayerLossMetadata], layer0_cache: ModelOutput, layer1_cache: ModelOutput, ) -> Dict[str, torch.Tensor]: """Compute loss over layers specified in layer_loss layer0_cache and layer1_cache should contain the data required to compute the losses specified in layer_loss """ losses = {} for ll in layer_losses: if ll.layer0 not in layer0_cache: raise ValueError(f"Missing saved layer {ll.layer0} in layer0_cache") if ll.layer1 not in layer1_cache: raise ValueError(f"Missing saved layer {ll.layer1} in layer1_cache") losses[ll.name] = ll.loss(layer0_cache[ll.layer0], layer1_cache[ll.layer1]) return losses class WrappedTeacher: """Used to remove the teacher model from the student module list See: DistillationMiscTests.test_teacher_outside_updated_parameters to get more details on avoiding adding the teacher as a module """ def __init__(self, model: nn.Module): self.model = model def __call__(self, *args, **kwargs): return self.model(*args, **kwargs) def get_default_kd_image_classification_layer_losses() -> List[LayerLossMetadata]: """Return some typical values used in knowledge distillation Assumes student model is ImageClassificationMetaArch and teacher model is the same or a wrapped torchscript model with the same output layer name """ return [ LayerLossMetadata( loss=nn.CrossEntropyLoss(), name="kd", layer0="classifier", layer1="", # use empty layer name to indicate last layer ) ] class DefaultLossCombiner: """Returns a weighted sum of the losses based on the name_weight name_weight is a dictionary indicating the name of the loss and the weight associated with that loss Example: name_weight = {"nll": 0.1, "kd": 0.9} """ def __init__(self, name_weight: Dict[str, float]): self.name_weight = name_weight def __call__(self, losses: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: output = {} for k, v in losses.items(): if k not in self.name_weight: raise ValueError(f"Unexpected weight in loss dict: {k}") output[k] = v * self.name_weight[k] return output def register_layer_losses_and_to_device( layer_losses: List[LayerLossMetadata], model: nn.Module ) -> List[LayerLossMetadata]: """Register loss modules in layerlossemtadata to model and move to device""" registered_losses = [] for ll in layer_losses: loss_on_device = ll.loss.to(model.device) model.add_module(ll.name, loss_on_device) registered_losses.append( LayerLossMetadata( loss_on_device, ll.name, ll.layer0, ll.layer1, ) ) return registered_losses
d2go-main
d2go/modeling/distillation.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import functools import inspect import json import logging import math from typing import Any, Optional, Tuple import numpy as np import torch import torch.nn as nn from d2go.config import CfgNode from d2go.config.utils import flatten_config_dict from d2go.export.api import PredictorExportConfig from d2go.quantization.qconfig import set_backend_and_create_qconfig from d2go.registry.builtin import META_ARCH_REGISTRY from detectron2.modeling import ( GeneralizedRCNN as _GeneralizedRCNN, ProposalNetwork as _ProposalNetwork, ) from detectron2.modeling.backbone.fpn import FPN from detectron2.modeling.postprocessing import detector_postprocess from detectron2.projects.point_rend import PointRendMaskHead from detectron2.structures import Boxes, Instances, Keypoints, PolygonMasks from detectron2.utils.events import EventStorage from detectron2.utils.registry import Registry from mobile_cv.arch.utils import fuse_utils from mobile_cv.arch.utils.quantize_utils import ( QuantWrapper, wrap_non_quant_group_norm, wrap_quant_subclass, ) from mobile_cv.predictor.api import FuncInfo from torch.ao.quantization.quantize_fx import convert_fx, prepare_fx, prepare_qat_fx from torch.ao.quantization.utils import get_fqn_to_example_inputs logger = logging.getLogger(__name__) # NOTE: Customized heads are often used in the GeneralizedRCNN, this leads to the needs # for also customizating export/quant APIs, therefore registries are provided for easy # override without creating new meta-archs. For other less general meta-arch, this type # of registries might be over-kill. RCNN_PREPARE_FOR_EXPORT_REGISTRY = Registry("RCNN_PREPARE_FOR_EXPORT") RCNN_PREPARE_FOR_QUANT_REGISTRY = Registry("RCNN_PREPARE_FOR_QUANT") # Re-register D2's meta-arch in D2Go with updated APIs @META_ARCH_REGISTRY.register() class GeneralizedRCNN(_GeneralizedRCNN): def prepare_for_export(self, cfg, *args, **kwargs): func = RCNN_PREPARE_FOR_EXPORT_REGISTRY.get(cfg.RCNN_PREPARE_FOR_EXPORT) return func(self, cfg, *args, **kwargs) def prepare_for_quant(self, cfg, *args, **kwargs): func = RCNN_PREPARE_FOR_QUANT_REGISTRY.get(cfg.RCNN_PREPARE_FOR_QUANT) return func(self, cfg, *args, **kwargs) def custom_prepare_fx(self, cfg, is_qat, example_input=None): return default_rcnn_custom_prepare_fx(self, cfg, is_qat, example_input) def _cast_model_to_device(self, device): return _cast_detection_model(self, device) # Re-register D2's meta-arch in D2Go with updated APIs @META_ARCH_REGISTRY.register() class ProposalNetwork(_ProposalNetwork): pass @RCNN_PREPARE_FOR_EXPORT_REGISTRY.register() def default_rcnn_prepare_for_export(self, cfg, inputs, predictor_type): pytorch_model = self if ( "@c2_ops" in predictor_type or "caffe2" in predictor_type or "onnx" in predictor_type ): from detectron2.export.caffe2_modeling import META_ARCH_CAFFE2_EXPORT_TYPE_MAP C2MetaArch = META_ARCH_CAFFE2_EXPORT_TYPE_MAP[cfg.MODEL.META_ARCHITECTURE] c2_compatible_model = C2MetaArch(cfg, pytorch_model) preprocess_info = FuncInfo.gen_func_info( D2Caffe2MetaArchPreprocessFunc, params=D2Caffe2MetaArchPreprocessFunc.get_params(cfg, c2_compatible_model), ) postprocess_info = FuncInfo.gen_func_info( D2Caffe2MetaArchPostprocessFunc, params=D2Caffe2MetaArchPostprocessFunc.get_params(cfg, c2_compatible_model), ) preprocess_func = preprocess_info.instantiate() model_export_kwargs = {} if "torchscript" in predictor_type: model_export_kwargs["force_disable_tracing_adapter"] = True return PredictorExportConfig( model=c2_compatible_model, # Caffe2MetaArch takes a single tuple as input (which is the return of # preprocess_func), data_generator requires all positional args as a tuple. data_generator=lambda x: (preprocess_func(x),), model_export_method=predictor_type.replace("@c2_ops", "", 1), model_export_kwargs=model_export_kwargs, preprocess_info=preprocess_info, postprocess_info=postprocess_info, ) else: do_postprocess = cfg.RCNN_EXPORT.INCLUDE_POSTPROCESS preprocess_info = FuncInfo.gen_func_info( D2RCNNInferenceWrapper.Preprocess, params={} ) preprocess_func = preprocess_info.instantiate() return PredictorExportConfig( model=D2RCNNInferenceWrapper( pytorch_model, do_postprocess=do_postprocess, ), data_generator=lambda x: (preprocess_func(x),), model_export_method=predictor_type, preprocess_info=preprocess_info, postprocess_info=FuncInfo.gen_func_info( D2RCNNInferenceWrapper.Postprocess, params={"detector_postprocess_done_in_model": do_postprocess}, ), ) def _apply_eager_mode_quant(cfg, model): if isinstance(model, GeneralizedRCNN): """Wrap each quantized part of the model to insert Quant and DeQuant in-place""" # Wrap backbone and proposal_generator if isinstance(model.backbone, FPN): # HACK: currently the quantization won't pick up D2's the Conv2d, which is # used by D2's default FPN (same as FBNetV2FPN), this causes problem if we # warpping entire backbone as whole. The current solution is only quantizing # bottom_up and leaving other parts un-quantized. TODO (T109761730): However # we need to re-visit this if using other (fbnet-based) FPN module since the # new FPN module might be pikced by quantization. model.backbone.bottom_up = wrap_quant_subclass( model.backbone.bottom_up, n_inputs=1, n_outputs=len(model.backbone.bottom_up._out_features), ) else: model.backbone = wrap_quant_subclass( model.backbone, n_inputs=1, n_outputs=len(model.backbone._out_features) ) model.proposal_generator.rpn_head = wrap_quant_subclass( model.proposal_generator.rpn_head, n_inputs=len(cfg.MODEL.RPN.IN_FEATURES), n_outputs=len(cfg.MODEL.RPN.IN_FEATURES) * 2, ) # Wrap the roi_heads, box_pooler is not quantized if hasattr(model.roi_heads, "box_head"): model.roi_heads.box_head = wrap_quant_subclass( model.roi_heads.box_head, n_inputs=1, n_outputs=1, ) # for faster_rcnn_R_50_C4 if hasattr(model.roi_heads, "res5"): model.roi_heads.res5 = wrap_quant_subclass( model.roi_heads.res5, n_inputs=1, n_outputs=1, ) model.roi_heads.box_predictor = wrap_quant_subclass( model.roi_heads.box_predictor, n_inputs=1, n_outputs=2 ) # Optionally wrap keypoint and mask heads, pools are not quantized if hasattr(model.roi_heads, "keypoint_head"): model.roi_heads.keypoint_head = wrap_quant_subclass( model.roi_heads.keypoint_head, n_inputs=1, n_outputs=1, wrapped_method_name="layers", ) if hasattr(model.roi_heads, "mask_head"): model.roi_heads.mask_head = wrap_quant_subclass( model.roi_heads.mask_head, n_inputs=1, n_outputs=1, wrapped_method_name="layers", ) # StandardROIHeadsWithSubClass uses a subclass head if hasattr(model.roi_heads, "subclass_head"): q_subclass_head = QuantWrapper(model.roi_heads.subclass_head) model.roi_heads.subclass_head = q_subclass_head else: raise NotImplementedError( "Eager mode for {} is not supported".format(type(model)) ) # TODO: wrap the normalizer and make it quantizable # NOTE: GN is not quantizable, assuming all GN follows a quantized conv, # wrap them with dequant-quant model = wrap_non_quant_group_norm(model) return model def _lcm(x: Optional[int], y: Optional[int]) -> int: if x is None or x == 0: return y if y is None or y == 0: return x return x * y // math.gcd(x, y) def _get_example_rcnn_input(image_tensor_size: int): def _get_batch(): # example input image # TODO: do not hard-code channel size 3 image = torch.randn(3, image_tensor_size, image_tensor_size) # example GT instances num_instances = 2 gt_boxes = torch.tensor([[0.0, 0.0, 10.0, 10.0]] * num_instances) gt_boxes = Boxes(gt_boxes) gt_classes = torch.tensor([0] * num_instances) polygon = np.array([0.0, 0.0, 10.0, 0.0, 10.0, 10.0]) # x1,y1,x2,y2,x3,y3 gt_masks = PolygonMasks([[polygon]] * num_instances) # TODO: make keypoints inside box and set visibililty # TODO: do not hard-code num_keypoints 17 keypoints = torch.randn(num_instances, 17, 3) gt_keypoints = Keypoints(keypoints) # NOTE: currenlty supports faster/mask/keypoint RCNN instances = Instances( image_size=(10, 10), gt_boxes=gt_boxes, gt_classes=gt_classes, gt_masks=gt_masks, gt_keypoints=gt_keypoints, ) return { # `file_name` and `image_id` are not used, can be any value. "file_name": "fake_example_image.jpg", "image_id": 42, # `height` and `width` are used in post-processing to scale predictions back # to original size, not used during training. "height": 10, "width": 10, "image": image, "instances": instances, # NOTE: proposals are not supported } return [_get_batch(), _get_batch()] def _set_qconfig(model, cfg, is_qat): model.qconfig = set_backend_and_create_qconfig(cfg, is_train=is_qat) # skip quantization for point rend head if ( hasattr(model, "roi_heads") and hasattr(model.roi_heads, "mask_head") and isinstance(model.roi_heads.mask_head, PointRendMaskHead) ): model.roi_heads.mask_head.qconfig = None logger.info("Setup the model with qconfig:\n{}".format(model.qconfig)) @RCNN_PREPARE_FOR_QUANT_REGISTRY.register() def default_rcnn_prepare_for_quant(self, cfg): model = self _set_qconfig(model, cfg, model.training) # Modify the model for eager mode model = _apply_eager_mode_quant(cfg, model) model = fuse_utils.fuse_model( model, is_qat=cfg.QUANTIZATION.QAT.ENABLED, inplace=True, ) return model def default_rcnn_custom_prepare_fx(self, cfg, is_qat, example_input=None): model = self _set_qconfig(model, cfg, is_qat) # construct example input for FX when not provided if example_input is None: assert ( is_qat ), "Currently only (FX mode) QAT requires user-provided `example_input`" # make sure the image size can be divided by all strides and size_divisibility required_strides = [model.backbone.size_divisibility] + [ shape_spec.stride for shape_spec in model.backbone.output_shape().values() ] image_tensor_size = functools.reduce(_lcm, required_strides) example_input = _get_example_rcnn_input(image_tensor_size) _fx_quant_prepare(model, cfg, is_qat, example_input) def convert_fx_callback(model): return default_rcnn_custom_convert_fx(model, cfg) return model, convert_fx_callback def _fx_quant_prepare(self, cfg, is_qat, example_input): prep_fn = prepare_qat_fx if is_qat else prepare_fx qconfig = {"": self.qconfig} assert not isinstance(self.backbone, FPN), "FPN is not supported in FX mode" with EventStorage() as _: # D2's rcnn requires EventStorage when for loss with torch.no_grad(): fqn_to_example_inputs = get_fqn_to_example_inputs(self, (example_input,)) self.backbone = prep_fn( self.backbone, qconfig, fqn_to_example_inputs["backbone"], prepare_custom_config={ "preserved_attributes": ["size_divisibility", "padding_constraints"], # keep the output of backbone quantized, to avoid # redundant dequant # TODO: output of backbone is a dict and currently this will keep all output # quantized, when we fix the implementation of "output_quantized_idxs" # we'll need to change this "output_quantized_idxs": [0], }, ) self.proposal_generator.rpn_head.rpn_feature = prep_fn( self.proposal_generator.rpn_head.rpn_feature, qconfig, fqn_to_example_inputs["proposal_generator.rpn_head.rpn_feature"], prepare_custom_config={ # rpn_feature expecting quantized input, this is used to avoid redundant # quant "input_quantized_idxs": [0] }, ) self.proposal_generator.rpn_head.rpn_regressor.cls_logits = prep_fn( self.proposal_generator.rpn_head.rpn_regressor.cls_logits, qconfig, fqn_to_example_inputs["proposal_generator.rpn_head.rpn_regressor.cls_logits"], ) self.proposal_generator.rpn_head.rpn_regressor.bbox_pred = prep_fn( self.proposal_generator.rpn_head.rpn_regressor.bbox_pred, qconfig, fqn_to_example_inputs["proposal_generator.rpn_head.rpn_regressor.bbox_pred"], ) self.roi_heads.box_head.roi_box_conv = prep_fn( self.roi_heads.box_head.roi_box_conv, qconfig, fqn_to_example_inputs["roi_heads.box_head.roi_box_conv"], prepare_custom_config={ "output_quantized_idxs": [0], }, ) self.roi_heads.box_head.avgpool = prep_fn( self.roi_heads.box_head.avgpool, qconfig, (torch.randn(1, 3, 224, 224),), prepare_custom_config={ "input_quantized_idxs": [0], "output_quantized_idxs": [0], }, ) self.roi_heads.box_predictor.cls_score = prep_fn( self.roi_heads.box_predictor.cls_score, qconfig, fqn_to_example_inputs["roi_heads.box_predictor.cls_score"], prepare_custom_config={"input_quantized_idxs": [0]}, ) self.roi_heads.box_predictor.bbox_pred = prep_fn( self.roi_heads.box_predictor.bbox_pred, qconfig, fqn_to_example_inputs["roi_heads.box_predictor.bbox_pred"], prepare_custom_config={"input_quantized_idxs": [0]}, ) def default_rcnn_custom_convert_fx(self, cfg): assert not isinstance(self.backbone, FPN), "FPN is not supported in FX mode" self.backbone = convert_fx( self.backbone, convert_custom_config={ "preserved_attributes": ["size_divisibility", "padding_constraints"] }, ) self.proposal_generator.rpn_head.rpn_feature = convert_fx( self.proposal_generator.rpn_head.rpn_feature ) self.proposal_generator.rpn_head.rpn_regressor.cls_logits = convert_fx( self.proposal_generator.rpn_head.rpn_regressor.cls_logits ) self.proposal_generator.rpn_head.rpn_regressor.bbox_pred = convert_fx( self.proposal_generator.rpn_head.rpn_regressor.bbox_pred ) self.roi_heads.box_head.roi_box_conv = convert_fx( self.roi_heads.box_head.roi_box_conv ) self.roi_heads.box_head.avgpool = convert_fx(self.roi_heads.box_head.avgpool) self.roi_heads.box_predictor.cls_score = convert_fx( self.roi_heads.box_predictor.cls_score ) self.roi_heads.box_predictor.bbox_pred = convert_fx( self.roi_heads.box_predictor.bbox_pred ) return self class D2Caffe2MetaArchPreprocessFunc(object): def __init__(self, size_divisibility, device): self.size_divisibility = size_divisibility self.device = device def __call__(self, inputs): from detectron2.export.caffe2_modeling import ( convert_batched_inputs_to_c2_format, ) data, im_info = convert_batched_inputs_to_c2_format( inputs, self.size_divisibility, self.device ) return (data, im_info) @staticmethod def get_params(cfg, model): from caffe2.proto import caffe2_pb2 from detectron2.export.shared import get_pb_arg_vali, get_pb_arg_vals fake_predict_net = caffe2_pb2.NetDef() model.encode_additional_info(fake_predict_net, None) size_divisibility = get_pb_arg_vali(fake_predict_net, "size_divisibility", 0) device = get_pb_arg_vals(fake_predict_net, "device", b"cpu").decode("ascii") return { "size_divisibility": size_divisibility, "device": device, } class D2Caffe2MetaArchPostprocessFunc(object): def __init__(self, external_input, external_output, encoded_info): self.external_input = external_input self.external_output = external_output self.encoded_info = encoded_info def __call__(self, inputs, tensor_inputs, tensor_outputs): from caffe2.proto import caffe2_pb2 from detectron2.export.caffe2_modeling import META_ARCH_CAFFE2_EXPORT_TYPE_MAP from detectron2.export.shared import get_pb_arg_vals encoded_info = self.encoded_info.encode("ascii") fake_predict_net = caffe2_pb2.NetDef().FromString(encoded_info) meta_architecture = get_pb_arg_vals(fake_predict_net, "meta_architecture", None) meta_architecture = meta_architecture.decode("ascii") model_class = META_ARCH_CAFFE2_EXPORT_TYPE_MAP[meta_architecture] convert_outputs = model_class.get_outputs_converter(fake_predict_net, None) c2_inputs = tensor_inputs c2_results = dict(zip(self.external_output, tensor_outputs)) return convert_outputs(inputs, c2_inputs, c2_results) @staticmethod def get_params(cfg, model): from caffe2.proto import caffe2_pb2 # NOTE: the post processing has different values for different meta # architectures, here simply relying Caffe2 meta architecture to encode info # into a NetDef and storing it as whole. fake_predict_net = caffe2_pb2.NetDef() model.encode_additional_info(fake_predict_net, None) encoded_info = fake_predict_net.SerializeToString().decode("ascii") # HACK: Caffe2MetaArch's post processing requires the blob name of model output, # this information is missed for torchscript. There's no easy way to know this # unless using NamedTuple for tracing. external_input = ["data", "im_info"] if cfg.MODEL.META_ARCHITECTURE == "GeneralizedRCNN": external_output = ["bbox_nms", "score_nms", "class_nms"] if cfg.MODEL.MASK_ON: external_output.extend(["mask_fcn_probs"]) if cfg.MODEL.KEYPOINT_ON: if cfg.EXPORT_CAFFE2.USE_HEATMAP_MAX_KEYPOINT: external_output.extend(["keypoints_out"]) else: external_output.extend(["kps_score"]) else: raise NotImplementedError("") return { "external_input": external_input, "external_output": external_output, "encoded_info": encoded_info, } class D2RCNNInferenceWrapper(nn.Module): def __init__( self, model, do_postprocess=False, ): super().__init__() self.model = model self.do_postprocess = do_postprocess def forward(self, image): """ This function describes what happends during the tracing. Note that the output contains non-tensor, therefore the TracingAdaptedTorchscriptExport must be used in order to convert the output back from flattened tensors. """ if self.do_postprocess: inputs = [ { "image": image, # NOTE: the width/height is not available since the model takes a # single image tensor as input. Therefore even though post-process # is specified, the wrapped model doesn't resize the output to its # original width/height. # TODO: If this is needed, we might make the model take extra # width/height info like the C2-style inputs. } ] return self.model.forward(inputs)[0]["instances"] else: inputs = [{"image": image}] return self.model.inference(inputs, do_postprocess=False)[0] @staticmethod class Preprocess(object): """ This function describes how to covert orginal input (from the data loader) to the inputs used during the tracing (i.e. the inputs of forward function). """ def __call__(self, batch): assert len(batch) == 1, "only support single batch" return batch[0]["image"] class Postprocess(object): def __init__(self, detector_postprocess_done_in_model=False): """ Args: detector_postprocess_done_in_model (bool): whether `detector_postprocess` has already applied in the D2RCNNInferenceWrapper """ self.detector_postprocess_done_in_model = detector_postprocess_done_in_model def __call__(self, batch, inputs, outputs): """ This function describes how to run the predictor using exported model. Note that `tracing_adapter_wrapper` runs the traced model under the hood and behaves exactly the same as the forward function. """ assert len(batch) == 1, "only support single batch" width, height = batch[0]["width"], batch[0]["height"] if self.detector_postprocess_done_in_model: image_shape = batch[0]["image"].shape # chw if image_shape[1] != height or image_shape[2] != width: raise NotImplementedError( f"Image tensor (shape: {image_shape}) doesn't match the" f" input width ({width}) height ({height}). Since post-process" f" has been done inside the torchscript without width/height" f" information, can't recover the post-processed output to " f"orignail resolution." ) return [{"instances": outputs}] else: r = detector_postprocess(outputs, height, width) return [{"instances": r}] # TODO: model.to(device) might not work for detection meta-arch, this function is the # workaround, in general, we might need a meta-arch API for this if needed. def _cast_detection_model(model, device): # check model is an instance of one of the meta arch from detectron2.export.caffe2_modeling import Caffe2MetaArch if isinstance(model, Caffe2MetaArch): model._wrapped_model = _cast_detection_model(model._wrapped_model, device) return model assert isinstance(model, tuple(META_ARCH_REGISTRY._obj_map.values())) model.to(device) # cast normalizer separately if hasattr(model, "normalizer") and not ( hasattr(model, "pixel_mean") and hasattr(model, "pixel_std") ): pixel_mean = inspect.getclosurevars(model.normalizer).nonlocals["pixel_mean"] pixel_std = inspect.getclosurevars(model.normalizer).nonlocals["pixel_std"] pixel_mean = pixel_mean.to(device) pixel_std = pixel_std.to(device) model.normalizer = lambda x: (x - pixel_mean) / pixel_std return model def _update_export_config_with_extra_files(export_config, extra_files): export_config_dict = export_config._asdict() if export_config_dict["model_export_kwargs"] is None: export_config_dict["model_export_kwargs"] = {} export_config_dict["model_export_kwargs"]["_extra_files"] = extra_files return PredictorExportConfig(**export_config_dict) @RCNN_PREPARE_FOR_EXPORT_REGISTRY.register() def prepare_for_export_with_inference_config( self, cfg: CfgNode, inputs: Optional[Tuple[Any]], predictor_type: str ) -> PredictorExportConfig: """ For certain tasks, the exported model needs to encode config as part of the extra files. """ export_config = default_rcnn_prepare_for_export(self, cfg, inputs, predictor_type) # Add "inference_config.json" for the _extra_files as part of model_export_kwargs extra_files = {"inference_config.json": json.dumps(flatten_config_dict(cfg))} return _update_export_config_with_extra_files(export_config, extra_files)
d2go-main
d2go/modeling/meta_arch/rcnn.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from d2go.registry.builtin import META_ARCH_REGISTRY from detectron2.modeling import PanopticFPN as _PanopticFPN # Re-register D2's meta-arch in D2Go with updated APIs @META_ARCH_REGISTRY.register() class PanopticFPN(_PanopticFPN): def prepare_for_export(self, cfg, inputs, predictor_type): raise NotImplementedError
d2go-main
d2go/modeling/meta_arch/panoptic_fpn.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Populating registreis from d2go.modeling.meta_arch import ( # noqa fcos as _fcos, panoptic_fpn as _panoptic_fpn, rcnn as _rcnn, retinanet as _retinanet, semantic_seg as _semantic_seg, ) # @fb-only: from d2go.modeling.meta_arch import fb as _fb # isort:skip # noqa
d2go-main
d2go/modeling/meta_arch/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import torch.nn as nn from d2go.config import CfgNode as CN from d2go.export.api import PredictorExportConfig from d2go.modeling.meta_arch.rcnn import D2RCNNInferenceWrapper from d2go.quantization.qconfig import set_backend_and_create_qconfig from d2go.registry.builtin import META_ARCH_REGISTRY from detectron2.config import configurable from detectron2.layers.batch_norm import CycleBatchNormList from detectron2.modeling.backbone import build_backbone from detectron2.modeling.backbone.fpn import FPN from detectron2.modeling.meta_arch.fcos import FCOS as d2_FCOS, FCOSHead from detectron2.utils.registry import Registry from mobile_cv.arch.utils import fuse_utils from mobile_cv.arch.utils.quantize_utils import ( wrap_non_quant_group_norm, wrap_quant_subclass, ) from mobile_cv.predictor.api import FuncInfo logger = logging.getLogger(__name__) # Registry to store custom export logic FCOS_PREPARE_FOR_EXPORT_REGISTRY = Registry("FCOS_PREPARE_FOR_EXPORT") class FCOSInferenceWrapper(nn.Module): def __init__( self, model, ): super().__init__() self.model = model def forward(self, image): inputs = [{"image": image}] return self.model.forward(inputs)[0]["instances"] def add_fcos_configs(cfg): cfg.MODEL.FCOS = CN() # the number of foreground classes. cfg.MODEL.FCOS.NUM_CLASSES = 80 cfg.MODEL.FCOS.IN_FEATURES = ["p3", "p4", "p5", "p6", "p7"] cfg.MODEL.FCOS.NUM_CONVS = 4 cfg.MODEL.FCOS.HEAD_NORM = "GN" # inference parameters cfg.MODEL.FCOS.SCORE_THRESH_TEST = 0.04 cfg.MODEL.FCOS.TOPK_CANDIDATES_TEST = 1000 cfg.MODEL.FCOS.NMS_THRESH_TEST = 0.6 # Focal loss parameters cfg.MODEL.FCOS.FOCAL_LOSS_ALPHA = 0.25 cfg.MODEL.FCOS.FOCAL_LOSS_GAMMA = 2.0 # Export method cfg.FCOS_PREPARE_FOR_EXPORT = "default_fcos_prepare_for_export" # Re-register D2's meta-arch in D2Go with updated APIs @META_ARCH_REGISTRY.register() class FCOS(d2_FCOS): """ Implement config->argument translation for FCOS model. """ @configurable def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) @classmethod def from_config(cls, cfg): backbone = build_backbone(cfg) backbone_shape = backbone.output_shape() try: feature_shapes = [backbone_shape[f] for f in cfg.MODEL.FCOS.IN_FEATURES] except KeyError: raise KeyError( f"Available keys: {backbone_shape.keys()}. Requested keys: {cfg.MODEL.FCOS.IN_FEATURES}" ) head = FCOSHead( input_shape=feature_shapes, num_classes=cfg.MODEL.FCOS.NUM_CLASSES, conv_dims=[feature_shapes[0].channels] * cfg.MODEL.FCOS.NUM_CONVS, norm=cfg.MODEL.FCOS.HEAD_NORM, ) return { "backbone": backbone, "head": head, "pixel_mean": cfg.MODEL.PIXEL_MEAN, "pixel_std": cfg.MODEL.PIXEL_STD, "num_classes": cfg.MODEL.FCOS.NUM_CLASSES, "head_in_features": cfg.MODEL.FCOS.IN_FEATURES, # Loss parameters: "focal_loss_alpha": cfg.MODEL.FCOS.FOCAL_LOSS_ALPHA, "focal_loss_gamma": cfg.MODEL.FCOS.FOCAL_LOSS_GAMMA, # Inference parameters: "test_score_thresh": cfg.MODEL.FCOS.SCORE_THRESH_TEST, "test_topk_candidates": cfg.MODEL.FCOS.TOPK_CANDIDATES_TEST, "test_nms_thresh": cfg.MODEL.FCOS.NMS_THRESH_TEST, "max_detections_per_image": cfg.TEST.DETECTIONS_PER_IMAGE, } # HACK: default FCOS export shares the same prepare functions w/ RCNN under certain constrains def prepare_for_export(self, cfg, *args, **kwargs): func = FCOS_PREPARE_FOR_EXPORT_REGISTRY.get(cfg.FCOS_PREPARE_FOR_EXPORT) return func(self, cfg, *args, **kwargs) def prepare_for_quant(self, cfg, *args, **kwargs): """Wrap each quantized part of the model to insert Quant and DeQuant in-place""" model = self qconfig = set_backend_and_create_qconfig( cfg, is_train=cfg.QUANTIZATION.QAT.ENABLED ) logger.info("Setup the model with qconfig:\n{}".format(qconfig)) model.backbone.qconfig = qconfig model.head.qconfig = qconfig # Wrap the backbone based on the architecture type if isinstance(model.backbone, FPN): # Same trick in RCNN's _apply_eager_mode_quant model.backbone.bottom_up = wrap_quant_subclass( model.backbone.bottom_up, n_inputs=1, n_outputs=len(model.backbone.bottom_up._out_features), ) else: model.backbone = wrap_quant_subclass( model.backbone, n_inputs=1, n_outputs=len(model.backbone._out_features) ) def unpack_cyclebatchnormlist(module): # HACK: This function flattens CycleBatchNormList for quantization purpose if isinstance(module, CycleBatchNormList): if len(module) > 1: # TODO: add quantization support of CycleBatchNormList raise NotImplementedError( "CycleBatchNormList w/ more than one element cannot be quantized" ) else: num_channel = module.weight.size(0) new_module = nn.BatchNorm2d(num_channel, affine=True) new_module.weight = module.weight new_module.bias = module.bias new_module.running_mean = module[0].running_mean new_module.running_var = module[0].running_var module = new_module else: for name, child in module.named_children(): new_child = unpack_cyclebatchnormlist(child) if new_child is not child: module.add_module(name, new_child) return module model.head = unpack_cyclebatchnormlist(model.head) # Wrap the FCOS head model.head = wrap_quant_subclass( model.head, n_inputs=len(cfg.MODEL.FCOS.IN_FEATURES), n_outputs=len(cfg.MODEL.FCOS.IN_FEATURES) * 3, ) model = fuse_utils.fuse_model( model, is_qat=cfg.QUANTIZATION.QAT.ENABLED, inplace=True, ) model = wrap_non_quant_group_norm(model) return model @FCOS_PREPARE_FOR_EXPORT_REGISTRY.register() def default_fcos_prepare_for_export(self, cfg, inputs, predictor_type): pytorch_model = self preprocess_info = FuncInfo.gen_func_info( D2RCNNInferenceWrapper.Preprocess, params={} ) preprocess_func = preprocess_info.instantiate() return PredictorExportConfig( model=FCOSInferenceWrapper(pytorch_model), data_generator=lambda x: (preprocess_func(x),), model_export_method=predictor_type, preprocess_info=preprocess_info, postprocess_info=FuncInfo.gen_func_info( D2RCNNInferenceWrapper.Postprocess, params={"detector_postprocess_done_in_model": True}, ), )
d2go-main
d2go/modeling/meta_arch/fcos.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from d2go.registry.builtin import META_ARCH_REGISTRY from detectron2.modeling import RetinaNet as _RetinaNet # Re-register D2's meta-arch in D2Go with updated APIs @META_ARCH_REGISTRY.register() class RetinaNet(_RetinaNet): def prepare_for_export(self, cfg, inputs, predictor_type): raise NotImplementedError
d2go-main
d2go/modeling/meta_arch/retinanet.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from typing import Any, Dict, List import torch import torch.nn as nn from d2go.export.api import PredictorExportConfig from d2go.registry.builtin import META_ARCH_REGISTRY from detectron2.modeling import SemanticSegmentor as _SemanticSegmentor from detectron2.modeling.postprocessing import sem_seg_postprocess from detectron2.structures import ImageList from mobile_cv.predictor.api import FuncInfo # Re-register D2's meta-arch in D2Go with updated APIs @META_ARCH_REGISTRY.register() class SemanticSegmentor(_SemanticSegmentor): def prepare_for_export(self, cfg, inputs, predictor_type): preprocess_info = FuncInfo.gen_func_info( PreprocessFunc, params={ "size_divisibility": self.backbone.size_divisibility, "device": str(self.device), }, ) postprocess_info = FuncInfo.gen_func_info( PostprocessFunc, params={}, ) preprocess_func = preprocess_info.instantiate() return PredictorExportConfig( model=ModelWrapper(self), data_generator=lambda x: (preprocess_func(x),), preprocess_info=preprocess_info, postprocess_info=postprocess_info, ) class ModelWrapper(nn.Module): def __init__(self, segmentor): super().__init__() self.segmentor = segmentor def forward(self, x): x = (x - self.segmentor.pixel_mean) / self.segmentor.pixel_std features = self.segmentor.backbone(x) results, losses = self.segmentor.sem_seg_head(features, targets=None) return results class PreprocessFunc(object): """ A common preprocessing module for semantic segmentation models. """ def __init__(self, size_divisibility, device): self.size_divisibility = size_divisibility self.device = device def __call__(self, batched_inputs: List[Dict[str, Any]]) -> torch.Tensor: """ Retreive image tensor from dataloader batches. Args: batched_inputs: (List[Dict[str, Tensor]]): output from a D2Go train or test data loader. Returns: input images (torch.Tensor): ImageList-wrapped NCHW tensor (i.e. with padding and divisibility alignment) of batches' images. """ images = [x["image"].to(self.device) for x in batched_inputs] images = ImageList.from_tensors(images, self.size_divisibility) return images.tensor class PostprocessFunc(object): """ A common postprocessing module for semantic segmentation models. """ def __call__( self, batched_inputs: List[Dict[str, Any]], tensor_inputs: torch.Tensor, tensor_outputs: torch.Tensor, ) -> List[Dict[str, Any]]: """ Rescales sem_seg logits to original image input resolution, and packages the logits into D2Go's expected output format. Args: inputs (List[Dict[str, Tensor]]): batched inputs from the dataloader. tensor_inputs (Tensor): tensorized inputs, e.g. from `PreprocessFunc`. tensor_outputs (Tensor): sem seg logits tensor from the model to process. Returns: processed_results (List[Dict]): List of D2Go output dicts ready to be used downstream in an Evaluator, for export, etc. """ results = tensor_outputs # nchw processed_results = [] for result, input_per_image in zip(results, batched_inputs): height = input_per_image.get("height") width = input_per_image.get("width") image_tensor_shape = input_per_image["image"].shape image_size = (image_tensor_shape[1], image_tensor_shape[2]) # D2's sem_seg_postprocess rescales sem seg masks to the # provided original input resolution. r = sem_seg_postprocess(result, image_size, height, width) processed_results.append({"sem_seg": r}) return processed_results
d2go-main
d2go/modeling/meta_arch/semantic_seg.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import copy from d2go.modeling.modeldef.fbnet_modeldef_registry import FBNetV2ModelArch from d2go.registry.bootstrap import lazy_on_bootstrap from mobile_cv.arch.fbnet_v2.modeldef_utils import _ex, e1, e1p, e2, e3, e4, e6 def _mutated_tuple(tp, pos, value): tp_list = list(tp) tp_list[pos] = value return tuple(tp_list) @lazy_on_bootstrap def _repeat_last(stage, n=None): """ Repeat the last "layer" of given stage, i.e. a (op_type, c, s, n_repeat, ...) tuple, reset n_repeat if specified otherwise kept the original value. """ assert isinstance(stage, list) assert all(isinstance(x, tuple) for x in stage) last_layer = copy.deepcopy(stage[-1]) if n is not None: last_layer = _mutated_tuple(last_layer, 3, n) return last_layer _BASIC_ARGS = { # skil norm and activation for depthwise conv in IRF module, this make the # model easier to quantize. "dw_skip_bnrelu": True, # uncomment below (always_pw and bias) to match model definition of the # FBNetV1 builder. # "always_pw": True, # "bias": False, # temporarily disable zero_last_bn_gamma "zero_last_bn_gamma": False, } DEFAULT_STAGES = [ # NOTE: each stage is a list of (op_type, out_channels, stride, n_repeat, ...) # resolution stage 0, equivalent to 224->112 [("conv_k3", 32, 2, 1), ("ir_k3", 16, 1, 1, e1)], # resolution stage 1, equivalent to 112->56 [("ir_k3", 24, 2, 2, e6)], # resolution stage 2, equivalent to 56->28 [("ir_k3", 32, 2, 3, e6)], # resolution stage 3, equivalent to 28->14 [("ir_k3", 64, 2, 4, e6), ("ir_k3", 96, 1, 3, e6)], # resolution stage 4, equivalent to 14->7 [("ir_k3", 160, 2, 3, e6), ("ir_k3", 320, 1, 1, e6)], # final stage, equivalent to 7->1, ignored ] IRF_CFG = {"less_se_channels": False} FBNetV3_A_dsmask = [ [("conv_k3", 16, 2, 1), ("ir_k3", 16, 1, 1, {"expansion": 1}, IRF_CFG)], [ ("ir_k5", 32, 2, 1, {"expansion": 4}, IRF_CFG), ("ir_k5", 32, 1, 1, {"expansion": 2}, IRF_CFG), ], [ ("ir_k5", 40, 2, 1, {"expansion": 4}, IRF_CFG), ("ir_k3", 40, 1, 3, {"expansion": 3}, IRF_CFG), ], [ ("ir_k5", 72, 2, 1, {"expansion": 4}, IRF_CFG), ("ir_k3", 72, 1, 3, {"expansion": 3}, IRF_CFG), ("ir_k5", 112, 1, 1, {"expansion": 4}, IRF_CFG), ("ir_k5", 112, 1, 3, {"expansion": 4}, IRF_CFG), ], [ ("ir_k5", 184, 2, 1, {"expansion": 4}, IRF_CFG), ("ir_k3", 184, 1, 4, {"expansion": 4}, IRF_CFG), ("ir_k5", 200, 1, 1, {"expansion": 6}, IRF_CFG), ], ] FBNetV3_A_dsmask_tiny = [ [("conv_k3", 8, 2, 1), ("ir_k3", 8, 1, 1, {"expansion": 1}, IRF_CFG)], [ ("ir_k5", 16, 2, 1, {"expansion": 3}, IRF_CFG), ("ir_k5", 16, 1, 1, {"expansion": 2}, IRF_CFG), ], [ ("ir_k5", 24, 2, 1, {"expansion": 4}, IRF_CFG), ("ir_k3", 24, 1, 2, {"expansion": 3}, IRF_CFG), ], [ ("ir_k5", 40, 2, 1, {"expansion": 4}, IRF_CFG), ("ir_k3", 40, 1, 2, {"expansion": 3}, IRF_CFG), ("ir_k5", 64, 1, 1, {"expansion": 4}, IRF_CFG), ("ir_k5", 64, 1, 2, {"expansion": 3}, IRF_CFG), ], [ ("ir_k5", 92, 2, 1, {"expansion": 4}, IRF_CFG), ("ir_k3", 92, 1, 2, {"expansion": 4}, IRF_CFG), ("ir_k5", 92, 1, 1, {"expansion": 6}, IRF_CFG), ], ] FBNetV3_A = [ # FBNetV3 arch without hs [("conv_k3", 16, 2, 1), ("ir_k3", 16, 1, 2, {"expansion": 1}, IRF_CFG)], [ ("ir_k5", 24, 2, 1, {"expansion": 4}, IRF_CFG), ("ir_k5", 24, 1, 3, {"expansion": 3}, IRF_CFG), ], [ ("ir_k5_se", 32, 2, 1, {"expansion": 4}, IRF_CFG), ("ir_k3_se", 32, 1, 3, {"expansion": 3}, IRF_CFG), ], [ ("ir_k5", 64, 2, 1, {"expansion": 4}, IRF_CFG), ("ir_k3", 64, 1, 3, {"expansion": 3}, IRF_CFG), ("ir_k5_se", 112, 1, 1, {"expansion": 4}, IRF_CFG), ("ir_k5_se", 112, 1, 5, {"expansion": 3}, IRF_CFG), ], [ ("ir_k5_se", 184, 2, 1, {"expansion": 4}, IRF_CFG), ("ir_k3_se", 184, 1, 4, {"expansion": 4}, IRF_CFG), ("ir_k5_se", 200, 1, 1, {"expansion": 6}, IRF_CFG), ], ] FBNetV3_B = [ [("conv_k3", 16, 2, 1), ("ir_k3", 16, 1, 2, {"expansion": 1}, IRF_CFG)], [ ("ir_k5", 24, 2, 1, {"expansion": 4}, IRF_CFG), ("ir_k5", 24, 1, 3, {"expansion": 2}, IRF_CFG), ], [ ("ir_k5_se", 40, 2, 1, {"expansion": 5}, IRF_CFG), ("ir_k5_se", 40, 1, 4, {"expansion": 3}, IRF_CFG), ], [ ("ir_k5", 72, 2, 1, {"expansion": 5}, IRF_CFG), ("ir_k3", 72, 1, 4, {"expansion": 3}, IRF_CFG), ("ir_k3_se", 120, 1, 1, {"expansion": 5}, IRF_CFG), ("ir_k5_se", 120, 1, 5, {"expansion": 3}, IRF_CFG), ], [ ("ir_k3_se", 184, 2, 1, {"expansion": 6}, IRF_CFG), ("ir_k5_se", 184, 1, 5, {"expansion": 4}, IRF_CFG), ("ir_k5_se", 224, 1, 1, {"expansion": 6}, IRF_CFG), ], ] FBNetV3_C = [ [("conv_k3", 16, 2, 1), ("ir_k3", 16, 1, 2, {"expansion": 1}, IRF_CFG)], [ ("ir_k5", 24, 2, 1, {"expansion": 5}, IRF_CFG), ("ir_k3", 24, 1, 4, {"expansion": 3}, IRF_CFG), ], [ ("ir_k5_se", 48, 2, 1, {"expansion": 5}, IRF_CFG), ("ir_k5_se", 48, 1, 4, {"expansion": 2}, IRF_CFG), ], [ ("ir_k5", 88, 2, 1, {"expansion": 4}, IRF_CFG), ("ir_k3", 88, 1, 4, {"expansion": 3}, IRF_CFG), ("ir_k3_se", 120, 1, 1, {"expansion": 4}, IRF_CFG), ("ir_k5_se", 120, 1, 5, {"expansion": 3}, IRF_CFG), ], [ ("ir_k5_se", 216, 2, 1, {"expansion": 5}, IRF_CFG), ("ir_k5_se", 216, 1, 5, {"expansion": 5}, IRF_CFG), ("ir_k5_se", 216, 1, 1, {"expansion": 6}, IRF_CFG), ], ] FBNetV3_D = [ [("conv_k3", 24, 2, 1), ("ir_k3", 16, 1, 2, {"expansion": 1}, IRF_CFG)], [ ("ir_k3", 24, 2, 1, {"expansion": 5}, IRF_CFG), ("ir_k3", 24, 1, 5, {"expansion": 2}, IRF_CFG), ], [ ("ir_k5_se", 40, 2, 1, {"expansion": 4}, IRF_CFG), ("ir_k3_se", 40, 1, 4, {"expansion": 3}, IRF_CFG), ], [ ("ir_k3", 72, 2, 1, {"expansion": 5}, IRF_CFG), ("ir_k3", 72, 1, 4, {"expansion": 3}, IRF_CFG), ("ir_k3_se", 128, 1, 1, {"expansion": 5}, IRF_CFG), ("ir_k5_se", 128, 1, 6, {"expansion": 3}, IRF_CFG), ], [ ("ir_k3_se", 208, 2, 1, {"expansion": 6}, IRF_CFG), ("ir_k5_se", 208, 1, 5, {"expansion": 5}, IRF_CFG), ("ir_k5_se", 240, 1, 1, {"expansion": 6}, IRF_CFG), ], ] FBNetV3_E = [ [("conv_k3", 24, 2, 1), ("ir_k3", 16, 1, 3, {"expansion": 1}, IRF_CFG)], [ ("ir_k5", 24, 2, 1, {"expansion": 4}, IRF_CFG), ("ir_k5", 24, 1, 4, {"expansion": 2}, IRF_CFG), ], [ ("ir_k5_se", 48, 2, 1, {"expansion": 4}, IRF_CFG), ("ir_k5_se", 48, 1, 4, {"expansion": 3}, IRF_CFG), ], [ ("ir_k5", 80, 2, 1, {"expansion": 5}, IRF_CFG), ("ir_k3", 80, 1, 4, {"expansion": 3}, IRF_CFG), ("ir_k3_se", 128, 1, 1, {"expansion": 5}, IRF_CFG), ("ir_k5_se", 128, 1, 7, {"expansion": 3}, IRF_CFG), ], [ ("ir_k3_se", 216, 2, 1, {"expansion": 6}, IRF_CFG), ("ir_k5_se", 216, 1, 5, {"expansion": 5}, IRF_CFG), ("ir_k5_se", 240, 1, 1, {"expansion": 6}, IRF_CFG), ], ] FBNetV3_F = [ [("conv_k3", 24, 2, 1), ("ir_k3", 24, 1, 3, {"expansion": 1}, IRF_CFG)], [ ("ir_k5", 32, 2, 1, {"expansion": 4}, IRF_CFG), ("ir_k5", 32, 1, 4, {"expansion": 2}, IRF_CFG), ], [ ("ir_k5_se", 56, 2, 1, {"expansion": 4}, IRF_CFG), ("ir_k5_se", 56, 1, 4, {"expansion": 3}, IRF_CFG), ], [ ("ir_k5", 88, 2, 1, {"expansion": 5}, IRF_CFG), ("ir_k3", 88, 1, 4, {"expansion": 3}, IRF_CFG), ("ir_k3_se", 144, 1, 1, {"expansion": 5}, IRF_CFG), ("ir_k5_se", 144, 1, 8, {"expansion": 3}, IRF_CFG), ], [ ("ir_k3_se", 248, 2, 1, {"expansion": 6}, IRF_CFG), ("ir_k5_se", 248, 1, 6, {"expansion": 5}, IRF_CFG), ("ir_k5_se", 272, 1, 1, {"expansion": 6}, IRF_CFG), ], ] FBNetV3_G = [ [("conv_k3", 32, 2, 1), ("ir_k3", 24, 1, 3, {"expansion": 1}, IRF_CFG)], [ ("ir_k5", 40, 2, 1, {"expansion": 4}, IRF_CFG), ("ir_k5", 40, 1, 4, {"expansion": 2}, IRF_CFG), ], [ ("ir_k5_se", 56, 2, 1, {"expansion": 4}, IRF_CFG), ("ir_k5_se", 56, 1, 4, {"expansion": 3}, IRF_CFG), ], [ ("ir_k5", 104, 2, 1, {"expansion": 5}, IRF_CFG), ("ir_k3", 104, 1, 4, {"expansion": 3}, IRF_CFG), ("ir_k3_se", 160, 1, 1, {"expansion": 5}, IRF_CFG), ("ir_k5_se", 160, 1, 8, {"expansion": 3}, IRF_CFG), ], [ ("ir_k3_se", 264, 2, 1, {"expansion": 6}, IRF_CFG), ("ir_k5_se", 264, 1, 6, {"expansion": 5}, IRF_CFG), ("ir_k5_se", 288, 1, 2, {"expansion": 6}, IRF_CFG), ], ] FBNetV3_H = [ [("conv_k3", 48, 2, 1), ("ir_k3", 32, 1, 4, {"expansion": 1}, IRF_CFG)], [ ("ir_k5", 64, 2, 1, {"expansion": 4}, IRF_CFG), ("ir_k5", 64, 1, 6, {"expansion": 2}, IRF_CFG), ], [ ("ir_k5_se", 80, 2, 1, {"expansion": 4}, IRF_CFG), ("ir_k5_se", 80, 1, 6, {"expansion": 3}, IRF_CFG), ], [ ("ir_k5", 160, 2, 1, {"expansion": 5}, IRF_CFG), ("ir_k3", 160, 1, 6, {"expansion": 3}, IRF_CFG), ("ir_k3_se", 240, 1, 1, {"expansion": 5}, IRF_CFG), ("ir_k5_se", 240, 1, 12, {"expansion": 3}, IRF_CFG), ], [ ("ir_k3_se", 400, 2, 1, {"expansion": 6}, IRF_CFG), ("ir_k5_se", 400, 1, 8, {"expansion": 5}, IRF_CFG), ("ir_k5_se", 480, 1, 3, {"expansion": 6}, IRF_CFG), ], ] FBNetV3_A_no_se = [ # FBNetV3 without hs and SE (SE is not quantization friendly) [("conv_k3", 16, 2, 1), ("ir_k3", 16, 1, 2, {"expansion": 1}, IRF_CFG)], [ ("ir_k5", 24, 2, 1, {"expansion": 4}, IRF_CFG), ("ir_k5", 24, 1, 3, {"expansion": 3}, IRF_CFG), ], [ ("ir_k5", 32, 2, 1, {"expansion": 4}, IRF_CFG), ("ir_k3", 32, 1, 3, {"expansion": 3}, IRF_CFG), ], [ ("ir_k5", 64, 2, 1, {"expansion": 4}, IRF_CFG), ("ir_k3", 64, 1, 3, {"expansion": 3}, IRF_CFG), ("ir_k5", 112, 1, 1, {"expansion": 4}, IRF_CFG), ("ir_k5", 112, 1, 5, {"expansion": 3}, IRF_CFG), ], [ ("ir_k5", 184, 2, 1, {"expansion": 4}, IRF_CFG), ("ir_k3", 184, 1, 4, {"expansion": 4}, IRF_CFG), ("ir_k5", 200, 1, 1, {"expansion": 6}, IRF_CFG), ], ] FBNetV3_B_no_se = [ [("conv_k3", 16, 2, 1), ("ir_k3", 16, 1, 2, {"expansion": 1}, IRF_CFG)], [ ("ir_k5", 24, 2, 1, {"expansion": 4}, IRF_CFG), ("ir_k5", 24, 1, 3, {"expansion": 2}, IRF_CFG), ], [ ("ir_k5", 40, 2, 1, {"expansion": 5}, IRF_CFG), ("ir_k5", 40, 1, 4, {"expansion": 3}, IRF_CFG), ], [ ("ir_k5", 72, 2, 1, {"expansion": 5}, IRF_CFG), ("ir_k3", 72, 1, 4, {"expansion": 3}, IRF_CFG), ("ir_k3", 120, 1, 1, {"expansion": 5}, IRF_CFG), ("ir_k5", 120, 1, 5, {"expansion": 3}, IRF_CFG), ], [ ("ir_k3", 184, 2, 1, {"expansion": 6}, IRF_CFG), ("ir_k5", 184, 1, 5, {"expansion": 4}, IRF_CFG), ("ir_k5", 224, 1, 1, {"expansion": 6}, IRF_CFG), ], ] # FBNetV3_B model, a lighter version for real-time inference FBNetV3_B_light_no_se = [ [("conv_k3", 16, 2, 1), ("ir_k3", 16, 1, 2, {"expansion": 1}, IRF_CFG)], [ ("ir_k5", 24, 2, 1, {"expansion": 4}, IRF_CFG), ("ir_k5", 24, 1, 2, {"expansion": 2}, IRF_CFG), ], [ ("ir_k5", 40, 2, 1, {"expansion": 5}, IRF_CFG), ("ir_k5", 40, 1, 3, {"expansion": 3}, IRF_CFG), ], [ ("ir_k5", 72, 2, 1, {"expansion": 5}, IRF_CFG), ("ir_k3", 72, 1, 4, {"expansion": 3}, IRF_CFG), ("ir_k3", 120, 1, 1, {"expansion": 5}, IRF_CFG), ("ir_k5", 120, 1, 5, {"expansion": 3}, IRF_CFG), ], [ ("ir_k3", 184, 2, 1, {"expansion": 6}, IRF_CFG), ("ir_k5", 184, 1, 5, {"expansion": 4}, IRF_CFG), ("ir_k5", 224, 1, 1, {"expansion": 6}, IRF_CFG), ], ] LARGE_BOX_HEAD_STAGES = [ [("ir_k3", 160, 2, 1, e4), ("ir_k3", 160, 1, 2, e6), ("ir_k3", 240, 1, 1, e6)], ] SMALL_BOX_HEAD_STAGES = [ [("ir_k3", 128, 2, 1, e4), ("ir_k3", 128, 1, 2, e6), ("ir_k3", 160, 1, 1, e6)], ] TINY_BOX_HEAD_STAGES = [ [("ir_k3", 64, 2, 1, e4), ("ir_k3", 64, 1, 2, e4), ("ir_k3", 80, 1, 1, e4)], ] LARGE_UPSAMPLE_HEAD_STAGES = [ [("ir_k3", 160, 1, 1, e4), ("ir_k3", 160, 1, 3, e6), ("ir_k3", 80, -2, 1, e3)], ] LARGE_UPSAMPLE_HEAD_D21_STAGES = [ [("ir_k3", 192, 1, 1, e4), ("ir_k3", 192, 1, 5, e3), ("ir_k3", 96, -2, 1, e3)], ] SMALL_UPSAMPLE_HEAD_STAGES = [ [("ir_k3", 128, 1, 1, e4), ("ir_k3", 128, 1, 3, e6), ("ir_k3", 64, -2, 1, e3)], ] # NOTE: Compared with SMALL_UPSAMPLE_HEAD_STAGES, this does one more down-sample # in the first "layer" and then up-sample twice SMALL_DS_UPSAMPLE_HEAD_STAGES = [ [ ("ir_k3", 128, 2, 1, e4), ("ir_k3", 128, 1, 2, e6), ("ir_k3", 128, -2, 1, e6), ("ir_k3", 64, -2, 1, e3), ], # noqa ] TINY_DS_UPSAMPLE_HEAD_STAGES = [ [ ("ir_k3", 64, 2, 1, e4), ("ir_k3", 64, 1, 2, e4), ("ir_k3", 64, -2, 1, e4), ("ir_k3", 40, -2, 1, e3), ], # noqa ] FPN_UPSAMPLE_HEAD_STAGES = [ [("ir_k3", 96, 1, 1, e6), ("ir_k3", 160, 1, 3, e6), ("ir_k3", 80, -2, 1, e3)], ] MODEL_ARCH_BUILTIN = { "default": { "trunk": DEFAULT_STAGES[0:4], "rpn": [[_repeat_last(DEFAULT_STAGES[3])]], "bbox": LARGE_BOX_HEAD_STAGES, "mask": LARGE_UPSAMPLE_HEAD_STAGES, "kpts": LARGE_UPSAMPLE_HEAD_STAGES, "basic_args": _BASIC_ARGS, }, "default_dsmask": { "trunk": DEFAULT_STAGES[0:4], "rpn": [[_repeat_last(DEFAULT_STAGES[3])]], "bbox": SMALL_BOX_HEAD_STAGES, "mask": SMALL_DS_UPSAMPLE_HEAD_STAGES, "kpts": SMALL_DS_UPSAMPLE_HEAD_STAGES, "basic_args": _BASIC_ARGS, }, "FBNetV3_A": { "trunk": FBNetV3_A[0:4], "rpn": [[_repeat_last(FBNetV3_A[3])]], "bbox": [FBNetV3_A[4]], "mask": SMALL_DS_UPSAMPLE_HEAD_STAGES, "basic_args": _BASIC_ARGS, }, "FBNetV3_A_C5": { "trunk": FBNetV3_A[0:5], "rpn": [[_repeat_last(FBNetV3_A[3])]], "bbox": [FBNetV3_A[4]], "mask": SMALL_DS_UPSAMPLE_HEAD_STAGES, "basic_args": _BASIC_ARGS, }, "FBNetV3_B": { "trunk": FBNetV3_B[0:4], "rpn": [[_repeat_last(FBNetV3_B[3])]], "bbox": [FBNetV3_B[4]], "basic_args": _BASIC_ARGS, }, "FBNetV3_B_C5": { "trunk": FBNetV3_B[0:5], "rpn": [[_repeat_last(FBNetV3_B[3])]], "bbox": [FBNetV3_B[4]], "basic_args": _BASIC_ARGS, }, "FBNetV3_C": { "trunk": FBNetV3_C[0:4], "rpn": [[_repeat_last(FBNetV3_C[3])]], "bbox": [FBNetV3_C[4]], "basic_args": _BASIC_ARGS, }, "FBNetV3_C_C5": { "trunk": FBNetV3_C[0:5], "rpn": [[_repeat_last(FBNetV3_C[3])]], "bbox": [FBNetV3_C[4]], "basic_args": _BASIC_ARGS, }, "FBNetV3_D": { "trunk": FBNetV3_D[0:4], "rpn": [[_repeat_last(FBNetV3_D[3])]], "bbox": [FBNetV3_D[4]], "basic_args": _BASIC_ARGS, }, "FBNetV3_E": { "trunk": FBNetV3_E[0:4], "rpn": [[_repeat_last(FBNetV3_E[3])]], "bbox": [FBNetV3_E[4]], "basic_args": _BASIC_ARGS, }, "FBNetV3_F": { "trunk": FBNetV3_F[0:4], "rpn": [[_repeat_last(FBNetV3_F[3])]], "bbox": [FBNetV3_F[4]], "basic_args": _BASIC_ARGS, }, "FBNetV3_F_C5": { "trunk": FBNetV3_F[0:5], "rpn": [[_repeat_last(FBNetV3_F[3])]], "bbox": [FBNetV3_F[4]], "basic_args": _BASIC_ARGS, }, "FBNetV3_G": { "trunk": FBNetV3_G[0:4], "rpn": [[_repeat_last(FBNetV3_G[3])]], "bbox": [FBNetV3_G[4]], "mask": LARGE_UPSAMPLE_HEAD_STAGES, "kpts": LARGE_UPSAMPLE_HEAD_D21_STAGES, "basic_args": _BASIC_ARGS, }, "FBNetV3_G_C5": { "trunk": FBNetV3_G[0:5], "rpn": [[_repeat_last(FBNetV3_G[3])]], "bbox": [FBNetV3_G[4]], "mask": LARGE_UPSAMPLE_HEAD_STAGES, "kpts": LARGE_UPSAMPLE_HEAD_D21_STAGES, "basic_args": _BASIC_ARGS, }, "FBNetV3_H": { "trunk": FBNetV3_H[0:4], "rpn": [[_repeat_last(FBNetV3_H[3])]], "bbox": [FBNetV3_H[4]], "basic_args": _BASIC_ARGS, }, "FBNetV3_A_dsmask_C5": { "trunk": FBNetV3_A_dsmask, "rpn": [[_repeat_last(FBNetV3_A_dsmask[3])]], "bbox": SMALL_BOX_HEAD_STAGES, "mask": SMALL_DS_UPSAMPLE_HEAD_STAGES, "kpts": SMALL_DS_UPSAMPLE_HEAD_STAGES, "basic_args": _BASIC_ARGS, }, "FBNetV3_A_dsmask": { "trunk": FBNetV3_A_dsmask[0:4], "rpn": [[_repeat_last(FBNetV3_A_dsmask[3])]], "bbox": SMALL_BOX_HEAD_STAGES, "mask": SMALL_DS_UPSAMPLE_HEAD_STAGES, "kpts": SMALL_DS_UPSAMPLE_HEAD_STAGES, "basic_args": _BASIC_ARGS, }, "FBNetV3_A_dsmask_tiny": { "trunk": FBNetV3_A_dsmask_tiny[0:4], "rpn": [[_repeat_last(FBNetV3_A_dsmask_tiny[3])]], "bbox": TINY_BOX_HEAD_STAGES, "mask": TINY_DS_UPSAMPLE_HEAD_STAGES, "kpts": TINY_DS_UPSAMPLE_HEAD_STAGES, "basic_args": _BASIC_ARGS, }, "FBNetV3_B_light_large": { "trunk": FBNetV3_B_light_no_se[0:4], "rpn": [[_repeat_last(FBNetV3_B_light_no_se[3])]], "bbox": SMALL_BOX_HEAD_STAGES, "mask": SMALL_DS_UPSAMPLE_HEAD_STAGES, "kpts": LARGE_UPSAMPLE_HEAD_D21_STAGES, "basic_args": _BASIC_ARGS, }, "FBNetV3_B_light_no_se_C5": { "trunk": FBNetV3_B_light_no_se[0:5], "rpn": [[_repeat_last(FBNetV3_B_light_no_se[3])]], "bbox": [FBNetV3_B_light_no_se[4]], "basic_args": _BASIC_ARGS, }, "FBNetV3_G_fpn": { "trunk": FBNetV3_G[0:5], # FPN uses all 5 stages "rpn": [[_repeat_last(FBNetV3_G[3], n=1)]], "bbox": [FBNetV3_G[4]], "mask": FPN_UPSAMPLE_HEAD_STAGES, "kpts": LARGE_UPSAMPLE_HEAD_D21_STAGES, "basic_args": _BASIC_ARGS, }, } FBNetV2ModelArch.add_archs(MODEL_ARCH_BUILTIN)
d2go-main
d2go/modeling/modeldef/modeldef.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ This is the centralized place to define modeldef for all projects under D2Go. """ # Populating registreis from d2go.modeling.modeldef import modeldef as _modeldef # noqa # @fb-only: from d2go.modeling.modeldef import fb as _fb # isort:skip # noqa
d2go-main
d2go/modeling/modeldef/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import copy class FBNetV2ModelArch(object): _MODEL_ARCH = {} @staticmethod def add(name, arch): assert ( name not in FBNetV2ModelArch._MODEL_ARCH ), "Arch name '{}' is already existed".format(name) FBNetV2ModelArch._MODEL_ARCH[name] = arch @staticmethod def add_archs(archs): for name, arch in archs.items(): FBNetV2ModelArch.add(name, arch) @staticmethod def get(name): return copy.deepcopy(FBNetV2ModelArch._MODEL_ARCH[name])
d2go-main
d2go/modeling/modeldef/fbnet_modeldef_registry.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Populating registreis from d2go.modeling.backbone import fbnet_v2 as _fbnet_v2 # noqa # @fb-only: from d2go.modeling.backbone import fb as _fb # isort:skip # noqa
d2go-main
d2go/modeling/backbone/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import copy import itertools import logging from typing import List import torch import torch.nn as nn from d2go.modeling.backbone.modules import ( KeypointRCNNConvUpsamplePredictorNoUpscale, KeypointRCNNIRFPredictorNoUpscale, KeypointRCNNPredictor, KeypointRCNNPredictorNoUpscale, MaskRCNNConv1x1Predictor, RPNHeadConvRegressor, ) from d2go.modeling.modeldef.fbnet_modeldef_registry import FBNetV2ModelArch from detectron2.layers import ShapeSpec from detectron2.modeling import ( Backbone, BACKBONE_REGISTRY, build_anchor_generator, RPN_HEAD_REGISTRY, ) from detectron2.modeling.backbone.fpn import FPN, LastLevelMaxPool, LastLevelP6P7 from detectron2.modeling.roi_heads import box_head, keypoint_head, mask_head from detectron2.utils.logger import log_first_n from mobile_cv.arch.fbnet_v2 import fbnet_builder as mbuilder from mobile_cv.arch.utils.helper import format_dict_expanding_list_values logger = logging.getLogger(__name__) FBNET_BUILDER_IDENTIFIER = "fbnetv2" def _get_builder_norm_args(cfg): norm_name = cfg.MODEL.FBNET_V2.NORM norm_args = {"name": norm_name} assert all(isinstance(x, dict) for x in cfg.MODEL.FBNET_V2.NORM_ARGS) for dic in cfg.MODEL.FBNET_V2.NORM_ARGS: norm_args.update(dic) return norm_args def _merge_fbnetv2_arch_def(cfg): arch_def = {} assert all( isinstance(x, dict) for x in cfg.MODEL.FBNET_V2.ARCH_DEF ), cfg.MODEL.FBNET_V2.ARCH_DEF for dic in cfg.MODEL.FBNET_V2.ARCH_DEF: arch_def.update(dic) return arch_def def _parse_arch_def(cfg): arch = cfg.MODEL.FBNET_V2.ARCH arch_def = cfg.MODEL.FBNET_V2.ARCH_DEF assert (arch != "" and not arch_def) ^ ( not arch and arch_def != [] ), "Only allow one unset node between MODEL.FBNET_V2.ARCH ({}) and MODEL.FBNET_V2.ARCH_DEF ({})".format( arch, arch_def ) arch_def = FBNetV2ModelArch.get(arch) if arch else _merge_fbnetv2_arch_def(cfg) # NOTE: arch_def is a dictionary describing the CNN architecture for creating # the detection model. It can describe a wide range of models including the # original FBNet. Each key-value pair expresses either a sub part of the model # like trunk or head, or stores other meta information. message = 'Using un-unified arch_def for ARCH "{}" (without scaling):\n{}'.format( arch, format_dict_expanding_list_values(arch_def) ) log_first_n(logging.INFO, message, n=1, key="message") return arch_def def _get_fbnet_builder_and_arch_def(cfg): arch_def = _parse_arch_def(cfg) # NOTE: one can store extra information in arch_def to configurate FBNetBuilder, # after this point, builder and arch_def will become independent. basic_args = arch_def.pop("basic_args", {}) builder = mbuilder.FBNetBuilder( width_ratio=cfg.MODEL.FBNET_V2.SCALE_FACTOR, width_divisor=cfg.MODEL.FBNET_V2.WIDTH_DIVISOR, bn_args=_get_builder_norm_args(cfg), ) builder.add_basic_args(**basic_args) return builder, arch_def def _get_stride_per_stage(blocks): """ Count the accummulated stride per stage given a list of blocks. The mbuilder provides API for counting per-block accumulated stride, this function leverages it to count per-stage accumulated stride. Input: a list of blocks from the unified arch_def. Note that the stage_idx must be contiguous (not necessarily starting from 0), and can be non-ascending (not tested). Output: a list of accumulated stride per stage, starting from lowest stage_idx. """ stride_per_block = mbuilder.count_stride_each_block(blocks) assert len(stride_per_block) == len(blocks) stage_idx_set = {s["stage_idx"] for s in blocks} # assume stage idx are contiguous, eg. 1, 2, 3, ... assert max(stage_idx_set) - min(stage_idx_set) + 1 == len(stage_idx_set) start_stage_id = min(stage_idx_set) ids_per_stage = [ [i for i, s in enumerate(blocks) if s["stage_idx"] == stage_idx] for stage_idx in range(start_stage_id, start_stage_id + len(stage_idx_set)) ] # eg. [[0], [1, 2], [3, 4, 5, 6], ...] block_stride_per_stage = [ [stride_per_block[i] for i in ids] for ids in ids_per_stage ] # eg. [[1], [2, 1], [2, 1, 1, 1], ...] stride_per_stage = [ list(itertools.accumulate(s, lambda x, y: x * y))[-1] for s in block_stride_per_stage ] # eg. [1, 2, 2, ...] accum_stride_per_stage = list( itertools.accumulate(stride_per_stage, lambda x, y: x * y) ) # eg. [first*1, first*2, first*4, ...] assert accum_stride_per_stage[-1] == mbuilder.count_strides(blocks) return accum_stride_per_stage def fbnet_identifier_checker(func): """Can be used to decorate _load_from_state_dict""" def wrapper(self, state_dict, prefix, *args, **kwargs): possible_keys = [k for k in state_dict.keys() if k.startswith(prefix)] if not all(FBNET_BUILDER_IDENTIFIER in k for k in possible_keys): logger.warning( "Couldn't match FBNetV2 pattern given prefix {}, possible keys: \n{}".format( prefix, "\n".join(possible_keys) ) ) if any("xif" in k for k in possible_keys): raise RuntimeError( "Seems a FBNetV1 trained checkpoint is loaded by FBNetV2 model," " which is not supported. Please consider re-train your model" " using the same setup as before (it will be FBNetV2). If you" " need to run the old FBNetV1 models, those configs can be" " still found, see D19477651 as example." ) return func(self, state_dict, prefix, *args, **kwargs) return wrapper # pyre-fixme[11]: Annotation `Sequential` is not defined as a type. class FBNetModule(nn.Sequential): @fbnet_identifier_checker def _load_from_state_dict(self, *args, **kwargs): return super()._load_from_state_dict(*args, **kwargs) def build_fbnet(cfg, name, in_channels): """ Create a FBNet module using FBNet V2 builder. Args: cfg (CfgNode): the config that contains MODEL.FBNET_V2. name (str): the key in arch_def that represents a subpart of network in_channels (int): input channel size Returns: nn.Sequential: the first return is a nn.Sequential, each element corresponds a stage in arch_def. List[ShapeSpec]: the second return is a list of ShapeSpec containing the output channels and accumulated strides for that stage. """ builder, raw_arch_def = _get_fbnet_builder_and_arch_def(cfg) # Reset the last_depth for this builder (might have been cached), this is # the only mutable member variable. builder.last_depth = in_channels # NOTE: Each sub part of the model consists of several stages and each stage # has several blocks. "Raw" arch_def (Dict[str, List[List[Tuple]]]) uses a # list of stages to describe the architecture, which is more compact and # thus written as builtin metadata (inside FBNetV2ModelArch) or config # (MODEL.FBNET_V2.ARCH_DEF). "Unified" arch_def (Dict[str, List[Dict]]) # uses a list blocks from all stages instead, which is recognized by builder. arch_def = mbuilder.unify_arch_def(raw_arch_def, [name]) arch_def = {name: arch_def[name]} logger.info( "Build FBNet using unified arch_def:\n{}".format( format_dict_expanding_list_values(arch_def) ) ) arch_def_blocks = arch_def[name] stages = [] trunk_stride_per_stage = _get_stride_per_stage(arch_def_blocks) shape_spec_per_stage = [] for i, stride_i in enumerate(trunk_stride_per_stage): stages.append( builder.build_blocks( arch_def_blocks, stage_indices=[i], prefix_name=FBNET_BUILDER_IDENTIFIER + "_", ) ) shape_spec_per_stage.append( ShapeSpec( channels=builder.last_depth, stride=stride_i, ) ) return FBNetModule(*stages), shape_spec_per_stage class FBNetV2Backbone(Backbone): """ Backbone (bottom-up) for FBNet. Hierarchy: trunk0: xif0_0 xif0_1 ... trunk1: xif1_0 xif1_1 ... ... Output features: The outputs from each "stage", i.e. trunkX. """ def __init__(self, cfg): super(FBNetV2Backbone, self).__init__() stages, shape_specs = build_fbnet( cfg, name="trunk", in_channels=cfg.MODEL.FBNET_V2.STEM_IN_CHANNELS ) self._trunk_stage_names = [] self._trunk_stages = [] self._out_feature_channels = {} self._out_feature_strides = {} for i, (stage, shape_spec) in enumerate(zip(stages, shape_specs)): name = "trunk{}".format(i) self.add_module(name, stage) self._trunk_stage_names.append(name) self._trunk_stages.append(stage) self._out_feature_channels[name] = shape_spec.channels self._out_feature_strides[name] = shape_spec.stride # returned features are the final output of each stage self._out_features = self._trunk_stage_names self._trunk_stage_names = tuple(self._trunk_stage_names) def __prepare_scriptable__(self): ret = copy.deepcopy(self) ret._trunk_stages = nn.ModuleList(ret._trunk_stages) for k in self._trunk_stage_names: delattr(ret, k) return ret @fbnet_identifier_checker def _load_from_state_dict(self, *args, **kwargs): return super()._load_from_state_dict(*args, **kwargs) # return features for each stage def forward(self, x): features = {} for name, stage in zip(self._trunk_stage_names, self._trunk_stages): x = stage(x) features[name] = x return features class FBNetV2FPN(FPN): """ FPN module for FBNet. """ pass def build_fbnet_backbone(cfg): return FBNetV2Backbone(cfg) @BACKBONE_REGISTRY.register() class FBNetV2C4Backbone(Backbone): def __init__(self, cfg, _): super(FBNetV2C4Backbone, self).__init__() self.body = build_fbnet_backbone(cfg) self._out_features = self.body._out_features self._out_feature_strides = self.body._out_feature_strides self._out_feature_channels = self.body._out_feature_channels def forward(self, x): return self.body(x) @BACKBONE_REGISTRY.register() def FBNetV2FpnBackbone(cfg, _): backbone = FBNetV2FPN( bottom_up=build_fbnet_backbone(cfg), in_features=cfg.MODEL.FPN.IN_FEATURES, out_channels=cfg.MODEL.FPN.OUT_CHANNELS, norm=cfg.MODEL.FPN.NORM, top_block=LastLevelMaxPool(), ) return backbone @BACKBONE_REGISTRY.register() def FBNetV2RetinaNetBackbone(cfg, _): bottom_up = build_fbnet_backbone(cfg) in_channels_p6p7 = bottom_up.output_shape()[cfg.MODEL.FPN.IN_FEATURES[-1]].channels top_block = LastLevelP6P7(in_channels_p6p7, cfg.MODEL.FPN.OUT_CHANNELS) top_block.in_feature = cfg.MODEL.FPN.IN_FEATURES[-1] backbone = FBNetV2FPN( bottom_up=bottom_up, in_features=cfg.MODEL.FPN.IN_FEATURES, out_channels=cfg.MODEL.FPN.OUT_CHANNELS, norm=cfg.MODEL.FPN.NORM, top_block=top_block, ) return backbone @RPN_HEAD_REGISTRY.register() class FBNetV2RpnHead(nn.Module): def __init__(self, cfg, input_shape: List[ShapeSpec]): super(FBNetV2RpnHead, self).__init__() in_channels = [x.channels for x in input_shape] assert len(set(in_channels)) == 1 in_channels = in_channels[0] anchor_generator = build_anchor_generator(cfg, input_shape) num_cell_anchors = anchor_generator.num_cell_anchors box_dim = anchor_generator.box_dim assert len(set(num_cell_anchors)) == 1 num_cell_anchors = num_cell_anchors[0] self.rpn_feature, shape_specs = build_fbnet( cfg, name="rpn", in_channels=in_channels ) self.rpn_regressor = RPNHeadConvRegressor( in_channels=shape_specs[-1].channels, num_anchors=num_cell_anchors, box_dim=box_dim, ) def forward(self, x: List[torch.Tensor]): x = [self.rpn_feature(y) for y in x] return self.rpn_regressor(x) @box_head.ROI_BOX_HEAD_REGISTRY.register() class FBNetV2RoIBoxHead(nn.Module): def __init__(self, cfg, input_shape: ShapeSpec): super(FBNetV2RoIBoxHead, self).__init__() self.roi_box_conv, shape_specs = build_fbnet( cfg, name="bbox", in_channels=input_shape.channels ) self._out_channels = shape_specs[-1].channels self.avgpool = nn.AdaptiveAvgPool2d(1) def forward(self, x): x = self.roi_box_conv(x) if len(x.shape) == 4 and (x.shape[2] > 1 or x.shape[3] > 1): x = self.avgpool(x) return x @property @torch.jit.unused def output_shape(self): return ShapeSpec(channels=self._out_channels) @keypoint_head.ROI_KEYPOINT_HEAD_REGISTRY.register() class FBNetV2RoIKeypointHead(keypoint_head.BaseKeypointRCNNHead): def __init__(self, cfg, input_shape: ShapeSpec): super(FBNetV2RoIKeypointHead, self).__init__( cfg=cfg, input_shape=input_shape, ) self.feature_extractor, shape_specs = build_fbnet( cfg, name="kpts", in_channels=input_shape.channels ) self.predictor = KeypointRCNNPredictor( in_channels=shape_specs[-1].channels, num_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.NUM_KEYPOINTS, ) def layers(self, x): x = self.feature_extractor(x) x = self.predictor(x) return x @keypoint_head.ROI_KEYPOINT_HEAD_REGISTRY.register() class FBNetV2RoIKeypointHeadKRCNNPredictorNoUpscale(keypoint_head.BaseKeypointRCNNHead): def __init__(self, cfg, input_shape: ShapeSpec): super(FBNetV2RoIKeypointHeadKRCNNPredictorNoUpscale, self).__init__( cfg=cfg, input_shape=input_shape, ) self.feature_extractor, shape_specs = build_fbnet( cfg, name="kpts", in_channels=input_shape.channels, ) self.predictor = KeypointRCNNPredictorNoUpscale( in_channels=shape_specs[-1].channels, num_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.NUM_KEYPOINTS, ) def layers(self, x): x = self.feature_extractor(x) x = self.predictor(x) return x @keypoint_head.ROI_KEYPOINT_HEAD_REGISTRY.register() class FBNetV2RoIKeypointHeadKPRCNNIRFPredictorNoUpscale( keypoint_head.BaseKeypointRCNNHead, ): def __init__(self, cfg, input_shape: ShapeSpec): super(FBNetV2RoIKeypointHeadKPRCNNIRFPredictorNoUpscale, self).__init__( cfg=cfg, input_shape=input_shape, ) self.feature_extractor, shape_specs = build_fbnet( cfg, name="kpts", in_channels=input_shape.channels, ) self.predictor = KeypointRCNNIRFPredictorNoUpscale( cfg, in_channels=shape_specs[-1].channels, num_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.NUM_KEYPOINTS, ) def layers(self, x): x = self.feature_extractor(x) x = self.predictor(x) return x @keypoint_head.ROI_KEYPOINT_HEAD_REGISTRY.register() class FBNetV2RoIKeypointHeadKPRCNNConvUpsamplePredictorNoUpscale( keypoint_head.BaseKeypointRCNNHead, ): def __init__(self, cfg, input_shape: ShapeSpec): super( FBNetV2RoIKeypointHeadKPRCNNConvUpsamplePredictorNoUpscale, self ).__init__( cfg=cfg, input_shape=input_shape, ) self.feature_extractor, shape_specs = build_fbnet( cfg, name="kpts", in_channels=input_shape.channels, ) self.predictor = KeypointRCNNConvUpsamplePredictorNoUpscale( cfg, in_channels=shape_specs[-1].channels, num_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.NUM_KEYPOINTS, ) def layers(self, x): x = self.feature_extractor(x) x = self.predictor(x) return x @mask_head.ROI_MASK_HEAD_REGISTRY.register() class FBNetV2RoIMaskHead(mask_head.BaseMaskRCNNHead): def __init__(self, cfg, input_shape: ShapeSpec): super(FBNetV2RoIMaskHead, self).__init__( cfg=cfg, input_shape=input_shape, ) self.feature_extractor, shape_specs = build_fbnet( cfg, name="mask", in_channels=input_shape.channels, ) num_classes = cfg.MODEL.ROI_HEADS.NUM_CLASSES self.predictor = MaskRCNNConv1x1Predictor(shape_specs[-1].channels, num_classes) def layers(self, x): x = self.feature_extractor(x) x = self.predictor(x) return x
d2go-main
d2go/modeling/backbone/fbnet_v2.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from typing import List import torch import torch.nn as nn from detectron2 import layers from detectron2.utils.tracing import is_fx_tracing from mobile_cv.arch.fbnet_v2.irf_block import IRFBlock class RPNHeadConvRegressor(nn.Module): """ A simple RPN Head for classification and bbox regression """ def __init__(self, in_channels, num_anchors, box_dim=4): """ Arguments: in_channels (int): number of channels of the input feature num_anchors (int): number of anchors to be predicted box_dim (int): dimension of bbox """ super(RPNHeadConvRegressor, self).__init__() self.cls_logits = nn.Conv2d(in_channels, num_anchors, kernel_size=1, stride=1) self.bbox_pred = nn.Conv2d( in_channels, num_anchors * box_dim, kernel_size=1, stride=1 ) for l in [self.cls_logits, self.bbox_pred]: torch.nn.init.normal_(l.weight, std=0.01) torch.nn.init.constant_(l.bias, 0) def forward(self, x: List[torch.Tensor]): if not is_fx_tracing(): torch._assert(isinstance(x, (list, tuple)), "Unexpected data type") logits = [self.cls_logits(y) for y in x] bbox_reg = [self.bbox_pred(y) for y in x] return logits, bbox_reg class MaskRCNNConv1x1Predictor(nn.Module): def __init__(self, in_channels, out_channels): super(MaskRCNNConv1x1Predictor, self).__init__() num_classes = out_channels num_inputs = in_channels self.mask_fcn_logits = nn.Conv2d(num_inputs, num_classes, 1, 1, 0) for name, param in self.named_parameters(): if "bias" in name: nn.init.constant_(param, 0) elif "weight" in name: # Caffe2 implementation uses MSRAFill, which in fact # corresponds to kaiming_normal_ in PyTorch nn.init.kaiming_normal_(param, mode="fan_out", nonlinearity="relu") def forward(self, x): return self.mask_fcn_logits(x) class KeypointRCNNPredictor(nn.Module): def __init__(self, in_channels, num_keypoints): super(KeypointRCNNPredictor, self).__init__() input_features = in_channels deconv_kernel = 4 self.kps_score_lowres = nn.ConvTranspose2d( input_features, num_keypoints, deconv_kernel, stride=2, padding=deconv_kernel // 2 - 1, ) nn.init.kaiming_normal_( self.kps_score_lowres.weight, mode="fan_out", nonlinearity="relu" ) nn.init.constant_(self.kps_score_lowres.bias, 0) self.up_scale = 2 self.out_channels = num_keypoints def forward(self, x): x = self.kps_score_lowres(x) x = layers.interpolate( x, scale_factor=self.up_scale, mode="bilinear", align_corners=False ) return x class KeypointRCNNPredictorNoUpscale(nn.Module): def __init__(self, in_channels, num_keypoints): super(KeypointRCNNPredictorNoUpscale, self).__init__() input_features = in_channels deconv_kernel = 4 self.kps_score_lowres = nn.ConvTranspose2d( input_features, num_keypoints, deconv_kernel, stride=2, padding=deconv_kernel // 2 - 1, ) nn.init.kaiming_normal_( self.kps_score_lowres.weight, mode="fan_out", nonlinearity="relu" ) nn.init.constant_(self.kps_score_lowres.bias, 0) self.out_channels = num_keypoints def forward(self, x): x = self.kps_score_lowres(x) return x class KeypointRCNNIRFPredictorNoUpscale(nn.Module): def __init__(self, cfg, in_channels, num_keypoints): super(KeypointRCNNIRFPredictorNoUpscale, self).__init__() input_features = in_channels self.kps_score_lowres = IRFBlock( input_features, num_keypoints, stride=-2, expansion=3, bn_args="none", dw_skip_bnrelu=True, ) self.out_channels = num_keypoints def forward(self, x): x = self.kps_score_lowres(x) return x class KeypointRCNNConvUpsamplePredictorNoUpscale(nn.Module): def __init__(self, cfg, in_channels, num_keypoints): super(KeypointRCNNConvUpsamplePredictorNoUpscale, self).__init__() input_features = in_channels self.kps_score_lowres = nn.Conv2d( input_features, num_keypoints, kernel_size=3, stride=1, padding=1, ) self.out_channels = num_keypoints def forward(self, x): x = layers.interpolate(x, scale_factor=(2, 2), mode="nearest") x = self.kps_score_lowres(x) return x
d2go-main
d2go/modeling/backbone/modules.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from d2go.config import CfgNode as CN def add_fbnet_default_configs(_C): """FBNet options and default values""" _C.MODEL.FBNET = CN() _C.MODEL.FBNET.ARCH = "default" # custom arch _C.MODEL.FBNET.ARCH_DEF = "" _C.MODEL.FBNET.BN_TYPE = "bn" _C.MODEL.FBNET.NUM_GROUPS = 32 # for gn usage only _C.MODEL.FBNET.SCALE_FACTOR = 1.0 # the output channels will be divisible by WIDTH_DIVISOR _C.MODEL.FBNET.WIDTH_DIVISOR = 1 _C.MODEL.FBNET.DW_CONV_SKIP_BN = True _C.MODEL.FBNET.DW_CONV_SKIP_RELU = True # > 0 scale, == 0 skip, < 0 same dimension _C.MODEL.FBNET.DET_HEAD_LAST_SCALE = 1.0 _C.MODEL.FBNET.DET_HEAD_BLOCKS = [] # overwrite the stride for the head, 0 to use original value _C.MODEL.FBNET.DET_HEAD_STRIDE = 0 # > 0 scale, == 0 skip, < 0 same dimension _C.MODEL.FBNET.KPTS_HEAD_LAST_SCALE = 0.0 _C.MODEL.FBNET.KPTS_HEAD_BLOCKS = [] # overwrite the stride for the head, 0 to use original value _C.MODEL.FBNET.KPTS_HEAD_STRIDE = 0 # > 0 scale, == 0 skip, < 0 same dimension _C.MODEL.FBNET.MASK_HEAD_LAST_SCALE = 0.0 _C.MODEL.FBNET.MASK_HEAD_BLOCKS = [] # overwrite the stride for the head, 0 to use original value _C.MODEL.FBNET.MASK_HEAD_STRIDE = 0 # 0 to use all blocks defined in arch_def _C.MODEL.FBNET.RPN_HEAD_BLOCKS = 0 _C.MODEL.FBNET.RPN_BN_TYPE = "" # number of channels input to trunk _C.MODEL.FBNET.STEM_IN_CHANNELS = 3 def add_fbnet_v2_default_configs(_C): _C.MODEL.FBNET_V2 = CN() _C.MODEL.FBNET_V2.ARCH = "default" _C.MODEL.FBNET_V2.ARCH_DEF = [] # number of channels input to trunk _C.MODEL.FBNET_V2.STEM_IN_CHANNELS = 3 _C.MODEL.FBNET_V2.SCALE_FACTOR = 1.0 # the output channels will be divisible by WIDTH_DIVISOR _C.MODEL.FBNET_V2.WIDTH_DIVISOR = 1 # normalization configs # name of norm such as "bn", "sync_bn", "gn" _C.MODEL.FBNET_V2.NORM = "bn" # for advanced use case that requries extra arguments, passing a list of # dict such as [{"num_groups": 8}, {"momentum": 0.1}] (merged in given order). # Note that string written it in .yaml will be evaluated by yacs, thus this # node will become normal python object. # https://github.com/rbgirshick/yacs/blob/master/yacs/config.py#L410 _C.MODEL.FBNET_V2.NORM_ARGS = [] _C.MODEL.VT_FPN = CN() _C.MODEL.VT_FPN.IN_FEATURES = ["res2", "res3", "res4", "res5"] _C.MODEL.VT_FPN.OUT_CHANNELS = 256 _C.MODEL.VT_FPN.LAYERS = 3 _C.MODEL.VT_FPN.TOKEN_LS = [16, 16, 8, 8] _C.MODEL.VT_FPN.TOKEN_C = 1024 _C.MODEL.VT_FPN.HEADS = 16 _C.MODEL.VT_FPN.MIN_GROUP_PLANES = 64 _C.MODEL.VT_FPN.NORM = "BN" _C.MODEL.VT_FPN.POS_HWS = [] _C.MODEL.VT_FPN.POS_N_DOWNSAMPLE = [] def add_bifpn_default_configs(_C): _C.MODEL.BIFPN = CN() _C.MODEL.BIFPN.DEPTH_MULTIPLIER = 1 _C.MODEL.BIFPN.SCALE_FACTOR = 1 _C.MODEL.BIFPN.WIDTH_DIVISOR = 8 _C.MODEL.BIFPN.NORM = "bn" _C.MODEL.BIFPN.NORM_ARGS = [] _C.MODEL.BIFPN.TOP_BLOCK_BEFORE_FPN = False
d2go-main
d2go/modeling/backbone/fbnet_cfg.py
from typing import Tuple import torch from d2go.quantization.learnable_qat import convert_to_learnable_qconfig from mobile_cv.common.misc.registry import Registry TORCH_VERSION: Tuple[int, ...] = tuple(int(x) for x in torch.__version__.split(".")[:2]) if TORCH_VERSION > (1, 10): from torch.ao.quantization.quantize_fx import convert_fx, prepare_fx, prepare_qat_fx else: from torch.quantization.quantize_fx import convert_fx, prepare_fx, prepare_qat_fx from mobile_cv.common.misc.oss_utils import fb_overwritable QCONFIG_CREATOR_REGISTRY = Registry("QCONFIG_CREATOR_REGISTRY") def set_backend_and_create_qconfig(cfg, *, is_train): """ Recommended function to create qconfig given D2Go's quantization config. """ # In case we need different implmentation, we can add a new key called # QUANTIZATION.QCONFIG_CREATOR with "smart" as default value, and use this key # to toggle between registries. return QCONFIG_CREATOR_REGISTRY.get("smart")(cfg, is_train=is_train) def holistic_get_qconfig(backend, is_qat, use_symmetric=False): """ Config-less vanilla way to create the QConfig, suitable for explicitly creating qconfig. """ if use_symmetric: if not backend == "qnnpack": raise ValueError( f"Only qnnpack supports Symmetric quantization, given: {backend}" ) if is_qat: return torch.ao.quantization.default_symmetric_qnnpack_qat_qconfig else: return torch.ao.quantization.default_symmetric_qnnpack_qconfig else: if is_qat: return torch.ao.quantization.get_default_qat_qconfig(backend) else: return torch.ao.quantization.get_default_qconfig(backend) @QCONFIG_CREATOR_REGISTRY.register("smart") def _smart_set_backend_and_create_qconfig(cfg, *, is_train): """ This is the default / "smart" way to create qconfig based on various of configs, supports: - learnable QAT - set symmetric quantization via backend. """ backend, options = _smart_parse_extended_backend(cfg.QUANTIZATION.BACKEND) is_symmetric = options["is_symmetric"] # Set backend torch.backends.quantized.engine = backend qat_method = cfg.QUANTIZATION.QAT.FAKE_QUANT_METHOD assert qat_method in ["default", "learnable"] qconfig = holistic_get_qconfig( backend=backend, is_qat=is_train, use_symmetric=is_symmetric ) if is_train and qat_method == "learnable": qconfig = convert_to_learnable_qconfig(qconfig) return qconfig def validate_native_backend(backend): _PYTORCH_NATIVE_BACKENDS = ["fbgemm", "qnnpack"] if backend not in _PYTORCH_NATIVE_BACKENDS: raise ValueError( f"Unrecognized backend: {backend}, PyTorch" f" supported backends are: {_PYTORCH_NATIVE_BACKENDS}" ) @fb_overwritable() def _smart_parse_extended_backend(extended_backend): """ D2Go extends the definition of quantization "backend". In addition to PyTorch's native backends (i.e. qnnpack and fbgemm), we allow other type of backend so users can easily express different settings. Here are the supported cases: 1. Symmetric quantization: "qnnpack@symmetric" refers to using QNNPACK with symmetric QConfig. """ backend = extended_backend # default options options = { "is_symmetric": False, } if "@symmetric" in backend: options["is_symmetric"] = True backend = backend.replace("@symmetric", "", 1) validate_native_backend(backend) return backend, options def smart_decode_backend(extended_backend): """ Since we extend the definition of quantization backend, user shouldn't directly use cfg.QUANTIZATION.BACKEND under PyTorch's context, this is the translation function if direct use is necessary. """ return _smart_parse_extended_backend(extended_backend)[0]
d2go-main
d2go/quantization/qconfig.py
d2go-main
d2go/quantization/__init__.py
#!/usr/bin/env python3 import logging from functools import partial import torch import torch.distributed as dist from d2go.utils.parse_module_params import iterate_module_named_parameters from torch.ao.quantization._learnable_fake_quantize import _LearnableFakeQuantize logger = logging.getLogger(__name__) def mixin_with_subclass(module, mix_class): """Create a subclass of type(module) and mix_class while using all the data from the `module` object """ ModuleType = type(module) class SubClass(mix_class, ModuleType): def __init__(self, module): assert isinstance(module, ModuleType) # initialize the parent by copying the dict directly self.__dict__ = module.__dict__.copy() ret = SubClass(module) return ret def _has_module(model, module_type): for x in model.modules(): if isinstance(x, module_type): return True return False def check_for_learnable_fake_quant_ops(qat_method, model): """Make sure learnable observers are used if qat method is `learnable`""" if qat_method.startswith("learnable"): if not _has_module(model, _LearnableFakeQuantize): raise Exception( "No learnable fake quant is used for learnable quantzation, please use d2go.quantization.learnable_qat.get_learnable_qat_qconfig() to get proper qconfig" ) def convert_to_learnable_qconfig(qconfig): """ Convert a QConfig to its learnable counterpart. """ def _update_fused_moving_avg_obs_fake_quantize(keywords): # requires setting use_grad_scaling to True, all other parameters are the same # as default setting of FusedMovingAvgObsFakeQuantize (both qnnpack and fbgemm). assert "use_grad_scaling" not in keywords keywords["use_grad_scaling"] = True return keywords _OVERWRITE_PARAMS = { # map from supported FakeQuant type to the its new parameters in order to convert # it to a learnable FakeQuant torch.ao.quantization.fake_quantize.FusedMovingAvgObsFakeQuantize: _update_fused_moving_avg_obs_fake_quantize } def _update_to_learnable(wrapper): assert isinstance( wrapper, torch.ao.quantization.observer._PartialWrapper ), wrapper assert isinstance(wrapper.p, partial), wrapper keywords_updater = _OVERWRITE_PARAMS[wrapper.p.func] keywords = keywords_updater(wrapper.p.keywords) new_p = partial(_LearnableFakeQuantize, *wrapper.p.args, **keywords) wrapper.p = new_p return wrapper activation = _update_to_learnable(qconfig.activation) weight = _update_to_learnable(qconfig.weight) return torch.quantization.QConfig(activation=activation, weight=weight) def get_world_size() -> int: if not dist.is_available(): return 1 if not dist.is_initialized(): return 1 return dist.get_world_size() def sync_tensor(data): world_size = get_world_size() if world_size > 1: dist.all_reduce(data, op=dist.ReduceOp.SUM) data /= world_size def toggle_lqat_fake_quant(mod, enable): """Toggle fake quantization for learnable qat""" if type(mod) == _LearnableFakeQuantize: mod.toggle_fake_quant(enable) # enable/disable fake quantization for learnable qat enable_lqat_fake_quant = partial(toggle_lqat_fake_quant, enable=True) disable_lqat_fake_quant = partial(toggle_lqat_fake_quant, enable=False) def toggle_lqat_static_observer(mod, enable): """Toggle static observers for learnable qat""" if type(mod) == _LearnableFakeQuantize: mod.toggle_observer_update(enable) # enable/disable static observer for learnable qat enable_lqat_static_observer = partial(toggle_lqat_static_observer, enable=True) disable_lqat_static_observer = partial(toggle_lqat_static_observer, enable=False) def enable_lqat_learnable_observer(mod): """Enable learning observers, will disable static observer updates""" if type(mod) == _LearnableFakeQuantize: sync_tensor(mod.scale.data) sync_tensor(mod.zero_point.data) mod.toggle_qparam_learning(enabled=True).toggle_observer_update(enabled=False) def disable_lqat_learnable_observer(mod): """Disable learning observers""" if type(mod) == _LearnableFakeQuantize: mod.toggle_qparam_learning(enabled=False) def get_optimizer_param_groups_learnable_qat(model, _): """Set the weight decay for scale/zero_point for learnable_fake_quant to 0""" params = [] for ( _module_name, module, module_param_name, value, ) in iterate_module_named_parameters(model, check_requires_grad=False): if isinstance(module, _LearnableFakeQuantize): if module_param_name in ("scale", "zero_point"): params += [ { "params": [value], "weight_decay": 0.0, } ] return params def _is_observer_key(state_dict_key): observer_keys = ["activation_post_process", "weight_fake_quant"] return any(x in state_dict_key for x in observer_keys) def _is_q_state_dict(state_dict): return any(_is_observer_key(k) for k in state_dict) class ModelGetOptimizerParamGroupLearnableQATMixin: def get_optimizer_param_groups(self, opts): ret = [] if hasattr(super(), "get_optimizer_param_groups"): ret = super().get_optimizer_param_groups(opts) ret += get_optimizer_param_groups_learnable_qat(self, opts) return ret def setup_qat_get_optimizer_param_groups(model, qat_method): """Add a function `get_optimizer_param_groups` to the model so that it could return proper weight decay for learnable qat """ if not qat_method.startswith("learnable"): return model assert _is_q_state_dict(model.state_dict()) model = mixin_with_subclass(model, ModelGetOptimizerParamGroupLearnableQATMixin) assert hasattr(model, "get_optimizer_param_groups") return model
d2go-main
d2go/quantization/learnable_qat.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from typing import Tuple import torch from mobile_cv.common.misc.oss_utils import fb_overwritable TORCH_VERSION: Tuple[int, ...] = tuple(int(x) for x in torch.__version__.split(".")[:2]) if TORCH_VERSION > (1, 10): from torch.ao.quantization.quantize import convert from torch.ao.quantization.quantize_fx import convert_fx, prepare_fx, prepare_qat_fx else: from torch.quantization.quantize import convert from torch.quantization.quantize_fx import convert_fx, prepare_fx, prepare_qat_fx @fb_overwritable() def get_prepare_fx_fn(cfg, is_qat): return prepare_qat_fx if is_qat else prepare_fx @fb_overwritable() def get_convert_fn(cfg, example_inputs=None, qconfig_mapping=None, backend_config=None): if cfg.QUANTIZATION.EAGER_MODE: return convert else: return convert_fx
d2go-main
d2go/quantization/fx.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import copy import logging import math from typing import Any, Dict, Tuple import detectron2.utils.comm as comm import torch from d2go.quantization import learnable_qat from d2go.quantization.fx import get_convert_fn, get_prepare_fx_fn from d2go.quantization.qconfig import ( set_backend_and_create_qconfig, smart_decode_backend, ) from detectron2.checkpoint import DetectionCheckpointer from detectron2.engine.train_loop import HookBase, SimpleTrainer from detectron2.utils.file_io import PathManager from mobile_cv.arch.quantization.observer import update_stat as observer_update_stat from mobile_cv.arch.utils import fuse_utils from mobile_cv.common.misc.iter_utils import recursive_iterate TORCH_VERSION: Tuple[int, ...] = tuple(int(x) for x in torch.__version__.split(".")[:2]) if TORCH_VERSION > (1, 10): from torch.ao.quantization.quantize import convert from torch.ao.quantization.quantize_fx import convert_fx, prepare_fx, prepare_qat_fx else: from torch.quantization.quantize import convert from torch.quantization.quantize_fx import convert_fx, prepare_fx, prepare_qat_fx logger = logging.getLogger(__name__) _CONVERT_FX_CALLBACK_ATTRIBUTE = "_convert_fx_callback" _STATE_DICT_KEY = "state_dict" _OLD_STATE_DICT_KEY = "model" _OLD_EMA_KEY = "ema_state" def _is_observer_key(state_dict_key): observer_keys = ["activation_post_process", "weight_fake_quant"] return any(x in state_dict_key for x in observer_keys) # TODO: replace QATCheckpointer with central D2GoCheckpointer which supports customize # state_dict re-mapping (which includes QAT re-mapping). class QATCheckpointer(DetectionCheckpointer): """ Extend the Checkpointer to support loading (QAT / non-QAT) weight into (QAT / non-QAT) model. """ def __init__( self, model, save_dir="", *, load_ckpt_to_gpu=False, save_to_disk=None, **checkpointables, ): super().__init__( model, save_dir, save_to_disk=save_to_disk, **checkpointables, ) self.load_ckpt_to_gpu = load_ckpt_to_gpu @classmethod def _is_q_state_dict(cls, state_dict): return any(_is_observer_key(k) for k in state_dict) # HACK: temporarily put it here, move to centrail D2GoCheckpointer later on def _load_file(self, filename): # support loading lightning checkpointer if filename.endswith(".ckpt"): # assume file is from lightning; no one else seems to use the ".ckpt" extension with PathManager.open(filename, "rb") as f: data = self._torch_load(f) _convert_to_d2(data) return data return super()._load_file(filename) def _torch_load(self, f): device = ( "cuda:{}".format(torch.cuda.current_device()) if self.load_ckpt_to_gpu else "cpu" ) return torch.load(f, map_location=torch.device(device)) def _load_model(self, checkpoint): model_is_qat = self._is_q_state_dict(self.model.state_dict()) checkpoint_is_qat = self._is_q_state_dict(checkpoint["model"]) if model_is_qat and not checkpoint_is_qat: logger.info("Loading QAT model with non-QAT checkpoint, ignore observers!") mapping = getattr(self.model, "_non_qat_to_qat_state_dict_map", {}) # map the key from non-QAT model to QAT model if possible checkpoint_state_dict = { mapping.get(k, k): v for k, v in checkpoint["model"].items() } checkpoint["model"] = checkpoint_state_dict incompatible = super()._load_model(checkpoint) # suppress the missing observer keys warning # NOTE: for some reason incompatible.missing_keys can have duplicated keys, # here we replace the entire list rather than calling .remove() missing_non_qat_keys = [ k for k in incompatible.missing_keys if not _is_observer_key(k) ] incompatible.missing_keys[:] = missing_non_qat_keys return incompatible elif not model_is_qat and checkpoint_is_qat: raise NotImplementedError() elif model_is_qat and checkpoint_is_qat: # TODO: maybe suppress shape mismatch # For models trained with QAT and per-channel quant, the inital size of the # buffers in fake_quant and observer modules does not reflect the size in # state_dict, which is updated only when convert is called. return super()._load_model(checkpoint) else: return super()._load_model(checkpoint) def add_quantization_default_configs(_C): CfgNode = type(_C) _C.QUANTIZATION = CfgNode() # Note: EAGER_MODE == False currently represents FX graph mode quantization _C.QUANTIZATION.EAGER_MODE = True # Available backends include PyTorch's natively supported backends (i.e. fbgemm and # qnnpack), plus D2Go-defined backends such as "qnnpack@symmetric". _C.QUANTIZATION.BACKEND = "fbgemm" # used to enable metarch set_custom_qscheme (need to implement) # this is a limited implementation where only str is provided to change options _C.QUANTIZATION.CUSTOM_QSCHEME = "" _C.QUANTIZATION.MODULES = [] # Lightning quantization callback name _C.QUANTIZATION.NAME = "" _C.QUANTIZATION.ACT_BITS = 8 _C.QUANTIZATION.WEIGHT_BITS = 8 # quantization-aware training _C.QUANTIZATION.QAT = CfgNode() _C.QUANTIZATION.QAT.ENABLED = False # Methods for QAT training, could be "default" or "learnable" _C.QUANTIZATION.QAT.FAKE_QUANT_METHOD = "default" # QAT will use more GPU memory, user can change this factor to reduce the batch size # after fake quant is enabled. Setting it to 0.5 should guarantee no memory increase # compared with QAT is disabled. _C.QUANTIZATION.QAT.BATCH_SIZE_FACTOR = 1.0 # the iteration number to start QAT, (i.e. enable fake quant). The default value of # SOLVER.MAX_ITER is 40k and SOLVER.STEPS is (30k,), here we turn on QAT at 35k, so # the last 5k iterations will run with QAT with decreased learning rate. _C.QUANTIZATION.QAT.START_ITER = 35000 # the iteration number to enable observer, it's usually set to be the same as # QUANTIZATION.QAT.START_ITER. _C.QUANTIZATION.QAT.ENABLE_OBSERVER_ITER = 35000 # the iteration number to enable learnable observer, only used when METHOD == "learnable" _C.QUANTIZATION.QAT.ENABLE_LEARNABLE_OBSERVER_ITER = 36000 # the iteration number to disable observer, here it's 3k after enabling the fake # quant, 3k roughly corresponds to 7 out of 90 epochs in classification. _C.QUANTIZATION.QAT.DISABLE_OBSERVER_ITER = 35000 + 3000 # the iteration number to freeze BN, here it's 3k after enabling the fake quant, 2k # roughly corresponds to 5 out of 90 epochs for classification. _C.QUANTIZATION.QAT.FREEZE_BN_ITER = 35000 + 2000 # qat hook will run observers update_stat if it exists # after update_observer_stats_period iters _C.QUANTIZATION.QAT.UPDATE_OBSERVER_STATS_PERIODICALLY = False _C.QUANTIZATION.QAT.UPDATE_OBSERVER_STATS_PERIOD = 1 _C.QUANTIZATION.WEIGHT_OBSERVERS = None _C.QUANTIZATION.ACTIVATION_OBSERVERS = None # post-training quantization _C.QUANTIZATION.PTQ = CfgNode() _C.QUANTIZATION.PTQ.CALIBRATION_NUM_IMAGES = 16 # NOTE: this is actually iterations _C.QUANTIZATION.PTQ.CALIBRATION_FORCE_ON_GPU = False # register deprecated and renamed keys _C.register_deprecated_key("QUANTIZATION.QAT.LOAD_PRETRAINED") _C.register_renamed_key("QUANTIZATION.QAT.BACKEND", "QUANTIZATION.BACKEND") _C.register_deprecated_key("QUANTIZATION.ENABLE_CUSTOM_QSCHEME") _C.register_deprecated_key("QUANTIZATION.SILICON_QAT") _C.register_deprecated_key("QUANTIZATION.SILICON_QAT.ENABLED") # TODO: model.to(device) might not work for detection meta-arch, this function is the # workaround, in general, we might need a meta-arch API for this if needed. def _cast_model_to_device(model, device): if hasattr( model, "_cast_model_to_device" ): # we can make this formal by removing "_" return model._cast_model_to_device(device) else: logger.warning( "model.to(device) doesn't guarentee moving the entire model, " "if customization is needed, please implement _cast_model_to_device " "for the MetaArch" ) return model.to(device) def add_d2_quant_mapping(mappings): """HACK: Add d2 specific module mapping for eager model quantization""" import torch.ao.quantization.quantization_mappings as qm for k, v in mappings.items(): if k not in qm.get_default_static_quant_module_mappings(): qm.DEFAULT_STATIC_QUANT_MODULE_MAPPINGS[k] = v if k not in qm.get_default_qat_module_mappings(): qm.DEFAULT_QAT_MODULE_MAPPINGS[k] = v # The `mock_quantization_type` decorate may not be needed anymore to unify # detectron2.layers modules and torch.nn modules since Pytorch 1.5. See comments on D23790034. def mock_quantization_type(quant_func): import builtins import functools from unittest import mock import detectron2.layers as d2l type_mapping = {d2l.Linear: torch.nn.Linear} from d2go.utils.misc import check_version if check_version(torch, "1.7.2", warning_only=True): add_d2_quant_mapping(type_mapping) real_type = builtins.type def _new_type(obj): rtype = real_type(obj) return type_mapping.get(rtype, rtype) @functools.wraps(quant_func) def wrapper(cfg, model, *args, **kwargs): if d2l.Linear == torch.nn.Linear: # we do not need the moc after when the type is expected, consider # remving those related code logger.warning( "`detectron2.layers.Linear` is in expected type (torch.nn.Linear)," "consider removing this code `mock_quantization_type`." ) return quant_func(cfg, model, *args, **kwargs) if not cfg.QUANTIZATION.EAGER_MODE: return quant_func(cfg, model, *args, **kwargs) # `from_float()` in `torch.nn.quantized.modules.linear.Linear` and # `torch.nn.qat.modules.linear` checkes if the type of `mod` is torch.Linear, # hack it to return the expected value with mock.patch("torch.nn.quantized.modules.linear.type") as mock_type: with mock.patch("torch.nn.qat.modules.linear.type") as mock_type2: mock_type.side_effect = _new_type mock_type2.side_effect = _new_type return quant_func(cfg, model, *args, **kwargs) return wrapper def default_prepare_for_quant(cfg, model): """ Default implementation of preparing a model for quantization. This function will be called to before training if QAT is enabled, or before calibration during PTQ if the model is not already quantized. NOTE: - This is the simplest implementation, most meta-arch needs its own version. - For eager model, user should make sure the returned model has Quant/DeQuant insert. This can be done by wrapping the model or defining the model with quant stubs. - QAT/PTQ can be determined by model.training. - Currently the input model can be changed inplace since we won't re-use the input model. - Currently this API doesn't include the final torch.ao.quantization.prepare(_qat) call since existing usecases don't have further steps after it. Args: model (nn.Module): a non-quantized model. cfg (CfgNode): config Return: nn.Module: a ready model for QAT training or PTQ calibration """ assert cfg.QUANTIZATION.EAGER_MODE qconfig = set_backend_and_create_qconfig(cfg, is_train=model.training) model = fuse_utils.fuse_model( model, is_qat=cfg.QUANTIZATION.QAT.ENABLED, inplace=True, ) model.qconfig = qconfig # TODO(future diff): move the torch.ao.quantization.prepare(...) call # here, to be consistent with the FX branch logger.info("Setup the model with qconfig:\n{}".format(qconfig)) return model def default_custom_prepare_fx(cfg, model, is_qat, example_input=None): """ Similar to default_prepare_for_quant, but for FX graph mode. Args: example_input (Optional[Any]): optional example_input for model, if it is not provided we'll use `model.example_input` when example_input is required, Note: d2go assumes we always have a single example_input """ assert not cfg.QUANTIZATION.EAGER_MODE qconfig = set_backend_and_create_qconfig(cfg, is_train=is_qat) qconfig_dict = {"": qconfig} if example_input is None: raise NotImplementedError( "prepare FX requires `example_input`, user should implement this for" " their own MetaArch." ) prepare_fn = get_prepare_fx_fn(cfg, is_qat) model = prepare_fn( model, qconfig_mapping=qconfig_dict, example_inputs=(example_input,), ) convert_fn = get_convert_fn(cfg, (example_input,)) return model, convert_fn def prepare_fake_quant_model(cfg, model, is_qat, example_input=None): """ Centralized function to prepare fp32 model (D2Go's MetaArch) to fake quant model. """ # TODO: create a warning for the direct use of `torch.ao.quantization.get_default_qconfig` # or `torch.ao.quantization.get_default_qat_qconfig` without calling D2Go's high-level # `set_backend_and_create_qconfig` API. if cfg.QUANTIZATION.EAGER_MODE: if hasattr(model, "prepare_for_quant"): model = model.prepare_for_quant(cfg) else: logger.info( "Using default implementation for prepare_for_quant (eager mode)" ) model = default_prepare_for_quant(cfg, model) # NOTE: eager model needs to call prepare after `prepare_for_quant` if is_qat: torch.ao.quantization.prepare_qat(model, inplace=True) else: torch.ao.quantization.prepare(model, inplace=True) else: # FX graph mode requires the model to be symbolically traceable, swap common # modules like SyncBN to FX-friendly version. if not is_qat: # NOTE: we only do this for PTQ, because we want to keep using unmodified # model during QAT. model = fuse_utils.swap_modules(model) if hasattr(model, "custom_prepare_fx"): ret = model.custom_prepare_fx(cfg, is_qat, example_input) if not (isinstance(ret, tuple) and len(ret) == 2): raise ValueError( "`custom_prepare_fx` requires return model and convert_callback" ) model, convert_fx_callback = ret else: logger.info( "Using default implementation for custom_prepare_fx (FX graph mode)" ) model, convert_fx_callback = default_custom_prepare_fx( cfg, model, is_qat, example_input ) # HACK: store the convert_callback function as model attribute, which can be # later accessed to convert fake quant model to quantized model. We'll find a # better place to store this. if hasattr(model, _CONVERT_FX_CALLBACK_ATTRIBUTE): raise AttributeError( f"{_CONVERT_FX_CALLBACK_ATTRIBUTE} is already set in model: {model}" ) setattr(model, _CONVERT_FX_CALLBACK_ATTRIBUTE, convert_fx_callback) return model def convert_to_quantized_model(cfg, fp32_model): """ Contralized function to convert fake quant model (fp32 operators) to "real" quantized model (int8 operators). """ if cfg.QUANTIZATION.EAGER_MODE: convert_fn = get_convert_fn(cfg) int8_model = convert_fn(fp32_model, inplace=False) else: # FX graph mode quantization if not hasattr(fp32_model, _CONVERT_FX_CALLBACK_ATTRIBUTE): raise AttributeError( f"Can't find {_CONVERT_FX_CALLBACK_ATTRIBUTE} in model, please check " f"`prepare_fake_quant_model` has been called: {fp32_model}" ) convert_fx_callback = getattr(fp32_model, _CONVERT_FX_CALLBACK_ATTRIBUTE) int8_model = convert_fx_callback(fp32_model) return int8_model @mock_quantization_type def post_training_quantize(cfg, model, data_loader): """Calibrate a model, convert it to a quantized pytorch model""" model = copy.deepcopy(model) model.eval() # TODO: check why some parameters will have gradient for param in model.parameters(): param.requires_grad = False example_input = next(iter(data_loader)) model = prepare_fake_quant_model(cfg, model, False, example_input) logger.info("Prepared the PTQ model for calibration:\n{}".format(model)) # Option for forcing running calibration on GPU, works only when the model supports # casting both model and inputs. calibration_force_on_gpu = ( cfg.QUANTIZATION.PTQ.CALIBRATION_FORCE_ON_GPU and torch.cuda.is_available() ) if calibration_force_on_gpu: # NOTE: model.to(device) may not handle cases such as normalizer, FPN, only # do move to GPU if specified. _cast_model_to_device(model, "cuda") calibration_iters = cfg.QUANTIZATION.PTQ.CALIBRATION_NUM_IMAGES for idx, inputs in enumerate(data_loader): # Setting CALIBRATION_NUM_IMAGES to 0 allows skipping calibration if idx == calibration_iters: break logger.info("Running calibration iter: {}/{}".format(idx, calibration_iters)) if calibration_force_on_gpu: iters = recursive_iterate(inputs) for x in iters: if isinstance(x, torch.Tensor): iters.send(x.to("cuda")) inputs = iters.value with torch.no_grad(): model(inputs) else: logger.warning("Can't run enough calibration iterations") # cast model back to the original device if calibration_force_on_gpu: _cast_model_to_device(model, cfg.MODEL.DEVICE) return model @mock_quantization_type def setup_qat_model( cfg, model_fp32, enable_fake_quant: bool = False, enable_observer: bool = False, enable_learnable_observer: bool = False, ): assert cfg.QUANTIZATION.QAT.FAKE_QUANT_METHOD in [ "default", "learnable", "learnable_act", ] if hasattr(model_fp32, "_non_qat_to_qat_state_dict_map"): raise RuntimeError("The model is already setup to be QAT, cannot setup again!") device = model_fp32.device # FIXME: seems that we can remove this torch.backends.quantized.engine = smart_decode_backend(cfg.QUANTIZATION.BACKEND) qat_method = cfg.QUANTIZATION.QAT.FAKE_QUANT_METHOD # prepare for qat may modify the fp32 model directly so we create a copy model_fp32_state_dict = model_fp32.state_dict() # prepare model for qat model = prepare_fake_quant_model(cfg, model_fp32, True) # make sure the proper qconfig are used in the model learnable_qat.check_for_learnable_fake_quant_ops(qat_method, model) # Move newly added observers to the original device model.to(device) if not enable_fake_quant: logger.info("Disabling fake quant ...") model.apply(torch.ao.quantization.disable_fake_quant) model.apply(learnable_qat.disable_lqat_fake_quant) if not enable_observer: logger.info("Disabling static observer ...") model.apply(torch.ao.quantization.disable_observer) model.apply(learnable_qat.disable_lqat_static_observer) if not enable_learnable_observer and qat_method.startswith("learnable"): logger.info("Disabling learnable observer ...") model.apply(learnable_qat.disable_lqat_learnable_observer) # qat state dict mapper if not getattr(model, "_non_qat_to_qat_state_dict_map", None): model = _setup_non_qat_to_qat_state_dict_map( model_fp32_state_dict, model, is_eager_mode=cfg.QUANTIZATION.EAGER_MODE ) # qat optimizer group for learnable qat model = learnable_qat.setup_qat_get_optimizer_param_groups(model, qat_method) return model def _setup_non_qat_to_qat_state_dict_map( model_fp32_state_dict, model_qat, is_eager_mode ): original_state_dict_shapes = {k: v.shape for k, v in model_fp32_state_dict.items()} # fuse_model and prepare_qat may change the state_dict of model, keep a map from the # orginal model to the key QAT in order to load weight from non-QAT model. new_state_dict_shapes = {k: v.shape for k, v in model_qat.state_dict().items()} new_state_dict_non_observer_keys = [ k for k in new_state_dict_shapes if not _is_observer_key(k) ] assert len(new_state_dict_non_observer_keys) == len(original_state_dict_shapes) if is_eager_mode: for n_k, o_k in zip( new_state_dict_non_observer_keys, original_state_dict_shapes ): assert ( new_state_dict_shapes[n_k] == original_state_dict_shapes[o_k] ), f"QAT model shapes is inconsistent. FP32.{o_k}={original_state_dict_shapes[o_k]} , QAT.{n_k}={new_state_dict_shapes[n_k]}" # _q_state_dict_map will store model_qat._non_qat_to_qat_state_dict_map = dict( zip(original_state_dict_shapes, new_state_dict_non_observer_keys) ) else: # in FX, the order of where modules appear in the state_dict may change, # so we need to match by key def get_new_bn_key(old_bn_key): # tries to adjust the key for conv-bn fusion, where # root # - conv # - bn # # becomes # # root # - conv # - bn return old_bn_key.replace(".bn.", ".conv.bn.") model_qat._non_qat_to_qat_state_dict_map = {} for key in original_state_dict_shapes.keys(): if key in new_state_dict_non_observer_keys: model_qat._non_qat_to_qat_state_dict_map[key] = key else: maybe_new_bn_key = get_new_bn_key(key) if maybe_new_bn_key in new_state_dict_non_observer_keys: model_qat._non_qat_to_qat_state_dict_map[key] = maybe_new_bn_key return model_qat class QATHook(HookBase): def __init__(self, cfg, build_data_loader_func=None): self.cfg = cfg self.build_data_loader_func = build_data_loader_func self._applied = { "enable_fake_quant": False, "enable_observer": False, "enable_learnable_observer": False, "disable_observer": False, "freeze_bn_stats": False, } assert ( cfg.QUANTIZATION.QAT.ENABLE_OBSERVER_ITER <= cfg.QUANTIZATION.QAT.DISABLE_OBSERVER_ITER ), "Can't diable observer before enabling it" def before_step(self): cur_iter = self.trainer.iter model = self.trainer.model cfg = self.cfg if ( not self._applied["enable_fake_quant"] and cur_iter >= cfg.QUANTIZATION.QAT.START_ITER ): logger.info( "[QAT] enable fake quant to start QAT, iter = {}".format(cur_iter) ) model.apply(torch.ao.quantization.enable_fake_quant) model.apply(learnable_qat.enable_lqat_fake_quant) self._applied["enable_fake_quant"] = True _reset_qat_data_loader_if_needed( self.cfg, self.trainer, self.build_data_loader_func ) if ( not self._applied["enable_observer"] and cur_iter >= cfg.QUANTIZATION.QAT.ENABLE_OBSERVER_ITER and cur_iter < cfg.QUANTIZATION.QAT.DISABLE_OBSERVER_ITER ): logger.info("[QAT] enable static observer, iter = {}".format(cur_iter)) model.apply(torch.ao.quantization.enable_observer) model.apply(learnable_qat.enable_lqat_static_observer) self._applied["enable_observer"] = True if ( not self._applied["enable_learnable_observer"] and cur_iter >= cfg.QUANTIZATION.QAT.ENABLE_LEARNABLE_OBSERVER_ITER ): logger.info(f"[QAT] enabling learnable observer, iter = {cur_iter}") model.apply(learnable_qat.enable_lqat_learnable_observer) self._applied["enable_learnable_observer"] = True if ( not self._applied["disable_observer"] and cur_iter >= cfg.QUANTIZATION.QAT.DISABLE_OBSERVER_ITER ): logger.info( "[QAT] disabling observer for sub seq iters, iter = {}".format(cur_iter) ) model.apply(torch.ao.quantization.disable_observer) model.apply(learnable_qat.disable_lqat_static_observer) model.apply(learnable_qat.disable_lqat_learnable_observer) self._applied["disable_observer"] = True if ( not self._applied["freeze_bn_stats"] and cur_iter >= cfg.QUANTIZATION.QAT.FREEZE_BN_ITER ): logger.info( "[QAT] freezing BN for subseq iters, iter = {}".format(cur_iter) ) model.apply(torch.nn.intrinsic.qat.freeze_bn_stats) self._applied["freeze_bn_stats"] = True if ( self._applied["enable_fake_quant"] and not self._applied["disable_observer"] and cfg.QUANTIZATION.QAT.UPDATE_OBSERVER_STATS_PERIODICALLY and cur_iter % cfg.QUANTIZATION.QAT.UPDATE_OBSERVER_STATS_PERIOD == 0 ): logger.info(f"[QAT] updating observers, iter = {cur_iter}") model.apply(observer_update_stat) def _reset_qat_data_loader_if_needed(cfg, trainer, build_loader_func): if cfg.QUANTIZATION.QAT.BATCH_SIZE_FACTOR != 1.0: loader_cfg = cfg.clone() loader_cfg.defrost() num_gpus = comm.get_world_size() old_bs = cfg.SOLVER.IMS_PER_BATCH // num_gpus new_bs = math.ceil(old_bs * cfg.QUANTIZATION.QAT.BATCH_SIZE_FACTOR) loader_cfg.SOLVER.IMS_PER_BATCH = new_bs * num_gpus loader_cfg.freeze() logger.info( "[QAT] Rebuild data loader with batch size per GPU: {} -> {}".format( old_bs, new_bs ) ) assert isinstance( trainer, SimpleTrainer ), "Trainer needs to be a subclass of SimpleTrainer to support resetting the dataloader" trainer.reset_data_loader(lambda: build_loader_func(loader_cfg)) def forward_custom_prepare_fx(root, sub_module_name, orig_ret): """Helper function to forward return of `custom_prepare_fx` from sub module""" new_sub_module, callback = orig_ret setattr(root, sub_module_name, new_sub_module) def new_callback(m): setattr(m, sub_module_name, callback(getattr(m, sub_module_name))) return m return root, new_callback def _convert_to_d2(lightning_checkpoint: Dict[str, Any]) -> None: prefix = "model" # based on DefaultTask.model. old_keys = [x.lstrip("model.") for x in lightning_checkpoint[_STATE_DICT_KEY]] for key in old_keys: if f"{prefix}.{key}" in lightning_checkpoint[_STATE_DICT_KEY]: lightning_checkpoint[_STATE_DICT_KEY][key] = lightning_checkpoint[ _STATE_DICT_KEY ][f"{prefix}.{key}"] del lightning_checkpoint[_STATE_DICT_KEY][f"{prefix}.{key}"] for old, new in zip( [_STATE_DICT_KEY, "global_step"], [_OLD_STATE_DICT_KEY, "iteration"] ): lightning_checkpoint[new] = lightning_checkpoint[old] del lightning_checkpoint[old] for old, new in zip( ["optimizer_states", "lr_schedulers"], ["optimizer", "scheduler"] ): if old not in lightning_checkpoint: continue lightning_checkpoint[new] = [lightning_checkpoint[old]] del lightning_checkpoint[old] for key in [ "epoch", "pytorch-lightning_versio", "callbacks", "hparams_name", "hyper_parameters", ]: if key in lightning_checkpoint: del lightning_checkpoint[key]
d2go-main
d2go/quantization/modeling.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import ast import builtins import contextlib import glob import hashlib import logging import os import tempfile import time import traceback from collections import defaultdict from dataclasses import asdict, dataclass from enum import Enum from typing import Any, Callable, Dict, List, Optional, Tuple import pkg_resources import yaml from mobile_cv.common.misc.py import dynamic_import, MoreMagicMock from mobile_cv.common.misc.registry import ( CLASS_OR_FUNCTION_TYPES, LazyRegisterable, Registry, ) logger = logging.getLogger(__name__) orig_import = builtins.__import__ orig_open = builtins.open orig__register = Registry._register _INSIDE_BOOTSTRAP = False _IS_BOOTSTRAPPED = False _BOOTSTRAP_PACKAGE = "d2go.registry._bootstrap" _BOOTSTRAP_CACHE_FILENAME = "registry_bootstrap.v1.yaml" def _log(lvl: int, msg: str): _VERBOSE_LEVEL = 0 if _VERBOSE_LEVEL >= lvl: print(msg) # Simple version copied from fvcore/iopath def _get_cache_dir() -> str: cache_dir = os.path.expanduser("~/.torch/d2go_cache") try: os.makedirs(cache_dir, exist_ok=True) assert os.access(cache_dir, os.R_OK | os.W_OK | os.X_OK) except (OSError, AssertionError): tmp_dir = os.path.join(tempfile.gettempdir(), "d2go_cache") logger.warning(f"{cache_dir} is not accessible! Using {tmp_dir} instead!") os.makedirs(tmp_dir, exist_ok=True) cache_dir = tmp_dir return cache_dir class _catchtime: def __enter__(self): self.time = time.perf_counter() return self def __exit__(self, type, value, traceback): self.time = time.perf_counter() - self.time def _match(name, module_full_name, match_submodule=False): if name == module_full_name: return True if match_submodule: if name.startswith(module_full_name + "."): return True return False def _match_any(name, module_full_names, match_submodule=False): return any( _match(name, module_full_name, match_submodule=match_submodule) for module_full_name in module_full_names ) def _import_mock(name, globals=None, locals=None, fromlist=(), level=0): use_orig_import = False # enable some first-party packages if _match_any( name, [ # allow using pdb during patch "pdb", "readline", "linecache", "reprlib", "io", # allow using builtins.__import__ "builtins", ], ): use_orig_import = True # enable some known third-party packages, these pacakges might have been imported if _match_any( name, [ # "torch", # "numpy", # "mobile_cv.arch.fbnet_v2.modeldef_utils", ], ): use_orig_import = True # enable modules under d2go.registry if _match(name, "d2go.registry", match_submodule=True): use_orig_import = True if use_orig_import: # import as normal return orig_import(name, globals, locals, fromlist=fromlist, level=level) else: # return a Mock instead of making a real import _log(2, f"mock import: {name}; fromlist={fromlist}; level={level}") m = MoreMagicMock() return m def _open_mock(*args, **kwargs): return MoreMagicMock() def _register_mock(self, name: Optional[str], obj: Any) -> None: """Convert `obj` to LazyRegisterable""" # Instead of register the (possibly mocked) object which is created under the # "fake" package _BOOTSTRAP_PACKAGE, register a lazy-object (i.e. a string) pointing # to its original (possibly un-imported) module. def _resolve_real_module(module_in_bootstrap_package): assert module_in_bootstrap_package.startswith(_BOOTSTRAP_PACKAGE + ".") orig_module = module_in_bootstrap_package[len(_BOOTSTRAP_PACKAGE + ".") :] return orig_module if isinstance(obj, MoreMagicMock): assert obj.mocked_obj_info is not None, obj if name is None: name = obj.mocked_obj_info["__name__"] obj = LazyRegisterable( module=_resolve_real_module(obj.mocked_obj_info["__module__"]), name=obj.mocked_obj_info["__qualname__"], ) elif isinstance(obj, LazyRegisterable): pass else: assert isinstance(obj, CLASS_OR_FUNCTION_TYPES), obj if name is None: name = obj.__name__ obj = LazyRegisterable( module=_resolve_real_module(obj.__module__), name=obj.__qualname__ ) assert isinstance(obj, LazyRegisterable) # During bootstrap, it's possible that the object is already registered # (as non-lazy), because importing a library first and then bootstramp it. Simply # skip the lazy-registration. if name in self and not isinstance(self[name], LazyRegisterable): if self[name].__module__ == obj.module and ( obj.name is None or self[name].__name__ == obj.name ): _log(2, f"{obj} has already registered as {self[name]}, skip...") return orig__register(self, name, obj) @contextlib.contextmanager def _bootstrap_patch(): global _INSIDE_BOOTSTRAP builtins.__import__ = _import_mock builtins.open = _open_mock Registry._register = _register_mock _INSIDE_BOOTSTRAP = True try: yield finally: builtins.__import__ = orig_import builtins.open = orig_open Registry._register = orig__register _INSIDE_BOOTSTRAP = False def _get_registered_names() -> Dict[str, List[str]]: """Return the currently registered names for each registry""" # NOTE: currently only support D2Go's builtin registry module, which can be extended # in future. import d2go.registry.builtin modules = [ d2go.registry.builtin, ] registered = {} for module in modules: registered_in_module = { f"{module.__name__}.{name}": obj.get_names() for name, obj in module.__dict__.items() if isinstance(obj, Registry) } registered.update(registered_in_module) return registered class BootstrapStatus(Enum): CACHED = 0 FULLY_IMPORTED = 1 PARTIALLY_IMPORTED = 2 FAILED = 3 @dataclass class CachedResult: sha1: str registered: Dict[str, str] status: str # string representation of BootstrapStatus def _bootstrap_file( rel_path: str, catch_exception: bool, cached_result: Optional[CachedResult] = None, ) -> Tuple[CachedResult, BootstrapStatus]: # convert relative path to full module name # eg. ".../d2go/a/b/c.py" -> "d2go.a.b.c" # eg. ".../d2go/a/b/__init__.py" -> "d2go.a.b" package_root = os.path.dirname(pkg_resources.resource_filename("d2go", "")) filename = os.path.join(package_root, rel_path) assert rel_path.endswith(".py") module = rel_path[: -len(".py")] if module.endswith("/__init__"): module = module[: -len("/__init__")] module = module.replace("/", ".") exec_globals = { "__file__": filename, # execute in a "fake" package to minimize potential side effect "__name__": "{}.{}".format(_BOOTSTRAP_PACKAGE, module), } with _catchtime() as t: with open(filename) as f: content = f.read() file_hash = hashlib.sha1(content.encode("utf-8")).hexdigest() if cached_result is not None and file_hash == cached_result.sha1: _log( 2, f"Hash {file_hash} matches, lazy registering cached registerables ...", ) registerables = cached_result.registered for registry_module_dot_name, names_to_register in registerables.items(): registry = dynamic_import(registry_module_dot_name) for name in names_to_register: # we only store the registered name in the cache, here we know the # module of bootstrapped file, which should be sufficient. registry.register(name, LazyRegisterable(module=module)) return cached_result, BootstrapStatus.CACHED tree = ast.parse(content) # HACK: convert multiple inheritance to single inheritance, this is needed # because current implementation of MoreMagicMock can't handle this well. # eg. `class MyClass(MyMixin, nn.Module)` -> `class MyClass(MyMixin)` def _truncate_multiple_inheritance(ast_tree): for stmt in ast_tree.body: if isinstance(stmt, ast.ClassDef): if len(stmt.bases) > 1: stmt.bases = stmt.bases[:1] stmt.keywords.clear() _truncate_multiple_inheritance(stmt) _truncate_multiple_inheritance(tree) _log(2, f"Parsing AST takes {t.time} sec") prev_registered = _get_registered_names() with _catchtime() as t: try: with _bootstrap_patch(): exec(compile(tree, filename, "exec"), exec_globals) # noqa status = BootstrapStatus.FULLY_IMPORTED except _BootstrapBreakException: status = BootstrapStatus.PARTIALLY_IMPORTED except Exception as e: if catch_exception: _log( 1, "Encountered the following error during bootstrap:" + "".join(traceback.format_exception(type(e), e, e.__traceback__)), ) else: raise e status = BootstrapStatus.FAILED _log(2, f"Execute file takes {t.time} sec") # compare and get the newly registered cur_registered = _get_registered_names() assert set(cur_registered.keys()) == set(prev_registered.keys()) newly_registered = { k: sorted(set(cur_registered[k]) - set(prev_registered[k])) for k in sorted(cur_registered.keys()) } newly_registered = {k: v for k, v in newly_registered.items() if len(v) > 0} result = CachedResult( sha1=file_hash, registered=newly_registered, status=status.name, ) return result, status class _BootstrapBreakException(Exception): pass def break_bootstrap(): """ In case the file can't be perfectly executed by `_bootstrap_file`, users can call this function to break the process. Because the remaining content in the file will be skipped, avoid using registration statement after calling this function. """ if _INSIDE_BOOTSTRAP: # raise a special exception which will be catched later raise _BootstrapBreakException() # non-op outside of bootstrap return def lazy_on_bootstrap(f: Callable) -> Callable: """ A decorator to mark a function as "lazy" during bootstrap, such that the decorated function will skip the execution and immediately return a MagicMock object during the bootstrap (the decorator is a non-op outside of bootstrap). This can be used to hide un-executable code (usually related to import-time computation) during the bootstrap. For registration related import-time computation, please consider using the `LazyRegisterable` since it will also save time for the normal import. """ def wrapped(*args, **kwargs): if _INSIDE_BOOTSTRAP: return MoreMagicMock() else: return f(*args, **kwargs) return wrapped def _load_cached_results(filename: str) -> Dict[str, CachedResult]: with open(filename) as f: content = f.read() loaded = yaml.safe_load(content) assert isinstance(loaded, dict), f"Wrong format: {content}" results = { filename: CachedResult(**result_dic) for filename, result_dic in loaded.items() } return results def _dump_cached_results(cached_results: Dict[str, CachedResult], filename: str): results_dict = { filename: asdict(result_dic) for filename, result_dic in cached_results.items() } dumped = yaml.safe_dump(results_dict) with open(filename, "w") as f: f.write(dumped) def bootstrap_registries(enable_cache: bool = True, catch_exception: bool = True): """ Bootstrap all registries so that all objects are effectively registered. This function will "import" all the files from certain locations (eg. d2go package) and look for a set of known registries (eg. d2go's builtin registries). The "import" should not have any side effect, which is achieved by mocking builtin.__import__. """ global _IS_BOOTSTRAPPED if _IS_BOOTSTRAPPED: logger.warning("Registries are already bootstrapped, skipped!") return if _INSIDE_BOOTSTRAP: _log(1, "calling bootstrap_registries() inside bootstrap process, skip ...") return start = time.perf_counter() # load cached bootstrap results if exist cached_bootstrap_results: Dict[str, CachedResult] = {} if enable_cache: filename = os.path.join(_get_cache_dir(), _BOOTSTRAP_CACHE_FILENAME) if os.path.isfile(filename): logger.info(f"Loading bootstrap cache at {filename} ...") cached_bootstrap_results = _load_cached_results(filename) else: logger.info( f"Can't find the bootstrap cache at {filename}, start from scratch" ) # locate all the files under d2go package # NOTE: we may extend to support user-defined locations if necessary d2go_root = pkg_resources.resource_filename("d2go", "") logger.info(f"Start bootstrapping for d2go_root: {d2go_root} ...") all_files = glob.glob(f"{d2go_root}/**/*.py", recursive=True) all_files = [os.path.relpath(x, os.path.dirname(d2go_root)) for x in all_files] new_bootstrap_results: Dict[str, CachedResult] = {} files_per_status = defaultdict(list) time_per_file = {} for filename in all_files: _log(1, f"bootstrap for file: {filename}") cached_result = cached_bootstrap_results.get(filename, None) with _catchtime() as t: result, status = _bootstrap_file(filename, catch_exception, cached_result) new_bootstrap_results[filename] = result files_per_status[status].append(filename) time_per_file[filename] = t.time end = time.perf_counter() duration = end - start status_breakdown = ", ".join( [f"{len(files_per_status[status])} {status.name}" for status in BootstrapStatus] ) logger.info( f"Finished bootstrapping for {len(all_files)} files ({status_breakdown})" f" in {duration:.2f} seconds." ) exception_files = [ filename for filename, result in new_bootstrap_results.items() if result.status == BootstrapStatus.FAILED.name ] if len(exception_files) > 0: logger.warning( "Found exception for the following {} files (either during this bootstrap" " run or from previous cached result), registration inside those files" " might not work!\n{}".format( len(exception_files), "\n".join(exception_files), ) ) # Log slowest Top-N files TOP_N = 100 _log(2, f"Top-{TOP_N} slowest files during bootstrap:") all_time = [(os.path.relpath(k, d2go_root), v) for k, v in time_per_file.items()] for x in sorted(all_time, key=lambda x: x[1])[-TOP_N:]: _log(2, x) if enable_cache: filename = os.path.join(_get_cache_dir(), _BOOTSTRAP_CACHE_FILENAME) logger.info(f"Writing updated bootstrap results to {filename} ...") _dump_cached_results(new_bootstrap_results, filename) _IS_BOOTSTRAPPED = True
d2go-main
d2go/registry/bootstrap.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
d2go-main
d2go/registry/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from mobile_cv.common.misc.registry import Registry """ This file contains all D2Go's builtin registries with global scope. - These registries can be treated as "static". There'll be a bootstrap process happens at the beginning of the program to make it works like the registrations happen at compile time (like C++). In another word, the objects are guaranteed to be registered to those builtin registries without user importing their code. - Since the namespace is global, the registered name has to be unique across all projects. """ DEMO_REGISTRY = Registry("DEMO") # Registry for config updater CONFIG_UPDATER_REGISTRY = Registry("CONFIG_UPDATER") # Registry for meta-arch, registered nn.Module should follow D2Go's meta-arch API META_ARCH_REGISTRY = Registry("META_ARCH") # Modeling hook registry MODELING_HOOK_REGISTRY = Registry("MODELING_HOOK") MODELING_HOOK_REGISTRY.__doc__ = """ Registry for modeling hook. The registered object will be called with `obj(cfg)` and expected to return a `ModelingHook` object. """ # Distillation algorithms DISTILLATION_ALGORITHM_REGISTRY = Registry("DISTILLATION_ALGORITHM") # Distillation helper to allow user customization DISTILLATION_HELPER_REGISTRY = Registry("DISTILLATION_HELPER")
d2go-main
d2go/registry/builtin.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from d2go.evaluation.prediction_count_evaluation import PredictionCountEvaluator __all__ = [ "PredictionCountEvaluator", ] # Populating registreis # @fb-only: from d2go.evaluation import fb as _fb # noqa
d2go-main
d2go/evaluation/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from typing import Dict, TypeVar, Union T = TypeVar("T") # "accuracy" in D2Go is defined by a 4-level dictionary in the order of: # model_tag -> dataset -> task -> metrics AccuracyDict = Dict[str, Dict[str, Dict[str, Dict[str, T]]]] # "metric" in D2Go is a nested dictionary, which may have arbitrary levels. MetricsDict = Union[Dict[str, "MetricsDict"], T]
d2go-main
d2go/evaluation/api.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import heapq import itertools import logging from contextlib import contextmanager from detectron2.data import MetadataCatalog from detectron2.evaluation import DatasetEvaluator, SemSegEvaluator from detectron2.utils.comm import all_gather, synchronize logger = logging.getLogger(__name__) class MultiSemSegEvaluator(DatasetEvaluator): """ Evaluate multiple results for the same target. SemSegEvaluator requires the outputs of model to be like: [ {"sem_seg": Tensor}, ] This evaluator allows evaluating mutliple predictions, it may takes outputs like: [ { "prediction_1": {"sem_seg": Tensor}, "prediction_2": {"sem_seg": Tensor}, } ] """ _DUMMY_KEY_PREFIX = "dummy_eval" def __init__(self, dataset_name, *args, distributed, output_dir=None, **kwargs): self._distributed = distributed self._output_dir = output_dir self.evaluators = {} self.dataset_name = dataset_name self.init_args = args self.init_kwargs = kwargs def _get_evaluator(self, key, superclass_name=None): if key in self.evaluators: return self.evaluators[key] def create_evaluator_and_reset(dataset_name): logger.info( "Create an instance of SemSegEvaluator for {} on dataset {} ...".format( key, dataset_name ) ) evaluator = SemSegEvaluator( dataset_name, *self.init_args, **self.init_kwargs, distributed=self._distributed, output_dir=self._output_dir, ) evaluator.reset() return evaluator if superclass_name is None: self.evaluators[key] = create_evaluator_and_reset(self.dataset_name) else: # NOTE: create temporary single-super-class dataset and use standard # evaluator for the dataset metadata = MetadataCatalog.get(self.dataset_name) tmp_dataset_name = "__AUTOGEN__{}@{}".format( self.dataset_name, superclass_name ) from d2go.data.fb.semantic_seg import register_sem_seg if tmp_dataset_name not in MetadataCatalog: if superclass_name in metadata.pseudo_gt_classes: mask_dir = metadata.pseudo_gt_mask_dir else: mask_dir = metadata.mask_dir register_sem_seg( tmp_dataset_name, metadata=metadata.mcs_metadata[superclass_name], image_root=metadata.image_root, sem_seg_root=metadata.sem_seg_root, instances_json=metadata.json_file, mask_dir=mask_dir.format(superclass_name), ) self.evaluators[key] = create_evaluator_and_reset(tmp_dataset_name) return self.evaluators[key] def reset(self): for evaluator in self.evaluators.values(): evaluator.reset() def process(self, inputs, outputs): if "sem_seg" in outputs[0].keys(): # normal eval is compatible with SemSegEvaluator self._get_evaluator("sem_seg").process(inputs, outputs) else: # only the file_name of inputs is needed for SemSegEvaluator inputs_ = [{"file_name": inp["file_name"]} for inp in inputs] for frame_name in outputs[0].keys(): if isinstance(outputs[0]["detect"]["sem_seg"], dict): # multi-class for superclass_name in outputs[0]["detect"]["sem_seg"]: outputs_ = [] for outp in outputs: x = outp[frame_name] x = {"sem_seg": x["sem_seg"][superclass_name]} outputs_.append(x) self._get_evaluator( "sem_seg-{}-{}".format(frame_name, superclass_name), superclass_name=superclass_name, ).process(inputs_, outputs_) else: # convert the output to SemSegEvaluator's format outputs_ = [outp[frame_name] for outp in outputs] self._get_evaluator("sem_seg-{}".format(frame_name)).process( inputs_, outputs_ ) def evaluate(self): results = {} # The evaluation will get stuck sometimes if the follwoing code is not used. # `SemSegEvaluator` will do synchronization between processes when computing # the metrics. In some cases the number of self.evaluators will not be the # same between processes and the code will stuck in synchronization. # For example, evaluate 10 images on 8 GPUs, only 5 GPUs # will be used for evaluation, each has 2 images, the rest 3 GPUs will have # zero self.evaluators as they are constructed on-the-fly when calling # self.process()) # We create additional evaluators so that all processes have the same size # of evaluators so that the synchronization will not get stuck. evaluator_size = len(self.evaluators) synchronize() evaluator_size_list = all_gather(evaluator_size) max_evaluator_size = max(evaluator_size_list) if evaluator_size < max_evaluator_size: # create additional evaluators so that all processes have the same # size of evaluators metadata = MetadataCatalog.get(self.dataset_name) mcs_metadata = metadata.get("mcs_metadata") for idx in range(max_evaluator_size - evaluator_size): dummy_key = f"{self._DUMMY_KEY_PREFIX}_{idx}" assert dummy_key not in self.evaluators if mcs_metadata: for k in mcs_metadata: self._get_evaluator(dummy_key, superclass_name=k).reset() else: self._get_evaluator(dummy_key).reset() for name, evaluator in self.evaluators.items(): result = evaluator.evaluate() # NOTE: .evaluate() returns None for non-main process if result is not None: results[name] = result["sem_seg"] return results class MultiSemSegVidEvaluator(MultiSemSegEvaluator): """ Evaluate semantic segmentation results for video clips. MultiSemSegVidEvaluator requires the outputs of model to be like: [ {"file_names": Tensor}, ] """ def process(self, inputs, outputs): assert "file_names" in inputs[0] inputs_ = [] for batch_id in range(len(inputs)): for frame_i in range(len(inputs[batch_id]["file_names"])): inputs_.append({"file_name": inputs[batch_id]["file_names"][frame_i]}) for name in outputs[0].keys(): # convert the output to SemSegEvaluator's format outputs_ = [outp[name] for outp in outputs] self.evaluators["sem_seg_{}".format(name)].process(inputs_, outputs_) @contextmanager def all_logging_disabled(highest_level=logging.CRITICAL): """ A context manager that will prevent any logging messages triggered during the body from being processed. :param highest_level: the maximum logging level in use. This would only need to be changed if a custom level greater than CRITICAL is defined. """ # two kind-of hacks here: # * can't get the highest logging level in effect => delegate to the user # * can't get the current module-level override => use an undocumented # (but non-private!) interface previous_level = logging.root.manager.disable logging.disable(highest_level) try: yield finally: logging.disable(previous_level) class PerImageEvaluator(object): def __init__( self, evaluator, callback, distributed=True, playback_criterion=None, playback_limit=0, ): self._evaluator = evaluator self._evaluator._distributed = False self._evaluator._output_dir = None self._distributed = distributed self.callback = callback self.results_per_image = [] # record the N most interesting results for playback self.playback_heap = [] self.playback_criterion = playback_criterion self.playback_limit = playback_limit def reset(self): self._evaluator.reset() def process(self, inputs, outputs): self._evaluator.process(inputs, outputs) assert len(inputs) == 1 with all_logging_disabled(): result = self._evaluator.evaluate() self.results_per_image.append((inputs[0], result)) if self.playback_criterion: score = self.playback_criterion(result) heapq.heappush(self.playback_heap, (score, inputs[0], outputs[0], result)) if len(self.playback_heap) > self.playback_limit: heapq.heappop(self.playback_heap) self._evaluator.reset() def evaluate(self): if self._distributed: synchronize() results_per_image = all_gather(self.results_per_image) self.results_per_image = list(itertools.chain(*results_per_image)) playback_heap = all_gather(self.playback_heap) playback_heap = list(itertools.chain(*playback_heap)) # each GPU has local N mininums, sort and take global mininums playback_heap = sorted(playback_heap, key=lambda x: x[0]) self.playback_heap = playback_heap[: self.playback_limit] self.callback(self) return {}
d2go-main
d2go/evaluation/sem_seg_evaluation.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import itertools import logging from collections import OrderedDict import detectron2.utils.comm as comm import numpy as np from detectron2.evaluation import DatasetEvaluator logger = logging.getLogger(__name__) class PredictionCountEvaluator(DatasetEvaluator): """ Custom Detectron2 evaluator class to simply count the number of predictions e.g. on a dataset of hard negatives where there are no annotations, and summarize results into interpretable metrics. See class pattern from detectron2.evaluation.evaluator.py, especially :func:`inference_on_dataset` to see how this class will be called. """ def __init__(self, distributed: bool = True): self._distributed = distributed self.prediction_counts = [] self.confidence_scores = [] def reset(self): self.prediction_counts = [] self.confidence_scores = [] def process(self, inputs, outputs): """ Params: input: the input that's used to call the model. output: the return value of `model(output)` """ # outputs format: # [{ # "instances": Instances( # num_instances=88, # fields=[scores = tensor([list of len num_instances])] # ), ... # }, # ... other dicts # ] for output_dict in outputs: instances = output_dict["instances"] self.prediction_counts.append(len(instances)) self.confidence_scores.extend(instances.get("scores").tolist()) def evaluate(self): """ Returns: In detectron2.tools.train_net.py, following format expected: dict: * key: the name of the task (e.g., bbox) * value: a dict of {metric name: score}, e.g.: {"AP50": 80} """ if self._distributed: comm.synchronize() prediction_counts = comm.gather(self.prediction_counts, dst=0) prediction_counts = list(itertools.chain(*prediction_counts)) confidence_scores = comm.gather(self.confidence_scores, dst=0) confidence_scores = list(itertools.chain(*confidence_scores)) if not comm.is_main_process(): return {} else: prediction_counts = self.prediction_counts confidence_scores = self.confidence_scores mpi = np.mean(prediction_counts) mcp = np.mean(confidence_scores) output_metrics = OrderedDict( { "false_positives": { "predictions_per_image": mpi, "confidence_per_prediction": mcp, } } ) logger.info(f"mean predictions per image: {mpi}") logger.info(f"mean confidence per prediction: {mcp}") return output_metrics
d2go-main
d2go/evaluation/prediction_count_evaluation.py
# Copyright (c) Facebook, Inc. and its affiliates. import logging import os from collections import abc from typing import Any, Iterable, List, Union import torch from detectron2.evaluation import ( DatasetEvaluator, DatasetEvaluators, inference_on_dataset as inference_on_dataset_d2, ) from detectron2.utils import comm from detectron2.utils.file_io import PathManager logger = logging.getLogger(__name__) def DatasetEvaluators_has_finished_process(self): ret = True for x in self._evaluators: if hasattr(x, "has_finished_process"): ret &= x.has_finished_process() else: ret &= False return ret # patch evaluators defined in d2 DatasetEvaluators.has_finished_process = DatasetEvaluators_has_finished_process def inference_on_dataset( model: torch.nn.Module, data_loader: Iterable, evaluator: Union[DatasetEvaluator, List[DatasetEvaluator], None], ): """ A drop-in replacement for d2's inference_on_dataset to run inference on datasets, supports customization for checkpointing * has_finished_process(self) -> bool: return True if `self.process()` could be skipped """ if evaluator is None: return inference_on_dataset_d2(model, data_loader, evaluator) if isinstance(evaluator, abc.MutableSequence): evaluator = DatasetEvaluators(evaluator) if not ( hasattr(evaluator, "has_finished_process") and evaluator.has_finished_process() ): return inference_on_dataset_d2(model, data_loader, evaluator) evaluator.reset() results = evaluator.evaluate() if results is None: results = {} return results class ResultCache(object): def __init__(self, cache_dir: str): """A utility class to handle save/load cache data across processes""" self.cache_str = cache_dir @property def cache_file(self): if self.cache_str is None: return None return os.path.join(self.cache_str, f"_result_cache_.{comm.get_rank()}.pkl") def has_cache(self): return PathManager.isfile(self.cache_file) def load(self, gather: bool = False): """ Load cache results. gather (bool): gather cache results arcoss ranks to a list """ if self.cache_file is None or not PathManager.exists(self.cache_file): ret = None else: with PathManager.open(self.cache_file, "rb") as fp: ret = torch.load(fp) logger.info(f"Loaded from checkpoint {self.cache_file}") if gather: ret = comm.all_gather(ret) return ret def save(self, data: Any): if self.cache_file is None: return PathManager.mkdirs(os.path.dirname(self.cache_file)) with PathManager.open(self.cache_file, "wb") as fp: torch.save(data, fp) logger.info(f"Saved checkpoint to {self.cache_file}")
d2go-main
d2go/evaluation/evaluator.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ API for exporting a pytorch model to a predictor, the predictor contains model(s) in deployable format and predefined functions as glue code. The exported predictor should generate same output as the original pytorch model. (See predictor/api.py for details of predictor) This API defines customizable methods for the pytorch model: prepare_for_export (required by the default export_predictor): returns PredictorExportConfig which tells information about how export the predictor. NOTE: 1: There's a difference between predictor type and model type. model type refers to predefined deployable format such as caffe2, torchscript(_int8), while the predictor type can be anything that "export_predictor" can recognize. 2: The standard model exporting methods are provided by the library code, they're meant to be modularized and can be used by customized export_predictor as well. """ import json import logging import os from typing import Iterable import torch.nn as nn from d2go.config import CfgNode from d2go.export.api import ModelExportMethod, ModelExportMethodRegistry from d2go.quantization.modeling import ( convert_to_quantized_model, post_training_quantize, ) from detectron2.utils.file_io import PathManager from mobile_cv.arch.utils import fuse_utils from mobile_cv.predictor.api import ModelInfo, PredictorInfo logger = logging.getLogger(__name__) def is_predictor_quantized(predictor_type: str) -> bool: return "int8" in predictor_type def convert_model( cfg: CfgNode, pytorch_model: nn.Module, predictor_type: str, data_loader: Iterable, ): """Converts pytorch model to pytorch model (fuse for fp32, fake quantize for int8)""" return ( convert_quantized_model(cfg, pytorch_model, data_loader) if is_predictor_quantized(predictor_type) else _convert_fp_model(cfg, pytorch_model, data_loader) ) def convert_quantized_model( cfg: CfgNode, pytorch_model: nn.Module, data_loader: Iterable ) -> nn.Module: if not cfg.QUANTIZATION.QAT.ENABLED: # For PTQ, converts pytorch model to fake-quantized pytorch model. For QAT, the # built pytorch model is already fake-quantized. logger.info( "The model is not quantized during training, running post" " training quantization ..." ) pytorch_model = post_training_quantize(cfg, pytorch_model, data_loader) # only check bn exists in ptq as qat still has bn inside fused ops if fuse_utils.check_bn_exist(pytorch_model): logger.warn("Post training quantized model has bn inside fused ops") logger.info(f"Converting quantized model {cfg.QUANTIZATION.BACKEND}...") # convert the fake-quantized model to int8 model pytorch_model = convert_to_quantized_model(cfg, pytorch_model) logger.info(f"Quantized Model:\n{pytorch_model}") return pytorch_model def _convert_fp_model( cfg: CfgNode, pytorch_model: nn.Module, data_loader: Iterable ) -> nn.Module: """Converts floating point predictor""" pytorch_model = fuse_utils.fuse_model(pytorch_model) logger.info(f"Fused Model:\n{pytorch_model}") if fuse_utils.count_bn_exist(pytorch_model) > 0: logger.warning("BN existed in pytorch model after fusing.") return pytorch_model def convert_and_export_predictor( cfg, pytorch_model, predictor_type, output_dir, data_loader, ): """ Entry point for convert and export model. This involves two steps: - convert: converting the given `pytorch_model` to another format, currently mainly for quantizing the model. - export: exporting the converted `pytorch_model` to predictor. This step should not alter the behaviour of model. """ pytorch_model = convert_model(cfg, pytorch_model, predictor_type, data_loader) return export_predictor(cfg, pytorch_model, predictor_type, output_dir, data_loader) def export_predictor(cfg, pytorch_model, predictor_type, output_dir, data_loader): """ Interface for exporting a pytorch model to predictor of given type. This function can be override to achieve customized exporting procedure, eg. using non-default optimization passes, composing traced models, etc. Args: cfg (CfgNode): the config pytorch_model (nn.Module): a pytorch model, mostly also a meta-arch predictor_type (str): a string which specifies the type of predictor, note that the definition of type is interpreted by "export_predictor", the default implementation uses the deployable model format (eg. caffe2_fp32, torchscript_int8) as predictor type. output_dir (str): the parent directory where the predictor will be saved data_loader: data loader for the pytorch model Returns: predictor_path (str): the directory of exported predictor, a sub-directory of "output_dir" """ return default_export_predictor( cfg, pytorch_model, predictor_type, output_dir, data_loader ) def _export_single_model( predictor_path, model, input_args, save_path, model_export_method, model_export_kwargs, ): assert isinstance(model, nn.Module), model # model_export_method either inherits ModelExportMethod or is a key in the registry model_export_method_str = None if isinstance(model_export_method, str): model_export_method_str = model_export_method model_export_method = ModelExportMethodRegistry.get(model_export_method) assert issubclass(model_export_method, ModelExportMethod), model_export_method logger.info(f"Using model export method: {model_export_method}") load_kwargs = model_export_method.export( model=model, input_args=input_args, save_path=save_path, export_method=model_export_method_str, **model_export_kwargs, ) assert isinstance(load_kwargs, dict) model_rel_path = os.path.relpath(save_path, predictor_path) return ModelInfo( path=model_rel_path, export_method=f"{model_export_method.__module__}.{model_export_method.__qualname__}", load_kwargs=load_kwargs, ) def default_export_predictor( cfg, pytorch_model, predictor_type, output_dir, data_loader ): # The default implementation acts based on the PredictorExportConfig returned by # calling "prepare_for_export". It'll export all sub models in standard way # according to the "predictor_type". assert hasattr(pytorch_model, "prepare_for_export"), pytorch_model inputs = next(iter(data_loader)) export_config = pytorch_model.prepare_for_export(cfg, inputs, predictor_type) model_inputs = ( export_config.data_generator(inputs) if export_config.data_generator is not None else (inputs,) ) predictor_path = os.path.join(output_dir, predictor_type) PathManager.mkdirs(predictor_path) predictor_init_kwargs = { "preprocess_info": export_config.preprocess_info, "postprocess_info": export_config.postprocess_info, "run_func_info": export_config.run_func_info, } if isinstance(export_config.model, dict): models_info = {} for name, model in export_config.model.items(): save_path = os.path.join(predictor_path, name) model_info = _export_single_model( predictor_path=predictor_path, model=model, input_args=model_inputs[name] if model_inputs is not None else None, save_path=save_path, model_export_method=( predictor_type if export_config.model_export_method is None else export_config.model_export_method[name] ), model_export_kwargs=( {} if export_config.model_export_kwargs is None else export_config.model_export_kwargs[name] ), ) models_info[name] = model_info predictor_init_kwargs["models"] = models_info else: save_path = predictor_path # for single model exported files are put under `predictor_path` together with predictor_info.json model_info = _export_single_model( predictor_path=predictor_path, model=export_config.model, input_args=model_inputs, save_path=save_path, model_export_method=export_config.model_export_method or predictor_type, model_export_kwargs=export_config.model_export_kwargs or {}, ) predictor_init_kwargs["model"] = model_info # assemble predictor predictor_info = PredictorInfo(**predictor_init_kwargs) with PathManager.open( os.path.join(predictor_path, "predictor_info.json"), "w" ) as f: json.dump(predictor_info.to_dict(), f, indent=4) return predictor_path
d2go-main
d2go/export/exporter.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Populating registreis from d2go.export import torchscript as _torchscript # noqa
d2go-main
d2go/export/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import json import sys from abc import ABC, abstractmethod from typing import Callable, Dict, NamedTuple, Optional, Union import torch.nn as nn from mobile_cv.common.misc.file_utils import make_temp_directory from mobile_cv.common.misc.registry import Registry from mobile_cv.predictor.api import FuncInfo from mobile_cv.predictor.builtin_functions import ( IdentityPostprocess, IdentityPreprocess, NaiveRunFunc, ) if sys.version_info >= (3, 8): from typing import final else: # If final decorator not available when using older python version, replace with the # dummy implementation that does nothing. def final(func): return func class PredictorExportConfig(NamedTuple): """ Storing information for exporting a predictor. Args: model (any nested iterable structure of nn.Module): the model(s) to be exported (via tracing/onnx or scripting). This can be sub-model(s) when the predictor consists of multiple models in deployable format, and/or pre/post processing is excluded due to requirement of tracing or hardware incompatibility. data_generator (Callable): a function to generate all data needed for tracing, such that data = data_generator(x), the returned data has the same nested structure as model. The data for each model will be treated as positional arguments, i.e. model(*data). model_export_kwargs (Dict): additional kwargs when exporting each sub-model, it follows the same nested structure as the model, and may contains information such as scriptable. preprocess_info (FuncInfo): info for predictor's preprocess postprocess_info (FuncInfo): info for predictor's postprocess run_func_info (FuncInfo): info for predictor's run_fun """ model: Union[nn.Module, Dict[str, nn.Module]] data_generator: Optional[Callable] = None model_export_method: Optional[Union[str, Dict[str, str]]] = None model_export_kwargs: Optional[Union[Dict, Dict[str, Dict]]] = None preprocess_info: FuncInfo = FuncInfo.gen_func_info(IdentityPreprocess, params={}) postprocess_info: FuncInfo = FuncInfo.gen_func_info(IdentityPostprocess, params={}) run_func_info: FuncInfo = FuncInfo.gen_func_info(NaiveRunFunc, params={}) class ModelExportMethod(ABC): """ Base class for "model export method". Each model export method can export a pytorch model to a certain deployable format, such as torchscript or caffe2. It consists with `export` and `load` methods. """ @classmethod @abstractmethod def export(cls, model, input_args, save_path, export_method, **export_kwargs): """ Export the model to deployable format. Args: model (nn.Module): a pytorch model to export input_args (Tuple[Any]): inputs of model, called as model(*input_args) save_path (str): directory where the model will be exported export_method (str): string name for the export method export_kwargs (Dict): additional parameters for exporting model defined by each model export method. Return: load_kwargs (Dict): additional information (besides save_path) needed in order to load the exported model. This needs to be JSON serializable. """ pass @classmethod @abstractmethod def load(cls, save_path, **load_kwargs): """ Load the exported model back for inference. Args: save_path (str): directory where the model is stored. load_kwargs (Dict): addtional information to load the exported model. Returns: model (nn.Module): a nn.Module (often time a wrapper for non torchscript types like caffe2), it works the same as the original pytorch model, i.e. getting the same output when called as model(*input_args) """ pass @classmethod @final def test_export_and_load( cls, model, input_args, export_method, export_kwargs, output_checker ): """ Illustrate the life-cycle of export and load, used for testing. """ with make_temp_directory("test_export_and_load") as save_path: # run the orginal model assert isinstance(model, nn.Module), model assert isinstance(input_args, (list, tuple)), input_args original_output = model(*input_args) # export the model model.eval() # TODO: decide where eval() should be called load_kwargs = cls.export( model, input_args, save_path, export_method, **export_kwargs ) # sanity check for load_kwargs assert isinstance(load_kwargs, dict), load_kwargs assert json.dumps(load_kwargs), load_kwargs # loaded model back loaded_model = cls.load(save_path, **load_kwargs) # run the loaded model assert isinstance(loaded_model, nn.Module), loaded_model new_output = loaded_model(*input_args) # compare outputs output_checker(new_output, original_output) ModelExportMethodRegistry = Registry("ModelExportMethod", allow_override=True)
d2go-main
d2go/export/api.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import contextlib import logging import os from typing import Any, AnyStr, Dict, List, NamedTuple, Optional, Set, Tuple import torch from d2go.export.api import ModelExportMethod, ModelExportMethodRegistry from detectron2.config.instantiate import dump_dataclass, instantiate from detectron2.export import dump_torchscript_IR from detectron2.export.flatten import flatten_to_tuple, TracingAdapter from detectron2.export.torchscript_patch import patch_builtin_len from detectron2.utils.file_io import PathManager from mobile_cv.common.misc.file_utils import make_temp_directory from mobile_cv.common.misc.iter_utils import recursive_iterate from torch import nn from torch.utils.bundled_inputs import augment_model_with_bundled_inputs from torch.utils.mobile_optimizer import MobileOptimizerType, optimize_for_mobile logger = logging.getLogger(__name__) TORCHSCRIPT_FILENAME_KEY: str = "torchscript_filename" DEFAULT_JIT_MODE = "trace" class MobileOptimizationConfig(NamedTuple): # optimize_for_mobile optimization_blocklist: Set[MobileOptimizerType] = None preserved_methods: List[AnyStr] = None backend: str = "CPU" torchscript_filename: str = "mobile_optimized.ptl" def export_optimize_and_save_torchscript( model: nn.Module, inputs: Optional[Tuple[Any]], output_path: str, *, jit_mode: Optional[str] = DEFAULT_JIT_MODE, torchscript_filename: str = "model.jit", mobile_optimization: Optional[MobileOptimizationConfig] = None, _extra_files: Optional[Dict[str, bytes]] = None, ) -> str: """ The primary function for exporting PyTorch model to TorchScript. Args: model (nn.Module): the model to export. When given a ScriptModule, skip the export and only optimize and save model. inputs (tuple or None): input arguments of model, can be called as model(*inputs). Will not be used when scripting the model. output_path (str): directory that the model will be saved. jit_mode (str): trace/script or None if the model is already a ScriptModule. torchscript_filename (str): the filename of non-mobile-optimized model. mobile_optimization (MobileOptimizationConfig): when provided, the mobile optimization will be applied. _extra_files (Dict[str, bytes]): when provided, extra files will be saved. Returns: (str): filename of the final model no matter optmized or not. """ logger.info("Export, optimize and saving TorchScript to {} ...".format(output_path)) PathManager.mkdirs(output_path) if _extra_files is None: _extra_files = {} if isinstance(model, torch.jit.ScriptModule): if jit_mode is not None: logger.info("The input model is already a ScriptModule, skip the jit step") elif jit_mode == "trace": logger.info("Tracing the model ...") with torch.no_grad(): script_model = torch.jit.trace(model, inputs) elif jit_mode == "script": logger.info("Scripting the model ...") script_model = torch.jit.script(model) else: raise ValueError("Unsupported jit_mode: {}".format(jit_mode)) with make_temp_directory("export_optimize_and_save_torchscript") as tmp_dir: @contextlib.contextmanager def _synced_local_file(rel_path): remote_file = os.path.join(output_path, rel_path) local_file = os.path.join(tmp_dir, rel_path) yield local_file PathManager.copy_from_local(local_file, remote_file, overwrite=True) with _synced_local_file(torchscript_filename) as model_file: logger.info(f"Saving torchscript model to: {torchscript_filename}") torch.jit.save(script_model, model_file, _extra_files=_extra_files) dump_torchscript_IR(script_model, os.path.join(output_path, "torchscript_IR")) data_filename = "data.pth" with _synced_local_file(data_filename) as data_file: logger.info(f"Saving example data to: {data_filename}") torch.save(inputs, data_file) if mobile_optimization is not None: logger.info("Applying optimize_for_mobile ...") liteopt_model = optimize_for_mobile( script_model, optimization_blocklist=mobile_optimization.optimization_blocklist, preserved_methods=mobile_optimization.preserved_methods, backend=mobile_optimization.backend, ) torchscript_filename = mobile_optimization.torchscript_filename with _synced_local_file(torchscript_filename) as lite_path: logger.info(f"Saving mobile optimized model to: {torchscript_filename}") liteopt_model._save_for_lite_interpreter( lite_path, _extra_files=_extra_files ) op_names = torch.jit.export_opnames(liteopt_model) logger.info( "Operator names from lite interpreter:\n{}".format("\n".join(op_names)) ) logger.info("Applying augment_model_with_bundled_inputs ...") # make all tensors zero-like to save storage iters = recursive_iterate(inputs) for x in iters: if isinstance(x, torch.Tensor): iters.send(torch.zeros_like(x).contiguous()) inputs = iters.value augment_model_with_bundled_inputs(liteopt_model, [inputs]) # For non-cpu backends (e.g. Metal, Vulkan) the bundled inputs need to be # converted with `torch.to(<myDevice>)` in order to predict successfully # This is a temporary bypass until PT Edge supports automatic backend # conversion in the bundled inputs interface, or we can auto-add a input tensor # conversion op to Metal and Vulkan models. target_backend = mobile_optimization.backend.lower() if target_backend == "cpu": # Sanity check by running logger.info("Running sanity check for the mobile optimized model ...") liteopt_model(*liteopt_model.get_all_bundled_inputs()[0]) name, ext = os.path.splitext(torchscript_filename) input_bundled_path = name + "_bundled" + ext with _synced_local_file(input_bundled_path) as lite_path: logger.info(f"Saving input bundled model to: {input_bundled_path}") liteopt_model._save_for_lite_interpreter(lite_path) return torchscript_filename # For backward compatibility, TODO: remove this function. def trace_and_save_torchscript( model: nn.Module, inputs: Optional[Tuple[Any]], output_path: str, torchscript_filename: str = "model.jit", mobile_optimization: Optional[MobileOptimizationConfig] = None, _extra_files: Optional[Dict[str, bytes]] = None, ): return export_optimize_and_save_torchscript( model, inputs, output_path, jit_mode="trace", torchscript_filename=torchscript_filename, mobile_optimization=mobile_optimization, _extra_files=_extra_files, ) class TorchscriptWrapper(nn.Module): """ """ def __init__(self, module, int8_backend=None): super().__init__() self.module = module self.int8_backend = int8_backend def forward(self, *args, **kwargs): # TODO: set int8 backend accordingly if needed return self.module(*args, **kwargs) def get_wrapped_models(self): return self.module def load_torchscript(model_path): extra_files = {} # NOTE: may support loading extra_file specified by model_info # extra_files["predictor_info.json"] = "" with PathManager.open(model_path, "rb") as f: ts = torch.jit.load(f, _extra_files=extra_files) return TorchscriptWrapper(ts) def _is_data_flattened_tensors(data): if isinstance(data, torch.Tensor): return True if isinstance(data, (tuple, list)): if all(isinstance(x, torch.Tensor) for x in data): return True return False def tracing_adapter_wrap_export(old_f): def new_f(cls, model, input_args, save_path, export_method, **export_kwargs): force_disable_tracing_adapter = export_kwargs.pop( "force_disable_tracing_adapter", False ) is_trace_mode = export_kwargs.get("jit_mode", "trace") == "trace" if force_disable_tracing_adapter or not is_trace_mode: logger.info("Not trace mode, export normally") return old_f( cls, model, input_args, save_path, export_method, **export_kwargs ) if _is_data_flattened_tensors(input_args): logger.info("Dry run the model to check if TracingAdapter is needed ...") outputs = model(*input_args) if _is_data_flattened_tensors(outputs): logger.info( "Both inputs and outputs are flattened tensors, export the model as is." ) load_kwargs = old_f( cls, model, input_args, save_path, export_method, **export_kwargs ) assert "tracing_adapted" not in load_kwargs load_kwargs.update({"tracing_adapted": False}) return load_kwargs else: logger.info( "The outputs are not flattened tensors, can't trace normally." ) else: logger.info("The inputs are not flattened tensors, can't trace normally.") logger.warning( "Wrap the model with TracingAdapter to handle non-flattened inputs/outputs," " please be aware that the exported model will have different input/output data structure." ) adapter = TracingAdapter(model, input_args) load_kwargs = old_f( cls, adapter, adapter.flattened_inputs, save_path, export_method, **export_kwargs, ) inputs_schema = dump_dataclass(adapter.inputs_schema) outputs_schema = dump_dataclass(adapter.outputs_schema) assert "tracing_adapted" not in load_kwargs assert "inputs_schema" not in load_kwargs assert "outputs_schema" not in load_kwargs load_kwargs.update( { "tracing_adapted": True, "inputs_schema": inputs_schema, "outputs_schema": outputs_schema, } ) return load_kwargs return new_f class TracingAdapterModelWrapper(nn.Module): def __init__(self, traced_model, inputs_schema, outputs_schema): super().__init__() self.traced_model = traced_model self.inputs_schema = inputs_schema self.outputs_schema = outputs_schema def forward(self, *input_args): flattened_inputs, _ = flatten_to_tuple(input_args) flattened_outputs = self.traced_model(*flattened_inputs) return self.outputs_schema(flattened_outputs) def get_wrapped_models(self): return self.traced_model def tracing_adapter_wrap_load(old_f): def new_f(cls, save_path, **load_kwargs): tracing_adapted = load_kwargs.pop("tracing_adapted", False) if not tracing_adapted: logger.info("The model is not tracing adapted, load it normally.") return old_f(cls, save_path, **load_kwargs) logger.info( "The model is tracing adapted, load the schema and wrap the model for inference." ) assert "inputs_schema" in load_kwargs, load_kwargs.keys() assert "outputs_schema" in load_kwargs, load_kwargs.keys() inputs_schema = instantiate(load_kwargs.pop("inputs_schema")) outputs_schema = instantiate(load_kwargs.pop("outputs_schema")) traced_model = old_f(cls, save_path, **load_kwargs) return TracingAdapterModelWrapper(traced_model, inputs_schema, outputs_schema) return new_f def update_export_kwargs_from_export_method(old_f): """ Provide some convenient way of updating export_kwargs by adding trigger words in `export_method`. For example, instead of setting `mobile_optimization` in the model_export_kwargs of the PredictorExportConfig, user can simply put the `_mobile` trigger word in the --predictor-type (which will then be forwarded as `export_method` in most cases) to enable mobile optimizaiton. Please note that there's a finite set of allowed "export_method" values, and an error will be raised if the string cannot be fully parsed. The recognized values generally follow a pattern of: "torchscript[_mobile][_int8][-vulkan | -metal][@scripting | @tracing]" Some examples (not comprehensive because flag words' order can be swapped): "torchscript" "torchscript_mobile" "torchscript_mobile-metal" "torchscript_mobile-vulkan" "torchscript_mobile_int8" "torchscript@scripting" "torchscript_int8@scripting" "torchscript_mobile@scripting" "torchscript_mobile-metal@scripting" "torchscript_mobile-vulkan@scripting" "torchscript_mobile_int8@scripting" "torchscript@tracing" "torchscript_int8@tracing" "torchscript_mobile@tracing" "torchscript_mobile-metal@tracing" "torchscript_mobile-vulkan@tracing" "torchscript_mobile_int8@tracing" """ def new_f(cls, model, input_args, save_path, export_method, **export_kwargs): if export_method is not None: assert isinstance(export_method, str) original_export_method = export_method if "_mobile" in export_method: if "mobile_optimization" in export_kwargs: logger.warning( "`mobile_optimization` is already specified, keep using it" ) else: # Infer a MobileOptimizationConfig if none was provided # "CPU" backend default. If found appropriate suffix, update the backend if "-metal" in export_method: mobile_opt_config = MobileOptimizationConfig(backend="metal") export_method = export_method.replace("-metal", "", 1) elif "-vulkan" in export_method: mobile_opt_config = MobileOptimizationConfig(backend="vulkan") export_method = export_method.replace("-vulkan", "", 1) else: mobile_opt_config = MobileOptimizationConfig() export_kwargs["mobile_optimization"] = mobile_opt_config export_method = export_method.replace("_mobile", "", 1) if "@scripting" in export_method: jit_mode = export_kwargs.get("jit_mode", None) if jit_mode and jit_mode != "script": logger.warning( "`jit_mode` is already specified as {}, overwrite it to `script`" " since @scripting appears in export_method".format(jit_mode) ) export_kwargs["jit_mode"] = "script" export_method = export_method.replace("@scripting", "", 1) if "@tracing" in export_method: jit_mode = export_kwargs.get("jit_mode", None) if jit_mode and jit_mode != "trace": logger.warning( "`jit_mode` is already specified as {}, overwrite it to `trace`" " since @tracing appears in export_method".format(jit_mode) ) export_kwargs["jit_mode"] = "trace" export_method = export_method.replace("@tracing", "", 1) if "_int8" in export_method: export_method = export_method.replace("_int8", "", 1) if export_method != "torchscript": logger.warning( "Suspcious export_method after removing triggering words," " original export_method: {}, remaining: {}".format( original_export_method, export_method ) ) return old_f(cls, model, input_args, save_path, export_method, **export_kwargs) return new_f class DefaultTorchscriptExport(ModelExportMethod): @classmethod @update_export_kwargs_from_export_method def export( cls, model: nn.Module, input_args: Tuple[Tuple[torch.Tensor]], save_path: str, export_method: Optional[str], **export_kwargs, ): expected_arguments = { "jit_mode", "torchscript_filename", "mobile_optimization", "_extra_files", } filtered_kwargs = { k: v for k, v in export_kwargs.items() if k in expected_arguments } torchscript_filename = export_optimize_and_save_torchscript( model, input_args, save_path, **filtered_kwargs ) return {TORCHSCRIPT_FILENAME_KEY: torchscript_filename} @classmethod def load(cls, save_path, *, torchscript_filename="model.jit"): model_path = os.path.join(save_path, torchscript_filename) return load_torchscript(model_path) @ModelExportMethodRegistry.register("torchscript") @ModelExportMethodRegistry.register("torchscript_int8") @ModelExportMethodRegistry.register("torchscript_mobile") @ModelExportMethodRegistry.register("torchscript_mobile-metal") @ModelExportMethodRegistry.register("torchscript_mobile-vulkan") @ModelExportMethodRegistry.register("torchscript_mobile_int8") @ModelExportMethodRegistry.register("torchscript@scripting") @ModelExportMethodRegistry.register("torchscript_int8@scripting") @ModelExportMethodRegistry.register("torchscript_mobile@scripting") @ModelExportMethodRegistry.register("torchscript_mobile-metal@scripting") @ModelExportMethodRegistry.register("torchscript_mobile-vulkan@scripting") @ModelExportMethodRegistry.register("torchscript_mobile_int8@scripting") @ModelExportMethodRegistry.register("torchscript@tracing") @ModelExportMethodRegistry.register("torchscript_int8@tracing") @ModelExportMethodRegistry.register("torchscript_mobile@tracing") @ModelExportMethodRegistry.register("torchscript_mobile-metal@tracing") @ModelExportMethodRegistry.register("torchscript_mobile-vulkan@tracing") @ModelExportMethodRegistry.register("torchscript_mobile_int8@tracing") class TracingAdaptedTorchscriptExport(DefaultTorchscriptExport): @classmethod @update_export_kwargs_from_export_method @tracing_adapter_wrap_export def export(cls, model, input_args, save_path, export_method, **export_kwargs): with patch_builtin_len(): return super().export( model, input_args, save_path, export_method, **export_kwargs ) @classmethod @tracing_adapter_wrap_load def load(cls, save_path, **load_kwargs): return super().load(save_path, **load_kwargs)
d2go-main
d2go/export/torchscript.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import itertools import logging import operator from collections import defaultdict, OrderedDict from typing import Dict import torch from d2go.config import CfgNode from d2go.data.dataset_mappers.build import build_dataset_mapper from d2go.data.utils import ClipLengthGroupedDataset from detectron2.data import ( build_batch_data_loader, build_detection_train_loader, get_detection_dataset_dicts, ) from detectron2.data.build import worker_init_reset_seed from detectron2.data.common import DatasetFromList, MapDataset from detectron2.data.dataset_mapper import DatasetMapper from detectron2.data.samplers import RepeatFactorTrainingSampler from detectron2.utils.comm import get_world_size from mobile_cv.common.misc.oss_utils import fb_overwritable from tabulate import tabulate logger = logging.getLogger(__name__) def add_weighted_training_sampler_default_configs(cfg: CfgNode): """ The CfgNode under cfg.DATASETS.TRAIN_REPEAT_FACTOR should be a list of tuples (dataset_name, scalar-repeat-factor) specifying upsampled frequencies for each dataset when using RepeatFactorTrainingSampler. An example looks like: DATASETS: TRAIN: - "train_1" - "train_2" - "small_train_3" TEST: ... TRAIN_REPEAT_FACTOR: - ["small_train_3", 2.5] """ cfg.DATASETS.TRAIN_REPEAT_FACTOR = [] def add_random_subset_training_sampler_default_configs(cfg: CfgNode): """ Add default cfg.DATALOADER.RANDOM_SUBSET_RATIO for RandomSubsetTrainingSampler The CfgNode under cfg.DATALOADER.RANDOM_SUBSET_RATIO should be a float > 0 and <= 1 """ cfg.DATALOADER.RANDOM_SUBSET_RATIO = 1.0 def get_train_datasets_repeat_factors(cfg: CfgNode) -> Dict[str, float]: repeat_factors = cfg.DATASETS.TRAIN_REPEAT_FACTOR assert all(len(tup) == 2 for tup in repeat_factors) name_to_weight = defaultdict(lambda: 1, dict(repeat_factors)) # The sampling weights map should only contain datasets in train config unrecognized = set(name_to_weight.keys()) - set(cfg.DATASETS.TRAIN) assert not unrecognized, f"unrecognized datasets: {unrecognized}" logger.info(f"Found repeat factors: {list(name_to_weight.items())}") # pyre-fixme[7]: Expected `Dict[str, float]` but got `DefaultDict[typing.Any, int]`. return name_to_weight def get_sampling_probability_table( dataset_sizes: Dict[str, int], dataset_repeat_factors: Dict[str, float] ) -> str: total_sum = sum( dataset_repeat_factors.get(dsname, 1.0) * size for dsname, size in dataset_sizes.items() ) sample_prob_data = [ ( dsname, size, dataset_repeat_factors.get(dsname, 1.0), (dataset_repeat_factors.get(dsname, 1.0) * size) * 100 / total_sum, ) for dsname, size in dataset_sizes.items() ] headers = ["Dataset", "Samples", "Repeat factor", "Sample Prob (%)"] table = tabulate(sample_prob_data, headers=headers, tablefmt="pipe") return table def build_weighted_detection_train_loader( cfg: CfgNode, mapper=None, enable_category_balance=False ): dataset_repeat_factors = get_train_datasets_repeat_factors(cfg) # OrderedDict to guarantee order of values() consistent with repeat factors dataset_name_to_dicts = OrderedDict( { name: get_detection_dataset_dicts( [name], filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS, min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE if cfg.MODEL.KEYPOINT_ON else 0, proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None, ) for name in cfg.DATASETS.TRAIN } ) # Repeat factor for every sample in the dataset repeat_factors = [ [dataset_repeat_factors[dsname]] * len(dataset_name_to_dicts[dsname]) for dsname in cfg.DATASETS.TRAIN ] sampling_prob_table = get_sampling_probability_table( {dsname: len(dataset_name_to_dicts[dsname]) for dsname in cfg.DATASETS.TRAIN}, dataset_repeat_factors, ) logger.info("Dataset TRAIN sampling probability: \n" + sampling_prob_table) repeat_factors = list(itertools.chain.from_iterable(repeat_factors)) dataset_dicts = dataset_name_to_dicts.values() dataset_dicts = list(itertools.chain.from_iterable(dataset_dicts)) dataset = DatasetFromList(dataset_dicts, copy=False) if mapper is None: mapper = DatasetMapper(cfg, True) dataset = MapDataset(dataset, mapper) repeat_factors = torch.tensor(repeat_factors) if enable_category_balance: """ 1. Calculate repeat factors using category frequency for each dataset and then merge them. 2. Element wise dot producting the dataset frequency repeat factors with the category frequency repeat factors gives the final repeat factors. """ category_repeat_factors = [ RepeatFactorTrainingSampler.repeat_factors_from_category_frequency( dataset_dict, cfg.DATALOADER.REPEAT_THRESHOLD ) for dataset_dict in dataset_name_to_dicts.values() ] # flatten the category repeat factors from all datasets category_repeat_factors = list( itertools.chain.from_iterable(category_repeat_factors) ) category_repeat_factors = torch.tensor(category_repeat_factors) repeat_factors = torch.mul(category_repeat_factors, repeat_factors) repeat_factors = repeat_factors / torch.min(repeat_factors) logger.info( "Using WeightedCategoryTrainingSampler with repeat_factors={}".format( cfg.DATASETS.TRAIN_REPEAT_FACTOR ) ) else: logger.info( "Using WeightedTrainingSampler with repeat_factors={}".format( cfg.DATASETS.TRAIN_REPEAT_FACTOR ) ) sampler = RepeatFactorTrainingSampler(repeat_factors) return build_batch_data_loader( dataset, sampler, cfg.SOLVER.IMS_PER_BATCH, aspect_ratio_grouping=cfg.DATALOADER.ASPECT_RATIO_GROUPING, num_workers=cfg.DATALOADER.NUM_WORKERS, ) def build_clip_grouping_data_loader(dataset, sampler, total_batch_size, num_workers=0): """ Build a batched dataloader for training with video clips. Args: dataset (torch.utils.data.Dataset): map-style PyTorch dataset. Can be indexed. sampler (torch.utils.data.sampler.Sampler): a sampler that produces indices total_batch_size (int): total batch size across GPUs. num_workers (int): number of parallel data loading workers Returns: iterable[list]. Length of each list is the batch size of the current GPU. Each element in the list comes from the dataset. """ world_size = get_world_size() assert ( total_batch_size > 0 and total_batch_size % world_size == 0 ), "Total batch size ({}) must be divisible by the number of gpus ({}).".format( total_batch_size, world_size ) batch_size = total_batch_size // world_size data_loader = torch.utils.data.DataLoader( dataset, sampler=sampler, num_workers=num_workers, batch_sampler=None, collate_fn=operator.itemgetter(0), # don't batch, but yield individual elements worker_init_fn=worker_init_reset_seed, ) # yield individual mapped dict return ClipLengthGroupedDataset(data_loader, batch_size) @fb_overwritable() def build_mapped_train_loader(cfg, mapper): if cfg.DATALOADER.SAMPLER_TRAIN == "WeightedTrainingSampler": # balancing only datasets frequencies data_loader = build_weighted_detection_train_loader(cfg, mapper=mapper) elif cfg.DATALOADER.SAMPLER_TRAIN == "WeightedCategoryTrainingSampler": # balancing both datasets and its categories data_loader = build_weighted_detection_train_loader( cfg, mapper=mapper, enable_category_balance=True ) else: data_loader = build_detection_train_loader(cfg, mapper=mapper) return data_loader def build_d2go_train_loader(cfg, mapper=None): """ Build the dataloader for training in D2Go. This is the main entry and customizations will be done by using Registry. This interface is currently experimental. """ logger.info("Building D2Go's train loader ...") # TODO: disallow passing mapper and use registry for all mapper registering mapper = mapper or build_dataset_mapper(cfg, is_train=True) logger.info("Using dataset mapper:\n{}".format(mapper)) data_loader = build_mapped_train_loader(cfg, mapper) # TODO: decide if move vis_wrapper inside this interface return data_loader
d2go-main
d2go/data/build.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from d2go.config import CfgNode as CN def add_d2go_data_default_configs(_C): _C.D2GO_DATA = CN() # Config for "detectron2go.data.extended_coco.extended_coco_load" _C.D2GO_DATA.DATASETS = CN() # List of class names to use when loading the data, this applies to train # and test separately. Default value means using all classes, otherwise it'll create # new json file containing only given categories. _C.D2GO_DATA.DATASETS.TRAIN_CATEGORIES = () _C.D2GO_DATA.DATASETS.TEST_CATEGORIES = () # Register a list of COCO datasets in config # The following specifies additional coco data to inject. The required is the # name (NAMES), image root (IM_DIRS), coco json file (JSON_FILES) while keypoint # metadata (KEYPOINT_METADATA) is optional. The keypoint metadata name provided # here is used to lookup the metadata specified within the KEYPOINT_METADATA # metadata registry specified in "data/keypoint_metadata_registry.py". For adding # new use cases, simply register new metadata to that registry. _C.D2GO_DATA.DATASETS.COCO_INJECTION = CN() _C.D2GO_DATA.DATASETS.COCO_INJECTION.NAMES = [] _C.D2GO_DATA.DATASETS.COCO_INJECTION.IM_DIRS = [] _C.D2GO_DATA.DATASETS.COCO_INJECTION.JSON_FILES = [] _C.D2GO_DATA.DATASETS.COCO_INJECTION.KEYPOINT_METADATA = [] _C.D2GO_DATA.DATASETS.COCO_INJECTION.REGISTER_FUNCTION = "_register_extended_coco" # On-the-fly register a list of datasets located under detectron2go/datasets # by specifying the filename (without .py). _C.D2GO_DATA.DATASETS.DYNAMIC_DATASETS = [] # Config for caching the dataset annotations on local disk _C.D2GO_DATA.DATASETS.DISK_CACHE = CN() _C.D2GO_DATA.DATASETS.DISK_CACHE.ENABLED = False # TODO: potentially add this config # # List of extra keys in annotation, the item will be forwarded by # # extended_coco_load. # _C.D2GO_DATA.DATASETS.ANNOTATION_FIELDS_TO_FORWARD = () # Config for D2GoDatasetMapper _C.D2GO_DATA.MAPPER = CN() # dataset mapper name _C.D2GO_DATA.MAPPER.NAME = "D2GoDatasetMapper" # When enabled, image item from json dataset doesn't need to have width/hegiht, # they will be backfilled once image is loaded. This may cause issue when # width/hegiht is acutally been used by extended_coco_load, eg. grouping # by aspect ratio. _C.D2GO_DATA.MAPPER.BACKFILL_SIZE = False _C.D2GO_DATA.MAPPER.RETRY = 3 _C.D2GO_DATA.MAPPER.CATCH_EXCEPTION = True _C.D2GO_DATA.AUG_OPS = CN() # List of transforms that are represented by string. Each string starts with # a registered name in TRANSFORM_OP_REGISTRY, optionally followed by a string # argument (separated by "::") which can be used for initializing the # transform object. See build_transform_gen for the detail. # Some examples are: # example 1: RandomFlipOp # example 2: RandomFlipOp::{} # example 3: RandomFlipOp::{"prob":0.5} # example 4: RandomBrightnessOp::{"intensity_min":1.0, "intensity_max":2.0} # NOTE: search "example repr:" in fbcode for examples. _C.D2GO_DATA.AUG_OPS.TRAIN = ["ResizeShortestEdgeOp", "RandomFlipOp"] _C.D2GO_DATA.AUG_OPS.TEST = ["ResizeShortestEdgeOp"] _C.D2GO_DATA.TEST = CN() # Evaluate on the first specified number of images for each datset during # testing, default value 0 means using all images. # NOTE: See maybe_subsample_n_images for details. _C.D2GO_DATA.TEST.MAX_IMAGES = 0 _C.D2GO_DATA.TEST.SUBSET_SAMPLING = "frontmost" # one of {"frontmost", "random"} return _C
d2go-main
d2go/data/config.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import atexit import logging import pickle import shutil import uuid import numpy as np from detectron2.utils import comm from detectron2.utils.logger import log_every_n_seconds logger = logging.getLogger(__name__) # NOTE: Use unique ROOT_CACHE_DIR for each run, during the run, each instance of data # loader will create a `cache_dir` under ROOT_CACHE_DIR. When the DL instance is GC-ed, # the `cache_dir` will be removed by __del__; when the run is finished or interrupted, # atexit.register will be triggered to remove the ROOT_CACHE_DIR to make sure there's no # leftovers. Regarding DDP, although each GPU process has their own random value for # ROOT_CACHE_DIR, but each GPU process uses the same `cache_dir` broadcasted from local # master rank, which is then inherited by each data loader worker, this makes sure that # `cache_dir` is in-sync between all GPUs and DL works on the same node. ROOT_CACHE_DIR = "/tmp/DatasetFromList_cache_" + uuid.uuid4().hex[:8] def _local_master_gather(func, check_equal=False): if comm.get_local_rank() == 0: x = func() assert x is not None else: x = None x_all = comm.all_gather(x) x_local_master = [x for x in x_all if x is not None] if check_equal: master = x_local_master[0] assert all(x == master for x in x_local_master), x_local_master return x_local_master class DiskCachedList(object): """ Wrap a list, the underlying storage is off-loaded to disk to save RAM usage. """ def __init__(self, lst, strategy="batched_static"): """ Args: lst (list): a list which contains elements to produce. strategy (str): strategy of using diskcache, supported strategies: - native: saving each item individually. - batched_static: group N items together, where N is calculated from the average item size. """ self._lst = lst self._diskcache_strategy = strategy def _serialize(data): buffer = pickle.dumps(data, protocol=-1) return np.frombuffer(buffer, dtype=np.uint8) logger.info( "Serializing {} elements to byte tensors ...".format(len(self._lst)) ) self._lst = [_serialize(x) for x in self._lst] total_size = sum(len(x) for x in self._lst) # TODO: only enabling DiskCachedDataset for large enough dataset logger.info( "Serialized dataset takes {:.2f} MiB".format(total_size / 1024**2) ) self._initialize_diskcache() def _initialize_diskcache(self): from mobile_cv.common.misc.local_cache import LocalCache cache_dir = "{}/{}".format(ROOT_CACHE_DIR, uuid.uuid4().hex[:8]) cache_dir = comm.all_gather(cache_dir)[0] # use same cache_dir logger.info("Creating diskcache database in: {}".format(cache_dir)) self._cache = LocalCache(cache_dir=cache_dir, num_shards=8) # self._cache.cache.clear(retry=True) # seems faster if index exists if comm.get_local_rank() == 0: if self._diskcache_strategy == "naive": for i, item in enumerate(self._lst): ret = self._write_to_local_db((i, item)) assert ret, "Error writing index {} to local db".format(i) pct = 100.0 * i / len(self._lst) self._log_progress(pct) # NOTE: each item might be small in size (hundreds of bytes), # writing million of them can take a pretty long time (hours) # because of frequent disk access. One solution is grouping a batch # of items into larger blob. elif self._diskcache_strategy == "batched_static": TARGET_BYTES = 50 * 1024 average_bytes = np.average( [ self._lst[int(x)].size for x in np.linspace(0, len(self._lst) - 1, 1000) ] ) self._chuck_size = max(1, int(TARGET_BYTES / average_bytes)) logger.info( "Average data size: {} bytes; target chuck data size {} KiB;" " {} items per chuck; {} chucks in total".format( average_bytes, TARGET_BYTES / 1024, self._chuck_size, int(len(self._lst) / self._chuck_size), ) ) for i in range(0, len(self._lst), self._chuck_size): chunk = self._lst[i : i + self._chuck_size] chunk_i = int(i / self._chuck_size) ret = self._write_to_local_db((chunk_i, chunk)) assert ret, "Error writing index {} to local db".format(chunk_i) pct = 100.0 * i / len(self._lst) self._log_progress(pct) # NOTE: instead of using fixed chuck size, items can be grouped dynamically elif self._diskcache_strategy == "batched_dynamic": raise NotImplementedError() else: raise NotImplementedError(self._diskcache_strategy) comm.synchronize() logger.info( "Finished writing to local disk, db size: {:.2f} MiB".format( self._cache.cache.volume() / 1024**2 ) ) # Optional sync for some strategies if self._diskcache_strategy == "batched_static": # propagate chuck size and make sure all local rank 0 uses the same value self._chuck_size = _local_master_gather( lambda: self._chuck_size, check_equal=True )[0] logger.info("Gathered chuck size: {}".format(self._chuck_size)) # free the memory of self._lst self._size = _local_master_gather(lambda: len(self._lst), check_equal=True)[0] logger.info("Gathered list size: {}".format(self._size)) del self._lst def _write_to_local_db(self, task): index, record = task db_path = str(index) # suc = self._cache.load(lambda path, x: x, db_path, record) # record = BytesIO(np.random.bytes(np.random.randint(70000, 90000))) suc = self._cache.cache.set(db_path, record, retry=True) return suc def _log_progress(self, percentage): log_every_n_seconds( logging.INFO, "({:.2f}%) Wrote {} elements to local disk cache, db size: {:.2f} MiB".format( percentage, len(self._cache.cache), self._cache.cache.volume() / 1024**2, ), n=10, ) def __len__(self): if self._diskcache_strategy == "batched_static": return self._size else: raise NotImplementedError() def __getitem__(self, idx): if self._diskcache_strategy == "naive": bytes = memoryview(self._cache.cache[str(idx)]) return pickle.loads(bytes) elif self._diskcache_strategy == "batched_static": chunk_i, residual = divmod(idx, self._chuck_size) chunk = self._cache.cache[str(chunk_i)] bytes = memoryview(chunk[residual]) return pickle.loads(bytes) else: raise NotImplementedError() @property def cache_dir(self): """return the current cache dirs of DiskCachedDatasetFromList instance""" return self._cache.cache_dir @staticmethod @atexit.register def _clean_up_root_cache_dir(): # in case the program exists unexpectly, clean all the cache dirs created by # this session. if comm.get_local_rank() == 0: _clean_up_cache_dir(ROOT_CACHE_DIR) def __del__(self): # when data loader goes are GC-ed, remove the cache dir. This is needed to not # waste disk space in case that multiple data loaders are used, eg. running # evaluations on multiple datasets during training. if comm.get_local_rank() == 0: _clean_up_cache_dir(self.cache_dir) def _clean_up_cache_dir(cache_dir): print("Cleaning up cache dir: {}".format(cache_dir)) shutil.rmtree( cache_dir, onerror=lambda func, path, ex: print( "Catch error when removing {}; func: {}; exc_info: {}".format( path, func, ex ) ), )
d2go-main
d2go/data/disk_cache.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import copy import json import logging import os import shlex import subprocess from collections import defaultdict from typing import Callable, Dict, List, Optional import detectron2.utils.comm as comm from d2go.data.cache_util import _cache_json_file from detectron2.data import MetadataCatalog from detectron2.structures import BoxMode from detectron2.utils.file_io import PathManager from pycocotools.coco import COCO logger = logging.getLogger(__name__) class InMemoryCOCO(COCO): def __init__(self, loaded_json): """ In this in-memory version of COCO we don't load json from the file, but direclty use a loaded_json instead. This approach improves both robustness and efficiency, as when we convert from other formats to COCO format, we don't need to save and re-load the json again. """ # load dataset self.dataset = loaded_json self.anns = {} self.cats = {} self.imgs = {} self.imgToAnns, self.catToImgs = defaultdict(list), defaultdict(list) self.createIndex() def extract_archive_file(archive_fn: str, im_dir: str): if not PathManager.exists(im_dir) or not PathManager.ls(im_dir): # Dataset is not deployed. Deploy it. archive_fns = archive_fn # A dataset may be composed of several tgz files, or only one. # If one, make it into a list to make the code later more general if not isinstance(archive_fns, list): archive_fns = [archive_fns] logger.info( "Extracting datasets {} to local machine at {}".format(archive_fns, im_dir) ) if not PathManager.exists(im_dir): PathManager.mkdirs(im_dir) for archive_fn in archive_fns: # Extract the tgz file directly into the target directory, # without precopy. # Note that the tgz file contains a root directory that # we do not want, hence the strip-components=1 commandUnpack = ( "tar -mxzf {src_file} -C {tgt_dir} " "--strip-components=1" ).format(src_file=archive_fn, tgt_dir=im_dir) assert not subprocess.call(shlex.split(commandUnpack)), "Failed to unpack" logger.info("Extracted {}".format(archive_fn)) COCOTEXT_DATASET_CONVERSION_STATUS = {} def save_converted_json(target_json, convert_coco_dict): if target_json in COCOTEXT_DATASET_CONVERSION_STATUS: return PathManager.mkdirs(os.path.dirname(target_json)) if comm.get_local_rank() == 0: with PathManager.open(target_json, "w") as f: json.dump(convert_coco_dict, f) comm.synchronize() COCOTEXT_DATASET_CONVERSION_STATUS[target_json] = True def convert_coco_text_to_coco_detection_json( source_json: str, target_json: str, set_type: Optional[str] = None, min_img_size: int = 100, text_cat_id: int = 1, ) -> Dict: """ This function converts a COCOText style JSON to a COCODetection style JSON. For COCOText see: https://vision.cornell.edu/se3/coco-text-2/ For COCODetection see: http://cocodataset.org/#overview """ with PathManager.open(source_json, "r") as f: coco_text_json = json.load(f) coco_text_json["annotations"] = list(coco_text_json["anns"].values()) coco_text_json["images"] = list(coco_text_json["imgs"].values()) if set_type is not None: # COCO Text style JSONs often mix test, train, and val sets. # We need to make sure we only use the data type we want. coco_text_json["images"] = [ x for x in coco_text_json["images"] if x["set"] == set_type ] coco_text_json["categories"] = [{"name": "text", "id": text_cat_id}] del coco_text_json["cats"] del coco_text_json["imgs"] del coco_text_json["anns"] for ann in coco_text_json["annotations"]: ann["category_id"] = text_cat_id ann["iscrowd"] = 0 # Don't evaluate the model on illegible words if set_type == "val" and ann["legibility"] != "legible": ann["ignore"] = True # Some datasets seem to have extremely small images which break downstream # operations. If min_img_size is set, we can remove these. coco_text_json["images"] = [ x for x in coco_text_json["images"] if x["height"] >= min_img_size and x["width"] >= min_img_size ] # Remap image_ids if necessary if isinstance(coco_text_json["images"][0]["id"], str): image_id_remap = { x["id"]: id_no for (id_no, x) in enumerate(coco_text_json["images"]) } for x in coco_text_json["images"]: x["id"] = image_id_remap[x["id"]] for x in coco_text_json["annotations"]: if x["image_id"] in image_id_remap: x["image_id"] = image_id_remap[x["image_id"]] save_converted_json(target_json, coco_text_json) return coco_text_json def valid_bbox(bbox_xywh: List[int], img_w: int, img_h: int) -> bool: if ( bbox_xywh is None or not len(bbox_xywh) == 4 or (bbox_xywh[3] == 0 or bbox_xywh[2] == 0) or not (0 <= bbox_xywh[0] <= img_w - bbox_xywh[2]) or not (0 <= bbox_xywh[1] <= img_h - bbox_xywh[3]) ): return False return True def valid_bbox_rotated(bbox_xywha: List[int], img_w: int, img_h: int) -> bool: if ( bbox_xywha is None or (bbox_xywha[3] == 0 or bbox_xywha[2] == 0) or not ( 0.4 * bbox_xywha[2] <= bbox_xywha[0] <= img_w - bbox_xywha[2] * 0.4 ) # using 0.4*h and 0.4*w to give some leeway for rotation but still remove huge bboxes for training stability or not (0.4 * bbox_xywha[3] <= bbox_xywha[1] <= img_h - bbox_xywha[3] * 0.4) ): return False return True def convert_coco_annotations( anno_dict_list: List[Dict], record: Dict, remapped_id: Dict, error_report: Dict, filter_invalid_bbox: Optional[bool] = True, ): """ Converts annotations format of coco to internal format while applying some filtering """ converted_annotations = [] for anno in anno_dict_list: # Check that the image_id in this annotation is the same. This fails # only when the data parsing logic or the annotation file is buggy. assert anno["image_id"] == record["image_id"] assert anno.get("ignore", 0) == 0 # Copy fields that do not need additional conversion fields_to_copy = [ "iscrowd", "bbox", "bbox_mode", "keypoints", "category_id", "extras", "point_coords", "point_labels", "associations", "file_name", ] # NOTE: maybe use MetadataCatalog for this obj = {field: anno[field] for field in fields_to_copy if field in anno} # Filter out bad annotations where category do not match if obj.get("category_id", None) not in remapped_id: continue # Bounding boxes: convert and filter out bad bounding box annotations bbox_object = obj.get("bbox", None) if bbox_object: if "bbox_mode" in obj: bbox_object = BoxMode.convert( bbox_object, obj["bbox_mode"], BoxMode.XYWH_ABS ) else: # Assume default box mode is always (x, y, w h) error_report["without_bbox_mode"].cnt += 1 obj["bbox_mode"] = ( BoxMode.XYWHA_ABS if len(obj["bbox"]) == 5 else BoxMode.XYWH_ABS ) if obj["bbox_mode"] != BoxMode.XYWHA_ABS: # for horizontal bboxes if ( filter_invalid_bbox and record.get("width") and record.get("height") and not valid_bbox(bbox_object, record["width"], record["height"]) ): error_report["without_valid_bounding_box"].cnt += 1 continue else: # for rotated bboxes in XYWHA format if ( filter_invalid_bbox and record.get("width") and record.get("height") and not valid_bbox_rotated( bbox_object, record["width"], record["height"] ) ): error_report["without_valid_bounding_box"].cnt += 1 continue # Segmentation: filter and add segmentation segm = anno.get("segmentation", None) if segm: # either list[list[float]] or dict(RLE) if not isinstance(segm, dict): # filter out invalid polygons (< 3 points) segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6] if len(segm) == 0: error_report["without_valid_segmentation"].cnt += 1 continue # ignore this instance obj["segmentation"] = segm # Remap ids obj["category_id"] = remapped_id[obj["category_id"]] converted_annotations.append(obj) return converted_annotations # Error entry class for reporting coco conversion issues class ErrorEntry: def __init__(self, error_name, msg, cnt=0): self.error_name = error_name self.cnt = cnt self.msg = msg def __repr__(self): return f"{self.msg} for {self.error_name}, count = {self.cnt}" def print_conversion_report(ann_error_report, image_error_report, ex_warning_fn): # Report image errors report_str = "" for error_key in image_error_report: if image_error_report[error_key].cnt > 0: report_str += f"\t{image_error_report[error_key]}\n" if error_key == "ignore_image_root" and ex_warning_fn: report_str += f"\texample file name {ex_warning_fn}\n" # Report annotation errors for error_key in ann_error_report: if ann_error_report[error_key].cnt > 0: report_str += f"\t{ann_error_report[error_key]}\n" if len(report_str): logger.warning(f"Conversion issues:\n{report_str}") def _assign_annotations_to_record( record: Dict, converted_anns: List[Dict], all_cat_names: Optional[List[str]] ) -> None: record["annotations"] = converted_anns if converted_anns and all( [ann.get("file_name", "").endswith(".png") for ann in converted_anns] ): if len(converted_anns) == 1: record["sem_seg_file_name"] = converted_anns[0]["file_name"] return assert ( all_cat_names ), f"all_cat_names needs to be specified for MCS dataset: {converted_anns}" record["multi_sem_seg_file_names"] = { all_cat_names[ann["category_id"]]: ann["file_name"] for ann in converted_anns } def _process_associations( record: Dict, converted_anns: List[Dict], _post_process_: Optional[Callable] ) -> None: post_process_dict = {"_post_process_": _post_process_} if _post_process_ else {} record.update(post_process_dict) if "associations" not in record or "associations" not in converted_anns[0]: return assert ( len(converted_anns) == 1 ), "Only one annotation expected when associated frames exist!" for key, associated_ann in converted_anns[0]["associations"].items(): if key not in record["associations"]: continue record["associations"][key] = { "file_name": record["associations"][key], "sem_seg_file_name": associated_ann, } record["associations"][key].update(post_process_dict) # Following D23593142 to save memory record["associations"] = list(record["associations"]) def convert_to_dict_list( image_root: str, remapped_id: Dict, imgs: List[Dict], anns: List[Dict], dataset_name: Optional[str] = None, all_cat_names: Optional[List[str]] = None, image_direct_copy_keys: Optional[List[str]] = None, filter_invalid_bbox: Optional[bool] = True, filter_empty_annotations: Optional[bool] = True, _post_process_: Optional[Callable] = None, ) -> List[Dict]: ann_error_report = { name: ErrorEntry(name, msg, 0) for name, msg in [ ("without_valid_segmentation", "Instance filtered"), ("without_valid_bounding_box", "Instance filtered"), ("without_bbox_mode", "Warning"), ] } image_error_report = { name: ErrorEntry(name, msg, 0) for name, msg in [ ("ignore_image_root", f"Image root ignored {image_root}"), ( "no_annotations", "Image filtered" if filter_empty_annotations else "Warning", ), ] } ex_warning_fn = None default_record = {"dataset_name": dataset_name} if dataset_name else {} converted_dict_list = [] for (img_dict, anno_dict_list) in zip(imgs, anns): record = copy.deepcopy(default_record) # NOTE: besides using (relative path) in the "file_name" filed to represent # the image resource, "extended coco" also supports using uri which # represents an image using a single string, eg. "everstore_handle://xxx", if "://" not in img_dict["file_name"]: record["file_name"] = os.path.join(image_root, img_dict["file_name"]) else: if image_root is not None: image_error_report["ignore_image_root"].cnt += 1 ex_warning_fn = ( ex_warning_fn if ex_warning_fn else img_dict["file_name"] ) record["file_name"] = img_dict["file_name"] # Setup image info and id if "height" in img_dict or "width" in img_dict: record["height"] = img_dict["height"] record["width"] = img_dict["width"] record["image_id"] = img_dict["id"] # Convert annotation for dataset_dict converted_anns = convert_coco_annotations( anno_dict_list, record, remapped_id, ann_error_report, filter_invalid_bbox=filter_invalid_bbox, ) if len(converted_anns) == 0: image_error_report["no_annotations"].cnt += 1 if filter_empty_annotations: continue _assign_annotations_to_record(record, converted_anns, all_cat_names) if "associations" in img_dict: record["associations"] = img_dict["associations"] _process_associations(record, converted_anns, _post_process_) # Copy keys if additionally asked if image_direct_copy_keys: for c_key in image_direct_copy_keys: assert c_key in img_dict, f"{c_key} not in coco image entry annotation" record[c_key] = img_dict[c_key] converted_dict_list.append(record) print_conversion_report(ann_error_report, image_error_report, ex_warning_fn) assert len(converted_dict_list) != 0, ( f"Loaded zero entries from {dataset_name}. \n" f" Size of inputs (imgs={len(imgs)}, anns={len(anns)})\n" f" Image issues ({image_error_report})\n" f" Instance issues ({ann_error_report})\n" ) return converted_dict_list def coco_text_load( coco_json_file: str, image_root: str, source_json_file: Optional[str] = None, dataset_name: Optional[str] = None, archive_file: Optional[str] = None, ) -> List[Dict]: if archive_file is not None: if comm.get_local_rank() == 0: extract_archive_file(archive_file, image_root) comm.synchronize() if source_json_file is not None: # Need to convert to coco detection format loaded_json = convert_coco_text_to_coco_detection_json( source_json_file, coco_json_file ) return extended_coco_load(coco_json_file, image_root, dataset_name, loaded_json) return extended_coco_load( coco_json_file, image_root, dataset_name, loaded_json=None ) def extended_coco_load( json_file: str, image_root: str, dataset_name: Optional[str] = None, loaded_json: Optional[str] = None, image_direct_copy_keys: List[str] = None, filter_invalid_bbox: Optional[bool] = True, filter_empty_annotations: Optional[bool] = True, _post_process_: Optional[Callable] = None, ) -> List[Dict]: """ Load a json file with COCO's annotation format. Currently only supports instance segmentation annotations. Args: json_file (str): full path to the json file in COCO annotation format. image_root (str): the directory where the images in this json file exists. dataset_name (str): the name of the dataset (e.g., "coco", "cityscapes"). If provided, this function will also put "thing_classes" into the metadata associated with this dataset. loaded_json (str): optional loaded json content, used in InMemoryCOCO to avoid loading from json_file again. Returns: list[dict]: a list of dicts in "Detectron2 Dataset" format. (See DATASETS.md) Notes: 1. This function does not read the image files. The results do not have the "image" field. 2. When `dataset_name=='coco'`, this function will translate COCO's incontiguous category ids to contiguous ids in [0, 80). """ json_file = _cache_json_file(json_file) if loaded_json is None: coco_api = COCO(json_file) else: coco_api = InMemoryCOCO(loaded_json) associations = coco_api.dataset.get("associations", {}) # Collect classes and remap them starting from 0 all_cat_ids = coco_api.getCatIds() all_cats = coco_api.loadCats(all_cat_ids) all_cat_names = [c["name"] for c in sorted(all_cats, key=lambda x: x["id"])] # Setup id remapping remapped_id = {} for cat_id, cat in zip(all_cat_ids, all_cats): remapped_id[cat_id] = all_cat_names.index(cat["name"]) # Register dataset in metadata catalog if dataset_name is not None: # overwrite attrs meta_dict = MetadataCatalog.get(dataset_name).as_dict() meta_dict["thing_classes"] = all_cat_names meta_dict["thing_dataset_id_to_contiguous_id"] = remapped_id # update MetadataCatalog (cannot change inplace, have to remove) MetadataCatalog.remove(dataset_name) MetadataCatalog.get(dataset_name).set(**meta_dict) # assert the change assert MetadataCatalog.get(dataset_name).thing_classes == all_cat_names # Sort indices for reproducible results img_ids = sorted(coco_api.imgs.keys()) imgs = coco_api.loadImgs(img_ids) anns = [coco_api.imgToAnns[img_id] for img_id in img_ids] logger.info("Loaded {} images from {}".format(len(imgs), json_file)) for img in imgs: association = associations.get(img["file_name"], {}) if association: img["associations"] = association # Return the coco converted to record list return convert_to_dict_list( image_root, remapped_id, imgs, anns, dataset_name=dataset_name, all_cat_names=all_cat_names, image_direct_copy_keys=image_direct_copy_keys, filter_invalid_bbox=filter_invalid_bbox, filter_empty_annotations=filter_empty_annotations, _post_process_=_post_process_, ) if __name__ == "__main__": """ Test the COCO json dataset loader. Usage: python -m detectron2.data.datasets.coco \ path/to/json path/to/image_root dataset_name """ import sys import cv2 from detectron2.utils.logger import setup_logger from detectron2.utils.visualizer import Visualizer logger = setup_logger(name=__name__) meta = MetadataCatalog.get(sys.argv[3]) dicts = extended_coco_load(sys.argv[1], sys.argv[2], sys.argv[3], ["cat", "dog"]) logger.info("Done loading {} samples.".format(len(dicts))) for d in dicts: img = cv2.imread(d["file_name"])[:, :, ::-1] visualizer = Visualizer(img, metadata=meta) vis = visualizer.draw_dataset_dict(d) fpath = os.path.join("coco-data-vis", os.path.basename(d["file_name"])) vis.save(fpath)
d2go-main
d2go/data/extended_coco.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os from mobile_cv.common.misc.oss_utils import fb_overwritable @fb_overwritable() def _cache_json_file(json_file): # TODO: entirely rely on PathManager for caching json_file = os.fspath(json_file) return json_file
d2go-main
d2go/data/cache_util.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import os from d2go.data.extended_coco import _cache_json_file from detectron2.data import MetadataCatalog from detectron2.structures import BoxMode from fvcore.common.timer import Timer """ This file contains functions to parse LVIS-format annotations into dicts in the "Detectron2 format". """ logger = logging.getLogger(__name__) def extended_lvis_load(json_file, image_root, dataset_name=None): """ Load a json file in LVIS's annotation format. Args: json_file (str): full path to the LVIS json annotation file. image_root (str): the directory where the images in this json file exists. dataset_name (str): the name of the dataset (e.g., "lvis_v0.5_train"). If provided, this function will put "thing_classes" into the metadata associated with this dataset. Returns: list[dict]: a list of dicts in "Detectron2 Dataset" format. (See DATASETS.md) Notes: 1. This function does not read the image files. The results do not have the "image" field. """ from lvis import LVIS json_file = _cache_json_file(json_file) timer = Timer() lvis_api = LVIS(json_file) if timer.seconds() > 1: logger.info( "Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()) ) # sort indices for reproducible results img_ids = sorted(list(lvis_api.imgs.keys())) # imgs is a list of dicts, each looks something like: # {'license': 4, # 'url': 'http://farm6.staticflickr.com/5454/9413846304_881d5e5c3b_z.jpg', # 'file_name': 'COCO_val2014_000000001268.jpg', # 'height': 427, # 'width': 640, # 'date_captured': '2013-11-17 05:57:24', # 'id': 1268} imgs = lvis_api.load_imgs(img_ids) # anns is a list[list[dict]], where each dict is an annotation # record for an object. The inner list enumerates the objects in an image # and the outer list enumerates over images. Example of anns[0]: # [{'segmentation': [[192.81, # 247.09, # ... # 219.03, # 249.06]], # 'area': 1035.749, # 'image_id': 1268, # 'bbox': [192.81, 224.8, 74.73, 33.43], # 'category_id': 16, # 'id': 42986}, # ...] anns = [lvis_api.img_ann_map[img_id] for img_id in img_ids] # Sanity check that each annotation has a unique id ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image] assert len(set(ann_ids)) == len( ann_ids ), "Annotation ids in '{}' are not unique".format(json_file) imgs_anns = list(zip(imgs, anns)) logger.info( "Loaded {} images in the LVIS format from {}".format(len(imgs_anns), json_file) ) dataset_dicts = [] count_ignore_image_root_warning = 0 for (img_dict, anno_dict_list) in imgs_anns: record = {} if "://" not in img_dict["file_name"]: file_name = img_dict["file_name"] if img_dict["file_name"].startswith("COCO"): # Convert form the COCO 2014 file naming convention of # COCO_[train/val/test]2014_000000000000.jpg to the 2017 naming # convention of 000000000000.jpg (LVIS v1 will fix this naming issue) file_name = file_name[-16:] record["file_name"] = os.path.join(image_root, file_name) else: if image_root is not None: count_ignore_image_root_warning += 1 if count_ignore_image_root_warning == 1: logger.warning( ( "Found '://' in file_name: {}, ignore image_root: {}" "(logged once per dataset)." ).format(img_dict["file_name"], image_root) ) record["file_name"] = img_dict["file_name"] record["height"] = img_dict["height"] record["width"] = img_dict["width"] record["not_exhaustive_category_ids"] = img_dict.get( "not_exhaustive_category_ids", [] ) record["neg_category_ids"] = img_dict.get("neg_category_ids", []) image_id = record["image_id"] = img_dict["id"] objs = [] for anno in anno_dict_list: # Check that the image_id in this annotation is the same as # the image_id we're looking at. # Fails only when the data parsing logic or the annotation file is buggy. assert anno["image_id"] == image_id obj = {"bbox": anno["bbox"], "bbox_mode": BoxMode.XYWH_ABS} obj["category_id"] = ( anno["category_id"] - 1 ) # Convert 1-indexed to 0-indexed segm = anno["segmentation"] # filter out invalid polygons (< 3 points) valid_segm = [ poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6 ] assert len(segm) == len( valid_segm ), "Annotation contains an invalid polygon with < 3 points" assert len(segm) > 0 obj["segmentation"] = segm objs.append(obj) record["annotations"] = objs dataset_dicts.append(record) if dataset_name: meta = MetadataCatalog.get(dataset_name) meta.thing_classes = get_extended_lvis_instances_meta(lvis_api)["thing_classes"] return dataset_dicts def get_extended_lvis_instances_meta(lvis_api): cat_ids = lvis_api.get_cat_ids() categories = lvis_api.load_cats(cat_ids) assert min(cat_ids) == 1 and max(cat_ids) == len( cat_ids ), "Category ids are not in [1, #categories], as expected" extended_lvis_categories = [k for k in sorted(categories, key=lambda x: x["id"])] thing_classes = [k["name"] for k in extended_lvis_categories] meta = {"thing_classes": thing_classes} return meta if __name__ == "__main__": """ Test the LVIS json dataset loader. Usage: python -m detectron2.data.datasets.lvis \ path/to/json path/to/image_root dataset_name vis_limit """ import sys import detectron2.data.datasets # noqa # add pre-defined metadata import numpy as np from detectron2.utils.logger import setup_logger from detectron2.utils.visualizer import Visualizer from PIL import Image logger = setup_logger(name=__name__) meta = MetadataCatalog.get(sys.argv[3]) dicts = extended_lvis_load(sys.argv[1], sys.argv[2], sys.argv[3]) logger.info("Done loading {} samples.".format(len(dicts))) dirname = "lvis-data-vis" os.makedirs(dirname, exist_ok=True) for d in dicts[: int(sys.argv[4])]: img = np.array(Image.open(d["file_name"])) visualizer = Visualizer(img, metadata=meta) vis = visualizer.draw_dataset_dict(d) fpath = os.path.join(dirname, os.path.basename(d["file_name"])) vis.save(fpath)
d2go-main
d2go/data/extended_lvis.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import functools import importlib import logging import os from collections import namedtuple from d2go.data.extended_coco import coco_text_load, extended_coco_load from d2go.data.extended_lvis import extended_lvis_load from d2go.data.keypoint_metadata_registry import get_keypoint_metadata from d2go.utils.helper import get_dir_path from detectron2.data import DatasetCatalog, MetadataCatalog from detectron2.utils.registry import Registry from mobile_cv.common.misc.oss_utils import fb_overwritable logger = logging.getLogger(__name__) D2GO_DATASETS_BASE_MODULE = "d2go.datasets" IM_DIR = "image_directory" ANN_FN = "annotation_file" LOAD_KWARGS = "load_kwargs" COCO_REGISTER_FUNCTION_REGISTRY = Registry("COCO_REGISTER_FUNCTION_REGISTRY") COCO_REGISTER_FUNCTION_REGISTRY.__doc__ = "Registry - coco register function" InjectedCocoEntry = namedtuple("InjectedCocoEntry", ["func", "split_dict"]) INJECTED_COCO_DATASETS_LUT = {} def get_coco_register_function(cfg): name = cfg.D2GO_DATA.DATASETS.COCO_INJECTION.REGISTER_FUNCTION return COCO_REGISTER_FUNCTION_REGISTRY.get(name) def _import_dataset(module_name): return importlib.import_module( "{}.{}".format(D2GO_DATASETS_BASE_MODULE, module_name) ) @COCO_REGISTER_FUNCTION_REGISTRY.register() def _register_extended_coco(dataset_name, split_dict): json_file = split_dict[ANN_FN] image_root = split_dict[IM_DIR] load_kwargs = split_dict.get(LOAD_KWARGS, {}) # 1. register a function which returns dicts load_coco_json_func = functools.partial( extended_coco_load, json_file=json_file, image_root=image_root, dataset_name=dataset_name, **load_kwargs, ) DatasetCatalog.register(dataset_name, load_coco_json_func) # 2. Optionally, add metadata about this split, # since they might be useful in evaluation, visualization or logging evaluator_type = split_dict.get("evaluator_type", "coco") meta_data = split_dict.get("meta_data", {}) MetadataCatalog.get(dataset_name).set( evaluator_type=evaluator_type, json_file=json_file, image_root=image_root, **meta_data, ) _add_additional_extended_coco_metadata(dataset_name) @fb_overwritable() def _add_additional_extended_coco_metadata(dataset_name): pass def _register_extended_lvis(dataset_name, split_dict): json_file = split_dict[ANN_FN] image_root = split_dict[IM_DIR] # 1. register a function which returns dicts load_lvis_json_func = functools.partial( extended_lvis_load, json_file=json_file, image_root=image_root, dataset_name=dataset_name, ) DatasetCatalog.register(dataset_name, load_lvis_json_func) # 2. Optionally, add metadata about this split, # since they might be useful in evaluation, visualization or logging evaluator_type = split_dict.get("evaluator_type", "lvis") MetadataCatalog.get(dataset_name).set( evaluator_type=evaluator_type, json_file=json_file, image_root=image_root ) def _register_coco_text(dataset_name, split_dict): source_json_file = split_dict[ANN_FN] coco_json_file = "/tmp/{}.json".format(dataset_name) ARCHIVE_FN = "archive_file" # 1. register a function which returns dicts DatasetCatalog.register( dataset_name, functools.partial( coco_text_load, coco_json_file=coco_json_file, image_root=split_dict[IM_DIR], source_json_file=source_json_file, dataset_name=dataset_name, archive_file=split_dict.get(ARCHIVE_FN, None), ), ) # 2. Optionally, add metadata about this split, # since they might be useful in evaluation, visualization or logging evaluator_type = split_dict.get("evaluator_type", "coco") MetadataCatalog.get(dataset_name).set( json_file=coco_json_file, image_root=split_dict[IM_DIR], evaluator_type=evaluator_type, ) def inject_coco_datasets(cfg): names = cfg.D2GO_DATA.DATASETS.COCO_INJECTION.NAMES im_dirs = cfg.D2GO_DATA.DATASETS.COCO_INJECTION.IM_DIRS json_files = cfg.D2GO_DATA.DATASETS.COCO_INJECTION.JSON_FILES metadata_type = cfg.D2GO_DATA.DATASETS.COCO_INJECTION.KEYPOINT_METADATA _register_func = get_coco_register_function(cfg) assert len(names) == len(im_dirs) == len(json_files) for ds_index, (name, im_dir, json_file) in enumerate( zip(names, im_dirs, json_files) ): split_dict = {IM_DIR: im_dir, ANN_FN: json_file} if len(metadata_type) != 0: split_dict["meta_data"] = get_keypoint_metadata(metadata_type[ds_index]) logger.info("Inject coco dataset {}: {}".format(name, split_dict)) _register_func(name, split_dict) INJECTED_COCO_DATASETS_LUT[name] = InjectedCocoEntry( func=_register_func, split_dict=split_dict ) def register_dataset_split(dataset_name, split_dict): """ Register a dataset to detectron2's DatasetCatalog and MetadataCatalog. """ _DATASET_TYPE_LOAD_FUNC_MAP = { "COCODataset": _register_extended_coco, "COCOText": _register_coco_text, "COCOTextDataset": _register_coco_text, "LVISDataset": _register_extended_lvis, } factory = split_dict.get("DS_TYPE", "COCODataset") _DATASET_TYPE_LOAD_FUNC_MAP[factory]( dataset_name=dataset_name, split_dict=split_dict ) def register_json_datasets(): json_dataset_names = [ os.path.splitext(filename)[0] for filename in os.listdir( get_dir_path(D2GO_DATASETS_BASE_MODULE.replace(".", "/")) ) if filename.startswith("json_dataset_") ] json_dataset_names = [ x for x in json_dataset_names if x not in [ "json_dataset_lvis", "json_dataset_oculus_external", "json_dataset_people_ai_foot_tracking", ] ] # load all splits from json datasets all_splits = {} for dataset in json_dataset_names: module = _import_dataset(dataset) assert ( len(set(all_splits).intersection(set(module.DATASETS))) == 0 ), "Name confliction when loading {}".format(dataset) all_splits.update(module.DATASETS) # register all splits for split_name in all_splits: split_dict = all_splits[split_name] register_dataset_split(split_name, split_dict) def register_builtin_datasets(): builtin_dataset_names = [ os.path.splitext(filename)[0] for filename in os.listdir( get_dir_path(D2GO_DATASETS_BASE_MODULE.replace(".", "/")) ) if filename.startswith("builtin_dataset_") ] for dataset in builtin_dataset_names: _import_dataset(dataset) def register_dynamic_datasets(cfg): for dataset in cfg.D2GO_DATA.DATASETS.DYNAMIC_DATASETS: assert dataset.startswith("dynamic_dataset_") _import_dataset(dataset)
d2go-main
d2go/data/datasets.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
d2go-main
d2go/data/__init__.py