python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import torch # from PIL import Image import imageio import numpy as np from cotracker.datasets.utils import CoTrackerData, resize_sample class FastCaptureDataset(torch.utils.data.Dataset): def __init__( self, data_root, max_seq_len=50, max_num_points=20, dataset_resolution=(384, 512), ): self.data_root = data_root self.seq_names = os.listdir(os.path.join(data_root, "renders_local_rm")) self.pth_dir = os.path.join(data_root, "zju_tracking") self.max_seq_len = max_seq_len self.max_num_points = max_num_points self.dataset_resolution = dataset_resolution print("found %d unique videos in %s" % (len(self.seq_names), self.data_root)) def __getitem__(self, index): seq_name = self.seq_names[index] spath = os.path.join(self.data_root, "renders_local_rm", seq_name) pthpath = os.path.join(self.pth_dir, seq_name + ".pth") rgbs = [] img_paths = sorted(os.listdir(spath)) for i, img_path in enumerate(img_paths): if i < self.max_seq_len: rgbs.append(imageio.imread(os.path.join(spath, img_path))) annot_dict = torch.load(pthpath) traj_2d = annot_dict["traj_2d"][:, :, : self.max_seq_len] visibility = annot_dict["visibility"][:, : self.max_seq_len] S = len(rgbs) H, W, __ = rgbs[0].shape *_, S = traj_2d.shape visibile_pts_first_frame_inds = (visibility[:, 0] > 0).nonzero(as_tuple=False)[ :, 0 ] torch.manual_seed(0) point_inds = torch.randperm(len(visibile_pts_first_frame_inds))[ : self.max_num_points ] visible_inds_sampled = visibile_pts_first_frame_inds[point_inds] rgbs = np.stack(rgbs, 0) rgbs = torch.from_numpy(rgbs).reshape(S, H, W, 3).permute(0, 3, 1, 2).float() segs = torch.ones(S, 1, H, W).float() trajs = traj_2d[visible_inds_sampled].permute(2, 0, 1).float() visibles = visibility[visible_inds_sampled].permute(1, 0) rgbs, trajs, segs = resize_sample(rgbs, trajs, segs, self.dataset_resolution) return CoTrackerData(rgbs, segs, trajs, visibles, seq_name=seq_name) def __len__(self): return len(self.seq_names)
co-tracker-main
cotracker/datasets/fast_capture_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
co-tracker-main
cotracker/datasets/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import dataclasses import torch.nn.functional as F from dataclasses import dataclass from typing import Any, Optional @dataclass(eq=False) class CoTrackerData: """ Dataclass for storing video tracks data. """ video: torch.Tensor # B, S, C, H, W segmentation: torch.Tensor # B, S, 1, H, W trajectory: torch.Tensor # B, S, N, 2 visibility: torch.Tensor # B, S, N # optional data valid: Optional[torch.Tensor] = None # B, S, N seq_name: Optional[str] = None query_points: Optional[torch.Tensor] = None # TapVID evaluation format def collate_fn(batch): """ Collate function for video tracks data. """ video = torch.stack([b.video for b in batch], dim=0) segmentation = torch.stack([b.segmentation for b in batch], dim=0) trajectory = torch.stack([b.trajectory for b in batch], dim=0) visibility = torch.stack([b.visibility for b in batch], dim=0) query_points = None if batch[0].query_points is not None: query_points = torch.stack([b.query_points for b in batch], dim=0) seq_name = [b.seq_name for b in batch] return CoTrackerData( video, segmentation, trajectory, visibility, seq_name=seq_name, query_points=query_points, ) def collate_fn_train(batch): """ Collate function for video tracks data during training. """ gotit = [gotit for _, gotit in batch] video = torch.stack([b.video for b, _ in batch], dim=0) segmentation = torch.stack([b.segmentation for b, _ in batch], dim=0) trajectory = torch.stack([b.trajectory for b, _ in batch], dim=0) visibility = torch.stack([b.visibility for b, _ in batch], dim=0) valid = torch.stack([b.valid for b, _ in batch], dim=0) seq_name = [b.seq_name for b, _ in batch] return ( CoTrackerData(video, segmentation, trajectory, visibility, valid, seq_name), gotit, ) def try_to_cuda(t: Any) -> Any: """ Try to move the input variable `t` to a cuda device. Args: t: Input. Returns: t_cuda: `t` moved to a cuda device, if supported. """ try: t = t.float().cuda() except AttributeError: pass return t def dataclass_to_cuda_(obj): """ Move all contents of a dataclass to cuda inplace if supported. Args: batch: Input dataclass. Returns: batch_cuda: `batch` moved to a cuda device, if supported. """ for f in dataclasses.fields(obj): setattr(obj, f.name, try_to_cuda(getattr(obj, f.name))) return obj def resize_sample(rgbs, trajs_g, segs, interp_shape): S, C, H, W = rgbs.shape S, N, D = trajs_g.shape assert D == 2 rgbs = F.interpolate(rgbs, interp_shape, mode="bilinear") segs = F.interpolate(segs, interp_shape, mode="nearest") trajs_g[:, :, 0] *= interp_shape[1] / W trajs_g[:, :, 1] *= interp_shape[0] / H return rgbs, trajs_g, segs
co-tracker-main
cotracker/datasets/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
co-tracker-main
cotracker/utils/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import numpy as np import cv2 import torch import flow_vis from matplotlib import cm import torch.nn.functional as F import torchvision.transforms as transforms from moviepy.editor import ImageSequenceClip import matplotlib.pyplot as plt def read_video_from_path(path): cap = cv2.VideoCapture(path) if not cap.isOpened(): print("Error opening video file") else: frames = [] while cap.isOpened(): ret, frame = cap.read() if ret == True: frames.append(np.array(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))) else: break cap.release() return np.stack(frames) class Visualizer: def __init__( self, save_dir: str = "./results", grayscale: bool = False, pad_value: int = 0, fps: int = 10, mode: str = "rainbow", # 'cool', 'optical_flow' linewidth: int = 2, show_first_frame: int = 10, tracks_leave_trace: int = 0, # -1 for infinite ): self.mode = mode self.save_dir = save_dir if mode == "rainbow": self.color_map = cm.get_cmap("gist_rainbow") elif mode == "cool": self.color_map = cm.get_cmap(mode) self.show_first_frame = show_first_frame self.grayscale = grayscale self.tracks_leave_trace = tracks_leave_trace self.pad_value = pad_value self.linewidth = linewidth self.fps = fps def visualize( self, video: torch.Tensor, # (B,T,C,H,W) tracks: torch.Tensor, # (B,T,N,2) visibility: torch.Tensor = None, # (B, T, N, 1) bool gt_tracks: torch.Tensor = None, # (B,T,N,2) segm_mask: torch.Tensor = None, # (B,1,H,W) filename: str = "video", writer=None, # tensorboard Summary Writer, used for visualization during training step: int = 0, query_frame: int = 0, save_video: bool = True, compensate_for_camera_motion: bool = False, ): if compensate_for_camera_motion: assert segm_mask is not None if segm_mask is not None: coords = tracks[0, query_frame].round().long() segm_mask = segm_mask[0, query_frame][coords[:, 1], coords[:, 0]].long() video = F.pad( video, (self.pad_value, self.pad_value, self.pad_value, self.pad_value), "constant", 255, ) tracks = tracks + self.pad_value if self.grayscale: transform = transforms.Grayscale() video = transform(video) video = video.repeat(1, 1, 3, 1, 1) res_video = self.draw_tracks_on_video( video=video, tracks=tracks, visibility=visibility, segm_mask=segm_mask, gt_tracks=gt_tracks, query_frame=query_frame, compensate_for_camera_motion=compensate_for_camera_motion, ) if save_video: self.save_video(res_video, filename=filename, writer=writer, step=step) return res_video def save_video(self, video, filename, writer=None, step=0): if writer is not None: writer.add_video( f"{filename}_pred_track", video.to(torch.uint8), global_step=step, fps=self.fps, ) else: os.makedirs(self.save_dir, exist_ok=True) wide_list = list(video.unbind(1)) wide_list = [wide[0].permute(1, 2, 0).cpu().numpy() for wide in wide_list] clip = ImageSequenceClip(wide_list[2:-1], fps=self.fps) # Write the video file save_path = os.path.join(self.save_dir, f"{filename}_pred_track.mp4") clip.write_videofile(save_path, codec="libx264", fps=self.fps, logger=None) print(f"Video saved to {save_path}") def draw_tracks_on_video( self, video: torch.Tensor, tracks: torch.Tensor, visibility: torch.Tensor = None, segm_mask: torch.Tensor = None, gt_tracks=None, query_frame: int = 0, compensate_for_camera_motion=False, ): B, T, C, H, W = video.shape _, _, N, D = tracks.shape assert D == 2 assert C == 3 video = video[0].permute(0, 2, 3, 1).byte().detach().cpu().numpy() # S, H, W, C tracks = tracks[0].long().detach().cpu().numpy() # S, N, 2 if gt_tracks is not None: gt_tracks = gt_tracks[0].detach().cpu().numpy() res_video = [] # process input video for rgb in video: res_video.append(rgb.copy()) vector_colors = np.zeros((T, N, 3)) if self.mode == "optical_flow": vector_colors = flow_vis.flow_to_color(tracks - tracks[query_frame][None]) elif segm_mask is None: if self.mode == "rainbow": y_min, y_max = ( tracks[query_frame, :, 1].min(), tracks[query_frame, :, 1].max(), ) norm = plt.Normalize(y_min, y_max) for n in range(N): color = self.color_map(norm(tracks[query_frame, n, 1])) color = np.array(color[:3])[None] * 255 vector_colors[:, n] = np.repeat(color, T, axis=0) else: # color changes with time for t in range(T): color = np.array(self.color_map(t / T)[:3])[None] * 255 vector_colors[t] = np.repeat(color, N, axis=0) else: if self.mode == "rainbow": vector_colors[:, segm_mask <= 0, :] = 255 y_min, y_max = ( tracks[0, segm_mask > 0, 1].min(), tracks[0, segm_mask > 0, 1].max(), ) norm = plt.Normalize(y_min, y_max) for n in range(N): if segm_mask[n] > 0: color = self.color_map(norm(tracks[0, n, 1])) color = np.array(color[:3])[None] * 255 vector_colors[:, n] = np.repeat(color, T, axis=0) else: # color changes with segm class segm_mask = segm_mask.cpu() color = np.zeros((segm_mask.shape[0], 3), dtype=np.float32) color[segm_mask > 0] = np.array(self.color_map(1.0)[:3]) * 255.0 color[segm_mask <= 0] = np.array(self.color_map(0.0)[:3]) * 255.0 vector_colors = np.repeat(color[None], T, axis=0) # draw tracks if self.tracks_leave_trace != 0: for t in range(1, T): first_ind = ( max(0, t - self.tracks_leave_trace) if self.tracks_leave_trace >= 0 else 0 ) curr_tracks = tracks[first_ind : t + 1] curr_colors = vector_colors[first_ind : t + 1] if compensate_for_camera_motion: diff = ( tracks[first_ind : t + 1, segm_mask <= 0] - tracks[t : t + 1, segm_mask <= 0] ).mean(1)[:, None] curr_tracks = curr_tracks - diff curr_tracks = curr_tracks[:, segm_mask > 0] curr_colors = curr_colors[:, segm_mask > 0] res_video[t] = self._draw_pred_tracks( res_video[t], curr_tracks, curr_colors, ) if gt_tracks is not None: res_video[t] = self._draw_gt_tracks( res_video[t], gt_tracks[first_ind : t + 1] ) # draw points for t in range(T): for i in range(N): coord = (tracks[t, i, 0], tracks[t, i, 1]) visibile = True if visibility is not None: visibile = visibility[0, t, i] if coord[0] != 0 and coord[1] != 0: if not compensate_for_camera_motion or ( compensate_for_camera_motion and segm_mask[i] > 0 ): cv2.circle( res_video[t], coord, int(self.linewidth * 2), vector_colors[t, i].tolist(), thickness=-1 if visibile else 2 -1, ) # construct the final rgb sequence if self.show_first_frame > 0: res_video = [res_video[0]] * self.show_first_frame + res_video[1:] return torch.from_numpy(np.stack(res_video)).permute(0, 3, 1, 2)[None].byte() def _draw_pred_tracks( self, rgb: np.ndarray, # H x W x 3 tracks: np.ndarray, # T x 2 vector_colors: np.ndarray, alpha: float = 0.5, ): T, N, _ = tracks.shape for s in range(T - 1): vector_color = vector_colors[s] original = rgb.copy() alpha = (s / T) ** 2 for i in range(N): coord_y = (int(tracks[s, i, 0]), int(tracks[s, i, 1])) coord_x = (int(tracks[s + 1, i, 0]), int(tracks[s + 1, i, 1])) if coord_y[0] != 0 and coord_y[1] != 0: cv2.line( rgb, coord_y, coord_x, vector_color[i].tolist(), self.linewidth, cv2.LINE_AA, ) if self.tracks_leave_trace > 0: rgb = cv2.addWeighted(rgb, alpha, original, 1 - alpha, 0) return rgb def _draw_gt_tracks( self, rgb: np.ndarray, # H x W x 3, gt_tracks: np.ndarray, # T x 2 ): T, N, _ = gt_tracks.shape color = np.array((211.0, 0.0, 0.0)) for t in range(T): for i in range(N): gt_tracks = gt_tracks[t][i] # draw a red cross if gt_tracks[0] > 0 and gt_tracks[1] > 0: length = self.linewidth * 3 coord_y = (int(gt_tracks[0]) + length, int(gt_tracks[1]) + length) coord_x = (int(gt_tracks[0]) - length, int(gt_tracks[1]) - length) cv2.line( rgb, coord_y, coord_x, color, self.linewidth, cv2.LINE_AA, ) coord_y = (int(gt_tracks[0]) - length, int(gt_tracks[1]) + length) coord_x = (int(gt_tracks[0]) + length, int(gt_tracks[1]) - length) cv2.line( rgb, coord_y, coord_x, color, self.linewidth, cv2.LINE_AA, ) return rgb
co-tracker-main
cotracker/utils/visualizer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
co-tracker-main
cotracker/models/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn.functional as F from typing import Tuple from cotracker.models.core.cotracker.cotracker import CoTracker, get_points_on_a_grid class EvaluationPredictor(torch.nn.Module): def __init__( self, cotracker_model: CoTracker, interp_shape: Tuple[int, int] = (384, 512), grid_size: int = 6, local_grid_size: int = 6, single_point: bool = True, n_iters: int = 6, ) -> None: super(EvaluationPredictor, self).__init__() self.grid_size = grid_size self.local_grid_size = local_grid_size self.single_point = single_point self.interp_shape = interp_shape self.n_iters = n_iters self.model = cotracker_model self.model.eval() def forward(self, video, queries): queries = queries.clone() B, T, C, H, W = video.shape B, N, D = queries.shape assert D == 3 assert B == 1 rgbs = video.reshape(B * T, C, H, W) rgbs = F.interpolate(rgbs, tuple(self.interp_shape), mode="bilinear") rgbs = rgbs.reshape(B, T, 3, self.interp_shape[0], self.interp_shape[1]) device = rgbs.device queries[:, :, 1] *= self.interp_shape[1] / W queries[:, :, 2] *= self.interp_shape[0] / H if self.single_point: traj_e = torch.zeros((B, T, N, 2), device=device) vis_e = torch.zeros((B, T, N), device=device) for pind in range((N)): query = queries[:, pind : pind + 1] t = query[0, 0, 0].long() traj_e_pind, vis_e_pind = self._process_one_point(rgbs, query) traj_e[:, t:, pind : pind + 1] = traj_e_pind[:, :, :1] vis_e[:, t:, pind : pind + 1] = vis_e_pind[:, :, :1] else: if self.grid_size > 0: xy = get_points_on_a_grid(self.grid_size, rgbs.shape[3:], device=device) xy = torch.cat([torch.zeros_like(xy[:, :, :1]), xy], dim=2).to( device ) # queries = torch.cat([queries, xy], dim=1) # traj_e, __, vis_e, __ = self.model( rgbs=rgbs, queries=queries, iters=self.n_iters, ) traj_e[:, :, :, 0] *= W / float(self.interp_shape[1]) traj_e[:, :, :, 1] *= H / float(self.interp_shape[0]) return traj_e, vis_e def _process_one_point(self, rgbs, query): t = query[0, 0, 0].long() device = rgbs.device if self.local_grid_size > 0: xy_target = get_points_on_a_grid( self.local_grid_size, (50, 50), [query[0, 0, 2], query[0, 0, 1]], ) xy_target = torch.cat( [torch.zeros_like(xy_target[:, :, :1]), xy_target], dim=2 ) # query = torch.cat([query, xy_target], dim=1).to(device) # if self.grid_size > 0: xy = get_points_on_a_grid(self.grid_size, rgbs.shape[3:], device=device) xy = torch.cat([torch.zeros_like(xy[:, :, :1]), xy], dim=2).to(device) # query = torch.cat([query, xy], dim=1).to(device) # # crop the video to start from the queried frame query[0, 0, 0] = 0 traj_e_pind, __, vis_e_pind, __ = self.model( rgbs=rgbs[:, t:], queries=query, iters=self.n_iters ) return traj_e_pind, vis_e_pind
co-tracker-main
cotracker/models/evaluation_predictor.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch from cotracker.models.core.cotracker.cotracker import CoTracker def build_cotracker( checkpoint: str, ): if checkpoint is None: return build_cotracker_stride_4_wind_8() model_name = checkpoint.split("/")[-1].split(".")[0] if model_name == "cotracker_stride_4_wind_8": return build_cotracker_stride_4_wind_8(checkpoint=checkpoint) elif model_name == "cotracker_stride_4_wind_12": return build_cotracker_stride_4_wind_12(checkpoint=checkpoint) elif model_name == "cotracker_stride_8_wind_16": return build_cotracker_stride_8_wind_16(checkpoint=checkpoint) else: raise ValueError(f"Unknown model name {model_name}") # model used to produce the results in the paper def build_cotracker_stride_4_wind_8(checkpoint=None): return _build_cotracker( stride=4, sequence_len=8, checkpoint=checkpoint, ) def build_cotracker_stride_4_wind_12(checkpoint=None): return _build_cotracker( stride=4, sequence_len=12, checkpoint=checkpoint, ) # the fastest model def build_cotracker_stride_8_wind_16(checkpoint=None): return _build_cotracker( stride=8, sequence_len=16, checkpoint=checkpoint, ) def _build_cotracker( stride, sequence_len, checkpoint=None, ): cotracker = CoTracker( stride=stride, S=sequence_len, add_space_attn=True, space_depth=6, time_depth=6, ) if checkpoint is not None: with open(checkpoint, "rb") as f: state_dict = torch.load(f, map_location="cpu") if "model" in state_dict: state_dict = state_dict["model"] cotracker.load_state_dict(state_dict) return cotracker
co-tracker-main
cotracker/models/build_cotracker.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch EPS = 1e-6 def smart_cat(tensor1, tensor2, dim): if tensor1 is None: return tensor2 return torch.cat([tensor1, tensor2], dim=dim) def normalize_single(d): # d is a whatever shape torch tensor dmin = torch.min(d) dmax = torch.max(d) d = (d - dmin) / (EPS + (dmax - dmin)) return d def normalize(d): # d is B x whatever. normalize within each element of the batch out = torch.zeros(d.size()) if d.is_cuda: out = out.cuda() B = list(d.size())[0] for b in list(range(B)): out[b] = normalize_single(d[b]) return out def meshgrid2d(B, Y, X, stack=False, norm=False, device="cuda"): # returns a meshgrid sized B x Y x X grid_y = torch.linspace(0.0, Y - 1, Y, device=torch.device(device)) grid_y = torch.reshape(grid_y, [1, Y, 1]) grid_y = grid_y.repeat(B, 1, X) grid_x = torch.linspace(0.0, X - 1, X, device=torch.device(device)) grid_x = torch.reshape(grid_x, [1, 1, X]) grid_x = grid_x.repeat(B, Y, 1) if stack: # note we stack in xy order # (see https://pytorch.org/docs/stable/nn.functional.html#torch.nn.functional.grid_sample) grid = torch.stack([grid_x, grid_y], dim=-1) return grid else: return grid_y, grid_x def reduce_masked_mean(x, mask, dim=None, keepdim=False): # x and mask are the same shape, or at least broadcastably so < actually it's safer if you disallow broadcasting # returns shape-1 # axis can be a list of axes for (a, b) in zip(x.size(), mask.size()): assert a == b # some shape mismatch! prod = x * mask if dim is None: numer = torch.sum(prod) denom = EPS + torch.sum(mask) else: numer = torch.sum(prod, dim=dim, keepdim=keepdim) denom = EPS + torch.sum(mask, dim=dim, keepdim=keepdim) mean = numer / denom return mean def bilinear_sample2d(im, x, y, return_inbounds=False): # x and y are each B, N # output is B, C, N if len(im.shape) == 5: B, N, C, H, W = list(im.shape) else: B, C, H, W = list(im.shape) N = list(x.shape)[1] x = x.float() y = y.float() H_f = torch.tensor(H, dtype=torch.float32) W_f = torch.tensor(W, dtype=torch.float32) # inbound_mask = (x>-0.5).float()*(y>-0.5).float()*(x<W_f+0.5).float()*(y<H_f+0.5).float() max_y = (H_f - 1).int() max_x = (W_f - 1).int() x0 = torch.floor(x).int() x1 = x0 + 1 y0 = torch.floor(y).int() y1 = y0 + 1 x0_clip = torch.clamp(x0, 0, max_x) x1_clip = torch.clamp(x1, 0, max_x) y0_clip = torch.clamp(y0, 0, max_y) y1_clip = torch.clamp(y1, 0, max_y) dim2 = W dim1 = W * H base = torch.arange(0, B, dtype=torch.int64, device=x.device) * dim1 base = torch.reshape(base, [B, 1]).repeat([1, N]) base_y0 = base + y0_clip * dim2 base_y1 = base + y1_clip * dim2 idx_y0_x0 = base_y0 + x0_clip idx_y0_x1 = base_y0 + x1_clip idx_y1_x0 = base_y1 + x0_clip idx_y1_x1 = base_y1 + x1_clip # use the indices to lookup pixels in the flat image # im is B x C x H x W # move C out to last dim if len(im.shape) == 5: im_flat = (im.permute(0, 3, 4, 1, 2)).reshape(B * H * W, N, C) i_y0_x0 = torch.diagonal(im_flat[idx_y0_x0.long()], dim1=1, dim2=2).permute( 0, 2, 1 ) i_y0_x1 = torch.diagonal(im_flat[idx_y0_x1.long()], dim1=1, dim2=2).permute( 0, 2, 1 ) i_y1_x0 = torch.diagonal(im_flat[idx_y1_x0.long()], dim1=1, dim2=2).permute( 0, 2, 1 ) i_y1_x1 = torch.diagonal(im_flat[idx_y1_x1.long()], dim1=1, dim2=2).permute( 0, 2, 1 ) else: im_flat = (im.permute(0, 2, 3, 1)).reshape(B * H * W, C) i_y0_x0 = im_flat[idx_y0_x0.long()] i_y0_x1 = im_flat[idx_y0_x1.long()] i_y1_x0 = im_flat[idx_y1_x0.long()] i_y1_x1 = im_flat[idx_y1_x1.long()] # Finally calculate interpolated values. x0_f = x0.float() x1_f = x1.float() y0_f = y0.float() y1_f = y1.float() w_y0_x0 = ((x1_f - x) * (y1_f - y)).unsqueeze(2) w_y0_x1 = ((x - x0_f) * (y1_f - y)).unsqueeze(2) w_y1_x0 = ((x1_f - x) * (y - y0_f)).unsqueeze(2) w_y1_x1 = ((x - x0_f) * (y - y0_f)).unsqueeze(2) output = ( w_y0_x0 * i_y0_x0 + w_y0_x1 * i_y0_x1 + w_y1_x0 * i_y1_x0 + w_y1_x1 * i_y1_x1 ) # output is B*N x C output = output.view(B, -1, C) output = output.permute(0, 2, 1) # output is B x C x N if return_inbounds: x_valid = (x > -0.5).byte() & (x < float(W_f - 0.5)).byte() y_valid = (y > -0.5).byte() & (y < float(H_f - 0.5)).byte() inbounds = (x_valid & y_valid).float() inbounds = inbounds.reshape( B, N ) # something seems wrong here for B>1; i'm getting an error here (or downstream if i put -1) return output, inbounds return output # B, C, N
co-tracker-main
cotracker/models/core/model_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
co-tracker-main
cotracker/models/core/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import numpy as np def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0): """ grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) """ if isinstance(grid_size, tuple): grid_size_h, grid_size_w = grid_size else: grid_size_h = grid_size_w = grid_size grid_h = np.arange(grid_size_h, dtype=np.float32) grid_w = np.arange(grid_size_w, dtype=np.float32) grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, grid_size_h, grid_size_w]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) if cls_token and extra_tokens > 0: pos_embed = np.concatenate( [np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0 ) return pos_embed def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): assert embed_dim % 2 == 0 # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) return emb def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ assert embed_dim % 2 == 0 omega = np.arange(embed_dim // 2, dtype=np.float64) omega /= embed_dim / 2.0 omega = 1.0 / 10000 ** omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) return emb def get_2d_embedding(xy, C, cat_coords=True): B, N, D = xy.shape assert D == 2 x = xy[:, :, 0:1] y = xy[:, :, 1:2] div_term = ( torch.arange(0, C, 2, device=xy.device, dtype=torch.float32) * (1000.0 / C) ).reshape(1, 1, int(C / 2)) pe_x = torch.zeros(B, N, C, device=xy.device, dtype=torch.float32) pe_y = torch.zeros(B, N, C, device=xy.device, dtype=torch.float32) pe_x[:, :, 0::2] = torch.sin(x * div_term) pe_x[:, :, 1::2] = torch.cos(x * div_term) pe_y[:, :, 0::2] = torch.sin(y * div_term) pe_y[:, :, 1::2] = torch.cos(y * div_term) pe = torch.cat([pe_x, pe_y], dim=2) # B, N, C*3 if cat_coords: pe = torch.cat([xy, pe], dim=2) # B, N, C*3+3 return pe def get_3d_embedding(xyz, C, cat_coords=True): B, N, D = xyz.shape assert D == 3 x = xyz[:, :, 0:1] y = xyz[:, :, 1:2] z = xyz[:, :, 2:3] div_term = ( torch.arange(0, C, 2, device=xyz.device, dtype=torch.float32) * (1000.0 / C) ).reshape(1, 1, int(C / 2)) pe_x = torch.zeros(B, N, C, device=xyz.device, dtype=torch.float32) pe_y = torch.zeros(B, N, C, device=xyz.device, dtype=torch.float32) pe_z = torch.zeros(B, N, C, device=xyz.device, dtype=torch.float32) pe_x[:, :, 0::2] = torch.sin(x * div_term) pe_x[:, :, 1::2] = torch.cos(x * div_term) pe_y[:, :, 0::2] = torch.sin(y * div_term) pe_y[:, :, 1::2] = torch.cos(y * div_term) pe_z[:, :, 0::2] = torch.sin(z * div_term) pe_z[:, :, 1::2] = torch.cos(z * div_term) pe = torch.cat([pe_x, pe_y, pe_z], dim=2) # B, N, C*3 if cat_coords: pe = torch.cat([pe, xyz], dim=2) # B, N, C*3+3 return pe def get_4d_embedding(xyzw, C, cat_coords=True): B, N, D = xyzw.shape assert D == 4 x = xyzw[:, :, 0:1] y = xyzw[:, :, 1:2] z = xyzw[:, :, 2:3] w = xyzw[:, :, 3:4] div_term = ( torch.arange(0, C, 2, device=xyzw.device, dtype=torch.float32) * (1000.0 / C) ).reshape(1, 1, int(C / 2)) pe_x = torch.zeros(B, N, C, device=xyzw.device, dtype=torch.float32) pe_y = torch.zeros(B, N, C, device=xyzw.device, dtype=torch.float32) pe_z = torch.zeros(B, N, C, device=xyzw.device, dtype=torch.float32) pe_w = torch.zeros(B, N, C, device=xyzw.device, dtype=torch.float32) pe_x[:, :, 0::2] = torch.sin(x * div_term) pe_x[:, :, 1::2] = torch.cos(x * div_term) pe_y[:, :, 0::2] = torch.sin(y * div_term) pe_y[:, :, 1::2] = torch.cos(y * div_term) pe_z[:, :, 0::2] = torch.sin(z * div_term) pe_z[:, :, 1::2] = torch.cos(z * div_term) pe_w[:, :, 0::2] = torch.sin(w * div_term) pe_w[:, :, 1::2] = torch.cos(w * div_term) pe = torch.cat([pe_x, pe_y, pe_z, pe_w], dim=2) # B, N, C*3 if cat_coords: pe = torch.cat([pe, xyzw], dim=2) # B, N, C*3+3 return pe
co-tracker-main
cotracker/models/core/embeddings.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
co-tracker-main
cotracker/models/core/cotracker/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn from einops import rearrange from cotracker.models.core.cotracker.blocks import ( BasicEncoder, CorrBlock, UpdateFormer, ) from cotracker.models.core.model_utils import meshgrid2d, bilinear_sample2d, smart_cat from cotracker.models.core.embeddings import ( get_2d_embedding, get_1d_sincos_pos_embed_from_grid, get_2d_sincos_pos_embed, ) torch.manual_seed(0) def get_points_on_a_grid(grid_size, interp_shape, grid_center=(0, 0), device="cuda"): if grid_size == 1: return torch.tensor([interp_shape[1] / 2, interp_shape[0] / 2], device=device)[ None, None ] grid_y, grid_x = meshgrid2d( 1, grid_size, grid_size, stack=False, norm=False, device=device ) step = interp_shape[1] // 64 if grid_center[0] != 0 or grid_center[1] != 0: grid_y = grid_y - grid_size / 2.0 grid_x = grid_x - grid_size / 2.0 grid_y = step + grid_y.reshape(1, -1) / float(grid_size - 1) * ( interp_shape[0] - step * 2 ) grid_x = step + grid_x.reshape(1, -1) / float(grid_size - 1) * ( interp_shape[1] - step * 2 ) grid_y = grid_y + grid_center[0] grid_x = grid_x + grid_center[1] xy = torch.stack([grid_x, grid_y], dim=-1).to(device) return xy def sample_pos_embed(grid_size, embed_dim, coords): pos_embed = get_2d_sincos_pos_embed(embed_dim=embed_dim, grid_size=grid_size) pos_embed = ( torch.from_numpy(pos_embed) .reshape(grid_size[0], grid_size[1], embed_dim) .float() .unsqueeze(0) .to(coords.device) ) sampled_pos_embed = bilinear_sample2d( pos_embed.permute(0, 3, 1, 2), coords[:, 0, :, 0], coords[:, 0, :, 1] ) return sampled_pos_embed class CoTracker(nn.Module): def __init__( self, S=8, stride=8, add_space_attn=True, num_heads=8, hidden_size=384, space_depth=12, time_depth=12, ): super(CoTracker, self).__init__() self.S = S self.stride = stride self.hidden_dim = 256 self.latent_dim = latent_dim = 128 self.corr_levels = 4 self.corr_radius = 3 self.add_space_attn = add_space_attn self.fnet = BasicEncoder( output_dim=self.latent_dim, norm_fn="instance", dropout=0, stride=stride ) self.updateformer = UpdateFormer( space_depth=space_depth, time_depth=time_depth, input_dim=456, hidden_size=hidden_size, num_heads=num_heads, output_dim=latent_dim + 2, mlp_ratio=4.0, add_space_attn=add_space_attn, ) self.norm = nn.GroupNorm(1, self.latent_dim) self.ffeat_updater = nn.Sequential( nn.Linear(self.latent_dim, self.latent_dim), nn.GELU(), ) self.vis_predictor = nn.Sequential( nn.Linear(self.latent_dim, 1), ) def forward_iteration( self, fmaps, coords_init, feat_init=None, vis_init=None, track_mask=None, iters=4, ): B, S_init, N, D = coords_init.shape assert D == 2 assert B == 1 B, S, __, H8, W8 = fmaps.shape device = fmaps.device if S_init < S: coords = torch.cat( [coords_init, coords_init[:, -1].repeat(1, S - S_init, 1, 1)], dim=1 ) vis_init = torch.cat( [vis_init, vis_init[:, -1].repeat(1, S - S_init, 1, 1)], dim=1 ) else: coords = coords_init.clone() fcorr_fn = CorrBlock( fmaps, num_levels=self.corr_levels, radius=self.corr_radius ) ffeats = feat_init.clone() times_ = torch.linspace(0, S - 1, S).reshape(1, S, 1) pos_embed = sample_pos_embed( grid_size=(H8, W8), embed_dim=456, coords=coords, ) pos_embed = rearrange(pos_embed, "b e n -> (b n) e").unsqueeze(1) times_embed = ( torch.from_numpy(get_1d_sincos_pos_embed_from_grid(456, times_[0]))[None] .repeat(B, 1, 1) .float() .to(device) ) coord_predictions = [] for __ in range(iters): coords = coords.detach() fcorr_fn.corr(ffeats) fcorrs = fcorr_fn.sample(coords) # B, S, N, LRR LRR = fcorrs.shape[3] fcorrs_ = fcorrs.permute(0, 2, 1, 3).reshape(B * N, S, LRR) flows_ = (coords - coords[:, 0:1]).permute(0, 2, 1, 3).reshape(B * N, S, 2) flows_cat = get_2d_embedding(flows_, 64, cat_coords=True) ffeats_ = ffeats.permute(0, 2, 1, 3).reshape(B * N, S, self.latent_dim) if track_mask.shape[1] < vis_init.shape[1]: track_mask = torch.cat( [ track_mask, torch.zeros_like(track_mask[:, 0]).repeat( 1, vis_init.shape[1] - track_mask.shape[1], 1, 1 ), ], dim=1, ) concat = ( torch.cat([track_mask, vis_init], dim=2) .permute(0, 2, 1, 3) .reshape(B * N, S, 2) ) transformer_input = torch.cat([flows_cat, fcorrs_, ffeats_, concat], dim=2) x = transformer_input + pos_embed + times_embed x = rearrange(x, "(b n) t d -> b n t d", b=B) delta = self.updateformer(x) delta = rearrange(delta, " b n t d -> (b n) t d") delta_coords_ = delta[:, :, :2] delta_feats_ = delta[:, :, 2:] delta_feats_ = delta_feats_.reshape(B * N * S, self.latent_dim) ffeats_ = ffeats.permute(0, 2, 1, 3).reshape(B * N * S, self.latent_dim) ffeats_ = self.ffeat_updater(self.norm(delta_feats_)) + ffeats_ ffeats = ffeats_.reshape(B, N, S, self.latent_dim).permute( 0, 2, 1, 3 ) # B,S,N,C coords = coords + delta_coords_.reshape(B, N, S, 2).permute(0, 2, 1, 3) coord_predictions.append(coords * self.stride) vis_e = self.vis_predictor(ffeats.reshape(B * S * N, self.latent_dim)).reshape( B, S, N ) return coord_predictions, vis_e, feat_init def forward(self, rgbs, queries, iters=4, feat_init=None, is_train=False): B, T, C, H, W = rgbs.shape B, N, __ = queries.shape device = rgbs.device assert B == 1 # INIT for the first sequence # We want to sort points by the first frame they are visible to add them to the tensor of tracked points consequtively first_positive_inds = queries[:, :, 0].long() __, sort_inds = torch.sort(first_positive_inds[0], dim=0, descending=False) inv_sort_inds = torch.argsort(sort_inds, dim=0) first_positive_sorted_inds = first_positive_inds[0][sort_inds] assert torch.allclose( first_positive_inds[0], first_positive_inds[0][sort_inds][inv_sort_inds] ) coords_init = queries[:, :, 1:].reshape(B, 1, N, 2).repeat( 1, self.S, 1, 1 ) / float(self.stride) rgbs = 2 * (rgbs / 255.0) - 1.0 traj_e = torch.zeros((B, T, N, 2), device=device) vis_e = torch.zeros((B, T, N), device=device) ind_array = torch.arange(T, device=device) ind_array = ind_array[None, :, None].repeat(B, 1, N) track_mask = (ind_array >= first_positive_inds[:, None, :]).unsqueeze(-1) # these are logits, so we initialize visibility with something that would give a value close to 1 after softmax vis_init = torch.ones((B, self.S, N, 1), device=device).float() * 10 ind = 0 track_mask_ = track_mask[:, :, sort_inds].clone() coords_init_ = coords_init[:, :, sort_inds].clone() vis_init_ = vis_init[:, :, sort_inds].clone() prev_wind_idx = 0 fmaps_ = None vis_predictions = [] coord_predictions = [] wind_inds = [] while ind < T - self.S // 2: rgbs_seq = rgbs[:, ind : ind + self.S] S = S_local = rgbs_seq.shape[1] if S < self.S: rgbs_seq = torch.cat( [rgbs_seq, rgbs_seq[:, -1, None].repeat(1, self.S - S, 1, 1, 1)], dim=1, ) S = rgbs_seq.shape[1] rgbs_ = rgbs_seq.reshape(B * S, C, H, W) if fmaps_ is None: fmaps_ = self.fnet(rgbs_) else: fmaps_ = torch.cat( [fmaps_[self.S // 2 :], self.fnet(rgbs_[self.S // 2 :])], dim=0 ) fmaps = fmaps_.reshape( B, S, self.latent_dim, H // self.stride, W // self.stride ) curr_wind_points = torch.nonzero(first_positive_sorted_inds < ind + self.S) if curr_wind_points.shape[0] == 0: ind = ind + self.S // 2 continue wind_idx = curr_wind_points[-1] + 1 if wind_idx - prev_wind_idx > 0: fmaps_sample = fmaps[ :, first_positive_sorted_inds[prev_wind_idx:wind_idx] - ind ] feat_init_ = bilinear_sample2d( fmaps_sample, coords_init_[:, 0, prev_wind_idx:wind_idx, 0], coords_init_[:, 0, prev_wind_idx:wind_idx, 1], ).permute(0, 2, 1) feat_init_ = feat_init_.unsqueeze(1).repeat(1, self.S, 1, 1) feat_init = smart_cat(feat_init, feat_init_, dim=2) if prev_wind_idx > 0: new_coords = coords[-1][:, self.S // 2 :] / float(self.stride) coords_init_[:, : self.S // 2, :prev_wind_idx] = new_coords coords_init_[:, self.S // 2 :, :prev_wind_idx] = new_coords[ :, -1 ].repeat(1, self.S // 2, 1, 1) new_vis = vis[:, self.S // 2 :].unsqueeze(-1) vis_init_[:, : self.S // 2, :prev_wind_idx] = new_vis vis_init_[:, self.S // 2 :, :prev_wind_idx] = new_vis[:, -1].repeat( 1, self.S // 2, 1, 1 ) coords, vis, __ = self.forward_iteration( fmaps=fmaps, coords_init=coords_init_[:, :, :wind_idx], feat_init=feat_init[:, :, :wind_idx], vis_init=vis_init_[:, :, :wind_idx], track_mask=track_mask_[:, ind : ind + self.S, :wind_idx], iters=iters, ) if is_train: vis_predictions.append(torch.sigmoid(vis[:, :S_local])) coord_predictions.append([coord[:, :S_local] for coord in coords]) wind_inds.append(wind_idx) traj_e[:, ind : ind + self.S, :wind_idx] = coords[-1][:, :S_local] vis_e[:, ind : ind + self.S, :wind_idx] = vis[:, :S_local] track_mask_[:, : ind + self.S, :wind_idx] = 0.0 ind = ind + self.S // 2 prev_wind_idx = wind_idx traj_e = traj_e[:, :, inv_sort_inds] vis_e = vis_e[:, :, inv_sort_inds] vis_e = torch.sigmoid(vis_e) train_data = ( (vis_predictions, coord_predictions, wind_inds, sort_inds) if is_train else None ) return traj_e, feat_init, vis_e, train_data
co-tracker-main
cotracker/models/core/cotracker/cotracker.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn.functional as F from cotracker.models.core.model_utils import reduce_masked_mean EPS = 1e-6 def balanced_ce_loss(pred, gt, valid=None): total_balanced_loss = 0.0 for j in range(len(gt)): B, S, N = gt[j].shape # pred and gt are the same shape for (a, b) in zip(pred[j].size(), gt[j].size()): assert a == b # some shape mismatch! # if valid is not None: for (a, b) in zip(pred[j].size(), valid[j].size()): assert a == b # some shape mismatch! pos = (gt[j] > 0.95).float() neg = (gt[j] < 0.05).float() label = pos * 2.0 - 1.0 a = -label * pred[j] b = F.relu(a) loss = b + torch.log(torch.exp(-b) + torch.exp(a - b)) pos_loss = reduce_masked_mean(loss, pos * valid[j]) neg_loss = reduce_masked_mean(loss, neg * valid[j]) balanced_loss = pos_loss + neg_loss total_balanced_loss += balanced_loss / float(N) return total_balanced_loss def sequence_loss(flow_preds, flow_gt, vis, valids, gamma=0.8): """Loss function defined over sequence of flow predictions""" total_flow_loss = 0.0 for j in range(len(flow_gt)): B, S, N, D = flow_gt[j].shape assert D == 2 B, S1, N = vis[j].shape B, S2, N = valids[j].shape assert S == S1 assert S == S2 n_predictions = len(flow_preds[j]) flow_loss = 0.0 for i in range(n_predictions): i_weight = gamma ** (n_predictions - i - 1) flow_pred = flow_preds[j][i] i_loss = (flow_pred - flow_gt[j]).abs() # B, S, N, 2 i_loss = torch.mean(i_loss, dim=3) # B, S, N flow_loss += i_weight * reduce_masked_mean(i_loss, valids[j]) flow_loss = flow_loss / n_predictions total_flow_loss += flow_loss / float(N) return total_flow_loss
co-tracker-main
cotracker/models/core/cotracker/losses.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from timm.models.vision_transformer import Attention, Mlp class ResidualBlock(nn.Module): def __init__(self, in_planes, planes, norm_fn="group", stride=1): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d( in_planes, planes, kernel_size=3, padding=1, stride=stride, padding_mode="zeros", ) self.conv2 = nn.Conv2d( planes, planes, kernel_size=3, padding=1, padding_mode="zeros" ) self.relu = nn.ReLU(inplace=True) num_groups = planes // 8 if norm_fn == "group": self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) if not stride == 1: self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) elif norm_fn == "batch": self.norm1 = nn.BatchNorm2d(planes) self.norm2 = nn.BatchNorm2d(planes) if not stride == 1: self.norm3 = nn.BatchNorm2d(planes) elif norm_fn == "instance": self.norm1 = nn.InstanceNorm2d(planes) self.norm2 = nn.InstanceNorm2d(planes) if not stride == 1: self.norm3 = nn.InstanceNorm2d(planes) elif norm_fn == "none": self.norm1 = nn.Sequential() self.norm2 = nn.Sequential() if not stride == 1: self.norm3 = nn.Sequential() if stride == 1: self.downsample = None else: self.downsample = nn.Sequential( nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3 ) def forward(self, x): y = x y = self.relu(self.norm1(self.conv1(y))) y = self.relu(self.norm2(self.conv2(y))) if self.downsample is not None: x = self.downsample(x) return self.relu(x + y) class BasicEncoder(nn.Module): def __init__( self, input_dim=3, output_dim=128, stride=8, norm_fn="batch", dropout=0.0 ): super(BasicEncoder, self).__init__() self.stride = stride self.norm_fn = norm_fn self.in_planes = 64 if self.norm_fn == "group": self.norm1 = nn.GroupNorm(num_groups=8, num_channels=self.in_planes) self.norm2 = nn.GroupNorm(num_groups=8, num_channels=output_dim * 2) elif self.norm_fn == "batch": self.norm1 = nn.BatchNorm2d(self.in_planes) self.norm2 = nn.BatchNorm2d(output_dim * 2) elif self.norm_fn == "instance": self.norm1 = nn.InstanceNorm2d(self.in_planes) self.norm2 = nn.InstanceNorm2d(output_dim * 2) elif self.norm_fn == "none": self.norm1 = nn.Sequential() self.conv1 = nn.Conv2d( input_dim, self.in_planes, kernel_size=7, stride=2, padding=3, padding_mode="zeros", ) self.relu1 = nn.ReLU(inplace=True) self.shallow = False if self.shallow: self.layer1 = self._make_layer(64, stride=1) self.layer2 = self._make_layer(96, stride=2) self.layer3 = self._make_layer(128, stride=2) self.conv2 = nn.Conv2d(128 + 96 + 64, output_dim, kernel_size=1) else: self.layer1 = self._make_layer(64, stride=1) self.layer2 = self._make_layer(96, stride=2) self.layer3 = self._make_layer(128, stride=2) self.layer4 = self._make_layer(128, stride=2) self.conv2 = nn.Conv2d( 128 + 128 + 96 + 64, output_dim * 2, kernel_size=3, padding=1, padding_mode="zeros", ) self.relu2 = nn.ReLU(inplace=True) self.conv3 = nn.Conv2d(output_dim * 2, output_dim, kernel_size=1) self.dropout = None if dropout > 0: self.dropout = nn.Dropout2d(p=dropout) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)): if m.weight is not None: nn.init.constant_(m.weight, 1) if m.bias is not None: nn.init.constant_(m.bias, 0) def _make_layer(self, dim, stride=1): layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride) layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1) layers = (layer1, layer2) self.in_planes = dim return nn.Sequential(*layers) def forward(self, x): _, _, H, W = x.shape x = self.conv1(x) x = self.norm1(x) x = self.relu1(x) if self.shallow: a = self.layer1(x) b = self.layer2(a) c = self.layer3(b) a = F.interpolate( a, (H // self.stride, W // self.stride), mode="bilinear", align_corners=True, ) b = F.interpolate( b, (H // self.stride, W // self.stride), mode="bilinear", align_corners=True, ) c = F.interpolate( c, (H // self.stride, W // self.stride), mode="bilinear", align_corners=True, ) x = self.conv2(torch.cat([a, b, c], dim=1)) else: a = self.layer1(x) b = self.layer2(a) c = self.layer3(b) d = self.layer4(c) a = F.interpolate( a, (H // self.stride, W // self.stride), mode="bilinear", align_corners=True, ) b = F.interpolate( b, (H // self.stride, W // self.stride), mode="bilinear", align_corners=True, ) c = F.interpolate( c, (H // self.stride, W // self.stride), mode="bilinear", align_corners=True, ) d = F.interpolate( d, (H // self.stride, W // self.stride), mode="bilinear", align_corners=True, ) x = self.conv2(torch.cat([a, b, c, d], dim=1)) x = self.norm2(x) x = self.relu2(x) x = self.conv3(x) if self.training and self.dropout is not None: x = self.dropout(x) return x class AttnBlock(nn.Module): """ A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning. """ def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs): super().__init__() self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.attn = Attention( hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs ) self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) mlp_hidden_dim = int(hidden_size * mlp_ratio) approx_gelu = lambda: nn.GELU(approximate="tanh") self.mlp = Mlp( in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0, ) def forward(self, x): x = x + self.attn(self.norm1(x)) x = x + self.mlp(self.norm2(x)) return x def bilinear_sampler(img, coords, mode="bilinear", mask=False): """Wrapper for grid_sample, uses pixel coordinates""" H, W = img.shape[-2:] xgrid, ygrid = coords.split([1, 1], dim=-1) # go to 0,1 then 0,2 then -1,1 xgrid = 2 * xgrid / (W - 1) - 1 ygrid = 2 * ygrid / (H - 1) - 1 grid = torch.cat([xgrid, ygrid], dim=-1) img = F.grid_sample(img, grid, align_corners=True) if mask: mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1) return img, mask.float() return img class CorrBlock: def __init__(self, fmaps, num_levels=4, radius=4): B, S, C, H, W = fmaps.shape self.S, self.C, self.H, self.W = S, C, H, W self.num_levels = num_levels self.radius = radius self.fmaps_pyramid = [] self.fmaps_pyramid.append(fmaps) for i in range(self.num_levels - 1): fmaps_ = fmaps.reshape(B * S, C, H, W) fmaps_ = F.avg_pool2d(fmaps_, 2, stride=2) _, _, H, W = fmaps_.shape fmaps = fmaps_.reshape(B, S, C, H, W) self.fmaps_pyramid.append(fmaps) def sample(self, coords): r = self.radius B, S, N, D = coords.shape assert D == 2 H, W = self.H, self.W out_pyramid = [] for i in range(self.num_levels): corrs = self.corrs_pyramid[i] # B, S, N, H, W _, _, _, H, W = corrs.shape dx = torch.linspace(-r, r, 2 * r + 1) dy = torch.linspace(-r, r, 2 * r + 1) delta = torch.stack(torch.meshgrid(dy, dx, indexing="ij"), axis=-1).to( coords.device ) centroid_lvl = coords.reshape(B * S * N, 1, 1, 2) / 2 ** i delta_lvl = delta.view(1, 2 * r + 1, 2 * r + 1, 2) coords_lvl = centroid_lvl + delta_lvl corrs = bilinear_sampler(corrs.reshape(B * S * N, 1, H, W), coords_lvl) corrs = corrs.view(B, S, N, -1) out_pyramid.append(corrs) out = torch.cat(out_pyramid, dim=-1) # B, S, N, LRR*2 return out.contiguous().float() def corr(self, targets): B, S, N, C = targets.shape assert C == self.C assert S == self.S fmap1 = targets self.corrs_pyramid = [] for fmaps in self.fmaps_pyramid: _, _, _, H, W = fmaps.shape fmap2s = fmaps.view(B, S, C, H * W) corrs = torch.matmul(fmap1, fmap2s) corrs = corrs.view(B, S, N, H, W) corrs = corrs / torch.sqrt(torch.tensor(C).float()) self.corrs_pyramid.append(corrs) class UpdateFormer(nn.Module): """ Transformer model that updates track estimates. """ def __init__( self, space_depth=12, time_depth=12, input_dim=320, hidden_size=384, num_heads=8, output_dim=130, mlp_ratio=4.0, add_space_attn=True, ): super().__init__() self.out_channels = 2 self.num_heads = num_heads self.hidden_size = hidden_size self.add_space_attn = add_space_attn self.input_transform = torch.nn.Linear(input_dim, hidden_size, bias=True) self.flow_head = torch.nn.Linear(hidden_size, output_dim, bias=True) self.time_blocks = nn.ModuleList( [ AttnBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(time_depth) ] ) if add_space_attn: self.space_blocks = nn.ModuleList( [ AttnBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(space_depth) ] ) assert len(self.time_blocks) >= len(self.space_blocks) self.initialize_weights() def initialize_weights(self): def _basic_init(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) def forward(self, input_tensor): x = self.input_transform(input_tensor) j = 0 for i in range(len(self.time_blocks)): B, N, T, _ = x.shape x_time = rearrange(x, "b n t c -> (b n) t c", b=B, t=T, n=N) x_time = self.time_blocks[i](x_time) x = rearrange(x_time, "(b n) t c -> b n t c ", b=B, t=T, n=N) if self.add_space_attn and ( i % (len(self.time_blocks) // len(self.space_blocks)) == 0 ): x_space = rearrange(x, "b n t c -> (b t) n c ", b=B, t=T, n=N) x_space = self.space_blocks[j](x_space) x = rearrange(x_space, "(b t) n c -> b n t c ", b=B, t=T, n=N) j += 1 flow = self.flow_head(x) return flow
co-tracker-main
cotracker/models/core/cotracker/blocks.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
co-tracker-main
cotracker/evaluation/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import json import os from dataclasses import dataclass, field import hydra import numpy as np import torch from omegaconf import OmegaConf from cotracker.datasets.badja_dataset import BadjaDataset from cotracker.datasets.fast_capture_dataset import FastCaptureDataset from cotracker.datasets.tap_vid_datasets import TapVidDataset from cotracker.datasets.utils import collate_fn from cotracker.models.evaluation_predictor import EvaluationPredictor from cotracker.evaluation.core.evaluator import Evaluator from cotracker.models.build_cotracker import ( build_cotracker, ) @dataclass(eq=False) class DefaultConfig: # Directory where all outputs of the experiment will be saved. exp_dir: str = "./outputs" # Name of the dataset to be used for the evaluation. dataset_name: str = "badja" # The root directory of the dataset. dataset_root: str = "./" # Path to the pre-trained model checkpoint to be used for the evaluation. # The default value is the path to a specific CoTracker model checkpoint. # Other available options are commented. checkpoint: str = "./checkpoints/cotracker_stride_4_wind_8.pth" # cotracker_stride_4_wind_12 # cotracker_stride_8_wind_16 # EvaluationPredictor parameters # The size (N) of the support grid used in the predictor. # The total number of points is (N*N). grid_size: int = 6 # The size (N) of the local support grid. local_grid_size: int = 6 # A flag indicating whether to evaluate one ground truth point at a time. single_point: bool = True # The number of iterative updates for each sliding window. n_iters: int = 6 seed: int = 0 gpu_idx: int = 0 # Override hydra's working directory to current working dir, # also disable storing the .hydra logs: hydra: dict = field( default_factory=lambda: { "run": {"dir": "."}, "output_subdir": None, } ) def run_eval(cfg: DefaultConfig): """ The function evaluates CoTracker on a specified benchmark dataset based on a provided configuration. Args: cfg (DefaultConfig): An instance of DefaultConfig class which includes: - exp_dir (str): The directory path for the experiment. - dataset_name (str): The name of the dataset to be used. - dataset_root (str): The root directory of the dataset. - checkpoint (str): The path to the CoTracker model's checkpoint. - single_point (bool): A flag indicating whether to evaluate one ground truth point at a time. - n_iters (int): The number of iterative updates for each sliding window. - seed (int): The seed for setting the random state for reproducibility. - gpu_idx (int): The index of the GPU to be used. """ # Creating the experiment directory if it doesn't exist os.makedirs(cfg.exp_dir, exist_ok=True) # Saving the experiment configuration to a .yaml file in the experiment directory cfg_file = os.path.join(cfg.exp_dir, "expconfig.yaml") with open(cfg_file, "w") as f: OmegaConf.save(config=cfg, f=f) evaluator = Evaluator(cfg.exp_dir) cotracker_model = build_cotracker(cfg.checkpoint) # Creating the EvaluationPredictor object predictor = EvaluationPredictor( cotracker_model, grid_size=cfg.grid_size, local_grid_size=cfg.local_grid_size, single_point=cfg.single_point, n_iters=cfg.n_iters, ) if torch.cuda.is_available(): predictor.model = predictor.model.cuda() # Setting the random seeds torch.manual_seed(cfg.seed) np.random.seed(cfg.seed) # Constructing the specified dataset curr_collate_fn = collate_fn if cfg.dataset_name == "badja": test_dataset = BadjaDataset(data_root=os.path.join(cfg.dataset_root, "BADJA")) elif cfg.dataset_name == "fastcapture": test_dataset = FastCaptureDataset( data_root=os.path.join(cfg.dataset_root, "fastcapture"), max_seq_len=100, max_num_points=20, ) elif "tapvid" in cfg.dataset_name: dataset_type = cfg.dataset_name.split("_")[1] if dataset_type == "davis": data_root = os.path.join(cfg.dataset_root, "/tapvid_davis/tapvid_davis.pkl") elif dataset_type == "kinetics": data_root = os.path.join( cfg.dataset_root, "/kinetics/kinetics-dataset/k700-2020/tapvid_kinetics" ) test_dataset = TapVidDataset( dataset_type=dataset_type, data_root=data_root, queried_first=not "strided" in cfg.dataset_name, ) # Creating the DataLoader object test_dataloader = torch.utils.data.DataLoader( test_dataset, batch_size=1, shuffle=False, num_workers=14, collate_fn=curr_collate_fn, ) # Timing and conducting the evaluation import time start = time.time() evaluate_result = evaluator.evaluate_sequence( predictor, test_dataloader, dataset_name=cfg.dataset_name, ) end = time.time() print(end - start) # Saving the evaluation results to a .json file if not "tapvid" in cfg.dataset_name: print("evaluate_result", evaluate_result) else: evaluate_result = evaluate_result["avg"] result_file = os.path.join(cfg.exp_dir, f"result_eval_.json") evaluate_result["time"] = end - start print(f"Dumping eval results to {result_file}.") with open(result_file, "w") as f: json.dump(evaluate_result, f) cs = hydra.core.config_store.ConfigStore.instance() cs.store(name="default_config_eval", node=DefaultConfig) @hydra.main(config_path="./configs/", config_name="default_config_eval") def evaluate(cfg: DefaultConfig) -> None: os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = str(cfg.gpu_idx) run_eval(cfg) if __name__ == "__main__": evaluate()
co-tracker-main
cotracker/evaluation/evaluate.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
co-tracker-main
cotracker/evaluation/core/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np from typing import Iterable, Mapping, Tuple, Union def compute_tapvid_metrics( query_points: np.ndarray, gt_occluded: np.ndarray, gt_tracks: np.ndarray, pred_occluded: np.ndarray, pred_tracks: np.ndarray, query_mode: str, ) -> Mapping[str, np.ndarray]: """Computes TAP-Vid metrics (Jaccard, Pts. Within Thresh, Occ. Acc.) See the TAP-Vid paper for details on the metric computation. All inputs are given in raster coordinates. The first three arguments should be the direct outputs of the reader: the 'query_points', 'occluded', and 'target_points'. The paper metrics assume these are scaled relative to 256x256 images. pred_occluded and pred_tracks are your algorithm's predictions. This function takes a batch of inputs, and computes metrics separately for each video. The metrics for the full benchmark are a simple mean of the metrics across the full set of videos. These numbers are between 0 and 1, but the paper multiplies them by 100 to ease reading. Args: query_points: The query points, an in the format [t, y, x]. Its size is [b, n, 3], where b is the batch size and n is the number of queries gt_occluded: A boolean array of shape [b, n, t], where t is the number of frames. True indicates that the point is occluded. gt_tracks: The target points, of shape [b, n, t, 2]. Each point is in the format [x, y] pred_occluded: A boolean array of predicted occlusions, in the same format as gt_occluded. pred_tracks: An array of track predictions from your algorithm, in the same format as gt_tracks. query_mode: Either 'first' or 'strided', depending on how queries are sampled. If 'first', we assume the prior knowledge that all points before the query point are occluded, and these are removed from the evaluation. Returns: A dict with the following keys: occlusion_accuracy: Accuracy at predicting occlusion. pts_within_{x} for x in [1, 2, 4, 8, 16]: Fraction of points predicted to be within the given pixel threshold, ignoring occlusion prediction. jaccard_{x} for x in [1, 2, 4, 8, 16]: Jaccard metric for the given threshold average_pts_within_thresh: average across pts_within_{x} average_jaccard: average across jaccard_{x} """ metrics = {} # Don't evaluate the query point. Numpy doesn't have one_hot, so we # replicate it by indexing into an identity matrix. one_hot_eye = np.eye(gt_tracks.shape[2]) query_frame = query_points[..., 0] query_frame = np.round(query_frame).astype(np.int32) evaluation_points = one_hot_eye[query_frame] == 0 # If we're using the first point on the track as a query, don't evaluate the # other points. if query_mode == "first": for i in range(gt_occluded.shape[0]): index = np.where(gt_occluded[i] == 0)[0][0] evaluation_points[i, :index] = False elif query_mode != "strided": raise ValueError("Unknown query mode " + query_mode) # Occlusion accuracy is simply how often the predicted occlusion equals the # ground truth. occ_acc = ( np.sum( np.equal(pred_occluded, gt_occluded) & evaluation_points, axis=(1, 2), ) / np.sum(evaluation_points) ) metrics["occlusion_accuracy"] = occ_acc # Next, convert the predictions and ground truth positions into pixel # coordinates. visible = np.logical_not(gt_occluded) pred_visible = np.logical_not(pred_occluded) all_frac_within = [] all_jaccard = [] for thresh in [1, 2, 4, 8, 16]: # True positives are points that are within the threshold and where both # the prediction and the ground truth are listed as visible. within_dist = ( np.sum( np.square(pred_tracks - gt_tracks), axis=-1, ) < np.square(thresh) ) is_correct = np.logical_and(within_dist, visible) # Compute the frac_within_threshold, which is the fraction of points # within the threshold among points that are visible in the ground truth, # ignoring whether they're predicted to be visible. count_correct = np.sum( is_correct & evaluation_points, axis=(1, 2), ) count_visible_points = np.sum(visible & evaluation_points, axis=(1, 2)) frac_correct = count_correct / count_visible_points metrics["pts_within_" + str(thresh)] = frac_correct all_frac_within.append(frac_correct) true_positives = np.sum( is_correct & pred_visible & evaluation_points, axis=(1, 2) ) # The denominator of the jaccard metric is the true positives plus # false positives plus false negatives. However, note that true positives # plus false negatives is simply the number of points in the ground truth # which is easier to compute than trying to compute all three quantities. # Thus we just add the number of points in the ground truth to the number # of false positives. # # False positives are simply points that are predicted to be visible, # but the ground truth is not visible or too far from the prediction. gt_positives = np.sum(visible & evaluation_points, axis=(1, 2)) false_positives = (~visible) & pred_visible false_positives = false_positives | ((~within_dist) & pred_visible) false_positives = np.sum(false_positives & evaluation_points, axis=(1, 2)) jaccard = true_positives / (gt_positives + false_positives) metrics["jaccard_" + str(thresh)] = jaccard all_jaccard.append(jaccard) metrics["average_jaccard"] = np.mean( np.stack(all_jaccard, axis=1), axis=1, ) metrics["average_pts_within_thresh"] = np.mean( np.stack(all_frac_within, axis=1), axis=1, ) return metrics
co-tracker-main
cotracker/evaluation/core/eval_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from collections import defaultdict import os from typing import Optional import torch from tqdm import tqdm import numpy as np from torch.utils.tensorboard import SummaryWriter from cotracker.datasets.utils import dataclass_to_cuda_ from cotracker.utils.visualizer import Visualizer from cotracker.models.core.model_utils import reduce_masked_mean from cotracker.evaluation.core.eval_utils import compute_tapvid_metrics import logging class Evaluator: """ A class defining the CoTracker evaluator. """ def __init__(self, exp_dir) -> None: # Visualization self.exp_dir = exp_dir os.makedirs(exp_dir, exist_ok=True) self.visualization_filepaths = defaultdict(lambda: defaultdict(list)) self.visualize_dir = os.path.join(exp_dir, "visualisations") def compute_metrics(self, metrics, sample, pred_trajectory, dataset_name): if isinstance(pred_trajectory, tuple): pred_trajectory, pred_visibility = pred_trajectory else: pred_visibility = None if dataset_name == "badja": sample.segmentation = (sample.segmentation > 0).float() *_, N, _ = sample.trajectory.shape accs = [] accs_3px = [] for s1 in range(1, sample.video.shape[1]): # target frame for n in range(N): vis = sample.visibility[0, s1, n] if vis > 0: coord_e = pred_trajectory[0, s1, n] # 2 coord_g = sample.trajectory[0, s1, n] # 2 dist = torch.sqrt(torch.sum((coord_e - coord_g) ** 2, dim=0)) area = torch.sum(sample.segmentation[0, s1]) # print_('0.2*sqrt(area)', 0.2*torch.sqrt(area)) thr = 0.2 * torch.sqrt(area) # correct = accs.append((dist < thr).float()) # print('thr',thr) accs_3px.append((dist < 3.0).float()) res = torch.mean(torch.stack(accs)) * 100.0 res_3px = torch.mean(torch.stack(accs_3px)) * 100.0 metrics[sample.seq_name[0]] = res.item() metrics[sample.seq_name[0] + "_accuracy"] = res_3px.item() print(metrics) print( "avg", np.mean([v for k, v in metrics.items() if "accuracy" not in k]) ) print( "avg acc 3px", np.mean([v for k, v in metrics.items() if "accuracy" in k]), ) elif dataset_name == "fastcapture" or ("kubric" in dataset_name): *_, N, _ = sample.trajectory.shape accs = [] for s1 in range(1, sample.video.shape[1]): # target frame for n in range(N): vis = sample.visibility[0, s1, n] if vis > 0: coord_e = pred_trajectory[0, s1, n] # 2 coord_g = sample.trajectory[0, s1, n] # 2 dist = torch.sqrt(torch.sum((coord_e - coord_g) ** 2, dim=0)) thr = 3 correct = (dist < thr).float() accs.append(correct) res = torch.mean(torch.stack(accs)) * 100.0 metrics[sample.seq_name[0] + "_accuracy"] = res.item() print(metrics) print("avg", np.mean([v for v in metrics.values()])) elif "tapvid" in dataset_name: B, T, N, D = sample.trajectory.shape traj = sample.trajectory.clone() thr = 0.9 if pred_visibility is None: logging.warning("visibility is NONE") pred_visibility = torch.zeros_like(sample.visibility) if not pred_visibility.dtype == torch.bool: pred_visibility = pred_visibility > thr # pred_trajectory query_points = sample.query_points.clone().cpu().numpy() pred_visibility = pred_visibility[:, :, :N] pred_trajectory = pred_trajectory[:, :, :N] gt_tracks = traj.permute(0, 2, 1, 3).cpu().numpy() gt_occluded = ( torch.logical_not(sample.visibility.clone().permute(0, 2, 1)) .cpu() .numpy() ) pred_occluded = ( torch.logical_not(pred_visibility.clone().permute(0, 2, 1)) .cpu() .numpy() ) pred_tracks = pred_trajectory.permute(0, 2, 1, 3).cpu().numpy() out_metrics = compute_tapvid_metrics( query_points, gt_occluded, gt_tracks, pred_occluded, pred_tracks, query_mode="strided" if "strided" in dataset_name else "first", ) metrics[sample.seq_name[0]] = out_metrics for metric_name in out_metrics.keys(): if "avg" not in metrics: metrics["avg"] = {} metrics["avg"][metric_name] = np.mean( [v[metric_name] for k, v in metrics.items() if k != "avg"] ) logging.info(f"Metrics: {out_metrics}") logging.info(f"avg: {metrics['avg']}") print("metrics", out_metrics) print("avg", metrics["avg"]) else: rgbs = sample.video trajs_g = sample.trajectory valids = sample.valid vis_g = sample.visibility B, S, C, H, W = rgbs.shape assert C == 3 B, S, N, D = trajs_g.shape assert torch.sum(valids) == B * S * N vis_g = (torch.sum(vis_g, dim=1, keepdim=True) >= 4).float().repeat(1, S, 1) ate = torch.norm(pred_trajectory - trajs_g, dim=-1) # B, S, N metrics["things_all"] = reduce_masked_mean(ate, valids).item() metrics["things_vis"] = reduce_masked_mean(ate, valids * vis_g).item() metrics["things_occ"] = reduce_masked_mean( ate, valids * (1.0 - vis_g) ).item() @torch.no_grad() def evaluate_sequence( self, model, test_dataloader: torch.utils.data.DataLoader, dataset_name: str, train_mode=False, writer: Optional[SummaryWriter] = None, step: Optional[int] = 0, ): metrics = {} vis = Visualizer( save_dir=self.exp_dir, fps=7, ) for ind, sample in enumerate(tqdm(test_dataloader)): if isinstance(sample, tuple): sample, gotit = sample if not all(gotit): print("batch is None") continue if torch.cuda.is_available(): dataclass_to_cuda_(sample) device = torch.device("cuda") else: device = torch.device("cpu") if ( not train_mode and hasattr(model, "sequence_len") and (sample.visibility[:, : model.sequence_len].sum() == 0) ): print(f"skipping batch {ind}") continue if "tapvid" in dataset_name: queries = sample.query_points.clone().float() queries = torch.stack( [ queries[:, :, 0], queries[:, :, 2], queries[:, :, 1], ], dim=2, ).to(device) else: queries = torch.cat( [ torch.zeros_like(sample.trajectory[:, 0, :, :1]), sample.trajectory[:, 0], ], dim=2, ).to(device) pred_tracks = model(sample.video, queries) if "strided" in dataset_name: inv_video = sample.video.flip(1).clone() inv_queries = queries.clone() inv_queries[:, :, 0] = inv_video.shape[1] - inv_queries[:, :, 0] - 1 pred_trj, pred_vsb = pred_tracks inv_pred_trj, inv_pred_vsb = model(inv_video, inv_queries) inv_pred_trj = inv_pred_trj.flip(1) inv_pred_vsb = inv_pred_vsb.flip(1) mask = pred_trj == 0 pred_trj[mask] = inv_pred_trj[mask] pred_vsb[mask[:, :, :, 0]] = inv_pred_vsb[mask[:, :, :, 0]] pred_tracks = pred_trj, pred_vsb if dataset_name == "badja" or dataset_name == "fastcapture": seq_name = sample.seq_name[0] else: seq_name = str(ind) vis.visualize( sample.video, pred_tracks[0] if isinstance(pred_tracks, tuple) else pred_tracks, filename=dataset_name + "_" + seq_name, writer=writer, step=step, ) self.compute_metrics(metrics, sample, pred_tracks, dataset_name) return metrics
co-tracker-main
cotracker/evaluation/core/evaluator.py
import os import torch import timm import einops import tqdm import cv2 import gradio as gr from cotracker.utils.visualizer import Visualizer, read_video_from_path def cotracker_demo( input_video, grid_size: int = 10, grid_query_frame: int = 0, backward_tracking: bool = False, tracks_leave_trace: bool = False ): load_video = read_video_from_path(input_video) grid_query_frame = min(len(load_video)-1, grid_query_frame) load_video = torch.from_numpy(load_video).permute(0, 3, 1, 2)[None].float() model = torch.hub.load("facebookresearch/co-tracker", "cotracker_w8") if torch.cuda.is_available(): model = model.cuda() load_video = load_video.cuda() pred_tracks, pred_visibility = model( load_video, grid_size=grid_size, grid_query_frame=grid_query_frame, backward_tracking=backward_tracking ) linewidth = 2 if grid_size < 10: linewidth = 4 elif grid_size < 20: linewidth = 3 vis = Visualizer( save_dir=os.path.join(os.path.dirname(__file__), "results"), grayscale=False, pad_value=100, fps=10, linewidth=linewidth, show_first_frame=5, tracks_leave_trace= -1 if tracks_leave_trace else 0, ) import time def current_milli_time(): return round(time.time() * 1000) filename = str(current_milli_time()) vis.visualize( load_video, tracks=pred_tracks, visibility=pred_visibility, filename=filename, query_frame=grid_query_frame, ) return os.path.join( os.path.dirname(__file__), "results", f"{filename}_pred_track.mp4" ) app = gr.Interface( title = "🎨 CoTracker: It is Better to Track Together", description = "<div style='text-align: left;'> \ <p>Welcome to <a href='http://co-tracker.github.io' target='_blank'>CoTracker</a>! This space demonstrates point (pixel) tracking in videos. \ Points are sampled on a regular grid and are tracked jointly. </p> \ <p> To get started, simply upload your <b>.mp4</b> video in landscape orientation or click on one of the example videos to load them. The shorter the video, the faster the processing. We recommend submitting short videos of length <b>2-7 seconds</b>.</p> \ <ul style='display: inline-block; text-align: left;'> \ <li>The total number of grid points is the square of <b>Grid Size</b>.</li> \ <li>To specify the starting frame for tracking, adjust <b>Grid Query Frame</b>. Tracks will be visualized only after the selected frame.</li> \ <li>Use <b>Backward Tracking</b> to track points from the selected frame in both directions.</li> \ <li>Check <b>Visualize Track Traces</b> to visualize traces of all the tracked points. </li> \ </ul> \ <p style='text-align: left'>For more details, check out our <a href='https://github.com/facebookresearch/co-tracker' target='_blank'>GitHub Repo</a> ⭐</p> \ </div>", fn=cotracker_demo, inputs=[ gr.Video(type="file", label="Input video", interactive=True), gr.Slider(minimum=1, maximum=30, step=1, value=10, label="Grid Size"), gr.Slider(minimum=0, maximum=30, step=1, default=0, label="Grid Query Frame"), gr.Checkbox(label="Backward Tracking"), gr.Checkbox(label="Visualize Track Traces"), ], outputs=gr.Video(label="Video with predicted tracks"), examples=[ [ "./assets/apple.mp4", 20, 0, False, False ], [ "./assets/apple.mp4", 10, 30, True, False ], ], cache_examples=False ) app.launch(share=False)
co-tracker-main
gradio_demo/app.py
''' Standalone Long Conv class. The `LongConvModel` class defined in this file provides a simple backbone to train models. ''' import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from opt_einsum import contract class OurModule(nn.Module): """ Interface for Module that allows registering buffers/parameters with configurable optimizer hyperparameters """ def register(self, name, tensor, lr=None, wd=0.0): """Register a tensor with a configurable learning rate and 0 weight decay""" if lr == 0.0: self.register_buffer(name, tensor) else: self.register_parameter(name, nn.Parameter(tensor)) optim = {} if lr is not None: optim["lr"] = lr if wd is not None: optim["weight_decay"] = wd setattr(getattr(self, name), "_optim", optim) class LongConv(OurModule): def __init__( self, H, L, channels=2, dropout=0.1, kernel_learning_rate=None, kernel_lam=0.1, kernel_dropout=0, ): super().__init__() self.H = H self.L = L * 2 # for causal conv self.channels = channels self.dropout = nn.Dropout(p=dropout) self.kernel_learning_rate = kernel_learning_rate self.kernel_lam = kernel_lam self.kernel_drop = torch.nn.Dropout(p=kernel_dropout) self.D = nn.Parameter(torch.randn(channels, self.H)) # Pointwise self.activation = nn.GELU() # output transform to mix features self.output_linear = nn.Sequential( nn.Linear(self.channels * self.H, 2 * self.H, bias=True), nn.GLU(dim=-1), ) self.kernel = torch.nn.Parameter(torch.randn(self.channels, self.H, self.L) * 0.002) #(c,H,L) self.register("kernel", self.kernel, kernel_learning_rate) def forward(self, u): L = u.size(-1) k = self.kernel # squash operator k = F.relu(torch.abs(k)-self.kernel_lam)*torch.sign(k) k = self.kernel_drop(k) # use FFT to compute convolution k_f = torch.fft.rfft(k, n=2*L) u_f = torch.fft.rfft(u, n=2*L) y_f = contract('bhl,chl->bchl', u_f, k_f) y = torch.fft.irfft(y_f, n=2*L)[..., :L] # Compute skip connection y = y + contract('bhl,ch->bchl', u, self.D) # Reshape to flatten channels y = rearrange(y, '... c h l -> ... (c h) l') y = self.dropout(self.activation(y)) # Transpose for the linear y = y.transpose(-1, -2) y = self.output_linear(y) y = y.transpose(-1, -2) return y class LongConvModel(nn.Module): def __init__( self, d_input, d_output=10, d_model=512, n_layers=6, dropout=0.1, prenorm=False, **conv_kwargs, ): super().__init__() self.prenorm = prenorm # Linear encoder (d_input = 1 for grayscale and 3 for RGB) self.encoder = nn.Linear(d_input, d_model) # Stack S4 layers as residual blocks self.conv_layers = nn.ModuleList() self.norms = nn.ModuleList() self.dropouts = nn.ModuleList() for _ in range(n_layers): self.conv_layers.append( LongConv(d_model, L=1024, dropout=dropout, **conv_kwargs) ) self.norms.append(nn.LayerNorm(d_model)) self.dropouts.append(nn.Dropout1d(dropout)) # Linear decoder self.decoder = nn.Linear(d_model, d_output) def forward(self, x): """ Input x is shape (B, L, d_input) """ x = self.encoder(x) # (B, L, d_input) -> (B, L, d_model) x = x.transpose(-1, -2) # (B, L, d_model) -> (B, d_model, L) for layer, norm, dropout in zip(self.conv_layers, self.norms, self.dropouts): # Each iteration of this loop will map (B, d_model, L) -> (B, d_model, L) z = x if self.prenorm: # Prenorm z = norm(z.transpose(-1, -2)).transpose(-1, -2) # Apply long conv block z = layer(z) # Dropout on the output of the conv block z = dropout(z) # Residual connection x = z + x if not self.prenorm: # Postnorm x = norm(x.transpose(-1, -2)).transpose(-1, -2) x = x.transpose(-1, -2) # Pooling: average pooling over the sequence length x = x.mean(dim=1) # Decode the outputs x = self.decoder(x) # (B, d_model) -> (B, d_output) return x
safari-main
standalone_long_convs.py
''' Train a long conv model on sequential CIFAR10 / sequential MNIST with PyTorch for demonstration purposes. This code borrows heavily from https://github.com/kuangliu/pytorch-cifar and is based on https://github.com/HazyResearch/state-spaces. * Train standard sequential CIFAR: python -m standalone_cifar * Train sequential CIFAR grayscale: python -m standalone_cifar --grayscale It imports LongConv from the `standalone_long_convs.py` file. The default CIFAR10 model trained by this file should get 90+% accuracy on the CIFAR10 val set. Each epoch takes approximately 1m05s on an A100 GPU. ''' import torch import torch.nn as nn import torch.optim as optim import torch.backends.cudnn as cudnn import torchvision import torchvision.transforms as transforms import os import argparse from tqdm.auto import tqdm from standalone_long_convs import LongConvModel parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training') # Optimizer parser.add_argument('--lr', default=0.01, type=float, help='Learning rate') parser.add_argument('--weight_decay', default=0.05, type=float, help='Weight decay') # Scheduler parser.add_argument('--epochs', default=300, type=float, help='Training epochs') # Dataset parser.add_argument('--grayscale', action='store_true', help='Use grayscale CIFAR10') # Dataloader parser.add_argument('--num_workers', default=4, type=int, help='Number of workers to use for dataloader') parser.add_argument('--batch_size', default=50, type=int, help='Batch size') # Model parser.add_argument('--n_layers', default=6, type=int, help='Number of layers') parser.add_argument('--d_model', default=256, type=int, help='Model dimension') parser.add_argument('--dropout', default=0.1, type=float, help='Model Dropout') parser.add_argument('--kernel_dropout', default=0.2, type=float, help='Kernel Dropout') parser.add_argument('--kernel_lr', default=0.001, type=float, help='Kernel Learning Rate') parser.add_argument('--kernel_lam', default=0.001, type=float, help='Kernel Squash Parameter') parser.add_argument('--prenorm', action='store_true', help='Prenorm') # General parser.add_argument('--resume', '-r', action='store_true', help='Resume from checkpoint') args = parser.parse_args() device = 'cuda' if torch.cuda.is_available() else 'cpu' best_acc = 0 # best test accuracy start_epoch = 0 # start from epoch 0 or last checkpoint epoch # Data print(f'==> Preparing data..') def split_train_val(train, val_split): train_len = int(len(train) * (1.0-val_split)) train, val = torch.utils.data.random_split( train, (train_len, len(train) - train_len), generator=torch.Generator().manual_seed(42), ) return train, val if args.grayscale: transform = transforms.Compose([ transforms.Grayscale(), transforms.ToTensor(), transforms.Normalize(mean=122.6 / 255.0, std=61.0 / 255.0), transforms.Lambda(lambda x: x.view(1, 1024).t()) ]) else: transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), transforms.Lambda(lambda x: x.view(3, 1024).t()) ]) # Train with no data augmentation transform_train = transform_test = transform trainset = torchvision.datasets.CIFAR10( root='./data/cifar/', train=True, download=True, transform=transform_train) trainset, _ = split_train_val(trainset, val_split=0.1) valset = torchvision.datasets.CIFAR10( root='./data/cifar/', train=True, download=True, transform=transform_test) _, valset = split_train_val(valset, val_split=0.1) testset = torchvision.datasets.CIFAR10( root='./data/cifar/', train=False, download=True, transform=transform_test) d_input = 3 if not args.grayscale else 1 d_output = 10 # Dataloaders trainloader = torch.utils.data.DataLoader( trainset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers) valloader = torch.utils.data.DataLoader( valset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) testloader = torch.utils.data.DataLoader( testset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) # Model print('==> Building model..') long_conv_args = { 'kernel_dropout': args.kernel_dropout, 'kernel_learning_rate': args.kernel_lr, 'kernel_lam': args.kernel_lam, } model = LongConvModel( d_input=d_input, d_output=d_output, d_model=args.d_model, n_layers=args.n_layers, dropout=args.dropout, prenorm=args.prenorm, **long_conv_args, ) model = model.to(device) if device == 'cuda': cudnn.benchmark = True if args.resume: # Load checkpoint. print('==> Resuming from checkpoint..') assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!' checkpoint = torch.load('./checkpoint/ckpt.pth') model.load_state_dict(checkpoint['model']) best_acc = checkpoint['acc'] start_epoch = checkpoint['epoch'] def setup_optimizer(model, lr, weight_decay, epochs): """ Following S4, train the convolution layers with a smaller learning rate, with no weight decay. The rest of the model can be trained with a higher learning rate (e.g. 0.004, 0.01) and weight decay (if desired). """ # All parameters in the model all_parameters = list(model.parameters()) # General parameters don't contain the special _optim key params = [p for p in all_parameters if not hasattr(p, "_optim")] # Create an optimizer with the general parameters optimizer = optim.AdamW(params, lr=lr, weight_decay=weight_decay) # Add parameters with special hyperparameters hps = [getattr(p, "_optim") for p in all_parameters if hasattr(p, "_optim")] hps = [ dict(s) for s in sorted(list(dict.fromkeys(frozenset(hp.items()) for hp in hps))) ] # Unique dicts for hp in hps: params = [p for p in all_parameters if getattr(p, "_optim", None) == hp] optimizer.add_param_group( {"params": params, **hp} ) # Create a lr scheduler # scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=patience, factor=0.2) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, epochs) # Print optimizer info keys = sorted(set([k for hp in hps for k in hp.keys()])) for i, g in enumerate(optimizer.param_groups): group_hps = {k: g.get(k, None) for k in keys} print(' | '.join([ f"Optimizer group {i}", f"{len(g['params'])} tensors", ] + [f"{k} {v}" for k, v in group_hps.items()])) return optimizer, scheduler criterion = nn.CrossEntropyLoss() optimizer, scheduler = setup_optimizer( model, lr=args.lr, weight_decay=args.weight_decay, epochs=args.epochs ) ############################################################################### # Everything after this point is standard PyTorch training! ############################################################################### # Training def train(): model.train() train_loss = 0 correct = 0 total = 0 pbar = tqdm(enumerate(trainloader)) for batch_idx, (inputs, targets) in pbar: inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() train_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() pbar.set_description( 'Batch Idx: (%d/%d) | Loss: %.3f | Train Acc: %.3f%% (%d/%d)' % (batch_idx, len(trainloader), train_loss/(batch_idx+1), 100.*correct/total, correct, total) ) def eval(epoch, dataloader, checkpoint=False): global best_acc model.eval() eval_loss = 0 correct = 0 total = 0 with torch.no_grad(): pbar = tqdm(enumerate(dataloader)) for batch_idx, (inputs, targets) in pbar: inputs, targets = inputs.to(device), targets.to(device) outputs = model(inputs) loss = criterion(outputs, targets) eval_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() pbar.set_description( 'Batch Idx: (%d/%d) | Loss: %.3f | Eval Acc: %.3f%% (%d/%d)' % (batch_idx, len(dataloader), eval_loss/(batch_idx+1), 100.*correct/total, correct, total) ) # Save checkpoint. if checkpoint: acc = 100.*correct/total if acc > best_acc: state = { 'model': model.state_dict(), 'acc': acc, 'epoch': epoch, } if not os.path.isdir('checkpoint'): os.mkdir('checkpoint') torch.save(state, './checkpoint/ckpt.pth') best_acc = acc return acc pbar = tqdm(range(start_epoch, args.epochs)) for epoch in pbar: if epoch == 0: pbar.set_description('Epoch: %d' % (epoch)) else: pbar.set_description('Epoch: %d | Val acc: %1.3f' % (epoch, val_acc)) train() val_acc = eval(epoch, valloader, checkpoint=True) eval(epoch, testloader) scheduler.step()
safari-main
standalone_cifar.py
""" Simplified standalone version of Hyena: https://arxiv.org/abs/2302.10866, designed for quick experimentation. A complete version is available under `src.models.sequence.hyena`. """ import math import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange def fftconv(u, k, D): seqlen = u.shape[-1] fft_size = 2 * seqlen k_f = torch.fft.rfft(k, n=fft_size) / fft_size u_f = torch.fft.rfft(u.to(dtype=k.dtype), n=fft_size) if len(u.shape) > 3: k_f = k_f.unsqueeze(1) y = torch.fft.irfft(u_f * k_f, n=fft_size, norm='forward')[..., :seqlen] out = y + u * D.unsqueeze(-1) return out.to(dtype=u.dtype) @torch.jit.script def mul_sum(q, y): return (q * y).sum(dim=1) class OptimModule(nn.Module): """ Interface for Module that allows registering buffers/parameters with configurable optimizer hyperparameters """ def register(self, name, tensor, lr=None, wd=0.0): """Register a tensor with a configurable learning rate and 0 weight decay""" if lr == 0.0: self.register_buffer(name, tensor) else: self.register_parameter(name, nn.Parameter(tensor)) optim = {} if lr is not None: optim["lr"] = lr if wd is not None: optim["weight_decay"] = wd setattr(getattr(self, name), "_optim", optim) class Sin(nn.Module): def __init__(self, dim, w=10, train_freq=True): super().__init__() self.freq = nn.Parameter(w * torch.ones(1, dim)) if train_freq else w * torch.ones(1, dim) def forward(self, x): return torch.sin(self.freq * x) class PositionalEmbedding(OptimModule): def __init__(self, emb_dim: int, seq_len: int, lr_pos_emb: float=1e-5, **kwargs): """Complex exponential positional embeddings for Hyena filters.""" super().__init__() self.seq_len = seq_len # The time embedding fed to the filteres is normalized so that t_f = 1 t = torch.linspace(0, 1, self.seq_len)[None, :, None] # 1, L, 1 if emb_dim > 1: bands = (emb_dim - 1) // 2 # To compute the right embeddings we use the "proper" linspace t_rescaled = torch.linspace(0, seq_len - 1, seq_len)[None, :, None] w = 2 * math.pi * t_rescaled / seq_len # 1, L, 1 f = torch.linspace(1e-4, bands - 1, bands)[None, None] z = torch.exp(-1j * f * w) z = torch.cat([t, z.real, z.imag], dim=-1) self.register("z", z, lr=lr_pos_emb) self.register("t", t, lr=0.0) def forward(self, L): return self.z[:, :L], self.t[:, :L] class ExponentialModulation(OptimModule): def __init__( self, d_model, fast_decay_pct=0.3, slow_decay_pct=1.5, target=1e-2, modulation_lr=0.0, modulate: bool=True, shift: float = 0.0, **kwargs ): super().__init__() self.modulate = modulate self.shift = shift max_decay = math.log(target) / fast_decay_pct min_decay = math.log(target) / slow_decay_pct deltas = torch.linspace(min_decay, max_decay, d_model)[None, None] self.register("deltas", deltas, lr=modulation_lr) def forward(self, t, x): if self.modulate: decay = torch.exp(-t * self.deltas.abs()) x = x * (decay + self.shift) return x class HyenaFilter(OptimModule): def __init__( self, d_model, emb_dim=3, # dim of input to MLP, augments with positional encoding order=16, # width of the implicit MLP fused_fft_conv=False, seq_len=1024, lr=1e-3, lr_pos_emb=1e-5, dropout=0.0, w=1, # frequency of periodic activations wd=0, # weight decay of kernel parameters bias=True, num_inner_mlps=2, normalized=False, **kwargs ): """ Implicit long filter with modulation. Args: d_model: number of channels in the input emb_dim: dimension of the positional encoding (`emb_dim` - 1) // 2 is the number of bands order: width of the FFN num_inner_mlps: number of inner linear layers inside filter MLP """ super().__init__() self.d_model = d_model self.use_bias = bias self.fused_fft_conv = fused_fft_conv self.bias = nn.Parameter(torch.randn(self.d_model)) self.dropout = nn.Dropout(dropout) act = Sin(dim=order, w=w) self.emb_dim = emb_dim assert emb_dim % 2 != 0 and emb_dim >= 3, "emb_dim must be odd and greater or equal to 3 (time, sine and cosine)" self.seq_len = seq_len self.pos_emb = PositionalEmbedding(emb_dim, seq_len, lr_pos_emb) self.implicit_filter = nn.Sequential( nn.Linear(emb_dim, order), act, ) for i in range(num_inner_mlps): self.implicit_filter.append(nn.Linear(order, order)) self.implicit_filter.append(act) self.implicit_filter.append(nn.Linear(order, d_model, bias=False)) self.modulation = ExponentialModulation(d_model, **kwargs) self.normalized = normalized for c in self.implicit_filter.children(): for name, v in c.state_dict().items(): optim = {"weight_decay": wd, "lr": lr} setattr(getattr(c, name), "_optim", optim) def filter(self, L, *args, **kwargs): z, t = self.pos_emb(L) h = self.implicit_filter(z) h = self.modulation(t, h) return h def forward(self, x, L, k=None, bias=None, *args, **kwargs): if k is None: k = self.filter(L) # Ensure compatibility with filters that return a tuple k = k[0] if type(k) is tuple else k y = fftconv(x, k, bias) return y class HyenaOperator(nn.Module): def __init__( self, d_model, l_max, order=2, filter_order=64, dropout=0.0, filter_dropout=0.0, **filter_args, ): r""" Hyena operator described in the paper https://arxiv.org/pdf/2302.10866.pdf Args: d_model (int): Dimension of the input and output embeddings (width of the layer) l_max: (int): Maximum input sequence length. Defaults to None order: (int): Depth of the Hyena recurrence. Defaults to 2 dropout: (float): Dropout probability. Defaults to 0.0 filter_dropout: (float): Dropout probability for the filter. Defaults to 0.0 """ super().__init__() self.d_model = d_model self.l_max = l_max self.order = order inner_width = d_model * (order + 1) self.dropout = nn.Dropout(dropout) self.in_proj = nn.Linear(d_model, inner_width) self.out_proj = nn.Linear(d_model, d_model) self.short_filter = nn.Conv1d( inner_width, inner_width, 3, padding=2, groups=inner_width ) self.filter_fn = HyenaFilter( d_model * (order - 1), order=filter_order, seq_len=l_max, channels=1, dropout=filter_dropout, **filter_args ) def forward(self, u, *args, **kwargs): l = u.size(-2) l_filter = min(l, self.l_max) u = self.in_proj(u) u = rearrange(u, 'b l d -> b d l') uc = self.short_filter(u)[...,:l_filter] *x, v = uc.split(self.d_model, dim=1) k = self.filter_fn.filter(l_filter)[0] k = rearrange(k, 'l (o d) -> o d l', o=self.order - 1) bias = rearrange(self.filter_fn.bias, '(o d) -> o d', o=self.order - 1) for o, x_i in enumerate(reversed(x[1:])): v = self.dropout(v * x_i) v = self.filter_fn(v, l_filter, k=k[o], bias=bias[o]) y = rearrange(v * x[0], 'b d l -> b l d') y = self.out_proj(y) return y if __name__ == "__main__": layer = HyenaOperator( d_model=512, l_max=1024, order=2, filter_order=64 ) x = torch.randn(1, 1024, 512, requires_grad=True) y = layer(x) print(x.shape, y.shape) grad = torch.autograd.grad(y[:, 10, :].sum(), x)[0] print('Causality check: gradients should not flow "from future to past"') print(grad[0, 11, :].sum(), grad[0, 9, :].sum())
safari-main
standalone_hyena.py
import copy import os import random import time from functools import partial, wraps from typing import Callable, List, Sequence import hydra import numpy as np import pytorch_lightning as pl import torch import torch.nn as nn import wandb from hydra.utils import get_original_cwd from omegaconf import DictConfig, OmegaConf from pytorch_lightning.loggers import WandbLogger from pytorch_lightning.utilities import rank_zero_only, rank_zero_warn from tqdm.auto import tqdm import src.models.nn.utils as U import src.utils as utils import src.utils.train from src.dataloaders import SequenceDataset # TODO make registry from src.tasks import decoders, encoders, tasks from src.utils import registry from src.utils.optim_groups import add_optimizer_hooks log = src.utils.train.get_logger(__name__) # Turn on TensorFloat32 (speeds up large model training substantially) import torch.backends torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True OmegaConf.register_new_resolver('eval', eval) OmegaConf.register_new_resolver('div_up', lambda x, y: (x + y - 1) // y) # Lots of annoying hacks to get WandbLogger to continuously retry on failure class DummyExperiment: """Dummy experiment.""" def nop(self, *args, **kw): pass def __getattr__(self, _): return self.nop def __getitem__(self, idx) -> "DummyExperiment": # enables self.logger.experiment[0].add_image(...) return self def __setitem__(self, *args, **kwargs) -> None: pass def rank_zero_experiment(fn: Callable) -> Callable: """Returns the real experiment on rank 0 and otherwise the DummyExperiment.""" @wraps(fn) def experiment(self): @rank_zero_only def get_experiment(): return fn(self) return get_experiment() or DummyExperiment() return experiment class CustomWandbLogger(WandbLogger): def __init__(self, *args, **kwargs): """Modified logger that insists on a wandb.init() call and catches wandb's error if thrown.""" super().__init__(*args, **kwargs) @property @rank_zero_experiment def experiment(self): r""" Actual wandb object. To use wandb features in your :class:`~pytorch_lightning.core.lightning.LightningModule` do the following. Example:: .. code-block:: python self.logger.experiment.some_wandb_function() """ if self._experiment is None: if self._offline: os.environ["WANDB_MODE"] = "dryrun" attach_id = getattr(self, "_attach_id", None) if wandb.run is not None: # wandb process already created in this instance rank_zero_warn( "There is a wandb run already in progress and newly created instances of `WandbLogger` will reuse" " this run. If this is not desired, call `wandb.finish()` before instantiating `WandbLogger`." ) self._experiment = wandb.run elif attach_id is not None and hasattr(wandb, "_attach"): # attach to wandb process referenced self._experiment = wandb._attach(attach_id) else: # create new wandb process while True: try: self._experiment = wandb.init(**self._wandb_init) break except Exception as e: print("wandb Exception:\n", e) t = random.randint(30, 60) print(f"Sleeping for {t} seconds") time.sleep(t) # define default x-axis if getattr(self._experiment, "define_metric", None): self._experiment.define_metric("trainer/global_step") self._experiment.define_metric("*", step_metric="trainer/global_step", step_sync=True) return self._experiment class SequenceLightningModule(pl.LightningModule): def __init__(self, config): # Disable profiling executor. This reduces memory and increases speed. try: torch._C._jit_set_profiling_executor(False) torch._C._jit_set_profiling_mode(False) except AttributeError: pass super().__init__() # Passing in config expands it one level, so can access by self.hparams.train instead of self.hparams.config.train self.save_hyperparameters(config, logger=False) # Dataset arguments self.dataset = SequenceDataset.registry[self.hparams.dataset._name_]( **self.hparams.dataset ) # Check hparams self._check_config() # PL has some bugs, so add hooks and make sure they're only called once self._has_setup = False self.setup() ## Added by KS def setup(self, stage=None): if not self.hparams.train.disable_dataset: self.dataset.setup() # We need to set up the model in setup() because for some reason when training with DDP, one GPU uses much more memory than the others # In order to not overwrite the model multiple times during different stages, we need this hack # TODO PL 1.5 seems to have an option to skip hooks to avoid this # https://github.com/PyTorchLightning/pytorch-lightning/issues/5410#issuecomment-762257024 if self._has_setup: return else: self._has_setup = True # Convenience feature: if model specifies encoder, combine it with main encoder encoder_cfg = utils.to_list(self.hparams.encoder) + utils.to_list( self.hparams.model.pop("encoder", None) ) decoder_cfg = utils.to_list( self.hparams.model.pop("decoder", None) ) + utils.to_list(self.hparams.decoder) # Instantiate model self.model = utils.instantiate(registry.model, self.hparams.model) if (name := self.hparams.train.post_init_hook['_name_']) is not None: kwargs = self.hparams.train.post_init_hook.copy() del kwargs['_name_'] for module in self.modules(): if hasattr(module, name): getattr(module, name)(**kwargs) # Instantiate the task self.task = utils.instantiate( tasks.registry, self.hparams.task, dataset=self.dataset, model=self.model ) # Create encoders and decoders encoder = encoders.instantiate( encoder_cfg, dataset=self.dataset, model=self.model ) decoder = decoders.instantiate( decoder_cfg, model=self.model, dataset=self.dataset ) # Extract the modules so they show up in the top level parameter count self.encoder = U.PassthroughSequential(self.task.encoder, encoder) self.decoder = U.PassthroughSequential(decoder, self.task.decoder) self.loss = self.task.loss self.loss_val = self.task.loss if hasattr(self.task, 'loss_val'): self.loss_val = self.task.loss_val self.metrics = self.task.metrics self.train_torchmetrics = self.task.train_torchmetrics self.val_torchmetrics = self.task.val_torchmetrics self.test_torchmetrics = self.task.test_torchmetrics def load_state_dict(self, state_dict, strict=True): if self.hparams.train.pretrained_model_state_hook['_name_'] is not None: model_state_hook = utils.instantiate( registry.model_state_hook, self.hparams.train.pretrained_model_state_hook.copy(), partial=True, ) # Modify the checkpoint['state_dict'] inside model_state_hook e.g. to inflate 2D convs to 3D convs state_dict = model_state_hook(self.model, state_dict) print("Custom load_state_dict function is running.") # note, it needs to return something from the normal function we overrided return super().load_state_dict(state_dict, strict=strict) def _check_config(self): assert self.hparams.train.state.mode in [None, "none", "null", "reset", "bptt", "tbptt"] assert ( (n := self.hparams.train.state.n_context) is None or isinstance(n, int) and n >= 0 ) assert ( (n := self.hparams.train.state.n_context_eval) is None or isinstance(n, int) and n >= 0 ) def _initialize_state(self): """Called at model setup and start of epoch to completely reset state""" self._state = None self._memory_chunks = [] def _reset_state(self, batch, device=None): """Called to construct default_state when necessary, e.g. during BPTT""" device = device or batch[0].device self._state = self.model.default_state(*batch[0].shape[:1], device=device) def _detach_state(self, state): if isinstance(state, torch.Tensor): return state.detach() elif isinstance(state, tuple): return tuple(self._detach_state(s) for s in state) elif isinstance(state, list): return [self._detach_state(s) for s in state] elif isinstance(state, dict): return {k: self._detach_state(v) for k, v in state.items()} elif state is None: return None else: raise NotImplementedError def _process_state(self, batch, batch_idx, train=True): """Handle logic for state context.""" # Number of context steps key = "n_context" if train else "n_context_eval" n_context = self.hparams.train.state.get(key) # Don't need to do anything if 0 context steps. Make sure there is no state if n_context == 0 and self.hparams.train.state.mode not in ['tbptt']: self._initialize_state() return # Reset state if needed if self.hparams.train.state.mode == "reset": if batch_idx % (n_context + 1) == 0: self._reset_state(batch) # Pass through memory chunks elif self.hparams.train.state.mode == "bptt": self._reset_state(batch) with torch.no_grad(): # should be unnecessary because individual modules should handle this for _batch in self._memory_chunks: self.forward(_batch) # Prepare for next step self._memory_chunks.append(batch) self._memory_chunks = self._memory_chunks[-n_context:] elif self.hparams.train.state.mode == 'tbptt': _, _, z = batch reset = z["reset"] if reset: self._reset_state(batch) else: self._state = self._detach_state(self._state) # def forward(self, batch): # """Passes a batch through the encoder, backbone, and decoder""" # # z holds arguments such as sequence length # x, y, *z = batch # z holds extra dataloader info such as resolution # if len(z) == 0: # z = {} # else: # assert len(z) == 1 and isinstance(z[0], dict), "Dataloader must return dictionary of extra arguments" # z = z[0] # x, w = self.encoder(x, **z) # w can model-specific constructions such as key_padding_mask for transformers or state for RNNs # x, state = self.model(x, **w, state=self._state) # self._state = state # x, w = self.decoder(x, state=state, **z) # return x, y, w def forward(self, batch): return self.task.forward(batch, self.encoder, self.model, self.decoder, self._state) def step(self, x_t): x_t, *_ = self.encoder(x_t) # Potential edge case for encoders that expect (B, L, H)? x_t, state = self.model.step(x_t, state=self._state) self._state = state # x_t = x_t[:, None, ...] # Dummy length # x_t, *_ = self.decoder(x_t, state=state) # x_t = x_t[:, 0, ...] x_t, *_ = self.decoder.step(x_t, state=state) return x_t def _shared_step(self, batch, batch_idx, prefix="train"): self._process_state(batch, batch_idx, train=(prefix == "train")) x, y, w = self.forward(batch) # Loss if prefix == 'train': loss = self.loss(x, y, **w) else: loss = self.loss_val(x, y, **w) # Metrics metrics = self.metrics(x, y, **w) metrics["loss"] = loss metrics = {f"{prefix}/{k}": v for k, v in metrics.items()} # Calculate torchmetrics torchmetrics = getattr(self, f'{prefix}_torchmetrics') torchmetrics(x, y, loss=loss) log_on_step = 'eval' in self.hparams and self.hparams.eval.get('log_on_step', False) and prefix == 'train' self.log_dict( metrics, on_step=log_on_step, on_epoch=True, prog_bar=True, add_dataloader_idx=False, sync_dist=True, ) # log the whole dict, otherwise lightning takes the mean to reduce it # https://pytorch-lightning.readthedocs.io/en/stable/visualize/logging_advanced.html#enable-metrics-for-distributed-training self.log_dict( torchmetrics, on_step=log_on_step, on_epoch=True, prog_bar=True, add_dataloader_idx=False, sync_dist=True, ) return loss def on_train_epoch_start(self): # Reset training torchmetrics self.task._reset_torchmetrics("train") def training_epoch_end(self, outputs): # Log training torchmetrics super().training_epoch_end(outputs) # self.log_dict( # {f"train/{k}": v for k, v in self.task.get_torchmetrics("train").items()}, # on_step=False, # on_epoch=True, # prog_bar=True, # add_dataloader_idx=False, # sync_dist=True, # ) def on_validation_epoch_start(self): # Reset all validation torchmetrics for name in self.val_loader_names: self.task._reset_torchmetrics(name) def validation_epoch_end(self, outputs): # Log all validation torchmetrics super().validation_epoch_end(outputs) # for name in self.val_loader_names: # self.log_dict( # {f"{name}/{k}": v for k, v in self.task.get_torchmetrics(name).items()}, # on_step=False, # on_epoch=True, # prog_bar=True, # add_dataloader_idx=False, # sync_dist=True, # ) def on_test_epoch_start(self): # Reset all test torchmetrics for name in self.test_loader_names: self.task._reset_torchmetrics(name) def test_epoch_end(self, outputs): # Log all test torchmetrics super().test_epoch_end(outputs) # for name in self.test_loader_names: # self.log_dict( # {f"{name}/{k}": v for k, v in self.task.get_torchmetrics(name).items()}, # on_step=False, # on_epoch=True, # prog_bar=True, # add_dataloader_idx=False, # sync_dist=True, # ) def training_step(self, batch, batch_idx, dataloader_idx=0): loss = self._shared_step(batch, batch_idx, prefix="train") # Log the loss explicitly so it shows up in WandB # Note that this currently runs into a bug in the progress bar with ddp (as of 1.4.6) # https://github.com/PyTorchLightning/pytorch-lightning/pull/9142 # We additionally log the epochs under 'trainer' to get a consistent prefix with 'global_step' loss_epoch = {"trainer/loss": loss, "trainer/epoch": self.current_epoch} self.log_dict( loss_epoch, on_step=True, on_epoch=False, prog_bar=False, add_dataloader_idx=False, sync_dist=True, ) # Log any extra info that the models want to expose (e.g. output norms) metrics = {} for module in list(self.modules())[1:]: if hasattr(module, "metrics"): metrics.update(module.metrics) self.log_dict( metrics, on_step=True, on_epoch=False, prog_bar=False, add_dataloader_idx=False, sync_dist=True, ) return loss def validation_step(self, batch, batch_idx, dataloader_idx=0): ema = ( self.val_loader_names[dataloader_idx].endswith("/ema") and self.optimizers().optimizer.stepped ) # There's a bit of an annoying edge case with the first (0-th) epoch; it has to be excluded due to the initial sanity check if ema: self.optimizers().swap_ema() loss = self._shared_step( batch, batch_idx, prefix=self.val_loader_names[dataloader_idx] ) if ema: self.optimizers().swap_ema() return loss def test_step(self, batch, batch_idx, dataloader_idx=0): return self._shared_step( batch, batch_idx, prefix=self.test_loader_names[dataloader_idx] ) def configure_optimizers(self): # Set zero weight decay for some params if 'optimizer_param_grouping' in self.hparams.train: add_optimizer_hooks(self.model, **self.hparams.train.optimizer_param_grouping) # Normal parameters all_params = list(self.parameters()) params = [p for p in all_params if not hasattr(p, "_optim")] optimizer = utils.instantiate(registry.optimizer, self.hparams.optimizer, params) del self.hparams.optimizer._name_ # Add parameters with special hyperparameters hps = [getattr(p, "_optim") for p in all_params if hasattr(p, "_optim")] hps = [ # dict(s) for s in set(frozenset(hp.items()) for hp in hps) dict(s) for s in sorted(list(dict.fromkeys(frozenset(hp.items()) for hp in hps))) # dict(s) for s in dict.fromkeys(frozenset(hp.items()) for hp in hps) ] # Unique dicts print("Hyperparameter groups", hps) for hp in hps: params = [p for p in all_params if getattr(p, "_optim", None) == hp] optimizer.add_param_group( {"params": params, **self.hparams.optimizer, **hp} ) ### Layer Decay ### if self.hparams.train.layer_decay['_name_'] is not None: get_num_layer = utils.instantiate( registry.layer_decay, self.hparams.train.layer_decay['_name_'], partial=True, ) # Go through all parameters and get num layer layer_wise_groups = {} num_max_layers = 0 for name, p in self.named_parameters(): # Get layer id for each parameter in the model layer_id = get_num_layer(name) # Add to layer wise group if layer_id not in layer_wise_groups: layer_wise_groups[layer_id] = { 'params': [], 'lr': None, 'weight_decay': self.hparams.optimizer.weight_decay } layer_wise_groups[layer_id]['params'].append(p) if layer_id > num_max_layers: num_max_layers = layer_id # Update lr for each layer for layer_id, group in layer_wise_groups.items(): group['lr'] = self.hparams.optimizer.lr * (self.hparams.train.layer_decay.decay ** (num_max_layers - layer_id)) # Reset the torch optimizer's param groups optimizer.param_groups = [] for layer_id, group in layer_wise_groups.items(): optimizer.add_param_group(group) # Print optimizer info for debugging keys = set([k for hp in hps for k in hp.keys()]) # Special hparams utils.train.log_optimizer(log, optimizer, keys) # Configure scheduler if "scheduler" not in self.hparams: return optimizer lr_scheduler = utils.instantiate( registry.scheduler, self.hparams.scheduler, optimizer ) scheduler = { "scheduler": lr_scheduler, "interval": self.hparams.train.interval, # 'epoch' or 'step' "monitor": self.hparams.train.monitor, "name": "trainer/lr", # default is e.g. 'lr-AdamW' } # See documentation for how to configure the return # https://pytorch-lightning.readthedocs.io/en/latest/api/pytorch_lightning.core.lightning.html#pytorch_lightning.core.lightning.LightningModule.configure_optimizers return [optimizer], [scheduler] def train_dataloader(self): return self.dataset.train_dataloader(**self.hparams.loader) def _eval_dataloaders_names(self, loaders, prefix): """Process loaders into a list of names and loaders""" if utils.is_dict(loaders): return [ f"{prefix}/{k}" if k is not None else prefix for k in loaders.keys() ], list(loaders.values()) elif utils.is_list(loaders): return [f"{prefix}/{i}" for i in range(len(loaders))], loaders else: return [prefix], [loaders] def _eval_dataloaders(self): # Return all val + test loaders val_loaders = self.dataset.val_dataloader(**self.hparams.loader) test_loaders = self.dataset.test_dataloader(**self.hparams.loader) val_loader_names, val_loaders = self._eval_dataloaders_names(val_loaders, "val") test_loader_names, test_loaders = self._eval_dataloaders_names( test_loaders, "test" ) # Duplicate datasets for ema if self.hparams.train.ema > 0.0: val_loader_names += [name + "/ema" for name in val_loader_names] val_loaders = val_loaders + val_loaders test_loader_names += [name + "/ema" for name in test_loader_names] test_loaders = test_loaders + test_loaders # adding option to only have val loader at eval (eg if test is duplicate) if self.hparams.train.get("remove_test_loader_in_eval", None) is not None: return val_loader_names, val_loaders # default behavior is to add test loaders in eval else: return val_loader_names + test_loader_names, val_loaders + test_loaders def val_dataloader(self): val_loader_names, val_loaders = self._eval_dataloaders() self.val_loader_names = val_loader_names return val_loaders def test_dataloader(self): test_loader_names, test_loaders = self._eval_dataloaders() self.test_loader_names = ["final/" + name for name in test_loader_names] return test_loaders ### pytorch-lightning utils and entrypoint ### def create_trainer(config, **kwargs): callbacks: List[pl.Callback] = [] logger = None # WandB Logging if config.get("wandb") is not None: # Pass in wandb.init(config=) argument to get the nice 'x.y.0.z' hparams logged # Can pass in config_exclude_keys='wandb' to remove certain groups import wandb logger = CustomWandbLogger( config=utils.to_dict(config, recursive=True), settings=wandb.Settings(start_method="fork"), **config.wandb, ) # Lightning callbacks if "callbacks" in config: for _name_, callback in config.callbacks.items(): if config.get("wandb") is None and _name_ in ["learning_rate_monitor"]: continue log.info(f"Instantiating callback <{registry.callbacks[_name_]}>") callback._name_ = _name_ callbacks.append(utils.instantiate(registry.callbacks, callback)) # Add ProgressiveResizing callback if config.callbacks.get("progressive_resizing", None) is not None: num_stages = len(config.callbacks.progressive_resizing.stage_params) print(f"Progressive Resizing: {num_stages} stages") for i, e in enumerate(config.callbacks.progressive_resizing.stage_params): # Stage params are resolution and epochs, pretty print print(f"\tStage {i}: {e['resolution']} @ {e['epochs']} epochs") # Configure ddp automatically n_devices = config.trainer.get('devices', 1) if isinstance(n_devices, Sequence): # trainer.devices could be [1, 3] for example n_devices = len(n_devices) if n_devices > 1 and config.trainer.get('strategy', None) is None: config.trainer.strategy = dict( _target_='pytorch_lightning.strategies.DDPStrategy', find_unused_parameters=False, gradient_as_bucket_view=True, # https://pytorch-lightning.readthedocs.io/en/stable/advanced/advanced_gpu.html#ddp-optimizations ) # Init lightning trainer log.info(f"Instantiating trainer <{config.trainer._target_}>") trainer = hydra.utils.instantiate( config.trainer, callbacks=callbacks, logger=logger) return trainer def train(config): if config.train.seed is not None: pl.seed_everything(config.train.seed, workers=True) trainer = create_trainer(config) model = SequenceLightningModule(config) # Run initial validation epoch (useful for debugging, finetuning) if config.train.validate_at_start: print("Running validation before training") trainer.validate(model) if config.train.ckpt is not None: trainer.fit(model, ckpt_path=config.train.ckpt) else: trainer.fit(model) if config.train.test: trainer.test(model) @hydra.main(config_path="configs", config_name="config.yaml") def main(config: OmegaConf): # Process config: # - register evaluation resolver # - filter out keys used only for interpolation # - optional hooks, including disabling python warnings or debug friendly configuration config = utils.train.process_config(config) # Pretty print config using Rich library utils.train.print_config(config, resolve=True) train(config) if __name__ == "__main__": main()
safari-main
train.py
import torch import torch.nn.functional as F from einops import rearrange from fftconv import fftconv_fwd, fftconv_bwd def fftconv_ref(u, k, D, dropout_mask): seqlen = u.shape[-1] fft_size = 2 * seqlen k_f = torch.fft.rfft(k, n=fft_size) / fft_size u_f = torch.fft.rfft(u.to(dtype=k.dtype), n=fft_size) y = torch.fft.irfft(u_f * k_f, n=fft_size, norm='forward')[..., :seqlen] out = y + u * D.unsqueeze(-1) return (F.gelu(out) * rearrange(dropout_mask, 'b H -> b H 1')).to(dtype=u.dtype) def fftconv_fast(u, k, D, dropout_mask): """Fuse padding + rfft + pointwise mult + ifft + multiply with D + gelu + dropout """ seqlen = u.shape[-1] fft_size = 2 * seqlen k_f = torch.fft.rfft(k, n=fft_size) out = fftconv_fwd(u, k_f, D, dropout_mask, fft_size) return out def fftconv_fast_bwd(dout, u, k, D, dropout_mask=None): seqlen = u.shape[-1] fft_size = 2 * seqlen k_f = torch.fft.rfft(k, n=fft_size) dx, dk_f, dD = fftconv_bwd(dout, u, k_f, D, dropout_mask, fft_size) dk = torch.fft.irfft(dk_f, n=fft_size, norm='forward')[..., :seqlen] return dx, dk, dD device = 'cuda' dtype = torch.float32 # dtype = torch.float16 batch_size = 64 H = 256 fft_size = 2048 seqlen = 1024 dropout_prob = 0.37 torch.manual_seed(0) u = torch.randn(batch_size, H, seqlen, device=device, dtype=dtype, requires_grad=True) k = torch.randn(H, seqlen, device=device, requires_grad=True) D = torch.randn(H, device=device, requires_grad=True) dropout_mask = F.dropout(torch.ones(batch_size, H, device=device), dropout_prob) out = fftconv_ref(u, k, D, dropout_mask) out = fftconv_fast(u, k, D, dropout_mask) g = torch.randn_like(out) fftconv_fast_bwd(g, u, k, D, dropout_mask)
safari-main
csrc/fftconv/launch_fftconv.py
# Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py import torch from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME from setuptools import setup, find_packages import subprocess import sys import warnings import os # ninja build does not work unless include_dirs are abs path this_dir = os.path.dirname(os.path.abspath(__file__)) def get_cuda_bare_metal_version(cuda_dir): raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True) output = raw_output.split() release_idx = output.index("release") + 1 release = output[release_idx].split(".") bare_metal_major = release[0] bare_metal_minor = release[1][0] return raw_output, bare_metal_major, bare_metal_minor def check_cuda_torch_binary_vs_bare_metal(cuda_dir): raw_output, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(cuda_dir) torch_binary_major = torch.version.cuda.split(".")[0] torch_binary_minor = torch.version.cuda.split(".")[1] print("\nCompiling cuda extensions with") print(raw_output + "from " + cuda_dir + "/bin\n") if (bare_metal_major != torch_binary_major) or (bare_metal_minor != torch_binary_minor): raise RuntimeError( "Cuda extensions are being compiled with a version of Cuda that does " "not match the version used to compile Pytorch binaries. " "Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda) + "In some cases, a minor-version mismatch will not cause later errors: " "https://github.com/NVIDIA/apex/pull/323#discussion_r287021798. " "You can try commenting out this check (at your own risk)." ) def raise_if_cuda_home_none(global_option: str) -> None: if CUDA_HOME is not None: return raise RuntimeError( f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? " "If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, " "only images whose names contain 'devel' will provide nvcc." ) def append_nvcc_threads(nvcc_extra_args): _, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME) if int(bare_metal_major) >= 11 and int(bare_metal_minor) >= 2: return nvcc_extra_args + ["--threads", "4"] return nvcc_extra_args if not torch.cuda.is_available(): # https://github.com/NVIDIA/apex/issues/486 # Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(), # which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command). print( "\nWarning: Torch did not find available GPUs on this system.\n", "If your intention is to cross-compile, this is not an error.\n" "By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n" "Volta (compute capability 7.0), Turing (compute capability 7.5),\n" "and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n" "If you wish to cross-compile for a single specific architecture,\n" 'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n', ) if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None: _, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME) if int(bare_metal_major) == 11: os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0" if int(bare_metal_minor) > 0: os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6" else: os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5" print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__)) TORCH_MAJOR = int(torch.__version__.split(".")[0]) TORCH_MINOR = int(torch.__version__.split(".")[1]) cmdclass = {} ext_modules = [] raise_if_cuda_home_none("fftconv") # Check, if CUDA11 is installed for compute capability 8.0 cc_flag = [] # cc_flag.append("-gencode") # cc_flag.append("arch=compute_70,code=sm_70") cc_flag.append("-gencode") cc_flag.append("arch=compute_80,code=sm_80") ext_modules.append( CUDAExtension( 'fftconv', [ 'fftconv.cpp', 'fftconv_cuda.cu', ], extra_compile_args={'cxx': ['-g', '-march=native', '-funroll-loops'], 'nvcc': ['-O3', '--threads', '4', '-lineinfo', '--use_fast_math', '-std=c++17', '-arch=compute_70'] # extra_compile_args={'cxx': ['-O3'], # 'nvcc': append_nvcc_threads(['-O3', '-lineinfo', '--use_fast_math', '-std=c++17'] + cc_flag) }, include_dirs=[os.path.join(this_dir, 'mathdx/22.02/include')] ) ) torch.utils.cpp_extension.COMMON_NVCC_FLAGS.remove('-D__CUDA_NO_HALF2_OPERATORS__') setup( name="fftconv", version="0.1", description="FFTConv for state-space models", ext_modules=ext_modules, cmdclass={"build_ext": BuildExtension} if ext_modules else {}, )
safari-main
csrc/fftconv/setup.py
import math import re import numpy as np # N = 8192 N = 16384 # The case of 0 / N is special, we want to simplify it to 0 / 2 instead of 0 / 1 numerator = np.arange(1, N // 8 + 1) gcd = np.gcd(numerator, N) num = numerator // gcd denom = N // gcd lut_vals = ['T_2_0'] + [f'T_{d}_{n}' for n, d in zip(num, denom)] lut_string = f"static const __device__ float2 lut_mine_sp_8_{N}[{N // 8 + 1}] = {{\n {','.join(lut_vals)}\n}};" print(lut_string) # Only define new values if it's not already in the cuFFTDx lookup table cufftdx_lut_filename = 'mathdx/22.02/include/cufftdx/include/database/lut_defines_0.hpp.inc' matches = set() reg = re.compile(f'^#define T_{N}_([0-9]+) ') with open(cufftdx_lut_filename, 'r') as f: for line in f: if (match := reg.match(line)) is not None: matches.add(int(match[1])) numerator = np.arange(1, N // 8 + 1, 2) angle = -2 * math.pi * numerator.astype(np.float64) / N cos, sin = np.cos(angle), np.sin(angle) defs = [f'#define T_{N}_{n} {{{c:.40f},{s:.40f}}}' for n, c, s in zip(numerator, cos, sin) if n not in matches] def_string = '\n'.join(defs) print(def_string)
safari-main
csrc/fftconv/lut_code_gen.py
import torch import argparse import os import sys import yaml from tqdm import tqdm import json sys.path.append(os.environ.get("SAFARI_PATH", ".")) from src.models.sequence.long_conv_lm import ConvLMHeadModel from transformers import AutoTokenizer, GPT2LMHeadModel from spacy.lang.en.stop_words import STOP_WORDS from transformers import GPT2Tokenizer try: from tokenizers import Tokenizer except: pass # https://github.com/openai/gpt-2/issues/131#issuecomment-492786058 def preprocess(text): text = text.replace("“", '"') text = text.replace("”", '"') return '\n'+text.strip() class LAMBADA: "LAMBADA (OpenAI) benchmark" def __init__(self, data_dir=None, use_stop_filter:bool=False): data_dir = os.environ.get("DATA_DIR", data_dir) lambada_path = os.path.join(data_dir + "/lambada/lambada_openai/lambada_test.jsonl") self.data = [preprocess(json.loads(line)['text']) for line in open(lambada_path)] self.use_stop_filter = use_stop_filter def run(self, model_cfg, ckpt_path): model, tokenizer = self.load_model(model_cfg, ckpt_path) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) if isinstance(tokenizer, Tokenizer): vocab_size = tokenizer.get_vocab_size() else: vocab_size = tokenizer.vocab_size stop_filter = torch.zeros(vocab_size, device=device) if self.use_stop_filter: token_to_idx = {tokenizer.decode([i]):i for i in range(vocab_size)} for word in STOP_WORDS: if ' '+word in token_to_idx: stop_filter[token_to_idx[' '+word]] = -float('inf') results = [] for prompt in tqdm(self.data): target = prompt.split(" ")[-1] if isinstance(tokenizer, Tokenizer): tokenized_prompt = tokenizer.encode(prompt).ids target_tokenized = tokenizer.encode(' '+target).ids else: tokenized_prompt = tokenizer.encode(prompt) target_tokenized = tokenizer(' '+target)['input_ids'] out = model(torch.tensor([tokenized_prompt]).to(device=device)) if type(out) == tuple: out = out[0] logits = out.logits[0][:-1, :vocab_size] # seq_len - 1, vocab_size logits = logits + stop_filter[None] preds = logits.argmax(-1) acc = all([pred == answer for pred, answer in zip(preds[-len(target_tokenized):], target_tokenized) ] ) results.append(acc) print(f"Accuracy {torch.tensor(results).float().mean().item()*100:4.2f}") def load_model(self, model_cfg, ckpt_path): config = yaml.load(open(model_cfg, 'r'), Loader=yaml.FullLoader) model = ConvLMHeadModel(**config['model_config']) state_dict = torch.load(ckpt_path, map_location='cpu') model.load_state_dict(state_dict) if config['tokenizer_name'] == 'gpt2': tokenizer = GPT2Tokenizer.from_pretrained("gpt2") else: tokenizer = None return model, tokenizer if __name__ == "__main__": SAFARI_PATH = os.getenv('SAFARI_PATH', '.') parser = argparse.ArgumentParser() parser.add_argument( "--data_dir", type=str, default="/data", help="Path to data", ) parser.add_argument( "--model_cfg", default=f"{SAFARI_PATH}/configs/evals/hyena_small_150b.yaml", ) parser.add_argument( "--ckpt_path", default=f"", help="Path to model state dict checkpoint" ) parser.add_argument( "--stop_word_filter", type=bool, default=False, help="Filter out stop words", ) args = parser.parse_args() task = LAMBADA(data_dir=args.data_dir, use_stop_filter=args.stop_word_filter) task.run(args.model_cfg, args.ckpt_path)
safari-main
evals/lambada.py
import sys from pathlib import Path import torch import torch.utils.benchmark as benchmark from src.models.sequence.hyena import HyenaOperator from flash_attn.flash_attention import FlashMHA def benchmark_forward(fn, *inputs, repeats = 10, desc='', verbose=True, **kwinputs): if verbose: print(desc, '- Forward pass') t = benchmark.Timer( stmt='fn(*inputs, **kwinputs)', globals={'fn': fn, 'inputs': inputs, 'kwinputs': kwinputs}, num_threads=torch.get_num_threads(), ) m = t.timeit(repeats) if verbose: print(m) return t, m def benchmark_backward(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, **kwinputs): if verbose: print(desc, '- Backward pass') y = fn(*inputs, **kwinputs) if not hasattr(y, 'shape'): y = y[0] if grad is None: grad = torch.randn_like(y) else: if grad.shape != y.shape: raise RuntimeError('Grad shape does not match output shape') t = benchmark.Timer( stmt='y.backward(grad, retain_graph=True)', globals={'y': y, 'grad': grad}, num_threads=torch.get_num_threads(), ) m = t.timeit(repeats) if verbose: print(m) return t, m DIM = 768 torch.manual_seed(0) batch_size = 1 dtype = torch.float16 device = torch.device(f"cuda") runtime_mha, runtime_hyena = {}, {} runtime_bwd_mha, runtime_bwd_hyena = {}, {} for SEQ_LEN in [2048, 4096, 8192, 16384, 32768, 65536, 131072]: print(SEQ_LEN) mha = FlashMHA(embed_dim=DIM, num_heads=12, causal=True, device=device, dtype=dtype) hyena = HyenaOperator(d_model=DIM, l_max=SEQ_LEN, fused_fft_conv=False, groups=3*DIM, fused_bias_fc=True, modulate=False, emb_dim=33, d_state=64).to(device).to(dtype) x = torch.ones((batch_size, SEQ_LEN, DIM), dtype=dtype, device=device) m, t = benchmark_forward(mha, x, repeats=10, desc='', verbose=False) runtime_mha[SEQ_LEN] = t.mean m, t = benchmark_backward(mha, x, repeats=10, desc='', verbose=False) runtime_bwd_mha[SEQ_LEN] = t.mean m, t = benchmark_forward(hyena, x, repeats=10, desc='', verbose=False) runtime_hyena[SEQ_LEN] = t.mean m, t = benchmark_backward(hyena, x, repeats=10, desc='', verbose=False) runtime_bwd_hyena[SEQ_LEN] = t.mean print('---') print(runtime_mha) print(runtime_bwd_mha) print('---') print(runtime_hyena) print(runtime_bwd_hyena)
safari-main
benchmarks/runtime_hyena_flashmha.py
import math import torch import torch.nn.functional as F from sklearn.metrics import f1_score, roc_auc_score from functools import partial import torchmetrics.functional as tm_f def _student_t_map(mu, sigma, nu): sigma = F.softplus(sigma) nu = 2.0 + F.softplus(nu) return mu.squeeze(axis=-1), sigma.squeeze(axis=-1), nu.squeeze(axis=-1) def student_t_loss(outs, y): mu, sigma, nu = outs[..., 0], outs[..., 1], outs[..., 2] mu, sigma, nu = _student_t_map(mu, sigma, nu) y = y.squeeze(axis=-1) nup1_half = (nu + 1.0) / 2.0 part1 = 1.0 / nu * torch.square((y - mu) / sigma) Z = ( torch.lgamma(nup1_half) - torch.lgamma(nu / 2.0) - 0.5 * torch.log(math.pi * nu) - torch.log(sigma) ) ll = Z - nup1_half * torch.log1p(part1) return -ll.mean() def gaussian_ll_loss(outs, y): mu, sigma = outs[..., 0], outs[..., 1] y = y.squeeze(axis=-1) sigma = F.softplus(sigma) ll = -1.0 * ( torch.log(sigma) + 0.5 * math.log(2 * math.pi) + 0.5 * torch.square((y - mu) / sigma) ) return -ll.mean() def binary_cross_entropy(logits, y): # BCE loss requires squeezing last dimension of logits so it has the same shape as y # requires y to be float, since it's overloaded to represent a probability return F.binary_cross_entropy_with_logits(logits.squeeze(-1), y.float()) def binary_accuracy(logits, y): return torch.eq(logits.squeeze(-1) >= 0, y).float().mean() def cross_entropy(logits, y): logits = logits.view(-1, logits.shape[-1]) y = y.view(-1) return F.cross_entropy(logits, y) def soft_cross_entropy(logits, y, label_smoothing=0.0): logits = logits.view(-1, logits.shape[-1]) # target is now 2d (no target flattening) return F.cross_entropy(logits, y, label_smoothing=label_smoothing) def accuracy(logits, y): logits = logits.view(-1, logits.shape[-1]) if y.numel() > logits.shape[0]: # Mixup leads to this case: use argmax class y = y.argmax(dim=-1) y = y.view(-1) return torch.eq(torch.argmax(logits, dim=-1), y).float().mean() def accuracy_ignore_index(logits, y, ignore_index=-100): num_classes = logits.shape[-1] preds = torch.argmax(logits, dim=-1) logits = logits.view(-1, logits.shape[-1]) y = y.view(-1) return tm_f.classification.accuracy(preds, y, 'multiclass', num_classes=num_classes, ignore_index=ignore_index, average='micro') def accuracy_at_k(logits, y, k=1): logits = logits.view(-1, logits.shape[-1]) if y.numel() > logits.shape[0]: # Mixup leads to this case: use argmax class y = y.argmax(dim=-1) y = y.view(-1) return torch.topk(logits, k, dim=-1)[1].eq(y.unsqueeze(-1)).any(dim=-1).float().mean() def f1_binary(logits, y): logits = logits.view(-1, logits.shape[-1]) y = y.view(-1) y_hat = torch.argmax(logits, dim=-1) return f1_score(y.cpu().numpy(), y_hat.cpu().numpy(), average="binary") def f1_macro(logits, y): logits = logits.view(-1, logits.shape[-1]) y = y.view(-1) y_hat = torch.argmax(logits, dim=-1) return f1_score(y.cpu().numpy(), y_hat.cpu().numpy(), average="macro") def f1_micro(logits, y): logits = logits.view(-1, logits.shape[-1]) y = y.view(-1) y_hat = torch.argmax(logits, dim=-1) return f1_score(y.cpu().numpy(), y_hat.cpu().numpy(), average="micro") def roc_auc_macro(logits, y): logits = logits.view( -1, logits.shape[-1] ).detach() # KS: had to add detach to eval while training y = y.view(-1) return roc_auc_score( y.cpu().numpy(), F.softmax(logits, dim=-1).cpu().numpy()[:, 1], average="macro" ) def roc_auc_micro(logits, y): logits = logits.view(-1, logits.shape[-1]) y = y.view(-1) return roc_auc_score( y.cpu().numpy(), F.softmax(logits, dim=-1).cpu().numpy()[:, 1], average="micro" ) def mse(outs, y, len_batch=None): # assert outs.shape[:-1] == y.shape and outs.shape[-1] == 1 # outs = outs.squeeze(-1) if len(y.shape) < len(outs.shape): assert outs.shape[-1] == 1 outs = outs.squeeze(-1) if len_batch is None: return F.mse_loss(outs, y) else: # Computes the loss of the first `lens` items in the batches # TODO document the use case of this mask = torch.zeros_like(outs, dtype=torch.bool) for i, l in enumerate(len_batch): mask[i, :l, :] = 1 outs_masked = torch.masked_select(outs, mask) y_masked = torch.masked_select(y, mask) return F.mse_loss(outs_masked, y_masked) def forecast_rmse(outs, y, len_batch=None): # TODO: generalize, currently for Monash dataset return torch.sqrt(F.mse_loss(outs, y, reduction='none').mean(1)).mean() def mae(outs, y, len_batch=None): # assert outs.shape[:-1] == y.shape and outs.shape[-1] == 1 # outs = outs.squeeze(-1) if len(y.shape) < len(outs.shape): assert outs.shape[-1] == 1 outs = outs.squeeze(-1) if len_batch is None: return F.l1_loss(outs, y) else: # Computes the loss of the first `lens` items in the batches mask = torch.zeros_like(outs, dtype=torch.bool) for i, l in enumerate(len_batch): mask[i, :l, :] = 1 outs_masked = torch.masked_select(outs, mask) y_masked = torch.masked_select(y, mask) return F.l1_loss(outs_masked, y_masked) # Metrics that can depend on the loss def loss(x, y, loss_fn): """ This metric may be useful because the training loss may add extra regularization (e.g. weight decay implemented as L2 penalty), while adding this as a metric skips the additional losses """ return loss_fn(x, y) def bpb(x, y, loss_fn): """ bits per byte (image density estimation, speech generation, char LM) """ return loss_fn(x, y) / math.log(2) def ppl(x, y, loss_fn): return torch.exp(loss_fn(x, y)) # should have a better way to do this output_metric_fns = { "binary_cross_entropy": binary_cross_entropy, "cross_entropy": cross_entropy, "binary_accuracy": binary_accuracy, "accuracy": accuracy, "accuracy_ignore_index": accuracy_ignore_index, 'accuracy@3': partial(accuracy_at_k, k=3), 'accuracy@5': partial(accuracy_at_k, k=5), 'accuracy@10': partial(accuracy_at_k, k=10), "eval_loss": loss, "mse": mse, "mae": mae, "forecast_rmse": forecast_rmse, "f1_binary": f1_binary, "f1_macro": f1_macro, "f1_micro": f1_micro, "roc_auc_macro": roc_auc_macro, "roc_auc_micro": roc_auc_micro, "soft_cross_entropy": soft_cross_entropy, # only for pytorch 1.10+ "student_t": student_t_loss, "gaussian_ll": gaussian_ll_loss, } try: from segmentation_models_pytorch.utils.functional import iou from segmentation_models_pytorch.losses.focal import focal_loss_with_logits def iou_with_logits(pr, gt, eps=1e-7, threshold=None, ignore_channels=None): return iou(pr.sigmoid(), gt, eps=eps, threshold=threshold, ignore_channels=ignore_channels) output_metric_fns["iou"] = partial(iou, threshold=0.5) output_metric_fns["iou_with_logits"] = partial(iou_with_logits, threshold=0.5) output_metric_fns["focal_loss"] = focal_loss_with_logits except ImportError: pass loss_metric_fns = { "loss": loss, "bpb": bpb, "ppl": ppl, } metric_fns = {**output_metric_fns, **loss_metric_fns} # TODO py3.9
safari-main
src/tasks/metrics.py
# Inspired by https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/common/metrics/perplexity.py # But we compute the perplexity correctly: exp(average(nll)), not average(exp(nll)) # Also adapted from https://github.com/Lightning-AI/metrics/blob/master/src/torchmetrics/text/perplexity.py # But we pass in the loss to avoid recomputation from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import Tensor from torchmetrics import Metric try: from flash_attn.losses.cross_entropy import CrossEntropyLoss except ImportError: CrossEntropyLoss = torch.nn.CrossEntropyLoss try: from apex.transformer import parallel_state except ImportError: parallel_state = None class Perplexity(Metric): r""" Perplexity measures how well a language model predicts a text sample. It's calculated as the average number of bits per word a model needs to represent the sample. Args: kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. Examples: >>> import torch >>> preds = torch.rand(2, 8, 5, generator=torch.manual_seed(22)) >>> target = torch.randint(5, (2, 8), generator=torch.manual_seed(22)) >>> target[0, 6:] = -100 >>> metric = Perplexity(ignore_index=-100) >>> metric(preds, target) tensor(5.2545) """ is_differentiable = True higher_is_better = False full_state_update = False total_log_probs: Tensor count: Tensor def __init__(self, **kwargs: Dict[str, Any]): super().__init__(**kwargs) self.add_state("total_log_probs", default=torch.tensor(0.0, dtype=torch.float64), dist_reduce_fx="sum") self.add_state("count", default=torch.tensor(0, dtype=torch.int64), dist_reduce_fx="sum") self.loss_fn = CrossEntropyLoss() def update(self, preds: Tensor, target: Tensor, loss: Optional[Tensor] = None) -> None: # type: ignore """Compute and store intermediate statistics for Perplexity. Args: preds: Probabilities assigned to each token in a sequence with shape [batch_size, seq_len, vocab_size]. target: Ground truth values with a shape [batch_size, seq_len]. """ count = target.numel() if loss is None: loss = self.loss_fn(preds, target) self.total_log_probs += loss.double() * count self.count += count def compute(self) -> Tensor: """Compute the Perplexity. Returns: Perplexity """ return torch.exp(self.total_log_probs / self.count) class NumTokens(Metric): """Keep track of how many tokens we've seen. """ # TODO: how do we prevent the reset between the epochs? The reset happens on the 1st batch # of the next epoch. # Right now the hack is that we override reset(), which would mess up the forward method. # We then override forward to do the right thing. is_differentiable = False higher_is_better = False full_state_update = False count: Tensor def __init__(self, **kwargs: Dict[str, Any]): super().__init__(**kwargs) self.add_state("count", default=torch.tensor(0, dtype=torch.int64), dist_reduce_fx="sum", persistent=True) # We want the count to be saved to state-dict if parallel_state is not None and not parallel_state.is_unitialized(): self.tensor_parallel_world_size = parallel_state.get_tensor_model_parallel_world_size() else: self.tensor_parallel_world_size = 1 def update(self, preds: Tensor, target: Tensor, loss: Optional[Tensor] = None) -> None: # type: ignore self.count += target.numel() // self.tensor_parallel_world_size def compute(self) -> Tensor: return self.count def reset(self): count = self.count super().reset() self.count = count # Adapted from https://github.com/Lightning-AI/metrics/blob/master/src/torchmetrics/metric.py def _forward_reduce_state_update(self, *args: Any, **kwargs: Any) -> Any: """forward computation using single call to `update` to calculate the metric value on the current batch and accumulate global state. This can be done when the global metric state is a sinple reduction of batch states. """ self.update(*args, **kwargs) return self.compute() torchmetric_fns = { "perplexity": Perplexity, "num_tokens": NumTokens, }
safari-main
src/tasks/torchmetrics.py
from typing import Optional, List, Tuple import math import functools import collections import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from omegaconf import ListConfig from src.models.nn.components import ReversibleInstanceNorm1dInput, ReversibleInstanceNorm1dOutput, \ TSNormalization, TSInverseNormalization from src.models.nn.adaptive_softmax import AdaptiveEmbedding, ProjectedAdaptiveLogSoftmax import src.tasks.metrics as M from src.tasks.torchmetrics import torchmetric_fns as tm_mine import src.models.nn.utils as U import torchmetrics as tm from src.utils.config import to_list, instantiate from torchmetrics import MetricCollection class BaseTask: """ Abstract class that takes care of: - loss function - arbitrary metrics - forward pass - (optional) encoder module that interfaces with dataset (inputs) and model - (optional) decoder module that interfaces with dataset (targets) and model """ encoder = None decoder = None def __init__(self, dataset=None, model=None, loss=None, loss_val=None, metrics=None, torchmetrics=None): """ This class is allowed to grab attributes directly off a constructed dataset and model object """ self.dataset = dataset self.model = model if metrics is None: metrics = [] self.metric_names = to_list(metrics) if torchmetrics is None: torchmetrics = [] self.torchmetric_names = to_list(torchmetrics) self._tracked_torchmetrics = {} # The decoder might pass through arguments that the loss needs (e.g. sequence lengths) # but might also pass through extraneous arguments (e.g. sampling rate) # Wrap loss and metrics so that they accept kwargs and # Create loss function self.loss = instantiate(M.output_metric_fns, loss, partial=True) self.loss = U.discard_kwargs(self.loss) if loss_val is not None: self.loss_val = instantiate(M.output_metric_fns, loss_val, partial=True) self.loss_val = U.discard_kwargs(self.loss_val) torchmetrics = MetricCollection(self._init_torchmetrics()) self.train_torchmetrics = torchmetrics.clone(prefix='train/') self.val_torchmetrics = torchmetrics.clone(prefix='val/') self.test_torchmetrics = torchmetrics.clone(prefix='test/') def _init_torchmetrics(self): """ Instantiate torchmetrics. """ tracked_torchmetrics = {} for name in self.torchmetric_names: if name in tm_mine: tracked_torchmetrics[name] = tm_mine[name]().to('cuda') elif name in ['AUROC', 'StatScores', 'Precision', 'Recall', 'F1', 'F1Score']: tracked_torchmetrics[name] = getattr(tm, name)(average='macro', num_classes=self.dataset.d_output, compute_on_step=False).to('cuda') elif '@' in name: k = int(name.split('@')[1]) mname = name.split('@')[0] tracked_torchmetrics[name] = getattr(tm, mname)(average='macro', num_classes=self.dataset.d_output, compute_on_step=False, top_k=k).to('cuda') else: tracked_torchmetrics[name] = getattr(tm, name)(compute_on_step=False).to('cuda') return tracked_torchmetrics def _reset_torchmetrics(self, prefix=None): """ Reset torchmetrics for a prefix associated with a particular dataloader (e.g. train, val, test). Generally do this at the start of an epoch. """ all_prefixes = [prefix] if prefix is not None else self._tracked_torchmetrics for prefix in all_prefixes: if prefix in self._tracked_torchmetrics: self._tracked_torchmetrics[prefix].reset() def get_torchmetrics(self, prefix): """ Compute torchmetrics for a prefix associated with a particular dataloader (e.g. train, val, test). Generally do this at the end of an epoch. """ return {name: self._tracked_torchmetrics[prefix][name].compute() for name in self.torchmetric_names} def torchmetrics(self, x, y, prefix, loss=None): """ Update torchmetrics with new x, y . Prefix corresponds to a particular dataloader (e.g. train, val, test). Generally call this every batch. """ if prefix not in self._tracked_torchmetrics: self._init_torchmetrics(prefix) self._tracked_torchmetrics[prefix](x, y, loss=loss) # for name in self.torchmetric_names: # if name.startswith('Accuracy'): # if len(x.shape) > 2: # # Multi-dimensional, multi-class # self._tracked_torchmetrics[prefix][name].update(x.transpose(1, 2), y.squeeze()) # continue # self._tracked_torchmetrics[prefix][name].update(x, y) def get_torchmetrics(self, prefix): return self._tracked_torchmetrics[prefix] def metrics(self, x, y, **kwargs): """ Metrics are just functions output metrics are a function of output and target loss metrics are a function of loss (e.g. perplexity) """ output_metrics = { name: U.discard_kwargs(M.output_metric_fns[name])(x, y, **kwargs) for name in self.metric_names if name in M.output_metric_fns } loss_metrics = { name: U.discard_kwargs(M.loss_metric_fns[name])(x, y, self.loss, **kwargs) for name in self.metric_names if name in M.loss_metric_fns } return {**output_metrics, **loss_metrics} def forward(self, batch, encoder, model, decoder, _state): """Passes a batch through the encoder, backbone, and decoder""" # z holds arguments such as sequence length x, y, *z = batch # z holds extra dataloader info such as resolution if len(z) == 0: z = {} else: assert len(z) == 1 and isinstance(z[0], dict), "Dataloader must return dictionary of extra arguments" z = z[0] x, w = encoder(x, **z) # w can model-specific constructions such as key_padding_mask for transformers or state for RNNs x, state = model(x, **w, state=_state) self._state = state x, w = decoder(x, state=state, **z) return x, y, w class Scalar(nn.Module): def __init__(self, c=1): super().__init__() self.c = c def forward(self, x): return x * self.c class LMTask(BaseTask): def forward(self, batch, encoder, model, decoder, _state): """Passes a batch through the encoder, backbone, and decoder""" # z holds arguments such as sequence length x, y, *z = batch # z holds extra dataloader info such as resolution if len(z) == 0: z = {} else: assert len(z) == 1 and isinstance(z[0], dict), "Dataloader must return dictionary of extra arguments" z = z[0] x, w = encoder(x, **z) # w can model-specific constructions such as key_padding_mask for transformers or state for RNNs x, state = model(x, **w, state=_state) self._state = state x, w = decoder(x, state=state, **z) x = x.logits x = rearrange(x, '... C -> (...) C') y = rearrange(y, '... -> (...)') return x, y, w class ForecastingTask(BaseTask): class DummyModule(nn.Module): def forward(self, *args): return args def __init__(self, norm='mean', **kwargs): super().__init__(**kwargs) if norm == 'revnorm': self.encoder = ReversibleInstanceNorm1dInput(self.dataset.d_input, transposed=False) self.decoder = ReversibleInstanceNorm1dOutput(self.encoder) elif norm == 'mean': self.encoder = TSNormalization(method='mean', horizon=self.dataset.dataset_train.forecast_horizon) self.decoder = TSInverseNormalization(method='mean', normalizer=self.encoder) elif norm == 'last': self.encoder = TSNormalization(method='last', horizon=self.dataset.dataset_train.forecast_horizon) self.decoder = TSInverseNormalization(method='last', normalizer=self.encoder) else: self.encoder = None self.decoder = None try: if hasattr(self.dataset.dataset_train, 'mean'): self.mean = torch.tensor(self.dataset.dataset_train.mean) self.std = torch.tensor(self.dataset.dataset_train.std) elif hasattr(self.dataset.dataset_train, 'standardization'): self.mean = torch.tensor(self.dataset.dataset_train.standardization['means']) self.std = torch.tensor(self.dataset.dataset_train.standardization['stds']) else: self.mean = None self.std = None except AttributeError: raise AttributeError('Dataset does not have mean/std attributes') self.mean = torch.tensor(self.dataset.dataset_train.standardization['means']) self.std = torch.tensor(self.dataset.dataset_train.standardization['stds']) if hasattr(self.dataset.dataset_train, 'log_transform'): self.log_transform = self.dataset.dataset_train.log_transform else: self.log_transform = False print("Log Transform", self.log_transform) def metrics(self, x, y, state=None, timestamps=None, ids=None): # Explicit about which arguments the decoder might pass through, but can future-proof with **kwargs if self.mean is not None: means = self.mean[ids].to(x.device) stds = self.std[ids].to(x.device) x_ = x * stds[:, None, None] + means[:, None, None] y_ = y * stds[:, None, None] + means[:, None, None] else: x_ = x y_ = y if self.log_transform: x_ = torch.exp(x_) y_ = torch.exp(y_) return super().metrics(x_, y_) class VideoTask(BaseTask): def __init__(self, **kwargs): super().__init__(**kwargs) # self._y_to_logits = {} self._vid_to_logits = {} self._vid_to_label = {} # TODO needed to extract the first element of y, which includes the video idea; there should be a cleaner pattern to this import copy loss_fn = copy.deepcopy(self.loss) self.loss = lambda x, y: loss_fn(x, y[0]) if hasattr(self, 'loss_val'): loss_val_fn = copy.deepcopy(self.loss_val) self.loss_val = lambda x, y: loss_val_fn(x, y[0]) def metrics(self, logits, y, **kwargs): labels, vids = y return super().metrics(logits, labels, **kwargs) def torchmetrics(self, logits, y, prefix): """ logits: (batch, n_classes) y = tuple of labels and video ids labels: (batch) vids: (batch) """ for _logits, _label, _vid in zip(logits, y[0], y[1]): _vid = _vid.item() # Check that labels are consistent per video id assert self._vid_to_label[prefix].get(_vid, _label) == _label self._vid_to_label[prefix][_vid] = _label self._vid_to_logits[prefix][_vid].append(_logits) def _reset_torchmetrics(self, prefix): self._vid_to_logits[prefix] = collections.defaultdict(list) self._vid_to_label[prefix] = {} def get_torchmetrics(self, prefix): vid_to_average_logits = {vid: torch.mean(torch.stack(logits, dim=0), dim=0) for vid, logits in self._vid_to_logits[prefix].items()} # y is (label, vid) pair all_labels = torch.stack(list(self._vid_to_label[prefix].values()), dim=0) # (n_videos) all_logits = torch.stack(list(vid_to_average_logits.values()), dim=0) # (n_videos, n_classes) m = M.accuracy(all_logits, all_labels) return {'aggregate_accuracy': m} class AdaptiveLMTask(BaseTask): def __init__( self, div_val, cutoffs : List[int], tie_weights : bool, tie_projs : List[bool], init_scale=1.0, bias_scale=0.0, dropemb=0.0, dropsoft=0.0, **kwargs, ): super().__init__(**kwargs) n_tokens = self.dataset.n_tokens d_model = self.model.d_model d_output = self.model.d_output encoder = AdaptiveEmbedding( n_tokens, d_model, d_model, cutoffs=cutoffs, div_val=div_val, init_scale=init_scale, dropout=dropemb, ) if tie_weights: assert d_model == d_output emb_layers = [i.weight for i in encoder.emb_layers] else: emb_layers = None # Construct decoder/loss emb_projs = encoder.emb_projs loss = ProjectedAdaptiveLogSoftmax( n_tokens, d_output, d_output, cutoffs, div_val=div_val, tie_projs=tie_projs, out_projs=emb_projs, out_layers_weights=emb_layers, bias_scale=bias_scale, dropout=dropsoft, ) self.encoder = encoder self.loss = loss class ImageNetTask(BaseTask): """ Imagenet training uses mixup augmentations, which require a separate loss for train and val, which we overide the base task here. """ def __init__(self, **kwargs): import hydra super().__init__( dataset=kwargs.get("dataset", None), model=kwargs.get("model", None), loss=kwargs.get("loss", None), # we still create the base loss here, but will overide below metrics=kwargs.get("metrics", None), torchmetrics=kwargs.get("torchmetrics", None) ) # if using mixup, overide loss (train) and loss_val, otherwise # we have just one loss from the base task above if "loss_val" in kwargs and "loss_train" in kwargs: self.loss = hydra.utils.instantiate(kwargs.get("loss_train")) self.loss_val = hydra.utils.instantiate(kwargs.get('loss_val')) registry = { 'base': BaseTask, 'lm': LMTask, 'imagenet': ImageNetTask, 'forecasting': ForecastingTask, 'video': VideoTask, }
safari-main
src/tasks/tasks.py
import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange, reduce import src.models.nn.utils as U import src.utils as utils import src.utils.config import src.utils.train log = src.utils.train.get_logger(__name__) class Decoder(nn.Module): """This class doesn't do much but just signals the interface that Decoders are expected to adhere to TODO: is there a way to enforce the signature of the forward method? """ def forward(self, x, **kwargs): """ x: (batch, length, dim) input tensor state: additional state from the model backbone *args, **kwargs: additional info from the dataset Returns: y: output tensor *args: other arguments to pass into the loss function """ return x def step(self, x): """ x: (batch, dim) """ return self.forward(x.unsqueeze(1)).squeeze(1) class SequenceDecoder(Decoder): def __init__( self, d_model, d_output=None, l_output=None, use_lengths=False, mode="last" ): super().__init__() self.output_transform = nn.Identity() if d_output is None else nn.Linear(d_model, d_output) if l_output is None: self.l_output = None self.squeeze = False elif l_output == 0: # Equivalent to getting an output of length 1 and then squeezing self.l_output = 1 self.squeeze = True else: assert l_output > 0 self.l_output = l_output self.squeeze = False self.use_lengths = use_lengths self.mode = mode if mode == 'ragged': assert not use_lengths def forward(self, x, state=None, lengths=None, l_output=None): """ x: (n_batch, l_seq, d_model) Returns: (n_batch, l_output, d_output) """ if self.l_output is None: if l_output is not None: assert isinstance(l_output, int) # Override by pass in else: # Grab entire output l_output = x.size(-2) squeeze = False else: l_output = self.l_output squeeze = self.squeeze if self.mode == "last": restrict = lambda x: x[..., -l_output:, :] elif self.mode == "first": restrict = lambda x: x[..., :l_output, :] elif self.mode == "pool": restrict = lambda x: ( torch.cumsum(x, dim=-2) / torch.arange( 1, 1 + x.size(-2), device=x.device, dtype=x.dtype ).unsqueeze(-1) )[..., -l_output:, :] def restrict(x): L = x.size(-2) s = x.sum(dim=-2, keepdim=True) if l_output > 1: c = torch.cumsum(x[..., -(l_output - 1) :, :].flip(-2), dim=-2) c = F.pad(c, (0, 0, 1, 0)) s = s - c # (B, l_output, D) s = s.flip(-2) denom = torch.arange( L - l_output + 1, L + 1, dtype=x.dtype, device=x.device ) s = s / denom return s elif self.mode == "sum": restrict = lambda x: torch.cumsum(x, dim=-2)[..., -l_output:, :] # TODO use same restrict function as pool case elif self.mode == 'ragged': assert lengths is not None, "lengths must be provided for ragged mode" # remove any additional padding (beyond max length of any sequence in the batch) restrict = lambda x: x[..., : max(lengths), :] else: raise NotImplementedError( "Mode must be ['last' | 'first' | 'pool' | 'sum']" ) # Restrict to actual length of sequence if self.use_lengths: assert lengths is not None x = torch.stack( [ restrict(out[..., :length, :]) for out, length in zip(torch.unbind(x, dim=0), lengths) ], dim=0, ) else: x = restrict(x) if squeeze: assert x.size(-2) == 1 x = x.squeeze(-2) x = self.output_transform(x) return x def step(self, x, state=None): # Ignore all length logic return self.output_transform(x) class NDDecoder(Decoder): """Decoder for single target (e.g. classification or regression)""" def __init__( self, d_model, d_output=None, mode="pool" ): super().__init__() assert mode in ["pool", "full"] self.output_transform = nn.Identity() if d_output is None else nn.Linear(d_model, d_output) self.mode = mode def forward(self, x, state=None): """ x: (n_batch, l_seq, d_model) Returns: (n_batch, l_output, d_output) """ if self.mode == 'pool': x = reduce(x, 'b ... h -> b h', 'mean') x = self.output_transform(x) return x class StateDecoder(Decoder): """Use the output state to decode (useful for stateful models such as RNNs or perhaps Transformer-XL if it gets implemented""" def __init__(self, d_model, state_to_tensor, d_output): super().__init__() self.output_transform = nn.Linear(d_model, d_output) self.state_transform = state_to_tensor def forward(self, x, state=None): return self.output_transform(self.state_transform(state)) class RetrievalHead(nn.Module): def __init__(self, d_input, d_model, n_classes, nli=True, activation="relu"): super().__init__() self.nli = nli if activation == "relu": activation_fn = nn.ReLU() elif activation == "gelu": activation_fn = nn.GELU() else: raise NotImplementedError if ( self.nli ): # Architecture from https://github.com/mlpen/Nystromformer/blob/6539b895fa5f798ea0509d19f336d4be787b5708/reorganized_code/LRA/model_wrapper.py#L74 self.classifier = nn.Sequential( nn.Linear(4 * d_input, d_model), activation_fn, nn.Linear(d_model, n_classes), ) else: # Head from https://github.com/google-research/long-range-arena/blob/ad0ff01a5b3492ade621553a1caae383b347e0c1/lra_benchmarks/models/layers/common_layers.py#L232 self.classifier = nn.Sequential( nn.Linear(2 * d_input, d_model), activation_fn, nn.Linear(d_model, d_model // 2), activation_fn, nn.Linear(d_model // 2, n_classes), ) def forward(self, x): """ x: (2*batch, dim) """ outs = rearrange(x, "(z b) d -> z b d", z=2) outs0, outs1 = outs[0], outs[1] # (n_batch, d_input) if self.nli: features = torch.cat( [outs0, outs1, outs0 - outs1, outs0 * outs1], dim=-1 ) # (batch, dim) else: features = torch.cat([outs0, outs1], dim=-1) # (batch, dim) logits = self.classifier(features) return logits class RetrievalDecoder(Decoder): """Combines the standard FeatureDecoder to extract a feature before passing through the RetrievalHead""" def __init__( self, d_input, n_classes, d_model=None, nli=True, activation="relu", *args, **kwargs ): super().__init__() if d_model is None: d_model = d_input self.feature = SequenceDecoder( d_input, d_output=None, l_output=0, *args, **kwargs ) self.retrieval = RetrievalHead( d_input, d_model, n_classes, nli=nli, activation=activation ) def forward(self, x, state=None, **kwargs): x = self.feature(x, state=state, **kwargs) x = self.retrieval(x) return x class PackedDecoder(Decoder): def forward(self, x, state=None): x, _ = nn.utils.rnn.pad_packed_sequence(x, batch_first=True) return x # For every type of encoder/decoder, specify: # - constructor class # - list of attributes to grab from dataset # - list of attributes to grab from model registry = { "stop": Decoder, "id": nn.Identity, "linear": nn.Linear, "sequence": SequenceDecoder, "nd": NDDecoder, "retrieval": RetrievalDecoder, "state": StateDecoder, "pack": PackedDecoder, } model_attrs = { "linear": ["d_output"], "sequence": ["d_output"], "nd": ["d_output"], "retrieval": ["d_output"], "state": ["d_state", "state_to_tensor"], "forecast": ["d_output"], } dataset_attrs = { "linear": ["d_output"], "sequence": ["d_output", "l_output"], "nd": ["d_output"], "retrieval": ["d_output"], "state": ["d_output"], "forecast": ["d_output", "l_output"], } def _instantiate(decoder, model=None, dataset=None): """Instantiate a single decoder""" if decoder is None: return None if isinstance(decoder, str): name = decoder else: name = decoder["_name_"] # Extract arguments from attribute names dataset_args = utils.config.extract_attrs_from_obj( dataset, *dataset_attrs.get(name, []) ) model_args = utils.config.extract_attrs_from_obj(model, *model_attrs.get(name, [])) # Instantiate decoder obj = utils.instantiate(registry, decoder, *model_args, *dataset_args) return obj def instantiate(decoder, model=None, dataset=None): """Instantiate a full decoder config, e.g. handle list of configs Note that arguments are added in reverse order compared to encoder (model first, then dataset) """ decoder = utils.to_list(decoder) return U.PassthroughSequential( *[_instantiate(d, model=model, dataset=dataset) for d in decoder] )
safari-main
src/tasks/decoders.py
import datetime import math from typing import ForwardRef import torch from torch import nn import torch.nn.functional as F from einops import rearrange, repeat import src.models.nn.utils as U import src.utils as utils import src.utils.config from src.models.sequence.block import SequenceResidualBlock from src.models.nn.components import Normalization class Encoder(nn.Module): """Encoder abstraction Accepts a tensor and optional kwargs. Outside of the main tensor, all other arguments should be kwargs. Returns a tensor and optional kwargs. Encoders are combined via U.PassthroughSequential which passes these kwargs through in a pipeline. The resulting kwargs are accumulated and passed into the model backbone. """ def forward(self, x, **kwargs): """ x: input tensor *args: additional info from the dataset (e.g. sequence lengths) Returns: y: output tensor *args: other arguments to pass into the model backbone """ return x, {} class PositionalIDEncoder(Encoder): def forward(self, x): position_ids = torch.arange(x.shape[-1], dtype=torch.long, device=x.device) position_ids = repeat(position_ids, 'l -> b l', b=x.shape[0]) return x, { 'position_ids': position_ids } # Adapted from https://github.com/pytorch/examples/blob/master/word_language_model/model.py class PositionalEncoder(Encoder): r"""Inject some information about the relative or absolute position of the tokens in the sequence. The positional encodings have the same dimension as the embeddings, so that the two can be summed. Here, we use sine and cosine functions of different frequencies. .. math:: \text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model)) \text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model)) \text{where pos is the word position and i is the embed idx) Args: d_model: the embed dim (required). dropout: the dropout value (default=0.1). max_len: the max. length of the incoming sequence (default=5000). Examples: >>> pos_encoder = PositionalEncoder(d_model) """ def __init__(self, d_model, dropout=0.1, max_len=16384, pe_init=None): super().__init__() self.dropout = nn.Dropout(p=dropout) if pe_init is not None: self.pe = nn.Parameter(torch.empty(max_len, 1, d_model)) nn.init.normal_(self.pe, 0, pe_init) # self.pe = pe.unsqueeze(1) else: pe = torch.zeros(max_len, d_model) position = torch.arange(0.0, max_len).unsqueeze(1) div_term = torch.exp( -math.log(10000.0) * torch.arange(0.0, d_model, 2.0) / d_model ) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) self.register_buffer("pe", pe) self.attn_mask = None def forward(self, x): r"""Inputs of forward function Args: x: the sequence fed to the positional encoder model (required). lens: actual lengths of sequences Shape: x: [l_sequence, n_batch, d_model] Returns: [l_sequence, n_batch, d_model] attn_mask: [l_sequence, l_sequence] padding_mask: """ x = x + self.pe[: x.size(-2)] return self.dropout(x) class ClassEmbedding(Encoder): # Should also be able to define this by subclassing Embedding def __init__(self, n_classes, d_model): super().__init__() self.embedding = nn.Embedding(n_classes, d_model) def forward(self, x, y): x = x + self.embedding(y).unsqueeze(-2) # (B, L, D) return x class Conv1DEncoder(Encoder): def __init__(self, d_input, d_model, kernel_size=25, stride=1, padding='same'): super().__init__() self.conv = nn.Conv1d( in_channels=d_input, out_channels=d_model, kernel_size=kernel_size, stride=stride, padding=padding, ) def forward(self, x): # BLD -> BLD x = self.conv(x.transpose(1, 2)).transpose(1, 2) return x class LayerEncoder(Encoder): """Use an arbitary SequenceModule layer""" def __init__(self, d_model, prenorm=False, norm='layer', layer=None): super().__init__() # Simple stack of blocks layer["transposed"] = False self.layer = SequenceResidualBlock( d_input=d_model, prenorm=prenorm, layer=layer, residual='R', norm=norm, pool=None, ) def forward(self, x): x, _ = self.layer(x) # Discard state return x class TimestampEmbeddingEncoder(Encoder): """ General time encoder for Pandas Timestamp objects (encoded as torch tensors). See MonashDataset for an example of how to return time features as 'z's. """ cardinalities = { 'day': (1, 31), 'hour': (0, 23), 'minute': (0, 59), 'second': (0, 59), 'month': (1, 12), 'year': (1950, 2010), # (1800, 3000) used to be (1970, datetime.datetime.now().year + 1) but was not enough for all datasets in monash 'dayofweek': (0, 6), 'dayofyear': (1, 366), 'quarter': (1, 4), 'week': (1, 53), 'is_month_start': (0, 1), 'is_month_end': (0, 1), 'is_quarter_start': (0, 1), 'is_quarter_end': (0, 1), 'is_year_start': (0, 1), 'is_year_end': (0, 1), 'is_leap_year': (0, 1), } def __init__(self, d_model, table=False, features=None): super().__init__() self.table = table self.ranges = {k: max_val - min_val + 2 for k, (min_val, max_val) in self.cardinalities.items()} # padding for null included if features is None: pass else: self.cardinalities = {k: v for k, v in self.cardinalities.items() if k in features} if table: self.embedding = nn.ModuleDict({ attr: nn.Embedding(maxval - minval + 2, d_model, padding_idx=0) for attr, (minval, maxval) in self.cardinalities.items() }) else: self.embedding = nn.ModuleDict({ attr: nn.Linear(1, d_model) for attr in self.cardinalities }) def forward(self, x, timestamps=None): for attr in timestamps: mask = timestamps[attr] == -1 timestamps[attr] = timestamps[attr] - self.cardinalities[attr][0] timestamps[attr][mask] = 0 if self.table: x = x + self.embedding[attr](timestamps[attr].to(torch.long)) else: x = x + self.embedding[attr]((2 * timestamps[attr] / self.ranges[attr] - 1).unsqueeze(-1)) #x = x + self.embedding(timestamps[attr].to(torch.float)).unsqueeze(1) return x class TimeEncoder(Encoder): def __init__(self, n_tokens_time, d_model, timeenc=0): super().__init__() self.timeenc = timeenc if self.timeenc == 0: self.encoders = nn.ModuleList( [nn.Embedding(v, d_model) for v in n_tokens_time] ) else: self.encoders = nn.Linear(len(n_tokens_time), d_model) self.mask_embed = nn.Embedding(2, d_model) def forward(self, x, mark=None, mask=None): assert mark is not None and mask is not None, "Extra arguments should be returned by collate function" if self.timeenc == 0: assert mark.size(-1) == len(self.encoders) embeddings = [ embed(z) for embed, z in zip(self.encoders, torch.unbind(mark, dim=-1)) ] time_encode = torch.sum(torch.stack(embeddings), dim=0) else: time_encode = self.encoders(mark) mask_encode = self.mask_embed(mask.squeeze(-1)) return x + time_encode + mask_encode # (B, L, d_model) class PackedEncoder(Encoder): def forward(self, x, len_batch=None): assert len_batch is not None x = nn.utils.rnn.pack_padded_sequence( x, len_batch.cpu(), enforce_sorted=False, batch_first=True, ) return x class OneHotEncoder(Encoder): def __init__(self, n_tokens, d_model): super().__init__() assert n_tokens <= d_model self.d_model = d_model def forward(self, x): return F.one_hot(x.squeeze(-1), self.d_model).float() class Conv2DPatchEncoder(Encoder): """ For encoding images into a sequence of patches. """ def __init__(self, d_input, d_model, filter_sizes, flat=False): """ d_input: dim of encoder input (data dimension) d_model: dim of encoder output (model dimension) filter_sizes: tuple with fh, fw flat: if image is flattened from dataloader (like in cifar), then we need to reshape back to 2D before conv """ fh, fw = filter_sizes self.flat = flat super().__init__() assert len(filter_sizes) == 2 self.encoder = nn.Conv2d(d_input, d_model, kernel_size=(fh, fw), stride=(fh, fw)) def forward(self, x): """ x shape expected = [b, h, w, c] returns tuple with x, with new shape = [b, seq_len, c_out] """ x = rearrange(x, 'b h w c -> b c h w') x = self.encoder(x) x = rearrange(x, 'b c h w -> b (h w) c') return x # For every type of encoder/decoder, specify: # - constructor class # - list of attributes to grab from dataset # - list of attributes to grab from model registry = { "stop": Encoder, "id": nn.Identity, "embedding": nn.Embedding, "linear": nn.Linear, "position": PositionalEncoder, "position_id": PositionalIDEncoder, "class": ClassEmbedding, "pack": PackedEncoder, "time": TimeEncoder, "onehot": OneHotEncoder, "conv1d": Conv1DEncoder, "patch2d": Conv2DPatchEncoder, "timestamp_embedding": TimestampEmbeddingEncoder, "layer": LayerEncoder, } dataset_attrs = { "embedding": ["n_tokens"], "linear": ["d_input"], # TODO make this d_data? "class": ["n_classes"], "time": ["n_tokens_time"], "onehot": ["n_tokens"], "conv1d": ["d_input"], "patch2d": ["d_input"], } model_attrs = { "embedding": ["d_model"], "linear": ["d_model"], "position": ["d_model"], "class": ["d_model"], "time": ["d_model"], "onehot": ["d_model"], "conv1d": ["d_model"], "patch2d": ["d_model"], "timestamp_embedding": ["d_model"], "layer": ["d_model"], } def _instantiate(encoder, dataset=None, model=None): """Instantiate a single encoder""" if encoder is None: return None if isinstance(encoder, str): name = encoder else: name = encoder["_name_"] # Extract dataset/model arguments from attribute names dataset_args = utils.config.extract_attrs_from_obj( dataset, *dataset_attrs.get(name, []) ) model_args = utils.config.extract_attrs_from_obj(model, *model_attrs.get(name, [])) # Instantiate encoder obj = utils.instantiate(registry, encoder, *dataset_args, *model_args) return obj def instantiate(encoder, dataset=None, model=None): encoder = utils.to_list(encoder) return U.PassthroughSequential( *[_instantiate(e, dataset=dataset, model=model) for e in encoder] )
safari-main
src/tasks/encoders.py
from typing import Any import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_only from pytorch_lightning.utilities.parsing import AttributeDict class ParamsLog(pl.Callback): """ Log the number of parameters of the model """ def __init__( self, total: bool = True, trainable: bool = True, fixed: bool = True, ): super().__init__() self._log_stats = AttributeDict( { 'total_params_log': total, 'trainable_params_log': trainable, 'non_trainable_params_log': fixed, } ) @rank_zero_only def on_fit_start(self, trainer: pl.Trainer, pl_module: pl.LightningModule) -> None: logs = {} if self._log_stats.total_params_log: logs["params/total"] = sum(p.numel() for p in pl_module.parameters()) if self._log_stats.trainable_params_log: logs["params/trainable"] = sum(p.numel() for p in pl_module.parameters() if p.requires_grad) if self._log_stats.non_trainable_params_log: logs["params/fixed"] = sum(p.numel() for p in pl_module.parameters() if not p.requires_grad) if trainer.logger: trainer.logger.log_hyperparams(logs)
safari-main
src/callbacks/params.py
### https://github.com/HazyResearch/transformers/blob/master/src/callbacks/wandb_callbacks.py import glob import os from typing import List import matplotlib.pyplot as plt import pandas as pd import seaborn as sn import torch import wandb from pytorch_lightning import Callback, Trainer from pytorch_lightning.loggers import LoggerCollection, WandbLogger from pytorch_lightning.utilities import rank_zero_only from sklearn import metrics from sklearn.metrics import f1_score, precision_score, recall_score def get_wandb_logger(trainer: Trainer) -> WandbLogger: """Safely get Weights&Biases logger from Trainer.""" if isinstance(trainer.logger, WandbLogger): return trainer.logger if isinstance(trainer.logger, LoggerCollection): for logger in trainer.logger: if isinstance(logger, WandbLogger): return logger raise Exception( "You are using wandb related callback, but WandbLogger was not found for some reason..." ) class WatchModel(Callback): """Make wandb watch model at the beginning of the run.""" def __init__(self, log: str = "gradients", log_freq: int = 100): self.log = log self.log_freq = log_freq @rank_zero_only def on_train_start(self, trainer, pl_module): logger = get_wandb_logger(trainer=trainer) logger.watch(model=trainer.model, log=self.log, log_freq=self.log_freq) class UploadCodeAsArtifact(Callback): """Upload all *.py files to wandb as an artifact, at the beginning of the run.""" def __init__(self, code_dir: str): self.code_dir = code_dir @rank_zero_only def on_train_start(self, trainer, pl_module): logger = get_wandb_logger(trainer=trainer) experiment = logger.experiment code = wandb.Artifact("project-source", type="code") for path in glob.glob(os.path.join(self.code_dir, "**/*.py"), recursive=True): code.add_file(path) experiment.log_artifact(code) class UploadCheckpointsAsArtifact(Callback): """Upload checkpoints to wandb as an artifact, at the end of run.""" def __init__(self, ckpt_dir: str = "checkpoints/", upload_best_only: bool = False): self.ckpt_dir = ckpt_dir self.upload_best_only = upload_best_only @rank_zero_only def on_train_end(self, trainer, pl_module): logger = get_wandb_logger(trainer=trainer) experiment = logger.experiment ckpts = wandb.Artifact("experiment-ckpts", type="checkpoints") if self.upload_best_only: ckpts.add_file(trainer.checkpoint_callback.best_model_path) else: for path in glob.glob(os.path.join(self.ckpt_dir, "**/*.ckpt"), recursive=True): ckpts.add_file(path) experiment.log_artifact(ckpts) class LogConfusionMatrix(Callback): """Generate confusion matrix every epoch and send it to wandb. Expects validation step to return predictions and targets. """ def __init__(self): self.preds = [] self.targets = [] self.ready = True def on_sanity_check_start(self, trainer, pl_module) -> None: self.ready = False def on_sanity_check_end(self, trainer, pl_module): """Start executing this callback only after all validation sanity checks end.""" self.ready = True def on_validation_batch_end( self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx ): """Gather data from single batch.""" if self.ready: self.preds.append(outputs["preds"]) self.targets.append(outputs["targets"]) def on_validation_epoch_end(self, trainer, pl_module): """Generate confusion matrix.""" if self.ready: logger = get_wandb_logger(trainer) experiment = logger.experiment preds = torch.cat(self.preds).cpu().numpy() targets = torch.cat(self.targets).cpu().numpy() confusion_matrix = metrics.confusion_matrix(y_true=targets, y_pred=preds) # set figure size plt.figure(figsize=(14, 8)) # set labels size sn.set(font_scale=1.4) # set font size sn.heatmap(confusion_matrix, annot=True, annot_kws={"size": 8}, fmt="g") # names should be uniqe or else charts from different experiments in wandb will overlap experiment.log({f"confusion_matrix/{experiment.name}": wandb.Image(plt)}, commit=False) # according to wandb docs this should also work but it crashes # experiment.log(f{"confusion_matrix/{experiment.name}": plt}) # reset plot plt.clf() self.preds.clear() self.targets.clear() class LogF1PrecRecHeatmap(Callback): """Generate f1, precision, recall heatmap every epoch and send it to wandb. Expects validation step to return predictions and targets. """ def __init__(self, class_names: List[str] = None): self.preds = [] self.targets = [] self.ready = True def on_sanity_check_start(self, trainer, pl_module): self.ready = False def on_sanity_check_end(self, trainer, pl_module): """Start executing this callback only after all validation sanity checks end.""" self.ready = True def on_validation_batch_end( self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx ): """Gather data from single batch.""" if self.ready: self.preds.append(outputs["preds"]) self.targets.append(outputs["targets"]) def on_validation_epoch_end(self, trainer, pl_module): """Generate f1, precision and recall heatmap.""" if self.ready: logger = get_wandb_logger(trainer=trainer) experiment = logger.experiment preds = torch.cat(self.preds).cpu().numpy() targets = torch.cat(self.targets).cpu().numpy() f1 = f1_score(preds, targets, average=None) r = recall_score(preds, targets, average=None) p = precision_score(preds, targets, average=None) data = [f1, p, r] # set figure size plt.figure(figsize=(14, 3)) # set labels size sn.set(font_scale=1.2) # set font size sn.heatmap( data, annot=True, annot_kws={"size": 10}, fmt=".3f", yticklabels=["F1", "Precision", "Recall"], ) # names should be uniqe or else charts from different experiments in wandb will overlap experiment.log({f"f1_p_r_heatmap/{experiment.name}": wandb.Image(plt)}, commit=False) # reset plot plt.clf() self.preds.clear() self.targets.clear() class LogImagePredictions(Callback): """Logs a validation batch and their predictions to wandb. Example adapted from: https://wandb.ai/wandb/wandb-lightning/reports/Image-Classification-using-PyTorch-Lightning--VmlldzoyODk1NzY """ def __init__(self, num_samples: int = 8): super().__init__() self.num_samples = num_samples self.ready = True def on_sanity_check_start(self, trainer, pl_module): self.ready = False def on_sanity_check_end(self, trainer, pl_module): """Start executing this callback only after all validation sanity checks end.""" self.ready = True def on_validation_epoch_end(self, trainer, pl_module): if self.ready: logger = get_wandb_logger(trainer=trainer) experiment = logger.experiment # get a validation batch from the validation dat loader val_samples = next(iter(trainer.datamodule.val_dataloader())) val_imgs, val_labels = val_samples # run the batch through the network val_imgs = val_imgs.to(device=pl_module.device) logits = pl_module(val_imgs) preds = torch.argmax(logits, axis=-1) # log the images as wandb Image experiment.log( { f"Images/{experiment.name}": [ wandb.Image(x, caption=f"Pred:{pred}, Label:{y}") for x, pred, y in zip( val_imgs[: self.num_samples], preds[: self.num_samples], val_labels[: self.num_samples], ) ] } ) class LogDT(Callback): """ Log the dt values (from NeurIPS 2021 LSSL submission) """ def on_train_epoch_end(self, trainer, pl_module): log_dict = {} for name, m in pl_module.model.named_modules(): if pl_module.hparams.train.get('log_dt', False) \ and hasattr(m, "log_dt"): log_dict[f"{name}.log_dt"] = ( m.log_dt.detach().cpu().numpy().flatten() ) log_dict[f"{name}.log_dt.image"] = wandb.Image( m.log_dt.detach().cpu().numpy().flatten().reshape(1, -1) ) log_dict[f"{name}.log_dt"] = wandb.Table( dataframe=pd.DataFrame( {"log_dt": m.log_dt.detach().cpu().numpy().flatten()} ) ) if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0: if trainer.logger is not None: trainer.logger.experiment.log(log_dict)
safari-main
src/callbacks/wandb.py
### https://github.com/HazyResearch/transformers/blob/master/src/callbacks/speed_monitor.py # Adapted from https://pytorch-lightning.readthedocs.io/en/latest/_modules/pytorch_lightning/callbacks/gpu_stats_monitor.html#GPUStatsMonitor # We only need the speed monitoring, not the GPU monitoring import time from typing import Any from pytorch_lightning import Callback, Trainer, LightningModule from pytorch_lightning.utilities import rank_zero_only from pytorch_lightning.utilities.parsing import AttributeDict from pytorch_lightning.utilities.types import STEP_OUTPUT class Timer(Callback): """Monitor the speed of each step and each epoch. """ def __init__( self, step: bool = True, inter_step: bool = True, epoch: bool = True, val: bool = True, ): super().__init__() self._log_stats = AttributeDict( { 'step_time': step, 'inter_step_time': inter_step, 'epoch_time': epoch, 'val_time': val, }) def on_train_start(self, trainer: Trainer, pl_module: LightningModule) -> None: self._snap_epoch_time = None def on_train_epoch_start(self, trainer: Trainer, pl_module: LightningModule) -> None: self._snap_step_time = None self._snap_inter_step_time = None self._snap_epoch_time = time.time() def on_train_batch_start( self, trainer: Trainer, pl_module: LightningModule, batch: Any, batch_idx: int, ) -> None: if self._log_stats.step_time: self._snap_step_time = time.time() if not self._should_log(trainer): return logs = {} if self._log_stats.inter_step_time and self._snap_inter_step_time: # First log at beginning of second step logs["timer/inter_step"] = (time.time() - self._snap_inter_step_time) # * 1000 if trainer.logger: trainer.logger.log_metrics(logs, step=trainer.global_step) @rank_zero_only def on_train_batch_end( self, trainer: Trainer, pl_module: LightningModule, outputs: STEP_OUTPUT, batch: Any, batch_idx: int, ) -> None: if self._log_stats.inter_step_time: self._snap_inter_step_time = time.time() if not self._should_log(trainer): return logs = {} if self._log_stats.step_time and self._snap_step_time: logs["timer/step"] = (time.time() - self._snap_step_time) # * 1000 if trainer.logger: trainer.logger.log_metrics(logs, step=trainer.global_step) @rank_zero_only def on_train_epoch_end(self, trainer: Trainer, pl_module: LightningModule,) -> None: logs = {} if self._log_stats.epoch_time and self._snap_epoch_time: logs["timer/epoch"] = time.time() - self._snap_epoch_time if trainer.logger: trainer.logger.log_metrics(logs, step=trainer.global_step) def on_validation_epoch_start(self, trainer: Trainer, pl_module: LightningModule) -> None: self._snap_val_time = time.time() @rank_zero_only def on_validation_epoch_end(self, trainer: Trainer, pl_module: LightningModule,) -> None: logs = {} if self._log_stats.val_time and self._snap_val_time: logs["timer/validation"] = time.time() - self._snap_val_time if trainer.logger: trainer.logger.log_metrics(logs) # , step=trainer.global_step) @staticmethod def _should_log(trainer) -> bool: return (trainer.global_step + 1) % trainer.log_every_n_steps == 0 or trainer.should_stop
safari-main
src/callbacks/timer.py
import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_only from pytorch_lightning.utilities.parsing import AttributeDict from omegaconf import OmegaConf class TrackNorms(pl.Callback): # TODO do callbacks happen before or after the method in the main LightningModule? # @rank_zero_only # needed? def on_after_training_step(self, batch, batch_idx, trainer: pl.Trainer, pl_module: pl.LightningModule): # Log extra metrics metrics = {} if hasattr(pl_module, "_grad_norms"): metrics.update(pl_module._grad_norms) self.log_dict( metrics, on_step=True, on_epoch=False, prog_bar=False, add_dataloader_idx=False, sync_dist=True, ) def on_after_backward(self, trainer: pl.Trainer, pl_module: pl.LightningModule): # example to inspect gradient information in tensorboard if OmegaConf.select(trainer.hparams, 'trainer.track_grad_norms'): # TODO dot notation should work with omegaconf? norms = {} for name, p in pl_module.named_parameters(): if p.grad is None: continue # param_norm = float(p.grad.data.norm(norm_type)) param_norm = torch.mean(p.grad.data ** 2) norms[f"grad_norm.{name}"] = param_norm pl_module._grad_norms = norms
safari-main
src/callbacks/norms.py
import numpy as np from pytorch_lightning.callbacks import Callback import src.utils as utils from src.utils import registry class ProgressiveResizing(Callback): def __init__(self, stage_params: list): """ stage_params is a list of dicts e.g. stage_params = [ {'resolution': 4, 'epochs': 50}, # 32 x 32 {'resolution': 2, 'epochs': 30}, # 64 x 64 {'resolution': 1, 'epochs': 20}, # 128 x 128 ] """ super().__init__() assert len(stage_params) > 0, 'No stages specified' assert all([{'resolution', 'epochs'} <= set(stage.keys()) for stage in stage_params]), \ 'stage_params must contain keys: resolution and epochs' self.stage_params = stage_params self.stage_epochs_cume = np.cumsum([stage['epochs'] for stage in stage_params]) self._current_stage = 0 def _verify_stages(self, trainer, model): # Double-check that stage parameters are correct, otherwise we'll fail in the middle of training for stage in self.stage_params: if hasattr(stage, 'scheduler'): # Verify that we can actually create the scheduler when we need to update it in each stage scheduler = utils.instantiate(registry.scheduler, {**model.hparams.scheduler, **stage['scheduler']}, trainer.optimizers[0]) del scheduler def on_train_start(self, trainer, model) -> None: # Verify all the stage parameters are correct self._verify_stages(trainer, model) print(f"Training starts at {trainer.current_epoch}") if trainer.current_epoch == 0: # Update the model to the first stage self._update_to_current_stage(trainer, model) else: # Preemption or resumption of progressive resizing # Update the stage to the current one self._current_stage = int(np.searchsorted(self.stage_epochs_cume - 1, trainer.current_epoch)) self._starting_stage = np.any(trainer.current_epoch == self.stage_epochs_cume) print("Progressive Resizing: Restarting at Stage {}".format(self._current_stage)) if self._starting_stage: self._update_lr_scheduler(trainer, model) # Set the dataloader and model self._update_dataloaders(trainer, model) self._update_model(trainer, model) return super().on_train_start(trainer, model) def _update_lr_scheduler(self, trainer, model): if not hasattr(self.stage_params[self._current_stage], 'scheduler'): # No scheduler specified, so don't update the current scheduler return assert len(trainer.lr_schedulers) == 1 # Reinitialize the scheduler # We don't need to carry over information from the last scheduler e.g. the last_epoch property, # because that will mess with the new scheduler when we step it hparams = {**model.hparams.scheduler, **self.stage_params[self._current_stage]['scheduler']} # Note that passing in the optimizer below is okay: the scheduler will be reinitialized and doesn't seem to inherit any current lr info from the optimizer trainer.lr_schedulers[0]['scheduler'] = utils.instantiate(registry.scheduler, hparams, trainer.optimizers[0]) print("\tChanged scheduler to {}".format(hparams)) def _update_dataloaders(self, trainer, model): # Set the train resolution and reset the dataloader model.hparams.loader.train_resolution = self.stage_params[self._current_stage]['resolution'] trainer.reset_train_dataloader(model) print('\tChanged resolution to {}'.format(self.stage_params[self._current_stage]['resolution'])) def _update_model(self, trainer, model): if not hasattr(self.stage_params[self._current_stage], 'bandlimit'): return # Update the bandlimit value for the model: this is a hack to make sure the model is updated # Iterate over all the modules for module in model.modules(): if hasattr(module, 'bandlimit'): module.bandlimit = self.stage_params[self._current_stage]['bandlimit'] print('\tChanged bandlimit to {}'.format(self.stage_params[self._current_stage]['bandlimit'])) def _update_to_current_stage(self, trainer, model): print("Progressive Resizing: Moving to Stage {}".format(self._current_stage)) # Update the train dataloader, model and scheduler self._update_dataloaders(trainer, model) self._update_model(trainer, model) self._update_lr_scheduler(trainer, model) def on_train_epoch_end(self, trainer, model): """ Check to see if new stage is reached for the next epoch, and if so, prepare the new stage by changing the dataloader. (We do next epoch so that the dataloader is prepared before the next epoch) """ next_epoch = trainer.current_epoch + 1 # Check if stage should be increased if next_epoch >= self.stage_epochs_cume[self._current_stage] and self._current_stage < len(self.stage_params) - 1: self._current_stage += 1 self._update_to_current_stage(trainer, model) return super().on_train_epoch_end(trainer, model)
safari-main
src/callbacks/progressive_resizing.py
"""Long Range Arena datasets""" import io import logging import os import pickle from pathlib import Path import torch from torch import nn import torch.nn.functional as F import torchtext import torchvision from einops.layers.torch import Rearrange, Reduce from PIL import Image # Only used for Pathfinder from datasets import DatasetDict, Value, load_dataset from src.dataloaders.base import default_data_path, SequenceDataset, ImageResolutionSequenceDataset class IMDB(SequenceDataset): _name_ = "imdb" d_output = 2 l_output = 0 @property def init_defaults(self): return { "l_max": 4096, "level": "char", "min_freq": 15, "seed": 42, "val_split": 0.0, "append_bos": False, "append_eos": True, # 'max_vocab': 135, "n_workers": 4, # Only used for tokenizing dataset before caching } @property def n_tokens(self): return len(self.vocab) def prepare_data(self): if self.cache_dir is None: # Just download the dataset load_dataset(self._name_, cache_dir=self.data_dir) else: # Process the dataset and save it self.process_dataset() def setup(self, stage=None): """If cache_dir is not None, we'll cache the processed dataset there.""" self.data_dir = self.data_dir or default_data_path / self._name_ self.cache_dir = self.data_dir / "cache" assert self.level in [ "word", "char", ], f"level {self.level} not supported" if stage == "test" and hasattr(self, "dataset_test"): return dataset, self.tokenizer, self.vocab = self.process_dataset() print( f"IMDB {self.level} level | min_freq {self.min_freq} | vocab size {len(self.vocab)}" ) dataset.set_format(type="torch", columns=["input_ids", "label"]) # Create all splits dataset_train, self.dataset_test = dataset["train"], dataset["test"] if self.val_split == 0.0: # Use test set as val set, as done in the LRA paper self.dataset_train, self.dataset_val = dataset_train, None else: train_val = dataset_train.train_test_split( test_size=self.val_split, seed=self.seed ) self.dataset_train, self.dataset_val = ( train_val["train"], train_val["test"], ) def _collate_fn(self, batch): xs, ys = zip(*[(data["input_ids"], data["label"]) for data in batch]) lengths = torch.tensor([len(x) for x in xs]) xs = nn.utils.rnn.pad_sequence( xs, padding_value=self.vocab["<pad>"], batch_first=True ) ys = torch.tensor(ys) return xs, ys, {"lengths": lengths} # self._collate_fn = collate_batch def process_dataset(self): cache_dir = ( None if self.cache_dir is None else self.cache_dir / self._cache_dir_name ) if cache_dir is not None: if cache_dir.is_dir(): return self._load_from_cache(cache_dir) dataset = load_dataset(self._name_, cache_dir=self.data_dir) dataset = DatasetDict(train=dataset["train"], test=dataset["test"]) if self.level == "word": tokenizer = torchtext.data.utils.get_tokenizer( "spacy", language="en_core_web_sm" ) else: # self.level == 'char' tokenizer = list # Just convert a string to a list of chars # Account for <bos> and <eos> tokens l_max = self.l_max - int(self.append_bos) - int(self.append_eos) tokenize = lambda example: {"tokens": tokenizer(example["text"])[:l_max]} dataset = dataset.map( tokenize, remove_columns=["text"], keep_in_memory=True, load_from_cache_file=False, num_proc=max(self.n_workers, 1), ) vocab = torchtext.vocab.build_vocab_from_iterator( dataset["train"]["tokens"], min_freq=self.min_freq, specials=( ["<pad>", "<unk>"] + (["<bos>"] if self.append_bos else []) + (["<eos>"] if self.append_eos else []) ), ) vocab.set_default_index(vocab["<unk>"]) numericalize = lambda example: { "input_ids": vocab( (["<bos>"] if self.append_bos else []) + example["tokens"] + (["<eos>"] if self.append_eos else []) ) } dataset = dataset.map( numericalize, remove_columns=["tokens"], keep_in_memory=True, load_from_cache_file=False, num_proc=max(self.n_workers, 1), ) if cache_dir is not None: self._save_to_cache(dataset, tokenizer, vocab, cache_dir) return dataset, tokenizer, vocab def _save_to_cache(self, dataset, tokenizer, vocab, cache_dir): cache_dir = self.cache_dir / self._cache_dir_name logger = logging.getLogger(__name__) logger.info(f"Saving to cache at {str(cache_dir)}") dataset.save_to_disk(str(cache_dir)) with open(cache_dir / "tokenizer.pkl", "wb") as f: pickle.dump(tokenizer, f) with open(cache_dir / "vocab.pkl", "wb") as f: pickle.dump(vocab, f) def _load_from_cache(self, cache_dir): assert cache_dir.is_dir() logger = logging.getLogger(__name__) logger.info(f"Load from cache at {str(cache_dir)}") dataset = DatasetDict.load_from_disk(str(cache_dir)) with open(cache_dir / "tokenizer.pkl", "rb") as f: tokenizer = pickle.load(f) with open(cache_dir / "vocab.pkl", "rb") as f: vocab = pickle.load(f) return dataset, tokenizer, vocab @property def _cache_dir_name(self): return f"l_max-{self.l_max}-level-{self.level}-min_freq-{self.min_freq}-append_bos-{self.append_bos}-append_eos-{self.append_eos}" class TabularDataset(torch.utils.data.Dataset): def __init__( self, path, format, col_idx=None, skip_header=False, csv_reader_params=None, ): """ col_idx: the indices of the columns. """ if csv_reader_params is None: csv_reader_params = {} format = format.lower() assert format in ["tsv", "csv"] with io.open(os.path.expanduser(path), encoding="utf8") as f: if format == "csv": reader = torchtext.utils.unicode_csv_reader(f, **csv_reader_params) elif format == "tsv": reader = torchtext.utils.unicode_csv_reader( f, delimiter="\t", **csv_reader_params ) else: reader = f if skip_header: next(reader) self._data = [ line if col_idx is None else [line[c] for c in col_idx] for line in reader ] def __len__(self): return len(self._data) def __getitem__(self, idx): return self._data[idx] # LRA tokenizer renames ']' to 'X' and delete parentheses as their tokenizer removes # non-alphanumeric characters. # https://github.com/google-research/long-range-arena/blob/264227cbf9591e39dd596d2dc935297a2070bdfe/lra_benchmarks/listops/input_pipeline.py#L46 def listops_tokenizer(s): return s.translate({ord("]"): ord("X"), ord("("): None, ord(")"): None}).split() class ListOps(SequenceDataset): _name_ = "listops" d_output = 10 l_output = 0 @property def init_defaults(self): return { "l_max": 2048, "append_bos": False, "append_eos": True, # 'max_vocab': 20, # Actual size 18 "n_workers": 4, # Only used for tokenizing dataset } @property def n_tokens(self): return len(self.vocab) @property def _cache_dir_name(self): return f"l_max-{self.l_max}-append_bos-{self.append_bos}-append_eos-{self.append_eos}" def init(self): if self.data_dir is None: self.data_dir = default_data_path / self._name_ self.cache_dir = self.data_dir / self._cache_dir_name def prepare_data(self): if self.cache_dir is None: for split in ["train", "val", "test"]: split_path = self.data_dir / f"basic_{split}.tsv" if not split_path.is_file(): raise FileNotFoundError( f""" File {str(split_path)} not found. To get the dataset, download lra_release.gz from https://github.com/google-research/long-range-arena, then unzip it with tar -xvf lra_release.gz. Then point data_dir to the listops-1000 directory. """ ) else: # Process the dataset and save it self.process_dataset() def setup(self, stage=None): if stage == "test" and hasattr(self, "dataset_test"): return dataset, self.tokenizer, self.vocab = self.process_dataset() self.vocab_size = len(self.vocab) dataset.set_format(type="torch", columns=["input_ids", "Target"]) self.dataset_train, self.dataset_val, self.dataset_test = ( dataset["train"], dataset["val"], dataset["test"], ) def collate_batch(batch): xs, ys = zip(*[(data["input_ids"], data["Target"]) for data in batch]) lengths = torch.tensor([len(x) for x in xs]) xs = nn.utils.rnn.pad_sequence( xs, padding_value=self.vocab["<pad>"], batch_first=True ) ys = torch.tensor(ys) return xs, ys, {"lengths": lengths} self._collate_fn = collate_batch def process_dataset(self): cache_dir = ( None if self.cache_dir is None else self.cache_dir / self._cache_dir_name ) if cache_dir is not None: if cache_dir.is_dir(): return self._load_from_cache(cache_dir) dataset = load_dataset( "csv", data_files={ "train": str(self.data_dir / "basic_train.tsv"), "val": str(self.data_dir / "basic_val.tsv"), "test": str(self.data_dir / "basic_test.tsv"), }, delimiter="\t", keep_in_memory=True, ) tokenizer = listops_tokenizer # Account for <bos> and <eos> tokens l_max = self.l_max - int(self.append_bos) - int(self.append_eos) tokenize = lambda example: {"tokens": tokenizer(example["Source"])[:l_max]} dataset = dataset.map( tokenize, remove_columns=["Source"], keep_in_memory=True, load_from_cache_file=False, num_proc=max(self.n_workers, 1), ) vocab = torchtext.vocab.build_vocab_from_iterator( dataset["train"]["tokens"], specials=( ["<pad>", "<unk>"] + (["<bos>"] if self.append_bos else []) + (["<eos>"] if self.append_eos else []) ), ) vocab.set_default_index(vocab["<unk>"]) numericalize = lambda example: { "input_ids": vocab( (["<bos>"] if self.append_bos else []) + example["tokens"] + (["<eos>"] if self.append_eos else []) ) } dataset = dataset.map( numericalize, remove_columns=["tokens"], keep_in_memory=True, load_from_cache_file=False, num_proc=max(self.n_workers, 1), ) if cache_dir is not None: self._save_to_cache(dataset, tokenizer, vocab, cache_dir) return dataset, tokenizer, vocab def _save_to_cache(self, dataset, tokenizer, vocab, cache_dir): cache_dir = self.cache_dir / self._cache_dir_name logger = logging.getLogger(__name__) logger.info(f"Saving to cache at {str(cache_dir)}") dataset.save_to_disk(str(cache_dir)) with open(cache_dir / "tokenizer.pkl", "wb") as f: pickle.dump(tokenizer, f) with open(cache_dir / "vocab.pkl", "wb") as f: pickle.dump(vocab, f) def _load_from_cache(self, cache_dir): assert cache_dir.is_dir() logger = logging.getLogger(__name__) logger.info(f"Load from cache at {str(cache_dir)}") dataset = DatasetDict.load_from_disk(str(cache_dir)) with open(cache_dir / "tokenizer.pkl", "rb") as f: tokenizer = pickle.load(f) with open(cache_dir / "vocab.pkl", "rb") as f: vocab = pickle.load(f) return dataset, tokenizer, vocab class PathFinderDataset(torch.utils.data.Dataset): """Path Finder dataset.""" # There's an empty file in the dataset blacklist = {"pathfinder32/curv_baseline/imgs/0/sample_172.png"} def __init__(self, data_dir, transform=None): """ Args: data_dir (string): Directory with all the images. transform (callable, optional): Optional transform to be applied on a sample. """ self.data_dir = Path(data_dir).expanduser() assert self.data_dir.is_dir(), f"data_dir {str(self.data_dir)} does not exist" self.transform = transform samples = [] # for diff_level in ['curv_baseline', 'curv_contour_length_9', 'curv_contour_length_14']: for diff_level in ["curv_contour_length_14"]: path_list = sorted( list((self.data_dir / diff_level / "metadata").glob("*.npy")), key=lambda path: int(path.stem), ) assert path_list, "No metadata found" for metadata_file in path_list: with open(metadata_file, "r") as f: for metadata in f.read().splitlines(): metadata = metadata.split() image_path = Path(diff_level) / metadata[0] / metadata[1] if ( str(Path(self.data_dir.stem) / image_path) not in self.blacklist ): label = int(metadata[3]) samples.append((image_path, label)) self.samples = samples def __len__(self): return len(self.samples) def __getitem__(self, idx): path, target = self.samples[idx] # https://github.com/pytorch/vision/blob/9b29f3f22783112406d9c1a6db47165a297c3942/torchvision/datasets/folder.py#L247 with open(self.data_dir / path, "rb") as f: sample = Image.open(f).convert("L") # Open in grayscale if self.transform is not None: sample = self.transform(sample) return sample, target class PathFinder(ImageResolutionSequenceDataset): _name_ = "pathfinder" d_input = 1 d_output = 2 l_output = 0 @property def n_tokens(self): if self.tokenize: return 256 @property def init_defaults(self): return { "resolution": 32, "sequential": True, "tokenize": False, "center": True, "pool": 1, "val_split": 0.1, "test_split": 0.1, "seed": 42, # Controls the train/val/test split } def default_transforms(self): transform_list = [torchvision.transforms.ToTensor()] if self.pool > 1: transform_list.append( Reduce( "1 (h h2) (w w2) -> 1 h w", "mean", h2=self.pool, w2=self.pool, ) ) if self.tokenize: transform_list.append( torchvision.transforms.Lambda(lambda x: (x * 255).long()) ) else: if self.center: transform_list.append(torchvision.transforms.Normalize(mean=0.5, std=0.5)) if self.sequential: # If tokenize, it makes more sense to get rid of the channel dimension transform_list.append( Rearrange("1 h w -> (h w)") if self.tokenize else Rearrange("1 h w -> (h w) 1") ) else: transform_list.append(Rearrange("1 h w -> h w 1")) return torchvision.transforms.Compose(transform_list) def prepare_data(self): if not self.data_dir.is_dir(): raise FileNotFoundError( f""" Directory {str(self.data_dir)} not found. To get the dataset, download lra_release.gz from https://github.com/google-research/long-range-arena, then unzip it with tar -xvf lra_release.gz. Then point data_dir to the pathfinderX directory, where X is either 32, 64, 128, or 256. """ ) def setup(self, stage=None): if self.data_dir is None: self.data_dir = ( default_data_path / self._name_ / f"pathfinder{self.resolution}" ) if stage == "test" and hasattr(self, "dataset_test"): return # [2021-08-18] TD: I ran into RuntimeError: Too many open files. # https://github.com/pytorch/pytorch/issues/11201 # torch.multiprocessing.set_sharing_strategy("file_system") dataset = PathFinderDataset(self.data_dir, transform=self.default_transforms()) len_dataset = len(dataset) val_len = int(self.val_split * len_dataset) test_len = int(self.test_split * len_dataset) train_len = len_dataset - val_len - test_len ( self.dataset_train, self.dataset_val, self.dataset_test, ) = torch.utils.data.random_split( dataset, [train_len, val_len, test_len], generator=torch.Generator().manual_seed(self.seed), ) class AAN(SequenceDataset): _name_ = "aan" d_output = 2 # Use accuracy instead of binary_accuracy l_output = 0 @property def n_tokens(self): return len(self.vocab) @property def init_defaults(self): return { "l_max": 4000, # 'max_vocab': 100, # Full size 98 "append_bos": False, "append_eos": True, "n_workers": 4, # For tokenizing only } @property def _cache_dir_name(self): return f"l_max-{self.l_max}-append_bos-{self.append_bos}-append_eos-{self.append_eos}" def init(self): if self.data_dir is None: self.data_dir = default_data_path / self._name_ self.cache_dir = self.data_dir / self._cache_dir_name def prepare_data(self): if self.cache_dir is None: for split in ["train", "eval", "test"]: split_path = self.data_dir / f"new_aan_pairs.{split}.tsv" if not split_path.is_file(): raise FileNotFoundError( f""" File {str(split_path)} not found. To get the dataset, download lra_release.gz from https://github.com/google-research/long-range-arena, then unzip it with tar -xvf lra_release.gz. Then point data_dir to the tsv_data directory. """ ) else: # Process the dataset and save it self.process_dataset() def setup(self, stage=None): if stage == "test" and hasattr(self, "dataset_test"): return # [2021-08-18] TD: I ran into RuntimeError: Too many open files. # https://github.com/pytorch/pytorch/issues/11201 # torch.multiprocessing.set_sharing_strategy("file_system") dataset, self.tokenizer, self.vocab = self.process_dataset() # self.vocab_size = len(self.vocab) print("AAN vocab size:", len(self.vocab)) dataset.set_format(type="torch", columns=["input_ids1", "input_ids2", "label"]) self.dataset_train, self.dataset_val, self.dataset_test = ( dataset["train"], dataset["val"], dataset["test"], ) def collate_batch(batch): xs1, xs2, ys = zip( *[ (data["input_ids1"], data["input_ids2"], data["label"]) for data in batch ] ) lengths1 = torch.tensor([len(x) for x in xs1]) lengths2 = torch.tensor([len(x) for x in xs2]) xs1 = nn.utils.rnn.pad_sequence( xs1, padding_value=self.vocab["<pad>"], batch_first=True ) xs2 = nn.utils.rnn.pad_sequence( xs2, padding_value=self.vocab["<pad>"], batch_first=True ) # Pad both to same length # Shape (batch, length) L = max(xs1.size(1), xs2.size(1)) xs1 = F.pad(xs1, (0, L-xs1.size(1)), value=self.vocab["<pad>"]) xs2 = F.pad(xs2, (0, L-xs2.size(1)), value=self.vocab["<pad>"]) ys = torch.tensor(ys) # return xs1, xs2, ys, lengths1, lengths2 # Concatenate two batches xs = torch.cat([xs1, xs2], dim=0) lengths = torch.cat([lengths1, lengths2], dim=0) return xs, ys, {"lengths": lengths} self._collate_fn = collate_batch def process_dataset(self): cache_dir = ( None if self.cache_dir is None else self.cache_dir / self._cache_dir_name ) if cache_dir is not None: if cache_dir.is_dir(): return self._load_from_cache(cache_dir) dataset = load_dataset( "csv", data_files={ "train": str(self.data_dir / "new_aan_pairs.train.tsv"), "val": str(self.data_dir / "new_aan_pairs.eval.tsv"), "test": str(self.data_dir / "new_aan_pairs.test.tsv"), }, delimiter="\t", column_names=["label", "input1_id", "input2_id", "text1", "text2"], keep_in_memory=True, ) # True) dataset = dataset.remove_columns(["input1_id", "input2_id"]) new_features = dataset["train"].features.copy() new_features["label"] = Value("int32") dataset = dataset.cast(new_features) tokenizer = list # Just convert a string to a list of chars # Account for <bos> and <eos> tokens l_max = self.l_max - int(self.append_bos) - int(self.append_eos) tokenize = lambda example: { "tokens1": tokenizer(example["text1"])[:l_max], "tokens2": tokenizer(example["text2"])[:l_max], } dataset = dataset.map( tokenize, remove_columns=["text1", "text2"], keep_in_memory=True, load_from_cache_file=False, num_proc=max(self.n_workers, 1), ) vocab = torchtext.vocab.build_vocab_from_iterator( dataset["train"]["tokens1"] + dataset["train"]["tokens2"], specials=( ["<pad>", "<unk>"] + (["<bos>"] if self.append_bos else []) + (["<eos>"] if self.append_eos else []) ), ) vocab.set_default_index(vocab["<unk>"]) encode = lambda text: vocab( (["<bos>"] if self.append_bos else []) + text + (["<eos>"] if self.append_eos else []) ) numericalize = lambda example: { "input_ids1": encode(example["tokens1"]), "input_ids2": encode(example["tokens2"]), } dataset = dataset.map( numericalize, remove_columns=["tokens1", "tokens2"], keep_in_memory=True, load_from_cache_file=False, num_proc=max(self.n_workers, 1), ) if cache_dir is not None: self._save_to_cache(dataset, tokenizer, vocab, cache_dir) return dataset, tokenizer, vocab def _save_to_cache(self, dataset, tokenizer, vocab, cache_dir): cache_dir = self.cache_dir / self._cache_dir_name logger = logging.getLogger(__name__) logger.info(f"Saving to cache at {str(cache_dir)}") dataset.save_to_disk(str(cache_dir)) with open(cache_dir / "tokenizer.pkl", "wb") as f: pickle.dump(tokenizer, f) with open(cache_dir / "vocab.pkl", "wb") as f: pickle.dump(vocab, f) def _load_from_cache(self, cache_dir): assert cache_dir.is_dir() logger = logging.getLogger(__name__) logger.info(f"Load from cache at {str(cache_dir)}") dataset = DatasetDict.load_from_disk(str(cache_dir)) with open(cache_dir / "tokenizer.pkl", "rb") as f: tokenizer = pickle.load(f) with open(cache_dir / "vocab.pkl", "rb") as f: vocab = pickle.load(f) return dataset, tokenizer, vocab
safari-main
src/dataloaders/lra.py
"""Miscellaneous vision datasets.""" import os import torch from torch import nn from torch.nn import functional as F import torchvision from src.dataloaders.base import default_data_path, SequenceDataset class ImageNet(SequenceDataset): """ .. figure:: https://3qeqpr26caki16dnhd19sv6by6v-wpengine.netdna-ssl.com/wp-content/uploads/2017/08/ Sample-of-Images-from-the-ImageNet-Dataset-used-in-the-ILSVRC-Challenge.png :width: 400 :alt: Imagenet Specs: - 1000 classes - Each image is (3 x varies x varies) (here we default to 3 x 224 x 224) Imagenet train, val and test dataloaders. The train set is the imagenet train. The val split is taken from train if a val_split % is provided, or will be the same as test otherwise The test set is the official imagenet validation set. """ _name_ = "imagenet" d_input = 3 d_output = 1000 l_output = 0 init_defaults = { "data_dir": None, "cache_dir": None, "image_size": 224, "val_split": None, # currently not implemented "train_transforms": None, "val_transforms": None, "test_transforms": None, "mixup": None, # augmentation "num_aug_repeats": 0, "num_gpus": 1, "shuffle": True, # for train "loader_fft": False, } @property def num_classes(self) -> int: """ Return: 1000 """ return 1000 def _verify_splits(self, data_dir: str, split: str) -> None: dirs = os.listdir(data_dir) if split not in dirs: raise FileNotFoundError( f"a {split} Imagenet split was not found in {data_dir}," f" make sure the folder contains a subfolder named {split}" ) def prepare_data(self) -> None: """This method already assumes you have imagenet2012 downloaded. It validates the data using the meta.bin. .. warning:: Please download imagenet on your own first. """ if not self.use_archive_dataset: self._verify_splits(self.data_dir, "train") self._verify_splits(self.data_dir, "val") else: if not self.data_dir.is_file(): raise FileNotFoundError(f"""Archive file {str(self.data_dir)} not found.""") def setup(self, stage=None): """Creates train, val, and test dataset.""" from typing import Any, Callable, List, Optional, Union import hydra # for mixup from pl_bolts.transforms.dataset_normalizations import \ imagenet_normalization from torch.utils.data import Dataset from torch.utils.data.dataloader import default_collate from torchvision.datasets import ImageFolder # for access in other methods self.imagenet_normalization = imagenet_normalization self.default_collate = default_collate self.hydra = hydra self.ImageFolder = ImageFolder if self.mixup is not None: self.mixup_fn = hydra.utils.instantiate(self.mixup) else: self.mixup_fn = None self.dir_path = self.data_dir or default_data_path / self._name_ if stage == "fit" or stage is None: self.set_phase([self.image_size]) if stage == "test" or stage is None: test_transforms = (self.val_transform() if self.test_transforms is None else hydra.utils.instantiate(self.test_transforms)) self.dataset_test = ImageFolder(os.path.join(self.dir_path, 'val'), transform=test_transforms) # # modded, override (for debugging) # self.dataset_test = self.dataset_val def set_phase(self, stage_params=[224], val_upsample=False, test_upsample=False): """ For progresive learning. Will modify train transform parameters during training, just image size for now, and create a new train dataset, which the train_dataloader will load every n epochs (in config). Later, will be possible to change magnitude of RandAug here too, and mixup alpha stage_params: list, list of values to change. single [image_size] for now """ img_size = int(stage_params[0]) if val_upsample: self.val_transforms["input_size"] = img_size train_transforms = (self.train_transform() if self.train_transforms is None else self.hydra.utils.instantiate(self.train_transforms)) val_transforms = (self.val_transform() if self.val_transforms is None else self.hydra.utils.instantiate(self.val_transforms)) if self.loader_fft: train_transforms = torchvision.transforms.Compose( train_transforms.transforms + [ torchvision.transforms.Lambda(lambda x: torch.fft.rfftn(x, s=tuple([2*l for l in x.shape[1:]]))) ] ) val_transforms = torchvision.transforms.Compose( val_transforms.transforms + [ torchvision.transforms.Lambda(lambda x: torch.fft.rfftn(x, s=tuple([2*l for l in x.shape[1:]]))) ] ) self.dataset_train = self.ImageFolder(self.dir_path / 'train', transform=train_transforms) if self.val_split > 0.: # this will create the val split self.split_train_val(self.val_split) # will use the test split as val by default else: self.dataset_val = self.ImageFolder(self.dir_path / 'val', transform=val_transforms) # # modded, override (for debugging) # self.dataset_train = self.dataset_val # not sure if normally you upsample test also if test_upsample: self.test_transforms["input_size"] = img_size test_transforms = (self.val_transform() if self.test_transforms is None else self.hydra.utils.instantiate(self.test_transforms)) self.dataset_test = self.ImageFolder(os.path.join(self.dir_path, 'val'), transform=test_transforms) ## modded, override (for debugging) # self.dataset_test = self.dataset_val # could modify mixup by reinstantiating self.mixup_fn (later maybe) def train_transform(self): """The standard imagenet transforms. .. code-block:: python transforms.Compose([ transforms.RandomResizedCrop(self.image_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ]) """ preprocessing = torchvision.transforms.Compose( [ torchvision.transforms.RandomResizedCrop(self.image_size), torchvision.transforms.RandomHorizontalFlip(), torchvision.transforms.ToTensor(), self.imagenet_normalization(), ] ) return preprocessing def val_transform(self): """The standard imagenet transforms for validation. .. code-block:: python transforms.Compose([ transforms.Resize(self.image_size + 32), transforms.CenterCrop(self.image_size), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ]) """ preprocessing = torchvision.transforms.Compose( [ torchvision.transforms.Resize(self.image_size + 32), torchvision.transforms.CenterCrop(self.image_size), torchvision.transforms.ToTensor(), self.imagenet_normalization(), ] ) return preprocessing def train_dataloader(self, **kwargs): """ The train dataloader """ if self.num_aug_repeats == 0 or self.num_gpus == 1: shuffle = self.shuffle sampler = None else: shuffle = False from timm.data.distributed_sampler import RepeatAugSampler sampler = RepeatAugSampler(self.dataset_train, num_repeats=self.num_aug_repeats) # calculate resolution resolution = self.image_size / self.train_transforms['input_size'] # usually 1.0 return (self._data_loader(self.dataset_train, shuffle=shuffle, mixup=self.mixup_fn, sampler=sampler, resolution=resolution, **kwargs)) def val_dataloader(self, **kwargs): """ The val dataloader """ kwargs['drop_last'] = False # update batch_size for eval if provided batch_size = kwargs.get("batch_size_eval", None) or kwargs.get("batch_size") kwargs["batch_size"] = batch_size # calculate resolution resolution = self.image_size / self.val_transforms['input_size'] # usually 1.0 or 0.583 return (self._data_loader(self.dataset_val, resolution=resolution, **kwargs)) def test_dataloader(self, **kwargs): """ The test dataloader """ kwargs['drop_last'] = False # update batch_size for test if provided batch_size = kwargs.get("batch_size_test", None) or kwargs.get("batch_size_eval", None) or kwargs.get("batch_size") kwargs["batch_size"] = batch_size # calculate resolution resolution = self.image_size / self.test_transforms.get("input_size", self.val_transforms['input_size']) return (self._data_loader(self.dataset_test, resolution=resolution, **kwargs)) def _data_loader(self, dataset, resolution, shuffle=False, mixup=None, sampler=None, **kwargs): # collate_fn = (lambda batch: mixup(*self.default_collate(batch))) if mixup is not None else self.default_collate collate_fn = (lambda batch: mixup(*self.collate_with_resolution(batch, resolution))) if mixup is not None else lambda batch: self.collate_with_resolution(batch, resolution) # hacked - can't pass this this arg to dataloader, but used to update the batch_size val / test kwargs.pop('batch_size_eval', None) kwargs.pop('batch_size_test', None) return torch.utils.data.DataLoader( dataset, collate_fn=collate_fn, shuffle=shuffle, sampler=sampler, **kwargs, ) def collate_with_resolution(self, batch, resolution): stuff = self.default_collate(batch) return *stuff, {"resolution": resolution}
safari-main
src/dataloaders/vision.py
'''Synthetic datasets to test in-context learning ability.''' import os import torch from torch.utils.data import TensorDataset, Dataset, DataLoader from typing import Dict import numpy as np from tqdm import tqdm from collections import Counter from src.dataloaders.base import SequenceDataset class Vocab: """Custom vocab.""" def __init__(self, vocab_size: int, special_vocabs: Dict): # Special tokens hold copy_prefix and noop/pad token etc assert "copy_prefix" in special_vocabs self.special_vocabs = special_vocabs vocab = [str(v) for v in list(range(vocab_size))] self.non_special_vocab = sorted(list(vocab)) self.vocab = sorted(list(set(vocab + list(self.special_vocabs.values())))) self.v2id = {v:i for i,v in enumerate(self.vocab)} self.vocab_size = len(vocab) def get_next_vocab(self, token: str): """Gets next token excluding special_vocabs.""" id = (self.get_id(token) + 1) % self.vocab_size while self.get_vocab(id) in self.special_vocabs: id = (id + 1) % self.vocab_size return self.get_vocab(id) @property def copy_prefix(self): return self.special_vocabs["copy_prefix"] @property def noop(self): return self.special_vocabs["noop"] @property def special_tokens(self): return set(self.special_vocabs.values()) def get_id(self, token: str): return self.v2id[token] def get_vocab(self, id: int): return self.vocab[id] def __len__(self): return len(self.vocab) class Tokenizer: """Custom Tokenizer for our own vocab.""" def __init__(self, vocab: Vocab): self.vocab = vocab def tokenize(self, text: str, return_tensor=False, mask_input=False): input_ids = [self.vocab.get_id(t) for t in text.split()] if self.vocab.get_id(self.vocab.copy_prefix) not in input_ids: raise ValueError("Input text must contain copy_prefix token.") copy_prefix_pos = input_ids.index(self.vocab.get_id(self.vocab.copy_prefix)) labels = input_ids if mask_input: # Mask the input tokens for loss but do not mask the copied token labels = [-100] * (copy_prefix_pos+1) + labels[copy_prefix_pos+1:] if return_tensor: input_ids = torch.LongTensor(input_ids) labels = torch.LongTensor(labels) return { "input_ids": input_ids, "labels": labels, } def decode(self, ids: list): return " ".join([self.vocab.get_vocab(id) for id in ids]) def generate_start_seq(vocab: Vocab, input_seq_len: int, rng: np.random.Generator): """Generate token sequence up to and including the copy_prefix token.""" vocab_seq = rng.choice( vocab.vocab, input_seq_len, replace=True, # Do not generate any special tokens p=[1/(len(vocab)-len(vocab.special_tokens)) if p not in vocab.special_tokens else 0 for p in vocab.vocab]) vocab_seq = np.append(vocab_seq, vocab.copy_prefix) return vocab_seq.tolist() def generate_induction_head( vocab: Vocab, input_seq_len: int, copy_prefix: str, induction_len: int, num_triggers: int, rng: np.random.Generator, valid_chars: list = None, ): """Generate sequence where the copy prefix is inserted into the input and then the character after the copy prefix is copied at the end. """ if valid_chars is not None: raise NotImplementedError("Valid chars not implemented for induction heads.") vocab_seq = generate_start_seq(vocab, input_seq_len, rng) if rng.uniform() < 0.5: num_triggers = 1 pos = sorted(rng.integers( input_seq_len - (1 + induction_len), size=num_triggers )) pos_filtered = [] for i, p in enumerate(pos): if i == 0: pos_filtered.append(p) elif p - pos_filtered[-1] > induction_len: pos_filtered.append(p) to_copy = [ vocab_seq[pos_filtered[0]+1+i] for i in range(induction_len) ] for pos in pos_filtered: vocab_seq[pos] = copy_prefix for i in range(induction_len): vocab_seq[pos+1+i] = to_copy[i] # if valid_chars is not None and to_copy not in valid_chars: # vocab_seq[pos+1] = rng.choice(valid_chars) # to_copy = vocab_seq[pos+1] vocab_seq = vocab_seq + to_copy return " ".join(vocab_seq) def generate_assoc_recall( vocab: Vocab, input_seq_len: int, num_keys: int, rng: np.random.Generator, allow_dot: bool = True, valid_chars: list = None, ): """Generate sequence where the input has a sequence of key value pairs and the copy prefix at the end, and then a key value pair is inserted after the copy prefix.""" non_special_vocab_size = len(vocab.non_special_vocab) keys = vocab.non_special_vocab[:non_special_vocab_size // 2] values = vocab.non_special_vocab[non_special_vocab_size // 2:] keys_multi = [ [key] for key in keys ] for i in range(num_keys-1): keys_multi = [ key + [key2] for key in keys_multi for key2 in keys ] kv_map = { tuple(k): rng.choice(values) for k in keys_multi } key_present = {} vocab_seq = [] for _ in range(input_seq_len // (num_keys + 1)): k = tuple(rng.choice(list(kv_map.keys()))) v = kv_map[k] vocab_seq += list(k) + [v] key_present[k] = True # vocab_seq.append(v) k = tuple(rng.choice(list(kv_map.keys()))) if not allow_dot: while k not in key_present: k = tuple(rng.choice(list(key_present.keys()))) to_copy = [vocab.copy_prefix] + list(k) + [ kv_map[k] if k in key_present else vocab.noop ] vocab_seq = vocab_seq + to_copy return " ".join(vocab_seq) class ICLDataModule(SequenceDataset): _name_ = "icl_synthetics" def __init__( self, num_examples: int, num_test_examples: int, vocab_size: int, input_seq_len: int, copy_method: str, number_duplicates_per_epoch: int = 0, seed: int = 0, batch_size: int = 32, split_train_test: bool = False, induction_len: int = 1, induction_num_triggers: int = 1, allow_dot: bool = False, max_copy_len: int = 10, test_seq_len: int = None, num_keys: int = 1, # number of keys for associative recall, data_dir: str = None, *args, **kwargs ): self.num_examples = num_examples self.num_test_examples = num_test_examples self.input_seq_len = input_seq_len self.vocab_size = vocab_size self.copy_method = copy_method assert copy_method in ["induction_head", "assoc_recall"] self.number_duplicates_per_epoch = number_duplicates_per_epoch self.seed = seed self.batch_size = batch_size self.split_train_test = split_train_test # let the same copy chars appear in train/test self.induction_len = induction_len self.induction_num_triggers = induction_num_triggers self.allow_dot = allow_dot self.max_copy_len = max_copy_len self.data_dir = data_dir if test_seq_len is not None: self.test_seq_len = test_seq_len else: self.test_seq_len = input_seq_len self.num_keys = num_keys special_vocabs = { "copy_prefix": "=>", "noop": "." } self.special_vocabs = special_vocabs self.vocab = Vocab(vocab_size-len(special_vocabs), special_vocabs=special_vocabs) self.tokenizer = Tokenizer(self.vocab) self.num_extra_seq_len = 2 if self.copy_method == "induction_head": self.copy_f = self.generate_induction_head self.num_extra_seq_len = 1 + self.induction_len elif self.copy_method == "assoc_recall": self.copy_f = self.generate_assoc_recall self.num_extra_seq_len = 1 + self.num_keys else: self.copy_f = None if self.number_duplicates_per_epoch > 0: self.duplicate_ex = self.generate_example() self.duplicate_index = max(int(self.num_examples / self.number_duplicates_per_epoch), 1) else: self.duplicate_ex = None self.duplicate_index = -1 self.total_seq_len = self.input_seq_len + self.num_extra_seq_len def generate_induction_head(self, seqlen=None, valid_chars=None): return generate_induction_head(self.vocab, seqlen if seqlen is not None else self.input_seq_len, self.special_vocabs["copy_prefix"], self.induction_len, self.induction_num_triggers, self.rng, valid_chars=valid_chars) def generate_assoc_recall(self, seqlen=None, valid_chars=None): return generate_assoc_recall(self.vocab, seqlen if seqlen is not None else self.input_seq_len, self.num_keys, self.rng, allow_dot = self.allow_dot, valid_chars=valid_chars) def generate_example(self, seqlen=None, valid_chars=None): vocab_seq = self.copy_f(seqlen=seqlen, valid_chars=valid_chars) return self.tokenizer.tokenize(vocab_seq, return_tensor=True) def setup(self, stage=None): train_tensor = test_tensor = None if self.data_dir is not None: try: train_tensor = torch.load(os.path.join(self.data_dir, f"train_{self.copy_method}_{self.num_examples}_{self.vocab_size}_{self.input_seq_len}.pt")) test_tensor = torch.load(os.path.join(self.data_dir, f"test_{self.copy_method}_{self.num_examples}_{self.vocab_size}_{self.input_seq_len}.pt")) except: pass if train_tensor is None or test_tensor is None: if hasattr(self, 'dataset'): return self.rng = np.random.default_rng(self.seed) if self.split_train_test: all_vocab = self.vocab.non_special_vocab train_vocab = set(self.rng.choice(all_vocab, size=len(all_vocab) // 2, replace=False)) test_vocab = set(all_vocab) - train_vocab train_vocab = list(train_vocab) test_vocab = list(test_vocab) else: train_vocab = None test_vocab = None all_examples = [] for i, (example_count, valid_vocab) in enumerate(zip([self.num_examples, self.num_test_examples], [train_vocab, test_vocab])): examples = torch.stack([self.generate_example( seqlen=self.input_seq_len if i == 0 else self.test_seq_len, valid_chars=valid_vocab )['input_ids'] for _ in tqdm(range(example_count))]) examples = torch.unique(examples, dim=0, sorted=False).tolist() while len(examples) < example_count: new_example = self.generate_example( seqlen=self.input_seq_len if i == 0 else self.test_seq_len, valid_chars=valid_vocab )['input_ids'].tolist() if new_example not in examples: examples.append(new_example) self.rng.shuffle(examples) all_examples.append(torch.LongTensor(examples)) # all_examples = torch.concat(all_examples) train_tensor = torch.stack([torch.stack([example[:-1], example[1:]]) for example in all_examples[0]]) test_tensor = torch.stack([torch.stack([example[:-1], example[1:]]) for example in all_examples[1]]) test_tensor[:, 1, :-1 * (self.num_extra_seq_len - 1)] = -100 if self.copy_method in ["assoc_recall"]: test_tensor[:, 1, :-1] = -100 if self.copy_method in ["majority", "fom1"]: train_tensor[:, 1, :-1 * (self.num_extra_seq_len - 1)] = -100 if self.data_dir is not None: torch.save(train_tensor, os.path.join(self.data_dir, f"train_{self.copy_method}_{self.num_examples}_{self.vocab_size}_{self.input_seq_len}.pt") ) torch.save(test_tensor, os.path.join(self.data_dir, f"test_{self.copy_method}_{self.num_examples}_{self.vocab_size}_{self.input_seq_len}.pt") ) self.dataset = { 'train': TensorDataset(train_tensor[:, 0, :], train_tensor[:, 1, :]), 'test': TensorDataset(test_tensor[:, 0, :], test_tensor[:, 1, :]) } def train_dataloader(self, *args, **kwargs): return self._data_loader(self.dataset['train'], shuffle=True) def val_dataloader(self, *args, **kwargs): return self._data_loader(self.dataset['test'], shuffle=False) def test_dataloader(self, *args, **kwargs): return self._data_loader(self.dataset['test'], shuffle=False) def _data_loader(self, dataset: Dataset, shuffle: bool = False) -> DataLoader: return DataLoader( dataset, batch_size=self.batch_size, num_workers=10, shuffle=shuffle, persistent_workers=True )
safari-main
src/dataloaders/synthetics.py
""" ET Dataset from Informer Paper. Dataset: https://github.com/zhouhaoyi/ETDataset Dataloader: https://github.com/zhouhaoyi/Informer2020 """ from typing import List import os import numpy as np import pandas as pd from pandas.tseries import offsets from pandas.tseries.frequencies import to_offset import torch from torch.utils import data from torch.utils.data import Dataset, DataLoader import warnings warnings.filterwarnings("ignore") from src.dataloaders.base import SequenceDataset, default_data_path class TimeFeature: def __init__(self): pass def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: pass def __repr__(self): return self.__class__.__name__ + "()" class SecondOfMinute(TimeFeature): """Minute of hour encoded as value between [-0.5, 0.5]""" def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: return index.second / 59.0 - 0.5 class MinuteOfHour(TimeFeature): """Minute of hour encoded as value between [-0.5, 0.5]""" def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: return index.minute / 59.0 - 0.5 class HourOfDay(TimeFeature): """Hour of day encoded as value between [-0.5, 0.5]""" def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: return index.hour / 23.0 - 0.5 class DayOfWeek(TimeFeature): """Hour of day encoded as value between [-0.5, 0.5]""" def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: return index.dayofweek / 6.0 - 0.5 class DayOfMonth(TimeFeature): """Day of month encoded as value between [-0.5, 0.5]""" def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: return (index.day - 1) / 30.0 - 0.5 class DayOfYear(TimeFeature): """Day of year encoded as value between [-0.5, 0.5]""" def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: return (index.dayofyear - 1) / 365.0 - 0.5 class MonthOfYear(TimeFeature): """Month of year encoded as value between [-0.5, 0.5]""" def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: return (index.month - 1) / 11.0 - 0.5 class WeekOfYear(TimeFeature): """Week of year encoded as value between [-0.5, 0.5]""" def __call__(self, index: pd.DatetimeIndex) -> np.ndarray: return (index.isocalendar().week - 1) / 52.0 - 0.5 def time_features_from_frequency_str(freq_str: str) -> List[TimeFeature]: """ Returns a list of time features that will be appropriate for the given frequency string. Parameters ---------- freq_str Frequency string of the form [multiple][granularity] such as "12H", "5min", "1D" etc. """ features_by_offsets = { offsets.YearEnd: [], offsets.QuarterEnd: [MonthOfYear], offsets.MonthEnd: [MonthOfYear], offsets.Week: [DayOfMonth, WeekOfYear], offsets.Day: [DayOfWeek, DayOfMonth, DayOfYear], offsets.BusinessDay: [DayOfWeek, DayOfMonth, DayOfYear], offsets.Hour: [HourOfDay, DayOfWeek, DayOfMonth, DayOfYear], offsets.Minute: [ MinuteOfHour, HourOfDay, DayOfWeek, DayOfMonth, DayOfYear, ], offsets.Second: [ SecondOfMinute, MinuteOfHour, HourOfDay, DayOfWeek, DayOfMonth, DayOfYear, ], } offset = to_offset(freq_str) for offset_type, feature_classes in features_by_offsets.items(): if isinstance(offset, offset_type): return [cls() for cls in feature_classes] supported_freq_msg = f""" Unsupported frequency {freq_str} The following frequencies are supported: Y - yearly alias: A M - monthly W - weekly D - daily B - business days H - hourly T - minutely alias: min S - secondly """ raise RuntimeError(supported_freq_msg) def time_features(dates, timeenc=1, freq="h"): """ > `time_features` takes in a `dates` dataframe with a 'dates' column and extracts the date down to `freq` where freq can be any of the following if `timeenc` is 0: > * m - [month] > * w - [month] > * d - [month, day, weekday] > * b - [month, day, weekday] > * h - [month, day, weekday, hour] > * t - [month, day, weekday, hour, *minute] > > If `timeenc` is 1, a similar, but different list of `freq` values are supported (all encoded between [-0.5 and 0.5]): > * Q - [month] > * M - [month] > * W - [Day of month, week of year] > * D - [Day of week, day of month, day of year] > * B - [Day of week, day of month, day of year] > * H - [Hour of day, day of week, day of month, day of year] > * T - [Minute of hour*, hour of day, day of week, day of month, day of year] > * S - [Second of minute, minute of hour, hour of day, day of week, day of month, day of year] *minute returns a number from 0-3 corresponding to the 15 minute period it falls into. """ if timeenc == 0: dates["month"] = dates.date.apply(lambda row: row.month, 1) dates["day"] = dates.date.apply(lambda row: row.day, 1) dates["weekday"] = dates.date.apply(lambda row: row.weekday(), 1) dates["hour"] = dates.date.apply(lambda row: row.hour, 1) dates["minute"] = dates.date.apply(lambda row: row.minute, 1) dates["minute"] = dates.minute.map(lambda x: x // 15) freq_map = { "y": [], "m": ["month"], "w": ["month"], "d": ["month", "day", "weekday"], "b": ["month", "day", "weekday"], "h": ["month", "day", "weekday", "hour"], "t": ["month", "day", "weekday", "hour", "minute"], } return dates[freq_map[freq.lower()]].values if timeenc == 1: dates = pd.to_datetime(dates.date.values) return np.vstack( [feat(dates) for feat in time_features_from_frequency_str(freq)] ).transpose(1, 0) class StandardScaler: def __init__(self): self.mean = 0.0 self.std = 1.0 def fit(self, data): self.mean = data.mean(0) self.std = data.std(0) def transform(self, data): mean = ( torch.from_numpy(self.mean).type_as(data).to(data.device) if torch.is_tensor(data) else self.mean ) std = ( torch.from_numpy(self.std).type_as(data).to(data.device) if torch.is_tensor(data) else self.std ) return (data - mean) / std def inverse_transform(self, data): mean = ( torch.from_numpy(self.mean).type_as(data).to(data.device) if torch.is_tensor(data) else self.mean ) std = ( torch.from_numpy(self.std).type_as(data).to(data.device) if torch.is_tensor(data) else self.std ) return (data * std) + mean class InformerDataset(Dataset): def __init__( self, root_path, flag="train", size=None, features="S", data_path="ETTh1.csv", target="OT", scale=True, inverse=False, timeenc=0, freq="h", cols=None, eval_stamp=False, eval_mask=False, ): # size [seq_len, label_len, pred_len] # info if size == None: self.seq_len = 24 * 4 * 4 self.label_len = 24 * 4 self.pred_len = 24 * 4 else: self.seq_len = size[0] self.label_len = size[1] self.pred_len = size[2] # init assert flag in ["train", "test", "val"] type_map = {"train": 0, "val": 1, "test": 2} self.set_type = type_map[flag] self.features = features self.target = target self.scale = scale self.inverse = inverse self.timeenc = timeenc self.freq = freq self.cols = cols self.eval_stamp = eval_stamp self.eval_mask = eval_mask self.forecast_horizon = self.pred_len self.root_path = root_path self.data_path = data_path self.__read_data__() def _borders(self, df_raw): num_train = int(len(df_raw) * 0.7) num_test = int(len(df_raw) * 0.2) num_vali = len(df_raw) - num_train - num_test border1s = [0, num_train - self.seq_len, len(df_raw) - num_test - self.seq_len] border2s = [num_train, num_train + num_vali, len(df_raw)] return border1s, border2s def _process_columns(self, df_raw): if self.cols: cols = self.cols.copy() cols.remove(self.target) else: cols = list(df_raw.columns) cols.remove(self.target) cols.remove("date") return df_raw[["date"] + cols + [self.target]] def __read_data__(self): self.scaler = StandardScaler() df_raw = pd.read_csv(os.path.join(self.root_path, self.data_path)) df_raw = self._process_columns(df_raw) border1s, border2s = self._borders(df_raw) border1 = border1s[self.set_type] border2 = border2s[self.set_type] if self.features == "M" or self.features == "MS": cols_data = df_raw.columns[1:] df_data = df_raw[cols_data] elif self.features == "S": df_data = df_raw[[self.target]] if self.scale: train_data = df_data[border1s[0] : border2s[0]] self.scaler.fit(train_data.values) data = self.scaler.transform(df_data.values) else: data = df_data.values df_stamp = df_raw[["date"]][border1:border2] df_stamp["date"] = pd.to_datetime(df_stamp.date) data_stamp = time_features(df_stamp, timeenc=self.timeenc, freq=self.freq) self.data_x = data[border1:border2] if self.inverse: self.data_y = df_data.values[border1:border2] else: self.data_y = data[border1:border2] self.data_stamp = data_stamp def __getitem__(self, index): s_begin = index s_end = s_begin + self.seq_len r_begin = s_end - self.label_len r_end = r_begin + self.label_len + self.pred_len seq_x = self.data_x[s_begin:s_end] seq_x = np.concatenate( [seq_x, np.zeros((self.pred_len, self.data_x.shape[-1]))], axis=0 ) if self.inverse: seq_y = np.concatenate( [ self.data_x[r_begin : r_begin + self.label_len], self.data_y[r_begin + self.label_len : r_end], ], 0, ) raise NotImplementedError else: # seq_y = self.data_y[r_begin:r_end] # OLD in Informer codebase seq_y = self.data_y[s_end:r_end] # OLD in Informer codebase # seq_x_mark = self.data_stamp[s_begin:s_end] # seq_y_mark = self.data_stamp[r_begin:r_end] if self.eval_stamp: mark = self.data_stamp[s_begin:r_end] else: mark = self.data_stamp[s_begin:s_end] mark = np.concatenate([mark, np.zeros((self.pred_len, mark.shape[-1]))], axis=0) if self.eval_mask: mask = np.concatenate([np.zeros(self.seq_len), np.ones(self.pred_len)], axis=0) else: mask = np.concatenate([np.zeros(self.seq_len), np.zeros(self.pred_len)], axis=0) mask = mask[:, None] # Add the mask to the timestamps: # 480, 5 # mark = np.concatenate([mark, mask[:, np.newaxis]], axis=1) seq_x = seq_x.astype(np.float32) seq_y = seq_y.astype(np.float32) if self.timeenc == 0: mark = mark.astype(np.int64) else: mark = mark.astype(np.float32) mask = mask.astype(np.int64) return torch.tensor(seq_x), torch.tensor(seq_y), torch.tensor(mark), torch.tensor(mask) def __len__(self): return len(self.data_x) - self.seq_len - self.pred_len + 1 def inverse_transform(self, data): return self.scaler.inverse_transform(data) @property def d_input(self): return self.data_x.shape[-1] @property def d_output(self): if self.features in ["M", "S"]: return self.data_x.shape[-1] elif self.features == "MS": return 1 else: raise NotImplementedError @property def n_tokens_time(self): if self.freq == 'h': return [13, 32, 7, 24] elif self.freq == 't': return [13, 32, 7, 24, 4] else: raise NotImplementedError class _Dataset_ETT_hour(InformerDataset): def __init__(self, **kwargs): super().__init__(**kwargs) def _borders(self, df_raw): border1s = [ 0, 12 * 30 * 24 - self.seq_len, 12 * 30 * 24 + 4 * 30 * 24 - self.seq_len, ] border2s = [ 12 * 30 * 24, 12 * 30 * 24 + 4 * 30 * 24, 12 * 30 * 24 + 8 * 30 * 24, ] return border1s, border2s def _process_columns(self, df_raw): return df_raw @property def n_tokens_time(self): assert self.freq == "h" return [13, 32, 7, 24] class _Dataset_ETT_minute(_Dataset_ETT_hour): def __init__(self, data_path="ETTm1.csv", freq="t", **kwargs): super().__init__(data_path=data_path, freq=freq, **kwargs) def _borders(self, df_raw): border1s = [ 0, 12 * 30 * 24 * 4 - self.seq_len, 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4 - self.seq_len, ] border2s = [ 12 * 30 * 24 * 4, 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4, 12 * 30 * 24 * 4 + 8 * 30 * 24 * 4, ] return border1s, border2s @property def n_tokens_time(self): assert self.freq == "t" return [13, 32, 7, 24, 4] class _Dataset_Weather(InformerDataset): def __init__(self, data_path="WTH.csv", target="WetBulbCelsius", **kwargs): super().__init__(data_path=data_path, target=target, **kwargs) class _Dataset_ECL(InformerDataset): def __init__(self, data_path="ECL.csv", target="MT_320", **kwargs): super().__init__(data_path=data_path, target=target, **kwargs) class InformerSequenceDataset(SequenceDataset): @property def n_tokens_time(self): # Shape of the dates: depends on `timeenc` and `freq` return self.dataset_train.n_tokens_time # data_stamp.shape[-1] @property def d_input(self): return self.dataset_train.d_input @property def d_output(self): return self.dataset_train.d_output @property def l_output(self): return self.dataset_train.pred_len def _get_data_filename(self, variant): return self.variants[variant] _collate_arg_names = ["mark", "mask"] # Names of the two extra tensors that the InformerDataset returns def setup(self): self.data_dir = self.data_dir or default_data_path / 'informer' / self._name_ self.dataset_train = self._dataset_cls( root_path=self.data_dir, flag="train", size=self.size, features=self.features, data_path=self._get_data_filename(self.variant), target=self.target, scale=self.scale, inverse=self.inverse, timeenc=self.timeenc, freq=self.freq, cols=self.cols, eval_stamp=self.eval_stamp, eval_mask=self.eval_mask, ) self.dataset_val = self._dataset_cls( root_path=self.data_dir, flag="val", size=self.size, features=self.features, data_path=self._get_data_filename(self.variant), target=self.target, scale=self.scale, inverse=self.inverse, timeenc=self.timeenc, freq=self.freq, cols=self.cols, eval_stamp=self.eval_stamp, eval_mask=self.eval_mask, ) self.dataset_test = self._dataset_cls( root_path=self.data_dir, flag="test", size=self.size, features=self.features, data_path=self._get_data_filename(self.variant), target=self.target, scale=self.scale, inverse=self.inverse, timeenc=self.timeenc, freq=self.freq, cols=self.cols, eval_stamp=self.eval_stamp, eval_mask=self.eval_mask, ) class ETTHour(InformerSequenceDataset): _name_ = "etth" _dataset_cls = _Dataset_ETT_hour init_defaults = { "size": None, "features": "S", "target": "OT", "variant": 0, "scale": True, "inverse": False, "timeenc": 0, "freq": "h", "cols": None, } variants = { 0: "ETTh1.csv", 1: "ETTh2.csv", } class ETTMinute(InformerSequenceDataset): _name_ = "ettm" _dataset_cls = _Dataset_ETT_minute init_defaults = { "size": None, "features": "S", "target": "OT", "variant": 0, "scale": True, "inverse": False, "timeenc": 0, "freq": "t", "cols": None, } variants = { 0: "ETTm1.csv", 1: "ETTm2.csv", } class Weather(InformerSequenceDataset): _name_ = "weather" _dataset_cls = _Dataset_Weather init_defaults = { "size": None, "features": "S", "target": "WetBulbCelsius", "variant": 0, "scale": True, "inverse": False, "timeenc": 0, "freq": "h", "cols": None, } variants = { 0: "WTH.csv", } class ECL(InformerSequenceDataset): _name_ = "ecl" _dataset_cls = _Dataset_ECL init_defaults = { "size": None, "features": "S", "target": "MT_320", "variant": 0, "scale": True, "inverse": False, "timeenc": 0, "freq": "h", "cols": None, } variants = { 0: "ECL.csv", }
safari-main
src/dataloaders/et.py
# Adapted from https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_clm.py # Adapted from https://github.com/HazyResearch/flash-attention/blob/main/training/src/datamodules/language_modeling_hf.py from itertools import chain from pathlib import Path import pickle from typing import Any, List, Union import subprocess import mmap from multiprocessing.shared_memory import SharedMemory import numpy as np import torch from torch.utils.data.dataloader import DataLoader, Dataset from transformers import AutoTokenizer from datasets import load_dataset from src.dataloaders.base import SequenceDataset, default_data_path from src.dataloaders.datasets.lm_dataset import LMDataset from src.dataloaders.fault_tolerant_sampler import RandomFaultTolerantSampler from src.dataloaders.fault_tolerant_sampler import FaultTolerantDistributedSampler from src.dataloaders.datasets.detokenizer import DATASET_TOKENIZATION_REGISTRY from src.utils.train import get_logger logger = get_logger() # https://github.com/numpy/numpy/issues/18294 class SHMArray(np.ndarray): #copied from https://numpy.org/doc/stable/user/basics.subclassing.html#slightly-more-realistic-example-attribute-added-to-existing-array def __new__(cls, input_array, shm=None): obj = np.asarray(input_array).view(cls) obj.shm = shm return obj def __array_finalize__(self, obj): if obj is None: return self.shm = getattr(obj, 'shm', None) class LMDataModuleWT103(SequenceDataset): _name_ = "wt103" def __init__(self, dataset_name, tokenizer_name, dataset_config_name=None, max_length=1024, cache_dir=None, val_ratio=0.0005, val_split_seed=2357, add_eos=True, detokenize=False, val_only=False, batch_size=32, batch_size_eval=None, num_workers=1, shuffle=False, pin_memory=False, drop_last=False, fault_tolerant=False, ddp=False, fast_forward_epochs=None, fast_forward_batches=None, use_shmem=True, *args, **kwargs): self.dataset_name = dataset_name self.dataset_config_name = dataset_config_name self.tokenizer_name = tokenizer_name self.cache_dir = None if cache_dir is None else Path(cache_dir).expanduser() self.max_length = max_length self.val_ratio = val_ratio self.val_split_seed = val_split_seed self.val_only = val_only self.add_eos = add_eos self.detokenize = detokenize self.batch_size = batch_size self.batch_size_eval = batch_size_eval if batch_size_eval is not None else self.batch_size self.num_workers = num_workers self.shuffle = shuffle self.pin_memory = pin_memory self.drop_last = drop_last if fault_tolerant: assert self.shuffle self.fault_tolerant = fault_tolerant if ddp: assert fault_tolerant self.ddp = ddp self.fast_forward_epochs = fast_forward_epochs self.fast_forward_batches = fast_forward_batches if self.fast_forward_epochs is not None or self.fast_forward_batches is not None: assert ddp and fault_tolerant self.use_shmem = use_shmem if self.use_shmem: assert cache_dir is not None def prepare_data(self): if self.cache_dir is None: # Just download the dataset load_dataset(self.dataset_name, self.dataset_config_name) else: # Process the dataset and save it self.process_dataset() def setup(self, stage=None): if stage == 'test' and hasattr(self, 'dataset_test'): return concat_ids, self.tokenizer = self.process_dataset() self.vocab_size = len(self.tokenizer) # Create all splits self.dataset_train, self.dataset_val, self.dataset_test = [ LMDataset(concat_ids[split], seq_len=self.max_length) for split in ['train', 'validation', 'test'] ] def process_dataset(self): cache_dir = None if self.cache_dir is None else self.cache_dir / self._cache_dir_name if cache_dir is not None: if cache_dir.is_dir(): return self._load_from_cache(cache_dir) raw_datasets = load_dataset(self.dataset_name, self.dataset_config_name) # https://github.com/stanford-crfm/mistral/blob/main/src/corpora/auto.py if 'validation' not in raw_datasets: assert "train" in raw_datasets, "You must have train in raw_datasets to make a validation raw_datasets" raw_datasets = raw_datasets["train"].train_test_split( test_size=self.val_ratio, seed=self.val_split_seed, shuffle=True # Otherwise test will be at the end of the dataset ) raw_datasets['validation'] = raw_datasets['test'] if self.val_only: # Should only be used for evaluation, not for training raw_datasets['train'] = raw_datasets['validation'] # [2021-12-25] TD: Running the detokenizer on wikitext-103 makes ppl worse # (GPT2-small val ppl after 10 epochs ~22 -> ~25) # However, it's useful for zero-shot transfer from Openwebtext, # as after detokenization it's closer to Openwebtext's format. # https://github.com/stanford-crfm/mistral/issues/12 if self.detokenize: if self.dataset_name in DATASET_TOKENIZATION_REGISTRY: detokenizer = DATASET_TOKENIZATION_REGISTRY[self.dataset_name] raw_datasets = raw_datasets.map( lambda example: {'text': detokenizer(example['text'])}, num_proc=max(self.num_workers, 1), desc='Running detokenizer on dataset' ) tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_name, use_fast=True) # Preprocessing the datasets. # First we tokenize all the texts. column_names = raw_datasets["train"].column_names text_column_name = "text" if "text" in column_names else column_names[0] # [2021-12-25] TD: For wikitext, don't need to add the EOS since each example already ends # with '\n', and there are no other '\n' in the examples. # assert all([t.count('\n') == 1 for t in raw_datasets['train']['text'] if t]) # Add EOS token to the end of the text if the text is not empty # https://github.com/stanford-crfm/mistral/issues/91 # https://github.com/stanford-crfm/mistral/pull/98 if self.add_eos: add_eos = lambda seq: (seq + tokenizer.eos_token) if seq else seq add_eos_batched = lambda seqs: [add_eos(seq) for seq in seqs] tokenize = lambda example: tokenizer(add_eos_batched(example[text_column_name])) else: tokenize = lambda example: tokenizer(example[text_column_name]) # tokenized_datasets = raw_datasets.map( # tokenize, # batched=True, # num_proc=max(self.num_workers, 1), # remove_columns=column_names, # desc="Running tokenizer on dataset", # ) dtype = np.uint16 if tokenizer.vocab_size < 64 * 1024 else np.int32 def tokenize_concat(examples): # We just need 'input_ids', not 'attention_mask' (since it's all 1) input_ids = np.fromiter(chain(*tokenize(examples)['input_ids']), dtype=dtype) # Need to return a list since we're doing batched processing return {'input_ids': [input_ids], 'len': [len(input_ids)]} tokenized_datasets = raw_datasets.map( tokenize_concat, batched=True, num_proc=max(self.num_workers, 1), remove_columns=column_names, desc="Running tokenizer on dataset", ) if self.use_shmem: # Concatenate all input_ids into an array in shared memory def write_ids_to_shm(example, shm_name, array_len): shm = SharedMemory(name=shm_name) shm_arr = np.ndarray((array_len,), dtype=dtype, buffer=shm.buf) start_idx = example['len_offset'] - len(example['input_ids']) shm_arr[start_idx:example['len_offset']] = example['input_ids'] shm.close() concat_ids = {} for name, ds in tokenized_datasets.items(): tokenized_datasets[name] = ds.add_column('len_offset', np.cumsum(ds['len'])) array_len = tokenized_datasets[name][-1]['len_offset'] shm = SharedMemory(create=True, size=array_len * np.dtype(dtype).itemsize) shm_name = shm.name tokenized_datasets[name].map( write_ids_to_shm, fn_kwargs={'shm_name': shm_name, 'array_len': array_len}, batched=False, num_proc=max(self.num_workers, 1), desc="Concatenating examples", ) shm_arr = np.ndarray((array_len,), dtype=dtype, buffer=shm.buf) # We need to keep a reference to the shared memory, otherwise it gets garbage-collected # when it goes out of scope, and that memory is gone. # https://github.com/numpy/numpy/issues/18294 concat_ids[name] = SHMArray(shm_arr, shm=shm) else: # Use disk concat_ids = {} assert cache_dir is not None cache_dir.mkdir(parents=True, exist_ok=True) def write_ids_to_disk(example, filename): with open(filename, 'r+b') as f: mm = mmap.mmap(f.fileno(), 0) start_idx = example['len_offset'] - len(example['input_ids']) array_len = len(example['input_ids']) arr = np.ndarray((array_len,), dtype=dtype, buffer=mm, offset=np.dtype(dtype).itemsize * start_idx) arr[:] = example['input_ids'] mm.flush() for name, ds in tokenized_datasets.items(): tokenized_datasets[name] = ds.add_column('len_offset', np.cumsum(ds['len'])) array_len = tokenized_datasets[name][-1]['len_offset'] filename = cache_dir / f'{name}.bin' # Need to create the file with this specific size first # https://ostechnix.com/create-files-certain-size-linux/ subprocess.run(['truncate', '-s', str(array_len * np.dtype(dtype).itemsize), str(filename)], check=True) tokenized_datasets[name].map( write_ids_to_disk, fn_kwargs={'filename': filename}, batched=False, num_proc=max(self.num_workers, 1), desc="Concatenating examples", ) concat_ids[name] = np.memmap(filename, dtype=dtype, mode='r', shape=(array_len,)) if cache_dir is not None: self._save_to_cache(concat_ids, tokenizer, cache_dir) if not self.use_shmem: for name in concat_ids: Path(cache_dir / f'{name}.bin').unlink() return concat_ids, tokenizer def _save_to_cache(self, concat_ids, tokenizer, cache_dir): cache_dir.mkdir(parents=True, exist_ok=True) logger.info(f'Saving to cache at {str(cache_dir)}') for k, v in concat_ids.items(): np.save(cache_dir / f'{k}.npy', v) with open(cache_dir / 'tokenizer.pkl', 'wb') as f: pickle.dump(tokenizer, f) def _load_from_cache(self, cache_dir): assert cache_dir.is_dir() logger.info(f'Load from cache at {str(cache_dir)}') concat_ids = {split: np.load(cache_dir / f'{split}.npy', mmap_mode='r') for split in ['train', 'validation', 'test']} with open(cache_dir / 'tokenizer.pkl', 'rb') as f: tokenizer = pickle.load(f) return concat_ids, tokenizer @property def _cache_dir_name(self): return f'tokenizer_name-{self.tokenizer_name}-val_ratio-{self.val_ratio}-val_split_seed-{self.val_split_seed}-add_eos-{self.add_eos}-detokenize-{self.detokenize}' def train_dataloader(self, *args: Any, **kwargs: Any) -> DataLoader: """ The train dataloader """ if self.shuffle and self.fault_tolerant: shuffle = False # TD [2022-12-26]: We need the distributed_sampler_kwargs in case of model parallel: # In that case the number of replicas and the data parallel rank are more complicated. distributed_sampler_kwargs = self.trainer.distributed_sampler_kwargs sampler = (FaultTolerantDistributedSampler(self.dataset_train, **self.trainer.distributed_sampler_kwargs) if self.ddp else RandomFaultTolerantSampler(self.dataset_train)) # TD [2022-08-06]: Only the DDP sampler supports fast-forwarding for now # We assume that it's being resumed with the same number of GPUs if self.ddp and self.fast_forward_epochs is not None and self.fast_forward_batches is not None: sampler.load_state_dict({ 'epoch': self.fast_forward_epochs, 'counter': self.fast_forward_batches * self.batch_size }) else: shuffle = self.shuffle sampler = None return self._data_loader(self.dataset_train, batch_size=self.batch_size, shuffle=shuffle, sampler=sampler) def val_dataloader(self, *args: Any, **kwargs: Any) -> Union[DataLoader, List[DataLoader]]: """ The val dataloader """ return self._data_loader(self.dataset_val, batch_size=self.batch_size_eval) def test_dataloader(self, *args: Any, **kwargs: Any) -> Union[DataLoader, List[DataLoader]]: """ The test dataloader """ return self._data_loader(self.dataset_test, batch_size=self.batch_size_eval) def _data_loader(self, dataset: Dataset, batch_size: int, shuffle: bool = False, sampler=None) -> DataLoader: return DataLoader( dataset, batch_size=batch_size, num_workers=1, # Data is already in memory, we don't need many workers shuffle=shuffle, sampler=sampler, drop_last=self.drop_last, pin_memory=self.pin_memory, # persistent_workers=True ) def load_state_dict(self, checkpoint): if self.fault_tolerant: self.fast_forward_epochs = checkpoint['loops']['fit_loop']['epoch_progress']['current']['completed'] # TD [2022-08-07] ['epoch_loop.batch_progress']['total']['completed'] is 1 iteration # behind, so we're using the optimizer's progress. This is set correctly in seq.py. self.fast_forward_batches = checkpoint['loops']['fit_loop']['epoch_loop.batch_progress']['current']['completed'] # At this point the train loader hasn't been constructed yet class LMDataModuleOWT(LMDataModuleWT103): _name_ = "owt" class LMDataModulePile(LMDataModuleWT103): _name_ = "the_pile"
safari-main
src/dataloaders/language_modeling_hf.py
from . import basic, et, lra, language_modeling_hf, synthetics, vision from .base import SequenceDataset
safari-main
src/dataloaders/__init__.py
# Adapted from https://github.com/Lightning-AI/lightning/blob/2845e7565dbe6b765ae32870e7d2bc456529c30a/tests/tests_pytorch/utilities/test_auto_restart.py#L1397 from typing import Iterator import math import torch from torch.utils.data import RandomSampler, DistributedSampler class RandomFaultTolerantSampler(RandomSampler): def __init__(self, *args, generator=None, **kwargs): # generator = torch.Generator().manual_seed(seed) # super().__init__(*args, generator=generator, **kwargs) # TD [2022-07-17]: We don't force the seed to be zero. We generate random seed, # which should be reproducible if pl.seed_everything was called before hand. # This means that changing the seed of the experiment will also change the # sampling order. if generator is None: seed = int(torch.empty((), dtype=torch.int64).random_().item()) generator = torch.Generator().manual_seed(seed) super().__init__(*args, generator=generator, **kwargs) self.counter = 0 # self.start_counter = 0 self.restarting = False def state_dict(self): return {"random_state": self.state, "counter": self.counter} def load_state_dict(self, state_dict): self.generator.set_state(state_dict.get("random_state")) self.counter = state_dict["counter"] # self.start_counter = self.counter self.restarting = True # TD [2022-08-28] Setting the len will cause PL to think there are only a few batches left per # epoch, and subsequent epoch will have very few batches. # def __len__(self): # # We need a separate self.start_counter because PL seems to call len repeatedly. # # If we use len(self.data_source) - self.counter then PL will think the epoch ends # # when we're only half way through. # return len(self.data_source) - self.start_counter def __iter__(self) -> Iterator[int]: n = len(self.data_source) self.state = self.generator.get_state() indices = torch.randperm(n, generator=self.generator).tolist() if not self.restarting: self.counter = 0 else: indices = indices[self.counter:] self.restarting = False # self.start_counter = self.counter for index in indices: self.counter += 1 yield index self.counter = 0 # self.start_counter = self.counter class FaultTolerantDistributedSampler(DistributedSampler): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.counter = 0 # self.start_counter = 0 self.restarting = False def state_dict(self): return {"epoch": self.epoch, "counter": self.counter} def load_state_dict(self, state_dict): self.epoch = state_dict["epoch"] self.counter = state_dict["counter"] # self.start_counter = self.counter self.restarting = True # TD [2022-08-28] Setting the len will cause PL to think there are only a few batches left per # epoch, and subsequent epoch will have very few batches. # def __len__(self) -> int: # return self.num_samples - self.start_counter def __iter__(self): if self.shuffle: # deterministically shuffle based on epoch and seed g = torch.Generator() g.manual_seed(self.seed + self.epoch) indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore[arg-type] else: indices = list(range(len(self.dataset))) # type: ignore[arg-type] if not self.drop_last: # add extra samples to make it evenly divisible padding_size = self.total_size - len(indices) if padding_size <= len(indices): indices += indices[:padding_size] else: indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size] else: # remove tail of data to make it evenly divisible. indices = indices[:self.total_size] assert len(indices) == self.total_size # subsample indices = indices[self.rank:self.total_size:self.num_replicas] assert len(indices) == self.num_samples if not self.restarting: self.counter = 0 else: indices = indices[self.counter:] self.restarting = False # self.start_counter = self.counter for index in indices: self.counter += 1 yield index self.counter = 0 # self.start_counter = self.counter
safari-main
src/dataloaders/fault_tolerant_sampler.py
"""Implementation of basic benchmark datasets used in S4 experiments: MNIST, CIFAR10 and Speech Commands.""" import numpy as np import torch import torchvision from einops.layers.torch import Rearrange from src.utils import permutations from src.dataloaders.base import default_data_path, ImageResolutionSequenceDataset, ResolutionSequenceDataset, SequenceDataset class MNIST(SequenceDataset): _name_ = "mnist" d_input = 1 d_output = 10 l_output = 0 L = 784 @property def init_defaults(self): return { "permute": True, "val_split": 0.1, "seed": 42, # For train/val split } def setup(self): self.data_dir = self.data_dir or default_data_path / self._name_ transform_list = [ torchvision.transforms.ToTensor(), torchvision.transforms.Lambda(lambda x: x.view(self.d_input, self.L).t()), ] # (L, d_input) if self.permute: # below is another permutation that other works have used # permute = np.random.RandomState(92916) # permutation = torch.LongTensor(permute.permutation(784)) permutation = permutations.bitreversal_permutation(self.L) transform_list.append( torchvision.transforms.Lambda(lambda x: x[permutation]) ) # TODO does MNIST need normalization? # torchvision.transforms.Normalize((0.1307,), (0.3081,)) # normalize inputs transform = torchvision.transforms.Compose(transform_list) self.dataset_train = torchvision.datasets.MNIST( self.data_dir, train=True, download=True, transform=transform, ) self.dataset_test = torchvision.datasets.MNIST( self.data_dir, train=False, transform=transform, ) self.split_train_val(self.val_split) def __str__(self): return f"{'p' if self.permute else 's'}{self._name_}" class CIFAR10(ImageResolutionSequenceDataset): _name_ = "cifar" d_output = 10 l_output = 0 @property def init_defaults(self): return { "permute": None, "grayscale": False, "tokenize": False, # if grayscale, tokenize into discrete byte inputs "augment": False, "cutout": False, "rescale": None, "random_erasing": False, "val_split": 0.1, "seed": 42, # For validation split } @property def d_input(self): if self.grayscale: if self.tokenize: return 256 else: return 1 else: assert not self.tokenize return 3 def setup(self): img_size = 32 if self.rescale: img_size //= self.rescale if self.grayscale: preprocessors = [ torchvision.transforms.Grayscale(), torchvision.transforms.ToTensor(), ] permutations_list = [ torchvision.transforms.Lambda( lambda x: x.view(1, img_size * img_size).t() ) # (L, d_input) ] if self.tokenize: preprocessors.append( torchvision.transforms.Lambda(lambda x: (x * 255).long()) ) permutations_list.append(Rearrange("l 1 -> l")) else: preprocessors.append( torchvision.transforms.Normalize( mean=122.6 / 255.0, std=61.0 / 255.0 ) ) else: preprocessors = [ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261) ), ] permutations_list = [ torchvision.transforms.Lambda( Rearrange("z h w -> (h w) z", z=3, h=img_size, w=img_size) ) # (L, d_input) ] # Permutations and reshaping if self.permute == "br": permutation = permutations.bitreversal_permutation(img_size * img_size) print("bit reversal", permutation) permutations_list.append(torchvision.transforms.Lambda(lambda x: x[permutation])) elif self.permute == "snake": permutation = permutations.snake_permutation(img_size, img_size) print("snake", permutation) permutations_list.append(torchvision.transforms.Lambda(lambda x: x[permutation])) elif self.permute == "hilbert": permutation = permutations.hilbert_permutation(img_size) print("hilbert", permutation) permutations_list.append(torchvision.transforms.Lambda(lambda x: x[permutation])) elif self.permute == "transpose": permutation = permutations.transpose_permutation(img_size, img_size) transform = torchvision.transforms.Lambda( lambda x: torch.cat([x, x[permutation]], dim=-1) ) permutations_list.append(transform) elif self.permute == "2d": # h, w, c permutation = torchvision.transforms.Lambda( Rearrange("(h w) c -> h w c", h=img_size, w=img_size) ) permutations_list.append(permutation) elif self.permute == "2d_transpose": # c, h, w permutation = torchvision.transforms.Lambda( Rearrange("(h w) c -> c h w", h=img_size, w=img_size) ) permutations_list.append(permutation) # Augmentation if self.augment: augmentations = [ torchvision.transforms.RandomCrop( img_size, padding=4, padding_mode="symmetric" ), torchvision.transforms.RandomHorizontalFlip(), ] post_augmentations = [] if self.cutout: post_augmentations.append(Cutout(1, img_size // 2)) pass if self.random_erasing: # augmentations.append(RandomErasing()) pass else: augmentations, post_augmentations = [], [] transforms_train = ( augmentations + preprocessors + post_augmentations + permutations_list ) transforms_eval = preprocessors + permutations_list transform_train = torchvision.transforms.Compose(transforms_train) transform_eval = torchvision.transforms.Compose(transforms_eval) self.dataset_train = torchvision.datasets.CIFAR10( f"{default_data_path}/{self._name_}", train=True, download=True, transform=transform_train, ) self.dataset_test = torchvision.datasets.CIFAR10( f"{default_data_path}/{self._name_}", train=False, transform=transform_eval ) if self.rescale: print(f"Resizing all images to {img_size} x {img_size}.") self.dataset_train.data = self.dataset_train.data.reshape((self.dataset_train.data.shape[0], 32 // self.rescale, self.rescale, 32 // self.rescale, self.rescale, 3)).max(4).max(2).astype(np.uint8) self.dataset_test.data = self.dataset_test.data.reshape((self.dataset_test.data.shape[0], 32 // self.rescale, self.rescale, 32 // self.rescale, self.rescale, 3)).max(4).max(2).astype(np.uint8) self.split_train_val(self.val_split) def __str__(self): return f"{'p' if self.permute else 's'}{self._name_}" class SpeechCommands(ResolutionSequenceDataset): _name_ = "sc" @property def init_defaults(self): return { "mfcc": False, "dropped_rate": 0.0, "length": 16000, "all_classes": False, } @property def d_input(self): _d_input = 20 if self.mfcc else 1 _d_input += 1 if self.dropped_rate > 0.0 else 0 return _d_input @property def d_output(self): return 10 if not self.all_classes else 35 @property def l_output(self): return 0 @property def L(self): return 161 if self.mfcc else self.length def setup(self): self.data_dir = self.data_dir or default_data_path # TODO make same logic as other classes from src.dataloaders.datasets.sc import _SpeechCommands # TODO refactor with data_dir argument self.dataset_train = _SpeechCommands( partition="train", length=self.L, mfcc=self.mfcc, sr=1, dropped_rate=self.dropped_rate, path=self.data_dir, all_classes=self.all_classes, ) self.dataset_val = _SpeechCommands( partition="val", length=self.L, mfcc=self.mfcc, sr=1, dropped_rate=self.dropped_rate, path=self.data_dir, all_classes=self.all_classes, ) self.dataset_test = _SpeechCommands( partition="test", length=self.L, mfcc=self.mfcc, sr=1, dropped_rate=self.dropped_rate, path=self.data_dir, all_classes=self.all_classes, )
safari-main
src/dataloaders/basic.py
# Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import re import subprocess from pathlib import Path from typing import Optional, List, Tuple import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import functools from omegaconf import DictConfig from pytorch_lightning import LightningDataModule from src.utils import distributed import src.utils.train log = src.utils.train.get_logger(__name__) from src.dataloaders.base import SequenceDataset, default_data_path from src.dataloaders.utils.vocabulary import OpenAIVocab, Vocab import src.utils as utils project_root = Path(__file__).parent.parent.absolute() data_path = Path(__file__).absolute().parent / 'data' import sys sys.path.insert(0, str(project_root)) class LMOrderedIterator: def __init__( self, data, batch_size, l_max, batch_first=True, n_context=1, n_epoch_double=0, pad_last=False, roll_seed=None, # roll data based on seed limit_tokens=1.0, # reduce tokens; useful for debugging last batch edge cases ): """ data -- LongTensor -- the LongTensor is strictly ordered pad_last: whether to pad the last sequence in the batch so that all sequences have the same length (l_max). """ self.raw_data = data self.batch_size = batch_size self.l_max = l_max self.batch_first = batch_first self.pad_last = pad_last self.roll_seed = roll_seed self.n_context = n_context self.n_epoch_double = n_epoch_double self.epoch = -1 # DDP self.world_size = distributed.get_world_size() self.rank = distributed.get_rank() if limit_tokens is not None and 0.0 < limit_tokens < 1.0: l_data = int(math.floor(data.size(-1) * limit_tokens)) self.raw_data = self.raw_data[:l_data] self.process() def process(self): """ Process the data. All logic involving sequence length and batch size should go here """ assert self.l_max % self.n_context == 0 self.l_inc = self.l_max // self.n_context global_batch_size = self.world_size * self.batch_size # Work out how cleanly we can divide the dataset into batch_size parts. n_step = self.raw_data.size(-1) // global_batch_size # Trim off any extra elements that wouldn't cleanly fit (remainders). self.data = self.raw_data[: n_step * global_batch_size] # Evenly divide the data across the batches. self.data = self.data.view(global_batch_size, -1).contiguous().pin_memory() # (global_batch_size, length) # Partition data for DistributedDataParallel self.data = self.data.chunk(self.world_size, dim=0)[self.rank] # Number of mini-batches # Need to subtract 1 because target is data shifted by 1 self.n_batch = (self.data.size(-1) - 1 + self.l_inc - 1) // self.l_inc def roll(self, seed): rng = torch.Generator() rng.manual_seed(seed) for i in range(self.data.size(0)): row = self.data[i, :] shift = torch.randint(0, self.data.size(-1), (1,), generator=rng) row = torch.cat((row[shift:], row[:shift])) self.data[i, :] = row def get_batch(self, i): """ Get batch starting at token index i """ end_idx = min(i + self.l_inc, self.data.size(-1)-1) beg_idx = max(0, i + self.l_inc - self.l_max) seq_len = end_idx - i data = self.data[..., beg_idx:end_idx] target = self.data[..., i+1 : end_idx+1] if self.pad_last and seq_len < self.l_inc: data = F.pad(data, (0, self.l_inc - seq_len)) # (batch_size, l_inc) target = F.pad(target, (0, self.l_inc - seq_len)) seq_len = self.l_inc if not self.batch_first: data = data.transpose(0, 1).contiguous() # (n_batch, l_sequence) target = target.transpose(0, 1).contiguous() return data, target, {"l_output": seq_len} # Return length of desired output def get_fixlen_iter(self, start=0): if start != 0: start += self.l_max for i in range(start, self.data.size(-1) - 1, self.l_inc): self.last_iter = i yield self.get_batch(i) def get_varlen_iter(self, start=0, std=5, min_len=5, max_deviation=3): # NOTE: NOT TESTED l_max = self.l_max + max_deviation * std i = start while True: l_max = self.l_max if np.random.random() < 0.95 else self.l_max / 2.0 l_max = min(l_max, max(min_len, int(np.random.normal(l_max, std)))) data, target, seq_len = self.get_batch(i, l_max) # AG: this doesn't appear to work... i += seq_len yield data, target, seq_len if i >= self.data.size(-1) - 2: break def __iter__(self): self.epoch += 1 if (n := self.n_epoch_double) > 0 and self.epoch > 0 and self.epoch % n == 0: if self.batch_size > 1: log.info(f"LM Iterator doubling length from {self.l_max} to {self.l_max*2}") self.l_max *= 2 self.batch_size //= 2 self.process() if self.roll_seed is not None: self.roll(self.roll_seed + self.epoch) return self.get_fixlen_iter() def __len__(self): return self.n_batch class LMShuffledIterator(object): # NOTE: Not tested def __init__( self, data, batch_size, l_max, device="cpu", ext_len=None, shuffle=False ): """ data -- list[LongTensor] -- there is no order among the LongTensors """ self.data = data self.batch_size = batch_size self.l_max = l_max self.ext_len = ext_len if ext_len is not None else 0 self.device = device self.shuffle = shuffle def get_sent_stream(self): # index iterator epoch_indices = ( np.random.permutation(len(self.data)) if self.shuffle else np.array(range(len(self.data))) ) # sentence iterator for idx in epoch_indices: yield self.data[idx] def stream_iterator(self, sent_stream): # streams for each data in the batch streams = [None] * self.batch_size data = torch.LongTensor(self.l_max, self.batch_size) target = torch.LongTensor(self.l_max, self.batch_size) n_retain = 0 while True: # data : [n_retain+l_max x batch_size] # target : [l_max x batch_size] data[n_retain:].fill_(-1) target.fill_(-1) valid_batch = True for i in range(self.batch_size): n_filled = 0 try: while n_filled < self.l_max: if streams[i] is None or len(streams[i]) <= 1: streams[i] = next(sent_stream) # number of new tokens to fill in n_new = min(len(streams[i]) - 1, self.l_max - n_filled) # first n_retain tokens are retained from last batch data[ n_retain + n_filled : n_retain + n_filled + n_new, i, ] = streams[i][:n_new] target[n_filled : n_filled + n_new, i] = streams[i][ 1 : n_new + 1 ] streams[i] = streams[i][n_new:] n_filled += n_new except StopIteration: valid_batch = False break if not valid_batch: return data = data.to(self.device) target = target.to(self.device) yield data, target, self.l_max n_retain = min(data.size(0), self.ext_len) if n_retain > 0: data[:n_retain] = data[-n_retain:] data.resize_(n_retain + self.l_max, data.size(1)) def __iter__(self): # sent_stream is an iterator sent_stream = self.get_sent_stream() for batch in self.stream_iterator(sent_stream): yield batch class LMMultiFileIterator(LMShuffledIterator): # NOTE: Not tested def __init__( self, paths, vocab, batch_size, l_max, device="cpu", ext_len=None, shuffle=False, ): self.paths = paths self.vocab = vocab self.batch_size = batch_size self.l_max = l_max self.ext_len = ext_len if ext_len is not None else 0 self.device = device self.shuffle = shuffle def get_sent_stream(self, path): sents = self.vocab.encode_file(path, add_double_eos=True) if self.shuffle: np.random.shuffle(sents) sent_stream = iter(sents) return sent_stream def __iter__(self): if self.shuffle: np.random.shuffle(self.paths) for path in self.paths: # sent_stream is an iterator sent_stream = self.get_sent_stream(path) for batch in self.stream_iterator(sent_stream): yield batch class WikiText2(SequenceDataset): _name_ = "wt2" # Vocab arguments vocab_kwargs = {"special": ["<eos>"], "lower_case": False} encode_kwargs = {"ordered": True} init_defaults = { # Dataset arguments 'l_max': 512, 'bpe': False, 'roll_seed': 42, 'test_split': True, } @property def n_tokens(self): return len(self.vocab) def prepare_data(self): # [21-09-23] probably broken if not self.data_dir.exists(): subprocess.run( [ str(project_root / "data" / "getdata.sh"), self._name_, str(self.data_dir.parent.absolute()), ], check=True, ) def setup(self, stage=None): # [21-09-10 AG]: TODO shouldn't this tokenization happen in the prepare_data? since we're caching it it doesn't really matter, but still if self.data_dir is None: self.data_dir = default_data_path / self._name_ if self.bpe: self.vocab = OpenAIVocab() else: self.vocab = Vocab(**self.vocab_kwargs) # Loader arguments if not self._load_from_cache(): logging.info(f"Producing dataset {self._name_}...") self._vocab_count() self.vocab.build_vocab() self.train = self.vocab.encode_file( str(self.data_dir / "train.txt"), **self.encode_kwargs ) self.valid = self.vocab.encode_file( str(self.data_dir / "valid.txt"), **self.encode_kwargs ) self.test = self.vocab.encode_file( str(self.data_dir / "test.txt"), **self.encode_kwargs ) self._save_to_cache() # No test set if specified if not self.test_split: self.test = None # Define task print("Vocab size:", len(self.vocab)) def _vocab_count(self): self.vocab.count_file(self.data_dir / "train.txt") self.vocab.count_file(self.data_dir / "valid.txt") self.vocab.count_file(self.data_dir / "test.txt") def _save_to_cache(self): cache_path = self.data_dir / f"cache.pt" # TODO name could include vocab_kwargs to disambiguate with distributed.sync_workers() as rank: if rank == 0: try: torch.save( (self.vocab, self.train, self.valid, self.test), cache_path, ) logging.info(f"Saved dataset to {cache_path}...") except: pass def _load_from_cache(self): cache_path = self.data_dir / f"cache.pt" if cache_path.exists(): logging.info("Loading cached dataset...") self.vocab, self.train, self.valid, self.test = torch.load( cache_path ) return True else: return False def train_dataloader(self, eval=None, **kwargs): # TODO kwargs absorbs num_workers return LMOrderedIterator( self.train, roll_seed=self.roll_seed, **kwargs, ) # def val_dataloader(self, batch_size, **kwargs): def _eval_dataloader(self, dataset, eval=None, **loader_args): if dataset is None: return None # Make eval a list of dictionaries if eval is None: eval = {} if not utils.is_list(eval): eval = [eval] # Each eval setting overrides the train setting for eval_args in eval: for k in loader_args: if eval_args.get(k, None) is None: eval_args[k] = loader_args[k] print("eval loader:", eval_args) loaders = [LMOrderedIterator(dataset, **eval_args) for eval_args in eval] if len(loaders) == 1: return loaders[0] return loaders def val_dataloader(self, **kwargs): return self._eval_dataloader(self.valid, **kwargs) def test_dataloader(self, **kwargs): return self._eval_dataloader(self.test, **kwargs) class WikiText103(WikiText2): _name_ = "wt103" def _vocab_count(self): print(self.data_dir) self.vocab.count_file(self.data_dir / "train.txt") class PennTreeBank(WikiText2): _name_ = "ptb" vocab_kwargs = {"special": ["<eos>"], "lower_case": True} class EnWik8(WikiText2): _name_ = "enwik8" vocab_kwargs = {} encode_kwargs = {"ordered": True, "add_eos": False} class Text8(EnWik8): _name_ = "text8" class LM1B(WikiText2): # [21-09-08 AG]: this looks very out of date, the __init__ function should be inherited _name_ = "lm1b" vocab_kwargs = {"special": [], "lower_case": False} cutoffs = [59997, 99997, 639997] tie_projs = [False] + [False] * len(cutoffs) def __init__(self, data_dir, bpe=False, *args, **kwargs): LightningDataModule.__init__(self) self.data_dir = Path(data_dir) # self.vocab_type = vocab if bpe: self.vocab = OpenAIVocab() else: self.vocab = Vocab( vocab_file=self.data_dir / "1b_word_vocab.txt", **self.vocab_kwargs, ) def setup(self, stage=None): if not self._load_from_cache(): logging.info(f"Producing dataset {self._name_}...") # the vocab will load from file when build_vocab() is called self.vocab.build_vocab() train_paths = list( ( self.data_dir / "1-billion-word-language-modeling-benchmark-r13output" / "training-monolingual.tokenized.shuffled" ).glob("news.en-*") ) self.train = train_paths self.valid = self.vocab.encode_file( str(self.data_dir / "valid.txt"), ordered=False, add_double_eos=True, ) self.test = self.vocab.encode_file( str(self.data_dir / "test.txt"), ordered=False, add_double_eos=True, ) self._save_to_cache() def train_dataloader(self, *args, **kwargs): kwargs["shuffle"] = True return LMMultiFileIterator(self.train, self.vocab, *args, **kwargs) def val_dataloader(self, *args, **kwargs): return LMShuffledIterator(self.valid, *args, **kwargs) def test_dataloader(self, *args, **kwargs): return LMShuffledIterator(self.test, *args, **kwargs)
safari-main
src/dataloaders/lm.py
""" Datasets for core experimental results """ import os import pickle from functools import partial from pathlib import Path import numpy as np import torch import torchvision from einops import rearrange from einops.layers.torch import Rearrange from src.utils import is_list, permutations from torch.nn import functional as F def deprecated(cls_or_func): def _deprecated(*args, **kwargs): print(f"{cls_or_func} is deprecated") return cls_or_func(*args, **kwargs) return _deprecated # Default data path is environment variable or hippo/data if (default_data_path := os.getenv("DATA_PATH")) is None: default_data_path = Path(__file__).parent.parent.parent.absolute() default_data_path = default_data_path / "data" else: default_data_path = Path(default_data_path).absolute() class DefaultCollateMixin: """Controls collating in the DataLoader The CollateMixin classes instantiate a dataloader by separating collate arguments with the rest of the dataloader arguments. Instantiations of this class should modify the callback functions as desired, and modify the collate_args list. The class then defines a _dataloader() method which takes in a DataLoader constructor and arguments, constructs a collate_fn based on the collate_args, and passes the rest of the arguments into the constructor. """ @classmethod def _collate_callback(cls, x, *args, **kwargs): """ Modify the behavior of the default _collate method. """ return x _collate_arg_names = [] @classmethod def _return_callback(cls, return_value, *args, **kwargs): """ Modify the return value of the collate_fn. Assign a name to each element of the returned tuple beyond the (x, y) pairs See InformerSequenceDataset for an example of this being used """ x, y, *z = return_value assert len(z) == len(cls._collate_arg_names), "Specify a name for each auxiliary data item returned by dataset" return x, y, {k: v for k, v in zip(cls._collate_arg_names, z)} @classmethod def _collate(cls, batch, *args, **kwargs): # From https://github.com/pyforch/pytorch/blob/master/torch/utils/data/_utils/collate.py elem = batch[0] if isinstance(elem, torch.Tensor): out = None if torch.utils.data.get_worker_info() is not None: # If we're in a background process, concatenate directly into a # shared memory tensor to avoid an extra copy numel = sum(x.numel() for x in batch) storage = elem.storage()._new_shared(numel) out = elem.new(storage) x = torch.stack(batch, dim=0, out=out) # Insert custom functionality into the collate_fn x = cls._collate_callback(x, *args, **kwargs) return x else: return torch.tensor(batch) @classmethod def _collate_fn(cls, batch, *args, **kwargs): """ Default collate function. Generally accessed by the dataloader() methods to pass into torch DataLoader Arguments: batch: list of (x, y) pairs args, kwargs: extra arguments that get passed into the _collate_callback and _return_callback """ x, y, *z = zip(*batch) x = cls._collate(x, *args, **kwargs) y = cls._collate(y) z = [cls._collate(z_) for z_ in z] return_value = (x, y, *z) return cls._return_callback(return_value, *args, **kwargs) # List of loader arguments to pass into collate_fn collate_args = [] def _dataloader(self, dataset, **loader_args): collate_args = {k: loader_args[k] for k in loader_args if k in self.collate_args} loader_args = {k: loader_args[k] for k in loader_args if k not in self.collate_args} loader_cls = loader_registry[loader_args.pop("_name_", None)] return loader_cls( dataset=dataset, collate_fn=partial(self._collate_fn, **collate_args), **loader_args, ) class SequenceResolutionCollateMixin(DefaultCollateMixin): """self.collate_fn(resolution) produces a collate function that subsamples elements of the sequence""" @classmethod def _collate_callback(cls, x, resolution=None): if resolution is None: pass else: # Assume x is (B, L_0, L_1, ..., L_k, C) for x.ndim > 2 and (B, L) for x.ndim = 2 assert x.ndim >= 2 n_resaxes = max(1, x.ndim - 2) # [AG 22/07/02] this line looks suspicious... are there cases with 2 axes? # rearrange: b (l_0 res_0) (l_1 res_1) ... (l_k res_k) ... -> res_0 res_1 .. res_k b l_0 l_1 ... lhs = "b " + " ".join([f"(l{i} res{i})" for i in range(n_resaxes)]) + " ..." rhs = " ".join([f"res{i}" for i in range(n_resaxes)]) + " b " + " ".join([f"l{i}" for i in range(n_resaxes)]) + " ..." x = rearrange(x, lhs + " -> " + rhs, **{f'res{i}': resolution for i in range(n_resaxes)}) x = x[tuple([0] * n_resaxes)] return x @classmethod def _return_callback(cls, return_value, resolution=None): return *return_value, {"rate": resolution} collate_args = ['resolution'] class ImageResolutionCollateMixin(SequenceResolutionCollateMixin): """self.collate_fn(resolution, img_size) produces a collate function that resizes inputs to size img_size/resolution""" _interpolation = torchvision.transforms.InterpolationMode.BILINEAR _antialias = True @classmethod def _collate_callback(cls, x, resolution=None, img_size=None, channels_last=True): if x.ndim < 4: return super()._collate_callback(x, resolution=resolution) if img_size is None: x = super()._collate_callback(x, resolution=resolution) else: x = rearrange(x, 'b ... c -> b c ...') if channels_last else x _size = round(img_size/resolution) x = torchvision.transforms.functional.resize( x, size=[_size, _size], interpolation=cls._interpolation, antialias=cls._antialias, ) x = rearrange(x, 'b c ... -> b ... c') if channels_last else x return x @classmethod def _return_callback(cls, return_value, resolution=None, img_size=None, channels_last=True): return *return_value, {"rate": resolution} collate_args = ['resolution', 'img_size', 'channels_last'] # class SequenceDataset(LightningDataModule): # [21-09-10 AG] Subclassing LightningDataModule fails due to trying to access _has_setup_fit. No idea why. So we just provide our own class with the same core methods as LightningDataModule (e.g. setup) class SequenceDataset(DefaultCollateMixin): registry = {} _name_ = NotImplementedError("Dataset must have shorthand name") # Since subclasses do not specify __init__ which is instead handled by this class # Subclasses can provide a list of default arguments which are automatically registered as attributes # TODO it might be possible to write this as a @dataclass, but it seems tricky to separate from the other features of this class such as the _name_ and d_input/d_output @property def init_defaults(self): return {} # https://www.python.org/dev/peps/pep-0487/#subclass-registration def __init_subclass__(cls, **kwargs): super().__init_subclass__(**kwargs) cls.registry[cls._name_] = cls def __init__(self, _name_, data_dir=None, **dataset_cfg): assert _name_ == self._name_ self.data_dir = Path(data_dir).absolute() if data_dir is not None else None # Add all arguments to self init_args = self.init_defaults.copy() init_args.update(dataset_cfg) for k, v in init_args.items(): setattr(self, k, v) # The train, val, test datasets must be set by `setup()` self.dataset_train = self.dataset_val = self.dataset_test = None self.init() def init(self): """Hook called at end of __init__, override this instead of __init__""" pass def setup(self): """This method should set self.dataset_train, self.dataset_val, and self.dataset_test.""" raise NotImplementedError def split_train_val(self, val_split): """ Randomly split self.dataset_train into a new (self.dataset_train, self.dataset_val) pair. """ train_len = int(len(self.dataset_train) * (1.0 - val_split)) self.dataset_train, self.dataset_val = torch.utils.data.random_split( self.dataset_train, (train_len, len(self.dataset_train) - train_len), generator=torch.Generator().manual_seed( getattr(self, "seed", 42) ), # PL is supposed to have a way to handle seeds properly, but doesn't seem to work for us ) def train_dataloader(self, **kwargs): return self._train_dataloader(self.dataset_train, **kwargs) def _train_dataloader(self, dataset, **kwargs): if dataset is None: return kwargs['shuffle'] = 'sampler' not in kwargs # shuffle cant be True if we have custom sampler return self._dataloader(dataset, **kwargs) def val_dataloader(self, **kwargs): return self._eval_dataloader(self.dataset_val, **kwargs) def test_dataloader(self, **kwargs): return self._eval_dataloader(self.dataset_test, **kwargs) def _eval_dataloader(self, dataset, **kwargs): if dataset is None: return # Note that shuffle=False by default return self._dataloader(dataset, **kwargs) def __str__(self): return self._name_ class ResolutionSequenceDataset(SequenceDataset, SequenceResolutionCollateMixin): def _train_dataloader(self, dataset, train_resolution=None, eval_resolutions=None, **kwargs): if train_resolution is None: train_resolution = [1] if not is_list(train_resolution): train_resolution = [train_resolution] assert len(train_resolution) == 1, "Only one train resolution supported for now." return super()._train_dataloader(dataset, resolution=train_resolution[0], **kwargs) def _eval_dataloader(self, dataset, train_resolution=None, eval_resolutions=None, **kwargs): if dataset is None: return if eval_resolutions is None: eval_resolutions = [1] if not is_list(eval_resolutions): eval_resolutions = [eval_resolutions] dataloaders = [] for resolution in eval_resolutions: dataloaders.append(super()._eval_dataloader(dataset, resolution=resolution, **kwargs)) return ( { None if res == 1 else str(res): dl for res, dl in zip(eval_resolutions, dataloaders) } if dataloaders is not None else None ) class ImageResolutionSequenceDataset(ResolutionSequenceDataset, ImageResolutionCollateMixin): pass # Registry for dataloader class loader_registry = { None: torch.utils.data.DataLoader, # default case }
safari-main
src/dataloaders/base.py
# Copied from https://github.com/stanford-crfm/mistral/blob/main/src/corpora/detokenization.py # Which was originally from https://github.com/NVIDIA/Megatron-LM/blob/aed2f75e209e525c842aec7c044af7acae2a4614/tasks/zeroshot_gpt/detokenizer.py """ Handle detokenization for different dataset for zero-shot LM evaluation. """ import re def wikitext_detokenize(string: str) -> str: """ Wikitext is whitespace tokenized and we remove these whitespaces. Taken from https://github.com/NVIDIA/Megatron-LM/blob/main/tasks/zeroshot_gpt2/detokenizer.py """ # Contractions string = string.replace("s '", "s'") string = re.sub(r"/' [0-9]/", r"/'[0-9]/", string) # Number Separators string = string.replace(" @-@ ", "-") string = string.replace(" @,@ ", ",") string = string.replace(" @.@ ", ".") # Punctuation string = string.replace(" : ", ": ") string = string.replace(" ; ", "; ") string = string.replace(" . ", ". ") string = string.replace(" ! ", "! ") string = string.replace(" ? ", "? ") string = string.replace(" , ", ", ") # Double Brackets string = re.sub(r"\(\s*([^\)]*?)\s*\)", r"(\1)", string) string = re.sub(r"\[\s*([^\]]*?)\s*\]", r"[\1]", string) string = re.sub(r"{\s*([^}]*?)\s*}", r"{\1}", string) string = re.sub(r"\"\s*([^\"]*?)\s*\"", r'"\1"', string) string = re.sub(r"'\s*([^']*?)\s*'", r"'\1'", string) # Miscellaneous string = string.replace("= = = =", "====") string = string.replace("= = =", "===") string = string.replace("= =", "==") string = string.replace(" " + chr(176) + " ", chr(176)) string = string.replace(" \n", "\n") string = string.replace("\n ", "\n") string = string.replace(" N ", " 1 ") string = string.replace(" 's", "'s") return string # Set Registry for Various Datasets DATASET_TOKENIZATION_REGISTRY = {"wikitext": wikitext_detokenize}
safari-main
src/dataloaders/datasets/detokenizer.py
# Inspired by https://github.com/NVIDIA/Megatron-LM/blob/main/tasks/zeroshot_gpt/datasets.py # Except we don't pad the last block and don't use overlapping eval # And we return both the input and the target import math import numpy as np import torch class LMDataset(torch.utils.data.Dataset): def __init__(self, tokens, seq_len, drop_last=True): """tokens should be a numpy array """ self.seq_len = seq_len ntokens = len(tokens) if drop_last: ntokens = ((ntokens - 1) // seq_len) * seq_len + 1 self.ntokens = ntokens # We're careful not to slice tokens, since it could be a memmap'ed array or H5 dataset, # and slicing would load it to memory. self.tokens = tokens self.total_sequences = math.ceil((self.ntokens - 1) / self.seq_len) def __len__(self): return self.total_sequences def __getitem__(self, idx): start_idx = idx * self.seq_len seq_len = min(self.seq_len, self.ntokens - 1 - start_idx) data = torch.as_tensor(self.tokens[start_idx:(start_idx + seq_len + 1)].astype(np.int64)) return data[:-1], data[1:].clone()
safari-main
src/dataloaders/datasets/lm_dataset.py
""" Borrowed from https://github.com/hysts/pytorch_image_classification/tree/9ff4248905850c68aa9c09c17914307eb81769e7/pytorch_image_classification/transforms """ import torch import numpy as np import PIL import PIL.Image from PIL.Image import Image class NpNormalize: def __init__(self, mean: np.ndarray, std: np.ndarray): self.mean = np.array(mean) self.std = np.array(std) def __call__(self, image: PIL.Image.Image) -> np.ndarray: image = np.asarray(image).astype(np.float32) / 255. image = (image - self.mean) / self.std return image class Cutout(object): """Randomly mask out one or more patches from an image. Args: n_holes (int): Number of patches to cut out of each image. length (int): The length (in pixels) of each square patch. """ def __init__(self, n_holes, length): self.n_holes = n_holes self.length = length def __call__(self, img): """ Args: img (Tensor): Tensor image of size (C, H, W). Returns: Tensor: Image with n_holes of dimension length x length cut out of it. """ h = img.size(1) w = img.size(2) mask = np.ones((h, w), np.float32) for n in range(self.n_holes): y = np.random.randint(h) x = np.random.randint(w) y1 = np.clip(y - self.length // 2, 0, h) y2 = np.clip(y + self.length // 2, 0, h) x1 = np.clip(x - self.length // 2, 0, w) x2 = np.clip(x + self.length // 2, 0, w) mask[y1: y2, x1: x2] = 0. mask = torch.from_numpy(mask) mask = mask.expand_as(img) img = img * mask return img # # class Cutout: # def __init__(self, p=1.0, mask_size=16, cutout_inside=False, mask_color=0): # # https://github.com/hysts/pytorch_image_classification/blob/9ff4248905850c68aa9c09c17914307eb81769e7/configs/augmentations/cifar/cutout.yaml # self.p = p # self.mask_size = mask_size # self.cutout_inside = cutout_inside # self.mask_color = mask_color # # self.mask_size_half = self.mask_size // 2 # self.offset = 1 if self.mask_size % 2 == 0 else 0 # # def __call__(self, image: np.ndarray) -> np.ndarray: # image = np.asarray(image).copy() # # if np.random.random() > self.p: # return image # # h, w = image.shape[:2] # # if self.cutout_inside: # cxmin = self.mask_size_half # cxmax = w + self.offset - self.mask_size_half # cymin = self.mask_size_half # cymax = h + self.offset - self.mask_size_half # else: # cxmin, cxmax = 0, w + self.offset # cymin, cymax = 0, h + self.offset # # cx = np.random.randint(cxmin, cxmax) # cy = np.random.randint(cymin, cymax) # xmin = cx - self.mask_size_half # ymin = cy - self.mask_size_half # xmax = xmin + self.mask_size # ymax = ymin + self.mask_size # xmin = max(0, xmin) # ymin = max(0, ymin) # xmax = min(w, xmax) # ymax = min(h, ymax) # image[ymin:ymax, xmin:xmax] = self.mask_color # return image class RandomErasing: def __init__(self, p=0.5, max_attempt=20, sl=0.02, sh=0.4, rl=0.3, rh=1. / 0.3): # https://github.com/hysts/pytorch_image_classification/blob/9ff4248905850c68aa9c09c17914307eb81769e7/configs/augmentations/cifar/random_erasing.yaml self.p = 0.5 self.max_attempt = 20 self.sl, self.sh = 0.02, 0.4 self.rl = 0.3 self.rh = 1. / 0.3 def __call__(self, image: np.ndarray) -> np.ndarray: image = np.asarray(image).copy() if np.random.random() > self.p: return image h, w = image.shape[:2] image_area = h * w for _ in range(self.max_attempt): mask_area = np.random.uniform(self.sl, self.sh) * image_area aspect_ratio = np.random.uniform(self.rl, self.rh) mask_h = int(np.sqrt(mask_area * aspect_ratio)) mask_w = int(np.sqrt(mask_area / aspect_ratio)) if mask_w < w and mask_h < h: x0 = np.random.randint(0, w - mask_w) y0 = np.random.randint(0, h - mask_h) x1 = x0 + mask_w y1 = y0 + mask_h image[y0:y1, x0:x1] = np.random.uniform(0, 1) break return image
safari-main
src/dataloaders/utils/cifar_augmentations.py
import torch from timm.data import Mixup from timm.data.mixup import mixup_target class TimmMixup(Mixup): """ Wrap timm.data.Mixup that avoids the assert that batch size must be even. """ def __call__(self, x, target, *args): if self.mode == 'elem': lam = self._mix_elem(x) elif self.mode == 'pair': # We move the assert from the beginning of the function to here assert len(x) % 2 == 0, 'Batch size should be even when using this' lam = self._mix_pair(x) else: lam = self._mix_batch(x) # Another change is to set the right device here target = mixup_target(target, self.num_classes, lam, self.label_smoothing, device=target.device) return x, target, *args
safari-main
src/dataloaders/utils/timm_mixup.py
# Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import os from collections import Counter from collections import OrderedDict import torch import src.utils as utils class Vocab(object): def __init__(self, special=[], min_freq=0, max_size=None, lower_case=True, delimiter=None, vocab_file=None): self.counter = Counter() self.special = special self.min_freq = min_freq self.max_size = max_size self.lower_case = lower_case self.delimiter = delimiter self.vocab_file = vocab_file def tokenize(self, line, add_eos=False, add_double_eos=False): line = line.strip() # convert to lower case if self.lower_case: line = line.lower() # empty delimiter '' will evaluate False if self.delimiter == '': symbols = line else: symbols = line.split(self.delimiter) if add_double_eos: # lm1b return ['<S>'] + symbols + ['<S>'] elif add_eos: return symbols + ['<eos>'] else: return symbols def count_file(self, path, verbose=False, add_eos=False): if verbose: print('counting file {} ...'.format(path)) assert os.path.exists(path) sents = [] with open(path, 'r', encoding='utf-8') as f: for idx, line in enumerate(f): if verbose and idx > 0 and idx % 500000 == 0: print(' line {}'.format(idx)) symbols = self.tokenize(line, add_eos=add_eos) self.counter.update(symbols) sents.append(symbols) return sents def count_sents(self, sents, verbose=False): """ sents : a list of sentences, each a list of tokenized symbols """ if verbose: print('counting {} sents ...'.format(len(sents))) for idx, symbols in enumerate(sents): if verbose and idx > 0 and idx % 500000 == 0: print(' line {}'.format(idx)) self.counter.update(symbols) def _build_from_file(self, vocab_file): self.idx2sym = [] self.sym2idx = OrderedDict() with open(vocab_file, 'r', encoding='utf-8') as f: for line in f: symb = line.strip().split()[0] self.add_symbol(symb) self.unk_idx = self.sym2idx['<UNK>'] def build_vocab(self): if self.vocab_file: print('building vocab from {}'.format(self.vocab_file)) self._build_from_file(self.vocab_file) print('final vocab size {}'.format(len(self))) else: print('building vocab with min_freq={}, max_size={}'.format( self.min_freq, self.max_size)) self.idx2sym = [] self.sym2idx = OrderedDict() for sym in self.special: self.add_special(sym) for sym, cnt in self.counter.most_common(self.max_size): if cnt < self.min_freq: break self.add_symbol(sym) print('final vocab size {} from {} unique tokens'.format( len(self), len(self.counter))) def encode_file(self, path, ordered=False, verbose=False, add_eos=True, add_double_eos=False): if verbose: print('encoding file {} ...'.format(path)) assert os.path.exists(path) encoded = [] with open(path, 'r', encoding='utf-8') as f: for idx, line in enumerate(f): if verbose and idx > 0 and idx % 500000 == 0: print(' line {}'.format(idx)) symbols = self.tokenize(line, add_eos=add_eos, add_double_eos=add_double_eos) encoded.append(self.convert_to_tensor(symbols)) if ordered: encoded = torch.cat(encoded) return encoded def encode_sents(self, sents, ordered=False, verbose=False): if verbose: print('encoding {} sents ...'.format(len(sents))) encoded = [] for idx, symbols in enumerate(sents): if verbose and idx > 0 and idx % 500000 == 0: print(' line {}'.format(idx)) encoded.append(self.convert_to_tensor(symbols)) if ordered: encoded = torch.cat(encoded) return encoded def add_special(self, sym): if sym not in self.sym2idx: self.idx2sym.append(sym) self.sym2idx[sym] = len(self.idx2sym) - 1 setattr(self, '{}_idx'.format(sym.strip('<>')), self.sym2idx[sym]) def add_symbol(self, sym): if sym not in self.sym2idx: self.idx2sym.append(sym) self.sym2idx[sym] = len(self.idx2sym) - 1 def get_sym(self, idx): assert 0 <= idx < len(self), 'Index {} out of range'.format(idx) return self.idx2sym[idx] def get_idx(self, sym): if sym in self.sym2idx: return self.sym2idx[sym] else: # print('encounter unk {}'.format(sym)) assert '<eos>' not in sym assert hasattr(self, 'unk_idx') return self.sym2idx.get(sym, self.unk_idx) def get_symbols(self, indices): return [self.get_sym(idx) for idx in indices] def get_indices(self, symbols): return [self.get_idx(sym) for sym in symbols] def convert_to_tensor(self, symbols): return torch.LongTensor(self.get_indices(symbols)) def convert_to_sent(self, indices, exclude=None): if exclude is None: return ' '.join([self.get_sym(idx) for idx in indices]) else: return ' '.join([self.get_sym(idx) for idx in indices if idx not in exclude]) def __len__(self): return len(self.idx2sym) # Class OpenAIVocab has been adapted from # https://github.com/cybertronai/transformer-xl/blob/master/utils/vocabulary.py class OpenAIVocab(Vocab): def __init__(self, max_size=None, vocab_file=None): from transformers import GPT2Tokenizer self.tokenizer = GPT2Tokenizer.from_pretrained('gpt2') self.EOT = self.tokenizer.encoder['<|endoftext|>'] self.max_size = max_size self.vocab_file = vocab_file pad = 8 vocab_size = len(self.tokenizer) padded_vocab_size = (vocab_size + pad - 1) // pad * pad for i in range(0, padded_vocab_size - vocab_size): token = f'madeupword{i:09d}' self.tokenizer.add_tokens([token]) def __len__(self): return len(self.tokenizer) def count_file(self, path, verbose=False, add_eos=False): # TODO: train from scratch, respect self.max_size pass def build_vocab(self): pass def encode_file(self, path, ordered=False, verbose=False, add_eos=True, add_double_eos=False) -> torch.LongTensor: cached = path + '.bpe' if os.path.exists(cached): return torch.load(cached) print(f'encoding file {path} ...') assert os.path.exists(path), f"{path} doesn't exist" with open(path, encoding='utf-8') as f: # Suppress warnings about length. with open(os.devnull, "w") as devnull, contextlib.redirect_stderr(devnull): out = torch.LongTensor(self.tokenizer.encode(f.read()) + [self.EOT]) with utils.distributed.sync_workers() as rank: if rank == 0: torch.save(out, cached) return out def tokenize(self, line, add_eos=False, add_double_eos=False): return self.tokenizer.encode(line) def convert_to_tensor(self, symbols): return torch.LongTensor(symbols)
safari-main
src/dataloaders/utils/vocabulary.py
"""Utilities for special optimizer hyperparameters. group_parameters_for_optimizer is a modification of timm's optimizer logic, which is currently unused add_optimizer_hooks is an improved version that uses this codebase's _optim dictionary """ import inspect import torch.nn as nn import hydra def add_optimizer_hooks( model, bias_weight_decay=False, normalization_weight_decay=False, ): """Set weight_decay=0.0 for parameters in model.no_weight_decay, for parameters with attribute _no_weight_decay==True, for bias parameters if bias_weight_decay==False, for normalization parameters if normalization_weight_decay==False """ # Separate out all parameters to those that will and won't experience regularizing weight decay blacklist_weight_modules = (nn.Embedding, ) if not normalization_weight_decay: blacklist_weight_modules += (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, # Not compatible with Pytorch 1.8.1 # nn.LazyBatchNorm1d, nn.LazyBatchNorm2d, nn.LazyBatchNorm3d, nn.GroupNorm, nn.SyncBatchNorm, nn.InstanceNorm1d, nn.InstanceNorm2d, nn.InstanceNorm3d, nn.LayerNorm, nn.LocalResponseNorm) for mn, m in model.named_modules(): for pn, p in m.named_parameters(): if (not bias_weight_decay and pn.endswith('bias')) \ or getattr(p, '_no_weight_decay', False) \ or isinstance(m, blacklist_weight_modules): setattr(p, "_optim", {"weight_decay": 0.0}) def group_parameters_for_optimizer( model, optimizer_cfg, bias_weight_decay=False, normalization_weight_decay=False, ): """Set weight_decay=0.0 for parameters in model.no_weight_decay, for parameters with attribute _no_weight_decay==True, for bias parameters if bias_weight_decay==False, for normalization parameters if normalization_weight_decay==False """ # Get the weight decay from the config, or from the default value of the optimizer constructor # if it's not specified in the config. if 'weight_decay' in optimizer_cfg: weight_decay = optimizer_cfg.weight_decay else: # https://stackoverflow.com/questions/12627118/get-a-function-arguments-default-value signature = inspect.signature(hydra.utils.get_class(optimizer_cfg._target_)) if 'weight_decay' in signature.parameters: weight_decay = signature.parameters['weight_decay'].default if weight_decay is inspect.Parameter.empty: weight_decay = 0.0 else: weight_decay = 0.0 # If none of the parameters have weight decay anyway, and there are no parameters with special # optimization params if weight_decay == 0.0 and not any(hasattr(p, '_optim') for p in model.parameters()): return model.parameters() skip = model.no_weight_decay() if hasattr(model, 'no_weight_decay') else set() skip_keywords = (model.no_weight_decay_keywords() if hasattr(model, 'no_weight_decay_keywords') else set()) # Adapted from https://github.com/karpathy/minGPT/blob/master/mingpt/model.py#L134 """ This long function is unfortunately doing something very simple and is being very defensive: We are separating out all parameters of the model into two buckets: those that will experience weight decay for regularization and those that won't (biases, and layernorm/embedding weights). We are then returning the PyTorch optimizer object. """ # separate out all parameters to those that will and won't experience regularizing weight decay decay = set() no_decay = set() special = set() whitelist_weight_modules = (nn.Linear, ) blacklist_weight_modules = (nn.Embedding, ) if not normalization_weight_decay: blacklist_weight_modules += (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, # Not compatible with Pytorch 1.8.1 # nn.LazyBatchNorm1d, nn.LazyBatchNorm2d, nn.LazyBatchNorm3d, nn.GroupNorm, nn.SyncBatchNorm, nn.InstanceNorm1d, nn.InstanceNorm2d, nn.InstanceNorm3d, nn.LayerNorm, nn.LocalResponseNorm) for mn, m in model.named_modules(): for pn, p in m.named_parameters(): fpn = '%s.%s' % (mn, pn) if mn else pn # full param name if not p.requires_grad: continue # frozen weights if hasattr(p, '_optim'): special.add(fpn) elif fpn in skip or any(skip_keyword in fpn for skip_keyword in skip_keywords): no_decay.add(fpn) elif getattr(p, '_no_weight_decay', False): no_decay.add(fpn) elif not bias_weight_decay and pn.endswith('bias'): no_decay.add(fpn) elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules): # weights of whitelist modules will be weight decayed decay.add(fpn) elif isinstance(m, blacklist_weight_modules): # weights of blacklist modules will NOT be weight decayed no_decay.add(fpn) param_dict = {pn: p for pn, p in model.named_parameters() if p.requires_grad} # special case the position embedding parameter in the root GPT module as not decayed if 'pos_emb' in param_dict: no_decay.add('pos_emb') # In case of parameter sharing, some parameters show up in decay but are not in param_dict.keys() decay &= param_dict.keys() decay |= (param_dict.keys() - no_decay - special) # validate that we considered every parameter inter_params = decay & no_decay union_params = decay | no_decay assert len(inter_params) == 0, f"Parameters {str(inter_params)} made it into both decay/no_decay sets!" assert len(param_dict.keys() - special - union_params) == 0, f"parameters {str(param_dict.keys() - union_params)} were not separated into either decay/no_decay set!" if weight_decay == 0.0 or not no_decay: param_groups = [{"params": [param_dict[pn] for pn in sorted(list(no_decay | decay))], "weight_decay": weight_decay}] else: param_groups = [ {"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": weight_decay}, {"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0}, ] # Add parameters with special hyperparameters # Unique dicts hps = [dict(s) for s in set(frozenset(param_dict[pn]._optim.items()) for pn in special)] for hp in hps: params = [param_dict[pn] for pn in sorted(list(special)) if param_dict[pn]._optim == hp] param_groups.append({"params": params, **hp}) return param_groups
safari-main
src/utils/optim_groups.py
""" Utilities for dealing with collection objects (lists, dicts) and configs """ from typing import Sequence, Mapping, Optional, Callable import functools import hydra from omegaconf import ListConfig, DictConfig # TODO this is usually used in a pattern where it's turned into a list, so can just do that here def is_list(x): return isinstance(x, Sequence) and not isinstance(x, str) def is_dict(x): return isinstance(x, Mapping) def to_dict(x, recursive=True): """Convert Sequence or Mapping object to dict lists get converted to {0: x[0], 1: x[1], ...} """ if is_list(x): x = {i: v for i, v in enumerate(x)} if is_dict(x): if recursive: return {k: to_dict(v, recursive=recursive) for k, v in x.items()} else: return dict(x) else: return x def to_list(x, recursive=False): """Convert an object to list. If Sequence (e.g. list, tuple, Listconfig): just return it Special case: If non-recursive and not a list, wrap in list """ if is_list(x): if recursive: return [to_list(_x) for _x in x] else: return list(x) else: if recursive: return x else: return [x] def extract_attrs_from_obj(obj, *attrs): if obj is None: assert len(attrs) == 0 return [] return [getattr(obj, attr, None) for attr in attrs] def auto_assign_attrs(cls, **kwargs): for k, v in kwargs.items(): setattr(cls, k, v) def instantiate(registry, config, *args, partial=False, wrap=None, **kwargs): """ registry: Dictionary mapping names to functions or target paths (e.g. {'model': 'models.SequenceModel'}) config: Dictionary with a '_name_' key indicating which element of the registry to grab, and kwargs to be passed into the target constructor wrap: wrap the target class (e.g. ema optimizer or tasks.wrap) *args, **kwargs: additional arguments to override the config to pass into the target constructor """ # Case 1: no config if config is None: return None # Case 2a: string means _name_ was overloaded if isinstance(config, str): _name_ = None _target_ = registry[config] config = {} # Case 2b: grab the desired callable from name else: _name_ = config.pop("_name_") _target_ = registry[_name_] # Retrieve the right constructor automatically based on type if isinstance(_target_, str): fn = hydra.utils.get_method(path=_target_) elif isinstance(_target_, Callable): fn = _target_ else: raise NotImplementedError("instantiate target must be string or callable") # Instantiate object if wrap is not None: fn = wrap(fn) obj = functools.partial(fn, *args, **config, **kwargs) # Restore _name_ if _name_ is not None: config["_name_"] = _name_ if partial: return obj else: return obj() def get_class(registry, _name_): return hydra.utils.get_class(path=registry[_name_]) def omegaconf_filter_keys(d, fn=None): """Only keep keys where fn(key) is True. Support nested DictConfig. # TODO can make this inplace? """ if fn is None: fn = lambda _: True if is_list(d): return ListConfig([omegaconf_filter_keys(v, fn) for v in d]) elif is_dict(d): return DictConfig( {k: omegaconf_filter_keys(v, fn) for k, v in d.items() if fn(k)} ) else: return d
safari-main
src/utils/config.py
optimizer = { "adam": "torch.optim.Adam", "adamw": "torch.optim.AdamW", "rmsprop": "torch.optim.RMSprop", "sgd": "torch.optim.SGD", "lamb": "src.utils.optim.lamb.JITLamb", } scheduler = { "constant": "transformers.get_constant_schedule", "plateau": "torch.optim.lr_scheduler.ReduceLROnPlateau", "step": "torch.optim.lr_scheduler.StepLR", "multistep": "torch.optim.lr_scheduler.MultiStepLR", "cosine": "torch.optim.lr_scheduler.CosineAnnealingLR", "constant_warmup": "transformers.get_constant_schedule_with_warmup", "linear_warmup": "transformers.get_linear_schedule_with_warmup", "cosine_warmup": "transformers.get_cosine_schedule_with_warmup", "cosine_warmup_timm": "src.utils.optim.schedulers.TimmCosineLRScheduler", } model = { # Backbones from this repo "model": "src.models.sequence.SequenceModel", "lm": "src.models.sequence.long_conv_lm.ConvLMHeadModel", "lm_simple": "src.models.sequence.simple_lm.SimpleLMHeadModel", "vit_b_16": "src.models.baselines.vit_all.vit_base_patch16_224", } layer = { "id": "src.models.sequence.base.SequenceIdentity", "ff": "src.models.sequence.ff.FF", "mha": "src.models.sequence.mha.MultiheadAttention", "s4d": "src.models.sequence.ssm.s4d.S4D", "s4_simple": "src.models.sequence.ssm.s4_simple.SimpleS4Wrapper", "long-conv": "src.models.sequence.long_conv.LongConv", "h3": "src.models.sequence.h3.H3", "h3-conv": "src.models.sequence.h3_conv.H3Conv", "hyena": "src.models.sequence.hyena.HyenaOperator", "hyena-filter": "src.models.sequence.hyena.HyenaFilter", "vit": "src.models.sequence.mha.VitAttention", } callbacks = { "timer": "src.callbacks.timer.Timer", "params": "src.callbacks.params.ParamsLog", "learning_rate_monitor": "pytorch_lightning.callbacks.LearningRateMonitor", "model_checkpoint": "pytorch_lightning.callbacks.ModelCheckpoint", "early_stopping": "pytorch_lightning.callbacks.EarlyStopping", "swa": "pytorch_lightning.callbacks.StochasticWeightAveraging", "rich_model_summary": "pytorch_lightning.callbacks.RichModelSummary", "rich_progress_bar": "pytorch_lightning.callbacks.RichProgressBar", "progressive_resizing": "src.callbacks.progressive_resizing.ProgressiveResizing", }
safari-main
src/utils/registry.py
from .config import is_list, is_dict, to_list, to_dict, get_class, instantiate
safari-main
src/utils/__init__.py
import math import numpy as np import torch ### Bit reversal permutation def bitreversal_po2(n): m = int(math.log(n)/math.log(2)) perm = np.arange(n).reshape(n,1) for i in range(m): n1 = perm.shape[0]//2 perm = np.hstack((perm[:n1],perm[n1:])) return perm.squeeze(0) def bitreversal_permutation(n): m = int(math.ceil(math.log(n)/math.log(2))) N = 1 << m perm = bitreversal_po2(N) return np.extract(perm < n, perm) def transpose_permutation(h, w): indices = np.arange(h*w) indices = indices.reshape((h, w)) indices = indices.T indices = indices.reshape(h*w) return indices def snake_permutation(h, w): indices = np.arange(h*w) indices = indices.reshape((h, w)) indices[1::2, :] = indices[1::2, ::-1] indices = indices.reshape(h*w) return indices def hilbert_permutation(n): m = int(math.log2(n)) assert n == 2**m inds = decode(list(range(n*n)), 2, m) ind_x, ind_y = inds.T indices = np.arange(n*n).reshape((n, n)) indices = indices[ind_x, ind_y] return(indices) """ Hilbert curve utilities taken from https://github.com/PrincetonLIPS/numpy-hilbert-curve """ def decode(hilberts, num_dims, num_bits): ''' Decode an array of Hilbert integers into locations in a hypercube. This is a vectorized-ish version of the Hilbert curve implementation by John Skilling as described in: Skilling, J. (2004, April). Programming the Hilbert curve. In AIP Conference Proceedings (Vol. 707, No. 1, pp. 381-387). American Institute of Physics. Params: ------- hilberts - An ndarray of Hilbert integers. Must be an integer dtype and cannot have fewer bits than num_dims * num_bits. num_dims - The dimensionality of the hypercube. Integer. num_bits - The number of bits for each dimension. Integer. Returns: -------- The output is an ndarray of unsigned integers with the same shape as hilberts but with an additional dimension of size num_dims. ''' if num_dims*num_bits > 64: raise ValueError( ''' num_dims=%d and num_bits=%d for %d bits total, which can't be encoded into a uint64. Are you sure you need that many points on your Hilbert curve? ''' % (num_dims, num_bits) ) # Handle the case where we got handed a naked integer. hilberts = np.atleast_1d(hilberts) # Keep around the shape for later. orig_shape = hilberts.shape # Treat each of the hilberts as a sequence of eight uint8. # This treats all of the inputs as uint64 and makes things uniform. hh_uint8 = np.reshape(hilberts.ravel().astype('>u8').view(np.uint8), (-1, 8)) # Turn these lists of uints into lists of bits and then truncate to the size # we actually need for using Skilling's procedure. hh_bits = np.unpackbits(hh_uint8, axis=1)[:,-num_dims*num_bits:] # Take the sequence of bits and Gray-code it. gray = binary2gray(hh_bits) # There has got to be a better way to do this. # I could index them differently, but the eventual packbits likes it this way. gray = np.swapaxes( np.reshape(gray, (-1, num_bits, num_dims)), axis1=1, axis2=2, ) # Iterate backwards through the bits. for bit in range(num_bits-1, -1, -1): # Iterate backwards through the dimensions. for dim in range(num_dims-1, -1, -1): # Identify which ones have this bit active. mask = gray[:,dim,bit] # Where this bit is on, invert the 0 dimension for lower bits. gray[:,0,bit+1:] = np.logical_xor(gray[:,0,bit+1:], mask[:,np.newaxis]) # Where the bit is off, exchange the lower bits with the 0 dimension. to_flip = np.logical_and( np.logical_not(mask[:,np.newaxis]), np.logical_xor(gray[:,0,bit+1:], gray[:,dim,bit+1:]) ) gray[:,dim,bit+1:] = np.logical_xor(gray[:,dim,bit+1:], to_flip) gray[:,0,bit+1:] = np.logical_xor(gray[:,0,bit+1:], to_flip) # Pad back out to 64 bits. extra_dims = 64 - num_bits padded = np.pad(gray, ((0,0), (0,0), (extra_dims,0)), mode='constant', constant_values=0) # Now chop these up into blocks of 8. locs_chopped = np.reshape(padded[:,:,::-1], (-1, num_dims, 8, 8)) # Take those blocks and turn them unto uint8s. locs_uint8 = np.squeeze(np.packbits(locs_chopped, bitorder='little', axis=3)) # Finally, treat these as uint64s. flat_locs = locs_uint8.view(np.uint64) # Return them in the expected shape. return np.reshape(flat_locs, (*orig_shape, num_dims)) def right_shift(binary, k=1, axis=-1): ''' Right shift an array of binary values. Parameters: ----------- binary: An ndarray of binary values. k: The number of bits to shift. Default 1. axis: The axis along which to shift. Default -1. Returns: -------- Returns an ndarray with zero prepended and the ends truncated, along whatever axis was specified. ''' # If we're shifting the whole thing, just return zeros. if binary.shape[axis] <= k: return np.zeros_like(binary) # Determine the padding pattern. padding = [(0,0)] * len(binary.shape) padding[axis] = (k,0) # Determine the slicing pattern to eliminate just the last one. slicing = [slice(None)] * len(binary.shape) slicing[axis] = slice(None, -k) shifted = np.pad(binary[tuple(slicing)], padding, mode='constant', constant_values=0) return shifted def binary2gray(binary, axis=-1): ''' Convert an array of binary values into Gray codes. This uses the classic X ^ (X >> 1) trick to compute the Gray code. Parameters: ----------- binary: An ndarray of binary values. axis: The axis along which to compute the gray code. Default=-1. Returns: -------- Returns an ndarray of Gray codes. ''' shifted = right_shift(binary, axis=axis) # Do the X ^ (X >> 1) trick. gray = np.logical_xor(binary, shifted) return gray
safari-main
src/utils/permutations.py
# Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from contextlib import contextmanager import torch def init_distributed(cuda): """ Initializes distributed backend. :param cuda: (bool) if True initializes nccl backend, if False initializes gloo backend """ world_size = int(os.environ.get('WORLD_SIZE', 1)) distributed = (world_size > 1) if distributed: backend = 'nccl' if cuda else 'gloo' torch.distributed.init_process_group(backend=backend, init_method='env://') assert torch.distributed.is_initialized() return distributed def barrier(): """ Call torch.distributed.barrier() if distritubed is in use """ if torch.distributed.is_available() and torch.distributed.is_initialized(): torch.distributed.barrier() def get_rank(): """ Gets distributed rank or returns zero if distributed is not initialized. """ if torch.distributed.is_available() and torch.distributed.is_initialized(): rank = torch.distributed.get_rank() else: rank = 0 return rank def get_world_size(): """ Gets total number of distributed workers or returns one if distributed is not initialized. """ if torch.distributed.is_available() and torch.distributed.is_initialized(): world_size = torch.distributed.get_world_size() else: world_size = 1 return world_size def all_reduce_item(value, op='sum'): """ All-reduces single scalar value if distributed is in use """ if torch.distributed.is_available() and torch.distributed.is_initialized(): if op == 'sum' or op == 'mean': dop = torch.distributed.ReduceOp.SUM elif op == 'min': dop = torch.distributed.ReduceOp.MIN elif op == 'max': dop = torch.distributed.ReduceOp.MAX elif op == 'product': dop = torch.distributed.ReduceOp.PRODUCT else: raise RuntimeError('Unsupported reduce op') backend = torch.distributed.get_backend() if backend == torch.distributed.Backend.NCCL: device = torch.device('cuda') elif backend == torch.distributed.Backend.GLOO: device = torch.device('cpu') else: raise RuntimeError('Unsupported distributed backend') tensor = torch.tensor(value, device=device) torch.distributed.all_reduce(tensor, dop) if op == 'mean': tensor /= get_world_size() ret = tensor.item() else: ret = value return ret def all_reduce_tensor(value, op='sum'): """ All-reduces single scalar value if distributed is in use """ if torch.distributed.is_available() and torch.distributed.is_initialized(): if op == 'sum' or op == 'mean': dop = torch.distributed.ReduceOp.SUM elif op == 'min': dop = torch.distributed.ReduceOp.MIN elif op == 'max': dop = torch.distributed.ReduceOp.MAX elif op == 'product': dop = torch.distributed.ReduceOp.PRODUCT else: raise RuntimeError('Unsupported reduce op') backend = torch.distributed.get_backend() if backend == torch.distributed.Backend.NCCL: device = torch.device('cuda') elif backend == torch.distributed.Backend.GLOO: device = torch.device('cpu') else: raise RuntimeError('Unsupported distributed backend') tensor = value torch.distributed.all_reduce(tensor, dop) if op == 'mean': tensor /= get_world_size() ret = tensor else: ret = value return ret @contextmanager def sync_workers(): """ Yields distributed rank and synchronizes all workers on exit. """ rank = get_rank() yield rank barrier()
safari-main
src/utils/distributed.py
""" Utils for the training loop. Copied from https://github.com/HazyResearch/transformers/blob/master/src/utils/utils.py """ import logging import os import warnings from typing import List, Sequence import torch.nn as nn import pytorch_lightning as pl import rich.syntax import rich.tree from omegaconf import DictConfig, OmegaConf from pytorch_lightning.utilities import rank_zero_only from src.utils.config import omegaconf_filter_keys # Copied from https://docs.python.org/3/howto/logging-cookbook.html#using-a-context-manager-for-selective-logging class LoggingContext: def __init__(self, logger, level=None, handler=None, close=True): self.logger = logger self.level = level self.handler = handler self.close = close def __enter__(self): if self.level is not None: self.old_level = self.logger.level self.logger.setLevel(self.level) if self.handler: self.logger.addHandler(self.handler) def __exit__(self, et, ev, tb): if self.level is not None: self.logger.setLevel(self.old_level) if self.handler: self.logger.removeHandler(self.handler) if self.handler and self.close: self.handler.close() # implicit return of None => don't swallow exceptions def get_logger(name=__name__, level=logging.INFO) -> logging.Logger: """Initializes multi-GPU-friendly python logger.""" logger = logging.getLogger(name) logger.setLevel(level) # this ensures all logging levels get marked with the rank zero decorator # otherwise logs would get multiplied for each GPU process in multi-GPU setup for level in ("debug", "info", "warning", "error", "exception", "fatal", "critical"): setattr(logger, level, rank_zero_only(getattr(logger, level))) return logger def process_config(config: DictConfig) -> DictConfig: # TODO because of filter_keys, this is no longer in place """A couple of optional utilities, controlled by main config file: - disabling warnings - easier access to debug mode - forcing debug friendly configuration Modifies DictConfig in place. Args: config (DictConfig): Configuration composed by Hydra. """ log = get_logger() # Filter out keys that were used just for interpolation # config = dictconfig_filter_keys(config, lambda k: not k.startswith('__')) config = omegaconf_filter_keys(config, lambda k: not k.startswith('__')) # enable adding new keys to config OmegaConf.set_struct(config, False) # disable python warnings if <config.ignore_warnings=True> if config.get("ignore_warnings"): log.info("Disabling python warnings! <config.ignore_warnings=True>") warnings.filterwarnings("ignore") if config.get("debug"): log.info("Running in debug mode! <config.debug=True>") config.trainer.fast_dev_run = True # force debugger friendly configuration log.info("Forcing debugger friendly configuration! <config.trainer.fast_dev_run=True>") # Debuggers don't like GPUs or multiprocessing if config.trainer.get("gpus"): config.trainer.gpus = 0 if config.loader.get("pin_memory"): config.loader.pin_memory = False if config.loader.get("num_workers"): config.loader.num_workers = 0 # disable adding new keys to config # OmegaConf.set_struct(config, True) # [21-09-17 AG] I need this for .pop(_name_) pattern among other things return config @rank_zero_only def print_config( config: DictConfig, resolve: bool = True, save_cfg=True, ) -> None: """Prints content of DictConfig using Rich library and its tree structure. Args: config (DictConfig): Configuration composed by Hydra. fields (Sequence[str], optional): Determines which main fields from config will be printed and in what order. resolve (bool, optional): Whether to resolve reference fields of DictConfig. """ style = "dim" tree = rich.tree.Tree("CONFIG", style=style, guide_style=style) fields = config.keys() for field in fields: branch = tree.add(field, style=style, guide_style=style) config_section = config.get(field) branch_content = str(config_section) if isinstance(config_section, DictConfig): branch_content = OmegaConf.to_yaml(config_section, resolve=resolve) branch.add(rich.syntax.Syntax(branch_content, "yaml")) rich.print(tree) if save_cfg: with open("config_tree.txt", "w") as fp: rich.print(tree, file=fp) def log_optimizer(logger, optimizer, keys): """ Log values of particular keys from the optimizer's param groups """ keys = sorted(keys) for i, g in enumerate(optimizer.param_groups): group_hps = {k: g.get(k, None) for k in keys} logger.info(' | '.join([ f"Optimizer group {i}", f"{len(g['params'])} tensors", ] + [f"{k} {v}" for k, v in group_hps.items()])) class OptimModule(nn.Module): """ Interface for Module that allows registering buffers/parameters with configurable optimizer hyperparameters """ def register(self, name, tensor, lr=None, wd=0.0): """Register a tensor with a configurable learning rate and 0 weight decay""" if lr == 0.0: self.register_buffer(name, tensor) else: self.register_parameter(name, nn.Parameter(tensor)) optim = {} if lr is not None: optim["lr"] = lr if wd is not None: optim["weight_decay"] = wd setattr(getattr(self, name), "_optim", optim)
safari-main
src/utils/train.py
# Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # MIT License # # Copyright (c) 2019 cybertronai # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """Lamb optimizer.""" import torch from torch.optim import Optimizer class Lamb(Optimizer): r"""Implements Lamb algorithm. It has been proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) adam (bool, optional): always use trust ratio = 1, which turns this into Adam. Useful for comparison purposes. .. _Large Batch Optimization for Deep Learning: Training BERT in 76 minutes: https://arxiv.org/abs/1904.00962 """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-6, weight_decay=0, adam=False): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) self.adam = adam super(Lamb, self).__init__(params, defaults) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError('Lamb does not support sparse gradients.') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 # Decay the first and second moment running average coefficient # m_t exp_avg.mul_(beta1).add_(1 - beta1, grad) # v_t exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) # Paper v3 does not use debiasing. # bias_correction1 = 1 - beta1 ** state['step'] # bias_correction2 = 1 - beta2 ** state['step'] # Apply bias to lr to avoid broadcast. step_size = group['lr'] # * math.sqrt(bias_correction2) / bias_correction1 weight_norm = p.data.norm(p=2).clamp_(0, 10) adam_step = exp_avg / exp_avg_sq.sqrt().add(group['eps']) if group['weight_decay'] != 0: adam_step.add_(group['weight_decay'], p.data) adam_norm = adam_step.norm(p=2) if weight_norm == 0.0 or adam_norm == 0.0: trust_ratio = 1 else: trust_ratio = weight_norm / (adam_norm + group['eps']) state['weight_norm'] = weight_norm state['adam_norm'] = adam_norm state['trust_ratio'] = trust_ratio if self.adam: trust_ratio = 1 p.data.add_(-step_size * trust_ratio, adam_step) return loss @torch.jit.script def lamb_kernel(param, grad, exp_avg, exp_avg_sq, beta1: float, beta2: float, step_size: float, eps: float, weight_decay: float): exp_avg = exp_avg * beta1 + (1 - beta1) * grad exp_avg_sq = exp_avg_sq * beta2 + (1 - beta2) * (grad * grad) adam_step = exp_avg / (exp_avg_sq.sqrt() + eps) adam_step = adam_step + weight_decay * param weight_norm = param.norm(p=2).clamp(0, 10) adam_norm = adam_step.norm(p=2) trust_ratio = weight_norm / (adam_norm + eps) trust_ratio = (weight_norm == 0.0) * 1.0 + (weight_norm != 0.0) * trust_ratio trust_ratio = (adam_norm == 0.0) * 1.0 + (adam_norm != 0.0) * trust_ratio trust_ratio = trust_ratio.float() param = param - step_size * trust_ratio * adam_step return param, exp_avg, exp_avg_sq class JITLamb(Optimizer): r"""Implements Lamb algorithm. It has been proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) adam (bool, optional): always use trust ratio = 1, which turns this into Adam. Useful for comparison purposes. .. _Large Batch Optimization for Deep Learning: Training BERT in 76 minutes: https://arxiv.org/abs/1904.00962 """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-6, weight_decay=0, adam=False): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) self.adam = adam super().__init__(params, defaults) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError('Lamb does not support sparse gradients.') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 step_size = group['lr'] param, exp_avg, exp_avg_sq = lamb_kernel(p.data, grad, exp_avg, exp_avg_sq, beta1, beta2, step_size, group['eps'], group['weight_decay'], ) state['exp_avg'] = exp_avg state['exp_avg_sq'] = exp_avg_sq p.data = param return loss
safari-main
src/utils/optim/lamb.py
"""Custom learning rate schedulers""" import math import warnings import torch from timm.scheduler import CosineLRScheduler # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html class CosineWarmup(torch.optim.lr_scheduler.CosineAnnealingLR): def __init__(self, optimizer, T_max, eta_min=0, warmup_step=0, **kwargs): self.warmup_step = warmup_step super().__init__(optimizer, T_max - warmup_step, eta_min, *kwargs) # Copied from CosineAnnealingLR, but adding warmup and changing self.last_epoch to # self.last_epoch - self.warmup_step. def get_lr(self): if not self._get_lr_called_within_step: warnings.warn("To get the last learning rate computed by the scheduler, " "please use `get_last_lr()`.", UserWarning) if self.last_epoch == self.warmup_step: # also covers the case where both are 0 return self.base_lrs elif self.last_epoch < self.warmup_step: return [base_lr * (self.last_epoch + 1) / self.warmup_step for base_lr in self.base_lrs] elif (self.last_epoch - self.warmup_step - 1 - self.T_max) % (2 * self.T_max) == 0: return [group['lr'] + (base_lr - self.eta_min) * (1 - math.cos(math.pi / self.T_max)) / 2 for base_lr, group in zip(self.base_lrs, self.optimizer.param_groups)] return [(1 + math.cos(math.pi * (self.last_epoch - self.warmup_step) / self.T_max)) / (1 + math.cos(math.pi * (self.last_epoch - self.warmup_step - 1) / self.T_max)) * (group['lr'] - self.eta_min) + self.eta_min for group in self.optimizer.param_groups] _get_closed_form_lr = None def InvSqrt(optimizer, warmup_step): """ Originally used for Transformer (in Attention is all you need) """ def lr_lambda(step): # return a multiplier instead of a learning rate if step == warmup_step: # also covers the case where both are 0 return 1. else: return 1. / (step ** 0.5) if step > warmup_step else (step + 1) / (warmup_step ** 1.5) return torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_lambda) def Constant(optimizer, warmup_step): def lr_lambda(step): if step == warmup_step: # also covers the case where both are 0 return 1. else: return 1. if step > warmup_step else (step + 1) / warmup_step return torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_lambda) class TimmCosineLRScheduler(CosineLRScheduler, torch.optim.lr_scheduler._LRScheduler): """ Wrap timm.scheduler.CosineLRScheduler so we can call scheduler.step() without passing in epoch. It supports resuming as well. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._last_epoch = -1 self.step(epoch=0) def step(self, epoch=None): if epoch is None: self._last_epoch += 1 else: self._last_epoch = epoch # We call either step or step_update, depending on whether we're using the scheduler every # epoch or every step. # Otherwise, lightning will always call step (i.e., meant for each epoch), and if we set # scheduler interval to "step", then the learning rate update will be wrong. if self.t_in_epochs: super().step(epoch=self._last_epoch) else: super().step_update(num_updates=self._last_epoch)
safari-main
src/utils/optim/schedulers.py
""" Implementations of different types of residual functions. """ import torch from torch import nn class Residual(nn.Module): """ Residual connection with constant affine weights. Can simulate standard residual, no residual, and "constant gates". """ def __init__(self, i_layer, d_input, d_model, alpha=1.0, beta=1.0): # print("ConstantResidual extra kwargs", kwargs) super().__init__() assert (d_input == d_model) or alpha == 0.0 self.i_layer = i_layer self.d_input = d_input self.d_model = d_model self.alpha = alpha self.beta = beta @property def d_output(self): return self.d_model def forward(self, x, y, transposed): # TODO documentation of transposed y = self.beta*y if self.beta != 1.0 else y return self.alpha * x + y if self.alpha else y class Affine(Residual): """ Residual connection with learnable scalar multipliers on the main branch scalar: Single scalar multiplier, or one per dimension scale, power: Initialize to scale * layer_num**(-power) """ def __init__(self, *args, scalar=True, gamma=0.0, **kwargs): # print("ConstantResidual extra kwargs", kwargs) super().__init__(*args, **kwargs) self.scalar = scalar self.gamma = gamma c = self.beta * self.i_layer ** (-self.gamma) d = 1 if self.scalar else self.d_input self.affine = nn.Parameter(c * torch.ones(d)) def forward(self, x, y, transposed): # TODO documentation of transposed c = self.affine if transposed: c = c.unsqueeze(-1) return self.alpha * x + c * y class Feedforward(Residual): def __init__(self, *args): # print("Feedforward extra kwargs", kwargs) super().__init__(*args, alpha=0.0, beta=1.0) class Highway(Residual): def __init__(self, *args, scaling_correction=False, elemwise=False): super().__init__(*args) self.scaling_correction = 1.732 if scaling_correction else 1.0 # TODO self.elemwise = elemwise self.Wx = nn.Linear(self.d_input, self.d_input) if self.elemwise: self.Wy = nn.Parameter(torch.randn(self.d_input)) else: self.Wy = nn.Linear(self.d_input, self.d_input) def forward(self, x, y, transposed=False): # TODO handle this case if self.elemwise: y = self.Wy * y else: y = self.Wy(y) r = torch.sigmoid(self.Wx(x) + y) z = self.scaling_correction * (1.-r) * x + r * y return z class DecayResidual(Residual): """ Residual connection that can decay the linear combination depending on depth. """ def __init__(self, *args, power=0.5, l2=True): # print("DecayResidual extra kwargs", kwargs) super().__init__(*args) self.power = power self.l2 = l2 def forward(self, x, y, transposed): beta = self.i_layer ** (-self.power) if self.l2: alpha = (1. - beta**2)**0.5 else: alpha = 1. - beta return alpha * x + beta * y registry = { 'F': Feedforward, 'N': Feedforward, 'R': Residual, 'H': Highway, 'D': DecayResidual, 'A': Affine, 'none': Feedforward, 'ff': Feedforward, 'feedforward': Feedforward, 'residual': Residual, 'highway': Highway, 'decay': DecayResidual, 'affine': Affine, }
safari-main
src/models/nn/residual.py
# Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional import functools import torch import torch.nn as nn import torch.nn.functional as F class OptionalParameterList(nn.ParameterList): def extra_repr(self): child_lines = [] for k, p in self._parameters.items(): if p is not None: size_str = 'x'.join(str(size) for size in p.size()) device_str = '' if not p.is_cuda else ' (GPU {})'.format(p.get_device()) parastr = 'Parameter containing: [{} of size {}{}]'.format( torch.typename(p), size_str, device_str) child_lines.append(' (' + str(k) + '): ' + parastr) tmpstr = '\n'.join(child_lines) return tmpstr class ProjectedAdaptiveLogSoftmax(nn.Module): def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, tie_projs=None, out_layers_weights=None, out_projs=None, keep_order=False, bias_scale=0.0, dropout=0.0, ): super().__init__() self.n_token = n_token self.d_embed = d_embed self.d_proj = d_proj self.cutoffs = list(cutoffs) + [n_token] self.cutoff_ends = [0] + self.cutoffs self.div_val = div_val self.shortlist_size = self.cutoffs[0] self.n_clusters = len(self.cutoffs) - 1 self.head_size = self.shortlist_size + self.n_clusters # bake the first False into the definition, just as [0] is built into the cutoffs if tie_projs is None: tie_projs = [] elif isinstance(tie_projs, bool): tie_projs = [tie_projs] * len(cutoffs) else: tie_projs = list(tie_projs) tie_projs = [False] + tie_projs self.tie_projs = tie_projs if self.n_clusters > 0: self.cluster_weight = nn.Parameter(torch.zeros(self.n_clusters, self.d_embed)) self.cluster_bias = nn.Parameter(torch.zeros(self.n_clusters)) if not out_layers_weights: self.out_layers_weights = nn.ParameterList() else: self.out_layers_weights = out_layers_weights self.out_layers_biases = nn.ParameterList() self.shared_out_projs = out_projs self.out_projs = OptionalParameterList() self.dropout = dropout self.drop = nn.Dropout(dropout) if div_val == 1: if d_proj != d_embed: for i in range(len(self.cutoffs)): if tie_projs[i]: self.out_projs.append(None) else: self.out_projs.append( nn.Parameter(torch.zeros(d_proj, d_embed)) ) else: self.out_projs.append(None) self.out_layers_biases.append( nn.Parameter(torch.zeros(n_token)) ) if not out_layers_weights: self.out_layers_weights.append( nn.Parameter(torch.zeros(n_token, d_embed)) ) else: for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i+1] d_emb_i = d_embed // (div_val ** i) if tie_projs[i]: self.out_projs.append(None) else: self.out_projs.append( nn.Parameter(torch.zeros(d_proj, d_emb_i)) ) self.out_layers_biases.append( nn.Parameter(torch.zeros(r_idx - l_idx)) ) if not out_layers_weights: self.out_layers_weights.append( nn.Parameter(torch.zeros(r_idx - l_idx, d_emb_i)) ) for bias in self.out_layers_biases: bound = bias_scale * d_proj ** -.5 nn.init.uniform_(bias, -bound, bound) self.keep_order = keep_order def _compute_logit(self, hidden, weight, bias, proj): if proj is None: logit = F.linear(hidden, weight, bias=bias) else: if self.dropout > 0.0: logit = hidden @ proj logit = self.drop(logit) logit = logit @ weight.t() else: logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) if bias is not None: logit = logit + bias return logit def get_out_proj(self, i): if self.tie_projs[i]: if len(self.shared_out_projs) == 0: return None elif len(self.shared_out_projs) == 1: return self.shared_out_projs[0] else: return self.shared_out_projs[i] else: return self.out_projs[i] def forward(self, hidden, target, keep_order=False, key_padding_mask=None, *args, **kwargs): # [21-09-15 AG]: TODO may need to handle key_padding_mask ''' hidden :: [len*bsz x d_proj] target :: [len*bsz] ''' hidden = hidden.reshape(-1, hidden.size(-1)) target = target.reshape(-1) if hidden.size(0) != target.size(0): print(hidden.shape, target.shape) raise RuntimeError('Input and target should have the same size ' 'in the batch dimension.') if self.n_clusters == 0: logit = self._compute_logit(hidden, self.out_layers_weights[0], self.out_layers_biases[0], self.get_out_proj(0)) nll = -F.log_softmax(logit, dim=-1) \ .gather(1, target.unsqueeze(1)).squeeze(1) else: # construct weights and biases weights, biases = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] weight_i = self.out_layers_weights[0][l_idx:r_idx] bias_i = self.out_layers_biases[0][l_idx:r_idx] else: weight_i = self.out_layers_weights[i] bias_i = self.out_layers_biases[i] if i == 0: weight_i = torch.cat( [weight_i, self.cluster_weight], dim=0) bias_i = torch.cat( [bias_i, self.cluster_bias], dim=0) weights.append(weight_i) biases.append(bias_i) head_weight, head_bias, head_proj = weights[0], biases[0], self.get_out_proj(0) head_logit = self._compute_logit(hidden, head_weight, head_bias, head_proj) head_logprob = F.log_softmax(head_logit, dim=1) nll = torch.zeros_like(target, dtype=hidden.dtype, device=hidden.device) offset = 0 cutoff_values = [0] + self.cutoffs for i in range(len(cutoff_values) - 1): l_idx, r_idx = cutoff_values[i], cutoff_values[i + 1] mask_i = (target >= l_idx) & (target < r_idx) indices_i = mask_i.nonzero(as_tuple=False).squeeze() if indices_i.numel() == 0: continue target_i = target.index_select(0, indices_i) - l_idx head_logprob_i = head_logprob.index_select(0, indices_i) if i == 0: logprob_i = head_logprob_i.gather(1, target_i[:, None]).squeeze(1) else: weight_i, bias_i, proj_i = weights[i], biases[i], self.get_out_proj(i) hidden_i = hidden.index_select(0, indices_i) tail_logit_i = self._compute_logit(hidden_i, weight_i, bias_i, proj_i) tail_logprob_i = F.log_softmax(tail_logit_i, dim=1) # First term accounts for cluster probabilities logprob_i = head_logprob_i[:, -i] \ + tail_logprob_i.gather(1, target_i[:, None]).squeeze(1) if self.keep_order or keep_order: nll.index_copy_(0, indices_i, -logprob_i) else: nll[offset:offset+logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) # TODO This should be a bug in the original implementation; it should go into the continue case above as well return nll.mean() # TODO maybe cases for length or padding_mask def compute_logits(self, hidden): """Compute full vector of logits Adapted from https://github.com/kimiyoung/transformer-xl/issues/88 """ hidden = hidden.reshape(-1, hidden.size(-1)) if self.n_clusters == 0: logits = self._compute_logit(hidden, self.out_layers_weights[0], self.out_layers_biases[0], self.get_out_proj(0)) return logits else: # construct weights and biases weights, biases = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] weight_i = self.out_layers_weights[0][l_idx:r_idx] bias_i = self.out_layers_biases[0][l_idx:r_idx] else: weight_i = self.out_layers_weights[i] bias_i = self.out_layers_biases[i] if i == 0: weight_i = torch.cat( [weight_i, self.cluster_weight], dim=0) bias_i = torch.cat( [bias_i, self.cluster_bias], dim=0) weights.append(weight_i) biases.append(bias_i) head_weight, head_bias, head_proj = weights[0], biases[0], self.get_out_proj(0) head_logit = self._compute_logit(hidden, head_weight, head_bias, head_proj) head_logprob = F.log_softmax(head_logit, dim=1) out_full_logps = [head_logprob[:, :self.cutoffs[0]]] offset = 0 cutoff_values = [0] + self.cutoffs for i in range(1, len(cutoff_values) - 1): l_idx, r_idx = cutoff_values[i], cutoff_values[i + 1] head_logprob_i = head_logprob # .index_select(0, indices_i) if i == 0: logprob_i = head_logprob_i else: weight_i, bias_i, proj_i = weights[i], biases[i], self.get_out_proj(i) hidden_i = hidden # .index_select(0, indices_i) tail_logit_i = self._compute_logit(hidden_i, weight_i, bias_i, proj_i) tail_logprob_i = F.log_softmax(tail_logit_i, dim=1) logprob_i = head_logprob_i[:, -i].view(-1, 1) + tail_logprob_i offset += logprob_i.size(0) out_full_logps.append(logprob_i) out_full_logps = torch.cat(out_full_logps, dim = 1) # print(torch.sum(out_full_ps), out_full_ps.shape) return out_full_logps class AdaptiveEmbedding(nn.Module): """ Copy of transformers.AdaptiveEmbedding that works with fp16 by replacing the index_put_ operation Initialization has been fixed for the case when d_proj = d_embed """ def __init__(self, n_token, d_embed, d_proj, cutoffs : List[int], div_val=1, init_scale=1.0, sample_softmax=False, dropout=0.0): super().__init__() self.n_token = n_token self.d_embed = d_embed self.cutoffs = list(cutoffs) + [n_token] self.div_val = div_val self.d_proj = d_proj self.drop = nn.Dropout(dropout) if dropout > 0.0 else nn.Identity() self.emb_scale = d_proj ** 0.5 self.cutoff_ends = [0] + self.cutoffs self.emb_layers = nn.ModuleList() self.emb_projs = nn.ParameterList() if div_val == 1: self.emb_layers.append(nn.Embedding(n_token, d_embed, sparse=sample_softmax > 0)) _init_embed(self.emb_layers[-1].weight, d_embed, init_scale) # torch.nn.init.normal_(self.emb_layers[-1].weight, mean=0, std=init_scale * d_embed ** -.5) if d_proj != d_embed: # TODO # self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_embed))) self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_embed))) # torch.nn.init.normal_(self.emb_projs[-1], mean=0, std=init_scale * 1./self.emb_scale) _init_proj(self.emb_projs[-1], d_proj, init_scale) else: for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] d_emb_i = d_embed // (div_val ** i) self.emb_layers.append(nn.Embedding(r_idx - l_idx, d_emb_i)) # torch.nn.init.normal_(self.emb_layers[-1].weight, mean=0, std=init_scale * d_emb_i ** -.5) _init_embed(self.emb_layers[-1].weight, d_emb_i, init_scale) self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_emb_i))) # torch.nn.init.normal_(self.emb_projs[-1], mean=0, std=init_scale * 1./self.emb_scale) _init_proj(self.emb_projs[-1], d_proj, init_scale) def forward(self, inp): if self.div_val == 1: embed = self.emb_layers[0](inp) embed = self.drop(embed) if self.d_proj != self.d_embed: embed = F.linear(embed, self.emb_projs[0]) else: param = next(self.parameters()) inp_flat = inp.reshape(-1) # Changes from original impl # emb_flat = torch.zeros([inp_flat.size(0), self.d_proj], dtype=param.dtype, device=param.device) embeddings = [] indices = torch.zeros_like(inp_flat) # empty should work as long as cutoffs[-1] > max token _total_tokens = 0 # emb_flat = inp.new_zeros(inp_flat.size(0), self.d_proj) for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx) indices_i = mask_i.nonzero().squeeze(-1) # shape (_tokens,) _tokens = indices_i.numel() if _tokens == 0: continue inp_i = inp_flat.index_select(0, indices_i) - l_idx emb_i = self.emb_layers[i](inp_i) emb_i = self.drop(emb_i) emb_i = F.linear(emb_i, self.emb_projs[i]) # Changes embeddings.append(emb_i) indices.index_put_( (indices_i,), torch.arange(_tokens, device=inp.device) + _total_tokens ) _total_tokens += _tokens # emb_flat.index_copy_(0, indices_i, emb_i) embeddings = torch.cat(embeddings, dim=0) emb_flat = embeddings[indices] embed_shape = inp.size() + (self.d_proj,) embed = emb_flat.view(embed_shape) embed.mul_(self.emb_scale) # embed.div_(self.emb_scale) return embed def _init_weight(weight, d : int, init_scale : Optional[float], default=None): assert init_scale or default if init_scale is None: std = default else: std = init_scale * (d ** -0.5) nn.init.normal_(weight, mean=0, std=std) _init_embed = functools.partial(_init_weight, default=0.02) _init_proj = functools.partial(_init_weight, default=0.01)
safari-main
src/models/nn/adaptive_softmax.py
from .components import LinearActivation, Activation, Normalization, DropoutNd
safari-main
src/models/nn/__init__.py
""" Utility wrappers around modules to let them handle Args and extra arguments """ import inspect from functools import wraps import torch from torch import nn def wrap_kwargs(f): """ Given a callable f that can consume some named arguments, wrap it with a kwargs that passes back any unused args EXAMPLES -------- Basic usage: def foo(x, y=None): return x wrap_kwargs(foo)(0, y=1, z=2) == (0, {'z': 2}) -------- The wrapped function can return its own argument dictionary, which gets merged with the new kwargs. def foo(x, y=None): return x, {} wrap_kwargs(foo)(0, y=1, z=2) == (0, {'z': 2}) def foo(x, y=None): return x, {"y": y, "z": None} wrap_kwargs(foo)(0, y=1, z=2) == (0, {'y': 1, 'z': 2}) -------- The wrapped function can have its own kwargs parameter: def foo(x, y=None, **kw_args): return x, {} wrap_kwargs(foo)(0, y=1, z=2) == (0, {}) -------- Partial functions and modules work automatically: class Module: def forward(self, x, y=0): return x, {"y": y+1} m = Module() wrap_kwargs(m.forward)(0, y=1, z=2) == (0, {'y': 2, 'z': 2}) """ sig = inspect.signature(f) # Check if f already has kwargs has_kwargs = any([ param.kind == inspect.Parameter.VAR_KEYWORD for param in sig.parameters.values() ]) if has_kwargs: @wraps(f) def f_kwargs(*args, **kwargs): y = f(*args, **kwargs) if isinstance(y, tuple) and isinstance(y[-1], dict): return y else: return y, {} else: param_kwargs = inspect.Parameter("kwargs", kind=inspect.Parameter.VAR_KEYWORD) sig_kwargs = inspect.Signature(parameters=list(sig.parameters.values())+[param_kwargs]) @wraps(f) def f_kwargs(*args, **kwargs): bound = sig_kwargs.bind(*args, **kwargs) if "kwargs" in bound.arguments: kwargs = bound.arguments.pop("kwargs") else: kwargs = {} y = f(**bound.arguments) if isinstance(y, tuple) and isinstance(y[-1], dict): return *y[:-1], {**y[-1], **kwargs} else: return y, kwargs return f_kwargs def discard_kwargs(f): if f is None: return None f_kwargs = wrap_kwargs(f) @wraps(f) def f_(*args, **kwargs): return f_kwargs(*args, **kwargs)[0] return f_ def PassthroughSequential(*modules): """Special Sequential module that chains kwargs. Semantics are the same as nn.Sequential, with extra convenience features: - Discard None modules - Flatten inner Sequential modules - In case with 0 or 1 Module, rename the class for ease of inspection """ def flatten(module): if isinstance(module, nn.Sequential): return sum([flatten(m) for m in module], []) else: return [module] modules = flatten(nn.Sequential(*modules)) modules = [module for module in modules if module if not None] class Sequential(nn.Sequential): def forward(self, x, **kwargs): for layer in self: x, kwargs = wrap_kwargs(layer.forward)(x, **kwargs) return x, kwargs def step(self, x, **kwargs): for layer in self: fn = getattr(layer, "step", layer.forward) x, kwargs = wrap_kwargs(fn)(x, **kwargs) return x, kwargs if len(modules) == 0: Sequential.__name__ = "Identity" elif len(modules) == 1: Sequential.__name__ = type(modules[0]).__name__ return Sequential(*modules)
safari-main
src/models/nn/utils.py
""" Defines flexible gating mechanisms based on ideas from LSSL paper and UR-LSTM paper https://arxiv.org/abs/1910.09890 """ import torch import torch.nn as nn class Gate(nn.Module): """ Implements gating mechanisms. TODO update this with more detailed description with reference to LSSL paper when it's on arxiv Mechanisms: N - No gate G - Standard sigmoid gate UR - Uniform refine gates R - Refine gate FS - Forward discretization, Sigmoid activation [equivalent to G] BE - Backward discretization, Exp activation [equivalent to G] BR - Backward discretization, Relu activation TE - Trapezoid discretization, Exp activation TR - Trapezoid discretization, Relu activation TS - Trapezoid discretization, Sigmoid activation (0 to 2) """ def __init__(self, size, preact_ctor, preact_args, mechanism='N'): super().__init__() self.size = size self.mechanism = mechanism if self.mechanism == 'N': pass elif self.mechanism in ['G', 'FS', 'BE', 'BR', 'TE', 'TR', 'TS', 'ZE', 'ZR', 'ZS']: self.W_g = preact_ctor(*preact_args) elif self.mechanism in ['U', 'UT']: self.W_g = preact_ctor(*preact_args) b_g_unif = torch.empty(size) torch.nn.init.uniform_(b_g_unif, 1./self.size, 1.-1./self.size) self.b_g = nn.Parameter(torch.log(1./b_g_unif-1.).detach(), requires_grad=False) elif self.mechanism == 'UR': self.W_g = preact_ctor(*preact_args) self.W_r = preact_ctor(*preact_args) b_g_unif = torch.empty(size) torch.nn.init.uniform_(b_g_unif, 1./self.size, 1.-1./self.size) self.b_g = nn.Parameter(torch.log(1./b_g_unif-1.).detach(), requires_grad=False) elif self.mechanism == 'R': self.W_g = preact_ctor(*preact_args) self.W_r = preact_ctor(*preact_args) elif self.mechanism in ['GT']: self.W_g = preact_ctor(*preact_args) else: assert False, f'Gating type {self.mechanism} is not supported.' def forward(self, *inputs): if self.mechanism == 'N': return 1.0 if self.mechanism == 'G': g_preact = self.W_g(*inputs) g = torch.sigmoid(g_preact) if self.mechanism == 'U': g_preact = self.W_g(*inputs) + self.b_g g = torch.sigmoid(g_preact) elif self.mechanism == 'UR': g_preact = self.W_g(*inputs) + self.b_g g = torch.sigmoid(g_preact) r = torch.sigmoid(self.W_r(*inputs)) g = (1-2*r)*g**2 + 2*r*g elif self.mechanism == 'R': g_preact = self.W_g(*inputs) g = torch.sigmoid(g_preact) r = torch.sigmoid(self.W_r(*inputs)) g = (1-2*r)*g**2 + 2*r*g elif self.mechanism == 'UT': g_preact = self.W_g(*inputs) + self.b_g g = torch.sigmoid(g_preact) r = g g = (1-2*r)*g**2 + 2*r*g elif self.mechanism == 'GT': g_preact = self.W_g(*inputs) g = torch.sigmoid(g_preact) r = g g = (1-2*r)*g**2 + 2*r*g else: g_preact = self.W_g(*inputs) # if self.mechanism[1] == 'S': # g = torch.sigmoid(g_preact) # elif self.mechanism[1] == 'E': # g = torch.exp(g_preact) # elif self.mechanism[1] == 'R': # g = torch.relu(g_preact) if self.mechanism == 'FS': g = torch.sigmoid(g_preact) g = self.forward_diff(g) elif self.mechanism == 'BE': g = torch.exp(g_preact) g = self.backward_diff(g) elif self.mechanism == 'BR': g = torch.relu(g_preact) g = self.backward_diff(g) elif self.mechanism == 'TS': g = 2 * torch.sigmoid(g_preact) g = self.trapezoid(g) elif self.mechanism == 'TE': g = torch.exp(g_preact) g = self.trapezoid(g) elif self.mechanism == 'TR': g = torch.relu(g_preact) g = self.trapezoid(g) elif self.mechanism == 'ZE': g = torch.exp(g_preact) g = self.zoh(g) elif self.mechanism == 'ZR': g = torch.relu(g_preact) g = self.zoh(g) elif self.mechanism == 'ZS': g = torch.sigmoid(g_preact) g = self.zoh(g) return g def forward_diff(self, x): return x def backward_diff(self, x): return x / (1+x) def trapezoid(self, x): return x / (1 + x/2) def zoh(self, x): return 1 - torch.exp(-x)
safari-main
src/models/nn/gate.py
"""Implementations of several types of Discrete Sin/Cosine Transforms with various reductions to FFT. Currently not used by S4 """ import torch import torch.nn as nn import numpy as np import scipy.fft from einops import rearrange, repeat class DCT(nn.Module): """ Reductions adapted from https://dsp.stackexchange.com/questions/2807/fast-cosine-transform-via-fft """ def __init__(self, N, norm='backward'): super().__init__() self.N = N # Materialize DCT matrix P = scipy.fft.dct(np.eye(N), norm=norm, type=2).T P = torch.tensor(P, dtype=torch.float) self.register_buffer('P', P) # TODO take care of normalization Q = np.exp(-1j * np.pi / (2 * self.N) * np.arange(self.N)) Q = torch.tensor(Q, dtype=torch.cfloat) self.register_buffer('Q', Q) # half shift def forward(self, x, mode=2): if mode == 0: return self.forward_dense(x) elif mode == 1: return self.forward_n(x) elif mode == 2: return self.forward_2n(x) elif mode == 4: return self.forward_4n(x) def forward_dense(self, x): """ Baseline DCT type II - matmul by DCT matrix """ y = (self.P.to(x) @ x.unsqueeze(-1)).squeeze(-1) return y def forward_4n(self, x): """ DCT type II - reduction to FFT size 4N """ assert self.N == x.shape[-1] x = torch.cat([x, x.flip(-1)], dim=-1) z = torch.zeros_like(x) x = torch.stack([z, x], dim=-1) x = x.view(x.shape[:-2] + (-1,)) y = torch.fft.fft(x) y = y[..., :self.N] if torch.is_complex(x): return y else: return torch.real(y) def forward_2n(self, x): """ DCT type II - reduction to FFT size 2N mirrored The reduction from the DSP forum is not quite correct in the complex input case. halfshift(FFT[a, b, c, d, d, c, b, a]) -> [A, B, C, D, 0, -D, -C, -B] In the case of real input, the intermediate step after FFT has form [A, B, C, D, 0, D*, C*, B*] """ assert self.N == x.shape[-1] x = torch.cat([x, x.flip(-1)], dim=-1) y = torch.fft.fft(x)[..., :self.N] y = y * self.Q if torch.is_complex(x): return y else: return torch.real(y) def forward_n(self, x): """ DCT type II - reduction to size N """ assert self.N == x.shape[-1] x = torch.cat([x[..., 0::2], x[..., 1::2].flip(-1)], dim=-1) y = torch.fft.fft(x) y = y * 2 * self.Q if torch.is_complex(x): y = torch.cat([y[..., :1], (y[..., 1:] + 1j * y[..., 1:].flip(-1)) / 2], dim=-1) # TODO in-place sum else: y = torch.real(y) return y class IDCT(nn.Module): def __init__(self, N, norm='backward'): super().__init__() self.N = N # Materialize DCT matrix P = np.linalg.inv(scipy.fft.dct(np.eye(N), norm=norm, type=2).T) P = torch.tensor(P, dtype=torch.float) self.register_buffer('P', P) # TODO take care of normalization Q = np.exp(-1j * np.pi / (2 * self.N) * np.arange(2*self.N)) Q = torch.tensor(Q, dtype=torch.cfloat) self.register_buffer('Q', Q) # half shift def forward(self, x, mode=2): if mode == 0: return self.forward_dense(x) elif mode == 1: return self.forward_n(x) elif mode == 2: return self.forward_2n(x) elif mode == 4: return self.forward_4n(x) def forward_dense(self, x): """ Baseline DCT type II - matmul by DCT matrix """ y = (self.P.to(x) @ x.unsqueeze(-1)).squeeze(-1) return y def forward_4n(self, x): """ DCT type II - reduction to FFT size 4N """ assert self.N == x.shape[-1] z = x.new_zeros(x.shape[:-1] + (1,)) x = torch.cat([x, z, -x.flip(-1), -x[..., 1:], z, x[..., 1:].flip(-1)], dim=-1) y = torch.fft.ifft(x) y = y[..., 1:2*self.N:2] if torch.is_complex(x): return y else: return torch.real(y) def forward_2n(self, x): """ DCT type II - reduction to FFT size 2N mirrored """ assert self.N == x.shape[-1] z = x.new_zeros(x.shape[:-1] + (1,)) x = torch.cat([x, z, -x[..., 1:].flip(-1)], dim=-1) x = x / self.Q y = torch.fft.ifft(x)[..., :self.N] if torch.is_complex(x): return y else: return torch.real(y) def forward_n(self, x): """ DCT type II - reduction to size N """ assert self.N == x.shape[-1] raise NotImplementedError # Straightforward by inverting operations of DCT-II reduction def test_dct_ii(): N = 8 dct = DCT(N) baseline = dct.forward_dense methods = [dct.forward_4n, dct.forward_2n, dct.forward_n] # Real case print("DCT-II Real input") x = torch.randn(1, N) y = baseline(x) print(y) for fn in methods: y_ = fn(x) print("err", torch.norm(y-y_)) # Complex case print("DCT-II Complex input") x = torch.randn(N) + 1j * torch.randn(N) y = baseline(x) print(y) for fn in methods: y_ = fn(x) print("err", torch.norm(y-y_)) def test_dct_iii(): N = 8 dct = IDCT(N) baseline = dct.forward_dense methods = [dct.forward_4n, dct.forward_2n] # Real case print("DCT-III Real input") x = torch.randn(1, N) y = baseline(x) print(y) for fn in methods: y_ = fn(x) print("err", torch.norm(y-y_)) # Complex case print("DCT-III Complex input") # x = torch.randn(N) + 1j * torch.randn(N) x = 1j * torch.ones(N) y = baseline(x) print(y) for fn in methods: y_ = fn(x) print("err", torch.norm(y-y_))
safari-main
src/models/nn/dxt.py
""" Utility nn components, in particular handling activations, initializations, and normalization layers """ from functools import partial import math from typing import ForwardRef import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from opt_einsum import contract def stochastic_depth(input: torch.tensor, p: float, mode: str, training: bool = True): """ Implements the Stochastic Depth from `"Deep Networks with Stochastic Depth" <https://arxiv.org/abs/1603.09382>`_ used for randomly dropping residual branches of residual architectures. Args: input (Tensor[N, ...]): The input tensor or arbitrary dimensions with the first one being its batch i.e. a batch with ``N`` rows. p (float): probability of the input to be zeroed. mode (str): ``"batch"`` or ``"row"``. ``"batch"`` randomly zeroes the entire input, ``"row"`` zeroes randomly selected rows from the batch. training: apply stochastic depth if is ``True``. Default: ``True`` Returns: Tensor[N, ...]: The randomly zeroed tensor. """ if p < 0.0 or p > 1.0: raise ValueError("drop probability has to be between 0 and 1, but got {}".format(p)) if mode not in ["batch", "row"]: raise ValueError("mode has to be either 'batch' or 'row', but got {}".format(mode)) if not training or p == 0.0: return input survival_rate = 1.0 - p if mode == "row": size = [input.shape[0]] + [1] * (input.ndim - 1) else: size = [1] * input.ndim noise = torch.empty(size, dtype=input.dtype, device=input.device) noise = noise.bernoulli_(survival_rate).div_(survival_rate) return input * noise class StochasticDepth(nn.Module): """ See :func:`stochastic_depth`. """ def __init__(self, p: float, mode: str) -> None: # TODO(karan): need to upgrade to torchvision==0.11.0 to use StochasticDepth directly # from torchvision.ops import StochasticDepth super().__init__() self.p = p self.mode = mode def forward(self, input): return stochastic_depth(input, self.p, self.mode, self.training) def __repr__(self) -> str: tmpstr = self.__class__.__name__ + '(' tmpstr += 'p=' + str(self.p) tmpstr += ', mode=' + str(self.mode) tmpstr += ')' return tmpstr class DropoutNd(nn.Module): def __init__(self, p: float = 0.5, tie=True, transposed=True): """ tie: tie dropout mask across sequence lengths (Dropout1d/2d/3d) """ super().__init__() if p < 0 or p >= 1: raise ValueError("dropout probability has to be in [0, 1), " "but got {}".format(p)) self.p = p self.tie = tie self.transposed = transposed self.binomial = torch.distributions.binomial.Binomial(probs=1-self.p) def forward(self, X): """ X: (batch, dim, lengths...) """ if self.training: if not self.transposed: X = rearrange(X, 'b d ... -> b ... d') # binomial = torch.distributions.binomial.Binomial(probs=1-self.p) # This is incredibly slow mask_shape = X.shape[:2] + (1,)*(X.ndim-2) if self.tie else X.shape # mask = self.binomial.sample(mask_shape) mask = torch.rand(*mask_shape, device=X.device) < 1.-self.p X = X * mask * (1.0/(1-self.p)) if not self.transposed: X = rearrange(X, 'b ... d -> b d ...') return X return X def Activation(activation=None, size=None, dim=-1): if activation in [ None, 'id', 'identity', 'linear' ]: return nn.Identity() elif activation == 'tanh': return nn.Tanh() elif activation == 'relu': return nn.ReLU() elif activation == 'gelu': return nn.GELU() elif activation in ['swish', 'silu']: return nn.SiLU() elif activation == 'glu': return nn.GLU(dim=dim) elif activation == 'sigmoid': return nn.Sigmoid() elif activation == 'softplus': return nn.Softplus() elif activation in ['sqrelu', 'relu2']: return SquaredReLU() elif activation == 'laplace': return Laplace() elif activation == 'ln': return TransposedLN(dim) else: raise NotImplementedError("hidden activation '{}' is not implemented".format(activation)) def get_initializer(name, activation=None): if activation in [ None, 'id', 'identity', 'linear' ]: nonlinearity = 'linear' elif activation in ['relu', 'tanh', 'sigmoid']: nonlinearity = activation elif activation in ['gelu', 'swish', 'silu']: nonlinearity = 'relu' # Close to ReLU so approximate with ReLU's gain else: raise NotImplementedError(f"get_initializer: activation {activation} not supported") if name == 'uniform': initializer = partial(torch.nn.init.kaiming_uniform_, nonlinearity=nonlinearity) elif name == 'normal': initializer = partial(torch.nn.init.kaiming_normal_, nonlinearity=nonlinearity) elif name == 'xavier': initializer = torch.nn.init.xavier_normal_ elif name == 'zero': initializer = partial(torch.nn.init.constant_, val=0) elif name == 'one': initializer = partial(torch.nn.init.constant_, val=1) else: raise NotImplementedError(f"get_initializer: initializer type {name} not supported") return initializer def LinearActivation( d_input, d_output, bias=True, zero_bias_init=False, transposed=False, initializer=None, activation=None, activate=False, # Apply activation as part of this module weight_norm=False, **kwargs, ): """ Returns a linear nn.Module with control over axes order, initialization, and activation """ # Construct core module # linear_cls = partial(nn.Conv1d, kernel_size=1) if transposed else nn.Linear linear_cls = TransposedLinear if transposed else nn.Linear if activation == 'glu': d_output *= 2 linear = linear_cls(d_input, d_output, bias=bias, **kwargs) # Initialize weight if initializer is not None: get_initializer(initializer, activation)(linear.weight) # Initialize bias if bias and zero_bias_init: nn.init.zeros_(linear.bias) # Weight norm if weight_norm: linear = nn.utils.weight_norm(linear) if activate and activation is not None: activation = Activation(activation, d_output, dim=1 if transposed else -1) linear = nn.Sequential(linear, activation) return linear class SquaredReLU(nn.Module): def forward(self, x): # return F.relu(x)**2 return torch.square(F.relu(x)) # Could this be faster? def laplace(x, mu=0.707107, sigma=0.282095): x = (x - mu).div(sigma * math.sqrt(2.0)) return 0.5 * (1.0 + torch.erf(x)) class Laplace(nn.Module): def __init__(self, mu=0.707107, sigma=0.282095): super().__init__() self.mu = mu self.sigma = sigma def forward(self, x): return laplace(x, mu=self.mu, sigma=self.sigma) class TransposedLinear(nn.Module): """ Linear module on the second-to-last dimension Assumes shape (B, D, L), where L can be 1 or more axis """ def __init__(self, d_input, d_output, bias=True): super().__init__() self.weight = nn.Parameter(torch.empty(d_output, d_input)) nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) # nn.Linear default init # nn.init.kaiming_uniform_(self.weight, nonlinearity='linear') # should be equivalent if bias: self.bias = nn.Parameter(torch.empty(d_output)) bound = 1 / math.sqrt(d_input) nn.init.uniform_(self.bias, -bound, bound) setattr(self.bias, "_optim", {"weight_decay": 0.0}) else: self.bias = 0.0 def forward(self, x): num_axis = len(x.shape[2:]) # num_axis in L, for broadcasting bias y = contract('b u ..., v u -> b v ...', x, self.weight) + self.bias.view(-1, *[1]*num_axis) return y class TransposedLN(nn.Module): """ LayerNorm module over second dimension Assumes shape (B, D, L), where L can be 1 or more axis This is slow and a dedicated CUDA/Triton implementation shuld provide substantial end-to-end speedup """ def __init__(self, d, scalar=True): super().__init__() self.scalar = scalar if self.scalar: self.m = nn.Parameter(torch.zeros(1)) self.s = nn.Parameter(torch.ones(1)) setattr(self.m, "_optim", {"weight_decay": 0.0}) setattr(self.s, "_optim", {"weight_decay": 0.0}) else: self.ln = nn.LayerNorm(d) def forward(self, x): if self.scalar: # calc. stats over D dim / channels s, m = torch.std_mean(x, dim=1, unbiased=False, keepdim=True) y = (self.s/s) * (x-m+self.m) else: # move channel to last axis, apply layer_norm, then move channel back to second axis _x = self.ln(rearrange(x, 'b d ... -> b ... d')) y = rearrange(_x, 'b ... d -> b d ...') return y class Normalization(nn.Module): def __init__( self, d, transposed=False, # Length dimension is -1 or -2 _name_='layer', **kwargs ): super().__init__() self.transposed = transposed self._name_ = _name_ if _name_ == 'layer': self.channel = True # Normalize over channel dimension if self.transposed: self.norm = TransposedLN(d, **kwargs) else: self.norm = nn.LayerNorm(d, **kwargs) elif _name_ == 'instance': self.channel = False norm_args = {'affine': False, 'track_running_stats': False} norm_args.update(kwargs) self.norm = nn.InstanceNorm1d(d, **norm_args) # (True, True) performs very poorly elif _name_ == 'batch': self.channel = False norm_args = {'affine': True, 'track_running_stats': True} norm_args.update(kwargs) self.norm = nn.BatchNorm1d(d, **norm_args) elif _name_ == 'group': self.channel = False self.norm = nn.GroupNorm(1, d, *kwargs) elif _name_ == 'none': self.channel = True self.norm = nn.Identity() else: raise NotImplementedError def forward(self, x): # Handle higher dimension logic shape = x.shape if self.transposed: x = rearrange(x, 'b d ... -> b d (...)') else: x = rearrange(x, 'b ... d -> b (...)d ') # The cases of LayerNorm / no normalization are automatically handled in all cases # Instance/Batch Norm work automatically with transposed axes if self.channel or self.transposed: x = self.norm(x) else: x = x.transpose(-1, -2) x = self.norm(x) x = x.transpose(-1, -2) x = x.view(shape) return x def step(self, x, **kwargs): assert self._name_ in ["layer", "none"] if self.transposed: x = x.unsqueeze(-1) x = self.forward(x) if self.transposed: x = x.squeeze(-1) return x class TSNormalization(nn.Module): def __init__(self, method, horizon): super().__init__() self.method = method self.horizon = horizon def forward(self, x): # x must be BLD if self.method == 'mean': self.scale = x.abs()[:, :-self.horizon].mean(dim=1)[:, None, :] return x / self.scale elif self.method == 'last': self.scale = x.abs()[:, -self.horizon-1][:, None, :] return x / self.scale return x class TSInverseNormalization(nn.Module): def __init__(self, method, normalizer): super().__init__() self.method = method self.normalizer = normalizer def forward(self, x): if self.method == 'mean' or self.method == 'last': return x * self.normalizer.scale return x class ReversibleInstanceNorm1dInput(nn.Module): def __init__(self, d, transposed=False): super().__init__() # BLD if transpoed is False, otherwise BDL self.transposed = transposed self.norm = nn.InstanceNorm1d(d, affine=True, track_running_stats=False) def forward(self, x): # Means, stds if not self.transposed: x = x.transpose(-1, -2) self.s, self.m = torch.std_mean(x, dim=-1, unbiased=False, keepdim=True) self.s += 1e-4 x = (x - self.m) / self.s # x = self.norm.weight.unsqueeze(-1) * x + self.norm.bias.unsqueeze(-1) if not self.transposed: return x.transpose(-1, -2) return x class ReversibleInstanceNorm1dOutput(nn.Module): def __init__(self, norm_input): super().__init__() self.transposed = norm_input.transposed self.weight = norm_input.norm.weight self.bias = norm_input.norm.bias self.norm_input = norm_input def forward(self, x): if not self.transposed: x = x.transpose(-1, -2) # x = (x - self.bias.unsqueeze(-1))/self.weight.unsqueeze(-1) x = x * self.norm_input.s + self.norm_input.m if not self.transposed: return x.transpose(-1, -2) return x
safari-main
src/models/nn/components.py
# Copyright (c) 2023, Tri Dao, Dan Fu. # Simplified, mostly standalone version of LongConvLM for synthetics. import math from functools import partial from collections import namedtuple import torch import torch.nn as nn import torch.nn.functional as F from torchvision.ops import StochasticDepth from einops import rearrange from src.utils import instantiate import src.utils.registry as registry class LinearResidual(nn.Linear): """Wrap nn.Linear to return the residual as well. For compatibility with FusedDense. """ def forward(self, input: torch.Tensor) -> torch.Tensor: return super().forward(input), input class SelfAttention(nn.Module): """Implement the scaled dot product attention with softmax. Arguments --------- softmax_scale: The temperature to use for the softmax attention. (default: 1/sqrt(d_keys) where d_keys is computed at runtime) attention_dropout: The dropout rate to apply to the attention (default: 0.0) """ def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0): super().__init__() self.causal = causal self.softmax_scale = softmax_scale self.dropout_p = attention_dropout def forward(self, qkv, causal=None, key_padding_mask=None): """Implements the multihead softmax attention. Arguments --------- qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) causal: if passed, will override self.causal key_padding_mask: boolean mask to apply to the attention weights. True means to keep, False means to mask out. (B, S) """ batch_size, seqlen = qkv.shape[0], qkv.shape[1] causal = self.causal if causal is None else causal q, k, v = qkv.unbind(dim=2) softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1]) scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale) if key_padding_mask is not None: padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device) padding_mask.masked_fill_(key_padding_mask, 0.0) # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess) scores = scores + rearrange(padding_mask, 'b s -> b 1 1 s') if causal: # "triu_tril_cuda_template" not implemented for 'BFloat16' # So we have to construct the mask in float causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1) # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess) scores = scores + causal_mask.to(dtype=scores.dtype) attention = torch.softmax(scores, dim=-1, dtype=v.dtype) attention_drop = F.dropout(attention, self.dropout_p if self.training else 0.0) output = torch.einsum('bhts,bshd->bthd', attention_drop, v) return output class MHA(nn.Module): """Multi-head self-attention and cross-attention """ def __init__(self, embed_dim, num_heads, bias=True, dropout=0.0, softmax_scale=None, causal=False, layer_idx=None, dwconv=False,return_residual=False,device=None, dtype=None) -> None: """ return_residual: whether to return the input x along with the output. This is for performance reason: for post-norm architecture, returning the input allows us to fuse the backward of nn.Linear with the residual connection. """ factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.embed_dim = embed_dim self.causal = causal self.layer_idx = layer_idx self.dwconv = dwconv self.return_residual = return_residual self.num_heads = num_heads assert self.embed_dim % num_heads == 0, "self.kdim must be divisible by num_heads" self.head_dim = self.embed_dim // num_heads linear_cls = nn.Linear linear_resid_cls = LinearResidual inner_attn_cls = SelfAttention if not self.return_residual: self.Wqkv = linear_cls(embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs) else: self.Wqkv = linear_resid_cls(embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs) if self.dwconv: self.dwconv_qkv = nn.Conv1d(3 * embed_dim, 3 * embed_dim, kernel_size=3, padding=2, groups=3 * embed_dim) self.inner_attn = inner_attn_cls(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout) # output projection always have the bias (for now) self.out_proj = linear_cls(embed_dim, embed_dim, **factory_kwargs) def forward(self, x, key_padding_mask=None, **kwargs): """ Arguments: x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total is the is the sum of the sequence lengths in the batch. cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into x. Only applicable when using FlashAttention. max_seqlen: int. Maximum sequence length in the batch. key_padding_mask: boolean mask, True means to keep, False means to mask out. (batch, seqlen). Only applicable when not using FlashAttention. mixer_subset: for cross-attention only. If not None, will take a subset of x before applying the query projection. Useful for e.g., ViT where we only care about the CLS token in the last layer. inference_params: for generation. Adapted from Megatron-LM (and Apex) https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470 """ kwargs = ({'key_padding_mask': key_padding_mask, **kwargs}) if not self.return_residual: qkv = self.Wqkv(x) else: qkv, x = self.Wqkv(x) if self.dwconv: qkv = rearrange(self.dwconv_qkv(rearrange(qkv, 'b s d -> b d s'))[..., :-2], 'b d s -> b s d').contiguous() qkv = rearrange(qkv, '... (three h d) -> ... three h d', three=3, d=self.head_dim) context = self.inner_attn(qkv, **kwargs) out = self.out_proj(rearrange(context, '... h d -> ... (h d)')) return out if not self.return_residual else (out, x) class GPT2Embeddings(nn.Module): def __init__(self, embed_dim, vocab_size, max_position_embeddings, padding_idx=None, word_embed_proj_dim=None, device=None, dtype=None): """ If max_position_embeddings <= 0, there's no position embeddings If word_embe_proj_dim is not None (e.g., OPT-350m), we embed to that dimension the project up to embed_dim """ factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() if word_embed_proj_dim is None: self.word_embeddings = nn.Embedding(vocab_size, embed_dim, padding_idx=padding_idx, **factory_kwargs) self.project_in = None else: self.word_embeddings = nn.Embedding(vocab_size, word_embed_proj_dim, padding_idx=padding_idx, **factory_kwargs) self.project_in = nn.Linear(word_embed_proj_dim, embed_dim, bias=False, **factory_kwargs) self.max_position_embeddings = max_position_embeddings if self.max_position_embeddings > 0: self.position_embeddings = nn.Embedding(max_position_embeddings, embed_dim, **factory_kwargs) def forward(self, input_ids, position_ids=None): """ input_ids: (batch, seqlen) position_ids: (batch, seqlen) """ batch_size, seqlen = input_ids.shape embeddings = self.word_embeddings(input_ids) if self.project_in is not None: embeddings = self.project_in(embeddings) if self.max_position_embeddings > 0: if position_ids is None: position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device) position_embeddings = self.position_embeddings(position_ids) embeddings = embeddings + position_embeddings return embeddings class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, activation=F.gelu, return_residual=False, device=None, dtype=None): """ From https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/modules/mlp.py """ factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.return_residual = return_residual self.fc1 = nn.Linear(in_features, hidden_features, **factory_kwargs) self.activation = activation self.fc2 = nn.Linear(hidden_features, out_features, **factory_kwargs) def forward(self, x): y = self.fc1(x) y = self.activation(y) y = self.fc2(y) return y if not self.return_residual else (y, x) class Block(nn.Module): def __init__(self, dim, mixer_cls=None, mlp_cls=None, norm_cls=nn.LayerNorm, dropout_cls=nn.Dropout, prenorm=True, resid_dropout1=0., resid_dropout2=0., drop_path1=0., drop_path2=0., return_residual=False, residual_in_fp32=False): """ From https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/modules/block.py For prenorm=True, this Block has a slightly different structure compared to a regular prenorm Transformer block. The standard block is: LN -> MHA -> Dropout -> Add -> LN -> MLP -> Dropout -> Add. [Ref: https://arxiv.org/abs/2002.04745] Here we have: Dropout -> Add -> LN -> MHA -> Dropout -> Add -> LN -> MLP, returning both the hidden_states (output of the MLP) and the residual. This is for performance reasons, as we can fuse the dropout, add and LayerNorm. The residual needs to be provided (except for the very first block). For prenorm=False, this Block has the same structure as a regular postnorm Transformer block: MHA -> Dropout -> Add -> LN -> MLP -> Dropout -> Add -> LN. return_residual: whether each of the sub-layers (mixer and mlp) will return the residual. This is for performance reason: for post-norm architecture, returning the input allows us to fuse the backward of nn.Linear with the residual connection. """ super().__init__() self.prenorm = prenorm self.return_residual = return_residual self.residual_in_fp32 = residual_in_fp32 if self.residual_in_fp32: assert self.prenorm, 'residual_in_fp32 is only compatible with prenorm=True' if mixer_cls is None: mixer_cls = partial(MHA, num_heads=dim // 64) if mlp_cls is None: mlp_cls = partial(Mlp, hidden_features=4 * dim) self.mixer = mixer_cls(dim) self.dropout1 = dropout_cls(resid_dropout1) self.drop_path1 = StochasticDepth(drop_path1, mode='row') self.norm1 = norm_cls(dim) self.mlp = mlp_cls(dim) if not isinstance(self.mlp, nn.Identity): self.dropout2 = dropout_cls(resid_dropout2) self.drop_path2 = StochasticDepth(drop_path2, mode='row') self.norm2 = norm_cls(dim) def forward(self, hidden_states, residual = None, mixer_subset=None, mixer_kwargs=None): r"""Pass the input through the encoder layer. Args: hidden_states: the sequence to the encoder layer (required). residual: if postnorm, residual=None, If prenorm, hidden_states = Attn/MLP(LN(residual)) mixer_subset: for cross-attention only. If not None, will take a subset of x before applying the query projection. Useful for e.g., ViT where we only care about the CLS token in the last layer. """ if self.prenorm: dropped = self.drop_path1(self.dropout1(hidden_states)) residual = (dropped + residual) if residual is not None else dropped hidden_states = self.norm1(residual.to(dtype=self.norm1.weight.dtype)) if self.residual_in_fp32: residual = residual.to(torch.float32) if mixer_kwargs is None: mixer_kwargs = {} if mixer_subset is not None: mixer_kwargs['mixer_subset'] = mixer_subset hidden_states = self.mixer(hidden_states, **mixer_kwargs) if mixer_subset is not None: residual = residual[:, mixer_subset] if not isinstance(self.mlp, nn.Identity): dropped = self.drop_path2(self.dropout2(hidden_states)) residual = (dropped + residual) if residual is not None else dropped hidden_states = self.norm2(residual.to(dtype=self.norm2.weight.dtype)) if self.residual_in_fp32: residual = residual.to(torch.float32) hidden_states = self.mlp(hidden_states) return hidden_states, residual else: assert residual is None mixer_out = self.mixer( hidden_states, **(mixer_kwargs if mixer_kwargs is not None else {}) ) if self.return_residual: # mixer out is actually a pair here mixer_out, hidden_states = mixer_out hidden_states = self.norm1((self.drop_path1(self.dropout1(mixer_out)) + hidden_states).to(dtype=self.norm1.weight.dtype)) if not isinstance(self.mlp, nn.Identity): mlp_out = self.mlp(hidden_states) if self.return_residual: # mlp out is actually a pair here mlp_out, hidden_states = mlp_out hidden_states = self.norm2((self.drop_path2(self.dropout2(mlp_out)) + hidden_states).to(dtype=self.norm2.weight.dtype)) return hidden_states def create_mixer_cls(layer=None, attn_layer_idx=None, attn_cfg=None, layer_idx=None, device=None, dtype=None): factory_kwargs = {'device': device, 'dtype': dtype} if attn_layer_idx is not None and layer_idx in attn_layer_idx: causal = True if attn_cfg is None else attn_cfg.pop('causal', True) mha_cls = MHA mixer_cls = partial(mha_cls, causal=causal, layer_idx=layer_idx, **(attn_cfg if attn_cfg is not None else {}),**factory_kwargs) else: mixer_cls = instantiate(registry.layer, layer, partial=True, layer_idx=layer_idx, **factory_kwargs) return mixer_cls def create_mlp_cls(d_model, d_inner=None, device=None, dtype=None): factory_kwargs = {'device': device, 'dtype': dtype} inner_dim = d_inner if d_inner is not None else 4 * d_model mlp_cls = partial(Mlp, hidden_features=inner_dim, activation=partial(F.gelu, approximate='tanh'), **factory_kwargs) return mlp_cls def create_block(d_model, d_inner=None, layer=None, attn_layer_idx=None, attn_cfg=None, layer_norm_epsilon=1e-5, resid_dropout1=0.0, resid_dropout2=0.0, residual_in_fp32=False, layer_idx=None, device=None, dtype=None): factory_kwargs = {'device': device, 'dtype': dtype} mixer_cls = create_mixer_cls(layer=layer, attn_layer_idx=attn_layer_idx, attn_cfg=attn_cfg, layer_idx=layer_idx, **factory_kwargs) mlp_cls = create_mlp_cls(d_model, d_inner=d_inner, **factory_kwargs) norm_cls = partial(nn.LayerNorm, eps=layer_norm_epsilon, **factory_kwargs) block = Block(d_model, mixer_cls, mlp_cls, norm_cls=norm_cls, prenorm=True, resid_dropout1=resid_dropout1, resid_dropout2=resid_dropout2,residual_in_fp32=residual_in_fp32) block.layer_idx = layer_idx return block # https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454 def _init_weights(module, n_layer, initializer_range=0.02, rescale_prenorm_residual=True, glu_act=False): if isinstance(module, nn.Linear): nn.init.normal_(module.weight, std=initializer_range) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, std=initializer_range) if rescale_prenorm_residual: # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme: # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers. # > -- GPT-2 :: https://openai.com/blog/better-language-models/ # # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py for name, p in module.named_parameters(): if name in ["out_proj.weight", "fc2.weight"]: # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block nn.init.normal_(p, mean=0.0, std=initializer_range / math.sqrt(2 * n_layer)) # If using GLU activation for now, we scale the std by 2 elif name in ["output_linear.0.weight"]: # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block if not glu_act: nn.init.normal_(p, mean=0.0, std=initializer_range / math.sqrt(2 * n_layer)) else: out_features = p.shape[0] # Multiplying the first half of the matrix by 2 since sigmoid scales it down by 0.5 # on average. nn.init.normal_(p[:out_features // 2], mean=0.0, std=initializer_range / math.sqrt(2 * n_layer) * 2) class LMBackbone(nn.Module): def __init__(self, d_model: int, n_layer: int, d_inner: int, vocab_size: int, process_group=None, layer=None, attn_layer_idx=None, attn_cfg=None, max_position_embeddings=0, resid_dropout: float = 0.0, embed_dropout: float = 0.1, layer_norm_epsilon: float = 1e-5, initializer_cfg=None,residual_in_fp32=False, device=None, dtype=None, **kwargs) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.process_group = process_group self.residual_in_fp32 = residual_in_fp32 self.embeddings = GPT2Embeddings(d_model, vocab_size, max_position_embeddings, **factory_kwargs) self.layers = nn.ModuleList([create_block( d_model, d_inner=d_inner, layer=layer, attn_layer_idx=attn_layer_idx, attn_cfg=attn_cfg, layer_norm_epsilon=layer_norm_epsilon, resid_dropout1=embed_dropout if i == 0 else resid_dropout, resid_dropout2=resid_dropout, residual_in_fp32=residual_in_fp32,layer_idx=i, **factory_kwargs, ) for i in range(n_layer)]) self.drop_f = nn.Dropout(resid_dropout) self.ln_f = nn.LayerNorm(d_model, eps=layer_norm_epsilon, **factory_kwargs) self.apply(partial(_init_weights, n_layer=n_layer, **(initializer_cfg if initializer_cfg is not None else {}))) def forward(self, input_ids, position_ids=None): hidden_states = self.embeddings(input_ids, position_ids=position_ids,) residual = None for layer in self.layers: hidden_states, residual = layer(hidden_states, residual) dropped = self.drop_f(hidden_states) residual = (dropped + residual) if residual is not None else dropped hidden_states = self.ln_f(residual.to(dtype=self.ln_f.weight.dtype)) return hidden_states class SimpleLMHeadModel(nn.Module): def __init__(self, d_model: int, n_layer: int, d_inner: int, vocab_size: int, layer=None, attn_layer_idx=None, attn_cfg=None, max_position_embeddings=0, resid_dropout: float = 0.0, embed_dropout: float = 0.1, layer_norm_epsilon: float = 1e-5, initializer_cfg=None,residual_in_fp32=False, pad_vocab_size_multiple: int = 1, device=None, dtype=None, **kwargs) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() if vocab_size % pad_vocab_size_multiple != 0: vocab_size += pad_vocab_size_multiple - (vocab_size % pad_vocab_size_multiple) self.backbone = LMBackbone( d_model=d_model, n_layer=n_layer, d_inner=d_inner, vocab_size=vocab_size, layer=layer, attn_layer_idx=attn_layer_idx, attn_cfg=attn_cfg, max_position_embeddings=max_position_embeddings, resid_dropout=resid_dropout, embed_dropout=embed_dropout, layer_norm_epsilon=layer_norm_epsilon, initializer_cfg=initializer_cfg, residual_in_fp32=residual_in_fp32, **factory_kwargs, **kwargs ) self.lm_head = nn.Linear(d_model, vocab_size, bias=False, **factory_kwargs) # Initialize weights and apply final processing self.apply(partial(_init_weights, n_layer=n_layer, **(initializer_cfg if initializer_cfg is not None else {}))) self.tie_weights() def tie_weights(self): self.lm_head.weight = self.backbone.embeddings.word_embeddings.weight def forward(self, input_ids, position_ids=None, state=None): # state for the repo interface hidden_states = self.backbone(input_ids, position_ids=position_ids) lm_logits = self.lm_head(hidden_states) CausalLMOutput = namedtuple('CausalLMOutput', ['logits']) return CausalLMOutput(logits=lm_logits), None
safari-main
src/models/sequence/simple_lm.py
""" Implementation of FFN block in the style of Transformers """ from functools import partial from torch import nn from src.models.sequence.base import SequenceModule from src.models.nn import LinearActivation, DropoutNd class FF(SequenceModule): def __init__(self, d_input, expand=2, d_output=None, transposed=False, activation='gelu', initializer=None, dropout=0.0, tie_dropout=False): super().__init__() self.d_output = d_input if d_output is None else d_output self.transposed = transposed d_inner = expand * d_input linear1 = LinearActivation( d_input, d_inner, transposed=transposed, activation=activation, initializer=initializer, activate=True, ) dropout_cls = partial(DropoutNd, transposed=self.transposed) if tie_dropout else nn.Dropout # dropout_cls = nn.Dropout2d if self.transposed else nn.Dropout drop = dropout_cls(dropout) if dropout > 0.0 else nn.Identity() linear2 = LinearActivation( d_inner, self.d_output, transposed=transposed, activation=None, initializer=initializer, activate=False, ) self.ff = nn.Sequential( linear1, drop, linear2, ) def forward(self, x, *args, **kwargs): return self.ff(x), None def step(self, x, state, **kwargs): # x: [batch, d_input] if self.transposed: # expects: [batch, d_input, seq_len] return self.ff(x.unsqueeze(-1)).squeeze(-1), state else: return self.ff(x), state
safari-main
src/models/sequence/ff.py
import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from src.models.sequence.ssm.ss_kernel import SSKernel try: from src.ops.fftconv import fftconv_func except ImportError: fftconv_func = None @torch.jit.script def mul_sum(q, y): return (q * y).sum(dim=1) class H3(nn.Module): def __init__( self, d_model, d_state=64, l_max=None, head_dim=1, use_fast_fftconv=False, dropout=0.0, # Just to absorb the kwarg layer_idx=None, device=None, dtype=None, # SSM Kernel arguments **kernel_args, ): """ d_state: the dimension of the state, also denoted by N l_max: the maximum kernel length, also denoted by L. Set l_max=None to always use a global kernel See the class .kernel.SSKernel for the kernel constructor which accepts kernel_args. Relevant options that are worth considering and tuning include "mode" + "measure", "dt_min", "dt_max", "lr" Other options are all experimental and should not need to be configured """ factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.d_model = d_model self.head_dim = head_dim assert d_model % head_dim == 0 self.H = d_model // head_dim self.N = d_state self.L = l_max self.layer_idx = layer_idx self.use_fast_fftconv = use_fast_fftconv if self.use_fast_fftconv: assert fftconv_func is not None, 'Need to install fftconv' self.q_proj = nn.Linear(self.d_model, self.d_model, **factory_kwargs) self.k_proj = nn.Linear(self.d_model, self.d_model, **factory_kwargs) self.v_proj = nn.Linear(self.d_model, self.d_model, **factory_kwargs) # TODO: SSKernel doesn't take device argument yet self.ssm_k_kernel = SSKernel(self.d_model, N=d_state, L=self.L, mode='shift', lr=kernel_args.get('lr', None)) self.ssm_k_D = nn.Parameter(torch.randn(self.d_model)) # S4D Kernel self.kernel = SSKernel(self.H, N=self.N, L=self.L, channels=1, **kernel_args) self.D = nn.Parameter(torch.randn(self.H, **factory_kwargs)) # Pointwise # position-wise output transform to mix features # Don't use FusedDense since the layout is H first self.output_linear = nn.Linear(self.d_model, self.d_model) def forward(self, u, inference_params=None): """ u: (B L H) Returns: same shape as u """ L_og = u.size(-2) if self.use_fast_fftconv and L_og % 2 != 0: u = F.pad(u, (0, 0, 0, 1)) L = u.size(-2) use_fast_fftconv = self.use_fast_fftconv and inference_params is None state_k, state = None, None if inference_params is not None: assert self.layer_idx is not None if self.layer_idx not in inference_params.key_value_memory_dict: batch_shape = (u.shape[0] * self.head_dim * self.head_dim,) state_k = self.ssm_k_kernel.default_state(*batch_shape) state = self.kernel.default_state(*batch_shape) inference_params.key_value_memory_dict[self.layer_idx] = (state_k, state) else: state_k, state = inference_params.key_value_memory_dict[self.layer_idx] if inference_params.sequence_len_offset == 0: self.ssm_k_kernel._setup_step() self.kernel._setup_step() if inference_params is not None and inference_params.sequence_len_offset > 0: y, next_state_k, next_state = self.step(u, state_k, state) inference_params.key_value_memory_dict[self.layer_idx][0].copy_(next_state_k) inference_params.key_value_memory_dict[self.layer_idx][1].copy_(next_state) return y # Compute SS Kernel L_kernel = L if self.L is None else min(L, self.L ) ssm_kernel, k_state = self.kernel(L=L_kernel, state=state, rate=1.0) # (C H L) (B C H L) ssm_kernel = rearrange(ssm_kernel, '1 h l -> h l') u = rearrange(u, 'b l h -> (b l) h') dtype = (self.q_proj.weight.dtype if not torch.is_autocast_enabled() else torch.get_autocast_gpu_dtype()) q = self.q_proj.weight @ u.T + self.q_proj.bias.to(dtype).unsqueeze(-1) k = self.k_proj.weight @ u.T + self.k_proj.bias.to(dtype).unsqueeze(-1) v = self.v_proj.weight @ u.T + self.v_proj.bias.to(dtype).unsqueeze(-1) q, k, v = [rearrange(x, 'h (b l) -> b h l', l=L) for x in [q, k, v]] k_og = k ssm_k_kernel, _ = self.ssm_k_kernel(L=L_kernel, state=state_k, rate=1.0) # (C H L) (B C H L) ssm_k_kernel = rearrange(ssm_k_kernel, '1 h l -> h l') if not use_fast_fftconv: fft_size = L_kernel + L ssm_k_kernel_f = torch.fft.rfft(ssm_k_kernel, n=fft_size) # (H 2L) k_f = torch.fft.rfft(k.to(ssm_kernel.dtype), n=fft_size) # (B H 2L) shift_k_out = torch.fft.irfft(ssm_k_kernel_f * k_f, n=fft_size)[..., :L] k = shift_k_out + rearrange(self.ssm_k_D, 'h -> h 1') * k else: dropout_mask = None # No GeLU after the SSM # We want output_hbl=True so that k has the same layout as q and v for the next # fftconv k = fftconv_func(k, ssm_k_kernel, self.ssm_k_D, dropout_mask, False, False, True) # This line below looks like it doesn't do anything, but it gets the stride right # for the case batch_size=1. In that case k has stride (L, L, 1), but q and v has # stride (H * L, L, 1). The two strides are equivalent because batch_size=1, but # the C++ code doesn't like that. k = rearrange(rearrange(k, 'b h l -> h b l'), 'h b l -> b h l') if not use_fast_fftconv: fft_size = L_kernel + L # kv = k * v kv = (rearrange(k, 'b (h d1) l -> b d1 1 h l', d1=self.head_dim) * rearrange(v, 'b (h d2) l -> b 1 d2 h l', d2=self.head_dim)) # b d1 d2 h l kv_f = torch.fft.rfft(kv.to(dtype=ssm_kernel.dtype), n=fft_size) / fft_size ssm_kernel_f = torch.fft.rfft(ssm_kernel, n=fft_size) # h L+1 y = torch.fft.irfft(kv_f * ssm_kernel_f, n=fft_size, norm='forward')[..., :L] # b d1 d2 h l y = y + kv * self.D.unsqueeze(-1) # b d1 d2 h l q = rearrange(q, 'b (h d1) l -> b d1 1 h l', d1=self.head_dim) # einsum is way slower than multiply and then sum. if self.head_dim > 1: y = mul_sum(y, q) y = rearrange(y, 'b d h l -> b (d h) l') else: y = rearrange(y * q, 'b 1 1 h l -> b h l') else: dropout_mask = None # No GeLU after the SSM # Set output_hbl_layout=True since we'll be doing a matmul right after y = fftconv_func(k, ssm_kernel, self.D, dropout_mask, False, torch.is_autocast_enabled(), True, v, self.head_dim, q) y = rearrange(y, 'b h l -> b l h') if state is not None: assert inference_params is not None # TODO: This doesn't ever happen? # if inference_params.sequence_len_offset > 0: # y = y + k_state inference_params.key_value_memory_dict[self.layer_idx][0].copy_( self.ssm_k_kernel.forward_state(k_og, state_k) ) inference_params.key_value_memory_dict[self.layer_idx][1].copy_( self.kernel.forward_state(rearrange(kv, 'b d1 d2 h l -> (b d1 d2) h l'), state) ) # y could be in fp32 because of the SSMs if not torch.is_autocast_enabled(): y = y.to(dtype=self.output_linear.weight.dtype) y = self.output_linear(y) if L_og < L: y = y[:, :L_og, :] return y def step(self, u, state_k, state): q, k, v = self.q_proj(u), self.k_proj(u), self.v_proj(u) shift_k, next_state_k = self.ssm_k_kernel.step(rearrange(k, 'b 1 h -> b h'), state_k) k = shift_k + k * self.ssm_k_D # kv = k * v kv = (rearrange(k, 'b 1 (h d1) -> b d1 1 h', d1=self.head_dim) * rearrange(v, 'b 1 (h d2) -> b 1 d2 h', d2=self.head_dim)) # b d1 d2 h y, next_state = self.kernel.step(rearrange(kv, 'b d1 d2 h -> (b d1 d2) h'), state) y = (rearrange(y, '(b d1 d2) 1 h -> b d1 d2 h', d1=self.head_dim, d2=self.head_dim) + kv * self.D) q = rearrange(q, 'b 1 (h d1) -> b d1 1 h', d1=self.head_dim) if self.head_dim > 1: y = mul_sum(y, q) y = rearrange(y, 'b d h l -> b (d h) l') else: y = rearrange(y * q, 'b 1 1 h -> b 1 h') # y could be in fp32 because of the SSMs if not torch.is_autocast_enabled(): y = y.to(dtype=self.output_linear.weight.dtype) return self.output_linear(y), next_state_k, next_state
safari-main
src/models/sequence/h3.py
'''PyTorch version of the block FFT convolution as described in the H3 paper.''' import torch from einops import rearrange import math from torch import nn from src.models.nn import Activation from src.utils.train import OptimModule def ref_dft_matrix(N, H=1): """Compute the DFT matrix of size N x N. This is where we could add extra compute for free.""" # n = torch.arange(N) n = torch.arange(N).cuda() k = n.view(-1, 1) M = torch.exp(-2j * torch.pi * n * k / N) return torch.view_as_real(M.repeat(H, 1, 1)) def compute_twiddle_factors(n, m): """Compute the twiddle factors of size n x m""" # n_a = torch.arange(n).view(-1, 1) # m_a = torch.arange(m) n_a = torch.arange(n).cuda().view(-1, 1) m_a = torch.arange(m).cuda() N = n * m M = torch.exp(-2j * torch.pi * n_a * m_a / N) return torch.view_as_real(M) def _cooley_tukey( k, n, m, dft_matrix=ref_dft_matrix, max_m=16, activation=None, ): ''' Compute the FFT using the general Cooley-Tukey algorithm: * Reshape to (m, n) * Do n m-length FFTs along the rows * Transpose to (n, m), multiply by twiddle factors * Do m n-length FFTs along the rows This function assumes that m <= 16 and recurses on n. The base case is n <= 16 (we are simulating tensor cores of 16x16 mm). The dft_matrix function is overwriteable so that we can replace it with learnable parameters in a model. ''' assert m <= max_m if activation is not None: act_fn = Activation(activation) k = rearrange(k, '... (m n) -> ... m n', m=m, n=n) # (m, n) # do n m-length FFTs if activation is None: mat = torch.view_as_complex(dft_matrix(m)) k_f = torch.einsum('... m o, ... o n -> ... m n', mat, k) # (..., m, n) else: mat = torch.view_as_complex(dft_matrix(m)) k_f = torch.view_as_complex(act_fn( torch.view_as_real(torch.einsum('... m o, ... o n -> ... m n', mat, k)) )) # (..., m, n) # multiply by twiddle factors twi = torch.view_as_complex(compute_twiddle_factors(n, m)) # (n, m) k_f = torch.einsum('n m, ... m n -> ... n m', twi, k_f) # (..., n, m) if n <= max_m: # do m n-length FFTs if activation is None: mat = torch.view_as_complex(dft_matrix(n)) k_f = torch.einsum('... n o, ... o m -> ... n m', mat, k_f) # (.., n, m) else: mat = torch.view_as_complex(dft_matrix(n)) k_f = torch.view_as_complex(act_fn( torch.view_as_real(torch.einsum('... n o, ... o m -> ... n m', mat, k_f)) )) # (.., n, m) else: # recurse k_f = rearrange(k_f, '... h n m -> ... m h n') k_f = _cooley_tukey(k_f, n // max_m, max_m, dft_matrix, max_m, activation) k_f = rearrange(k_f, '... m h n -> ... h n m') # reshape for the output k_f = rearrange(k_f, '... n m -> ... (n m)') # (..., n*m) return k_f def block_fft( k, N, dft_matrix=ref_dft_matrix, max_m=16, **kwargs, ): ''' Compute the FFT of size N of the vector k, using _block_fft_recurse. The dft_matrix function is overwriteable so that we can replace it with learnable parameters in a model. ''' if not math.log(N, 2).is_integer(): N = int(2 ** math.ceil(math.log(N, 2))) # pad k with zeros if necessary (e.g. for causality) if k.shape[-1] != N: k = nn.ConstantPad1d((0, N - k.shape[-1]), 0)(k) if N <= max_m: mat = torch.view_as_complex(dft_matrix(m)) return torch.einsum('... n o, ... o -> ... n', mat, k) # (.., n, m) n = N // max_m m = max_m return _cooley_tukey(k, n, m, dft_matrix, max_m, **kwargs) class BlockFFT(OptimModule): ''' Learnable Block FFT module. Args: learn_dft_matrix (bool): If True, learn a different DFT matrix for lengths 2, 4, 8, and 16. If False, this module computes a normal FFT. ''' def __init__(self, learn_dft_matrices=True, H=1, max_m=16, dft_lr=0.001, dropout=0, learn_additive=False, **block_fft_args): super().__init__() self.learn_dft_matrices = learn_dft_matrices self.block_fft_args = block_fft_args self.max_m=max_m self.drop = torch.nn.Dropout(p=dropout) self.learn_additive=learn_additive # get the powers of 2 up to max_m assert math.log(max_m, 2).is_integer(), 'max_m must be a power of 2' self.powers = [ 2 ** (i + 1) for i in range(int(math.log(max_m, 2))) ] if learn_dft_matrices: assert dft_lr>0,"If learn_dft_matrices=True dft_lr must be positive" self.dft_matrices = nn.ParameterList() for n in self.powers: setattr(self,f"mat_{n}",nn.Parameter( 0.01 * torch.randn(H, n, n, 2) if self.learn_additive else ref_dft_matrix(n, H=H), requires_grad=True)) self.register(f"mat_{n}",getattr(self,f"mat_{n}"),dft_lr) self.dft_matrices.append(getattr(self,"mat_{}".format(n))) def compute_dft_matrix(self, n): if not self.learn_dft_matrices: return ref_dft_matrix(n) else: assert n in self.powers if self.learn_additive: mat = ref_dft_matrix(n) return mat + self.drop(self.dft_matrices[int(math.log(n, 2) - 1)]) else: return self.drop(self.dft_matrices[int(math.log(n, 2) - 1)]) def forward(self, x, N,forward=True): '''Compute an FFT (forward=True) or iFFT (forward=False) of length N over x.''' if forward: return block_fft(x, N, dft_matrix=self.compute_dft_matrix, **self.block_fft_args) else: return (1/(N))*torch.conj(block_fft(torch.conj(x), N, dft_matrix=self.compute_dft_matrix, **self.block_fft_args)) if __name__ == "__main__": B = 128 H = 29 N = 8192 n = 2 m = 8 k = torch.randn(B, H, N).to(torch.complex64) print(f'(B, H, N) = ({B}, {H}, {N})') # test FFT k_f = block_fft(k, N) k_f_ref = torch.fft.fft(k, N) print('L-inf error in FFT: ', torch.max(torch.abs(k_f - k_f_ref)).item())
safari-main
src/models/sequence/block_fft.py
from .base import SequenceModule, TransposedModule from .model import SequenceModel from .ff import FF
safari-main
src/models/sequence/__init__.py
import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange import opt_einsum as oe optimized = True if optimized: contract = oe.contract else: contract = torch.einsum from src.models.nn import LinearActivation, Activation, DropoutNd from src.models.sequence.block_fft import BlockFFT from src.models.sequence.long_conv_kernel import LongConvKernel class LongConv(nn.Module): def __init__( self, d_model, l_max=1024, channels=1, bidirectional=False, # Arguments for position-wise feedforward components activation='gelu', # activation between conv and FF postact='glu', # activation after FF initializer=None, # initializer on FF weight_norm=False, # weight normalization on FF dropout=0.0, tie_dropout=False, transposed=True, # axis ordering (B, L, D) or (B, D, L) verbose=False, block_fft_conv=False, # replace the FFT conv with Monarch blocks block_fft_conv_args={}, # SSM Kernel arguments **kernel_args, ): """ d_state: the dimension of the state, also denoted by N l_max: the maximum kernel length, also denoted by L channels: can be interpreted as a number of "heads"; the SSM is a map from a 1-dim to C-dim sequence. It's not recommended to change this unless desperate for things to tune; instead, increase d_model for larger models bidirectional: if True, convolution kernel will be two-sided Position-wise feedforward components: -------------------- activation: activation in between SS and FF postact: activation after FF ('id' for no activation, None to remove FF layer) initializer: initializer on FF weight_norm: weight normalization on FF dropout: standard dropout argument. tie_dropout=True ties the dropout mask across the sequence length, emulating nn.Dropout1d Other arguments: -------------------- transposed: choose backbone axis ordering of (B, L, H) (if False) or (B, H, L) (if True) [B=batch size, L=sequence length, H=hidden dimension] """ super().__init__() if verbose: import src.utils.train log = src.utils.train.get_logger(__name__) log.info(f"Constructing Long Conv (H, L) = ({d_model}, {l_max})") self.d_model = d_model self.H = d_model self.L = l_max self.bidirectional = bidirectional self.channels = channels self.transposed = transposed self.block_fft_conv = block_fft_conv self.block_fft_conv_args = block_fft_conv_args self.D = nn.Parameter(torch.randn(channels, self.H)) if self.bidirectional: channels *= 2 # SSM Kernel self.kernel = LongConvKernel(self.H, L=self.L, channels=channels, verbose=verbose, **kernel_args) if self.block_fft_conv: self.block_fft_u = BlockFFT(**self.block_fft_conv_args) self.block_fft_k = BlockFFT(**self.block_fft_conv_args) # Pointwise self.activation = Activation(activation) # dropout_fn = nn.Dropout2d if self.transposed else nn.Dropout # Broken in torch==1.11 dropout_fn = DropoutNd if tie_dropout else nn.Dropout self.dropout = dropout_fn(dropout) if dropout > 0.0 else nn.Identity() # position-wise output transform to mix features if postact is None: self.output_linear = nn.Identity() else: self.output_linear = LinearActivation( self.d_model * self.channels, self.d_model, # self.H*self.channels, # self.d_model*(1 if self.gate is None else self.gate), transposed=self.transposed, initializer=initializer, activation=postact, activate=True, weight_norm=weight_norm, ) def forward(self, u, state=None, rate=1.0, lengths=None, **kwargs): # absorbs return_output and transformer src mask """ u: (B H L) if self.transposed else (B L H) state: (H N) never needed, remnant from state spaces repo Returns: same shape as u """ if not self.transposed: u = u.transpose(-1, -2) L = u.size(-1) # Mask out padding tokens # TODO handle option for mask - instead of lengths, which assumes suffix padding if isinstance(lengths, int): if lengths != L: lengths = torch.tensor(lengths, dtype=torch.long, device=u.device) else: lengths = None if lengths is not None: assert isinstance(lengths, torch.Tensor) and lengths.ndim == 1 and lengths.size(0) in [1, u.size(0)] mask = torch.where(torch.arange(L, device=lengths.device) < lengths[:, None, None], 1., 0.) u = u * mask # Compute SS Kernel L_kernel = L if self.L is None else min(L, round(self.L / rate)) k, _ = self.kernel(L=L_kernel, rate=rate, state=state) # (C H L) (B C H L) # Convolution if self.bidirectional: k0, k1 = rearrange(k, '(s c) h l -> s c h l', s=2) k = F.pad(k0, (0, L)) \ + F.pad(k1.flip(-1), (L, 0)) if self.block_fft_conv: k_f = self.block_fft_k(k.to(torch.complex64), N=L_kernel+L) # (C H L) u_f = self.block_fft_u(u.to(torch.complex64), N=L_kernel+L) # (B H L) y_f = contract('bhl,chl->bchl', u_f, k_f) if self.learn_ifft: y = self.block_fft_u(y_f, N=L_kernel+L,forward=False).real[..., :L] else: y = torch.fft.ifft(y_f, n=L_kernel+L, dim=-1).real[..., :L] # (B C H L) else: k_f = torch.fft.rfft(k, n=L_kernel+L) # (C H L) u_f = torch.fft.rfft(u, n=L_kernel+L) # (B H L) y_f = contract('bhl,chl->bchl', u_f, k_f) y = torch.fft.irfft(y_f, n=L_kernel+L)[..., :L] # (B C H L) # Compute skip connection y = y + contract('bhl,ch->bchl', u, self.D) # Reshape to flatten channels y = rearrange(y, '... c h l -> ... (c h) l') if not self.transposed: y = y.transpose(-1, -2) y = self.activation(y) y = self.dropout(y) y = self.output_linear(y) return y, None @property def d_state(self): return self.H @property def d_output(self): return self.d_model
safari-main
src/models/sequence/long_conv.py
# Copyright (c) 2023, Tri Dao, Dan Fu. import copy import math import re from functools import partial from collections import namedtuple, OrderedDict from collections.abc import Sequence import torch import torch.nn as nn import torch.nn.functional as F from transformers.models.gpt2.configuration_gpt2 import GPT2Config from einops import rearrange from flash_attn.modules.mha import MHA, ParallelMHA from flash_attn.modules.mlp import Mlp, FusedMLP, ParallelFusedMLP from flash_attn.modules.block import Block from flash_attn.modules.embedding import GPT2Embeddings, ParallelGPT2Embeddings from flash_attn.utils.generation import GenerationMixin from flash_attn.utils.distributed import sync_shared_params, all_gather_raw try: from flash_attn.ops.fused_dense import ColumnParallelLinear except ImportError: ColumnParallelLinear = None try: from flash_attn.ops.layer_norm import dropout_add_layer_norm except ImportError: dropout_add_layer_norm = None from src.utils import instantiate import src.utils.registry as registry def create_mixer_cls(layer=None, process_group=None, attn_layer_idx=None, attn_cfg=None, layer_idx=None, sequence_parallel=True, device=None, dtype=None): factory_kwargs = {'device': device, 'dtype': dtype} parallel_kwargs = ({'process_group': process_group, 'sequence_parallel': sequence_parallel} if process_group is not None else {}) if attn_layer_idx is not None and layer_idx in attn_layer_idx: causal = True if attn_cfg is None else attn_cfg.pop('causal', True) fused_bias_fc = False if attn_cfg is None else attn_cfg.get('fused_bias_fc', False) if not fused_bias_fc: assert process_group is None, 'TensorParallel MHA requires fused_bias_fc' mha_cls = MHA if process_group is None else ParallelMHA # ParallelMHA doesn't take 'fused_bias_fc', it is assumed that we fuse matmul + bias if process_group is not None: attn_cfg = copy.deepcopy(attn_cfg) # Don't modify the original cfg attn_cfg.pop('fused_bias_fc', None) mixer_cls = partial(mha_cls, causal=causal, layer_idx=layer_idx, **(attn_cfg if attn_cfg is not None else {}), **parallel_kwargs, **factory_kwargs) else: fused_bias_fc = False if layer is None else layer.get('fused_bias_fc', False) if process_group is not None: assert fused_bias_fc, 'TensorParallel SSM requires fused_bias_fc' mixer_cls = instantiate(registry.layer, layer, partial=True, layer_idx=layer_idx, **factory_kwargs, **parallel_kwargs) # mixer_cls = partial(ssm_cls, layer_idx=layer_idx, # **(ssm_cfg if ssm_cfg is not None else {}), # **parallel_kwargs, **factory_kwargs) return mixer_cls def create_mlp_cls(d_model, d_inner=None, process_group=None, fused_mlp=False, sequence_parallel=True, device=None, dtype=None): factory_kwargs = {'device': device, 'dtype': dtype} inner_dim = d_inner if d_inner is not None else 4 * d_model if process_group is not None: assert fused_mlp, 'Tensor Parallel is only implemented for FusedMLP' if not fused_mlp: mlp_cls = partial(Mlp, hidden_features=inner_dim, activation=partial(F.gelu, approximate='tanh'), **factory_kwargs) else: mlp_cls = FusedMLP if process_group is None else ParallelFusedMLP parallel_kwargs = ({'process_group': process_group, 'sequence_parallel': sequence_parallel} if process_group is not None else {}) mlp_cls = partial(mlp_cls, hidden_features=inner_dim, **parallel_kwargs, **factory_kwargs) return mlp_cls def create_block(d_model, d_inner=None, process_group=None, layer=None, attn_layer_idx=None, attn_cfg=None, layer_norm_epsilon=1e-5, resid_dropout1=0.0, resid_dropout2=0.0, residual_in_fp32=False, fused_mlp=False, fused_dropout_add_ln=False, layer_idx=None, sequence_parallel=True, device=None, dtype=None): factory_kwargs = {'device': device, 'dtype': dtype} mixer_cls = create_mixer_cls(layer=layer, process_group=process_group, attn_layer_idx=attn_layer_idx, attn_cfg=attn_cfg, layer_idx=layer_idx, sequence_parallel=sequence_parallel, **factory_kwargs) mlp_cls = create_mlp_cls(d_model, d_inner=d_inner, process_group=process_group, fused_mlp=fused_mlp, sequence_parallel=sequence_parallel, **factory_kwargs) norm_cls = partial(nn.LayerNorm, eps=layer_norm_epsilon, **factory_kwargs) block = Block(d_model, mixer_cls, mlp_cls, norm_cls=norm_cls, prenorm=True, resid_dropout1=resid_dropout1, resid_dropout2=resid_dropout2, fused_dropout_add_ln=fused_dropout_add_ln, residual_in_fp32=residual_in_fp32, sequence_parallel=sequence_parallel and process_group is not None, mark_shared_params=process_group is not None) block.layer_idx = layer_idx return block # https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454 def _init_weights(module, n_layer, initializer_range=0.02, rescale_prenorm_residual=True, glu_act=False): if isinstance(module, nn.Linear): nn.init.normal_(module.weight, std=initializer_range) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, std=initializer_range) if rescale_prenorm_residual: # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme: # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers. # > -- GPT-2 :: https://openai.com/blog/better-language-models/ # # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py for name, p in module.named_parameters(): if name in ["out_proj.weight", "fc2.weight"]: # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block nn.init.normal_(p, mean=0.0, std=initializer_range / math.sqrt(2 * n_layer)) # If using GLU activation for now, we scale the std by 2 elif name in ["output_linear.0.weight"]: # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block if not glu_act: nn.init.normal_(p, mean=0.0, std=initializer_range / math.sqrt(2 * n_layer)) else: out_features = p.shape[0] # Multiplying the first half of the matrix by 2 since sigmoid scales it down by 0.5 # on average. nn.init.normal_(p[:out_features // 2], mean=0.0, std=initializer_range / math.sqrt(2 * n_layer) * 2) class LMBackbone(nn.Module): def __init__(self, d_model: int, n_layer: int, d_inner: int, vocab_size: int, process_group=None, layer=None, attn_layer_idx=None, attn_cfg=None, max_position_embeddings=0, resid_dropout: float = 0.0, embed_dropout: float = 0.1, dropout_cls=nn.Dropout, layer_norm_epsilon: float = 1e-5, initializer_cfg=None, fused_mlp=False, fused_dropout_add_ln=False, residual_in_fp32=False, sequence_parallel=True, device=None, dtype=None, **kwargs) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.process_group = process_group self.sequence_parallel = sequence_parallel self.residual_in_fp32 = residual_in_fp32 if process_group is None: self.embeddings = GPT2Embeddings(d_model, vocab_size, max_position_embeddings, **factory_kwargs) else: self.embeddings = ParallelGPT2Embeddings( d_model, vocab_size, max_position_embeddings, process_group=process_group, sequence_parallel=self.sequence_parallel, **factory_kwargs ) # We change the order of dropout, residual and layer norm: # Instead of LN -> Attn / MLP -> Dropout -> Add, we do: # Dropout -> Add -> LN -> Attn / MLP, returning both the residual branch (output of Add) and # the main branch (output of MLP). The model definition is unchanged, but the mapping of the # nn.Dropout probabilities are changed. # This is for performance reason: we can fuse dropout + add + layer_norm. self.fused_dropout_add_ln = fused_dropout_add_ln if self.fused_dropout_add_ln and dropout_add_layer_norm is None: raise ImportError('dropout_add_layer_norm is not installed') self.layers = nn.ModuleList([create_block( d_model, d_inner=d_inner, process_group=process_group, layer=layer, attn_layer_idx=attn_layer_idx, attn_cfg=attn_cfg, layer_norm_epsilon=layer_norm_epsilon, resid_dropout1=embed_dropout if i == 0 else resid_dropout, resid_dropout2=resid_dropout, residual_in_fp32=residual_in_fp32, fused_mlp=fused_mlp, fused_dropout_add_ln=fused_dropout_add_ln, layer_idx=i, sequence_parallel=self.sequence_parallel, **factory_kwargs, ) for i in range(n_layer)]) self.drop_f = nn.Dropout(resid_dropout) self.ln_f = nn.LayerNorm(d_model, eps=layer_norm_epsilon, **factory_kwargs) if process_group is not None: for p in self.ln_f.parameters(): # Mark the norm parameters as "shared_params" so that we sync their values at init. p._shared_params = True # Mark the norm params as "sequence_parallel" so we run all-reduce on their grads. if self.sequence_parallel: p._sequence_parallel = True self.apply(partial(_init_weights, n_layer=n_layer, **(initializer_cfg if initializer_cfg is not None else {}))) self.tie_weights() def tie_weights(self): if self.process_group is not None: sync_shared_params(self, self.process_group) def forward(self, input_ids, position_ids=None, inference_params=None): # If using Tensor Parallel with sequence parallel, we combine the batch and the seqlen # dimensions so that we can split on it easily, in case of small batch size. # Only the attention/SSM layers need to know the seqlen. embedding_kwargs = ({'combine_batch_seqlen_dim': True} if self.process_group is not None and self.sequence_parallel else {}) hidden_states = self.embeddings(input_ids, position_ids=position_ids, **embedding_kwargs) residual = None mixer_kwargs = ({'seqlen': input_ids.shape[1]} if self.process_group is not None and self.sequence_parallel else {}) if inference_params is not None: mixer_kwargs['inference_params'] = inference_params for layer in self.layers: hidden_states, residual = layer(hidden_states, residual, mixer_kwargs=mixer_kwargs) if not self.fused_dropout_add_ln: dropped = self.drop_f(hidden_states) residual = (dropped + residual) if residual is not None else dropped hidden_states = self.ln_f(residual.to(dtype=self.ln_f.weight.dtype)) else: # Set prenorm=False here since we don't need the residual hidden_states = dropout_add_layer_norm( hidden_states, residual, self.ln_f.weight, self.ln_f.bias, self.drop_f.p if self.training else 0.0, self.ln_f.eps, prenorm=False, residual_in_fp32=self.residual_in_fp32 ) return hidden_states class ConvLMHeadModel(nn.Module, GenerationMixin): def __init__(self, d_model: int, n_layer: int, d_inner: int, vocab_size: int, process_group=None, layer=None, attn_layer_idx=None, attn_cfg=None, max_position_embeddings=0, resid_dropout: float = 0.0, embed_dropout: float = 0.1, dropout_cls=nn.Dropout, layer_norm_epsilon: float = 1e-5, initializer_cfg=None, fused_mlp=False, fused_dropout_add_ln=False, residual_in_fp32=False, pad_vocab_size_multiple: int = 1, sequence_parallel=True, device=None, dtype=None, **kwargs) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.process_group = process_group if vocab_size % pad_vocab_size_multiple != 0: vocab_size += pad_vocab_size_multiple - (vocab_size % pad_vocab_size_multiple) self.backbone = LMBackbone( d_model=d_model, n_layer=n_layer, d_inner=d_inner, vocab_size=vocab_size, process_group=process_group, layer=layer, attn_layer_idx=attn_layer_idx, attn_cfg=attn_cfg, max_position_embeddings=max_position_embeddings, resid_dropout=resid_dropout, embed_dropout=embed_dropout, dropout_cls=dropout_cls, layer_norm_epsilon=layer_norm_epsilon, initializer_cfg=initializer_cfg, fused_mlp=fused_mlp, fused_dropout_add_ln=fused_dropout_add_ln, residual_in_fp32=residual_in_fp32, sequence_parallel=sequence_parallel, **factory_kwargs, **kwargs ) if process_group is None: self.lm_head = nn.Linear(d_model, vocab_size, bias=False, **factory_kwargs) else: if ColumnParallelLinear is None: raise ImportError('fused_dense_lib is not installed') self.lm_head = ColumnParallelLinear( d_model, vocab_size, process_group, bias=False, sequence_parallel=sequence_parallel, **factory_kwargs ) # Initialize weights and apply final processing self.apply(partial(_init_weights, n_layer=n_layer, **(initializer_cfg if initializer_cfg is not None else {}))) self.tie_weights() def tie_weights(self): self.lm_head.weight = self.backbone.embeddings.word_embeddings.weight if self.process_group is not None: sync_shared_params(self, self.process_group) def forward(self, input_ids, position_ids=None, inference_params=None, state=None): # state for the repo interface hidden_states = self.backbone(input_ids, position_ids=position_ids, inference_params=inference_params) lm_logits = self.lm_head(hidden_states) # During inference, we want the full logit for sampling if isinstance(self.lm_head, ColumnParallelLinear) and inference_params is not None: lm_logits, _ = all_gather_raw(lm_logits, self.lm_head.process_group) lm_logits = rearrange(lm_logits, '(n b) s d -> b s (n d)', b=hidden_states.shape[0]) CausalLMOutput = namedtuple('CausalLMOutput', ['logits']) return CausalLMOutput(logits=lm_logits), None def load_state_dict(self, state_dict, strict=True): # Remapping from our checkpoints that used different names def key_mapping_backbone(key): key = re.sub(r'^s4seq.encoder.', 'backbone.', key) key = re.sub(r'^embedding.', 'backbone.embeddings.word_embeddings.', key) key = re.sub(r'^backbone.norm', 'backbone.ln_0', key) key = re.sub(r'^backbone.layers.(\d+).mixer.output_linear.', r'backbone.layers.\1.mixer.out_proj.', key) return key state_dict = OrderedDict((key_mapping_backbone(k), v) for k, v in state_dict.items()) # Remapping from our checkpoints that used a different ordering of layers in the block # Previous: Mixer / MLP -> Dropout -> Add -> LN # Current: Dropout -> Add -> LN -> Attn / MLP if 'backbone.ln_0.weight' in state_dict: n_layers = len(self.backbone.layers) ln_weight = state_dict.pop(f'backbone.layers.{n_layers - 1}.norm2.weight') ln_bias = state_dict.pop(f'backbone.layers.{n_layers - 1}.norm2.bias') state_dict['backbone.ln_f.weight'] = ln_weight state_dict['backbone.ln_f.bias'] = ln_bias for l in reversed(range(n_layers)): ln_weight = state_dict.pop(f'backbone.layers.{l}.norm1.weight') ln_bias = state_dict.pop(f'backbone.layers.{l}.norm1.bias') state_dict[f'backbone.layers.{l}.norm2.weight'] = ln_weight state_dict[f'backbone.layers.{l}.norm2.bias'] = ln_bias if l > 0: ln_weight = state_dict.pop(f'backbone.layers.{l - 1}.norm2.weight') ln_bias = state_dict.pop(f'backbone.layers.{l - 1}.norm2.bias') state_dict[f'backbone.layers.{l}.norm1.weight'] = ln_weight state_dict[f'backbone.layers.{l}.norm1.bias'] = ln_bias ln_weight = state_dict.pop('backbone.ln_0.weight') ln_bias = state_dict.pop('backbone.ln_0.bias') state_dict[f'backbone.layers.0.norm1.weight'] = ln_weight state_dict[f'backbone.layers.0.norm1.bias'] = ln_bias # Previously we have separate projection matrices for q, k, v, now we stack them if 'backbone.layers.0.mixer.q_proj.weight' in state_dict: n_layers = len(self.backbone.layers) for l in range(n_layers): if f'backbone.layers.{l}.mixer.q_proj.weight' in state_dict: Wq = state_dict.pop(f'backbone.layers.{l}.mixer.q_proj.weight') Wk = state_dict.pop(f'backbone.layers.{l}.mixer.k_proj.weight') Wv = state_dict.pop(f'backbone.layers.{l}.mixer.v_proj.weight') bq = state_dict.pop(f'backbone.layers.{l}.mixer.q_proj.bias') bk = state_dict.pop(f'backbone.layers.{l}.mixer.k_proj.bias') bv = state_dict.pop(f'backbone.layers.{l}.mixer.v_proj.bias') state_dict[f'backbone.layers.{l}.mixer.Wqkv.weight'] = torch.cat( [Wq, Wk, Wv], dim=0 ) state_dict[f'backbone.layers.{l}.mixer.Wqkv.bias'] = torch.cat( [bq, bk, bv], dim=0 ) return super().load_state_dict(state_dict, strict=strict) def shard_state_dict_tp(state_dict, world_size, rank, pad_vocab_size_multiple=1): """Convert the state_dict of a standard SSM model to the state_dict of a SSM model with tensor parallel. """ layer_idx_match = [re.search(r'backbone\.layers\.(\d+)\.', k) for k in state_dict.keys()] num_hidden_layers = len(set(m.group(1) for m in layer_idx_match if m is not None)) vocab_size = state_dict['backbone.embeddings.word_embeddings.weight'].shape[0] inner_dim, hidden_size = state_dict['backbone.layers.0.mlp.fc1.weight'].shape vocab_size = (math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple) assert vocab_size % world_size == 0 assert hidden_size % world_size == 0 assert inner_dim % world_size == 0 def shard_dim(state_dict, key, dim=0): x = state_dict[key] dimension = x.shape[dim] // world_size state_dict[key] = x.narrow(dim, rank * dimension, dimension) def shard_qkv_headdim(state_dict, key): x = rearrange(state_dict[key], '(three d) ... -> three d ...', three=3) dim = x.shape[1] // world_size state_dict[key] = rearrange(x[:, rank * dim:(rank + 1) * dim], 'three d ... -> (three d) ...') shard_dim(state_dict, 'backbone.embeddings.word_embeddings.weight', 0) if 'lm_head.weight' in state_dict: shard_dim(state_dict, 'lm_head.weight', 0) if 'backbone.embeddings.position_embeddings.weight' in state_dict: shard_dim(state_dict, 'backbone.embeddings.position_embeddings.weight', -1) for i in range(num_hidden_layers): shard_qkv_headdim(state_dict, f'backbone.layers.{i}.mixer.Wqkv.weight') shard_qkv_headdim(state_dict, f'backbone.layers.{i}.mixer.Wqkv.bias') shard_dim(state_dict, f'backbone.layers.{i}.mixer.out_proj.weight', -1) if rank != 0: state_dict.pop(f'backbone.layers.{i}.mixer.out_proj.bias') shard_dim(state_dict, f'backbone.layers.{i}.mlp.fc1.weight', 0) shard_dim(state_dict, f'backbone.layers.{i}.mlp.fc1.bias', 0) shard_dim(state_dict, f'backbone.layers.{i}.mlp.fc2.weight', -1) if rank != 0: state_dict.pop(f'backbone.layers.{i}.mlp.fc2.bias') if f'backbone.layers.{i}.mixer.kernel.kernel.B' in state_dict: for name in ['D', 'ssm_k_D', 'kernel.kernel.B', 'kernel.kernel.inv_A_real', 'kernel.kernel.A_imag', 'ssm_k_kernel.kernel.B', 'kernel.kernel.log_dt']: if f'backbone.layers.{i}.mixer.{name}' in state_dict: shard_dim(state_dict, f'backbone.layers.{i}.mixer.{name}', 0) for name in ['kernel.kernel.C', 'ssm_k_kernel.kernel.C']: if f'backbone.layers.{i}.mixer.{name}' in state_dict: shard_dim(state_dict, f'backbone.layers.{i}.mixer.{name}', 1) return state_dict
safari-main
src/models/sequence/long_conv_lm.py
""" Isotropic deep sequence model backbone, in the style of ResNets / Transformers. The SequenceModel class implements a generic (batch, length, d_input) -> (batch, length, d_output) transformation """ from functools import partial import torch import torch.nn as nn from einops import rearrange from src.utils.config import to_list, to_dict from src.models.sequence.block import SequenceResidualBlock from src.models.sequence.base import SequenceModule from src.models.nn.components import Normalization, DropoutNd class SequenceModel(SequenceModule): def __init__( self, d_model, # Resize input (useful for deep models with residuals) n_layers=1, # Number of layers transposed=False, # Transpose inputs so each layer receives (batch, dim, length) dropout=0.0, # Dropout parameter applied on every residual and every layer tie_dropout=False, # Tie dropout mask across sequence like nn.Dropout1d/nn.Dropout2d prenorm=True, # Pre-norm vs. post-norm n_repeat=1, # Each layer is repeated n times per stage before applying pooling layer=None, # Layer config, must be specified residual=None, # Residual config norm=None, # Normalization config (e.g. layer vs batch) pool=None, # Config for pooling layer per stage track_norms=True, # Log norms of each layer output dropinp=0.0, # Input dropout ): super().__init__() # Save arguments needed for forward pass self.d_model = d_model self.transposed = transposed self.track_norms = track_norms # Input dropout (not really used) dropout_fn = partial(DropoutNd, transposed=self.transposed) if tie_dropout else nn.Dropout self.drop = dropout_fn(dropinp) if dropinp > 0.0 else nn.Identity() layer = to_list(layer, recursive=False) # Some special arguments are passed into each layer for _layer in layer: # If layers don't specify dropout, add it if _layer.get('dropout', None) is None: _layer['dropout'] = dropout # Ensure all layers are shaped the same way _layer['transposed'] = transposed # Duplicate layers layers = layer * n_layers * n_repeat # Instantiate layers _layers = [] d = d_model for l, layer in enumerate(layers): # Pool at the end of every n_repeat blocks pool_cfg = pool if (l+1) % n_repeat == 0 else None block = SequenceResidualBlock(d, l+1, prenorm=prenorm, dropout=dropout, tie_dropout=tie_dropout, transposed=transposed, layer=layer, residual=residual, norm=norm, pool=pool_cfg) _layers.append(block) d = block.d_output self.d_output = d self.layers = nn.ModuleList(_layers) if prenorm: if norm is None: self.norm = None elif isinstance(norm, str): self.norm = Normalization(self.d_output, transposed=self.transposed, _name_=norm) else: self.norm = Normalization(self.d_output, transposed=self.transposed, **norm) else: self.norm = nn.Identity() def forward(self, inputs, *args, state=None, **kwargs): """ Inputs assumed to be (batch, sequence, dim) """ if self.transposed: inputs = rearrange(inputs, 'b ... d -> b d ...') inputs = self.drop(inputs) # Track norms if self.track_norms: output_norms = [torch.mean(inputs.detach() ** 2)] # Apply layers outputs = inputs prev_states = [None] * len(self.layers) if state is None else state next_states = [] for layer, prev_state in zip(self.layers, prev_states): outputs, state = layer(outputs, *args, state=prev_state, **kwargs) next_states.append(state) if self.track_norms: output_norms.append(torch.mean(outputs.detach() ** 2)) if self.norm is not None: outputs = self.norm(outputs) if self.transposed: outputs = rearrange(outputs, 'b d ... -> b ... d') if self.track_norms: metrics = to_dict(output_norms, recursive=False) self.metrics = {f'norm/{i}': v for i, v in metrics.items()} return outputs, next_states @property def d_state(self): d_states = [layer.d_state for layer in self.layers] return sum([d for d in d_states if d is not None]) @property def state_to_tensor(self): # Slightly hacky way to implement this in a curried manner (so that the function can be extracted from an instance) # Somewhat more sound may be to turn this into a @staticmethod and grab subclasses using hydra.utils.get_class def fn(state): x = [_layer.state_to_tensor(_state) for (_layer, _state) in zip(self.layers, state)] x = [_x for _x in x if _x is not None] return torch.cat( x, dim=-1) return fn def default_state(self, *batch_shape, device=None): return [layer.default_state(*batch_shape, device=device) for layer in self.layers] def step(self, x, state, **kwargs): # Apply layers prev_states = [None] * len(self.layers) if state is None else state next_states = [] for layer, prev_state in zip(self.layers, prev_states): x, state = layer.step(x, state=prev_state, **kwargs) next_states.append(state) x = self.norm(x) return x, next_states
safari-main
src/models/sequence/model.py
import torch import torch.nn as nn import torch.nn.functional as F from einops import repeat from src.utils.train import OptimModule class LongConvKernel(OptimModule): def __init__( self, H, L, channels=1, learning_rate=None, lam=0.1, causal=True, kernel_dropout=0, weight_init="random", use_ma_smoothing = False, ma_window_len = 7, smooth_freq = False, **kwargs ): super().__init__() self.drop = torch.nn.Dropout(p=kernel_dropout) self.H = H self.weight_init = weight_init self.causal = causal self.L = L*2 if not causal else L self.channels = channels self.lam = lam self.kernel = torch.nn.Parameter(self._parameter_initialization()) #(c,H,L) self.register("kernel", self.kernel, learning_rate) self.use_ma_smoothing=use_ma_smoothing self.smooth_freq = smooth_freq self.ma_window_len = ma_window_len if self.use_ma_smoothing: if smooth_freq: weight = torch.arange(ma_window_len, dtype = self.kernel.dtype) weight = torch.exp(-0.5 * torch.abs(weight - ma_window_len // 2) ** 2) weight = repeat(weight, 'l -> h1 h2 l', h1 = self.H, h2 = 1) weight = weight.type(torch.fft.rfft(self.kernel).dtype) self.smooth_weight = weight else: self.ma_window_len = ma_window_len assert self.ma_window_len%2!=0, "window size must be odd" padding = (self.ma_window_len//2) self.smooth = torch.nn.AvgPool1d(kernel_size=self.ma_window_len,stride=1,padding=padding) def _parameter_initialization(self): if self.weight_init=="random": return torch.randn(self.channels, self.H, self.L) * 0.002 elif self.weight_init=="double_exp": K = torch.randn(self.channels, self.H, self.L,dtype=torch.float32) * 0.02 double_exp = torch.zeros((self.H,self.L),dtype=torch.float32) for i in range(self.H): for j in range(self.L): double_exp[i,j] = torch.exp(-(j/self.L)*torch.pow(torch.tensor(int(self.H/2)),torch.tensor(i/self.H))) K = torch.einsum("c h l, h l -> c h l",K,double_exp) return K else: raise NotImplementedError(f"{self.weight_init} is not valid") def forward(self, **kwargs): k = self.kernel if self.use_ma_smoothing: if self.smooth_freq: k_f = torch.fft.rfft(k, dim=-1) k_f = F.conv1d(k_f, self.smooth_weight.to(k_f.device), padding='same', groups=self.H) k = torch.fft.irfft(k_f, dim=-1) else: k = self.smooth(k) k = F.relu(torch.abs(k)-self.lam)*torch.sign(k) k = self.drop(k) return k, None @property def d_output(self): return self.H
safari-main
src/models/sequence/long_conv_kernel.py
import math from re import U import torch import torch.nn as nn import torch.nn.functional as F from functools import partial from einops import rearrange, repeat try: from src.ops.fftconv import fftconv_ref, fftconv_func except ImportError: fftconv_func = None try: from flash_attn.ops.fused_dense import FusedDense except ImportError: FusedDense = None import src.utils.registry as registry from src.utils.train import OptimModule from src.utils.config import instantiate, auto_assign_attrs from src.models.nn import Activation # reference convolution with residual connection def fftconv_ref(u, k, D, dropout_mask, gelu=True, k_rev=None): seqlen = u.shape[-1] fft_size = 2 * seqlen k_f = torch.fft.rfft(k, n=fft_size) / fft_size if k_rev is not None: k_rev_f = torch.fft.rfft(k_rev, n=fft_size) / fft_size k_f = k_f + k_rev_f.conj() u_f = torch.fft.rfft(u.to(dtype=k.dtype), n=fft_size) if len(u.shape) > 3: k_f = k_f.unsqueeze(1) y = torch.fft.irfft(u_f * k_f, n=fft_size, norm='forward')[..., :seqlen] out = y + u * D.unsqueeze(-1) if gelu: out = F.gelu(out) if dropout_mask is not None: return (out * rearrange(dropout_mask, 'b H -> b H 1')).to(dtype=u.dtype) else: return out.to(dtype=u.dtype) @torch.jit.script def mul_sum(q, y): return (q * y).sum(dim=1) class Sin(nn.Module): def __init__(self, dim, w=10, train_freq=True): super().__init__() self.freq = nn.Parameter(w * torch.ones(1, dim)) if train_freq else w * torch.ones(1, dim) def forward(self, x): return torch.sin(self.freq * x) class PositionalEmbedding(OptimModule): def __init__(self, emb_dim: int, seq_len: int, lr_pos_emb: float=1e-5, **kwargs): """Complex exponential positional embeddings for Hyena filters.""" super().__init__() self.seq_len = seq_len # The time embedding fed to the filteres is normalized so that t_f = 1 t = torch.linspace(0, 1, self.seq_len)[None, :, None] # 1, L, 1 if emb_dim > 1: bands = (emb_dim - 1) // 2 # To compute the right embeddings we use the "proper" linspace t_rescaled = torch.linspace(0, seq_len - 1, seq_len)[None, :, None] w = 2 * math.pi * t_rescaled / seq_len # 1, L, 1 f = torch.linspace(1e-4, bands - 1, bands)[None, None] z = torch.exp(-1j * f * w) z = torch.cat([t, z.real, z.imag], dim=-1) self.register("z", z, lr=lr_pos_emb) self.register("t", t, lr=0.0) def forward(self, L): return self.z[:, :L], self.t[:, :L] class ExponentialModulation(OptimModule): def __init__( self, d_model, fast_decay_pct=0.3, slow_decay_pct=1.5, target=1e-2, modulation_lr=0.0, modulate: bool=True, shift: float = 0.0, **kwargs ): super().__init__() self.modulate = modulate self.shift = shift max_decay = math.log(target) / fast_decay_pct min_decay = math.log(target) / slow_decay_pct deltas = torch.linspace(min_decay, max_decay, d_model)[None, None] self.register("deltas", deltas, lr=modulation_lr) def forward(self, t, x): if self.modulate: decay = torch.exp(-t * self.deltas.abs()) x = x * (decay + self.shift) return x class HyenaFilter(OptimModule): def __init__( self, d_model, emb_dim=3, # dim of input to MLP, augments with positional encoding order=16, # width of the implicit MLP fused_fft_conv=False, seq_len=1024, lr=1e-3, lr_pos_emb=1e-5, dropout=0.0, w=1, # frequency of periodic activations wd=0, # weight decay of kernel parameters bias=True, num_inner_mlps=2, normalized=False, **kwargs ): """ Implicit long filter with modulation. Args: d_model: number of channels in the input emb_dim: dimension of the positional encoding (`emb_dim` - 1) // 2 is the number of bands order: width of the FFN num_inner_mlps: number of inner linear layers inside filter MLP Note: filter_dropout is not implemented """ super().__init__() self.d_model = d_model self.use_bias = bias self.fused_fft_conv = fused_fft_conv self.bias = nn.Parameter(torch.randn(self.d_model)) self.dropout = nn.Dropout(dropout) act = Sin(dim=order, w=w) self.emb_dim = emb_dim assert emb_dim % 2 != 0 and emb_dim >= 3, "emb_dim must be odd and greater or equal to 3 (time, sine and cosine)" self.seq_len = seq_len self.pos_emb = PositionalEmbedding(emb_dim, seq_len, lr_pos_emb) # uses a variable number of inner linear layers self.implicit_filter = nn.Sequential( nn.Linear(emb_dim, order), act, ) for i in range(num_inner_mlps): self.implicit_filter.append(nn.Linear(order, order)) self.implicit_filter.append(act) # final linear layer self.implicit_filter.append(nn.Linear(order, d_model, bias=False)) self.modulation = ExponentialModulation(d_model, **kwargs) self.normalized = normalized for c in self.implicit_filter.children(): for name, v in c.state_dict().items(): optim = {"weight_decay": wd, "lr": lr} setattr(getattr(c, name), "_optim", optim) def filter(self, L, *args, **kwargs): z, t = self.pos_emb(L) h = self.implicit_filter(z) h = self.modulation(t, h) if self.normalized: h = h / torch.norm(h, dim=-1, p=1, keepdim=True) return h def forward(self, x, L, k=None, bias=None, *args, **kwargs): if k is None: k = self.filter(L) # Ensure compatibility with filters that return a tuple k = k[0] if type(k) is tuple else k if bias is None: bias = self.bias bias = bias if self.use_bias else 0 * bias if self.fused_fft_conv: bias = bias.to(dtype=torch.float32) y = fftconv_func( x, k, bias, dropout_mask=None, gelu=False, force_fp16_output=torch.is_autocast_enabled() ) else: y = fftconv_ref(x, k, bias, dropout_mask=None, gelu=False) return y class HyenaOperator(nn.Module): def __init__( self, d_model, l_max, order=2, filter_order=64, num_heads=1, inner_factor=1, num_blocks=1, fused_bias_fc=False, outer_mixing=False, dropout=0.0, filter_dropout=0.0, filter_cls='hyena-filter', post_order_ffn=False, jit_filter=False, short_filter_order=3, activation="id", return_state=False, **filter_args, ): r""" Hyena operator described in the paper https://arxiv.org/pdf/2302.10866.pdf Args: d_model (int): Dimension of the input and output embeddings (width of the layer) l_max: (int): Maximum input sequence length. Defaults to None order: (int): Depth of the Hyena recurrence. Defaults to 2 filter_order: (int): Width of the FFN parametrizing the implicit filter. Defaults to 64 num_heads: (int): Number of heads. Defaults to 1 inner_factor: (int): Width multiplier. Defaults to 1 num_blocks: (int): Number of blocks in sequence length. Defaults to 1 fused_bias_fc: (bool): Whether to use fused bias FC. Defaults to False dropout: (float): Dropout probability. Defaults to 0.0 filter_dropout: (float): Dropout probability for the filter. Defaults to 0.0 post_order_ffn: (bool): Apply a dense layer between steps of the recurrence. Defaults to False jit_filter: (bool): Whether JIT the implicit filter function. Defaults to False short_filter_order: (int): Length of the explicit input convolutional filter. Defaults to 3 activation: (str): type of act between kernel output and FF (default identity) return_state: (bool): whether to return a state """ super().__init__() assert d_model % num_heads == 0, f'Model dimension {d_model} must be divisible by num heads {num_heads}' assert l_max % num_blocks == 0, f'Maximum signal length {l_max} must be divisible by block dimension {num_blocks}' block_dim = l_max // num_blocks head_dim = d_model // num_heads auto_assign_attrs( self, d_model=d_model, order=order, l_max=l_max, num_heads=num_heads, inner_factor=inner_factor, block_dim=block_dim, head_dim=head_dim, filter_order=filter_order, post_order_ffn=post_order_ffn, short_filter_order=short_filter_order, num_blocks = num_blocks, filter_dropout=filter_dropout, jit_filter=jit_filter, outer_mixing=outer_mixing, activation=activation, return_state=return_state, ) self.activation = Activation(activation) self.dropout = nn.Dropout(dropout) self.setup_projections(fused_bias_fc, inner_factor) self.setup_filters(filter_cls, filter_args) def setup_projections(self, fused_bias_fc, inner_factor): "Initializes input and output projections (over the width dimension)" if fused_bias_fc and FusedDense is None: raise ImportError('fused_dense is not installed') linear_cls = nn.Linear if not fused_bias_fc else FusedDense self.out_proj = linear_cls(self.d_model * inner_factor, self.d_model) self.in_proj = linear_cls(self.d_model, (self.order + 1) * self.d_model) if self.post_order_ffn: self.ord_proj_w = nn.Parameter(torch.randn(self.order, self.num_heads, self.num_heads) / math.sqrt(self.head_dim)) def setup_filters(self, filter_cls, filter_args): "Initializes the explicit and implicit filters" assert self.order >= 2, f'Order must be at least 2, (got {self.order})' total_width = self.d_model * self.inner_factor * (self.order + 1) self.short_filter = nn.Conv1d( in_channels=total_width, out_channels=total_width, kernel_size=self.short_filter_order, groups=total_width, padding=self.short_filter_order - 1 ) filter_cls = instantiate(registry.layer, filter_cls, partial=True) self.filter_fn = filter_cls( self.head_dim * self.inner_factor * (self.order - 1), order=self.filter_order, seq_len=self.l_max, channels=1, dropout=self.filter_dropout, **filter_args ) if self.jit_filter: self.filter_fn = torch.jit.script(self.filter_fn, self.L) def recurrence(self, u , state): "Fast inference mode via distilled recurrence" raise NotImplementedError("Working on it!") def forward(self, u, *args, **kwargs): l = u.size(-2) l_filter = min(l, self.l_max) u = self.in_proj(u) u = rearrange(u, 'b l d -> b d l') uc = self.short_filter(u)[...,:l_filter] uc = rearrange(uc, 'b (ho v) (z l) -> b ho v z l', z=self.num_blocks, ho=self.num_heads, v=self.head_dim * (self.order + 1) ) *x, v = uc.split(self.d_model, dim=2) k = self.filter_fn.filter(l_filter) # `c` is always 1 by default k = rearrange(k, 'c l (v o) -> c o v l', v=self.head_dim, o=self.order - 1)[0] bias = rearrange(self.filter_fn.bias, '(v o) -> o v', v=self.head_dim, o=self.order - 1) for o, x_i in enumerate(reversed(x[1:])): if self.outer_mixing: v = rearrange(v, 'b h v z l -> b h 1 v z l') v = self.dropout( v * rearrange(x_i, 'b h v z l -> b h v 1 z l') ) v = v.sum(dim=2) else: v = self.dropout(v * x_i) # the bias term is broadcasted. Last dimension (l) is handled by fftconv v = self.filter_fn(v, l_filter, k=k[o], bias=bias[o, None, :, None]) if self.post_order_ffn: w = self.ord_proj_w[o] v = mul_sum( rearrange(w, 'h1 h2 -> 1 h1 h2 1 1 1'), rearrange(v, 'b h v z l -> b h 1 v z l') ) y = self.activation(rearrange(v * x[0], 'b h v z l -> b (z l) (h v)', z=self.num_blocks, h=self.num_heads)) y = self.out_proj(y) if self.return_state: return y, None return y @property def d_output(self): return self.d_model
safari-main
src/models/sequence/hyena.py
import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from src.models.sequence.long_conv_kernel import LongConvKernel try: from src.ops.fftconv import fftconv_func except ImportError: fftconv_func = None @torch.jit.script def mul_sum(q, y): return (q * y).sum(dim=1) class H3Conv(nn.Module): def __init__( self, d_model, l_max=None, head_dim=1, use_fast_fftconv=False, dropout=0.0, # Just to absorb the kwarg layer_idx=None, device=None, dtype=None, # SSM Kernel arguments **kernel_args, ): """ d_state: the dimension of the state, also denoted by N l_max: the maximum kernel length, also denoted by L. Set l_max=None to always use a global kernel See the class .kernel.SSKernel for the kernel constructor which accepts kernel_args. Relevant options that are worth considering and tuning include "mode" + "measure", "dt_min", "dt_max", "lr" Other options are all experimental and should not need to be configured """ factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.d_model = d_model self.head_dim = head_dim assert d_model % head_dim == 0 self.H = d_model // head_dim self.L = l_max self.layer_idx = layer_idx self.use_fast_fftconv = use_fast_fftconv if self.use_fast_fftconv: assert fftconv_func is not None, 'Need to install fftconv' self.q_proj = nn.Linear(self.d_model, self.d_model, **factory_kwargs) self.k_proj = nn.Linear(self.d_model, self.d_model, **factory_kwargs) self.v_proj = nn.Linear(self.d_model, self.d_model, **factory_kwargs) self.k_kernel = LongConvKernel( self.d_model, L=self.L, **kernel_args) self.k_D = nn.Parameter(torch.randn(self.d_model)) self.kernel = LongConvKernel( self.d_model, L=self.L, **kernel_args) self.D = nn.Parameter(torch.randn(self.H, **factory_kwargs)) # Pointwise # position-wise output transform to mix features # Don't use FusedDense since the layout is H first self.output_linear = nn.Linear(self.d_model, self.d_model) def forward(self, u, inference_params=None): """ u: (B L H) Returns: same shape as u """ L_og = u.size(-2) if self.use_fast_fftconv and L_og % 2 != 0: u = F.pad(u, (0, 0, 0, 1)) L = u.size(-2) use_fast_fftconv = self.use_fast_fftconv # Compute SS Kernel ssm_kernel, _ = self.kernel() # (C H L) (B C H L) ssm_kernel = rearrange(ssm_kernel, '1 h l -> h l') u = rearrange(u, 'b l h -> (b l) h') dtype = (self.q_proj.weight.dtype if not torch.is_autocast_enabled() else torch.get_autocast_gpu_dtype()) q = self.q_proj.weight @ u.T + self.q_proj.bias.to(dtype).unsqueeze(-1) k = self.k_proj.weight @ u.T + self.k_proj.bias.to(dtype).unsqueeze(-1) v = self.v_proj.weight @ u.T + self.v_proj.bias.to(dtype).unsqueeze(-1) q, k, v = [rearrange(x, 'h (b l) -> b h l', l=L) for x in [q, k, v]] k_og = k k_kernel, _ = self.k_kernel() # (C H L) (B C H L) k_kernel = rearrange(k_kernel, '1 h l -> h l') if not use_fast_fftconv: fft_size = 2 * L k_kernel_f = torch.fft.rfft(k_kernel, n=fft_size) # (H 2L) k_f = torch.fft.rfft(k.to(ssm_kernel.dtype), n=fft_size) # (B H 2L) shift_k_out = torch.fft.irfft(k_kernel_f * k_f, n=fft_size)[..., :L] k = shift_k_out + rearrange(self.k_D, 'h -> h 1') * k else: dropout_mask = None # No GeLU after the SSM # We want output_hbl=True so that k has the same layout as q and v for the next # fftconv k = fftconv_func(k, k_kernel, self.k_D, dropout_mask, False, False, True) # This line below looks like it doesn't do anything, but it gets the stride right # for the case batch_size=1. In that case k has stride (L, L, 1), but q and v has # stride (H * L, L, 1). The two strides are equivalent because batch_size=1, but # the C++ code doesn't like that. k = rearrange(rearrange(k, 'b h l -> h b l'), 'h b l -> b h l') if not use_fast_fftconv: fft_size = 2 * L # kv = k * v kv = (rearrange(k, 'b (h d1) l -> b d1 1 h l', d1=self.head_dim) * rearrange(v, 'b (h d2) l -> b 1 d2 h l', d2=self.head_dim)) # b d1 d2 h l kv_f = torch.fft.rfft(kv.to(dtype=ssm_kernel.dtype), n=fft_size) / fft_size ssm_kernel_f = torch.fft.rfft(ssm_kernel, n=fft_size) # h L+1 y = torch.fft.irfft(kv_f * ssm_kernel_f, n=fft_size, norm='forward')[..., :L] # b d1 d2 h l y = y + kv * self.D.unsqueeze(-1) # b d1 d2 h l q = rearrange(q, 'b (h d1) l -> b d1 1 h l', d1=self.head_dim) # einsum is way slower than multiply and then sum. if self.head_dim > 1: y = mul_sum(y, q) y = rearrange(y, 'b d h l -> b (d h) l') else: y = rearrange(y * q, 'b 1 1 h l -> b h l') else: dropout_mask = None # No GeLU after the SSM # Set output_hbl_layout=True since we'll be doing a matmul right after y = fftconv_func(k, ssm_kernel, self.D, dropout_mask, False, torch.is_autocast_enabled(), True, v, self.head_dim, q) y = rearrange(y, 'b h l -> b l h') # y could be in fp32 because of the SSMs if not torch.is_autocast_enabled(): y = y.to(dtype=self.output_linear.weight.dtype) y = self.output_linear(y) if L_og < L: y = y[:, :L_og, :] return y
safari-main
src/models/sequence/h3_conv.py
""" Implements a full residual block around a black box layer Configurable options include: normalization position: prenorm or postnorm normalization type: batchnorm, layernorm etc. subsampling/pooling residual options: feedforward, residual, affine scalars, depth-dependent scaling, etc. """ from torch import nn from functools import partial import src.utils as utils from src.models.nn.components import Normalization, StochasticDepth, DropoutNd from src.models.sequence import SequenceModule from src.models.sequence.pool import registry as pool_registry from src.models.nn.residual import registry as residual_registry import src.utils.registry as registry class SequenceResidualBlock(SequenceModule): def __init__( self, d_input, i_layer=None, # Only needs to be passed into certain residuals like Decay prenorm=True, dropout=0.0, tie_dropout=False, transposed=False, layer=None, # Config for black box module residual=None, # Config for residual function norm=None, # Config for normalization layer pool=None, drop_path=0., ): super().__init__() self.i_layer = i_layer self.d_input = d_input self.layer = utils.instantiate(registry.layer, layer, d_input) self.prenorm = prenorm self.transposed = transposed # Residual # d_residual is the output dimension after residual if residual is None: self.residual = None self.d_residual = self.layer.d_output else: self.residual = utils.instantiate(residual_registry, residual, i_layer, d_input, self.layer.d_output) self.d_residual = self.residual.d_output # Normalization d_norm = d_input if self.prenorm else self.d_residual # We don't use config to directly instantiate since Normalization has some special cases if norm is None: self.norm = None elif isinstance(norm, str): self.norm = Normalization(d_norm, transposed=self.transposed, _name_=norm) else: self.norm = Normalization(d_norm, transposed=self.transposed, **norm) # Pool self.pool = utils.instantiate(pool_registry, pool, self.d_residual, transposed=self.transposed) # Dropout dropout_cls = partial(DropoutNd, transposed=self.transposed) if tie_dropout else nn.Dropout self.drop = dropout_cls(dropout) if dropout > 0.0 else nn.Identity() # Stochastic depth self.drop_path = StochasticDepth(drop_path, mode='row') if drop_path > 0.0 else nn.Identity() @property def d_output(self): return self.pool.d_output if self.pool is not None else self.d_residual @property def d_state(self): return self.layer.d_state @property def state_to_tensor(self): return self.layer.state_to_tensor def default_state(self, *args, **kwargs): return self.layer.default_state(*args, **kwargs) def forward(self, x, state=None, **kwargs): y = x # Pre-norm if self.norm is not None and self.prenorm: y = self.norm(y) # Black box layer y, state = self.layer(y, state=state, **kwargs) # Residual if self.residual is not None: y = self.residual(x, self.drop_path(self.drop(y)), self.transposed) # Post-norm if self.norm is not None and not self.prenorm: y = self.norm(y) # Pool if self.pool is not None: y, _ = self.pool(y) return y, state def step(self, x, state, **kwargs): y = x # Pre-norm if self.norm is not None and self.prenorm: y = self.norm.step(y) # Black box layer y, state = self.layer.step(y, state, **kwargs) # Residual if self.residual is not None: y = self.residual(x, y, transposed=False) # NOTE this would not work with concat residual function (catformer) # Post-norm if self.norm is not None and not self.prenorm: y = self.norm.step(y) # Pool if self.pool is not None: y, _ = self.pool(y) return y, state
safari-main
src/models/sequence/block.py
"""Implements downsampling and upsampling on sequences.""" import torch from torch import nn import torch.nn.functional as F from einops import rearrange, repeat, reduce from src.models.sequence import SequenceModule from src.models.nn import LinearActivation """ Simple pooling functions that just downsample or repeat stride: Subsample on the layer dimension expand: Repeat on the feature dimension """ class DownSample(SequenceModule): def __init__(self, d_input, stride=1, expand=1, transposed=True): super().__init__() self.d_input = d_input self.stride = stride self.expand = expand self.transposed = transposed def forward(self, x): if x is None: return None if self.stride > 1: assert x.ndim == 3, "Downsampling with higher-dimensional inputs is currently not supported. It is recommended to use average or spectral pooling instead." if self.transposed: x = x[..., 0::self.stride] else: x = x[..., 0::self.stride, :] if self.expand > 1: if self.transposed: x = repeat(x, 'b d ... -> b (d e) ...', e=self.expand) else: x = repeat(x, 'b ... d -> b ... (d e)', e=self.expand) return x, None def step(self, x, state, **kwargs): if self.stride > 1 or self.expand > 1: raise NotImplementedError return x, state @property def d_output(self): return self.d_input * self.expand class DownAvgPool(SequenceModule): def __init__(self, d_input, stride=1, expand=None, transposed=True): super().__init__() self.d_input = d_input self.stride = stride self.expand = expand self.transposed = transposed if self.expand is not None: self.linear = LinearActivation( d_input, d_input * expand, transposed=transposed, ) def forward(self, x): if not self.transposed: x = rearrange(x, 'b ... d -> b d ...') if self.stride > 1: # einops appears slower than F if x.ndim == 3: x = F.avg_pool1d(x, self.stride, self.stride) elif x.ndim == 4: x = F.avg_pool2d(x, self.stride, self.stride) else: # Reduction string e.g. "b d (l1 2) (l2 2) -> b d l1 l2" reduce_str = "b d " + " ".join([f"(l{i} {self.stride})" for i in range(x.ndim-2)]) \ + " -> b d " + " ".join([f"l{i}" for i in range(x.ndim-2)]) x = reduce(x, reduce_str, 'mean') # if self.expand > 1: # x = repeat(x, 'b d ... -> b (d e) ...', e=self.expand) if not self.transposed: x = rearrange(x, 'b d ... -> b ... d') if self.expand is not None: x = self.linear(x) return x, None def step(self, x, state, **kwargs): if self.stride > 1 or self.expand > 1: raise NotImplementedError return x, state @property def d_output(self): if self.expand is None: return self.d_input else: return self.d_input * self.expand class DownSpectralPool(SequenceModule): def __init__(self, d_input, stride=1, expand=1, transposed=True): super().__init__() self.d_input = d_input self.stride = stride self.expand = expand self.transposed = transposed def forward(self, x): """ x: (B, L..., D) """ if not self.transposed: x = rearrange(x, 'b ... d -> b d ...') shape = x.shape[2:] x_f = torch.fft.ifftn(x, s=shape) for axis, l in enumerate(shape): assert l % self.stride == 0, 'input length must be divisible by stride' new_l = l // self.stride idx = torch.cat([torch.arange(0, new_l-new_l//2), l+torch.arange(-new_l//2, 0)]).to(x_f.device) x_f = torch.index_select(x_f, 2+axis, idx) x = torch.fft.ifftn(x_f, s=[l//self.stride for l in shape]) x = x.real if self.expand > 1: x = repeat(x, 'b d ... -> b (d e) ...', e=self.expand) if not self.transposed: x = rearrange(x, 'b d ... -> b ... d') return x, None def step(self, x, state, **kwargs): if self.stride > 1 or self.expand > 1: raise NotImplementedError return x, state @property def d_output(self): return self.d_input * self.expand class UpSample(SequenceModule): def __init__(self, d_input, stride=1, expand=1, transposed=True): super().__init__() self.d_input = d_input self.stride = stride self.expand = expand self.transposed = transposed def forward(self, x): if x is None: return None if self.expand > 1: if self.transposed: x = reduce(x, '... (d e) l -> ... d l', 'mean', e=self.expand) else: x = reduce(x, '... (d e) -> ... d', 'mean', e=self.expand) if self.stride > 1: if self.transposed: x = repeat(x, '... l -> ... (l e)', e=self.stride) else: x = repeat(x, '... l d -> ... (l e) d', e=self.stride) return x, None @property def d_output(self): return self.d_input // self.expand def step(self, x, state, **kwargs): if self.stride > 1 or self.expand > 1: raise NotImplementedError return x, state class UpAvgPool(SequenceModule): def __init__(self, d_input, stride=1, expand=1, causal=False, transposed=True): super().__init__() assert d_input % expand == 0 self.d_input = d_input self.stride = stride self.expand = expand self.causal = causal self.transposed = transposed self.linear = LinearActivation( d_input, d_input // expand, transposed=transposed, ) def forward(self, x): # TODO only works for 1D right now if x is None: return None x = self.linear(x) if self.stride > 1: if self.transposed: if self.causal: x = F.pad(x[..., :-1], (1, 0)) # Shift to ensure causality x = repeat(x, '... l -> ... (l e)', e=self.stride) else: if self.causal: x = F.pad(x[..., :-1, :], (0, 0, 1, 0)) # Shift to ensure causality x = repeat(x, '... l d -> ... (l e) d', e=self.stride) return x, None @property def d_output(self): return self.d_input // self.expand def step(self, x, state, **kwargs): if self.stride > 1 or self.expand > 1: raise NotImplementedError return x, state class DownLinearPool(SequenceModule): def __init__(self, d_model, stride=1, expand=1, causal=False, transposed=True): super().__init__() self.d_model = d_model self.stride = stride self.expand = expand self.transposed = transposed self.linear = LinearActivation( d_model * stride, d_model * expand, transposed=transposed, ) def forward(self, x): if self.transposed: x = rearrange(x, '... h (l s) -> ... (h s) l', s=self.stride) else: x = rearrange(x, '... (l s) h -> ... l (h s)', s=self.stride) x = self.linear(x) return x, None def step(self, x, state, **kwargs): # if self.stride > 1 or self.expand > 1: # raise NotImplementedError # return x, state if x is None: return None, state state.append(x) if len(state) == self.stride: x = rearrange(torch.stack(state, dim=-1), '... h s -> ... (h s)') if self.transposed: x = x.unsqueeze(-1) x = self.linear(x) if self.transposed: x = x.squeeze(-1) return x, [] else: return None, state def default_state(self, *batch_shape, device=None): return [] @property def d_output(self): return self.d_input * self.expand class UpLinearPool(SequenceModule): def __init__(self, d, stride=1, expand=1, causal=False, transposed=True): super().__init__() # self.d_model = d * expand # self.d_output = d assert d % expand == 0 self.d_model = d self.d_output = d // expand # self._d_output = d_output self.stride = stride self.causal = causal self.transposed = transposed self.linear = LinearActivation( self.d_model, self.d_output * stride, transposed=transposed, ) def forward(self, x, skip=None): x = self.linear(x) if self.transposed: if self.causal: x = F.pad(x[..., :-1], (1, 0)) # Shift to ensure causality x = rearrange(x, '... (h s) l -> ... h (l s)', s=self.stride) else: if self.causal: x = F.pad(x[..., :-1, :], (0, 0, 1, 0)) # Shift to ensure causality x = rearrange(x, '... l (h s) -> ... (l s) h', s=self.stride) if skip is not None: x = x + skip return x, None def step(self, x, state, **kwargs): """ x: (..., H) """ assert len(state) > 0 y, state = state[0], state[1:] if len(state) == 0: assert x is not None if self.transposed: x = x.unsqueeze(-1) x = self.linear(x) if self.transposed: x = x.squeeze(-1) x = rearrange(x, '... (h s) -> ... h s', s=self.stride) state = list(torch.unbind(x, dim=-1)) else: assert x is None return y, state def default_state(self, *batch_shape, device=None): state = torch.zeros(batch_shape + (self.d_output, self.stride), device=device) # (batch, h, s) state = list(torch.unbind(state, dim=-1)) # List of (..., H) return state # @property # def d_output(self): return self._d_output """ Pooling functions with trainable parameters """ # TODO make d_output expand instead class DownPool2d(SequenceModule): def __init__(self, d_input, d_output, stride=1, transposed=True, weight_norm=True): super().__init__() self.linear = LinearActivation( d_input, d_output, transposed=transposed, weight_norm=weight_norm, ) self.pool = nn.AvgPool2d(kernel_size=stride, stride=stride), def forward(self, x): if self.transposed: x = self.pool(x) # TODO DownPool/UpPool are currently used by unet/sashimi backbones # DownLinearPool is used by the registry (for isotropic backbone) # DownPool is essentially the same as DownLinearPool. These should be consolidated class DownPool(SequenceModule): def __init__(self, d_input, d_output=None, expand=None, stride=1, transposed=True, weight_norm=True, initializer=None, activation=None): super().__init__() assert (d_output is None) + (expand is None) == 1 if d_output is None: d_output = d_input * expand self.d_output = d_output self.stride = stride self.transposed = transposed self.linear = LinearActivation( d_input * stride, d_output, transposed=transposed, initializer=initializer, weight_norm = weight_norm, activation=activation, activate=True if activation is not None else False, ) def forward(self, x): if self.transposed: x = rearrange(x, '... h (l s) -> ... (h s) l', s=self.stride) else: x = rearrange(x, '... (l s) h -> ... l (h s)', s=self.stride) x = self.linear(x) return x, None def step(self, x, state, **kwargs): """ x: (..., H) """ if x is None: return None, state state.append(x) if len(state) == self.stride: x = rearrange(torch.stack(state, dim=-1), '... h s -> ... (h s)') if self.transposed: x = x.unsqueeze(-1) x = self.linear(x) if self.transposed: x = x.squeeze(-1) return x, [] else: return None, state def default_state(self, *batch_shape, device=None): return [] class UpPool(SequenceModule): def __init__(self, d_input, d_output, stride, transposed=True, weight_norm=True, initializer=None, activation=None): super().__init__() self.d_input = d_input self._d_output = d_output self.stride = stride self.transposed = transposed self.linear = LinearActivation( d_input, d_output * stride, transposed=transposed, initializer=initializer, weight_norm = weight_norm, activation=activation, activate=True if activation is not None else False, ) def forward(self, x, skip=None): x = self.linear(x) if self.transposed: x = F.pad(x[..., :-1], (1, 0)) # Shift to ensure causality x = rearrange(x, '... (h s) l -> ... h (l s)', s=self.stride) else: x = F.pad(x[..., :-1, :], (0, 0, 1, 0)) # Shift to ensure causality x = rearrange(x, '... l (h s) -> ... (l s) h', s=self.stride) if skip is not None: x = x + skip return x, None def step(self, x, state, **kwargs): """ x: (..., H) """ assert len(state) > 0 y, state = state[0], state[1:] if len(state) == 0: assert x is not None if self.transposed: x = x.unsqueeze(-1) x = self.linear(x) if self.transposed: x = x.squeeze(-1) x = rearrange(x, '... (h s) -> ... h s', s=self.stride) state = list(torch.unbind(x, dim=-1)) else: assert x is None return y, state def default_state(self, *batch_shape, device=None): state = torch.zeros(batch_shape + (self.d_output, self.stride), device=device) # (batch, h, s) state = list(torch.unbind(state, dim=-1)) # List of (..., H) return state @property def d_output(self): return self._d_output registry = { 'sample': DownSample, 'pool': DownAvgPool, 'avg': DownAvgPool, 'linear': DownLinearPool, 'spectral': DownSpectralPool, } up_registry = { # 'sample': UpSample, 'pool': UpAvgPool, 'avg': UpAvgPool, 'linear': UpLinearPool, # 'spectral': UpSpectralPool, # Not implemented and no way to make this causal }
safari-main
src/models/sequence/pool.py
from torch import nn import functools class SequenceModule(nn.Module): """Abstract sequence model class. All models must adhere to this interface A SequenceModule is generally a model that transforms an input of shape (n_batch, l_sequence, d_model) to (n_batch, l_sequence, d_output) REQUIRED methods and attributes forward, d_model, d_output: controls standard forward pass, a sequence-to-sequence transformation __init__ should also satisfy the following interface; see SequenceIdentity for an example def __init__(self, d_model, transposed=False, **kwargs) OPTIONAL methods default_state, step: allows stepping the model recurrently with a hidden state state_to_tensor, d_state: allows decoding from hidden state """ @property def d_model(self): """Model dimension (generally same as input dimension). This attribute is required for all SequenceModule instantiations. It is used by the rest of the pipeline (e.g. model backbone, encoder) to track the internal shapes of the full model. """ if getattr(self, "_d_model", None) is None: raise NotImplementedError("SequenceModule instantiation must set d_model") return self._d_model @d_model.setter def d_model(self, d): self._d_model = d @property def d_output(self): """Output dimension of model. This attribute is required for all SequenceModule instantiations. It is used by the rest of the pipeline (e.g. model backbone, decoder) to track the internal shapes of the full model. """ if getattr(self, "_d_output", None) is None: raise NotImplementedError("SequenceModule instantiation must specify d_output for decoder") return self._d_output @d_output.setter def d_output(self, d): self._d_output = d def forward(self, x, state=None, **kwargs): """Forward pass of sequence model, a sequence-to-sequence transformation with an optional state. Generally, this should map a tensor of shape (batch, length, self.d_model) to (batch, length, self.d_output) Additionally, it returns a "state" which can be any additional information For example, RNN and SSM layers may return their hidden state, while some types of transformer layers (e.g. Transformer-XL) may want to pass a state as well """ return x, None @property def state_to_tensor(self): """Returns a function mapping a state to a single tensor. This method should be implemented if one wants to use the hidden state instead of the output sequence for final prediction. Currently only used with the StateDecoder. """ return lambda _: None @property def d_state(self): """ Returns dimension of output of self.state_to_tensor """ return None def default_state(self, *batch_shape, device=None): """Create initial state for a batch of inputs.""" return None def step(self, x, state=None, **kwargs): """Step the model recurrently for one step of the input sequence. For example, this should correspond to unrolling an RNN for one step. If the forward pass has signature (B, L, H1) -> (B, L, H2), this method should generally have signature (B, H1) -> (B, H2) with an optional recurrent state. """ raise NotImplementedError def TransposedModule(module): """Wrap a SequenceModule class to accept transposed parameter, handle state, absorb kwargs""" # https://stackoverflow.com/a/65470430/1980685 @functools.wraps(module, updated=()) class TransposedModule(module): def __init__(self, *args, transposed=False, **kwargs): super().__init__(*args, **kwargs) self.transposed = transposed def forward(self, x, state=None, **kwargs): if self.transposed: x = x.transpose(-1, -2) x, next_state = super().forward(x, state) # Don't use kwarg because nn.LSTM next_state = None if state is None else next_state if self.transposed: x = x.transpose(-1,-2) return x, next_state # https://stackoverflow.com/questions/5352781/how-to-set-class-names-dynamically # TransposedModule.__name__ = module.__name__ # functools wraps is better solution return TransposedModule @TransposedModule class SequenceIdentity(SequenceModule): """Simple SequenceModule for testing purposes""" def __init__(self, d_model, dropout=0.0, **kwargs): """Default interface for SequenceModule d_model: input dimension (sometimes denoted H for hidden dimension) transposed: if True, inputs have axis ordering (B, H, L) instead of (B, H, L) """ super().__init__() self.d_model = d_model self.d_output = d_model def forward(self, x, state=None): return x, state def default_state(self, *batch_shape, device=None): return None def step(self, x, state=None, **kwargs): return x, state
safari-main
src/models/sequence/base.py
""" Wrapper around nn.MultiheadAttention to adhere to SequenceModule interface. """ import torch import torch.nn.functional as F from torch import nn import hydra from src.models.sequence.base import SequenceModule, TransposedModule import src.models.nn.utils as U from einops import rearrange @TransposedModule class MultiheadAttention(SequenceModule): """ Simple wrapper for MultiheadAttention """ def __init__(self, d_model, n_heads, *args, causal=True, **kwargs): super().__init__() self.d_model = d_model self.d_output = d_model self.mha = nn.MultiheadAttention(d_model, n_heads, *args, batch_first=True, **kwargs) self.causal = causal def forward(self, src, attn_mask=None, key_padding_mask=None, state=None, **kwargs): """ state should represent a mask and key padding mask """ if self.causal and attn_mask is None: attn_mask = torch.triu(torch.ones(src.size(-2), src.size(-2), dtype=torch.bool, device=src.device), diagonal=1) # attn_mask, key_padding_mask = state # Note that this returns None for the second argument y, _ = self.mha(src, src, src, attn_mask=attn_mask, key_padding_mask=key_padding_mask, need_weights=False) return y, None def step(self, x, state): # TODO proper cached inference # x: (B, D) pass class VitAttention(SequenceModule): """Copied from implementation for ViT: only used for ViT model This attention class makes several simplifying assumptions (commonly satisfied in vision applications): 1. q = k = v 2. No masks: no attention mask, no key padding mask 3. Embed dimension = Input dimension, i.e. projection matrices are square. """ @property def d_output(self): return self.dim def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., # proj_drop=0., packed_linear=True, linear_cfg=None, **kwargs, ): """packed_linear: whether to pack all 3 q_proj, k_proj, v_proj into 2 matrix. This option is to be compatible with T2T-ViT pretrained weights, where there's only one projection weight matrix. """ super().__init__() self.dim = dim self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 if linear_cfg is not None: packed_linear = False self.packed_linear = packed_linear if packed_linear: self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) else: if linear_cfg is None: linear_cfg = {'_target_': 'torch.nn.Linear'} self.q_proj = hydra.utils.instantiate(linear_cfg, dim, dim, bias=qkv_bias, _recursive_=False) self.k_proj = hydra.utils.instantiate(linear_cfg, dim, dim, bias=qkv_bias, _recursive_=False) self.v_proj = hydra.utils.instantiate(linear_cfg, dim, dim, bias=qkv_bias, _recursive_=False) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) # Removing this dropout because we do this in SequenceResidualBlock # self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, state=None): B, N, C = x.shape if self.packed_linear: qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) else: q, k, v = self.q_proj(x), self.k_proj(x), self.v_proj(x) q, k, v = [rearrange(x, 'b n (h d) -> b h n d', h=self.num_heads) for x in (q, k, v)] # attn = (q @ k.transpose(-2, -1) * self.scale) # Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM) bsz, num_heads, q_seq_len, dk = q.size() _, _, k_seq_len, _ = k.size() q = rearrange(q, 'b h t d -> (b h) t d') k = rearrange(k, 'b h s d -> (b h) d s') # Preallocate attn_weights for `baddbmm` attn = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=q.dtype, device=q.device) attn = rearrange(torch.baddbmm(attn, q, k, beta=0, alpha=self.scale), '(b h) t s -> b h t s', h = self.num_heads) attn = F.softmax(attn, dim=-1, dtype=v.dtype) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) # x = self.proj_drop(x) return x, None
safari-main
src/models/sequence/mha.py
""" Standalone version of Structured (Sequence) State Space (S4) model. """ import logging from functools import partial import math import numpy as np from scipy import special as ss import torch import torch.nn as nn import torch.nn.functional as F from pytorch_lightning.utilities import rank_zero_only from einops import rearrange, repeat import opt_einsum as oe contract = oe.contract contract_expression = oe.contract_expression _c2r = torch.view_as_real _r2c = torch.view_as_complex if tuple(map(int, torch.__version__.split('.')[:2])) >= (1, 10): _resolve_conj = lambda x: x.conj().resolve_conj() else: _resolve_conj = lambda x: x.conj() """ simple nn.Module components """ def Activation(activation=None, dim=-1): if activation in [ None, 'id', 'identity', 'linear' ]: return nn.Identity() elif activation == 'tanh': return nn.Tanh() elif activation == 'relu': return nn.ReLU() elif activation == 'gelu': return nn.GELU() elif activation in ['swish', 'silu']: return nn.SiLU() elif activation == 'glu': return nn.GLU(dim=dim) elif activation == 'sigmoid': return nn.Sigmoid() else: raise NotImplementedError("hidden activation '{}' is not implemented".format(activation)) def LinearActivation( d_input, d_output, bias=True, transposed=False, activation=None, activate=False, # Apply activation as part of this module **kwargs, ): """ Returns a linear nn.Module with control over axes order, initialization, and activation """ # Construct core module linear_cls = partial(nn.Conv1d, kernel_size=1) if transposed else nn.Linear if activation == 'glu': d_output *= 2 linear = linear_cls(d_input, d_output, bias=bias, **kwargs) if activate and activation is not None: activation = Activation(activation, dim=-2 if transposed else -1) linear = nn.Sequential(linear, activation) return linear """ HiPPO utilities """ def random_dplr(N, H=1, scaling='inverse', real_scale=1.0, imag_scale=1.0): dtype = torch.cfloat pi = torch.tensor(np.pi) real_part = .5 * torch.ones(H, N//2) imag_part = repeat(torch.arange(N//2), 'n -> h n', h=H) real_part = real_scale * real_part if scaling == 'random': imag_part = torch.randn(H, N//2) elif scaling == 'linear': imag_part = pi * imag_part elif scaling == 'inverse': # Based on asymptotics of the default HiPPO matrix imag_part = 1/pi * N * (N/(1+2*imag_part)-1) else: raise NotImplementedError imag_part = imag_scale * imag_part w = -real_part + 1j * imag_part B = torch.randn(H, N//2, dtype=dtype) norm = -B/w # (H, N) # Result if you integrate the kernel with constant 1 function zeta = 2*torch.sum(torch.abs(norm)**2, dim=-1, keepdim=True) # Variance with a random C vector B = B / zeta**.5 return w, B class SSKernelDiag(nn.Module): """ Version using (complex) diagonal state matrix. Note that it is slower and less memory efficient than the NPLR kernel because of lack of kernel support. """ def __init__( self, w, C, log_dt, lr=None, train_w = True, train_dt = True, **kwargs # For compatibility with other kernels ): super().__init__() # Rank of low-rank correction assert w.size(-1) == C.size(-1) self.H = log_dt.size(-1) self.N = w.size(-1) assert self.H % w.size(0) == 0 self.copies = self.H // w.size(0) # Broadcast everything to correct shapes C = C.expand(torch.broadcast_shapes(C.shape, (1, self.H, self.N))) # (H, C, N) # Register parameters self.C = nn.Parameter(_c2r(_resolve_conj(C))) self.register("log_dt", log_dt, train_dt, lr, 0.0) log_w_real = torch.log(-w.real + 1e-4) w_imag = w.imag self.register("log_w_real", log_w_real, train_w, lr, 0.0) self.register("w_imag", w_imag, train_w, lr, 0.0) def _w(self): # Get the internal w (diagonal) parameter w_real = -torch.exp(self.log_w_real) w_imag = self.w_imag w = w_real + 1j * w_imag w = repeat(w, 't n -> (v t) n', v=self.copies) # (H N) return w def forward(self, L): """ returns: (..., c, L) where c is number of channels (default 1) """ dt = torch.exp(self.log_dt) # (H) C = _r2c(self.C) # (C H N) w = self._w() # (H N) # Incorporate dt into A dtA = w * dt.unsqueeze(-1) # (H N) # Power up K = dtA.unsqueeze(-1) * torch.arange(L, device=w.device) # (H N L) C = C * (torch.exp(dtA)-1.) / w K = contract('chn, hnl -> chl', C, torch.exp(K)) K = 2*K.real # Keops version is more memory efficient # C = C * (torch.exp(dtA)-1.) / w # K = log_vandermonde(C, dtA, L) # (H L) return K def setup_step(self): dt = torch.exp(self.log_dt) # (H) C = _r2c(self.C) # (C H N) w = self._w() # (H N) # Incorporate dt into A dtA = w * dt.unsqueeze(-1) # (H N) self.dA = torch.exp(dtA) # (H N) self.dC = C * (torch.exp(dtA)-1.) / w # (C H N) self.dB = self.dC.new_ones(self.H, self.N) # (H N) def default_state(self, *batch_shape): C = _r2c(self.C) state = torch.zeros(*batch_shape, self.H, self.N, dtype=C.dtype, device=C.device) return state def step(self, u, state): next_state = contract("h n, b h n -> b h n", self.dA, state) \ + contract("h n, b h -> b h n", self.dB, u) y = contract("c h n, b h n -> b c h", self.dC, next_state) return 2*y.real, next_state def register(self, name, tensor, trainable=False, lr=None, wd=None): """Utility method: register a tensor as a buffer or trainable parameter""" if trainable: self.register_parameter(name, nn.Parameter(tensor)) else: self.register_buffer(name, tensor) optim = {} if trainable and lr is not None: optim["lr"] = lr if trainable and wd is not None: optim["weight_decay"] = wd if len(optim) > 0: setattr(getattr(self, name), "_optim", optim) class S4DKernel(nn.Module): """Wrapper around SSKernelDiag that generates the diagonal SSM parameters """ def __init__( self, H, N=64, scaling="inverse", channels=1, # 1-dim to C-dim map; can think of C as having separate "heads" dt_min=0.001, dt_max=0.1, lr=None, # Hook to set LR of SSM parameters differently n_ssm=1, # Copies of the ODE parameters A and B. Must divide H **kernel_args, ): super().__init__() self.N = N self.H = H dtype = torch.float cdtype = torch.cfloat self.channels = channels self.n_ssm = n_ssm # Generate dt log_dt = torch.rand(self.H, dtype=dtype) * ( math.log(dt_max) - math.log(dt_min) ) + math.log(dt_min) # Compute the preprocessed representation # Generate low rank correction p for the measure w, B = random_dplr(self.N, H=n_ssm, scaling=scaling) C = torch.randn(channels, self.H, self.N // 2, dtype=cdtype) # Broadcast tensors to n_ssm copies # These will be the parameters, so make sure tensors are materialized and contiguous B = repeat(B, 't n -> (v t) n', v=self.n_ssm // B.size(-2)).clone().contiguous() w = repeat(w, 't n -> (v t) n', v=self.n_ssm // w.size(-2)).clone().contiguous() # Combine B and C using structure of diagonal SSM C = C * repeat(B, 't n -> (v t) n', v=H//self.n_ssm) self.kernel = SSKernelDiag( w, C, log_dt, lr=lr, **kernel_args, ) def forward(self, L=None): k = self.kernel(L=L) return k.float() def setup_step(self): self.kernel.setup_step() def step(self, u, state, **kwargs): u, state = self.kernel.step(u, state, **kwargs) return u.float(), state def default_state(self, *args, **kwargs): return self.kernel.default_state(*args, **kwargs) class S4D(nn.Module): def __init__( self, d_model, d_state=64, channels=1, # maps 1-dim to C-dim bidirectional=False, # Arguments for FF activation='gelu', # activation in between SS and FF postact=None, # activation after FF dropout=0.0, transposed=True, # axis ordering (B, L, D) or (B, D, L) return_state=True, # return state in addition to output # SSM Kernel arguments **kernel_args, ): """ d_state: the dimension of the state, also denoted by N channels: can be interpreted as a number of "heads" bidirectional: bidirectional dropout: standard dropout argument transposed: choose backbone axis ordering of (B, L, H) or (B, H, L) [B=batch size, L=sequence length, H=hidden dimension] Other options are all experimental and should not need to be configured """ super().__init__() self.h = d_model self.n = d_state self.bidirectional = bidirectional self.channels = channels self.transposed = transposed self.return_state = return_state self.D = nn.Parameter(torch.randn(channels, self.h)) if self.bidirectional: channels *= 2 # SSM Kernel self.kernel = S4DKernel(self.h, N=self.n, channels=channels, **kernel_args) # Pointwise self.activation = Activation(activation) dropout_fn = nn.Dropout2d if self.transposed else nn.Dropout self.dropout = dropout_fn(dropout) if dropout > 0.0 else nn.Identity() # position-wise output transform to mix features self.output_linear = LinearActivation( self.h*self.channels, self.h, transposed=self.transposed, activation=postact, activate=True, ) def forward(self, u, **kwargs): # absorbs return_output and transformer src mask """ u: (B H L) if self.transposed else (B L H) state: (H N) never needed unless you know what you're doing Returns: same shape as u """ if not self.transposed: u = u.transpose(-1, -2) L = u.size(-1) # Compute SS Kernel k = self.kernel(L=L) # (C H L) (B C H L) # Convolution if self.bidirectional: k0, k1 = rearrange(k, '(s c) h l -> s c h l', s=2) k = F.pad(k0, (0, L)) \ + F.pad(k1.flip(-1), (L, 0)) \ k_f = torch.fft.rfft(k, n=2*L) # (C H L) u_f = torch.fft.rfft(u, n=2*L) # (B H L) y_f = contract('bhl,chl->bchl', u_f, k_f) # k_f.unsqueeze(-4) * u_f.unsqueeze(-3) # (B C H L) y = torch.fft.irfft(y_f, n=2*L)[..., :L] # (B C H L) # Compute D term in state space equation - essentially a skip connection y = y + contract('bhl,ch->bchl', u, self.D) # u.unsqueeze(-3) * self.D.unsqueeze(-1) # Reshape to flatten channels y = rearrange(y, '... c h l -> ... (c h) l') y = self.dropout(self.activation(y)) if not self.transposed: y = y.transpose(-1, -2) y = self.output_linear(y) if self.return_state: return y, None # Return a None to satisfy this repo's interface, but this can be modified else: return y def setup_step(self): self.kernel.setup_step() def step(self, u, state): """ Step one time step as a recurrent model. Intended to be used during validation. u: (B H) state: (B H N) Returns: output (B H), state (B H N) """ assert not self.training y, next_state = self.kernel.step(u, state) # (B C H) y = y + u.unsqueeze(-2) * self.D y = rearrange(y, '... c h -> ... (c h)') y = self.activation(y) if self.transposed: y = self.output_linear(y.unsqueeze(-1)).squeeze(-1) else: y = self.output_linear(y) return y, next_state def default_state(self, *batch_shape, device=None): return self.kernel.default_state(*batch_shape) @property def d_state(self): return self.h * self.n @property def d_output(self): return self.h @property def state_to_tensor(self): return lambda state: rearrange('... h n -> ... (h n)', state)
safari-main
src/models/sequence/ssm/s4d.py
# TD: [2023-01-05]: Extracted the SSKernel class from # https://github.com/HazyResearch/state-spaces/blob/06dbbdfd0876501a7f12bf3262121badbc7658af/src/models/sequence/ss/kernel.py # We add option to use the shift kernel, and remove the option of SSKernelNPLR """SSM convolution kernels. SSKernel wraps different kernels with common options and handles the initialization. """ import math import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange, repeat from opt_einsum import contract from src.models.sequence.ssm.ss_kernel_diag import SSKernelDiag, EMAKernel from src.models.sequence.ssm.ss_kernel_shift import SSKernelShift from src.models.sequence.ssm import hippo from src.models.sequence.ssm import dplr from src.ops.krylov import power from src.utils.train import get_logger log = get_logger(__name__) _conj = lambda x: torch.cat([x, x.conj()], dim=-1) class SSKernel(nn.Module): """Wrapper around SSKernel parameterizations. The SSKernel is expected to support the interface forward() default_state() _setup_step() step() """ def __init__( self, H, N=64, L=None, measure="diag-lin", rank=1, channels=1, dt_min=0.001, dt_max=0.1, deterministic=False, lr=None, mode="diag", n_ssm=None, verbose=False, measure_args={}, **kernel_args, ): """State Space Kernel which computes the convolution kernel $\\bar{K}$ H: Number of independent SSM copies; controls the size of the model. Also called d_model in the config. N: State size (dimensionality of parameters A, B, C). Also called d_state in the config. Generally shouldn't need to be adjusted and doens't affect speed much. L: Maximum length of convolution kernel, if known. Should work in the majority of cases even if not known. measure: Options for initialization of (A, B). For NPLR mode, recommendations are "legs", "fout", "hippo" (combination of both). For Diag mode, recommendations are "diag-inv", "diag-lin", "diag-legs", and "diag" (combination of diag-inv and diag-lin) rank: Rank of low-rank correction for NPLR mode. Needs to be increased for measure "legt" channels: C channels turns the SSM from a 1-dim to C-dim map; can think of it having C separate "heads" per SSM. This was partly a feature to make it easier to implement bidirectionality; it is recommended to set channels=1 and adjust H to control parameters instead dt_min, dt_max: min and max values for the step size dt (\Delta) mode: Which kernel algorithm to use. 'nplr' is the full S4 model; 'diag' is the simpler S4D; 'slow' is a dense version for testing n_ssm: Number of independent trainable (A, B) SSMs, e.g. n_ssm=1 means all A/B parameters are tied across the H different instantiations of C. n_ssm=None means all H SSMs are completely independent. Generally, changing this option can save parameters but doesn't affect performance or speed much. This parameter must divide H lr: Passing in a number (e.g. 0.001) sets attributes of SSM parameers (A, B, dt). A custom optimizer hook is needed to configure the optimizer to set the learning rates appropriately for these parameters. """ super().__init__() self.N = N self.H = H dtype, cdtype = torch.float, torch.cfloat self.channels = channels self.n_ssm = n_ssm if n_ssm is not None else H self.mode = mode self.verbose = verbose self.kernel_args = kernel_args # Generate dt if deterministic: log_dt = torch.exp(torch.linspace(math.log(dt_min), math.log(dt_max), H)) else: log_dt = torch.rand(self.H, dtype=dtype) * ( math.log(dt_max) - math.log(dt_min) ) + math.log(dt_min) # Compute the preprocessed representation if mode == "ema": self.kernel = EMAKernel(H, N=N, channels=channels, **kernel_args) else: w, P, B, V = dplr.combination(measure, self.N, rank, self.n_ssm, **measure_args) # Broadcast C to have H channels if deterministic: C = torch.zeros(channels, self.n_ssm, self.N, dtype=cdtype) C[:, :, :1] = 1. C = contract('hmn, chn -> chm', V.conj().transpose(-1, -2), C) # V^* C C = repeat(C, 'c t n -> c (v t) n', v=self.n_ssm // C.size(-2)).clone().contiguous() else: C = torch.randn(channels, self.H, self.N//2, dtype=cdtype) # Broadcast other parameters to have n_ssm copies assert self.n_ssm % B.size(-2) == 0 \ and self.n_ssm % P.size(-2) == 0 \ and self.n_ssm % w.size(-2) == 0 # Broadcast tensors to n_ssm copies # These will be the parameters, so make sure tensors are materialized and contiguous B = repeat(B, 't n -> (v t) n', v=self.n_ssm // B.size(-2)).clone().contiguous() P = repeat(P, 'r t n -> r (v t) n', v=self.n_ssm // P.size(-2)).clone().contiguous() w = repeat(w, 't n -> (v t) n', v=self.n_ssm // w.size(-2)).clone().contiguous() if mode == "diag": if not measure.startswith("diag"): log.warning("Diagonal kernel (S4D) activated but initialization is not intended for S4D. Set `measure` to 'diag-lin', 'diag-inv', or 'diag-legs' for the main variants, or 'diag' for a combination of S4D-Lin and S4D-Inv.") C = C * repeat(B, 't n -> (v t) n', v=H//self.n_ssm) self.kernel = SSKernelDiag( w, B, C, log_dt, L=L, lr=lr, **kernel_args, ) elif mode == 'shift': # Initializing B to be e_1 B = torch.zeros(self.H, self.N) B[..., 0] = 1.0 # Match torch.Conv1d init C = torch.randn(self.H, self.channels, self.N) nn.init.kaiming_uniform_(C, a=math.sqrt(5)) C = rearrange(C, 'h c n -> c h n') self.kernel = SSKernelShift(B, C, L=L, lr=lr, **kernel_args) else: raise NotImplementedError(f"{mode=} is not valid") def forward(self, state=None, L=None, rate=None): return self.kernel(state=state, L=L, rate=rate) @torch.no_grad() def forward_state(self, u, state): """ Forward the state through a sequence, i.e. computes the state after passing chunk through SSM state: (B, H, N) u: (B, H, L) Returns: (B, H, N) """ if hasattr(self.kernel, "forward_state"): return self.kernel.forward_state(u, state) dA, dB = self.kernel._setup_state() # Construct dA, dB matrices # dA, dB = self.kernel.dA, self.kernel.dB # (H N N) (H N) conj = state.size(-1) != dA.size(-1) if conj: state = _conj(state) v = contract('h n, b h l -> b h n l', dB, u.flip(-1)) # dB.unsqueeze(-1) * u.flip(-1).unsqueeze(-2) AL, v = power(u.size(-1), dA, v) next_state = contract("h m n, b h n -> b h m", AL, state) next_state = next_state + v if conj: next_state = next_state[..., : next_state.size(-1) // 2] return next_state def _setup_step(self, **kwargs): # This method is intended to be private so that setting up an S4 module with # ``` # if hasattr(module, 'setup_step'): module.setup_step() # ``` # will not trigger this method multiple times self.kernel._setup_step(**kwargs) def step(self, u, state, **kwargs): y, state = self.kernel.step(u, state, **kwargs) return y, state def default_state(self, *args, **kwargs): return self.kernel.default_state(*args, **kwargs)
safari-main
src/models/sequence/ssm/ss_kernel.py
# Copied from https://github.com/HazyResearch/state-spaces/blob/06dbbdfd0876501a7f12bf3262121badbc7658af/src/models/hippo/hippo.py """ Definitions of A and B matrices for various HiPPO operators. """ import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from scipy import special as ss from einops import rearrange, repeat from opt_einsum import contract def embed_c2r(A): A = rearrange(A, '... m n -> ... m () n ()') A = np.pad(A, ((0, 0), (0, 1), (0, 0), (0, 1))) + \ np.pad(A, ((0, 0), (1, 0), (0, 0), (1,0))) return rearrange(A, 'm x n y -> (m x) (n y)') # TODO take in 'torch' option to return torch instead of numpy, and converts the shape of B from (N, 1) to (N) def transition(measure, N, **measure_args): """ A, B transition matrices for different measures measure: the type of measure legt - Legendre (translated) legs - Legendre (scaled) glagt - generalized Laguerre (translated) lagt, tlagt - previous versions of (tilted) Laguerre with slightly different normalization """ # Laguerre (translated) if measure == 'lagt': b = measure_args.get('beta', 1.0) A = np.eye(N) / 2 - np.tril(np.ones((N, N))) B = b * np.ones((N, 1)) # Generalized Laguerre # alpha 0, beta small is most stable (limits to the 'lagt' measure) # alpha 0, beta 1 has transition matrix A = [lower triangular 1] elif measure == 'glagt': alpha = measure_args.get('alpha', 0.0) beta = measure_args.get('beta', 0.01) A = -np.eye(N) * (1 + beta) / 2 - np.tril(np.ones((N, N)), -1) B = ss.binom(alpha + np.arange(N), np.arange(N))[:, None] L = np.exp(.5 * (ss.gammaln(np.arange(N)+alpha+1) - ss.gammaln(np.arange(N)+1))) A = (1./L[:, None]) * A * L[None, :] B = (1./L[:, None]) * B * np.exp(-.5 * ss.gammaln(1-alpha)) * beta**((1-alpha)/2) # Legendre (translated) elif measure == 'legt': Q = np.arange(N, dtype=np.float64) R = (2*Q + 1) ** .5 j, i = np.meshgrid(Q, Q) A = R[:, None] * np.where(i < j, (-1.)**(i-j), 1) * R[None, :] B = R[:, None] A = -A # Halve again for timescale correctness A *= 0.5 B *= 0.5 # LMU: equivalent to LegT up to normalization elif measure == 'lmu': Q = np.arange(N, dtype=np.float64) R = (2*Q + 1)[:, None] # / theta j, i = np.meshgrid(Q, Q) A = np.where(i < j, -1, (-1.)**(i-j+1)) * R B = (-1.)**Q[:, None] * R # Legendre (scaled) elif measure == 'legs': q = np.arange(N, dtype=np.float64) col, row = np.meshgrid(q, q) r = 2 * q + 1 M = -(np.where(row >= col, r, 0) - np.diag(q)) T = np.sqrt(np.diag(2 * q + 1)) A = T @ M @ np.linalg.inv(T) B = np.diag(T)[:, None] B = B.copy() # Otherwise "UserWarning: given NumPY array is not writeable..." after torch.as_tensor(B) elif measure == 'legsd': q = np.arange(N, dtype=np.float64) col, row = np.meshgrid(q, q) r = 2 * q + 1 M = -(np.where(row >= col, r, 0) - np.diag(q)) T = np.sqrt(np.diag(2 * q + 1)) A = T @ M @ np.linalg.inv(T) B = np.diag(T)[:, None] B = B.copy() # Otherwise "UserWarning: given NumPY array is not writeable..." after torch.as_tensor(B) A += .5 * B*B[None, :, 0] B = B / 2.0 elif measure in ['fourier_diag', 'foud']: freqs = np.arange(N//2) d = np.stack([freqs, np.zeros(N//2)], axis=-1).reshape(-1)[:-1] A = 2*np.pi*(-np.diag(d, 1) + np.diag(d, -1)) A = A - .5 * np.eye(N) B = np.zeros(N) B[0::2] = 2**.5 B[0] = 1 B = B[:, None] elif measure in ['fourier', 'fout']: freqs = np.arange(N//2) d = np.stack([np.zeros(N//2), freqs], axis=-1).reshape(-1)[1:] A = np.pi*(-np.diag(d, 1) + np.diag(d, -1)) B = np.zeros(N) B[0::2] = 2**.5 B[0] = 1 # Subtract off rank correction - this corresponds to the other endpoint u(t-1) in this case A = A - B[:, None] * B[None, :] B = B[:, None] elif measure == 'fourier_decay': freqs = np.arange(N//2) d = np.stack([np.zeros(N//2), freqs], axis=-1).reshape(-1)[1:] A = np.pi*(-np.diag(d, 1) + np.diag(d, -1)) B = np.zeros(N) B[0::2] = 2**.5 B[0] = 1 # Subtract off rank correction - this corresponds to the other endpoint u(t-1) in this case A = A - .5 * B[:, None] * B[None, :] B = .5 * B[:, None] elif measure == 'fourier2': # Double everything: orthonormal on [0, 1] freqs = 2*np.arange(N//2) d = np.stack([np.zeros(N//2), freqs], axis=-1).reshape(-1)[1:] A = np.pi*(-np.diag(d, 1) + np.diag(d, -1)) B = np.zeros(N) B[0::2] = 2**.5 B[0] = 1 # Subtract off rank correction - this corresponds to the other endpoint u(t-1) in this case A = A - B[:, None] * B[None, :] * 2 B = B[:, None] * 2 elif measure == 'random': A = np.random.randn(N, N) / N B = np.random.randn(N, 1) elif measure == 'diagonal': A = -np.diag(np.exp(np.random.randn(N))) B = np.random.randn(N, 1) else: raise NotImplementedError return A, B def rank_correction(measure, N, rank=1, dtype=torch.float): """ Return low-rank matrix L such that A + L is normal """ if measure == 'legs': assert rank >= 1 P = torch.sqrt(.5+torch.arange(N, dtype=dtype)).unsqueeze(0) # (1 N) elif measure == 'legt': assert rank >= 2 P = torch.sqrt(1+2*torch.arange(N, dtype=dtype)) # (N) P0 = P.clone() P0[0::2] = 0. P1 = P.clone() P1[1::2] = 0. P = torch.stack([P0, P1], dim=0) # (2 N) P *= 2**(-0.5) # Halve the rank correct just like the original matrix was halved elif measure == 'lagt': assert rank >= 1 P = .5**.5 * torch.ones(1, N, dtype=dtype) elif measure in ['fourier', 'fout']: P = torch.zeros(N) P[0::2] = 2**.5 P[0] = 1 P = P.unsqueeze(0) elif measure == 'fourier_decay': P = torch.zeros(N) P[0::2] = 2**.5 P[0] = 1 P = P.unsqueeze(0) P = P / 2**.5 elif measure == 'fourier2': P = torch.zeros(N) P[0::2] = 2**.5 P[0] = 1 P = 2**.5 * P.unsqueeze(0) elif measure in ['fourier_diag', 'foud', 'legsd']: P = torch.zeros(1, N, dtype=dtype) else: raise NotImplementedError d = P.size(0) if rank > d: P = torch.cat([P, torch.zeros(rank-d, N, dtype=dtype)], dim=0) # (rank N) return P def initial_C(measure, N, dtype=torch.float): """ Return C that captures the other endpoint in the HiPPO approximation """ if measure == 'legt': C = (torch.arange(N, dtype=dtype)*2+1)**.5 * (-1)**torch.arange(N) elif measure == 'fourier': C = torch.zeros(N) C[0::2] = 2**.5 C[0] = 1 else: C = torch.zeros(N, dtype=dtype) # (N) return C def nplr(measure, N, rank=1, dtype=torch.float, diagonalize_precision=True): """ Return w, p, q, V, B such that (w - p q^*, B) is unitarily equivalent to the original HiPPO A, B by the matrix V i.e. A = V[w - p q^*]V^*, B = V B """ assert dtype == torch.float or dtype == torch.double cdtype = torch.cfloat if dtype == torch.float else torch.cdouble A, B = transition(measure, N) A = torch.as_tensor(A, dtype=dtype) # (N, N) B = torch.as_tensor(B, dtype=dtype)[:, 0] # (N,) P = rank_correction(measure, N, rank=rank, dtype=dtype) # (r N) AP = A + torch.sum(P.unsqueeze(-2)*P.unsqueeze(-1), dim=-3) # We require AP to be nearly skew-symmetric _A = AP + AP.transpose(-1, -2) if (err := torch.sum((_A - _A[0,0]*torch.eye(N))**2) / N) > 1e-5: # if not torch.allclose(_A - _A[0,0]*torch.eye(N), torch.zeros(N, N), atol=1e-5): print("WARNING: HiPPO matrix not skew symmetric", err) # Take advantage of identity + skew-symmetric form to calculate real and imaginary parts separately # Imaginary part can use eigh instead of eig w_re = torch.mean(torch.diagonal(AP), -1, keepdim=True) # Diagonalize in double precision if diagonalize_precision: AP = AP.to(torch.double) # w, V = torch.linalg.eig(AP) # (..., N) (..., N, N) w_im, V = torch.linalg.eigh(AP*-1j) # (..., N) (..., N, N) if diagonalize_precision: w_im, V = w_im.to(cdtype), V.to(cdtype) w = w_re + 1j * w_im # Check: V w V^{-1} = A # print("check", V @ torch.diag_embed(w) @ V.conj().transpose(-1, -2)) # Only keep half of each conjugate pair _, idx = torch.sort(w.imag) w_sorted = w[idx] V_sorted = V[:, idx] # There is an edge case when eigenvalues can be 0, which requires some machinery to handle # We use a huge hack here: Assume only one pair is 0, and that it is the first row/column of A (only happens in Fourier case) V = V_sorted[:, :N//2] w = w_sorted[:N//2] assert w[-2].abs() > 1e-4, "Only 1 zero eigenvalue allowed in diagonal part of A" if w[-1].abs() < 1e-4: V[:, -1] = 0. V[0, -1] = 2**-0.5 V[1, -1] = 2**-0.5 * 1j _AP = V @ torch.diag_embed(w) @ V.conj().transpose(-1, -2) if ((err := torch.sum((2*_AP.real-AP)**2)/N) > 1e-5): print("Warning: Diagonalization of A matrix not numerically precise - error", err) # print("check", V @ torch.diag_embed(w) @ V.conj().transpose(-1, -2)) V_inv = V.conj().transpose(-1, -2) # C = initial_C(measure, N, dtype=dtype) B = contract('ij, j -> i', V_inv, B.to(V)) # V^* B # C = contract('ij, j -> i', V_inv, C.to(V)) # V^* C P = contract('ij, ...j -> ...i', V_inv, P.to(V)) # V^* P # return w, P, B, C, V return w, P, B, V
safari-main
src/models/sequence/ssm/hippo.py
# TD: [2023-01-05]: Extracted the SSKernelDiag class from # https://github.com/HazyResearch/state-spaces/blob/06dbbdfd0876501a7f12bf3262121badbc7658af/src/models/sequence/ss/kernel.py # We make a small change to use the log_vandermonde CUDA code. """SSKernelDiag is the S4D kernel, a simpler algorithm for computing the kernel for the case of diagonal state matrices A. """ import math import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange, repeat from opt_einsum import contract from src.utils.train import OptimModule class SSKernelShift(OptimModule): def __init__(self, B, C, L=None, lr=None, **kwargs): """ B: (H, d), real C: (channel, H, d), real """ super().__init__() self.L = L self.N = B.size(-1) self.H = B.shape[0] # Register parameters if lr is None or isinstance(lr, float): lr_dict = {} else: lr_dict, lr = lr, None self.register("B", B, lr_dict.get('B', lr)) self.C = nn.Parameter(C) def forward(self, state=None, rate=1.0, L=None): if L is None: L = self.L # This class doesn't support variable length functionalities, since it's a discrete SSM assert rate == 1.0 and L is not None # Augment B with state B = self.B if state is not None: B = rearrange(torch.cat([rearrange(B, 'h n -> 1 h n'), state], dim=-3), 'bp1 h n -> bp1 1 h n') # (1 + B, 1, H, N) B_f = torch.fft.rfft(B, n=2*self.N) C_f = torch.fft.rfft(self.C, n=2*self.N) k = torch.fft.irfft(B_f.conj() * C_f, n=2*self.N)[..., :min(self.N, L)] # If self.N < L, need to pad with zeros to reach length L if self.N < L: k = F.pad(k, (0, L - self.N)) k = k.float() # Otherwise it could be dtype half if state is not None: k, k_state = k[0], k[1:] else: k_state = None return k, k_state def _setup_step(self): # Just here to conform to the interface, eventually we should refactor out pass def default_state(self, *batch_shape): return torch.zeros(*batch_shape, self.H, self.N, dtype=self.C.dtype, device=self.C.device) def step(self, u, state): """u: (B, H), state: (B, H, N)""" next_state = F.pad(state, (1, -1)) + contract("h n, b h -> b h n", self.B, u) y = contract("c h n, b h n -> b c h", self.C, next_state) return y, next_state def forward_state(self, u, state): """u: (B, H, L), state: (B, H, N)""" L = u.shape[-1] B_f = torch.fft.rfft(self.B, n=2 * self.N) u_f = torch.fft.rfft(u[..., -self.N:].flip(-1).to(dtype=self.B.dtype), n=2 * self.N) v = torch.fft.irfft(B_f * u_f, n=2 * self.N)[..., :self.N] if L < self.N: next_state = F.pad(state, (L, -L)) + v else: next_state = v return next_state
safari-main
src/models/sequence/ssm/ss_kernel_shift.py
import torch import torch.nn as nn from src.models.nn import LinearActivation, Activation, DropoutNd from einops import rearrange, repeat import opt_einsum as oe import math class OurModule(nn.Module): def __init__(self): super().__init__() def register(self, name, tensor, trainable=False, lr=None, wd=None): """Utility method: register a tensor as a buffer or trainable parameter""" if trainable: self.register_parameter(name, nn.Parameter(tensor)) else: self.register_buffer(name, tensor) optim = {} if trainable and lr is not None: optim["lr"] = lr if trainable and wd is not None: optim["weight_decay"] = wd if len(optim) > 0: setattr(getattr(self, name), "_optim", optim) # # This is intended to match np.convolve(x,w)[:len(w)] # That is, (u \ast v)[k] = sum_{j} u[k-j]v[j] # Here y = (u \ask v) on return. # We assume the inputs are: # u (B H L) # v (C H L) # and we want to produce y that is (B C H L) # def fft_conv(u,v): L = u.shape[-1] u_f = torch.fft.rfft(u, n=2*L) # (B H L) v_f = torch.fft.rfft(v, n=2*L) # (C H L) y_f = oe.contract('bhl,chl->bchl', u_f, v_f) y = torch.fft.irfft(y_f, n=2*L)[..., :L] # (B C H L) return y def normalize_param(a, method, norm_const=None): if method == "l1": if norm_const is not None: return a/((1+norm_const)*torch.linalg.norm(a,ord=1,dim=2).unsqueeze(2)) return a/torch.linalg.norm(a,ord=1,dim=2).unsqueeze(2) if method == "l2": return a/torch.linalg.norm(a,ord=2,dim=2).unsqueeze(2) if method == "max": return 0.1*a/torch.max(a,dim=2)[0].unsqueeze(2) if method == "none": return a raise ValueError(f"{method} normalization not implemented") class SimpleS4(OurModule): def __init__(self, nHippos, d_state=64, channels=1, use_initial=True, # Use the initial state? zero_order_hold=False, # Use zero-order hold approximation trap_rule=True, dt_min=0.001, dt_max=0.1, lr=None, # Hook to set LR of SSM parameters differently learn_a=True, learn_theta=True, learn_dt=False, # whether to learn separate dt for each hippo theta_scale=False, skip_connection=True, repr='cont', # representation to use: ['cont','disc','comp'] param_norm = 'none', # for normalizing parameters for stability **kernel_args,): # Use the trapezoid rule super().__init__() # H is number of hippos # D is the dimension (also shockingly n other places) # B is the batch # L is the length self.h = nHippos self.d = d_state // 2 self.channels = channels self.use_initial = use_initial self.zero_order_hold = zero_order_hold # # Use the trapezoid rule correct or just do zero-order hold. self.trap_rule = trap_rule self.repr = repr self.learn_dt = learn_dt self.shift = 'shift' in self.repr self.param_norm = param_norm _fp = (self.channels, self.h, self.d) # Chebyshev initialization h_scale = torch.exp(torch.arange(self.h)/self.h * math.log(dt_max/dt_min)) angles = torch.arange(self.d)*torch.pi t_scale = h_scale if theta_scale else torch.ones(self.h) theta = oe.contract('c,h,d->chd', torch.ones(self.channels), t_scale, angles) if self.repr == 'disc': # discrete diagonal representation a = torch.randn(*_fp).abs() #a = 2*torch.rand(*_fp)-1 # init randomly from [-1,1] else: # default continuous diagonal representation a = -repeat(h_scale, 'h -> c h d', c=self.channels, d=self.d) self.register("theta", theta,learn_theta,lr=lr, wd=None) self.register("a", a, learn_a,lr=lr, wd=None) if self.learn_dt: log_dt = torch.rand(self.h) * ( math.log(dt_max) - math.log(dt_min) ) + math.log(dt_min) self.register("log_dt", log_dt, True,lr=lr, wd=None) # The other maps if not skip_connection: self.register("D", torch.zeros((channels, self.h)), False) else: self.D = nn.Parameter(torch.randn(channels, self.h)) if use_initial or 'comp' in self.repr: if self.shift: b = torch.zeros(*_fp) b[:,:,0] = 1 self.register("b", b, False) else: self.b = nn.Parameter(torch.randn(*_fp)) self.c = nn.Parameter(torch.randn(*_fp)) self.x0 = nn.Parameter(torch.randn(*_fp)) else: # This is an optimization that we combine q = c * b # It's as if we're setting x0 = 0. self.q = nn.Parameter(torch.randn(*_fp)) def quadrature_method(self, u, horizon): # The input is now Batch x Hippos x Length l = u.size(-1) dt = 1/(l-1) # the step size if self.learn_dt: dt = torch.exp(self.log_dt).view(1,-1,1, 1) # q and a are both C x H x D # zk is of length l we want a C x H x L matrix zk = dt*torch.arange(l, device=u.device).view(1,1,-1,1) if self.repr == 'disc': # discrete diagonal representation a_ = (self.a).abs() base_term = 2 * dt * torch.pow(a_.unsqueeze(2), zk) * torch.cos(self.theta.unsqueeze(2) * zk) else: # continuous diagonal representation a_ = self.a #/torch.linalg.norm(self.a,ord=1,dim=2).unsqueeze(2) a_ = -a_.abs() # a_ = -self.a.abs() base_term = 2*dt*torch.exp(a_.unsqueeze(2) * zk)*torch.cos( self.theta.unsqueeze(2) * zk) q = self.b*self.c if self.use_initial else self.q f = (q.unsqueeze(2)*base_term).sum(-1) y = fft_conv(u,f) # Add in the skip connection with per-channel D matrix y = y + oe.contract('bhl,ch->bchl', u, self.D) # Add back the initial state if self.use_initial: y = y + (2*(self.c*self.x0).unsqueeze(2)*base_term).sum(-1) return rearrange(y, 'b c h l-> b (c h) l'), None # flatten the channels. def forward(self, u, horizon=None): return self.quadrature_method(u, horizon) # Below here are standard wrapper classes to handle # (1) Non-linearity # (2) Integration with the Hippo Code base class NonLinear(nn.Module): def __init__(self, h, channels, ln=False, # Extra normalization transposed=True, dropout=0.0, postact=None, # activation after FF activation='gelu', # activation in between SS and FF initializer=None, # initializer on FF weight_norm=False, # weight normalization on FF ): super().__init__() dropout_fn = DropoutNd # nn.Dropout2d bugged in PyTorch 1.11 dropout = dropout_fn(dropout) if dropout > 0.0 else nn.Identity() #norm = Normalization(h*channels, transposed=transposed) if ln else nn.Identity() activation_fn = Activation(activation) output_linear = LinearActivation( h*channels, h, transposed=transposed, initializer=initializer, activation=postact, activate=True, weight_norm=weight_norm, ) #self.f = nn.Sequential(activation_fn, dropout, norm, output_linear) self.f = nn.Sequential(activation_fn, dropout, output_linear) def forward(self,x): # Always (B H L) return self.f(x) class SimpleS4Wrapper(nn.Module): def __init__( self, d_model, d_state=64, channels=1, bidirectional=False, dropout=0.0, transposed=True, # axis ordering (B, L, D) or (B, D, L) ln=True, # IGNORED: Extra normalization postact=None, # activation after FF activation='gelu', # activation in between SS and FF initializer=None, # initializer on FF weight_norm=False, # weight normalization on FF linear=False, # SSM Kernel arguments **kernel_args, ): super().__init__() self.h = d_model self.d = d_state self.channels = channels #self.shift = shift #self.linear = linear self.out_d = self.h self.transposed = transposed self.bidirectional = bidirectional assert not bidirectional, f"Bidirectional NYI" self.s4 = SimpleS4(nHippos=d_model, d_state=d_state, channels=channels, **kernel_args) # the mapping # We transpose if it's not in the forward. nl = NonLinear(self.h, channels=self.channels, ln=ln, # Extra normalization dropout=dropout, postact=postact, activation=activation, transposed=True, initializer=initializer, weight_norm=weight_norm) self.out = nn.Identity() if linear else nl def forward(self, u, *w, state=None, horizon=None): # u: (B H L) if self.transposed else (B L H) if not self.transposed: u = u.transpose(-1, -2) # We only pass BHL, and it is as if transposed is True. y, state = self.s4(u,horizon=horizon) ret = self.out(y) if not self.transposed: ret = ret.transpose(-1, -2) return ret, state @property def d_state(self): return self.h * self.d @property def d_output(self): return self.out_d
safari-main
src/models/sequence/ssm/s4_simple.py
# TD: [2023-01-05]: Extracted the SSKernelDiag class from # https://github.com/HazyResearch/state-spaces/blob/06dbbdfd0876501a7f12bf3262121badbc7658af/src/models/sequence/ss/kernel.py # We make a small change to use the log_vandermonde CUDA code. """SSKernelDiag is the S4D kernel, a simpler algorithm for computing the kernel for the case of diagonal state matrices A. """ import math import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange, repeat from opt_einsum import contract from src.utils.train import OptimModule from src.utils.train import get_logger log = get_logger(__name__) # This could be None if the CUDA import fails from src.ops.vandermonde import log_vandermonde_fast try: import pykeops from src.ops.vandermonde import log_vandermonde, log_vandermonde_transpose has_pykeops = True log.info("Pykeops installation found.") except ImportError: has_pykeops = False from src.ops.vandermonde import log_vandermonde_naive as log_vandermonde from src.ops.vandermonde import log_vandermonde_transpose_naive as log_vandermonde_transpose log.warning( "Falling back on slow Vandermonde kernel. Install pykeops for improved memory efficiency." ) _c2r = torch.view_as_real _r2c = torch.view_as_complex if tuple(map(int, torch.__version__.split('.')[:2])) >= (1, 10): _resolve_conj = lambda x: x.conj().resolve_conj() else: _resolve_conj = lambda x: x.conj() class SSKernelDiag(OptimModule): """Version using (complex) diagonal state matrix (S4D)""" def __init__( self, A, B, C, log_dt, L=None, disc='bilinear', real_type='exp', lr=None, bandlimit=None, force_real=False, ): super().__init__() self.L = L self.disc = disc self.bandlimit = bandlimit self.real_type = real_type self.force_real = force_real # Rank of low-rank correction assert A.size(-1) == C.size(-1) self.H = log_dt.size(-1) self.N = A.size(-1) assert A.size(-2) == B.size(-2) # Number of independent SSMs trained assert self.H % A.size(-2) == 0 self.n_ssm = A.size(-2) self.repeat = self.H // A.size(0) self.channels = C.shape[0] self.C = nn.Parameter(_c2r(_resolve_conj(C))) # Register parameters if lr is None or isinstance(lr, float): lr_dict = {} else: lr_dict, lr = lr, None self.register("log_dt", log_dt, lr_dict.get('dt', lr)) self.register("B", _c2r(B), lr_dict.get('B', lr)) self.register("inv_A_real", self._A_init(A.real), lr_dict.get('A', lr)) self.register("A_imag", A.imag, lr_dict.get('A', lr)) def _A_init(self, A_real): A_real = torch.clamp(A_real, max=-1e-4) if self.real_type == 'none': return -A_real elif self.real_type == 'exp': return torch.log(-A_real) # Some of the HiPPO methods have real part 0 elif self.real_type == 'relu': return -A_real elif self.real_type == 'sigmoid': return torch.logit(-A_real) elif self.real_type == 'softplus': return torch.log(torch.exp(-A_real)-1) else: raise NotImplementedError def _A(self): # Get the internal A (diagonal) parameter if self.real_type == 'none': A_real = -self.inv_A_real elif self.real_type == 'exp': A_real = -torch.exp(self.inv_A_real) elif self.real_type == 'relu': # JAX version seems to NaN if you alloA 0's, although this code Aas fine Aithout it A_real = -F.relu(self.inv_A_real)-1e-4 elif self.real_type == 'sigmoid': A_real = -F.sigmoid(self.inv_A_real) elif self.real_type == 'softplus': A_real = -F.softplus(self.inv_A_real) else: raise NotImplementedError A = A_real + 1j * self.A_imag return A def forward(self, L, state=None, rate=1.0, u=None): """ state: (B, H, N) initial state rate: sampling rate factor L: target length returns: (C, H, L) convolution kernel (generally C=1) (B, H, L) output from initial state """ dt = torch.exp(self.log_dt) * rate # (H) C = _r2c(self.C) # (C H N) A = self._A() # (H N) B = _r2c(self.B) B = repeat(B, 't n -> 1 (v t) n', v=self.repeat) # Force A to be real valued, so the whole kernel can be interpreted as a "multi-head EMA" if self.force_real: A = A.real + 0j if self.bandlimit is not None: freqs = dt[:, None] / rate * A.imag.abs() / (2*math.pi) # (H, N) mask = torch.where(freqs < self.bandlimit * .5, 1, 0) C = C * mask # Incorporate dt into A A = repeat(A, 't n -> (v t) n', v=self.repeat) dtA = A * dt.unsqueeze(-1) # (H N) # Augment B with state if state is not None: s = state / dt.unsqueeze(-1) if self.disc == 'bilinear': s = s * (1. + dtA/2) elif self.disc == 'zoh': s = s * dtA * dtA.exp() / (dtA.exp() - 1.) B = torch.cat([s, B], dim=-3) # (1+B H N) C = (B[:, None, :, :] * C).view(-1, self.H, self.N) if self.disc == 'zoh': # Power up C = C * (torch.exp(dtA)-1.) / A # TODO (TD): make it work for C.shape[0] > 1 if log_vandermonde_fast is not None and C.shape[0] == 1: K = log_vandermonde_fast(C.squeeze(0), dtA, L).unsqueeze(0) # (H L) else: K = log_vandermonde(C, dtA, L) # (H L) elif self.disc == 'bilinear': C = C * (1. - dtA/2).reciprocal() * dt.unsqueeze(-1) # or * dtA / A dA = (1. + dtA/2) / (1. - dtA/2) if log_vandermonde_fast is not None: dA_log = repeat(dA.log(), 'h d -> (c h) d', c=C.shape[0]) K = rearrange(log_vandermonde_fast(rearrange(C, 'c h d -> (c h) d'), dA_log, L), '(c h) d -> c h d', c=C.shape[0]) else: K = log_vandermonde(C, dA.log(), L) elif self.disc == 'dss': # Implementation from DSS meant for case when real eigenvalues can be positive P = dtA.unsqueeze(-1) * torch.arange(L, device=C.device) # [H N L] A_gt_0 = A.real > 0 # [N] if A_gt_0.any(): with torch.no_grad(): P_max = dtA * (A_gt_0 * (L-1)) # [H N] P = P - P_max.unsqueeze(-1) # [H N L] S = P.exp() # [H N L] dtA_neg = dtA * (1 - 2*A_gt_0) # [H N] num = dtA_neg.exp() - 1 # [H N] den = (dtA_neg * L).exp() - 1 # [H N] # Inline reciprocal function for DSS logic x = den * A x_conj = _resolve_conj(x) r = x_conj / (x*x_conj + 1e-7) C = C * num * r # [C H N] K = contract('chn,hnl->chl', C, S).float() else: assert False, f"{self.disc} not supported" K = K.view(-1, self.channels, self.H, L) # (1+B C H L) if state is not None: K_state = K[:-1, :, :, :] # (B C H L) else: K_state = None K = K[-1, :, :, :] # (C H L) return K, K_state def _setup_step(self): # These methods are organized like this to be compatible with the NPLR kernel interface dt = torch.exp(self.log_dt) # (H) B = _r2c(self.B) # (H N) C = _r2c(self.C) # (C H N) self.dC = C A = self._A() # (H N) A = repeat(A, 't n -> (v t) n', v=self.repeat) B = repeat(B, 't n -> (v t) n', v=self.repeat) # Incorporate dt into A dtA = A * dt.unsqueeze(-1) # (H N) if self.disc == 'zoh': self.dA = torch.exp(dtA) # (H N) self.dB = B * (torch.exp(dtA)-1.) / A # (C H N) elif self.disc == 'bilinear': self.dA = (1. + dtA/2) / (1. - dtA/2) self.dB = B * (1. - dtA/2).reciprocal() * dt.unsqueeze(-1) # or * dtA / A def default_state(self, *batch_shape): C = _r2c(self.C) state = torch.zeros(*batch_shape, self.H, self.N, dtype=C.dtype, device=C.device) return state def step(self, u, state): next_state = contract("h n, b h n -> b h n", self.dA, state) \ + contract("h n, b h -> b h n", self.dB, u) y = contract("c h n, b h n -> b c h", self.dC, next_state) return 2*y.real, next_state def forward_state(self, u, state): self._setup_step() AL = self.dA ** u.size(-1) u = u.flip(-1).to(self.dA).contiguous() # (B H L) v = log_vandermonde_transpose(u, self.dB, self.dA.log(), u.size(-1)) next_state = AL * state + v return next_state class EMAKernel(OptimModule): """Translation of Mega's MultiHeadEMA. This is a minimal implementation of the convolution kernel part of the module. This module, together with the main S4 block in src.models.sequence.ss.s4 (which is really just a fft-conv wrapper around any convolution kernel, such as this one), should be exactly equivalent to using the original Mega EMA module in src.models.sequence.ss.ema. Two additional flags have been provided to resolve discrepencies in parameter count between S4(D) and EMA - `dt_tie` makes the shape of the step size \Delta (H, 1) instead of (H, N) - `efficient_bidirectional` ties the A/B/dt parameters for the conv kernels in both forwards and backwards directions. This should have exactly the same speed, slightly more parameter efficiency, and unchanged performance. """ def __init__( self, H, N=2, channels=1, l_max=None, dt_tie=False, efficient_bidirectional=False, ): super().__init__() self.H = H self.N = N self.channels = channels self.l_max = l_max self.scale = math.sqrt(1.0 / self.N) # Exactly match the parameter count of S4(D) when bididirectional is on self.efficient_bidirectional = efficient_bidirectional if self.efficient_bidirectional: H_C = H * channels else: H *= channels H_C = H self.delta = nn.Parameter(torch.Tensor(H, 1 if dt_tie else N, 1)) self.alpha = nn.Parameter(torch.Tensor(H, N, 1)) self.beta = nn.Parameter(torch.Tensor(H, N, 1)) self.gamma = nn.Parameter(torch.Tensor(H_C, N)) # self.omega = nn.Parameter(torch.Tensor(H)) # D skip connection handled by outside class self.reset_parameters() def reset_parameters(self): with torch.no_grad(): nn.init.normal_(self.delta, mean=0.0, std=0.2) nn.init.normal_(self.alpha, mean=0.0, std=0.2) # Mega comment: beta [1, -1, 1, -1, ...] seems more stable. val = torch.ones(self.N, 1) if self.N > 1: idx = torch.tensor(list(range(1, self.N, 2))) val.index_fill_(0, idx, -1.0) self.beta.normal_(mean=0.0, std=0.02).add_(val) nn.init.normal_(self.gamma, mean=0.0, std=1.0) # nn.init.normal_(self.omega, mean=0.0, std=1.0) def coeffs(self): # Same as discretize p = torch.sigmoid(self.delta) # (H N 1) alpha = torch.sigmoid(self.alpha) q = 1.0 - p * alpha return p, q def forward(self, L=None, state=None, rate=1.0): L = L if self.l_max is None else min(self.l_max, L) p, q = self.coeffs() # (H N 1) vander = torch.arange(L).to(p).view(1, 1, L) * torch.log(q) # (H N L) kernel = (p * self.beta) * torch.exp(vander) if self.efficient_bidirectional: C = rearrange(self.gamma * self.scale, '(c h) n -> c h n', c=self.channels) kernel = torch.einsum('dnl,cdn->cdl', kernel, C) # kernel = rearrange(kernel, 'c d l -> (c d) l') else: kernel = torch.einsum('dnl,dn->dl', kernel, self.gamma * self.scale) kernel = rearrange(kernel, '(c h) l -> c h l', c=self.channels) kernel = kernel[..., :L] # kernel = rearrange(kernel, '(c h) l -> c h l', c=self.channels) return kernel, None # k_state
safari-main
src/models/sequence/ssm/ss_kernel_diag.py
# Copied from https://github.com/HazyResearch/state-spaces/blob/06dbbdfd0876501a7f12bf3262121badbc7658af/src/models/sequence/ss/dplr.py """Initializations of structured state space models""" import math import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange, repeat from src.models.sequence.ssm import hippo def dplr(scaling='linear', N=64, rank=1, H=1, dtype=torch.float, real_scale=1.0, imag_scale=1.0, random_real=False, random_imag=False, normalize=False, diagonal=True, random_B=False): assert dtype == torch.float or dtype == torch.double dtype = torch.cfloat if dtype == torch.float else torch.cdouble pi = torch.tensor(math.pi) if random_real: real_part = torch.rand(H, N//2) else: real_part = .5 * torch.ones(H, N//2) if random_imag: imag_part = N//2 * torch.rand(H, N//2) else: imag_part = repeat(torch.arange(N//2), 'n -> h n', h=H) real_part = real_scale * real_part if scaling == 'random': imag_part = torch.randn(H, N//2) elif scaling == 'real': imag_part = 0 * imag_part real_part = 1 + repeat(torch.arange(N//2), 'n -> h n', h=H) elif scaling in ['linear', 'lin']: imag_part = pi * imag_part elif scaling in ['inverse', 'inv']: # Based on asymptotics of the default HiPPO matrix imag_part = 1/pi * N * (N/(1+2*imag_part)-1) elif scaling in ['inverse2', 'inv2']: imag_part = 1/pi * N * (N/(1+imag_part)-1) elif scaling in ['quadratic', 'quad']: imag_part = 1/pi * (1+2*imag_part)**2 elif scaling in ['legs', 'hippo']: w, _, _, _ = hippo.nplr('legsd', N) imag_part = w.imag else: raise NotImplementedError imag_part = imag_scale * imag_part w = -real_part + 1j * imag_part # Initialize B if random_B: B = torch.randn(H, N//2, dtype=dtype) else: B = torch.ones(H, N//2, dtype=dtype) if normalize: norm = -B/w # (H, N) # Result if you integrate the kernel with constant 1 function zeta = 2*torch.sum(torch.abs(norm)**2, dim=-1, keepdim=True) # Variance with a random C vector B = B / zeta**.5 P = torch.randn(rank, H, N//2, dtype=dtype) if diagonal: P = P * 0.0 V = torch.eye(N, dtype=dtype)[:, :N//2] # Only used in testing V = repeat(V, 'n m -> h n m', h=H) return w, P, B, V def ssm(measure, N, R, H, **ssm_args): """Dispatcher to create single SSM initialization N: state size R: rank (for DPLR parameterization) H: number of independent SSM copies """ if measure == "dplr": w, P, B, V = dplr(N=N, rank=R, H=H, **ssm_args) elif measure.startswith("diag"): args = measure.split("-") assert args[0] == "diag" and len(args) > 1 scaling = args[1] w, P, B, V = dplr(scaling=scaling, N=N, rank=R, H=H, diagonal=True, **ssm_args) else: w, P, B, V = hippo.nplr(measure, N, R, **ssm_args) w = repeat(w, 'n -> s n', s=H) P = repeat(P, 'r n -> r s n', s=H) B = repeat(B, 'n -> s n', s=H) V = repeat(V, 'n m -> s n m', s=H) return w, P, B, V combinations = { 'hippo': ['legs', 'fourier'], 'diag': ['diag-inv', 'diag-lin'], 'all': ['legs', 'fourier', 'diag-inv', 'diag-lin'], } def combination(measures, N, R, S, **ssm_args): if isinstance(measures, str): measures = combinations[measures] if measures in combinations else [measures] assert S % len(measures) == 0, f"{S} independent trainable SSM copies must be multiple of {len(measures)} different measures" w, P, B, V = zip( *[ssm(measure, N, R, S // len(measures), **ssm_args) for measure in measures] ) w = torch.cat(w, dim=0) # (S N) P = torch.cat(P, dim=1) # (R S N) B = torch.cat(B, dim=0) # (S N) V = torch.cat(V, dim=0) # (S N N) return w, P, B, V
safari-main
src/models/sequence/ssm/dplr.py
""" The original Vision Transformer (ViT) from timm, copyright belongs to / Copyright 2020 Ross Wightman """ import math import logging from functools import partial from collections import OrderedDict from copy import deepcopy import torch import torch.nn as nn import torch.nn.functional as F from timm.models.helpers import build_model_with_cfg, overlay_external_default_cfg from timm.models.layers import PatchEmbed, Mlp, trunc_normal_, lecun_normal_ from src.models.sequence.base import SequenceModule from src.models.nn.components import Normalization from src.models.sequence.block import SequenceResidualBlock from src.utils.config import to_list, to_dict _logger = logging.getLogger(__name__) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'classifier': 'head', **kwargs, } default_cfgs = { # patch models (my experiments) 'vit_small_patch16_224': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth', ), # patch models (weights ported from official Google JAX impl) 'vit_base_patch16_224': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), ), } class VisionTransformer(SequenceModule): """ Vision Transformer A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 Includes distillation token & head support for `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877 """ def __init__( self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, d_model=768, depth=12, expand=4, representation_size=None, distilled=False, dropout=0., drop_path_rate=0., embed_layer=PatchEmbed, norm='layer', weight_init='', layer=None, transposed=False, layer_reps=1, use_pos_embed=False, use_cls_token=False, track_norms=False, ): """ Args: img_size (int, tuple): input image size patch_size (int, tuple): patch size in_chans (int): number of input channels num_classes (int): number of classes for classification head d_model (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True qk_scale (float): override default qk scale of head_dim ** -0.5 if set representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set distilled (bool): model includes a distillation token and head as in DeiT models dropout (float): dropout rate attn_drop_rate (float): attention dropout rate drop_path_rate (float): stochastic depth rate embed_layer (nn.Module): patch embedding layer norm_layer: (nn.Module): normalization layer weight_init: (str): weight init scheme """ super().__init__() self.num_classes = num_classes self.num_features = self.d_model = d_model # num_features for consistency with other models self.num_tokens = 2 if distilled else 1 self.use_pos_embed = use_pos_embed self.use_cls_token = use_cls_token self.track_norms = track_norms self.patch_embed = embed_layer( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=d_model, ) num_patches = self.patch_embed.num_patches self.cls_token = None self.dist_token = None if use_cls_token: self.cls_token = nn.Parameter(torch.zeros(1, 1, d_model)) self.dist_token = nn.Parameter(torch.zeros(1, 1, d_model)) if distilled else None else: assert not distilled, 'Distillation token not supported without class token' self.pos_embed = None if use_pos_embed: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, d_model)) self.pos_drop = nn.Dropout(p=dropout) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.transposed = transposed layer = to_list(layer, recursive=False) * layer_reps # Some special arguments are passed into each layer for _layer in layer: # If layers don't specify dropout, add it if _layer.get('dropout', None) is None: _layer['dropout'] = dropout # Ensure all layers are shaped the same way _layer['transposed'] = transposed # Config for the inverted bottleneck ff_cfg = { '_name_': 'ff', 'expand': int(expand), 'transposed': self.transposed, 'activation': 'gelu', 'initializer': None, 'dropout': dropout, } blocks = [] for i in range(depth): for _layer in layer: blocks.append( SequenceResidualBlock( d_input=d_model, i_layer=i, prenorm=True, dropout=dropout, layer=_layer, residual='R', norm=norm, pool=None, drop_path=dpr[i], ) ) if expand > 0: blocks.append( SequenceResidualBlock( d_input=d_model, i_layer=i, prenorm=True, dropout=dropout, layer=ff_cfg, residual='R', norm=norm, pool=None, drop_path=dpr[i], ) ) self.blocks = nn.Sequential(*blocks) if norm is None: self.norm = None elif isinstance(norm, str): self.norm = Normalization(d_model, transposed=self.transposed, _name_=norm) else: self.norm = Normalization(d_model, transposed=self.transposed, **norm) # Representation layer: generally defaults to nn.Identity() if representation_size and not distilled: self.num_features = representation_size self.pre_logits = nn.Sequential(OrderedDict([ ('fc', nn.Linear(d_model, representation_size)), ('act', nn.Tanh()) ])) else: self.pre_logits = nn.Identity() # Classifier head(s): TODO: move to decoder self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() self.head_dist = None if distilled: self.head_dist = nn.Linear(self.d_model, self.num_classes) if num_classes > 0 else nn.Identity() # Weight init assert weight_init in ('jax', 'jax_nlhb', 'nlhb', '') head_bias = -math.log(self.num_classes) if 'nlhb' in weight_init else 0. if self.pos_embed is not None: trunc_normal_(self.pos_embed, std=.02) if self.dist_token is not None: trunc_normal_(self.dist_token, std=.02) if weight_init.startswith('jax'): # leave cls token as zeros to match jax impl for n, m in self.named_modules(): _init_vit_weights(m, n, head_bias=head_bias, jax_impl=True) else: if self.cls_token is not None: trunc_normal_(self.cls_token, std=.02) self.apply(_init_vit_weights) def _init_weights(self, m): # this fn left here for compat with downstream users _init_vit_weights(m) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token', 'dist_token'} def forward_features(self, x): # TODO: move to encoder x = self.patch_embed(x) if self.use_cls_token: cls_token = self.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks if self.dist_token is None: x = torch.cat((cls_token, x), dim=1) else: x = torch.cat((cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1) if self.use_pos_embed: x = self.pos_drop(x + self.pos_embed) if self.track_norms: output_norms = [torch.mean(x.detach() ** 2)] for block in self.blocks: x, _ = block(x) if self.track_norms: output_norms.append(torch.mean(x.detach() ** 2)) x = self.norm(x) if self.track_norms: metrics = to_dict(output_norms, recursive=False) self.metrics = {f'norm/{i}': v for i, v in metrics.items()} if self.dist_token is None: if self.use_cls_token: return self.pre_logits(x[:, 0]) else: # pooling: TODO move to decoder return self.pre_logits(x.mean(1)) else: return x[:, 0], x[:, 1] def forward(self, x, rate=1.0, resolution=None, state=None): x = self.forward_features(x) if self.head_dist is not None: x, x_dist = self.head(x[0]), self.head_dist(x[1]) # x must be a tuple if self.training and not torch.jit.is_scripting(): # during inference, return the average of both classifier predictions return x, x_dist else: return (x + x_dist) / 2 else: x = self.head(x) return x, None def _init_vit_weights(m, n: str = '', head_bias: float = 0., jax_impl: bool = False): """ ViT weight initialization * When called without n, head_bias, jax_impl args it will behave exactly the same as my original init for compatibility with prev hparam / downstream use cases (ie DeiT). * When called w/ valid n (module name) and jax_impl=True, will (hopefully) match JAX impl """ if isinstance(m, (nn.Linear)): if n.startswith('head'): nn.init.zeros_(m.weight) nn.init.constant_(m.bias, head_bias) elif n.startswith('pre_logits'): lecun_normal_(m.weight) nn.init.zeros_(m.bias) else: if jax_impl: nn.init.xavier_uniform_(m.weight) if m.bias is not None: if 'mlp' in n: nn.init.normal_(m.bias, std=1e-6) else: nn.init.zeros_(m.bias) else: if m.bias is not None: nn.init.zeros_(m.bias) dense_init_fn_ = partial(trunc_normal_, std=.02) if isinstance(m, nn.Linear): dense_init_fn_(m.weight) elif jax_impl and isinstance(m, nn.Conv2d): # NOTE conv was left to pytorch default in my original init lecun_normal_(m.weight) if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.LayerNorm): nn.init.zeros_(m.bias) nn.init.ones_(m.weight) def resize_pos_embed(posemb, posemb_new, num_tokens=1, gs_new=()): # Rescale the grid of position embeddings when loading from state_dict. Adapted from # https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224 _logger.info('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape) ntok_new = posemb_new.shape[1] if num_tokens: posemb_tok, posemb_grid = posemb[:, :num_tokens], posemb[0, num_tokens:] ntok_new -= num_tokens else: posemb_tok, posemb_grid = posemb[:, :0], posemb[0] gs_old = int(math.sqrt(len(posemb_grid))) if not len(gs_new): # backwards compatibility gs_new = [int(math.sqrt(ntok_new))] * 2 assert len(gs_new) >= 2 _logger.info('Position embedding grid-size from %s to %s', [gs_old, gs_old], gs_new) posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2) posemb_grid = F.interpolate(posemb_grid, size=gs_new, mode='bilinear') posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1) posemb = torch.cat([posemb_tok, posemb_grid], dim=1) return posemb def checkpoint_filter_fn(state_dict, model): """ convert patch embedding weight from manual patchify + linear proj to conv""" out_dict = {} if 'model' in state_dict: # For deit models state_dict = state_dict['model'] for k, v in state_dict.items(): if 'patch_embed.proj.weight' in k and len(v.shape) < 4: # For old models that I trained prior to conv based patchification O, I, H, W = model.patch_embed.proj.weight.shape v = v.reshape(O, -1, H, W) elif k == 'pos_embed' and v.shape != model.pos_embed.shape: # To resize pos embedding when using model at different size from pretrained weights v = resize_pos_embed(v, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size) out_dict[k] = v return out_dict def _create_vision_transformer(variant, pretrained=False, default_cfg=None, **kwargs): if default_cfg is None: default_cfg = deepcopy(default_cfgs[variant]) overlay_external_default_cfg(default_cfg, kwargs) default_num_classes = default_cfg['num_classes'] default_img_size = default_cfg['input_size'][-2:] num_classes = kwargs.pop('num_classes', default_num_classes) img_size = kwargs.pop('img_size', default_img_size) repr_size = kwargs.pop('representation_size', None) if repr_size is not None and num_classes != default_num_classes: # Remove representation layer if fine-tuning. This may not always be the desired action, # but I feel better than doing nothing by default for fine-tuning. Perhaps a better interface? _logger.warning("Removing representation layer for fine-tuning.") repr_size = None if kwargs.get('features_only', None): raise RuntimeError('features_only not implemented for Vision Transformer models.') model = build_model_with_cfg( VisionTransformer, variant, pretrained, default_cfg=default_cfg, img_size=img_size, num_classes=num_classes, representation_size=repr_size, pretrained_filter_fn=checkpoint_filter_fn, **kwargs) return model def vit_small_patch16_224(pretrained=False, **kwargs): """ Tri's custom 'small' ViT model. d_model=768, depth=8, num_heads=8, mlp_ratio=3. NOTE: * this differs from the DeiT based 'small' definitions with d_model=384, depth=12, num_heads=6 * this model does not have a bias for QKV (unlike the official ViT and DeiT models) """ print(kwargs) model_kwargs = dict( patch_size=16, d_model=768, depth=8, expand=3, norm='layer', ) model_kwargs = { **model_kwargs, **kwargs, } if pretrained: # NOTE my scale was wrong for original weights, leaving this here until I have better ones for this model model_kwargs.setdefault('qk_scale', 768 ** -0.5) model = _create_vision_transformer('vit_small_patch16_224', pretrained=pretrained, **model_kwargs) return model def vit_base_patch16_224(pretrained=False, **kwargs): """ ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer. """ model_kwargs = dict( patch_size=16, d_model=768, depth=12, # num_heads=12, ) model_kwargs = { **model_kwargs, **kwargs, } model = _create_vision_transformer('vit_base_patch16_224', pretrained=pretrained, **model_kwargs) return model
safari-main
src/models/baselines/vit_all.py
import math import torch import torch.nn.functional as F from einops import rearrange from fftconv import fftconv_fwd, fftconv_bwd @torch.jit.script def _mul_sum(y, q): return (y * q).sum(dim=1) # reference convolution with residual connection def fftconv_ref(u, k, D, dropout_mask, gelu=True, k_rev=None): seqlen = u.shape[-1] fft_size = 2 * seqlen k_f = torch.fft.rfft(k, n=fft_size) / fft_size if k_rev is not None: k_rev_f = torch.fft.rfft(k_rev, n=fft_size) / fft_size k_f = k_f + k_rev_f.conj() u_f = torch.fft.rfft(u.to(dtype=k.dtype), n=fft_size) y = torch.fft.irfft(u_f * k_f, n=fft_size, norm='forward')[..., :seqlen] out = y + u * D.unsqueeze(-1) if gelu: out = F.gelu(out) if dropout_mask is not None: return (out * rearrange(dropout_mask, 'b H -> b H 1')).to(dtype=u.dtype) else: return out.to(dtype=u.dtype) # reference H3 forward pass def fftconv_h3_ref(k, ssm_kernel, D, q, v, head_dim=1, ssm_kernel_rev=None): seqlen = k.shape[-1] fft_size = 2 * seqlen kv = (rearrange(k, 'b (h d1) l -> b d1 1 h l', d1=head_dim) * rearrange(v, 'b (h d2) l -> b 1 d2 h l', d2=head_dim)) # b d1 d2 h l kv_f = torch.fft.rfft(kv.to(dtype=ssm_kernel.dtype), n=fft_size) / fft_size ssm_kernel_f = torch.fft.rfft(ssm_kernel, n=fft_size) # h L+1 if ssm_kernel_rev is not None: ssm_kernel_rev_f = torch.fft.rfft(ssm_kernel_rev, n=fft_size) # h L+1 ssm_kernel_f = ssm_kernel_f + ssm_kernel_rev_f.conj() y = torch.fft.irfft(kv_f * ssm_kernel_f, n=fft_size, norm='forward')[..., :seqlen] # b d1 d2 h l out = y + kv * D.unsqueeze(-1) # b d1 d2 h l q = rearrange(q, 'b (h d1) l -> b d1 1 h l', d1=head_dim) if head_dim > 1: out = _mul_sum(out, q) return rearrange(out, 'b d2 h l -> b (h d2) l').to(dtype=k.dtype) else: return rearrange(out * q, 'b 1 1 h l -> b h l').to(dtype=k.dtype) class FFTConvFunc(torch.autograd.Function): @staticmethod def forward(ctx, u, k, D, dropout_mask=None, gelu=True, force_fp16_output=False, output_hbl_layout=False, v=None, head_dim=1, q=None, fftfp16=False, k_rev=None): seqlen = u.shape[-1] fft_size = max(2 * 2 ** int(math.ceil(math.log2(seqlen))), 16) k_f = torch.fft.rfft(k, n=fft_size) if k_rev is not None: k_f = k_f + torch.fft.rfft(k_rev, n=fft_size).conj() if u.stride(-1) != 1: u = u.contiguous() k_f = k_f.contiguous() D = D.contiguous() if v is not None and v.stride(-1) != 1: v = v.contiguous() if q is not None and q.stride(-1) != 1: q = q.contiguous() if dropout_mask is not None: dropout_mask = dropout_mask.contiguous() ctx.save_for_backward(u, k_f, D, dropout_mask, v, q) ctx.output_hbl_layout = output_hbl_layout ctx.head_dim = head_dim ctx.gelu = gelu ctx.fftfp16 = fftfp16 ctx.has_k_rev = k_rev is not None out = fftconv_fwd(u, k_f, D, v, head_dim, q, dropout_mask, gelu, False, False, fft_size, force_fp16_output, output_hbl_layout, fftfp16) return out @staticmethod def backward(ctx, dout): if ctx.output_hbl_layout: dout = rearrange(rearrange(dout, 'b h l -> h b l').contiguous(), 'h b l -> b h l') else: dout = dout.contiguous() u, k_f, D, dropout_mask, v, q = ctx.saved_tensors seqlen = u.shape[-1] fft_size = max(2 * 2 ** int(math.ceil(math.log2(seqlen))), 16) du, dk_f, dD, dv, dq = fftconv_bwd(dout, u, k_f, D, v, ctx.head_dim, q, dropout_mask, ctx.gelu, False, False, fft_size, ctx.output_hbl_layout, ctx.fftfp16) dk = torch.fft.irfft(dk_f, n=fft_size, norm='forward')[..., :seqlen] dk_rev = (None if not ctx.has_k_rev else torch.fft.irfft(dk_f.conj(), n=fft_size, norm='forward')[..., :seqlen]) if v is not None: dv = dv.to(dtype=v.dtype) # We do atomicAdd in fp32 so might need to convert to fp16 return du, dk, dD, None, None, None, None, dv if v is not None else None, None, dq if q is not None else None, None, dk_rev def fftconv_func(u, k, D, dropout_mask=None, gelu=True, force_fp16_output=False, output_hbl_layout=False, v=None, head_dim=1, q=None, fftfp16=False, k_rev=None): return FFTConvFunc.apply(u, k, D, dropout_mask, gelu, force_fp16_output, output_hbl_layout, v, head_dim, q, fftfp16, k_rev)
safari-main
src/ops/fftconv.py
"""pykeops implementations of the Vandermonde matrix multiplication kernel used in the S4D kernel.""" import math import torch from einops import rearrange, repeat from opt_einsum import contract import os try: import pykeops from pykeops.torch import LazyTensor, Genred except: pass try: from cauchy_mult import vand_log_mult_sym_fwd, vand_log_mult_sym_bwd except: vand_log_mult_sym_fwd, vand_log_mult_sym_bwd = None, None _conj = lambda x: torch.cat([x, x.conj()], dim=-1) def _broadcast_dims(*tensors): max_dim = max([len(tensor.shape) for tensor in tensors]) tensors = [tensor.view((1,)*(max_dim-len(tensor.shape))+tensor.shape) for tensor in tensors] return tensors def _c2r(x): return torch.view_as_real(x) def _r2c(x): return torch.view_as_complex(x) def vandermonde_naive(v, x, L, conj=True): """ v: (..., N) x: (..., N) returns: (..., L) \sum v x^l """ if conj: x = _conj(x) v = _conj(v) vandermonde_matrix = x.unsqueeze(-1) ** torch.arange(L).to(x) # (... N L) vandermonde_prod = torch.sum(v.unsqueeze(-1) * vandermonde_matrix, dim=-2) # (... L) return vandermonde_prod def log_vandermonde_naive(v, x, L, conj=True): """ v: (..., N) x: (..., N) returns: (..., L) \sum v x^l """ vandermonde_matrix = torch.exp(x.unsqueeze(-1) * torch.arange(L).to(x)) # (... N L) vandermonde_prod = contract('... n, ... n l -> ... l', v, vandermonde_matrix) # (... L) if conj: return 2*vandermonde_prod.real else: return vandermonde_prod def log_vandermonde_lazy(v, x, L, conj=True): if conj: v = _conj(v) x = _conj(x) l = torch.arange(L).to(x) v, x, l = _broadcast_dims(v, x, l) v_l = LazyTensor(rearrange(v, '... N -> ... N 1 1')) x_l = LazyTensor(rearrange(x, '... N -> ... N 1 1')) l_l = LazyTensor(rearrange(l, '... L -> ... 1 L 1')) # exp vand = (x_l * l_l).exp() s = (v_l*vand).sum(dim=len(v_l.shape)-2) return s.squeeze(-1) def log_vandermonde(v, x, L, conj=True): expr = 'ComplexMult(v, ComplexExp(ComplexMult(x, l)))' vandermonde_mult = Genred( expr, [ 'v = Vj(2)', 'x = Vj(2)', 'l = Vi(2)', ], reduction_op='Sum', axis=1, ) l = torch.arange(L).to(x) v, x, l = _broadcast_dims(v, x, l) v = _c2r(v) x = _c2r(x) l = _c2r(l) r = vandermonde_mult(v, x, l, backend='GPU') if conj: return 2*_r2c(r).real else: return _r2c(r) def log_vandermonde_transpose_naive(u, v, x, L): vandermonde_matrix = torch.exp(x.unsqueeze(-1) * torch.arange(L).to(x)) # (... N L) vandermonde_prod = contract('... l, ... n, ... n l -> ... n', u.to(x), v.to(x), vandermonde_matrix) # (... L) return vandermonde_prod def log_vandermonde_transpose(u, v, x, L): """ u: ... H L v: ... H N x: ... H N Returns: ... H N V = Vandermonde(a, L) : (H N L) contract_L(V * u * v) """ expr = 'ComplexMult(ComplexMult(v, u), ComplexExp(ComplexMult(x, l)))' vandermonde_mult = Genred( expr, [ 'u = Vj(2)', 'v = Vi(2)', 'x = Vi(2)', 'l = Vj(2)', ], reduction_op='Sum', axis=1, ) l = torch.arange(L).to(x) u, v, x, l = _broadcast_dims(u, v, x, l) u = _c2r(u) v = _c2r(v) x = _c2r(x) l = _c2r(l) r = vandermonde_mult(u, v, x, l, backend='GPU') return _r2c(r) def _log_vandermonde_matmul(x, L): vandermonde_matrix = torch.exp(x.unsqueeze(-1) * torch.arange(L).to(x)) # (... N L) return vandermonde_matrix def log_vandermonde_matmul(v, K): prod = contract('...n, ...nl -> ...l', v, K) return 2*prod.real class LogVandMultiplySymmetric(torch.autograd.Function): @staticmethod def forward(ctx, v, x, L): batch, N = v.shape supported_N_values = [1 << log_n for log_n in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]] if not N in supported_N_values: raise NotImplementedError(f'Only support N values in {supported_N_values}') max_L_value = 32 * 1024 * 64 * 1024 if L > max_L_value: raise NotImplementedError(f'Only support L values <= {max_L_value}') if not v.is_cuda and x.is_cuda: raise NotImplementedError(f'Only support CUDA tensors') ctx.save_for_backward(v, x) return vand_log_mult_sym_fwd(v, x, L) @staticmethod def backward(ctx, dout): v, x = ctx.saved_tensors dv, dx = vand_log_mult_sym_bwd(v, x, dout) return dv, dx, None if vand_log_mult_sym_fwd and vand_log_mult_sym_bwd is not None: log_vandermonde_fast = LogVandMultiplySymmetric.apply else: log_vandermonde_fast = None
safari-main
src/ops/vandermonde.py
""" Old utilities for parallel scan implementation of Linear RNNs. """ # TODO this file could use much cleanup import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import math from src.models.functional.toeplitz import triangular_toeplitz_multiply, triangular_toeplitz_multiply_padded from src.utils.permutations import bitreversal_po2, bitreversal_permutation ### Utilities def shift_up(a, s=None, drop=True, dim=0): assert dim == 0 if s is None: s = torch.zeros_like(a[0, ...]) s = s.unsqueeze(dim) if drop: a = a[:-1, ...] return torch.cat((s, a), dim=dim) def interleave(a, b, uneven=False, dim=0): """ Interleave two tensors of same shape """ # assert(a.shape == b.shape) assert dim == 0 # TODO temporary to make handling uneven case easier if dim < 0: dim = N + dim if uneven: a_ = a[-1:, ...] a = a[:-1, ...] c = torch.stack((a, b), dim+1) out_shape = list(a.shape) out_shape[dim] *= 2 c = c.view(out_shape) if uneven: c = torch.cat((c, a_), dim=dim) return c def batch_mult(A, u, has_batch=None): """ Matrix mult A @ u with special case to save memory if u has additional batch dim The batch dimension is assumed to be the second dimension A : (L, ..., N, N) u : (L, [B], ..., N) has_batch: True, False, or None. If None, determined automatically Output: x : (L, [B], ..., N) A @ u broadcasted appropriately """ if has_batch is None: has_batch = len(u.shape) >= len(A.shape) if has_batch: u = u.permute([0] + list(range(2, len(u.shape))) + [1]) else: u = u.unsqueeze(-1) v = (A @ u) if has_batch: v = v.permute([0] + [len(u.shape)-1] + list(range(1, len(u.shape)-1))) else: v = v[..., 0] return v ### Main unrolling functions def unroll(A, u): """ A : (..., N, N) # TODO I think this can't take batch dimension? u : (L, ..., N) output : x (..., N) # TODO a lot of these shapes are wrong x[i, ...] = A^{i} @ u[0, ...] + ... + A @ u[i-1, ...] + u[i, ...] """ m = u.new_zeros(u.shape[1:]) outputs = [] for u_ in torch.unbind(u, dim=0): m = F.linear(m, A) + u_ outputs.append(m) output = torch.stack(outputs, dim=0) return output def parallel_unroll_recursive(A, u): """ Bottom-up divide-and-conquer version of unroll. """ # Main recursive function def parallel_unroll_recursive_(A, u): if u.shape[0] == 1: return u u_evens = u[0::2, ...] u_odds = u[1::2, ...] # u2 = F.linear(u_evens, A) + u_odds u2 = (A @ u_evens.unsqueeze(-1)).squeeze(-1) + u_odds A2 = A @ A x_odds = parallel_unroll_recursive_(A2, u2) # x_evens = F.linear(shift_up(x_odds), A) + u_evens x_evens = (A @ shift_up(x_odds).unsqueeze(-1)).squeeze(-1) + u_evens x = interleave(x_evens, x_odds, dim=0) return x # Pad u to power of 2 n = u.shape[0] m = int(math.ceil(math.log(n)/math.log(2))) N = 1 << m u = torch.cat((u, u.new_zeros((N-u.shape[0],) + u.shape[1:] )), dim=0) return parallel_unroll_recursive_(A, u)[:n, ...] def parallel_unroll_recursive_br(A, u): """ Same as parallel_unroll_recursive but uses bit reversal for locality. """ # Main recursive function def parallel_unroll_recursive_br_(A, u): n = u.shape[0] if n == 1: return u m = n//2 u_0 = u[:m, ...] u_1 = u[m:, ...] u2 = F.linear(u_0, A) + u_1 A2 = A @ A x_1 = parallel_unroll_recursive_br_(A2, u2) x_0 = F.linear(shift_up(x_1), A) + u_0 # x = torch.cat((x_0, x_1), dim=0) # is there a way to do this with cat? x = interleave(x_0, x_1, dim=0) return x # Pad u to power of 2 n = u.shape[0] m = int(math.ceil(math.log(n)/math.log(2))) N = 1 << m u = torch.cat((u, u.new_zeros((N-u.shape[0],) + u.shape[1:] )), dim=0) # Apply bit reversal br = bitreversal_po2(N) u = u[br, ...] x = parallel_unroll_recursive_br_(A, u) return x[:n, ...] def parallel_unroll_iterative(A, u): """ Bottom-up divide-and-conquer version of unroll, implemented iteratively """ # Pad u to power of 2 n = u.shape[0] m = int(math.ceil(math.log(n)/math.log(2))) N = 1 << m u = torch.cat((u, u.new_zeros((N-u.shape[0],) + u.shape[1:] )), dim=0) # Apply bit reversal br = bitreversal_po2(N) u = u[br, ...] # Main recursive loop, flattened us = [] # stores the u_0 terms in the recursive version N_ = N As = [] # stores the A matrices for l in range(m): N_ = N_ // 2 As.append(A) u_0 = u[:N_, ...] us.append(u_0) u = F.linear(u_0, A) + u[N_:, ...] A = A @ A x_0 = [] x = u # x_1 for l in range(m-1, -1, -1): x_0 = F.linear(shift_up(x), As[l]) + us[l] x = interleave(x_0, x, dim=0) return x[:n, ...] def variable_unroll_sequential(A, u, s=None, variable=True): """ Unroll with variable (in time/length) transitions A. A : ([L], ..., N, N) dimension L should exist iff variable is True u : (L, [B], ..., N) updates s : ([B], ..., N) start state output : x (..., N) x[i, ...] = A[i]..A[0] @ s + A[i..1] @ u[0] + ... + A[i] @ u[i-1] + u[i] """ if s is None: s = torch.zeros_like(u[0]) if not variable: A = A.expand((u.shape[0],) + A.shape) has_batch = len(u.shape) >= len(A.shape) outputs = [] for (A_, u_) in zip(torch.unbind(A, dim=0), torch.unbind(u, dim=0)): # s = F.linear(s, A_) + u_ s = batch_mult(A_.unsqueeze(0), s.unsqueeze(0), has_batch)[0] s = s + u_ outputs.append(s) output = torch.stack(outputs, dim=0) return output def variable_unroll(A, u, s=None, variable=True, recurse_limit=16): """ Bottom-up divide-and-conquer version of variable_unroll. """ if u.shape[0] <= recurse_limit: return variable_unroll_sequential(A, u, s, variable) if s is None: s = torch.zeros_like(u[0]) uneven = u.shape[0] % 2 == 1 has_batch = len(u.shape) >= len(A.shape) u_0 = u[0::2, ...] u_1 = u[1::2, ...] if variable: A_0 = A[0::2, ...] A_1 = A[1::2, ...] else: A_0 = A A_1 = A u_0_ = u_0 A_0_ = A_0 if uneven: u_0_ = u_0[:-1, ...] if variable: A_0_ = A_0[:-1, ...] u_10 = batch_mult(A_1, u_0_, has_batch) u_10 = u_10 + u_1 A_10 = A_1 @ A_0_ # Recursive call x_1 = variable_unroll(A_10, u_10, s, variable, recurse_limit) x_0 = shift_up(x_1, s, drop=not uneven) x_0 = batch_mult(A_0, x_0, has_batch) x_0 = x_0 + u_0 x = interleave(x_0, x_1, uneven, dim=0) # For some reason this interleave is slower than in the (non-multi) unroll_recursive return x def variable_unroll_general_sequential(A, u, s, op, variable=True): """ Unroll with variable (in time/length) transitions A with general associative operation A : ([L], ..., N, N) dimension L should exist iff variable is True u : (L, [B], ..., N) updates s : ([B], ..., N) start state output : x (..., N) x[i, ...] = A[i]..A[0] s + A[i..1] u[0] + ... + A[i] u[i-1] + u[i] """ if not variable: A = A.expand((u.shape[0],) + A.shape) outputs = [] for (A_, u_) in zip(torch.unbind(A, dim=0), torch.unbind(u, dim=0)): s = op(A_, s) s = s + u_ outputs.append(s) output = torch.stack(outputs, dim=0) return output def variable_unroll_matrix_sequential(A, u, s=None, variable=True): if s is None: s = torch.zeros_like(u[0]) if not variable: A = A.expand((u.shape[0],) + A.shape) # has_batch = len(u.shape) >= len(A.shape) # op = lambda x, y: batch_mult(x.unsqueeze(0), y.unsqueeze(0), has_batch)[0] op = lambda x, y: batch_mult(x.unsqueeze(0), y.unsqueeze(0))[0] return variable_unroll_general_sequential(A, u, s, op, variable=True) def variable_unroll_toeplitz_sequential(A, u, s=None, variable=True, pad=False): if s is None: s = torch.zeros_like(u[0]) if not variable: A = A.expand((u.shape[0],) + A.shape) # has_batch = len(u.shape) >= len(A.shape) # op = lambda x, y: batch_mult(x.unsqueeze(0), y.unsqueeze(0), has_batch)[0] # op = lambda x, y: batch_mult(x.unsqueeze(0), y.unsqueeze(0))[0] if pad: n = A.shape[-1] A = F.pad(A, (0, n)) u = F.pad(u, (0, n)) s = F.pad(s, (0, n)) ret = variable_unroll_general_sequential(A, u, s, triangular_toeplitz_multiply_padded, variable=True) ret = ret[..., :n] return ret return variable_unroll_general_sequential(A, u, s, triangular_toeplitz_multiply, variable=True) ### General parallel scan functions with generic binary composition operators def variable_unroll_general(A, u, s, op, compose_op=None, sequential_op=None, variable=True, recurse_limit=16): """ Bottom-up divide-and-conquer version of variable_unroll. compose is an optional function that defines how to compose A without multiplying by a leaf u """ if u.shape[0] <= recurse_limit: if sequential_op is None: sequential_op = op return variable_unroll_general_sequential(A, u, s, sequential_op, variable) if compose_op is None: compose_op = op uneven = u.shape[0] % 2 == 1 # has_batch = len(u.shape) >= len(A.shape) u_0 = u[0::2, ...] u_1 = u[1::2, ...] if variable: A_0 = A[0::2, ...] A_1 = A[1::2, ...] else: A_0 = A A_1 = A u_0_ = u_0 A_0_ = A_0 if uneven: u_0_ = u_0[:-1, ...] if variable: A_0_ = A_0[:-1, ...] u_10 = op(A_1, u_0_) # batch_mult(A_1, u_0_, has_batch) u_10 = u_10 + u_1 A_10 = compose_op(A_1, A_0_) # Recursive call x_1 = variable_unroll_general(A_10, u_10, s, op, compose_op, sequential_op, variable=variable, recurse_limit=recurse_limit) x_0 = shift_up(x_1, s, drop=not uneven) x_0 = op(A_0, x_0) # batch_mult(A_0, x_0, has_batch) x_0 = x_0 + u_0 x = interleave(x_0, x_1, uneven, dim=0) # For some reason this interleave is slower than in the (non-multi) unroll_recursive return x def variable_unroll_matrix(A, u, s=None, variable=True, recurse_limit=16): if s is None: s = torch.zeros_like(u[0]) has_batch = len(u.shape) >= len(A.shape) op = lambda x, y: batch_mult(x, y, has_batch) sequential_op = lambda x, y: batch_mult(x.unsqueeze(0), y.unsqueeze(0), has_batch)[0] matmul = lambda x, y: x @ y return variable_unroll_general(A, u, s, op, compose_op=matmul, sequential_op=sequential_op, variable=variable, recurse_limit=recurse_limit) def variable_unroll_toeplitz(A, u, s=None, variable=True, recurse_limit=8, pad=False): """ Unroll with variable (in time/length) transitions A with general associative operation A : ([L], ..., N) dimension L should exist iff variable is True u : (L, [B], ..., N) updates s : ([B], ..., N) start state output : x (L, [B], ..., N) same shape as u x[i, ...] = A[i]..A[0] s + A[i..1] u[0] + ... + A[i] u[i-1] + u[i] """ # Add the batch dimension to A if necessary A_batch_dims = len(A.shape) - int(variable) u_batch_dims = len(u.shape)-1 if u_batch_dims > A_batch_dims: # assert u_batch_dims == A_batch_dims + 1 if variable: while len(A.shape) < len(u.shape): A = A.unsqueeze(1) # else: # A = A.unsqueeze(0) if s is None: s = torch.zeros_like(u[0]) if pad: n = A.shape[-1] A = F.pad(A, (0, n)) u = F.pad(u, (0, n)) s = F.pad(s, (0, n)) op = triangular_toeplitz_multiply_padded ret = variable_unroll_general(A, u, s, op, compose_op=op, variable=variable, recurse_limit=recurse_limit) ret = ret[..., :n] return ret op = triangular_toeplitz_multiply ret = variable_unroll_general(A, u, s, op, compose_op=op, variable=variable, recurse_limit=recurse_limit) return ret
safari-main
src/ops/unroll.py
""" Compute a Krylov function efficiently. (S4 renames the Krylov function to a "state space kernel") A : (N, N) b : (N,) c : (N,) Return: [c^T A^i b for i in [L]] """ import torch import torch.nn.functional as F from einops import rearrange, repeat from src.ops.toeplitz import causal_convolution def krylov_sequential(L, A, b, c=None): """ Constant matrix A A : (..., N, N) b : (..., N) c : (..., N) Returns if c: x : (..., L) x[i, l] = c[i] @ A^l @ b[i] else: x : (..., N, L) x[i, l] = A^l @ b[i] """ # Check which of dim b and c is smaller to save memory if c is not None and c.numel() < b.numel(): return krylov_sequential(L, A.transpose(-1, -2), c, b) b_ = b x = [] for _ in range(L): if c is not None: x_ = torch.sum(c*b_, dim=-1) # (...) # could be faster with matmul or einsum? else: x_ = b_ x.append(x_) b_ = (A @ b_.unsqueeze(-1)).squeeze(-1) x = torch.stack(x, dim=-1) return x def krylov(L, A, b, c=None, return_power=False): """ Compute the Krylov matrix (b, Ab, A^2b, ...) using the squaring trick. If return_power=True, return A^{L-1} as well """ # TODO There is an edge case if L=1 where output doesn't get broadcasted, which might be an issue if caller is expecting broadcasting semantics... can deal with it if it arises x = b.unsqueeze(-1) # (..., N, 1) A_ = A AL = None if return_power: AL = torch.eye(A.shape[-1], dtype=A.dtype, device=A.device) _L = L-1 done = L == 1 # loop invariant: _L represents how many indices left to compute while not done: if return_power: if _L % 2 == 1: AL = A_ @ AL _L //= 2 # Save memory on last iteration l = x.shape[-1] if L - l <= l: done = True _x = x[..., :L-l] else: _x = x _x = A_ @ _x x = torch.cat([x, _x], dim=-1) # there might be a more efficient way of ordering axes if not done: A_ = A_ @ A_ assert x.shape[-1] == L if c is not None: x = torch.einsum('...nl, ...n -> ...l', x, c) x = x.contiguous() # WOW!! if return_power: return x, AL else: return x @torch.no_grad() def power(L, A, v=None): """ Compute A^L and the scan sum_i A^i v_i A: (..., N, N) v: (..., N, L) """ I = torch.eye(A.shape[-1]).to(A) # , dtype=A.dtype, device=A.device) powers = [A] l = 1 while True: if L % 2 == 1: I = powers[-1] @ I L //= 2 if L == 0: break l *= 2 if v is None: powers = [powers[-1] @ powers[-1]] else: powers.append(powers[-1] @ powers[-1]) if v is None: return I # Invariants: # powers[-1] := A^l # l := largest po2 at most L # Note that an alternative divide and conquer to compute the reduction is possible and can be embedded into the above loop without caching intermediate powers of A # We do this reverse divide-and-conquer for efficiency reasons: # 1) it involves fewer padding steps for non-po2 L # 2) it involves more contiguous arrays # Take care of edge case for non-po2 arrays # Note that this initial step is a no-op for the case of power of 2 (l == L) k = v.size(-1) - l v_ = powers.pop() @ v[..., l:] v = v[..., :l] v[..., :k] = v[..., :k] + v_ # Handle reduction for power of 2 while v.size(-1) > 1: v = rearrange(v, '... (z l) -> ... z l', z=2) v = v[..., 0, :] + powers.pop() @ v[..., 1, :] return I, v.squeeze(-1) def krylov_toeplitz(L, A, b, c=None): """ Specializes to lower triangular Toeplitz matrix A represented by its diagonals A : (..., N) b : (..., N) c : (..., N) Returns x : (..., N, L) x[i, l] = A^l @ b[i] """ x = b.unsqueeze(0) # (1, ..., N) A_ = A while x.shape[0] < L: xx = causal_convolution(A_, x) x = torch.cat([x, xx], dim=0) # there might be a more efficient way of ordering axes A_ = causal_convolution(A_, A_) x = x[:L, ...] # (L, ..., N) if c is not None: x = torch.einsum('l...n, ...n -> ...l', x, c) else: x = rearrange(x, 'l ... n -> ... n l') x = x.contiguous() return x def krylov_toeplitz_(L, A, b, c=None): """ Padded version of krylov_toeplitz that saves some fft's TODO currently not faster than original version, not sure why """ N = A.shape[-1] x = b.unsqueeze(0) # (1, ..., N) x = F.pad(x, (0, N)) A = F.pad(A, (0, N)) done = L == 1 while not done: l = x.shape[0] # Save memory on last iteration if L - l <= l: done = True _x = x[:L-l] else: _x = x Af = torch.fft.rfft(A, n=2*N, dim=-1) xf = torch.fft.rfft(_x, n=2*N, dim=-1) xf_ = Af * xf x_ = torch.fft.irfft(xf_, n=2*N, dim=-1) x_[..., N:] = 0 x = torch.cat([x, x_], dim=0) # there might be a more efficient way of ordering axes if not done: A = torch.fft.irfft(Af*Af, n=2*N, dim=-1) A[..., N:] = 0 x = x[:L, ..., :N] # (L, ..., N) if c is not None: x = torch.einsum('l...n, ...n -> ...l', x, c) else: x = rearrange(x, 'l ... n -> ... n l') x = x.contiguous() return x
safari-main
src/ops/krylov.py
""" Utilities for computing convolutions. There are 3 equivalent views: 1. causal convolution 2. multiplication of (lower) triangular Toeplitz matrices 3. polynomial multiplication (mod x^N) """ import torch import torch.nn as nn import torch.nn.functional as F def construct_toeplitz(v, f=0.0): """Explicit construction of Krylov matrix [v A @ v A^2 @ v ... A^{n-1} @ v] where A = Z_f. This uses vectorized indexing and cumprod so it's much faster than using the Krylov function. Parameters: v: the starting vector of size n or (rank, n). f: real number Returns: K: Krylov matrix of size (n, n) or (rank, n, n). """ n = v.shape[-1] a = torch.arange(n, device=v.device) b = -a indices = a[:, None] + b[None] K = v[..., indices] K[..., indices < 0] *= f return K def triangular_toeplitz_multiply_(u, v, sum=None): n = u.shape[-1] u_expand = F.pad(u, (0, n)) v_expand = F.pad(v, (0, n)) u_f = torch.fft.rfft(u_expand, n=2*n, dim=-1) v_f = torch.fft.rfft(v_expand, n=2*n, dim=-1) uv_f = u_f * v_f if sum is not None: uv_f = uv_f.sum(dim=sum) output = torch.fft.irfft(uv_f, n=2*n, dim=-1)[..., :n] return output def triangular_toeplitz_multiply_padded_(u, v): """ Same as triangular_toeplitz_multiply but inputs and output assume to be 0-padded already. """ n = u.shape[-1] assert n % 2 == 0 u_f = torch.fft.rfft(u, n=n, dim=-1) v_f = torch.fft.rfft(v, n=n, dim=-1) uv_f = u_f * v_f output = torch.fft.irfft(uv_f, n=n, dim=-1) output[..., n:] = 0 return output class TriangularToeplitzMult(torch.autograd.Function): @staticmethod def forward(ctx, u, v): ctx.save_for_backward(u, v) return triangular_toeplitz_multiply_(u, v) @staticmethod def backward(ctx, grad): u, v = ctx.saved_tensors d_u = triangular_toeplitz_multiply_(grad.flip(-1), v).flip(-1) d_v = triangular_toeplitz_multiply_(grad.flip(-1), u).flip(-1) return d_u, d_v class TriangularToeplitzMultFast(torch.autograd.Function): @staticmethod def forward(ctx, u, v): n = u.shape[-1] u_expand = F.pad(u, (0, n)) v_expand = F.pad(v, (0, n)) u_f = torch.fft.rfft(u_expand, n=2*n, dim=-1) v_f = torch.fft.rfft(v_expand, n=2*n, dim=-1) ctx.save_for_backward(u_f, v_f) uv_f = u_f * v_f output = torch.fft.irfft(uv_f, n=2*n, dim=-1)[..., :n] return output @staticmethod def backward(ctx, grad): u_f, v_f = ctx.saved_tensors n = grad.shape[-1] g_expand = F.pad(grad.flip(-1), (0, n)) g_f = torch.fft.rfft(g_expand, n=2*n, dim=-1) gu_f = g_f * u_f gv_f = g_f * v_f d_u = torch.fft.irfft(gv_f, n=2*n, dim=-1)[..., :n] d_v = torch.fft.irfft(gu_f, n=2*n, dim=-1)[..., :n] d_u = d_u.flip(-1) d_v = d_v.flip(-1) return d_u, d_v class TriangularToeplitzMultPadded(torch.autograd.Function): @staticmethod def forward(ctx, u, v): ctx.save_for_backward(u, v) output = triangular_toeplitz_multiply_(u, v) return output @staticmethod def backward(ctx, grad): u, v = ctx.saved_tensors d_u = triangular_toeplitz_multiply_padded_(grad.flip(-1), v).flip(-1) d_v = triangular_toeplitz_multiply_padded_(grad.flip(-1), u).flip(-1) return d_u, d_v class TriangularToeplitzMultPaddedFast(torch.autograd.Function): """ Trade off speed (20-25% faster) for more memory (20-25%) """ @staticmethod def forward(ctx, u, v): n = u.shape[-1] u_f = torch.fft.rfft(u, n=n, dim=-1) v_f = torch.fft.rfft(v, n=n, dim=-1) ctx.save_for_backward(u_f, v_f) uv_f = u_f * v_f output = torch.fft.irfft(uv_f, n=n, dim=-1) output[..., n//2:].zero_() return output @staticmethod def backward(ctx, grad): u_f, v_f = ctx.saved_tensors n = grad.shape[-1] g_expand = F.pad(grad[..., :n//2].flip(-1), (0, n//2)) g_f = torch.fft.rfft(g_expand, n=n, dim=-1) gu_f = g_f * u_f gv_f = g_f * v_f d_u = torch.fft.irfft(gv_f, n=n, dim=-1) d_v = torch.fft.irfft(gu_f, n=n, dim=-1) d_u[..., n//2:].zero_() d_v[..., n//2:].zero_() d_u[..., :n//2] = d_u[..., :n//2].flip(-1) # TODO d_v[..., :n//2] = d_v[..., :n//2].flip(-1) # TODO return d_u, d_v # triangular_toeplitz_multiply = triangular_toeplitz_multiply_ triangular_toeplitz_multiply = TriangularToeplitzMult.apply triangular_toeplitz_multiply_fast = TriangularToeplitzMultFast.apply triangular_toeplitz_multiply_padded = TriangularToeplitzMultPadded.apply triangular_toeplitz_multiply_padded_fast = TriangularToeplitzMultPaddedFast.apply def causal_convolution(u, v, fast=True, pad=False): if not pad and not fast: return triangular_toeplitz_multiply(u, v) if not pad and fast: return triangular_toeplitz_multiply_fast(u, v) if pad and not fast: return triangular_toeplitz_multiply_padded(u, v) if pad and fast: return triangular_toeplitz_multiply_padded_fast(u, v)
safari-main
src/ops/toeplitz.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import math import torch import torch.nn.functional as F from torch.autograd import grad def gPenalty(inputs, loss, lam, q): # Gradient penalty bs, c, h, w = inputs.size() d_in = c * h * w g = grad(loss, inputs, create_graph=True)[0] * bs g = g.view(bs, -1) qnorms = g.norm(q, 1).mean() lam = lam * math.pow(d_in, 1. - 1. / q) return lam * qnorms.mean() / 2. def advAugment(net, inputs, targets, loss, lam, q): # Single-step adversarial augmentation (e.g. FGSM) bs, c, h, w = inputs.size() d_in = c * h * w g = grad(loss, inputs, retain_graph=True)[0] * bs g = g.view(bs, -1).detach() if q == 1: lam = lam dx = lam * g.sign() else: p = 1. / (1. - 1. / q) lam = lam * math.pow(d_in, 1. - 1. / q) dx = g.sign() * g.abs().pow(q - 1) # sign when q uneven pnorms = dx.norm(p, 1, keepdim=True) dx = lam * dx / pnorms dx = dx.view_as(inputs) advInputs = (inputs + dx).detach() advOutputs = net(advInputs) advLoss = F.cross_entropy(advOutputs, targets) return (advLoss - loss) / 2. def pgd(net, inputs, targets, loss, lam, steps, step_size, random_start=True, train=True): # Projected gradient descent (i.e. iterative FGSM) with random starts bs, c, h, w = inputs.size() if random_start: if torch.cuda.is_available(): noise = torch.cuda.FloatTensor(bs, c, h, w).uniform_(-lam, lam) else: noise = torch.FloatTensor(bs, c, h, w).uniform_(-lam, lam) else: if torch.cuda.is_available(): noise = torch.cuda.FloatTensor(bs, c, h, w).fill_(0) else: noise = torch.FloatTensor(bs, c, h, w).fill_(0) advInputs = (inputs + noise).detach() advInputs.requires_grad = True advOutputs = net(advInputs) advLoss = F.cross_entropy(advOutputs, targets) for i in range(steps): retain_graph = ((i + 1 == steps) and train) g = grad(advLoss, advInputs, retain_graph=retain_graph)[0] * bs g = g.view(bs, -1).detach() dx = step_size * g.sign() dx = dx.view_as(advInputs) advInputs = advInputs + dx advInputs = inputs + torch.clamp(advInputs - inputs, -lam, lam) advInputs = advInputs.detach() advInputs.requires_grad = True advOutputs = net(advInputs) advLoss = F.cross_entropy(advOutputs, targets) return advLoss - loss, advOutputs def crossLip(inputs, outputs, lam): gk = [] n, K, cLpen = outputs.size(0), outputs.size(1), 0. for k in range(K): gk.append(grad(outputs[:, k].sum(), inputs, create_graph=True)[0]) for l in range(K): for m in range(l + 1, K): cLpen += (gk[l] - gk[m]) ** 2 cLpen = 2. / n / K ** 2 * cLpen.sum() return lam * cLpen def addPenalty(net, inputs, outputs, targets, loss, args): if args.penalty == 'grad': penalty = gPenalty(inputs, loss, args.lam, args.q) elif args.penalty == 'adv': penalty = advAugment(net, inputs, targets, loss, args.lam, args.q) elif args.penalty == 'pgd': penalty, _ = pgd( # uses linf attacks net, inputs, targets, loss, args.lam, args.steps, step_size=args.lam / (.75 * args.steps)) elif args.penalty == 'crossLip': penalty = crossLip(inputs, outputs, args.lam) else: raise NotImplementedError("Unknown penalty %r" % args.penalty) return penalty
AdversarialAndDimensionality-master
penalties.py