python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # """ Some utilities """ import os import math import warnings import configargparse import torch from nets import ConvNet def argument_parser(): parser = configargparse.ArgParser( description='First-order vulnerability and input dimension') parser.add( '--config', required=True, is_config_file=True, help='configuration file path') parser.add_argument( '--name', type=str, help='Experiment name. Results will be saved/loaded from directory ' './results/name (which will be created if needed).') parser.add_argument( '--datapath', type=str, default=None, help="Data location. Default: '~/datasets/' + `dataset`") parser.add_argument( '--dataset', type=str, default='cifar', help='mnist, cifar, imgnet12 (default: cifar)') parser.add_argument( '--img_size', type=int, default=None, help='only for imgnet. Resize img to 32, 64, 128 or 256.') parser.add_argument( '--n_layers', type=int, default=5, help='number of hidden layers') parser.add_argument( '--bs', type=int, default=128, help='batch size') parser.add_argument( '--epochs', type=int, default=200, help='number of training epochs') parser.add_argument( '--no_BN', action='store_true', help='Do not use batch norms (except before the very 1st layer)') parser.add_argument( '--no_act', action='store_true', help='No activation functions (f.ex. no ReLUs)') parser.add_argument( '--raw_inputs', action='store_true', help='Do not normalize inputs (hence no bn as first network layer)') parser.add_argument( '--log_step', type=int, default=None, help='print training info every log_step batches (default: None)') # training parser.add_argument( '--lr', type=float, default=.01, help='Initial learning rate') parser.add_argument( '--no_training', action='store_true', help='Do not train the network') parser.add_argument( '--crop', action='store_true', help='Use cropping instead of resizing image.') # Penalties/Regularizers penalties = ['grad', 'adv', 'pgd', 'crossLip'] parser.add_argument( '--lam', type=float, default=0., help='global regularization weight') parser.add_argument( '--penalty', type=str, choices=penalties, default=None, help='penalty type:' + ' | '.join(penalties)) parser.add_argument( '--q', type=int, default=None, help="defense-norm q; dual of attack-norm p. " "For FGSM, use penalty='adv' and 'q=1'") parser.add_argument( '--steps', type=int, default=None, help='number of optimization steps per attack when using PGD') # Vulnerability.py specific parser.add_argument( '--n_attacks', type=int, default=-1, help='number of attack iterations; -1 for whole dataset') parser.add_argument( '--log_vul', action='store_true', help='Print detailed logs of vulnerability computation') # ConvNet specific pooltypes = ['avgpool', 'maxpool', 'weightpool', 'subsamp'] last_layers = ['maxpool', 'avgpool', 'fc', 'weightpool'] parser.add_argument( '--poolings', nargs='*', type=int, default=[], help='Where to do poolings. Should be a list of ' 'integers smaller than n_layers. Defaults to None. (ConvNet)') parser.add_argument( '--pooltype', type=str, choices=pooltypes, default='subsamp', help='penalty type:' + ' | '.join(penalties) + 'default: subsamp') parser.add_argument( '--dilations', nargs='*', type=int, default=None, help='Dilations to use for each layer. List of n_layers int. ' 'Defaults to 1 for all layers. (ConvNet)') parser.add_argument( '--last_layers', type=str, choices=last_layers, default='avgpool', help='penalty type:' + ' | '.join(last_layers)) args = parser.parse_args() if args.datapath is None: args.datapath = os.path.join('~/datasets/', args.dataset) args.datapath = os.path.expanduser(args.datapath) # DATASET SPECIFIC SETTINGS if args.dataset == 'mnist': if args.img_size is None: args.img_size = 32 elif args.img_size not in {32, 64, 128, 256, 512}: raise Exception( "img_size must be 32, 64, 128, 256. " "But provided %r" % args.img_size) args.categories = 10 args.in_planes = 1 elif args.dataset == 'cifar': if args.img_size is None: args.img_size = 32 elif args.img_size not in {32, 64, 128, 256, 512}: raise Exception( "img_size must be 32, 64, 128, 256, or 512. " "But provided %r" % args.img_size) args.categories = 10 args.in_planes = 3 elif args.dataset == 'imgnet12': if args.img_size is None: args.img_size = 256 elif args.img_size not in {32, 64, 128, 256}: raise Exception( "img_size must be 32, 64, 128, or 256. " "But provided %r" % args.img_size) if args.bs > 32: raise Exception( "With imgnet12, Batchsize bs should be <= 32. " "Otherwise, you'll probably run out of GPU memory") args.categories = 12 args.in_planes = 3 else: raise NotImplementedError("Dataset unknown") # NETWORK DOUBLE-CHECKS/WARNINGS if args.no_BN and args.raw_inputs: warnings.warn( "no_BN also removes the first BN layer before the net " "which serves as normalization of data when using raw_inputs. " "Thus data input data stays unnormalized between 0 and 1") if args.dilations is None: dilation = 1 if args.crop else int(args.img_size / 32) args.dilations = [dilation] * args.n_layers elif len(args.dilations) == 1: args.dilations = args.dilations * args.n_layers elif len(args.dilations) != args.n_layers: raise Exception( 'Argument dilations must be single integer, or a list of ' 'integers of length n_layers') # PENALTY/REGULARIZATION WARNINGS if (args.lam, args.penalty, args.q) != (0., None, None): if args.lam == 0.: warnings.warn( "Arguments penalty and/or q are given, but lam = 0. " "Set lam > 0., otherwise not penalty is used") elif args.penalty is None: raise Exception("Argument lam > 0., but no penalty is defined.") elif (args.penalty in {'adv', 'grad'}) and (args.q is None): raise Exception( "If argument penalty is 'adv' or 'grad', q must be in " "[1, infty]") if (args.penalty == 'pgd') and (args.steps is None): raise Exception( "Arguments steps must be specified with " "penalty-option pgd") return parser, args def create_net(args): net = ConvNet( args.categories, args.n_layers, args.img_size, args.poolings, args.pooltype, args.no_BN, args.no_act, args.dilations, normalize_inputs=(not args.raw_inputs), last_layers=args.last_layers, in_planes=args.in_planes) return net def initialize_params(m, no_act=False, distribution='normal'): # gain = sqrt 2 for ReLU gain = 1. if no_act else math.sqrt(2) try: # if last layer, then gain = 1. if m.unit_gain: # test if module as attribute 'last' gain = 1. except AttributeError: pass if type(m) in {torch.nn.Conv2d, torch.nn.Linear}: if m.bias is not None: torch.nn.init.constant_(m.bias, 0.) out_ = m.weight.data.size(0) in_ = m.weight.data.view(out_, -1).size(1) sigma = gain / math.sqrt(in_) if distribution is 'uniform': xmax = math.sqrt(3) * sigma torch.nn.init.uniform_(m.weight, a=-xmax, b=xmax) elif distribution is 'normal': torch.nn.init.normal_(m.weight, std=sigma) else: raise NotImplementedError( "Argument distribution must be 'uniform' or 'normal'. " "Got: '%r'" % distribution) elif type(m) == torch.nn.BatchNorm2d: if m.affine: torch.nn.init.constant_(m.bias, 0.) torch.nn.init.constant_(m.weight, 1.) if m.track_running_stats: torch.nn.init.constant_(m.running_mean, 0.) torch.nn.init.constant_(m.running_var, 1.)
AdversarialAndDimensionality-master
utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import time import torch import torch.nn.functional as F from torch.autograd import grad from data import CIFAR10, IMGNET12, MNIST from vulnerability import compute_vulnerability from utils import argument_parser, create_net, initialize_params from penalties import addPenalty, pgd # NB: Logger cannot be pushed to utils.py, because of eval(name) class Logger(object): def __init__(self): self.logs = dict() def log(self, step, delta_time, *args): for name in args: if type(name) != str: raise Exception( "Logger takes strings as inputs. " "But got %s" % type(name)) if name not in self.logs: self.logs[name] = [] self.logs[name].append([eval(name), step, delta_time]) def get_logs(self): return self.logs def set_logs(self, logs): self.logs = logs # logs : dict return def grad_norms(loss, inputs, train=False): bs = inputs.size(0) g = grad(loss, inputs, retain_graph=train)[0] * bs g = g.view(bs, -1) norm1, norm2 = g.norm(1, 1).mean(), g.norm(2, 1).mean() return norm1.item(), norm2.item() def do_epoch(epoch, net, optimizer, loader, mode, args): if mode not in {'train', 'eval', 'test', 'init'}: # 'init' -> for initialization of batchnorms # 'train' -> training (but no logging of vul & dam) # 'eval' -> compute acc & gnorms but not vul & dam on validation # 'test' -> compute all logged values on test set raise Exception('Argument mode must be train, eval or init') net.eval() if mode in {'eval', 'test'} else net.train() device = next(net.parameters()).device cum_loss = cum_pen = cum_norm1 = cum_norm2 = total = correct = 0. advVul = advCorrect = cum_dam = 0. predictedAdv = None for i, (inputs, targets) in enumerate(loader): optimizer.zero_grad() inputs, targets = inputs.to(device), targets.to(device) inputs.requires_grad = True outputs = net(inputs) loss = F.cross_entropy(outputs, targets) norm1, norm2 = grad_norms(loss, inputs, mode == 'train') if mode == 'train': if args.lam > 0.: penalty = addPenalty(net, inputs, outputs, targets, loss, args) loss += penalty cum_pen += penalty.item() cum_loss += loss.item() loss.backward() optimizer.step() elif mode == 'test': # compute adv vul & damage using custom PGD eps = .004 advDam, advOutputs = pgd( net, inputs, targets, loss, lam=eps, steps=10, step_size=eps / (.75 * 10), random_start=False, train=False) # Compute logging info cum_norm1 += norm1 cum_norm2 += norm2 cum_loss += loss.item() total += targets.size(0) _, predicted = torch.max(outputs.data, 1) correct += predicted.eq(targets.data).float().cpu().sum().item() if mode == 'test': cum_dam += advDam.item() / eps _, predictedAdv = torch.max(advOutputs.data, 1) advVul += predicted.size(0) - ( predictedAdv.eq(predicted.data).float().cpu().sum().item()) advCorrect += predictedAdv.eq( targets.data).float().cpu().sum().item() results = { 'acc': 100 * correct / total, # accuracy 'loss': cum_loss / (i + 1), # loss 'pen': cum_pen / (i + 1), # penalty 'norm1': cum_norm1 / (i + 1), # avg l1-gradient norm 'norm2': cum_norm2 / (i + 1), # avg l2-gradient norm 'av': 100 * advVul / total, # adversarial vulnerability 'da': cum_dam / (i + 1), # adversarial damage 'aa': 100 * advCorrect / total # adversarial accuracy } if args.log_step is not None and i % args.log_step == 0: print("Epoch: %03d Batch: %04d Mode: %-5s Acc: %4.1f Loss: %4.2f " "Pen: %5.3f gNorm1: %6.2f gNorm2: %6.3f Vul: %4.1f " "Dam: %6.2f AdAcc %4.1f" % ( epoch, i, mode, *[ results[i] for i in ['acc', 'loss', 'pen', 'norm1', 'norm2', 'av', 'da', 'aa']])) return results if __name__ == '__main__': parser, args = argument_parser() logger = Logger() args.path = os.path.join('results', args.name) net = create_net(args) # print(net) if not os.path.exists(args.path): os.makedirs(args.path, exist_ok=True) # requires Python >= 3.2 if os.path.isfile(os.path.join(args.path, 'last.pt')): print('> Loading last saved state/network...') state = torch.load(os.path.join(args.path, 'last.pt')) net.load_state_dict(state['state_dict']) lr = state['lr'] optimizer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9) optimizer.load_state_dict(state['optimizer']) best_va_acc = state['best_va_acc'] start_ep = state['epoch'] + 1 logger.set_logs(state['logs']) else: # initialize new net print('> Initializing new network...') net.apply(lambda m: initialize_params(m, args.no_act, 'normal')) lr = args.lr optimizer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9) best_va_acc = -1. start_ep = -1 print('> Done.') device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') net = net.to(device) torch.backends.cudnn.benchmark = True print('> Loading dataset...') if args.dataset == 'mnist': tr_loader, va_loader, te_loader = MNIST( root=args.datapath, bs=args.bs, valid_size=.1, size=args.img_size, normalize=(not args.raw_inputs)) elif args.dataset == 'cifar': tr_loader, va_loader, te_loader = CIFAR10( root=args.datapath, bs=args.bs, valid_size=.1, size=args.img_size, normalize=(not args.raw_inputs)) elif args.dataset == 'imgnet12': tr_loader, va_loader, te_loader = IMGNET12( root=args.datapath, bs=args.bs, valid_size=.1, size=args.img_size, normalize=(not args.raw_inputs)) else: raise NotImplementedError print('> Done.') print('> Starting training.') time_start = time.time() epochs = 0 if args.no_training else args.epochs for epoch in range(start_ep, epochs): time_start = time.time() if epoch % 30 == 0 and epoch > 0: # reload best parameters on validation set net.load_state_dict( torch.load(os.path.join( args.path, 'best.pt'))['state_dict']) # update learning rate lr *= .5 for param_group in optimizer.param_groups: param_group['lr'] = lr mode = 'init' if epoch < 0 else 'train' tr_res = do_epoch(epoch, net, optimizer, tr_loader, mode, args) va_res = do_epoch(epoch, net, optimizer, va_loader, 'eval', args) te_res = do_epoch(epoch, net, optimizer, te_loader, 'test', args) time_per_epoch = time.time() - time_start print("epoch %3d lr %.1e te_norm1 %7.3f te_norm2 %6.4f tr_loss %6.3f " "tr_acc %5.2f te_acc %5.2f te_aa %5.2f te_av %5.2f te_da %6.3f " "va_acc %5.2f be_va_acc %5.2f time %d" % ( epoch, lr, te_res['norm1'], te_res['norm2'], tr_res['loss'], tr_res['acc'], te_res['acc'], te_res['aa'], te_res['av'], te_res['da'], va_res['acc'], best_va_acc, time_per_epoch)) # Log and save results logger.log(epoch, time_per_epoch, 'lr', 'tr_res', 'va_res', 'te_res') state = { 'lr': lr, 'epoch': epoch, 'state_dict': net.state_dict(), 'optimizer': optimizer.state_dict(), 'args': args, 'logs': logger.get_logs(), 'best_va_acc': best_va_acc } torch.save(state, os.path.join(args.path, 'last.pt')) if va_res['acc'] > best_va_acc: best_va_acc = va_res['acc'] torch.save(state, os.path.join(args.path, 'best.pt')) print('> Finished Training') # Compute adversarial vulnerability with foolbox print('\n> Starting attacks.') attacks = {'l1'} # attacks = {'l1', 'l2', 'itl1', 'itl2', 'deepFool', 'pgd', 'boundary'} for attack in attacks: vulnerability = compute_vulnerability( args, attack, net, args.n_attacks) torch.save(vulnerability, os.path.join(args.path, 'vulnerability_%s.pt' % attack))
AdversarialAndDimensionality-master
main.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import math import time import numpy as np import scipy.stats as st from functools import partial import torch from torch.autograd import grad import foolbox from foolbox.distances import Linfinity, MSE from data import CIFAR10, IMGNET12, MNIST def do_pass(net, loader, args, means, stds): correct = total = 0. device = next(net.parameters()).device means = torch.FloatTensor(means).to(device) stds = torch.FloatTensor(stds).to(device) for i, (inputs, targets) in enumerate(loader): inputs, targets = inputs.to(device), targets.to(device) inputs = (inputs - means) / stds outputs = net(inputs) _, predicted = torch.max(outputs.data, 1) total += targets.size(0) correct += predicted.eq(targets.data).float().sum().item() if args.log_step is not None and i % args.log_step == 0: print("Batch: %03d Acc: %4.1f" % (i, 100 * correct / total)) return 100 * correct / total def classify(net, x, args, means, stds): device = next(net.parameters()).device x = x.to(device).view(1, 3, args.img_size, args.img_size) means = torch.FloatTensor(means).to(device) stds = torch.FloatTensor(stds).to(device) x = ((x - means) / stds).detach() x.requires_grad = True y = net(x) g = grad(y.sum(), x)[0].view(x.size(0), -1).norm().item() _, top_indices = y.data.cpu().view(-1).topk(2) return top_indices[0].item(), g def myPrint(string, args): if args.log_vul: print(string) def conf95(a): return st.t.interval( 0.95, len(a) - 1, loc=np.nanmean(a), scale=st.sem(a, nan_policy='omit')) def compute_vulnerability(args, attack_name, net, n_attacks=-1): """ Computes vulnerability using foolbox package of net Parameters ---------- args : :class:`argparse.ArgumentParser` The arguments passed to main.py attack_name : string The attack type. Must be one of {'l1', 'l2', 'itl1', 'itl2', 'pgd', 'deepfool'} net : :class:`torch.nn.Module` The network whose vulnerability is computed. n_attacks : int The number of attacks to use for the computation of vulnerbaility. If -1 or greater than dataset-size, uses the entire dataset. Default: -1. """ print('\nStarting attacks of type ' + attack_name) # Reload data without normalizing it print('> Loading dataset %s...' % args.dataset) if args.dataset == 'mnist': _, loader = MNIST( root=args.datapath, bs=args.bs, valid_size=0., size=args.img_size, normalize=False) elif args.dataset == 'cifar': _, loader = CIFAR10( root=args.datapath, bs=args.bs, valid_size=0., size=args.img_size, normalize=False) elif args.dataset == 'imgnet12': _, loader = IMGNET12( root=args.datapath, bs=args.bs, valid_size=0., size=args.img_size, normalize=False) else: raise NotImplementedError print('> Done.') # Image-normalizations (must be same as in data.py) if args.raw_inputs: means = [0., 0., 0.] stds = [1., 1., 1.] elif args.dataset == "mnist": means = [0.1307] stds = [0.3081] elif args.dataset == "cifar": means = [0.4914, 0.4822, 0.4465] stds = [0.2023, 0.1994, 0.2010] elif args.dataset == "imgnet12": means = [.453, .443, .403] stds = { 256: [.232, .226, .225], 128: [.225, .218, .218], 64: [.218, .211, .211], 32: [.206, .200, .200] }[args.img_size] else: raise NotImplementedError means = np.array(means).reshape(-1, 1, 1) stds = np.array(stds).reshape(-1, 1, 1) net.eval() print('> Computing test accuracy...') te_acc = do_pass(net, loader, args, means, stds) print('> Done. Computed test accuracy: %5.2f' % te_acc) # construct attack bounds = (0, 1) model = foolbox.models.PyTorchModel(net, bounds=bounds, preprocessing=(means, stds), num_classes=args.categories) # Choosing attack type if attack_name == 'l1': # vulnerability increases like sqrt(d) \propto img_size # therefore, we divide the linfty-threshold by img_size attack = partial(foolbox.attacks.FGSM(model, distance=Linfinity), epsilons=1000, max_epsilon=1. / args.img_size) elif attack_name == 'l2': # to be visually constant, the l2-threshold increases like sqrt d; # but vulnerability also increases like sqrt d; # therefore, use constant max_epsilon accross dimension d attack = partial(foolbox.attacks.GradientAttack(model, distance=MSE), epsilons=1000, max_epsilon=1.) elif attack_name == 'itl1': it, eps = 10, 1. / args.img_size attack = partial( foolbox.attacks.LinfinityBasicIterativeAttack( model, distance=Linfinity), iterations=it, epsilon=eps, stepsize=eps / (.75 * it), binary_search=True) elif attack_name == 'itl2': it, eps = 10, 1. attack = partial( foolbox.attacks.L2BasicIterativeAttack( model, distance=MSE), iterations=it, epsilon=eps, stepsize=eps / (.75 * it), binary_search=True) elif attack_name == 'pgd': it, eps = 10, 1. / args.img_size attack = partial(foolbox.attacks.RandomPGD(model, distance=Linfinity), iterations=it, epsilon=eps, stepsize=eps / (.75 * it), binary_search=True) elif attack_name == 'deepFool': attack = foolbox.attacks.DeepFoolAttack(model, distance=MSE) elif attack_name == 'boundary': attack = partial(foolbox.attacks.BoundaryAttack(model, distance=MSE), iterations=2000, log_every_n_steps=np.Infinity, verbose=False) else: raise NotImplementedError( "attack_name must be 'l1', 'l2', 'itl1', 'itl2', " "'deepFool' or 'boundary'") n_iterations = 0 results = {} results['l2_snr'] = [] results['clean_grad'] = [] results['dirty_grad'] = [] results['l2_norm'] = [] results['linf_norm'] = [] n_fooled = 0 print('> Creating empty image-tensors') n_saved = 64 if (n_attacks == -1) else min(n_attacks, 64) clean_images = torch.zeros(n_saved, 3, args.img_size, args.img_size) dirty_images = torch.zeros(n_saved, 3, args.img_size, args.img_size) print('> Done.') myPrint(("{:>15} " * 5).format( "clean_grad", "dirty_grad", "linf_norm", "l2_norm", "l2_snr"), args) t0 = time.time() for i, (images, labels) in enumerate(loader): if n_iterations == n_attacks: break for i, clean_image in enumerate(images): clean_label, clean_grad = classify(net, clean_image, args, means, stds) dirty_image_np = attack(clean_image.numpy(), clean_label) if dirty_image_np is not None: # i.e. if adversarial was found dirty_image = torch.Tensor(dirty_image_np) _, dirty_grad = classify(net, dirty_image, args, means, stds) if i < n_saved: # only save n_saved first images dirty_images[i] = dirty_image.clone() clean_images[i] = clean_image.clone() l2_norm = (clean_image - dirty_image).norm().item() linf_norm = (clean_image - dirty_image).abs().max().item() l2_snr = 20. * math.log10( clean_image.norm().item() / (l2_norm + 1e-6)) else: l2_snr = dirty_grad = l2_norm = linf_norm = np.NaN results['l2_snr'].append(l2_snr) results['clean_grad'].append(clean_grad) results['dirty_grad'].append(dirty_grad) results['l2_norm'].append(l2_norm) results['linf_norm'].append(linf_norm) fmt_str = "{:>15.6f} " * 5 if ((attack.func._default_distance == MSE and l2_norm < .005 * np.sqrt(args.img_size)) or (attack.func._default_distance == Linfinity and linf_norm < .005)): fmt_str += " * fooled!" n_fooled += 1 myPrint(fmt_str.format(clean_grad, dirty_grad, linf_norm, l2_norm, l2_snr), args) n_iterations += 1 if n_iterations == n_attacks: break # Printing summary summary = {} print("\n Summary for network in '{}' of test accuracy {}".format( args.path, te_acc)) for key, value in results.items(): low95, high95 = conf95(value) print("{:>10} mean:{:>10.5f} std:{:>10.5f} conf95:({:>10.5f}, " "{:>10.5f}) minmax:({:>10.5f}, {:>10.5f})".format( key, np.nanmean(value), np.nanstd(value), low95, high95, np.nanmin(value), np.nanmax(value))) summary[key] = [np.nanmean(value), np.nanstd(value), low95, high95] percent = 100 * n_fooled / float(n_iterations) print("{:>10} {:10d}s".format("Time", int(time.time() - t0))) print("{:>10} {:10.1f}%".format("percent", percent)) # Preparing the output output = dict() output['summary'] = summary output['results'] = results output['clean_images'] = clean_images output['dirty_images'] = dirty_images output['percent'] = percent output['te_acc'] = te_acc return output
AdversarialAndDimensionality-master
vulnerability.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import numpy as np from PIL import Image import torch from torch.utils.data.sampler import SubsetRandomSampler import torchvision.transforms as transforms import torchvision.datasets as datasets def IMGNET12(root='~/datasets/imgnet12/', bs=32, bs_test=None, num_workers=32, valid_size=.1, size=256, crop=False, normalize=False): # Datafolder '~/datasets/imgnet12/' should contain folders train/ and val/, # each of which whould contain 12 subfolders (1 per class) with .jpg files root = os.path.expanduser(root) # original means = [.485, .456, .406] # original stds = [0.229, 0.224, 0.225] means = [.453, .443, .403] stds = { 256: [.232, .226, .225], 128: [.225, .218, .218], 64: [.218, .211, .211], 32: [.206, .200, .200] } if normalize: normalize = transforms.Normalize(mean=means, std=stds[size]) else: normalize = transforms.Normalize((0., 0., 0), (1., 1., 1.)) if bs_test is None: bs_test = bs if crop: tr_downsamplingOp = transforms.RandomCrop(size) te_downsamplingOp = transforms.CenterCrop(size) else: tr_downsamplingOp = transforms.Resize(size) te_downsamplingOp = transforms.Resize(size) preprocess = [transforms.Resize(256), transforms.CenterCrop(256)] tr_transforms = transforms.Compose([ *preprocess, tr_downsamplingOp, transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ]) te_transforms = transforms.Compose([ *preprocess, te_downsamplingOp, transforms.ToTensor(), normalize, ]) tr_dataset = datasets.ImageFolder(root + '/train', transform=tr_transforms) te_dataset = datasets.ImageFolder(root + '/val', transform=te_transforms) # Split training in train and valid set num_train = len(tr_dataset) indices = list(range(num_train)) split = int(np.floor(valid_size * num_train)) np.random.seed(42) np.random.shuffle(indices) tr_idx, va_idx = indices[split:], indices[:split] tr_sampler = SubsetRandomSampler(tr_idx) va_sampler = SubsetRandomSampler(va_idx) tr_loader = torch.utils.data.DataLoader( tr_dataset, batch_size=bs, num_workers=num_workers, pin_memory=True, sampler=tr_sampler) va_loader = torch.utils.data.DataLoader( tr_dataset, batch_size=bs_test, num_workers=num_workers, pin_memory=True, sampler=va_sampler) te_loader = torch.utils.data.DataLoader( te_dataset, batch_size=bs_test, shuffle=False, num_workers=num_workers, pin_memory=True) if valid_size > 0.: return tr_loader, va_loader, te_loader else: return tr_loader, te_loader def CIFAR10(root='~/datasets/cifar10/', bs=128, bs_test=None, augment_training=True, valid_size=0., size=32, num_workers=1, normalize=False): root = os.path.expanduser(root) if bs_test is None: bs_test = bs if normalize: normalize = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) else: normalize = transforms.Normalize((0., 0., 0), (1., 1., 1.)) transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.Resize(size, Image.NEAREST), transforms.ToTensor(), normalize ]) transform_test = transforms.Compose([ transforms.Resize(size, Image.NEAREST), transforms.ToTensor(), normalize ]) transform_valid = transform_test if augment_training is False: transform_train = transform_test dataset_tr = datasets.CIFAR10(root=root, train=True, transform=transform_train) dataset_va = datasets.CIFAR10(root=root, train=True, transform=transform_valid) dataset_te = datasets.CIFAR10(root=root, train=False, transform=transform_test) # Split training in train and valid set num_train = len(dataset_tr) indices = list(range(num_train)) split = int(np.floor(valid_size * num_train)) np.random.seed(42) np.random.shuffle(indices) train_idx, valid_idx = indices[split:], indices[:split] train_sampler = SubsetRandomSampler(train_idx) valid_sampler = SubsetRandomSampler(valid_idx) loader_tr = torch.utils.data.DataLoader(dataset_tr, batch_size=bs, sampler=train_sampler, num_workers=num_workers) loader_va = torch.utils.data.DataLoader(dataset_va, batch_size=bs, sampler=valid_sampler, num_workers=num_workers) # add pin_memory loader_te = torch.utils.data.DataLoader(dataset_te, batch_size=bs_test, shuffle=False, num_workers=num_workers) if valid_size > 0: return loader_tr, loader_va, loader_te else: return loader_tr, loader_te def MNIST(root='~/datasets/mnist/', bs=128, bs_test=None, augment_training=True, valid_size=0., size=32, num_workers=1, normalize=False): root = os.path.expanduser(root) if bs_test is None: bs_test = bs if normalize: normalize = transforms.Normalize((0.1307,), (0.3081,)) else: normalize = transforms.Normalize((0.,), (1.,)) transform = transforms.Compose([ transforms.Resize(32, Image.BILINEAR), transforms.Resize(size, Image.NEAREST), transforms.Grayscale(num_output_channels=1), transforms.ToTensor(), normalize ]) dataset_tr = datasets.MNIST(root=root, train=True, transform=transform) dataset_va = datasets.MNIST(root=root, train=True, transform=transform) dataset_te = datasets.MNIST(root=root, train=False, transform=transform) # Split training in train and valid set num_train = len(dataset_tr) indices = list(range(num_train)) split = int(np.floor(valid_size * num_train)) np.random.seed(42) np.random.shuffle(indices) train_idx, valid_idx = indices[split:], indices[:split] train_sampler = SubsetRandomSampler(train_idx) valid_sampler = SubsetRandomSampler(valid_idx) loader_tr = torch.utils.data.DataLoader(dataset_tr, batch_size=bs, sampler=train_sampler, num_workers=num_workers) loader_va = torch.utils.data.DataLoader(dataset_va, batch_size=bs, sampler=valid_sampler, num_workers=num_workers) # add pin_memory loader_te = torch.utils.data.DataLoader(dataset_te, batch_size=bs_test, shuffle=False, num_workers=num_workers) if valid_size > 0: return loader_tr, loader_va, loader_te else: return loader_tr, loader_te
AdversarialAndDimensionality-master
data.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from functools import reduce import torch.nn as nn import torch.nn.functional as F class Identity(nn.Module): def __init__(self): super(Identity, self).__init__() def forward(self, x): return x class FlexibleAvgPool2d(nn.Module): def __init__(self): super().__init__() def forward(self, inputs): return F.avg_pool2d(inputs, kernel_size=inputs.size(2)) class WeightPool(nn.Module): def __init__(self, in_planes, kernel_size): super(WeightPool, self).__init__() self.conv = nn.Conv2d(in_planes, in_planes, kernel_size=kernel_size, stride=kernel_size, groups=in_planes, bias=False) self.conv.unit_gain = True def forward(self, x): return self.conv(x) class WeightPoolOut(nn.Module): def __init__(self, in_planes, plane_size, categories, unit_gain=False): super(WeightPoolOut, self).__init__() self.in_planes = in_planes self.conv = nn.Conv2d(in_planes, in_planes, kernel_size=plane_size, groups=in_planes, bias=False) self.linear = nn.Linear(in_planes, categories) self.linear.unit_gain = unit_gain def forward(self, x): out = self.conv(x) out = out.view(-1, self.in_planes) return self.linear(out) class MaxPoolOut(nn.Module): def __init__(self, in_planes, plane_size, categories, unit_gain=False): super(MaxPoolOut, self).__init__() self.in_planes = in_planes self.maxpool = nn.MaxPool2d(kernel_size=plane_size) self.linear = nn.Linear(in_planes, categories) self.linear.unit_gain = unit_gain def forward(self, x): out = self.maxpool(x) out = out.view(-1, self.in_planes) return self.linear(out) class AvgPoolOut(nn.Module): def __init__(self, in_planes, plane_size, categories, unit_gain=False): super(AvgPoolOut, self).__init__() self.in_planes = in_planes self.avgpool = nn.AvgPool2d(kernel_size=plane_size) self.linear = nn.Linear(in_planes, categories) self.linear.unit_gain = unit_gain def forward(self, x): out = self.avgpool(x) out = out.view(-1, self.in_planes) return self.linear(out) class FCout(nn.Module): def __init__(self, in_planes, plane_size, categories, unit_gain=False): super(FCout, self).__init__() if type(plane_size) == tuple and len(plane_size) == 2: plane_size = reduce(lambda x, y: x * y, plane_size) else: plane_size = plane_size ** 2 print('Plane size = ', plane_size) self.in_planes = in_planes self.plane_size = plane_size self.linear = nn.Linear(in_planes * plane_size, categories) self.linear.unit_gain = unit_gain def forward(self, x): out = x.view(-1, self.in_planes * self.plane_size) return self.linear(out) class ConvLayer(nn.Module): def __init__(self, in_planes, planes, pooltype=None, no_BN=False, no_act=False, dilation=1): super(ConvLayer, self).__init__() self.pad = nn.ReflectionPad2d(dilation) if pooltype is None: # Usual conv self.conv = nn.Conv2d(in_planes, planes, 3, padding=0, stride=1, dilation=dilation) elif pooltype == 'avgpool': # Average Pool self.conv = nn.Sequential( nn.Conv2d(in_planes, planes, 3, dilation=dilation), nn.AvgPool2d(2)) elif pooltype == 'subsamp': # Strided Conv self.conv = nn.Conv2d( in_planes, planes, 3, stride=2, dilation=dilation) elif pooltype == 'maxpool': # Max Pool self.conv = nn.Sequential( nn.Conv2d(in_planes, planes, 3, dilation=dilation), nn.MaxPool2d(2)) elif pooltype == 'weightpool': self.conv = nn.Sequential( nn.Conv2d(in_planes, planes, 3, dilation=dilation), WeightPool(planes, 2)) else: raise NotImplementedError if no_act: self.act = lambda x: x else: self.act = nn.ReLU() if no_BN: self.bn = lambda x: x # Identity() else: self.bn = nn.BatchNorm2d(planes) def forward(self, x): out = self.act(self.bn(self.conv(self.pad(x)))) return out class ConvNet(nn.Module): def __init__( self, categories=10, n_layers=3, in_size=32, poolings=None, pooltype='avgpool', no_BN=False, no_act=False, dilations=1, normalize_inputs=False, last_layers='maxpool', in_planes=3): # last_layers in {'maxpool', 'fc', 'weightpool'} super(ConvNet, self).__init__() poolings = [] if poolings is None else poolings if type(dilations) != list: dilations = [dilations] * n_layers self.in_planes = in_planes if normalize_inputs or no_BN: self.bn = (lambda x: x) else: self.bn = nn.BatchNorm2d(self.in_planes) self.layers = self._make_layers( ConvLayer, 64, n_layers, poolings, pooltype, no_BN, no_act, dilations) # compute input-size to last layers from input-size of the net # self.in_planes is changed by _make_layers to the nbr of out-planes out_size = int(in_size / (2 ** (len(poolings)))) self.last_layers = self._make_last_layers( out_size, categories, last_layers) def _make_layers(self, block, planes, num_blocks, poolings, pooltype, no_BN, no_act, dilations): # pooltypes = [0] + [0] * (num_blocks - 1) pooltypes = [None] * num_blocks for pool in poolings: pooltypes[pool] = pooltype layers = [] for pool, dilation in zip(pooltypes, dilations): layers.append(block(self.in_planes, planes, pool, no_BN, no_act, dilation)) self.in_planes = planes return nn.Sequential(*layers) def _make_last_layers(self, in_size, categories, last_layers): if last_layers == 'maxpool': last_layers = MaxPoolOut( self.in_planes, in_size, categories, unit_gain=True) elif last_layers == 'avgpool': last_layers = AvgPoolOut( self.in_planes, in_size, categories, unit_gain=True) elif last_layers == 'weightpool': last_layers = WeightPoolOut( self.in_planes, in_size, categories, unit_gain=True) elif last_layers == 'fc': last_layers = FCout( self.in_planes, in_size, categories, unit_gain=True) else: raise NotImplementedError( 'Argument last_layers must be maxpool, fc, weightpool. ' 'But got: %s' % last_layers) return last_layers def forward(self, x): out = self.layers(self.bn(x)) out = self.last_layers(out) return out
AdversarialAndDimensionality-master
nets.py
#!/usr/bin/env python3 import argparse import json import logging import os import pickle import random import re from collections import Counter, OrderedDict from sklearn.cluster import DBSCAN, AffinityPropagation from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics.pairwise import linear_kernel working_dir = None config = None vocab = None options = None def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "-c", "--corpus", action="store", dest="corpus", default=None, help="Process raw ASTs, featurize, and store in the working directory.", ) parser.add_argument( "-d", "--working-dir", action="store", dest="working_dir", help="Working directory.", required=True, ) parser.add_argument( "-f", "--file-query", action="append", dest="file_query", default=[], help="File containing the query AST of a query code as JSON.", ) parser.add_argument( "-k", "--keywords", action="append", dest="keywords", default=[], help="Keywords to search for.", ) parser.add_argument( "-i", "--index-query", type=int, action="store", dest="index_query", default=None, help="Index of the query AST in the corpus.", ) parser.add_argument( "-t", "--testall", dest="testall", action="store_true", default=False, help="Sample config.N_SAMPLES snippets and search.", ) options = parser.parse_args() logging.info(options) return options class Config: def __init__(self): self.MIN_MERGED_CODE = 3 self.MIN_PRUNED_SCORE = 0.65 self.N_PARENTS = 3 self.N_SIBLINGS = 1 self.N_VAR_SIBLINGS = 2 self.NUM_SIMILARS = 100 self.MIN_SIMILARITY_SCORE = 0.4 self.VOCAB_FILE = "vocab.pkl" self.TFIDF_FILE = "tfidf.pkl" self.FEATURES_FILE = "features.json" self.NUM_FEATURE_MIN = 10 self.DBSCAN_EPS = 0.1 self.SAMPLE_METHOD_MIN_LINES = 12 self.SAMPLE_METHOD_MAX_LINES = 7 self.METHOD_MAX_LINES = 150 self.SEED = 119 self.N_SAMPLES = 100 self.IGNORE_VAR_NAMES = True self.IGNORE_SIBLING_FEATURES = False self.IGNORE_VAR_SIBLING_FEATURES = False self.CLUSTER = True self.PRINT_SIMILAR = True self.USE_DBSCAN = True self.THRESHOLD1 = 0.9 self.THRESHOLD2 = 1.5 self.TOP_N = 5 class Vocab: def __init__(self): self.vocab = OrderedDict() self.words = [] def get_word(self, i): if i <= config.NUM_FEATURE_MIN: return "#UNK" return self.words[i - 1 - config.NUM_FEATURE_MIN] def add_and_get_index(self, word): if not (word in self.vocab): self.words.append(word) self.vocab[word] = [0, len(self.vocab) + 1 + config.NUM_FEATURE_MIN] value = self.vocab[word] value[0] += 1 return value[1] def get_index(self, word): if word in self.vocab: return self.vocab[word][1] else: return config.NUM_FEATURE_MIN def dump(self): with open(os.path.join(options.working_dir, config.VOCAB_FILE), "wb") as out: pickle.dump([self.vocab, self.words], out) logging.info(f"Dumped vocab with size {len(self.vocab)}") @staticmethod def load(init=False): tmp = Vocab() if not init: try: with open( os.path.join(options.working_dir, config.VOCAB_FILE), "rb" ) as out: [tmp.vocab, tmp.words] = pickle.load(out) logging.info(f"Loaded vocab with size {len(tmp.vocab)}") except: logging.info("Initialized vocab.") pass return tmp def str2bool(v): return v.lower() in ("yes", "true", "t", "1") def ast_to_code_aux(ast, token_list): if isinstance(ast, list): for elem in ast: ast_to_code_aux(elem, token_list) elif isinstance(ast, dict): token_list.append(ast["leading"]) token_list.append(ast["token"]) def ast_to_code_collect_lines(ast, line_list): if isinstance(ast, list): for elem in ast: ast_to_code_collect_lines(elem, line_list) elif isinstance(ast, dict): if "line" in ast: line_list.append(ast["line"]) def ast_to_code_print_lines(ast, line_list, token_list): if isinstance(ast, list): for elem in ast: ast_to_code_print_lines(elem, line_list, token_list) elif isinstance(ast, dict): if "line" in ast and ast["line"] in line_list: if len(token_list) > 0 and token_list[-1] == "//": token_list.append(" your code ...\n") token_list.append(ast["leading"]) token_list.append(ast["token"]) else: if len(token_list) > 0 and token_list[-1] != "//": token_list.append("\n") token_list.append("//") def featurize_records_file(rpath, wpath): with open(rpath, "r") as inp: with open(wpath, "w") as outp: i = 0 for line in inp: obj = json.loads(line) obj["features"] = collect_features_as_list(obj["ast"], True, False)[0] obj["index"] = i i += 1 outp.write(json.dumps(obj)) outp.write("\n") def append_feature_index(is_init, is_counter, key, feature_list, c): if is_init: n = vocab.add_and_get_index(key) else: n = vocab.get_index(key) if is_counter: if n != str(config.NUM_FEATURE_MIN): c[n] += 1 else: feature_list.append(n) def append_feature_pair( is_init, is_counter, key, feature_list, leaf_features, sibling_idx, leaf_idx ): if is_init: n = vocab.add_and_get_index(key) else: n = vocab.get_index(key) if is_counter: if n != str(config.NUM_FEATURE_MIN): leaf_features[leaf_idx][n] += 1 leaf_features[sibling_idx][n] += 1 else: feature_list.append(n) feature_list.append(n) def get_leftmost_leaf(ast): if isinstance(ast, list): for elem in ast: (success, token) = get_leftmost_leaf(elem) if success: return (success, token) elif isinstance(ast, dict): if "leaf" in ast and ast["leaf"]: return (True, ast["token"]) return (False, None) def get_var_context(p_idx, p_label, p_ast): if p_label == "#.#": return get_leftmost_leaf(p_ast[p_idx + 2])[1] else: return p_label + str(p_idx) def collect_features_aux( ast, feature_list, parents, siblings, var_siblings, leaf_features, leaf_pair_features, is_init, is_counter, ): global leaf_idx if isinstance(ast, list): i = 0 for elem in ast: parents.append((i, ast[0], ast)) collect_features_aux( elem, feature_list, parents, siblings, var_siblings, leaf_features, leaf_pair_features, is_init, is_counter, ) parents.pop() i += 1 elif isinstance(ast, dict): if "leaf" in ast and ast["leaf"]: leaf_idx += 1 is_var = False var_name = key = ast["token"] if config.IGNORE_VAR_NAMES and "var" in ast and not key[0].isupper(): key = "#VAR" is_var = True c = None if is_counter: c = Counter() leaf_features.append(c) append_feature_index(is_init, is_counter, key, feature_list, c) count = 0 for (i, p, p_ast) in reversed(parents): if p != "(#)" and re.match("^\{#*\}$", p) is None: count += 1 key2 = p + str(i) + ">" + key append_feature_index(is_init, is_counter, key2, feature_list, c) if count >= config.N_PARENTS: break count = 0 if not config.IGNORE_VAR_SIBLING_FEATURES and is_var: (p_idx, p_label, p_ast) = parents[-1] var_context = get_var_context(p_idx, p_label, p_ast) if var_context is not None: if var_name not in var_siblings: var_siblings[var_name] = [] for (var_sibling_idx, var_context_sibling) in reversed( var_siblings[var_name] ): count += 1 key2 = var_context_sibling + ">>>" + var_context # logging.info(f"var sibling feature {key2}") append_feature_pair( is_init, is_counter, key2, feature_list, leaf_features, var_sibling_idx, leaf_idx - 1, ) if count >= config.N_VAR_SIBLINGS: break var_siblings[var_name].append((leaf_idx - 1, var_context)) count = 0 if not config.IGNORE_SIBLING_FEATURES: # and not is_var: for (sibling_idx, sibling) in reversed(siblings): count += 1 key2 = sibling + ">>" + key append_feature_pair( is_init, is_counter, key2, feature_list, leaf_features, sibling_idx, leaf_idx - 1, ) if count >= config.N_SIBLINGS: break siblings.append((leaf_idx - 1, key)) def feature_list_to_doc(record): return " ".join([str(y) for y in record["features"]]) def counter_vectorize(rpath, wpath): with open(rpath, "r") as f: records = f.readlines() documents = [feature_list_to_doc(json.loads(x)) for x in records] vectorizer = CountVectorizer(min_df=1, binary=True) counter_matrix = vectorizer.fit_transform(documents) with open(wpath, "wb") as outf: pickle.dump((vectorizer, counter_matrix), outf) def read_all_records(rpath): with open(rpath, "r") as f: records = f.readlines() ret = [json.loads(x) for x in records] return ret def get_record_part(record): n_lines = record["endline"] - record["beginline"] if n_lines < config.SAMPLE_METHOD_MIN_LINES or "tests" in record["path"]: return None else: (_, ast) = get_sub_ast_aux(record["ast"], record["beginline"]) if ast == None: return None else: ret = copy_record_with_ast(record, ast) ret["features"] = collect_features_as_list(ast, False, False)[0] return ret def get_sub_ast_aux(ast, beginline, stop=False): if isinstance(ast, list): if stop: return (stop, None) else: ret = [] for elem in ast: (stop, tmp) = get_sub_ast_aux(elem, beginline, stop) if tmp != None: ret.append(tmp) if len(ret) >= 2: return (stop, ret) else: return (True, None) elif isinstance(ast, dict): if ( "leaf" not in ast or not ast["leaf"] or (not stop and ast["line"] - beginline < config.SAMPLE_METHOD_MAX_LINES) ): return (stop, ast) else: return (True, None) else: return (stop, ast) def print_features(fstr): print(" ".join([vocab.get_word(int(k)) for k in fstr])) def sample_n_records(records, n): ret_indices = [] ret_records = [] for j in range(10000): if len(ret_indices) < n: i = random.randint(0, len(records) - 1) if not (i in ret_indices): record = get_record_part(records[i]) if record != None: ret_indices.append(i) ret_records.append(record) else: logging.info("Sampled records") return (ret_indices, ret_records) logging.info("Sampled records") return (ret_indices, ret_records) def my_similarity_score(M1, M2): return linear_kernel(M1, M2) def find_similarity_score_features_un(record1, record2): features_as_counter1 = Counter(record1["features"]) features_as_counter2 = Counter(record2["features"]) return sum((features_as_counter1 & features_as_counter2).values()) def find_similarity_score_features_set(records): features_as_counters = [] for record in records: features_as_counters.append(Counter(record["features"])) return distance_set(features_as_counters) def find_similarity_score_features_set_un(records): features_as_counters = [] for record in records: features_as_counters.append(Counter(record["features"])) intersection = None for counter in features_as_counters: if intersection is None: intersection = counter else: intersection = intersection & counter return sum(intersection.values()) def copy_record_with_ast(record, ast): ret = dict(record) ret["ast"] = ast return ret def copy_record_with_features(record, features): ret = dict(record) ret["features"] = features return ret def copy_leaf_dummy(ast): return {"token": " ... ", "leading": ast["leading"], "trailing": ast["trailing"]} leaf_idx = 0 def prune_ast(ast, leaf_features): global leaf_idx if isinstance(ast, list): no_leaf = True ret = [] for elem in ast: (flag, tmp) = prune_ast(elem, leaf_features) ret.append(tmp) no_leaf = no_leaf and flag if no_leaf: return (True, None) else: return (False, ret) elif isinstance(ast, dict): if "leaf" in ast and ast["leaf"]: leaf_idx += 1 if leaf_features[leaf_idx - 1] is None: return (True, copy_leaf_dummy(ast)) else: return (False, ast) else: return (True, ast) else: return (True, ast) def prune_second_jd(record1, record2): return prune_last_jd([record1], record2) def add_pair_features(new_features, leaf_pair_features, leaf_idx, current_leaf_indices): if not config.IGNORE_SIBLING_FEATURES: for sibling_idx in current_leaf_indices: if (sibling_idx, leaf_idx) in leaf_pair_features: new_features[leaf_pair_features[(sibling_idx, leaf_idx)]] += 1 def distance_set(counters): intersection = None union = None for counter in counters: if intersection is None: intersection = counter else: intersection = intersection & counter for counter in counters: if union is None: union = counter else: union = union | counter return sum(intersection.values()) / sum(union.values()) def distance(counter1, counter2): return sum((counter1 & counter2).values()) / sum((counter1 | counter2).values()) def copy_record(record2, ast, features): ret = dict(record2) ret["ast"] = ast ret["features"] = features ret["index"] = -1 return ret def get_completions_via_clustering(query_record, similar_records): features = [feature_list_to_doc(record) for record in similar_records] if len(features) > 1: vectorizer = CountVectorizer(min_df=1) X = vectorizer.fit_transform(features) if config.USE_DBSCAN: db = DBSCAN(eps=config.DBSCAN_EPS, min_samples=2, metric="cosine") labels = db.fit_predict(X) else: db = AffinityPropagation() labels = db.fit_predict(X) else: labels = [0] print(f"Clustering labels: {labels}") logging.info(f"Clustering labels: {labels}") index_pairs = OrderedDict() ret = [] n_clusters = 0 n_uniques = 0 for i in range(min(config.MIN_MERGED_CODE, len(similar_records))): if labels[i] < 0: ret.append((similar_records[i]["ast"], i, i)) for i in range(len(labels)): if labels[i] >= 0: if labels[i] in index_pairs: if len(index_pairs[labels[i]]) == 1: index_pairs[labels[i]].append(i) else: index_pairs[labels[i]] = [i] n_clusters += 1 else: n_uniques += 1 for p in index_pairs.values(): if len(p) == 2: (i, j) = p pruned_record = prune_last_jd( [query_record, similar_records[j]], similar_records[i] ) ret.append((pruned_record, i, j)) else: ret.append((similar_records[p[0]]["ast"], p[0], p[0])) ret.sort(key=lambda t: t[1]) logging.info( f"(# similars, #clusters, #singles, #completions) = ({len(similar_records)}, {n_clusters}, {n_uniques}, {len(ret)})" ) print( f"(# similars, #clusters, #singles, #completions) = ({len(similar_records)}, {n_clusters}, {n_uniques}, {len(ret)})" ) return ret def get_completions2(query_record, candidate_records): l = len(candidate_records) ret = [] n_clusters = 0 n_uniques = 0 print("2-way") for i in range(l): jmax = None maxscore = 0 for j in range(i + 1, l): pscore = find_similarity_score_features( candidate_records[i][2], candidate_records[j][2] ) if pscore > config.THRESHOLD1: query_score_un = find_similarity_score_features_un( candidate_records[i][2], candidate_records[j][2] ) tmp_score = find_similarity_score_features_un( candidate_records[i][0], candidate_records[j][0] ) if ( tmp_score > config.THRESHOLD2 * query_score_un and tmp_score > maxscore ): jmax = j maxscore = tmp_score if jmax is not None: pruned_record = prune_last_jd( [query_record, candidate_records[jmax][0]], candidate_records[i][0] ) ret.append((pruned_record, i, jmax)) print(ast_to_code(pruned_record["ast"])) n_clusters += 1 # else: # ret.append((candidate_records[i][0]['ast'], i, i)) # n_uniques += 1 ret2 = [] print("3-way") for (record, i, j) in ret: if i != j: kmax = None maxscore = 0 for k in range(l): if k != i and k != j: pscore = find_similarity_score_features_set( [ candidate_records[i][2], candidate_records[j][2], candidate_records[k][2], ] ) if pscore > config.THRESHOLD1: query_score_un = find_similarity_score_features_set_un( [ candidate_records[i][2], candidate_records[j][2], candidate_records[k][2], ] ) tmp_score = find_similarity_score_features_set_un( [ candidate_records[i][0], candidate_records[j][0], candidate_records[k][0], ] ) if ( tmp_score > config.THRESHOLD2 * query_score_un and tmp_score > maxscore ): kmax = k maxscore = tmp_score if kmax is not None: pruned_record = prune_last_jd( [query_record, candidate_records[kmax][0]], record ) n_clusters += 1 print(ast_to_code(pruned_record["ast"])) ret2.append((pruned_record, i, j, kmax)) logging.info( f"(# similars, #clusters, #singles, #completions) = ({len(candidate_records)}, {n_clusters}, {n_uniques}, {len(ret)})" ) print( f"(# similars, #clusters, #singles, #completions) = ({len(candidate_records)}, {n_clusters}, {n_uniques}, {len(ret)})" ) return ret2 + ret def get_completions3(query_record, candidate_records, top_n, threshold1, threshold2): l = len(candidate_records) ret = [] acc = [] for i in range(l): ret.append([i]) changed = True while changed: ret2 = [] changed = False for tuple in ret: kmax = None maxscore = 0 for k in range(tuple[-1] + 1, l): record_list1 = [] record_list2 = [] for i in tuple: record_list1.append(candidate_records[i][2]) record_list2.append(candidate_records[i][0]) record_list1.append(candidate_records[k][2]) record_list2.append(candidate_records[k][0]) qlen = sum(Counter(record_list1[0]["features"]).values()) iscore = find_similarity_score_features_set_un(record_list1) pscore = iscore / qlen # pscore = find_similarity_score_features_set(record_list1) if pscore > threshold1: query_score_un = find_similarity_score_features_set_un(record_list1) tmp_score = find_similarity_score_features_set_un(record_list2) if tmp_score > threshold2 * query_score_un and tmp_score > maxscore: kmax = k maxscore = tmp_score if kmax is not None: changed = True ret2.append(tuple + [kmax]) acc = ret2 + acc ret = ret2 ret = [] acc = sorted(acc, key=lambda t: t[0] * 1000 - len(t)) for i in range(len(acc)): tuple = acc[i] logging.info(f"Pruning {len(tuple)} {tuple}") is_subset = False s = set(tuple) for j in reversed(range(i)): if distance(Counter(tuple), Counter(acc[j])) > 0.5: is_subset = True if not is_subset: print(f"Pruning {len(tuple)} {tuple}") logging.info("recommending") pruned_record = candidate_records[tuple[0]][0] for j in range(1, len(tuple)): pruned_record = prune_last_jd( [query_record, candidate_records[tuple[j]][0]], pruned_record ) ret.append([pruned_record, candidate_records[tuple[0]][0]] + tuple) if len(ret) >= top_n: return ret return ret def print_match_index(query_record, candidate_records): ret = -1 i = 0 for (candidate_record, score, pruned_record, pruned_score) in candidate_records: if query_record["index"] == candidate_record["index"]: ret = i i += 1 if ret < 0: print("Failed to match original method.") elif ret > 0: print(f"Matched original method. Rank = {ret}") else: print(f"Matched original method perfectly.") #### Interface methods #### def find_indices_similar_to_features( vectorizer, counter_matrix, feature_lists, num_similars, min_similarity_score ): doc_counter_vector = vectorizer.transform(feature_lists) len = my_similarity_score(doc_counter_vector, doc_counter_vector).flatten()[0] cosine_similarities = my_similarity_score( doc_counter_vector, counter_matrix ).flatten() related_docs_indices = [ i for i in cosine_similarities.argsort()[::-1] if cosine_similarities[i] > min_similarity_score * len ][0:num_similars] return [(j, cosine_similarities[j]) for j in related_docs_indices] def find_similarity_score_features(record1, record2): features_as_counter1 = Counter(record1["features"]) features_as_counter2 = Counter(record2["features"]) return distance(features_as_counter1, features_as_counter2) def prune_last_jd(records, record2): other_features = [Counter(record["features"]) for record in records] ast = record2["ast"] leaf_features, leaf_pair_features = collect_features_as_list(ast, False, True) out_features = [None] * len(leaf_features) current_features = Counter() current_leaf_indices = [] for features1 in other_features: score = distance(features1, current_features) done = False while not done: max = score max_idx = None i = 0 for leaf_feature in leaf_features: if leaf_feature is not None: new_features = current_features + leaf_feature # add_pair_features(new_features, leaf_pair_features, i, current_leaf_indices) tmp = distance(features1, new_features) if tmp > max: max = tmp max_idx = i i += 1 if max_idx is not None: score = max out_features[max_idx] = leaf_features[max_idx] current_features = current_features + leaf_features[max_idx] # add_pair_features(current_features, leaf_pair_features, max_idx, current_leaf_indices) current_leaf_indices.append(max_idx) leaf_features[max_idx] = None else: done = True global leaf_idx leaf_idx = 0 pruned_ast = prune_ast(ast, out_features)[1] pruned_features = collect_features_as_list(pruned_ast, False, False)[0] return copy_record(record2, pruned_ast, pruned_features) def ast_to_code(tree): token_list = [] ast_to_code_aux(tree, token_list) token_list.append("\n") return "".join(token_list) def ast_to_code_with_full_lines(tree, fulltree): line_list = [] ast_to_code_collect_lines(tree, line_list) token_list = [] ast_to_code_print_lines(fulltree, line_list, token_list) token_list.append("\n") return "".join(token_list) def find_similar( query_record, records, vectorizer, counter_matrix, num_similars, min_similarity_score, min_pruned_score, ): print("Query features: ") print_features(query_record["features"]) similars = find_indices_similar_to_features( vectorizer, counter_matrix, [feature_list_to_doc(query_record)], num_similars, min_similarity_score, ) candidate_records = [] for (idx, score) in similars: pruned_record = prune_second_jd(query_record, records[idx]) pruned_score = find_similarity_score_features(query_record, pruned_record) if pruned_score > min_pruned_score: candidate_records.append((records[idx], score, pruned_record, pruned_score)) candidate_records = sorted(candidate_records, key=lambda v: v[3], reverse=True) logging.info(f"# of similar snippets = {len(candidate_records)}") return candidate_records def cluster_and_intersect( query_record, candidate_records, top_n, threshold1, threshold2 ): clustered_records = [] if len(candidate_records) > 0: if config.CLUSTER: clustered_records = get_completions3( query_record, candidate_records, top_n, threshold1, threshold2 ) return clustered_records def print_similar_and_completions(query_record, records, vectorizer, counter_matrix): candidate_records = find_similar( query_record, records, vectorizer, counter_matrix, config.NUM_SIMILARS, config.MIN_SIMILARITY_SCORE, config.MIN_PRUNED_SCORE, ) print_match_index(query_record, candidate_records) clustered_records = cluster_and_intersect( query_record, candidate_records, config.TOP_N, config.THRESHOLD1, config.THRESHOLD2, ) print( f"################ query code ################ index = {query_record['index']}" ) print(ast_to_code(query_record["ast"])) if query_record["index"] >= 0: print("---------------- extracted from ---------------") print(ast_to_code(records[query_record["index"]]["ast"])) for clustered_record in clustered_records: print( f"------------------- suggested code completion ------------------" ) # idxs = ({clustered_record[1:]}), score = {candidate_records[clustered_record[1]][3]}") print( ast_to_code_with_full_lines( clustered_record[0]["ast"], clustered_record[1]["ast"] ) ) if config.PRINT_SIMILAR: j = 0 for (candidate_record, score, pruned_record, pruned_score) in candidate_records: print( f"idx = {j}:------------------- similar code ------------------ index = {candidate_record['index']}, score = {score}" ) print(ast_to_code(candidate_record["ast"])) print( f"------------------- similar code (pruned) ------------------ score = {pruned_score}" ) print(ast_to_code(pruned_record["ast"])) j += 1 print("", flush=True) def collect_features_as_list(ast, is_init, is_counter): feature_list = [] leaf_features = [] leaf_pair_features = dict() global leaf_idx leaf_idx = 0 collect_features_aux( ast, feature_list, [], [], dict(), leaf_features, leaf_pair_features, is_init, is_counter, ) if is_counter: return (leaf_features, leaf_pair_features) else: return (feature_list, None) def read_and_featurize_record_file(rpath): with open(rpath, "r") as inp: for line in inp: obj = json.loads(line) obj["features"] = collect_features_as_list(obj["ast"], False, False)[0] obj["index"] = -1 return obj def test_record_at_index(idx): record = get_record_part(records[idx]) if record != None: print_similar_and_completions(record, records, vectorizer, counter_matrix) def featurize_and_test_record(record_files, keywords): set_tmp = None record_final = None for record_file in record_files: record = read_and_featurize_record_file(record_file) if record is not None: record_final = record if set_tmp is not None: set_tmp = set_tmp & Counter(record["features"]) else: set_tmp = Counter(record["features"]) # need to figure out how to merge asts as well if set_tmp is None: set_tmp = Counter() for keyword in keywords: set_tmp[vocab.get_index(keyword)] += 1 if record_final is None: record_final = {"ast": None, "index": -1, "features": list(set_tmp.elements())} else: record_final["features"] = list(set_tmp.elements()) if len(record_final["features"]) > 0: print_similar_and_completions(record_final, records, vectorizer, counter_matrix) def test_all(): N = config.N_SAMPLES (sampled_indices, sampled_records) = sample_n_records(records, N) for k, record in enumerate(sampled_records): print(f"{k}: ", end="") print_similar_and_completions(record, records, vectorizer, counter_matrix) def load_all(counter_path, asts_path): with open(counter_path, "rb") as outf: (vectorizer, counter_matrix) = pickle.load(outf) records = read_all_records(asts_path) logging.info("Read all records.") return (vectorizer, counter_matrix, records) def setup(records_file): global config global vocab config = Config() logging.basicConfig(level=logging.DEBUG) random.seed(config.SEED) os.makedirs(options.working_dir, exist_ok=True) if records_file is None: vocab = Vocab.load() else: vocab = Vocab.load(True) featurize_records_file( records_file, os.path.join(options.working_dir, config.FEATURES_FILE) ) vocab.dump() logging.info("Done featurizing.") counter_vectorize( os.path.join(options.working_dir, config.FEATURES_FILE), os.path.join(options.working_dir, config.TFIDF_FILE), ) logging.info("Done computing counter matrix.") logging.basicConfig(level=logging.DEBUG) options = parse_args() setup(options.corpus) (vectorizer, counter_matrix, records) = load_all( os.path.join(options.working_dir, config.TFIDF_FILE), os.path.join(options.working_dir, config.FEATURES_FILE), ) if options.index_query is not None: test_record_at_index(options.index_query) elif len(options.file_query) > 0 or len(options.keywords) > 0: featurize_and_test_record(options.file_query, options.keywords) elif options.testall: test_all()
aroma-paper-artifacts-main
reference/src/main/python/similar.py
#!/usr/bin/env python # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch archs = torch.cuda.get_arch_list() archs = [arch[3:] for arch in archs if arch.startswith('sm_')] print(";".join(archs), end='')
baspacho-main
cmake/get_torch_cuda_archs.py
#!/usr/bin/env python """TODO.""" from __future__ import print_function import numbskull from numbskull.numbskulltypes import * import numpy as np def factor(f, args): """THIS IS A DOCSTRING.""" if f == FUNC_IMPLY_NATURAL: # TODO pass elif f == FUNC_OR: return 1 if any(args) else -1 elif f == FUNC_EQUAL: # TODO pass elif f == FUNC_AND or FUNC_ISTRUE: return 1 if all(args) else -1 elif f == FUNC_LINEAR: # TODO pass elif f == FUNC_RATIO: # TODO pass elif f == FUNC_LOGICAL: # TODO pass elif f == FUNC_IMPLY_MLN: # TODO pass else: raise NotImplemented("FACTOR " + str(f) + " not implemented.") for (key, value) in numbskull.inference.FACTORS.items(): print(key) variables = 2 if key == "DP_GEN_DEP_FIXING" or key == "DP_GEN_DEP_REINFORCING": # These factor functions requires three vars to work variables = 3 edges = variables weight = np.zeros(1, Weight) variable = np.zeros(variables, Variable) factor = np.zeros(1, Factor) fmap = np.zeros(edges, FactorToVar) domain_mask = np.zeros(variables, np.bool) weight[0]["isFixed"] = True weight[0]["initialValue"] = 1 for i in range(variables): variable[i]["isEvidence"] = 0 variable[i]["initialValue"] = 0 variable[i]["dataType"] = 0 variable[i]["cardinality"] = 2 factor[0]["factorFunction"] = value factor[0]["weightId"] = 0 factor[0]["featureValue"] = 1 factor[0]["arity"] = variables factor[0]["ftv_offset"] = 0 for i in range(variables): fmap[i]["vid"] = i ns = numbskull.NumbSkull(n_inference_epoch=100, n_learning_epoch=100, quiet=True) ns.loadFactorGraph(weight, variable, factor, fmap, domain_mask, edges) ns.learning() ns.inference() print(ns.factorGraphs[0].count)
numbskull-master
loadfg.py
#!/usr/bin/env python """TODO.""" from numbskull import numbskull args = ['test', '-l', '100', '-i', '100', '-t', '10', '-s', '0.01', '--regularization', '2', '-r', '0.1', '--quiet'] ns = numbskull.load(args) ns.learning() ns.inference() print(ns.factorGraphs[0].count)
numbskull-master
test.py
#!/usr/bin/env python """This tests learning for labelling functions.""" from __future__ import print_function, absolute_import import numpy as np import numbskull from numbskull.numbskulltypes import * import math def index_to_values(index, num_lf): value = [0] * (1 + num_lf) value[0] = index % 2 index = index // 2 for i in range(num_lf): value[i + 1] = index % 3 index = index // 3 return value def create_fg(prior, accuracy, abstain, copies): """ This creates copies of the following factor graph. istrue (weight = prior) | y_i /|\ / | \ / | \ / | \ / | \ LF_{i1} ... LF_{in} ( weight = ) ( weight = ) accuracy[1] accuracy[n] Arguments: prior: one floating-point value weight: list of floating-point values abstain: list of floating-point values (same number as weight) copies: integer Returns: list of arguments that can be passed to numbskull.loadFactorGraph """ n = len(accuracy) # number of labelling functions weights = 1 + n variables = copies * (1 + n) factors = copies * (1 + n) edges = copies * (1 + 2 * n) weight = np.zeros(weights, Weight) variable = np.zeros(variables, Variable) factor = np.zeros(factors, Factor) fmap = np.zeros(edges, FactorToVar) domain_mask = np.zeros(variables, np.bool) states = 2 * 3 ** n Z = np.zeros(states, np.float64) for i in range(states): value = index_to_values(i, n) y = value[0] lfs = value[1:] Z[i] = prior * (2 * y - 1) for (j, lf) in enumerate(lfs): lf = lf - 1 # remap to standard -1, 0, 1 if lf != 0: Z[i] += accuracy[j] * lf * (2 * y - 1) # TODO: abstain not handled yet Z[i] = math.exp(Z[i]) Z = np.cumsum(Z) Z = Z / Z[-1] print(Z) for w in weight: w["isFixed"] = False w["initialValue"] = 1.0 weight[0]["initialValue"] = 0 for copy in range(copies): r = np.random.rand() index = np.argmax(Z >= r) value = index_to_values(index, n) y = value[0] lf = value[1:] # y variable variable[copy * (1 + n)]["isEvidence"] = 0 # query variable[copy * (1 + n)]["initialValue"] = 0 # Do not actually show y variable[copy * (1 + n)]["dataType"] = 0 # not sparse variable[copy * (1 + n)]["cardinality"] = 2 # labelling function variable for i in range(n): variable[copy * (1 + n) + 1 + i]["isEvidence"] = 1 # evidence variable[copy * (1 + n) + 1 + i]["initialValue"] = lf[i] variable[copy * (1 + n) + 1 + i]["dataType"] = 0 # not sparse variable[copy * (1 + n) + 1 + i]["cardinality"] = 3 # Class prior factor[copy * (1 + n)]["factorFunction"] = 18 # DP_GEN_CLASS_PRIOR factor[copy * (1 + n)]["weightId"] = 0 factor[copy * (1 + n)]["featureValue"] = 1 factor[copy * (1 + n)]["arity"] = 1 factor[copy * (1 + n)]["ftv_offset"] = copy * (1 + 2 * n) fmap[copy * (1 + 2 * n)]["vid"] = copy * (1 + n) # Labelling function accuracy for i in range(n): factor_index = copy * (1 + n) + 1 + i factor[factor_index]["factorFunction"] = 21 # DP_GEN_LF_ACCURACY factor[factor_index]["weightId"] = i + 1 factor[factor_index]["featureValue"] = 1 factor[factor_index]["arity"] = 2 factor[factor_index]["ftv_offset"] = copy * (1 + 2 * n) + 1 + 2 * i fmap_index = copy * (1 + 2 * n) + 1 + 2 * i fmap[fmap_index]["vid"] = copy * (1 + n) # y fmap[fmap_index + 1]["vid"] = copy * (1 + n) + i + 1 # LF i return weight, variable, factor, fmap, domain_mask, edges learn = 100 ns = numbskull.NumbSkull(n_inference_epoch=100, n_learning_epoch=learn, quiet=True, learn_non_evidence=True, stepsize=0.0001, burn_in=100, decay=0.001 ** (1.0 / learn), regularization=1, reg_param=0.01) prior = 0 accuracy = [1, 0.5] abstain = [0, 0, 0] copies = 10 fg = create_fg(prior, accuracy, abstain, copies) print("weight") print(fg[0]) print() print("variable") print(fg[1]) print() print("factor") print(fg[2]) print() print("fmap") print(fg[3]) print() print("domain_mask") print(fg[4]) print() print("edges") print(fg[5]) print() ns.loadFactorGraph(*fg) print(ns.factorGraphs[0].weight_value) ns.learning() print(ns.factorGraphs[0].weight_value)
numbskull-master
test_lf_learning.py
"""For pip.""" from setuptools import setup, find_packages exec(open('numbskull/version.py').read()) setup( name='numbskull', version=__version__, description='sample away', packages=find_packages(), install_requires=[ 'future', 'futures; python_version == "2.7"', ], entry_points={ 'console_scripts': [ 'numbskull = numbskull.numbskull:main', ], }, )
numbskull-master
setup.py
#!/usr/bin/env python from __future__ import print_function from distutils.dir_util import mkpath import sys import os import shutil import subprocess def generate(directory, degree, copies): print("Generating " + directory + "...") sys.stdout.flush() try: shutil.rmtree(directory) except: # exception can be thrown if dir does not exist pass mkpath(directory) # app.ddlog f = open(directory + "/app.ddlog", "w") f.write("p? (\n" " prop_id bigint\n" ").\n" "\n" "voter_voted_for (\n" " voter_id bigint,\n" " prop_id bigint\n" ").\n" "\n") for i in range(degree): f.write("v" + str(i) + "? (\n" " prop_id bigint\n" ").\n" "\n") f.write("@name(\"and_factor\")\n" "@weight(1.0)\n" "p(p)") for i in range(degree): f.write(" ^ v" + str(i) + "(v)") f.write(" :-\n" " voter_voted_for(v, p).\n" "\n" "@weight(0.0)\n" "v0(v) :- FALSE.\n") f.close() # db.url f = open(directory + "/db.url", "w") f.write("postgresql://[email protected]:1432/intro_" + str(degree) + "_" + str(copies)) f.close() # deepdive.conf f = open(directory + "/deepdive.conf", "w") f.write("deepdive.calibration.holdout_fraction:0.25\n" "deepdive.sampler.sampler_args: \"-l 0 -i 0 --alpha 0.01\"\n") f.close() # simple.costmodel.txt f = open(directory + "/simple.costmodel.txt", "w") f.write("v_A 5.0\n" "v_B 8.0\n" "v_C 0.0\n" "v_D 1.0\n" "v_Au 6.0\n" "v_Bu 9.0\n" "v_Cu 1.0\n" "v_Du 2.0\n" "w_C 5.0\n" "w_D 5.0\n" "w_Cu 5.0\n" "w_Du 5.0\n" "f_A 0.0\n" "f_C 0.0\n" "f_D 1.0\n" "f_E 1.0\n" "f_G 2.0\n" "f_Cu 0.0\n" "f_Du 0.0\n" "f_Eu 0.0\n" "f_Gum 1.0\n" "f_Guw 1.0\n" "f_Gumw 0.0\n" "f_H 1000.0\n") f.close() mkpath(directory + "/input") f = open(directory + "/input/p.tsv", "w") f.write("0\t\\N\n") f.close() f = open(directory + "/input/voter_voted_for.tsv", "w") index = 0 for i in range(copies): f.write(str(i) + "\t0\n") f.close() f = open(directory + "/input/v.tsv", "w") for i in range(copies): f.write(str(i) + "\t\\N\n") f.close() for i in range(degree): os.symlink(directory + "/input/v.tsv", directory + "/input/v" + str(i) + ".tsv") cmd = ["deepdive", "do", "all"] subprocess.call(cmd, cwd=directory) if __name__ == "__main__": n_var = 12600 for degree in [1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50]: copies = n_var // degree generate("/dfs/scratch0/bryanhe/intro_" + str(copies) + "_" + str(degree) + "/", degree, copies)
numbskull-master
experiments/intro/generate.py
#!/usr/bin/env python from __future__ import print_function copies = 10 f = open("input/p.tsv", "w") f.write("0\t\\N\n") f.close() f = open("input/voter_voted_for.tsv", "w") index = 0 for i in range(copies): f.write(str(i) + "\t0\n") f.close() f = open("input/v.tsv", "w") for i in range(copies): f.write(str(i) + "\t\\N\n") f.close()
numbskull-master
experiments/partitionable_and_vote/generate.py
#!/usr/bin/env python from __future__ import print_function from distutils.dir_util import mkpath import sys import os import shutil import subprocess import time child_processes = {} def generate(directory, propositions, voters_per_proposition, copies, FNULL): print("Generating " + directory + "...") sys.stdout.flush() mkpath(directory) # app.ddlog f = open(directory + "/app.ddlog", "w") f.write("p? (\n" " prop_id bigint\n" ").\n" "\n" "voter_voted_for (\n" " voter_id bigint,\n" " prop_id bigint\n" ").\n" "\n") for i in range(voters_per_proposition): f.write("v" + str(i) + "? (\n" " prop_id bigint\n" ").\n" "\n") f.write("@name(\"and_factor\")\n" "@weight(1.0)\n" "p(p)") for i in range(voters_per_proposition): f.write(" ^ v" + str(i) + "(v)") f.write(" :-\n" " voter_voted_for(v, p).\n" "\n" "@weight(0.0)\n" "v0(v) :- FALSE.\n") f.close() # db.url f = open(directory + "/db.url", "w") f.write("postgresql://[email protected]:1432/tradeoff_" + str(propositions) + "_" + str(voters_per_proposition) + "_" + str(copies)) f.close() # deepdive.conf f = open(directory + "/deepdive.conf", "w") f.write("deepdive.calibration.holdout_fraction:0.25\n" "deepdive.sampler.sampler_args: \"-l 0 -i 0 --alpha 0.01\"\n") f.close() # simple.costmodel.txt f = open(directory + "/simple.costmodel.txt", "w") f.write("v_A 5.0\n" "v_B 8.0\n" "v_C 0.0\n" "v_D 1.0\n" "v_Au 6.0\n" "v_Bu 9.0\n" "v_Cu 1.0\n" "v_Du 2.0\n" "w_C 5.0\n" "w_D 5.0\n" "w_Cu 5.0\n" "w_Du 5.0\n" "f_A 0.0\n" "f_C 0.0\n" "f_D 1.0\n" "f_E 1.0\n" "f_G 2.0\n" "f_Cu 0.0\n" "f_Du 0.0\n" "f_Eu 0.0\n" "f_Gum 1.0\n" "f_Guw 1.0\n" "f_Gumw 0.0\n" "f_H 1000.0\n") f.close() mkpath(directory + "/input") f = open(directory + "/input/p.tsv", "w") for i in range(propositions): f.write(str(i) + "\t\\N\n") f.close() f = open(directory + "/input/voter_voted_for.tsv", "w") index = 0 for i in range(copies): for j in range(propositions): f.write(str(i) + "\t" + str(j) + "\n") f.close() f = open(directory + "/input/v.tsv", "w") for i in range(copies): f.write(str(i) + "\t\\N\n") f.close() for i in range(voters_per_proposition): try: os.symlink(directory + "/input/v.tsv", directory + "/input/v" + str(i) + ".tsv") except: pass cmd = ["deepdive", "do", "all"] child_processes[directory] = subprocess.Popen(cmd, cwd=directory, stdout=FNULL) if __name__ == "__main__": FNULL = open(os.devnull, 'w') n_var = 1260000 propositions = 10 # for voters_per_proposition in [2, 5, 10, 20, 50]: for voters_per_proposition in [1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50]: copies = n_var // voters_per_proposition generate("/dfs/scratch0/bryanhe/tradeoff_" + str(propositions) + "_" + str(copies) + "_" + str(voters_per_proposition) + "/", propositions, voters_per_proposition, copies, FNULL) print(80 * "*") done = False while not done: done = True for i in child_processes: status = child_processes[i].poll() print(str(i) + ":\t" + str(status)) if status is None: done = False print() time.sleep(1) FNULL.close()
numbskull-master
experiments/tradeoff/generate.py
# -*- coding: utf-8 -*- # # Numbskull documentation build configuration file, created by # sphinx-quickstart on Fri Aug 26 17:55:24 2016. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # """TODO.""" import os import sys sys.path.insert(0, os.path.abspath('../..')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode', 'sphinx.ext.autosummary', 'numpydoc', # 'sphinx.ext.githubpages', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. # # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Numbskull' copyright = u'2016, Bryan He, Theodoros Rekatsinas' author = u'Bryan He, Theodoros Rekatsinas' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = u'0.0' # The full version, including alpha/beta/rc tags. release = u'0.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # # today = '' # # Else, today_fmt is used as the format for a strftime call. # # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all # documents. # # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. # "<project> v<release> documentation" by default. # # html_title = u'Numbskull v0.0' # A shorter title for the navigation bar. Default is the same as html_title. # # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = '../../fig/numbskull.png' # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or # 32x32 pixels large. # html_favicon = "../../fig/mario.gif" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. # # html_extra_path = [] # If not None, a 'Last updated on:' timestamp is inserted at every page # bottom, using the given strftime format. # The empty string is equivalent to '%b %d, %Y'. # # html_last_updated_fmt = None # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # # html_additional_pages = {} # If false, no module index is generated. # # html_domain_indices = True # If false, no index is generated. # # html_use_index = True # If true, the index is split into individual pages for each letter. # # html_split_index = False # If true, links to the reST sources are added to the pages. # # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr', 'zh' # # html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # 'ja' uses this config value. # 'zh' user can custom change `jieba` dictionary path. # # html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. # # html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'Numbskulldoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'Numbskull.tex', u'Numbskull Documentation', u'Bryan He, Theodoros Rekatsinas', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # # latex_use_parts = False # If true, show page references after internal links. # # latex_show_pagerefs = False # If true, show URL addresses after external links. # # latex_show_urls = False # Documents to append as an appendix to all manuals. # # latex_appendices = [] # It false, will not define \strong, \code, itleref, \crossref ... but only # \sphinxstrong, ..., \sphinxtitleref, ... To help avoid clash with user added # packages. # # latex_keep_old_macro_names = True # If false, no module index is generated. # # latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'numbskull', u'Numbskull Documentation', [author], 1) ] # If true, show URL addresses after external links. # # man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'Numbskull', u'Numbskull Documentation', author, 'Numbskull', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. # # texinfo_appendices = [] # If false, no module index is generated. # # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # # texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. # # texinfo_no_detailmenu = False # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'https://docs.python.org/': None} # Allow __init__ to be autodoc'ed def skip(app, what, name, obj, skip, options): """TODO.""" if name == "__init__": return False return skip def setup(app): """TODO.""" app.connect("autodoc-skip-member", skip) numpydoc_show_class_members = False
numbskull-master
docs/source/conf.py
#!/usr/bin/env python """Script to run distributed experiments.""" import numbskull_master import sys if __name__ == "__main__": n_var = 1260000 machines = 4 threads_per_machine = 1 learning_epochs = 10 inference_epochs = 10 f = open("intro_degree.dat", "w") f.write("degree\tcopies\tmaster_l\tmaster_i\t" + "a_l\ta_i\tb_l\tb_i\tbu_l\tbu_i\tc_l\tc_i\tcu_l\tcu_i\n") f.flush() for degree in [1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50]: copies = n_var // degree application_dir = "/dfs/scratch0/bryanhe/intro_" + \ str(copies) + "_" + str(degree) + "/" print(application_dir) sys.stdout.flush() f.write(str(degree) + "\t" + str(copies) + "\t") f.flush() # Master (ns, res) = numbskull_master.main(application_dir, 0, threads_per_machine, learning_epochs, inference_epochs, "sp", "--ppa", False, "") f.write(str(res["learning_time"]) + "\t" + str(res["inference_time"]) + "\t") f.flush() # A (ns, res) = numbskull_master.main(application_dir, machines, threads_per_machine, learning_epochs, inference_epochs, "sp", "--ppa", False, "(1)") f.write(str(res["learning_time"]) + "\t" + str(res["inference_time"]) + "\t") f.flush() # B (ns, res) = numbskull_master.main(application_dir, machines, threads_per_machine, learning_epochs, inference_epochs, "sp", "--ppb", False, "(1)") f.write(str(res["learning_time"]) + "\t" + str(res["inference_time"]) + "\t") f.flush() # Bu (ns, res) = numbskull_master.main(application_dir, machines, threads_per_machine, learning_epochs, inference_epochs, "sp", "--ppb", True, "(1)") f.write(str(res["learning_time"]) + "\t" + str(res["inference_time"]) + "\t") f.flush() # C (ns, res) = numbskull_master.main(application_dir, machines, threads_per_machine, learning_epochs, inference_epochs, "sp", "--ppc", False, "(1)") f.write(str(res["learning_time"]) + "\t" + str(res["inference_time"]) + "\t") f.flush() # Cu (ns, res) = numbskull_master.main(application_dir, machines, threads_per_machine, learning_epochs, inference_epochs, "sp", "--ppc", True, "(1)") f.write(str(res["learning_time"]) + "\t" + str(res["inference_time"]) + "\n") f.flush() f.close()
numbskull-master
salt/src/experiment_intro_degree.py
#!/usr/bin/env python """Script to run distributed experiments.""" import numbskull_master if __name__ == "__main__": application_dir = "/dfs/scratch0/bryanhe/congress6/" machines = 1 threads_per_machine = 1 learning_epochs = 100 inference_epochs = 100 f = open("congress.dat", "w") for m in range(0, machines + 1): partition_type = "" if m == 0 else "(1)" (ns, res) = numbskull_master.main(application_dir, m, threads_per_machine, learning_epochs, inference_epochs, "sp", "a", False, partition_type) f.write(str(m) + "\t" + str(res["learning_time"]) + "\t" + str(res["inference_time"]) + "\n") f.flush()
numbskull-master
salt/src/experiment.py
"""TODO.""" from __future__ import print_function import numbskull from numbskull.numbskulltypes import * import numbskull.inference import numpy as np import codecs import numba import time import networkx as nx import nxmetis # Commands from master to minions (Tags) ASSIGN_ID = 'ASSIGN_ID' INIT_NS = 'INIT_NS' LOAD_FG = 'LOAD_FG' SYNC_MAPPING = 'SYNC_MAPPING' LEARN = 'LEARN' INFER = 'INFER' # Responses from minions to master (Tags) ASSIGN_ID_RES = 'ASSIGN_ID_RES' INIT_NS_RES = 'INIT_NS_RES' LOAD_FG_RES = 'LOAD_FG_RES' SYNC_MAPPING_RES = 'SYNC_MAPPING_RES' LEARN_RES = 'LEARN_RES' INFER_RES = 'INFER_RES' # TODO These should be in some sort of util package def get_views(cur): """TODO.""" cur.execute("SELECT table_name " "FROM INFORMATION_SCHEMA.views " "WHERE table_name LIKE '%_sharding' " " AND table_schema = ANY (current_schemas(false))") view = [] while True: temp = cur.fetchmany() if temp == []: break for i in temp: assert(len(i) == 1) view += i factor_view = [] variable_view = [] weight_view = [] for v in view: is_f = ("_factors_" in v) is_v = ("_variables_" in v) is_w = ("_weights_" in v) assert((is_f + is_v + is_w) == 1) if is_f: factor_view.append(v) if is_v: variable_view.append(v) if is_w: weight_view.append(v) return (factor_view, variable_view, weight_view) @numba.jit(nopython=True, cache=True, nogil=True) def get_factors_helper(row, fid, ff, factor, factor_pt, factor_ufo, fmap, factor_index, fmap_index): """TODO.""" for i in row: fid[factor_index] = i[-1] factor[factor_index]["factorFunction"] = ff factor[factor_index]["weightId"] = i[-5] factor[factor_index]["featureValue"] = i[-4] factor_pt[factor_index] = i[-3] factor_ufo[factor_index] = (i[-2] == 117) # 117 == 'u' factor[factor_index]["arity"] = len(i) - 5 if factor_index == 0: factor[factor_index]["ftv_offset"] = 0 else: factor[factor_index]["ftv_offset"] = \ factor[factor_index - 1]["ftv_offset"] + \ factor[factor_index - 1]["arity"] factor_index += 1 for j in i[:-5]: fmap[fmap_index]["vid"] = j # TODO: how to actually get categorical info? fmap[fmap_index]["dense_equal_to"] = 0 fmap_index += 1 return factor_index, fmap_index def get_factors(cur, views, sql_filter="True"): """TODO.""" factors = 0 edges = 0 # This operation is for counting rows, and getting rows op_template = "SELECT {cmd} FROM {table_name} WHERE {filter}" # This operation is for counting columns in a table count_template = "SELECT COUNT(*) " \ "FROM INFORMATION_SCHEMA.COLUMNS " \ "WHERE table_schema = 'public' " \ "AND table_name = '{table_name}'" # This operation is for getting columns in a table names_template = "SELECT column_name " \ "FROM INFORMATION_SCHEMA.COLUMNS " \ "WHERE table_schema = 'public' " \ "AND table_name = '{table_name}' " \ "ORDER BY ordinal_position" # Pre-count number of factors and edges # TODO: can this step be avoided? min_fid = np.zeros(len(views), np.int64) max_fid = np.zeros(len(views), np.int64) for (i, table) in enumerate(views): op = op_template.format(cmd="COUNT(*), MIN(fid), MAX(fid)", table_name=table, filter=sql_filter) cur.execute(op) info = cur.fetchone() f = info[0] # number of factors in this table min_fid[i] = info[1] if info[1] is not None else 0 max_fid[i] = info[2] if info[2] is not None else 0 count = count_template.format(table_name=table) cur.execute(count) v = cur.fetchone()[0] - 4 # number of vars used by these factors factors += f edges += f * v perm = min_fid.argsort() min_fid = min_fid[perm] max_fid = max_fid[perm] assert(all(max_fid[i] <= max_fid[i + 1] for i in xrange(len(max_fid) - 1))) # TODO: cannot directly apply perm to views # (standard array, not numpy array) views_temp = [None for i in range(len(views))] for i in range(len(views)): views_temp[i] = views[perm[i]] views = views_temp fid = np.zeros(factors, np.int64) factor = np.zeros(factors, Factor) factor_pt = np.zeros(factors, np.int8) # partition type factor_ufo = np.zeros(factors, np.bool) # unary factor optimization fmap = np.zeros(edges, FactorToVar) factor_index = 0 fmap_index = 0 for v in views: # Find factor function ff = -1 for (key, value) in numbskull.inference.FACTORS.items(): if ("_" + key + "_").lower() in v: assert(ff == -1) ff = value # TODO: assume istrue if not found? if ff == -1: ff = numbskull.inference.FUNC_ISTRUE names_op = names_template.format(table_name=v) cur.execute(names_op) name = cur.fetchall() for i in range(len(name)): assert(len(name[i]) == 1) name[i] = name[i][0] assert(name[-4] == "weight_id") assert(name[-3] == "feature_value") assert(name[-2] == "partition_key") assert(name[-1] == "fid") cmd = (", ".join(['"' + i + '"' for i in name[:-2]]) + ", ASCII(LEFT(partition_key, 1))" + # partition key ", ASCII(SUBSTR(partition_key, 2, 1))" + # unary factor opt ", fid") # TODO: should actually put the ORDER BY fid in its own var op = op_template.format(cmd=cmd, table_name=v, filter=sql_filter + "ORDER BY fid") cur.execute(op) while True: row = cur.fetchmany(10000) if row == []: break (factor_index, fmap_index) = \ get_factors_helper(row, fid, ff, factor, factor_pt, factor_ufo, fmap, factor_index, fmap_index) return fid, factor, factor_pt.view('c'), factor_ufo, fmap, edges @numba.jit(nopython=True, cache=True, nogil=True) def get_variables_helper(row, vid, variable, var_pt, var_ufo, index): """TODO.""" for v in row: vid[index] = v[0] variable[index]["isEvidence"] = v[1] variable[index]["initialValue"] = v[2] variable[index]["dataType"] = v[3] variable[index]["cardinality"] = v[4] var_pt[index] = v[5] var_ufo[index] = (v[6] == 117) # 117 == 'u' index += 1 return index def get_variables(cur, views, sql_filter="True"): """TODO.""" op_template = "SELECT {cmd} FROM {table_name} " \ "WHERE {filter}" # Obtain count of variables # TODO: is there a way to do this together with next part? # (one query per table) n = 0 for v in views: op = op_template.format(cmd="COUNT(*)", table_name=v, filter=sql_filter) cur.execute(op) n += cur.fetchone()[0] # number of factors in this table vid = np.zeros(n, np.int64) variable = np.zeros(n, Variable) var_pt = np.zeros(n, np.int8) # partition type var_ufo = np.zeros(n, np.bool) # unary factor opt index = 0 for v in views: cmd = ("vid, variable_role, init_value, variable_type, cardinality, " + "ASCII(LEFT(partition_key, 1)), " + # partition key "ASCII(SUBSTR(partition_key, 2, 1))") # unary factor opt op = op_template.format(cmd=cmd, table_name=v, filter=sql_filter) cur.execute(op) while True: row = cur.fetchmany(10000) if row == []: break index = get_variables_helper(row, vid, variable, var_pt, var_ufo, index) perm = vid.argsort() vid = vid[perm] variable = variable[perm] var_pt = var_pt[perm] var_ufo = var_ufo[perm] return vid, variable, var_pt.view('c'), var_ufo @numba.jit(nopython=True, cache=True, nogil=True) def get_weights_helper(row, weight): """TODO.""" for w in row: wid = w[0] weight[wid]["isFixed"] = w[1] weight[wid]["initialValue"] = w[2] def get_weights(cur, views, sql_filter="True"): """TODO.""" op_template = "SELECT {cmd} FROM {table_name} " \ "WHERE {filter}" # Obtain count of variables # TODO: is there a way to do this together with next part? # (one query per table) n = 0 for v in views: op = op_template.format(cmd="COUNT(*)", table_name=v, filter=sql_filter) cur.execute(op) n += cur.fetchone()[0] # number of factors in this table weight = np.zeros(n, Weight) index = 0 for v in views: op = op_template.format(cmd="*", table_name=v, filter=sql_filter) cur.execute(op) while True: row = cur.fetchmany(10000) if row == []: break index = get_weights_helper(row, weight) return weight def read_factor_views(cur, views, sql_filter="True"): """TODO.""" data = [] op_template = "SELECT * FROM {table_name} " \ "WHERE {filter}" for v in views: # Find factor function ff = -1 for (key, value) in numbskull.inference.FACTORS.items(): if ("_" + key + "_").lower() in v: assert(ff == -1) ff = value # TODO: assume istrue if not found? # assert(ff != -1) if ff == -1: ff = numbskull.inference.FUNC_ISTRUE op = op_template.format(table_name=v, filter=sql_filter) cur.execute(op) while True: temp = cur.fetchmany() if temp == []: break for i in temp: data.append((i[:-3], i[-3], i[-2], i[-1], ff)) return data # views for variables and factors def read_views(cur, views, sql_filter="True"): """TODO.""" data = [] op_template = "SELECT * FROM {table_name} " \ "WHERE {filter}" for v in views: op = op_template.format(table_name=v, filter=sql_filter) cur.execute(op) while True: temp = cur.fetchmany() if temp == []: break data += temp return data @numba.jit(nopython=True, cache=True, nogil=True) def inverse_map(forward, index): """TODO.""" # TODO: should probably also check that nothing is duplicated? ans = np.searchsorted(forward, index) assert(forward[ans] == index) return ans @numba.jit(nopython=True, cache=True, nogil=True) def variable_exists(forward, index): """TODO.""" ans = np.searchsorted(forward, index) return ans < len(forward) and forward[ans] == index @numba.jit(nopython=True, cache=True, nogil=True) def remap_fmap(fmap, vid): """TODO.""" for i in range(len(fmap)): fmap[i]["vid"] = inverse_map(vid, fmap[i]["vid"]) @numba.jit(nopython=True, cache=True, nogil=True) def remap_ufo(ufo, vid): """TODO.""" for i in range(len(ufo)): ufo[i]["vid"] = inverse_map(vid, ufo[i]["vid"]) def get_fg_data(cur, filt, ismaster): """TODO.""" print("***GET_FG_DATA***") # Get names of views time1 = time.time() (factor_view, variable_view, weight_view) = get_views(cur) time2 = time.time() print("get_views: " + str(time2 - time1)) # Load factors (fid, factor, factor_pt, factor_ufo, fmap, edges) = \ get_factors(cur, factor_view, filt) time1 = time2 time2 = time.time() print("get_factors: " + str(time2 - time1)) # Load variables (vid, variable, var_pt, var_ufo) = get_variables(cur, variable_view, filt) time1 = time2 time2 = time.time() print("get_variables: " + str(time2 - time1)) print("factor: ", factor) print("factor_pt: ", factor_pt) print("factor_ufo: ", factor_ufo) print("fmap: ", fmap) print("edges: ", edges) print("vid: ", vid) print("variable: ", variable) print("var_pt: ", var_pt) print("var_ufo: ", var_ufo) print() (fmap, vid, variable, var_pt, var_ufo, pf_list, pf_var_begin, pf_ufo_var_list) = \ process_pf(factor, factor_pt, factor_ufo, fmap, fid, vid, variable, var_pt, var_ufo, ismaster) time1 = time2 time2 = time.time() print("process_pf: " + str(time2 - time1)) print("factor: ", factor) print("factor_pt: ", factor_pt) print("factor_ufo: ", factor_ufo) print("fmap: ", fmap) print("edges: ", edges) print("vid: ", vid) print("variable: ", variable) print("var_pt: ", var_pt) print("var_ufo: ", var_ufo) print() print("pf_list: ", pf_list) print("pf_var_begin: ", pf_var_begin) print("pf_ufo_var_list: ", pf_ufo_var_list) (factor, factor_pt, factor_ufo, fmap, vid, variable, var_pt, var_ufo, ufo_send, ufo_recv, ufo_start, ufo_map, ufo_var_begin) = \ process_ufo(factor, factor_pt, factor_ufo, fmap, vid, variable, var_pt, var_ufo, pf_ufo_var_list, pf_var_begin) time1 = time2 time2 = time.time() print("process_ufo: " + str(time2 - time1)) print("factor: ", factor) print("factor_pt: ", factor_pt) print("factor_ufo: ", factor_ufo) print("fmap: ", fmap) print("edges: ", edges) print("vid: ", vid) print("variable: ", variable) print("var_pt: ", var_pt) print("var_ufo: ", var_ufo) print() # remap factor to variable remap_fmap(fmap, vid) time1 = time2 time2 = time.time() print("remap fmap: " + str(time2 - time1)) # Load weight info # No filter since weights do not have a partition id weight = get_weights(cur, weight_view) time1 = time2 time2 = time.time() print("get_weight: " + str(time2 - time1)) domain_mask = np.full(len(variable), True, np.bool) time1 = time2 time2 = time.time() print("allocate domain_mask: " + str(time2 - time1)) (factors_to_skip, pf_to_send) = \ compute_skipped_factors(factor, factor_pt.view(np.int8), factor_ufo, fmap, fid, vid, variable, var_pt.view(np.int8), var_ufo, pf_list, ismaster) return (weight, variable, factor, fmap, domain_mask, edges, var_pt, factor_pt, var_ufo, factor_ufo, fid, vid, ufo_send, ufo_recv, ufo_start, ufo_map, ufo_var_begin, pf_list, factors_to_skip, pf_to_send) @numba.jit(nopython=True, cache=True, nogil=True) def compute_skipped_factors(factor, factor_pt, factor_ufo, fmap, fid, vid, variable, var_pt, var_ufo, pf_list, ismaster): n_pf_send = 0 n_pf_skip = 0 # n_ufo_skip = 0 # UFO's never have to be skipped? # minion will not generate extra factors for UFO # and if master has an extra factor, it will always actually be # using the ufo (and may have partial factors for minions) for i in range(len(factor)): if factor_pt[i] == 71: # "G" if not factor_ufo[i] or ismaster: n_pf_send += 1 if factor_ufo[i] and ismaster: n_pf_skip += 1 elif factor_pt[i] == 68: if not ismaster and not factor_ufo[i]: n_pf_send += 1 # factors_to_skip = np.empty(n_pf_send + n_ufo_skip, np.int64) factors_to_skip = np.empty(n_pf_skip, np.int64) pf_to_send = np.empty(n_pf_send, np.int64) n_pf_send = 0 n_pf_skip = 0 for i in range(len(factor)): if factor_pt[i] == 71: # "G" if not factor_ufo[i] or ismaster: pf_to_send[n_pf_send] = i n_pf_send += 1 if factor_ufo[i] and ismaster: factors_to_skip[n_pf_skip] = i n_pf_skip += 1 elif factor_pt[i] == 68: if not ismaster and not factor_ufo[i]: pf_to_send[n_pf_send] = i n_pf_send += 1 return factors_to_skip, pf_to_send def serialize(array): """TODO.""" return array.tolist() # try: # return array.tobytes().decode('utf16').encode('utf8') # except: # return array.tobytes() def deserialize(array, dtype): """TODO.""" try: return np.array(array, dtype=dtype) except: # For UnaryFactorOpt and other complicated dtypes # Salt converts list of tuples into list of lists, # which breaks the original version return np.array([tuple(i) for i in array], dtype=dtype) # try: # ar = array.decode('utf8').encode('utf16').lstrip(codecs.BOM_UTF16) # return np.fromstring(ar, dtype=dtype) # except: # return np.fromstring(array, dtype=dtype) def find_connected_components(conn, cur): """TODO.""" # Open a cursor to perform database operations (factor_view, variable_view, weight_view) = get_views(cur) (factor, factor_pt, factor_ufo, fmap, edges) = \ get_factors(cur, factor_view) hyperedges = [] for f in factor: newedge = [] for i in range(f['ftv_offset'], f['ftv_offset'] + f['arity']): newedge.append(fmap[i]['vid']) hyperedges.append(newedge) G = nx.Graph() for e in hyperedges: for i in range(len(e)): for j in range(i + 1, len(e)): newedge = (e[i], e[j]) G.add_edge(*e) cc = nx.connected_components(G) try: cur.execute("CREATE TABLE variable_to_cc " "(dd_id bigint, cc_id bigint);") except: conn.rollback() cur.execute("TRUNCATE variable_to_cc;") rows = [] cc_id = 0 for c in cc: for node in c: rows.append([node, cc_id]) cc_id += 1 dataText = ','.join(cur.mogrify('(%s,%s)', row) for row in rows) try: cur.execute("INSERT INTO variable_to_cc VALUES " + dataText) if cc_id > 1: cur.execute("CREATE INDEX dd_cc ON variable_to_cc (dd_id);") conn.commit() G.clear() return True except: conn.rollback() G.clear() return False def find_metis_parts(conn, cur, parts): """TODO""" # Open a cursor to perform database operations (factor_view, variable_view, weight_view) = get_views(cur) # Obtain graph (factor, factor_pt, factor_ufo, fmap, edges) = \ get_factors(cur, factor_view) hyperedges = [] for f in factor: newedge = [] for i in range(f['ftv_offset'], f['ftv_offset'] + f['arity']): newedge.append(fmap[i]['vid']) hyperedges.append(newedge) G = nx.Graph() for e in hyperedges: for i in range(len(e)): for j in range(i + 1, len(e)): newedge = (e[i], e[j]) G.add_edge(*e) # Run metis to obtain partitioning metis_options = \ nxmetis.MetisOptions(objtype=nxmetis.enums.MetisObjType.vol) (cost, partitions) = \ nxmetis.partition(G, parts, options=metis_options) print(80 * "*") print(cost) print(partitions) print(80 * "*") # Find nodes to master master_variables = set([]) # Get all edges cut_edges = set(G.edges()) for p in partitions: H = G.subgraph(p) cut_edges -= set(H.edges()) print(H.edges()) H.clear() for edge in cut_edges: n1, n2 = edge master_variables.add(n1) master_variables.add(n2) # Store parition in DB try: cur.execute("CREATE TABLE variable_to_cc(dd_id bigint, cc_id bigint);") except: conn.rollback() cur.execute("TRUNCATE variable_to_cc;") rows = [] # Output master variables for node in master_variables: rows.append([node, -1]) print(master_variables) # Output minion variables pid = 0 for p in partitions: only_master = True for node in p: if node not in master_variables: only_master = False rows.append([node, pid]) if not only_master: pid += 1 print(rows) dataText = ','.join(cur.mogrify('(%s,%s)', row) for row in rows) print(dataText) try: cur.execute("INSERT INTO variable_to_cc VALUES " + dataText) if pid > 1: cur.execute("CREATE INDEX dd_cc ON variable_to_cc (dd_id);") conn.commit() G.clear() return True except: conn.rollback() G.clear() return False @numba.jit(cache=True, nogil=True) def remove_noop(factor, factor_pt, factor_ufo, fmap): factor_des, fmap_des = \ remove_noop_helper(factor, factor_pt, factor_ufo, fmap) factor = np.resize(factor, factor_des) factor_pt = np.resize(factor_pt, factor_des) factor_ufo = np.resize(factor_ufo, factor_des) fmap = np.resize(fmap, fmap_des) return factor, factor_pt, factor_ufo, fmap, fmap_des @numba.jit(nopython=True, cache=True, nogil=True) def remove_noop_helper(factor, factor_pt, factor_ufo, fmap): factor_des = 0 fmap_des = 0 ftv_offset = 0 for factor_src in range(len(factor)): if factor[factor_src]["factorFunction"] == \ numbskull.inference.FUNC_NOOP: continue factor[factor_des] = factor[factor_src] factor_pt[factor_des] = factor_pt[factor_src] factor_ufo[factor_des] = factor_ufo[factor_src] factor[factor_des]["ftv_offset"] = ftv_offset ftv_offset += factor[factor_des]["arity"] for i in range(factor[factor_src]["arity"]): fmap[fmap_des + i] = fmap[factor[factor_src]["ftv_offset"] + i] fmap_des += factor[factor_des]["arity"] factor_des += 1 return factor_des, fmap_des @numba.jit(nopython=True, cache=True, nogil=True) def find_ufo(factor, factor_pt, factor_ufo, fmap, vid, variable, var_pt, var_ufo, pf_ufo_var_list, pf_var_begin): # Count number of factors with UFO n_ufo_recv = 0 # Number of ufo to receive n_ufo_send = 0 # Number of ufo to send for i in range(len(factor)): if factor_ufo[i]: exist = 0 # number of vars manifested on this machine for j in range(factor[i]["arity"]): vid1 = fmap[factor[i]["ftv_offset"] + j]["vid"] local_vid = loose_inverse_map(vid, vid1) exist += ((local_vid != -1) and (var_pt[local_vid] != 80 or var_ufo[local_vid])) # (local_vid != -1) specifies that this var must be on this # machine to exist # (var_pt[local_vid] != 80 or var_ufo[local_vid]) # part 1 (check against 80) mean that this is not a # partial factor var # part 2 is a check that it replaced an ufo var # Must have exactly one or all vars on this machine assert(exist == 1 or exist == factor[i]["arity"]) if exist == 1: # One var is missing # This machine gets the UFO n_ufo_recv += 1 else: # All vars are present # This machine computes the UFO n_ufo_send += 1 ufo_recv = np.empty(n_ufo_recv, dtype=UnaryFactorOpt) ufo_send = np.empty(n_ufo_send, dtype=UnaryFactorOpt) n_ufo_recv = 0 n_ufo_send = 0 for i in range(len(factor)): if factor_ufo[i]: exist = 0 # number of vars manifested on this machine var = -1 is_pf = False for j in range(factor[i]["arity"]): vid1 = fmap[factor[i]["ftv_offset"] + j]["vid"] local_vid = loose_inverse_map(vid, vid1) ex = (local_vid != -1) and (var_pt[local_vid] != 80 or var_ufo[local_vid]) exist += ex if ex: var = vid1 if (local_vid != -1) and var_pt[local_vid] == 80: is_pf = True if exist == 1: # Only one var on this machine # This machine receives the ufo ufo_recv[n_ufo_recv]['vid'] = var ufo_recv[n_ufo_recv]['weightId'] = factor[i]['weightId'] n_ufo_recv += 1 if not is_pf: factor[i]["factorFunction"] = numbskull.inference.FUNC_NOOP else: # Both on this machine # Check which is actually the UFO var = -1 for j in range(factor[i]["arity"]): vid1 = fmap[factor[i]["ftv_offset"] + j]["vid"] local_vid = inverse_map(vid, vid1) is_ufo = var_ufo[local_vid] if is_ufo: assert(var == -1) # This must be the first seen is_pf = (var_pt[local_vid] == 80) # check if this is a partial factor if is_pf: var = pf_ufo_var_list[local_vid - pf_var_begin] else: var = vid1 # if var == -1: # # no ufo var found yet # # this factor must have been partial factored # # last var has to be the partial factor var # vid1 = fmap[factor[i]["ftv_offset"] + factor[i]["arity"] - 1]["vid"] # local_vid = inverse_map(vid, vid1) # is_pf = (var_pt[local_vid] == 80) # check that this is a partial factor # assert(is_pf) # var = pf_ufo_var_list[local_vid - pf_var_begin] ufo_send[n_ufo_send]['vid'] = var ufo_send[n_ufo_send]['weightId'] = factor[i]['weightId'] n_ufo_send += 1 return ufo_send, ufo_recv @numba.jit(nopython=True, cache=True, nogil=True) def extra_space(vid, variable, ufo_recv): m_factors = len(ufo_recv) m_fmap = 0 m_var = 0 for ufo in ufo_recv: card = variable[ufo["vid"]]["cardinality"] m_fmap += card m_var += card - 1 return m_factors, m_fmap, m_var @numba.jit(nopython=True, cache=True, nogil=True) def set_ufo(factor, factor_pt, factor_ufo, fmap, vid, variable, var_pt, var_ufo, ufo_recv, n_factors, n_fmap, n_var, vid_max): # vid_max should just be np.iinfo(vid.dtype).max, but numba doesn't support iinfo ftv_offset = 0 if len(factor) > 0: ftv_offset = factor[-1]["ftv_offset"] + factor[-1]["arity"] n_vid = vid_max - len(vid) + n_var + 1 for (i, ufo) in enumerate(ufo_recv): card = variable[ufo["vid"]]["cardinality"] factor[n_factors + i]["factorFunction"] = numbskull.inference.FUNC_UFO factor[n_factors + i]["weightId"] = ufo["weightId"] factor[n_factors + i]["featureValue"] = 1 # TODO: feature value may not match factor[n_factors + i]["arity"] = card factor[n_factors + i]["ftv_offset"] = ftv_offset factor_pt[n_factors + i] = 85 # TODO: Does this actually matter at all? factor_ufo[n_factors + i] = True fmap[n_fmap]["vid"] = vid[ufo["vid"]] n_fmap += 1 for j in range(card - 1): fmap[n_fmap]["vid"] = n_vid vid[n_var] = n_vid variable[n_var]["isEvidence"] = 4 variable[n_var]["initialValue"] variable[n_var]["dataType"] variable[n_var]["cardinality"] variable[n_var]["vtf_offset"] var_pt[n_var] = 85 # TODO: Does this actually matter at all? var_ufo[n_var] = True n_vid += 1 n_fmap += 1 n_var += 1 ftv_offset += card @numba.jit(cache=True, nogil=True) def add_ufo(factor, factor_pt, factor_ufo, fmap, vid, variable, var_pt, var_ufo, ufo_recv, pf_var_begin): n_factors = len(factor) n_fmap = len(fmap) n_var = len(variable) m_factors, m_fmap, m_var = extra_space(vid, variable, ufo_recv) factor = np.resize(factor, n_factors + m_factors) factor_pt = np.resize(factor_pt, n_factors + m_factors) factor_ufo = np.resize(factor_ufo, n_factors + m_factors) fmap = np.resize(fmap, n_fmap + m_fmap) vid = np.resize(vid, n_var + m_var) variable = np.resize(variable, n_var + m_var) var_pt = np.resize(var_pt, n_var + m_var) var_ufo = np.resize(var_ufo, n_var + m_var) # need to decrease vids of pf's to not overlap with ufo fake vid decrease_vid(fmap, vid, m_var, pf_var_begin, n_var) set_ufo(factor, factor_pt, factor_ufo, fmap, vid, variable, var_pt, var_ufo, ufo_recv, n_factors, n_fmap, n_var, np.iinfo(vid.dtype).max) return factor, factor_pt, factor_ufo, fmap, vid, variable, var_pt, var_ufo, n_var @numba.jit(nopython=True, cache=True, nogil=True) def decrease_vid(fmap, vid, amount, begin, end): if begin < end: for i in range(len(fmap)): if vid[begin] <= fmap[i]["vid"] <= vid[end - 1]: fmap[i]["vid"] -= amount vid[begin:end] -= amount @numba.jit(nopython=True, cache=True, nogil=True) def ufo_equal(u, v): """Numba-compatible equality check.""" # TODO: is there a way to do this in a safer way? # (in the sense that this changes if def of UFO changes) return u["vid"] == v["vid"] and \ u["weightId"] == v["weightId"] @numba.jit(nopython=True, cache=True, nogil=True) def ufo_less(u, v): """Numba-compatible equality check.""" # TODO: is there a way to do this in a safer way? if u["vid"] != v["vid"]: return u["vid"] < v["vid"] return u["weightId"] < v["weightId"] @numba.jit(nopython=True, cache=True, nogil=True) def ufo_check_sorted(a): """Checks if a numpy-array of ufo's is sorted.""" for i in range(1, len(a)): assert(ufo_less(a[i - 1], a[i])) @numba.jit(nopython=True, cache=True, nogil=True) def ufo_searchsorted(a, b): begin = -1 end = len(a) while begin + 1 < end: mid = (begin + end) / 2 if ufo_less(a[mid], b): begin = mid else: end = mid return end @numba.jit(nopython=True, cache=True, nogil=True) def compute_ufo_map(factor, factor_pt, factor_ufo, fmap, vid, variable, var_pt, var_ufo, ufo_send, pf_ufo_var_list, pf_var_begin): ufo_length = np.zeros(ufo_send.size, np.int64) ufo_start = np.zeros(ufo_send.size + 1, np.int64) ufo = np.zeros(1, dtype=UnaryFactorOpt) if len(ufo_send) == 0: return ufo_length, np.zeros(0, np.int64) for i in range(len(factor)): if factor_ufo[i]: exist = 0 # number of vars manifested on this machine var = -1 for j in range(factor[i]["arity"]): vid1 = fmap[factor[i]["ftv_offset"] + j]["vid"] local_vid = inverse_map(vid, vid1) ex = (local_vid != -1) and (var_pt[local_vid] != 80 or var_ufo[local_vid]) exist += ex if ex and var_ufo[local_vid]: # This variable is on this machine and is ufo assert(var == -1) # This must be the first seen is_pf = (var_pt[local_vid] == 80) # check if this is a partial factor if is_pf: var = pf_ufo_var_list[local_vid - pf_var_begin] else: var = local_vid # if var == -1: # # no ufo var found yet # # this factor must have been partial factored # # last var has to be the partial factor var # vid1 = fmap[factor[i]["ftv_offset"] + factor[i]["arity"] - 1]["vid"] # local_vid = inverse_map(vid, vid1) # is_pf = (var_pt[local_vid] == 80) # check that this is a partial factor # assert(is_pf) # var = pf_ufo_var_list[local_vid - pf_var_begin] # Must have exactly one or all vars on this machine assert(exist == 1 or exist == factor[i]["arity"]) if exist == 1: # Only one var on this machine # This machine receives the ufo # No computation will be done pass else: # All vars on this machine # Will be computing weightId = factor[i]['weightId'] # TODO: is there a way to not create a list of length 1 ufo[0]["vid"] = var ufo[0]["weightId"] = weightId j = ufo_searchsorted(ufo_send, ufo[0]) assert(ufo_equal(ufo_send[j], ufo[0])) ufo_length[j] += 1 for i in range(ufo_send.size): ufo_start[i + 1] = ufo_start[i] + ufo_length[i] ufo_length[i] = 0 ufo_map = np.zeros(ufo_start[-1], np.int64) for i in range(len(factor)): if factor_ufo[i]: exist = 0 var = -1 for j in range(factor[i]["arity"]): vid1 = fmap[factor[i]["ftv_offset"] + j]["vid"] local_vid = inverse_map(vid, vid1) ex = (local_vid != -1) and (var_pt[local_vid] != 80 or var_ufo[local_vid]) exist += ex if ex and var_ufo[local_vid]: # This variable is on this machine and is ufo assert(var == -1) # This must be the first seen is_pf = (var_pt[local_vid] == 80) # check if this is a partial factor if is_pf: var = pf_ufo_var_list[local_vid - pf_var_begin] else: var = local_vid # if var == -1: # # no ufo var found yet # # this factor must have been partial factored # # last var has to be the partial factor var # vid1 = fmap[factor[i]["ftv_offset"] + factor[i]["arity"] - 1]["vid"] # local_vid = inverse_map(vid, vid1) # is_pf = (var_pt[local_vid] == 80) # check that this is a partial factor # assert(is_pf) # var = pf_ufo_var_list[local_vid - pf_var_begin] # Must have exactly one or all vars on this machine assert(exist == 1 or exist == factor[i]["arity"]) if exist == factor[i]["arity"]: weightId = factor[i]['weightId'] ufo[0]["vid"] = var ufo[0]["weightId"] = weightId j = ufo_searchsorted(ufo_send, ufo[0]) assert(ufo_equal(ufo_send[j], ufo[0])) ufo_map[ufo_start[j] + ufo_length[j]] = i ufo_length[j] += 1 return ufo_start, ufo_map @numba.jit(nopython=True, cache=True, nogil=True) def compute_ufo_values(factor, fmap, var_value, variable, var_ufo, ufo_send, ufo_start, ufo_map, ufo): var_copy = 0 ufo_index = 0 for i in range(len(ufo)): ufo[i] = 0 for i in range(len(ufo_send)): var_samp = ufo_send[i]["vid"] for j in range(ufo_start[i], ufo_start[i + 1]): factor_id = ufo_map[j] value = 0 f0 = numbskull.inference.eval_factor(factor_id, var_samp, value, var_copy, variable, factor, fmap, var_value) for value in range(1, variable[var_samp]["cardinality"]): ufo[ufo_index + value - 1] += numbskull.inference.eval_factor(factor_id, var_samp, value, var_copy, variable, factor, fmap, var_value) - f0 ufo_index += variable[var_samp]["cardinality"] - 1 @numba.jit(nopython=True, cache=True, nogil=True) def clear_ufo_values(var_value, ufo_var_begin): for i in range(ufo_var_begin, len(var_value)): var_value[i] = 0 @numba.jit(nopython=True, cache=True, nogil=True) def apply_ufo_values(factor, fmap, var_value, ufo_map, ufo_values): for i in range(len(ufo_map)): assert(factor[i]["arity"] == 2) var_value[fmap[factor[i]["ftv_offset"] + 1]["vid"]] += ufo_values[i] @numba.jit(cache=True, nogil=True) def process_pf(factor, factor_pt, factor_ufo, fmap, fid, vid, variable, var_pt, var_ufo, ismaster): """Process partial factor.""" pf_var_begin = len(vid) pf_list = find_pf(factor, factor_pt.view(np.int8), factor_ufo, fmap, fid, vid, variable, var_pt.view(np.int8), var_ufo) vid = np.resize(vid, len(vid) + len(pf_list)) variable = np.resize(variable, len(variable) + len(pf_list)) var_pt = np.resize(var_pt, len(var_pt) + len(pf_list)) var_ufo = np.resize(var_ufo, len(var_ufo) + len(pf_list)) pf_ufo_var_list = np.zeros(pf_list.size, np.int64) # This is a list of one of the vars that was deleted from a partial factor # In this case that this factor is also UFO'd, then this var is the UFO var ftv_offset = set_pf(factor, factor_pt.view(np.int8), factor_ufo, fmap, fid, vid, variable, var_pt.view(np.int8), var_ufo, pf_var_begin, np.iinfo(vid.dtype).max, ismaster, pf_ufo_var_list) fmap = np.resize(fmap, ftv_offset) return fmap, vid, variable, var_pt.view('c'), var_ufo, pf_list, pf_var_begin, pf_ufo_var_list @numba.jit(nopython=True, cache=True, nogil=True) def find_pf(factor, factor_pt, factor_ufo, fmap, fid, vid, variable, var_pt, var_ufo): count = 0 for i in range(len(factor)): if ((factor_pt[i] == 68 and not factor_ufo[i]) # "D" or factor_pt[i] == 71): # "G" count += 1 pf_list = np.zeros(count, np.int64) count = 0 for i in range(len(factor)): if ((factor_pt[i] == 68 and not factor_ufo[i]) # "D" or factor_pt[i] == 71): # "G" pf_list[count] = i count += 1 return pf_list @numba.jit(nopython=True, cache=True, nogil=True) def set_pf(factor, factor_pt, factor_ufo, fmap, fid, vid, variable, var_pt, var_ufo, pf_var_begin, vid_max, ismaster, pf_ufo_var_list): # vid_max should just be np.iinfo(vid.dtype).max, but numba doesn't support iinfo # Setting fake variables for i in range(pf_var_begin, len(vid)): vid[i] = vid_max - len(vid) + i # I think this can have a +1, but it doesn't really matter variable[i]["isEvidence"] = 4 variable[i]["initialValue"] variable[i]["dataType"] variable[i]["cardinality"] variable[i]["vtf_offset"] var_pt[i] = 80 # TODO: Does this actually matter at all? var_ufo[i] = False ftv_offset = 0 ftv_offset_src = 0 count = 0 for i in range(len(factor)): factor[i]["ftv_offset"] = ftv_offset if ((factor_pt[i] == 68 and not factor_ufo[i]) # "D" or factor_pt[i] == 71): # "G" # Is a partial factor arity = 0 var_was_ufo = False for j in range(factor[i]["arity"]): # Minions are loading Au vars right now for PPB with UFO # Because PPB partitions on factors, the var never appears on minion # but information about the minion needs to exist to figure out how # to handle the UFO local_vid = loose_inverse_map(vid, fmap[ftv_offset_src + j]["vid"]) if local_vid != -1 and (ismaster or var_pt[local_vid] != 65): # "A" # This variable is owned by this machine fmap[ftv_offset + arity] = fmap[ftv_offset_src + j] arity += 1 else: # This variable is being deleted # Could be a ufo var # save for later use pf_ufo_var_list[count] = fmap[ftv_offset_src + j]["vid"] var_was_ufo = var_ufo[local_vid] # In Cu, it is possible for this factor (which is a partial factor) # to receive some (or all) of its non-owned vars from another machine # this part swaps everything to the back back = ftv_offset + factor[i]["arity"] - 1 front = ftv_offset while front < back: local_vid = loose_inverse_map(vid, fmap[front]["vid"]) if local_vid != -1 and \ ((ismaster and var_pt[local_vid] == 68) # "D" or (not ismaster and var_pt[local_vid] == 66)): # "B" # This variable exists on this machine # but is not owned by the machine # need to ship the var from another machine fmap[front], fmap[back] = fmap[back], fmap[front] back -= 1 front += 1 if arity < factor[i]["arity"]: # there is enough space allocated for extra vid # this means that something was deleted # so a partial factor will be received fmap[ftv_offset + arity]["vid"] = vid[pf_var_begin + count] var_ufo[pf_var_begin + count] = var_was_ufo count += 1 arity += 1 ftv_offset += arity ftv_offset_src += factor[i]["arity"] factor[i]["arity"] = arity else: for j in range(factor[i]["arity"]): local_vid = loose_inverse_map(vid, fmap[ftv_offset_src + j]["vid"]) if local_vid != -1 and (ismaster or var_pt[local_vid] != 65): # "A" fmap[ftv_offset + j] = fmap[ftv_offset_src + j] ftv_offset += factor[i]["arity"] ftv_offset_src += factor[i]["arity"] return ftv_offset @numba.jit(cache=True, nogil=True) def process_ufo(factor, factor_pt, factor_ufo, fmap, vid, variable, var_pt, var_ufo, pf_ufo_var_list, pf_var_begin): time1 = time.time() ufo_send, ufo_recv = find_ufo(factor, factor_pt.view(np.int8), factor_ufo, fmap, vid, variable, var_pt.view(np.int8), var_ufo, pf_ufo_var_list, pf_var_begin) time2 = time.time() print("find_ufo took ", time2 - time1) factor, factor_pt, factor_ufo, fmap, edges = remove_noop(factor, factor_pt.view(np.int8), factor_ufo, fmap) time1 = time2 time2 = time.time() print("remove_noop took ", time2 - time1) # compute unique ufo_send = np.unique(ufo_send) ufo_recv = np.unique(ufo_recv) ufo_send.sort() ufo_recv.sort() # Checking that numpy sort uses the same comparison ufo_check_sorted(ufo_send) ufo_check_sorted(ufo_recv) remap_ufo(ufo_send, vid) remap_ufo(ufo_recv, vid) apply_loose_inverse_map(vid, pf_ufo_var_list) time1 = time2 time2 = time.time() print("unique + sort took ", time2 - time1) # add fake factors vars for UFO factor, factor_pt, factor_ufo, fmap, vid, variable, var_pt, var_ufo, ufo_var_begin = add_ufo(factor, factor_pt.view(np.int8), factor_ufo, fmap, vid, variable, var_pt.view(np.int8), var_ufo, ufo_recv, pf_var_begin) time1 = time2 time2 = time.time() print("add_ufo took ", time2 - time1) # Provide a fast method of finding factors that need to be evaluated for UFO ufo_start, ufo_map = compute_ufo_map(factor, factor_pt, factor_ufo, fmap, vid, variable, var_pt, var_ufo, ufo_send, pf_ufo_var_list, pf_var_begin) time1 = time2 time2 = time.time() print("compute_ufo_map took ", time2 - time1) return factor, factor_pt.view('c'), factor_ufo, fmap, vid, variable, var_pt.view('c'), var_ufo, ufo_send, ufo_recv, ufo_start, ufo_map, ufo_var_begin @numba.jit(nopython=True, cache=True, nogil=True) def compute_map_master(vid, var_pt): l = 0 for i in range(len(var_pt)): if var_pt[i] == 66: # 66 = "B" l += 1 map_to_minions = np.zeros(l, np.int64) l = 0 for i in range(len(var_pt)): if var_pt[i] == 66: # 66 = "B" map_to_minions[l] = vid[i] l += 1 return map_to_minions @numba.jit(nopython=True, cache=True, nogil=True) def compute_map_minion(vid, var_pt): l = 0 for i in range(len(var_pt)): if var_pt[i] == 68: # 68 = "D" l += 1 map_to_master = np.zeros(l, np.int64) l = 0 for i in range(len(var_pt)): if var_pt[i] == 68: # 68 = "D" map_to_master[l] = vid[i] l += 1 return map_to_master @numba.jit(nopython=True, cache=True, nogil=True) def apply_inverse_map(vid, array): for i in range(len(array)): array[i] = inverse_map(vid, array[i]) @numba.jit(nopython=True, cache=True, nogil=True) def loose_inverse_map(forward, index): """TODO.""" ans = np.searchsorted(forward, index) if ans >= len(forward) or forward[ans] != index: return -1 return ans @numba.jit(nopython=True, cache=True, nogil=True) def apply_loose_inverse_map(vid, array): for i in range(len(array)): array[i] = loose_inverse_map(vid, array[i]) @numba.jit(nopython=True, cache=True, nogil=True) def compute_vars_to_send(map, var_to_send, var_value): # TODO: handle multiple copies for (i, m) in enumerate(map): var_to_send[i] = var_value[m] @numba.jit(nopython=True, cache=True, nogil=True) def process_received_vars(map, var_recv, var_value): for (i, v) in enumerate(var_recv): m = map[i] var_value[m] = v @numba.jit(nopython=True, cache=True, nogil=True) def ufo_to_factor(ufo, ufo_map, n_factors): index = np.empty(ufo.size, np.int64) for i in range(len(ufo)): j = ufo_searchsorted(ufo_map, ufo[i]) assert(ufo_equal(ufo_map[j], ufo[i])) index[i] = n_factors - len(ufo_map) + j return index @numba.jit(nopython=True, cache=True, nogil=True) def compute_pf_values(factor, fmap, var_value, variable, pf_list, pf): for i in range(len(pf_list)): assert(factor[pf_list[i]]["factorFunction"] in [numbskull.inference.FUNC_OR, numbskull.inference.FUNC_AND, numbskull.inference.FUNC_ISTRUE]) # TODO: this only works if no vars are shipped from other machine # There might be more than one var at the end that has to be skipped factor[pf_list[i]]["arity"] -= 1 factor_id = pf_list[i] var_samp = -1 value = -1 var_copy = 0 pf[i] = numbskull.inference.eval_factor(factor_id, var_samp, value, var_copy, variable, factor, fmap, var_value) factor[pf_list[i]]["arity"] += 1 @numba.jit(nopython=True, cache=True, nogil=True) def apply_pf_values(factor, fmap, var_value, variable, pf_list, pf_values): for i in range(len(pf_list)): if pf_list[i] != -1: fac = factor[pf_list[i]] var_value[fmap[fac["ftv_offset"] + fac["arity"] - 1]["vid"]] = pf_values[i]
numbskull-master
salt/src/messages.py
"""TODO.""" # Import python libs from __future__ import absolute_import import logging import sys import os import time import pydoc import urlparse import traceback # libs for server import msgpack import socket import errno import signal # Import salt libs import salt.utils.event import salt.utils import salt.payload import salt.exceptions import salt.transport.frame import salt.ext.six as six from salt.exceptions import SaltReqTimeoutError, SaltClientError from salt.utils.process import default_signals, \ SignalHandlingMultiprocessingProcess # Import Tornado Libs import tornado import tornado.tcpserver import tornado.gen import tornado.concurrent import tornado.tcpclient import tornado.netutil import tornado.ioloop LOOP_CLASS = tornado.ioloop.IOLoop USE_LOAD_BALANCER = False if USE_LOAD_BALANCER: import threading import multiprocessing import errno import tornado.util from salt.utils.process import SignalHandlingMultiprocessingProcess # pylint: disable=import-error,no-name-in-module if six.PY2: import urlparse else: import urllib.parse as urlparse # pylint: enable=import-error,no-name-in-module log = logging.getLogger(__name__) def _set_tcp_keepalive(sock, opts): """Ensure that TCP keepalives are set for the socket.""" if hasattr(socket, 'SO_KEEPALIVE'): if opts.get('tcp_keepalive', False): sock.setsockopt(socket.SOL_SOCKET, socket.SO_KEEPALIVE, 1) if hasattr(socket, 'SOL_TCP'): if hasattr(socket, 'TCP_KEEPIDLE'): tcp_keepalive_idle = opts.get('tcp_keepalive_idle', -1) if tcp_keepalive_idle > 0: sock.setsockopt( socket.SOL_TCP, socket.TCP_KEEPIDLE, int(tcp_keepalive_idle)) if hasattr(socket, 'TCP_KEEPCNT'): tcp_keepalive_cnt = opts.get('tcp_keepalive_cnt', -1) if tcp_keepalive_cnt > 0: sock.setsockopt( socket.SOL_TCP, socket.TCP_KEEPCNT, int(tcp_keepalive_cnt)) if hasattr(socket, 'TCP_KEEPINTVL'): tcp_keepalive_intvl = opts.get('tcp_keepalive_intvl', -1) if tcp_keepalive_intvl > 0: sock.setsockopt( socket.SOL_TCP, socket.TCP_KEEPINTVL, int(tcp_keepalive_intvl)) if hasattr(socket, 'SIO_KEEPALIVE_VALS'): # Windows doesn't support TCP_KEEPIDLE, TCP_KEEPCNT, nor # TCP_KEEPINTVL. Instead, it has its own proprietary # SIO_KEEPALIVE_VALS. tcp_keepalive_idle = opts.get('tcp_keepalive_idle', -1) tcp_keepalive_intvl = opts.get('tcp_keepalive_intvl', -1) # Windows doesn't support changing something equivalent to # TCP_KEEPCNT. if tcp_keepalive_idle > 0 or tcp_keepalive_intvl > 0: # Windows defaults may be found by using the link below. # Search for 'KeepAliveTime' and 'KeepAliveInterval'. # https://technet.microsoft.com/en-us/library/bb726981.aspx#EDAA # If one value is set and the other isn't, we still need # to send both values to SIO_KEEPALIVE_VALS and they both # need to be valid. So in that case, use the Windows # default. if tcp_keepalive_idle <= 0: tcp_keepalive_idle = 7200 if tcp_keepalive_intvl <= 0: tcp_keepalive_intvl = 1 # The values expected are in milliseconds, so multiply by # 1000. sock.ioctl(socket.SIO_KEEPALIVE_VALS, ( 1, int(tcp_keepalive_idle * 1000), int(tcp_keepalive_intvl * 1000))) else: sock.setsockopt(socket.SOL_SOCKET, socket.SO_KEEPALIVE, 0) if USE_LOAD_BALANCER: class LoadBalancerServer(SignalHandlingMultiprocessingProcess): """ This is a TCP server. Raw TCP server which runs in its own process and will listen for incoming connections. Each incoming connection will be sent via multiprocessing queue to the workers. Since the queue is shared amongst workers, only one worker will handle a given connection. """ # TODO: opts! # Based on default used in tornado.netutil.bind_sockets() backlog = 128 def __init__(self, opts, socket_queue, log_queue=None): """TODO.""" super(LoadBalancerServer, self).__init__(log_queue=log_queue) self.opts = opts self.socket_queue = socket_queue self._socket = None # __setstate__ and __getstate__ are only used on Windows. # We do this so that __init__ will be invoked on Windows in the child # process so that a register_after_fork() equivalent will work on # Windows. def __setstate__(self, state): """TODO.""" self._is_child = True self.__init__( state['opts'], state['socket_queue'], log_queue=state['log_queue'] ) def __getstate__(self): """TODO.""" return {'opts': self.opts, 'socket_queue': self.socket_queue, 'log_queue': self.log_queue} def close(self): """TODO.""" if self._socket is not None: self._socket.shutdown(socket.SHUT_RDWR) self._socket.close() self._socket = None def __del__(self): """TODO.""" self.close() def run(self): """Start the load balancer.""" self._socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self._socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) _set_tcp_keepalive(self._socket, self.opts) self._socket.setblocking(1) self._socket.bind((self.opts['inf_learn_interface'], int(self.opts['inf_learn_port']))) self._socket.listen(self.backlog) while True: try: # Wait for a connection to occur since the socket is # blocking. connection, address = self._socket.accept() # Wait for a free slot to be available to put # the connection into. # Sockets are picklable on Windows in Python 3. self.socket_queue.put((connection, address), True, None) except socket.error as e: # ECONNABORTED indicates that there was a connection # but it was closed while still in the accept queue. # (observed on FreeBSD). if tornado.util.errno_from_exception(e) == \ errno.ECONNABORTED: continue raise class InfLearnMessageServer(tornado.tcpserver.TCPServer, object): """ This is a raw TCP server. Raw TCP server which will receive all of the TCP streams and re-assemble messages that are sent through to us """ def __init__(self, message_handler, logger, *args, **kwargs): """TODO.""" super(InfLearnMessageServer, self).__init__(*args, **kwargs) self.clients = [] self.message_handler = message_handler self.log = logger self.log.debug('Inside InfLearnMessageServer') @tornado.gen.coroutine def handle_stream(self, stream, address): """Handle incoming streams and add messages to the incoming queue.""" self.log.debug('InfLearn client {0} connected'.format(address)) self.clients.append((stream, address)) unpacker = msgpack.Unpacker() try: while True: wire_bytes = yield stream.read_bytes(4096, partial=True) unpacker.feed(wire_bytes) for framed_msg in unpacker: if six.PY3: framed_msg = salt.transport.frame.decode_embedded_strs( framed_msg ) header = framed_msg['head'] self.io_loop.spawn_callback(self.message_handler, stream, header, framed_msg['body']) except tornado.iostream.StreamClosedError: self.log.debug('InfLearn client disconnected {0}'.format(address)) self.clients.remove((stream, address)) except Exception as e: self.log.debug('Other minion-side InfLearn ' 'exception: {0}'.format(e)) self.clients.remove((stream, address)) stream.close() def shutdown(self): """Shutdown the whole server.""" for item in self.clients: client, address = item client.close() self.clients.remove(item) if USE_LOAD_BALANCER: class LoadBalancerWorker(InfLearnMessageServer): """ This receives TCP connections. This will receive TCP connections from 'LoadBalancerServer' via a multiprocessing queue. Since the queue is shared amongst workers, only one worker will handle a given connection. """ def __init__(self, socket_queue, message_handler, logger, *args, **kwargs): """TODO.""" super(LoadBalancerWorker, self).__init__( message_handler, logger, *args, **kwargs) self.socket_queue = socket_queue t = threading.Thread(target=self.socket_queue_thread) t.start() def socket_queue_thread(self): """TODO.""" try: while True: client_socket, address = self.socket_queue.get(True, None) # 'self.io_loop' initialized in super class # 'tornado.tcpserver.TCPServer'. # 'self._handle_connection' defined in same super class. self.io_loop.spawn_callback( self._handle_connection, client_socket, address) except (KeyboardInterrupt, SystemExit): pass class TCPReqServerMinionChannel(object): """TODO.""" backlog = 5 def __init__(self, logger, opts, salt): """TODO.""" self.log = logger self._opts = opts self._socket = None self._salt = salt @property def socket(self): """TODO.""" return self._socket def close(self): """TODO.""" if self._socket is not None: try: self._socket.shutdown(socket.SHUT_RDWR) except socket.error as exc: if exc.errno == errno.ENOTCONN: # We may try to shutdown a socket which is already # disconnected. # Ignore this condition and continue. pass else: raise exc self._socket.close() self._socket = None def __del__(self): """TODO.""" self.close() def pre_fork(self, process_manager): """Pre-fork we need to initialize socket.""" if USE_LOAD_BALANCER: self.socket_queue = multiprocessing.Queue() process_manager.add_process( LoadBalancerServer, args=(self._opts, self.socket_queue) ) else: self._socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self._socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) _set_tcp_keepalive(self._socket, self._opts) self._socket.setblocking(0) self._socket.bind((self._opts['inf_learn_interface'], int(self._opts['inf_learn_port']))) def post_fork(self, payload_handler, io_loop): """ TODO. After forking we need to create all of the local sockets to listen to the router payload_handler: function to call with your payloads """ self.payload_handler = payload_handler self.io_loop = io_loop self.serial = salt.payload.Serial(self._opts) if USE_LOAD_BALANCER: self.req_server = LoadBalancerWorker( self.socket_queue, self.handle_message, self.log, io_loop=self.io_loop ) else: self.req_server = InfLearnMessageServer(self.handle_message, self.log, io_loop=self.io_loop) self.req_server.add_socket(self._socket) self._socket.listen(self.backlog) def fire_local_event(self, payload): """TODO.""" try: tag = payload['load']['tag'] data = payload['load']['data'] self._salt['event.fire'](data, tag) return True except: return False def handle_message(self, stream, header, payload): """Handle incoming messages from underylying tcp streams.""" if self.fire_local_event(payload): try: stream.write(salt.transport.frame.frame_msg('OK', header=header)) except: raise tornado.gen.Return() else: try: stream.write(salt.transport.frame.frame_msg('ERROR', header=header)) except: raise tornado.gen.Return() class InfLearnMinionServer(object): """TODO.""" def __init__(self, opts, logger, salt, log_queue=None): """TODO.""" self.opts = opts self.log_queue = log_queue self.log = logger self.salt = salt def __bind(self): """TODO.""" if self.log_queue is not None: salt.log.setup.set_multiprocessing_logging_queue(self.log_queue) salt.log.setup.setup_multiprocessing_logging(self.log_queue) dfn = os.path.join(self.opts['cachedir'], '.dfn') if os.path.isfile(dfn): try: if salt.utils.is_windows() and not os.access(dfn, os.W_OK): # Cannot delete read-only files on Windows. os.chmod(dfn, stat.S_IRUSR | stat.S_IWUSR) os.remove(dfn) except os.error: pass self.process_manager = salt.utils.process.ProcessManager( name='ReqMinionInfLearnServer_PM' ) req_channels = [] tcp_only = True chan = TCPReqServerMinionChannel(self.log, self.opts, self.salt) chan.pre_fork(self.process_manager) req_channels.append(chan) # Reset signals to default ones before adding processes to the process # manager. We don't want the processes being started to inherit those # signal handlers kwargs = {} with default_signals(signal.SIGINT, signal.SIGTERM): for ind in range(int(self.opts['inf_learn_threads'])): name = 'InfLearnWorker-{0}'.format(ind) self.process_manager.add_process(InfLearnWorker, args=(self.opts, req_channels, name, self.log), kwargs=kwargs, name=name) self.process_manager.run() def run(self): """Start up the InfLearnServer.""" self.__bind() def destroy(self, signum=signal.SIGTERM): """TODO.""" if hasattr(self, 'process_manager'): self.process_manager.stop_restarting() self.process_manager.send_signal_to_processes(signum) self.process_manager.kill_children() def __del__(self): """TODO.""" self.destroy() class InfLearnWorker(SignalHandlingMultiprocessingProcess): """ Manages backend operations. The worker multiprocess instance to manage the backend operations for the minion during inference and learning. """ def __init__(self, opts, req_channels, name, logger, **kwargs): """ Create a salt minion inference learning worker process. :param dict opts: The salt options :rtype: InfLearngWorker :return: Inference Learning worker """ kwargs['name'] = name SignalHandlingMultiprocessingProcess.__init__(self, **kwargs) self.opts = opts self.log = logger self.req_channels = req_channels self.k_mtime = 0 # We need __setstate__ and __getstate__ to also pickle 'SMaster.secrets'. # Otherwise, 'SMaster.secrets' won't be copied over to the spawned process # on Windows since spawning processes on Windows requires pickling. # These methods are only used when pickling so will not be used on # non-Windows platforms. def __setstate__(self, state): """TODO.""" self._is_child = True SignalHandlingMultiprocessingProcess.__init__( self, log_queue=state['log_queue'] ) self.opts = state['opts'] self.req_channels = state['req_channels'] self.k_mtime = state['k_mtime'] def __getstate__(self): """TODO.""" return {'opts': self.opts, 'req_channels': self.req_channels, 'k_mtime': self.k_mtime, 'log_queue': self.log_queue} def _handle_signals(self, signum, sigframe): """TODO.""" for channel in getattr(self, 'req_channels', ()): channel.close() super(InfLearnWorker, self)._handle_signals(signum, sigframe) def __bind(self): """Bind to the local port.""" self.io_loop = LOOP_CLASS() self.io_loop.make_current() for req_channel in self.req_channels: req_channel.post_fork(self._handle_payload, io_loop=self.io_loop) self.log.debug('Inside worker ' + self.name) try: self.io_loop.start() except (KeyboardInterrupt, SystemExit): # Tornado knows what to do pass @tornado.gen.coroutine def _handle_payload(self, payload): """ TODO. The _handle_payload method is the key method used to figure out what needs to be done with communication to the server """ raise tornado.gen.Return(payload) def run(self): """Start a Minion Inference Learning Worker.""" salt.utils.appendproctitle(self.name) self.__bind() #################### # ENGINE MAIN LOOP # #################### def start(): """TODO.""" log.debug('Starting Numbskull Minion InfLearn Server') ilServer = InfLearnMinionServer(__opts__, log, __salt__) ilServer.run()
numbskull-master
salt/src/numbskull_minion_server.py
"""TODO.""" from __future__ import absolute_import from salt.utils.async import SyncWrapper from salt.transport.client import AsyncChannel from salt.transport.tcp import SaltMessageClient import msgpack import socket import weakref import logging # Import Salt Libs import salt.payload import salt.exceptions import salt.ext.six as six from salt.exceptions import SaltReqTimeoutError, SaltClientError # Import Tornado Libs import tornado import tornado.ioloop import tornado.gen # pylint: disable=import-error,no-name-in-module if six.PY2: import urlparse else: import urllib.parse as urlparse # pylint: enable=import-error,no-name-in-module log = logging.getLogger(__name__) class InfLearn_Channel(object): """TODO.""" @staticmethod def factory(opts, **kwargs): """TODO.""" return InfLearn_ReqChannel.factory(opts, **kwargs) class InfLearn_ReqChannel(object): """Factory to create Sync communication channels to the ReqServer.""" @staticmethod def factory(opts, **kwargs): """TODO.""" # All Sync interfaces are just wrappers around the Async ones sync = SyncWrapper(InfLearn_AsyncChannel.factory, (opts,), kwargs) return sync def send(self, load, tries=3, timeout=60, raw=False): """Send "load" to the master.""" raise NotImplementedError() class InfLearn_AsyncChannel(AsyncChannel): """Factory to create Async comm. channels to the ReqServer.""" @classmethod def factory(cls, opts, **kwargs): """TODO.""" if not cls._resolver_configured: AsyncChannel._config_resolver() return InfLearn_AsyncTCPChannel(opts, **kwargs) def send(self, load, tries=3, timeout=60, raw=False): """Send 'load' to the minion.""" raise NotImplementedError() class InfLearn_AsyncTCPChannel(InfLearn_ReqChannel): """ Encapsulate sending routines to tcp. Note: this class returns a singleton """ # This class is only a singleton per minion/master pair # mapping of io_loop -> {key -> channel} instance_map = weakref.WeakKeyDictionary() def __new__(cls, opts, **kwargs): """Only create one instance of channel per __key().""" # do we have any mapping for this io_loop io_loop = kwargs.get('io_loop') or tornado.ioloop.IOLoop.current() if io_loop not in cls.instance_map: cls.instance_map[io_loop] = weakref.WeakValueDictionary() loop_instance_map = cls.instance_map[io_loop] key = cls.__key(opts, **kwargs) if key not in loop_instance_map: log.debug('Initializing new InfLearn_AsyncTCPChannel ' 'for {0}'.format(key)) # we need to make a local variable for this, as we are going to # store it in a WeakValueDictionary-- which will remove the item # if no one references it-- this forces a reference while we # return to the caller new_obj = object.__new__(cls) new_obj.__singleton_init__(opts, **kwargs) loop_instance_map[key] = new_obj else: log.debug('Re-using AsyncTCPReqChannel for {0}'.format(key)) return loop_instance_map[key] @classmethod def __key(cls, opts, **kwargs): if 'minion_uri' in kwargs: opts['minion_uri'] = kwargs['minion_uri'] return (opts['master_uri']) # must be empty for singletons, since __init__ will *always* be called def __init__(self, opts, **kwargs): """TODO.""" pass # an init for the singleton instance to call def __singleton_init__(self, opts, **kwargs): """TODO.""" self.opts = dict(opts) self.serial = salt.payload.Serial(self.opts) self.io_loop = kwargs.get('io_loop') or tornado.ioloop.IOLoop.current() resolver = kwargs.get('resolver') parse = urlparse.urlparse(self.opts['minion_uri']) host, port = parse.netloc.rsplit(':', 1) self.minion_addr = (host, int(port)) self._closing = False self.message_client = SaltMessageClient( self.opts, host, int(port), io_loop=self.io_loop, resolver=resolver) def close(self): """TODO.""" if self._closing: return self._closing = True self.message_client.close() def __del__(self): """TODO.""" self.close() def _package_load(self, load): """TODO.""" return {'load': load} @tornado.gen.coroutine def _transfer(self, load, tries=3, timeout=60): """TODO.""" ret = yield self.message_client.send(self._package_load(load), timeout=timeout) raise tornado.gen.Return(ret) @tornado.gen.coroutine def send(self, load, tries=3, timeout=60, raw=False): """ Send a request. Returns a future which will complete when we send the message """ try: ret = yield self._transfer(load, tries=tries, timeout=timeout) except tornado.iostream.StreamClosedError: # Convert to 'SaltClientError' so that clients can handle this # exception more appropriately. raise SaltClientError('Connection to minion lost') raise tornado.gen.Return(ret)
numbskull-master
salt/src/numbskull_master_client.py
"""TODO.""" # Import python libs from __future__ import print_function, absolute_import import json import logging import sys import os import time import argparse import numpy as np import codecs import pydoc import psycopg2 import urlparse import numpy as np import traceback # Import salt libs import salt.utils.event # Import numbskull m_opts = salt.config.minion_config(os.environ['SALT_CONFIG_DIR'] + '/minion') sys.path.append(m_opts['extension_modules'] + '/modules') import numbskull from numbskull import numbskull from numbskull.numbskulltypes import * import messages log = logging.getLogger(__name__) class NumbskullMinion: """TODO.""" def __init__(self): """TODO.""" self.partitionId = None self.args = None self.ns = None def parse_args(self, argv): """TODO.""" if argv is None: argv = sys.argv[1:] parser = argparse.ArgumentParser( description="Runs a Gibbs sampler", epilog="") # Add version to parser parser.add_argument("--version", action='version', version="%(prog)s 0.0", help="print version number") # Add execution arguments to parser for arg, opts in numbskull.arguments: parser.add_argument(*arg, **opts) # Add flags to parser for arg, opts in numbskull.flags: parser.add_argument(*arg, **opts) # Initialize NumbSkull # args = parser.parse_args(argv) return args def init_numbskull(self, argv): """TODO.""" self.args = self.parse_args(argv) self.ns = numbskull.NumbSkull(**vars(self.args)) def loadFG(self, data): """TODO.""" try: weight = np.fromstring(data['weight'], dtype=Weight) variable = np.fromstring(data['variable'], dtype=Variable) factor = messages.deserialize(data['factor'], Factor) fmap = np.fromstring(data['fmap'], dtype=FactorToVar) vmap = np.fromstring(data['vmap'], dtype=VarToFactor) factor_index = np.fromstring(data['factor_index'], dtype=np.int64) except: return 'FAILED LOADING', None try: self.ns.loadFactorGraphRaw(weight, variable, factor, fmap, vmap, factor_index) fg = self.ns.factorGraphs[-1] meta = {} meta['weights'] = fg.weight.shape[0] meta['variables'] = fg.variable.shape[0] meta['factors'] = fg.factor.shape[0] return 'SUCCESS', meta except: return 'FAILED', None def learning(self, fgID): """TODO.""" try: self.ns.learning(fgID, False) weights = self.ns.factorGraphs[fgID].weight_value return 'SUCCESS', messages.serialize(weights) except: return 'FAILED', None def inference(self, fgID=0): """TODO.""" try: self.ns.inference(fgID, False) marginals = self.ns.factorGraphs[fgID].marginals return 'SUCCESS', messages.serialize(marginals) except: return 'FAILED', None def start(): """TODO.""" log.debug('Initializing Numbskull Minion Engine') ns_minion = NumbskullMinion() event_bus = salt.utils.event.get_event( 'minion', transport=__opts__['transport'], opts=__opts__, sock_dir=__opts__['sock_dir'], listen=True) log.debug('Starting Numbskull Minion Engine') partition_id = -1 for evdata in event_bus.iter_events(full=True): loop_begin = time.time() tag, data = evdata['tag'], evdata['data'] if tag == messages.ASSIGN_ID: partition_id = data['id'] print("Assigned partition id #", partition_id) # TODO: respond to master elif tag == messages.INIT_NS: try: ns_minion.init_numbskull(data['argv']) # Respond OK to master data = {'status': 'OK'} __salt__['event.send'](messages.INIT_NS_RES, data) except: # Respond FAIL to master data = {'status': 'FAIL'} __salt__['event.send'](messages.INIT_NS_RES, data) elif tag == messages.LOAD_FG: # Connect to an existing database # http://stackoverflow.com/questions/15634092/connect-to-an-uri-in-postgres db_url = data["db_url"] url = urlparse.urlparse(db_url) username = url.username password = url.password database = url.path[1:] hostname = url.hostname port = url.port conn = psycopg2.connect( database=database, user=username, password=password, host=hostname, port=port ) # Open a cursor to perform database operations cur = conn.cursor() # TODO: the Au filter should only be for variables # For partition scheme PPB with UFO, # variables are missing from the minion # and the minion needs to know the cardinality minion_filter = " partition_key similar to 'Au' " \ "or partition_key similar to 'B(|u)' " \ "or partition_key similar to 'C(|u){partition_id}' " \ "or partition_key similar to 'D(|u){partition_id}' " \ "or partition_key similar to 'E(|u){partition_id}' " \ "or partition_key similar to 'F(|u){partition_id}' " \ "or partition_key similar to 'G(|um|uw|umw){partition_id}' " \ "or partition_key similar to 'H(|u)' " minion_filter = minion_filter.format(partition_id=partition_id) (weight, variable, factor, fmap, domain_mask, edges, var_pt, factor_pt, var_ufo, factor_ufo, fid, vid, ufo_send, ufo_recv, ufo_start, ufo_map, ufo_var_begin, pf_list, factors_to_skip, pf_to_send) = \ messages.get_fg_data(cur, minion_filter, False) # Close communication with the database cur.close() conn.close() variable[var_pt == "B"]["isEvidence"] = 4 # not owned var type ns_minion.ns.loadFactorGraph(weight, variable, factor, fmap, domain_mask, edges, 1, 1, factors_to_skip) # Respond to master data = {} __salt__['event.send'](messages.LOAD_FG_RES, data) log.debug("DONE LOADFG") elif tag == messages.SYNC_MAPPING: # receive map from master map_from_master = messages.deserialize(data["map"], np.int64) pf_from_master = messages.deserialize(data["pf"], np.int64) messages.apply_loose_inverse_map(fid, pf_from_master) # compute map map_to_master = messages.compute_map_minion(vid, var_pt.view(np.int8)) ufo_map_to_master = ufo_send.copy() ufo_map_to_master["vid"] = vid[ufo_map_to_master["vid"]] data = {"pid": partition_id, "map": messages.serialize(map_to_master), "pf": messages.serialize(fid[pf_to_send]), "ufo": messages.serialize(ufo_map_to_master)} __salt__['event.send'](messages.SYNC_MAPPING_RES, data) messages.apply_inverse_map(vid, map_from_master) messages.apply_inverse_map(vid, map_to_master) variables_to_master = np.zeros(map_to_master.size, np.int64) var_evid_to_master = np.zeros(map_to_master.size, np.int64) pf_to_master = np.zeros(pf_to_send.size, np.int64) pf_evid_to_master = np.zeros(pf_to_send.size, np.int64) m_factors, m_fmap, m_var = messages.extra_space(vid, variable, ufo_send) ufo_to_master = np.empty(m_var, np.int64) ufo_evid_to_master = np.empty(m_var, np.int64) log.debug("DONE SYNC_MAPPING") elif tag == messages.INFER or tag == messages.LEARN: variables_from_master = \ messages.deserialize(data["values"], np.int64) messages.process_received_vars(map_from_master, variables_from_master, ns_minion.ns.factorGraphs[-1].var_value[0]) messages.apply_pf_values(factor, fmap, ns_minion.ns.factorGraphs[-1].var_value[0], variable, pf_from_master, messages.deserialize(data["pf"], np.int64)) if tag == messages.LEARN: var_evid_from_master = \ messages.deserialize(data["v_evid"], np.int64) messages.process_received_vars(map_from_master, var_evid_from_master, ns_minion.ns.factorGraphs[-1].var_value_evid[0]) messages.apply_pf_values(factor, fmap, ns_minion.ns.factorGraphs[-1].var_value_evid[0], variable, pf_from_master, messages.deserialize(data["pf_evid"], np.int64)) ns_minion.ns.factorGraphs[-1].weight_value[0] = \ messages.deserialize(data["weight"], np.float64) w0 = ns_minion.ns.factorGraphs[-1].weight_value[0] begin = time.time() fgID = 0 if tag == messages.LEARN: ns_minion.ns.learning(fgID, False) else: ns_minion.ns.inference(fgID, False) end = time.time() log.debug("INFERENCE LOOP TOOK " + str(end - begin)) # Respond to master messages.compute_vars_to_send(map_to_master, variables_to_master, ns_minion.ns.factorGraphs[-1].var_value[0]) messages.compute_pf_values(factor, fmap, ns_minion.ns.factorGraphs[-1].var_value, variable, pf_to_send, pf_to_master) messages.compute_ufo_values(factor, fmap, ns_minion.ns.factorGraphs[-1].var_value, variable, var_ufo, ufo_send, ufo_start, ufo_map, ufo_to_master) print(80 * "*") print(ns_minion.ns.factorGraphs[-1].var_value) print(ufo_to_master) if tag == messages.INFER: data = {"pid": partition_id, "values": messages.serialize(variables_to_master), "pf": messages.serialize(pf_to_master), "ufo": messages.serialize(ufo_to_master)} __salt__['event.send'](messages.INFER_RES, data) else: messages.compute_vars_to_send(map_to_master, var_evid_to_master, ns_minion.ns.factorGraphs[-1].var_value_evid[0]) messages.compute_pf_values(factor, fmap, ns_minion.ns.factorGraphs[-1].var_value_evid, variable, pf_to_send, pf_evid_to_master) messages.compute_ufo_values(factor, fmap, ns_minion.ns.factorGraphs[-1].var_value_evid, variable, var_ufo, ufo_send, ufo_start, ufo_map, ufo_evid_to_master) dweight = ns_minion.ns.factorGraphs[-1].weight_value[0] - w0 data = {"pid": partition_id, "values": messages.serialize(variables_to_master), "v_evid": messages.serialize(var_evid_to_master), "pf": messages.serialize(pf_to_master), "pf_evid": messages.serialize(pf_evid_to_master), "ufo": messages.serialize(ufo_to_master), "ufo_evid": messages.serialize(ufo_to_master), "dw": messages.serialize(dweight)} __salt__['event.send'](messages.LEARN_RES, data) loop_end = time.time() print("*****" + tag + " took " + str(loop_end - loop_begin) + "*****")
numbskull-master
salt/src/numbskull_minion.py
#!/usr/bin/env python # -*- coding: utf-8 -*- """TODO.""" # Import python libs from __future__ import print_function, absolute_import import json import logging import os.path import numbskull from numbskull import numbskull from numbskull.numbskulltypes import * import argparse import sys import subprocess import numpy as np import codecs from multiprocessing import Pool from functools import partial # Import salt libs import salt.utils.event import salt.client import salt.runner import salt.config import messages import time import psycopg2 import urlparse import numbskull_master_client from numbskull_master_client import InfLearn_Channel master_conf_dir = \ os.path.join(os.environ['SALT_CONFIG_DIR'], 'master') salt_opts = salt.config.client_config(master_conf_dir) def send_to_minion(data, tag, tgt): """TODO.""" salt_opts['minion_uri'] = 'tcp://{ip}:{port}'.format( ip=salt.utils.ip_bracket(tgt), port=7341 # TODO, no fallback ) load = {'id': 'master_inflearn', 'tag': tag, 'data': data} channel = InfLearn_Channel.factory(salt_opts) channel.send(load) return True class NumbskullMaster: """TODO.""" def __init__(self, application_dir, machines, partition_method, partition_scheme, use_ufo, partition_type, argv): """TODO.""" # Salt conf init self.master_conf_dir = master_conf_dir self.salt_opts = salt_opts # Salt clients init self.local_client = salt.client.LocalClient(self.master_conf_dir) self.runner = salt.runner.RunnerClient(self.salt_opts) # Salt event bus - used to communicate with minions self.event_bus = salt.utils.event.get_event( 'master', sock_dir=self.salt_opts['sock_dir'], transport=self.salt_opts['transport'], opts=self.salt_opts) # Numbskull-related variables self.argv = argv self.args = self.parse_args(argv) self.ns = None self.application_dir = application_dir self.num_minions = machines self.partition_scheme = partition_scheme self.use_ufo = use_ufo self.partition_type = partition_type # Partitioning variables self.partition_method = partition_method # DB variables self.db_url = None self.conn = None def initialize(self): """TODO.""" time1 = time.time() self.assign_partition_id() time2 = time.time() print("assign_partition_id took " + str(time2 - time1)) self.prep_numbskull() time3 = time.time() print("prep_numbskull took " + str(time3 - time2)) # Open DB connection self.open_db_connection() # Open a cursor to perform database operations cur = self.conn.cursor() out = self.prepare_db(cur) time4 = time.time() print("prepare_db took " + str(time4 - time3)) self.load_all_fg(self.db_url, cur) time5 = time.time() print("load_all_fg took " + str(time5 - time4)) # Close communication with the database cur.close() self.conn.close() self.sync_mapping() time6 = time.time() print("sync_mapping took " + str(time6 - time5)) # The code for learning and inference share a lot of code (computing # variable map, handling partial factors) so they are in one func). # This is just a trivial wrapper function. def learning(self, epochs=1): """TODO.""" return self.inference(epochs, True) def inference(self, epochs=1, learn=False): """TODO.""" mode = "Learning" if learn else "Inference" print("BEGINNING " + mode.upper()) begin = time.time() variables_to_minions = np.zeros(self.map_to_minions.size, np.int64) var_evid_to_minions = np.zeros(self.map_to_minions.size, np.int64) pf_to_minions = np.zeros(self.pf_to_send.size, np.int64) pf_evid_to_minions = np.zeros(self.pf_to_send.size, np.int64) print("***LENGTHS***") print("Variables to minions: ", len(variables_to_minions)) print("Partial Factors to minions: ", len(pf_to_minions)) print("Variables from Minions: ", sum([len(i) for i in self.map_from_minion])) print("Partial Factors from Minions: ", sum([len(i) for i in self.pf_from_minion])) print("UFO from Minions: ", sum([len(i) for i in self.ufo_from_minion])) print("*************") for i in range(epochs): print(mode + " loop " + str(i)) # sample own variables begin1 = time.time() fgID = 0 if learn: self.ns.learning(fgID, False) else: self.ns.inference(fgID, False) end1 = time.time() print(mode + " LOOP TOOK " + str(end1 - begin1)) # gather values to ship to minions # TODO: handle multiple copies messages.compute_vars_to_send(self.map_to_minions, variables_to_minions, self.ns.factorGraphs[-1].var_value[0]) messages.compute_pf_values(self.factor, self.fmap, self.ns.factorGraphs[-1].var_value, self.variable, self.pf_to_send, pf_to_minions) if learn: messages.compute_vars_to_send(self.map_to_minions, var_evid_to_minions, self.ns.factorGraphs[-1].var_value_evid[0]) messages.compute_pf_values(self.factor, self.fmap, self.ns.factorGraphs[-1].var_value_evid, self.variable, self.pf_to_send, pf_evid_to_minions) # Tell minions to sample beginTest = time.time() if learn: tag = messages.LEARN # TODO: which copy of weight to use when multiple weight_value = self.ns.factorGraphs[-1].weight_value[0] data = {"values": messages.serialize(variables_to_minions), "v_evid": messages.serialize(var_evid_to_minions), "pf": messages.serialize(pf_to_minions), "pf_evid": messages.serialize(pf_evid_to_minions), "weight": messages.serialize(weight_value)} else: tag = messages.INFER data = {"values": messages.serialize(variables_to_minions), "pf": messages.serialize(pf_to_minions)} if self.num_minions != 0: pub_func = partial(send_to_minion, data, tag) self.clientPool.imap(pub_func, self.minion2host.values()) endTest = time.time() print("EVENT FIRE LOOP TOOK " + str(endTest - beginTest)) messages.clear_ufo_values(self.ns.factorGraphs[-1].var_value[0], self.ufo_var_begin) if learn: messages.clear_ufo_values(self.ns.factorGraphs[-1].var_value_evid[0], self.ufo_var_begin) resp = 0 while resp < len(self.minions): tag = messages.LEARN_RES if learn else messages.INFER_RES evdata = self.event_bus.get_event(wait=5, tag=tag, full=True) if evdata: resp += 1 data = evdata['data']['data'] pid = data["pid"] # Process variables from minions vfmin = messages.deserialize(data["values"], np.int64) messages.process_received_vars(self.map_from_minion[pid], vfmin, self.ns.factorGraphs[-1].var_value[0]) messages.apply_pf_values(self.factor, self.fmap, self.ns.factorGraphs[-1].var_value[0], self.variable, self.pf_from_minion[pid], messages.deserialize(data["pf"], np.int64)) messages.apply_ufo_values(self.factor, self.fmap, self.ns.factorGraphs[-1].var_value[0], self.ufo_from_minion[pid], messages.deserialize(data["ufo"], np.int64)) if learn: vfmin = messages.deserialize(data["v_evid"], np.int64) messages.process_received_vars(self.map_from_minion[pid], vfmin, self.ns.factorGraphs[-1].var_value_evid[0]) messages.apply_pf_values(self.factor, self.fmap, self.ns.factorGraphs[-1].var_value[0], self.variable, self.pf_from_minion[pid], messages.deserialize(data["pf_evid"], np.int64)) messages.apply_ufo_values(self.factor, self.fmap, self.ns.factorGraphs[-1].var_value_evid[0], self.ufo_from_minion[pid], messages.deserialize(data["ufo_evid"], np.int64)) self.ns.factorGraphs[-1].weight_value[0] += \ messages.deserialize(data["dw"], np.float64) end1 = time.time() print("FULL " + mode + " LOOP TOOK " + str(end1 - begin1) + "\n") # TODO: get and return marginals # TODO: switch to proper probs end = time.time() print(mode + " TOOK", end - begin) return end - begin ############## # Init Phase # ############## def assign_partition_id(self): """TODO.""" while True: self.minions = self.get_minions_status()['up'] if len(self.minions) >= self.num_minions: break print("Waiting for minions (" + str(len(self.minions)) + " / " + str(self.num_minions) + ")") time.sleep(1) print("Minions obtained") self.minions = self.minions[:self.num_minions] for (i, name) in enumerate(self.minions): data = {'id': i} newEvent = self.local_client.cmd([name], 'event.fire', [data, messages.ASSIGN_ID], expr_form='list') # TODO: listen for responses # Obtain minions ip addresses self.minion2host = \ self.local_client.cmd(self.minions, 'grains.get', ['localhost'], expr_form='list', timeout=None) # Initialize multiprocessing pool for publishing if self.num_minions != 0: self.clientPool = Pool(self.num_minions) def prep_numbskull(self): """TODO.""" # Setup local instance self.prep_local_numbskull() # Setup minion instances success = self.prep_minions_numbskull() if not success: print('ERROR: Numbksull not loaded') def open_db_connection(self): # obtain database url from file with open(self.application_dir + "/db.url", "r") as f: self.db_url = f.read().strip() # Connect to an existing database # http://stackoverflow.com/questions/15634092/connect-to-an-uri-in-postgres url = urlparse.urlparse(self.db_url) username = url.username password = url.password database = url.path[1:] hostname = url.hostname port = url.port self.conn = psycopg2.connect( database=database, user=username, password=password, host=hostname, port=port ) def run_deepdive(self): # Call deepdive to perform everything up to grounding # TODO: check that deepdive ran successfully cmd = ["deepdive", "do", "all"] subprocess.call(cmd, cwd=self.application_dir) def run_ddlog(self): # semantic partitioning if self.partition_method == 'sp': cmd = ["ddlog", "semantic-partition", "app.ddlog", self.partition_scheme, "--workers", str(self.num_minions), "--cost-model", "simple.costmodel.txt"] if self.use_ufo: cmd.append("-u") partition_json = subprocess.check_output(cmd, cwd=self.application_dir) partition = json.loads(partition_json) return partition # Metis or connected components based partitioning elif self.partition_method == 'metis' or self.partition_method == 'cc': cmd = ["ddlog", "cc-partition", "app.ddlog", "--workers", str(self.num_minions)] partition_json = subprocess.check_output(cmd, cwd=self.application_dir) partition = json.loads(partition_json) return partition # Default else: print('ERROR: Invalid partition method!') return False def get_fg(self, cur): """TODO""" master_filter = " partition_key similar to 'A(|u)' " \ "or partition_key similar to 'B(|u)' " \ "or partition_key similar to 'D(|u)%' " \ "or partition_key similar to 'F(|u)%' " \ "or partition_key similar to 'G(|u)%' " \ "or partition_key similar to 'H(|u)%' " get_fg_data_begin = time.time() (self.weight, self.variable, self.factor, self.fmap, domain_mask, edges, self.var_pt, self.factor_pt, self.var_ufo, self.factor_ufo, self.fid, self.vid, self.ufo_send, self.ufo_recv, self.ufo_start, self.ufo_map, self.ufo_var_begin, self.pf_list, factors_to_skip, self.pf_to_send) = \ messages.get_fg_data(cur, master_filter, True) get_fg_data_end = time.time() print("Done running get_fg_data: " + str(get_fg_data_end - get_fg_data_begin)) self.variable[self.var_pt == "D"]["isEvidence"] = 4 # not owned var type self.ns.loadFactorGraph(self.weight, self.variable, self.factor, self.fmap, domain_mask, edges, 1, 1, factors_to_skip) def prepare_db(self, cur): """TODO.""" # Run deepdive to perform candidate extraction self.run_deepdive() # Obtain partition information partition = self.run_ddlog() if not partition: return False # Define functions that sql needs for op in partition[0]["sql_prefix"]: cur.execute(op) # Make the changes to the database persistent self.conn.commit() # Check if partioning is metis or cc if self.partition_method == 'metis': messages.find_metis_parts(self.conn, cur, self.num_minions) p0 = partition[0] elif self.partition_method == 'cc': messages.find_connected_components(self.conn, cur) p0 = partition[0] elif self.partition_method == 'sp': begin = time.time() # Select which partitioning scheme to use if self.partition_type is not None: # Type was prespecified for p in partition: if p["partition_types"] == self.partition_type: p0 = p else: # Evaluating costs print(80 * "*") optimal_cost = None for p in partition: cur.execute(p["sql_to_cost"]) cost = cur.fetchone()[0] print('Partition scheme "' + p["partition_types"] + '" has cost ' + str(cost)) if optimal_cost is None or cost < optimal_cost: optimal_cost = cost p0 = p print(80 * "*") # p0 is partition to use for k in p0.keys(): print(k) print(p0[k]) print() # This adds partition information to the database print("Running sql_to_apply") sql_to_apply_begin = time.time() for op in p0["sql_to_apply"]: cur.execute(op) # Make the changes to the database persistent self.conn.commit() sql_to_apply_end = time.time() print("Done running sql_to_apply: " + str(sql_to_apply_end - sql_to_apply_begin)) def load_all_fg(self, db_url, cur): """TODO.""" tag = messages.LOAD_FG data = {"db_url": db_url} newEvent = self.local_client.cmd(self.minions, 'event.fire', [data, tag], expr_form='list') begin = time.time() # Grab factor graph data self.get_fg(cur) end = time.time() print("get_fg", end - begin) print("WAITING FOR MINION LOAD_FG_RES") begin = time.time() resp = 0 while resp < len(self.minions): evdata = self.event_bus.get_event(wait=5, tag=messages.LOAD_FG_RES, full=True) if evdata: resp += 1 end = time.time() print("DONE WAITING FOR MINION LOAD_FG_RES", end - begin) def sync_mapping(self): """TODO.""" self.map_to_minions = messages.compute_map_master(self.vid, self.var_pt.view(np.int8)) print(self.fid[self.pf_list]) # send mapping to minions tag = messages.SYNC_MAPPING data = {"map": messages.serialize(self.map_to_minions), "pf": messages.serialize(self.fid[self.pf_to_send])} if self.num_minions != 0: pub_func = partial(send_to_minion, data, tag) self.clientPool.imap(pub_func, self.minion2host.values()) #newEvent = self.local_client.cmd(self.minions, # 'event.fire', # [data, tag], # expr_form='list') self.map_from_minion = [None for i in range(len(self.minions))] self.pf_from_minion = [None for i in range(len(self.minions))] self.ufo_from_minion = [None for i in range(len(self.minions))] self.ufo_map_from_minion = self.ufo_recv.copy() self.ufo_map_from_minion["vid"] = self.vid[self.ufo_map_from_minion["vid"]] resp = 0 while resp < len(self.minions): # receive map and save evdata = self.event_bus.get_event(wait=5, tag=messages.SYNC_MAPPING_RES, full=True) if evdata: tag, data = evdata['tag'], evdata['data']['data'] pid = data["pid"] self.map_from_minion[pid] = \ messages.deserialize(data["map"], np.int64) messages.apply_inverse_map(self.vid, self.map_from_minion[pid]) self.pf_from_minion[pid] = messages.deserialize(data["pf"], np.int64) messages.apply_inverse_map(self.fid, self.pf_from_minion[pid]) self.ufo_from_minion[pid] = messages.ufo_to_factor(messages.deserialize(data["ufo"], UnaryFactorOpt), self.ufo_map_from_minion, len(self.factor_pt)) resp += 1 print("DONE WITH SENDING MAPPING") messages.apply_inverse_map(self.vid, self.map_to_minions) # Helper def parse_args(self, argv): """TODO.""" if argv is None: argv = sys.argv[1:] parser = argparse.ArgumentParser( description="Runs a Gibbs sampler", epilog="") # Add version to parser parser.add_argument("--version", action='version', version="%(prog)s 0.0", help="print version number") # Add execution arguments to parser for arg, opts in numbskull.arguments: parser.add_argument(*arg, **opts) # Add flags to parser for arg, opts in numbskull.flags: parser.add_argument(*arg, **opts) # Initialize NumbSkull # args = parser.parse_args(argv) return args def get_minions_status(self): """TODO.""" minion_status = self.runner.cmd('manage.status') print("***** MINION STATUS REPORT *****") print(minion_status) print("UP: ", len(minion_status['up'])) print("DOWN: ", len(minion_status['down'])) print() return minion_status def prep_local_numbskull(self): """TODO.""" self.ns = numbskull.NumbSkull(**vars(self.args)) def prep_minions_numbskull(self): """TODO.""" # send args and initialize numbskull at minion data = {'argv': self.argv} newEvent = self.local_client.cmd(self.minions, 'event.fire', [data, messages.INIT_NS], expr_form='list') # wait for ACK from minions SUCCESS = True resp = [] while len(resp) < len(self.minions): evdata = self.event_bus.get_event(wait=5, tag=messages.INIT_NS_RES, full=True) if evdata: tag, data = evdata['tag'], evdata['data'] if data['data']['status'] == 'FAIL': print('ERROR: Minion %s failed to load numbskull.' % data['id']) SUCCESS = False resp.append((data['id'], SUCCESS)) if SUCCESS: print('SUCCESS: All minions loaded numbskull.') return SUCCESS def main(application_dir, machines, threads_per_machine, learning_epochs, inference_epochs, partition_method, partition_scheme, use_ufo, partition_type=None): """TODO.""" # Inputs for experiments: # - dataset # - number of machines # - number of threads per machine # - learning/inference epochs # - sweeps per epoch # Return values: # - Time for database # - Time for loading # - Time for learning # - Time for inference # - Memory usage (master, all minions) # TODO: how to automate partition selection args = ['-l', '1', '-i', '1', '-t', str(threads_per_machine), '-s', '0.01', '--regularization', '2', '-r', '0.1', '--quiet'] ns_master = NumbskullMaster(application_dir, machines, partition_method, partition_scheme, use_ufo, partition_type, args) ns_master.initialize() learn_time = ns_master.learning(learning_epochs) infer_time = ns_master.inference(inference_epochs) return ns_master, {"learning_time": learn_time, "inference_time": infer_time} if __name__ == "__main__": if len(sys.argv) == 7 or \ len(sys.argv) == 8 or \ len(sys.argv) == 9: application_dir = sys.argv[1] machines = int(sys.argv[2]) threads_per_machine = int(sys.argv[3]) learning_epochs = int(sys.argv[4]) inference_epochs = int(sys.argv[5]) partition_method = sys.argv[6] assert(partition_method == "cc" or partition_method == "metis" or partition_method == "sp") partition_scheme = None use_ufo = False if partition_method == "sp": assert(len(sys.argv) >= 8) partition_scheme = "--pp" + sys.argv[7][0] if len(sys.argv[7]) > 1 and sys.argv[7][1] == "u": use_ufo = True partition_type = None if len(sys.argv) == 9: partition_type = sys.argv[8] main(application_dir, machines, threads_per_machine, learning_epochs, inference_epochs, partition_method, partition_scheme, use_ufo, partition_type) else: print("Usage: " + sys.argv[0] + " application_dir" + " machines" + " threads_per_machine" + " learning_epochs" + " inference_epochs" + " partition_method (cc, metis, sp)" + " partition_scheme (for sp) {a,b,c,au,bu,cu}" + " partition_type (type for sp)")
numbskull-master
salt/src/numbskull_master.py
"""TODO.""" from __future__ import print_function, absolute_import import numba from numba import jit import numpy as np # HELPER METHODS # def dataType(i): """TODO.""" return {0: "Boolean", 1: "Categorical"}.get(i, "Unknown") @jit(nopython=True, cache=True) def compute_var_map(variables, factors, fmap, vmap, factor_index, domain_mask, factors_to_skip=np.empty(0, np.int64)): """TODO.""" # Fill in domain values (for mapping when dumping marginals) for i, v in enumerate(variables): # skip boolean (value is 0) if v["dataType"] == 0: continue # default to 0 # categorical with explicit domain if domain_mask[i]: continue # filled already else: # categorical with implicit domain [0...cardinality) for index in range(v["cardinality"]): vmap[v["vtf_offset"] + index]["value"] = index # Fill in factor_index and indexes into factor_index # Step 1: populate VTF.length for ftv in fmap: vid = ftv["vid"] val = ftv["dense_equal_to"] if variables[vid]["dataType"] == 1 else 0 vtf = vmap[variables[vid]["vtf_offset"] + val] vtf["factor_index_length"] += 1 # Step 2: populate VTF.offset last_len = 0 last_off = 0 for i, vtf in enumerate(vmap): vtf["factor_index_offset"] = last_off + last_len last_len = vtf["factor_index_length"] last_off = vtf["factor_index_offset"] # Step 3: populate factor_index offsets = vmap["factor_index_offset"].copy() fts_index = 0 # factors_to_skip index for i, fac in enumerate(factors): if fts_index < len(factors_to_skip) and \ factors_to_skip[fts_index] == i: fts_index += 1 continue for j in range(fac["ftv_offset"], fac["ftv_offset"] + fac["arity"]): ftv = fmap[j] vid = ftv["vid"] val = ftv["dense_equal_to"] if variables[ vid]["dataType"] == 1 else 0 vtf_idx = variables[vid]["vtf_offset"] + val fidx = offsets[vtf_idx] factor_index[fidx] = i offsets[vtf_idx] += 1 # Step 4: remove dupes from factor_index for vtf in vmap: offset = vtf["factor_index_offset"] length = vtf["factor_index_length"] new_list = factor_index[offset: offset + length] new_list.sort() i = 0 last_fid = -1 for fid in new_list: if last_fid == fid: continue last_fid = fid factor_index[offset + i] = fid i += 1 vtf["factor_index_length"] = i @jit(nopython=True, cache=True) def reverse(data, start, end): """TODO.""" end -= 1 while (start < end): data[start], data[end] = data[end], data[start] start += 1 end -= 1 @jit(nopython=True, cache=True) def reverse_array(data): """TODO.""" # TODO: why does this fail? # data = np.flipud(data) reverse(data, 0, data.size) # DEFINE NUMBA-BASED DATA LOADING METHODS # @jit(nopython=True, cache=True) def load_weights(data, nweights, weights): """TODO.""" for i in range(nweights): # TODO: read types from struct? # TODO: byteswap only if system is little-endian buf = data[(17 * i):(17 * i + 8)] reverse_array(buf) weightId = np.frombuffer(buf, dtype=np.int64)[0] isFixed = data[17 * i + 8] buf = data[(17 * i + 9):(17 * i + 17)] reverse_array(buf) initialValue = np.frombuffer(buf, dtype=np.float64)[0] weights[weightId]["isFixed"] = isFixed weights[weightId]["initialValue"] = initialValue print("LOADED WEIGHTS") @jit(nopython=True, cache=True) def load_variables(data, nvariables, variables): """TODO.""" for i in range(nvariables): # TODO: read types from struct? # TODO: byteswap only if system is little-endian buf = data[(27 * i):(27 * i + 8)] reverse_array(buf) variableId = np.frombuffer(buf, dtype=np.int64)[0] isEvidence = data[27 * i + 8] buf = data[(27 * i + 9):(27 * i + 17)] reverse_array(buf) initialValue = np.frombuffer(buf, dtype=np.int64)[0] buf = data[(27 * i + 17):(27 * i + 19)] reverse_array(buf) dataType = np.frombuffer(buf, dtype=np.int16)[0] buf = data[(27 * i + 19):(27 * i + 27)] reverse_array(buf) cardinality = np.frombuffer(buf, dtype=np.int64)[0] variables[variableId]["isEvidence"] = isEvidence variables[variableId]["initialValue"] = initialValue variables[variableId]["dataType"] = dataType variables[variableId]["cardinality"] = cardinality print("LOADED VARS") @jit(nopython=True, cache=True) def load_domains(data, domain_mask, vmap, variables): """TODO.""" index = 0 while index < data.size: buf = data[index: index + 8] reverse_array(buf) variableId = np.frombuffer(buf, dtype=np.int64)[0] index += 8 buf = data[index: index + 8] reverse_array(buf) cardinality = np.frombuffer(buf, dtype=np.int64)[0] index += 8 domain_mask[variableId] = True # NOTE: values are sorted already by DD for j in range(cardinality): buf = data[index: index + 8] reverse_array(buf) val = np.frombuffer(buf, dtype=np.int64)[0] index += 8 vmap[variables[variableId]["vtf_offset"] + j]["value"] = val # translate initial value into dense index if val == variables[variableId]["initialValue"]: variables[variableId]["initialValue"] = j print("LOADED DOMAINS") @jit(nopython=True, cache=True) def load_factors(data, nfactors, factors, fmap, domain_mask, variable, vmap): """TODO.""" index = 0 fmap_idx = 0 k = 0 # somehow numba 0.28 would raise LowerError without this line for i in range(nfactors): buf = data[index:(index + 2)] reverse_array(buf) factors[i]["factorFunction"] = np.frombuffer(buf, dtype=np.int16)[0] buf = data[(index + 2):(index + 10)] reverse_array(buf) arity = np.frombuffer(buf, dtype=np.int64)[0] factors[i]["arity"] = arity factors[i]["ftv_offset"] = fmap_idx index += 10 # TODO: update index once per loop? for k in range(arity): buf = data[index:(index + 8)] reverse_array(buf) vid = np.frombuffer(buf, dtype=np.int64)[0] fmap[fmap_idx + k]["vid"] = vid buf = data[(index + 8):(index + 16)] reverse_array(buf) val = np.frombuffer(buf, dtype=np.int64)[0] # translate initial value into dense index using bisect if domain_mask[vid]: start = variable[vid]["vtf_offset"] end = start + variable[vid]["cardinality"] val = np.searchsorted(vmap["value"][start:end], val) fmap[fmap_idx + k]["dense_equal_to"] = val index += 16 fmap_idx += arity buf = data[index:(index + 8)] reverse_array(buf) factors[i]["weightId"] = np.frombuffer(buf, dtype=np.int64)[0] buf = data[(index + 8):(index + 16)] reverse_array(buf) factors[i]["featureValue"] = np.frombuffer(buf, dtype=np.float64)[0] index += 16 print("LOADED FACTORS")
numbskull-master
numbskull/dataloading.py
__version__ = "0.1.1"
numbskull-master
numbskull/version.py
"""TODO.""" from __future__ import print_function, absolute_import import sys import numpy as np from numbskull.inference import * from numbskull.learning import * from numbskull.timer import Timer import concurrent.futures from concurrent.futures import ThreadPoolExecutor def run_pool(threadpool, threads, func, args): """TODO.""" if threads == 1: func(0, *args) else: future_to_samples = \ [threadpool.submit(func, threadID, *args) for threadID in range(threads)] concurrent.futures.wait(future_to_samples) for fts in future_to_samples: if fts.exception() is not None: raise fts.exception() class FactorGraph(object): """TODO.""" def __init__(self, weight, variable, factor, fmap, vmap, factor_index, var_copies, weight_copies, fid, workers): """TODO.""" self.weight = weight self.variable = variable self.factor = factor self.fmap = fmap self.vmap = vmap self.factor_index = factor_index # This is just cumsum shifted by 1 self.cstart = np.empty(self.variable.shape[0] + 1, np.int64) self.cstart[0] = 0 self.cstart[1:] = self.variable["cardinality"] self.cstart[self.cstart == 2] = 1 # Save space for binary vars np.cumsum(self.cstart, out=self.cstart) self.count = np.zeros(self.cstart[self.variable.shape[0]], np.int64) self.var_value_evid = \ np.tile(self.variable[:]['initialValue'], (var_copies, 1)) self.var_value = \ np.tile(self.variable[:]['initialValue'], (var_copies, 1)) self.weight_value = \ np.tile(self.weight[:]['initialValue'], (weight_copies, 1)) if self.variable.size == 0: self.Z = np.zeros((workers, 0)) else: self.Z = np.zeros((workers, max(self.variable[:]['cardinality']))) if self.vmap.size == 0: size = (workers, 0) else: size = (workers, 2 * max(self.vmap['factor_index_length'])) self.fids = np.zeros(size, factor_index.dtype) self.fid = fid assert(workers > 0) self.threads = workers self.threadpool = ThreadPoolExecutor(self.threads) self.marginals = np.zeros(self.cstart[self.variable.shape[0]]) self.inference_epoch_time = 0.0 self.inference_total_time = 0.0 self.learning_epoch_time = 0.0 self.learning_total_time = 0.0 def clear(self): """TODO.""" self.count[:] = 0 self.threadpool.shutdown() ################# # GETTERS # ################# def getWeights(self, weight_copy=0): """TODO.""" return self.weight_value[weight_copy][:] def getMarginals(self, varIds=None): """TODO.""" if not varIds: return self.marginals else: return self.marginals[varIds] ##################### # DIAGNOSTICS # ##################### def diagnostics(self, epochs): """TODO.""" print('Inference took %.03f sec.' % self.inference_total_time) epochs = epochs or 1 bins = 10 hist = np.zeros(bins, dtype=np.int64) for i in range(len(self.count)): assert(self.count[i] >= 0) assert(self.count[i] <= epochs) hist[min(self.count[i] * bins // epochs, bins - 1)] += 1 for i in range(bins): start = i / 10.0 end = (i + 1) / 10.0 print("Prob. " + str(start) + ".." + str(end) + ": \ " + str(hist[i]) + " variables") def diagnosticsLearning(self, weight_copy=0): """TODO.""" print('Learning epoch took %.03f sec.' % self.learning_epoch_time) print("Weights:") for (i, w) in enumerate(self.weight): print(" weightId:", i) print(" isFixed:", w["isFixed"]) print(" weight: ", self.weight_value[weight_copy][i]) print() ################################ # INFERENCE AND LEARNING # ################################ def burnIn(self, epochs, sample_evidence, diagnostics=False, var_copy=0, weight_copy=0): """TODO.""" if diagnostics: print("FACTOR " + str(self.fid) + ": STARTED BURN-IN...") # NUMBA-based method. Implemented in inference.py for ep in range(epochs): args = (self.threads, var_copy, weight_copy, self.weight, self.variable, self.factor, self.fmap, self.vmap, self.factor_index, self.Z, self.cstart, self.count, self.var_value, self.weight_value, sample_evidence, True) run_pool(self.threadpool, self.threads, gibbsthread, args) if diagnostics: print("FACTOR " + str(self.fid) + ": DONE WITH BURN-IN") def inference(self, burnin_epochs, epochs, sample_evidence=False, diagnostics=False, var_copy=0, weight_copy=0): """TODO.""" # Burn-in if burnin_epochs > 0: self.burnIn(burnin_epochs, sample_evidence, diagnostics=diagnostics) # Run inference if diagnostics: print("FACTOR " + str(self.fid) + ": STARTED INFERENCE") for ep in range(epochs): with Timer() as timer: args = (self.threads, var_copy, weight_copy, self.weight, self.variable, self.factor, self.fmap, self.vmap, self.factor_index, self.Z, self.cstart, self.count, self.var_value, self.weight_value, sample_evidence, False) run_pool(self.threadpool, self.threads, gibbsthread, args) self.inference_epoch_time = timer.interval self.inference_total_time += timer.interval if diagnostics: print('Inference epoch #%d took %.03f sec.' % (ep, self.inference_epoch_time)) if diagnostics: print("FACTOR " + str(self.fid) + ": DONE WITH INFERENCE") # compute marginals if epochs != 0: self.marginals = self.count / float(epochs) if diagnostics: self.diagnostics(epochs) def learn(self, burnin_epochs, epochs, stepsize, decay, regularization, reg_param, truncation, diagnostics=False, verbose=False, learn_non_evidence=False, var_copy=0, weight_copy=0): """TODO.""" # Burn-in if burnin_epochs > 0: self.burnIn(burnin_epochs, True, diagnostics=diagnostics) # Run learning if diagnostics: print("FACTOR " + str(self.fid) + ": STARTED LEARNING") for ep in range(epochs): if diagnostics: print("FACTOR " + str(self.fid) + ": EPOCH #" + str(ep)) print("Current stepsize = " + str(stepsize)) if verbose: self.diagnosticsLearning(weight_copy) sys.stdout.flush() # otherwise output refuses to show in DD with Timer() as timer: args = (self.threads, stepsize, regularization, reg_param, truncation, var_copy, weight_copy, self.weight, self.variable, self.factor, self.fmap, self.vmap, self.factor_index, self.Z, self.fids, self.var_value, self.var_value_evid, self.weight_value, learn_non_evidence) run_pool(self.threadpool, self.threads, learnthread, args) self.learning_epoch_time = timer.interval self.learning_total_time += timer.interval # Decay stepsize stepsize *= decay if diagnostics: print("FACTOR " + str(self.fid) + ": DONE WITH LEARNING") def dump_weights(self, fout, weight_copy=0): """Dump <wid, weight> text file in DW format.""" with open(fout, 'w') as out: for i, w in enumerate(self.weight): out.write('%d %f\n' % (i, self.weight_value[weight_copy][i])) def dump_probabilities(self, fout, epochs): """Dump <vid, value, prob> text file in DW format.""" epochs = epochs or 1 with open(fout, 'w') as out: for i, v in enumerate(self.variable): if v["cardinality"] == 2: prob = float(self.count[self.cstart[i]]) / epochs out.write('%d %d %.3f\n' % (i, 1, prob)) else: for k in range(v["cardinality"]): prob = float(self.count[self.cstart[i] + k]) / epochs original_value = self.vmap[ v["vtf_offset"] + k]["value"] out.write('%d %d %.3f\n' % (i, original_value, prob))
numbskull-master
numbskull/factorgraph.py
"""TODO.""" from __future__ import print_function, absolute_import import time class Timer: """TODO.""" def __enter__(self): """TODO.""" self.start = time.time() return self def __exit__(self, *args): """TODO.""" self.end = time.time() self.interval = self.end - self.start
numbskull-master
numbskull/timer.py
"""inference and learning for factor graphs""" from .numbskull import NumbSkull from .numbskull import main from .version import __version__ __all__ = ('numbskull', 'factorgraph', 'timer')
numbskull-master
numbskull/__init__.py
#!/usr/bin/env python """TODO: This is a docstring.""" from __future__ import print_function, absolute_import from past.builtins import long import os import sys import argparse import numbskull.factorgraph from numbskull.factorgraph import FactorGraph from numbskull.dataloading import * from numbskull.numbskulltypes import * import numpy as np # Define arguments for both parser in main and NumbSkull arguments = [ (tuple(['directory']), {'metavar': 'DIRECTORY', 'nargs': '?', 'default': '.', 'type': str, 'help': 'specify the directory of factor graph files'}), # TODO: print default for meta, weight, variable, factor in help (('-o', '--output_dir'), {'metavar': 'OUTPUT_DIR', 'dest': 'output_dir', 'default': '.', 'type': str, 'help': 'Output dir to contain inference_result.out.text ' + 'and inference_result.out.weights.text'}), (('-m', '--meta', '--fg_meta'), {'metavar': 'META_FILE', 'dest': 'metafile', 'default': 'graph.meta', 'type': str, 'help': 'factor graph metadata file'}), (('-w', '--weight', '--weights'), {'metavar': 'WEIGHTS_FILE', 'dest': 'weightfile', 'default': 'graph.weights', 'type': str, 'help': 'factor weight file'}), (('-v', '--variable', '--variables'), {'metavar': 'VARIABLES_FILE', 'dest': 'variablefile', 'default': 'graph.variables', 'type': str, 'help': 'factor graph variables file'}), (('-f', '--factor', '--factors'), {'metavar': 'FACTORS_FILE', 'dest': 'factorfile', 'default': 'graph.factors', 'type': str, 'help': 'factor file'}), (('--domain', '--domains'), {'metavar': 'DOMAINS_FILE', 'dest': 'domainfile', 'default': 'graph.domains', 'type': str, 'help': 'domain file'}), (('-l', '--n_learning_epoch'), {'metavar': 'NUM_LEARNING_EPOCHS', 'dest': 'n_learning_epoch', 'default': 0, 'type': int, 'help': 'number of learning epochs'}), (('-i', '--n_inference_epoch'), {'metavar': 'NUM_INFERENCE_EPOCHS', 'dest': 'n_inference_epoch', 'default': 0, 'type': int, 'help': 'number of inference epochs'}), (('-s', '--stepsize', '-a', '--alpha'), {'metavar': 'LEARNING_STEPSIZE', 'dest': 'stepsize', 'default': 0.01, 'type': float, 'help': 'stepsize for learning'}), (('-d', '--decay', '--diminish'), {'metavar': 'LEARNING_DECAY', 'dest': 'decay', 'default': 0.95, 'type': float, 'help': 'decay for updating stepsize during learning'}), (('-r', '--reg_param'), {'metavar': 'LEARNING_REGULARIZATION_PARAM', 'dest': 'reg_param', 'default': 0.01, 'type': float, 'help': 'regularization penalty'}), (tuple(['--regularization']), {'metavar': 'REGULARIZATION', 'dest': 'regularization', 'default': 2, 'type': int, 'help': 'regularization (l1 or l2) [Enter as "1" or "2"]'}), (('-k', '--truncation'), {'metavar': 'TRUNCATION', 'dest': 'truncation', 'default': 1, 'type': int, 'help': 'If using l1 regularization, truncation is applied with ' 'probability 1/k and with magnitude ' 'step_size * reg_param * k. If not using l1 regularization, ' 'this parameter has no effect.'}), (('-b', '--burn_in'), {'metavar': 'BURN_IN', 'dest': 'burn_in', 'default': 0, 'type': int, 'help': 'number of burn-in epochs'}), (('-t', '--threads', '--n_threads'), {'metavar': 'NUM_THREADS', 'dest': 'nthreads', 'default': 1, 'type': int, 'help': 'number of threads to be used'}), (('-u', '--dburl'), {'metavar': 'DATABASE_URL', 'dest': 'dburl', 'default': '', 'type': str, 'help': 'url to database holding factor graph information'}) ] flags = [ (tuple(['--sample_evidence']), {'default': True, 'dest': 'sample_evidence', 'action': 'store_true', 'help': 'sample evidence variables'}), (tuple(['--learn_non_evidence']), {'default': False, 'dest': 'learn_non_evidence', 'action': 'store_true', 'help': 'learn from non-evidence variables'}), (('-q', '--quiet'), {'default': False, 'dest': 'quiet', 'action': 'store_true', 'help': 'quiet'}), (tuple(['--verbose']), {'default': False, 'dest': 'verbose', 'action': 'store_true', 'help': 'verbose'}) ] class NumbSkull(object): """TODO: Main class for numbskull.""" def __init__(self, **kwargs): """TODO. Parameters ---------- paramater : type This is a parameter Returns ------- describe : type Expanation """ # Initialize default execution arguments arg_defaults = {} for arg, opts in arguments: if 'directory' in arg[0]: arg_defaults['directory'] = opts['default'] else: arg_defaults[opts['dest']] = opts['default'] # Initialize default execution flags for arg, opts in flags: arg_defaults[opts['dest']] = opts['default'] for (arg, default) in arg_defaults.items(): setattr(self, arg, kwargs.get(arg, default)) self.factorGraphs = [] def loadFactorGraphRaw(self, weight, variable, factor, fmap, vmap, factor_index, var_copies=1, weight_copies=1): """TODO.""" fg = FactorGraph(weight, variable, factor, fmap, vmap, factor_index, var_copies, weight_copies, len(self.factorGraphs), self.nthreads) self.factorGraphs.append(fg) def loadFactorGraph(self, weight, variable, factor, fmap, domain_mask, edges, var_copies=1, weight_copies=1, factors_to_skip=np.empty(0, np.int64)): """TODO.""" # Note: factors_to_skip must be sorted # Assert input arguments correspond to NUMPY arrays assert(type(weight) == np.ndarray and weight.dtype == Weight) assert(type(variable) == np.ndarray and variable.dtype == Variable) assert(type(factor) == np.ndarray and factor.dtype == Factor) assert(type(fmap) == np.ndarray and fmap.dtype == FactorToVar) assert(type(domain_mask) == np.ndarray and domain_mask.dtype == np.bool) assert(type(edges) == int or type(edges) == long or type(edges) == np.int64) assert(type(factors_to_skip) == np.ndarray and factors_to_skip.dtype == np.int64) # Initialize metadata meta = {} meta['weights'] = weight.shape[0] meta['variables'] = variable.shape[0] meta['factors'] = factor.shape[0] # TODO: should probably just delete edges as an argument # Not really needed (can just be computed from factors) edges = sum(factor["arity"]) - sum(factor[factors_to_skip]["arity"]) meta['edges'] = edges # count total number of VTF records needed num_vtfs = 0 for var in variable: var["vtf_offset"] = num_vtfs if var["dataType"] == 0: # boolean num_vtfs += 1 else: num_vtfs += var["cardinality"] vmap = np.zeros(num_vtfs, VarToFactor) # factors_to_skip is a list of indices of factors # these factors need to exist for the distributed sampler # but cannot be sampled # TODO: edges is really poorly defined with factors_to_skip factor_index = np.zeros(meta["edges"], np.int64) # Numba-based method. Defined in dataloading.py compute_var_map(variable, factor, fmap, vmap, factor_index, domain_mask, factors_to_skip) fg = FactorGraph(weight, variable, factor, fmap, vmap, factor_index, var_copies, weight_copies, len(self.factorGraphs), self.nthreads) self.factorGraphs.append(fg) def loadFGFromFile(self, directory=None, metafile=None, weightfile=None, variablefile=None, factorfile=None, domainfile=None, var_copies=1, weight_copies=1): """TODO.""" # init necessary input arguments if not self.directory: print("No factor graph specified") return else: directory = self.directory metafile = self.metafile if not metafile else metafile weightfile = self.weightfile if not weightfile else weightfile variablefile = self.variablefile if not variablefile else variablefile factorfile = self.factorfile if not factorfile else factorfile domainfile = self.domainfile if not domainfile else domainfile print_info = not self.quiet print_only_meta = not self.verbose # load metadata meta = np.loadtxt(directory + "/" + metafile, delimiter=',', dtype=Meta) meta = meta[()] if print_info: print("Meta:") print(" weights: ", meta["weights"]) print(" variables:", meta["variables"]) print(" factors: ", meta["factors"]) print(" edges: ", meta["edges"]) print() # load weights weight_data = np.memmap(directory + "/" + weightfile, mode="c") weight = np.zeros(meta["weights"], Weight) # NUMBA-based function. Defined in dataloading.py load_weights(weight_data, meta["weights"], weight) if print_info and not print_only_meta: print("Weights:") for (i, w) in enumerate(weight): print(" weightId:", i) print(" isFixed:", w["isFixed"]) print(" weight: ", w["initialValue"]) print() # load variables variable_data = np.memmap(directory + "/" + variablefile, mode="c") variable = np.zeros(meta["variables"], Variable) # NUMBA-based method. Defined in dataloading.py load_variables(variable_data, meta["variables"], variable) sys.stdout.flush() if print_info and not print_only_meta: print("Variables:") for (i, v) in enumerate(variable): print(" variableId:", i) print(" isEvidence: ", v["isEvidence"]) print(" initialValue:", v["initialValue"]) print(" dataType: ", v["dataType"], "(", dataType(v["dataType"]), ")") print(" cardinality: ", v["cardinality"]) print() # count total number of VTF records needed num_vtfs = 0 for var in variable: var["vtf_offset"] = num_vtfs if var["dataType"] == 0: # boolean num_vtfs += 1 else: num_vtfs += var["cardinality"] print("#VTF = %s" % num_vtfs) sys.stdout.flush() # generate variable-to-factor map vmap = np.zeros(num_vtfs, VarToFactor) factor_index = np.zeros(meta["edges"], np.int64) # load domains # whether a var has domain spec domain_mask = np.zeros(meta["variables"], np.bool) domain_file = directory + "/" + domainfile if os.path.isfile(domain_file) and os.stat(domain_file).st_size > 0: domain_data = np.memmap(directory + "/" + domainfile, mode="c") load_domains(domain_data, domain_mask, vmap, variable) sys.stdout.flush() # load factors factor_data = np.memmap(directory + "/" + factorfile, mode="c") factor = np.zeros(meta["factors"], Factor) fmap = np.zeros(meta["edges"], FactorToVar) # Numba-based method. Defined in dataloading.py load_factors(factor_data, meta["factors"], factor, fmap, domain_mask, variable, vmap) sys.stdout.flush() # Numba-based method. Defined in dataloading.py compute_var_map(variable, factor, fmap, vmap, factor_index, domain_mask) print("COMPLETED VMAP INDEXING") sys.stdout.flush() fg = FactorGraph(weight, variable, factor, fmap, vmap, factor_index, var_copies, weight_copies, len(self.factorGraphs), self.nthreads) self.factorGraphs.append(fg) def getFactorGraph(self, fgID=0): """TODO.""" return self.factorGraphs[fgID] def inference(self, fgID=0, out=True): """TODO.""" burn_in = self.burn_in n_inference_epoch = self.n_inference_epoch self.factorGraphs[fgID].inference(burn_in, n_inference_epoch, sample_evidence=self.sample_evidence, diagnostics=not self.quiet) if out: output_file = os.path.join( self.output_dir, "inference_result.out.text") self.factorGraphs[fgID].dump_probabilities(output_file, n_inference_epoch) def learning(self, fgID=0, out=True): """TODO.""" burn_in = self.burn_in n_learning_epoch = self.n_learning_epoch stepsize = self.stepsize decay = self.decay regularization = self.regularization reg_param = self.reg_param truncation = self.truncation fg = self.factorGraphs[fgID] fg.learn(burn_in, n_learning_epoch, stepsize, decay, regularization, reg_param, truncation, diagnostics=not self.quiet, verbose=self.verbose, learn_non_evidence=self.learn_non_evidence) if out: output_file = os.path.join( self.output_dir, "inference_result.out.weights.text") self.factorGraphs[fgID].dump_weights(output_file) def load(argv=None): """TODO.""" if argv is None: argv = sys.argv[1:] parser = argparse.ArgumentParser( description="Runs a Gibbs sampler", epilog="") # Add version to parser parser.add_argument("--version", action='version', version="%(prog)s 0.0", help="print version number") # Add execution arguments to parser for arg, opts in arguments: parser.add_argument(*arg, **opts) # Add flags to parser for arg, opts in flags: parser.add_argument(*arg, **opts) # Initialize NumbSkull # args = parser.parse_args(argv) ns = NumbSkull(**vars(args)) ns.loadFGFromFile() return ns def main(argv=None): """Duh.""" ns = load(argv) ns.learning() ns.inference()
numbskull-master
numbskull/numbskull.py
#!/usr/bin/env python """TODO.""" from __future__ import print_function import zmq import sys import time import argparse import gibbs import numpy as np def send_array(socket, A, flags=0, copy=True, track=False): """TODO: send a numpy array with metadata.""" md = dict( dtype=str(A.dtype), shape=A.shape, ) socket.send_json(md, flags | zmq.SNDMORE) return socket.send(A, flags, copy=copy, track=track) def recv_array(socket, flags=0, copy=True, track=False): """TODO: recv a numpy array.""" md = socket.recv_json(flags=flags) msg = socket.recv(flags=flags, copy=copy, track=track) buf = buffer(msg) try: A = np.frombuffer(buf, dtype=md['dtype']) except: A = np.frombuffer(buf, dtype=eval(md['dtype'])) return A.reshape(md['shape']) def server(argv=None): """TODO.""" parser = argparse.ArgumentParser( description="Run Gibbs worker", epilog="") parser.add_argument("directory", metavar="DIRECTORY", nargs="?", help="specify directory of factor graph files", default="", type=str) parser.add_argument("-p", "--port", metavar="PORT", help="port", default=5556, type=int) parser.add_argument("-m", "--meta", metavar="META_FILE", dest="meta", default="graph.meta", type=str, help="meta file") # TODO: print default for meta, weight, variable, factor in help parser.add_argument("-w", "--weight", metavar="WEIGHTS_FILE", dest="weight", default="graph.weights", type=str, help="weight file") parser.add_argument("-v", "--variable", metavar="VARIABLES_FILE", dest="variable", default="graph.variables", type=str, help="variable file") parser.add_argument("-f", "--factor", metavar="FACTORS_FILE", dest="factor", default="graph.factors", type=str, help="factor file") parser.add_argument("-b", "--burn", metavar="NUM_BURN_STEPS", dest="burn", default=0, type=int, help="number of learning sweeps") parser.add_argument("-l", "--learn", metavar="NUM_LEARN_STEPS", dest="learn", default=0, type=int, help="number of learning sweeps") parser.add_argument("-e", "--epoch", metavar="NUM_LEARNING_EPOCHS", dest="epoch", default=0, type=int, help="number of learning epochs") parser.add_argument("-i", "--inference", metavar="NUM_INFERENCE_STEPS", dest="inference", default=0, type=int, help="number of inference sweeps") # TODO: sample observed variable option parser.add_argument("-q", "--quiet", # metavar="QUIET", dest="quiet", default=False, action="store_true", # type=bool, help="quiet") # TODO: verbose option (print all info) parser.add_argument("--verbose", # metavar="VERBOSE", dest="verbose", default=False, action="store_true", # type=bool, help="verbose") print("Running server...") arg = parser.parse_args(argv[1:]) if arg.directory == "": fg = None else: var_copies = 1 weight_copies = 1 (meta, weight, variable, factor, fstart, fmap, vstart, vmap, equalPredicate) = \ gibbs.load(arg.directory, arg.meta, arg.weight, arg.variable, arg.factor, not arg.quiet, not arg.verbose) fg_args = (weight, variable, factor, fstart, fmap, vstart, vmap, equalPredicate, var_copies, weight_copies) fg = gibbs.FactorGraph(*fg_args) context = zmq.Context() socket = context.socket(zmq.REP) socket.bind("tcp://*:%s" % arg.port) num_clients = 0 # TODO: barrier between burn, learn, and inference # Probably need to send client id back while True: # Wait for next request from client message = socket.recv() if message == "HELLO": # Initial message from client print("Received HELLO.") socket.send("CLIENT_ID", zmq.SNDMORE) socket.send_json("%d" % num_clients) num_clients += 1 elif message == 'R_FACTOR_GRAPH': # Request for factor graph client_id = socket.recv_json() print("Received factor graph request from client #%d." % client_id) # TODO: check that fg != None # TODO socket.send("FACTOR_GRAPH", zmq.SNDMORE) socket.send_json(len(fg_args), zmq.SNDMORE) for a in fg_args: is_array = (type(a) == np.ndarray) socket.send_json(is_array, zmq.SNDMORE) if is_array: send_array(socket, a, zmq.SNDMORE) else: socket.send_json(a, zmq.SNDMORE) # TODO: could just not send SNDMORE for last arg socket.send("DONE") elif message == "READY": # Client ready print("Received ready.") # could skip this if arg.burn == 0 socket.send("BURN", zmq.SNDMORE) socket.send_json(arg.burn) elif message == 'DONE_BURN' or message == 'DONE_LEARN': # Client done with burn/learning if message == 'DONE_BURN': # Done burning epochs = 0 else: # Done learning epochs = socket.recv_json() fg.wv += recv_array(socket) pass if epochs < arg.epoch: socket.send("LEARN", zmq.SNDMORE) socket.send_json(arg.learn, zmq.SNDMORE) socket.send_json(0.001, zmq.SNDMORE) # TODO send_array(socket, fg.wv) else: socket.send("INFERENCE", zmq.SNDMORE) socket.send_json(arg.inference, zmq.SNDMORE) send_array(socket, fg.wv) elif message == 'DONE_INFERENCE': # Client done with inference data = recv_array(socket) # TODO: handle count socket.send("EXIT") else: print("Message (%s) cannot be interpreted." % message, file=sys.stderr) socket.send("EXIT") return def client(argv=None): """TODO.""" parser = argparse.ArgumentParser( description="Run Gibbs worker", epilog="") parser.add_argument("directory", metavar="DIRECTORY", nargs="?", help="specify directory of factor graph files", default="", type=str) parser.add_argument("-p", "--port", metavar="PORT", help="port", default=5556, type=int) parser.add_argument("-m", "--meta", metavar="META_FILE", dest="meta", default="graph.meta", type=str, help="meta file") # TODO: print default for meta, weight, variable, factor in help parser.add_argument("-w", "--weight", metavar="WEIGHTS_FILE", dest="weight", default="graph.weights", type=str, help="weight file") parser.add_argument("-v", "--variable", metavar="VARIABLES_FILE", dest="variable", default="graph.variables", type=str, help="variable file") parser.add_argument("-f", "--factor", metavar="FACTORS_FILE", dest="factor", default="graph.factors", type=str, help="factor file") parser.add_argument("-q", "--quiet", # metavar="QUIET", dest="quiet", default=False, action="store_true", # type=bool, help="quiet") parser.add_argument("--verbose", # metavar="VERBOSE", dest="verbose", default=False, action="store_true", # type=bool, help="verbose") print(argv) arg = parser.parse_args(argv[1:]) print("Running client...") print(arg.directory) if arg.directory == "": fg = None else: var_copies = 1 weight_copies = 1 (meta, weight, variable, factor, fstart, fmap, vstart, vmap, equalPredicate) = \ gibbs.load(arg.directory, arg.meta, arg.weight, arg.variable, arg.factor, not arg.quiet, not arg.verbose) fg = gibbs.FactorGraph(weight, variable, factor, fstart, fmap, vstart, vmap, equalPredicate, var_copies, weight_copies) context = zmq.Context() print("Connecting to server...") socket = context.socket(zmq.REQ) socket.connect("tcp://localhost:%s" % arg.port) # hello message print("Sent HELLO.") socket.send("HELLO") message = socket.recv() assert(message == "CLIENT_ID") message = socket.recv_json() client_id = int(message) print("Received id #%d.\n" % client_id) # request factor graph if not loaded if fg is None: socket.send("R_FACTOR_GRAPH", zmq.SNDMORE) socket.send_json(client_id) message = socket.recv() assert(message == "FACTOR_GRAPH") length = socket.recv_json() fg_args = [None, ] * length for i in range(length): is_array = socket.recv_json() if is_array: fg_args[i] = recv_array(socket) else: fg_args[i] = socket.recv_json() assert(socket.recv() == "DONE") fg = gibbs.FactorGraph(*fg_args) # Send "ready" socket.send("READY") learning_epochs = 0 while True: message = socket.recv() if message == 'BURN': # request for burn-in print("Received request for burn-in.") burn = socket.recv_json() print("Burning", burn, "sweeps.") fg.gibbs(burn, 0, 0) socket.send("DONE_BURN") elif message == 'LEARN': # Request for learning print("Received request for learning.") sweeps = socket.recv_json() step = socket.recv_json() fg.wv = recv_array(socket) wv = fg.wv fg.learn(sweeps, step, 0, 0) dw = fg.wv - wv socket.send("DONE_LEARNING", zmq.SNDMORE) learning_epochs += 1 socket.send_json(learning_epochs, zmq.SNDMORE) send_array(socket, dw) elif message == 'INFERENCE': # Request for inference print("Received request for inference.") inference = socket.recv_json() fg.wv = recv_array(socket) print("Inference:", inference, "sweeps.") fg.clear() fg.gibbs(inference, 0, 0) socket.send("DONE_INFERENCE", zmq.SNDMORE) send_array(socket, fg.count) elif message == 'EXIT': # Exit print("Exit") break else: print("Message cannot be interpreted.", file=sys.stderr) break def main(argv=None): """TODO.""" if argv is None: argv = sys.argv[1:] if len(argv) < 1: print("Usage: ./distributed.py [server/client]", file=sys.stderr) elif argv[0].lower() == "server" or argv[0].lower() == "s": server(argv) elif argv[0].lower() == "client" or argv[0].lower() == "c": client(argv) else: print("Error:", argv[0], "is not a valid choice.", file=sys.stderr) if __name__ == "__main__": main()
numbskull-master
numbskull/distributed.py
"""TODO.""" from __future__ import print_function, absolute_import import numpy as np # TODO (shared with DW): space optimization: # 1. use smaller ints for some fields # 2. replace a[x].length with a[x+1].offset - a[x].offset Meta = np.dtype([('weights', np.int64), ('variables', np.int64), ('factors', np.int64), ('edges', np.int64)]) Weight = np.dtype([("isFixed", np.bool), ("initialValue", np.float64)]) Variable = np.dtype([("isEvidence", np.int8), ("initialValue", np.int64), ("dataType", np.int16), ("cardinality", np.int64), ("vtf_offset", np.int64)]) Factor = np.dtype([("factorFunction", np.int16), ("weightId", np.int64), ("featureValue", np.float64), ("arity", np.int64), ("ftv_offset", np.int64)]) FactorToVar = np.dtype([("vid", np.int64), ("dense_equal_to", np.int64)]) VarToFactor = np.dtype([("value", np.int64), ("factor_index_offset", np.int64), ("factor_index_length", np.int64)]) UnaryFactorOpt = np.dtype([('vid', np.int64), ('weightId', np.int64)])
numbskull-master
numbskull/numbskulltypes.py
"""TODO.""" from __future__ import print_function, absolute_import import numba from numba import jit import numpy as np import math @jit(nopython=True, cache=True, nogil=True) def gibbsthread(shardID, nshards, var_copy, weight_copy, weight, variable, factor, fmap, vmap, factor_index, Z, cstart, count, var_value, weight_value, sample_evidence, burnin): """TODO.""" # Indentify start and end variable nvar = variable.shape[0] start = (shardID * nvar) // nshards end = ((shardID + 1) * nvar) // nshards # TODO: give option do not store result, or just store tally for var_samp in range(start, end): if variable[var_samp]["isEvidence"] == 4: # This variable is not owned by this machine continue if variable[var_samp]["isEvidence"] == 0 or sample_evidence: v = draw_sample(var_samp, var_copy, weight_copy, weight, variable, factor, fmap, vmap, factor_index, Z[shardID], var_value, weight_value) var_value[var_copy][var_samp] = v if not burnin: if variable[var_samp]["cardinality"] == 2: count[cstart[var_samp]] += v else: count[cstart[var_samp] + v] += 1 @jit(nopython=True, cache=True, nogil=True) def draw_sample(var_samp, var_copy, weight_copy, weight, variable, factor, fmap, vmap, factor_index, Z, var_value, weight_value): """TODO.""" cardinality = variable[var_samp]["cardinality"] for value in range(cardinality): Z[value] = np.exp(potential(var_samp, value, var_copy, weight_copy, weight, variable, factor, fmap, vmap, factor_index, var_value, weight_value)) for j in range(1, cardinality): Z[j] += Z[j - 1] z = np.random.rand() * Z[cardinality - 1] return np.argmax(Z[:cardinality] >= z) @jit(nopython=True, cache=True, nogil=True) def potential(var_samp, value, var_copy, weight_copy, weight, variable, factor, fmap, vmap, factor_index, var_value, weight_value): """TODO.""" p = 0.0 varval_off = value if variable[var_samp]["dataType"] == 0: varval_off = 0 vtf = vmap[variable[var_samp]["vtf_offset"] + varval_off] start = vtf["factor_index_offset"] end = start + vtf["factor_index_length"] for k in range(start, end): factor_id = factor_index[k] p += weight_value[weight_copy][factor[factor_id]["weightId"]] * \ eval_factor(factor_id, var_samp, value, var_copy, variable, factor, fmap, var_value) return p FACTORS = { # Factor functions for boolean variables "NOOP": -1, "IMPLY_NATURAL": 0, "OR": 1, "EQUAL": 3, "AND": 2, "ISTRUE": 4, "LINEAR": 7, "RATIO": 8, "LOGICAL": 9, "IMPLY_MLN": 13, # Factor functions for categorical variables "AND_CAT": 12, "OR_CAT": 14, "EQUAL_CAT_CONST": 15, "IMPLY_NATURAL_CAT": 16, "IMPLY_MLN_CAT": 17, # Factor functions for generative models for data programming. # # These functions accept two types of categorical variables: # # y \in {1, -1} corresponding to latent labels, and # l \in {1, 0, -1} corresponding to labeling function outputs. # # The values of y are mapped to Numbskull variables y_index # via {-1: 0, 1: 1}, and # the values of l are mapped to Numbskull variables l_index # via {-1: 0, 0: 1, 1: 2}. # h(y) := y "DP_GEN_CLASS_PRIOR": 18, # h(l) := l "DP_GEN_LF_PRIOR": 19, # h(l) := l * l "DP_GEN_LF_PROPENSITY": 20, # h(y, l) := y * l "DP_GEN_LF_ACCURACY": 21, # h(l) := y * l * l "DP_GEN_LF_CLASS_PROPENSITY": 22, # l_2 fixes errors made by l_1 # # h(y, l_1, l_2) := if l_1 == 0 and l_2 != 0: -1, # elif l_1 == -1 * y and l_2 == y: 1, # else: 0 "DP_GEN_DEP_FIXING": 23, # l_2 reinforces the output of l_1 # # h(y, l_1, l_2) := if l_1 == 0 and l_2 != 0: -1, # elif l_1 == y and l_2 == y: 1, # else: 0 "DP_GEN_DEP_REINFORCING": 24, # h(l_1, l_2) := if l_1 != 0 and l_2 != 0: -1, else: 0 "DP_GEN_DEP_EXCLUSIVE": 25, #h(l_1, l_2) := if l_1 == l_2: 1, else: 0 "DP_GEN_DEP_SIMILAR": 26, # Factor functions for distribution "UFO": 30 } for (key, value) in FACTORS.items(): exec("FUNC_" + key + " = " + str(value)) @jit(nopython=True, cache=True, nogil=True) def eval_factor(factor_id, var_samp, value, var_copy, variable, factor, fmap, var_value): """TODO.""" #################### # BINARY VARIABLES # #################### fac = factor[factor_id] ftv_start = fac["ftv_offset"] ftv_end = ftv_start + fac["arity"] if fac["factorFunction"] == FUNC_NOOP: return 0 elif fac["factorFunction"] == FUNC_IMPLY_NATURAL: for l in range(ftv_start, ftv_end): v = value if (fmap[l]["vid"] == var_samp) else \ var_value[var_copy][fmap[l]["vid"]] if v == 0: # Early return if body is not satisfied return 0 # If this point is reached, body must be true l = ftv_end - 1 head = value if (fmap[l]["vid"] == var_samp) else \ var_value[var_copy][fmap[l]["vid"]] if head: return 1 return -1 elif factor[factor_id]["factorFunction"] == FUNC_OR: for l in range(ftv_start, ftv_end): v = value if (fmap[l]["vid"] == var_samp) else \ var_value[var_copy][fmap[l]["vid"]] if v == 1: return 1 return -1 elif factor[factor_id]["factorFunction"] == FUNC_EQUAL: v = value if (fmap[ftv_start]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start]["vid"]] for l in range(ftv_start + 1, ftv_end): w = value if (fmap[l]["vid"] == var_samp) \ else var_value[var_copy][fmap[l]["vid"]] if v != w: return -1 return 1 elif factor[factor_id]["factorFunction"] == FUNC_AND \ or factor[factor_id]["factorFunction"] == FUNC_ISTRUE: for l in range(ftv_start, ftv_end): v = value if (fmap[l]["vid"] == var_samp) \ else var_value[var_copy][fmap[l]["vid"]] if v == 0: return -1 return 1 elif factor[factor_id]["factorFunction"] == FUNC_LINEAR: res = 0 head = value if (fmap[ftv_end - 1]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_end - 1]["vid"]] for l in range(ftv_start, ftv_end - 1): v = value if (fmap[l]["vid"] == var_samp) \ else var_value[var_copy][fmap[l]["vid"]] if v == head: res += 1 # This does not match Dimmwitted, but matches the eq in the paper return res elif factor[factor_id]["factorFunction"] == FUNC_RATIO: res = 1 head = value if (fmap[ftv_end - 1]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_end - 1]["vid"]] for l in range(ftv_start, ftv_end - 1): v = value if (fmap[l]["vid"] == var_samp) \ else var_value[var_copy][fmap[l]["vid"]] if v == head: res += 1 # This does not match Dimmwitted, but matches the eq in the paper return math.log(res) # TODO: use log2? elif factor[factor_id]["factorFunction"] == FUNC_LOGICAL: head = value if (fmap[ftv_end - 1]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_end - 1]["vid"]] for l in range(ftv_start, ftv_end - 1): v = value if (fmap[l]["vid"] == var_samp) \ else var_value[var_copy][fmap[l]["vid"]] if v == head: return 1 return 0 elif factor[factor_id]["factorFunction"] == FUNC_IMPLY_MLN: for l in range(ftv_start, ftv_end - 1): v = value if (fmap[l]["vid"] == var_samp) \ else var_value[var_copy][fmap[l]["vid"]] if v == 0: # Early return if body is not satisfied return 1 # If this point is reached, body must be true l = ftv_end - 1 head = value if (fmap[l]["vid"] == var_samp) \ else var_value[var_copy][l] if head: return 1 return 0 ######################### # CATEGORICAL VARIABLES # ######################### elif factor[factor_id]["factorFunction"] == FUNC_AND_CAT \ or factor[factor_id]["factorFunction"] == FUNC_EQUAL_CAT_CONST: for l in range(ftv_start, ftv_end): v = value if (fmap[l]["vid"] == var_samp) \ else var_value[var_copy][fmap[l]["vid"]] if v != fmap[l]["dense_equal_to"]: return 0 return 1 elif factor[factor_id]["factorFunction"] == FUNC_OR_CAT: for l in range(ftv_start, ftv_end): v = value if (fmap[l]["vid"] == var_samp) \ else var_value[var_copy][fmap[l]["vid"]] if v == fmap[l]["dense_equal_to"]: return 1 return -1 elif factor[factor_id]["factorFunction"] == FUNC_IMPLY_NATURAL_CAT: for l in range(ftv_start, ftv_end - 1): v = value if (fmap[l]["vid"] == var_samp) \ else var_value[var_copy][fmap[l]["vid"]] if v != fmap[l]["dense_equal_to"]: # Early return if body is not satisfied return 0 # If this point is reached, body must be true l = ftv_end - 1 head = value if (fmap[l]["vid"] == var_samp) \ else var_value[var_copy][l] if head == fmap[l]["dense_equal_to"]: return 1 return -1 elif factor[factor_id]["factorFunction"] == FUNC_IMPLY_MLN_CAT: for l in range(ftv_start, ftv_end - 1): v = value if (fmap[l]["vid"] == var_samp) \ else var_value[var_copy][fmap[l]["vid"]] if v != fmap[l]["dense_equal_to"]: # Early return if body is not satisfied return 1 # If this point is reached, body must be true l = ftv_end - 1 head = value if (fmap[l]["vid"] == var_samp) \ else var_value[var_copy][l] if head == fmap[l]["dense_equal_to"]: return 1 return 0 ##################### # DATA PROGRAMMING # # GENERATIVE MODELS # ##################### elif factor[factor_id]["factorFunction"] == FUNC_DP_GEN_CLASS_PRIOR: # NB: this doesn't make sense for categoricals y_index = value if fmap[ftv_start]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start]["vid"]] return 1 if y_index == 1 else -1 elif factor[factor_id]["factorFunction"] == FUNC_DP_GEN_LF_PRIOR: # NB: this doesn't make sense for categoricals l_index = value if fmap[ftv_start]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start]["vid"]] if l_index == 2: return -1 elif l_index == 0: return 0 else: return 1 elif factor[factor_id]["factorFunction"] == FUNC_DP_GEN_LF_PROPENSITY: l_index = value if fmap[ftv_start]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start]["vid"]] abstain = variable[fmap[ftv_start]["vid"]]["cardinality"] - 1 return 0 if l_index == abstain else 1 elif factor[factor_id]["factorFunction"] == FUNC_DP_GEN_LF_ACCURACY: y_index = value if fmap[ftv_start]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start]["vid"]] l_index = value if fmap[ftv_start + 1]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start + 1]["vid"]] abstain = variable[fmap[ftv_start + 1]["vid"]]["cardinality"] - 1 if l_index == abstain: return 0 elif y_index == l_index: return 1 else: return -1 elif factor[factor_id]["factorFunction"] == \ FUNC_DP_GEN_LF_CLASS_PROPENSITY: # NB: this doesn't make sense for categoricals y_index = value if fmap[ftv_start]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start]["vid"]] l_index = value if fmap[ftv_start + 1]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start + 1]["vid"]] abstain = variable[fmap[ftv_start + 1]["vid"]]["cardinality"] - 1 if l_index == abstain: return 0 elif y_index == 1: return 1 else: return -1 elif factor[factor_id]["factorFunction"] == FUNC_DP_GEN_DEP_FIXING: # NB: this doesn't make sense for categoricals y_index = value if fmap[ftv_start]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start]["vid"]] l1_index = value if fmap[ftv_start + 1]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start + 1]["vid"]] l2_index = value if fmap[ftv_start + 2]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start + 2]["vid"]] abstain = variable[fmap[ftv_start + 1]["vid"]]["cardinality"] - 1 if l1_index == abstain: return -1 if l2_index != 1 else 0 elif l1_index == 0 and l2_index == 1 and y_index == 1: return 1 elif l1_index == 1 and l2_index == 0 and y_index == 0: return 1 else: return 0 elif factor[factor_id]["factorFunction"] == FUNC_DP_GEN_DEP_REINFORCING: # NB: this doesn't make sense for categoricals y_index = value if fmap[ftv_start]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start]["vid"]] l1_index = value if fmap[ftv_start + 1]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start + 1]["vid"]] l2_index = value if fmap[ftv_start + 2]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start + 2]["vid"]] abstain = variable[fmap[ftv_start + 1]["vid"]]["cardinality"] - 1 if l1_index == abstain: return -1 if l2_index != 1 else 0 elif l1_index == 0 and l2_index == 0 and y_index == 0: return 1 elif l1_index == 1 and l2_index == 1 and y_index == 1: return 1 else: return 0 elif factor[factor_id]["factorFunction"] == FUNC_DP_GEN_DEP_EXCLUSIVE: l1_index = value if fmap[ftv_start]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start]["vid"]] l2_index = value if fmap[ftv_start + 1]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start + 1]["vid"]] abstain = variable[fmap[ftv_start]["vid"]]["cardinality"] - 1 return 0 if l1_index == abstain or l2_index == abstain else -1 elif factor[factor_id]["factorFunction"] == FUNC_DP_GEN_DEP_SIMILAR: l1_index = value if fmap[ftv_start]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start]["vid"]] l2_index = value if fmap[ftv_start + 1]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start + 1]["vid"]] return 1 if l1_index == l2_index else 0 ########################################### # FACTORS FOR OPTIMIZING DISTRIBUTED CODE # ########################################### elif factor[factor_id]["factorFunction"] == FUNC_UFO: v = value if fmap[ftv_start]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start]["vid"]] if v == 0: return 0 return value if fmap[ftv_start + v - 1]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start + v - 1]["vid"]] ###################### # FACTOR NOT DEFINED # ###################### else: # FUNC_UNDEFINED print("Error: Factor Function", factor[factor_id]["factorFunction"], "( used in factor", factor_id, ") is not implemented.") raise NotImplementedError("Factor function is not implemented.")
numbskull-master
numbskull/inference.py
"""TODO.""" from __future__ import print_function, absolute_import import numba from numba import jit import numpy as np import math import random from numbskull.inference import draw_sample, eval_factor @jit(nopython=True, cache=True, nogil=True) def learnthread(shardID, nshards, step, regularization, reg_param, truncation, var_copy, weight_copy, weight, variable, factor, fmap, vmap, factor_index, Z, fids, var_value, var_value_evid, weight_value, learn_non_evidence): """TODO.""" # Identify start and end variable nvar = variable.shape[0] start = (shardID * nvar) // nshards end = ((shardID + 1) * nvar) // nshards for var_samp in range(start, end): if variable[var_samp]["isEvidence"] == 4: # This variable is not owned by this machine continue sample_and_sgd(var_samp, step, regularization, reg_param, truncation, var_copy, weight_copy, weight, variable, factor, fmap, vmap, factor_index, Z[shardID], fids[shardID], var_value, var_value_evid, weight_value, learn_non_evidence) @jit(nopython=True, cache=True, nogil=True) def get_factor_id_range(variable, vmap, var_samp, val): """TODO.""" varval_off = val if variable[var_samp]["dataType"] == 0: varval_off = 0 vtf = vmap[variable[var_samp]["vtf_offset"] + varval_off] start = vtf["factor_index_offset"] end = start + vtf["factor_index_length"] return (start, end) @jit(nopython=True, cache=True, nogil=True) def sample_and_sgd(var_samp, step, regularization, reg_param, truncation, var_copy, weight_copy, weight, variable, factor, fmap, vmap, factor_index, Z, fids, var_value, var_value_evid, weight_value, learn_non_evidence): """TODO.""" # If learn_non_evidence sample twice. # The method corresponds to expectation-conjugate descent. if variable[var_samp]["isEvidence"] != 1: evidence = draw_sample(var_samp, var_copy, weight_copy, weight, variable, factor, fmap, vmap, factor_index, Z, var_value_evid, weight_value) # If evidence then store the initial value in a tmp variable # then sample and compute the gradient. else: evidence = variable[var_samp]["initialValue"] var_value_evid[var_copy][var_samp] = evidence # Sample the variable proposal = draw_sample(var_samp, var_copy, weight_copy, weight, variable, factor, fmap, vmap, factor_index, Z, var_value, weight_value) var_value[var_copy][var_samp] = proposal if not learn_non_evidence and variable[var_samp]["isEvidence"] != 1: return # Compute the gradient and update the weights # Iterate over corresponding factors range_fids = get_factor_id_range(variable, vmap, var_samp, evidence) # TODO: is it possible to avoid copying around fids if evidence != proposal: range_prop = get_factor_id_range(variable, vmap, var_samp, proposal) s1 = range_fids[1] - range_fids[0] s2 = range_prop[1] - range_prop[0] s = s1 + s2 fids[:s1] = factor_index[range_fids[0]:range_fids[1]] fids[s1:s] = factor_index[range_prop[0]:range_prop[1]] fids[:s].sort() else: s = range_fids[1] - range_fids[0] fids[:s] = factor_index[range_fids[0]:range_fids[1]] truncate = random.random() < 1.0 / truncation if regularization == 1 else False # go over all factor ids, ignoring dupes last_fid = -1 # numba 0.28 would complain if this were None for factor_id in fids[:s]: if factor_id == last_fid: continue last_fid = factor_id weight_id = factor[factor_id]["weightId"] if weight[weight_id]["isFixed"]: continue # Compute Gradient p0 = eval_factor(factor_id, var_samp, evidence, var_copy, variable, factor, fmap, var_value_evid) p1 = eval_factor(factor_id, var_samp, proposal, var_copy, variable, factor, fmap, var_value) gradient = (p1 - p0) * factor[factor_id]["featureValue"] # Update weight w = weight_value[weight_copy][weight_id] if regularization == 2: w *= (1.0 / (1.0 + reg_param * step)) w -= step * gradient elif regularization == 1: # Truncated Gradient # "Sparse Online Learning via Truncated Gradient" # Langford et al. 2009 w -= step * gradient if truncate: l1delta = reg_param * step * truncation w = max(0, w - l1delta) if w > 0 else min(0, w + l1delta) else: w -= step * gradient weight_value[weight_copy][weight_id] = w
numbskull-master
numbskull/learning.py
"""TODO.""" from .numbskull import main main()
numbskull-master
numbskull/__main__.py
from setuptools import setup setup( name='pytorch_radon', version='0.1.0', author='Philipp Ernst', author_email='[email protected]', packages=['pytorch_radon'], url='https://github.com/phernst/pytorch_radon.git', license='MIT', description='Pytorch implementation of scikit-image\'s radon function and more', install_requires=[ "torch >= 0.4.0", ], )
pytorch_radon-master
setup.py
import unittest from pytorch_radon.utils import PI, SQRT2, deg2rad import numpy as np class TestStackgram(unittest.TestCase): def test_pi(self): self.assertAlmostEqual(PI.item(), np.pi, places=6) def test_sqrt2(self): self.assertAlmostEqual(SQRT2.item(), np.sqrt(2), places=6) def test_deg2rad(self): self.assertAlmostEqual(deg2rad(45).item(), np.deg2rad(45), places=6) if __name__ == '__main__': unittest.main()
pytorch_radon-master
tests/test_utils.py
import unittest from pytorch_radon import Radon, IRadon import torch class TestRadon(unittest.TestCase): def test_radon_iradon_circle(self): img = torch.zeros(1,1,256,256) img[:, :, 120:130, 120:130] = 1 circle = True theta = torch.arange(180) r = Radon(img.shape[2], theta, circle) ir = IRadon(img.shape[2], theta, circle) sino = r(img) reco = ir(sino) self.assertAlmostEqual(torch.nn.MSELoss()(img, reco).item(), 0, places=4) def test_radon_iradon_not_circle(self): img = torch.zeros(1,1,256,256) img[:, :, 120:130, 120:130] = 1 circle = False theta = torch.arange(180) r = Radon(img.shape[2], theta, circle) ir = IRadon(img.shape[2], theta, circle) sino = r(img) reco = ir(sino) self.assertAlmostEqual(torch.nn.MSELoss()(img, reco).item(), 0, places=4) if __name__ == '__main__': unittest.main()
pytorch_radon-master
tests/test_radon.py
pytorch_radon-master
tests/__init__.py
import unittest from pytorch_radon import Radon, IRadon, Stackgram, IStackgram import torch class TestStackgram(unittest.TestCase): def test_stackgram_istackgram_circle(self): img = torch.zeros(1,1,256,256) img[:, :, 120:130, 120:130] = 1 circle = True theta = torch.arange(180) r = Radon(img.shape[2], theta, circle) ir = IRadon(img.shape[2], theta, circle) sg = Stackgram(img.shape[2], theta, circle) isg = IStackgram(img.shape[2], theta, circle) reco = ir(isg(sg(r(img)))) self.assertAlmostEqual(torch.nn.MSELoss()(img, reco).item(), 0, places=3) def test_stackgram_istackgram_not_circle(self): img = torch.zeros(1,1,256,256) img[:, :, 120:130, 120:130] = 1 circle = False theta = torch.arange(180) r = Radon(img.shape[2], theta, circle) ir = IRadon(img.shape[2], theta, circle) sg = Stackgram(img.shape[2], theta, circle) isg = IStackgram(img.shape[2], theta, circle) reco = ir(isg(sg(r(img)))) self.assertAlmostEqual(torch.nn.MSELoss()(img, reco).item(), 0, places=3) if __name__ == '__main__': unittest.main()
pytorch_radon-master
tests/test_stackgram.py
import unittest from pytorch_radon import Radon, IRadon from pytorch_radon.filters import RampFilter, HannFilter, LearnableFilter from pytorch_radon.filters import RampButterflyFilter, HannButterflyFilter import torch class TestStackgram(unittest.TestCase): def test_ramp_filter(self): img = torch.zeros(1,1,256,256) img[:, :, 120:130, 120:130] = 1 circle = True theta = torch.arange(180) r = Radon(img.shape[2], theta, circle) ir = IRadon(img.shape[2], theta, circle, use_filter=RampFilter()) reco = ir(r(img)) self.assertAlmostEqual(torch.nn.MSELoss()(img, reco).item(), 0, places=4) def test_hann_filter(self): img = torch.zeros(1,1,256,256) img[:, :, 120:130, 120:130] = 1 circle = True theta = torch.arange(180) r = Radon(img.shape[2], theta, circle) ir = IRadon(img.shape[2], theta, circle, use_filter=HannFilter()) reco = ir(r(img)) self.assertAlmostEqual(torch.nn.MSELoss()(img, reco).item(), 0, places=3) def test_learnable_filter(self): img = torch.zeros(1,1,256,256) img[:, :, 120:130, 120:130] = 1 circle = True theta = torch.arange(180) r = Radon(img.shape[2], theta, circle) ir = IRadon(img.shape[2], theta, circle, use_filter=LearnableFilter(img.shape[2])) reco = ir(r(img)) self.assertAlmostEqual(torch.nn.MSELoss()(img, reco).item(), 0, places=4) def test_ramp_butterfly_filter(self): img = torch.zeros(1,1,256,256) img[:, :, 120:130, 120:130] = 1 circle = True theta = torch.arange(180) r = Radon(img.shape[2], theta, circle) ir = IRadon(img.shape[2], theta, circle, use_filter=RampButterflyFilter(img.shape[2])) reco = ir(r(img)) self.assertAlmostEqual(torch.nn.MSELoss()(img, reco).item(), 0, places=4) # Check that it's close to using RampFilter ir_og = IRadon(img.shape[2], theta, circle, use_filter=RampFilter()) reco_og = ir_og(r(img)) self.assertAlmostEqual(torch.nn.MSELoss()(reco, reco_og).item(), 0, places=4) def test_hann_butterfly_filter(self): img = torch.zeros(1,1,256,256) img[:, :, 120:130, 120:130] = 1 circle = True theta = torch.arange(180) r = Radon(img.shape[2], theta, circle) ir = IRadon(img.shape[2], theta, circle, use_filter=HannButterflyFilter(img.shape[2])) reco = ir(r(img)) self.assertAlmostEqual(torch.nn.MSELoss()(img, reco).item(), 0, places=3) # Check that it's close to using HannFilter ir_og = IRadon(img.shape[2], theta, circle, use_filter=HannFilter()) reco_og = ir_og(r(img)) self.assertAlmostEqual(torch.nn.MSELoss()(reco, reco_og).item(), 0, places=4) if __name__ == '__main__': unittest.main()
pytorch_radon-master
tests/test_filters.py
from .radon import Radon, IRadon from .stackgram import Stackgram, IStackgram
pytorch_radon-master
pytorch_radon/__init__.py
import torch # constants PI = 4*torch.ones(1).atan() SQRT2 = (2*torch.ones(1)).sqrt() def fftfreq(n): val = 1.0/n results = torch.zeros(n) N = (n-1)//2 + 1 p1 = torch.arange(0, N) results[:N] = p1 p2 = torch.arange(-(n//2), 0) results[N:] = p2 return results*val def deg2rad(x): return x*PI/180
pytorch_radon-master
pytorch_radon/utils.py
import torch from torch import nn import torch.nn.functional as F from .utils import PI, SQRT2, deg2rad from .filters import RampFilter class Radon(nn.Module): def __init__(self, in_size, theta=None, circle=True): super(Radon, self).__init__() self.circle = circle self.theta = theta if theta is None: self.theta = torch.arange(180) self.all_grids = self._create_grids(self.theta, in_size if circle else int((SQRT2*in_size).ceil())) def forward(self, x): N, C, W, H = x.shape assert(W==H) if not self.circle: diagonal = SQRT2 * W pad = int((diagonal - W).ceil()) new_center = (W + pad) // 2 old_center = W // 2 pad_before = new_center - old_center pad_width = (pad_before, pad - pad_before) x = F.pad(x, (pad_width[0], pad_width[1], pad_width[0], pad_width[1])) N, C, W, _ = x.shape L, _, __, _ = self.all_grids.shape grid = self.all_grids.to(x.device).view(L * W, W, 2).expand(N, -1, -1, -1) x_sampled = F.grid_sample(x, grid, align_corners=True) out = x_sampled.view(N, C, L, W, W).sum(dim=3).transpose(-1, -2) # out = torch.zeros(N, C, W, len(self.theta), device=x.device) # for i in range(len(self.theta)): # rotated = F.grid_sample(x, self.all_grids[i].repeat(N, 1, 1, 1).to(x.device), align_corners=False) # out[...,i] = rotated.sum(2) return out def _create_grids(self, angles, grid_size): rad = deg2rad(angles) c, s = rad.cos(), rad.sin() R = torch.stack((torch.stack((c, s, torch.zeros_like(c)), dim=-1), torch.stack((-s, c, torch.zeros_like(c)), dim=-1)), dim=-2) return F.affine_grid(R, (R.shape[0], 1, grid_size, grid_size), align_corners=True) # all_grids = [] # for theta in angles: # theta = deg2rad(theta) # R = torch.tensor([[ # [ theta.cos(), theta.sin(), 0], # [-theta.sin(), theta.cos(), 0], # ]]) # all_grids.append(F.affine_grid(R, (1, 1, grid_size, grid_size), align_corners=False)) # return all_grids class IRadon(nn.Module): def __init__(self, out_size, theta=None, circle=True, use_filter=RampFilter()): super(IRadon, self).__init__() self.circle = circle self.theta = theta if theta is not None else torch.arange(180) self.out_size = out_size self.in_size = in_size = out_size if circle else int((SQRT2*out_size).ceil()) # self.xgrid = torch.arange(in_size).float().view(1,-1).repeat(in_size, 1)*2/(in_size-1)-1 self.xgrid = torch.linspace(-1.0, 1.0, in_size).expand(in_size, -1) # self.ygrid = torch.arange(in_size).float().view(-1,1).repeat(1, in_size)*2/(in_size-1)-1 self.ygrid = torch.linspace(-1.0, 1.0, in_size).unsqueeze(-1).expand(-1, in_size) self.all_grids = self._create_grids(self.theta, in_size) self.filter = use_filter if use_filter is not None else lambda x: x def forward(self, x): it_size = x.shape[2] ch_size = x.shape[1] x = self.filter(x) N, C, W, _ = x.shape L, _, __, _ = self.all_grids.shape grid = self.all_grids.to(x.device).view(L * W, W, 2).expand(N, -1, -1, -1) x_sampled = F.grid_sample(x, grid, align_corners=True) reco = x_sampled.view(N, C, L, W, W).sum(dim=2) # reco = torch.zeros(x.shape[0], ch_size, it_size, it_size).to(x.device) # for i_theta in range(len(self.theta)): # reco += F.grid_sample(x, self.all_grids[i_theta].repeat(reco.shape[0], 1, 1, 1).to(x.device), align_corners=True) if not self.circle: W = self.out_size diagonal = self.in_size pad = int(torch.tensor(diagonal - W).float().ceil()) new_center = (W + pad) // 2 old_center = W // 2 pad_before = new_center - old_center pad_width = (pad_before, pad - pad_before) reco = F.pad(reco, (-pad_width[0], -pad_width[1], -pad_width[0], -pad_width[1])) if self.circle: reconstruction_circle = (self.xgrid ** 2 + self.ygrid ** 2) <= 1 # reconstruction_circle = reconstruction_circle.repeat(x.shape[0], ch_size, 1, 1) # reco[~reconstruction_circle] = 0. reco[:, :, ~reconstruction_circle] = 0. return reco*PI.item()/(2*len(self.theta)) # def _XYtoT(self, theta): # T = self.xgrid*(deg2rad(theta)).cos() - self.ygrid*(deg2rad(theta)).sin() # return T def _create_grids(self, angles, grid_size): X = torch.linspace(-1.0, 1.0, len(angles)).unsqueeze(-1).unsqueeze(-1).expand(-1, grid_size, grid_size) rad = deg2rad(angles).unsqueeze(-1).unsqueeze(-1) c, s = rad.cos(), rad.sin() Y = self.xgrid.unsqueeze(0) * c - self.ygrid * s return torch.stack((X, Y), dim=-1) # all_grids = [] # for i_theta in range(len(angles)): # X = torch.ones(grid_size).float().view(-1,1).repeat(1, grid_size)*i_theta*2./(len(angles)-1)-1. # Y = self._XYtoT(angles[i_theta]) # all_grids.append(torch.cat((X.unsqueeze(-1), Y.unsqueeze(-1)), dim=-1)) # return torch.stack(all_grids, dim=0)
pytorch_radon-master
pytorch_radon/radon.py
import torch from torch import nn import torch.nn.functional as F from .utils import SQRT2, deg2rad class Stackgram(nn.Module): def __init__(self, out_size, theta=None, circle=True, mode='nearest'): super(Stackgram, self).__init__() self.circle = circle self.theta = theta if theta is None: self.theta = torch.arange(180) self.out_size = out_size self.in_size = in_size = out_size if circle else int((SQRT2*out_size).ceil()) self.all_grids = self._create_grids(self.theta, in_size) self.mode = mode def forward(self, x): stackgram = torch.zeros(x.shape[0], len(self.theta), self.in_size, self.in_size).to(x.device) for i_theta in range(len(self.theta)): repline = x[...,i_theta] repline = repline.unsqueeze(-1).repeat(1,1,1,repline.shape[2]) linogram = F.grid_sample(repline, self.all_grids[i_theta].repeat(x.shape[0],1,1,1).to(x.device), mode=self.mode) stackgram[:,i_theta] = linogram return stackgram def _create_grids(self, angles, grid_size): all_grids = [] for i_theta in range(len(angles)): t = deg2rad(angles[i_theta]) R = torch.tensor([[t.sin(), t.cos(), 0.],[t.cos(), -t.sin(), 0.]]).unsqueeze(0) all_grids.append(F.affine_grid(R, torch.Size([1,1,grid_size,grid_size]))) return all_grids class IStackgram(nn.Module): def __init__(self, out_size, theta=None, circle=True, mode='bilinear'): super(IStackgram, self).__init__() self.circle = circle self.theta = theta if theta is None: self.theta = torch.arange(180) self.out_size = out_size self.in_size = in_size = out_size if circle else int((SQRT2*out_size).ceil()) self.all_grids = self._create_grids(self.theta, in_size) self.mode = mode def forward(self, x): sinogram = torch.zeros(x.shape[0], 1, self.in_size, len(self.theta)).to(x.device) for i_theta in range(len(self.theta)): linogram = x[:,i_theta].unsqueeze(1) repline = F.grid_sample(linogram, self.all_grids[i_theta].repeat(x.shape[0],1,1,1).to(x.device), mode=self.mode) repline = repline[...,repline.shape[-1]//2] sinogram[...,i_theta] = repline return sinogram def _create_grids(self, angles, grid_size): all_grids = [] for i_theta in range(len(angles)): t = deg2rad(angles[i_theta]) R = torch.tensor([[t.sin(), t.cos(), 0.],[t.cos(), -t.sin(), 0.]]).unsqueeze(0) all_grids.append(F.affine_grid(R, torch.Size([1,1,grid_size,grid_size]))) return all_grids
pytorch_radon-master
pytorch_radon/stackgram.py
import torch from torch import nn import torch.nn.functional as F from .utils import PI, fftfreq class AbstractFilter(nn.Module): def __init__(self): super(AbstractFilter, self).__init__() def forward(self, x): input_size = x.shape[2] projection_size_padded = \ max(64, int(2 ** (2 * torch.tensor(input_size)).float().log2().ceil())) pad_width = projection_size_padded - input_size padded_tensor = F.pad(x, (0,0,0,pad_width)) f = fftfreq(padded_tensor.shape[2]).view(-1, 1).to(x.device) fourier_filter = self.create_filter(f) # fourier_filter = fourier_filter.unsqueeze(-1).repeat(1,1,2) fourier_filter = fourier_filter.unsqueeze(-1) projection = torch.rfft(padded_tensor.transpose(2,3), 1, onesided=False).transpose(2,3) * fourier_filter return torch.irfft(projection.transpose(2,3), 1, onesided=False).transpose(2,3)[:,:,:input_size,:] def create_filter(self, f): raise NotImplementedError class RampFilter(AbstractFilter): def __init__(self): super(RampFilter, self).__init__() def create_filter(self, f): return 2 * f.abs() class HannFilter(AbstractFilter): def __init__(self): super(HannFilter, self).__init__() def create_filter(self, f): fourier_filter = 2 * f.abs() omega = 2*PI*f fourier_filter *= (1 + (omega / 2).cos()) / 2 return fourier_filter class LearnableFilter(AbstractFilter): def __init__(self, filter_size): super(LearnableFilter, self).__init__() self.filter = nn.Parameter(2*fftfreq(filter_size).abs().view(-1, 1)) def forward(self, x): fourier_filter = self.filter.unsqueeze(-1).repeat(1,1,2).to(x.device) projection = torch.rfft(x.transpose(2,3), 1, onesided=False).transpose(2,3) * fourier_filter return torch.irfft(projection.transpose(2,3), 1, onesided=False).transpose(2,3) import sys # butterfly_root = '../../learning-circuits' from pathlib import Path butterfly_root = Path(__file__).absolute().parent.parent.parent / 'learning-circuits' sys.path.insert(0, str(butterfly_root)) import math from butterfly import Butterfly from butterfly.utils import bitreversal_permutation def fft_twiddle(n, forward=True, normalized=False): m = int(math.ceil(math.log2(n))) assert n == 1 << m, 'n must be a power of 2' factors = [] for log_size in range(1, m + 1): size = 1 << log_size angles = -torch.arange(size // 2, dtype=torch.float) / size * 2 * math.pi if not forward: angles = -angles c, s = torch.cos(angles), torch.sin(angles) real = torch.stack((torch.stack((torch.ones_like(c), c), dim=-1), torch.stack((torch.ones_like(c), -c), dim=-1)), dim=-2) imag = torch.stack((torch.stack((torch.zeros_like(s), s), dim=-1), torch.stack((torch.zeros_like(s), -s), dim=-1)), dim=-2) twiddle_factor = torch.stack((real, imag), dim=-1) factors.append(twiddle_factor.repeat(n // size, 1, 1, 1)) twiddle = torch.stack(factors, dim=0).unsqueeze(0) if normalized: # Divide the whole transform by sqrt(n) by dividing each factor by n^(1/2 log_n) = sqrt(2) twiddle /= math.sqrt(2) elif not forward: twiddle /= 2 return twiddle def butterfly_transpose_conjugate(twiddle): twiddle_conj = twiddle.clone() if twiddle.dim() == 6: twiddle_conj[..., 1] *= -1 # conjugate return twiddle_conj.transpose(3, 4) class ButterflyFilter(AbstractFilter): def __init__(self, input_size): super().__init__() filter_size = \ max(64, int(2 ** (2 * torch.tensor(input_size)).float().log2().ceil())) self.butterfly_ifft = Butterfly(filter_size, filter_size, complex=True, tied_weight=False, bias=False) # iFFT self.butterfly_ifft.twiddle = torch.nn.Parameter(fft_twiddle(filter_size, forward=False, normalized=True)) self.butterfly_fft = Butterfly(filter_size, filter_size, complex=True, tied_weight=False, bias=False, increasing_stride=False) # FFT self.butterfly_fft.twiddle = torch.nn.Parameter(butterfly_transpose_conjugate(self.butterfly_ifft.twiddle)) f = fftfreq(filter_size) fourier_filter = self.create_filter(f) br = bitreversal_permutation(filter_size) self.fourier_filter_br = torch.nn.Parameter(fourier_filter[br]) def forward(self, x): b, c, input_size, nangles = x.shape x_reshaped = x.transpose(2, 3).reshape(b * c * nangles, input_size, 1) # Last dimension for complex projection_size_padded = \ max(64, int(2 ** (2 * torch.tensor(input_size)).float().log2().ceil())) pad_width = projection_size_padded - input_size padded_tensor = F.pad(x_reshaped, (0, 1, 0, pad_width)) projection = self.butterfly_ifft(self.butterfly_fft(padded_tensor) * self.fourier_filter_br.unsqueeze(-1))[:, :input_size, 0] return projection.t().reshape(b, c, input_size, nangles) class RampButterflyFilter(ButterflyFilter, RampFilter): pass class HannButterflyFilter(ButterflyFilter, HannFilter): pass # n = 1024 # b = Butterfly(n, n, complex=True, tied_weight=False, bias=False) # iFFT # b.twiddle = torch.nn.Parameter(fft_twiddle(n, forward=False, normalized=True)) # b_t = Butterfly(n, n, complex=True, tied_weight=False, bias=False, increasing_stride=False) # FFT # b_t.twiddle = torch.nn.Parameter(butterfly_transpose_conjugate(b.twiddle)) # br = bitreversal_permutation(n) # v = torch.randn(1, n, 2) # v_if = torch.ifft(v, 1, normalized=True) # v_b = b(v[:, br]) # print((v_if - v_b).abs().max()) # v_f = torch.fft(v, 1, normalized=True) # v_bt = b_t(v)[:, br] # print((v_f - v_bt).abs().max()) # h_f = torch.randn(n) # v_conv_h = torch.ifft(torch.fft(v, 1) * h_f.unsqueeze(-1), 1) # v_conv_h_butterfly = b(b_t(v) * h_f[br].unsqueeze(-1)) # print((v_conv_h - v_conv_h_butterfly).abs().max()) # twiddle = b.twiddle.clone() # factor = twiddle[:, 0].transpose(2, 3).reshape(-1, n, 2, 2) * h_f[br].unsqueeze(-1).unsqueeze(-1) # factor = factor.view(twiddle[:, 0].shape).transpose(2, 3) # twiddle[:, 0] = factor # b_h = Butterfly(n, n, complex=True, tied_weight=False, bias=False) # b_h.twiddle = torch.nn.Parameter(twiddle) # v_conv_h_bbt = b_h(b_t(v)) # print((v_conv_h - v_conv_h_bbt).abs().max())
pytorch_radon-master
pytorch_radon/filters.py
from setuptools import find_packages, setup setup( name="tabi", version="0.0.1", author="Megan Leszczynski", author_email="[email protected]", packages=find_packages(), )
tabi-main
setup.py
import argparse from tabi.utils.utils import str2bool parser = argparse.ArgumentParser(add_help=False) general_args = parser.add_argument_group("general_args") general_args.add_argument( "--verbose", type=str2bool, default="False", help="Print debug information" ) general_args.add_argument( "--distributed", type=str2bool, default="False", help="Use distributed data parallel", ) general_args.add_argument( "--local_rank", type=int, default=-1, help="Local rank. Provided by pytorch torch.distributed.launch script.", ) general_args.add_argument( "--log_dir", type=str, required=True, help="Directory to save log and outputs" ) general_args.add_argument( "--num_workers", type=int, default=4, help="Number of dataloader workers" ) general_args.add_argument( "--gpu", type=int, default=0, help="Device to use (-1 if CPU)" ) general_args.add_argument("--batch_size", type=int, default=32, help="Batch size") general_args.add_argument("--seed", type=int, default=1234, help="Seed for training") general_args.add_argument("--type_file", type=str, help="List of types") model_args = parser.add_argument_group("model_args") model_args.add_argument( "--tied", type=str2bool, default="True", help="Tie mention and entity encoder weights", ) model_args.add_argument("--temperature", type=float, default=0.1, help="Temperature") model_args.add_argument( "--model_name", type=str, default="bert-base-uncased", help="Transformer model for initialization", ) model_args.add_argument( "--tokenizer_name", type=str, default="bert-base-uncased", help="Transformer tokenizer", ) model_args.add_argument( "--normalize", type=str2bool, default=True, help="Use L2 normalization for entity and mention embs. If using normalization, a lower temperature value (i.e. 0.1) is recommended.", ) model_args.add_argument( "--add_entity_type_in_description", type=str2bool, default="False", help="Add the entity type in the entity encoding", ) model_args.add_argument( "--max_entity_length", type=int, default=128, help="Max numbers of tokens for entity", ) model_args.add_argument( "--max_context_length", type=int, default=32, help="Max number of tokens for mention context", )
tabi-main
tabi/config.py
ENT_START = "[unused1]" MENTION_START = "[unused2]" MENTION_END = "[unused3]"
tabi-main
tabi/constants.py
tabi-main
tabi/__init__.py
"""Extract entity embeddings from a trained biencoder model.""" import argparse import logging import os import numpy as np import torch import torch.nn as nn from torch.utils.data import DataLoader from tqdm import tqdm from tabi.config import parser from tabi.data import EntityDataset from tabi.models.biencoder import Biencoder from tabi.utils.train_utils import set_random_seed from tabi.utils.utils import ( load_model, log_setup, move_dict, save_entity_map, set_device, ) logger = logging.getLogger() # we only use DataParallel with entity extraction # to avoid merging back together embeddings across processes with DistributedDataParallel def main(args): # setup log directory and logger log_setup(args) # set seed and device set_random_seed(args.seed) set_device(args) # datasets and dataloaders logger.info("Loading entity dataset...") dataset = EntityDataset( entity_path=args.entity_file, add_entity_type_in_description=args.add_entity_type_in_description, max_entity_length=args.max_entity_length, tokenized_entity_data=args.tokenized_entity_data, tokenizer_name=args.tokenizer_name, type_path=args.type_file, ) dataloader = DataLoader( dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=False ) # init model model = Biencoder( tied=args.tied, model_name=args.model_name, normalize=args.normalize, temperature=args.temperature, ) embed_dim = model.dim # load saved model weights if args.model_checkpoint is not None: load_model( model_checkpoint=args.model_checkpoint, device=args.device, model=model ) if args.distributed: logger.info(f"Using DataParallel with {torch.cuda.device_count()} GPUs") model = nn.DataParallel(model) model = model.to(args.device) # save entity embeddings to memory mapped file emb_path = os.path.join(args.log_dir, args.entity_emb_path) logger.info(f"Saving entity embeddings to {emb_path}.") mmap_file = np.memmap( emb_path, dtype="float32", mode="w+", shape=(len(dataset), embed_dim) ) model.eval() entity_ids = [] with torch.no_grad(): with tqdm(total=len(dataloader), unit="ex") as bar: for step, batch in enumerate(dataloader): entity_emb_batch = model( entity_data=move_dict(batch["sample"], args.device) )["entity_embs"] start_idx = step * args.batch_size end_idx = start_idx + args.batch_size mmap_file[start_idx:end_idx] = entity_emb_batch.cpu().numpy() entity_ids.extend(batch["entity_id"].tolist()) bar.update(1) mmap_file.flush() # keep track of embedding idx to entity_id mapping id_map_path = os.path.join(args.log_dir, args.entity_map_file) save_entity_map(id_map_path, entity_ids) if __name__ == "__main__": # add arguments specific to entity extraction to parser parser = argparse.ArgumentParser(parents=[parser]) entity_args = parser.add_argument_group("entity_args") entity_args.add_argument("--entity_file", type=str, required=True) entity_args.add_argument("--model_checkpoint", type=str, required=True) entity_args.add_argument("--entity_emb_path", type=str, default="embs.npy") entity_args.add_argument("--entity_map_file", type=str, default="entity_map.pkl") entity_args.add_argument( "--tokenized_entity_data", type=str, help="File path for memory mapped entity data", ) args = parser.parse_args() main(args)
tabi-main
tabi/extract_entity.py
"""Preprocesses entity data into memory mapped file to reduce memory usage by dataloaders.""" import argparse import logging import os import numpy as np import torch from torch.utils.data import DataLoader from tqdm import tqdm from tabi.config import parser from tabi.data import EntityDataset from tabi.utils.train_utils import set_random_seed from tabi.utils.utils import get_mmap_type, log_setup, save_entity_map, set_device torch.multiprocessing.set_sharing_strategy("file_system") os.environ["TOKENIZERS_PARALLELISM"] = "true" logger = logging.getLogger() def main(args): # setup log directory and logger log_setup(args) # set seed and device set_random_seed(args.seed) set_device(args) # datasets and dataloaders logger.info("Loading entity dataset...") dataset = EntityDataset( entity_path=args.entity_file, add_entity_type_in_description=args.add_entity_type_in_description, max_entity_length=args.max_entity_length, tokenizer_name=args.tokenizer_name, type_path=args.type_file, ) dataloader = DataLoader( dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=False ) # store tokenized results in memory mapped file entity_type = get_mmap_type(args.max_entity_length) mmap_file_path = os.path.join(args.log_dir, args.entity_memmap_file) logger.info(f"Saving tokenized entity data to {mmap_file_path}.") mmap_file = np.memmap( mmap_file_path, dtype=entity_type, mode="w+", shape=len(dataset) ) entity_ids = [] with tqdm(total=len(dataloader), unit="ex", desc="Extracting") as bar: for step, batch in enumerate(dataloader): entity_batch_data = batch["sample"] start_idx = step * args.batch_size end_idx = start_idx + args.batch_size mmap_file[start_idx:end_idx]["input_ids"] = entity_batch_data["input_ids"] mmap_file[start_idx:end_idx]["attention_mask"] = entity_batch_data[ "attention_mask" ] mmap_file[start_idx:end_idx]["token_type_ids"] = entity_batch_data[ "token_type_ids" ] entity_ids.extend(batch["entity_id"].tolist()) bar.update(1) mmap_file.flush() # keep track of embedding idx to entity_id mapping id_map_path = os.path.join(args.log_dir, args.entity_map_file) save_entity_map(id_map_path, entity_ids) if __name__ == "__main__": parser = argparse.ArgumentParser(parents=[parser]) entity_args = parser.add_argument_group("entity_args") entity_args.add_argument("--entity_file", type=str, required=True) entity_args.add_argument("--entity_map_file", type=str, default="entity_map.pkl") entity_args.add_argument( "--entity_memmap_file", type=str, default="entity_data.npy" ) args = parser.parse_args() main(args)
tabi-main
tabi/preprocess_entity.py
"""Train biencoder model for entity retrieval.""" import argparse import logging import math import os import time import torch import torch.distributed as dist import torch.nn as nn from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm from tabi.config import parser from tabi.data import EntityLinkingDataset from tabi.models.biencoder import Biencoder from tabi.utils.train_utils import get_bert_optimizer, set_random_seed from tabi.utils.utils import load_model, log_setup, move_dict, set_device, str2bool logger = logging.getLogger() def train(args, model, dataloader, optimizer, tb_writer, epoch, global_step): """Train for one epoch""" model.train() total_loss = 0.0 loss_fn = model.module.loss if args.distributed else model.loss log_every_k_steps = max(1, int(args.log_freq * len(dataloader))) logger.info(f"Logging every {log_every_k_steps} steps") with tqdm(total=len(dataloader), unit="ex", desc="Training") as bar: for step, batch in enumerate(dataloader): start = time.time() embs = model( entity_data=move_dict(batch["entity"], args.device), context_data=move_dict(batch["context"], args.device), ) loss = loss_fn( query_embs=embs["query_embs"], entity_embs=embs["entity_embs"], query_type_labels=batch["query_type_labels"].to(args.device), query_entity_labels=batch["query_entity_labels"].to(args.device), entity_labels=batch["entity_labels"].to(args.device), ) optimizer.zero_grad() loss["total_loss"].backward() optimizer.step() bar.update(1) bar.set_postfix(loss=f'{loss["total_loss"].item():.6f}') total_loss += loss["total_loss"].item() if (step + 1) % log_every_k_steps == 0: logger.info( f"Epoch: {epoch} [{step}/{len(dataloader)}] | loss: {round(loss['total_loss'].item(), 4)} | lr: {optimizer.param_groups[0]['lr']} | {round(time.time()-start, 4)}s/batch" ) if args.local_rank in [-1, 0]: tb_writer.add_scalar( "total_loss/train/step", loss["total_loss"].item(), global_step + step, ) tb_writer.add_scalar( "ent_loss/train/step", loss["ent_loss"].item(), global_step + step ) tb_writer.add_scalar( "type_loss/train/step", loss["type_loss"].item(), global_step + step ) avg_loss = total_loss / (step + 1.0) return avg_loss def eval(args, model, dataloader): """Eval over entities in batch""" model.eval() total_loss = 0.0 loss_fn = model.module.loss if args.distributed else model.loss with torch.no_grad(): with tqdm(total=len(dataloader), unit="ex", desc="Evaluating") as bar: for step, batch in enumerate(dataloader): embs = model( entity_data=move_dict(batch["entity"], args.device), context_data=move_dict(batch["context"], args.device), ) loss = loss_fn( query_embs=embs["query_embs"], entity_embs=embs["entity_embs"], query_type_labels=batch["query_type_labels"].to(args.device), query_entity_labels=batch["query_entity_labels"].to(args.device), entity_labels=batch["entity_labels"].to(args.device), ) bar.update(1) bar.set_postfix(loss=f'{loss["total_loss"].item():.6f}') total_loss += loss["total_loss"] avg_loss = total_loss.item() / (step + 1.0) return avg_loss def main(args): # setup log directory and logger log_setup(args) # setup tensorboard: only first process in distributed logs to tensorboard tb_writer = None if args.local_rank in [-1, 0]: tb_writer = SummaryWriter(log_dir=args.log_dir) # set seed and device set_random_seed(args.seed) set_device(args) # prepare datasets and dataloaders logger.info("Preparing train dataset...") train_dataset = EntityLinkingDataset( data_path=args.train_data_file, entity_path=args.train_entity_file, neg_sample_file=args.train_neg_sample_file, num_negatives=args.num_negatives, add_entity_type_in_description=args.add_entity_type_in_description, max_context_length=args.max_context_length, max_entity_length=args.max_entity_length, tokenized_entity_data=args.tokenized_entity_data, tokenizer_name=args.tokenizer_name, type_path=args.type_file, ) logger.info("Preparing dev dataset...") dev_dataset = EntityLinkingDataset( data_path=args.dev_data_file, entity_path=args.dev_entity_file, neg_sample_file=args.dev_neg_sample_file, num_negatives=args.num_negatives, add_entity_type_in_description=args.add_entity_type_in_description, max_context_length=args.max_context_length, max_entity_length=args.max_entity_length, tokenized_entity_data=args.tokenized_entity_data, tokenizer_name=args.tokenizer_name, type_path=args.type_file, ) # make sure each process only gets its portion of the dataset if args.distributed: # necessary to set seed here or else seed will be default distributed seed (zero) # and data will not change ordering wrt seed argument train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset, seed=args.seed, drop_last=True ) dev_sampler = torch.utils.data.distributed.DistributedSampler( dev_dataset, seed=args.seed, drop_last=True ) else: train_sampler = None dev_sampler = None train_dataloader = DataLoader( train_dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=(train_sampler is None), sampler=train_sampler, drop_last=True, ) dev_dataloader = DataLoader( dev_dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=(dev_sampler is None), sampler=dev_sampler, drop_last=True, ) # init model model = Biencoder( tied=args.tied, model_name=args.model_name, normalize=args.normalize, temperature=args.temperature, is_distributed=args.local_rank > -1, alpha=args.alpha, ) model = model.to(args.device) # optimizer optimizer = get_bert_optimizer(model, learning_rate=args.lr) # lr scheduler if args.lr_scheduler_type == "step": lr_scheduler = torch.optim.lr_scheduler.StepLR( optimizer, step_size=1, gamma=0.5 # each epoch ) else: lr_scheduler = None # load saved model weights and load optimizer/scheduler state dicts global_step = 0 starting_epoch = 0 if args.model_checkpoint is not None: model_ckpt_stats = load_model( model_checkpoint=args.model_checkpoint, device=args.device, model=model, optimizer=optimizer, lr_scheduler=lr_scheduler, ) global_step = model_ckpt_stats["global_step"] starting_epoch = model_ckpt_stats["epoch"] if lr_scheduler is None: for g in optimizer.param_groups: g["lr"] = args.lr if args.distributed: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.device], find_unused_parameters=True ) # train loop best_dev_loss = float("inf") for epoch in range(starting_epoch, starting_epoch + args.n_epochs): # required for determinism across runs with distributed if args.distributed: train_sampler.set_epoch(epoch) # train for one epoch avg_train_loss = train( args, model=model, dataloader=train_dataloader, optimizer=optimizer, tb_writer=tb_writer, epoch=epoch, global_step=global_step, ) global_step += len(train_dataloader) if args.lr_scheduler_type == "step": lr_scheduler.step() if lr_scheduler is not None: logger.info( f"Epoch {epoch} | average train loss: {round(avg_train_loss, 6)} | lr: {lr_scheduler.get_last_lr()[0]}" ) else: logger.info( f"Epoch {epoch} | average train loss: {round(avg_train_loss, 6)} | lr: {optimizer.param_groups[0]['lr']}" ) logger.info(f"Epoch {epoch} | average train loss: {round(avg_train_loss, 6)}") # evaluate on dev set avg_dev_loss = eval(args, model=model, dataloader=dev_dataloader) logger.info(f"Epoch {epoch} | average dev loss: {round(avg_dev_loss, 6)}") # log to tensorboard if args.local_rank in [-1, 0]: tb_writer.add_scalar("Loss/train/epoch", avg_train_loss, epoch) tb_writer.add_scalar("Loss/dev/epoch", avg_dev_loss, epoch) # save model at the end of each epoch if args.local_rank in [-1, 0]: ckpt_path = os.path.join(args.log_dir, f"model_epoch{epoch+1}.pth") torch.save( { "epoch": epoch, "global_step": global_step, "optimizer": optimizer.state_dict(), "train_loss": avg_train_loss, "dev_loss": avg_dev_loss, "state_dict": model.state_dict(), "lr_scheduler": lr_scheduler.state_dict() if lr_scheduler is not None else None, "rng_cpu": torch.get_rng_state(), "rng_gpu": torch.cuda.get_rng_state() if args.device != "cpu" else None, }, ckpt_path, ) # keep track of best dev score if avg_dev_loss < best_dev_loss and args.local_rank in [-1, 0]: ckpt_path = os.path.join(args.log_dir, "best_model.pth") logger.info(f"Dev loss improved. Saving checkpoint to {ckpt_path}.") torch.save( { "epoch": epoch, "global_step": global_step, "optimizer": optimizer.state_dict(), "train_loss": avg_train_loss, "dev_loss": avg_dev_loss, "state_dict": model.state_dict(), "lr_scheduler": lr_scheduler.state_dict() if lr_scheduler is not None else None, "rng_cpu": torch.get_rng_state(), "rng_gpu": torch.cuda.get_rng_state() if args.device != "cpu" else None, }, ckpt_path, ) best_dev_loss = avg_dev_loss logger.info("Finished training!") if args.local_rank in [-1, 0]: # save last ckpt last_ckpt_path = os.path.join(args.log_dir, "last_model.pth") logger.info(f"Saving last model checkpoint to {last_ckpt_path}.") torch.save( { "epoch": epoch, "global_step": global_step, "optimizer": optimizer.state_dict(), "train_loss": avg_train_loss, "dev_loss": avg_dev_loss, "state_dict": model.state_dict(), "lr_scheduler": lr_scheduler.state_dict() if lr_scheduler is not None else None, "rng_cpu": torch.get_rng_state(), "rng_gpu": torch.cuda.get_rng_state() if args.device != "cpu" else None, }, last_ckpt_path, ) if args.distributed: # tear down the process group dist.destroy_process_group() if __name__ == "__main__": parser = argparse.ArgumentParser(parents=[parser]) training_args = parser.add_argument_group("training_args") training_args.add_argument("--lr", type=float, default=1e-5, help="Learning rate") training_args.add_argument( "--n_epochs", type=int, default=1, help="Maximum number of (new) epochs to train (on top of starting epoch).", ) training_args.add_argument( "--num_negatives", type=int, default=5, help="Number of hard negative samples to use for training", ) training_args.add_argument( "--model_checkpoint", type=str, help="Model checkpoint to continue training" ) training_args.add_argument( "--log_freq", type=float, default=0.1, help="Fraction of an epoch to log" ) training_args.add_argument( "--alpha", type=float, default=0.1, help="Alpha for weighting type loss" ) training_args.add_argument( "--lr_scheduler_type", type=str, help="LR scheduler: step or leave empty for no LR scheduler", ) data_args = parser.add_argument_group("training_data_args") data_args.add_argument("--train_data_file", type=str) data_args.add_argument("--dev_data_file", type=str) data_args.add_argument("--train_entity_file", type=str) data_args.add_argument("--dev_entity_file", type=str) data_args.add_argument( "--train_neg_sample_file", type=str, help="File path for negative samples for train dataset", ) data_args.add_argument( "--dev_neg_sample_file", type=str, help="File path for negative samples for dev dataset", ) data_args.add_argument( "--tokenized_entity_data", type=str, help="File path for memory mapped entity data", ) args = parser.parse_args() # if using hard negatives, adjust the batch size args.orig_batch_size = args.batch_size if args.train_neg_sample_file is not None: args.batch_size = 2 ** int( math.log2(args.batch_size / (args.num_negatives + 1)) ) # setup distributed args.ngpus_per_node = 1 if args.distributed: dist.init_process_group(backend="nccl") logger.info( f"[{os.getpid()}]: world_size = {dist.get_world_size()}, " + f"rank = {dist.get_rank()}, backend={dist.get_backend()} \n", end="", ) # update batch size and number of workers for DistributedDataParallel # assumes we are using a single GPU per process args.ngpus_per_node = torch.cuda.device_count() args.batch_size = args.batch_size // args.ngpus_per_node main(args)
tabi-main
tabi/train.py
"""Retrieve candidates for evaluation or hard negative sampling.""" import argparse import logging import os import torch import torch.distributed as dist from torch.utils.data import DataLoader from tqdm import tqdm from tabi.config import parser from tabi.data import EntityLinkingDataset from tabi.models.biencoder import Biencoder from tabi.utils.train_utils import set_random_seed from tabi.utils.utils import ( combine_negs, combine_preds, load_model, log_setup, move_dict, set_device, str2bool, write_neg_samples, write_preds, ) logger = logging.getLogger() def main(args): # setup log directory and logger log_setup(args) # set seed and device set_random_seed(args.seed) set_device(args) # datasets and dataloaders logger.info("Preparing dataset...") top_k = args.top_k if args.mode == "eval" else args.orig_num_negatives dataset = EntityLinkingDataset( data_path=args.test_data_file, entity_path=args.entity_file, top_k=top_k, tokenize_entities=False, max_context_length=args.max_context_length, max_entity_length=args.max_entity_length, tokenizer_name=args.tokenizer_name, type_path=args.type_file, is_eval=args.mode == "eval", ) # make sure each process only gets its portion of the dataset if args.distributed: sampler = torch.utils.data.distributed.DistributedSampler( dataset, shuffle=False ) else: sampler = None dataloader = DataLoader( dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=False, sampler=sampler, ) # init model model = Biencoder( tied=args.tied, entity_emb_path=args.entity_emb_path, top_k=top_k, model_name=args.model_name, normalize=args.normalize, temperature=args.temperature, ) # load saved model weights if args.model_checkpoint is not None: load_model( model_checkpoint=args.model_checkpoint, device=args.device, model=model ) model = model.to(args.device) # entity embs aren't parameters of the model so need to be moved separately model.entity_embs = model.entity_embs.to(args.device) if args.distributed: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.device], find_unused_parameters=True ) # run evaluation model.eval() predictions = [] predict_fn = model.module.predict if args.distributed else model.predict with torch.no_grad(): with tqdm(total=len(dataloader), unit="ex", desc="Running model") as bar: for batch in dataloader: prediction = predict_fn( context_data=move_dict(batch["context"], args.device), data_id=batch["data_id"], ) predictions.append(prediction) bar.update(1) if args.mode == "eval": # save predictions as jsonlines pred_file = os.path.join( args.log_dir, args.pred_file.split(".jsonl")[0] + f"_{args.device if args.device != 'cpu' else 0}.jsonl" ) write_preds( preds=predictions, dataset=dataset, pred_file=pred_file, entity_map_file=args.entity_map_file, ) # make sure all processes write their predictions if args.distributed: torch.distributed.barrier() # let first process combine predictions across processes into a single file if args.local_rank in [-1, 0]: combine_preds( args.log_dir, os.path.join(args.log_dir, args.pred_file), num_gpus=dist.get_world_size() if args.distributed else 1, ) elif args.mode == "neg_sample": # save negative samples to file neg_sample_file = os.path.join( args.log_dir, args.neg_sample_file.split(".json")[0] + f"_{args.device if args.device != 'cpu' else 0}.json", ) write_neg_samples( preds=predictions, dataset=dataset, entity_map_file=args.entity_map_file, neg_sample_file=neg_sample_file, num_negative_samples=args.orig_num_negatives, ) if args.distributed: # wait for all devices to generate their negative samples torch.distributed.barrier() # let first process combine negative samples across processes into a single file if args.local_rank in [-1, 0]: if args.filter_negatives: combine_negs( log_dir=args.log_dir, neg_sample_file=os.path.join(args.log_dir, args.neg_sample_file), num_gpus=dist.get_world_size() if args.distributed else 1, use_filter=args.filter_negatives, entity_cache=dataset.entity_cache, ent_counter=dataset.ent_counter, # top_k here is the number of negatives we want after filter total_num_samples=args.top_k, mult_factor=args.mult_factor, ) else: combine_negs( log_dir=args.log_dir, neg_sample_file=os.path.join(args.log_dir, args.neg_sample_file), num_gpus=dist.get_world_size() if args.distributed else 1, use_filter=args.filter_negatives, ) if args.distributed: # TODO: automatically remove all extra negative sample files that are generated torch.distributed.barrier() # tear down the process group dist.destroy_process_group() if __name__ == "__main__": # add arguments specific to eval to parser parser = argparse.ArgumentParser(parents=[parser]) eval_args = parser.add_argument_group("eval_args") eval_args.add_argument("--test_data_file", type=str, required=True) eval_args.add_argument("--entity_file", type=str, required=True) eval_args.add_argument("--model_checkpoint", type=str, required=True) eval_args.add_argument("--entity_emb_path", type=str, required=True) eval_args.add_argument("--entity_map_file", type=str) eval_args.add_argument( "--mode", type=str, default="eval", choices=["eval", "neg_sample"] ) eval_args.add_argument("--pred_file", type=str, default="preds.jsonl") eval_args.add_argument("--neg_sample_file", type=str, default="neg_samples.json") eval_args.add_argument( "--top_k", type=int, default=10, help="Number of candidates to retrieve for each mention", ) eval_args.add_argument( "--filter_negatives", type=str2bool, default=False, help="Whether to filter negatives by entity count", ) # eval_args.add_argument("--popularity_file", type=str, help="File with entity counts for filtering negatives") eval_args.add_argument( "--mult_factor", type=int, default=10, help="Multiplicative factor for ratio of neg:pos in negative sample filter, e.g. up to 10 negatives for every 1 positive.", ) eval_args.add_argument( "--orig_num_negatives", type=int, default=20, help="Number of negatives to fetch for filtering", ) args = parser.parse_args() # setup distributed # recommend using distributed for neg_sample mode but not for eval mode # for distributed eval, the accuracy metrics are computed separately over each portion of the dataset if args.distributed: dist.init_process_group(backend="nccl") logger.info( f"[{os.getpid()}]: world_size = {dist.get_world_size()}, " + f"rank = {dist.get_rank()}, backend={dist.get_backend()} \n", end="", ) # update batch size and number of workers for DistributedDataParallel # assumes we are using a single GPU per process ngpus_per_node = torch.cuda.device_count() args.batch_size = args.batch_size // ngpus_per_node main(args)
tabi-main
tabi/eval.py
import json import logging import os from collections import defaultdict from typing import Optional import numpy as np import torch import torch.nn.functional as F from transformers import AutoTokenizer from transformers import logging as tf_logging import tabi.utils.data_utils as data_utils import tabi.utils.utils as utils from tabi.constants import ENT_START, MENTION_END, MENTION_START logger = logging.getLogger(__name__) import warnings warnings.filterwarnings("ignore", message=".*The given NumPy array is not writeable.*") # suppress warnings from huggingface tf_logging.set_verbosity_error() class EntityDataset(torch.utils.data.Dataset): def __init__( self, entity_path: Optional[str] = None, max_entity_length: int = 128, add_entity_type_in_description: bool = False, tokenized_entity_data: Optional[str] = None, tokenizer_name: str = "bert-base-uncased", type_path: Optional[str] = None, ) -> None: super().__init__() # hyperparameters self.max_entity_length = max_entity_length self.add_entity_type_in_description = add_entity_type_in_description # load entity file logger.debug("Loading entity data...") self.entity_cache = data_utils.load_entity_data(entity_path) self.entity_ids = np.array(list(self.entity_cache.keys())) self.entity_ids.flags.writeable = False # get typename to id map to pass types by id in batch # type ids are used for masking in loss function if type_path is not None: self.all_types = np.array(data_utils.load_types(type_path)) self.all_types.flags.writeable = False self.type_vocab = {name: i for i, name in enumerate(self.all_types)} self.eid2row = {eid: row_id for row_id, eid in enumerate(self.entity_ids)} logger.debug("Finished loading entity data!") # load tokenized entity data if available self.tokenized_entity_data = None if tokenized_entity_data is not None: logger.info( f"Loading preprocessed entity data from {tokenized_entity_data}." ) # load read only memory mapped file of tokenized entity data self.tokenized_entity_data = np.memmap( tokenized_entity_data, mode="r", shape=len(self.entity_ids), dtype=utils.get_mmap_type(max_entity_length), ) # map all types to a read only numpy array if not os.path.exists(data_utils.get_prepped_type_file(entity_path)): self.all_one_hot_types = np.zeros( (len(self.entity_ids), len(self.all_types)) ) for e in self.entity_cache: ent_typeids = [ self.type_vocab[t] for t in self.entity_cache[e]["types"] ] if len(ent_typeids) > 0: row_id = self.eid2row[e] self.all_one_hot_types[row_id] = torch.sum( F.one_hot( torch.tensor(ent_typeids), num_classes=len(self.all_types), ), dim=0, ) type_mmap = np.memmap( data_utils.get_prepped_type_file(entity_path), mode="w+", shape=self.all_one_hot_types.shape, ) type_mmap[:] = self.all_one_hot_types else: self.all_one_hot_types = np.memmap( data_utils.get_prepped_type_file(entity_path), mode="r" ).reshape(len(self.entity_ids), len(self.all_types)) self.all_one_hot_types.flags.writeable = False # no longer need entity cache self.entity_cache = None # set up tokenizer logger.info(f"Using tokenizer: {tokenizer_name}") # use local files unless not present try: self.tokenizer = AutoTokenizer.from_pretrained( tokenizer_name, local_files_only=True ) except: self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) self.tokenizer.add_special_tokens( {"additional_special_tokens": [ENT_START, MENTION_START, MENTION_END]} ) def __len__(self) -> int: return len(self.entity_ids) def __getitem__(self, index): entity_id = self.entity_ids[index] # get entity tokens from preprocessed entity data if self.tokenized_entity_data is not None: entity_tokens = self.tokenized_entity_data[index] # convert memory mapped format to standard dict format entity_tokens = { key: entity_tokens[key] for key in entity_tokens.dtype.names } # tokenize entity data on the fly else: entity_data = self.entity_cache[entity_id] entity_tokens = self.get_entity_tokens(entity_data) entity_tokens = {k: v[0] for k, v in entity_tokens.items()} return {"sample": entity_tokens, "entity_id": entity_id} def get_entity_tokens(self, entity): title = entity["title"] entity_description = entity["description"] if self.add_entity_type_in_description: type_str = utils.get_type_str(entity["types"]) ent_str = ( title + " " + ENT_START + " " + type_str + " " + ENT_START + " " + entity_description ) else: ent_str = title + " " + ENT_START + " " + entity_description inputs = self.tokenizer( ent_str, padding="max_length", add_special_tokens=True, return_tensors="pt", truncation=True, max_length=self.max_entity_length, ) return inputs def get_types(self, ent): if self.tokenized_entity_data is None: one_hot_types = data_utils.convert_types_to_onehot( types=self.entity_cache[ent]["types"], type_vocab=self.type_vocab ) else: one_hot_types = self.all_one_hot_types[self.eid2row[ent]] return np.array(one_hot_types) class EntityLinkingDataset(EntityDataset): def __init__( self, max_entity_length: int = 128, max_context_length: int = 64, data_path: str = "", entity_path: str = "", neg_sample_file: Optional[str] = None, num_negatives: int = 0, add_entity_type_in_description: bool = False, top_k: int = 10, tokenize_entities: bool = True, tokenized_entity_data: Optional[str] = None, tokenizer_name: str = "bert-base-uncased", type_path: Optional[str] = None, is_eval: bool = False, ) -> None: super().__init__( max_entity_length=max_entity_length, entity_path=entity_path, add_entity_type_in_description=add_entity_type_in_description, tokenized_entity_data=tokenized_entity_data, tokenizer_name=tokenizer_name, type_path=type_path, ) # hyperparameters self.eval = is_eval self.max_context_length = max_context_length self.top_k = top_k self.tokenize_entities = tokenize_entities # load context files logger.debug("Loading context data...") self.data, self.ent_counter = data_utils.load_data(data_path) logger.debug("Finished loading context data!") # load hard negative samples self.neg_sample_file = neg_sample_file self.num_negatives = num_negatives self.neg_samples = None if self.num_negatives > 0 and self.neg_sample_file is not None: logger.info( f"Using {self.num_negatives} hard negatives from {self.neg_sample_file}" ) self.neg_samples = data_utils.load_neg_samples( self.neg_sample_file, data_len=len(self.data), num_negatives=self.num_negatives, ) def __len__(self) -> int: return len(self.data) def __getitem__(self, index): sample = self.data[index] # get mention context data context_tokens = defaultdict(list) tokens = self.get_context_tokens( sample["text"], char_spans=sample["char_spans"] ) for key in tokens.keys(): context_tokens[key].append(tokens[key][0]) context_tokens = {k: torch.stack(v) for k, v in context_tokens.items()} # get entity data gold = sample["gold"] entities = [gold] # allow up to 10 alternate gold alt_gold = sample["alt_gold"][:10] # pad alt gold with gold so all the same size for batching while len(alt_gold) < 10: alt_gold.append(gold) if self.neg_samples is not None: for ent in self.neg_samples[index]: entities.append(ent) # get entity tokens entity_tokens = defaultdict(list) if self.tokenize_entities: # tokenize entity data on the fly if self.tokenized_entity_data is None: for entity in entities: tokens = self.get_entity_tokens(self.entity_cache[entity]) for key in tokens.keys(): entity_tokens[key].append(tokens[key][0]) # use preprocessed entity data else: for entity in entities: tokens = self.tokenized_entity_data[self.eid2row[entity]] for key in tokens.dtype.names: # this throws a warning about torch tensors not being read-only # we do not copy as tokenized_entity_data is large entity_tokens[key].append(torch.from_numpy(tokens[key])) entity_tokens = {k: torch.stack(v) for k, v in entity_tokens.items()} # use query type labels if training query_type_labels = ( torch.from_numpy(self.get_types(sample["gold"])) if not self.eval else [] ) return { "data_id": index, "context": context_tokens, "entity": entity_tokens, "entity_labels": torch.tensor(entities), "query_entity_labels": torch.tensor(gold), "query_type_labels": query_type_labels, "alt_gold": torch.tensor(alt_gold), } def get_context_tokens(self, context, char_spans=[]): # no mention boundaries if len(char_spans) == 0: return self.tokenizer( context, padding="max_length", add_special_tokens=True, return_tensors="pt", # return as pytorch tensors truncation=True, max_length=self.max_context_length, ) char_spans = data_utils.clean_spaces(context=context, char_spans=char_spans) context_tokens = data_utils.get_context_window( char_spans=char_spans, tokenizer=self.tokenizer, context=context, max_context_length=self.max_context_length, ) # convert back to string to use tokenizer to pad and generate attention mask context = self.tokenizer.decode( self.tokenizer.convert_tokens_to_ids(context_tokens) ) return self.tokenizer( context, padding="max_length", add_special_tokens=True, return_tensors="pt", # return as pytorch tensors truncation=True, max_length=self.max_context_length, )
tabi-main
tabi/data.py
import logging import math import random import numpy as np import torch import torch.distributed as dist import torch.nn as nn from transformers.optimization import AdamW logger = logging.getLogger(__name__) def get_type_label_mask(labels, type_equivalence="strict"): """Generate the mask indicating which queries have the same type. Args: labels: (num_queries, num_types) type_equivalence (str): 'strict' or 'weak' Returns: mask with 1 where two queries share the same type and 0 otherwise """ # weak equivalence # two sets of types are considered equivalent if more than # 50% of the types are shared between them (based on cardinality of larger set) if type_equivalence == "weak": shared_labels = torch.matmul(labels.float(), labels.float().T) num_types_per_el = labels.sum(1) max_types = ( torch.cartesian_prod(num_types_per_el, num_types_per_el) .max(1)[0] .reshape(num_types_per_el.shape[0], -1) ) same_label_mask = (shared_labels > max_types * 0.5).float() # strict equivalence # two sets of types are considered equivalent if all types match else: shared_labels = torch.matmul(labels.float(), labels.float().T) labels_cols = labels.sum(1).repeat(len(labels), 1) labels_rows = labels.sum(1).unsqueeze(1).repeat(1, len(labels)) same_label_mask = ( torch.eq(shared_labels, labels_rows) & torch.eq(shared_labels, labels_cols) ).float() return same_label_mask # https://discuss.pytorch.org/t/first-nonzero-index/24769 def first_nonzero(x, axis=0): nonz = x > 0 return ((nonz.cumsum(axis) == 1) & nonz).max(axis) # modified from https://github.com/facebookresearch/BLINK/blob/main/blink/common/optimizer.py def get_bert_optimizer(model, learning_rate): """Optimizes the network with AdamWithDecay""" parameters_with_decay = [] parameters_without_decay = [] for param_name, param in model.named_parameters(): # do not use decay on bias terms if "bias" in param_name: parameters_without_decay.append(param) else: parameters_with_decay.append(param) optimizer_grouped_parameters = [ {"params": parameters_with_decay, "weight_decay": 0.01}, {"params": parameters_without_decay, "weight_decay": 0.0}, ] optimizer = AdamW( optimizer_grouped_parameters, lr=learning_rate, correct_bias=False, no_deprecation_warning=True, ) return optimizer def gather_embs(embs): """ Gathers embeddings across machines in distributed training and combines into a single embedding. """ return torch.cat(GatherLayer.apply(embs.contiguous()), dim=0) # https://github.com/open-mmlab/OpenSelfSup/blob/master/openselfsup/models/utils/gather_layer.py class GatherLayer(torch.autograd.Function): """ Gather tensors from all process, supporting backward propagation. """ @staticmethod def forward(ctx, input): ctx.save_for_backward(input) output = [torch.zeros_like(input) for _ in range(dist.get_world_size())] dist.all_gather(output, input) return tuple(output) @staticmethod def backward(ctx, *grads): (input,) = ctx.saved_tensors grad_out = torch.zeros_like(input) grad_out[:] = grads[dist.get_rank()] return grad_out def set_random_seed(random_seed=0): logger.info(f"Random seed: {random_seed}") torch.manual_seed(random_seed) torch.cuda.manual_seed(random_seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False np.random.seed(random_seed) random.seed(random_seed)
tabi-main
tabi/utils/train_utils.py
tabi-main
tabi/utils/__init__.py
import json import logging import pickle import unicodedata from collections import Counter import jsonlines import numpy as np import torch import torch.nn.functional as F from tabi.constants import MENTION_END, MENTION_START logger = logging.getLogger(__name__) def load_neg_samples(neg_sample_file, num_negatives, data_len): with open(neg_sample_file) as f: neg_samples = json.load(f) # store only negative samples we need in array assert len(neg_samples) == data_len, f"{data_len} {len(neg_samples)}" ns_array = np.zeros((len(neg_samples), num_negatives), dtype="int64") for ns in neg_samples: assert len(neg_samples[ns]["samples"]) >= num_negatives ns_array[int(ns)] = neg_samples[ns]["samples"][:num_negatives] return ns_array def save_entity_map(id_map_path, entity_ids): """Save mapping of embedding index to entity id (eid)""" logger.info(f"Saving ids to {id_map_path}.") entity_map = {int(idx): int(eid) for idx, eid in enumerate(entity_ids)} with open(id_map_path, "wb") as f: pickle.dump(entity_map, f) def convert_types_to_onehot(types, type_vocab): types = [type_vocab[t] for t in types] if len(types) == 0: one_hot_types = torch.zeros(len(type_vocab)) else: one_hot_types = torch.sum( F.one_hot(torch.tensor(types), num_classes=len(type_vocab)), dim=0 ).float() return one_hot_types def load_entity_data(datapath: str): """Load entity data as dictionary with entity ids as keys""" data = {} if datapath.endswith(".pkl"): with open(datapath, "rb") as f: return pickle.load(f) with jsonlines.open(datapath) as f: for line_idx, line in enumerate(f): lid = line["label_id"] if "label_id" in line else line_idx data[lid] = { "id": lid, "description": line.get("text", ""), "title": line.get("title", ""), "types": line.get("types", []), "wikipedia_page_id": line.get("wikipedia_page_id", ""), } # save as pickle for faster loading entityfile = datapath.split(".jsonl")[0] + ".pkl" with open(entityfile, "wb") as f: pickle.dump(data, f) logger.debug(f"Wrote entities to {entityfile}") return data def get_prepped_type_file(datapath: str): if datapath.endswith(".pkl"): tag = datapath.split(".pkl")[0] if datapath.endswith(".jsonl"): tag = datapath.split(".jsonl")[0] return f"{tag}_onehot_types.npy" def load_data(datapath): samples = [] ent_counter = Counter() with jsonlines.open(datapath) as f: for line in f: # each mention gets its own example if len(line["mentions"]) > 0: for i in range(len(["mentions"])): sample = { "id": line["id"], "gold": line["label_id"][i], "alt_gold": line["alt_label_id"][i] if "alt_label_id" in line else [], "text": line["text"], # keep track of all mentions that were present "char_spans": line["mentions"][i], } ent_counter[sample["gold"]] += 1 samples.append(sample) else: sample = { "id": line["id"], "gold": line["label_id"][0], "alt_gold": line["alt_label_id"][0] if "alt_label_id" in line else [], "text": line["text"], "char_spans": [], } ent_counter[sample["gold"]] += 1 samples.append(sample) return samples, ent_counter # modified from https://github.com/facebookresearch/BLINK/blob/main/blink/biencoder/data_process.py def get_context_window(char_spans, tokenizer, context, max_context_length): start_idx = char_spans[0] end_idx = char_spans[1] context_left = context[:start_idx] mention = context[start_idx:end_idx] context_right = context[end_idx:] mention_tokens = [MENTION_START] + tokenizer.tokenize(mention) + [MENTION_END] context_left_tokens = tokenizer.tokenize(context_left) context_right_tokens = tokenizer.tokenize(context_right) left_quota = (max_context_length - len(mention_tokens)) // 2 - 1 right_quota = max_context_length - len(mention_tokens) - left_quota - 2 left_add = len(context_left) right_add = len(context_right) if left_add <= left_quota: if right_add > right_quota: right_quota += left_quota - left_add else: if right_add <= right_quota: left_quota += right_quota - right_add context_tokens = ( context_left_tokens[-left_quota:] + mention_tokens + context_right_tokens[:right_quota] ) return context_tokens def clean_spaces(context, char_spans): """Update char span to require mention to not start with a space""" while unicodedata.normalize("NFKD", context[char_spans[0]]) == " ": char_spans[0] += 1 assert char_spans[1] > char_spans[0] return char_spans def load_types(type_path): types = [] with open(type_path) as f: for line in f: types.append(line.strip()) return types
tabi-main
tabi/utils/data_utils.py
import logging import os import pickle import subprocess import sys import time from collections import Counter, defaultdict import jsonlines import numpy as np import torch import ujson from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present from tqdm import tqdm logger = logging.getLogger(__name__) def save_entity_map(id_map_path, entity_ids): logger.info(f"Saving ids to {id_map_path}.") entity_map = {int(idx): int(eid) for idx, eid in enumerate(entity_ids)} with open(id_map_path, "wb") as f: pickle.dump(entity_map, f) def get_type_str(types): all_types = [] for t in types: for subt in t.split("/")[1:]: if subt not in all_types: all_types.append(subt) return " ".join(all_types) def filter_negatives( negative_samples, entity_cache, ent_counter, mult_factor=1, total_num_samples=1 ): neg_counter = Counter() missing_negs = 0 # sample random ids in advance -- sample max possible number to avoid running out of random ids start = time.time() rand_samples = list( np.random.choice( list(entity_cache.keys()), len(negative_samples) * total_num_samples ) ) logger.info(f"Time to sample random ids: {round(time.time()-start,3)}s") for row, val in tqdm(negative_samples.items(), desc="Filtering"): new_samples = [] new_scores = [] samples = val["samples"] scores = val["scores"] for sample, score in zip(samples, scores): pos_count = ent_counter[sample] if neg_counter[sample] < pos_count * mult_factor: new_samples.append(sample) new_scores.append(score) neg_counter[sample] += 1 # exit if we have all the samples we need so the remaining # hard samples can be used for another example if len(new_samples) == total_num_samples: break while len(new_samples) < total_num_samples: missing_negs += 1 new_samples.append(int(rand_samples.pop())) negative_samples[row]["samples"] = new_samples[:total_num_samples] negative_samples[row]["scores"] = new_scores[:total_num_samples] logger.info( f"{round(missing_negs/(len(negative_samples)*total_num_samples)*100,3)}% random samples" ) return negative_samples def get_mmap_type(max_length: int): """Get datatype for storing tokenized data in memory mapped file. Modified from https://github.com/senwu/Emmental-Candidate_retrieval/blob/master/data_processing/prep_entity_mmap.py """ return [ ("input_ids", "i8", max_length), ("attention_mask", "i8", max_length), ("token_type_ids", "i8", max_length), ] def load_model(model_checkpoint, model, device, optimizer=None, lr_scheduler=None): """Load model checkpoint and update optimizer and lr_scheduler if in checkpoint. Returns: dict with global_step and epoch to start training from """ logger.info(f"Loading model from checkpoint {model_checkpoint}") if device != "cpu": # map model to be loaded to specified single gpu. loc = "cuda:{}".format(device) checkpoint = torch.load(model_checkpoint, map_location=loc) else: checkpoint = torch.load(model_checkpoint, map_location=torch.device("cpu")) # remove DDP "module." prefix if present state_dict = checkpoint["state_dict"] consume_prefix_in_state_dict_if_present(state_dict, "module.") model.load_state_dict(state_dict, strict=True) if optimizer is not None: optimizer.load_state_dict(checkpoint["optimizer"]) logger.info("Loaded optimizer.") if lr_scheduler is not None: lr_scheduler.load_state_dict(checkpoint["lr_scheduler"]) logger.info("Loaded lr scheduler.") # reload random states to resume data loading order across runs # TODO: support reloading numpy state if any new randomness depends on numpy random if "rng_cpu" in checkpoint: torch.set_rng_state(checkpoint["rng_cpu"].cpu()) if device != "cpu": torch.cuda.set_rng_state(checkpoint["rng_gpu"].cpu()) logger.debug("Loaded random states.") return { "global_step": checkpoint.get("global_step", 0), "epoch": checkpoint.get("epoch", -1) + 1, } def set_device(args): if args.distributed: # set to device 0 if using data parallel args.device = args.local_rank if args.local_rank != -1 else 0 else: args.device = args.gpu if args.gpu >= 0 else "cpu" if args.device != "cpu": torch.cuda.set_device(args.device) logger.info(f"Device id: {args.device}") def move_dict(dict_to_move, device): return {k: val.to(device) for k, val in dict_to_move.items()} def combine_preds(log_dir, predfile, num_gpus): output = jsonlines.open(predfile, "w") logger.info(f"Writing final preds to {predfile}") seen_id = set() for gpu_idx in range(num_gpus): with jsonlines.open( f'{log_dir}/{os.path.basename(predfile).split(".jsonl")[0]}_{gpu_idx}.jsonl' ) as f: for line in f: line_id = line["id"] # already seen in another process if line_id in seen_id: continue seen_id.add(line_id) output.write(line) output.close() def combine_negs( log_dir, neg_sample_file, num_gpus, use_filter=False, entity_cache=None, ent_counter=None, total_num_samples=-1, mult_factor=1, ): neg_samples = {} for gpu_idx in range(num_gpus): # includes sample ids and distances with open(f"{log_dir}/neg_samples_{gpu_idx}.json", "r") as f: res = ujson.load(f) neg_samples.update(res) # filter negatives before saving combined negatives if use_filter: neg_samples = filter_negatives( neg_samples, entity_cache=entity_cache, ent_counter=ent_counter, # top_k here is the number of negatives we want after filter total_num_samples=total_num_samples, mult_factor=mult_factor, ) with open(neg_sample_file, "w") as f: ujson.dump(neg_samples, f) logger.info(f"Wrote final negative samples to {neg_sample_file}") # https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse def str2bool(v): if isinstance(v, bool): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("Boolean value expected.") def write_neg_samples( preds, dataset, entity_map_file, neg_sample_file, num_negative_samples ): # keep track of emb id to eid with open(entity_map_file, "rb") as f: entity_map = pickle.load(f) # flatten preds across batches flattened_preds = flatten_dicts(preds) # store as dictionary because indices will be accessed out of order # during training neg_samples = {} # need to use data_id rather than idx in list to support ddp for (data_id, indices, scores) in zip( flattened_preds["data_id"], flattened_preds["indices"], flattened_preds["scores"], ): neg_samples_ex = [] scores_ex = [] gold_eids = [dataset.data[data_id]["gold"]] gold_eids.extend(dataset.data[data_id]["alt_gold"]) gold_eids = set(gold_eids) for s, idx in zip(scores, indices): eid = entity_map[idx] # remove gold entities from hard negatives if eid in gold_eids: continue scores_ex.append(float(s)) # save entity ids (not emb/row ids) for negative samples neg_samples_ex.append(eid) neg_samples[int(data_id)] = { "samples": neg_samples_ex[:num_negative_samples], "scores": scores_ex[:num_negative_samples], } with open(neg_sample_file, "w") as f: ujson.dump(neg_samples, f) logger.info(f"Wrote negative samples to {neg_sample_file}") def correct_at_k(pred_ids, gold_ids, k): """Return 1 if *any* gold id occurs in the top-k predicted ids, else 0.""" return int(len(set(gold_ids).intersection(pred_ids[:k])) > 0) def write_preds(preds, dataset, pred_file, entity_map_file): # embedding id to eid entity_map = None if entity_map_file is not None: with open(entity_map_file, "rb") as f: entity_map = pickle.load(f) entity_cache = dataset.entity_cache # flatten preds across batches flattened_preds = flatten_dicts(preds) # KILT FORMAT # { # "id": x, # "output": [ # { # "answer": y, # "provenance": [ # {"wikipedia_id": z}, # {"wikipedia_id": w}, # ... # ] # } # ] # } total_at_1 = 0 total_at_10 = 0 iter_ = tqdm(range(len(flattened_preds["data_id"])), desc="Evaluating") with jsonlines.open(pred_file, "w") as f_out: for i in iter_: if entity_map is not None: pred_eids = [ entity_map[emb_id] for emb_id in flattened_preds["indices"][i] ] else: pred_eids = flattened_preds["indices"][i] data_id = flattened_preds["data_id"][i] orig_data_id = dataset.data[data_id]["id"] try: new_ids = [ { "wikipedia_id": entity_cache[eid]["wikipedia_page_id"], "wikipedia_title": entity_cache[eid]["title"], } for eid in pred_eids ] except: # not using wikipedia ids new_ids = [ { "kb_id": eid, "title": entity_cache[eid]["title"], } for eid in pred_eids ] gold_ids = [dataset.data[data_id]["gold"]] gold_ids.extend(dataset.data[data_id]["alt_gold"]) total_at_1 += correct_at_k(pred_ids=pred_eids, gold_ids=gold_ids, k=1) total_at_10 += correct_at_k(pred_ids=pred_eids, gold_ids=gold_ids, k=10) iter_.set_postfix(acc_1=total_at_1 / (i + 1), acc_10=total_at_10 / (i + 1)) output = { "id": orig_data_id, "input": dataset.data[data_id]["text"], "output": [{"answer": "", "provenance": new_ids}], } f_out.write(output) logger.info(f"Accuracy@1: {round(total_at_1/(i+1), 5)}") logger.info(f"Accuracy@10: {round(total_at_10/(i+1), 5)}") def flatten_dicts(batched_dict): flattened_dict = defaultdict(list) for batch in batched_dict: for key, val in batch.items(): flattened_dict[key].extend(val) return flattened_dict def log_setup(args): """Create log directory and logger. Log basic set up information.""" # wait for first process to create log directory and dump config if args.local_rank not in [-1, 0]: torch.distributed.barrier(device_ids=[args.local_rank]) if args.local_rank in [-1, 0]: os.makedirs(args.log_dir, exist_ok=True) # dump args as config # https://stackoverflow.com/questions/38884513/python-argparse-how-can-i-get-namespace-objects-for-argument-groups-separately with open(os.path.join(args.log_dir, "config.json"), "w") as f: ujson.dump(dict(sorted(args.__dict__.items())), f) if args.local_rank != -1: torch.distributed.barrier(device_ids=[args.local_rank]) # write separate log for each process with local rank tags log_path = ( os.path.join(args.log_dir, f"log_{args.local_rank}.txt") if args.local_rank != -1 else os.path.join(args.log_dir, "log.txt") ) if args.local_rank in [-1, 0]: # only use streamhandler for first process handlers = [logging.FileHandler(log_path), logging.StreamHandler()] else: handlers = [ logging.FileHandler(log_path), ] logging.basicConfig( level=logging.INFO if not args.verbose else logging.DEBUG, format="%(asctime)s [%(module)s] [%(levelname)s] %(message)s", handlers=handlers, ) # dump git hash label = ( subprocess.check_output(["git", "rev-parse", "--short", "HEAD"]) .decode("ascii") .strip() ) logger.info(f"Git hash: {label}") # dump basic machine info machine_info = os.uname() logger.info(f"Machine: {machine_info.nodename} ({machine_info.version})") # dump run cmd cmd_msg = " ".join(sys.argv) logger.info(f"CMD: {cmd_msg}")
tabi-main
tabi/utils/utils.py
tabi-main
tabi/models/__init__.py
import torch import torch.nn as nn import tabi.utils.train_utils as train_utils class TABiLoss(nn.Module): """ Type-Aware Bi-encoders (TABi) loss. """ def __init__(self, temperature=0.01, alpha=0.1, type_equivalence="strict"): super(TABiLoss, self).__init__() self.temperature = temperature self.alpha = alpha self.type_equivalence = type_equivalence def forward( self, query_embs, entity_embs, query_type_labels, query_entity_labels, entity_labels, ): """Computes TABi loss. Args: query_embs: (num_queries, hidden_dim) entity_embs: (num_uniq_entities, hidden_dim) query_type_labels: (num_queries, num_types) query_entity_labels: (num_queries) entity_labels: (num_uniq_entities) Returns: dict of {type_loss, ent_loss, total_loss} """ type_loss = torch.tensor(0.0) ent_loss = torch.tensor(0.0) total_loss = torch.tensor(0.0) # entity loss if self.alpha < 1.0: all_embs = torch.cat([query_embs, entity_embs], dim=0) all_ent_labels = torch.cat( [query_entity_labels, entity_labels], dim=0 ).view(-1, 1) # -1 means no label no_label_mask = all_ent_labels == -1 same_label_mask = torch.eq(all_ent_labels, all_ent_labels.T).bool() ent_loss = SupConLoss(temperature=self.temperature)( embs=all_embs, same_label_mask=same_label_mask, no_label_mask=no_label_mask, ) # type loss if self.alpha > 0.0: no_label_mask = query_type_labels.sum(1) == 0 same_label_mask = train_utils.get_type_label_mask( query_type_labels, type_equivalence=self.type_equivalence ).bool() type_loss = SupConLoss(temperature=self.temperature)( embs=query_embs, no_label_mask=no_label_mask, same_label_mask=same_label_mask, ) total_loss = type_loss * self.alpha + ent_loss * (1 - self.alpha) return {"total_loss": total_loss, "ent_loss": ent_loss, "type_loss": type_loss} class SupConLoss(nn.Module): """ Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf. Modified from https://github.com/HobbitLong/SupContrast. """ def __init__(self, temperature=0.01): super(SupConLoss, self).__init__() self.temperature = temperature def forward(self, embs, same_label_mask, no_label_mask): """Compute supervised contrastive loss (variant). Args: embs: (num_examples, hidden_dim) same_label_mask: (num_examples, num_examples) no_label_mask: (num_examples) Returns: A loss scalar """ # compute similarity scores for embs sim = embs @ embs.T / self.temperature # for numerical stability sim_max, _ = torch.max(sim, dim=1, keepdim=True) sim = sim - sim_max.detach() # compute log-likelihood for each pair # ***unlike original supcon, do not include examples with the same label in the denominator*** negs = torch.exp(sim) * ~(same_label_mask) denominator = negs.sum(axis=1, keepdim=True) + torch.exp(sim) # log(exp(x)) = x and log(x/y) = log(x) - log(y) log_prob = sim - torch.log(denominator) # compute mean of log-likelihood over all positive pairs for a query/entity # exclude self from positive pairs pos_pairs_mask = same_label_mask.fill_diagonal_(0) # only include examples in loss that have positive pairs and the class label is known include_in_loss = (pos_pairs_mask.sum(1) != 0) & (~no_label_mask).flatten() # we add ones to the denominator to avoid nans when there are no positive pairs mean_log_prob_pos = (pos_pairs_mask * log_prob).sum(1) / ( pos_pairs_mask.sum(1) + (~include_in_loss).float() ) mean_log_prob_pos = mean_log_prob_pos[include_in_loss] # return zero loss if there are no values to take average over if mean_log_prob_pos.shape[0] == 0: return torch.tensor(0) # scale loss by temperature (as done in supcon paper) loss = -1 * self.temperature * mean_log_prob_pos # average loss over all queries/entities that have at least one positive pair return loss.mean()
tabi-main
tabi/models/losses.py
import logging import torch.nn.functional as F from torch import nn from transformers import AutoModel logger = logging.getLogger() class Encoder(nn.Module): def __init__(self, model_name: str = "bert-base-uncased") -> None: super().__init__() logger.info(f"Using encoder model: {model_name}") # use local model files unless not present try: self.transformer = AutoModel.from_pretrained( model_name, local_files_only=True ) except: self.transformer = AutoModel.from_pretrained(model_name) self.output_dim = self.transformer.embeddings.word_embeddings.weight.size(1) def forward(self, x): input_ids = x["input_ids"] token_type_ids = x["token_type_ids"] attention_mask = x["attention_mask"] seq_len = input_ids.shape[-1] last_hidden_state, _ = self.transformer( input_ids=input_ids.reshape(-1, seq_len), token_type_ids=token_type_ids.reshape(-1, seq_len), attention_mask=attention_mask.reshape(-1, seq_len), return_dict=False, ) return last_hidden_state class Aggregator(nn.Module): def __init__(self, normalize: bool = True) -> None: super().__init__() self.normalize = normalize logger.debug(f"L2 normalization: {normalize}") def forward(self, last_hidden_state): # take CLS token as embedding emb = last_hidden_state[:, 0] if self.normalize: return F.normalize(emb, p=2, dim=-1) return emb
tabi-main
tabi/models/layers.py
import logging import numpy as np import torch import torch.distributed as dist import torch.nn as nn import torch.nn.functional as F from tabi.models.layers import Aggregator, Encoder from tabi.models.losses import TABiLoss from tabi.utils.train_utils import first_nonzero, gather_embs logger = logging.getLogger(__name__) class Biencoder(nn.Module): def __init__( self, tied, temperature=0.1, top_k=10, entity_emb_path=None, model_name="bert-base-uncased", normalize=True, alpha=0.1, is_distributed=False, ): super(Biencoder, self).__init__() # initialize encoders if tied: # use same weights for entity encoder and query encoder self.entity_encoder = Encoder(model_name=model_name) self.query_encoder = self.entity_encoder else: self.entity_encoder = Encoder(model_name=model_name) self.query_encoder = Encoder(model_name=model_name) self.dim = self.entity_encoder.output_dim self.entity_aggregator = Aggregator(normalize=normalize) self.query_aggregator = Aggregator(normalize=normalize) self.entity_embs = None if entity_emb_path is not None: entity_embs = np.memmap(entity_emb_path, dtype="float32", mode="r").reshape( -1, self.dim ) self.entity_embs = torch.from_numpy(np.copy(entity_embs)) # hyperparameters self.temperature = temperature self.top_k = top_k self.alpha = alpha self.is_distributed = is_distributed logger.debug(f"Using distributed for model: {is_distributed}") self.tabi_loss = TABiLoss(temperature=temperature, alpha=self.alpha) def _embed_entity(self, entity_data): """Get entity embeddings""" return self.entity_aggregator(self.entity_encoder(entity_data)) def _embed_query(self, context_data): """Get query embeddings""" return self.query_aggregator(self.query_encoder(context_data)) def forward(self, entity_data=None, context_data=None): entity_embs = None query_embs = None if entity_data is not None: entity_embs = self._embed_entity(entity_data) if context_data is not None: query_embs = self._embed_query(context_data) return {"entity_embs": entity_embs, "query_embs": query_embs} def loss( self, query_embs, entity_embs, query_entity_labels, entity_labels, query_type_labels=None, ): """ Args: query_embs: (num_queries, hidden_dim) entity_embs: (num_entities, hidden_dim) query_entity_labels: (num_queries) entity_labels: (num_queries, num_negatives+1) query_type_labels: (num_queries, num_types) num_entities will include duplicate entities if the same entity occurs with more than one example in the batch. Returns: dict of {type_loss, ent_loss, total_loss} """ # get embs across gpus before computing loss if distributed if self.is_distributed: entity_embs = gather_embs(entity_embs) query_embs = gather_embs(query_embs) query_type_labels = gather_embs(query_type_labels) query_entity_labels = gather_embs(query_entity_labels) entity_labels = gather_embs(entity_labels) # flatten entity labels to have same dimension 0 as entity embs entity_labels = entity_labels.flatten() # remove duplicate entities from a batch uniq_ent_indices = torch.unique( first_nonzero( torch.eq( entity_labels.unsqueeze(1), entity_labels.unsqueeze(1).T ).float(), axis=1, )[1] ) entity_embs = entity_embs[uniq_ent_indices] entity_labels = entity_labels[uniq_ent_indices] return self.tabi_loss( query_embs=query_embs, entity_embs=entity_embs, query_type_labels=query_type_labels, query_entity_labels=query_entity_labels, entity_labels=entity_labels, ) def predict(self, context_data, data_id=None): query_embs = self(context_data=context_data)["query_embs"] # get top entity candidates using nearest neighbor search scores = query_embs @ self.entity_embs.t() query_entity_scores, index = scores.topk(self.top_k) probs = F.softmax(query_entity_scores / self.temperature, -1) # "indices" are row in the embedding matrix and may not correspond to entity_ids # we convert back to entity_ids in saving predictions/negative samples (see utils.py) prediction = { "scores": query_entity_scores, "probs": probs, "indices": index, "data_id": data_id, } prediction = { key: value.cpu().numpy() for key, value in prediction.items() if len(value) > 0 } return prediction
tabi-main
tabi/models/biencoder.py
import subprocess # set hyperparameters # number of epochs for each round of sampling n_epochs = 1 # first epoch is in-batch negatives num_neg_rounds = 3 # tabi-specific type_weight = 0.1 # model params max_context_length = 32 lr = 3e-4 temperature = 0.05 add_types_in_desc = False seed = 1234 batch_size = 4096 eval_batch_size = 32 neg_sample_batch_size = batch_size * 2 entity_batch_size = batch_size * 4 num_negatives = 3 # number of hard negatives to use for training num_negatives_orig = 100 # total number of hard negatives to fetch (fetch extra since we filter gold ids and optionally based on counts) filter_negatives = True # whether to filter hard negatives for training # machine params gpus = "0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15" ngpus = 16 distributed = True # set paths home_dir = "tabi" data_dir = f"data" train_file = "kilt_train.jsonl" dev_file = "kilt_dev.jsonl" test_file = "kilt_dev.jsonl" entity_file = "entity.pkl" type_file = "figer_types.txt" base_log_dir = "logs" run_name = f"kilt_train" log_dir = f"{base_log_dir}/{run_name}" preprocess = True tokenized_entity_data = f"{log_dir}/1_preprocess/entity_data.npy" python_str = "python" if distributed: python_str = f"python -m torch.distributed.launch --nproc_per_node={ngpus}" # preprocess entity data (generate and save tokens for BERT entity input) if preprocess: subprocess.run( f"python {home_dir}/preprocess_entity.py \ --batch_size {batch_size} \ --add_entity_type_in_description {add_types_in_desc} \ --log_dir {log_dir}/1_preprocess \ --type_file {data_dir}/{type_file} \ --num_workers 12 \ --entity_file {data_dir}/{entity_file}", shell=True, check=True, ) # train model subprocess.run( f"CUDA_VISIBLE_DEVICES={gpus} {python_str} {home_dir}/train.py \ --train_data_file {data_dir}/{train_file} \ --train_entity_file {data_dir}/{entity_file} \ --dev_data_file {data_dir}/{dev_file} \ --dev_entity_file {data_dir}/{entity_file} \ --type_file {data_dir}/{type_file} \ --n_epochs {n_epochs} \ --log_dir {log_dir}/1_train \ --temperature {temperature} \ --batch_size {batch_size} \ --add_entity_type_in_description {add_types_in_desc} \ --distributed {distributed} \ --tokenized_entity_data {tokenized_entity_data} \ --max_context_length {max_context_length} \ --alpha {type_weight} \ --seed {seed} \ --lr {lr}", shell=True, check=True, ) # generate entities subprocess.run( f"CUDA_VISIBLE_DEVICES={gpus} python {home_dir}/extract_entity.py \ --entity_file {data_dir}/{entity_file} \ --model_checkpoint {log_dir}/1_train/best_model.pth \ --batch_size {entity_batch_size} \ --log_dir {log_dir}/1_entity \ --add_entity_type_in_description {add_types_in_desc} \ --distributed {distributed} \ --tokenized_entity_data {tokenized_entity_data} \ --type_file {data_dir}/{type_file}", shell=True, check=True, ) # eval # don't use distributed for eval subprocess.run( f"CUDA_VISIBLE_DEVICES={gpus} python {home_dir}/eval.py \ --test_data_file {data_dir}/{test_file} \ --entity_file {data_dir}/{entity_file} \ --log_dir {log_dir}/1_eval \ --temperature {temperature} \ --batch_size 32 \ --model_checkpoint {log_dir}/1_train/best_model.pth \ --entity_emb_path {log_dir}/1_entity/embs.npy \ --entity_map_file {log_dir}/1_entity/entity_map.pkl \ --add_entity_type_in_description {add_types_in_desc} \ --max_context_length {max_context_length} \ --mode eval", shell=True, check=True, ) # hard negative sampling rounds for round in range(1, num_neg_rounds + 1): # decay the lr by 1/2 each round neg_lr = lr * (0.5) ** (round) # generate train negative samples subprocess.run( f"CUDA_VISIBLE_DEVICES={gpus} {python_str} {home_dir}/eval.py \ --test_data_file {data_dir}/{train_file} \ --entity_file {data_dir}/{entity_file} \ --log_dir {log_dir}/{round}_neg_sample_train \ --temperature {temperature} \ --batch_size {neg_sample_batch_size} \ --model_checkpoint {log_dir}/{round}_train/best_model.pth \ --entity_emb_path {log_dir}/{round}_entity/embs.npy \ --entity_map_file {log_dir}/{round}_entity/entity_map.pkl \ --add_entity_type_in_description {add_types_in_desc} \ --max_context_length {max_context_length} \ --distributed {distributed} \ --top_k {num_negatives} \ --type_file {data_dir}/{type_file} \ --orig_num_negatives {num_negatives_orig} \ --filter_negatives {filter_negatives} \ --mode neg_sample", shell=True, check=True, ) # generate dev negative samples subprocess.run( f"CUDA_VISIBLE_DEVICES={gpus} {python_str} {home_dir}/eval.py \ --test_data_file {data_dir}/{dev_file} \ --entity_file {data_dir}/{entity_file} \ --log_dir {log_dir}/{round}_neg_sample_dev \ --temperature {temperature} \ --batch_size {neg_sample_batch_size} \ --model_checkpoint {log_dir}/{round}_train/best_model.pth \ --entity_emb_path {log_dir}/{round}_entity/embs.npy \ --entity_map_file {log_dir}/{round}_entity/entity_map.pkl \ --max_context_length {max_context_length} \ --add_entity_type_in_description {add_types_in_desc} \ --distributed {distributed} \ --top_k {num_negatives} \ --type_file {data_dir}/{type_file} \ --mode neg_sample", shell=True, check=True, ) # train model subprocess.run( f"CUDA_VISIBLE_DEVICES={gpus} {python_str} {home_dir}/train.py \ --seed {seed} \ --train_data_file {data_dir}/{train_file} \ --train_entity_file {data_dir}/{entity_file} \ --dev_data_file {data_dir}/{dev_file} \ --dev_entity_file {data_dir}/{entity_file} \ --type_file {data_dir}/{type_file} \ --n_epochs {n_epochs} \ --log_dir {log_dir}/{round+1}_train \ --temperature {temperature} \ --batch_size {batch_size} \ --add_entity_type_in_description {add_types_in_desc} \ --distributed {distributed} \ --tokenized_entity_data {tokenized_entity_data} \ --alpha {type_weight} \ --max_context_length {max_context_length} \ --num_negatives {num_negatives} \ --model_checkpoint {log_dir}/{round}_train/best_model.pth \ --train_neg_sample_file {log_dir}/{round}_neg_sample_train/neg_samples.json \ --dev_neg_sample_file {log_dir}/{round}_neg_sample_dev/neg_samples.json \ --lr {neg_lr}", shell=True, check=True, ) # generate entities for eval subprocess.run( f"CUDA_VISIBLE_DEVICES={gpus} python {home_dir}/extract_entity.py \ --entity_file {data_dir}/{entity_file} \ --model_checkpoint {log_dir}/{round+1}_train/best_model.pth \ --batch_size {entity_batch_size} \ --log_dir {log_dir}/{round+1}_entity \ --add_entity_type_in_description {add_types_in_desc} \ --tokenized_entity_data {tokenized_entity_data} \ --type_file {data_dir}/{type_file} \ --distributed {distributed}", shell=True, check=True, ) # eval subprocess.run( f"CUDA_VISIBLE_DEVICES={gpus} python {home_dir}/eval.py \ --test_data_file {data_dir}/{test_file} \ --entity_file {data_dir}/{entity_file} \ --log_dir {log_dir}/{round+1}_eval \ --temperature {temperature} \ --batch_size {eval_batch_size} \ --model_checkpoint {log_dir}/{round+1}_train/best_model.pth \ --entity_emb_path {log_dir}/{round+1}_entity/embs.npy \ --max_context_length {max_context_length} \ --entity_map_file {log_dir}/{round+1}_entity/entity_map.pkl \ --add_entity_type_in_description {add_types_in_desc} \ --mode eval", shell=True, check=True, )
tabi-main
scripts/run_kilt_data.py
import subprocess # set hyperparameters # number of epochs for each round of sampling n_epochs = 1 # first epoch is in-batch negatives num_neg_rounds = 3 # tabi-specific type_weight = 0.1 # model params max_context_length = 32 lr = 1e-5 temperature = 0.05 add_types_in_desc = True seed = 1234 batch_size = 32 eval_batch_size = 32 neg_sample_batch_size = 32 entity_batch_size = 32 num_negatives = 1 # number of hard negatives to use for training num_negatives_orig = 20 # total number of hard negatives to fetch (fetch extra since we filter gold ids and optionally based on counts) filter_negatives = False # whether to filter hard negatives # machine params gpu = -1 distributed = False # set paths home_dir = "tabi" data_dir = f"sample_data" train_file = "train.jsonl" dev_file = "dev.jsonl" test_file = "dev.jsonl" entity_file = "entity.jsonl" type_file = "figer_types.txt" base_log_dir = "logs" run_name = f"sample_run" log_dir = f"{base_log_dir}/{run_name}" preprocess = True tokenized_entity_data = f"{log_dir}/1_preprocess/entity_data.npy" # preprocess entity data (generate and save tokens for BERT entity input) if preprocess: subprocess.run( f"python {home_dir}/preprocess_entity.py \ --batch_size {batch_size} \ --add_entity_type_in_description {add_types_in_desc} \ --log_dir {log_dir}/1_preprocess \ --type_file {data_dir}/{type_file} \ --num_workers 12 \ --entity_file {data_dir}/{entity_file} \ --gpu {gpu}", shell=True, check=True, ) # train model subprocess.run( f"python {home_dir}/train.py \ --train_data_file {data_dir}/{train_file} \ --train_entity_file {data_dir}/{entity_file} \ --dev_data_file {data_dir}/{dev_file} \ --dev_entity_file {data_dir}/{entity_file} \ --type_file {data_dir}/{type_file} \ --n_epochs {n_epochs} \ --log_dir {log_dir}/1_train \ --temperature {temperature} \ --batch_size {batch_size} \ --add_entity_type_in_description {add_types_in_desc} \ --distributed {distributed} \ --tokenized_entity_data {tokenized_entity_data} \ --max_context_length {max_context_length} \ --alpha {type_weight} \ --seed {seed} \ --lr {lr} \ --gpu {gpu}", shell=True, check=True, ) # generate entities subprocess.run( f"python {home_dir}/extract_entity.py \ --entity_file {data_dir}/{entity_file} \ --model_checkpoint {log_dir}/1_train/best_model.pth \ --batch_size {entity_batch_size} \ --log_dir {log_dir}/1_entity \ --add_entity_type_in_description {add_types_in_desc} \ --distributed {distributed} \ --tokenized_entity_data {tokenized_entity_data} \ --type_file {data_dir}/{type_file} \ --gpu {gpu}", shell=True, check=True, ) # eval subprocess.run( f"python {home_dir}/eval.py \ --test_data_file {data_dir}/{test_file} \ --entity_file {data_dir}/{entity_file} \ --log_dir {log_dir}/1_eval \ --temperature {temperature} \ --batch_size {eval_batch_size} \ --model_checkpoint {log_dir}/1_train/best_model.pth \ --entity_emb_path {log_dir}/1_entity/embs.npy \ --entity_map_file {log_dir}/1_entity/entity_map.pkl \ --add_entity_type_in_description {add_types_in_desc} \ --max_context_length {max_context_length} \ --mode eval \ --gpu {gpu}", shell=True, check=True, ) # hard negative sampling rounds for round in range(1, num_neg_rounds + 1): # decay the lr by 1/2 each round neg_lr = lr * (0.5) ** (round) # generate train negative samples subprocess.run( f"python {home_dir}/eval.py \ --test_data_file {data_dir}/{train_file} \ --entity_file {data_dir}/{entity_file} \ --log_dir {log_dir}/{round}_neg_sample_train \ --temperature {temperature} \ --batch_size {neg_sample_batch_size} \ --model_checkpoint {log_dir}/{round}_train/best_model.pth \ --entity_emb_path {log_dir}/{round}_entity/embs.npy \ --entity_map_file {log_dir}/{round}_entity/entity_map.pkl \ --add_entity_type_in_description {add_types_in_desc} \ --max_context_length {max_context_length} \ --distributed {distributed} \ --top_k {num_negatives} \ --type_file {data_dir}/{type_file} \ --orig_num_negatives {num_negatives_orig} \ --filter_negatives {filter_negatives} \ --mode neg_sample \ --gpu {gpu}", shell=True, check=True, ) # generate dev negative samples subprocess.run( f"python {home_dir}/eval.py \ --test_data_file {data_dir}/{dev_file} \ --entity_file {data_dir}/{entity_file} \ --log_dir {log_dir}/{round}_neg_sample_dev \ --temperature {temperature} \ --batch_size {neg_sample_batch_size} \ --model_checkpoint {log_dir}/{round}_train/best_model.pth \ --entity_emb_path {log_dir}/{round}_entity/embs.npy \ --entity_map_file {log_dir}/{round}_entity/entity_map.pkl \ --max_context_length {max_context_length} \ --add_entity_type_in_description {add_types_in_desc} \ --distributed {distributed} \ --top_k {num_negatives} \ --type_file {data_dir}/{type_file} \ --mode neg_sample \ --gpu {gpu}", shell=True, check=True, ) # train model subprocess.run( f"python {home_dir}/train.py \ --seed {seed} \ --train_data_file {data_dir}/{train_file} \ --train_entity_file {data_dir}/{entity_file} \ --dev_data_file {data_dir}/{dev_file} \ --dev_entity_file {data_dir}/{entity_file} \ --type_file {data_dir}/{type_file} \ --n_epochs {n_epochs} \ --log_dir {log_dir}/{round+1}_train \ --temperature {temperature} \ --batch_size {batch_size} \ --add_entity_type_in_description {add_types_in_desc} \ --distributed {distributed} \ --tokenized_entity_data {tokenized_entity_data} \ --alpha {type_weight} \ --max_context_length {max_context_length} \ --num_negatives {num_negatives} \ --model_checkpoint {log_dir}/{round}_train/best_model.pth \ --train_neg_sample_file {log_dir}/{round}_neg_sample_train/neg_samples.json \ --dev_neg_sample_file {log_dir}/{round}_neg_sample_dev/neg_samples.json \ --lr {neg_lr} \ --gpu {gpu}", shell=True, check=True, ) # generate entities for eval subprocess.run( f"python {home_dir}/extract_entity.py \ --entity_file {data_dir}/{entity_file} \ --model_checkpoint {log_dir}/{round+1}_train/best_model.pth \ --batch_size {entity_batch_size} \ --log_dir {log_dir}/{round+1}_entity \ --add_entity_type_in_description {add_types_in_desc} \ --tokenized_entity_data {tokenized_entity_data} \ --type_file {data_dir}/{type_file} \ --distributed {distributed} \ --gpu {gpu}", shell=True, check=True, ) # eval subprocess.run( f"python {home_dir}/eval.py \ --test_data_file {data_dir}/{test_file} \ --entity_file {data_dir}/{entity_file} \ --log_dir {log_dir}/{round+1}_eval \ --temperature {temperature} \ --batch_size {eval_batch_size} \ --model_checkpoint {log_dir}/{round+1}_train/best_model.pth \ --entity_emb_path {log_dir}/{round+1}_entity/embs.npy \ --max_context_length {max_context_length} \ --entity_map_file {log_dir}/{round+1}_entity/entity_map.pkl \ --add_entity_type_in_description {add_types_in_desc} \ --mode eval \ --gpu {gpu}", shell=True, check=True, )
tabi-main
scripts/run_sample_cpu.py
import subprocess # set hyperparameters # number of epochs for each round of sampling n_epochs = 1 # first epoch is in-batch negatives num_neg_rounds = 3 # tabi-specific type_weight = 0.1 # model params max_context_length = 32 lr = 1e-5 temperature = 0.05 add_types_in_desc = True seed = 1234 batch_size = 32 eval_batch_size = 32 neg_sample_batch_size = 32 entity_batch_size = 32 num_negatives = 1 # number of hard negatives to use for training num_negatives_orig = 20 # total number of hard negatives to fetch (fetch extra since we filter gold ids and optionally based on counts) filter_negatives = False # whether to filter hard negatives # machine params gpus = "0" ngpus = 1 distributed = False # set paths home_dir = "tabi" data_dir = f"sample_data" train_file = "train.jsonl" dev_file = "dev.jsonl" test_file = "dev.jsonl" entity_file = "entity.jsonl" type_file = "figer_types.txt" base_log_dir = "logs" run_name = f"sample_run" log_dir = f"{base_log_dir}/{run_name}" preprocess = True tokenized_entity_data = f"{log_dir}/1_preprocess/entity_data.npy" python_str = "python" if distributed: python_str = f"python -m torch.distributed.launch --nproc_per_node={ngpus}" # preprocess entity data (generate and save tokens for BERT entity input) if preprocess: subprocess.run( f"python {home_dir}/preprocess_entity.py \ --batch_size {batch_size} \ --add_entity_type_in_description {add_types_in_desc} \ --log_dir {log_dir}/1_preprocess \ --type_file {data_dir}/{type_file} \ --num_workers 12 \ --entity_file {data_dir}/{entity_file}", shell=True, check=True, ) # train model subprocess.run( f"CUDA_VISIBLE_DEVICES={gpus} {python_str} {home_dir}/train.py \ --train_data_file {data_dir}/{train_file} \ --train_entity_file {data_dir}/{entity_file} \ --dev_data_file {data_dir}/{dev_file} \ --dev_entity_file {data_dir}/{entity_file} \ --type_file {data_dir}/{type_file} \ --n_epochs {n_epochs} \ --log_dir {log_dir}/1_train \ --temperature {temperature} \ --batch_size {batch_size} \ --add_entity_type_in_description {add_types_in_desc} \ --distributed {distributed} \ --tokenized_entity_data {tokenized_entity_data} \ --max_context_length {max_context_length} \ --alpha {type_weight} \ --seed {seed} \ --lr {lr}", shell=True, check=True, ) # generate entities subprocess.run( f"CUDA_VISIBLE_DEVICES={gpus} python {home_dir}/extract_entity.py \ --entity_file {data_dir}/{entity_file} \ --model_checkpoint {log_dir}/1_train/best_model.pth \ --batch_size {entity_batch_size} \ --log_dir {log_dir}/1_entity \ --add_entity_type_in_description {add_types_in_desc} \ --distributed {distributed} \ --tokenized_entity_data {tokenized_entity_data} \ --type_file {data_dir}/{type_file}", shell=True, check=True, ) # eval subprocess.run( f"CUDA_VISIBLE_DEVICES={gpus} python {home_dir}/eval.py \ --test_data_file {data_dir}/{test_file} \ --entity_file {data_dir}/{entity_file} \ --log_dir {log_dir}/1_eval \ --temperature {temperature} \ --batch_size {eval_batch_size} \ --model_checkpoint {log_dir}/1_train/best_model.pth \ --entity_emb_path {log_dir}/1_entity/embs.npy \ --entity_map_file {log_dir}/1_entity/entity_map.pkl \ --add_entity_type_in_description {add_types_in_desc} \ --max_context_length {max_context_length} \ --mode eval", shell=True, check=True, ) # hard negative sampling rounds for round in range(1, num_neg_rounds + 1): # decay the lr by 1/2 each round neg_lr = lr * (0.5) ** (round) # generate train negative samples subprocess.run( f"CUDA_VISIBLE_DEVICES={gpus} {python_str} {home_dir}/eval.py \ --test_data_file {data_dir}/{train_file} \ --entity_file {data_dir}/{entity_file} \ --log_dir {log_dir}/{round}_neg_sample_train \ --temperature {temperature} \ --batch_size {neg_sample_batch_size} \ --model_checkpoint {log_dir}/{round}_train/best_model.pth \ --entity_emb_path {log_dir}/{round}_entity/embs.npy \ --entity_map_file {log_dir}/{round}_entity/entity_map.pkl \ --add_entity_type_in_description {add_types_in_desc} \ --max_context_length {max_context_length} \ --distributed {distributed} \ --top_k {num_negatives} \ --type_file {data_dir}/{type_file} \ --orig_num_negatives {num_negatives_orig} \ --filter_negatives {filter_negatives} \ --mode neg_sample", shell=True, check=True, ) # generate dev negative samples subprocess.run( f"CUDA_VISIBLE_DEVICES={gpus} {python_str} {home_dir}/eval.py \ --test_data_file {data_dir}/{dev_file} \ --entity_file {data_dir}/{entity_file} \ --log_dir {log_dir}/{round}_neg_sample_dev \ --temperature {temperature} \ --batch_size {neg_sample_batch_size} \ --model_checkpoint {log_dir}/{round}_train/best_model.pth \ --entity_emb_path {log_dir}/{round}_entity/embs.npy \ --entity_map_file {log_dir}/{round}_entity/entity_map.pkl \ --max_context_length {max_context_length} \ --add_entity_type_in_description {add_types_in_desc} \ --distributed {distributed} \ --top_k {num_negatives} \ --type_file {data_dir}/{type_file} \ --mode neg_sample", shell=True, check=True, ) # train model subprocess.run( f"CUDA_VISIBLE_DEVICES={gpus} {python_str} {home_dir}/train.py \ --seed {seed} \ --train_data_file {data_dir}/{train_file} \ --train_entity_file {data_dir}/{entity_file} \ --dev_data_file {data_dir}/{dev_file} \ --dev_entity_file {data_dir}/{entity_file} \ --type_file {data_dir}/{type_file} \ --n_epochs {n_epochs} \ --log_dir {log_dir}/{round+1}_train \ --temperature {temperature} \ --batch_size {batch_size} \ --add_entity_type_in_description {add_types_in_desc} \ --distributed {distributed} \ --tokenized_entity_data {tokenized_entity_data} \ --alpha {type_weight} \ --max_context_length {max_context_length} \ --num_negatives {num_negatives} \ --model_checkpoint {log_dir}/{round}_train/best_model.pth \ --train_neg_sample_file {log_dir}/{round}_neg_sample_train/neg_samples.json \ --dev_neg_sample_file {log_dir}/{round}_neg_sample_dev/neg_samples.json \ --lr {neg_lr}", shell=True, check=True, ) # generate entities for eval subprocess.run( f"CUDA_VISIBLE_DEVICES={gpus} python {home_dir}/extract_entity.py \ --entity_file {data_dir}/{entity_file} \ --model_checkpoint {log_dir}/{round+1}_train/best_model.pth \ --batch_size {entity_batch_size} \ --log_dir {log_dir}/{round+1}_entity \ --add_entity_type_in_description {add_types_in_desc} \ --tokenized_entity_data {tokenized_entity_data} \ --type_file {data_dir}/{type_file} \ --distributed {distributed}", shell=True, check=True, ) # eval subprocess.run( f"CUDA_VISIBLE_DEVICES={gpus} python {home_dir}/eval.py \ --test_data_file {data_dir}/{test_file} \ --entity_file {data_dir}/{entity_file} \ --log_dir {log_dir}/{round+1}_eval \ --temperature {temperature} \ --batch_size {eval_batch_size} \ --model_checkpoint {log_dir}/{round+1}_train/best_model.pth \ --entity_emb_path {log_dir}/{round+1}_entity/embs.npy \ --max_context_length {max_context_length} \ --entity_map_file {log_dir}/{round+1}_entity/entity_map.pkl \ --add_entity_type_in_description {add_types_in_desc} \ --mode eval", shell=True, check=True, )
tabi-main
scripts/run_sample.py
"""Convert KILT-formatted jsonlines files to TABi-formatted jsonlines files.""" import argparse import glob import logging import os import jsonlines from tqdm import tqdm from tabi.utils.data_utils import load_entity_data logger = logging.getLogger(__name__) logging.basicConfig( level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s", ) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "--input_file", type=str, help="Input KILT file to convert. Only needed if input_dir and ouput_dir are NOT provided", ) parser.add_argument( "--output_file", type=str, help="Output file. Only needed if input_dir and output_dir are NOT provided", ) parser.add_argument( "--input_dir", type=str, help="Input directory to read KILT files. This reads all jsonlines files in the directory!", ) parser.add_argument( "--output_dir", type=str, help="Output directory to write TABi files" ) parser.add_argument( "--entity_file", type=str, required=True, help="KILT-E knowledge base path" ) return parser.parse_args() def convert_kilt_to_tabi(kilt_file, tabi_file, wikiid2eid): with jsonlines.open(kilt_file) as f, jsonlines.open(tabi_file, "w") as f_out: for line in f: # get mentions (if any) has_mention_boundaries = ("[START_ENT]" in line["input"]) and ( "[END_ENT]" in line["input"] ) if has_mention_boundaries: meta = line["meta"] start_idx = len(meta["left_context"]) + 1 end_idx = start_idx + len(meta["mention"]) text = ( line["input"].replace("[START_ENT] ", "").replace(" [END_ENT]", "") ) mentions = [[start_idx, end_idx]] else: text = line["input"] mentions = [] # no labels provided (e.g. test dataset) if "output" not in line or not any( ["provenance" in o for o in line["output"]] ): f_out.write( { "text": text, "label_id": [-1], "alt_label_id": [[]], "id": line["id"], "mentions": mentions, } ) continue # convert labels from wikipedia page ids to KILT-E entity ids all_eids = [] for o in line["output"]: # take first wikipedia id to be the label if "provenance" in o: for pair in o["provenance"]: wikiid = pair["wikipedia_id"] # some wikipedia page ids won't have eids if they are in KILT but not in KILT-E (e.g. list pages) eid = int(wikiid2eid.get(wikiid, -1)) all_eids.append(eid) # get unique entity ids all_eids = list(set(all_eids)) assert len(all_eids) > 0 f_out.write( { "text": text, "label_id": [all_eids[0]], "alt_label_id": [all_eids[1:]], "id": line["id"], "mentions": mentions, } ) def main(args): assert (args.input_file and args.output_file) or ( args.input_dir and args.output_dir ), "Must provide either input_file and output_file OR input_dir and output_dir" logger.info("Loading entity data...") entity_cache = load_entity_data(args.entity_file) # mapping from Wikipedia page ids to KILT-E knowledge base ids wikiid2eid = {} for eid in entity_cache: wikiid2eid[entity_cache[eid]["wikipedia_page_id"]] = eid if args.output_dir is not None: # make output directory if it doesn't exist os.makedirs(args.output_dir, exist_ok=True) # iterate over each file in the input dir assert ( args.input_dir is not None ), "Must provide input_dir if output_dir is provided" # assumes all jsonlines files in the directory are in KILT format! kilt_files = glob.glob(f"{args.input_dir}/*") logger.info(f"Found {len(kilt_files)} KILT files.") for kilt_file in tqdm(kilt_files, desc="Converting"): tabi_file = os.path.join(args.output_dir, os.path.basename(kilt_file)) convert_kilt_to_tabi( kilt_file=kilt_file, tabi_file=tabi_file, wikiid2eid=wikiid2eid ) else: logger.info(f"Converting {args.input_file}...") convert_kilt_to_tabi( kilt_file=args.input_file, tabi_file=args.output_file, wikiid2eid=wikiid2eid ) logger.info(f"Wrote {args.output_file}!") if __name__ == "__main__": args = parse_args() main(args)
tabi-main
scripts/preprocess_kilt.py
import argparse import logging from collections import defaultdict from string import punctuation import torch from termcolor import colored from transformers import AutoTokenizer from transformers import logging as hf_logging from tabi.constants import ENT_START from tabi.models.biencoder import Biencoder from tabi.utils.data_utils import load_entity_data from tabi.utils.utils import load_model, move_dict hf_logging.set_verbosity_error() logger = logging.getLogger(__name__) logging.basicConfig( level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s", ) parser = argparse.ArgumentParser() parser.add_argument("--model_checkpoint", type=str, required=True) parser.add_argument("--entity_emb_path", type=str) parser.add_argument("--entity_file", type=str) parser.add_argument("--top_k", type=int, default=10) parser.add_argument("--device", type=str, choices=["cuda", "cpu"], default="cpu") args = parser.parse_args() def preprocess_query(tokenizer, text): # Take the input data and make it inference ready tokens = tokenizer( text, padding="max_length", add_special_tokens=True, return_tensors="pt", # return as pytorch tensors truncation=True, max_length=32, return_length=True, return_offsets_mapping=True, ) context_tokens = defaultdict(list) for key in tokens.keys(): context_tokens[key].append(tokens[key][0]) context_tokens = {k: torch.stack(v) for k, v in context_tokens.items()} return context_tokens def preprocess_entity(tokenizer, title, description): ent_str = title + " " + ENT_START + " " + description entity_tokens = tokenizer( ent_str, padding="max_length", add_special_tokens=True, return_tensors="pt", truncation=True, max_length=128, ) return entity_tokens # load model logger.info("Loading model...") model = Biencoder( tied=True, entity_emb_path=args.entity_emb_path, top_k=args.top_k, model_name="bert-base-uncased", normalize=True, temperature=0.05, ) load_model(model_checkpoint=args.model_checkpoint, device=args.device, model=model) model.to(args.device) model.eval() logger.info("Finished loading model!") # create tokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") tokenizer.add_special_tokens({"additional_special_tokens": [ENT_START]}) if args.entity_emb_path is not None: # load entity cache logger.info("Loading entity data...") entity_cache = load_entity_data(args.entity_file) logger.info("Finished loading entity data!") def pretty_print(ent_data, prob, score): print(colored(f"\ntitle: {ent_data['title']}", "grey", "on_cyan")) print(f"prob: {round(prob, 5)}") print(f"score: {round(score, 5)}") print(f"text:{' '.join(ent_data['description'].split(' ')[:150])}") if args.entity_emb_path is None: logger.info( "Using entity-input mode. No entity index was provided. To enter a new query, type 'Exit' for entity title. Returns raw score." ) while True: # ask for input text = input(colored("\nInsert query: ", "grey", "on_green")) if text.lower() == "exit" or text == "exit()": break # remove punctuation from end of text text = text.rstrip(punctuation) query_tokens = preprocess_query(tokenizer=tokenizer, text=text) # use index if provided if args.entity_emb_path is not None: # retrieve candidates with torch.no_grad(): res = model.predict( context_data=move_dict(query_tokens, args.device), data_id=torch.tensor([-1]), ) assert len(res["probs"]) == 1 res["probs"] = res["probs"][0].tolist() res["indices"] = res["indices"][0].tolist() res["scores"] = res["scores"][0].tolist() del res["data_id"] # return response to user for eid, prob, score in zip(res["indices"], res["probs"], res["scores"]): pretty_print(entity_cache[eid], prob, score) # otherwise, return query for entity info and return raw score else: exit_code = False while not exit_code: entity_title = input("\nInsert entity title: ") if entity_title.lower() == "exit" or entity_title == "exit()": exit_code = True break entity_description = input("Insert entity description: ") entity_tokens = preprocess_entity( tokenizer=tokenizer, title=entity_title, description=entity_description ) # print(tokenizer.decode(entity_tokens['input_ids'][0])) # compute embeddings and take dot product ent_emb = model._embed_entity(move_dict(entity_tokens, args.device)) query_emb = model._embed_query(move_dict(query_tokens, args.device)) score = torch.dot(ent_emb.squeeze(), query_emb.squeeze()) print(f"Score: {round(score.item(), 5)}")
tabi-main
scripts/demo.py
import subprocess # set hyperparameters # number of epochs for each round of sampling n_epochs = 1 # first epoch is in-batch negatives num_neg_rounds = 3 # tabi-specific type_weight = 0.1 # model params max_context_length = 32 lr = 3e-4 temperature = 0.05 add_types_in_desc = False seed = 1234 batch_size = 4096 eval_batch_size = 32 neg_sample_batch_size = batch_size * 2 entity_batch_size = batch_size * 4 num_negatives = 3 # number of hard negatives to use for training num_negatives_orig = 100 # total number of hard negatives to fetch (fetch extra since we filter gold ids and optionally based on counts) filter_negatives = True # whether to filter hard negatives for training # machine params gpus = "0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15" ngpus = 16 distributed = True # set paths home_dir = "tabi" data_dir = f"data" train_file = "blink_train.jsonl" dev_file = "blink_dev.jsonl" test_file = "blink_dev.jsonl" entity_file = "entity.pkl" type_file = "figer_types.txt" base_log_dir = "logs" run_name = f"blink_train" log_dir = f"{base_log_dir}/{run_name}" preprocess = True tokenized_entity_data = f"{log_dir}/1_preprocess/entity_data.npy" python_str = "python" if distributed: python_str = f"python -m torch.distributed.launch --nproc_per_node={ngpus}" # preprocess entity data (generate and save tokens for BERT entity input) if preprocess: subprocess.run( f"python {home_dir}/preprocess_entity.py \ --batch_size {batch_size} \ --add_entity_type_in_description {add_types_in_desc} \ --log_dir {log_dir}/1_preprocess \ --type_file {data_dir}/{type_file} \ --num_workers 12 \ --entity_file {data_dir}/{entity_file}", shell=True, check=True, ) # train model subprocess.run( f"CUDA_VISIBLE_DEVICES={gpus} {python_str} {home_dir}/train.py \ --train_data_file {data_dir}/{train_file} \ --train_entity_file {data_dir}/{entity_file} \ --dev_data_file {data_dir}/{dev_file} \ --dev_entity_file {data_dir}/{entity_file} \ --type_file {data_dir}/{type_file} \ --n_epochs {n_epochs} \ --log_dir {log_dir}/1_train \ --temperature {temperature} \ --batch_size {batch_size} \ --add_entity_type_in_description {add_types_in_desc} \ --distributed {distributed} \ --tokenized_entity_data {tokenized_entity_data} \ --max_context_length {max_context_length} \ --alpha {type_weight} \ --seed {seed} \ --lr {lr}", shell=True, check=True, ) # generate entities subprocess.run( f"CUDA_VISIBLE_DEVICES={gpus} python {home_dir}/extract_entity.py \ --entity_file {data_dir}/{entity_file} \ --model_checkpoint {log_dir}/1_train/best_model.pth \ --batch_size {entity_batch_size} \ --log_dir {log_dir}/1_entity \ --add_entity_type_in_description {add_types_in_desc} \ --distributed {distributed} \ --tokenized_entity_data {tokenized_entity_data} \ --type_file {data_dir}/{type_file}", shell=True, check=True, ) # eval # don't use distributed for eval subprocess.run( f"CUDA_VISIBLE_DEVICES={gpus} python {home_dir}/eval.py \ --test_data_file {data_dir}/{test_file} \ --entity_file {data_dir}/{entity_file} \ --log_dir {log_dir}/1_eval \ --temperature {temperature} \ --batch_size 32 \ --model_checkpoint {log_dir}/1_train/best_model.pth \ --entity_emb_path {log_dir}/1_entity/embs.npy \ --entity_map_file {log_dir}/1_entity/entity_map.pkl \ --add_entity_type_in_description {add_types_in_desc} \ --max_context_length {max_context_length} \ --mode eval", shell=True, check=True, ) # hard negative sampling rounds for round in range(1, num_neg_rounds + 1): # decay the lr by 1/2 each round neg_lr = lr * (0.5) ** (round) # generate train negative samples subprocess.run( f"CUDA_VISIBLE_DEVICES={gpus} {python_str} {home_dir}/eval.py \ --test_data_file {data_dir}/{train_file} \ --entity_file {data_dir}/{entity_file} \ --log_dir {log_dir}/{round}_neg_sample_train \ --temperature {temperature} \ --batch_size {neg_sample_batch_size} \ --model_checkpoint {log_dir}/{round}_train/best_model.pth \ --entity_emb_path {log_dir}/{round}_entity/embs.npy \ --entity_map_file {log_dir}/{round}_entity/entity_map.pkl \ --add_entity_type_in_description {add_types_in_desc} \ --max_context_length {max_context_length} \ --distributed {distributed} \ --top_k {num_negatives} \ --type_file {data_dir}/{type_file} \ --orig_num_negatives {num_negatives_orig} \ --filter_negatives {filter_negatives} \ --mode neg_sample", shell=True, check=True, ) # generate dev negative samples subprocess.run( f"CUDA_VISIBLE_DEVICES={gpus} {python_str} {home_dir}/eval.py \ --test_data_file {data_dir}/{dev_file} \ --entity_file {data_dir}/{entity_file} \ --log_dir {log_dir}/{round}_neg_sample_dev \ --temperature {temperature} \ --batch_size {neg_sample_batch_size} \ --model_checkpoint {log_dir}/{round}_train/best_model.pth \ --entity_emb_path {log_dir}/{round}_entity/embs.npy \ --entity_map_file {log_dir}/{round}_entity/entity_map.pkl \ --max_context_length {max_context_length} \ --add_entity_type_in_description {add_types_in_desc} \ --distributed {distributed} \ --top_k {num_negatives} \ --type_file {data_dir}/{type_file} \ --mode neg_sample", shell=True, check=True, ) # train model subprocess.run( f"CUDA_VISIBLE_DEVICES={gpus} {python_str} {home_dir}/train.py \ --seed {seed} \ --train_data_file {data_dir}/{train_file} \ --train_entity_file {data_dir}/{entity_file} \ --dev_data_file {data_dir}/{dev_file} \ --dev_entity_file {data_dir}/{entity_file} \ --type_file {data_dir}/{type_file} \ --n_epochs {n_epochs} \ --log_dir {log_dir}/{round+1}_train \ --temperature {temperature} \ --batch_size {batch_size} \ --add_entity_type_in_description {add_types_in_desc} \ --distributed {distributed} \ --tokenized_entity_data {tokenized_entity_data} \ --alpha {type_weight} \ --max_context_length {max_context_length} \ --num_negatives {num_negatives} \ --model_checkpoint {log_dir}/{round}_train/best_model.pth \ --train_neg_sample_file {log_dir}/{round}_neg_sample_train/neg_samples.json \ --dev_neg_sample_file {log_dir}/{round}_neg_sample_dev/neg_samples.json \ --lr {neg_lr}", shell=True, check=True, ) # generate entities for eval subprocess.run( f"CUDA_VISIBLE_DEVICES={gpus} python {home_dir}/extract_entity.py \ --entity_file {data_dir}/{entity_file} \ --model_checkpoint {log_dir}/{round+1}_train/best_model.pth \ --batch_size {entity_batch_size} \ --log_dir {log_dir}/{round+1}_entity \ --add_entity_type_in_description {add_types_in_desc} \ --tokenized_entity_data {tokenized_entity_data} \ --type_file {data_dir}/{type_file} \ --distributed {distributed}", shell=True, check=True, ) # eval subprocess.run( f"CUDA_VISIBLE_DEVICES={gpus} python {home_dir}/eval.py \ --test_data_file {data_dir}/{test_file} \ --entity_file {data_dir}/{entity_file} \ --log_dir {log_dir}/{round+1}_eval \ --temperature {temperature} \ --batch_size {eval_batch_size} \ --model_checkpoint {log_dir}/{round+1}_train/best_model.pth \ --entity_emb_path {log_dir}/{round+1}_entity/embs.npy \ --max_context_length {max_context_length} \ --entity_map_file {log_dir}/{round+1}_entity/entity_map.pkl \ --add_entity_type_in_description {add_types_in_desc} \ --mode eval", shell=True, check=True, )
tabi-main
scripts/run_blink_data.py
import glob from os.path import basename import setuptools from setuptools import find_namespace_packages setuptools.setup( name="anchor", version="0.0.1", author="Megan Leszczynski", packages=find_namespace_packages() )
anchor-stability-master
setup.py
anchor-stability-master
tests/__init__.py
import unittest from unittest.mock import Mock, patch import numpy as np import utils from scipy.linalg import orthogonal_procrustes from anchor.embedding import Embedding class EmbeddingTest(unittest.TestCase): def test_save_load(self): # save embedding vecs = np.array([[0, 1, 2], [3, 4, 5]]) vocab = ["cat", "dog"] tmpfile = "tmp.txt" original_emb = Embedding(vecs=vecs, vocab=vocab) original_emb.save(tmpfile) # load into a new embedding new_emb = Embedding(tmpfile) new_vecs = new_emb.m utils.clean_files("tmp.txt") np.testing.assert_array_equal(vecs, new_vecs) def test_align(self): # test basic align vocab = ["cat", "dog"] vecs1 = np.array([[0, 1, 2], [3, 4, 5]]) vecs2 = np.array([[4, 5, 6], [7, 8, 9]]) emb1 = Embedding(vecs=vecs1, vocab=vocab) emb2 = Embedding(vecs=vecs2, vocab=vocab) R, _ = orthogonal_procrustes(vecs2, vecs1) expected_vec = np.dot(vecs2, R) emb2.align(emb1) np.testing.assert_array_equal(expected_vec, emb2.m) np.testing.assert_array_equal(emb1, emb2.reference) # test align with subembeds vocab1 = ["cat", "dog"] vocab2 = ["cat", "giraffe", "dog"] vecs1 = np.array([[0, 1, 2], [3, 4, 5]]) vecs2 = np.array([[4, 5, 6], [7, 8, 9], [0, 3, 4]]) emb1 = Embedding(vecs=vecs1, vocab=vocab1) emb2 = Embedding(vecs=vecs2, vocab=vocab2) R, _ = orthogonal_procrustes(np.array([[4, 5, 6], [0, 3, 4]]), vecs1) expected_vec = np.dot(vecs2, R) emb2.align(emb1) np.testing.assert_array_equal(expected_vec, emb2.m) np.testing.assert_array_equal(emb1, emb2.reference) def test_get_subembed(self): vecs = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) vocab = ["cat", "dog", "giraffe"] full_emb = Embedding(vecs=vecs, vocab=vocab) new_vecs = full_emb.get_subembed(["giraffe", "dog"]) expected_vecs = np.array([[6, 7, 8], [3, 4, 5]]) np.testing.assert_array_equal(expected_vecs, new_vecs) new_vecs = full_emb.get_subembed(["cat"]) expected_vecs = np.array([[0, 1, 2]]) np.testing.assert_array_equal(expected_vecs, new_vecs) if __name__ == "__main__": unittest.main()
anchor-stability-master
tests/test_embedding.py
import subprocess import numpy as np def clean_files(filename): try: subprocess.check_output("rm -f %s" % filename, shell=True) except OSError as e: print(e) pass
anchor-stability-master
tests/utils.py
""" Main analysis file to compute the embedding distance measures and downstream measures between pairs of embeddings and save the results to panda dataframes. """ import argparse import glob import os import pickle import multiprocessing as mp import numpy as np import pandas as pd from anchor.embedding import Embedding from utils import run_task, check_sent_complete, check_ner_complete def parse_args(): parser = argparse.ArgumentParser(description="") parser.add_argument("--dist", type=str, required=True, choices=['eis', 'knn', 'eigen_overlap', 'sem_disp', 'weighted_eigen_overlap', 'fro_norm', 'pip', 'pred', 'quality'], help='Distance metric between embeddings or models') parser.add_argument("--resultdir1", type=str, help='Directory for first embedding or model') parser.add_argument("--resultdir2", type=str,help='Directory for second embedding or model') parser.add_argument("--out", type=str, default=".", help='Result directory for dataframe') parser.add_argument('-t', '--task', type=str, help='Task for intrinsic or extrinsic comparison') parser.add_argument('--algo', type=str, help='Emb. algorithm', required=True) parser.add_argument('--compressed', action='store_true') parser.add_argument("--compress_type", type=str, help='Compression type', default='uniform', choices=['kmeans', 'uniform']) parser.add_argument("--dim", type=int) parser.add_argument("--bitrate", type=int) parser.add_argument("--model", type=str, help='Type of model, e.g. CNN') parser.add_argument("--exp", type=float, help="Exponent for weighting eigenvalues") parser.add_argument("--nprocs", type=int, default=20, help="Number of processes") parser.add_argument("--wiki", type=bool, default=True, help='Use wiki embeddings') parser.add_argument("--no_norm", action="store_true", help="Do not normalize the overlap metric") parser.add_argument("--symmetric", action='store_true') parser.add_argument("--lr", type=float, help="Learning rate for downstream model") parser.add_argument("--no_align", action='store_true') parser.add_argument("--truncate", type=int, help='Truncate embeddings to this number of words', default=-1) parser.add_argument("--tag", type=str, help='Additional tag to add to distance metric') parser.add_argument("--random", action='store_true', help='Randomly sampling vocab') parser.add_argument("--nquery", type=int, help='Number of queries for the knn metric', default=1000) parser.add_argument("--nneighbors", type=int, help='Number of neighbors to compare for the knn metric', default=10) parser.add_argument("--validation", action='store_true', help='Use the validation predictions') parser.add_argument("--seed_test", action='store_true', help='Use different seed for 2018 embeddings to test seed effect') parser.add_argument("--nseeds", type=int) parser.add_argument("--same_norm", action='store_true', help='Use embeddings that have the same norm for algo comparison') parser.add_argument("--scale", type=float, help='Magnitude to normalize embeddings to.') return parser.parse_args() def ner_stability(modelpath1, modelpath2, val=False): """Return the downstream prediction disagreement for the NER task.""" if val: preds1 = f"{modelpath1}/dev.tsv" preds2 = f"{modelpath2}/dev.tsv" else: preds1 = f"{modelpath1}/test.tsv" preds2 = f"{modelpath2}/test.tsv" check_ner_complete(modelpath1, modelpath2) file1_lines = open(preds1, 'r').readlines() file2_lines = open(preds2, 'r').readlines() # compare predictions mismatch = 0 total = 0 for line1, line2 in zip(file1_lines, file2_lines): if len(line1.split(' ')) > 3: pred1 = line1.split(' ')[2] pred2 = line2.split(' ')[2] # skip over cases where true value is "O" if line1.split(' ')[1] != 'O': if pred1 != pred2: mismatch += 1 total += 1 dist = mismatch / float(total) * 100 return dist def get_dist_tag(args): """Return the tag to use for the 'distance' measure in the dataframe.""" # downstream tasks if args.model is not None: # measure stability if args.dist == 'pred': dist_tag = f'{args.model}_{args.task}' # measure quality else: dist_tag = f'{args.model}_{args.task}_quality' else: dist_tag = args.dist # append additional tags if args.exp: dist_tag += f'_{args.exp}' if args.no_norm: dist_tag += f'_no_norm' if args.symmetric: dist_tag += f'_sym' if args.truncate > -1: dist_tag += f'_top_{args.truncate}' if args.random: dist_tag += '_rand' if args.dist == 'knn': dist_tag += f'_nquery_{args.nquery}_nn_{args.nneighbors}' if args.tag is not None: dist_tag += f'_{args.tag}' if args.validation: dist_tag += '_val' if args.seed_test: dist_tag += '_seed_test' return dist_tag def get_final_dist_tag(dist_tag, args): """Add additional file identifier tags for saving the results. NOT used in dataframe.""" if args.dim: dist_tag += f'_dim_{args.dim}' if args.compressed: dist_tag += f'_{args.compress_type}' if args.lr: dist_tag += f'_lr_{args.lr}' if args.wiki: dist_tag += '_wiki' if args.no_align: dist_tag += 'no_align' return dist_tag def run_seed(algo, seed, dim, lr, bitrate=None, compress_type=None, args=None): # set seeds for model seed1 = seed if args.seed_test: seed2 = seed + 1000 else: seed2 = seed # get paths for embeddings or models if algo != 'ft_sg': if algo == "w2v_cbow": end_tag = "50.w.txt" elif algo == "mc": end_tag = "50.txt" else: end_tag = "050.txt" path1 = f"{args.resultdir1}/{algo}_wiki.en.txt_2017_seed_{seed}_dim_{dim}_lr_{lr}.{end_tag}" path2 = f"{args.resultdir2}/{algo}_wiki.en.txt_2018_seed_{seed}_dim_{dim}_lr_{lr}.{end_tag}" else: path1 = f"{args.resultdir1}/ft_sg_wiki.en.txt_2017_seed_{seed}_dim_{dim}.vec" path2 = f"{args.resultdir2}/ft_sg_wiki.en.txt_2018_seed_{seed}_dim_{dim}.vec" # do embedding comparison if args.model is None: anchor_path = f'{args.resultdir1}/{args.algo}_anchor_seed_{seed}_top_{args.truncate}.pkl' if args.compressed: path1 += f'_br_{bitrate}' path2 += f'_br_{bitrate}_same_range' print(path2) else: path1 += f'_br_32' if not args.no_align: path2 += f'_br_32_same_range' print(path2) if args.same_norm: path1 += f'_norm_{args.scale}' path2 += f'_norm_{args.scale}' # get downstream model quality of second model elif args.dist == 'quality': assert args.model is not None and args.task is not None and args.lr is not None, "Must provide model, task, and lr for quality eval" if args.task != 'ner': try: modelpath1 = f"{path1}/{args.task}/model_{args.model}_dropout_0.5_seed_{seed1}_lr_{args.lr}" ff = open(f'{modelpath1}.log', 'r') except: modelpath1 = f"{path1}/{args.task}/model_{args.model}_dropout_0.5_seed_{seed1}_data_{seed1}_lr_{args.lr}" ff = open(f'{modelpath1}.log', 'r') dat = [_.strip() for _ in ff] quality1 = 1-float(dat[-2].strip().split(': ')[1])*100 try: modelpath2 = f"{path2}/{args.task}/model_{args.model}_dropout_0.5_seed_{seed2}_lr_{args.lr}" ff = open(f'{modelpath2}.log', 'r') except: modelpath2 = f"{path2}/{args.task}/model_{args.model}_dropout_0.5_seed_{seed2}_data_{seed2}_lr_{args.lr}" ff = open(f'{modelpath2}.log', 'r') dat = [_.strip() for _ in ff] try: dist = (1-float(dat[-2].strip().split(': ')[1]))*100 except: print(modelpath2) exit() else: modelpath2 = f"{path2}/ner_{args.model}_lr_{args.lr}/eval.log" ff = open(modelpath2, 'r') dat = [_.strip() for _ in ff] lr = float(os.path.basename(os.path.dirname(modelpath2)).split('_')[-1]) assert 'f1-score' in dat[-7] and 'MICRO_AVG' in dat[-7], 'Parsing NER incorrect' dist = float(dat[-7].strip().split(' ')[-1])*100 print(modelpath2, dist) # compute downstream stability elif args.model is not None: assert args.model is not None and args.task is not None and (args.lr is not None), "Must provide model, task, and lr for prediction eval" if args.task != 'ner': # load validation predictions if args.validation: # load model trained on embedding modelpath1 = f"{path1}/{args.task}/model_{args.model}_dropout_0.5_seed_{seed1}_lr_{args.lr}" preds1 = np.array(pickle.load(open(f'{modelpath1}_eval.val.pred', "rb"))) modelpath2 = f"{path2}/{args.task}/model_{args.model}_dropout_0.5_seed_{seed2}_lr_{args.lr}" preds2 = np.array(pickle.load(open(f'{modelpath2}_eval.val.pred', "rb"))) print(len(preds1), len(preds2)) dist = (1 - np.sum(preds1 == preds2) / float(len(preds1)))*100 # make sure logs are complete assert check_sent_complete(modelpath1, modelpath2) else: # load model trained on embedding # hacky soln to deal with new naming for seed experiments try: modelpath1 = f"{path1}/{args.task}/model_{args.model}_dropout_0.5_seed_{seed1}_lr_{args.lr}" preds1 = np.array(pickle.load(open(f'{modelpath1}.pred', "rb"))) except: modelpath1 = f"{path1}/{args.task}/model_{args.model}_dropout_0.5_seed_{seed1}_data_{seed1}_lr_{args.lr}" preds1 = np.array(pickle.load(open(f'{modelpath1}.pred', "rb"))) try: modelpath2 = f"{path2}/{args.task}/model_{args.model}_dropout_0.5_seed_{seed2}_lr_{args.lr}" preds2 = np.array(pickle.load(open(f'{modelpath2}.pred', "rb"))) except: modelpath2 = f"{path2}/{args.task}/model_{args.model}_dropout_0.5_seed_{seed2}_data_{seed2}_lr_{args.lr}" print(modelpath2) preds2 = np.array(pickle.load(open(f'{modelpath2}.pred', "rb"))) dist = (1 - np.sum(preds1 == preds2) / float(len(preds1)))*100 assert check_sent_complete(modelpath1, modelpath2) else: modelpath1 = f"{path1}/ner_{args.model}_lr_{args.lr}" modelpath2 = f"{path2}/ner_{args.model}_lr_{args.lr}" dist = ner_stability(modelpath1, modelpath2, val=args.validation) # Compute embedding distance measure else: # load embeddings from text files emb1 = Embedding(path1) emb2 = Embedding(path2) if args.dist == "sem_disp": dist = emb2.sem_disp(other=emb1, n=args.truncate) elif args.dist == "eigen_overlap": dist = emb2.eigen_overlap(other=emb1, n=args.truncate) elif args.dist == 'weighted_eigen_overlap': dist = emb2.eigen_overlap(other=emb1, weighted=True, exp=args.exp, normalize=not args.no_norm, symmetric=args.symmetric, n=args.truncate) elif args.dist == 'eis': assert args.truncate > 0, 'Need to use top n for anchor metric' print(f'Loading {anchor_path}.') curr_anchor, other_anchor, vocab_anchor = pickle.load(open(anchor_path, 'rb')) dist = emb2.eis(emb1, curr_anchor=curr_anchor, other_anchor=other_anchor, vocab=vocab_anchor, exp=args.exp, n=args.truncate) elif args.dist == 'fro_norm': dist = emb2.fro_norm(other=emb1, n=args.truncate) elif args.dist == 'pip': dist = emb2.pip_loss(other=emb1, n=args.truncate, random=args.random) elif 'knn' in args.dist: dist = emb2.knn(other=emb1, n=args.truncate, nquery=args.nquery, nneighbors=args.nneighbors) return dist def main(): args = parse_args() os.makedirs(args.out, exist_ok=True) algos = [args.algo] assert args.dist != 'weighted_eigen_overlap' or args.exp is not None, "Must provide exponent for weighted eigen overlap." assert args.dim is not None or not args.compressed, "Must provide a dimension for compression evaluation" # learning rates used to train each embedding wiki_lrs = {'glove': 0.01, 'mc': 0.2, 'w2v_cbow': 0.05, 'pi': None, 'ft_sg': 0.05} seeds = [1234, 1235, 1236] # Set dimensions if args.dim: dims = [args.dim] else: dims = [25, 50, 100, 200, 400, 800] # Set precisions if args.bitrate: bitrates = [args.bitrate] else: bitrates = [1,2,4,8,16,32] dist_tag = get_dist_tag(args) results = [] pool = mp.Pool(processes=args.nprocs) for algo in algos: # use same learning rate across dimensions lr = wiki_lrs[algo] dim = args.dim for bitrate in bitrates: seed_runs = [pool.apply_async(run_seed, args=(algo,seed,dim,lr,bitrate,args.compress_type,args)) for seed in seeds] seed_results = [p.get() for p in seed_runs] for i,seed in enumerate(seeds): row = {} row["algo"] = algo row["seed"] = seed row["dim"] = dim row["lr"] = lr row["bitrate"] = bitrate row[dist_tag] = seed_results[i] row["compress_type"] = args.compress_type print(row) results.append(row) # Dump results df_results = pd.DataFrame(results) if args.compressed: df_sum = df_results.groupby(['algo', 'bitrate']).aggregate(['mean', 'std']).reset_index() else: df_sum = df_results.groupby(['algo', 'dim']).aggregate(['mean', 'std']).reset_index() print(df_results) print(df_sum) dist_tag = get_final_dist_tag(dist_tag, args) df_results_path = f"{args.out}/{args.algo}_{dist_tag}_results.pkl" df_results.to_pickle(df_results_path) if __name__ == '__main__': main()
anchor-stability-master
scripts/analysis/dim_stability_analysis.py
""" Generates the selection criterion results -- requires data file with embedding distance and disagreement between pairs of embeddings as input. """ import argparse import csv import numpy as np import pandas as pd def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--emb_metrics', type=str, nargs='+', required=True, help='List of embedding metrics') parser.add_argument('--ds_metrics', type=str, nargs='+', required=True, help='List of downstream metrics') parser.add_argument('--csv-file', type=str, required=True, help='CSV file with pair results for emb metrics and DS results') parser.add_argument('--acc-file', type=str, required=True, help='File to write accuracy results to') parser.add_argument('--rob-file', type=str, required=True, help='File to write robustness results to') parser.add_argument('--same-space', action='store_true', help='Restrict selection to the same space budget') parser.add_argument('--verbose', action='store_true', help='Print information about selection') args = parser.parse_args() return args def get_selection_error(emb_metric, ds_metric, df, space_budget=None, verbose=False, seed=None, same_space=False): """ Returns the selection error when using emb_metric to select the more stable pair on ds_metric and the maximum difference to the oracle when a mistake is made. """ # Only compare pairs of a specific seed df = df.loc[df['seed'] == seed].reset_index() n_rows = len(df.index) count = 0. total = 0. max_diff = 0 idx = None # Iterate over all pairs of pairs for i in range(n_rows-1): for j in range(i+1, n_rows): row1 = df.loc[i][emb_metric] row2 = df.loc[j][emb_metric] ds_row1 = df.loc[i][ds_metric] ds_row2 = df.loc[j][ds_metric] # Skip pairs of pairs where either pair exceed space budget if space_budget is not None: if (df.loc[i]['space'] > space_budget or df.loc[j]['space'] > space_budget): continue # If same_space, only compare pairs of pairs of the same space budget if same_space and (df.loc[i]['space'] != df.loc[j]['space']): continue # most stable emb depends on metric # for knn and eigen_overlap, higher value is more stable # for other metrics, lower value is more stable if 'knn' in emb_metric or emb_metric == 'eigen_overlap_top_10000': emb_vote = np.argmax([row1, row2]) else: emb_vote = np.argmin([row1, row2]) # most stable downstream is smallest % ds_vote = np.argmin([ds_row1, ds_row2]) # incorrect vote if emb_vote != ds_vote: count += 1 # keep track to compute the max. difference to oracle diff = np.abs(ds_row1 - ds_row2) if diff > max_diff: max_diff = diff idx = (i, j) total += 1 error = count / total if verbose: print(f'Maximum difference {max_diff} @ {idx}') print(f'Compared {total} pairs') return error, max_diff def compute_sel_results(df, acc_file, rob_file, emb_metrics, ds_metrics, space_budgets=[None], seeds=[1234, 1235, 1236], verbose=False, same_space=False): """ Write the selection error and max. error results to acc_file and rob_file, respectively. Iterate over emb_metrics and ds_metrics, computing these values for each combination and reporting the result as the average over seeds. """ with open(acc_file, 'w') as f1, open(rob_file, 'w') as f2: writer1 = csv.writer(f1) writer1.writerow(['metric'] + ds_metrics) writer2 = csv.writer(f2) writer2.writerow(['metric'] + ds_metrics) for budget in space_budgets: for emb_metric in emb_metrics: emb_results_acc = [] emb_results_robust = [] for ds_metric in ds_metrics: seed_error = [] seed_diff = [] for seed in seeds: error, max_diff = get_selection_error(emb_metric, ds_metric, df, space_budget=budget, verbose=verbose, seed=seed, same_space=same_space) if verbose: print(emb_metric, ds_metric, error, max_diff) seed_error.append(error) seed_diff.append(max_diff) # take average and max over seed emb_results_acc.append(np.mean(seed_error)) emb_results_robust.append(np.max(seed_diff)) writer1.writerow([emb_metric] + emb_results_acc) writer2.writerow([emb_metric] + emb_results_robust) def main(): args = parse_args() # Read in pandas dataframe df = pd.read_csv(args.csv_file) compute_sel_results(df=df, acc_file=args.acc_file, rob_file=args.rob_file, emb_metrics=args.emb_metrics, ds_metrics=args.ds_metrics, same_space=args.same_space, verbose=args.verbose) if __name__ == '__main__': main()
anchor-stability-master
scripts/analysis/selection_criterion.py
""" Save the high-precision, full-dimensional embeddings needed for the eigenspace instability measure in advance for more efficient analysis. """ from anchor.embedding import Embedding import argparse import pickle def main(): parser = argparse.ArgumentParser() parser.add_argument('--algo', type=str, help='Embedding algorithm', required=True) parser.add_argument('--n', type=int, help='Number to truncate', default=10000) parser.add_argument('--embdir', type=str, help='Location to load embs and store anchors', default='runs/embs') args = parser.parse_args() seeds = [1234, 1235, 1236] for seed in seeds: if args.algo == 'mc': path1 = f'{args.embdir}/wiki_2017/mc_wiki.en.txt_2017_seed_{seed}_dim_800_lr_0.2.50.txt_br_32' path2 = f'{args.embdir}/wiki_2018/mc_wiki.en.txt_2018_seed_{seed}_dim_800_lr_0.2.50.txt_br_32_same_range' elif args.algo == 'w2v_cbow': path1 = f'{args.embdir}/wiki_2017/w2v_cbow_wiki.en.txt_2017_seed_{seed}_dim_800_lr_0.05.50.w.txt_br_32' path2 = f'{args.embdir}/wiki_2018/w2v_cbow_wiki.en.txt_2018_seed_{seed}_dim_800_lr_0.05.50.w.txt_br_32_same_range' else: raise ValueError('Algorithm not supported') emb1 = Embedding(path1) emb2 = Embedding(path2) print(f'Loaded {path1} and {path2}') emb2_anchor, emb1_anchor, shared_vocab = emb2.get_subembeds_same_vocab(emb1, n=args.n, return_vocab=True) filename = f'{args.embdir}/wiki_2017/{args.algo}_anchor_seed_{seed}_top_{args.n}.pkl' with open(filename, 'wb') as f: pickle.dump((emb2_anchor, emb1_anchor, shared_vocab), f) print(f'Saved to {filename}') if __name__ == '__main__': main()
anchor-stability-master
scripts/analysis/create_anchors.py
""" Fits linear-log models to the instability v. memory, instability v. dimension, and instability v. precision trends. """ import argparse import pandas as pd import numpy as np import functools import scipy.stats def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--csv-files', type=str, nargs='+', required=True, help='CSV file (list) with pair results for emb metrics and DS results') parser.add_argument('--tasks', type=str, nargs='+', default=[ 'la_sst_no_emb_norm', 'la_mr_no_emb_norm', 'la_subj_no_emb_norm', 'la_mpqa_no_emb_norm', 'rnn_no_crf_ner'], help='List of downstream metrics') parser.add_argument('--thresh', type=int, default=1000, help='Maximum memory budget') parser.add_argument('--dim', action='store_true', help='Fit the trend with respect to dimension') parser.add_argument('--prec', action='store_true', help='Fit the trend with respect to precision') return parser.parse_args() def solve_lstsq_combine(dfs, thresh, tasks): """ Fit a single trend to the downstream stability v. memory results across embedding algorithms and downstream tasks. """ ncombos = len(tasks) * len(dfs) space_vals = np.log2(dfs[0].loc[dfs[0]['space'] < thresh]['space'].values) num_vals = len(space_vals) X = np.zeros((num_vals*len(tasks) * len(dfs), ncombos+1)) y = np.zeros((num_vals*len(tasks) * len(dfs))) for i, df in enumerate(dfs): # Only consider those results less than thresh space budget df_subset = df.loc[df['space'] < thresh] for j, t in enumerate(tasks): idx = i*len(tasks) + j y[idx*num_vals:(idx+1)*num_vals] = df_subset[t].values # First column is the log2(m) results X[idx*num_vals:(idx+1)*num_vals][:,0] = space_vals # Append a 1-hot vector to learn a separate y-intercept per task X[idx*num_vals:(idx+1)*num_vals][:,idx+1] = np.ones(num_vals) # print(f'Dimensions of data matrix: {X.shape}') return np.linalg.inv(X.T @ X) @ X.T @ y def solve_lstsq_combine_prec(dfs, thresh, tasks, dims=[25, 50, 100, 200, 400, 800]): """ Fit a single trend to the downstream stability v. *precision* results across embedding algorithms and downstream tasks and *dimensions*. """ ncombos = len(tasks) * len(dfs) * len(dims) num_vals = len(dfs[0].loc[(dfs[0]['space'] < thresh)]['space'].values) X = np.zeros((num_vals*len(tasks)*len(dfs), ncombos+1)) y = np.zeros((num_vals*len(tasks)*len(dfs))) row_idx = 0 col_idx = 0 for i, df in enumerate(dfs): for j, t in enumerate(tasks): for k,dim in enumerate(dims): df_subset = df.loc[(df['space'] < thresh) & (df['dim'] == dim)] prec_vals = np.log2(df_subset['bitrate'].values) # Number of values diffs by dimension num_vals = len(prec_vals) y[row_idx:row_idx+num_vals] = df_subset[t].values X[row_idx:row_idx+num_vals][:,0] = prec_vals X[row_idx:row_idx+num_vals][:,col_idx+1] = np.ones(num_vals) row_idx += num_vals # Learn a different y-intercept for each algo/task/dim combination col_idx += 1 # print(f'Dimensions of data matrix: {X.shape}') return np.linalg.inv(X.T @ X) @ X.T @ y def solve_lstsq_combine_dim(dfs, thresh, tasks, bitrates=[1,2,4,8,16,32]): """ Fit a single trend to the downstream stability v. *dimension* results across embedding algorithms and downstream tasks and *precisions*. """ ncombos = len(tasks) * len(dfs) * len(bitrates) num_vals = len(dfs[0].loc[(dfs[0]['space'] < thresh)]['space'].values) X = np.zeros((num_vals*len(tasks)*len(dfs), ncombos+1)) y = np.zeros((num_vals*len(tasks)*len(dfs))) row_idx = 0 col_idx = 0 for i, df in enumerate(dfs): for j, t in enumerate(tasks): for k, bitrate in enumerate(bitrates): df_subset = df.loc[(df['space'] < thresh) & (df['bitrate'] == bitrate)] space_vals = np.log2(df_subset['dim'].values) # Number of values diffs by precision num_vals = len(space_vals) y[row_idx:row_idx+num_vals] = df_subset[t].values X[row_idx:row_idx+num_vals][:,0] = space_vals X[row_idx:row_idx+num_vals][:,col_idx+1] = np.ones(num_vals) row_idx += num_vals # Learn a different y-intercept for each algo/task/prec combination col_idx += 1 # print(f'Dimensions of data matrix: {X.shape}') return np.linalg.inv(X.T @ X) @ X.T @ y def main(): args = parse_args() dfs = [] for file in args.csv_files: dfs.append(pd.read_csv(file)) if args.dim: print('Instability v. dimension trend') m = solve_lstsq_combine_dim(dfs=dfs, thresh=args.thresh, tasks=args.tasks) elif args.prec: print('Instability v. precision trend') m = solve_lstsq_combine_prec(dfs=dfs, thresh=args.thresh, tasks=args.tasks) else: print('Instability v. memory trend') m = solve_lstsq_combine(dfs=dfs, thresh=args.thresh, tasks=args.tasks) print(f'Slope: {m[0]}') print(f'y-intercepts: {m[1:]}') if __name__ == '__main__': main()
anchor-stability-master
scripts/analysis/fit_trend.py
""" Utils file for analysis. """ import os import subprocess def check_ner_complete(modelpath1, modelpath2): """ Checks that the NER task is complete by locating the final-model artifact. """ file1_final = f"{modelpath1}/final-model.pt" file2_final = f"{modelpath2}/final-model.pt" assert os.path.isfile(file1_final), file1_final assert os.path.isfile(file2_final), file2_final def check_sent_complete(modelpath1, modelpath2): """Checks that the logs for the sentence analysis task are complete.""" try: ff = open(f'{modelpath1}.log', 'r') dat = [_.strip() for _ in ff] error1 = 1-float(dat[-2].strip().split(': ')[1]) except: return False try: ff = open(f'{modelpath2}.log', 'r') dat = [_.strip() for _ in ff] error2 = 1-float(dat[-2].strip().split(': ')[1]) except: return False return True def run_task(taskdir, taskfile, embpath): results = subprocess.check_output( ["python", os.path.join(taskdir, "ws_eval.py"), "GLOVE", embpath, taskfile] ) correlation = results.decode("utf8").strip().split(" ")[-1] return float(correlation)
anchor-stability-master
scripts/analysis/utils.py
""" Generates the csvs of all of the embedding and downstream results. """ import argparse import pandas as pd import numpy as np # keep track of all the optimal parameters found from the grid search optimal_wiki = { ('mc', 'la_sst_no_emb_norm'): 0.001, ('mc', 'la_subj_no_emb_norm'): 0.1, ('mc', 'la_mr_no_emb_norm'): 0.1, ('mc', 'la_mpqa_no_emb_norm'): 0.001, ('mc', 'rnn_no_crf_ner'): 1.0, ('w2v_cbow', 'la_sst_no_emb_norm'): 0.0001, ('w2v_cbow', 'la_subj_no_emb_norm'): 0.0001, ('w2v_cbow', 'la_mr_no_emb_norm'): 0.001, ('w2v_cbow', 'la_mpqa_no_emb_norm'): 0.001, ('w2v_cbow', 'rnn_no_crf_ner'): 0.1, ('mc', 'la_sst_no_emb_norm_val'): 0.001, ('mc', 'la_subj_no_emb_norm_val'): 0.1, ('mc', 'la_mr_no_emb_norm_val'): 0.1, ('mc', 'la_mpqa_no_emb_norm_val'): 0.001, ('mc', 'rnn_no_crf_ner_val'): 1.0, ('w2v_cbow', 'la_sst_no_emb_norm_val'): 0.0001, ('w2v_cbow', 'la_subj_no_emb_norm_val'): 0.0001, ('w2v_cbow', 'la_mr_no_emb_norm_val'): 0.001, ('w2v_cbow', 'la_mpqa_no_emb_norm_val'): 0.001, ('w2v_cbow', 'rnn_no_crf_ner_val'): 0.1, ('glove', 'la_sst_no_emb_norm'): 0.01, ('glove', 'la_subj_no_emb_norm'): 0.01, ('glove', 'la_mr_no_emb_norm'): 0.01, ('glove', 'la_mpqa_no_emb_norm'): 0.001, ('glove', 'rnn_no_crf_ner'): 1.0, ('ft_sg', 'la_sst_no_emb_norm'): 0.001, ('ft_sg', 'la_subj_no_emb_norm'): 100.0, ('ft_sg', 'la_mr_no_emb_norm'): 0.01, ('ft_sg', 'la_mpqa_no_emb_norm'): 0.01, ('ft_sg', 'rnn_no_crf_ner'): 1.0, } def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--algo', type=str, help='Embedding algorithm', required=True) parser.add_argument('--default', action='store_true', help='Use default hyperparameters for DS models') parser.add_argument('--datadir', type=str, help='Data directory to read extracted dataframes', required=True) parser.add_argument('--resultdir', type=str, help='Result directory to write csv of results', required=True) parser.add_argument('--emb_metrics', type=str, nargs='+', required=True, help='List of embedding metrics') parser.add_argument('--ds_metrics', type=str, nargs='+', required=True, help='List of downstream metrics') return parser.parse_args() def read(algo, dist, datadir): df = pd.read_pickle(f"{datadir}/{algo}_{dist}_results.pkl") return df def gather_all_tasks(algo, optimal, emb_metrics, ds_metrics, dims, datadir): total_metrics = ds_metrics + emb_metrics merge_tags = ['space', 'bitrate', 'dim', 'seed', 'lr', 'compress_type', 'algo'] # merge over metrics total_df = None for m in total_metrics: # concat dimensions dfs = [] for d in dims: if m in ds_metrics: if optimal: # hacky soln to avoid copying and pasting vals in dictionary metric = m if 'quality' in m: metric = ''.join(m.split('_quality')) full_metric = f'{m}_dim_{d}_uniform_lr_{optimal_wiki[(algo,metric)]}_wiki' else: full_metric = f'{m}_dim_{d}_uniform_lr_0.001_wiki' else: full_metric = f'{m}_dim_{d}_uniform_wiki' single_df = read(algo, full_metric, datadir=datadir) single_df['space'] = single_df['bitrate'] * single_df['dim'] dfs.append(single_df) df = pd.concat(dfs) # merge with other metrics if total_df is None: total_df = df else: total_df = total_df.merge(df, on=merge_tags) return total_df def main(): args = parse_args() dims = [25, 50, 100, 200, 400, 800] emb_metrics = args.emb_metrics ds_metrics = args.ds_metrics total_df = gather_all_tasks(algo=args.algo, optimal=not args.default, emb_metrics=emb_metrics, ds_metrics=ds_metrics, dims=dims, datadir=args.datadir) if not args.default: total_df.to_csv(f'{args.resultdir}/{args.algo}_optimal_no_emb_norm_top_10000.csv', index=False) else: total_df.to_csv(f'{args.resultdir}/{args.algo}_no_emb_norm_top_10000.csv', index=False) if __name__ == '__main__': main()
anchor-stability-master
scripts/analysis/gather_results.py
""" Computes the distance to the oracle when given a selection of pairs at the same memory budget and must select the pair which attains the lowest embedding distance measure. """ import pandas as pd import argparse import csv import numpy as np def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--csv-file', type=str, required=True, help='CSV file with pair results for emb metrics and DS results') parser.add_argument('--out-file', type=str, required=True, help='File to write results to') parser.add_argument('--emb_metrics', type=str, nargs='+', required=True, help='List of embedding metrics') parser.add_argument('--ds_metrics', type=str, nargs='+', required=True, help='List of downstream metrics') return parser.parse_args() def compute_diff_to_oracle(df, summary_file, emb_metrics, ds_metrics): """ Compute the average difference to the oracle across space budgets and seeds for each emb_metric and ds_metric combination and write to the summary_file. """ space_vals = set(df['space']) seeds = set(df['seed']) space_vals = sorted(space_vals) all_results = {} for metric in emb_metrics: metric_dict = {} for space in space_vals: # average over seeds for seed in seeds: vals = {} # get rows for space # need to match over seed as well subset = df.loc[(df['space'] == space) & (df['seed'] == seed)] # there is a vote to make (at least two things) if len(subset.index) > 1: for dist in ds_metrics: oracle = subset.loc[[subset[(dist)].idxmin()]] oracle_val = oracle[(dist)].values[0] if 'baseline' not in metric: # high means more stable if 'knn' in metric or metric == 'eigen_overlap_top_10000': predicted = subset.loc[[subset[(metric)].idxmax()]] # low means more stable else: predicted = subset.loc[[subset[(metric)].idxmin()]] else: if 'fp' in metric: # select highest bitrate predicted = subset.loc[[subset['bitrate'].idxmax()]] else: # select lowest bitrate predicted = subset.loc[[subset['bitrate'].idxmin()]] predicted_val = predicted[(dist)].values[0] diff = predicted_val-oracle_val if dist in metric_dict: metric_dict[dist].append(diff) else: metric_dict[dist] = [diff] all_results[metric] = metric_dict # write averages with open(summary_file, 'w') as csvfile: writer = csv.writer(csvfile) writer.writerow(['metric'] + ds_metrics) # write average values for metric in emb_metrics: writer.writerow([metric] + [str(np.mean(all_results[metric][ds_metric])) for ds_metric in ds_metrics]) writer.writerow([]) # write max values for metric in emb_metrics: writer.writerow([metric] + [str(np.max(all_results[metric][ds_metric])) for ds_metric in ds_metrics]) def main(): args = parse_args() # Read in pandas dataframe df = pd.read_csv(args.csv_file) compute_diff_to_oracle(df=df, summary_file=args.out_file, emb_metrics=args.emb_metrics, ds_metrics=args.ds_metrics) if __name__ == '__main__': main()
anchor-stability-master
scripts/analysis/diff_to_oracle.py
""" Generates the Spearman correlations between the embedding and downstream measures. """ import argparse import csv import numpy as np import pandas as pd def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--csv-file', type=str, required=True, help='CSV file with pair results for emb metrics and DS results') parser.add_argument('--out-file', type=str, required=True, help='File to write results to') parser.add_argument('--emb_metrics', type=str, nargs='+', required=True, help='List of embedding metrics') parser.add_argument('--ds_metrics', type=str, nargs='+', required=True, help='List of downstream metrics') return parser.parse_args() def get_corr(df, emb_metrics, ds_metrics, summary_file): """ Writes the Spearman correlations for all emb_metrics and ds_metrics pairs to summary_file. """ with open(summary_file, 'w') as f: writer = csv.writer(f) writer.writerow(['metric'] + ds_metrics) for em in emb_metrics: corr = [] for dm in ds_metrics: # higher is more stable for these metrics, reverse to maintain consistent # correlation value meaning if 'knn' in em or em == 'eigen_overlap_top_10000': emb_val = 1-df[em] else: emb_val = df[em] # get spearman corr of column (aggregates over seeds and space budgets) correlation = pd.Series.corr(emb_val, df[dm], method='spearman') corr.append(correlation) writer.writerow([em] + corr) def main(): args = parse_args() # Read in pandas dataframe df = pd.read_csv(args.csv_file) get_corr(df=df, summary_file=args.out_file, emb_metrics=args.emb_metrics, ds_metrics=args.ds_metrics) if __name__ == '__main__': main()
anchor-stability-master
scripts/analysis/get_correlation.py
""" Run the embedding compression using smallfry's implementation. """ from smallfry.compress import compress_uniform from smallfry.utils import load_embeddings, save_embeddings import argparse import io import numpy as np import os import sys from anchor.embedding import Embedding def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--emb_path', type=str, required=True, help='Embedding to compress') parser.add_argument('--base_emb_path', type=str, help='Base embedding to use for alignment and compression intervals') parser.add_argument('--bitrate', type=int, default=1, required=True, help='Precision of embedding') parser.add_argument('--out', type=str, required=True, help='Where to save compressed embedding') parser.add_argument('--seed', type=int, required=True) return parser.parse_args() def main(): args = parse_args() os.makedirs(os.path.dirname(args.out), exist_ok=True) emb2 = Embedding(args.emb_path) if args.base_emb_path is not None: emb1 = Embedding(args.base_emb_path) # align embeddings first if args.base_emb_path is not None: print('Aligning!') emb2.align(emb1) if args.base_emb_path is not None: Xq, frob_squared_error, elapsed = compress_uniform(X=emb2.m, bit_rate=args.bitrate, adaptive_range=True, X_0=emb1.m) else: Xq, frob_squared_error, elapsed = compress_uniform(X=emb2.m, bit_rate=args.bitrate, adaptive_range=True) print(frob_squared_error, elapsed) print(Xq.shape) # save compressed embedding save_embeddings(path=args.out, embeds=Xq, wordlist=emb2.iw) if __name__ == '__main__': main()
anchor-stability-master
scripts/embedding_generation/gen_compressed.py
""" Generate commands for compressing embeddings. """ import argparse import pickle def parse_args(): parser = argparse.ArgumentParser(description="") parser.add_argument( "--resultdir1", type=str, required=True, ) parser.add_argument( "--resultdir2", type=str, required=True, ) parser.add_argument('--algo', type=str, required=True, help='Embedding algorithm') parser.add_argument('--bitrate', type=int, help='Run specific bitrate') return parser.parse_args() def main(): args = parse_args() algo = args.algo bitrates = [1,2,4,8,16,32] if args.bitrate: bitrates = [args.bitrate] seeds = range(1234, 1237) dims = [25, 50, 100, 200, 400, 800] lrs = {'mc': 0.2, 'w2v_cbow': 0.05, 'glove': 0.01} for seed in seeds: for dim in dims: for bitrate in bitrates: if algo != 'ft_sg': lr = lrs[algo] if algo == "w2v_cbow": end_tag = "50.w.txt" elif algo == 'mc': end_tag = "50.txt" elif algo == 'glove': end_tag = "050.w.txt" path1 = f"{args.resultdir1}/{algo}_wiki.en.txt_2017_seed_{seed}_dim_{dim}_lr_{lr}.{end_tag}" path2 = f"{args.resultdir2}/{algo}_wiki.en.txt_2018_seed_{seed}_dim_{dim}_lr_{lr}.{end_tag}" else: path1 = f"{args.resultdir1}/ft_sg_wiki.en.txt_2017_seed_{seed}_dim_{dim}.vec" path2 = f"{args.resultdir2}/ft_sg_wiki.en.txt_2018_seed_{seed}_dim_{dim}.vec" # gen compressed 2017 print(f'python scripts/embedding_generation/gen_compressed.py --emb_path {path1} --out {path1}_br_{bitrate} --bitrate {bitrate} --seed {seed}') # gen compressed 2018, align to 2017 embedding print(f'python scripts/embedding_generation/gen_compressed.py --emb_path {path2} --base_emb_path {path1} --out {path2}_br_{bitrate}_same_range --bitrate {bitrate} --seed {seed}') if __name__ == '__main__': main()
anchor-stability-master
scripts/embedding_generation/compression_experiment_wiki.py
""" Downstream model training/prediction on top of an embedding; called from gen_model_cmds. """ import argparse import logging import glob import numpy as np import os import random import sys import torch from third_party.sentence_classification.train_classifier import train_sentiment from third_party.flair.ner import train_ner, eval_ner def parse_args(): parser = argparse.ArgumentParser(description="") parser.add_argument("--embed_path", type=str, required=True) parser.add_argument("--data_path", type=str) parser.add_argument("--seed", type=int, required=True) parser.add_argument("--model", type=str) parser.add_argument("--resultdir", type=str) parser.add_argument("--dataset", type=str) parser.add_argument("--task", type=str, required=True) parser.add_argument("--no_normalize", action='store_true', help="Do not normalize embeddings") parser.add_argument("--dim", type=int) parser.add_argument("--predict", action='store_true') parser.add_argument("--lr", type=float) parser.add_argument("--crf", action="store_true", help="Use CRF for NER") parser.add_argument("--finetune", action='store_true', help='Finetune embeddings') parser.add_argument("--model_seed", type=int, help="Seed of the model") parser.add_argument("--data_seed", type=int, help="Seed of the data") return parser.parse_args() def evaluate_ner(embed_path, resultdir, datadir, use_crf, lr): train_ner(embed_path, resultdir, datadir, use_crf, lr) def predict_ner(embed_path, resultdir, datadir, use_crf): eval_ner(embed_path, resultdir, datadir, use_crf) def evaluate_sentiment( embed_path, data_path, result_dir, seed, model, dataset="sst", epochs=100, lr=0.001, no_normalize=False, load_mdl=None, finetune=False, data_seed=None, model_seed=None ): # use same seed if not provided if data_seed is None: data_seed = seed if model_seed is None: model_seed = seed cmdlines = [ "--dataset", dataset, "--path", data_path + "/", "--embedding", embed_path, "--max_epoch", str(epochs), "--model_seed", str(model_seed), "--data_seed", str(data_seed), "--seed", str(seed), "--lr", str(lr), "--out", str(result_dir) ] if model == "la": cmdlines += ["--la"] elif model == "cnn": cmdlines += ["--cnn"] elif model == "lstm": cmdlines += ["--lstm"] if no_normalize: cmdlines += ["--no_normalize"] if load_mdl is not None: cmdlines += ['--load_mdl', load_mdl, '--eval'] if finetune: cmdlines += ['--finetune'] err_valid, err_test = train_sentiment(cmdlines) def main(): args = parse_args() # set seeds -- need to set again per app if otherwise changed to defaults in apps seed = args.seed torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic=True np.random.seed(seed) random.seed(seed) if args.resultdir is not None: os.makedirs(args.resultdir, exist_ok=True) if args.task == 'sentiment': if not args.predict: evaluate_sentiment( embed_path=args.embed_path, data_path=args.data_path, seed=args.seed, model=args.model, result_dir=args.resultdir, dataset=args.dataset, no_normalize=args.no_normalize, lr=args.lr, finetune=args.finetune, model_seed=args.model_seed, data_seed=args.data_seed ) else: pretrained = glob.glob(f'{args.resultdir}/*ckpt') assert len(pretrained) == 1, "More than one model available" pretrained = pretrained[0] print(pretrained) evaluate_sentiment( embed_path=args.embed_path, data_path=args.data_path, seed=args.seed, model=args.model, result_dir=args.resultdir, dataset=args.dataset, no_normalize=args.no_normalize, lr=args.lr, load_mdl=pretrained, model_seed=args.model_seed, data_seed=args.data_seed ) elif args.task == 'ner': if args.predict: predict_ner(embed_path=args.embed_path, resultdir=args.resultdir, datadir=args.data_path, use_crf=args.crf) else: evaluate_ner(embed_path=args.embed_path, resultdir=args.resultdir, datadir=args.data_path, use_crf=args.crf, lr=args.lr) if __name__ == "__main__": main()
anchor-stability-master
scripts/model_training/train_downstream.py
""" Generate commands for model training for a list of embeddings. """ import argparse import glob import os import sys def parse_args(): parser = argparse.ArgumentParser(description='') parser.add_argument('--homedir', type=str, help='Root directory of code', required=True) parser.add_argument('--python', type=str, help='Python version', required=True) parser.add_argument('--resultdir', type=str, help='Directory to save results', required=True) parser.add_argument('--dataset', type=str, help='Dataset for sentiment analysis') parser.add_argument('--model', type=str, default='la', choices=['cnn', 'lstm', 'la']) parser.add_argument('--task', type=str, choices=['sentiment', 'ner'], required=True) parser.add_argument('--gpu', type=int, help='GPU id', default=0) parser.add_argument('--predict', action='store_true') parser.add_argument('--lr', type=float) parser.add_argument('--crf', action='store_true', help='Use CRF for NER') parser.add_argument('--finetune', action='store_true', help='Finetune embeddings') parser.add_argument('--model_seed', type=int, help='Seed of the model') parser.add_argument('--data_seed', type=int, help='Seed of the data') parser.add_argument('--seed_test', action='store_true', help='Used for testing different model and data seeds') return parser.parse_args() def main(): args = parse_args() resultdir = args.resultdir homedir = args.homedir # read in list of embeddings from stdin embs = [line.strip() for line in sys.stdin.readlines()] os.makedirs(resultdir, exist_ok=True) if args.dataset == 'sst2': dataset = 'sst' else: dataset = args.dataset assert len(embs) > 0, 'Must provide embs with stdin' for emb in embs: terms = os.path.basename(emb).split('_') seed = terms[terms.index('seed') + 1].split('.')[0] dim = terms[terms.index('dim') + 1].split('.')[0] if args.task == 'sentiment': assert args.lr is not None, 'Must provide lr' assert args.model is not None and args.dataset is not None, 'Must provide model and dataset for sentiment task!' line = f'CUDA_VISIBLE_DEVICES={args.gpu} {args.python} {homedir}/scripts/model_training/train_downstream.py --dataset {dataset} --embed_path {emb} --data_path {homedir}/third_party/sentence_classification/data --seed {seed} --model {args.model} --task sentiment --lr {args.lr} --no_normalize' resultpath = f'{resultdir}/{os.path.basename(emb)}/{args.dataset}' if args.predict: line += ' --predict' if args.finetune: line += ' --finetune' if args.model_seed is not None: line += f' --model_seed {args.model_seed}' if args.data_seed is not None: line += f' --data_seed {args.data_seed}' if args.seed_test: line += f' --model_seed {int(seed)+1000} --data_seed {int(seed)+1000}' print(f'{line} --resultdir {resultpath}') elif args.task == 'ner': assert (args.lr is not None or args.predict), 'Must provide a lr for training' if not args.crf: line = f'{args.python} {homedir}/scripts/model_training/train_downstream.py --embed_path {emb} --data_path {homedir}/third_party/flair/resources/tasks --seed {seed} --resultdir {resultdir}/{os.path.basename(emb)}/ner_no_crf_lr_{args.lr} --task ner --lr {args.lr}' else: line = f'{args.python} {homedir}/scripts/model_training/train_downstream.py --embed_path {emb} --data_path {homedir}/third_party/flair/resources/tasks --seed {seed} --resultdir {resultdir}/{os.path.basename(emb)}/ner_crf_lr_{args.lr} --crf --task ner --lr {args.lr}' if args.predict: line += ' --predict' print(line) if __name__ == '__main__': main()
anchor-stability-master
scripts/model_training/gen_model_cmds.py
""" Embedding class with embedding distance measures. modified from https://github.com/williamleif/histwords/blob/master/representations/embedding.py """ import copy import io import logging import numpy as np import os from scipy import spatial from scipy.linalg import orthogonal_procrustes from sklearn.neighbors import NearestNeighbors logger = logging.getLogger(__name__) class Embedding: """ Embedding class to load embeddings and compute distances between embeddings. """ def __init__( self, emb_path=None, vecs=None, vocab=None, header=False): # Use lazy loading of the embedding if not provided if (vecs is not None and vocab is None) or (vecs is None and vocab is not None): raise ValueError("vecs and vocab must be provided together") self.emb_path = emb_path self._iw = vocab self._wi = None self._dim = None self._m = None if vecs is not None: self._m = copy.deepcopy(vecs) if self._iw is not None: self._wi = {w: i for i, w in enumerate(self._iw)} if self._m is not None: self._dim = self._m.shape[1] self.header = header # bool, whether there is a header in emb file @property def wi(self): if self._wi is None: # Load all embedding info self._load() return self._wi @property def iw(self): if self._iw is None: # Load all embedding info self._load() return self._iw @property def m(self): if self._m is None: # Load all embedding info self._load() return self._m @property def dim(self): if self._dim is None: # Load all embedding info self._load() return self._dim def __getitem__(self, key): if self.oov(key): raise KeyError else: return self.represent(key) def __iter__(self): return self.iw.__iter__() def __contains__(self, key): return not self.oov(key) def oov(self, w): return not (w in self.wi) def represent(self, w): if w in self.wi: return self.m[self.wi[w], :] return np.zeros(self.dim) def _load(self): """Load embeddings from a text file.""" logger.info("Loading embedding...") f = open(self.emb_path, "r") dat = [_.rstrip() for _ in f] # Ignore the header and incomplete rows if len(dat[0].split()) == 2: dat = dat[1:] # ignore word self._dim = len(dat[0].split()) - 1 self._m = np.zeros((len(dat), self._dim)) vocab = [] cnt = 0 for i, _ in enumerate(dat): d = _.split(' ') if len(d) != self._dim + 1: cnt += 1 w = ' '.join(d[:-self._dim]) self._m[i] = d[-self._dim:] vocab.append(w) self._wi, self._iw = dict([(a, i) for i, a in enumerate(vocab)]), vocab if cnt > 0: logger.debug(f"Found {cnt} empty word(s)") f.close() def save(self, path=None): """ Save embeddings to a text file. If path is None, then overwrites the embeddings at the original path used to load the embeddings. Uses code from: https://github.com/facebookresearch/fastText/blob/99f23802d4572ba50417b062137fbd20aa03a794/alignment/utils.py """ if path is None: path = self.emb_path assert path is not None # Write current vecs to file logger.info(f"Writing embedding to {path}") if os.path.exists(path): logger.warning(f"Overwriting existing embedding file: {path}") n = len(self._iw) fout = io.open(path, "w", encoding="utf-8") if self.header: fout.write("%d %d\n" % (n, self.dim)) for i in range(n): fout.write( self._iw[i] + " " + " ".join(map(lambda a: "%.6f" % a, self._m[i, :])) + "\n" ) fout.close() self.emb_path = path def align(self, reference): """ Aligns the embedding to the reference Embedding object in-place via orthogonal Procrustes. :param reference: Embedding object to align current instance to. Computes the rotation matrix based on the shared vocabulary between the current instance and reference object. """ if not isinstance(reference, Embedding): raise ValueError("Argument must be an embedding") shared_words = list(set(reference.iw) & set(self.iw)) num_shared = len(shared_words) logger.info(f"{num_shared} words are shared with the reference matrix.") sub_emb1 = self.get_subembed(shared_words) sub_emb2 = reference.get_subembed(shared_words) R, _ = orthogonal_procrustes(sub_emb1, sub_emb2) # Rotate entire matrix, not just new words self._m = np.dot(self._m, R) def normalize(self): """Row normalizes the embedding in-place""" norm = np.sqrt(np.sum(self.m * self.m, axis=1)) norm[norm == 0.0] = 1.0 self._m = self.m / norm[:, np.newaxis] def get_subembed(self, word_list): """ Extracts the sub-embedding for a given vocabulary. :param word_list: list of words to extract word vectors for. Word vectors will be returned matching the order of the words in this list. :return: numpy array of sub-embedding """ assert isinstance( word_list, list ), "Must be list to use subembed for consistent orderings" keep_indices = [self.wi[word] for word in word_list] return self.m[keep_indices, :] def get_subembeds_same_vocab(self, other, n=-1, random=False, return_vocab=False): """ Extracts the sub-embeddings for the current instance and other Embedding object for distance computation. :param other: other Embedding object to compare :param n (optional): int, number of words to sample from the current instance to form the sub-embeddings. Samples from the shared list of words in the current instance and the other Embedding object. Takes the top 'n' most frequent words from the current instance (assumes current instance is sorted by frequency) if 'random' is not True. :param random: (optional): Randomly sample the 'n' words from the full shared vocabulary rather than taking the top 'n' words sorted by frequency. :param return_vocab (optional): bool , return the vocabulary used to generate the sub-embeddings :return: numpy arrays of embeddings for current instance and other Embedding object, and optionally, the vocabulary used to generate the sub-embeddings """ shared_vocab = list(set(self.iw) & set(other.iw)) num_shared = len(shared_vocab) logger.info(f"{num_shared} words are shared between the embeddings.") if n > 0: if not random: # sort words by original order in self # assuming this is by frequency, then the most frequent words are first vocab_new = {word: self.wi[word] for word in shared_vocab} sorted_shared_vocab , _ = zip(*sorted(vocab_new.items(), key=lambda kv: kv[1])) shared_vocab = list(sorted_shared_vocab)[:n] else: print('Randomly sampling vocab') # choose n random words shared_vocab = [shared_vocab[i] for i in np.random.choice(len(shared_vocab), n, replace=False)] emb1 = self.get_subembed(shared_vocab) emb2 = other.get_subembed(shared_vocab) if return_vocab: return emb1, emb2, shared_vocab return emb1, emb2 def _eigen_overlap(self, X1, X2): """ Helper function to implement the eigenspace overlap score as described in May et al., NeurIPS, 2019. The values will range from 0 to 1, where 1 is more stable. :param X1: numpy array of the first embedding matrix :param X2: numpy array of the second embedding matrix, must have the same shape and corresponding vocabulary order as X1. :return: float distance """ # X1 and X2 are n x d where n is the dataset size, d is the feature dimensionality assert X1.shape[0] == X2.shape[0] U1, _, _ = np.linalg.svd(X1, full_matrices=False) U2, _, _ = np.linalg.svd(X2, full_matrices=False) normalizer = max(X1.shape[1], X2.shape[1]) return np.linalg.norm(np.matmul(U1.T, U2), ord="fro") ** 2 / normalizer def _weighted_eigen_overlap(self, X1, X2, exp=1, normalize=True): """ Helper function to implement a weighted variant of the eigenspace overlap score from May et al., NeurIPS, 2019. If normalized, the values will range from 0 to 1. :param X1: numpy array of the first embedding matrix :param X2: numpy array of the second embedding matrix, must have the same shape and corresponding vocabulary order as X1. :param exp: int, scales the eigenvalues by this factor to weight their importance :param normalize: bool, whether to normalize this measure , needed to compare across dimensions :return: float distance """ # X1 and X2 are n x d where n is the dataset size, d is the feature dimensionality assert X1.shape[0] == X2.shape[0] U1, S1, _ = np.linalg.svd(X1, full_matrices=False) U2, S2, _ = np.linalg.svd(X2, full_matrices=False) if normalize: normalizer = np.sum(np.diag(S2**(exp*2))) return np.linalg.norm(np.matmul(np.matmul(U1.T, U2), np.diag(S2**exp)), ord="fro")**2 / normalizer return np.linalg.norm(np.matmul(np.matmul(U1.T, U2), np.diag(S2**exp)), ord="fro")**2 def eigen_overlap(self, other, weighted=False, exp=1, normalize=True, n=-1): """ Computes the eigenspace overlap score between the current instance and another Embedding. :param other: other Embedding object to compare :param weighted (optional): bool, whether to use the weight variant of this measure (weights by singular values) :param exp (optional): int, scalar hyperparameter for the weighted variant :param normalize (optional): bool, whether to normalize the weighted variant, needed to compare across dimensions :param n: (optional) int value representing the number of words to use to compute the distance, where the words are assumed to be sorted by frequency in curr_anchor. :return: float distance """ emb1, emb2 = self.get_subembeds_same_vocab(other, n=n) if not weighted: norm = self._eigen_overlap(emb1, emb2) else: norm = self._weighted_eigen_overlap(emb1, emb2, exp=exp, normalize=normalize) return norm def eis(self, other, curr_anchor, other_anchor, vocab=None, exp=3, n=-1): """ Computes the eigenspace instability measure between the current instance and another Embedding. See details in Appendix B.1 of the MLSys 2020 paper "Understanding the Downstream Instability of Word Embeddings" for the derivation of this implementation. :param other: other Embedding object to compare :param curr_anchor: 'anchor' embedding corresponding to current instance to compute distance relative to, Embedding object or numpy array. Corresponds to E in the EIS equation. :param other_anchor: 'anchor' embedding corresponding to other instance to compute distance relative to, Embedding object or numpy array. Corresponds to E_tilde in the EIS equation. :param vocab: (optional, required if curr_anchor is a numpy array) list of words to use to compute the measure, if not provided computed from curr_anchor for the top 'n' most frequent words :param exp: (optional) int value to scale eigenvalues by for weighting measure. Corresponds to alpha in the EIS equation. :param n: (optional) int value representing the number of words to use to compute the distance, where the words are assumed to be sorted by frequency in curr_anchor. :return: float value of the distance """ if vocab is None: # get vocab from anchor embs curr_anchor, other_anchor, vocab = curr_anchor.get_subembeds_same_vocab(other_anchor, n=n, return_vocab=True) curr_emb = self.get_subembed(vocab) other_emb = other.get_subembed(vocab) V1, R1, _ = np.linalg.svd(curr_anchor, full_matrices=False) V2, R2, _ = np.linalg.svd(other_anchor, full_matrices=False) U1, _, _ = np.linalg.svd(curr_emb, full_matrices=False) U2, _, _ = np.linalg.svd(other_emb, full_matrices=False) R1_a = np.diag(R1**exp) R2_a = np.diag(R2**exp) t1 = np.linalg.norm(np.matmul(np.matmul(U1.T, V1), R1_a), ord='fro')**2 t2 = np.linalg.norm(np.matmul(np.matmul(U2.T, V1), R1_a), ord='fro')**2 t3_1 = np.matmul(R1_a, np.matmul(V1.T, U2)) t3_2 = np.matmul(np.matmul(U2.T, U1), np.matmul(U1.T, V1)) t3 = np.trace(np.matmul(np.matmul(t3_1, t3_2), R1_a)) t4 = np.linalg.norm(np.matmul(np.matmul(U1.T, V2), R2_a), ord='fro')**2 t5 = np.linalg.norm(np.matmul(np.matmul(U2.T, V2), R2_a), ord='fro')**2 t6_1 = np.matmul(R2_a, np.matmul(V2.T, U2)) t6_2 = np.matmul(np.matmul(U2.T, U1), np.matmul(U1.T, V2)) t6 = np.trace(np.matmul(np.matmul(t6_1, t6_2), R2_a)) normalizer = np.trace(np.diag(R1**(exp*2))) + np.trace(np.diag(R2**(exp*2))) return (t1 + t2 - 2*t3 + t4 + t5 - 2*t6) / normalizer def sem_disp(self, other, average=True, align=True, n=-1): """ Computes the semantic displacement measure between the current instance and another Embedding. :param other: other Embedding object to compare :param average: (optional) average over the cosine distance between 'n' word vectors from two embeddings. :param align: (optional) bool value, use orthogonal Procrustes to align the current instance to the other Embedding prior to computing the measure. :param n: (optional) int value representing the number of words to use to compute the distance, where the words are assumed to be sorted by frequency in the current instance. :return: float distance """ if not isinstance(other, Embedding): raise ValueError("Only Embedding objects supported.") emb1, emb2 = self.get_subembeds_same_vocab(other, n=n) if align: R, _ = orthogonal_procrustes(emb1, emb2) emb1 = np.dot(emb1, R) rcos_dist = np.array( [spatial.distance.cosine(emb1[k], emb2[k]) for k in range(emb2.shape[0])] ) if average: rcos_dist = np.nanmean(rcos_dist, axis=0) return rcos_dist def fro_norm(self, other, n=-1): """ Computes the Frobenius norm between the current instance and another Embedding. :param other: other Embedding object to compare :param n: (optional) int value representing the number of words to use to compute the distance, where the words are assumed to be sorted by frequency in the current instance. :return: float distance """ if not isinstance(other, Embedding): raise ValueError("Only Embedding objects supported.") emb1, emb2 = self.get_subembeds_same_vocab(other, n=n) return float(np.linalg.norm(emb1 - emb2, ord='fro')) def pip_loss(self, other, n=10000, random=False): """ Computes the PIP loss between the current instance and another Embedding as described in Yin et al., NeurIPS, 2018. :param other: other Embedding object to compare :param n: (optional) int value representing the number of words to use to compute the distance, where the words are assumed to be sorted by frequency in the current instance. This measure scales with O(n^2), so it may be slow if 'n' is large. :param random: (optional): randomly sample the 'n' words from the full vocabulary rather than taking the top 'n' words sorted by frequency. :return: float distance """ assert n > 0, "Truncation required for pip loss" X, Xq = self.get_subembeds_same_vocab(other, n=n, random=random) K = X @ X.T Kq = Xq @ Xq.T return float(np.linalg.norm(K - Kq)) def knn(self, other, n=10000, nquery=1000, nneighbors=5): """ Computes the k-nearest neighbors measure between the current instance and another Embedding. Based on that described in Wendlandt et al., NAACL-HLT, 2018 :param other: other Embedding object to compare :param n (optional): int, number of words to consider for query word selection and for ranking nearest neighbors. Words are assumed to be sorted by frequency in the current instance, and we take the 'n' most frequent words from the current instance to form sub-embeddings for distance computation. :param nquery (optional): int, number of words to query from the list of 'n' words. The nearest neighbors of each query word are compared between the current instance and the other Embedding. :param nneighbors (optional): int, number of nearest neighbors to compare for each query word :return: float distance """ np.random.seed(1234) assert n > 0 and nquery > 0 and nneighbors > 0, "N, nquery, nneighbors must be > 0" emb1, emb2 = self.get_subembeds_same_vocab(other, n=n) # randomly sample queries from n rand_indices = np.random.choice(n, nquery, replace=False) query1 = emb1[rand_indices] query2 = emb2[rand_indices] neigh1 = NearestNeighbors(nneighbors+1, metric='cosine') neigh1.fit(emb1) _, neighbors1 = neigh1.kneighbors(X=query1) neigh2 = NearestNeighbors(nneighbors+1, metric='cosine') neigh2.fit(emb2) _, neighbors2 = neigh2.kneighbors(X=query2) def _filter_nn(neighbors): actual_neighbors = np.zeros((len(neighbors), nneighbors)) for i, nn in enumerate(neighbors): nn = np.array(nn) # Delete query itself from neighbors try: actual_neighbors[i] = np.delete(nn, np.where(nn == rand_indices[i])) # Cut last neighbor if query not in list (for example all distances are small) except: actual_neighbors[i] = nn[:-1] return actual_neighbors neighbors1 = _filter_nn(neighbors1) neighbors2 = _filter_nn(neighbors2) assert neighbors1.shape[1] == nneighbors and neighbors2.shape[1] == nneighbors, 'Dimensions not correct for nearest neighbors' count = 0. for n1, n2 in zip(neighbors1, neighbors2): count += len(set(n1).intersection(n2)) / len(n1) return count / len(neighbors1)
anchor-stability-master
anchor/embedding.py
anchor-stability-master
anchor/__init__.py
""" Utils file. """ import logging import time from datetime import timedelta def load_vocab_list(vocab_file): vocab = [] fin = open(vocab_file, "r", encoding="utf-8") for line in fin: try: w, _ = line.rstrip().split(' ') vocab.append(w) except: print(line) return vocab def load_vocab(vocab_file): vocab = {} fin = open(vocab_file, "r", encoding="utf-8") for line in fin: w, count = line.rstrip().split(' ') vocab[w] = int(count) return vocab # https://github.com/facebookresearch/DME class LogFormatter(object): def __init__(self): self.start_time = time.time() def format(self, record): elapsed_seconds = round(record.created - self.start_time) prefix = "%s - %s - %s" % ( record.levelname, time.strftime("%x %X"), timedelta(seconds=elapsed_seconds), ) message = record.getMessage() message = message.replace("\n", "\n" + " " * (len(prefix) + 3)) return "%s - %s" % (prefix, message) # https://github.com/facebookresearch/DME def create_logger(filepath): """ Create a logger. """ # create log formatter log_formatter = LogFormatter() # create file handler and set level to debug file_handler = logging.FileHandler(filepath, "a") file_handler.setLevel(logging.DEBUG) file_handler.setFormatter(log_formatter) # create console handler and set level to info console_handler = logging.StreamHandler() console_handler.setLevel(logging.INFO) console_handler.setFormatter(log_formatter) # create logger and set level to debug logger = logging.getLogger() logger.handlers = [] logger.setLevel(logging.DEBUG) logger.propagate = False logger.addHandler(file_handler)
anchor-stability-master
anchor/utils.py
import matplotlib import matplotlib.pyplot as plt import pandas markers = ['s', 'v', '^', '<', '>', 'o'] def plt_single(df, vals, val_tag, xtag, dist, ylog=False, ylabel='', xlabel='', title='', val_tag_label='', legend=False, color='C4', marker='s', line_label=None): if val_tag_label == '': val_tag_label=val_tag for i, val in enumerate(vals): df_sub = df.loc[df[val_tag] == val] xval = df_sub[xtag] yval = df_sub[(dist, 'mean')] if ('overlap' in dist and 'sym' not in dist and 'anchor' not in dist) or 'knn' in dist: yval = 1 - yval yerr = df_sub[(dist, 'std')] if len(vals) == 1: if line_label is None: line_label = f'{val_tag_label}={val}' plt.errorbar(xval, yval, yerr, label=line_label, capsize=5, marker=marker, linestyle='--', color=color) else: plt.errorbar(xval, yval, yerr, label=f'{val_tag_label}={val}', capsize=5, marker=markers[i], linestyle='--') if xtag == 'dim': plt.xscale('log') plt.minorticks_off() plt.xticks([25, 50, 100, 200, 400, 800]) plt.gca().xaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter()) elif xtag == 'bitrate': plt.xscale('log', basex=2) plt.minorticks_off() plt.xticks([1, 2, 4, 8, 16, 32]) plt.gca().xaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter()) elif xtag == 'space': plt.xscale('log') plt.title(title) if legend: plt.legend() plt.xlabel(xlabel) plt.ylabel(ylabel) if ylog: plt.yscale('log') def plt_correlations(df, values, val_tag, metrics, xmetric, ylog=False, ylabel='', title='', xlabel='', xlog=False, legend=False): if len(metrics) > 1: fig = plt.figure(figsize=(20,30)) plt.subplots_adjust(wspace=0.2, hspace=0.2) num = 321 for dist in metrics: if len(metrics) > 1: plt.subplot(num) for i,val in enumerate(values): df_sub = df.loc[df[val_tag] == val] xval = df_sub[(xmetric, 'mean')] yval = df_sub[(dist, 'mean')] yerr = df_sub[(dist, 'std')] if ('overlap' in xmetric and 'sym' not in xmetric and 'anchor' not in xmetric) or 'knn' in xmetric: xval = 1 - xval plt.errorbar(xval, yval, yerr, label=f'b={val}', capsize=5, marker=markers[i], linestyle='--') if xlog: plt.xscale('log') plt.minorticks_off() plt.title(title) if legend: plt.legend(ncol=2) if xlabel == '': xlabel = xmetric plt.xlabel(xlabel) plt.ylabel('% Disagreement') num += 1 if ylog: plt.yscale('log') # load csv results def plt_csv(xlabel, filepath): df = pandas.read_csv(filepath) plt.errorbar(df['Disagreement|x'], df['Disagreement|y'], df['Disagreement|y_std'], capsize=5, marker='s', linestyle='--', color='C4') if xlabel == 'Precision': plt.xscale('log', basex=2) plt.minorticks_off() plt.xticks([1, 2, 4, 8, 16, 32]) plt.gca().xaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter()) else: plt.xscale('log') plt.minorticks_off() plt.xticks([192, 384, 768, 1536, 3072]) plt.gca().xaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter()) plt.xlabel(xlabel) plt.ylabel('% Disagreement')
anchor-stability-master
notebooks/plot_utils.py
"""Train Knowledge Graph embeddings for link prediction.""" import argparse import json import logging import os import torch import torch.optim import models import optimizers.regularizers as regularizers from datasets.kg_dataset import KGDataset from models import all_models from optimizers.kg_optimizer import KGOptimizer from utils.train import get_savedir, avg_both, format_metrics, count_params parser = argparse.ArgumentParser( description="Knowledge Graph Embedding" ) parser.add_argument( "--dataset", default="WN18RR", choices=["FB15K", "WN", "WN18RR", "FB237", "YAGO3-10"], help="Knowledge Graph dataset" ) parser.add_argument( "--model", default="RotE", choices=all_models, help="Knowledge Graph embedding model" ) parser.add_argument( "--regularizer", choices=["N3", "F2"], default="N3", help="Regularizer" ) parser.add_argument( "--reg", default=0, type=float, help="Regularization weight" ) parser.add_argument( "--optimizer", choices=["Adagrad", "Adam", "SparseAdam"], default="Adagrad", help="Optimizer" ) parser.add_argument( "--max_epochs", default=50, type=int, help="Maximum number of epochs to train for" ) parser.add_argument( "--patience", default=10, type=int, help="Number of epochs before early stopping" ) parser.add_argument( "--valid", default=3, type=float, help="Number of epochs before validation" ) parser.add_argument( "--rank", default=1000, type=int, help="Embedding dimension" ) parser.add_argument( "--batch_size", default=1000, type=int, help="Batch size" ) parser.add_argument( "--neg_sample_size", default=50, type=int, help="Negative sample size, -1 to not use negative sampling" ) parser.add_argument( "--dropout", default=0, type=float, help="Dropout rate" ) parser.add_argument( "--init_size", default=1e-3, type=float, help="Initial embeddings' scale" ) parser.add_argument( "--learning_rate", default=1e-1, type=float, help="Learning rate" ) parser.add_argument( "--gamma", default=0, type=float, help="Margin for distance-based losses" ) parser.add_argument( "--bias", default="constant", type=str, choices=["constant", "learn", "none"], help="Bias type (none for no bias)" ) parser.add_argument( "--dtype", default="double", type=str, choices=["single", "double"], help="Machine precision" ) parser.add_argument( "--double_neg", action="store_true", help="Whether to negative sample both head and tail entities" ) parser.add_argument( "--debug", action="store_true", help="Only use 1000 examples for debugging" ) parser.add_argument( "--multi_c", action="store_true", help="Multiple curvatures per relation" ) def train(args): save_dir = get_savedir(args.model, args.dataset) # file logger logging.basicConfig( format="%(asctime)s %(levelname)-8s %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S", filename=os.path.join(save_dir, "train.log") ) # stdout logger console = logging.StreamHandler() console.setLevel(logging.INFO) formatter = logging.Formatter("%(asctime)s %(levelname)-8s %(message)s") console.setFormatter(formatter) logging.getLogger("").addHandler(console) logging.info("Saving logs in: {}".format(save_dir)) # create dataset dataset_path = os.path.join(os.environ["DATA_PATH"], args.dataset) dataset = KGDataset(dataset_path, args.debug) args.sizes = dataset.get_shape() # load data logging.info("\t " + str(dataset.get_shape())) train_examples = dataset.get_examples("train") valid_examples = dataset.get_examples("valid") test_examples = dataset.get_examples("test") filters = dataset.get_filters() # save config with open(os.path.join(save_dir, "config.json"), "w") as fjson: json.dump(vars(args), fjson) # create model model = getattr(models, args.model)(args) total = count_params(model) logging.info("Total number of parameters {}".format(total)) device = "cuda" model.to(device) # get optimizer regularizer = getattr(regularizers, args.regularizer)(args.reg) optim_method = getattr(torch.optim, args.optimizer)(model.parameters(), lr=args.learning_rate) optimizer = KGOptimizer(model, regularizer, optim_method, args.batch_size, args.neg_sample_size, bool(args.double_neg)) counter = 0 best_mrr = None best_epoch = None logging.info("\t Start training") for step in range(args.max_epochs): # Train step model.train() train_loss = optimizer.epoch(train_examples) logging.info("\t Epoch {} | average train loss: {:.4f}".format(step, train_loss)) # Valid step model.eval() valid_loss = optimizer.calculate_valid_loss(valid_examples) logging.info("\t Epoch {} | average valid loss: {:.4f}".format(step, valid_loss)) if (step + 1) % args.valid == 0: valid_metrics = avg_both(*model.compute_metrics(valid_examples, filters)) logging.info(format_metrics(valid_metrics, split="valid")) valid_mrr = valid_metrics["MRR"] if not best_mrr or valid_mrr > best_mrr: best_mrr = valid_mrr counter = 0 best_epoch = step logging.info("\t Saving model at epoch {} in {}".format(step, save_dir)) torch.save(model.cpu().state_dict(), os.path.join(save_dir, "model.pt")) model.cuda() else: counter += 1 if counter == args.patience: logging.info("\t Early stopping") break elif counter == args.patience // 2: pass # logging.info("\t Reducing learning rate") # optimizer.reduce_lr() logging.info("\t Optimization finished") if not best_mrr: torch.save(model.cpu().state_dict(), os.path.join(save_dir, "model.pt")) else: logging.info("\t Loading best model saved at epoch {}".format(best_epoch)) model.load_state_dict(torch.load(os.path.join(save_dir, "model.pt"))) model.cuda() model.eval() # Validation metrics valid_metrics = avg_both(*model.compute_metrics(valid_examples, filters)) logging.info(format_metrics(valid_metrics, split="valid")) # Test metrics test_metrics = avg_both(*model.compute_metrics(test_examples, filters)) logging.info(format_metrics(test_metrics, split="test")) if __name__ == "__main__": train(parser.parse_args())
KGEmb-master
run.py
"""Evaluation script.""" import argparse import json import os import torch import models from datasets.kg_dataset import KGDataset from utils.train import avg_both, format_metrics parser = argparse.ArgumentParser(description="Test") parser.add_argument( '--model_dir', help="Model path" ) def test(model_dir): # load config with open(os.path.join(model_dir, "config.json"), "r") as f: config = json.load(f) args = argparse.Namespace(**config) # create dataset dataset_path = os.path.join(os.environ["DATA_PATH"], args.dataset) dataset = KGDataset(dataset_path, False) test_examples = dataset.get_examples("test") filters = dataset.get_filters() # load pretrained model weights model = getattr(models, args.model)(args) device = 'cuda' model.to(device) model.load_state_dict(torch.load(os.path.join(model_dir, 'model.pt'))) # eval test_metrics = avg_both(*model.compute_metrics(test_examples, filters)) return test_metrics if __name__ == "__main__": args = parser.parse_args() test_metrics = test(args.model_dir) print(format_metrics(test_metrics, split='test'))
KGEmb-master
test.py
"""Dataset class for loading and processing KG datasets.""" import os import pickle as pkl import numpy as np import torch class KGDataset(object): """Knowledge Graph dataset class.""" def __init__(self, data_path, debug): """Creates KG dataset object for data loading. Args: data_path: Path to directory containing train/valid/test pickle files produced by process.py debug: boolean indicating whether to use debug mode or not if true, the dataset will only contain 1000 examples for debugging. """ self.data_path = data_path self.debug = debug self.data = {} for split in ["train", "test", "valid"]: file_path = os.path.join(self.data_path, split + ".pickle") with open(file_path, "rb") as in_file: self.data[split] = pkl.load(in_file) filters_file = open(os.path.join(self.data_path, "to_skip.pickle"), "rb") self.to_skip = pkl.load(filters_file) filters_file.close() max_axis = np.max(self.data["train"], axis=0) self.n_entities = int(max(max_axis[0], max_axis[2]) + 1) self.n_predicates = int(max_axis[1] + 1) * 2 def get_examples(self, split, rel_idx=-1): """Get examples in a split. Args: split: String indicating the split to use (train/valid/test) rel_idx: integer for relation index to keep (-1 to keep all relation) Returns: examples: torch.LongTensor containing KG triples in a split """ examples = self.data[split] if split == "train": copy = np.copy(examples) tmp = np.copy(copy[:, 0]) copy[:, 0] = copy[:, 2] copy[:, 2] = tmp copy[:, 1] += self.n_predicates // 2 examples = np.vstack((examples, copy)) if rel_idx >= 0: examples = examples[examples[:, 1] == rel_idx] if self.debug: examples = examples[:1000] return torch.from_numpy(examples.astype("int64")) def get_filters(self, ): """Return filter dict to compute ranking metrics in the filtered setting.""" return self.to_skip def get_shape(self): """Returns KG dataset shape.""" return self.n_entities, self.n_predicates, self.n_entities
KGEmb-master
datasets/kg_dataset.py
KGEmb-master
datasets/__init__.py
"""Knowledge Graph dataset pre-processing functions.""" import collections import os import pickle import numpy as np def get_idx(path): """Map entities and relations to unique ids. Args: path: path to directory with raw dataset files (tab-separated train/valid/test triples) Returns: ent2idx: Dictionary mapping raw entities to unique ids rel2idx: Dictionary mapping raw relations to unique ids """ entities, relations = set(), set() for split in ["train", "valid", "test"]: with open(os.path.join(path, split), "r") as lines: for line in lines: lhs, rel, rhs = line.strip().split("\t") entities.add(lhs) entities.add(rhs) relations.add(rel) ent2idx = {x: i for (i, x) in enumerate(sorted(entities))} rel2idx = {x: i for (i, x) in enumerate(sorted(relations))} return ent2idx, rel2idx def to_np_array(dataset_file, ent2idx, rel2idx): """Map raw dataset file to numpy array with unique ids. Args: dataset_file: Path to file containing raw triples in a split ent2idx: Dictionary mapping raw entities to unique ids rel2idx: Dictionary mapping raw relations to unique ids Returns: Numpy array of size n_examples x 3 mapping the raw dataset file to ids """ examples = [] with open(dataset_file, "r") as lines: for line in lines: lhs, rel, rhs = line.strip().split("\t") try: examples.append([ent2idx[lhs], rel2idx[rel], ent2idx[rhs]]) except ValueError: continue return np.array(examples).astype("int64") def get_filters(examples, n_relations): """Create filtering lists for evaluation. Args: examples: Numpy array of size n_examples x 3 containing KG triples n_relations: Int indicating the total number of relations in the KG Returns: lhs_final: Dictionary mapping queries (entity, relation) to filtered entities for left-hand-side prediction rhs_final: Dictionary mapping queries (entity, relation) to filtered entities for right-hand-side prediction """ lhs_filters = collections.defaultdict(set) rhs_filters = collections.defaultdict(set) for lhs, rel, rhs in examples: rhs_filters[(lhs, rel)].add(rhs) lhs_filters[(rhs, rel + n_relations)].add(lhs) lhs_final = {} rhs_final = {} for k, v in lhs_filters.items(): lhs_final[k] = sorted(list(v)) for k, v in rhs_filters.items(): rhs_final[k] = sorted(list(v)) return lhs_final, rhs_final def process_dataset(path): """Map entities and relations to ids and saves corresponding pickle arrays. Args: path: Path to dataset directory Returns: examples: Dictionary mapping splits to with Numpy array containing corresponding KG triples. filters: Dictionary containing filters for lhs and rhs predictions. """ ent2idx, rel2idx = get_idx(dataset_path) examples = {} splits = ["train", "valid", "test"] for split in splits: dataset_file = os.path.join(path, split) examples[split] = to_np_array(dataset_file, ent2idx, rel2idx) all_examples = np.concatenate([examples[split] for split in splits], axis=0) lhs_skip, rhs_skip = get_filters(all_examples, len(rel2idx)) filters = {"lhs": lhs_skip, "rhs": rhs_skip} return examples, filters if __name__ == "__main__": data_path = os.environ["DATA_PATH"] for dataset_name in os.listdir(data_path): dataset_path = os.path.join(data_path, dataset_name) dataset_examples, dataset_filters = process_dataset(dataset_path) for dataset_split in ["train", "valid", "test"]: save_path = os.path.join(dataset_path, dataset_split + ".pickle") with open(save_path, "wb") as save_file: pickle.dump(dataset_examples[dataset_split], save_file) with open(os.path.join(dataset_path, "to_skip.pickle"), "wb") as save_file: pickle.dump(dataset_filters, save_file)
KGEmb-master
datasets/process.py
KGEmb-master
utils/__init__.py
"""Hyperbolic operations utils functions.""" import torch MIN_NORM = 1e-15 BALL_EPS = {torch.float32: 4e-3, torch.float64: 1e-5} # ################# MATH FUNCTIONS ######################## class Artanh(torch.autograd.Function): @staticmethod def forward(ctx, x): x = x.clamp(-1 + 1e-5, 1 - 1e-5) ctx.save_for_backward(x) dtype = x.dtype x = x.double() return (torch.log_(1 + x).sub_(torch.log_(1 - x))).mul_(0.5).to(dtype) @staticmethod def backward(ctx, grad_output): input, = ctx.saved_tensors return grad_output / (1 - input ** 2) def artanh(x): return Artanh.apply(x) def tanh(x): return x.clamp(-15, 15).tanh() # ################# HYP OPS ######################## def expmap0(u, c): """Exponential map taken at the origin of the Poincare ball with curvature c. Args: u: torch.Tensor of size B x d with hyperbolic points c: torch.Tensor of size 1 or B x 1 with absolute hyperbolic curvatures Returns: torch.Tensor with tangent points. """ sqrt_c = c ** 0.5 u_norm = u.norm(dim=-1, p=2, keepdim=True).clamp_min(MIN_NORM) gamma_1 = tanh(sqrt_c * u_norm) * u / (sqrt_c * u_norm) return project(gamma_1, c) def logmap0(y, c): """Logarithmic map taken at the origin of the Poincare ball with curvature c. Args: y: torch.Tensor of size B x d with tangent points c: torch.Tensor of size 1 or B x 1 with absolute hyperbolic curvatures Returns: torch.Tensor with hyperbolic points. """ sqrt_c = c ** 0.5 y_norm = y.norm(dim=-1, p=2, keepdim=True).clamp_min(MIN_NORM) return y / y_norm / sqrt_c * artanh(sqrt_c * y_norm) def project(x, c): """Project points to Poincare ball with curvature c. Args: x: torch.Tensor of size B x d with hyperbolic points c: torch.Tensor of size 1 or B x 1 with absolute hyperbolic curvatures Returns: torch.Tensor with projected hyperbolic points. """ norm = x.norm(dim=-1, p=2, keepdim=True).clamp_min(MIN_NORM) eps = BALL_EPS[x.dtype] maxnorm = (1 - eps) / (c ** 0.5) cond = norm > maxnorm projected = x / norm * maxnorm return torch.where(cond, projected, x) def mobius_add(x, y, c): """Mobius addition of points in the Poincare ball with curvature c. Args: x: torch.Tensor of size B x d with hyperbolic points y: torch.Tensor of size B x d with hyperbolic points c: torch.Tensor of size 1 or B x 1 with absolute hyperbolic curvatures Returns: Tensor of shape B x d representing the element-wise Mobius addition of x and y. """ x2 = torch.sum(x * x, dim=-1, keepdim=True) y2 = torch.sum(y * y, dim=-1, keepdim=True) xy = torch.sum(x * y, dim=-1, keepdim=True) num = (1 + 2 * c * xy + c * y2) * x + (1 - c * x2) * y denom = 1 + 2 * c * xy + c ** 2 * x2 * y2 return num / denom.clamp_min(MIN_NORM) # ################# HYP DISTANCES ######################## def hyp_distance(x, y, c, eval_mode=False): """Hyperbolic distance on the Poincare ball with curvature c. Args: x: torch.Tensor of size B x d with hyperbolic queries y: torch.Tensor with hyperbolic queries, shape n_entities x d if eval_mode is true else (B x d) c: torch.Tensor of size 1 with absolute hyperbolic curvature Returns: torch,Tensor with hyperbolic distances, size B x 1 if eval_mode is False else B x n_entities matrix with all pairs distances """ sqrt_c = c ** 0.5 x2 = torch.sum(x * x, dim=-1, keepdim=True) if eval_mode: y2 = torch.sum(y * y, dim=-1, keepdim=True).transpose(0, 1) xy = x @ y.transpose(0, 1) else: y2 = torch.sum(y * y, dim=-1, keepdim=True) xy = torch.sum(x * y, dim=-1, keepdim=True) c1 = 1 - 2 * c * xy + c * y2 c2 = 1 - c * x2 num = torch.sqrt((c1 ** 2) * x2 + (c2 ** 2) * y2 - (2 * c1 * c2) * xy) denom = 1 - 2 * c * xy + c ** 2 * x2 * y2 pairwise_norm = num / denom.clamp_min(MIN_NORM) dist = artanh(sqrt_c * pairwise_norm) return 2 * dist / sqrt_c def hyp_distance_multi_c(x, v, c, eval_mode=False): """Hyperbolic distance on Poincare balls with varying curvatures c. Args: x: torch.Tensor of size B x d with hyperbolic queries y: torch.Tensor with hyperbolic queries, shape n_entities x d if eval_mode is true else (B x d) c: torch.Tensor of size B x d with absolute hyperbolic curvatures Return: torch,Tensor with hyperbolic distances, size B x 1 if eval_mode is False else B x n_entities matrix with all pairs distances """ sqrt_c = c ** 0.5 if eval_mode: vnorm = torch.norm(v, p=2, dim=-1, keepdim=True).transpose(0, 1) xv = x @ v.transpose(0, 1) / vnorm else: vnorm = torch.norm(v, p=2, dim=-1, keepdim=True) xv = torch.sum(x * v / vnorm, dim=-1, keepdim=True) gamma = tanh(sqrt_c * vnorm) / sqrt_c x2 = torch.sum(x * x, dim=-1, keepdim=True) c1 = 1 - 2 * c * gamma * xv + c * gamma ** 2 c2 = 1 - c * x2 num = torch.sqrt((c1 ** 2) * x2 + (c2 ** 2) * (gamma ** 2) - (2 * c1 * c2) * gamma * xv) denom = 1 - 2 * c * gamma * xv + (c ** 2) * (gamma ** 2) * x2 pairwise_norm = num / denom.clamp_min(MIN_NORM) dist = artanh(sqrt_c * pairwise_norm) return 2 * dist / sqrt_c
KGEmb-master
utils/hyperbolic.py
"""Training utils.""" import datetime import os def get_savedir(model, dataset): """Get unique saving directory name.""" dt = datetime.datetime.now() date = dt.strftime("%m_%d") save_dir = os.path.join( os.environ["LOG_DIR"], date, dataset, model + dt.strftime('_%H_%M_%S') ) os.makedirs(save_dir) return save_dir def avg_both(mrs, mrrs, hits): """Aggregate metrics for missing lhs and rhs. Args: mrs: Dict[str, float] mrrs: Dict[str, float] hits: Dict[str, torch.FloatTensor] Returns: Dict[str, torch.FloatTensor] mapping metric name to averaged score """ mr = (mrs['lhs'] + mrs['rhs']) / 2. mrr = (mrrs['lhs'] + mrrs['rhs']) / 2. h = (hits['lhs'] + hits['rhs']) / 2. return {'MR': mr, 'MRR': mrr, 'hits@[1,3,10]': h} def format_metrics(metrics, split): """Format metrics for logging.""" result = "\t {} MR: {:.2f} | ".format(split, metrics['MR']) result += "MRR: {:.3f} | ".format(metrics['MRR']) result += "H@1: {:.3f} | ".format(metrics['hits@[1,3,10]'][0]) result += "H@3: {:.3f} | ".format(metrics['hits@[1,3,10]'][1]) result += "H@10: {:.3f}".format(metrics['hits@[1,3,10]'][2]) return result def write_metrics(writer, step, metrics, split): """Write metrics to tensorboard logs.""" writer.add_scalar('{}_MR'.format(split), metrics['MR'], global_step=step) writer.add_scalar('{}_MRR'.format(split), metrics['MRR'], global_step=step) writer.add_scalar('{}_H1'.format(split), metrics['hits@[1,3,10]'][0], global_step=step) writer.add_scalar('{}_H3'.format(split), metrics['hits@[1,3,10]'][1], global_step=step) writer.add_scalar('{}_H10'.format(split), metrics['hits@[1,3,10]'][2], global_step=step) def count_params(model): """Count total number of trainable parameters in model""" total = 0 for x in model.parameters(): if x.requires_grad: res = 1 for y in x.shape: res *= y total += res return total
KGEmb-master
utils/train.py
"""Euclidean operations utils functions.""" import torch def euc_sqdistance(x, y, eval_mode=False): """Compute euclidean squared distance between tensors. Args: x: torch.Tensor of shape (N1 x d) y: torch.Tensor of shape (N2 x d) eval_mode: boolean Returns: torch.Tensor of shape N1 x 1 with pairwise squared distances if eval_mode is false else torch.Tensor of shape N1 x N2 with all-pairs distances """ x2 = torch.sum(x * x, dim=-1, keepdim=True) y2 = torch.sum(y * y, dim=-1, keepdim=True) if eval_mode: y2 = y2.t() xy = x @ y.t() else: assert x.shape[0] == y.shape[0] xy = torch.sum(x * y, dim=-1, keepdim=True) return x2 + y2 - 2 * xy def givens_rotations(r, x): """Givens rotations. Args: r: torch.Tensor of shape (N x d), rotation parameters x: torch.Tensor of shape (N x d), points to rotate Returns: torch.Tensor os shape (N x d) representing rotation of x by r """ givens = r.view((r.shape[0], -1, 2)) givens = givens / torch.norm(givens, p=2, dim=-1, keepdim=True).clamp_min(1e-15) x = x.view((r.shape[0], -1, 2)) x_rot = givens[:, :, 0:1] * x + givens[:, :, 1:] * torch.cat((-x[:, :, 1:], x[:, :, 0:1]), dim=-1) return x_rot.view((r.shape[0], -1)) def givens_reflection(r, x): """Givens reflections. Args: r: torch.Tensor of shape (N x d), rotation parameters x: torch.Tensor of shape (N x d), points to reflect Returns: torch.Tensor os shape (N x d) representing reflection of x by r """ givens = r.view((r.shape[0], -1, 2)) givens = givens / torch.norm(givens, p=2, dim=-1, keepdim=True).clamp_min(1e-15) x = x.view((r.shape[0], -1, 2)) x_ref = givens[:, :, 0:1] * torch.cat((x[:, :, 0:1], -x[:, :, 1:]), dim=-1) + givens[:, :, 1:] * torch.cat( (x[:, :, 1:], x[:, :, 0:1]), dim=-1) return x_ref.view((r.shape[0], -1))
KGEmb-master
utils/euclidean.py
from .complex import * from .euclidean import * from .hyperbolic import * all_models = EUC_MODELS + HYP_MODELS + COMPLEX_MODELS
KGEmb-master
models/__init__.py
"""Hyperbolic Knowledge Graph embedding models where all parameters are defined in tangent spaces.""" import numpy as np import torch import torch.nn.functional as F from torch import nn from models.base import KGModel from utils.euclidean import givens_rotations, givens_reflection from utils.hyperbolic import mobius_add, expmap0, project, hyp_distance_multi_c HYP_MODELS = ["RotH", "RefH", "AttH"] class BaseH(KGModel): """Trainable curvature for each relationship.""" def __init__(self, args): super(BaseH, self).__init__(args.sizes, args.rank, args.dropout, args.gamma, args.dtype, args.bias, args.init_size) self.entity.weight.data = self.init_size * torch.randn((self.sizes[0], self.rank), dtype=self.data_type) self.rel.weight.data = self.init_size * torch.randn((self.sizes[1], 2 * self.rank), dtype=self.data_type) self.rel_diag = nn.Embedding(self.sizes[1], self.rank) self.rel_diag.weight.data = 2 * torch.rand((self.sizes[1], self.rank), dtype=self.data_type) - 1.0 self.multi_c = args.multi_c if self.multi_c: c_init = torch.ones((self.sizes[1], 1), dtype=self.data_type) else: c_init = torch.ones((1, 1), dtype=self.data_type) self.c = nn.Parameter(c_init, requires_grad=True) def get_rhs(self, queries, eval_mode): """Get embeddings and biases of target entities.""" if eval_mode: return self.entity.weight, self.bt.weight else: return self.entity(queries[:, 2]), self.bt(queries[:, 2]) def similarity_score(self, lhs_e, rhs_e, eval_mode): """Compute similarity scores or queries against targets in embedding space.""" lhs_e, c = lhs_e return - hyp_distance_multi_c(lhs_e, rhs_e, c, eval_mode) ** 2 class RotH(BaseH): """Hyperbolic 2x2 Givens rotations""" def get_queries(self, queries): """Compute embedding and biases of queries.""" c = F.softplus(self.c[queries[:, 1]]) head = expmap0(self.entity(queries[:, 0]), c) rel1, rel2 = torch.chunk(self.rel(queries[:, 1]), 2, dim=1) rel1 = expmap0(rel1, c) rel2 = expmap0(rel2, c) lhs = project(mobius_add(head, rel1, c), c) res1 = givens_rotations(self.rel_diag(queries[:, 1]), lhs) res2 = mobius_add(res1, rel2, c) return (res2, c), self.bh(queries[:, 0]) class RefH(BaseH): """Hyperbolic 2x2 Givens reflections""" def get_queries(self, queries): """Compute embedding and biases of queries.""" c = F.softplus(self.c[queries[:, 1]]) rel, _ = torch.chunk(self.rel(queries[:, 1]), 2, dim=1) rel = expmap0(rel, c) lhs = givens_reflection(self.rel_diag(queries[:, 1]), self.entity(queries[:, 0])) lhs = expmap0(lhs, c) res = project(mobius_add(lhs, rel, c), c) return (res, c), self.bh(queries[:, 0]) class AttH(BaseH): """Hyperbolic attention model combining translations, reflections and rotations""" def __init__(self, args): super(AttH, self).__init__(args) self.rel_diag = nn.Embedding(self.sizes[1], 2 * self.rank) self.rel_diag.weight.data = 2 * torch.rand((self.sizes[1], 2 * self.rank), dtype=self.data_type) - 1.0 self.context_vec = nn.Embedding(self.sizes[1], self.rank) self.context_vec.weight.data = self.init_size * torch.randn((self.sizes[1], self.rank), dtype=self.data_type) self.act = nn.Softmax(dim=1) if args.dtype == "double": self.scale = torch.Tensor([1. / np.sqrt(self.rank)]).double().cuda() else: self.scale = torch.Tensor([1. / np.sqrt(self.rank)]).cuda() def get_queries(self, queries): """Compute embedding and biases of queries.""" c = F.softplus(self.c[queries[:, 1]]) head = self.entity(queries[:, 0]) rot_mat, ref_mat = torch.chunk(self.rel_diag(queries[:, 1]), 2, dim=1) rot_q = givens_rotations(rot_mat, head).view((-1, 1, self.rank)) ref_q = givens_reflection(ref_mat, head).view((-1, 1, self.rank)) cands = torch.cat([ref_q, rot_q], dim=1) context_vec = self.context_vec(queries[:, 1]).view((-1, 1, self.rank)) att_weights = torch.sum(context_vec * cands * self.scale, dim=-1, keepdim=True) att_weights = self.act(att_weights) att_q = torch.sum(att_weights * cands, dim=1) lhs = expmap0(att_q, c) rel, _ = torch.chunk(self.rel(queries[:, 1]), 2, dim=1) rel = expmap0(rel, c) res = project(mobius_add(lhs, rel, c), c) return (res, c), self.bh(queries[:, 0])
KGEmb-master
models/hyperbolic.py
"""Euclidean Knowledge Graph embedding models where embeddings are in complex space.""" import torch from torch import nn from models.base import KGModel COMPLEX_MODELS = ["ComplEx", "RotatE"] class BaseC(KGModel): """Complex Knowledge Graph Embedding models. Attributes: embeddings: complex embeddings for entities and relations """ def __init__(self, args): """Initialize a Complex KGModel.""" super(BaseC, self).__init__(args.sizes, args.rank, args.dropout, args.gamma, args.dtype, args.bias, args.init_size) assert self.rank % 2 == 0, "Complex models require even embedding dimension" self.rank = self.rank // 2 self.embeddings = nn.ModuleList([ nn.Embedding(s, 2 * self.rank, sparse=True) for s in self.sizes[:2] ]) self.embeddings[0].weight.data = self.init_size * self.embeddings[0].weight.to(self.data_type) self.embeddings[1].weight.data = self.init_size * self.embeddings[1].weight.to(self.data_type) def get_rhs(self, queries, eval_mode): """Get embeddings and biases of target entities.""" if eval_mode: return self.embeddings[0].weight, self.bt.weight else: return self.embeddings[0](queries[:, 2]), self.bt(queries[:, 2]) def similarity_score(self, lhs_e, rhs_e, eval_mode): """Compute similarity scores or queries against targets in embedding space.""" lhs_e = lhs_e[:, :self.rank], lhs_e[:, self.rank:] rhs_e = rhs_e[:, :self.rank], rhs_e[:, self.rank:] if eval_mode: return lhs_e[0] @ rhs_e[0].transpose(0, 1) + lhs_e[1] @ rhs_e[1].transpose(0, 1) else: return torch.sum( lhs_e[0] * rhs_e[0] + lhs_e[1] * rhs_e[1], 1, keepdim=True ) def get_complex_embeddings(self, queries): """Get complex embeddings of queries.""" head_e = self.embeddings[0](queries[:, 0]) rel_e = self.embeddings[1](queries[:, 1]) rhs_e = self.embeddings[0](queries[:, 2]) head_e = head_e[:, :self.rank], head_e[:, self.rank:] rel_e = rel_e[:, :self.rank], rel_e[:, self.rank:] rhs_e = rhs_e[:, :self.rank], rhs_e[:, self.rank:] return head_e, rel_e, rhs_e def get_factors(self, queries): """Compute factors for embeddings' regularization.""" head_e, rel_e, rhs_e = self.get_complex_embeddings(queries) head_f = torch.sqrt(head_e[0] ** 2 + head_e[1] ** 2) rel_f = torch.sqrt(rel_e[0] ** 2 + rel_e[1] ** 2) rhs_f = torch.sqrt(rhs_e[0] ** 2 + rhs_e[1] ** 2) return head_f, rel_f, rhs_f class ComplEx(BaseC): """Simple complex model http://proceedings.mlr.press/v48/trouillon16.pdf""" def get_queries(self, queries): """Compute embedding and biases of queries.""" head_e, rel_e, _ = self.get_complex_embeddings(queries) lhs_e = torch.cat([ head_e[0] * rel_e[0] - head_e[1] * rel_e[1], head_e[0] * rel_e[1] + head_e[1] * rel_e[0] ], 1) return lhs_e, self.bh(queries[:, 0]) class RotatE(BaseC): """Rotations in complex space https://openreview.net/pdf?id=HkgEQnRqYQ""" def get_queries(self, queries): """Compute embedding and biases of queries.""" head_e, rel_e, _ = self.get_complex_embeddings(queries) rel_norm = torch.sqrt(rel_e[0] ** 2 + rel_e[1] ** 2) cos = rel_e[0] / rel_norm sin = rel_e[1] / rel_norm lhs_e = torch.cat([ head_e[0] * cos - head_e[1] * sin, head_e[0] * sin + head_e[1] * cos ], 1) return lhs_e, self.bh(queries[:, 0])
KGEmb-master
models/complex.py
"""Base Knowledge Graph embedding model.""" from abc import ABC, abstractmethod import torch from torch import nn class KGModel(nn.Module, ABC): """Base Knowledge Graph Embedding model class. Attributes: sizes: Tuple[int, int, int] with (n_entities, n_relations, n_entities) rank: integer for embedding dimension dropout: float for dropout rate gamma: torch.nn.Parameter for margin in ranking-based loss data_type: torch.dtype for machine precision (single or double) bias: string for whether to learn or fix bias (none for no bias) init_size: float for embeddings' initialization scale entity: torch.nn.Embedding with entity embeddings rel: torch.nn.Embedding with relation embeddings bh: torch.nn.Embedding with head entity bias embeddings bt: torch.nn.Embedding with tail entity bias embeddings """ def __init__(self, sizes, rank, dropout, gamma, data_type, bias, init_size): """Initialize KGModel.""" super(KGModel, self).__init__() if data_type == 'double': self.data_type = torch.double else: self.data_type = torch.float self.sizes = sizes self.rank = rank self.dropout = dropout self.bias = bias self.init_size = init_size self.gamma = nn.Parameter(torch.Tensor([gamma]), requires_grad=False) self.entity = nn.Embedding(sizes[0], rank) self.rel = nn.Embedding(sizes[1], rank) self.bh = nn.Embedding(sizes[0], 1) self.bh.weight.data = torch.zeros((sizes[0], 1), dtype=self.data_type) self.bt = nn.Embedding(sizes[0], 1) self.bt.weight.data = torch.zeros((sizes[0], 1), dtype=self.data_type) @abstractmethod def get_queries(self, queries): """Compute embedding and biases of queries. Args: queries: torch.LongTensor with query triples (head, relation, tail) Returns: lhs_e: torch.Tensor with queries' embeddings (embedding of head entities and relations) lhs_biases: torch.Tensor with head entities' biases """ pass @abstractmethod def get_rhs(self, queries, eval_mode): """Get embeddings and biases of target entities. Args: queries: torch.LongTensor with query triples (head, relation, tail) eval_mode: boolean, true for evaluation, false for training Returns: rhs_e: torch.Tensor with targets' embeddings if eval_mode=False returns embedding of tail entities (n_queries x rank) else returns embedding of all possible entities in the KG dataset (n_entities x rank) rhs_biases: torch.Tensor with targets' biases if eval_mode=False returns biases of tail entities (n_queries x 1) else returns biases of all possible entities in the KG dataset (n_entities x 1) """ pass @abstractmethod def similarity_score(self, lhs_e, rhs_e, eval_mode): """Compute similarity scores or queries against targets in embedding space. Args: lhs_e: torch.Tensor with queries' embeddings rhs_e: torch.Tensor with targets' embeddings eval_mode: boolean, true for evaluation, false for training Returns: scores: torch.Tensor with similarity scores of queries against targets """ pass def score(self, lhs, rhs, eval_mode): """Scores queries against targets Args: lhs: Tuple[torch.Tensor, torch.Tensor] with queries' embeddings and head biases returned by get_queries(queries) rhs: Tuple[torch.Tensor, torch.Tensor] with targets' embeddings and tail biases returned by get_rhs(queries, eval_mode) eval_mode: boolean, true for evaluation, false for training Returns: score: torch.Tensor with scores of queries against targets if eval_mode=True, returns scores against all possible tail entities, shape (n_queries x n_entities) else returns scores for triples in batch (shape n_queries x 1) """ lhs_e, lhs_biases = lhs rhs_e, rhs_biases = rhs score = self.similarity_score(lhs_e, rhs_e, eval_mode) if self.bias == 'constant': return self.gamma.item() + score elif self.bias == 'learn': if eval_mode: return lhs_biases + rhs_biases.t() + score else: return lhs_biases + rhs_biases + score else: return score def get_factors(self, queries): """Computes factors for embeddings' regularization. Args: queries: torch.LongTensor with query triples (head, relation, tail) Returns: Tuple[torch.Tensor, torch.Tensor, torch.Tensor] with embeddings to regularize """ head_e = self.entity(queries[:, 0]) rel_e = self.rel(queries[:, 1]) rhs_e = self.entity(queries[:, 2]) return head_e, rel_e, rhs_e def forward(self, queries, eval_mode=False): """KGModel forward pass. Args: queries: torch.LongTensor with query triples (head, relation, tail) eval_mode: boolean, true for evaluation, false for training Returns: predictions: torch.Tensor with triples' scores shape is (n_queries x 1) if eval_mode is false else (n_queries x n_entities) factors: embeddings to regularize """ # get embeddings and similarity scores lhs_e, lhs_biases = self.get_queries(queries) # queries = F.dropout(queries, self.dropout, training=self.training) rhs_e, rhs_biases = self.get_rhs(queries, eval_mode) # candidates = F.dropout(candidates, self.dropout, training=self.training) predictions = self.score((lhs_e, lhs_biases), (rhs_e, rhs_biases), eval_mode) # get factors for regularization factors = self.get_factors(queries) return predictions, factors def get_ranking(self, queries, filters, batch_size=1000): """Compute filtered ranking of correct entity for evaluation. Args: queries: torch.LongTensor with query triples (head, relation, tail) filters: filters[(head, relation)] gives entities to ignore (filtered setting) batch_size: int for evaluation batch size Returns: ranks: torch.Tensor with ranks or correct entities """ ranks = torch.ones(len(queries)) with torch.no_grad(): b_begin = 0 candidates = self.get_rhs(queries, eval_mode=True) while b_begin < len(queries): these_queries = queries[b_begin:b_begin + batch_size].cuda() q = self.get_queries(these_queries) rhs = self.get_rhs(these_queries, eval_mode=False) scores = self.score(q, candidates, eval_mode=True) targets = self.score(q, rhs, eval_mode=False) # set filtered and true scores to -1e6 to be ignored for i, query in enumerate(these_queries): filter_out = filters[(query[0].item(), query[1].item())] filter_out += [queries[b_begin + i, 2].item()] scores[i, torch.LongTensor(filter_out)] = -1e6 ranks[b_begin:b_begin + batch_size] += torch.sum( (scores >= targets).float(), dim=1 ).cpu() b_begin += batch_size return ranks def compute_metrics(self, examples, filters, batch_size=500): """Compute ranking-based evaluation metrics. Args: examples: torch.LongTensor of size n_examples x 3 containing triples' indices filters: Dict with entities to skip per query for evaluation in the filtered setting batch_size: integer for batch size to use to compute scores Returns: Evaluation metrics (mean rank, mean reciprocical rank and hits) """ mean_rank = {} mean_reciprocal_rank = {} hits_at = {} for m in ["rhs", "lhs"]: q = examples.clone() if m == "lhs": tmp = torch.clone(q[:, 0]) q[:, 0] = q[:, 2] q[:, 2] = tmp q[:, 1] += self.sizes[1] // 2 ranks = self.get_ranking(q, filters[m], batch_size=batch_size) mean_rank[m] = torch.mean(ranks).item() mean_reciprocal_rank[m] = torch.mean(1. / ranks).item() hits_at[m] = torch.FloatTensor((list(map( lambda x: torch.mean((ranks <= x).float()).item(), (1, 3, 10) )))) return mean_rank, mean_reciprocal_rank, hits_at
KGEmb-master
models/base.py