python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
import pandas as pd import numpy as np __all__ = ['csv_node'] class csv_node(object): def __init__(self, DataFrame, seed): self.dataframe = DataFrame self.seed = int(seed) self.build_node() @classmethod def from_csv(klass, csv, seed=None): dataframe = pd.read_csv(csv) if seed is None: seed = csv.split("/")[-1].split(".")[0].split("_")[-1] return klass(dataframe, seed) def build_node(self): """ Building the dict of predictions based on the pd.DataFrame """ self.data = {} self.PID = [] for i, row in self.dataframe.iterrows(): self.PID.append(row.PID) self.data.update({row.PID: {"Y_TRUE": row.Y_TRUE, "Y_PROBA": row.Y_PROBA, "Y_PRED": row.Y_PRED}}) def extract(self, key, PIDs=None): PIDs = self.PID if PIDs is None else PIDs return np.array([self.data[pid][key] for pid in PIDs])
ukb-cardiac-mri-master
ukb/ensemble/csv_reader.py
from .csv_reader import * from .voting import *
ukb-cardiac-mri-master
ukb/ensemble/__init__.py
import glob import numpy as np import pandas as pd from collections import OrderedDict #from . import metrics import metrics from .csv_reader import csv_node __all__ = ['tune_threshold', 'assemble_node', 'assemble_dev_threshold', 'metric_reading', 'Ensemble'] def tune_threshold(y_true, y_prob, metric="f1_score"): if isinstance(metric, str): metric = getattr(metrics, metric) thresholds = np.arange(0.01, 1, 0.01) best_score = 0.0 best_threshold = 0.5 for threshold in thresholds: y_pred = np.array([1 if p > threshold else 0 for p in y_prob]) cur_score = metric(y_true, y_pred) if cur_score > best_score: best_score = cur_score best_threshold = threshold print("Tuned threshold: {:.4f}".format(best_threshold)) return best_threshold def assemble_node(nodes, key="Y_PROBA", method="median", PIDs=None): if isinstance(method, str): method = getattr(np, method) if PIDs is None: PIDs = nodes[0].PID probas = [] for pid in PIDs: proba = method([x.data[pid][key] for x in nodes]) probas.append(proba) return np.array(probas) def assemble_dev_threshold(nodes, method="median", metric="f1_score", PIDs=None): y_prob = assemble_node(nodes, key="Y_PROBA", method=method, PIDs=PIDs) y_true = nodes[0].extract("Y_TRUE", PIDs) threshold = tune_threshold(y_true, y_prob, metric) return threshold def metric_reading(y_true, y_pred, y_proba): if isinstance(y_true, list): readings = [metric_reading(y_true_, y_pred_, y_proba_) for y_true_,y_pred_,y_proba_ in zip(y_true, y_pred, y_proba)] return readings else: scores = metrics.classification_summary(y_true, y_pred, [0,1], y_proba, verbose=False) reading = OrderedDict([('Pos.Acc',scores['pos_acc']*100.0), ('Neg.Acc',scores['neg_acc']*100.0), ('Precision',scores['precision']*100.0), ('Recall',scores['recall']*100.0), ('F1',scores['f1']*100.0), ('ROC',scores['roc']*100.0), ('PRC',scores['prc']*100.0), ('NDCG',scores['ndcg']*100.0), ('TP',scores['tp']), ('FP',scores['fp']), ('TN',scores['tn']), ('FN',scores['fn'])]) return reading class Ensemble(object): def __init__(self, results_csvs, dev_csvs, pids=None): self.results_csvs = results_csvs self.dev_csvs = dev_csvs self.build(pids) @classmethod def from_keyword(klass, test_keyword, dev_keyword, pids=None): test_csvs = glob.glob(test_keyword, recursive=True) dev_csvs = glob.glob(dev_keyword, recursive=True) return klass(test_csvs, dev_csvs, pids) @classmethod def from_folder(klass, results_folder, dev_folder, pids=None): results_csvs = glob.glob("{}/**/predictions*.csv".format(results_folder), recursive=True) dev_csvs = glob.glob("{}/**/predictions*.csv".format(dev_folder), recursive=True) return klass(results_csvs, dev_csvs, pids) def build(self, pids=None): self.results = [csv_node.from_csv(x) for x in self.results_csvs] self.devs = [csv_node.from_csv(x) for x in self.dev_csvs] self.results = sorted(self.results, key=lambda x: x.seed) self.devs = sorted(self.devs, key=lambda x: x.seed) if pids is None: self.pids = list(self.results[0].PID) else: self.pids = pids try: self.score_list = self.get_seeds_score_list() self.score = True except: self.score = False self.proba_list = self.get_seeds_proba_list() self.pred_list = self.get_seeds_pred_list() @property def score_dataframe(self): return pd.DataFrame(OrderedDict(self.score_list_head+self.score_list)) @property def proba_dataframe(self): return pd.DataFrame(OrderedDict(self.proba_list_head+self.proba_list)) @property def pred_dataframe(self): return pd.DataFrame(OrderedDict(self.pred_list_head+self.pred_list)) def get_df_by_seed(self, key="Y_PROBA"): seeds = [x.seed for x in self.results] probas = [x.extract(key, self.pids) for x in self.results] df_dict = OrderedDict([("PID", self.pids)] + \ [("SEED_{}".format(seed), proba) for seed, proba in zip(seeds, probas)]) df = pd.DataFrame(df_dict) return df def get_score_by_seed(self, seed=0): idx = [x.seed for x in self.results].index(seed) node = self.results[idx] y_true = node.extract("Y_TRUE") y_pred = node.extract("Y_PRED") y_proba = node.extract("Y_PROBA") score = metric_reading(y_true, y_pred, y_proba) return score def score2pair(self, key, score): val = ["{:.2f}".format(score[key]) for key in self.score_keys] return (key, val) def get_seeds_score_list(self): seeds = [x.seed for x in self.results] scores = [self.get_score_by_seed(x) for x in seeds] self.score_keys = list(scores[0].keys()) self.score_list_head = [("Experiment", self.score_keys)] df_list = [] for seed, score in zip(seeds, scores): pair = self.score2pair("SEED_{}".format(seed), score) df_list.append(pair) mean_score = OrderedDict([(key, np.mean([score[key] for score in scores])) for key in self.score_keys]) std_score = OrderedDict([(key, np.std([score[key] for score in scores])) for key in self.score_keys]) df_list.append(self.score2pair("AVERAGE", mean_score)) df_list.append(self.score2pair("STD", std_score)) return df_list def get_seeds_proba_list(self): seeds = [x.seed for x in self.results] probas = [x.extract("Y_PROBA", self.pids) for x in self.results] self.proba_list_head = [("PID", self.pids)] proba_list = [("SEED_{}".format(seed), proba) for seed, proba in zip(seeds, probas)] return proba_list def get_seeds_pred_list(self): seeds = [x.seed for x in self.results] preds = [x.extract("Y_PRED", self.pids) for x in self.results] self.pred_list_head = [("PID", self.pids)] pred_list = [("SEED_{}".format(seed), pred) for seed, pred in zip(seeds, preds)] return pred_list def median_vote(self, metric="f1_score"): dev_threshold = assemble_dev_threshold(self.devs, method="median", metric=metric, PIDs=self.devs[0].PID) voted_y_proba = assemble_node(self.results, key="Y_PROBA", method="median", PIDs=self.pids) voted_y_pred = np.array([1 if p > dev_threshold else 0 for p in voted_y_proba]) y_true = self.results[0].extract("Y_TRUE", self.pids) #df_dict = OrderedDict([("PID", self.pids), # ("Y_PROBA", voted_y_proba), # ("Y_PRED", voted_y_pred)]) #df = pd.DataFrame(df_dict) proba_pair = ("MEDIAN", voted_y_proba) self.proba_list.append(proba_pair) proba_df = pd.DataFrame(OrderedDict(self.proba_list_head+[proba_pair])) pred_pair = ("MEDIAN", voted_y_pred) self.pred_list.append(pred_pair) pred_df = pd.DataFrame(OrderedDict(self.pred_list_head+[pred_pair])) if self.score: score = metric_reading(y_true, voted_y_pred, voted_y_proba) score_pair = self.score2pair("MEDIAN", score) self.score_list.append(score_pair) score_df = pd.DataFrame(OrderedDict(self.score_list_head+[score_pair])) else: score_df = None return proba_df, pred_df, score_df def mv_vote(self): voted_y_proba = assemble_node(self.results, key="Y_PRED", method="mean", PIDs=self.pids) voted_y_pred = np.round(voted_y_proba) y_true = self.results[0].extract("Y_TRUE", self.pids) proba_pair = ("MV", voted_y_proba) self.proba_list.append(proba_pair) proba_df = pd.DataFrame(OrderedDict(self.proba_list_head+[proba_pair])) pred_pair = ("MV", voted_y_pred) self.pred_list.append(pred_pair) pred_df = pd.DataFrame(OrderedDict(self.pred_list_head+[pred_pair])) if self.score: score = metric_reading(y_true, voted_y_pred, voted_y_proba) score_pair = self.score2pair("MV", score) self.score_list.append(score_pair) score_df = pd.DataFrame(OrderedDict(self.score_list_head+[score_pair])) else: score_df = None return proba_df, pred_df, score_df
ukb-cardiac-mri-master
ukb/ensemble/voting.py
from .ukbb import UKBBCardiacMRI from .ukbb import UKBBCardiacMRIMeta from .ukbb import UKBBCardiacMRICache from .ukbb import stratified_sample_dataset from .cifar10 import CIFAR10
ukb-cardiac-mri-master
ukb/dataloaders/__init__.py
from __future__ import print_function, division import os import sys import logging import numpy as np import pandas as pd from skimage.color import grey2rgb from torch.utils.data import Dataset, DataLoader from sklearn.model_selection import StratifiedKFold from collections import OrderedDict from sklearn.preprocessing import OneHotEncoder logger = logging.getLogger(__name__) seriesMap = { 0 : "flow_250_tp_AoV_bh_ePAT@c_MAG", 1 : "flow_250_tp_AoV_bh_ePAT@c_P", 2 : "flow_250_tp_AoV_bh_ePAT@c" } AGE_MEAN = 55.360334580673566 AGE_STD = 7.569607026616798 class UKBBCardiacMRI(Dataset): """ UK Biobank cardiac MRI dataset Load Numpy MRI sequence tensors with shape: num_frames X width X height TODO: Transformations are custom and are applied to each frame """ def __init__(self, csv_data, root_dir, series=0, N=30, image_type='grey', preprocess=None, augmentation=None, postprocess=None, rebalance=False, threshold=0.5, seed=4321, sample=False, sample_type=0, sample_split=0.5, n_samples=100, pos_samples=0, neg_samples=0, frame_label=False, rebalance_strategy="oversample", semi=False, semi_dir=None, semi_csv=None): # either load from CSV or just use the provided pandas dataframe if frame_label: csv_data = "{}/labels_frame.csv".format(root_dir) self.labels = pd.read_csv(csv_data) if type(csv_data) is str else csv_data self.root_dir = root_dir self.series = series self.preprocess = preprocess self.augment = augmentation self.postprocess = postprocess self.image_type = image_type self.N = N self.frame_label = frame_label self.rebalance_strategy = rebalance_strategy self.semi = semi self.semi_dir = semi_dir self.semi_csv = semi_csv np.random.seed(seed) # remove any instances with label = 0.5 #df = [{"ID":x.ID,"LABEL":x.LABEL} for x in list(self.labels.itertuples()) if x.LABEL != 0.5] #self.labels = pd.DataFrame(df) # Sampling is computed first, then rebalancing if wanted :) if sample: pids, ys = zip(*[(x.ID,x.LABEL) for x in list(self.labels.itertuples())]) pids = np.array(pids) ys = np.array(ys) Content = OrderedDict([(str(key), np.array(getattr(self.labels, key))) for key in self.labels.columns if key != 'ID' and key != 'LABEL']) if (sample_type == 0): logger.info("Randomly Sampling dataset...\n" + "\tNum Samples = {}\n".format(n_samples)) self.random_sample(pids, ys, n_samples, Content) elif (sample_type == 1): logger.info("Threshold Random Sampling dataset...\n" + "\tSample Split = {}\n".format(sample_split) + "\tThreshold = {}\n".format(threshold) + "\tNum Samples = {}\n".format(n_samples)) self.threshold_random_sample(pids, ys, sample_split, threshold, n_samples, Content) elif (sample_type == 2): logger.info("Top/Bottom Sampling dataset...\n" + "\tSample Split = {}\n".format(sample_split) + "\tNum Samples = {}\n".format(n_samples)) self.top_bottom_sample(pids, ys, sample_split, n_samples, Content) elif (sample_type == 3): logger.info("Random Subset Sampling dataset...\n" + "\tThreshold = {}\n".format(threshold) + "\tPos Samples = {}\n".format(pos_samples) + "\tNeg Samples = {}\n".format(neg_samples) + "\tTotal Samples = {}\n".format(pos_samples + neg_samples)) self.random_subset_sampling(pids, ys, threshold, pos_samples, neg_samples, Content) # append hard labels to create semi-supervised labels DataFrame if semi: semi_labels = pd.read_csv("{}/{}".format(self.semi_dir, self.semi_csv)) self.labels = self.labels.append(semi_labels, ignore_index=True).ix[:,semi_labels.columns] # resample to create balanced training set? # HACK: assumes binary classes if rebalance: logger.info("Rebalancing dataset... {} b={}".format(self.rebalance_strategy, threshold)) pids, ys = zip(*[(x.ID,x.LABEL) for x in list(self.labels.itertuples())]) pids = np.array(pids) ys = np.array(ys) t = [i for i,v in enumerate(ys) if v > threshold] f = [i for i,v in enumerate(ys) if v <= threshold] logger.info("True:{:>4} False:{:>4}".format(len(t), len(f))) # oversample minority class OR undersample majority class minority_class, majority_class = (t,f) if len(t) < len(f) else (f,t) if self.rebalance_strategy == "oversample": minority_class = np.random.choice(minority_class, len(majority_class), replace=True) elif self.rebalance_strategy == "undersample": majority_class = np.random.choice(majority_class, len(minority_class), replace=True) #logger.info("Minority:{:>4} Majority:{:>4}".format(len(minority_class), len(majority_class))) df = [] for pid,label in zip(pids[minority_class], ys[minority_class]): df.append(self.labels.loc[self.labels.ID==pid].to_dict('records', into=OrderedDict)[0]) #df.append({"ID":id, "LABEL":label}) for pid,label in zip(pids[majority_class], ys[majority_class]): df.append(self.labels.loc[self.labels.ID==pid].to_dict('records', into=OrderedDict)[0]) #df.append({"ID":id, "LABEL":label}) self.labels = pd.DataFrame(df) # sanity check pids, ys = zip(*[(x.ID, x.LABEL) for x in list(self.labels.itertuples())]) pids = np.array(pids) ys = np.array(ys) t = [i for i, v in enumerate(ys) if v > threshold] f = [i for i, v in enumerate(ys) if v <= threshold] logger.info("True:{:>4} False:{:>4}".format(len(t), len(f))) def random_sample(self, pids, ys, x, Content): """ Randomly sample x patients. Params ------ pids : np.array - patient id array ys : np.array - patient label array x : int - number of patients to sample Return ------ None - set self.labels = pd.DataFrame(something) """ indexes = np.arange(len(pids)) np.random.shuffle(indexes) df = [] for idx, (id, label) in enumerate(zip(pids[indexes[:x]], ys[indexes[:x]])): row = OrderedDict([("ID",id), ("LABEL",label)]) for key in Content: row.update({key : Content[key][indexes[idx]]}) df.append(row) self.labels = pd.DataFrame(df) def threshold_random_sample(self, pids, ys, split, threshold, x, Content): """ Randomly sample x patients based on a given threshold. Params ------ pids : np.array - patient id array ys : np.array - patient label array x : int - number of patients to sample Return ------ None - set self.labels = pd.DataFrame(something) """ # Determine the split of patients pos_count = int(round(x*split)) neg_count = x - pos_count # Separate patients based on threshold p = [i for i,v in enumerate(ys) if v > threshold] n = [i for i,v in enumerate(ys) if v <= threshold] logger.info("Class Distribution :\n" + "\tPossitive Class : {:>4}\n\tNegative Class : {:>4}\n".format(len(p), len(n))) np.random.shuffle(p) np.random.shuffle(n) logger.info("Class Selection Count :\n" + "\tPossitive Class : {:>4}\n\tNegative Class : {:>4}\n".format(pos_count, neg_count)) df = [] for idx, (id,label) in enumerate(zip(pids[p[:pos_count]], ys[p[:pos_count]])): row = OrderedDict([("ID",id), ("LABEL",label)]) for key in Content: row.update({key : Content[key][p[idx]]}) df.append(row) for idx, (id,label) in enumerate(zip(pids[n[:neg_count]], ys[n[:neg_count]])): row = OrderedDict([("ID",id), ("LABEL",label)]) for key in Content: row.update({key : Content[key][n[idx]]}) df.append(row) self.labels = pd.DataFrame(df) def top_bottom_sample(self, pids, ys, split, x, Content): """ Sample x patients from top and bottom of labels. Params ------ pids : np.array - patient id array ys : np.array - patient label array x : int - number of patients to sample Return ------ None - set self.labels = pd.DataFrame(something) """ # Determine the split of patients pos_count = int(round(x*split)) neg_count = x - pos_count index_sort = np.argsort(ys) sorted_ys = ys[index_sort] sorted_pids = pids[index_sort] logger.info("Class Selection Count :\n" + "\tPossitive Class : {:>4}\n\tNegative Class : {:>4}\n".format(pos_count, neg_count)) df = [] # Get highest probability (highest labels) 'positive' cases for idx, (id, label) in enumerate(zip(sorted_pids[-pos_count:], sorted_ys[-pos_count:])): row = OrderedDict([("ID",id), ("LABEL",label)]) for key in Content: row.update({key : Content[key][index_sort[-pos_count+idx]]}) df.append(row) # Get lowest probability (lowest labels) 'negative' cases for idx, (id, label) in enumerate(zip(sorted_pids[:neg_count], sorted_ys[:neg_count])): row = OrderedDict([("ID",id), ("LABEL",label)]) for key in Content: row.update({key : Content[key][index_sort[idx]]}) df.append(row) self.labels = pd.DataFrame(df) def random_subset_sampling(self, pids, ys, threshold, pos_cases, neg_cases, Content): """ Randomly sample subsets of cases and non cases. Return a set of total_cases = pos_cases + neg_cases Params ------ pids : np.array - patient id array ys : np.array - patient label array threshold : int - threshold to separate cases and non cases pos_cases : int - number of positive cases to select neg_cases : int - number of negative cases to select Return ------ None - set self.labels = pd.DataFrame(something) """ # Separate patients based on threshold p = [i for i, v in enumerate(ys) if v > threshold] n = [i for i, v in enumerate(ys) if v <= threshold] logger.info("Class Distribution :\n" + "\tPossitive Class : {:>4}\n\tNegative Class : {:>4}\n".format(len(p), len(n))) np.random.shuffle(p) np.random.shuffle(n) logger.info("Class Selection Count :\n" + "\tPossitive Class : {:>4}\n\tNegative Class : {:>4}\n".format(pos_cases, neg_cases)) df = [] for idx, (id, label) in enumerate(zip(pids[p[:pos_cases]], ys[p[:pos_cases]])): row = OrderedDict([("ID", id), ("LABEL", label)]) for key in Content: row.update({key : Content[key][p[idx]]}) df.append(row) for idx, (id, label) in enumerate(zip(pids[n[:neg_cases]], ys[n[:neg_cases]])): row = OrderedDict([("ID", id), ("LABEL", label)]) for key in Content: row.update({key : Content[key][n[idx]]}) df.append(row) self.labels = pd.DataFrame(df) def summary(self): """ Generate message summarizing data (e.g., counts, class balance) Assumes hard labels :return: """ return "Instances: {}".format(len(self)) def load_label(self, idx): # most PyTorch operations are only defined over float or doublefloat (32 vs 64bit) tensors if self.frame_label: label = np.array(self.labels.iloc[idx, 2:8]).astype(float) else: label = self.labels.iloc[idx, 1] return label def get_labels(self): return [(str(self.labels.iloc[i, 0]), data[1]) for i, data in enumerate(self)] def convert_image(self, images): try: images = np.array(images) except Exception as err: raise ValueError("image channels are having different shapes. \n ERR| {}".format(err)) if images.ndim == 4: images = np.moveaxis(images, 0, 1) elif self.image_type == 'grey': images = np.expand_dims(images, axis=1) elif self.image_type == 'rgb': images = np.moveaxis(grey2rgb(images), -1, 1) return images def flow_250_MAG(self, pid, rootDir): """ Load the flow_250_tp_AoV_bh_ePAT@c_MAG series for the given patient. Params ------ pid : str - patient id Return ------ np.array - numpy series """ fpath = os.path.join(rootDir, seriesMap[0] + "/" + pid + ".npy") series = np.load(fpath).astype(np.float32) if self.preprocess: # Apply Preprocessing series = self.preprocess(series) if self.augment: # Apply Agumentations # raise NotImplemented() series = self.augment(series) if self.postprocess: series = self.postprocess(series) # Compute final 1 Ch or 3 ch series = self.convert_image(series) return series def flow_250_other(self, pid, rootDir): """ Load the flow_250_tp_AoV_bh_ePAT@c* series for the given patient. Params ------ pid : str - patient id series : int - series map number 1 : flow_250_tp_AoV_bh_ePAT@c_P 2 : flow_250_tp_AoV_bh_ePAT@c Return ------ np.array - numpy series """ fpath = os.path.join(rootDir, seriesMap[self.series] + "/" + pid + ".npy") series = np.load(fpath).astype(np.float32) if self.postprocess: series = self.postprocess(series) # Compute final 1 Ch or 3 ch series = self.convert_image(series) return series def flow_250_all(self, pid, rootDir): """ Load ALL flow_250_tp_AoV_bh_ePAT@c* series for the given patient. Params ------ pid : str - patient id Return ------ np.array - numpy series """ # flow_250_tp_AoV_bh_ePAT@c_MAG fpath_MAG = os.path.join(rootDir, seriesMap[0] + "/" + pid + ".npy") # flow_250_tp_AoV_bh_ePAT@c_P fpath_P = os.path.join(rootDir, seriesMap[1] + "/" + pid + ".npy") # flow_250_tp_AoV_bh_ePAT@c fpath_c = os.path.join(rootDir, seriesMap[2] + "/" + pid + ".npy") # most PyTorch operations are only defined over float or doublefloat (32 vs 64bit) tensors series_MAG = np.load(fpath_MAG).astype(np.float32) series_P = np.load(fpath_P).astype(np.float32) series_c = np.load(fpath_c).astype(np.float32) if self.preprocess: # Apply Preprocessing series_MAG, series_P, series_c = self.preprocess(series_MAG, series_P, series_c) # if self.augment: # Apply Agumentations # raise NotImplemented() if self.postprocess: series_MAG, series_P, series_c = self.postprocess(series_MAG, series_P, series_c) series = [series_MAG, series_P, series_c] # Compute final 1 Ch per series type (series has 3 ch) series = self.convert_image(series) return series def __len__(self): return len(self.labels) def __getitem__(self, idx): pid = str(self.labels.iloc[idx, 0]) if 'DIR' in self.labels.columns and isinstance(self.labels.DIR[idx], str): rootDir = str(self.labels.DIR[idx]) else: rootDir = self.root_dir if (self.series == 3): series = self.flow_250_all(pid, rootDir) elif (self.series == 0): series = self.flow_250_MAG(pid, rootDir) else: series = self.flow_250_other(pid, rootDir) label = self.load_label(idx) return (series, label) class UKBBCardiacMRIMeta(UKBBCardiacMRI): """ Class for MetaVGG16RNN class """ def _init_Meta(self): MetaData = pd.read_csv("{}/MetaData.csv".format(self.root_dir)) if self.semi: semi_MetaData = pd.read_csv("{}/MetaData.csv".format(self.semi_dir)) MetaData = MetaData.append(semi_MetaData, ignore_index=True).ix[:,semi_MetaData.columns] self.MetaData = self.encode_MetaData(MetaData) def encode_MetaData(self, MetaData): age = np.array(MetaData.Age) gen = np.array(MetaData.Gender) ss = np.array(MetaData.SmokingStatus) ss[ss==-3] = 3 age = (age - AGE_MEAN)/AGE_STD age = age.reshape(-1,1) gen[gen==1] = -1 gen[gen==0] = 1 gen = gen.reshape(-1,1) enc = OneHotEncoder(sparse=False) enc.fit(np.array([0,1,2,3,4]).reshape(-1,1)) ss = enc.transform(ss.reshape(-1,1)) encoded_MetaData = pd.DataFrame() encoded_MetaData['ID'] = list(MetaData.ID) encoded_MetaData['SmokingStatus'] = list(ss) encoded_MetaData['Age'] = list(age) encoded_MetaData['Gender'] = list(gen) return encoded_MetaData def _get_meta(self, idx): if not hasattr(self, "MetaData"): self._init_Meta() pid = str(self.labels.iloc[idx, 0]) meta_idx = self.MetaData.loc[self.MetaData['ID']==pid].index[0] return np.concatenate(self.MetaData.iloc[meta_idx,1:]).astype(float) def __getitem__(self, idx): series, label = super(UKBBCardiacMRIMeta, self).__getitem__(idx) meta_data = self._get_meta(idx) return ([series, meta_data], label) class UKBBCardiacMRICache(UKBBCardiacMRI): """ UK Biobank cardiac MRI dataset Load Numpy MRI sequence tensors with shape: num_frames X width X height TODO: Transformations are custom and are applied to each frame """ def __init__(self, csv_data, root_dir, series=0, N=30, image_type='grey', preprocess=None, augmentation=None, postprocess=None, rebalance=False, threshold=0.5, seed=4321, sample=False, sample_type=0, sample_split=0.5, n_samples=100, pos_samples=0, neg_samples=0, frame_label=False): super(UKBBCardiacMRICache, self).__init__(csv_data=csv_data, root_dir=root_dir, series=series, N=N, image_type=image_type, preprocess=preprocess, augmentation=augmentation, postprocess=postprocess, rebalance=rebalance, threshold=threshold, seed=seed, sample=sample, sample_type=sample_type, sample_split=sample_split, n_samples=n_samples, pos_samples=pos_samples, neg_samples=neg_samples, frame_label=frame_label) self.cache_data() def flow_250_MAG(self, pid): """ Load the flow_250_tp_AoV_bh_ePAT@c_MAG series for the given patient. Params ------ pid : str - patient id Return ------ np.array - numpy series """ fpath = os.path.join(self.root_dir, seriesMap[0] + "/" + pid + ".npy") series = np.load(fpath).astype(np.float32) if self.preprocess: # Apply Preprocessing series = self.preprocess(series) return series def cache_data(self): self.cached_data = [] for idx in range(len(self)): pid = str(self.labels.iloc[idx, 0]) label = self.labels.iloc[idx, 1] # most PyTorch operations are only defined over float or doublefloat (32 vs 64bit) tensors if (self.series == 3): series = self.flow_250_all(pid) elif (self.series == 0): series = self.flow_250_MAG(pid) else: series = self.flow_250_other(pid) self.cached_data.append((pid, series, label)) def __getitem__(self, idx): pid, series, label = self.cached_data[idx] if (self.series == 0): if self.augment: # Apply Agumentations series = self.augment(series) if self.postprocess: series = self.postprocess(series) # Compute final 1 Ch or 3 ch series = self.convert_image(series) return (series, label) def stratified_sample_dataset(csv_data, seed=1234): labels = pd.read_csv(csv_data) if type(csv_data) is str else csv_data X = np.array(labels["ID"]) Y = np.array(labels["LABEL"]) dataframes = {} skf = StratifiedKFold(n_splits=2, shuffle=True, random_state=seed) for split1, split2 in skf.split(X, Y): data = np.vstack([X[split1], Y[split1]]) dataframes["dev"] = pd.DataFrame(data.T, columns=['ID', 'LABEL']) data = np.vstack([X[split2], Y[split2]]) dataframes["test"] = pd.DataFrame(data.T, columns=['ID', 'LABEL']) break return dataframes
ukb-cardiac-mri-master
ukb/dataloaders/ukbb.py
from __future__ import print_function, division import os import logging import numpy as np import pandas as pd import torchvision.datasets from torch.utils.data import Dataset, DataLoader from sklearn.model_selection import StratifiedKFold logger = logging.getLogger(__name__) class CIFAR10(Dataset): """ """ def __init__(self, data_root, split="train", transform=None, num_samples=25000): self.dataset = torchvision.datasets.CIFAR10(data_root, train=split in ['train','dev'], download=True) self.transform = transform if split == "train": self.data = self._load_images(self.dataset.train_data[0:num_samples]) self.labels = [y for y in self.dataset.train_labels[0:num_samples]] elif split == "dev": self.data = self._load_images(self.dataset.train_data[50000 - num_samples:]) self.labels = [y for y in self.dataset.train_labels[50000 - num_samples:]] else: self.data = self._load_images(self.dataset.test_data)[0:num_samples] self.labels = [y for y in self.dataset.test_labels][0:num_samples] self.dataset = None def _load_images(self, array): imgs = [] for x in array: x = np.array(x).astype(np.float32) x = np.array([x[..., i] for i in range(x.shape[-1])]) imgs.append(x) return imgs def summary(self): return "Instances: {}".format(len(self)) def get_labels(self): return self.labels def __len__(self): return len(self.data) def __getitem__(self, idx): if self.transform: raise NotImplemented() x,y = self.data[idx], self.labels[idx] return x, y
ukb-cardiac-mri-master
ukb/dataloaders/cifar10.py
import sys import json import models import logging from collections import OrderedDict logger = logging.getLogger(__name__) def convert_param_string(s): """ Convert string of hyperparamters into typed dictionary e.g., `lr=0.001,rebalance=False,attention=True` This is used to parse paramaters specificed on the command line :param s: :return: """ config = dict([p.split("=") for p in s.split(",")]) # force typecasting in this order types = [int, float] for param in config: v = config[param] for t in types: try: v = t(v) except: continue config[param] = v break if config[param] in ['true','True']: config[param] = True elif config[param] in ['false','False']: config[param] = False return config def get_model_config(args, verbose=True): """ Given command line arguments and (optional) JSON configuration file, setup model and paramater grid :param model_name: :param manual_config: :param verbose: :return: """ # load config JSON if args.config: args.config = json.load(open(args.config,"rU")) model_class = getattr(models, args.config[u"model"]) model_class_params = args.config[u'model_class_params'] #model_hyperparams = args.config[u'model_hyperparams'] model_param_grid = args.config[u'model_param_grid'] logger.info("Loaded model config from JSON file...") # convert list params into tuples for param_name in model_param_grid: values = [] for v in model_param_grid[param_name]: values.append(v if type(v) is not list else tuple(v)) model_param_grid[param_name] = values # use model defaults elif args.model: model_class, model_class_params = {},{} model_param_grid = {} logger.info("Loaded model defaults...") else: logger.error("Please specify model config or model class type") sys.exit() # override parameter grid if args.param_grid: manual_param_grid = json.load(open(args.param_grid, "rU")) args.n_model_search = len(manual_param_grid[u'params']) logger.info("Using manual parameter grid, setting n_model_search={}".format(args.n_model_search)) else: manual_param_grid = {} # # custom model parameters # if args.params: # params = convert_param_string(args.params) # # override any grid search settings # logger.info("Overriding some model hyperparameters") # # override any model_hyperparameter defaults # for name in params: # model_hyperparams[name] = params[name] # # also override in the param grid # if name in model_param_grid: # model_param_grid[name] = [params[name]] # override model params from command line model_class_params['seed'] = args.seed model_class_params['n_threads'] = args.n_procs #model_hyperparams['n_epochs'] = args.n_epochs model_class_params['host_device'] = args.host_device model_param_grid = OrderedDict(sorted(model_param_grid.items())) return model_class, model_class_params, model_param_grid #, manual_param_grid def get_data_config(args, verbose=True): """ Given command line arguments and (optional) JSON configuration file, setup data preprocessing and augmentation. :param data_config: :param verbose: :return: """ # load config JSON if args.dconfig: args.dconfig = json.load(open(args.dconfig,"rU")) if (args.series == 3): preprocessing = args.dconfig.get(u'Preprocess', {"FrameSelector" : { "name" : "FrameSelectionVarMulti" } }) augmentation = None postprocessing = args.dconfig.get(u'Postprocess', {"Name" : "RescaleIntensityMulti"}) logger.info("Loaded data config from JSON MULTI file...") else: preprocessing = args.dconfig.get(u'Preprocess', {"FrameSelector" : { "name" : "FrameSelectionVar" } }) augmentation = args.dconfig.get(u'Augmentation', None) postprocessing = args.dconfig.get(u'Postprocess', {"Name" : "RescaleIntensity"}) logger.info("Loaded data config from JSON file...") else: if (args.series == 3): preprocessing = { "FrameSelector" : { "name" : "FrameSelectionVarMulti" } } augmentation = None postprocessing = {"Name" : "RescaleIntensityMulti"} logger.info("Loaded data defaults for MULTI series...") else: preprocessing = { "FrameSelector" : { "name" : "FrameSelectionVar" } } augmentation = None postprocessing = {"Name" : "RescaleIntensity"} logger.info("Loaded data defaults for SINGLE series...") return preprocessing, augmentation, postprocessing
ukb-cardiac-mri-master
ukb/utils/config_parser.py
from .utils import * from .config_parser import *
ukb-cardiac-mri-master
ukb/utils/__init__.py
import time import logging import numpy as np from skimage import draw import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import matplotlib.animation as animation logger = logging.getLogger(__name__) def print_key_pairs(v, title="Parameters"): """ Print python dictionary key/value pairs :param v: python dictionary :param title: table title :return: """ items = v.items() if type(v) is dict else v logger.info("-" * 40) logger.info(title) logger.info("-" * 40) for key,value in items: logger.info("{!s:<20}: {!s:<10}".format(key, value)) logger.info("-" * 40) def print_dict_pairs(d, title="Parameters"): """ Print python dictionary key/value pairs :param v: python dictionary :param title: table title :return: """ logger.info("") logger.info("=" * 90) logger.info(title) logger.info("=" * 90) if (d is None): logger.info("None") else: items = d.items() if type(d) is dict else d for key,value in items: if (type(value) is dict): for sub_key, sub_value in value.items(): logger.info("{!s:<35}: {!s:<10}".format(key + " " + sub_key, sub_value)) else: logger.info("{!s:<35}: {!s:<10}".format(key, value)) logger.info("") def timeit(method): """ Decorator function for timing :param method: :return: """ def timed(*args, **kw): ts = time.time() result = method(*args, **kw) te = time.time() result = (te-ts,) + result logger.info('%r %2.2f sec' % (method.__name__, te-ts)) return result return timed def select_frames(seq, epsilon=0.05, plot=False): """ Select a contiguous subset of frames based on each frame's overall standard deviation by pixel. Determine cut points based on the first pair of inflection points. :param seq: :param epsilon: :param plot: :return: """ # z-score transform frames z = (seq - np.mean(seq)) / np.std(seq) # standard deviation per frame / threshold std = [np.std(z[i]) for i in range(seq.shape[0])] std = [v - min(std) for v in std] std = [v if v > epsilon else 0 for v in std] # find inflection points signs = [np.sign(std[i + 1] - std[i]) for i in range(len(std) - 1)] inf_pnts = [] if signs[0] <= 0 else [0] for i in range(1, len(signs)): if signs[i] != signs[i - 1]: inf_pnts.append(i) # pathological image sequence if len(inf_pnts) < 3: return (0, len(seq) - 1) if plot: plt.plot(std) plt.show() return (inf_pnts[0], inf_pnts[2]) def z_score_normalize(seq): """ Z-score normalization :param seq: :return: """ return (seq - np.mean(seq)) / np.std(seq) def seq_as_float(seq): """ Convert 0-255 ubyte image to 0-1 float range :param seq: :return: """ seq = seq.astype(np.float32) return (seq - np.min(seq)) / (np.max(seq) - np.min(seq)) def seq_as_ubyte(seq): """ Convert 0-1 float image to 0-255 range :param seq: :return: """ return (seq * 255.0).astype(np.uint8) def get_bounding_box(pnts): """ Compute bounding box given a region of points. :param pnts: :return: """ min_x, max_x, min_y, max_y = None, None, None, None for x,y in pnts: min_x, max_x = min(x, min_x), max(x, max_x) min_y, max_y = min(y, min_y), max(y, min_y) return [min_x, max_x, min_y, max_y] def seq_to_video(seq, outfpath, width=4, height=4, normalize=False): """ Export Numpy tensor images to .mp4 video. see https://stackoverflow.com/questions/43445103/inline-animations-in-jupyter :param seq: :param outfpath: :param width: :param height: :return: """ def getImageFromList(x): return seq[x] # z-score normalization seq = z_score_normalize(seq.astype(np.float32)) if normalize else seq fig = plt.figure(figsize=(width, height)) ims = [] for i in range(seq.shape[0]): im = plt.imshow(getImageFromList(i), animated=True, cmap='gray', vmin=0, vmax=np.max(seq)) ims.append([im]) ani = animation.ArtistAnimation(fig, ims, interval=60, blit=True, repeat_delay=5) plt.close() ani.save('{}.mp4'.format(outfpath)) def generate_random_dataset(outdir, n_samples=100, dim=(30, 192, 192)): """ Create random numpy matrices in the same format as our MRI images. Generate some simple circle shapes to test segmentation. :param n_samples: :param dim: :return: """ for i in range(1000000, 1000000 + n_samples): fpath = "{}/{}_random_{}x{}x{}".format(outdir, i, *dim) X = np.zeros(dim) # fix random center points centers = [np.random.randint(50, 160, 2) for _ in range(6)] # create some elliptical variation around these centers for j in range(dim[0]): for c in centers: c_radius = np.random.randint(2, 10) r_radius = np.random.randint(5, 10) rr, cc = draw.ellipse(c[0], c[1], r_radius, c_radius, shape=X[j].shape) X[j, rr, cc] = 10 np.save(fpath, X) def format_time(seconds): days = int(seconds / 3600/24) seconds = seconds - days*3600*24 hours = int(seconds / 3600) seconds = seconds - hours*3600 minutes = int(seconds / 60) seconds = seconds - minutes*60 secondsf = int(seconds) seconds = seconds - secondsf millis = int(seconds*1000) f = '' i = 1 if days > 0: f += str(days) + 'D' i += 1 if hours > 0 and i <= 2: f += str(hours) + 'h' i += 1 if minutes > 0 and i <= 2: f += str(minutes) + 'm' i += 1 if secondsf > 0 and i <= 2: f += str(secondsf) + 's' i += 1 if millis > 0 and i <= 2: f += str(millis) + 'ms' i += 1 if f == '': f = '0ms' return f
ukb-cardiac-mri-master
ukb/utils/utils.py
import torch import numpy as np import torch.nn as nn from torch.autograd import Variable import torch.nn.functional as F import matplotlib.pyplot as plt import matplotlib.cm as cm from sklearn.manifold import TSNE from sklearn.metrics import auc, roc_curve, precision_recall_curve import seaborn as sns sns.set_style("darkgrid") def set_seed(seed, use_cuda): np.random.seed(seed=int(seed)) torch.manual_seed(seed) if use_cuda: torch.cuda.manual_seed_all(seed) def embed(model, data_loader, seed, use_cuda): """ Generated learned representation :param model: :param data_loader: :return: """ set_seed(seed,use_cuda) embs = [] for i, data in enumerate(data_loader): x,y = data if isinstance(x, list): X = [Variable(x_) for x_ in x] hidden = model.init_hidden(X[0].size(0)) else: X = Variable(x) hidden = model.init_hidden(X.size(0)) embs.append(model.embedding(X, hidden).data.numpy()) return np.vstack(embs) def tsne_plot(model, data_loader, outfpath, seed, use_cuda, threshold=0.5, fmt="pdf", width=16, height=8, topSelection=None, save_coords=False, pred_only=False, save_embeds=False, classes=None): """ Generate TSNE (2D stochastic neighbor embedding) for visualization :param model: :param data_loader: :param width: :param height: :return: """ # generate labels and embeddings for the provided data loader embs = embed(model, data_loader, seed, use_cuda) if save_embeds: np.save("{}embeds.npy".format(outfpath), embs) set_seed(seed, use_cuda) y_proba, y_pred = model.predict(data_loader, threshold=threshold, return_proba=True, topSelection=topSelection) y_true = np.hstack([y.numpy() for x,y in data_loader]) X_emb = TSNE(n_components=2).fit_transform(embs) classes = np.unique(y_true) if classes is None else np.unique(classes) colors = cm.rainbow(np.linspace(0, 1, len(classes))) def scatter_tsne(ax_, y_label, ax_title): if save_coords: # save the tsne coordinates pnts_indexes = [[index for index, label in zip(range(y_label.shape[0]), y_label) if label == class_name] for class_name in classes] pnts_indexes = [np.vstack(p) if p else np.array([]) for p in pnts_indexes] pnts = [[pnt for pnt, label in zip(X_emb, y_label) if label == class_name] for class_name in classes] pnts = [np.vstack(p) if p else np.array([]) for p in pnts] for p, c in zip(pnts, colors): if p.size == 0: continue xs, ys = zip(*p) ax_.scatter(xs, ys, color=c) ax_.set_title(ax_title) if save_coords: # save the tsne coordinates pnt_table = [] for i,p in zip(pnts_indexes, pnts): if p.size == 0: continue xs, ys = zip(*p) pnt_table += [(index_[0],x_,y_) for index_, x_, y_ in zip(i, xs, ys)] pnt_table = sorted(pnt_table, key=lambda x: x[0]) coords = np.array([(x_,y_) for i_,x_,y_ in pnt_table]) xs_,ys_ = zip(*coords) pids = [data[0] for i,data in enumerate(data_loader.dataset.get_labels())] tsne_csv = "PID,X,Y,PROBA,{}\n".format(ax_title.upper()) tsne_csv += "\n".join(["{},{},{},{},{}".format(pid_,x_,y_,proba_,label_) for pid_,x_,y_,proba_,label_ in zip(pids, xs_, ys_, y_proba, y_label)]) open("{}tsne_{}_coords.csv".format(outfpath, ax_title), "w").write(tsne_csv) if pred_only: width /= 2 # setup 1 subplots f, (ax1) = plt.subplots(1, 1, sharey=True, figsize=(width, height)) # 1) Predicted Labels scatter_tsne(ax1, y_pred, "y_pred") # Save the fig plt.savefig("{}tsne_pred.{}".format(outfpath, fmt)) else: # setup 2 subplots f, (ax1, ax2) = plt.subplots(1, 2, sharey=True, figsize=(width, height)) # 1) True Labels scatter_tsne(ax1, y_true, "y_true") # 2) Predicted Labels scatter_tsne(ax2, y_pred, "y_pred") # Save the fig plt.savefig("{}tsne.{}".format(outfpath, fmt)) def analysis_plot(**kwargs): """ Generate Histograms of probabilities. Params ------ outfpath: types: fmt: 1). y_true: 1). y_proba: 2). model: 2). data_loader: 2). seed: 2). use_cuda: Return ------ None """ outfpath = kwargs.get("outfpath") types = kwargs.get("types") fmt = kwargs.get("fmt", "pdf") def _plt_hist_plot(y_true, y_proba, bins='auto'): plt.figure(figsize=(5,5)) plt.hist(y_proba, bins=bins) plt.xlim([-0.01, 1.01]) plt.title("Probabilities histogram") plt.xlabel("Probabilities") plt.ylabel("Sample count") plt.savefig("{}plt_hist.{}".format(outfpath, fmt)) def _hist_plot(y_true, y_proba): plt.figure(figsize=(5,5)) positive_index = np.flatnonzero(y_true) negative_index = np.flatnonzero(1-y_true) sns.distplot(y_proba[positive_index], label="positive_class") sns.distplot(y_proba[negative_index], label="negative_class") plt.xlim([-0.01, 1.01]) plt.title("Probabilities histogram") plt.xlabel("Probabilities") plt.ylabel("Sample count") plt.legend(bbox_to_anchor=(0.95,0.05),loc=4, borderaxespad=0.) plt.savefig("{}hist.{}".format(outfpath, fmt)) def _roc_curve(y_true, y_proba): plt.figure(figsize=(5,5)) fpr, tpr, thresholds = roc_curve(y_true, y_proba, pos_label=1) roc_score = auc(fpr, tpr) plt.plot(fpr, tpr, lw=4) plt.xlim([-0.01, 1.01]) plt.ylim([-0.01, 1.01]) plt.title("ROC_Curve: {:4.2f}".format(roc_score)) plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.legend(bbox_to_anchor=(0.95,0.05),loc=4, borderaxespad=0.) plt.savefig("{}roc_curve.{}".format(outfpath, fmt)) def _prc_curve(y_true, y_proba): plt.figure(figsize=(5,5)) precision, recall, thresholds = precision_recall_curve(y_true, y_proba, pos_label=1) prc_score = auc(recall, precision) plt.step(recall, precision, color="b", alpha=0.2, where='post') plt.fill_between(recall, precision, step='post', alpha=0.2, color='b') plt.xlim([-0.01, 1.01]) plt.ylim([-0.01, 1.01]) plt.title("PRC_Curve: {:4.2f}".format(prc_score)) plt.xlabel("Recall") plt.ylabel("Precision") plt.legend(bbox_to_anchor=(0.95,0.05),loc=4, borderaxespad=0.) plt.savefig("{}prc_curve.{}".format(outfpath, fmt)) def generate_plots(y_true, y_proba, image_type): function_dict = dict(hist_plot=_hist_plot, plt_hist_plot=_plt_hist_plot, roc_curve=_roc_curve, prc_curve=_prc_curve) function_dict[image_type](y_true, y_proba) if not 'y_true' in kwargs.keys() or not 'y_proba' in kwargs.keys(): model = kwargs.get("model") data_loader = kwargs.get("data_loader") seed = kwargs.get("seed") use_cuda = kwargs.get("use_cuda") set_seed(seed, use_cuda) y_proba = model.predict_proba(data_loader) y_true = np.hstack([y.numpy() for x,y in data_loader]) else: y_true = kwargs.get("y_true") y_proba = kwargs.get("y_proba") for image_type in types: try: generate_plots(y_true, y_proba, image_type) except: pass
ukb-cardiac-mri-master
ukb/utils/viz.py
from .mri import * from .trainer import *
ukb-cardiac-mri-master
ukb/models/__init__.py
import torch import logging import numpy as np import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from .frame import LeNetFrameEncoder, FNNFrameEncoder, DenseNet121, vgg16_bn, densenet121, densenet_40_12_bc from .sequence import RNN, MetaRNN, SeqSumPoolingEncoder logger = logging.getLogger(__name__) ################################################################################ # Image Container Models (each image is independantly classified) ################################################################################ class MRINet(nn.Module): """ Simple container class for MRI net. This module consists of: 1) A frame encoder, e.g., a ConvNet/CNN 2) Linear output layer """ def __init__(self, frame_encoder, n_classes, output_size, layers, dropout, vote_opt='mean', use_cuda=False): super(MRINet, self).__init__() self.n_classes = n_classes self.fenc = frame_encoder self.classifier = self._make_classifier(output_size, n_classes, layers, dropout) self.vote_opt = vote_opt self.use_cuda = use_cuda def _make_classifier(self, output_size, n_classes, layers=[64,32], dropout=0.2): layers = [output_size] + layers + [n_classes] classifier = [] for i, size in enumerate(layers[:-1]): classifier.append(nn.Linear(layers[i], layers[i+1])) if size != layers[-1]: classifier.append(nn.ReLU(True)) classifier.append(nn.Dropout(p=dropout)) return nn.Sequential(*classifier) def init_hidden(self, batch_size): return None def embedding(self, x, hidden=None): """Get learned representation of MRI sequence""" if self.use_cuda and not x.is_cuda: x = x.cuda() batch_size, num_frames, num_channels, width, height = x.size() self.num_frames = num_frames x = x.view(-1, num_channels, width, height) x = self.fenc(x) x = self.classifier(x) if self.use_cuda: return x.cpu() else: return x def forward(self, x, hidden=None): if self.use_cuda and not x.is_cuda: x = x.cuda() # collapse all frames into new batch = batch_size * num_frames batch_size, num_frames, num_channels, width, height = x.size() self.num_frames = num_frames x = x.view(-1, num_channels, width, height) # encode frames x = self.fenc(x) # feed-forward-classifier x = self.classifier(x) return x def vote(self, y_pred, threshold=None): if threshold is not None: y_pred = (y_pred > threshold).astype(float) num_frames = self.num_frames num_samples = int(y_pred.shape[0]/num_frames) ex_shape = y_pred.shape[1:] y_pred = np.reshape(y_pred, (num_samples, num_frames,)+ex_shape) y_pred = np.mean(y_pred, axis=1) return y_pred def predict_proba(self, data_loader, binary=True, pos_label=1, threshold=0.5): """ Forward inference """ y_pred = [] for i, data in enumerate(data_loader): x, y = data x = Variable(x) if not self.use_cuda else Variable(x).cuda() y = Variable(y) if not self.use_cuda else Variable(y).cuda() h0 = self.init_hidden(x.size(0)) outputs = self(x, h0) y_hat = F.softmax(outputs, dim=1) y_hat = y_hat.data.numpy() if not self.use_cuda else y_hat.cpu().data.numpy() y_pred.append(y_hat) # empty cuda cache if self.use_cuda: torch.cuda.empty_cache() y_pred = np.concatenate(y_pred) if self.vote_opt=='mean': y_pred = self.vote(y_pred) elif self.vote_opt=='vote': y_pred = self.vote(y_pred, threshold) return y_pred[:, pos_label] if binary else y_pred def predict(self, data_loader, binary=True, pos_label=1, threshold=0.5, return_proba=False): """ If binary classification, use threshold on positive class If multinomial, just select the max probability as the predicted class :param data_loader: :param binary: :param pos_label: :param threshold: :return: """ proba = self.predict_proba(data_loader, binary, pos_label, threshold) if binary: pred = np.array([1 if p > threshold else 0 for p in proba]) else: pred = np.argmax(proba, 1) if return_proba: return (proba, pred) else: return pred class DenseNet121Net(MRINet): def __init__(self, n_classes, output_size, use_cuda, **kwargs): super(DenseNet121Net, self).__init__(frame_encoder=None, n_classes=n_classes, output_size=output_size, use_cuda=use_cuda) self.name = "DenseNet121Net" self.fenc = DenseNet121() class VGG16Net(MRINet): def __init__(self, n_classes, use_cuda, **kwargs): input_shape = kwargs.get("input_shape", (3, 32, 32)) layers = kwargs.get("layers", [64, 32]) dropout = kwargs.get("dropout", 0.2) vote_opt = kwargs.get("vote_opt", "mean") pretrained = kwargs.get("pretrained", True) requires_grad = kwargs.get("requires_grad", False) frm_output_size = self.get_frm_output_size(input_shape) super(VGG16Net, self).__init__(frame_encoder=None, n_classes=n_classes, output_size=frm_output_size, layers=layers, dropout=dropout, vote_opt=vote_opt, use_cuda=use_cuda) self.name = "VGG16Net" self.fenc = vgg16_bn(pretrained=pretrained, requires_grad=requires_grad) def get_frm_output_size(self, input_shape): feature_output = int(min(input_shape[-1], input_shape[-2])/32) feature_output = 1 if feature_output == 0 else feature_output frm_output_size = pow(feature_output, 2) * 512 return frm_output_size class LeNet(MRINet): def __init__(self, n_classes, n_channels, output_size, use_cuda, **kwargs): super(LeNet, self).__init__(frame_encoder=None, n_classes=n_classes, output_size=output_size, use_cuda=use_cuda) self.name = "LeNet" self.fenc = LeNetFrameEncoder(n_channels=n_channels, output_size=output_size) ################################################################################ # Sequence Container Models ################################################################################ class MRISequenceNet(nn.Module): """ Simple container network for MRI sequence classification. This module consists of: 1) A frame encoder, e.g., a ConvNet/CNN 2) A sequence encoder for merging frame representations, e.g., an RNN """ def __init__(self, frame_encoder, seq_encoder, use_cuda=False): super(MRISequenceNet, self).__init__() self.fenc = frame_encoder self.senc = seq_encoder self.use_cuda = use_cuda def init_hidden(self, batch_size): return self.senc.init_hidden(batch_size) def embedding(self, x, hidden): """Get learned representation of MRI sequence""" if self.use_cuda and not x.is_cuda: x = x.cuda() batch_size, num_frames, num_channels, width, height = x.size() x = x.view(-1, num_channels, width, height) x = self.fenc(x) x = x.view(batch_size, num_frames, -1) x = self.senc.embedding(x, hidden) if self.use_cuda: return x.cpu() else: return x def forward(self, x, hidden=None): if self.use_cuda and not x.is_cuda: x = x.cuda() # collapse all frames into new batch = batch_size * num_frames batch_size, num_frames, num_channels, width, height = x.size() x = x.view(-1, num_channels, width, height) # encode frames x = self.fenc(x) x = x.view(batch_size, num_frames, -1) # encode sequence x = self.senc(x, hidden) return x def predict_proba(self, data_loader, binary=True, pos_label=1): """ Forward inference """ y_pred = [] for i, data in enumerate(data_loader): x, y = data x = Variable(x) if not self.use_cuda else Variable(x).cuda() y = Variable(y) if not self.use_cuda else Variable(y).cuda() h0 = self.init_hidden(x.size(0)) outputs = self(x, h0) y_hat = F.softmax(outputs, dim=1) y_hat = y_hat.data.numpy() if not self.use_cuda else y_hat.cpu().data.numpy() y_pred.append(y_hat) # empty cuda cache if self.use_cuda: torch.cuda.empty_cache() y_pred = np.concatenate(y_pred) return y_pred[:, pos_label] if binary else y_pred def predict(self, data_loader, binary=True, pos_label=1, threshold=0.5, return_proba=False, topSelection=None): """ If binary classification, use threshold on positive class If multinomial, just select the max probability as the predicted class :param data_loader: :param binary: :param pos_label: :param threshold: :return: """ proba = self.predict_proba(data_loader, binary, pos_label) if topSelection is not None and topSelection < proba.shape[0]: threshold = proba[np.argsort(proba)[-topSelection-1]] if binary: pred = np.array([1 if p > threshold else 0 for p in proba]) else: pred = np.argmax(proba, 1) if return_proba: return (proba, pred) else: return pred ################################################################################ # FNN Models ################################################################################ class FNNFrameSum(MRISequenceNet): def __init__(self, n_classes, use_cuda, **kwargs): super(FNNFrameSum, self).__init__(frame_encoder=None, seq_encoder=None, use_cuda=use_cuda) self.name = "FNNFrameSum" self.n_classes = n_classes frm_layers = kwargs.get("frm_layers", [64, 32]) input_shape = kwargs.get("input_shape", (1, 32, 32)) frm_input_size = input_shape[0]*input_shape[1]*input_shape[2] self.fenc = FNNFrameEncoder(input_size=frm_input_size, layers=list(frm_layers)) self.senc = SeqSumPoolingEncoder(n_classes=n_classes, input_size=frm_layers[-1]) class FNNFrameRNN(MRISequenceNet): def __init__(self, n_classes, use_cuda, **kwargs): super(FNNFrameRNN, self).__init__(frame_encoder=None, seq_encoder=None, use_cuda=use_cuda) self.name = "FNNFrameRNN" self.n_classes = n_classes frm_layers = kwargs.get("frm_layers", [64, 32]) input_shape = kwargs.get("input_shape", (1, 32, 32)) frm_input_size = input_shape[0]*input_shape[1]*input_shape[2] frm_output_size = frm_layers[-1] seq_output_size = kwargs.get("seq_output_size", 128) seq_dropout = kwargs.get("seq_dropout", 0.1) seq_attention = kwargs.get("seq_attention", True) seq_bidirectional = kwargs.get("seq_bidirectional", True) seq_max_seq_len = kwargs.get("seq_max_seq_len", 30) seq_rnn_type = kwargs.get("rnn_type", "LSTM") self.fenc = FNNFrameEncoder(input_size=frm_input_size, layers=frm_layers) self.senc = RNN(n_classes=2, input_size=frm_output_size, hidden_size=seq_output_size, dropout=seq_dropout, max_seq_len=seq_max_seq_len, attention=seq_attention, rnn_type=seq_rnn_type, bidirectional=seq_bidirectional, use_cuda=self.use_cuda) ################################################################################ # LeNet Models ################################################################################ class LeNetFrameSum(MRISequenceNet): def __init__(self, n_classes, use_cuda, **kwargs): super(LeNetFrameSum, self).__init__(frame_encoder=None, seq_encoder=None, use_cuda=use_cuda) self.name = "LeNetFrameSum" self.n_classes = n_classes frm_output_size = kwargs.get("frm_output_size", 84) input_shape = kwargs.get("input_shape", (1, 32, 32)) self.fenc = LeNetFrameEncoder(input_shape=input_shape, output_size=frm_output_size) self.senc = SeqSumPoolingEncoder(n_classes=n_classes, input_size=frm_output_size) class LeNetFrameRNN(MRISequenceNet): def __init__(self, n_classes, use_cuda, **kwargs): super(LeNetFrameRNN, self).__init__(frame_encoder=None, seq_encoder=None, use_cuda=use_cuda) self.name = "LeNetFrameRNN" self.n_classes = n_classes frm_output_size = kwargs.get("frm_output_size", 84) input_shape = kwargs.get("input_shape", (1, 32, 32)) seq_output_size = kwargs.get("seq_output_size", 128) seq_dropout = kwargs.get("seq_dropout", 0.1) seq_attention = kwargs.get("seq_attention", True) seq_bidirectional = kwargs.get("seq_bidirectional", True) seq_max_seq_len = kwargs.get("seq_max_seq_len", 15) seq_rnn_type = kwargs.get("rnn_type", "LSTM") self.fenc = LeNetFrameEncoder(input_shape=input_shape, output_size=frm_output_size) self.senc = RNN(n_classes=2, input_size=frm_output_size, hidden_size=seq_output_size, dropout=seq_dropout, max_seq_len=seq_max_seq_len, attention=seq_attention, rnn_type=seq_rnn_type, bidirectional=seq_bidirectional, use_cuda=self.use_cuda) ################################################################################ # DenseNet 3-channel Models ################################################################################ class DenseNet121FrameSum(MRISequenceNet): def __init__(self, n_classes, use_cuda, **kwargs): super(DenseNet121FrameSum, self).__init__(frame_encoder=None, seq_encoder=None, use_cuda=use_cuda) self.name = "DenseNet121FrameSum" self.n_classes = n_classes input_shape = kwargs.get("input_shape", (3, 32, 32)) pretrained = kwargs.get("pretrained", True) requires_grad = kwargs.get("requires_grad", False) frm_output_size = pow(int(input_shape[-1]/32), 2) * 1024 #self.fenc = DenseNet121() self.fenc = densenet121(pretrained=pretrained, requires_grad=requires_grad) self.senc = SeqSumPoolingEncoder(n_classes=n_classes, input_size=frm_output_size) class DenseNet121FrameRNN(MRISequenceNet): def __init__(self, n_classes, use_cuda, **kwargs): super(DenseNet121FrameRNN, self).__init__(frame_encoder=None, seq_encoder=None, use_cuda=use_cuda) self.name = "DenseNet121FrameRNN" self.n_classes = n_classes input_shape = kwargs.get("input_shape", (3, 32, 32)) frm_output_size = pow(int(input_shape[-1]/32), 2) * 1024 seq_output_size = kwargs.get("seq_output_size", 128) seq_dropout = kwargs.get("seq_dropout", 0.1) seq_attention = kwargs.get("seq_attention", True) seq_bidirectional = kwargs.get("seq_bidirectional", True) seq_max_seq_len = kwargs.get("seq_max_seq_len", 15) seq_rnn_type = kwargs.get("rnn_type", "LSTM") pretrained = kwargs.get("pretrained", True) requires_grad = kwargs.get("requires_grad", False) #self.fenc = DenseNet121() self.fenc = densenet121(pretrained=pretrained, requires_grad=requires_grad) self.senc = RNN(n_classes=2, input_size=frm_output_size, hidden_size=seq_output_size, dropout=seq_dropout, max_seq_len=seq_max_seq_len, attention=seq_attention, rnn_type=seq_rnn_type, bidirectional=seq_bidirectional, use_cuda=self.use_cuda) ################################################################################ # VGG 3-channel Models ################################################################################ class VGG16FrameSum(MRISequenceNet): def __init__(self, n_classes, use_cuda, **kwargs): super(VGG16FrameSum, self).__init__(frame_encoder=None, seq_encoder=None, use_cuda=use_cuda) self.name = "VGG16FrameSum" self.n_classes = n_classes input_shape = kwargs.get("input_shape", (3, 32, 32)) pretrained = kwargs.get("pretrained", True) requires_grad = kwargs.get("requires_grad", False) self.fenc = vgg16_bn(pretrained=pretrained, requires_grad=requires_grad) frm_output_size = self.get_frm_output_size(input_shape) self.senc = SeqSumPoolingEncoder(n_classes=n_classes, input_size=frm_output_size) def get_frm_output_size(self, input_shape): feature_output = int(min(input_shape[-1], input_shape[-2])/32) feature_output = 1 if feature_output == 0 else feature_output frm_output_size = pow(feature_output, 2) * 512 return frm_output_size class VGG16FrameRNN(MRISequenceNet): def __init__(self, n_classes, use_cuda, **kwargs): super(VGG16FrameRNN, self).__init__(frame_encoder=None, seq_encoder=None, use_cuda=use_cuda) self.name = "VGG16FrameRNN" self.n_classes = n_classes input_shape = kwargs.get("input_shape", (3, 32, 32)) pretrained = kwargs.get("pretrained", True) requires_grad = kwargs.get("requires_grad", False) self.fenc = vgg16_bn(pretrained=pretrained, requires_grad=requires_grad) frm_output_size = self.get_frm_output_size(input_shape) #print(kwargs) #print("seq_bidirectional" in kwargs) seq_output_size = kwargs.get("seq_output_size", 128) seq_dropout = kwargs.get("seq_dropout", 0.1) seq_attention = kwargs.get("seq_attention", True) seq_bidirectional = kwargs.get("seq_bidirectional", True) seq_max_seq_len = kwargs.get("seq_max_seq_len", 15) seq_rnn_type = kwargs.get("seq_rnn_type", "LSTM") self.senc = RNN(n_classes=n_classes, input_size=frm_output_size, hidden_size=seq_output_size, dropout=seq_dropout, max_seq_len=seq_max_seq_len, attention=seq_attention, rnn_type=seq_rnn_type, bidirectional=seq_bidirectional, use_cuda=self.use_cuda) def get_frm_output_size(self, input_shape): input_shape = list(input_shape) input_shape.insert(0,1) dummy_batch_size = tuple(input_shape) x = torch.autograd.Variable(torch.zeros(dummy_batch_size)) frm_output_size = self.fenc.forward(x).size()[1] return frm_output_size class Dense4012FrameRNN(MRISequenceNet): def __init__(self, n_classes, use_cuda, **kwargs): super(Dense4012FrameRNN, self).__init__(frame_encoder=None, seq_encoder=None, use_cuda=use_cuda) self.name = "Dense4012FrameRNN" input_shape = kwargs.get("input_shape", (3, 32, 32)) seq_output_size = kwargs.get("seq_output_size", 128) seq_dropout = kwargs.get("seq_dropout", 0.1) seq_attention = kwargs.get("seq_attention", True) seq_bidirectional = kwargs.get("seq_bidirectional", True) seq_max_seq_len = kwargs.get("seq_max_seq_len", 15) seq_rnn_type = kwargs.get("rnn_type", "LSTM") pretrained = kwargs.get("pretrained", True) requires_grad = kwargs.get("requires_grad", False) logger.info("============================") logger.info("Dense4012FrameRNN parameters") logger.info("============================") logger.info("seq_output_size: {}".format(seq_output_size)) logger.info("seq_dropout: {}".format(seq_dropout)) logger.info("seq_attention: {}".format(seq_attention)) logger.info("seq_bidirectional: {}".format(seq_bidirectional)) logger.info("seq_max_seq_len: {}".format(seq_max_seq_len)) logger.info("seq_rnn_type: {}".format(seq_rnn_type)) logger.info("pretrained: {}".format(pretrained)) logger.info("requires_grad: {}\n".format(requires_grad)) self.fenc = densenet_40_12_bc(pretrained=pretrained, requires_grad=requires_grad) frm_output_size = self.get_frm_output_size(input_shape) self.senc = RNN(n_classes=2, input_size=frm_output_size, hidden_size=seq_output_size, dropout=seq_dropout, max_seq_len=seq_max_seq_len, attention=seq_attention, rnn_type=seq_rnn_type, bidirectional=seq_bidirectional, use_cuda=self.use_cuda) def get_frm_output_size(self, input_shape): input_shape = list(input_shape) input_shape.insert(0,1) dummy_batch_size = tuple(input_shape) x = torch.autograd.Variable(torch.zeros(dummy_batch_size)) frm_output_size = self.fenc.forward(x).size()[1] return frm_output_size ################################################################################ # Sequence Container Meta Models ################################################################################ class MRIMetaSequenceRNN(MRISequenceNet): def __init__(self, frame_encoder, n_classes, use_cuda, **kwargs): super(MRIMetaSequenceRNN, self).__init__(frame_encoder=None, seq_encoder=None, use_cuda=use_cuda) self.n_classes = n_classes input_shape = kwargs.get("input_shape", (3, 32, 32)) self.fenc = frame_encoder frm_output_size = self.get_frm_output_size(input_shape) #print(kwargs) #print("seq_bidirectional" in kwargs) seq_output_size = kwargs.get("seq_output_size", 128) seq_dropout = kwargs.get("seq_dropout", 0.1) seq_attention = kwargs.get("seq_attention", True) seq_bidirectional = kwargs.get("seq_bidirectional", True) seq_max_seq_len = kwargs.get("seq_max_seq_len", 15) seq_rnn_type = kwargs.get("seq_rnn_type", "LSTM") self.senc = MetaRNN(n_classes=n_classes, input_size=frm_output_size, hidden_size=seq_output_size, dropout=seq_dropout, max_seq_len=seq_max_seq_len, attention=seq_attention, rnn_type=seq_rnn_type, bidirectional=seq_bidirectional, use_cuda=self.use_cuda) meta_input_shape = kwargs.get("meta_input_shape", 3) self.classifier = self.get_classifier(seq_output_size, n_classes, seq_bidirectional, meta_input_shape) def get_frm_output_size(self, input_shape): input_shape = list(input_shape) input_shape.insert(0,1) dummy_batch_size = tuple(input_shape) x = torch.autograd.Variable(torch.zeros(dummy_batch_size)) frm_output_size = self.fenc.forward(x).size()[1] return frm_output_size def get_classifier(self, seq_output_size, n_classes, seq_bidirectional, meta_input_shape): b = 2 if seq_bidirectional else 1 meta_input_shape = np.prod([meta_input_shape]) classifier = nn.Linear(int(b * seq_output_size + meta_input_shape), int(n_classes)) return classifier def embedding(self, x, hidden): """Get learned representation of MRI sequence""" x, meta = x return super(MRIMetaSequenceRNN, self).embedding(x, hidden) def forward(self, x, hidden=None): x, meta = x if self.use_cuda and not meta.is_cuda: meta = meta.cuda() if self.use_cuda and not x.is_cuda: x = x.cuda() x = super(MRIMetaSequenceRNN, self).forward(x, hidden) concats = torch.cat((x.view(x.size(0), -1).float(), meta.view(meta.size(0), -1).float()), 1) outputs = self.classifier(concats) return outputs def predict_proba(self, data_loader, binary=True, pos_label=1): """ Forward inference """ y_pred = [] for i, data in enumerate(data_loader): x, y = data x = [Variable(x_) if not self.use_cuda else Variable(x_).cuda() for x_ in x] y = Variable(y) if not self.use_cuda else Variable(y).cuda() h0 = self.init_hidden(x[0].size(0)) outputs = self(x, h0) y_hat = F.softmax(outputs, dim=1) y_hat = y_hat.data.numpy() if not self.use_cuda else y_hat.cpu().data.numpy() y_pred.append(y_hat) # empty cuda cache if self.use_cuda: torch.cuda.empty_cache() y_pred = np.concatenate(y_pred) return y_pred[:, pos_label] if binary else y_pred class MetaVGG16FrameRNN(MRIMetaSequenceRNN): def __init__(self, n_classes, use_cuda, **kwargs): self.name = "MetaVGG16FrameRNN" pretrained = kwargs.get("pretrained", True) requires_grad = kwargs.get("requires_grad", False) frame_encoder = vgg16_bn(pretrained=pretrained, requires_grad=requires_grad) super(MetaVGG16FrameRNN, self).__init__(frame_encoder=frame_encoder, n_classes=n_classes, use_cuda=use_cuda, **kwargs) class MetaDense4012FrameRNN(MRIMetaSequenceRNN): def __init__(self, n_classes, use_cuda, **kwargs): self.name = "MetaDense4012FrameRNN" pretrained = kwargs.get("pretrained", True) requires_grad = kwargs.get("requires_grad", False) frame_encoder = densenet_40_12_bc(pretrained=pretrained, requires_grad=requires_grad) super(MetaDense4012FrameRNN, self).__init__(frame_encoder=frame_encoder, n_classes=n_classes, use_cuda=use_cuda, **kwargs)
ukb-cardiac-mri-master
ukb/models/mri.py
""" Simple random grid search """ import os import sys import glob import copy import time import torch import logging import numpy as np import pandas as pd from itertools import product import metrics from metrics import * import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from torch.utils.data import Dataset, DataLoader from torch.optim.lr_scheduler import ReduceLROnPlateau from utils import timeit, format_time logger = logging.getLogger(__name__) def tune_threshold(y_true, y_prob, metric='roc_auc_score'): """ Function for tuning the threshold """ try: logger.info("The tune_metric chosen is {}".format(metric)) metric = getattr(metrics, metric) if type(metric) is str else metric thresholds = np.arange(0.01, 1, 0.01) best_score = 0.0 best_threshold = 0.5 for threshold in thresholds: y_pred = np.array([1 if p > threshold else 0 for p in y_prob]) auc_score = metric(y_true, y_pred) if auc_score > best_score: best_score = auc_score best_threshold = threshold dev_threshold = best_threshold return dev_threshold except: try: logger.info("The tune_metric chosen is disabled.\n" "Fixed threshold chosen: {}".format(metric)) return float(metric) except: sys.exit("Invalid tune_metric input!\n" "Valid option1: `str` eg. roc_auc_score\n" "Valid option2: `float` eg. 0.7\n") class Trainer(object): def __init__(self, model_class, model_class_params, noise_aware=False, use_cuda=False, seed=1234): """ :param model_class: :param model_class_params: :param noise_aware: :param use_cuda: :param seed: """ self.model_class = model_class self.model_class_params = model_class_params self.noise_aware = noise_aware self.use_cuda = use_cuda self.seed = seed self.model_class_params.update({"use_cuda": use_cuda}) @timeit def fit(self, train, dev, test=None, update_freq=5, checkpoint_freq=10, checkpoint_dir=".", **kwargs): """ Fit target model :param train: :param dev: :param test: :param update_freq: :param checkpoint_freq: :param checkpoint_dir: :param kwargs: :return: """ self._set_seed() lr = kwargs.get('lr', 0.001) momentum = kwargs.get('momentum', 0.9) n_epochs = kwargs.get('n_epochs', 10) metric = kwargs.get('metric', 'roc_auc_score') tune_metric = kwargs.get('tune_metric', 'roc_auc_score') batch_size = kwargs.get('batch_size', 4) num_workers = kwargs.get('num_workers', 1) threshold = kwargs.get('threshold', 0.5) use_class_weights = kwargs.get('class_weights', False) use_scheduler = kwargs.get('scheduler', True) l2_penalty = kwargs.get('l2_penalty', 0.001) num_frames = kwargs.get('num_frames', None) binary = self.model_class_params.get('n_classes', 2) == 2 verbose = kwargs.get('verbose', False) checkpoint_burn = kwargs.get('checkpoint_burn', 1) logger.info("============================") logger.info("Trainer Config") logger.info("============================") logger.info("lr: {}".format(lr)) logger.info("momentum: {}".format(momentum)) logger.info("tune_metric: {}".format(tune_metric)) logger.info("batch_size: {}".format(batch_size)) logger.info("l2_penalty: {}".format(l2_penalty)) logger.info("num_frames: {}".format(num_frames)) logger.info("use_scheduler: {}".format(use_scheduler)) logger.info("checkpoint_burn: {}".format(checkpoint_burn)) # get metric function metric = getattr(metrics, metric) if type(metric) is str else metric # build model params dictionary params = {name:v if name not in kwargs else kwargs[name] for name,v in self.model_class_params.items()} model = self.model_class(**params) if not self.use_cuda else self.model_class(**params).cuda() # setup checkpointing / model state name if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) filelist = glob.glob("{}/{}*".format(checkpoint_dir, model.name)) checkpoint_name = "{}{}".format(model.name, len(filelist)) train_loader, dev_loader, test_loader = self._get_data_loaders(train, dev, test, batch_size, num_workers) criterion = self._get_criterion(train_loader, use_weights=use_class_weights) optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=momentum, weight_decay=l2_penalty) if use_scheduler: scheduler = ReduceLROnPlateau(optimizer, 'min') best_score = -0.01 best_threshold = threshold best_model = None start_time = time.time() for epoch in range(n_epochs): train_loss, correct, total = 0.0, 0.0, 0.0 for i, batch in enumerate(train_loader): x,y = batch if num_frames is not None: if self.noise_aware: y = y.view(-1) else: y = np.repeat(y, num_frames) if isinstance(x, list): x = [Variable(x_) if not self.use_cuda else Variable(x_).cuda() for x_ in x] h0 = model.init_hidden(x[0].size(0)) else: x = Variable(x) if not self.use_cuda else Variable(x).cuda() h0 = model.init_hidden(x.size(0)) y = Variable(y) if not self.use_cuda else Variable(y).cuda() optimizer.zero_grad() outputs = model(x, h0) # BCELoss assumes binary classification and relies on probability of second class if self.noise_aware: loss = criterion(outputs[:,1], y.float()) y = (y-best_threshold+0.5).round().long() else: loss = criterion(outputs, y) loss.backward() optimizer.step() train_loss += loss.data[0] total += y.size(0) _, predicted = torch.max(outputs.data, 1) correct += predicted.eq(y.data).cpu().sum() # progress update if (epoch + 1) % update_freq == 0: elapsed = time.time() - start_time msg = 'Epoch {:>8} | {:>10} | Loss: {:2.3f} | Acc. {:>5}% ({}/{})' avg_loss = train_loss / (i+1) acc = 100.0 * correct / total logger.info(msg.format("[{}/{}]".format(epoch + 1, n_epochs), format_time(elapsed), avg_loss, "{:2.1f}".format(acc), int(correct), int(total))) # dev set checkpointing if epoch + 1 >= checkpoint_burn and ((epoch + 1) % checkpoint_freq == 0 or epoch + 1 == n_epochs): dev_true, dev_pred, dev_prob, dev_threshold = self._evaluate(model, dev_loader, "DEV", binary=binary, threshold=best_threshold, tune_metric=tune_metric) try: score = metric(dev_true, dev_prob) except: score = metric(dev_true, dev_pred) if test: test_true, test_pred, test_prob, _ = self._evaluate(model, test_loader, "TEST", binary=binary, threshold=dev_threshold, tune_metric=tune_metric) if verbose: y_proba, y_pred = model.predict(test_loader, threshold=threshold, binary=binary, return_proba=True) classification_summary(test_true, test_pred, [], test_prob) print(test_prob) if (score > 0.0 and score > best_score) or best_score == -0.01: best_score = score best_threshold = dev_threshold best_model = { 'epoch': epoch, 'model': copy.deepcopy(model), 'state_dict': copy.deepcopy(model.state_dict()), 'best_score': best_score, 'optimizer': optimizer.state_dict() } torch.cuda.empty_cache() if use_scheduler: score = train_loss / (i+1) scheduler.step(score) #for ii,group in enumerate(optimizer.param_groups): # logger.info("group lr {} {} {}".format(group['lr'], score, epoch)) # load best model #model.load_state_dict(best_model['state_dict']) return best_model['model'], best_score, best_threshold def save(self, state, checkpoint_root_dir, checkpoint_name): """ Dump model & optimizer state_dict to file :param state: :param checkpoint_root_dir: :param checkpoint_name: :return: """ filename = "{}/{}".format(checkpoint_root_dir, checkpoint_name) torch.save(state, filename) logger.info("Saved model to {}".format(filename)) def load(self, model, checkpoint_root_dir, checkpoint_name): """ Load saved model. Assumes only state_dict is saved to file. :param model: :param checkpoint_root_dir: :param checkpoint_name: :return: """ filename = "{}/{}".format(checkpoint_root_dir, checkpoint_name) if os.path.exists(filename): checkpoint = torch.load(filename) model.load_state_dict(checkpoint['state_dict']) else: logger.info("No checkpoint found at '{}'".format(filename)) return model ################################################################################ # INTERNAL ################################################################################ def _set_seed(self): """ Set seed for deterministic random behavior for PyTorch on CPU and GPU :return: """ torch.cuda.random.manual_seed_all(self.seed) torch.manual_seed(self.seed) np.random.seed(seed=int(self.seed)) def _get_criterion(self, train_loader, use_weights=False): """ NOTE: Noise aware loss assumes binary classes :param train_loader: :param use_weights: :return: """ if use_weights and not self.noise_aware: class_weights = [] return nn.CrossEntropyLoss(weight=class_weights) elif not self.noise_aware: return nn.CrossEntropyLoss() return nn.BCEWithLogitsLoss(size_average=False) def _get_data_loaders(self, train, dev, test=None, batch_size=4, num_workers=1): """ Initialize dataloaders here so we can tune over batch_size :param train: :param dev: :param test: :param batch_size: :param num_workers: :return: """ train_loader = DataLoader(train, batch_size=batch_size, shuffle=True, num_workers=num_workers) dev_loader = DataLoader(dev, batch_size=batch_size, shuffle=False, num_workers=num_workers) test_loader = None if not test else DataLoader(test, batch_size=batch_size, shuffle=False, num_workers=num_workers) return train_loader, dev_loader, test_loader def _scorer(self, y_true, y_pred_prob, y_pred, name, binary=False, pos_label=1): """ Print performance metrics :param y_true: :param y_pred: :param name: :return: """ fpr, tpr, thresholds = roc_curve(y_true, y_pred_prob, pos_label=pos_label) precision, recall, _ = precision_recall_curve(y_true, y_pred_prob) roc_score = auc(fpr, tpr) * 100.0 prc_score = auc(recall, precision) * 100.0 logloss = log_loss(y_true, y_pred_prob) average = "binary" if binary else "micro" precision = precision_score(y_true, y_pred, average=average) * 100.0 recall = recall_score(y_true, y_pred, average=average) * 100.0 f1 = f1_score(y_true, y_pred, average=average) * 100.0 acc = accuracy_score(y_true, y_pred) * 100.0 msg = "{:<6} log loss: {:2.3f} | ROC: {:>5} | PRC: {:>5} | accuracy: {:>5} | P/R/F1: {:>5}" prf1 = "{:>5} / {:>5} / {:>5}".format("%2.1f" % precision, "%2.1f" % recall, "%2.1f" % f1) return msg.format(" [%s]" % name, logloss, "%2.1f" % roc_score, "%2.1f" % prc_score, "%2.1f" % acc, prf1) def _evaluate(self, model, data_loader, name, binary=False, threshold=0.5, tune_metric='roc_auc_score'): """ Generate label predictions :param model: :param data_loader: :param name: :return: """ # save rng state, seed for deterministic evaluation rng_gpu = torch.cuda.random.get_rng_state_all() rng_cpu = torch.random.get_rng_state() torch.cuda.random.manual_seed_all(self.seed) torch.random.manual_seed(self.seed) y_true = np.hstack([y.numpy() for x,y in data_loader]) y_prob, y_pred = model.predict(data_loader, binary=binary, pos_label=1, threshold=threshold, return_proba=True) if name == "DEV": threshold = tune_threshold(y_true, y_prob, tune_metric) logger.info("Tuned threshold: {:.2f}".format(threshold)) if binary: y_pred = np.array([1 if p > threshold else 0 for p in y_prob]) else: y_pred = np.argmax(y_prob, 1) msg = self._scorer(y_true, y_prob, y_pred, name, binary) logger.info(msg) # restore rng state to all devices torch.cuda.set_rng_state_all(rng_gpu) torch.random.set_rng_state(rng_cpu) return y_true, y_pred, y_prob, threshold class GridSearchTrainer(Trainer): def __init__(self, model_class, model_class_params, param_grid, n_model_search, noise_aware=False, use_cuda=False, seed=1234): """ Single-threaded random grid search :param model_class: :param model_class_params: :param param_grid: :param n_model_search: :param seed: """ super(GridSearchTrainer, self).__init__(model_class, model_class_params, noise_aware=noise_aware, use_cuda=use_cuda, seed=seed) # use fixed random seed for consistent parameter grid self.rng = np.random.RandomState(1234) self.param_grid = param_grid self.param_names = [name for name in self.param_grid] self.n_model_search = n_model_search @timeit def fit(self, train, dev, test=None, update_freq=5, checkpoint_freq=10, checkpoint_dir=".", metric='roc_auc_score', **kwargs): """ Random grid search :param train: :param dev: :param test: :param update_freq: :param checkpoint_freq: :param checkpoint_dir: :param metric: scikit-learn metric (function or str) or custom score function :param kwargs: :return: """ hyperparams = self.get_hyperparams(self.n_model_search) self._print_parameter_space() metric = getattr(metrics, metric) if type(metric) is str else metric scores = {} curr_best = -0.01 tuned_threshold = 0.5 best_model = None for i, params in enumerate(hyperparams): params = dict(zip(self.param_names, params)) model_name = "MODEL [{}]".format(i) logger.info(model_name) # override any grid search params params.update(kwargs) logger.info(params) fit_time, model, score, dev_threshold = super(GridSearchTrainer, self).fit( train=train, dev=dev, test=test, update_freq=update_freq, metric=metric, checkpoint_freq=checkpoint_freq, checkpoint_dir=checkpoint_dir, **params ) scores[model_name] = [score, model_name, params] if score > curr_best: curr_best = score tuned_threshold = dev_threshold best_model = { 'model': copy.deepcopy(model), 'state_dict': copy.deepcopy(model.state_dict()), 'best_score': curr_best, 'params': copy.deepcopy(params), 'threshold': copy.deepcopy(tuned_threshold) } checkpoint_name = "{}_{}".format(model.name, i) logger.info("NEW BEST: {} {}".format(metric.__name__, curr_best)) self.save(best_model, checkpoint_dir, checkpoint_name) self.save(best_model, checkpoint_dir, "{}_BEST".format(model.name)) logger.info(("#" * 90) + "\n") del model torch.cuda.empty_cache() # print performance summary logger.info("=" * 90) self._print_grid_search_summary(scores, metric) logger.info("Best [DEV] score: {} {}\n".format(metric.__name__, curr_best)) model = best_model['model'] logger.info(model) logger.info("=" * 90) return model, curr_best, tuned_threshold def search_space(self): """ Get full parameter grid :return: """ return product(*[self.param_grid[name] for name in self.param_grid]) def get_hyperparams(self, n_model_search=5): """ Fetch n_model_search parameter sets :param n_model_search: :return: """ ss = sorted(list(set(self.search_space()))) n = min(len(ss), n_model_search) self.rng.seed(1234) self.rng.shuffle(ss) return ss[0:n] ################################################################################ # INTERNAL ################################################################################ def _print_grid_search_summary(self, scores, metric): """ Print sorted grid search results """ df = [] for score, name, params in sorted(scores.values(), reverse=1): params.update({metric.__name__: score, "model": name}) df.append(params) print(pd.DataFrame(df)) def _print_parameter_space(self): """ Show full hyperparameter search space :param name: :return: """ name = "{}".format(self.model_class.__name__) ss = self.get_hyperparams(self.n_model_search) logger.info("=" * 90) n,N = len(ss), len(list(self.search_space())) logger.info("Model Parameter Space {}/{} {:2.2f}% (grid search seed={}):".format(n, N, float(n)/N * 100, 1234)) logger.info("=" * 90) padding = 10 for i, params in enumerate(ss): param_set = [": ".join(x) for x in zip(self.param_names, map(str, params))] tmpl = ("{:<" + str(padding) + "} ") * len(param_set) logger.info("{}_{} | {}".format(name, i, tmpl.format(*param_set))) logger.info("")
ukb-cardiac-mri-master
ukb/models/trainer.py
#!/usr/bin/env python """ vgg.py - VGG11/13/16/19 and VGG11_bn/VGG13_bn/VGG16_bn/VGG19_bn in torchvision - load the features layers weights only (without the classifier) """ import torch.nn as nn import torch.utils.model_zoo as model_zoo import math from torchvision.models.vgg import model_urls, make_layers, cfg __all__ = [ 'VGG', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn', 'vgg19_bn', 'vgg19', ] class VGG(nn.Module): def __init__(self, features, init_weights=True): super(VGG, self).__init__() self.features = features if init_weights: self._initialize_weights() def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) return x def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.weight.data.normal_(0, 0.01) m.bias.data.zero_() def extract_feature_state_dict(pretrained_state_dict, model): model_state_dict = model.state_dict() pretrained_state_dict = {k: v for k, v in pretrained_state_dict.items() if k in model_state_dict} return pretrained_state_dict def vgg11(pretrained=False, requires_grad=False, **kwargs): """VGG 11-layer model (configuration "A") Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ if pretrained: kwargs['init_weights'] = False model = VGG(make_layers(cfg['A']), **kwargs) if pretrained: pretrained_state_dict = model_zoo.load_url(model_urls['vgg11']) pretrained_state_dict = extract_feature_state_dict(pretrained_state_dict, model) model.load_state_dict(pretrained_state_dict) model.requires_grad = requires_grad return model def vgg11_bn(pretrained=False, requires_grad=False, **kwargs): """VGG 11-layer model (configuration "A") with batch normalization Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ if pretrained: kwargs['init_weights'] = False model = VGG(make_layers(cfg['A'], batch_norm=True), **kwargs) if pretrained: pretrained_state_dict = model_zoo.load_url(model_urls['vgg11_bn']) pretrained_state_dict = extract_feature_state_dict(pretrained_state_dict, model) model.load_state_dict(pretrained_state_dict) model.requires_grad = requires_grad return model def vgg13(pretrained=False, requires_grad=False, **kwargs): """VGG 13-layer model (configuration "B") Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ if pretrained: kwargs['init_weights'] = False model = VGG(make_layers(cfg['B']), **kwargs) if pretrained: pretrained_state_dict = model_zoo.load_url(model_urls['vgg13']) pretrained_state_dict = extract_feature_state_dict(pretrained_state_dict, model) model.load_state_dict(pretrained_state_dict) model.requires_grad = requires_grad return model def vgg13_bn(pretrained=False, requires_grad=False, **kwargs): """VGG 13-layer model (configuration "B") with batch normalization Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ if pretrained: kwargs['init_weights'] = False model = VGG(make_layers(cfg['B'], batch_norm=True), **kwargs) if pretrained: pretrained_state_dict = model_zoo.load_url(model_urls['vgg13_bn']) pretrained_state_dict = extract_feature_state_dict(pretrained_state_dict, model) model.load_state_dict(pretrained_state_dict) model.requires_grad = requires_grad return model def vgg16(pretrained=False, requires_grad=False, **kwargs): """VGG 16-layer model (configuration "D") Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ if pretrained: kwargs['init_weights'] = False model = VGG(make_layers(cfg['D']), **kwargs) if pretrained: pretrained_state_dict = model_zoo.load_url(model_urls['vgg16']) pretrained_state_dict = extract_feature_state_dict(pretrained_state_dict, model) model.load_state_dict(pretrained_state_dict) model.requires_grad = requires_grad return model def vgg16_bn(pretrained=False, requires_grad=False, **kwargs): """VGG 16-layer model (configuration "D") with batch normalization Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ if pretrained: kwargs['init_weights'] = False model = VGG(make_layers(cfg['D'], batch_norm=True), **kwargs) if pretrained: pretrained_state_dict = model_zoo.load_url(model_urls['vgg16_bn']) pretrained_state_dict = extract_feature_state_dict(pretrained_state_dict, model) model.load_state_dict(pretrained_state_dict) model.requires_grad = requires_grad return model def vgg19(pretrained=False, requires_grad=False, **kwargs): """VGG 19-layer model (configuration "E") Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ if pretrained: kwargs['init_weights'] = False model = VGG(make_layers(cfg['E']), **kwargs) if pretrained: pretrained_state_dict = model_zoo.load_url(model_urls['vgg19']) pretrained_state_dict = extract_feature_state_dict(pretrained_state_dict, model) model.load_state_dict(pretrained_state_dict) model.requires_grad = requires_grad return model def vgg19_bn(pretrained=False, requires_grad=False, **kwargs): """VGG 19-layer model (configuration 'E') with batch normalization Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ if pretrained: kwargs['init_weights'] = False model = VGG(make_layers(cfg['E'], batch_norm=True), **kwargs) if pretrained: pretrained_state_dict = model_zoo.load_url(model_urls['vgg19_bn']) pretrained_state_dict = extract_feature_state_dict(pretrained_state_dict, model) model.load_state_dict(pretrained_state_dict) model.requires_grad = requires_grad return model
ukb-cardiac-mri-master
ukb/models/frame/vgg.py
import math import torch import torch.nn as nn import torch.nn.functional as F from os.path import dirname, join #Implementation based on https://github.com/andreasveit/densenet-pytorch densenet_40_12_bc_weights_path = join(dirname(__file__), "pretrained_densenet_4012BC.pth.tar") def densenet_40_12_bc(pretrained=False, requires_grad=False, **kwargs): layers=40 depth=10 growth_rate=12 reduce_rate=0.5 drop_rate= 0.0 bottleneck= True model=DenseNet3(layers, depth, growth_rate, reduction=reduce_rate, bottleneck=bottleneck, dropRate=drop_rate) if pretrained: checkpoint = torch.load(densenet_40_12_bc_weights_path) model.load_state_dict(checkpoint['state_dict']) model.requires_grad = requires_grad # Removing linear layer removed = list(model.children())[:-1] model= torch.nn.Sequential(*removed) return model class BasicBlock(nn.Module): def __init__(self, in_planes, out_planes, dropRate=0.0): super(BasicBlock, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.relu = nn.ReLU(inplace=True) self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=1, padding=1, bias=False) self.droprate = dropRate def forward(self, x): out = self.conv1(self.relu(self.bn1(x))) if self.droprate > 0: out = F.dropout(out, p=self.droprate, training=self.training) return torch.cat([x, out], 1) class BottleneckBlock(nn.Module): def __init__(self, in_planes, out_planes, dropRate=0.0): super(BottleneckBlock, self).__init__() inter_planes = out_planes * 4 self.bn1 = nn.BatchNorm2d(in_planes) self.relu = nn.ReLU(inplace=True) self.conv1 = nn.Conv2d(in_planes, inter_planes, kernel_size=1, stride=1, padding=0, bias=False) self.bn2 = nn.BatchNorm2d(inter_planes) self.conv2 = nn.Conv2d(inter_planes, out_planes, kernel_size=3, stride=1, padding=1, bias=False) self.droprate = dropRate def forward(self, x): out = self.conv1(self.relu(self.bn1(x))) if self.droprate > 0: out = F.dropout(out, p=self.droprate, inplace=False, training=self.training) out = self.conv2(self.relu(self.bn2(out))) if self.droprate > 0: out = F.dropout(out, p=self.droprate, inplace=False, training=self.training) return torch.cat([x, out], 1) class TransitionBlock(nn.Module): def __init__(self, in_planes, out_planes, dropRate=0.0): super(TransitionBlock, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.relu = nn.ReLU(inplace=True) self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False) self.droprate = dropRate def forward(self, x): out = self.conv1(self.relu(self.bn1(x))) if self.droprate > 0: out = F.dropout(out, p=self.droprate, inplace=False, training=self.training) return F.avg_pool2d(out, 2) class DenseBlock(nn.Module): def __init__(self, nb_layers, in_planes, growth_rate, block, dropRate=0.0): super(DenseBlock, self).__init__() self.layer = self._make_layer(block, in_planes, growth_rate, nb_layers, dropRate) def _make_layer(self, block, in_planes, growth_rate, nb_layers, dropRate): layers = [] for i in range(nb_layers): layers.append(block(in_planes+i*growth_rate, growth_rate, dropRate)) return nn.Sequential(*layers) def forward(self, x): return self.layer(x) class DenseNet3(nn.Module): def __init__(self, depth, num_classes, growth_rate=12, reduction=0.5, bottleneck=True, dropRate=0.0): super(DenseNet3, self).__init__() in_planes = 2 * growth_rate n = (depth - 4) / 3 if bottleneck == True: n = n/2 block = BottleneckBlock else: block = BasicBlock n = int(n) # 1st conv before any dense block self.conv1 = nn.Conv2d(3, in_planes, kernel_size=3, stride=1, padding=1, bias=False) # 1st block self.block1 = DenseBlock(n, in_planes, growth_rate, block, dropRate) in_planes = int(in_planes+n*growth_rate) self.trans1 = TransitionBlock(in_planes, int(math.floor(in_planes*reduction)), dropRate=dropRate) in_planes = int(math.floor(in_planes*reduction)) # 2nd block self.block2 = DenseBlock(n, in_planes, growth_rate, block, dropRate) in_planes = int(in_planes+n*growth_rate) self.trans2 = TransitionBlock(in_planes, int(math.floor(in_planes*reduction)), dropRate=dropRate) in_planes = int(math.floor(in_planes*reduction)) # 3rd block self.block3 = DenseBlock(n, in_planes, growth_rate, block, dropRate) in_planes = int(in_planes+n*growth_rate) # global average pooling and classifier self.bn1 = nn.BatchNorm2d(in_planes) self.relu = nn.ReLU(inplace=True) # changed this line so avgpool is a layer in the net!! self.avpl = nn.AvgPool2d(8) self.fc = nn.Linear(in_planes, num_classes) self.in_planes = in_planes for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.bias.data.zero_() def forward(self, x): out = self.conv1(x) out = self.trans1(self.block1(out)) out = self.trans2(self.block2(out)) out = self.block3(out) out = self.relu(self.bn1(out)) out = self.avpl(out) out = out.view(-1, self.in_planes) return self.fc(out)
ukb-cardiac-mri-master
ukb/models/frame/densenet_av.py
''' DenseNet in PyTorch. From: https://github.com/kuangliu/pytorch-cifar https://arxiv.org/pdf/1608.06993.pdf ''' import math import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class Bottleneck(nn.Module): def __init__(self, in_planes, growth_rate): super(Bottleneck, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.conv1 = nn.Conv2d(in_planes, 4*growth_rate, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(4*growth_rate) self.conv2 = nn.Conv2d(4*growth_rate, growth_rate, kernel_size=3, padding=1, bias=False) def forward(self, x): out = self.conv1(F.relu(self.bn1(x))) out = self.conv2(F.relu(self.bn2(out))) out = torch.cat([out,x], 1) return out class Transition(nn.Module): def __init__(self, in_planes, out_planes): super(Transition, self).__init__() self.bn = nn.BatchNorm2d(in_planes) self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=False) def forward(self, x): out = self.conv(F.relu(self.bn(x))) out = F.avg_pool2d(out, 2) return out class DenseNetFrameEncoder(nn.Module): def __init__(self, block, nblocks, growth_rate=12, reduction=0.5, num_classes=10): super(DenseNetFrameEncoder, self).__init__() self.growth_rate = growth_rate num_planes = 2*growth_rate self.conv1 = nn.Conv2d(3, num_planes, kernel_size=3, padding=1, bias=False) self.dense1 = self._make_dense_layers(block, num_planes, nblocks[0]) num_planes += nblocks[0]*growth_rate out_planes = int(math.floor(num_planes*reduction)) self.trans1 = Transition(num_planes, out_planes) num_planes = out_planes self.dense2 = self._make_dense_layers(block, num_planes, nblocks[1]) num_planes += nblocks[1]*growth_rate out_planes = int(math.floor(num_planes*reduction)) self.trans2 = Transition(num_planes, out_planes) num_planes = out_planes self.dense3 = self._make_dense_layers(block, num_planes, nblocks[2]) num_planes += nblocks[2]*growth_rate out_planes = int(math.floor(num_planes*reduction)) self.trans3 = Transition(num_planes, out_planes) num_planes = out_planes self.dense4 = self._make_dense_layers(block, num_planes, nblocks[3]) num_planes += nblocks[3]*growth_rate self.bn = nn.BatchNorm2d(num_planes) #self.linear = nn.Linear(num_planes, num_classes) def _make_dense_layers(self, block, in_planes, nblock): layers = [] for i in range(nblock): layers.append(block(in_planes, self.growth_rate)) in_planes += self.growth_rate return nn.Sequential(*layers) def forward(self, x): out = self.conv1(x) out = self.trans1(self.dense1(out)) out = self.trans2(self.dense2(out)) out = self.trans3(self.dense3(out)) out = self.dense4(out) out = F.avg_pool2d(F.relu(self.bn(out)), 4) out = out.view(out.size(0), -1) #out = self.linear(out) return out def DenseNet121(): return DenseNetFrameEncoder(Bottleneck, [6,12,24,16], growth_rate=32) def DenseNet169(): return DenseNetFrameEncoder(Bottleneck, [6,12,32,32], growth_rate=32) def DenseNet201(): return DenseNetFrameEncoder(Bottleneck, [6,12,48,32], growth_rate=32) def DenseNet161(): return DenseNetFrameEncoder(Bottleneck, [6,12,36,24], growth_rate=48) def densenet_cifar(): return DenseNetFrameEncoder(Bottleneck, [6,12,24,16], growth_rate=12) def test_densenet(): net = densenet_cifar() x = torch.randn(1,3,32,32) y = net(Variable(x)) print(y)
ukb-cardiac-mri-master
ukb/models/frame/densenet.py
from .fnn import * from .vgg import * from .lenet import * from .densenet import * from .densenet_pretrained import * from .densenet_av import *
ukb-cardiac-mri-master
ukb/models/frame/__init__.py
import torch.nn as nn import torch.nn.functional as F ################################################################################ # Simple CNN Models ################################################################################ class LeNetFrameEncoder(nn.Module): def __init__(self, input_shape=(1, 32, 32), kernel_size=5, output_size=84): super(LeNetFrameEncoder, self).__init__() n_channels, width, height = input_shape conv_output = self.calculate_conv_output(input_shape, kernel_size) self.conv1 = nn.Conv2d(n_channels, 6, kernel_size) self.conv2 = nn.Conv2d(6, 16, kernel_size) self.fc1 = nn.Linear(conv_output, 120) self.fc2 = nn.Linear(120, output_size) def forward(self, x): out = F.relu(self.conv1(x)) out = F.max_pool2d(out, 2) out = F.relu(self.conv2(out)) out = F.max_pool2d(out, 2) out = out.view(out.size(0), -1) out = F.relu(self.fc1(out)) out = F.relu(self.fc2(out)) return out def calculate_conv_output(self, input_shape, kernel_size): output1 = (6, input_shape[1]-kernel_size+1, input_shape[2]-kernel_size+1) output2 = (6, int(output1[1]/2), int(output1[2]/2)) output3 = (16, output2[1]-kernel_size+1, output2[2]-kernel_size+1) output4 = (16, int(output3[1]/2), int(output3[2]/2)) return output4[0]*output4[1]*output4[2]
ukb-cardiac-mri-master
ukb/models/frame/lenet.py
import torch.nn as nn import torch.nn.functional as F ################################################################################ # FNN Models ################################################################################ class FNNFrameEncoder(nn.Module): def __init__(self, input_size=1024, layers=[64, 32]): super(FNNFrameEncoder, self).__init__() layers = [input_size] + layers for i, size in enumerate(layers[:-1]): self.add_module('fc{}'.format(i+1), nn.Linear(layers[i], layers[i+1])) def forward(self, x): x = x.view(-1, self.num_flat_features(x)) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) return x def num_flat_features(self, x): size = x.size()[1:] # all dimensions except the batch dimension num_features = 1 for s in size: num_features *= s return num_features
ukb-cardiac-mri-master
ukb/models/frame/fnn.py
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.model_zoo as model_zoo from collections import OrderedDict from torchvision.models.densenet import model_urls, _DenseLayer, _DenseBlock, _Transition __all__ = ['DenseNet', 'densenet121', 'densenet169', 'densenet201', 'densenet161'] class DenseNet(nn.Module): r"""Densenet-BC model class, based on `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: growth_rate (int) - how many filters to add each layer (`k` in paper) block_config (list of 4 ints) - how many layers in each pooling block num_init_features (int) - the number of filters to learn in the first convolution layer bn_size (int) - multiplicative factor for number of bottle neck layers (i.e. bn_size * k features in the bottleneck layer) drop_rate (float) - dropout rate after each dense layer num_classes (int) - number of classification classes """ def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64, bn_size=4, drop_rate=0, num_classes=1000): super(DenseNet, self).__init__() # First convolution self.features = nn.Sequential(OrderedDict([ ('conv0', nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)), ('norm0', nn.BatchNorm2d(num_init_features)), ('relu0', nn.ReLU(inplace=True)), ('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)), ])) # Each denseblock num_features = num_init_features for i, num_layers in enumerate(block_config): block = _DenseBlock(num_layers=num_layers, num_input_features=num_features, bn_size=bn_size, growth_rate=growth_rate, drop_rate=drop_rate) self.features.add_module('denseblock%d' % (i + 1), block) num_features = num_features + num_layers * growth_rate if i != len(block_config) - 1: trans = _Transition(num_input_features=num_features, num_output_features=num_features // 2) self.features.add_module('transition%d' % (i + 1), trans) num_features = num_features // 2 # Final batch norm self.features.add_module('norm5', nn.BatchNorm2d(num_features)) # Linear layer # self.classifier = nn.Linear(num_features, num_classes) def forward(self, x): features = self.features(x) out = F.relu(features, inplace=True) # default: kernel_size=7 | changed to 1 for smaller images | >=61 out = F.avg_pool2d(out, kernel_size=1, stride=1).view(features.size(0), -1) #out = self.classifier(out) return out def extract_feature_state_dict(pretrained_state_dict, model): model_state_dict = model.state_dict() pretrained_state_dict = {k: v for k, v in pretrained_state_dict.items() if k in model_state_dict} return pretrained_state_dict def densenet121(pretrained=False, requires_grad=False, **kwargs): r"""Densenet-121 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16), **kwargs) if pretrained: pretrained_state_dict = model_zoo.load_url(model_urls['densenet121']) pretrained_state_dict = extract_feature_state_dict(pretrained_state_dict, model) model.load_state_dict(pretrained_state_dict) model.requires_grad = requires_grad return model def densenet169(pretrained=False, requires_grad=False, **kwargs): r"""Densenet-169 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 32, 32), **kwargs) if pretrained: pretrained_state_dict = model_zoo.load_url(model_urls['densenet169']) pretrained_state_dict = extract_feature_state_dict(pretrained_state_dict, model) model.load_state_dict(pretrained_state_dict) model.requires_grad = requires_grad return model def densenet201(pretrained=False, requires_grad=False, **kwargs): r"""Densenet-201 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 48, 32), **kwargs) if pretrained: pretrained_state_dict = model_zoo.load_url(model_urls['densenet201']) pretrained_state_dict = extract_feature_state_dict(pretrained_state_dict, model) model.load_state_dict(pretrained_state_dict) model.requires_grad = requires_grad return model def densenet161(pretrained=False, requires_grad=False, **kwargs): r"""Densenet-161 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = DenseNet(num_init_features=96, growth_rate=48, block_config=(6, 12, 36, 24), **kwargs) if pretrained: pretrained_state_dict = model_zoo.load_url(model_urls['densenet161']) pretrained_state_dict = extract_feature_state_dict(pretrained_state_dict, model) model.load_state_dict(pretrained_state_dict) model.requires_grad = requires_grad return model def test_densenet(size, dense): from torch.autograd import Variable dense = int(dense) if dense==121: net = densenet121(pretrained=True) elif dense==161: net = densenet161(pretrained=True) elif dense==169: net = densenet169(pretrained=True) elif dense==201: net = densenet201(pretrained=True) x = torch.randn(1,3,size,size) y = net(Variable(x)) print(y.shape)
ukb-cardiac-mri-master
ukb/models/frame/densenet_pretrained.py
from .pooled import * from .rnn import *
ukb-cardiac-mri-master
ukb/models/sequence/__init__.py
""" Simple models for encoding dense representations of sequences """ import torch import torch.nn as nn from torch.autograd import Variable import torch.nn.functional as F ################################################################################ # Summing Models ################################################################################ class SeqSumPoolingEncoder(nn.Module): """Sum all frame representations into a single feature vector""" def __init__(self, n_classes, input_size): super(SeqSumPoolingEncoder, self).__init__() self.linear = nn.Linear(input_size, n_classes, bias=False) def init_hidden(self, batch_size): return None def embedding(self, x, hidden=None): """Get learned (summed) representation""" x = torch.sum(x, 1) return x def forward(self, x, hidden=None): x = torch.sum(x, 1) x = self.linear(x) return x
ukb-cardiac-mri-master
ukb/models/sequence/pooled.py
""" Simple models for encoding dense representations of sequences """ import torch import torch.nn as nn from torch.autograd import Variable import torch.nn.functional as F ################################################################################ # Recurrent Neural Network Models ################################################################################ class RNN(nn.Module): def __init__(self, n_classes, input_size, hidden_size, rnn_type="LSTM", dropout=0.0, max_seq_len=15, attention=True, bidirectional=True, use_cuda=False): """ Initalize RNN module :param n_classes: :param input_size: :param hidden_size: :param rnn_type: GRU or LSTM :param dropout: :param max_seq_len: :param attention: :param bidirectional: :param use_cuda: """ super(RNN, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.bidirectional = bidirectional self.n_classes = n_classes self.attention = attention self.max_seq_len = max_seq_len self.use_cuda = use_cuda self.rnn_type = rnn_type if rnn_type in ['LSTM', 'GRU']: self.rnn = getattr(nn, rnn_type)(input_size, hidden_size, batch_first=True, dropout=dropout, bidirectional=self.bidirectional) self.dropout = nn.Dropout(dropout) b = 2 if self.bidirectional else 1 if attention: self.attn_linear_w_1 = nn.Linear(b * hidden_size, b * hidden_size, bias=True) self.attn_linear_w_2 = nn.Linear(b * hidden_size, 1, bias=False) self.linear = nn.Linear(b * hidden_size, n_classes) def embedding(self, x, hidden, x_mask=None): """ Get learned representation """ x_mask = self._get_mask(x) if not x_mask else x_mask output, hidden = self.rnn(x, hidden) output = self.dropout(output) if self.attention: output = self._attn_mean_pooling(output, x_mask) else: output = self._mean_pooling(output, x_mask) return output def _mean_pooling(self, x, x_mask): """ Mean pooling of RNN hidden states TODO: add variable sequence lengths back in """ return torch.mean(x, 1) # x_lens = x_mask.data.eq(0).long().sum(dim=1) # if self.use_cuda: # weights = Variable(torch.ones(x.size()).cuda() / x_lens.unsqueeze(1).float()) # else: # weights = Variable(torch.ones(x.size()) / x_lens.unsqueeze(1).float()) # weights.data.masked_fill_(x_mask.data, 0.0) # output = torch.bmm(x.transpose(1, 2), weights.unsqueeze(2)).squeeze(2) # return output def _attn_mean_pooling(self, x, x_mask): """ Weighted mean pooling of RNN hidden states, where weights are calculated via an attention layer where the attention weight is a = T' . tanh(Wx + b) where x is the input, b is the bias. """ emb_squish = F.tanh(self.attn_linear_w_1(x)) emb_attn = self.attn_linear_w_2(emb_squish) emb_attn.data.masked_fill_(x_mask.unsqueeze(2).data, float("-inf")) emb_attn_norm = F.softmax(emb_attn.squeeze(2), dim=0) emb_attn_vectors = torch.bmm(x.transpose(1, 2), emb_attn_norm.unsqueeze(2)).squeeze(2) return emb_attn_vectors def _get_mask(self, x): """ Return an empty mask :param x: :return: """ x_mask = Variable(torch.zeros(x.size(0), self.max_seq_len).byte()) return x_mask.cuda() if self.use_cuda else x_mask def forward(self, x, hidden, x_mask=None): """ Forward pass of the network :param x: :param hidden: :param x_mask: 0-1 byte mask for variable length sequences :return: """ x_mask = self._get_mask(x) if not x_mask else x_mask output, hidden = self.rnn(x, hidden) output = self.dropout(output) if self.attention: output = self._attn_mean_pooling(output, x_mask) else: output = self._mean_pooling(output, x_mask) output = self.linear(output) return output def init_hidden(self, batch_size): """ Initialize hidden state params :param batch_size: :return: """ b = 2 if self.bidirectional else 1 if self.rnn_type == "LSTM": h0 = (Variable(torch.zeros(b, batch_size, self.hidden_size)), Variable(torch.zeros(b, batch_size, self.hidden_size))) h0 = [h0[0].cuda(), h0[1].cuda()] if self.use_cuda else h0 else: h0 = Variable(torch.zeros(b, batch_size, self.hidden_size)) h0 = h0.cuda() if self.use_cuda else h0 return h0 class MetaRNN(RNN): """ RNN class for Meta data concatenating into seq_output before classifier """ def forward(self, x, hidden, x_mask=None): """ Forward pass of the network :param x: :param hidden: :param x_mask: 0-1 byte mask for variable length sequences :return: """ x_mask = self._get_mask(x) if not x_mask else x_mask output, hidden = self.rnn(x, hidden) output = self.dropout(output) if self.attention: output = self._attn_mean_pooling(output, x_mask) else: output = self._mean_pooling(output, x_mask) return output
ukb-cardiac-mri-master
ukb/models/sequence/rnn.py
from .ukbb import * from .augmentations import * from .multi_series import * from torchvision.transforms import Compose class RandomTransforms(object): """Base class for a list of transformations with randomness Args: transforms (list or tuple): list of transformations """ def __init__(self, transforms, out_range=(0.0, 1.0)): assert isinstance(transforms, (list, tuple)) self.transforms = transforms self.out_range = out_range def __call__(self, *args, **kwargs): raise NotImplementedError() def __repr__(self): format_string = self.__class__.__name__ + '(' for t in self.transforms: format_string += '\n' format_string += ' {0}'.format(t) format_string += '\n)' return format_string class RandomOrder(RandomTransforms): """Apply a list of transformations in a random order """ def __call__(self, img): order = list(range(len(self.transforms))) random.shuffle(order) for i in order: img = self.transforms[i](img) rescale = RescaleIntensity(out_range=self.out_range) img = rescale(img) return img class ComposeMultiChannel(object): """Composes several transforms together for multi channel operations. Args: transforms (list of ``Transform`` objects): list of transforms to compose. Example: >>> transforms.Compose([ >>> transforms.CenterCrop(10), >>> transforms.ToTensor(), >>> ]) """ def __init__(self, transforms): self.transforms = transforms def __call__(self, img1, img2, img3): for t in self.transforms: img1, img2, img3 = t(img1, img2, img3) return img1, img2, img3 def __repr__(self): format_string = self.__class__.__name__ + '(' for t in self.transforms: format_string += '\n' format_string += ' {0}'.format(t) format_string += '\n)' return format_string ############################################################################## # SINGLE Series Transforms (to be used on flow_250_*_MAG) ############################################################################## ############################ # Preprocessing Transforms ############################ def compose_preprocessing(preprocessing): """ Compose a preprocessing transform to be performed. Params ------ preprocessing : dict - dictionary defining all preprocessing steps to be taken with their values e.g. {"FrameSelector" : "var", "Rescale_Intensity" : [0, 255], "Gamma_Correction" : 2.0} Return ------ torchvision.transforms.Compose """ # Frame Selector if (preprocessing["FrameSelector"]["name"] == "FrameSelectionVar"): frame_selector = FrameSelectionVar(n_frames=preprocessing["n_frames"]) else: frame_selector = FrameSelectionStd(n_frames=preprocessing["n_frames"], channel=preprocessing["FrameSelector"]["channel"], epsilon=preprocessing["FrameSelector"]["epsilon"]) # Rescale Intensity if ("Rescale_Intensity" in preprocessing): intensity_rescale = RescaleIntensity(out_range=tuple(preprocessing["Rescale_Intensity"])) else: intensity_rescale = NullTransform() # Gamma Correction if ("Gamma_Correction" in preprocessing): gamma_correct = GammaCorrection(gamma=preprocessing["Gamma_Correction"]["gamma"], intensity=preprocessing["Gamma_Correction"]["intensity"]) else: gamma_correct = NullTransform() return Compose([frame_selector, intensity_rescale, gamma_correct]) ########################### # Augmentation Transforms ########################### def compose_augmentation(augmentations, seed=1234): """ Compose an augmentation transform to be performed. Params ------ augmentations : dict - dictionary defining all augmentation steps to be taken with their values e.g. { "RandomCrop" : { "size" : 28, "padding" : 12 }, "RandomRotation" : { "degrees" : 25 }, "RandomTranslation" : { "translate" : (0.2, 0.8) }, "RandomShear" : { "shear" : 12.5 }, "RandomAffine" : { "degrees" : 5, "translate" : (0.5, 0.5), "scale" : 0.8, "shear" : 15.0 }, "Randomize" : 0 } Return ------ torchvision.transforms.Compose (ordered transforms) OR torchvision.transforms.RandomOrder (randomly ordered transforms) """ # Padding if ("Pad" in augmentations): if ("padding" in augmentations["Pad"]): padding = augmentations["Pad"]["padding"] else: padding = 0 if ("fill" in augmentations["Pad"]): fill = augmentations["Pad"]["fill"] else: fill = 0 if ("padding_mode" in augmentations["Pad"]): padding_mode = augmentations["Pad"]["padding_mode"] else: padding_mode = 'constant' pad = Pad( padding=padding, fill=fill, padding_mode=padding_mode) else: pad = NullAugmentation() # Random Horizontal Flip if ("RandomHorizontalFlip" in augmentations): if ("probability" in augmentations["RandomHorizontalFlip"]): probability = augmentations["RandomHorizontalFlip"]["probability"] else: probability = 0.5 random_horizontal = RandomHorizontalFlip(p=probability, seed=seed) else: random_horizontal = NullAugmentation() # Random Vertical Flip if ("RandomVerticalFlip" in augmentations): if ("probability" in augmentations["RandomVerticalFlip"]): probability = augmentations["RandomVerticalFlip"]["probability"] else: probability = 0.5 random_vertical = RandomVerticalFlip(p=probability, seed=seed) else: random_vertical = NullAugmentation() # Random Cropping if ("RandomCrop" in augmentations): if ("padding" in augmentations["RandomCrop"]): padding = augmentations["RandomCrop"]["padding"] else: padding = 0 random_crop = RandomCrop( augmentations["RandomCrop"]["size"], padding=padding, seed=seed) else: random_crop = NullAugmentation() # Random Rotation if ("RandomRotation" in augmentations): if ("resample" in augmentations["RandomRotation"]): resample = augmentations["RandomRotation"]["resample"] else: resample = False if ("center" in augmentations["RandomRotation"]): center = augmentations["RandomRotation"]["center"] else: center = None random_rotation = RandomRotation( augmentations["RandomRotation"]["degrees"], resample=resample, center=center, seed=seed) else: random_rotation = NullAugmentation() # Random Translation if ("RandomTranslation" in augmentations): if ("resample" in augmentations["RandomTranslation"]): resample = augmentations["RandomTranslation"]["resample"] else: resample = False random_translation = RandomTranslation( augmentations["RandomTranslation"]["translate"], resample=resample, seed=seed) else: random_translation = NullAugmentation() # Random Shear if ("RandomShear" in augmentations): if ("resample" in augmentations["RandomShear"]): resample = augmentations["RandomShear"]["resample"] else: resample = False random_shear = RandomShear( augmentations["RandomShear"]["shear"], resample=resample, seed=seed) else: random_shear = NullAugmentation() # Random Affine if ("RandomAffine" in augmentations): if ("translate" in augmentations["RandomAffine"]): translate = augmentations["RandomAffine"]["translate"] else: translate = None if ("scale" in augmentations["RandomAffine"]): scale = augmentations["RandomAffine"]["scale"] else: scale = None if ("shear" in augmentations["RandomAffine"]): shear = augmentations["RandomAffine"]["shear"] else: shear = None if ("resample" in augmentations["RandomAffine"]): resample = augmentations["RandomAffine"]["resample"] else: resample = False if ("fillcolor" in augmentations["RandomAffine"]): fillcolor = augmentations["RandomAffine"]["fillcolor"] else: fillcolor = 0 random_affine = RandomAffine( augmentations["RandomAffine"]["degrees"], translate=translate, scale=scale, shear=shear, resample=resample, fillcolor=fillcolor, seed=seed) else: random_affine = NullAugmentation() try: if (augmentations["Randomize"]): if ("PixelRange" in augmentations): return RandomOrder( [random_crop, random_rotation, random_translation, random_shear, random_affine]) else: return RandomOrder( [random_crop, random_rotation, random_translation, random_shear, random_affine]) except: # This will fail when "Randomize" is not defined in augmentations pass return Compose([pad, random_horizontal, random_vertical, random_crop, random_rotation, random_translation, random_shear, random_affine]) ############################################################################## # Postprocessing Transforms ############################################################################## def compose_postprocessing(postprocessing): """ Compose a postprocessing transform to be performed. Params ------ postprocessing : dict - dictionary defining all preprocessing steps to be taken with their values e.g. {"Name" : "RescaleIntensity"} OR {"Name" : "StdNormalize"} Return ------ torchvision.transforms.Compose """ if (postprocessing["Name"] == "StdNormalize"): postprocess = StdNormalize() else: postprocess = RescaleIntensity(out_range=(0.0, 1.0)) return Compose([postprocess]) ############################################################################## # MULTIPLE Series Transforms (to be used on ALL flow_250_* series) ############################################################################## ############################ # Preprocessing Transforms ############################ def compose_preprocessing_multi(preprocessing): """ Compose a preprocessing transform to be performed on MULTI series. Params ------ preprocessing : dict - dictionary defining all preprocessing steps to be taken with their values e.g. {"FrameSelector" : "var", "Rescale_Intensity" : [0, 255], "Gamma_Correction" : 2.0} Return ------ torchvision.transforms.Compose """ # Frame Selector if (preprocessing["FrameSelector"]["name"] == "FrameSelectionVarMulti"): frame_selector = FrameSelectionVarMulti(n_frames=preprocessing["n_frames"]) # Rescale Intensity if ("RescaleIntensityMulti" in preprocessing): intensity_rescale = RescaleIntensityMulti(out_range=tuple(preprocessing["RescaleIntensityMulti"])) else: intensity_rescale = NullTransformMulti() return ComposeMultiChannel([frame_selector, intensity_rescale]) ############################# # Postprocessing Transforms ############################# def compose_postprocessing_multi(postprocessing): """ Compose a postprocessing transform to be performed on MULTI series. Params ------ postprocessing : dict - dictionary defining all preprocessing steps to be taken with their values e.g. {"Name" : "RescaleIntensity"} OR {"Name" : "StdNormalize"} Return ------ torchvision.transforms.Compose """ if (postprocessing["Name"] == "StdNormalizeMulti"): postprocess = StdNormalizeMulti() else: postprocess = RescaleIntensityMulti(out_range=(0.0, 1.0)) return ComposeMultiChannel([postprocess])
ukb-cardiac-mri-master
ukb/transforms/__init__.py
""" Custom preprocessing transformation functions for video/sequential frame MRI data from the UK Biobank """ import numpy as np from skimage.exposure import rescale_intensity from torchvision.transforms import Lambda class NullTransform(Lambda): """ Create a null transformation. This is to be used when a given augmentation is not selected in the config so that it simply returns the input. """ def __init__(self): """ Instantiate lambda x: x. Params ------ None """ super(NullTransform, self).__init__(lambda x: x) class FrameSelectionStd(object): """ Select subset of MRI frames based on pixel variance Assumes NUM_FRAMES X WIDTH X HEIGHT tensors TODO: Setup for 3 channel images """ def __init__(self, n_frames=15, channel=1, epsilon=0.05): """ :param n_frames: :param channel: :param epsilon: """ self.n_frames = n_frames self.channel = channel self.epsilon = epsilon def std_by_frame(self, seq, normalize=True): """ Compute standard deviation by frame :param seq: :param normalize: :return: """ # z-score transform frames z = (seq - np.mean(seq)) / np.std(seq) if normalize else seq # standard deviation per frame std = [np.std(z[i]) for i in range(seq.shape[0])] return [v - min(std) for v in std] def select_frames(self, seq, epsilon=0.05): """ Select a contiguous subset of frames based on each frame's overall pixel standard deviation. Determine cut points based on the first set of inflection points. P2 /\ / \ __/ \__/\____ P1 P3 :param seq: :param epsilon: :return: """ std = self.std_by_frame(seq) # threshold SD std = [v if v > epsilon else 0 for v in std] # find inflection points signs = [np.sign(std[i + 1] - std[i]) for i in range(len(std) - 1)] # skip if first point is no slope or negative inf_pnts = [] if signs[0] <= 0 else [0] for i in range(1, len(signs)): if signs[i] != signs[i - 1]: inf_pnts.append(i) if len(inf_pnts) < 3: raise ValueError("No inflection points found") return (inf_pnts[0], inf_pnts[2]) def __call__(self, sample): # x,y = sample # i,j = self.select_frames(x, self.epsilon) if (self.n_frames == 30): return sample i, j = self.select_frames(sample, self.epsilon) j = i + self.n_frames # return (x[i:j,...], y) return sample[i:j,...] class FrameSelectionVar(): """ Frame selector class. Select the N best frames from a series to use for classification. In this case, the N best frames are the "brightest" sequential frames. The frames with the most variance between dark and light pixels, centered around the brightest frame (frame with most variance). Nowing how the frames are structured (with a lot of noise), we konw that the best frames are where the noise dies down and the consentration is on the aortic valve. Therefore, with pixel intensities around the valve going up and intensities away from the valve go down, we get our largest variance in pixels with these frames. """ def __init__(self, n_frames=6): """ Class initialization function. Params ------ None """ self.N = n_frames def __call__(self, seq): """ Select the BEST frames from the given series. Params ------ npy_series : np.array - numpy array of the series of DICOM images. Return ------ list - list of the most best (sequential) frames """ if (self.N == seq.shape[0]): return seq # Otherwise find correct frames to output var = [fr.var() for fr in seq] varDict = dict((i, fr.var()) for i, fr in enumerate(seq)) frameIndx = [np.argmax(var)] low_, high_ = frameIndx[-1]-1, frameIndx[-1]+1 if (self.N > 1): for i in range(self.N-1): if (low_ >= 0 and high_ <= len(seq)-1): if (varDict[low_] > varDict[high_]): frameIndx.append(low_) low_ = sorted(frameIndx)[0] - 1 high_ = sorted(frameIndx)[-1] + 1 else: frameIndx.append(high_) low_ = sorted(frameIndx)[0] - 1 high_ = sorted(frameIndx)[-1] + 1 elif (low_ == -1): frameIndx.append(high_) low_ = sorted(frameIndx)[0] - 1 high_ = sorted(frameIndx)[-1] + 1 else: frameIndx.append(low_) low_ = sorted(frameIndx)[0] - 1 high_ = sorted(frameIndx)[-1] + 1 return seq[sorted(frameIndx)] class RescaleIntensity(): """Rescale pixel values of a DICOM Series so that they span low-high.""" def __init__(self, out_range=(0.0,255.0)): """ Class initialization function. Params ------ None """ self.out_range = out_range def __call__(self, series): """ Execute normalization for the given series. Params ------ seris : np.array - DICOM Series as an np.array Return ------ np.array - new normalized series """ return np.array( [rescale_intensity(1.0*frame, out_range=self.out_range) for frame in series]) class GammaCorrection(): """Enhance Gray Scale Levels of a DICOM Series frame.""" def __init__(self, gamma=2.0, intensity=255.0): """ Class initialization function. Params ------ gamma : float - gamma correction amount """ assert isinstance(gamma, (int, float)) self.gamma = gamma self.intensity = intensity def __call__(self, series): """ Execute gamma correction for the entire series. Params ------ series : np.array - DICOM Series of images as an np.array Return ------ np.array - new gamma corrected series """ return np.array([self.intensity*(1.0*frame/frame.max())**self.gamma for frame in series]) class StdNormalize(object): """Standard Deviation Normalization mu = 0, std = 1.0.""" def __call__(self, series): """ Execute std normalization for each individual image in the series. Params ------ series : np.array - series of images Return ------ stdNorm series - standard normalized series """ stdSeries = [] for img in series: stdSeries.append((img - img.mean())/img.std()) return np.array(stdSeries)
ukb-cardiac-mri-master
ukb/transforms/ukbb.py
""" Custom preprocessing transformation functions for video/sequential frame MRI data from the UK Biobank TO BE USED ON MULTI SERIES INPUTS """ import numpy as np from skimage.exposure import rescale_intensity class NullTransformMulti(): """ Create a null transformation (for multiple series inputs). This is to be used when a given augmentation is not selected in the config so that it simply returns the input. """ def __call__(self, series1, series2, series3): """ Do nothing and return the same series passed in. Params ------ seq1 : np.array - numpy array of the MAIN series of DICOM images seq2 : np.array - numpy array of the SUB series of DICOM images seq3 : np.array - numpy array of the SUB series of DICOM images Return ------ seq1, seq2, seq3 - same as input """ return series1, series2, series3 class FrameSelectionVarMulti(): """ Frame selector class (for multiple series inputs). Select the N best frames from a series to use for classification. In this case, the N best frames are the "brightest" sequential frames. The frames with the most variance between dark and light pixels, centered around the brightest frame (frame with most variance). Nowing how the frames are structured (with a lot of noise), we konw that the best frames are where the noise dies down and the consentration is on the aortic valve. Therefore, with pixel intensities around the valve going up and intensities away from the valve go down, we get our largest variance in pixels with these frames. """ def __init__(self, n_frames=6): """ Class initialization function. Params ------ None """ self.N = n_frames def __call__(self, seq1, seq2, seq3): """ Select the BEST frames from seq1 and get those frames only for all seq. Params ------ seq1 : np.array - numpy array of the MAIN series of DICOM images seq2 : np.array - numpy array of the SUB series of DICOM images seq3 : np.array - numpy array of the SUB series of DICOM images Return ------ seq1, seq2, seq3 - series of essential (selected) frames (drop the rest) """ if (self.N == seq1.shape[0]): return seq1, seq2, seq3 # Otherwise find correct frames to output var = [fr.var() for fr in seq1] varDict = dict((i, fr.var()) for i, fr in enumerate(seq1)) frameIndx = [np.argmax(var)] low_, high_ = frameIndx[-1]-1, frameIndx[-1]+1 if (self.N > 1): for i in range(self.N-1): if (low_ >= 0 and high_ <= len(seq1)-1): if (varDict[low_] > varDict[high_]): frameIndx.append(low_) low_ = sorted(frameIndx)[0] - 1 high_ = sorted(frameIndx)[-1] + 1 else: frameIndx.append(high_) low_ = sorted(frameIndx)[0] - 1 high_ = sorted(frameIndx)[-1] + 1 elif (low_ == -1): frameIndx.append(high_) low_ = sorted(frameIndx)[0] - 1 high_ = sorted(frameIndx)[-1] + 1 else: frameIndx.append(low_) low_ = sorted(frameIndx)[0] - 1 high_ = sorted(frameIndx)[-1] + 1 return seq1[sorted(frameIndx)], seq2[sorted(frameIndx)], seq3[sorted(frameIndx)] class RescaleIntensityMulti(): """Rescale pixel values of multiple DICOM Series so that they span low-high.""" def __init__(self, out_range=(0.0,255.0)): """ Class initialization function. Params ------ None """ self.out_range = out_range def __call__(self, series1, series2, series3): """ Execute normalization for all of the given series. NOTE : series1 is the MAIN series Params ------ seris1 : np.array - MAIN DICOM Series as an np.array seris2 : np.array - SUB DICOM Series as an np.array seris3 : np.array - SUB DICOM Series as an np.array Return ------ np.array - new normalized series """ return (np.array([rescale_intensity(1.0*frame, out_range=self.out_range) for frame in series1]), np.array([rescale_intensity(1.0*frame, out_range=self.out_range) for frame in series2]), np.array([rescale_intensity(1.0*frame, out_range=self.out_range) for frame in series3])) class StdNormalizeMulti(object): """Standard Deviation Normalization for multiple series mu = 0, std = 1.0.""" def __call__(self, series1, series2, series3): """ Execute std normalization for each individual image in all of the series. Params ------ seris1 : np.array - MAIN DICOM Series as an np.array seris2 : np.array - SUB DICOM Series as an np.array seris3 : np.array - SUB DICOM Series as an np.array Return ------ stdNorm series1 series2 and series3 - standard normalized series """ stdSeries1, stdSeries2, stdSeries3 = [], [], [] for i, img in enumerate(series1): stdSeries1.append((img - img.mean())/img.std()) stdSeries2.append((series2[i] - series2[i].mean())/series2[i].std()) stdSeries3.append((series3[i] - series3[i].mean())/series3[i].std()) return np.array(stdSeries1), np.array(stdSeries2), np.array(stdSeries3)
ukb-cardiac-mri-master
ukb/transforms/multi_series.py
ukb-cardiac-mri-master
ukb/transforms/debug.py
""" Custom augmentation transform functions for video/sequential frame MRI data from the UK Biobank """ import math import random import numbers import collections import numpy as np from PIL import Image from torchvision.transforms import functional as F from torchvision.transforms import Lambda ############################################################################## # Helper Functions ############################################################################## def _numpy_to_PIL(img): """ Convert a given numpy array image into a PIL Image. Params ------ img : np.array - image to be converted Return ------ PIL.Image - Image type of numpy array """ return Image.fromarray(img) def _PIL_to_numpy(img): """ Convert a given PIL.Image into a numpy array. Params ------ img : PIL.Image - image to be converted Return ------ np.array - numpy array of PIL.Image """ return np.array(img) def _get_inverse_affine_matrix(center, angle, translate, scale, shear): # Helper method to compute inverse matrix for affine transformation # As it is explained in PIL.Image.rotate # We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1 # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1] # C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1] # RSS is rotation with scale and shear matrix # RSS(a, scale, shear) = [ cos(a)*scale -sin(a + shear)*scale 0] # [ sin(a)*scale cos(a + shear)*scale 0] # [ 0 0 1] # Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1 angle = math.radians(angle) shear = math.radians(shear) scale = 1.0 / scale # Inverted rotation matrix with scale and shear d = math.cos(angle + shear) * math.cos(angle) + math.sin(angle + shear) * math.sin(angle) matrix = [ math.cos(angle + shear), math.sin(angle + shear), 0, -math.sin(angle), math.cos(angle), 0 ] matrix = [scale / d * m for m in matrix] # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1 matrix[2] += matrix[0] * (-center[0] - translate[0]) + matrix[1] * (-center[1] - translate[1]) matrix[5] += matrix[3] * (-center[0] - translate[0]) + matrix[4] * (-center[1] - translate[1]) # Apply center translation: C * RSS^-1 * C^-1 * T^-1 matrix[2] += center[0] matrix[5] += center[1] return matrix def affine(img, angle, translate, scale, shear, resample=0, fillcolor=None): """Apply affine transformation on the image keeping image center invariant Args: img (PIL Image): PIL Image to be rotated. angle ({float, int}): rotation angle in degrees between -180 and 180, clockwise direction. translate (list or tuple of integers): horizontal and vertical translations (post-rotation translation) scale (float): overall scale shear (float): shear angle value in degrees between -180 to 180, clockwise direction. resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional): An optional resampling filter. See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST. fillcolor (int): Optional fill color for the area outside the transform in the output image. """ if not F._is_pil_image(img): raise TypeError('img should be PIL Image. Got {}'.format(type(img))) assert isinstance(translate, (tuple, list)) and len(translate) == 2, \ "Argument translate should be a list or tuple of length 2" assert scale > 0.0, "Argument scale should be positive" output_size = img.size center = (img.size[0] * 0.5 + 0.5, img.size[1] * 0.5 + 0.5) matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear) return img.transform(output_size, Image.AFFINE, matrix, resample, fillcolor=fillcolor) ############################################################################## # Augmentation Functions ############################################################################## class NullAugmentation(Lambda): """ Create a null augmentation transformation. This is to be used when a given augmentation is not selected in the config so that it simply returns the input. """ def __init__(self): """ Instantiate lambda x: x. Params ------ None """ super(NullAugmentation, self).__init__(lambda x: x) class RandomCrop(object): """Crop a given MRI Image Series at a random location.""" def __init__(self, size, padding=0, seed=1234): """ Class initialization function. Params ------ size : (sequence or int) - Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made padding : (int or sequence) - (Optional) padding on each border of the image Default is 0, i.e no padding. If a sequence of length 4 is provided, it is used to pad left, top, right, bottom borders respectively """ if isinstance(size, numbers.Number): self.size = (int(size), int(size)) else: self.size = size self.padding = padding np.random.seed(seed) @staticmethod def get_params(img, output_size): """Get parameters for ``crop`` for a random crop. Args: img (PIL Image): Image to be cropped. output_size (tuple): Expected output size of the crop. Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for random crop. """ w, h = img.size th, tw = output_size if w == tw and h == th: return 0, 0, h, w i = np.random.randint(0, h - th) j = np.random.randint(0, w - tw) return i, j, th, tw def __call__(self, series): """ Execute random cropping of series. Params ------ series : np.array MRI Series to be cropped Return ------ np.array - Cropped series """ # Convert all images in the series to PIL.Image types PIL_series = [_numpy_to_PIL(img) for img in series] # Pad all images in the series if (self.padding > 0): PIL_series = [F.pad(img, self.padding) for img in PIL_series] # Find crop params i, j, h, w = self.get_params(PIL_series[0], self.size) # Crop the entire series PIL_series = [F.crop(img, i, j, h, w) for img in PIL_series] # Convert all images back to numpy array return np.array([_PIL_to_numpy(img) for img in PIL_series]) class RandomRotation(object): """Rotate a MRI Image Series by an angle.""" def __init__(self, degrees, resample=False, center=None, seed=1234): """ Class initialization function. Params ------ degrees : (sequence or float or int): - Range of degrees to select from. If degrees is a number instead of sequence like (min, max), the range of degrees will be (-degrees, +degrees) resample: (PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC): An optional resampling filter. See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST. center : (2-tuple, optional) - Optional center of rotation. Origin is the upper left corner. Default is the center of the image. """ if isinstance(degrees, numbers.Number): if degrees < 0: raise ValueError("If degrees is a single number, it must be positive.") self.degrees = (-degrees, degrees) else: if len(degrees) != 2: raise ValueError("If degrees is a sequence, it must be of len 2.") self.degrees = degrees if (resample): if (resample == 'NEAREST'): self.resample = Image.NEAREST elif (resample == 'BILINEAR'): self.resample = Image.BILINEAR else: self.resample = Image.BICUBIC else: self.resample = Image.BILINEAR self.center = center np.random.seed(seed) @staticmethod def get_params(degrees): """Get parameters for ``rotate`` for a random rotation. Returns: sequence: params to be passed to ``rotate`` for random rotation. """ angle = np.random.uniform(degrees[0], degrees[1]) return angle def __call__(self, series): """ Execute random cropping of series. Params ------ series : np.array MRI Series to be rotated Return ------ np.array - Rotated series """ # Randomly select angle to rotate the series angle = self.get_params(self.degrees) # Convert numpy series to PIL series PIL_series = [_numpy_to_PIL(img) for img in series] # Rotate all images in the series PIL_series = [F.rotate(img, angle, self.resample, self.center) for img in PIL_series] # Return numpy array return np.array([_PIL_to_numpy(img) for img in PIL_series]) def __repr__(self): format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees) format_string += ', resample={0}'.format(self.resample) format_string += ', expand={0}'.format(self.expand) if self.center is not None: format_string += ', center={0}'.format(self.center) format_string += ')' return format_string class RandomTranslation(object): """Random translation (shifting) of a MRI Image Series.""" def __init__(self, translate=None, resample=False, seed=1234): """ Class initialization function. Params ------ translate : (tuple, optional) - tuple of maximum absolute fraction for horizontal and vertical translations. For example translate=(a, b), then horizontal shift is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is randomly sampled in the range -img_height * b < dy < img_height * b Will not translate by default. resample: (PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC) - An optional resampling filter. See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST. """ if translate is not None: assert isinstance(translate, (tuple, list)) and len(translate) == 2, \ "translate should be a list or tuple and it must be of length 2." for t in translate: if not (0.0 <= t <= 1.0): raise ValueError("translation values should be between 0 and 1") self.translate = translate if (resample): if (resample == 'NEAREST'): self.resample = Image.NEAREST elif (resample == 'BILINEAR'): self.resample = Image.BILINEAR else: self.resample = Image.BICUBIC else: self.resample = Image.BILINEAR np.random.seed(seed) @staticmethod def get_params(translate, img_size): """Get parameters for translation Returns: sequence: params to be passed to the translation """ if translate is not None: max_dx = translate[0] * img_size[0] max_dy = translate[1] * img_size[1] translations = (np.round(np.random.uniform(-max_dx, max_dx)), np.round(np.random.uniform(-max_dy, max_dy))) else: translations = (0, 0) angle = 0.0 scale = 1.0 shear = 0.0 return angle, translations, scale, shear def __call__(self, series): """ Execute random translation of series. Params ------ series : np.array MRI Series to be translated Return ------ np.array - Translated series """ # Convert numpy series to PIL series PIL_series = [_numpy_to_PIL(img) for img in series] # Get random params for Affine Transform ret = self.get_params(self.translate, PIL_series[0].size) # Compute Affine Transform for all images in the series PIL_series = [affine(img, *ret, resample=self.resample, fillcolor=0) for img in PIL_series] # Return numpy array return np.array([_PIL_to_numpy(img) for img in PIL_series]) def __repr__(self): if self.translate is not None: s = 'translate={translate}' if self.resample > 0: s += ', resample={resample}' s += ')' d = dict(self.__dict__) d['resample'] = _pil_interpolation_to_str[d['resample']] return s.format(name=self.__class__.__name__, **d) class RandomShear(object): """Random shear (stretching) of a MRI Image Series.""" def __init__(self, shear=None, resample=False, seed=1234): """ Class initialization function. Params ------ shear : (sequence or float or int, optional) - Range of degrees to select from. If degrees is a number instead of sequence like (min, max), the range of degrees will be (-degrees, +degrees). Will not apply shear by default resample: (PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC) - An optional resampling filter. See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST. """ if shear is not None: if isinstance(shear, numbers.Number): if shear < 0: raise ValueError("If shear is a single number, it must be positive.") self.shear = (-shear, shear) else: assert isinstance(shear, (tuple, list)) and len(shear) == 2, \ "shear should be a list or tuple and it must be of length 2." self.shear = shear else: self.shear = shear if (resample): if (resample == 'NEAREST'): self.resample = Image.NEAREST elif (resample == 'BILINEAR'): self.resample = Image.BILINEAR else: self.resample = Image.BICUBIC else: self.resample = Image.BILINEAR np.random.seed(seed) @staticmethod def get_params(shears): """Get parameters for shearing Returns: sequence: params to be passed to the shearing transformation """ angle = 0.0 translations = (0, 0) scale = 1.0 if shears is not None: shear = np.random.uniform(shears[0], shears[1]) else: shear = 0.0 return angle, translations, scale, shear def __call__(self, series): """ Execute random shear transform of series. Params ------ series : np.array MRI Series to be transformed Return ------ np.array - Shear transformed series """ # Get random params for Affine Transform ret = self.get_params(self.shear) # Convert numpy series to PIL series PIL_series = [_numpy_to_PIL(img) for img in series] # Compute Affine Transform for all images in the series PIL_series = [affine(img, *ret, resample=self.resample, fillcolor=0) for img in PIL_series] # Return numpy array return np.array([_PIL_to_numpy(img) for img in PIL_series]) def __repr__(self): if self.shear is not None: s = 'shear={shear}' if self.resample > 0: s += ', resample={resample}' s += ')' d = dict(self.__dict__) d['resample'] = _pil_interpolation_to_str[d['resample']] return s.format(name=self.__class__.__name__, **d) class RandomAffine(object): """Random affine transformation of a MRI Image Series.""" def __init__(self, degrees, translate=None, scale=None, shear=None, resample=False, fillcolor=0, seed=1234): """ Class initialization function. Args: degrees : (sequence or float or int) - Range of degrees to select from. If degrees is a number instead of sequence like (min, max), the range of degrees will be (-degrees, +degrees). Set to 0 to desactivate rotations. translate : (tuple, optional) - tuple of maximum absolute fraction for horizontal and vertical translations. For example translate=(a, b), then horizontal shift is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is randomly sampled in the range -img_height * b < dy < img_height * b Will not translate by default. scale : (tuple, optional) - scaling factor interval, e.g (a, b), then scale is randomly sampled from the range a <= scale <= b Will keep original scale by default. shear : (sequence or float or int, optional) - Range of degrees to select from. If degrees is a number instead of sequence like (min, max), the range of degrees will be (-degrees, +degrees). Will not apply shear by default resample: (PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC) - An optional resampling filter. See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST. fillcolor : (int) - Optional fill color for the area outside the transform in the output image. """ if isinstance(degrees, numbers.Number): if degrees < 0: raise ValueError("If degrees is a single number, it must be positive.") self.degrees = (-degrees, degrees) else: assert isinstance(degrees, (tuple, list)) and len(degrees) == 2, \ "degrees should be a list or tuple and it must be of length 2." self.degrees = degrees if translate is not None: assert isinstance(translate, (tuple, list)) and len(translate) == 2, \ "translate should be a list or tuple and it must be of length 2." for t in translate: if not (0.0 <= t <= 1.0): raise ValueError("translation values should be between 0 and 1") self.translate = translate if scale is not None: assert isinstance(scale, (tuple, list)) and len(scale) == 2, \ "scale should be a list or tuple and it must be of length 2." for s in scale: if s <= 0: raise ValueError("scale values should be positive") self.scale = scale if shear is not None: if isinstance(shear, numbers.Number): if shear < 0: raise ValueError("If shear is a single number, it must be positive.") self.shear = (-shear, shear) else: assert isinstance(shear, (tuple, list)) and len(shear) == 2, \ "shear should be a list or tuple and it must be of length 2." self.shear = shear else: self.shear = shear if (resample): if (resample == 'NEAREST'): self.resample = Image.NEAREST elif (resample == 'BILINEAR'): self.resample = Image.BILINEAR else: self.resample = Image.BICUBIC else: self.resample = Image.BILINEAR self.fillcolor = fillcolor np.random.seed(seed) @staticmethod def get_params(degrees, translate, scale_ranges, shears, img_size): """Get parameters for affine transformation Returns: sequence: params to be passed to the affine transformation """ angle = np.random.uniform(degrees[0], degrees[1]) if translate is not None: max_dx = translate[0] * img_size[0] max_dy = translate[1] * img_size[1] translations = (np.round(np.random.uniform(-max_dx, max_dx)), np.round(np.random.uniform(-max_dy, max_dy))) else: translations = (0, 0) if scale_ranges is not None: scale = np.random.uniform(scale_ranges[0], scale_ranges[1]) else: scale = 1.0 if shears is not None: shear = np.random.uniform(shears[0], shears[1]) else: shear = 0.0 return angle, translations, scale, shear def __call__(self, series): """ Execute random affine transform of series. Params ------ series : np.array MRI Series to be transformed Return ------ np.array - Affine transformed series """ # Convert numpy series to PIL series PIL_series = [_numpy_to_PIL(img) for img in series] # Get random params for Affine Transform ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, PIL_series[0].size) # Compute Affine Transform for all images in the series PIL_series = [affine(img, *ret, resample=self.resample, fillcolor=self.fillcolor) for img in PIL_series] # Return numpy array return np.array([_PIL_to_numpy(img) for img in PIL_series]) def __repr__(self): s = '{name}(degrees={degrees}' if self.translate is not None: s += ', translate={translate}' if self.scale is not None: s += ', scale={scale}' if self.shear is not None: s += ', shear={shear}' if self.resample > 0: s += ', resample={resample}' if self.fillcolor != 0: s += ', fillcolor={fillcolor}' s += ')' d = dict(self.__dict__) d['resample'] = _pil_interpolation_to_str[d['resample']] return s.format(name=self.__class__.__name__, **d) class Pad(object): """Pad the given Series on all sides with the given "pad" value. Args: padding (int or tuple): Padding on each border. If a single int is provided this is used to pad all borders. If tuple of length 2 is provided this is the padding on left/right and top/bottom respectively. If a tuple of length 4 is provided this is the padding for the left, top, right and bottom borders respectively. fill: Pixel fill value for constant fill. Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively. This value is only used when the padding_mode is constant padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant. constant: pads with a constant value, this value is specified with fill edge: pads with the last value at the edge of the image reflect: pads with reflection of image (without repeating the last value on the edge) padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode will result in [3, 2, 1, 2, 3, 4, 3, 2] symmetric: pads with reflection of image (repeating the last value on the edge) padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode will result in [2, 1, 1, 2, 3, 4, 4, 3] """ def __init__(self, padding, fill=0, padding_mode='constant'): assert isinstance(padding, (numbers.Number, tuple)) assert isinstance(fill, (numbers.Number, str, tuple)) assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'] if isinstance(padding, collections.Sequence) and len(padding) not in [2, 4]: raise ValueError("Padding must be an int or a 2, or 4 element tuple, not a " + "{} element tuple".format(len(padding))) self.padding = padding self.fill = fill self.padding_mode = padding_mode def __call__(self, series): """ Execute padding for series. Params ------ series : np.array MRI Series to be padded Return ------ np.array - Padded series """ # Convert numpy series to PIL series PIL_series = [_numpy_to_PIL(img) for img in series] # Return numpy array return np.array([_PIL_to_numpy(F.pad(img, self.padding, self.fill)) for img in PIL_series]) def __repr__(self): return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'.\ format(self.padding, self.fill, self.padding_mode) class RandomHorizontalFlip(object): """Horizontally flip the given Series randomly with a given probability. Args: p (float): probability of the image being flipped. Default value is 0.5 """ def __init__(self, p=0.5, seed=1234): self.p = p np.random.seed(seed) def __call__(self, series): """ Execute random horizontal flip of series. Params ------ series : np.array MRI Series to be padded Return ------ np.array - Horizontally flipped series (or not) """ if np.random.random() < self.p: # Convert numpy series to PIL series PIL_series = [_numpy_to_PIL(img) for img in series] # Compute Flip PIL_series = [F.hflip(img) for img in PIL_series] # Convert PIL series to numpy series series = np.array([_PIL_to_numpy(img) for img in PIL_series]) return series def __repr__(self): return self.__class__.__name__ + '(p={})'.format(self.p) class RandomVerticalFlip(object): """Vertically flip the given Series randomly with a given probability. Args: p (float): probability of the image being flipped. Default value is 0.5 """ def __init__(self, p=0.5, seed=1234): self.p = p np.random.seed(seed) def __call__(self, series): """ Execute random vertical flip of series. Params ------ series : np.array MRI Series to be padded Return ------ np.array - Vertically flipped series (or not) """ if np.random.random() < self.p: # Convert numpy series to PIL series PIL_series = [_numpy_to_PIL(img) for img in series] # Compute Flip PIL_series = [F.vflip(img) for img in PIL_series] # Convert PIL series to numpy series series = np.array([_PIL_to_numpy(img) for img in PIL_series]) return series def __repr__(self): return self.__class__.__name__ + '(p={})'.format(self.p)
ukb-cardiac-mri-master
ukb/transforms/augmentations.py
ukb-cardiac-mri-master
ukb/weak_supervision/coral/coral/__init__.py
import coral_sa as csa def is_square(width, height): if width == height: return True else: return False def is_large(width, height): if width * height > 100: return True else: return False def is_small(width, height): if width * height < 10: return True # Just for testing. elif width * height <= 30: return True elif width * height + height * height >= 30: return True else: return False tests = [is_square, is_large, is_small] coral_ast = csa.convert_to_coral_ast(is_small) vocabs_used = csa.extract_vocabularies(coral_ast) print "AST:", coral_ast print "Vocabs used:", vocabs_used
ukb-cardiac-mri-master
ukb/weak_supervision/coral/coral/old_sa/tests.py
import coral_types as ct # A basic node in an AST. # This is meant to be subclassed. class Expression(object): def __repr__(self): return str(self) def children(self): return NotImplementedError def walk(self, f): """ Walks the AST, applying the function f to each node in pre-order. """ for child in self.children(): child.walk(f) f(self) def __str__(self): return "???" class LabelingFunction(Expression): def __init__(self, body, vocabs): # A list of subexpressions. self.body = body # A list of vocabularies, identified via the vocab name. # Each latent vocabulary is derived from these vocabularies. self.vocabs = vocabs self.ty = ct.LabelingFunctionType def children(self): return self.body def __str__(self): if isinstance(self.body, list): return str(self.body) else: return str(self.body) ## Literals class VocabLiteral(Expression): def __init__(self, name): self.name = name # The type is just the name. self.ty = ct.VocabType([self.name]) def children(self): return [] def __str__(self): return self.name class TrueLabelLiteral(Expression): def __init__(self): self.ty = ct.LabelType() def children(self): return [] def __str__(self): return "true" class FalseLabelLiteral(Expression): def __init__(self): self.ty = ct.LabelType() def children(self): return [] def __str__(self): return "false" class AbstainLabelLiteral(Expression): def __init__(self): self.ty = ct.LabelType() def children(self): return [] def __str__(self): return "abstain" class PythonLiteral(Expression): """ A catch-all for sub-expressions we don't care about. """ def __init__(self, value): self.value = value self.ty = ct.PythonBasicExpressionType() def children(self): return [] def __str__(self): return str(self.value) ## Etc Expressions important to Coral. class IfThen(Expression): def __init__(self, cond, true_branch): self.cond = cond self.true_branch = true_branch self.ty = ct.PythonBasicExpressionType() def children(self): return [self.cond, self.true_branch] def __str__(self): return "if ({}) then ({})".format(self.cond, self.true_branch) class Return(Expression): def __init__(self, value): self.value = value # Has no sensible return type. self.ty = ct.PythonBasicExpressionType() def children(self): return [self.value] def __str__(self): return "return {}".format(self.value) ## Basic Binary Operations class BinOp(Expression): def __init__(self, left, right): self.left = left self.right = right left_isvocab = isinstance(self.left.ty, ct.VocabType) right_isvocab = isinstance(self.right.ty, ct.VocabType) if left_isvocab and right_isvocab: # This is a new latent vocabulary composed of existing vocabularies. self.ty = ct.VocabType(self.left.ty.deps + self.right.ty.deps) elif left_isvocab: self.ty = ct.VocabType(self.left.ty.deps) elif rght_isvocab: self.ty = ct.VocabType(self.right.ty.deps) else: self.ty = ct.PythonBasicExpressionType() def children(self): return [self.left, self.right] def printer(self, operator, prefix=False): if prefix: return "{}({}, {})".format(operator, self.left, self.right) else: return "({} {} {})".format(self.left, operator, self.right) class Add(BinOp): def __str__(self): return self.printer("+") class Subtract(BinOp): def __str__(self): return self.printer("-") class Multiply(BinOp): def __str__(self): return self.printer("*") class Divide(BinOp): def __str__(self): return self.printer("/") class Equal(BinOp): def __str__(self): return self.printer("==") class GreaterThan(BinOp): def __str__(self): return self.printer(">") class GreaterThanOrEqual(BinOp): def __str__(self): return self.printer(">=") class LessThan(BinOp): def __str__(self): return self.printer("<") class LessThanOrEqual(BinOp): def __str__(self): return self.printer("<=") ## Meta doesn't handle dictionaries, but they're probably important for labeling functions... # TODO
ukb-cardiac-mri-master
ukb/weak_supervision/coral/coral/old_sa/coral_sa/coral_ast.py
import ast import meta import coral_ast as cast import coral_types as ct # Public API # Turn this on for printing. verbose = False def vprint(a): global verbose if verbose: print a def convert_to_coral_ast(func): """ Converts a Python function to a Coral AST. """ # A Python AST. tree = meta.decompiler.decompile_func(func) vprint(ast.dump(tree)) coral_tree = _generate_coral_ast(tree) vprint(coral_tree) return coral_tree # Ghetto a.f. vocabs = [] def extract_vocabularies(coral_tree): global vocabs assert isinstance(coral_tree, cast.LabelingFunction) vocabs = [str(v) for v in coral_tree.vocabs] def _extract_vocabs(node): global vocabs if isinstance(node.ty, ct.VocabType): vocabs.append(str(node.ty)) coral_tree.walk(_extract_vocabs) # Uniquify return list(set(list(vocabs))) ### Private Stuff. def _generate_coral_ast(node, names={}): """ Generates a Coral AST given a Python AST. """ if isinstance(node, ast.FunctionDef): args = [name.id for name in node.args.args] for arg in args: names[arg] = cast.VocabLiteral(arg) body = [_generate_coral_ast(b, names) for b in node.body] expr = cast.LabelingFunction(body, args) return expr if isinstance(node, ast.Return): return cast.Return(_generate_coral_ast(node.value, names)) if isinstance(node, ast.If): cond = _generate_coral_ast(node.test, names) true_branch = _generate_coral_ast(node.body[0], names) expr = cast.IfThen(cond, true_branch) vprint(expr) return expr if isinstance(node, ast.Compare): left = _generate_coral_ast(node.left, names) right = _generate_coral_ast(node.comparators[0], names) op = node.ops[0] if isinstance(op, ast.Eq): expr = cast.Equal(left, right) vprint(expr) return expr elif isinstance(op, ast.Gt): expr = cast.GreaterThan(left, right) vprint(expr) return expr elif isinstance(op, ast.Lt): expr = cast.LessThan(left, right) vprint(expr) return expr elif isinstance(op, ast.LtE): expr = cast.LessThanOrEqual(left, right) vprint(expr) return expr elif isinstance(op, ast.GtE): expr = cast.GreaterThanOrEqual(left, right) vprint(expr) return expr if isinstance(node, ast.BinOp): if isinstance(node.op, ast.Add): expr = cast.Add(_generate_coral_ast(node.left, names), _generate_coral_ast(node.right, names)) elif isinstance(node.op, ast.Mult): expr = cast.Multiply(_generate_coral_ast(node.left, names), _generate_coral_ast(node.right, names)) if isinstance(node.op, ast.Sub): expr = cast.Subtract(_generate_coral_ast(node.left, names), _generate_coral_ast(node.right, names)) vprint(expr) return expr if isinstance(node, ast.Name): if node.id == "True": expr = cast.TrueLabelLiteral() elif node.id == "False": expr = cast.FalseLabelLiteral() elif node.id == "None": expr = cast.AbstainLabelLiteral() else: expr = names[node.id] vprint(expr) return expr if isinstance(node, ast.Num): return cast.PythonLiteral(node.n)
ukb-cardiac-mri-master
ukb/weak_supervision/coral/coral/old_sa/coral_sa/coral_funcs.py
# These are directly accessible. from coral_funcs import *
ukb-cardiac-mri-master
ukb/weak_supervision/coral/coral/old_sa/coral_sa/__init__.py
class Type(object): pass class LabelingFunctionType(Type): def __str__(self): return "LF" class VocabType(Type): def __init__(self, deps): # This vocabulary is dependent on the given list of vocabulary types. self.deps = list(set(deps)) def __str__(self): return "|".join(self.deps) class LabelType(Type): def __str__(self): return "label" # Hmm...need to think about this a little. class Threshold(Type): pass class PythonBasicExpressionType(Type): # Encapsulates all the Python types we don't care about, e.g., # booleans, integers, lists, classes, and so forth.... pass
ukb-cardiac-mri-master
ukb/weak_supervision/coral/coral/old_sa/coral_sa/coral_types.py
""" Subpackage for learning the structures of models. """ from .gen_learning import CoralModel from .structure_learning import CoralDependencySelector
ukb-cardiac-mri-master
ukb/weak_supervision/coral/coral/learning/__init__.py
from numbskull import NumbSkull from numbskull.inference import * from numbskull.numbskulltypes import Weight, Variable, Factor, FactorToVar from numbskull.udf import * import numpy as np import random class CoralModel(object): def __init__(self, class_prior=False, lf_prior=False, lf_propensity=False, lf_class_propensity=False, seed=271828): self.class_prior = class_prior self.lf_prior = lf_prior self.lf_propensity = lf_propensity self.lf_class_propensity = lf_class_propensity self.weights = None self.rng = random.Random() self.rng.seed(seed) def train(self, V, cardinality, L, L_offset, y=None, deps=(), init_acc = 1.0, init_deps=0.0, init_class_prior=-1.0, epochs=100, step_size=None, decay=0.99, reg_param=0.1, reg_type=2, verbose=False, truncation=10, burn_in=50, timer=None): n_data = V.shape[0] step_size = step_size or 1.0 / n_data reg_param_scaled = reg_param / n_data # self._process_dependency_graph(L, deps) weight, variable, factor, ftv, domain_mask, n_edges = self._compile(V, cardinality, L, L_offset, y, deps, init_acc, init_deps) # , init_deps, init_class_prior) fg = NumbSkull(n_inference_epoch=0, n_learning_epoch=epochs, stepsize=step_size, decay=decay, reg_param=reg_param_scaled, regularization=reg_type, truncation=truncation, quiet=(not verbose), verbose=verbose, learn_non_evidence=True, burn_in=burn_in) fg.loadFactorGraph(weight, variable, factor, ftv, domain_mask, n_edges) if timer is not None: timer.start() fg.learning(out=False) if timer is not None: timer.end() self.weights = fg.factorGraphs[0].weight_value[0][:len(L)] self.dep_weights = fg.factorGraphs[0].weight_value[0][len(L):] self.lf_accuracy = 1. / (1. + np.exp(-self.weights[:len(L)])) # self._process_learned_weights(L, fg) def marginals(self, V, cardinality, L, L_offset, deps=(), init_acc = 1.0, init_deps=1.0, init_class_prior=-1.0, epochs=100, step_size=None, decay=0.99, verbose=False, burn_in=50, timer=None): if self.weights is None: raise ValueError("Must fit model with train() before computing marginal probabilities.") y = None weight, variable, factor, ftv, domain_mask, n_edges = self._compile(V, cardinality, L, L_offset, y, deps, self.weights, self.dep_weights) fg = NumbSkull(n_inference_epoch=epochs, n_learning_epoch=0, stepsize=step_size, decay=decay, quiet=(not verbose), verbose=verbose, learn_non_evidence=True, burn_in=burn_in, sample_evidence=False) fg.loadFactorGraph(weight, variable, factor, ftv, domain_mask, n_edges) fg.inference(out=False) marginals = fg.factorGraphs[0].marginals[:V.shape[0]] return marginals def _compile(self, V, cardinality, L, L_offset, y, deps, init_acc, init_deps): """ Compiles a generative model based on L and the current labeling function dependencies. """ ### Error Checking ### # Check L_offset is valid index = np.flatnonzero(UdfStart == L_offset) if len(index) == 0: raise ValueError("L_offset " + str(L_offset) + " does not correspond to a known application") if len(index) > 1: raise ValueError("L_offset " + str(L_offset) + " found multiple times") index = index[0] # Check L is the right size if len(L) != LfCount[index]: raise ValueError("Wrong number of LFs passed: (" + str(len(L)) + " given and " + str(LfCount[index]) + " in udf.py)") # Check cardinality of each LF is right for i in range(len(L)): if len(L[i]) != UdfCardinality[UdfCardinalityStart[index] + i]: raise ValueError("LF " + str(i) + " has the wrong cardinality: (" + str(len(L[i])) + " given and " + str(UdfCardinality[UdfCardinalityStart[index] + i]) + " in udf.py)") # Check that there are enough vocab terms for i in range(len(L)): for j in range(len(L[i])): if L[i][j] >= V.shape[1]: raise ValueError("LF " + str(i) + " uses vocab " + str(L[i][j]) + " when there are only " + str(V.shape[1]) + " terms") ### Set up factor graph ### n_data = V.shape[0] n_vocab = V.shape[1] n_lf = len(L) n_weights = n_lf + len(deps) n_vars = n_data * (n_vocab + 1) n_factors = n_data * n_weights n_edges = n_data * (sum([len(l) + 1 for l in L]) + 2 * len(deps)) weight = np.zeros(n_weights, Weight) variable = np.zeros(n_vars, Variable) factor = np.zeros(n_factors, Factor) ftv = np.zeros(n_edges, FactorToVar) domain_mask = np.zeros(n_vars, np.bool) # # Compiles weight matrix # for i in range(n_weights): weight[i]['isFixed'] = False if i < n_lf: if type(init_acc) == int or type(init_acc) == float: weight[i]['initialValue'] = np.float64(init_acc) else: weight[i]['initialValue'] = init_acc[i] else: if type(init_deps) == int or type(init_deps) == float: weight[i]['initialValue'] = np.float64(init_deps) else: weight[i]['initialValue'] = init_deps[i - n_lf] # # Compiles variable matrix # # True Label y for i in range(n_data): variable[i]['isEvidence'] = False if (y is None) else True variable[i]['initialValue'] = self.rng.randrange(0, 2) if (y is None) else (1 if y[i] == 1 else 0) variable[i]["dataType"] = 0 variable[i]["cardinality"] = 2 # Vocabulary for i in range(n_data): for j in range(n_vocab): variable[n_data + i * n_vocab + j]["isEvidence"] = True variable[n_data + i * n_vocab + j]["initialValue"] = V[i, j] variable[n_data + i * n_vocab + j]["dataType"] = 0 variable[n_data + i * n_vocab + j]["cardinality"] = cardinality[j] if V[i, j] >= cardinality[j]: raise ValueError("Vocab " + str(j) + " contains " + str(V[i, j]) + " even though it has a cardinality of " + str(cardinality[j])) # # Compiles factor and ftv matrices # index = 0 # Accuracy for i in range(n_data): for j in range(n_lf): factor[i * n_lf + j]["factorFunction"] = L_offset + j factor[i * n_lf + j]["weightId"] = j factor[i * n_lf + j]["featureValue"] = 1.0 factor[i * n_lf + j]["arity"] = len(L[j]) + 1 factor[i * n_lf + j]["ftv_offset"] = index for k in range(len(L[j])): ftv[index]["vid"] = n_data + i * n_vocab + L[j][k] ftv[index]["dense_equal_to"] = 0 # not actually used index += 1 ftv[index]["vid"] = i ftv[index]["dense_equal_to"] = 0 # not actually used index += 1 # Dependencies for i in range(n_data): for j in range(len(deps)): factor[n_lf * n_data + i * len(deps) + j]["factorFunction"] = FUNC_CORAL_GEN_DEP_SIMILAR factor[n_lf * n_data + i * len(deps) + j]["weightId"] = n_lf + j factor[n_lf * n_data + i * len(deps) + j]["featureValue"] = 1.0 factor[n_lf * n_data + i * len(deps) + j]["arity"] = 2 factor[n_lf * n_data + i * len(deps) + j]["ftv_offset"] = index ftv[index + 0]["vid"] = n_data + i * n_vocab + deps[j][0] ftv[index + 0]["dense_equal_to"] = 0 # not actually used ftv[index + 1]["vid"] = n_data + i * n_vocab + deps[j][1] ftv[index + 1]["dense_equal_to"] = 0 # not actually used index += 2 return weight, variable, factor, ftv, domain_mask, n_edges
ukb-cardiac-mri-master
ukb/weak_supervision/coral/coral/learning/gen_learning.py
from numba import jit import numpy as np import random from numbskull.udf import * from numbskull.numbskulltypes import * class CoralDependencySelector(object): """ Fast method for identifying dependencies among labeling functions. :param seed: seed for initializing state of Numbskull variables """ def __init__(self, seed=271828): self.rng = random.Random() self.rng.seed(seed) def select(self, V, cardinality, L, UDF_SET, threshold=0.05, truncation=10): """ Identifies a dependency structure among labeling functions for a given data set. By default searches for correlations, i.e., the DEP_SIMILAR dependency type. :param L: labeling function output matrix :param higher_order: bool indicating whether to additionally search for higher order fixing and reinforcing dependencies (DEP_FIXING and DEP_REINFORCING) :param propensity: bool indicating whether to include LF propensity dependencies during learning :param threshold: minimum magnitude weight a dependency must have to be returned (in log scale), also regularization strength :param truncation: number of iterations between truncation step for regularization :return: collection of tuples of the format (LF 1 index, LF 2 index, dependency type), see snorkel.learning.constants """ n_data = V.shape[0] n_vocab = V.shape[1] n_lf = len(L) # Initializes data structures deps = set() n_weights = n_lf + n_vocab weights = np.zeros((n_weights,)) joint = np.zeros((6,)) # joint[0] = P(Y = -1, V_j = 0) # joint[1] = P(Y = -1, V_j = 1) # joint[2] = P(Y = -1, V_j = 2) # joint[3] = P(Y = 1, V_j = 0) # joint[4] = P(Y = 1, V_j = 1) # joint[5] = P(Y = 1, V_j = 2) Lstart = np.cumsum(np.array([0] + [len(l) for l in L])) L = [item for sublist in L for item in sublist] for j in range(n_vocab): ## Initializes weights # Accuracy for k in range(n_lf): weights[k] = 1.1 - .2 * self.rng.random() # Similarity for k in range(n_lf, len(weights)): weights[k] = 0.0 _fit_deps(n_data, n_lf, n_vocab, j, V, cardinality, L, Lstart, UDF_USAGE[UDF_SET], weights, joint, threshold, truncation) for k in range(n_vocab): if abs(weights[n_lf + k]) > threshold: deps.add((j, k) if j < k else (k, j)) return deps @jit(nopython=True, cache=True, nogil=True) def eval_udf(i, udf_index, V, L, var_samp, value): var_copy = 0 var_value = V[i:(i + 1), :] fmap = np.empty(len(L), FactorToVar) for i in range(len(L)): fmap[i]["vid"] = L[i] fmap[i]["dense_equal_to"] = 0 # not used ftv_start = 0 return udf(udf_index, var_samp, value, var_copy, var_value, fmap, ftv_start) @jit(nopython=True, cache=True, nogil=True) def _fit_deps(n_data, n_lf, n_vocab, j, V, cardinality, L, Lstart, udf, weights, joint, regularization, truncation): step_size = 1.0 / n_data epochs = 100 l1delta = regularization * step_size * truncation for t in range(epochs): for i in range(n_data): # Processes a training example # First, computes joint and conditional distributions joint[:] = 0, 0, 0, 0, 0, 0 for k in range(n_lf): # Accuracy for value in range(cardinality[j]): u = eval_udf(i, udf[k], V, L[Lstart[k]:Lstart[k + 1]], j, value) joint[0 + value] += weights[k] * -1 * u joint[3 + value] += weights[k] * +1 * u for k in range(n_vocab): # Similarity if j != k: if cardinality[j] == cardinality[k]: joint[0 + V[i, k]] += weights[n_lf + k] joint[3 + V[i, k]] += weights[n_lf + k] elif cardinality[j] == 2 and cardinality[k] == 3: if V[i, k] == 0: joint[0] += weights[n_lf + k] joint[3] += weights[n_lf + k] elif V[i, k] == 1: pass elif V[i, k] == 2: joint[1] += weights[n_lf + k] joint[4] += weights[n_lf + k] elif cardinality[j] == 3 and cardinality[k] == 2: if V[i, k] == 0: joint[0] += weights[n_lf + k] joint[3] += weights[n_lf + k] elif V[i, k] == 1: joint[2] += weights[n_lf + k] joint[5] += weights[n_lf + k] else: raise ValueError("cardinality not valid") if cardinality[j] == 2: joint[2] = -np.inf joint[5] = -np.inf joint = np.exp(joint) joint /= np.sum(joint) marginal_pos = np.sum(joint[3:6]) marginal_neg = np.sum(joint[0:3]) conditional_pos = joint[3 + V[i, j]] / (joint[0 + V[i, j]] + joint[3 + V[i, j]]) conditional_neg = joint[0 + V[i, j]] / (joint[0 + V[i, j]] + joint[3 + V[i, j]]) # Second, takes likelihood gradient step for k in range(n_lf): for value in range(cardinality[j]): # decrease marginal u = eval_udf(i, udf[k], V, L[Lstart[k]:Lstart[k + 1]], j, value) weights[k] -= step_size * joint[0 + value] * -1 * u weights[k] -= step_size * joint[3 + value] * +1 * u # increase conditional value = V[i, j] u = eval_udf(i, udf[k], V, L[Lstart[k]:Lstart[k + 1]], j, value) weights[k] += step_size * -1 * u * conditional_neg weights[k] += step_size * +1 * u * conditional_pos for k in range(n_vocab): # Similarity if j != k: if cardinality[j] == cardinality[k]: weights[n_lf + k] -= step_size * (joint[0 + V[i, k]] + joint[3 + V[i, k]]) if V[i, j] == V[i, k]: weights[n_lf + k] += step_size elif cardinality[j] == 2 and cardinality[k] == 3: if V[i, k] == 0: weights[n_lf + k] -= step_size * (joint[0] + joint[3]) if V[i, k] == 2: weights[n_lf + k] -= step_size * (joint[1] + joint[4]) if (V[i, j] == 0 and V[i, k] == 0) or (V[i, j] == 1 and V[i, k] == 2): weights[n_lf + k] += step_size elif cardinality[j] == 3 and cardinality[k] == 2: if V[i, k] == 0: weights[n_lf + k] -= step_size * (joint[0] + joint[3]) if V[i, k] == 1: weights[n_lf + k] -= step_size * (joint[2] + joint[5]) if (V[i, j] == 0 and V[i, k] == 0) or (V[i, j] == 2 and V[i, k] == 1): weights[n_lf + k] += step_size else: raise ValueError("cardinality not valid") # Third, takes regularization gradient step if (t * n_data + i) % truncation == 0: # do not regularize accuracy # only regularize dependencies for k in range(n_lf, len(weights)): weights[k] = max(0, weights[k] - l1delta) if weights[k] > 0 else min(0, weights[k] + l1delta)
ukb-cardiac-mri-master
ukb/weak_supervision/coral/coral/learning/structure_learning.py
import numpy as np from scipy import sparse def log_odds(p): """This is the logit function""" return np.log(p / (1.0 - p)) def odds_to_prob(l): """ This is the inverse logit function logit^{-1}: l = \log\frac{p}{1-p} \exp(l) = \frac{p}{1-p} p = \frac{\exp(l)}{1 + \exp(l)} """ return np.exp(l) / (1.0 + np.exp(l)) def sample_data(X, w, n_samples): """ Here we do Gibbs sampling over the decision variables (representing our objects), o_j corresponding to the columns of X The model is just logistic regression, e.g. P(o_j=1 | X_{*,j}; w) = logit^{-1}(w \dot X_{*,j}) This can be calculated exactly, so this is essentially a noisy version of the exact calc... """ N, R = X.shape t = np.zeros(N) f = np.zeros(N) # Take samples of random variables idxs = np.round(np.random.rand(n_samples) * (N-1)).astype(int) ct = np.bincount(idxs) # Estimate probability of correct assignment increment = np.random.rand(n_samples) < odds_to_prob(X[idxs, :].dot(w)) increment_f = -1. * (increment - 1) t[idxs] = increment * ct[idxs] f[idxs] = increment_f * ct[idxs] return t, f def exact_data(X, w, evidence=None): """ We calculate the exact conditional probability of the decision variables in logistic regression; see sample_data """ t = odds_to_prob(X.dot(w)) if evidence is not None: t[evidence > 0.0] = 1.0 t[evidence < 0.0] = 0.0 return t, 1-t def transform_sample_stats(Xt, t, f, Xt_abs=None): """ Here we calculate the expected accuracy of each LF/feature (corresponding to the rows of X) wrt to the distribution of samples S: E_S[ accuracy_i ] = E_(t,f)[ \frac{TP + TN}{TP + FP + TN + FN} ] = \frac{X_{i|x_{ij}>0}*t - X_{i|x_{ij}<0}*f}{t+f} = \frac12\left(\frac{X*(t-f)}{t+f} + 1\right) """ if Xt_abs is None: Xt_abs = sparse_abs(Xt) if sparse.issparse(Xt) else abs(Xt) n_pred = Xt_abs.dot(t+f) m = (1. / (n_pred + 1e-8)) * (Xt.dot(t) - Xt.dot(f)) p_correct = (m + 1) / 2 return p_correct, n_pred class IndepModel(object): """IndepModel Object that learns the accuracies for the heuristics. Copied from Snorkel v0.4 NaiveBayes Model with minor changes for simplicity""" def __init__(self, bias_term=False): self.w = None self.bias_term = bias_term def train(self, X, n_iter=1000, w0=None, rate=0.01, alpha=0.5, mu=1e-6, \ sample=False, n_samples=100, evidence=None, warm_starts=False, tol=1e-6, verbose=True): """ Perform SGD wrt the weights w * n_iter: Number of steps of SGD * w0: Initial value for weights w * rate: I.e. the SGD step size * alpha: Elastic net penalty mixing parameter (0=ridge, 1=lasso) * mu: Elastic net penalty * sample: Whether to sample or not * n_samples: Number of samples per SGD step * evidence: Ground truth to condition on * warm_starts: * tol: For testing for SGD convergence, i.e. stopping threshold """ self.X_train = X # Set up stuff N, M = X.shape if verbose: print "="*80 print "Training marginals (!= 0.5):\t%s" % N print "Features:\t\t\t%s" % M print "="*80 Xt = X.transpose() Xt_abs = np.abs(Xt) w0 = w0 if w0 is not None else np.ones(M) # Initialize training w = w0.copy() g = np.zeros(M) l = np.zeros(M) g_size = 0 # Gradient descent if verbose: print "Begin training for rate={}, mu={}".format(rate, mu) for step in range(n_iter): # Get the expected LF accuracy t,f = sample_data(X, w, n_samples=n_samples) if sample else exact_data(X, w, evidence) p_correct, n_pred = transform_sample_stats(Xt, t, f, Xt_abs) # Get the "empirical log odds"; NB: this assumes one is correct, clamp is for sampling... l = np.clip(log_odds(p_correct), -10, 10) # SGD step with normalization by the number of samples g0 = (n_pred*(w - l)) / np.sum(n_pred) # Momentum term for faster training g = 0.95*g0 + 0.05*g # Check for convergence wn = np.linalg.norm(w, ord=2) g_size = np.linalg.norm(g, ord=2) if step % 250 == 0 and verbose: print "\tLearning epoch = {}\tGradient mag. = {:.6f}".format(step, g_size) if (wn < 1e-12 or g_size / wn < tol) and step >= 10: if verbose: print "SGD converged for mu={} after {} steps".format(mu, step) break # Update weights w -= rate * g # Apply elastic net penalty w_bias = w[-1] soft = np.abs(w) - mu ridge_pen = (1 + (1-alpha) * mu) # \ell_1 penalty by soft thresholding | \ell_2 penalty w = (np.sign(w)*np.select([soft>0], [soft], default=0)) / ridge_pen # Don't regularize the bias term if self.bias_term: w[-1] = w_bias # SGD did not converge else: if verbose: print "Final gradient magnitude for rate={}, mu={}: {:.3f}".format(rate, mu, g_size) # Return learned weights self.w = w def marginals(self, X): X = X.todense() marginals = odds_to_prob(X.dot(self.w)) return np.array(marginals)[0]
ukb-cardiac-mri-master
ukb/weak_supervision/coral/coral/learning/indep_learning.py
from inspect import getsourcelines
ukb-cardiac-mri-master
ukb/weak_supervision/coral/coral/static_analysis/__init__.py
from inspect import getsourcelines import numpy as np def find_dependencies(L_names, primitive_names): LFs = [] for lf in L_names: LFs.append(getsourcelines(lf)[0]) L_deps = [] for lf_idx, lf in enumerate(LFs): L_dep = [] for line in lf: if len(line.strip()) > 0: if line.lstrip()[:3] == "def": parameters = line[line.find("(")+1:line.rfind(")")].split(",") for param in parameters: L_dep.append(primitive_names.index(param.strip())) L_deps.append(L_dep) return L_deps def discretize_primitives(L_names): LFs = [] for lf in L_names: LFs.append(getsourcelines(lf)[0]) # extract all conditions from labeling functions lfs_primitives = {} primitives = {} primitives_ordered = [] for lf_idx, lf in enumerate(LFs): for line in lf: if len(line.strip()) > 0: if (line.lstrip()[:2] == "if" or line.lstrip()[:4] == "elif") and line.rstrip()[-1] == ":": p_cond = line[line.find("if")+2:-1].lstrip() #TODO(pabajaj): handle multiple and or conditions p_name, p_cond, p_thresh = p_cond.split() if p_name not in primitives: primitives_ordered.append(p_name) primitives[p_name] = [] if (p_name, p_cond, p_thresh) not in primitives[p_name]: primitives[p_name].append((p_name, p_cond, p_thresh)) code = [] for p_idx, p_name in enumerate(primitives_ordered): p_idx_str = str(p_idx) p_max = len(primitives[p_name]) p_data = primitives[p_name][0] code.append("P.discrete_primitive_mtx[i,"+p_idx_str+"] = "+str(p_max)+" if P.primitive_mtx[i,"+p_idx_str+"] "+p_data[1]+" "+p_data[2].strip(':')+" else 0") for p_data in primitives[p_name][1:]: p_max -= 1 code.append("P.discrete_primitive_mtx[i,"+p_idx_str+"] = "+str(p_max)+" if P.primitive_mtx[i,"+p_idx_str+"] "+p_data[1]+" "+p_data[2].strip(':')+" else P.discrete_primitive_mtx[i,"+p_idx_str+"]") return code
ukb-cardiac-mri-master
ukb/weak_supervision/coral/coral/static_analysis/dependency_learning.py
import json import os import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Rectangle import skimage.io as io class DataLoader(object): def __init__(self, data_path='/tutorial_data/'): current_dir = os.getcwd() self.data_path = current_dir + data_path def load_train_attr(self): self.train_mscoco = np.load(self.data_path + 'train_mscoco.npy') self.train_vg = np.load(self.data_path + 'train_vg.npy') self.train_vg_idx = np.load(self.data_path + 'train_vg_idx.npy') self.train_ground = np.load(self.data_path + 'train_ground.npy') self.train_object_names = np.load(self.data_path + 'train_object_names.npy') self.train_object_x = np.load(self.data_path + 'train_object_x.npy') self.train_object_y = np.load(self.data_path + 'train_object_y.npy') self.train_object_height = np.load(self.data_path + 'train_object_height.npy') self.train_object_width = np.load(self.data_path + 'train_object_width.npy') def load_val_attr(self): self.val_mscoco = np.load(self.data_path + 'val_mscoco.npy') self.val_vg = np.load(self.data_path + 'val_vg.npy') self.val_vg_idx = np.load(self.data_path + 'val_vg_idx.npy') self.val_ground = np.load(self.data_path + 'val_ground.npy') self.val_object_names = np.load(self.data_path + 'val_object_names.npy') self.val_object_x = np.load(self.data_path + 'val_object_x.npy') self.val_object_y = np.load(self.data_path + 'val_object_y.npy') self.val_object_height = np.load(self.data_path + 'val_object_height.npy') self.val_object_width = np.load(self.data_path + 'val_object_width.npy') load_train_attr(self) self.train_num = np.shape(self.train_object_names)[0] load_val_attr(self) self.val_num = np.shape(self.val_object_names)[0] with open(self.data_path + 'image_data.json') as json_data: self.data = json.load(json_data) def show_examples(self, annotated=False, label=-1): def show_image(vg_idx): image_url = self.data[vg_idx]['url'] I = io.imread(image_url) plt.axis('off') plt.imshow(I) def show_image_annotated(vg_idx, idx): image_url = self.data[vg_idx]['url'] I = io.imread(image_url) plt.axis('off') plt.imshow(I) ax = plt.gca() for i in range(np.shape(self.val_object_y[idx])[0]): ax.add_patch(Rectangle((self.val_object_x[idx][i], self.val_object_y[idx][i]), self.val_object_width[idx][i], self.val_object_height[idx][i], fill=False, edgecolor='cyan', linewidth=1)) split_idx = np.where(self.val_ground == label)[0] idx_list = np.random.choice(split_idx,3) plt.figure(figsize=(15,3)) for j,i in enumerate(idx_list): plt.subplot(1,3,j+1) if annotated: show_image_annotated(int(self.val_vg_idx[i]), i) else: show_image(int(self.val_vg_idx[i])) plt.suptitle('Query Examples')
ukb-cardiac-mri-master
ukb/weak_supervision/coral/tutorials/data_loader.py
import numpy as np class PrimitiveObject(object): def save_primitive_matrix(self,primitive_mtx): self.primitive_mtx = primitive_mtx self.discrete_primitive_mtx = primitive_mtx self.num_primitives = np.shape(self.primitive_mtx)[1] def save_primitive_names(self,names): self.primitive_names = names if len(self.primitive_names) != self.num_primitives: Exception('Incorrect number of Primitive Names') def bike_human_nums(object_names): names = object_names.split(' , ')[1:] num_person = 0 num_bicycles = 0 for i in range(np.shape(names)[0]): name = names[i] if ('person' in name) or ('man' in name) or ('woman' in name) or ('girl' in name) or ('boy' in name) or ('people' in name): num_person = num_person+1 if ('cycle' in name) or ('bike' in name) or ('bicycle' in name): num_bicycles = num_bicycles+1 if (num_bicycles == 0) or (num_person == 0): return 0 if num_person == num_bicycles: return 2 elif num_person <= num_bicycles: return 0 else: return 1 def bike_human_distance(object_names, object_x, object_y): names = object_names.split(' , ')[1:] person_position = np.array([[0,0],[0,0]]) bicycle_position = np.array([[0,0],[0,0]]) for i in range(np.shape(names)[0]): name = names[i] if ('person' in name) or ('man' in name) or ('woman' in name) or ('girl' in name) or ('boy' in name) or ('people' in name): person_position = np.concatenate((person_position, np.array([[object_x[i],object_y[i]]]))) if ('cycle' in name) or ('bike' in name) or ('bicycle' in name): bicycle_position = np.concatenate((bicycle_position, np.array([[object_x[i],object_y[i]]]))) person_position = person_position[2:,:] bicycle_position = bicycle_position[2:,:] if (np.shape(bicycle_position)[0] == 0) or (np.shape(person_position)[0] == 0): return -1 import itertools if len(bicycle_position) >= len(person_position): list1 = [list(coord) for coord in bicycle_position] list2 = [list(coord) for coord in person_position] else: list2 = [list(coord) for coord in bicycle_position] list1 = [list(coord) for coord in person_position] coord_comb = [list1, list2] person_bike_pairs = itertools.product(*coord_comb) dists = [] for pair in person_bike_pairs: for coord1, coord2 in pair: dists.append(np.linalg.norm(coord1-coord2)) return np.min(dists) def bike_human_size(object_names, object_area): names = object_names.split(' , ')[1:] person_area = np.array([0]) bicycle_area = np.array([0]) for i in range(np.shape(names)[0]): name = names[i] if ('person' in name) or ('man' in name) or ('woman' in name) or ('girl' in name) or ('boy' in name) or ('people' in name): person_area = np.concatenate((person_area, [object_area[i]])) if ('cycle' in name) or ('bike' in name) or ('bicycle' in name): bicycle_area = np.concatenate((bicycle_area, [object_area[i]])) person_area = person_area[1:] bicycle_area = bicycle_area[1:] if (np.shape(bicycle_area)[0] == 0) or (np.shape(person_area)[0] == 0): area_diff = -1 area_diff = -1 for i in range(np.shape(bicycle_area)[0]): try: area_diff_temp = np.max((np.abs(bicycle_area[i]-person_area[:]))) area_diff = np.max(area_diff_temp, area_diff) except: continue return area_diff
ukb-cardiac-mri-master
ukb/weak_supervision/coral/tutorials/primitive_helpers.py
#!/usr/bin/env python """TODO.""" from __future__ import print_function import numbskull from numbskull.numbskulltypes import * import numpy as np def factor(f, args): """THIS IS A DOCSTRING.""" if f == FUNC_IMPLY_NATURAL: # TODO pass elif f == FUNC_OR: return 1 if any(args) else -1 elif f == FUNC_EQUAL: # TODO pass elif f == FUNC_AND or FUNC_ISTRUE: return 1 if all(args) else -1 elif f == FUNC_LINEAR: # TODO pass elif f == FUNC_RATIO: # TODO pass elif f == FUNC_LOGICAL: # TODO pass elif f == FUNC_IMPLY_MLN: # TODO pass else: raise NotImplemented("FACTOR " + str(f) + " not implemented.") for (key, value) in numbskull.inference.FACTORS.items(): print(key) variables = 2 if key == "DP_GEN_DEP_FIXING" or key == "DP_GEN_DEP_REINFORCING": # These factor functions requires three vars to work variables = 3 edges = variables weight = np.zeros(1, Weight) variable = np.zeros(variables, Variable) factor = np.zeros(1, Factor) fmap = np.zeros(edges, FactorToVar) domain_mask = np.zeros(variables, np.bool) weight[0]["isFixed"] = True weight[0]["initialValue"] = 1 for i in range(variables): variable[i]["isEvidence"] = 0 variable[i]["initialValue"] = 0 variable[i]["dataType"] = 0 variable[i]["cardinality"] = 2 factor[0]["factorFunction"] = value factor[0]["weightId"] = 0 factor[0]["featureValue"] = 1 factor[0]["arity"] = variables factor[0]["ftv_offset"] = 0 for i in range(variables): fmap[i]["vid"] = i ns = numbskull.NumbSkull(n_inference_epoch=100, n_learning_epoch=100, quiet=True) ns.loadFactorGraph(weight, variable, factor, fmap, domain_mask, edges) ns.learning() ns.inference() print(ns.factorGraphs[0].count)
ukb-cardiac-mri-master
ukb/weak_supervision/numbskull/loadfg.py
#!/usr/bin/env python """TODO.""" from numbskull import numbskull args = ['test', '-l', '100', '-i', '100', '-t', '10', '-s', '0.01', '--regularization', '2', '-r', '0.1', '--quiet'] ns = numbskull.load(args) ns.learning() ns.inference() print(ns.factorGraphs[0].count)
ukb-cardiac-mri-master
ukb/weak_supervision/numbskull/test.py
#!/usr/bin/env python """This tests learning for labelling functions.""" from __future__ import print_function, absolute_import import numpy as np import numbskull from numbskull.numbskulltypes import * import math def index_to_values(index, num_lf): value = [0] * (1 + num_lf) value[0] = index % 2 index = index // 2 for i in range(num_lf): value[i + 1] = index % 3 index = index // 3 return value def create_fg(prior, accuracy, abstain, copies): """ This creates copies of the following factor graph. istrue (weight = prior) | y_i /|\ / | \ / | \ / | \ / | \ LF_{i1} ... LF_{in} ( weight = ) ( weight = ) accuracy[1] accuracy[n] Arguments: prior: one floating-point value weight: list of floating-point values abstain: list of floating-point values (same number as weight) copies: integer Returns: list of arguments that can be passed to numbskull.loadFactorGraph """ n = len(accuracy) # number of labelling functions weights = 1 + n variables = copies * (1 + n) factors = copies * (1 + n) edges = copies * (1 + 2 * n) weight = np.zeros(weights, Weight) variable = np.zeros(variables, Variable) factor = np.zeros(factors, Factor) fmap = np.zeros(edges, FactorToVar) domain_mask = np.zeros(variables, np.bool) states = 2 * 3 ** n Z = np.zeros(states, np.float64) for i in range(states): value = index_to_values(i, n) y = value[0] lfs = value[1:] Z[i] = prior * (2 * y - 1) for (j, lf) in enumerate(lfs): lf = lf - 1 # remap to standard -1, 0, 1 if lf != 0: Z[i] += accuracy[j] * lf * (2 * y - 1) # TODO: abstain not handled yet Z[i] = math.exp(Z[i]) Z = np.cumsum(Z) Z = Z / Z[-1] print(Z) for w in weight: w["isFixed"] = False w["initialValue"] = 1.0 weight[0]["initialValue"] = 0 for copy in range(copies): r = np.random.rand() index = np.argmax(Z >= r) value = index_to_values(index, n) y = value[0] lf = value[1:] # y variable variable[copy * (1 + n)]["isEvidence"] = 0 # query variable[copy * (1 + n)]["initialValue"] = 0 # Do not actually show y variable[copy * (1 + n)]["dataType"] = 0 # binary variable[copy * (1 + n)]["cardinality"] = 2 # labelling function variable for i in range(n): variable[copy * (1 + n) + 1 + i]["isEvidence"] = 1 # evidence variable[copy * (1 + n) + 1 + i]["initialValue"] = lf[i] variable[copy * (1 + n) + 1 + i]["dataType"] = 1 # categorical variable[copy * (1 + n) + 1 + i]["cardinality"] = 3 # Class prior factor[copy * (1 + n)]["factorFunction"] = 18 # DP_GEN_CLASS_PRIOR factor[copy * (1 + n)]["weightId"] = 0 factor[copy * (1 + n)]["featureValue"] = 1 factor[copy * (1 + n)]["arity"] = 1 factor[copy * (1 + n)]["ftv_offset"] = copy * (1 + 2 * n) fmap[copy * (1 + 2 * n)]["vid"] = copy * (1 + n) # Labelling function accuracy for i in range(n): factor_index = copy * (1 + n) + 1 + i factor[factor_index]["factorFunction"] = 21 # DP_GEN_LF_ACCURACY factor[factor_index]["weightId"] = i + 1 factor[factor_index]["featureValue"] = 1 factor[factor_index]["arity"] = 2 factor[factor_index]["ftv_offset"] = copy * (1 + 2 * n) + 1 + 2 * i fmap_index = copy * (1 + 2 * n) + 1 + 2 * i fmap[fmap_index]["vid"] = copy * (1 + n) # y fmap[fmap_index]["vid"] = copy * (1 + n) + i + 1 # labeling func i return weight, variable, factor, fmap, domain_mask, edges learn = 100 ns = numbskull.NumbSkull(n_inference_epoch=100, n_learning_epoch=learn, quiet=True, learn_non_evidence=True, stepsize=0.01, burn_in=100, decay=0.001 ** (1.0 / learn), reg_param=0.15) prior = 0 accuracy = [1, 0.5] abstain = [0, 0, 0] copies = 10 fg = create_fg(prior, accuracy, abstain, copies) print("weight") print(fg[0]) print() print("variable") print(fg[1]) print() print("factor") print(fg[2]) print() print("fmap") print(fg[3]) print() print("domain_mask") print(fg[4]) print() print("edges") print(fg[5]) print() ns.loadFactorGraph(*fg) print(ns.factorGraphs[0].weight_value) ns.learning() print(ns.factorGraphs[0].weight_value)
ukb-cardiac-mri-master
ukb/weak_supervision/numbskull/test_lf_learning.py
"""For pip.""" from setuptools import setup, find_packages setup( name='numbskull', version='0.0', description='sample away', packages=find_packages(), install_requires=[], entry_points={ 'console_scripts': [ 'numbskull = numbskull.numbskull:main', ], }, )
ukb-cardiac-mri-master
ukb/weak_supervision/numbskull/setup.py
# -*- coding: utf-8 -*- # # Numbskull documentation build configuration file, created by # sphinx-quickstart on Fri Aug 26 17:55:24 2016. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # """TODO.""" import os import sys sys.path.insert(0, os.path.abspath('../..')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode', 'sphinx.ext.autosummary', 'numpydoc', # 'sphinx.ext.githubpages', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. # # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Numbskull' copyright = u'2016, Bryan He, Theodoros Rekatsinas' author = u'Bryan He, Theodoros Rekatsinas' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = u'0.0' # The full version, including alpha/beta/rc tags. release = u'0.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # # today = '' # # Else, today_fmt is used as the format for a strftime call. # # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all # documents. # # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. # "<project> v<release> documentation" by default. # # html_title = u'Numbskull v0.0' # A shorter title for the navigation bar. Default is the same as html_title. # # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = '../../fig/numbskull.png' # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or # 32x32 pixels large. # html_favicon = "../../fig/mario.gif" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. # # html_extra_path = [] # If not None, a 'Last updated on:' timestamp is inserted at every page # bottom, using the given strftime format. # The empty string is equivalent to '%b %d, %Y'. # # html_last_updated_fmt = None # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # # html_additional_pages = {} # If false, no module index is generated. # # html_domain_indices = True # If false, no index is generated. # # html_use_index = True # If true, the index is split into individual pages for each letter. # # html_split_index = False # If true, links to the reST sources are added to the pages. # # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr', 'zh' # # html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # 'ja' uses this config value. # 'zh' user can custom change `jieba` dictionary path. # # html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. # # html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'Numbskulldoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'Numbskull.tex', u'Numbskull Documentation', u'Bryan He, Theodoros Rekatsinas', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # # latex_use_parts = False # If true, show page references after internal links. # # latex_show_pagerefs = False # If true, show URL addresses after external links. # # latex_show_urls = False # Documents to append as an appendix to all manuals. # # latex_appendices = [] # It false, will not define \strong, \code, itleref, \crossref ... but only # \sphinxstrong, ..., \sphinxtitleref, ... To help avoid clash with user added # packages. # # latex_keep_old_macro_names = True # If false, no module index is generated. # # latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'numbskull', u'Numbskull Documentation', [author], 1) ] # If true, show URL addresses after external links. # # man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'Numbskull', u'Numbskull Documentation', author, 'Numbskull', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. # # texinfo_appendices = [] # If false, no module index is generated. # # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # # texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. # # texinfo_no_detailmenu = False # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'https://docs.python.org/': None} # Allow __init__ to be autodoc'ed def skip(app, what, name, obj, skip, options): """TODO.""" if name == "__init__": return False return skip def setup(app): """TODO.""" app.connect("autodoc-skip-member", skip) numpydoc_show_class_members = False
ukb-cardiac-mri-master
ukb/weak_supervision/numbskull/docs/source/conf.py
"""TODO.""" from __future__ import print_function, absolute_import import numba from numba import jit import numpy as np # HELPER METHODS # def dataType(i): """TODO.""" return {0: "Boolean", 1: "Categorical"}.get(i, "Unknown") @jit(nopython=True, cache=True) def compute_var_map(variables, factors, fmap, vmap, factor_index, domain_mask): """TODO.""" # Fill in domain values (for mapping when dumping marginals) for i, v in enumerate(variables): # skip boolean (value is 0) if v["dataType"] == 0: continue # default to 0 # categorical with explicit domain if domain_mask[i]: continue # filled already else: # categorical with implicit domain [0...cardinality) for index in range(v["cardinality"]): vmap[v["vtf_offset"] + index]["value"] = index # Fill in factor_index and indexes into factor_index # Step 1: populate VTF.length for ftv in fmap: vid = ftv["vid"] val = ftv["dense_equal_to"] if variables[vid]["dataType"] == 1 else 0 vtf = vmap[variables[vid]["vtf_offset"] + val] vtf["factor_index_length"] += 1 # Step 2: populate VTF.offset last_len = 0 last_off = 0 for i, vtf in enumerate(vmap): vtf["factor_index_offset"] = last_off + last_len last_len = vtf["factor_index_length"] last_off = vtf["factor_index_offset"] # Step 3: populate factor_index offsets = vmap["factor_index_offset"].copy() for i, fac in enumerate(factors): for j in range(fac["ftv_offset"], fac["ftv_offset"] + fac["arity"]): ftv = fmap[j] vid = ftv["vid"] val = ftv["dense_equal_to"] if variables[ vid]["dataType"] == 1 else 0 vtf_idx = variables[vid]["vtf_offset"] + val fidx = offsets[vtf_idx] factor_index[fidx] = i offsets[vtf_idx] += 1 # Step 4: remove dupes from factor_index for vtf in vmap: offset = vtf["factor_index_offset"] length = vtf["factor_index_length"] new_list = factor_index[offset: offset + length] new_list.sort() i = 0 last_fid = -1 for fid in new_list: if last_fid == fid: continue last_fid = fid factor_index[offset + i] = fid i += 1 vtf["factor_index_length"] = i @jit(nopython=True, cache=True) def reverse(data, start, end): """TODO.""" end -= 1 while (start < end): data[start], data[end] = data[end], data[start] start += 1 end -= 1 @jit(nopython=True, cache=True) def reverse_array(data): """TODO.""" # TODO: why does this fail? # data = np.flipud(data) reverse(data, 0, data.size) # DEFINE NUMBA-BASED DATA LOADING METHODS # @jit(nopython=True, cache=True) def load_weights(data, nweights, weights): """TODO.""" for i in range(nweights): # TODO: read types from struct? # TODO: byteswap only if system is little-endian buf = data[(17 * i):(17 * i + 8)] reverse_array(buf) weightId = np.frombuffer(buf, dtype=np.int64)[0] isFixed = data[17 * i + 8] buf = data[(17 * i + 9):(17 * i + 17)] reverse_array(buf) initialValue = np.frombuffer(buf, dtype=np.float64)[0] weights[weightId]["isFixed"] = isFixed weights[weightId]["initialValue"] = initialValue print("LOADED WEIGHTS") @jit(nopython=True, cache=True) def load_variables(data, nvariables, variables): """TODO.""" for i in range(nvariables): # TODO: read types from struct? # TODO: byteswap only if system is little-endian buf = data[(27 * i):(27 * i + 8)] reverse_array(buf) variableId = np.frombuffer(buf, dtype=np.int64)[0] isEvidence = data[27 * i + 8] buf = data[(27 * i + 9):(27 * i + 17)] reverse_array(buf) initialValue = np.frombuffer(buf, dtype=np.int64)[0] buf = data[(27 * i + 17):(27 * i + 19)] reverse_array(buf) dataType = np.frombuffer(buf, dtype=np.int16)[0] buf = data[(27 * i + 19):(27 * i + 27)] reverse_array(buf) cardinality = np.frombuffer(buf, dtype=np.int64)[0] variables[variableId]["isEvidence"] = isEvidence variables[variableId]["initialValue"] = initialValue variables[variableId]["dataType"] = dataType variables[variableId]["cardinality"] = cardinality print("LOADED VARS") @jit(nopython=True, cache=True) def load_domains(data, domain_mask, vmap, variables): """TODO.""" index = 0 while index < data.size: buf = data[index: index + 8] reverse_array(buf) variableId = np.frombuffer(buf, dtype=np.int64)[0] index += 8 buf = data[index: index + 8] reverse_array(buf) cardinality = np.frombuffer(buf, dtype=np.int64)[0] index += 8 domain_mask[variableId] = True # NOTE: values are sorted already by DD for j in range(cardinality): buf = data[index: index + 8] reverse_array(buf) val = np.frombuffer(buf, dtype=np.int64)[0] index += 8 vmap[variables[variableId]["vtf_offset"] + j]["value"] = val # translate initial value into dense index if val == variables[variableId]["initialValue"]: variables[variableId]["initialValue"] = j print("LOADED DOMAINS") @jit(nopython=True, cache=True) def load_factors(data, nfactors, factors, fmap, domain_mask, variable, vmap): """TODO.""" index = 0 fmap_idx = 0 k = 0 # somehow numba 0.28 would raise LowerError without this line for i in range(nfactors): buf = data[index:(index + 2)] reverse_array(buf) factors[i]["factorFunction"] = np.frombuffer(buf, dtype=np.int16)[0] buf = data[(index + 2):(index + 10)] reverse_array(buf) arity = np.frombuffer(buf, dtype=np.int64)[0] factors[i]["arity"] = arity factors[i]["ftv_offset"] = fmap_idx index += 10 # TODO: update index once per loop? for k in range(arity): buf = data[index:(index + 8)] reverse_array(buf) vid = np.frombuffer(buf, dtype=np.int64)[0] fmap[fmap_idx + k]["vid"] = vid buf = data[(index + 8):(index + 16)] reverse_array(buf) val = np.frombuffer(buf, dtype=np.int64)[0] # translate initial value into dense index using bisect if domain_mask[vid]: start = variable[vid]["vtf_offset"] end = start + variable[vid]["cardinality"] val = np.searchsorted(vmap["value"][start:end], val) fmap[fmap_idx + k]["dense_equal_to"] = val index += 16 fmap_idx += arity buf = data[index:(index + 8)] reverse_array(buf) factors[i]["weightId"] = np.frombuffer(buf, dtype=np.int64)[0] buf = data[(index + 8):(index + 16)] reverse_array(buf) factors[i]["featureValue"] = np.frombuffer(buf, dtype=np.float64)[0] index += 16 print("LOADED FACTORS")
ukb-cardiac-mri-master
ukb/weak_supervision/numbskull/numbskull/dataloading.py
"""TODO.""" from __future__ import print_function, absolute_import import sys import numpy as np from numbskull.inference import * from numbskull.learning import * from numbskull.timer import Timer import concurrent.futures from concurrent.futures import ThreadPoolExecutor def run_pool(threadpool, threads, func, args): """TODO.""" if threads == 1: func(0, *args) else: future_to_samples = \ [threadpool.submit(func, threadID, *args) for threadID in range(threads)] concurrent.futures.wait(future_to_samples) for fts in future_to_samples: if fts.exception() is not None: raise fts.exception() class FactorGraph(object): """TODO.""" def __init__(self, weight, variable, factor, fmap, vmap, factor_index, var_copies, weight_copies, fid, workers): """TODO.""" self.weight = weight self.variable = variable self.factor = factor self.fmap = fmap self.vmap = vmap self.factor_index = factor_index # This is just cumsum shifted by 1 self.cstart = np.zeros(self.variable.shape[0] + 1, np.int64) for i in range(self.variable.shape[0]): c = self.variable[i]["cardinality"] if self.variable[i]["dataType"] == 0: c = 1 self.cstart[i + 1] = self.cstart[i] + c self.count = np.zeros(self.cstart[self.variable.shape[0]], np.int64) self.var_value_evid = \ np.tile(self.variable[:]['initialValue'], (var_copies, 1)) self.var_value = \ np.tile(self.variable[:]['initialValue'], (var_copies, 1)) self.weight_value = \ np.tile(self.weight[:]['initialValue'], (weight_copies, 1)) if self.variable.size == 0: self.Z = np.zeros((workers, 0)) else: self.Z = np.zeros((workers, max(self.variable[:]['cardinality']))) if self.vmap.size == 0: size = (workers, 0) else: size = (workers, 2 * max(self.vmap['factor_index_length'])) self.fids = np.zeros(size, factor_index.dtype) self.fid = fid assert(workers > 0) self.threads = workers self.threadpool = ThreadPoolExecutor(self.threads) self.marginals = np.zeros(self.cstart[self.variable.shape[0]]) self.inference_epoch_time = 0.0 self.inference_total_time = 0.0 self.learning_epoch_time = 0.0 self.learning_total_time = 0.0 def clear(self): """TODO.""" self.count[:] = 0 self.threadpool.shutdown() ################# # GETTERS # ################# def getWeights(self, weight_copy=0): """TODO.""" return self.weight_value[weight_copy][:] def getMarginals(self, varIds=None): """TODO.""" if not varIds: return self.marginals else: return self.marginals[varIds] ##################### # DIAGNOSTICS # ##################### def diagnostics(self, epochs): """TODO.""" print('Inference took %.03f sec.' % self.inference_total_time) epochs = epochs or 1 bins = 10 hist = np.zeros(bins, dtype=np.int64) for i in range(len(self.count)): assert(self.count[i] >= 0) assert(self.count[i] <= epochs) hist[min(self.count[i] * bins // epochs, bins - 1)] += 1 for i in range(bins): start = i / 10.0 end = (i + 1) / 10.0 print("Prob. " + str(start) + ".." + str(end) + ": \ " + str(hist[i]) + " variables") def diagnosticsLearning(self, weight_copy=0): """TODO.""" print('Learning epoch took %.03f sec.' % self.learning_epoch_time) print("Weights:") for (i, w) in enumerate(self.weight): print(" weightId:", i) print(" isFixed:", w["isFixed"]) print(" weight: ", self.weight_value[weight_copy][i]) print() ################################ # INFERENCE AND LEARNING # ################################ def burnIn(self, epochs, sample_evidence, diagnostics=False, var_copy=0, weight_copy=0): """TODO.""" if diagnostics: print("FACTOR " + str(self.fid) + ": STARTED BURN-IN...") # NUMBA-based method. Implemented in inference.py for ep in range(epochs): args = (self.threads, var_copy, weight_copy, self.weight, self.variable, self.factor, self.fmap, self.vmap, self.factor_index, self.Z, self.cstart, self.count, self.var_value, self.weight_value, sample_evidence, True) run_pool(self.threadpool, self.threads, gibbsthread, args) if diagnostics: print("FACTOR " + str(self.fid) + ": DONE WITH BURN-IN") def inference(self, burnin_epochs, epochs, sample_evidence=False, diagnostics=False, var_copy=0, weight_copy=0): """TODO.""" # Burn-in if burnin_epochs > 0: self.burnIn(burnin_epochs, sample_evidence, diagnostics=diagnostics) # Run inference if diagnostics: print("FACTOR " + str(self.fid) + ": STARTED INFERENCE") for ep in range(epochs): with Timer() as timer: args = (self.threads, var_copy, weight_copy, self.weight, self.variable, self.factor, self.fmap, self.vmap, self.factor_index, self.Z, self.cstart, self.count, self.var_value, self.weight_value, sample_evidence, False) run_pool(self.threadpool, self.threads, gibbsthread, args) self.inference_epoch_time = timer.interval self.inference_total_time += timer.interval if diagnostics: print('Inference epoch #%d took %.03f sec.' % (ep, self.inference_epoch_time)) if diagnostics: print("FACTOR " + str(self.fid) + ": DONE WITH INFERENCE") # compute marginals if epochs != 0: self.marginals = self.count / float(epochs) if diagnostics: self.diagnostics(epochs) def learn(self, burnin_epochs, epochs, stepsize, decay, regularization, reg_param, truncation, diagnostics=False, verbose=False, learn_non_evidence=False, var_copy=0, weight_copy=0): """TODO.""" # Burn-in if burnin_epochs > 0: self.burnIn(burnin_epochs, True, diagnostics=diagnostics) # Run learning if diagnostics: print("FACTOR " + str(self.fid) + ": STARTED LEARNING") for ep in range(epochs): if diagnostics: print("FACTOR " + str(self.fid) + ": EPOCH #" + str(ep)) print("Current stepsize = " + str(stepsize)) if verbose: self.diagnosticsLearning(weight_copy) sys.stdout.flush() # otherwise output refuses to show in DD with Timer() as timer: args = (self.threads, stepsize, regularization, reg_param, truncation, var_copy, weight_copy, self.weight, self.variable, self.factor, self.fmap, self.vmap, self.factor_index, self.Z, self.fids, self.var_value, self.var_value_evid, self.weight_value, learn_non_evidence) run_pool(self.threadpool, self.threads, learnthread, args) self.learning_epoch_time = timer.interval self.learning_total_time += timer.interval # Decay stepsize stepsize *= decay if diagnostics: print("FACTOR " + str(self.fid) + ": DONE WITH LEARNING") def dump_weights(self, fout, weight_copy=0): """Dump <wid, weight> text file in DW format.""" with open(fout, 'w') as out: for i, w in enumerate(self.weight): out.write('%d %f\n' % (i, self.weight_value[weight_copy][i])) def dump_probabilities(self, fout, epochs): """Dump <vid, value, prob> text file in DW format.""" epochs = epochs or 1 with open(fout, 'w') as out: for i, v in enumerate(self.variable): if v["dataType"] == 0: prob = float(self.count[self.cstart[i]]) / epochs out.write('%d %d %.3f\n' % (i, 1, prob)) else: for k in range(v["cardinality"]): prob = float(self.count[self.cstart[i] + k]) / epochs original_value = self.vmap[ v["vtf_offset"] + k]["value"] out.write('%d %d %.3f\n' % (i, original_value, prob))
ukb-cardiac-mri-master
ukb/weak_supervision/numbskull/numbskull/factorgraph.py
"""TODO.""" from __future__ import print_function, absolute_import import time class Timer: """TODO.""" def __enter__(self): """TODO.""" self.start = time.time() return self def __exit__(self, *args): """TODO.""" self.end = time.time() self.interval = self.end - self.start
ukb-cardiac-mri-master
ukb/weak_supervision/numbskull/numbskull/timer.py
"""TODO.""" from .numbskull import NumbSkull from .numbskull import main __all__ = ('numbskull', 'factorgraph', 'timer')
ukb-cardiac-mri-master
ukb/weak_supervision/numbskull/numbskull/__init__.py
#!/usr/bin/env python """TODO: This is a docstring.""" from __future__ import print_function, absolute_import import os import sys import argparse import numbskull.factorgraph from numbskull.factorgraph import FactorGraph from numbskull.dataloading import * from numbskull.numbskulltypes import * import numpy as np # Define arguments for both parser in main and NumbSkull arguments = [ (tuple(['directory']), {'metavar': 'DIRECTORY', 'nargs': '?', 'default': '.', 'type': str, 'help': 'specify the directory of factor graph files'}), # TODO: print default for meta, weight, variable, factor in help (('-o', '--output_dir'), {'metavar': 'OUTPUT_DIR', 'dest': 'output_dir', 'default': '.', 'type': str, 'help': 'Output dir to contain inference_result.out.text ' + 'and inference_result.out.weights.text'}), (('-m', '--meta', '--fg_meta'), {'metavar': 'META_FILE', 'dest': 'metafile', 'default': 'graph.meta', 'type': str, 'help': 'factor graph metadata file'}), (('-w', '--weight', '--weights'), {'metavar': 'WEIGHTS_FILE', 'dest': 'weightfile', 'default': 'graph.weights', 'type': str, 'help': 'factor weight file'}), (('-v', '--variable', '--variables'), {'metavar': 'VARIABLES_FILE', 'dest': 'variablefile', 'default': 'graph.variables', 'type': str, 'help': 'factor graph variables file'}), (('-f', '--factor', '--factors'), {'metavar': 'FACTORS_FILE', 'dest': 'factorfile', 'default': 'graph.factors', 'type': str, 'help': 'factor file'}), (('--domain', '--domains'), {'metavar': 'DOMAINS_FILE', 'dest': 'domainfile', 'default': 'graph.domains', 'type': str, 'help': 'domain file'}), (('-l', '--n_learning_epoch'), {'metavar': 'NUM_LEARNING_EPOCHS', 'dest': 'n_learning_epoch', 'default': 0, 'type': int, 'help': 'number of learning epochs'}), (('-i', '--n_inference_epoch'), {'metavar': 'NUM_INFERENCE_EPOCHS', 'dest': 'n_inference_epoch', 'default': 0, 'type': int, 'help': 'number of inference epochs'}), (('-s', '--stepsize', '-a', '--alpha'), {'metavar': 'LEARNING_STEPSIZE', 'dest': 'stepsize', 'default': 0.01, 'type': float, 'help': 'stepsize for learning'}), (('-d', '--decay', '--diminish'), {'metavar': 'LEARNING_DECAY', 'dest': 'decay', 'default': 0.95, 'type': float, 'help': 'decay for updating stepsize during learning'}), (('-r', '--reg_param'), {'metavar': 'LEARNING_REGULARIZATION_PARAM', 'dest': 'reg_param', 'default': 0.01, 'type': float, 'help': 'regularization penalty'}), (tuple(['--regularization']), {'metavar': 'REGULARIZATION', 'dest': 'regularization', 'default': 2, 'type': int, 'help': 'regularization (l1 or l2) [Enter as "1" or "2"]'}), (('-k', '--truncation'), {'metavar': 'TRUNCATION', 'dest': 'truncation', 'default': 1, 'type': int, 'help': 'If using l1 regularization, truncation is applied with ' 'probability 1/k and with magnitude ' 'step_size * reg_param * k. If not using l1 regularization, ' 'this parameter has no effect.'}), (('-b', '--burn_in'), {'metavar': 'BURN_IN', 'dest': 'burn_in', 'default': 0, 'type': int, 'help': 'number of burn-in epochs'}), (('-t', '--threads', '--n_threads'), {'metavar': 'NUM_THREADS', 'dest': 'nthreads', 'default': 1, 'type': int, 'help': 'number of threads to be used'}), (('-u', '--dburl'), {'metavar': 'DATABASE_URL', 'dest': 'dburl', 'default': '', 'type': str, 'help': 'url to database holding factor graph information'}) ] flags = [ (tuple(['--sample_evidence']), {'default': True, 'dest': 'sample_evidence', 'action': 'store_true', 'help': 'sample evidence variables'}), (tuple(['--learn_non_evidence']), {'default': False, 'dest': 'learn_non_evidence', 'action': 'store_true', 'help': 'learn from non-evidence variables'}), (('-q', '--quiet'), {'default': False, 'dest': 'quiet', 'action': 'store_true', 'help': 'quiet'}), (tuple(['--verbose']), {'default': False, 'dest': 'verbose', 'action': 'store_true', 'help': 'verbose'}) ] class NumbSkull(object): """TODO: Main class for numbskull.""" def __init__(self, **kwargs): """TODO. Parameters ---------- paramater : type This is a parameter Returns ------- describe : type Expanation """ # Set version self.version = "0.0" # Initialize default execution arguments arg_defaults = {} for arg, opts in arguments: if 'directory' in arg[0]: arg_defaults['directory'] = opts['default'] else: arg_defaults[opts['dest']] = opts['default'] # Initialize default execution flags for arg, opts in flags: arg_defaults[opts['dest']] = opts['default'] for (arg, default) in arg_defaults.items(): setattr(self, arg, kwargs.get(arg, default)) self.factorGraphs = [] def loadFactorGraphRaw(self, weight, variable, factor, fmap, vmap, factor_index, var_copies=1, weight_copies=1): """TODO.""" fg = FactorGraph(weight, variable, factor, fmap, vmap, factor_index, var_copies, weight_copies, len(self.factorGraphs), self.nthreads) self.factorGraphs.append(fg) def loadFactorGraph(self, weight, variable, factor, fmap, domain_mask, edges, var_copies=1, weight_copies=1): """TODO.""" # Assert input arguments correspond to NUMPY arrays assert(type(weight) == np.ndarray and weight.dtype == Weight) assert(type(variable) == np.ndarray and variable.dtype == Variable) assert(type(factor) == np.ndarray and factor.dtype == Factor) assert(type(fmap) == np.ndarray and fmap.dtype == FactorToVar) assert(type(domain_mask) == np.ndarray and domain_mask.dtype == np.bool) assert(type(edges) == int or type(edges) == np.int64) # Initialize metadata meta = {} meta['weights'] = weight.shape[0] meta['variables'] = variable.shape[0] meta['factors'] = factor.shape[0] meta['edges'] = edges # count total number of VTF records needed num_vtfs = 0 for var in variable: var["vtf_offset"] = num_vtfs if var["dataType"] == 0: # boolean num_vtfs += 1 else: num_vtfs += var["cardinality"] vmap = np.zeros(num_vtfs, VarToFactor) factor_index = np.zeros(meta["edges"], np.int64) # Numba-based method. Defined in dataloading.py compute_var_map(variable, factor, fmap, vmap, factor_index, domain_mask) fg = FactorGraph(weight, variable, factor, fmap, vmap, factor_index, var_copies, weight_copies, len(self.factorGraphs), self.nthreads) self.factorGraphs.append(fg) def loadFGFromFile(self, directory=None, metafile=None, weightfile=None, variablefile=None, factorfile=None, domainfile=None, var_copies=1, weight_copies=1): """TODO.""" # init necessary input arguments if not self.directory: print("No factor graph specified") return else: directory = self.directory metafile = self.metafile if not metafile else metafile weightfile = self.weightfile if not weightfile else weightfile variablefile = self.variablefile if not variablefile else variablefile factorfile = self.factorfile if not factorfile else factorfile domainfile = self.domainfile if not domainfile else domainfile print_info = not self.quiet print_only_meta = not self.verbose # load metadata meta = np.loadtxt(directory + "/" + metafile, delimiter=',', dtype=Meta) meta = meta[()] if print_info: print("Meta:") print(" weights: ", meta["weights"]) print(" variables:", meta["variables"]) print(" factors: ", meta["factors"]) print(" edges: ", meta["edges"]) print() # load weights weight_data = np.memmap(directory + "/" + weightfile, mode="c") weight = np.zeros(meta["weights"], Weight) # NUMBA-based function. Defined in dataloading.py load_weights(weight_data, meta["weights"], weight) if print_info and not print_only_meta: print("Weights:") for (i, w) in enumerate(weight): print(" weightId:", i) print(" isFixed:", w["isFixed"]) print(" weight: ", w["initialValue"]) print() # load variables variable_data = np.memmap(directory + "/" + variablefile, mode="c") variable = np.zeros(meta["variables"], Variable) # NUMBA-based method. Defined in dataloading.py load_variables(variable_data, meta["variables"], variable) sys.stdout.flush() if print_info and not print_only_meta: print("Variables:") for (i, v) in enumerate(variable): print(" variableId:", i) print(" isEvidence: ", v["isEvidence"]) print(" initialValue:", v["initialValue"]) print(" dataType: ", v["dataType"], "(", dataType(v["dataType"]), ")") print(" cardinality: ", v["cardinality"]) print() # count total number of VTF records needed num_vtfs = 0 for var in variable: var["vtf_offset"] = num_vtfs if var["dataType"] == 0: # boolean num_vtfs += 1 else: num_vtfs += var["cardinality"] print("#VTF = %s" % num_vtfs) sys.stdout.flush() # generate variable-to-factor map vmap = np.zeros(num_vtfs, VarToFactor) factor_index = np.zeros(meta["edges"], np.int64) # load domains # whether a var has domain spec domain_mask = np.zeros(meta["variables"], np.bool) domain_file = directory + "/" + domainfile if os.path.isfile(domain_file) and os.stat(domain_file).st_size > 0: domain_data = np.memmap(directory + "/" + domainfile, mode="c") load_domains(domain_data, domain_mask, vmap, variable) sys.stdout.flush() # load factors factor_data = np.memmap(directory + "/" + factorfile, mode="c") factor = np.zeros(meta["factors"], Factor) fmap = np.zeros(meta["edges"], FactorToVar) # Numba-based method. Defined in dataloading.py load_factors(factor_data, meta["factors"], factor, fmap, domain_mask, variable, vmap) sys.stdout.flush() # Numba-based method. Defined in dataloading.py compute_var_map(variable, factor, fmap, vmap, factor_index, domain_mask) print("COMPLETED VMAP INDEXING") sys.stdout.flush() fg = FactorGraph(weight, variable, factor, fmap, vmap, factor_index, var_copies, weight_copies, len(self.factorGraphs), self.nthreads) self.factorGraphs.append(fg) def getFactorGraph(self, fgID=0): """TODO.""" return self.factorGraphs[fgID] def inference(self, fgID=0, out=True): """TODO.""" burn_in = self.burn_in n_inference_epoch = self.n_inference_epoch self.factorGraphs[fgID].inference(burn_in, n_inference_epoch, sample_evidence=self.sample_evidence, diagnostics=not self.quiet) if out: output_file = os.path.join( self.output_dir, "inference_result.out.text") self.factorGraphs[fgID].dump_probabilities(output_file, n_inference_epoch) def learning(self, fgID=0, out=True): """TODO.""" burn_in = self.burn_in n_learning_epoch = self.n_learning_epoch stepsize = self.stepsize decay = self.decay regularization = self.regularization reg_param = self.reg_param truncation = self.truncation fg = self.factorGraphs[fgID] fg.learn(burn_in, n_learning_epoch, stepsize, decay, regularization, reg_param, truncation, diagnostics=not self.quiet, verbose=self.verbose, learn_non_evidence=self.learn_non_evidence) if out: output_file = os.path.join( self.output_dir, "inference_result.out.weights.text") self.factorGraphs[fgID].dump_weights(output_file) def load(argv=None): """TODO.""" if argv is None: argv = sys.argv[1:] parser = argparse.ArgumentParser( description="Runs a Gibbs sampler", epilog="") # Add version to parser parser.add_argument("--version", action='version', version="%(prog)s 0.0", help="print version number") # Add execution arguments to parser for arg, opts in arguments: parser.add_argument(*arg, **opts) # Add flags to parser for arg, opts in flags: parser.add_argument(*arg, **opts) # Initialize NumbSkull # args = parser.parse_args(argv) ns = NumbSkull(**vars(args)) ns.loadFGFromFile() return ns def main(argv=None): """Duh.""" ns = load(argv) ns.learning() ns.inference()
ukb-cardiac-mri-master
ukb/weak_supervision/numbskull/numbskull/numbskull.py
#!/usr/bin/env python """TODO.""" from __future__ import print_function import zmq import sys import time import argparse import gibbs import numpy as np def send_array(socket, A, flags=0, copy=True, track=False): """TODO: send a numpy array with metadata.""" md = dict( dtype=str(A.dtype), shape=A.shape, ) socket.send_json(md, flags | zmq.SNDMORE) return socket.send(A, flags, copy=copy, track=track) def recv_array(socket, flags=0, copy=True, track=False): """TODO: recv a numpy array.""" md = socket.recv_json(flags=flags) msg = socket.recv(flags=flags, copy=copy, track=track) buf = buffer(msg) try: A = np.frombuffer(buf, dtype=md['dtype']) except: A = np.frombuffer(buf, dtype=eval(md['dtype'])) return A.reshape(md['shape']) def server(argv=None): """TODO.""" parser = argparse.ArgumentParser( description="Run Gibbs worker", epilog="") parser.add_argument("directory", metavar="DIRECTORY", nargs="?", help="specify directory of factor graph files", default="", type=str) parser.add_argument("-p", "--port", metavar="PORT", help="port", default=5556, type=int) parser.add_argument("-m", "--meta", metavar="META_FILE", dest="meta", default="graph.meta", type=str, help="meta file") # TODO: print default for meta, weight, variable, factor in help parser.add_argument("-w", "--weight", metavar="WEIGHTS_FILE", dest="weight", default="graph.weights", type=str, help="weight file") parser.add_argument("-v", "--variable", metavar="VARIABLES_FILE", dest="variable", default="graph.variables", type=str, help="variable file") parser.add_argument("-f", "--factor", metavar="FACTORS_FILE", dest="factor", default="graph.factors", type=str, help="factor file") parser.add_argument("-b", "--burn", metavar="NUM_BURN_STEPS", dest="burn", default=0, type=int, help="number of learning sweeps") parser.add_argument("-l", "--learn", metavar="NUM_LEARN_STEPS", dest="learn", default=0, type=int, help="number of learning sweeps") parser.add_argument("-e", "--epoch", metavar="NUM_LEARNING_EPOCHS", dest="epoch", default=0, type=int, help="number of learning epochs") parser.add_argument("-i", "--inference", metavar="NUM_INFERENCE_STEPS", dest="inference", default=0, type=int, help="number of inference sweeps") # TODO: sample observed variable option parser.add_argument("-q", "--quiet", # metavar="QUIET", dest="quiet", default=False, action="store_true", # type=bool, help="quiet") # TODO: verbose option (print all info) parser.add_argument("--verbose", # metavar="VERBOSE", dest="verbose", default=False, action="store_true", # type=bool, help="verbose") print("Running server...") arg = parser.parse_args(argv[1:]) if arg.directory == "": fg = None else: var_copies = 1 weight_copies = 1 (meta, weight, variable, factor, fstart, fmap, vstart, vmap, equalPredicate) = \ gibbs.load(arg.directory, arg.meta, arg.weight, arg.variable, arg.factor, not arg.quiet, not arg.verbose) fg_args = (weight, variable, factor, fstart, fmap, vstart, vmap, equalPredicate, var_copies, weight_copies) fg = gibbs.FactorGraph(*fg_args) context = zmq.Context() socket = context.socket(zmq.REP) socket.bind("tcp://*:%s" % arg.port) num_clients = 0 # TODO: barrier between burn, learn, and inference # Probably need to send client id back while True: # Wait for next request from client message = socket.recv() if message == "HELLO": # Initial message from client print("Received HELLO.") socket.send("CLIENT_ID", zmq.SNDMORE) socket.send_json("%d" % num_clients) num_clients += 1 elif message == 'R_FACTOR_GRAPH': # Request for factor graph client_id = socket.recv_json() print("Received factor graph request from client #%d." % client_id) # TODO: check that fg != None # TODO socket.send("FACTOR_GRAPH", zmq.SNDMORE) socket.send_json(len(fg_args), zmq.SNDMORE) for a in fg_args: is_array = (type(a) == np.ndarray) socket.send_json(is_array, zmq.SNDMORE) if is_array: send_array(socket, a, zmq.SNDMORE) else: socket.send_json(a, zmq.SNDMORE) # TODO: could just not send SNDMORE for last arg socket.send("DONE") elif message == "READY": # Client ready print("Received ready.") # could skip this if arg.burn == 0 socket.send("BURN", zmq.SNDMORE) socket.send_json(arg.burn) elif message == 'DONE_BURN' or message == 'DONE_LEARN': # Client done with burn/learning if message == 'DONE_BURN': # Done burning epochs = 0 else: # Done learning epochs = socket.recv_json() fg.wv += recv_array(socket) pass if epochs < arg.epoch: socket.send("LEARN", zmq.SNDMORE) socket.send_json(arg.learn, zmq.SNDMORE) socket.send_json(0.001, zmq.SNDMORE) # TODO send_array(socket, fg.wv) else: socket.send("INFERENCE", zmq.SNDMORE) socket.send_json(arg.inference, zmq.SNDMORE) send_array(socket, fg.wv) elif message == 'DONE_INFERENCE': # Client done with inference data = recv_array(socket) # TODO: handle count socket.send("EXIT") else: print("Message (%s) cannot be interpreted." % message, file=sys.stderr) socket.send("EXIT") return def client(argv=None): """TODO.""" parser = argparse.ArgumentParser( description="Run Gibbs worker", epilog="") parser.add_argument("directory", metavar="DIRECTORY", nargs="?", help="specify directory of factor graph files", default="", type=str) parser.add_argument("-p", "--port", metavar="PORT", help="port", default=5556, type=int) parser.add_argument("-m", "--meta", metavar="META_FILE", dest="meta", default="graph.meta", type=str, help="meta file") # TODO: print default for meta, weight, variable, factor in help parser.add_argument("-w", "--weight", metavar="WEIGHTS_FILE", dest="weight", default="graph.weights", type=str, help="weight file") parser.add_argument("-v", "--variable", metavar="VARIABLES_FILE", dest="variable", default="graph.variables", type=str, help="variable file") parser.add_argument("-f", "--factor", metavar="FACTORS_FILE", dest="factor", default="graph.factors", type=str, help="factor file") parser.add_argument("-q", "--quiet", # metavar="QUIET", dest="quiet", default=False, action="store_true", # type=bool, help="quiet") parser.add_argument("--verbose", # metavar="VERBOSE", dest="verbose", default=False, action="store_true", # type=bool, help="verbose") print(argv) arg = parser.parse_args(argv[1:]) print("Running client...") print(arg.directory) if arg.directory == "": fg = None else: var_copies = 1 weight_copies = 1 (meta, weight, variable, factor, fstart, fmap, vstart, vmap, equalPredicate) = \ gibbs.load(arg.directory, arg.meta, arg.weight, arg.variable, arg.factor, not arg.quiet, not arg.verbose) fg = gibbs.FactorGraph(weight, variable, factor, fstart, fmap, vstart, vmap, equalPredicate, var_copies, weight_copies) context = zmq.Context() print("Connecting to server...") socket = context.socket(zmq.REQ) socket.connect("tcp://localhost:%s" % arg.port) # hello message print("Sent HELLO.") socket.send("HELLO") message = socket.recv() assert(message == "CLIENT_ID") message = socket.recv_json() client_id = int(message) print("Received id #%d.\n" % client_id) # request factor graph if not loaded if fg is None: socket.send("R_FACTOR_GRAPH", zmq.SNDMORE) socket.send_json(client_id) message = socket.recv() assert(message == "FACTOR_GRAPH") length = socket.recv_json() fg_args = [None, ] * length for i in range(length): is_array = socket.recv_json() if is_array: fg_args[i] = recv_array(socket) else: fg_args[i] = socket.recv_json() assert(socket.recv() == "DONE") fg = gibbs.FactorGraph(*fg_args) # Send "ready" socket.send("READY") learning_epochs = 0 while True: message = socket.recv() if message == 'BURN': # request for burn-in print("Received request for burn-in.") burn = socket.recv_json() print("Burning", burn, "sweeps.") fg.gibbs(burn, 0, 0) socket.send("DONE_BURN") elif message == 'LEARN': # Request for learning print("Received request for learning.") sweeps = socket.recv_json() step = socket.recv_json() fg.wv = recv_array(socket) wv = fg.wv fg.learn(sweeps, step, 0, 0) dw = fg.wv - wv socket.send("DONE_LEARNING", zmq.SNDMORE) learning_epochs += 1 socket.send_json(learning_epochs, zmq.SNDMORE) send_array(socket, dw) elif message == 'INFERENCE': # Request for inference print("Received request for inference.") inference = socket.recv_json() fg.wv = recv_array(socket) print("Inference:", inference, "sweeps.") fg.clear() fg.gibbs(inference, 0, 0) socket.send("DONE_INFERENCE", zmq.SNDMORE) send_array(socket, fg.count) elif message == 'EXIT': # Exit print("Exit") break else: print("Message cannot be interpreted.", file=sys.stderr) break def main(argv=None): """TODO.""" if argv is None: argv = sys.argv[1:] if len(argv) < 1: print("Usage: ./distributed.py [server/client]", file=sys.stderr) elif argv[0].lower() == "server" or argv[0].lower() == "s": server(argv) elif argv[0].lower() == "client" or argv[0].lower() == "c": client(argv) else: print("Error:", argv[0], "is not a valid choice.", file=sys.stderr) if __name__ == "__main__": main()
ukb-cardiac-mri-master
ukb/weak_supervision/numbskull/numbskull/distributed.py
"""TODO.""" from __future__ import print_function, absolute_import import numpy as np # TODO (shared with DW): space optimization: # 1. use smaller ints for some fields # 2. replace a[x].length with a[x+1].offset - a[x].offset Meta = np.dtype([('weights', np.int64), ('variables', np.int64), ('factors', np.int64), ('edges', np.int64)]) Weight = np.dtype([("isFixed", np.bool), ("initialValue", np.float64)]) Variable = np.dtype([("isEvidence", np.int8), ("initialValue", np.int64), ("dataType", np.int16), ("cardinality", np.int64), ("vtf_offset", np.int64)]) Factor = np.dtype([("factorFunction", np.int16), ("weightId", np.int64), ("featureValue", np.float64), ("arity", np.int64), ("ftv_offset", np.int64)]) FactorToVar = np.dtype([("vid", np.int64), ("dense_equal_to", np.int64)]) VarToFactor = np.dtype([("value", np.int64), ("factor_index_offset", np.int64), ("factor_index_length", np.int64)])
ukb-cardiac-mri-master
ukb/weak_supervision/numbskull/numbskull/numbskulltypes.py
"""TODO.""" from __future__ import print_function, absolute_import import numba from numba import jit import numpy as np import math from numbskull.udf import * @jit(nopython=True, cache=True, nogil=True) def gibbsthread(shardID, nshards, var_copy, weight_copy, weight, variable, factor, fmap, vmap, factor_index, Z, cstart, count, var_value, weight_value, sample_evidence, burnin): """TODO.""" # Indentify start and end variable nvar = variable.shape[0] start = (shardID * nvar) // nshards end = ((shardID + 1) * nvar) // nshards # TODO: give option do not store result, or just store tally for var_samp in range(start, end): if variable[var_samp]["isEvidence"] == 0 or sample_evidence: v = draw_sample(var_samp, var_copy, weight_copy, weight, variable, factor, fmap, vmap, factor_index, Z[shardID], var_value, weight_value) var_value[var_copy][var_samp] = v if not burnin: if variable[var_samp]["dataType"] == 0: count[cstart[var_samp]] += v else: count[cstart[var_samp] + v] += 1 @jit(nopython=True, cache=True, nogil=True) def draw_sample(var_samp, var_copy, weight_copy, weight, variable, factor, fmap, vmap, factor_index, Z, var_value, weight_value): """TODO.""" cardinality = variable[var_samp]["cardinality"] for value in range(cardinality): Z[value] = np.exp(potential(var_samp, value, var_copy, weight_copy, weight, variable, factor, fmap, vmap, factor_index, var_value, weight_value)) for j in range(1, cardinality): Z[j] += Z[j - 1] z = np.random.rand() * Z[cardinality - 1] return np.argmax(Z[0:cardinality] >= z) @jit(nopython=True, cache=True, nogil=True) def potential(var_samp, value, var_copy, weight_copy, weight, variable, factor, fmap, vmap, factor_index, var_value, weight_value): """TODO.""" p = 0.0 varval_off = value if variable[var_samp]["dataType"] == 0: varval_off = 0 vtf = vmap[variable[var_samp]["vtf_offset"] + varval_off] start = vtf["factor_index_offset"] end = start + vtf["factor_index_length"] for k in range(start, end): factor_id = factor_index[k] p += weight_value[weight_copy][factor[factor_id]["weightId"]] * \ eval_factor(factor_id, var_samp, value, var_copy, variable, factor, fmap, var_value) return p FACTORS = { # Factor functions for boolean variables "IMPLY_NATURAL": 0, "OR": 1, "EQUAL": 3, "AND": 2, "ISTRUE": 4, "LINEAR": 7, "RATIO": 8, "LOGICAL": 9, "IMPLY_MLN": 13, # Factor functions for categorical variables "AND_CAT": 12, "OR_CAT": 14, "EQUAL_CAT_CONST": 15, "IMPLY_NATURAL_CAT": 16, "IMPLY_MLN_CAT": 17, # Factor functions for generative models for data programming. # # These functions accept two types of categorical variables: # # y \in {1, -1} corresponding to latent labels, and # l \in {1, 0, -1} corresponding to labeling function outputs. # # The values of y are mapped to Numbskull variables y_index # via {-1: 0, 1: 1}, and # the values of l are mapped to Numbskull variables l_index # via {-1: 0, 0: 1, 1: 2}. # h(y) := y "DP_GEN_CLASS_PRIOR": 18, # h(l) := l "DP_GEN_LF_PRIOR": 19, # h(l) := l * l "DP_GEN_LF_PROPENSITY": 20, # h(y, l) := y * l "DP_GEN_LF_ACCURACY": 21, # h(l) := y * l * l "DP_GEN_LF_CLASS_PROPENSITY": 22, # l_2 fixes errors made by l_1 # # h(y, l_1, l_2) := if l_1 == 0 and l_2 != 0: -1, # elif l_1 == -1 * y and l_2 == y: 1, # else: 0 "DP_GEN_DEP_FIXING": 23, # l_2 reinforces the output of l_1 # # h(y, l_1, l_2) := if l_1 == 0 and l_2 != 0: -1, # elif l_1 == y and l_2 == y: 1, # else: 0 "DP_GEN_DEP_REINFORCING": 24, # h(l_1, l_2) := if l_1 != 0 and l_2 != 0: -1, else: 0 "DP_GEN_DEP_EXCLUSIVE": 25, #h(l_1, l_2) := if l_1 == l_2: 1, else: 0 "DP_GEN_DEP_SIMILAR": 26, "CORAL_GEN_DEP_SIMILAR": 27, } for (key, value) in FACTORS.items(): exec("FUNC_" + key + " = " + str(value)) @jit(nopython=True, cache=True, nogil=True) def eval_factor(factor_id, var_samp, value, var_copy, variable, factor, fmap, var_value): """TODO.""" #################### # BINARY VARIABLES # #################### fac = factor[factor_id] ftv_start = fac["ftv_offset"] ftv_end = ftv_start + fac["arity"] if fac["factorFunction"] == FUNC_IMPLY_NATURAL: for l in range(ftv_start, ftv_end): v = value if (fmap[l]["vid"] == var_samp) else \ var_value[var_copy][fmap[l]["vid"]] if v == 0: # Early return if body is not satisfied return 0 # If this point is reached, body must be true l = ftv_end - 1 head = value if (fmap[l]["vid"] == var_samp) else \ var_value[var_copy][fmap[l]["vid"]] if head: return 1 return -1 elif factor[factor_id]["factorFunction"] == FUNC_OR: for l in range(ftv_start, ftv_end): v = value if (fmap[l]["vid"] == var_samp) else \ var_value[var_copy][fmap[l]["vid"]] if v == 1: return 1 return -1 elif factor[factor_id]["factorFunction"] == FUNC_EQUAL: v = value if (fmap[ftv_start]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start]["vid"]] for l in range(ftv_start + 1, ftv_end): w = value if (fmap[l]["vid"] == var_samp) \ else var_value[var_copy][fmap[l]["vid"]] if v != w: return -1 return 1 elif factor[factor_id]["factorFunction"] == FUNC_AND \ or factor[factor_id]["factorFunction"] == FUNC_ISTRUE: for l in range(ftv_start, ftv_end): v = value if (fmap[l]["vid"] == var_samp) \ else var_value[var_copy][fmap[l]["vid"]] if v == 0: return -1 return 1 elif factor[factor_id]["factorFunction"] == FUNC_LINEAR: res = 0 head = value if (fmap[ftv_end - 1]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_end - 1]["vid"]] for l in range(ftv_start, ftv_end - 1): v = value if (fmap[l]["vid"] == var_samp) \ else var_value[var_copy][fmap[l]["vid"]] if v == head: res += 1 # This does not match Dimmwitted, but matches the eq in the paper return res elif factor[factor_id]["factorFunction"] == FUNC_RATIO: res = 1 head = value if (fmap[ftv_end - 1]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_end - 1]["vid"]] for l in range(ftv_start, ftv_end - 1): v = value if (fmap[l]["vid"] == var_samp) \ else var_value[var_copy][fmap[l]["vid"]] if v == head: res += 1 # This does not match Dimmwitted, but matches the eq in the paper return math.log(res) # TODO: use log2? elif factor[factor_id]["factorFunction"] == FUNC_LOGICAL: head = value if (fmap[ftv_end - 1]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_end - 1]["vid"]] for l in range(ftv_start, ftv_end - 1): v = value if (fmap[l]["vid"] == var_samp) \ else var_value[var_copy][fmap[l]["vid"]] if v == head: return 1 return 0 elif factor[factor_id]["factorFunction"] == FUNC_IMPLY_MLN: for l in range(ftv_start, ftv_end - 1): v = value if (fmap[l]["vid"] == var_samp) \ else var_value[var_copy][fmap[l]["vid"]] if v == 0: # Early return if body is not satisfied return 1 # If this point is reached, body must be true l = ftv_end - 1 head = value if (fmap[l]["vid"] == var_samp) \ else var_value[var_copy][l] if head: return 1 return 0 ######################### # CATEGORICAL VARIABLES # ######################### elif factor[factor_id]["factorFunction"] == FUNC_AND_CAT \ or factor[factor_id]["factorFunction"] == FUNC_EQUAL_CAT_CONST: for l in range(ftv_start, ftv_end): v = value if (fmap[l]["vid"] == var_samp) \ else var_value[var_copy][fmap[l]["vid"]] if v != fmap[l]["dense_equal_to"]: return 0 return 1 elif factor[factor_id]["factorFunction"] == FUNC_OR_CAT: for l in range(ftv_start, ftv_end): v = value if (fmap[l]["vid"] == var_samp) \ else var_value[var_copy][fmap[l]["vid"]] if v == fmap[l]["dense_equal_to"]: return 1 return -1 elif factor[factor_id]["factorFunction"] == FUNC_IMPLY_NATURAL_CAT: for l in range(ftv_start, ftv_end - 1): v = value if (fmap[l]["vid"] == var_samp) \ else var_value[var_copy][fmap[l]["vid"]] if v != fmap[l]["dense_equal_to"]: # Early return if body is not satisfied return 0 # If this point is reached, body must be true l = ftv_end - 1 head = value if (fmap[l]["vid"] == var_samp) \ else var_value[var_copy][l] if head == fmap[l]["dense_equal_to"]: return 1 return -1 elif factor[factor_id]["factorFunction"] == FUNC_IMPLY_MLN_CAT: for l in range(ftv_start, ftv_end - 1): v = value if (fmap[l]["vid"] == var_samp) \ else var_value[var_copy][fmap[l]["vid"]] if v != fmap[l]["dense_equal_to"]: # Early return if body is not satisfied return 1 # If this point is reached, body must be true l = ftv_end - 1 head = value if (fmap[l]["vid"] == var_samp) \ else var_value[var_copy][l] if head == fmap[l]["dense_equal_to"]: return 1 return 0 ##################### # DATA PROGRAMMING # # GENERATIVE MODELS # ##################### elif factor[factor_id]["factorFunction"] == FUNC_DP_GEN_CLASS_PRIOR: y_index = value if fmap[ftv_start]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start]["vid"]] return 1 if y_index == 1 else -1 elif factor[factor_id]["factorFunction"] == FUNC_DP_GEN_LF_PRIOR: l_index = value if fmap[ftv_start]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start]["vid"]] if l_index == 0: return -1 elif l_index == 1: return 0 else: return 1 elif factor[factor_id]["factorFunction"] == FUNC_DP_GEN_LF_PROPENSITY: l_index = value if fmap[ftv_start]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start]["vid"]] return 0 if l_index == 1 else 1 elif factor[factor_id]["factorFunction"] == FUNC_DP_GEN_LF_ACCURACY: y_index = value if fmap[ftv_start]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start]["vid"]] l_index = value if fmap[ftv_start + 1]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start + 1]["vid"]] if l_index == 1: return 0 # First part of below condition is simpler because # the index for value -1 is 0 for both variables elif y_index == l_index or (y_index == 1 and l_index == 2): return 1 else: return -1 elif factor[factor_id]["factorFunction"] == \ FUNC_DP_GEN_LF_CLASS_PROPENSITY: y_index = value if fmap[ftv_start]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start]["vid"]] l_index = value if fmap[ftv_start + 1]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start + 1]["vid"]] if l_index == 1: return 0 elif y_index == 1: return 1 else: return -1 elif factor[factor_id]["factorFunction"] == FUNC_DP_GEN_DEP_FIXING: y_index = value if fmap[ftv_start]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start]["vid"]] l1_index = value if fmap[ftv_start + 1]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start + 1]["vid"]] l2_index = value if fmap[ftv_start + 2]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start + 2]["vid"]] if l1_index == 1: return -1 if l2_index != 1 else 0 elif l1_index == 0 and l2_index == 2 and y_index == 1: return 1 elif l1_index == 2 and l2_index == 0 and y_index == 0: return 1 else: return 0 elif factor[factor_id]["factorFunction"] == FUNC_DP_GEN_DEP_REINFORCING: y_index = value if fmap[ftv_start]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start]["vid"]] l1_index = value if fmap[ftv_start + 1]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start + 1]["vid"]] l2_index = value if fmap[ftv_start + 2]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start + 2]["vid"]] if l1_index == 1: return -1 if l2_index != 1 else 0 elif l1_index == 0 and l2_index == 0 and y_index == 0: return 1 elif l1_index == 2 and l2_index == 2 and y_index == 1: return 1 else: return 0 elif factor[factor_id]["factorFunction"] == FUNC_DP_GEN_DEP_EXCLUSIVE: l1_index = value if fmap[ftv_start]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start]["vid"]] l2_index = value if fmap[ftv_start + 1]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start + 1]["vid"]] return 0 if l1_index == 1 or l2_index == 1 else -1 elif factor[factor_id]["factorFunction"] == FUNC_DP_GEN_DEP_SIMILAR: l1_index = value if fmap[ftv_start]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start]["vid"]] l2_index = value if fmap[ftv_start + 1]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start + 1]["vid"]] return 1 if l1_index == l2_index else 0 elif factor[factor_id]["factorFunction"] == FUNC_CORAL_GEN_DEP_SIMILAR: v1 = value if fmap[ftv_start]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start]["vid"]] v2 = value if fmap[ftv_start + 1]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start + 1]["vid"]] card1 = variable[fmap[ftv_start]["vid"]]["cardinality"] card2 = variable[fmap[ftv_start + 1]["vid"]]["cardinality"] assert(card1 == 2 or card1 == 3) assert(card2 == 2 or card2 == 3) if (card1 == card2): return 1 if v1 == v2 else 0 if card2 == 2: v1, v2 = v2, v1 return 1 if ((v1 == 0) and (v2 == 0)) or ((v1 == 1) and (v2 == 2)) else 0 else: for i in range(UdfStart.shape[0] - 1): if (factor[factor_id]["factorFunction"] >= UdfStart[i]) and (factor[factor_id]["factorFunction"] < UdfStart[i + 1]): # This is a valid UDF fid = factor[factor_id]["factorFunction"] - UdfStart[i] if fid < LfCount[i]: # LF Accuracy u = udf(UdfMap[UdfCardinalityStart[i] + fid], var_samp, value, var_copy, var_value, fmap, ftv_start) y = value if fmap[ftv_start + UdfCardinality[UdfCardinalityStart[i] + fid]]["vid"] == var_samp else \ var_value[var_copy][fmap[ftv_start + UdfCardinality[UdfCardinalityStart[i] + fid]]["vid"]] y = 2 * y - 1 return u * y else: # Correlation pass # FUNC_UNDEFINED print("Error: Factor Function", factor[factor_id]["factorFunction"], "( used in factor", factor_id, ") is not implemented.") raise NotImplementedError("Factor function is not implemented.")
ukb-cardiac-mri-master
ukb/weak_supervision/numbskull/numbskull/inference.py
"""TODO.""" from __future__ import print_function, absolute_import import numba from numba import jit import numpy as np import math import random from numbskull.inference import draw_sample, eval_factor @jit(nopython=True, cache=True, nogil=True) def learnthread(shardID, nshards, step, regularization, reg_param, truncation, var_copy, weight_copy, weight, variable, factor, fmap, vmap, factor_index, Z, fids, var_value, var_value_evid, weight_value, learn_non_evidence): """TODO.""" # Identify start and end variable nvar = variable.shape[0] start = (shardID * nvar) // nshards end = ((shardID + 1) * nvar) // nshards for var_samp in range(start, end): sample_and_sgd(var_samp, step, regularization, reg_param, truncation, var_copy, weight_copy, weight, variable, factor, fmap, vmap, factor_index, Z[shardID], fids[shardID], var_value, var_value_evid, weight_value, learn_non_evidence) @jit(nopython=True, cache=True, nogil=True) def get_factor_id_range(variable, vmap, var_samp, val): """TODO.""" varval_off = val if variable[var_samp]["dataType"] == 0: varval_off = 0 vtf = vmap[variable[var_samp]["vtf_offset"] + varval_off] start = vtf["factor_index_offset"] end = start + vtf["factor_index_length"] return (start, end) @jit(nopython=True, cache=True, nogil=True) def sample_and_sgd(var_samp, step, regularization, reg_param, truncation, var_copy, weight_copy, weight, variable, factor, fmap, vmap, factor_index, Z, fids, var_value, var_value_evid, weight_value, learn_non_evidence): """TODO.""" # If learn_non_evidence sample twice. # The method corresponds to expectation-conjugate descent. if variable[var_samp]["isEvidence"] != 1: evidence = draw_sample(var_samp, var_copy, weight_copy, weight, variable, factor, fmap, vmap, factor_index, Z, var_value_evid, weight_value) # If evidence then store the initial value in a tmp variable # then sample and compute the gradient. else: evidence = variable[var_samp]["initialValue"] var_value_evid[var_copy][var_samp] = evidence # Sample the variable proposal = draw_sample(var_samp, var_copy, weight_copy, weight, variable, factor, fmap, vmap, factor_index, Z, var_value, weight_value) var_value[var_copy][var_samp] = proposal if not learn_non_evidence and variable[var_samp]["isEvidence"] != 1: return # Compute the gradient and update the weights # Iterate over corresponding factors range_fids = get_factor_id_range(variable, vmap, var_samp, evidence) # TODO: is it possible to avoid copying around fids if evidence != proposal: range_prop = get_factor_id_range(variable, vmap, var_samp, proposal) s1 = range_fids[1] - range_fids[0] s2 = range_prop[1] - range_prop[0] s = s1 + s2 fids[:s1] = factor_index[range_fids[0]:range_fids[1]] fids[s1:s] = factor_index[range_prop[0]:range_prop[1]] fids[:s].sort() else: s = range_fids[1] - range_fids[0] fids[:s] = factor_index[range_fids[0]:range_fids[1]] truncate = random.random() < 1.0 / truncation if regularization == 1 else False # go over all factor ids, ignoring dupes last_fid = -1 # numba 0.28 would complain if this were None for factor_id in fids[:s]: if factor_id == last_fid: continue last_fid = factor_id weight_id = factor[factor_id]["weightId"] if weight[weight_id]["isFixed"]: continue # Compute Gradient p0 = eval_factor(factor_id, var_samp, evidence, var_copy, variable, factor, fmap, var_value_evid) p1 = eval_factor(factor_id, var_samp, proposal, var_copy, variable, factor, fmap, var_value) gradient = (p1 - p0) * factor[factor_id]["featureValue"] # Update weight w = weight_value[weight_copy][weight_id] if regularization == 2: w *= (1.0 / (1.0 + reg_param * step)) w -= step * gradient elif regularization == 1: # Truncated Gradient # "Sparse Online Learning via Truncated Gradient" # Langford et al. 2009 w -= step * gradient if truncate: l1delta = reg_param * step * truncation w = max(0, w - l1delta) if w > 0 else min(0, w + l1delta) else: w -= step * gradient weight_value[weight_copy][weight_id] = w
ukb-cardiac-mri-master
ukb/weak_supervision/numbskull/numbskull/learning.py
"""TODO.""" from __future__ import print_function, absolute_import import numba from numba import jit import numpy as np import math # Search "USER" to find sections that need to be implemented. # USER: insert name of UDF and cardinality here UDF_CARDINALITY = { # UDFs for toy example "TOY_OR": 2, "TOY_AND": 2, "TOY_DIRECT": 1, "TOY_DIRECT_ABSTAIN": 1, "TOY_DIRECT_SINGLE": 1, "VG_12": 2, "VG_POS_SIZE_NUM": 3, "BT_DAUBE": 3, "BT_EDGE": 3, "BT_LESION": 2, "BT_SHAPE": 3, "BT_SOBEL": 2, "BT_GLCM": 2, "BT_FIRST": 2, "AN_PB": 2, "AN_DIST": 3, "AN_COLOR_TEMP": 2, "HEART_POSITIVE": 1, "HEART_NEGATIVE": 1, "HEART_SINGLE_POSITIVE": 1, "HEART_SINGLE_NEGATIVE": 1 } # Automatically select a unique index for each UDF (no modification needed) UDF_INDEX = {} UDF_NAME = {} udf_index = 0 for udf in UDF_CARDINALITY: UDF_INDEX[udf] = udf_index UDF_NAME[udf_index] = udf udf_index += 1 # Create a constant for the index of each UDF for (key, value) in UDF_INDEX.items(): exec(key + " = " + str(value)) # USER: Specify the list of UDFs that are used in a single model. UDF_USAGE = { #"TOY": [TOY_AND, TOY_DIRECT, TOY_DIRECT], "TOY": [TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT], "SYNTHETIC2_5": [TOY_OR, TOY_OR, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT], "SYNTHETIC3_5": [TOY_OR, TOY_OR, TOY_OR, TOY_DIRECT, TOY_DIRECT], "SYNTHETIC4_5": [TOY_OR, TOY_OR, TOY_OR, TOY_OR, TOY_DIRECT], "SYNTHETIC5_5": [TOY_OR, TOY_OR, TOY_OR, TOY_OR, TOY_OR], "SYNTHETIC2_6": [TOY_OR, TOY_OR, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT], "SYNTHETIC3_6": [TOY_OR, TOY_OR, TOY_OR, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT], "SYNTHETIC4_6": [TOY_OR, TOY_OR, TOY_OR, TOY_OR, TOY_DIRECT, TOY_DIRECT], "SYNTHETIC5_6": [TOY_OR, TOY_OR, TOY_OR, TOY_OR, TOY_OR, TOY_DIRECT], "SYNTHETIC2_7": [TOY_OR, TOY_OR, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT], "SYNTHETIC3_7": [TOY_OR, TOY_OR, TOY_OR, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT], "SYNTHETIC4_7": [TOY_OR, TOY_OR, TOY_OR, TOY_OR, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT], "SYNTHETIC5_7": [TOY_OR, TOY_OR, TOY_OR, TOY_OR, TOY_OR, TOY_DIRECT, TOY_DIRECT], "SYNTHETIC2_8": [TOY_OR, TOY_OR, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT], "SYNTHETIC3_8": [TOY_OR, TOY_OR, TOY_OR, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT], "SYNTHETIC4_8": [TOY_OR, TOY_OR, TOY_OR, TOY_OR, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT], "SYNTHETIC5_8": [TOY_OR, TOY_OR, TOY_OR, TOY_OR, TOY_OR, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT], "SYNTHETIC2_10": [TOY_OR, TOY_OR, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT], "SYNTHETIC3_10": [TOY_OR, TOY_OR, TOY_OR, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT], "SYNTHETIC4_10": [TOY_OR, TOY_OR, TOY_OR, TOY_OR, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT], "SYNTHETIC5_10": [TOY_OR, TOY_OR, TOY_OR, TOY_OR, TOY_OR, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT], "SYNTHETIC2_15": [TOY_OR, TOY_OR, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT], "SYNTHETIC3_15": [TOY_OR, TOY_OR, TOY_OR, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT], "SYNTHETIC4_15": [TOY_OR, TOY_OR, TOY_OR, TOY_OR, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT], "SYNTHETIC5_15": [TOY_OR, TOY_OR, TOY_OR, TOY_OR, TOY_OR, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT], "DDSM": [TOY_DIRECT_ABSTAIN, TOY_DIRECT_ABSTAIN, TOY_DIRECT_ABSTAIN, TOY_DIRECT_ABSTAIN, TOY_DIRECT_SINGLE, TOY_DIRECT_ABSTAIN], "SYNTH": [TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT], "VG": [VG_12, VG_12, VG_POS_SIZE_NUM, VG_POS_SIZE_NUM, VG_POS_SIZE_NUM], "VGSYNTH": [TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT], "BT": [BT_DAUBE, BT_EDGE, BT_LESION, BT_SHAPE, BT_SOBEL, BT_GLCM, BT_FIRST], "BTSYNTH": [TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT, TOY_DIRECT], "AN": [AN_PB, AN_DIST, AN_COLOR_TEMP, AN_COLOR_TEMP], #"MRI": [HEART_POSITIVE, HEART_POSITIVE, HEART_POSITIVE, HEART_POSITIVE, HEART_NEGATIVE] "MRI": [HEART_NEGATIVE, HEART_POSITIVE, HEART_SINGLE_NEGATIVE, HEART_POSITIVE, HEART_NEGATIVE] } # USER: There are not modifications necessary here. However, the value # generated in UDF_OFFSET needs to be given to CoralModel as L_offset. UDF_OFFSET = {} UDF_OFFSET_END = {} UdfStart = np.empty(len(UDF_USAGE) + 1, np.int64) # UdfStart[i] = first index corresponding to application [i] LfCount = np.empty(len(UDF_USAGE), np.int64) # LfCount[i] = number of LFs in application [i] UdfCardinalityStart = np.empty(len(UDF_USAGE) + 1, np.int64) UdfMap = np.empty(sum(len(value) for (key, value) in UDF_USAGE.items()), np.int64) UdfCardinality = np.empty(sum(len(value) for (key, value) in UDF_USAGE.items()), np.int64) index = 0 ci = 0 udf_offset = 1000 for (key, value) in UDF_USAGE.items(): UDF_OFFSET[key] = udf_offset UdfStart[index] = udf_offset LfCount[index] = len(UDF_USAGE[key]) UdfCardinalityStart[index] = ci for i in range(LfCount[index]): UdfMap[ci] = UDF_USAGE[key][i] UdfCardinality[ci] = UDF_CARDINALITY[UDF_NAME[UDF_USAGE[key][i]]] ci += 1 udf_offset += len(UDF_USAGE[key]) # LF accuracy udf_offset += len(UDF_USAGE[key]) * (len(UDF_USAGE[key]) - 1) / 2 # correlations index += 1 UdfStart[index] = udf_offset UDF_OFFSET_END[key] = udf_offset UdfCardinalityStart[index] = ci exec(key + "_UDF_OFFSET = " + str(UDF_OFFSET[key])) # USER: Implement the UDF here # The following code can be used to obtain the correct value of a variable: # vi = value if (fmap[ftv_start + i]["vid"] == var_samp) \ # else var_value[var_copy][fmap[ftv_start + i]["vid"]] @jit(nopython=True, cache=True, nogil=True) def udf(udf_index, var_samp, value, var_copy, var_value, fmap, ftv_start): if udf_index == TOY_OR: v1 = value if (fmap[ftv_start + 0]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 0]["vid"]] v2 = value if (fmap[ftv_start + 1]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 1]["vid"]] if v1 == 1 or v2 == 1: return 1 return -1 elif udf_index == TOY_AND: v1 = value if (fmap[ftv_start + 0]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 0]["vid"]] v2 = value if (fmap[ftv_start + 1]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 1]["vid"]] if v1 == 1 and v2 == 1: return 1 return -1 elif udf_index == TOY_DIRECT: v1 = value if (fmap[ftv_start + 0]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 0]["vid"]] return 2 * v1 - 1 #DDSM Labeling Functions elif udf_index == TOY_DIRECT_ABSTAIN: v1 = value if (fmap[ftv_start + 0]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 0]["vid"]] return v1-1 elif udf_index == TOY_DIRECT_SINGLE: v1 = value if (fmap[ftv_start + 0]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 0]["vid"]] return v1-1 #Visual Genome Labeling Functions elif udf_index == VG_12: v1 = value if (fmap[ftv_start + 0]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 0]["vid"]] v2 = value if (fmap[ftv_start + 1]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 1]["vid"]] if v1 == 1: if v2 == 1: return 1 else: return -1 return 0 elif udf_index == VG_POS_SIZE_NUM: v1 = value if (fmap[ftv_start + 0]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 0]["vid"]] v2 = value if (fmap[ftv_start + 1]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 1]["vid"]] v3 = value if (fmap[ftv_start + 2]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 2]["vid"]] if v1 == 1: if v2 == 1: if v3 == 2: return 1 else: if v3 == 0: return -1 return 0 #Bone Tumor Labeling Functions elif udf_index == BT_DAUBE: v1 = value if (fmap[ftv_start + 0]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 0]["vid"]] v2 = value if (fmap[ftv_start + 1]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 1]["vid"]] v3 = value if (fmap[ftv_start + 2]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 2]["vid"]] if v1 == 1: if v2 == 1: return 1 else: if v3 == 1: return -1 else: return 1 else: return -1 return 0 elif udf_index == BT_EDGE: v1 = value if (fmap[ftv_start + 0]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 0]["vid"]] v2 = value if (fmap[ftv_start + 1]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 1]["vid"]] v3 = value if (fmap[ftv_start + 2]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 2]["vid"]] if v1 == 1: return -1 else: if v2 == 1: return -1 else: if v3 == 1: return -1 else: return 1 return 0 elif udf_index == BT_LESION: v1 = value if (fmap[ftv_start + 0]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 0]["vid"]] v2 = value if (fmap[ftv_start + 1]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 1]["vid"]] if v1 == 2: return -1 if v1 == 1: if v2 == 2: return 1 return 0 elif udf_index == BT_SHAPE: v1 = value if (fmap[ftv_start + 0]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 0]["vid"]] v2 = value if (fmap[ftv_start + 1]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 1]["vid"]] v3 = value if (fmap[ftv_start + 2]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 2]["vid"]] if v1 == 2: return -1 if v1 == 1: if v2 == 2: if v3 == 2: return -1 if v3 == 1: return 1 if v2 == 1: return 1 return 0 elif udf_index == BT_SOBEL: v1 = value if (fmap[ftv_start + 0]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 0]["vid"]] v2 = value if (fmap[ftv_start + 1]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 1]["vid"]] if v1 == 2: return -1 if v1 == 1: if v2 == 2: return 1 if v2 == 1: return -1 return 0 elif udf_index == BT_GLCM: v1 = value if (fmap[ftv_start + 0]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 0]["vid"]] v2 = value if (fmap[ftv_start + 1]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 1]["vid"]] if v1 == 2: if v2 == 2: return -1 if v2 == 1: return 1 if v1 == 1: return -1 return 0 elif udf_index == BT_FIRST: v1 = value if (fmap[ftv_start + 0]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 0]["vid"]] v2 = value if (fmap[ftv_start + 1]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 1]["vid"]] if v1 == 2: return -1 if v1 == 1: if v2 == 2: return 1 if v2 == 1: return -1 return 0 #ActivityNet Labeling Functions elif udf_index == AN_PB: v1 = value if (fmap[ftv_start + 0]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 0]["vid"]] v2 = value if (fmap[ftv_start + 1]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 1]["vid"]] if v1 == 1: if v2 == 1: return 1 else: return -1 return 0 elif udf_index == AN_DIST: v1 = value if (fmap[ftv_start + 0]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 0]["vid"]] v2 = value if (fmap[ftv_start + 1]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 1]["vid"]] v3 = value if (fmap[ftv_start + 2]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 2]["vid"]] if v1 == 1: if v2 == 1: if v3 == 1: return 1 else: return -1 return 0 elif udf_index == AN_COLOR_TEMP: v1 = value if (fmap[ftv_start + 0]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 0]["vid"]] v2 = value if (fmap[ftv_start + 1]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 1]["vid"]] if v1 == 1: if v2 == 1: return 1 else: return -1 return 0 #Heart MRI Functions elif udf_index == HEART_POSITIVE: v1 = value if (fmap[ftv_start + 0]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 0]["vid"]] v2 = value if (fmap[ftv_start + 1]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 1]["vid"]] if v1 == 2: return 1 if v1 == 1: return -1 return 0 elif udf_index == HEART_NEGATIVE: v1 = value if (fmap[ftv_start + 0]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 0]["vid"]] v2 = value if (fmap[ftv_start + 1]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 1]["vid"]] if v1 == 2: return -1 if v1 == 1: return 1 return 0 elif udf_index == HEART_SINGLE_POSITIVE: v1 = value if (fmap[ftv_start + 0]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 0]["vid"]] v2 = value if (fmap[ftv_start + 1]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 1]["vid"]] if v1 == 2: return 1 return 0 elif udf_index == HEART_SINGLE_NEGATIVE: v1 = value if (fmap[ftv_start + 0]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 0]["vid"]] v2 = value if (fmap[ftv_start + 1]["vid"] == var_samp) \ else var_value[var_copy][fmap[ftv_start + 1]["vid"]] if v1 == 1: return 1 return 0 else: print("Error: UDF", udf_index, "is not implemented.") raise NotImplementedError("UDF is not implemented.")
ukb-cardiac-mri-master
ukb/weak_supervision/numbskull/numbskull/udf.py
"""TODO.""" from .numbskull import main main()
ukb-cardiac-mri-master
ukb/weak_supervision/numbskull/numbskull/__main__.py
import logging import re from builtins import chr, range, str from difflib import SequenceMatcher from fonduer.candidates import MentionNgrams from fonduer.candidates.models.implicit_span_mention import TemporaryImplicitSpanMention logger = logging.getLogger(__name__) def expand_part_range(text): """ Given a string, generates strings that are potentially implied by the original text. Two main operations are performed: 1. Expanding ranges (X to Y; X ~ Y; X -- Y) 2. Expanding suffixes (123X/Y/Z; 123X, Y, Z) Also yields the original input string. To get the correct output from complex strings, this function should be fed many Ngrams from a particular sentence. """ # Regex Patterns compile only once per function call. # This range pattern will find text that "looks like" a range. range_pattern = re.compile( r"^(?P<start>[\w\/]+)(?:\s*(\.{3,}|\~|\-+|to|thru|through" r"|\u2011+|\u2012+|\u2013+|\u2014+|\u2012+|\u2212+)\s*)(?P<end>[\w\/]+)$", re.IGNORECASE | re.UNICODE, ) suffix_pattern = re.compile(r"(?P<spacer>(?:,|\/)\s*)(?P<suffix>[\w\-]+)") base_pattern = re.compile( r"(?P<base>[\w\-]+)(?P<spacer>(?:,|\/)\s*)(?P<suffix>[\w\-]+)?" ) logger.debug("Text: " + text) expanded_parts = set() final_set = set() # Step 1: Search and expand ranges m = re.search(range_pattern, text) if m: start = m.group("start") end = m.group("end") start_diff = "" end_diff = "" logger.debug(f" Start: {start} \t End: {end}") # Use difflib to find difference. We are interested in 'replace' only seqm = SequenceMatcher(None, start, end).get_opcodes() for opcode, a0, a1, b0, b1 in seqm: if opcode == "equal": continue elif opcode == "insert": break elif opcode == "delete": break elif opcode == "replace": # NOTE: Potential bug if there is more than 1 replace start_diff = start[a0:a1] end_diff = end[b0:b1] else: logger.error("Unexpected opcode") raise RuntimeError("[ERROR] unexpected opcode") logger.debug(f" start_diff: {start_diff} \t end_diff: {end_diff}") # First, check for number range if atoi(start_diff) and atoi(end_diff): logger.debug(f" Enumerate {atoi(start_diff)} to {atoi(end_diff)}") # generate a list of the numbers plugged in for number in range(atoi(start_diff), atoi(end_diff) + 1): new_part = start.replace(start_diff, str(number)) # Produce the strings with the enumerated ranges expanded_parts.add(new_part) # Second, check for single-letter enumeration if len(start_diff) == 1 and len(end_diff) == 1: if start_diff.isalpha() and end_diff.isalpha(): logger.debug(f" Enumerate {start_diff} to {end_diff}") letter_range = char_range(start_diff, end_diff) for letter in letter_range: new_part = start.replace(start_diff, letter) # Produce the strings with the enumerated ranges expanded_parts.add(new_part) # If we cannot identify a clear number or letter range, or if there are # multiple ranges being expressed, just ignore it. if len(expanded_parts) == 0: expanded_parts.add(text) else: expanded_parts.add(text) # Special case is when there is a single slack (e.g. BC337-16/BC338-16) # and we want to output both halves of the slash, assuming that both # halves are the same length if text.count("/") == 1: split = text.split("/") if len(split[0]) == len(split[1]): expanded_parts.add(split[0]) expanded_parts.add(split[1]) logger.debug(" Inferred Text: \n " + str(sorted(expanded_parts))) # Step 2: Expand suffixes for each of the inferred sentences # NOTE: this only does the simple case of replacing same-length suffixes. # we do not handle cases like "BC546A/B/XYZ/QR" for part in expanded_parts: first_match = re.search(base_pattern, part) if first_match: base = re.search(base_pattern, part).group("base") final_set.add(base) # add the base (multiple times, but set handles that) if first_match.group("suffix"): all_suffix_lengths = set() # This is a bit inefficient but this first pass just is here # to make sure that the suffixes are the same length # first_suffix = first_match.group("suffix") # if part.startswith('BC547'): # import pdb; pdb.set_trace() for m in re.finditer(suffix_pattern, part): suffix = m.group("suffix") suffix_len = len(suffix) all_suffix_lengths.add(suffix_len) if len(all_suffix_lengths) == 1: for m in re.finditer(suffix_pattern, part): suffix = m.group("suffix") suffix_len = len(suffix) old_suffix = base[-suffix_len:] if (suffix.isalpha() and old_suffix.isalpha()) or ( suffix.isdigit() and old_suffix.isdigit() ): trimmed = base[:-suffix_len] final_set.add(trimmed + suffix) else: if part and (not part.isspace()): final_set.add(part) # no base was found with suffixes to expand logger.debug(" Final Set: " + str(sorted(final_set))) # Also return the original input string final_set.add(text) for part in final_set: yield part # NOTE: We make a few assumptions (e.g. suffixes must be same length), but # one important unstated assumption is that if there is a single suffix, # (e.g. BC546A/B), the single suffix will be swapped in no matter what. # In this example, it works. But if we had "ABCD/EFG" we would get "ABCD,AEFG" # Check out UtilsTests.py to see more of our assumptions capture as test # cases. def atoi(num_str): """ Helper function which converts a string to an integer, or returns None. """ try: return int(num_str) except Exception: pass return None def char_range(a, b): """ Generates the characters from a to b inclusive. """ for c in range(ord(a), ord(b) + 1): yield chr(c) class MentionNgramsPart(MentionNgrams): def __init__( self, parts_by_doc=None, n_max=3, expand=True, split_tokens=["-", "/"] ): """MentionNgrams specifically for transistor parts. :param parts_by_doc: a dictionary d where d[document_name.upper()] = [partA, partB, ...] """ super(MentionNgrams, self).__init__(n_max=n_max, split_tokens=split_tokens) self.parts_by_doc = parts_by_doc self.expander = expand_part_range if expand else (lambda x: [x]) def apply(self, doc): for ts in MentionNgrams.apply(self, doc): enumerated_parts = [ part.upper() for part in expand_part_range(ts.get_span()) ] parts = set(enumerated_parts) if self.parts_by_doc: possible_parts = self.parts_by_doc[ts.parent.document.name.upper()] for base_part in enumerated_parts: for part in possible_parts: if part.startswith(base_part) and len(base_part) >= 4: parts.add(part) for i, part in enumerate(parts): if " " in part: continue # it won't pass the part_matcher if part == ts.get_span(): yield ts else: yield TemporaryImplicitSpanMention( sentence=ts.sentence, char_start=ts.char_start, char_end=ts.char_end, expander_key="part_expander", position=i, text=part, words=[part], lemmas=[part], pos_tags=[ts.get_attrib_tokens("pos_tags")[0]], ner_tags=[ts.get_attrib_tokens("ner_tags")[0]], dep_parents=[ts.get_attrib_tokens("dep_parents")[0]], dep_labels=[ts.get_attrib_tokens("dep_labels")[0]], page=[min(ts.get_attrib_tokens("page"))] if ts.sentence.is_visual() else [None], top=[min(ts.get_attrib_tokens("top"))] if ts.sentence.is_visual() else [None], left=[max(ts.get_attrib_tokens("left"))] if ts.sentence.is_visual() else [None], bottom=[min(ts.get_attrib_tokens("bottom"))] if ts.sentence.is_visual() else [None], right=[max(ts.get_attrib_tokens("right"))] if ts.sentence.is_visual() else [None], meta=None, ) class MentionNgramsTemp(MentionNgrams): def __init__(self, n_max=2, split_tokens=["-", "/"]): super(MentionNgrams, self).__init__(n_max=n_max, split_tokens=split_tokens) def apply(self, doc): for ts in MentionNgrams.apply(self, doc): m = re.match( r"^([\+\-\u2010\u2011\u2012\u2013\u2014\u2212\uf02d])?(\s*)(\d+)$", ts.get_span(), re.U, ) if m: if m.group(1) is None: temp = "" elif m.group(1) == "+": if m.group(2) != "": # If bigram '+ 150' is seen, accept the unigram '150', # not both continue temp = "" else: # m.group(1) is a type of negative sign # A bigram '- 150' is different from unigram '150', so we # keep the implicit '-150' temp = "-" temp += m.group(3) yield TemporaryImplicitSpanMention( sentence=ts.sentence, char_start=ts.char_start, char_end=ts.char_end, expander_key="temp_expander", position=0, text=temp, words=[temp], lemmas=[temp], pos_tags=[ts.get_attrib_tokens("pos_tags")[-1]], ner_tags=[ts.get_attrib_tokens("ner_tags")[-1]], dep_parents=[ts.get_attrib_tokens("dep_parents")[-1]], dep_labels=[ts.get_attrib_tokens("dep_labels")[-1]], page=[ts.get_attrib_tokens("page")[-1]] if ts.sentence.is_visual() else [None], top=[ts.get_attrib_tokens("top")[-1]] if ts.sentence.is_visual() else [None], left=[ts.get_attrib_tokens("left")[-1]] if ts.sentence.is_visual() else [None], bottom=[ts.get_attrib_tokens("bottom")[-1]] if ts.sentence.is_visual() else [None], right=[ts.get_attrib_tokens("right")[-1]] if ts.sentence.is_visual() else [None], meta=None, ) else: yield ts class MentionNgramsVolt(MentionNgrams): def __init__(self, n_max=1, split_tokens=["-", "/"]): super(MentionNgrams, self).__init__(n_max=n_max, split_tokens=split_tokens) def apply(self, doc): for ts in MentionNgrams.apply(self, doc): if ts.get_span().endswith(".0"): value = ts.get_span()[:-2] yield TemporaryImplicitSpanMention( sentence=ts.sentence, char_start=ts.char_start, char_end=ts.char_end, expander_key="volt_expander", position=0, text=value, words=[value], lemmas=[value], pos_tags=[ts.get_attrib_tokens("pos_tags")[-1]], ner_tags=[ts.get_attrib_tokens("ner_tags")[-1]], dep_parents=[ts.get_attrib_tokens("dep_parents")[-1]], dep_labels=[ts.get_attrib_tokens("dep_labels")[-1]], page=[ts.get_attrib_tokens("page")[-1]] if ts.sentence.is_visual() else [None], top=[ts.get_attrib_tokens("top")[-1]] if ts.sentence.is_visual() else [None], left=[ts.get_attrib_tokens("left")[-1]] if ts.sentence.is_visual() else [None], bottom=[ts.get_attrib_tokens("bottom")[-1]] if ts.sentence.is_visual() else [None], right=[ts.get_attrib_tokens("right")[-1]] if ts.sentence.is_visual() else [None], meta=None, ) else: yield ts
fonduer-tutorials-master
hardware/hardware_spaces.py
import codecs import csv from builtins import range from fonduer.candidates.models import Candidate from fonduer.learning.utils import confusion_matrix from fonduer.supervision.models import GoldLabel, GoldLabelKey try: from IPython import get_ipython if "IPKernelApp" not in get_ipython().config: raise ImportError("console") except (AttributeError, ImportError): from tqdm import tqdm else: from tqdm import tqdm_notebook as tqdm # Define labels ABSTAIN = -1 FALSE = 0 TRUE = 1 def get_gold_dict( filename, doc_on=True, part_on=True, val_on=True, attribute=None, docs=None ): with codecs.open(filename, encoding="utf-8") as csvfile: gold_reader = csv.reader(csvfile) gold_dict = set() for row in gold_reader: (doc, part, attr, val) = row if docs is None or doc.upper() in docs: if attribute and attr != attribute: continue if val == TRUE: continue else: key = [] if doc_on: key.append(doc.upper()) if part_on: key.append(part.upper()) if val_on: key.append(val.upper()) gold_dict.add(tuple(key)) return gold_dict gold_dict = get_gold_dict( "data/hardware_tutorial_gold.csv", attribute="stg_temp_max" ) def gold(c: Candidate) -> int: doc = (c[0].context.sentence.document.name).upper() part = (c[0].context.get_span()).upper() val = ("".join(c[1].context.get_span().split())).upper() if (doc, part, val) in gold_dict: return TRUE else: return FALSE def entity_level_f1( candidates, gold_file, attribute=None, corpus=None, parts_by_doc=None ): """Checks entity-level recall of candidates compared to gold. Turns a CandidateSet into a normal set of entity-level tuples (doc, part, [attribute_value]) then compares this to the entity-level tuples found in the gold. Example Usage: from hardware_utils import entity_level_total_recall candidates = # CandidateSet of all candidates you want to consider gold_file = 'tutorials/tables/data/hardware/hardware_gold.csv' entity_level_total_recall(candidates, gold_file, 'stg_temp_min') """ docs = [(doc.name).upper() for doc in corpus] if corpus else None val_on = attribute is not None gold_set = get_gold_dict( gold_file, docs=docs, doc_on=True, part_on=True, val_on=val_on, attribute=attribute, ) if len(gold_set) == 0: print(f"Gold File: {gold_file}\n Attribute: {attribute}") print("Gold set is empty.") return # Turn CandidateSet into set of tuples print("Preparing candidates...") entities = set() for i, c in enumerate(tqdm(candidates)): part = c[0].context.get_span() doc = c[0].context.sentence.document.name.upper() if attribute: val = c[1].context.get_span() for p in get_implied_parts(part, doc, parts_by_doc): if attribute: entities.add((doc, p, val)) else: entities.add((doc, p)) (TP_set, FP_set, FN_set) = confusion_matrix(entities, gold_set) TP = len(TP_set) FP = len(FP_set) FN = len(FN_set) prec = TP / (TP + FP) if TP + FP > 0 else float("nan") rec = TP / (TP + FN) if TP + FN > 0 else float("nan") f1 = 2 * (prec * rec) / (prec + rec) if prec + rec > 0 else float("nan") print("========================================") print("Scoring on Entity-Level Gold Data") print("========================================") print(f"Corpus Precision {prec:.3}") print(f"Corpus Recall {rec:.3}") print(f"Corpus F1 {f1:.3}") print("----------------------------------------") print(f"TP: {TP} | FP: {FP} | FN: {FN}") print("========================================\n") return [sorted(list(x)) for x in [TP_set, FP_set, FN_set]] def get_implied_parts(part, doc, parts_by_doc): yield part if parts_by_doc: for p in parts_by_doc[doc]: if p.startswith(part) and len(part) >= 4: yield p def entity_to_candidates(entity, candidate_subset): matches = [] for c in candidate_subset: c_entity = tuple( [c[0].context.sentence.document.name.upper()] + [c[i].context.get_span().upper() for i in range(len(c))] ) c_entity = tuple([str(x) for x in c_entity]) if c_entity == entity: matches.append(c) return matches
fonduer-tutorials-master
hardware/hardware_utils.py
import codecs import csv from builtins import range from fonduer.candidates.models import Candidate from fonduer.learning.utils import confusion_matrix from fonduer.supervision.models import GoldLabel, GoldLabelKey try: from IPython import get_ipython if "IPKernelApp" not in get_ipython().config: raise ImportError("console") except (AttributeError, ImportError): from tqdm import tqdm else: from tqdm import tqdm_notebook as tqdm # Define labels ABSTAIN = -1 FALSE = 0 TRUE = 1 def get_gold_dict( filename, doc_on=True, part_on=True, val_on=True, attribute=None, docs=None ): with codecs.open(filename, encoding="utf-8") as csvfile: gold_reader = csv.reader(csvfile) gold_dict = set() for row in gold_reader: (doc, part, attr, val) = row if docs is None or doc.upper() in docs: if attribute and attr != attribute: continue if val == TRUE: continue else: key = [] if doc_on: key.append(doc.upper()) if part_on: key.append(part.upper()) if val_on: key.append(val.upper()) gold_dict.add(tuple(key)) return gold_dict gold_dict = get_gold_dict( "data/hardware_tutorial_gold.csv", attribute="stg_temp_max" ) def gold(c: Candidate) -> int: doc = (c[0].context.sentence.document.name).upper() part = (c[0].context.get_span()).upper() val = ("".join(c[1].context.get_span().split())).upper() if (doc, part, val) in gold_dict: return TRUE else: return FALSE def entity_level_f1( candidates, gold_file, attribute=None, corpus=None, parts_by_doc=None ): """Checks entity-level recall of candidates compared to gold. Turns a CandidateSet into a normal set of entity-level tuples (doc, part, [attribute_value]) then compares this to the entity-level tuples found in the gold. Example Usage: from hardware_utils import entity_level_total_recall candidates = # CandidateSet of all candidates you want to consider gold_file = 'tutorials/tables/data/hardware/hardware_gold.csv' entity_level_total_recall(candidates, gold_file, 'stg_temp_min') """ docs = [(doc.name).upper() for doc in corpus] if corpus else None val_on = attribute is not None gold_set = get_gold_dict( gold_file, docs=docs, doc_on=True, part_on=True, val_on=val_on, attribute=attribute, ) if len(gold_set) == 0: print(f"Gold File: {gold_file}\n Attribute: {attribute}") print("Gold set is empty.") return # Turn CandidateSet into set of tuples print("Preparing candidates...") entities = set() for i, c in enumerate(tqdm(candidates)): part = c[0].context.get_span() doc = c[0].context.sentence.document.name.upper() if attribute: val = c[1].context.get_span() for p in get_implied_parts(part, doc, parts_by_doc): if attribute: entities.add((doc, p, val)) else: entities.add((doc, p)) (TP_set, FP_set, FN_set) = confusion_matrix(entities, gold_set) TP = len(TP_set) FP = len(FP_set) FN = len(FN_set) prec = TP / (TP + FP) if TP + FP > 0 else float("nan") rec = TP / (TP + FN) if TP + FN > 0 else float("nan") f1 = 2 * (prec * rec) / (prec + rec) if prec + rec > 0 else float("nan") print("========================================") print("Scoring on Entity-Level Gold Data") print("========================================") print(f"Corpus Precision {prec:.3}") print(f"Corpus Recall {rec:.3}") print(f"Corpus F1 {f1:.3}") print("----------------------------------------") print(f"TP: {TP} | FP: {FP} | FN: {FN}") print("========================================\n") return [sorted(list(x)) for x in [TP_set, FP_set, FN_set]] def get_implied_parts(part, doc, parts_by_doc): yield part if parts_by_doc: for p in parts_by_doc[doc]: if p.startswith(part) and len(part) >= 4: yield p def entity_to_candidates(entity, candidate_subset): matches = [] for c in candidate_subset: c_entity = tuple( [c[0].context.sentence.document.name.upper()] + [c[i].context.get_span().upper() for i in range(len(c))] ) c_entity = tuple([str(x) for x in c_entity]) if c_entity == entity: matches.append(c) return matches
fonduer-tutorials-master
intro/hardware_utils.py
import codecs import csv from builtins import range from fonduer.candidates.models import Candidate from fonduer.parser.models import Document, Sentence from fonduer.learning.utils import confusion_matrix from fonduer.supervision.models import GoldLabel, GoldLabelKey try: from IPython import get_ipython if "IPKernelApp" not in get_ipython().config: raise ImportError("console") except (AttributeError, ImportError): from tqdm import tqdm else: from tqdm import tqdm_notebook as tqdm # Define labels ABSTAIN = -1 FALSE = 0 TRUE = 1 def get_gold_dict( filename, doc_on=True, presidentname_on=True, placeofbirth_on=True, docs=None ): with codecs.open(filename) as csvfile: gold_reader = csv.reader(csvfile, delimiter=";") # skip header row next(gold_reader) gold_dict = set() for row in gold_reader: (doc, presidentname, placeofbirth) = row docname_without_spaces = doc.replace(" ", "_") if docs is None or docname_without_spaces.upper() in docs: if not (doc and placeofbirth and presidentname): continue else: key = [] if doc_on: key.append(docname_without_spaces.upper()) if presidentname_on: key.append(presidentname.upper()) if placeofbirth_on: key.append(placeofbirth.upper()) gold_dict.add(tuple(key)) return gold_dict gold_dict = get_gold_dict("data/president_tutorial_gold.csv") def gold(c: Candidate) -> int: doc = (c[0].context.sentence.document.name).upper() president_name = (c[0].context.get_span()).upper() birthplace = (c[1].context.get_span()).upper() cand_tuple = (doc, president_name, birthplace) # gold_matches = [x for x in gold_dict if x[0] == doc] if cand_tuple in gold_dict: return TRUE else: return FALSE def entity_level_f1(candidates, gold_file, corpus=None): """Checks entity-level recall of candidates compared to gold. Turns a CandidateSet into a normal set of entity-level tuples (doc, president_name, birthplace) then compares this to the entity-level tuples found in the gold. Example Usage: from hardware_utils import entity_level_total_recall candidates = # CandidateSet of all candidates you want to consider gold_file = 'tutorials/tables/data/hardware/hardware_gold.csv' entity_level_total_recall(candidates, gold_file, 'stg_temp_min') """ docs = [(doc.name).upper() for doc in corpus] if corpus else None gold_set = get_gold_dict(gold_file, docs=docs) if len(gold_set) == 0: print("Gold File: {gold_file}") print("Gold set is empty.") return # Turn CandidateSet into set of tuples print("Preparing candidates...") entities = set() for i, c in enumerate(tqdm(candidates)): doc = c[0].context.sentence.document.name.upper() president_name = c[0].context.get_span().upper() birthplace = c[1].context.get_span().upper() entities.add((doc, president_name, birthplace)) (TP_set, FP_set, FN_set) = confusion_matrix(entities, gold_set) TP = len(TP_set) FP = len(FP_set) FN = len(FN_set) prec = TP / (TP + FP) if TP + FP > 0 else float("nan") rec = TP / (TP + FN) if TP + FN > 0 else float("nan") f1 = 2 * (prec * rec) / (prec + rec) if prec + rec > 0 else float("nan") print("========================================") print("Scoring on Entity-Level Gold Data") print("========================================") print(f"Corpus Precision {prec:.3}") print(f"Corpus Recall {rec:.3}") print(f"Corpus F1 {f1:.3}") print("----------------------------------------") print(f"TP: {TP} | FP: {FP} | FN: {FN}") print("========================================\n") return [sorted(list(x)) for x in [TP_set, FP_set, FN_set]]
fonduer-tutorials-master
wiki/wiki_table_utils.py
import datasets import tensorflow as tf import pandas as pd from pathlib import Path import json from tqdm.auto import tqdm import os DATA_DIR = os.environ.get("AMA_DATA", "/home/data") # Download P3 github data from HF website ''' git lfs install git clone https://huggingface.co/datasets/bigscience/P3 ''' import sys sys.path.append(f"{DATA_DIR}/P3") # From P3 github from tasks_splits_and_features import DATA_SPLITS_SIZES SPLITS = ["train", "test", "validation"] _FEAT_MAPPING_FUNCTIONS = { "answer_choices": lambda x: [choice.decode("utf-8") for choice in x], "inputs": lambda x: x.tolist(), "inputs_pretokenized": lambda x: x.decode("utf-8"), "targets": lambda x: x.tolist(), "targets_pretokenized": lambda x: x.decode("utf-8"), "idx": lambda x: x.tolist(), "weight": lambda x: float(x), "is_correct": lambda x: x, } def _feature_config(shape, dtype): if dtype in ("int32", "bool"): # int32 and bool are stored as int64 in the tf.train.Example protobuf. dtype = "int64" if shape and shape[0] is None: return tf.io.FixedLenSequenceFeature( shape[1:], dtype, allow_missing=True ) return tf.io.FixedLenFeature(shape, dtype) @tf.autograph.experimental.do_not_convert def extract_dataset(data_path, subfolder, sizes, processes=10, splits=SPLITS): datasets = {} for split in splits: if not (data_path / subfolder / f"info.{split}.json").exists(): continue features_dict = json.load(open(data_path / subfolder / f"info.{split}.json")) if "features" not in features_dict: features_dict = json.load(open(data_path / subfolder / f"info.train.json")) if "features" not in features_dict: continue features_dict = features_dict["features"] tfrecord = str(data_path / subfolder / f"{split}.tfrecord-00000-of-00001") feature_description = { feat: _feature_config(**desc) for feat, desc in features_dict.items() } ds = tf.data.TFRecordDataset(tf.io.gfile.glob([tfrecord])) # TODO -> handle multiple shards ds = ds.map( lambda pb: tf.io.parse_single_example(pb, feature_description), num_parallel_calls=processes ) # Cast features back to the types from the info JSON since some features # must be cast for storage (e.g., int32 is stored as int64). ds = ds.map( lambda x: {k: tf.cast(v, features_dict[k]["dtype"]) for k, v in x.items()}, num_parallel_calls=processes ) res = [] for ex in tqdm(ds.as_numpy_iterator(), total=sizes.get(split, 10000)): ex_dict = {} for feat_name, feat_value in ex.items(): ex_dict[feat_name] = _FEAT_MAPPING_FUNCTIONS[feat_name](feat_value) res.append(ex_dict) if len(res) > 0: df = pd.DataFrame.from_records(res) datasets[split] = df return datasets data_path = Path(f"{DATA_DIR}/P3/data") output_data_path = Path(f"{DATA_DIR}/P3/data_feather") for subfolder in data_path.iterdir(): print(subfolder) subfolder = subfolder.name out_path = output_data_path / subfolder out_path.mkdir(parents=True, exist_ok=True) splits_to_pass = [] for split in SPLITS: if not (out_path / f"{split}.feather").exists(): splits_to_pass.append(split) datasets = extract_dataset(data_path, subfolder, sizes=DATA_SPLITS_SIZES[str(subfolder)], splits=splits_to_pass) for split, df in datasets.items(): df.to_feather(out_path / f"{split}.feather")
ama_prompting-main
download_p3.py
#!/usr/bin/env python # coding: utf-8 from tqdm.auto import tqdm import pandas as pd from sklearn.metrics import classification_report from decomposition import Decomposition, get_args, DATA_DIR from utils import get_response, InputOutputPrompt synonym = InputOutputPrompt( input_formatter=lambda x: f"{x['passage']}", output_formatter=lambda x: f"- {x['answer']}", required_keys=["passage", "answer"], input_output_sep="\n", example_sep="\n\n", instruction="Give synonyms of the word in the sentence.\n\n" ) synonym_examples = [ pd.DataFrame([ { "passage": "In \"She heard the sound of voices in the hall.\", synonyms for the word \"sound\" are:", "answer": "noise", }, { "passage": "In \"Enter the secret code.\", synonyms for the word \"code\" are:", "answer": "password", }, { "passage": "In \"She acted in a play on Broadway\", synonyms for the word \"play\" are:", "answer": "show", }, ]), pd.DataFrame([ { "passage": "In \"She rode around the park on her cycle.\", synonyms for the word \"cycle\" are:", "answer": "bicycle", }, { "passage": "In \"Don't keep everything bottled up.\", synonyms for the word \"bottled\" are:", "answer": "trapped inside", }, { "passage": "In \"The present is like no other time.\", synonyms for the word \"present\" are:", "answer": "current moment", }, ]), pd.DataFrame([ { "passage": "In \"The movie was awful.\", synonyms for the word \"aweful\" are:", "answer": "bad and terrible", }, { "passage": "In \"She is so beautiful.\", synonyms for the word \"beautiful\" are:", "answer": "pretty and gorgeous", }, { "passage": "In \"It was quite cool out so she wore a jacket\", synonyms for the word \"cool\" are:", "answer": "cold and chilly", }, ]), pd.DataFrame([ { "passage": "In \"There are so many flies near the food.\", synonyms for the word \"flies\" are:", "answer": "bugs", }, { "passage": "In \"Eat your noodles with a fork.\", synonyms for the word \"fork\" are:", "answer": "utensils", }, { "passage": "In \"She and her husband went on a trip.\", synonyms for the word \"trip\" are:", "answer": "vacation", }, ]), pd.DataFrame([ { "passage": "In \"It was definitely a cry for help.\", synonyms for the word \"cry\" are:", "answer": "call", }, { "passage": "In \"I watch all my students as they take their exams.\", synonyms for the word \"watch\" are:", "answer": "look at", }, { "passage": "In \"The beginning of the book was fine, but the end was terrible.\", synonyms for the word \"beginning\" are:", "answer": "start", }, ]) ] description = InputOutputPrompt( input_formatter=lambda x: f"Choices\n{x['choices']}\nFill the [MASK] with the correct \"Choice\": {x['sentence']}", output_formatter=lambda x: f"[MASK] is \"Choice\": {x['answer']}\n", required_keys=["choices", "sentence", "answer"], input_output_sep="\n", example_sep="\n\n", instruction="Select the correct choice for the blank.\n\n" ) description_examples = [ pd.DataFrame([ { "choices": "1: noise\n2. in good condition", "sentence": "She heard the [MASK] of voices in the hall.", "answer": "noise", }, { "choices": "1. not heavy\n2. sun rays", "sentence": "The [MASK] shined through the window.", "answer": "sun rays", }, { "choices": "1. widespread\n2. commander of an army", "sentence": "The book is of [MASK] interest.", "answer": "widespread", }, ]) ] class WICDecomp(Decomposition): def __init__(self, task_name, data_dir, val_split="validation"): super().__init__(task_name, data_dir, val_split) def get_boost_decomp_examples(self, train_data, boost_id): return [ synonym_examples[boost_id], ] def zero_few_baseline( self, test_data, few_shot_df, manifest, overwrite_manifest, do_few_shot=True, ): expt_log = {} preds = [] labels = [] labels_names = set(test_data["targets_pretokenized"]) labels_names = [l.lower().strip() for l in labels_names] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): if ind in expt_log: pred = entry["pred"] gold = entry["gold"] else: text = row["inputs_pretokenized"] gold = row["targets_pretokenized"] icl_str = "" if do_few_shot: for s_ind, s_row in few_shot_df.iterrows(): icl_str += f"{s_row['inputs_pretokenized']} {s_row['targets_pretokenized']}\n\n" prompt = f"{icl_str}{{text:}}" pmp = prompt.format(text=text) if i == 0: print(pmp) raw_answer = get_response( pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=30, ) answer = raw_answer.strip().lower() answer = answer.split("\n") answer = [a for a in answer if a] answer = [ a for a in answer if any(l.lower() in a.lower() for l in labels_names) ] if answer: answer = answer[0] answer = "".join( [a for a in answer if a not in [".", ",", "?", ";", ":", "'", '"']] ) is_yes = "yes" in answer.split() is_no = "no" in answer.split() pred = "" if is_yes and (not is_no): pred = "yes" if is_no and (not is_yes): pred = "no" gold = gold.strip().lower() pred = pred.strip().lower() entry = { "ind": ind, "example": text, "base_prompt": pmp, "raw_answer": raw_answer, "pred": pred, "gold": gold, } expt_log[ind] = entry preds.append(pred) labels.append(gold) report = classification_report(labels, preds, output_dict=True) return expt_log, report["accuracy"] def get_parts(self, text): parts = text.split("\n") sent1 = parts[0] sent2 = parts[1] word = parts[2].split("Question: Is the word ")[-1].split()[0] return word, sent1, sent2 def clean_sentence(self, sentence): sentence = sentence.replace("2. ", "") sentence = sentence.replace("3. ", "") sentence = sentence.replace("\n\n", "") sentence = sentence.replace("A:", "") sentence = sentence.strip() sentence = sentence.split(".")[0] sentence = sentence.split("\n")[0] return sentence def get_sentences( self, all_constructors, all_boost_exs, sent, word, manifest, overwrite_manifest ): synonym = all_constructors[0] all_prompts = [] # synonyms prompt_suffix = synonym(all_boost_exs[0]) prompt_combined = f'{prompt_suffix}\n\nIn "{{sent:}}", synonyms for the word \"{{word:}}\" are: ' all_prompts.append(prompt_combined.format(sent=sent, word=word)) synonyms = get_response( prompt_combined.format(sent=sent, word=word), manifest, overwrite=bool(overwrite_manifest), max_toks=10, ) synonyms = synonyms.replace("- ", "").split("\n") synonyms = ", ".join([a for a in synonyms if a][0:1]) # generate sentences quoted_sent = sent.split() sent = [] for tok in quoted_sent: if tok.lower() == word.strip('"').lower(): sent.append(f'"{tok}"') else: sent.append(tok) if sent: sent = " ".join(sent) else: sent = " ".join(quoted_sent) combined_definition = f"{synonyms}" sentences = [] return combined_definition, sentences, all_prompts def pairwise_comparisons( self, description_constructor, boost_exs, def1, sentences_lst1, def2, sentences_lst2, word, manifest, overwrite_manifest, ): all_prompts = [] # reconcile the result answer = "" if def1.strip() != def2.strip(): answer = "No" else: answer = "Yes" return answer, all_prompts def run_decomposed_prompt( self, test_data, boost_data_train, boost_dfs, manifest, overwrite_manifest ): expt_log, all_boost_preds, labels = self._run_decomp_single_data(test_data, boost_dfs, manifest, overwrite_manifest) expt_log_train, all_boost_train_preds, train_labels = self._run_decomp_single_data(boost_data_train, boost_dfs, manifest, overwrite_manifest, run_limit=1000) # Do WS preds = self.merge_boosted_preds(all_boost_preds, all_boost_train_preds, train_labels, expt_log, expt_log_train) # Get accuracies across all boost sets individual_accuracies = [] for i in range(len(all_boost_preds[0])): individual_accuracies.append(classification_report(labels, [p[i] for p in all_boost_preds], output_dict=True)["accuracy"]) report = classification_report(labels, preds, output_dict=True) return expt_log, expt_log_train, report["accuracy"], individual_accuracies def _run_decomp_single_data(self, test_data, boost_dfs, manifest, overwrite_manifest, run_limit=-1): expt_log = {} all_boost_preds = [] labels = [] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): text = row["inputs_pretokenized"] gold = row["targets_pretokenized"] word, sent1, sent2 = self.get_parts(text) if i == run_limit: break prompts_across_boost = [] preds_across_boost = [] for boost_examples in boost_dfs: all_prompts = [] def1, sentences_lst1, lst1_prompts = self.get_sentences( [synonym], [boost_examples[0]], sent1, word, manifest, overwrite_manifest ) def2, sentences_lst2, lst2_prompts = self.get_sentences( [synonym], [boost_examples[0]], sent2, word, manifest, overwrite_manifest ) pred, pred_prompts = self.pairwise_comparisons( description, boost_examples[-1], def1, sentences_lst1, def2, sentences_lst2, word, manifest, overwrite_manifest, ) all_prompts = lst1_prompts + lst2_prompts + pred_prompts if i == 0: print("\n".join(all_prompts)) prompts_across_boost.append(all_prompts) preds_across_boost.append(pred) entry = { "ind": ind, "example": text, "word": word, "prompts": prompts_across_boost, "preds_boost": preds_across_boost, "sent1": sent1, "sent2": sent2, "def1": def1, "def2": def2, "gold": gold, "sentences_lst1": sentences_lst1, "sentences_lst2": sentences_lst2, } expt_log[ind] = entry all_boost_preds.append(preds_across_boost) labels.append(gold) return expt_log, all_boost_preds, labels def main(): args = get_args() args.num_boost = 5 task_name = "super_glue_wic" data_dir = f"{DATA_DIR}/P3/data_feather/super_glue_wic_GPT_3_prompt/" decomp = WICDecomp(task_name, data_dir) decomp.run(args) if __name__ == "__main__": main()
ama_prompting-main
tasks/WIC_final.py
#!/usr/bin/env python # coding: utf-8 from pathlib import Path import pandas as pd import numpy as np from tqdm.auto import tqdm from datasets import load_dataset from decomposition import Decomposition, get_args from utils import get_response, text_f1, InputOutputPrompt, load_hf_data extract = InputOutputPrompt( input_formatter=lambda x: f"Context: {x['context']}\nQuestion: {x['question']}", output_formatter=lambda x: f"Answer: {x['answer']}", required_keys=["context", "question", "answer"], input_output_sep="\n", example_sep="\n\n", instruction="Answer the question. If there is no evidence in the context, return \"Unknown\".\n\n" ) extract_examples = [ pd.DataFrame([ { "context": "According to Biraben, the plague was present somewhere in Europe in every year between 1346 and 1671", "question": "Where was the plague present?", "answer": "somewhere in Europe" }, { "context": "Policies aiming at controlling unemployment and in particular at reducing its inequality-associated effects support economic growth.", "question": "What's one factor in increasing self-esteem?", "answer": "Unknown" }, { "context": "The term \"matter\" is used throughout physics in a bewildering variety of contexts: for example, one refers to \"condensed matter physics\", \"elementary matter\", \"partonic\" matter, \"dark\" matter, \"anti\"-matter, \"strange\" matter, and \"nuclear\" matter.", "question": "What is another name for anti-matter?", "answer": "Unknown" } ]), pd.DataFrame([ { "context": "According to Biraben, the plague was present somewhere in Europe in every year between 1346 and 1671", "question": "Where was the plague present?", "answer": "somewhere in Europe" }, { "context": "The term \"matter\" is used throughout physics in a bewildering variety of contexts: for example, one refers to \"condensed matter physics\", \"elementary matter\", \"partonic\" matter, \"dark\" matter, \"anti\"-matter, \"strange\" matter, and \"nuclear\" matter.", "question": "What is another name for anti-matter?", "answer": "Unknown" }, { "context": "Policies aiming at controlling unemployment and in particular at reducing its inequality-associated effects support economic growth.", "question": "What's one factor in increasing self-esteem?", "answer": "Unknown" }, ]), pd.DataFrame([ { "context": "Policies aiming at controlling unemployment and in particular at reducing its inequality-associated effects support economic growth.", "question": "What's one factor in increasing self-esteem?", "answer": "Unknown" }, { "context": "According to Biraben, the plague was present somewhere in Europe in every year between 1346 and 1671", "question": "Where was the plague present?", "answer": "somewhere in Europe" }, { "context": "The term \"matter\" is used throughout physics in a bewildering variety of contexts: for example, one refers to \"condensed matter physics\", \"elementary matter\", \"partonic\" matter, \"dark\" matter, \"anti\"-matter, \"strange\" matter, and \"nuclear\" matter.", "question": "What is another name for anti-matter?", "answer": "Unknown" } ]), ] prefix_select_zeroshot = """Answer the question. If there is no evidence in the context, return "Unknown".\n\n""" class DropDecomp(Decomposition): def __init__(self, task_name, data_dir, val_split="validation"): super().__init__(task_name, data_dir, val_split) def read_data(self, save_dir, overwrite_data): return load_hf_data(save_dir, self.task_name, self.val_split, "drop", overwrite_data) def get_boost_decomp_examples(self, train_data, boost_id): return [ extract_examples[boost_id], ] def get_few_shot_examples(self, train_data, k_shot): """Get few shot examples""" labels = [] for x in train_data.answers_spans: if len(x['spans']) == 0: labels.append("unknown") else: labels.append(x['spans'][0]) train_data['expanded_labels'] = labels labels = ["unknown"] + list(sorted(set(labels))) num_per_class = int(np.ceil(k_shot / len(labels))) print(f"Selecting {num_per_class} examples per class.") dfs = [] total_in_context = 0 for label in labels: while num_per_class + total_in_context > k_shot: num_per_class -= 1 sub_df = train_data[train_data["expanded_labels"] == label].sample(num_per_class) dfs.append(sub_df) total_in_context += num_per_class if total_in_context == k_shot: break mini_df = pd.concat(dfs) return mini_df def zero_few_baseline( self, test_data, few_shot_df, manifest, overwrite_manifest, do_few_shot=True, ): expt_log = {} preds = [] labels = [] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): if ind in expt_log: entry = expt_log[ind] pred = entry["pred"] gold = entry["gold"] else: text = row.passage question = row.question if len(row.answers_spans["spans"]) == 0: label = "unknown" else: label = row.answers_spans["spans"][0] gold = label.lower() icl_str = "" if do_few_shot: for s_ind, s_row in few_shot_df.iterrows(): input = s_row.passage s_question = s_row.question if len(s_row.answers_spans["spans"]) == 0: label = "unknown" else: label = s_row.answers_spans["spans"][0] icl_str += f"Passage: {input}\nQuestion: {s_question}\nAnswer: {label}\n\n" prompt = ( icl_str + "Passage: {text:}\nQuestion: {question:}" + "\nAnswer:" ) pmp = prompt.format(text=text, question=question) if i == 0: print(prompt.format(text=text, question=question)) raw_answer = get_response( pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=10, stop_token="\n\n", ) pred = raw_answer.strip("\n").strip().lower() entry = { "ind": ind, "example": text, "base_prompt": pmp, "raw_answer": raw_answer, "pred": pred, "gold": gold, } expt_log[ind] = entry preds.append(pred) labels.append(gold) metric = text_f1(preds=preds, golds=labels) return expt_log, metric def run_decomposed_prompt( self, test_data, boost_data_train, boost_dfs, manifest, overwrite_manifest ): expt_log, all_boost_preds, labels = self._run_decomp_single_data(test_data, boost_dfs, manifest, overwrite_manifest) expt_log_train, all_boost_train_preds, train_labels = self._run_decomp_single_data(boost_data_train, boost_dfs, manifest, overwrite_manifest, run_limit=1) # Do WS preds = self.merge_boosted_preds(all_boost_preds, all_boost_train_preds, train_labels, expt_log, expt_log_train) # Get accuracies across all boost sets individual_accuracies = [] for i in range(len(all_boost_preds[0])): individual_accuracies.append(text_f1(preds=[p[i] for p in all_boost_preds], golds=labels)) metric = text_f1(preds=preds, golds=labels) return expt_log, expt_log_train, metric, individual_accuracies def _run_decomp_single_data(self, test_data, boost_dfs, manifest, overwrite_manifest, run_limit=-1): expt_log = {} all_boost_preds = [] labels = [] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): if i == run_limit: break text = row.passage question = row.question if len(row.answers_spans["spans"]) == 0: label = "unknown" else: label = row.answers_spans["spans"][0] gold = label.lower() prompts_across_boost = [] preds_across_boost = [] for boost_examples in boost_dfs: prompt_suffix = extract(boost_examples[0]) prompt = ( prompt_suffix + "\n\nContext: {text:}\nQuestion: {question:}\nAnswer:" ) pmp = prompt.format(text=text, question=question) if i == 0: print(pmp) raw_answer = get_response( pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=50, stop_token="\n\n", ) pred = raw_answer.split("\n")[0].replace('"', "").strip().lower() # Single list pmp for one step decomp prompts_across_boost.append([pmp]) preds_across_boost.append(pred) entry = { "ind": ind, "example": text, "prompts": prompts_across_boost, "preds_boost": preds_across_boost, "gold": gold, } expt_log[ind] = entry all_boost_preds.append(preds_across_boost) labels.append(gold) return expt_log, all_boost_preds, labels def main(): args = get_args() task_name = "drop" data_dir = "drop" wic = DropDecomp(task_name, data_dir) wic.run(args) if __name__ == "__main__": main()
ama_prompting-main
tasks/drop_final.py
#!/usr/bin/env python # coding: utf-8 from tqdm.auto import tqdm import pandas as pd from sklearn.metrics import classification_report from decomposition import Decomposition, get_args, DATA_DIR from utils import get_response, InputOutputPrompt questioner = InputOutputPrompt( input_formatter=lambda x: f"Statement: {x['statement']}", output_formatter=lambda x: f"Question: {x['question']}", required_keys=["statement", "question"], input_output_sep="\n", example_sep="\n\n", instruction="Rewrite the statement as a yes/no question.\n\n" ) questioner_examples = [ pd.DataFrame([ { "statement": "most of the light comes from the sun", "question": "Does most of the light come from the sun?" }, { "statement": "the test was not", "question": "Was the test hard?" }, { "statement": "it is a good idea to buy your parents gifts", "question": "Is it a good idea to buy your parents gifts?" }, { "statement": "the balloon popped", "question": "Did the balloon pop?" }, { "statement": "The father and son went camping to California.", "question": "Did the father and son go camping?" } ]), pd.DataFrame([ { "statement": "most of the light comes from the sun", "question": "Does most of the light come from the sun?" }, { "statement": "the test was not", "question": "Was the test hard?" }, { "statement": "it is a good idea to buy your parents gifts", "question": "Is it a good idea to buy your parents gifts?" }, { "statement": "the balloon popped", "question": "Did the balloon pop?" }, { "statement": "The father and son went camping to California.", "question": "Did the father and son go camping?" } ]), pd.DataFrame([ { "statement": "she prefers kittens over puppies.", "question": "Does she prefer kittens over puppies?", }, { "statement": "Max and his wife went on a trip to Europe", "question": "Did Max and his wife go on a trip to Europe?", }, { "statement": "jared was born during the war in 1942.", "question": "Was Jared born during a war in 1942?", }, { "statement": "it took jenna 7 attempts to solve the problem", "question": "Did it take Jenna 7 attempts to solve the problem?", }, ]), ] openended_qa = InputOutputPrompt( input_formatter=lambda x: f"Passage: {x['passage']}\nQuestion: {x['question']}", output_formatter=lambda x: f"Answer: {x['answer']}", required_keys=["passage", "question", "answer"], input_output_sep="\n", example_sep="\n\n", instruction="Provide the answer to the question from the passage.\n\n" ) openended_qa_examples = [ pd.DataFrame([ { "passage": "When Judy and Jack went to school, they got in trouble with their teacher for being late. I didn't think it was very fair.", "question": "Did she think it was fair?", "answer": "No" }, { "passage": "If inflation is occurring, leading to higher prices for basic necessities such as gas by 2 dollars. Do you think that inflation is good for society?", "question": "Is inflation good for society?", "answer": "Maybe" }, { "passage": "Put yourself out there. The more time you spend dating and socializing, the more likely you will find a boyfriend you like.", "question": "Does socializing help you find a boyfriend?", "answer": "Yes" }, ]), pd.DataFrame([ { "passage": "Jack recommends his least favorite books of the year to his followers. The least favorite book this year was Harry Potter and the 7 Rings.", "question": "What book does Jack dislike?", "answer": "Jack does not like Harry Potter and the 7 Rings." }, { "passage": "When Judy and Jack went to school, they got in trouble with their teacher for being late. I didn't think it was very fair.", "question": "Did she think it was fair?", "answer": "No, she didn't think it was very fair." }, { "passage": "If inflation is occurring, leading to higher prices for basic necessities such as gas by 2 dollars. Do you think that inflation is good for society?", "question": "Is inflation good for society?", "answer": "Hmm. Do you think so?" }, { "passage": "Put yourself out there. The more time you spend dating and socializing, the more likely you will find a boyfriend you like.", "question": "Does socializing help you find a boyfriend?", "answer": "Yes, it helps you find a boyfriend." } ]), pd.DataFrame([ { "passage": "Anna's mother always told her to be confident even if she feels nervous on the inside", "question": "Does Anna always feel nervous on the inside?", "answer": "Unknown" }, { "passage": "Max and Jeff were extremely competitive at soccer, but Max was a lot better.", "question": "Was Jeff better than Max at soccer?", "answer": "No, Max was a lot better" }, { "passage": "When Judy and Jack went to school, they got in trouble with their teacher for being late. I didn't think it was very fair.", "question": "Did she think it was fair?", "answer": "No, she didn't think it was very fair." }, { "passage": "The FSP conference took place last week in Spain and representatives from 21 countries attended.", "question": "Did representatives from more than 20 countries attend FSP?", "answer": "Yes" }, ]), ] class CBDecomp(Decomposition): def __init__(self, task_name, data_dir, val_split="validation"): super().__init__(task_name, data_dir, val_split) def get_boost_decomp_examples(self, data_train, boost_id): return [ questioner_examples[boost_id], openended_qa_examples[boost_id], ] def zero_few_baseline( self, test_data, few_shot_df, manifest, overwrite_manifest, do_few_shot=True, ): expt_log = {} preds = [] labels = [] labels_names = set(test_data["targets_pretokenized"]) labels_names = [l.lower().strip() for l in labels_names] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): if ind in expt_log: pred = entry["pred"] gold = entry["gold"] else: text = row["inputs_pretokenized"] gold = row["targets_pretokenized"] icl_str = "" if do_few_shot: for s_ind, s_row in few_shot_df.iterrows(): icl_str += f"{s_row['inputs_pretokenized']} {s_row['targets_pretokenized']}\n\n\n" text = row["inputs_pretokenized"] text = text.replace("True, False, or Neither?", "") text = text + ". True, False, or Neither?" gold = row["targets_pretokenized"] prompt = f"{icl_str}{{text:}}" pmp = prompt.format(text=text) if i == 0: print(pmp) raw_answer = get_response( pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=30, ) answer = raw_answer.strip().lower() answer = answer.split("\n") answer = [a for a in answer if a] answer = [ a for a in answer if any(l.lower() in a.lower() for l in labels_names) ] if answer: answer = answer[0] else: answer = "" answer = "".join( [a for a in answer if a not in [".", ",", "?", ";", ":", "'", '"']] ) is_yes = "true" in answer.split() is_no = "false" in answer.split() is_maybe = "neither" in answer.split() or "unknown" in answer.split() or "maybe" in answer.split() pred = "Neither" if is_yes and (not is_maybe and not is_no): pred = "True" if is_no and (not is_maybe and not is_yes): pred = "False" if is_maybe and (not is_no and not is_yes): pred = "Neither" entry = { "ind": ind, "example": text, "base_prompt": pmp, "raw_answer": raw_answer, "pred": pred, "gold": gold, } expt_log[ind] = entry preds.append(pred) labels.append(gold) report = classification_report(labels, preds, output_dict=True) return expt_log, report["accuracy"] def get_question(self, statement, prompt, boost_ex, manifest, overwrite_manifest): prompt_suffix = prompt(boost_ex) quesiton_prompt = f"\n{prompt_suffix}\n\nStatement: {{statement:}}\nQuestion:" question_pmp = quesiton_prompt.format(statement=statement) answer = get_response( question_pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=50, ) answer = answer.split("\n")[0] return answer, question_pmp def open_qa(self, question, passage, prompt, boost_ex, manifest, overwrite_manifest): prompt_suffix = prompt(boost_ex) qa_prompt = f"\n{prompt_suffix}\n\nPassage: {{passage:}}\nQuestion: {question}\nAnswer:" qa_pmp = qa_prompt.format(passage=passage) answer = get_response( qa_pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=50, ) answer = answer.split("\n")[0] answer = ( answer.replace("A: ", "") .replace("B: ", "") .replace("Answer: ", "") .replace(", ", " ") ) return answer, qa_pmp def run_decomposed_prompt( self, test_data, boost_data_train, boost_dfs, manifest, overwrite_manifest ): expt_log, all_boost_preds, labels = self._run_decomp_single_data(test_data, boost_dfs, manifest, overwrite_manifest) expt_log_train, all_boost_train_preds, train_labels = self._run_decomp_single_data(boost_data_train, boost_dfs, manifest, overwrite_manifest, run_limit=-1) # Do WS preds = self.merge_boosted_preds(all_boost_preds, all_boost_train_preds, train_labels, expt_log, expt_log_train) # Get accuracies across all boost sets individual_accuracies = [] for i in range(len(all_boost_preds[0])): individual_accuracies.append(classification_report(labels, [p[i] for p in all_boost_preds], output_dict=True)["accuracy"]) report = classification_report(labels, preds, output_dict=True) return expt_log, expt_log_train, report["accuracy"], individual_accuracies def _run_decomp_single_data(self, test_data, boost_dfs, manifest, overwrite_manifest, run_limit=-1): expt_log = {} all_boost_preds = [] labels = [] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): suffix = "True, False, or Neither?" input = row["inputs_pretokenized"] passage = input.split("\nQuestion: ")[0] statement = ( input.split("\nQuestion: ")[-1] .replace(suffix, "") .replace('"', "") .strip() ) if i == run_limit: break gold = row["targets_pretokenized"] gold = gold.lower() prompts_across_boost = [] preds_across_boost = [] for boost_examples in boost_dfs: all_prompts = [] question, question_final_prompt = self.get_question( statement, questioner, boost_examples[0], manifest, overwrite_manifest ) open_answer, answer_final_prompt = self.open_qa( question, passage, openended_qa, boost_examples[1], manifest, overwrite_manifest ) all_prompts.append(question_final_prompt) all_prompts.append(answer_final_prompt) if i == 0: print("\n".join(all_prompts)) if "Yes" in open_answer.split(): answer = "True" elif "No" in open_answer.split(): answer = "False" else: answer = "Neither" answer = answer.lower() is_yes = "yes" in answer.split() or "true" in answer.split() is_no = "no" in answer.split() or "false" in answer.split() is_maybe = "neither" in answer.split() or "maybe" in answer.split() or "unknown" in answer.split() pred = "neither" if is_yes and (not is_maybe and not is_no): pred = "true" if is_no and (not is_maybe and not is_yes): pred = "false" if is_maybe and (not is_no and not is_yes): pred = "neither" prompts_across_boost.append(all_prompts) preds_across_boost.append(pred) entry = { "ind": ind, "prompts": prompts_across_boost, "preds_boost": preds_across_boost, "example": input, "gold": gold, } expt_log[ind] = entry all_boost_preds.append(preds_across_boost) labels.append(gold) return expt_log, all_boost_preds, labels def main(): args = get_args() args.num_boost = 3 task_name = "super_glue_cb" data_dir = f"{DATA_DIR}/P3/data_feather/super_glue_cb_GPT_3_style/" decomp = CBDecomp(task_name, data_dir) decomp.run(args) if __name__ == "__main__": main()
ama_prompting-main
tasks/CB_final.py
#!/usr/bin/env python # coding: utf-8 import pandas as pd import numpy as np import ast from tqdm.auto import tqdm from pathlib import Path from nltk.corpus import stopwords stops = set(stopwords.words("english")) from decomposition import Decomposition, get_args, DATA_DIR from utils import get_response, InputOutputPrompt, accuracy_span_overlap extract = InputOutputPrompt( input_formatter=lambda x: f"Question: {x['question']}", output_formatter=lambda x: f"Answer: {x['answer']}", required_keys=["question", "answer"], input_output_sep="\n", example_sep="\n\n", instruction="Produce distinct questions.\n\n" ) more_info_examples = [ pd.DataFrame([ { "question": "who plays Carrie Bradshaw in sex and the city?", "answer": "Caroline \"Carrie\" Bradshaw is a fictional character from the HBO franchise Sex and the City, portrayed by Sarah Jessica Parker." }, { "question": "what are the elements in air?", "answer": "By mole fraction (i.e., by number of molecules), dry air contains 78.08% nitrogen, 20.95% oxygen, 0.93% argon, 0.04% carbon dioxide, and small amounts of other gases" }, { "question": "what is HP company?", "answer": "HP Inc. is an American multinational information technology company headquartered in Palo Alto, California, that develops personal computers (PCs)" }, { "question": "when was the last season of FRIENDS released?", "answer": "The series finale aired on May 6, 2004, and was watched by around 52.5 million American viewers, making it the fifth-most-watched series finale in television history" } ]), ] answer = InputOutputPrompt( input_formatter=lambda x: f"Context: {x['context']}\nQuestion: {x['question']}", output_formatter=lambda x: f"Answer: {x['answer']}", required_keys=["context", "question", "answer"], input_output_sep="\n", example_sep="\n\n", instruction="Answer the question.\n\n" ) answer_question = [ pd.DataFrame([ { 'context': 'The nearest airport to Palm Springs is Indio/Palm Springs (PSP) Airport which is 2.1 miles away. ', 'question': 'what airport is closest to palm springs?', 'answer': 'Palm Springs International Airport' }, { 'context': 'Martin Luther King earned his Bachelor of Divinity degree from Crozer Theological Seminary, followed by a doctorate in Systematic Theology from Boston University.', 'question': 'what degree did martin luther king get?', 'answer': 'Bachelor of Divinity' }, { 'context': 'The Niger river runs in a crescent through Libya, Mali, Niger, on the border with Benin and then through Nigeria.', 'question': 'what countries does the niger river flow through?', 'answer': 'Libya' }, { 'context': 'Puerto Rico is a territory of the United States and uses the U.S. dollar. ', 'question': 'what type of currency is used in puerto rico?', 'answer': 'United States dollar' }, { 'context': 'kitt was voice most often by William daniels.', 'question': 'who played kitt in knight rider?', 'answer': 'William Daniels' } ]), pd.DataFrame([ { 'context': 'leonardo da vinci invented the parachute, the helicopter, double hull, an armored fighting vehicle,', 'question': 'what inventions did leonardo da vinci made?', 'answer': 'Double hull' }, { 'context': "The French franc (F) was the national currency of France prior to France's adoption of the euro (EUR) in January 2002.", 'question': 'what currency is used in france before euro?', 'answer': 'French franc' }, { 'context': 'The Isthmus of Panama, contains the country of Panama and the panama canal.', 'question': 'where is isthmus of panama located?', 'answer': 'Costa Rica' }, { 'context': 'Hurricane Irene was a large and destructive tropical cyclone which affected much of the Caribbean and East Coast', 'question': 'where did hurricane irene?', 'answer': 'Eastern United States' }, { 'context': 'Rihanna acted in This is the End and Battleship.', 'question': 'what movie did rihanna play in?', 'answer': 'This Is the End' } ]), pd.DataFrame([ { 'context': 'st vincent de paul is buried in the 6th arrondisment of Paris.', 'question': 'where is st vincent de paul buried?', 'answer': 'Paris' }, { 'context': 'Thomas Luther "Luke" Bryan (born July 17, 1976) is an American country singer and songwriter from Leesburg.', 'question': 'where is luke bryan from?', 'answer': 'Leesburg' }, { 'context': "Klum and Seal got married on 10 May 2005 on a beach in Mexico near Seal's home on Costa Careyes. ", 'question': 'where did heidi klum and seal get married?', 'answer': 'Mexico'}, { 'context': 'Tarantino starred in pulp fiction, grindhouse and others.', 'question': 'what movies did quentin tarantino star in?', 'answer': 'Grindhouse' }, { 'context': 'Countries that are sometimes considered to be entirely or partially part of the Balkans are Croatia, Serbia, Lake Prespa.', 'question': 'what country is located in the balkan peninsula?', 'answer': 'Lake Prespa' } ]) ] prefix_select_zeroshot = """Answer the question.\n\n""" class NQDecomp(Decomposition): def __init__(self, task_name, data_dir, val_split="validation"): super().__init__(task_name, data_dir, val_split) def get_boost_decomp_examples(self, train_data, boost_id): return [ more_info_examples[0], answer_question[boost_id], ] def read_data(self, save_dir, overwrite_data): save_data = Path(f"{save_dir}/{self.task_name}/data.feather") if not save_data.exists() or overwrite_data: test_data = pd.read_csv(f"{self.data_dir}/{self.task_name}/nq-test.qa.csv", sep="\t", header=None) test_data.to_feather(f"{save_data}") else: print(f"Reading test data from {save_data}") test_data = pd.read_feather(save_data) save_data = Path(f"{self.data_dir}/{self.task_name}/train_data.feather") if not save_data.exists() or overwrite_data: train_data = pd.read_json(f"{self.data_dir}/{self.task_name}/biencoder-nq-dev.json") train_data.to_feather(f"{save_data}") else: print(f"Reading train data from {save_data}") train_data = pd.read_feather(save_data) print(f"Test Data Size: {len(test_data)}") print(f"Train Data Size: {len(train_data)}") return test_data, train_data def get_few_shot_examples(self, train_data, k_shot): """Get few shot examples""" labels = train_data.question.tolist() num_per_class = int(np.ceil(k_shot / len(labels))) print(f"Selecting {num_per_class} examples per class.") dfs = [] total_in_context = 0 for label in labels: while num_per_class + total_in_context > k_shot: num_per_class -= 1 sub_df = train_data[train_data["question"] == label].sample(num_per_class) dfs.append(sub_df) total_in_context += num_per_class if total_in_context == k_shot: break mini_df = pd.concat(dfs) return mini_df def zero_few_baseline( self, test_data, few_shot_df, manifest, overwrite_manifest, prompt_suffix="", do_few_shot=True, ): expt_log = {} preds = [] labels = [] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): question = row.question if isinstance(row.answers, str): label = ast.literal_eval(row.answers) else: label = row.answers.tolist() gold = label icl_str = "" if do_few_shot: for s_ind, s_row in few_shot_df.iterrows(): input = s_row.question s_question = s_row.question if isinstance(s_row.answers, str): label = ast.literal_eval(s_row.answers) else: label = s_row.answers.tolist() icl_str += f"Question: {s_question}\nAnswer: {label[0]}\n\n" prompt = ( icl_str + "Question: {question:}" + prompt_suffix + "\nAnswer:" ) if i == 0: print(prompt.format(question=question)) prompt = prompt.format(question=question) raw_answer = get_response( prompt, #prompt.format(question=question), manifest, overwrite=bool(overwrite_manifest), max_toks=20, stop_token="\n\n", ) pred = raw_answer.strip("\n").strip().lower() entry = { "ind": ind, "example": question, "base_prompt": prompt, "raw_answer": raw_answer, "pred": pred, "gold": gold, } expt_log[ind] = entry preds.append([pred]) labels.append(gold) metric = accuracy_span_overlap(preds=preds, golds=labels) return expt_log, metric def run_decomposed_prompt( self, test_data, boost_data_train, boost_dfs, manifest, overwrite_manifest ): expt_log, all_boost_preds, labels = self._run_decomp_single_data(test_data, boost_dfs, manifest, overwrite_manifest) expt_log_train, all_boost_train_preds, train_labels = self._run_decomp_single_data(boost_data_train, boost_dfs, manifest, overwrite_manifest, run_limit=1000) # Do WS boost_test, boost_train = [], [] for p in all_boost_preds: samples = [lf[1] for lf in p] boost_test.append(samples) for p in all_boost_train_preds: samples = [lf[1] for lf in p] boost_train.append(samples) preds = self.merge_boosted_preds(boost_test, boost_train, train_labels, expt_log, expt_log_train) preds = [(x,y) for x,y in zip([p[0][0] for p in all_boost_preds], preds)] # Get accuracies across all boost sets individual_accuracies = [] for i in range(len(all_boost_preds[0])): individual_accuracies.append(accuracy_span_overlap(preds=[p[i] for p in all_boost_preds], golds=labels)) metric = accuracy_span_overlap(preds=preds, golds=labels) return expt_log, expt_log_train, metric, individual_accuracies def _run_decomp_single_data(self, test_data, boost_dfs, manifest, overwrite_manifest, run_limit=-1): expt_log = {} all_boost_preds = [] labels = [] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): if i == run_limit: break question = row.question if isinstance(row.answers, str): label = ast.literal_eval(row.answers) else: label = row.answers.tolist() gold = label prompts_across_boost = [] preds_across_boost = [] # extract context prompt_suffix = extract(boost_dfs[0][0]) prompt = ( prompt_suffix + "\n\Question: {question:}\nAnswer:" ) more_info_answer = get_response( prompt.format(question=question), manifest, overwrite=bool(overwrite_manifest), max_toks=20, stop_token="\n\n", ) for boost_examples in boost_dfs: all_prompts = [] prompt_suffix = answer(boost_examples[1]) prompt = ( prompt_suffix + "\n\nContext: {text:}\nQuestion: {question:}\nAnswer:" ) all_prompts.append(prompt) if i == 0: print(prompt.format(text=more_info_answer, question=question)) raw_answer = get_response( prompt.format(text=more_info_answer, question=question), manifest, overwrite=bool(overwrite_manifest), max_toks=20, stop_token="\n\n", ) pred = raw_answer.split("\n")[0].strip().lower() prompts_across_boost.append(all_prompts) preds_across_boost.append((more_info_answer, pred)) entry = { "ind": ind, "example": question, "prompts": prompts_across_boost, "preds_boost": preds_across_boost, "gold": gold, } expt_log[ind] = entry all_boost_preds.append(preds_across_boost) labels.append(gold) return expt_log, all_boost_preds, labels def main(): args = get_args() task_name = "NQ" data_dir = f"{DATA_DIR}/NQ" webq = NQDecomp(task_name, data_dir) webq.run(args) if __name__ == "__main__": main()
ama_prompting-main
tasks/NQ_final.py
#!/usr/bin/env python # coding: utf-8 from tqdm.auto import tqdm from pathlib import Path import pandas as pd import numpy as np import random from sklearn.metrics import classification_report from decomposition import Decomposition, get_args, DATA_DIR from utils import get_response def format_data(lines): """from lines in dataset to two lists of sentences and labels respectively""" def process_raw_data_sst(lines): labels = [] sentences = [] for line in lines: labels.append(int(line[0])) sentences.append(line[2:].strip()) return sentences, labels train_sentences, train_labels = process_raw_data_sst(lines) return train_sentences, train_labels class SST2Decomp(Decomposition): def __init__(self, task_name, data_dir, val_split="validation"): super().__init__(task_name, data_dir, val_split) def get_few_shot_examples(self, train_data, k_shot): """Get few shot examples""" labels = [0, 1] num_per_class = int(np.ceil(k_shot / len(labels))) print(f"Selecting {num_per_class} examples per class.") dfs = [] total_in_context = 0 for label in labels: while num_per_class + total_in_context > k_shot: num_per_class -= 1 sub_df = train_data[train_data["label"] == label].sample(num_per_class) dfs.append(sub_df) total_in_context += num_per_class if total_in_context == k_shot: break mini_df = pd.concat(dfs) return mini_df def read_data(self, save_dir, overwrite_data): save_data = Path(f"{save_dir}/{self.task_name}/data.feather") if not save_data.exists() or overwrite_data: with open(f"{self.data_dir}/stsa.binary.test", "r") as f: test_lines = f.readlines() test_sentences, test_labels = format_data(test_lines) test_data = pd.DataFrame({ 'sentence': test_sentences, 'label': test_labels, }) test_data.to_feather(f"{save_data}") else: print(f"Reading test data from {save_data}") test_data = pd.read_feather(save_data) save_data = Path(f"{save_dir}/{self.task_name}/train_data.feather") if not save_data.exists() or overwrite_data: with open(f"{self.data_dir}/stsa.binary.train", "r") as f: train_lines = f.readlines() train_sentences, train_labels = format_data(train_lines) train_data = pd.DataFrame({ 'sentence': train_sentences, 'label': train_labels, }) train_data.to_feather(f"{save_data}") else: print(f"Reading train data from {save_data}") train_data = pd.read_feather(save_data) print(f"Test Data Size: {len(test_data)}") print(f"Train Data Size: {len(train_data)}") return test_data, train_data def get_boost_decomp_examples(self, train_data, boost_id): seed = [1, 2, 3][boost_id] k_shot = 16 random.seed(seed) np.random.seed(seed) data_train = pd.DataFrame(train_data) labels = set(data_train["label"]) num_per_class = int(np.ceil(k_shot / len(labels))) dfs = [] total_in_context = 0 for label in labels: while num_per_class + total_in_context > k_shot: num_per_class -= 1 if seed % 2 == 1: sub_df = data_train[data_train["label"] == label].sample(num_per_class, random_state=seed) elif seed % 2 == 0: sub_df = data_train[data_train["label"] != label].sample(num_per_class, random_state=seed) dfs.append(sub_df) total_in_context += num_per_class if total_in_context == k_shot: break booster_df = pd.concat(dfs).sample(frac=1, random_state=0) print(f"Selected: {len(booster_df)} in context examples.") return [ booster_df ] def zero_few_baseline( self, test_data, few_shot_df, manifest, overwrite_manifest, do_few_shot=True, ): expt_log = {} preds = [] labels = [] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): if ind in expt_log: pred = entry["pred"] gold_str = entry["gold"] else: sentence = row["sentence"] label = row["label"] icl_str = "" if do_few_shot: for s_ind, s_row in few_shot_df.iterrows(): if s_row["label"] == 0: demo_label = "negative" else: demo_label = "positive" icl = f"Text: {s_row['sentence']}\nSentiment: {demo_label}" icl_str += f"{icl}\n\n" description = "For each snippet of text, label the sentiment of the text as positive or negative." prompt = f"{description}\n\n{icl_str}Text: {{sentence:}}\nSentiment:" pmp = prompt.format(sentence=sentence) if i == 0: print(pmp) pred = get_response( pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=50, ) pred = ( pred.replace(".", "") .replace(",", "") .replace("Label: ", "") .replace("Sentiment: ", "") ) pred = [p for p in pred.split("\n") if p] is_pos = "positive" in pred is_neg = "negative" in pred if is_pos and not is_neg: pred = "positive" elif is_neg and not is_pos: pred = "negative" else: pred = "" if label == 1: gold_str = "positive" else: gold_str = "negative" entry = { "gold": gold_str, "pred": pred, "base_prompt": pmp, "ind": ind, "example": sentence, } expt_log[ind] = entry preds.append(pred) labels.append(gold_str) report = classification_report(labels, preds, output_dict=True) return expt_log, report["accuracy"] def run_decomposed_prompt( self, test_data, boost_data_train, boost_dfs, manifest, overwrite_manifest ): expt_log, all_boost_preds, labels = self._run_decomp_single_data(test_data, boost_dfs, manifest, overwrite_manifest, run_limit=-1) expt_log_train, all_boost_train_preds, train_labels = self._run_decomp_single_data(boost_data_train, boost_dfs, manifest, overwrite_manifest, run_limit=1000) # Do WS preds = self.merge_boosted_preds(all_boost_preds, all_boost_train_preds, train_labels, expt_log, expt_log_train) # Get accuracies across all boost sets individual_accuracies = [] for i in range(len(all_boost_preds[0])): individual_accuracies.append(classification_report(labels, [p[i] for p in all_boost_preds], output_dict=True)["accuracy"]) report = classification_report(labels, preds, output_dict=True) return expt_log, expt_log_train, report["accuracy"], individual_accuracies def _run_decomp_single_data(self, test_data, boost_dfs, manifest, overwrite_manifest, run_limit=-1): expt_log = {} all_boost_preds = [] labels = [] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): sentence = row["sentence"] label = row["label"] if i == run_limit: break prompts_across_boost = [] preds_across_boost = [] for boost_examples in boost_dfs: all_prompts = [] icl_str = "" for s_ind, s_row in boost_examples[0].iterrows(): if s_row["label"] == 0: demo_label = "negative" else: demo_label = "positive" icl = f"Text: {s_row['sentence']}\nSentiment: {demo_label}" icl_str += f"{icl}\n\n" description = "For each snippet of text, label the sentiment of the text as positive or negative." prompt = f"{description}\n\n{icl_str}Text: {{sentence:}}\nSentiment:" pmp = prompt.format(sentence=sentence) all_prompts.append(pmp) if i == 0: print(pmp) pred = get_response( pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=5, ) pred = pred.replace(".", "").replace(",", "").replace("Label: ", "") pred = [p for p in pred.split("\n") if p] if pred: pred = pred[0] else: pred = "" prompts_across_boost.append(all_prompts) preds_across_boost.append(pred) if label == 1: gold_str = "positive" else: gold_str = "negative" entry = { "gold": gold_str, "prompts": prompts_across_boost, "preds_boost": preds_across_boost, "example": sentence, "ind": i, } expt_log[i] = entry all_boost_preds.append(preds_across_boost) labels.append(gold_str) return expt_log, all_boost_preds, labels def main(): args = get_args() args.num_boost = 3 task_name = "sst2" data_dir = f"{DATA_DIR}/sst2/" if not Path(data_dir).exists(): raise ValueError( f"Data directory {data_dir} does not exist. Download AGNews from https://github.com/tonyzhaozh/few-shot-learning.") decomp = SST2Decomp(task_name, data_dir) decomp.run(args) if __name__ == "__main__": main()
ama_prompting-main
tasks/SST2_final.py
#!/usr/bin/env python # coding: utf-8 import pandas as pd import numpy as np from tqdm.auto import tqdm from sklearn.metrics import classification_report from decomposition import Decomposition, get_args, DATA_DIR from utils import get_response, InputOutputPrompt summarize = InputOutputPrompt( input_formatter=lambda x: f"Passage: {x['passage']}", output_formatter=lambda x: f"Summarize: the passage \"Passage\": {x['summary']}", required_keys=["passage", "summary"], input_output_sep="\n", example_sep="\n\n", instruction="Summarize the passage.\n\n\"Categories\":\n- company\n- educational institution\n- artist\n- athlete\n- office holder\n- mean of transportation\n- building\n- natural place\n- village\n- animal\n- plant\n- album\n- film \n- written work\n\n" ) summarize_examples = [ pd.DataFrame([ { "passage": "Personality and Mental Health - Personality and Mental Health: Multidisciplinary Studies from Personality Dysfunction to Criminal Behaviour is a quarterly peer-reviewed academic journal published by Wiley-Blackwell on behalf of the Centre for Health and Justice.", "summary": "The passage is about a journal." }, { "passage": "RNLB Mona (ON 775) - RNLB Mona (ON 775) was a Watson Class lifeboat based at Broughty Ferry in Scotland that capsized during a rescue attempt with the loss of her entire crew of eight men. The Mona was built in 1935 and in her time saved 118 lives.", "summary": "The passage is about a lifeboat." }, { "passage": "Sayonara mo Ienakatta Natsu - Sayonara mo Ienakatta Natsu (さよならも言えなかった夏) is an album by Mikuni Shimokawa released on July 4 2007 by Pony Canyon.This album consists of eleven songs; several new songs and some songs which were previously released as singles.", "summary": "The passage is about a album." } ]), pd.DataFrame([ { "passage": "Personality and Mental Health - Personality and Mental Health: Multidisciplinary Studies from Personality Dysfunction to Criminal Behaviour is a quarterly peer-reviewed academic journal published by Wiley-Blackwell on behalf of the Centre for Health and Justice.", "summary": "The passage is about a journal." }, { "passage": "Sayonara mo Ienakatta Natsu - Sayonara mo Ienakatta Natsu (さよならも言えなかった夏) is an album by Mikuni Shimokawa released on July 4 2007 by Pony Canyon.This album consists of eleven songs; several new songs and some songs which were previously released as singles.", "summary": "The passage is about a album." }, { "passage": "RNLB Mona (ON 775) - RNLB Mona (ON 775) was a Watson Class lifeboat based at Broughty Ferry in Scotland that capsized during a rescue attempt with the loss of her entire crew of eight men. The Mona was built in 1935 and in her time saved 118 lives.", "summary": "The passage is about a lifeboat." }, ]), pd.DataFrame([ { "passage": "Sayonara mo Ienakatta Natsu - Sayonara mo Ienakatta Natsu (さよならも言えなかった夏) is an album by Mikuni Shimokawa released on July 4 2007 by Pony Canyon.This album consists of eleven songs; several new songs and some songs which were previously released as singles.", "summary": "The passage is about a album." }, { "passage": "Personality and Mental Health - Personality and Mental Health: Multidisciplinary Studies from Personality Dysfunction to Criminal Behaviour is a quarterly peer-reviewed academic journal published by Wiley-Blackwell on behalf of the Centre for Health and Justice.", "summary": "The passage is about a journal." }, { "passage": "RNLB Mona (ON 775) - RNLB Mona (ON 775) was a Watson Class lifeboat based at Broughty Ferry in Scotland that capsized during a rescue attempt with the loss of her entire crew of eight men. The Mona was built in 1935 and in her time saved 118 lives.", "summary": "The passage is about a lifeboat." }, ]) ] categorize = InputOutputPrompt( input_formatter=lambda x: f"Passage: {x['passage']}\nSummary: {x['summary']}", output_formatter=lambda x: f"The summary \"Summary\" fits \"Category\": {x['category']}", required_keys=["passage", "summary", "category"], input_output_sep="\n", example_sep="\n\n", instruction="Pick one category for the following text.\n\n\"Categories\":\n- company\n- educational institution\n- artist\n- athlete\n- office holder\n- mean of transportation\n- building\n- natural place\n- village\n- animal\n- plant\n- album\n- film\n- written work\n\n" ) categorize_examples = [ pd.DataFrame([ { "passage": "Personality and Mental Health - Personality and Mental Health: Multidisciplinary Studies from Personality Dysfunction to Criminal Behaviour is a quarterly peer-reviewed academic journal published by Wiley-Blackwell on behalf of the Centre for Health and Justice.", "summary": "The passage is about a journal.", "category": "written work" }, { "passage": "RNLB Mona (ON 775) - RNLB Mona (ON 775) was a Watson Class lifeboat based at Broughty Ferry in Scotland that capsized during a rescue attempt with the loss of her entire crew of eight men. The Mona was built in 1935 and in her time saved 118 lives.", "summary": "The passage is about a lifeboat.", "category": "mean of transportation" }, { "passage": "Sayonara mo Ienakatta Natsu - Sayonara mo Ienakatta Natsu (さよならも言えなかった夏) is an album by Mikuni Shimokawa released on July 4 2007 by Pony Canyon.This album consists of eleven songs; several new songs and some songs which were previously released as singles.", "summary": "The passage is about a album.", "category": "album" } ]), pd.DataFrame([ { "passage": "Personality and Mental Health - Personality and Mental Health: Multidisciplinary Studies from Personality Dysfunction to Criminal Behaviour is a quarterly peer-reviewed academic journal published by Wiley-Blackwell on behalf of the Centre for Health and Justice.", "summary": "The passage is about a journal.", "category": "written work" }, { "passage": "Sayonara mo Ienakatta Natsu - Sayonara mo Ienakatta Natsu (さよならも言えなかった夏) is an album by Mikuni Shimokawa released on July 4 2007 by Pony Canyon.This album consists of eleven songs; several new songs and some songs which were previously released as singles.", "summary": "The passage is about a album.", "category": "album" }, { "passage": "RNLB Mona (ON 775) - RNLB Mona (ON 775) was a Watson Class lifeboat based at Broughty Ferry in Scotland that capsized during a rescue attempt with the loss of her entire crew of eight men. The Mona was built in 1935 and in her time saved 118 lives.", "summary": "The passage is about a lifeboat.", "category": "mean of transportation" }, ]), pd.DataFrame([ { "passage": "Sayonara mo Ienakatta Natsu - Sayonara mo Ienakatta Natsu (さよならも言えなかった夏) is an album by Mikuni Shimokawa released on July 4 2007 by Pony Canyon.This album consists of eleven songs; several new songs and some songs which were previously released as singles.", "summary": "The passage is about a album.", "category": "album" }, { "passage": "Personality and Mental Health - Personality and Mental Health: Multidisciplinary Studies from Personality Dysfunction to Criminal Behaviour is a quarterly peer-reviewed academic journal published by Wiley-Blackwell on behalf of the Centre for Health and Justice.", "summary": "The passage is about a journal.", "category": "written work" }, { "passage": "RNLB Mona (ON 775) - RNLB Mona (ON 775) was a Watson Class lifeboat based at Broughty Ferry in Scotland that capsized during a rescue attempt with the loss of her entire crew of eight men. The Mona was built in 1935 and in her time saved 118 lives.", "summary": "The passage is about a lifeboat.", "category": "mean of transportation" }, ]) ] description_zeroshot=""" Pick the correct category for the passage. Categories: - company - educational institution - artist - athlete - office holder - mean of transportation - building - natural place - village - animal - plant - album - film - written work""" class DBPediaDecomp(Decomposition): def __init__(self, task_name, data_dir, val_split="validation"): super().__init__(task_name, data_dir, val_split) def get_boost_decomp_examples(self, train_data, boost_id): return [ summarize_examples[boost_id], categorize_examples[boost_id], ] def get_few_shot_examples(self, train_data, k_shot): """Get few shot examples""" labels = sorted(set(train_data["targets_pretokenized"])) num_per_class = int(np.ceil(k_shot / len(labels))) print(f"Selecting {num_per_class} examples per class.") dfs = [] total_in_context = 0 for label in labels: while num_per_class + total_in_context > k_shot: num_per_class -= 1 sub_df = train_data[train_data["targets_pretokenized"] == label].sample( num_per_class ) dfs.append(sub_df) total_in_context += num_per_class if total_in_context == k_shot: break mini_df = pd.concat(dfs) return mini_df def zero_few_baseline( self, test_data, few_shot_df, manifest, overwrite_manifest, do_few_shot=True, ): expt_log = {} preds = [] labels = [] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): input = row["inputs_pretokenized"] body = input.split("written work. ")[-1] gold = row["targets_pretokenized"].strip().lower() icl_str = "" title = description_zeroshot if do_few_shot: for s_ind, s_row in few_shot_df.iterrows(): s_input = s_row.inputs_pretokenized s_body = s_input.split("written work. ")[-1] s_title = s_input.split("written work. ")[0] + "written work." s_output = s_row.targets_pretokenized.strip() icl_str += f"Passage: {s_body}\nCategory: {s_output}\n\n" icl_str = f"{title}\n\n{icl_str}" prompt = f"{icl_str}Passage: {{body:}}\nCategory:" pmp = prompt.format(body=body) if i == 0: print(pmp) output = get_response( pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=10, stop_token="\n\n", ) pred = output.strip().lower() entry = { "ind": ind, "example": input, "base_prompt": pmp, "pred": pred, "gold": gold, } expt_log[ind] = entry preds.append(pred) labels.append(gold) report = classification_report(labels, preds, output_dict=True) return expt_log, report["accuracy"] def run_decomposed_prompt( self, test_data, boost_data_train, boost_dfs, manifest, overwrite_manifest ): expt_log, all_boost_preds, labels = self._run_decomp_single_data(test_data, boost_dfs, manifest, overwrite_manifest) expt_log_train, all_boost_train_preds, train_labels = self._run_decomp_single_data(boost_data_train, boost_dfs, manifest, overwrite_manifest, run_limit=1) # Do WS preds = self.merge_boosted_preds(all_boost_preds, all_boost_train_preds, train_labels, expt_log, expt_log_train) # Get accuracies across all boost sets individual_accuracies = [] for i in range(len(all_boost_preds[0])): individual_accuracies.append(classification_report(labels, [p[i] for p in all_boost_preds], output_dict=True)["accuracy"]) report = classification_report(labels, preds, output_dict=True) return expt_log, expt_log_train, report["accuracy"], individual_accuracies def _run_decomp_single_data(self, test_data, boost_dfs, manifest, overwrite_manifest, run_limit=-1): expt_log = {} all_boost_preds = [] labels = [] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): if i == run_limit: break text = ( row.inputs_pretokenized.strip("\n").split("written work.")[-1].strip() ) gold = row.targets_pretokenized.strip().lower() prompts_across_boost = [] preds_across_boost = [] for boost_examples in boost_dfs: all_prompts = [] prompt_suffix = summarize(boost_examples[0]) summarize_prompt = f"{prompt_suffix}\n\nPassage: {{text:}}\nSummarize: the passage \"Passage\":" summarize_pmp = summarize_prompt.format(text=text) output = get_response( summarize_pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=50, ) summary = output.split("\n")[0].split(":")[-1].strip("\n") prompt_suffix = categorize(boost_examples[1]) category_prompt = f"{prompt_suffix}\n\nPassage: {{text:}}\nSummary: {{summary:}}\nThe summary \"Summary\" fits \"Category\":" category_pmp = category_prompt.format(text=text, summary=summary) output = get_response( category_pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=15, ) pred = output.split("\n")[0].strip().lower() all_prompts.append(summarize_pmp) all_prompts.append(category_pmp) if i == 0: print(summarize_pmp) print(category_pmp) prompts_across_boost.append(all_prompts) preds_across_boost.append(pred) entry = { "ind": ind, "example": text, "prompts": prompts_across_boost, "preds_boost": preds_across_boost, "gold": gold, } expt_log[ind] = entry all_boost_preds.append(preds_across_boost) labels.append(gold) return expt_log, all_boost_preds, labels def main(): args = get_args() task_name = "dbpedia" data_dir = ( f"{DATA_DIR}/P3/data_feather/dbpedia_14_pick_one_category_for_the_following_text" ) decomp = DBPediaDecomp(task_name, data_dir, val_split="test") decomp.run(args) if __name__ == "__main__": main()
ama_prompting-main
tasks/DBPedia_final.py
#!/usr/bin/env python # coding: utf-8 import pandas as pd import numpy as np from tqdm.auto import tqdm import random from sklearn.metrics import classification_report from decomposition import Decomposition, get_args, DATA_DIR from utils import get_response, InputOutputPrompt ############################################################################################################################## # All prompts questioner_prompt = InputOutputPrompt( input_formatter=lambda x: f"Statement: {x['statement']}", output_formatter=lambda x: f"Question: {x['question']}", required_keys=["question", "statement"], input_output_sep="\n", example_sep="\n\n", instruction="Rewrite the statement as a yes/no question.\n\n" ) questioner_prompt_examples = [ pd.DataFrame([ { "statement": "most of the light comes from the sun", "question": "Does most of the light come from the sun?" }, { "statement": "the test was not hard", "question": "Was the test not hard?", }, { "statement": "it is a good idea to buy your parents gifts", "question": "Is it a good idea to buy your parents gifts?", }, { "statement": "the balloon popped", "question": "Did the balloon pop?", }, { "statement": "The father and son went camping to California.", "question": "Did the father and son go camping?", }, ]), pd.DataFrame([ { "statement": "most of the light comes from the sun", "question": "Does most of the light come from the sun?" }, { "statement": "the test was not", "question": "Was the test not hard?", }, { "statement": "it is a good idea to buy your parents gifts", "question": "Is it a good idea to buy your parents gifts?", }, { "statement": "the balloon popped", "question": "Did the balloon pop?", }, { "statement": "The father and son went camping to California.", "question": "Did the father and son go camping?", }, ]), pd.DataFrame([ { "statement": "most of the light comes from the sun", "question": "Does most of the light come from the sun?" }, { "statement": "the test was not hard", "question": "Was the test not hard?", }, { "statement": "it is a good idea to buy your parents gifts", "question": "Is it a good idea to buy your parents gifts?", }, { "statement": "the balloon popped", "question": "Did the balloon pop?", }, { "statement": "The father and son went camping to California.", "question": "Did the father and son go camping?", }, ]), pd.DataFrame([ { "statement": "most of the light comes from the sun", "question": "Does most of the light come from the sun?" }, { "statement": "the test was not hard", "question": "Was the test not hard?", }, { "statement": "it is a good idea to buy your parents gifts", "question": "Is it a good idea to buy your parents gifts?", }, { "statement": "the balloon popped", "question": "Did the balloon pop?", }, { "statement": "The father and son went camping to California.", "question": "Did the father and son go camping?", }, ]), pd.DataFrame([ { "statement": "most of the light comes from the sun", "question": "Does most of the light come from the sun?" }, { "statement": "the test was not hard", "question": "Was the test not hard?", }, { "statement": "it is a good idea to buy your parents gifts", "question": "Is it a good idea to buy your parents gifts?", }, { "statement": "the balloon popped", "question": "Did the balloon pop?", }, { "statement": "The father and son went camping to California.", "question": "Did the father and son go camping?", }, ]), ] extraction_qa = InputOutputPrompt( input_formatter=lambda x: f"Context: {x['context']}\nQuestion: {x['question']}", output_formatter=lambda x: f"Answer: {x['answer']}", required_keys=["context", "question", "answer"], input_output_sep="\n", example_sep="\n\n", instruction="Answer the question. If there is no evidence in the context, return \"Unknown\".\n\n" ) extraction_qa_examples = [ pd.DataFrame([ { "context": "According to Biraben, the plague was present somewhere in Italy and affected 1,200 people.", "question": "Based on the context, Did the plague affect people in Europe?", "answer": "yes, people in Italy, Europe", }, { "context": "Policies aiming at controlling unemployment and in particular at reducing its inequality-associated effects support economic growth.", "question": "Based on the context, Is confidence a factor in increasing self-esteem?", "answer": "unknown", }, { "context": "The term \"matter\" is used throughout physics in a bewildering variety of contexts: for example, one refers to \"condensed matter physics\", \"elementary matter\", \"partonic\" matter, \"dark\" matter, \"anti\"-matter, \"strange\" matter, and \"nuclear\" matter.", "question": "Based on the context, Is anti-matter made of electrons? ", "answer": "Unknown", }, ]), pd.DataFrame([ { "context": "According to Biraben, the plague was present somewhere in Italy only between 1346 and 1671, and not after that.", "question": "Based on the context, Was the plague present in Italy during the 2000s?", "answer": "No, it was present between 1346 and 1671" }, { "context": "The term \"matter\" is used throughout physics in a bewildering variety of contexts: for example, one refers to \"condensed matter physics\", \"elementary matter\", \"partonic\" matter, \"dark\" matter, \"anti\"-matter, \"strange\" matter, and \"nuclear\" matter.", "question": "Based on the context, Is anti-matter made of electrons? ", "answer": "Unknown" }, { "context": "Policies aiming at controlling unemployment and in particular at reducing its inequality-associated effects support economic growth.", "question": "Based on the context, Is confidence a factor in increasing self-esteem?", "answer": "unknown" } ]), pd.DataFrame([ { "context": "Jenna's 10th birthday was yesterday evening and at least 10 of her friends attended the party.", "question": "Based on the context, Did 10 friends attend Jenna's party?", "answer": "Unknown" }, { "context": "The bullies attacked John when he was walking through the elementary school parking lot and then got sent to the teacher's office.", "question": "Based on the context, Did the bullies attack John in the teacher's office?", "answer": "No, parking lot" }, { "context": "WISS discovered a new monkey disease occurring in a remote tribe in the Amazon rainforrest.", "question": "Based on the context, Did WISS discover a new monkey species?", "answer": "No, a new monkey disease" } ]), pd.DataFrame([ { "context": "When Judy and Jack went to school, they got in trouble with their teacher for being late. I didn't think it was very fair.", "question": "Based on the context, Did she think it was fair?", "answer": "No" }, { "context": "If inflation is occurring, leading to higher prices for basic necessities such as gas by 2 dollars. Do you think that inflation is good for society?", "question": "Based on the context, Is inflation good for society?", "answer": "Unknown" }, { "context": "Put yourself out there. The more time you spend dating and socializing, the more likely you will find a boyfriend you like.", "question": "Based on the context, Does socializing help you find a boyfriend?", "answer": "Yes" }, { "context": "According to Biraben, the plague was present somewhere in Italy and affected 1,200 people.", "question": "Based on the context, Did the plague affect people in Europe?", "answer": "yes, people in Italy, Europe", }, { "context": "Policies aiming at controlling unemployment and in particular at reducing its inequality-associated effects support economic growth.", "question": "Based on the context, Is confidence a factor in increasing self-esteem?", "answer": "unknown", }, { "context": "The term \"matter\" is used throughout physics in a bewildering variety of contexts: for example, one refers to \"condensed matter physics\", \"elementary matter\", \"partonic\" matter, \"dark\" matter, \"anti\"-matter, \"strange\" matter, and \"nuclear\" matter.", "question": "Based on the context, Is anti-matter made of electrons? ", "answer": "Unknown", }, ]), pd.DataFrame([ { "context": "According to Biraben, the plague was present somewhere in Italy and affected 1,200 people.", "question": "Based on the context, Did the plague affect over 1,000 people?", "answer": "yes, 1,200 people", }, { "context": "If inflation is occurring, leading to higher prices for basic necessities such as gas by 2 dollars. Do you think that inflation is good for society?", "question": "Based on the context, Is inflation good for society?", "answer": "Unknown" }, { "context": "Policies aiming at controlling unemployment and in particular at reducing its inequality-associated effects support economic growth.", "question": "Based on the context, Is confidence a factor in increasing self-esteem?", "answer": "unknown" } ]), ] ############################################################################################################################## class ANLIR1Decomp(Decomposition): def __init__(self, task_name, data_dir, val_split="validation"): super().__init__(task_name, data_dir, val_split) def get_few_shot_examples(self, train_data, k_shot): """Get few shot examples""" labels = [' True', ' False', ' Neither'] num_per_class = int(np.ceil(k_shot / len(labels))) print(f"Selecting {num_per_class} examples per class.") dfs = [] total_in_context = 0 for label in labels: while num_per_class + total_in_context > k_shot: num_per_class -= 1 sub_df = train_data[train_data["targets_pretokenized"] == label].sample( num_per_class ) dfs.append(sub_df) total_in_context += num_per_class if total_in_context == k_shot: break mini_df = pd.concat(dfs) return mini_df def _get_boost_decomp_examples(self, train_data, boost_id): seed = [69, 987][boost_id] k_shot = 64 random.seed(seed) np.random.seed(seed) data_train = pd.DataFrame(train_data) labels = [' Neither', ' False', ' True'] num_per_class = int(np.ceil(k_shot / len(labels))) dfs = [] total_in_context = 0 for label in labels: while num_per_class + total_in_context > k_shot: num_per_class -= 1 if seed % 2 == 1: sub_df = data_train[data_train["targets_pretokenized"] == label].sample(num_per_class, random_state = seed) elif seed % 2 == 0: sub_df = data_train[data_train["targets_pretokenized"] != label].sample(num_per_class, random_state = seed) dfs.append(sub_df) total_in_context += num_per_class if total_in_context == k_shot: break booster_df = pd.concat(dfs).sample(frac=1, random_state=0) print(f"Selected: {len(booster_df)} in context examples.") return [ booster_df ] def get_boost_decomp_examples(self, train_data, boost_id): if boost_id < 3: return [ questioner_prompt_examples[boost_id], extraction_qa_examples[boost_id], ] else: icl_examples = self._get_boost_decomp_examples(train_data, boost_id-3)[0] return [ icl_examples ] def zero_few_baseline( self, test_data, few_shot_df, manifest, overwrite_manifest, do_few_shot=True, ): expt_log = {} golds = [] preds = [] labels = set(test_data["targets_pretokenized"]) labels = [l.lower().strip() for l in labels] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): if ind in expt_log: pred = expt_log[ind]["pred"] gold = expt_log[ind]["gold"] else: icl_str = "" if do_few_shot: for s_ind, s_row in few_shot_df.iterrows(): icl_str += f"{s_row['inputs_pretokenized']}{s_row['targets_pretokenized']}\n\n" text = row["inputs_pretokenized"] text = text.replace("True, False, or Neither?", "").strip().strip("\n") text = text + " True, False, or Neither? " gold = row["targets_pretokenized"] prompt = f"{icl_str}{{text:}}" pmp = prompt.format(text=text) if i == 0: print(pmp) raw_answer = get_response( pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=20, ) answer = raw_answer.strip().lower() answer = answer.split("\n") answer = [a for a in answer if a] answer = [ a for a in answer if any(l.lower() in a.lower() for l in labels) ] if answer: answer = answer[0] else: answer = "" answer = "".join( [a for a in answer if a not in [".", ",", "?", ";", ":", "'", '"']] ) is_yes = "true" in answer.split() is_no = "false" in answer.split() is_maybe = "neither" in answer.split() pred = "Neither" if is_yes and (not is_maybe and not is_no): pred = "True" if is_no and (not is_maybe and not is_yes): pred = "False" if is_maybe and (not is_no and not is_yes): pred = "Neither" gold = gold.strip().lower() pred = pred.strip().lower() entry = { "ind": ind, "example": text, "base_prompt": pmp, "raw_answer": raw_answer, "pred": pred, "gold": gold, } expt_log[ind] = entry golds.append(gold) preds.append(pred) report = classification_report(golds, preds, output_dict=True) return expt_log, report["accuracy"] def get_extraction(self, question, passage, prompt, boost_ex, manifest, overwrite_manifest): prompt_suffix = prompt(boost_ex) if "Based on the context," in prompt_suffix: question_prefix = " Based on the context," else: question_prefix = "" extract_prompt = f"{prompt_suffix}\n\nContext: {{passage:}}\nQuestion:{question_prefix} {question}\nAnswer:" extract_pmp = extract_prompt.format(passage=passage) answer = get_response( extract_pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=50, ) answer = answer.replace(",", "").replace(".", "").replace("?", "") answer = [a for a in answer.split("\n") if a] if answer: answer = answer[0] else: answer = passage return answer, extract_pmp def get_question(self, statement, prompt, boost_ex, manifest, overwrite_manifest): prompt_suffix = prompt(boost_ex) question_prompt = f"{prompt_suffix}\n\nStatement: {{statement:}}\nQuestion:" question_pmp = question_prompt.format(statement=statement) answer = get_response( question_pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=50, ) answer = answer.replace("Question: ", "") answer = [a for a in answer.split("\n") if a] if answer: answer = answer[0].strip() # answer = '' statement = statement.strip().strip(".") if ( not answer or statement.lower() == answer.lower() or not answer.strip().endswith("?") ): answer = f"{statement}. Yes, no, or unknown?" answer = answer.split("\n")[0] return answer, question_pmp def resolve_pred(self, answer): is_yes = "yes" in answer.split() or "true" in answer.split() is_no = "no" in answer.split() or "false" in answer.split() is_maybe = "maybe" in answer.split() or "maybe" in answer.split() pred = "Neither" if is_yes and (not is_maybe and not is_no): pred = "True" if is_no and (not is_maybe and not is_yes): pred = "False" if is_maybe and (not is_no and not is_yes): pred = "Neither" return pred def run_decomposed_prompt( self, test_data, boost_data_train, boost_dfs, manifest, overwrite_manifest ): expt_log, all_boost_preds, labels = self._run_decomp_single_data(test_data, boost_dfs, manifest, overwrite_manifest, run_limit=-1) expt_log_train, all_boost_train_preds, train_labels = self._run_decomp_single_data(boost_data_train, boost_dfs, manifest, overwrite_manifest, run_limit=1000) # Do WS preds = self.merge_boosted_preds(all_boost_preds, all_boost_train_preds, train_labels, expt_log, expt_log_train, indecisive_ans="neither") # Get accuracies across all boost sets individual_accuracies = [] for i in range(len(all_boost_preds[0])): report = classification_report(labels, [p[i] for p in all_boost_preds], output_dict=True) individual_accuracies.append(report["accuracy"]) print(report) print("\n\n") report = classification_report(labels, preds, output_dict=True) print(report) return expt_log, expt_log_train, report["accuracy"], individual_accuracies def _run_decomp_single_data( self, test_data, boost_dfs, manifest, overwrite_manifest, run_limit = -1 ): expt_log = {} all_boost_preds = [] labels = [] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): prompts_across_boost = [] preds_across_boost = [] if i == run_limit: break text = row["inputs_pretokenized"] gold = row["targets_pretokenized"].strip() passage = text.split("\n")[0] statement = ( text.split("\n")[-1] .replace("True, False, or Neither?", "") .strip() .strip("\n") .replace("Question: ", "") ) for boost_num, boost_examples in enumerate(boost_dfs): all_prompts = [] # question / extract prompt if boost_num < 3: question, question_final_prompt = self.get_question( statement, questioner_prompt, boost_examples[0], manifest, overwrite_manifest ) all_prompts.append(question_final_prompt) open_answer_f, extraction_final_prompt = self.get_extraction( question, passage, extraction_qa, boost_examples[1], manifest, overwrite_manifest, ) all_prompts.append(extraction_final_prompt) if i == 0: print("\n".join(all_prompts)) answer_f = open_answer_f.lower() pred = self.resolve_pred(answer_f) pred = pred.strip().lower() preds_across_boost.append(pred) # just ICL else: icl_str = "" for s_ind, s_row in boost_examples[0].iterrows(): if s_row["targets_pretokenized"].strip() == "True": demo_label = "yes" elif s_row["targets_pretokenized"].strip() == "False": demo_label = "no" else: demo_label = "unknown" s_text = s_row["inputs_pretokenized"] s_passage = s_text.split("\n")[0] s_statement = ( s_text.split("\n")[-1] .replace("True, False, or Neither?", "") .strip() .strip("\n") .replace("Question: ", "") ) icl = f"Statement: {s_statement}\nAnswer: {demo_label}" icl_str += f"{icl}\n\n" description = "Is the statement Yes, No, or Unknown?" prompt = f"{description}\n\n{icl_str}Statement: {{statement:}}\nAnswer:" pmp = prompt.format(statement=statement) if i == 0: print("PMP ICL") print(pmp) pred = get_response( pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=10, stop_token="\n", ) pred = pred.lower().strip() pred = pred.replace(".", "").replace(",", "").replace("Label: ", "").replace("Sentiment:", "") pred = [p for p in pred.split("\n") if p] if pred: pred = pred[0] else: pred = "" all_prompts.append(pmp) prompts_across_boost.append(all_prompts) pred = self.resolve_pred(pred).lower() preds_across_boost.append(pred) gold = gold.strip().lower() expt_log[ind] = { "ind": ind, "preds_boost": preds_across_boost, "prompts": prompts_across_boost, "example": text, "pred": pred, "gold": gold, } all_boost_preds.append(preds_across_boost) labels.append(gold) return expt_log, all_boost_preds, labels def main(): args = get_args() args.num_boost = 5 task_name = "anli_r1" data_dir = f"{DATA_DIR}/P3/data_feather/anli_GPT_3_style_r1" decomp = ANLIR1Decomp(task_name, data_dir, val_split="test") decomp.run(args) if __name__ == "__main__": main()
ama_prompting-main
tasks/ANLIR1_final.py
#!/usr/bin/env python # coding: utf-8 from tqdm.auto import tqdm import pandas as pd import random import numpy as np from pathlib import Path from datasets import load_dataset from sklearn.metrics import classification_report from decomposition import Decomposition, get_args, DATA_DIR from utils import get_response, InputOutputPrompt questioner = InputOutputPrompt( input_formatter=lambda x: f"Statement: {x['statement']}", output_formatter=lambda x: f"Question: {x['question']}", required_keys=["statement", "question"], input_output_sep="\n", example_sep="\n\n", instruction="Rewrite the statement as a yes/no question.\n\n" ) questioner_examples = [ pd.DataFrame([ { "statement": "Jonathan Samuels was born in the 70's.", "question": "Was Jonathan Samuels born in the 70's?" }, { "statement": "Jerry bullied him and called him names", "question": "Did Jerry bully him and call him names?", }, { "statement": "Sam and jade were going to go to the movies", "question": "Did did Sam and jade go to the movies?", }, { "statement": "Chocolate is tasty, when I am feeling hungry.", "question": "Does chocolate taste good when you are hungry?", }, { "statement": "Mark ran fast.", "question": "Did mark run fast?", }, ]), pd.DataFrame([ { "statement": "most of the light comes from the sun", "question": "Does most of the light come from the sun?" }, { "statement": "the test was not hard", "question": "Was the test not hard?", }, { "statement": "it is a good idea to buy your parents gifts", "question": "Is it a good idea to buy your parents gifts?", }, { "statement": "the balloon popped", "question": "Did the balloon pop?", }, { "statement": "The father and son went camping to California.", "question": "Did the father and son go camping?", }, ]), pd.DataFrame([ { "statement": "most of the light comes from the sun", "question": "Does most of the light come from the sun?" }, { "statement": "the test was not", "question": "Was the test hard?" }, { "statement": "it is a good idea to buy your parents gifts", "question": "Is it a good idea to buy your parents gifts?" }, { "statement": "the balloon popped", "question": "Did the balloon pop?" }, { "statement": "The father and son went camping to California.", "question": "Did the father and son go camping?" } ]) ] openended_qa = InputOutputPrompt( input_formatter=lambda x: f"Passage: {x['context']}\nQuestion: {x['question']}", output_formatter=lambda x: f"Answer: {x['answer']}", required_keys=["passage", "question", "answer"], input_output_sep="\n", example_sep="\n\n", instruction="" ) openended_qa_examples = [ pd.DataFrame([ { "context": "My aunt is a nurse and she often talks about long hours at work. Last week was especially bad and she was constantly working many hours.", "question": "Was her work easy?", "answer": "No, it was hard work." }, { "context": "My roommate was sick. She stayed home from work and school. She slept all day long and by the end of the day, she was feeling better.", "question": "Did the rest help her?", "answer": "Yes, she slept and felt better." }, { "context": "Andy had always wanted a big kids bike. When he turned six Year's old he asked for a bike for his birthday. He did not know how to ride a bike. On Andy's birthday his mother gave him a bike.", "question": "Did he cry all night?", "answer": "No, Andy was happy because he got a bike." }, ]), pd.DataFrame([ { "context": "Anna's mother always told her to be confident even if she feels nervous on the inside", "question": "Does Anna always feel nervous on the inside?", "answer": "Unknown" }, { "context": "Max and Jeff were extremely competitive at soccer, but Max was a lot better.", "question": "Was Jeff better than Max at soccer?", "answer": "No, Max was a lot better" }, { "context": "When Judy and Jack went to school, they got in trouble with their teacher for being late. I didn't think it was very fair.", "question": "Did she think it was fair?", "answer": "No, she didn't think it was very fair." }, { "context": "The FSP conference took place last week in Spain and representatives from 21 countries attended.", "question": "Did representatives from more than 20 countries attend FSP?", "answer": "Yes" }, ]), pd.DataFrame([ { "context": "My roommate was sick. She stayed home from work and school. She slept all day long and by the end of the day, she was feeling better.", "question": "Did the rest help her?", "answer": "Yes, she slept and felt better." }, { "context": "It was a beautiful day outside. Bob decided to go for a walkk. Bob walked along the path and admired the scenery. He found a twenty dollar bill on the ground.", "question": "Was he disappointed?", "answer": "No, he was happy he got money." }, { "context": "My aunt is a nurse and she often talks about long hours at work. Last week was especially bad and she was constantly working many hours.", "question": "Was her work easy?", "answer": "No, it was hard work." }, ]), ] sentiment = InputOutputPrompt( input_formatter=lambda x: f"Passage: {x['statement']}", output_formatter=lambda x: f"Sentiment: {x['sentiment']}", required_keys=["statement", "question"], input_output_sep="\n", example_sep="\n\n", instruction="Is the sentiment of the passage positive, negative, or neutral?\n\n" ) sentiment_examples = [ pd.DataFrame([ { "statement": "Mary saw the animal", "sentiment": "neutral", }, { "statement": "the town is quaint , but ultimately too boring and ugly", "sentiment": "negative", }, { "statement": "he's a strong athlete, people come from miles away to watch him compete", "sentiment": "positive", }, ]), pd.DataFrame([ { "statement": "the movie was not very good, they could have picked a better lead actor", "sentiment": "negative", }, { "statement": "she loves her mother so much that she gives her a hug everyday", "sentiment": "positive", }, { "statement": "the computer sat on the table", "sentiment": "neutral", }, ]), pd.DataFrame([ { "statement": "Mary saw the animal", "sentiment": "neutral", }, { "statement": "he's a strong athlete, people come from miles away to watch him compete", "sentiment": "positive", }, { "statement": "the dress is boring and ugly, it loooks like a towel", "sentiment": "negative", }, { "statement": "the exam went well since i studied a lot", "sentiment": "positive", }, { "statement": "the table was made of wood", "sentiment": "neutral", }, { "statement": "grocery stores sell food", "sentiment": "neutral", }, ]) ] sentiment_more_positive = InputOutputPrompt( input_formatter=lambda x: f"Sentence 1: {x['sentence1']}\nSentence 2: {x['sentence2']}", output_formatter=lambda x: f"More positive: {x['answer']}", required_keys=["sentence1", "sentence2", 'answer'], input_output_sep="\n", example_sep="\n\n", instruction="Which sentence is more positive?\n\n" ) sentiment_more_positive_examples = [ pd.DataFrame([ { "sentence1": "i think she's fine", "sentence2": "she's my favorite person in the world", "answer": "she's my favorite person in the world" }, { "sentence1": "i have never been to a better restaurant in my life", "sentence2": "the restaurant was decent, I may go back", "answer": "i have never been to a better restaurant in my life" }, { "sentence1": "I went on the best vacation with my family last week.", "sentence2": "I just got back from a vacation, which was expensive, but fun", "answer": "I went on the best vacation with my family last week." } ]) ] what_next = InputOutputPrompt( input_formatter=lambda x: f"Choices:\n- {x['choice_a']}\n- {x['choice_b']}\n\nPassage: {x['passage']} Then?", output_formatter=lambda x: f"{x['answer']}", required_keys=["choice_a", "choice_b", "passage", "answer"], input_output_sep=" ", example_sep="\n\n----\n\n", instruction="Pick the best choice for the passage.\n\n" ) what_next_examples = [ pd.DataFrame([ { "passage": "The girl went to college and graduated with honors", "choice_a": "She was qualified to get a job", "choice_b": "She was qualified to eat pizza", "answer": "she was qualified to get a job" }, { "passage": "Max bought all his friends cupcakes for the party.", "choice_a": "They never spoke to him again", "choice_b": "They all thanked him", "answer": "They all thanked him" }, { "passage": "Sam felt so hungry so he bought himself some cheese!", "choice_a": "he was starving", "choice_b": "he felt full", "answer": "he felt full" } ]), pd.DataFrame([ { "passage": "The girl went to college and graduated with honors", "choice_a": "She was qualified to get a job", "choice_b": "She was qualified to eat pizza", "answer": "she was qualified to get a job" }, { "passage": "Max bought all his friends cupcakes for the party.", "choice_a": "They never spoke to him again", "choice_b": "They all thanked him", "answer": "They all thanked him" }, { "passage": "Sam felt so hungry so he bought himself some cheese!", "choice_a": "he was starving", "choice_b": "he felt full", "answer": "he felt full" } ]), pd.DataFrame([ { "passage": "Sam and Jade were excited to see the new movie.", "choice_a": "They went to the theater", "choice_b": "They went swimming", "answer": "They went to the theater" }, { "passage": "Andy's parents got him a new toy", "choice_a": "he played", "choice_b": "he cried", "answer": "he played" }, { "passage": "She can read the entire book in a single day.", "choice_a": "She is a slow reader", "choice_b": "She is a fast reader", "answer": "She is a fast reader" } ]) ] class StoryCloze(Decomposition): def __init__(self, task_name, data_dir, val_split="validation"): super().__init__(task_name, data_dir, val_split) def read_data(self, save_dir, overwrite_data): save_data = Path(f"{save_dir}/{self.task_name}/data.feather") if not save_data.exists() or overwrite_data: dataset = load_dataset("story_cloze", "2016", data_dir=self.data_dir) test_data = dataset[self.val_split].to_pandas() test_data.to_feather(f"{save_data}") else: print(f"Reading test data from {save_data}") test_data = pd.read_feather(f"{save_data}") save_data_train = Path(f"{save_dir}/{self.task_name}/train_data.feather") if not save_data_train.exists() or overwrite_data: dataset = load_dataset("story_cloze", "2016", data_dir=self.data_dir) train_data = dataset["validation"].to_pandas() train_data.to_feather(f"{save_data_train}") else: print(f"Reading train data from {save_data_train}") train_data = pd.read_feather(f"{save_data_train}") print(f"Test Data Size: {len(test_data)}") print(f"Train Data Size: {len(train_data)}") return test_data, train_data def get_boost_decomp_examples(self, data_train, boost_id): if boost_id < 3: return [ questioner_examples[boost_id], openended_qa_examples[boost_id], sentiment_examples[boost_id], what_next_examples[boost_id], sentiment_more_positive_examples[0] ] else: seed = [1, 2, 3][boost_id-3] k_shot = 8 #32#4 random.seed(seed) np.random.seed(seed) sub_df = data_train.sample(k_shot) booster_df = sub_df.sample(frac=1, random_state=0) print(f"Selected: {len(booster_df)} in context examples.") return [ booster_df ] def zero_few_baseline( self, test_data, few_shot_df, manifest, overwrite_manifest, prompt_suffix="", do_few_shot=True, ): expt_log = {} preds = [] labels = [] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): if ind in expt_log: pred = entry["pred"] gold = entry["gold"] else: instruction = "Given two possible next sentences A) and B), choose the best next sentence to complete the story. Answer with A or B." icl_str = "" if do_few_shot: for s_ind, s_row in few_shot_df.iterrows(): s_text = f"{s_row['input_sentence_1']} {s_row['input_sentence_2']} {s_row['input_sentence_3']} {s_row['input_sentence_4']}\n\n" if s_row['answer_right_ending'] == 1: answer = s_row['sentence_quiz1'] elif s_row['answer_right_ending'] == 2: answer = s_row['sentence_quiz2'] choices = f"A) {s_row['sentence_quiz1']}\nB) {s_row['sentence_quiz2']}\n\n" icl_str += f"{s_text}{choices}Answer: {answer}\n\n\n" text = f"{row['input_sentence_1']} {row['input_sentence_2']} {row['input_sentence_3']} {row['input_sentence_4']}\n\n" choices = f"A) {row['sentence_quiz1']}\nB) {row['sentence_quiz2']}\n\n" gold = '' if row['answer_right_ending'] == 1: gold = row['sentence_quiz1'] elif row['answer_right_ending'] == 2: gold = row['sentence_quiz2'] prompt = f"{instruction}\n\n\n{icl_str}{text}{choices}Answer: " raw_answer = get_response(prompt, manifest, max_toks=50) answer = raw_answer.split("\n") answer = [a for a in answer if a] if answer: answer = answer[0].replace("Answer: ", "").strip() else: answer = '' if i == 0: print(prompt) answer = answer.replace(")", "").replace("(", "").replace(":", "") is_A = answer.lower() in row['sentence_quiz1'].lower() or row['sentence_quiz1'].lower() in answer.lower() or "A" in answer.split() is_B = answer.lower() in row['sentence_quiz2'].lower() or row['sentence_quiz2'].lower() in answer.lower() or "B" in answer.split() pred = '' if is_A and (not is_B): pred = '1' if is_B and (not is_A): pred = '2' entry = { "ind": ind, "example": text, "base_prompt": prompt, "raw_answer": raw_answer, "pred": pred, "gold": gold, } expt_log[ind] = entry labels.append(str(row['answer_right_ending'])) preds.append(pred) report = classification_report(labels, preds, output_dict=True) return expt_log, report["accuracy"] def get_question(self, statement, all_prompts, boost_examples, manifest, overwrite_manifest): questioner = all_prompts[0](boost_examples[0]) question_prompt = f"{questioner}\n\nStatement: {{statement:}}\n" question = get_response( question_prompt.format(statement=statement), manifest, max_toks= 4*len(statement.split())) question = question.replace("Question: ", "") question = [q for q in question.split("\n") if q] if not question: question = f"{statement} Yes or no?" else: question = question[0] return question, question_prompt def answer_question(self, question, passage, all_prompts, boost_examples, manifest, overwrite_manifest, option=1): one_at_a_time = all_prompts[1](boost_examples[1]) answer_prompt = f"{one_at_a_time}\n\nPassage: {{passage:}}\nQuestion: {{question:}}\n" answer = get_response( answer_prompt.format(passage=passage, question=question), manifest, max_toks=50) answer = answer.replace("Answer: ", "") answer = [a for a in answer.split("\n") if a] if answer: answer = answer[0].replace(",", "").replace(".", "").lower() else: answer = '' pred = '' if option == 1: if 'yes' in answer.split(): pred = "1" elif 'no' in answer.split(): pred = "2" elif option == 2: if 'no' in answer.split(): pred = "1" elif 'yes' in answer.split(): pred = "2" return pred, answer_prompt def get_one_by_one(self, example, choice_a, choice_b, all_prompts, boost_examples, manifest, overwrite_manifest): # construct questions question_a, questioner_prompt = self.get_question(choice_a, all_prompts, boost_examples, manifest, overwrite_manifest) question_b, questioner_prompt = self.get_question(choice_b, all_prompts, boost_examples, manifest, overwrite_manifest) # ask questions pred_a, answerer_prompt = self.answer_question(question_a, example, all_prompts, boost_examples, manifest, overwrite_manifest, option=1) pred_b, answerer_prompt = self.answer_question(question_b, example, all_prompts, boost_examples, manifest, overwrite_manifest, option=2) # reconcile answer if pred_a == "1" and pred_b == "1": pred = "1" elif pred_a == "2" and pred_b == "2": pred = "2" elif pred_a and not pred_b: pred = pred_a elif not pred_b and pred_b: pred = pred_b else: pred = '' return pred, questioner_prompt, answerer_prompt def get_sentiment(self, statement, all_prompts, boost_examples, manifest, overwrite_manifest): sentiment_prompt = all_prompts[0](boost_examples[2]) prompt = f"{sentiment_prompt}\n\nPassage: {{statement:}}\nSentiment: " raw_answer = get_response( prompt.format(statement=statement), manifest, max_toks=5) sent = raw_answer.split("\n")[0] if "positive" in sent: sent = 1 elif "negative" in sent: sent = -1 elif "neutral" in sent: sent = 0 return sent, sentiment_prompt def get_sentiment_more_pos(self, choice_a, choice_b, all_prompts, boost_examples, manifest, overwrite_manifest): sentiment_prompt = all_prompts[1](boost_examples[4]) prompt = f"{sentiment_prompt}\n\nSentence 1: {{choice_a:}}\nSentence 2: {{choice_b:}}\nMore positive:" raw_answer = get_response( prompt.format(choice_a=choice_a, choice_b=choice_b), manifest, max_toks=20) raw_answer = raw_answer.split("\n")[0].lower() if choice_a.lower() in raw_answer and not choice_b.lower() in raw_answer: return 1 elif choice_b.lower() in raw_answer and not choice_a.lower() in raw_answer: return 2 else: return 0 def combine_sentiments(self, example, choice_a, choice_b, all_prompts, boost_examples, manifest, boost_id, overwrite_manifest): # construct questions sentiment_a, sentiment_prompt = self.get_sentiment(choice_a, all_prompts, boost_examples, manifest, overwrite_manifest) sentiment_b, sentiment_prompt = self.get_sentiment(choice_b, all_prompts, boost_examples, manifest, overwrite_manifest) sentiment_ex, sentiment_prompt = self.get_sentiment(example, all_prompts, boost_examples, manifest, overwrite_manifest) # reconcile answer pred = '' if abs(sentiment_a - sentiment_ex) < abs(sentiment_b - sentiment_ex): pred = "1" elif abs(sentiment_a - sentiment_ex) > abs(sentiment_b - sentiment_ex): pred = "2" return pred, sentiment_prompt def get_what_next(self, example, choice_a, choice_b, all_prompts, boost_examples, manifest, overwrite_manifest): what_next_prompt = all_prompts[0](boost_examples[3]) prompt = f"{what_next_prompt}\n\n----\n\nChoices:\n- {{choice_a:}}\n- {{choice_b:}}\n\nPassage: {{example:}} Then?" raw_answer = get_response( prompt.format(choice_a=choice_a, choice_b=choice_b, example=example), manifest, max_toks=50) answer = raw_answer.split("\n")[0].lower() choice_a = choice_a.lower() choice_b = choice_b.lower() pred = '' for n in range(5,50): for idx_offset in range(len(answer) - n + 1): ngram = "".join(answer[idx_offset:idx_offset+n]) if ngram in choice_a and ngram not in choice_b: pred = '1' elif ngram not in choice_a and ngram in choice_b: pred = '2' return pred, what_next_prompt def run_decomposed_prompt( self, test_data, boost_data_train, boost_dfs, manifest, overwrite_manifest ): expt_log, all_boost_preds, labels = self._run_decomp_single_data(test_data, boost_dfs, manifest, overwrite_manifest, run_limit=-1) expt_log_train, all_boost_train_preds, train_labels = self._run_decomp_single_data(boost_data_train, boost_dfs, manifest, overwrite_manifest, run_limit=1000) # Do WS preds = self.merge_boosted_preds(all_boost_preds, all_boost_train_preds, train_labels, expt_log, expt_log_train) # Get accuracies across all boost sets individual_accuracies = [] for i in range(len(all_boost_preds[0])): individual_accuracies.append(classification_report(labels, [p[i] for p in all_boost_preds], output_dict=True)["accuracy"]) report = classification_report(labels, preds, output_dict=True) return expt_log, expt_log_train, report["accuracy"], individual_accuracies def _run_decomp_single_data(self, test_data, boost_dfs, manifest, overwrite_manifest, run_limit=-1): expt_log = {} all_boost_preds = [] labels = [] no_preds = 0 for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): example = f"{row['input_sentence_1']} {row['input_sentence_2']} {row['input_sentence_3']} {row['input_sentence_4']}" choice_a = row['sentence_quiz1'] choice_b = row['sentence_quiz2'] gold = str(row['answer_right_ending']) if i == run_limit: break prompts_across_boost = [] preds_across_boost = [] for boost_num, boost_examples in enumerate(boost_dfs): all_prompts = [] if boost_num < 3: pred, questioner_prompt, answerer_prompt = self.get_one_by_one( example, choice_a, choice_b, [questioner, openended_qa], boost_examples, manifest, overwrite_manifest ) if i == 0: print(questioner_prompt) print("\n\n") print(answerer_prompt) print("\n\n") all_prompts.append(questioner_prompt) all_prompts.append(answerer_prompt) if not pred: pred, sentiment_prompt = self.combine_sentiments( example, choice_a, choice_b, [sentiment, sentiment_more_positive], boost_examples, manifest, boost_num, overwrite_manifest ) all_prompts.append(sentiment_prompt) if not pred: pred, what_next_prompt = self.get_what_next( example, choice_a, choice_b, [what_next], boost_examples, manifest, overwrite_manifest ) pred2, what_next_prompt = self.get_what_next( example, choice_b, choice_a, [what_next], boost_examples, manifest, overwrite_manifest ) if pred != pred2: pred = "" all_prompts.append(what_next_prompt) if not pred: pred = '' no_preds += 1 else: icl_str = "" for s_ind, s_row in boost_examples[0].iterrows(): s_text = f"{s_row['input_sentence_1']} {s_row['input_sentence_2']} {s_row['input_sentence_3']} {s_row['input_sentence_4']}" if s_row['answer_right_ending'] == 1: answer = s_row['sentence_quiz1'] elif s_row['answer_right_ending'] == 2: answer = s_row['sentence_quiz2'] icl_str += f"Context: {s_text} {answer}\n\n" text = f"{row['input_sentence_1']} {row['input_sentence_2']} {row['input_sentence_3']} {row['input_sentence_4']}" options = [row['sentence_quiz1'], row['sentence_quiz2']] if row['answer_right_ending'] == 1: gold = row['sentence_quiz1'] elif row['answer_right_ending'] == 2: gold = row['sentence_quiz2'] prompt = f"Complete the paragraph.\n\n\n{icl_str}Context: {text}" if i == 0: print(prompt.format(text=text)) all_prompts.append(prompt) raw_answer, _ = get_response( prompt.format(text=text), manifest, gold_choices=[options[0].replace("- ", "").strip(), options[1].replace("- ", "").strip()], overwrite=bool(overwrite_manifest), max_toks=max(len(opt) for opt in options)*4, ) answer = raw_answer is_A = answer.lower() in row['sentence_quiz1'].lower() or row['sentence_quiz1'].lower() in answer.lower() or "A" in answer.split() is_B = answer.lower() in row['sentence_quiz2'].lower() or row['sentence_quiz2'].lower() in answer.lower() or "B" in answer.split() pred = '' if is_A and (not is_B): pred = '1' if is_B and (not is_A): pred = '2' prompts_across_boost.append(all_prompts) preds_across_boost.append(pred) entry = { "ind": ind, "prompts": prompts_across_boost, "preds_boost": preds_across_boost, "example": example, "choice_a": choice_a, "choice_b": choice_b, "gold": str(row['answer_right_ending']), } expt_log[ind] = entry all_boost_preds.append(preds_across_boost) labels.append(str(row['answer_right_ending'])) return expt_log, all_boost_preds, labels def main(): args = get_args() args.num_boost = 6 task_name = "story_cloze" data_dir = f"{DATA_DIR}/story_cloze" decomp = StoryCloze(task_name, data_dir, val_split="test") decomp.run(args) if __name__ == "__main__": main()
ama_prompting-main
tasks/StoryCloze_final.py
#!/usr/bin/env python # coding: utf-8 from tqdm.auto import tqdm from pathlib import Path from collections import Counter import re import pandas as pd import json import unicodedata import string from decomposition import Decomposition, get_args, DATA_DIR from utils import get_response, InputOutputPrompt cloze_completion = InputOutputPrompt( input_formatter=lambda x: f"Context: {x['context']}", output_formatter=lambda x: f"{x['answer']}", input_output_sep=" ", example_sep="\n\n----\n\n", required_keys=["context"], instruction="Complete the paragraph.\n\n" ) cloze_completion_examples = [ pd.DataFrame([ { "context": "Barack Hussein Obama is an American politician who served as the 44th president of the United States from 2009 to 2017. A member of the Democratic Party, he was the first African-American president of the United States. Obama previously served as a U.S. senator from Illinois from 2005 to 2008 and as an Illinois state senator from 1997 to 2004.", "answer": "Obama was senator of the state of Illinois prior to becoming a US president." }, { "context": "(CNN) -- Saif al-Islam Gadhafi, 38, has never lived a day in which his father Moammar didn't rule Libya -- as its undisputed leader inside the country and an enigmatic, controversial voice for the world. And yet, as the Libyan government faced a stiff popular uprising, it was Moammar Gadhafi's second eldest son -- and not the Leader of the Revolution himself -- who was first to talk to the nation about the unrest and detail a plan to address it. The speech, made early Monday on Libyan state television, does not mean that Saif Gadhafi has usurped power from his father: Senior U.S. officials said there's no indication the elder Gadhafi is losing his grip.Saif al-Islam Gadhafi, 38, gives Libya's first public speech acknowledging unrest. There's been no public indication why he, and not his father Moammar, talked.", "answer": "Even while some may see the son as more open to change, there's little question that his loyalty remains first with Moammar and that his father has given little indication publicly that he's ready to let go and calls the shots." }, { "context": "The Beatles were an English rock band, formed in Liverpool in 1960, that comprised John Lennon, Paul McCartney, George Harrison and Ringo Starr. They are regarded as the most influential band of all time and were integral to the development of 1960s counterculture and popular music's recognition as an art form. They were led by primary songwriters Lennon and McCartney.", "answer": "It is without a doubt that the Beatles were influential in rock and roll." } ]), pd.DataFrame([ { "context": "One of the Internet's great promises is that it's the ultimate democratizer. It's open to everyone and allows all people to communicate. Facebook and Google have added new translation tools, but they take different approaches.", "answer": "Pros and cons: Google's computerized approach means it can translate tons of content -- and fast." }, { "context": "Los Angeles, often referred to by its initials L.A., is the largest city in the U.S. state of California. With a population of roughly 3.9 million as of 2020, it is the second largest city in the United States after New York City and one of the world's most populous megacities. ", "answer": "Los Angeles is known for its Mediterranean climate, ethnic and cultural diversity, Hollywood film industry, and sprawling metropolitan area." }, { "context": "The United States is cutting funding to the U.N. education and science agency UNESCO after the agency voted to accept a Palestinian bid for full membership, the U.S. State Department said Monday. \"Today's vote by the member states of UNESCO to admit Palestine as member is regrettable, premature and undermines our shared goal of a comprehensive just and lasting peace in the Middle East,\" said State Department spokeswoman Victoria Nuland.", "answer": "Israel believes that the correct and only way to make progress in the diplomatic process with the Palestinian is through direct negotiations without preconditions." }, ]), pd.DataFrame([ { "context": "(CNN) -- Martin Luther King Jr. fought and died so blacks would no longer be viewed as inferior but rather enjoy the same inherent rights given to whites in America. Yet in 2014, 50 years since the passage of the Civil Rights Act, the West View News thinks it's appropriate to publish a story about our first black president, Barack Obama, with the headline, \"The Nigger in the White House.\" Oh, the times we are living in. ", "answer": "The entire incident shows how far America has to yet to go in race relations." }, { "context": "Martin Skrtel has warned Liverpool’s top-four rivals they should be ready to fight as they look to take momentum from his ‘most important’ goal. The Slovakian defender had eight staples put into a head wound following a clash with Olivier Giroud but carried on with a bandage to score the equaliser deep into injury time in Sunday’s dramatic 2-2 draw with Arsenal at Anfield. Liverpool have a chance to push on over Christmas with a fixture away to Burnley followed by home games against Swansea and Leicester.", "answer": "The Liverpool defender celebrates his last-minute goal as the crowd go wild at Anfield" }, { "context": "Tripoli, Libya (CNN) -- It has been almost two weeks since Eman al-Obeidy burst into our hotel in Tripoli, desperate for the world to hear her story of rape and torture. We were finally able to speak to her Wednesday, against the explicit wishes of the Libyan government. The interview with al-Obeidy was facilitated by Gadhafi's son Saadi. We asked al-Obeidy if she would be willing to come to Saadi Gadhafi's office. She agreed and Gadhafi sent a car to pick her up. She says she wants to clear her name, smeared on state TV. Story of rape and torture became known after she burst into a Tripoli hotel", "answer": "Later Saadi Gadhafi told me: \"The people responsible for raping her should face charges.\"" }, ]) ] # TODO: how to fit in more ICL-demos def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): return re.sub(r'\b(a|an|the)\b', ' ', text) def white_space_fix(text): return ' '.join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return ''.join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def f1_score(prediction, ground_truth): prediction_tokens = normalize_answer(prediction).split() ground_truth_tokens = normalize_answer(ground_truth).split() common = Counter(prediction_tokens) & Counter(ground_truth_tokens) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) f1 = (2 * precision * recall) / (precision + recall) return f1 def exact_match_score(prediction, ground_truth): return normalize_answer(prediction) == normalize_answer(ground_truth) def metric_max_over_ground_truths(metric_fn, prediction, ground_truths): scores_for_ground_truths = [] for ground_truth in ground_truths: score = metric_fn(prediction, ground_truth) scores_for_ground_truths.append(score) return max(scores_for_ground_truths) def evaluate(labels, predictions): f1 = exact_match = total = 0 for label_set, pred in zip(labels, predictions): total += 1 exact_match += metric_max_over_ground_truths( exact_match_score, pred, label_set) f1 += metric_max_over_ground_truths(f1_score, pred, label_set) exact_match = 100.0 * exact_match / total f1 = 100.0 * f1 / total return {'exact_match': exact_match, 'f1': f1} class ReCoRDDecomp(Decomposition): def __init__(self, task_name, data_dir, val_split="validation"): super().__init__(task_name, data_dir, val_split) # Download from https://sheng-z.github.io/ReCoRD-explorer/ if not Path(f"{DATA_DIR}/record").exists(): raise ValueError(f"{DATA_DIR}/record doesn't exist. Please download.") data = json.load(open(f"{DATA_DIR}/record/record_dev.json"))["data"] self.test_query2labels = {} t = 0 for ex in data: passage = ex["passage"]["text"] passage = unicodedata.normalize("NFKD", passage) for q in ex["qas"]: t += 1 answers = list(set([e["text"] for e in q["answers"]])) query = unicodedata.normalize("NFKD", q["query"].strip()) key = (passage, query) if key in self.test_query2labels: assert set(self.test_query2labels[key]) == set(answers) self.test_query2labels[key] = answers data = json.load(open(f"{DATA_DIR}/record/record_train.json"))["data"] self.train_query2labels = {} t2 = 0 for ex in data: passage = ex["passage"]["text"] passage = unicodedata.normalize("NFKD", passage) for q in ex["qas"]: t2 += 1 answers = list(set([e["text"] for e in q["answers"]])) query = unicodedata.normalize("NFKD", q["query"].strip()) key = (passage, query) if key in self.train_query2labels: assert set(self.train_query2labels[key]) == set(answers) self.train_query2labels[key] = answers print(f"Loaded {t} test examples and {t2} train examples") def zero_few_baseline( self, test_data, few_shot_df, manifest, overwrite_manifest, do_few_shot=True, ): expt_log = {} preds = [] labels = [] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): icl_str = "" if do_few_shot: for s_ind, s_row in few_shot_df.iterrows(): s_text = " ".join(s_row['inputs_pretokenized'].split("\n\n")[1:]).strip() s_query = s_text.split("\n")[-1] s_text = s_text.replace(s_query, "").strip().replace("@highlight", "").replace("\n\n", ". ") s_answer_choices = s_row['answer_choices'] s_clean_choices = [] for choice in s_answer_choices: other_choices = [c for c in s_answer_choices if c != choice] if not any(c for c in other_choices if choice.lower() in c.lower()): s_clean_choices.append(s_query.replace("@placeholder", choice)) s_answer = s_row['targets_pretokenized'] s_choices = "\n- ".join(list(s_clean_choices)) s_answer = s_query.replace("@placeholder", f'{s_answer}') if s_ind + 1 == len(few_shot_df): icl_str += f"Context: {s_text}\n\nAnswer: {s_answer}" else: icl_str += f"Context: {s_text}\n\nAnswer: {s_answer}\n\n----\n\n" text = " ".join(row['inputs_pretokenized'].split("\n\n")[1:]).strip() query = text.split("\n")[-1] passage = text.rsplit("\n", 1)[0] key = (passage, query.strip()) if key in self.test_query2labels: golds = self.test_query2labels[key] else: golds = [row['targets_pretokenized']] text = text.replace(query, "").strip().replace("@highlight", "").replace("\n\n", ". ") # gold = row['targets_pretokenized'] answer_choices = row['answer_choices'] answer, prompt = self.get_final_answer_full_sentence(answer_choices, None, None, text, query, manifest, icl_str=icl_str) pred = answer entry = { "ind": ind, "example": text, "base_prompt": prompt, "raw_answer": answer, "pred": pred, "gold": golds, } expt_log[ind] = entry preds.append(pred) labels.append(golds) metrics = evaluate(labels, preds) print(metrics) return expt_log, metrics["exact_match"] def get_boost_decomp_examples(self, train_data, boost_id): return [ cloze_completion_examples[boost_id] ] def get_final_answer_full_sentence(self, answer_choices, prompt, boost_ex, text, query, manifest, icl_str='', size=2): if boost_ex is None: answer_prefix = "\n\nAnswer: " prompt_suffix = icl_str else: answer_prefix = " " prompt_suffix = prompt(boost_ex) left, right = query.split("@placeholder") clean_choices = [] for choice in answer_choices: clean_choices.append(f"{choice}{right}") # other_choices = [c for c in answer_choices if c != choice] # if not any(c for c in other_choices if choice.lower() in c.lower()): # clean_choices.append(query.replace("@placeholder", choice)) prompt = f"{prompt_suffix}\n\n----\n\nContext: {{text:}}{answer_prefix}{{left:}}" pmp = prompt.format(text=text, left=left) answers = [] for choice_group in range(0, len(clean_choices), size): try: raw_answer, score = get_response( pmp, manifest, max_toks=20, gold_choices=list(clean_choices[choice_group:choice_group+size]) ) raw_answer = raw_answer.replace(right, "").strip() except Exception as e: print(e) raw_answer = "" score = -1000 answers.append((raw_answer, score)) answers = sorted(answers, key=lambda x: x[1], reverse=True) final_answer = answers[0][0].strip() return final_answer, pmp def run_decomposed_prompt( self, test_data, boost_data_train, boost_dfs, manifest, overwrite_manifest ): expt_log, all_boost_preds, labels = self._run_decomp_single_data(test_data, boost_dfs, manifest, overwrite_manifest, run_limit=-1) expt_log_train, all_boost_train_preds, train_labels = self._run_decomp_single_data(boost_data_train, boost_dfs, manifest, overwrite_manifest, run_limit=1000, is_train=True) # Do WS preds = self.merge_boosted_preds(all_boost_preds, all_boost_train_preds, train_labels, expt_log, expt_log_train) # Get accuracies across all boost sets individual_accuracies = [] for i in range(len(all_boost_preds[0])): individual_accuracies.append(evaluate(labels, [p[i] for p in all_boost_preds])["exact_match"]) report = evaluate(labels, preds) return expt_log, expt_log_train, report["exact_match"], individual_accuracies def _run_decomp_single_data(self, test_data, boost_dfs, manifest, overwrite_manifest, run_limit=-1, is_train=False): expt_log = {} all_boost_preds = [] all_boost_answers = [] labels = [] label_data = self.test_query2labels if not is_train else self.train_query2labels for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): text = " ".join(row['inputs_pretokenized'].split("\n\n")[1:]).strip() query = text.split("\n")[-1] passage = text.rsplit("\n", 1)[0] key = (passage, query.strip()) if key in label_data: golds = label_data[key] else: golds = [row['targets_pretokenized']] answer_choices = row['answer_choices'] if i == run_limit: break prompts_across_boost = [] preds_across_boost = [] answers_across_boost= [] for boost_num, boost_examples in enumerate(boost_dfs): all_prompts = [] if "@highlight" not in boost_examples[0]: text = text.replace(query, "").strip().replace("@highlight", "").replace("\n\n", ". ") final_answer, prompt = self.get_final_answer_full_sentence(answer_choices, cloze_completion, boost_examples[0], text, query, manifest) if i == 0: print(prompt) all_prompts.append(prompt) pred = final_answer answers_across_boost.append(final_answer) prompts_across_boost.append(all_prompts) preds_across_boost.append(pred) all_boost_preds.append(preds_across_boost) all_boost_answers.append(answers_across_boost) entry = { "ind": ind, "example": text, "prompts": prompts_across_boost, "preds_boost": preds_across_boost, "gold": golds, } expt_log[ind] = entry labels.append(golds) return expt_log, all_boost_preds, labels def main(): args = get_args() task_name = "super_glue_record" data_dir = f"{DATA_DIR}/P3/data_feather/super_glue_record_exercise/" decomp = ReCoRDDecomp(task_name, data_dir) decomp.run(args) if __name__ == "__main__": main()
ama_prompting-main
tasks/ReCoRD_final.py
#!/usr/bin/env python # coding: utf-8 import pandas as pd import numpy as np import ast from tqdm.auto import tqdm from decomposition import Decomposition, get_args from utils import get_response, InputOutputPrompt, accuracy_span_overlap, load_hf_data extract = InputOutputPrompt( input_formatter=lambda x: f"Question: {x['question']}", output_formatter=lambda x: f"Answer: {x['answer']}", required_keys=["question", "answer"], input_output_sep="\n", example_sep="\n\n", instruction="Produce distinct questions.\n\n" ) more_info_examples = [ pd.DataFrame([ { "question": "who plays Carrie Bradshaw in sex and the city?", "answer": "Caroline \"Carrie\" Bradshaw is a fictional character from the HBO franchise Sex and the City, portrayed by Sarah Jessica Parker." }, { "question": "what are the elements in air?", "answer": "By mole fraction (i.e., by number of molecules), dry air contains 78.08% nitrogen, 20.95% oxygen, 0.93% argon, 0.04% carbon dioxide, and small amounts of other gases" }, { "question": "what is HP company?", "answer": "HP Inc. is an American multinational information technology company headquartered in Palo Alto, California, that develops personal computers (PCs)" }, { "question": "when was the last season of FRIENDS released?", "answer": "The series finale aired on May 6, 2004, and was watched by around 52.5 million American viewers, making it the fifth-most-watched series finale in television history" } ]), ] answer = InputOutputPrompt( input_formatter=lambda x: f"Context: {x['context']}\nQuestion: {x['question']}", output_formatter=lambda x: f"Answer: {x['answer']}", required_keys=["context", "question", "answer"], input_output_sep="\n", example_sep="\n\n", instruction="Answer the question.\n\n" ) answer_question = [ pd.DataFrame([ { 'context': 'The nearest airport to Palm Springs is Indio/Palm Springs (PSP) Airport which is 2.1 miles away. ', 'question': 'what airport is closest to palm springs?', 'answer': 'Palm Springs International Airport' }, { 'context': 'Martin Luther King earned his Bachelor of Divinity degree from Crozer Theological Seminary, followed by a doctorate in Systematic Theology from Boston University.', 'question': 'what degree did martin luther king get?', 'answer': 'Bachelor of Divinity' }, { 'context': 'The Niger river runs in a crescent through Libya, Mali, Niger, on the border with Benin and then through Nigeria.', 'question': 'what countries does the niger river flow through?', 'answer': 'Libya' }, { 'context': 'Puerto Rico is a territory of the United States and uses the U.S. dollar. ', 'question': 'what type of currency is used in puerto rico?', 'answer': 'United States dollar' }, { 'context': 'kitt was voice most often by William daniels.', 'question': 'who played kitt in knight rider?', 'answer': 'William Daniels' } ]), pd.DataFrame([ { 'context': 'leonardo da vinci invented the parachute, the helicopter, double hull, an armored fighting vehicle,', 'question': 'what inventions did leonardo da vinci made?', 'answer': 'Double hull' }, { 'context': "The French franc (F) was the national currency of France prior to France's adoption of the euro (EUR) in January 2002.", 'question': 'what currency is used in france before euro?', 'answer': 'French franc' }, { 'context': 'The Isthmus of Panama, contains the country of Panama and the panama canal.', 'question': 'where is isthmus of panama located?', 'answer': 'Costa Rica' }, { 'context': 'Hurricane Irene was a large and destructive tropical cyclone which affected much of the Caribbean and East Coast', 'question': 'where did hurricane irene?', 'answer': 'Eastern United States' }, { 'context': 'Rihanna acted in This is the End and Battleship.', 'question': 'what movie did rihanna play in?', 'answer': 'This Is the End' } ]), pd.DataFrame([ { 'context': 'st vincent de paul is buried in the 6th arrondisment of Paris.', 'question': 'where is st vincent de paul buried?', 'answer': 'Paris' }, { 'context': 'Thomas Luther "Luke" Bryan (born July 17, 1976) is an American country singer and songwriter from Leesburg.', 'question': 'where is luke bryan from?', 'answer': 'Leesburg' }, { 'context': "Klum and Seal got married on 10 May 2005 on a beach in Mexico near Seal's home on Costa Careyes. ", 'question': 'where did heidi klum and seal get married?', 'answer': 'Mexico'}, { 'context': 'Tarantino starred in pulp fiction, grindhouse and others.', 'question': 'what movies did quentin tarantino star in?', 'answer': 'Grindhouse' }, { 'context': 'Countries that are sometimes considered to be entirely or partially part of the Balkans are Croatia, Serbia, Lake Prespa.', 'question': 'what country is located in the balkan peninsula?', 'answer': 'Lake Prespa' } ]) ] prefix_select_zeroshot = """Answer the question.\n\n""" class WebQDecomp(Decomposition): def __init__(self, task_name, data_dir, val_split="validation"): super().__init__(task_name, data_dir, val_split) def read_data(self, save_dir, overwrite_data): return load_hf_data(save_dir, self.task_name, self.val_split, "web_questions", overwrite_data) def get_boost_decomp_examples(self, train_data, boost_id): return [ more_info_examples[0], answer_question[boost_id], ] def zero_few_baseline( self, test_data, few_shot_df, manifest, overwrite_manifest, prompt_suffix="", do_few_shot=True, ): expt_log = {} preds = [] labels = [] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): if ind in expt_log: entry = expt_log[ind] pred = entry["pred"] gold = entry["gold"] else: question = row.question if isinstance(row.answers, str): label = ast.literal_eval(row.answers) else: label = row.answers.tolist() gold = label icl_str = "" if do_few_shot: for s_ind, s_row in few_shot_df.iterrows(): s_question = s_row.question if isinstance(s_row.answers, str): label = ast.literal_eval(s_row.answers) else: label = s_row.answers.tolist() icl_str += f"Question: {s_question}\nAnswer: {label[0]}\n\n" prompt = ( icl_str + "Question: {question:}" + prompt_suffix + "\nAnswer:" ) if i == 0: print(prompt.format(question=question)) prompt = prompt.format(question=question) raw_answer = get_response( prompt, #prompt.format(question=question), manifest, overwrite=bool(overwrite_manifest), max_toks=20, stop_token="\n\n", ) pred = raw_answer.strip("\n").strip().lower() entry = { "ind": ind, "example": question, "base_prompt": prompt, "raw_answer": raw_answer, "pred": pred, "gold": gold, } expt_log[ind] = entry preds.append([pred]) labels.append(gold) metric = accuracy_span_overlap(preds=preds, golds=labels) return expt_log, metric def run_decomposed_prompt( self, test_data, boost_data_train, boost_dfs, manifest, overwrite_manifest ): expt_log, all_boost_preds, labels = self._run_decomp_single_data(test_data, boost_dfs, manifest, overwrite_manifest) expt_log_train, all_boost_train_preds, train_labels = self._run_decomp_single_data(boost_data_train, boost_dfs, manifest, overwrite_manifest, run_limit=1000) # Do WS boost_test, boost_train = [], [] for p in all_boost_preds: samples = [lf[1] for lf in p] boost_test.append(samples) for p in all_boost_train_preds: samples = [lf[1] for lf in p] boost_train.append(samples) preds = self.merge_boosted_preds(boost_test, boost_train, train_labels, expt_log, expt_log_train) preds = [(x,y) for x,y in zip([p[0][0] for p in all_boost_preds], preds)] # Get accuracies across all boost sets individual_accuracies = [] for i in range(len(all_boost_preds[0])): individual_accuracies.append(accuracy_span_overlap(preds=[p[i] for p in all_boost_preds], golds=labels)) metric = accuracy_span_overlap(preds=preds, golds=labels) return expt_log, expt_log_train, metric, individual_accuracies def _run_decomp_single_data(self, test_data, boost_dfs, manifest, overwrite_manifest, run_limit=-1): expt_log = {} all_boost_preds = [] labels = [] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): if i == run_limit: break question = row.question if isinstance(row.answers, str): label = ast.literal_eval(row.answers) else: label = row.answers.tolist() gold = label prompts_across_boost = [] preds_across_boost = [] # extract context prompt_suffix = extract(boost_dfs[0][0]) prompt = ( prompt_suffix + "\n\Question: {question:}\nAnswer:" ) more_info_answer = get_response( prompt.format(question=question), manifest, overwrite=bool(overwrite_manifest), max_toks=20, stop_token="\n\n", ) for boost_examples in boost_dfs: all_prompts = [] prompt_suffix = answer(boost_examples[1]) prompt = ( prompt_suffix + "\n\nContext: {text:}\nQuestion: {question:}\nAnswer:" ) if i == 0: print(prompt.format(text=more_info_answer, question=question)) all_prompts.append(prompt.format(text=more_info_answer, question=question)) raw_answer = get_response( prompt.format(text=more_info_answer, question=question), manifest, overwrite=bool(overwrite_manifest), max_toks=20, stop_token="\n\n", ) pred = raw_answer.split("\n")[0].strip().lower() prompts_across_boost.append(all_prompts) preds_across_boost.append((more_info_answer, pred)) entry = { "ind": ind, "example": question, "prompts": prompts_across_boost, "preds_boost": preds_across_boost, "gold": gold, } expt_log[ind] = entry all_boost_preds.append(preds_across_boost) labels.append(gold) return expt_log, all_boost_preds, labels def main(): args = get_args() task_name = "webq" data_dir = "webq" webq = WebQDecomp(task_name, data_dir, val_split="test") webq.run(args) if __name__ == "__main__": main()
ama_prompting-main
tasks/webq_final.py
#!/usr/bin/env python # coding: utf-8 from pathlib import Path from tqdm.auto import tqdm import pandas as pd from nltk.corpus import stopwords from datasets import load_dataset stops = set(stopwords.words("english")) from sklearn.metrics import classification_report from utils import get_response, InputOutputPrompt, load_hf_data from decomposition import Decomposition, get_args extract_relevant_phrase = InputOutputPrompt( input_formatter=lambda x: f"Passage: {x['passage']}", output_formatter=lambda x: f"Extract: {x['extract']}", required_keys=["passage", "extract"], input_output_sep="\n", example_sep="\n\n", instruction="Extract the phrase containing the pronoun.\n\n" ) extract_relevant_phrase_examples = [ pd.DataFrame([ { "passage": "Jane's mom went to the shop to buy Jane a backpack for \"her\" first day of kindergarten.", "extract": "phrase containing \"her\": \"her\" first day" }, { "passage": "The musicians performed in the park and the crowd loved \"them\". The crowd cheered for them.", "extract": "phrase containing \"them\": crowd loved \"them\"" }, { "passage": "Jeff gave his son some money because \"he\" wanted to buy lunch.", "extract": "phrase containing \"he\": \"he\" wanted to buy" } ]), pd.DataFrame([ { "passage": "The dog chased the cat. The cat ran up a tree and \"it\" waited at the top.", "extract": "phrase containing \"it\": \"it\" waited at the top" }, { "passage": "The musicians performed in the park and the crowd loved \"them\". The crowd cheered for them.", "extract": "phrase containing \"them\": crowd loved \"them\"" }, { "passage": "John couldn't see the stage with Billy in front of him because \"he\" is so short.", "extract": "phrase containing \"he\": \"he\" is so short" } ]), pd.DataFrame([ { "passage": "The candle gave some light during the blackout, but after a while \"it\" also burned out.", "extract": "phrase containing \"it\": \"it\" also burned out" }, { "passage": "Mark stocked the pantry with \"his\" son Jack's favorite cookies.", "extract": "phrase containing \"his\": \"his\" son Jack's" }, { "passage": "Mary invited Jenna to \"her\" birthday party, but didn't invite Anna.", "extract": "phrase containing \"her\": \"her\" birthday party" } ]), ] convert_reason_to_q = InputOutputPrompt( input_formatter=lambda x: f"Input: {x['input']}", output_formatter=lambda x: f"Question: {x['question']}", required_keys=["input", "question"], input_output_sep="\n", example_sep="\n\n", instruction="Rewrite the input as a question.\n\n" ) convert_reason_to_q_examples = [ pd.DataFrame([ { "input": "it was made of glass", "question": "What was made of glass?" }, { "input": "they are funny", "question": "Who or what are funny?" }, { "input": "he drowned", "question": "Who drowned?" }, { "input": "wrap around them", "question": "Wrap around who or what?" }, { "input": "his cat is black", "question": "Whose cat is black?" }, { "input": "laugh at them", "question": "Laugh at who?" }, { "input": "her friend jennfier", "question": "Whose friend Jennifer?" } ]), pd.DataFrame([ { "input": "it was made of glass", "question": "What was made of glass?" }, { "input": "they are funny", "question": "Who or what are funny?" }, { "input": "he drowned", "question": "Who drowned?" }, { "input": "wrap around them", "question": "Wrap around who or what?" }, { "input": "his cat is black", "question": "Whose cat is black?" }, { "input": "laugh at them", "question": "Laugh at who?" }, { "input": "her friend jennfier", "question": "Whose friend Jennifer?" } ]), pd.DataFrame([ { "input": "it was made of glass", "question": "What was made of glass?" }, { "input": "they are funny", "question": "Who or what are funny?" }, { "input": "he drowned", "question": "Who drowned?" }, { "input": "wrap around them", "question": "Wrap around who or what?" }, { "input": "his cat is black", "question": "Whose cat is black?" }, { "input": "laugh at them", "question": "Laugh at who?" }, { "input": "her friend jennfier", "question": "Whose friend Jennifer?" } ]), ] answer_q_in_passage = InputOutputPrompt( input_formatter=lambda x: f"Passage: {x['passage']}\nQuestion: {x['question']}", output_formatter=lambda x: f"Answer: {x['answer']}", required_keys=["passage", "question", "answer"], input_output_sep="\n", example_sep="\n\n", instruction="Answer the question.\n\n" ) answer_q_in_passage_examples = [ pd.DataFrame([ { "passage": "Jane's mom went to the shop to buy Jane a backpack for her first day of kindergarten.", "question": "Whose first day?", "answer": "Jane" }, { "passage": "Mrs. Jenna told Fred she loved him.", "question": "Who loved him?", "answer": "Mrs. Jenna" }, { "passage": "Joe gave Mark some money so he could buy lunch.", "question": "Who could buy lunch?", "answer": "Mark" } ]), pd.DataFrame([ { "passage": "Joe gave Mark some money so he could buy lunch.", "question": "Who could buy lunch?", "answer": "Mark" }, { "passage": "Jane's mom went to the shop to buy Jane a backpack for her first day of kindergarten.", "question": "Whose first day?", "answer": "Jane" }, { "passage": "Mark stocked the pantry with his son Jack's favorite cookies.", "question": "Whose son?", "answer": "Mark" }, ]), pd.DataFrame([ { "passage": "The candle burned out after some time. It dripped a lot of wax.", "question": "What dripped?", "answer": "The candle" }, { "passage": "Mark stocked the pantry with his son Jack's favorite cookies.", "question": "Whose son?", "answer": "Mark" }, { "passage": "Mary invited Jenna to her birthday party.", "question": "Whose birthday party?", "answer": "Mary" } ]), ] class WSCDecomp(Decomposition): def __init__(self, task_name, data_dir, val_split="validation"): super().__init__(task_name, data_dir, val_split) def get_boost_decomp_examples(self, train_data, boost_id): return [ extract_relevant_phrase_examples[boost_id], convert_reason_to_q_examples[boost_id], answer_q_in_passage_examples[boost_id], ] def read_data(self, save_dir, overwrite_data): return load_hf_data(save_dir, self.task_name, self.val_split, "SetFit/wsc_fixed", overwrite_data) def zero_few_baseline( self, test_data, few_shot_df, manifest, overwrite_manifest, do_few_shot=True, ): expt_log = {} preds = [] labels = [] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): text = row['text'] gold = row['label_text'] if gold == 'False': gold = 'No' elif gold == 'True': gold = 'Yes' pronoun = row['span2_text'] subject = row['span1_text'] text_toks = text.split(" ") text_toks_prefix = text_toks[:row['span2_index']] text_toks_suffix = text_toks[row['span2_index']+len(pronoun.split()):] text_toks = text_toks_prefix + [f'"{pronoun}"'] + text_toks_suffix passage = " ".join(text_toks).strip(".").strip() + "." question = f"Question: In the passage above, does the pronoun \"{pronoun}\" refer to {subject}?" icl_str = "" if do_few_shot: for s_ind, s_row in few_shot_df.iterrows(): s_text = s_row['text'] s_gold = s_row['label_text'] if s_gold == 'False': s_gold = 'No' elif s_gold == 'True': s_gold = 'Yes' s_pronoun = s_row['span2_text'] s_subject = s_row['span1_text'] s_text_toks = s_text.split(" ") s_text_toks_prefix = s_text_toks[:s_row['span2_index']] s_text_toks_suffix = s_text_toks[s_row['span2_index']+len(s_pronoun.split()):] s_text_toks = s_text_toks_prefix + [f'"{s_pronoun}"'] + s_text_toks_suffix s_passage = " ".join(s_text_toks).strip(".").strip() + "." s_question = f"Passage: {s_passage}\nQuestion: In the passage above, does the pronoun \"{s_pronoun}\" refer to {s_subject}?" icl_str += f"{s_question}\nAnswer: {s_gold}\n\n" prompt = f"{icl_str}Passage: {{passage:}}\n{question}\nAnswer:" pmp = prompt.format(passage=passage) if i == 0: print(pmp) raw_answer = get_response( pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=30, ) answer = raw_answer.split("\n") answer = [a for a in answer if a] if len(answer) <= 0: answer = "" else: answer = answer[0] answer = " ".join( [a.strip(",").strip(".").strip() for a in answer.split()] ) is_yes = "yes" in answer.lower().split() is_no = "no" in answer.lower().split() if is_yes and not is_no: pred = "Yes" elif is_no and not is_yes: pred = "No" else: pred = "" entry = { "ind": ind, "example": text, "base_prompt": pmp, "raw_answer": raw_answer, "pred": pred, "gold": gold, } expt_log[ind] = entry preds.append(pred) labels.append(gold) report = classification_report(labels, preds, output_dict=True) return expt_log, report["accuracy"] def question_answer( self, all_prompts, boost_exs, passage, original_passage, pronoun, manifest, overwrite_manifest, ): prompt_suffix = all_prompts[0](boost_exs[0]) extract_prompt = ( f"{prompt_suffix}\n\nPassage: {{passage:}}\nExtract: phrase containing \"{{pronoun:}}\": " ) extract_pmp = extract_prompt.format(passage=passage, pronoun=pronoun) relevant_phrase = get_response( extract_pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=50, ) relevant_phrase = relevant_phrase.split("\n")[0] relevant_phrase = relevant_phrase.replace('"', '') prompt_suffix = all_prompts[1](boost_exs[1]) convert_prompt = f"{prompt_suffix}\n\nInput: {{relevant_phrase:}}\nQuestion:" convert_pmp = convert_prompt.format(relevant_phrase=relevant_phrase) converted = get_response( convert_pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=50, ) converted = converted.split("\n")[0].replace("Question: ", "") prompt_suffix = all_prompts[2](boost_exs[2]) answer_prompt = f"{prompt_suffix}\n\nPassage: {{passage:}}\nQuestion: {{converted:}}\nAnswer:" answer_pmp = answer_prompt.format(passage=original_passage, converted=converted) answer = get_response( answer_pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=50, ) answer = answer.split("\n")[0].strip("'s").strip().replace("Answer: ", "").replace("A: ", "").strip() return answer, extract_pmp, convert_pmp, answer_pmp def run_decomposed_prompt( self, test_data, boost_data_train, boost_dfs, manifest, overwrite_manifest ): expt_log, all_boost_preds, labels = self._run_decomp_single_data(test_data, boost_dfs, manifest, overwrite_manifest) expt_log_train, all_boost_train_preds, train_labels = self._run_decomp_single_data(boost_data_train, boost_dfs, manifest, overwrite_manifest, run_limit=1000) # Do WS preds = self.merge_boosted_preds(all_boost_preds, all_boost_train_preds, train_labels, expt_log, expt_log_train) # Get accuracies across all boost sets individual_accuracies = [] for i in range(len(all_boost_preds[0])): individual_accuracies.append(classification_report(labels, [p[i] for p in all_boost_preds], output_dict=True)["accuracy"]) report = classification_report(labels, preds, output_dict=True) return expt_log, expt_log_train, report["accuracy"], individual_accuracies def _run_decomp_single_data(self, test_data, boost_dfs, manifest, overwrite_manifest, run_limit=-1): expt_log = {} all_boost_preds = [] labels = [] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): if i == run_limit: break prompts_across_boost = [] preds_across_boost = [] for boost_examples in boost_dfs: all_prompts = [] text = row['text'] gold_answer = row['label_text'] pronoun = row['span2_text'] gold = row['span1_text'] text_toks = text.split(" ") text_toks_prefix = text_toks[:row['span2_index']] text_toks_suffix = text_toks[row['span2_index']+len(pronoun.split()):] text_toks = text_toks_prefix + [f'\"{pronoun}\"'] + text_toks_suffix passage = " ".join(text_toks).strip(".").strip() + "." original_passage = text.strip(".").strip() + "." # gold = question.split("refer to")[-1].replace("?", "").strip().lower() gold_split = gold.split() if gold_split[0] in stops: gold = " ".join(gold_split[1:]) ( qa_answer, extract_prompt, convert_prompt, answer_prompt, ) = self.question_answer( [extract_relevant_phrase, convert_reason_to_q, answer_q_in_passage], boost_examples, passage, original_passage, pronoun, manifest, overwrite_manifest, ) all_prompts.append(extract_prompt) all_prompts.append(convert_prompt) all_prompts.append(answer_prompt) if i == 0: print(extract_prompt) print(convert_prompt) print(answer_prompt) answer_no_stop = " ".join( [a for a in qa_answer.lower().split() if a not in stops] ).lower() gold_no_stop = " ".join([a for a in gold.lower().split() if a not in stops]).lower() answer_no_stop = answer_no_stop.strip("s") gold_no_stop = gold_no_stop.strip("s") if ( answer_no_stop.strip() == gold_no_stop.strip() or gold_no_stop.strip() == answer_no_stop.strip() ): pred = "True" else: pred = "False" prompts_across_boost.append(all_prompts) preds_across_boost.append(pred) entry = { "ind": ind, "example": text, "prompts": prompts_across_boost, "preds_boost": preds_across_boost, "gold": gold_answer, } expt_log[ind] = entry all_boost_preds.append(preds_across_boost) labels.append(gold_answer) return expt_log, all_boost_preds, labels def main(): args = get_args() task_name = "super_glue_wsc" data_dir = "SetFit/wsc_fixed" decomp = WSCDecomp(task_name, data_dir) decomp.run(args) if __name__ == "__main__": main()
ama_prompting-main
tasks/WSC_final.py
from pathlib import Path from collections import Counter import json from datasets import load_dataset import re import pandas as pd from typing import Callable, List from manifest import Manifest class InputOutputPrompt: def __init__(self, input_formatter: Callable, output_formatter: Callable, required_keys: List, input_output_sep: str = "\n", example_sep: str = "\n\n", instruction: str = "" ): self.input_formatter = input_formatter self.output_formatter = output_formatter self.required_keys = required_keys self.input_output_sep = input_output_sep self.example_sep = example_sep self.instruction = instruction def __call__(self, input_output_pairs: pd.DataFrame): examples = [] for _, example in input_output_pairs.iterrows(): examples.append(f"{self.input_formatter(example)}{self.input_output_sep}{self.output_formatter(example)}") if examples: input_str = self.example_sep.join(examples) res = f"{self.instruction}{input_str}" else: res = f"{self.instruction}".rstrip() return res def __repr__(self): dummy_ex = pd.DataFrame([{k: f"<{k.upper()}>" for k in self.required_keys}]) st = self(dummy_ex) return st def prefix_formatter(ex_keys: List[str], prefix: str, error_on_empty: bool = True) -> str: def full_prefix_formatter(ex: pd.Series): for k in ex_keys: if k in ex: return f"{prefix} {getattr(ex, k)}" if error_on_empty: raise ValueError(f"Example {ex} has no value for any of the keys {ex_keys}") else: return f"{prefix}" return full_prefix_formatter def get_manifest_session( client_name="huggingface", client_engine=None, client_connection="http://127.0.0.1:5000", cache_connection=None, temperature=0, top_p=1.0, ): if client_name == "huggingface" and temperature == 0: params = { "temperature": 0.001, "do_sample": False, "top_p": top_p, } elif client_name in {"openai", "ai21"}: params = { "temperature": temperature, "top_p": top_p, "engine": client_engine, } else: raise ValueError(f"{client_name} is not a valid client name") manifest = Manifest( client_name=client_name, client_connection=client_connection, cache_name="sqlite", cache_connection=cache_connection, session_id=None, **params, ) params = manifest.client.get_model_params() model_name = params["model_name"] if "engine" in params: model_name += f"_{params['engine']}" return manifest, model_name def get_response( prompt, manifest, overwrite=False, max_toks=10, stop_token=None, gold_choices=[], verbose=False, ): prompt = prompt.strip() if gold_choices: gold_choices = [" " + g.strip() for g in gold_choices] response_obj = manifest.run( prompt, gold_choices=gold_choices, overwrite_cache=overwrite, return_response=True ) response_obj = response_obj.get_json_response()["choices"][0] log_prob = response_obj["text_logprob"] response = response_obj["text"] else: response = manifest.run( prompt, max_tokens=max_toks, stop_token=stop_token, overwrite_cache=overwrite, ) log_prob = None if verbose: print("\n***Prompt***\n", prompt) print("\n***Response***\n", response) if log_prob: return response, log_prob return response def load_hf_data(save_dir, task_name, val_split, hf_name, overwrite_data): save_data = Path(f"{save_dir}/{task_name}/data.feather") if not save_data.exists() or overwrite_data: dataset = load_dataset(hf_name) test_data = dataset[val_split].to_pandas() test_data.to_feather(f"{save_data}") else: print(f"Reading test data from {save_data}") test_data = pd.read_feather(f"{save_data}") save_data_train = Path(f"{save_dir}/{task_name}/train_data.feather") if not save_data_train.exists() or overwrite_data: dataset = load_dataset(hf_name) train_data = dataset["train"].to_pandas() train_data.to_feather(f"{save_data_train}") else: print(f"Reading train data from {save_data_train}") train_data = pd.read_feather(f"{save_data_train}") print(f"Test Data Size: {len(test_data)}") print(f"Train Data Size: {len(train_data)}") return test_data, train_data def save_log(task_name, expt_name, log, final_run_dir): final_run_dir = Path(final_run_dir) output_fpath = final_run_dir / task_name output_fpath.mkdir(parents=True, exist_ok=True) print("Saving to", output_fpath / f"{expt_name}.json") assert all(a in list(log.values())[0].keys() for a in ["ind","example","pred","gold"]) with open(output_fpath / f"{expt_name}.json", "w") as f: json.dump(log, f) def text_f1(preds, golds): """Compute average F1 of text spans. Taken from Squad without prob threshold for no answer. """ total_f1 = 0 for pred, gold in zip(preds, golds): pred_toks = pred.split() gold_toks = gold.split() common = Counter(pred_toks) & Counter(gold_toks) num_same = sum(common.values()) if len(gold_toks) == 0 or len(pred_toks) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise total_f1 += int(gold_toks == pred_toks) elif num_same == 0: total_f1 += 0 else: precision = 1.0 * num_same / len(pred_toks) recall = 1.0 * num_same / len(gold_toks) f1 = (2 * precision * recall) / (precision + recall) total_f1 += f1 f1_avg = total_f1 / len(golds) return f1_avg def accuracy_span_overlap(preds, golds): correct = 0 for pred, gold in zip(preds, golds): found = False for p in pred: for g in gold: if len(p) < len(g): if p.lower() in g.lower(): found = True break else: if g.lower() in p.lower(): found = True break if found: correct += 1 return correct / len(preds)
ama_prompting-main
tasks/utils.py
#!/usr/bin/env python # coding: utf-8 from tqdm.auto import tqdm import pandas as pd from nltk.corpus import stopwords stops = set(stopwords.words("english")) from sklearn.metrics import classification_report from decomposition import Decomposition, get_args, DATA_DIR from utils import get_response, InputOutputPrompt questioner = InputOutputPrompt( input_formatter=lambda x: f"Statement: {x['statement']}", output_formatter=lambda x: f"Question: {x['question']}", input_output_sep="\n", example_sep="\n\n", required_keys=["question", "statement"], instruction="Rewrite the statement as a question.\n\n" ) questioner_examples = [ pd.DataFrame([ { "statement": "most of the light comes from the sun", "question": "Does most of the light come from the sun?" }, { "statement": "the test was not hard", "question": "Was the test hard?" }, { "statement": "it was a good idea to buy your parents gifts", "question": "Was it a good idea to buy your parents gifts?" }, { "statement": "The 20 cans will arrive in the grocery store tomorrow.", "question": "Will the 20 cans arrive in the grocery store tomorrow?" }, { "statement": "the balloon popped", "question": "Did the balloon pop?" }, { "statement": "The father and son went camping to California.", "question": "Did the father and son go camping?" } ]), pd.DataFrame([ { "statement": "most of the light comes from the sun", "question": "Does most of the light come from the sun?" }, { "statement": "the test was not", "question": "Was the test hard?" }, { "statement": "it was a good idea to buy your parents gifts", "question": "Was it a good idea to buy your parents gifts?" }, { "statement": "The 20 cans will arrive in the grocery store tomorrow.", "question": "Will the 20 cans arrive in the grocery store tomorrow?" }, { "statement": "the balloon popped", "question": "Did the balloon pop?" }, { "statement": "The father and son went camping to California.", "question": "Did the father and son go camping?" } ]), pd.DataFrame([ { "statement": "tennis can be played on grass courts", "question": "Can tennis be played on grass courts?", }, { "statement": "the artist painted a picture of the apple in a bowl.", "question": "Did the artist paint a picture of an apple in a bowl?", }, { "statement": "mary is unhappy with tim.", "question": "Is mary unhappy with Tim?", }, { "statement": "after school, Jim was going to go to the park", "question": "Was Jim going to go to the park after school?", }, ]), pd.DataFrame([ { "statement": "she prefers kittens over puppies", "question": "What does she prefer over puppies?\nAnswer: kittens", }, { "statement": "Max and his wife went on a trip to Europe", "question": "Where did Max and his wife go on a trip?\nAnswer: Europe", }, { "statement": "jared was born during the war in 1942", "question": "Jared was born during a war in which year?\nAnswer: 1942", }, { "statement": "it took jenna 7 attempts to solve the problem", "question": "How many attempts did it take Jenna to solve the problem?\nAnswer: 7", }, ]), ] openended_qa = InputOutputPrompt( input_formatter=lambda x: f"Context: {x['passage']}\n\nQuestion: {x['question']}", output_formatter=lambda x: f"Answer: {x['answer']}", input_output_sep="\n\n", example_sep="\n\n----\n\n", required_keys=["question", "statement", 'answer'], instruction="Answer the question. If there is no evidence in the context, return \"Unknown\".\n\n" ) openended_qa_examples = [ pd.DataFrame([ { "passage": "Jenna's 10th birthday was yesterday evening and at least 10 of her friends attended the party.", "question": "Did 10 friends attend Jenna's party?", "answer": "Unknown, at least 10" }, { "passage": "The bullies attacked John when he was walking through the elementary school parking lot and then got sent to the teacher's office.", "question": "Did the bullies attack John in the teacher's office?", "answer": "No, parking lot" }, { "passage": "WISS discovered a new monkey disease in a remote tribe in the Amazon rainforrest last week. It was highly contagious.", "question": "Did WISS discover a new disease?", "answer": "Yes, new monkey disease" }, ]), pd.DataFrame([ { "passage": "Jenna's birthday was yesterday evening and at least 10 of her friends attended the party.", "question": "Did 10 friends attend Jenna's party?", "answer": "unknown, at least 10" }, { "passage": "The bullies punched John when he was walking through the elementary school parking lot. They punched 3 times.", "question": "Did the bullies punch John 4 time?", "answer": "No, 3 times" }, { "passage": "WISS discovered a new monkey disease in a remote tribe in the Amazon rainforrest last week. It was highly contagious.", "question": "Did WISS discover a new species of monkeys?", "answer": "Unknown" }, ]), pd.DataFrame([ { "passage": "The doctor performed surgery at the hospital and then went to the school to pick up her son.", "question": "Was the surgery successful?", "answer": "Unknown" }, { "passage": "As soon as the book was released, it became a New York Times fiction bestseller.", "question": "Is the book non-fiction?", "answer": "No, Fiction bestseller" }, { "passage": "During the presidential election polls last week, Jeff had 15% more votes than John", "question": "Were Jack and John running for president?", "answer": "Yes, presidential election" }, ]), pd.DataFrame([ { "passage": "According to Biraben, the plague was present somewhere in Italy in every year between 1346 and 1671", "question": "Where was the plague present?", "answer": "somewhere in Italy" }, { "passage": "Jenna's birthday was yesterday evening and at least 10 of her friends attended the party.", "question": "How many of Jenna's friends attended?", "answer": "at least 10" }, { "passage": "Mitsubishi Motor Corp's vehicle sales fell by 42 percent in June", "question": "When did Mitsubishi's sales fall?", "answer": "June" }, { "passage": "The bullies attacked in the elementary school parking lot and then got sent to the teacher's office.", "question": "Who or what did the bullies punch?", "answer": "Unknown" }, ]), ] cloze_convertor = InputOutputPrompt( input_formatter=lambda x: f"Example: {x['passage']}", output_formatter=lambda x: f"Output: {x['question']}", input_output_sep="\n", example_sep="\n\n", required_keys=["question", "passage"], instruction="" ) cloze_examples = [ pd.DataFrame([ { "passage": "Barrack Obama believes the best novel is Harry Potter.", "question": "Barrack Obama believes the best novel is Harry", }, { "passage": "The girl invited 12 friends to her birthday party last week.", "question": "The girl invited 12 friends to her birthday ", }, { "passage": "Apple computers are worse than Dell computers.", "question": "Apple computers are worse", }, { "passage": "Welcome to New York.", "question": "Welcome to New" } ]), ] cloze_choices = InputOutputPrompt( input_formatter=lambda x: f"Example: {x['example']}\nList alternatives:\n- {x['alternatives1']}\n- {x['alternatives2']}\n- {x['alternatives3']}", output_formatter=lambda x: f"", input_output_sep="", example_sep="\n\n", required_keys=["example", "alternatives1", "alternatives2", "alternatives3"], instruction="Output a list of unique alternatives for each example.\n\n" ) cloze_choice_examples = [ pd.DataFrame([ { "example": "Barrack Obama believes the", "alternatives1": "best novel is Harry Potter", "alternatives2": "worst book is Harry Potter", "alternatives3": "United States is great" }, { "example":"The Beatles were honored in:", "alternatives1":"Buckingham Palace", "alternatives2":"Mexico", "alternatives3":"Tower of London" }, { "example":"Jerry Baker:", "alternatives1":"is part of a soccer team", "alternatives2":"is not part of a soccer team", "alternatives3":"is a character in a book" }, ]) ] cloze_completion = InputOutputPrompt( input_formatter=lambda x: f"Select One Choice:\n1. {x['alternatives1']}\n2. {x['alternatives2']}\n3. {x['alternatives3']}\n\nPassage: {x['passage']}\n\nThe passage \"Passage\" states: {x['statement']}: \"Choice\":", output_formatter=lambda x: f"{x['answer']}", input_output_sep=" ", example_sep="\n\n----\n\n", required_keys=["passage", "alternatives1", "alternatives2", "alternatives3", "statement", "answer"], instruction="Select one choice from the passage.\n\n" ) cloze_completion_examples = [ pd.DataFrame([ { "passage": "Microsoft Corporation produces computer software, consumer electronics, and personal computers. It is headquartered at the Microsoft Redmond campus located in Redmond, Washington, United States.", "alternatives1": "consumer electronics", "alternatives2": "Play Stations", "alternatives3": "cameras", "statement": "Microsoft Corporation sells", "answer": "consumer electronics" }, { "passage":"Sir Elton Hercules John CH CBE is a British singer, pianist and reknowned composer. His nickname is the Rocket Man.", "alternatives1":"and tall man", "alternatives2":"and trombone player", "alternatives3":"and reknowned composer", "statement": "Sir Elton John is a musician", "answer": "and reknowned composer" }, { "passage":"The Mac versus Windows PC debate has been going on for a long time. Most people say the Windows PC three is superior. It comes down to personal preference.", "alternatives1":"Lenovo computers", "alternatives2":"Windows PC three", "alternatives3":"Dell computers", "statement": "Apple computers are superior to", "answer": " Windows PC three" }, ]) ] class RTEDecomp(Decomposition): def __init__(self, task_name, data_dir, val_split="validation"): super().__init__(task_name, data_dir, val_split) def get_boost_decomp_examples(self, data_train, boost_id): if boost_id < 4: return [ questioner_examples[boost_id], openended_qa_examples[boost_id], ] else: return [ cloze_examples[0], cloze_choice_examples[0], cloze_completion_examples[0] ] def zero_few_baseline( self, test_data, few_shot_df, manifest, overwrite_manifest, prompt_suffix="", do_few_shot=True, ): expt_log = {} preds = [] labels = [] labels_names = set(test_data["targets_pretokenized"]) labels_names = [l.lower().strip() for l in labels_names] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): if ind in expt_log: pred = entry["pred"] gold = entry["gold"] else: text = row["inputs_pretokenized"] gold = row["targets_pretokenized"] icl_str = "" if do_few_shot: for s_ind, s_row in few_shot_df.iterrows(): icl_str += f"{s_row['inputs_pretokenized']} {s_row['targets_pretokenized']}\n\n\n" prompt = f"{icl_str}{{text:}}" pmp = prompt.format(text=text) if i == 0: print(pmp) raw_answer = get_response( pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=30, ) answer = raw_answer.strip().lower() answer = answer.split("\n") answer = [a for a in answer if a] answer = [ a for a in answer if any(l.lower() in a.lower() for l in labels_names) ] if answer: answer = answer[0] else: answer = "" answer = "".join( [a for a in answer if a not in [".", ",", "?", ";", ":", "'", '"']] ) is_yes = "true" in answer.split() is_no = "false" in answer.split() if is_yes and (not is_no): pred = "True" if is_no and (not is_yes): pred = "False" elif not is_no and not is_yes: pred = "False" entry = { "ind": ind, "example": text, "base_prompt": pmp, "raw_answer": raw_answer, "pred": pred, "gold": gold, } expt_log[ind] = entry preds.append(pred) labels.append(gold) report = classification_report(labels, preds, output_dict=True) return expt_log, report["accuracy"] def get_question(self, statement, prompt, boost_ex, manifest, overwrite_manifest): prompt_suffix = prompt(boost_ex) quesiton_prompt = f"{prompt_suffix}\n\nStatement: {{statement:}}\nQuestion:" quesiton_prompt = quesiton_prompt.format(statement=statement).replace("\n\nAnswer:", "\nAnswer:") chopped_answer = get_response( quesiton_prompt, manifest, overwrite=bool(overwrite_manifest), max_toks=50) chopped_answer = chopped_answer.split("\n") question = [ch for ch in chopped_answer if ch][0] answer = [ch for ch in chopped_answer if ch.startswith("Answer: ")] if answer: answer = answer[0].replace(",", "").replace(".", "").replace("?", "").replace("Answer: ", "") answer = " ".join([a for a in answer.split() if a not in stops]) else: answer = '' if "A:" in question: statement = statement.strip(".") return f"{statement}. Yes or no?" return question, answer, quesiton_prompt def open_qa(self, question, passage, prompt, boost_ex, manifest, overwrite_manifest): prompt_suffix = prompt(boost_ex) qa_prompt = f"{prompt_suffix}\n\n----\n\nContext: {{passage:}}\n\nQuestion: {{question:}}\n\nAnswer:" qa_prompt = qa_prompt.format(passage=passage, question=question) answer = get_response( qa_prompt, manifest, overwrite=bool(overwrite_manifest), max_toks=50 ) answer = answer.replace(",", "").replace(".", "").replace("?", "") answer = [a for a in answer.split("\n") if a] if answer: answer = answer[0] else: answer = passage return answer, qa_prompt def resolve_pred(self, answer, open_answer): answer = answer.lower() is_yes = "yes" in answer.split() or "true" in answer.split() is_no = "no" in answer.split() or "false" in answer.split() is_maybe = False answer = answer.replace("-", "") pred = "False" if is_yes and (not is_maybe and not is_no) or (answer in open_answer or open_answer in answer): pred = "True" if is_no and (not is_maybe and not is_yes): pred = "False" return pred def get_choices_answer(self, chopped_answer, cuttoff, prompt, boost_ex, manifest, overwrite_manifest, get_choices_prompt=''): prompt_suffix = prompt(boost_ex) prompt = f"{prompt_suffix}\n\nExample: {{example:}}\nList alternatives:\n- {{cuttoff:}}\n" choices_answer = get_response( prompt.format(example=chopped_answer, cuttoff=cuttoff), manifest, overwrite=bool(overwrite_manifest), max_toks = 30 ) choices_answer = choices_answer.split("\n\n")[0] choices_answer = choices_answer.split("\n") choices_answer = [a.replace("- ", "").strip() for a in choices_answer] choices_answer = [a for a in choices_answer if cuttoff.lower() not in a.lower()] choices_answer = list(sorted(set(choices_answer))) choices_answer = choices_answer[:min(len(choices_answer), 2)] choices_answer = list(sorted(set(choices_answer))) choices_answer.append(cuttoff) choices_answer = [ch.strip(".") for ch in choices_answer] return choices_answer, prompt def get_chopping(self, question, prompt, boost_ex, manifest, overwrite_manifest, cuttoff_size=2, chopper_prompt=''): prompt_suffix = prompt(boost_ex) prompt = f"{prompt_suffix}\n\nExample: {{question:}}\nOutput:" chopped_answer = get_response( prompt.format(question=question), manifest, overwrite=bool(overwrite_manifest), max_toks = len(question.split())*4 ) chopped_answer = chopped_answer.split("\n")[0] chopped_list = chopped_answer.split() question = question.split() cuttoff = [t for t in question if t not in chopped_list] cuttoff_str = " ".join(cuttoff).strip(".") chopped_list_str = " ".join(chopped_list).strip(".") if not cuttoff or chopped_list_str.endswith(cuttoff_str): chopped_list = question[0:-cuttoff_size] cuttoff = question[-cuttoff_size:] cuttoff = " ".join(cuttoff) chopped_answer = " ".join(chopped_list) cuttoff = cuttoff.strip(".") return chopped_answer, cuttoff, prompt def get_final_selection(self, choices_answer, passage, chopped_answer, prompt, boost_ex, manifest, overwrite_manifest, selector_prompt=''): prompt_suffix = prompt(boost_ex) select_choice_str = "" gold_choice = choices_answer[-1] other_choices = choices_answer[:-1] for num, ch in enumerate(choices_answer): select_choice_str += f"\n{num+1}. {ch}" prompt = f"{prompt_suffix}\n\n----\n\nSelect one Choice:{{choices_str:}}\n\nPassage: {{passage:}}\nThe passage \"Passage\" states: {{chopped_answer:}} \"Choice\": " select_answer = get_response( prompt.format(choices_str=select_choice_str, passage=passage, chopped_answer=chopped_answer), manifest, overwrite=bool(overwrite_manifest), max_toks = max(len(c.split()) for c in choices_answer) ) select_answer = select_answer.lower() select_answer = select_answer.split("\n")[0].strip(".") if select_answer.lower() in gold_choice.lower(): answer = "True" else: answer = "False" return answer, prompt def run_decomposed_prompt( self, test_data, boost_data_train, boost_dfs, manifest, overwrite_manifest ): expt_log, all_boost_preds, labels = self._run_decomp_single_data(test_data, boost_dfs, manifest, overwrite_manifest) expt_log_train, all_boost_train_preds, train_labels = self._run_decomp_single_data(boost_data_train, boost_dfs, manifest, overwrite_manifest, run_limit=1000) # Do WS preds = self.merge_boosted_preds(all_boost_preds, all_boost_train_preds, train_labels, expt_log, expt_log_train) # Get accuracies across all boost sets individual_accuracies = [] for i in range(len(all_boost_preds[0])): individual_accuracies.append(classification_report(labels, [p[i] for p in all_boost_preds], output_dict=True)["accuracy"]) report = classification_report(labels, preds, output_dict=True) return expt_log, expt_log_train, report["accuracy"], individual_accuracies def _run_decomp_single_data(self, test_data, boost_dfs, manifest, overwrite_manifest, run_limit=-1): expt_log = {} all_boost_preds = [] labels = [] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): input = row['inputs_pretokenized'] gold = row['targets_pretokenized'] passage = input.split("Question: ")[0].strip("\n") statement = input.split("Question: ")[-1].replace("True or False?", "") if i == run_limit: break prompts_across_boost = [] preds_across_boost = [] for boost_num, boost_examples in enumerate(boost_dfs): all_prompts = [] if boost_num < 4: question, proposed_answer, question_final_prompt = self.get_question( statement, questioner, boost_examples[0], manifest, overwrite_manifest ) if i == 0: print("PROMPT:") print(question_final_prompt) open_answer, answer_final_prompt = self.open_qa( question, passage, openended_qa, boost_examples[1], manifest, overwrite_manifest ) if i == 0: print("\nPROMPT:") print(answer_final_prompt) all_prompts.append(question_final_prompt) all_prompts.append(answer_final_prompt) open_answer = open_answer.replace("-", "") open_answer = " ".join([a for a in open_answer.split() if a not in stops]) if proposed_answer: answer = proposed_answer.replace("-", "") answer = " ".join([a for a in answer.split() if a not in stops]) if all(wd in open_answer.lower() for wd in answer.lower().split()) or all(wd in answer.lower() for wd in open_answer.lower().split()): pred = "True" else: pred = 'False' if not answer.strip(): pred = 'False' else: pred = self.resolve_pred(open_answer.lower(), open_answer) else: chopped_answer, cuttoff, chopper_prompt = self.get_chopping( statement, cloze_convertor, boost_examples[0], manifest, overwrite_manifest, cuttoff_size=2) choices_answer, choices_prompt = self.get_choices_answer( chopped_answer, cuttoff, cloze_choices, boost_examples[1], manifest, overwrite_manifest) pred, selector_prompt = self.get_final_selection( choices_answer, passage, chopped_answer, cloze_completion, boost_examples[2], manifest, overwrite_manifest) prompts_across_boost.append(all_prompts) preds_across_boost.append(pred) entry = { "ind": ind, "prompts": prompts_across_boost, "preds_boost": preds_across_boost, "example": input, "gold": gold, } expt_log[ind] = entry all_boost_preds.append(preds_across_boost) labels.append(gold) return expt_log, all_boost_preds, labels def main(): args = get_args() args.num_boost = 5 task_name = "super_glue_rte" data_dir = f"{DATA_DIR}/P3/data_feather/super_glue_rte_GPT_3_style/" decomp = RTEDecomp(task_name, data_dir) decomp.run(args) if __name__ == "__main__": main()
ama_prompting-main
tasks/RTE_final.py
#!/usr/bin/env python # coding: utf-8 from pathlib import Path import argparse from typing import Counter import pandas as pd import json import numpy as np import datetime import os import random from utils import save_log, get_manifest_session DATA_DIR = os.environ.get("AMA_DATA", "/home/data") def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--seed", type=int, default=3) parser.add_argument( "--num_run", type=int, default=-1, help="Number of rows of test data to run" ) parser.add_argument( "--k_shot", type=int, default=3, help="Number of few shot" ) parser.add_argument( "--num_boost", type=int, default=3, help="Number of few shot sets to boost over") parser.add_argument( "--boost_train_examples", type=int, default=1000, help="Number of training examples to run through for boosting" ) parser.add_argument( "--output_metrics_file", type=str, default="decomposition_metrics.json", help="Output file for all metrics." ) parser.add_argument( "--save_dir", type=str, default="/home/final_runs/", help="Data directory" ) parser.add_argument( "--run_decomp", type=int, default=1, help="Run decomp", choices=[0, 1], ) parser.add_argument( "--run_zeroshot", type=int, default=1, help="Run zeroshot", choices=[0, 1], ) parser.add_argument( "--run_fewshot", type=int, default=1, help="Run fewshot", choices=[0, 1], ) parser.add_argument( "--run_zeroshot_decomp", type=int, default=0, help="Run zero shot decomp", choices=[0, 1], ) parser.add_argument( "--overwrite_boost_exs", type=int, default=0, help="Overwrite boost examples", choices=[0, 1], ) parser.add_argument( "--overwrite_data", type=int, default=0, help="Overwrite saved data examples", choices=[0, 1], ) # Manifest parser.add_argument( "--client_name", type=str, default="huggingface", help="Client name manifest", choices=["huggingface", "openai", "ai21"], ) parser.add_argument( "--client_engine", type=str, default=None, help="Client engine manifest. Only used for openai/ai21", choices=["davinci"], ) parser.add_argument( "--client_connection", type=str, default="http://127.0.0.1:5000", help="Client connection str", ) parser.add_argument( "--cache_connection", type=str, default="/home/manifest/final_runs.sqlite", help="Cache connection str", ) parser.add_argument( "--overwrite_manifest", type=int, default=0, help="Overwrite manifest", choices=[0, 1], ) return parser.parse_args() class Decomposition: def __init__(self, task_name, data_dir, val_split="validation"): self.task_name = task_name self.data_dir = data_dir self.val_split = val_split def read_data(self, save_dir, overwrite_data): save_data = Path(f"{save_dir}/{self.task_name}/data.feather") if not save_data.exists() or overwrite_data: test_data = pd.read_feather(f"{self.data_dir}/{self.val_split}.feather") test_data.to_feather(f"{save_data}") else: print(f"Reading test data from {save_data}") test_data = pd.read_feather(save_data) save_data = Path(f"{save_dir}/{self.task_name}/train_data.feather") if not save_data.exists() or overwrite_data: train_data = pd.read_feather(f"{self.data_dir}/train.feather") else: print(f"Reading train data from {save_data}") train_data = pd.read_feather(save_data) print(f"Test Data Size: {len(test_data)}") print(f"Train Data Size: {len(train_data)}") return test_data, train_data def get_few_shot_examples(self, train_data, k_shot): """Get few shot examples""" return train_data.sample(k_shot) def get_boost_decomp_examples(self, train_data, boost_i=0): """Get boost examples""" raise NotImplementedError() def zero_few_baseline( self, test_data, few_shot_df, manifest, overwrite_manifest, do_few_shot=True ): """Zero and few shot baseline""" raise NotImplementedError() def run_decomposed_prompt( self, test_data, boost_data_train, boost_dfs, manifest, overwrite_manifest ): """Decomposition run""" raise NotImplementedError() def merge_boosted_preds(self, boosted_preds, all_boost_train_preds, train_labels, exp_log, expt_log_train, indecisive_ans=None): """Merge boosted preds""" if isinstance(boosted_preds, list): boosted_preds = np.array(boosted_preds) if isinstance(all_boost_train_preds, list): all_boost_train_preds = np.array(all_boost_train_preds) if isinstance(train_labels, list): train_labels = np.array(train_labels) uniq = np.unique(boosted_preds) pred_map = {} if "yes" in uniq: pred_map = {"yes": 1, "no": -1, "neither": 0} elif "true" in uniq: pred_map = {"true": 1, "false": -1, "neither": 0} elif "positive" in uniq: pred_map = {"positive": 1, "negative": -1, "neutral": 0} pred_map_inv = {v:k for k,v in pred_map.items()} use_pred_map = False if all(p.lower() in pred_map for p in uniq): use_pred_map = True if use_pred_map: # Cast to integers boosted_preds = np.array([[pred_map[p.lower()] for p in preds] for preds in boosted_preds]) all_boost_train_preds = np.array( [[pred_map[p.lower()] for p in preds] for preds in all_boost_train_preds] ) train_labels = np.array([pred_map[p.lower()] for p in train_labels]) if indecisive_ans: indecisive_ans = pred_map[indecisive_ans.lower()] # Take majority vote preds_test = [] for i, voter_preds in enumerate(boosted_preds): most_common = Counter(voter_preds).most_common(1)[0] if indecisive_ans and len(voter_preds) > 1 and most_common[1] == 1: majority_vote_pred = indecisive_ans else: majority_vote_pred = most_common[0] if use_pred_map: majority_vote_pred = pred_map_inv[majority_vote_pred] preds_test.append(majority_vote_pred) exp_log[i]["pred"] = majority_vote_pred # Take majority vote preds_train = [] for i, voter_preds in enumerate(all_boost_train_preds): most_common = Counter(voter_preds).most_common(1)[0] if indecisive_ans and len(voter_preds) > 1 and most_common[1] == 1: majority_vote_pred = indecisive_ans else: majority_vote_pred = most_common[0] if use_pred_map: majority_vote_pred = pred_map_inv[majority_vote_pred] preds_train.append(majority_vote_pred) expt_log_train[i]["pred"] = majority_vote_pred return preds_test def run(self, args): print(json.dumps(vars(args), indent=4)) random.seed(args.seed) np.random.seed(args.seed) save_path = Path(f"{args.save_dir}/{self.task_name}") save_path.mkdir(parents=True, exist_ok=True) data_test, data_train = self.read_data(args.save_dir, bool(args.overwrite_data)) # Subsample train for boost exps if args.boost_train_examples >= 0: boost_data_train = data_train.head(min(len(data_train), args.boost_train_examples)) else: boost_data_train = data_train # Reset indexes for enumerations boost_data_train = boost_data_train.reset_index(drop=True) data_test = data_test.reset_index(drop=True) data_train = data_train.reset_index(drop=True) num_run = ( min(args.num_run, len(data_test)) if args.num_run > 0 else len(data_test) ) save_results = True if num_run != len(data_test): print("Using {} rows".format(num_run)) data_test = data_test.iloc[:num_run] save_results = False runner, model_name = get_manifest_session( client_name=args.client_name, client_engine=args.client_engine, client_connection=args.client_connection, cache_connection=args.cache_connection, ) model_name = model_name.replace("/", "_") print("Model name:", model_name) # Read in few shot examples few_shot_path = save_path /f"{args.k_shot}_shot_examples.feather" if bool(args.overwrite_data) or not few_shot_path.exists(): mini_df = self.get_few_shot_examples(data_train, args.k_shot) mini_df.reset_index().to_feather(few_shot_path) else: print(f"Reading few show examples from {few_shot_path}") mini_df = pd.read_feather(few_shot_path) # Read in few shot decomp examples - one data frame per decomp step boost_examples = [] for i in range(args.num_boost): boost_examples_per_step = [] # Get all steps boost_examples_paths = list(save_path.glob(f"boost_examples_{i}_step*.feather")) if bool(args.overwrite_boost_exs) or not boost_examples_paths or not all(p.exists() for p in boost_examples_paths): boost_df_steps = self.get_boost_decomp_examples(data_train, boost_id=i) if not isinstance(boost_df_steps, list) or not isinstance( boost_df_steps[0], pd.DataFrame ): raise ValueError("Must return list of dataframes, one per step") for step, boost_df in enumerate(boost_df_steps): boost_df.reset_index().to_feather(save_path / f"boost_examples_{i}_step{step}.feather") print(f"Saving boost examples to", save_path / f"boost_examples_{i}_step{step}.feather") boost_examples_per_step.append(boost_df) else: for boost_examples_p in sorted(boost_examples_paths): print(f"Reading boost examples from {boost_examples_p}") boost_examples_per_step.append(pd.read_feather(boost_examples_p)) boost_examples.append(boost_examples_per_step) today = datetime.datetime.today().strftime("%m%d%Y") # Default metrics metric_zero = -1.0 metric_few = -1.0 metric_decomposed = -1.0 metric_decomposed_by_boost = [] metric_zeroshot_decomposed = -1.0 if bool(args.run_zeroshot): # Zero Shot run_name = f"{model_name}_0shot" exp_zero, metric_zero = self.zero_few_baseline( test_data=data_test, few_shot_df=mini_df, manifest=runner, overwrite_manifest=args.overwrite_manifest, do_few_shot=False, ) if save_results: save_log(self.task_name, run_name, exp_zero, args.save_dir) if bool(args.run_fewshot): # Few Shot run_name = f"{model_name}_{args.k_shot}shot" exp_few, metric_few = self.zero_few_baseline( test_data=data_test, few_shot_df=mini_df, manifest=runner, overwrite_manifest=args.overwrite_manifest, do_few_shot=True, ) if save_results: save_log(self.task_name, run_name, exp_few, args.save_dir) if bool(args.run_decomp): # Decomp run_name = f"{model_name}_decomposed_{today}" exp_decomposed, exp_decomposed_train, metric_decomposed, metric_decomposed_by_boost = self.run_decomposed_prompt( test_data=data_test, boost_data_train=boost_data_train, boost_dfs=boost_examples, manifest=runner, overwrite_manifest=args.overwrite_manifest ) if save_results: save_log( self.task_name, run_name, exp_decomposed, args.save_dir ) if exp_decomposed_train: save_log( self.task_name, f"{run_name}_train", exp_decomposed_train, args.save_dir ) # Zero shot decomp exp_zeroshot_decomposed = [] if bool(args.run_zeroshot_decomp): run_name = f"{model_name}_decomposed_0shot_{today}" ( exp_zeroshot_decomposed, exp_zeroshot_decomposed_train, metric_zeroshot_decomposed, _, ) = self.run_decomposed_prompt( test_data=data_test, boost_data_train=boost_data_train, boost_dfs=[[pd.DataFrame() for _ in range(len(boost_examples[0]))]], manifest=runner, overwrite_manifest=args.overwrite_manifest, ) if save_results and len(exp_zeroshot_decomposed) > 0: save_log( self.task_name, run_name, exp_zeroshot_decomposed, args.save_dir, ) if exp_zeroshot_decomposed_train: save_log( self.task_name, f"{run_name}_train", exp_zeroshot_decomposed_train, args.save_dir, ) print("Accuracy Zero Shot", metric_zero) print("Accuracy Few Shot", metric_few) if len(metric_decomposed_by_boost) > 0: print("Accuracy by Boost Set Decomposed", metric_decomposed_by_boost) print("Accuracy by Boost Set Decomposed Average", np.mean(metric_decomposed_by_boost)) print("Accuracy Boost Decomposed", metric_decomposed) if len(exp_zeroshot_decomposed) > 0: print("Accuracy Zero Shot Decomposed", metric_zeroshot_decomposed) metrics = { "model_name": model_name, "task_name": self.task_name, "today": today, "zero_shot": metric_zero, "few_shot": metric_few, "decomposed": metric_decomposed, "decomposed_by_boost": metric_decomposed_by_boost, "decomposed_by_boost_avg": np.mean(metric_decomposed_by_boost), "zero_shot_decomposed": metric_zeroshot_decomposed, } output_metrics = Path(args.output_metrics_file) output_metrics.parent.mkdir(parents=True, exist_ok=True) with open(output_metrics, "a") as f: f.write(json.dumps(metrics) + "\n") print(f"Saved metrics to {output_metrics}") print(f"Saved final data to", Path(args.save_dir) / self.task_name)
ama_prompting-main
tasks/decomposition.py
#!/usr/bin/env python # coding: utf-8 from tqdm.auto import tqdm from collections import Counter import pandas as pd import random import numpy as np from sklearn.metrics import classification_report from decomposition import Decomposition, get_args, DATA_DIR from utils import get_response, InputOutputPrompt what_next = InputOutputPrompt( input_formatter=lambda x: f"Question: {x['example']}", output_formatter=lambda x: f"{x['continue']}", required_keys=["example", "continue"], input_output_sep=" ", example_sep="\n\n", instruction="Pick the correct ending for the example.\n\n" ) what_next_examples = [ pd.DataFrame([ { "example": "(because 'she took medicine', because 'she got expelled') My roommate was feeling better because?", "continue": "'she took medicine'", }, { "example": "(because 'he does not practice', because 'he is fast') Matt is not good at soccer because?", "continue": "'he does not practice'", }, { "example": "(because 'she was smart', because 'she never did her homework') The girl went to college and graduated with honors because?", "continue": "'she was smart'", }, ]), pd.DataFrame([ { "example": "(so 'he is always tired', so 'he is always sleeping') My dad works very hard so", "continue": "'he is always tired'", }, { "example": "(so 'she threw a party', so 'she took medicine') My roommate was sick so", "continue": "'she took medicine'", }, { "example": "(so 'he played', so 'he cried') Andy's parents got him a new toy so", "continue": "'he played'", }, ]), ] question = InputOutputPrompt( input_formatter=lambda x: f"Question: {x['example']}", output_formatter=lambda x: f"Answer: {x['continue']}", required_keys=["example", "continue"], input_output_sep="\n", example_sep="\n\n", instruction="Pick the correct ending for the example.\n\n" ) question_examples = [ pd.DataFrame([ { "example": "What best continues the sentence \"My dad often talks about long hours at work because\"?", "continue": "\"work is hard\"", }, { "example": "What best continues the sentence \"My roommate was sick and took medicine and so\"?", "continue": "\"she felt better\"", }, { "example": "What best continues the sentence \"Andy's parents got him a new toy and so\"?", "continue": "\"he played\"", }, { "example": "What best continues the sentence \"My roommate was feeling better because\"?", "continue": "\"she took medicine\"", } ]) ] questioner = InputOutputPrompt( input_formatter=lambda x: f"Statement: {x['statement']}", output_formatter=lambda x: f"Question: {x['question']}", required_keys=["statement", "question"], input_output_sep="\n", example_sep="\n\n", instruction="Rewrite the statement as a yes/no question.\n\n" ) questioner_examples = [ pd.DataFrame([ { "statement": "Jonathan Samuels was born in the 70's.", "question": "Was Jonathan Samuels born in the 70's?" }, { "statement": "Jerry bullied him and called him names", "question": "Did Jerry bully him and call him names?", }, { "statement": "Sam and jade were going to go to the movies", "question": "Did did Sam and jade go to the movies?", }, { "statement": "Chocolate is tasty, when I am feeling hungry.", "question": "Does chocolate taste good when you are hungry?", }, { "statement": "Mark ran fast.", "question": "Did mark run fast?", }, ]), pd.DataFrame([ { "statement": "most of the light comes from the sun", "question": "Does most of the light come from the sun?" }, { "statement": "the test was not hard", "question": "Was the test not hard?", }, { "statement": "it is a good idea to buy your parents gifts", "question": "Is it a good idea to buy your parents gifts?", }, { "statement": "the balloon popped", "question": "Did the balloon pop?", }, { "statement": "The father and son went camping to California.", "question": "Did the father and son go camping?", }, ]), pd.DataFrame([ { "statement": "most of the light comes from the sun", "question": "Does most of the light come from the sun?" }, { "statement": "the test was not", "question": "Was the test hard?" }, { "statement": "it is a good idea to buy your parents gifts", "question": "Is it a good idea to buy your parents gifts?" }, { "statement": "the balloon popped", "question": "Did the balloon pop?" }, { "statement": "The father and son went camping to California.", "question": "Did the father and son go camping?" } ]) ] openended_qa = InputOutputPrompt( input_formatter=lambda x: f"Passage: {x['context']}\nQuestion: {x['question']}", output_formatter=lambda x: f"Answer: {x['answer']}", required_keys=["passage", "question", "answer"], input_output_sep="\n", example_sep="\n\n", instruction="" ) openended_qa_examples = [ pd.DataFrame([ { "context": "My aunt is a nurse and she often talks about long hours at work. Last week was especially bad and she was constantly working many hours.", "question": "Was her work easy?", "answer": "No, it was hard work." }, { "context": "My roommate was sick. She stayed home from work and school. She slept all day long and by the end of the day, she was feeling better.", "question": "Did the rest help her?", "answer": "Yes, she slept and felt better." }, { "context": "Andy had always wanted a big kids bike. When he turned six Year's old he asked for a bike for his birthday. He did not know how to ride a bike. On Andy's birthday his mother gave him a bike.", "question": "Did he cry all night?", "answer": "No, Andy was happy because he got a bike." }, ]), pd.DataFrame([ { "context": "It was a beautiful summer day outside. Bob decided to go for a walk at the park. Bob walked along the path and admired the scenery. He found a twenty dollar bill on the ground.", "question": "Was he disappointed?", "answer": "No, he was happy he got money." }, { "context": "Mike is a busy man. He often eats fast food for breakfast. Mike wanted to enjoy a healthier breakfast. He tried an overnight oatmeal recipe.", "question": "Did Mike eat the oatmeal?", "answer": "Yes" }, { "context": "Gina's sister cut her ankle on broken glass. The blood ran down her foot and into her shoe. When she saw the blood she ran home. Gina ran behind her, but couldn't keep up.", "question": "Did Gina's sister go to the doctor?", "answer": "Yes, because she was bleeding" }, ]), pd.DataFrame([ { "context": "My aunt is a nurse she works a lot. Last week was especially bad and she was constantly working many hours.", "question": "Was her work easy?", "answer": "No" }, { "context": "It was a beautiful day outside. Bob decided to go for a walkk. Bob walked along the path and admired the scenery. He found a twenty dollar bill on the ground.", "question": "Was he disappointed?", "answer": "No, he was happy he got money." }, { "context": "Mom didn't want to cook dinner tonight. We were all very hungry. She told us to fend for ourselves. We ate cold cereal for dinner tonight.", "question": "Was everyone upset about the dinner?", "answer": "Yes, the food was cold" }, ]), ] sentiment = InputOutputPrompt( input_formatter=lambda x: f"Passage: {x['statement']}", output_formatter=lambda x: f"Sentiment: {x['sentiment']}", required_keys=["statement", "question"], input_output_sep="\n", example_sep="\n\n", instruction="Is the sentiment of the passage positive, negative, or neutral?\n\n" ) sentiment_examples = [ pd.DataFrame([ { "statement": "Mary saw the animal", "sentiment": "neutral", }, { "statement": "the town is quaint , but ultimately too boring and ugly", "sentiment": "negative", }, { "statement": "he's a strong athlete, people come from miles away to watch him compete", "sentiment": "positive", }, ]), pd.DataFrame([ { "statement": "Mary saw the animal", "sentiment": "neutral", }, { "statement": "the town is quaint , but ultimately too boring and ugly", "sentiment": "negative", }, { "statement": "he's a strong athlete, people come from miles away to watch him compete", "sentiment": "positive", }, ]), pd.DataFrame([ { "statement": "Mary saw the animal", "sentiment": "neutral", }, { "statement": "the town is quaint , but ultimately too boring and ugly", "sentiment": "negative", }, { "statement": "he's a strong athlete, people come from miles away to watch him compete", "sentiment": "positive", }, ]) ] what_next2 = InputOutputPrompt( input_formatter=lambda x: f"Choices:\n- {x['choice_a']}\n- {x['choice_b']}\n\nPassage: {x['passage']}", output_formatter=lambda x: f"{x['answer']}", required_keys=["choice_a", "choice_b", "passage", "answer"], input_output_sep=" ", example_sep="\n\n----\n\n", instruction="Pick the best choice for the passage.\n\n" ) what_next_examples2 = [ pd.DataFrame([ { "passage": "My dad often talks about long hours at work. Because?", "choice_a": "work is hard", "choice_b": "work is easy", "answer": "work is hard" }, { "passage": "My roommate was sick and took medicine. So?", "choice_a": "she threw a party", "choice_b": "she felt better", "answer": "she felt better" }, { "passage": "Andy's parents got him a new toy. So?", "choice_a": "he played", "choice_b": "he cried", "answer": "he played" } ]), pd.DataFrame([ { "passage": "The girl went to college and graduated with honors.", "choice_a": "She was qualified to get a job.", "choice_b": "She was qualified to eat pizza.", "answer": "she was qualified to get a job." }, { "passage": "Max bought all his friends cupcakes for the party.", "choice_a": "They never spoke to him again.", "choice_b": "They all thanked him.", "answer": "They all thanked him." }, { "passage": "Sam felt so hungry so he bought himself some cheese!", "choice_a": "After he ate the cheese, he was starving.", "choice_b": "After he ate the cheese, he felt better.", "answer": "After he ate the cheese, he felt better." } ]), pd.DataFrame([ { "passage": "Sam and Jade were excited to see the new movie.", "choice_a": "They went to the theater.", "choice_b": "They went swimming.", "answer": "They went to the theater." }, { "passage": "Matt is very competitive in soccer.", "choice_a": "He practices all the time.", "choice_b": "He loves to lose.", "answer": "He practices all the time." }, { "passage": "She can read the entire book in a single day.", "choice_a": "She is a slow reader.", "choice_b": "She is a fast reader.", "answer": "She is a fast reader." } ]) ] class COPADecomp(Decomposition): def __init__(self, task_name, data_dir, val_split="validation"): super().__init__(task_name, data_dir, val_split) def zero_few_baseline( self, test_data, few_shot_df, manifest, overwrite_manifest, do_few_shot=True, ): expt_log = {} total = 0 total_crct = 0 for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): if ind in expt_log: pred = entry["pred"] gold = entry["gold"] else: icl_str = "" if do_few_shot: for s_ind, s_row in few_shot_df.iterrows(): s_text = s_row['inputs_pretokenized'].replace("Pick the more likely continuation to the following sentence:", "").strip("\n") s_parts = s_text.split(". ") s_sentence = s_parts[0] s_transition = s_parts[1] options = [l for l in s_text.split("\n") if l.startswith("- ")] if "as a consequence" in s_transition: s_text = f"{s_sentence} so" elif "as a result of" in s_transition: s_text = f"{s_sentence} because" icl_str += f"Context: {s_text} {s_row['targets_pretokenized']}\n\n" text = row['inputs_pretokenized'] parts = text.split(". ") sentence = parts[0] transition = parts[1] options = [l for l in text.split("\n") if l.startswith("- ")] if "as a consequence" in transition: text = f"{sentence} so" elif "as a result of" in transition: text = f"{sentence} because" text = text.replace("Pick the more likely continuation to the following sentence:", "").strip("\n") gold = row['targets_pretokenized'] prompt = f"Pick the more likely continuation to the following sentence.\n\n\n{icl_str}Context: {{text:}}" pmp = prompt.format(text=text) if i == 0: print(pmp) raw_answer, _ = get_response( pmp, manifest, gold_choices=[options[0].replace("- ", "").strip(), options[1].replace("- ", "").strip()], overwrite=bool(overwrite_manifest), max_toks=50, ) answer = raw_answer.strip().lower() answer = answer.split("\n") answer = [a for a in answer if a] if answer: answer = answer[0].replace("-", "").strip() else: answer = '' pred = "".join([a for a in answer if a not in [".", ",", "?", ";", ":", "'", '"']]) gold = "".join([a for a in gold if a not in [".", ",", "?", ";", ":", "'", '"']]) crct = gold.lower() == pred.lower() total += 1 total_crct += crct entry = { "ind": ind, "example": text, "base_prompt": pmp, "raw_answer": raw_answer, "pred": pred, "gold": gold, } expt_log[ind] = entry accuracy = total_crct/total return expt_log, accuracy def get_boost_decomp_examples(self, train_data, boost_id): if boost_id < 1: return [ what_next_examples[boost_id], ] elif boost_id < 2: return [ what_next_examples2[boost_id-1], ] elif boost_id >= 2: seed = [1, 2, 3][boost_id-2] k_shot = 4*seed random.seed(seed) np.random.seed(seed) data_train = pd.DataFrame(train_data) sub_df = data_train.sample(k_shot) booster_df = sub_df.sample(frac=1, random_state=0) print(f"Selected: {len(booster_df)} in context examples.") return [ booster_df ] def what_happened_next(self, prompt, boost_ex, example, transition, choice_a, choice_b, word, manifest, overwrite_manifest): example = example.strip(".") choice_a = choice_a.lower() choice_b = choice_b.lower() transition = transition.strip() prompt_suffix = prompt(boost_ex) ex_prompt = f"{prompt_suffix}\n\nQuestion: ({{word:}} \'{{choice_a:}}\', {{word:}} \'{{choice_b:}}\') {{example:}} {{word:}}?" raw_answer = get_response( ex_prompt.format(word=word, choice_a=choice_a, choice_b=choice_b, example=example), manifest, max_toks= 4*len(choice_a.split()), overwrite=bool(overwrite_manifest)) answer = [q for q in raw_answer.split("\n") if q][0].lower() pred = '' for n in range(5,50): for idx_offset in range(len(answer) - n + 1): ngram = "".join(answer[idx_offset:idx_offset+n]) if ngram in choice_a and ngram not in choice_b: pred = choice_a elif ngram not in choice_a and ngram in choice_b: pred = choice_b return pred, ex_prompt def question_answer(self, prompt, boost_ex, example, transition, choice_a, choice_b, word, manifest, overwrite_manifest): example = example.strip(".") choice_a = choice_a.lower() choice_b = choice_b.lower() transition = transition.strip() prompt_suffix = prompt(boost_ex) ex_prompt = f"{prompt_suffix}\n\nQuestion: What best continues the sentence \"{{example:}}\"?\nAnswer:" ex_pmp = ex_prompt.format(example=example) raw_answer, log_prob = get_response( ex_pmp, manifest, gold_choices=[choice_a, choice_b], max_toks= 4*len(choice_a.split()), overwrite=bool(overwrite_manifest)) answer = [q for q in raw_answer.split("\n") if q][0].lower() pred = '' for n in range(5,50): for idx_offset in range(len(answer) - n + 1): ngram = "".join(answer[idx_offset:idx_offset+n]) if ngram in choice_a and ngram not in choice_b: pred = '1' elif ngram not in choice_a and ngram in choice_b: pred = '2' return pred, ex_pmp def answer_question(self, question, passage, all_prompts, boost_examples, manifest, overwrite_manifest, option=1): one_at_a_time = all_prompts[1](boost_examples[1]) answer_prompt = f"{one_at_a_time}\n\nPassage: {{passage:}}\nQuestion: {{question:}}\n" answer = get_response( answer_prompt.format(passage=passage, question=question), manifest, max_toks=50) answer = answer.replace("Answer: ", "") answer = [a for a in answer.split("\n") if a] if answer: answer = answer[0].replace(",", "").replace(".", "").lower() else: answer = '' pred = '' if option == 1: if 'yes' in answer.split(): pred = "1" elif 'no' in answer.split(): pred = "2" elif option == 2: if 'no' in answer.split(): pred = "1" elif 'yes' in answer.split(): pred = "2" return pred, answer_prompt def get_one_by_one(self, example, choice_a, choice_b, all_prompts, boost_examples, manifest, overwrite_manifest): # construct questions question_a, questioner_prompt = self.get_question(choice_a, all_prompts, boost_examples, manifest, overwrite_manifest) question_b, questioner_prompt = self.get_question(choice_b, all_prompts, boost_examples, manifest, overwrite_manifest) # ask questions pred_a, answerer_prompt = self.answer_question(question_a, example, all_prompts, boost_examples, manifest, overwrite_manifest, option=1) pred_b, answerer_prompt = self.answer_question(question_b, example, all_prompts, boost_examples, manifest, overwrite_manifest, option=2) # reconcile answer if pred_a == "1" and pred_b == "1": pred = choice_a elif pred_a == "2" and pred_b == "2": pred = choice_b elif pred_a and not pred_b: if pred_a == "1": pred = choice_a else: pred = choice_b elif not pred_b and pred_b: if pred_b == "1": pred = choice_a else: pred = choice_b else: pred = '' return pred, questioner_prompt, answerer_prompt def get_sentiment(self, statement, all_prompts, boost_examples, manifest, overwrite_manifest): sentiment_prompt = all_prompts[0](boost_examples[0]) prompt = f"{sentiment_prompt}\n\nPassage: {{statement:}}\nSentiment: " raw_answer = get_response( prompt.format(statement=statement), manifest, max_toks=5) sent = raw_answer.split("\n")[0] if "positive" in sent: sent = 1 elif "negative" in sent: sent = -1 elif "neutral" in sent: sent = 0 return sent, sentiment_prompt def combine_sentiments(self, example, choice_a, choice_b, all_prompts, boost_examples, manifest, overwrite_manifest): # construct questions sentiment_a, sentiment_prompt = self.get_sentiment(choice_a, all_prompts, boost_examples, manifest, overwrite_manifest) sentiment_b, sentiment_prompt = self.get_sentiment(choice_b, all_prompts, boost_examples, manifest, overwrite_manifest) sentiment_ex, sentiment_prompt = self.get_sentiment(example, all_prompts, boost_examples, manifest, overwrite_manifest) # reconcile answer pred = '' if abs(sentiment_a - sentiment_ex) < abs(sentiment_b - sentiment_ex): pred = choice_a elif abs(sentiment_a - sentiment_ex) > abs(sentiment_b - sentiment_ex): pred = choice_b return pred, sentiment_prompt def get_question(self, statement, all_prompts, boost_examples, manifest, overwrite_manifest): questioner = all_prompts[0](boost_examples[0]) question_prompt = f"{questioner}\n\nStatement: {{statement:}}\n" question = get_response( question_prompt.format(statement=statement), manifest, max_toks= 4*len(statement.split())) question = question.replace("Question: ", "") question = [q for q in question.split("\n") if q] if not question: question = f"{statement} Yes or no?" else: question = question[0] return question, question_prompt def get_what_next(self, example, choice_a, choice_b, transition, all_prompts, boost_examples, manifest, overwrite_manifest): what_next_prompt = all_prompts[0](boost_examples[0]) if "result of": prompt = f"{what_next_prompt}\n\n----\n\nChoices:\n- {{choice_a:}}\n- {{choice_b:}}\n\nPassage: {{example:}} Because?" elif "consequence": prompt = f"{what_next_prompt}\n\n----\n\nChoices:\n- {{choice_a:}}\n- {{choice_b:}}\n\nPassage: {{example:}} So?" raw_answer = get_response( prompt.format(choice_a=choice_a, choice_b=choice_b, example=example), manifest, max_toks=50) answer = raw_answer.split("\n")[0].lower() choice_a = choice_a.lower() choice_b = choice_b.lower() pred = '' for n in range(5,50): for idx_offset in range(len(answer) - n + 1): ngram = "".join(answer[idx_offset:idx_offset+n]) if ngram in choice_a and ngram not in choice_b: pred = choice_a elif ngram not in choice_a and ngram in choice_b: pred = choice_b return pred, what_next_prompt def run_decomposed_prompt( self, test_data, boost_data_train, boost_dfs, manifest, overwrite_manifest ): expt_log, all_boost_preds, labels = self._run_decomp_single_data(test_data, boost_dfs, manifest, overwrite_manifest) expt_log_train, all_boost_train_preds, train_labels = self._run_decomp_single_data(boost_data_train, boost_dfs, manifest, overwrite_manifest, run_limit=1000) # Do WS preds = self.merge_boosted_preds(all_boost_preds, all_boost_train_preds, train_labels, expt_log, expt_log_train) # Get accuracies across all boost sets individual_accuracies = [] for i in range(len(all_boost_preds[0])): individual_accuracies.append(classification_report(labels, [p[i] for p in all_boost_preds], output_dict=True)["accuracy"]) report = classification_report(labels, preds, output_dict=True) return expt_log, expt_log_train, report["accuracy"], individual_accuracies def _run_decomp_single_data(self, test_data, boost_dfs, manifest, overwrite_manifest, run_limit=-1): expt_log = {} all_boost_preds = [] labels = [] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): text = row['inputs_pretokenized'] text = text.replace("Pick the more likely continuation to the following sentence:", "").strip("\n") gold = row['targets_pretokenized'] parts = text.split("\n") statement = parts[0].split(".")[0:-1] transition = parts[0].split(".")[-1] example = " ".join(statement) choice_a = parts[1].replace("-", "").strip() choice_b = parts[2].replace("-", "").strip() gold_idx = -1 if gold.lower() == choice_a.lower(): gold_idx = '1' else: gold_idx = '2' all_prompts = [] if i == run_limit: break prompts_across_boost = [] preds_across_boost = [] for boost_num, boost_examples in enumerate(boost_dfs): icl_str = "" pred = '' answer2 = None if boost_num < 1: all_prompts = [] if 'as a consequence' in transition: answer, what_next_prompt = self.what_happened_next(question, boost_examples[0], example, transition, choice_a, choice_b, 'and so', manifest, overwrite_manifest) else: answer, what_next_prompt = self.what_happened_next( question, boost_examples[0], example, transition, choice_a, choice_b, 'because', manifest, overwrite_manifest) if 'as a consequence' in transition: answer2, what_next_prompt = self.what_happened_next(question, boost_examples[0], example, transition, choice_b, choice_a, 'and so', manifest, overwrite_manifest) else: answer2, what_next_prompt = self.what_happened_next( question, boost_examples[0], example, transition, choice_b, choice_a, 'because', manifest, overwrite_manifest) if answer != answer2: answer = '' all_prompts.append(what_next_prompt) elif boost_num < 2: answer, what_next_prompt = self.get_what_next( example, choice_a, choice_b, transition, [what_next2], boost_examples, manifest, overwrite_manifest ) answer2, what_next_prompt = self.get_what_next( example, choice_b, choice_a, transition, [what_next2], boost_examples, manifest, overwrite_manifest ) if answer != answer2: answer = '' all_prompts.append(what_next_prompt) else: icl_str = "" for s_ind, s_row in boost_examples[0].iterrows(): s_text = s_row['inputs_pretokenized'].replace("Pick the more likely continuation to the following sentence:", "").strip("\n") s_parts = s_text.split(". ") s_sentence = s_parts[0] s_transition = s_parts[1] options = [l for l in s_text.split("\n") if l.startswith("- ")] if "as a consequence" in s_transition: s_text = f"{s_sentence} so" elif "as a result of" in s_transition: s_text = f"{s_sentence} because" s_gold = s_row['targets_pretokenized'].lower() icl_str += f"Context: {s_text} {s_gold}\n\n" text = row['inputs_pretokenized'] parts = text.split(". ") sentence = parts[0] transition = parts[1] options = [l.lower() for l in text.split("\n") if l.startswith("- ")] if "as a consequence" in transition: text = f"{sentence} so" elif "as a result of" in transition: text = f"{sentence} because" text = text.replace("Pick the more likely continuation to the following sentence:", "").strip("\n") gold = row['targets_pretokenized'] prompt = f"Pick the more likely continuation to the following sentence.\n\n\n{icl_str}Context: {{text:}}" if i == 0: print(prompt.format(text=text)) all_prompts.append(prompt) raw_answer, _ = get_response( prompt.format(text=text), manifest, gold_choices=[options[0].replace("- ", "").strip(), options[1].replace("- ", "").strip()], overwrite=bool(overwrite_manifest), max_toks=50, ) answer = raw_answer.strip().lower() answer = answer.split("\n") answer = [a for a in answer if a] if answer: answer = answer[0].replace("-", "").strip() else: answer = '' pred = "".join([a for a in answer if a not in [".", ",", "?", ";", ":", "'", '"']]).lower() gold = "".join([a for a in gold if a not in [".", ",", "?", ";", ":", "'", '"']]).lower() prompts_across_boost.append(all_prompts) preds_across_boost.append(pred) preds_across_boost.reverse() mapped_p = [] for p in preds_across_boost: if not p: mapped_p.append("") continue if p == gold: mapped_p.append(gold_idx) elif gold_idx == "1": mapped_p.append("2") else: mapped_p.append("1") all_boost_preds.append(mapped_p) entry = { "ind": ind, "example": text, "prompts": prompts_across_boost, "preds_boost": mapped_p, "gold": gold_idx, } expt_log[ind] = entry labels.append(gold_idx) return expt_log, all_boost_preds, labels def main(): args = get_args() args.num_boost = 5 task_name = "super_glue_copa" data_dir = f"{DATA_DIR}/P3/data_feather/super_glue_copa_more_likely/" decomp = COPADecomp(task_name, data_dir) decomp.run(args) if __name__ == "__main__": main()
ama_prompting-main
tasks/COPA_final.py
#!/usr/bin/env python # coding: utf-8 import pandas as pd import numpy as np from pathlib import Path from tqdm.auto import tqdm import random from datasets import load_dataset from sklearn.metrics import classification_report from decomposition import Decomposition, get_args, DATA_DIR from utils import get_response, InputOutputPrompt ############################################################################################################################## # All prompts summarize = InputOutputPrompt( input_formatter=lambda x: f"Product: {x['product']}", output_formatter=lambda x: f"Summarize: the product \"Product\": {x['summarize']}", required_keys=["product", "summarize"], input_output_sep="\n", example_sep="\n\n", instruction="Summarize the product.\n\n" ) summarize_examples = [ pd.DataFrame([ { "product": "Was unsure when I purchased the DVD what to expect. With real joy I can say that it was worth every cent and I have already watched it several times. The Storyline kept me interested.", "summarize": "The product is a DVD." }, { "product": "These are the best headphones I've ever owned. I recently purchased a replacement pair, as my original set died after several years of intensive use.", "summarize": "The product is headphones." }, { "product": "So these tights are tighter than most tights I own and when I take these off, they leave my legs feeling like they've been squeezed to death.", "summarize": "The product is tights." } ]), pd.DataFrame([ { "product": "This bra is extremely comfortable, affordable and pretty too! My only complaint, and the reason for 4 stars is that the straps can't be adjusted very much.", "summarize": "The product is a bra." }, { "product": "1/8/10 Have been using this drill and am very pleased. It has tons of torque and the handle comes in handy.", "summarize": "The product is a drill." }, { "product": "I have used the Sanford highlighters for close to 20 years. there are nice. They are almost a disaster when highlighting textbooks.", "summarize": "The product is a highlighter." } ]), pd.DataFrame([ { "product": "bought a pack of these at a b&m; store, and you'd think pens are pens... especially if you paid a measly $2 for a 12 pack. But negative. These pens I bought were dry.", "summarize": "The product is a pen." }, { "product": "I get a lot of grease on my guitar from lotion, sweat, fingerprints, dust, what have you; I take some of this, spray it on a cloth, give it some elbow grease, and my guitars are shiny as the day it was made.", "summarize": "The product is a guitar." }, { "product": "I purchased this sander nearly one year ago and can't say I have any complaints about it. The dust collection works surprisingly well, though if the bag isn't pushed in all", "summarize": "The product is a sander." } ]), pd.DataFrame([ { "product": "I have 7 guitars in my cramped little bedroom studio and I quickly ran out of space to hold them easily. Floor space is dominated by my desk and drum set and I wanted my guitars to be out of the way and safe so they didn't get tripped over or dinged.", "summarize": "The product is guitars." }, { "product": "This is a beautifully constructed book. The circus atmosphere is rich and detailed, and it's redolent of its time period. The images are strong and the pace, while not fast, is stately -- perhaps the way an elephant moves??", "summarize": "The product is a book." }, { "product": "I was looking for decent Levi's for a few years and Amazon had them!!! I wanted the stiff unwashed jeans because they last quite a few years.", "summarize": "The product is jeans." } ]), pd.DataFrame([ { "product": "I get a lot of grease on my guitar from lotion, sweat, fingerprints, dust, what have you; I take some of this, spray it on a cloth, give it some elbow grease, and my guitars are shiny as the day it was made.", "summarize": "The product is a guitar." }, { "product": "This bra is extremely comfortable, affordable and pretty too! My only complaint, and the reason for 4 stars is that the straps can't be adjusted very much.", "summarize": "The product is a bra." }, { "product": "The parts of this book that dealt with the main character in old age, were very insightful and I enjoyed that. But quite honestly had I known that it would detail the abuse of the circus animals and then also the detailed sex acts I would never had purchased this.", "summarize": "The product is a book." } ]) ] categorize = InputOutputPrompt( input_formatter=lambda x: f"Product: {x['product']}\nSummary: {x['summary']}", output_formatter=lambda x: f"The summary \"Summary\" fits \"Category\": {x['category']}", required_keys=["product", "summary", "category"], input_output_sep="\n", example_sep="\n\n", instruction="Pick the correct category for the product.\n\n\"Categories\":\n- Amazon Instant Video\n- Books\n- Clothing Shoes and Jewelry\n- Electronics\n- Kindle Store\n- Movies and TV\n- Musical Instruments\n- Office Products\n- Tools and Home Improvement\n\n" ) categorize_examples = [ pd.DataFrame([ { "product": "Was unsure when I purchased the DVD what to expect. With real joy I can say that it was worth every cent and I have already watched it several times. The Storyline kept me interested.", "summary": "The product is a DVD.", "category": "Amazon Instant Video" }, { "product": "These are the best headphones I've ever owned. I recently purchased a replacement pair, as my original set died after several years of intensive use.", "summary": "The product is headphones.", "category": "Electronics" }, { "product": "So these tights are tighter than most tights I own and when I take these off, they leave my legs feeling like they've been squeezed to death.", "summary": "The product is tights.", "category": "Clothing Shoes and Jewelry" } ]), pd.DataFrame([ { "product": "This bra is extremely comfortable, affordable and pretty too! My only complaint, and the reason for 4 stars is that the straps can't be adjusted very much. ", "summary": "The product is a bra.", "category": "Clothing Shoes and Jewelry" }, { "product": "1/8/10 Have been using this drill and am very pleased. It has tons of torque and the handle comes in handy. ", "summary": "The product is a drill.", "category": "Tools and Home Improvement" }, { "product": "I have used the Sanford highlighters for close to 20 years. there are nice. They are almost a disaster when highlighting textbooks. ", "summary": "The product is a highlighter.", "category": "Office Products" } ]), pd.DataFrame([ { "product": "bought a pack of these at a b&m; store, and you'd think pens are pens... especially if you paid a measly $2 for a 12 pack. But negative. These pens I bought were dry.", "summary": "The product is a pen.", "category": "Office Products" }, { "product": "I get a lot of grease on my guitar from lotion, sweat, fingerprints, dust, what have you; I take some of this, spray it on a cloth, give it some elbow grease, and my guitars are shiny as the day it was made. ", "summary": "The product is a guitar.", "category": "Musical Instruments" }, { "product": "I purchased this sander nearly one year ago and can't say I have any complaints about it. The dust collection works surprisingly well, though if the bag isn't pushed in all", "summary": "The product is a sander.", "category": "Tools and Home Improvement" } ]), pd.DataFrame([ { "product": "I have 7 guitars in my cramped little bedroom studio and I quickly ran out of space to hold them easily. Floor space is dominated by my desk and drum set and I wanted my guitars to be out of the way and safe so they didn't get tripped over or dinged.", "summary": "The product is guitars.", "category": "Musical Instruments" }, { "product": "This is a beautifully constructed book. The circus atmosphere is rich and detailed, and it's redolent of its time period. The images are strong and the pace, while not fast, is stately -- perhaps the way an elephant moves??", "summary": "The product is a book.", "category": 'Books', }, { "product": "I was looking for decent Levi's for a few years and Amazon had them!!! I wanted the stiff unwashed jeans because they last quite a few years.", "summary": 'The product is jeans', "category": 'Clothing Shoes and Jewelry', } ]), pd.DataFrame([ { "product": "I get a lot of grease on my guitar from lotion, sweat, fingerprints, dust, what have you; I take some of this, spray it on a cloth, give it some elbow grease, and my guitars are shiny as the day it was made.", "summary": "The product is a guitar.", "category": "Musical Instruments" }, { "product": "The parts of this book that dealt with the main character in old age, were very insightful and I enjoyed that. But quite honestly had I known that it would detail the abuse of the circus animals and then also the detailed sex acts I would never had purchased this.", "summary": 'The product is a book.', "category": 'Books', }, { "product": "This bra is extremely comfortable, affordable and pretty too! My only complaint, and the reason for 4 stars is that the straps can't be adjusted very much.", "summary": "The product is a bra.", "category": "Clothing Shoes and Jewelry" } ]) ] description_zeroshot=""" Pick the correct category for the product. Categories: - Amazon Instant Video - Books - Clothing Shoes and Jewelry - Electronics - Kindle Store - Movies and TV - Musical Instruments - Office Products - Tools and Home Improvement""" class AmazonProduct(Decomposition): def __init__(self, task_name, data_dir, val_split="validation"): super().__init__(task_name, data_dir, val_split) def get_boost_decomp_examples(self, train_data, boost_id): return [ summarize_examples[boost_id], categorize_examples[boost_id], ] def read_data(self, save_dir, overwrite_data): random.seed(0) np.random.seed(0) save_data = Path(f"{save_dir}/{self.task_name}/data.feather") dataset = load_dataset('amazon') all_data = dataset['test'] all_data = pd.DataFrame(all_data).sample(frac=1, random_state=0) if not save_data.exists() or overwrite_data: test_data = all_data.iloc[:int(len(all_data)*0.9)] test_data.reset_index().to_feather(f"{save_data}") else: print(f"Reading test data from {save_data}") test_data = pd.read_feather(save_data) save_data = Path(f"{save_dir}/{self.task_name}/train_data.feather") if not save_data.exists() or overwrite_data: train_data = all_data.iloc[int(len(all_data)*0.9):] train_data.reset_index().to_feather(f"{save_data}") else: print(f"Reading train data from {save_data}") train_data = pd.read_feather(save_data) print(f"Test Data Size: {len(test_data)}") print(f"Train Data Size: {len(train_data)}") return test_data, train_data def get_few_shot_examples(self, train_data, k_shot): """Get few shot examples""" labels = ['Clothing_Shoes_and_Jewelry', 'Tools_and_Home_Improvement', 'Office_Products', 'Amazon_Instant_Video', 'Musical_Instruments', 'Books', 'Electronics', 'Kindle_Store'] num_per_class = int(np.ceil(k_shot / len(labels))) print(f"Selecting {num_per_class} examples per class.") dfs = [] total_in_context = 0 for label in labels: while num_per_class + total_in_context > k_shot: num_per_class -= 1 sub_df = train_data[train_data["label"] == label].sample( num_per_class ) dfs.append(sub_df) total_in_context += num_per_class if total_in_context == k_shot: break mini_df = pd.concat(dfs) return mini_df def zero_few_baseline( self, test_data, few_shot_df, manifest, overwrite_manifest, do_few_shot=True, ): expt_log = {} preds = [] labels = [] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): text = row['text'] gold = row['label'] gold = gold.replace("_", " ").strip().replace(",", "") icl_str = f"{description_zeroshot}" if do_few_shot: for s_ind, s_row in few_shot_df.iterrows(): s_label = s_row['label'].replace("_", " ") icl_str += f"\n\nProduct: {s_row['text']}\nCategory: {s_label}" prompt = f"{icl_str}\n\nProduct: {{text:}}\nCategory:" pmp = prompt.format(text=text) if i == 0: print(pmp) answer = get_response( pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=10, stop_token="\n\n", ) answer = answer.split("\n") answer = [a for a in answer if a] pred = '' if answer: pred = answer[0] pred = pred.replace("-", "").strip().replace(",", "") entry = { "ind": ind, "example": text, "base_prompt": pmp, "pred": pred, "gold": gold, } expt_log[ind] = entry preds.append(pred) labels.append(gold) report = classification_report(labels, preds, output_dict=True) return expt_log, report["accuracy"] def run_decomposed_prompt( self, test_data, boost_data_train, boost_dfs, manifest, overwrite_manifest ): expt_log, all_boost_preds, labels = self._run_decomp_single_data(test_data, boost_dfs, manifest, overwrite_manifest, run_limit=-1) expt_log_train, all_boost_train_preds, train_labels = self._run_decomp_single_data(boost_data_train, boost_dfs, manifest, overwrite_manifest, run_limit=-1) # Do WS preds = self.merge_boosted_preds(all_boost_preds, all_boost_train_preds, train_labels, expt_log, expt_log_train) # Get accuracies across all boost sets individual_accuracies = [] for i in range(len(all_boost_preds[0])): individual_accuracies.append(classification_report(labels, [p[i] for p in all_boost_preds], output_dict=True)["accuracy"]) report = classification_report(labels, preds, output_dict=True) return expt_log, expt_log_train, report["accuracy"], individual_accuracies def _run_decomp_single_data(self, test_data, boost_dfs, manifest, overwrite_manifest, run_limit=-1): expt_log = {} all_boost_preds = [] labels = [] labels_clean = [l.replace("_", " ") for l in set(test_data['label'])] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): text = row['text'] gold = row['label'] if i == run_limit: break prompts_across_boost = [] preds_across_boost = [] for boost_examples in boost_dfs: all_prompts = [] prompt_suffix = summarize(boost_examples[0]) summary_prompt = f"{prompt_suffix}\n\nProduct: {{text:}}\nSummarize: the product \"Product\":" summary_pmp = summary_prompt.format(text=text) output = get_response( summary_pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=25, ) summary = output.split("\n")[0].split(":")[-1].strip("\n") all_prompts.append(summary_pmp) prompt_suffix = categorize(boost_examples[1]) category_prompt = f"{prompt_suffix}\n\nProduct: {{text:}}\nSummary: {{summary:}}\nThe summary \"Summary\" fits \"Category\":" category_pmp = category_prompt.format(text=text, summary=summary) output = get_response( category_pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=10, ) all_prompts.append(category_pmp) if i == 0: print(summary_pmp) print(category_pmp) answer = output.split("\n")[0].strip().lower() answer = answer.replace("-", "").strip() gold = gold.replace("_", " ").strip().lower() pred = answer for label in labels_clean: if label.lower() in answer.lower(): pred = label.lower() break prompts_across_boost.append(all_prompts) preds_across_boost.append(pred) entry = { "ind": ind, "example": text, "prompts": prompts_across_boost, "preds_boost": preds_across_boost, "gold": gold, } expt_log[i] = entry all_boost_preds.append(preds_across_boost) labels.append(gold) return expt_log, all_boost_preds, labels def main(): args = get_args() args.num_boost = 3 task_name = "amazon_products" data_dir = ( f"{DATA_DIR}/amazon_products/" ) if not Path(data_dir).exists(): raise ValueError( f"Data directory {data_dir} does not exist." "Download from https://github.com/allenai/flex/blob/75d6d1cea66df2c8a7e3d429c6af5008ccf1544b/fewshot/hf_datasets_scripts/amazon/amazon.py" ) decomp = AmazonProduct(task_name, data_dir, val_split="test") decomp.run(args) if __name__ == "__main__": main()
ama_prompting-main
tasks/Amazon_final.py
#!/usr/bin/env python # coding: utf-8 from collections import defaultdict from pathlib import Path import pandas as pd import numpy as np from tqdm.auto import tqdm from decomposition import Decomposition, get_args, DATA_DIR from utils import get_response, InputOutputPrompt answer_prompt = InputOutputPrompt( input_formatter=lambda x: f"Passage: {x['passage']}\nQuestion: {x['question']}\n{x['choice_question']}", output_formatter=lambda x: f"Answer: {x['answer']}", required_keys=["passage", "question", "choice_question", "answer"], input_output_sep="\n", example_sep="\n\n", instruction="Answer if the possible answer is a correct answer to the question.\n\n" ) answer_prompt_examples = [ pd.DataFrame([ { "passage": "Sara wanted to play on a baseball team. She had never tried to swing a bat and hit a baseball before. Her Dad gave her a bat and together they went to the park to practice. Sara wondered if she could hit a ball. She wasn't sure if she would be any good. She really wanted to play on a team and wear a real uniform. She couldn't wait to get to the park and test out her bat. When Sara and her Dad reached the park, Sara grabbed the bat and stood a few steps away from her Dad. Sara waited as her Dad pitched the ball to her. Her heart was beating fast. She missed the first few pitches. She felt like quitting but kept trying. Soon she was hitting the ball very far. She was very happy and she couldn't wait to sign up for a real team. Her Dad was very proud of her for not giving up. ", "question": "Based on the previous passage, Who pitched the ball to Sara and where did it occur? ", "choice_question": "Is \"Her dad did in the park\" a correct answer?", "answer": "yes", }, { "passage": "The Vice President stated that he called the President to discuss the rules of engagement for the CAP. He recalled feeling that it did no good to establish the CAP unless the pilots had instructions on whether they were authorized to shoot if the plane would not divert. He said the President signed off on that concept. The President said he remembered such a conversation, and that it reminded him of when he had been an interceptor pilot. The President emphasized to us that he had authorized the shootdown of hijacked aircraft. The Vice President's military aide told us he believed the Vice President spoke to the President just after entering the conference room, but he did not hear what they said. Rice, who entered the room shortly after the Vice President and sat next to him, remembered hearing him inform the President, \"Sir, the CAPs are up. Sir, they're going to want to know what to do.\" Then she recalled hearing him say, \"Yes sir.\" She believed this conversation occurred a few minutes, perhaps five, after they entered the conference room. We believe this call would have taken place sometime before 10:10 to 10:15. Among the sources that reflect other important events of that morning, there is no documentary evidence for this call, but the relevant sources are incomplete. Others nearby who were taking notes, such as the Vice President's chief of staff, Scooter Libby, who sat next to him, and Mrs. Cheney, did not note a call between the President and Vice President immediately after the Vice President entered the conference room. At 10:02, the communicators in the shelter began receiving reports from the Secret Service of an inbound aircraft-presumably hijacked-heading toward Washington. That aircraft was United 93. The Secret Service was getting this information directly from the FAA. The FAA may have been tracking the progress of United 93 on a display that showed its projected path to Washington, not its actual radar return. Thus, the Secret Service was relying on projections and was not aware the plane...", "question": "Based on the previous passage, Why was the Secret Service's information about United 93 flawed? ", "choice_question": "Is \"The Secret Service Didn't have access to FAA information\" a correct answer?", "answer": "no", }, { "passage": "Patricia Cross and her boyfriend Larry Osborne , two students in a San Francisco school , become expelled for the publication of an off-campus underground paper . As a result , a philosophy professor , Dr. Jonathon Barnett , resigns his teaching position and decides to become an advocate for the counterculture youth movement and , specifically , the use of LSD . The hippies of the Haight-Ashbury district first see him as a hero and then as something even more . Dr. Barnett even makes an appearance on the Joe Pyne TV show to voice his support of the hippie community and the use of LSD . One scheming young man sees the opportunity to build Dr. Barnett as the head of a cult centered around the use of LSD . He hopes to earn profit from the users , Dr. Barnett's speeches known as `` happenings , '' and their lifestyles . At a massive LSD-fueled dance , Patricia begins to have a bad trip Which leads to an argument between her and Pat , ultimately splitting the couple up . After Patricia realizes that she's pregnant , Dr. Barnett advises her to have an abortion , ultimately leading to Patricia attempting suicide . However , Larry saves her and makes the destruction of Dr. Barnett's cult his primary objective . Larry shoots Dr. Barnett from the crowd at one of his massive speeches . As another hippie in attendance calms the audience and Elliot sees his new leader for their cult-like organization , Larry realizes that his assassination of Dr. Barnett simply made him a martyr for the hippie movement . ", "question": "Based on the previous passage, Why did Dr. Barnett resign from teaching? ", "choice_question": "Is \"Patricia expulsion\" a correct answer?", "answer": "yes", }, { "passage": "I wondered if that were my case--if I rode out for honour, and not for the pure pleasure of the riding. And I marvelled more to see the two of us, both lovers of one lady and eager rivals, burying for the nonce our feuds, and with the same hope serving the same cause. We slept the night at Aird's store, and early the next morning found Ringan. A new Ringan indeed, as unlike the buccaneer I knew as he was unlike the Quaker. He was now the gentleman of Breadalbane, dressed for the part with all the care of an exquisite. He rode a noble roan, in his Spanish belt were stuck silver-hafted pistols, and a long sword swung at his side. When I presented Grey to him, he became at once the cavalier, as precise in his speech and polite in his deportment as any Whitehall courtier. They talked high and disposedly of genteel matters, and you would have thought that that red-haired pirate had lived his life among proud lords and high-heeled ladies. That is ever the way of the Highlander. He alters like a clear pool to every mood of the sky, so that the shallow observer might forget how deep the waters are. ", "question": "Based on the previous passage, Who is described as both buccaneer and cavalier? ", "choice_question": "Is \"Quaker\" a correct answer?", "answer": "no" } ]), pd.DataFrame([ { "passage": "Earth processes have not changed over time. The way things happen now is the same way things happened in the past. Mountains grow and mountains slowly wear away. The same process is at work the same as it was billions of years ago. As the environment changes, living creatures adapt. They change over time. Some organisms may not be able to adapt. They become extinct. Becoming extinct means they die out completely. Some geologists study the history of the Earth. They want to learn about Earths past. They use clues from rocks and fossils. They use these clues to make sense of events. The goal is to place things in the order they happened. They also want to know how long it took for those events to happen. ", "question": "Based on the previous passage, Who studies in order to learn about the earth's past? ", "choice_question": "Is \"Librarians\" a correct answer?", "answer": "no", }, { "passage": "Sam Farragut is a sociopathic business executive in Southern California who forces a team of advertising agency employees to embark on a dangerous dirtbike trip to the Baja California desert in order to compete for his business . The men are Warren Summerfield , a suicidal middle-aged ad executive who has been fired from the agency ; the straightlaced Paul McIlvain who is inattentive to his wife , and brash art designer Maxon who feels suddenly trapped after his girlfriend announces she is pregnant . There are numerous long sequences of motorcycle riding on desert backroads . Summerfield has been having an affair with McIlvian's wife . He has not told his wife that he was fired and is simply serving out his tenure at the agency while looking for a new position . His wife is actually aware of the affair . Farragut convinces the ad men to make the motorcycle journey on the pretext of looking for a location to shoot a commercial . In reality , Farragut is reckless and looking to involve the men in spontaneous edgy adventure of his own manipulation . After they leave , McIlvain's wife suspects that Summerfield is planning to kill himself for the insurance money , but she can not convince Summerfield's wife to instigate a search . The four men travel deeper into Mexico on isolated dirt roads . At one point Summerfield contemplates plunging off a cliff . After being humiliated by a young American couple in a Baja bar , Farragut tracks them down on the beach while accompanied by Maxon . ", "question": "Based on the previous passage, Under what pretext does a sociopathic company executive organize the motorcycle trip? ", "choice_question": "Is \"Because he wants to compete for his business, so he suggest looking for a place to shoot a commercial\" a correct answer?", "answer": "yes", }, { "passage": "The mighty fane, with its three massive towers, rises majestically over the red roofs of the town. Its most striking feature is the great Norman screen, running up without buttresses or projections to the parapet and hiding the bases of the square, richly decorated towers of the west front. The plain centre of the screen is the work of Remigius, the first bishop. The rest of it is relieved with rich arcading of Late Norman and Early English periods. The wooden spires which crowned the towers were removed in 1807. In 1192 Hugh of Avalon determined to rebuild the Norman building of Remigius, which an earthquake had shaken. To him we owe the choir and eastern transept. His successors completed the western transept and began the west end of the nave. So much money had to be spent in rebuilding the central tower, which fell in 1239, that the canons could not rebuild the nave entirely, but had to incorporate the Norman end by Remigius. Unfortunately the axis of the west front does not correspond to that of the nave, which is too wide for its height. The low vaulting is a serious defect in the choir built by St. Hugh, but of the superb beauty of the Angel Choir, which encloses his shrine, there can be no doubt. In its richness of sculpture it is one of the masterpieces of Gothic architecture in England. The interior of the cathedral is remarkable for the harmony of its style, which is Lancet-Gothic, and the dim lighting of the nave only adds to its impressiveness. ", "question": "Based on the previous passage, Who was responsible for initially building the choir and eastern transept and in what year did he start? ", "choice_question": "Is \"It wasn't the Hugh of Avalon\" a correct answer?", "answer": "no", }, { "passage": "If you beat a dog in Schuylkill County, you'll probably get a $100 fine. If you repeatedly beat a woman, you'll probably get the same fine. In 2001, county judges heard 98 Protection From Abuse cases, finding the defendant guilty in 48 percent of those cases, either after a hearing or through a technical violation or plea. Of those found guilty, the majority were ordered to pay court costs, plus a $100 fine. No defendants were ordered to pay more than a $250 fine for violating the court order. In 27 percent of the cases, the charges were dismissed or the defendant was found not guilty. In the rest of the cases, charges were withdrawn or the matter is not yet resolved. Sarah T. Casey, executive director of Schuylkill Women in Crisis, finds it disturbing that in most cases, the fine for violating a PFA is little more than the fine someone would get for cruelty and abuse toward an animal. \"In most of the counties surrounding Schuylkill County, the penalties given for indirect criminal contempt are much stiffer than those in Schuylkill County,\" Casey said. \"What kind of message are we sending those who repeatedly violate Protection From Abuse orders? That it's OK to abuse women in Schuylkill County, because you'll only get a slap on the wrist?\" Under state law, the minimum fine for contempt of a PFA is $100; the maximum fine is $1,000 and up to six months in jail. Like others who are familiar with how the county's legal system does and doesn't work for victims of domestic violence, Casey believes some changes are in order. Valerie West, a manager/attorney with Mid-Penn Legal Services, with offices in Pottsville and Reading, regularly handles domestic violence cases. She finds fault with the local requirement that a custody order must be established within 30 days after a PFA is filed. West said she feels a custody order should be allowed to stand for the full term of the PFA - up to 18 months - as it does in many other counties in the state. \"It places an undue burden on the plaintiff, in terms of cost, finding...", "question": "Based on the previous passage, What solution is West offering and how is it different for a plaintiff from what is already being practiced? ", "choice_question": "Is \"West said she feels a custody order should be allowed to stand for the full term of the PFA - up to 18 months - as it does in many other counties in the state\" a correct answer?", "answer": "yes" } ]), pd.DataFrame([ { "passage": "Fossils give clues about major geological events. Fossils can also give clues about past climates. Fossils of ocean animals on the top of a mountain? Ocean animals have been found on the Earths tallest mountain. Its hard to believe, but it is true. These fossils were found at the top of Mt. Everest. Mt. Everest is the highest mountain on Earth. These fossils showed that this entire area was once at the bottom of a sea. It can only mean that Mt. Everest was uplifted. In fact, the entire Himalaya mountain range was raised. It was forced up from the collision of two continents. Fossils of plants are found in Antarctica. Now, Antarctica is almost completely covered with ice. Plants do not grow in Antarctica. According to fossils, they once did. This means that Antarctica was once much warmer than it is now. These fossils tell us about Antarcticas past climate. ", "question": "Based on the previous passage, How were the Himalayas \"uplifted\"? ", "choice_question": "Is \"The collision of two continents\" a correct answer?", "answer": "yes", }, { "passage": "Fossils give clues about major geological events. Fossils can also give clues about past climates. Fossils of ocean animals on the top of a mountain? Ocean animals have been found on the Earths tallest mountain. Its hard to believe, but it is true. These fossils were found at the top of Mt. Everest. Mt. Everest is the highest mountain on Earth. These fossils showed that this entire area was once at the bottom of a sea. It can only mean that Mt. Everest was uplifted. In fact, the entire Himalaya mountain range was raised. It was forced up from the collision of two continents. Fossils of plants are found in Antarctica. Now, Antarctica is almost completely covered with ice. Plants do not grow in Antarctica. According to fossils, they once did. This means that Antarctica was once much warmer than it is now. These fossils tell us about Antarcticas past climate. ", "question": "Based on the previous passage, How were the Himalayas \"uplifted\"? ", "choice_question": "Is \"Magnetic forces\" a correct answer?", "answer": "no", }, { "passage": "If you beat a dog in Schuylkill County, you'll probably get a $100 fine. If you repeatedly beat a woman, you'll probably get the same fine. In 2001, county judges heard 98 Protection From Abuse cases, finding the defendant guilty in 48 percent of those cases, either after a hearing or through a technical violation or plea. Of those found guilty, the majority were ordered to pay court costs, plus a $100 fine. No defendants were ordered to pay more than a $250 fine for violating the court order. In 27 percent of the cases, the charges were dismissed or the defendant was found not guilty. In the rest of the cases, charges were withdrawn or the matter is not yet resolved. Sarah T. Casey, executive director of Schuylkill Women in Crisis, finds it disturbing that in most cases, the fine for violating a PFA is little more than the fine someone would get for cruelty and abuse toward an animal. \"In most of the counties surrounding Schuylkill County, the penalties given for indirect criminal contempt are much stiffer than those in Schuylkill County,\" Casey said. \"What kind of message are we sending those who repeatedly violate Protection From Abuse orders? That it's OK to abuse women in Schuylkill County, because you'll only get a slap on the wrist?\" Under state law, the minimum fine for contempt of a PFA is $100; the maximum fine is $1,000 and up to six months in jail. Like others who are familiar with how the county's legal system does and doesn't work for victims of domestic violence, Casey believes some changes are in order. Valerie West, a manager/attorney with Mid-Penn Legal Services, with offices in Pottsville and Reading, regularly handles domestic violence cases. She finds fault with the local requirement that a custody order must be established within 30 days after a PFA is filed. West said she feels a custody order should be allowed to stand for the full term of the PFA - up to 18 months - as it does in many other counties in the state. \"It places an undue burden on the plaintiff, in terms of cost, finding...", "question": "Based on the previous passage, What solution is West offering and how is it different for a plaintiff from what is already being practiced? ", "choice_question": "Is \"West said she feels a custody order should be allowed to stand for the full term of the PFA - up to 18 months - as it does in many other counties in the state\" a correct answer?", "answer": "yes", }, { "passage": "Sam Farragut is a sociopathic business executive in Southern California who forces a team of advertising agency employees to embark on a dangerous dirtbike trip to the Baja California desert in order to compete for his business . The men are Warren Summerfield , a suicidal middle-aged ad executive who has been fired from the agency ; the straightlaced Paul McIlvain who is inattentive to his wife , and brash art designer Maxon who feels suddenly trapped after his girlfriend announces she is pregnant . There are numerous long sequences of motorcycle riding on desert backroads . Summerfield has been having an affair with McIlvian's wife . He has not told his wife that he was fired and is simply serving out his tenure at the agency while looking for a new position . His wife is actually aware of the affair . Farragut convinces the ad men to make the motorcycle journey on the pretext of looking for a location to shoot a commercial . In reality , Farragut is reckless and looking to involve the men in spontaneous edgy adventure of his own manipulation . After they leave , McIlvain's wife suspects that Summerfield is planning to kill himself for the insurance money , but she can not convince Summerfield's wife to instigate a search . The four men travel deeper into Mexico on isolated dirt roads . At one point Summerfield contemplates plunging off a cliff . After being humiliated by a young American couple in a Baja bar , Farragut tracks them down on the beach while accompanied by Maxon . ", "question": "Based on the previous passage, Under what pretext does a sociopathic company executive organize the motorcycle trip? ", "choice_question": "Is \"For a getaway trip\" a correct answer?", "answer": "no" } ]), ] ############################################################################################################################## def multirc_metric(preds_by_question, golds_by_question): assert len(preds_by_question) == len(golds_by_question) agreement_count = 0 correct_count = 0 predict_count = 0 accuracy_count = 0 total_count = 0 for p_id in range(len(preds_by_question)): predicted_ans = [int(g.lower() == "yes") for g in preds_by_question[p_id]] gold_ans = [int(g.lower() == "yes") for g in golds_by_question[p_id]] assert len(predicted_ans) == len(gold_ans) total_count += len(predicted_ans) if all([p == g for p, g in zip(predicted_ans, gold_ans)]): accuracy_count += 1 predict_count += sum(predicted_ans) correct_count += sum(gold_ans) agreement_count += sum([a * b for (a, b) in zip(gold_ans, predicted_ans)]) p1 = (1.0 * agreement_count / predict_count) if predict_count > 0.0 else 1.0 r1 = (1.0 * agreement_count / correct_count) if correct_count > 0.0 else 1.0 acc = (1.0 * accuracy_count / total_count) if total_count > 0.0 else 1.0 return {"precision": p1, "recall": r1, "f1a": 2 * r1 * p1 / (p1 + r1), "accuracy": acc} class MultiRCDecomp(Decomposition): def __init__(self, task_name, data_dir, val_split="validation"): super().__init__(task_name, data_dir, val_split) def transform_df(self, df): """Group data by passage for accurate multiRC metrics.""" by_passage_question_df = defaultdict(list) for _, row in df.iterrows(): passage, question, choice_question = row["inputs_pretokenized"].split("\n") new_key = passage + "\n" + question by_passage_question_df[new_key].append({"choice_question": choice_question, "answer": row["targets_pretokenized"]}) for_df = [] for key, d in by_passage_question_df.items(): passage, question = key.split("\n") for_df.append({"passage": passage, "question": question, "choice_questions": [x["choice_question"] for x in d], "answers": [x["answer"] for x in d]}) return pd.DataFrame(for_df) def read_data(self, save_dir, overwrite_data): save_data = Path(f"{save_dir}/{self.task_name}/data.feather") if not save_data.exists() or overwrite_data: test_data = self.transform_df(pd.read_feather(f"{self.data_dir}/{self.val_split}.feather")) train_data = self.transform_df(pd.read_feather(f"{self.data_dir}/train.feather")) test_data.to_feather(f"{save_data}") else: print(f"Reading train data from {save_data}") train_data = self.transform_df(pd.read_feather(f"{self.data_dir}/train.feather")) test_data = pd.read_feather(f"{save_data}") print(f"Test Data Size: {len(test_data)}") print(f"Train Data Size: {len(train_data)}") return test_data, train_data def get_boost_decomp_examples(self, train_data, boost_id): return [ answer_prompt_examples[boost_id], ] def zero_few_baseline( self, test_data, few_shot_df, manifest, overwrite_manifest, do_few_shot=True, ): expt_log = {} golds = [] preds = [] cum_ind = 0 for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): # Task requires multiple questions per passage for scoring all_q_preds = [] all_q_golds = [] fs_exs = [] if do_few_shot: cnt = 0 for s_ind, s_row in few_shot_df.iterrows(): passage = s_row["passage"] question = s_row["question"] for choice_q, gold in zip(s_row["choice_questions"], s_row["answers"]): cnt += 1 fs_exs.append({ "passage": passage, "question": question, "choice_question": choice_q, "answer": gold, }) # Take one question per passage break passage = row["passage"] question = row["question"] all_prompts = [] for q_ind, (choice_q, gold) in enumerate(zip(row["choice_questions"], row["answers"])): exs = fs_exs[:] exs.append({ "passage": passage, "question": question, "choice_question": choice_q, "answer": "" }) pmp = answer_prompt(pd.DataFrame(exs)) all_prompts.append(pmp) res = get_response( pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=8, stop_token="\n", ) all_q_golds.append(gold.strip().lower()) all_q_preds.append(res.strip().lower()) # row as dict - convert ndarry to list row_as_dict = row.to_dict() for k, v in list(row_as_dict.items()): if isinstance(v, np.ndarray): row_as_dict[k] = v.tolist() entry = { "ind": cum_ind, "example_ind": ind, "question_ind": q_ind, "example": row_as_dict, "base_prompt": pmp, "pred": res.strip().lower(), "gold": gold.strip().lower(), } expt_log[cum_ind] = entry cum_ind += 1 if i == 0: print(pmp) preds.append(all_q_preds) golds.append(all_q_golds) report = multirc_metric(preds_by_question=preds, golds_by_question=golds) return expt_log, report["f1a"] def run_decomposed_prompt( self, test_data, boost_data_train, boost_dfs, manifest, overwrite_manifest ): expt_log, all_boost_preds, labels = self._run_decomp_single_data(test_data, boost_dfs, manifest, overwrite_manifest) expt_log_train, all_boost_train_preds, train_labels = self._run_decomp_single_data(boost_data_train, boost_dfs, manifest, overwrite_manifest) # This task has nested labels (i.e. shape # test examples X number sub questions X number boosts) # Flatten over first two dims for merging and then undo all_boost_preds_flattened = [pred for pred_q_and_boost in all_boost_preds for pred in pred_q_and_boost] all_boost_train_preds_flattened = [pred for pred_q_and_boost in all_boost_train_preds for pred in pred_q_and_boost] train_labels_flattened = [label for label_q in train_labels for label in label_q] all_boost_preds_flattened = np.array(all_boost_preds_flattened) all_boost_train_preds_flattened = np.array(all_boost_train_preds_flattened) # Do WS preds = self.merge_boosted_preds(all_boost_preds_flattened, all_boost_train_preds_flattened, train_labels_flattened, expt_log, expt_log_train) preds_unflattened = [] cum_i = 0 for i in range(len(all_boost_preds)): preds_unflattened.append([preds[cum_i + j] for j in range(len(all_boost_preds[i]))]) cum_i += len(all_boost_preds[i]) # Get accuracies across all boost sets individual_accuracies = [] for i in range(len(all_boost_preds[0][0])): individual_accuracies.append(multirc_metric(preds_by_question=[[p[i] for p in pred_set] for pred_set in all_boost_preds], golds_by_question=labels)["f1a"]) metric = multirc_metric(preds_by_question=preds_unflattened, golds_by_question=labels)["f1a"] return expt_log, expt_log_train, metric, individual_accuracies def _run_decomp_single_data( self, test_data, boost_dfs, manifest, overwrite_manifest ): expt_log = {} all_boost_preds = [] labels = [] cum_ind = 0 for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): all_q_golds = [] all_q_preds = [] passage = row["passage"] question = row["question"] # Add prompt before the inner gold choice loop for q_ind, (choice_q, gold) in enumerate(zip(row["choice_questions"], row["answers"])): all_q_golds.append(gold.strip().lower()) prompts_across_boost = [] preds_across_boost = [] for boost_examples in boost_dfs: prompt_suffix = answer_prompt(boost_examples[0]) pmp = f"{prompt_suffix}\n\nPassage: {passage}\nQuestion: {question}\n{choice_q}\nAnswer:" # Single list pmp for one step decomp prompts_across_boost.append([pmp]) res = get_response( pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=8, ) preds_across_boost.append(res.split("\n\n")[0].strip().lower()) all_q_preds.append(preds_across_boost) # row as dict - convert ndarry to list row_as_dict = row.to_dict() for k, v in list(row_as_dict.items()): if isinstance(v, np.ndarray): row_as_dict[k] = v.tolist() expt_log[cum_ind] = { "ind": cum_ind, "example_ind": ind, "question_ind": q_ind, "preds_boost": preds_across_boost, "prompts": prompts_across_boost, "example": row_as_dict, "gold": gold.strip().lower(), } cum_ind += 1 if i == 0: for pmp_set in prompts_across_boost: print("\n".join(pmp_set)) all_boost_preds.append(all_q_preds) labels.append(all_q_golds) return expt_log, all_boost_preds, labels def main(): args = get_args() task_name = "multirc" data_dir = f"{DATA_DIR}/P3/data_feather/super_glue_multirc_is_a_correct_answer_" decomp = MultiRCDecomp(task_name, data_dir, val_split="validation") decomp.run(args) if __name__ == "__main__": main()
ama_prompting-main
tasks/MultiRC_final.py
#!/usr/bin/env python # coding: utf-8 import pandas as pd import numpy as np from tqdm.auto import tqdm import random from sklearn.metrics import classification_report from decomposition import Decomposition, get_args, DATA_DIR from utils import get_response, InputOutputPrompt ############################################################################################################################## # All prompts questioner_prompt = InputOutputPrompt( input_formatter=lambda x: f"Statement: {x['statement']}", output_formatter=lambda x: f"Question: {x['question']}", required_keys=["question", "statement"], input_output_sep="\n", example_sep="\n\n", instruction="Rewrite the statement as a yes/no question.\n\n" ) questioner_prompt_examples = [ pd.DataFrame([ { "statement": "most of the light comes from the sun", "question": "Does most of the light come from the sun?" }, { "statement": "the test was not hard", "question": "Was the test not hard?", }, { "statement": "it is a good idea to buy your parents gifts", "question": "Is it a good idea to buy your parents gifts?", }, { "statement": "the balloon popped", "question": "Did the balloon pop?", }, { "statement": "The father and son went camping to California.", "question": "Did the father and son go camping?", }, ]), pd.DataFrame([ { "statement": "most of the light comes from the sun", "question": "Does most of the light come from the sun?" }, { "statement": "the test was not", "question": "Was the test not hard?", }, { "statement": "it is a good idea to buy your parents gifts", "question": "Is it a good idea to buy your parents gifts?", }, { "statement": "the balloon popped", "question": "Did the balloon pop?", }, { "statement": "The father and son went camping to California.", "question": "Did the father and son go camping?", }, ]), pd.DataFrame([ { "statement": "most of the light comes from the sun", "question": "Does most of the light come from the sun?" }, { "statement": "the test was not hard", "question": "Was the test not hard?", }, { "statement": "it is a good idea to buy your parents gifts", "question": "Is it a good idea to buy your parents gifts?", }, { "statement": "the balloon popped", "question": "Did the balloon pop?", }, { "statement": "The father and son went camping to California.", "question": "Did the father and son go camping?", }, ]), pd.DataFrame([ { "statement": "most of the light comes from the sun", "question": "Does most of the light come from the sun?" }, { "statement": "the test was not hard", "question": "Was the test not hard?", }, { "statement": "it is a good idea to buy your parents gifts", "question": "Is it a good idea to buy your parents gifts?", }, { "statement": "the balloon popped", "question": "Did the balloon pop?", }, { "statement": "The father and son went camping to California.", "question": "Did the father and son go camping?", }, ]), pd.DataFrame([ { "statement": "most of the light comes from the sun", "question": "Does most of the light come from the sun?" }, { "statement": "the test was not hard", "question": "Was the test not hard?", }, { "statement": "it is a good idea to buy your parents gifts", "question": "Is it a good idea to buy your parents gifts?", }, { "statement": "the balloon popped", "question": "Did the balloon pop?", }, { "statement": "The father and son went camping to California.", "question": "Did the father and son go camping?", }, ]), ] extraction_qa = InputOutputPrompt( input_formatter=lambda x: f"Context: {x['context']}\nQuestion: {x['question']}", output_formatter=lambda x: f"Answer: {x['answer']}", required_keys=["context", "question", "answer"], input_output_sep="\n", example_sep="\n\n", instruction="Answer the question. If there is no evidence in the context, return \"Unknown\".\n\n" ) extraction_qa_examples = [ pd.DataFrame([ { "context": "According to Biraben, the plague was present somewhere in Italy and affected 1,200 people.", "question": "Based on the context, Did the plague affect people in Europe?", "answer": "yes, people in Italy, Europe", }, { "context": "Policies aiming at controlling unemployment and in particular at reducing its inequality-associated effects support economic growth.", "question": "Based on the context, Is confidence a factor in increasing self-esteem?", "answer": "unknown", }, { "context": "The term \"matter\" is used throughout physics in a bewildering variety of contexts: for example, one refers to \"condensed matter physics\", \"elementary matter\", \"partonic\" matter, \"dark\" matter, \"anti\"-matter, \"strange\" matter, and \"nuclear\" matter.", "question": "Based on the context, Is anti-matter made of electrons? ", "answer": "Unknown", }, ]), pd.DataFrame([ { "context": "According to Biraben, the plague was present somewhere in Italy only between 1346 and 1671, and not after that.", "question": "Based on the context, Was the plague present in Italy during the 2000s?", "answer": "No, it was present between 1346 and 1671" }, { "context": "The term \"matter\" is used throughout physics in a bewildering variety of contexts: for example, one refers to \"condensed matter physics\", \"elementary matter\", \"partonic\" matter, \"dark\" matter, \"anti\"-matter, \"strange\" matter, and \"nuclear\" matter.", "question": "Based on the context, Is anti-matter made of electrons? ", "answer": "Unknown" }, { "context": "Policies aiming at controlling unemployment and in particular at reducing its inequality-associated effects support economic growth.", "question": "Based on the context, Is confidence a factor in increasing self-esteem?", "answer": "unknown" } ]), pd.DataFrame([ { "context": "Jenna's 10th birthday was yesterday evening and at least 10 of her friends attended the party.", "question": "Based on the context, Did 10 friends attend Jenna's party?", "answer": "Unknown" }, { "context": "The bullies attacked John when he was walking through the elementary school parking lot and then got sent to the teacher's office.", "question": "Based on the context, Did the bullies attack John in the teacher's office?", "answer": "No, parking lot" }, { "context": "WISS discovered a new monkey disease occurring in a remote tribe in the Amazon rainforrest.", "question": "Based on the context, Did WISS discover a new monkey species?", "answer": "No, a new monkey disease" } ]), pd.DataFrame([ { "context": "When Judy and Jack went to school, they got in trouble with their teacher for being late. I didn't think it was very fair.", "question": "Based on the context, Did she think it was fair?", "answer": "No" }, { "context": "If inflation is occurring, leading to higher prices for basic necessities such as gas by 2 dollars. Do you think that inflation is good for society?", "question": "Based on the context, Is inflation good for society?", "answer": "Unknown" }, { "context": "Put yourself out there. The more time you spend dating and socializing, the more likely you will find a boyfriend you like.", "question": "Based on the context, Does socializing help you find a boyfriend?", "answer": "Yes" }, { "context": "According to Biraben, the plague was present somewhere in Italy and affected 1,200 people.", "question": "Based on the context, Did the plague affect people in Europe?", "answer": "yes, people in Italy, Europe", }, { "context": "Policies aiming at controlling unemployment and in particular at reducing its inequality-associated effects support economic growth.", "question": "Based on the context, Is confidence a factor in increasing self-esteem?", "answer": "unknown", }, { "context": "The term \"matter\" is used throughout physics in a bewildering variety of contexts: for example, one refers to \"condensed matter physics\", \"elementary matter\", \"partonic\" matter, \"dark\" matter, \"anti\"-matter, \"strange\" matter, and \"nuclear\" matter.", "question": "Based on the context, Is anti-matter made of electrons? ", "answer": "Unknown", }, ]), pd.DataFrame([ { "context": "According to Biraben, the plague was present somewhere in Italy and affected 1,200 people.", "question": "Based on the context, Did the plague affect over 1,000 people?", "answer": "yes, 1,200 people", }, { "context": "If inflation is occurring, leading to higher prices for basic necessities such as gas by 2 dollars. Do you think that inflation is good for society?", "question": "Based on the context, Is inflation good for society?", "answer": "Unknown" }, { "context": "Policies aiming at controlling unemployment and in particular at reducing its inequality-associated effects support economic growth.", "question": "Based on the context, Is confidence a factor in increasing self-esteem?", "answer": "unknown" } ]), ] ############################################################################################################################## class ANLIR2Decomp(Decomposition): def __init__(self, task_name, data_dir, val_split="validation"): super().__init__(task_name, data_dir, val_split) def get_few_shot_examples(self, train_data, k_shot): """Get few shot examples""" labels = [' True', ' Neither', ' False'] num_per_class = int(np.ceil(k_shot / len(labels))) print(f"Selecting {num_per_class} examples per class.") dfs = [] total_in_context = 0 for label in labels: while num_per_class + total_in_context > k_shot: num_per_class -= 1 sub_df = train_data[train_data["targets_pretokenized"] == label].sample( num_per_class ) dfs.append(sub_df) total_in_context += num_per_class if total_in_context == k_shot: break mini_df = pd.concat(dfs) return mini_df def _get_boost_decomp_examples(self, train_data, boost_id): seed = [69, 987][boost_id] k_shot = 64 random.seed(seed) np.random.seed(seed) data_train = pd.DataFrame(train_data) labels = [' False', ' True', ' Neither'] num_per_class = int(np.ceil(k_shot / len(labels))) dfs = [] total_in_context = 0 for label in labels: while num_per_class + total_in_context > k_shot: num_per_class -= 1 if seed % 2 == 1: sub_df = data_train[data_train["targets_pretokenized"] == label].sample(num_per_class, random_state = seed) elif seed % 2 == 0: sub_df = data_train[data_train["targets_pretokenized"] != label].sample(num_per_class, random_state = seed) dfs.append(sub_df) total_in_context += num_per_class if total_in_context == k_shot: break booster_df = pd.concat(dfs).sample(frac=1, random_state=0) print(f"Selected: {len(booster_df)} in context examples.") return [ booster_df ] def get_boost_decomp_examples(self, train_data, boost_id): if boost_id < 3: return [ questioner_prompt_examples[boost_id], extraction_qa_examples[boost_id], ] else: icl_examples = self._get_boost_decomp_examples(train_data, boost_id-3)[0] return [ icl_examples ] def zero_few_baseline( self, test_data, few_shot_df, manifest, overwrite_manifest, do_few_shot=True, ): expt_log = {} golds = [] preds = [] labels = set(test_data["targets_pretokenized"]) labels = [l.lower().strip() for l in labels] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): if ind in expt_log: pred = expt_log[ind]["pred"] gold = expt_log[ind]["gold"] else: icl_str = "" if do_few_shot: for s_ind, s_row in few_shot_df.iterrows(): icl_str += f"{s_row['inputs_pretokenized']}{s_row['targets_pretokenized']}\n\n" text = row["inputs_pretokenized"] text = text.replace("True, False, or Neither?", "").strip().strip("\n") text = text + " True, False, or Neither? " gold = row["targets_pretokenized"] prompt = f"{icl_str}{{text:}}" pmp = prompt.format(text=text) if i == 0: print(pmp) raw_answer = get_response( pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=20, ) answer = raw_answer.strip().lower() answer = answer.split("\n") answer = [a for a in answer if a] answer = [ a for a in answer if any(l.lower() in a.lower() for l in labels) ] if answer: answer = answer[0] else: answer = "" answer = "".join( [a for a in answer if a not in [".", ",", "?", ";", ":", "'", '"']] ) is_yes = "true" in answer.split() is_no = "false" in answer.split() is_maybe = "neither" in answer.split() pred = "Neither" if is_yes and (not is_maybe and not is_no): pred = "True" if is_no and (not is_maybe and not is_yes): pred = "False" if is_maybe and (not is_no and not is_yes): pred = "Neither" gold = gold.strip().lower() pred = pred.strip().lower() entry = { "ind": ind, "example": text, "base_prompt": pmp, "raw_answer": raw_answer, "pred": pred, "gold": gold, } expt_log[ind] = entry golds.append(gold) preds.append(pred) report = classification_report(golds, preds, output_dict=True) return expt_log, report["accuracy"] def get_extraction(self, question, passage, prompt, boost_ex, manifest, overwrite_manifest): prompt_suffix = prompt(boost_ex) if "Based on the context," in prompt_suffix: question_prefix = " Based on the context," else: question_prefix = "" extract_prompt = f"{prompt_suffix}\n\nContext: {{passage:}}\nQuestion:{question_prefix} {question}\nAnswer:" extract_pmp = extract_prompt.format(passage=passage) answer = get_response( extract_pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=50, ) answer = answer.replace(",", "").replace(".", "").replace("?", "") answer = [a for a in answer.split("\n") if a] if answer: answer = answer[0] else: answer = passage return answer, extract_pmp def get_question(self, statement, prompt, boost_ex, manifest, overwrite_manifest): prompt_suffix = prompt(boost_ex) question_prompt = f"{prompt_suffix}\n\nStatement: {{statement:}}\nQuestion:" question_pmp = question_prompt.format(statement=statement) answer = get_response( question_pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=50, ) answer = answer.replace("Question: ", "") answer = [a for a in answer.split("\n") if a] if answer: answer = answer[0].strip() # answer = '' statement = statement.strip().strip(".") if ( not answer or statement.lower() == answer.lower() or not answer.strip().endswith("?") ): answer = f"{statement}. Yes, no, or unknown?" answer = answer.split("\n")[0] return answer, question_pmp def resolve_pred(self, answer): is_yes = "yes" in answer.split() or "true" in answer.split() is_no = "no" in answer.split() or "false" in answer.split() is_maybe = "maybe" in answer.split() or "maybe" in answer.split() pred = "Neither" if is_yes and (not is_maybe and not is_no): pred = "True" if is_no and (not is_maybe and not is_yes): pred = "False" if is_maybe and (not is_no and not is_yes): pred = "Neither" return pred def run_decomposed_prompt( self, test_data, boost_data_train, boost_dfs, manifest, overwrite_manifest ): expt_log, all_boost_preds, labels = self._run_decomp_single_data(test_data, boost_dfs, manifest, overwrite_manifest, run_limit=-1) expt_log_train, all_boost_train_preds, train_labels = self._run_decomp_single_data(boost_data_train, boost_dfs, manifest, overwrite_manifest, run_limit=1000) # Do WS preds = self.merge_boosted_preds(all_boost_preds, all_boost_train_preds, train_labels, expt_log, expt_log_train, indecisive_ans="neither") # Get accuracies across all boost sets individual_accuracies = [] for i in range(len(all_boost_preds[0])): report = classification_report(labels, [p[i] for p in all_boost_preds], output_dict=True) individual_accuracies.append(report["accuracy"]) print(report) print("\n\n") report = classification_report(labels, preds, output_dict=True) print(report) return expt_log, expt_log_train, report["accuracy"], individual_accuracies def _run_decomp_single_data( self, test_data, boost_dfs, manifest, overwrite_manifest, run_limit = -1 ): expt_log = {} all_boost_preds = [] labels = [] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): prompts_across_boost = [] preds_across_boost = [] if i == run_limit: break text = row["inputs_pretokenized"] gold = row["targets_pretokenized"].strip() passage = text.split("\n")[0] statement = ( text.split("\n")[-1] .replace("True, False, or Neither?", "") .strip() .strip("\n") .replace("Question: ", "") ) for boost_num, boost_examples in enumerate(boost_dfs): all_prompts = [] # question / extract prompt if boost_num < 3: question, question_final_prompt = self.get_question( statement, questioner_prompt, boost_examples[0], manifest, overwrite_manifest ) all_prompts.append(question_final_prompt) open_answer_f, extraction_final_prompt = self.get_extraction( question, passage, extraction_qa, boost_examples[1], manifest, overwrite_manifest, ) all_prompts.append(extraction_final_prompt) if i == 0: print("\n".join(all_prompts)) answer_f = open_answer_f.lower() pred = self.resolve_pred(answer_f) pred = pred.strip().lower() preds_across_boost.append(pred) # just ICL elif boost_num >= 3: icl_str = "" for s_ind, s_row in boost_examples[0].iterrows(): if s_row["targets_pretokenized"].strip() == "True": demo_label = "yes" elif s_row["targets_pretokenized"].strip() == "False": demo_label = "no" else: demo_label = "unknown" s_text = s_row["inputs_pretokenized"] s_passage = s_text.split("\n")[0] s_statement = ( s_text.split("\n")[-1] .replace("True, False, or Neither?", "") .strip() .strip("\n") .replace("Question: ", "") ) icl = f"Statement: {s_statement}\nAnswer: {demo_label}" icl_str += f"{icl}\n\n" description = "Is the statement Yes, No, or Unknown?" prompt = f"{description}\n\n{icl_str}Statement: {{statement:}}\nAnswer:" pmp = prompt.format(statement=statement) if i == 0: print("PMP ICL") print(pmp) pred = get_response( pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=10, stop_token="\n", ) pred = pred.lower().strip() pred = pred.replace(".", "").replace(",", "").replace("Label: ", "").replace("Sentiment:", "") pred = [p for p in pred.split("\n") if p] if pred: pred = pred[0] else: pred = "" all_prompts.append(pmp) prompts_across_boost.append(all_prompts) pred = self.resolve_pred(pred).lower() preds_across_boost.append(pred) gold = gold.strip().lower() expt_log[ind] = { "ind": ind, "preds_boost": preds_across_boost, "prompts": prompts_across_boost, "example": text, "pred": pred, "gold": gold, } all_boost_preds.append(preds_across_boost) labels.append(gold) return expt_log, all_boost_preds, labels def main(): args = get_args() args.num_boost = 5 task_name = "anli_r2" data_dir = f"{DATA_DIR}/P3/data_feather/anli_GPT_3_style_r2" decomp = ANLIR2Decomp(task_name, data_dir, val_split="test") decomp.run(args) if __name__ == "__main__": main()
ama_prompting-main
tasks/ANLIR2_final.py
#!/usr/bin/env python # coding: utf-8 import pandas as pd import numpy as np from tqdm.auto import tqdm import random from sklearn.metrics import classification_report from decomposition import Decomposition, get_args, DATA_DIR from utils import get_response, InputOutputPrompt ############################################################################################################################## # All prompts questioner_prompt = InputOutputPrompt( input_formatter=lambda x: f"Statement: {x['statement']}", output_formatter=lambda x: f"Question: {x['question']}", required_keys=["question", "statement"], input_output_sep="\n", example_sep="\n\n", instruction="Rewrite the statement as a yes/no question.\n\n" ) questioner_prompt_examples = [ pd.DataFrame([ { "statement": "most of the light comes from the sun", "question": "Does most of the light come from the sun?" }, { "statement": "the test was not hard", "question": "Was the test not hard?", }, { "statement": "it is a good idea to buy your parents gifts", "question": "Is it a good idea to buy your parents gifts?", }, { "statement": "the balloon popped", "question": "Did the balloon pop?", }, { "statement": "The father and son went camping to California.", "question": "Did the father and son go camping?", }, ]), pd.DataFrame([ { "statement": "most of the light comes from the sun", "question": "Does most of the light come from the sun?" }, { "statement": "the test was not", "question": "Was the test not hard?", }, { "statement": "it is a good idea to buy your parents gifts", "question": "Is it a good idea to buy your parents gifts?", }, { "statement": "the balloon popped", "question": "Did the balloon pop?", }, { "statement": "The father and son went camping to California.", "question": "Did the father and son go camping?", }, ]), pd.DataFrame([ { "statement": "most of the light comes from the sun", "question": "Does most of the light come from the sun?" }, { "statement": "the test was not hard", "question": "Was the test not hard?", }, { "statement": "it is a good idea to buy your parents gifts", "question": "Is it a good idea to buy your parents gifts?", }, { "statement": "the balloon popped", "question": "Did the balloon pop?", }, { "statement": "The father and son went camping to California.", "question": "Did the father and son go camping?", }, ]), pd.DataFrame([ { "statement": "most of the light comes from the sun", "question": "Does most of the light come from the sun?" }, { "statement": "the test was not hard", "question": "Was the test not hard?", }, { "statement": "it is a good idea to buy your parents gifts", "question": "Is it a good idea to buy your parents gifts?", }, { "statement": "the balloon popped", "question": "Did the balloon pop?", }, { "statement": "The father and son went camping to California.", "question": "Did the father and son go camping?", }, ]), pd.DataFrame([ { "statement": "most of the light comes from the sun", "question": "Does most of the light come from the sun?" }, { "statement": "the test was not hard", "question": "Was the test not hard?", }, { "statement": "it is a good idea to buy your parents gifts", "question": "Is it a good idea to buy your parents gifts?", }, { "statement": "the balloon popped", "question": "Did the balloon pop?", }, { "statement": "The father and son went camping to California.", "question": "Did the father and son go camping?", }, ]), ] extraction_qa = InputOutputPrompt( input_formatter=lambda x: f"Context: {x['context']}\nQuestion: {x['question']}", output_formatter=lambda x: f"Answer: {x['answer']}", required_keys=["context", "question", "answer"], input_output_sep="\n", example_sep="\n\n", instruction="Answer the question. If there is no evidence in the context, return \"Unknown\".\n\n" ) extraction_qa_examples = [ pd.DataFrame([ { "context": "According to Biraben, the plague was present somewhere in Italy and affected 1,200 people.", "question": "Based on the context, Did the plague affect people in Europe?", "answer": "yes, people in Italy, Europe", }, { "context": "Policies aiming at controlling unemployment and in particular at reducing its inequality-associated effects support economic growth.", "question": "Based on the context, Is confidence a factor in increasing self-esteem?", "answer": "unknown", }, { "context": "The term \"matter\" is used throughout physics in a bewildering variety of contexts: for example, one refers to \"condensed matter physics\", \"elementary matter\", \"partonic\" matter, \"dark\" matter, \"anti\"-matter, \"strange\" matter, and \"nuclear\" matter.", "question": "Based on the context, Is anti-matter made of electrons? ", "answer": "Unknown", }, ]), pd.DataFrame([ { "context": "According to Biraben, the plague was present somewhere in Italy only between 1346 and 1671, and not after that.", "question": "Based on the context, Was the plague present in Italy during the 2000s?", "answer": "No, it was present between 1346 and 1671" }, { "context": "The term \"matter\" is used throughout physics in a bewildering variety of contexts: for example, one refers to \"condensed matter physics\", \"elementary matter\", \"partonic\" matter, \"dark\" matter, \"anti\"-matter, \"strange\" matter, and \"nuclear\" matter.", "question": "Based on the context, Is anti-matter made of electrons? ", "answer": "Unknown" }, { "context": "Policies aiming at controlling unemployment and in particular at reducing its inequality-associated effects support economic growth.", "question": "Based on the context, Is confidence a factor in increasing self-esteem?", "answer": "unknown" } ]), pd.DataFrame([ { "context": "Jenna's 10th birthday was yesterday evening and at least 10 of her friends attended the party.", "question": "Based on the context, Did 10 friends attend Jenna's party?", "answer": "Unknown" }, { "context": "The bullies attacked John when he was walking through the elementary school parking lot and then got sent to the teacher's office.", "question": "Based on the context, Did the bullies attack John in the teacher's office?", "answer": "No, parking lot" }, { "context": "WISS discovered a new monkey disease occurring in a remote tribe in the Amazon rainforrest.", "question": "Based on the context, Did WISS discover a new monkey species?", "answer": "No, a new monkey disease" } ]), pd.DataFrame([ { "context": "When Judy and Jack went to school, they got in trouble with their teacher for being late. I didn't think it was very fair.", "question": "Based on the context, Did she think it was fair?", "answer": "No" }, { "context": "If inflation is occurring, leading to higher prices for basic necessities such as gas by 2 dollars. Do you think that inflation is good for society?", "question": "Based on the context, Is inflation good for society?", "answer": "Unknown" }, { "context": "Put yourself out there. The more time you spend dating and socializing, the more likely you will find a boyfriend you like.", "question": "Based on the context, Does socializing help you find a boyfriend?", "answer": "Yes" }, { "context": "According to Biraben, the plague was present somewhere in Italy and affected 1,200 people.", "question": "Based on the context, Did the plague affect people in Europe?", "answer": "yes, people in Italy, Europe", }, { "context": "Policies aiming at controlling unemployment and in particular at reducing its inequality-associated effects support economic growth.", "question": "Based on the context, Is confidence a factor in increasing self-esteem?", "answer": "unknown", }, { "context": "The term \"matter\" is used throughout physics in a bewildering variety of contexts: for example, one refers to \"condensed matter physics\", \"elementary matter\", \"partonic\" matter, \"dark\" matter, \"anti\"-matter, \"strange\" matter, and \"nuclear\" matter.", "question": "Based on the context, Is anti-matter made of electrons? ", "answer": "Unknown", }, ]), pd.DataFrame([ { "context": "According to Biraben, the plague was present somewhere in Italy and affected 1,200 people.", "question": "Based on the context, Did the plague affect over 1,000 people?", "answer": "yes, 1,200 people", }, { "context": "If inflation is occurring, leading to higher prices for basic necessities such as gas by 2 dollars. Do you think that inflation is good for society?", "question": "Based on the context, Is inflation good for society?", "answer": "Unknown" }, { "context": "Policies aiming at controlling unemployment and in particular at reducing its inequality-associated effects support economic growth.", "question": "Based on the context, Is confidence a factor in increasing self-esteem?", "answer": "unknown" } ]), ] class ANLIDecomp(Decomposition): def __init__(self, task_name, data_dir, val_split="validation"): super().__init__(task_name, data_dir, val_split) def get_few_shot_examples(self, train_data, k_shot): """Get few shot examples""" labels = [' False', ' True', ' Neither'] num_per_class = int(np.ceil(k_shot / len(labels))) print(f"Selecting {num_per_class} examples per class.") dfs = [] total_in_context = 0 for label in labels: while num_per_class + total_in_context > k_shot: num_per_class -= 1 sub_df = train_data[train_data["targets_pretokenized"] == label].sample( num_per_class ) dfs.append(sub_df) total_in_context += num_per_class if total_in_context == k_shot: break mini_df = pd.concat(dfs) return mini_df def _get_boost_decomp_examples(self, train_data, boost_id): seed = [69, 987][boost_id] k_shot = 64 random.seed(seed) np.random.seed(seed) data_train = pd.DataFrame(train_data) labels = [' True', ' False', ' Neither'] num_per_class = int(np.ceil(k_shot / len(labels))) dfs = [] total_in_context = 0 for label in labels: while num_per_class + total_in_context > k_shot: num_per_class -= 1 if seed % 2 == 1: sub_df = data_train[data_train["targets_pretokenized"] == label].sample(num_per_class, random_state = seed) elif seed % 2 == 0: sub_df = data_train[data_train["targets_pretokenized"] != label].sample(num_per_class, random_state = seed) dfs.append(sub_df) total_in_context += num_per_class if total_in_context == k_shot: break booster_df = pd.concat(dfs).sample(frac=1, random_state=0) print(f"Selected: {len(booster_df)} in context examples.") return [ booster_df ] def get_boost_decomp_examples(self, train_data, boost_id): if boost_id < 3: return [ questioner_prompt_examples[boost_id], extraction_qa_examples[boost_id], ] else: icl_examples = self._get_boost_decomp_examples(train_data, boost_id-3)[0] return [ icl_examples ] def zero_few_baseline( self, test_data, few_shot_df, manifest, overwrite_manifest, do_few_shot=True, ): expt_log = {} golds = [] preds = [] labels = set(test_data["targets_pretokenized"]) labels = [l.lower().strip() for l in labels] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): if ind in expt_log: pred = expt_log[ind]["pred"] gold = expt_log[ind]["gold"] else: icl_str = "" if do_few_shot: for s_ind, s_row in few_shot_df.iterrows(): icl_str += f"{s_row['inputs_pretokenized']}{s_row['targets_pretokenized']}\n\n" text = row["inputs_pretokenized"] text = text.replace("True, False, or Neither?", "").strip().strip("\n") text = text + " True, False, or Neither? " gold = row["targets_pretokenized"] prompt = f"{icl_str}{{text:}}" pmp = prompt.format(text=text) if i == 0: print(pmp) raw_answer = get_response( pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=20, ) answer = raw_answer.strip().lower() answer = answer.split("\n") answer = [a for a in answer if a] answer = [ a for a in answer if any(l.lower() in a.lower() for l in labels) ] if answer: answer = answer[0] else: answer = "" answer = "".join( [a for a in answer if a not in [".", ",", "?", ";", ":", "'", '"']] ) is_yes = "true" in answer.split() is_no = "false" in answer.split() is_maybe = "neither" in answer.split() pred = "Neither" if is_yes and (not is_maybe and not is_no): pred = "True" if is_no and (not is_maybe and not is_yes): pred = "False" if is_maybe and (not is_no and not is_yes): pred = "Neither" gold = gold.strip().lower() pred = pred.strip().lower() entry = { "ind": ind, "example": text, "base_prompt": pmp, "raw_answer": raw_answer, "pred": pred, "gold": gold, } expt_log[ind] = entry golds.append(gold) preds.append(pred) report = classification_report(golds, preds, output_dict=True) return expt_log, report["accuracy"] def get_extraction(self, question, passage, prompt, boost_ex, manifest, overwrite_manifest): prompt_suffix = prompt(boost_ex) if "Based on the context," in prompt_suffix: question_prefix = " Based on the context," else: question_prefix = "" extract_prompt = f"{prompt_suffix}\n\nContext: {{passage:}}\nQuestion:{question_prefix} {question}\nAnswer:" extract_pmp = extract_prompt.format(passage=passage) answer = get_response( extract_pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=50, ) answer = answer.replace(",", "").replace(".", "").replace("?", "") answer = [a for a in answer.split("\n") if a] if answer: answer = answer[0] else: answer = passage return answer, extract_pmp def get_question(self, statement, prompt, boost_ex, manifest, overwrite_manifest): prompt_suffix = prompt(boost_ex) question_prompt = f"{prompt_suffix}\n\nStatement: {{statement:}}\nQuestion:" question_pmp = question_prompt.format(statement=statement) answer = get_response( question_pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=50, ) answer = answer.replace("Question: ", "") answer = [a for a in answer.split("\n") if a] if answer: answer = answer[0].strip() else: answer = '' statement = statement.strip().strip(".") if ( not answer or statement.lower() == answer.lower() or not answer.strip().endswith("?") ): answer = f"{statement}. Yes, no, or unknown?" answer = answer.split("\n")[0] return answer, question_pmp def resolve_pred(self, answer): is_yes = "yes" in answer.split() or "true" in answer.split() is_no = "no" in answer.split() or "false" in answer.split() is_maybe = "maybe" in answer.split() or "maybe" in answer.split() pred = "Neither" if is_yes and (not is_maybe and not is_no): pred = "True" if is_no and (not is_maybe and not is_yes): pred = "False" if is_maybe and (not is_no and not is_yes): pred = "Neither" return pred def run_decomposed_prompt( self, test_data, boost_data_train, boost_dfs, manifest, overwrite_manifest ): expt_log, all_boost_preds, labels = self._run_decomp_single_data(test_data, boost_dfs, manifest, overwrite_manifest, run_limit=-1) expt_log_train, all_boost_train_preds, train_labels = self._run_decomp_single_data(boost_data_train, boost_dfs, manifest, overwrite_manifest, run_limit=1000) # Do WS preds = self.merge_boosted_preds(all_boost_preds, all_boost_train_preds, train_labels, expt_log, expt_log_train, indecisive_ans="neither") # Get accuracies across all boost sets individual_accuracies = [] for i in range(len(all_boost_preds[0])): report = classification_report(labels, [p[i] for p in all_boost_preds], output_dict=True) individual_accuracies.append(report["accuracy"]) print(report) print("\n\n") report = classification_report(labels, preds, output_dict=True) print(report) return expt_log, expt_log_train, report["accuracy"], individual_accuracies def _run_decomp_single_data( self, test_data, boost_dfs, manifest, overwrite_manifest, run_limit = -1 ): expt_log = {} all_boost_preds = [] labels = [] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): prompts_across_boost = [] preds_across_boost = [] if i == run_limit: break text = row["inputs_pretokenized"] gold = row["targets_pretokenized"].strip() passage = text.split("\n")[0] statement = ( text.split("\n")[-1] .replace("True, False, or Neither?", "") .strip() .strip("\n") .replace("Question: ", "") ) for boost_num, boost_examples in enumerate(boost_dfs): all_prompts = [] # question / extract prompt if boost_num < 3: question, question_final_prompt = self.get_question( statement, questioner_prompt, boost_examples[0], manifest, overwrite_manifest ) all_prompts.append(question_final_prompt) open_answer_f, extraction_final_prompt = self.get_extraction( question, passage, extraction_qa, boost_examples[1], manifest, overwrite_manifest, ) all_prompts.append(extraction_final_prompt) if i == 0: print("\n".join(all_prompts)) answer_f = open_answer_f.lower() pred = self.resolve_pred(answer_f) pred = pred.strip().lower() preds_across_boost.append(pred) else: icl_str = "" for s_ind, s_row in boost_examples[0].iterrows(): if s_row["targets_pretokenized"].strip() == "True": demo_label = "yes" elif s_row["targets_pretokenized"].strip() == "False": demo_label = "no" else: demo_label = "unknown" s_text = s_row["inputs_pretokenized"] s_passage = s_text.split("\n")[0] s_statement = ( s_text.split("\n")[-1] .replace("True, False, or Neither?", "") .strip() .strip("\n") .replace("Question: ", "") ) icl = f"Statement: {s_statement}\nAnswer: {demo_label}" icl_str += f"{icl}\n\n" description = "Is the statement Yes, No, or Unknown?" prompt = f"{description}\n\n{icl_str}Statement: {{statement:}}\nAnswer:" pmp = prompt.format(statement=statement) if i == 0: print("PMP ICL") print(pmp) pred = get_response( pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=10, stop_token="\n", ) pred = pred.lower().strip() pred = pred.replace(".", "").replace(",", "").replace("Label: ", "").replace("Sentiment:", "") pred = [p for p in pred.split("\n") if p] if pred: pred = pred[0] else: pred = "" all_prompts.append(pmp) prompts_across_boost.append(all_prompts) pred = self.resolve_pred(pred).lower() preds_across_boost.append(pred) gold = gold.strip().lower() expt_log[ind] = { "ind": ind, "preds_boost": preds_across_boost, "prompts": prompts_across_boost, "example": text, "pred": pred, "gold": gold, } all_boost_preds.append(preds_across_boost) labels.append(gold) return expt_log, all_boost_preds, labels def main(): args = get_args() task_name = "anli_r3" args.num_boost = 5 data_dir = f"{DATA_DIR}/P3/data_feather/anli_GPT_3_style_r3" decomp = ANLIDecomp(task_name, data_dir, val_split="test") decomp.run(args) if __name__ == "__main__": main()
ama_prompting-main
tasks/ANLIR3_final.py
#!/usr/bin/env python # coding: utf-8 from pathlib import Path from tqdm.auto import tqdm import pandas as pd import numpy as np import sys import json import string import datetime from decomposition import Decomposition, get_args, DATA_DIR from utils import get_response, InputOutputPrompt realtime_qa_path = Path(f"{DATA_DIR}/realtimeqa_public/scripts/utils") sys.path.append(str(realtime_qa_path)) try: from tools import f1_score, metric_max_over_ground_truths, fall_back, read_jsonl, check_jsonls except ModuleNotFoundError: print(f"realtimeQA tools not found. Please download from realtimeQA repo to {realtime_qa_path}.") art1_answer = InputOutputPrompt( input_formatter=lambda x: f"{x['passages']}Question: {x['question']}", output_formatter=lambda x: f"Answer: {x['answer']}", required_keys=["passages", "question", "answer"], input_output_sep="\n", example_sep="\n\n", instruction="Answer the question given the article. Answer \"I don't know\" if you don't know.", ) all_answer = InputOutputPrompt( input_formatter=lambda x: f"{x['passages']}Question: {x['question']}", output_formatter=lambda x: f"Answer: {x['answer']}", required_keys=["passages", "question", "answer"], input_output_sep="\n", example_sep="\n\n", instruction="Answer the question given the articles." ) art1_answer_examples = [ pd.DataFrame([ { "passages": "Article 1: Walmart is slashing prices on clothing and other products - CNN New York(CNN Business) Many shoppers have pulled back on buying clothing and other discretionary items as the highest inflation in four decades pinches their pocketbooks.", "question": "Which major US retailer announced this week it is slashing prices on clothing and other products?", "answer": "\"Walmart\"" }, { "passages": "Article 1: Oak Fire: California's fast-moving wildfire burns 14,000 acres and ... (CNN) A wildfire raging for a third day Sunday in central California's Mariposa County outside Yosemite National Park has burned more than 14, 000 acres and forced thousands to evacuate from rural communities.", "question": "A raging wildfire this week forced thousands of people to evacuate communities near which national park?", "answer": "\"Yosemite National Park\"" }, { "passages": "Article 1: Frontier Airlines, Spirit Airlines announce budget airline merger Budget airlines Frontier Airlines and Spirit Airlines.", "question": "Which airline announced a deal this week to buy Spirit Airlines?", "answer": "\"I don't know\"" } ]), pd.DataFrame([ { "passages": "Article 1: During the initial outbreak in Wuhan, the virus and disease were commonly referred to as \"coronavirus\", \"Wuhan coronavirus\", \"the coronavirus outbreak\" and the \"Wuhan coronavirus outbreak\", with the disease sometimes called \"Wuhan pneumonia\".", "question": "From which country did COVID originate?", "answer": "\"Wuhan, China\"" }, { "passages": "Article 1: Philippines earthquake: 7.0-magnitude quake in Abra kills five.", "question": "Which country was shaken by a 7.0-magnitude earthquake this week?", "answer": "\"Philippines\"" }, { "passages": "Article 1: Ten Things You Need to Know Today: 10 August 2022 | The Week UK Domino’s fails in land of the pizza Domino’s Pizza has been forced to pull out of the home of the pizza.", "question": "What percentage of babies in the UK were born out of wedlock last year?", "answer": "\"I don't know\"" } ]), pd.DataFrame([ { "passages": "Article 1: Japan\'s Sakurajima volcano erupts, prompting evacuation alerts.", "question": "A volcano eruption in which country recently prompted a Level 5 alert – the highest level – calling for people to evacuate.?", "answer": "\"Japan\"" }, { "passages": "Article 1: \'Weekends With Adele\': Caesars Palace Las Vegas to host residency Adele has her fans exclaiming \"Oh My God\" with her latest announcement.", "question": "Which popular singer will launch a Las Vegas residency later this year?", "answer": "\"Adele\"" }, { "passages": "Article 1: As of 2020, the largest selling record label in the U.S. is Sony Music Entertainment.", "question": "Which artist is best seller 2020?", "answer": "\"I don't know\"" } ]) ] all_answer_examples = [ pd.DataFrame([ { "passages": "Article 1: Walmart is slashing prices on clothing and other products - CNN New York(CNN Business) Many shoppers have pulled back on buying clothing and other discretionary items as the highest inflation in four decades pinches their pocketbooks.\nArticle 2: Retail slowdown: Target cuts vendor orders, slashes prices as it ... Associated Press NEW YORK.\nArticle 3: Stores have too much stuff. That means discounts are coming | CNN ... New York(CNN Business).\nArticle 4: GM reports strong sales but says it's prepared for possible recession ... New York (CNN Business).\nArticle 5: Target is ramping up discounts. Here's why - CNN New York(CNN Business).\n", "question": "Which major US retailer announced this week it is slashing prices on clothing and other products?", "answer": "\"Walmart\"" }, { "passages": "Article 1: Article 1: JetBlue announces a deal to buy Spirit Airlines. Fares could surge.\nArticle 2: JetBlue-Spirit merger: Airlines have complaints over flights and fees Christopher Elliott Special to USA TODAY.\nArticle 3: JetBlue announces a deal to buy Spirit Airlines | CNN Business The announcement comes a day after Spirit pulled the plug on a deal to merge with Frontier.\nArticle 4: Spirit and Frontier pull plug on deal, setting stage for JetBlue to buy ... New York (CNN Buiness).\nArticle 5: Frontier Airlines, Spirit Airlines announce budget airline merger Budget airlines Frontier Airlines and Spirit Airlines.\n", "question": "Which airline announced a deal this week to buy Spirit Airlines?", "answer": "\"JetBlue\"" }, { "passages": "Article 1: Oak Fire: California's fast-moving wildfire burns 14,000 acres and ... (CNN) A wildfire raging for a third day Sunday in central California's Mariposa County outside Yosemite National Park has burned more than 14, 000 acres and forced thousands to evacuate from rural communities.\nArticle 2: California Oak Fire: Rapidly-growing fire engulfs homes near ... For more on the fires, \" United Shades of America with W. Kamau Bell \" heads to California to discover how communities are learning to coexist with the frequent destruction.\nArticle 3: 5 things to know for July 25: Wildfires, Ukraine, Monkeypox, Volcano ... If your day doesn't start until you're up to speed on the latest headlines, then let us introduce you to your new favorite morning fix.\nArticle 4: Wildfires in US: 2 firefighting helicopter pilots die in Idaho ... Multiple wildfires raged across the U.S. Saturday, causing deaths, destruction and thousands of forced evacuations.\nArticle 5: Boulder wildfires: Hundreds of homes burn evacuations ordered BOULDER, Colo. — A ferocious wind-driven wildfire on Thursday destroyed hundreds of homes and businesses near Denver, forcing tens of thousands to flee and blanketing the area in smoke.\n", "question": "A raging wildfire this week forced thousands of people to evacuate communities near which national park?", "answer": "\"Yosemite National Park\"" } ]), pd.DataFrame([ { "passages": "Article 1: During the initial outbreak in Wuhan, the virus and disease were commonly referred to as \"coronavirus\", \"Wuhan coronavirus\", \"the coronavirus outbreak\" and the \"Wuhan coronavirus outbreak\", with the disease sometimes called \"Wuhan pneumonia\".\nArticle 2: The first known outbreak started in Wuhan, Hubei, China, in November 2019.\nArticle 3: A cluster of patients in China\’s Hubei Province, in the city of Wuhan, begin to experience the symptoms of an atypical pneumonia-like illness that does not respond well to standard treatments.\nArticle 4: The World Health Organization(WHO) has released its plan to investigate the origins of the COVID pandemic. The search will start in Wuhan.\nArticle 5: The World Health Organization(WHO) Country Office in China is informed of several cases of a pneumonia of unknown etiology(cause) with symptoms including shortness of breath and fever occurring in Wuhan, China.\n", "question": "From which country did COVID originate?", "answer": "\"Wuhan, China\"" }, { "passages": "Article 1: Philippines earthquake: 7.0-magnitude quake in Abra kills five.\nArticle 2: Haiti earthquakes: Comparing recent quake to deadly 2010 tragedy A decade ago, an earthquake struck just outside Haiti's capital of Port-au-Prince.\nArticle 3: Indonesia earthquake: Death toll rises as Lombok, Bali shaken The death toll rose to 98 after a magnitude 7.0 earthquake rocked the Indonesian island of Lombok and nearby Bali.\nArticle 4: Alaska earthquake: Aftershocks continue to shake Last Frontier Two days after a magnitude 7.0 earthquake struck near Anchorage, Alaska is still shaking.\n", "question": "Which country was shaken by a 7.0-magnitude earthquake this week?", "answer": "\"Philippines\"" }, { "passages": "Article 1: According to latest Office for National Statistics (ONS) data, of 624,828 live births registered, 320,713 were to women who were not married or in a civil partnership at the time – 51.3% of the total.\nArticle 2: Ten Things You Need to Know Today: 10 August 2022 | The Week UK Domino’s fails in land of the pizza Domino’s Pizza has been forced to pull out of the home of the pizza.\nArticle 3: Gay couple sues State Department for denying daughter's citizenship Couple's daughter was born to a surrogate in Britain.\nArticle 4: Ex-Jehovah's Witnesses say church's shunning caused too many.\nArticle 5: Kids before marriage is becoming the norm (and that\'s not good) What\’s wrong with America? Everybody has an answer these days.\n", "question": "What percentage of babies in the UK were born out of wedlock last year?", "answer": "\"51.3%\"" } ]), pd.DataFrame([ { "passages": "Article 1: Japan\'s Sakurajima volcano erupts, prompting evacuation alerts.\nArticle 2: (CNN) Here\'s a tip if you are among the millions of people quitting your job: Don\'t cash out your 401(k)! As tempting as it may seem, there are other options that will give you better returns in the long run.\nArticle 3: (CNN) Did you take your vitamins this morning? Daily vitamin D and fish oil supplements may help prevent some adults from developing autoimmune disorders such as arthritis and psoriasis.\nArticle 4: (CNN) The federal tax filing season is underway. And even though the IRS still hasn\'t processed millions of returns from last year due to Covid-19 and a lack of funding, there are still ways to help ensure your tax filing experience is hassle-free.\nArticle 5: (CNN) Happy Valentine\'s Day, and happy Conveniently Call In Sick to Work Day for all the Los Angeles Rams fans out there.\n", "question": "A volcano eruption in which country recently prompted a Level 5 alert – the highest level – calling for people to evacuate.?", "answer": "\"Japan\"" }, { "passages": "Article 1: \'Weekends With Adele\': Caesars Palace Las Vegas to host residency Adele has her fans exclaiming \"Oh My God\" with her latest announcement.\nArticle 2: Usher is \'ready to drop\' upcoming album \'Confessions 2\' this year Associated Press LOS ANGELES — Usher has a confession — he’s almost ready to release the sequel to his groundbreaking, epic 2004 album “Confessions.”\nArticle 3: When could Britney Spears start her Vegas residency shows in 2022?\nArticle 4: Backstreet Boys return to Las Vegas for holiday residency Backstreet will be back in Las Vegas.\nArticle 5: Miami Vice postpones Las Vegas residency due to rising COVID risks.\n", "question": "Which popular singer will launch a Las Vegas residency later this year?", "answer": "\"Adele\"" }, { "passages": "Article 1: Best selling artists worldwide and Eminem makes into the Top 10. You can check the lit below: 1 BTS 2 Taylor Swift 3 Drake 4 The Weeknd 5 Billie Eilish.\nArticle 2: Pop group BTS have been named the number one artists of 2020 by the IFPI.\nArticle 3: The market reported total revenues of $21.6 billion (roughly €18.2bn), marking its sixth consecutive year of growth and the highest figure since 2002.\nArticle 4: BTS were the world\'s biggest act overall, marking the first time a South Korean band has topped the global chart.\nArticle 5: Music is an art form, and cultural activity, whose medium is sound. Well, music has no language and is soothing and stress relieving, no matter in whichever language it is.\n", "question": "Which artist is best seller 2020?", "answer": "\"pop group BTS\"" } ]) ] # Taken from realtimeQA github repo # https://github.com/realtimeqa/realtimeqa_public def get_retrieved_text(retrieved_datum, top_k=5, rm_date_r=False): search_result = retrieved_datum["search_result"] retrieved_text = "" for art_i, article in enumerate(search_result[:top_k]): if "publish_date" not in article: continue date = article["publish_date"] content = article["text"] if content == '': continue date = datetime.datetime.strptime(date, '%Y/%m/%d') date = date.strftime("%B %d, %Y") #first_paraph = content.split("\n\n")[0] first_paraph = " ".join(content.split("\n\n")[:2]) if "title" in article.keys(): first_paraph = article["title"] + " " + first_paraph if not rm_date_r: retrieved_text += "Article on {}: {}\n".format(date, first_paraph) else: retrieved_text += "Article: {}\n".format(first_paraph) return retrieved_text def read_dates(data_dir, dates): all_dfs = [] for date in dates: passages = [] in_file = str(Path(data_dir) / f"{date}_qa.jsonl") gold_df = pd.DataFrame([json.loads(line) for line in open(in_file)]) gold_df["gold_answers"] = gold_df.apply(lambda x: [x["choices"][int(idx)] for idx in x["answer"]], axis=1) gcs_file = in_file.replace("_qa.jsonl", "_gcs.jsonl") dpr_file = in_file.replace("_qa.jsonl", "_dpr.jsonl") gcs = read_jsonl(gcs_file) dpr = read_jsonl(dpr_file) check_jsonls(gcs, dpr) retrieved_data = fall_back(gcs, dpr) for q_idx in range(len(gold_df)): retrieved_text = get_retrieved_text(retrieved_data[q_idx], top_k=5, rm_date_r=True) passages.append(retrieved_text) gold_df["passages"] = passages all_dfs.append(gold_df) return pd.concat(all_dfs) class RealtimeQADecomp(Decomposition): def __init__(self, task_name, data_dir, val_split="validation"): super().__init__(task_name, data_dir, val_split) def get_boost_decomp_examples(self, train_data, boost_id): # We boost by changing passage order return [ art1_answer_examples[boost_id], all_answer_examples[boost_id] ] def read_data(self, save_dir, overwrite_data): val_dates_for_benchmark = ["20220617", "20220624", "20220701", "20220708", "20220715", "20220722"] train_dates_for_benchmark = ["20220729", "20220805", "20220812"] save_data = Path(f"{save_dir}/{self.task_name}/data.jsonl") if not save_data.exists() or overwrite_data: test_data = read_dates(self.data_dir, val_dates_for_benchmark) test_data = test_data.reset_index(drop=True) test_data.to_feather(f"{save_data}") else: test_data = pd.read_feather(f"{save_data}") save_data = Path(f"{save_dir}/{self.task_name}/train_data.feather") if not save_data.exists() or overwrite_data: train_data = read_dates(self.data_dir, train_dates_for_benchmark) train_data = train_data.reset_index(drop=True) train_data.to_feather(f"{save_data}") else: train_data = pd.read_feather(f"{save_data}") print(f"Test Data Size: {len(test_data)}") print(f"Train Data Size: {len(train_data)}") return test_data, train_data def zero_few_baseline( self, test_data, few_shot_df, manifest, overwrite_manifest, do_few_shot=True, ): expt_log = {} preds = [] labels = [] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): row["answer"] = row["answer"].tolist() row["choices"] = row["choices"].tolist() row["gold_answers"] = row["gold_answers"].tolist() question = row["question_sentence"] passages = row["passages"] golds = row["gold_answers"] assert len(golds) == 1 icl_str = "" if do_few_shot: # Taken from realtime_qa github repo icl_str += f"Question: What is the capital city of Japan?\nAnswer: Tokyo\n\n" pmp = f"{icl_str}{passages}Question: {question}\nAnswer:" if i == 0: print(pmp) try: raw_answer = get_response( pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=30, ) except: passage_list = [p for p in passages.split("Article:") if p.strip()] passage_list = [" ".join(p.split(" ")[:100]) for p in passage_list] passages = "Article:" + "Article:".join(passage_list) pmp = f"{passages}Question: {question}\nAnswer:" raw_answer = get_response( pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=30, ) pred = raw_answer.split("\n")[0].strip() entry = { "ind": ind, "example": row.to_dict(), "base_prompt": pmp, "raw_answer": raw_answer, "pred": pred, "gold": golds[0], } expt_log[ind] = entry preds.append(pred) labels.append(golds[0]) metric = np.mean([metric_max_over_ground_truths(f1_score, pred, [gold]) for pred, gold in zip(preds, labels)]) # Compute accuracy # metric = np.mean([pred == gold for pred, gold in zip(preds, labels)]) return expt_log, metric def run_decomposed_prompt( self, test_data, boost_data_train, boost_dfs, manifest, overwrite_manifest ): expt_log, all_boost_preds, labels = self._run_decomp_single_data(test_data, boost_dfs, manifest, overwrite_manifest) expt_log_train, all_boost_train_preds, train_labels = self._run_decomp_single_data(boost_data_train, boost_dfs, manifest, overwrite_manifest, run_limit=1000) # Do WS preds = self.merge_boosted_preds(all_boost_preds, all_boost_train_preds, train_labels, expt_log, expt_log_train) # Get accuracies across all boost sets individual_accuracies = [] for i in range(len(all_boost_preds[0])): individual_accuracies.append( np.mean([metric_max_over_ground_truths(f1_score, pred, [gold]) for pred, gold in zip([p[i] for p in all_boost_preds], labels)]) ) metric = np.mean([metric_max_over_ground_truths(f1_score, pred, [gold]) for pred, gold in zip(preds, labels)]) return expt_log, expt_log_train, metric, individual_accuracies def _run_decomp_single_data(self, test_data, boost_dfs, manifest, overwrite_manifest, run_limit=-1): expt_log = {} all_boost_preds = [] labels = [] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): if i == run_limit: break row["answer"] = [d for d in row["answer"]] row["choices"] = [d for d in row["choices"]] row["gold_answers"] = [d for d in row["gold_answers"]] question = row["question_sentence"] passages = row["passages"] golds = row["gold_answers"] assert len(golds) == 1 prompts_across_boost = [] preds_across_boost = [] for boost_idx, boost_examples in enumerate(boost_dfs): all_prompts = [] passage_list = [p for p in passages.split("Article:") if p.strip()] passage_list = [" ".join(p.split(" ")[:100]) for p in passage_list] assert len(passage_list) > 1 passages_for_prompt = "" .join([f"Article {i+1}:{a}" for i, a in enumerate(passage_list[:1])]) # Art1 answer icl_str = art1_answer(boost_examples[0]) pmp = f"{icl_str}\n\n{passages_for_prompt}Question: {question}\nAnswer:" all_prompts.append(pmp) raw_answer_art1 = get_response( pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=30, ) pred_art1 = raw_answer_art1.split("\n")[0].strip("\"").strip() icl_str = all_answer(boost_examples[1]) passages_for_prompt = "" .join([f"Article {i+1}:{a}" for i, a in enumerate(passage_list)]) all_pmp = f"{icl_str}\n\n{passages_for_prompt}Question: {question}\nAnswer:" all_prompts.append(all_pmp) if i == 0: print(pmp) print(all_pmp) raw_answer_all = get_response( all_pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=30, ) pred_all = raw_answer_all.split("\n")[0].strip("\"").strip() if pred_art1 == "I don't know": pred = pred_all else: pred = pred_art1 pred = pred.translate(str.maketrans('', '', string.punctuation)) pred = pred.lower() # if pred != golds[0].lower() and golds[0].lower() in passages_for_prompt.lower(): # print("PASSAGES", passages_for_prompt) # print("QUESTION", question) # print("ANSWER", golds[0]) # print("PRED", pred) prompts_across_boost.append(all_prompts) preds_across_boost.append(pred) entry = { "ind": ind, "example": row.to_dict(), "prompts": prompts_across_boost, "preds_boost": preds_across_boost, "gold": golds[0].lower(), } expt_log[ind] = entry all_boost_preds.append(preds_across_boost) labels.append(golds[0]) return expt_log, all_boost_preds, labels def main(): args = get_args() if not Path(realtime_qa_path).exists(): raise ValueError(f"Path {realtime_qa_path} does not exist. Download from realtimeQA repo to this path.") task_name = "realtime_qa" data_dir = f"{DATA_DIR}/realtimeqa_public/past/2022" if not Path(data_dir).exists(): raise ValueError(f"Data dir {data_dir} does not exist. Download from realtimeQA repo.") decomp = RealtimeQADecomp(task_name, data_dir) decomp.run(args) if __name__ == "__main__": main()
ama_prompting-main
tasks/RealtimeQA_final.py
#!/usr/bin/env python # coding: utf-8 import pandas as pd import numpy as np from pathlib import Path from tqdm.auto import tqdm from sklearn.metrics import classification_report from decomposition import Decomposition, get_args, DATA_DIR from utils import get_response, InputOutputPrompt ############################################################################################################################## # All prompts summarize = InputOutputPrompt( input_formatter=lambda x: f"Passage: {x['passage']}", output_formatter=lambda x: f"Summarize: the passage \"Passage\": {x['summarize']}", required_keys=["passage", "summarize"], input_output_sep="\n", example_sep="\n\n", instruction="Summarize the passage.\n\n" ) summarize_examples = [ pd.DataFrame([ { "passage": "China overtakes United States as top destination for foreign investment (AFP). AFP - China overtook the United States as a top global destination for foreign direct investment (FDI) in 2003 while the Asia-Pacific region attracted more investment than any other developing region, a UN report said.", "summarize": "The passage is about foreign direct investment." }, { "passage": "Colangelo resigns as CEO of D-Backs. Jerry Colangelo has resigned his position as chief executive officer of the Arizona Diamondbacks, effective immediately, handing the reins of the organization to CEO Elect Jeff Moorad.", "summarize": "The passage is about the Arizona Diamondbacks." }, { "passage": "3 injured in plant fire in Japan. TOKYO, Aug. 20 (Xinhuanet) -- Fire broke out Friday at a tire plant belonging to Bridgestone Corp. in Amagi, western Fukuoka Prefecture of Japan, leaving 13 people injured.", "summarize": "The passage is about a plant fire." } ]), pd.DataFrame([ { "passage": "Abramovich faces rich list challenge. Lakshmi Mittal, the Indian-born steel magnate, yesterday staked a claim to overtake Roman Abramovich as Britain's richest man with a 10bn deal to create the world's largest steelmaker.", "summarize": "The passage is about a 10bn deal." }, { "passage": "U.N. Deadlocks on Cloning Ban. The United Nations abandons efforts to ban all cloning and opts for a non-binding resolution. It's a blow to President Bush's efforts to push a ban and a victory for embryonic stem cell researchers. By Kristen Philipkoski", "summarize": "The passage is about stem cell research." }, { "passage": "Tennis: Serena Williams Reaches Finals of China Open. Top seed Serena Williams of the United States has powered her way into the finals of the China Open tennis tournament in Beijing with a straight sets (6-2, 6-3) victory over fourth-seeded Vera Zvonareva of Russia.", "summarize": "The passage is about tennis." } ]), pd.DataFrame([ { "passage": "San Francisco at Atlanta, 1:05 PM. ATLANTA (Ticker) -- Rookie Noah Lowry looks to win his fourth straight decision when he starts for the San Francisco Giants in the finale of a four-game series with the Atlanta Braves.", "summarize": "The passage is about the San Francisco Giants." }, { "passage": "Suffocation cited in most deaths. At least 84 Muslim protesters died, mostly from suffocation so severe their eyes bled, after being arrested and locked in army trucks following clashes with security forces in the south, officials said yesterday.", "summarize": "The passage is about Muslim protesters." }, { "passage": "Merrill, UBS Up Apple Stock Estimates. As consumers start spending on Christmas, two brokerage houses raised their estimates on Apple Computer (AAPL) stock Monday to more than US $77, predicting.", "summarize": "The passage is about Apple Stock Estimates." } ]), ] categorize = InputOutputPrompt( input_formatter=lambda x: f"Passage: {x['passage']}\nSummary: {x['summary']}", output_formatter=lambda x: f"The summary \"Summary\" fits \"Category\": {x['category']}", required_keys=["passage", "summary", "category"], input_output_sep="\n", example_sep="\n\n", instruction="Pick the correct category for the passage.\n\n\"Categories\":\n- World News\n- Sports\n- Business\n- Technology and Science\n\n" ) categorize_examples = [ pd.DataFrame([ { "passage": "China overtakes United States as top destination for foreign investment (AFP). AFP - China overtook the United States as a top global destination for foreign direct investment (FDI) in 2003 while the Asia-Pacific region attracted more investment than any other developing region, a UN report said.", "summary": "The passage is about foreign direct investment.", "category": "Business" }, { "passage": "Colangelo resigns as CEO of D-Backs. Jerry Colangelo has resigned his position as chief executive officer of the Arizona Diamondbacks, effective immediately, handing the reins of the organization to CEO Elect Jeff Moorad.", "summary": "The passage is the Arizona Diamondbacks.", "category": "Sports" }, { "passage": "3 injured in plant fire in Japan. TOKYO, Aug. 20 (Xinhuanet) -- Fire broke out Friday at a tire plant belonging to Bridgestone Corp. in Amagi, western Fukuoka Prefecture of Japan, leaving 13 people injured.", "summary": "The passage is about a plant fire.", "category": "World News" } ]), pd.DataFrame([ { "passage": "Abramovich faces rich list challenge. Lakshmi Mittal, the Indian-born steel magnate, yesterday staked a claim to overtake Roman Abramovich as Britain's richest man with a 10bn deal to create the world's largest steelmaker.", "summary": "The passage is about a 10bn deal.", "category": "Business" }, { "passage": "U.N. Deadlocks on Cloning Ban. The United Nations abandons efforts to ban all cloning and opts for a non-binding resolution. It's a blow to President Bush's efforts to push a ban and a victory for embryonic stem cell researchers. By Kristen Philipkoski", "summary": "The passage is about stem cell research.", "category": "Technology and Science" }, { "passage": "Tennis: Serena Williams Reaches Finals of China Open. Top seed Serena Williams of the United States has powered her way into the finals of the China Open tennis tournament in Beijing with a straight sets (6-2, 6-3) victory over fourth-seeded Vera Zvonareva of Russia.", "summary": "The passage is about tennis", "category": "Sports" } ]), pd.DataFrame([ { "passage": "San Francisco at Atlanta, 1:05 PM. ATLANTA (Ticker) -- Rookie Noah Lowry looks to win his fourth straight decision when he starts for the San Francisco Giants in the finale of a four-game series with the Atlanta Braves.", "summary": "The passage is about the San Francisco Giants.", "category": "Sports" }, { "passage": "Suffocation cited in most deaths. At least 84 Muslim protesters died, mostly from suffocation so severe their eyes bled, after being arrested and locked in army trucks following clashes with security forces in the south, officials said yesterday.", "summary": "The passage is about Muslim protesters.", "category": "World News" }, { "passage": "Merrill, UBS Up Apple Stock Estimates. As consumers start spending on Christmas, two brokerage houses raised their estimates on Apple Computer (AAPL) stock Monday to more than US $77, predicting", "summary": "The passage is about Apple Stock Estimates.", "category": "Business" } ]), ] description_zeroshot=""" Pick the correct category for the passage. Categories: - World News - Sports - Business - Technology and Science""" label_dict = { 0: 'World News', 1: 'Sports', 2: 'Business', 3: 'Technology and Science' } def format_data(df): # Pre-processing code from: https://github.com/tonyzhaozh/few-shot-learning sentences = df['Title'] + ". " + df['Description'] sentences = list( [item.replace(' #39;s', '\'s').replace(' quot;', "\"").replace('\\', " ").replace(' #39;ll', "'ll") for item in sentences]) # some basic cleaning labels = list(df['Class Index']) labels = [l - 1 for l in labels] # make them 0, 1, 2, 3 instead of 1, 2, 3, 4 return sentences, labels class AGNews(Decomposition): def __init__(self, task_name, data_dir, val_split="validation"): super().__init__(task_name, data_dir, val_split) def read_data(self, save_dir, overwrite_data): save_data = Path(f"{save_dir}/{self.task_name}/data.feather") if not save_data.exists() or overwrite_data: test_data = pd.read_csv(f"{self.data_dir}/{self.val_split}.csv") test_sentences, test_labels = format_data(test_data) test_data = pd.DataFrame({ 'sentence': test_sentences, 'label': test_labels, }) test_data.to_feather(f"{save_data}") else: print(f"Reading test data from {save_data}") test_data = pd.read_feather(save_data) save_data = Path(f"{save_dir}/{self.task_name}/train_data.feather") if not save_data.exists() or overwrite_data: train_data = pd.read_csv(f"{self.data_dir}/train.csv") train_sentences, train_labels = format_data(train_data) train_data = pd.DataFrame({ 'sentence': train_sentences, 'label': train_labels, }) train_data.to_feather(f"{save_data}") else: print(f"Reading train data from {save_data}") train_data = pd.read_feather(save_data) print(f"Test Data Size: {len(test_data)}") print(f"Train Data Size: {len(train_data)}") return test_data, train_data def get_boost_decomp_examples(self, train_data, boost_id): return [ summarize_examples[boost_id], categorize_examples[boost_id], ] def get_few_shot_examples(self, train_data, k_shot): """Get few shot examples""" labels = [0, 1, 2, 3] num_per_class = int(np.ceil(k_shot / len(labels))) print(f"Selecting {num_per_class} examples per class.") dfs = [] total_in_context = 0 for label in labels: while num_per_class + total_in_context > k_shot: num_per_class -= 1 sub_df = train_data[train_data["label"] == label].sample( num_per_class ) dfs.append(sub_df) total_in_context += num_per_class if total_in_context == k_shot: break mini_df = pd.concat(dfs) print(mini_df.index) return mini_df def zero_few_baseline( self, test_data, few_shot_df, manifest, overwrite_manifest, do_few_shot=True, ): expt_log = {} preds = [] labels = [] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): text = row['sentence'] gold = label_dict[row['label']] gold = gold.replace("_", " ").strip().replace(",", "") icl_str = f"{description_zeroshot}" if do_few_shot: for s_ind, s_row in few_shot_df.iterrows(): s_label = label_dict[s_row['label']] icl_str += f"\n\nPassage: {s_row['sentence']}\nCategory: {s_label}" prompt = f"{icl_str}\n\nPassage: {{text:}}\nCategory:" pmp = prompt.format(text=text) if i == 0: print(pmp) answer = get_response( pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=10, stop_token="\n\n", ) answer = answer.split("\n") answer = [a for a in answer if a] pred = '' if answer: pred = answer[0] pred = pred.replace("-", "").strip().replace(",", "") entry = { "ind": ind, "example": text, "base_prompt": pmp, "pred": pred, "gold": gold, } expt_log[ind] = entry preds.append(pred) labels.append(gold) report = classification_report(labels, preds, output_dict=True) return expt_log, report["accuracy"] def run_decomposed_prompt( self, test_data, boost_data_train, boost_dfs, manifest, overwrite_manifest ): expt_log, all_boost_preds, labels = self._run_decomp_single_data(test_data, boost_dfs, manifest, overwrite_manifest, run_limit=-1) expt_log_train, all_boost_train_preds, train_labels = self._run_decomp_single_data(boost_data_train, boost_dfs, manifest, overwrite_manifest, run_limit=1000) # Do WS preds = self.merge_boosted_preds(all_boost_preds, all_boost_train_preds, train_labels, expt_log, expt_log_train) # Get accuracies across all boost sets individual_accuracies = [] for i in range(len(all_boost_preds[0])): individual_accuracies.append(classification_report(labels, [p[i] for p in all_boost_preds], output_dict=True)["accuracy"]) report = classification_report(labels, preds, output_dict=True) return expt_log, expt_log_train, report["accuracy"], individual_accuracies def _run_decomp_single_data(self, test_data, boost_dfs, manifest, overwrite_manifest, run_limit=-1): expt_log = {} all_boost_preds = [] labels = [] labels_clean = [v for k, v in label_dict.items()] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): text = row['sentence'] gold = label_dict[row['label']] if i == run_limit: break prompts_across_boost = [] preds_across_boost = [] for boost_examples in boost_dfs: all_prompts = [] prompt_suffix = summarize(boost_examples[0]) summary_prompt = f"{prompt_suffix}\n\nPassage: {{text:}}\nSummarize: the passage \"Passage\":" summary_pmp = summary_prompt.format(text=text) output = get_response( summary_pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=40, ) summary = output.split("\n")[0].split(":")[-1].strip("\n") all_prompts.append(summary_pmp) prompt_suffix = categorize(boost_examples[1]) category_prompt = f"{prompt_suffix}\n\nPassage: {{text:}}\nSummary: {{summary:}}\nThe summary \"Summary\" fits \"Category\":" category_pmp = category_prompt.format(text=text, summary=summary) output = get_response( category_pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=5, ) all_prompts.append(category_pmp) if i== 0: print(summary_pmp) print("\n---------------------------------------\n") print(category_pmp) answer = output.split("\n")[0].strip().lower() answer = answer.replace("-", "").strip() gold = gold.replace("_", " ").strip().lower() pred = answer for label in labels_clean: if label.lower() in answer.lower(): pred = label.lower() break prompts_across_boost.append(all_prompts) preds_across_boost.append(pred) entry = { "ind": ind, "example": text, "prompts": prompts_across_boost, "preds_boost": preds_across_boost, "gold": gold, } expt_log[ind] = entry all_boost_preds.append(preds_across_boost) labels.append(gold) return expt_log, all_boost_preds, labels def main(): args = get_args() args.num_boost = 3 task_name = "agnews" data_dir = f"{DATA_DIR}/agnews/" if not Path(data_dir).exists(): raise ValueError(f"Data directory {data_dir} does not exist. Download AGNews from https://github.com/tonyzhaozh/few-shot-learning.") decomp = AGNews(task_name, data_dir, val_split="test") decomp.run(args) if __name__ == "__main__": main()
ama_prompting-main
tasks/AGNews_final.py
#!/usr/bin/env python # coding: utf-8 from tqdm.auto import tqdm import pandas as pd import numpy as np from tqdm.auto import tqdm from sklearn.metrics import classification_report from decomposition import Decomposition, get_args, DATA_DIR from utils import get_response, InputOutputPrompt extract = InputOutputPrompt( input_formatter=lambda x: f"Context: {x['context']}\n\nQuestion: {x['question']}", output_formatter=lambda x: f"Answer: {x['answer']}", required_keys=["context", "question", "answer"], input_output_sep="\n\n", example_sep="\n\n----\n\n", instruction="Answer the question using the context.\n\n" ) extract_examples = [ pd.DataFrame([ { "context": "Tonic water -- Tonic water (or Indian tonic water) is a carbonated soft drink in which quinine is dissolved. Originally used as a prophylactic against malaria, tonic water usually now has a significantly lower quinine content and is consumed for its distinctive bitter flavor. It is often used in mixed drinks, particularly in gin and tonic.", "question": "does tonic water still have quinine in it?", "answer": "yes" }, { "context": "Northern bobwhite -- The northern bobwhite, Virginia quail or (in its home range) bobwhite quail (Colinus virginianus) is a ground-dwelling bird native to the United States, Mexico, and the Caribbean. It is a member of the group of species known as New World quails (Odontophoridae). They were initially placed with the Old World quails in the pheasant family (Phasianidae), but are not particularly closely related. The name ``bobwhite'' derives from its characteristic whistling call. Despite its secretive nature, the northern bobwhite is one of the most familiar quails in eastern North America because it is frequently the only quail in its range. Habitat degradation has likely contributed to the northern bobwhite population in eastern North America declining by roughly 85% from 1966-2014. This population decline is apparently range-wide and continuing.", "question": "is a quail the same as a bobwhite?", "answer": "yes" }, { "context": "United States Department of Homeland Security -- In fiscal year 2017, it was allocated a net discretionary budget of $40.6 billion. With more than 240,000 employees, DHS is the third largest Cabinet department, after the Departments of Defense and Veterans Affairs. Homeland security policy is coordinated at the White House by the Homeland Security Council. Other agencies with significant homeland security responsibilities include the Departments of Health and Human Services, Justice, and Energy", "question": "is department of homeland security part of dod?", "answer": "no" } ]), pd.DataFrame([ { "context": "Debit card cashback -- The services are restricted to debit cards where the merchant pays a fixed fee for the transaction, it is not offered on payments by credit card because they would pay a percentage commission on the additional cash amount to their bank or merchant service provider.", "question": "can i ask for cashback with a credit card?", "answer": "no" }, { "context": "Bundle branch block -- A bundle branch block can be diagnosed when the duration of the QRS complex on the ECG exceeds 120 ms. A right bundle branch block typically causes prolongation of the last part of the QRS complex, and may shift the heart's electrical axis slightly to the right. The ECG will show a terminal R wave in lead V1 and a slurred S wave in lead I. Left bundle branch block widens the entire QRS, and in most cases shifts the heart's electrical axis to the left. The ECG will show a QS or rS complex in lead V1 and a monophasic R wave in lead I. Another normal finding with bundle branch block is appropriate T wave discordance. In other words, the T wave will be deflected opposite the terminal deflection of the QRS complex. Bundle branch block, especially left bundle branch block, can lead to cardiac dyssynchrony. The simultaneous occurrence of left and right bundle branch block leads to total AV block.", "question": "can you have a right and left bundle branch block?", "answer": "yes" }, { "context": "Windsor Castle -- Queen Victoria and Prince Albert made Windsor Castle their principal royal residence, despite Victoria complaining early in her reign that the castle was ``dull and tiresome'' and ``prison-like'', and preferring Osborne and Balmoral as holiday residences. The growth of the British Empire and Victoria's close dynastic ties to Europe made Windsor the hub for many diplomatic and state visits, assisted by the new railways and steamships of the period. Indeed, it has been argued that Windsor reached its social peak during the Victorian era, seeing the introduction of invitations to numerous prominent figures to ``dine and sleep'' at the castle. Victoria took a close interest in the details of how Windsor Castle was run, including the minutiae of the social events. Few visitors found these occasions comfortable, both due to the design of the castle and the excessive royal formality. Prince Albert died in the Blue Room at Windsor Castle in 1861 and was buried in the Royal Mausoleum built at nearby Frogmore, within the Home Park. The prince's rooms were maintained exactly as they had been at the moment of his death and Victoria kept the castle in a state of mourning for many years, becoming known as the ``Widow of Windsor'', a phrase popularised in the famous poem by Rudyard Kipling. The Queen shunned the use of Buckingham Palace after Albert's death and instead used Windsor Castle as her residence when conducting official business near London. Towards the end of her reign, plays, operas, and other entertainments slowly began to be held at the castle again, accommodating both the Queen's desire for entertainment and her reluctance to be seen in public.", "question": "is buckingham palace the same as windsor castle?", "answer": "no" } ]), pd.DataFrame([ { "context": "The Princess and the Goblin (film) -- The Princess and the Goblin (Hungarian: A hercegnő és a kobold) is a 1991 British-Hungarian-American animated musical fantasy film directed by József Gémes and written by Robin Lyons, an adaptation of George MacDonald's 1872 novel of the same name.", "question": "is the princess and the goblin a disney movie?", "answer": "no" }, { "context": "Field marshal (United Kingdom) -- Field Marshal has been the highest rank in the British Army since 1736. A five-star rank with NATO code OF-10, it is equivalent to an Admiral of the Fleet in the Royal Navy or a Marshal of the Royal Air Force in the Royal Air Force (RAF). A Field Marshal's insignia consists of two crossed batons surrounded by yellow leaves below St Edward's Crown. Like Marshals of the RAF and Admirals of the Fleet, Field Marshals traditionally remain officers for life, though on half-pay when not in an appointment. The rank has been used sporadically throughout its history and was vacant during parts of the 18th and 19th centuries (when all former holders of the rank were deceased). After the Second World War, it became standard practice to appoint the Chief of the Imperial General Staff (later renamed Chief of the General Staff) to the rank on his last day in the post. Army officers occupying the post of Chief of the Defence Staff, the professional head of all the British Armed Forces, were usually promoted to the rank upon their appointment.", "question": "is there a field marshal in the british army?", "answer": "yes" }, { "context": "Washington, D.C. -- The signing of the Residence Act on July 16, 1790, approved the creation of a capital district located along the Potomac River on the country's East Coast. The U.S. Constitution provided for a federal district under the exclusive jurisdiction of the Congress and the District is therefore not a part of any state. The states of Maryland and Virginia each donated land to form the federal district, which included the pre-existing settlements of Georgetown and Alexandria. Named in honor of President George Washington, the City of Washington was founded in 1791 to serve as the new national capital. In 1846, Congress returned the land originally ceded by Virginia; in 1871, it created a single municipal government for the remaining portion of the District.", "question": "is washington dc a part of a state?", "answer": "no" } ]), pd.DataFrame([ { "context": "Legal issues in airsoft -- Under federal law, airsoft guns are not classified as firearms and are legal for all ages. People under the age of 18 are not permitted to buy airsoft guns over the counter in stores. However, a person of any age may use one (with the permission of their parents, of course, for anyone under 18). This is also the case for the laws in each state. However, in some major cities, the definition of a firearm within their respected ordinances includes propulsion by spring or compressed air, thus making airsoft subject to applicable laws. For example, airsoft guns within the state of California can only be bought by a person above the age of 18. However, no laws indicate an age requirement to sell airsoft guns. Generally speaking, toy, look-alike, and imitation firearms must have an orange tip during shipping and transportation.", "question": "do you have to be 18 to buy airsoft guns?", "answer": "yes" }, { "context": "India national football team -- India has never participated in the FIFA World Cup, although the team did qualify by default for the 1950 World Cup after all the other nations in their qualification group withdrew. However, India withdrew prior to the beginning of the tournament. The team has also appeared three times in the Asia's top football competition, the AFC Asian Cup. Their best result in the competition occurred in 1964 when the team finished as runners-up. India also participate in the SAFF Championship, the top regional football competition in South Asia. They have won the tournament six times since it began in 1993. \nQuestion: has india ever played in fifa world cup.", "question": "has india ever played in fifa world cup?", "answer": "no" }, { "context": "Pan-American Highway -- The Pan-American Highway is a network of roads measuring about 30,000 kilometres (19,000 mi) in total length. Except for a rainforest break of approximately 160 km (100 mi), called the Darién Gap, the road links almost all of the mainland countries of the Americas in a connected highway system. According to Guinness World Records, the Pan-American Highway is the world's longest ``motorable road''. However, because of the Darién Gap, it is not possible to cross between South America and Central America, alternatively being able to circumnavigate this terrestrial stretch by sea.", "question": "could you drive from north america to south america?", "answer": "no" } ]), pd.DataFrame([ { "context": "Appointment and confirmation to the Supreme Court of the United States -- The appointment and confirmation of Justices to the Supreme Court of the United States involves several steps set forth by the United States Constitution, which have been further refined and developed by decades of tradition. Candidates are nominated by the President of the United States and must face a series of hearings in which both the nominee and other witnesses make statements and answer questions before the Senate Judiciary Committee, which can vote to send the nomination to the full United States Senate. Confirmation by the Senate allows the President to formally appoint the candidate to the court.", "question": "do supreme court justices have to be approved by congress?", "answer": "no" }, { "context": "Glowplug -- Diesel engines, unlike gasoline engines, do not use spark plugs to induce combustion. Instead, they rely solely on compression to raise the temperature of the air to a point where the diesel combusts spontaneously when introduced to the hot high pressure air. The high pressure and spray pattern of the diesel ensures a controlled, complete burn. The piston rises, compressing the air in the cylinder; this causes the air's temperature to rise. By the time the piston reaches the top of its travel path, the temperature in the cylinder is very high. The fuel mist is then sprayed into the cylinder; it instantly combusts, forcing the piston downwards, thus generating power. The pressure required to heat the air to that temperature, however, requires a large and strong engine block.", "question": "is there a spark plug in diesel engine?", "answer": "no" }, { "context": "Buffy the Vampire Slayer Season Eight -- Buffy the Vampire Slayer Season Eight is a comic book series published by Dark Horse Comics from 2007 to 2011. The series serves as a canonical continuation of the television series Buffy the Vampire Slayer, and follows the events of that show's final televised season. It is produced by Joss Whedon, who wrote or co-wrote three of the series arcs and several one-shot stories. The series was followed by Season Nine in 2011.", "question": "is there a season 8 of buffy the vampire slayer?", "answer": "yes" } ]), pd.DataFrame([ { "context": "Uterus -- The uterus (from Latin ``uterus'', plural uteri) or womb is a major female hormone-responsive secondary sex organ of the reproductive system in humans and most other mammals. In the human, the lower end of the uterus, the cervix, opens into the vagina, while the upper end, the fundus, is connected to the fallopian tubes. It is within the uterus that the fetus develops during gestation. In the human embryo, the uterus develops from the paramesonephric ducts which fuse into the single organ known as a simplex uterus. The uterus has different forms in many other animals and in some it exists as two separate uteri known as a duplex uterus.", "question": "are the womb and the uterus the same thing?", "answer": "yes" }, { "context": "Super Bowl XLVII -- Super Bowl XLVII was an American football game between the American Football Conference (AFC) champion Baltimore Ravens and the National Football Conference (NFC) champion San Francisco 49ers to decide the National Football League (NFL) champion for the 2012 season. The Ravens defeated the 49ers by the score of 34--31, handing the 49ers their first Super Bowl loss in franchise history. The game was played on Sunday, February 3, 2013 at Mercedes-Benz Superdome in New Orleans, Louisiana. This was the tenth Super Bowl to be played in New Orleans, equaling Miami's record of ten in an individual city.", "question": "did the 49ers win the superbowl in 2012?", "answer": "no" }, { "context": "Blacklight -- A blacklight (or often black light), also referred to as a UV-A light, Wood's lamp, or simply ultraviolet light, is a lamp that emits long-wave (UV-A) ultraviolet light and not much visible light.", "question": "are black lights and uv lights the same thing?", "answer": "yes" } ]), pd.DataFrame([ { "context": "2018 Winter Olympics -- In June 2017, Ubisoft announced that it would release an expansion pack for its winter sports video game Steep entitled Road to the Olympics, which features new game modes and content inspired by the 2018 Winter Olympics.", "question": "will there be a winter olympics video game?", "answer": "yes" }, { "context": "Castor oil -- Castor oil is a vegetable oil obtained by pressing the seeds of the castor oil plant (Ricinus communis). The common name ``castor oil'', from which the plant gets its name, probably comes from its use as a replacement for castoreum, a perfume base made from the dried perineal glands of the beaver (castor in Latin).", "question": "is vegetable oil and castor oil the same?", "answer": "no" }, { "context": "The Mother (How I Met Your Mother) -- Tracy McConnell, better known as ``The Mother'', is the title character from the CBS television sitcom How I Met Your Mother. The show, narrated by Future Ted, tells the story of how Ted Mosby met The Mother. Tracy McConnell appears in 8 episodes from ``Lucky Penny'' to ``The Time Travelers'' as an unseen character; she was first seen fully in ``Something New'' and was promoted to a main character in season 9. The Mother is played by Cristin Milioti.", "question": "does how i met your mother ever show ted's wife?", "answer": "yes" } ]), ] prefix_select_zeroshot = """Answer the question.""" class BoolQDecomp(Decomposition): def __init__(self, task_name, data_dir, val_split="validation"): super().__init__(task_name, data_dir, val_split) def get_boost_decomp_examples(self, train_data, boost_id): return [ extract_examples[boost_id], ] def get_few_shot_examples(self, train_data, k_shot): """Get few shot examples""" labels = ['No', 'Yes'] num_per_class = int(np.ceil(k_shot / len(labels))) print(f"Selecting {num_per_class} examples per class.") dfs = [] total_in_context = 0 for label in labels: while num_per_class + total_in_context > k_shot: num_per_class -= 1 sub_df = train_data[train_data["targets_pretokenized"] == label] sub_df = sub_df.sample(num_per_class) dfs.append(sub_df) total_in_context += num_per_class if total_in_context == k_shot: break mini_df = pd.concat(dfs) return mini_df def zero_few_baseline( self, test_data, few_shot_df, manifest, overwrite_manifest, do_few_shot=True, ): expt_log = {} preds = [] labels = [] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): text = row['inputs_pretokenized'] passage = text.split("\nQuestion")[0].strip() question = text.split("\nQuestion")[-1].split("\nAnswer")[0].strip().strip(":").strip().strip("\n").strip("?").strip() gold = row['targets_pretokenized'] icl_str = f"{prefix_select_zeroshot}" if do_few_shot: for s_ind, s_row in few_shot_df.iterrows(): s_text = s_row['inputs_pretokenized'] s_passage = s_text.split("\nQuestion")[0].strip("\n").strip() s_question = s_text.split("\nQuestion")[-1].split("\nAnswer")[0].strip().strip(":").strip().strip("\n").strip("?").strip() icl_str += f"\n\nContext: {s_passage}\nQuestion: {s_question}?\nAnswer: {s_row['targets_pretokenized']}" prompt = f"{icl_str}\n\nContext: {passage}\nQuestion: {question}?\nAnswer:" if i == 0: print(prompt) answer = get_response( prompt, manifest, overwrite=bool(overwrite_manifest), max_toks=10, stop_token="\n\n", ) answer = answer.strip("\n").lower() pred = answer.strip() gold = gold.strip().lower() entry = { "ind": ind, "example": text, "base_prompt": prompt, "pred": pred, "gold": gold, } expt_log[ind] = entry preds.append(pred) labels.append(gold) report = classification_report(labels, preds, output_dict=True) return expt_log, report["accuracy"] def run_decomposed_prompt( self, test_data, boost_data_train, boost_dfs, manifest, overwrite_manifest ): expt_log, all_boost_preds, labels = self._run_decomp_single_data(test_data, boost_dfs, manifest, overwrite_manifest, run_limit=-1) expt_log_train, all_boost_train_preds, train_labels = self._run_decomp_single_data(boost_data_train, boost_dfs, manifest, overwrite_manifest, run_limit=1000) # Do WS preds = self.merge_boosted_preds(all_boost_preds, all_boost_train_preds, train_labels, expt_log, expt_log_train) # Get accuracies across all boost sets individual_accuracies = [] for i in range(len(all_boost_preds[0])): individual_accuracies.append(classification_report(labels, [p[i] for p in all_boost_preds], output_dict=True)["accuracy"]) report = classification_report(labels, preds, output_dict=True) return expt_log, expt_log_train, report["accuracy"], individual_accuracies def _run_decomp_single_data(self, test_data, boost_dfs, manifest, overwrite_manifest, run_limit=-1): expt_log = {} all_boost_preds = [] labels = [] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): text = row['inputs_pretokenized'] passage = text.split("\nQuestion")[0].strip() question = text.split("\nQuestion")[-1].split("\nAnswer")[0].replace( "True or False?", "").strip().strip(":").strip().strip("?").strip() gold = row['targets_pretokenized'] if i == run_limit: break prompts_across_boost = [] preds_across_boost = [] for boost_examples in boost_dfs: all_prompts = [] prompt_suffix = extract(boost_examples[0]) extract_prompt = f"{prompt_suffix}\n\n----\n\nContext: {{passage:}}\n\nQuestion: {{question:}}?\n\nAnswer:" extract_pmp = extract_prompt.format(passage=passage, question=question) output = get_response( extract_pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=5, ) all_prompts.append(extract_pmp) if i == 0: print(extract_pmp) answer = output.strip("\n").lower() answer = [a for a in answer.split("\n") if a][0] answer = "".join( [a for a in answer if a not in [".", ",", "?", ";", ":", "'", '"']] ) gold = gold.strip().lower() pred = answer is_yes = "yes" in pred.split() is_no = "no" in pred.split() pred = "No" if is_yes and (not is_no): pred = "Yes" if is_no and (not is_yes): pred = "No" pred = pred.lower() prompts_across_boost.append(all_prompts) preds_across_boost.append(pred) entry = { "ind": ind, "example": text, "prompts": prompts_across_boost, "preds_boost": preds_across_boost, "gold": gold, } expt_log[ind] = entry all_boost_preds.append(preds_across_boost) labels.append(gold) return expt_log, all_boost_preds, labels def main(): args = get_args() args.num_boost = 5 task_name = "super_glue_boolq" data_dir = f"{DATA_DIR}/P3/data_feather/super_glue_boolq_GPT_3_Style/" boolq = BoolQDecomp(task_name, data_dir) boolq.run(args) if __name__ == "__main__": main()
ama_prompting-main
tasks/BoolQ_final.py
#!/usr/bin/env python # coding: utf-8 import os from tqdm.auto import tqdm import pandas as pd from sklearn.metrics import classification_report from decomposition import Decomposition, get_args, DATA_DIR from utils import get_response, InputOutputPrompt from collections import defaultdict, Counter class CBDecomp(Decomposition): def __init__(self, task_name, data_dir, val_split="validation"): super().__init__(task_name, data_dir, val_split) def get_boost_decomp_examples(self, data_train, boost_id): lst = [ 'super_glue_cb_claim_true_false_inconclusive', 'super_glue_cb_does_this_imply', 'super_glue_cb_always_sometimes_never', 'super_glue_cb_does_it_follow_that', 'super_glue_cb_guaranteed_true', 'super_glue_cb_take_the_following_as_truth', 'super_glue_cb_justified_in_saying', 'super_glue_cb_should_assume', 'super_glue_cb_GPT_3_style', 'super_glue_cb_can_we_infer', 'super_glue_cb_consider_always_sometimes_never', 'super_glue_cb_guaranteed_possible_impossible', 'super_glue_cb_MNLI_crowdsource', 'super_glue_cb_based_on_the_previous_passage', 'super_glue_cb_must_be_true' ] file_path = lst[boost_id] print(f"FILE PATH: {file_path}") train_data = pd.read_feather(f"{DATA_DIR}/P3/data_feather/{file_path}/train.feather") val_data = pd.read_feather(f"{DATA_DIR}/P3/data_feather/{file_path}/validation.feather") return [ train_data, val_data ] def zero_few_baseline( self, test_data, few_shot_df, manifest, overwrite_manifest, do_few_shot=True, ): expt_log = {} preds = [] labels = [] labels_names = set(test_data["targets_pretokenized"]) labels_names = [l.lower().strip() for l in labels_names] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): if ind in expt_log: pred = entry["pred"] gold = entry["gold"] else: text = row["inputs_pretokenized"] gold = row["targets_pretokenized"] icl_str = "" if do_few_shot: for s_ind, s_row in few_shot_df.iterrows(): icl_str += f"{s_row['inputs_pretokenized']} {s_row['targets_pretokenized']}\n\n\n" text = row["inputs_pretokenized"] text = text.replace("True, False, or Neither?", "") text = text + ". True, False, or Neither?" gold = row["targets_pretokenized"] prompt = f"{icl_str}{{text:}}" pmp = prompt.format(text=text) if i == 0: print(pmp) raw_answer = get_response( pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=30, ) answer = raw_answer.strip().lower() answer = answer.split("\n") answer = [a for a in answer if a] answer = [ a for a in answer if any(l.lower() in a.lower() for l in labels_names) ] if answer: answer = answer[0] else: answer = "" answer = "".join( [a for a in answer if a not in [".", ",", "?", ";", ":", "'", '"']] ) is_yes = "true" in answer.split() is_no = "false" in answer.split() is_maybe = "neither" in answer.split() or "unknown" in answer.split() or "maybe" in answer.split() pred = "Neither" if is_yes and (not is_maybe and not is_no): pred = "True" if is_no and (not is_maybe and not is_yes): pred = "False" if is_maybe and (not is_no and not is_yes): pred = "Neither" entry = { "ind": ind, "example": text, "base_prompt": pmp, "raw_answer": raw_answer, "pred": pred, "gold": gold, } expt_log[ind] = entry preds.append(pred) labels.append(gold) report = classification_report(labels, preds, output_dict=True) return expt_log, report["accuracy"] def run_decomposed_prompt( self, test_data, boost_data_train, boost_dfs, manifest, overwrite_manifest ): expt_log, all_boost_preds, labels = self._run_decomp_single_data(test_data, boost_dfs, manifest, overwrite_manifest, do_train=0) expt_log_train, all_boost_train_preds, train_labels = self._run_decomp_single_data(boost_data_train, boost_dfs, manifest, overwrite_manifest, do_train=1) # Do WS preds = self.merge_boosted_preds(all_boost_preds, all_boost_train_preds, train_labels, expt_log, expt_log_train) # Get accuracies across all boost sets individual_accuracies = [] for i in range(len(all_boost_preds[0])): individual_accuracies.append(classification_report(labels, [p[i] for p in all_boost_preds], output_dict=True)["accuracy"]) report = classification_report(labels, preds, output_dict=True) return expt_log, expt_log_train, report["accuracy"], individual_accuracies def _run_decomp_single_data(self, test_data, boost_dfs, manifest, overwrite_manifest, do_train=-1): expt_log = {} all_boost_preds = [] labels = [] label_name_to_maping = { "always": "true", "never": "false", "sometimes": 'neither', "true": "true", "false": "false", "neither": 'neither', "no": "false", "yes": "true", "maybe": "neither", "unknown": "neither", "inconclusive": "neither", "impossible": "false", "possible": "neither", "guaranteed": "true", } prompts_across_boost = defaultdict(list) preds_across_boost = defaultdict(list) for boost_num, boost_examples in enumerate(boost_dfs): if do_train: data = boost_examples[0].iloc[:1] elif not do_train: data = boost_examples[1] else: raise ValueError("Unsupported value for do train.") for i, (ind, row) in tqdm(enumerate(data.iterrows()), total=len(data)): input = row["inputs_pretokenized"] gold = row["targets_pretokenized"] all_prompts = [] raw_answer = get_response( input, manifest, overwrite=bool(overwrite_manifest), max_toks=30, ) all_prompts.append(input) answer = raw_answer.lower() if answer not in label_name_to_maping: pred = 'neither' print("BAD ANSWER", answer) else: pred = label_name_to_maping[answer] prompts_across_boost[i].append(all_prompts) preds_across_boost[i].append(pred) if gold.lower() not in label_name_to_maping: import pdb; pdb.set_trace() for i, (ind, row) in enumerate(data.iterrows()): label = row["targets_pretokenized"].lower() entry = { "ind": ind, "prompts": prompts_across_boost[i], "preds_boost": preds_across_boost[i], "example": row['inputs_pretokenized'], "gold": label, } expt_log[ind] = entry all_boost_preds.append(preds_across_boost[ind]) labels.append(label_name_to_maping[label]) return expt_log, all_boost_preds, labels def main(): args = get_args() args.num_boost = 10 task_name = "cb_t0_variants" data_dir = f"{DATA_DIR}/P3/data_feather/super_glue_cb_GPT_3_style/" decomp = CBDecomp(task_name, data_dir) decomp.run(args) if __name__ == "__main__": main()
ama_prompting-main
ablations/T0_variants/CB_variants.py
#!/usr/bin/env python # coding: utf-8 import os from tqdm.auto import tqdm import pandas as pd from sklearn.metrics import classification_report from decomposition import Decomposition, get_args, DATA_DIR from utils import get_response, InputOutputPrompt from collections import defaultdict, Counter class RTEDecomp(Decomposition): def __init__(self, task_name, data_dir, val_split="validation"): super().__init__(task_name, data_dir, val_split) def get_boost_decomp_examples(self, data_train, boost_id): lst = [ 'super_glue_wsc.fixed_GPT_3_Style', 'super_glue_wsc.fixed_Who_or_what_is_are', 'super_glue_wsc.fixed_p_is_are_r', 'super_glue_wsc.fixed_by_p_they_mean', 'super_glue_wsc.fixed_replaced_with', 'super_glue_wsc.fixed_in_other_words', 'super_glue_wsc.fixed_I_think_they_mean', 'super_glue_wsc.fixed_does_p_stand_for', 'super_glue_wsc.fixed_does_the_pronoun_refer_to', 'super_glue_wsc.fixed_the_pronoun_refers_to' ] file_path = lst[boost_id] print(f"FILE PATH: {file_path}") train_data = pd.read_feather(f"{DATA_DIR}/P3/data_feather/{file_path}/train.feather") val_data = pd.read_feather(f"{DATA_DIR}/P3/data_feather/{file_path}/validation.feather") return [ train_data, val_data ] def zero_few_baseline( self, test_data, few_shot_df, manifest, overwrite_manifest, do_few_shot=True, ): expt_log = {} preds = [] labels = [] labels_names = set(test_data["targets_pretokenized"]) labels_names = [l.lower().strip() for l in labels_names] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): if ind in expt_log: pred = entry["pred"] gold = entry["gold"] else: text = row["inputs_pretokenized"] gold = row["targets_pretokenized"] icl_str = "" if do_few_shot: for s_ind, s_row in few_shot_df.iterrows(): icl_str += f"{s_row['inputs_pretokenized']} {s_row['targets_pretokenized']}\n\n\n" text = row["inputs_pretokenized"] text = text.replace("True, False, or Neither?", "") text = text + ". True, False, or Neither?" gold = row["targets_pretokenized"] prompt = f"{icl_str}{{text:}}" pmp = prompt.format(text=text) if i == 0: print(pmp) raw_answer = get_response( pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=30, ) answer = raw_answer.strip().lower() answer = answer.split("\n") answer = [a for a in answer if a] answer = [ a for a in answer if any(l.lower() in a.lower() for l in labels_names) ] if answer: answer = answer[0] else: answer = "" answer = "".join( [a for a in answer if a not in [".", ",", "?", ";", ":", "'", '"']] ) is_yes = "true" in answer.split() is_no = "false" in answer.split() is_maybe = "neither" in answer.split() or "unknown" in answer.split() or "maybe" in answer.split() pred = "Neither" if is_yes and (not is_maybe and not is_no): pred = "True" if is_no and (not is_maybe and not is_yes): pred = "False" if is_maybe and (not is_no and not is_yes): pred = "Neither" entry = { "ind": ind, "example": text, "base_prompt": pmp, "raw_answer": raw_answer, "pred": pred, "gold": gold, } expt_log[ind] = entry preds.append(pred) labels.append(gold) report = classification_report(labels, preds, output_dict=True) return expt_log, report["accuracy"] def run_decomposed_prompt( self, test_data, boost_data_train, boost_dfs, manifest, overwrite_manifest ): expt_log, all_boost_preds, labels = self._run_decomp_single_data(test_data, boost_dfs, manifest, overwrite_manifest, do_train=0) expt_log_train, all_boost_train_preds, train_labels = self._run_decomp_single_data(boost_data_train, boost_dfs, manifest, overwrite_manifest, do_train=1) # Do WS preds = self.merge_boosted_preds(all_boost_preds, all_boost_train_preds, train_labels, expt_log, expt_log_train) # Get accuracies across all boost sets individual_accuracies = [] for i in range(len(all_boost_preds[0])): individual_accuracies.append(classification_report(labels, [p[i] for p in all_boost_preds], output_dict=True)["accuracy"]) report = classification_report(labels, preds, output_dict=True) return expt_log, expt_log_train, report["accuracy"], individual_accuracies def _run_decomp_single_data(self, test_data, boost_dfs, manifest, overwrite_manifest, do_train=-1): expt_log = {} all_boost_preds = [] labels = [] label_name_to_maping = { "always": "true", "never": "false", "sometimes": 'neither', "true": "true", "false": "false", "neither": 'neither', "no": "false", "yes": "true", "maybe": "neither", "unknown": "neither", "inconclusive": "neither", "impossible": "false", "possible": "neither", "guaranteed": "true", } prompts_across_boost = defaultdict(list) preds_across_boost = defaultdict(list) for boost_num, boost_examples in enumerate(boost_dfs): if do_train: data = boost_examples[0].iloc[:1000] elif not do_train: data = boost_examples[1] else: raise ValueError("Unsupported value for do train.") for i, (ind, row) in tqdm(enumerate(data.iterrows()), total=len(data)): input = row["inputs_pretokenized"] gold = row["targets_pretokenized"] all_prompts = [] raw_answer = get_response( input, manifest, overwrite=bool(overwrite_manifest), max_toks=30, ) all_prompts.append(input) answer = raw_answer.lower() if answer not in label_name_to_maping: pred = 'neither' print(answer) else: pred = label_name_to_maping[answer] prompts_across_boost[i].append(all_prompts) preds_across_boost[i].append(pred) if gold.lower() not in label_name_to_maping: import pdb; pdb.set_trace() for i, (ind, row) in enumerate(data.iterrows()): label = row["targets_pretokenized"].lower() entry = { "ind": ind, "prompts": prompts_across_boost[i], "preds_boost": preds_across_boost[i], "example": row['inputs_pretokenized'], "gold": label, } expt_log[ind] = entry all_boost_preds.append(preds_across_boost[ind]) labels.append(label_name_to_maping[label]) return expt_log, all_boost_preds, labels def main(): args = get_args() args.num_boost = 10 task_name = "wsc_t0_variants" data_dir = f"{DATA_DIR}/P3/data_feather/super_glue_wsc.fixed_GPT_3_Style/" decomp = RTEDecomp(task_name, data_dir) decomp.run(args) if __name__ == "__main__": main()
ama_prompting-main
ablations/T0_variants/WSC_variants.py
from pathlib import Path from collections import Counter import json from datasets import load_dataset import re import pandas as pd from typing import Callable, List from manifest import Manifest class InputOutputPrompt: def __init__(self, input_formatter: Callable, output_formatter: Callable, required_keys: List, input_output_sep: str = "\n", example_sep: str = "\n\n", instruction: str = "" ): self.input_formatter = input_formatter self.output_formatter = output_formatter self.required_keys = required_keys self.input_output_sep = input_output_sep self.example_sep = example_sep self.instruction = instruction def __call__(self, input_output_pairs: pd.DataFrame): examples = [] for _, example in input_output_pairs.iterrows(): examples.append(f"{self.input_formatter(example)}{self.input_output_sep}{self.output_formatter(example)}") if examples: input_str = self.example_sep.join(examples) res = f"{self.instruction}{input_str}" else: res = f"{self.instruction}".rstrip() return res def __repr__(self): dummy_ex = pd.DataFrame([{k: f"<{k.upper()}>" for k in self.required_keys}]) st = self(dummy_ex) return st def prefix_formatter(ex_keys: List[str], prefix: str, error_on_empty: bool = True) -> str: def full_prefix_formatter(ex: pd.Series): for k in ex_keys: if k in ex: return f"{prefix} {getattr(ex, k)}" if error_on_empty: raise ValueError(f"Example {ex} has no value for any of the keys {ex_keys}") else: return f"{prefix}" return full_prefix_formatter def get_manifest_session( client_name="huggingface", client_engine=None, client_connection="http://127.0.0.1:5000", cache_connection=None, temperature=0, top_p=1.0, ): if client_name == "huggingface" and temperature == 0: params = { "temperature": 0.001, "do_sample": False, "top_p": top_p, } elif client_name in {"openai", "ai21"}: params = { "temperature": temperature, "top_p": top_p, "engine": client_engine, } else: raise ValueError(f"{client_name} is not a valid client name") manifest = Manifest( client_name=client_name, client_connection=client_connection, cache_name="sqlite", cache_connection=cache_connection, session_id=None, **params, ) params = manifest.client.get_model_params() model_name = params["model_name"] if "engine" in params: model_name += f"_{params['engine']}" return manifest, model_name def get_response( prompt, manifest, overwrite=False, max_toks=10, stop_token=None, gold_choices=[], verbose=False, ): prompt = prompt.strip() if gold_choices: gold_choices = [" " + g.strip() for g in gold_choices] response_obj = manifest.run( prompt, gold_choices=gold_choices, overwrite_cache=overwrite, return_response=True ) response_obj = response_obj.get_json_response()["choices"][0] log_prob = response_obj["text_logprob"] response = response_obj["text"] else: response = manifest.run( prompt, max_tokens=max_toks, stop_token=stop_token, overwrite_cache=overwrite, ) log_prob = None if verbose: print("\n***Prompt***\n", prompt) print("\n***Response***\n", response) if log_prob: return response, log_prob return response def load_hf_data(save_dir, task_name, val_split, hf_name, overwrite_data): save_data = Path(f"{save_dir}/{task_name}/data.feather") if not save_data.exists() or overwrite_data: dataset = load_dataset(hf_name) test_data = dataset[val_split].to_pandas() test_data.to_feather(f"{save_data}") else: print(f"Reading test data from {save_data}") test_data = pd.read_feather(f"{save_data}") save_data_train = Path(f"{save_dir}/{task_name}/train_data.feather") if not save_data_train.exists() or overwrite_data: dataset = load_dataset(hf_name) train_data = dataset["train"].to_pandas() train_data.to_feather(f"{save_data_train}") else: print(f"Reading train data from {save_data_train}") train_data = pd.read_feather(f"{save_data_train}") print(f"Test Data Size: {len(test_data)}") print(f"Train Data Size: {len(train_data)}") return test_data, train_data def save_log(task_name, expt_name, log, final_run_dir): final_run_dir = Path(final_run_dir) output_fpath = final_run_dir / task_name output_fpath.mkdir(parents=True, exist_ok=True) print("Saving to", output_fpath / f"{expt_name}.json") assert all(a in list(log.values())[0].keys() for a in ["ind","example","pred","gold"]) with open(output_fpath / f"{expt_name}.json", "w") as f: json.dump(log, f) def text_f1(preds, golds): """Compute average F1 of text spans. Taken from Squad without prob threshold for no answer. """ total_f1 = 0 for pred, gold in zip(preds, golds): pred_toks = pred.split() gold_toks = gold.split() common = Counter(pred_toks) & Counter(gold_toks) num_same = sum(common.values()) if len(gold_toks) == 0 or len(pred_toks) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise total_f1 += int(gold_toks == pred_toks) elif num_same == 0: total_f1 += 0 else: precision = 1.0 * num_same / len(pred_toks) recall = 1.0 * num_same / len(gold_toks) f1 = (2 * precision * recall) / (precision + recall) total_f1 += f1 f1_avg = total_f1 / len(golds) return f1_avg def accuracy_span_overlap(preds, golds): correct = 0 for pred, gold in zip(preds, golds): found = False for p in pred: for g in gold: if len(p) < len(g): if p.lower() in g.lower(): found = True break else: if g.lower() in p.lower(): found = True break if found: correct += 1 return correct / len(preds)
ama_prompting-main
ablations/T0_variants/utils.py
#!/usr/bin/env python # coding: utf-8 from pathlib import Path import argparse from typing import Counter import pandas as pd import json import numpy as np import datetime import os import random from utils import save_log, get_manifest_session DATA_DIR = os.environ.get("AMA_DATA", "/home/data") def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--seed", type=int, default=3) parser.add_argument( "--num_run", type=int, default=-1, help="Number of rows of test data to run" ) parser.add_argument( "--k_shot", type=int, default=3, help="Number of few shot" ) parser.add_argument( "--num_boost", type=int, default=3, help="Number of few shot sets to boost over") parser.add_argument( "--boost_train_examples", type=int, default=1000, help="Number of training examples to run through for boosting" ) parser.add_argument( "--output_metrics_file", type=str, default="decomposition_metrics.json", help="Output file for all metrics." ) parser.add_argument( "--save_dir", type=str, default="/home/final_runs/", help="Data directory" ) parser.add_argument( "--run_decomp", type=int, default=1, help="Run decomp", choices=[0, 1], ) parser.add_argument( "--run_zeroshot", type=int, default=1, help="Run zeroshot", choices=[0, 1], ) parser.add_argument( "--run_fewshot", type=int, default=1, help="Run fewshot", choices=[0, 1], ) parser.add_argument( "--run_zeroshot_decomp", type=int, default=0, help="Run zero shot decomp", choices=[0, 1], ) parser.add_argument( "--overwrite_boost_exs", type=int, default=0, help="Overwrite boost examples", choices=[0, 1], ) parser.add_argument( "--overwrite_data", type=int, default=0, help="Overwrite saved data examples", choices=[0, 1], ) # Manifest parser.add_argument( "--client_name", type=str, default="huggingface", help="Client name manifest", choices=["huggingface", "openai", "ai21"], ) parser.add_argument( "--client_engine", type=str, default=None, help="Client engine manifest. Only used for openai/ai21", choices=["davinci"], ) parser.add_argument( "--client_connection", type=str, default="http://127.0.0.1:5001", help="Client connection str", ) parser.add_argument( "--cache_connection", type=str, default="/home/manifest/final_runs.sqlite", help="Cache connection str", ) parser.add_argument( "--overwrite_manifest", type=int, default=0, help="Overwrite manifest", choices=[0, 1], ) return parser.parse_args() class Decomposition: def __init__(self, task_name, data_dir, val_split="validation"): self.task_name = task_name self.data_dir = data_dir self.val_split = val_split def read_data(self, save_dir, overwrite_data): save_data = Path(f"{save_dir}/{self.task_name}/data.feather") if not save_data.exists() or overwrite_data: test_data = pd.read_feather(f"{self.data_dir}/{self.val_split}.feather") test_data.to_feather(f"{save_data}") else: print(f"Reading test data from {save_data}") test_data = pd.read_feather(save_data) save_data = Path(f"{save_dir}/{self.task_name}/train_data.feather") if not save_data.exists() or overwrite_data: train_data = pd.read_feather(f"{self.data_dir}/train.feather") else: print(f"Reading train data from {save_data}") train_data = pd.read_feather(save_data) print(f"Test Data Size: {len(test_data)}") print(f"Train Data Size: {len(train_data)}") return test_data, train_data def get_few_shot_examples(self, train_data, k_shot): """Get few shot examples""" return train_data.sample(k_shot) def get_boost_decomp_examples(self, train_data, boost_i=0): """Get boost examples""" raise NotImplementedError() def zero_few_baseline( self, test_data, few_shot_df, manifest, overwrite_manifest, do_few_shot=True ): """Zero and few shot baseline""" raise NotImplementedError() def run_decomposed_prompt( self, test_data, boost_data_train, boost_dfs, manifest, overwrite_manifest ): """Decomposition run""" raise NotImplementedError() def merge_boosted_preds(self, boosted_preds, all_boost_train_preds, train_labels, exp_log, expt_log_train, indecisive_ans=None): """Merge boosted preds""" if isinstance(boosted_preds, list): boosted_preds = np.array(boosted_preds) if isinstance(all_boost_train_preds, list): all_boost_train_preds = np.array(all_boost_train_preds) if isinstance(train_labels, list): train_labels = np.array(train_labels) uniq = np.unique(boosted_preds) pred_map = {} if "yes" in uniq: pred_map = {"yes": 1, "no": -1, "neither": 0} elif "true" in uniq: pred_map = {"true": 1, "false": -1, "neither": 0} elif "positive" in uniq: pred_map = {"positive": 1, "negative": -1, "neutral": 0} pred_map_inv = {v:k for k,v in pred_map.items()} use_pred_map = False if all(p.lower() in pred_map for p in uniq): use_pred_map = True if use_pred_map: # Cast to integers boosted_preds = np.array([[pred_map[p.lower()] for p in preds] for preds in boosted_preds]) all_boost_train_preds = np.array( [[pred_map[p.lower()] for p in preds] for preds in all_boost_train_preds] ) train_labels = np.array([pred_map[p.lower()] for p in train_labels]) if indecisive_ans: indecisive_ans = pred_map[indecisive_ans.lower()] # Take majority vote preds_test = [] for i, voter_preds in enumerate(boosted_preds): most_common = Counter(voter_preds).most_common(1)[0] if indecisive_ans and len(voter_preds) > 1 and most_common[1] == 1: majority_vote_pred = indecisive_ans else: majority_vote_pred = most_common[0] if use_pred_map: majority_vote_pred = pred_map_inv[majority_vote_pred] preds_test.append(majority_vote_pred) exp_log[i]["pred"] = majority_vote_pred # Take majority vote preds_train = [] for i, voter_preds in enumerate(all_boost_train_preds): most_common = Counter(voter_preds).most_common(1)[0] if indecisive_ans and len(voter_preds) > 1 and most_common[1] == 1: majority_vote_pred = indecisive_ans else: majority_vote_pred = most_common[0] if use_pred_map: majority_vote_pred = pred_map_inv[majority_vote_pred] preds_train.append(majority_vote_pred) expt_log_train[i]["pred"] = majority_vote_pred return preds_test def run(self, args): print(json.dumps(vars(args), indent=4)) random.seed(args.seed) np.random.seed(args.seed) save_path = Path(f"{args.save_dir}/{self.task_name}") save_path.mkdir(parents=True, exist_ok=True) data_test, data_train = self.read_data(args.save_dir, bool(args.overwrite_data)) # Subsample train for boost exps if args.boost_train_examples >= 0: boost_data_train = data_train.head(min(len(data_train), args.boost_train_examples)) else: boost_data_train = data_train # Reset indexes for enumerations boost_data_train = boost_data_train.reset_index(drop=True) data_test = data_test.reset_index(drop=True) data_train = data_train.reset_index(drop=True) num_run = ( min(args.num_run, len(data_test)) if args.num_run > 0 else len(data_test) ) save_results = True if num_run != len(data_test): print("Using {} rows".format(num_run)) data_test = data_test.iloc[:num_run] save_results = False runner, model_name = get_manifest_session( client_name=args.client_name, client_engine=args.client_engine, client_connection=args.client_connection, cache_connection=args.cache_connection, ) model_name = model_name.replace("/", "_") print("Model name:", model_name) # Read in few shot examples few_shot_path = save_path /f"{args.k_shot}_shot_examples.feather" if bool(args.overwrite_data) or not few_shot_path.exists(): mini_df = self.get_few_shot_examples(data_train, args.k_shot) mini_df.reset_index().to_feather(few_shot_path) else: print(f"Reading few show examples from {few_shot_path}") mini_df = pd.read_feather(few_shot_path) # Read in few shot decomp examples - one data frame per decomp step boost_examples = [] for i in range(args.num_boost): boost_examples_per_step = [] # Get all steps boost_examples_paths = list(save_path.glob(f"boost_examples_{i}_step*.feather")) if bool(args.overwrite_boost_exs) or not boost_examples_paths or not all(p.exists() for p in boost_examples_paths): boost_df_steps = self.get_boost_decomp_examples(data_train, boost_id=i) if not isinstance(boost_df_steps, list) or not isinstance( boost_df_steps[0], pd.DataFrame ): raise ValueError("Must return list of dataframes, one per step") for step, boost_df in enumerate(boost_df_steps): boost_df.reset_index().to_feather(save_path / f"boost_examples_{i}_step{step}.feather") print(f"Saving boost examples to", save_path / f"boost_examples_{i}_step{step}.feather") boost_examples_per_step.append(boost_df) else: for boost_examples_p in sorted(boost_examples_paths): print(f"Reading boost examples from {boost_examples_p}") boost_examples_per_step.append(pd.read_feather(boost_examples_p)) boost_examples.append(boost_examples_per_step) today = datetime.datetime.today().strftime("%m%d%Y") # Default metrics metric_zero = -1.0 metric_few = -1.0 metric_decomposed = -1.0 metric_decomposed_by_boost = [] metric_zeroshot_decomposed = -1.0 if bool(args.run_zeroshot): # Zero Shot run_name = f"{model_name}_0shot" exp_zero, metric_zero = self.zero_few_baseline( test_data=data_test, few_shot_df=mini_df, manifest=runner, overwrite_manifest=args.overwrite_manifest, do_few_shot=False, ) if save_results: save_log(self.task_name, run_name, exp_zero, args.save_dir) if bool(args.run_fewshot): # Few Shot run_name = f"{model_name}_{args.k_shot}shot" exp_few, metric_few = self.zero_few_baseline( test_data=data_test, few_shot_df=mini_df, manifest=runner, overwrite_manifest=args.overwrite_manifest, do_few_shot=True, ) if save_results: save_log(self.task_name, run_name, exp_few, args.save_dir) if bool(args.run_decomp): # Decomp run_name = f"{model_name}_decomposed_{today}" exp_decomposed, exp_decomposed_train, metric_decomposed, metric_decomposed_by_boost = self.run_decomposed_prompt( test_data=data_test, boost_data_train=boost_data_train, boost_dfs=boost_examples, manifest=runner, overwrite_manifest=args.overwrite_manifest ) if save_results: save_log( self.task_name, run_name, exp_decomposed, args.save_dir ) if exp_decomposed_train: save_log( self.task_name, f"{run_name}_train", exp_decomposed_train, args.save_dir ) # Zero shot decomp exp_zeroshot_decomposed = [] if bool(args.run_zeroshot_decomp): run_name = f"{model_name}_decomposed_0shot_{today}" ( exp_zeroshot_decomposed, exp_zeroshot_decomposed_train, metric_zeroshot_decomposed, _, ) = self.run_decomposed_prompt( test_data=data_test, boost_data_train=boost_data_train, boost_dfs=[[pd.DataFrame() for _ in range(len(boost_examples[0]))]], manifest=runner, overwrite_manifest=args.overwrite_manifest, ) if save_results and len(exp_zeroshot_decomposed) > 0: save_log( self.task_name, run_name, exp_zeroshot_decomposed, args.save_dir, ) if exp_zeroshot_decomposed_train: save_log( self.task_name, f"{run_name}_train", exp_zeroshot_decomposed_train, args.save_dir, ) print("Accuracy Zero Shot", metric_zero) print("Accuracy Few Shot", metric_few) if len(metric_decomposed_by_boost) > 0: print("Accuracy by Boost Set Decomposed", metric_decomposed_by_boost) print("Accuracy by Boost Set Decomposed Average", np.mean(metric_decomposed_by_boost)) print("Accuracy Boost Decomposed", metric_decomposed) if len(exp_zeroshot_decomposed) > 0: print("Accuracy Zero Shot Decomposed", metric_zeroshot_decomposed) metrics = { "model_name": model_name, "task_name": self.task_name, "today": today, "zero_shot": metric_zero, "few_shot": metric_few, "decomposed": metric_decomposed, "decomposed_by_boost": metric_decomposed_by_boost, "decomposed_by_boost_avg": np.mean(metric_decomposed_by_boost), "zero_shot_decomposed": metric_zeroshot_decomposed, } output_metrics = Path(args.output_metrics_file) output_metrics.parent.mkdir(parents=True, exist_ok=True) with open(output_metrics, "a") as f: f.write(json.dumps(metrics) + "\n") print(f"Saved metrics to {output_metrics}") print(f"Saved final data to", Path(args.save_dir) / self.task_name)
ama_prompting-main
ablations/T0_variants/decomposition.py
#!/usr/bin/env python # coding: utf-8 import os from tqdm.auto import tqdm import pandas as pd from sklearn.metrics import classification_report from decomposition import Decomposition, get_args, DATA_DIR from utils import get_response, InputOutputPrompt from collections import defaultdict, Counter class WICDecomp(Decomposition): def __init__(self, task_name, data_dir, val_split="validation"): super().__init__(task_name, data_dir, val_split) def get_boost_decomp_examples(self, data_train, boost_id): lst = [ "super_glue_wic_affirmation_true_or_false", "super_glue_wic_GPT_3_prompt", "super_glue_wic_GPT_3_prompt_with_label", "super_glue_wic_grammar_homework", "super_glue_wic_polysemous", "super_glue_wic_question_context", "super_glue_wic_question_context_meaning", "super_glue_wic_question_context_meaning_with_label", "super_glue_wic_same_sense", "super_glue_wic_similar_sense", ] file_path = lst[boost_id] print(f"FILE PATH: {file_path}") train_data = pd.read_feather(f"{DATA_DIR}/P3/data_feather/{file_path}/train.feather") val_data = pd.read_feather(f"{DATA_DIR}/P3/data_feather/{file_path}/validation.feather") return [ train_data, val_data ] def zero_few_baseline( self, test_data, few_shot_df, manifest, overwrite_manifest, do_few_shot=True, ): expt_log = {} preds = [] labels = [] labels_names = set(test_data["targets_pretokenized"]) labels_names = [l.lower().strip() for l in labels_names] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): if ind in expt_log: pred = entry["pred"] gold = entry["gold"] else: text = row["inputs_pretokenized"] gold = row["targets_pretokenized"] icl_str = "" if do_few_shot: for s_ind, s_row in few_shot_df.iterrows(): icl_str += f"{s_row['inputs_pretokenized']} {s_row['targets_pretokenized']}\n\n\n" text = row["inputs_pretokenized"] gold = row["targets_pretokenized"] prompt = f"{icl_str}{{text:}}" pmp = prompt.format(text=text) if i == 0: print(pmp) raw_answer = get_response( pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=30, ) answer = raw_answer.strip().lower() answer = answer.split("\n") answer = [a for a in answer if a] answer = [ a for a in answer if any(l.lower() in a.lower() for l in labels_names) ] if answer: answer = answer[0] else: answer = "" answer = "".join( [a for a in answer if a not in [".", ",", "?", ";", ":", "'", '"']] ) is_yes = "yes" in answer.split() is_no = "no" in answer.split() pred = "" if is_yes and (not is_no): pred = "yes" if is_no and (not is_yes): pred = "no" entry = { "ind": ind, "example": text, "base_prompt": pmp, "raw_answer": raw_answer, "pred": pred, "gold": gold.strip().lower(), } expt_log[ind] = entry preds.append(pred) labels.append(gold) report = classification_report(labels, preds, output_dict=True) return expt_log, report["accuracy"] def run_decomposed_prompt( self, test_data, boost_data_train, boost_dfs, manifest, overwrite_manifest ): expt_log, all_boost_preds, labels = self._run_decomp_single_data(test_data, boost_dfs, manifest, overwrite_manifest, do_train=0) expt_log_train, all_boost_train_preds, train_labels = self._run_decomp_single_data(boost_data_train, boost_dfs, manifest, overwrite_manifest, do_train=1) # Do WS preds = self.merge_boosted_preds(all_boost_preds, all_boost_train_preds, train_labels, expt_log, expt_log_train) # Get accuracies across all boost sets individual_accuracies = [] for i in range(len(all_boost_preds[0])): individual_accuracies.append(classification_report(labels, [p[i] for p in all_boost_preds], output_dict=True)["accuracy"]) report = classification_report(labels, preds, output_dict=True) return expt_log, expt_log_train, report["accuracy"], individual_accuracies def _run_decomp_single_data(self, test_data, boost_dfs, manifest, overwrite_manifest, do_train=-1): expt_log = {} all_boost_preds = [] labels = [] label_name_to_maping = { "always": "true", "never": "false", "true": "true", "false": "false", "no": "false", "yes": "true", "impossible": "false", "guaranteed": "true", } prompts_across_boost = defaultdict(list) preds_across_boost = defaultdict(list) for boost_num, boost_examples in enumerate(boost_dfs): if do_train: data = boost_examples[0].iloc[:1] elif not do_train: data = boost_examples[1] else: raise ValueError("Unsupported value for do train.") for i, (ind, row) in tqdm(enumerate(data.iterrows()), total=len(data)): input = row["inputs_pretokenized"] gold = row["targets_pretokenized"] all_prompts = [] raw_answer = get_response( input, manifest, overwrite=bool(overwrite_manifest), max_toks=30, ) all_prompts.append(input) answer = raw_answer.lower() if answer not in label_name_to_maping: pred = '' print("BAD ANSWER", answer) else: pred = label_name_to_maping[answer] prompts_across_boost[i].append(all_prompts) preds_across_boost[i].append(pred) if gold.lower() not in label_name_to_maping: import pdb; pdb.set_trace() for i, (ind, row) in enumerate(data.iterrows()): label = row["targets_pretokenized"].lower() entry = { "ind": ind, "prompts": prompts_across_boost[i], "preds_boost": preds_across_boost[i], "example": row['inputs_pretokenized'], "gold": label, } expt_log[ind] = entry all_boost_preds.append(preds_across_boost[ind]) labels.append(label_name_to_maping[label]) return expt_log, all_boost_preds, labels def main(): args = get_args() args.num_boost = 9 task_name = "wic_t0_variants" data_dir = f"{DATA_DIR}/P3/data_feather/super_glue_wic_GPT_3_prompt/" decomp = WICDecomp(task_name, data_dir) decomp.run(args) if __name__ == "__main__": main()
ama_prompting-main
ablations/T0_variants/WIC_variants.py
#!/usr/bin/env python # coding: utf-8 import os from tqdm.auto import tqdm import pandas as pd from sklearn.metrics import classification_report from decomposition import Decomposition, get_args, DATA_DIR from utils import get_response, InputOutputPrompt from collections import defaultdict, Counter class RTEDecomp(Decomposition): def __init__(self, task_name, data_dir, val_split="validation"): super().__init__(task_name, data_dir, val_split) def get_boost_decomp_examples(self, data_train, boost_id): lst = [ 'super_glue_rte_GPT_3_style', 'super_glue_rte_does_it_follow_that', 'super_glue_rte_MNLI_crowdsource', 'super_glue_rte_can_we_infer', 'super_glue_rte_justified_in_saying', 'super_glue_rte_does_this_imply', 'super_glue_rte_guaranteed_true', 'super_glue_rte_based_on_the_previous_passage', 'super_glue_rte_should_assume', 'super_glue_rte_must_be_true' ] file_path = lst[boost_id] print(f"FILE PATH: {file_path}") train_data = pd.read_feather(f"{DATA_DIR}/P3/data_feather/{file_path}/train.feather") val_data = pd.read_feather(f"{DATA_DIR}/P3/data_feather/{file_path}/validation.feather") return [ train_data, val_data ] def zero_few_baseline( self, test_data, few_shot_df, manifest, overwrite_manifest, do_few_shot=True, ): expt_log = {} preds = [] labels = [] labels_names = set(test_data["targets_pretokenized"]) labels_names = [l.lower().strip() for l in labels_names] for i, (ind, row) in tqdm( enumerate(test_data.iterrows()), total=len(test_data) ): if ind in expt_log: pred = entry["pred"] gold = entry["gold"] else: text = row["inputs_pretokenized"] gold = row["targets_pretokenized"] icl_str = "" if do_few_shot: for s_ind, s_row in few_shot_df.iterrows(): icl_str += f"{s_row['inputs_pretokenized']} {s_row['targets_pretokenized']}\n\n\n" text = row["inputs_pretokenized"] text = text.replace("True, False, or Neither?", "") text = text + ". True, False, or Neither?" gold = row["targets_pretokenized"] prompt = f"{icl_str}{{text:}}" pmp = prompt.format(text=text) if i == 0: print(pmp) raw_answer = get_response( pmp, manifest, overwrite=bool(overwrite_manifest), max_toks=30, ) answer = raw_answer.strip().lower() answer = answer.split("\n") answer = [a for a in answer if a] answer = [ a for a in answer if any(l.lower() in a.lower() for l in labels_names) ] if answer: answer = answer[0] else: answer = "" answer = "".join( [a for a in answer if a not in [".", ",", "?", ";", ":", "'", '"']] ) is_yes = "true" in answer.split() is_no = "false" in answer.split() is_maybe = "neither" in answer.split() or "unknown" in answer.split() or "maybe" in answer.split() pred = "Neither" if is_yes and (not is_maybe and not is_no): pred = "True" if is_no and (not is_maybe and not is_yes): pred = "False" if is_maybe and (not is_no and not is_yes): pred = "Neither" entry = { "ind": ind, "example": text, "base_prompt": pmp, "raw_answer": raw_answer, "pred": pred, "gold": gold, } expt_log[ind] = entry preds.append(pred) labels.append(gold) report = classification_report(labels, preds, output_dict=True) return expt_log, report["accuracy"] def run_decomposed_prompt( self, test_data, boost_data_train, boost_dfs, manifest, overwrite_manifest ): expt_log, all_boost_preds, labels = self._run_decomp_single_data(test_data, boost_dfs, manifest, overwrite_manifest, do_train=0) expt_log_train, all_boost_train_preds, train_labels = self._run_decomp_single_data(boost_data_train, boost_dfs, manifest, overwrite_manifest, do_train=1) # Do WS preds = self.merge_boosted_preds(all_boost_preds, all_boost_train_preds, train_labels, expt_log, expt_log_train) # Get accuracies across all boost sets individual_accuracies = [] for i in range(len(all_boost_preds[0])): individual_accuracies.append(classification_report(labels, [p[i] for p in all_boost_preds], output_dict=True)["accuracy"]) report = classification_report(labels, preds, output_dict=True) return expt_log, expt_log_train, report["accuracy"], individual_accuracies def _run_decomp_single_data(self, test_data, boost_dfs, manifest, overwrite_manifest, do_train=-1): expt_log = {} all_boost_preds = [] labels = [] label_name_to_maping = { "always": "true", "never": "false", "true": "true", "false": "false", "no": "false", "yes": "true", "impossible": "false", "guaranteed": "true", } prompts_across_boost = defaultdict(list) preds_across_boost = defaultdict(list) for boost_num, boost_examples in enumerate(boost_dfs): if do_train: data = boost_examples[0].iloc[:1000] elif not do_train: data = boost_examples[1] else: raise ValueError("Unsupported value for do train.") for i, (ind, row) in tqdm(enumerate(data.iterrows()), total=len(data)): input = row["inputs_pretokenized"] gold = row["targets_pretokenized"] all_prompts = [] raw_answer = get_response( input, manifest, overwrite=bool(overwrite_manifest), max_toks=30, ) all_prompts.append(input) answer = raw_answer.lower() if answer not in label_name_to_maping: pred = 'neither' print("BAD ANSWER", answer) else: pred = label_name_to_maping[answer] prompts_across_boost[i].append(all_prompts) preds_across_boost[i].append(pred) if gold.lower() not in label_name_to_maping: import pdb; pdb.set_trace() for i, (ind, row) in enumerate(data.iterrows()): label = row["targets_pretokenized"].lower() entry = { "ind": ind, "prompts": prompts_across_boost[i], "preds_boost": preds_across_boost[i], "example": row['inputs_pretokenized'], "gold": label, } expt_log[ind] = entry all_boost_preds.append(preds_across_boost[ind]) labels.append(label_name_to_maping[label]) return expt_log, all_boost_preds, labels def main(): args = get_args() args.num_boost = 10 task_name = "rte_t0_variants" data_dir = f"{DATA_DIR}/P3/data_feather/super_glue_rte_GPT_3_style/" decomp = RTEDecomp(task_name, data_dir) decomp.run(args) if __name__ == "__main__": main()
ama_prompting-main
ablations/T0_variants/RTE_variants.py
import numpy as np import itertools import matplotlib.pyplot as plt import scipy.stats class Ising(): def __init__(self, m, potentials, thetas = None, vals = [-1, 1], ) -> None: self.m = m self.v = m + 1 # total number of vertices self.potentials = potentials self.vals = vals #TODO support values in 0, 1 if thetas is not None: assert len(thetas) >= len(potentials), f"Need to specify at least {len(potentials)} theta parameters." self.thetas = thetas else: self.thetas = np.random.rand(len(potentials)) self.support = np.array(list(map(list, itertools.product(vals, repeat=self.v)))) self._make_pdf() self._make_cdf() self._get_means() self._get_balance() self._get_accs() def _exponential_family(self, labels): x = 0.0 for i in range(len(self.potentials)): x += self.thetas[i] * labels[self.potentials[i]].prod() return np.exp(x) def _make_pdf(self): p = np.zeros(len(self.support)) for i, labels in enumerate(self.support): p[i] = self._exponential_family(labels) self.z = sum(p) self.pdf = p/self.z def _make_cdf(self): self.cdf = np.cumsum(self.pdf) def joint_p(self, C, values): p = 0.0 for k, labels in enumerate(self.support): flag = True for i in range(len(C)): prod = labels[C[i]].prod() if prod != values[i]: flag = False if flag == True: p += self.pdf[k] return p def expectation(self, C): return self.vals[0] * self.joint_p(C, self.vals[0] * np.ones(len(C))) + self.vals[1] * self.joint_p(C, self.vals[1] * np.ones(len(C))) def _get_means(self): self.means = np.zeros(self.m) for k in range(self.m): self.means[k] = self.expectation([[k]]) def _get_balance(self): self.balance = self.joint_p([[self.m]], [1]) # def _get_covariance(self): def _get_accs(self): """ self.accs[k, i, j] = Pr(lf_k = j | y = i) (i, j scaled to -1, 1 if needed) """ self.accs = np.zeros((self.m, 2, 2)) for k in range(self.m): self.accs[k, 1, 1] = self.joint_p([[k], [self.m]], [self.vals[1], self.vals[1]]) / self.balance self.accs[k, 0, 0] = self.joint_p([[k], [self.m]], [self.vals[0], self.vals[0]]) / (1 - self.balance) self.accs[k, 1, 0] = 1 - self.accs[k, 1, 1] self.accs[k, 0, 1] = 1 - self.accs[k, 0, 0] def sample(self): r = np.random.random_sample() smaller = np.where(self.cdf < r)[0] if len(smaller) == 0: i = 0 else: i = smaller.max() + 1 return self.support[i] def make_data(self, n, has_label = True): L = np.zeros((n, self.m)) gold = np.zeros(n) for i in range(n): l = self.sample() L[i, :] = l[:self.m] if has_label: gold[i] = l[self.m] return L.astype(int), gold.astype(int) def est_accs(m, vote, gold): # compute pr(lf | y) accuracies. Each prompt has 4 values (2x2) # we need to do this on the train/dev set classes = [0, 1] gold_idxs = [np.where(gold == -1)[0], np.where(gold == 1)[0]] accs = np.zeros((m, 2, 2)) # [i, j, k] = Pr(prompt_i = j| y = k) for p in range(m): for i in classes: for j in classes: accs[p, i, j] = len(np.where(vote[gold_idxs[i], p] == 2*j-1)[0]) / len(gold_idxs[i]) return accs def est_balance(gold, n): return len(np.where(gold == 1)[0]) / n # Pr(lf votes, y) def get_cond_probs(m, votes, y, accs, balance): pr_y = balance if y == 1 else 1 - balance prod = pr_y for i in range(m): prod *= accs[i, y, int(0.5*(votes[i] + 1))] # this assumes everything is independent return prod # Pr(y = 1 | lf votes) def get_probs(m, votes, accs, balance): pos = get_cond_probs(m, votes, 1, accs, balance) neg = get_cond_probs(m, votes, 0, accs, balance) if pos == 0: return 0 else: return pos / (pos + neg) def pick_best_prompt(m, vote, gold, n): # overall accuracies Pr(lf_p = y) on test (we don't know these) overall_train_acc = np.zeros(m) for i in range(m): overall_train_acc[i] = len(np.where((vote[:, i] == gold) == True)[0])/n return overall_train_acc.argmax() def main(): # number of weak labels m = 5 # total number of vertices v = m + 1 # randomly parametrize exponential family to determine accuracies and correlations #theta = np.random.rand() #theta_cliques = (np.random.randint(0, 2, 5)*2 - 1)*theta #theta = np.random.rand() #theta_cliques = [1, 1, 1, 1, 1, 1, 1] thetas = np.random.rand(30) # all conditionally independent potentials = [[5], [0], [1], [4], [0, 5], [1, 5], [2, 5], [3, 5], [4, 5]] pgm = Ising(m, potentials, thetas) n_train = 10000 vote_train, gold_train = pgm.make_data(n_train) n_test = 1000 vote_test, gold_test = pgm.make_data(n_test) accs = est_accs(m, vote_train, gold_train) balance = est_balance(gold_train, n_train) nb_output = np.zeros(n_test) # naive bayes mv_output = np.zeros(n_test) nb_err = 0 mv_err = 0 for i in range(n_test): nb_output[i] = 2*np.round(get_probs(m, vote_test[i], accs, balance))-1 if nb_output[i] != gold_test[i]: nb_err += 1 # note: play around with MV tie breaking strategy if len(np.where(vote_test[i] == 1)[0]) >= m / 2: mv_output[i] = 1 elif len(np.where(vote_test[i] == 1)[0]) < m / 2: mv_output[i] = -1 else: mv_output[i] = 2*np.random.randint(0, 2)-1 if mv_output[i] != gold_test[i]: mv_err += 1 nb_acc = 1 - (nb_err / n_test) mv_acc = 1 - (mv_err / n_test) #fs_acc = 1 - (fs_err / n_test) best_prompt = pick_best_prompt(m, vote_train, gold_train, n_train) best_prompt_acc = len(np.where((vote_test[:, best_prompt] == gold_test) == True)[0]) / n_test print(f"Naive bayes: {nb_acc}") print(f"Best prompt: {best_prompt_acc}") print(f"Majority vote: {mv_acc}") if __name__ == "__main__": main()
ama_prompting-main
boosting/pgm.py
import networkx as nx import numpy as np from itertools import chain, product, combinations from scipy.sparse import issparse import more_itertools import torch class DependentPGM: """ This class describes a PGM learned from labeled data with specified edge structure. Args: edges: list of edges that are dependent train_votes: n x m array of votes in {0, 1} train_gold: n array of true labels in {0, 1} """ def __init__( self, edges, train_votes, train_gold, abstains = False, classes = [0, 1], abstain_value = -1) -> None: """ Initialize the PGM by computing its junction tree factorization (c_tree and c_data) and by computing individual LF accuracy and class balance. """ self.edges = edges self.train_votes = train_votes self.train_gold = train_gold self.classes = classes self.k = len(classes) assert len(np.unique(self.train_gold)) == self.k self.abstains = abstains assert len(np.unique(self.train_votes)) == int(abstains) + self.k self.abstain_value = abstain_value self.n, self.m = self.train_votes.shape self.nodes = np.arange(self.m) self.higher_order = len(edges) != 0 # construct data structures containing dependency graph information (maximal cliques and separator sets) self._set_clique_tree() self._set_clique_data() # compute LF accuracies and class balance self._get_accs_and_cb() def _get_scaled(self): if self.classes == [0, 1]: self.train_votes_scaled = 2*self.train_votes - 1 self.train_gold_scaled = 2*self.train_gold - 1 if self.abstains: self.train_votes_scaled[self.train_votes == self.abstain_value] = 0 else: self.train_votes_scaled = self.train_votes self.train_gold_scaled = self.train_gold def _set_clique_tree(self): G1 = nx.Graph() G1.add_nodes_from(self.nodes) G1.add_edges_from(self.edges) # Check if graph is chordal # TODO: Add step to triangulate graph if not if not nx.is_chordal(G1): raise nx.NetworkXError("Graph triangulation not implemented.") # Create maximal clique graph G2 # Each node is a maximal clique C_i # Let w = |C_i \cap C_j|; C_i, C_j have an edge with weight w if w > 0 G2 = nx.Graph() for i, c in enumerate(nx.chordal_graph_cliques(G1)): G2.add_node(i, members=c) for i in G2.nodes(): for j in G2.nodes(): S = G2.nodes[i]["members"].intersection(G2.nodes[j]["members"]) w = len(S) if w > 0: G2.add_edge(i, j, weight=w, members=S) self.c_tree = nx.maximum_spanning_tree(G2) # should be maximum??? Because we want maximal separator sets # Return a minimum spanning tree of G2 def _set_clique_data(self): # Create a helper data structure which maps cliques (as tuples of member # sources) --> {start_index, end_index, maximal_cliques}, where # the last value is a set of indices in this data structure self.c_data = dict() for i in range(self.m): self.c_data[i] = { "vertices": [i], "max_cliques": set( # which max clique i belongs to [ j for j in self.c_tree.nodes() if i in self.c_tree.nodes[j]["members"] ] ), } # Get the higher-order clique statistics based on the clique tree # First, iterate over the maximal cliques (nodes of c_tree) and # separator sets (edges of c_tree) if self.higher_order: counter = 0 for item in chain(self.c_tree.nodes(), self.c_tree.edges()): if isinstance(item, int): C = self.c_tree.nodes[item] C_type = "node" elif isinstance(item, tuple): C = self.c_tree[item[0]][item[1]] C_type = "edge" else: raise ValueError(item) members = list(C["members"]) nc = len(members) # Else add one column for each possible value if nc != 1: # Add to self.c_data as well #idx = counter + m self.c_data[tuple(members)] = { "vertices": members, "max_cliques": set([item]) if C_type == "node" else set(item), } counter += 1 def _get_accs_and_cb(self): classes = [0, 1] self.gold_idxs = [np.where(self.train_gold == c)[0] for c in classes] self.accs = np.zeros((self.m, 2)) # [i, j, k] = Pr(prompt_i = j| y = k) for p in range(self.m): for i in classes: self.accs[p, i] = len(np.where(self.train_votes[self.gold_idxs[i], p] == 1)[0]) / len(self.gold_idxs[i]) self.accs = np.clip(self.accs, 0.0001, 0.9999) self.balance = len(self.gold_idxs[1]) / self.n def get_clique_probs(self, idxs, vals, y): """ Computes marginal probability over voters indexed by idx, Pr(votes_idxs = vals | y). """ truth_matrix = np.ones(len(self.gold_idxs[y])).astype(bool) for i, lf in enumerate(idxs): truth_matrix = np.logical_and(truth_matrix, self.train_votes[self.gold_idxs[y], lf] == vals[i]) if len(np.where(truth_matrix == True)[0]) == 0: return 0.00001 return len(np.where(truth_matrix == True)[0]) / len(self.gold_idxs[y]) def get_cond_probs(self, votes, y): """ Computes the probability Pr(votes | y). """ pr_y = self.balance if y == 1 else 1 - self.balance prod = pr_y for i in self.c_tree.nodes(): node = self.c_tree.nodes[i] members = list(node['members']) if len(members) == 1: v = members[0] print(f"multiplying by {votes[v] * self.accs[v, y]}") prod *= votes[v] * self.accs[v, y] + (1 - votes[v]) * (1 - self.accs[v, y]) else: print(members) print(f"multiplying by {self.get_clique_probs(members, votes[members], y)}") prod *= self.get_clique_probs(members, votes[members], y) for i in self.c_tree.edges(): edge = self.c_tree.edges[i] members = list(edge['members']) if len(members) == 1: v = members[0] deg = len(self.c_data[v]['max_cliques']) prod /= (votes[v] * self.accs[v, y] + (1 - votes[v]) * (1 - self.accs[v, y]))**(deg-1) print(members) print(f"Dividing by {votes[v] * self.accs[v, y] + (1 - votes[v]) * (1 - self.accs[v, y])} to the {deg - 1} power") else: deg = len(self.c_data[tuple(members)]['max_cliques']) prod /= (self.get_clique_probs(members, votes[members], y))**(deg-1) print(members) print(f"Dividing by {self.get_clique_probs(members, votes[members], y)} to the {deg - 1} power") print(prod) return prod def get_probs(self, votes): """ Computes the probability Pr(y = 1 | votes). """ pos = self.get_cond_probs(votes, 1) neg = self.get_cond_probs(votes, 0) if pos == 0: return 0 else: return pos / (pos + neg) def evaluate(self, test_votes, test_gold): """ Using our learned PGM, output rounded estimates of Pr(y = 1 | votes) and computes its accuracy. Args: test_votes: vote array to perform inference on in {0, 1} test_gold: true labels to compare to in {0, 1} """ n_test = len(test_votes) output_rounded = np.zeros(n_test) output_probs = np.zeros(n_test) err = 0 for i in range(n_test): output_probs[i] = self.get_probs(test_votes[i]) output_rounded[i] = np.round(output_probs[i]) err += output_rounded[i] != test_gold[i] accuracy = 1 - err / n_test return output_probs, output_rounded, accuracy def is_triangulated(nodes, edges): """ If a graph is triangulated (e.g. if a junction tree factorization exists). """ G1 = nx.Graph() G1.add_nodes_from(nodes) G1.add_edges_from(edges) return nx.is_chordal(G1) def structure_learning(m, votes, gold, acc_theta, classes = [0, 1], l1_lambda=0.2): """ Structure learning algorithm (Ising model selection) from Ravikumar (2010). Args: - votes: n_train x m array of training votes - gold: n_train array of gold labels on the training data - acc_theta: E[vote_i y] (where vote and y are scaled to [-1, 1]). This is a scaled version of accuracy that we will initialize some of the parameters in our PGM with in order to specify that we don't want to optimize over the edges between votes and y. We only are learning edges among votes! - classes: the list of classes the data can take on. - l1_lambda: l1 regularization strength """ # scale the data classes = np.sort(np.unique(gold)) vote_classes = np.sort(np.unique(votes)) if 0 in classes and 1 in classes: votes_scaled = 2*votes - 1 gold_scaled = 2*gold - 1 if len(vote_classes) == len(classes) + 1: votes_scaled[votes == -1] = 0 else: votes_scaled = votes gold_scaled = gold acc_theta = torch.from_numpy(acc_theta).type(torch.FloatTensor) all_thetas = np.zeros((m, m)) # learned thetas from alg # for each prompt, we fit a logistic regression model on it with prompt_i's output as the response variable and all otehr prompt outputs as the covariates. # big_theta is a vector of weights that denote dependence on each prompt (0 is independence). for v in range(m): print(f"Learning neighborhood of vertex {v}.") if len(classes) == 2: big_theta = learn_neighborhood(m, v, votes_scaled, gold_scaled, acc_theta, l1_lambda) else: big_theta = learn_neighborhood_multi(m, v, votes_scaled, gold_scaled, acc_theta, l1_lambda, classes) all_thetas[v] = big_theta return all_thetas # v is the vertex whose neighborhood graph we are estimating def learn_neighborhood(m, vertex, votes, gold, accs, l1_lambda, epochs = 50000): """ Learn the neighborhood graph for a vertex. Args: - m: number of prompts - vertex: the index of the prompt we are selecting as the response variable - votes: votes on training data - gold: gold label of training data - accs: training accuracies of each prompt we use to initialize the PGM parameters with - l1_lambda: regularization strength - epochs: number of iterations """ n = len(gold) vote_y = np.concatenate((votes, gold.reshape(n, 1)), axis=1) xr = vote_y[:, vertex] x_notr = np.delete(vote_y, vertex, axis=1) xr = torch.from_numpy(xr).type(torch.FloatTensor) x_notr = torch.from_numpy(x_notr).type(torch.FloatTensor) theta = torch.zeros(m) # last index is for accuracy between vertex and y theta[m - 1] = accs[vertex] # initialize this to be the train accuracy. We do want this to be an optimizable variable still though. theta.requires_grad_() optimizer = torch.optim.SGD([theta], lr=0.0001) for t in range(epochs): optimizer.zero_grad() # logistic regression from Ravikumar et al fx = (torch.log(torch.exp(torch.matmul(x_notr, theta)) + torch.exp(-torch.matmul(x_notr, theta))).mean()) loss = fx - torch.multiply(xr, x_notr.T).mean(dim=1).dot(theta) + l1_lambda * torch.linalg.vector_norm(theta[:m], ord=1) loss.backward() optimizer.step() #if t % 1000 == 0: # print(f"Loss: {loss}") big_theta = np.concatenate([theta.detach().numpy()[:vertex], [0], theta.detach().numpy()[vertex:m - 1]]) return big_theta # v is the vertex whose neighborhood graph we are estimating def learn_neighborhood_multi(m, vertex, votes, gold, accs, l1_lambda, classes, epochs = 50000): # votes: in range {0, ... k} n = len(gold) vote_y = np.concatenate((votes, gold.reshape(n, 1)), axis=1) xr = vote_y[:, vertex] x_notr = np.delete(vote_y, vertex, axis=1) xr = torch.from_numpy(xr).type(torch.FloatTensor) x_notr = torch.from_numpy(x_notr).type(torch.FloatTensor) theta = torch.zeros(m) # last index is for accuracy between vertex and y theta[m - 1] = accs[vertex] # initialize this theta.requires_grad_() optimizer = torch.optim.SGD([theta], lr=0.0001) for t in range(epochs): optimizer.zero_grad() # logistic regression from Ravikumar et al mu = 0 for i in range(x_notr.shape[1]): # mu = \sum_i theta_i * \sum_data sign{x_r = x_i} mu += (2*(xr == x_notr[:, i])-1).type(torch.FloatTensor).mean() * theta[i] fx = 0 for k in classes: # \sum_y exp( \sum_i theta_i sign(x_i = y)) "normalization" fx += torch.exp(torch.matmul((2*(x_notr == k)-1).type(torch.FloatTensor), theta)).mean() loss = fx - mu + l1_lambda * torch.linalg.vector_norm(theta[:m], ord=1) loss.backward() optimizer.step() #if t % 1000 == 0: # print(f"Loss: {loss}") big_theta = np.concatenate([theta.detach().numpy()[:vertex], [0], theta.detach().numpy()[vertex:m - 1]]) return big_theta def main(): # load data vote_arr_train = np.load('./data/youtube-spam/train_votes.npy').T vote_arr_test = np.load('./data/youtube-spam/test_votes.npy').T gold_arr_train = np.load('./data/youtube-spam/train_gold.npy').T gold_arr_test = np.load('./data/youtube-spam/test_gold.npy').T # vote_arr_train = np.concatenate((vote_arr_train[:, 0: 2], vote_arr_train[:, 4:]), axis=1) # vote_arr_test = np.concatenate((vote_arr_test[:, 0: 2], vote_arr_test[:, 4:]), axis=1) n_train, num_prompts = vote_arr_train.shape # make validation set np.random.seed(4) val_idxs = np.random.choice(np.arange(n_train), size= 28, replace=False) vote_arr_val = vote_arr_train[val_idxs, :] vote_arr_train = np.delete(vote_arr_train, val_idxs, axis=0) gold_arr_val = gold_arr_train[val_idxs] gold_arr_train = np.delete(gold_arr_train, val_idxs) nodes = np. arange(num_prompts) # specify edgeset # edges =[(0, 1)] #model = DependentPGM(edges, vote_arr_train, gold_arr_train) #probs, output, acc = model.evaluate(vote_arr_test, gold_arr_test) #print(acc) # Brute-force iteration through a bunch of edges all_edges = list(combinations(nodes, 2)) small_edgesets = list(more_itertools.powerset(all_edges)) #small_edgesets = list(combinations(all_edges, 0)) + list(combinations(all_edges, 1)) + list(combinations(all_edges, 2)) + list(combinations(all_edges, 3)) scores = np.zeros(len(small_edgesets)) for i, edgeset in enumerate(small_edgesets): if len(edgeset) > 4: break if not is_triangulated(nodes, edgeset): continue model = DependentPGM(edgeset, vote_arr_train, gold_arr_train) probs, output, scores[i] = model.evaluate(vote_arr_val, gold_arr_val) if i % 100 == 0: print(f"Edgeset: {edgeset} \n score: {scores[i]}") print(f"Best edgeset score: {scores.max()}") print(f"Best edgeset: {small_edgesets[scores.argmax()]}") edges = small_edgesets[scores.argmax()] vote_arr_train = np.concatenate((vote_arr_train, vote_arr_val)) gold_arr_train = np.concatenate((gold_arr_train, gold_arr_val)) model = DependentPGM(edges, vote_arr_train, gold_arr_train) probs, output, acc = model.evaluate(vote_arr_test, gold_arr_test) print(f"Final model accuracy: {acc}") if __name__ == "__main__": main()
ama_prompting-main
boosting/binary_deps.py
"""This script contains code to execute different methods""" from readline import append_history_file from sklearn.metrics import accuracy_score import numpy as np from snorkel.labeling.model import LabelModel from snorkel.utils import probs_to_preds import itertools import math import torch import collections from sklearn.linear_model import LogisticRegression import networkx as nx class Aggregator(): def __init__(self, train_votes, train_gold, test_votes, test_gold, abstains = False, classes=[0, 1], abstain_value = -1) -> None: # set votes and golds self.train_votes = train_votes self.train_gold = train_gold self.test_votes = test_votes self.test_gold = test_gold self.n_train, self.m = train_votes.shape self.n_test = len(test_gold) # in some cases, we need a validation set split from the training data np.random.seed(0) indices = np.random.permutation(self.n_train) n_val = int(self.n_train / 5) # 20% of the training dataset val_idx, train_idx = indices[:n_val], indices[n_val:] self.train_no_val_votes = self.train_votes[train_idx, :] self.val_votes = self.train_votes[val_idx, :] self.train_no_val_gold = self.train_gold[train_idx] self.val_gold = self.train_gold[val_idx] # check classes self.classes = classes self.k = len(classes) # print(np.unique(self.train_gold)) # print(np.unique(classes)) assert len(np.unique(self.train_gold)) == self.k assert len(np.unique(self.test_gold)) == self.k # check if abstains self.abstains = abstains #assert len(np.unique(self.train_votes)) == int(abstains) + self.k #assert len(np.unique(self.test_votes)) == int(abstains) + self.k self.abstain_value = abstain_value self.vote_classes = self.classes.copy() if abstains: assert self.abstain_value in self.train_votes assert self.abstain_value in self.test_votes self.vote_classes.append(self.abstain_value) self.nodes = np.arange(self.m) # construct scaled arrays (for binary) self._get_scaled() # get true accuracies on train and test self._get_train_acc() self._get_test_acc() # estimate some parameters self._estimate_balance() self._estimate_coverage() self._estimate_accs() self._estimate_test_accs() self._estimate_symmetric_accs() self._estimate_fs_accs() def _get_scaled(self): """ For binary tasks defined with classes [0, 1] and abstain -1, we construct scaled versions with classes [-1, 1] and abstain 0. Scaled versions of the data are used as input to certain methods that assume an Ising model (such as FlyingSquid). """ if self.classes == [0, 1]: self.train_votes_scaled = 2*self.train_votes - 1 self.test_votes_scaled = 2*self.test_votes - 1 self.train_no_val_votes_scaled = 2*self.train_no_val_votes - 1 self.val_votes_scaled = 2*self.val_votes - 1 self.train_gold_scaled = 2*self.train_gold - 1 self.test_gold_scaled = 2*self.test_gold - 1 self.train_no_val_gold_scaled = 2*self.train_no_val_gold - 1 self.val_gold_scaled = 2*self.val_gold - 1 if self.abstains: self.train_votes_scaled[self.train_votes == self.abstain_value] = 0 self.test_votes_scaled[self.test_votes == self.abstain_value] = 0 self.train_no_val_votes_scaled[self.train_no_val_votes == self.abstain_value] = 0 self.val_votes_scaled[self.val_votes == self.abstain_value] = 0 else: self.train_votes_scaled = self.train_votes self.test_votes_scaled = self.test_votes self.train_no_val_votes_scaled = self.train_no_val_votes self.val_votes_scaled = self.val_votes self.train_gold_scaled = self.train_gold self.test_gold_scaled = self.test_gold self.train_no_val_gold_scaled = self.train_no_val_gold self.val_gold_scaled = self.val_gold def _set_clique_tree(self, edgeset): """ Constructs a data structure c_tree that contains nodes and edges of the junction tree. Args: edgeset: List of tuples (i, j) for i, j = {0, ..., m} """ G1 = nx.Graph() G1.add_nodes_from(self.nodes) G1.add_edges_from(edgeset) self.higher_order = len(edgeset) != 0 # Check if graph is chordal # TODO: Add step to triangulate graph if not if not nx.is_chordal(G1): raise nx.NetworkXError("Graph triangulation not implemented.") # Create maximal clique graph G2 # Each node is a maximal clique C_i # Let w = |C_i \cap C_j|; C_i, C_j have an edge with weight w if w > 0 G2 = nx.Graph() for i, c in enumerate(nx.chordal_graph_cliques(G1)): G2.add_node(i, members=c) for i in G2.nodes(): for j in G2.nodes(): S = G2.nodes[i]["members"].intersection(G2.nodes[j]["members"]) w = len(S) if w > 0: G2.add_edge(i, j, weight=w, members=S) self.c_tree = nx.maximum_spanning_tree(G2) # should be maximum??? Because we want maximal separator sets # Return a minimum spanning tree of G2 def _set_clique_data(self): """ Creates a data structure c_data which maps cliques and separator sets to their maximal clique. """ self.c_data = dict() for i in range(self.m): self.c_data[i] = { "vertices": [i], "max_cliques": set( # which max clique i belongs to [ j for j in self.c_tree.nodes() if i in self.c_tree.nodes[j]["members"] ] ), } # Get the higher-order clique statistics based on the clique tree # First, iterate over the maximal cliques (nodes of c_tree) and # separator sets (edges of c_tree) if self.higher_order: counter = 0 for item in itertools.chain(self.c_tree.nodes(), self.c_tree.edges()): if isinstance(item, int): C = self.c_tree.nodes[item] C_type = "node" elif isinstance(item, tuple): C = self.c_tree[item[0]][item[1]] C_type = "edge" else: raise ValueError(item) members = list(C["members"]) nc = len(members) # Else add one column for each possible value if nc != 1: # Add to self.c_data as well #idx = counter + m self.c_data[tuple(members)] = { "vertices": members, "max_cliques": set([item]) if C_type == "node" else set(item), } counter += 1 def _estimate_balance(self): """ Estimates the class balance Pr(y) on training data. Sets self.balance to be an array of length k. """ self.gold_idxs = [np.where(self.train_gold == c)[0] for c in self.classes] self.balance = np.array([len(self.gold_idxs[c])/self.n_train for c in range(self.k)]) def _estimate_accs(self): """ Computes Pr(vote_i | y) on training data. Each prompt has k x k values. We ignore the abstaining case Pr(vote_i = 0 | y), since this is handled by self.coverage. """ k_votes = self.k vote_classes = self.classes self.nb_accs = np.zeros((self.m, self.k, k_votes)) # [i, j, k] = Pr(prompt_i = j| y = k) for p in range(self.m): for i in range(self.k): for j in range(k_votes): vc = vote_classes[j] self.nb_accs[p, i, j] = len(np.where(self.train_votes[self.gold_idxs[i], p] == vc)[0]) / len(self.gold_idxs[i]) # clip values to 0.0001, 0.9999 self.nb_accs[self.nb_accs > 1] = 0.9999 self.nb_accs[self.nb_accs == 0] = 0.0001 def _estimate_test_accs(self): self.gold_test_idxs = [np.where(self.test_gold == c)[0] for c in self.classes] self.nb_test_accs = np.zeros((self.m, self.k, self.k)) # [i, j, k] = Pr(prompt_i = j| y = k) for p in range(self.m): for i in range(self.k): for j in range(self.k): vc = self.classes[j] self.nb_test_accs[p, i, j] = len(np.where(self.test_votes[self.gold_test_idxs[i], p] == vc)[0]) / len(self.gold_test_idxs[i]) # clip values to 0.0001, 0.9999 self.nb_test_accs[self.nb_test_accs > 1] = 0.9999 self.nb_test_accs[self.nb_test_accs == 0] = 0.0001 def _estimate_symmetric_accs(self): """ Computes Pr(vote_i | y) on training data similarly to above, but assumes Pr(vote_i = c | y = c) = Pr(vote_i = y), independent of what the value of y is. Then, Pr(vote_i = c' | y = c) = (1 - Pr(vote_i = y)) / (k - 1) (uniform assumption) """ self.sym_accs = np.zeros((self.m, self.k, self.k)) for i in range(self.m): for j in range(self.k): for k in range(self.k): if j == k: self.sym_accs[i, j, k] = self.train_acc[i] # Pr(lf_i = c | y = c) = Pr(lf = y) else: self.sym_accs[i, j, k] = (self.coverage[i] - self.train_acc[i])/(self.k - 1) # divide uniformly among other classes def _estimate_coverage(self): """ Computes Pr(vote_i != 0) (coverage) and Pr(vote_i = 0 | y) for each y (abstain_rate). """ # Pr(vote_i != 0) self.coverage = np.array([len(np.where(self.train_votes[:, p] != self.abstain_value)[0]) / self.n_train for p in range(self.m)]) # Pr(vote_i = 0 | y) self.abstain_rate = np.zeros((self.m, self.k)) for i in range(self.m): for j in range(self.k): self.abstain_rate[i, j] = len(np.where(self.train_votes[self.gold_idxs[j], i] == self.abstain_value)[0]) / len(self.gold_idxs[j]) def _estimate_fs_accs(self, on_all_data = True): """ Estimates Pr(vote_i | y = 0, 1) using FlyingSquid algorithm. Args: - on_test: If we use the unlabeled test dataset or the labeled train dataset. Default is True. This version of FlyingSquid only handles the binary case (and is called on one-vs-all for multiclass) and works with scaled data. """ if self.k > 2: return if on_all_data: votes = np.concatenate((self.train_votes_scaled, self.test_votes_scaled)) n = self.n_train + self.n_test else: votes = self.test_votes_scaled n = self.n_test if self.abstains: # compute M[i, j] = E[vote_i * vote_j | vote_i, vote_j not abstaining] M = np.zeros((self.m, self.m)) for i in range(self.m): for j in range(self.m): no_abstains = np.where(np.logical_and(votes[:, i] != 0, votes[:, j] != 0))[0] M[i, j] = votes[no_abstains, i].dot(votes[no_abstains, j]) / len(no_abstains) else: # M[i, j] = E[vote_i * vote_j] M = votes.T.dot(votes)/n triplets = list(itertools.combinations(np.arange(self.m), 3)) # all possible combinations of triplets self.fs_accs = np.zeros((self.m, 2, 2)) total = math.comb(self.m-1, 2) # average over every combination of triplets for (i, j, k) in triplets: a = np.zeros(3) a[0] = 0.5*(np.sqrt(np.abs(M[i, j] * M[i, k] / M[j, k]))+1) a[1] = 0.5*(np.sqrt(np.abs(M[j, k] * M[i, j] / M[i, k]))+1) a[2] = 0.5*(np.sqrt(np.abs(M[i, k] * M[j, k] / M[i, j]))+1) # edge cases a[np.where(np.isnan(a))[0]] = 0.5 a[np.where(np.isinf(a))[0]] = 1 self.fs_accs[i, 1, 1] += a[0] self.fs_accs[j, 1, 1] += a[1] self.fs_accs[k, 1, 1] += a[2] self.fs_accs /= total self.fs_accs[self.fs_accs > 1] = 0.9999 # Flying Squid assumes symmetry, Pr(vote_i = 1 | y = 1) = Pr(vote_i = -1 | y = -1) self.fs_accs[:, 0, 0] = self.fs_accs[:, 1, 1] self.fs_accs[:, 1, 0] = 1 - self.fs_accs[:, 1, 1] self.fs_accs[:, 0, 1] = 1 - self.fs_accs[:, 1, 1] def _get_train_acc(self): """ Compute Pr(vote_i = y) on the training data. """ self.train_acc = (self.train_votes.T == self.train_gold).mean(axis=1) self.train_no_val_acc = (self.train_no_val_votes.T == self.train_no_val_gold).mean(axis=1) def _get_test_acc(self): """ Compute Pr(vote_i = y) on the test data. """ self.test_acc = (self.test_votes.T == self.test_gold).mean(axis=1) def pick_best(self): """Use the predictor with the best performance on the train set. """ self.best_prompt = np.argmax(self.train_acc) test_preds = self.test_votes[:, self.best_prompt] return accuracy_score(self.test_gold, test_preds) def majority_vote(self): """Take a majority vote over predictors. Current implementation ignores abstains. When there is a tie, we pick the prompt with the lowest index. When all prompts abstain, we just return the most common label argmax_y Pr(y). """ test_preds = np.zeros(self.n_test) for i in range(self.n_test): # Majority vote discards abstains if any if self.abstains: voters = self.test_votes[i, self.test_votes[i] != self.abstain_value] else: voters = self.test_votes[i] counts = collections.Counter(voters) if len(counts) == 0: # e.g. all prompts abstain --> return most common class label test_preds[i] = self.balance.argmax() else: test_preds[i] = counts.most_common(1)[0][0] return test_preds.astype(int), accuracy_score(self.test_gold, test_preds) def get_clique_probs(self, idxs, vals, y, symmetric = False): """ Computes marginal probability over votes indexed by idx, Pr(votes_idxs = vals | y), using training data. """ if symmetric: truth_matrix = np.ones(self.n_train).astype(bool) agree = np.where(vals == y)[0] disagree = np.where((np.logical_and(vals != self.abstain_value, vals != y)) == True)[0] for i, lf in enumerate(idxs): if i in agree: truth_matrix = np.logical_and(truth_matrix, self.train_votes[:, lf] == self.train_gold) elif i in disagree: truth_matrix = np.logical_and(truth_matrix, self.train_votes[:, lf] != self.train_gold) else: truth_matrix = np.logical_and(truth_matrix, self.train_votes[:, lf] == self.abstain_value) else: truth_matrix = np.ones(len(self.gold_idxs[y])).astype(bool) for i, lf in enumerate(idxs): truth_matrix = np.logical_and(truth_matrix, self.train_votes[self.gold_idxs[y], lf] == vals[i]) if len(np.where(truth_matrix == True)[0]) == 0: return 0.00001 if symmetric: return len(np.where(truth_matrix == True)[0]) / self.n_train else: return len(np.where(truth_matrix == True)[0]) / len(self.gold_idxs[y]) def get_clique_probs_unlabeled(self, idxs, on_all_data=True): if on_all_data: votes = np.concatenate((self.train_votes_scaled, self.test_votes_scaled)) n = self.n_train + self.n_test else: votes = self.test_votes_scaled n = self.n_test l = len(idxs) e_y = 2*self.balance[1] - 1 vote_moment = votes[:, idxs].prod(axis=1).mean() if l % 2 == 0: # E[Y] * E[lfs] = E[lfs Y] acc = vote_moment * e_y else: acc = vote_moment / e_y def get_cond_probs(self, votes, y, accs, edgeset = None, symmetric=False, abstains_symmetric = True): """ Computes the probability Pr(votes, y) assuming conditional independence. Args: - votes: m element array of votes in {-1, 0, ..., k-1} - y: the value of the label, in {0, ..., k - 1} - accs: the accuracy array, e.g. directly learned from data or from FlyingSquid - edgeset: set of edges to factorize probability with - abstains_symmetric: do we assume Pr(vote_i = 0 | y) = Pr(vote_i = 0) or not? """ pr_y = self.balance[y] prod = pr_y if edgeset is None: # in this case, do not need junction tree factorization. Just multiply accs together for p in range(len(votes)): if self.abstains and votes[p] == self.abstain_value: if abstains_symmetric: # we can drop Pr(lf_i = 0 | y) since it appears the same amount of times in numerator and denominator prod *= (1 - self.coverage[p]) # print(f"multiplying by abstain on {p}: {1 - self.coverage[p]}") else: prod *= self.abstain_rate[p, y] else: # print(f"multiplying by accuracy Pr(vote_{p} = {votes[p]} | y = {y}): {accs[p, y, votes[p]]}") prod *= accs[p, y, votes[p]] # this assumes everything is independent else: # multiply over maximal cliques for i in self.c_tree.nodes(): node = self.c_tree.nodes[i] members = list(node['members']) if len(members) == 1: v = members[0] if self.abstains and votes[v] == self.abstain_value: if abstains_symmetric: prod *= (1 - self.coverage[v]) # print(f"multiplying by abstain on {v}: {1 - self.coverage[v]}") else: #print("multiplying by abstains") prod *= self.abstain_rate[v, y] else: #print(f"multiplying by accuracy of {v}: {accs[v, y, votes[v]] }") prod *= accs[v, y, votes[v]] # print(f"multiplying by Pr(vote_{v} = {votes[v]} | y = {y}): {accs[v, y, votes[v]]}") else: #print(f"multiplying by prob over clique {members}: {self.get_clique_probs(members, votes[members], y, symmetric)}") prod *= self.get_clique_probs(members, votes[members], y, symmetric) # divide over separator sets for i in self.c_tree.edges(): edge = self.c_tree.edges[i] members = list(edge['members']) if len(members) == 1: v = members[0] deg = len(self.c_data[v]['max_cliques']) if self.abstains and votes[v] == self.abstain_value: if abstains_symmetric: prod /= (1 - self.coverage[v])**(deg - 1) else: if self.abstain_rate[v, y] == 0: prod /= 0.000001**(deg - 1) # edge cas else: prod /= self.abstain_rate[v, y]**(deg - 1) else: #print(f"Dividing by symmetric accuracy of {v}") prod /= accs[v, y, votes[v]]**(deg - 1) else: #print(f"Dividing by prob over clique {members}: {self.get_clique_probs(members, votes[members], y, symmetric)}") deg = len(self.c_data[tuple(members)]['max_cliques']) prod /= (self.get_clique_probs(members, votes[members], y, symmetric))**(deg-1) return prod def get_probs(self, votes, accs, edgeset = None, symmetric=False, abstains_symmetric = True): """ Computes the probability Pr(y | votes) using Bayes Rule over Pr(votes, y). Args: - votes: m element array of votes in {-1, 0, ..., k-1} - accs: the accuracy array, e.g. directly learned from data or from FlyingSquid - edgeset: set of edges to factorize probability with - abstains_symmetric: do we assume Pr(vote_i = 0 | y) = Pr(vote_i = 0) or not? """ p = np.zeros(self.k) for i in range(self.k): p[i] = self.get_cond_probs(votes, self.classes[i], accs, edgeset, symmetric, abstains_symmetric) p /= p.sum() # normalization return p def naive_bayes(self, accs = None, symmetric = False, abstains_symmetric=True): """ Naive bayes estimation. Estimate Pr(vote_i | y) from training data and use that to compute Pr(y = 1 | votes). Assumes conditional independence. Args: - accs: the accuracies [m x k x k] we estimate with - symmetric: Do we assume Pr(vote_i = c | y = c) = Pr(vote_i = y) for all c? - abstains_symmetric: Do we assume Pr(vote_i = 0 | y) = Pr(vote_i = 0)? This is reasonable when an abstain is due to a systematic error in the prompt that doesn't depend on the label of the data. """ test_preds = [] test_probs = [] if symmetric: accs = self.sym_accs else: if accs is None: accs = self.nb_accs for votes in self.test_votes: prob = self.get_probs(votes, accs, symmetric=symmetric, abstains_symmetric=abstains_symmetric) test_probs.append(prob) test_preds.append(np.argmax(prob)) return test_probs, accuracy_score(self.test_gold, test_preds) def junction_tree(self, edgeset, symmetric=False, abstains_symmetric=True, data='test'): """ Junction tree estimation. Estimate Pr(vote_i | y) from training data and use that to compute Pr(y = 1 | votes). Assumes edgeset structure. Args: - edgeset: List of tuples (i, j) for i, j in {0, ..., m} denoting edges to factorize distribution with. - symmetric: Do we assume Pr(vote_i = c | y = c) = Pr(vote_i = y) for all c? - abstains_symmetric: Do we assume Pr(vote_i = 0 | y) = Pr(vote_i = 0)? This is reasonable when an abstain is due to a systematic error in the prompt that doesn't depend on the label of the data. """ # construct auxiliary data structures self._set_clique_tree(edgeset) self._set_clique_data() # Get preds preds = [] probs = [] if data=='val': votes = self.val_votes gold = self.val_gold elif data=='test': votes = self.test_votes gold = self.test_gold else: votes = self.train_votes gold = self.train_gold if symmetric: accs = self.sym_accs else: accs = self.nb_accs for v in votes: prob = self.get_probs(v, accs, edgeset, symmetric=False, abstains_symmetric= abstains_symmetric) probs.append(prob) preds.append(np.argmax(prob)) return probs, accuracy_score(gold, preds) def conditional_entropy(self, votes, edgeset=None): """ Computes H(Y | votes) ~= -1/n sum_i sum_y' Pr(y = y' | votes_j) log Pr(y = y' | votes_j). Uses learned distribution as true one over Pr(y | votes) This computation is independent of aggregation approach. It uses direct estimation on the training dataset to learn the PGM. """ ce = 0 if edgeset is not None: self._set_clique_tree(edgeset) self._set_clique_data() #print("Votes 1") #print(votes) for i, vote in enumerate(votes): # compute Pr(y | lf) for all y. We are treating this estimated probability as the true distribution. prob_vector = self.get_probs(vote, self.nb_test_accs, edgeset, symmetric=False, abstains_symmetric=True) # print(prob_vector, vote, i) # print(prob_vector, vote) for j in range(self.k): if prob_vector[j] == 0: continue # print(vote, j, prob_vector[j]) ce += prob_vector[j] * np.log(prob_vector[j]) return -ce/len(votes) def conditional_entropy_singleton(self, probs, gold, edgeset=None): """ Computes H(Y | WS output) = -1/n sum_i sum_j Pr(y-hat = y_j | lfs(x_i)) * sum_k Pr(y = y_k | y-hat = y_j) log Pr(y = y_k | y-hat = y_j) """ # First, compute WS estimate y-hat over dataset preds = np.argmax(probs, axis=1) # need to # Now estimate Pr(y | y-hat) (k by k) matrix y_accs = np.zeros((self.k, self.k)) ws_idxs = [np.where(preds == c)[0] for c in self.classes] for i in range(self.k): for j in range(self.k): y_accs[i, j] = len(np.where(gold[ws_idxs[i]] == self.classes[j])[0]) / len(ws_idxs[i]) # print(y_accs) # finally, compute entropy: 1/n sum_i sum_j Pr(y-hat = y_j | lfs(x_i)) * sum_k Pr(y = y_k | y-hat = y_j) log Pr(y = y_k | y-hat = y_j) ce = 0 for i in range(len(probs)): for j in range(self.k): for c in range(self.k): y_prob = y_accs[c, j] if y_prob == 0: continue ce += probs[i, j] * y_prob * np.log(y_prob) return -ce/len(probs) def conditional_entropy_mv(self, edgeset=None): """ Computes H(Y | MV output) = -1/n sum_i sum_k Pr(y = y_k | y-hat_i) log Pr(y = y_k | y-hat_i) """ # First, compute MV estimate y-hat over dataset preds, _ = self.majority_vote() # Now estimate Pr(y | y-hat) (k by k) matrix y_accs = np.zeros((self.k, self.k)) ws_idxs = [np.where(preds == c)[0] for c in self.classes] for i in range(self.k): for j in range(self.k): y_accs[i, j] = len(np.where(self.test_gold[ws_idxs[i]] == self.classes[j])[0]) / len(ws_idxs[i]) ce = 0 for i, vote in enumerate(self.test_votes): v_pred = preds[i] for j in range(self.k): y_prob = y_accs[v_pred, j] if y_prob == 0: continue ce += y_prob * np.log(y_prob) return -ce/len(self.test_votes) def cross_entropy_conditional(self, votes, golds, edgeset): """ Computes -1/n sum_i log Pr(y-hat = y | votes_j). This is the standard notion of CE loss. """ ce = 0 self._set_clique_tree(edgeset) self._set_clique_data() for i, vote in enumerate(votes): # compute Pr(y | lf) prob = self.get_probs(vote, self.nb_accs, edgeset, symmetric=False, abstains_symmetric=True) ce += np.log(prob[golds[i]]) return -ce/len(votes) def cross_entropy(self, votes, golds, edgeset): """ Computes -1/n sum_i log Pr(y-hat = y, votes_j), minimizing cross entropy over the joint distribution of Y, votes. """ ce = 0 self._set_clique_tree(edgeset) self._set_clique_data() for i, vote in enumerate(votes): # compute Pr(votes, y) prob = self.get_cond_probs(vote, golds[i], self.nb_accs, edgeset, symmetric=False, abstains_symmetric=True) ce += np.log(prob) return -ce/len(votes) def cross_entropy_no_label(self, votes, edgeset): """ Computes -1/n sum_j log Pr(votes_j), minimizing cross entropy over the distribution of votes """ ce = 0 self._set_clique_tree(edgeset) self._set_clique_data() for i, vote in enumerate(votes): # compute Pr(votes, y) prob = 0 for c in self.classes: prob+= self.get_cond_probs(vote, c, self.nb_accs, edgeset, symmetric=False, abstains_symmetric=True) ce += np.log(prob) return -ce/len(votes) def flying_squid(self, abstains_symmetric=True): """ FlyingSquid algorithm requires no labeled data (except for estimating class balance). Assumes conditional independence (for now) and symmetric accuracies. That is, Pr(vote_i = 1 | y = 1) = Pr(vote_i = 0 | y = 0). Args: - abstains_symmetric: Do we assume Pr(vote_i = 0 | y) = Pr(vote_i = 0)? This is reasonable when an abstain is due to a systematic error in the prompt that doesn't depend on the label of the data. """ assert self.k == 2, "not implemented for more than 2 classes!" assert 0 in self.classes assert 1 in self.classes # Get preds test_preds = [] test_probs = [] for votes in self.test_votes: prob = self.get_probs(votes, self.fs_accs, abstains_symmetric=abstains_symmetric) test_probs.append(prob) test_preds.append(np.argmax(prob)) return test_probs, accuracy_score(self.test_gold, test_preds) def snorkel_lm(self, on_all_data=True): """ Use Snorkel AI's label model. Under the hood: Metal "forward" algorithm. """ #assert self.k == 2, "not implemented for more than 2 classes!" #assert 0 in self.classes #assert 1 in self.classes if on_all_data: votes = np.concatenate((self.train_votes, self.test_votes)) n = self.n_train + self.n_test else: votes = self.test_votes n = self.n_test label_model = LabelModel(cardinality=self.k) label_model.fit(L_train=votes, n_epochs=500, log_freq=100, seed=0) probs_test = label_model.predict_proba(self.test_votes) test_preds = np.argmax(probs_test, axis=1) params = label_model.get_conditional_probs() return params, accuracy_score(self.test_gold, test_preds) def dp_learn_params(self, with_label=False, seed=0, lr=0.0001, epochs = 1000): """ Learn the data programming parameters alpha and beta. Args: - with_label: Do we use y or not? If using label, use the train set and do MLE on Pr(y, votes); else use the test set and do MLE on Pr(votes). - seed: random seed for Pytorch. - lr: learning rate - epochs: number of epochs Returns: - alpha: parameter corresponding to accuracy Pr(vote_i = y) (symmetric)! - beta: parameter corresponding to coverage Pr(vote_i != 0) (symmetric)! """ if with_label: votes = self.train_votes_scaled gold = self.train_gold_scaled else: votes = self.test_votes_scaled gold = self.test_gold_scaled torch.manual_seed(seed) x = torch.from_numpy(votes).type(torch.FloatTensor) # Initialize Parameters alpha = torch.rand(self.m, requires_grad=True) beta = torch.tensor(self.coverage, requires_grad = False).type(torch.FloatTensor) # we do not optimize beta for now optimizer = torch.optim.SGD([alpha], lr=lr) for t in range(epochs): optimizer.zero_grad() mu_1 = torch.prod((x == 1) * beta.multiply(alpha) + (x == -1) * beta.multiply(1 - alpha) + (x == 0) * (1 - beta), dim = 1) mu_neg1 = torch.prod((x == -1) * beta.multiply(alpha) + (x == 1) * beta.multiply(1 - alpha) + (x == 0) * (1 - beta), dim=1) if with_label: # use the label information in MLE snorkel_loss = -torch.log(mu_1[np.where(gold == 1)[0]]).sum() - torch.log(mu_neg1[np.where(gold == -1)[0]]).sum() else: # 50-50 for y = 1 vs -1 snorkel_loss = -torch.log(0.5*mu_1 + 0.5*mu_neg1).sum() snorkel_loss.backward() optimizer.step() #if t % 100 == 0: # print('Loss', snorkel_loss, 'alpha', alpha, 'beta', beta) with torch.no_grad(): alpha.clamp_(0.5, 1) # assume that accuracy is better than random beta.clamp_(0, 1) # coverage should be between 0 and 1 return alpha, beta def data_programming(self, with_label=False, seed=0, lr = 0.0001, epochs=1000): """ Data programming algorithm. Args: - with_label: Do we use y or not? If using label, use the train set and do MLE on Pr(y, votes); else use the test set and do MLE on Pr(votes). - seed: random seed for Pytorch. - lr: learning rate - epochs: number of epochs """ assert self.k == 2, "not implemented for more than 2 classes!" assert 0 in self.classes assert 1 in self.classes # we don't need betas, will just cancel out when doing inference alpha, beta = self.dp_learn_params(with_label, seed, lr, epochs) alpha = alpha.detach().numpy() if np.any(np.isnan(alpha)): raise ValueError("SGD failed to converge.") dp_accs = np.zeros((self.m, 2, 2)) dp_accs[:, 1, 1] = dp_accs[:, 0, 0] = alpha dp_accs[:, 1, 0] = dp_accs[:, 0, 1] = 1 - alpha if with_label: self.dp_label_accs = dp_accs else: self.dp_nolabel_accs = dp_accs # Get preds test_preds = [] test_probs = [] for votes in self.test_votes: prob = self.get_probs(votes, dp_accs) test_probs.append(prob[1]) test_preds.append(np.argmax(prob)) return test_probs, accuracy_score(self.test_gold, test_preds) def logistic_regression(self, pairwise=True, singleton=False, scaling=True, max_iter=100): """ Logistic regression baseline. Args: - pairwise: if true, we scale everything to [-1, 1] and look at vote_i * vote_j as (m choose 2) new features that explicitly model their agreement and disagreement. - singleton: do we include the original votes as features - scaling: do logistic regression over [-1, 1] or [0, 1] - max_iter: maximum number of iterations for sklearn LR algorithm. """ if scaling: train_votes = self.train_no_val_votes_scaled val_votes = self.val_votes_scaled test_votes = self.test_votes_scaled train_gold = self.train_no_val_gold_scaled val_gold = self.val_gold_scaled test_gold = self.test_gold_scaled else: train_votes = self.train_no_val_votes val_votes = self.val_votes test_votes = self.test_votes train_gold = self.train_no_val_gold val_gold = self.val_gold test_gold = self.test_gold if pairwise: # get pairwise data pair_idxs = list(itertools.combinations(np.arange(self.m), 2)) pairs_train = np.zeros((len(train_gold), len(pair_idxs))) pairs_val = np.zeros((len(val_gold), len(pair_idxs))) pairs_test = np.zeros((self.n_test, len(pair_idxs))) for count, (i, j) in enumerate(pair_idxs): pairs_train[:, count] = train_votes[:, i] * train_votes[:, j] pairs_val[:, count] = val_votes[:, i] * val_votes[:, j] pairs_test[:, count] = test_votes[:, i] * test_votes[:, j] if not singleton: train_votes = pairs_train val_votes = pairs_val test_votes = pairs_test else: train_votes = np.concatenate((train_votes, pairs_train), axis=1) val_votes = np.concatenate((val_votes, pairs_val), axis=1) test_votes = np.concatenate((test_votes, pairs_test), axis=1) best_val = -1 best_test = -1 best_reg = -1 # grid search over regularization parameter using validation set for c in [0.001, 0.01, 0.1, 0.25, 0.5, 5, 10, 100, 1000, 2000]: clf = LogisticRegression(random_state=0, penalty='l1', solver='liblinear', fit_intercept=False, multi_class='ovr', C=c, max_iter=max_iter).fit(train_votes, train_gold) test_score = clf.score(test_votes, test_gold) val_score = clf.score(val_votes, val_gold) if val_score >= best_val: best_val = val_score best_test = test_score best_reg = c clf = LogisticRegression(random_state=0, penalty='l1', solver='liblinear', fit_intercept=False, multi_class='ovr', C=best_reg, max_iter=max_iter).fit(train_votes, train_gold) return clf.coef_, clf.predict_proba(test_votes), best_test def exp_weight(self, option=1, etas=[0.25, 0.5, 1, 2, 4, 8, 16, 32]): """ Weighting rule 1: Pr(y | votes) ~ sum_i 1{vote_i = y} * exp(-eta*loss_i) Weighting rule 2: Pr(y | votes) ~ exp(sum_i eta * accuracy * vote_i * y) (scaled to -1, 1) Args: - option: which weighting rule to use - etas: list of temperature hyperparameters """ test_preds = [] test_probs = [] # grid search best_eta = -1 best_acc = 0 for eta in etas: val_preds = [] if option == 1: weights = np.exp(-eta * (1 - self.train_no_val_acc)) else: weights = eta*self.train_no_val_acc for votes in self.val_votes: if option == 1: scores = np.array([weights[votes == y].sum() for y in self.classes]) else: scores = np.array([np.exp((2*((votes == y).astype(int))-1).dot(weights)) for y in self.classes] ) if scores.sum() ==0: # return prior val_preds.append(np.argmax(self.balance)) else: val_preds.append(np.argmax(scores)) val_acc = accuracy_score(self.val_gold, val_preds) if val_acc > best_acc: best_eta = eta if option == 1: weights = np.exp(-best_eta * (1 - self.train_no_val_acc)) else: weights = best_eta*self.train_no_val_acc for votes in self.test_votes: if option == 1: scores = np.array([weights[votes == y].sum() for y in self.classes]) else: scores = np.array([np.exp((2*((votes == y).astype(int))-1).dot(weights)) for y in self.classes] ) if scores.sum() ==0: # return prior test_preds.append(np.argmax(self.balance)) else: scores /= scores.sum() test_probs.append(scores[1]) test_preds.append(np.argmax(scores)) return test_probs, accuracy_score(self.test_gold, test_preds) class MultiAggregator(Aggregator): def __init__(self, train_votes, train_gold, test_votes, test_gold, classes, abstains=False, abstain_value=-1) -> None: super().__init__(train_votes, train_gold, test_votes, test_gold, abstains, classes, abstain_value) def flying_squid(self, abstains_symmetric=True): """ For multi-class, FlyingSquid reduces into one-vs-all subproblems and picking the highest Pr(y | votes) from each of those. """ probs = np.zeros((self.n_test, self.k)) for i, c in enumerate(self.classes): train_votes_c = np.where(self.train_votes == c, 1, 0) train_votes_c[self.train_votes == self.abstain_value] = -1 # keep the abstains train_gold_c = np.where(self.train_gold == c, 1, 0) test_votes_c = np.where(self.test_votes == c, 1, 0) test_votes_c[self.test_votes == self.abstain_value] = -1 test_gold_c = np.where(self.test_gold == c, 1, 0) agg = Aggregator(train_votes_c, train_gold_c, test_votes_c, test_gold_c, self.abstains, classes=[0, 1]) fs_probs, fs_acc = agg.flying_squid(abstains_symmetric) probs[:, i] = np.array(fs_probs)[:, 1] test_preds = np.argmax(probs, axis=1) return probs, accuracy_score(self.test_gold, test_preds) def data_programming(self, epochs=1000, with_label=False, seed=0, lr=0.0001): """ For multi-class, data programming reduces into one-vs-all subproblems and picking the highest Pr(y | votes) from each of those. """ probs = np.zeros((self.n_test, self.k)) # one versus all for i, c in enumerate(self.classes): train_votes_c = np.where(self.train_votes == c, 1, 0) train_votes_c[self.train_votes == self.abstain_value] = -1 train_gold_c = np.where(self.train_gold == c, 1, 0) test_votes_c = np.where(self.test_votes == c, 1, 0) test_votes_c[self.test_votes == self.abstain_value] = -1 test_gold_c = np.where(self.test_gold == c, 1, 0) agg = Aggregator(train_votes_c, train_gold_c, test_votes_c, test_gold_c, self.abstains, classes=[0, 1]) probs[:, i], _ = agg.data_programming(with_label, seed, lr, epochs) test_preds = np.argmax(probs, axis=1) return accuracy_score(self.test_gold, test_preds)
ama_prompting-main
boosting/methods.py
import argparse import numpy as np import json import os import cvxpy as cp import scipy as sp import datetime from methods import Aggregator from metal.label_model import LabelModel def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--task_name", type=str, required=True) parser.add_argument("--data_dir", type=str, default="../ama_logs/ama_final_runs") parser.add_argument("--symmetric", action="store_true") parser.add_argument("--model_prefix", type=str, default="EleutherAI_gpt-j-6B") parser.add_argument("--override_date", type=str, default=None) args = parser.parse_args() return args def get_data(task_name, data_dir, model_prefix, override_date=None): """ Load in dataset from task_name depending on where files are saved. """ task_dir = os.path.join(data_dir, task_name) date = datetime.datetime.today().strftime("%m%d%Y") if not override_date else override_date print(f"Loading runs from {date}") dpath = os.path.join(task_dir, f"{model_prefix}_decomposed_{date}.json") train_dpath = os.path.join(task_dir, f"{model_prefix}_decomposed_{date}_train.json") print(dpath) print(train_dpath) if task_name in ["super_glue_rte"]: label_name_to_int = {"True": 1, "False": 0} elif task_name == "amazon": label_name_to_int = {'amazon instant video':0, 'books':1, 'clothing shoes and jewelry':2, 'electronics':3, 'kindle store':4, 'movies and tv':5, 'musical instruments':6, 'office products':7, 'tools and home improvement':8} elif task_name == 'wic': label_name_to_int = {"Yes": 1, "No": 0} elif task_name == 'super_glue_wsc': label_name_to_int = {"True": 1, "False": 0} elif task_name == "sst2": label_name_to_int = {"positive": 1, "negative": 0, "neutral": 0} elif task_name == "super_glue_boolq": label_name_to_int = {"true": 1, "false": 0} elif task_name in ["story_cloze", "story_cloze_v2", "story_cloze_v3"]: label_name_to_int = {"2": 1, "1": 0} elif task_name in ["anli_r1", "anli_r2", "anli_r3"]: label_name_to_int = {"true": 1, "false": 0, "neither": 2} elif task_name == "MR" or task_name == "mr": label_name_to_int = {"positive": 1, "negative": 0} elif task_name == "multirc": label_name_to_int = {"yes": 1, "no": 0} elif task_name == "super_glue_cb": label_name_to_int = {"true": 0, "false": 2, "neither": 1} elif task_name == "super_glue_copa": label_name_to_int = {"1": 1, "2": 0} elif task_name == "drop": label_name_to_int = {"true": 1, "false": 0} elif task_name == "super_glue_record": label_name_to_int = {"true": 1, "false": 0} elif task_name == "ag_news": label_name_to_int = {"world news": 0, "sports": 1, "business": 2, "technology and science": 3} elif task_name == "dbpedia": label_name_to_int = {"company": 0, "educational institution": 1, "artist": 2, "athlete": 3, "office holder": 4, "mean of transportation": 5, "building": 6, "natural place": 7, "village": 8, "animal": 9, "plant": 10, "album": 11, "film": 12, "written work": 13} else: raise ValueError("Unsupported task!") test_data = json.load(open(dpath)) train_data = json.load(open(train_dpath)) print(train_data['0']['example']) print(train_data['0']['gold']) n_test = len(test_data) n_train = len(train_data) m = len(test_data['0']['preds_boost']) test_votes = np.zeros((n_test, m)) test_gold = np.zeros(n_test) for i in range(n_test): test_votes[i] = np.array([label_name_to_int[ans] if ans in label_name_to_int else -1 for ans in test_data[str(i)]['preds_boost']]) test_gold[i] = label_name_to_int[str(test_data[str(i)]['gold'])] test_votes = test_votes.astype(int) test_gold = test_gold.astype(int) train_votes = np.zeros((n_train, m)) train_gold = np.zeros(n_train) for i in range(n_train): train_votes[i] = np.array([label_name_to_int[ans] if ans in label_name_to_int else -1 for ans in train_data[str(i)]['preds_boost']]) train_gold[i] = label_name_to_int[str(train_data[str(i)]['gold'])] train_votes = train_votes.astype(int) train_gold = train_gold.astype(int) return train_votes, train_gold, test_votes, test_gold def get_top_deps_from_inverse_sig(J, k): m = J.shape[0] deps = [] sorted_idxs = np.argsort(np.abs(J), axis=None) n = m*m idxs = sorted_idxs[-k:] for idx in idxs: i = int(np.floor(idx / m)) j = idx % m if (j, i) in deps: continue deps.append((i, j)) return deps def learn_structure(L): m = L.shape[1] n = float(np.shape(L)[0]) sigma_O = (np.dot(L.T,L))/(n-1) - np.outer(np.mean(L,axis=0), np.mean(L,axis=0)) #bad code O = 1/2*(sigma_O+sigma_O.T) O_root = np.real(sp.linalg.sqrtm(O)) # low-rank matrix L_cvx = cp.Variable([m,m], PSD=True) # sparse matrix S = cp.Variable([m,m], PSD=True) # S-L matrix R = cp.Variable([m,m], PSD=True) #reg params lam = 1/np.sqrt(m) gamma = 1e-8 objective = cp.Minimize(0.5*(cp.norm(R @ O_root, 'fro')**2) - cp.trace(R) + lam*(gamma*cp.pnorm(S,1) + cp.norm(L_cvx, "nuc"))) constraints = [R == S - L_cvx, L_cvx>>0] prob = cp.Problem(objective, constraints) result = prob.solve(verbose=False, solver=cp.SCS) opt_error = prob.value #extract dependencies J_hat = S.value if J_hat is None: raise ValueError("CVXPY failed to solve the structured learning problem, use result without dependencies.") for i in range(m): J_hat[i, i] = 0 return J_hat def learn_structure_multiclass(L, k): m = L.shape[1] J_hats = np.zeros((k, m, m)) for c in range(k): all_votes_c = np.where(L == c, 1, 0) J_hats[c] = learn_structure(all_votes_c) return J_hats def get_min_off_diagonal(J_hat): J_hat_copy = J_hat.copy() for i in range(len(J_hat_copy)): J_hat_copy[i, i] = np.inf return np.abs(J_hat_copy).min() def main(): args = get_args() task_name = args.task_name data_dir = args.data_dir symmetric = args.symmetric train_votes, train_gold, test_votes, test_gold = get_data(task_name, data_dir, args.model_prefix, args.override_date) classes = np.sort(np.unique(test_gold)) vote_classes = np.sort(np.unique(test_votes)) n_train, m = train_votes.shape n_test = len(test_votes) k = len(classes) abstains = len(vote_classes) == len(classes) + 1 print(f"Abstains: {abstains}") m = test_votes.shape[1] all_votes= np.concatenate((train_votes, test_votes)) label_model = LabelModel(k=k, seed=123) # scale to 0, 1, 2 (0 is abstain) test_votes_scaled = (test_votes + np.ones((n_test, m))).astype(int) test_gold_scaled = (test_gold + np.ones(n_test)).astype(int) train_votes_scaled = (train_votes + np.ones((n_train, m))).astype(int) train_gold_scaled = (train_gold + np.ones(n_train)).astype(int) all_votes_scaled = np.concatenate((train_votes_scaled, test_votes_scaled)) label_model.train_model(all_votes_scaled, Y_dev=train_gold_scaled, abstains=abstains, symmetric=False, n_epochs=10000, log_train_every=50, lr=0.00001) print('Trained Label Model Metrics (No deps):') scores = label_model.score((test_votes_scaled, test_gold_scaled), metric=['accuracy','precision', 'recall', 'f1']) print(scores) all_votes_no_abstains = np.where(all_votes == -1, 0, all_votes) if len(classes) == 2: J_hat = learn_structure(all_votes_no_abstains) else: J_hats = learn_structure_multiclass(all_votes_no_abstains, len(classes)) J_hat = J_hats.mean(axis=0) # if values in J are all too large, then everything is connected / structure learning isn't learning the right thing. Don't model deps then min_entry = get_min_off_diagonal(J_hat) if min_entry < 1: deps = get_top_deps_from_inverse_sig(J_hat, 1) print("Recovered dependencies: ", deps) label_model.train_model(all_votes_scaled, Y_dev=train_gold_scaled, abstains=abstains, symmetric=symmetric, n_epochs=80000, log_train_every=50, lr=0.000001, deps=deps) print('Trained Label Model Metrics (with deps):') scores = label_model.score((test_votes_scaled, test_gold_scaled), metric=['accuracy', 'precision', 'recall', 'f1']) print(scores) try: lm_probs = label_model.predict_proba(test_votes_scaled) agg = Aggregator(test_votes, test_gold, test_votes, test_gold, abstains, classes=[0, 1]) # print("H(Y | WS output):") print(agg.conditional_entropy_singleton(lm_probs, test_gold)) except: print(f"Failed to produce conditional entropy value: H(Y | WS output).") if __name__ == "__main__": main()
ama_prompting-main
boosting/run_ws.py
import numpy as np import itertools def get_probabilties(num_lfs, num_examples, predictions, label_name_to_int): lf_array = np.zeros((num_lfs, num_examples)) golds = [] # Collect golds and preds for i, (k, item) in enumerate(predictions.items()): preds = item['chosen_answers_lst'] preds_mapped = [] for p in preds: if p in label_name_to_int: preds_mapped.append(label_name_to_int[p]) else: preds_mapped.append(0) preds = preds_mapped.copy() for lf_num, p in zip(range(num_lfs), preds): lf_array[lf_num][i] = p gold = label_name_to_int[item['gold']] golds.append(gold) golds = np.array(golds) neg_indices, pos_indices = [np.where(golds == -1)[0], np.where(golds == 1)[0]] indices = { -1: neg_indices, 1: pos_indices } # [i, j, k] = Pr(prompt_i = j| y = k) # Accuracies lf_accuracies = [] for i in range(num_lfs): lf_accuracies.append(np.sum(golds == np.array(lf_array[i]))/num_examples) print(f"LF Accs: {lf_accuracies}") # [i, j, k] = Pr(prompt_i = j| y = k) classes = label_name_to_int.values() accs = np.zeros((num_lfs, len(classes), len(classes))) for p in range(num_lfs): for i in classes: for j in classes: j_idx = j if j == -1: j_idx = 0 i_idx = i if i == -1: i_idx = 0 accs[p, i_idx, j_idx] = len(np.where(lf_array[p, indices[i]] == j)[0]) / len(indices[i]) # Compute probabilities pos_probs = [] for i in range(num_lfs): sub_preds = lf_array[i][pos_indices] sub_golds = golds[pos_indices] pos_probs.append(np.sum(sub_golds == np.array(sub_preds))/len(pos_indices)) print(f"Pos Probs: {pos_probs}") neg_probs = [] for i in range(num_lfs): sub_preds = lf_array[i][neg_indices] sub_golds = golds[neg_indices] neg_probs.append(np.sum(sub_golds == np.array(sub_preds))/len(neg_indices)) print(f"Neg Probs: {neg_probs}\n\n") return lf_accuracies, accs, pos_probs, neg_probs, golds, indices """ Independence Assumption: take the product of probabilities as p(L1, L2, ..., LK | y) """ # Pr(y = 1 | lf votes) def get_cond_probs(votes, y, indices_train, golds_train, accs_train, num_lfs_test): prop_pos = len(indices_train[1])/len(golds_train) pr_y = prop_pos if y == 1 else 1 - prop_pos prod = pr_y for i in range(num_lfs_test): if y == -1: y = 0 prod *= accs_train[i, y, votes[i]] return prod # Pr(y = 1 | lf votes) def get_probs(votes, indices_train, golds_train, acc_train, num_lfs_test): votes = [max(v, 0) for v in votes] numerator = get_cond_probs(votes, 1, indices_train, golds_train, acc_train, num_lfs_test) denominator = numerator + get_cond_probs(votes, -1, indices_train, golds_train, acc_train, num_lfs_test) return numerator / denominator def get_nb_accuracy(num_examples_test, num_lfs_test, predictions_test, label_name_to_int, golds_test, indices_train, golds_train, accs_train): output = np.zeros(num_examples_test) errors = 0 for i, (k, item) in enumerate(predictions_test.items()): votes = item['chosen_answers_lst'] votes_mapped = [] for v in votes: if v in label_name_to_int: votes_mapped.append(label_name_to_int[v]) else: votes_mapped.append(0) votes = votes_mapped.copy() probs = np.round(get_probs(votes, indices_train, golds_train, accs_train, num_lfs_test)) output[i] = probs # Mean squared error g = golds_test[i] if golds_test[i] == -1: g = 0 error = np.abs(output[i] - g)**2 errors += error accuracy = 1 - (errors / num_examples_test) return accuracy, output def estimate_matrix(m, n, L): E_prod = np.zeros((m, m)) l_avg = np.zeros(m) for i in range(n): l = L[i, :] l_avg += l E_prod += np.outer(l, l) l_avg = l_avg/n E_prod = E_prod/n cov = E_prod - np.outer(l_avg, l_avg) return (E_prod, cov, l_avg) def get_vote_vectors(num_samples, num_lfs, predictions, label_name_to_int): vectors = np.zeros((num_samples, num_lfs+1), float) vectors_no_y = np.zeros((num_samples, num_lfs), float) labels_vector = np.zeros((num_samples, 1), float) for i, p in enumerate(predictions.values()): votes = p['chosen_answers_lst'] votes_mapped = [] for v in votes: if v in label_name_to_int: votes_mapped.append(label_name_to_int[v]) else: votes_mapped.append(0) votes = votes_mapped.copy() # votes = [max(v, 0) for v in votes] gold = p['gold'] gold = label_name_to_int[gold] vectors_no_y[i] = np.array(votes) vectors[i] = np.array(votes + [gold]) #- lf_accuracies_train labels_vector[i] = np.array([gold]) print(f"Shape: {vectors.shape}") print(f"Sample: {vectors[0]}") return vectors, vectors_no_y, labels_vector def get_feature_vector(vote_vectors, include_pairwise=False, include_singletons=True): feature_vectors = [] for votes in vote_vectors: if include_singletons: feature_vector = list(votes[:]) else: feature_vector = [] if include_pairwise: for subset in itertools.combinations(votes[:], 2): feature_vector.append(subset[0] * subset[1]) feature_vectors.append(feature_vector) X = np.matrix(feature_vectors) return X
ama_prompting-main
boosting/utils.py
import numpy as np import itertools import scipy.stats import math import networkx as nx from itertools import chain from methods import Aggregator from binary_deps import structure_learning from binary_deps import DependentPGM from sklearn.metrics import log_loss, accuracy_score class Ising(): def __init__(self, m, potentials, thetas = None, vals = [-1, 1], ) -> None: self.m = m self.v = m + 1 # total number of vertices self.potentials = potentials self.vals = vals #TODO support values in 0, 1 if thetas is not None: assert len(thetas) >= len(potentials), f"Need to specify at least {len(potentials)} theta parameters." self.thetas = thetas else: self.thetas = np.random.rand(len(potentials)) # 2^v size support over y and all prompts self.support = np.array(list(map(list, itertools.product(vals, repeat=self.v)))) # 2^m size support over all prompts self.support_no_y = np.array(list(map(list, itertools.product(vals, repeat=self.m)))) self.n_vals = len(self.support) self._make_pdf() self._make_cdf() self._get_means() self._get_balance() self._get_accs() # set graph true graph structure self._get_edges_nodes() self.c_tree = self._set_clique_tree(self.edges) self.c_data = self._set_clique_data(self.c_tree) def _get_edges_nodes(self): self.nodes = np.arange(self.m) self.edges = [p for p in self.potentials if len(p) == 2 and self.m not in p] if self.edges != []: self.higher_order = True else: self.higher_order = False def _exponential_family(self, labels): x = 0.0 for i in range(len(self.potentials)): x += self.thetas[i] * labels[self.potentials[i]].prod() return np.exp(x) def _make_pdf(self): p = np.zeros(len(self.support)) for i, labels in enumerate(self.support): p[i] = self._exponential_family(labels) self.z = sum(p) self.pdf = p/self.z def _make_cdf(self): self.cdf = np.cumsum(self.pdf) def joint_p(self, C, values): p = 0.0 for k, labels in enumerate(self.support): flag = True for i in range(len(C)): prod = labels[C[i]].prod() if prod != values[i]: flag = False if flag == True: p += self.pdf[k] return p def expectation(self, C): return self.vals[0] * self.joint_p(C, self.vals[0] * np.ones(len(C))) + self.vals[1] * self.joint_p(C, self.vals[1] * np.ones(len(C))) def _get_means(self): self.means = np.zeros(self.m) for k in range(self.m): self.means[k] = self.expectation([[k]]) def _get_balance(self): self.balance = self.joint_p([[self.m]], [1]) def _get_covariance_y(self): self.cov = np.zeros((self.m + 1, self.m + 1)) def aug_covariance(self, rvs): l = len(rvs) M = np.zeros((l, l)) for i in range(l): for j in range(i + 1, l): M[i, j] = self.joint_p([rvs[i], rvs[j]], [1, 1]) + self.joint_p([rvs[i], rvs[j]], [-1, -1]) for i in range(l): for j in range(i + 1): if i != j: M[i, j] = M[j, i] else: M[i, j] = 1 M = 2*M - 1 mu = np.zeros(l) for i in range(l): mu[i] = self.joint_p([rvs[i]], [1]) mu = 2*mu - 1 return M - np.outer(mu, mu) def aug_covariance_y(self, rvs, y): p_y = self.balance if y == 1 else 1 - self.balance l = len(rvs) M = np.zeros((l, l)) for i in range(l): for j in range(i + 1, l): M[i, j] = (self.joint_p([rvs[i], rvs[j], [self.m]], [1, 1, y]) + self.joint_p([rvs[i], rvs[j], [self.m]], [-1, -1, y])) / p_y for i in range(l): for j in range(i + 1): if i != j: M[i, j] = M[j, i] else: M[i, j] = 1 M = 2*M - 1 mu = np.zeros(l) for i in range(l): mu[i] = self.joint_p([rvs[i], [self.m]], [1, y]) / p_y mu = 2*mu - 1 return M - np.outer(mu, mu) def _get_accs(self): """ self.accs[k, i, j] = Pr(lf_k = j | y = i) (i, j scaled to -1, 1 if needed) """ self.accs = np.zeros((self.m, 2, 2)) for k in range(self.m): self.accs[k, 1, 1] = self.joint_p([[k], [self.m]], [self.vals[1], self.vals[1]]) / self.balance self.accs[k, 0, 0] = self.joint_p([[k], [self.m]], [self.vals[0], self.vals[0]]) / (1 - self.balance) self.accs[k, 1, 0] = 1 - self.accs[k, 1, 1] self.accs[k, 0, 1] = 1 - self.accs[k, 0, 0] def sample(self): r = np.random.random_sample() smaller = np.where(self.cdf < r)[0] if len(smaller) == 0: i = 0 else: i = smaller.max() + 1 return self.support[i] def make_data(self, n, has_label = True): L = np.zeros((n, self.m)) gold = np.zeros(n) for i in range(n): l = self.sample() L[i, :] = l[:self.m] if has_label: gold[i] = l[self.m] return L.astype(int), gold.astype(int) def _set_clique_tree(self, edges): G1 = nx.Graph() G1.add_nodes_from(self.nodes) G1.add_edges_from(edges) # Check if graph is chordal # TODO: Add step to triangulate graph if not if not nx.is_chordal(G1): raise NotImplementedError("Graph triangulation not implemented.") # Create maximal clique graph G2 # Each node is a maximal clique C_i # Let w = |C_i \cap C_j|; C_i, C_j have an edge with weight w if w > 0 G2 = nx.Graph() for i, c in enumerate(nx.chordal_graph_cliques(G1)): G2.add_node(i, members=c) for i in G2.nodes(): for j in G2.nodes(): S = G2.nodes[i]["members"].intersection(G2.nodes[j]["members"]) w = len(S) if w > 0: G2.add_edge(i, j, weight=w, members=S) return nx.maximum_spanning_tree(G2) # should be maximum??? Because we want maximal separator sets # Return a minimum spanning tree of G2 def _set_clique_data(self, c_tree): # Create a helper data structure which maps cliques (as tuples of member # sources) --> {start_index, end_index, maximal_cliques}, where # the last value is a set of indices in this data structure c_data = dict() for i in range(self.m): c_data[i] = { "vertices": [i], "max_cliques": set( # which max clique i belongs to [ j for j in c_tree.nodes() if i in c_tree.nodes[j]["members"] ] ), } # Get the higher-order clique statistics based on the clique tree # First, iterate over the maximal cliques (nodes of c_tree) and # separator sets (edges of c_tree) if self.higher_order: counter = 0 for item in chain(c_tree.nodes(), c_tree.edges()): if isinstance(item, int): C = c_tree.nodes[item] C_type = "node" elif isinstance(item, tuple): C = c_tree[item[0]][item[1]] C_type = "edge" else: raise ValueError(item) members = list(C["members"]) nc = len(members) # Else add one column for each possible value if nc != 1: # Add to self.c_data as well #idx = counter + m c_data[tuple(members)] = { "vertices": members, "max_cliques": set([item]) if C_type == "node" else set(item), } counter += 1 return c_data def get_cond_probs(self, votes, y, edgeset = None): """ Computes the probability Pr(votes | y). """ pr_y = self.balance if y == 1 else 1 - self.balance prod = pr_y votes_scaled = 2*votes - 1 y_scaled = 2*y - 1 if edgeset is not None: c_tree = self._set_clique_tree(edgeset) c_data = self._set_clique_data(c_tree) else: c_tree = self.c_tree c_data = self.c_data for i in c_tree.nodes(): node = c_tree.nodes[i] members = list(node['members']) if len(members) == 1: v = members[0] prod *= self.accs[v, y, votes[v]] else: # prod *= self.get_clique_probs(members, votes[members], y) member_votes = np.append(votes_scaled[members], y_scaled) members = [[m] for m in members] + [[self.m]] clique_probs = self.joint_p(members, member_votes)/self.joint_p([[self.m]], [y_scaled]) #print("clique probs") #print(members, member_votes) #print(self.joint_p(members, member_votes)) #print(clique_probs) prod *= clique_probs for i in c_tree.edges(): edge = c_tree.edges[i] members = list(edge['members']) if len(members) == 1: v = members[0] deg = len(c_data[v]['max_cliques']) prod /= (self.accs[v, y, votes[v]])**(deg-1) else: deg = len(c_data[tuple(members)]['max_cliques']) # prod /= (self.get_clique_probs(members, votes[members], y))**(deg-1) member_votes = np.concatenate(votes[members], y_scaled) members = [[m] for m in members] + [[self.m]] clique_probs = self.joint_p(members, member_votes)/self.joint_p([[self.m]], [y_scaled]) prod /= clique_probs**(deg-1) return prod def get_probs(self, votes, edgeset = None): """ Computes the probability Pr(y = 1 | votes). """ pos = self.get_cond_probs(votes, 1, edgeset) neg = self.get_cond_probs(votes, 0, edgeset) if pos == 0: return 0 else: return pos / (pos + neg) def cross_entropy(self, edgeset): ce = 0 for i in range(self.n_vals): votes_unscaled = (0.5*(self.support[i, :self.m]+1)).astype(int) y_unscaled = int(0.5*(self.support[i, self.m]+1)) ce += self.pdf[i] * np.log(self.get_cond_probs(votes_unscaled, y_unscaled, edgeset)) return -ce def cross_entropy_conditional(self, edgeset): ce = 0 for i in range(self.n_vals): votes_unscaled = (0.5*(self.support[i, :self.m]+1)).astype(int) y_unscaled = int(0.5*(self.support[i, self.m]+1)) prob = self.get_probs(votes_unscaled, edgeset) if y_unscaled == 0: prob = 1 - prob ce += self.pdf[i] * np.log(prob) return -ce def cross_entropy_no_label(self, edgeset): ce = 0 for i in range(len(self.support_no_y)): sequence = self.support_no_y[i] sequence_scaled = (0.5*(sequence+1)).astype(int) # scale back to 0/1 voters = [[i] for i in np.arange(self.m)] true_prob = self.joint_p(voters, sequence) pos = self.get_cond_probs(sequence_scaled, 1, edgeset) neg = self.get_cond_probs(sequence_scaled, 0, edgeset) ce += true_prob * np.log(pos + neg) return -ce def to01(labels): return (0.5*(labels + 1)).astype(int) # MV and picking the best prompt should do well when things are conditionally independent and equally same def test0(): m = 3 thetas = [0, 0.5, 0.5, 0.5] # all conditionally independent, some singletons are fine potentials = [[3], [0, 3], [1, 3], [2, 3]] pgm = Ising(m, potentials, thetas) # make data n_train = 1000 train_votes, train_gold = pgm.make_data(n_train) n_test = 1000 test_votes, test_gold = pgm.make_data(n_test) train_votes = to01(train_votes) train_gold = to01(train_gold) test_votes = to01(test_votes) test_gold = to01(test_gold) agg = Aggregator(train_votes, train_gold, test_votes, test_gold) _, mv_acc = agg.majority_vote() pb_acc = agg.pick_best() _, nb_acc = agg.naive_bayes() _, sym_acc = agg.naive_bayes(symmetric=True) print(f"Majority vote: {mv_acc}") print(f"Pick the best: {pb_acc}") print(f"Naive bayes: {nb_acc}") print(f"Naive bayes (symmetric): {sym_acc}") # should be worse! print(f"Test passed: {nb_acc == mv_acc}\n ") def test1(): m = 5 # randomly parametrize exponential family to determine accuracies and correlations np.random.seed(2) thetas = np.random.rand(30) # all conditionally independent, some singletons are fine potentials = [[5], [0], [1], [4], [0, 5], [1, 5], [2, 5], [3, 5], [4, 5]] pgm = Ising(m, potentials, thetas) # make data n_train = 1000 train_votes, train_gold = pgm.make_data(n_train) n_test = 1000 test_votes, test_gold = pgm.make_data(n_test) train_votes = to01(train_votes) train_gold = to01(train_gold) test_votes = to01(test_votes) test_gold = to01(test_gold) agg = Aggregator(train_votes, train_gold, test_votes, test_gold) _, mv_acc = agg.majority_vote() pb_acc = agg.pick_best() _, nb_acc = agg.naive_bayes() _, sym_acc = agg.naive_bayes(symmetric=True) print(f"Majority vote: {mv_acc}") print(f"Pick the best: {pb_acc}") print(f"Naive bayes: {nb_acc}") print(f"Naive bayes (symmetric): {sym_acc}") # should be worse! print(f"Test passed: {nb_acc >= max(mv_acc, pb_acc) and sym_acc < nb_acc}\n ") def test2(): m = 3 # randomly parametrize exponential family to determine accuracies and correlations #theta = np.random.rand() #theta_cliques = (np.random.randint(0, 2, 5)*2 - 1)*theta #theta = np.random.rand() #theta_cliques = [1, 1, 1, 1, 1, 1, 1] np.random.seed(3) thetas = np.random.rand(30) # all conditionally independent potentials = [[3], [0, 3], [1, 3], [2, 3]] pgm = Ising(m, potentials, thetas) n_train = 100 train_votes, train_gold = pgm.make_data(n_train) n_test = 100 test_votes, test_gold = pgm.make_data(n_test) train_votes = to01(train_votes) train_gold = to01(train_gold) test_votes = to01(test_votes) test_gold = to01(test_gold) agg = Aggregator(train_votes, train_gold, test_votes, test_gold) _, mv_acc = agg.majority_vote() pb_acc = agg.pick_best() _, nb_acc = agg.naive_bayes() _, sym_acc = agg.naive_bayes(symmetric=True) _, fs_acc = agg.flying_squid() print(pgm.joint_p([[3]], [1])) print(pgm.balance) print(pgm.expectation([[3]]), pgm.expectation([[0]]), pgm.expectation([[0, 3]])) print(pgm.expectation([[3]])*pgm.expectation([[0, 3]])) print(f"Majority vote: {mv_acc}") print(f"Pick the best: {pb_acc}") print(f"Naive bayes: {nb_acc}") print(f"Naive bayes (symmetric): {sym_acc}") print(f"FlyingSquid: {fs_acc}") print(f"Test passed: {fs_acc >= max(mv_acc, pb_acc) and nb_acc == sym_acc}\n") def test3(): m = 3 np.random.seed(2) thetas = [0.5, 0.1, 0.4, 0.4] # all conditionally independent potentials = [[3], [0, 3], [1, 3], [2, 3]] pgm = Ising(m, potentials, thetas) # print(pgm.balance) n_train = 1000 train_votes, train_gold = pgm.make_data(n_train) n_test = 1000 test_votes, test_gold = pgm.make_data(n_test) train_votes = to01(train_votes) train_gold = to01(train_gold) test_votes = to01(test_votes) test_gold = to01(test_gold) agg = Aggregator(train_votes, train_gold, test_votes, test_gold) #print(agg.fs_accs, agg.nb_accs, pgm.accs) _, mv_acc = agg.majority_vote() pb_acc = agg.pick_best() _, nb_acc = agg.naive_bayes() _, fs_acc = agg.flying_squid() _, dp_nolabel_acc = agg.data_programming(with_label=False) _, dp_label_acc = agg.data_programming(with_label=True) #print(agg.dp_learn_params(with_label=False)) print(f"Majority vote: {mv_acc}") print(f"Pick the best: {pb_acc}") print(f"Naive bayes: {nb_acc}") print(f"FlyingSquid: {fs_acc}") print(f"Data Programming (no label): {dp_nolabel_acc}") print(f"Data Programming (with label): {dp_label_acc}") assert 0.69 <= mv_acc <= 0.7 and 0.69 <= pb_acc <= 0.7, f"MV and pick best should be 0.692 and 0.694." assert 0.77 <= min(nb_acc, fs_acc, dp_nolabel_acc, dp_label_acc) <= 0.79, f"All methods should have accuracy 0.78." print(f"Test passed: {min(nb_acc, fs_acc, dp_nolabel_acc, dp_label_acc) >= max(mv_acc, pb_acc)}\n") def test4(): m = 3 # randomly parametrize exponential family to determine accuracies and correlations #theta = np.random.rand() #theta_cliques = (np.random.randint(0, 2, 5)*2 - 1)*theta #theta = np.random.rand() #theta_cliques = [1, 1, 1, 1, 1, 1, 1] np.random.seed(3) thetas = np.random.rand(30) thetas[0] = 0.1 thetas[1] = 0.2 thetas[2] = 0.01 thetas[3] = 0.1 thetas[4] = 0.5 # make this hugeeee potentials = [[3], [0, 3], [1, 3], [2, 3], [0, 1]] pgm = Ising(m, potentials, thetas) print(pgm.joint_p([[0], [1], [3]], [1, 1, 1])/pgm.balance) print(pgm.joint_p([[0], [3]], [1, 1]) * pgm.joint_p([[1], [3]], [1, 1]) / pgm.balance**2) print(pgm.joint_p([[0], [2], [3]], [1, 1, 1])/pgm.balance) print(pgm.joint_p([[0], [3]], [1, 1]) * pgm.joint_p([[2], [3]], [1, 1]) / pgm.balance**2) n_train = 10000 train_votes, train_gold = pgm.make_data(n_train) n_test = 1000 test_votes, test_gold = pgm.make_data(n_test) train_votes = to01(train_votes) train_gold = to01(train_gold) test_votes = to01(test_votes) test_gold = to01(test_gold) print(pgm.expectation([[3]]), pgm.expectation([[0, 1]]), pgm.expectation([[0, 1, 3]])) print(pgm.expectation([[3]])*pgm.expectation([[0, 1]])) edgeset = [(0, 1)] agg = Aggregator(train_votes, train_gold, test_votes, test_gold) _, mv_acc = agg.majority_vote() pb_acc = agg.pick_best() nb_probs, nb_acc = agg.naive_bayes() fs_probs, fs_acc = agg.flying_squid() jt_probs, jt_acc = agg.junction_tree(edgeset) jt_sym_probs, jt_sym_acc = agg.junction_tree(edgeset, symmetric=True) # print(agg.fs_accs, agg.nb_accs, pgm.accs) #print(pgm.joint_p([[0], [1], [3]], [1, 1, 1]) / pgm.balance) #print(pgm.joint_p([[0], [1], [3]], [-1, -1, -1]) / pgm.balance) print(f"Majority vote: {mv_acc}") print(f"Pick the best: {pb_acc}") print(f"Naive bayes: {nb_acc}") print(f"FlyingSquid: {fs_acc}") print(f"Junction tree (with deps): {jt_acc}") print(f"Junction tree (with deps, symmetric): {jt_sym_acc}") print(agg.get_probs(np.array([1, 1, 0]), agg.sym_accs, edgeset=[(0, 1)], symmetric=True, abstains_symmetric=False)) print(agg.get_probs(np.array([1, 1, 0]), agg.nb_accs, edgeset=[(0, 1)], symmetric=False, abstains_symmetric=False)) print(pgm.get_probs(np.array([1, 1, 0]))) fail = False for i, votes in enumerate(test_votes): if np.abs(pgm.get_probs(votes) - jt_probs[i][1]) > 0.05: print(votes) print(pgm.get_probs(votes), jt_probs[i][1]) fail = True #print(pgm.get_probs(votes), nb_probs[i], test_gold[i]) #print(np.round(pgm.get_probs(votes)), np.round(fs_probs[i]), test_gold[i]) if fail: print("Test failed.") else: print("Test passed.") def test5(): m = 3 # randomly parametrize exponential family to determine accuracies and correlations #theta = np.random.rand() #theta_cliques = (np.random.randint(0, 2, 5)*2 - 1)*theta #theta = np.random.rand() #theta_cliques = [1, 1, 1, 1, 1, 1, 1] np.random.seed(3) # 6 is good , 9 , 10 thetas = np.random.rand(30) thetas[0] = 0 thetas[1] = 0.1 thetas[2] = 0.6 thetas[3] = 0.1 thetas[4] = 0.6 # make this hugeeee potentials = [[3], [0, 3], [1, 3], [2, 3], [0, 1]] pgm = Ising(m, potentials, thetas) print(pgm.joint_p([[0], [1], [3]], [1, 1, 1])/pgm.balance) print(pgm.joint_p([[0], [3]], [1, 1]) * pgm.joint_p([[1], [3]], [1, 1]) / pgm.balance**2) print(pgm.joint_p([[0], [2], [3]], [1, 1, 1])/pgm.balance) print(pgm.joint_p([[0], [3]], [1, 1]) * pgm.joint_p([[2], [3]], [1, 1]) / pgm.balance**2) n_train = 10000 train_votes, train_gold = pgm.make_data(n_train) n_test = 100 test_votes, test_gold = pgm.make_data(n_test) train_votes = to01(train_votes) train_gold = to01(train_gold) test_votes = to01(test_votes) test_gold = to01(test_gold) edgeset = [(0, 1)] agg = Aggregator(train_votes, train_gold, test_votes, test_gold) _, mv_acc = agg.majority_vote() pb_acc = agg.pick_best() nb_probs, nb_acc = agg.naive_bayes() fs_probs, fs_acc = agg.flying_squid() jt_probs, jt_acc = agg.junction_tree(edgeset) jt_sym_probs, jt_sym_acc = agg.junction_tree(edgeset, symmetric=True) print(f"Majority vote: {mv_acc}") print(f"Pick the best: {pb_acc}") print(f"Naive bayes: {accuracy_score(test_gold, np.array(nb_probs).argmax(axis=1))}") print(f"FlyingSquid: {accuracy_score(test_gold, np.array(fs_probs).argmax(axis=1))}") print(f"Junction tree (with deps): {accuracy_score(test_gold, np.array(jt_probs).argmax(axis=1))}") print(f"Junction tree (with deps, symmetric): {accuracy_score(test_gold, np.array(jt_sym_probs).argmax(axis=1))}") print(f"NB log loss {log_loss(test_gold, nb_probs)}") print(f"FS log loss {log_loss(test_gold, fs_probs)}") print(f"JT log loss {log_loss(test_gold, jt_probs)}") print(agg.get_probs(np.array([1, 1, 0]), agg.sym_accs, edgeset=[(0, 1)], symmetric=True, abstains_symmetric=False)) print(agg.get_probs(np.array([1, 1, 0]), agg.nb_accs, edgeset=[(0, 1)], symmetric=False, abstains_symmetric=False)) print(pgm.get_probs(np.array([1, 1, 0]))) jt_probs = np.array(jt_probs) jt_sym_probs = np.array(jt_sym_probs) fail = False pgm_probs = np.zeros(len(test_votes)) for i, votes in enumerate(test_votes): pgm_probs[i] = pgm.get_probs(votes) avg_jt_err = np.linalg.norm(pgm_probs - jt_probs[:, 1]) / n_test avg_jt_sym_err = np.linalg.norm(pgm_probs - jt_sym_probs[:, 1]) / n_test if avg_jt_err > 0.05: fail = True if avg_jt_err < avg_jt_sym_err: print(avg_jt_err, avg_jt_sym_err) fail= True if fail: print("Test failed.") else: print("Test passed.") def test6(): m = 3 np.random.seed(5) thetas = np.random.rand(30) # model some edges - see if we can recover it potentials = [[3], [0, 3], [1, 3], [2, 3], [0, 1], [0, 2]] pgm = Ising(m, potentials, thetas) # make big datasets n_train = 1000 train_votes, train_gold = pgm.make_data(n_train) n_test = 1000 test_votes, test_gold = pgm.make_data(n_test) train_votes = to01(train_votes) train_gold = to01(train_gold) test_votes = to01(test_votes) test_gold = to01(test_gold) agg = Aggregator(train_votes, train_gold, test_votes, test_gold) # overall accuracies Pr(lf_p = y) on train acc_theta = np.zeros(m) for i in range(m): acc_theta[i] = len(np.where((train_votes[:, i] == train_gold) == True)[0])/n_train acc_theta = 2*acc_theta - 1 all_thetas = structure_learning(m, train_votes, train_gold, acc_theta) print(all_thetas) #idx = np.argsort(all_thetas, axis=None)[-1] #i = int(np.round(idx / m)) #j = idx % m #print(f"Recovered edge: ({i}, {j})") # should be (0, 1) ce = np.ones(m*m) * np.inf ce_cond = np.ones(m*m) * np.inf ce_nolabel = np.ones(m*m) * np.inf true_ce = np.ones(m*m) * np.inf true_ce_cond = np.ones(m*m) * np.inf true_ce_nolabel = np.ones(m*m) * np.inf neighborhood_size = len(all_thetas.flatten()) all_edgesets = [] for n in range(neighborhood_size): print(f"edgeset size is {n}") # try edgeset of size n if n != 0: idxs = np.argsort(np.abs(all_thetas), axis=None)[-n:] edgeset = [] for idx in idxs: i = int(np.floor(idx / m)) j = idx % m # print(all_thetas[i, j]) # print(f"Recovered edge: ({i}, {j})") # should be (0, 1) edgeset.append((i, j)) else: edgeset = [] print(edgeset) all_edgesets.append(edgeset) try: ce[n] = agg.cross_entropy(train_votes, train_gold, edgeset) ce_cond[n] = agg.cross_entropy_conditional(train_votes, train_gold, edgeset) ce_nolabel[n] = agg.cross_entropy_no_label(test_votes, edgeset) true_ce[n] = pgm.cross_entropy(edgeset) true_ce_cond[n] = pgm.cross_entropy_conditional(edgeset) true_ce_nolabel[n] = pgm.cross_entropy_no_label(edgeset) except nx.NetworkXError: # skip if proposed graph is not triangulated pass print(ce) print(ce_cond) print(ce_nolabel) best_ce = ce.argmin() best_ce_cond = ce_cond.argmin() best_ce_nolabel = ce_nolabel.argmin() print(f"Recovered edgeset using MLE: {all_edgesets[best_ce]}") print(f"Recovered edgeset using MLE (conditional): {all_edgesets[best_ce_cond]}") print(f"Recovered edgeset using MLE (no labels): {all_edgesets[best_ce_nolabel]}") print(true_ce) print(true_ce_cond) print(true_ce_nolabel) def main(): #test0() #test1() #test2() #test3() test4() # test5() #test6() if __name__ == "__main__": main()
ama_prompting-main
boosting/make_pgm.py
""" Running and Scoring the AMA Diagnostics """ import os import json from collections import Counter from tqdm import tqdm import openai from manifest import Manifest openai.api_key = "" # Find this on the OpenAI Website from datasets import load_metric rouge = load_metric("rouge") ######################### HELPER FUNCTIONS ######################### def rougeL(preds, labels): return rouge.compute(predictions=preds, references=labels)['rougeL'].mid.fmeasure from collections import Counter def text_f1(preds=[], labels=[]): """Compute average F1 of text spans. Taken from Squad without prob threshold for no answer. """ total_f1 = 0 for pred, gold in zip(preds, labels): pred_toks = pred.split() gold_toks = gold.split() common = Counter(pred_toks) & Counter(gold_toks) num_same = sum(common.values()) if len(gold_toks) == 0 or len(pred_toks) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise total_f1 += int(gold_toks == pred_toks) elif num_same == 0: total_f1 += 0 else: precision = 1.0 * num_same / len(pred_toks) recall = 1.0 * num_same / len(gold_toks) f1 = (2 * precision * recall) / (precision + recall) total_f1 += f1 f1_avg = total_f1 / len(labels) return f1_avg def get_response(manifest, prompt, max_toks=10, temperature = 0, gold_choices=[], model_name="manifest", engine="text-davinci-002", logit_bias={}): prompt = prompt.strip() if model_name == 'openai': if logit_bias: completion = openai.Completion.create(engine=engine, prompt=prompt, temperature=temperature, top_p=1, max_tokens=max_toks, logprobs=5, logit_bias=logit_bias) else: completion = openai.Completion.create(engine=engine, prompt=prompt, temperature=temperature, top_p=1, max_tokens=max_toks, logprobs=5) response = completion.choices[0].text if model_name == "manifest": if gold_choices: max_len = max([len(g.split()) for g in gold_choices]) else: max_len = 0 max_token_args = ({"max_tokens": min(max_toks,8 * len(max_len),)} if gold_choices is None else {} ) if gold_choices: response = manifest.run(prompt, gold_choices=gold_choices,overwrite_cache=False,**max_token_args,) else: response = manifest.run(prompt, max_tokens=max_toks, overwrite_cache=False) return response def get_manifest_session( client_name="huggingface", client_connection="http://127.0.0.1:5000", cache_connection=None, temperature=0, top_p=1.0, ): if client_name == "huggingface" and temperature == 0: params = { "temperature": 0.001, "do_sample": False, "top_p": top_p, } elif client_name in {"openai", "ai21"}: params = { "temperature": temperature, "top_p": top_p, } else: raise ValueError(f"{client_name} is not a valid client name") manifest = Manifest( client_name=client_name, client_connection=client_connection, cache_name="sqlite", cache_connection=cache_connection, **params, ) model_name = manifest.client.get_model_params()["model_name"] return manifest, model_name ######################### SCORE FUNCTIONS ######################### """ A "blah" maps to category: blah """ def selection_easy(dataset, manifest): preds = [] for i, (ind, row) in tqdm(enumerate(dataset.items())): prefix = row['input'] pred = get_response(manifest, prefix, max_toks=50) pred = [p for p in pred.split("\n") if p][0].strip() preds.append(pred) if i == 0: print(prefix) print(f"PRED: {pred}") labels = [l.strip() for l in row['labels']] num_valid = [p for p in preds if p in labels] return len(num_valid)/len(dataset) """ Does the model pick one of the given choices? """ def selection_hard(dataset, manifest): preds = [] for i, (ind, row) in tqdm(enumerate(dataset.items())): prefix = row['input'] pred = get_response(manifest, prefix, max_toks=50) pred = [p for p in pred.split("\n")][0] preds.append(pred) if i == 0: print(prefix) print(f"PRED: {pred}") valid = 0 for (ind, row), pred in zip(dataset.items(), preds): choices = row['output'] if pred.lower().strip(".") in [c.lower().strip(".") for c in choices]: valid += 1 return valid/len(dataset) """ Does the model generate three choices? """ def text_generation(dataset, manifest): preds = [] for i, (ind, row) in tqdm(enumerate(dataset.items())): prefix = row['input'] pred = get_response(manifest, prefix, max_toks=50) pred = pred.split("\n\n")[0] pred = pred.split("\n") pred = list(set([a.replace("- ", "").strip() for a in pred])) preds.append(pred) if i == 0: print(prefix) print(f"PRED: {pred}") valid = 0 for pred in preds: if len(pred) == 2: valid += 1 return valid/len(dataset) """ Does the model faithfully transform the statement to a question? """ def question_generation(dataset, manifest): preds = [] for i, (ind, row) in tqdm(enumerate(dataset.items())): prefix = row['input'] pred = get_response(manifest, prefix, max_toks=50) pred = [p for p in pred.split("\n")][0] preds.append(pred) if i == 0: print(prefix) print(f"PRED: {pred}") outputs = [row['output'] for ind, row in dataset.items()] score = rougeL(preds=preds, labels = outputs) return score """ Does the model faithfully choose the sentence with the entity name? """ """ Does the model faithfully answer given a keyword for extraction? """ def extraction(dataset, manifest): preds = [] for i, (ind, row) in tqdm(enumerate(dataset.items())): prefix = row['input'] pred = get_response(manifest, prefix, max_toks=50) pred = [p for p in pred.split("\n")][0] preds.append(pred) if i == 0: print(prefix) print(f"PRED: {pred}") outputs = [row['output'] for ind, row in dataset.items()] score = text_f1(preds=preds, labels = outputs) return score def main(): data_dir = "data/" synthetics = { 'selection_easy':selection_easy, 'selection_hard':selection_hard, 'extraction':extraction, "text_generation": text_generation, "question_generation": question_generation } manifest, model_name = get_manifest_session() synthetic_scores = {} for synthetic, function in synthetics.items(): print(f"RUNNING {synthetic}") with open(f"{data_dir}/{synthetic}.json") as f: dataset = json.load(f) score = function(dataset, manifest) synthetic_scores[synthetic] = score print(f"SCORE: {score}") print(synthetic_scores) model_name = model_name.replace("/", "_") if not os.path.exists(f"results/"): os.makedirs(f"results/") with open(f"results/{model_name}_results.json", "w") as f: json.dump(synthetic_scores, f) print(f"Saved to: results/{model_name}_results.json") if __name__ == "__main__": main()
ama_prompting-main
diagnostics/run_diagnostics.py
from setuptools import setup, find_packages setup(name='stratification', version='1.0', packages=find_packages())
hidden-stratification-master
setup.py
import os import torch from stratification.harness import GEORGEHarness from stratification.utils.utils import set_seed, init_cuda from stratification.utils.parse_args import get_config def main(): config = get_config() use_cuda = config['use_cuda'] and torch.cuda.is_available() set_seed(config['seed'], use_cuda) # set seeds for reproducibility init_cuda(config['deterministic'], config['allow_multigpu']) torch.multiprocessing.set_sharing_strategy('file_system') harness = GEORGEHarness(config, use_cuda=use_cuda) harness.save_full_config(config) first_mode = 'erm' if (config['mode'] == 'george') else config['mode'] dataloaders = harness.get_dataloaders(config, mode=first_mode) num_classes = dataloaders['train'].dataset.get_num_classes('superclass') model = harness.get_nn_model(config, num_classes=num_classes, mode=first_mode) activ_done = config['activations_dir'] != 'NONE' rep_done = config['representation_dir'] != 'NONE' cluster_done = config['cluster_dir'] != 'NONE' rep_done = rep_done or cluster_done # if we already have clusters, don't need to do reduction step activ_done = activ_done or rep_done # don't need to get activations if we already have reduced ones if config['classification_config']['eval_only']: assert (activ_done) if config['cluster_dir'] != 'NONE': dataloaders = harness.get_dataloaders( config, mode=first_mode, subclass_labels=os.path.join(config['cluster_dir'], 'clusters.pt') if os.path.isdir(config['cluster_dir']) else config['cluster_dir']) # Train a model with ERM if activ_done and not (config['classification_config']['eval_only'] or config['classification_config']['save_act_only']): erm_dir = config['activations_dir'] else: if config['classification_config']['eval_only'] or config['classification_config'][ 'save_act_only']: erm_dir = config['activations_dir'] model_path = os.path.join(erm_dir, f'{config["classification_config"]["eval_mode"]}_model.pt') print(f'Loading model from {model_path}...') model.load_state_dict(torch.load(model_path)['state_dict']) erm_dir = harness.classify(config['classification_config'], model, dataloaders, mode=first_mode) if config['classification_config']['eval_only'] or config['classification_config'][ 'save_act_only']: exit() if config['mode'] == 'george': if not config['classification_config']['bit_pretrained'] and not rep_done: model.load_state_dict(torch.load(os.path.join(erm_dir, 'best_model.pt'))['state_dict']) set_seed(config['seed'], use_cuda) # Dimensionality-reduce the model activations if rep_done: reduction_dir = config['representation_dir'] else: reduction_model = harness.get_reduction_model(config, nn_model=model) reduction_dir = harness.reduce(config['reduction_config'], reduction_model, inputs_path=os.path.join(erm_dir, 'outputs.pt')) # Cluster the per-superclass features if cluster_done: cluster_dir = config['cluster_dir'] else: cluster_model = harness.get_cluster_model(config) cluster_dir = harness.cluster(config['cluster_config'], cluster_model, inputs_path=os.path.join(reduction_dir, 'outputs.pt')) set_seed(config['seed'], use_cuda) # reset random state dataloaders = harness.get_dataloaders( config, mode='george', subclass_labels=os.path.join(cluster_dir, 'clusters.pt')) model = harness.get_nn_model(config, num_classes=num_classes, mode='george') # Train the final (GEORGE) model george_dir = harness.classify(config['classification_config'], model, dataloaders, mode='george') if __name__ == '__main__': main()
hidden-stratification-master
stratification/run.py