python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
"""Type symbols class.""" import copy import os from typing import Dict, List, Optional, Set, Union from tqdm.auto import tqdm from bootleg.symbols.constants import edit_op from bootleg.utils import utils from bootleg.utils.classes.nested_vocab_tries import TwoLayerVocabularyScoreTrie def _convert_to_trie(qid2typenames, max_types): all_typenames = set() qid2typenames_filt = {} for q, typs in qid2typenames.items(): all_typenames.update(set(typs)) qid2typenames_filt[q] = typs[:max_types] qid2typenames_trie = TwoLayerVocabularyScoreTrie( input_dict=qid2typenames_filt, vocabulary=all_typenames, max_value=max_types, ) return qid2typenames_trie class TypeSymbols: """Type Symbols class for managing type metadata.""" def __init__( self, qid2typenames: Union[Dict[str, List[str]], TwoLayerVocabularyScoreTrie], max_types: Optional[int] = 10, edit_mode: Optional[bool] = False, verbose: Optional[bool] = False, ): """Type Symbols initializer.""" if max_types <= 0: raise ValueError("max_types must be greater than 0") self.max_types = max_types self.edit_mode = edit_mode self.verbose = verbose if self.edit_mode: self._load_edit_mode( qid2typenames, ) else: self._load_non_edit_mode( qid2typenames, ) def _load_edit_mode( self, qid2typenames: Union[Dict[str, List[str]], TwoLayerVocabularyScoreTrie] ): """Load qid to type mappings in edit mode.""" if isinstance(qid2typenames, TwoLayerVocabularyScoreTrie): self._qid2typenames: Union[ Dict[str, List[str]], TwoLayerVocabularyScoreTrie ] = qid2typenames.to_dict(keep_score=False) else: self._qid2typenames: Union[ Dict[str, List[str]], TwoLayerVocabularyScoreTrie ] = {q: typs[: self.max_types] for q, typs in qid2typenames.items()} self._all_typenames: Union[Set[str], None] = set( [t for typeset in self._qid2typenames.values() for t in typeset] ) self._typename2qids: Union[Dict[str, set], None] = {} for qid in tqdm( self._qid2typenames, total=len(self._qid2typenames), desc="Building edit mode objs", disable=not self.verbose, ): for typname in self._qid2typenames[qid]: if typname not in self._typename2qids: self._typename2qids[typname] = set() self._typename2qids[typname].add(qid) # In case extra types in vocab without qids for typname in self._all_typenames: if typname not in self._typename2qids: self._typename2qids[typname] = set() def _load_non_edit_mode( self, qid2typenames: Union[Dict[str, List[str]], TwoLayerVocabularyScoreTrie] ): """Load qid to type mappings in non edit mode (read only mode).""" if isinstance(qid2typenames, dict): self._qid2typenames: Union[ Dict[str, List[str]], TwoLayerVocabularyScoreTrie ] = _convert_to_trie(qid2typenames, self.max_types) else: self._qid2typenames: Union[ Dict[str, List[str]], TwoLayerVocabularyScoreTrie ] = qid2typenames self._all_typenames: Union[Set[str], None] = None self._typename2qids: Union[Dict[str, set], None] = None def save(self, save_dir, prefix=""): """Dump the type symbols. Args: save_dir: directory string to save prefix: prefix to add to beginning to file """ utils.ensure_dir(str(save_dir)) utils.dump_json_file( filename=os.path.join(save_dir, "config.json"), contents={ "max_types": self.max_types, }, ) if isinstance(self._qid2typenames, dict): qid2typenames = _convert_to_trie(self._qid2typenames, self.max_types) qid2typenames.dump(os.path.join(save_dir, f"{prefix}qid2typenames")) else: self._qid2typenames.dump(os.path.join(save_dir, f"{prefix}qid2typenames")) @classmethod def load_from_cache(cls, load_dir, prefix="", edit_mode=False, verbose=False): """Load type symbols from load_dir. Args: load_dir: directory to load from prefix: prefix to add to beginning to file edit_mode: edit mode flag verbose: verbose flag Returns: TypeSymbols """ config = utils.load_json_file(filename=os.path.join(load_dir, "config.json")) max_types = config["max_types"] # For backwards compatibility, check if trie directory exists, otherwise load from json type_load_dir = os.path.join(load_dir, f"{prefix}qid2typenames") if not os.path.exists(type_load_dir): qid2typenames: Union[ Dict[str, List[str]], TwoLayerVocabularyScoreTrie ] = utils.load_json_file( filename=os.path.join(load_dir, f"{prefix}qid2typenames.json") ) else: qid2typenames: Union[ Dict[str, List[str]], TwoLayerVocabularyScoreTrie ] = TwoLayerVocabularyScoreTrie(load_dir=type_load_dir, max_value=max_types) return cls(qid2typenames, max_types, edit_mode, verbose) def get_all_types(self): """Return all typenames.""" if isinstance(self._qid2typenames, dict): return self._all_typenames else: return set(self._qid2typenames.vocab_keys()) def get_types(self, qid): """Get the type names associated with the given QID. Args: qid: QID Returns: list of typename strings """ if isinstance(self._qid2typenames, dict): types = self._qid2typenames.get(qid, []) else: if self._qid2typenames.is_key_in_trie(qid): # TwoLayerVocabularyScoreTrie assumes values are list of pairs - we only want type name which is first types = self._qid2typenames.get_value(qid, keep_score=False) else: types = [] return types def get_qid2typename_dict(self): """Return dictionary of qid to typenames. Returns: Dict of QID to list of typenames. """ if isinstance(self._qid2typenames, dict): return copy.deepcopy(self._qid2typenames) else: return self._qid2typenames.to_dict(keep_score=False) # ============================================================ # EDIT MODE OPERATIONS # ============================================================ @edit_op def get_entities_of_type(self, typename): """Get all entity QIDs of type ``typename``. Args: typename: typename Returns: List """ if typename not in self._all_typenames: raise ValueError(f"{typename} is not a type in the typesystem") # This will not be None as we are in edit mode return self._typename2qids.get(typename, []) @edit_op def add_type(self, qid, typename): """Add the type to the QID. If the QID already has maximum types, the last type is removed and replaced by ``typename``. Args: qid: QID typename: type name """ if typename not in self._all_typenames: self._all_typenames.add(typename) self._typename2qids[typename] = set() # Update qid->type mappings if typename not in self._qid2typenames[qid]: # Remove last type if too many types if len(self._qid2typenames[qid]) >= self.max_types: type_to_remove = self._qid2typenames[qid][-1] self.remove_type(qid, type_to_remove) self._qid2typenames[qid].append(typename) # As we are in edit mode, self._typename2qids will not be None self._typename2qids[typename].add(qid) return @edit_op def remove_type(self, qid, typename): """Remove the type from the QID. Args: qid: QID typename: type name to remove """ if typename not in self._all_typenames: raise ValueError( f"The type {typename} is not in our vocab. We only support adding types in our vocab." ) if typename not in self._qid2typenames[qid]: return assert ( typename in self._typename2qids ), f"Invalid state a typename is in self._typename2qids for {typename} and {qid}" self._qid2typenames[qid].remove(typename) # As we are in edit mode, self._typename2qids will not be None # Further, we want to keep the typename even if list is empty as our type system doesn't change self._typename2qids[typename].remove(qid) return @edit_op def add_entity(self, qid, types): """ Add an entity QID with its types to our mappings. Args: qid: QID types: list of type names """ for typename in types: if typename not in self._all_typenames: self._all_typenames.add(typename) self._typename2qids[typename] = set() # Add the qid to the qid dicts so we can call the add/remove functions self._qid2typenames[qid] = [] for typename in types: self._qid2typenames[qid].append(typename) # Cutdown to max types self._qid2typenames[qid] = self._qid2typenames[qid][: self.max_types] # Add to typenames to qids for typename in self._qid2typenames[qid]: self._typename2qids[typename].add(qid) return @edit_op def reidentify_entity(self, old_qid, new_qid): """Rename ``old_qid`` to ``new_qid``. Args: old_qid: old QID new_qid: new QID """ assert ( old_qid in self._qid2typenames and new_qid not in self._qid2typenames ), f"Internal Error: checks on existing versus new qid for {old_qid} and {new_qid} failed" # Update qid2typenames self._qid2typenames[new_qid] = self._qid2typenames[old_qid] del self._qid2typenames[old_qid] # Update qid2typenames for typename in self._qid2typenames[new_qid]: self._typename2qids[typename].remove(old_qid) self._typename2qids[typename].add(new_qid) @edit_op def prune_to_entities(self, entities_to_keep): """Remove all entities except those in ``entities_to_keep``. Args: entities_to_keep: Set of entities to keep """ # Update qid2typenames self._qid2typenames = { k: v for k, v in self._qid2typenames.items() if k in entities_to_keep } # Update qid2typenames, keeping the typenames even if empty lists for typename in self._typename2qids: self._typename2qids[typename] = self._typename2qids[typename].intersection( entities_to_keep )
bootleg-master
bootleg/symbols/type_symbols.py
"""Constants.""" import logging import os from distutils.util import strtobool from functools import wraps from bootleg import log_rank_0_info logger = logging.getLogger(__name__) USE_STRIP = strtobool(os.environ.get("BOOTLEG_STRIP", "true")) USE_LOWER = strtobool(os.environ.get("BOOTLEG_LOWER", "true")) LANG_CODE = os.environ.get("BOOTLEG_LANG_CODE", "en") log_rank_0_info( logger, f"Setting BOOTLEG_STRIP to {USE_STRIP} and BOOTLEG_LOWER to {USE_LOWER} and BOOTLEG_LANG_CODE to {LANG_CODE}. " f"Set these enviorn variables to change behavior.", ) PAD = "<pad>" UNK_ID = 0 PAD_ID = -1 CLS_BERT = "[CLS]" SEP_BERT = "[SEP]" PAD_BERT = "[PAD]" BERT_WORD_DIM = 768 MAX_BERT_TOKEN_LEN = 512 SPECIAL_TOKENS = { "additional_special_tokens": [ "[ent_start]", "[ent_end]", "[ent_desc]", "[ent_kg]", "[ent_type]", ] } FINAL_LOSS = "final_loss" TRAIN_SPLIT = "train" DEV_SPLIT = "dev" TEST_SPLIT = "test" # dataset keys ANCHOR_KEY = "gold" STOP_WORDS = { "for", "this", "haven", "her", "are", "s", "don't", "ll", "isn't", "been", "themselves", "it's", "needn't", "haven't", "shouldn", "ours", "d", "than", "only", "ma", "me", "after", "which", "under", "then", "both", "as", "can", "yours", "hers", "their", "hadn't", "we", "in", "off", "having", "t", "up", "re", "needn", "she's", "below", "over", "from", "all", "an", "did", "most", "weren't", "your", "couldn", "you've", "because", "same", "didn", "shouldn't", "about", "aren", "myself", "while", "so", "mightn't", "very", "what", "aren't", "other", "won", "or", "should've", "out", "when", "doesn", "of", "am", "doing", "nor", "above", "shan't", "with", "isn", "that", "is", "yourself", "him", "had", "those", "just", "more", "ain", "my", "it", "won't", "you", "yourselves", "at", "being", "between", "be", "some", "o", "where", "weren", "has", "will", "wasn't", "that'll", "against", "during", "ve", "wouldn't", "herself", "such", "m", "doesn't", "itself", "here", "and", "were", "didn't", "own", "through", "they", "do", "you'd", "once", "the", "couldn't", "hasn't", "before", "who", "any", "our", "hadn", "too", "no", "he", "hasn", "if", "why", "wouldn", "its", "on", "mustn't", "now", "again", "to", "each", "whom", "i", "by", "have", "how", "theirs", "not", "don", "but", "there", "shan", "ourselves", "until", "down", "mightn", "wasn", "few", "mustn", "his", "y", "you're", "should", "does", "himself", "was", "you'll", "them", "these", "she", "into", "further", "a", } # profile constants/utils wrappers def edit_op(func): """Edit op.""" @wraps(func) def wrapper_check_edit_mode(obj, *args, **kwargs): if obj.edit_mode is False: raise AttributeError("You must load object in edit_mode=True") return func(obj, *args, **kwargs) return wrapper_check_edit_mode def check_qid_exists(func): """Check QID exists.""" @wraps(func) def wrapper_check_qid(obj, *args, **kwargs): if len(args) > 0: qid = args[0] else: qid = kwargs["qid"] if not obj._entity_symbols.qid_exists(qid): raise ValueError(f"The entity {qid} is not in our dump") return func(obj, *args, **kwargs) return wrapper_check_qid
bootleg-master
bootleg/symbols/constants.py
"""Symbols init."""
bootleg-master
bootleg/symbols/__init__.py
"""Entity symbols.""" import copy import logging import os from typing import Callable, Dict, Optional, Union from tqdm.auto import tqdm import bootleg.utils.utils as utils from bootleg.symbols.constants import edit_op from bootleg.utils.classes.nested_vocab_tries import ( TwoLayerVocabularyScoreTrie, VocabularyTrie, ) logger = logging.getLogger(__name__) class EntitySymbols: """Entity Symbols class for managing entity metadata.""" def __init__( self, alias2qids: Union[Dict[str, list], TwoLayerVocabularyScoreTrie], qid2title: Dict[str, str], qid2desc: Union[Dict[str, str]] = None, qid2eid: Optional[VocabularyTrie] = None, alias2id: Optional[VocabularyTrie] = None, max_candidates: int = 30, alias_cand_map_dir: str = "alias2qids", alias_idx_dir: str = "alias2id", edit_mode: Optional[bool] = False, verbose: Optional[bool] = False, ): """Entity symbols initializer.""" # We support different candidate mappings for the same set of entities self.alias_cand_map_dir = alias_cand_map_dir self.alias_idx_dir = alias_idx_dir self.max_candidates = max_candidates self.edit_mode = edit_mode self.verbose = verbose if qid2eid is None: # +1 as 0 is reserved for not-in-cand list entity qid2eid = {q: i + 1 for i, q in enumerate(qid2title.keys())} if alias2id is None: alias2id = {a: i for i, a in enumerate(alias2qids.keys())} # If edit mode is ON, we must load everything as a dictionary if self.edit_mode: self._load_edit_mode( alias2qids, qid2title, qid2desc, qid2eid, alias2id, ) else: self._load_non_edit_mode( alias2qids, qid2title, qid2desc, qid2eid, alias2id, ) # This assumes that eid of 0 is NO_CAND and eid of -1 is NULL entity; neither are in dict self.num_entities = len(self._qid2eid) self.num_entities_with_pad_and_nocand = self.num_entities + 2 def _load_edit_mode( self, alias2qids: Union[Dict[str, list], TwoLayerVocabularyScoreTrie], qid2title: Dict[str, str], qid2desc: Union[Dict[str, str]], qid2eid: Union[Dict[str, int], VocabularyTrie], alias2id: Union[Dict[str, int], VocabularyTrie], ): """Load in edit mode. Loading in edit mode requires all inputs be cast to dictionaries. Tries do not allow value changes. """ # Convert to dict for editing if isinstance(alias2qids, TwoLayerVocabularyScoreTrie): alias2qids = alias2qids.to_dict() self._alias2qids: Union[ Dict[str, list], TwoLayerVocabularyScoreTrie ] = alias2qids self._qid2title: Dict[str, str] = qid2title self._qid2desc: Dict[str, str] = qid2desc # Sort by score and filter to max candidates self._sort_alias_cands( self._alias2qids, truncate=True, max_cands=self.max_candidates ) # Cast to dicts in edit mode if isinstance(qid2eid, VocabularyTrie): self._qid2eid: Union[Dict[str, int], VocabularyTrie] = qid2eid.to_dict() else: self._qid2eid: Union[Dict[str, int], VocabularyTrie] = qid2eid if isinstance(alias2id, VocabularyTrie): self._alias2id: Union[Dict[str, int], VocabularyTrie] = alias2id.to_dict() else: self._alias2id: Union[Dict[str, int], VocabularyTrie] = alias2id # Generate reverse indexes for fast editing self._id2alias: Union[Dict[int, str], Callable[[int], str]] = { id: al for al, id in self._alias2id.items() } self._eid2qid: Union[Dict[int, str], Callable[[int], str]] = { eid: qid for qid, eid in self._qid2eid.items() } self._qid2aliases: Union[Dict[str, set], None] = {} for al in tqdm( self._alias2qids, total=len(self._alias2qids), desc="Building edit mode objs", disable=not self.verbose, ): for qid_pair in self._alias2qids[al]: if qid_pair[0] not in self._qid2aliases: self._qid2aliases[qid_pair[0]] = set() self._qid2aliases[qid_pair[0]].add(al) assert len(self._qid2eid) == len(self._eid2qid), ( "The qid2eid mapping is not invertable. " "This means there is a duplicate id value." ) assert -1 not in self._eid2qid, "-1 can't be an eid" assert ( 0 not in self._eid2qid ), "0 can't be an eid. It's reserved for null candidate" # For when we need to add new entities self.max_eid = max(self._eid2qid.keys()) self.max_alid = max(self._id2alias.keys()) def _load_non_edit_mode( self, alias2qids: Union[Dict[str, list], TwoLayerVocabularyScoreTrie], qid2title: Dict[str, str], qid2desc: Union[Dict[str, str]], qid2eid: Optional[VocabularyTrie], alias2id: Optional[VocabularyTrie], ): """Load items in read-only Trie mode.""" # Convert to record trie if isinstance(alias2qids, dict): self._sort_alias_cands( alias2qids, truncate=True, max_cands=self.max_candidates ) alias2qids = TwoLayerVocabularyScoreTrie( input_dict=alias2qids, vocabulary=qid2title, max_value=self.max_candidates, ) self._alias2qids: Union[ Dict[str, list], TwoLayerVocabularyScoreTrie ] = alias2qids self._qid2title: Dict[str, str] = qid2title self._qid2desc: Dict[str, str] = qid2desc # Convert to Tries for non edit mode if isinstance(qid2eid, dict): self._qid2eid: Union[Dict[str, int], VocabularyTrie] = VocabularyTrie( input_dict=qid2eid ) else: self._qid2eid: Union[Dict[str, int], VocabularyTrie] = qid2eid if isinstance(alias2id, dict): self._alias2id: Union[Dict[str, int], VocabularyTrie] = VocabularyTrie( input_dict=alias2id ) else: self._alias2id: Union[Dict[str, int], VocabularyTrie] = alias2id # Make reverse functions for each of use self._id2alias: Union[ Dict[int, str], Callable[[int], str] ] = lambda x: self._alias2id.get_key(x) self._eid2qid: Union[ Dict[int, str], Callable[[int], str] ] = lambda x: self._qid2eid.get_key(x) self._qid2aliases: Union[Dict[str, set], None] = None assert not self._qid2eid.is_value_in_trie( 0 ), "0 can't be an eid. It's reserved for null candidate" # For when we need to add new entities self.max_eid = self._qid2eid.get_max_id() self.max_alid = self._alias2id.get_max_id() def save(self, save_dir): """Dump the entity symbols. Args: save_dir: directory string to save """ utils.ensure_dir(save_dir) utils.dump_json_file( filename=os.path.join(save_dir, "config.json"), contents={ "max_candidates": self.max_candidates, }, ) # If in edit mode, must convert back to tris for saving if isinstance(self._alias2qids, dict): alias2qids = TwoLayerVocabularyScoreTrie( input_dict=self._alias2qids, vocabulary=self._qid2title, max_value=self.max_candidates, ) alias2qids.dump(os.path.join(save_dir, self.alias_cand_map_dir)) else: self._alias2qids.dump(os.path.join(save_dir, self.alias_cand_map_dir)) if isinstance(self._alias2id, dict): alias2id = VocabularyTrie(input_dict=self._alias2id) alias2id.dump(os.path.join(save_dir, self.alias_idx_dir)) else: self._alias2id.dump(os.path.join(save_dir, self.alias_idx_dir)) if isinstance(self._qid2eid, dict): qid2eid = VocabularyTrie(input_dict=self._qid2eid) qid2eid.dump(os.path.join(save_dir, "qid2eid")) else: self._qid2eid.dump(os.path.join(save_dir, "qid2eid")) utils.dump_json_file( filename=os.path.join(save_dir, "qid2title.json"), contents=self._qid2title ) if self._qid2desc is not None: utils.dump_json_file( filename=os.path.join(save_dir, "qid2desc.json"), contents=self._qid2desc, ) @classmethod def load_from_cache( cls, load_dir, alias_cand_map_dir="alias2qids", alias_idx_dir="alias2id", edit_mode=False, verbose=False, ): """Load entity symbols from load_dir. Args: load_dir: directory to load from alias_cand_map_dir: alias2qid directory alias_idx_dir: alias2id directory edit_mode: edit mode flag verbose: verbose flag """ config = utils.load_json_file(filename=os.path.join(load_dir, "config.json")) max_candidates = config["max_candidates"] # For backwards compatibility, check if folder exists - if not, load from json # Future versions will assume folders exist alias_load_dir = os.path.join(load_dir, alias_cand_map_dir) if not os.path.exists(alias_load_dir): alias2qids: Dict[str, list] = utils.load_json_file( filename=os.path.join(load_dir, "alias2qids.json") ) else: alias2qids: TwoLayerVocabularyScoreTrie = TwoLayerVocabularyScoreTrie( load_dir=alias_load_dir ) alias_id_load_dir = os.path.join(load_dir, alias_idx_dir) alias2id = None if os.path.exists(alias_id_load_dir): alias2id: VocabularyTrie = VocabularyTrie(load_dir=alias_id_load_dir) eid_load_dir = os.path.join(load_dir, "qid2eid") qid2eid = None if os.path.exists(eid_load_dir): qid2eid: VocabularyTrie = VocabularyTrie(load_dir=eid_load_dir) qid2title: Dict[str, str] = utils.load_json_file( filename=os.path.join(load_dir, "qid2title.json") ) qid2desc = None if os.path.exists(os.path.join(load_dir, "qid2desc.json")): qid2desc: Dict[str, str] = utils.load_json_file( filename=os.path.join(load_dir, "qid2desc.json") ) return cls( alias2qids, qid2title, qid2desc, qid2eid, alias2id, max_candidates, alias_cand_map_dir, alias_idx_dir, edit_mode, verbose, ) def _sort_alias_cands( self, alias2qids: Dict[str, list], truncate: bool = False, max_cands: int = 30 ): """Sort the candidates for each alias from largest to smallest score, truncating if desired.""" for alias in alias2qids: # Add second key for determinism in case of same counts alias2qids[alias] = sorted( alias2qids[alias], key=lambda x: (x[1], x[0]), reverse=True ) if truncate: alias2qids[alias] = alias2qids[alias][:max_cands] return alias2qids def get_qid2eid_dict(self): """ Get the qid2eid mapping. Returns: Dict qid2eid mapping """ if isinstance(self._qid2eid, dict): return copy.deepcopy(self._qid2eid) else: return self._qid2eid.to_dict() def get_alias2qids_dict(self): """ Get the alias2qids mapping. Key is alias, value is list of candidate tuple of length two of [QID, sort_value]. Returns: Dict alias2qids mapping """ if isinstance(self._alias2qids, dict): return copy.deepcopy(self._alias2qids) else: return self._alias2qids.to_dict() def get_qid2title_dict(self): """ Get the qid2title mapping. Returns: Dict qid2title mapping """ return copy.deepcopy(self._qid2title) def get_all_alias_vocabtrie(self): """ Get a trie of all aliases. Returns: Vocab trie of all aliases. """ if isinstance(self._alias2id, VocabularyTrie): return self._alias2id else: return VocabularyTrie(input_dict=self._alias2id) def get_all_qids(self): """ Get all QIDs. Returns: Dict_keys of all QIDs """ return self._qid2eid.keys() def get_all_aliases(self): """ Get all aliases. Returns: Dict_keys of all aliases """ return self._alias2qids.keys() def get_all_titles(self): """ Get all QID titles. Returns: Dict_values of all titles """ return self._qid2title.values() def get_qid(self, id): """Get the QID associated with EID. Args: id: EID Returns: QID string """ if isinstance(self._eid2qid, dict): return self._eid2qid[id] else: return self._eid2qid(id) def alias_exists(self, alias): """Check alias existance. Args: alias: alias string Returns: boolean """ if isinstance(self._alias2qids, dict): return alias in self._alias2id else: return self._alias2qids.is_key_in_trie(alias) def qid_exists(self, qid): """Check QID existance. Args: alias: QID string Returns: boolean """ if isinstance(self._qid2eid, dict): return qid in self._qid2eid else: return self._qid2eid.is_key_in_trie(qid) def get_eid(self, id): """Get the QID for the EID. Args: id: EID int Returns: QID string """ return self._qid2eid[id] def _get_qid_pairs(self, alias): """Get the qid pairs for an alias. Args: alias: alias Returns: List of QID pairs """ if isinstance(self._alias2qids, dict): qid_pairs = self._alias2qids[alias] else: qid_pairs = self._alias2qids.get_value(alias) return qid_pairs def get_qid_cands(self, alias, max_cand_pad=False): """Get the QID candidates for an alias. Args: alias: alias max_cand_pad: whether to pad with '-1' or not if fewer than max_candidates candidates Returns: List of QID strings """ qid_pairs = self._get_qid_pairs(alias) res = [qid_pair[0] for qid_pair in qid_pairs] if max_cand_pad: res = res + ["-1"] * (self.max_candidates - len(res)) return res def get_qid_count_cands(self, alias, max_cand_pad=False): """Get the [QID, sort_value] candidates for an alias. Args: alias: alias max_cand_pad: whether to pad with ['-1',-1] or not if fewer than max_candidates candidates Returns: List of [QID, sort_value] """ qid_pairs = self._get_qid_pairs(alias) res = qid_pairs if max_cand_pad: res = res + ["-1", -1] * (self.max_candidates - len(res)) return res def get_eid_cands(self, alias, max_cand_pad=False): """Get the EID candidates for an alias. Args: alias: alias max_cand_pad: whether to pad with -1 or not if fewer than max_candidates candidates Returns: List of EID ints """ qid_pairs = self._get_qid_pairs(alias) res = [self._qid2eid[qid_pair[0]] for qid_pair in qid_pairs] if max_cand_pad: res = res + [-1] * (self.max_candidates - len(res)) return res def get_title(self, id): """Get title for QID. Args: id: QID string Returns: title string """ return self._qid2title[id] def get_desc(self, id): """Get description for QID. Args: id: QID string Returns: title string """ if self._qid2desc is None: return "" return self._qid2desc.get(id, "") def get_alias_idx(self, alias): """Get the numeric index of an alias. Args: alias: alias Returns: integer representation of alias """ return self._alias2id[alias] def get_alias_from_idx(self, alias_idx): """Get the alias from the numeric index. Args: alias_idx: alias numeric index Returns: alias string """ if isinstance(self._id2alias, dict): alias = self._id2alias[alias_idx] else: alias = self._id2alias(alias_idx) return alias # ============================================================ # EDIT MODE OPERATIONS # ============================================================ @edit_op def set_title(self, qid: str, title: str): """Set the title for a QID. Args: qid: QID title: title """ assert qid in self._qid2eid self._qid2title[qid] = title @edit_op def set_desc(self, qid: str, desc: str): """Set the description for a QID. Args: qid: QID desc: description """ assert qid in self._qid2eid self._qid2desc[qid] = desc @edit_op def set_score(self, qid: str, mention: str, score: float): """Change the mention QID score and resorts candidates. Highest score is first. Args: qid: QID mention: mention score: score """ if mention not in self._alias2qids: raise ValueError(f"The mention {mention} is not in our mapping") qids_only = list(map(lambda x: x[0], self._alias2qids[mention])) if qid not in set(qids_only): raise ValueError( f"The qid {qid} is not already associated with that mention." ) qid_idx = qids_only.index(qid) assert self._alias2qids[mention][qid_idx][0] == qid self._alias2qids[mention][qid_idx][1] = score self._alias2qids[mention] = sorted( self._alias2qids[mention], key=lambda x: x[1], reverse=True ) return @edit_op def add_mention(self, qid: str, mention: str, score: float): """Add mention to QID with the associated score. The mention already exists, error thrown to call ``set_score`` instead. If there are already max candidates to that mention, the last candidate of the mention is removed in place of QID. Args: qid: QID mention: mention score: score """ # Cast to lower and stripped for aliases mention = utils.get_lnrm(mention) # If mention is in mapping, make sure the qid is not if mention in self._alias2qids: if qid in set(map(lambda x: x[0], self._alias2qids[mention])): logger.warning( f"The QID {qid} is already associated with {mention}. Use set_score if you want to change " f"the score of an existing mention-qid pair" ) return # If mention is not in mapping, add it if mention not in self._alias2qids: self._alias2qids[mention] = [] new_al_id = self.max_alid + 1 self.max_alid += 1 assert ( new_al_id not in self._id2alias ), f"{new_al_id} already in self_id2alias" self._alias2id[mention] = new_al_id self._id2alias[new_al_id] = mention # msg = f"You have added a new mention to the dataset. You MUST reprep you data for this to take effect. # Set data_config.overwrite_preprocessed_data to be True. This warning will now be supressed." # logger.warning(msg) # warnings.filterwarnings("ignore", message=msg) assert ( mention not in self._qid2aliases[qid] ), f"{mention} was a mention for {qid} despite the alias mapping saying otherwise" # If adding will go beyond max candidates, remove the last candidate. Even if the score is higher, # the user still wants this mention added. if len(self._alias2qids[mention]) >= self.max_candidates: qid_to_remove = self._alias2qids[mention][-1][0] self.remove_mention(qid_to_remove, mention) assert ( len(self._alias2qids[mention]) < self.max_candidates ), f"Invalid state: {mention} still has more than {self.max_candidates} candidates after removal" # Add pair self._alias2qids[mention].append([qid, score]) self._alias2qids[mention] = sorted( self._alias2qids[mention], key=lambda x: x[1], reverse=True ) self._qid2aliases[qid].add(mention) @edit_op def remove_mention(self, qid, mention): """Remove the mention from those associated with the QID. Args: qid: QID mention: mention to remove """ # Make sure the mention and qid pair is already in the mapping if mention not in self._alias2qids: return qids_only = list(map(lambda x: x[0], self._alias2qids[mention])) if qid not in set(qids_only): return # Remove the QID idx_to_remove = qids_only.index(qid) self._alias2qids[mention].pop(idx_to_remove) # If the mention has NO candidates, remove it as a possible mention if len(self._alias2qids[mention]) == 0: del self._alias2qids[mention] al_id = self._alias2id[mention] del self._alias2id[mention] del self._id2alias[al_id] assert ( mention not in self._alias2qids and mention not in self._alias2id ), f"Removal of no candidates mention {mention} failed" # msg = f"You have removed all candidates for an existing mention, which will now be removed. # You MUST reprep you data for this to take effect. Set data_config.overwrite_preprocessed_data to be # True. This warning will now be supressed." # logger.warning(msg) # warnings.filterwarnings("ignore", message=msg) # Remove mention from inverse mapping (will be not None in edit mode) assert ( mention in self._qid2aliases[qid] ), f"{mention} was not a mention for {qid} despite the reverse being true" self._qid2aliases[qid].remove(mention) return @edit_op def add_entity(self, qid, mentions, title, desc=""): """Add entity QID to our mappings with its mentions and title. Args: qid: QID mentions: List of tuples [mention, score] title: title desc: description """ assert ( qid not in self._qid2eid ), "Something went wrong with the qid check that this entity doesn't exist" # Update eid new_eid = self.max_eid + 1 assert new_eid not in self._eid2qid self._qid2eid[qid] = new_eid self._eid2qid[new_eid] = qid # Update title self._qid2title[qid] = title # Update description self._qid2desc[qid] = desc # Make empty list to add in add_mention self._qid2aliases[qid] = set() # Update mentions for mention_pair in mentions: self.add_mention(qid, mention_pair[0], mention_pair[1]) # Update metrics at the end in case of failure self.max_eid += 1 self.num_entities += 1 self.num_entities_with_pad_and_nocand += 1 @edit_op def reidentify_entity(self, old_qid, new_qid): """Rename ``old_qid`` to ``new_qid``. Args: old_qid: old QID new_qid: new QID """ assert ( old_qid in self._qid2eid and new_qid not in self._qid2eid ), f"Internal Error: checks on existing versus new qid for {old_qid} and {new_qid} failed" # Save state eid = self._qid2eid[old_qid] mentions = self.get_mentions(old_qid) # Update qid2eid self._qid2eid[new_qid] = self._qid2eid[old_qid] del self._qid2eid[old_qid] # Reassign eid self._eid2qid[eid] = new_qid # Update qid2title self._qid2title[new_qid] = self._qid2title[old_qid] del self._qid2title[old_qid] # Update qid2desc self._qid2desc[new_qid] = self.get_desc(old_qid) del self._qid2desc[old_qid] # Update qid2aliases self._qid2aliases[new_qid] = self._qid2aliases[old_qid] del self._qid2aliases[old_qid] # Update alias2qids for mention in mentions: for i in range(len(self._alias2qids[mention])): if self._alias2qids[mention][i][0] == old_qid: self._alias2qids[mention][i][0] = new_qid break @edit_op def prune_to_entities(self, entities_to_keep): """Remove all entities except those in ``entities_to_keep``. Args: entities_to_keep: Set of entities to keep """ # Update qid based dictionaries self._qid2title = { k: v for k, v in self._qid2title.items() if k in entities_to_keep } if self._qid2desc is not None: self._qid2desc = { k: v for k, v in self._qid2desc.items() if k in entities_to_keep } self._qid2aliases = { k: v for k, v in self._qid2aliases.items() if k in entities_to_keep } # Reindex the entities to compress the embedding matrix (when model is update) self._qid2eid = {k: i + 1 for i, k in enumerate(sorted(entities_to_keep))} self._eid2qid = {eid: qid for qid, eid in self._qid2eid.items()} # Extract mentions to keep mentions_to_keep = set().union(*self._qid2aliases.values()) # Reindex aliases self._alias2id = {v: i for i, v in enumerate(sorted(mentions_to_keep))} self._id2alias = {id: al for al, id in self._alias2id.items()} # Rebuild self._alias2qids new_alias2qids = {} for al in mentions_to_keep: new_alias2qids[al] = [ pair for pair in self._alias2qids[al] if pair[0] in entities_to_keep ][: self.max_candidates] assert len(new_alias2qids[al]) > 0 self._alias2qids = new_alias2qids self.num_entities = len(self._qid2eid) self.num_entities_with_pad_and_nocand = self.num_entities + 2 assert self.num_entities == len(entities_to_keep) # For when we need to add new entities self.max_eid = max(self._eid2qid.keys()) self.max_alid = max(self._id2alias.keys()) @edit_op def get_mentions(self, qid): """Get the mentions for the QID. Args: qid: QID Returns: List of mentions """ # qid2aliases is only created in edit mode to allow for removal of mentions associated with a qid return self._qid2aliases[qid] @edit_op def get_mentions_with_scores(self, qid): """Get the mentions and the associated score for the QID. Args: qid: QID Returns: List of tuples [mention, score] """ mentions = self._qid2aliases[qid] res = [] for men in mentions: for qid_pair in self._alias2qids[men]: if qid_pair[0] == qid: res.append([men, qid_pair[1]]) break return list(sorted(res, key=lambda x: x[1], reverse=True))
bootleg-master
bootleg/symbols/entity_symbols.py
"""Bootleg slice dataset.""" import hashlib import logging import multiprocessing import os import shutil import time import traceback from collections import defaultdict import numpy as np import ujson from tqdm.auto import tqdm from bootleg import log_rank_0_debug, log_rank_0_info from bootleg.symbols.constants import ANCHOR_KEY, FINAL_LOSS from bootleg.utils import data_utils, utils logger = logging.getLogger(__name__) class InputExample(object): """A single training/test example.""" def __init__(self, sent_idx, subslice_idx, anchor, num_alias2pred, slices): """Input example initializer.""" self.sent_idx = sent_idx self.subslice_idx = subslice_idx self.anchor = anchor self.num_alias2pred = num_alias2pred self.slices = slices def to_dict(self): """Turn object to dictionary.""" return { "sent_idx": self.sent_idx, "subslice_idx": self.subslice_idx, "anchor": self.anchor, "num_alias2pred": self.num_alias2pred, "slices": self.slices, } @classmethod def from_dict(cls, in_dict): """Create object from dictionary.""" return cls( in_dict["sent_idx"], in_dict["subslice_idx"], in_dict["anchor"], in_dict["num_alias2pred"], in_dict["slices"], ) def __repr__(self): """Repr.""" return ( f"Sent: {self.sent_idx} Subsent: {self.subslice_idx} Anchors: {self.anchor} " f"Num Alias2Pred: {self.num_alias2pred} Slices: {self.slices}" ) class InputFeatures(object): """A single set of features of data.""" def __init__(self, sent_idx, subslice_idx, alias_slice_incidence, alias2pred_probs): """Input feature initializer.""" self.sent_idx = sent_idx self.subslice_idx = subslice_idx self.alias_slice_incidence = alias_slice_incidence self.alias2pred_probs = alias2pred_probs def to_dict(self): """Object to dictionary.""" return { "sent_idx": self.sent_idx, "subslice_idx": self.subslice_idx, "alias_slice_incidence": self.alias_slice_incidence, "alias2pred_probs": self.alias2pred_probs, } @classmethod def from_dict(cls, in_dict): """Create object from dictionary.""" return cls( in_dict["sent_idx"], in_dict["subslice_idx"], in_dict["alias_slice_incidence"], in_dict["alias2pred_probs"], ) def get_slice_values(slice_names, line): """ Results a dictionary of all slice values for an input example. Any mention with a slice value of > 0.5 gets assigned that slice. If some slices are missing from the input, we assign all mentions as not being in that slice (getting a 0 label value). We also check that slices are formatted correctly. Args: slice_names: slice names to evaluate on line: input data json line Returns: Dict of slice name to alias index string to float value of if mention is in a slice or not. """ slices = {} if "slices" in line: assert type(line["slices"]) is dict aliases = line["aliases"] slices = line["slices"] # remove slices that we don't need for slice_name in list(slices.keys()): if slice_name not in slice_names: del slices[slice_name] else: assert len(slices[slice_name]) == len( aliases ), "Must have a prob label for each mention" # FINAL_LOSS and BASE_SLICE are in slice_names but are generated by us so we do not want them to be in slices assert ( FINAL_LOSS not in slices ), f"You can't have {FINAL_LOSS} be slice names. You have {slices.keys()}. {FINAL_LOSS} is used internally." for slice_name in slice_names: if slice_name in [FINAL_LOSS]: continue # Add slices that are empty if slice_name not in slices: slices[slice_name] = {str(i): 0.0 for i in range(len(aliases))} return slices def create_examples_initializer( data_config, slice_names, use_weak_label, split, train_in_candidates ): """Create example multiprocessing initialiezr.""" global constants_global constants_global = { "slice_names": slice_names, "use_weak_label": use_weak_label, "split": split, "train_in_candidates": train_in_candidates, } def create_examples( dataset, create_ex_indir, create_ex_outdir, meta_file, data_config, dataset_threads, slice_names, use_weak_label, split, ): """Create examples from the raw input data. Args: dataset: dataset file create_ex_indir: temporary directory where input files are stored create_ex_outdir: temporary directory to store output files from method meta_file: metadata file to save the file names/paths for the next step in prep pipeline data_config: data config dataset_threads: number of threads slice_names: list of slices to evaluate on use_weak_label: whether to use weak labeling or not split: data split """ log_rank_0_debug(logger, "Starting to extract subsentences") start = time.time() num_processes = min(dataset_threads, int(0.8 * multiprocessing.cpu_count())) log_rank_0_debug(logger, "Counting lines") total_input = sum(1 for _ in open(dataset)) if num_processes == 1: out_file_name = os.path.join(create_ex_outdir, os.path.basename(dataset)) constants_dict = { "slice_names": slice_names, "use_weak_label": use_weak_label, "split": split, "train_in_candidates": data_config.train_in_candidates, } files_and_counts = {} res = create_examples_single( dataset, total_input, out_file_name, constants_dict ) total_output = res["total_lines"] max_alias2pred = res["max_alias2pred"] files_and_counts[res["output_filename"]] = res["total_lines"] else: log_rank_0_info( logger, f"Strating to extract examples with {num_processes} threads" ) log_rank_0_debug( logger, "Parallelizing with " + str(num_processes) + " threads." ) chunk_input = int(np.ceil(total_input / num_processes)) log_rank_0_debug( logger, f"Chunking up {total_input} lines into subfiles of size {chunk_input} lines", ) total_input_from_chunks, input_files_dict = utils.chunk_file( dataset, create_ex_indir, chunk_input ) input_files = list(input_files_dict.keys()) input_file_lines = [input_files_dict[k] for k in input_files] output_files = [ in_file_name.replace(create_ex_indir, create_ex_outdir) for in_file_name in input_files ] assert ( total_input == total_input_from_chunks ), f"Lengths of files {total_input} doesn't mathc {total_input_from_chunks}" log_rank_0_debug(logger, "Done chunking files") pool = multiprocessing.Pool( processes=num_processes, initializer=create_examples_initializer, initargs=[ data_config, slice_names, use_weak_label, split, data_config.train_in_candidates, ], ) total_output = 0 max_alias2pred = 0 input_args = list(zip(input_files, input_file_lines, output_files)) # Store output files and counts for saving in next step files_and_counts = {} for res in pool.imap_unordered(create_examples_hlp, input_args, chunksize=1): total_output += res["total_lines"] max_alias2pred = max(max_alias2pred, res["max_alias2pred"]) files_and_counts[res["output_filename"]] = res["total_lines"] pool.close() pool.join() utils.dump_json_file( meta_file, { "num_mentions": total_output, "files_and_counts": files_and_counts, "max_alias2pred": max_alias2pred, }, ) log_rank_0_debug( logger, f"Done with extracting examples in {time.time()-start}. Total lines seen {total_input}. " f"Total lines kept {total_output}.", ) return def create_examples_hlp(args): """Create examples wrapper helper.""" in_file_name, in_file_lines, out_file_name = args return create_examples_single( in_file_name, in_file_lines, out_file_name, constants_global ) def create_examples_single(in_file_name, in_file_lines, out_file_name, constants_dict): """Create examples multiprocessing helper.""" split = constants_dict["split"] use_weak_label = constants_dict["use_weak_label"] slice_names = constants_dict["slice_names"] with open(out_file_name, "w") as out_f: total_subsents = 0 # The memmap stores things differently when you have two integers and we want to keep a2p as an array # Therefore for force max the minimum max_a2p to be 2 max_a2pred = 2 for ex in tqdm( open(in_file_name), total=in_file_lines, desc=f"Reading in {in_file_name}" ): line = ujson.loads(ex) assert "sent_idx_unq" in line assert "aliases" in line assert ANCHOR_KEY in line sent_idx = line["sent_idx_unq"] # aliases are assumed to be lower-cased in candidate map aliases = [alias.lower() for alias in line["aliases"]] num_alias2pred = len(aliases) slices = get_slice_values(slice_names, line) # We need to only use True anchors for eval anchor = [True for i in range(len(aliases))] if ANCHOR_KEY in line: anchor = line[ANCHOR_KEY] assert len(aliases) == len(anchor) assert all(isinstance(a, bool) for a in anchor) if split != "train": # Reindex aliases to predict to be where anchor == True because we only ever want to predict # those (it will see all aliases in the forward pass but we will only score the True anchors) for slice_name in slices: aliases_to_predict = slices[slice_name] slices[slice_name] = { i: aliases_to_predict[i] for i in aliases_to_predict if anchor[int(i)] is True } # Add in FINAL LOSS slice if split != "train": slices[FINAL_LOSS] = { str(i): 1.0 for i in range(len(aliases)) if anchor[i] is True } else: slices[FINAL_LOSS] = {str(i): 1.0 for i in range(len(aliases))} # If not use_weak_label, only the anchor is True aliases will be given to the model # We must re-index alias to predict to be in terms of anchors == True # Ex: anchors = [F, T, T, F, F, T] # If dataset_is_eval, let # a2p = [2,5] (a2p must only be for T anchors) # AFTER NOT USE_WEAK_LABEL, DATA WILL BE ONLY THE TRUE ANCHORS # a2p needs to be [1, 2] for the 3rd and 6th true become the 2nd and 3rd after not weak labelling # If dataset_is_eval is False, let # a2p = [0,2,4,5] (a2p can be anything) if not use_weak_label: assert ( ANCHOR_KEY in line ), "Cannot toggle off data weak labelling without anchor info" # The number of aliases will be reduced to the number of true anchors num_alias2pred = sum(anchor) # We must correct this mapping because the indexing will change when we remove False anchors (see # comment example above) slices = data_utils.correct_not_augmented_dict_values(anchor, slices) # print("ANCHOR", anchor, "LINE", line, "SLICeS", slices) # Remove slices that have no aliases to predict for slice_name in list(slices.keys()): if len(slices[slice_name]) <= 0: del slices[slice_name] all_false_anchors = all([anc is False for anc in anchor]) # For nicer code downstream, we make sure FINAL_LOSS is in here # Only cases where it won't be is if use_weak_labels is True and the split is train # (then we may have all false anchors) if FINAL_LOSS not in slices: assert ( all_false_anchors ), f"If {FINAL_LOSS} isn't in slice, it must be that all anchors are False. This is not true" assert ( split != "train" or not use_weak_label ), "As all anchors are false, this must happen if you are evaling or training and using weak labels" # TODO: optimizer here # for i in range(0, num_alias2pred, 1): # subset_slices = {} # for slice_name in list(slices.keys()): # subset_slices[slice_name] = dict(str(j):slice[slice_name][str(j)] for # j in range(i:i+1)) # ex = InputExample( # sent_idx=sent_idx, # subslice_idx=i, # anchor=anchor, # num_alias2pred=num_alias2pred, # slices=slices) # examples.append(ex) subslice_idx = 0 total_subsents += 1 max_a2pred = max(max_a2pred, num_alias2pred) out_f.write( ujson.dumps( InputExample( sent_idx=sent_idx, subslice_idx=subslice_idx, anchor=anchor, num_alias2pred=num_alias2pred, slices=slices, ).to_dict() ) + "\n" ) return { "total_lines": total_subsents, "output_filename": out_file_name, "max_alias2pred": max_a2pred, } def convert_examples_to_features_and_save_initializer(save_dataset_name, storage): """Convert to features multiprocessing initializer.""" global mmap_file_global mmap_file_global = np.memmap(save_dataset_name, dtype=storage, mode="r+") def convert_examples_to_features_and_save( meta_file, dataset_threads, slice_names, save_dataset_name, storage ): """Convert the prepped examples into input features. Saves in memmap files. These are used in the __get_item__ method. Args: meta_file: metadata file where input file paths are saved dataset_threads: number of threads slice_names: list of slice names to evaluation on save_dataset_name: data file name to save storage: data storage type (for memmap) """ log_rank_0_debug(logger, "Starting to extract subsentences") start = time.time() num_processes = min(dataset_threads, int(0.8 * multiprocessing.cpu_count())) log_rank_0_info( logger, f"Starting to build and save features with {num_processes} threads" ) log_rank_0_debug(logger, "Counting lines") total_input = utils.load_json_file(meta_file)["num_mentions"] max_alias2pred = utils.load_json_file(meta_file)["max_alias2pred"] files_and_counts = utils.load_json_file(meta_file)["files_and_counts"] # IMPORTANT: for distributed writing to memmap files, you must create them in w+ mode before # being opened in r+ mode by workers memmap_file = np.memmap( save_dataset_name, dtype=storage, mode="w+", shape=(total_input,), order="C" ) # Save -1 in sent_idx to check that things are loaded correctly later memmap_file[slice_names[0]]["sent_idx"][:] = -1 input_args = [] # Saves where in memap file to start writing offset = 0 for i, in_file_name in enumerate(files_and_counts.keys()): input_args.append( { "file_name": in_file_name, "in_file_lines": files_and_counts[in_file_name], "save_file_offset": offset, "ex_print_mod": int(np.ceil(total_input / 20)), "slice_names": slice_names, "max_alias2pred": max_alias2pred, } ) offset += files_and_counts[in_file_name] if num_processes == 1: assert len(input_args) == 1 total_output = convert_examples_to_features_and_save_single( input_args[0], memmap_file ) else: log_rank_0_debug( logger, "Initializing pool. This make take a few minutes.", ) pool = multiprocessing.Pool( processes=num_processes, initializer=convert_examples_to_features_and_save_initializer, initargs=[save_dataset_name, storage], ) total_output = 0 for res in pool.imap_unordered( convert_examples_to_features_and_save_hlp, input_args, chunksize=1 ): total_output += res pool.close() pool.join() # Verify that sentences are unique and saved correctly mmap_file = np.memmap(save_dataset_name, dtype=storage, mode="r") all_uniq_ids = set() for i in tqdm(range(total_input), desc="Checking sentence uniqueness"): assert ( mmap_file[slice_names[0]]["sent_idx"][i] != -1 ), f"Index {i} has -1 sent idx" uniq_id = str( f"{mmap_file[slice_names[0]]['sent_idx'][i]}.{mmap_file[slice_names[0]]['subslice_idx'][i]}" ) assert ( uniq_id not in all_uniq_ids ), f"Idx {uniq_id} is not unique and already in data" all_uniq_ids.add(uniq_id) log_rank_0_debug( logger, f"Done with extracting examples in {time.time() - start}. Total lines seen {total_input}. " f"Total lines kept {total_output}", ) return def convert_examples_to_features_and_save_hlp(input_dict): """Convert to features helper.""" return convert_examples_to_features_and_save_single(input_dict, mmap_file_global) def convert_examples_to_features_and_save_single(input_dict, mmap_file): """Convert examples to features multiprocessing helper.""" file_name = input_dict["file_name"] in_file_lines = input_dict["in_file_lines"] save_file_offset = input_dict["save_file_offset"] ex_print_mod = input_dict["ex_print_mod"] max_alias2pred = input_dict["max_alias2pred"] slice_names = input_dict["slice_names"] total_saved_features = 0 for idx, in_line in tqdm( enumerate(open(file_name)), total=in_file_lines, desc=f"Processing slice {file_name}", ): example = InputExample.from_dict(ujson.loads(in_line)) example_idx = save_file_offset + idx sent_idx = example.sent_idx subslice_idx = example.subslice_idx slices = example.slices row_data = {} for slice_name in slice_names: # We use the information in "slices" key to generate two pieces of info # 1. Binary info for if a mention is in the slice # 2. Probabilistic info for the prob the mention is in the slice, this is used to train indicator heads if slice_name in slices: # Set indices of aliases to predict relevant to slice to 1-hot vector slice_indexes = np.array([0] * (max_alias2pred)) for idx in slices[slice_name]: # We consider an example as "in the slice" if it's probability is greater than 0.5 slice_indexes[int(idx)] = slices[slice_name][idx] > 0.5 alias_slice_incidence = slice_indexes else: # Set to zero for all aliases if no aliases in example occur in the slice alias_slice_incidence = np.array([0] * max_alias2pred) # Add probabilistic labels for training indicators if slice_name in slices: # padded values are -1 so they are masked in score function slices_padded = np.array([-1.0] * (max_alias2pred)) for idx in slices[slice_name]: # The indexes needed to be string for json slices_padded[int(idx)] = slices[slice_name][idx] alias2pred_probs = slices_padded else: alias2pred_probs = np.array([-1] * max_alias2pred) total_saved_features += 1 # Write slice indices into record array feature = InputFeatures( sent_idx=sent_idx, subslice_idx=subslice_idx, alias_slice_incidence=alias_slice_incidence, alias2pred_probs=alias2pred_probs, ) # We are storing mmap file in column format, so column name first mmap_file[slice_name]["sent_idx"][example_idx] = feature.sent_idx mmap_file[slice_name]["subslice_idx"][example_idx] = feature.subslice_idx mmap_file[slice_name]["alias_slice_incidence"][ example_idx ] = feature.alias_slice_incidence mmap_file[slice_name]["prob_labels"][example_idx] = feature.alias2pred_probs if example_idx % ex_print_mod == 0: for slice_name in row_data: # Make one string for distributed computation consistency output_str = "" output_str += f'*** Example Slice "{slice_name}" ***' + "\n" output_str += ( f"sent_idx: {example.sent_idx}" + "\n" ) output_str += ( f"subslice_idx: {example.subslice_idx}" + "\n" ) output_str += ( f"anchor: {example.anchor}" + "\n" ) output_str += ( f"slices: {example.slices.get(slice_name, {})}" + "\n" ) # Sometimes slices are emtpy if all anchors are false output_str += "*** Feature ***" + "\n" output_str += ( f"alias_slice_incidence: {row_data[slice_name].alias_slice_incidence}" + "\n" ) output_str += ( f"alias2pred_probs: {row_data[slice_name].alias2pred_probs}" + "\n" ) print(output_str) mmap_file.flush() return total_saved_features class BootlegSliceDataset: """ Slice dataset class. Our dataset class for holding data slices (or subpopulations). Each mention can be part of 0 or more slices. When running eval, we use the SliceDataset to determine which mentions are part of what slices. Importantly, although the model "sees" all mentions, only GOLD anchor links are evaluated for eval (splits of test/dev). Args: main_args: main arguments dataset: dataset file use_weak_label: whether to use weak labeling or not entity_symbols: entity symbols dataset_threads: number of processes to use split: data split """ def __init__( self, main_args, dataset, use_weak_label, entity_symbols, dataset_threads, split="train", ): """Slice dataset initializer.""" global_start = time.time() log_rank_0_info(logger, f"Building slice dataset for {split} from {dataset}.") spawn_method = main_args.run_config.spawn_method data_config = main_args.data_config orig_spawn = multiprocessing.get_start_method() multiprocessing.set_start_method(spawn_method, force=True) self.slice_names = data_utils.get_eval_slices(data_config.eval_slices) self.get_slice_dt = lambda max_a2p: np.dtype( [ ("sent_idx", int), ("subslice_idx", int), ("alias_slice_incidence", int, (max_a2p,)), ("prob_labels", float, (max_a2p,)), ] ) self.get_storage = lambda max_a2p: np.dtype( [ (slice_name, self.get_slice_dt(max_a2p)) for slice_name in self.slice_names ] ) # Folder for all mmap saved files -> if call from cand_gen code, save_data_folder will fail try: save_dataset_folder = data_utils.get_save_data_folder( data_config, use_weak_label, dataset ) except AttributeError: save_dataset_folder = data_utils.get_save_data_folder_candgen( data_config, use_weak_label, dataset ) utils.ensure_dir(save_dataset_folder) # Folder for temporary output files temp_output_folder = os.path.join( data_config.data_dir, data_config.data_prep_dir, f"prep_{split}_slice_files" ) utils.ensure_dir(temp_output_folder) # Input step 1 create_ex_indir = os.path.join(temp_output_folder, "create_examples_input") utils.ensure_dir(create_ex_indir) # Input step 2 create_ex_outdir = os.path.join(temp_output_folder, "create_examples_output") utils.ensure_dir(create_ex_outdir) # Meta data saved files meta_file = os.path.join(temp_output_folder, "meta_data.json") # File for standard training data hash = hashlib.sha1(str(self.slice_names).encode("UTF-8")).hexdigest()[:10] self.save_dataset_name = os.path.join( save_dataset_folder, f"ned_slices_{hash}.bin" ) self.save_data_config_name = os.path.join( save_dataset_folder, "ned_slices_config.json" ) # ======================================================================================= # SLICE DATA # ======================================================================================= log_rank_0_debug(logger, "Loading dataset...") log_rank_0_debug(logger, f"Seeing if {self.save_dataset_name} exists") if data_config.overwrite_preprocessed_data or ( not os.path.exists(self.save_dataset_name) ): st_time = time.time() try: log_rank_0_info( logger, f"Building dataset from scratch. Saving to {save_dataset_folder}", ) create_examples( dataset, create_ex_indir, create_ex_outdir, meta_file, data_config, dataset_threads, self.slice_names, use_weak_label, split, ) max_alias2pred = utils.load_json_file(meta_file)["max_alias2pred"] convert_examples_to_features_and_save( meta_file, dataset_threads, self.slice_names, self.save_dataset_name, self.get_storage(max_alias2pred), ) utils.dump_json_file( self.save_data_config_name, {"max_alias2pred": max_alias2pred} ) log_rank_0_debug( logger, f"Finished prepping data in {time.time() - st_time}" ) except Exception as e: tb = traceback.TracebackException.from_exception(e) logger.error(e) logger.error("\n".join(tb.stack.format())) shutil.rmtree(save_dataset_folder, ignore_errors=True) raise log_rank_0_info( logger, f"Loading data from {self.save_dataset_name} and {self.save_data_config_name}", ) max_alias2pred = utils.load_json_file(self.save_data_config_name)[ "max_alias2pred" ] self.data, self.sent_to_row_id_dict = self.build_data_dict( self.save_dataset_name, self.get_storage(max_alias2pred) ) assert len(self.data) > 0 assert len(self.sent_to_row_id_dict) > 0 log_rank_0_debug(logger, "Removing temporary output files") shutil.rmtree(temp_output_folder, ignore_errors=True) # Set spawn back to original/default, which is "fork" or "spawn". This is needed for the Meta.config to # be correctly passed in the collate_fn. multiprocessing.set_start_method(orig_spawn, force=True) log_rank_0_info( logger, f"Final slice data initialization time from {split} is {time.time() - global_start}s", ) @classmethod def build_data_dict(cls, save_dataset_name, storage): """ Build the slice dataset from saved file. Loads the memmap slice dataset and create a mapping from sentence index to row index. Args: save_dataset_name: saved memmap file name storage: storage type of memmap file Returns: numpy memmap data, Dict of sentence index to row in data """ sent_to_row_id_dict = defaultdict(list) data = np.expand_dims( np.memmap(save_dataset_name, dtype=storage, mode="r").view(np.recarray), axis=1, ) # Get any slice name for getting the sentence index slice_name = data[0].dtype.names[0] for i in tqdm(range(len(data)), desc="Building sent idx to row idx mapping"): sent_idx = data[i][slice_name]["sent_idx"][0] sent_to_row_id_dict[sent_idx].append(i) return data, dict(sent_to_row_id_dict) def contains_sentidx(self, sent_idx): """Return true if the sentence index is in the dataset. Args: sent_idx: sentence index Returns: bool whether in dataset or not """ return sent_idx in self.sent_to_row_id_dict def get_slice_incidence_arr(self, sent_idx, alias_orig_list_pos): """ Get slice incident array. Given the sentence index and the list of aliases to get slice indices for (may have -1 indicating no alias), return a dictionary of slice_name -> 0/1 incidence array of if each alias in alias_orig_list_pos was in the slice or not (-1 for no alias). Args: sent_idx: sentence index alias_orig_list_pos: list of alias positions in input data list (due to sentence splitting, aliases may be split up) Returns: Dict of slice name -> 0/1 incidence array """ assert ( sent_idx in self.sent_to_row_id_dict ), f"Sentence {sent_idx} not in {self.save_dataset_name}" alias_orig_list_pos = np.array(alias_orig_list_pos) row_ids = self.sent_to_row_id_dict[sent_idx] slices_to_return = {} for row_i in row_ids: for slice_name in self.slice_names: slices_to_return[slice_name] = self.data[row_i][slice_name][ "alias_slice_incidence" ][0][alias_orig_list_pos] slices_to_return[slice_name][alias_orig_list_pos == -1] = -1 return slices_to_return
bootleg-master
bootleg/slicing/slice_dataset.py
"""Slicing initializer."""
bootleg-master
bootleg/slicing/__init__.py
import re import tempfile from pathlib import Path from subprocess import call import argh from rich.console import Console from bootleg.utils.utils import load_yaml_file console = Console(soft_wrap=True) bert_dir = tempfile.TemporaryDirectory().name checkpoint_regex = re.compile(r"checkpoint_(\d+\.{0,1}\d*).model.pth") def find_latest_checkpoint(path): path = Path(path) possible_checkpoints = [] for fld in path.iterdir(): res = checkpoint_regex.match(fld.name) if res: possible_checkpoints.append([res.group(1), fld]) if len(possible_checkpoints) <= 0: return possible_checkpoints newest_sort = sorted(possible_checkpoints, key=lambda x: float(x[0]), reverse=True) return newest_sort[0][-1] @argh.arg("--config", help="Path for config") @argh.arg("--num_gpus", help="Num gpus") @argh.arg("--batch", help="Batch size") @argh.arg("--grad_accum", help="Grad accum") @argh.arg("--cand_gen_run", help="Launch cand get") def main( config="configs/gcp/bootleg_test.yaml", num_gpus=4, batch=None, grad_accum=None, cand_gen_run=False, ): config = Path(config) config_d = load_yaml_file(config) save_path = Path(config_d["emmental"]["log_path"]) seed = config_d["emmental"].get("seed", 1234) call_file = "bootleg/run.py" if not cand_gen_run else "cand_gen/train.py" to_call = [ "python3", "-m", "torch.distributed.run", f"--nproc_per_node={num_gpus}", call_file, "--config", str(config), ] # if this is a second+ run, log path will be {log_path}_{num_steps_trained} possible_save_paths = save_path.parent.glob(f"{save_path.name}*") latest_save_path = sorted( possible_save_paths, key=lambda x: int(x.name.split("_")[-1]) if x.name.split("_")[-1].isnumeric() else 0, reverse=True, ) save_path = latest_save_path[0] if len(latest_save_path) > 0 else None if save_path is not None and save_path.exists() and save_path.is_dir(): last_checkpoint = find_latest_checkpoint(save_path) if last_checkpoint is not None: to_call.append("--emmental.model_path") to_call.append(str(save_path / last_checkpoint.name)) num_steps_trained = int( checkpoint_regex.match(last_checkpoint.name).group(1) ) assert num_steps_trained == int( float(checkpoint_regex.match(last_checkpoint.name).group(1)) ) optimizer_path = str( save_path / last_checkpoint.name.replace("model", "optimizer") ) scheduler_path = str( save_path / last_checkpoint.name.replace("model", "scheduler") ) to_call.append("--emmental.optimizer_path") to_call.append(optimizer_path) to_call.append("--emmental.scheduler_path") to_call.append(scheduler_path) to_call.append("--emmental.steps_learned") to_call.append(str(num_steps_trained)) # In case didn't get through epoch, change seed so that data is reshuffled to_call.append("--emmental.seed") to_call.append(str(seed + num_steps_trained)) to_call.append("--emmental.log_path") to_call.append( str(save_path.parent / f"{save_path.name}_{num_steps_trained}") ) if batch is not None: to_call.append("--train_config.batch_size") to_call.append(str(batch)) if grad_accum is not None: to_call.append("--emmental.gradient_accumulation_steps") to_call.append(str(grad_accum)) print(f"CALLING...{' '.join(to_call)}") call(to_call) if __name__ == "__main__": argh.dispatch_command(main)
bootleg-master
configs/gcp/launch_gcp.py
import os import jsonlines import numpy as np import pandas as pd import requests import tagme import ujson from tqdm.auto import tqdm from bootleg.symbols.entity_profile import EntityProfile pd.options.display.max_colwidth = 500 def load_train_data(train_file, title_map, entity_profile=None): """Loads a jsonl file and creates a pandas DataFrame. Adds candidates, types, and KGs if available.""" num_lines = sum(1 for _ in open(train_file)) rows = [] with jsonlines.open(train_file) as f: for line in tqdm(f, total=num_lines): gold_qids = line["qids"] # for each alias, append a row in the merged result table for alias_idx in range(len(gold_qids)): sent_toks = line["sentence"].split() res = { "sentence": line["sentence"], "sent_idx": line["sent_idx_unq"], "aliases": line["aliases"], "span": line["spans"][alias_idx], "slices": line.get("slices", {}), "alias": line["aliases"][alias_idx], "real_alias": " ".join( sent_toks[ line["spans"][alias_idx][0] : line["spans"][alias_idx][1] ] ), "alias_idx": alias_idx, "is_gold_label": line["gold"][alias_idx], "gold_qid": gold_qids[alias_idx], "gold_title": title_map[gold_qids[alias_idx]] if gold_qids[alias_idx] != "Q-1" else "Q-1", "all_gold_qids": gold_qids, "gold_label_aliases": [ al for i, al in enumerate(line["aliases"]) if line["gold"][i] is True ], "all_is_gold_labels": line["gold"], "all_spans": line["spans"], } slices = [] if "slices" in line: for sl_name in line["slices"]: if ( str(alias_idx) in line["slices"][sl_name] and line["slices"][sl_name][str(alias_idx)] > 0.5 ): slices.append(sl_name) res["slices"] = slices if entity_profile is not None: res["cand_names"] = [ title_map[q[0]] for i, q in enumerate( entity_profile.get_qid_count_cands( line["aliases"][alias_idx] ) ) ] res["cand_qids"] = [ q[0] for i, q in enumerate( entity_profile.get_qid_count_cands( line["aliases"][alias_idx] ) ) ] for type_sym in entity_profile.get_all_typesystems(): gold_types = entity_profile.get_types( gold_qids[alias_idx], type_sym ) res[f"{type_sym}_gld"] = gold_types connected_pairs_gld = [] for alias_idx2 in range(len(gold_qids)): if entity_profile.is_connected( gold_qids[alias_idx], gold_qids[alias_idx2] ): connected_pairs_gld.append(gold_qids[alias_idx2]) res["kg_gld"] = connected_pairs_gld rows.append(res) return pd.DataFrame(rows) def load_title_map(entity_dir, entity_mapping_dir="entity_mappings"): return ujson.load( open(os.path.join(entity_dir, entity_mapping_dir, "qid2title.json")) ) def load_cand_map(entity_dir, alias_map_file, entity_mapping_dir="entity_mappings"): return ujson.load( open(os.path.join(entity_dir, entity_mapping_dir, alias_map_file)) ) def load_predictions(file): lines = {} with jsonlines.open(file) as f: for line in f: lines[line["sent_idx_unq"]] = line return lines def score_predictions( orig_file, pred_file, title_map, entity_profile: EntityProfile = None, abbr: bool = False, add_type: bool = True, add_kg: bool = False, ): """Loads a jsonl file and joins with the results from dump_preds""" num_lines = sum(1 for _ in open(orig_file)) preds = load_predictions(pred_file) rows = [] with jsonlines.open(orig_file) as f: for line in tqdm(f, total=num_lines): sub_rows = score_line( line, abbr, preds, title_map, entity_profile, add_type, add_kg ) rows.extend(sub_rows) return pd.DataFrame(rows) def score_line( line, abbr, preds, title_map, entity_profile, add_type=True, add_kg=True ): rows = [] sent_idx = line["sent_idx_unq"] gold_qids = line["qids"] pred_qids = preds[sent_idx]["qids"] gold_label_aliases = [ al for i, al in enumerate(line["aliases"]) if line["gold"][i] is True ] assert len(gold_qids) == len(pred_qids), "Gold and pred QIDs have different lengths" # for each alias, append a row in the merged result table for alias_idx in range(len(gold_qids)): res = { "sentence": line["sentence"], "sent_idx": line["sent_idx_unq"], "aliases": line["aliases"], "span": list(line["spans"][alias_idx]), "slices": line.get("slices", {}), "alias": line["aliases"][alias_idx], "alias_idx": alias_idx, "is_gold_label": line["gold"][alias_idx], "gold_qid": gold_qids[alias_idx], "pred_qid": pred_qids[alias_idx], "gold_title": title_map[gold_qids[alias_idx]] if gold_qids[alias_idx] not in {"Q-1", "-1"} else "Q-1", "pred_title": title_map.get(pred_qids[alias_idx], "CouldnotFind") if pred_qids[alias_idx] != "NC" else "NC", "expandedAbbr": line["expandedAbbr"][alias_idx] if abbr else "", "all_gold_qids": gold_qids, "all_pred_qids": pred_qids, "gold_label_aliases": gold_label_aliases, "all_is_gold_labels": line["gold"], "all_spans": line["spans"], } slices = [] if "slices" in line: for sl_name in line["slices"]: if ( str(alias_idx) in line["slices"][sl_name] and line["slices"][sl_name][str(alias_idx)] > 0.5 ): slices.append(sl_name) res["slices"] = slices if entity_profile is not None: res["cand_qids"] = [] res["cand_probs"] = [] res["cand_names"] = [] for i, q in enumerate( entity_profile.get_qid_count_cands(line["aliases"][alias_idx]) ): res["cand_qids"].append(q[0]) res["cand_probs"].append(preds[sent_idx]["cand_probs"][alias_idx][i]) res["cand_names"].append(title_map[q[0]]) if add_type: for type_sym in entity_profile.get_all_typesystems(): gold_types = entity_profile.get_types( gold_qids[alias_idx], type_sym ) pred_types = entity_profile.get_types( pred_qids[alias_idx], type_sym ) res[f"{type_sym}_gld"] = gold_types res[f"{type_sym}_pred"] = pred_types if add_kg: connected_pairs_gld = [] connected_pairs_pred = [] for alias_idx2 in range(len(gold_qids)): if entity_profile.is_connected( gold_qids[alias_idx], gold_qids[alias_idx2] ): connected_pairs_gld.append(gold_qids[alias_idx2]) if entity_profile.is_connected( pred_qids[alias_idx], pred_qids[alias_idx2] ): connected_pairs_pred.append(pred_qids[alias_idx2]) res["kg_gld"] = connected_pairs_gld res["kg_pred"] = connected_pairs_pred rows.append(res) return rows def load_mentions(file): lines = [] with jsonlines.open(file) as f: for line in f: new_line = { "sentence": line["sentence"], "aliases": line.get("aliases", []), "spans": line.get("spans", []), } lines.append(new_line) return pd.DataFrame(lines) def enwiki_title_to_wikidata_id(title: str) -> str: protocol = "https" base_url = "en.wikipedia.org/w/api.php" params = f"action=query&prop=pageprops&format=json&titles={title}" url = f"{protocol}://{base_url}?{params}" response = requests.get(url) json = response.json() for pages in json["query"]["pages"].values(): wikidata_id = pages["pageprops"]["wikibase_item"] return wikidata_id def tagme_annotate(in_file, out_file, threshold=0.1): with jsonlines.open(in_file) as f_in, jsonlines.open(out_file, "w") as f_out: for line in f_in: aliases = [] spans = [] qids = [] probs = [] text = line["sentence"] text_spans = text.split() text_span_indices = [] total_len = 0 # get word boundaries for converting char spans to word spans for i, t in enumerate(text_spans): text_span_indices.append(total_len) total_len += len(t) + 1 lunch_annotations = tagme.annotate(text) # as the threshold increases, the precision increases, but the recall decreases for ann in lunch_annotations.get_annotations(threshold): mention = ann.mention try: qid = enwiki_title_to_wikidata_id(ann.entity_title) except Exception: print(f"No wikidata id found for {ann.entity_title}") continue span_start = text_span_indices.index(ann.begin) try: span_end = text_span_indices.index(ann.end + 1) except Exception: span_end = len(text_spans) aliases.append(mention) spans.append([span_start, span_end]) qids.append(qid) probs.append(ann.score) line["aliases"] = aliases line["qids"] = qids line["spans"] = spans line["probs"] = probs line["gold"] = [True for _ in aliases] f_out.write(line) # modified from https://github.com/facebookresearch/BLINK/blob/master/elq/vcg_utils/measures.py def entity_linking_tp_with_overlap(gold, predicted, ignore_entity=False): """ Partially adopted from: https://github.com/UKPLab/starsem2018-entity-linking Counts weak and strong matches :param gold: :param predicted: :return: >>> entity_linking_tp_with_overlap([('Q7366', 14, 18),('Q780394', 19, 35)],[('Q7366', 14, 16),('Q780394', 19, 35)]) 2, 1 >>> entity_linking_tp_with_overlap([('Q7366', 14, 18), ('Q780394', 19, 35)], [('Q7366', 14, 16)]) 1, 0 >>> entity_linking_tp_with_overlap([(None, 14, 18), ('Q780394', 19, 35)], [('Q7366', 14, 16)]) 0, 0 >>> entity_linking_tp_with_overlap([(None, 14, 18), (None, )], [(None,)]) 1, 0 >>> entity_linking_tp_with_overlap([('Q7366', ), ('Q780394', )], [('Q7366', 14, 16)]) 1, 0 >>> entity_linking_tp_with_overlap([], [('Q7366', 14, 16)]) 0, 0 """ if not gold or not predicted: return 0, 0 # Add dummy spans, if no spans are given, everything is overlapping per default if any(len(e) != 3 for e in gold): gold = [(e[0], 0, 1) for e in gold] predicted = [(e[0], 0, 1) for e in predicted] # Replace None KB ids with empty strings gold = [("",) + e[1:] if e[0] is None else e for e in gold] predicted = [("",) + e[1:] if e[0] is None else e for e in predicted] # ignore_entity for computing mention precision and recall without the entity prediction if ignore_entity: gold = [("",) + e[1:] for e in gold] predicted = [("",) + e[1:] for e in predicted] gold = sorted(gold, key=lambda x: x[2]) predicted = sorted(predicted, key=lambda x: x[2]) # tracks weak matches lcs_matrix_weak = np.zeros((len(gold), len(predicted)), dtype=np.int16) # tracks strong matches lcs_matrix_strong = np.zeros((len(gold), len(predicted)), dtype=np.int16) for g_i in range(len(gold)): for p_i in range(len(predicted)): gm = gold[g_i] pm = predicted[p_i] # increment lcs_matrix_weak if not (gm[1] >= pm[2] or pm[1] >= gm[2]) and ( gm[0].lower() == pm[0].lower() ): if g_i == 0 or p_i == 0: lcs_matrix_weak[g_i, p_i] = 1 else: lcs_matrix_weak[g_i, p_i] = 1 + lcs_matrix_weak[g_i - 1, p_i - 1] else: if g_i == 0 and p_i == 0: lcs_matrix_weak[g_i, p_i] = 0 elif g_i == 0 and p_i != 0: lcs_matrix_weak[g_i, p_i] = max(0, lcs_matrix_weak[g_i, p_i - 1]) elif g_i != 0 and p_i == 0: lcs_matrix_weak[g_i, p_i] = max(lcs_matrix_weak[g_i - 1, p_i], 0) elif g_i != 0 and p_i != 0: lcs_matrix_weak[g_i, p_i] = max( lcs_matrix_weak[g_i - 1, p_i], lcs_matrix_weak[g_i, p_i - 1] ) # increment lcs_matrix_strong if (gm[1] == pm[1] and pm[2] == gm[2]) and (gm[0].lower() == pm[0].lower()): if g_i == 0 or p_i == 0: lcs_matrix_strong[g_i, p_i] = 1 else: lcs_matrix_strong[g_i, p_i] = ( 1 + lcs_matrix_strong[g_i - 1, p_i - 1] ) else: if g_i == 0 and p_i == 0: lcs_matrix_strong[g_i, p_i] = 0 elif g_i == 0 and p_i != 0: lcs_matrix_strong[g_i, p_i] = max( 0, lcs_matrix_strong[g_i, p_i - 1] ) elif g_i != 0 and p_i == 0: lcs_matrix_strong[g_i, p_i] = max( lcs_matrix_strong[g_i - 1, p_i], 0 ) elif g_i != 0 and p_i != 0: lcs_matrix_strong[g_i, p_i] = max( lcs_matrix_strong[g_i - 1, p_i], lcs_matrix_strong[g_i, p_i - 1] ) weak_match_count = lcs_matrix_weak[len(gold) - 1, len(predicted) - 1] strong_match_count = lcs_matrix_strong[len(gold) - 1, len(predicted) - 1] return weak_match_count, strong_match_count def convert_line_tuple(line): qids = line["qids"] spans = line["spans"] pairs = zip(qids, spans) pairs = [(pair[0], pair[1][0], pair[1][1]) for pair in pairs] return pairs # modified from https://github.com/facebookresearch/BLINK def compute_metrics(pred_file, gold_file, md_step_only=False, threshold=0.0): # align by sentence index pred_results = {} with jsonlines.open(pred_file) as f: for line in f: pred_results[line["sent_idx_unq"]] = line gold_results = {} with jsonlines.open(gold_file) as f: for line in f: gold_results[line["sent_idx_unq"]] = line assert len(pred_results) == len( gold_results ), f"{len(pred_results)} {len(gold_results)}" num_mentions_actual = 0 num_mentions_pred = 0 weak_match_total = 0 strong_match_total = 0 errors = [] for sent_idx in pred_results: gold_line = gold_results[sent_idx] pred_line = pred_results[sent_idx] pred_triples = convert_line_tuple(pred_results[sent_idx]) gold_triples = convert_line_tuple(gold_results[sent_idx]) # filter out triples below the threshold if len(pred_triples) > 0 and "probs" in pred_line: assert len(pred_triples) == len(pred_line["probs"]) pred_triples = [ pt for (pt, prob) in zip(pred_triples, pred_line["probs"]) if prob > threshold ] weak_match_count, strong_match_count = entity_linking_tp_with_overlap( pred_triples, gold_triples, ignore_entity=md_step_only ) num_mentions_actual += len(gold_triples) num_mentions_pred += len(pred_triples) weak_match_total += weak_match_count strong_match_total += strong_match_count if weak_match_count != len(gold_triples) or weak_match_count != len( pred_triples ): pred_qids = [p[0] for p in pred_triples] pred_spans = [[p[1], p[2]] for p in pred_triples] pred_probs = [] if "probs" in pred_line: pred_probs = [p for p in pred_line["probs"] if p > threshold] assert len(pred_qids) == len(pred_probs) errors.append( { "sent_idx": sent_idx, "text": gold_line["sentence"], "gold_aliases": gold_line["aliases"], "gold_qids": gold_line["qids"], "gold_spans": gold_line["spans"], "pred_aliases": pred_line["aliases"], "pred_qids": pred_qids, "pred_spans": pred_spans, "pred_probs": pred_probs, } ) print("WEAK MATCHING") precision = weak_match_total / num_mentions_pred recall = weak_match_total / num_mentions_actual print(f"precision = {weak_match_total} / {num_mentions_pred} = {precision}") print(f"recall = {weak_match_total} / {num_mentions_actual} = {recall}") print(f"f1 = {precision*recall*2/(precision+recall)}") print("\nEXACT MATCHING") precision = strong_match_total / num_mentions_pred recall = strong_match_total / num_mentions_actual print(f"precision = {strong_match_total} / {num_mentions_pred} = {precision}") print(f"recall = {strong_match_total} / {num_mentions_actual} = {recall}") print(f"f1 = {precision*recall*2/(precision+recall)}") return pd.DataFrame(errors)
bootleg-master
tutorials/utils.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import argparse from monodepth.depth_model_registry import get_depth_model, get_depth_model_list from depth_fine_tuning import DepthFineTuningParams from scale_calibration import ScaleCalibrationParams from utils import frame_sampling, frame_range from tools.colmap_processor import COLMAPParams from tools.make_video import MakeVideoParams class Video3dParamsParser: def __init__(self): self.parser = argparse.ArgumentParser() self.initialized = False def initialize(self): self.parser.add_argument("--op", choices=["all", "extract_frames"], default="all") self.parser.add_argument("--path", type=str, help="Path to all the input (except for the video) and output files " " are stored.") self.parser.add_argument("--video_file", type=str, help="Path to input video file. Will be ignored if `color_full` and " "`frames.txt` are already present.") self.parser.add_argument("--configure", choices=["default", "kitti"], default="default") self.add_video_args() self.add_flow_args() self.add_calibration_args() self.add_fine_tuning_args() self.add_make_video_args() self.initialized = True def add_video_args(self): self.parser.add_argument("--size", type=int, default=384, help="Size of the (long image dimension of the) output depth maps.") self.parser.add_argument("--align", type=int, default=0, help="Alignment requirement of the depth size (i.e, forcing each" " image dimension to be an integer multiple). If set <= 0 it will" " be set automatically, based on the requirements of the depth network.") def add_flow_args(self): self.parser.add_argument( "--flow_ops", nargs="*", help="optical flow operation: exhausted optical flow for all the pairs in" " dense_frame_range or consective that computes forward backward flow" " between consecutive frames.", choices=frame_sampling.SamplePairsMode.names(), default=["hierarchical2"], ) self.parser.add_argument( "--flow_checkpoint", choices=["FlowNet2", "FlowNet2-KITTI"], default="FlowNet2" ) self.parser.add_argument("--overlap_ratio", type=float, default=0.2) def add_calibration_args(self): COLMAPParams.add_arguments(self.parser) ScaleCalibrationParams.add_arguments(self.parser) def add_fine_tuning_args(self): DepthFineTuningParams.add_arguments(self.parser) self.parser.add_argument( "--model_type", type=str, choices=get_depth_model_list(), default="mc" ) self.parser.add_argument( "--frame_range", default="", type=frame_range.parse_frame_range, help="Range of depth to fine-tune, e.g., 0,2-10,21-40." ) def add_make_video_args(self): self.parser.add_argument("--make_video", action="store_true") MakeVideoParams.add_arguments(self.parser) def print(self): print("------------ Parameters -------------") args = vars(self.params) for k, v in sorted(args.items()): if type(v) == frame_range.NamedOptionalSet: print(f"{k}: '{v.name}'") else: print(f"{k}: {v}") print("-------------------------------------") def parse(self, args=None, namespace=None): if not self.initialized: self.initialize() self.params = self.parser.parse_args(args, namespace=namespace) if self.params.configure == "kitti": self.params.flow_checkpoint = "FlowNet2-KITTI" self.params.model_type = "monodepth2" self.params.overlap_ratio = 0.5 if 'matcher' in self.params: self.params.matcher = 'sequential' # Resolve unspecified parameters model = get_depth_model(self.params.model_type) if self.params.align <= 0: self.params.align = model.align if self.params.learning_rate <= 0: self.params.learning_rate = model.learning_rate if self.params.lambda_view_baseline < 0: self.params.lambda_view_baseline = model.lambda_view_baseline self.print() return self.params
consistent_depth-main
params.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import cv2 import numpy as np import os from os.path import join as pjoin import logging from typing import Optional, Set import torch from utils.helpers import SuppressedStdout from loaders.video_dataset import _dtype, load_color from tools.colmap_processor import COLMAPParams, COLMAPProcessor from utils import ( image_io, geometry, load_colmap, visualization, ) from utils.helpers import print_banner from utils.torch_helpers import _device class ScaleCalibrationParams: @staticmethod def add_arguments(parser): parser.add_argument( "--dense_frame_ratio", type=float, default=0.95, help="threshold on percentage of successully computed dense depth frames." ) parser.add_argument("--dense_pixel_ratio", type=float, default=0.3, help="ratio of valid dense depth pixels for that frame to valid") def prepare_colmap_color(video): """ If there is no dynamic object mask (in `mask_dynamic`) then just use `color_full` to do colmap so return `color_full`. Otherwise, set dynamic part to be black. `mask_dynamic` is 1 in static part and 0 in dynamic part. So in this case, return 'color_colmap_dense' Returns: output_directory """ print('Preparint color input for COLMAP...') out_dir = pjoin(video.path, 'color_colmap_dense') dynamic_mask_dir = pjoin(video.path, 'mask_dynamic') color_src_dir = pjoin(video.path, 'color_full') if not os.path.isdir(dynamic_mask_dir): return color_src_dir if video.check_frames(out_dir, 'png'): return out_dir name_fmt = 'frame_{:06d}.png' os.makedirs(out_dir, exist_ok=True) for i in range(video.frame_count): name = name_fmt.format(i) im = cv2.imread(pjoin(color_src_dir, name)) seg_fn = pjoin(dynamic_mask_dir, name) seg = (cv2.imread(seg_fn, 0) > 0)[..., np.newaxis] masked = im * seg cv2.imwrite(pjoin(out_dir, name), masked) assert video.check_frames(out_dir, 'png') return out_dir def make_camera_params_from_colmap(path, sparse_dir): cameras, images, points3D = load_colmap.read_model(path=sparse_dir, ext=".bin") size_new = image_io.load_raw_float32_image( pjoin(path, "color_down", "frame_{:06d}.raw".format(0)) ).shape[:2][::-1] intrinsics, extrinsics = load_colmap.convert_calibration( cameras, images, size_new ) return intrinsics, extrinsics def visualize_calibration_pair( extrinsics, intrinsics, depth_fmt, color_fmt, id_pair, vis_dir ): assert len(id_pair) == 2 depth_fns = [depth_fmt.format(id) for id in id_pair] if any(not os.path.isfile(fn) for fn in depth_fns): return color_fns = [color_fmt.format(id) for id in id_pair] colors = [load_color(fn, channels_first=True) for fn in color_fns] colors = torch.stack(colors, dim=0).to(_device) inv_depths = [image_io.load_raw_float32_image(fn) for fn in depth_fns] depths = 1.0 / torch.tensor(inv_depths, device=_device).unsqueeze(-3) def select_tensor(x): return torch.tensor(x[list(id_pair)], device=_device, dtype=_dtype) extr = select_tensor(extrinsics) intr = select_tensor(intrinsics) colors_warped_to_ref = geometry.warp_image(colors, depths, extr, intr, [1, 0]) def vis(x): x = np.clip(x.permute(1, 2, 0).cpu().numpy(), a_min=0, a_max=1) x = x[..., ::-1] * 255 # RGB to BGR, [0, 1] to [0, 255] return x os.makedirs(vis_dir, exist_ok=True) for id, tgt_id, color_warped, color in zip( id_pair, id_pair[::-1], colors_warped_to_ref, colors ): cv2.imwrite(pjoin(vis_dir, "frame_{:06d}.png".format(id)), vis(color)) cv2.imwrite( pjoin(vis_dir, "frame_{:06d}_warped_to_{:06d}.png".format(tgt_id, id)), vis(color_warped), ) def visualize_all_calibration( extrinsics, intrinsics, depth_fmt, color_fmt, frame_range, vis_dir ): id_pairs = [ (frame_range.index_to_frame[i], frame_range.index_to_frame[0]) for i in range(1, len(frame_range)) ] for id_pair in id_pairs: visualize_calibration_pair( extrinsics, intrinsics, depth_fmt, color_fmt, id_pair, vis_dir ) def check_frames( src_dir, src_ext, dst_dir, dst_ext, frame_names: Optional[Set[str]] = None ): if not os.path.isdir(src_dir): assert frame_names is not None names = list(frame_names) else: names = [n.replace(src_ext, dst_ext) for n in os.listdir(src_dir) if n.endswith(src_ext)] names = [n for n in names if frame_names is None or n in frame_names] return all( os.path.isfile(pjoin(dst_dir, n)) for n in names ) def calibrate_scale(video, out_dir, frame_range, args): # COLMAP reconstruction. print_banner("COLMAP reconstruction") colmap_dir = pjoin(video.path, 'colmap_dense') src_meta_file = pjoin(colmap_dir, "metadata.npz") colmap = COLMAPProcessor(args.colmap_bin_path) dense_dir = colmap.dense_dir(colmap_dir, 0) if os.path.isfile(src_meta_file): print("Checked metadata file exists.") else: color_dir = prepare_colmap_color(video) if not colmap.check_dense( dense_dir, color_dir, valid_ratio=args.dense_frame_ratio ): path_args = [color_dir, colmap_dir] mask_path = pjoin(video.path, 'colmap_mask') if os.path.isdir(mask_path): path_args.extend(['--mask_path', mask_path]) colmap_args = COLMAPParams().parse_args( args=path_args + ['--dense_max_size', str(args.size)], namespace=args ) colmap.process(colmap_args) intrinsics, extrinsics = make_camera_params_from_colmap( video.path, colmap.sparse_dir(colmap_dir, 0) ) np.savez(src_meta_file, intrinsics=intrinsics, extrinsics=extrinsics) # Convert COLMAP dense depth maps to .raw file format. print_banner("Convert COLMAP depth maps") converted_depth_fmt = pjoin( video.path, "depth_colmap_dense", "depth", "frame_{:06d}.raw" ) # convert colmap dense depths to .raw converted_depth_dir = os.path.dirname(converted_depth_fmt) dense_depth_dir = pjoin(dense_dir, "stereo", "depth_maps") frames = frame_range.frames() if not check_frames( dense_depth_dir, colmap.dense_depth_suffix(), converted_depth_dir, "", frame_names={f"frame_{i:06d}.png" for i in frames}, ): os.makedirs(converted_depth_dir, exist_ok=True) colmap_depth_fmt = pjoin( dense_depth_dir, "frame_{:06d}.png" + colmap.dense_depth_suffix() ) for i in frames: colmap_depth_fn = colmap_depth_fmt.format(i) if not os.path.isfile(colmap_depth_fn): logging.warning( "[SCALE CALIBRATION] %s does not exist.", colmap_depth_fn ) continue cmp_depth = load_colmap.read_array(colmap_depth_fn) inv_cmp_depth = 1.0 / cmp_depth ix = np.isinf(inv_cmp_depth) | (inv_cmp_depth < 0) inv_cmp_depth[ix] = float("nan") image_io.save_raw_float32_image( converted_depth_fmt.format(i), inv_cmp_depth ) with SuppressedStdout(): visualization.visualize_depth_dir( converted_depth_dir, converted_depth_dir, force=True, min_percentile=0, max_percentile=99, ) # Compute scaled depth maps print_banner("Compute per-frame scales") scaled_depth_dir = pjoin(out_dir, "depth_scaled_by_colmap_dense", "depth") scaled_depth_fmt = pjoin(scaled_depth_dir, "frame_{:06d}.raw") scales_file = pjoin(out_dir, "scales.csv") src_depth_fmt = pjoin( video.path, f"depth_{args.model_type}", "depth", "frame_{:06d}.raw" ) frames = frame_range.frames() if ( check_frames( converted_depth_dir, ".png", os.path.dirname(scaled_depth_fmt), ".raw" ) and os.path.isfile(scales_file) ): src_to_colmap_scales = np.loadtxt(scales_file, delimiter=',') assert src_to_colmap_scales.shape[0] >= len(frames) * args.dense_frame_ratio \ and src_to_colmap_scales.shape[1] == 2, \ (f"scales shape is {src_to_colmap_scales.shape} does not match " + f"({len(frames)}, 2) with threshold {args.dense_frame_ratio}") print("Existing scales file loaded.") else: # Scale depth maps os.makedirs(scaled_depth_dir, exist_ok=True) src_to_colmap_scales_map = {} for i in frames: converted_depth_fn = converted_depth_fmt.format(i) if not os.path.isfile(converted_depth_fn): logging.warning("[SCALE CALIBRATION] %s does not exist", converted_depth_fn) continue # convert colmap_depth to raw inv_cmp_depth = image_io.load_raw_float32_image(converted_depth_fn) # compute scale for init depths inv_src_depth = image_io.load_raw_float32_image(src_depth_fmt.format(i)) # src_depth * scale = (1/inv_src_depth) * scale == cmp_depth inv_cmp_depth = cv2.resize( inv_cmp_depth, inv_src_depth.shape[:2][::-1], interpolation=cv2.INTER_NEAREST ) ix = np.isfinite(inv_cmp_depth) if np.sum(ix) / ix.size < args.dense_pixel_ratio: # not enough pixels are valid and hence the frame is invalid. continue scales = (inv_src_depth / inv_cmp_depth)[ix] scale = np.median(scales) print(f"Scale[{i}]: median={scale}, std={np.std(scales)}") # scale = np.median(inv_depth) * np.median(cmp_depth) src_to_colmap_scales_map[i] = float(scale) scaled_inv_src_depth = inv_src_depth / scale image_io.save_raw_float32_image( scaled_depth_fmt.format(i), scaled_inv_src_depth ) with SuppressedStdout(): visualization.visualize_depth_dir( scaled_depth_dir, scaled_depth_dir, force=True ) # Write scales.csv xs = sorted(src_to_colmap_scales_map.keys()) ys = [src_to_colmap_scales_map[x] for x in xs] src_to_colmap_scales = np.stack((np.array(xs), np.array(ys)), axis=-1) np.savetxt(scales_file, src_to_colmap_scales, delimiter=",") valid_frames = {int(s) for s in src_to_colmap_scales[:, 0]} # Scale the extrinsics' translations scaled_meta_file = pjoin(out_dir, "metadata_scaled.npz") if os.path.isfile(scaled_meta_file): print("Scaled metadata file exists.") else: scales = src_to_colmap_scales[:, 1] mean_scale = scales.mean() print(f"[scales] mean={mean_scale}, std={np.std(scales)}") with np.load(src_meta_file) as meta_colmap: intrinsics = meta_colmap["intrinsics"] extrinsics = meta_colmap["extrinsics"] extrinsics[..., -1] /= mean_scale np.savez( scaled_meta_file, intrinsics=intrinsics, extrinsics=extrinsics, scales=src_to_colmap_scales, ) color_fmt = pjoin(video.path, "color_down", "frame_{:06d}.raw") vis_dir = pjoin(out_dir, "vis_calibration_dense") visualize_all_calibration( extrinsics, intrinsics, scaled_depth_fmt, color_fmt, frame_range, vis_dir, ) return valid_frames
consistent_depth-main
scale_calibration.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import argparse import copy import cv2 import numpy as np import os import torch from third_party.flownet2.models import FlowNet2 from third_party.OpticalFlowToolkit.lib.flowlib import flow_to_image from utils.image_io import save_raw_float32_image class FlowInfer(torch.utils.data.Dataset): def __init__(self, list_file, size=None, isRGB=True, start_pos=0): super(FlowInfer, self).__init__() self.size = size txt_file = open(list_file, "r") self.frame1_list = [] self.frame2_list = [] self.output_list = [] self.isRGB = isRGB for line in txt_file: line = line.strip(" ") line = line.strip("\n") line_split = line.split(" ") self.frame1_list.append(line_split[0]) self.frame2_list.append(line_split[1]) self.output_list.append(line_split[2]) if start_pos > 0: self.frame1_list = self.frame1_list[start_pos:] self.frame2_list = self.frame2_list[start_pos:] self.output_list = self.output_list[start_pos:] txt_file.close() def __len__(self): return len(self.frame1_list) def __getitem__(self, idx): frame1 = cv2.imread(self.frame1_list[idx]) frame2 = cv2.imread(self.frame2_list[idx]) if self.isRGB: frame1 = frame1[:, :, ::-1] frame2 = frame2[:, :, ::-1] output_path = self.output_list[idx] frame1 = self._img_tf(frame1) frame2 = self._img_tf(frame2) frame1_tensor = torch.from_numpy(frame1).permute(2, 0, 1).contiguous().float() frame2_tensor = torch.from_numpy(frame2).permute(2, 0, 1).contiguous().float() return frame1_tensor, frame2_tensor, output_path def _img_tf(self, img): img = cv2.resize(img, (self.size[1], self.size[0])) return img def detectAndDescribe(image): # detect and extract features from the image descriptor = cv2.xfeatures2d.SURF_create() (kps, features) = descriptor.detectAndCompute(image, None) # convert the keypoints from KeyPoint objects to NumPy # arrays kps = np.float32([kp.pt for kp in kps]) # return a tuple of keypoints and features return (kps, features) def matchKeypoints(kpsA, kpsB, featuresA, featuresB, ratio=0.75, reprojThresh=4.0): # compute the raw matches and initialize the list of actual # matches matcher = cv2.DescriptorMatcher_create("BruteForce") rawMatches = matcher.knnMatch(featuresA, featuresB, 2) matches = [] # loop over the raw matches for m in rawMatches: # ensure the distance is within a certain ratio of each # other (i.e. Lowe's ratio test) if len(m) == 2 and m[0].distance < m[1].distance * ratio: matches.append((m[0].trainIdx, m[0].queryIdx)) # computing a homography requires at least 4 matches if len(matches) > 4: # construct the two sets of points ptsA = np.float32([kpsA[i] for (_, i) in matches]) ptsB = np.float32([kpsB[i] for (i, _) in matches]) # compute the homography between the two sets of points (H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, reprojThresh) # return the matches along with the homograpy matrix # and status of each matched point return (matches, H, status) # otherwise, no homograpy could be computed return None def parse_args(): parser = argparse.ArgumentParser("Compute optical flow from im1 to im2") parser.add_argument("--im1", nargs="+") parser.add_argument("--im2", nargs="+") parser.add_argument("--out", nargs="+") parser.add_argument( "--pretrained_model_flownet2", type=str, default="./pretrained_models/FlowNet2_checkpoint.pth.tar", ) # parser.add_argument('--img_size', type=list, default=(512, 1024, 3)) parser.add_argument("--rgb_max", type=float, default=255.0) parser.add_argument("--fp16", action="store_true") parser.add_argument("--homography", type=bool, default=1) parser.add_argument( "--size", type=int, nargs=2, default=None, help="If size is not None, resize the flow to size." + " O.w., resize based on max_size and divide.", ) parser.add_argument("--max_size", type=int, default=None) parser.add_argument("--divide", type=int, default=1) parser.add_argument("--visualize", type=bool, default=False) args = parser.parse_args() return args def getimage(img1_path, img2_path, size=None): frame1 = cv2.imread(img1_path) frame2 = cv2.imread(img2_path) if size is not None: frame1 = cv2.resize(frame1[:, :, ::-1], (size[1], size[0])) frame2 = cv2.resize(frame2[:, :, ::-1], (size[1], size[0])) imgH, imgW, _ = frame1.shape (kpsA, featuresA) = detectAndDescribe(frame1) (kpsB, featuresB) = detectAndDescribe(frame2) try: (_, H_BA, _) = matchKeypoints(kpsB, kpsA, featuresB, featuresA) except Exception: H_BA = np.array([1.0, 0, 0, 0, 1.0, 0, 0, 0, 1.0]).reshape(3, 3) NoneType = type(None) if type(H_BA) == NoneType: H_BA = np.array([1.0, 0, 0, 0, 1.0, 0, 0, 0, 1.0]).reshape(3, 3) try: np.linalg.inv(H_BA) except Exception: H_BA = np.array([1.0, 0, 0, 0, 1.0, 0, 0, 0, 1.0]).reshape(3, 3) img2_registered = cv2.warpPerspective(frame2, H_BA, (imgW, imgH)) frame1_tensor = torch.from_numpy(frame1).permute(2, 0, 1).contiguous().float() frame2_tensor = torch.from_numpy(frame2).permute(2, 0, 1).contiguous().float() frame2_reg_tensor = ( torch.from_numpy(img2_registered).permute(2, 0, 1).contiguous().float() ) return frame1_tensor, frame2_tensor, frame2_reg_tensor, H_BA def infer(args, Flownet, device, img1_name, img2_name): img1, img2, img2_reg, H_BA = getimage(img1_name, img2_name) _, imgH, imgW = img1.shape img1 = img1[None, :, :] img2 = img2[None, :, :] img2_reg = img2_reg[None, :, :] img1 = img1.to(device) img2 = img2.to(device) img2_reg = img2_reg.to(device) if args.homography != 1: sz = img1.size() img1_view = img1.view(sz[0], sz[1], 1, sz[2], sz[3]) img2_view = img2.view(sz[0], sz[1], 1, sz[2], sz[3]) inputs = torch.cat((img1_view, img2_view), dim=2) flow = Flownet(inputs)[0].permute(1, 2, 0).data.cpu().numpy() else: sz = img1.size() img1_view = img1.view(sz[0], sz[1], 1, sz[2], sz[3]) img2_reg_view = img2_reg.view(sz[0], sz[1], 1, sz[2], sz[3]) inputs = torch.cat((img1_view, img2_reg_view), dim=2) flow = Flownet(inputs)[0].permute(1, 2, 0).data.cpu().numpy() (fy, fx) = np.mgrid[0:imgH, 0:imgW].astype(np.float32) fxx = copy.deepcopy(fx) + flow[:, :, 0] fyy = copy.deepcopy(fy) + flow[:, :, 1] (fxxx, fyyy, fz) = np.linalg.inv(H_BA).dot( np.concatenate( ( fxx.reshape(1, -1), fyy.reshape(1, -1), np.ones_like(fyy).reshape(1, -1), ), axis=0, ) ) fxxx, fyyy = fxxx / fz, fyyy / fz flow = np.concatenate( ( fxxx.reshape(imgH, imgW, 1) - fx.reshape(imgH, imgW, 1), fyyy.reshape(imgH, imgW, 1) - fy.reshape(imgH, imgW, 1), ), axis=2, ) return flow def resize_flow(flow, size): resized_width, resized_height = size H, W = flow.shape[:2] scale = np.array((resized_width / float(W), resized_height / float(H))).reshape( 1, 1, -1 ) resized = cv2.resize( flow, dsize=(resized_width, resized_height), interpolation=cv2.INTER_CUBIC ) resized *= scale return resized def process(args): N = len(args.im1) assert N == len(args.im2) and N == len(args.out) device = torch.device("cuda:0") Flownet = FlowNet2(args) print(f"Loading pretrained model from '{args.pretrained_model_flownet2}'.") flownet2_ckpt = torch.load(args.pretrained_model_flownet2) Flownet.load_state_dict(flownet2_ckpt["state_dict"]) Flownet.to(device) Flownet.eval() for im1, im2, out in zip(args.im1, args.im2, args.out): if os.path.isfile(out): continue flow = infer(args, Flownet, device, im1, im2) flow = resize_flow(flow, args.size) os.makedirs(os.path.dirname(out), exist_ok=True) save_raw_float32_image(out, flow) if args.visualize: vis = flow_to_image(flow) cv2.imwrite(os.path.splitext(out)[0] + ".png", vis) if __name__ == "__main__": args = parse_args() process(args)
consistent_depth-main
optical_flow_flownet2_homography.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import cv2 import itertools import json import math import os from os.path import join as pjoin import time import torch from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter import torchvision.utils as vutils from typing import Dict from utils.helpers import SuppressedStdout from monodepth.depth_model_registry import get_depth_model import optimizer from loaders.video_dataset import VideoDataset, VideoFrameDataset from loss.joint_loss import JointLoss from loss.loss_params import LossParams from utils import image_io, visualization from utils.torch_helpers import to_device class DepthFineTuningParams: """Options about finetune parameters. """ @staticmethod def add_arguments(parser): parser = LossParams.add_arguments(parser) parser.add_argument( "--optimizer", default="Adam", choices=optimizer.OPTIMIZER_NAMES, help="optimizer to train the network", ) parser.add_argument( "--val_epoch_freq", type=int, default=1, help="validation epoch frequency.", ) parser.add_argument("--learning_rate", type=float, default=0, help="Learning rate for the training. If <= 0 it will be set" " automatically to the default for the specified model adapter.") parser.add_argument("--batch_size", type=int, default=4) parser.add_argument("--num_epochs", type=int, default=20) parser.add_argument("--log_dir", help="folder to log tensorboard summary") parser.add_argument('--display_freq', type=int, default=100, help='frequency of showing training results on screen') parser.add_argument('--print_freq', type=int, default=1, help='frequency of showing training results on console') parser.add_argument('--save_epoch_freq', type=int, default=1, help='frequency of saving checkpoints at the end of epochs') return parser def log_loss_stats( writer: SummaryWriter, name_prefix: str, loss_meta: Dict[str, torch.Tensor], n: int, log_histogram: bool = False, ): """ loss_meta: sub_loss_name: individual losses """ for sub_loss_name, loss_value in loss_meta.items(): sub_loss_full_name = name_prefix + "/" + sub_loss_name writer.add_scalar( sub_loss_full_name + "/max", loss_value.max(), n, ) writer.add_scalar( sub_loss_full_name + "/min", loss_value.min(), n, ) writer.add_scalar( sub_loss_full_name + "/mean", loss_value.mean(), n, ) if log_histogram: writer.add_histogram(sub_loss_full_name, loss_value, n) def write_summary( writer, mode_name, input_images, depth, metadata, n_iter ): DIM = -3 B = depth.shape[0] inv_depth_pred = depth.unsqueeze(DIM) mask = torch.stack(metadata['geometry_consistency']['masks'], dim=1) def to_vis(x): return x[:8].transpose(0, 1).reshape((-1,) + x.shape[DIM:]) writer.add_image( mode_name + '/image', vutils.make_grid(to_vis(input_images), nrow=B, normalize=True), n_iter) writer.add_image( mode_name + '/pred_full', vutils.make_grid(to_vis(1.0 / inv_depth_pred), nrow=B, normalize=True), n_iter) writer.add_image( mode_name + '/mask', vutils.make_grid(to_vis(mask), nrow=B, normalize=True), n_iter) def log_loss( writer: SummaryWriter, mode_name: str, loss: torch.Tensor, loss_meta: Dict[str, torch.Tensor], niters: int, ): main_loss_name = mode_name + "/loss" writer.add_scalar(main_loss_name, loss, niters) log_loss_stats(writer, main_loss_name, loss_meta, niters) def make_tag(params): return ( LossParams.make_str(params) + f"_LR{params.learning_rate}" + f"_BS{params.batch_size}" + f"_O{params.optimizer.lower()}" ) class DepthFineTuner: def __init__(self, range_dir, frames, params): self.frames = frames self.params = params self.base_dir = params.path self.range_dir = range_dir self.out_dir = pjoin(self.range_dir, make_tag(params)) os.makedirs(self.out_dir, exist_ok=True) print(f"Fine-tuning directory: '{self.out_dir}'") self.checkpoints_dir = pjoin(self.out_dir, "checkpoints") os.makedirs(self.checkpoints_dir, exist_ok=True) model = get_depth_model(params.model_type) self.model = model() num_gpus = torch.cuda.device_count() print(f"Using {num_gpus} GPUs.") if num_gpus > 1: self.params.batch_size *= num_gpus print(f"Adjusting batch size to {self.params.batch_size}.") self.reference_disparity = {} self.vis_depth_scale = None def save_depth(self, dir: str = None, frames=None): if dir is None: dir = self.out_dir if frames is None: frames = self.frames color_fmt = pjoin(self.base_dir, "color_down", "frame_{:06d}.raw") depth_dir = pjoin(dir, "depth") depth_fmt = pjoin(depth_dir, "frame_{:06d}") dataset = VideoFrameDataset(color_fmt, frames) data_loader = DataLoader( dataset, batch_size=1, shuffle=False, num_workers=4 ) torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True self.model.eval() os.makedirs(depth_dir, exist_ok=True) for data in data_loader: data = to_device(data) stacked_images, metadata = data frame_id = metadata["frame_id"][0] depth = self.model.forward(stacked_images, metadata) depth = depth.detach().cpu().numpy().squeeze() inv_depth = 1.0 / depth image_io.save_raw_float32_image( depth_fmt.format(frame_id) + ".raw", inv_depth) with SuppressedStdout(): visualization.visualize_depth_dir(depth_dir, depth_dir, force=True) def fine_tune(self, writer=None): meta_file = pjoin(self.range_dir, "metadata_scaled.npz") dataset = VideoDataset(self.base_dir, meta_file) train_data_loader = DataLoader( dataset, batch_size=self.params.batch_size, shuffle=True, num_workers=4, pin_memory=torch.cuda.is_available(), ) val_data_loader = DataLoader( dataset, batch_size=self.params.batch_size, shuffle=False, num_workers=4, pin_memory=torch.cuda.is_available(), ) torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True criterion = JointLoss(self.params, parameters_init=[p.clone() for p in self.model.parameters()]) if writer is None: log_dir = pjoin(self.out_dir, "tensorboard") os.makedirs(log_dir, exist_ok=True) writer = SummaryWriter(log_dir=log_dir) opt = optimizer.create( self.params.optimizer, self.model.parameters(), self.params.learning_rate, betas=(0.9, 0.999) ) eval_dir = pjoin(self.out_dir, "eval") os.makedirs(eval_dir, exist_ok=True) self.model.train() def suffix(epoch, niters): return "_e{:04d}_iter{:06d}".format(epoch, niters) def validate(epoch, niters): loss_meta = self.eval_and_save( criterion, val_data_loader, suffix(epoch, niters) ) if writer is not None: log_loss_stats( writer, "validation", loss_meta, epoch, log_histogram=True ) print(f"Done Validation for epoch {epoch} ({niters} iterations)") self.vis_depth_scale = None validate(0, 0) # Training loop. total_iters = 0 for epoch in range(self.params.num_epochs): epoch_start_time = time.perf_counter() for data in train_data_loader: data = to_device(data) stacked_img, metadata = data depth = self.model(stacked_img, metadata) opt.zero_grad() loss, loss_meta = criterion( depth, metadata, parameters=self.model.parameters()) pairs = metadata['geometry_consistency']['indices'] pairs = pairs.cpu().numpy().tolist() print(f"Epoch = {epoch}, pairs = {pairs}, loss = {loss[0]}") if torch.isnan(loss): print("Loss is NaN. Skipping.") continue loss.backward() opt.step() total_iters += stacked_img.shape[0] if writer is not None and total_iters % self.params.print_freq == 0: log_loss(writer, 'Train', loss, loss_meta, total_iters) if writer is not None and total_iters % self.params.display_freq == 0: write_summary( writer, 'Train', stacked_img, depth, metadata, total_iters ) epoch_end_time = time.perf_counter() epoch_duration = epoch_end_time - epoch_start_time print(f"Epoch {epoch} took {epoch_duration:.2f}s.") if (epoch + 1) % self.params.val_epoch_freq == 0: validate(epoch + 1, total_iters) if (epoch + 1) % self.params.save_epoch_freq == 0: file_name = pjoin(self.checkpoints_dir, f"{epoch + 1:04d}.pth") self.model.save(file_name) # Validate the last epoch, unless it was just done in the loop above. if self.params.num_epochs % self.params.val_epoch_freq != 0: validate(self.params.num_epochs, total_iters) print("Finished Training") def eval_and_save(self, criterion, data_loader, suf) -> Dict[str, torch.Tensor]: """ Note this function asssumes the structure of the data produced by data_loader """ N = len(data_loader.dataset) loss_dict = {} saved_frames = set() total_index = 0 max_frame_index = 0 all_pairs = [] for _, data in zip(range(N), data_loader): data = to_device(data) stacked_img, metadata = data with torch.no_grad(): depth = self.model(stacked_img, metadata) batch_indices = ( metadata["geometry_consistency"]["indices"].cpu().numpy().tolist() ) # Update the maximum frame index and pairs list. max_frame_index = max(max_frame_index, max(itertools.chain(*batch_indices))) all_pairs += batch_indices # Compute and store losses. _, loss_meta = criterion( depth, metadata, parameters=self.model.parameters(), ) for loss_name, losses in loss_meta.items(): if loss_name not in loss_dict: loss_dict[loss_name] = {} for indices, loss in zip(batch_indices, losses): loss_dict[loss_name][str(indices)] = loss.item() # Save depth maps. inv_depths_batch = 1.0 / depth.cpu().detach().numpy() if self.vis_depth_scale is None: # Single scale for the whole dataset. self.vis_depth_scale = inv_depths_batch.max() for inv_depths, indices in zip(inv_depths_batch, batch_indices): for inv_depth, index in zip(inv_depths, indices): # Only save frames not saved before. if index in saved_frames: continue saved_frames.add(index) fn_pre = pjoin( self.out_dir, "eval", "depth_{:06d}{}".format(index, suf) ) image_io.save_raw_float32_image(fn_pre + ".raw", inv_depth) inv_depth_vis = visualization.visualize_depth( inv_depth, depth_min=0, depth_max=self.vis_depth_scale ) cv2.imwrite(fn_pre + ".png", inv_depth_vis) total_index += 1 loss_meta = { loss_name: torch.tensor(tuple(loss.values())) for loss_name, loss in loss_dict.items() } loss_dict["mean"] = {k: v.mean().item() for k, v in loss_meta.items()} with open(pjoin(self.out_dir, "eval", "loss{}.json".format(suf)), "w") as f: json.dump(loss_dict, f) # Print verbose summary to stdout. index_width = int(math.ceil(math.log10(max_frame_index))) loss_names = list(loss_dict.keys()) loss_names.remove("mean") loss_format = {} for name in loss_names: max_value = max(loss_dict[name].values()) width = math.ceil(math.log10(max_value)) loss_format[name] = f"{width+7}.6f" for pair in sorted(all_pairs): line = f"({pair[0]:{index_width}d}, {pair[1]:{index_width}d}): " line += ", ".join( [f"{name}: {loss_dict[name][str(pair)]:{loss_format[name]}}" for name in loss_names] ) print(line) print("Mean: " + " " * (2 * index_width) + ", ".join( [f"{name}: {loss_dict[name][str(pair)]:{loss_format[name]}}" for name in loss_names] )) return loss_meta
consistent_depth-main
depth_fine_tuning.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import cv2 import json import numpy as np import os from os.path import join as pjoin import torch from third_party.OpticalFlowToolkit.lib import flowlib from utils.url_helpers import get_model_from_url import optical_flow_flownet2_homography from utils import ( consistency, geometry, image_io, visualization ) from utils.helpers import dotdict, mkdir_ifnotexists from utils.torch_helpers import _device def warp_by_flow(color, flow): def to_tensor(x): return torch.tensor(x.reshape((-1,) + x.shape)).to(_device).permute(0, 3, 1, 2) color = to_tensor(color) flow = to_tensor(flow) N, _, H, W = flow.shape pixel = geometry.pixel_grid(1, (H, W)) uv = pixel + flow warped = geometry.sample(color, uv) return warped.permute(0, 2, 3, 1).squeeze().detach().cpu().numpy() class Flow: def __init__(self, path, out_path): self.path = path self.out_path = out_path # Max size at which flow can be computed. @staticmethod def max_size(): return 1024 def check_good_flow_pairs(self, frame_pairs, overlap_ratio): flow_list_path = pjoin(self.out_path, "flow_list_%.2f.json" % overlap_ratio) if os.path.isfile(flow_list_path): return flow_list_path def ratio(mask): return np.sum(mask > 0) / np.prod(mask.shape[:2]) mask_fmt = pjoin(self.path, "mask", "mask_{:06d}_{:06d}.png") result_pairs = [] checked_pairs = set() for pair in frame_pairs: if pair in checked_pairs: continue cur_pairs = [pair, pair[::-1]] checked_pairs.update(cur_pairs) mask_fns = [mask_fmt.format(*ids) for ids in cur_pairs] masks = [cv2.imread(fn, 0) for fn in mask_fns] mask_ratios = [ratio(m) for m in masks] if all(r >= overlap_ratio for r in mask_ratios): result_pairs.extend(cur_pairs) else: print("Bad frame pair(%d, %d). Overlap_ratio=" % (pair[0], pair[1]), mask_ratios) print(f"Filtered {len(result_pairs)} / {len(frame_pairs)} good frame pairs") if len(result_pairs) == 0: raise Exception("No good frame pairs are found.") frame_dists = np.array([np.abs(i - j) for (i, j) in result_pairs]) print( "Frame distance statistics: max = %d, mean = %d, median = %d" % (np.amax(frame_dists), np.mean(frame_dists), np.median(frame_dists)) ) with open(flow_list_path, "w") as f: json.dump(list(result_pairs), f) return flow_list_path def check_flow_files(self, index_pairs): flow_dir = "%s/flow" % self.path for (i, j) in index_pairs: file = "%s/flow_%06d_%06d.raw" % (flow_dir, i, j) if not os.path.exists(file): return False return True def compute_flow(self, index_pairs, checkpoint): """Run Flownet2 with specific <checkpoint> (FlowNet2 or finetuned on KITTI) Note that we don't fit homography first for FlowNet2-KITTI model. """ model_name = checkpoint.lower() if model_name == "flownet2-kitti": model_file = get_model_from_url( "https://www.dropbox.com/s/mme80czrpbqal7k/flownet2-kitti.pth.tar?dl=1", model_name + ".pth", ) else: model_file = f"checkpoints/{model_name}.pth" mkdir_ifnotexists("%s/flow" % self.path) if self.check_flow_files(index_pairs): return frame_dir = "%s/color_flow" % self.path frame1_fns = [ "%s/frame_%06d.png" % (frame_dir, pair[0]) for pair in index_pairs ] frame2_fns = [ "%s/frame_%06d.png" % (frame_dir, pair[1]) for pair in index_pairs ] out_fns = [ "%s/flow/flow_%06d_%06d.raw" % (self.path, i, j) for (i, j) in index_pairs ] tmp = image_io.load_raw_float32_image( pjoin(self.path, "color_down", "frame_{:06d}.raw".format(0)) ) size = tmp.shape[:2][::-1] print("Resizing flow to", size) args = dotdict() args.pretrained_model_flownet2 = model_file args.im1 = list(frame1_fns) args.im2 = list(frame2_fns) args.out = list(out_fns) args.size = size args.fp16 = False args.homography = 'KITTI' not in checkpoint args.rgb_max = 255.0 args.visualize = False optical_flow_flownet2_homography.process(args) self.check_flow_files(index_pairs) def visualize_flow(self, warp=False): flow_fmt = pjoin(self.path, "flow", "flow_{:06d}_{:06d}.raw") mask_fmt = pjoin(self.path, "mask", "mask_{:06d}_{:06d}.png") color_fmt = pjoin(self.path, "color_down", "frame_{:06d}.raw") vis_fmt = pjoin(self.path, "vis_flow", "frame_{:06d}_{:06d}.png") warp_fmt = pjoin(self.path, "vis_flow_warped", "frame_{:06d}_{:06d}_warped.png") def get_indices(name): strs = os.path.splitext(name)[0].split("_")[1:] return sorted((int(s) for s in strs)) for fmt in (vis_fmt, warp_fmt): os.makedirs(os.path.dirname(fmt), exist_ok=True) flow_names = os.listdir(os.path.dirname(flow_fmt)) for flow_name in flow_names: indices = get_indices(flow_name) if os.path.isfile(vis_fmt.format(*indices)) and ( not warp or os.path.isfile(warp_fmt.format(*indices)) ): continue indices_pair = [indices, indices[::-1]] flow_fns = [flow_fmt.format(*idxs) for idxs in indices_pair] mask_fns = [mask_fmt.format(*idxs) for idxs in indices_pair] color_fns = [color_fmt.format(idx) for idx in indices] flows = [image_io.load_raw_float32_image(fn) for fn in flow_fns] flow_ims = [flowlib.flow_to_image(np.copy(flow)) for flow in flows] colors = [image_io.load_raw_float32_image(fn) * 255 for fn in color_fns] masks = [cv2.imread(fn, 0) for fn in mask_fns] masked_colors = [ visualization.apply_mask(im, mask) for im, mask in zip(colors, masks) ] masked_flows = [ visualization.apply_mask(im, mask) for im, mask in zip(flow_ims, masks) ] masked = np.hstack(masked_colors + masked_flows) original = np.hstack(colors + flow_ims) visual = np.vstack((original, masked)) cv2.imwrite(vis_fmt.format(*indices), visual) if warp: warped = [ warp_by_flow(color, flow) for color, flow in zip(colors[::-1], flows) ] for idxs, im in zip([indices, indices[::-1]], warped): cv2.imwrite(warp_fmt.format(*idxs), im) def mask_valid_correspondences(self, flow_thresh=1, color_thresh=1): flow_fmt = pjoin(self.path, "flow", "flow_{:06d}_{:06d}.raw") mask_fmt = pjoin(self.path, "mask", "mask_{:06d}_{:06d}.png") color_fmt = pjoin(self.path, "color_down", "frame_{:06d}.raw") def get_indices(name): strs = os.path.splitext(name)[0].split("_")[1:] return [int(s) for s in strs] os.makedirs(os.path.dirname(mask_fmt), exist_ok=True) flow_names = os.listdir(os.path.dirname(flow_fmt)) for flow_name in flow_names: indices = get_indices(flow_name) if os.path.isfile(mask_fmt.format(*indices)): continue indices_pair = [indices, indices[::-1]] flow_fns = [flow_fmt.format(*idxs) for idxs in indices_pair] mask_fns = [mask_fmt.format(*idxs) for idxs in indices_pair] color_fns = [color_fmt.format(idx) for idx in indices] flows = [image_io.load_raw_float32_image(fn) for fn in flow_fns] colors = [image_io.load_raw_float32_image(fn) for fn in color_fns] masks = consistency.consistent_flow_masks( flows, colors, flow_thresh, color_thresh ) for mask, mask_fn in zip(masks, mask_fns): cv2.imwrite(mask_fn, mask * 255)
consistent_depth-main
flow.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import logging import os from os.path import join as pjoin import shutil from depth_fine_tuning import DepthFineTuner from flow import Flow from scale_calibration import calibrate_scale from tools import make_video as mkvid from utils.frame_range import FrameRange, OptionalSet from utils.helpers import print_banner, print_title from video import (Video, sample_pairs) class DatasetProcessor: def __init__(self, writer=None): self.writer = writer def create_output_path(self, params): range_tag = f"R{params.frame_range.name}" flow_ops_tag = "-".join(params.flow_ops) name = f"{range_tag}_{flow_ops_tag}_{params.model_type}" out_dir = pjoin(self.path, name) os.makedirs(out_dir, exist_ok=True) return out_dir def extract_frames(self, params): print_banner("Extracting PTS") self.video.extract_pts() print_banner("Extracting frames") self.video.extract_frames() def pipeline(self, params): self.extract_frames(params) print_banner("Downscaling frames (raw)") self.video.downscale_frames("color_down", params.size, "raw") print_banner("Downscaling frames (png)") self.video.downscale_frames("color_down_png", params.size, "png") print_banner("Downscaling frames (for flow)") self.video.downscale_frames("color_flow", Flow.max_size(), "png", align=64) frame_range = FrameRange( frame_range=params.frame_range.set, num_frames=self.video.frame_count, ) frames = frame_range.frames() print_banner("Compute initial depth") ft = DepthFineTuner(self.out_dir, frames, params) initial_depth_dir = pjoin(self.path, f"depth_{params.model_type}") if not self.video.check_frames(pjoin(initial_depth_dir, "depth"), "raw"): ft.save_depth(initial_depth_dir) valid_frames = calibrate_scale(self.video, self.out_dir, frame_range, params) # frame range for finetuning: ft_frame_range = frame_range.intersection(OptionalSet(set(valid_frames))) print("Filtered out frames", sorted(set(frame_range.frames()) - set(ft_frame_range.frames()))) print_banner("Compute flow") frame_pairs = sample_pairs(ft_frame_range, params.flow_ops) self.flow.compute_flow(frame_pairs, params.flow_checkpoint) print_banner("Compute flow masks") self.flow.mask_valid_correspondences() flow_list_path = self.flow.check_good_flow_pairs( frame_pairs, params.overlap_ratio ) shutil.copyfile(flow_list_path, pjoin(self.path, "flow_list.json")) print_banner("Visualize flow") self.flow.visualize_flow(warp=True) print_banner("Fine-tuning") ft.fine_tune(writer=self.writer) print_banner("Compute final depth") if not self.video.check_frames(pjoin(ft.out_dir, "depth"), "raw", frames): ft.save_depth(ft.out_dir, frames) if params.make_video: print_banner("Export visualization videos") self.make_videos(params, ft.out_dir) return initial_depth_dir, ft.out_dir, frame_range.frames() def process(self, params): self.path = params.path os.makedirs(self.path, exist_ok=True) self.video_file = params.video_file self.out_dir = self.create_output_path(params) self.video = Video(params.path, params.video_file) self.flow = Flow(params.path, self.out_dir) print_title(f"Processing dataset '{self.path}'") print(f"Output directory: {self.out_dir}") if params.op == "all": return self.pipeline(params) elif params.op == "extract_frames": return self.extract_frames(params) else: raise RuntimeError("Invalid operation specified.") def make_videos(self, params, ft_depth_dir): args = [ "--color_dir", pjoin(self.path, "color_down_png"), "--out_dir", pjoin(self.out_dir, "videos"), "--depth_dirs", pjoin(self.path, f"depth_{params.model_type}"), pjoin(self.path, "depth_colmap_dense"), pjoin(ft_depth_dir, "depth"), ] gt_dir = pjoin(self.path, "depth_gt") if os.path.isdir(gt_dir): args.append(gt_dir) vid_params = mkvid.MakeVideoParams().parser.parse_args( args, namespace=params ) logging.info("Make videos {}".format(vid_params)) mkvid.main(vid_params)
consistent_depth-main
process.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. from params import Video3dParamsParser from process import DatasetProcessor if __name__ == "__main__": parser = Video3dParamsParser() params = parser.parse() dp = DatasetProcessor() dp.process(params)
consistent_depth-main
main.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import cv2 import logging import os from os.path import join as pjoin import sys import tempfile from utils import (frame_sampling, image_io) from utils.helpers import mkdir_ifnotexists ffmpeg = "ffmpeg" ffprobe = "ffprobe" def sample_pairs(frame_range, flow_ops): #TODO: update the frame range with reconstruction range name_mode_map = frame_sampling.SamplePairsMode.name_mode_map() opts = [ frame_sampling.SamplePairsOptions(mode=name_mode_map[op]) for op in flow_ops ] pairs = frame_sampling.SamplePairs.sample( opts, frame_range=frame_range, two_way=True ) print(f"Sampled {len(pairs)} frame pairs.") return pairs class Video: def __init__(self, path, video_file=None): self.path = path self.video_file = video_file def check_extracted_pts(self): pts_file = "%s/frames.txt" % self.path if not os.path.exists(pts_file): return False with open(pts_file, "r") as file: lines = file.readlines() self.frame_count = int(lines[0]) width = int(lines[1]) height = int(lines[2]) print("%d frames detected (%d x %d)." % (self.frame_count, width, height)) if len(lines) != self.frame_count + 3: sys.exit("frames.txt has wrong number of lines") print("frames.txt exists, checked OK.") return True return False def extract_pts(self): if self.check_extracted_pts(): # frames.txt exists and checked OK. return if not os.path.exists(self.video_file): sys.exit("ERROR: input video file '%s' not found.", self.video_file) # Get width and height tmp_file = tempfile.mktemp(".png") cmd = "%s -i %s -vframes 1 %s" % (ffmpeg, self.video_file, tmp_file) print(cmd) res = os.popen(cmd).read() image = image_io.load_image(tmp_file) height = image.shape[0] width = image.shape[1] os.remove(tmp_file) if os.path.exists(tmp_file): sys.exit("ERROR: unable to remove '%s'" % tmp_file) # Get PTS def parse_line(line, token): if line[: len(token)] != token: sys.exit("ERROR: record is malformed, expected to find '%s'." % token) return line[len(token) :] ffprobe_cmd = "%s %s -select_streams v:0 -show_frames" % ( ffprobe, self.video_file, ) cmd = ffprobe_cmd + " | grep pkt_pts_time" print(cmd) res = os.popen(cmd).read() pts = [] for line in res.splitlines(): pts.append(parse_line(line, "pkt_pts_time=")) self.frame_count = len(pts) print("%d frames detected." % self.frame_count) pts_file = "%s/frames.txt" % self.path with open(pts_file, "w") as file: file.write("%d\n" % len(pts)) file.write("%s\n" % width) file.write("%s\n" % height) for t in pts: file.write("%s\n" % t) self.check_extracted_pts() def check_frames(self, frame_dir, extension, frames=None): if not os.path.isdir(frame_dir): return False files = os.listdir(frame_dir) files = [n for n in files if n.endswith(extension)] if len(files) == 0: return False if frames is None: frames = range(self.frame_count) if len(files) != len(frames): sys.exit( "ERROR: expected to find %d files but found %d in '%s'" % (self.frame_count, len(files), frame_dir) ) for i in frames: frame_file = "%s/frame_%06d.%s" % (frame_dir, i, extension) if not os.path.exists(frame_file): sys.exit("ERROR: did not find expected file '%s'" % frame_file) print("Frames found, checked OK.") return True def extract_frames(self): frame_dir = "%s/color_full" % self.path mkdir_ifnotexists(frame_dir) if self.check_frames(frame_dir, "png"): # Frames are already extracted and checked OK. return if not os.path.exists(self.video_file): sys.exit("ERROR: input video file '%s' not found.", self.video_file) cmd = "%s -i %s -start_number 0 -vsync 0 %s/frame_%%06d.png" % ( ffmpeg, self.video_file, frame_dir, ) print(cmd) os.popen(cmd).read() count = len(os.listdir(frame_dir)) if count != self.frame_count: sys.exit( "ERROR: %d frames extracted, but %d PTS entries." % (count, self.frame_count) ) self.check_frames(frame_dir, "png") def downscale_frames( self, subdir, max_size, ext, align=16, full_subdir="color_full" ): full_dir = pjoin(self.path, full_subdir) down_dir = pjoin(self.path, subdir) mkdir_ifnotexists(down_dir) if self.check_frames(down_dir, ext): # Frames are already extracted and checked OK. return for i in range(self.frame_count): full_file = "%s/frame_%06d.png" % (full_dir, i) down_file = ("%s/frame_%06d." + ext) % (down_dir, i) suppress_messages = (i > 0) image = image_io.load_image( full_file, max_size=max_size, align=align, suppress_messages=suppress_messages ) image = image[..., ::-1] # Channel swizzle if ext == "raw": image_io.save_raw_float32_image(down_file, image) else: cv2.imwrite(down_file, image * 255) self.check_frames(down_dir, ext)
consistent_depth-main
video.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import argparse import logging import sys import os from os.path import join as pjoin import shutil import subprocess from typing import Tuple, Optional, List import cv2 LOG = logging.getLogger() LOG.setLevel("INFO") formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s") ch = logging.StreamHandler() ch.setFormatter(formatter) LOG.handlers = [] LOG.addHandler(ch) class MakeVideoParams: def __init__(self): self.parser = argparse.ArgumentParser( "Create videos from color and depth frames. " "If <video3d_dir> is specified, <color_dir> and <depth_dirs> " "only need to be relative directory to <video3d_dir>." " <color_dir> and each of the <depth_dirs> should contain " "the same number of frames." ) self.parser.add_argument( "--color_dir", default="color_down_png", help="directory of color images" ) self.parser.add_argument( "--depth_dirs", nargs="*", help="directory of depth images" ) self.parser.add_argument("--out_dir", help="output directory for the video") self.parser.add_argument("--ext", help="video extension", default=".mp4") self.parser.add_argument( "--frame_fmt", help="frame format", default="frame_%06d.png" ) self.parser.add_argument( "--video3d_dir", help="directory for the 3D video", default=None ) self.add_arguments(self.parser) @staticmethod def add_arguments(parser): parser.add_argument( "--ffmpeg", help="specify the path to the ffmpeg bin", default="ffmpeg" ) def parse_args(): return MakeVideoParams().parser.parse_args() def num_frames(dir, ext): return len([fn for fn in os.listdir(dir) if os.path.splitext(fn)[-1] == ext]) def augment_args(args): if args.video3d_dir is not None: args.color_dir = pjoin(args.video3d_dir, args.color_dir) args.depth_dirs = [pjoin(args.video3d_dir, dir) for dir in args.depth_dirs] args.out_dir = pjoin(args.video3d_dir, args.out_dir) # depth_dir can include or omit the "depth" suffix # number of frames should be equal frame_ext = os.path.splitext(args.frame_fmt)[-1] n = num_frames(args.color_dir, frame_ext) assert n > 0 DEPTH = "depth" args.depth_names = [] valid_depth_dirs = [] for depth_dir in args.depth_dirs: names = os.listdir(depth_dir) if DEPTH in names and len(names) == 1: depth_dir = pjoin(depth_dir, DEPTH) depth_frames = num_frames(depth_dir, frame_ext) if depth_frames == n: valid_depth_dirs.append(depth_dir) else: logging.warning("[Warning] %d vs. %d in %s" % (depth_frames, n, depth_dir)) continue p_head, p_tail = os.path.split(depth_dir) if p_tail == DEPTH: p_head, p_tail = os.path.split(p_head) args.depth_names.append(p_tail) args.depth_dirs = valid_depth_dirs return args def frame_size(frame_fmt: str, frame_index: int = 0): im_fn = frame_fmt % frame_index return cv2.imread(im_fn).shape[:2][::-1] def make_resized_filename(prefix: str, size: Tuple[int, int], ext: str): return prefix + ("_" + str(size)) + ext def make_resized_filename_if_exists( prefix: str, ext: str, size: Optional[Tuple[int, int]] = None ) -> str: unsized_fn = prefix + ext if size is None: return unsized_fn sized_fn = make_resized_filename(prefix, size, ext) if os.path.isfile(sized_fn): return sized_fn return unsized_fn def make_video( ffmpeg: str, frame_fmt: str, out_prefix: str, ext: str = ".mp4", size: Optional[Tuple[int, int]] = None, crf: int = 1, ) -> None: out_fn = out_prefix + ext if not os.path.isfile(out_fn): cmd = [ ffmpeg, "-r", "30", "-i", frame_fmt, "-vcodec", "libx264", "-pix_fmt", "yuv420p", "-crf", str(crf), "-vf", "pad=ceil(iw/2)*2:ceil(ih/2)*2", out_fn, ] print(subprocess.run(cmd, check=True)) # resize the video if size is specified if size is None: return in_size = frame_size(frame_fmt) if in_size == size: return resized_out_fn = make_resized_filename(out_prefix, size, ext) if os.path.isfile(resized_out_fn): return resize_cmd = [ ffmpeg, "-i", out_fn, "-vf", "scale=" + ":".join([str(x) for x in size]), resized_out_fn, ] print(subprocess.run(resize_cmd, check=True)) def make_overlay(depth_fmt: str, color_fmt: str, overlay_fmt: str) -> None: n = num_frames(os.path.dirname(color_fmt), os.path.splitext(color_fmt)[-1]) for i in range(n): color = cv2.imread(color_fmt % i) depth = cv2.imread(depth_fmt % i) if depth.shape != color.shape: depth = cv2.resize(depth, color.shape[:2][::-1]) gray = cv2.cvtColor(color, cv2.COLOR_BGR2GRAY) overlay = gray.reshape(gray.shape[:2] + (-1,)) / 2.0 + depth / 2.0 cv2.imwrite(overlay_fmt % i, overlay) def stack_videos( ffmpeg: str, fn_prefixes: List[str], out_dir: str, ext: str = ".mp4", size: Optional[Tuple[int, int]] = None, crf: int = 1, ) -> str: out_pre = "_".join([os.path.basename(pre) for pre in fn_prefixes]) out_fn = pjoin(out_dir, out_pre + ext) if os.path.isfile(out_fn): return out_fn vid_fns = [ make_resized_filename_if_exists(pre, ext, size=size) for pre in fn_prefixes ] cmd = [ffmpeg] for vid_fn in vid_fns: cmd.extend(["-i", vid_fn]) cmd.extend(["-filter_complex", "hstack=inputs=" + str(len(vid_fns))]) cmd.extend(["-crf", str(crf)]) cmd.append(out_fn) print(subprocess.run(cmd, check=True)) return out_fn def make_depth_videos( ffmpeg: str, depth_fmt: str, color_fmt: str, out_prefix: str, ext: str = ".mp4", size: Optional[Tuple[int, int]] = None, ) -> None: # make a video using the depth frames make_video(ffmpeg, depth_fmt, out_prefix, ext=ext, size=size) # color depth overlay overlay_prefix = out_prefix + "-overlay" overlay_fn = overlay_prefix + ext if os.path.isfile(overlay_fn): return overlay_dir = out_prefix os.makedirs(overlay_dir, exist_ok=True) overlay_fmt = pjoin(overlay_dir, os.path.basename(depth_fmt)) make_overlay(depth_fmt, color_fmt, overlay_fmt) make_video(ffmpeg, overlay_fmt, overlay_prefix, ext=ext, size=size) shutil.rmtree(overlay_dir) stack_videos( ffmpeg, [out_prefix, overlay_prefix], os.path.dirname(out_prefix), ext=ext, size=size, ) def main(args): COLOR_NAME = "color" args = augment_args(args) size = frame_size(pjoin(args.color_dir, args.frame_fmt)) os.makedirs(args.out_dir, exist_ok=True) color_video_prefix = pjoin(args.out_dir, COLOR_NAME) make_video( args.ffmpeg, pjoin(args.color_dir, args.frame_fmt), color_video_prefix, ext=args.ext, ) depth_video_prefixes = [pjoin(args.out_dir, name) for name in args.depth_names] for depth_dir, prefix in zip(args.depth_dirs, depth_video_prefixes): make_depth_videos( args.ffmpeg, pjoin(depth_dir, args.frame_fmt), pjoin(args.color_dir, args.frame_fmt), prefix, size=size, ext=args.ext, ) if len(args.depth_dirs) > 0: stack_videos( args.ffmpeg, [color_video_prefix] + depth_video_prefixes, args.out_dir, size=size, ext=args.ext, ) # merge overlay videos overlay_video_prefixes = [] for pre in depth_video_prefixes: overlay_video_prefixes.extend([pre, pre + "-overlay"]) stack_videos( args.ffmpeg, overlay_video_prefixes, args.out_dir, size=size, ext=args.ext ) return 0 if __name__ == "__main__": sys.exit(main(parse_args()))
consistent_depth-main
tools/make_video.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import argparse import logging import os from os.path import join as pjoin import subprocess import sys import numpy as np class COLMAPParams: def __init__(self): self.parser = argparse.ArgumentParser() self.parser.add_argument("image_path", help="image path") self.parser.add_argument("workspace_path", help="workspace path") self.parser.add_argument( "--mask_path", help="path for mask to exclude feature extration from those regions", default=None, ) self.parser.add_argument( "--dense_max_size", type=int, help='Max size for dense COLMAP', default=384, ) self.add_arguments(self.parser) @staticmethod def add_arguments(parser): parser.add_argument( "--colmap_bin_path", help="path to colmap bin. COLMAP 3.6 is required to enable mask_path", default='colmap' ) parser.add_argument( "--sparse", help="disable dense reconstruction", action='store_true' ) parser.add_argument( "--initialize_pose", help="Intialize Pose", action='store_true' ) parser.add_argument( "--camera_params", help="prior camera parameters", default=None ) parser.add_argument( "--camera_model", help="camera_model", default='SIMPLE_PINHOLE' ) parser.add_argument( "--refine_intrinsics", help="refine camera parameters. Not used when camera_params is None", action="store_true" ) parser.add_argument( "--matcher", choices=["exhaustive", "sequential"], default="exhaustive", help="COLMAP matcher ('exhaustive' or 'sequential')" ) def parse_args(self, args=None, namespace=None): return self.parser.parse_args(args, namespace=namespace) class COLMAPProcessor: def __init__(self, colmap_bin: str = 'colmap'): self.colmap_bin = colmap_bin def process(self, args): os.makedirs(args.workspace_path, exist_ok=True) self.extract_features(args) self.match(args) if args.initialize_pose: self.triangulate(args) else: self.map(args) models = os.listdir(self.sparse_dir(args.workspace_path)) num_models = len(models) logging.info('#models = %d', num_models) if num_models > 1: logging.error( "COLMAP reconstructs more than one model (#models=%d)", num_models ) if 'sparse' not in vars(args) or not args.sparse: for sub_model in models: self.dense(sub_model, args) def extract_features(self, args): cmd = [ self.colmap_bin, 'feature_extractor', '--database_path', self.db_path(args.workspace_path), '--image_path', args.image_path, '--ImageReader.camera_model', args.camera_model, '--ImageReader.single_camera', '1' ] if args.camera_params: cmd.extend(['--ImageReader.camera_params', args.camera_params]) if args.mask_path: cmd.extend(['--ImageReader.mask_path', args.mask_path]) if args.initialize_pose: cmd.extend(['--SiftExtraction.num_threads', '1']) cmd.extend(['--SiftExtraction.gpu_index', '0']) run(cmd) def match(self, args): cmd = [ self.colmap_bin, f'{args.matcher}_matcher', '--database_path', self.db_path(args.workspace_path), '--SiftMatching.guided_matching', '1', ] if args.matcher == "sequential": cmd.extend([ '--SequentialMatching.overlap', '50', '--SequentialMatching.quadratic_overlap', '0', ]) run(cmd) def triangulate(self, args): if self.check_sparse(self.sparse_dir(args.workspace_path, model_index=0)): return pose_init_dir = self.pose_init_dir(args.workspace_path) assert self.check_sparse(pose_init_dir) sparse_dir = self.sparse_dir(args.workspace_path, model_index=0) os.makedirs(sparse_dir, exist_ok=True) cmd = [ self.colmap_bin, 'point_triangulator', '--database_path', self.db_path(args.workspace_path), '--image_path', args.image_path, '--output_path', sparse_dir, '--input_path', pose_init_dir, '--Mapper.ba_refine_focal_length', '0', '--Mapper.ba_local_max_num_iterations', '0', '--Mapper.ba_global_max_num_iterations', '1', ] run(cmd) def map(self, args): if self.check_sparse(self.sparse_dir(args.workspace_path, model_index=0)): return sparse_dir = self.sparse_dir(args.workspace_path) os.makedirs(sparse_dir, exist_ok=True) cmd = [ self.colmap_bin, 'mapper', '--database_path', self.db_path(args.workspace_path), '--image_path', args.image_path, '--output_path', sparse_dir, # add the following options for KITTI evaluation. Should help in general. '--Mapper.abs_pose_min_inlier_ratio', '0.5', '--Mapper.abs_pose_min_num_inliers', '50', '--Mapper.init_max_forward_motion', '1', '--Mapper.ba_local_num_images', '15', ] if args.camera_params and not args.refine_intrinsics: cmd.extend([ '--Mapper.ba_refine_focal_length', '0', '--Mapper.ba_refine_extra_params', '0', ]) run(cmd) def dense(self, recon_model: str, args): dense_dir = self.dense_dir(args.workspace_path, model_index=recon_model) if self.check_dense(dense_dir, args.image_path): return os.makedirs(dense_dir, exist_ok=True) cmd = [ self.colmap_bin, 'image_undistorter', '--image_path', args.image_path, '--input_path', self.sparse_dir(args.workspace_path, model_index=recon_model), '--output_path', dense_dir, '--output_type', "COLMAP", '--max_image_size', str(args.dense_max_size), ] run(cmd) cmd = [ self.colmap_bin, 'patch_match_stereo', '--workspace_path', dense_dir, '--workspace_format', "COLMAP", '--PatchMatchStereo.max_image_size', str(args.dense_max_size), ] run(cmd) @staticmethod def dense_depth_suffix(): return ".geometric.bin" @staticmethod def db_path(workspace): return pjoin(workspace, 'database.db') @staticmethod def sparse_dir(workspace, model_index=None): p = pjoin(workspace, 'sparse') if model_index is None: return p return pjoin(p, str(model_index)) @staticmethod def dense_dir(workspace, model_index=None): p = pjoin(workspace, 'dense') if model_index is None: return p return pjoin(p, str(model_index)) @staticmethod def pose_init_dir(workspace): return pjoin(workspace, 'pose_init') @staticmethod def check_sparse(sparse_model_dir: str): return any( all( (os.path.isfile(pjoin(sparse_model_dir, name)) for name in ["cameras" + ext, "images" + ext]) ) for ext in ['.bin', '.txt'] ) @classmethod def check_dense(cls, dense_model_dir: str, image_path: str, valid_ratio=1): assert valid_ratio <= 1 depth_fmt = pjoin( dense_model_dir, "stereo", "depth_maps", "{}" + cls.dense_depth_suffix() ) color_names = os.listdir(image_path) num_valid = np.sum(os.path.isfile(depth_fmt.format(n)) for n in color_names) return (num_valid / len(color_names)) >= valid_ratio def run(cmd): print(' '.join(cmd)) subprocess.run(cmd) def main(args): processor = COLMAPProcessor(args.colmap_bin) processor.process(args) return 0 def parse_args(): return COLMAPParams().parser.parse_args() if __name__ == '__main__': sys.exit(main(parse_args()))
consistent_depth-main
tools/colmap_processor.py
#!/usr/bin/env python3 from torch.optim.optimizer import Optimizer from torch.optim import Adam OPTIMIZER_MAP = { "Adam": Adam, } OPTIMIZER_NAMES = OPTIMIZER_MAP.keys() OPTIMIZER_CLASSES = OPTIMIZER_MAP.values() def create(optimizer_name: str, *args, **kwargs) -> Optimizer: return OPTIMIZER_MAP[optimizer_name](*args, **kwargs)
consistent_depth-main
optimizer/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import torch import torch.nn as nn from utils.torch_helpers import _device from utils.geometry import ( pixel_grid, focal_length, project, pixels_to_points, reproject_points, sample, ) def select_tensors(x): """ x (B, N, C, H, W) -> (N, B, C, H, W) Each batch (B) is composed of a pair or more samples (N). """ return x.transpose(0, 1) def weighted_mse_loss(input, target, weights, dim=1, eps=1e-6): """ Args: input (B, C, H, W) target (B, C, H, W) weights (B, 1, H, W) Returns: scalar """ assert ( input.ndimension() == target.ndimension() and input.ndimension() == weights.ndimension() ) # normalize to sum=1 B = weights.shape[0] weights_sum = torch.sum(weights.view(B, -1), dim=-1).view(B, 1, 1, 1) weights_sum = torch.clamp(weights_sum, min=eps) weights_n = weights / weights_sum sq_error = torch.sum((input - target) ** 2, dim=dim, keepdim=True) # BHW return torch.sum((weights_n * sq_error).reshape(B, -1), dim=1) def weighted_rmse_loss(input, target, weights, dim=1, eps=1e-6): """ Args: input (B, C, H, W) target (B, C, H, W) weights (B, 1, H, W) Returns: scalar = weighted_mean(rmse_along_dim) """ assert ( input.ndimension() == target.ndimension() and input.ndimension() == weights.ndimension() ) # normalize to sum=1 B = weights.shape[0] weights_sum = torch.sum(weights.view(B, -1), dim=-1).view(B, 1, 1, 1) weights_sum = torch.clamp(weights_sum, min=eps) weights_n = weights / weights_sum diff = torch.norm(input - target, dim=dim, keepdim=True) return torch.sum((weights_n * diff).reshape(B, -1), dim=1) def weighted_mean_loss(x, weights, eps=1e-6): """ Args: x (B, ...) weights (B, ...) Returns: a scalar """ assert x.ndimension() == weights.ndimension() and x.shape[0] == weights.shape[0] # normalize to sum=1 B = weights.shape[0] weights_sum = torch.sum(weights.view(B, -1), dim=-1).view(B, 1, 1, 1) weights_sum = torch.clamp(weights_sum, min=eps) weights_n = weights / weights_sum return torch.sum((weights_n * x).reshape(B, -1), dim=1) class ConsistencyLoss(nn.Module): def __init__(self, opt): super().__init__() self.opt = opt self.dist = torch.abs def geometry_consistency_loss(self, points_cam, metadata, pixels): """Geometry Consistency Loss. For each pair as specified by indices, geom_consistency = reprojection_error + disparity_error reprojection_error is measured in the screen space of each camera in the pair. Args: points_cam (B, N, 3, H, W): points in local camera coordinate. pixels (B, N, 2, H, W) metadata: dictionary of related metadata to compute the loss. Here assumes metadata include entries as below. { 'extrinsics': torch.tensor (B, N, 3, 4), # extrinsics of each frame. Each (3, 4) = [R, t] 'intrinsics': torch.tensor (B, N, 4), # (fx, fy, cx, cy) 'geometry_consistency': { 'flows': (B, 2, H, W),) * 2 in pixels. For k in range(2) (ref or tgt), pixel p = pixels[indices[b, k]][:, i, j] correspond to p + flows[k][b, :, i, j] in frame indices[b, (k + 1) % 2]. 'masks': ((B, 1, H, W),) * 2. Masks of valid flow matches. Values are 0 or 1. } } """ geom_meta = metadata["geometry_consistency"] points_cam_pair = select_tensors(points_cam) extrinsics = metadata["extrinsics"] extrinsics_pair = select_tensors(extrinsics) intrinsics = metadata["intrinsics"] intrinsics_pair = select_tensors(intrinsics) pixels_pair = select_tensors(pixels) flows_pair = (flows for flows in geom_meta["flows"]) masks_pair = (masks for masks in geom_meta["masks"]) reproj_losses, disp_losses = [], [] inv_idxs = [1, 0] for ( points_cam_ref, tgt_points_cam_tgt, pixels_ref, flows_ref, masks_ref, intrinsics_ref, intrinsics_tgt, extrinsics_ref, extrinsics_tgt, ) in zip( points_cam_pair, points_cam_pair[inv_idxs], pixels_pair, flows_pair, masks_pair, intrinsics_pair, intrinsics_pair[inv_idxs], extrinsics_pair, extrinsics_pair[inv_idxs], ): # change to camera space for target_camera points_cam_tgt = reproject_points( points_cam_ref, extrinsics_ref, extrinsics_tgt ) matched_pixels_tgt = pixels_ref + flows_ref pixels_tgt = project(points_cam_tgt, intrinsics_tgt) if self.opt.lambda_reprojection > 0: reproj_dist = torch.norm(pixels_tgt - matched_pixels_tgt, dim=1, keepdim=True) reproj_losses.append( weighted_mean_loss(self.dist(reproj_dist), masks_ref) ) if self.opt.lambda_view_baseline > 0: # disparity consistency f = torch.mean(focal_length(intrinsics_ref)) # warp points in target image grid target camera coordinates to # reference image grid warped_tgt_points_cam_tgt = sample( tgt_points_cam_tgt, matched_pixels_tgt ) disp_diff = 1.0 / points_cam_tgt[:, -1:, ...] \ - 1.0 / warped_tgt_points_cam_tgt[:, -1:, ...] disp_losses.append( f * weighted_mean_loss(self.dist(disp_diff), masks_ref) ) B = points_cam_pair[0].shape[0] dtype = points_cam_pair[0].dtype reproj_loss = ( self.opt.lambda_reprojection * torch.mean(torch.stack(reproj_losses, dim=-1), dim=-1) if len(reproj_losses) > 0 else torch.zeros(B, dtype=dtype, device=_device) ) disp_loss = ( self.opt.lambda_view_baseline * torch.mean(torch.stack(disp_losses, dim=-1), dim=-1) if len(disp_losses) > 0 else torch.zeros(B, dtype=dtype, device=_device) ) batch_losses = {"reprojection": reproj_loss, "disparity": disp_loss} return torch.mean(reproj_loss + disp_loss), batch_losses def __call__( self, depths, metadata, ): """Compute total loss. The network predicts a set of depths results. The number of samples, N, is not the batch_size, but computed based on the loss. For instance, geometry_consistency_loss requires pairs as samples, then N = 2 . If with more losses, say triplet one from temporal_consistency_loss. Then N = 2 + 3. Args: depths (B, N, H, W): predicted_depths metadata: dictionary of related metadata to compute the loss. Here assumes metadata include data as below. But each loss assumes more. { 'extrinsics': torch.tensor (B, N, 3, 4), # extrinsics of each frame. Each (3, 4) = [R, t] 'intrinsics': torch.tensor (B, N, 4), # (fx, fy, cx, cy) for each frame in pixels } Returns: loss: python scalar. And set self.total_loss """ def squeeze(x): return x.reshape((-1,) + x.shape[2:]) def unsqueeze(x, N): return x.reshape((-1, N) + x.shape[1:]) depths = depths.unsqueeze(-3) intrinsics = metadata["intrinsics"] B, N, C, H, W = depths.shape pixels = pixel_grid(B * N, (H, W)) points_cam = pixels_to_points(squeeze(intrinsics), squeeze(depths), pixels) pixels = unsqueeze(pixels, N) points_cam = unsqueeze(points_cam, N) return self.geometry_consistency_loss(points_cam, metadata, pixels)
consistent_depth-main
loss/consistency_loss.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. class LossParams: """ Loss related parameters """ @staticmethod def add_arguments(parser): parser.add_argument( "--lambda_view_baseline", type=float, default=-1, help="The baseline to define weight to penalize disparity difference." " If < 0 it will be set automatically to the default for the" " specified model adapter.", ) parser.add_argument( "--lambda_reprojection", type=float, default=1.0, help="weight for reprojection loss.", ) parser.add_argument( "--lambda_parameter", type=float, default=0, help="weight for network parameter regularization loss.", ) return parser @staticmethod def make_str(opt): return ( "B{}".format(opt.lambda_view_baseline) + "_R{}".format(opt.lambda_reprojection) + '_PL1-{}'.format(opt.lambda_parameter) )
consistent_depth-main
loss/loss_params.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import torch class ParameterLoss(torch.nn.Module): def __init__(self, parameters_init, opt): self.parameters_init = parameters_init self.opt = opt assert opt.lambda_parameter > 0 def __call__(self, parameters): sq_diff = [torch.abs(p - pi.data) for p, pi in zip(parameters, self.parameters_init)] sq_sum = torch.sum(torch.cat([d.flatten() for d in sq_diff])) loss = self.opt.lambda_parameter * sq_sum return loss, {"parameter_loss": loss.reshape(1, -1)}
consistent_depth-main
loss/parameter_loss.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. from typing import List, Optional import torch from torch.nn import Parameter from .parameter_loss import ParameterLoss from .consistency_loss import ConsistencyLoss from utils.torch_helpers import _device from loaders.video_dataset import _dtype class JointLoss(torch.nn.Module): def __init__(self, opt, parameters_init=None): super().__init__() self.opt = opt if opt.lambda_parameter > 0: assert parameters_init is not None self.parameter_loss = ParameterLoss(parameters_init, opt) if opt.lambda_view_baseline > 0 or opt.lambda_reprojection > 0: self.consistency_loss = ConsistencyLoss(opt) def __call__( self, depths, metadata, parameters: Optional[List[Parameter]] = None, ): loss = torch.zeros(1, dtype=_dtype, device=_device) batch_losses = {} if self.opt.lambda_parameter > 0: assert parameters is not None para_loss, para_batch_losses = self.parameter_loss(parameters) loss += para_loss batch_losses.update(para_batch_losses) if self.opt.lambda_view_baseline > 0 or self.opt.lambda_reprojection > 0: consis_loss, consis_batch_losses = self.consistency_loss( depths, metadata, ) loss += consis_loss batch_losses.update(consis_batch_losses) return loss, batch_losses
consistent_depth-main
loss/joint_loss.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. from collections import namedtuple from enum import Enum, unique, auto from typing import Iterable, NamedTuple, Dict, Any, Set import numpy as np from .frame_range import FrameRange @unique class SamplePairsMode(Enum): EXHAUSTED = 0 CONSECUTIVE = auto() HIERARCHICAL = auto() HIERARCHICAL2 = auto() @classmethod def name_mode_map(cls): return {v.name.lower(): v for v in cls} @classmethod def names(cls): return [v.name.lower() for v in cls] # param is default to {} while mode is required class SamplePairsOptions(NamedTuple): mode: SamplePairsMode params: Dict[str, Any] = {} Pair = namedtuple("Pair", ["first", "second"]) Pairs_t = Set[Pair] class SamplePairs: @classmethod def sample( cls, opts: Iterable[SamplePairsOptions], frame_range: FrameRange, two_way=False, ) -> Pairs_t: num_frames = len(frame_range) rel_pairs = set() for opt in opts: rel_pairs = rel_pairs.union(cls.factory(num_frames, opt, two_way)) pairs = set() for rel_pair in rel_pairs: pair = Pair( frame_range.index_to_frame[rel_pair[0]], frame_range.index_to_frame[rel_pair[1]] ) # Filter out pairs where no end is in depth_frames. Can be optimized # when constructing these pairs if (pair[0] in frame_range.frames() or pair[1] in frame_range.frames()): pairs.add(pair) return pairs @classmethod def factory( cls, num_frames: int, opt: SamplePairsOptions, two_way: bool ) -> Pairs_t: funcs = { SamplePairsMode.EXHAUSTED: cls.sample_exhausted, SamplePairsMode.CONSECUTIVE: cls.sample_consecutive, SamplePairsMode.HIERARCHICAL: cls.sample_hierarchical, SamplePairsMode.HIERARCHICAL2: cls.sample_hierarchical2, } return funcs[opt.mode](num_frames, two_way, **opt.params) @staticmethod def sample_hierarchical( num_frames: int, two_way: bool, min_dist=1, max_dist=None, include_mid_point=False, ) -> Pairs_t: """ Args: min_dist, max_dist: minimum and maximum distance to the neighbour """ assert min_dist >= 1 if max_dist is None: max_dist = num_frames - 1 min_level = np.ceil(np.log2(min_dist)).astype(int) max_level = np.floor(np.log2(max_dist)).astype(int) step_level = (lambda l: max(0, l - 1)) if include_mid_point else (lambda l: l) signs = (-1, 1) if two_way else (1,) pairs = set() for level in range(min_level, max_level + 1): dist = 1 << level step = 1 << step_level(level) for start in range(0, num_frames, step): for sign in signs: end = start + sign * dist if end < 0 or end >= num_frames: continue pairs.add(Pair(start, end)) return pairs @classmethod def sample_hierarchical2( cls, num_frames: int, two_way: bool, min_dist=1, max_dist=None ) -> Pairs_t: return cls.sample_hierarchical( num_frames, two_way, min_dist=min_dist, max_dist=max_dist, include_mid_point=True, ) @classmethod def sample_consecutive(cls, num_frames: int, two_way: bool) -> Pairs_t: return cls.sample_hierarchical(num_frames, two_way, min_dist=1, max_dist=1) @staticmethod def sample_exhausted(cls, num_frames: int, two_way: bool) -> Pairs_t: second_frame_range = ( (lambda i, N: range(N)) if two_way else (lambda i, N: range(i + 1, N)) ) pairs = set() for i in range(num_frames): for j in second_frame_range(i, num_frames): if i != j: pairs.add(Pair(i, j)) return pairs @classmethod def to_one_way(cls, pairs) -> Pairs_t: def ordered(pair): if pair[0] > pair[1]: return Pair(*pair[::-1]) return Pair(*pair) return {ordered(p) for p in pairs} def to_in_range(pairs, frame_range=None): if frame_range is None: return pairs def in_range(idx): return frame_range[0] <= idx and idx < frame_range[1] return [pair for pair in pairs if all(in_range(i) for i in pair)]
consistent_depth-main
utils/frame_sampling.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. from typing import Set, Optional from collections import namedtuple # set is an OptionalSet as below NamedOptionalSet = namedtuple("NamedOptionalSet", ["name", "set"]) class OptionalSet: def __init__(self, set: Optional[Set] = None): self.set = set def intersection(self, other): if self.set is None: return other if other.set is None: return self return OptionalSet(set=self.set.intersection(other.set)) def __str__(self): return str(self.set) class FrameRange: """ Compute the indices of frames we are interested in from the specified range. """ def __init__( self, frame_range: OptionalSet, num_frames: int = None, ): full_range = OptionalSet(set=set(range(num_frames)) if num_frames is not None else None) self.update(frame_range.intersection(full_range)) def intersection(self, other: OptionalSet): return FrameRange(self.frame_range.intersection(other)) def update(self, frame_range: OptionalSet): assert frame_range.set is not None self.frame_range = frame_range # Continuous index of all frames in the range. all_frames = sorted(self.frame_range.set) self.index_to_frame = {i: f for i, f in enumerate(all_frames)} def frames(self): return sorted(self.index_to_frame.values()) def __len__(self): return len(self.index_to_frame) def parse_frame_range(frame_range_str: str) -> NamedOptionalSet: """ Create a frame range from a string, e.g.: 1-10,15,21-40,51-62. """ if len(frame_range_str) == 0: return NamedOptionalSet(name=frame_range_str, set=OptionalSet()) range_strs = frame_range_str.split(',') def parse_sub_range(sub_range_str: str): splits = [int(s) for s in sub_range_str.split('-', maxsplit=1)] if len(splits) == 1: return splits start, end = splits assert start <= end return range(start, end + 1) frame_range = set() for range_str in range_strs: frame_range.update(parse_sub_range(range_str)) # Convert the range to a friendly string representation, e.g., # 6,6,5,8,0,2-4,5-6,10,9 -> "0,2-6,8-10" it = iter(sorted(frame_range)) ranges = [] start = next(it) last_index = start def add_range(ranges): if last_index == start: ranges.append(f"{start}") else: ranges.append(f"{start}-{last_index}") for i in it: if i < 0: raise ValueError("Frame indices must be positive.") assert(i > last_index) if i - last_index > 1: add_range(ranges) start = i last_index = i add_range(ranges) name = ",".join(ranges) return NamedOptionalSet(name=name, set=OptionalSet(frame_range))
consistent_depth-main
utils/frame_range.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import argparse import numpy as np import os from PIL import Image import cv2 import struct from subprocess import call import warnings import six if six.PY2: class ResourceWarning(RuntimeWarning): pass # Needed to suppress ResourceWarning for unclosed image file on dev server. warnings.simplefilter("ignore", ResourceWarning) warnings.simplefilter("ignore", UserWarning) # resizes the image def resize_to_target(image, max_size, align=1, suppress_messages=False): if not suppress_messages: print("Original size: %d x %d" % (image.shape[1], image.shape[0])) H, W = image.shape[:2] long_side = float(max(W, H)) scale = min(1.0, max_size / long_side) resized_height = int(H * scale) resized_width = int(W * scale) if resized_width % align != 0: resized_width = align * round(resized_width / align) if not suppress_messages: print("Rounding width to closest multiple of %d." % align) if resized_height % align != 0: resized_height = align * round(resized_height / align) if not suppress_messages: print("Rounding height to closest multiple of %d." % align) if not suppress_messages: print("Resized: %d x %d" % (resized_width, resized_height)) image = cv2.resize( image, (resized_width, resized_height), interpolation=cv2.INTER_AREA ) return image # Reads an image and returns a normalized float buffer (0-1 range). Corrects # rotation based on EXIF tags. def load_image(file_name, max_size=None, align=1, suppress_messages=False): img, angle = load_image_angle( file_name, max_size, align=align, suppress_messages=suppress_messages ) return img def load_image_angle( file_name, max_size=None, min_size=None, angle=0, align=1, suppress_messages=False ): with Image.open(file_name) as img: if hasattr(img, "_getexif") and img._getexif() is not None: # orientation tag in EXIF data is 274 exif = dict(img._getexif().items()) # adjust the rotation if 274 in exif: if exif[274] == 8: angle = 90 elif exif[274] == 6: angle = 270 elif exif[274] == 3: angle = 180 if angle != 0: img = img.rotate(angle, expand=True) img = np.float32(img) / 255.0 if max_size is not None: if min_size is not None: img = cv2.resize( img, (max_size, min_size), interpolation=cv2.INTER_AREA) else: img = resize_to_target( img, max_size, align=align, suppress_messages=suppress_messages ) return img, angle return [[]], 0.0 # Load image from binary file in the same way as read in C++ with # #include "compphotolib/core/CvUtil.h" # freadimg(fileName, image); def load_raw_float32_image(file_name): with open(file_name, "rb") as f: CV_CN_MAX = 512 CV_CN_SHIFT = 3 CV_32F = 5 I_BYTES = 4 Q_BYTES = 8 h = struct.unpack("i", f.read(I_BYTES))[0] w = struct.unpack("i", f.read(I_BYTES))[0] cv_type = struct.unpack("i", f.read(I_BYTES))[0] pixel_size = struct.unpack("Q", f.read(Q_BYTES))[0] d = ((cv_type - CV_32F) >> CV_CN_SHIFT) + 1 assert d >= 1 d_from_pixel_size = pixel_size // 4 if d != d_from_pixel_size: raise Exception( "Incompatible pixel_size(%d) and cv_type(%d)" % (pixel_size, cv_type) ) if d > CV_CN_MAX: raise Exception("Cannot save image with more than 512 channels") data = np.frombuffer(f.read(), dtype=np.float32) result = data.reshape(h, w) if d == 1 else data.reshape(h, w, d) return result # Save image to binary file, so that it can be read in C++ with # #include "compphotolib/core/CvUtil.h" # freadimg(fileName, image); def save_raw_float32_image(file_name, image): with open(file_name, "wb") as f: CV_CN_MAX = 512 CV_CN_SHIFT = 3 CV_32F = 5 dims = image.shape h = 0 w = 0 d = 1 if len(dims) == 2: h, w = image.shape float32_image = np.transpose(image).astype(np.float32) else: h, w, d = image.shape float32_image = np.transpose(image, [2, 1, 0]).astype("float32") cv_type = CV_32F + ((d - 1) << CV_CN_SHIFT) pixel_size = d * 4 if d > CV_CN_MAX: raise Exception("Cannot save image with more than 512 channels") f.write(struct.pack("i", h)) f.write(struct.pack("i", w)) f.write(struct.pack("i", cv_type)) f.write(struct.pack("Q", pixel_size)) # Write size_t ~ uint64_t # Set buffer size to 16 MiB to hide the Python loop overhead. buffersize = max(16 * 1024 ** 2 // image.itemsize, 1) for chunk in np.nditer( float32_image, flags=["external_loop", "buffered", "zerosize_ok"], buffersize=buffersize, order="F", ): f.write(chunk.tobytes("C")) def save_image(file_name, image): ext = os.path.splitext(file_name)[1].lower() if ext == ".raw": save_raw_float32_image(file_name, image) else: image = 255.0 * image image = Image.fromarray(image.astype("uint8")) image.save(file_name) def save_depth_map_colored(file_name, depth_map, color_binary): save_image(file_name, depth_map) color_depth_name = os.path.splitext(file_name)[0] + "_color.jpg" if color_binary != "": call([color_binary, "--inputFile", file_name, "--outputFile", color_depth_name]) # main print_function if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--input_image", type=str, help="input image") parser.add_argument("--output_image", type=str, help="output image") parser.add_argument( "--max_size", type=int, default=768, help="max size of long image dimension" ) args, unknown = parser.parse_known_args() img = load_image(args.input_image, int(args.max_size)) save_image(args.output_image, img)
consistent_depth-main
utils/image_io.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np from third_party.colmap.scripts.python.read_write_model import ( CAMERA_MODELS, rotmat2qvec, Camera, BaseImage, write_model ) # for exporting these functions to the rest of the code from third_party.colmap.scripts.python.read_dense import read_array from third_party.colmap.scripts.python.read_write_model import ( qvec2rotmat, read_images_binary, read_points3d_binary, read_cameras_binary, read_model, ) CAMERA_NAME_TO_IDS = { c.model_name: c.model_id for c in CAMERA_MODELS } # maps colmap point xc to normal coordinate frame x # x = ROT_COLMAP_TO_NORMAL * x ROT_COLMAP_TO_NORMAL = np.diag([1, -1, -1]) def intrinsics_to_camera(intrinsics, src_im_size=None, dst_im_size=None, eps=0.01): """Convert metadata intrinsics to COLMAP Camera. Only support shared SIMPLE_PINHOLE camera. Args: intrinsics: (N, 4) where each row is fx, fy, cx, cy. Assume intrinsics is the same across all frames. src_im_size: image size corresponding to intrinsics dst_im_size: the image size we want to convert to """ fxy, cxy = intrinsics[0][:2], intrinsics[0][-2:] if src_im_size is None: src_im_size = (2 * cxy).astype(int) if dst_im_size is None: dst_im_size = src_im_size ratio = np.array(dst_im_size) / np.array(src_im_size).astype(float) fxy *= ratio cxy *= ratio if np.abs(fxy[0] - fxy[1]) < eps: model = 'SIMPLE_PINHOLE' params = np.array((fxy[0], cxy[0], cxy[1])) else: model = 'PINHOLE' params = np.array((fxy[0], fxy[1], cxy[0], cxy[1])) camera = Camera( id=1, model=model, width=dst_im_size[0], height=dst_im_size[1], params=params ) return {camera.id: camera} def extrinsics_to_images(extrinsics): images = {} for i, extr in enumerate(extrinsics): R, t = extr[:, :3], extr[:, -1:] Rc = ROT_COLMAP_TO_NORMAL.dot(R.T).dot(ROT_COLMAP_TO_NORMAL.T) tc = -Rc.dot(ROT_COLMAP_TO_NORMAL.T).dot(t) frame_id = i + 1 image = BaseImage( id=frame_id, qvec=rotmat2qvec(Rc), tvec=tc.flatten(), camera_id=1, name="frame_%06d.png" % i, xys=[], point3D_ids=[] ) images[image.id] = image return images def to_colmap(intrinsics, extrinsics, src_im_size=None, dst_im_size=None): """Convert Extrinsics and intrinsics to an empty COLMAP project with no points. """ cameras = intrinsics_to_camera( intrinsics, src_im_size=src_im_size, dst_im_size=dst_im_size ) images = extrinsics_to_images(extrinsics) points3D = {} return cameras, images, points3D def save_colmap( path, intrinsics, extrinsics, src_im_size=None, dst_im_size=None, ext=".txt" ): cameras, images, points3D = to_colmap(intrinsics, extrinsics, src_im_size=src_im_size, dst_im_size=dst_im_size) write_model(cameras, images, points3D, path, ext) def cameras_to_intrinsics(cameras, camera_ids, size_new): """ Args: size_new: image size after resizing and produce equivalent intrinsics for this size """ # params = f, cx, cy assert all( (c.model == "SIMPLE_PINHOLE" or c.model == "PINHOLE" or c.model == "SIMPLE_RADIAL" for c in cameras.values())) intrinsics = [] for id in camera_ids: c = cameras[id] if c.model == "SIMPLE_PINHOLE": f, cx, cy = c.params fxy = np.array([f, f]) elif c.model == "PINHOLE": fx, fy, cx, cy = c.params fxy = np.array([fx, fy]) elif c.model == "SIMPLE_RADIAL": f, cx, cy, r = c.params fxy = np.array([f, f]) else: raise AssertionError() ratio = np.array(size_new) / np.array((c.width, c.height)) fxy = fxy * ratio cxy = np.array((cx, cy)) * ratio intrinsics.append(np.concatenate((fxy, cxy))) return np.stack(intrinsics, axis=0) def images_to_extrinsics(images, image_ids): """Let p be in local camera coordinates. x in global coordinates. Rc, tc be rotation and translation from colmap p = Rc * x + tc, i.e., x = Rc^T * p - Rc^T * tc But we want to generate R, t, s.t., x = Rx+t, so R = Rc^T, t = - Rc^T * tc Note that colmap uses a different coordinate system where y points down and z points to the world. """ extrinsics = [] for id in image_ids: im = images[id] Rc, tc = im.qvec2rotmat(), im.tvec R, t = Rc.T, -Rc.T.dot(tc.reshape(-1, 1)) R = ROT_COLMAP_TO_NORMAL.dot(R).dot(ROT_COLMAP_TO_NORMAL.T) t = ROT_COLMAP_TO_NORMAL.dot(t) extrinsics.append(np.concatenate([R, t], axis=1)) return np.stack(extrinsics, axis=0) def convert_points3D(pts3D: np.ndarray): """ points (3, N) """ return ROT_COLMAP_TO_NORMAL.dot(pts3D) def ordered_image_ids(images): return sorted(images.keys(), key=lambda id: images[id].name) def convert_calibration(cameras, images, size_new): sorted_im_ids = ordered_image_ids(images) sorted_cam_ids = [images[id].camera_id for id in sorted_im_ids] intrinsics = cameras_to_intrinsics(cameras, sorted_cam_ids, size_new) extrinsics = images_to_extrinsics(images, sorted_im_ids) return intrinsics, extrinsics
consistent_depth-main
utils/load_colmap.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import numpy as np import torch.nn def sample(data, uv): """Sample data (H, W, <C>) by uv (H, W, 2) (in pixels). """ shape = data.shape # data from (H, W, <C>) to (1, C, H, W) data = data.reshape(data.shape[:2] + (-1,)) data = torch.tensor(data).permute(2, 0, 1)[None, ...] # (H, W, 2) -> (1, H, W, 2) uv = torch.tensor(uv)[None, ...] H, W = shape[:2] # grid needs to be in [-1, 1] and (B, H, W, 2) size = torch.tensor((W, H), dtype=uv.dtype).view(1, 1, 1, -1) grid = (2 * uv / size - 1).to(data.dtype) tensor = torch.nn.functional.grid_sample(data, grid, padding_mode="border") # from (1, C, H, W) to (H, W, <C>) return tensor.permute(0, 2, 3, 1).reshape(shape).numpy() def sse(x, y, axis=-1): """Sum of suqare error""" d = x - y return np.sum(d * d, axis=axis) def consistency_mask(im_ref, im_tgt, flow, threshold, diff_func=sse): H, W = im_ref.shape[:2] im_ref = im_ref.reshape(H, W, -1) im_tgt = im_tgt.reshape(H, W, -1) x, y = np.arange(W), np.arange(H) X, Y = np.meshgrid(x, y) u, v = flow[..., 0], flow[..., 1] idx_x, idx_y = u + X, v + Y # first constrain to within the image mask = np.all( np.stack((idx_x >= 0, idx_x <= W - 1, 0 <= idx_y, idx_y <= H - 1), axis=-1), axis=-1, ) im_tgt_to_ref = sample(im_tgt, np.stack((idx_x, idx_y), axis=-1)) mask = np.logical_and(mask, diff_func(im_ref, im_tgt_to_ref) < threshold) return mask def consistent_flow_masks(flows, colors, flow_thresh, color_thresh): # mask from flow consistency masks_flow = [ consistency_mask(flow_ref, -flow_tgt, flow_ref, flow_thresh ** 2) for flow_ref, flow_tgt in zip(flows, flows[::-1]) ] # mask from photometric consistency C = colors[0].shape[-1] masks_photo = [ consistency_mask(c_ref, c_tgt, flow_ref, C * (color_thresh ** 2)) for c_ref, c_tgt, flow_ref in zip(colors, colors[::-1], flows) ] # merge the two masks = [np.logical_and(mf, mp) for mf, mp in zip(masks_flow, masks_photo)] return masks
consistent_depth-main
utils/consistency.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import os from os.path import join as pjoin import wget from zipfile import ZipFile def get_model_from_url( url: str, local_path: str, is_zip: bool = False, path_root: str = "checkpoints" ) -> str: local_path = pjoin(path_root, local_path) if os.path.exists(local_path): print(f"Found cache {local_path}") return local_path # download local_path = local_path.rstrip(os.sep) download_path = local_path if not is_zip else f"{local_path}.zip" os.makedirs(os.path.dirname(download_path), exist_ok=True) if os.path.isfile(download_path): print(f"Found cache {download_path}") else: print(f"Dowloading {url} to {download_path} ...") wget.download(url, download_path) if is_zip: print(f"Unziping {download_path} to {local_path}") with ZipFile(download_path, 'r') as f: f.extractall(local_path) os.remove(download_path) return local_path
consistent_depth-main
utils/url_helpers.py
consistent_depth-main
utils/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import cv2 import numpy import os import subprocess import sys import logging from matplotlib.cm import get_cmap from . import image_io CM_MAGMA = (numpy.array([get_cmap('magma').colors]). transpose([1, 0, 2]) * 255)[..., ::-1].astype(numpy.uint8) def visualize_depth(depth, depth_min=None, depth_max=None): """Visualize the depth map with colormap. Rescales the values so that depth_min and depth_max map to 0 and 1, respectively. """ if depth_min is None: depth_min = numpy.amin(depth) if depth_max is None: depth_max = numpy.amax(depth) depth_scaled = (depth - depth_min) / (depth_max - depth_min) depth_scaled = depth_scaled ** 0.5 depth_scaled_uint8 = numpy.uint8(depth_scaled * 255) return ((cv2.applyColorMap( depth_scaled_uint8, CM_MAGMA) / 255) ** 2.2) * 255 def visualize_depth_dir( src_dir: str, dst_dir: str, force: bool = False, extension: str = ".raw", min_percentile: float = 0, max_percentile: float = 100, ): src_files = [] dst_files = [] for file in sorted(os.listdir(src_dir)): base, ext = os.path.splitext(file) if ext.lower() == extension: src_files.append(file) dst_files.append(f"{base}.png") if len(src_files) == 0: return # Check if all dst_files already exist dst_exists = True for file in dst_files: if not os.path.exists(f"{dst_dir}/{file}"): dst_exists = False break if not force and dst_exists: return d_min = sys.float_info.max d_max = sys.float_info.min for src_file in src_files: print("reading '%s'." % src_file) if extension == ".raw": disparity = image_io.load_raw_float32_image(f"{src_dir}/{src_file}") else: disparity = cv2.imread(f"{src_dir}/{src_file}") ix = numpy.isfinite(disparity) if numpy.sum(ix) == 0: logging.warning(f"{src_file} has 0 valid depth") continue valid_disp = disparity[ix] d_min = min(d_min, numpy.percentile(valid_disp, min_percentile)) d_max = max(d_max, numpy.percentile(valid_disp, max_percentile)) for i in range(len(src_files)): src_file = src_files[i] dst_file = dst_files[i] print(f"reading '{src_file}'.") if os.path.exists(f"{dst_dir}/{dst_file}") and not force: print(f"skipping existing file '{dst_file}'.") else: if extension == ".raw": disparity = image_io.load_raw_float32_image( f"{src_dir}/{src_file}") else: disparity = cv2.imread(f"{src_dir}/{src_file}") disparity_vis = visualize_depth(disparity, d_min, d_max) print(f"writing '{dst_file}'.") cv2.imwrite(f"{dst_dir}/{dst_file}", disparity_vis) def create_video(pattern: str, output_file: str, ffmpeg_bin: str = 'ffmpeg'): if not os.path.exists(output_file): cmd = [ffmpeg_bin, "-r", "30", "-i", pattern, "-c:v", "libx264", "-crf", "27", "-pix_fmt", "yuv420p", output_file] subprocess.call(cmd) def apply_mask(im, mask, mask_color=None): im = im.reshape(im.shape[:2] + (-1,)) C = im.shape[-1] mask = mask.reshape(mask.shape[:2] + (-1,)) > 0 if mask_color is None: mask_color = numpy.array([0, 255, 0] if C == 3 else 1) mask_color = mask_color.reshape(1, 1, C) inv_mask = (1 - mask) * mask_color result = 0.7 * im + 0.3 * inv_mask return result.squeeze()
consistent_depth-main
utils/visualization.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import numpy as np from typing import Tuple def reproject(pts3d: np.ndarray, extr: np.ndarray) -> np.ndarray: assert pts3d.shape[0] == extr.shape[0] and pts3d.shape[0] == 3 p_dim, _ = pts3d.shape R, t = extr[:, :p_dim], extr[:, -1:] return R.T.dot(pts3d - t) def focal_length(intr: np.ndarray): return intr[:2] def principal_point(intrinsics): """ Args: intrinsics: (fx, fy, cx, cy) """ return intrinsics[2:] # # center version # H, W = shape # return torch.tensor(((W - 1) / 2.0, (H - 1) / 2.0), device=_device) def project(pts3d: np.ndarray, intr: np.ndarray) -> np.ndarray: """ Args: pts3d (3, N) intr (4) Returns: pixels (2, N) """ rays = pts3d / -pts3d[-1:] fxy = focal_length(intr) uvs = rays[:2] * fxy.reshape(-1, 1) cs = principal_point(intr) # to pixels: (i, j) = (u, -v) + (cx, cy) uvs[1] = -uvs[1] pixels = uvs + cs.reshape(-1, 1) return pixels def sample(depth: np.ndarray, pixels: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """ Args: depth (H, W) pixels (2, N) Returns: depths (M): depths at corresponding pixels with nearest neighbour sampling, M <= N, because some depth can be invalid ix (N): whether a pixels[:, i] is inside the image """ pixels_nn = (pixels + 0.5).astype(int) H, W = depth.shape ix = np.all( ( 0 <= pixels_nn[0], pixels_nn[0] <= W - 1, 0 <= pixels_nn[1], pixels_nn[1] <= H - 1, ), axis=0, ) pixels_valid = pixels_nn[:, ix] indices = pixels_valid[1] * W + pixels_valid[0] ds = depth.flatten()[indices] return ds, ix
consistent_depth-main
utils/geometry_np.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import torch _device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") def to_device(data): if isinstance(data, torch.Tensor): data = data.to(_device, non_blocking=True) return data if isinstance(data, dict): for k, v in data.items(): data[k] = to_device(v) return data # list or tuple for i, v in enumerate(data): data[i] = to_device(v) return data
consistent_depth-main
utils/torch_helpers.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import torch from .torch_helpers import _device from typing import List def pixel_grid(batch_size, shape): """Returns pixel grid of size (batch_size, 2, H, W). pixel positions (x, y) are in range [0, W-1] x [0, H-1] top left is (0, 0). """ H, W = shape x = torch.linspace(0, W - 1, W, device=_device) y = torch.linspace(0, H - 1, H, device=_device) Y, X = torch.meshgrid(y, x) pixels = torch.stack((X, Y), dim=0)[None, ...] return pixels.expand(batch_size, -1, -1, -1) def principal_point(intrinsics, shape): """ Args: intrinsics: (fx, fy, cx, cy) shape: (H, W) """ return intrinsics[:, 2:] # # center version # H, W = shape # return torch.tensor(((W - 1) / 2.0, (H - 1) / 2.0), device=_device) def focal_length(intrinsics): return intrinsics[:, :2] def pixels_to_rays(pixels, intrinsics): """Convert pixels to rays in camera space using intrinsics. Args: pixels (B, 2, H, W) intrinsics (B, 4): (fx, fy, cx, cy) Returns: rays: (B, 3, H, W), where z component is -1, i.e., rays[:, -1] = -1 """ # Assume principal point is ((W-1)/2, (H-1)/2). B, _, H, W = pixels.shape cs = principal_point(intrinsics, (H, W)) # Convert to [-(W-1)/2, (W-1)/2] x [-(H-1)/2, (H-1)/2)] and bottom left is (0, 0) uvs = pixels - cs.view(-1, 2, 1, 1) uvs[:, 1] = -uvs[:, 1] # flip v # compute rays (u/fx, v/fy, -1) fxys = focal_length(intrinsics).view(-1, 2, 1, 1) rays = torch.cat( (uvs / fxys, -torch.ones((B, 1, H, W), dtype=uvs.dtype, device=_device)), dim=1 ) return rays def project(points, intrinsics): """Project points in camera space to pixel coordinates based on intrinsics. Args: points (B, 3, H, W) intrinsics (B, 4): (fx, fy, cx, cy) Returns: pixels (B, 2, H, W) """ rays = points / -points[:, -1:] # rays in pixel unit fxys = focal_length(intrinsics) uvs = rays[:, :2] * fxys.view(-1, 2, 1, 1) B, _, H, W = uvs.shape cs = principal_point(intrinsics, (H, W)) # to pixels: (i, j) = (u, -v) + (cx, cy) uvs[:, 1] = -uvs[:, 1] # flip v pixels = uvs + cs.view(-1, 2, 1, 1) return pixels def pixels_to_points(intrinsics, depths, pixels): """Convert pixels to 3D points in camera space. (Camera facing -z direction) Args: intrinsics: depths (B, 1, H, W) pixels (B, 2, H, W) Returns: points (B, 3, H, W) """ rays = pixels_to_rays(pixels, intrinsics) points = rays * depths return points def reproject_points(points_cam_ref, extrinsics_ref, extrinsics_tgt): """Reproject points in reference camera coordinate to target camera coordinate Args: points_cam_ref (B, 3, H, W): points in reference camera coordinate. extrinsics_ref (B, 3, 4): [R, t] of reference camera. extrinsics_tgt (B, 3, 4): [R, t] of target_camera. Returns: points_cam_tgt (B, 3, H, W): points in target camera coordinate. """ B, p_dim, H, W = points_cam_ref.shape assert p_dim == 3, "dimension of point {} != 3".format(p_dim) # t + R * p where t of (B, 3, 1), R of (B, 3, 3) and p of (B, 3, H*W) R_ref = extrinsics_ref[..., :p_dim] t_ref = extrinsics_ref[..., -1:] points_world = torch.baddbmm(t_ref, R_ref, points_cam_ref.view(B, p_dim, -1)) # Reproject to target: # R'^T * (p - t') where t' of (B, 3, 1), R' of (B, 3, 3) and p of (B, 3, H*W) R_tgt = extrinsics_tgt[..., :p_dim] t_tgt = extrinsics_tgt[..., -1:] points_cam_tgt = torch.bmm(R_tgt.transpose(1, 2), points_world - t_tgt) return points_cam_tgt.view(B, p_dim, H, W) def depth_to_points(depths, intrinsics): """ Args: depths: (B, 1, H, W) intrinsics: (B, num_params) """ B, _, H, W = depths.shape pixels = pixel_grid(B, (H, W)) points_cam = pixels_to_points(intrinsics, depths, pixels) return points_cam def calibrate_scale(extrinsics, intrinsics, depths): """Given depths, compute the global scale to adjust the extrinsics. Given a pair of depths, intrinsics, extrinsics, unproject the depth maps, rotate these points based on camera rotation and compute the center for each one. The distance between these centers should be of the same scale as the translation between the cameras. Therefore, let mu1, mu2 and t1, t2 be the two scene centers and the two camera projection centers. Then -scale * (t1 - t2) = mu1 - mu2. Therefore, scale = -dt.dot(dmu) / dt.dot(dt), where dt = t1 - t2, dmu = mu1 - mu2. Args: intrinsics (2, num_params) extrinsics (2, 3, 4): each one is [R, t] depths (2, 1, H, W) """ assert ( extrinsics.shape[0] == intrinsics.shape[0] and intrinsics.shape[0] == depths.shape[0] ) points_cam = depth_to_points(depths, intrinsics) B, p_dim, H, W = points_cam.shape Rs = extrinsics[..., :p_dim] ts = extrinsics[..., p_dim] points_rot = torch.bmm(Rs, points_cam.view(B, p_dim, -1)) mus = torch.mean(points_rot, axis=-1) # TODO(xuanluo): generalize this to more framse B>2 via variances of the points. assert B == 2 dmu = mus[0] - mus[1] dt = ts[0] - ts[1] t_scale = -dt.dot(dmu) / dt.dot(dt) return t_scale def warping_field(extrinsics, intrinsics, depths, tgt_ids: List[int]): """ Generate the warping field to warp the other frame the current frame. Args: intrinsics (N, num_params) extrinsics (N, 3, 4): each one is [R, t] depths (N, 1, H, W) tgt_ids (N, 1): warp frame tgt_ids[i] to i Returns: uvs (N, 2, H, W): sampling the other frame tgt_ids[i] with uvs[i] produces the current frame i. """ assert ( extrinsics.shape[0] == intrinsics.shape[0] and intrinsics.shape[0] == depths.shape[0] ) points_cam = depth_to_points(depths, intrinsics) extrinsics_tgt = extrinsics[tgt_ids] points_tgt_cam = reproject_points(points_cam, extrinsics, extrinsics_tgt) uv_tgt = project(points_tgt_cam, intrinsics[tgt_ids]) return uv_tgt def sample(data, uv): """Sample data (B, C, H, W) by uv (B, 2, H, W) (in pixels). """ H, W = data.shape[2:] # grid needs to be in [-1, 1] and (B, H, W, 2) # NOTE: divide by (W-1, H-1) instead of (W, H) because uv is in [-1,1]x[-1,1] size = torch.tensor((W - 1, H - 1), dtype=uv.dtype).view(1, -1, 1, 1).to(_device) grid = (2 * uv / size - 1).permute(0, 2, 3, 1) return torch.nn.functional.grid_sample(data, grid, padding_mode="border") def warp_image(images, depths, extrinsics, intrinsics, tgt_ids: List[int]): """ Warp target images to the reference image based on depths and camera params Warp images[tgt_ids[i]] to images[i]. Args: images (N, C, H, W) depths (N, 1, H, W) extrinsics (N, 3, 4) intrinsics (N, 4) tgt_ids (N, 1) Returns: images_warped """ uv_tgt = warping_field(extrinsics, intrinsics, depths, tgt_ids) images_warped_to_ref = sample(images[tgt_ids], uv_tgt) return images_warped_to_ref
consistent_depth-main
utils/geometry.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import numpy as np from numpy.linalg import inv import cv2 from sklearn import linear_model def resize_small(gt, x, interp=cv2.INTER_NEAREST): """ Resize to match the smaller image. """ def size(x): return x.shape[:2][::-1] size_gt, size_x = size(gt), size(x) if size_gt == size_x: return gt, x if np.prod(size_gt) < np.prod(size_x): x = cv2.resize(x, size_gt, interpolation=interp) else: gt = cv2.resize(gt, size_x, interpolation=interp) return gt, x # calibration def calibrate_scale_shift(gt, x): ix = np.isfinite(gt) & np.isfinite(x) gt = gt[ix] x = x[ix] x2s = (x * x).flatten().sum() xs = x.flatten().sum() os = np.ones_like(x.flatten()).sum() xgs = (x * gt).flatten().sum() gs = gt.sum() A = np.array([ [x2s, xs], [xs, os] ]) b = np.array( [xgs, gs] ).T s, t = inv(A).dot(b) return np.array([s, t]) def calibrate_scale_shift_RANSAC( gt, x, max_trials=100000, stop_prob=0.999 ): ix = np.isfinite(gt) & np.isfinite(x) gt = gt[ix].reshape(-1, 1) x = x[ix].reshape(-1, 1) ransac = linear_model.RANSACRegressor( max_trials=max_trials, stop_probability=stop_prob ) ransac.fit(x, gt) s = ransac.estimator_.coef_[0, 0] t = ransac.estimator_.intercept_[0] return s, t def calibrate_scale(gt, x, reduce=np.median): ix = np.isfinite(gt) & np.isfinite(x) ratios = gt[ix] / x[ix] return reduce(ratios) # conversion def cvt_by_scale_shift(depth, calib_data): s, t = calib_data return depth * s + t CALIB_METHOD_MAP = { "scale": calibrate_scale, "scale-shift": calibrate_scale_shift, "ransac": calibrate_scale_shift_RANSAC, } def calibrate(gt, x, method: str): return CALIB_METHOD_MAP[method](gt, x)
consistent_depth-main
utils/calibrate.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import os import sys class dotdict(dict): """dot.notation access to dictionary attributes""" __getattr__ = dict.get __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ def mkdir_ifnotexists(dir): if os.path.exists(dir): return os.mkdir(dir) def print_title(text): print() print("-" * len(text)) print(text) print("-" * len(text)) def print_banner(text): w = 12 + len(text) print() print("*" * w) print(f"{'*' * 4} {text} {'*' * 4}") print("*" * w) class SuppressedStdout: def __enter__(self): self._original_stdout = sys.stdout sys.stdout = open(os.devnull, "w") def __exit__(self, exception_type, exception_value, traceback): sys.stdout.close() sys.stdout = self._original_stdout
consistent_depth-main
utils/helpers.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import os from os.path import join as pjoin from typing import Dict, Tuple import numpy as np from . import load_colmap, image_io as tr from .geometry_np import reproject, project, sample def store_visible_points_per_image( points3D: Dict[int, load_colmap.Point3D] ) -> Dict[int, np.ndarray]: """ returns dictionary where key is the image id: int and the value is 3D points (3, N) that are visible in each image (Note: currently images do not contain this info, but a list of -1's) """ map_img_to_pt3D = {} for _cur_key, cur_point in points3D.items(): # assert(cur_key == cur_point) # They are the same by design for img_id in cur_point.image_ids: if img_id in map_img_to_pt3D: map_img_to_pt3D[img_id].append(cur_point.xyz) else: map_img_to_pt3D[img_id] = [cur_point.xyz] for img_id, pt_list in map_img_to_pt3D.items(): map_img_to_pt3D[img_id] = load_colmap.convert_points3D(np.array(pt_list).T) return map_img_to_pt3D def vote_scale( scales: np.ndarray, min_percentile_thresh: int = 10, max_percentile_thresh: int = 90 ) -> float: """ Note if len(scales) is really small, e.g., len(scales) == 2, it will return nan """ m = np.percentile(scales, min_percentile_thresh) M = np.percentile(scales, max_percentile_thresh) ix = np.logical_and(m <= scales, scales <= M) scale = np.mean(scales[ix]) return scale def calibrate_frame_w_sparse_points( pts3d: np.ndarray, intr: np.ndarray, extr: np.ndarray, inv_depth: np.ndarray ) -> float: """ Args: pts3d (3, N) intr (4) extr (3, 4) depth (H, W) Returns: scale: depth * scale = -pts_in_local_camera_coordinate.z """ # points 3d in local camera coordinate # FIXME: deal with the case when a point is behind the camera pts3d_cam = reproject(pts3d, extr) pts2d = project(pts3d_cam, intr) inv_depths, ix = sample(inv_depth, pts2d) ds = -pts3d[-1, :][ix] # Note negative sign scales = ds * inv_depths return vote_scale(scales) def calibrate_w_sparse_colmap( colmap_dir: str, dense_depth_dir: str ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """ Args: colmap_dir: sparse colmap directory containing cameras.bin/txt, points3D.bin/txt, images.bin/txt dense_depth_dir: folder name for dense depth directory scales_fn (optional): dump per frame scale Returns: Calibrated intrinsics and extrinsics intrinsics (N, 4) extrinsics (N, 3, 4) scales (N) """ cameras, images, points3D = load_colmap.read_model(path=colmap_dir, ext=".bin") # compute intrinsics, extrinsics depth_names = [ x for x in os.listdir(dense_depth_dir) if os.path.splitext(x)[-1] == ".raw" ] size = tr.load_raw_float32_image(pjoin(dense_depth_dir, depth_names[0])).shape[:2][ ::-1 ] intrinsics, extrinsics = load_colmap.convert_calibration(cameras, images, size) # TODO: make the following up to compute the scale a single function map_img_to_pt3D = store_visible_points_per_image(points3D) ordered_im_ids = load_colmap.ordered_image_ids(images) scales = np.empty(intrinsics.shape[0]) for i, im_id in enumerate(ordered_im_ids): if im_id not in map_img_to_pt3D: scales[i] = np.nan print('[WARNING] %s does not have visible feature point' % images[im_id].name) im_name = images[im_id].name depth_fn = pjoin(dense_depth_dir, os.path.splitext(im_name)[0] + ".raw") inv_depth = tr.load_raw_float32_image(depth_fn) pts3D = map_img_to_pt3D[im_id] scale = calibrate_frame_w_sparse_points( pts3D, intrinsics[i], extrinsics[i], inv_depth ) scales[i] = scale mean_scale = scales[~np.isnan(scales)].mean() extrinsics[..., -1] /= mean_scale return intrinsics, extrinsics, scales
consistent_depth-main
utils/calibration.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import os import cv2 from os.path import join as pjoin import json import math import numpy as np import torch.utils.data as data import torch from typing import Optional from utils import image_io, frame_sampling as sampling _dtype = torch.float32 def load_image( path: str, channels_first: bool, check_channels: Optional[int] = None, post_proc_raw=lambda x: x, post_proc_other=lambda x: x, ) -> torch.FloatTensor: if os.path.splitext(path)[-1] == ".raw": im = image_io.load_raw_float32_image(path) im = post_proc_raw(im) else: im = cv2.imread(path, cv2.IMREAD_UNCHANGED) im = post_proc_other(im) im = im.reshape(im.shape[:2] + (-1,)) if check_channels is not None: assert ( im.shape[-1] == check_channels ), "receive image of shape {} whose #channels != {}".format( im.shape, check_channels ) if channels_first: im = im.transpose((2, 0, 1)) # to torch return torch.tensor(im, dtype=_dtype) def load_color(path: str, channels_first: bool) -> torch.FloatTensor: """ Returns: torch.tensor. color in range [0, 1] """ im = load_image( path, channels_first, post_proc_raw=lambda im: im[..., [2, 1, 0]] if im.ndim == 3 else im, post_proc_other=lambda im: im / 255, ) return im def load_flow(path: str, channels_first: bool) -> torch.FloatTensor: """ Returns: flow tensor in pixels. """ flow = load_image(path, channels_first, check_channels=2) return flow def load_mask(path: str, channels_first: bool) -> torch.ByteTensor: """ Returns: mask takes value 0 or 1 """ mask = load_image(path, channels_first, check_channels=1) > 0 return mask.to(_dtype) class VideoDataset(data.Dataset): """Load 3D video frames and related metadata for optimizing consistency loss. File organization of the corresponding 3D video dataset should be color_down/frame_{__ID__:06d}.raw flow/flow_{__REF_ID__:06d}_{__TGT_ID__:06d}.raw mask/mask_{__REF_ID__:06d}_{__TGT_ID__:06d}.png metadata.npz: {'extrinsics': (N, 3, 4), 'intrinsics': (N, 4)} <flow_list.json>: [[i, j], ...] """ def __init__(self, path: str, meta_file: str = None): """ Args: path: folder path of the 3D video """ self.color_fmt = pjoin(path, "color_down", "frame_{:06d}.raw") if not os.path.isfile(self.color_fmt.format(0)): self.color_fmt = pjoin(path, "color_down", "frame_{:06d}.png") self.mask_fmt = pjoin(path, "mask", "mask_{:06d}_{:06d}.png") self.flow_fmt = pjoin(path, "flow", "flow_{:06d}_{:06d}.raw") if meta_file is not None: with open(meta_file, "rb") as f: meta = np.load(f) self.extrinsics = torch.tensor(meta["extrinsics"], dtype=_dtype) self.intrinsics = torch.tensor(meta["intrinsics"], dtype=_dtype) assert ( self.extrinsics.shape[0] == self.intrinsics.shape[0] ), "#extrinsics({}) != #intrinsics({})".format( self.extrinsics.shape[0], self.intrinsics.shape[0] ) flow_list_fn = pjoin(path, "flow_list.json") if os.path.isfile(flow_list_fn): with open(flow_list_fn, "r") as f: self.flow_indices = json.load(f) else: names = os.listdir(os.path.dirname(self.flow_fmt)) self.flow_indices = [ self.parse_index_pair(name) for name in names if os.path.splitext(name)[-1] == os.path.splitext(self.flow_fmt)[-1] ] self.flow_indices = sampling.to_in_range(self.flow_indices) self.flow_indices = list(sampling.SamplePairs.to_one_way(self.flow_indices)) def parse_index_pair(self, name): strs = os.path.splitext(name)[0].split("_")[-2:] return [int(s) for s in strs] def __getitem__(self, index: int): """Fetch tuples of data. index = i * (i-1) / 2 + j, where i > j for pair (i,j) So [-1+sqrt(1+8k)]/2 < i <= [1+sqrt(1+8k))]/2, where k=index. So i = floor([1+sqrt(1+8k))]/2) j = k - i * (i - 1) / 2. The number of image frames fetched, N, is not the 1, but computed based on what kind of consistency to be measured. For instance, geometry_consistency_loss requires random pairs as samples. So N = 2. If with more losses, say triplet one from temporal_consistency_loss. Then N = 2 + 3. Returns: stacked_images (N, C, H, W): image frames targets: { 'extrinsics': torch.tensor (N, 3, 4), # extrinsics of each frame. Each (3, 4) = [R, t]. point_wolrd = R * point_cam + t 'intrinsics': torch.tensor (N, 4), # (fx, fy, cx, cy) for each frame 'geometry_consistency': { 'indices': torch.tensor (2), indices for corresponding pairs [(ref_index, tgt_index), ...] 'flows': ((2, H, W),) * 2 in pixels. For k in range(2) (ref or tgt), pixel p = pixels[indices[b, k]][:, i, j] correspond to p + flows[k][b, :, i, j] in frame indices[b, (k + 1) % 2]. 'masks': ((1, H, W),) * 2. Masks of valid flow matches to compute the consistency in training. Values are 0 or 1. } } """ pair = self.flow_indices[index] indices = torch.tensor(pair) intrinsics = torch.stack([self.intrinsics[k] for k in pair], dim=0) extrinsics = torch.stack([self.extrinsics[k] for k in pair], dim=0) images = torch.stack( [load_color(self.color_fmt.format(k), channels_first=True) for k in pair], dim=0, ) flows = [ load_flow(self.flow_fmt.format(k_ref, k_tgt), channels_first=True) for k_ref, k_tgt in [pair, pair[::-1]] ] masks = [ load_mask(self.mask_fmt.format(k_ref, k_tgt), channels_first=True) for k_ref, k_tgt in [pair, pair[::-1]] ] metadata = { "extrinsics": extrinsics, "intrinsics": intrinsics, "geometry_consistency": { "indices": indices, "flows": flows, "masks": masks, }, } if getattr(self, "scales", None): if isinstance(self.scales, dict): metadata["scales"] = torch.stack( [torch.Tensor([self.scales[k]]) for k in pair], dim=0 ) else: metadata["scales"] = torch.Tensor( [self.scales, self.scales]).reshape(2, 1) return (images, metadata) def __len__(self): return len(self.flow_indices) class VideoFrameDataset(data.Dataset): """Load video frames from color_fmt.format(frame_id) """ def __init__(self, color_fmt, frames=None): """ Args: color_fmt: e.g., <video_dir>/frame_{:06d}.raw """ self.color_fmt = color_fmt if frames is None: files = os.listdir(os.path.dirname(self.color_fmt)) self.frames = range(len(files)) else: self.frames = frames def __getitem__(self, index): """Fetch image frame. Returns: image (C, H, W): image frames """ frame_id = self.frames[index] image = load_color(self.color_fmt.format(frame_id), channels_first=True) meta = {"frame_id": frame_id} return image, meta def __len__(self): return len(self.frames)
consistent_depth-main
loaders/video_dataset.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import torch from utils.url_helpers import get_model_from_url from .midas_v2.midas_net import MidasNet from .depth_model import DepthModel class MidasV2Model(DepthModel): # Requirements and default settings align = 32 learning_rate = 0.0001 lambda_view_baseline = 0.0001 def __init__(self, support_cpu: bool = False, pretrained: bool = True): super().__init__() if support_cpu: # Allow the model to run on CPU when GPU is not available. self.device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") else: # Rather raise an error when GPU is not available. self.device = torch.device("cuda") self.model = MidasNet(non_negative=True) # Load pretrained checkpoint if pretrained: checkpoint = ( "https://github.com/intel-isl/MiDaS/releases/download/v2/model-f46da743.pt" ) state_dict = torch.hub.load_state_dict_from_url( checkpoint, progress=True, check_hash=True ) self.model.load_state_dict(state_dict) num_gpus = torch.cuda.device_count() if num_gpus > 1: self.model = torch.nn.DataParallel(self.model) self.model.to(self.device) self.norm_mean = torch.Tensor( [0.485, 0.456, 0.406]).reshape(1, -1, 1, 1) self.norm_stdev = torch.Tensor( [0.229, 0.224, 0.225]).reshape(1, -1, 1, 1) def estimate_depth(self, images): # Reshape ...CHW -> XCHW shape = images.shape C, H, W = shape[-3:] input_ = images.reshape(-1, C, H, W).to(self.device) input_ = (input_ - self.norm_mean.to(self.device)) / \ self.norm_stdev.to(self.device) output = self.model(input_) # Reshape X1HW -> BNHW depth = output.reshape(shape[:-3] + output.shape[-2:]) # Convert from disparity to depth depth = depth.reciprocal() return depth def save(self, file_name): state_dict = self.model.state_dict() torch.save(state_dict, file_name)
consistent_depth-main
monodepth/midas_v2_model.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import torch import torch.autograd as autograd from utils.helpers import SuppressedStdout from utils.url_helpers import get_model_from_url from .mannequin_challenge.models import pix2pix_model from .mannequin_challenge.options.train_options import TrainOptions from .depth_model import DepthModel class MannequinChallengeModel(DepthModel): # Requirements and default settings align = 16 learning_rate = 0.0004 lambda_view_baseline = 0.1 def __init__(self): super().__init__() parser = TrainOptions() parser.initialize() params = parser.parser.parse_args(["--input", "single_view"]) params.isTrain = False model_file = get_model_from_url( "https://storage.googleapis.com/mannequinchallenge-data/checkpoints/best_depth_Ours_Bilinear_inc_3_net_G.pth", "mc.pth" ) class FixedMcModel(pix2pix_model.Pix2PixModel): # Override the load function, so we can load the snapshot stored # in our specific location. def load_network(self, network, network_label, epoch_label): return torch.load(model_file) with SuppressedStdout(): self.model = FixedMcModel(params) def train(self): self.model.switch_to_train() def eval(self): self.model.switch_to_eval() def parameters(self): return self.model.netG.parameters() def estimate_depth(self, images): images = autograd.Variable(images.cuda(), requires_grad=False) # Reshape ...CHW -> XCHW shape = images.shape C, H, W = shape[-3:] images = images.reshape(-1, C, H, W) self.model.prediction_d, _ = self.model.netG.forward(images) # Reshape X1HW -> BNHW out_shape = shape[:-3] + self.model.prediction_d.shape[-2:] self.model.prediction_d = self.model.prediction_d.reshape(out_shape) self.model.prediction_d = torch.exp(self.model.prediction_d) self.model.prediction_d = self.model.prediction_d.squeeze(-3) return self.model.prediction_d def save(self, file_name): state_dict = self.model.netG.state_dict() torch.save(state_dict, file_name)
consistent_depth-main
monodepth/mannequin_challenge_model.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. from os.path import join as pjoin import torch from utils.url_helpers import get_model_from_url from .depth_model import DepthModel from .monodepth2.networks.resnet_encoder import ResnetEncoder from .monodepth2.networks.depth_decoder import DepthDecoder class Monodepth2Model(DepthModel): # Requirements and default settings align = 1 learning_rate = 0.00004 lambda_view_baseline = 1 def __init__(self): super().__init__() self.device = torch.device("cuda") model_url = "https://storage.googleapis.com/niantic-lon-static/research/monodepth2/mono+stereo_1024x320.zip" local_model_dir = get_model_from_url(model_url, "monodepth2_mono+stereo_1024x320/", is_zip=True) encoder_model_file = pjoin(local_model_dir, "encoder.pth") depth_model_file = pjoin(local_model_dir, "depth.pth") self.encoder = ResnetEncoder(18, False) loaded_dict_enc = torch.load(encoder_model_file, map_location=self.device) # extract the height and width of image that this model was trained with self.feed_height = loaded_dict_enc['height'] self.feed_width = loaded_dict_enc['width'] print(f"Model was trained at {self.feed_width} x {self.feed_height}.") filtered_dict_enc = { k: v for k, v in loaded_dict_enc.items() if k in self.encoder.state_dict() } self.encoder.load_state_dict(filtered_dict_enc) self.encoder.to(self.device) self.depth_decoder = DepthDecoder( num_ch_enc=self.encoder.num_ch_enc, scales=range(4)) loaded_dict = torch.load(depth_model_file, map_location=self.device) self.depth_decoder.load_state_dict(loaded_dict) self.depth_decoder.to(self.device) def train(self): self.encoder.train() self.depth_decoder.train() def eval(self): self.encoder.eval() self.depth_decoder.eval() def parameters(self): return list(self.encoder.parameters()) + list(self.depth_decoder.parameters()) def estimate_depth(self, images): # import pdb; pdb.set_trace() # Reshape ...CHW -> NCHW shape = images.shape C, H, W = shape[-3:] images = images.reshape(-1, C, H, W) # Estimate depth feed_size = [self.feed_height, self.feed_width] images = torch.nn.functional.interpolate( images, size=feed_size, mode='bicubic', align_corners=False) features = self.encoder(images) outputs = self.depth_decoder(features) disparity = outputs[("disp", 0)] disparity = torch.nn.functional.interpolate( disparity, size=[H, W], mode='bicubic', align_corners=False) depth = disparity.reciprocal() # Reshape N1HW -> ...1HW out_shape = shape[:-3] + depth.shape[-2:] depth = depth.reshape(out_shape) return depth def save(self, file_name): pass
consistent_depth-main
monodepth/monodepth2_model.py
consistent_depth-main
monodepth/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. from abc import abstractmethod import torch class DepthModel(torch.nn.Module): def __init__(self): super().__init__() def forward(self, images, metadata=None): """ Images should be feed in the format (N, C, H, W). Channels are in BGR order and values in [0, 1]. Metadata is not used by the depth models itself, only here, for value transformations. metadata["scales"]: (optional, can be None) specifies a post-scale transformation of the depth values. Format (1, N, 1). """ depth = self.estimate_depth(images) if metadata is not None: if "scales" in metadata: factor = metadata["scales"].unsqueeze(3).cuda() depth = depth * factor return depth @abstractmethod def estimate_depth(self, images, metadata) -> torch.Tensor: pass @abstractmethod def save(self, label): pass
consistent_depth-main
monodepth/depth_model.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. from .depth_model import DepthModel from .mannequin_challenge_model import MannequinChallengeModel from .midas_v2_model import MidasV2Model from .monodepth2_model import Monodepth2Model from typing import List def get_depth_model_list() -> List[str]: return ["mc", "midas2", "monodepth2"] def get_depth_model(type: str) -> DepthModel: if type == "mc": return MannequinChallengeModel elif type == "midas2": return MidasV2Model elif type == "monodepth2": return Monodepth2Model else: raise ValueError(f"Unsupported model type '{type}'.") def create_depth_model(type: str) -> DepthModel: model_class = get_depth_model(type) return model_class()
consistent_depth-main
monodepth/depth_model_registry.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os.path as osp import setuptools cur_dir = osp.dirname(osp.realpath(__file__)) requirementPath = osp.join(cur_dir, "requirements.txt") install_requires = [] with open(requirementPath) as f: install_requires = f.read().splitlines() setuptools.setup( name="imitation_learning", version="0.1", author="Andrew Szot", author_email="", description="imitation_learning", url="", install_requires=install_requires, packages=setuptools.find_packages(), )
bc-irl-main
setup.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import os.path as osp from collections import defaultdict from typing import Dict, Optional import gym.spaces as spaces import hydra import numpy as np import torch import torch.nn as nn from hydra.utils import instantiate as hydra_instantiate from omegaconf import DictConfig, OmegaConf from rl_utils.common import (Evaluator, compress_dict, get_size_for_space, set_seed) from rl_utils.envs import create_vectorized_envs from rl_utils.logging import Logger from imitation_learning.policy_opt.policy import Policy from imitation_learning.policy_opt.ppo import PPO from imitation_learning.policy_opt.storage import RolloutStorage @hydra.main(config_path="config", config_name="default") def main(cfg) -> Dict[str, float]: set_seed(cfg.seed) device = torch.device(cfg.device) set_env_settings = { k: hydra_instantiate(v) if isinstance(v, DictConfig) else v for k, v in cfg.env.env_settings.items() } envs = create_vectorized_envs( cfg.env.env_name, cfg.num_envs, seed=cfg.seed, device=device, **set_env_settings, ) steps_per_update = cfg.num_steps * cfg.num_envs num_updates = int(cfg.num_env_steps) // steps_per_update cfg.obs_shape = envs.observation_space.shape cfg.action_dim = get_size_for_space(envs.action_space) cfg.action_is_discrete = isinstance(cfg.action_dim, spaces.Discrete) cfg.total_num_updates = num_updates logger: Logger = hydra_instantiate(cfg.logger, full_cfg=cfg) storage: RolloutStorage = hydra_instantiate(cfg.storage, device=device) policy: Policy = hydra_instantiate(cfg.policy) policy = policy.to(device) updater = hydra_instantiate(cfg.policy_updater, policy=policy, device=device) evaluator: Evaluator = hydra_instantiate( cfg.evaluator, envs=envs, vid_dir=logger.vid_path, updater=updater, logger=logger, device=device, ) start_update = 0 if cfg.load_checkpoint is not None: ckpt = torch.load(cfg.load_checkpoint) updater.load_state_dict(ckpt["updater"], should_load_opt=cfg.resume_training) if cfg.load_policy: policy.load_state_dict(ckpt["policy"]) if cfg.resume_training: start_update = ckpt["update_i"] + 1 eval_info = {"run_name": logger.run_name} if cfg.only_eval: eval_result = evaluator.evaluate(policy, cfg.num_eval_episodes, 0) logger.collect_infos(eval_result, "eval.", no_rolling_window=True) eval_info.update(eval_result) logger.interval_log(0, 0) logger.close() return eval_info obs = envs.reset() storage.init_storage(obs) for update_i in range(start_update, num_updates): is_last_update = update_i == num_updates - 1 for step_idx in range(cfg.num_steps): with torch.no_grad(): act_data = policy.act( storage.get_obs(step_idx), storage.recurrent_hidden_states[step_idx], storage.masks[step_idx], ) next_obs, reward, done, info = envs.step(act_data["actions"]) storage.insert(next_obs, reward, done, info, **act_data) logger.collect_env_step_info(info) updater.update(policy, storage, logger, envs=envs) storage.after_update() if cfg.eval_interval != -1 and ( update_i % cfg.eval_interval == 0 or is_last_update ): with torch.no_grad(): eval_result = evaluator.evaluate( policy, cfg.num_eval_episodes, update_i ) logger.collect_infos(eval_result, "eval.", no_rolling_window=True) eval_info.update(eval_result) if cfg.log_interval != -1 and ( update_i % cfg.log_interval == 0 or is_last_update ): logger.interval_log(update_i, steps_per_update * (update_i + 1)) if cfg.save_interval != -1 and ( (update_i + 1) % cfg.save_interval == 0 or is_last_update ): save_name = osp.join(logger.save_path, f"ckpt.{update_i}.pth") torch.save( { "policy": policy.state_dict(), "updater": updater.state_dict(), "update_i": update_i, }, save_name, ) print(f"Saved to {save_name}") eval_info["last_ckpt"] = save_name logger.close() return eval_info if __name__ == "__main__": main()
bc-irl-main
imitation_learning/run.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
bc-irl-main
imitation_learning/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import hydra from omegaconf import OmegaConf from imitation_learning.run import main @hydra.main(config_path="config", config_name="default") def run_and_eval(cfg): eval_cfg = OmegaConf.merge(cfg, cfg.eval_args) eval_cfg.load_policy = False assert eval_cfg.load_checkpoint != "" and eval_cfg.load_checkpoint is not None print("Evaluating reward function") main(eval_cfg) if __name__ == "__main__": run_and_eval()
bc-irl-main
imitation_learning/eval.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import itertools from collections import defaultdict from functools import partial import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from hydra.utils import call, instantiate from omegaconf import DictConfig from torch.nn.utils import spectral_norm from torch.utils.data import DataLoader from imitation_learning.common.plotting import plot_actions from imitation_learning.common.utils import (create_next_obs, extract_transition_batch, log_finished_rewards) def wass_grad_pen( expert_state, expert_action, policy_state, policy_action, use_actions, disc, ): num_dims = len(expert_state.shape) - 1 alpha = torch.rand(expert_state.size(0), 1) alpha_state = ( alpha.view(-1, *[1 for _ in range(num_dims)]) .expand_as(expert_state) .to(expert_state.device) ) mixup_data_state = alpha_state * expert_state + (1 - alpha_state) * policy_state mixup_data_state.requires_grad = True inputs = [mixup_data_state] if use_actions: alpha_action = alpha.expand_as(expert_action).to(expert_action.device) mixup_data_action = ( alpha_action * expert_action + (1 - alpha_action) * policy_action ) mixup_data_action.requires_grad = True inputs.append(mixup_data_action) else: mixup_data_action = [] # disc = disc_fn(cur_obs=mixup_data_state, actions=mixup_data_action) disc = disc.g(mixup_data_state) ones = torch.ones(disc.size()).to(disc.device) grad = torch.autograd.grad( outputs=disc, inputs=inputs, grad_outputs=ones, create_graph=True, retain_graph=True, only_inputs=True, )[0] grad_pen = (grad.norm(2, dim=1) - 1).pow(2).mean() return grad_pen class GAIL(nn.Module): def __init__( self, discriminator: DictConfig, policy_updater: DictConfig, get_dataset_fn, batch_size: int, num_discrim_batches: int, discrim_opt: DictConfig, reward_update_freq: int, device, policy, num_envs, spectral_norm, grad_pen, **kwargs, ): super().__init__() self.discriminator = instantiate(discriminator).to(device) self.policy_updater = instantiate(policy_updater, policy=policy) self._grad_pen = grad_pen if spectral_norm: self._apply_spectral_norm() self.dataset = call(get_dataset_fn) self.expert_data = DataLoader(self.dataset, batch_size, shuffle=True) self.discrim_opt = instantiate( discrim_opt, params=self.discriminator.parameters() ) self.reward_update_freq = reward_update_freq self._n_updates = 0 self.batch_size = batch_size self.num_discrim_batches = num_discrim_batches self.device = device self._ep_rewards = torch.zeros(num_envs, device=self.device) def _apply_spectral_norm(self): for name, module in self.discriminator.named_modules(): # Only applies the spectral transformation to the high-level # modules and goes into the sequential modules and applies to # each element. if name == "" or "." in name: continue if isinstance(module, nn.Sequential): new_layers = [] for i in range(len(module)): layer = module[i] if isinstance(layer, nn.Linear): layer = spectral_norm(layer) new_layers.append(layer) setattr(self.discriminator, name, nn.Sequential(*new_layers)) elif isinstance(module, nn.Linear): setattr(self.discriminator, name, spectral_norm(module)) def state_dict(self, **kwargs): return { **super().state_dict(**kwargs), "discrim_opt": self.discrim_opt.state_dict(), } def load_state_dict(self, state_dict, should_load_opt): opt_state = state_dict.pop("discrim_opt") if should_load_opt: self.discrim_opt.load_state_dict(opt_state) return super().load_state_dict(state_dict) def viz_reward(self, cur_obs=None, action=None, next_obs=None) -> torch.Tensor: return self.discriminator.get_reward( cur_obs=cur_obs, actions=action, next_obs=next_obs, viz_reward=True ) def _get_agent_samples(self, rollouts): num_batches = len(rollouts) // self.batch_size agent_data = rollouts.data_generator(num_batches, get_next_obs=True) if self.num_discrim_batches != -1: agent_data = itertools.islice(agent_data, self.num_discrim_batches) return agent_data def _update_discriminator(self, policy, rollouts, logger): num_batches = len(rollouts) // self.batch_size agent_data = self._get_agent_samples(rollouts) for expert_batch, agent_batch in zip(self.expert_data, agent_data): expert_d = self.discriminator( cur_obs=expert_batch["observations"], actions=expert_batch["actions"], next_obs=expert_batch["next_observations"], masks=(~expert_batch["terminals"].bool()).float(), policy=policy, ) agent_d = self.discriminator( cur_obs=agent_batch["obs"], actions=agent_batch["action"], next_obs=agent_batch["next_obs"], masks=agent_batch["mask"], policy=policy, ) expert_loss = F.binary_cross_entropy_with_logits( expert_d, torch.ones_like(expert_d, device=self.device) ) agent_loss = F.binary_cross_entropy_with_logits( agent_d, torch.zeros_like(agent_d, device=self.device) ) loss = expert_loss + agent_loss # disc_fn = partial(self.discriminator, policy=policy) if self._grad_pen != 0.0: n_expert = len(expert_batch["observations"]) grad_pen = wass_grad_pen( expert_batch["observations"], expert_batch["actions"], agent_batch["obs"][:n_expert], agent_batch["action"][:n_expert], False, self.discriminator, ) loss += self._grad_pen * grad_pen self.discrim_opt.zero_grad() loss.backward() self.discrim_opt.step() logger.collect_info("expert_loss", expert_loss.item()) logger.collect_info("agent_loss", agent_loss.item()) logger.collect_info("discim_loss", loss.item()) def update(self, policy, rollouts, logger, **kwargs): if ( self.reward_update_freq != -1 and self._n_updates % self.reward_update_freq == 0 ): self._update_discriminator(policy, rollouts, logger) obs, actions, next_obs, masks = extract_transition_batch(rollouts) with torch.no_grad(): rollouts.rewards = self.discriminator.get_reward( cur_obs=obs, actions=actions, next_obs=next_obs, masks=masks, policy=policy, ) self._ep_rewards = log_finished_rewards(rollouts, self._ep_rewards, logger) self.policy_updater.update(policy, rollouts, logger) self._n_updates += 1
bc-irl-main
imitation_learning/gail/updater.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from enum import Enum, auto from typing import Tuple import torch import torch.nn as nn from rl_utils.common import make_mlp_layers class GailRewardType(Enum): AIRL = auto() GAIL = auto() RAW = auto() class GailDiscriminator(nn.Module): def __init__( self, obs_shape: Tuple[int], action_dim: int, reward_hidden_dim: int, n_hidden_layers: int, cost_take_dim: int, use_actions: bool, reward_type: str, ): super().__init__() self.cost_take_dim = cost_take_dim input_size = obs_shape[0] if cost_take_dim == -1 else cost_take_dim if use_actions: input_size += action_dim self.action_input = use_actions self.discrim_net = nn.Sequential( *make_mlp_layers(input_size, 1, reward_hidden_dim, n_hidden_layers) ) self.reward_type = GailRewardType[reward_type] def forward(self, cur_obs=None, actions=None, **kwargs): if self.cost_take_dim != -1: if cur_obs is not None: cur_obs = cur_obs[:, :, : self.cost_take_dim] if self.action_input: inputs = torch.cat([cur_obs, actions], -1) else: inputs = cur_obs return self.discrim_net(inputs) def get_reward(self, cur_obs=None, actions=None, **kwargs): d_val = self.forward(cur_obs, actions) s = torch.sigmoid(d_val) eps = 1e-20 if self.reward_type == GailRewardType.AIRL: reward = (s + eps).log() - (1 - s + eps).log() elif self.reward_type == GailRewardType.GAIL: reward = (s + eps).log() elif self.reward_type == GailRewardType.RAW: reward = d_val return reward
bc-irl-main
imitation_learning/gail/discriminator.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from functools import partial import numpy as np import torch import torch.nn as nn from rl_utils.models import (FixedCategorical, FixedNormal, SimpleCNN, build_rnn_state_encoder) def init_weights(m, gain=1): if isinstance(m, nn.Linear): torch.nn.init.orthogonal_(m.weight, gain=gain) m.bias.data.fill_(0.0) class Categorical(nn.Module): def __init__(self, num_inputs, num_outputs): super().__init__() self.linear = nn.Linear(num_inputs, num_outputs) self.apply(partial(init_weights, gain=0.01)) def forward(self, x): x = self.linear(x) return FixedCategorical(logits=x) class DiagGaussian(nn.Module): def __init__(self, num_inputs, num_outputs, std_init, squash_mean): super().__init__() if squash_mean: self.fc_mean = nn.Sequential( nn.Linear(num_inputs, num_outputs), nn.Tanh(), ) else: self.fc_mean = nn.Linear(num_inputs, num_outputs) self.logstd = nn.Parameter(torch.full((1, num_outputs), float(std_init))) self.apply(init_weights) def forward(self, x): action_mean = self.fc_mean(x) action_logstd = self.logstd.expand_as(action_mean) return FixedNormal(action_mean, action_logstd.exp()) class Policy(nn.Module): def __init__( self, obs_shape, action_dim, action_is_discrete, hidden_size, recurrent_hidden_size, is_recurrent, std_init=0.0, squash_mean=False, ): super().__init__() if isinstance(obs_shape, dict): is_visual_obs = any([len(v) == 3 for k, v in obs_shape.items()]) else: is_visual_obs = len(obs_shape) == 3 if is_visual_obs: self.backbone = SimpleCNN(obs_shape, hidden_size) input_size = hidden_size else: self.backbone = nn.Sequential() input_size = obs_shape[0] if is_recurrent: self.rnn_encoder = build_rnn_state_encoder( recurrent_hidden_size, recurrent_hidden_size ) else: # Pass through self.rnn_encoder = lambda hidden, hxs, _: (hidden, hxs) self.actor = nn.Sequential( nn.Linear(input_size, hidden_size), nn.Tanh(), nn.Linear(hidden_size, hidden_size), nn.Tanh(), ) self.critic = nn.Sequential( nn.Linear(input_size, hidden_size), nn.Tanh(), nn.Linear(hidden_size, hidden_size), nn.Tanh(), nn.Linear(hidden_size, 1), ) self.apply(partial(init_weights, gain=np.sqrt(2))) if action_is_discrete: self.actor_dist = Categorical(hidden_size, action_dim) else: self.actor_dist = DiagGaussian( hidden_size, action_dim, std_init, squash_mean ) def get_value(self, obs, hxs, masks): hidden, _ = self.forward(obs, hxs, masks) return self.critic(hidden) def evaluate_actions(self, obs, hxs, masks, action): hidden, hxs = self.forward(obs, hxs, masks) critic_value = self.critic(hidden) actor_hidden = self.actor(hidden) dist = self.actor_dist(actor_hidden) action_log_probs = dist.log_probs(action) dist_entropy = dist.entropy() return { "log_prob": action_log_probs, "value": critic_value, "dist_entropy": dist_entropy, } def forward(self, obs, hxs, masks): hidden = self.backbone(obs) hidden, hxs = self.rnn_encoder(hidden, hxs, masks) return hidden, hxs def get_action_dist(self, obs, hxs, masks): hidden, hxs = self.forward(obs, hxs, masks) actor_hidden = self.actor(hidden) return self.actor_dist(actor_hidden) def act(self, obs, hxs, masks, is_eval=False): hidden, hxs = self.forward(obs, hxs, masks) critic_value = self.critic(hidden) actor_hidden = self.actor(hidden) dist = self.actor_dist(actor_hidden) if is_eval: action = dist.mode() else: action = dist.sample() action_log_probs = dist.log_probs(action) dist_entropy = dist.entropy() return { "actions": action, "action_log_probs": action_log_probs, "value_preds": critic_value, "hxs": hxs, "extra": { "dist_entropy": dist_entropy, }, }
bc-irl-main
imitation_learning/policy_opt/policy.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
bc-irl-main
imitation_learning/policy_opt/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import defaultdict from typing import Dict, Optional import torch def _flatten_helper(T, N, _tensor): return _tensor.view(T * N, *_tensor.size()[2:]) class RolloutStorage: def __init__( self, num_steps, num_processes, obs_shape, action_dim, action_is_discrete, recurrent_hidden_state_size, device, fetch_final_obs, ): super().__init__() if isinstance(obs_shape, dict): self.obs_keys = obs_shape else: self.obs_keys = {None: obs_shape} self.obs: Dict[Optional[str], torch.Tensor] = {} for k, space_shape in self.obs_keys.items(): ob = torch.zeros(num_steps + 1, num_processes, *space_shape) self.obs[k] = ob self.rewards = torch.zeros(num_steps, num_processes, 1) self.value_preds = torch.zeros(num_steps + 1, num_processes, 1) self.action_log_probs = torch.zeros(num_steps, num_processes, 1) self.recurrent_hidden_states = torch.zeros( num_steps + 1, num_processes, recurrent_hidden_state_size ) self.actions = torch.zeros(num_steps, num_processes, action_dim) if action_is_discrete: self.actions = self.actions.long() self.masks = torch.zeros(num_steps + 1, num_processes, 1) self.bad_masks = torch.ones(num_steps + 1, num_processes, 1) if fetch_final_obs: self.final_obs = torch.zeros(num_steps, num_processes, *space_shape) else: self.final_obs = None self.num_steps = num_steps self.n_procs = num_processes self.step = 0 self.to(device) def compute_masks(self, done, infos): # If done then clean the history of observations. masks = torch.FloatTensor([[0.0] if done_ else [1.0] for done_ in done]) bad_masks = torch.FloatTensor( [[0.0] if "bad_transition" in info.keys() else [1.0] for info in infos] ) return masks, bad_masks def __len__(self): return self.num_steps * self.n_procs def init_storage(self, obs): for k in self.obs_keys: if k is None: self.obs[k][0].copy_(obs) else: self.obs[k][0].copy_(obs[k]) self.masks = self.masks.zero_() self.bad_masks = self.bad_masks.zero_() self.recurrent_hidden_states = self.recurrent_hidden_states.zero_() def to(self, device): for k in self.obs_keys: self.obs[k] = self.obs[k].to(device) if self.final_obs is not None: self.final_obs = self.final_obs.to(device) self.rewards = self.rewards.to(device) self.value_preds = self.value_preds.to(device) self.action_log_probs = self.action_log_probs.to(device) self.actions = self.actions.to(device) self.masks = self.masks.to(device) self.bad_masks = self.bad_masks.to(device) self.recurrent_hidden_states = self.recurrent_hidden_states.to(device) def insert( self, next_obs, rewards, done, infos, actions, value_preds, action_log_probs, hxs, **kwargs, ): masks, bad_masks = self.compute_masks(done, infos) for k in self.obs_keys: if k is None: self.obs[k][self.step + 1].copy_(next_obs) else: self.obs[k][self.step + 1].copy_(next_obs[k]) self.actions[self.step].copy_(actions) self.action_log_probs[self.step].copy_(action_log_probs) self.value_preds[self.step].copy_(value_preds) self.rewards[self.step].copy_(rewards) self.masks[self.step + 1].copy_(masks) self.bad_masks[self.step + 1].copy_(bad_masks) self.recurrent_hidden_states[self.step + 1].copy_(hxs) if self.final_obs is not None: for env_i, info in enumerate(infos): if "final_obs" in info: self.final_obs[self.step, env_i].copy_(info["final_obs"]) self.step = (self.step + 1) % self.num_steps def get_obs(self, idx): ret_d = {} for k in self.obs_keys: if k is None: return self.obs[k][idx] ret_d[k] = self.obs[k][idx] return ret_d def after_update(self): for k in self.obs_keys: self.obs[k][0].copy_(self.obs[k][-1]) self.masks[0].copy_(self.masks[-1]) self.bad_masks[0].copy_(self.bad_masks[-1]) self.recurrent_hidden_states[0].copy_(self.recurrent_hidden_states[-1]) def data_generator(self, num_mini_batch, get_next_obs=False, **add_data): if get_next_obs and self.final_obs is None: raise ValueError( "Must fetch final observations if getting the next observation" ) if get_next_obs and len(self.obs_keys) > 1: raise ValueError("Cannot fetch next obseration with dictionary observation") num_processes = self.rewards.size(1) if num_processes < num_mini_batch: raise ValueError( f"Number of processes {num_processes} is smaller than num mini batch {num_mini_batch}" ) num_envs_per_batch = num_processes // num_mini_batch perm = torch.randperm(num_processes) for start_ind in range(0, num_processes, num_envs_per_batch): ret_data = { "obs": defaultdict(list), "hxs": [], "action": [], "value": [], "mask": [], "prev_log_prob": [], "reward": [], "add_batch": defaultdict(list), } if get_next_obs: ret_data["next_obs"] = [] for offset in range(num_envs_per_batch): ind = perm[start_ind + offset] for k in self.obs_keys: ret_data["obs"][k].append(self.obs[k][:-1, ind]) if get_next_obs: mask = self.masks[1:, ind] final_obs = self.final_obs[:, ind] # This code assumes observation dict has only 1 key. first_key = next(iter(self.obs_keys)) obs = self.obs[first_key][1:, ind] ret_data["next_obs"].append((mask * obs) + ((1 - mask) * final_obs)) ret_data["hxs"].append(self.recurrent_hidden_states[0:1, ind]) ret_data["action"].append(self.actions[:, ind]) ret_data["value"].append(self.value_preds[:-1, ind]) ret_data["reward"].append(self.rewards[:, ind]) ret_data["mask"].append(self.masks[:-1, ind]) ret_data["prev_log_prob"].append(self.action_log_probs[:, ind]) for k, v in add_data.items(): ret_data["add_batch"][k].append(v[:, ind]) T, N = self.num_steps, num_envs_per_batch for k, v in ret_data.items(): if k == "hxs": ret_data[k] = torch.stack(v, 1).view(N, -1) elif isinstance(v, dict): for sub_k, sub_v in v.items(): ret_data[k][sub_k] = _flatten_helper( T, N, torch.stack(sub_v, 1) ) else: ret_data[k] = _flatten_helper(T, N, torch.stack(v, 1)) # Pop the add batch keys out a level add_batch = ret_data.pop("add_batch") ret_data.update(add_batch) # No need to return obs dict if there's only one thing in # dictionary if len(ret_data["obs"]) == 1: ret_data["obs"] = next(iter(ret_data["obs"].values())) yield ret_data
bc-irl-main
imitation_learning/policy_opt/storage.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Dict import torch import torch.nn as nn from hydra.utils import instantiate as hydra_instantiate from imitation_learning.policy_opt.policy import Policy class PPO: def __init__( self, use_gae: bool, gae_lambda: float, gamma: float, use_clipped_value_loss: bool, clip_param: bool, value_loss_coef: float, entropy_coef: float, max_grad_norm: float, num_mini_batch: int, num_epochs: int, optimizer_params: Dict[str, Any], num_steps: int, num_envs: int, policy: Policy, **kwargs, ): super().__init__() self.use_gae = use_gae self.gae_lambda = gae_lambda self.gamma = gamma self.use_clipped_value_loss = use_clipped_value_loss self.clip_param = clip_param self.value_loss_coef = value_loss_coef self.entropy_coef = entropy_coef self.max_grad_norm = max_grad_norm self.num_mini_batch = num_mini_batch self.num_epochs = num_epochs self.num_steps = num_steps self.num_envs = num_envs self.opt: torch.optim.Optimizer = hydra_instantiate( optimizer_params, params=policy.parameters() ) self.returns = torch.zeros(self.num_steps + 1, self.num_envs, 1) def state_dict(self): return {"opt": self.opt.state_dict()} def load_state_dict(self, state_dict, should_load_opt): opt_state = state_dict.pop("opt") if should_load_opt: self.opt.load_state_dict(opt_state) def update( self, policy, storage, logger, **kwargs, ): with torch.no_grad(): last_value = policy.get_value( storage.get_obs(-1), storage.recurrent_hidden_states[-1], storage.masks[-1], ) advantages = self.compute_derived( policy, storage.rewards, storage.masks, storage.bad_masks, storage.value_preds, last_value, ) for _ in range(self.num_epochs): data_gen = storage.data_generator( self.num_mini_batch, returns=self.returns[:-1], advantages=advantages ) for sample in data_gen: ac_eval = policy.evaluate_actions( sample["obs"], sample["hxs"], sample["mask"], sample["action"], ) ratio = torch.exp(ac_eval["log_prob"] - sample["prev_log_prob"]) surr1 = ratio * sample["advantages"] surr2 = ( torch.clamp( ratio, 1.0 - self.clip_param, 1.0 + self.clip_param, ) * sample["advantages"] ) action_loss = -torch.min(surr1, surr2).mean(0) if self.use_clipped_value_loss: value_pred_clipped = sample["value"] + ( ac_eval["value"] - sample["value"] ).clamp(-self.clip_param, self.clip_param) value_losses = (ac_eval["value"] - sample["returns"]).pow(2) value_losses_clipped = (value_pred_clipped - sample["returns"]).pow( 2 ) value_loss = ( 0.5 * torch.max(value_losses, value_losses_clipped).mean() ) else: value_loss = ( 0.5 * (sample["returns"] - ac_eval["value"]).pow(2).mean() ) loss = ( value_loss * self.value_loss_coef + action_loss - ac_eval["dist_entropy"].mean() * self.entropy_coef ) self.opt.zero_grad() loss.backward() if self.max_grad_norm > 0: nn.utils.clip_grad_norm_(policy.parameters(), self.max_grad_norm) self.opt.step() logger.collect_info("value_loss", value_loss.mean().item()) logger.collect_info("action_loss", action_loss.mean().item()) logger.collect_info( "dist_entropy", ac_eval["dist_entropy"].mean().item() ) def compute_derived( self, policy, rewards, masks, bad_masks, value_preds, last_value, ): if self.use_gae: value_preds[-1] = last_value gae = 0 for step in reversed(range(rewards.size(0))): delta = ( rewards[step] + self.gamma * value_preds[step + 1] * masks[step + 1] - value_preds[step] ) gae = delta + self.gamma * self.gae_lambda * masks[step + 1] * gae gae = gae * bad_masks[step + 1] self.returns[step] = gae + value_preds[step] else: self.returns[-1] = last_value for step in reversed(range(rewards.size(0))): self.returns[step] = ( self.returns[step + 1] * self.gamma * masks[step + 1] + rewards[step] ) * bad_masks[step + 1] + (1 - bad_masks[step + 1]) * value_preds[step] advantages = self.returns[:-1] - value_preds[:-1] # Normalize the advantages advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-5) return advantages
bc-irl-main
imitation_learning/policy_opt/ppo.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn from higher.optim import DifferentiableOptimizer from hydra.utils import instantiate from omegaconf import DictConfig class DifferentiablePPO(nn.Module): def __init__( self, use_gae: bool, gae_lambda: float, gamma: float, use_clipped_value_loss: bool, clip_param: bool, value_loss_coef: float, entropy_coef: float, max_grad_norm: float, num_mini_batch: int, num_epochs: int, ): super().__init__() self.use_gae = use_gae self.gae_lambda = gae_lambda self.gamma = gamma self.use_clipped_value_loss = use_clipped_value_loss self.clip_param = clip_param self.entropy_coef = entropy_coef self.max_grad_norm = max_grad_norm self.num_mini_batch = num_mini_batch self.num_epochs = num_epochs self.value_loss_coef = value_loss_coef def update( self, policy, storage, logger, optimizer: DifferentiableOptimizer, rewards, ) -> None: with torch.no_grad(): last_value = policy.get_value( storage.get_obs(-1), storage.recurrent_hidden_states[-1], storage.masks[-1], ) advantages, returns = self.compute_derived( rewards, storage.masks, storage.bad_masks, storage.value_preds.detach(), last_value, ) for _ in range(self.num_epochs): data_gen = storage.data_generator( self.num_mini_batch, returns=returns[:-1], advantages=advantages ) for sample in data_gen: ac_eval = policy.evaluate_actions( sample["obs"], sample["hxs"], sample["mask"], sample["action"], ) ratio = torch.exp(ac_eval["log_prob"] - sample["prev_log_prob"]) surr1 = ratio * sample["advantages"] surr2 = ( torch.clamp( ratio, 1.0 - self.clip_param, 1.0 + self.clip_param, ) * sample["advantages"] ) action_loss = -torch.min(surr1, surr2).mean(0) value_target = sample["returns"].detach() if self.use_clipped_value_loss: value_pred_clipped = sample["value"] + ( ac_eval["value"] - sample["value"] ).clamp(-self.clip_param, self.clip_param) value_losses = (ac_eval["value"] - value_target).pow(2) value_losses_clipped = (value_pred_clipped - value_target).pow(2) value_loss = ( 0.5 * torch.max(value_losses, value_losses_clipped).mean() ) else: value_loss = 0.5 * (value_target - ac_eval["value"]).pow(2).mean() loss = ( value_loss * self.value_loss_coef + action_loss - ac_eval["dist_entropy"].mean() * self.entropy_coef ) # if self.max_grad_norm > 0: # nn.utils.clip_grad_norm_(policy.parameters(), self.max_grad_norm) optimizer.step(loss) logger.collect_info("value_loss", value_loss.mean().item()) logger.collect_info("action_loss", action_loss.mean().item()) logger.collect_info( "dist_entropy", ac_eval["dist_entropy"].mean().item() ) def compute_derived( self, rewards, masks, bad_masks, value_preds, last_value, ): num_steps, num_envs = rewards.shape[:2] returns = torch.zeros(num_steps + 1, num_envs, 1, device=last_value.device) if self.use_gae: value_preds[-1] = last_value gae = 0 for step in reversed(range(rewards.size(0))): delta = ( rewards[step] + self.gamma * value_preds[step + 1] * masks[step + 1] - value_preds[step] ) gae = delta + self.gamma * self.gae_lambda * masks[step + 1] * gae gae = gae * bad_masks[step + 1] returns[step] = gae + value_preds[step] else: returns[-1] = last_value for step in reversed(range(rewards.size(0))): returns[step] = ( returns[step + 1] * self.gamma * masks[step + 1] + rewards[step] ) * bad_masks[step + 1] + (1 - bad_masks[step + 1]) * value_preds[step] advantages = returns[:-1] - value_preds[:-1] # Normalize the advantages advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-5) return advantages, returns
bc-irl-main
imitation_learning/bc_irl/differentiable_ppo.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
bc-irl-main
imitation_learning/bc_irl/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Callable import higher import torch import torch.nn as nn from hydra.utils import call, instantiate from omegaconf import DictConfig from rl_utils.common import DictDataset from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from imitation_learning.common.plotting import plot_actions from imitation_learning.common.utils import (extract_transition_batch, log_finished_rewards) class BCIRL(nn.Module): def __init__( self, reward: DictConfig, inner_updater: DictConfig, get_dataset_fn, batch_size: int, inner_opt: DictConfig, reward_opt: DictConfig, irl_loss: DictConfig, plot_interval: int, norm_expert_actions: bool, n_inner_iters: int, num_steps: int, reward_update_freq: int, storage_cfg: DictConfig, device, total_num_updates: int, num_envs: int, use_lr_decay: bool, policy_init_fn: Callable[[nn.Module, nn.Module], nn.Module], force_num_env_steps_lr_decay: float = -1.0, **kwargs, ): super().__init__() if inner_updater is not None: self.inner_updater = instantiate(inner_updater) self.reward = instantiate(reward).to(device) self.dataset = call(get_dataset_fn) self.data_loader = DataLoader(self.dataset, batch_size, shuffle=True) self.inner_opt = inner_opt self.reward_opt = instantiate(reward_opt, params=self.reward.parameters()) self._n_updates = 0 self.use_lr_decay = use_lr_decay self.policy_init_fn = policy_init_fn if force_num_env_steps_lr_decay > 0: use_total_num_updates = force_num_env_steps_lr_decay // ( num_envs * num_steps ) else: use_total_num_updates = total_num_updates self.lr_scheduler = LambdaLR( optimizer=self.reward_opt, lr_lambda=lambda x: 1 - (self._n_updates / use_total_num_updates), ) self.irl_loss = instantiate(irl_loss) self.data_loader_iter = iter(self.data_loader) self.plot_interval = plot_interval self.norm_expert_actions = norm_expert_actions self.n_inner_iters = n_inner_iters self.num_steps = num_steps self.reward_update_freq = reward_update_freq self.storage_cfg = storage_cfg self.device = device self.all_rollouts = [ instantiate(self.storage_cfg, device=self.device) for _ in range(self.n_inner_iters - 1) ] self._ep_rewards = torch.zeros(num_envs, device=self.device) def state_dict(self): return { **super().state_dict(), "reward_opt": self.reward_opt.state_dict(), } def load_state_dict(self, state_dict, should_load_opt): opt_state = state_dict.pop("reward_opt") if should_load_opt: self.reward_opt.load_state_dict(opt_state) return super().load_state_dict(state_dict) def viz_reward(self, cur_obs=None, action=None, next_obs=None) -> torch.Tensor: return self.reward(cur_obs, action, next_obs) def _irl_loss_step(self, policy, logger): expert_batch = next(self.data_loader_iter, None) if expert_batch is None: self.data_loader_iter = iter(self.data_loader) expert_batch = next(self.data_loader_iter, None) expert_actions = expert_batch["actions"].to(self.device) expert_obs = expert_batch["observations"].to(self.device) if self.norm_expert_actions: # Clip expert actions to be within [-1,1]. Actions have no effect # out of that range expert_actions = torch.clamp(expert_actions, -1.0, 1.0) dist = policy.get_action_dist(expert_obs, None, None) pred_actions = dist.mean irl_loss_val = self.irl_loss(expert_actions, pred_actions) irl_loss_val.backward(retain_graph=True) logger.collect_info("irl_loss", irl_loss_val.item()) if self._n_updates % self.plot_interval == 0: plot_actions( pred_actions.detach().cpu(), expert_actions.detach().cpu(), self._n_updates, logger.vid_dir, ) @property def inner_lr(self): return self.inner_opt["lr"] def update(self, policy, rollouts, logger, envs): self.reward_opt.zero_grad() policy = call(self.policy_init_fn, old_policy=policy).to(self.device) policy_opt = instantiate( self.inner_opt, lr=self.inner_lr, params=policy.parameters() ) # Setup Meta loop with higher.innerloop_ctx( policy, policy_opt, ) as (dpolicy, diffopt): for inner_i in range(self.n_inner_iters): obs, actions, next_obs, masks = extract_transition_batch(rollouts) rollouts.rewards = self.reward(obs, actions, next_obs) if inner_i == 0: self._ep_rewards = log_finished_rewards( rollouts, self._ep_rewards, logger ) # Inner loop policy update self.inner_updater.update( dpolicy, rollouts, logger, diffopt, rollouts.rewards ) if inner_i != self.n_inner_iters - 1: new_rollouts = self.all_rollouts[inner_i - 1] for k in rollouts.obs_keys: new_rollouts.obs[k][0].copy_(rollouts.obs[k][-1]) new_rollouts.masks[0].copy_(rollouts.masks[-1]) new_rollouts.bad_masks[0].copy_(rollouts.bad_masks[-1]) new_rollouts.recurrent_hidden_states[0].copy_( rollouts.recurrent_hidden_states[-1] ) # Collect the next batch of data. new_rollouts.after_update() for step_idx in range(self.num_steps): with torch.no_grad(): act_data = policy.act( new_rollouts.get_obs(step_idx), new_rollouts.recurrent_hidden_states[step_idx], new_rollouts.masks[step_idx], ) next_obs, reward, done, info = envs.step(act_data["action"]) new_rollouts.insert(next_obs, reward, done, info, **act_data) rollouts = new_rollouts # Compute IRL loss self._irl_loss_step(dpolicy, logger) if ( self.reward_update_freq != -1 and self._n_updates % self.reward_update_freq == 0 ): self.reward_opt.step() if hasattr(self.reward, "log"): self.reward.log(logger) policy.load_state_dict(dpolicy.state_dict()) if self.use_lr_decay and self.reward_update_freq != -1: # Step even if we did not update so we properly decay to 0. self.lr_scheduler.step() logger.collect_info("reward_lr", self.lr_scheduler.get_last_lr()[0]) self._n_updates += 1
bc-irl-main
imitation_learning/bc_irl/updater.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from enum import Enum, auto import torch import torch.nn as nn from hydra.utils import instantiate from rl_utils.common import make_mlp_layers def full_reset_init(old_policy, policy_cfg, **kwargs): return instantiate(policy_cfg) def reg_init(old_policy, **kwargs): return old_policy class StructuredReward(nn.Module): def __init__(self, obs_shape, **kwargs): super().__init__() self.center = nn.Parameter(torch.randn(obs_shape[0])) def forward(self, X): return -1.0 * ((X - self.center) ** 2).mean(-1, keepdims=True) def log(self, logger): for i, center_val in enumerate(self.center): logger.collect_info(f"reward_{i}", center_val.item()) class GtReward(nn.Module): def __init__( self, ): pass def forward(self, cur_obs=None, actions=None, next_obs=None): cur_dist = torch.linalg.norm(cur_obs, dim=-1) reward = torch.full(cur_dist.shape, -self._slack) assign = -self._slack * cur_dist should_give_reward = cur_dist < self._reward_thresh reward[should_give_reward] = assign[should_give_reward] return reward
bc-irl-main
imitation_learning/bc_irl/rewards.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import itertools from collections import defaultdict import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from hydra.utils import call, instantiate from omegaconf import DictConfig from rl_utils.common.net_utils import make_mlp_layers from torch.utils.data import DataLoader from imitation_learning.common.plotting import plot_actions from imitation_learning.common.utils import (create_next_obs, extract_transition_batch, log_finished_rewards) from imitation_learning.gail.updater import GAIL class fIRL(GAIL): """ From https://github.com/twni2016/f-IRL/blob/a3f1ec66f29c6d659abba630f70f8ae2e59ebe1e/firl/divs/f_div_disc.py """ def __init__( self, discriminator: DictConfig, reward: DictConfig, policy_updater: DictConfig, get_dataset_fn, batch_size: int, num_discrim_batches: int, reward_opt: DictConfig, discrim_opt: DictConfig, reward_update_freq: int, importance_sampling: bool, div_type: str, device, policy, num_envs, **kwargs, ): super().__init__( discriminator, policy_updater, get_dataset_fn, batch_size, num_discrim_batches, discrim_opt, reward_update_freq, device, policy, num_envs, ) self.reward = instantiate(reward).to(device) self._div_type = div_type self._importance_sampling = importance_sampling self.reward_opt = instantiate(reward_opt, params=self.reward.parameters()) def state_dict(self, **kwargs): return { **super().state_dict(**kwargs), "reward_opt": self.reward_opt.state_dict(), } def load_state_dict(self, state_dict, should_load_opt): opt_state = state_dict.pop("reward_opt") if should_load_opt: self.reward_opt.load_state_dict(opt_state) return super().load_state_dict(state_dict, should_load_opt) def viz_reward(self, cur_obs=None, action=None, next_obs=None) -> torch.Tensor: # Intentional to assign cur obs to next obs so we show reward for that state. return self.reward(next_obs=cur_obs) def _update_reward(self, policy, rollouts, logger): agent_data = self._get_agent_samples(rollouts) for expert_batch, agent_batch in zip(self.expert_data, agent_data): # Combine experience from both. with torch.no_grad(): obs = torch.cat( [ expert_batch["next_observations"], agent_batch["next_obs"], ], 0, ) actions = torch.cat([expert_batch["actions"], agent_batch["action"]], 0) logits = self.discriminator(cur_obs=obs) # JS if self._div_type == "fkl": t1 = torch.exp(logits) elif self._div_type == "rkl": t1 = logits elif self._div_type == "js": t1 = F.softplus(logits) else: raise ValueError() t1 = -t1 t2 = self.reward(next_obs=obs) if self._importance_sampling: with torch.no_grad(): traj_reward = t2.detach().clone() traj_log_prob = policy.evaluate_actions(obs, None, None, actions)[ "log_prob" ] IS_ratio = F.softmax(traj_reward - traj_log_prob, dim=0) loss = (IS_ratio * t1 * t2).mean() - ( (IS_ratio * t1).mean() * (IS_ratio * t2).mean() ) else: loss = (t1 * t2).mean() - (t1.mean() * t2.mean()) self.reward_opt.zero_grad() loss.backward() self.reward_opt.step() logger.collect_info("reward_loss", loss.item()) def update(self, policy, rollouts, logger, **kwargs): if ( self.reward_update_freq != -1 and self._n_updates % self.reward_update_freq == 0 ): self._update_discriminator(policy, rollouts, logger) self._update_reward(policy, rollouts, logger) obs, actions, next_obs, masks = extract_transition_batch(rollouts) with torch.no_grad(): rollouts.rewards = self.reward(next_obs=next_obs) self._ep_rewards = log_finished_rewards(rollouts, self._ep_rewards, logger) self.policy_updater.update(policy, rollouts, logger) self._n_updates += 1
bc-irl-main
imitation_learning/f_irl/updater.py
bc-irl-main
imitation_learning/config/logger/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch import torch.nn as nn from hydra.utils import call, instantiate from omegaconf import DictConfig from rl_utils.common import DictDataset, make_mlp_layers from torch.utils.data import DataLoader from imitation_learning.common.utils import (create_next_obs, extract_transition_batch, log_finished_rewards) class MaxEntIRL(nn.Module): def __init__( self, reward: DictConfig, reward_opt: DictConfig, get_dataset_fn, batch_size: int, num_cost_epochs: int, device, policy_updater: DictConfig, should_update_reward: bool, policy, num_envs, grid_lower=-1.5, grid_upper=1.5, grid_density=310, **kwargs ): super().__init__() self.reward = instantiate(reward).to(device) self.policy_updater = instantiate(policy_updater, policy=policy) self.demo_obs = call(get_dataset_fn)["next_observations"] self.reward_opt = instantiate(reward_opt, params=self.reward.parameters()) self.num_cost_epochs = num_cost_epochs self._ep_rewards = torch.zeros(num_envs, device=device) self.should_update_reward = should_update_reward # instead of policy samples we use a grid - which we can do in this low dimensional toy example, # this will give us "exact" max ent self.grid_samples = ( torch.stack( torch.meshgrid( torch.linspace(grid_lower, grid_upper, grid_density), torch.linspace(grid_lower, grid_upper, grid_density), indexing="ij", ), -1, ) .to(device) .view(-1, 2) ) def state_dict(self, **kwargs): return { **super().state_dict(**kwargs), "reward_opt": self.reward_opt.state_dict(), } def load_state_dict(self, state_dict, should_load_opt): opt_state = state_dict.pop("reward_opt") if should_load_opt: self.reward_opt.load_state_dict(opt_state) return super().load_state_dict(state_dict) def viz_reward(self, cur_obs=None, action=None, next_obs=None) -> torch.Tensor: return self.reward(next_obs=next_obs) def update(self, policy, rollouts, logger, **kwargs): if self.should_update_reward: for _ in range(self.num_cost_epochs): reward_samples = self.reward(next_obs=self.grid_samples) # we sample a demo reward_demos = self.reward(next_obs=self.demo_obs) # optimize reward loss_ME = -( torch.mean(reward_demos) - ( torch.logsumexp(reward_samples, dim=0) - np.log(len(reward_samples)) ) ) self.reward_opt.zero_grad() loss_ME.backward() self.reward_opt.step() logger.collect_info("irl_loss", loss_ME.item()) else: with torch.no_grad(): _, _, next_obs, _ = extract_transition_batch(rollouts) rollouts.rewards = self.reward(next_obs=next_obs) self._ep_rewards = log_finished_rewards( rollouts, self._ep_rewards, logger ) self.policy_updater.update(policy, rollouts, logger)
bc-irl-main
imitation_learning/maxent/updater.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Tuple import torch import torch.nn as nn from rl_utils.common import make_mlp_layers class AirlDiscriminator(nn.Module): def __init__( self, obs_shape: Tuple[int], action_dim: int, reward_hidden_dim: int, cost_take_dim: int, n_hidden_layers: int, use_shaped_reward: bool, gamma: float, airl_reward_bonus: float, ): super().__init__() self.cost_take_dim = cost_take_dim state_size = obs_shape[0] if cost_take_dim == -1 else cost_take_dim self.g = nn.Sequential( *make_mlp_layers(state_size, 1, reward_hidden_dim, n_hidden_layers) ) self.h = nn.Sequential( *make_mlp_layers(state_size, 1, reward_hidden_dim, n_hidden_layers) ) self.use_shaped_reward = use_shaped_reward self.gamma = gamma self.airl_reward_bonus = airl_reward_bonus def f(self, cur_obs, next_obs, masks, force_no_shaped=False, **kwargs): rs = self.g(cur_obs) if self.use_shaped_reward and not force_no_shaped: vs = self.h(cur_obs) next_vs = self.h(next_obs) return rs + (self.gamma * masks * next_vs) - vs else: return rs def forward(self, cur_obs, next_obs, actions, masks, policy, **kwargs): log_p = self.f(cur_obs, next_obs, masks) with torch.no_grad(): log_q = policy.evaluate_actions(cur_obs, {}, masks, actions)["log_prob"] return log_p - log_q def get_reward( self, cur_obs, next_obs, masks=None, actions=None, policy=None, viz_reward=False, **kwargs ): log_p = self.f(cur_obs, next_obs, masks=masks, force_no_shaped=viz_reward) if viz_reward: return log_p with torch.no_grad(): log_q = policy.evaluate_actions(cur_obs, {}, masks, actions)["log_prob"] logits = log_p - (self.airl_reward_bonus * log_q) s = torch.sigmoid(logits) eps = 1e-20 return (s + eps).log() - (1 - s + eps).log()
bc-irl-main
imitation_learning/airl/discriminator.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn from hydra.utils import call, instantiate from omegaconf import DictConfig from rl_utils.common import DictDataset, make_mlp_layers from torch.utils.data import DataLoader from imitation_learning.common.utils import (create_next_obs, extract_transition_batch, log_finished_rewards) class GCL(nn.Module): def __init__( self, reward: DictConfig, reward_opt: DictConfig, get_dataset_fn, batch_size: int, device, policy_updater: DictConfig, should_update_reward: bool, policy, num_envs, **kwargs ): super().__init__() self.reward = instantiate(reward).to(device) self.policy_updater = instantiate(policy_updater, policy=policy) self.batch_size = batch_size self.dataset = call(get_dataset_fn) self.expert_data = DataLoader(self.dataset, batch_size, shuffle=True) self.reward_opt = instantiate(reward_opt, params=self.reward.parameters()) self._ep_rewards = torch.zeros(num_envs, device=device) self.should_update_reward = should_update_reward def state_dict(self, **kwargs): return { **super().state_dict(**kwargs), "reward_opt": self.reward_opt.state_dict(), } def load_state_dict(self, state_dict, should_load_opt): opt_state = state_dict.pop("reward_opt") if should_load_opt: self.reward_opt.load_state_dict(opt_state) return super().load_state_dict(state_dict) def viz_reward(self, cur_obs=None, action=None, next_obs=None) -> torch.Tensor: return self.reward(next_obs=next_obs) def update(self, policy, rollouts, logger, **kwargs): if self.should_update_reward: obs, actions, next_obs, masks = extract_transition_batch(rollouts) reward_samples = [] num_batches = len(rollouts) // self.batch_size agent_data = rollouts.data_generator(num_batches, get_next_obs=True) for expert_batch, agent_batch in zip(self.expert_data, agent_data): ac_eval = policy.evaluate_actions( agent_batch["obs"], agent_batch["hxs"], agent_batch["mask"], agent_batch["action"], ) reward_demos = self.reward(next_obs=expert_batch["next_observations"]) reward_samples = self.reward(next_obs=agent_batch["next_obs"]) loss_IOC = -( torch.mean(reward_demos) - ( torch.logsumexp( reward_samples - ac_eval["log_prob"], dim=0, keepdim=True, ) - torch.log(torch.Tensor([len(reward_samples)])) ) ) self.reward_opt.zero_grad() loss_IOC.backward() self.reward_opt.step() logger.collect_info("irl_loss", loss_IOC.item()) with torch.no_grad(): _, _, next_obs, _ = extract_transition_batch(rollouts) rollouts.rewards = self.reward(next_obs=next_obs) self._ep_rewards = log_finished_rewards(rollouts, self._ep_rewards, logger) self.policy_updater.update(policy, rollouts, logger)
bc-irl-main
imitation_learning/gcl/updater.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os.path as osp import matplotlib.pyplot as plt import matplotlib.ticker as ticker import numpy as np import seaborn as sns import torch from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.colors import LogNorm from matplotlib.patches import Rectangle from mpl_toolkits.axes_grid1 import make_axes_locatable from rl_utils.common import Evaluator, group_trajectories from rl_utils.envs.pointmass import PointMassObstacleEnv class PMDistReward: def __init__(self, slack, **kwargs): self.slack = slack def __call__(self, cur_pos, prev_pos, action): cur_dist = torch.linalg.norm(cur_pos, dim=-1) prev_dist = torch.linalg.norm(prev_pos, dim=-1) return ((prev_dist - cur_dist) - self.slack).view(-1, 1) class PMDistActionPenReward: def __init__(self, slack, action_pen, **kwargs): self.slack = slack self.action_pen = action_pen def __call__(self, cur_pos, prev_pos, action): cur_dist = torch.linalg.norm(cur_pos, dim=-1) prev_dist = torch.linalg.norm(prev_pos, dim=-1) return ( (prev_dist - cur_dist) - self.slack - (self.action_pen * torch.linalg.norm(action, dim=-1)) ).view(-1, 1) class PMSparseReward: def __init__(self, succ_dist, **kwargs): self._succ_dist = succ_dist def __call__(self, cur_pos, prev_pos, action): cur_dist = torch.linalg.norm(cur_pos, dim=-1) reward = torch.full(cur_dist.shape, -0.1) reward[cur_dist < self._succ_dist] = 1.0 return reward.view(-1, 1) class PMSparseDenseReward: def __init__(self, reward_thresh, slack, **kwargs): self._reward_thresh = reward_thresh self._slack = slack def __call__(self, cur_pos, prev_pos, action): cur_dist = torch.linalg.norm(cur_pos, dim=-1) reward = torch.full(cur_dist.shape, -self._slack) assign = -self._slack * cur_dist should_give_reward = cur_dist < self._reward_thresh reward[should_give_reward] = assign[should_give_reward] return reward.view(-1, 1) def viz_trajs(trajs: torch.Tensor, plt_lim, agent_point_size, fig, ax, with_arrows): pal = sns.color_palette("rocket", as_cmap=True) traj_len = trajs.size(1) assert len(trajs.shape) == 3 assert trajs.shape[-1] == 2 scatter_len = 0.1 for i in range(trajs.size(1)): ax.scatter( trajs[:, i, 0], trajs[:, i, 1], color=[pal((i + 1) / traj_len) for _ in range(trajs.size(0))], s=180, # s=agent_point_size, cmap=pal, ) if with_arrows: for i in range(trajs.size(0)): traj_x = trajs[i, :, 0] traj_y = trajs[i, :, 1] for t in range(trajs.size(1) - 1): offset = np.array( [traj_x[t + 1] - traj_x[t], traj_y[t + 1] - traj_y[t]] ) offset_dist = np.linalg.norm(offset) point_offset = offset * (scatter_len / offset_dist) if offset_dist < 0.05: continue ax.arrow( x=traj_x[t] + point_offset[0], y=traj_y[t] + point_offset[1], dx=offset[0] - (2 * point_offset[0]), dy=offset[1] - (2 * point_offset[1]), length_includes_head=True, width=0.04, head_length=0.05, # color=np.array([236, 240, 241, 200]) / 255.0, color=np.array([44, 62, 80]) / 255.0, # color=np.array([0, 0, 0, 255]) / 255.0, ) ax.set_xlim(-plt_lim, plt_lim) ax.set_ylim(-plt_lim, plt_lim) def plot_obstacles(obstacle_transform, obstacle_len, obstacle_width): points = torch.tensor( [ [-obstacle_len, -obstacle_width, 1], [-obstacle_len, obstacle_width, 1], [obstacle_len, -obstacle_width, 1], [obstacle_len, obstacle_width, 1], ] ) obstacle_points = obstacle_transform @ points class PointMassVisualizer(Evaluator): def __init__( self, envs, rnn_hxs_dim, num_render, vid_dir, fps, save_traj_name, updater, agent_point_size, plt_lim, num_demo_plot, plt_density, plot_il, plot_expert: bool, logger, device, with_arrows: bool = False, is_final_render: bool = False, **kwargs, ): super().__init__(envs, rnn_hxs_dim, num_render, vid_dir, fps, save_traj_name) self._agent_point_size = agent_point_size self._plt_lim = plt_lim self._plt_density = plt_density self._plot_il = plot_il self.logger = logger self.device = device self.is_final_render = is_final_render self.with_arrows = with_arrows if plot_il and plot_expert: dones = updater.dataset.get_data("terminals") grouped_trajs = group_trajectories(dones, **updater.dataset.all_data) obs_trajs = ( torch.stack([traj["observations"] for traj in grouped_trajs], dim=0) .detach() .cpu() ) add_str = "" if num_demo_plot < obs_trajs.size(0): plot_idxs = torch.randint(high=len(obs_trajs), size=(num_demo_plot,)) obs_trajs = obs_trajs[plot_idxs] add_str = f" (Subsampled {num_demo_plot})" fig, ax = plt.subplots(figsize=(4, 4)) viz_trajs( obs_trajs, plt_lim, agent_point_size, fig, ax, self.is_final_render, ) self.plot_obstacle(ax) ax.set_title(f"Expert Demos{add_str}") self.save("demos", fig) plt.clf() self._updater = updater def save(self, name, fig): if self.is_final_render: full_path = osp.join(self._vid_dir, f"{name}.pdf") print(f"Saved to {full_path}") fig.savefig(full_path, bbox_inches="tight", dpi=100) else: full_path = osp.join(self._vid_dir, f"{name}.png") fig.savefig(full_path) return full_path def plot_obstacle(self, ax): if isinstance(self._envs, PointMassObstacleEnv): for obs, (obs_T, w, l) in zip( self._envs._params.square_obstacles, self._envs._square_obs_T ): origin = torch.tensor([-(w / 2), -(l / 2), 1]) origin = obs_T @ origin color = "orangered" rect = Rectangle( origin[:2], w, l, angle=obs.rot_deg, linewidth=2, edgecolor=color, facecolor=color, ) ax.add_patch(rect) def plot_reward(self, reward_fn, fig, ax): with torch.no_grad(): coords = torch.stack( torch.meshgrid( torch.linspace(-self._plt_lim, self._plt_lim, self._plt_density), torch.linspace(-self._plt_lim, self._plt_lim, self._plt_density), indexing="ij", ), -1, ).to(self.device) reward_vals = reward_fn(cur_obs=coords, next_obs=coords).cpu() max_reward_idx = reward_vals.argmax() flat_coords = coords.view(-1, 2) # print("Reward Max XY Coordinate", flat_coords[max_reward_idx]) im_fig = ax.imshow( reward_vals, extent=[ -self._plt_lim, self._plt_lim, -self._plt_lim, self._plt_lim, ], origin="lower", ) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) self.plot_obstacle(ax) def fmt(x, pos): return str(x).ljust(5) fig.colorbar( im_fig, cax=cax, orientation="vertical", format=ticker.FuncFormatter(fmt), ) def evaluate(self, policy, num_episodes, eval_i): fig, ax = plt.subplots(figsize=(4, 4)) if self.is_final_render: ax.axis("off") if self._plot_il: self.plot_reward( self._updater.viz_reward, fig, ax, ) self.save(f"reward_{eval_i}", fig) # Intentionally don't clear plot so the evaluation rollouts are # overlaid on reward. eval_result = super().evaluate(policy, num_episodes, eval_i) if len(self.eval_trajs_dones): grouped_trajs = group_trajectories( torch.stack(self.eval_trajs_dones, dim=0), obs=torch.stack(self.eval_trajs_obs, dim=0), ) obs_trajs = ( torch.stack([traj["obs"] for traj in grouped_trajs], dim=0) .detach() .cpu() ) viz_trajs( obs_trajs, self._plt_lim, self._agent_point_size, fig, ax, self.with_arrows, ) if not self._plot_il: self.plot_obstacle(ax) if not self.is_final_render: ax.set_title( f"Evaluation Rollouts (Update {eval_i}, Dist {eval_result['dist_to_goal']:.4f}) " ) eval_rollouts_path = self.save(f"eval_rollouts_{eval_i}", fig) plt.clf() if not self.is_final_render: self.logger.collect_img("reward", eval_rollouts_path) return eval_result
bc-irl-main
imitation_learning/common/pointmass_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os.path as osp import matplotlib.pyplot as plt import numpy as np def plot_actions(pred_actions, gt_actions, n_updates, save_dir): assert pred_actions.shape == gt_actions.shape action_len, action_dim = pred_actions.shape for action_dim_i in range(action_dim): plt.scatter( np.arange(action_len), pred_actions[:, action_dim_i], label="Predicted" ) plt.scatter(np.arange(action_len), gt_actions[:, action_dim_i], label="Expert") plt.legend() plt.title(f"Action Update Batch Dim {action_dim_i} @ {n_updates}") plt.savefig(osp.join(save_dir, f"actions_{n_updates}_{action_dim_i}.png")) plt.clf()
bc-irl-main
imitation_learning/common/plotting.py
from enum import Enum, auto import torch import torch.nn as nn from rl_utils.common import make_mlp_layers class RewardInputType(Enum): ACTION = auto() NEXT_STATE = auto() CUR_NEXT_STATE = auto() class NeuralReward(nn.Module): def __init__( self, obs_shape, action_dim, reward_hidden_dim, n_hidden_layers, cost_take_dim=-1, include_tanh=False, reward_type=None, clamp_max=None, ): super().__init__() if reward_type is None: self.reward_type = RewardInputType.NEXT_STATE else: self.reward_type = RewardInputType[reward_type] self.cost_take_dim = cost_take_dim obs_size = obs_shape[0] if cost_take_dim == -1 else cost_take_dim if self.reward_type == RewardInputType.ACTION: input_size = obs_size + action_dim elif self.reward_type == RewardInputType.NEXT_STATE: input_size = obs_size elif self.reward_type == RewardInputType.CUR_NEXT_STATE: input_size = obs_size + obs_size net_layers = make_mlp_layers(input_size, 1, reward_hidden_dim, n_hidden_layers) if include_tanh: net_layers.append(nn.Tanh()) self.net = nn.Sequential(*net_layers) self.clamp_max = clamp_max def forward(self, cur_obs=None, actions=None, next_obs=None): if self.cost_take_dim != -1: if cur_obs is not None: cur_obs = cur_obs[:, :, : self.cost_take_dim] if next_obs is not None: next_obs = next_obs[:, :, : self.cost_take_dim] if self.reward_type == RewardInputType.ACTION: inputs = [cur_obs, actions] elif self.reward_type == RewardInputType.NEXT_STATE: inputs = [next_obs] elif self.reward_type == RewardInputType.CUR_NEXT_STATE: inputs = [cur_obs, next_obs] else: raise ValueError() inputs = torch.cat(inputs, dim=-1) ret = self.net(inputs) if self.clamp_max is not None: ret = torch.clamp(ret, min=-self.clamp_max, max=self.clamp_max) return ret
bc-irl-main
imitation_learning/common/net.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
bc-irl-main
imitation_learning/common/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, List, Tuple import torch from rl_utils.common import DictDataset def log_finished_rewards( rollouts, rolling_ep_rewards: torch.Tensor, logger, ) -> torch.Tensor: """ :param rolling_ep_rewards: tensor of shape (num_envs,) """ num_steps, num_envs = rollouts.rewards.shape[:2] done_episodes_rewards = [] for env_i in range(num_envs): for step_i in range(num_steps): rolling_ep_rewards[env_i] += rollouts.rewards[step_i, env_i].item() if rollouts.masks[step_i + 1, env_i].item() == 0.0: done_episodes_rewards.append(rolling_ep_rewards[env_i].item()) rolling_ep_rewards[env_i] = 0 logger.collect_info_list("inferred_episode_reward", done_episodes_rewards) return rolling_ep_rewards def extract_transition_batch(rollouts): obs = next(iter(rollouts.obs.values())) cur_obs = obs[:-1] masks = rollouts.masks[1:] next_obs = (masks * obs[1:]) + ((1 - masks) * rollouts.final_obs) actions = rollouts.actions return cur_obs, actions, next_obs, masks def create_next_obs(dataset: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: obs = dataset["observations"].detach() final_final_obs = dataset["infos"][-1]["final_obs"] next_obs = torch.cat([obs[1:], final_final_obs.unsqueeze(0)], 0) num_eps = 1 for i in range(obs.shape[0] - 1): cur_info = dataset["infos"][i] if "final_obs" in cur_info: num_eps += 1 next_obs[i] = cur_info["final_obs"].detach() if num_eps != dataset["terminals"].sum(): raise ValueError( f"Inconsistency in # of episodes {num_eps} vs {dataset['terminals'].sum()}" ) dataset["next_observations"] = next_obs.detach() return dataset def get_dataset_data(dataset_path: str, env_name: str): return create_next_obs(torch.load(dataset_path)) def get_transition_dataset(dataset_path: str, env_name: str): dataset = get_dataset_data(dataset_path, env_name) return DictDataset( dataset, [ "observations", "actions", "rewards", "terminals", "next_observations", ], )
bc-irl-main
imitation_learning/common/utils.py
from setuptools import setup, find_packages setup( name='treedlib', version='0.1.3', description='Library of tree features.', packages=find_packages(), install_requires=[ 'lxml', ], classifiers=[ "License :: OSI Approved :: MIT License", ], url='https://github.com/HazyResearch/treedlib', author='Hazy Research', )
treedlib-master
setup.py
from feature_template import * from itertools import chain def get_mention_templates(cid, d): """ Generate the DDLib mention features as per http://deepdive.stanford.edu/doc/basics/gen_feats.html """ return [ # The set of POS tags comprising the mention Indicator(Mention(cid), 'pos'), # The set of NER tags comprising the mention Indicator(Mention(cid), 'ner'), # The set of lemmas comprising the mention Indicator(Mention(cid), 'lemma'), # The set of words comprising the mention Indicator(Mention(cid), 'word'), # TODO: Sum of the lengths of the words comprising the mention # Whether the first word in the mention starts with a capital letter RgxIndicator('^[A-Z].*$', 'word', 'STARTS_WITH_CAPITAL', Mention(cid)), # The lemma n-grams in a window of size 3 *of siblings* to the left and right of the mention # *Note* that this differs from ddlib in only considering sibling nodes # (which is the same if the tree is just a chain in original sequence order...) Indicator(Left(Mention(cid)), 'lemma'), Indicator(Right(Mention(cid)), 'lemma'), # Indicator feature of whether a keyword is part of the mention Indicator(Keyword(d, Mention(cid)), 'word'), # Indicator features of whether keywords appear in sentence Indicator(Keyword(d), 'word'), # Shortest dependency path between mention and keyword Indicator(Between(Mention(cid), Keyword(d)), 'lemma'), Indicator(Between(Mention(cid), Keyword(d)), 'dep_label')] def get_mention_features(cid, d, root): return chain.from_iterable(t.apply(root) for t in get_mention_templates(cid, d)) def get_relation_templates(cid1, cid2, d): """ Generate the DDLib relation features as per http://deepdive.stanford.edu/doc/basics/gen_feats.html """ return [ # The set of POS tags comprising the mention Indicator(Between(Mention(cid1), Mention(cid2)), 'pos'), # The set of NER tags comprising the mention Indicator(Between(Mention(cid1), Mention(cid2)), 'ner'), # The set of lemmas comprising the mention Indicator(Between(Mention(cid1), Mention(cid2)), 'lemma'), # The set of words comprising the mention Indicator(Between(Mention(cid1), Mention(cid2)), 'word'), # TODO: Sum of the lengths of the words comprising the mentions # Whether the first word in the mentions starts with a capital letter RgxIndicator('^[A-Z].*$', 'word', 'STARTS_WITH_CAPITAL_1', Mention(cid1)), RgxIndicator('^[A-Z].*$', 'word', 'STARTS_WITH_CAPITAL_2', Mention(cid2)), # The n-grams of up to size 3 of the lemmas and ners of the nodes in between the mentions Indicator(Between(Mention(cid1), Mention(cid2), 3), 'lemma'), Indicator(Between(Mention(cid1), Mention(cid2), 3), 'ner'), # The lemma and ner n-grams in a window of size 3 *of siblings* to the left and right # of the mention # *Note* that this differs from ddlib in only considering sibling nodes # (which is the same if the tree is just a chain in original sequence order...) Indicator(Left(Mention(cid1)), 'lemma'), Indicator(Left(Mention(cid2)), 'lemma'), Indicator(Right(Mention(cid1)), 'lemma'), Indicator(Right(Mention(cid2)), 'lemma'), Indicator(Left(Mention(cid1)), 'ner'), Indicator(Left(Mention(cid2)), 'ner'), Indicator(Right(Mention(cid1)), 'ner'), Indicator(Right(Mention(cid2)), 'ner'), # Indicator feature of whether a keyword is part of the mention Indicator(Keyword(d, Mention(cid1)), 'word'), Indicator(Keyword(d, Mention(cid2)), 'word'), # Indicator features of whether keywords appear in sentence Indicator(Keyword(d), 'word'), # Shortest dependency path between mention and keyword Indicator(Between(Mention(cid1), Keyword(d)), 'lemma'), Indicator(Between(Mention(cid1), Keyword(d)), 'dep_label'), Indicator(Between(Mention(cid2), Keyword(d)), 'lemma'), Indicator(Between(Mention(cid2), Keyword(d)), 'dep_label')] def get_relation_features(cid1, cid2, d, root): return chain.from_iterable(t.apply(root) for t in get_relation_templates(cid1, cid2, d))
treedlib-master
archive/basic_features.py
from itertools import chain import re # op_0 : X -> p(T) # op_1 : p(T) -> p(T) # ind : p(T) -> {0,1}^F class FeatureTemplate: """Base feature template class""" def __init__(self): self.label = None self.xpaths = set(['//node']) self.subsets = None # subtrees / p(T) def apply(self, root): """ Applies the feature template to the XML tree (the root of which is provided as input) Generates string feature representations Relies on a generator subfunction, _get_result_sets, which returns result sets of nodes, then optionally gets subsets (e.g. for n-grams) """ for res in self._get_result_sets(root): if len(res) > 0: res_sets = [res] if self.subsets is None else subsets(res, self.subsets) for res_set in res_sets: yield self._feat_str(res_set) def _get_result_sets(self, root): """Default result set generator- just applies each xpath to the root node""" for xpath in self.xpaths: yield root.xpath(xpath) def _feat_str(self, res_set): return '%s[%s]' % (self.label, '_'.join(map(str, res_set))) def apply_and_print(self, root): """Helper function to apply and then print the features one per line""" for f in self.apply(root): print(f) def __repr__(self): return "<%s, XPaths='%s', subsets=%s>" % (self.label, self.xpaths, self.subsets) def subsets(x, L): """Return all subsets of length 1, 2, ..., min(l, len(x)) from x""" return chain.from_iterable([x[s:s+l+1] for s in range(len(x)-l)] for l in range(min(len(x),L))) class Mention(FeatureTemplate): """The feature comprising the set of nodes making up the mention""" def __init__(self, cid, subsets=None): self.label = 'MENTION' self.xpaths = set(["//node[@cid='%s']" % str(cid)]) self.subsets = subsets class Indicator(FeatureTemplate): """ Outermost indicator feature, which just maps a specific attribute onto the inputted feature template and uses that feature template's apply function """ def __init__(self, f, attrib): self.f = f self.label = '%s-%s' % (attrib.upper(), f.label) self.xpaths = set('%s/@%s' % (xpath, attrib) for xpath in f.xpaths) self.subsets = f.subsets def apply(self, root): self.f.label = self.label self.f.xpaths = self.xpaths return self.f.apply(root) class Left(FeatureTemplate): """ The feature comprising the set of *sibling* nodes to the left of the input feature's nodes """ def __init__(self, f, subsets=3): self.label = 'LEFT-OF-%s' % f.label self.xpaths = set(xpath + '/preceding-sibling::node' for xpath in f.xpaths) self.subsets = subsets def _get_result_sets(self, root): """Only take the N nodes to the left, where N is = self.subsets""" for xpath in self.xpaths: yield root.xpath(xpath)[::-1][:self.subsets][::-1] class Right(FeatureTemplate): """ The feature comprising the set of *sibling* nodes to the right of the input feature's nodes """ def __init__(self, f, subsets=3): self.label = 'RIGHT-OF-%s' % f.label self.xpaths = set(xpath + '/following-sibling::node' for xpath in f.xpaths) self.subsets = subsets def _get_result_sets(self, root): """Only take the N nodes to the right, where N is = self.subsets""" for xpath in self.xpaths: yield root.xpath(xpath)[:self.subsets] class Between(FeatureTemplate): """ The set of nodes *between* two node sets """ def __init__(self, f1, f2, subsets=None): self.label = 'BETWEEN-%s-%s' % (f1.label, f2.label) self.xpaths = set(['/ancestor-or-self::node']) self.xpaths1 = f1.xpaths self.xpaths2 = f2.xpaths self.subsets = subsets def _get_result_sets(self, root): """ Get the path between the two node sets by getting the lowest shared parent, then concatenating the two ancestor paths at this shared parent """ for xpath in self.xpaths: for xpath1 in self.xpaths1: for xpath2 in self.xpaths2: p1 = root.xpath(xpath1 + xpath) p2 = root.xpath(xpath2 + xpath) shared = set(p1).intersection(p2) b1 = [] b2 = [] for node in reversed(p1): b1.append(node) if node in shared: break for node in reversed(p2): if node in shared: break b2.append(node) # Return only the path *between*, filtering out the self nodes # NOTE: This is different for node vs. edge attributes... res = b1 + b2[::-1] if 'dep_label' in xpath: yield res else: yield list(filter(lambda n : (len(p1)==0 or n!=p1[-1]) and (len(p2)==0 or n!=p2[-1]), res)) # TODO: Only handles single-word keywords right now!!! class Keyword(FeatureTemplate): """Searches for matches against a dictionary (list) of keywords""" def __init__(self, kws, f=None): self.label = 'KEYWORD' if f is None else 'KEYWORD-IN-%s' % f.label xs = ['//node'] if f is None else f.xpaths self.xpaths = set(chain.from_iterable(["%s[@word='%s']" % (x,w) for w in kws] for x in xs)) self.subsets = None # Should these classes be semantically separated, into NodeSet and FeatureIndicator, # Where some composition of FeatureIndicator classes are applied to some composition of # NodeSet classes...? # TODO: Handle multi-word properly!! Or just scrap this, do rgx in python... class RgxIndicator(FeatureTemplate): """Indicator of whether a regex matches the node set""" def __init__(self, rgx, attrib, label, f): self.label = label self.xpaths = set("%s/@%s[re:test(., '%s')]" % (xpath, attrib, rgx) for xpath in f.xpaths) self.subsets = None def apply(self, root): for xpath in self.xpaths: if len(root.xpath(xpath, namespaces={'re':"http://exslt.org/regular-expressions"})) > 0: yield self.label.upper()
treedlib-master
archive/feature_template.py
from collections import namedtuple import re import sys def print_gen(gen): """Print the results of a generator one-per-line""" for e in gen: print(e) def print_error(err_string): """Function to write to stderr""" sys.stderr.write("ERROR[UDF]: " + str(err_string) + "\n") BOOL_PARSER = { 't' : True, 'f' : False, 'NULL' : None, '\\N' : None } TYPE_PARSERS = { 'text' : lambda x : str(x.replace('\n', ' ')), 'int' : lambda x : int(x.strip()), 'float' : lambda x : float(x.strip()), 'boolean' : lambda x : BOOL_PARSER(x.lower().strip()) } def parse_ptsv_element(s, t, sep='|^|', sep2='|~|'): """ Parse an element in psql-compatible tsv format, i.e. {-format arrays based on provided type and type-parser dictionary """ # Interpret null first regardless of type if len(s) == 0 or s == '\\N': return None # Handle lists recursively first elif '[]' in t: if re.search(r'^\{|\}$', s): split = re.split(r'\"?\s*,\s*\"?', re.sub(r'^\{\s*\"?|\"?\s*\}$', '', s)) else: split = s.split(sep) return [parse_ptsv_element(ss, t[:-2], sep=sep2) for ss in split] # Else parse using parser else: try: parser = TYPE_PARSERS[t] except KeyError: raise Exception("Unsupported type: %s" % t) return parser(s) class Row: def __str__(self): return '<Row(' + ', '.join("%s=%s" % x for x in self.__dict__.items()) + ')>' def __repr__(self): return str(self) def _asdict(self): return self.__dict__ class PTSVParser: """ Initialized with a list of duples (field_name, field_type) Is a factory for simple Row class Parsed from Postgres-style TSV input lines """ def __init__(self, fields): self.fields = fields self.n = len(fields) def parse_line(self, line): row = Row() attribs = line.rstrip().split('\t') if len(attribs) != self.n: raise ValueError("%s attributes for %s fields:\n%s" % (len(attribs), self.n, line)) for i,attrib in enumerate(attribs): field_name, field_type = self.fields[i] setattr(row, field_name, parse_ptsv_element(attrib, field_type)) return row def parse_stdin(self): for line in sys.stdin: yield self.parse_line(line) def pg_array_escape(tok): """ Escape a string that's meant to be in a Postgres array. We double-quote the string and escape backslashes and double-quotes. """ return '"%s"' % str(tok).replace('\\', '\\\\').replace('"', '\\\\"') def list_to_pg_array(l): """Convert a list to a string that PostgreSQL's COPY FROM understands.""" return '{%s}' % ','.join(pg_array_escape(x) for x in l) def print_tsv(out_record): """Print a tuple as output of TSV extractor.""" values = [] for x in out_record: if isinstance(x, list) or isinstance(x, tuple): cur_val = list_to_pg_array(x) elif x is None: cur_val = r'\N' else: cur_val = x values.append(cur_val) print('\t'.join(str(x) for x in values))
treedlib-master
treedlib/util.py
import os # Set TREEDLIB_APP env var, for use in libs we load os.environ["TREEDLIB_LIB"] = os.path.dirname(os.path.realpath(__file__)) # Load treedlib libs from treedlib.util import * from treedlib.structs import * from treedlib.templates import * from treedlib.features import *
treedlib-master
treedlib/__init__.py
from treedlib.templates import * import lxml.etree as et def compile_relation_feature_generator(dictionaries=None, opts={}, is_multary=False): """ Given optional arguments, returns a generator function which accepts an xml root and two lists of mention indexes, and will generate relation features for this relation Optional args are: * dictionaries: should be a dictionary of lists of phrases, where the key is the dict name * opts: see defaults above * is_multary: whether to use multiple mentions or binary mentions """ # TODO: put globals into opts #BASIC_ATTRIBS_REL = ['word', 'lemma', 'pos', 'ner', 'dep_label'] BASIC_ATTRIBS_REL = ['lemma', 'dep_label'] m0 = Mention(0) m1 = Mention(1) btwn = Between(m0, m1) dl = LengthBin(btwn, [3,4,6]) sl = LengthBin(SeqBetween(), [5,8,14]) # Basic relation feature templates templates = [ # The full dependency path between #[Indicator(btwn, a) for a in BASIC_ATTRIBS_REL], #Indicator(btwn, 'dep_label,lemma'), # The *first element on the* path to the root: ngram lemmas along it Ngrams(Parents(btwn, 3), 'lemma', (1,3)), # The ngrams between #[Combinations(dl, Ngrams(btwn, a, (2,3))) for a in BASIC_ATTRIBS_REL], #Combinations(dl, Ngrams(btwn, 'dep_label,lemma', (2,3))), [Ngrams(btwn, a, (1,3)) for a in BASIC_ATTRIBS_REL], Ngrams(btwn, 'dep_label,lemma', (1,3)), # The VBs and NNs between #[Combinations(dl, Ngrams(Filter(btwn, 'pos', p), 'lemma', (1,3))) for p in ['VB', 'NN']], [Ngrams(Filter(btwn, 'pos', p), 'lemma', (1,3)) for p in ['VB', 'NN']], # The ngrams on the seq between Ngrams(SeqBetween(), 'lemma', (1,3)), # The siblings of each mention LeftNgrams(LeftSiblings(m0), 'lemma'), LeftNgrams(LeftSiblings(m1), 'lemma'), RightNgrams(RightSiblings(m0), 'lemma'), RightNgrams(RightSiblings(m1), 'lemma'), # The ngrams on the *word sequence* between #Combinations(sl, Ngrams(SeqBetween(), 'lemma', (1,3))), #Combinations(sl, Ngrams(Filter(SeqBetween(), 'pos', 'VB'), 'lemma', (1,2))), # The length bin features sl, dl ] # Add dictionary features if dictionaries: for d_name, d in dictionaries.items(): templates.append(DictionaryIntersect(btwn, d_name, d)) templates.append(DictionaryIntersect(SeqBetween(), d_name, d)) # return generator function if is_multary: return Compile(templates).apply_multary_relation return Compile(templates).apply_relation """ For calibrating the bin sizes """ get_relation_binning_features = Compile([ Indicator(Between(Mention(0), Mention(1)), 'word'), Indicator(SeqBetween(), 'word') ]).apply_relation
treedlib-master
treedlib/features.py
from itertools import chain import re import lxml.etree as et from collections import defaultdict # NODESET: # =========== class NodeSet: """ NodeSet objects are functions f : 2^T -> 2^T --------------- They are applied compositionally and lazily, by constructing an xpath query We use these to get the *subtree* or set of nodes that our indicicator features will operate over """ def __init__(self, label='NODESET', xpath='//*', psort=None): self.label = label self.xpath = xpath self.psort = psort # Attribute to sort on post-xpath execution def __repr__(self): return '<%s, xpath="%s">' % (self.label, self.xpath) class Mention(NodeSet): """Gets candidate mention nodes""" def __init__(self, cid=0): self.label = 'MENTION' self.xpath = "//*[{%s}]" % str(cid) class LeftSiblings(NodeSet): """Gets preceding siblings""" def __init__(self, ns, w=1): self.__dict__.update(ns.__dict__) # inherit child object's attributes self.label = 'LEFT-OF-%s' % ns.label self.xpath = '%s[1]/preceding-sibling::*[position() <= %s]' % (ns.xpath, w) class RightSiblings(NodeSet): """Gets following siblings""" def __init__(self, ns, w=1): self.__dict__.update(ns.__dict__) # inherit child object's attributes self.label = 'RIGHT-OF-%s' % ns.label self.xpath = '%s[1]/following-sibling::*[position() <= %s]' % (ns.xpath, w) # TODO: These should be "Descendants" / "Ancestors"... class Children(NodeSet): """Gets children of the node set""" def __init__(self, ns): self.__dict__.update(ns.__dict__) # inherit child object's attributes self.label = 'CHILDREN-OF-%s' % ns.label self.xpath = ns.xpath + '[1]/*' class Parents(NodeSet): """Gets parents of the node set""" def __init__(self, ns, num_parents=1): self.__dict__.update(ns.__dict__) # inherit child object's attributes self.label = 'PARENTS-OF-%s' % ns.label self.xpath = ns.xpath + '[1]/ancestor::*[position()<%s]' % (num_parents + 1) class Between(NodeSet): """ Gets the nodes between two node sets Note: this requires some ugly xpath... could change this to non-xpath method """ def __init__(self, ns1, ns2): self.__dict__.update(ns1.__dict__) # inherit *FIRST* child object's attributes self.label = 'BETWEEN-%s-and-%s' % (ns1.label, ns2.label) self.xpath = "{0}[1]/ancestor-or-self::*[count(. | {1}[1]/ancestor-or-self::*) = count({1}[1]/ancestor-or-self::*)][1]/descendant-or-self::*[((count(.{0}) = count({0})) or (count(.{1}) = count({1})))]".format(ns1.xpath, ns2.xpath) class SeqBetween(NodeSet): """ Gets the sequence of nodes in between, according to *sentence* (not dep tree) order """ def __init__(self, seq_attrib='word_idx'): # TODO: Extend to take in pair of NodeSets? self.xpath = '//*' self.label = 'SEQ-BETWEEN' self.seq_attrib = seq_attrib # Logic gets pushed to Indicator... self.psort = seq_attrib # Specify that post-xpath sorting needs to be done class Filter(NodeSet): """ Gets a subset of the nodes filtered by some node attribute Note the option to do exact match or starts with (could be expanded; useful for POS now...) """ def __init__(self, ns, filter_attr, filter_by, starts_with=True): self.__dict__.update(ns.__dict__) # inherit child object's attributes self.label = 'FILTER-BY(%s=%s):%s' % (filter_attr, filter_by, ns.label) temp = "[starts-with(@%s, '%s')]" if starts_with else "[@%s='%s']" self.xpath = ns.xpath + temp % (filter_attr, filter_by) # INDICATOR: # =========== def compile_dict_sub(brown_clusters_path=None, user_dicts=[]): """ Takes in a list of tuples of form (DICT_LABEL, set_of_words) AND/OR a file path to a tsv file list of (word, brown cluster id) lines And returns a single dictionary mapping from word -> DICT_LABEL, based on priority ordering Assume user dicts take priority over brown clusters... """ dict_sub = {} # User ditionaries for dict_label, words in user_dicts: for word in words: if word not in dict_sub: dict_sub[word] = dict_label # Brown clusters if brown_clusters_path is not None: with open(brown_clusters_path, 'rb') as f: for line in f: word, cluster_id = line.rstrip().split('\t') dict_sub[word] = 'BC-%s' % cluster_id return dict_sub class Indicator: """ Indicator objects are functions f : 2^T -> {0,1}^F --------------- Indicator objects take a NodeSet, an attibute or attributes, and apply some indicator function to the specified attributes of the NodeSet """ def __init__(self, ns, attribs): self.ns = ns self.attribs = attribs def apply(self, root, cids, cid_attrib='word_idx', feat_label=True, inv_tag=True, stopwords=None, dict_sub={}): """ Apply the feature template to the xml tree provided A list of lists of candidate mention ids are passed in, as well as a cid_attrib These identify the candidate mentions refered to by index in Mention For example, cids=[[1,2]], cid_attrib='word_idx' will have mention 0 as the set of nodes that have word index 1 and 2 """ # Sub in the candidate mention identifiers provided m = [" or ".join("@%s='%s'" % (cid_attrib, c) for c in cid) for cid in cids] xpath = self.ns.xpath.format(*m) # INV tag if binary relation inv = 'INV_' if inv_tag and len(cids) == 2 and cids[0][0] > cids[1][0] else '' # Get nodes nodes = root.xpath(xpath) # Filter stopwords if stopwords is not None and len(stopwords) > 0: nodes = list(filter(lambda n : n.get('word') not in stopwords and n.get('lemma') not in stopwords, nodes)) # Perform seq filter here if hasattr(self.ns, 'seq_attrib') and self.ns.seq_attrib is not None: seqa = self.ns.seq_attrib b = (cids[0][-1], cids[-1][0]) if cids[0][-1] < cids[-1][0] else (cids[-1][-1], cids[0][0]) nodes = list(filter(lambda n : n.get(seqa) is not None and int(n.get(seqa)) > b[0] and int(n.get(seqa)) < b[1], nodes)) # If sort specified, perform here if hasattr(self.ns, 'psort') and self.ns.psort is not None: nodes.sort(key=lambda n : int(n.get(self.ns.psort))) # Specifically handle single attrib or multiple attribs per node here try: attribs = re.split(r'\s*,\s*', self.attribs) res = ['|'.join(str(node.get(a)) for a in attribs) for node in nodes] label = '%s%s:%s' % (inv, '|'.join(attribs).upper(), self.ns.label) # Check each result value against a dictionary which maps string -> DICT_NAME, # and replace with the value "DICT_NAME" # NOTE: Only apply to word/lemma indicators for now if len(attribs) == 1 and attribs[0] in ('word', 'lemma') and len(dict_sub) > 0: res = [dict_sub.get(a, a) for a in res] except AttributeError: res = nodes label = '%s%s' % (inv, self.ns.label) # Only yield if non-zero result set; process through _get_features fn if len(res) > 0: for feat in self._get_features(res): if feat_label: yield '%s[%s]' % (label, feat) else: yield feat def _get_features(self, res): """ Given a result set of attribute values, return a set of strings representing the features This should be the default method to replace for Indicator objects """ return [' '.join(res)] def print_apply(self, root, cids, cid_attrib='word_idx', feat_label=True, dict_sub={}, stopwords=None): for feat in self.apply(root, cids, cid_attrib, feat_label=feat_label, dict_sub=dict_sub, stopwords=stopwords): print(feat) def result_set(self, root, cids, cid_attrib='word_idx', feat_label=False, dict_sub={}, stopwords=None): """Get results as a set- mostly for use in DSR applications""" res = set() for feat in self.apply(root, cids, cid_attrib=cid_attrib, feat_label=feat_label, dict_sub=dict_sub, stopwords=stopwords): res.add(feat) return res def __repr__(self): return '<%s:%s:%s, xpath="%s">' % (self.__class__.__name__, self.attribs, self.ns.label, self.ns.xpath) class Ngrams(Indicator): """ Return indicator features over the ngrams of a result set If ng arg is an int, will get ngrams of *exactly* this length If ng arg is a list/tuple, will get all ngrams of this range, *inclusive* """ def __init__(self, ns, attribs, ng): self.ns = ns self.attribs = attribs if (type(ng) == int and ng > 0) or (type(ng) in [list, tuple] and ng[0] > 0): self.ng = ng else: raise ValueError("Improper ngram range: %s" % ng) def _get_features(self, res): if type(self.ng) == int: r = [self.ng - 1] else: r = range(self.ng[0] - 1, min(len(res), self.ng[1])) return chain.from_iterable([' '.join(res[s:s+l+1]) for s in range(len(res)-l)] for l in r) class RightNgrams(Indicator): """Return all the ngrams which start at position 0""" def _get_features(self, res): return [' '.join(res[:l]) for l in range(1, len(res)+1)] class LeftNgrams(Indicator): """Return all the ngrams which start at position 0""" def _get_features(self, res): return [' '.join(res[l:]) for l in range(len(res))] class Regexp(Indicator): """ Return indicator features if the regular expression applied to the concatenation of the result set strings is not None """ def __init__(self, ns, attribs, rgx, rgx_label, sep=' '): self.ns = ns self.attribs = attribs self.rgx = rgx self.rgx_label = rgx_label self.sep = sep self.psort = 'word_idx' # Sort by word order... def _get_features(self, res): match = re.search(self.rgx, self.sep.join(res)) if match is not None: yield 'RGX:%s' % self.rgx_label class LengthBin(Indicator): """ Return indicator features for the length (size) of the node set binned according to provided values bins should be a list of INTS """ def __init__(self, ns, bin_divs): self.ns = ns self.bins = [] for i,d in enumerate(bin_divs): if i == 0: self.bins.append((0,d-1)) else: self.bins.append((bin_divs[i-1],d-1)) def _get_features(self, res): lbin = None l = len(res) for b in self.bins: if l >= b[0] and l <= b[1]: lbin = b break if lbin is None: lbin = (self.bins[-1][1]+1, 'inf') yield 'LEN:%s-%s' % lbin # TODO: Make this way more efficient...? class DictionaryIntersect(Indicator): """ Return an indicator feature for whether the input nodeset intersects with any phrase in the given dictionary """ def __init__(self, ns, d_name, d, d_attrib='word', caseless=True): self.ns = ns self.d_name = d_name self.d_attrib = d_attrib self.caseless = caseless # Split the dictionary up by phrase length (i.e. # of tokens) self.dl = defaultdict(lambda : set()) for phrase in d: if caseless: phrase = phrase.lower() self.dl[len(phrase.split())].add(phrase) self.dl.update((k, frozenset(v)) for k,v in self.dl.items()) # Get the ngram range for this dictionary self.ng_range = range(max(1, min(self.dl.keys())), max(self.dl.keys())+1) def apply(self, root, cids, cid_attrib='word_idx', feat_label=True): """ We replace the default apply method because we first need to get the full sequence, match against ngrams of this, then math via cid_attrib against the input NodeSet We do this because we need to catch e.g. when a multi-word phrase in the dictionary only partially-overlaps with the NodeSet (this should count as a match!) """ # First get full sequence fs = list(map(lambda x : x.get(self.d_attrib), sorted(root.xpath("//*[@word_idx]"), key=lambda x : int(x.get('word_idx'))))) # Next do sequence n-gram matching dcids = set() for l in self.ng_range: for i in range(0, len(fs)-l+1): phrase = ' '.join(fs[i:i+l]).lower() if self.caseless else ' '.join(fs[i:i+l]) if phrase in self.dl[l]: dcids.update(range(i, i+l)) # Finally, just look for intersect via XPATH + using the super method # TODO: How to call parent method here!? if len(dcids) > 0: self.ns.xpath += '[' + " or ".join("@word_idx='%s'" % i for i in dcids) + ']' m = [" or ".join("@%s='%s'" % (cid_attrib, c) for c in cid) for cid in cids] xpath = self.ns.xpath.format(*m) if len(root.xpath(xpath)) > 0: yield "DICTIONARY-MATCH:%s:%s" % (self.d_name, self.ns.label) # COMBINATOR: # =========== class Combinator: """ Combinator objects are functions f : {0,1}^F x {0,1}^F -> {0,1}^F --------------- Combinator objects take two (or more?) Indicator objects and map to feature space """ def __init__(self, ind1, ind2): self.ind1 = ind1 self.ind2 = ind2 def apply(self, root, cids, cid_attrib='word_idx', dict_sub={}, stopwords=None): return self.ind1.apply(root, cids, cid_attrib, dict_sub=dict_sub, stopwords=stopwords) def print_apply(self, root, cids, cid_attrib='word_idx', dict_sub={}, stopwords=None): return self.apply(root, cids, cid_attrib, dict_sub=dict_sub, stopwords=stopwords) class Combinations(Combinator): """Generates all *pairs* of features""" def apply(self, root, cids, cid_attrib='word_idx', dict_sub={}, stopwords=None): for f1 in self.ind1.apply(root, cids, cid_attrib, dict_sub=dict_sub, stopwords=stopwords): for f2 in self.ind2.apply(root, cids, cid_attrib, dict_sub=dict_sub, stopwords=stopwords): yield '%s+%s' % (f1, f2) # Compile Operator: Compiles a set of feature templates # ===================================================== class Compile: """ Compiles a set of functions f_i : 2^T -> {0,1}^F_i to a single function 2^T -> {0,1}^F where F <= \sum_i F_i i.e. we can do filtering and/or merging at this point (?) """ def __init__(self, op_list): self.op_list = op_list def _iterops(self): """Iterate over the operators provided, accepting list of single or list elements""" for ops in self.op_list: if type(ops) == list: for op in ops: yield op # Guard against e.g. generators where after one iteration through, is expended # Thus after being applied to one data item, would be done!! elif hasattr(ops, '__iter__'): raise ValueError("Iterables of operators in Compile must be list type.") else: yield ops def apply(self, root, cids, cid_attrib='word_idx', dict_sub={}, stopwords=None): # Ensure that root is parsed if type(root) == str: root = et.fromstring(root) # Apply the feature templates for op in self._iterops(): for f in op.apply(root, cids, cid_attrib, dict_sub=dict_sub, stopwords=stopwords): yield f def result_set(self, root, cids, cid_attrib='word_idx', dict_sub={}, stopwords=None): """Takes the union of the result sets""" # Ensure that root is parsed if type(root) == str: root = et.fromstring(root) # Apply the feature templates res = set() for op in self._iterops(): res.update(op.result_set(root, cids, cid_attrib, dict_sub=dict_sub, stopwords=stopwords)) return res def apply_mention(self, root, mention_idxs, dict_sub={}, stopwords=None): return self.apply(root, [mention_idxs], dict_sub=dict_sub, stopwords=stopwords) def apply_relation(self, root, mention1_idxs, mention2_idxs, dict_sub={}, stopwords=None): return self.apply(root, [mention1_idxs, mention2_idxs], dict_sub=dict_sub, stopwords=stopwords) def apply_multary_relation(self, root, mentions, dict_sub={}, stopwords=None): return self.apply(root, mentions, dict_sub=dict_sub, stopwords=stopwords) def __repr__(self): return '\n'.join(str(op) for op in self._iterops())
treedlib-master
treedlib/templates.py
import json import os import re import lxml.etree as et import sys # This should be set by the lib wrapper __init__.py file APP_HOME = os.environ["TREEDLIB_LIB"] # Load IPython display functionality libs if possible i.e. if in IPython try: from IPython.core.display import display_html, HTML, display_javascript, Javascript except: pass class XMLTree: """ A generic tree representation which takes XML as input Includes subroutines for conversion to JSON & for visualization based on js form """ def __init__(self, xml_root, words=None): """Calls subroutines to generate JSON form of XML input""" self.root = xml_root self.words = words # create a unique id for e.g. canvas id in notebook self.id = str(abs(hash(self.to_str()))) def _to_json(self, root): js = { 'attrib': dict(root.attrib), 'children': [] } for i,c in enumerate(root): js['children'].append(self._to_json(c)) return js def to_json(self): return self._to_json(self.root) def to_str(self): return et.tostring(self.root) def render_tree(self, highlight=[]): """ Renders d3 visualization of the d3 tree, for IPython notebook display Depends on html/js files in vis/ directory, which is assumed to be in same dir... """ # HTML WORD = '<span class="word-' + self.id + '-%s">%s</span>' words = ' '.join(WORD % (i,w) for i,w in enumerate(self.words)) if self.words else '' html = open('%s/vis/tree-chart.html' % APP_HOME).read() % (self.id, self.id, words) display_html(HTML(data=html)) # JS JS_LIBS = ["http://d3js.org/d3.v3.min.js"] js = open('%s/vis/tree-chart.js' % APP_HOME).read() % (self.id, json.dumps(self.to_json()), str(highlight)) display_javascript(Javascript(data=js, lib=JS_LIBS)) def corenlp_to_xmltree(s, prune_root=True): """ Transforms an object with CoreNLP dep_path and dep_parent attributes into an XMLTree Will include elements of any array having the same dimensiion as dep_* as node attributes Also adds special word_idx attribute corresponding to original sequence order in sentence """ # Convert input object to dictionary if type(s) != dict: try: s = s.__dict__ if hasattr(s, '__dict__') else dict(s) except: raise ValueError("Cannot convert input object to dict") # Use the dep_parents array as a guide: ensure it is present and a list of ints if not('dep_parents' in s and type(s['dep_parents']) == list): raise ValueError("Input CoreNLP object must have a 'dep_parents' attribute which is a list") try: dep_parents = list(map(int, s['dep_parents'])) except: raise ValueError("'dep_parents' attribute must be a list of ints") # Also ensure that we are using CoreNLP-native indexing (root=0, 1-base word indexes)! b = min(dep_parents) if b != 0: dep_parents = list(map(lambda j : j - b, dep_parents)) # Parse recursively root = corenlp_to_xmltree_sub(s, dep_parents, 0) # Often the return tree will have several roots, where one is the actual root # And the rest are just singletons not included in the dep tree parse... # We optionally remove these singletons and then collapse the root if only one child left if prune_root: for c in root: if len(c) == 0: root.remove(c) if len(root) == 1: root = root.findall("./*")[0] return XMLTree(root, words=s['words']) def corenlp_to_xmltree_sub(s, dep_parents, rid=0): i = rid - 1 attrib = {} N = len(dep_parents) # Add all attributes that have the same shape as dep_parents if i >= 0: for k,v in filter(lambda t : type(t[1]) == list and len(t[1]) == N, s.items()): if v[i] is not None: attrib[singular(k)] = ''.join(c for c in str(v[i]) if ord(c) < 128) # Add word_idx if not present if 'word_idx' not in attrib: attrib['word_idx'] = str(i) # Build tree recursively root = et.Element('node', attrib=attrib) for i,d in enumerate(dep_parents): if d == rid: root.append(corenlp_to_xmltree_sub(s, dep_parents, i+1)) return root def singular(s): """Get singular form of word s (crudely)""" return re.sub(r'e?s$', '', s, flags=re.I) def html_table_to_xmltree(html): """HTML/XML table to XMLTree object""" node = et.fromstring(re.sub(r'>\s+<', '><', html.strip())) xml = html_table_to_xmltree_sub(node) return XMLTree(xml) def html_table_to_xmltree_sub(node): """ Take the XML/HTML table and convert each word in leaf nodes into its own node Note: Ideally this text would be run through CoreNLP? """ # Split text into Token nodes # NOTE: very basic token splitting here... (to run through CoreNLP?) if node.text is not None: for tok in re.split(r'\s+', node.text): node.append(et.Element('token', attrib={'word':tok})) # Recursively append children for c in node: node.append(html_table_to_xmltree_sub(c)) return node
treedlib-master
treedlib/structs.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from distutils.core import setup setup( name="bela", version="0.1", packages=["bela"], )
BELA-main
setup.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # HACK: Need to import protobuf before pytorch_lightning to prevent Segmentation Fault: https://github.com/protocolbuffers/protobuf/issues/11934 from google.protobuf import descriptor as _descriptor
BELA-main
bela/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import hydra from bela.conf.config import MainConfig from omegaconf import OmegaConf from pytorch_lightning.trainer import Trainer @hydra.main(config_path="conf", config_name="config") def main(cfg: MainConfig): print(OmegaConf.to_yaml(cfg)) os.environ["NCCL_NSOCKS_PERTHREAD"] = "4" os.environ["NCCL_SOCKET_NTHREADS"] = "2" if cfg.get("debug_mode"): os.environ["CUDA_LAUNCH_BLOCKING"] = "1" os.environ["NCCL_BLOCKING_WAIT"] = "1" os.environ["PL_SKIP_CPU_COPY_ON_DDP_TEARDOWN"] = "1" transform = hydra.utils.instantiate(cfg.task.transform) datamodule = hydra.utils.instantiate(cfg.datamodule, transform=transform) task = hydra.utils.instantiate(cfg.task, datamodule=datamodule, _recursive_=False) checkpoint_callback = hydra.utils.instantiate(cfg.checkpoint_callback) trainer = Trainer(**cfg.trainer, callbacks=[checkpoint_callback]) if cfg.test_only: ckpt_path = cfg.task.load_from_checkpoint trainer.test( model=task, ckpt_path=ckpt_path, verbose=True, datamodule=datamodule, ) else: trainer.fit(task, datamodule=datamodule) print(f"*** Best model path is {checkpoint_callback.best_model_path}") trainer.test( model=None, ckpt_path="best", verbose=True, datamodule=datamodule, ) if __name__ == "__main__": main()
BELA-main
bela/main.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import logging import mmap from typing import List, Optional import torch from pytorch_lightning import LightningDataModule from bela.transforms.joint_el_transform import JointELTransform logger = logging.getLogger() def get_seq_lengths(batch: List[List[int]]): return [len(example) for example in batch] class EntityCatalogue: def __init__(self, idx_path): logger.info(f"Reading entity catalogue index {idx_path}") self.idx = {} with open(idx_path, "rt") as fd: for idx, line in enumerate(fd): ent_id = line.strip() self.idx[ent_id] = idx def __len__(self): return len(self.idx) def __getitem__(self, entity_id): ent_index = self.idx[entity_id] return ent_index def __contains__(self, entity_id): return entity_id in self.idx class ElMatchaDataset(torch.utils.data.Dataset): """ A memory mapped dataset for EL in Matcha format Each example in this dataset contains several mentions. We laso filter out mentions, that are not present in entity catalogue """ def __init__( self, path, ent_catalogue, use_raw_text, use_augmentation=False, augmentation_frequency=0.1, ): self.ent_catalogue = ent_catalogue self.use_raw_text = use_raw_text self.use_augmentation = use_augmentation self.augmentation_frequency = augmentation_frequency logger.info(f"Downloading file {path}") # TODO: Maybe we should lazily load the file to speed up datamodule instanciation (e.g. in model_eval.py) self.file = open(path, mode="r") self.mm = mmap.mmap(self.file.fileno(), 0, prot=mmap.PROT_READ) self.offsets = [] self.count = 0 logger.info(f"Build mmap index for {path}") line = self.mm.readline() offset = 0 while line: self.offsets.append(offset) self.count += 1 offset = self.mm.tell() line = self.mm.readline() def __len__(self): return self.count def _add_char_offsets(self, tokens, gt_entities): offsets = [] token_lengths = [] current_pos = 0 for token in tokens: offsets.append(current_pos) token_lengths.append(len(token)) current_pos += len(token) + 1 updated_gt_entities = [] for gt_entity in gt_entities: offset, length, entity, ent_type = gt_entity[:4] char_offset = offsets[offset] char_length = ( sum(token_lengths[offset + idx] for idx in range(length)) + length - 1 ) updated_gt_entities.append( (offset, length, entity, ent_type, char_offset, char_length) ) return updated_gt_entities def __getitem__(self, index): offset = self.offsets[index] self.mm.seek(offset) line = self.mm.readline() example = json.loads(line) gt_entities = [] if self.use_raw_text and "original_text" not in example: example["gt_entities"] = self._add_char_offsets( example["text"], example["gt_entities"] ) example["original_text"] = " ".join(example["text"]) for gt_entity in example["gt_entities"]: if self.use_raw_text: _, _, entity, ent_type, offset, length = gt_entity[:6] else: offset, length, entity, ent_type = gt_entity[:4] if ent_type != "wiki": continue if entity in self.ent_catalogue: gt_entities.append((offset, length, self.ent_catalogue[entity])) gt_entities = sorted(gt_entities) # blink predicts blink_predicts = None blink_scores = None if "blink_predicts" in example: blink_predicts = [] blink_scores = [] for predict, scores in zip( example["blink_predicts"], example["blink_scores"] ): candidates = [] candidates_scores = [] for candidate, score in zip(predict, scores): if candidate in self.ent_catalogue: candidates.append(self.ent_catalogue[candidate]) candidates_scores.append(score) blink_predicts.append(candidates) blink_scores.append(candidates_scores) # MD model predicts md_pred_offsets = example.get("md_pred_offsets") md_pred_lengths = example.get("md_pred_lengths") md_pred_scores = example.get("md_pred_scores") result = { "data_example_id": example.get("document_id") or example.get("data_example_id", ""), "text": example["original_text"] if self.use_raw_text else example["text"], "gt_entities": gt_entities, "blink_predicts": blink_predicts, "blink_scores": blink_scores, "md_pred_offsets": md_pred_offsets, "md_pred_lengths": md_pred_lengths, "md_pred_scores": md_pred_scores, } return result class JointELDataModule(LightningDataModule): """ Read data from EL datatset and prepare mention/entity pairs tensors """ def __init__( self, transform: JointELTransform, # Dataset args train_path: str, val_path: str, test_path: str, ent_catalogue_idx_path: str, batch_size: int = 2, val_batch_size: Optional[int] = None, test_batch_size: Optional[int] = None, drop_last: bool = False, # drop last batch if len(dataset) not multiple of batch_size num_workers: int = 0, # increasing this bugs out right now use_raw_text: bool = True, use_augmentation: bool = False, augmentation_frequency: float = 0.1, shuffle: bool = True, *args, **kwargs, ): super().__init__() self.batch_size = batch_size self.val_batch_size = val_batch_size or batch_size self.test_batch_size = test_batch_size or batch_size self.drop_last = drop_last self.num_workers = num_workers self.transform = transform self.ent_catalogue = EntityCatalogue(ent_catalogue_idx_path) self.shuffle = shuffle self.datasets = { "train": ElMatchaDataset( train_path, self.ent_catalogue, use_raw_text=use_raw_text, use_augmentation=use_augmentation, augmentation_frequency=augmentation_frequency, ) if train_path else None, "valid": ElMatchaDataset( val_path, self.ent_catalogue, use_raw_text=use_raw_text, ) if val_path else None, "test": ElMatchaDataset( test_path, self.ent_catalogue, use_raw_text=use_raw_text, ) if test_path else None, } def train_dataloader(self): return torch.utils.data.DataLoader( self.datasets["train"], batch_size=self.batch_size, num_workers=self.num_workers, collate_fn=self.collate_train, shuffle=self.shuffle, drop_last=self.drop_last, ) def val_dataloader(self): return torch.utils.data.DataLoader( self.datasets["valid"], shuffle=False, batch_size=self.val_batch_size, num_workers=self.num_workers, collate_fn=self.collate_eval, drop_last=self.drop_last, ) def test_dataloader(self): return torch.utils.data.DataLoader( self.datasets["test"], shuffle=False, batch_size=self.test_batch_size, num_workers=self.num_workers, collate_fn=self.collate_eval, drop_last=self.drop_last, ) def collate_eval(self, batch): return self.collate(batch, False) def collate_train(self, batch): return self.collate(batch, True) def collate(self, batch, is_train): """ Input: batch: List[Example] Example fields: - "text": List[str] - post tokens - "gt_entities": List[Tuple[int, int, int]] - GT entities in text, offset, length, entity id - "blink_predicts": List[List[int]] - list of entity ids for each MD prediction - "blink_scores": List[List[float]] - list of BLINK scores - "md_pred_offsets": List[int] - mention offsets predicted by MD - "md_pred_lengths": List[int] - mention lengths - "md_pred_scores": List[float] - MD scores """ data_example_ids = [] texts = [] offsets = [] lengths = [] entities = [] for example in batch: data_example_ids.append(example["data_example_id"]) texts.append(example["text"]) example_offsets = [] example_lengths = [] example_entities = [] for offset, length, entity_id in example["gt_entities"]: example_offsets.append(offset) example_lengths.append(length) example_entities.append(entity_id) offsets.append(example_offsets) lengths.append(example_lengths) entities.append(example_entities) model_inputs = self.transform( { "texts": texts, "mention_offsets": offsets, "mention_lengths": lengths, "entities": entities, } ) collate_output = { "data_example_ids": data_example_ids, "input_ids": model_inputs["input_ids"], "attention_mask": model_inputs["attention_mask"], "mention_offsets": model_inputs["mention_offsets"], "mention_lengths": model_inputs["mention_lengths"], "entities": model_inputs["entities"], "tokens_mapping": model_inputs["tokens_mapping"], } if "sp_tokens_boundaries" in model_inputs: collate_output["sp_tokens_boundaries"] = model_inputs[ "sp_tokens_boundaries" ] return collate_output
BELA-main
bela/datamodule/joint_el_datamodule.py
BELA-main
bela/tests/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import os import torch import torch from bela.transforms.joint_el_transform import JointELTransform from bela.datamodule.joint_el_datamodule import JointELDataModule def assert_equal_tensor_dict(test_case, result, expected): """ Compare tensors/values in the dict and assert if they are not equal. The dict could countain multiple levels of nesting. """ for key, value in expected.items(): if isinstance(value, dict): assert_equal_tensor_dict(test_case, result[key], value) else: if isinstance(value, torch.Tensor): test_case.assertTrue( torch.equal(result[key], value), f"{key} is not equal" ) else: test_case.assertEqual(result[key], value, f"{key} is not equal") class TestJointELDataModule(unittest.TestCase): def setUp(self): torch.manual_seed(0) self.base_dir = os.path.join(os.path.dirname(__file__), "data") self.data_path = os.path.join(self.base_dir, "el_matcha_joint.jsonl") self.ent_catalogue_idx_path = os.path.join(self.base_dir, "el_catalogue.idx") self.transform = JointELTransform() def test_joint_el_datamodule(self): dm = JointELDataModule( transform=self.transform, train_path=self.data_path, val_path=self.data_path, test_path=self.data_path, ent_catalogue_idx_path=self.ent_catalogue_idx_path, use_raw_text=False, batch_size=2, ) batches = list(dm.train_dataloader()) self.assertEqual(len(batches), 1) expected_batches = [ { "input_ids": torch.tensor( [ [ 0, 44517, 98809, 7687, 83, 142, 14941, 23182, 101740, 11938, 35509, 23, 88437, 3915, 9020, 2, ], [ 0, 360, 9020, 70, 10323, 111, 30715, 136, 70, 14098, 117604, 2, 1, 1, 1, 1, ], ] ), "attention_mask": torch.tensor( [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0], ] ), "mention_offsets": torch.tensor([[1, 14], [2, 0]]), "mention_lengths": torch.tensor([[3, 1], [1, 0]]), "entities": torch.tensor([[1, 0], [0, 0]]), "tokens_mapping": torch.tensor( [ [ [1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7], [7, 8], [8, 9], [9, 10], [10, 11], [11, 12], [12, 14], [14, 15], ], [ [1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7], [7, 8], [8, 9], [9, 10], [10, 11], [0, 1], [0, 1], [0, 1], ], ] ), } ] for result, expected in zip(batches, expected_batches): assert_equal_tensor_dict(self, result, expected) if __name__ == '__main__': unittest.main()
BELA-main
bela/tests/test_datamodules.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from bela.models.hf_encoder import HFEncoder from bela.transforms.joint_el_transform import JointELTransform class TestHFEncoder(unittest.TestCase): def test_xlmr_encoder(self): transform = JointELTransform() model = HFEncoder(model_path="xlm-roberta-base") model_inputs = transform( { "texts": [ [ "Some", "simple", "text", "about", "Real", "Madrid", "and", "Barcelona", ], ["Hola", "amigos", "!"], ["Cristiano", "Ronaldo", "juega", "en", "la", "Juventus"], ], "mention_offsets": [ [4, 7], [1], [0, 5], ], "mention_lengths": [ [2, 1], [1], [2, 1], ], "entities": [ [1, 2], [3], [102041, 267832], ], } ) output = model( input_ids=model_inputs["input_ids"], attention_mask=model_inputs["attention_mask"], ) if __name__ == '__main__': unittest.main()
BELA-main
bela/tests/test_models.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from bela.transforms.joint_el_transform import JointELTransform, JointELXlmrRawTextTransform class TestJointELXlmrTransforms(unittest.TestCase): def test_blink_mention_xlmr_transform(self): transform = JointELTransform() model_inputs = transform( { "texts": [ [ "Some", "simple", "text", "about", "Real", "Madrid", "and", "Barcelona", ], ["Hola", "amigos", "!"], ["Cristiano", "Ronaldo", "juega", "en", "la", "Juventus"], ], "mention_offsets": [ [4, 7], [1], [0, 5], ], "mention_lengths": [ [2, 1], [1], [2, 1], ], "entities": [ [1, 2], [3], [102041, 267832], ], } ) expected_model_inputs = { "input_ids": torch.tensor( [ [0, 31384, 8781, 7986, 1672, 5120, 8884, 136, 5755, 2], [0, 47958, 19715, 711, 2, 1, 1, 1, 1, 1], [0, 96085, 43340, 1129, 2765, 22, 21, 65526, 2, 1], ] ), "attention_mask": torch.tensor( [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 0], ] ), "mention_offsets": torch.tensor([[5, 8], [2, 0], [1, 7]]), "mention_lengths": torch.tensor([[2, 1], [1, 0], [2, 1]]), "entities": torch.tensor([[1, 2], [3, 0], [102041, 267832]]), "tokens_mapping": torch.tensor( [ [[1, 2], [2, 3], [3, 4], [4, 5], [ 5, 6], [6, 7], [7, 8], [8, 9]], [ [1, 2], [2, 3], [3, 4], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], ], [ [1, 2], [2, 3], [3, 5], [5, 6], [6, 7], [7, 8], [0, 1], [0, 1], ], ] ), } for key, value in expected_model_inputs.items(): self.assertTrue( torch.all(model_inputs[key].eq(value)), f"{key} not equal") def test_joint_el_raw_text_xlmr_transform(self): transform = JointELXlmrRawTextTransform() model_inputs = transform( { "texts": [ "Some simple text about Real Madrid and Barcelona", "Cristiano Ronaldo juega en la Juventus", "Hola amigos!", " Hola amigos! ", # test extra spaces ], "mention_offsets": [ [23, 39], [0, 30], [5], [10], ], "mention_lengths": [ [11, 9], [17, 8], [6], [6], ], "entities": [ [1, 2], [102041, 267832], [3], [3], ], } ) expected_model_inputs = { "input_ids": torch.tensor( [ [0, 31384, 8781, 7986, 1672, 5120, 8884, 136, 5755, 2], [0, 96085, 43340, 1129, 2765, 22, 21, 65526, 2, 1], [0, 47958, 19715, 38, 2, 1, 1, 1, 1, 1], # Whitespaces are ignored [0, 47958, 19715, 38, 2, 1, 1, 1, 1, 1], ] ), "attention_mask": torch.tensor( [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 0, 0, 0, 0, 0], ] ), "mention_offsets": torch.tensor([[5, 8], [1, 7], [2, 0], [2, 0]]), "mention_lengths": torch.tensor([[2, 1], [2, 1], [1, 0], [1, 0]]), "entities": torch.tensor([[1, 2], [102041, 267832], [3, 0], [3, 0]]), "tokens_mapping": torch.tensor( [ [[1, 2], [2, 3], [3, 4], [4, 5], [ 5, 6], [6, 7], [7, 8], [8, 9]], [ [1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7], [7, 8], [0, 1], ], [ [1, 2], [2, 3], [3, 4], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], ], [ [1, 2], [2, 3], [3, 4], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], ], ] ), "sp_tokens_boundaries": torch.tensor( [ [ [0, 4], [4, 11], [11, 16], [16, 22], [22, 27], [27, 34], [34, 38], [38, 48], ], [ [0, 9], [9, 17], [17, 20], [20, 23], [23, 26], [26, 29], [29, 38], [0, 1], ], [[0, 4], [4, 11], [11, 12], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1]], [[0, 4+3], [4+3, 11+5], [11+5, 12+5], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1]], # Add whitespaces ] ), } for key, value in expected_model_inputs.items(): self.assertTrue(torch.all(model_inputs[key].eq( value)), f"{key} not equal: {model_inputs[key]=} != {value=}") def test_joint_el_raw_text_xlmr_transform_2(self): examples = [ { 'original_text': ' La Carta de las Naciones Unidas: tratado fundacional de las Naciones Unidas que establece que las obligaciones con las Naciones Unidas prevalecen sobre todas las demás obligaciones del tratado y es vinculante para todos los miembros de las Naciones Unidas. Tipo de documento: tratado., Fecha de la firma: 26 de junio de 1945., Lugar de la firma: San Francisco, California, Estados Unidos., Entrada en vigor: 24 de octubre de 1945., Firmantes: Ratificado por China, Francia, la Unión Soviética, el Reino Unido, Estados Unidos y por la mayoría de estados signatarios., Artículos: 193., Secciones: 20 (preámbulo y 19 capítulos):, *Preámbulo de la Carta de las Naciones Unidas., *Capítulo I: Propósitos y principios., *Capítulo II: Miembros., *Capítulo III: Órganos, *Capítulo IV: La Asamblea General., *Capítulo V: El Consejo de Seguridad, *Capítulo VI: Solución pacífica de controversias., *Capítulo VII: Acción con respecto a las amenazas a la paz, las rupturas de la paz y los actos de agresión., *Capítulo VIII: Acuerdos Regionales., *Capítulo IX: Cooperación internacional económica y social., *Capítulo X: El Consejo Económico y Social., *Capítulo XI: Declaración sobre los territorios no autónomos., *Capítulo XII: Sistema Internacional de Administración Fiduciaria., *Capítulo XIII: El Consejo de Administración Fiduciaria., *Capítulo XIV: La Corte Internacional de Justicia., *Capítulo XV: La Secretaría., *Capítulo XVI: Disposiciones varias., *Capítulo XVII: Arreglos transitorios de seguridad., *Capítulo XVIII: Enmiendas., *Capítulo XIX: Ratificación y firma. ', 'gt_entities': [ [0, 0, 'Q171328', 'wiki', 4, 28], [0, 0, 'Q131569', 'wiki', 34, 7], [0, 0, 'Q1065', 'wiki', 61, 15], [0, 0, 'Q1065', 'wiki', 120, 15], [0, 0, 'Q131569', 'wiki', 186, 7], [0, 0, 'Q1065', 'wiki', 241, 15], [0, 0, 'Q49848', 'wiki', 267, 9], [0, 0, 'Q384515', 'wiki', 278, 7], [0, 0, 'Q205892', 'wiki', 288, 5], [0, 0, 'Q188675', 'wiki', 300, 5], [0, 0, 'Q2661', 'wiki', 307, 11], [0, 0, 'Q5240', 'wiki', 322, 4], [0, 0, 'Q62', 'wiki', 348, 13], [0, 0, 'Q99', 'wiki', 363, 10], [0, 0, 'Q30', 'wiki', 375, 14], [0, 0, 'Q2955', 'wiki', 410, 13], [0, 0, 'Q148', 'wiki', 460, 5], [0, 0, 'Q7275', 'wiki', 547, 7], [0, 0, 'Q1129448', 'wiki', 601, 9], [0, 0, 'Q1980247', 'wiki', 616, 9], [0, 0, 'Q7239343', 'wiki', 630, 44], [0, 0, 'Q211364', 'wiki', 703, 10], [0, 0, 'Q160016', 'wiki', 730, 8], [0, 0, 'Q895526', 'wiki', 756, 7], [0, 0, 'Q47423', 'wiki', 782, 16], [0, 0, 'Q37470', 'wiki', 817, 20], [0, 0, 'Q1255828', 'wiki', 874, 13], [0, 0, 'Q1728608', 'wiki', 891, 105], [0, 0, 'Q454', 'wiki', 945, 3] ], }, ] texts = [example['original_text'] for example in examples] mention_offsets = [[offset for _, _, _, _, offset, _ in example['gt_entities']] for example in examples] mention_lengths = [[length for _, _, _, _, _, length in example['gt_entities']] for example in examples] entities = [[0 for _, _, _, _, _, _ in example['gt_entities']] for example in examples] batch = { "texts": texts, "mention_offsets": mention_offsets, "mention_lengths": mention_lengths, "entities": entities, } transform = JointELXlmrRawTextTransform() model_inputs = transform(batch) expected_mention_offsets = [[2, 9, 14, 25, 37, 48, 55, 57, 60, 64, 66, 70, 78, 81, 83, 91, 104, 125, 141, 146, 151, 174, 183, 194, 205, 216, 230]] expected_mention_lengths = [[6, 1, 3, 3, 1, 3, 1, 1, 2, 1, 3, 1, 2, 1, 2, 3, 1, 1, 3, 2, 11, 1, 3, 3, 2, 3, 2]] self.assertEqual( model_inputs['mention_offsets'].tolist(), expected_mention_offsets) self.assertEqual( model_inputs['mention_lengths'].tolist(), expected_mention_lengths) if __name__ == '__main__': unittest.main()
BELA-main
bela/tests/test_transforms.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import defaultdict from functools import lru_cache from bela.evaluation.model_eval import ModelEval from bela.transforms.spm_transform import SPMTransform @lru_cache def get_sp_transform(): return SPMTransform(max_seq_len=100000) def get_windows(text, window_length=254, overlap=127): sp_transform = get_sp_transform() tokens = sp_transform([text])[0] tokens = tokens[1:-1] windows = [] for window_start in range(0, len(tokens), window_length - overlap): start_pos = tokens[window_start][1] if window_start + window_length >= len(tokens): end_pos = tokens[-1][2] else: end_pos = tokens[window_start + window_length][2] windows.append((start_pos, end_pos)) return windows def convert_predictions_to_dict(example_predictions): if len(example_predictions) > 0: offsets, lengths, entities, md_scores, el_scores = zip(*example_predictions) else: offsets, lengths, entities, md_scores, el_scores = [], [], [], [], [] return { "offsets": offsets, "lengths": lengths, "entities": entities, "md_scores": md_scores, "el_scores": el_scores, } def group_predictions_by_example(all_predictions, extended_examples): grouped_predictions = defaultdict(list) for prediction, extended_example in zip(all_predictions, extended_examples): window_start = extended_example["window_start"] prediction = dict(prediction) prediction["offsets"] = [ offset + window_start for offset in prediction["offsets"] ] grouped_predictions[extended_example["document_id"]].append((prediction)) predictions = {} for document_id, example_prediction_list in grouped_predictions.items(): example_predictions = [] for prediction in example_prediction_list: for offset, length, ent, md_score, el_score in zip( prediction["offsets"], prediction["lengths"], prediction["entities"], prediction["md_scores"], prediction["el_scores"], ): example_predictions.append((offset, length, ent, md_score, el_score)) example_predictions = sorted(example_predictions) predictions[document_id] = example_predictions return predictions def merge_predictions(example_predictions): filtered_example_predictions = [] current_end = None current_offset = None current_length = None current_ent_id = None current_md_score = None current_el_score = None for offset, length, ent_id, md_score, el_score in example_predictions: if current_end is None: current_end = offset + length current_offset = offset current_length = length current_ent_id = ent_id current_md_score = md_score current_el_score = el_score continue if offset < current_end: # intersection of two predictions if md_score > current_md_score: current_ent_id = ent_id current_offset = offset current_length = length current_md_score = md_score current_el_score = el_score else: filtered_example_predictions.append( ( current_offset, current_length, current_ent_id, current_md_score, current_el_score, ) ) current_ent_id = ent_id current_offset = offset current_length = length current_md_score = md_score current_el_score = el_score current_end = offset + length if current_offset is not None: filtered_example_predictions.append( ( current_offset, current_length, current_ent_id, current_md_score, current_el_score, ) ) return filtered_example_predictions def get_predictions_using_windows(model_eval: ModelEval, test_data, batch_size=1024, window_length=254, window_overlap=10, do_merge_predictions=True): extended_examples = [] for example in test_data: assert "document_id" in example or "data_example_id" in example document_id = example.get("document_id") or example["data_example_id"] text = example["original_text"] windows = get_windows(text, window_length, window_overlap) for idx, (start_pos, end_pos) in enumerate(windows): new_text = text[start_pos:end_pos] extended_examples.append( { "document_id": document_id, "original_text": new_text, "gt_entities": example["gt_entities"], "window_idx": idx, "window_start": start_pos, "window_end": end_pos, } ) all_predictions = model_eval.get_predictions( extended_examples, batch_size=batch_size ) predictions_dict = group_predictions_by_example(all_predictions, extended_examples) predictions = [] for example in test_data: assert "document_id" in example or "data_example_id" in example document_id = example.get("document_id") or example["data_example_id"] text = example["original_text"] example_predictions = predictions_dict[document_id] if do_merge_predictions: example_predictions = merge_predictions(example_predictions) example_predictions = convert_predictions_to_dict(example_predictions) predictions.append(example_predictions) return predictions
BELA-main
bela/utils/prediction_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. class DummyPathManager: def get_local_path(self, path, *args, **kwargs): return path def open(self, path, *args, **kwargs): return open(path, *args, **kwargs) PathManager = DummyPathManager()
BELA-main
bela/utils/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass from typing import Any, Dict, Optional, List @dataclass class Entity: entity_id: str # E.g. "Q3312129" offset: int length: int text: str entity_type: Optional[str] = None # E.g. wiki md_score: Optional[float] = None el_score: Optional[float] = None @property def mention(self): return self.text[self.offset : self.offset + self.length] @property def extended_mention(self): """Mentin in surrounding context (10 chars), with the mention in brackets""" left_context = self.text[max(0, self.offset - 10) : self.offset] right_context = self.text[self.offset + self.length : self.offset + self.length + 10] # Add ... if the context is truncated if self.offset - 10 > 0: left_context = "..." + left_context if self.offset + self.length + 10 < len(self.text): right_context = right_context + "..." return f"{left_context}[{self.mention}]{right_context}" def __repr__(self): str_repr = f'Entity<mention="{self.extended_mention}", entity_id={self.entity_id}' if self.md_score is not None and self.el_score is not None: str_repr += f", md_score={self.md_score:.2f}, el_score={self.el_score:.2f}" str_repr += ">" return str_repr def __eq__(self, other): return self.offset == other.offset and self.length == other.length and self.entity_id == other.entity_id class Sample: text: str sample_id: Optional[str] = None ground_truth_entities: Optional[List[Entity]] = None predicted_entities: Optional[List[Entity]] = None def __init__(self, text, sample_id=None, ground_truth_entities=None, predicted_entities=None): self.text = text self.sample_id = sample_id self.ground_truth_entities = ground_truth_entities self.predicted_entities = predicted_entities if self.ground_truth_entities is not None and self.predicted_entities is not None: self.compute_scores() def compute_scores(self): self.true_positives = [ predicted_entity for predicted_entity in self.predicted_entities if predicted_entity in self.ground_truth_entities ] self.false_positives = [ predicted_entity for predicted_entity in self.predicted_entities if predicted_entity not in self.ground_truth_entities ] self.false_negatives = [ ground_truth_entity for ground_truth_entity in self.ground_truth_entities if ground_truth_entity not in self.predicted_entities ] # Bag of entities self.ground_truth_entity_ids = set( [ground_truth_entity.entity_id for ground_truth_entity in self.ground_truth_entities] ) self.predicted_entity_ids = set( [predicted_entity.entity_id for predicted_entity in self.predicted_entities] ) self.true_positives_boe = [ predicted_entity_id for predicted_entity_id in self.predicted_entity_ids if predicted_entity_id in self.ground_truth_entity_ids ] self.false_positives_boe = [ predicted_entity_id for predicted_entity_id in self.predicted_entity_ids if predicted_entity_id not in self.ground_truth_entity_ids ] self.false_negatives_boe = [ ground_truth_entity_id for ground_truth_entity_id in self.ground_truth_entity_ids if ground_truth_entity_id not in self.predicted_entity_ids ] def __repr__(self): repr_str = f'Sample(text="{self.text[:100]}..."' if self.ground_truth_entities is not None: repr_str += f", ground_truth_entities={self.ground_truth_entities[:3]}..." if self.predicted_entities is not None: repr_str += f", predicted_entities={self.predicted_entities[:3]}..." repr_str += ")" return repr_str def print(self, max_display_length=1000): print(f"{self.text[:max_display_length]=}") if self.ground_truth_entities is not None: print("***************** Ground truth entities *****************") print(f"{len(self.ground_truth_entities)=}") for ground_truth_entity in self.ground_truth_entities: if ground_truth_entity.offset + ground_truth_entity.length > max_display_length: continue print(ground_truth_entity) if self.predicted_entities is not None: print("***************** Predicted entities *****************") print(f"{len(self.predicted_entities)=}") for predicted_entity in self.predicted_entities: if predicted_entity.offset + predicted_entity.length > max_display_length: continue print(predicted_entity) def convert_jsonl_data_to_samples(jsonl_data: List[Dict[str, Any]]) -> List[Sample]: """Converts the jsonl data to a list of samples.""" samples = [] for example in jsonl_data: ground_truth_entities = [ Entity(entity_id=entity_id, offset=offset, length=length, text=example["original_text"]) for _, _, entity_id, _, offset, length in example["gt_entities"] ] sample = Sample(text=example["original_text"], ground_truth_entities=ground_truth_entities) samples.append(sample) return samples def convert_predictions_to_entities(example_predictions: Dict[str, List], text) -> List[Entity]: """Converts the predictions of a single example to a list of entities.""" predicted_entities = [ Entity(entity_id=entity_id, offset=offset, length=length, md_score=md_score, el_score=el_score, text=text) for offset, length, entity_id, md_score, el_score in zip( example_predictions["offsets"], example_predictions["lengths"], example_predictions["entities"], example_predictions["md_scores"], example_predictions["el_scores"], ) ] return predicted_entities def convert_jsonl_data_and_predictions_to_samples( jsonl_data: List[Dict[str, Any]], predictions: Dict[str, List], md_threshold, el_threshold ) -> List[Sample]: samples = convert_jsonl_data_to_samples(jsonl_data) for sample, example_predictions in zip(samples, predictions): predicted_entities = convert_predictions_to_entities(example_predictions, sample.text) predicted_entities = [ entity for entity in predicted_entities if entity.el_score > el_threshold and entity.md_score > md_threshold ] sample.predicted_entities = predicted_entities sample.compute_scores() samples.append(sample) return samples
BELA-main
bela/utils/analysis_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Optional import torch.nn as nn from transformers import AutoModel, AutoConfig class HFEncoder(nn.Module): def __init__( self, model_path: str = "xlm-roberta-base", projection_dim: Optional[int] = None, ): super().__init__() self.transformer = AutoModel.from_pretrained(model_path) self.embedding_dim = self.transformer.encoder.config.hidden_size def forward(self, input_ids, attention_mask=None): output = self.transformer(input_ids=input_ids, attention_mask=attention_mask) last_layer = output["last_hidden_state"] sentence_rep = last_layer[:, 0, :] return sentence_rep, last_layer
BELA-main
bela/models/hf_encoder.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.nn as nn from transformers import AutoTokenizer class HFTransform(nn.Module): def __init__( self, model_path: str = "xlm-roberta-base", max_seq_len: int = 256, add_special_tokens: bool = True, ): super().__init__() self.tokenizer = AutoTokenizer.from_pretrained(model_path) self.sep_token = self.tokenizer.sep_token self.max_seq_len = max_seq_len self.add_special_tokens = add_special_tokens def forward(self, texts): return self.tokenizer( texts, return_tensors=None, padding=False, truncation=True, max_length=self.max_seq_len, add_special_tokens=self.add_special_tokens, )["input_ids"]
BELA-main
bela/transforms/hf_transform.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: sentencepiece.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='sentencepiece.proto', package='sentencepiece', syntax='proto2', serialized_options=b'H\003', create_key=_descriptor._internal_create_key, serialized_pb=b'\n\x13sentencepiece.proto\x12\rsentencepiece\"\xdf\x01\n\x11SentencePieceText\x12\x0c\n\x04text\x18\x01 \x01(\t\x12>\n\x06pieces\x18\x02 \x03(\x0b\x32..sentencepiece.SentencePieceText.SentencePiece\x12\r\n\x05score\x18\x03 \x01(\x02\x1a\x62\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\n\n\x02id\x18\x02 \x01(\r\x12\x0f\n\x07surface\x18\x03 \x01(\t\x12\r\n\x05\x62\x65gin\x18\x04 \x01(\r\x12\x0b\n\x03\x65nd\x18\x05 \x01(\r*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"J\n\x16NBestSentencePieceText\x12\x30\n\x06nbests\x18\x01 \x03(\x0b\x32 .sentencepiece.SentencePieceTextB\x02H\x03' ) _SENTENCEPIECETEXT_SENTENCEPIECE = _descriptor.Descriptor( name='SentencePiece', full_name='sentencepiece.SentencePieceText.SentencePiece', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='piece', full_name='sentencepiece.SentencePieceText.SentencePiece.piece', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='id', full_name='sentencepiece.SentencePieceText.SentencePiece.id', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='surface', full_name='sentencepiece.SentencePieceText.SentencePiece.surface', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='begin', full_name='sentencepiece.SentencePieceText.SentencePiece.begin', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='end', full_name='sentencepiece.SentencePieceText.SentencePiece.end', index=4, number=5, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=True, syntax='proto2', extension_ranges=[(200, 536870912), ], oneofs=[ ], serialized_start=153, serialized_end=251, ) _SENTENCEPIECETEXT = _descriptor.Descriptor( name='SentencePieceText', full_name='sentencepiece.SentencePieceText', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='text', full_name='sentencepiece.SentencePieceText.text', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='pieces', full_name='sentencepiece.SentencePieceText.pieces', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='score', full_name='sentencepiece.SentencePieceText.score', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[_SENTENCEPIECETEXT_SENTENCEPIECE, ], enum_types=[ ], serialized_options=None, is_extendable=True, syntax='proto2', extension_ranges=[(200, 536870912), ], oneofs=[ ], serialized_start=39, serialized_end=262, ) _NBESTSENTENCEPIECETEXT = _descriptor.Descriptor( name='NBestSentencePieceText', full_name='sentencepiece.NBestSentencePieceText', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='nbests', full_name='sentencepiece.NBestSentencePieceText.nbests', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=264, serialized_end=338, ) _SENTENCEPIECETEXT_SENTENCEPIECE.containing_type = _SENTENCEPIECETEXT _SENTENCEPIECETEXT.fields_by_name['pieces'].message_type = _SENTENCEPIECETEXT_SENTENCEPIECE _NBESTSENTENCEPIECETEXT.fields_by_name['nbests'].message_type = _SENTENCEPIECETEXT DESCRIPTOR.message_types_by_name['SentencePieceText'] = _SENTENCEPIECETEXT DESCRIPTOR.message_types_by_name['NBestSentencePieceText'] = _NBESTSENTENCEPIECETEXT _sym_db.RegisterFileDescriptor(DESCRIPTOR) SentencePieceText = _reflection.GeneratedProtocolMessageType('SentencePieceText', (_message.Message,), { 'SentencePiece' : _reflection.GeneratedProtocolMessageType('SentencePiece', (_message.Message,), { 'DESCRIPTOR' : _SENTENCEPIECETEXT_SENTENCEPIECE, '__module__' : 'sentencepiece_pb2' # @@protoc_insertion_point(class_scope:sentencepiece.SentencePieceText.SentencePiece) }) , 'DESCRIPTOR' : _SENTENCEPIECETEXT, '__module__' : 'sentencepiece_pb2' # @@protoc_insertion_point(class_scope:sentencepiece.SentencePieceText) }) _sym_db.RegisterMessage(SentencePieceText) _sym_db.RegisterMessage(SentencePieceText.SentencePiece) NBestSentencePieceText = _reflection.GeneratedProtocolMessageType('NBestSentencePieceText', (_message.Message,), { 'DESCRIPTOR' : _NBESTSENTENCEPIECETEXT, '__module__' : 'sentencepiece_pb2' # @@protoc_insertion_point(class_scope:sentencepiece.NBestSentencePieceText) }) _sym_db.RegisterMessage(NBestSentencePieceText) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
BELA-main
bela/transforms/sentencepiece_pb2.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Optional import os import torch.nn as nn import sentencepiece as spm from .sentencepiece_pb2 import SentencePieceText class SPMTransform(nn.Module): def __init__( self, sp_model_path: Optional[str] = None, max_seq_len: int = 256, add_special_tokens: bool = True, ): super().__init__() sp_model_path = sp_model_path or os.path.join(os.path.dirname(__file__), "../data/sp_model") self.processor = spm.SentencePieceProcessor(sp_model_path) self.sep_token = '</s>' self.unk_token_id = 3 self.max_seq_len = max_seq_len self.add_special_tokens = add_special_tokens def forward(self, texts): output = [] for text in texts: spt = SentencePieceText() spt.ParseFromString(self.processor.encode_as_serialized_proto(text)) current_offset = 0 leading_whitespaces_count = 0 for char in text: if char.isspace(): leading_whitespaces_count += 1 else: break token_ids_with_offsets = [] if self.add_special_tokens: token_ids_with_offsets.append((0,0,0)) for idx, piece in enumerate(spt.pieces): if piece.id != 0: token_id = piece.id + 1 else: token_id = self.unk_token_id if idx == 0: # if we process first token, append leading whitespacess count to the sp token length token_ids_with_offsets.append((token_id, current_offset, current_offset + len(piece.surface) + leading_whitespaces_count)) current_offset += len(piece.surface) + leading_whitespaces_count else: token_ids_with_offsets.append((token_id, current_offset, current_offset + len(piece.surface))) current_offset += len(piece.surface) # take into account special tokens if idx == self.max_seq_len - 3: break if self.add_special_tokens: token_ids_with_offsets.append((2,current_offset,0)) output.append(token_ids_with_offsets) return output
BELA-main
bela/transforms/spm_transform.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from enum import Enum from typing import Any, Dict, List, Optional, Tuple import torch import torch.nn as nn from torch.nn.utils.rnn import pad_sequence from bela.transforms.hf_transform import HFTransform from bela.transforms.spm_transform import SPMTransform class ReadState(Enum): ReadAlphaNum = 1 ReadSpace = 2 ReadOther = 3 def insert_spaces(text: str) -> Tuple[str, List[int]]: """ The raw string inputs are sometimes miss spaces between text pieces, like smiles could joint text: [smile]Some text.[smile] another text. This function modify text string to separate alphanumeric tokens from any other tokens to make models live easier. The above example will become: [smile] Some text . [smile] another text . """ out_str: str = "" insertions: List[int] = [] # In the beginning of the string we assume we just read some space state: ReadState = ReadState.ReadSpace for idx, char in enumerate(utf8_chars(text)): if state == ReadState.ReadSpace: if unicode_isspace(char): pass elif unicode_isalnum(char): state = ReadState.ReadAlphaNum else: state = ReadState.ReadOther elif state == ReadState.ReadAlphaNum: if unicode_isspace(char): state = ReadState.ReadSpace elif unicode_isalnum(char): pass else: out_str += " " insertions.append(idx) state = ReadState.ReadOther elif state == ReadState.ReadOther: if unicode_isspace(char): state = ReadState.ReadSpace elif unicode_isalnum(char): out_str += " " insertions.append(idx) state = ReadState.ReadAlphaNum else: pass out_str += char return out_str, insertions def lower_bound(a: List[int], x: int) -> int: lo: int = 0 hi: int = len(a) while lo < hi: mid = (lo + hi) // 2 if a[mid] < x: lo = mid + 1 else: hi = mid return lo def align_start(start: int, starts: List[int]) -> int: new_start: int = start if start not in starts: if len(starts) > 0: lb = lower_bound(starts, start) if lb == len(starts) or starts[lb] != start: new_start = starts[max(0, lb - 1)] return new_start def align_end(end: int, ends: List[int]) -> int: new_end: int = end if end not in ends: if len(ends) > 0: lb = lower_bound(ends, end) if lb < len(ends): new_end = ends[lb] return new_end def pieces_to_texts( texts_pieces_token_ids: List[List[int]], texts: List[List[str]], texts_mention_offsets: List[List[int]], texts_mention_lengths: List[List[int]], bos_idx: int, eos_idx: int, max_seq_len: int = 256, ): """ Function takes an array with SP tokenized word tokens and original texts and convert youda tokenized batch to SP tokenized batch. Mention offsets and lengths are also converted with respect to SP tokens. Inputs: 1) texts_pieces_token_ids: List with sp tokens per text token 2) texts: original yoda tokenized texts 3) texts_mention_offsets: mention offsets in original texts 4) texts_mention_lengths: mention lengths in original texts 5) bos_idx: tokenizer bos index 6) eos_idx: tokenizer eos index 7) max_seq_len: tokenizer max sequence length Outputs: new_texts_token_ids: List[List[int]] - text batch with sp tokens new_seq_lengths: List[int] - sp tokenized texts lengths new_mention_offsets: List[List[int]] - converted mention offsets new_mention_lengths: List[List[int]] - converted mention lengths """ new_texts_token_ids: List[List[int]] = [] new_seq_lengths: List[int] = [] new_mention_offsets: List[List[int]] = [] new_mention_lengths: List[List[int]] = [] tokens_mapping: List[List[List[int]]] = [] # bs x idx x 2 pieces_offset = 0 for text, old_mention_offsets, old_mention_lengths in zip( texts, texts_mention_offsets, texts_mention_lengths, ): mapping: List[Tuple[int, int]] = [] text_token_ids: List[int] = [bos_idx] mention_offsets: List[int] = [] mention_lengths: List[int] = [] for token_ids in texts_pieces_token_ids[ pieces_offset : pieces_offset + len(text) ]: token_ids = token_ids[1:-1] current_pos = len(text_token_ids) mapping.append((current_pos, current_pos + len(token_ids))) text_token_ids.extend(token_ids) text_token_ids = text_token_ids[: max_seq_len - 1] text_token_ids.append(eos_idx) for old_offset, old_length in zip(old_mention_offsets, old_mention_lengths): new_offset = mapping[old_offset][0] new_end = mapping[old_offset + old_length - 1][1] new_length = new_end - new_offset if new_end > max_seq_len - 1: break mention_offsets.append(new_offset) mention_lengths.append(new_length) new_texts_token_ids.append(text_token_ids) new_seq_lengths.append(len(text_token_ids)) new_mention_offsets.append(mention_offsets) new_mention_lengths.append(mention_lengths) mapping = [[start, end] for start, end in mapping if end < max_seq_len] tokens_mapping.append(mapping) pieces_offset += len(text) return ( new_texts_token_ids, new_seq_lengths, new_mention_offsets, new_mention_lengths, tokens_mapping, ) @torch.jit.script def pad_tokens_mapping(tokens_mapping: List[List[List[int]]]) -> List[List[List[int]]]: seq_lens: List[int] = [] for seq in tokens_mapping: seq_lens.append(len(seq)) pad_to_length = max(seq_lens) for mapping in tokens_mapping: padding = pad_to_length - len(mapping) if padding >= 0: for _ in range(padding): mapping.append([0, 1]) else: for _ in range(-padding): mapping.pop() return tokens_mapping @torch.jit.script def pad_tokens_mapping( tokens_mapping: List[List[Tuple[int, int]]] ) -> List[List[Tuple[int, int]]]: seq_lens: List[int] = [] for seq in tokens_mapping: seq_lens.append(len(seq)) pad_to_length = max(seq_lens) for mapping in tokens_mapping: padding = pad_to_length - len(mapping) if padding >= 0: for _ in range(padding): mapping.append((0, 1)) else: for _ in range(-padding): mapping.pop() return tokens_mapping @torch.jit.script def pad_2d( batch: List[List[int]], seq_lens: List[int], pad_idx: int, max_len: int = -1 ) -> List[List[int]]: pad_to_length = max(seq_lens) if max_len > 0: pad_to_length = min(pad_to_length, max_len) for sentence in batch: padding = pad_to_length - len(sentence) if padding >= 0: for _ in range(padding): sentence.append(pad_idx) else: for _ in range(-padding): sentence.pop() return batch class JointELCollate(torch.nn.Module): def __init__( self, pad_idx: int = 1, token_ids_column: str = "input_ids", seq_lens_column: str = "seq_lens", pad_mask_column: str = "attention_mask", mention_pad_idx: int = 0, mention_offsets_column: str = "mention_offsets", mention_lengths_column: str = "mention_lengths", mentions_seq_lengths_column: str = "mentions_seq_lengths", entities_column: str = "entities", tokens_mapping_column: str = "tokens_mapping", sp_tokens_boundaries_column: str = "sp_tokens_boundaries", insertions_column: str = "insertions", ): super().__init__() self._pad_idx = pad_idx self.token_ids_column = token_ids_column self.seq_lens_column = seq_lens_column self.pad_mask_column = pad_mask_column self._mention_pad_idx = mention_pad_idx self.mention_offsets_column = mention_offsets_column self.mention_lengths_column = mention_lengths_column self.entities_column = entities_column self.mentions_seq_lengths_column = mentions_seq_lengths_column self.tokens_mapping_column = tokens_mapping_column self.sp_tokens_boundaries_column = sp_tokens_boundaries_column self.insertions_column = insertions_column def forward(self, batch: Dict[str, Any]) -> Dict[str, torch.Tensor]: token_ids = batch[self.token_ids_column] assert torch.jit.isinstance(token_ids, List[List[int]]) seq_lens = batch[self.seq_lens_column] assert torch.jit.isinstance(seq_lens, List[int]) tokens_mapping = batch[self.tokens_mapping_column] assert torch.jit.isinstance(tokens_mapping, List[List[List[int]]]) pad_token_ids = pad_sequence( [torch.tensor(ids, dtype=torch.long) for ids in token_ids], batch_first=True, padding_value=float(self._pad_idx), ) pad_mask = torch.ne(pad_token_ids, self._pad_idx).to(dtype=torch.long) model_inputs: Dict[str, torch.Tensor] = { self.token_ids_column: pad_token_ids, self.pad_mask_column: pad_mask, } model_inputs[self.tokens_mapping_column] = torch.tensor( pad_tokens_mapping(tokens_mapping), dtype=torch.long, ) if self.mention_offsets_column in batch: mention_offsets = batch[self.mention_offsets_column] assert torch.jit.isinstance(mention_offsets, List[List[int]]) mention_lengths = batch[self.mention_lengths_column] assert torch.jit.isinstance(mention_lengths, List[List[int]]) mentions_seq_lengths = batch[self.mentions_seq_lengths_column] assert torch.jit.isinstance(mentions_seq_lengths, List[int]) entities = batch[self.entities_column] assert torch.jit.isinstance(entities, List[List[int]]) model_inputs[self.mention_offsets_column] = torch.tensor( pad_2d( mention_offsets, seq_lens=mentions_seq_lengths, pad_idx=self._mention_pad_idx, ), dtype=torch.long, ) model_inputs[self.mention_lengths_column] = torch.tensor( pad_2d( mention_lengths, seq_lens=mentions_seq_lengths, pad_idx=self._mention_pad_idx, ), dtype=torch.long, ) model_inputs[self.entities_column] = torch.tensor( pad_2d( entities, seq_lens=mentions_seq_lengths, pad_idx=self._mention_pad_idx, ), dtype=torch.long, ) if self.sp_tokens_boundaries_column in batch: sp_tokens_boundaries = batch[self.sp_tokens_boundaries_column] assert torch.jit.isinstance(sp_tokens_boundaries, List[List[List[int]]]) model_inputs[self.sp_tokens_boundaries_column] = torch.tensor( pad_tokens_mapping(sp_tokens_boundaries), dtype=torch.long, ) if self.insertions_column in batch: insertions = batch[self.insertions_column] assert torch.jit.isinstance(insertions, List[List[int]]) insertions_seq_lens: List[int] = [] for seq in insertions: insertions_seq_lens.append(len(seq)) model_inputs[self.insertions_column] = torch.tensor( pad_2d( insertions, seq_lens=insertions_seq_lens, pad_idx=-1, ), dtype=torch.long, ) return model_inputs class JointELTransform(HFTransform): def __init__( self, model_path: str = "xlm-roberta-base", max_seq_len: int = 256, texts_column: str = "texts", mention_offsets_column: str = "mention_offsets", mention_lengths_column: str = "mention_lengths", mentions_seq_lengths_column: str = "mentions_seq_lengths", entities_column: str = "entities", token_ids_column: str = "input_ids", seq_lens_column: str = "seq_lens", pad_mask_column: str = "attention_mask", tokens_mapping_column: str = "tokens_mapping", ): super().__init__(model_path=model_path) if 'xlm' in model_path: self.bos_idx = self.tokenizer.bos_token_id self.eos_idx = self.tokenizer.eos_token_id elif 'bert' in model_path: self.bos_idx = self.tokenizer.cls_token_id self.eos_idx = self.tokenizer.sep_token_id self.max_seq_len = max_seq_len self.texts_column = texts_column self.token_ids_column = token_ids_column self.seq_lens_column = seq_lens_column self.pad_mask_column = pad_mask_column self.mention_offsets_column = mention_offsets_column self.mention_lengths_column = mention_lengths_column self.mentions_seq_lengths_column = mentions_seq_lengths_column self.entities_column = entities_column self.tokens_mapping_column = tokens_mapping_column self._collate = JointELCollate( pad_idx=self.tokenizer.pad_token_id, token_ids_column=token_ids_column, seq_lens_column=seq_lens_column, pad_mask_column=pad_mask_column, mention_offsets_column=mention_offsets_column, mention_lengths_column=mention_lengths_column, mentions_seq_lengths_column=mentions_seq_lengths_column, entities_column=entities_column, tokens_mapping_column=tokens_mapping_column, ) def transform(self, batch: Dict[str, Any]) -> Dict[str, Any]: texts = batch[self.texts_column] torch.jit.isinstance(texts, List[List[str]]) mention_offsets = batch[self.mention_offsets_column] torch.jit.isinstance(mention_offsets, List[List[int]]) mention_lengths = batch[self.mention_lengths_column] torch.jit.isinstance(mention_lengths, List[List[int]]) entities = batch[self.entities_column] torch.jit.isinstance(entities, List[List[int]]) texts_pieces = [token for tokens in texts for token in tokens] texts_pieces_token_ids: List[List[int]] = super().forward( texts_pieces ) ( token_ids, seq_lens, mention_offsets, mention_lengths, tokens_mapping, ) = pieces_to_texts( texts_pieces_token_ids, texts, mention_offsets, mention_lengths, bos_idx=self.bos_idx, eos_idx=self.eos_idx, max_seq_len=self.max_seq_len, ) entities = [ text_entities[: len(text_mention_offsets)] for text_entities, text_mention_offsets in zip(entities, mention_offsets) ] mentions_seq_lens: List[int] = [ len(text_mention_offsets) for text_mention_offsets in mention_offsets ] return { self.token_ids_column: token_ids, self.seq_lens_column: seq_lens, self.mention_offsets_column: mention_offsets, self.mention_lengths_column: mention_lengths, self.mentions_seq_lengths_column: mentions_seq_lens, self.entities_column: entities, self.tokens_mapping_column: tokens_mapping, } def forward(self, batch: Dict[str, Any]) -> Dict[str, torch.Tensor]: return self._collate(self.transform(batch)) class JointELXlmrRawTextTransform(SPMTransform): def __init__( self, sp_model_path: Optional[str] = None, vocab_path: Optional[str] = None, max_seq_len: int = 256, insert_spaces: bool = False, mention_boundaries_on_word_boundaries: bool = False, align_mention_offsets_to_word_boundaries: bool = False, texts_column: str = "texts", mention_offsets_column: str = "mention_offsets", mention_lengths_column: str = "mention_lengths", mentions_seq_lengths_column: str = "mentions_seq_lengths", entities_column: str = "entities", token_ids_column: str = "input_ids", seq_lens_column: str = "seq_lens", pad_mask_column: str = "attention_mask", tokens_mapping_column: str = "tokens_mapping", sp_tokens_boundaries_column: str = "sp_tokens_boundaries", insertions_column: str = "insertions", ): super().__init__( sp_model_path=sp_model_path, max_seq_len=max_seq_len, add_special_tokens=False, ) self.bos_idx = 0 self.eos_idx = 2 self.pad_idx = 1 self.max_seq_len = max_seq_len self.insert_spaces = insert_spaces self.mention_boundaries_on_word_boundaries = ( mention_boundaries_on_word_boundaries ) self.align_mention_offsets_to_word_boundaries = ( align_mention_offsets_to_word_boundaries ) self.texts_column = texts_column self.mention_offsets_column = mention_offsets_column self.mention_lengths_column = mention_lengths_column self.mentions_seq_lengths_column = mentions_seq_lengths_column self.entities_column = entities_column self.token_ids_column = token_ids_column self.seq_lens_column = seq_lens_column self.tokens_mapping_column = tokens_mapping_column self.sp_tokens_boundaries_column = sp_tokens_boundaries_column self.insertions_column = insertions_column self._collate = JointELCollate( pad_idx=self.pad_idx, token_ids_column=token_ids_column, seq_lens_column=seq_lens_column, pad_mask_column=pad_mask_column, mention_offsets_column=mention_offsets_column, mention_lengths_column=mention_lengths_column, mentions_seq_lengths_column=mentions_seq_lengths_column, entities_column=entities_column, tokens_mapping_column=tokens_mapping_column, sp_tokens_boundaries_column=sp_tokens_boundaries_column, ) def _calculate_alpha_num_boundaries(self, texts: List[str]) -> List[List[List[int]]]: """Returns for each text, a list of lists of start and end indices of alpha-numeric substrings (~=words).""" alpha_num_boundaries: List[List[List[int]]] = [] for text in texts: example_alpha_num_boundaries: List[List[int]] = [] cur_alpha_num_start: int = -1 for idx, char in enumerate(text): if char.isalnum(): if cur_alpha_num_start == -1: cur_alpha_num_start = idx else: if cur_alpha_num_start != -1: example_alpha_num_boundaries.append([cur_alpha_num_start, idx]) cur_alpha_num_start = -1 if cur_alpha_num_start != -1: example_alpha_num_boundaries.append([cur_alpha_num_start, len(text)]) alpha_num_boundaries.append(example_alpha_num_boundaries) return alpha_num_boundaries def _calculate_token_mapping( self, sp_token_ids: List[List[int]], sp_token_boundaries: List[List[List[int]]], word_boundaries: List[List[List[int]]], ) -> List[List[List[int]]]: # Prepare list of possible mention start, ends pairs in terms of SP tokens. if self.mention_boundaries_on_word_boundaries: token_mapping: List[List[List[int]]] = [] for ex_word_boundaries, ex_sp_token_boundaries in zip( word_boundaries, sp_token_boundaries ): ex_token_mapping: List[List[int]] = [] sp_idx = 0 for start, end in ex_word_boundaries: while ( sp_idx < len(ex_sp_token_boundaries) and start >= ex_sp_token_boundaries[sp_idx][1] ): sp_idx += 1 word_sp_start = sp_idx word_sp_end = sp_idx while ( word_sp_end < len(ex_sp_token_boundaries) and end >= ex_sp_token_boundaries[word_sp_end][1] ): word_sp_end += 1 # check if end token <= max_seq_len - 2 (take into account EOS and BOS tokens) if word_sp_end <= self.max_seq_len - 2: # shift word_sp_start and word_sp_end by 1 taking into account EOS ex_token_mapping.append([word_sp_start + 1, word_sp_end + 1]) else: break token_mapping.append(ex_token_mapping) return token_mapping else: # Consider any SP token could be a start or end of the mention. return [ [ [start, start + 1] for start in range( # start in range from 1 to maximum 255 1, min(len(example_sp_token_ids) - 2, self.max_seq_len - 2) + 1 ) ] for example_sp_token_ids in sp_token_ids ] def _convert_mention_offsets( self, sp_token_boundaries: List[List[List[int]]], char_offsets: List[List[int]], char_lengths: List[List[int]], ) -> Tuple[List[List[int]], List[List[int]]]: # TODO: Doesn't this do something similar to _calculate_token_mapping? sp_offsets: List[List[int]] = [] sp_lengths: List[List[int]] = [] for example_char_offsets, example_char_lengths, example_token_boundaries in zip( char_offsets, char_lengths, sp_token_boundaries ): example_sp_offsets: List[int] = [] example_sp_lengths: List[int] = [] for offset, length in zip(example_char_offsets, example_char_lengths): # TODO: There might be a bug here, need to write a test and with edge cases token_idx = 0 while ( # First we find the first token that starts at or after the offset token_idx < len(example_token_boundaries) and example_token_boundaries[token_idx][0] <= offset ): token_idx += 1 if ( # Then if we overshoot, we decrease by one token_idx == len(example_token_boundaries) or example_token_boundaries[token_idx][0] != offset ): token_idx -= 1 example_sp_offsets.append(token_idx) token_start_idx = token_idx while ( # Same method for the end token: find the first token that ends before the end of the mention token_idx < len(example_token_boundaries) and example_token_boundaries[token_idx][1] < offset + length ): token_idx += 1 example_sp_lengths.append(token_idx - token_start_idx + 1) # take into account BOS token and shift offsets by 1 # also remove all pairs that go beyond max_seq_length - 1 shifted_example_sp_offsets: List[int] = [] for offset, length in zip(example_sp_offsets, example_sp_lengths): if 1 + offset + length <= self.max_seq_len - 1: shifted_example_sp_offsets.append(offset + 1) else: # last mention went off the limit, skip all next mention break example_sp_offsets = shifted_example_sp_offsets example_sp_lengths = example_sp_lengths[: len(example_sp_offsets)] sp_offsets.append(example_sp_offsets) sp_lengths.append(example_sp_lengths) return sp_offsets, sp_lengths def _adjust_mention_offsets_and_lengths( self, offsets: List[List[int]], lengths: List[List[int]], insertions: List[List[int]], ) -> Tuple[List[List[int]], List[List[int]]]: new_offsets: List[List[int]] = [] new_lengths: List[List[int]] = [] for example_offsets, example_lengths, example_insertions in zip( offsets, lengths, insertions ): new_example_offsets: List[int] = [] new_example_lengths: List[int] = [] # assume that offsets, lengths sorted by offsets/lengths insertion_idx = 0 current_shift = 0 for offset, length in zip(example_offsets, example_lengths): while ( insertion_idx < len(example_insertions) and example_insertions[insertion_idx] <= offset ): current_shift += 1 insertion_idx += 1 new_offset = offset + current_shift new_length = length length_insertion_idx = insertion_idx while ( length_insertion_idx < len(example_insertions) and example_insertions[length_insertion_idx] < offset + length ): new_length += 1 length_insertion_idx += 1 new_example_offsets.append(new_offset) new_example_lengths.append(new_length) new_offsets.append(new_example_offsets) new_lengths.append(new_example_lengths) return new_offsets, new_lengths def _insert_spaces_to_texts( self, texts: List[str] ) -> Tuple[List[str], List[List[int]]]: all_texts: List[str] = [] all_insertions: List[List[int]] = [] for text in texts: out_text, insertions = insert_spaces(text) all_texts.append(out_text) all_insertions.append(insertions) return all_texts, all_insertions def _align_mention_offsets_to_word_boundaries( self, mention_offsets: List[List[int]], mention_lengths: List[List[int]], word_boundaries: List[List[List[int]]], ) -> Tuple[List[List[int]], List[List[int]]]: """ In some training examples we can face situations where ground truth offsets point to the middle of the word, ex: ``` Playlist in "#NuevaPlaylist ➡ Desempo" mente in "simplemente retirarte" ``` we can align the offsets to the word boundaries, so in the examples above we will mark `NuevaPlaylist` and `simplemente` as mentions. """ new_mention_offsets: List[List[int]] = [] new_mention_lengths: List[List[int]] = [] for ex_mention_offsets, ex_mention_length, ex_word_boundaries in zip( mention_offsets, mention_lengths, word_boundaries, ): starts: List[int] = [] ends: List[int] = [] for wb in ex_word_boundaries: starts.append(wb[0]) ends.append(wb[1]) ex_new_mention_offsets: List[int] = [] ex_new_mention_lengths: List[int] = [] for offset, length in zip(ex_mention_offsets, ex_mention_length): start = align_start(offset, starts) end = align_end(offset + length, ends) ex_new_mention_offsets.append(start) ex_new_mention_lengths.append(end - start) new_mention_offsets.append(ex_new_mention_offsets) new_mention_lengths.append(ex_new_mention_lengths) return new_mention_offsets, new_mention_lengths def transform(self, batch: Dict[str, Any]) -> Dict[str, Any]: texts = batch[self.texts_column] assert torch.jit.isinstance(texts, List[str]) insertions: List[List[int]] = [] if self.insert_spaces: texts, insertions = self._insert_spaces_to_texts(texts) word_boundaries = self._calculate_alpha_num_boundaries(texts) sp_tokens_with_indices: List[List[Tuple[int, int, int]]] = super().forward(texts) sp_token_ids: List[List[int]] = [ [sp_token for sp_token, _, _ in tokens] for tokens in sp_tokens_with_indices ] # append bos and eos tokens sp_token_ids = [[self.bos_idx] + tokens + [self.eos_idx] for tokens in sp_token_ids] sp_token_boundaries: List[List[List[int]]] = [ [[start, end] for _, start, end in tokens] for tokens in sp_tokens_with_indices ] seq_lens: List[int] = [ len(example_token_ids) for example_token_ids in sp_token_ids ] tokens_mapping: List[List[List[int]]] = self._calculate_token_mapping( sp_token_ids, sp_token_boundaries, word_boundaries, ) output: Dict[str, Any] = { self.token_ids_column: sp_token_ids, self.seq_lens_column: seq_lens, self.tokens_mapping_column: tokens_mapping, self.sp_tokens_boundaries_column: sp_token_boundaries, } if self.insert_spaces: output[self.insertions_column] = insertions if self.mention_offsets_column in batch: mention_offsets = batch[self.mention_offsets_column] assert torch.jit.isinstance(mention_offsets, List[List[int]]) mention_lengths = batch[self.mention_lengths_column] assert torch.jit.isinstance(mention_lengths, List[List[int]]) entities = batch[self.entities_column] assert torch.jit.isinstance(entities, List[List[int]]) if self.insert_spaces: ( mention_offsets, mention_lengths, ) = self._adjust_mention_offsets_and_lengths( mention_offsets, mention_lengths, insertions ) if self.align_mention_offsets_to_word_boundaries: ( mention_offsets, mention_lengths, ) = self._align_mention_offsets_to_word_boundaries( mention_offsets, mention_lengths, word_boundaries, ) sp_offsets, sp_lengths = self._convert_mention_offsets( sp_token_boundaries, mention_offsets, mention_lengths, ) entities: List[List[int]] = [ example_entities[: len(example_mention_offsets)] for example_entities, example_mention_offsets in zip( entities, sp_offsets ) ] mentions_seq_lens: List[int] = [ len(example_mention_offsets) for example_mention_offsets in sp_offsets ] output[self.mention_offsets_column] = sp_offsets output[self.mention_lengths_column] = sp_lengths output[self.mentions_seq_lengths_column] = mentions_seq_lens output[self.entities_column] = entities return output def forward(self, batch: Dict[str, Any]) -> Dict[str, torch.Tensor]: return self._collate(self.transform(batch))
BELA-main
bela/transforms/joint_el_transform.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from collections import OrderedDict from typing import Any, Dict, NamedTuple, Optional, Tuple, Union import faiss import faiss.contrib.torch_utils import hydra import torch import torch.nn as nn from pytorch_lightning import LightningModule from bela.conf import ( DataModuleConf, ModelConf, OptimConf, TransformConf, ) import datetime import os import numpy as np logger = logging.getLogger(__name__) class ClassificationMetrics(NamedTuple): f1: float precision: float recall: float support: int tp: int fp: int fn: int # Bag-Of-Entities metrics: we consider targets and predictions as set # of entities instead of strong matching positions and entities. boe_f1: float boe_precision: float boe_recall: float boe_support: int boe_tp: int boe_fp: int boe_fn: int class ClassificationHead(nn.Module): def __init__( self, ctxt_output_dim=768, ): super(ClassificationHead, self).__init__() self.mlp = nn.Sequential( # [mention, candidate, mention - candidate, mention * candidate, md_score, dis_score] nn.Linear(4 * ctxt_output_dim + 2, ctxt_output_dim), nn.ReLU(), nn.Dropout(0.2), nn.Linear(ctxt_output_dim, ctxt_output_dim), nn.ReLU(), nn.Dropout(0.2), nn.Linear(ctxt_output_dim, 1), ) def forward(self, mentions_repr, entities_repr, md_scores, dis_scores): features = [ mentions_repr, entities_repr, mentions_repr - entities_repr, mentions_repr * entities_repr, md_scores, dis_scores, ] features = torch.cat(features, 1) return self.mlp(features) class SaliencyClassificationHead(nn.Module): def __init__( self, ctxt_output_dim=768, ): super(SaliencyClassificationHead, self).__init__() self.mlp = nn.Sequential( nn.Linear(9 * ctxt_output_dim + 4, ctxt_output_dim), nn.ReLU(), nn.Dropout(0.2), nn.Linear(ctxt_output_dim, ctxt_output_dim), nn.ReLU(), nn.Dropout(0.2), nn.Linear(ctxt_output_dim, 1), ) def forward( self, cls_tokens_repr, mentions_repr, entities_repr, md_scores, dis_scores ): cls_mention_dot_product = torch.sum( cls_tokens_repr * mentions_repr, 1 ).unsqueeze(-1) cls_entity_dot_product = torch.sum( cls_tokens_repr * entities_repr, 1 ).unsqueeze(-1) features = [ cls_tokens_repr, mentions_repr, entities_repr, mentions_repr - entities_repr, mentions_repr * entities_repr, cls_tokens_repr - mentions_repr, cls_tokens_repr * mentions_repr, cls_tokens_repr - entities_repr, cls_tokens_repr * entities_repr, md_scores, dis_scores, cls_mention_dot_product, cls_entity_dot_product, ] features = torch.cat(features, 1) return self.mlp(features) class SpanEncoder(nn.Module): def __init__( self, mention_aggregation="linear", ctxt_output_dim=768, cand_output_dim=768, dropout=0.1, ): super(SpanEncoder, self).__init__() if mention_aggregation == "linear": self.mention_mlp = nn.Linear(ctxt_output_dim * 2, cand_output_dim) # elif mention_aggregation == "mlp": # self.mention_mlp = nn.Sequential( # nn.Linear(ctxt_output_dim, ctxt_output_dim), # nn.ReLU(), # nn.Dropout(dropout), # nn.Linear(ctxt_output_dim, cand_output_dim), # ) else: raise NotImplementedError() def forward(self, text_encodings, mention_offsets, mention_lengths): idx = ( torch.arange(mention_offsets.shape[0]) .unsqueeze(1) .repeat(1, mention_offsets.shape[1]) ) mention_starts = text_encodings[idx, mention_offsets] mention_ends = text_encodings[ idx, mention_lengths + mention_offsets - 1, ] mention_emb = torch.cat([mention_starts, mention_ends], dim=2) mention_encodings = self.mention_mlp(mention_emb) return mention_encodings class MentionScoresHead(nn.Module): def __init__( self, encoder_output_dim=768, max_mention_length=10, ): super(MentionScoresHead, self).__init__() self.max_mention_length = max_mention_length self.bound_classifier = nn.Linear(encoder_output_dim, 3) def forward(self, text_encodings, mask_ctxt, tokens_mapping): """ Retuns scores for *inclusive* mention boundaries """ device = text_encodings.device # (bs, seqlen, 3) logits = self.bound_classifier(text_encodings) # (bs, seqlen, 1); (bs, seqlen, 1); (bs, seqlen, 1) # start_logprobs, end_logprobs, mention_logprobs = logits.split(1, dim=-1) start_logprobs = logits[:, :, 0].squeeze(-1) end_logprobs = logits[:, :, 1].squeeze(-1) mention_logprobs = logits[:, :, 2].squeeze(-1) # impossible to choose masked tokens as starts/ends of spans start_logprobs[mask_ctxt != 1] = float("-inf") end_logprobs[mask_ctxt != 1] = float("-inf") mention_logprobs[mask_ctxt != 1] = float("-inf") # take sum of log softmaxes: # log p(mention) = log p(start_pos && end_pos) = log p(start_pos) + log p(end_pos) # DIM: (bs, starts, ends) mention_scores = start_logprobs.unsqueeze(2) + end_logprobs.unsqueeze(1) # (bs, starts, ends) mention_cum_scores = torch.zeros( mention_scores.size(), dtype=mention_scores.dtype ).to(device) # add ends mention_logprobs_end_cumsum = torch.zeros( mask_ctxt.size(0), dtype=mention_scores.dtype ).to(device) for i in range(mask_ctxt.size(1)): mention_logprobs_end_cumsum += mention_logprobs[:, i] mention_cum_scores[:, :, i] += mention_logprobs_end_cumsum.unsqueeze(-1) # subtract starts mention_logprobs_start_cumsum = torch.zeros( mask_ctxt.size(0), dtype=mention_scores.dtype ).to(device) for i in range(mask_ctxt.size(1) - 1): mention_logprobs_start_cumsum += mention_logprobs[:, i] mention_cum_scores[ :, (i + 1), : ] -= mention_logprobs_start_cumsum.unsqueeze(-1) # DIM: (bs, starts, ends) mention_scores += mention_cum_scores # DIM: (starts, ends, 2) -- tuples of [start_idx, end_idx] mention_bounds = torch.stack( [ torch.arange(mention_scores.size(1)) .unsqueeze(-1) .expand(mention_scores.size(1), mention_scores.size(2)), # start idxs torch.arange(mention_scores.size(1)) .unsqueeze(0) .expand(mention_scores.size(1), mention_scores.size(2)), # end idxs ], dim=-1, ).to(device) # DIM: (starts, ends) mention_sizes = ( mention_bounds[:, :, 1] - mention_bounds[:, :, 0] + 1 ) # (+1 as ends are inclusive) # Remove invalids (startpos > endpos, endpos > seqlen) and renormalize # DIM: (bs, starts, ends) # valid mention starts mask select_indices = torch.cat( [ torch.arange(tokens_mapping.shape[0]) .unsqueeze(1) .repeat(1, tokens_mapping.shape[1]) .unsqueeze(-1), tokens_mapping[:, :, 0].unsqueeze(-1).to(torch.device("cpu")), ], -1, ).flatten(0, 1) token_starts_mask = torch.zeros(mask_ctxt.size(), dtype=mask_ctxt.dtype) token_starts_mask[select_indices[:, 0], select_indices[:, 1]] = 1 token_starts_mask[:, 0] = 0 # valid mention ends mask select_indices = torch.cat( [ torch.arange(tokens_mapping.shape[0]) .unsqueeze(1) .repeat(1, tokens_mapping.shape[1]) .unsqueeze(-1), (tokens_mapping[:, :, 1] - 1).unsqueeze(-1).to(torch.device("cpu")), ], -1, ).flatten(0, 1) token_ends_mask = torch.zeros(mask_ctxt.size(), dtype=mask_ctxt.dtype) token_ends_mask[select_indices[:, 0], select_indices[:, 1]] = 1 token_ends_mask[:, 0] = 0 # valid mention starts*ends mask valid_starts_ends_mask = torch.bmm( token_starts_mask.unsqueeze(2), token_ends_mask.unsqueeze(1) ).to(device) valid_mask = ( (mention_sizes.unsqueeze(0) > 0) & torch.gt(mask_ctxt.unsqueeze(2), 0) & torch.gt(valid_starts_ends_mask, 0) ) # DIM: (bs, starts, ends) # 0 is not a valid mention_scores[~valid_mask] = float("-inf") # invalids have logprob=-inf (p=0) # DIM: (bs, starts * ends) mention_scores = mention_scores.view(mention_scores.size(0), -1) # DIM: (bs, starts * ends, 2) mention_bounds = mention_bounds.view(-1, 2) mention_bounds = mention_bounds.unsqueeze(0).expand( mention_scores.size(0), mention_scores.size(1), 2 ) if self.max_mention_length is not None: mention_scores, mention_bounds = self.filter_by_mention_size( mention_scores, mention_bounds, ) return mention_scores, mention_bounds def batch_reshape_mask_left( self, input_t: torch.Tensor, selected: torch.Tensor, pad_idx: Union[int, float] = 0, left_align_mask: Optional[torch.Tensor] = None, ): """ Left-aligns all ``selected" values in input_t, which is a batch of examples. - input_t: >=2D tensor (N, M, *) - selected: 2D torch.Bool tensor, 2 dims same size as first 2 dims of `input_t` (N, M) - pad_idx represents the padding to be used in the output - left_align_mask: if already precomputed, pass the alignment mask in (mask on the output, corresponding to `selected` on the input) Example: input_t = [[1,2,3,4],[5,6,7,8]] selected = [[0,1,0,1],[1,1,0,1]] output = [[2,4,0],[5,6,8]] """ batch_num_selected = selected.sum(1) max_num_selected = batch_num_selected.max() # (bsz, 2) repeat_freqs = torch.stack( [batch_num_selected, max_num_selected - batch_num_selected], dim=-1 ) # (bsz x 2,) repeat_freqs = repeat_freqs.view(-1) if left_align_mask is None: # (bsz, 2) left_align_mask = ( torch.zeros(input_t.size(0), 2).to(input_t.device).to(torch.bool) ) left_align_mask[:, 0] = 1 # (bsz x 2,): [1,0,1,0,...] left_align_mask = left_align_mask.view(-1) # (bsz x max_num_selected,): [1 xrepeat_freqs[0],0 x(M-repeat_freqs[0]),1 xrepeat_freqs[1],0 x(M-repeat_freqs[1]),...] left_align_mask = left_align_mask.repeat_interleave(repeat_freqs) # (bsz, max_num_selected) left_align_mask = left_align_mask.view(-1, max_num_selected) # reshape to (bsz, max_num_selected, *) input_reshape = ( torch.empty(left_align_mask.size() + input_t.size()[2:]) .to(input_t.device, input_t.dtype) .fill_(pad_idx) ) input_reshape[left_align_mask] = input_t[selected] # (bsz, max_num_selected, *); (bsz, max_num_selected) return input_reshape, left_align_mask def prune_ctxt_mentions( self, mention_logits: torch.Tensor, mention_bounds: torch.Tensor, num_cand_mentions: int, threshold: float, ): """ Prunes mentions based on mention scores/logits (by either `threshold` or `num_cand_mentions`, whichever yields less candidates) Inputs: mention_logits: torch.FloatTensor (bsz, num_total_mentions) mention_bounds: torch.IntTensor (bsz, num_total_mentions) num_cand_mentions: int threshold: float Returns: torch.FloatTensor(bsz, max_num_pred_mentions): top mention scores/logits torch.IntTensor(bsz, max_num_pred_mentions, 2): top mention boundaries torch.BoolTensor(bsz, max_num_pred_mentions): mask on top mentions torch.BoolTensor(bsz, total_possible_mentions): mask for reshaping from total possible mentions -> max # pred mentions """ # (bsz, num_cand_mentions); (bsz, num_cand_mentions) num_cand_mentions = min(num_cand_mentions, mention_logits.shape[1]) top_mention_logits, mention_pos = mention_logits.topk( num_cand_mentions, sorted=True ) # (bsz, num_cand_mentions, 2) # [:,:,0]: index of batch # [:,:,1]: index into top mention in mention_bounds mention_pos = torch.stack( [ torch.arange(mention_pos.size(0)) .to(mention_pos.device) .unsqueeze(-1) .expand_as(mention_pos), mention_pos, ], dim=-1, ) # (bsz, num_cand_mentions) top_mention_pos_mask = torch.sigmoid(top_mention_logits) > threshold # (total_possible_mentions, 2) # tuples of [index of batch, index into mention_bounds] of what mentions to include mention_pos = mention_pos[ top_mention_pos_mask | ( # 2nd part of OR: if nothing is > threshold, use topK that are > -inf ((top_mention_pos_mask.sum(1) == 0).unsqueeze(-1)) & (top_mention_logits > float("-inf")) ) ] mention_pos = mention_pos.view(-1, 2) # (bsz, total_possible_mentions) # mask of possible logits mention_pos_mask = torch.zeros(mention_logits.size(), dtype=torch.bool).to( mention_pos.device ) mention_pos_mask[mention_pos[:, 0], mention_pos[:, 1]] = 1 # (bsz, max_num_pred_mentions, 2) chosen_mention_bounds, chosen_mention_mask = self.batch_reshape_mask_left( mention_bounds, mention_pos_mask, pad_idx=0 ) # (bsz, max_num_pred_mentions) chosen_mention_logits, _ = self.batch_reshape_mask_left( mention_logits, mention_pos_mask, pad_idx=float("-inf"), left_align_mask=chosen_mention_mask, ) return ( chosen_mention_logits, chosen_mention_bounds, chosen_mention_mask, mention_pos_mask, ) def filter_by_mention_size( self, mention_scores: torch.Tensor, mention_bounds: torch.Tensor ): """ Filter all mentions > maximum mention length mention_scores: torch.FloatTensor (bsz, num_mentions) mention_bounds: torch.LongTensor (bsz, num_mentions, 2) """ # (bsz, num_mentions) mention_bounds_mask = ( mention_bounds[:, :, 1] - mention_bounds[:, :, 0] <= self.max_mention_length ) # (bsz, num_filtered_mentions) mention_scores = mention_scores[mention_bounds_mask] mention_scores = mention_scores.view(mention_bounds_mask.size(0), -1) # (bsz, num_filtered_mentions, 2) mention_bounds = mention_bounds[mention_bounds_mask] mention_bounds = mention_bounds.view(mention_bounds_mask.size(0), -1, 2) return mention_scores, mention_bounds class JointELTask(LightningModule): def __init__( self, transform: TransformConf, model: ModelConf, datamodule: DataModuleConf, optim: OptimConf, embeddings_path: str, faiss_index_path: Optional[str] = None, n_retrieve_candidates: int = 10, eval_compure_recall_at: Tuple[int] = (1, 10, 100), warmup_steps: int = 0, load_from_checkpoint: Optional[str] = None, only_train_disambiguation: bool = False, train_el_classifier: bool = True, train_saliency: bool = True, md_threshold: float = 0.2, el_threshold: float = 0.4, saliency_threshold: float = 0.4, use_gpu_index: bool = False, ): super().__init__() # encoder setup self.encoder_conf = model self.optim_conf = optim self.embeddings_path = embeddings_path self.faiss_index_path = faiss_index_path self.n_retrieve_candidates = n_retrieve_candidates self.eval_compure_recall_at = eval_compure_recall_at self.warmup_steps = warmup_steps self.load_from_checkpoint = load_from_checkpoint self.disambiguation_loss = nn.CrossEntropyLoss() self.md_loss = nn.BCEWithLogitsLoss() self.el_loss = nn.BCEWithLogitsLoss() self.saliency_loss = nn.BCEWithLogitsLoss() self.only_train_disambiguation = only_train_disambiguation self.train_el_classifier = train_el_classifier self.train_saliency = train_saliency self.md_threshold = md_threshold self.el_threshold = el_threshold self.saliency_threshold = saliency_threshold self.use_gpu_index = use_gpu_index @staticmethod def _get_encoder_state(state, encoder_name): encoder_state = OrderedDict() for key, value in state["state_dict"].items(): if key.startswith(encoder_name): encoder_state[key[len(encoder_name) + 1 :]] = value return encoder_state def setup_gpu_index(self): gpu_id = self.local_rank flat_config = faiss.GpuIndexFlatConfig() flat_config.device = gpu_id flat_config.useFloat16 = True res = faiss.StandardGpuResources() self.faiss_index = faiss.GpuIndexFlatIP(res, self.embedding_dim, flat_config) self.faiss_index.add(self.embeddings) def setup(self, stage: str): if stage == "test": return # resetting call_configure_sharded_model_hook attribute so that we could configure model self.call_configure_sharded_model_hook = False self.embeddings = torch.load(self.embeddings_path) self.embedding_dim = len(self.embeddings[0]) self.embeddings.requires_grad = False self.encoder = hydra.utils.instantiate( self.encoder_conf, ) self.project_encoder_op = nn.Identity() if self.encoder.embedding_dim != self.embedding_dim: self.project_encoder_op = nn.Sequential( nn.Linear(self.encoder.embedding_dim, self.embedding_dim), nn.LayerNorm(self.embedding_dim), ) self.span_encoder = SpanEncoder( ctxt_output_dim=self.embedding_dim, cand_output_dim=self.embedding_dim, ) self.mention_encoder = MentionScoresHead( encoder_output_dim=self.embedding_dim, ) self.el_encoder = ClassificationHead( ctxt_output_dim=self.embedding_dim, ) if self.train_saliency: self.saliency_encoder = SaliencyClassificationHead( ctxt_output_dim=self.embedding_dim, ) if self.load_from_checkpoint is not None: logger.info(f"Load encoders state from {self.load_from_checkpoint}") with open(self.load_from_checkpoint, "rb") as f: checkpoint = torch.load(f, map_location=torch.device("cpu")) encoder_state = self._get_encoder_state(checkpoint, "encoder") self.encoder.load_state_dict(encoder_state) span_encoder_state = self._get_encoder_state(checkpoint, "span_encoder") self.span_encoder.load_state_dict(span_encoder_state) project_encoder_op_state = self._get_encoder_state( checkpoint, "project_encoder_op" ) if len(project_encoder_op_state) > 0: self.project_encoder_op.load_state_dict(project_encoder_op_state) mention_encoder_state = self._get_encoder_state( checkpoint, "mention_encoder" ) if len(mention_encoder_state) > 0: self.mention_encoder.load_state_dict(mention_encoder_state) el_encoder_state = self._get_encoder_state(checkpoint, "el_encoder") if len(el_encoder_state) > 0: self.el_encoder.load_state_dict(el_encoder_state) saliency_encoder_state = self._get_encoder_state( checkpoint, "saliency_encoder" ) if len(saliency_encoder_state) > 0 and self.train_saliency: self.saliency_encoder.load_state_dict(saliency_encoder_state) self.optimizer = hydra.utils.instantiate(self.optim_conf, self.parameters()) if self.use_gpu_index: logger.info(f"Setup GPU index") self.setup_gpu_index() # self.embeddings = None else: logger.info(f"Setup CPU index") assert self.faiss_index_path is not None self.faiss_index = faiss.read_index(self.faiss_index_path) def sim_score(self, mentions_repr, entities_repr): # bs x emb_dim , bs x emb_dim scores = torch.sum(mentions_repr * entities_repr, 1) return scores def forward( self, text_inputs, attention_mask, mention_offsets, mention_lengths, ): # encode query and contexts _, last_layer = self.encoder(text_inputs, attention_mask) text_encodings = last_layer text_encodings = self.project_encoder_op(text_encodings) mentions_repr = self.span_encoder( text_encodings, mention_offsets, mention_lengths ) return text_encodings, mentions_repr def configure_optimizers(self): return self.optimizer def _disambiguation_training_step( self, mentions_repr, mention_offsets, mention_lengths, entities_ids ): device = mentions_repr.get_device() # flat mentions and entities indices (mentions_num x embedding_dim) flat_mentions_repr = mentions_repr[mention_lengths != 0] flat_entities_ids = entities_ids[mention_lengths != 0] if flat_mentions_repr.shape[0] == 0: return None # obtain positive entities representations if self.use_gpu_index: entities_repr = torch.stack( [ self.faiss_index.reconstruct(flat_id) for flat_id in flat_entities_ids.tolist() ] ).to(device) else: entities_repr = self.embeddings[flat_entities_ids.to("cpu")].to(device) # compute scores for positive entities pos_scores = self.sim_score(flat_mentions_repr, entities_repr) # retrieve candidates indices if self.use_gpu_index: ( _, neg_cand_indices, neg_cand_repr, ) = self.faiss_index.search_and_reconstruct( flat_mentions_repr.detach().cpu().numpy().astype(np.float32), self.n_retrieve_candidates, ) neg_cand_indices = torch.from_numpy(neg_cand_indices).to(device) neg_cand_repr = torch.from_numpy(neg_cand_repr).to(device) else: ( _, neg_cand_indices, ) = self.faiss_index.search( flat_mentions_repr.detach().cpu().numpy().astype(np.float32), self.n_retrieve_candidates, ) # get candidates embeddings neg_cand_repr = ( self.embeddings[neg_cand_indices.flatten()] .reshape( neg_cand_indices.shape[0], # bs neg_cand_indices.shape[1], # n_retrieve_candidates self.embeddings.shape[1], # emb dim ) .to(device) ) neg_cand_indices = torch.from_numpy(neg_cand_indices).to(device) # compute scores (bs x n_retrieve_candidates) neg_cand_scores = torch.bmm( flat_mentions_repr.unsqueeze(1), neg_cand_repr.transpose(1, 2) ).squeeze(1) # zero score for the positive entities neg_cand_scores[ neg_cand_indices.eq( flat_entities_ids.unsqueeze(1).repeat([1, self.n_retrieve_candidates]) ) ] = float("-inf") # append positive scores to neg scores (bs x (1 + n_retrieve_candidates)) scores = torch.hstack([pos_scores.unsqueeze(1), neg_cand_scores]) # cosntruct targets targets = torch.tensor([0] * neg_cand_scores.shape[0]).to(device) loss = self.disambiguation_loss(scores, targets) return loss def _md_training_step( self, text_encodings, text_pad_mask, gold_mention_offsets, gold_mention_lengths, entities_ids, tokens_mapping, ): device = text_encodings.get_device() mention_logits, mention_bounds = self.mention_encoder( text_encodings, text_pad_mask, tokens_mapping, ) gold_mention_ends = gold_mention_offsets + gold_mention_lengths - 1 gold_mention_bounds = torch.cat( [gold_mention_offsets.unsqueeze(-1), gold_mention_ends.unsqueeze(-1)], -1 ) gold_mention_bounds[gold_mention_lengths == 0] = -1 gold_mention_pos_idx = ( ( mention_bounds.unsqueeze(1) - gold_mention_bounds.unsqueeze( 2 ) # (bs, num_mentions, start_pos * end_pos, 2) ) .abs() .sum(-1) == 0 ).nonzero() # (bs, total_possible_spans) gold_mention_binary = torch.zeros( mention_logits.size(), dtype=mention_logits.dtype ).to(device) gold_mention_binary[gold_mention_pos_idx[:, 0], gold_mention_pos_idx[:, 2]] = 1 # prune masked spans mask = mention_logits != float("-inf") masked_mention_logits = mention_logits[mask] masked_gold_mention_binary = gold_mention_binary[mask] return ( self.md_loss(masked_mention_logits, masked_gold_mention_binary), mention_logits, mention_bounds, ) def _el_training_step( self, text_encodings, mention_logits, mention_bounds, gold_mention_offsets, gold_mention_lengths, entities_ids, tokens_mapping, ): """ Train "rejection" head. Inputs: text_encodings: last layer output of text encoder mention_logits: mention scores produced by mention detection head mention_bounds: mention bounds (start, end (inclusive)) by MD head gold_mention_offsets: ground truth mention offsets gold_mention_lengths: ground truth mention lengths entities_ids: entity ids for ground truth mentions tokens_mapping: sentencepiece to text token mapping Returns: el_loss: sum of entity linking loss over all predicted mentions """ device = text_encodings.get_device() # get predicted mention_offsets and mention_bounds by MD model ( chosen_mention_logits, chosen_mention_bounds, chosen_mention_mask, mention_pos_mask, ) = self.mention_encoder.prune_ctxt_mentions( mention_logits, mention_bounds, num_cand_mentions=50, threshold=self.md_threshold, ) mention_offsets = chosen_mention_bounds[:, :, 0] mention_lengths = ( chosen_mention_bounds[:, :, 1] - chosen_mention_bounds[:, :, 0] + 1 ) # get mention representations for predicted mentions mentions_repr = self.span_encoder( text_encodings, mention_offsets, mention_lengths ) mention_lengths[mention_offsets == 0] = 0 # flat mentions and entities indices (mentions_num x embedding_dim) flat_mentions_repr = mentions_repr[mention_lengths != 0] flat_mentions_scores = torch.sigmoid( chosen_mention_logits[mention_lengths != 0] ) flat_mentions_repr = flat_mentions_repr[flat_mentions_scores > 0] # cand_scores, cand_indices = self.faiss_index.search( # flat_mentions_repr.detach().cpu().numpy(), 1 # ) # cand_scores = torch.from_numpy(cand_scores) # cand_indices = torch.from_numpy(cand_indices) cand_scores, cand_indices = self.faiss_index.search( flat_mentions_repr.detach().cpu().numpy().astype(np.float32), 1, ) if self.use_gpu_index: cand_scores = torch.from_numpy(cand_scores) cand_indices = torch.from_numpy(cand_indices) # iterate over predicted and gold mentions to create targets for # predicted mentions targets = [] for ( e_mention_offsets, e_mention_lengths, e_gold_mention_offsets, e_gold_mention_lengths, e_entities, ) in zip( mention_offsets.detach().cpu().tolist(), mention_lengths.detach().cpu().tolist(), gold_mention_offsets.cpu().tolist(), gold_mention_lengths.cpu().tolist(), entities_ids.cpu().tolist(), ): e_gold_targets = { (offset, length): ent for offset, length, ent in zip( e_gold_mention_offsets, e_gold_mention_lengths, e_entities ) } e_targets = [ e_gold_targets.get((offset, length), -1) for offset, length in zip(e_mention_offsets, e_mention_lengths) ] targets.append(e_targets) targets = torch.tensor(targets, device=device) flat_targets = targets[mention_lengths != 0][flat_mentions_scores > 0] md_scores = flat_mentions_scores[flat_mentions_scores > 0].unsqueeze(-1) # flat_entities_repr = self.embeddings[cand_indices.squeeze(1)].to(device) if self.use_gpu_index: flat_entities_repr = torch.stack( [ self.faiss_index.reconstruct(flat_id) for flat_id in cand_indices.squeeze(1).tolist() ] ).to(device) else: flat_entities_repr = self.embeddings[cand_indices.squeeze(1)].to(device) cand_scores = cand_scores.to(device) cand_indices = cand_indices.to(device) predictions = self.el_encoder( flat_mentions_repr, flat_entities_repr, md_scores, cand_scores ).squeeze(1) binary_targets = (flat_targets == cand_indices.squeeze(1)).double() el_loss = self.el_loss(predictions, binary_targets) return el_loss def training_step(self, batch, batch_idx): """ This receives queries, each with mutliple contexts. """ text_inputs = batch["input_ids"] # bs x mention_len text_pad_mask = batch["attention_mask"] gold_mention_offsets = batch["mention_offsets"] # bs x max_mentions_num gold_mention_lengths = batch["mention_lengths"] # bs x max_mentions_num entities_ids = batch["entities"] # bs x max_mentions_num tokens_mapping = batch["tokens_mapping"] # bs x max_tokens_in_input x 2 # mention representations (bs x max_mentions_num x embedding_dim) text_encodings, mentions_repr = self( text_inputs, text_pad_mask, gold_mention_offsets, gold_mention_lengths ) dis_loss = self._disambiguation_training_step( mentions_repr, gold_mention_offsets, gold_mention_lengths, entities_ids, ) if dis_loss is not None: self.log("dis_loss", dis_loss, prog_bar=True) loss = dis_loss if not self.only_train_disambiguation: md_loss, mention_logits, mention_bounds = self._md_training_step( text_encodings, text_pad_mask, gold_mention_offsets, gold_mention_lengths, entities_ids, tokens_mapping, ) self.log("md_loss", md_loss, prog_bar=True) if loss is not None: loss += md_loss else: loss = md_loss if self.train_el_classifier: el_loss = self._el_training_step( text_encodings, mention_logits, mention_bounds, gold_mention_offsets, gold_mention_lengths, entities_ids, tokens_mapping, ) self.log("el_loss", el_loss, prog_bar=True) loss += el_loss self.log("train_loss", loss, prog_bar=True) assert not torch.isnan(loss) return loss def _disambiguation_eval_step( self, mentions_repr, mention_offsets, mention_lengths, entities_ids, ): device = mentions_repr.device # flat mentions and entities indices (mentions_num x embedding_dim) flat_mentions_repr = mentions_repr[mention_lengths != 0] flat_entities_ids = entities_ids[mention_lengths != 0] # obtain positive entities representations # entities_repr = self.embeddings[flat_entities_ids.to("cpu")].to(device) if self.use_gpu_index: entities_repr = torch.stack( [ self.faiss_index.reconstruct(flat_id) for flat_id in flat_entities_ids.tolist() ] ).to(device) else: entities_repr = self.embeddings[flat_entities_ids.to("cpu")].to(device) # compute scores for positive entities pos_scores = self.sim_score(flat_mentions_repr, entities_repr) # candidates to retrieve n_retrieve_candidates = max(self.eval_compure_recall_at) # retrieve negative candidates ids and scores neg_cand_scores, neg_cand_indices = self.faiss_index.search( flat_mentions_repr.detach().cpu().numpy().astype(np.float32), n_retrieve_candidates, ) neg_cand_scores = torch.from_numpy(neg_cand_scores).to(device) neg_cand_indices = torch.from_numpy(neg_cand_indices).to(device) # zero score for the positive entities neg_cand_scores[ neg_cand_indices.eq( flat_entities_ids.unsqueeze(1).repeat([1, n_retrieve_candidates]) ) ] = float("-inf") # append positive scores to neg scores scores = torch.hstack([pos_scores.unsqueeze(1), neg_cand_scores]) # cosntruct targets targets = torch.tensor([0] * neg_cand_scores.shape[0]).to(device) loss = self.disambiguation_loss(scores, targets) # compute recall at (1, 10, 100) flat_entities_ids = flat_entities_ids.cpu().tolist() neg_cand_indices = neg_cand_indices.cpu().tolist() recalls = [] for k in self.eval_compure_recall_at: recall = sum( entity_id in cand_entity_ids[:k] for entity_id, cand_entity_ids in zip( flat_entities_ids, neg_cand_indices ) ) recalls.append(recall) return ( recalls, len(flat_entities_ids), loss, ) def _joint_eval_step( self, text_inputs, text_pad_mask, gold_mention_offsets, gold_mention_lengths, entities_ids, tokens_mapping, ): device = text_inputs.device # encode query and contexts _, last_layer = self.encoder(text_inputs) text_encodings = last_layer text_encodings = self.project_encoder_op(text_encodings) mention_logits, mention_bounds = self.mention_encoder( text_encodings, text_pad_mask, tokens_mapping ) ( chosen_mention_logits, chosen_mention_bounds, chosen_mention_mask, mention_pos_mask, ) = self.mention_encoder.prune_ctxt_mentions( mention_logits, mention_bounds, num_cand_mentions=50, threshold=self.md_threshold, ) mention_offsets = chosen_mention_bounds[:, :, 0] mention_lengths = ( chosen_mention_bounds[:, :, 1] - chosen_mention_bounds[:, :, 0] + 1 ) mentions_repr = self.span_encoder( text_encodings, mention_offsets, mention_lengths ) mention_lengths[mention_offsets == 0] = 0 # flat mentions and entities indices (mentions_num x embedding_dim) flat_mentions_repr = mentions_repr[mention_lengths != 0] mentions_scores = torch.sigmoid(chosen_mention_logits) # flat_mentions_repr = flat_mentions_repr[flat_mentions_scores > 0] # retrieve candidates top-1 ids and scores cand_scores, cand_indices = self.faiss_index.search( flat_mentions_repr.detach().cpu().numpy().astype(np.float32), 1 ) if self.train_el_classifier: # flat_entities_repr = self.embeddings[cand_indices.squeeze(1)].to(device) if self.use_gpu_index: flat_entities_repr = torch.stack( [ self.faiss_index.reconstruct(flat_id) for flat_id in cand_indices.squeeze(1).tolist() ] ).to(device) else: flat_entities_repr = self.embeddings[cand_indices.squeeze(1)].to(device) flat_mentions_scores = mentions_scores[mention_lengths != 0].unsqueeze(-1) cand_scores = torch.from_numpy(cand_scores).to(device) el_scores = torch.sigmoid( self.el_encoder( flat_mentions_repr, flat_entities_repr, flat_mentions_scores, cand_scores, ) ).squeeze(1) gold_mention_offsets = gold_mention_offsets.cpu().tolist() gold_mention_lengths = gold_mention_lengths.cpu().tolist() entities_ids = entities_ids.cpu().tolist() el_targets = [] for offsets, lengths, example_ent_ids in zip( gold_mention_offsets, gold_mention_lengths, entities_ids, ): el_targets.append( { (offset, length): ent_id for offset, length, ent_id in zip(offsets, lengths, example_ent_ids) if length != 0 } ) mention_offsets = mention_offsets.detach().cpu().tolist() mention_lengths = mention_lengths.detach().cpu().tolist() mentions_scores = mentions_scores.detach().cpu().tolist() el_predictions = [] cand_idx = 0 for offsets, lengths, md_scores in zip( mention_offsets, mention_lengths, mentions_scores ): example_predictions = {} for offset, length, md_score in zip(offsets, lengths, md_scores): if length != 0: if md_score >= self.md_threshold: if ( not self.train_el_classifier or el_scores[cand_idx] >= self.el_threshold ): example_predictions[(offset, length)] = cand_indices[ cand_idx ][0] cand_idx += 1 el_predictions.append(example_predictions) return el_targets, el_predictions def _eval_step(self, batch, batch_idx): text_inputs = batch["input_ids"] # bs x mention_len text_pad_mask = batch["attention_mask"] mention_offsets = batch["mention_offsets"] # bs x max_mentions_num mention_lengths = batch["mention_lengths"] # bs x max_mentions_num entities_ids = batch["entities"] # bs x max_mentions_num tokens_mapping = batch["tokens_mapping"] if self.only_train_disambiguation: text_encodings, mentions_repr = self( text_inputs, text_pad_mask, mention_offsets, mention_lengths ) return self._disambiguation_eval_step( mentions_repr, mention_offsets, mention_lengths, entities_ids, ) return self._joint_eval_step( text_inputs, text_pad_mask, mention_offsets, mention_lengths, entities_ids, tokens_mapping, ) def _compute_disambiguation_metrics(self, outputs, log_prefix): total_recalls = [0] * len(self.eval_compure_recall_at) total_ent_count = 0 total_loss = 0 for recalls, count, loss in outputs: for idx in range(len(total_recalls)): total_recalls[idx] += recalls[idx] total_ent_count += count total_loss += loss metrics = { log_prefix + "_ent_count": total_ent_count, log_prefix + "_loss": total_loss, } for idx, recall_at in enumerate(self.eval_compure_recall_at): metrics[log_prefix + f"_recall_at_{recall_at}"] = ( total_recalls[idx] / total_ent_count ) return metrics @staticmethod def calculate_classification_metrics(targets, predictions): tp, fp, support = 0, 0, 0 boe_tp, boe_fp, boe_support = 0, 0, 0 for example_targets, example_predictions in zip(targets, predictions): for pos, ent in example_targets.items(): support += 1 if pos in example_predictions and example_predictions[pos] == ent: tp += 1 for pos, ent in example_predictions.items(): if pos not in example_targets or example_targets[pos] != ent: fp += 1 example_targets_set = set(example_targets.values()) example_predictions_set = set(example_predictions.values()) for ent in example_targets_set: boe_support += 1 if ent in example_predictions_set: boe_tp += 1 for ent in example_predictions_set: if ent not in example_targets_set: boe_fp += 1 def compute_f1_p_r(tp, fp, fn): precision = tp / (tp + fp) if (tp + fp) > 0 else 0 recall = tp / (tp + fn) if (tp + fn) > 0 else 0 f1 = 2 * tp / (2 * tp + fp + fn) if (2 * tp + fp + fn) > 0 else 0 return f1, precision, recall fn = support - tp boe_fn = boe_support - boe_tp f1, precision, recall = compute_f1_p_r(tp, fp, fn) boe_f1, boe_precision, boe_recall = compute_f1_p_r(boe_tp, boe_fp, boe_fn) return ClassificationMetrics( f1=f1, precision=precision, recall=recall, support=support, tp=tp, fp=fp, fn=fn, boe_f1=boe_f1, boe_precision=boe_precision, boe_recall=boe_recall, boe_support=boe_support, boe_tp=boe_tp, boe_fp=boe_fp, boe_fn=boe_fn, ) def _compute_el_metrics(self, outputs, log_prefix): el_targets = [] el_predictions = [] for ( batch_el_targets, batch_el_predictions, ) in outputs: el_targets.extend(batch_el_targets) el_predictions.extend(batch_el_predictions) el_metrics = self.calculate_classification_metrics(el_targets, el_predictions) metrics = { log_prefix + "_f1": el_metrics.f1, log_prefix + "_precision": el_metrics.precision, log_prefix + "_recall": el_metrics.recall, log_prefix + "_support": el_metrics.support, log_prefix + "_tp": el_metrics.tp, log_prefix + "_fp": el_metrics.fp, log_prefix + "_fn": el_metrics.fn, log_prefix + "_boe_f1": el_metrics.boe_f1, log_prefix + "_boe_precision": el_metrics.boe_precision, log_prefix + "_boe_recall": el_metrics.boe_recall, log_prefix + "_boe_support": el_metrics.boe_support, log_prefix + "_boe_tp": el_metrics.boe_tp, log_prefix + "_boe_fp": el_metrics.boe_fp, log_prefix + "_boe_fn": el_metrics.boe_fn, } return metrics def _eval_epoch_end(self, outputs, log_prefix="valid"): if self.only_train_disambiguation: metrics = self._compute_disambiguation_metrics(outputs, log_prefix) else: metrics = self._compute_el_metrics(outputs, log_prefix) print("EVAL:") print(metrics) self.log_dict(metrics, on_epoch=True, sync_dist=True) def validation_step(self, batch, batch_idx): return self._eval_step(batch, batch_idx) def validation_epoch_end(self, valid_outputs): self._eval_epoch_end(valid_outputs) def test_step(self, batch, batch_idx): return self._eval_step(batch, batch_idx) def test_epoch_end(self, test_outputs): self._eval_epoch_end(test_outputs, "test") def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None: """ This hook will be called before loading state_dict from a checkpoint. setup("fit") will build the model before loading state_dict Args: checkpoint: A dictionary with variables from the checkpoint. """ self.setup("fit")
BELA-main
bela/task/joint_el_task.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from pathlib import Path import yaml from hydra.experimental import compose, initialize_config_module import hydra import torch from tqdm import tqdm import json import faiss import logging from typing import Union, List, Dict, Any, Tuple logger = logging.getLogger(__name__) def load_file(path: Union[str, Path]) -> List[Dict[str, Any]]: all_data = [] with open(path, 'rt') as fd: for line in tqdm(fd): data = json.loads(line) all_data.append(data) return all_data def convert_sp_to_char_offsets( text: str, sp_offsets: List[int], sp_lengths: List[int], sp_tokens_boundaries: List[List[int]], ) -> Tuple[List[int], List[int]]: """ Function convert sentecepiece offsets and lengths to character level offsets and lengths for a given `text`. """ char_offsets: List[int] = [] char_lengths: List[int] = [] text_utf8_chars: List[str] = [char for char in text] for sp_offset, sp_length in zip(sp_offsets, sp_lengths): # sp_offsets include cls_token, while boundaries doesn't if sp_offset == 0: continue sp_offset = sp_offset - 1 char_offset = sp_tokens_boundaries[sp_offset][0] char_end = sp_tokens_boundaries[sp_offset + sp_length - 1][1] # sp token boundaries include whitespaces, so remove them while text_utf8_chars[char_offset].isspace(): char_offset += 1 assert char_offset < len(text_utf8_chars) char_offsets.append(char_offset) char_lengths.append(char_end - char_offset) return char_offsets, char_lengths class ModelEval: def __init__( self, checkpoint_path, config_name="joint_el_mel", embeddings_path=None, ent_catalogue_idx_path=None ): self.device = torch.device("cuda:0") logger.info("Create task") with initialize_config_module("bela/conf"): cfg = compose(config_name=config_name) cfg.task.load_from_checkpoint = checkpoint_path cfg.task.embeddings_path = embeddings_path or cfg.task.embeddings_path cfg.datamodule.ent_catalogue_idx_path = ent_catalogue_idx_path or cfg.datamodule.ent_catalogue_idx_path cfg.datamodule.train_path = None cfg.datamodule.val_path = None cfg.datamodule.test_path = None self.checkpoint_path = checkpoint_path self.transform = hydra.utils.instantiate(cfg.task.transform) datamodule = hydra.utils.instantiate(cfg.datamodule, transform=self.transform) self.task = hydra.utils.instantiate(cfg.task, datamodule=datamodule, _recursive_=False) self.task.setup("train") self.task = self.task.eval() self.task = self.task.to(self.device) self.embeddings = self.task.embeddings self.faiss_index = self.task.faiss_index logger.info("Create ent index") self.ent_idx = [] for ent in datamodule.ent_catalogue.idx: self.ent_idx.append(ent) def create_gpu_index(self, gpu_id=0): flat_config = faiss.GpuIndexFlatConfig() flat_config.device = gpu_id flat_config.useFloat16 = True res = faiss.StandardGpuResources() self.faiss_index = faiss.GpuIndexFlatIP(res, embeddings.shape[1], flat_config) self.faiss_index.add(self.embeddings) def lookup( self, query: torch.Tensor, ): scores, indices = self.faiss_index.search(query, k=1) return scores.squeeze(-1).to(self.device), indices.squeeze(-1).to(self.device) def process_batch(self, texts): batch: Dict[str, Any] = {"texts": texts} model_inputs = self.transform(batch) token_ids = model_inputs["input_ids"].to(self.device) text_pad_mask = model_inputs["attention_mask"].to(self.device) tokens_mapping = model_inputs["tokens_mapping"].to(self.device) sp_tokens_boundaries = model_inputs["sp_tokens_boundaries"].tolist() with torch.no_grad(): _, last_layer = self.task.encoder(token_ids) text_encodings = last_layer text_encodings = self.task.project_encoder_op(text_encodings) mention_logits, mention_bounds = self.task.mention_encoder( text_encodings, text_pad_mask, tokens_mapping ) ( chosen_mention_logits, chosen_mention_bounds, chosen_mention_mask, mention_pos_mask, ) = self.task.mention_encoder.prune_ctxt_mentions( mention_logits, mention_bounds, num_cand_mentions=50, threshold=self.task.md_threshold, ) mention_offsets = chosen_mention_bounds[:, :, 0] mention_lengths = ( chosen_mention_bounds[:, :, 1] - chosen_mention_bounds[:, :, 0] + 1 ) mention_lengths[mention_offsets == 0] = 0 mentions_repr = self.task.span_encoder( text_encodings, mention_offsets, mention_lengths ) # flat mentions and entities indices (mentions_num x embedding_dim) flat_mentions_repr = mentions_repr[mention_lengths != 0] mentions_scores = torch.sigmoid(chosen_mention_logits) # retrieve candidates top-1 ids and scores cand_scores, cand_indices = self.lookup( flat_mentions_repr.detach() ) entities_repr = self.embeddings[cand_indices.to(self.embeddings.device)].to(self.device) chosen_mention_limits: List[int] = ( chosen_mention_mask.int().sum(-1).detach().cpu().tolist() ) flat_mentions_scores = mentions_scores[mention_lengths != 0].unsqueeze(-1) cand_scores = cand_scores.unsqueeze(-1) el_scores = torch.sigmoid( self.task.el_encoder( flat_mentions_repr, entities_repr, flat_mentions_scores, cand_scores, ) ).squeeze(1) predictions = [] cand_idx = 0 example_idx = 0 for offsets, lengths, md_scores in zip( mention_offsets, mention_lengths, mentions_scores ): ex_sp_offsets = [] ex_sp_lengths = [] ex_entities = [] ex_md_scores = [] ex_el_scores = [] for offset, length, md_score in zip(offsets, lengths, md_scores): if length != 0: if md_score >= self.task.md_threshold: ex_sp_offsets.append(offset.detach().cpu().item()) ex_sp_lengths.append(length.detach().cpu().item()) ex_entities.append(self.ent_idx[cand_indices[cand_idx].detach().cpu().item()]) ex_md_scores.append(md_score.item()) ex_el_scores.append(el_scores[cand_idx].item()) cand_idx += 1 char_offsets, char_lengths = convert_sp_to_char_offsets( texts[example_idx], ex_sp_offsets, ex_sp_lengths, sp_tokens_boundaries[example_idx], ) predictions.append( { "offsets": char_offsets, "lengths": char_lengths, "entities": ex_entities, "md_scores": ex_md_scores, "el_scores": ex_el_scores, } ) example_idx += 1 return predictions def process_disambiguation_batch(self, texts, mention_offsets, mention_lengths, entities): batch: Dict[str, Any] = { "texts": texts, "mention_offsets": mention_offsets, "mention_lengths": mention_lengths, "entities": entities, } model_inputs = self.transform(batch) token_ids = model_inputs["input_ids"].to(self.device) mention_offsets = model_inputs["mention_offsets"] mention_lengths = model_inputs["mention_lengths"] tokens_mapping = model_inputs["tokens_mapping"].to(self.device) sp_tokens_boundaries = model_inputs["sp_tokens_boundaries"].tolist() with torch.no_grad(): _, last_layer = self.task.encoder(token_ids) text_encodings = last_layer text_encodings = self.task.project_encoder_op(text_encodings) mentions_repr = self.task.span_encoder( text_encodings, mention_offsets, mention_lengths ) flat_mentions_repr = mentions_repr[mention_lengths != 0] # retrieve candidates top-1 ids and scores cand_scores, cand_indices = self.lookup( flat_mentions_repr.detach() ) predictions = [] cand_idx = 0 example_idx = 0 for offsets, lengths in zip( mention_offsets, mention_lengths, ): ex_sp_offsets = [] ex_sp_lengths = [] ex_entities = [] ex_dis_scores = [] for offset, length in zip(offsets, lengths): if length != 0: ex_sp_offsets.append(offset.detach().cpu().item()) ex_sp_lengths.append(length.detach().cpu().item()) ex_entities.append(self.ent_idx[cand_indices[cand_idx].detach().cpu().item()]) ex_dis_scores.append(cand_scores[cand_idx].detach().cpu().item()) cand_idx += 1 char_offsets, char_lengths = convert_sp_to_char_offsets( texts[example_idx], ex_sp_offsets, ex_sp_lengths, sp_tokens_boundaries[example_idx], ) predictions.append({ "offsets": char_offsets, "lengths": char_lengths, "entities": ex_entities, "scores": ex_dis_scores }) example_idx+= 1 return predictions def get_predictions(self, test_data, batch_size=256): all_predictions = [] for batch_start in tqdm(range(0,len(test_data),batch_size)): batch = test_data[batch_start:batch_start+batch_size] texts = [example['original_text'] for example in batch] predictions = self.process_batch(texts) all_predictions.extend(predictions) return all_predictions def get_disambiguation_predictions(self, test_data, batch_size=256): all_predictions = [] for batch_start in tqdm(range(0,len(test_data),batch_size)): batch = test_data[batch_start:batch_start+batch_size] texts = [example['original_text'] for example in batch] mention_offsets = [[offset for _,_,_,_,offset,_ in example['gt_entities']] for example in batch] mention_lengths = [[length for _,_,_,_,_,length in example['gt_entities']] for example in batch] entities = [[0 for _,_,_,_,_,_ in example['gt_entities']] for example in batch] predictions = self.process_disambiguation_batch(texts, mention_offsets, mention_lengths, entities) all_predictions.extend(predictions) return all_predictions @staticmethod def compute_scores(data, predictions, md_threshold=0.2, el_threshold=0.05): tp, fp, support = 0, 0, 0 tp_boe, fp_boe, support_boe = 0, 0, 0 predictions_per_example = [] for example, example_predictions in zip(data, predictions): example_targets = { (offset,length):ent_id for _,_,ent_id,_,offset,length in example['gt_entities'] } example_predictions = { (offset, length):ent_id for offset, length, ent_id, md_score, el_score in zip( example_predictions['offsets'], example_predictions['lengths'], example_predictions['entities'], example_predictions['md_scores'], example_predictions['el_scores'], ) if (el_score > el_threshold and md_score > md_threshold) } predictions_per_example.append((len(example_targets), len(example_predictions))) for pos, ent in example_targets.items(): support += 1 if pos in example_predictions and example_predictions[pos] == ent: tp += 1 for pos, ent in example_predictions.items(): if pos not in example_targets or example_targets[pos] != ent: fp += 1 example_targets_set = set(example_targets.values()) example_predictions_set = set(example_predictions.values()) for ent in example_targets_set: support_boe += 1 if ent in example_predictions_set: tp_boe += 1 for ent in example_predictions_set: if ent not in example_targets_set: fp_boe += 1 def safe_division(a, b): if b == 0: return 0 else: return a / b def compute_f1_p_r(tp, fp, fn): precision = safe_division(tp, (tp + fp)) recall = safe_division(tp, (tp + fn)) f1 = safe_division(2 * tp, (2 * tp + fp + fn)) return f1, precision, recall fn = support - tp fn_boe = support_boe - tp_boe return compute_f1_p_r(tp, fp, fn), compute_f1_p_r(tp_boe, fp_boe, fn_boe)
BELA-main
bela/evaluation/model_eval.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field from typing import List, Any # @manual "//github/facebookresearch/hydra:hydra" from hydra.core.config_store import ConfigStore from omegaconf import MISSING defaults = [ "_self_", {"task": "joint_el_task"}, # Model # {"task/model": "xlmr"}, # Transform # {"task/transform": "joint_el_xlmr_transform"}, # Optim # {"task/optim": "adamw"}, # Data # {"datamodule": "joint_el_datamodule"}, # Trainer # {"trainer": "gpu_1_host"}, {"checkpoint_callback": "default"}, ] @dataclass class MainConfig: defaults: List[Any] = field(default_factory=lambda: defaults) task: Any = MISSING datamodule: Any = MISSING trainer: Any = MISSING test_only: bool = False checkpoint_callback: Any = MISSING cs = ConfigStore.instance() cs.store(name="config", node=MainConfig)
BELA-main
bela/conf/config.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field from . import config @dataclass class TransformConf: pass @dataclass class DataModuleConf: pass @dataclass class OptimConf: pass @dataclass class ModelConf: pass
BELA-main
bela/conf/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from pathlib import Path from itertools import product from tqdm import tqdm import numpy as np from bela.evaluation.model_eval import ModelEval, load_file from bela.utils.prediction_utils import get_predictions_using_windows if __name__ == "__main__": # Finetuned on aida checkpoint_path = "/checkpoints/movb/bela/aida/lightning_logs/version_0/checkpoints/checkpoint_1.ckpt" model_eval = ModelEval(checkpoint_path, config_name="joint_el_mel_new_index") results = {} print(f"{model_eval.checkpoint_path=}") for md_threshold, el_threshold in tqdm(list(product(np.arange(0, 0.6, 0.2), repeat=2))): model_eval.task.md_threshold = md_threshold model_eval.task.el_threshold = el_threshold print(f"{model_eval.task.md_threshold=}") print(f"{model_eval.task.el_threshold=}") test_data_path = "/fsx/louismartin/bela/retrieved_from_aws_backup/ndecao/TACKBP2015/train_bela_format_all_languages.jsonl" print(f"Processing {test_data_path}") test_data = load_file(test_data_path) predictions = get_predictions_using_windows(model_eval, test_data, window_length=256) (f1, precision, recall), (f1_boe, precision_boe, recall_boe) = ModelEval.compute_scores(test_data, predictions) print(f"F1 = {f1:.4f}, precision = {precision:.4f}, recall = {recall:.4f}") print(f"F1 boe = {f1_boe:.4f}, precision = {precision_boe:.4f}, recall = {recall_boe:.4f}") results[(md_threshold, el_threshold)] = (f1, precision, recall), (f1_boe, precision_boe, recall_boe) print(sorted(results.items(), key=lambda x: x[1][0][0], reverse=True)) pickle_path = Path.home() / "tmp/grid_search_thresholds.pkl"
BELA-main
scripts/grid_search_thresholds.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import warnings warnings.filterwarnings('ignore') import yaml from hydra.experimental import compose, initialize_config_module import hydra import torch from tqdm import tqdm import json import faiss import logging from collections import defaultdict from dataclasses import dataclass from typing import Optional, List, Dict, Any, Tuple from bela.transforms.spm_transform import SPMTransform from bela.evaluation.model_eval import ModelEval, load_file from bela.utils.prediction_utils import get_predictions_using_windows, get_sp_transform def evaluate_model_e2e(checkpoint_path, datasets, md_threshold = 0.2, el_threshold = 0.4, embeddings_path=None, ent_catalogue_idx_path=None): print(f"Loading model from checkpoint {checkpoint_path}") model_eval = ModelEval( checkpoint_path=checkpoint_path, config_name="joint_el_mel_new", embeddings_path=embeddings_path, ent_catalogue_idx_path=ent_catalogue_idx_path ) model_eval.task.md_threshold = md_threshold model_eval.task.el_threshold = el_threshold for test_data_path in datasets: print(f"Processing {test_data_path}") test_data = load_file(test_data_path) for sample in test_data: if "data_example_id" in sample: sample["document_id"] = sample["data_example_id"] predictions = get_predictions_using_windows(model_eval, test_data, window_length=254, window_overlap=10, do_merge_predictions=True) (f1, precision, recall), (f1_boe, precision_boe, recall_boe) = ModelEval.compute_scores(test_data, predictions) print(f"F1 = {f1:.4f}, precision = {precision:.4f}, recall = {recall:.4f}") def convert_examples_for_disambiguation(test_data, transform, skip_unknown_ent_ids=False, ent_idx=None): old_max_seq_len = transform.max_seq_len transform.max_seq_len = 10000 new_examples = [] max_mention_token_pos_in_text = 192 skipped_ent_ids = 0 for example in tqdm(test_data): text = example['original_text'] outputs = transform(dict(texts=[text])) sp_token_boundaries = outputs['sp_tokens_boundaries'][0] for _ , _ , ent_id, _ , offset, length in example['gt_entities']: if skip_unknown_ent_ids and ent_idx is not None and ent_id not in ent_idx: skipped_ent_ids += 1 continue token_pos = 0 while token_pos < len(sp_token_boundaries) and offset >= sp_token_boundaries[token_pos][1]: token_pos += 1 new_text = text new_offset = offset if token_pos > max_mention_token_pos_in_text: shift = sp_token_boundaries[token_pos-max_mention_token_pos_in_text][0].item() new_text = new_text[shift:] new_offset = new_offset - shift assert text[offset:offset+length] == new_text[new_offset:new_offset+length] new_example = { 'original_text': new_text, 'gt_entities': [[0,0,ent_id,'wiki',new_offset,length]], } new_examples.append(new_example) transform.max_seq_len = old_max_seq_len return new_examples, skipped_ent_ids def metrics_disambiguation(test_data, predictions): support = 0 correct = 0 for example_idx, (example, prediction) in tqdm(enumerate(zip(test_data, predictions))): if len(prediction['entities']) == 0: continue target = example['gt_entities'][0][2] prediction = prediction['entities'][0] correct += (target == prediction) support += 1 accuracy = correct/support return accuracy, support def evaluate_model_dis(checkpoint_path, datasets, embeddings_path=None, ent_catalogue_idx_path=None): print(f"Loading model from checkpoint {checkpoint_path}") model_eval = ModelEval( checkpoint_path=checkpoint_path, config_name="joint_el_mel_new", embeddings_path=embeddings_path, ent_catalogue_idx_path=ent_catalogue_idx_path ) for test_data_path in datasets: print(f"Processing {test_data_path}") test_data = load_file(test_data_path) test_data_for_disambgiation, skipped = convert_examples_for_disambiguation(test_data, model_eval.transform) predictions = model_eval.get_disambiguation_predictions(test_data_for_disambgiation) accuracy, support = metrics_disambiguation(test_data_for_disambgiation, predictions) print(f"Accuracty {accuracy}, support {support}, skipped {skipped}") embeddings_path = "./models/embeddings.pt" ent_catalogue_idx_path = "./models/index.txt" print("End-to-end EL performance on Mewsli-9’-test (under-labeled for end-to-end linking)") checkpoint_path = "./models/model_mewsli.ckpt" datasets = [ './data/mewsli-9-splitted/ar.jsonl_test', './data/mewsli-9-splitted/de.jsonl_test', './data/mewsli-9-splitted/en.jsonl_test', './data/mewsli-9-splitted/es.jsonl_test', './data/mewsli-9-splitted/fa.jsonl_test', './data/mewsli-9-splitted/ja.jsonl_test', './data/mewsli-9-splitted/sr.jsonl_test', './data/mewsli-9-splitted/ta.jsonl_test', './data/mewsli-9-splitted/tr.jsonl_test', ] evaluate_model_e2e( checkpoint_path=checkpoint_path, datasets=datasets, embeddings_path=embeddings_path, ent_catalogue_idx_path=ent_catalogue_idx_path, ) print("End-to-end EL performance on Mewsli-9’-test (labeled for end-to-end linking)") checkpoint_path = "./models/model_e2e.ckpt" datasets = [ './data/mewsli-9-labelled/ar_labelled.jsonl', './data/mewsli-9-labelled/de_labelled.jsonl', './data/mewsli-9-labelled/en_labelled.jsonl', './data/mewsli-9-labelled/es_labelled.jsonl', './data/mewsli-9-labelled/fa_labelled.jsonl', './data/mewsli-9-labelled/ja_labelled.jsonl', './data/mewsli-9-labelled/sr_labelled.jsonl', './data/mewsli-9-labelled/ta_labelled.jsonl', './data/mewsli-9-labelled/tr_labelled.jsonl', ] evaluate_model_e2e( checkpoint_path=checkpoint_path, datasets=datasets, embeddings_path=embeddings_path, ent_catalogue_idx_path=ent_catalogue_idx_path, ) print("End-to-end results on AIDA") checkpoint_path = "./models/model_aida.ckpt" datasets = [ './data/aida/aida_testb.jsonl_wikidata', ] evaluate_model_e2e( checkpoint_path=checkpoint_path, datasets=datasets, embeddings_path=embeddings_path, ent_catalogue_idx_path=ent_catalogue_idx_path, ) print("ED accuracy on Mewsli-9") checkpoint_path = "./models/model_wiki.ckpt" datasets = [ './data/mewsli-9/ar.jsonl', './data/mewsli-9/de.jsonl', './data/mewsli-9/en.jsonl', './data/mewsli-9/es.jsonl', './data/mewsli-9/fa.jsonl', './data/mewsli-9/ja.jsonl', './data/mewsli-9/sr.jsonl', './data/mewsli-9/ta.jsonl', './data/mewsli-9/tr.jsonl', ] evaluate_model_dis( checkpoint_path=checkpoint_path, datasets=datasets, embeddings_path=embeddings_path, ent_catalogue_idx_path=ent_catalogue_idx_path, )
BELA-main
scripts/evaluate.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import logging import os import pickle import re import pandas import jsonlines from mgenre.utils import chunk_it, get_wikidata_ids from tqdm.auto import tqdm, trange if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--input_dir", type=str, default="/checkpoint/ndecao/xlwikifier-wikidata/data", ) parser.add_argument( "--output_dir", type=str, default="/checkpoint/ndecao/TR2016", ) parser.add_argument( "--base_wikidata", type=str, default="/checkpoint/ndecao/wikidata", ) parser.add_argument( "-d", "--debug", help="Print lots of debugging statements", action="store_const", dest="loglevel", const=logging.DEBUG, default=logging.WARNING, ) parser.add_argument( "-v", "--verbose", help="Be verbose", action="store_const", dest="loglevel", const=logging.INFO, ) args, _ = parser.parse_known_args() logging.basicConfig(level=logging.DEBUG) filename = os.path.join(args.base_wikidata, "lang_title2wikidataID.pkl") logging.info("Loading {}".format(filename)) with open(filename, "rb") as f: lang_title2wikidataID = pickle.load(f) filename = os.path.join(args.base_wikidata, "lang_redirect2title.pkl") logging.info("Loading {}".format(filename)) with open(filename, "rb") as f: lang_redirect2title = pickle.load(f) filename = os.path.join(args.base_wikidata, "label_or_alias2wikidataID.pkl") logging.info("Loading {}".format(filename)) with open(filename, "rb") as f: label_or_alias2wikidataID = pickle.load(f) for lang in os.listdir(args.input_dir): logging.info("Converting {}".format(lang)) for split in ("test", "train"): kilt_dataset = [] for filename in tqdm( set( ".".join(e.split(".")[:-1]) for e in os.listdir(os.path.join(args.input_dir, lang, split)) ) ): with open( os.path.join(args.input_dir, lang, split, filename + ".txt") ) as f: doc = f.read() with open( os.path.join(args.input_dir, lang, split, filename + ".mentions") ) as f: mentions = f.readlines() for i, mention in enumerate(mentions): start, end, _, title, is_hard = mention.strip().split("\t") start, end, is_hard = int(start), int(end), bool(int(is_hard)) wikidataIDs = get_wikidata_ids( title.replace("_", " "), lang, lang_title2wikidataID, lang_redirect2title, label_or_alias2wikidataID, )[0] meta = { "left_context": doc[:start].strip(), "mention": doc[start:end].strip(), "right_context": doc[end:].strip(), } item = { "id": "TR2016-{}-{}-{}".format(lang, filename, i), "input": ( meta["left_context"] + " [START] " + meta["mention"] + " [END] " + meta["right_context"] ), "output": [{"answer": list(wikidataIDs)}], "meta": meta, "is_hard": is_hard, } kilt_dataset.append(item) filename = os.path.join( args.output_dir, "{}-kilt-{}.jsonl".format(lang, split) ) logging.info("Saving {}".format(filename)) with jsonlines.open(filename, "w") as f: f.write_all(kilt_dataset) kilt_dataset = [e for e in kilt_dataset if e["is_hard"]] filename = os.path.join( args.output_dir, "{}-hard.jsonl".format(filename.split(".")[0]) ) logging.info("Saving {}".format(filename)) with jsonlines.open(filename, "w") as f: f.write_all(kilt_dataset)
BELA-main
preprocessing_scripts/preprocess_TR2016.py
BELA-main
mblink/__init__.py