python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import hydra from mblink.conf.config import MainConfig from omegaconf import OmegaConf from pytorch_lightning.trainer import Trainer @hydra.main(config_path="conf", config_name="config") def main(cfg: MainConfig): print(OmegaConf.to_yaml(cfg)) os.environ["NCCL_NSOCKS_PERTHREAD"] = "4" os.environ["NCCL_SOCKET_NTHREADS"] = "2" if cfg.get("debug_mode"): os.environ["CUDA_LAUNCH_BLOCKING"] = "1" os.environ["NCCL_BLOCKING_WAIT"] = "1" os.environ["PL_SKIP_CPU_COPY_ON_DDP_TEARDOWN"] = "1" task = hydra.utils.instantiate(cfg.task, _recursive_=False) assert cfg.task.model.model_path == cfg.task.transform.model_path transform = hydra.utils.instantiate(cfg.task.transform) datamodule = hydra.utils.instantiate(cfg.datamodule, transform=transform) checkpoint_callback = hydra.utils.instantiate(cfg.checkpoint_callback) trainer = Trainer(**cfg.trainer, callbacks=[checkpoint_callback]) if cfg.test_only: ckpt_path = cfg.task.load_from_checkpoint trainer.test( model=task, ckpt_path=ckpt_path, verbose=True, datamodule=datamodule, ) else: trainer.fit(task, datamodule=datamodule) print(f"*** Best model path is {checkpoint_callback.best_model_path}") trainer.test( model=None, ckpt_path="best", verbose=True, datamodule=datamodule, ) if __name__ == "__main__": main()
BELA-main
mblink/main.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import logging import mmap from typing import List import torch from pytorch_lightning import LightningDataModule from mblink.utils.utils import ( EntityCatalogueType, EntityCatalogue, ElDatasetType, MultilangEntityCatalogue, NegativesStrategy, order_entities, ) from mblink.transforms.blink_transform import BlinkTransform logger = logging.getLogger() class ElMatchaDataset(torch.utils.data.Dataset): """ A memory mapped dataset for EL in Matcha format Each example in this dataset contains several mentions. We laso filter out mentions, that are not present in entity catalogue """ def __init__( self, path, ent_catalogue, negatives=False, negatives_strategy="higher" ): self.ent_catalogue = ent_catalogue self.negatives = negatives self.negatives_strategy = NegativesStrategy(negatives_strategy) self.file = open(path, mode="r") self.mm = mmap.mmap(self.file.fileno(), 0, prot=mmap.PROT_READ) self.offsets = [] self.count = 0 logger.info(f"Build mmap index for {path}") line = self.mm.readline() offset = 0 while line: data = json.loads(line) for gt_ent_idx, gt_entity in enumerate(data["gt_entities"]): ent = gt_entity[2] if ent in self.ent_catalogue: self.offsets.append((offset, gt_ent_idx)) self.count += 1 offset = self.mm.tell() line = self.mm.readline() def __len__(self): return self.count def __getitem__(self, index): offset, gt_ent_idx = self.offsets[index] self.mm.seek(offset) line = self.mm.readline() data = json.loads(line) _, _, gt_entity, _, offset, length = data["gt_entities"][gt_ent_idx] entity_index, entity_tokens = self.ent_catalogue[gt_entity] text = data['original_text'] result = { "context_left": " ".join(text[:offset]), "mention": " ".join(text[offset : offset + length]), "context_right": " ".join(text[offset + length :]), "entity_id": gt_entity, "entity_index": entity_index, "entity_tokens": entity_tokens, } if self.negatives: assert "gt_hard_negatives" in data neg_entities_ids = [] neg_entities_indexes = [] neg_entities_tokens = [] for ent in data["gt_hard_negatives"][gt_ent_idx]: if ( ent == gt_entity and self.negatives_strategy == NegativesStrategy.HIGHER ): break entity_index, entity_tokens = self.ent_catalogue[ent] neg_entities_ids.append(ent) neg_entities_indexes.append(entity_index) neg_entities_tokens.append(entity_tokens) result["neg_entities_ids"] = neg_entities_ids result["neg_entities_indexes"] = neg_entities_indexes result["neg_entities_tokens"] = neg_entities_tokens return result class ElBlinkDataset(torch.utils.data.Dataset): """ A memory mapped dataset for EL in BLINK format Each example in this dataset contains one mention. We laso filter out mentions, that are not present in entity catalogue """ def __init__( self, path, ent_catalogue, negatives=False, negatives_strategy="higher" ): self.ent_catalogue = ent_catalogue self.file = open(path, mode="r") self.mm = mmap.mmap(self.file.fileno(), 0, prot=mmap.PROT_READ) self.offsets = [] self.count = 0 logger.info(f"Build mmap index for {path}") line = self.mm.readline() offset = 0 while line: data = json.loads(line) if data["entity_id"] in self.ent_catalogue: self.offsets.append(offset) self.count += 1 offset = self.mm.tell() line = self.mm.readline() def __len__(self): return self.count def __getitem__(self, index): offset = self.offsets[index] self.mm.seek(offset) line = self.mm.readline() data = json.loads(line) entity_id = data["entity_id"] entity_index, entity_tokens = self.ent_catalogue[entity_id] return { "context_left": data["context_left"], "mention": data["mention"], "context_right": data["context_right"], "entity_id": entity_id, "entity_index": entity_index, "entity_tokens": entity_tokens, } class ElBiEncoderDataModule(LightningDataModule): """ Read data from EL datatset and prepare mention/entity pairs tensors """ def __init__( self, transform: BlinkTransform, # Dataset args train_path: str, val_path: str, test_path: str, ent_catalogue_path: str, ent_catalogue_idx_path: str, dataset_type: str = "matcha", ent_catalogue_type: str = "simple", batch_size: int = 2, negatives: bool = False, negatives_strategy: str = "higher", max_negative_entities_in_batch: int = 0, drop_last: bool = False, # drop last batch if len(dataset) not multiple of batch_size num_workers: int = 0, # increasing this bugs out right now *args, **kwargs, ): super().__init__() self.batch_size = batch_size self.negatives = negatives self.max_negative_entities_in_batch = max_negative_entities_in_batch self.drop_last = drop_last self.num_workers = num_workers self.transform = transform ent_catalogue_type = EntityCatalogueType(ent_catalogue_type) if ent_catalogue_type == EntityCatalogueType.SIMPLE: self.ent_catalogue = EntityCatalogue( ent_catalogue_path, ent_catalogue_idx_path ) elif ent_catalogue_type == EntityCatalogueType.MULTI: self.ent_catalogue = MultilangEntityCatalogue( ent_catalogue_path, ent_catalogue_idx_path ) else: raise NotImplementedError( f"Unknown ent_catalogue_type {ent_catalogue_type}" ) dataset_type = ElDatasetType(dataset_type) if dataset_type == ElDatasetType.MATCHA: dataset_cls = ElMatchaDataset elif dataset_type == ElDatasetType.BLINK: dataset_cls = ElBlinkDataset else: raise NotImplementedError(f"Unknown dataset_type {dataset_type}") self.datasets = { "train": dataset_cls( train_path, self.ent_catalogue, negatives=negatives, negatives_strategy=negatives_strategy, ), "valid": dataset_cls(val_path, self.ent_catalogue), "test": dataset_cls(test_path, self.ent_catalogue), } def train_dataloader(self): return torch.utils.data.DataLoader( self.datasets["train"], batch_size=self.batch_size, num_workers=self.num_workers, collate_fn=self.collate_train, ) def val_dataloader(self): return torch.utils.data.DataLoader( self.datasets["valid"], shuffle=False, batch_size=self.batch_size, num_workers=self.num_workers, collate_fn=self.collate_eval, ) def test_dataloader(self): return torch.utils.data.DataLoader( self.datasets["test"], shuffle=False, batch_size=self.batch_size, num_workers=self.num_workers, collate_fn=self.collate_eval, ) def collate_eval(self, batch): return self.collate(batch, False) def collate_train(self, batch): return self.collate(batch, True) def collate(self, batch, is_train): """ Prepare mention, entity tokens and target tensors """ if self.negatives and is_train: ( left_context, mention, right_context, _, entity_ids, entity_token_ids, _, neg_entities_ids, neg_entities_tokens, ) = zip(*[item.values() for item in batch]) else: left_context, mention, right_context, _, entity_ids, entity_token_ids = zip( *[item.values() for item in batch] ) neg_entities_ids = None neg_entities_tokens = None entity_token_ids, entity_ids, targets = order_entities( entity_token_ids, entity_ids, neg_entities_ids, neg_entities_tokens, self.max_negative_entities_in_batch, ) pad_length = ( len(batch) + self.max_negative_entities_in_batch - len(entity_token_ids) ) entity_tensor_mask = [1] * len(entity_token_ids) + [0] * pad_length entity_token_ids += [ [self.transform.bos_idx, self.transform.eos_idx] ] * pad_length entity_ids += [0] * pad_length mention_tensors, entity_tensors = self.transform( { "left_context": left_context, "mention": mention, "right_context": right_context, "token_ids": entity_token_ids, } ) entity_ids = torch.tensor(entity_ids, dtype=torch.long) targets = torch.tensor(targets, dtype=torch.long) entity_tensor_mask = torch.tensor(entity_tensor_mask, dtype=torch.long) return { "mentions": mention_tensors, "entities": entity_tensors, "entity_ids": entity_ids, "targets": targets, "entity_tensor_mask": entity_tensor_mask, }
BELA-main
mblink/datamodule/blink_datamodule.py
BELA-main
mblink/tests/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import os import tempfile import random import torch import h5py import numpy as np import torch from mblink.datamodule.blink_datamodule import ( ElBlinkDataset, ElMatchaDataset, ElBiEncoderDataModule, EntityCatalogue, MultilangEntityCatalogue, ) from mblink.transforms.blink_transform import ( BlinkTransform, ) from mblink.utils.utils import assert_equal_tensor_dict class TestBiEncoderELDataModule(unittest.TestCase): def setUp(self): random.seed(0) torch.manual_seed(0) self.base_dir = os.path.join(os.path.dirname(__file__), "data") self.data_path = os.path.join(self.base_dir, "el_matcha.jsonl") self.ent_catalogue_path = os.path.join(self.base_dir, "el_catalogue.h5") self.ent_catalogue_idx_path = os.path.join(self.base_dir, "el_catalogue.idx") self.transform = BlinkTransform( model_path="bert-large-uncased", max_mention_len=12, max_entity_len=64, add_eos_bos_to_entity=True, ) self.tokens = { "London": [ 2414, 2003, 1996, 3007, 1998, 2922, 2103, 1997, 2563, 1998, 1996, 2142, 2983, ], "Chelsea F.C.": [ 9295, 2374, 2252, 2003, 2019, 2394, 2658, 2374, 2252, 2241, 1999, 21703, 1010, 2414, 1012, ], } def test_ent_catalogue(self): ent_catalogue = EntityCatalogue( self.ent_catalogue_path, self.ent_catalogue_idx_path, ) self.assertIn("London", ent_catalogue) self.assertIn("Chelsea F.C.", ent_catalogue) self.assertNotIn("Moscow", ent_catalogue) idx, data = ent_catalogue["London"] self.assertEqual(idx, 0) self.assertSequenceEqual(data, self.tokens["London"]) idx, data = ent_catalogue["Chelsea F.C."] self.assertEqual(idx, 1) self.assertSequenceEqual(data, self.tokens["Chelsea F.C."]) def test_el_matcha_dataset(self): ent_catalogue = EntityCatalogue( self.ent_catalogue_path, self.ent_catalogue_idx_path, ) ds = ElMatchaDataset(path=self.data_path, ent_catalogue=ent_catalogue) self.assertEqual(len(ds), 3) self.assertEqual( ds[0], { "context_left": "", "mention": "Chelsea Football Club", "context_right": "is an English professional football club based in Fulham London", "entity_id": "Chelsea F.C.", "entity_index": 1, "entity_tokens": self.tokens["Chelsea F.C."], }, ) self.assertEqual( ds[1], { "context_left": "Chelsea Football Club is an English professional football club based in Fulham", "mention": "London", "context_right": "", "entity_id": "London", "entity_index": 0, "entity_tokens": self.tokens["London"], }, ) self.assertEqual( ds[2], { "context_left": "In", "mention": "London", "context_right": "the capital of England and the United Kingdom", "entity_id": "London", "entity_index": 0, "entity_tokens": self.tokens["London"], }, ) def test_el_bi_encoder_data_module(self): dm = ElBiEncoderDataModule( transform=self.transform, train_path=self.data_path, val_path=self.data_path, test_path=self.data_path, ent_catalogue_path=self.ent_catalogue_path, ent_catalogue_idx_path=self.ent_catalogue_idx_path, batch_size=2, ) batches = list(dm.train_dataloader()) self.assertEqual(len(batches), 2) expected_batches = [ { "mentions": { "input_ids": torch.tensor( [ [ 101, 1, 9295, 2374, 2252, 2, 2003, 2019, 2394, 2658, 2374, 102, ], [ 101, 2394, 2658, 2374, 2252, 2241, 1999, 21703, 1, 2414, 2, 102, ], ] ), "attention_mask": torch.tensor( [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ] ), }, "entities": { "input_ids": torch.tensor( [ [ 101, 9295, 2374, 2252, 2003, 2019, 2394, 2658, 2374, 2252, 2241, 1999, 21703, 1010, 2414, 1012, 102, ], [ 101, 2414, 2003, 1996, 3007, 1998, 2922, 2103, 1997, 2563, 1998, 1996, 2142, 2983, 102, 0, 0, ], ] ), "attention_mask": torch.tensor( [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], ] ), }, "entity_ids": torch.tensor([1, 0]), "targets": torch.tensor([0, 1]), "entity_tensor_mask": torch.tensor([1, 1]), }, { "mentions": { "input_ids": torch.tensor( [ [ 101, 1999, 1, 2414, 2, 1996, 3007, 1997, 2563, 1998, 1996, 102, ] ] ), "attention_mask": torch.tensor( [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ), }, "entities": { "input_ids": torch.tensor( [ [ 101, 2414, 2003, 1996, 3007, 1998, 2922, 2103, 1997, 2563, 1998, 1996, 2142, 2983, 102, ] ] ), "attention_mask": torch.tensor( [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ), }, "entity_ids": torch.tensor([0]), "targets": torch.tensor([0]), "entity_tensor_mask": torch.tensor([1]), }, ] for result, expected in zip(batches, expected_batches): assert_equal_tensor_dict(self, result, expected) class TestBiEncoderELDataModuleWithXlmrTransform(unittest.TestCase): def setUp(self): random.seed(0) torch.manual_seed(0) self.base_dir = os.path.join(os.path.dirname(__file__), "data") self.data_path = os.path.join(self.base_dir, "el_matcha.jsonl") self.ent_catalogue_path = os.path.join(self.base_dir, "el_xlmr_catalogue.h5") self.ent_catalogue_idx_path = os.path.join(self.base_dir, "el_catalogue.idx") self.transform = BlinkTransform( model_path="xlm-roberta-base", mention_start_token=-2, mention_end_token=-3, max_mention_len=12, max_entity_len=32, ) def test_el_bi_encoder_data_module_with_xlmr_transform(self): dm = ElBiEncoderDataModule( transform=self.transform, train_path=self.data_path, val_path=self.data_path, test_path=self.data_path, ent_catalogue_path=self.ent_catalogue_path, ent_catalogue_idx_path=self.ent_catalogue_idx_path, batch_size=2, ) batches = list(dm.train_dataloader()) self.assertEqual(len(batches), 2) expected_batches = [ { "mentions": { "input_ids": torch.tensor( [ [ 0, 250000, 44517, 98809, 7687, 249999, 83, 142, 14941, 23182, 101740, 2, ], [ 0, 23182, 101740, 11938, 35509, 23, 88437, 3915, 250000, 9020, 249999, 2, ], ] ), "attention_mask": torch.tensor( [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ] ), }, "entities": { "input_ids": torch.tensor( [ [ 0, 44517, 563, 5, 441, 5, 250000, 44517, 98809, 7687, 83, 142, 14941, 23182, 101740, 11938, 35509, 23, 88437, 3915, 4, 9020, 5, 215624, 297, 23, 66007, 4, 70, 11938, 98438, 2, ], [ 0, 9020, 250000, 9020, 83, 70, 10323, 136, 142105, 26349, 111, 30715, 136, 70, 14098, 117604, 5, 581, 26349, 9157, 7, 98, 70, 32547, 99321, 90, 23, 70, 127067, 9, 13, 2, ], ] ), "attention_mask": torch.tensor( [ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ], [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ], ] ), }, "entity_ids": torch.tensor([1, 0]), "targets": torch.tensor([0, 1]), "entity_tensor_mask": torch.tensor([1, 1]), }, { "mentions": { "input_ids": torch.tensor( [ [ 0, 360, 250000, 9020, 249999, 70, 10323, 111, 30715, 136, 70, 2, ] ] ), "attention_mask": torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]), }, "entities": { "input_ids": torch.tensor( [ [ 0, 9020, 250000, 9020, 83, 70, 10323, 136, 142105, 26349, 111, 30715, 136, 70, 14098, 117604, 5, 581, 26349, 9157, 7, 98, 70, 32547, 99321, 90, 23, 70, 127067, 9, 13, 2, ] ] ), "attention_mask": torch.tensor( [ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ] ] ), }, "entity_ids": torch.tensor([0]), "targets": torch.tensor([0]), "entity_tensor_mask": torch.tensor([1]), }, ] for result, expected in zip(batches, expected_batches): assert_equal_tensor_dict(self, result, expected) def test_el_bi_encoder_data_module_with_hard_negatives_with_xlmr_transform(self): dm = ElBiEncoderDataModule( transform=self.transform, train_path=self.data_path, val_path=self.data_path, test_path=self.data_path, ent_catalogue_path=self.ent_catalogue_path, ent_catalogue_idx_path=self.ent_catalogue_idx_path, batch_size=2, negatives=True, max_negative_entities_in_batch=5, ) batches = list(dm.train_dataloader()) self.assertEqual(len(batches), 2) expected_batches = [ { "mentions": { "input_ids": torch.tensor( [ [ 0, 250000, 44517, 98809, 7687, 249999, 83, 142, 14941, 23182, 101740, 2, ], [ 0, 23182, 101740, 11938, 35509, 23, 88437, 3915, 250000, 9020, 249999, 2, ], ] ), "attention_mask": torch.tensor( [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ] ), }, "entities": { "input_ids": torch.tensor( [ [ 0, 44517, 563, 5, 441, 5, 250000, 44517, 98809, 7687, 83, 142, 14941, 23182, 101740, 11938, 35509, 23, 88437, 3915, 4, 9020, 5, 215624, 297, 23, 66007, 4, 70, 11938, 98438, 2, ], [ 0, 9020, 250000, 9020, 83, 70, 10323, 136, 142105, 26349, 111, 30715, 136, 70, 14098, 117604, 5, 581, 26349, 9157, 7, 98, 70, 32547, 99321, 90, 23, 70, 127067, 9, 13, 2, ], [0, 2] + [1] * 30, [0, 2] + [1] * 30, [0, 2] + [1] * 30, [0, 2] + [1] * 30, [0, 2] + [1] * 30, ] ), "attention_mask": torch.tensor( [ [1] * 32, [1] * 32, [1, 1] + [0] * 30, [1, 1] + [0] * 30, [1, 1] + [0] * 30, [1, 1] + [0] * 30, [1, 1] + [0] * 30, ] ), }, "entity_ids": torch.tensor([1, 0, 0, 0, 0, 0, 0]), "targets": torch.tensor([0, 1]), "entity_tensor_mask": torch.tensor([1, 1, 0, 0, 0, 0, 0]), }, { "mentions": { "input_ids": torch.tensor( [ [ 0, 360, 250000, 9020, 249999, 70, 10323, 111, 30715, 136, 70, 2, ] ] ), "attention_mask": torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]), }, "entities": { "input_ids": torch.tensor( [ [ 0, 9020, 250000, 9020, 83, 70, 10323, 136, 142105, 26349, 111, 30715, 136, 70, 14098, 117604, 5, 581, 26349, 9157, 7, 98, 70, 32547, 99321, 90, 23, 70, 127067, 9, 13, 2, ], [ 0, 44517, 563, 5, 441, 5, 250000, 44517, 98809, 7687, 83, 142, 14941, 23182, 101740, 11938, 35509, 23, 88437, 3915, 4, 9020, 5, 215624, 297, 23, 66007, 4, 70, 11938, 98438, 2, ], [0, 2] + [1] * 30, [0, 2] + [1] * 30, [0, 2] + [1] * 30, [0, 2] + [1] * 30, ] ), "attention_mask": torch.tensor( [ [1] * 32, [1] * 32, [1, 1] + [0] * 30, [1, 1] + [0] * 30, [1, 1] + [0] * 30, [1, 1] + [0] * 30, ] ), }, "entity_ids": torch.tensor([0, 1, 0, 0, 0, 0]), "targets": torch.tensor([0]), "entity_tensor_mask": torch.tensor([1, 1, 0, 0, 0, 0]), }, ] for result, expected in zip(batches, expected_batches): assert_equal_tensor_dict(self, result, expected) class TestMultilangELDataModule(unittest.TestCase): def setUp(self): random.seed(0) torch.manual_seed(0) self.base_dir = os.path.join(os.path.dirname(__file__), "data") self.data_path = os.path.join(self.base_dir, "el_blink.jsonl") self.ent_catalogue_idx_path = os.path.join( self.base_dir, "el_multi_catalogue.idx" ) fid, self.ent_catalogue_path = tempfile.mkstemp() os.close(fid) self._create_ent_data(self.ent_catalogue_path) def tearDown(self): if os.path.isfile(self.ent_catalogue_path): os.remove(self.ent_catalogue_path) @staticmethod def _create_ent_data(file_name): with h5py.File(file_name, "w") as fd: fd["en"] = np.array( [ [3, 101, 25550, 102, 0, 0], [3, 101, 16765, 102, 0, 0], [5, 101, 12109, 10104, 14822, 102], [3, 101, 10829, 102, 0, 0], ] ) fd["pt"] = np.array( [ [3, 101, 12264, 102, 0, 0], [5, 101, 14734, 47630, 27171, 102], ] ) fd["ru"] = np.array([[5, 101, 59049, 118, 11323, 102]]) def test_multilang_ent_catalogue(self): ent_catalogue = MultilangEntityCatalogue( self.ent_catalogue_path, self.ent_catalogue_idx_path, ) self.assertIn("Q5146", ent_catalogue) self.assertIn("Q155", ent_catalogue) self.assertIn("Q8678", ent_catalogue) self.assertIn("Q84", ent_catalogue) self.assertNotIn("London", ent_catalogue) idx0, data = ent_catalogue["Q5146"] self.assertSequenceEqual(data, [101, 14734, 47630, 27171, 102]) idx1, data = ent_catalogue["Q155"] self.assertSequenceEqual(data, [101, 16765, 102]) idx2, data = ent_catalogue["Q8678"] self.assertSequenceEqual(data, [101, 59049, 118, 11323, 102]) idx3, data = ent_catalogue["Q84"] self.assertSequenceEqual(data, [101, 10829, 102]) # assert all keys have unique idx numbers self.assertEqual(sorted([idx0, idx1, idx2, idx3]), [0, 1, 2, 3]) def test_el_blink_dataset(self): ent_catalogue = MultilangEntityCatalogue( self.ent_catalogue_path, self.ent_catalogue_idx_path, ) ds = ElBlinkDataset(path=self.data_path, ent_catalogue=ent_catalogue) self.assertEqual(len(ds), 7) self.assertEqual( ds[0], { "context_left": "Guanabara K\u00f6rfezi (", "mention": "Portekizce", "context_right": ": ve de Rio de Janeiro eyaletinde.", "entity_id": "Q5146", "entity_index": ent_catalogue["Q5146"][0], "entity_tokens": ent_catalogue["Q5146"][1], }, ) self.assertEqual( ds[6], { "context_left": "Serpenti Galerisi (\u0130ngilizce: Serpentine Gallery),", "mention": "Londra", "context_right": "\u015fehrindeki Hyde Park\u2019\u0131n bir par\u00e7as\u0131 olan Kensington Gardens.", "entity_id": "Q84", "entity_index": ent_catalogue["Q84"][0], "entity_tokens": ent_catalogue["Q84"][1], }, ) def test_el_multilang_datamodule(self): transform = BlinkTransform( model_path="xlm-roberta-base", mention_start_token=-2, mention_end_token=-3, max_mention_len=12, max_entity_len=32, ) dm = ElBiEncoderDataModule( transform=transform, train_path=self.data_path, val_path=self.data_path, test_path=self.data_path, ent_catalogue_path=self.ent_catalogue_path, ent_catalogue_idx_path=self.ent_catalogue_idx_path, dataset_type="blink", ent_catalogue_type="multi", batch_size=2, mention_start_token=1, mention_end_token=2, ent_sep_token=3, mention_context_length=12, separate_segments=True, ) batches = list(dm.train_dataloader()) self.assertEqual(len(batches), 4) if __name__ == '__main__': unittest.main()
BELA-main
mblink/tests/test_datamodules.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from bela.models.hf_encoder import HFEncoder from bela.transforms.joint_el_transform import JointELTransform class TestHFEncoder(unittest.TestCase): def test_xlmr_encoder(self): transform = JointELTransform() model = HFEncoder(model_path="xlm-roberta-base") model_inputs = transform( { "texts": [ [ "Some", "simple", "text", "about", "Real", "Madrid", "and", "Barcelona", ], ["Hola", "amigos", "!"], ["Cristiano", "Ronaldo", "juega", "en", "la", "Juventus"], ], "mention_offsets": [ [4, 7], [1], [0, 5], ], "mention_lengths": [ [2, 1], [1], [2, 1], ], "entities": [ [1, 2], [3], [102041, 267832], ], } ) output = model( input_ids=model_inputs["input_ids"], attention_mask=model_inputs["attention_mask"], ) if __name__ == '__main__': unittest.main()
BELA-main
mblink/tests/test_models.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from bela.transforms.joint_el_transform import JointELTransform class TestJointELXlmrTransforms(unittest.TestCase): def test_blink_mention_xlmr_transform(self): transform = JointELTransform() model_inputs = transform( { "texts": [ [ "Some", "simple", "text", "about", "Real", "Madrid", "and", "Barcelona", ], ["Hola", "amigos", "!"], ["Cristiano", "Ronaldo", "juega", "en", "la", "Juventus"], ], "mention_offsets": [ [4, 7], [1], [0, 5], ], "mention_lengths": [ [2, 1], [1], [2, 1], ], "entities": [ [1, 2], [3], [102041, 267832], ], } ) expected_model_inputs = { "input_ids": torch.tensor( [ [0, 31384, 8781, 7986, 1672, 5120, 8884, 136, 5755, 2], [0, 47958, 19715, 711, 2, 1, 1, 1, 1, 1], [0, 96085, 43340, 1129, 2765, 22, 21, 65526, 2, 1], ] ), "attention_mask": torch.tensor( [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 0], ] ), "mention_offsets": torch.tensor([[5, 8], [2, 0], [1, 7]]), "mention_lengths": torch.tensor([[2, 1], [1, 0], [2, 1]]), "entities": torch.tensor([[1, 2], [3, 0], [102041, 267832]]), "tokens_mapping": torch.tensor( [ [[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7], [7, 8], [8, 9]], [ [1, 2], [2, 3], [3, 4], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], ], [ [1, 2], [2, 3], [3, 5], [5, 6], [6, 7], [7, 8], [0, 1], [0, 1], ], ] ), } for key, value in expected_model_inputs.items(): self.assertTrue( torch.all(model_inputs[key].eq(value)), f"{key} not equal" ) if __name__ == '__main__': unittest.main()
BELA-main
mblink/tests/test_transforms.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import logging from enum import Enum from typing import List import torch import h5py logger = logging.getLogger() class EntityCatalogueType(Enum): SIMPLE = "simple" MULTI = "multi" class ElDatasetType(Enum): BLINK = "blink" MATCHA = "matcha" class NegativesStrategy(Enum): HIGHER = "higher" ALL = "all" def assert_equal_tensor_dict(test_case, result, expected): """ Compare tensors/values in the dict and assert if they are not equal. The dict could countain multiple levels of nesting. """ for key, value in expected.items(): if isinstance(value, dict): assert_equal_tensor_dict(test_case, result[key], value) else: if isinstance(value, torch.Tensor): test_case.assertTrue( torch.equal(result[key], value), f"{key} is not equal" ) else: test_case.assertEqual(result[key], value, f"{key} is not equal") def get_seq_lengths(batch: List[List[int]]): return [len(example) for example in batch] class EntityCatalogue: def __init__(self, local_path, idx_path): self.data_file = h5py.File(local_path, "r") self.data = self.data_file["data"] logger.info(f"Reading entity catalogue index {idx_path}") self.idx = {} with open(idx_path, "rt") as fd: for idx, line in enumerate(fd): ent_id = line.strip() self.idx[ent_id] = idx def __len__(self): return len(self.idx) def __getitem__(self, entity_id): ent_index = self.idx[entity_id] value = self.data[ent_index].tolist() value = value[1 : value[0] + 1] return ent_index, value def __contains__(self, entity_id): return entity_id in self.idx class MultilangEntityCatalogue: """ Entity catalogue where each entity id has descriptions in different languages Index is a json file, where keys are entity ids. The value is dict where key is language id and value is triplet (title, count, index). Title is a wikipedia title of the entity in that language, count is a number of mentions to the entity in that language and index is a pos of entity tokens in tokens array. Index example: { ... "Q17": { "en": ["Japan", 230, 10], "ru": ["Япония", 111, 55] } ... } Tokens file is an h5py file, where datasets keys are language ids and stored arrays are ent tokens. """ def __init__(self, local_path, idx_path): self.data = h5py.File(local_path, "r") logger.info(f"Reading entity catalogue index {idx_path}") with open(idx_path, "rt") as fd: self.idx = json.load(fd) # assign unique index number to each entity for idx, ent_value in enumerate(self.idx.values()): ent_value["idx"] = idx def __len__(self): return len(self.idx) def __getitem__(self, entity_id): ent_lang_map = self.idx[entity_id] # now choose language with most mentions selected_lang = None max_count = -1 for lang, val in ent_lang_map.items(): if lang == "idx": continue _, count, _ = val if count > max_count: max_count = count selected_lang = lang assert selected_lang is not None ent_index = ent_lang_map[selected_lang][2] value = self.data[selected_lang][ent_index].tolist() value = value[1 : value[0] + 1] return ent_lang_map["idx"], value def __contains__(self, entity_id): return entity_id in self.idx def order_entities( entities_data, entity_ids, neg_entities_ids=None, neg_entities_tokens=None, max_negative_entities_in_batch=None, ): """ This function removes duplicated entities in the entities batch and constructs the targets. In bi-encoder model we train on in-batch random and hard negatives. In this case each mention should have one positive entity class in enttiteis batch. But it could happen there are two or more mentions in the batch that referes to the same entitty (this entity would be in the batch 2 and more times). In this case we could predict class correctly and calculate loss. To resolve this problem we filter entities and left only one example of each in the batch. Returns: filteres_entities - filtered entities tokens filtered_entity_ids - filtered entities_ids targets - array, where each i-th element is a position in embedding's matrix of entity embedding of i-th corresponding mention. """ ent_indexes_map = {} targets = [] filteres_entities = [] filtered_entity_ids = [] for ent_id, ent_data in zip(entity_ids, entities_data): if ent_id in ent_indexes_map: targets.append(ent_indexes_map[ent_id]) else: ent_idx = len(ent_indexes_map) targets.append(ent_idx) ent_indexes_map[ent_id] = ent_idx filteres_entities.append(ent_data) filtered_entity_ids.append(ent_id) # Append `max_negative_entities_in_batch` entities to the end of batch neg_entities_ids = neg_entities_ids or [] neg_entities_tokens = neg_entities_tokens or [] neg_filteres_entities = [] neg_filtered_entity_ids = [] for item_neg_entities_ids, item_neg_entities_tokens in zip( neg_entities_ids, neg_entities_tokens, ): for neg_entity_id, neg_entity_tokens in zip( item_neg_entities_ids, item_neg_entities_tokens ): if neg_entity_id not in ent_indexes_map: ent_idx = len(ent_indexes_map) ent_indexes_map[neg_entity_id] = ent_idx neg_filteres_entities.append(neg_entity_tokens) neg_filtered_entity_ids.append(neg_entity_id) if max_negative_entities_in_batch is not None: neg_filteres_entities = neg_filteres_entities[:max_negative_entities_in_batch] neg_filtered_entity_ids = neg_filtered_entity_ids[ :max_negative_entities_in_batch ] filteres_entities.extend(neg_filteres_entities) filtered_entity_ids.extend(neg_filtered_entity_ids) return filteres_entities, filtered_entity_ids, targets
BELA-main
mblink/utils/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Optional from transformers import AutoModel from torch import nn class HFEncoder(nn.Module): def __init__( self, model_path: str = "xlm-roberta-base", projection_dim: Optional[int] = None, output_dropout: Optional[float] = 0.0, ): super().__init__() self.transformer = AutoModel.from_pretrained(model_path) self.embedding_dim = self.transformer.encoder.config.hidden_size self.project = nn.Identity() # to make torchscript happy if projection_dim: self.project = nn.Sequential( nn.Linear(self.embedding_dim, projection_dim), nn.LayerNorm(projection_dim) ) self.output_dropout = nn.Dropout(output_dropout) def forward(self, input_ids, attention_mask=None): output = self.transformer(input_ids=input_ids, attention_mask=attention_mask) last_layer = output["last_hidden_state"] sentence_rep = self.project(last_layer[:, 0, :]) return self.output_dropout(sentence_rep), last_layer
BELA-main
mblink/models/hf_encoder.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.nn as nn from transformers import AutoTokenizer class HFTransform(nn.Module): def __init__( self, model_path: str = "xlm-roberta-base", max_seq_len: int = 256, add_special_tokens: bool = True, return_offsets_mapping: bool = True, ): super().__init__() self.tokenizer = AutoTokenizer.from_pretrained(model_path) self.sep_token = self.tokenizer.sep_token self.max_seq_len = max_seq_len self.add_special_tokens = add_special_tokens self.return_offsets_mapping = return_offsets_mapping self.pad_token_id = self.tokenizer.pad_token_id def forward(self, texts): return self.tokenizer( texts, return_tensors=None, padding=False, truncation=True, max_length=self.max_seq_len, add_special_tokens=self.add_special_tokens, return_offsets_mapping=self.return_offsets_mapping, )["input_ids"]
BELA-main
mblink/transforms/hf_transform.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Dict, List, Optional, Tuple import torch import torch.nn as nn from torch.nn.utils.rnn import pad_sequence from mblink.transforms.hf_transform import HFTransform from mblink.utils.utils import ( EntityCatalogueType, EntityCatalogue, MultilangEntityCatalogue, NegativesStrategy, order_entities, ) @torch.jit.script def pad_2d( batch: List[List[int]], seq_lens: List[int], pad_idx: int, max_len: int = -1 ) -> List[List[int]]: pad_to_length = max(seq_lens) if max_len > 0: pad_to_length = min(pad_to_length, max_len) for sentence in batch: padding = pad_to_length - len(sentence) if padding >= 0: for _ in range(padding): sentence.append(pad_idx) else: for _ in range(-padding): sentence.pop() return batch def prepare_mention( context_left: List[int], mention_tokens: List[int], context_right: List[int], max_mention_length: int, mention_start_token: int, mention_end_token: int, bos_idx: int, eos_idx: int, ): context_left: List[int] = context_left[1:-1] mention_tokens: List[int] = mention_tokens[1:-1] context_right: List[int] = context_right[1:-1] mention_tokens = mention_tokens[: max_mention_length - 4] mention_tokens = [mention_start_token] + mention_tokens + [mention_end_token] left_quota = (max_mention_length - len(mention_tokens)) // 2 - 1 right_quota = max_mention_length - len(mention_tokens) - left_quota - 2 left_add = len(context_left) right_add = len(context_right) if left_add <= left_quota: if right_add > right_quota: right_quota += left_quota - left_add else: if right_add <= right_quota: left_quota += right_quota - right_add empty_tokens: List[int] = [] context_left = empty_tokens if left_quota == 0 else context_left[-left_quota:] context_right = context_right[:right_quota] context_left = [bos_idx] + context_left context_right = context_right + [eos_idx] context_tokens = context_left + mention_tokens + context_right return context_tokens # class BlinkMentionRobertaTransform(HFTransform): # def __init__( # self, # mention_start_token: int = -2, # mention_end_token: int = -3, # model_path: Optional[str] = None, # max_seq_len: int = 64, # ): # super().__init__( # model_path=model_path, # max_seq_len=max_seq_len, # ) # vocab_length = len(self.tokenizer.vocab) # self.bos_idx = self.tokenizer.bos_token_id # self.eos_idx = self.tokenizer.eos_token_id # self.mention_start_token = (vocab_length + mention_start_token) % vocab_length # self.mention_end_token = (vocab_length + mention_end_token) % vocab_length # self.max_mention_length = max_seq_len # def transform(self, batch: Dict[str, Any]) -> Dict[str, Any]: # left_context = batch["left_context"] # torch.jit.isinstance(left_context, List[str]) # right_context = batch["right_context"] # torch.jit.isinstance(right_context, List[str]) # mention = batch["mention"] # torch.jit.isinstance(mention, List[str]) # left_token_ids: List[List[int]] = self.tokenizer(left_context)["input_ids"] # mention_token_ids: List[List[int]] = self.tokenizer(mention)["input_ids"] # right_token_ids: List[List[int]] = self.tokenizer(right_context)["input_ids"] # token_ids: List[List[int]] = [] # attention_masks: List[List[int]] = [] # seq_lens: List[int] = [] # for lc_token_ids, m_token_ids, rc_token_ids, in zip( # left_token_ids, # mention_token_ids, # right_token_ids, # ): # sentence_token_ids = prepare_mention( # lc_token_ids, # m_token_ids, # rc_token_ids, # self.max_mention_length, # self.mention_start_token, # self.mention_end_token, # self.bos_idx, # self.eos_idx, # ) # token_ids.append(sentence_token_ids) # attention_mask = [1] * len(sentence_token_ids) # attention_masks.append(attention_mask) # seq_lens.append(len(sentence_token_ids)) # attention_masks = pad_2d( # attention_masks, # seq_lens, # pad_idx = 0, # ) # return { # "input_ids": token_ids, # "attention_mask": attention_masks, # } # class BlinkEntityPretokenizedTransform(HFTransform): # def __init__( # self, # model_path: Optional[str] = None, # max_seq_len: int = 64, # ): # super().__init__( # model_path=model_path, # max_seq_len=max_seq_len, # ) # self.max_entity_length = max_seq_len # def transform(self, batch: Dict[str, Any]) -> Dict[str, Any]: # token_ids = batch["token_ids"] # torch.jit.isinstance(token_ids, List[List[int]]) # result_token_ids: List[List[int]] = [] # seq_lens: List[int] = [] # attention_masks: List[List[int]] = [] # for token_ids_per_sequence in token_ids: # if len(token_ids_per_sequence) > self.max_entity_length: # eos_token = token_ids_per_sequence[-1] # token_ids_per_sequence = token_ids_per_sequence[ # : self.max_entity_length # ] # token_ids_per_sequence[-1] = eos_token # result_token_ids.append(token_ids_per_sequence) # seq_len = len(token_ids_per_sequence) # attention_mask = [1] * len(token_ids_per_sequence) # attention_masks.append(attention_mask) # seq_lens.append(seq_len) # attention_masks = pad_2d( # attention_masks, # seq_lens, # pad_idx = 0, # ) # return { # "input_ids": result_token_ids, # "attention_mask": attention_masks, # } # class BlinkTransform(nn.Module): # def __init__( # self, # model_path: Optional[str] = None, # mention_start_token: int = -2, # mention_end_token: int = -3, # max_mention_len: int = 64, # max_entity_len: int = 64, # ): # super().__init__() # self.mention_transform = BlinkMentionRobertaTransform( # mention_start_token=mention_start_token, # mention_end_token=mention_end_token, # model_path=model_path, # max_seq_len=max_mention_len, # ) # self.entity_transform = BlinkEntityPretokenizedTransform( # model_path=model_path, # max_seq_len=max_entity_len, # ) # def forward( # self, batch: Dict[str, Any] # ) -> Tuple[Dict[str, torch.Tensor], Dict[str, torch.Tensor]]: # return self.mention_transform(batch), self.entity_transform(batch) # @property # def bos_idx(self): # return self.mention_transform.bos_idx # @property # def eos_idx(self): # return self.mention_transform.eos_idx class BlinkTransform(HFTransform): def __init__( self, model_path: str = "bert-base-uncased", mention_start_token: int = 1, mention_end_token: int = 2, max_mention_len: int = 32, max_entity_len: int = 64, add_eos_bos_to_entity: bool = False, ): super().__init__( model_path=model_path, ) vocab_length = self.tokenizer.vocab_size self.mention_start_token = (vocab_length + mention_start_token) % vocab_length self.mention_end_token = (vocab_length + mention_end_token) % vocab_length self.max_mention_len = max_mention_len self.max_entity_len = max_entity_len self.add_eos_bos_to_entity = add_eos_bos_to_entity def _transform_mention( self, left_context: List[str], mention: List[str], right_context: List[str], ) -> List[List[int]]: token_ids: List[List[int]] = [] for sentence_lc, sentence_mention, sentence_rc, in zip( left_context, mention, right_context, ): lc_token_ids = self.tokenizer.encode(sentence_lc) mention_token_ids = self.tokenizer.encode(sentence_mention) rc_token_ids = self.tokenizer.encode(sentence_rc) sentence_token_ids = prepare_mention( lc_token_ids, mention_token_ids, rc_token_ids, self.max_mention_len, self.mention_start_token, self.mention_end_token, self.tokenizer.cls_token_id, self.tokenizer.sep_token_id, ) token_ids.append(sentence_token_ids) return token_ids def _transform_entity( self, entity_token_ids: List[List[int]], ) -> List[List[int]]: result_token_ids: List[List[int]] = [] for token_ids in entity_token_ids: if self.add_eos_bos_to_entity: token_ids = [self.bos_idx] + token_ids + [self.eos_idx] if len(token_ids) > self.max_entity_len: token_ids = token_ids[: self.max_entity_len] token_ids[-1] = self.eos_idx result_token_ids.append(token_ids) return result_token_ids def _to_tensor(self, token_ids, attention_mask_pad_idx=0): seq_lens = [len(seq) for seq in token_ids] input_ids = pad_2d( token_ids, seq_lens, pad_idx = self.pad_token_id, ) attention_mask = [[1]*seq_len for seq_len in seq_lens] attention_mask = pad_2d( attention_mask, seq_lens, pad_idx = attention_mask_pad_idx, ) return { 'input_ids': torch.tensor(input_ids), 'attention_mask': torch.tensor(attention_mask), } def forward( self, batch: Dict[str, Any] ) -> Tuple[Dict[str, torch.Tensor], Dict[str, torch.Tensor]]: left_context = batch["left_context"] torch.jit.isinstance(left_context, List[str]) mention = batch["mention"] torch.jit.isinstance(mention, List[str]) right_context = batch["right_context"] torch.jit.isinstance(right_context, List[str]) entity_token_ids = batch["token_ids"] torch.jit.isinstance(entity_token_ids, List[List[int]]) mention_token_ids = self._transform_mention( left_context, mention, right_context, ) mention_tensors = self._to_tensor( mention_token_ids, ) entity_token_ids = self._transform_entity(entity_token_ids) entity_tensors = self._to_tensor( entity_token_ids, ) return (mention_tensors, entity_tensors) @property def bos_idx(self): return self.tokenizer.cls_token_id @property def eos_idx(self): return self.tokenizer.sep_token_id
BELA-main
mblink/transforms/blink_transform.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from collections import OrderedDict from typing import Optional from pytorch_lightning.strategies import DDPShardedStrategy, DDPStrategy from torch.distributed.algorithms.ddp_comm_hooks.default_hooks import ( fp16_compress_hook, ) import hydra import torch import torch.nn as nn from pytorch_lightning import LightningModule from mblink.conf import ( DataModuleConf, ModelConf, OptimConf, TransformConf, ) logger = logging.getLogger(__name__) class InBatchTripletLoss(nn.Module): # Paper: In Defense of the Triplet Loss for Person Re-Identification, https://arxiv.org/abs/1703.07737 # Blog post: https://omoindrot.github.io/triplet-loss def __init__(self, margin: float = 1.0): super().__init__() self.margin = margin def forward(self, scores: torch.Tensor, targets: torch.Tensor) -> torch.Tensor: """Build the triplet loss over a matrix of computed scores For each mention distance to correct entity should be greater then distance to all other entities in batch by margin. Args: scores: n_mentions x n_entities matrix of distances between mentions and entities targets: vector of indices of correct entity for each mention (n_mentions) """ one_hot_targets = torch.zeros(scores.shape).bool() one_hot_targets[torch.arange(targets.shape[0]), targets] = True pos_scores = scores[one_hot_targets].unsqueeze(1).repeat(1, scores.shape[1] - 1) neg_scores = scores[~one_hot_targets].reshape( scores.shape[0], scores.shape[1] - 1 ) loss = torch.relu(self.margin + neg_scores - pos_scores).mean() return loss class InBatchMarginLoss(nn.Module): """ Pushes positives scores above margin and negatives below 0. The loss calculated as max(0, maring - positive scores) + max(0, negative scores). """ def __init__(self, margin: float = 100.0, pos_weight=1.0, use_mean=True): super().__init__() self.margin = margin self.pos_weight = pos_weight self.reduce_op = torch.mean if use_mean else torch.sum def forward(self, scores: torch.Tensor, targets: torch.Tensor) -> torch.Tensor: one_hot_targets = torch.zeros(scores.shape).bool() one_hot_targets[torch.arange(targets.shape[0]), targets] = True pos_scores = scores[one_hot_targets] neg_scores = scores[~one_hot_targets] if self.pos_weight is None: pos_weight = scores.shape[1] - 1 loss = self.reduce_op( pos_weight * torch.relu(self.margin - pos_scores) ) + self.reduce_op(torch.relu(neg_scores)) return loss class CombinedLoss(nn.Module): def __init__(self, first: nn.Module, second: nn.Module, second_weight=1.0): super().__init__() self.first = first self.second = second self.second_weight = second_weight def forward(self, scores: torch.Tensor, targets: torch.Tensor) -> torch.Tensor: return self.first(scores, targets) + self.second_weight * self.second( scores, targets ) class ElBiEncoderTask(LightningModule): def __init__( self, transform: TransformConf, model: ModelConf, datamodule: DataModuleConf, optim: OptimConf, in_batch_eval: bool = True, # use only in batch contexts for validation warmup_steps: int = 0, filter_entities: bool = True, loss: str = "cross_entropy", triplet_loss_margin: float = 1.0, margin_loss_margin: float = 100.0, margin_loss_pos_weight: Optional[float] = None, margin_loss_weight: float = 1.0, margin_loss_mean: bool = True, load_from_checkpoint: Optional[str] = None, fp16_grads: bool = False, ): super().__init__() # encoder setup self.mention_encoder_conf = model self.entity_encoder_conf = model self.optim_conf = optim self.in_batch_eval = in_batch_eval self.warmup_steps = warmup_steps self.filter_entities = filter_entities self.load_from_checkpoint = load_from_checkpoint self.fp16_grads = fp16_grads if loss == "cross_entropy": self.loss = nn.CrossEntropyLoss() elif loss == "triplet": self.loss = InBatchTripletLoss(margin=triplet_loss_margin) elif loss == "margin": self.loss = CombinedLoss( nn.CrossEntropyLoss(), InBatchMarginLoss( margin=margin_loss_margin, pos_weight=margin_loss_pos_weight, mean=margin_loss_mean, ), margin_loss_weight, ) else: raise ValueError(f"Unsupported loss {loss}") @staticmethod def _get_encoder_state(state, encoder_name): encoder_state = OrderedDict() for key, value in state["state_dict"].items(): if key.startswith(encoder_name): encoder_state[key[len(encoder_name) + 1 :]] = value return encoder_state def setup(self, stage: str): if stage == "test": return # resetting call_configure_sharded_model_hook attribute so that we could configure model self.call_configure_sharded_model_hook = False self.mention_encoder = hydra.utils.instantiate( self.mention_encoder_conf, _recursive_=False, ) self.entity_encoder = hydra.utils.instantiate( self.entity_encoder_conf, _recursive_=False, ) if self.load_from_checkpoint is not None: logger.info(f"Load encoders state from {self.load_from_checkpoint}") with open(self.load_from_checkpoint, "rb") as f: checkpoint = torch.load(f, map_location=torch.device("cpu")) entity_encoder_state = self._get_encoder_state(checkpoint, "entity_encoder") self.entity_encoder.load_state_dict(entity_encoder_state) mention_encoder_state = self._get_encoder_state( checkpoint, "mention_encoder" ) self.mention_encoder.load_state_dict(mention_encoder_state) self.optimizer = hydra.utils.instantiate( self.optim_conf, self.parameters(), _recursive_=False ) def on_pretrain_routine_start(self): if self.fp16_grads: self.trainer.strategy._model.register_comm_hook(None, fp16_compress_hook) def sim_score(self, mentions_repr, entities_repr): scores = torch.matmul(mentions_repr, torch.transpose(entities_repr, 0, 1)) return scores def forward( self, mentions_ids, entities_ids, ): # encode query and contexts mentions_repr, _ = self.mention_encoder(mentions_ids) # bs x d entities_repr, _ = self.entity_encoder(entities_ids) # bs x d return mentions_repr, entities_repr def configure_optimizers(self): return self.optimizer def training_step(self, batch, batch_idx): """ This receives queries, each with mutliple contexts. """ mentions = batch["mentions"] # bs x mention_len entities = batch["entities"] # bs x entity len entity_ids = batch["entity_ids"] # bs targets = batch["targets"] # bs mask = batch["entity_tensor_mask"] # bs mentions_repr, entities_repr = self(mentions['input_ids'], entities['input_ids']) if isinstance(self.trainer.strategy, (DDPStrategy, DDPShardedStrategy)): mentions_to_send = mentions_repr.detach() entities_to_send = entities_repr.detach() all_mentions_repr = self.all_gather(mentions_to_send) # num_workers x bs all_entities_repr = self.all_gather(entities_to_send) all_targets = self.all_gather(targets) # we are not filtering duplicated entities now all_entity_ids = self.all_gather(entity_ids) all_mask = self.all_gather(mask) # offset = 0 all_mentions_list = [] all_entities_list = [] all_entity_ids_list = [] all_targets_list = [] # Add current device representations first. # It is needed so we would not filter calculated on this # device representations. all_mentions_list.append(mentions_repr) entities_repr = entities_repr[mask.bool()] all_entities_list.append(entities_repr) all_entity_ids_list.append(entity_ids[mask.bool()].tolist()) all_targets_list.append(targets) # offset += entities_repr.size(0) for i in range(all_targets.size(0)): if i != self.global_rank: all_mentions_list.append(all_mentions_repr[i]) all_entities_list.append(all_entities_repr[i][all_mask[i].bool()]) all_entity_ids_list.append( all_entity_ids[i][all_mask[i].bool()].tolist() ) # all_targets[i] += offset all_targets_list.append(all_targets[i]) # offset += all_entities_repr[i].size(0) mentions_repr = torch.cat(all_mentions_list, dim=0) # total_ctx x dim # entities_repr = torch.cat(all_entities_list, dim=0) # total_query x dim # targets = torch.cat(all_targets_list, dim=0) if self.filter_entities: entities_repr, targets = self._filter_entities_and_targets( all_entities_list, all_entity_ids_list, all_targets_list, ) else: entities_repr = torch.cat(all_entities_list, dim=0) targets = torch.cat(all_targets_list, dim=0) # entity_ids = torch.flatten(entity_ids) else: entities_repr = entities_repr[mask.bool()] scores = self.sim_score(mentions_repr, entities_repr) loss = self.loss(scores, targets) self.log("train_loss", loss, prog_bar=True) return loss def _filter_entities_and_targets( self, all_entities_list, all_entity_ids_list, all_targets_list ): filtered_entities_repr = [] filtered_targets = [] ent_indexes_map = {} for entities_repr, entity_ids, targets, in zip( all_entities_list, all_entity_ids_list, all_targets_list, ): for entity_repr, ent_id in zip(entities_repr, entity_ids): if ent_id not in ent_indexes_map: ent_idx = len(ent_indexes_map) ent_indexes_map[ent_id] = ent_idx filtered_entities_repr.append(entity_repr) for target in targets.tolist(): filtered_targets.append(ent_indexes_map[entity_ids[target]]) filtered_entities_repr = torch.stack(filtered_entities_repr, dim=0) filtered_targets = torch.tensor( filtered_targets, dtype=torch.long, device=filtered_entities_repr.get_device(), ) return filtered_entities_repr, filtered_targets def _eval_step(self, batch, batch_idx): mentions = batch["mentions"] # bs x mention_len entities = batch["entities"] # bs x entity len entity_ids = batch["entity_ids"] # bs targets = batch["targets"] # bs mask = batch["entity_tensor_mask"] # bs mentions_repr, entities_repr = self(mentions['input_ids'], entities['input_ids']) entities_repr = entities_repr[mask.bool()] scores = self.sim_score(mentions_repr, entities_repr) # bs x ctx_cnt loss = self.loss(scores, targets) return ( self.compute_rank_metrics(scores, targets), mentions_repr, entities_repr, targets, entity_ids, loss, ) def compute_rank_metrics(self, scores, target_labels): # Compute total un_normalized avg_ranks, mrr values, indices = torch.sort(scores, dim=1, descending=True) rank = 0 mrr = 0.0 for i, idx in enumerate(target_labels): gold_idx = (indices[i] == idx).nonzero() rank += gold_idx.item() + 1 mrr += 1 / (gold_idx.item() + 1) return rank, mrr def _eval_epoch_end(self, outputs, log_prefix="valid"): total_avg_rank, total_ent_count, total_count = 0, 0, 0 total_mrr = 0 total_loss = 0 if self.in_batch_eval: for metrics, mentions_repr, entities_repr, _, _, loss in outputs: rank, mrr = metrics total_avg_rank += rank total_mrr += mrr total_ent_count += entities_repr.size(0) total_count += mentions_repr.size(0) total_loss += loss total_ent_count = total_ent_count / len(outputs) else: # TODO: collect entities representations over all batches raise NotImplementedError("Only in-batch eval implementted!") metrics = { log_prefix + "_avg_rank": total_avg_rank / total_count, log_prefix + "_mrr": total_mrr / total_count, log_prefix + "_ent_count": total_ent_count, log_prefix + "_loss": total_loss, } self.log_dict(metrics, on_epoch=True, sync_dist=True) def validation_step(self, batch, batch_idx): return self._eval_step(batch, batch_idx) def validation_epoch_end(self, valid_outputs): self._eval_epoch_end(valid_outputs) def test_step(self, batch, batch_idx): return self._eval_step(batch, batch_idx) def test_epoch_end(self, test_outputs): self._eval_epoch_end(test_outputs, "test")
BELA-main
mblink/task/blink_task.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field from typing import List, Any # @manual "//github/facebookresearch/hydra:hydra" from hydra.core.config_store import ConfigStore from omegaconf import MISSING defaults = [ "_self_", {"task": "blink_task"}, {"checkpoint_callback": "default"}, ] @dataclass class MainConfig: defaults: List[Any] = field(default_factory=lambda: defaults) task: Any = MISSING datamodule: Any = MISSING trainer: Any = MISSING test_only: bool = False checkpoint_callback: Any = MISSING cs = ConfigStore.instance() cs.store(name="config", node=MainConfig)
BELA-main
mblink/conf/config.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field @dataclass class TransformConf: pass @dataclass class DataModuleConf: pass @dataclass class OptimConf: pass @dataclass class ModelConf: pass
BELA-main
mblink/conf/__init__.py
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import pandas as pd import os, sys from syntactic_testsets.utils import load_vocab def lstm_probs(output, gold, w2idx): data = [] for scores, g in zip(output, gold): scores = scores.split() form, form_alt = g.split("\t")[6:8] prob_correct = float(scores[w2idx[form]]) prob_wrong = float(scores[w2idx[form_alt]]) data.append(prob_correct) data.append(prob_wrong) return data lang = sys.argv[1] model = sys.argv[2] path_repo = "../data" path_test_data = path_repo + "/agreement/" + lang + "/generated" path_output = path_repo + "/agreement/" + lang + "/generated.output_" path_lm_data = path_repo + "/lm/" + lang gold = open(path_test_data + ".gold").readlines() sents = open(path_test_data + ".text").readlines() data = pd.read_csv(path_test_data + ".tab",sep="\t") vocab = load_vocab(path_lm_data + "/vocab.txt") # getting softmax outputs and the probabilities for pairs of test forms #print("Assembling probabilities for the choice forms") outputs = {} probs = pd.DataFrame([]) if os.path.isfile(path_output + model): #print(model) output = open(path_output + model).readlines() #print(len(output)) data[model] = lstm_probs(output, gold, vocab) ### If you want to save table with target singular and plural form probabilities uncomment these lines and change the path ### #path_result = path_repo + "/results/" + lang + "/" + model + ".tab" #print("The target singular and plural form probabilities are saved in", path_result) #data.to_csv(path_result, sep="\t", index=False) #### Computing accuracy for the model (and frequency baseline) #### if "freq" in data: models = [model, "freq"] else: models = [model] fields = ["pattern","constr_id","sent_id","n_attr","punct","len_prefix","len_context","sent","correct_number","type"] wide_data = data[fields + ["class"] + models].pivot_table(columns=("class"), values=models, index=fields) for model in models: correct = wide_data.loc[:, (model, "correct")] wrong = wide_data.loc[:, (model, "wrong")] wide_data[(model, "acc")] = (correct > wrong)*100 t = wide_data.reset_index() a = t.groupby("type").agg({(m,"acc"):"mean" for m in models}) print("Accuracy overall\n", a) a = pd.concat([t[t.type=="original"].groupby("pattern").agg({(m, "acc"): "mean" for m in models}).rename(columns={'acc': 'orig'}), t[t.type=="generated"].groupby("pattern").agg({(m, "acc"): "mean" for m in models}).rename(columns={'acc': 'gen'})], axis=1) print() print("Accuracy by pattern\n", a)
colorlessgreenRNNs-main
src/results.py
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse lm_parser = argparse.ArgumentParser(add_help=False) lm_parser.add_argument('--data', type=str, help='location of the data corpus') lm_parser.add_argument('--model', type=str, default='LSTM', help='type of recurrent net (RNN_TANH, RNN_RELU, LSTM, GRU)') lm_parser.add_argument('--emsize', type=int, default=200, help='size of word embeddings') lm_parser.add_argument('--nhid', type=int, default=200, help='number of hidden units per layer') lm_parser.add_argument('--nlayers', type=int, default=2, help='number of layers') lm_parser.add_argument('--dropout', type=float, default=0.2, help='dropout applied to layers (0 = no dropout)') lm_parser.add_argument('--tied', action='store_true', help='tie the word embedding and softmax weights') lm_parser.add_argument('--lr', type=float, default=20, help='initial learning rate') lm_parser.add_argument('--clip', type=float, default=0.25, help='gradient clipping') lm_parser.add_argument('--epochs', type=int, default=40, help='upper epoch limit') lm_parser.add_argument('--batch_size', type=int, default=20, metavar='N', help='batch size') lm_parser.add_argument('--bptt', type=int, default=35, help='sequence length') lm_parser.add_argument('--seed', type=int, default=1111, help='random seed') lm_parser.add_argument('--cuda', action='store_true', help='use CUDA') lm_parser.add_argument('--log-interval', type=int, default=200, metavar='N', help='report interval') lm_parser.add_argument('--save', type=str, default='model.pt', help='path to save the final model') lm_parser.add_argument('--log', type=str, default='log.txt', help='path to logging file')
colorlessgreenRNNs-main
src/language_models/lm_argparser.py
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. #
colorlessgreenRNNs-main
src/language_models/__init__.py
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch.nn as nn import torch.utils.data.dataloader class RNNModel(nn.Module): """Container module with an encoder, a recurrent module, and a decoder. ntoken: vocab size nip: embedding size """ def __init__(self, rnn_type, ntoken, ninp, nhid, nlayers, dropout=0.5, tie_weights=False): super(RNNModel, self).__init__() self.drop = nn.Dropout(dropout) self.encoder = nn.Embedding(ntoken, ninp) if rnn_type in ['LSTM', 'GRU']: self.rnn = getattr(nn, rnn_type)(ninp, nhid, nlayers, dropout=dropout) else: try: nonlinearity = {'RNN_TANH': 'tanh', 'RNN_RELU': 'relu'}[rnn_type] except KeyError: raise ValueError( """An invalid option for `--model` was supplied, options are ['LSTM', 'GRU', 'RNN_TANH' or 'RNN_RELU']""") self.rnn = nn.RNN(ninp, nhid, nlayers, nonlinearity=nonlinearity, dropout=dropout) self.decoder = nn.Linear(nhid, ntoken) # Optionally tie weights as in: # "Using the Output Embedding to Improve Language Models" (Press & Wolf 2016) # https://arxiv.org/abs/1608.05859 # and # "Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling" (Inan et al. 2016) # https://arxiv.org/abs/1611.01462 if tie_weights: if nhid != ninp: raise ValueError('When using the tied flag, nhid must be equal to emsize') self.decoder.weight = self.encoder.weight self.init_weights() self.rnn_type = rnn_type self.nhid = nhid self.nlayers = nlayers def init_weights(self): initrange = 0.1 self.encoder.weight.data.uniform_(-initrange, initrange) self.decoder.bias.data.fill_(0) self.decoder.weight.data.uniform_(-initrange, initrange) def forward(self, input, hidden): emb = self.drop(self.encoder(input)) output, hidden = self.rnn(emb, hidden) output = self.drop(output) #print(output) decoded = self.decoder(output.view(output.size(0)*output.size(1), output.size(2))) return decoded.view(output.size(0), output.size(1), decoded.size(1)), hidden def init_hidden(self, bsz): weight = next(self.parameters()).data if self.rnn_type == 'LSTM': return (weight.new(self.nlayers, bsz, self.nhid).zero_(), weight.new(self.nlayers, bsz, self.nhid).zero_()) else: return weight.new(self.nlayers, bsz, self.nhid).zero_()
colorlessgreenRNNs-main
src/language_models/model.py
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch def repackage_hidden(h): """Detaches hidden states from their history.""" if isinstance(h, torch.Tensor): return h.detach() else: return tuple(repackage_hidden(v) for v in h) def get_batch(source, i, seq_length): seq_len = min(seq_length, len(source) - 1 - i) data = source[i:i+seq_len] # predict the sequences shifted by one word target = source[i+1:i+1+seq_len].view(-1) return data, target def batchify(data, bsz, cuda): # Work out how cleanly we can divide the dataset into bsz parts. nbatch = data.size(0) // bsz # Trim off any extra elements that wouldn't cleanly fit (remainders). data = data.narrow(0, 0, nbatch * bsz) # Evenly divide the data across the bsz batches. data = data.view(bsz, -1).t().contiguous() if cuda: data = data.cuda() return data
colorlessgreenRNNs-main
src/language_models/utils.py
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import math import argparse from utils import batchify, get_batch, repackage_hidden import torch import torch.nn as nn from dictionary_corpus import Dictionary, Corpus, tokenize parser = argparse.ArgumentParser(description='Evaluate perplexity of the dataset, ignoring the <unk> words') parser.add_argument('--data', type=str, default='./data/penn', help='location of the data corpus') parser.add_argument('--test', type=str, default=None, help='Indicate your test file if different from data/test.txt') parser.add_argument('--checkpoint', type=str, default='model.pt', help='path to save the final model') parser.add_argument('--cuda', action='store_true', help='use CUDA') parser.add_argument('--bptt', type=int, default=35, help='sequence length') args = parser.parse_args() def evaluate(data_source): model.eval() total_loss = 0 total_len = 0 ntokens = len(dictionary) hidden = model.init_hidden(eval_batch_size) unk_idx = dictionary.word2idx["<unk>"] if args.cuda: out_type = torch.cuda.LongTensor() else: out_type = torch.LongTensor() with torch.no_grad(): for i in range(0, data_source.size(0) - 1, args.bptt): data, targets = get_batch(data_source, i, args.bptt) output, hidden = model(data, hidden) output_flat = output.view(-1, ntokens) subset = targets != unk_idx targets = targets[subset] output_flat = output_flat[torch.arange(0, output_flat.size(0), out=out_type)[subset]] total_len += targets.size(0) total_loss += targets.size(0) * nn.CrossEntropyLoss()(output_flat, targets).item() hidden = repackage_hidden(hidden) return total_loss / total_len if torch.cuda.is_available(): if not args.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") eval_batch_size = 32 if args.test: dictionary = Dictionary(args.data) test = tokenize(dictionary, args.test) print("Size, OOV", test.size(0), sum(test == dictionary.word2idx["<unk>"])) test_data = batchify(test, eval_batch_size, args.cuda) ntokens = len(dictionary) else: corpus = Corpus(args.data) print("Size, OOV", corpus.test.size(0), sum(corpus.test == corpus.dictionary.word2idx["<unk>"])) test_data = batchify(corpus.test, eval_batch_size, args.cuda) dictionary = corpus.dictionary # Load the best saved model. with open(args.checkpoint, 'rb') as f: print("Loading the model") if args.cuda: model = torch.load(f) else: # to convert model trained on cuda to cpu model model = torch.load(f, map_location=lambda storage, loc: storage) print("Evaluation on non-unk tokens") # Run on test data. test_loss = evaluate(test_data) print('=' * 89) print('Test loss {:5.2f} | test ppl {:8.2f}'.format( test_loss, math.exp(test_loss))) print('=' * 89)
colorlessgreenRNNs-main
src/language_models/evaluate_test_perplexity.py
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import logging import math import time import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from dictionary_corpus import Corpus, Dictionary, tokenize from utils import batchify import lm_argparser parser = argparse.ArgumentParser(parents=[lm_argparser.lm_parser], description="Training and testing ngram LSTM model") parser.add_argument('--train', action='store_true', default=False, help='enable training regime') parser.add_argument('--test', action='store_true', default=False, help='enable testing regime') parser.add_argument('--test_path', type=str, help='path to test file, gold file and vocab file output') parser.add_argument('--suffix', type=str, help='suffix for generated output files which will be saved as path.output_suffix') args = parser.parse_args() logging.basicConfig(level=logging.INFO, handlers=[logging.StreamHandler(), logging.FileHandler(args.log)]) logging.info(args) class RNNModel(nn.Module): """Container module with an encoder, a recurrent module, and a decoder. ntoken: vocab size nip: embedding size """ def __init__(self, rnn_type, ntoken, ninp, nhid, nlayers, dropout=0.5, tie_weights=False): super(RNNModel, self).__init__() self.drop = nn.Dropout(dropout) self.encoder = nn.Embedding(ntoken, ninp) if rnn_type in ['LSTM', 'GRU']: self.rnn = getattr(nn, rnn_type)(ninp, nhid, nlayers, dropout=dropout) else: try: nonlinearity = {'RNN_TANH': 'tanh', 'RNN_RELU': 'relu'}[rnn_type] except KeyError: raise ValueError( """An invalid option for `--model` was supplied, options are ['LSTM', 'GRU', 'RNN_TANH' or 'RNN_RELU']""") self.rnn = nn.RNN(ninp, nhid, nlayers, nonlinearity=nonlinearity, dropout=dropout) self.decoder = nn.Linear(nhid, ntoken) # Optionally tie weights as in: # "Using the Output Embedding to Improve Language Models" (Press & Wolf 2016) # https://arxiv.org/abs/1608.05859 # and # "Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling" (Inan et al. 2016) # https://arxiv.org/abs/1611.01462 if tie_weights: if nhid != ninp: raise ValueError('When using the tied flag, nhid must be equal to emsize') self.decoder.weight = self.encoder.weight self.init_weights() self.rnn_type = rnn_type self.nhid = nhid self.nlayers = nlayers def init_weights(self): initrange = 0.1 self.encoder.weight.data.uniform_(-initrange, initrange) self.decoder.bias.data.fill_(0) self.decoder.weight.data.uniform_(-initrange, initrange) def forward(self, input, hidden): emb = self.drop(self.encoder(input)) output, hidden = self.rnn(emb, hidden) #print("hidden", hidden, hidden[0].size()) # take last output of the sequence output = output[-1] #print(output) #decoded = self.decoder(output.view(output.size(0)*output.size(1), output.size(2))) #print(output.size()) decoded = self.decoder(output.view(-1, output.size(1))) #print(output.view(output.size(0)*output.size(1), output.size(2))) #print(decoded) return decoded def init_hidden(self, bsz): weight = next(self.parameters()).data if self.rnn_type == 'LSTM': return (weight.new(self.nlayers, bsz, self.nhid).zero_(), weight.new(self.nlayers, bsz, self.nhid).zero_()) else: return weight.new(self.nlayers, bsz, self.nhid).zero_() def get_batch(source, i, seq_length): seq_len = min(seq_length, len(source) - 1 - i) #print("Sequence length", seq_len) #print(source) data = source[i:i+seq_len] #print(data) #> predict the sequences shifted by one word target = source[i+seq_len].view(-1) #print(target) return data, target def create_target_mask(test_file, gold_file, index_col): sents = open(test_file, "r", encoding="utf8").readlines() golds = open(gold_file, "r", encoding="utf8").readlines() #TODO optimize by initializaing np.array of needed size and doing indexing targets = [] for sent, gold in zip(sents, golds): # constr_id, sent_id, word_id, pos, morph target_idx = int(gold.split()[index_col]) len_s = len(sent.split(" ")) t_s = [0] * len_s t_s[target_idx] = 1 #print(sent.split(" ")[target_idx]) targets.extend(t_s) return np.array(targets) def evaluate_perplexity(data_source, exclude_oov=False): # Turn on evaluation mode which disables dropout. model.eval() total_loss = 0 ntokens = len(corpus.dictionary) len_data = 0 unk_idx = corpus.dictionary.word2idx["<unk>"] if args.cuda: torch_range = torch.cuda.LongTensor() else: torch_range = torch.LongTensor() with torch.no_grad(): for i in range(0, data_source.size(0) - 1): hidden = model.init_hidden(eval_batch_size) data, targets = get_batch(data_source, i, args.bptt) #> output has size seq_length x batch_size x vocab_size output = model(data, hidden) output_flat = output.view(-1, ntokens) # excluding OOV if exclude_oov: subset = targets != unk_idx subset = subset.data targets = targets[subset] output_flat = output_flat[torch.arange(0, output_flat.size(0), out=torch_range)[subset]] total_loss += targets.size(0) * nn.CrossEntropyLoss()(output_flat, targets).data len_data += targets.size(0) return total_loss[0] / len_data def evaluate_on_mask(data_source, mask): model.eval() idx2word = dictionary.idx2word for i in range(0, data_source.size(0) - 1): hidden = model.init_hidden(eval_batch_size) data, targets = get_batch(data_source, i, args.bptt, evaluation=True) _, targets_mask = get_batch(mask, i, args.bptt, evaluation=True) #print(targets_mask.size()) #> output has size seq_length x batch_size x vocab_size output = model(data, hidden) output_flat = output.view(-1, ntokens) log_probs = F.log_softmax(output_flat) # print("Log probs size", log_probs.size()) # print("Target size", targets.size()) log_probs_np = log_probs.data.cpu().numpy() subset = targets_mask.data.numpy().astype(bool) for scores, correct_label in zip(log_probs_np[subset], targets.data.cpu().numpy()[subset]): print(idx2word[correct_label], scores[correct_label]) f_output.write("\t".join(str(s) for s in scores) + "\n") #return total_loss[0] /len(data_source) ############################################################################### # Training code ############################################################################### def train(): # Turn on training mode which enables dropout. model.train() total_loss = 0 start_time = time.time() criterion = nn.CrossEntropyLoss() for batch, i in enumerate(range(0, train_data.size(0) - 1)): #> i is the starting index of the batch #> batch is the number of the batch #> data is a tensor of size seq_length x batch_size, where each element is an index from input vocabulary #> targets is a vector of length seq_length x batch_size data, targets = get_batch(train_data, i, args.bptt) hidden = model.init_hidden(args.batch_size) model.zero_grad() output = model(data, hidden) #> output.view(-1, ntokens) transforms a tensor to a longer tensor of size #> (seq_length x batch_size) x output_vocab_size #> which matches targets in length loss = criterion(output.view(-1, ntokens), targets) loss.backward() torch.nn.utils.clip_grad_norm(model.parameters(), args.clip) for p in model.parameters(): p.data.add_(-lr, p.grad.data) total_loss += loss.data if batch % args.log_interval == 0 and batch > 0: cur_loss = total_loss[0] / args.log_interval elapsed = time.time() - start_time #logging.info('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | ' # 'loss {:5.2f} | ppl {:8.2f}'.format( # epoch, batch, len(train_data) // args.bptt, lr, # elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss))) logging.info('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | ' 'loss {:5.2f}'.format(epoch, batch, len(train_data), lr, elapsed * 1000 / args.log_interval, cur_loss)) total_loss = 0 start_time = time.time() # Set the random seed manually for reproducibility. torch.manual_seed(args.seed) if torch.cuda.is_available(): if not args.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") else: torch.cuda.manual_seed(args.seed) ############################################################################### # Load data ############################################################################### if args.train: logging.info("Loading data") corpus = Corpus(args.data) # logging.info(corpus.train) ntokens = len(corpus.dictionary) logging.info("Vocab size %d", ntokens) logging.info("Batchying..") eval_batch_size = 256 train_data = batchify(corpus.train, args.batch_size, args.cuda) # logging.info("Train data size", train_data.size()) val_data = batchify(corpus.valid, eval_batch_size, args.cuda) test_data = batchify(corpus.test, eval_batch_size, args.cuda) logging.info("Building the model") # model = torch.nn.DataParallel(model.RNNModel(args.model, ntokens, args.emsize, args.nhid, args.nlayers, args.dropout, args.tied), # dim=1) model = RNNModel(args.model, ntokens, args.emsize, args.nhid, args.nlayers, args.dropout, args.tied) if args.cuda: model.cuda() # Loop over epochs. lr = args.lr best_val_loss = None try: for epoch in range(1, args.epochs+1): epoch_start_time = time.time() train() val_loss = evaluate_perplexity(val_data) logging.info('-' * 89) logging.info('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | ' 'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time), val_loss, math.exp(val_loss))) logging.info('-' * 89) # Save the model if the validation loss is the best we've seen so far. if not best_val_loss or val_loss < best_val_loss: with open(args.save, 'wb') as f: torch.save(model, f) best_val_loss = val_loss else: # Anneal the learning rate if no improvement has been seen in the validation dataset. lr /= 4.0 except KeyboardInterrupt: logging.info('-' * 89) logging.info('Exiting from training early') # Load the best saved model. with open(args.save, 'rb', encoding="utf8") as f: model = torch.load(f) # Run on valid data with OOV excluded test_loss = evaluate_perplexity(val_data, exclude_oov=True) logging.info('=' * 89) logging.info('| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format(test_loss, math.exp(test_loss))) logging.info('=' * 89) ##################################### # Testing # ##################################### if args.test: dictionary = Dictionary(args.data) with open(args.save, 'rb', encoding="utf8") as f: print("Loading the model") if args.cuda: model = torch.load(f) model.cuda() else: # to convert model trained on cuda to cpu model model = torch.load(f, map_location=lambda storage, loc: storage) model.cpu() model.eval() eval_batch_size = 1 ntokens = len(dictionary) #print("Vocab size", ntokens) #print("TESTING") # depends on generation script (constantly modified) - the column where the target word index is written index_col = 3 mask = create_target_mask(args.test_path + ".text", args.test_path + ".gold", index_col) mask_data = batchify(torch.LongTensor(mask), eval_batch_size, False) test_data = batchify(tokenize(dictionary, args.test_path + ".text"), eval_batch_size, args.cuda) f_output = open(args.test_path + ".output_" + args.suffix, 'w') evaluate_on_mask(test_data, mask_data) f_output.close()
colorlessgreenRNNs-main
src/language_models/ngram_lstm.py
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import torch import torch.nn as nn import torch.nn.functional as F import dictionary_corpus from utils import repackage_hidden, batchify, get_batch import numpy as np parser = argparse.ArgumentParser(description='Mask-based evaluation: extracts softmax vectors for specified words') parser.add_argument('--data', type=str, help='location of the data corpus for LM training') parser.add_argument('--checkpoint', type=str, help='model checkpoint to use') parser.add_argument('--seed', type=int, default=1111, help='random seed') parser.add_argument('--cuda', action='store_true', help='use CUDA') parser.add_argument('--path', type=str, help='path to test file (text) gold file (indices of words to evaluate)') parser.add_argument('--suffix', type=str, help='suffix for generated output files which will be saved as path.output_suffix') args = parser.parse_args() def evaluate(data_source, mask): # Turn on evaluation mode which disables dropout. model.eval() total_loss = 0 hidden = model.init_hidden(eval_batch_size) with torch.no_grad(): for i in range(0, data_source.size(0) - 1, seq_len): # keep continuous hidden state across all sentences in the input file data, targets = get_batch(data_source, i, seq_len) _, targets_mask = get_batch(mask, i, seq_len) output, hidden = model(data, hidden) output_flat = output.view(-1, vocab_size) total_loss += len(data) * nn.CrossEntropyLoss()(output_flat, targets) output_candidates_probs(output_flat, targets, targets_mask) hidden = repackage_hidden(hidden) return total_loss.item() / (len(data_source) - 1) def output_candidates_probs(output_flat, targets, mask): log_probs = F.log_softmax(output_flat, dim=1) log_probs_np = log_probs.cpu().numpy() subset = mask.cpu().numpy().astype(bool) for scores, correct_label in zip(log_probs_np[subset], targets.cpu().numpy()[subset]): #print(idx2word[correct_label], scores[correct_label]) f_output.write("\t".join(str(s) for s in scores) + "\n") def create_target_mask(test_file, gold_file, index_col): sents = open(test_file, "r").readlines() golds = open(gold_file, "r").readlines() #TODO optimize by initializaing np.array of needed size and doing indexing targets = [] for sent, gold in zip(sents, golds): # constr_id, sent_id, word_id, pos, morph target_idx = int(gold.split()[index_col]) len_s = len(sent.split(" ")) t_s = [0] * len_s t_s[target_idx] = 1 #print(sent.split(" ")[target_idx]) targets.extend(t_s) return np.array(targets) # Set the random seed manually for reproducibility. torch.manual_seed(args.seed) if torch.cuda.is_available(): if not args.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") else: torch.cuda.manual_seed(args.seed) with open(args.checkpoint, 'rb') as f: print("Loading the model") if args.cuda: model = torch.load(f) else: # to convert model trained on cuda to cpu model model = torch.load(f, map_location = lambda storage, loc: storage) model.eval() if args.cuda: model.cuda() else: model.cpu() eval_batch_size = 1 seq_len = 20 dictionary = dictionary_corpus.Dictionary(args.data) vocab_size = len(dictionary) #print("Vocab size", vocab_size) print("Computing probabilities for target words") # assuming the mask file contains one number per line indicating the index of the target word index_col = 0 mask = create_target_mask(args.path + ".text", args.path + ".eval", index_col) mask_data = batchify(torch.LongTensor(mask), eval_batch_size, args.cuda) test_data = batchify(dictionary_corpus.tokenize(dictionary, args.path + ".text"), eval_batch_size, args.cuda) f_output = open(args.path + ".output_" + args.suffix, 'w') evaluate(test_data, mask_data) print("Probabilities saved to", args.path + ".output_" + args.suffix) f_output.close()
colorlessgreenRNNs-main
src/language_models/evaluate_target_word.py
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import logging import math import time import torch import torch.nn as nn from dictionary_corpus import Corpus import model from lm_argparser import lm_parser from utils import repackage_hidden, get_batch, batchify parser = argparse.ArgumentParser(parents=[lm_parser], description="Basic training and evaluation for RNN LM") args = parser.parse_args() logging.basicConfig(level=logging.INFO, handlers=[logging.StreamHandler(), logging.FileHandler(args.log)]) logging.info(args) # Set the random seed manually for reproducibility. torch.manual_seed(args.seed) if torch.cuda.is_available(): if not args.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") else: torch.cuda.manual_seed(args.seed) ############################################################################### # Load data ############################################################################### logging.info("Loading data") start = time.time() corpus = Corpus(args.data) logging.info("( %.2f )" % (time.time() - start)) ntokens = len(corpus.dictionary) logging.info("Vocab size %d", ntokens) logging.info("Batchying..") eval_batch_size = 10 train_data = batchify(corpus.train, args.batch_size, args.cuda) val_data = batchify(corpus.valid, eval_batch_size, args.cuda) test_data = batchify(corpus.test, eval_batch_size, args.cuda) criterion = nn.CrossEntropyLoss() ############################################################################### # Build the model ############################################################################### logging.info("Building the model") model = model.RNNModel(args.model, ntokens, args.emsize, args.nhid, args.nlayers, args.dropout, args.tied) if args.cuda: model.cuda() ############################################################################### # Training code ############################################################################### def evaluate(data_source): # Turn on evaluation mode which disables dropout. model.eval() total_loss = 0 hidden = model.init_hidden(eval_batch_size) with torch.no_grad(): for i in range(0, data_source.size(0) - 1, args.bptt): data, targets = get_batch(data_source, i, args.bptt) #> output has size seq_length x batch_size x vocab_size output, hidden = model(data, hidden) #> output_flat has size num_targets x vocab_size (batches are stacked together) #> ! important, otherwise softmax computation (e.g. with F.softmax()) is incorrect output_flat = output.view(-1, ntokens) #output_candidates_info(output_flat.data, targets.data) total_loss += len(data) * nn.CrossEntropyLoss()(output_flat, targets).item() hidden = repackage_hidden(hidden) return total_loss / (len(data_source) - 1) def train(): # Turn on training mode which enables dropout. model.train() total_loss = 0 start_time = time.time() hidden = model.init_hidden(args.batch_size) for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)): data, targets = get_batch(train_data, i, args.bptt) # truncated BPP hidden = repackage_hidden(hidden) model.zero_grad() output, hidden = model(data, hidden) loss = criterion(output.view(-1, ntokens), targets) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip) for p in model.parameters(): p.data.add_(-lr, p.grad.data) total_loss += loss.item() if batch % args.log_interval == 0 and batch > 0: cur_loss = total_loss / args.log_interval elapsed = time.time() - start_time logging.info('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | ' 'loss {:5.2f} | ppl {:8.2f}'.format( epoch, batch, len(train_data) // args.bptt, lr, elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss))) total_loss = 0 start_time = time.time() # Loop over epochs. lr = args.lr best_val_loss = None # At any point you can hit Ctrl + C to break out of training early. try: for epoch in range(1, args.epochs + 1): epoch_start_time = time.time() train() val_loss = evaluate(val_data) logging.info('-' * 89) logging.info('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | ' 'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time), val_loss, math.exp(val_loss))) logging.info('-' * 89) # Save the model if the validation loss is the best we've seen so far. if not best_val_loss or val_loss < best_val_loss: with open(args.save, 'wb') as f: torch.save(model, f) best_val_loss = val_loss else: # Anneal the learning rate if no improvement has been seen in the validation dataset. lr /= 4.0 except KeyboardInterrupt: logging.info('-' * 89) logging.info('Exiting from training early') # Load the best saved model. with open(args.save, 'rb') as f: model = torch.load(f) # Run on test data. test_loss = evaluate(test_data) logging.info('=' * 89) logging.info('| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format(test_loss, math.exp(test_loss))) logging.info('=' * 89)
colorlessgreenRNNs-main
src/language_models/main.py
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import torch from collections import defaultdict import logging class Dictionary(object): def __init__(self, path): self.word2idx = {} self.idx2word = [] self.word2freq = defaultdict(int) vocab_path = os.path.join(path, 'vocab.txt') try: vocab = open(vocab_path, encoding="utf8").read() self.word2idx = {w: i for i, w in enumerate(vocab.split())} self.idx2word = [w for w in vocab.split()] self.vocab_file_exists = True except FileNotFoundError: logging.info("Vocab file not found, creating new vocab file.") self.create_vocab(os.path.join(path, 'train.txt')) open(vocab_path,"w").write("\n".join([w for w in self.idx2word])) def add_word(self, word): self.word2freq[word] += 1 if word not in self.word2idx: self.idx2word.append(word) self.word2idx[word] = len(self.idx2word) - 1 #return self.word2idx[word] def __len__(self): return len(self.idx2word) def create_vocab(self, path): with open(path, 'r', encoding="utf8") as f: for line in f: words = line.split() for word in words: self.add_word(word) class Corpus(object): def __init__(self, path): self.dictionary = Dictionary(path) self.train = tokenize(self.dictionary, os.path.join(path, 'train.txt')) self.valid = tokenize(self.dictionary, os.path.join(path, 'valid.txt')) self.test = tokenize(self.dictionary, os.path.join(path, 'test.txt')) def tokenize(dictionary, path): """Tokenizes a text file for training or testing to a sequence of indices format We assume that training and test data has <eos> symbols """ assert os.path.exists(path) with open(path, 'r', encoding="utf8") as f: ntokens = 0 for line in f: words = line.split() ntokens += len(words) # Tokenize file content with open(path, 'r', encoding="utf8") as f: ids = torch.LongTensor(ntokens) token = 0 for line in f: words = line.split() for word in words: if word in dictionary.word2idx: ids[token] = dictionary.word2idx[word] else: ids[token] = dictionary.word2idx["<unk>"] token += 1 return ids
colorlessgreenRNNs-main
src/language_models/dictionary_corpus.py
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import subprocess def query_KenLM(lm_file, file_name, kenlm_path="/private/home/gulordava/kenlm/build/bin/"): """ :param lm_file: language model :param file_name: file with (partial) sentences to test :return: a list of probabilities of the last word of each sentence """ command = kenlm_path + "query " + lm_file + ' < ' + file_name + " -n" KenLM_query = subprocess.getstatusoutput(command)[1] lines = KenLM_query.split("\n") skip = ["This binary file contains probing hash tables.", "Loading the LM will be faster if you build a binary file."] if any(s in lines[0] for s in skip): lines = lines[1:] result_probs = [] for line in lines: # last ngram is Total + OOV try: result_probs.append(float(line.split('\t')[-2].split(" ")[2])) except (IndexError, ValueError) as e: print(line) return result_probs, lines
colorlessgreenRNNs-main
src/syntactic_testsets/evaluate_utils.py
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import tree_module as tm import argparse import itertools from collections import defaultdict import numpy as np from generate_utils import is_good_form from utils import load_vocab, ltm_to_word, read_paradigms def safe_log(x): np.seterr(divide='ignore', invalid='ignore') return np.where(x > 0.0001, np.log(x), 0.0) def cond_entropy(xy): # normalise xy = xy / np.sum(xy) x_ = np.sum(xy, axis=1) y_ = np.sum(xy, axis=0) x_y = xy / y_ # print(x_y) y_x = xy / x_.reshape(x_.shape[0], 1) # print(y_x) # Entropies: H(x|y) H(y|x) H(x) H(y) return np.sum(-xy * safe_log(x_y)), np.sum(-xy * safe_log(y_x)), np.sum(-x_ * safe_log(x_)), np.sum( -y_ * safe_log(y_)) def pos_structure(nodes, arc): """ Get a sequence of pos tags for nodes which are direct children of the arc head or the arc child nodes - the list of nodes of the context Y, between the head and the child (X, Z) of the arc """ return tuple([n.pos for n in nodes if n.head_id in [arc.head.index, arc.child.index]]) def inside(tree, a): if a.child.index < a.head.index: nodes = tree.nodes[a.child.index: a.head.index - 1] l = a.child r = a.head else: nodes = tree.nodes[a.head.index: a.child.index - 1] l = a.head r = a.child return nodes, l, r def features(morph, feature_list): #Definite=Def|Gender=Masc|Number=Sing|PronType=Art Tense=Past|VerbForm=Part if not feature_list: return morph all_feats = morph.split("|") feat_values = tuple(f for f in all_feats if f.split("=")[0] in feature_list) return "|".join(feat_values) def morph_contexts_frequencies(trees, feature_list): """ Collect frequencies for X Y Z tuples, where Y is a context defined by its surface structure and X and Z are connected by a dependency :param trees: dependency trees :return: two dictionaries for left and right dependencies """ d_left = defaultdict(lambda: defaultdict(int)) d_right = defaultdict(lambda: defaultdict(int)) for t in trees: for a in t.arcs: if 3 < a.length() < 15 and t.is_projective_arc(a): # print("\n".join(str(n) for n in t.nodes)) nodes, l, r = inside(t, a) substring = (l.pos,) + pos_structure(nodes, a) + (r.pos,) # print(substring) if substring: if features(l.morph, feature_list) == "" or features(r.morph, feature_list) == "": continue #substring = substring + (a.dep_label,) if a.dir == tm.Arc.LEFT: d_left[substring][(features(l.morph, feature_list), features(r.morph, feature_list))] += 1 if a.dir == tm.Arc.RIGHT: d_right[substring][(features(l.morph, feature_list), features(r.morph, feature_list))] += 1 return d_left, d_right def find_good_patterns(context_dict, freq_threshold): """ :param context_dict: is a dictionary of type { Y context : {(X, Z) : count} } for X Y Z sequences where X and Z could be of any type (tags, morph) :param freq_threshold: for filtering out too infrequent patterns :return: list of patterns - tuples (context, left1, left2) == (Y, X1, X2) (where X1 and X2 occur with different Zs) """ patterns = [] for context in context_dict: left_right_pairs = context_dict[context].keys() if len(left_right_pairs) == 0: continue left, right = zip(*left_right_pairs) left_v = set(left) d = context_dict[context] if len(left_v) < 2: continue for l1, l2 in itertools.combinations(left_v, 2): right_v = [r for (l, r) in left_right_pairs if l in (l1, l2)] if len(right_v) < 2: continue a = np.zeros((2, len(right_v))) for i, x in enumerate((l1, l2)): for j, y in enumerate(right_v): a[(i, j)] = d[(x, y)] l_r, r_l, l_e, r_e = cond_entropy(a) mi = l_e - l_r count_l1 = 0 count_l2 = 0 for l, r in d: if l == l1: count_l1 += d[(l, r)] if l == l2: count_l2 += d[(l, r)] #print(l_r, r_l, l_e, r_e, mi) if l_r < 0.001 and count_l1 > freq_threshold and count_l2 > freq_threshold: patterns.append((context, l1, l2)) print(context, l_r, mi) print(l1, l2, count_l1, count_l2) #for l, r in d: # if l in (l1, l2) and d[(l, r)] > 0 : # print(l, r, d[(l, r)]) return patterns def grep_morph_pattern(trees, context, l_values, dep_dir, feature_list=None): """ :param context: Y :param l_values: l_values are relevant X values :param dep_dir: :return: generator of (context-type, l, r, tree, Y nodes) tuples """ if feature_list is None: feature_list = ['Number'] for t in trees: for a in t.arcs: if 3 < a.length() < 15 and t.is_projective_arc(a): if a.child.pos == "PUNCT" or a.head.pos == "PUNCT": continue #print("\n".join(str(n) for n in t.nodes)) nodes, l, r = inside(t, a) if a.dir != dep_dir: continue if not any(m in l.morph for m in l_values): #print(features(l.morph), l_values) continue if features(r.morph, feature_list) != features(l.morph, feature_list): continue substring = (l.pos,) + pos_structure(nodes, a) + (r.pos,) if substring == context: #print(substring, context) yield context, l, r, t, nodes def main(): parser = argparse.ArgumentParser( description='Extracting dependency-based long-distance agreement patterns') parser.add_argument('--treebank', type=str, required=True, help='Path of the input treebank file (in a column format)') parser.add_argument('--output', type=str, required=True, help="Path for the output files") parser.add_argument('--features', type=str, default="Number", help="A list of morphological features which will be used, in Number|Case|Gender format") parser.add_argument('--freq', type=int, default=5, help="minimal frequency") parser.add_argument('--vocab', type=str, required=False, help="LM vocab - to compute which sentences have OOV") parser.add_argument('--paradigms', type=str, required=False, help="File with morphological paradigms - to compute" "which sentences have both target pairs") args = parser.parse_args() if args.vocab: vocab = load_vocab(args.vocab) else: vocab = [] print("Loading trees") trees = tm.load_trees_from_conll(args.treebank) # needed for original UD treebanks (e.g. Italian) which contain spans, e.g. 10-12 # annotating mutlimorphemic words as several nodes in the tree for t in trees: t.remerge_segmented_morphemes() if args.features: args.features = args.features.split("|") print("Features", args.features) print("Extracting contexts") context_left_deps, context_right_deps = morph_contexts_frequencies(trees, args.features) # filtering very infrequent cases filter_threshold = 1 context_left_deps = defaultdict(lambda: defaultdict(int), {c: defaultdict(int, {lr: freq for lr, freq in d.items() if freq > filter_threshold}) for c, d in context_left_deps.items()}) context_right_deps = defaultdict(lambda: defaultdict(int), {c: defaultdict(int, {lr: freq for lr, freq in d.items() if freq > filter_threshold}) for c, d in context_right_deps.items()}) print("Finding good patterns") good_patterns_left = find_good_patterns(context_left_deps, args.freq) good_patterns_right = find_good_patterns(context_right_deps, args.freq) f_out = open(args.output + "/patterns.txt", "w") print("Saving patterns and sentences matching them") ltm_paradigms = ltm_to_word(read_paradigms(args.paradigms)) for p in good_patterns_left: f_out.write("L\t" + "_".join(x for x in p[0]) + "\t" + "\t".join(p[1:]) + "\n") print("L\t" + "_".join(x for x in p[0]) + "\t" + "\t".join(p[1:]) + "\n") f_out_grep = open(args.output + "/L_" + "_".join(x for x in p[0]), "w") for context, l, r, t, nodes in grep_morph_pattern(trees, p[0], p[1:], tm.Arc.LEFT, args.features): #print(l.morph + " " + r.morph + "\t" + l.word + " " + " ".join([n.word for n in nodes]) + " " + r.word) in_vocab = all([n.word in vocab for n in nodes + [l, r]]) in_paradigms = is_good_form(r.word, r.word, r.morph, r.lemma, r.pos, vocab, ltm_paradigms) f_out_grep.write(features(l.morph, args.features) + " " + features(r.morph, args.features) + "\t" + str(in_vocab) + str(in_paradigms) + "\t" + l.word + " " + " ".join([n.word for n in nodes]) + " " + r.word + "\n") f_out_grep.close() for p in good_patterns_right: f_out.write("R\t" + "_".join(x for x in p[0]) + "\t" + "\t".join(p[1:]) + "\n") print("R\t" + "_".join(x for x in p[0]) + "\t" + "\t".join(p[1:]) + "\n") f_out_grep = open(args.output + "/R_" + "_".join(x for x in p[0]), "w") for context, l, r, t, nodes in grep_morph_pattern(trees, p[0], p[1:], tm.Arc.RIGHT, args.features): #print(l.morph + " " + r.morph + "\t" + l.word + " " + " ".join([n.word for n in nodes]) + " " + r.word) in_vocab = all([n.word in vocab for n in nodes + [l, r]]) in_paradigms = is_good_form(r.word, r.word, r.morph, r.lemma, r.pos, vocab, ltm_paradigms) f_out_grep.write(features(l.morph, args.features)+ " " + features(r.morph, args.features) + "\t" + str(in_vocab) + str(in_paradigms) + "\t" + l.word + " " + " ".join([n.word for n in nodes]) + " " + r.word + "\n") f_out_grep.close() f_out.close() if __name__ == "__main__": main()
colorlessgreenRNNs-main
src/syntactic_testsets/extract_dependency_patterns.py
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # """ Classes Node, Arc, DependencyTree providing functionality for syntactic dependency trees """ from __future__ import print_function, division import re from queue import Queue import conll_utils as conll_utils class Node(object): def __init__(self, index=None, word="", lemma="", head_id=None, pos="", dep_label="", morph="_", size=None, dep_label_new=None): """ :param index: int :param word: str :param head_id: int :param pos: str :param dep_label: str """ self.index = index self.word = word self.lemma = lemma self.head_id = head_id self.pos = pos self.dep_label = dep_label self.morph = morph if dep_label_new is None: self.dep_label_new = dep_label else: self.dep_label_new = dep_label_new # to assign after tree creation self.size = size self.dir = None def __str__(self): return "\t".join([str(self.index), self.word, self.pos, self.morph, str(self.head_id), str(self.dep_label)]) def __repr__(self): return "\t".join([str(v) for (a, v) in self.__dict__.items() if v]) @classmethod def from_str(cls, string): index, word, pos, head_id, dep_label = [None if x == "None" else x for x in string.split("\t")] return Node(index, word, head_id, pos, dep_label) def __eq__(self, other): return other is not None and \ self.index == other.index and \ self.word == other.word and \ self.head_id == other.head_id and \ self.pos == other.pos and \ self.dep_label == other.dep_label def __hash__(self): return hash(tuple(self.__dict__.values())) def is_root(self): generic_root = DependencyTree.generic_root(conll_utils.UD_CONLL_CONFIG) if self.word == generic_root.word and self.pos == generic_root.pos: return True return False class Arc(object): LEFT = "L" RIGHT = "R" def __init__(self, head, direction, child): self.head = head self.dir = direction self.child = child self.dep_label = child.dep_label def __str__(self): return str(self.head) + " " + self.dir + " " + str(self.child) def __repr__(self): return str(self) @classmethod def from_str(cls, string): head_str, dir, child_str = string.split(" ") return Arc(Node.from_str(head_str), dir, Node.from_str(child_str)) def __eq__(self, other): if type(other) is type(self): return self.__dict__ == other.__dict__ return False def __hash__(self): return hash(tuple(self.__dict__.values())) def length(self): # arcs to ROOT node have length 0 if self.head.is_root(): return 0 else: return abs(self.child.index - self.head.index) class DependencyTree(object): def __init__(self, nodes, arcs, config, fused_nodes): self.nodes = nodes self.arcs = arcs self.assign_sizes_to_nodes() self.config = config # for UD annotation to be able to recover original sentence (without split morphemes) self.fused_nodes = fused_nodes def __str__(self): return "\n".join([str(n) for n in self.nodes]) def __repr__(self): return str(self) def children(self, head): children = [] for arc in self.arcs: if arc.head == head: children.append(arc.child) return children def assign_sizes_to_nodes(self): for node in self.nodes: node.size = len(self.children(node)) + 1 def reindex(self, nodes, conll_config): """ After reordering 'nodes' list reflects the final order of nodes, however the indices of node objects do not correspond to this order. This function fixes it. """ new_positions = {} new_nodes = [] # in order for i in range(len(nodes)): new_positions[nodes[i].index] = i for i in range(len(nodes)): new_nodes.append(nodes[i]) if nodes[i].head_id == conll_config.ROOT_INDEX: nodes[i].index = i + conll_config.OFFSET else: nodes[i].index = i + conll_config.OFFSET nodes[i].head_id = new_positions[nodes[i].head_id] + conll_config.OFFSET self.nodes = new_nodes def remove_node(self, node_x): assert len(self.children(node_x)) == 0 self.nodes.remove(node_x) for node in self.nodes: if node.head_id > node_x.index: node.head_id = node.head_id - 1 if node.index > node_x.index: node.index = node.index - 1 for i in range(len(self.fused_nodes)): start, end, token = self.fused_nodes[i] if start > node_x.index: start = start - 1 if end > node_x.index: end = end - 1 self.fused_nodes[i] = (start, end, token) def subtree(self, head): elements = set() queue = Queue() queue.put(head) #head_ = Node(head.index, head.word, head.pos + "X") elements.add(head) visited = set() while not queue.empty(): next_node = queue.get() if next_node in visited: continue visited.add(next_node) for child in self.children(next_node): elements.add(child) queue.put(child) return sorted(elements, key=lambda element: int(element.index)) def is_projective_arc(self, arc): st = self.subtree(arc.head) # all nodes in subtree of the arc head st_idx = [node.index for node in st] # span between the child and the head indexes = range(arc.child.index + 1, arc.head.index) if arc.child.index < arc.head.index else range( arc.head.index + 1, arc.child.index) # each node/word between child and head should be part of the subtree # if not, than the child-head arc is crossed by some other arc and is non-projective for i in indexes: if i not in st_idx: return False return True def is_projective(self): return all(self.is_projective_arc(arc) for arc in self.arcs) def length(self): return sum(arc.length() for arc in self.arcs) def average_branching_factor(self): heads = [node.head_id for node in self.nodes] return len(self.nodes)/len(set(heads)) def root(self): return DependencyTree.generic_root(self.config) def remerge_segmented_morphemes(self): """ UD format only: Remove segmented words and morphemes and substitute them by the original word form - all children of the segments are attached to the merged word form - word form features are assigned heuristically (should work for Italian, not sure about other languages) - pos tag and morphology (zero?) comes from the first morpheme :return: """ for start, end, token in self.fused_nodes: # assert start + 1 == end, t self.nodes[start - 1].word = token for i in range(end - start): # print(i) if len(self.children(self.nodes[start])) != 0: for c in self.children(self.nodes[start]): c.head_id = self.nodes[start - 1].index self.arcs.remove(Arc(child=c, head=self.nodes[start], direction=c.dir)) self.arcs.append(Arc(child=c, head=self.nodes[start - 1], direction=c.dir)) assert len(self.children(self.nodes[start])) == 0, (self, start, end, token, i, self.arcs) self.remove_node(self.nodes[start]) # print(t) # print(t) self.fused_nodes = [] @classmethod def generic_root(cls, conll_config): return Node(conll_config.ROOT_INDEX, "ROOT", "ROOT", 0, "ROOT", size=0) @classmethod def from_sentence(cls, sentence, conll_config): nodes = [] fused_nodes = [] for i in range(len(sentence)): row = sentence[i] if conll_config.MORPH is not None: morph = row[conll_config.MORPH] else: morph = "_" # saving original word segments separated in UD (e.g. Italian darglielo -> dare + gli + lo) if conll_config == conll_utils.UD_CONLL_CONFIG: if re.match(r"[0-9]+-[0-9]+", row[0]): fused_nodes.append((int(row[0].split("-")[0]), int(row[0].split("-")[1]), row[1])) continue # empty elements (e.g. copula in Russian) if re.match(r"[0-9]+\.[0-9]+", row[0]): continue if conll_config.INDEX is not None: nodes.append( Node(int(row[conll_config.INDEX]), row[conll_config.WORD], row[conll_config.LEMMA], int(row[conll_config.HEAD_INDEX]), pos=row[conll_config.POS], dep_label=row[conll_config.DEP_LABEL], morph=morph)) else: nodes.append(Node(i, row[conll_config.WORD], row[conll_config.LEMMA], int(row[conll_config.HEAD_INDEX]), pos=row[conll_config.POS], dep_label=row[conll_config.DEP_LABEL], morph=morph)) arcs = [] for node in nodes: head_index = int(node.head_id) head_element = nodes[head_index - conll_config.OFFSET] if head_index == conll_config.ROOT_INDEX: arcs.append(Arc(cls.generic_root(conll_config), Arc.LEFT, node)) elif head_index < int(node.index): arcs.append(Arc(head_element, Arc.RIGHT, node)) node.dir = Arc.RIGHT else: arcs.append(Arc(head_element, Arc.LEFT, node)) node.dir = Arc.LEFT return cls(nodes, arcs, conll_config, fused_nodes) def pprint(self, conll_config, lower_case=False): # TODO: change the indices of heads in accordance with the config s = "" for node in self.nodes: row = ["_"] * conll_config.NCOLS if conll_config.INDEX is not None: row[conll_config.INDEX] = str(node.index) if node.word: if lower_case: row[conll_config.WORD] = node.word.lower() else: row[conll_config.WORD] = node.word if node.pos: row[conll_config.POS] = node.pos if node.morph: row[conll_config.MORPH] = node.morph if node.lemma: row[conll_config.LEMMA] = node.lemma row[conll_config.HEAD_INDEX] = str(node.head_id) if node.dep_label: row[conll_config.DEP_LABEL] = node.dep_label s = s + "\t".join(row) + "\n" return s #.encode("utf-8") def load_trees_from_conll(file_name, config=None): sentences = conll_utils.read_sentences_from_columns(open(file_name)) # config for the default cases, to facilitate handling of multiple formats at the same time # for guaranteed performance, config should be supplied if config is None: if len(sentences[0][0]) == conll_utils.ZGEN_CONLL_CONFIG.NCOLS: config = conll_utils.ZGEN_CONLL_CONFIG elif len(sentences[0][0]) == conll_utils.UD_CONLL_CONFIG.NCOLS: config = conll_utils.UD_CONLL_CONFIG else: print("Unrecognised format of ", file_name) return None trees = [] for s in sentences: trees.append(DependencyTree.from_sentence(s, config)) return trees
colorlessgreenRNNs-main
src/syntactic_testsets/tree_module.py
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import sys from utils import read_paradigms, load_vocab, extract_sent_features, transform_gold, vocab_freqs import pandas as pd lang = sys.argv[1] path_test_data = "/private/home/gulordava/colorlessgreen/data/agreement/" + lang + "/generated" path_lm_data = "/private/home/gulordava/colorlessgreen/data/lm/" + lang if lang == "English": path_paradigms = "/private/home/gulordava/edouard_data/enwiki/paradigms_UD.txt" if lang == "Italian": path_paradigms = "/private/home/gulordava/edouard_data/itwiki/paradigms_UD.txt" if lang == "Italian_srnn": path_paradigms = "/private/home/gulordava/edouard_data/itwiki/paradigms_UD.txt" if lang == "Russian": path_paradigms = "/private/home/gulordava/edouard_data/ruwiki/paradigms_UD.txt" if lang == "Hebrew": path_paradigms = "/private/home/gulordava/edouard_data/hewiki/p2" gold = open(path_test_data + ".gold").readlines() sents = open(path_test_data + ".text").readlines() paradigms = read_paradigms(path_paradigms) output = [] vocab = load_vocab(path_lm_data + "/vocab.txt") data = transform_gold(gold) data = pd.DataFrame(data, columns=["pattern_id", "constr_id", "sent_id", "correct_number", "form", "class"]) data.loc[data.sent_id == 0, "type"] = "original" data.loc[data.sent_id > 0, "type"] = "generated" # getting simpler pattern labels patterns = {p: "__".join(p.split("!")[:2]) for p in set(data.pattern_id)} data["pattern"] = data["pattern_id"].map(patterns) df_sents = extract_sent_features(sents, gold, vocab, paradigms) full_df = data.merge(df_sents, on=["pattern_id", "constr_id", "sent_id"]) freq_dict = vocab_freqs(path_lm_data + "/train.txt", vocab) full_df["freq"] = full_df["form"].map(freq_dict) fields = ["pattern", "constr_id", "sent_id", "correct_number", "form", "class", "type", "prefix", "n_attr", "punct", "freq", "len_context", "len_prefix", "sent"] full_df[fields].to_csv(path_test_data + ".tab", sep="\t", index=False)
colorlessgreenRNNs-main
src/syntactic_testsets/_create_datatable.py
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. #
colorlessgreenRNNs-main
src/syntactic_testsets/__init__.py
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from __future__ import print_function #!/usr/bin/env python import sys import re from collections import namedtuple ConllConfig = namedtuple('CONLL_config', ['INDEX', 'WORD', 'POS', 'LEMMA', 'MORPH', 'HEAD_INDEX', 'DEP_LABEL', 'OFFSET', 'ROOT_INDEX', 'NCOLS'], verbose=False) UD_CONLL_CONFIG = ConllConfig(INDEX=0, WORD=1, LEMMA=2, POS=3, MORPH=5, HEAD_INDEX=6, DEP_LABEL=7, OFFSET=1, ROOT_INDEX=0, NCOLS=10) UD_CONLL_FINE_POS_CONFIG = ConllConfig(INDEX=0, WORD=1, LEMMA=2, POS=4, MORPH=5, HEAD_INDEX=6, DEP_LABEL=7, OFFSET=1, ROOT_INDEX=0, NCOLS=10) CONLL09_CONFIG = ConllConfig(INDEX=0, WORD=1, LEMMA=2, POS=4, MORPH=6, #TODO check morph column id HEAD_INDEX=8, DEP_LABEL=10, OFFSET=1, ROOT_INDEX=0, NCOLS=12) ZGEN_CONLL_CONFIG = ConllConfig(INDEX=None, WORD=0, LEMMA=0, POS=1, MORPH=None, HEAD_INDEX=2, DEP_LABEL=3, OFFSET=0, ROOT_INDEX=-1, NCOLS=4) ARCS_CONLL_CONFIG = ConllConfig(INDEX=0, WORD=1, LEMMA=1, POS=2, MORPH=None, HEAD_INDEX=3, DEP_LABEL=6, OFFSET=1, ROOT_INDEX=0, NCOLS=7) DEP_LABEL_TYPES = { "core": "ccomp csubj csubjpass dobj iobj nsubj nsubjpass xcomp".split(), "non_core": """acl discourse nmod advcl dislocated nummod advmod expl parataxis amod foreign remnant appos goeswith reparandum compound list root -NONE- conj mwe vocative dep name""".split(), "func": "aux auxpass case cc cop det mark neg".split(), "other": "punct".split()} def get_config(name): if name == "UD": return UD_CONLL_CONFIG elif name == "ZGEN": return ZGEN_CONLL_CONFIG elif name == "CONLL09": return CONLL09_CONFIG elif name == "UD_fine_pos": return UD_CONLL_FINE_POS_CONFIG def read_blankline_block(stream): s = '' list = [] while True: line = stream.readline() # End of file: if not line: list.append(s) return list # Blank line: elif line and not line.strip(): list.append(s) s = '' # Other line: # in Google UD some lines can be commented and some can have multiword expressions/fused morphemes introduced by "^11-12 sss" # and not re.match("[0-9]+-[0-9]+",line) and not line.startswith("<") elif not line.startswith("#"): # and "_\t_\t_\t_\t_\t" in line): # and not line.startswith("<"): s += line def read_sentences_from_columns(stream): # grids are sentences in column format grids = [] for block in read_blankline_block(stream): block = block.strip() if not block: continue grid = [line.split('\t') for line in block.split('\n')] appendFlag = True # Check that the grid is consistent. for row in grid: if len(row) != len(grid[0]): print(grid) #raise ValueError('Inconsistent number of columns:\n%s'% block) sys.stderr.write('Inconsistent number of columns', block) appendFlag = False break if appendFlag: grids.append(grid) return grids def output_conll(sentences, prefix): f_gold = open(prefix + "_conll.gold", "w") f_guess = open(prefix + "_conll.guess", "w") for sentence in sentences: for (num, word, pos, correct_dep, guess_dep) in sentence: f_gold.write("\t".join([num, word, word, pos, pos, "_", correct_dep, "_", "_", "_"]) + "\n") f_guess.write("\t".join([num, word, word, pos, pos, "_", guess_dep, "_", "_", "_"]) + "\n") f_gold.write("\n") f_guess.write("\n") def pprint(column_sentence): for row in column_sentence: print("\t".join([word for word in row])) print("") def write_conll(sentences, file_out): for sentence in sentences: # print "\n".join("\t".join(word for word in row)for row in sentence) file_out.write("\n".join("\t".join(word for word in row) for row in sentence)) file_out.write("\n\n") def pseudo_rand_split(sentences): i = 0 train = [] test = [] for sentence in sentences: i += 1 if i < 10: train.append(sentence) else: test.append(sentence) i = 0 return train, test ''' def main(): s = conll_utils() s.read() s.output_short_sentences() #s.print_dep_length() class conll_utils(object): # num_sents[len(extract_arcs(tree))] += 1 # print "\n".join("%d\t%f\t%f" % (size, counts_real[size]/float(num_sents[size]), counts_rand[size]/float(num_sents[size])) for size in counts_real.keys()) #print dep_length(extract_arcs(tree)) def output_short_sentences(self): sentences = read_sentences_from_columns(open(self.input)) for sentence in sentences: if len(sentence) == 10: # and len(sentence) > 8: pprint(sentence) def read(self): #sys.stderr.write("Main..\n") self.sentences = read_sentences_from_columns(open(self.input)) #print self.sentences """ self.correct_trees = [] self.guess_trees = [] for sentence in self.sentences: self.correct_trees.append([row[:4] for row in sentence]) self.guess_trees.append([row[:3] + [row[4]] for row in sentence]) """ def __init__(self): optparser = optparse.OptionParser() optparser.add_option("-n", "--num_training_iterations", dest="iterations", default=5, type="int", help="Number of training iterations") optparser.add_option("-N", "--num_training_sentences", dest="num_sents", default=1000, type="int", help="Number of training sentences to use") optparser.add_option("-t", "--threshold", dest="threshold", default=0.5, type="float", help="Score threshold for alignment") optparser.add_option("-d", "--display_count", dest="display_count", default=5, type="int", help="Number of alignments to display") optparser.add_option("-i", "--input", dest="input", default="test", help="Input file name") optparser.add_option("-e", "--evaluation", dest="evaluation", default="undirected", help="Type of dependency evaluation") (opts, args) = optparser.parse_args() self.input = opts.input self.evaluation = opts.evaluation return def accuracy(): sum = 0 length = 0 print len(self.sentences) if (self.evaluation == "directed"): for sentence in self.sentences: sum += correct_dir(sentence) length += len(sentence) #undirected else: for (correct_tree, guess_tree) in zip(self.correct_trees, self.guess_trees): sum += correct_undir(correct_tree, guess_tree) print "\n".join(str(row) for row in zip(correct_tree, guess_tree)) print correct_undir(correct_tree, guess_tree) length += len(correct_tree) print sum / float(length) for c1, c2 in zip(collect_statistics(self.correct_trees), collect_statistics(self.guess_trees)): print ' '.join(str(i) for i in c1[0]) + "\t" + str(c1[1]) #output_conll(self.sentences, self.input) if __name__ == "__main__": main() '''
colorlessgreenRNNs-main
src/syntactic_testsets/conll_utils.py
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import pandas as pd from collections import defaultdict import string def read_paradigms(path): """ reads morphological paradigms from a file with token, lemma, tag, morph, freq fields returns a simple dict: token -> list of all its analyses and their frequencies """ d = defaultdict(list) with open(path, "r") as f: for line in f: token, lemma, tag, morph, freq = line.split("\t") s_m = morph.split("|") s_m.sort() morph = "|".join(s_m) d[token].append((lemma, tag, morph, int(freq))) return d def load_vocab(vocab_file): f_vocab = open(vocab_file, "r") vocab = {w: i for i, w in enumerate(f_vocab.read().split())} f_vocab.close() return vocab def ltm_to_word(paradigms): """ converts standard paradigms dict (token -> list of analyses) to a dict (l_emma, t_ag, m_orph -> word) (where word in the most frequent form, e.g. between capitalized and non-capitalized Fanno and fanno) """ #paradigms = read_paradigms("/private/home/gulordava/edouard_data/itwiki//paradigms_UD.txt") paradigms_lemmas = defaultdict(lambda: defaultdict(lambda: defaultdict(int))) for w in paradigms: for lemma, tag, morph, freq in paradigms[w]: paradigms_lemmas[(lemma, tag)][morph][w] = int(freq) best_paradigms_lemmas = defaultdict(lambda: defaultdict(lambda: defaultdict(str))) for l, t in paradigms_lemmas: for m in paradigms_lemmas[(l, t)]: word = sorted(paradigms_lemmas[(l, t)][m].items(), key=lambda x: -x[1])[0][0] best_paradigms_lemmas[l][t][m] = word return best_paradigms_lemmas def vocab_freqs(train_data_file, vocab): train_data = open(train_data_file).readlines() freq_dict = {} for w in vocab: freq_dict[w] = 0 for line in train_data: for w in line.split(): if w in vocab: freq_dict[w] += 1 return freq_dict """ def number_agreement_data(sents, gold, ltm_paradigms, vocab): data = [] sentence_parts = [] for sent, g in zip(sents, gold): pattern_id, constr_id, sent_id, idx, gold_pos, gold_morph, _, _, _ = g.split() if "Number=Plur" in gold_morph: correct_number = "plur" elif "Number=Sing" in gold_morph: correct_number = "sing" else: continue sent_part = sent.split()[:int(idx)] # print(sent_part, gold_pos, gold_morph) for lemma, form, form_alt in choose_random_forms(ltm_paradigms, vocab, gold_pos, gold_morph): sentence_parts.append(" ".join(sent_part) + " " + form + "\n") sentence_parts.append(" ".join(sent_part) + " " + form_alt + "\n") data.append((pattern_id, int(constr_id), int(sent_id), lemma, correct_number, form, "correct")) data.append((pattern_id, int(constr_id), int(sent_id), lemma, correct_number, form_alt, "wrong")) return data, sentence_parts """ def plurality(morph): if "Number=Plur" in morph: return "plur" elif "Number=Sing" in morph: return "sing" else: return "none" def transform_gold(gold): data = [] for g in gold: pattern_id, constr_id, sent_id, r_idx, r_pos, r_morph, form, form_alt, lemma, l_idx, l_pos, prefix = g.split( "\t") correct_number = plurality(r_morph) data.append((pattern_id, int(constr_id), int(sent_id), correct_number, form, "correct")) data.append((pattern_id, int(constr_id), int(sent_id), correct_number, form_alt, "wrong")) return data def is_attr(word, pos, number, paradigms): """ verify whether a word is attractor, that is of tag *pos* and of the number opposite of *number* """ if not paradigms[word]: return False max_freq = max([p[3] for p in paradigms[word]]) for lemma, tag, morph, freq in paradigms[word]: # a word can have different tags (be ambiguous) # we filter out tags which are very infrequent (including wrong tags for functional words) if freq < max_freq / 10: continue if tag == pos and plurality(morph) != "none" and plurality(morph) != number: return True return False def extract_sent_features(sents, gold, vocab, paradigms): """ Extracting some features of the construction and the sentence for data analysis """ paradigms_word_tag = defaultdict(list) for w in paradigms: for lemma, tag, morph, freq in paradigms[w]: paradigms_word_tag[w].append(tag) df_sents = [] constr_id_unk = [] n_attractors = [] punct = [] for s, g in zip(sents, gold): pattern_id, constr_id, sent_id, r_idx, r_pos, r_morph, form, form_alt, lemma, l_idx, l_pos, prefix = g.split("\t") sent_id = int(sent_id) r_idx = int(r_idx) l_idx = int(l_idx) s_lm = " ".join([w if w in vocab else "<unk>" for w in s.split()[:r_idx]]) n_unk = len([w for w in s.split()[:r_idx] if w not in vocab ]) if sent_id == 0: constr_id_unk.append((pattern_id, int(constr_id), n_unk)) number = plurality(r_morph) #print(r_morph, number) attrs = [w for w in s.split()[l_idx + 1:r_idx] if is_attr(w, l_pos, number, paradigms)] n_attractors.append((pattern_id, int(constr_id), len(attrs))) #punct.append((pattern_id, int(constr_id), "PUNCT" in pos_seq)) punct.append((pattern_id, int(constr_id), any(p in prefix.split() for p in string.punctuation))) #print(s_lm) #print(attrs) n_unk = s_lm.count("<unk>") len_prefix = len(s_lm.split()) len_context = r_idx - l_idx df_sents.append((pattern_id, int(constr_id), int(sent_id), s.strip(), s_lm, n_unk, len_context, len_prefix)) df_sents = pd.DataFrame(df_sents, columns = ["pattern_id","constr_id", "sent_id", "sent", "prefix", "n_unk","len_context","len_prefix"]) #print(constr_id_unk) unk = pd.DataFrame(constr_id_unk, columns=["pattern_id", "constr_id", "n_unk_original"]) attr = pd.DataFrame(n_attractors, columns=["pattern_id","constr_id","n_attr"]) punct = pd.DataFrame(punct, columns=["pattern_id","constr_id","punct"]) df_sents = df_sents.merge(unk, on=["pattern_id", "constr_id"]) df_sents = df_sents.merge(attr, on=["pattern_id", "constr_id"]) df_sents = df_sents.merge(punct, on=["pattern_id", "constr_id"]) return df_sents
colorlessgreenRNNs-main
src/syntactic_testsets/utils.py
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import random import pandas as pd import tree_module as tm from extract_dependency_patterns import grep_morph_pattern from generate_utils import is_good_form, get_alt_form, match_features, alt_numeral_morph from utils import read_paradigms, load_vocab, ltm_to_word, extract_sent_features, transform_gold, vocab_freqs def generate_morph_pattern_test(trees, pattern, paradigms, vocab, n_sentences=10): arc_dir, context = pattern.split("\t")[:2] context = tuple(context.split("_")) l_values = pattern.split("\t")[2:] pattern_id = pattern.replace("\t", "!") ltm_paradigms = ltm_to_word(paradigms) output = [] constr_id = 0 n_vocab_unk = 0 n_paradigms_unk = 0 # 'nodes' constitute Y, without X or Z included for context, l, r, t, nodes in grep_morph_pattern(trees, context, l_values, arc_dir): #pos_constr = "_".join(n.pos for n in t.nodes[l.index - 1: r.index]) # filter model sentences with unk and the choice word not in vocab if not all([n.word in vocab for n in nodes + [l, r]]): n_vocab_unk += 1 continue if not is_good_form(r.word, r.word, r.morph, r.lemma, r.pos, vocab, ltm_paradigms): n_paradigms_unk += 1 continue prefix = " ".join(n.word for n in t.nodes[:r.index]) for i in range(n_sentences): # sent_id = 0 - original sentence with good lexical items, other sentences are generated if i == 0: new_context = " ".join(n.word for n in t.nodes) form = r.word form_alt = get_alt_form(r.lemma,r.pos,r.morph,ltm_paradigms) lemma = r.lemma else: new_context = generate_context(t.nodes, paradigms, vocab) random_forms = choose_random_forms(ltm_paradigms,vocab, r.pos,r.morph, n_samples=1, gold_word=r.word) if len(random_forms) > 0: lemma, form, form_alt = random_forms[0] else: # in rare cases, there is no (form, form_alt) both in vocab # original form and its alternation are not found because e.g. one or the other is not in paradigms # (they should anyway be in the vocabulary) lemma, form = r.lemma, r.word form_alt = get_alt_form(r.lemma, r.pos, r.morph, ltm_paradigms) # constr_id sent_id Z_index Z_pos Z_gold_morph gold_str = "\t".join([pattern_id, str(constr_id), str(i), str(r.index - 1), r.pos, r.morph, form, form_alt, lemma, str(l.index - 1), l.pos, prefix]) + "\n" output.append((new_context + " <eos>\n", gold_str)) constr_id += 1 print("Problematic sentences vocab/paradigms", n_vocab_unk, n_paradigms_unk) return output def is_content_word(pos): return pos in ["ADJ", "NOUN", "VERB", "PROPN", "NUM", "ADV"] def generate_context(nodes, paradigms, vocab): output = [] for i in range(len(nodes)): substitutes = [] n = nodes[i] # substituting content words if is_content_word(n.pos): for word in paradigms: if word == n.word: continue # matching capitalization and vowel if not match_features(word, n.word): continue tag_set = set([p[1] for p in paradigms[word]]) # use words with unambiguous POS if len(tag_set) == 1 and tag_set.pop() == n.pos: for _, _, morph, freq in paradigms[word]: if n.morph == morph and int(freq) > 1 and word in vocab: substitutes.append(word) if len(substitutes) == 0: output.append(n.word) else: output.append(random.choice(substitutes)) else: output.append(n.word) return " ".join(output) def choose_random_forms(ltm_paradigms, vocab, gold_pos, morph, n_samples=10, gold_word=None): candidates = set() #lemma_tag_pairs = ltm_paradigms.keys() #test_lemmas = [l for l, t in lemma_tag_pairs] for lemma in ltm_paradigms: poses = list(ltm_paradigms[lemma].keys()) if len(set(poses)) == 1 and poses.pop() == gold_pos: form = ltm_paradigms[lemma][gold_pos][morph] _, morph_alt = alt_numeral_morph(morph) form_alt = ltm_paradigms[lemma][gold_pos][morph_alt] if not is_good_form(gold_word, form, morph, lemma, gold_pos, vocab, ltm_paradigms): continue candidates.add((lemma, form, form_alt)) if len(candidates) > n_samples: return random.sample(candidates, n_samples) else: return random.sample(candidates, len(candidates)) def main(): parser = argparse.ArgumentParser(description='Generating sentences based on patterns') parser.add_argument('--treebank', type=str, required=True, help='input file (in a CONLL column format)') parser.add_argument('--paradigms', type=str, required=True, help="the dictionary of tokens and their morphological annotations") parser.add_argument('--vocab', type=str, required=True,help='(LM) Vocabulary to generate words from') parser.add_argument('--patterns', type=str, required=True) parser.add_argument('--output', type=str, required=True, help="prefix for generated text and annotation data") parser.add_argument('--lm_data', type=str, required=False, help="path to LM data to estimate word frequencies") args = parser.parse_args() trees = tm.load_trees_from_conll(args.treebank) for t in trees: t.remerge_segmented_morphemes() paradigms = read_paradigms(args.paradigms) f_text = open(args.output + ".text", "w") f_gold = open(args.output + ".gold", "w") f_eval = open(args.output + ".eval", "w") output = [] vocab = load_vocab(args.vocab) for line in open(args.patterns, "r"): print("Generating sentences with pattern", line.strip()) #l_values = ('Gender=Fem|Number=Sing','Gender=Masc|Number=Plur') data = generate_morph_pattern_test(trees, line.strip(), paradigms, vocab) output.extend(data) print("Generated", len(data), "sentences") random.shuffle(output) sents, golds = zip(*output) f_text.writelines(sents) f_gold.writelines(golds) # save the index of the target word to evaluate f_eval.writelines([g.split("\t")[3] + "\n" for g in golds]) ############################################################## # Make a readable data table with fields useful for analysis # ############################################################## data = transform_gold(golds) data = pd.DataFrame(data, columns=["pattern_id", "constr_id", "sent_id", "correct_number", "form", "class"]) data.loc[data.sent_id == 0, "type"] = "original" data.loc[data.sent_id > 0, "type"] = "generated" # getting simpler pattern labels patterns = {p: "__".join(p.split("!")[:2]) for p in set(data.pattern_id)} data["pattern"] = data["pattern_id"].map(patterns) df_sents = extract_sent_features(sents, golds, vocab, paradigms) full_df = data.merge(df_sents, on=["pattern_id", "constr_id", "sent_id"]) if args.lm_data: freq_dict = vocab_freqs(args.lm_data + "/train.txt", vocab) full_df["freq"] = full_df["form"].map(freq_dict) fields = ["pattern", "constr_id", "sent_id", "correct_number", "form", "class", "type", "prefix", "n_attr", "punct","freq", "len_context", "len_prefix", "sent"] else: fields = ["pattern", "constr_id", "sent_id", "correct_number", "form", "class", "type", "prefix", "n_attr", "punct","len_context", "len_prefix", "sent"] full_df[fields].to_csv(args.output + ".tab", sep="\t", index=False) if __name__ == "__main__": main()
colorlessgreenRNNs-main
src/syntactic_testsets/generate_nonsense.py
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def is_vowel(c): return c in ["a","o","u","e","i","A","O","U","E","I","è"] def alt_numeral_morph(morph): if "Number=Plur" in morph: morph_alt = morph.replace("Plur", "Sing") return "plur", morph_alt elif "Number=Sing" in morph: morph_alt = morph.replace("Sing", "Plur") return "sing", morph_alt def is_good_form(gold_form, new_form, gold_morph, lemma, pos, vocab, ltm_paradigms): _, alt_morph = alt_numeral_morph(gold_morph) if not new_form in vocab: return False alt_form = ltm_paradigms[lemma][pos][alt_morph] if not alt_form in vocab: return False if gold_form is None: print(gold_form, gold_morph) return True if not match_features(new_form, gold_form): return False if not match_features(alt_form, gold_form): return False return True def get_alt_form(lemma, pos, morph, ltm_paradigms): _, alt_morph = alt_numeral_morph(morph) return ltm_paradigms[lemma][pos][alt_morph] def match_features(w1, w2): return w1[0].isupper() == w2[0].isupper() and is_vowel(w1[0]) == is_vowel(w2[0])
colorlessgreenRNNs-main
src/syntactic_testsets/generate_utils.py
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse from collections import defaultdict from data import data_utils parser = argparse.ArgumentParser(description='Reading and processing a large gzip file') parser.add_argument('--input', type=str, required=True, help='Input path (in a column CONLL UD format)') parser.add_argument('--output', type=str, required=True, help="Output file name") parser.add_argument('--nwords', type=int, default='100000000', required=False, help='How many words to process') parser.add_argument('--min_freq', type=int, default='5', required=False, help='Minimal frequency of paradigm to be included in the dictionary') args = parser.parse_args() nwords = 0 paradigms = defaultdict(int) for line in data_utils.read(args.input): if line.strip() == "" or len(line.split("\t")) < 2: continue else: fields = line.split("\t") if fields[1].isalpha(): paradigms[(fields[1], fields[2], fields[3], fields[5])] += 1 nwords += 1 if nwords > args.nwords: break with open(args.output, 'w') as f: for p in paradigms: if paradigms[p] > args.min_freq: f.write("\t".join(el for el in p) + "\t" + str(paradigms[p]) + "\n") f.close()
colorlessgreenRNNs-main
src/data/collect_paradigms.py
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import sys file_name = sys.argv[1] for l in open(file_name): fields = l.strip().split("\t") if len(fields) == 10: morph = fields[5] # annotate non-singular verbs in present as Plural if "Tense=Pres" in morph and "VerbForm=Fin" in morph and "Number=Sing" not in morph: morph = morph + "|Number=Plur" s_m = morph.split("|") s_m.sort() morph = "|".join(s_m) elif "Number=Sing" in morph: feats = morph.split("|") # remove Person=3 annotation (since we don't have it for non-singular cases) feats = [f for f in feats if "Person=3" not in f] morph = "|".join(feats) print("\t".join(fields[:5] + [morph, ] + fields[6:])) else: print(l.strip())
colorlessgreenRNNs-main
src/data/preprocess_EnglishUD_morph.py
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import logging from collections import defaultdict from random import shuffle from data import data_utils parser = argparse.ArgumentParser() parser.add_argument('--input', type=str, help='Input file path') parser.add_argument('--output', type=str, help='Output file path') parser.add_argument('--output_dir', type=str, help='Output path for training/valid/test sets') parser.add_argument('--vocab', type=int, default=10000, help="The size of vocabulary, default = 10K") args = parser.parse_args() logging.basicConfig(level=logging.INFO) def create_vocab(path, vocab_size): counter = defaultdict(int) for line in data_utils.read(path): for word in line.replace("\n"," <eos>").split(): counter[word] += 1 count_pairs = sorted(counter.items(), key=lambda x: (-x[1], x[0]))[:vocab_size] words = [w for (w, v) in count_pairs] print(len(counter), count_pairs[vocab_size - 1]) w2idx = dict(zip(words, range(len(words)))) idx2w = dict(zip(range(len(words)), words)) return w2idx, idx2w def convert_text(input_path, output_path, vocab): with open(output_path, 'w') as output: for line in data_utils.read(input_path): words = [filter_word(word, vocab) for word in line.replace("\n", " <eos>").split()] output.write(" ".join(words) + "\n") output.close() def convert_line(line, vocab): return [filter_word(word, vocab) for word in line.replace("\n", " <eos>").split()] def word_to_idx(word, vocab): if word in vocab: return vocab[word] else: return vocab["<unk>"] def filter_word(word, vocab): if word in vocab: return word else: return "<unk>" def create_corpus(input_path, output_path, vocab): """ Split data to create training, validation and test corpus """ nlines = 0 f_train = open(output_path + "/train.txt", 'w') f_valid = open(output_path + "/valid.txt", 'w') f_test = open(output_path + "/test.txt", 'w') train = [] for line in data_utils.read(input_path): if nlines % 10 == 0: f_valid.write(" ".join(convert_line(line, vocab)) + "\n") elif nlines % 10 == 1: f_test.write(" ".join(convert_line(line, vocab)) + "\n") else: train.append(" ".join(convert_line(line, vocab)) + "\n") nlines += 1 shuffle(train) f_train.writelines(train) f_train.close() f_valid.close() f_test.close() w2idx, idx2w = create_vocab(args.input, args.vocab) #convert_text(args.input, args.output, w2idx) create_corpus(args.input, args.output_dir, w2idx)
colorlessgreenRNNs-main
src/data/data_vocab_prep.py
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import gzip import logging def read_gzip_stream(path): with gzip.open(path, 'rt', encoding="UTF-8") as f: for line in f: yield line def read_text_stream(path): with open(path, 'r', encoding="UTF-8") as f: for line in f: yield line def read(path): if path.endswith(".gz"): logging.info("Reading GZIP file") return read_gzip_stream(path) else: return read_text_stream(path)
colorlessgreenRNNs-main
src/data/data_utils.py
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import conll_utils import tree_module as tm def remove_segmented_morphemes_hebrew(t): for start, end, token in t.fused_nodes: # assert start + 1 == end, t # don't need to change anything if all(not n.word.startswith("_") and not n.word.endswith("_") for n in t.nodes[start - 1:end]): # print(start, end, token) continue tokens_separated = "" for n in t.nodes[start - 1:end]: if not n.word.startswith("_") and not n.word.endswith("_"): start = start + 1 tokens_separated = tokens_separated + n.word else: break # print("tokens sep", tokens_separated) head = None for n in t.nodes[start - 1:end]: # print(start-1, end-1) # print(n.head_id) if n.head_id > end or n.head_id < start: # in two sentences two parts of a word had two different heads # in 20 cases several parts of a word had the same head - annotated with 'fixed' dependency # assert head is None, (t, t.fused_nodes, start, end, t.nodes[start]) # if head is not None and head.head_id == n.head_id: # print("fixed") head = n assert head is not None, (t, t.fused_nodes, start, end, t.nodes[start]) # print(start - 1, end) # print("head", head) merged_part = token[len(tokens_separated):] # print("merged part", ) if merged_part == "": start = start - 1 else: t.nodes[start - 1].word = token[len(tokens_separated):] t.nodes[start - 1].lemma = head.lemma t.nodes[start - 1].pos = head.pos t.nodes[start - 1].morph = head.morph t.nodes[start - 1].dep_label = head.dep_label # print(t.nodes[start - 1].head_id) for i in range(end - start): if t.nodes[start].dep_label == "nmod:poss": t.nodes[start - 1].morph = t.nodes[start - 1].morph + "|Poss=Yes" # print(i) if len(t.children(t.nodes[start])) != 0: for c in t.children(t.nodes[start]): c.head_id = t.nodes[start - 1].index t.arcs.remove(tm.Arc(child=c, head=t.nodes[start], direction=c.dir)) t.arcs.append(tm.Arc(child=c, head=t.nodes[start - 1], direction=c.dir)) assert len(t.children(t.nodes[start])) == 0, (t, start, end, token, i, t.arcs) t.remove_node(t.nodes[start]) # print(t) # important, after removal of other nodes so that their dependencies get attached first to the right head t.nodes[start - 1].head_id = head.head_id t.fused_nodes = [] path = "/private/home/gulordava/edouard_data/hewiki/hebrew.conllu" trees = tm.load_trees_from_conll(path) for i, t in enumerate(trees): # in place remove_segmented_morphemes_hebrew(t) f_trees_new = open(path + "_new", "w") for t in trees: f_trees_new.write(t.pprint(conll_utils.UD_CONLL_CONFIG) + "\n") #print(t.pprint(conll_utils.UD_CONLL_CONFIG))
colorlessgreenRNNs-main
src/data/hebrew/preprocess_HebrewUD_morph.py
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import sys file_name = sys.argv[1] for l in open(file_name): fields = l.strip().split("\t") if len(fields) == 10: morph = fields[5] fine_tag = fields[4] if "NN+POS+PRP" in fine_tag: morph = morph + "|Poss=Yes" print("\t".join(fields[:5] + [morph,] + fields[6:])) else: print(l.strip())
colorlessgreenRNNs-main
src/data/hebrew/add_poss_wiki_annotation.py
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import sys file_name = sys.argv[1] for l in open(file_name): fields = l.strip().split("\t") if len(fields) == 10: morph = fields[5] feats = morph.split("|") feats = [f for f in feats if "HebBi" not in f and "HebCo" not in f and "Voice" not in f] morph = "|".join(feats) print("\t".join(fields[:5] + [morph,] + fields[6:])) else: print(l.strip())
colorlessgreenRNNs-main
src/data/hebrew/remove_binyanim.py
# Copyright (c) Meta Platforms, Inc. and affiliates. import logging from dataclasses import dataclass, field from math import sqrt from typing import List, Optional, Union import torch import torch.nn as nn logger: logging.Logger = logging.getLogger(__name__) @dataclass class MtlConfigs: mtl_model: str = "att_sp" # consider using enum num_task_experts: int = 1 num_shared_experts: int = 1 expert_out_dims: List[List[int]] = field(default_factory=list) self_exp_res_connect: bool = False expert_archs: Optional[List[List[int]]] = None gate_archs: Optional[List[List[int]]] = None num_experts: Optional[int] = None @dataclass(frozen=True) class ArchInputs: num_task: int = 3 task_mlp: List[int] = field(default_factory=list) mtl_configs: Optional[MtlConfigs] = field(default=None) # Parameters related to activation function activation_type: str = "RELU" class AdaTTSp(nn.Module): """ paper title: "AdaTT: Adaptive Task-to-Task Fusion Network for Multitask Learning in Recommendations" paper link: https://doi.org/10.1145/3580305.3599769 Call Args: inputs: inputs is a tensor of dimension [batch_size, self.num_tasks, self.input_dim]. Experts in the same module share the same input. outputs dimensions: [B, T, D_out] Example:: AdaTTSp( input_dim=256, expert_out_dims=[[128, 128]], num_tasks=8, num_task_experts=2, self_exp_res_connect=True, ) """ def __init__( self, input_dim: int, expert_out_dims: List[List[int]], num_tasks: int, num_task_experts: int, self_exp_res_connect: bool = True, activation: str = "RELU", ) -> None: super().__init__() if len(expert_out_dims) == 0: logger.warning( "AdaTTSp is noop! size of expert_out_dims which is the number of " "extraction layers should be at least 1." ) return self.num_extraction_layers: int = len(expert_out_dims) self.num_tasks = num_tasks self.num_task_experts = num_task_experts self.total_experts_per_layer: int = num_task_experts * num_tasks self.self_exp_res_connect = self_exp_res_connect self.experts = torch.nn.ModuleList() self.gate_weights = torch.nn.ModuleList() self_exp_weight_list = [] layer_input_dim = input_dim for expert_out_dim in expert_out_dims: self.experts.append( torch.nn.ModuleList( [ MLP(layer_input_dim, expert_out_dim, activation) for i in range(self.total_experts_per_layer) ] ) ) self.gate_weights.append( torch.nn.ModuleList( [ torch.nn.Sequential( torch.nn.Linear( layer_input_dim, self.total_experts_per_layer ), torch.nn.Softmax(dim=-1), ) for _ in range(num_tasks) ] ) ) # self.gate_weights is of shape L X T, after we loop over all layers. if self_exp_res_connect and num_task_experts > 1: params = torch.empty(num_tasks, num_task_experts) scale = sqrt(1.0 / num_task_experts) torch.nn.init.uniform_(params, a=-scale, b=scale) self_exp_weight_list.append(torch.nn.Parameter(params)) layer_input_dim = expert_out_dim[-1] self.self_exp_weights = nn.ParameterList(self_exp_weight_list) def forward( self, inputs: torch.Tensor, ) -> torch.Tensor: for layer_i in range(self.num_extraction_layers): # all task expert outputs. experts_out = torch.stack( [ expert(inputs[:, expert_i // self.num_task_experts, :]) for expert_i, expert in enumerate(self.experts[layer_i]) ], dim=1, ) # [B * E (total experts) * D_out] gates = torch.stack( [ gate_weight( inputs[:, task_i, :] ) # W ([B, D]) * S ([D, E]) -> G, dim is [B, E] for task_i, gate_weight in enumerate(self.gate_weights[layer_i]) ], dim=1, ) # [B, T, E] fused_experts_out = torch.bmm( gates, experts_out, ) # [B, T, E] X [B * E (total experts) * D_out] -> [B, T, D_out] if self.self_exp_res_connect: if self.num_task_experts > 1: # residual from the linear combination of tasks' own experts. self_exp_weighted = torch.einsum( "te,bted->btd", self.self_exp_weights[layer_i], experts_out.view( experts_out.size(0), self.num_tasks, self.num_task_experts, -1, ), # [B * E (total experts) * D_out] -> [B * T * E_task * D_out] ) # bmm: [T * E_task] X [B * T * E_task * D_out] -> [B, T, D_out] fused_experts_out = ( fused_experts_out + self_exp_weighted ) # [B, T, D_out] else: fused_experts_out = fused_experts_out + experts_out inputs = fused_experts_out return inputs class AdaTTWSharedExps(nn.Module): """ paper title: "AdaTT: Adaptive Task-to-Task Fusion Network for Multitask Learning in Recommendations" paper link: https://doi.org/10.1145/3580305.3599769 Call Args: inputs: inputs is a tensor of dimension [batch_size, self.num_tasks, self.input_dim]. Experts in the same module share the same input. outputs dimensions: [B, T, D_out] Example:: AdaTTWSharedExps( input_dim=256, expert_out_dims=[[128, 128]], num_tasks=8, num_shared_experts=1, num_task_experts=2, self_exp_res_connect=True, ) """ def __init__( self, input_dim: int, expert_out_dims: List[List[int]], num_tasks: int, num_shared_experts: int, num_task_experts: Optional[int] = None, num_task_expert_list: Optional[List[int]] = None, # Set num_task_expert_list for experimenting with a flexible number of # experts for different task_specific units. self_exp_res_connect: bool = True, activation: str = "RELU", ) -> None: super().__init__() if len(expert_out_dims) == 0: logger.warning( "AdaTTWSharedExps is noop! size of expert_out_dims which is the number of " "extraction layers should be at least 1." ) return self.num_extraction_layers: int = len(expert_out_dims) self.num_tasks = num_tasks assert (num_task_experts is None) ^ (num_task_expert_list is None) if num_task_experts is not None: self.num_expert_list = [num_task_experts for _ in range(num_tasks)] else: # num_expert_list is guaranteed to be not None here. # pyre-ignore self.num_expert_list: List[int] = num_task_expert_list self.num_expert_list.append(num_shared_experts) self.total_experts_per_layer: int = sum(self.num_expert_list) self.self_exp_res_connect = self_exp_res_connect self.experts = torch.nn.ModuleList() self.gate_weights = torch.nn.ModuleList() layer_input_dim = input_dim for layer_i, expert_out_dim in enumerate(expert_out_dims): self.experts.append( torch.nn.ModuleList( [ MLP(layer_input_dim, expert_out_dim, activation) for i in range(self.total_experts_per_layer) ] ) ) num_full_active_modules = ( num_tasks if layer_i == self.num_extraction_layers - 1 else num_tasks + 1 ) self.gate_weights.append( torch.nn.ModuleList( [ torch.nn.Sequential( torch.nn.Linear( layer_input_dim, self.total_experts_per_layer ), torch.nn.Softmax(dim=-1), ) for _ in range(num_full_active_modules) ] ) ) # self.gate_weights is a 2d module list of shape L X T (+ 1), after we loop over all layers. layer_input_dim = expert_out_dim[-1] self_exp_weight_list = [] if self_exp_res_connect: # If any tasks have number of experts not equal to 1, we learn linear combinations of native experts. if any(num_experts != 1 for num_experts in self.num_expert_list): for i in range(num_tasks + 1): num_full_active_layer = ( self.num_extraction_layers - 1 if i == num_tasks else self.num_extraction_layers ) params = torch.empty( num_full_active_layer, self.num_expert_list[i], ) scale = sqrt(1.0 / self.num_expert_list[i]) torch.nn.init.uniform_(params, a=-scale, b=scale) self_exp_weight_list.append(torch.nn.Parameter(params)) self.self_exp_weights = nn.ParameterList(self_exp_weight_list) self.expert_input_idx: List[int] = [] for i in range(num_tasks + 1): self.expert_input_idx.extend([i for _ in range(self.num_expert_list[i])]) def forward( self, inputs: torch.Tensor, ) -> torch.Tensor: for layer_i in range(self.num_extraction_layers): num_full_active_modules = ( self.num_tasks if layer_i == self.num_extraction_layers - 1 else self.num_tasks + 1 ) # all task expert outputs. experts_out = torch.stack( [ expert(inputs[:, self.expert_input_idx[expert_i], :]) for expert_i, expert in enumerate(self.experts[layer_i]) ], dim=1, ) # [B * E (total experts) * D_out] # gate weights for fusing all experts. gates = torch.stack( [ gate_weight(inputs[:, i, :]) # [B, D] * [D, E] -> [B, E] for i, gate_weight in enumerate(self.gate_weights[layer_i]) ], dim=1, ) # [B, T (+ 1), E] # add all expert gate weights with native expert weights. if self.self_exp_res_connect: prev_idx = 0 use_unit_naive_weights = all( num_expert == 1 for num_expert in self.num_expert_list ) for module_i in range(num_full_active_modules): next_idx = self.num_expert_list[module_i] + prev_idx if use_unit_naive_weights: gates[:, module_i, prev_idx:next_idx] += torch.ones( 1, self.num_expert_list[module_i] ) else: gates[:, module_i, prev_idx:next_idx] += self.self_exp_weights[ module_i ][layer_i].unsqueeze(0) prev_idx = next_idx fused_experts_out = torch.bmm( gates, experts_out, ) # [B, T (+ 1), E (total)] X [B * E (total) * D_out] -> [B, T (+ 1), D_out] inputs = fused_experts_out return inputs class MLP(nn.Module): """ Args: input_dim (int): mlp_arch (List[int]): activation (str): Call Args: input (torch.Tensor): tensor of shape (B, I) Returns: output (torch.Tensor): MLP result Example:: mlp = MLP(100, [100]) """ def __init__( self, input_dim: int, mlp_arch: List[int], activation: str = "RELU", bias: bool = True, ) -> None: super().__init__() mlp_net = [] for mlp_dim in mlp_arch: mlp_net.append( nn.Linear(in_features=input_dim, out_features=mlp_dim, bias=bias) ) if activation == "RELU": mlp_net.append(nn.ReLU()) else: raise ValueError("only RELU is included currently") input_dim = mlp_dim self.mlp_net = nn.Sequential(*mlp_net) def forward( self, input: torch.Tensor, ) -> torch.Tensor: return self.mlp_net(input) class SharedBottom(nn.Module): def __init__( self, input_dim: int, hidden_dims: List[int], num_tasks: int, activation: str ) -> None: super().__init__() self.bottom_projection = MLP(input_dim, hidden_dims, activation) self.num_tasks: int = num_tasks def forward( self, input: torch.Tensor, ) -> torch.Tensor: # input dim [T, D_in] # output dim [B, T, D_out] return self.bottom_projection(input).unsqueeze(1).expand(-1, self.num_tasks, -1) class CrossStitch(torch.nn.Module): """ cross-stitch paper title: "Cross-stitch Networks for Multi-task Learning". paper link: https://openaccess.thecvf.com/content_cvpr_2016/papers/Misra_Cross-Stitch_Networks_for_CVPR_2016_paper.pdf """ def __init__( self, input_dim: int, expert_archs: List[List[int]], num_tasks: int, activation: str = "RELU", ) -> None: super().__init__() self.num_layers: int = len(expert_archs) self.num_tasks = num_tasks self.experts = torch.nn.ModuleList() self.stitchs = torch.nn.ModuleList() expert_input_dim = input_dim for layer_ind in range(self.num_layers): self.experts.append( torch.nn.ModuleList( [ MLP( expert_input_dim, expert_archs[layer_ind], activation, ) for _ in range(self.num_tasks) ] ) ) self.stitchs.append( torch.nn.Linear( self.num_tasks, self.num_tasks, bias=False, ) ) expert_input_dim = expert_archs[layer_ind][-1] def forward(self, input: torch.Tensor) -> torch.Tensor: """ input dim [B, T, D_in] output dim [B, T, D_out] """ x = input for layer_ind in range(self.num_layers): expert_out = torch.stack( [ expert(x[:, expert_ind, :]) # [B, D_out] for expert_ind, expert in enumerate(self.experts[layer_ind]) ], dim=1, ) # [B, T, D_out] stitch_out = self.stitchs[layer_ind](expert_out.transpose(1, 2)).transpose( 1, 2 ) # [B, T, D_out] x = stitch_out return x class MLMMoE(torch.nn.Module): """ Multi-level Multi-gate Mixture of Experts This code implements a multi-level extension of the MMoE model, as described in the paper titled "Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts". Paper link: https://dl.acm.org/doi/10.1145/3219819.3220007 To run the original MMoE, use only one fusion level. For example, set expert_archs as [[96, 48]]. To configure multiple fusion levels, set expert_archs as something like [[96], [48]]. """ def __init__( self, input_dim: int, expert_archs: List[List[int]], gate_archs: List[List[int]], num_tasks: int, num_experts: int, activation: str = "RELU", ) -> None: super().__init__() self.num_layers: int = len(expert_archs) self.num_tasks: int = num_tasks self.num_experts = num_experts self.experts = torch.nn.ModuleList() self.gates = torch.nn.ModuleList() expert_input_dim = input_dim for layer_ind in range(self.num_layers): self.experts.append( torch.nn.ModuleList( [ MLP( expert_input_dim, expert_archs[layer_ind], activation, ) for _ in range(self.num_experts) ] ) ) self.gates.append( torch.nn.ModuleList( [ torch.nn.Sequential( MLP( input_dim, gate_archs[layer_ind], activation, ), torch.nn.Linear( gate_archs[layer_ind][-1] if gate_archs[layer_ind] else input_dim, self.num_experts, ), torch.nn.Softmax(dim=-1), ) for _ in range( self.num_experts if layer_ind < self.num_layers - 1 else self.num_tasks ) ] ) ) expert_input_dim = expert_archs[layer_ind][-1] def forward(self, input: torch.Tensor) -> torch.Tensor: """ input dim [B, D_in] output dim [B, T, D_out] """ x = input.unsqueeze(1).expand([-1, self.num_experts, -1]) # [B, E, D_in] for layer_ind in range(self.num_layers): expert_out = torch.stack( [ expert(x[:, expert_ind, :]) # [B, D_out] for expert_ind, expert in enumerate(self.experts[layer_ind]) ], dim=1, ) # [B, E, D_out] gate_out = torch.stack( [ gate(input) # [B, E] for gate_ind, gate in enumerate(self.gates[layer_ind]) ], dim=1, ) # [B, T, E] gated_out = torch.matmul(gate_out, expert_out) # [B, T, D_out] x = gated_out return x class PLE(nn.Module): """ PLE module is based on the paper "Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations". Paper link: https://doi.org/10.1145/3383313.3412236 PLE aims to address negative transfer and seesaw phenomenon in multi-task learning. PLE distinguishes shared and task-specic experts explicitly and adopts a progressive routing mechanism to extract and separate deeper semantic knowledge gradually. When there is only one extraction layer, PLE falls back to CGC. Args: input_dim: input embedding dimension expert_out_dims (List[List[int]]): dimension of an expert's output at each layer. This list's length equals the number of extraction layers num_tasks: number of tasks num_task_experts: number of experts for each task module at each layer. * If the number of experts is the same for all tasks, use an integer here. * If the number of experts is different for different tasks, use a list of integers here. num_shared_experts: number of experts for shared module at each layer Call Args: inputs: inputs is a tensor of dimension [batch_size, self.num_tasks + 1, self.input_dim]. Task specific module inputs are placed first, followed by shared module input. (Experts in the same module share the same input) Returns: output: output of extraction layer to be feed into task-specific tower networks. It's a list of tensors, each of which is for one task. Example:: PLE( input_dim=256, expert_out_dims=[[128]], num_tasks=8, num_task_experts=2, num_shared_experts=2, ) """ def __init__( self, input_dim: int, expert_out_dims: List[List[int]], num_tasks: int, num_task_experts: Union[int, List[int]], num_shared_experts: int, activation: str = "RELU", ) -> None: super().__init__() if len(expert_out_dims) == 0: raise ValueError("Expert out dims cannot be empty list") self.num_extraction_layers: int = len(expert_out_dims) self.num_tasks = num_tasks self.num_task_experts = num_task_experts if type(num_task_experts) is int: self.total_experts_per_layer: int = ( num_task_experts * num_tasks + num_shared_experts ) else: self.total_experts_per_layer: int = ( sum(num_task_experts) + num_shared_experts ) assert len(num_task_experts) == num_tasks self.num_shared_experts = num_shared_experts self.experts = nn.ModuleList() expert_input_dim = input_dim for expert_out_dim in expert_out_dims: self.experts.append( nn.ModuleList( [ MLP(expert_input_dim, expert_out_dim, activation) for i in range(self.total_experts_per_layer) ] ) ) expert_input_dim = expert_out_dim[-1] self.gate_weights = nn.ModuleList() selector_dim = input_dim for i in range(self.num_extraction_layers): expert_out_dim = expert_out_dims[i] # task specific gates. if type(num_task_experts) is int: gate_weights_in_layer = nn.ModuleList( [ nn.Sequential( nn.Linear( selector_dim, num_task_experts + num_shared_experts ), nn.Softmax(dim=-1), ) for i in range(num_tasks) ] ) else: gate_weights_in_layer = nn.ModuleList( [ nn.Sequential( nn.Linear( selector_dim, num_task_experts[i] + num_shared_experts ), nn.Softmax(dim=-1), ) for i in range(num_tasks) ] ) # Shared module gates. Note last layer has only task specific module gates for task towers later. if i != self.num_extraction_layers - 1: gate_weights_in_layer.append( nn.Sequential( nn.Linear(selector_dim, self.total_experts_per_layer), nn.Softmax(dim=-1), ) ) self.gate_weights.append(gate_weights_in_layer) selector_dim = expert_out_dim[-1] if type(self.num_task_experts) is list: experts_idx_2_task_idx = [] for i in range(num_tasks): # pyre-ignore experts_idx_2_task_idx += [i] * self.num_task_experts[i] experts_idx_2_task_idx += [num_tasks] * num_shared_experts self.experts_idx_2_task_idx: List[int] = experts_idx_2_task_idx def forward( self, inputs: torch.Tensor, ) -> torch.Tensor: for layer_i in range(self.num_extraction_layers): # all task specific and shared experts' outputs. # Note first num_task_experts * num_tasks experts are task specific, # last num_shared_experts experts are shared. if type(self.num_task_experts) is int: experts_out = torch.stack( [ self.experts[layer_i][expert_i]( inputs[ :, # pyre-ignore min(expert_i // self.num_task_experts, self.num_tasks), :, ] ) for expert_i in range(self.total_experts_per_layer) ], dim=1, ) # [B * E (num experts) * D_out] else: experts_out = torch.stack( [ self.experts[layer_i][expert_i]( inputs[ :, self.experts_idx_2_task_idx[expert_i], :, ] ) for expert_i in range(self.total_experts_per_layer) ], dim=1, ) # [B * E (num experts) * D_out] gates_out = [] # Loop over all the gates in the layer. Note for the last layer, # there is no shared gating network. prev_idx = 0 for gate_i in range(len(self.gate_weights[layer_i])): # This is for shared gating network, which uses all the experts. if gate_i == self.num_tasks: selected_matrix = experts_out # S_share # This is for task gating network, which only uses shared and its own experts. else: if type(self.num_task_experts) is int: task_experts_out = experts_out[ :, # pyre-ignore (gate_i * self.num_task_experts) : (gate_i + 1) # pyre-ignore * self.num_task_experts, :, ] # task specific experts else: # pyre-ignore next_idx = prev_idx + self.num_task_experts[gate_i] task_experts_out = experts_out[ :, prev_idx:next_idx, :, ] # task specific experts prev_idx = next_idx shared_experts_out = experts_out[ :, -self.num_shared_experts :, :, ] # shared experts selected_matrix = torch.concat( [task_experts_out, shared_experts_out], dim=1 ) # S_k with dimension of [B * E_selected * D_out] gates_out.append( torch.bmm( self.gate_weights[layer_i][gate_i]( inputs[:, gate_i, :] ).unsqueeze(dim=1), selected_matrix, ) # W * S -> G # [B, 1, E_selected] X [B * E_selected * D_out] -> [B, 1, D_out] ) inputs = torch.cat(gates_out, dim=1) # [B, T, D_out] return inputs class CentralTaskArch(nn.Module): def __init__( self, mtl_configs: MtlConfigs, opts: ArchInputs, input_dim: int, ) -> None: super().__init__() self.opts = opts assert len(mtl_configs.expert_out_dims) > 0, "expert_out_dims is empty." self.num_tasks: int = opts.num_task self.mtl_model: str = mtl_configs.mtl_model logger.info(f"mtl_model is {mtl_configs.mtl_model}") expert_out_dims: List[List[int]] = mtl_configs.expert_out_dims # AdaTT-sp # consider consolidating the implementation of att_sp and att_g. if mtl_configs.mtl_model == "att_sp": self.mtl_arch: nn.Module = AdaTTSp( input_dim=input_dim, expert_out_dims=expert_out_dims, num_tasks=self.num_tasks, num_task_experts=mtl_configs.num_task_experts, self_exp_res_connect=mtl_configs.self_exp_res_connect, activation=opts.activation_type, ) # AdaTT-general elif mtl_configs.mtl_model == "att_g": self.mtl_arch: nn.Module = AdaTTWSharedExps( input_dim=input_dim, expert_out_dims=expert_out_dims, num_tasks=self.num_tasks, num_task_experts=mtl_configs.num_task_experts, num_shared_experts=mtl_configs.num_shared_experts, self_exp_res_connect=mtl_configs.self_exp_res_connect, activation=opts.activation_type, ) # PLE elif mtl_configs.mtl_model == "ple": self.mtl_arch: nn.Module = PLE( input_dim=input_dim, expert_out_dims=expert_out_dims, num_tasks=self.num_tasks, num_task_experts=mtl_configs.num_task_experts, num_shared_experts=mtl_configs.num_shared_experts, activation=opts.activation_type, ) # cross-stitch elif mtl_configs.mtl_model == "cross_st": self.mtl_arch: nn.Module = CrossStitch( input_dim=input_dim, expert_archs=mtl_configs.expert_out_dims, num_tasks=self.num_tasks, activation=opts.activation_type, ) # multi-layer MMoE or MMoE elif mtl_configs.mtl_model == "mmoe": self.mtl_arch: nn.Module = MLMMoE( input_dim=input_dim, expert_archs=mtl_configs.expert_out_dims, gate_archs=[[] for i in range(len(mtl_configs.expert_out_dims))], num_tasks=self.num_tasks, num_experts=mtl_configs.num_shared_experts, activation=opts.activation_type, ) # shared bottom elif mtl_configs.mtl_model == "share_bottom": self.mtl_arch: nn.Module = SharedBottom( input_dim, [dim for dims in expert_out_dims for dim in dims], self.num_tasks, opts.activation_type, ) else: raise ValueError("invalid model type") task_modules_input_dim = expert_out_dims[-1][-1] self.task_modules: nn.ModuleList = nn.ModuleList( [ nn.Sequential( MLP( task_modules_input_dim, self.opts.task_mlp, opts.activation_type ), torch.nn.Linear(self.opts.task_mlp[-1], 1), ) for i in range(self.num_tasks) ] ) def forward( self, task_arch_input: torch.Tensor, ) -> List[torch.Tensor]: if self.mtl_model in ["att_sp", "cross_st"]: task_arch_input = task_arch_input.unsqueeze(1).expand( -1, self.num_tasks, -1 ) elif self.mtl_model in ["att_g", "ple"]: task_arch_input = task_arch_input.unsqueeze(1).expand( -1, self.num_tasks + 1, -1 ) task_specific_outputs = self.mtl_arch(task_arch_input) task_arch_output = [ task_module(task_specific_outputs[:, i, :]) for i, task_module in enumerate(self.task_modules) ] return task_arch_output
AdaTT-main
mtl_lib.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import json import argparse import numpy as np class BisonEval: def __init__(self, anno, pred): if pred.getBisonIds() != anno.getBisonIds(): print('[Warning] The prediction does not' + 'cover the entire set of bison data.' + 'The evaluation is running on the {}'.format( len(pred.getBisonIds())) + 'subset from prediction file.') self.params = {'bison_ids': pred.getBisonIds()} self.anno = anno self.pred = pred def evaluate(self): accuracy = [] for bison_id in self.params['bison_ids']: accuracy.append(self.anno[bison_id]['true_image_id'] == self.pred[bison_id]) mean_accuracy = np.mean(accuracy) print("[Result] Mean BISON accuracy on {}: {:.2f}%".format( self.anno.dataset, mean_accuracy * 100) ) return mean_accuracy class Annotation: def __init__(self, anno_filepath): assert os.path.exists(anno_filepath), 'Annotation file does not exist' with open(anno_filepath) as fd: anno_results = json.load(fd) self._data = {res['bison_id']: res for res in anno_results['data']} self.dataset = "{}.{}".format(anno_results['info']['source'], anno_results['info']['split']) def getBisonIds(self): return self._data.keys() def __getitem__(self, key): return self._data[key] class Prediction: def __init__(self, pred_filepath): assert os.path.exists(pred_filepath), 'Prediction file does not exist' with open(pred_filepath) as fd: pred_results = json.load(fd) self._data = {result['bison_id']: result['predicted_image_id'] for result in pred_results} def getBisonIds(self): return self._data.keys() def __getitem__(self, key): return self._data[key] def _command_line_parser(): parser = argparse.ArgumentParser() default_anno = './annotations/bison_annotations.cocoval2014.json' default_pred = './predictions/fake_predictions.cocoval2014.json' parser.add_argument('--anno_path', default=default_anno, help='Path to the annotation file') parser.add_argument('--pred_path', default=default_pred, help='Path to the prediction file') return parser def main(args): anno = Annotation(args.anno_path) pred = Prediction(args.pred_path) bison = BisonEval(anno, pred) bison.evaluate() if __name__ == '__main__': parser = _command_line_parser() args = parser.parse_args() main(args)
binary-image-selection-main
bison_eval.py
"""Load data, create a model, (optionally train it), and evaluate it Example: ``` python run.py --task WiC --n_epochs 1 --counter_unit epochs --evaluation_freq 0.25 --checkpointing 1 --logging 1 --lr 1e-5 ``` """ import argparse import json import logging import os import sys from functools import partial import superglue_tasks from dataloaders import get_dataloaders from snorkel.model.utils import set_seed from snorkel.mtl.trainer import Trainer from snorkel.mtl.model import MultitaskModel from snorkel.mtl.loggers import TensorBoardWriter from snorkel.mtl.snorkel_config import default_config from snorkel.slicing.apply import PandasSFApplier from snorkel.slicing.utils import add_slice_labels, convert_to_slice_tasks from superglue_slices import slice_func_dict from utils import ( str2list, str2bool, write_to_file, add_flags_from_config, task_dataset_to_dataframe, ) logging.basicConfig(level=logging.INFO) def add_application_args(parser): parser.add_argument("--task", type=str2list, required=True, help="GLUE tasks") parser.add_argument( "--log_root", type=str, default="logs", help="Path to root of the logs directory", ) parser.add_argument( "--run_name", type=str, help="Name of the current run (can include subdirectories)", ) parser.add_argument( "--data_dir", type=str, default="data", help="The path to GLUE dataset" ) parser.add_argument( "--bert_model", type=str, default="bert-large-cased", help="Which pretrained BERT model to use", ) parser.add_argument("--batch_size", type=int, default=16, help="batch size") parser.add_argument( "--seed", type=int, default=None, help="Random seed for training" ) parser.add_argument( "--max_data_samples", type=int, default=None, help="Maximum data samples to use" ) parser.add_argument( "--max_sequence_length", type=int, default=256, help="Maximum sentence length" ) parser.add_argument( "--last_hidden_dropout_prob", type=float, default=0.0, help="Dropout on last layer of bert.", ) parser.add_argument( "--train", type=str2bool, default=True, help="Whether to train the model" ) parser.add_argument( "--slice_dict", type=str, default=None, help="Json string dict mapping task_name to list of slicing functions to utilize." # Example usage: --slice_dict '{"WiC": ["slice_verb"]}' ) def get_parser(): # Parse cmdline args and setup environment parser = argparse.ArgumentParser( "SuperGLUE Runner", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) add_application_args(parser) return parser def main(args): config = vars(args) # Set random seed for reproducibility if config["seed"]: seed = config["seed"] logging.info(f"Setting seed: {seed}") set_seed(seed) # Full log path gets created in LogWriter log_writer = TensorBoardWriter(log_root=args.log_root, run_name=args.run_name) config["log_dir"] = log_writer.log_dir # Save command line argument into file cmd_msg = " ".join(sys.argv) logging.info(f"COMMAND: {cmd_msg}") log_writer.write_text(cmd_msg, "cmd.txt") # Save config into file logging.info(f"CONFIG: {config}") log_writer.write_config(config) # Construct dataloaders and tasks and load slices dataloaders = [] tasks = [] task_names = args.task for task_name in task_names: task_dataloaders = get_dataloaders( data_dir=args.data_dir, task_name=task_name, splits=["train", "valid", "test"], max_sequence_length=args.max_sequence_length, max_data_samples=args.max_data_samples, tokenizer_name=args.bert_model, batch_size=args.batch_size, ) dataloaders.extend(task_dataloaders) task = superglue_tasks.task_funcs[task_name]( args.bert_model, last_hidden_dropout_prob=args.last_hidden_dropout_prob ) tasks.append(task) if args.slice_dict: slice_dict = json.loads(str(args.slice_dict)) # Ensure this is a mapping str to list for k, v in slice_dict.items(): assert isinstance(k, str) assert isinstance(v, list) slice_tasks = [] for task in tasks: # Update slicing tasks slice_names = slice_dict[task.name] slice_tasks.extend(convert_to_slice_tasks(task, slice_names)) slicing_functions = [ slice_func_dict[task_name][slice_name] for slice_name in slice_names ] applier = PandasSFApplier(slicing_functions) # Update slicing dataloaders for dl in dataloaders: df = task_dataset_to_dataframe(dl.dataset) S_matrix = applier.apply(df) add_slice_labels(dl, task, S_matrix, slice_names) tasks = slice_tasks # Build model model model = MultitaskModel(name=f"SuperGLUE", tasks=tasks) # Load pretrained model if necessary if config["model_path"]: model.load(config["model_path"]) # Training if args.train: trainer = Trainer(**config) trainer.train_model(model, dataloaders) scores = model.score(dataloaders) # Save metrics into file logging.info(f"Metrics: {scores}") log_writer.write_json(scores, "metrics.json") # Save best metrics into file if args.train and trainer.config["checkpointing"]: logging.info( f"Best metrics: " f"{trainer.log_manager.checkpointer.best_metric_dict}" ) log_writer.write_json( trainer.log_manager.checkpointer.best_metric_dict, "best_metrics.json" ) if __name__ == "__main__": parser = get_parser() add_flags_from_config(parser, default_config) args = parser.parse_args() main(args)
snorkel-superglue-master
run.py
import logging import os import superglue_parsers from task_config import SuperGLUE_TASK_SPLIT_MAPPING from tokenizer import get_tokenizer from pytorch_pretrained_bert import BertTokenizer from snorkel.mtl.data import MultitaskDataLoader logger = logging.getLogger(__name__) def get_jsonl_path(data_dir: str, task_name: str, split: str): return os.path.join( data_dir, task_name, SuperGLUE_TASK_SPLIT_MAPPING[task_name][split] ) def get_dataset( data_dir: str, task_name: str, split: str, tokenizer: BertTokenizer, max_data_samples: int, max_sequence_length: int, ): jsonl_path = get_jsonl_path(data_dir, task_name, split) return superglue_parsers.parser[task_name]( jsonl_path, tokenizer, max_data_samples, max_sequence_length ) def get_dataloaders( data_dir, task_name="MultiRC", splits=["train", "valid", "test"], max_data_samples=None, max_sequence_length=256, tokenizer_name="bert-base-uncased", batch_size=16, ): """Load data and return dataloaders""" dataloaders = [] tokenizer = get_tokenizer(tokenizer_name) for split in splits: dataset = get_dataset( data_dir, task_name, split, tokenizer, max_data_samples, max_sequence_length ) dataloader = MultitaskDataLoader( task_to_label_dict={task_name: "labels"}, dataset=dataset, split=split, batch_size=batch_size, shuffle=(split == "train"), ) dataloaders.append(dataloader) logger.info(f"Loaded {split} for {task_name} with {len(dataset)} samples.") return dataloaders
snorkel-superglue-master
dataloaders.py
SuperGLUE_TASK_NAMES = ["CB", "COPA", "MultiRC", "RTE", "WiC", "WSC"] SuperGLUE_TASK_SPLIT_MAPPING = { "CB": {"train": "train.jsonl", "valid": "val.jsonl", "test": "test.jsonl"}, "COPA": {"train": "train.jsonl", "valid": "val.jsonl", "test": "test.jsonl"}, "MultiRC": {"train": "train.jsonl", "valid": "val.jsonl", "test": "test.jsonl"}, "RTE": {"train": "train.jsonl", "valid": "val.jsonl", "test": "test.jsonl"}, "WiC": {"train": "train.jsonl", "valid": "val.jsonl", "test": "test.jsonl"}, "WSC": {"train": "train.jsonl", "valid": "val.jsonl", "test": "test.jsonl"}, "SWAG": {"train": "train.csv", "valid": "val.csv", "test": "test.csv"}, } SuperGLUE_LABEL_MAPPING = { "CB": {"entailment": 1, "contradiction": 2, "neutral": 3}, "COPA": {0: 1, 1: 2}, "RTE": {"entailment": 1, "not_entailment": 2}, "WiC": {True: 1, False: 2}, "WSC": {True: 1, False: 2}, "MultiRC": {True: 1, False: 2}, "SWAG": {0: 1, 1: 2, 2: 3, 3: 4}, } SuperGLUE_LABEL_INVERSE = {} for task, mapping in SuperGLUE_LABEL_MAPPING.items(): SuperGLUE_LABEL_INVERSE[task] = {v: k for k, v in mapping.items()} SuperGLUE_TASK_METRIC_MAPPING = { "CB": ["accuracy"], "COPA": ["accuracy"], "MultiRC": ["f1"], "RTE": ["accuracy"], "WiC": ["accuracy"], "WSC": ["accuracy"], "SWAG": ["accuracy"], }
snorkel-superglue-master
task_config.py
import logging from pytorch_pretrained_bert import BertTokenizer logger = logging.getLogger(__name__) def get_tokenizer(tokenizer_name): logger.info(f"Loading Tokenizer {tokenizer_name}") if tokenizer_name.startswith("bert"): do_lower_case = "uncased" in tokenizer_name tokenizer = BertTokenizer.from_pretrained( tokenizer_name, do_lower_case=do_lower_case ) return tokenizer
snorkel-superglue-master
tokenizer.py
from setuptools import find_packages, setup with open("README.md") as read_file: long_description = read_file.read() with open("requirements.txt") as f: requirements = f.read().splitlines() setup( name="snorkel-superglue", version="0.1.0", url="https://github.com/HazyResearch/snorkel-superglue", description="Applying snorkel (stanford.snorkel.edu) to superglue", long_description_content_type="text/markdown", long_description=long_description, license="Apache License 2.0", packages=find_packages(), include_package_data=True, install_requires=requirements, keywords="machine-learning ai information-extraction weak-supervision", classifiers=[ "Intended Audience :: Science/Research", "Topic :: Scientific/Engineering :: Information Analysis", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3", ], project_urls={ "Homepage": "https://hazyresearch.github.io/snorkel-superglue/", "Source": "https://github.com/HazyResearch/snorkel-superglue/", "Bug Reports": "https://github.com/HazyResearch/snorkel-superglue/issues", }, )
snorkel-superglue-master
setup.py
import argparse import logging import os import pandas as pd from snorkel.mtl.data import MultitaskDataset def str2list(v, dim=","): return [t.strip() for t in v.split(dim)] def str2bool(v): if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise Exception("Boolean value expected.") def write_to_file(path, file_name, value): if not isinstance(value, str): value = str(value) fout = open(os.path.join(path, file_name), "w") fout.write(value + "\n") fout.close() def add_flags_from_config(parser, config_dict): """ Adds a flag (and default value) to an ArgumentParser for each parameter in a config """ def OrNone(default): def func(x): # Convert "none" to proper None object if x.lower() == "none": return None # If default is None (and x is not None), return x without conversion as str elif default is None: return str(x) # Otherwise, default has non-None type; convert x to that type else: return type(default)(x) return func for param in config_dict: default = config_dict[param] try: if isinstance(default, dict): parser = add_flags_from_config(parser, default) elif isinstance(default, bool): parser.add_argument(f"--{param}", type=str2bool, default=default) elif isinstance(default, list): if len(default) > 0: # pass a list as argument parser.add_argument( f"--{param}", action="append", type=type(default[0]), default=default, ) else: parser.add_argument(f"--{param}", action="append", default=default) else: parser.add_argument(f"--{param}", type=OrNone(default), default=default) except argparse.ArgumentError: logging.warning( f"Could not add flag for param {param} because it was already present." ) return parser def task_dataset_to_dataframe(dataset: MultitaskDataset) -> pd.DataFrame: data_dict = dataset.X_dict data_dict["labels"] = dataset.Y_dict["labels"] return pd.DataFrame(data_dict)
snorkel-superglue-master
utils.py
""" Script for downloading all SuperGLUE data. For licence information, see the original dataset information links available from: https://super.gluebenchmark.com/ Example usage: python download_superglue_data.py --data_dir data --tasks all """ import argparse import os import shutil import sys import tempfile import urllib.request import zipfile TASKS = ["CB", "COPA", "MultiRC", "RTE", "WiC", "WSC", "diagnostic"] TASK2PATH = { "CB": "https://dl.fbaipublicfiles.com/glue/superglue/data/CB.zip", "COPA": "https://dl.fbaipublicfiles.com/glue/superglue/data/COPA.zip", "MultiRC": "https://dl.fbaipublicfiles.com/glue/superglue/data/MultiRC.zip", "RTE": "https://dl.fbaipublicfiles.com/glue/superglue/data/RTE.zip", "WiC": "https://dl.fbaipublicfiles.com/glue/superglue/data/WiC.zip", "WSC": "https://dl.fbaipublicfiles.com/glue/superglue/data/WSC.zip", "diagnostic": "https://www.dropbox.com/s/ju7d95ifb072q9f/diagnostic-full.tsv?dl=1", } def download_and_extract(task, data_dir): print("Downloading and extracting %s..." % task) if not os.path.isdir(os.path.join(data_dir, task)): os.mkdir(os.path.join(data_dir, task)) data_file = os.path.join(data_dir, task, "%s.zip" % task) urllib.request.urlretrieve(TASK2PATH[task], data_file) with zipfile.ZipFile(data_file) as zip_ref: zip_ref.extractall(os.path.join(data_dir, task)) os.remove(data_file) print("\tCompleted!") def download_diagnostic(data_dir): print("Downloading and extracting diagnostic...") if not os.path.isdir(os.path.join(data_dir, "RTE")): os.mkdir(os.path.join(data_dir, "RTE")) data_file = os.path.join(data_dir, "RTE", "diagnostic-full.tsv") urllib.request.urlretrieve(TASK2PATH["diagnostic"], data_file) print("\tCompleted!") return def get_tasks(task_names): task_names = task_names.split(",") if "all" in task_names: tasks = TASKS else: tasks = [] for task_name in task_names: assert task_name in TASKS, "Task %s not found!" % task_name tasks.append(task_name) if "RTE" in tasks and "diagnostic" not in tasks: tasks.append("diagnostic") return tasks def main(arguments): parser = argparse.ArgumentParser() parser.add_argument( "-d", "--data_dir", help="directory to save data to", type=str, default="../superglue_data", ) parser.add_argument( "-t", "--tasks", help="tasks to download data for as a comma separated string", type=str, default="all", ) args = parser.parse_args(arguments) if not os.path.exists(args.data_dir): os.mkdir(args.data_dir) tasks = get_tasks(args.tasks) for task in tasks: if task == "diagnostic": download_diagnostic(args.data_dir) else: download_and_extract(task, args.data_dir) if __name__ == "__main__": sys.exit(main(sys.argv[1:]))
snorkel-superglue-master
download_superglue_data.py
import torch from torch import nn class ChoiceModule(nn.Module): def __init__(self, n_choices=2): super().__init__() self.n_choices = n_choices def forward(self, immediate_ouput_dict): logits = [] for i in range(self.n_choices): logits.append(immediate_ouput_dict[f"choice{str(i)}rep"][0]) logits = torch.cat(logits, dim=1) return logits
snorkel-superglue-master
superglue_modules/copa_module.py
import os import torch from pytorch_pretrained_bert.modeling import BertModel from torch import nn class BertModule(nn.Module): def __init__(self, bert_model_name, cache_dir="./cache/"): super().__init__() # Create cache directory if not exists if not os.path.exists(cache_dir): os.makedirs(cache_dir) self.bert_model = BertModel.from_pretrained( bert_model_name, cache_dir=cache_dir ) def forward(self, token_ids, token_type_ids=None, attention_mask=None): encoded_layers, pooled_output = self.bert_model( token_ids, token_type_ids, attention_mask ) return encoded_layers, pooled_output class BertLastCLSModule(nn.Module): def __init__(self, dropout_prob=0.0): super().__init__() self.dropout = nn.Dropout(dropout_prob) def forward(self, input): last_hidden = input[-1][:, 0, :] out = self.dropout(last_hidden) return out class BertContactLastCLSWithTwoTokensModule(nn.Module): def __init__(self): super().__init__() def forward(self, input, idx1, idx2): last_layer = input[-1] last_cls = last_layer[:, 0, :] idx1 = idx1.unsqueeze(-1).unsqueeze(-1).expand([-1, -1, last_layer.size(-1)]) idx2 = idx2.unsqueeze(-1).unsqueeze(-1).expand([-1, -1, last_layer.size(-1)]) token1_emb = last_layer.gather(dim=1, index=idx1).squeeze(dim=1) token2_emb = last_layer.gather(dim=1, index=idx2).squeeze(dim=1) output = torch.cat([last_cls, token1_emb, token2_emb], dim=-1) return output
snorkel-superglue-master
superglue_modules/bert_module.py
snorkel-superglue-master
superglue_modules/__init__.py
from torch import nn class RegressionModule(nn.Module): def __init__(self, feature_dim): super().__init__() self.linear = nn.Linear(feature_dim, 1) def forward(self, feature): return self.linear.forward(feature)
snorkel-superglue-master
superglue_modules/regression_module.py
import torch from torch import nn from allennlp.modules.span_extractors import SelfAttentiveSpanExtractor class SpanClassifierModule(nn.Module): def _make_span_extractor(self): return SelfAttentiveSpanExtractor(self.proj_dim) def _make_cnn_layer(self, d_inp): """ Make a CNN layer as a projection of local context. CNN maps [batch_size, max_len, d_inp] to [batch_size, max_len, proj_dim] with no change in length. """ k = 1 + 2 * self.cnn_context padding = self.cnn_context return nn.Conv1d( d_inp, self.proj_dim, kernel_size=k, stride=1, padding=padding, dilation=1, groups=1, bias=True, ) def __init__( self, d_inp=1024, proj_dim=512, num_spans=2, cnn_context=0, n_classes=2, dropout=0.1, ): super().__init__() self.cnn_context = cnn_context self.num_spans = num_spans self.proj_dim = proj_dim self.dropout = nn.Dropout(dropout) self.projs = torch.nn.ModuleList() for i in range(num_spans): # create a word-level pooling layer operator proj = self._make_cnn_layer(d_inp) self.projs.append(proj) self.span_extractors = torch.nn.ModuleList() # Lee's self-pooling operator (https://arxiv.org/abs/1812.10860) for i in range(num_spans): span_extractor = self._make_span_extractor() self.span_extractors.append(span_extractor) # Classifier gets concatenated projections of spans. clf_input_dim = self.span_extractors[1].get_output_dim() * num_spans self.classifier = nn.Linear(clf_input_dim, n_classes) def forward(self, feature, span1_idxs, span2_idxs, mask): # Apply projection CNN layer for each span of the input sentence sent_embs_t = self.dropout(feature[-1]).transpose(1, 2) # needed for CNN layer se_projs = [] for i in range(self.num_spans): se_proj = self.projs[i](sent_embs_t).transpose(2, 1).contiguous() se_projs.append(se_proj) span_embs = None _kw = dict(sequence_mask=mask.unsqueeze(2).long()) span_idxs = [span1_idxs.unsqueeze(1), span2_idxs.unsqueeze(1)] for i in range(self.num_spans): # spans are [batch_size, num_targets, span_modules] span_emb = self.span_extractors[i](se_projs[i], span_idxs[i], **_kw) if span_embs is None: span_embs = span_emb else: span_embs = torch.cat([span_embs, span_emb], dim=2) # [batch_size, num_targets, n_classes] logits = self.classifier(span_embs).squeeze(1) return logits
snorkel-superglue-master
superglue_modules/wsc_module.py
from torch import nn class ClassificationModule(nn.Module): def __init__(self, feature_dim, class_cardinality): super().__init__() self.linear = nn.Linear(feature_dim, class_cardinality) def forward(self, feature): return self.linear.forward(feature)
snorkel-superglue-master
superglue_modules/classification_module.py
from snorkel.slicing.sf import slicing_function from .general_sfs import slice_func_dict as general_slice_func_dict @slicing_function def slice_temporal_preposition(example): temporal_prepositions = ["after", "before", "past"] both_sentences = example.sentence1 + example.sentence2 return any([p in both_sentences for p in temporal_prepositions]) @slicing_function def slice_possessive_preposition(example): possessive_prepositions = ["inside of", "with", "within"] both_sentences = example.sentence1 + example.sentence2 return any([p in both_sentences for p in possessive_prepositions]) @slicing_function def slice_is_comparative(example): comparative_words = ["more", "less", "better", "worse", "bigger", "smaller"] both_sentences = example.sentence1 + example.sentence2 return any([p in both_sentences for p in comparative_words]) @slicing_function def slice_is_quantification(example): quantification_words = ["all", "some", "none"] both_sentences = example.sentence1 + example.sentence2 return any([p in both_sentences for p in quantification_words]) @slicing_function def slice_short_hypothesis(example, thresh=5): return len(example.sentence2.split()) < thresh @slicing_function def slice_long_hypothesis(example, thresh=15): return len(example.sentence2.split()) > thresh @slicing_function def slice_short_premise(example, thresh=10): return len(example.sentence1.split()) < thresh @slicing_function def slice_long_premise(example, thresh=100): return len(example.sentence1.split()) > thresh slices = [ slice_temporal_preposition, slice_possessive_preposition, slice_is_comparative, slice_is_quantification, slice_short_hypothesis, slice_long_hypothesis, slice_short_premise, slice_long_premise, ] slice_func_dict = {slice.name: slice for slice in slices} slice_func_dict.update(general_slice_func_dict)
snorkel-superglue-master
superglue_slices/CB_sfs.py
from .general_sfs import slice_func_dict as general_slice_func_dict slices = [] slice_func_dict = {slice.name: slice for slice in slices} slice_func_dict.update(general_slice_func_dict)
snorkel-superglue-master
superglue_slices/COPA_sfs.py
from .general_sfs import slice_func_dict as general_slice_func_dict slices = [] slice_func_dict = {slice.name: slice for slice in slices} slice_func_dict.update(general_slice_func_dict)
snorkel-superglue-master
superglue_slices/WSC_sfs.py
from . import general_sfs, RTE_sfs, WiC_sfs, CB_sfs, COPA_sfs, MultiRC_sfs, WSC_sfs slice_func_dict = { "CB": CB_sfs.slice_func_dict, "COPA": COPA_sfs.slice_func_dict, "MultiRC": MultiRC_sfs.slice_func_dict, "RTE": RTE_sfs.slice_func_dict, "WiC": WiC_sfs.slice_func_dict, "WSC": WSC_sfs.slice_func_dict, }
snorkel-superglue-master
superglue_slices/__init__.py
from snorkel.slicing.sf import slicing_function from .general_sfs import slice_func_dict as general_slice_func_dict @slicing_function() def slice_temporal_preposition(example): temporal_prepositions = ["after", "before", "past"] both_sentences = example.sentence1 + example.sentence2 return any([p in both_sentences for p in temporal_prepositions]) @slicing_function() def slice_possessive_preposition(example): possessive_prepositions = ["inside of", "with", "within"] both_sentences = example.sentence1 + example.sentence2 return any([p in both_sentences for p in possessive_prepositions]) @slicing_function() def slice_is_comparative(example): comparative_words = ["more", "less", "better", "worse", "bigger", "smaller"] both_sentences = example.sentence1 + example.sentence2 return any([p in both_sentences for p in comparative_words]) @slicing_function() def slice_is_quantification(example): quantification_words = ["all", "some", "none"] both_sentences = example.sentence1 + example.sentence2 return any([p in both_sentences for p in quantification_words]) @slicing_function() def slice_short_hypothesis(example, thresh=5): return len(example.sentence2.split()) < thresh @slicing_function() def slice_long_hypothesis(example, thresh=15): return len(example.sentence2.split()) > thresh @slicing_function() def slice_short_premise(example, thresh=10): return len(example.sentence1.split()) < thresh @slicing_function() def slice_long_premise(example, thresh=100): return len(example.sentence1.split()) > thresh slices = [ slice_temporal_preposition, slice_possessive_preposition, slice_is_comparative, slice_is_quantification, slice_short_hypothesis, slice_long_hypothesis, slice_short_premise, slice_long_premise, ] slice_func_dict = {slice.name: slice for slice in slices} slice_func_dict.update(general_slice_func_dict)
snorkel-superglue-master
superglue_slices/RTE_sfs.py
from .general_sfs import slice_func_dict as general_slice_func_dict slices = [] slice_func_dict = {slice.name: slice for slice in slices} slice_func_dict.update(general_slice_func_dict)
snorkel-superglue-master
superglue_slices/MultiRC_sfs.py
from snorkel.slicing.sf import slicing_function from .general_sfs import slice_func_dict as general_slice_func_dict @slicing_function() def slice_verb(example): """Is the target word a verb?""" return example.pos == "V" @slicing_function() def slice_noun(example): """Is the target word a noun?""" return example.pos == "N" @slicing_function() def slice_trigram(example): """Does the target word share a trigram between sentences?""" def get_ngrams(tokens, window=1): num_ngrams = len(tokens) - window + 1 for i in range(num_ngrams): yield tokens[i : i + window] trigrams = [] for sent, sent_idx in [ (example.sentence1, example.sentence1_idx), (example.sentence2, example.sentence2_idx), ]: tokens = sent.split() trigrams.append( [ " ".join(ngram).lower() for ngram in get_ngrams(tokens[sent_idx - 2 : sent_idx + 2], window=3) if len(ngram) == 3 ] ) return len(set(trigrams[0]).intersection(set(trigrams[1]))) > 0 @slicing_function() def slice_mismatch_verb(example): """Is the target word a verb with different forms between sentences?""" form1 = example.sentence1.split()[example.sentence1_idx] form2 = example.sentence2.split()[example.sentence2_idx] return (form1 != form2) and example.pos == "V" @slicing_function() def slice_mismatch_noun(example): """Is the target word a noun with different forms between sentences?""" form1 = example.sentence1.split()[example.sentence1_idx] form2 = example.sentence2.split()[example.sentence2_idx] return (form1 != form2) and example.pos == "N" slices = [ slice_verb, slice_noun, slice_trigram, slice_mismatch_verb, slice_mismatch_noun, ] slice_func_dict = {slice.name: slice for slice in slices} slice_func_dict.update(general_slice_func_dict)
snorkel-superglue-master
superglue_slices/WiC_sfs.py
from snorkel.slicing.sf import slicing_function @slicing_function() def slice_temporal_preposition(example): temporal_prepositions = ["after", "before", "past"] both_sentences = example.sentence1 + example.sentence2 return any([p in both_sentences for p in temporal_prepositions]) @slicing_function() def slice_possessive_preposition(example): possessive_prepositions = ["inside of", "with", "within"] both_sentences = example.sentence1 + example.sentence2 return any([p in both_sentences for p in possessive_prepositions]) @slicing_function() def slice_is_comparative(example): comparative_words = ["more", "less", "better", "worse", "bigger", "smaller"] both_sentences = example.sentence1 + example.sentence2 return any([p in both_sentences for p in comparative_words]) @slicing_function() def slice_is_quantification(example): quantification_words = ["all", "some", "none"] both_sentences = example.sentence1 + example.sentence2 return any([p in both_sentences for p in quantification_words]) @slicing_function() def slice_short_hypothesis(example, thresh=5): return len(example.sentence2.split()) < thresh @slicing_function() def slice_long_hypothesis(example, thresh=15): return len(example.sentence2.split()) > thresh @slicing_function() def slice_short_premise(example, thresh=10): return len(example.sentence1.split()) < thresh @slicing_function() def slice_long_premise(example, thresh=100): return len(example.sentence1.split()) > thresh @slicing_function() def slice_where(example): sentences = example.sentence1 + example.sentence2 return "where" in sentences @slicing_function() def slice_who(example): sentences = example.sentence1 + example.sentence2 return "who" in sentences @slicing_function() def slice_what(example): sentences = example.sentence1 + example.sentence2 return "what" in sentences @slicing_function() def slice_when(example): sentences = example.sentence1 + example.sentence2 return "when" in sentences @slicing_function() def slice_and(example): sentences = example.sentence1 + example.sentence2 return "and" in sentences @slicing_function() def slice_but(example): sentences = example.sentence1 + example.sentence2 return "but" in sentences @slicing_function() def slice_or(example): sentences = example.sentence1 + example.sentence2 return "or" in sentences @slicing_function() def slice_multiple_articles(example): sentences = example.sentence1 + example.sentence2 multiple_indefinite = ( sum([int(x == "a") for x in sentences.split()]) > 1 or sum([int(x == "an") for x in sentences.split()]) > 1 ) multiple_definite = sum([int(x == "the") for x in sentences.split()]) > 1 return multiple_indefinite or multiple_definite slices = [ slice_temporal_preposition, slice_possessive_preposition, slice_is_comparative, slice_is_quantification, slice_short_hypothesis, slice_long_hypothesis, slice_short_premise, slice_long_premise, slice_where, slice_who, slice_what, slice_when, slice_and, slice_or, slice_but, slice_multiple_articles, ] slice_func_dict = {slice.name: slice for slice in slices}
snorkel-superglue-master
superglue_slices/general_sfs.py
import sys from functools import partial from superglue_modules.bert_module import ( BertContactLastCLSWithTwoTokensModule, BertModule, ) from superglue_modules.wsc_module import SpanClassifierModule from task_config import SuperGLUE_LABEL_MAPPING, SuperGLUE_TASK_METRIC_MAPPING from torch import nn from snorkel.mtl.scorer import Scorer from snorkel.mtl.task import Task, Operation from . import utils sys.path.append("..") # Adds higher directory to python modules path. TASK_NAME = "WSC" def build_task(bert_model_name, last_hidden_dropout_prob=None): if last_hidden_dropout_prob: raise NotImplementedError(f"TODO: last_hidden_dropout_prob for {TASK_NAME}") bert_module = BertModule(bert_model_name) bert_output_dim = 768 if "base" in bert_model_name else 1024 task_cardinality = ( len(SuperGLUE_LABEL_MAPPING[TASK_NAME].keys()) if SuperGLUE_LABEL_MAPPING[TASK_NAME] is not None else 1 ) metrics = ( SuperGLUE_TASK_METRIC_MAPPING[TASK_NAME] if TASK_NAME in SuperGLUE_TASK_METRIC_MAPPING else [] ) custom_metric_funcs = {} loss_fn = partial(utils.ce_loss, f"{TASK_NAME}_pred_head") output_fn = partial(utils.output, f"{TASK_NAME}_pred_head") task = Task( name=TASK_NAME, module_pool=nn.ModuleDict( { "bert_module": bert_module, f"{TASK_NAME}_pred_head": SpanClassifierModule( d_inp=bert_output_dim, proj_dim=bert_output_dim // 2 ), } ), task_flow=[ Operation( name=f"{TASK_NAME}_bert_module", module_name="bert_module", inputs=[ ("_input_", "token_ids"), ("_input_", "token_segments"), ("_input_", "token_masks"), ], ), Operation( name=f"{TASK_NAME}_pred_head", module_name=f"{TASK_NAME}_pred_head", inputs=[ (f"{TASK_NAME}_bert_module", 0), ("_input_", "token1_idx"), ("_input_", "token2_idx"), ("_input_", "token_masks"), ], ), ], loss_func=loss_fn, output_func=output_fn, scorer=Scorer(metrics=metrics, custom_metric_funcs=custom_metric_funcs), ) return task
snorkel-superglue-master
superglue_tasks/wsc.py
import sys from functools import partial from superglue_modules.bert_module import BertLastCLSModule, BertModule from superglue_modules.copa_module import ChoiceModule from task_config import SuperGLUE_LABEL_MAPPING, SuperGLUE_TASK_METRIC_MAPPING from torch import nn from snorkel.mtl.scorer import Scorer from snorkel.mtl.task import Task, Operation from . import utils sys.path.append("..") # Adds higher directory to python modules path. TASK_NAME = "SWAG" def build_task(bert_model_name, last_hidden_dropout_prob=0.0): bert_module = BertModule(bert_model_name) bert_output_dim = 768 if "base" in bert_model_name else 1024 task_cardinality = ( len(SuperGLUE_LABEL_MAPPING[TASK_NAME].keys()) if SuperGLUE_LABEL_MAPPING[TASK_NAME] is not None else 1 ) metrics = ( SuperGLUE_TASK_METRIC_MAPPING[TASK_NAME] if TASK_NAME in SuperGLUE_TASK_METRIC_MAPPING else [] ) custom_metric_funcs = {} loss_fn = partial(utils.ce_loss, f"{TASK_NAME}_pred_head") output_fn = partial(utils.output, f"{TASK_NAME}_pred_head") task = Task( name=TASK_NAME, module_pool=nn.ModuleDict( { "bert_module": bert_module, "bert_last_cls": BertLastCLSModule( dropout_prob=last_hidden_dropout_prob ), "linear_module": nn.Linear(bert_output_dim, 1), f"{TASK_NAME}_pred_head": ChoiceModule(task_cardinality), } ), task_flow=[ Operation( name="choice0", module_name="bert_module", inputs=[("_input_", "token1_ids")], ), Operation( name="choice1", module_name="bert_module", inputs=[("_input_", "token2_ids")], ), Operation( name="choice2", module_name="bert_module", inputs=[("_input_", "token3_ids")], ), Operation( name="choice3", module_name="bert_module", inputs=[("_input_", "token4_ids")], ), Operation( name="choice0_bert_last_cls", module_name="bert_last_cls", inputs=[("choice0", 0)], ), Operation( name="choice1_bert_last_cls", module_name="bert_last_cls", inputs=[("choice1", 0)], ), Operation( name="choice2_bert_last_cls", module_name="bert_last_cls", inputs=[("choice2", 0)], ), Operation( name="choice3_bert_last_cls", module_name="bert_last_cls", inputs=[("choice3", 0)], ), Operation( name="choice0rep", module_name="linear_module", inputs=[("choice0_bert_last_cls", 0)], ), Operation( name="choice1rep", module_name="linear_module", inputs=[("choice1_bert_last_cls", 0)], ), Operation( name="choice2rep", module_name="linear_module", inputs=[("choice2_bert_last_cls", 0)], ), Operation( name="choice3rep", module_name="linear_module", inputs=[("choice3_bert_last_cls", 0)], ), Operation( name=f"{TASK_NAME}_pred_head", module_name=f"{TASK_NAME}_pred_head", inputs=[], ), ], loss_func=loss_fn, output_func=output_fn, scorer=Scorer(metrics=metrics, custom_metric_funcs=custom_metric_funcs), ) return task
snorkel-superglue-master
superglue_tasks/swag.py
import sys from functools import partial from superglue_modules.bert_module import BertLastCLSModule, BertModule from task_config import SuperGLUE_LABEL_MAPPING, SuperGLUE_TASK_METRIC_MAPPING from torch import nn from snorkel.model.metrics import metric_score from snorkel.mtl.scorer import Scorer from snorkel.mtl.task import Task, Operation from . import utils sys.path.append("..") # Adds higher directory to python modules path. TASK_NAME = "CB" # custom_metric_funcs ################# def macro_f1(golds, preds, probs): return metric_score(golds, preds, probs, metric="f1") def accuracy_macro_f1(golds, preds, probs): f1 = macro_f1(golds, preds, probs) accuracy = metric_score(golds, preds, probs, metric="accuracy") return (f1 + accuracy) / 2 ######################################### def build_task(bert_model_name, last_hidden_dropout_prob=0.0): bert_module = BertModule(bert_model_name) bert_output_dim = 768 if "base" in bert_model_name else 1024 task_cardinality = ( len(SuperGLUE_LABEL_MAPPING[TASK_NAME].keys()) if SuperGLUE_LABEL_MAPPING[TASK_NAME] is not None else 1 ) metrics = ( SuperGLUE_TASK_METRIC_MAPPING[TASK_NAME] if TASK_NAME in SuperGLUE_TASK_METRIC_MAPPING else [] ) custom_metric_funcs = {"macro_f1": macro_f1, "accuracy_macro_f1": accuracy_macro_f1} loss_fn = partial(utils.ce_loss, f"{TASK_NAME}_pred_head") output_fn = partial(utils.output, f"{TASK_NAME}_pred_head") task = Task( name=TASK_NAME, module_pool=nn.ModuleDict( { "bert_module": bert_module, f"{TASK_NAME}_feature": BertLastCLSModule( dropout_prob=last_hidden_dropout_prob ), f"{TASK_NAME}_pred_head": nn.Linear(bert_output_dim, task_cardinality), } ), task_flow=[ Operation( name=f"{TASK_NAME}_bert_module", module_name="bert_module", inputs=[ ("_input_", "token_ids"), ("_input_", "token_segments"), ("_input_", "token_masks"), ], ), Operation( name=f"{TASK_NAME}_feature", module_name=f"{TASK_NAME}_feature", inputs=[(f"{TASK_NAME}_bert_module", 0)], ), Operation( name=f"{TASK_NAME}_pred_head", module_name=f"{TASK_NAME}_pred_head", inputs=[(f"{TASK_NAME}_feature", 0)], ), ], loss_func=loss_fn, output_func=output_fn, scorer=Scorer(metrics=metrics, custom_metric_funcs=custom_metric_funcs), ) return task
snorkel-superglue-master
superglue_tasks/cb.py
import sys from functools import partial from superglue_modules.bert_module import BertLastCLSModule, BertModule from superglue_modules.copa_module import ChoiceModule from task_config import SuperGLUE_LABEL_MAPPING, SuperGLUE_TASK_METRIC_MAPPING from torch import nn from snorkel.mtl.scorer import Scorer from snorkel.mtl.task import Task, Operation from . import utils sys.path.append("..") # Adds higher directory to python modules path. TASK_NAME = "COPA" def build_task(bert_model_name, last_hidden_dropout_prob=0.0): bert_module = BertModule(bert_model_name) bert_output_dim = 768 if "base" in bert_model_name else 1024 task_cardinality = ( len(SuperGLUE_LABEL_MAPPING[TASK_NAME].keys()) if SuperGLUE_LABEL_MAPPING[TASK_NAME] is not None else 1 ) metrics = ( SuperGLUE_TASK_METRIC_MAPPING[TASK_NAME] if TASK_NAME in SuperGLUE_TASK_METRIC_MAPPING else [] ) custom_metric_funcs = {} loss_fn = partial(utils.ce_loss, f"{TASK_NAME}_pred_head") output_fn = partial(utils.output, f"{TASK_NAME}_pred_head") task = Task( name=TASK_NAME, module_pool=nn.ModuleDict( { "bert_module": bert_module, f"{TASK_NAME}_feature": BertLastCLSModule( dropout_prob=last_hidden_dropout_prob ), "linear_module": nn.Linear(bert_output_dim, 1), f"{TASK_NAME}_pred_head": ChoiceModule(task_cardinality), } ), task_flow=[ Operation( name="choice0", module_name="bert_module", inputs=[("_input_", "token1_ids")], ), Operation( name="choice1", module_name="bert_module", inputs=[("_input_", "token2_ids")], ), Operation( name="choice0_bert_last_cls", module_name=f"{TASK_NAME}_feature", inputs=[("choice0", 0)], ), Operation( name="choice1_bert_last_cls", module_name=f"{TASK_NAME}_feature", inputs=[("choice1", 0)], ), Operation( name="choice0rep", module_name="linear_module", inputs=[("choice0_bert_last_cls", 0)], ), Operation( name="choice1rep", module_name="linear_module", inputs=[("choice1_bert_last_cls", 0)], ), Operation( name=f"{TASK_NAME}_pred_head", module_name=f"{TASK_NAME}_pred_head", inputs=[], ), ], loss_func=loss_fn, output_func=output_fn, scorer=Scorer(metrics=metrics, custom_metric_funcs=custom_metric_funcs), ) return task
snorkel-superglue-master
superglue_tasks/copa.py
from . import cb, copa, multirc, rte, wic, wsc, swag task_funcs = { "CB": cb.build_task, "COPA": copa.build_task, "MultiRC": multirc.build_task, "RTE": rte.build_task, "WiC": wic.build_task, "WSC": wsc.build_task, "SWAG": swag.build_task, }
snorkel-superglue-master
superglue_tasks/__init__.py
import sys from functools import partial from superglue_modules.bert_module import BertLastCLSModule, BertModule from task_config import SuperGLUE_LABEL_MAPPING, SuperGLUE_TASK_METRIC_MAPPING from torch import nn from snorkel.mtl.scorer import Scorer from snorkel.mtl.task import Task, Operation from . import utils sys.path.append("..") # Adds higher directory to python modules path. TASK_NAME = "RTE" def build_task(bert_model_name, last_hidden_dropout_prob=0.0): bert_module = BertModule(bert_model_name) bert_output_dim = 768 if "base" in bert_model_name else 1024 task_cardinality = ( len(SuperGLUE_LABEL_MAPPING[TASK_NAME].keys()) if SuperGLUE_LABEL_MAPPING[TASK_NAME] is not None else 1 ) metrics = ( SuperGLUE_TASK_METRIC_MAPPING[TASK_NAME] if TASK_NAME in SuperGLUE_TASK_METRIC_MAPPING else [] ) custom_metric_funcs = {} loss_fn = partial(utils.ce_loss, f"{TASK_NAME}_pred_head") output_fn = partial(utils.output, f"{TASK_NAME}_pred_head") task = Task( name=TASK_NAME, module_pool=nn.ModuleDict( { "bert_module": bert_module, f"{TASK_NAME}_feature": BertLastCLSModule( dropout_prob=last_hidden_dropout_prob ), f"{TASK_NAME}_pred_head": nn.Linear(bert_output_dim, task_cardinality), } ), task_flow=[ Operation( name=f"{TASK_NAME}_bert_module", module_name="bert_module", inputs=[ ("_input_", "token_ids"), ("_input_", "token_segments"), ("_input_", "token_masks"), ], ), Operation( name=f"{TASK_NAME}_feature", module_name=f"{TASK_NAME}_feature", inputs=[(f"{TASK_NAME}_bert_module", 0)], ), Operation( name=f"{TASK_NAME}_pred_head", module_name=f"{TASK_NAME}_pred_head", inputs=[(f"{TASK_NAME}_feature", 0)], ), ], loss_func=loss_fn, output_func=output_fn, scorer=Scorer(metrics=metrics, custom_metric_funcs=custom_metric_funcs), ) return task
snorkel-superglue-master
superglue_tasks/rte.py
import sys from functools import partial from torch import nn from snorkel.model.metrics import metric_score from snorkel.mtl.scorer import Scorer from snorkel.mtl.task import Operation, Task from superglue_modules.bert_module import BertLastCLSModule, BertModule from task_config import SuperGLUE_LABEL_MAPPING, SuperGLUE_TASK_METRIC_MAPPING from . import utils sys.path.append("..") # Adds higher directory to python modules path. TASK_NAME = "MultiRC" def build_task(bert_model_name, last_hidden_dropout_prob=0.0): bert_module = BertModule(bert_model_name) bert_output_dim = 768 if "base" in bert_model_name else 1024 task_cardinality = ( len(SuperGLUE_LABEL_MAPPING[TASK_NAME].keys()) if SuperGLUE_LABEL_MAPPING[TASK_NAME] is not None else 1 ) metrics = ( SuperGLUE_TASK_METRIC_MAPPING[TASK_NAME] if TASK_NAME in SuperGLUE_TASK_METRIC_MAPPING else [] ) custom_metric_funcs = {} loss_fn = partial(utils.ce_loss, f"{TASK_NAME}_pred_head") output_fn = partial(utils.output, f"{TASK_NAME}_pred_head") task = Task( name=TASK_NAME, module_pool=nn.ModuleDict( { "bert_module": bert_module, "bert_last_CLS": BertLastCLSModule( dropout_prob=last_hidden_dropout_prob ), f"{TASK_NAME}_pred_head": nn.Linear(bert_output_dim, task_cardinality), } ), task_flow=[ Operation( name=f"{TASK_NAME}_bert_module", module_name="bert_module", inputs=[ ("_input_", "token_ids"), ("_input_", "token_segments"), ("_input_", "token_masks"), ], ), Operation( name=f"{TASK_NAME}_bert_last_CLS", module_name="bert_last_CLS", inputs=[(f"{TASK_NAME}_bert_module", 0)], ), Operation( name=f"{TASK_NAME}_pred_head", module_name=f"{TASK_NAME}_pred_head", inputs=[(f"{TASK_NAME}_bert_last_CLS", 0)], ), ], loss_func=loss_fn, output_func=output_fn, scorer=Scorer(metrics=metrics, custom_metric_funcs=custom_metric_funcs), ) return task
snorkel-superglue-master
superglue_tasks/multirc.py
import torch.nn.functional as F def ce_loss(module_name, immediate_ouput_dict, Y, active): return F.cross_entropy( immediate_ouput_dict[module_name][0][active], (Y.view(-1) - 1)[active] ) def output(module_name, immediate_ouput_dict): return F.softmax(immediate_ouput_dict[module_name][0], dim=1)
snorkel-superglue-master
superglue_tasks/utils.py
import sys from functools import partial from torch import nn from snorkel.mtl.scorer import Scorer from snorkel.mtl.task import Task, Operation from superglue_modules.bert_module import ( BertContactLastCLSWithTwoTokensModule, BertModule, ) from task_config import SuperGLUE_LABEL_MAPPING, SuperGLUE_TASK_METRIC_MAPPING from . import utils sys.path.append("..") # Adds higher directory to python modules path. TASK_NAME = "WiC" def build_task(bert_model_name, last_hidden_dropout_prob=None): if last_hidden_dropout_prob: raise NotImplementedError(f"TODO: last_hidden_dropout_prob for {TASK_NAME}") bert_module = BertModule(bert_model_name) bert_output_dim = 768 if "base" in bert_model_name else 1024 task_cardinality = ( len(SuperGLUE_LABEL_MAPPING[TASK_NAME].keys()) if SuperGLUE_LABEL_MAPPING[TASK_NAME] is not None else 1 ) metrics = ( SuperGLUE_TASK_METRIC_MAPPING[TASK_NAME] if TASK_NAME in SuperGLUE_TASK_METRIC_MAPPING else [] ) custom_metric_funcs = {} loss_fn = partial(utils.ce_loss, f"{TASK_NAME}_pred_head") output_fn = partial(utils.output, f"{TASK_NAME}_pred_head") task = Task( name=TASK_NAME, module_pool=nn.ModuleDict( { "bert_module": bert_module, f"{TASK_NAME}_feature": BertContactLastCLSWithTwoTokensModule(), f"{TASK_NAME}_pred_head": nn.Linear( bert_output_dim * 3, task_cardinality ), } ), task_flow=[ Operation( name=f"{TASK_NAME}_bert_module", module_name="bert_module", inputs=[ ("_input_", "token_ids"), ("_input_", "token_segments"), ("_input_", "token_masks"), ], ), Operation( name=f"{TASK_NAME}_feature", module_name=f"{TASK_NAME}_feature", inputs=[ (f"{TASK_NAME}_bert_module", 0), ("_input_", "token1_idx"), ("_input_", "token2_idx"), ], ), Operation( name=f"{TASK_NAME}_pred_head", module_name=f"{TASK_NAME}_pred_head", inputs=[(f"{TASK_NAME}_feature", 0)], ), ], loss_func=loss_fn, output_func=output_fn, scorer=Scorer(metrics=metrics, custom_metric_funcs=custom_metric_funcs), ) return task
snorkel-superglue-master
superglue_tasks/wic.py
import json import logging import sys import numpy as np import torch from task_config import SuperGLUE_LABEL_MAPPING from snorkel.mtl.data import MultitaskDataset sys.path.append("..") # Adds higher directory to python modules path. logger = logging.getLogger(__name__) TASK_NAME = "WSC" def get_char_index(text, span_text, span_index): tokens = text.replace("\n", " ").lower().split(" ") span_tokens = span_text.replace("\n", " ").lower().split(" ") # Token exact match if tokens[span_index : span_index + len(span_tokens)] == span_tokens: st = len(" ".join(tokens[:span_index])) + 1 if span_index != 0 else 0 ed = st + len(span_text) return st, ed if span_index < len(tokens): # Token fuzzy match with extra chars char_in_text = " ".join(tokens[span_index : span_index + len(span_tokens)]) char_in_span = " ".join(span_tokens) if char_in_text.startswith(char_in_span): st = len(" ".join(tokens[:span_index])) + 1 if span_index != 0 else 0 # ed = st + len(char_in_span) ed = st + len(char_in_text) return st, ed # Token fuzzy match with extra chars char_in_text = " ".join(tokens[span_index : span_index + len(span_tokens)]) char_in_span = " ".join(span_tokens) if char_in_span.startswith(char_in_text): st = len(" ".join(tokens[:span_index])) + 1 if span_index != 0 else 0 ed = st + len(char_in_text) return st, ed # Index out of range if span_index >= len(tokens): span_index -= 10 # Token fuzzy match with different position for idx in range(span_index, len(tokens)): if tokens[idx : idx + len(span_tokens)] == span_tokens: st = len(" ".join(tokens[:idx])) + 1 if idx != 0 else 0 ed = st + len(span_text) return st, ed # Token best fuzzy match with different position for idx in range(span_index, len(tokens)): if tokens[idx] == span_tokens[0]: for length in range(1, len(span_tokens)): if tokens[idx : idx + length] != span_tokens[:length]: st = len(" ".join(tokens[:idx])) + 1 if idx != 0 else 0 ed = st + len(" ".join(span_tokens[: length - 1])) return st, ed return None def parse(jsonl_path, tokenizer, max_data_samples, max_sequence_length): logger.info(f"Loading data from {jsonl_path}.") rows = [json.loads(row) for row in open(jsonl_path, encoding="utf-8")] for i in range(2): logger.info(f"Sample {i}: {rows[i]}") # Truncate to max_data_samples if max_data_samples: rows = rows[:max_data_samples] logger.info(f"Truncating to {max_data_samples} samples.") # sentence text sentences = [] # span1 span1s = [] # span2 span2s = [] # span1 idx span1_idxs = [] # span2 idx span2_idxs = [] # label labels = [] token1_idxs = [] token2_idxs = [] bert_tokens = [] bert_token_ids = [] bert_token_masks = [] bert_token_segments = [] # Check the maximum token length max_len = -1 for row in rows: index = row["idx"] text = row["text"] span1_text = row["target"]["span1_text"] span2_text = row["target"]["span2_text"] span1_index = row["target"]["span1_index"] span2_index = row["target"]["span2_index"] label = row["label"] if "label" in row else True span1_char_index = get_char_index(text, span1_text, span1_index) span2_char_index = get_char_index(text, span2_text, span2_index) assert span1_char_index is not None, f"Check example {id} in {jsonl_path}" assert span2_char_index is not None, f"Check example {id} in {jsonl_path}" # Tokenize sentences bert_tokens_sub1 = tokenizer.tokenize( text[: min(span1_char_index[0], span2_char_index[0])] ) if span1_char_index[0] < span2_char_index[0]: bert_tokens_sub2 = tokenizer.tokenize( text[span1_char_index[0] : span1_char_index[1]] ) token1_idx = [ len(bert_tokens_sub1) + 1, len(bert_tokens_sub1) + len(bert_tokens_sub2), ] else: bert_tokens_sub2 = tokenizer.tokenize( text[span2_char_index[0] : span2_char_index[1]] ) token2_idx = [ len(bert_tokens_sub1) + 1, len(bert_tokens_sub1) + len(bert_tokens_sub2), ] sub3_st = ( span1_char_index[1] if span1_char_index[0] < span2_char_index[0] else span2_char_index[1] ) sub3_ed = ( span1_char_index[0] if span1_char_index[0] > span2_char_index[0] else span2_char_index[0] ) bert_tokens_sub3 = tokenizer.tokenize(text[sub3_st:sub3_ed]) if span1_char_index[0] < span2_char_index[0]: bert_tokens_sub4 = tokenizer.tokenize( text[span2_char_index[0] : span2_char_index[1]] ) cur_len = ( len(bert_tokens_sub1) + len(bert_tokens_sub2) + len(bert_tokens_sub3) ) token2_idx = [cur_len + 1, cur_len + len(bert_tokens_sub4)] else: bert_tokens_sub4 = tokenizer.tokenize( text[span1_char_index[0] : span1_char_index[1]] ) cur_len = ( len(bert_tokens_sub1) + len(bert_tokens_sub2) + len(bert_tokens_sub3) ) token1_idx = [cur_len + 1, cur_len + len(bert_tokens_sub4)] if span1_char_index[0] < span2_char_index[0]: bert_tokens_sub5 = tokenizer.tokenize(text[span2_char_index[1] :]) else: bert_tokens_sub5 = tokenizer.tokenize(text[span1_char_index[1] :]) tokens = ( ["[CLS]"] + bert_tokens_sub1 + bert_tokens_sub2 + bert_tokens_sub3 + bert_tokens_sub4 + bert_tokens_sub5 + ["[SEP]"] ) if len(tokens) > max_len: max_len = len(tokens) token_ids = tokenizer.convert_tokens_to_ids(tokens) token_segments = [0] * len(token_ids) # Generate mask where 1 for real tokens and 0 for padding tokens token_masks = [1] * len(token_ids) token1_idxs.append(token1_idx) token2_idxs.append(token2_idx) sentences.append(text) span1s.append(span1_text) span2s.append(span2_text) span1_idxs.append(span1_index) span2_idxs.append(span2_index) labels.append(SuperGLUE_LABEL_MAPPING[TASK_NAME][label]) bert_tokens.append(tokens) bert_token_ids.append(torch.LongTensor(token_ids)) bert_token_masks.append(torch.LongTensor(token_masks)) bert_token_segments.append(torch.LongTensor(token_segments)) token1_idxs = torch.from_numpy(np.array(token1_idxs)) token2_idxs = torch.from_numpy(np.array(token2_idxs)) labels = torch.from_numpy(np.array(labels)) logger.info(f"Max token len {max_len}") return MultitaskDataset( name="SuperGLUE", X_dict={ "sentence": sentences, "span1": span1s, "span2": span2s, "span1_idx": span1_idxs, "span2_idx": span2_idxs, "token1_idx": token1_idxs, "token2_idx": token2_idxs, "tokens": bert_tokens, "token_ids": bert_token_ids, "token_masks": bert_token_masks, "token_segments": bert_token_segments, }, Y_dict={"labels": labels}, )
snorkel-superglue-master
superglue_parsers/wsc.py
import json import logging import sys import pandas as pd import numpy as np import torch from task_config import SuperGLUE_LABEL_MAPPING from snorkel.mtl.data import MultitaskDataset sys.path.append("..") # Adds higher directory to python modules path. logger = logging.getLogger(__name__) TASK_NAME = "SWAG" def parse(csv_path, tokenizer, max_data_samples, max_sequence_length): logger.info(f"Loading data from {csv_path}.") rows = pd.read_csv(csv_path) # for i in range(2): # logger.info(f"Sample {i}: {rows[i]}") # Truncate to max_data_samples if max_data_samples: rows = rows[:max_data_samples] logger.info(f"Truncating to {max_data_samples} samples.") # sentence1 sent1s = [] # sentence2 sent2s = [] # choice1 choice1s = [] # choice2 choice2s = [] # choice3 choice3s = [] # choice4 choice4s = [] labels = [] bert_token1_ids = [] bert_token2_ids = [] bert_token3_ids = [] bert_token4_ids = [] # Check the maximum token length max_len = -1 for ex_idx, ex in rows.iterrows(): sent1 = ex["sent1"] sent2 = ex["sent2"] choice1 = ex["ending0"] choice2 = ex["ending1"] choice3 = ex["ending2"] choice4 = ex["ending3"] label = ex["label"] if "label" in ex else 0 sent1s.append(sent1) sent2s.append(sent2) choice1s.append(choice1) choice2s.append(choice2) choice3s.append(choice3) choice4s.append(choice4) labels.append(SuperGLUE_LABEL_MAPPING[TASK_NAME][label]) # Tokenize sentences sent1_tokens = tokenizer.tokenize(sent1) sent2_tokens = tokenizer.tokenize(sent2) choice1_tokens = tokenizer.tokenize(choice1) choice2_tokens = tokenizer.tokenize(choice2) choice3_tokens = tokenizer.tokenize(choice3) choice4_tokens = tokenizer.tokenize(choice4) # Convert to BERT manner bert_token1 = ( ["[CLS]"] + sent1_tokens + ["[SEP]"] + sent2_tokens + choice1_tokens + ["[SEP]"] ) bert_token2 = ( ["[CLS]"] + sent1_tokens + ["[SEP]"] + sent2_tokens + choice2_tokens + ["[SEP]"] ) bert_token3 = ( ["[CLS]"] + sent1_tokens + ["[SEP]"] + sent2_tokens + choice3_tokens + ["[SEP]"] ) bert_token4 = ( ["[CLS]"] + sent1_tokens + ["[SEP]"] + sent2_tokens + choice4_tokens + ["[SEP]"] ) token1_ids = tokenizer.convert_tokens_to_ids(bert_token1) token2_ids = tokenizer.convert_tokens_to_ids(bert_token2) token3_ids = tokenizer.convert_tokens_to_ids(bert_token3) token4_ids = tokenizer.convert_tokens_to_ids(bert_token4) if len(token1_ids) > max_len: max_len = len(token1_ids) if len(token2_ids) > max_len: max_len = len(token2_ids) if len(token3_ids) > max_len: max_len = len(token3_ids) if len(token4_ids) > max_len: max_len = len(token4_ids) bert_token1_ids.append(torch.LongTensor(token1_ids)) bert_token2_ids.append(torch.LongTensor(token2_ids)) bert_token3_ids.append(torch.LongTensor(token3_ids)) bert_token4_ids.append(torch.LongTensor(token4_ids)) labels = torch.from_numpy(np.array(labels)) logger.info(f"Max token len {max_len}") return MultitaskDataset( name="SuperGLUE", X_dict={ "sent1": sent1s, "sent2": sent2s, "choice1": choice1s, "choice2": choice2s, "choice3": choice3s, "choice4": choice4s, "token1_ids": bert_token1_ids, "token2_ids": bert_token2_ids, "token3_ids": bert_token3_ids, "token4_ids": bert_token4_ids, }, Y_dict={"labels": labels}, )
snorkel-superglue-master
superglue_parsers/swag.py
import json import logging import sys import numpy as np import torch from task_config import SuperGLUE_LABEL_MAPPING from snorkel.mtl.data import MultitaskDataset sys.path.append("..") # Adds higher directory to python modules path. logger = logging.getLogger(__name__) TASK_NAME = "CB" def parse(jsonl_path, tokenizer, max_data_samples, max_sequence_length): logger.info(f"Loading data from {jsonl_path}.") rows = [json.loads(row) for row in open(jsonl_path, encoding="utf-8")] for i in range(2): logger.info(f"Sample {i}: {rows[i]}") # Truncate to max_data_samples if max_data_samples: rows = rows[:max_data_samples] logger.info(f"Truncating to {max_data_samples} samples.") # sentence1 text sentence1s = [] # sentence2 text sentence2s = [] # label labels = [] bert_token_ids = [] bert_token_masks = [] bert_token_segments = [] # Check the maximum token length max_len = -1 for row in rows: index = row["idx"] sentence1 = row["premise"] sentence2 = row["hypothesis"] label = row["label"] if "label" in row else "entailment" sentence1s.append(sentence1) sentence2s.append(sentence2) labels.append(SuperGLUE_LABEL_MAPPING[TASK_NAME][label]) # Tokenize sentences sent1_tokens = tokenizer.tokenize(sentence1) sent2_tokens = tokenizer.tokenize(sentence2) if len(sent1_tokens) + len(sent2_tokens) > max_len: max_len = len(sent1_tokens) + len(sent2_tokens) while True: total_length = len(sent1_tokens) + len(sent2_tokens) # Account for [CLS], [SEP], [SEP] with "- 3" if total_length <= max_sequence_length - 3: break if len(sent1_tokens) > len(sent2_tokens): sent1_tokens.pop() else: sent2_tokens.pop() # Convert to BERT manner tokens = ["[CLS]"] + sent1_tokens + ["[SEP]"] token_segments = [0] * len(tokens) tokens += sent2_tokens + ["[SEP]"] token_segments += [1] * (len(sent2_tokens) + 1) token_ids = tokenizer.convert_tokens_to_ids(tokens) # Generate mask where 1 for real tokens and 0 for padding tokens token_masks = [1] * len(token_ids) bert_token_ids.append(torch.LongTensor(token_ids)) bert_token_masks.append(torch.LongTensor(token_masks)) bert_token_segments.append(torch.LongTensor(token_segments)) labels = torch.from_numpy(np.array(labels)) logger.info(f"Max token len {max_len}") return MultitaskDataset( name="SuperGLUE", X_dict={ "sentence1": sentence1s, "sentence2": sentence2s, "token_ids": bert_token_ids, "token_masks": bert_token_masks, "token_segments": bert_token_segments, }, Y_dict={"labels": labels}, )
snorkel-superglue-master
superglue_parsers/cb.py
import json import logging import sys import numpy as np import torch from task_config import SuperGLUE_LABEL_MAPPING from snorkel.mtl.data import MultitaskDataset sys.path.append("..") # Adds higher directory to python modules path. logger = logging.getLogger(__name__) TASK_NAME = "COPA" def parse(jsonl_path, tokenizer, max_data_samples, max_sequence_length): logger.info(f"Loading data from {jsonl_path}.") rows = [json.loads(row) for row in open(jsonl_path, encoding="utf-8")] for i in range(2): logger.info(f"Sample {i}: {rows[i]}") # Truncate to max_data_samples if max_data_samples: rows = rows[:max_data_samples] logger.info(f"Truncating to {max_data_samples} samples.") # sentence1 sent1s = [] # sentence2 sent2s = [] # choice1 choice1s = [] # choice2 choice2s = [] labels = [] bert_token1_ids = [] bert_token2_ids = [] # Check the maximum token length max_len = -1 for sample in rows: index = sample["idx"] sent1 = sample["premise"] sent2 = sample["question"] sent2 = ( "What was the cause of this?" if sent2 == "cause" else "What happened as a result?" ) choice1 = sample["choice1"] choice2 = sample["choice2"] label = sample["label"] if "label" in sample else True sent1s.append(sent1) sent2s.append(sent2) choice1s.append(choice1) choice2s.append(choice2) labels.append(SuperGLUE_LABEL_MAPPING[TASK_NAME][label]) # Tokenize sentences sent1_tokens = tokenizer.tokenize(sent1) sent2_tokens = tokenizer.tokenize(sent2) # Tokenize choices choice1_tokens = tokenizer.tokenize(choice1) choice2_tokens = tokenizer.tokenize(choice2) # Convert to BERT manner tokens1 = ( ["[CLS]"] + sent1_tokens + ["[SEP]"] + sent2_tokens + ["[SEP]"] + choice1_tokens + ["[SEP]"] ) tokens2 = ( ["[CLS]"] + sent1_tokens + ["[SEP]"] + sent2_tokens + ["[SEP]"] + choice2_tokens + ["[SEP]"] ) token1_ids = tokenizer.convert_tokens_to_ids(tokens1) token2_ids = tokenizer.convert_tokens_to_ids(tokens2) if len(token1_ids) > max_len: max_len = len(token1_ids) if len(token2_ids) > max_len: max_len = len(token2_ids) bert_token1_ids.append(torch.LongTensor(token1_ids)) bert_token2_ids.append(torch.LongTensor(token2_ids)) labels = torch.from_numpy(np.array(labels)) logger.info(f"Max token len {max_len}") return MultitaskDataset( name="SuperGLUE", X_dict={ "sentence1": sent1s, "sentence2": sent2s, "choice1": choice1s, "choice2": choice2s, "token1_ids": bert_token1_ids, "token2_ids": bert_token2_ids, }, Y_dict={"labels": labels}, )
snorkel-superglue-master
superglue_parsers/copa.py
from . import cb, copa, multirc, rte, wic, wsc, swag parser = { "MultiRC": multirc.parse, "WiC": wic.parse, "CB": cb.parse, "COPA": copa.parse, "RTE": rte.parse, "WSC": wsc.parse, "SWAG": swag.parse, }
snorkel-superglue-master
superglue_parsers/__init__.py
import json import logging import sys import numpy as np import torch from task_config import SuperGLUE_LABEL_MAPPING from snorkel.mtl.data import MultitaskDataset sys.path.append("..") # Adds higher directory to python modules path. logger = logging.getLogger(__name__) TASK_NAME = "RTE" def parse(jsonl_path, tokenizer, max_data_samples, max_sequence_length): logger.info(f"Loading data from {jsonl_path}.") rows = [json.loads(row) for row in open(jsonl_path, encoding="utf-8")] for i in range(2): logger.info(f"Sample {i}: {rows[i]}") # Truncate to max_data_samples if max_data_samples: rows = rows[:max_data_samples] logger.info(f"Truncating to {max_data_samples} samples.") # sentence1 text sentence1s = [] # sentence2 text sentence2s = [] # label labels = [] bert_token_ids = [] bert_token_masks = [] bert_token_segments = [] # Check the maximum token length max_len = -1 for row in rows: index = row["idx"] sentence1 = row["premise"] sentence2 = row["hypothesis"] label = row["label"] if "label" in row else "entailment" sentence1s.append(sentence1) sentence2s.append(sentence2) labels.append(SuperGLUE_LABEL_MAPPING[TASK_NAME][label]) # Tokenize sentences sent1_tokens = tokenizer.tokenize(sentence1) sent2_tokens = tokenizer.tokenize(sentence2) if len(sent1_tokens) + len(sent2_tokens) > max_len: max_len = len(sent1_tokens) + len(sent2_tokens) while True: total_length = len(sent1_tokens) + len(sent2_tokens) # Account for [CLS], [SEP], [SEP] with "- 3" if total_length <= max_sequence_length - 3: break if len(sent1_tokens) > len(sent2_tokens): sent1_tokens.pop() else: sent2_tokens.pop() # Convert to BERT manner tokens = ["[CLS]"] + sent1_tokens + ["[SEP]"] token_segments = [0] * len(tokens) tokens += sent2_tokens + ["[SEP]"] token_segments += [1] * (len(sent2_tokens) + 1) token_ids = tokenizer.convert_tokens_to_ids(tokens) # Generate mask where 1 for real tokens and 0 for padding tokens token_masks = [1] * len(token_ids) bert_token_ids.append(torch.LongTensor(token_ids)) bert_token_masks.append(torch.LongTensor(token_masks)) bert_token_segments.append(torch.LongTensor(token_segments)) labels = torch.from_numpy(np.array(labels)) logger.info(f"Max token len {max_len}") return MultitaskDataset( name="SuperGLUE", X_dict={ "sentence1": sentence1s, "sentence2": sentence2s, "token_ids": bert_token_ids, "token_masks": bert_token_masks, "token_segments": bert_token_segments, }, Y_dict={"labels": labels}, )
snorkel-superglue-master
superglue_parsers/rte.py
import json import logging import re import sys import numpy as np import torch from snorkel.mtl.data import MultitaskDataset from task_config import SuperGLUE_LABEL_MAPPING sys.path.append("..") # Adds higher directory to python modules path. logger = logging.getLogger(__name__) TASK_NAME = "MultiRC" def get_rows(jsonl_path, max_data_samples): logger.info(f"Loading data from {jsonl_path}.") rows = [json.loads(row) for row in open(jsonl_path, encoding="utf-8")] new_rows = [] for row in rows: # each example has a paragraph field -> (text, questions) # text is the paragraph, which requires some preprocessing # questions is a list of questions, # has fields (question, sentences_used, answers) pid = row["idx"] para_sent_list = re.sub( "<b>Sent .{1,2}: </b>", "", row["paragraph"]["text"] ).split("<br>") para = " ".join(para_sent_list) for ques in row["paragraph"]["questions"]: qid = ques["idx"] question = ques["question"] sent_used = ques["sentences_used"] for ans in ques["answers"]: new_row = {} aid = ans["idx"] answer = ans["text"] new_row["pid"] = pid new_row["qid"] = qid new_row["aid"] = aid new_row["paragraph"] = para new_row["question"] = question new_row["answer"] = answer new_row["paragraph_sent_list"] = para_sent_list new_row["sent_used"] = sent_used new_row["label"] = ans["isAnswer"] if "isAnswer" in ans else False new_rows.append(new_row) for i in range(2): logger.info(f"Sample {i}: {new_rows[i]}") # Truncate to max_data_samples if max_data_samples: new_rows = new_rows[:max_data_samples] logger.info(f"Truncating to {max_data_samples} samples.") return new_rows def parse_from_rows(rows, tokenizer, max_sequence_length): # paragraph ids pids = [] # question ids qids = [] # answer ids aids = [] # paragraph text paras = [] # question text questions = [] # answer text answers = [] # labels labels = [] bert_token_ids = [] bert_token_masks = [] bert_token_segments = [] # Check the maximum token length max_len = -1 for row in rows: pid = row["pid"] qid = row["qid"] aid = row["aid"] para_token = tokenizer.tokenize(row["paragraph"])[: max_sequence_length - 2] question_token = tokenizer.tokenize(row["question"])[: max_sequence_length - 2] answer_token = tokenizer.tokenize(row["answer"])[: max_sequence_length - 2] # Generate tokens tokens = ( ["[CLS]"] + para_token + ["[SEP]"] + question_token + answer_token + ["[SEP]"] ) # No token segments token_segments = [0] * (len(para_token) + 2) + [0] * ( len(question_token) + len(answer_token) + 1 ) token_ids = tokenizer.convert_tokens_to_ids(tokens) token_masks = [1] * len(token_ids) if len(tokens) > max_len: max_len = len(tokens) # Add to list paras.append(row["paragraph"]) questions.append(row["question"]) answers.append(row["answer"]) label = row["label"] labels.append(SuperGLUE_LABEL_MAPPING[TASK_NAME][label]) pids.append(pid) qids.append(qid) aids.append(aid) bert_token_ids.append(torch.LongTensor(token_ids)) bert_token_masks.append(torch.LongTensor(token_masks)) bert_token_segments.append(torch.LongTensor(token_segments)) labels = torch.from_numpy(np.array(labels)) logger.info(f"Max token len {max_len}") return MultitaskDataset( name="SuperGLUE", X_dict={ "pid": pids, "qid": qids, "aid": aids, "para": paras, "question": questions, "answer": answers, "token_ids": bert_token_ids, "token_masks": bert_token_masks, "token_segments": bert_token_segments, }, Y_dict={"labels": labels}, ) def parse(jsonl_path, tokenizer, max_data_samples, max_sequence_length): rows = get_rows(jsonl_path, max_data_samples) return parse_from_rows(rows, tokenizer, max_sequence_length)
snorkel-superglue-master
superglue_parsers/multirc.py
import json import logging import sys import numpy as np import torch from task_config import SuperGLUE_LABEL_MAPPING from snorkel.mtl.data import MultitaskDataset sys.path.append("..") # Adds higher directory to python modules path. logger = logging.getLogger(__name__) TASK_NAME = "WiC" def get_rows(jsonl_path, max_data_samples): logger.info(f"Loading data from {jsonl_path}.") rows = [json.loads(row) for row in open(jsonl_path, encoding="utf-8")] for i in range(2): logger.info(f"Sample {i}: {rows[i]}") # Truncate to max_data_samples if max_data_samples: rows = rows[:max_data_samples] logger.info(f"Truncating to {max_data_samples} samples.") for row in rows: row["sentence1_idx"] = int(row["sentence1_idx"]) row["sentence2_idx"] = int(row["sentence2_idx"]) row["label"] = row["label"] if "label" in row else True return rows def parse_from_rows(rows, tokenizer, max_sequence_length): # sentence1 text sentence1s = [] # sentence2 text sentence2s = [] # sentence1 idx sentence1_idxs = [] # sentence2 idx sentence2_idxs = [] # word in common words = [] # pos tag poses = [] # label labels = [] token1_idxs = [] token2_idxs = [] bert_token_ids = [] bert_token_masks = [] bert_token_segments = [] # Check the maximum token length max_len = -1 for row in rows: index = row["idx"] sentence1 = row["sentence1"] sentence2 = row["sentence2"] word = row["word"] pos = row["pos"] sentence1_idx = row["sentence1_idx"] sentence2_idx = row["sentence2_idx"] label = row["label"] sentence1s.append(sentence1) sentence2s.append(sentence2) sentence1_idxs.append(sentence1_idx) sentence2_idxs.append(sentence2_idx) words.append(word) poses.append(pos) labels.append(SuperGLUE_LABEL_MAPPING[TASK_NAME][label]) # Tokenize sentences sent1_tokens = tokenizer.tokenize(sentence1) sent2_tokens = tokenizer.tokenize(sentence2) word_tokens_in_sent1 = tokenizer.tokenize(sentence1.split()[sentence1_idx]) word_tokens_in_sent2 = tokenizer.tokenize(sentence2.split()[sentence2_idx]) while True: total_length = len(sent1_tokens) + len(sent2_tokens) if total_length > max_len: max_len = total_length # Account for [CLS], [SEP], [SEP] with "- 3" if total_length <= max_sequence_length - 3: break if len(sent1_tokens) > len(sent2_tokens): sent1_tokens.pop() else: sent2_tokens.pop() for idx in range(sentence1_idx - 1, len(sent1_tokens)): if ( sent1_tokens[idx : idx + len(word_tokens_in_sent1)] == word_tokens_in_sent1 ): token1_idxs.append(idx + 1) # Add [CLS] break for idx in range(sentence2_idx - 1, len(sent2_tokens)): if ( sent2_tokens[idx : idx + len(word_tokens_in_sent2)] == word_tokens_in_sent2 ): token2_idxs.append( idx + len(sent1_tokens) + 2 ) # Add the length of the first sentence and [CLS] + [SEP] break # Convert to BERT manner tokens = ["[CLS]"] + sent1_tokens + ["[SEP]"] token_segments = [0] * len(tokens) tokens += sent2_tokens + ["[SEP]"] token_segments += [1] * (len(sent2_tokens) + 1) token_ids = tokenizer.convert_tokens_to_ids(tokens) # Generate mask where 1 for real tokens and 0 for padding tokens token_masks = [1] * len(token_ids) bert_token_ids.append(torch.LongTensor(token_ids)) bert_token_masks.append(torch.LongTensor(token_masks)) bert_token_segments.append(torch.LongTensor(token_segments)) token1_idxs = torch.from_numpy(np.array(token1_idxs)) token2_idxs = torch.from_numpy(np.array(token2_idxs)) labels = torch.from_numpy(np.array(labels)) logger.info(f"Max token len {max_len}") return MultitaskDataset( name="SuperGLUE", X_dict={ "sentence1": sentence1s, "sentence2": sentence2s, "word": words, "pos": poses, "sentence1_idx": sentence1_idxs, "sentence2_idx": sentence2_idxs, "token1_idx": token1_idxs, "token2_idx": token2_idxs, "token_ids": bert_token_ids, "token_masks": bert_token_masks, "token_segments": bert_token_segments, }, Y_dict={"labels": labels}, ) def parse(jsonl_path, tokenizer, max_data_samples, max_sequence_length): rows = get_rows(jsonl_path, max_data_samples) return parse_from_rows(rows, tokenizer, max_sequence_length)
snorkel-superglue-master
superglue_parsers/wic.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import sys import hydra import torch from lib.ddp_trainer import SegmentationTrainer from lib.distributed import multi_proc_run def single_proc_run(config): if not torch.cuda.is_available(): raise Exception('No GPUs FOUND.') torch.manual_seed(config.misc.seed) torch.cuda.manual_seed(config.misc.seed) trainer = SegmentationTrainer(config) if config.train.is_train: trainer.train() else: trainer.test() @hydra.main(config_path='config', config_name='default.yaml') def main(config): # Convert to dict if config.misc.num_gpus > 1: multi_proc_run(config.misc.num_gpus, fun=single_proc_run, fun_args=(config,)) else: single_proc_run(config) if __name__ == '__main__': __spec__ = None os.environ['MKL_THREADING_LAYER'] = 'GNU' main()
ContrastiveSceneContexts-main
downstream/semseg/ddp_main.py
import random import logging import numpy as np import scipy import scipy.ndimage import scipy.interpolate import torch # A sparse tensor consists of coordinates and associated features. # You must apply augmentation to both. # In 2D, flip, shear, scale, and rotation of images are coordinate transformation # color jitter, hue, etc., are feature transformations ############################## # Feature transformations ############################## class ChromaticTranslation(object): """Add random color to the image, input must be an array in [0,255] or a PIL image""" def __init__(self, trans_range_ratio=1e-1): """ trans_range_ratio: ratio of translation i.e. 255 * 2 * ratio * rand(-0.5, 0.5) """ self.trans_range_ratio = trans_range_ratio def __call__(self, coords, feats, labels): if random.random() < 0.95: tr = (np.random.rand(1, 3) - 0.5) * 255 * 2 * self.trans_range_ratio feats[:, :3] = np.clip(tr + feats[:, :3], 0, 255) return coords, feats, labels class ChromaticAutoContrast(object): def __init__(self, randomize_blend_factor=True, blend_factor=0.5): self.randomize_blend_factor = randomize_blend_factor self.blend_factor = blend_factor def __call__(self, coords, feats, labels): if random.random() < 0.2: # mean = np.mean(feats, 0, keepdims=True) # std = np.std(feats, 0, keepdims=True) # lo = mean - std # hi = mean + std lo = feats[:, :3].min(0, keepdims=True) hi = feats[:, :3].max(0, keepdims=True) assert hi.max() > 1, f"invalid color value. Color is supposed to be [0-255]" scale = 255 / (hi - lo) contrast_feats = (feats[:, :3] - lo) * scale blend_factor = random.random() if self.randomize_blend_factor else self.blend_factor feats[:, :3] = (1 - blend_factor) * feats + blend_factor * contrast_feats return coords, feats, labels class ChromaticJitter(object): def __init__(self, std=0.01): self.std = std def __call__(self, coords, feats, labels): if random.random() < 0.95: noise = np.random.randn(feats.shape[0], 3) noise *= self.std * 255 feats[:, :3] = np.clip(noise + feats[:, :3], 0, 255) return coords, feats, labels class HueSaturationTranslation(object): @staticmethod def rgb_to_hsv(rgb): # Translated from source of colorsys.rgb_to_hsv # r,g,b should be a numpy arrays with values between 0 and 255 # rgb_to_hsv returns an array of floats between 0.0 and 1.0. rgb = rgb.astype('float') hsv = np.zeros_like(rgb) # in case an RGBA array was passed, just copy the A channel hsv[..., 3:] = rgb[..., 3:] r, g, b = rgb[..., 0], rgb[..., 1], rgb[..., 2] maxc = np.max(rgb[..., :3], axis=-1) minc = np.min(rgb[..., :3], axis=-1) hsv[..., 2] = maxc mask = maxc != minc hsv[mask, 1] = (maxc - minc)[mask] / maxc[mask] rc = np.zeros_like(r) gc = np.zeros_like(g) bc = np.zeros_like(b) rc[mask] = (maxc - r)[mask] / (maxc - minc)[mask] gc[mask] = (maxc - g)[mask] / (maxc - minc)[mask] bc[mask] = (maxc - b)[mask] / (maxc - minc)[mask] hsv[..., 0] = np.select([r == maxc, g == maxc], [bc - gc, 2.0 + rc - bc], default=4.0 + gc - rc) hsv[..., 0] = (hsv[..., 0] / 6.0) % 1.0 return hsv @staticmethod def hsv_to_rgb(hsv): # Translated from source of colorsys.hsv_to_rgb # h,s should be a numpy arrays with values between 0.0 and 1.0 # v should be a numpy array with values between 0.0 and 255.0 # hsv_to_rgb returns an array of uints between 0 and 255. rgb = np.empty_like(hsv) rgb[..., 3:] = hsv[..., 3:] h, s, v = hsv[..., 0], hsv[..., 1], hsv[..., 2] i = (h * 6.0).astype('uint8') f = (h * 6.0) - i p = v * (1.0 - s) q = v * (1.0 - s * f) t = v * (1.0 - s * (1.0 - f)) i = i % 6 conditions = [s == 0.0, i == 1, i == 2, i == 3, i == 4, i == 5] rgb[..., 0] = np.select(conditions, [v, q, p, p, t, v], default=v) rgb[..., 1] = np.select(conditions, [v, v, v, q, p, p], default=t) rgb[..., 2] = np.select(conditions, [v, p, t, v, v, q], default=p) return rgb.astype('uint8') def __init__(self, hue_max, saturation_max): self.hue_max = hue_max self.saturation_max = saturation_max def __call__(self, coords, feats, labels): # Assume feat[:, :3] is rgb hsv = HueSaturationTranslation.rgb_to_hsv(feats[:, :3]) hue_val = (random.random() - 0.5) * 2 * self.hue_max sat_ratio = 1 + (random.random() - 0.5) * 2 * self.saturation_max hsv[..., 0] = np.remainder(hue_val + hsv[..., 0] + 1, 1) hsv[..., 1] = np.clip(sat_ratio * hsv[..., 1], 0, 1) feats[:, :3] = np.clip(HueSaturationTranslation.hsv_to_rgb(hsv), 0, 255) return coords, feats, labels ############################## # Coordinate transformations ############################## class RandomDropout(object): def __init__(self, dropout_ratio=0.2, dropout_application_ratio=0.5): """ upright_axis: axis index among x,y,z, i.e. 2 for z """ self.dropout_ratio = dropout_ratio self.dropout_application_ratio = dropout_application_ratio def __call__(self, coords, feats, labels): if random.random() < self.dropout_ratio: N = len(coords) inds = np.random.choice(N, int(N * (1 - self.dropout_ratio)), replace=False) return coords[inds], feats[inds], labels[inds] return coords, feats, labels class RandomHorizontalFlip(object): def __init__(self, upright_axis, is_temporal): """ upright_axis: axis index among x,y,z, i.e. 2 for z """ self.is_temporal = is_temporal self.D = 4 if is_temporal else 3 self.upright_axis = {'x': 0, 'y': 1, 'z': 2}[upright_axis.lower()] # Use the rest of axes for flipping. self.horz_axes = set(range(self.D)) - set([self.upright_axis]) def __call__(self, coords, feats, labels): if random.random() < 0.95: for curr_ax in self.horz_axes: if random.random() < 0.5: coord_max = np.max(coords[:, curr_ax]) coords[:, curr_ax] = coord_max - coords[:, curr_ax] return coords, feats, labels class ElasticDistortion: def __init__(self, distortion_params): self.distortion_params = distortion_params def elastic_distortion(self, coords, feats, labels, granularity, magnitude): """Apply elastic distortion on sparse coordinate space. pointcloud: numpy array of (number of points, at least 3 spatial dims) granularity: size of the noise grid (in same scale[m/cm] as the voxel grid) magnitude: noise multiplier """ blurx = np.ones((3, 1, 1, 1)).astype('float32') / 3 blury = np.ones((1, 3, 1, 1)).astype('float32') / 3 blurz = np.ones((1, 1, 3, 1)).astype('float32') / 3 coords_min = coords.min(0) # Create Gaussian noise tensor of the size given by granularity. noise_dim = ((coords - coords_min).max(0) // granularity).astype(int) + 3 noise = np.random.randn(*noise_dim, 3).astype(np.float32) # Smoothing. for _ in range(2): noise = scipy.ndimage.filters.convolve(noise, blurx, mode='constant', cval=0) noise = scipy.ndimage.filters.convolve(noise, blury, mode='constant', cval=0) noise = scipy.ndimage.filters.convolve(noise, blurz, mode='constant', cval=0) # Trilinear interpolate noise filters for each spatial dimensions. ax = [ np.linspace(d_min, d_max, d) for d_min, d_max, d in zip(coords_min - granularity, coords_min + granularity * (noise_dim - 2), noise_dim) ] interp = scipy.interpolate.RegularGridInterpolator(ax, noise, bounds_error=0, fill_value=0) coords += interp(coords) * magnitude return coords, feats, labels def __call__(self, coords, feats, labels): if self.distortion_params is not None: if random.random() < 0.95: for granularity, magnitude in self.distortion_params: coords, feats, labels = self.elastic_distortion(coords, feats, labels, granularity, magnitude) return coords, feats, labels class Compose(object): """Composes several transforms together.""" def __init__(self, transforms): self.transforms = transforms def __call__(self, *args): for t in self.transforms: args = t(*args) return args class cfl_collate_fn_factory: """Generates collate function for coords, feats, labels. Args: limit_numpoints: If 0 or False, does not alter batch size. If positive integer, limits batch size so that the number of input coordinates is below limit_numpoints. """ def __init__(self, limit_numpoints): self.limit_numpoints = limit_numpoints def __call__(self, list_data): coords, feats, labels = list(zip(*list_data)) coords_batch, feats_batch, labels_batch = [], [], [] batch_id = 0 batch_num_points = 0 for batch_id, _ in enumerate(coords): num_points = coords[batch_id].shape[0] batch_num_points += num_points if self.limit_numpoints and batch_num_points > self.limit_numpoints: num_full_points = sum(len(c) for c in coords) num_full_batch_size = len(coords) logging.warning( f'\t\tCannot fit {num_full_points} points into {self.limit_numpoints} points ' f'limit. Truncating batch size at {batch_id} out of {num_full_batch_size} with {batch_num_points - num_points}.' ) break # coords_batch.append( # torch.cat((torch.from_numpy( # coords[batch_id]).int(), torch.ones(num_points, 1).int() * batch_id), 1)) coords_batch.append( torch.cat((torch.ones(num_points, 1).int() * batch_id, torch.from_numpy( coords[batch_id]).int()), 1)) feats_batch.append(torch.from_numpy(feats[batch_id])) labels_batch.append(torch.from_numpy(labels[batch_id]).int()) batch_id += 1 # Concatenate all lists coords_batch = torch.cat(coords_batch, 0).int() feats_batch = torch.cat(feats_batch, 0).float() labels_batch = torch.cat(labels_batch, 0).int() return coords_batch, feats_batch, labels_batch class cflt_collate_fn_factory: """Generates collate function for coords, feats, labels, point_clouds, transformations. Args: limit_numpoints: If 0 or False, does not alter batch size. If positive integer, limits batch size so that the number of input coordinates is below limit_numpoints. """ def __init__(self, limit_numpoints): self.limit_numpoints = limit_numpoints def __call__(self, list_data): coords, feats, labels, transformations = list(zip(*list_data)) cfl_collate_fn = cfl_collate_fn_factory(limit_numpoints=self.limit_numpoints) coords_batch, feats_batch, labels_batch = cfl_collate_fn(list(zip(coords, feats, labels))) num_truncated_batch = coords_batch[:, -1].max().item() + 1 batch_id = 0 transformations_batch = [] for transformation in transformations: if batch_id >= num_truncated_batch: break transformations_batch.append(torch.from_numpy(transformation).float()) batch_id += 1 transformations_batch = torch.stack(transformations_batch, 0) return coords_batch, feats_batch, labels_batch, transformations_batch
ContrastiveSceneContexts-main
downstream/semseg/datasets/transforms.py
#from lib.datasets import synthia #from lib.datasets import shapenet from datasets import stanford from datasets import scannet DATASETS = [] def add_datasets(module): DATASETS.extend([getattr(module, a) for a in dir(module) if 'Dataset' in a]) add_datasets(stanford) #add_datasets(synthia) add_datasets(scannet) #add_datasets(shapenet) def load_dataset(name): '''Creates and returns an instance of the datasets given its name. ''' # Find the model class from its name mdict = {dataset.__name__: dataset for dataset in DATASETS} if name not in mdict: print('Invalid dataset index. Options are:') # Display a list of valid dataset names for dataset in DATASETS: print('\t* {}'.format(dataset.__name__)) raise ValueError(f'Dataset {name} not defined') DatasetClass = mdict[name] return DatasetClass
ContrastiveSceneContexts-main
downstream/semseg/datasets/__init__.py
import logging import unittest import imageio import os import os.path as osp import pickle import numpy as np from collections import defaultdict from plyfile import PlyData from lib.pc_utils import Camera, read_plyfile from lib.dataset import DictDataset, VoxelizationDataset, TemporalVoxelizationDataset, \ str2datasetphase_type, DatasetPhase from lib.transforms import cfl_collate_fn_factory from lib.utils import read_txt, debug_on class SynthiaDataset(DictDataset): NUM_LABELS = 16 def __init__(self, data_path_file, input_transform=None, target_transform=None): with open(data_path_file, 'r') as f: data_paths = pickle.load(f) super(SynthiaDataset, self).__init__(data_paths, input_transform, target_transform) @staticmethod def load_extrinsics(extrinsics_file): """Load the camera extrinsics from a .txt file. """ lines = read_txt(extrinsics_file) params = [float(x) for x in lines[0].split(' ')] extrinsics_matrix = np.asarray(params).reshape([4, 4]) return extrinsics_matrix @staticmethod def load_intrinsics(intrinsics_file): """Load the camera intrinsics from a intrinsics.txt file. intrinsics.txt: a text file containing 4 values that represent (in this order) {focal length, principal-point-x, principal-point-y, baseline (m) with the corresponding right camera} """ lines = read_txt(intrinsics_file) assert len(lines) == 7 intrinsics = { 'focal_length': float(lines[0]), 'pp_x': float(lines[2]), 'pp_y': float(lines[4]), 'baseline': float(lines[6]), } return intrinsics @staticmethod def load_depth(depth_file): """Read a single depth map (.png) file. 1280x760 760 rows, 1280 columns. Depth is encoded in any of the 3 channels in centimetres as an ushort. """ img = np.asarray(imageio.imread(depth_file, format='PNG-FI')) # uint16 img = img.astype(np.int32) # Convert to int32 for torch compatibility return img @staticmethod def load_label(label_file): """Load the ground truth semantic segmentation label. Annotations are given in two channels. The first channel contains the class of that pixel (see the table below). The second channel contains the unique ID of the instance for those objects that are dynamic (cars, pedestrians, etc.). Class R G B ID Void 0 0 0 0 Sky 128 128 128 1 Building 128 0 0 2 Road 128 64 128 3 Sidewalk 0 0 192 4 Fence 64 64 128 5 Vegetation 128 128 0 6 Pole 192 192 128 7 Car 64 0 128 8 Traffic Sign 192 128 128 9 Pedestrian 64 64 0 10 Bicycle 0 128 192 11 Lanemarking 0 172 0 12 Reserved - - - 13 Reserved - - - 14 Traffic Light 0 128 128 15 """ img = np.asarray(imageio.imread(label_file, format='PNG-FI')) # uint16 img = img.astype(np.int32) # Convert to int32 for torch compatibility return img @staticmethod def load_rgb(rgb_file): """Load RGB images. 1280x760 RGB images used for training. 760 rows, 1280 columns. """ img = np.array(imageio.imread(rgb_file)) # uint8 return img class SynthiaVoxelizationDataset(VoxelizationDataset): """Load the ground truth semantic segmentation label. Annotations are given in two channels. The first channel contains the class of that pixel (see the table below). The second channel contains the unique ID of the instance for those objects that are dynamic (cars, pedestrians, etc.). Class R G B ID Void 0 0 0 0 Sky 128 128 128 1 Building 128 0 0 2 Road 128 64 128 3 Sidewalk 0 0 192 4 Fence 64 64 128 5 Vegetation 128 128 0 6 Pole 192 192 128 7 Car 64 0 128 8 Traffic Sign 192 128 128 9 Pedestrian 64 64 0 10 Bicycle 0 128 192 11 Lanemarking 0 172 0 12 Reserved - - - 13 Reserved - - - 14 Traffic Light 0 128 128 15 """ CLASS_LABELS = ('building', 'road', 'sidewalk', 'fence', 'vegetation', 'pole', 'car', 'sign', 'pedestrian', 'cyclist', 'lanemarking', 'traffic light') VALID_CLASS_IDS = (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15) # Voxelization arguments CLIP_BOUND = ((-1800, 1800), (-1800, 1800), (-1800, 1800)) TEST_CLIP_BOUND = ((-2500, 2500), (-2500, 2500), (-2500, 2500)) VOXEL_SIZE = 15 # cm PREVOXELIZATION_VOXEL_SIZE = 7.5 # Elastic distortion, (granularity, magitude) pairs # ELASTIC_DISTORT_PARAMS = ((80, 300),) # Augmentation arguments ROTATION_AUGMENTATION_BOUND = ((0, 0), (-np.pi, np.pi), (0, 0)) TRANSLATION_AUGMENTATION_RATIO_BOUND = ((-0.1, 0.1), (0, 0), (-0.1, 0.1)) ROTATION_AXIS = 'y' LOCFEAT_IDX = 1 NUM_LABELS = 16 # Automatically subtract ignore labels after processed IGNORE_LABELS = (0, 1, 13, 14) # void, sky, reserved, reserved # Split used in the Minkowski ConvNet, CVPR'19 DATA_PATH_FILE = { DatasetPhase.Train: 'train_cvpr19.txt', DatasetPhase.Val: 'val_cvpr19.txt', DatasetPhase.Test: 'test_cvpr19.txt' } def __init__(self, config, prevoxel_transform=None, input_transform=None, target_transform=None, augment_data=True, elastic_distortion=False, cache=False, phase=DatasetPhase.Train): if isinstance(phase, str): phase = str2datasetphase_type(phase) if phase not in [DatasetPhase.Train, DatasetPhase.TrainVal]: self.CLIP_BOUND = self.TEST_CLIP_BOUND data_root = config.data.synthia_path data_paths = read_txt(osp.join('/checkpoint/jihou/data/synthia4d/splits', self.DATA_PATH_FILE[phase])) if phase == DatasetPhase.Train: data_paths = data_paths[:int(len(data_paths)*config.data.data_ratio)] data_paths = [d.split()[0] for d in data_paths] logging.info('Loading {}: {}'.format(self.__class__.__name__, self.DATA_PATH_FILE[phase])) super().__init__( data_paths, data_root=data_root, input_transform=input_transform, target_transform=target_transform, ignore_label=config.data.ignore_label, return_transformation=config.data.return_transformation, augment_data=augment_data, elastic_distortion=elastic_distortion, config=config) def load_data(self, index): filepath = self.data_root / self.data_paths[index] plydata = PlyData.read(filepath) data = plydata.elements[0].data coords = np.array([data['x'], data['y'], data['z']], dtype=np.float32).T feats = np.array([data['r'], data['g'], data['b']], dtype=np.float32).T labels = np.array(data['l'], dtype=np.int32) instances = np.zeros_like(labels) return coords, feats, labels, instances class SynthiaCVPR15cmVoxelizationDataset(SynthiaVoxelizationDataset): pass class SynthiaCVPR30cmVoxelizationDataset(SynthiaVoxelizationDataset): VOXEL_SIZE = 30 class SynthiaAllSequencesVoxelizationDataset(SynthiaVoxelizationDataset): DATA_PATH_FILE = { DatasetPhase.Train: 'train_raw.txt', DatasetPhase.Val: 'val_raw.txt', DatasetPhase.Test: 'test_raw.txt' } class TestSynthia(unittest.TestCase): @debug_on() def test(self): from torch.utils.data import DataLoader from lib.utils import Timer from config import get_config config = get_config() dataset = SynthiaVoxelizationDataset(config) timer = Timer() data_loader = DataLoader( dataset=dataset, collate_fn=cfl_collate_fn_factory(limit_numpoints=False), num_workers=0, batch_size=4, shuffle=True) # Start from index 1 # for i, batch in enumerate(data_loader, 1): iter = data_loader.__iter__() for i in range(100): timer.tic() batch = iter.next() print(batch, timer.toc()) if __name__ == '__main__': unittest.main()
ContrastiveSceneContexts-main
downstream/semseg/datasets/synthia.py
from abc import ABC from pathlib import Path from collections import defaultdict import random import numpy as np from enum import Enum import torch from torch.utils.data import Dataset, DataLoader import MinkowskiEngine as ME from plyfile import PlyData import datasets.transforms as t from datasets.dataloader import InfSampler, DistributedInfSampler from datasets.voxelizer import Voxelizer from lib.distributed import get_world_size class DatasetPhase(Enum): Train = 0 Val = 1 Val2 = 2 TrainVal = 3 Test = 4 Debug = 5 def datasetphase_2str(arg): if arg == DatasetPhase.Train: return 'train' elif arg == DatasetPhase.Val: return 'val' elif arg == DatasetPhase.Val2: return 'val2' elif arg == DatasetPhase.TrainVal: return 'trainval' elif arg == DatasetPhase.Test: return 'test' elif arg == DatasetPhase.Debug: return 'debug' else: raise ValueError('phase must be one of dataset enum.') def str2datasetphase_type(arg): if arg.upper() == 'TRAIN': return DatasetPhase.Train elif arg.upper() == 'VAL': return DatasetPhase.Val elif arg.upper() == 'VAL2': return DatasetPhase.Val2 elif arg.upper() == 'TRAINVAL': return DatasetPhase.TrainVal elif arg.upper() == 'TEST': return DatasetPhase.Test elif arg.upper() == 'DEBUG': return DatasetPhase.Debug else: raise ValueError('phase must be one of train/val/test') def cache(func): def wrapper(self, *args, **kwargs): # Assume that args[0] is index index = args[0] if self.cache: if index not in self.cache_dict[func.__name__]: results = func(self, *args, **kwargs) self.cache_dict[func.__name__][index] = results return self.cache_dict[func.__name__][index] else: return func(self, *args, **kwargs) return wrapper class DictDataset(Dataset, ABC): IS_FULL_POINTCLOUD_EVAL = False def __init__(self, data_paths, prevoxel_transform=None, input_transform=None, target_transform=None, cache=False, data_root='/'): """ data_paths: list of lists, [[str_path_to_input, str_path_to_label], [...]] """ Dataset.__init__(self) # Allows easier path concatenation if not isinstance(data_root, Path): data_root = Path(data_root) self.data_root = data_root self.data_paths = sorted(data_paths) self.prevoxel_transform = prevoxel_transform self.input_transform = input_transform self.target_transform = target_transform # dictionary of input self.data_loader_dict = { 'input': (self.load_input, self.input_transform), 'target': (self.load_target, self.target_transform) } # For large dataset, do not cache self.cache = cache self.cache_dict = defaultdict(dict) self.loading_key_order = ['input', 'target'] def load_input(self, index): raise NotImplementedError def load_target(self, index): raise NotImplementedError def get_classnames(self): pass def reorder_result(self, result): return result def __getitem__(self, index): out_array = [] for k in self.loading_key_order: loader, transformer = self.data_loader_dict[k] v = loader(index) if transformer: v = transformer(v) out_array.append(v) return out_array def __len__(self): return len(self.data_paths) class VoxelizationDatasetBase(DictDataset, ABC): IS_TEMPORAL = False CLIP_BOUND = (-1000, -1000, -1000, 1000, 1000, 1000) ROTATION_AXIS = None NUM_IN_CHANNEL = None NUM_LABELS = -1 # Number of labels in the dataset, including all ignore classes IGNORE_LABELS = None # labels that are not evaluated def __init__(self, data_paths, prevoxel_transform=None, input_transform=None, target_transform=None, cache=False, data_root='/', ignore_mask=255, return_transformation=False, **kwargs): """ ignore_mask: label value for ignore class. It will not be used as a class in the loss or evaluation. """ DictDataset.__init__( self, data_paths, prevoxel_transform=prevoxel_transform, input_transform=input_transform, target_transform=target_transform, cache=cache, data_root=data_root) self.ignore_mask = ignore_mask self.return_transformation = return_transformation def __getitem__(self, index): raise NotImplementedError def load_ply(self, index): filepath = self.data_root / self.data_paths[index] plydata = PlyData.read(filepath) data = plydata.elements[0].data coords = np.array([data['x'], data['y'], data['z']], dtype=np.float32).T feats = np.array([data['red'], data['green'], data['blue']], dtype=np.float32).T labels = np.array(data['label'], dtype=np.int32) return coords, feats, labels, None def load_data(self, index): raise NotImplementedError def __len__(self): num_data = len(self.data_paths) return num_data class VoxelizationDataset(VoxelizationDatasetBase): """This dataset loads RGB point clouds and their labels as a list of points and voxelizes the pointcloud with sufficient data augmentation. """ # Voxelization arguments VOXEL_SIZE = 0.05 # 5cm # Coordinate Augmentation Arguments: Unlike feature augmentation, coordinate # augmentation has to be done before voxelization SCALE_AUGMENTATION_BOUND = (0.9, 1.1) ROTATION_AUGMENTATION_BOUND = ((-np.pi / 6, np.pi / 6), (-np.pi, np.pi), (-np.pi / 6, np.pi / 6)) TRANSLATION_AUGMENTATION_RATIO_BOUND = ((-0.2, 0.2), (-0.05, 0.05), (-0.2, 0.2)) ELASTIC_DISTORT_PARAMS = None # MISC. PREVOXELIZATION_VOXEL_SIZE = None # Augment coords to feats AUGMENT_COORDS_TO_FEATS = False def __init__(self, data_paths, prevoxel_transform=None, input_transform=None, target_transform=None, data_root='/', ignore_label=255, return_transformation=False, augment_data=False, config=None, **kwargs): self.augment_data = augment_data self.config = config VoxelizationDatasetBase.__init__( self, data_paths, prevoxel_transform=prevoxel_transform, input_transform=input_transform, target_transform=target_transform, cache=cache, data_root=data_root, ignore_mask=ignore_label, return_transformation=return_transformation) # Prevoxel transformations self.voxelizer = Voxelizer( voxel_size=self.VOXEL_SIZE, clip_bound=self.CLIP_BOUND, use_augmentation=augment_data, scale_augmentation_bound=self.SCALE_AUGMENTATION_BOUND, rotation_augmentation_bound=self.ROTATION_AUGMENTATION_BOUND, translation_augmentation_ratio_bound=self.TRANSLATION_AUGMENTATION_RATIO_BOUND, ignore_label=ignore_label) # map labels not evaluated to ignore_label label_map = {} n_used = 0 for l in range(self.NUM_LABELS): if l in self.IGNORE_LABELS: label_map[l] = self.ignore_mask else: label_map[l] = n_used n_used += 1 label_map[self.ignore_mask] = self.ignore_mask self.label_map = label_map self.NUM_LABELS -= len(self.IGNORE_LABELS) def _augment_coords_to_feats(self, coords, feats, labels=None): norm_coords = coords - coords.mean(0) # color must come first. if isinstance(coords, np.ndarray): feats = np.concatenate((feats, norm_coords), 1) else: feats = torch.cat((feats, norm_coords), 1) return coords, feats, labels def convert_mat2cfl(self, mat): # Generally, xyz,rgb,label return mat[:, :3], mat[:, 3:-1], mat[:, -1] def get_instance_info(self, xyz, instance_ids): ''' :param xyz: (n, 3) :param instance_ids: (n), int, (1~nInst, -1) :return: instance_num, dict ''' centers = np.ones((xyz.shape[0], 3), dtype=np.float32) * -1 # (n, 9), float, (cx, cy, cz, minx, miny, minz, maxx, maxy, maxz, occ, num_instances) occupancy = {} # (nInst), int bbox = {} unique_ids = np.unique(instance_ids) for id_ in unique_ids: if id_ == -1: continue mask = (instance_ids == id_) xyz_ = xyz[mask] bbox_min = xyz_.min(0) bbox_max = xyz_.max(0) center = xyz_.mean(0) centers[mask] = center occupancy[id_] = mask.sum() bbox[id_] = np.concatenate([bbox_min, bbox_max]) return {"ids": instance_ids, "center": centers, "occupancy": occupancy, "bbox": bbox} def __getitem__(self, index): coords, feats, labels = self.load_data(index) # Downsample the pointcloud with finer voxel size before transformation for memory and speed if self.PREVOXELIZATION_VOXEL_SIZE is not None: inds = ME.utils.sparse_quantize( coords / self.PREVOXELIZATION_VOXEL_SIZE, return_index=True) coords = coords[inds] feats = feats[inds] labels = labels[inds] # Prevoxel transformations if self.prevoxel_transform is not None: coords, feats, labels = self.prevoxel_transform(coords, feats, labels) coords, feats, labels, transformation = self.voxelizer.voxelize( coords, feats, labels) # map labels not used for evaluation to ignore_label if self.input_transform is not None: coords, feats, labels = self.input_transform(coords, feats, labels) if self.target_transform is not None: coords, feats, labels = self.target_transform(coords, feats, labels) if self.augment_data: # For some networks, making the network invariant to even, odd coords is important coords += (torch.rand(3) * 100).int().numpy() # ------------- label mapping -------------------- if self.IGNORE_LABELS is not None: labels = np.array([self.label_map[x] for x in labels], dtype=np.int) # Use coordinate features if config is set if self.AUGMENT_COORDS_TO_FEATS: coords, feats, labels = self._augment_coords_to_feats(coords, feats, labels) return_args = [coords, feats, labels] if self.return_transformation: return_args.append(transformation.astype(np.float32)) return tuple(return_args) def initialize_data_loader(DatasetClass, config, phase, num_workers, shuffle, repeat, augment_data, batch_size, limit_numpoints, input_transform=None, target_transform=None): if isinstance(phase, str): phase = str2datasetphase_type(phase) if config.data.return_transformation: collate_fn = t.cflt_collate_fn_factory(limit_numpoints) else: collate_fn = t.cfl_collate_fn_factory(limit_numpoints) prevoxel_transform_train = [] if augment_data: prevoxel_transform_train.append(t.ElasticDistortion(DatasetClass.ELASTIC_DISTORT_PARAMS)) if len(prevoxel_transform_train) > 0: prevoxel_transforms = t.Compose(prevoxel_transform_train) else: prevoxel_transforms = None input_transforms = [] if input_transform is not None: input_transforms += input_transform if augment_data: input_transforms += [ t.RandomDropout(0.2), t.RandomHorizontalFlip(DatasetClass.ROTATION_AXIS, DatasetClass.IS_TEMPORAL), t.ChromaticAutoContrast(), t.ChromaticTranslation(config.augmentation.data_aug_color_trans_ratio), t.ChromaticJitter(config.augmentation.data_aug_color_jitter_std), # t.HueSaturationTranslation(config.data_aug_hue_max, config.data_aug_saturation_max), ] if len(input_transforms) > 0: input_transforms = t.Compose(input_transforms) else: input_transforms = None dataset = DatasetClass( config, prevoxel_transform=prevoxel_transforms, input_transform=input_transforms, target_transform=target_transform, cache=config.data.cache_data, augment_data=augment_data, phase=phase) data_args = { 'dataset': dataset, 'num_workers': num_workers, 'batch_size': batch_size, 'collate_fn': collate_fn, } if repeat: if get_world_size() > 1: data_args['sampler'] = DistributedInfSampler(dataset, shuffle=shuffle) # torch.utils.data.distributed.DistributedSampler(dataset) else: data_args['sampler'] = InfSampler(dataset, shuffle) else: data_args['shuffle'] = shuffle data_loader = DataLoader(**data_args) return data_loader
ContrastiveSceneContexts-main
downstream/semseg/datasets/dataset.py
import logging import os import sys import numpy as np from collections import defaultdict from scipy import spatial import torch from plyfile import PlyData from lib.utils import read_txt, fast_hist, per_class_iu from datasets.dataset import VoxelizationDataset, DatasetPhase, str2datasetphase_type, cache import datasets.transforms as t class StanfordVoxelizationDatasetBase: # added NUM_LABELS = 14 CLASS_LABELS = ('clutter', 'beam', 'board', 'bookcase', 'ceiling', 'chair', 'column', 'door', 'floor', 'sofa', 'table', 'wall', 'window') VALID_CLASS_IDS = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13) IGNORE_LABELS = tuple(set(range(14)) - set(VALID_CLASS_IDS)) CLASS_LABELS_INSTANCE = ('clutter', 'beam', 'board', 'bookcase', 'chair', 'column', 'door', 'sofa', 'table', 'window') VALID_CLASS_IDS_INSTANCE = (0, 1, 2, 3, 5, 6, 7, 9, 11, 13) IGNORE_LABELS_INSTANCE = tuple(set(range(14)) - set(VALID_CLASS_IDS_INSTANCE)) #--------- CLIP_SIZE = None CLIP_BOUND = None LOCFEAT_IDX = 2 ROTATION_AXIS = 'z' #IGNORE_LABELS = (10,) # remove stairs, following SegCloud # CLASSES = [ # 'clutter', 'beam', 'board', 'bookcase', 'ceiling', 'chair', 'column', 'door', 'floor', 'sofa', # 'table', 'wall', 'window' # ] IS_FULL_POINTCLOUD_EVAL = True DATA_PATH_FILE = { DatasetPhase.Train: 'train.txt', DatasetPhase.Val: 'val.txt', DatasetPhase.TrainVal: 'trainval.txt', DatasetPhase.Test: 'test.txt' } def test_pointcloud(self, pred_dir): print('Running full pointcloud evaluation.') # Join room by their area and room id. room_dict = defaultdict(list) for i, data_path in enumerate(self.data_paths): area, room = data_path.split(os.sep) room, _ = os.path.splitext(room) room_id = '_'.join(room.split('_')[:-1]) room_dict[(area, room_id)].append(i) # Test independently for each room. sys.setrecursionlimit(100000) # Increase recursion limit for k-d tree. pred_list = sorted(os.listdir(pred_dir)) hist = np.zeros((self.NUM_LABELS, self.NUM_LABELS)) for room_idx, room_list in enumerate(room_dict.values()): print(f'Evaluating room {room_idx} / {len(room_dict)}.') # Join all predictions and query pointclouds of split data. pred = np.zeros((0, 4)) pointcloud = np.zeros((0, 7)) for i in room_list: pred = np.vstack((pred, np.load(os.path.join(pred_dir, pred_list[i])))) pointcloud = np.vstack((pointcloud, self.load_ply(i)[0])) # Deduplicate all query pointclouds of split data. pointcloud = np.array(list(set(tuple(l) for l in pointcloud.tolist()))) # Run test for each room. pred_tree = spatial.KDTree(pred[:, :3], leafsize=500) _, result = pred_tree.query(pointcloud[:, :3]) ptc_pred = pred[result, 3].astype(int) ptc_gt = pointcloud[:, -1].astype(int) if self.IGNORE_LABELS: ptc_pred = self.label2masked[ptc_pred] ptc_gt = self.label2masked[ptc_gt] hist += fast_hist(ptc_pred, ptc_gt, self.NUM_LABELS) # Print results. ious = [] print('Per class IoU:') for i, iou in enumerate(per_class_iu(hist) * 100): result_str = '' if hist.sum(1)[i]: result_str += f'{iou}' ious.append(iou) else: result_str += 'N/A' # Do not print if data not in ground truth. print(result_str) print(f'Average IoU: {np.nanmean(ious)}') def _augment_coords_to_feats(self, coords, feats, labels=None): # Center x,y coords_center = coords.mean(0, keepdims=True) coords_center[0, 2] = 0 norm_coords = coords - coords_center feats = np.concatenate((feats, norm_coords), 1) return coords, feats, labels class StanfordDataset(StanfordVoxelizationDatasetBase, VoxelizationDataset): # Voxelization arguments VOXEL_SIZE = 0.05 # 5cm CLIP_BOUND = 4 # [-N, N] TEST_CLIP_BOUND = None # Augmentation arguments ROTATION_AUGMENTATION_BOUND = \ ((-np.pi / 32, np.pi / 32), (-np.pi / 32, np.pi / 32), (-np.pi, np.pi)) TRANSLATION_AUGMENTATION_RATIO_BOUND = ((-0.2, 0.2), (-0.2, 0.2), (-0.05, 0.05)) # AUGMENT_COORDS_TO_FEATS = True # NUM_IN_CHANNEL = 6 AUGMENT_COORDS_TO_FEATS = False NUM_IN_CHANNEL = 3 def __init__(self, config, prevoxel_transform=None, input_transform=None, target_transform=None, cache=False, augment_data=True, elastic_distortion=False, phase=DatasetPhase.Train): if isinstance(phase, str): phase = str2datasetphase_type(phase) if phase not in [DatasetPhase.Train, DatasetPhase.TrainVal]: self.CLIP_BOUND = self.TEST_CLIP_BOUND data_root = config.data.stanford3d_path if isinstance(self.DATA_PATH_FILE[phase], (list, tuple)): data_paths = [] for split in self.DATA_PATH_FILE[phase]: data_paths += read_txt(os.path.join(data_root, 'splits', split)) else: data_paths = read_txt(os.path.join(data_root, 'splits', self.DATA_PATH_FILE[phase])) if config.data.voxel_size: self.VOXEL_SIZE = config.data.voxel_size logging.info('voxel size: {}'.format(self.VOXEL_SIZE)) logging.info('Loading {} {}: {}'.format(self.__class__.__name__, phase, self.DATA_PATH_FILE[phase])) VoxelizationDataset.__init__( self, data_paths, data_root=data_root, prevoxel_transform=prevoxel_transform, input_transform=input_transform, target_transform=target_transform, ignore_label=config.data.ignore_label, return_transformation=config.data.return_transformation, augment_data=augment_data, elastic_distortion=elastic_distortion, config=config) @cache def load_ply(self, index): filepath = self.data_root / self.data_paths[index] plydata = PlyData.read(filepath) data = plydata.elements[0].data coords = np.array([data['x'], data['y'], data['z']], dtype=np.float32).T feats = np.array([data['red'], data['green'], data['blue']], dtype=np.float32).T labels = np.array(data['label'], dtype=np.int32) return coords, feats, labels, None @cache def load_data(self, index): filepath = self.data_root / self.data_paths[index] pointcloud = torch.load(filepath) coords = pointcloud[:,:3].astype(np.float32) feats = pointcloud[:,3:6].astype(np.float32) labels = pointcloud[:,6].astype(np.int32) return coords, feats, labels class StanfordArea5Dataset(StanfordDataset): DATA_PATH_FILE = { DatasetPhase.Train: ['area1.txt', 'area2.txt', 'area3.txt', 'area4.txt', 'area6.txt'], DatasetPhase.Val: 'area5.txt', DatasetPhase.Test: 'area5.txt' } class StanfordArea53cmDataset(StanfordArea5Dataset): CLIP_BOUND = 3.2 VOXEL_SIZE = 0.03 class StanfordArea57d5cmDataset(StanfordArea5Dataset): VOXEL_SIZE = 0.075 class StanfordArea510cmDataset(StanfordArea5Dataset): VOXEL_SIZE = 0.1 def test(config): """Test point cloud data loader. """ from torch.utils.data import DataLoader from lib.utils import Timer import open3d as o3d def make_pcd(coords, feats): pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(coords[:, :3].float().numpy()) pcd.colors = o3d.utility.Vector3dVector(feats[:, :3].numpy() / 255) return pcd timer = Timer() DatasetClass = StanfordArea5Dataset transformations = [ t.RandomHorizontalFlip(DatasetClass.ROTATION_AXIS, DatasetClass.IS_TEMPORAL), t.ChromaticAutoContrast(), t.ChromaticTranslation(config.data_aug_color_trans_ratio), t.ChromaticJitter(config.data_aug_color_jitter_std), ] dataset = DatasetClass( config, prevoxel_transform=t.ElasticDistortion(DatasetClass.ELASTIC_DISTORT_PARAMS), input_transform=t.Compose(transformations), augment_data=True, cache=True, elastic_distortion=True) data_loader = DataLoader( dataset=dataset, collate_fn=t.cfl_collate_fn_factory(limit_numpoints=False), batch_size=1, shuffle=True) # Start from index 1 iter = data_loader.__iter__() for i in range(100): timer.tic() coords, feats, labels = iter.next() pcd = make_pcd(coords, feats) o3d.visualization.draw_geometries([pcd]) print(timer.toc()) if __name__ == '__main__': from config import get_config config = get_config() test(config)
ContrastiveSceneContexts-main
downstream/semseg/datasets/stanford.py
import collections import numpy as np import MinkowskiEngine as ME from scipy.linalg import expm, norm # Rotation matrix along axis with angle theta def M(axis, theta): return expm(np.cross(np.eye(3), axis / norm(axis) * theta)) class Voxelizer: def __init__(self, voxel_size=1, clip_bound=None, use_augmentation=False, scale_augmentation_bound=None, rotation_augmentation_bound=None, translation_augmentation_ratio_bound=None, ignore_label=255): """ Args: voxel_size: side length of a voxel clip_bound: boundary of the voxelizer. Points outside the bound will be deleted expects either None or an array like ((-100, 100), (-100, 100), (-100, 100)). scale_augmentation_bound: None or (0.9, 1.1) rotation_augmentation_bound: None or ((np.pi / 6, np.pi / 6), None, None) for 3 axis. Use random order of x, y, z to prevent bias. translation_augmentation_bound: ((-5, 5), (0, 0), (-10, 10)) ignore_label: label assigned for ignore (not a training label). """ self.voxel_size = voxel_size self.clip_bound = clip_bound self.ignore_label = ignore_label # Augmentation self.use_augmentation = use_augmentation self.scale_augmentation_bound = scale_augmentation_bound self.rotation_augmentation_bound = rotation_augmentation_bound self.translation_augmentation_ratio_bound = translation_augmentation_ratio_bound def get_transformation_matrix(self): voxelization_matrix, rotation_matrix = np.eye(4), np.eye(4) # Get clip boundary from config or pointcloud. # Get inner clip bound to crop from. # Transform pointcloud coordinate to voxel coordinate. # 1. Random rotation rot_mat = np.eye(3) if self.use_augmentation and self.rotation_augmentation_bound is not None: if isinstance(self.rotation_augmentation_bound, collections.Iterable): rot_mats = [] for axis_ind, rot_bound in enumerate(self.rotation_augmentation_bound): theta = 0 axis = np.zeros(3) axis[axis_ind] = 1 if rot_bound is not None: theta = np.random.uniform(*rot_bound) rot_mats.append(M(axis, theta)) # Use random order np.random.shuffle(rot_mats) rot_mat = rot_mats[0] @ rot_mats[1] @ rot_mats[2] else: raise ValueError() rotation_matrix[:3, :3] = rot_mat # 2. Scale and translate to the voxel space. scale = 1 / self.voxel_size if self.use_augmentation and self.scale_augmentation_bound is not None: scale *= np.random.uniform(*self.scale_augmentation_bound) np.fill_diagonal(voxelization_matrix[:3, :3], scale) # Get final transformation matrix. return voxelization_matrix, rotation_matrix def clip(self, coords, center=None, trans_aug_ratio=None): bound_min = np.min(coords, 0).astype(float) bound_max = np.max(coords, 0).astype(float) bound_size = bound_max - bound_min if center is None: center = bound_min + bound_size * 0.5 if trans_aug_ratio is not None: trans = np.multiply(trans_aug_ratio, bound_size) center += trans lim = self.clip_bound if isinstance(self.clip_bound, (int, float)): if bound_size.max() < self.clip_bound: return None else: clip_inds = ((coords[:, 0] >= (-lim + center[0])) & \ (coords[:, 0] < (lim + center[0])) & \ (coords[:, 1] >= (-lim + center[1])) & \ (coords[:, 1] < (lim + center[1])) & \ (coords[:, 2] >= (-lim + center[2])) & \ (coords[:, 2] < (lim + center[2]))) return clip_inds # Clip points outside the limit clip_inds = ((coords[:, 0] >= (lim[0][0] + center[0])) & \ (coords[:, 0] < (lim[0][1] + center[0])) & \ (coords[:, 1] >= (lim[1][0] + center[1])) & \ (coords[:, 1] < (lim[1][1] + center[1])) & \ (coords[:, 2] >= (lim[2][0] + center[2])) & \ (coords[:, 2] < (lim[2][1] + center[2]))) return clip_inds def voxelize(self, coords, feats, labels, center=None): assert coords.shape[1] == 3 and coords.shape[0] == feats.shape[0] and coords.shape[0] if self.clip_bound is not None: trans_aug_ratio = np.zeros(3) if self.use_augmentation and self.translation_augmentation_ratio_bound is not None: for axis_ind, trans_ratio_bound in enumerate(self.translation_augmentation_ratio_bound): trans_aug_ratio[axis_ind] = np.random.uniform(*trans_ratio_bound) clip_inds = self.clip(coords, center, trans_aug_ratio) if clip_inds is not None: coords, feats = coords[clip_inds], feats[clip_inds] if labels is not None: labels = labels[clip_inds] # Get rotation and scale M_v, M_r = self.get_transformation_matrix() # Apply transformations rigid_transformation = M_v if self.use_augmentation: rigid_transformation = M_r @ rigid_transformation homo_coords = np.hstack((coords, np.ones((coords.shape[0], 1), dtype=coords.dtype))) coords_aug = np.floor(homo_coords @ rigid_transformation.T[:, :3]) # Align all coordinates to the origin. min_coords = coords_aug.min(0) M_t = np.eye(4) M_t[:3, -1] = -min_coords rigid_transformation = M_t @ rigid_transformation coords_aug = np.floor(coords_aug - min_coords) # key = self.hash(coords_aug) # floor happens by astype(np.uint64) mapping, colabels = ME.utils.sparse_quantize( coords_aug, feats, labels=labels, return_index=True, ignore_label=self.ignore_label) coords_aug = coords_aug[mapping] feats = feats[mapping] labels = colabels return coords_aug, feats, labels, rigid_transformation.flatten() def voxelize_temporal(self, coords_t, feats_t, labels_t, centers=None, return_transformation=False): # Legacy code, remove if centers is None: centers = [ None, ] * len(coords_t) coords_tc, feats_tc, labels_tc, transformation_tc = [], [], [], [] # ######################### Data Augmentation ############################# # Get rotation and scale M_v, M_r = self.get_transformation_matrix() # Apply transformations rigid_transformation = M_v if self.use_augmentation: rigid_transformation = M_r @ rigid_transformation # ######################### Voxelization ############################# # Voxelize coords for coords, feats, labels, center in zip(coords_t, feats_t, labels_t, centers): ################################### # Clip the data if bound exists if self.clip_bound is not None: trans_aug_ratio = np.zeros(3) if self.use_augmentation and self.translation_augmentation_ratio_bound is not None: for axis_ind, trans_ratio_bound in enumerate(self.translation_augmentation_ratio_bound): trans_aug_ratio[axis_ind] = np.random.uniform(*trans_ratio_bound) clip_inds = self.clip(coords, center, trans_aug_ratio) if clip_inds is not None: coords, feats = coords[clip_inds], feats[clip_inds] if labels is not None: labels = labels[clip_inds] ################################### homo_coords = np.hstack((coords, np.ones((coords.shape[0], 1), dtype=coords.dtype))) coords_aug = np.floor(homo_coords @ rigid_transformation.T)[:, :3] coords_aug, feats, labels = ME.utils.sparse_quantize( coords_aug, feats, labels=labels, ignore_label=self.ignore_label) coords_tc.append(coords_aug) feats_tc.append(feats) labels_tc.append(labels) transformation_tc.append(rigid_transformation.flatten()) return_args = [coords_tc, feats_tc, labels_tc] if return_transformation: return_args.append(transformation_tc) return tuple(return_args) def test(): N = 16575 coords = np.random.rand(N, 3) * 10 feats = np.random.rand(N, 4) labels = np.floor(np.random.rand(N) * 3) coords[:3] = 0 labels[:3] = 2 voxelizer = Voxelizer() print(voxelizer.voxelize(coords, feats, labels)) if __name__ == '__main__': test()
ContrastiveSceneContexts-main
downstream/semseg/datasets/voxelizer.py
import math import torch import torch.distributed as dist from torch.utils.data.sampler import Sampler class InfSampler(Sampler): """Samples elements randomly, without replacement. Arguments: data_source (Dataset): dataset to sample from """ def __init__(self, data_source, shuffle=False): self.data_source = data_source self.shuffle = shuffle self.reset_permutation() def reset_permutation(self): perm = len(self.data_source) if self.shuffle: perm = torch.randperm(perm) self._perm = perm.tolist() def __iter__(self): return self def __next__(self): if len(self._perm) == 0: self.reset_permutation() return self._perm.pop() def __len__(self): return len(self.data_source) next = __next__ # Python 2 compatibility class DistributedInfSampler(InfSampler): def __init__(self, data_source, num_replicas=None, rank=None, shuffle=True): if num_replicas is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") num_replicas = dist.get_world_size() if rank is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") rank = dist.get_rank() self.data_source = data_source self.num_replicas = num_replicas self.rank = rank self.epoch = 0 self.it = 0 self.num_samples = int(math.ceil(len(self.data_source) * 1.0 / self.num_replicas)) self.total_size = self.num_samples * self.num_replicas self.shuffle = shuffle self.reset_permutation() def __next__(self): it = self.it * self.num_replicas + self.rank value = self._perm[it % len(self._perm)] self.it = self.it + 1 if (self.it * self.num_replicas) >= len(self._perm): self.reset_permutation() self.it = 0 return value def __len__(self): return self.num_samples
ContrastiveSceneContexts-main
downstream/semseg/datasets/dataloader.py
import logging import os import sys from pathlib import Path import torch import numpy as np from scipy import spatial from datasets.dataset import VoxelizationDataset, DatasetPhase, str2datasetphase_type from lib.pc_utils import read_plyfile, save_point_cloud from lib.utils import read_txt, fast_hist, per_class_iu from lib.io3d import write_triangle_mesh, create_color_palette class ScannetVoxelizationDataset(VoxelizationDataset): # added NUM_LABELS = 41 # Will be converted to 20 as defined in IGNORE_LABELS. NUM_IN_CHANNEL = 3 CLASS_LABELS = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', 'bookshelf', 'picture', 'counter', 'desk', 'curtain', 'refrigerator', 'shower curtain', 'toilet', 'sink', 'bathtub', 'otherfurniture') VALID_CLASS_IDS = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39) IGNORE_LABELS = tuple(set(range(NUM_LABELS)) - set(VALID_CLASS_IDS)) CLASS_LABELS_INSTANCE = ['cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', 'bookshelf', 'picture', 'counter', 'desk', 'curtain', 'refrigerator', 'shower curtain', 'toilet', 'sink', 'bathtub', 'otherfurniture'] VALID_CLASS_IDS_INSTANCE = np.array([3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39]) IGNORE_LABELS_INSTANCE = tuple(set(range(NUM_LABELS)) - set(VALID_CLASS_IDS_INSTANCE)) # Voxelization arguments CLIP_BOUND = None TEST_CLIP_BOUND = None VOXEL_SIZE = 0.05 # Augmentation arguments ROTATION_AUGMENTATION_BOUND = ((-np.pi / 64, np.pi / 64), (-np.pi / 64, np.pi / 64), (-np.pi, np.pi)) TRANSLATION_AUGMENTATION_RATIO_BOUND = ((-0.2, 0.2), (-0.2, 0.2), (0, 0)) ELASTIC_DISTORT_PARAMS = ((0.2, 0.4), (0.8, 1.6)) ROTATION_AXIS = 'z' LOCFEAT_IDX = 2 IS_FULL_POINTCLOUD_EVAL = True # If trainval.txt does not exist, copy train.txt and add contents from val.txt DATA_PATH_FILE = { DatasetPhase.Train: 'scannetv2_train.txt', DatasetPhase.Val: 'scannetv2_val.txt', DatasetPhase.TrainVal: 'scannetv2_trainval.txt', DatasetPhase.Test: 'scannetv2_test.txt', } def __init__(self, config, prevoxel_transform=None, input_transform=None, target_transform=None, augment_data=True, elastic_distortion=False, cache=False, phase=DatasetPhase.Train): if isinstance(phase, str): phase = str2datasetphase_type(phase) # Use cropped rooms for train/val data_root = config.data.scannet_path if phase not in [DatasetPhase.Train, DatasetPhase.TrainVal]: self.CLIP_BOUND = self.TEST_CLIP_BOUND data_paths = read_txt(os.path.join(data_root, 'splits', self.DATA_PATH_FILE[phase])) if phase == DatasetPhase.Train and config.data.train_file: data_paths = read_txt(config.data.train_file) # data efficiency by sampling points self.sampled_inds = {} if config.data.sampled_inds and phase == DatasetPhase.Train: self.sampled_inds = torch.load(config.data.sampled_inds) data_paths = [data_path + '.pth' for data_path in data_paths] logging.info('Loading {}: {}'.format(self.__class__.__name__, self.DATA_PATH_FILE[phase])) super().__init__( data_paths, data_root=data_root, prevoxel_transform=prevoxel_transform, input_transform=input_transform, target_transform=target_transform, ignore_label=config.data.ignore_label, return_transformation=config.data.return_transformation, augment_data=augment_data, elastic_distortion=elastic_distortion, config=config) def get_output_id(self, iteration): return '_'.join(Path(self.data_paths[iteration]).stem.split('_')[:2]) def _augment_locfeat(self, pointcloud): # Assuming that pointcloud is xyzrgb(...), append location feat. pointcloud = np.hstack( (pointcloud[:, :6], 100 * np.expand_dims(pointcloud[:, self.LOCFEAT_IDX], 1), pointcloud[:, 6:])) return pointcloud def load_data(self, index): filepath = self.data_root / self.data_paths[index] pointcloud = torch.load(filepath) coords = pointcloud[0].astype(np.float32) feats = pointcloud[1].astype(np.float32) labels = pointcloud[2].astype(np.int32) if self.sampled_inds: scene_name = self.get_output_id(index) mask = np.ones_like(labels).astype(np.bool) sampled_inds = self.sampled_inds[scene_name] mask[sampled_inds] = False labels[mask] = 0 return coords, feats, labels def save_features(self, coords, upsampled_features, transformation, iteration, save_dir): inds_mapping, xyz = self.get_original_pointcloud(coords, transformation, iteration) ptc_feats = upsampled_features.cpu().numpy()[inds_mapping] room_id = self.get_output_id(iteration) torch.save(ptc_feats, f'{save_dir}/{room_id}') def get_original_pointcloud(self, coords, transformation, iteration): logging.info('===> Start testing on original pointcloud space.') data_path = self.data_paths[iteration] fullply_f = self.data_root / data_path query_xyz, _, query_label, _ = torch.load(fullply_f) coords = coords[:, 1:].numpy() + 0.5 curr_transformation = transformation[0, :16].numpy().reshape(4, 4) coords = np.hstack((coords, np.ones((coords.shape[0], 1)))) coords = (np.linalg.inv(curr_transformation) @ coords.T).T # Run test for each room. from pykeops.numpy import LazyTensor from pykeops.numpy.utils import IsGpuAvailable query_xyz = np.array(query_xyz) x_i = LazyTensor( query_xyz[:,None,:] ) # x_i.shape = (1e6, 1, 3) y_j = LazyTensor( coords[:,:3][None,:,:] ) # y_j.shape = ( 1, 2e6,3) D_ij = ((x_i - y_j) ** 2).sum(-1) # (M**2, N) symbolic matrix of squared distances indKNN = D_ij.argKmin(1, dim=1) # Grid <-> Samples, (M**2, K) integer tensor inds = indKNN[:,0] return inds, query_xyz class ScannetVoxelization2cmDataset(ScannetVoxelizationDataset): VOXEL_SIZE = 0.02
ContrastiveSceneContexts-main
downstream/semseg/datasets/scannet.py
# Evaluates semantic label task # Input: # - path to .txt prediction files # - path to .txt ground truth files # - output file to write results to # Note that only the valid classes are used for evaluation, # i.e., any ground truth label not in the valid label set # is ignored in the evaluation. # # example usage: evaluate_semantic_label.py --scan_path [path to scan data] --output_file [output file] # python imports import math import logging import os, sys, argparse import inspect try: import numpy as np except: print("Failed to import numpy package.") sys.exit(-1) try: from itertools import izip except ImportError: izip = zip #currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) #parentdir = os.path.dirname(currentdir) #sys.path.insert(0,parentdir) from datasets.evaluation.scannet_benchmark_utils import util_3d from datasets.evaluation.scannet_benchmark_utils import util class Evaluator: def __init__(self, CLASS_LABELS, VALID_CLASS_IDS): #CLASS_LABELS = ['wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table', # 'door', 'window', 'bookshelf', 'picture', 'counter', 'desk', # 'curtain', 'refrigerator', 'shower curtain', 'toilet', 'sink', 'bathtub', 'otherfurniture'] #VALID_CLASS_IDS = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39]) self.CLASS_LABELS = CLASS_LABELS self.VALID_CLASS_IDS = VALID_CLASS_IDS self.UNKNOWN_ID = np.max(VALID_CLASS_IDS) + 1 self.gt = {} self.pred = {} max_id = self.UNKNOWN_ID self.confusion = np.zeros((max_id+1, max_id+1), dtype=np.ulonglong) def update_confusion(self, pred_ids, gt_ids, sceneId=None): # sanity checks if not pred_ids.shape == gt_ids.shape: util.print_error('%s: number of predicted values does not match number of vertices' % pred_file, user_fault=True) n = self.confusion.shape[0] k = (gt_ids >= 0) & (gt_ids < n) temporal = np.bincount(n * gt_ids[k].astype(int) + pred_ids[k], minlength=n**2).reshape(n, n) for valid_class_row in self.VALID_CLASS_IDS: for valid_class_col in self.VALID_CLASS_IDS: self.confusion[valid_class_row][valid_class_col] += temporal[valid_class_row][valid_class_col] @staticmethod def write_to_benchmark(base='benchmark_segmentation', scene_id=None, pred_ids=None): os.makedirs(base, exist_ok=True) util_3d.export_ids('{}.txt'.format(os.path.join(base, scene_id)), pred_ids) def get_iou(self, label_id, confusion): if not label_id in self.VALID_CLASS_IDS: return float('nan') # #true positives tp = np.longlong(confusion[label_id, label_id]) # #false negatives fn = np.longlong(confusion[label_id, :].sum()) - tp # #false positives not_ignored = [l for l in self.VALID_CLASS_IDS if not l == label_id] fp = np.longlong(confusion[not_ignored, label_id].sum()) denom = (tp + fp + fn) if denom == 0: return float('nan') return (float(tp) / denom, tp, denom) def write_result_file(self, confusion, ious, filename): with open(filename, 'w') as f: f.write('iou scores\n') for i in range(len(self.VALID_CLASS_IDS)): label_id = self.VALID_CLASS_IDS[i] label_name = self.CLASS_LABELS[i] iou = ious[label_name][0] f.write('{0:<14s}({1:<2d}): {2:>5.3f}\n'.format(label_name, label_id, iou)) f.write("{0:<14s}: {1:>5.3f}".format('mean', np.array([ious[k][0] for k in ious]).mean())) f.write('\nconfusion matrix\n') f.write('\t\t\t') for i in range(len(self.VALID_CLASS_IDS)): #f.write('\t{0:<14s}({1:<2d})'.format(CLASS_LABELS[i], VALID_CLASS_IDS[i])) f.write('{0:<8d}'.format(self.VALID_CLASS_IDS[i])) f.write('\n') for r in range(len(self.VALID_CLASS_IDS)): f.write('{0:<14s}({1:<2d})'.format(self.CLASS_LABELS[r], self.VALID_CLASS_IDS[r])) for c in range(len(self.VALID_CLASS_IDS)): f.write('\t{0:>5.3f}'.format(confusion[self.VALID_CLASS_IDS[r],self.VALID_CLASS_IDS[c]])) f.write('\n') print('wrote results to', filename) def evaluate_confusion(self, output_file=None): class_ious = {} counter = 0 summation = 0 for i in range(len(self.VALID_CLASS_IDS)): label_name = self.CLASS_LABELS[i] label_id = self.VALID_CLASS_IDS[i] class_ious[label_name] = self.get_iou(label_id, self.confusion) # print logging.info('classes IoU') logging.info('----------------------------') for i in range(len(self.VALID_CLASS_IDS)): label_name = self.CLASS_LABELS[i] try: logging.info('{0:<14s}: {1:>5.3f} ({2:>6d}/{3:<6d})'.format(label_name, class_ious[label_name][0], class_ious[label_name][1], class_ious[label_name][2])) summation += class_ious[label_name][0] counter += 1 except: logging.info('{0:<14s}: nan ( nan/nan )'.format(label_name)) logging.info("{0:<14s}: {1:>5.3f}".format('mean', summation / counter)) if output_file: self.write_result_file(self.confusion, class_ious, output_file) return summation / counter def config(): parser = argparse.ArgumentParser() parser.add_argument('--pred_path', required=True, help='path to directory of predicted .txt files') parser.add_argument('--gt_path', required=True, help='path to gt files') parser.add_argument('--output_file', type=str, default='./semantic_label_evaluation.txt') opt = parser.parse_args() return opt def main(): opt = config() #------------------------- ScanNet -------------------------- CLASS_LABELS = ['wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', 'bookshelf', 'picture', 'counter', 'desk', 'curtain', 'refrigerator', 'shower curtain', 'toilet', 'sink', 'bathtub', 'otherfurniture'] VALID_CLASS_IDS = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39]) evaluator = Evaluator(CLASS_LABELS=CLASS_LABELS, VALID_CLASS_IDS=VALID_CLASS_IDS) print('reading', len(os.listdir(opt.pred_path))-1, 'scans...') for i, pred_file in enumerate(os.listdir(opt.pred_path)): if pred_file == 'semantic_label_evaluation.txt': continue gt_file = os.path.join(opt.gt_path, pred_file) if not os.path.isfile(gt_file): util.print_error('Result file {} does not match any gt file'.format(pred_file), user_fault=True) gt_ids = util_3d.load_ids(gt_file) pred_file = os.path.join(opt.pred_path, pred_file) pred_ids = util_3d.load_ids(pred_file) evaluator.update_confusion(pred_ids, gt_ids, pred_file.split('.')[0]) sys.stdout.write("\rscans processed: {}".format(i+1)) sys.stdout.flush() # evaluate evaluator.evaluate_confusion(opt.output_file) if __name__ == '__main__': main()
ContrastiveSceneContexts-main
downstream/semseg/datasets/evaluation/evaluate_semantic_label.py
# Evaluates semantic instance task # Adapted from the CityScapes evaluation: https://github.com/mcordts/cityscapesScripts/tree/master/cityscapesscripts/evaluation # Input: # - path to .txt prediction files # - path to .txt ground truth files # - output file to write results to # Each .txt prediction file look like: # [(pred0) rel. path to pred. mask over verts as .txt] [(pred0) label id] [(pred0) confidence] # [(pred1) rel. path to pred. mask over verts as .txt] [(pred1) label id] [(pred1) confidence] # [(pred2) rel. path to pred. mask over verts as .txt] [(pred2) label id] [(pred2) confidence] # ... # # NOTE: The prediction files must live in the root of the given prediction path. # Predicted mask .txt files must live in a subfolder. # Additionally, filenames must not contain spaces. # The relative paths to predicted masks must contain one integer per line, # where each line corresponds to vertices in the *_vh_clean_2.ply (in that order). # Non-zero integers indicate part of the predicted instance. # The label ids specify the class of the corresponding mask. # Confidence is a float confidence score of the mask. # # Note that only the valid classes are used for evaluation, # i.e., any ground truth label not in the valid label set # is ignored in the evaluation. # # example usage: evaluate_semantic_instance.py --scan_path [path to scan data] --output_file [output file] # python imports import logging import math import os, sys, argparse import inspect from copy import deepcopy import argparse import numpy as np #currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) #parentdir = os.path.dirname(currentdir) #sys.path.insert(0,parentdir) from datasets.evaluation.scannet_benchmark_utils import util_3d from datasets.evaluation.scannet_benchmark_utils import util def setup_logging(): ch = logging.StreamHandler(sys.stdout) logging.getLogger().setLevel(logging.INFO) logging.basicConfig( format=os.uname()[1].split('.')[0] + ' %(asctime)s %(message)s', datefmt='%m/%d %H:%M:%S', handlers=[ch]) class Evaluator: # ---------- Evaluation params ---------- # # overlaps for evaluation overlaps = np.append(np.arange(0.5,0.95,0.05), 0.25) # minimum region size for evaluation [verts] min_region_sizes = np.array( [ 10 ] ) # distance thresholds [m] distance_threshes = np.array( [ float('inf') ] ) # distance confidences distance_confs = np.array( [ -float('inf') ] ) def __init__(self, CLASS_LABELS, VALID_CLASS_IDS, benchmark=False): # ---------- Label info ---------- # #CLASS_LABELS = ['cabinet', 'bed', 'chair', 'sofa', 'table', 'door', # 'window', 'bookshelf', 'picture', 'counter', # 'desk', 'curtain', 'refrigerator', 'shower curtain', # 'toilet', 'sink', 'bathtub', 'otherfurniture'] #VALID_CLASS_IDS = np.array([3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39]) self.CLASS_LABELS = CLASS_LABELS self.VALID_CLASS_IDS = VALID_CLASS_IDS self.ID_TO_LABEL = {} self.LABEL_TO_ID = {} for i in range(len(VALID_CLASS_IDS)): self.LABEL_TO_ID[CLASS_LABELS[i]] = VALID_CLASS_IDS[i] self.ID_TO_LABEL[VALID_CLASS_IDS[i]] = CLASS_LABELS[i] self.pred_instances = {} self.gt_instances = {} self.benchmark = benchmark def evaluate_matches(self, matches): # results: class x overlap ap = np.zeros( (len(self.distance_threshes) , len(self.CLASS_LABELS) , len(self.overlaps)) , np.float ) for di, (min_region_size, distance_thresh, distance_conf) in enumerate(zip(self.min_region_sizes, self.distance_threshes, self.distance_confs)): for oi, overlap_th in enumerate(self.overlaps): pred_visited = {} for m in matches: for p in matches[m]['pred']: for label_name in self.CLASS_LABELS: for p in matches[m]['pred'][label_name]: if 'filename' in p: pred_visited[p['filename']] = False for li, label_name in enumerate(self.CLASS_LABELS): y_true = np.empty(0) y_score = np.empty(0) hard_false_negatives = 0 has_gt = False has_pred = False for m in matches: pred_instances = matches[m]['pred'][label_name] gt_instances = matches[m]['gt'][label_name] # filter groups in ground truth gt_instances = [ gt for gt in gt_instances if gt['instance_id']>=1000 and gt['vert_count']>=min_region_size and gt['med_dist']<=distance_thresh and gt['dist_conf']>=distance_conf ] if gt_instances: has_gt = True if pred_instances: has_pred = True cur_true = np.ones ( len(gt_instances) ) cur_score = np.ones ( len(gt_instances) ) * (-float("inf")) cur_match = np.zeros( len(gt_instances) , dtype=np.bool ) # collect matches for (gti,gt) in enumerate(gt_instances): found_match = False num_pred = len(gt['matched_pred']) for pred in gt['matched_pred']: # greedy assignments if pred_visited[pred['filename']]: continue overlap = float(pred['intersection']) / (gt['vert_count']+pred['vert_count']-pred['intersection']) if overlap > overlap_th: confidence = pred['confidence'] # if already have a prediction for this gt, # the prediction with the lower score is automatically a false positive if cur_match[gti]: max_score = max( cur_score[gti] , confidence ) min_score = min( cur_score[gti] , confidence ) cur_score[gti] = max_score # append false positive cur_true = np.append(cur_true,0) cur_score = np.append(cur_score,min_score) cur_match = np.append(cur_match,True) # otherwise set score else: found_match = True cur_match[gti] = True cur_score[gti] = confidence pred_visited[pred['filename']] = True if not found_match: hard_false_negatives += 1 # remove non-matched ground truth instances cur_true = cur_true [ cur_match==True ] cur_score = cur_score[ cur_match==True ] # collect non-matched predictions as false positive for pred in pred_instances: found_gt = False for gt in pred['matched_gt']: overlap = float(gt['intersection']) / (gt['vert_count']+pred['vert_count']-gt['intersection']) if overlap > overlap_th: found_gt = True break if not found_gt: num_ignore = pred['void_intersection'] for gt in pred['matched_gt']: # group? if gt['instance_id'] < 1000: num_ignore += gt['intersection'] # small ground truth instances if gt['vert_count'] < min_region_size or gt['med_dist']>distance_thresh or gt['dist_conf']<distance_conf: num_ignore += gt['intersection'] proportion_ignore = float(num_ignore)/pred['vert_count'] # if not ignored append false positive if proportion_ignore <= overlap_th: cur_true = np.append(cur_true,0) confidence = pred["confidence"] cur_score = np.append(cur_score,confidence) # append to overall results y_true = np.append(y_true,cur_true) y_score = np.append(y_score,cur_score) # compute average precision if has_gt and has_pred: # compute precision recall curve first # sorting and cumsum score_arg_sort = np.argsort(y_score) y_score_sorted = y_score[score_arg_sort] y_true_sorted = y_true[score_arg_sort] y_true_sorted_cumsum = np.cumsum(y_true_sorted) # unique thresholds (thresholds,unique_indices) = np.unique( y_score_sorted , return_index=True ) num_prec_recall = len(unique_indices) + 1 # prepare precision recall num_examples = len(y_score_sorted) try: num_true_examples = y_true_sorted_cumsum[-1] except: num_true_examples = 0 precision = np.zeros(num_prec_recall) recall = np.zeros(num_prec_recall) # deal with the first point y_true_sorted_cumsum = np.append( y_true_sorted_cumsum , 0 ) # deal with remaining for idx_res,idx_scores in enumerate(unique_indices): cumsum = y_true_sorted_cumsum[idx_scores-1] tp = num_true_examples - cumsum fp = num_examples - idx_scores - tp fn = cumsum + hard_false_negatives p = float(tp)/(tp+fp) r = float(tp)/(tp+fn) precision[idx_res] = p recall [idx_res] = r # first point in curve is artificial precision[-1] = 1. recall [-1] = 0. # compute average of precision-recall curve recall_for_conv = np.copy(recall) recall_for_conv = np.append(recall_for_conv[0], recall_for_conv) recall_for_conv = np.append(recall_for_conv, 0.) stepWidths = np.convolve(recall_for_conv,[-0.5,0,0.5],'valid') # integrate is now simply a dot product ap_current = np.dot(precision, stepWidths) elif has_gt: ap_current = 0.0 else: ap_current = float('nan') ap[di,li,oi] = ap_current return ap def compute_averages(self, aps): d_inf = 0 o50 = np.where(np.isclose(self.overlaps,0.5)) o25 = np.where(np.isclose(self.overlaps,0.25)) oAllBut25 = np.where(np.logical_not(np.isclose(self.overlaps,0.25))) avg_dict = {} #avg_dict['all_ap'] = np.nanmean(aps[ d_inf,:,: ]) avg_dict['all_ap'] = np.nanmean(aps[ d_inf,:,oAllBut25]) avg_dict['all_ap_50%'] = np.nanmean(aps[ d_inf,:,o50]) avg_dict['all_ap_25%'] = np.nanmean(aps[ d_inf,:,o25]) avg_dict["classes"] = {} for (li,label_name) in enumerate(self.CLASS_LABELS): avg_dict["classes"][label_name] = {} #avg_dict["classes"][label_name]["ap"] = np.average(aps[ d_inf,li, :]) avg_dict["classes"][label_name]["ap"] = np.average(aps[ d_inf,li,oAllBut25]) avg_dict["classes"][label_name]["ap50%"] = np.average(aps[ d_inf,li,o50]) avg_dict["classes"][label_name]["ap25%"] = np.average(aps[ d_inf,li,o25]) return avg_dict def assign_instances_for_scan(self, scene_id): # get gt instances gt_ids = self.gt_instances[scene_id] gt_instances = util_3d.get_instances(gt_ids, self.VALID_CLASS_IDS, self.CLASS_LABELS, self.ID_TO_LABEL) # associate gt2pred = deepcopy(gt_instances) for label in gt2pred: for gt in gt2pred[label]: gt['matched_pred'] = [] pred2gt = {} for label in self.CLASS_LABELS: pred2gt[label] = [] num_pred_instances = 0 # mask of void labels in the groundtruth bool_void = np.logical_not(np.in1d(gt_ids//1000, self.VALID_CLASS_IDS)) # go thru all prediction masks for instance_id in self.pred_instances[scene_id]: label_id = int(self.pred_instances[scene_id][instance_id]['label_id']) conf = self.pred_instances[scene_id][instance_id]['conf'] if not label_id in self.ID_TO_LABEL: continue label_name = self.ID_TO_LABEL[label_id] # read the mask pred_mask = self.pred_instances[scene_id][instance_id]['pred_mask'] # convert to binary num = np.count_nonzero(pred_mask) if num < self.min_region_sizes[0]: continue # skip if empty pred_instance = {} pred_instance['filename'] = str(scene_id) + '/' + str(instance_id) pred_instance['pred_id'] = num_pred_instances pred_instance['label_id'] = label_id pred_instance['vert_count'] = num pred_instance['confidence'] = conf pred_instance['void_intersection'] = np.count_nonzero(np.logical_and(bool_void, pred_mask)) # matched gt instances matched_gt = [] # go thru all gt instances with matching label for (gt_num, gt_inst) in enumerate(gt2pred[label_name]): intersection = np.count_nonzero(np.logical_and(gt_ids == gt_inst['instance_id'], pred_mask)) if intersection > 0: gt_copy = gt_inst.copy() pred_copy = pred_instance.copy() gt_copy['intersection'] = intersection pred_copy['intersection'] = intersection matched_gt.append(gt_copy) gt2pred[label_name][gt_num]['matched_pred'].append(pred_copy) pred_instance['matched_gt'] = matched_gt num_pred_instances += 1 pred2gt[label_name].append(pred_instance) return gt2pred, pred2gt def print_results(self, avgs): sep = "" col1 = ":" lineLen = 64 logging.info("") logging.info("#"*lineLen) line = "" line += "{:<15}".format("what" ) + sep + col1 line += "{:>15}".format("AP" ) + sep line += "{:>15}".format("AP_50%" ) + sep line += "{:>15}".format("AP_25%" ) + sep logging.info(line) logging.info("#"*lineLen) for (li,label_name) in enumerate(self.CLASS_LABELS): ap_avg = avgs["classes"][label_name]["ap"] ap_50o = avgs["classes"][label_name]["ap50%"] ap_25o = avgs["classes"][label_name]["ap25%"] line = "{:<15}".format(label_name) + sep + col1 line += sep + "{:>15.3f}".format(ap_avg ) + sep line += sep + "{:>15.3f}".format(ap_50o ) + sep line += sep + "{:>15.3f}".format(ap_25o ) + sep logging.info(line) all_ap_avg = avgs["all_ap"] all_ap_50o = avgs["all_ap_50%"] all_ap_25o = avgs["all_ap_25%"] logging.info("-"*lineLen) line = "{:<15}".format("average") + sep + col1 line += "{:>15.3f}".format(all_ap_avg) + sep line += "{:>15.3f}".format(all_ap_50o) + sep line += "{:>15.3f}".format(all_ap_25o) + sep logging.info(line) logging.info("") @staticmethod def write_to_benchmark(output_path='benchmark_instance', scene_id=None, pred_inst={}): os.makedirs(output_path, exist_ok=True) os.makedirs(os.path.join(output_path, 'predicted_masks'), exist_ok=True) f = open(os.path.join(output_path, scene_id + '.txt'), 'w') for instance_id in pred_inst: # for pred instance id starts from 0; in gt valid instance id starts from 1 score = pred_inst[instance_id]['conf'] label = pred_inst[instance_id]['label_id'] mask = pred_inst[instance_id]['pred_mask'] f.write('predicted_masks/{}_{:03d}.txt {} {:.4f}'.format(scene_id, instance_id, label, score)) if instance_id < len(pred_inst) - 1: f.write('\n') util_3d.export_ids(os.path.join(output_path, 'predicted_masks', scene_id + '_%03d.txt' % (instance_id)), mask) f.close() def add_prediction(self, instance_info, id): self.pred_instances[id] = instance_info def add_gt(self, instance_info, id): self.gt_instances[id] = instance_info def add_gt_from_benchmark(self, scene_id): try: gt_file_path = '/rhome/jhou/.gt/gt_insts/' gt_file = os.path.join(gt_file_path, scene_id + '.txt') gt_ids = util_3d.load_ids(gt_file) except: gt_file_path = '/rhome/jhou/data/dataset/scannet/scannet_benchmark/gt_instance/' gt_file = os.path.join(gt_file_path, scene_id + '.txt') gt_ids = util_3d.load_ids(gt_file) self.add_gt(gt_ids, scene_id) def evaluate(self): print('evaluating', len(self.pred_instances), 'scans...') matches = {} for i, scene_id in enumerate(self.pred_instances): gt2pred, pred2gt = self.assign_instances_for_scan(scene_id) matches[scene_id] = {} matches[scene_id]['gt'] = gt2pred matches[scene_id]['pred'] = pred2gt sys.stdout.write("\rscans processed: {}".format(i+1)) sys.stdout.flush() print('') ap_scores = self.evaluate_matches(matches) avgs = self.compute_averages(ap_scores) # print self.print_results(avgs) return avgs['all_ap'], avgs['all_ap_50%'], avgs['all_ap_25%'] def write_result_file(avgs, filename): _SPLITTER = ',' with open(filename, 'w') as f: f.write(_SPLITTER.join(['class', 'class id', 'ap', 'ap50', 'ap25']) + '\n') for i in range(len(VALID_CLASS_IDS)): class_name = CLASS_LABELS[i] class_id = VALID_CLASS_IDS[i] ap = avgs["classes"][class_name]["ap"] ap50 = avgs["classes"][class_name]["ap50%"] ap25 = avgs["classes"][class_name]["ap25%"] f.write(_SPLITTER.join([str(x) for x in [class_name, class_id, ap, ap50, ap25]]) + '\n') def config(): parser = argparse.ArgumentParser() parser.add_argument('--pred_path', required=True, help='path to directory of predicted .txt files') parser.add_argument('--gt_path', required=True, help='path to directory of gt .txt files') parser.add_argument('--output_file', default='semantic_instance_evaluation.txt', help='output file [default: semantic_instance_evaluation.txt]') opt = parser.parse_args() return opt if __name__ == '__main__': opt = config() setup_logging() #-----------------scannet---------------------- CLASS_LABELS = ['cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', 'bookshelf', 'picture', 'counter', 'desk', 'curtain', 'refrigerator', 'shower curtain', 'toilet', 'sink', 'bathtub', 'otherfurniture'] VALID_CLASS_IDS = np.array([3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39]) evaluator = Evaluator(CLASS_LABELS=CLASS_LABELS, VALID_CLASS_IDS=VALID_CLASS_IDS) print('reading', len(os.listdir(opt.pred_path))-1, 'scans...') for i, pred_file in enumerate(os.listdir(opt.pred_path)): if os.path.isdir(os.path.join(opt.pred_path, pred_file)): continue scene_id = pred_file[:12] sys.stdout.write("\rscans read: {}".format(i+1)) sys.stdout.flush() gt_file = os.path.join(opt.gt_path, pred_file) gt_ids = util_3d.load_ids(gt_file) evaluator.add_gt(gt_ids, scene_id) instances = util_3d.read_instance_prediction_file(os.path.join(opt.pred_path,pred_file), opt.pred_path) for pred_mask_file in instances: # read the mask pred_mask = util_3d.load_ids(pred_mask_file) instances[pred_mask_file]['pred_mask'] = pred_mask evaluator.add_prediction(instances, scene_id) print('') _, _, _ = evaluator.evaluate()
ContrastiveSceneContexts-main
downstream/semseg/datasets/evaluation/evaluate_semantic_instance.py
import os, sys import csv try: import numpy as np except: print("Failed to import numpy package.") sys.exit(-1) try: import imageio except: print("Please install the module 'imageio' for image processing, e.g.") print("pip install imageio") sys.exit(-1) # print an error message and quit def print_error(message, user_fault=False): sys.stderr.write('ERROR: ' + str(message) + '\n') if user_fault: sys.exit(2) sys.exit(-1) # if string s represents an int def represents_int(s): try: int(s) return True except ValueError: return False def read_label_mapping(filename, label_from='raw_category', label_to='nyu40id'): assert os.path.isfile(filename) mapping = dict() with open(filename) as csvfile: reader = csv.DictReader(csvfile, delimiter='\t') for row in reader: mapping[row[label_from]] = int(row[label_to]) # if ints convert if represents_int([key for key in mapping.keys()][0]): mapping = {int(k):v for k,v in mapping.items()} return mapping # input: scene_types.txt or scene_types_all.txt def read_scene_types_mapping(filename, remove_spaces=True): assert os.path.isfile(filename) mapping = dict() lines = open(filename).read().splitlines() lines = [line.split('\t') for line in lines] if remove_spaces: mapping = { x[1].strip():int(x[0]) for x in lines } else: mapping = { x[1]:int(x[0]) for x in lines } return mapping # color by label def visualize_label_image(filename, image): height = image.shape[0] width = image.shape[1] vis_image = np.zeros([height, width, 3], dtype=np.uint8) color_palette = create_color_palette() for idx, color in enumerate(color_palette): vis_image[image==idx] = color imageio.imwrite(filename, vis_image) # color by different instances (mod length of color palette) def visualize_instance_image(filename, image): height = image.shape[0] width = image.shape[1] vis_image = np.zeros([height, width, 3], dtype=np.uint8) color_palette = create_color_palette() instances = np.unique(image) for idx, inst in enumerate(instances): vis_image[image==inst] = color_palette[inst%len(color_palette)] imageio.imwrite(filename, vis_image)
ContrastiveSceneContexts-main
downstream/semseg/datasets/evaluation/scannet_benchmark_utils/util.py
import os, sys import json try: import numpy as np except: print("Failed to import numpy package.") sys.exit(-1) try: from plyfile import PlyData, PlyElement except: print("Please install the module 'plyfile' for PLY i/o, e.g.") print("pip install plyfile") sys.exit(-1) from . import util # matrix: 4x4 np array # points Nx3 np array def transform_points(matrix, points): assert len(points.shape) == 2 and points.shape[1] == 3 num_points = points.shape[0] p = np.concatenate([points, np.ones((num_points, 1))], axis=1) p = np.matmul(matrix, np.transpose(p)) p = np.transpose(p) p[:,:3] /= p[:,3,None] return p[:,:3] def export_ids(filename, ids): with open(filename, 'w') as f: for id in ids: f.write('%d\n' % id) def load_ids(filename): ids = open(filename).read().splitlines() ids = np.array(ids, dtype=np.int64) return ids def read_mesh_vertices(filename): assert os.path.isfile(filename) with open(filename, 'rb') as f: plydata = PlyData.read(f) num_verts = plydata['vertex'].count vertices = np.zeros(shape=[num_verts, 3], dtype=np.float32) vertices[:,0] = plydata['vertex'].data['x'] vertices[:,1] = plydata['vertex'].data['y'] vertices[:,2] = plydata['vertex'].data['z'] return vertices # export 3d instance labels for instance evaluation def export_instance_ids_for_eval(filename, label_ids, instance_ids): assert label_ids.shape[0] == instance_ids.shape[0] output_mask_path_relative = 'predicted_masks' name = os.path.splitext(os.path.basename(filename))[0] output_mask_path = os.path.join(os.path.dirname(filename), output_mask_path_relative) if not os.path.isdir(output_mask_path): os.mkdir(output_mask_path) insts = np.unique(instance_ids) zero_mask = np.zeros(shape=(instance_ids.shape[0]), dtype=np.int32) with open(filename, 'w') as f: for idx, inst_id in enumerate(insts): if inst_id == 0: # 0 -> no instance for this vertex continue loc = np.where(instance_ids == inst_id) label_id = label_ids[loc[0][0]] # write mask indexing output_mask_file_relavtive = os.path.join(output_mask_path_relative, name + '_' + str(idx) + '.txt') f.write('%s %d %f\n' % (output_mask_file_relavtive, label_id, 1.0)) # write mask mask = np.copy(zero_mask) mask[loc[0]] = 1 output_mask_file = os.path.join(output_mask_path, name + '_' + str(idx) + '.txt') export_ids(output_mask_file, mask) # ------------ Instance Utils ------------ # class Instance(object): instance_id = 0 label_id = 0 vert_count = 0 med_dist = -1 dist_conf = 0.0 def __init__(self, mesh_vert_instances, instance_id): if (instance_id == -1): return self.instance_id = int(instance_id) self.label_id = int(self.get_label_id(instance_id)) self.vert_count = int(self.get_instance_verts(mesh_vert_instances, instance_id)) def get_label_id(self, instance_id): return int(instance_id // 1000) def get_instance_verts(self, mesh_vert_instances, instance_id): return (mesh_vert_instances == instance_id).sum() def to_json(self): return json.dumps(self, default=lambda o: o.__dict__, sort_keys=True, indent=4) def to_dict(self): dict = {} dict["instance_id"] = self.instance_id dict["label_id"] = self.label_id dict["vert_count"] = self.vert_count dict["med_dist"] = self.med_dist dict["dist_conf"] = self.dist_conf return dict def from_json(self, data): self.instance_id = int(data["instance_id"]) self.label_id = int(data["label_id"]) self.vert_count = int(data["vert_count"]) if ("med_dist" in data): self.med_dist = float(data["med_dist"]) self.dist_conf = float(data["dist_conf"]) def __str__(self): return "("+str(self.instance_id)+")" def read_instance_prediction_file(filename, pred_path): lines = open(filename).read().splitlines() instance_info = {} abs_pred_path = os.path.abspath(pred_path) for line in lines: parts = line.split(' ') if len(parts) != 3: util.print_error('invalid instance prediction file. Expected (per line): [rel path prediction] [label id prediction] [confidence prediction]') if os.path.isabs(parts[0]): util.print_error('invalid instance prediction file. First entry in line must be a relative path') mask_file = os.path.join(os.path.dirname(filename), parts[0]) mask_file = os.path.abspath(mask_file) # check that mask_file lives inside prediction path if os.path.commonprefix([mask_file, abs_pred_path]) != abs_pred_path: util.print_error('predicted mask {} in prediction text file {} points outside of prediction path.'.format(mask_file,filename)) info = {} info["label_id"] = int(float(parts[1])) info["conf"] = float(parts[2]) instance_info[mask_file] = info return instance_info def get_instances(ids, class_ids, class_labels, id2label): instances = {} for label in class_labels: instances[label] = [] instance_ids = np.unique(ids) for id in instance_ids: if id == 0: continue inst = Instance(ids, id) if inst.label_id in class_ids: instances[id2label[inst.label_id]].append(inst.to_dict()) return instances
ContrastiveSceneContexts-main
downstream/semseg/datasets/evaluation/scannet_benchmark_utils/util_3d.py
# Evaluates semantic label task # Input: # - path to .txt prediction files # - path to .txt ground truth files # - output file to write results to # Note that only the valid classes are used for evaluation, # i.e., any ground truth label not in the valid label set # is ignored in the evaluation. # # example usage: evaluate_semantic_label.py --scan_path [path to scan data] --output_file [output file] # python imports import math import logging import os, sys, argparse import inspect try: import numpy as np except: print("Failed to import numpy package.") sys.exit(-1) try: from itertools import izip except ImportError: izip = zip #currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) #parentdir = os.path.dirname(currentdir) #sys.path.insert(0,parentdir) import util_3d import util class Evaluator: def __init__(self, CLASS_LABELS, VALID_CLASS_IDS): self.CLASS_LABELS = CLASS_LABELS self.VALID_CLASS_IDS = VALID_CLASS_IDS self.UNKNOWN_ID = np.max(VALID_CLASS_IDS) + 1 self.gt = {} self.pred = {} max_id = self.UNKNOWN_ID self.confusion = np.zeros((max_id+1, max_id+1), dtype=np.ulonglong) def update_confusion(self, pred_ids, gt_ids, sceneId=None): # sanity checks if not pred_ids.shape == gt_ids.shape: util.print_error('%s: number of predicted values does not match number of vertices' % pred_file, user_fault=True) n = self.confusion.shape[0] k = (gt_ids >= 0) & (gt_ids < n) temporal = np.bincount(n * gt_ids[k].astype(int) + pred_ids[k], minlength=n**2).reshape(n, n) for valid_class_row in self.VALID_CLASS_IDS: for valid_class_col in self.VALID_CLASS_IDS: self.confusion[valid_class_row][valid_class_col] += temporal[valid_class_row][valid_class_col] @staticmethod def write_to_benchmark(base='benchmark_segmentation', sceneId=None, pred_ids=None): os.makedirs(base, exist_ok=True) util_3d.export_ids('{}.txt'.format(os.path.join(base, sceneId)), pred_ids) def get_iou(self, label_id, confusion): if not label_id in self.VALID_CLASS_IDS: return float('nan') # #true positives tp = np.longlong(confusion[label_id, label_id]) # #false negatives fn = np.longlong(confusion[label_id, :].sum()) - tp # #false positives not_ignored = [l for l in self.VALID_CLASS_IDS if not l == label_id] fp = np.longlong(confusion[not_ignored, label_id].sum()) denom = (tp + fp + fn) if denom == 0: return float('nan') return (float(tp) / denom, tp, denom) def write_result_file(self, confusion, ious, filename): with open(filename, 'w') as f: f.write('iou scores\n') for i in range(len(self.VALID_CLASS_IDS)): label_id = self.VALID_CLASS_IDS[i] label_name = self.CLASS_LABELS[i] iou = ious[label_name][0] f.write('{0:<14s}({1:<2d}): {2:>5.3f}\n'.format(label_name, label_id, iou)) f.write("{0:<14s}: {1:>5.3f}".format('mean', np.array([ious[k][0] for k in ious]).mean())) f.write('\nconfusion matrix\n') f.write('\t\t\t') for i in range(len(self.VALID_CLASS_IDS)): #f.write('\t{0:<14s}({1:<2d})'.format(CLASS_LABELS[i], VALID_CLASS_IDS[i])) f.write('{0:<8d}'.format(self.VALID_CLASS_IDS[i])) f.write('\n') for r in range(len(self.VALID_CLASS_IDS)): f.write('{0:<14s}({1:<2d})'.format(self.CLASS_LABELS[r], self.VALID_CLASS_IDS[r])) for c in range(len(self.VALID_CLASS_IDS)): f.write('\t{0:>5.3f}'.format(confusion[self.VALID_CLASS_IDS[r],self.VALID_CLASS_IDS[c]])) f.write('\n') print('wrote results to', filename) def evaluate_confusion(self, output_file=None): class_ious = {} counter = 0 summation = 0 for i in range(len(self.VALID_CLASS_IDS)): label_name = self.CLASS_LABELS[i] label_id = self.VALID_CLASS_IDS[i] class_ious[label_name] = self.get_iou(label_id, self.confusion) # print logging.info('classes IoU') logging.info('----------------------------') for i in range(len(self.VALID_CLASS_IDS)): label_name = self.CLASS_LABELS[i] try: logging.info('{0:<14s}: {1:>5.3f} ({2:>6d}/{3:<6d})'.format(label_name, class_ious[label_name][0], class_ious[label_name][1], class_ious[label_name][2])) summation += class_ious[label_name][0] counter += 1 except: logging.info('{0:<14s}: nan ( nan/nan )'.format(label_name)) logging.info("{0:<14s}: {1:>5.3f}".format('mean', summation / counter)) if output_file: self.write_result_file(self.confusion, class_ious, output_file) return summation / counter def config(): parser = argparse.ArgumentParser() parser.add_argument('--pred_path', required=True, help='path to directory of predicted .txt files') parser.add_argument('--gt_path', required=True, help='path to gt files') parser.add_argument('--output_file', type=str, default='./semantic_label_evaluation.txt') opt = parser.parse_args() return opt def main(): opt = config() ch = logging.StreamHandler(sys.stdout) logging.getLogger().setLevel(logging.INFO) logging.basicConfig( format=os.uname()[1].split('.')[0] + ' %(asctime)s %(message)s', datefmt='%m/%d %H:%M:%S', handlers=[ch]) #------------------------- ScanNet -------------------------- CLASS_LABELS = ['wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', 'bookshelf', 'picture', 'counter', 'desk', 'curtain', 'refrigerator', 'shower curtain', 'toilet', 'sink', 'bathtub', 'otherfurniture'] VALID_CLASS_IDS = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39]) evaluator = Evaluator(CLASS_LABELS=CLASS_LABELS, VALID_CLASS_IDS=VALID_CLASS_IDS) print('reading', len(os.listdir(opt.pred_path))-1, 'scans...') for i, pred_file in enumerate(os.listdir(opt.pred_path)): if pred_file == 'semantic_label_evaluation.txt': continue gt_file = os.path.join(opt.gt_path, pred_file) if not os.path.isfile(gt_file): util.print_error('Result file {} does not match any gt file'.format(pred_file), user_fault=True) gt_ids = util_3d.load_ids(gt_file) pred_file = os.path.join(opt.pred_path, pred_file) pred_ids = util_3d.load_ids(pred_file) evaluator.update_confusion(pred_ids, gt_ids, pred_file.split('.')[0]) sys.stdout.write("\rscans processed: {}".format(i+1)) sys.stdout.flush() # evaluate evaluator.evaluate_confusion(opt.output_file) if __name__ == '__main__': main()
ContrastiveSceneContexts-main
downstream/semseg/datasets/evaluation/scannet_benchmark_utils/scripts/evaluate_semantic_label.py
import os, sys import csv try: import numpy as np except: print("Failed to import numpy package.") sys.exit(-1) try: import imageio except: print("Please install the module 'imageio' for image processing, e.g.") print("pip install imageio") sys.exit(-1) # print an error message and quit def print_error(message, user_fault=False): sys.stderr.write('ERROR: ' + str(message) + '\n') if user_fault: sys.exit(2) sys.exit(-1) # if string s represents an int def represents_int(s): try: int(s) return True except ValueError: return False def read_label_mapping(filename, label_from='raw_category', label_to='nyu40id'): assert os.path.isfile(filename) mapping = dict() with open(filename) as csvfile: reader = csv.DictReader(csvfile, delimiter='\t') for row in reader: mapping[row[label_from]] = int(row[label_to]) # if ints convert if represents_int([key for key in mapping.keys()][0]): mapping = {int(k):v for k,v in mapping.items()} return mapping # input: scene_types.txt or scene_types_all.txt def read_scene_types_mapping(filename, remove_spaces=True): assert os.path.isfile(filename) mapping = dict() lines = open(filename).read().splitlines() lines = [line.split('\t') for line in lines] if remove_spaces: mapping = { x[1].strip():int(x[0]) for x in lines } else: mapping = { x[1]:int(x[0]) for x in lines } return mapping # color by label def visualize_label_image(filename, image): height = image.shape[0] width = image.shape[1] vis_image = np.zeros([height, width, 3], dtype=np.uint8) color_palette = create_color_palette() for idx, color in enumerate(color_palette): vis_image[image==idx] = color imageio.imwrite(filename, vis_image) # color by different instances (mod length of color palette) def visualize_instance_image(filename, image): height = image.shape[0] width = image.shape[1] vis_image = np.zeros([height, width, 3], dtype=np.uint8) color_palette = create_color_palette() instances = np.unique(image) for idx, inst in enumerate(instances): vis_image[image==inst] = color_palette[inst%len(color_palette)] imageio.imwrite(filename, vis_image)
ContrastiveSceneContexts-main
downstream/semseg/datasets/evaluation/scannet_benchmark_utils/scripts/util.py
import os, sys import json try: import numpy as np except: print("Failed to import numpy package.") sys.exit(-1) try: from plyfile import PlyData, PlyElement except: print("Please install the module 'plyfile' for PLY i/o, e.g.") print("pip install plyfile") sys.exit(-1) import util # matrix: 4x4 np array # points Nx3 np array def transform_points(matrix, points): assert len(points.shape) == 2 and points.shape[1] == 3 num_points = points.shape[0] p = np.concatenate([points, np.ones((num_points, 1))], axis=1) p = np.matmul(matrix, np.transpose(p)) p = np.transpose(p) p[:,:3] /= p[:,3,None] return p[:,:3] def export_ids(filename, ids): with open(filename, 'w') as f: for id in ids: f.write('%d\n' % id) def load_ids(filename): ids = open(filename).read().splitlines() ids = np.array(ids, dtype=np.int64) return ids def read_mesh_vertices(filename): assert os.path.isfile(filename) with open(filename, 'rb') as f: plydata = PlyData.read(f) num_verts = plydata['vertex'].count vertices = np.zeros(shape=[num_verts, 3], dtype=np.float32) vertices[:,0] = plydata['vertex'].data['x'] vertices[:,1] = plydata['vertex'].data['y'] vertices[:,2] = plydata['vertex'].data['z'] return vertices # export 3d instance labels for instance evaluation def export_instance_ids_for_eval(filename, label_ids, instance_ids): assert label_ids.shape[0] == instance_ids.shape[0] output_mask_path_relative = 'predicted_masks' name = os.path.splitext(os.path.basename(filename))[0] output_mask_path = os.path.join(os.path.dirname(filename), output_mask_path_relative) if not os.path.isdir(output_mask_path): os.mkdir(output_mask_path) insts = np.unique(instance_ids) zero_mask = np.zeros(shape=(instance_ids.shape[0]), dtype=np.int32) with open(filename, 'w') as f: for idx, inst_id in enumerate(insts): if inst_id == 0: # 0 -> no instance for this vertex continue loc = np.where(instance_ids == inst_id) label_id = label_ids[loc[0][0]] # write mask indexing output_mask_file_relavtive = os.path.join(output_mask_path_relative, name + '_' + str(idx) + '.txt') f.write('%s %d %f\n' % (output_mask_file_relavtive, label_id, 1.0)) # write mask mask = np.copy(zero_mask) mask[loc[0]] = 1 output_mask_file = os.path.join(output_mask_path, name + '_' + str(idx) + '.txt') export_ids(output_mask_file, mask) # ------------ Instance Utils ------------ # class Instance(object): instance_id = 0 label_id = 0 vert_count = 0 med_dist = -1 dist_conf = 0.0 def __init__(self, mesh_vert_instances, instance_id): if (instance_id == -1): return self.instance_id = int(instance_id) self.label_id = int(self.get_label_id(instance_id)) self.vert_count = int(self.get_instance_verts(mesh_vert_instances, instance_id)) def get_label_id(self, instance_id): return int(instance_id // 1000) def get_instance_verts(self, mesh_vert_instances, instance_id): return (mesh_vert_instances == instance_id).sum() def to_json(self): return json.dumps(self, default=lambda o: o.__dict__, sort_keys=True, indent=4) def to_dict(self): dict = {} dict["instance_id"] = self.instance_id dict["label_id"] = self.label_id dict["vert_count"] = self.vert_count dict["med_dist"] = self.med_dist dict["dist_conf"] = self.dist_conf return dict def from_json(self, data): self.instance_id = int(data["instance_id"]) self.label_id = int(data["label_id"]) self.vert_count = int(data["vert_count"]) if ("med_dist" in data): self.med_dist = float(data["med_dist"]) self.dist_conf = float(data["dist_conf"]) def __str__(self): return "("+str(self.instance_id)+")" def read_instance_prediction_file(filename, pred_path): lines = open(filename).read().splitlines() instance_info = {} abs_pred_path = os.path.abspath(pred_path) for line in lines: parts = line.split(' ') if len(parts) != 3: util.print_error('invalid instance prediction file. Expected (per line): [rel path prediction] [label id prediction] [confidence prediction]') if os.path.isabs(parts[0]): util.print_error('invalid instance prediction file. First entry in line must be a relative path') mask_file = os.path.join(os.path.dirname(filename), parts[0]) mask_file = os.path.abspath(mask_file) # check that mask_file lives inside prediction path if os.path.commonprefix([mask_file, abs_pred_path]) != abs_pred_path: util.print_error('predicted mask {} in prediction text file {} points outside of prediction path.'.format(mask_file,filename)) info = {} info["label_id"] = int(float(parts[1])) info["conf"] = float(parts[2]) instance_info[mask_file] = info return instance_info def get_instances(ids, class_ids, class_labels, id2label): instances = {} for label in class_labels: instances[label] = [] instance_ids = np.unique(ids) for id in instance_ids: if id == 0: continue inst = Instance(ids, id) if inst.label_id in class_ids: instances[id2label[inst.label_id]].append(inst.to_dict()) return instances
ContrastiveSceneContexts-main
downstream/semseg/datasets/evaluation/scannet_benchmark_utils/scripts/util_3d.py
# Evaluates semantic instance task # Adapted from the CityScapes evaluation: https://github.com/mcordts/cityscapesScripts/tree/master/cityscapesscripts/evaluation # Input: # - path to .txt prediction files # - path to .txt ground truth files # - output file to write results to # Each .txt prediction file look like: # [(pred0) rel. path to pred. mask over verts as .txt] [(pred0) label id] [(pred0) confidence] # [(pred1) rel. path to pred. mask over verts as .txt] [(pred1) label id] [(pred1) confidence] # [(pred2) rel. path to pred. mask over verts as .txt] [(pred2) label id] [(pred2) confidence] # ... # # NOTE: The prediction files must live in the root of the given prediction path. # Predicted mask .txt files must live in a subfolder. # Additionally, filenames must not contain spaces. # The relative paths to predicted masks must contain one integer per line, # where each line corresponds to vertices in the *_vh_clean_2.ply (in that order). # Non-zero integers indicate part of the predicted instance. # The label ids specify the class of the corresponding mask. # Confidence is a float confidence score of the mask. # # Note that only the valid classes are used for evaluation, # i.e., any ground truth label not in the valid label set # is ignored in the evaluation. # # example usage: evaluate_semantic_instance.py --scan_path [path to scan data] --output_file [output file] # python imports import logging import math import os, sys, argparse import inspect from copy import deepcopy import argparse import numpy as np #currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) #parentdir = os.path.dirname(currentdir) #sys.path.insert(0,parentdir) import util_3d import util def setup_logging(): ch = logging.StreamHandler(sys.stdout) logging.getLogger().setLevel(logging.INFO) logging.basicConfig( format=os.uname()[1].split('.')[0] + ' %(asctime)s %(message)s', datefmt='%m/%d %H:%M:%S', handlers=[ch]) class Evaluator: # ---------- Evaluation params ---------- # # overlaps for evaluation overlaps = np.append(np.arange(0.5,0.95,0.05), 0.25) # minimum region size for evaluation [verts] min_region_sizes = np.array( [ 100 ] ) # distance thresholds [m] distance_threshes = np.array( [ float('inf') ] ) # distance confidences distance_confs = np.array( [ -float('inf') ] ) def __init__(self, CLASS_LABELS, VALID_CLASS_IDS, benchmark=False): # ---------- Label info ---------- # #CLASS_LABELS = ['cabinet', 'bed', 'chair', 'sofa', 'table', 'door', # 'window', 'bookshelf', 'picture', 'counter', # 'desk', 'curtain', 'refrigerator', 'shower curtain', # 'toilet', 'sink', 'bathtub', 'otherfurniture'] #VALID_CLASS_IDS = np.array([3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39]) self.CLASS_LABELS = CLASS_LABELS self.VALID_CLASS_IDS = VALID_CLASS_IDS self.ID_TO_LABEL = {} self.LABEL_TO_ID = {} for i in range(len(VALID_CLASS_IDS)): self.LABEL_TO_ID[CLASS_LABELS[i]] = VALID_CLASS_IDS[i] self.ID_TO_LABEL[VALID_CLASS_IDS[i]] = CLASS_LABELS[i] self.pred_instances = {} self.gt_instances = {} self.benchmark = benchmark def evaluate_matches(self, matches): # results: class x overlap ap = np.zeros( (len(self.distance_threshes) , len(self.CLASS_LABELS) , len(self.overlaps)) , np.float ) for di, (min_region_size, distance_thresh, distance_conf) in enumerate(zip(self.min_region_sizes, self.distance_threshes, self.distance_confs)): for oi, overlap_th in enumerate(self.overlaps): pred_visited = {} for m in matches: for p in matches[m]['pred']: for label_name in self.CLASS_LABELS: for p in matches[m]['pred'][label_name]: if 'filename' in p: pred_visited[p['filename']] = False for li, label_name in enumerate(self.CLASS_LABELS): y_true = np.empty(0) y_score = np.empty(0) hard_false_negatives = 0 has_gt = False has_pred = False for m in matches: pred_instances = matches[m]['pred'][label_name] gt_instances = matches[m]['gt'][label_name] # filter groups in ground truth gt_instances = [ gt for gt in gt_instances if gt['instance_id']>=1000 and gt['vert_count']>=min_region_size and gt['med_dist']<=distance_thresh and gt['dist_conf']>=distance_conf ] if gt_instances: has_gt = True if pred_instances: has_pred = True cur_true = np.ones ( len(gt_instances) ) cur_score = np.ones ( len(gt_instances) ) * (-float("inf")) cur_match = np.zeros( len(gt_instances) , dtype=np.bool ) # collect matches for (gti,gt) in enumerate(gt_instances): found_match = False num_pred = len(gt['matched_pred']) for pred in gt['matched_pred']: # greedy assignments if pred_visited[pred['filename']]: continue overlap = float(pred['intersection']) / (gt['vert_count']+pred['vert_count']-pred['intersection']) if overlap > overlap_th: confidence = pred['confidence'] # if already have a prediction for this gt, # the prediction with the lower score is automatically a false positive if cur_match[gti]: max_score = max( cur_score[gti] , confidence ) min_score = min( cur_score[gti] , confidence ) cur_score[gti] = max_score # append false positive cur_true = np.append(cur_true,0) cur_score = np.append(cur_score,min_score) cur_match = np.append(cur_match,True) # otherwise set score else: found_match = True cur_match[gti] = True cur_score[gti] = confidence pred_visited[pred['filename']] = True if not found_match: hard_false_negatives += 1 # remove non-matched ground truth instances cur_true = cur_true [ cur_match==True ] cur_score = cur_score[ cur_match==True ] # collect non-matched predictions as false positive for pred in pred_instances: found_gt = False for gt in pred['matched_gt']: overlap = float(gt['intersection']) / (gt['vert_count']+pred['vert_count']-gt['intersection']) if overlap > overlap_th: found_gt = True break if not found_gt: num_ignore = pred['void_intersection'] for gt in pred['matched_gt']: # group? if gt['instance_id'] < 1000: num_ignore += gt['intersection'] # small ground truth instances if gt['vert_count'] < min_region_size or gt['med_dist']>distance_thresh or gt['dist_conf']<distance_conf: num_ignore += gt['intersection'] proportion_ignore = float(num_ignore)/pred['vert_count'] # if not ignored append false positive if proportion_ignore <= overlap_th: cur_true = np.append(cur_true,0) confidence = pred["confidence"] cur_score = np.append(cur_score,confidence) # append to overall results y_true = np.append(y_true,cur_true) y_score = np.append(y_score,cur_score) # compute average precision if has_gt and has_pred: # compute precision recall curve first # sorting and cumsum score_arg_sort = np.argsort(y_score) y_score_sorted = y_score[score_arg_sort] y_true_sorted = y_true[score_arg_sort] y_true_sorted_cumsum = np.cumsum(y_true_sorted) # unique thresholds (thresholds,unique_indices) = np.unique( y_score_sorted , return_index=True ) num_prec_recall = len(unique_indices) + 1 # prepare precision recall num_examples = len(y_score_sorted) try: num_true_examples = y_true_sorted_cumsum[-1] except: num_true_examples = 0 precision = np.zeros(num_prec_recall) recall = np.zeros(num_prec_recall) # deal with the first point y_true_sorted_cumsum = np.append( y_true_sorted_cumsum , 0 ) # deal with remaining for idx_res,idx_scores in enumerate(unique_indices): cumsum = y_true_sorted_cumsum[idx_scores-1] tp = num_true_examples - cumsum fp = num_examples - idx_scores - tp fn = cumsum + hard_false_negatives p = float(tp)/(tp+fp) r = float(tp)/(tp+fn) precision[idx_res] = p recall [idx_res] = r # first point in curve is artificial precision[-1] = 1. recall [-1] = 0. # compute average of precision-recall curve recall_for_conv = np.copy(recall) recall_for_conv = np.append(recall_for_conv[0], recall_for_conv) recall_for_conv = np.append(recall_for_conv, 0.) stepWidths = np.convolve(recall_for_conv,[-0.5,0,0.5],'valid') # integrate is now simply a dot product ap_current = np.dot(precision, stepWidths) elif has_gt: ap_current = 0.0 else: ap_current = float('nan') ap[di,li,oi] = ap_current return ap def compute_averages(self, aps): d_inf = 0 o50 = np.where(np.isclose(self.overlaps,0.5)) o25 = np.where(np.isclose(self.overlaps,0.25)) oAllBut25 = np.where(np.logical_not(np.isclose(self.overlaps,0.25))) avg_dict = {} #avg_dict['all_ap'] = np.nanmean(aps[ d_inf,:,: ]) avg_dict['all_ap'] = np.nanmean(aps[ d_inf,:,oAllBut25]) avg_dict['all_ap_50%'] = np.nanmean(aps[ d_inf,:,o50]) avg_dict['all_ap_25%'] = np.nanmean(aps[ d_inf,:,o25]) avg_dict["classes"] = {} for (li,label_name) in enumerate(self.CLASS_LABELS): avg_dict["classes"][label_name] = {} #avg_dict["classes"][label_name]["ap"] = np.average(aps[ d_inf,li, :]) avg_dict["classes"][label_name]["ap"] = np.average(aps[ d_inf,li,oAllBut25]) avg_dict["classes"][label_name]["ap50%"] = np.average(aps[ d_inf,li,o50]) avg_dict["classes"][label_name]["ap25%"] = np.average(aps[ d_inf,li,o25]) return avg_dict def assign_instances_for_scan(self, scene_id): # get gt instances gt_ids = self.gt_instances[scene_id] gt_instances = util_3d.get_instances(gt_ids, self.VALID_CLASS_IDS, self.CLASS_LABELS, self.ID_TO_LABEL) # associate gt2pred = deepcopy(gt_instances) for label in gt2pred: for gt in gt2pred[label]: gt['matched_pred'] = [] pred2gt = {} for label in self.CLASS_LABELS: pred2gt[label] = [] num_pred_instances = 0 # mask of void labels in the groundtruth bool_void = np.logical_not(np.in1d(gt_ids//1000, self.VALID_CLASS_IDS)) # go thru all prediction masks for instance_id in self.pred_instances[scene_id]: label_id = int(self.pred_instances[scene_id][instance_id]['label_id']) conf = self.pred_instances[scene_id][instance_id]['conf'] if not label_id in self.ID_TO_LABEL: continue label_name = self.ID_TO_LABEL[label_id] # read the mask pred_mask = self.pred_instances[scene_id][instance_id]['pred_mask'] # convert to binary num = np.count_nonzero(pred_mask) if num < self.min_region_sizes[0]: continue # skip if empty pred_instance = {} pred_instance['filename'] = str(scene_id) + '/' + str(instance_id) pred_instance['pred_id'] = num_pred_instances pred_instance['label_id'] = label_id pred_instance['vert_count'] = num pred_instance['confidence'] = conf pred_instance['void_intersection'] = np.count_nonzero(np.logical_and(bool_void, pred_mask)) # matched gt instances matched_gt = [] # go thru all gt instances with matching label for (gt_num, gt_inst) in enumerate(gt2pred[label_name]): intersection = np.count_nonzero(np.logical_and(gt_ids == gt_inst['instance_id'], pred_mask)) if intersection > 0: gt_copy = gt_inst.copy() pred_copy = pred_instance.copy() gt_copy['intersection'] = intersection pred_copy['intersection'] = intersection matched_gt.append(gt_copy) gt2pred[label_name][gt_num]['matched_pred'].append(pred_copy) pred_instance['matched_gt'] = matched_gt num_pred_instances += 1 pred2gt[label_name].append(pred_instance) return gt2pred, pred2gt def print_results(self, avgs): sep = "" col1 = ":" lineLen = 64 logging.info("") logging.info("#"*lineLen) line = "" line += "{:<15}".format("what" ) + sep + col1 line += "{:>15}".format("AP" ) + sep line += "{:>15}".format("AP_50%" ) + sep line += "{:>15}".format("AP_25%" ) + sep logging.info(line) logging.info("#"*lineLen) for (li,label_name) in enumerate(self.CLASS_LABELS): ap_avg = avgs["classes"][label_name]["ap"] ap_50o = avgs["classes"][label_name]["ap50%"] ap_25o = avgs["classes"][label_name]["ap25%"] line = "{:<15}".format(label_name) + sep + col1 line += sep + "{:>15.3f}".format(ap_avg ) + sep line += sep + "{:>15.3f}".format(ap_50o ) + sep line += sep + "{:>15.3f}".format(ap_25o ) + sep logging.info(line) all_ap_avg = avgs["all_ap"] all_ap_50o = avgs["all_ap_50%"] all_ap_25o = avgs["all_ap_25%"] logging.info("-"*lineLen) line = "{:<15}".format("average") + sep + col1 line += "{:>15.3f}".format(all_ap_avg) + sep line += "{:>15.3f}".format(all_ap_50o) + sep line += "{:>15.3f}".format(all_ap_25o) + sep logging.info(line) logging.info("") @staticmethod def write_to_benchmark(output_path='benchmark_instance', scene_id=None, pred_inst={}): os.makedirs(output_path, exist_ok=True) os.makedirs(os.path.join(output_path, 'predicted_masks'), exist_ok=True) f = open(os.path.join(output_path, scene_id + '.txt'), 'w') for instance_id in pred_inst: # for pred instance id starts from 0; in gt valid instance id starts from 1 score = pred_inst[instance_id]['conf'] label = pred_inst[instance_id]['label_id'] mask = pred_inst[instance_id]['pred_mask'] f.write('predicted_masks/{}_{:03d}.txt {} {:.4f}'.format(scene_id, instance_id, label, score)) if instance_id < len(pred_inst) - 1: f.write('\n') util_3d.export_ids(os.path.join(output_path, 'predicted_masks', scene_id + '_%03d.txt' % (instance_id)), mask) f.close() def add_prediction(self, instance_info, id): self.pred_instances[id] = instance_info def add_gt(self, instance_info, id): self.gt_instances[id] = instance_info def evaluate(self): print('evaluating', len(self.pred_instances), 'scans...') matches = {} for i, scene_id in enumerate(self.pred_instances): gt2pred, pred2gt = self.assign_instances_for_scan(scene_id) matches[scene_id] = {} matches[scene_id]['gt'] = gt2pred matches[scene_id]['pred'] = pred2gt sys.stdout.write("\rscans processed: {}".format(i+1)) sys.stdout.flush() print('') ap_scores = self.evaluate_matches(matches) avgs = self.compute_averages(ap_scores) # print self.print_results(avgs) return avgs['all_ap'], avgs['all_ap_50%'], avgs['all_ap_25%'] def write_result_file(avgs, filename): _SPLITTER = ',' with open(filename, 'w') as f: f.write(_SPLITTER.join(['class', 'class id', 'ap', 'ap50', 'ap25']) + '\n') for i in range(len(VALID_CLASS_IDS)): class_name = CLASS_LABELS[i] class_id = VALID_CLASS_IDS[i] ap = avgs["classes"][class_name]["ap"] ap50 = avgs["classes"][class_name]["ap50%"] ap25 = avgs["classes"][class_name]["ap25%"] f.write(_SPLITTER.join([str(x) for x in [class_name, class_id, ap, ap50, ap25]]) + '\n') def config(): parser = argparse.ArgumentParser() parser.add_argument('--pred_path', required=True, help='path to directory of predicted .txt files') parser.add_argument('--gt_path', required=True, help='path to directory of gt .txt files') parser.add_argument('--output_file', default='semantic_instance_evaluation.txt', help='output file [default: semantic_instance_evaluation.txt]') opt = parser.parse_args() return opt if __name__ == '__main__': opt = config() setup_logging() #-----------------scannet---------------------- CLASS_LABELS = ['cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', 'bookshelf', 'picture', 'counter', 'desk', 'curtain', 'refrigerator', 'shower curtain', 'toilet', 'sink', 'bathtub', 'otherfurniture'] VALID_CLASS_IDS = np.array([3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39]) evaluator = Evaluator(CLASS_LABELS=CLASS_LABELS, VALID_CLASS_IDS=VALID_CLASS_IDS) print('reading', len(os.listdir(opt.pred_path))-1, 'scans...') for i, pred_file in enumerate(os.listdir(opt.pred_path)): if os.path.isdir(os.path.join(opt.pred_path, pred_file)): continue scene_id = pred_file[:12] sys.stdout.write("\rscans read: {}".format(i+1)) sys.stdout.flush() gt_file = os.path.join(opt.gt_path, pred_file) gt_ids = util_3d.load_ids(gt_file) evaluator.add_gt(gt_ids, scene_id) instances = util_3d.read_instance_prediction_file(os.path.join(opt.pred_path,pred_file), opt.pred_path) for pred_mask_file in instances: # read the mask pred_mask = util_3d.load_ids(pred_mask_file) instances[pred_mask_file]['pred_mask'] = pred_mask evaluator.add_prediction(instances, scene_id) print('') _, _, _ = evaluator.evaluate()
ContrastiveSceneContexts-main
downstream/semseg/datasets/evaluation/scannet_benchmark_utils/scripts/evaluate_semantic_instance.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import glob import numpy as np import os import torch from tqdm import tqdm from lib.utils import mkdir_p from lib.pc_utils import save_point_cloud, read_plyfile import MinkowskiEngine as ME STANFORD_3D_IN_PATH = '/checkpoint/jihou/data/stanford3d/Stanford3dDataset_v1.2/' STANFORD_3D_OUT_PATH = '/checkpoint/jihou/data/stanford3d/pointcloud_pth' STANFORD_3D_TO_SEGCLOUD_LABEL = { 4: 0, 8: 1, 12: 2, 1: 3, 6: 4, 13: 5, 7: 6, 5: 7, 11: 8, 3: 9, 9: 10, 2: 11, 0: 12, } class Stanford3DDatasetConverter: CLASSES = [ 'clutter', 'beam', 'board', 'bookcase', 'ceiling', 'chair', 'column', 'door', 'floor', 'sofa', 'stairs', 'table', 'wall', 'window' ] TRAIN_TEXT = 'train' VAL_TEXT = 'val' TEST_TEXT = 'test' @classmethod def read_txt(cls, txtfile): # Read txt file and parse its content. with open(txtfile) as f: pointcloud = [] for l in f: try: pointcloud += [[float(li) for li in l.split()]] except Exception as e: print(e, txtfile) continue # pointcloud = [l.split() for l in f] # Load point cloud to named numpy array. pointcloud = np.array(pointcloud).astype(np.float32) assert pointcloud.shape[1] == 6 xyz = pointcloud[:, :3].astype(np.float32) rgb = pointcloud[:, 3:].astype(np.uint8) return xyz, rgb @classmethod def convert_to_ply(cls, root_path, out_path, save_pth=False): """Convert Stanford3DDataset to PLY format that is compatible with Synthia dataset. Assumes file structure as given by the dataset. Outputs the processed PLY files to `STANFORD_3D_OUT_PATH`. """ txtfiles = glob.glob(os.path.join(root_path, '*/*/*.txt')) for txtfile in tqdm(txtfiles): file_sp = os.path.normpath(txtfile).split(os.path.sep) target_path = os.path.join(out_path, file_sp[-3]) out_file = os.path.join(target_path, file_sp[-2] + '.ply') if save_pth: out_file = os.path.join(target_path, file_sp[-2] + '.pth') if os.path.exists(out_file): print(out_file, ' exists') continue annotation, _ = os.path.split(txtfile) subclouds = glob.glob(os.path.join(annotation, 'Annotations/*.txt')) coords, feats, labels, instances = [], [], [], [] for inst, subcloud in enumerate(subclouds): # Read ply file and parse its rgb values. xyz, rgb = cls.read_txt(subcloud) _, annotation_subfile = os.path.split(subcloud) clsidx = cls.CLASSES.index(annotation_subfile.split('_')[0]) coords.append(xyz) feats.append(rgb) labels.append(np.ones((len(xyz), 1), dtype=np.int32) * clsidx) instances.append(np.ones((len(xyz), 1), dtype=np.int32) * inst) if len(coords) == 0: print(txtfile, ' has 0 files.') else: # Concat coords = np.concatenate(coords, 0) feats = np.concatenate(feats, 0) labels = np.concatenate(labels, 0) instances = np.concatenate(instances, 0) inds, collabels = ME.utils.sparse_quantize( coords, feats, labels, return_index=True, ignore_label=255, quantization_size=0.01 # 1cm ) pointcloud = np.concatenate((coords[inds], feats[inds], collabels[:, None]), axis=1) if save_pth: pointcloud = np.concatenate((coords[inds], feats[inds], collabels[:, None], instances[inds]), axis=1) # Write ply file. mkdir_p(target_path) if save_pth: torch.save(pointcloud, out_file) continue save_point_cloud(pointcloud, out_file, with_label=True, verbose=False) def generate_splits(stanford_out_path, suffix='ply'): """Takes preprocessed out path and generate txt files""" split_path = './splits/stanford' mkdir_p(split_path) for i in range(1, 7): curr_path = os.path.join(stanford_out_path, f'Area_{i}') files = glob.glob(os.path.join(curr_path, '*.{}'.format(suffix))) files = [os.path.relpath(full_path, stanford_out_path) for full_path in files] out_txt = os.path.join(split_path, f'area{i}.txt') with open(out_txt, 'w') as f: f.write('\n'.join(files)) if __name__ == '__main__': Stanford3DDatasetConverter.convert_to_ply(STANFORD_3D_IN_PATH, STANFORD_3D_OUT_PATH, save_pth=True) generate_splits(STANFORD_3D_OUT_PATH, 'pth')
ContrastiveSceneContexts-main
downstream/semseg/datasets/preprocessing/stanford/stanford.py
import os import sys import plyfile import json import time import torch import argparse import numpy as np def get_raw2scannet_label_map(): lines = [line.rstrip() for line in open('scannetv2-labels.combined.tsv')] lines = lines[1:] raw2scannet = {} for i in range(len(lines)): elements = lines[i].split('\t') # raw_name = elements[0] # nyu40_name = elements[6] raw_name = elements[1] nyu40_id = elements[4] nyu40_name = elements[7] raw2scannet[raw_name] = nyu40_id return raw2scannet g_raw2scannet = get_raw2scannet_label_map() RAW2SCANNET = g_raw2scannet def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--input', default='/canis/Datasets/ScanNet/public/v2/scans/') parser.add_argument('--output', default='./output') opt = parser.parse_args() return opt def main(config): for scene_name in os.listdir(config.input): print(scene_name) # Over-segmented segments: maps from segment to vertex/point IDs segid_to_pointid = {} segfile = os.path.join(config.input, scene_name, '%s_vh_clean_2.0.010000.segs.json'%(scene_name)) with open(segfile) as jsondata: d = json.load(jsondata) seg = d['segIndices'] for i in range(len(seg)): if seg[i] not in segid_to_pointid: segid_to_pointid[seg[i]] = [] segid_to_pointid[seg[i]].append(i) # Raw points in XYZRGBA ply_filename = os.path.join(config.input, scene_name, '%s_vh_clean_2.ply' % (scene_name)) f = plyfile.PlyData().read(ply_filename) points = np.array([list(x) for x in f.elements[0]]) # Instances over-segmented segment IDs: annotation on segments instance_segids = [] labels = [] annotation_filename = os.path.join(config.input, scene_name, '%s.aggregation.json'%(scene_name)) with open(annotation_filename) as jsondata: d = json.load(jsondata) for x in d['segGroups']: instance_segids.append(x['segments']) labels.append(x['label']) # Each instance's points instance_labels = np.zeros(points.shape[0]) semantic_labels = np.zeros(points.shape[0]) for i in range(len(instance_segids)): segids = instance_segids[i] pointids = [] for segid in segids: pointids += segid_to_pointid[segid] pointids = np.array(pointids) instance_labels[pointids] = i+1 semantic_labels[pointids] = RAW2SCANNET[labels[i]] colors = points[:,3:6] points = points[:,0:3] # XYZ+RGB+NORMAL torch.save((points, colors, semantic_labels, instance_labels), os.path.join(config.output, scene_name+'.pth')) if __name__=='__main__': config = parse_args() os.makedirs(config.output, exist_ok=True) main(config)
ContrastiveSceneContexts-main
downstream/semseg/datasets/preprocessing/scannet/collect_indoor3d_data.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import random from torch.nn import Module from MinkowskiEngine import SparseTensor class Wrapper(Module): """ Wrapper for the segmentation networks. """ OUT_PIXEL_DIST = -1 def __init__(self, NetClass, in_nchannel, out_nchannel, config): super(Wrapper, self).__init__() self.initialize_filter(NetClass, in_nchannel, out_nchannel, config) def initialize_filter(self, NetClass, in_nchannel, out_nchannel, config): raise NotImplementedError('Must initialize a model and a filter') def forward(self, x, coords, colors=None): soutput = self.model(x) # During training, make the network invariant to the filter if not self.training or random.random() < 0.5: # Filter requires the model to finish the forward pass wrapper_coords = self.filter.initialize_coords(self.model, coords, colors) finput = SparseTensor(soutput.F, wrapper_coords) soutput = self.filter(finput) return soutput
ContrastiveSceneContexts-main
downstream/semseg/models/wrapper.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from models.resnet import ResNetBase, get_norm from models.modules.common import ConvType, NormType, conv, conv_tr from models.modules.resnet_block import BasicBlock, BasicBlockINBN, Bottleneck import torch.nn as nn import MinkowskiEngine as ME from MinkowskiEngine import MinkowskiReLU import MinkowskiEngine.MinkowskiOps as me class MinkUNetBase(ResNetBase): BLOCK = None PLANES = (64, 128, 256, 512, 256, 128, 128) DILATIONS = (1, 1, 1, 1, 1, 1) LAYERS = (2, 2, 2, 2, 2, 2) INIT_DIM = 64 OUT_PIXEL_DIST = 1 NORM_TYPE = NormType.BATCH_NORM NON_BLOCK_CONV_TYPE = ConvType.SPATIAL_HYPERCUBE CONV_TYPE = ConvType.SPATIAL_HYPERCUBE_TEMPORAL_HYPERCROSS # To use the model, must call initialize_coords before forward pass. # Once data is processed, call clear to reset the model before calling initialize_coords def __init__(self, in_channels, out_channels, config, D=3, **kwargs): super(MinkUNetBase, self).__init__(in_channels, out_channels, config, D) def network_initialization(self, in_channels, out_channels, config, D): # Setup net_metadata dilations = self.DILATIONS bn_momentum = config.bn_momentum def space_n_time_m(n, m): return n if D == 3 else [n, n, n, m] if D == 4: self.OUT_PIXEL_DIST = space_n_time_m(self.OUT_PIXEL_DIST, 1) # Output of the first conv concated to conv6 self.inplanes = self.INIT_DIM self.conv1p1s1 = conv( in_channels, self.inplanes, kernel_size=space_n_time_m(config.conv1_kernel_size, 1), stride=1, dilation=1, conv_type=self.NON_BLOCK_CONV_TYPE, D=D) self.bn1 = get_norm(self.NORM_TYPE, self.PLANES[0], D, bn_momentum=bn_momentum) self.block1 = self._make_layer( self.BLOCK, self.PLANES[0], self.LAYERS[0], dilation=dilations[0], norm_type=self.NORM_TYPE, bn_momentum=bn_momentum) self.conv2p1s2 = conv( self.inplanes, self.inplanes, kernel_size=space_n_time_m(2, 1), stride=space_n_time_m(2, 1), dilation=1, conv_type=self.NON_BLOCK_CONV_TYPE, D=D) self.bn2 = get_norm(self.NORM_TYPE, self.inplanes, D, bn_momentum=bn_momentum) self.block2 = self._make_layer( self.BLOCK, self.PLANES[1], self.LAYERS[1], dilation=dilations[1], norm_type=self.NORM_TYPE, bn_momentum=bn_momentum) self.conv3p2s2 = conv( self.inplanes, self.inplanes, kernel_size=space_n_time_m(2, 1), stride=space_n_time_m(2, 1), dilation=1, conv_type=self.NON_BLOCK_CONV_TYPE, D=D) self.bn3 = get_norm(self.NORM_TYPE, self.inplanes, D, bn_momentum=bn_momentum) self.block3 = self._make_layer( self.BLOCK, self.PLANES[2], self.LAYERS[2], dilation=dilations[2], norm_type=self.NORM_TYPE, bn_momentum=bn_momentum) self.conv4p4s2 = conv( self.inplanes, self.inplanes, kernel_size=space_n_time_m(2, 1), stride=space_n_time_m(2, 1), dilation=1, conv_type=self.NON_BLOCK_CONV_TYPE, D=D) self.bn4 = get_norm(self.NORM_TYPE, self.inplanes, D, bn_momentum=bn_momentum) self.block4 = self._make_layer( self.BLOCK, self.PLANES[3], self.LAYERS[3], dilation=dilations[3], norm_type=self.NORM_TYPE, bn_momentum=bn_momentum) self.convtr4p8s2 = conv_tr( self.inplanes, self.PLANES[4], kernel_size=space_n_time_m(2, 1), upsample_stride=space_n_time_m(2, 1), dilation=1, bias=False, conv_type=self.NON_BLOCK_CONV_TYPE, D=D) self.bntr4 = get_norm(self.NORM_TYPE, self.PLANES[4], D, bn_momentum=bn_momentum) self.inplanes = self.PLANES[4] + self.PLANES[2] * self.BLOCK.expansion self.block5 = self._make_layer( self.BLOCK, self.PLANES[4], self.LAYERS[4], dilation=dilations[4], norm_type=self.NORM_TYPE, bn_momentum=bn_momentum) self.convtr5p4s2 = conv_tr( self.inplanes, self.PLANES[5], kernel_size=space_n_time_m(2, 1), upsample_stride=space_n_time_m(2, 1), dilation=1, bias=False, conv_type=self.NON_BLOCK_CONV_TYPE, D=D) self.bntr5 = get_norm(self.NORM_TYPE, self.PLANES[5], D, bn_momentum=bn_momentum) self.inplanes = self.PLANES[5] + self.PLANES[1] * self.BLOCK.expansion self.block6 = self._make_layer( self.BLOCK, self.PLANES[5], self.LAYERS[5], dilation=dilations[5], norm_type=self.NORM_TYPE, bn_momentum=bn_momentum) self.convtr6p2s2 = conv_tr( self.inplanes, self.PLANES[6], kernel_size=space_n_time_m(2, 1), upsample_stride=space_n_time_m(2, 1), dilation=1, bias=False, conv_type=self.NON_BLOCK_CONV_TYPE, D=D) self.bntr6 = get_norm(self.NORM_TYPE, self.PLANES[6], D, bn_momentum=bn_momentum) self.relu = MinkowskiReLU(inplace=True) self.final = nn.Sequential( conv( self.PLANES[6] + self.PLANES[0] * self.BLOCK.expansion, 512, kernel_size=1, stride=1, dilation=1, bias=False, D=D), ME.MinkowskiBatchNorm(512), ME.MinkowskiReLU(), conv(512, out_channels, kernel_size=1, stride=1, dilation=1, bias=True, D=D)) def forward(self, x): out = self.conv1p1s1(x) out = self.bn1(out) out = self.relu(out) out_b1p1 = self.block1(out) out = self.conv2p1s2(out_b1p1) out = self.bn2(out) out = self.relu(out) out_b2p2 = self.block2(out) out = self.conv3p2s2(out_b2p2) out = self.bn3(out) out = self.relu(out) out_b3p4 = self.block3(out) out = self.conv4p4s2(out_b3p4) out = self.bn4(out) out = self.relu(out) # pixel_dist=8 out = self.block4(out) out = self.convtr4p8s2(out) out = self.bntr4(out) out = self.relu(out) out = me.cat(out, out_b3p4) out = self.block5(out) out = self.convtr5p4s2(out) out = self.bntr5(out) out = self.relu(out) out = me.cat(out, out_b2p2) out = self.block6(out) out = self.convtr6p2s2(out) out = self.bntr6(out) out = self.relu(out) out = me.cat(out, out_b1p1) return self.final(out) class ResUNet14(MinkUNetBase): BLOCK = BasicBlock LAYERS = (1, 1, 1, 1, 1, 1) class ResUNet18(MinkUNetBase): BLOCK = BasicBlock LAYERS = (2, 2, 2, 2, 2, 2) class ResUNet18INBN(ResUNet18): NORM_TYPE = NormType.INSTANCE_BATCH_NORM BLOCK = BasicBlockINBN class ResUNet34(MinkUNetBase): BLOCK = BasicBlock LAYERS = (3, 4, 6, 3, 2, 2) class ResUNet50(MinkUNetBase): BLOCK = Bottleneck LAYERS = (3, 4, 6, 3, 2, 2) class ResUNet101(MinkUNetBase): BLOCK = Bottleneck LAYERS = (3, 4, 23, 3, 2, 2) class ResUNet14D(ResUNet14): PLANES = (64, 128, 256, 512, 512, 512, 512) class ResUNet18D(ResUNet18): PLANES = (64, 128, 256, 512, 512, 512, 512) class ResUNet34D(ResUNet34): PLANES = (64, 128, 256, 512, 512, 512, 512) class ResUNet34E(ResUNet34): INIT_DIM = 32 PLANES = (32, 64, 128, 256, 128, 64, 64) class ResUNet34F(ResUNet34): INIT_DIM = 32 PLANES = (32, 64, 128, 256, 128, 64, 32) class MinkUNetHyper(MinkUNetBase): BLOCK = None PLANES = (64, 128, 256, 512, 256, 128, 128) DILATIONS = (1, 1, 1, 1, 1, 1) LAYERS = (2, 2, 2, 2, 2, 2) INIT_DIM = 64 OUT_PIXEL_DIST = 1 NORM_TYPE = NormType.BATCH_NORM NON_BLOCK_CONV_TYPE = ConvType.SPATIAL_HYPERCUBE CONV_TYPE = ConvType.SPATIAL_HYPERCUBE_TEMPORAL_HYPERCROSS # To use the model, must call initialize_coords before forward pass. # Once data is processed, call clear to reset the model before calling initialize_coords def __init__(self, in_channels, out_channels, config, D=3, **kwargs): super(MinkUNetBase, self).__init__(in_channels, out_channels, config, D) def network_initialization(self, in_channels, out_channels, config, D): # Setup net_metadata dilations = self.DILATIONS bn_momentum = config.bn_momentum def space_n_time_m(n, m): return n if D == 3 else [n, n, n, m] if D == 4: self.OUT_PIXEL_DIST = space_n_time_m(self.OUT_PIXEL_DIST, 1) # Output of the first conv concated to conv6 self.inplanes = self.INIT_DIM self.conv1p1s1 = conv( in_channels, self.inplanes, kernel_size=space_n_time_m(config.conv1_kernel_size, 1), stride=1, dilation=1, conv_type=self.NON_BLOCK_CONV_TYPE, D=D) self.bn1 = get_norm(self.NORM_TYPE, self.PLANES[0], D, bn_momentum=bn_momentum) self.block1 = self._make_layer( self.BLOCK, self.PLANES[0], self.LAYERS[0], dilation=dilations[0], norm_type=self.NORM_TYPE, bn_momentum=bn_momentum) self.conv2p1s2 = conv( self.inplanes, self.inplanes, kernel_size=space_n_time_m(2, 1), stride=space_n_time_m(2, 1), dilation=1, conv_type=self.NON_BLOCK_CONV_TYPE, D=D) self.bn2 = get_norm(self.NORM_TYPE, self.inplanes, D, bn_momentum=bn_momentum) self.block2 = self._make_layer( self.BLOCK, self.PLANES[1], self.LAYERS[1], dilation=dilations[1], norm_type=self.NORM_TYPE, bn_momentum=bn_momentum) self.conv3p2s2 = conv( self.inplanes, self.inplanes, kernel_size=space_n_time_m(2, 1), stride=space_n_time_m(2, 1), dilation=1, conv_type=self.NON_BLOCK_CONV_TYPE, D=D) self.bn3 = get_norm(self.NORM_TYPE, self.inplanes, D, bn_momentum=bn_momentum) self.block3 = self._make_layer( self.BLOCK, self.PLANES[2], self.LAYERS[2], dilation=dilations[2], norm_type=self.NORM_TYPE, bn_momentum=bn_momentum) self.conv4p4s2 = conv( self.inplanes, self.inplanes, kernel_size=space_n_time_m(2, 1), stride=space_n_time_m(2, 1), dilation=1, conv_type=self.NON_BLOCK_CONV_TYPE, D=D) self.bn4 = get_norm(self.NORM_TYPE, self.inplanes, D, bn_momentum=bn_momentum) self.block4 = self._make_layer( self.BLOCK, self.PLANES[3], self.LAYERS[3], dilation=dilations[3], norm_type=self.NORM_TYPE, bn_momentum=bn_momentum) self.pool_tr4 = ME.MinkowskiPoolingTranspose(kernel_size=8, stride=8, dimension=D) out_pool4 = self.inplanes self.convtr4p8s2 = conv_tr( self.inplanes, self.PLANES[4], kernel_size=space_n_time_m(2, 1), upsample_stride=space_n_time_m(2, 1), dilation=1, bias=False, conv_type=self.NON_BLOCK_CONV_TYPE, D=D) self.bntr4 = get_norm(self.NORM_TYPE, self.PLANES[4], D, bn_momentum=bn_momentum) self.inplanes = self.PLANES[4] + self.PLANES[2] * self.BLOCK.expansion self.block5 = self._make_layer( self.BLOCK, self.PLANES[4], self.LAYERS[4], dilation=dilations[4], norm_type=self.NORM_TYPE, bn_momentum=bn_momentum) self.pool_tr5 = ME.MinkowskiPoolingTranspose(kernel_size=4, stride=4, dimension=D) out_pool5 = self.inplanes self.convtr5p4s2 = conv_tr( self.inplanes, self.PLANES[5], kernel_size=space_n_time_m(2, 1), upsample_stride=space_n_time_m(2, 1), dilation=1, bias=False, conv_type=self.NON_BLOCK_CONV_TYPE, D=D) self.bntr5 = get_norm(self.NORM_TYPE, self.PLANES[5], D, bn_momentum=bn_momentum) self.inplanes = self.PLANES[5] + self.PLANES[1] * self.BLOCK.expansion self.block6 = self._make_layer( self.BLOCK, self.PLANES[5], self.LAYERS[5], dilation=dilations[5], norm_type=self.NORM_TYPE, bn_momentum=bn_momentum) self.pool_tr6 = ME.MinkowskiPoolingTranspose(kernel_size=2, stride=2, dimension=D) out_pool6 = self.inplanes self.convtr6p2s2 = conv_tr( self.inplanes, self.PLANES[6], kernel_size=space_n_time_m(2, 1), upsample_stride=space_n_time_m(2, 1), dilation=1, bias=False, conv_type=self.NON_BLOCK_CONV_TYPE, D=D) self.bntr6 = get_norm(self.NORM_TYPE, self.PLANES[6], D, bn_momentum=bn_momentum) self.relu = MinkowskiReLU(inplace=True) self.final = nn.Sequential( conv( out_pool5 + out_pool6 + self.PLANES[6] + self.PLANES[0] * self.BLOCK.expansion, 512, kernel_size=1, bias=False, D=D), ME.MinkowskiBatchNorm(512), ME.MinkowskiReLU(), conv(512, out_channels, kernel_size=1, bias=True, D=D)) def forward(self, x): out = self.conv1p1s1(x) out = self.bn1(out) out = self.relu(out) out_b1p1 = self.block1(out) out = self.conv2p1s2(out_b1p1) out = self.bn2(out) out = self.relu(out) out_b2p2 = self.block2(out) out = self.conv3p2s2(out_b2p2) out = self.bn3(out) out = self.relu(out) out_b3p4 = self.block3(out) out = self.conv4p4s2(out_b3p4) out = self.bn4(out) out = self.relu(out) # pixel_dist=8 out = self.block4(out) out = self.convtr4p8s2(out) out = self.bntr4(out) out = self.relu(out) out = me.cat(out, out_b3p4) out = self.block5(out) out_5 = self.pool_tr5(out) out = self.convtr5p4s2(out) out = self.bntr5(out) out = self.relu(out) out = me.cat(out, out_b2p2) out = self.block6(out) out_6 = self.pool_tr6(out) out = self.convtr6p2s2(out) out = self.bntr6(out) out = self.relu(out) out = me.cat(out, out_b1p1, out_6, out_5) return self.final(out) class MinkUNetHyper14INBN(MinkUNetHyper): NORM_TYPE = NormType.INSTANCE_BATCH_NORM BLOCK = BasicBlockINBN class STMinkUNetBase(MinkUNetBase): CONV_TYPE = ConvType.SPATIAL_HYPERCUBE_TEMPORAL_HYPERCROSS def __init__(self, in_channels, out_channels, config, D=4, **kwargs): super(STMinkUNetBase, self).__init__(in_channels, out_channels, config, D, **kwargs) class STResUNet14(STMinkUNetBase, ResUNet14): pass class STResUNet18(STMinkUNetBase, ResUNet18): pass class STResUNet34(STMinkUNetBase, ResUNet34): pass class STResUNet50(STMinkUNetBase, ResUNet50): pass class STResUNet101(STMinkUNetBase, ResUNet101): pass class STResTesseractUNetBase(STMinkUNetBase): CONV_TYPE = ConvType.HYPERCUBE class STResTesseractUNet14(STResTesseractUNetBase, ResUNet14): pass class STResTesseractUNet18(STResTesseractUNetBase, ResUNet18): pass class STResTesseractUNet34(STResTesseractUNetBase, ResUNet34): pass class STResTesseractUNet50(STResTesseractUNetBase, ResUNet50): pass class STResTesseractUNet101(STResTesseractUNetBase, ResUNet101): pass
ContrastiveSceneContexts-main
downstream/semseg/models/resunet.py