python_code
stringlengths 0
456k
|
---|
from inspect import isfunction
import math
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
from typing import Optional, Any
from ldm.modules.diffusionmodules.util import checkpoint
try:
import xformers
import xformers.ops
XFORMERS_IS_AVAILBLE = True
except:
XFORMERS_IS_AVAILBLE = False
def exists(val):
return val is not None
def uniq(arr):
return{el: True for el in arr}.keys()
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def max_neg_value(t):
return -torch.finfo(t.dtype).max
def init_(tensor):
dim = tensor.shape[-1]
std = 1 / math.sqrt(dim)
tensor.uniform_(-std, std)
return tensor
# feedforward
class GEGLU(nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
return x * F.gelu(gate)
class FeedForward(nn.Module):
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
super().__init__()
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
project_in = nn.Sequential(
nn.Linear(dim, inner_dim),
nn.GELU()
) if not glu else GEGLU(dim, inner_dim)
self.net = nn.Sequential(
project_in,
nn.Dropout(dropout),
nn.Linear(inner_dim, dim_out)
)
def forward(self, x):
return self.net(x)
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
def Normalize(in_channels):
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
class SpatialSelfAttention(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels)
self.q = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.k = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.v = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.proj_out = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b,c,h,w = q.shape
q = rearrange(q, 'b c h w -> b (h w) c')
k = rearrange(k, 'b c h w -> b c (h w)')
w_ = torch.einsum('bij,bjk->bik', q, k)
w_ = w_ * (int(c)**(-0.5))
w_ = torch.nn.functional.softmax(w_, dim=2)
# attend to values
v = rearrange(v, 'b c h w -> b c (h w)')
w_ = rearrange(w_, 'b i j -> b j i')
h_ = torch.einsum('bij,bjk->bik', v, w_)
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
h_ = self.proj_out(h_)
return x+h_
class CrossAttention(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.scale = dim_head ** -0.5
self.heads = heads
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, query_dim),
nn.Dropout(dropout)
)
def forward(self, x, context=None, mask=None):
h = self.heads
q = self.to_q(x)
context = default(context, x)
k = self.to_k(context)
v = self.to_v(context)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
del q, k
if exists(mask):
mask = rearrange(mask, 'b ... -> b (...)')
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, 'b j -> (b h) () j', h=h)
sim.masked_fill_(~mask, max_neg_value)
# attention, what we cannot get enough of
sim = sim.softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', sim, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
return self.to_out(out)
class MemoryEfficientCrossAttention(nn.Module):
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
super().__init__()
print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
f"{heads} heads.")
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.heads = heads
self.dim_head = dim_head
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
self.attention_op: Optional[Any] = None
def forward(self, x, context=None, mask=None):
q = self.to_q(x)
context = default(context, x)
k = self.to_k(context)
v = self.to_v(context)
b, _, _ = q.shape
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, t.shape[1], self.heads, self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b * self.heads, t.shape[1], self.dim_head)
.contiguous(),
(q, k, v),
)
# actually compute the attention, what we cannot get enough of
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
if exists(mask):
raise NotImplementedError
out = (
out.unsqueeze(0)
.reshape(b, self.heads, out.shape[1], self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b, out.shape[1], self.heads * self.dim_head)
)
return self.to_out(out)
class BasicTransformerBlock(nn.Module):
ATTENTION_MODES = {
"softmax": CrossAttention, # vanilla attention
"softmax-xformers": MemoryEfficientCrossAttention
}
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
disable_self_attn=False):
super().__init__()
attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
assert attn_mode in self.ATTENTION_MODES
attn_cls = self.ATTENTION_MODES[attn_mode]
self.disable_self_attn = disable_self_attn
self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim,
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.norm3 = nn.LayerNorm(dim)
self.checkpoint = checkpoint
def forward(self, x, context=None):
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
def _forward(self, x, context=None):
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
x = self.attn2(self.norm2(x), context=context) + x
x = self.ff(self.norm3(x)) + x
return x
class SpatialTransformer(nn.Module):
"""
Transformer block for image-like data.
First, project the input (aka embedding)
and reshape to b, t, d.
Then apply standard transformer action.
Finally, reshape to image
NEW: use_linear for more efficiency instead of the 1x1 convs
"""
def __init__(self, in_channels, n_heads, d_head,
depth=1, dropout=0., context_dim=None,
disable_self_attn=False, use_linear=False,
use_checkpoint=True):
super().__init__()
if exists(context_dim) and not isinstance(context_dim, list):
context_dim = [context_dim]
self.in_channels = in_channels
inner_dim = n_heads * d_head
self.norm = Normalize(in_channels)
if not use_linear:
self.proj_in = nn.Conv2d(in_channels,
inner_dim,
kernel_size=1,
stride=1,
padding=0)
else:
self.proj_in = nn.Linear(in_channels, inner_dim)
self.transformer_blocks = nn.ModuleList(
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint)
for d in range(depth)]
)
if not use_linear:
self.proj_out = zero_module(nn.Conv2d(inner_dim,
in_channels,
kernel_size=1,
stride=1,
padding=0))
else:
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
self.use_linear = use_linear
def forward(self, x, context=None):
# note: if no context is given, cross-attention defaults to self-attention
if not isinstance(context, list):
context = [context]
b, c, h, w = x.shape
x_in = x
x = self.norm(x)
if not self.use_linear:
x = self.proj_in(x)
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
if self.use_linear:
x = self.proj_in(x)
for i, block in enumerate(self.transformer_blocks):
x = block(x, context=context[i])
if self.use_linear:
x = self.proj_out(x)
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
if not self.use_linear:
x = self.proj_out(x)
return x + x_in
|
import torch
from torch import nn
class LitEma(nn.Module):
def __init__(self, model, decay=0.9999, use_num_upates=True):
super().__init__()
if decay < 0.0 or decay > 1.0:
raise ValueError('Decay must be between 0 and 1')
self.m_name2s_name = {}
self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_upates
else torch.tensor(-1, dtype=torch.int))
for name, p in model.named_parameters():
if p.requires_grad:
# remove as '.'-character is not allowed in buffers
s_name = name.replace('.', '')
self.m_name2s_name.update({name: s_name})
self.register_buffer(s_name, p.clone().detach().data)
self.collected_params = []
def reset_num_updates(self):
del self.num_updates
self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int))
def forward(self, model):
decay = self.decay
if self.num_updates >= 0:
self.num_updates += 1
decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
one_minus_decay = 1.0 - decay
with torch.no_grad():
m_param = dict(model.named_parameters())
shadow_params = dict(self.named_buffers())
for key in m_param:
if m_param[key].requires_grad:
sname = self.m_name2s_name[key]
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
else:
assert not key in self.m_name2s_name
def copy_to(self, model):
m_param = dict(model.named_parameters())
shadow_params = dict(self.named_buffers())
for key in m_param:
if m_param[key].requires_grad:
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
else:
assert not key in self.m_name2s_name
def store(self, parameters):
"""
Save the current parameters for restoring later.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
temporarily stored.
"""
self.collected_params = [param.clone() for param in parameters]
def restore(self, parameters):
"""
Restore the parameters stored with the `store` method.
Useful to validate the model with EMA parameters without affecting the
original optimization process. Store the parameters before the
`copy_to` method. After validation (or model saving), use this to
restore the former parameters.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored parameters.
"""
for c_param, param in zip(self.collected_params, parameters):
param.data.copy_(c_param.data)
|
# based on https://github.com/isl-org/MiDaS
import cv2
import torch
import torch.nn as nn
from torchvision.transforms import Compose
from ldm.modules.midas.midas.dpt_depth import DPTDepthModel
from ldm.modules.midas.midas.midas_net import MidasNet
from ldm.modules.midas.midas.midas_net_custom import MidasNet_small
from ldm.modules.midas.midas.transforms import Resize, NormalizeImage, PrepareForNet
ISL_PATHS = {
"dpt_large": "midas_models/dpt_large-midas-2f21e586.pt",
"dpt_hybrid": "midas_models/dpt_hybrid-midas-501f0c75.pt",
"midas_v21": "",
"midas_v21_small": "",
}
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
def load_midas_transform(model_type):
# https://github.com/isl-org/MiDaS/blob/master/run.py
# load transform only
if model_type == "dpt_large": # DPT-Large
net_w, net_h = 384, 384
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_hybrid": # DPT-Hybrid
net_w, net_h = 384, 384
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "midas_v21":
net_w, net_h = 384, 384
resize_mode = "upper_bound"
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
elif model_type == "midas_v21_small":
net_w, net_h = 256, 256
resize_mode = "upper_bound"
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
else:
assert False, f"model_type '{model_type}' not implemented, use: --model_type large"
transform = Compose(
[
Resize(
net_w,
net_h,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method=resize_mode,
image_interpolation_method=cv2.INTER_CUBIC,
),
normalization,
PrepareForNet(),
]
)
return transform
def load_model(model_type):
# https://github.com/isl-org/MiDaS/blob/master/run.py
# load network
model_path = ISL_PATHS[model_type]
if model_type == "dpt_large": # DPT-Large
model = DPTDepthModel(
path=model_path,
backbone="vitl16_384",
non_negative=True,
)
net_w, net_h = 384, 384
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_hybrid": # DPT-Hybrid
model = DPTDepthModel(
path=model_path,
backbone="vitb_rn50_384",
non_negative=True,
)
net_w, net_h = 384, 384
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "midas_v21":
model = MidasNet(model_path, non_negative=True)
net_w, net_h = 384, 384
resize_mode = "upper_bound"
normalization = NormalizeImage(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
elif model_type == "midas_v21_small":
model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
non_negative=True, blocks={'expand': True})
net_w, net_h = 256, 256
resize_mode = "upper_bound"
normalization = NormalizeImage(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
else:
print(f"model_type '{model_type}' not implemented, use: --model_type large")
assert False
transform = Compose(
[
Resize(
net_w,
net_h,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method=resize_mode,
image_interpolation_method=cv2.INTER_CUBIC,
),
normalization,
PrepareForNet(),
]
)
return model.eval(), transform
class MiDaSInference(nn.Module):
MODEL_TYPES_TORCH_HUB = [
"DPT_Large",
"DPT_Hybrid",
"MiDaS_small"
]
MODEL_TYPES_ISL = [
"dpt_large",
"dpt_hybrid",
"midas_v21",
"midas_v21_small",
]
def __init__(self, model_type):
super().__init__()
assert (model_type in self.MODEL_TYPES_ISL)
model, _ = load_model(model_type)
self.model = model
self.model.train = disabled_train
def forward(self, x):
# x in 0..1 as produced by calling self.transform on a 0..1 float64 numpy array
# NOTE: we expect that the correct transform has been called during dataloading.
with torch.no_grad():
prediction = self.model(x)
prediction = torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=x.shape[2:],
mode="bicubic",
align_corners=False,
)
assert prediction.shape == (x.shape[0], 1, x.shape[2], x.shape[3])
return prediction
|
"""Utils for monoDepth."""
import sys
import re
import numpy as np
import cv2
import torch
def read_pfm(path):
"""Read pfm file.
Args:
path (str): path to file
Returns:
tuple: (data, scale)
"""
with open(path, "rb") as file:
color = None
width = None
height = None
scale = None
endian = None
header = file.readline().rstrip()
if header.decode("ascii") == "PF":
color = True
elif header.decode("ascii") == "Pf":
color = False
else:
raise Exception("Not a PFM file: " + path)
dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
if dim_match:
width, height = list(map(int, dim_match.groups()))
else:
raise Exception("Malformed PFM header.")
scale = float(file.readline().decode("ascii").rstrip())
if scale < 0:
# little-endian
endian = "<"
scale = -scale
else:
# big-endian
endian = ">"
data = np.fromfile(file, endian + "f")
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = np.flipud(data)
return data, scale
def write_pfm(path, image, scale=1):
"""Write pfm file.
Args:
path (str): pathto file
image (array): data
scale (int, optional): Scale. Defaults to 1.
"""
with open(path, "wb") as file:
color = None
if image.dtype.name != "float32":
raise Exception("Image dtype must be float32.")
image = np.flipud(image)
if len(image.shape) == 3 and image.shape[2] == 3: # color image
color = True
elif (
len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
): # greyscale
color = False
else:
raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")
file.write("PF\n" if color else "Pf\n".encode())
file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))
endian = image.dtype.byteorder
if endian == "<" or endian == "=" and sys.byteorder == "little":
scale = -scale
file.write("%f\n".encode() % scale)
image.tofile(file)
def read_image(path):
"""Read image and output RGB image (0-1).
Args:
path (str): path to file
Returns:
array: RGB image (0-1)
"""
img = cv2.imread(path)
if img.ndim == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
return img
def resize_image(img):
"""Resize image and make it fit for network.
Args:
img (array): image
Returns:
tensor: data ready for network
"""
height_orig = img.shape[0]
width_orig = img.shape[1]
if width_orig > height_orig:
scale = width_orig / 384
else:
scale = height_orig / 384
height = (np.ceil(height_orig / scale / 32) * 32).astype(int)
width = (np.ceil(width_orig / scale / 32) * 32).astype(int)
img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
img_resized = (
torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float()
)
img_resized = img_resized.unsqueeze(0)
return img_resized
def resize_depth(depth, width, height):
"""Resize depth map and bring to CPU (numpy).
Args:
depth (tensor): depth
width (int): image width
height (int): image height
Returns:
array: processed depth
"""
depth = torch.squeeze(depth[0, :, :, :]).to("cpu")
depth_resized = cv2.resize(
depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC
)
return depth_resized
def write_depth(path, depth, bits=1):
"""Write depth map to pfm and png file.
Args:
path (str): filepath without extension
depth (array): depth
"""
write_pfm(path + ".pfm", depth.astype(np.float32))
depth_min = depth.min()
depth_max = depth.max()
max_val = (2**(8*bits))-1
if depth_max - depth_min > np.finfo("float").eps:
out = max_val * (depth - depth_min) / (depth_max - depth_min)
else:
out = np.zeros(depth.shape, dtype=depth.type)
if bits == 1:
cv2.imwrite(path + ".png", out.astype("uint8"))
elif bits == 2:
cv2.imwrite(path + ".png", out.astype("uint16"))
return
|
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
This file contains code that is adapted from
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
"""
import torch
import torch.nn as nn
from .base_model import BaseModel
from .blocks import FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder
class MidasNet_small(BaseModel):
"""Network for monocular depth estimation.
"""
def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True,
blocks={'expand': True}):
"""Init.
Args:
path (str, optional): Path to saved model. Defaults to None.
features (int, optional): Number of features. Defaults to 256.
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
"""
print("Loading weights: ", path)
super(MidasNet_small, self).__init__()
use_pretrained = False if path else True
self.channels_last = channels_last
self.blocks = blocks
self.backbone = backbone
self.groups = 1
features1=features
features2=features
features3=features
features4=features
self.expand = False
if "expand" in self.blocks and self.blocks['expand'] == True:
self.expand = True
features1=features
features2=features*2
features3=features*4
features4=features*8
self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable)
self.scratch.activation = nn.ReLU(False)
self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners)
self.scratch.output_conv = nn.Sequential(
nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups),
Interpolate(scale_factor=2, mode="bilinear"),
nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1),
self.scratch.activation,
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
nn.ReLU(True) if non_negative else nn.Identity(),
nn.Identity(),
)
if path:
self.load(path)
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input data (image)
Returns:
tensor: depth
"""
if self.channels_last==True:
print("self.channels_last = ", self.channels_last)
x.contiguous(memory_format=torch.channels_last)
layer_1 = self.pretrained.layer1(x)
layer_2 = self.pretrained.layer2(layer_1)
layer_3 = self.pretrained.layer3(layer_2)
layer_4 = self.pretrained.layer4(layer_3)
layer_1_rn = self.scratch.layer1_rn(layer_1)
layer_2_rn = self.scratch.layer2_rn(layer_2)
layer_3_rn = self.scratch.layer3_rn(layer_3)
layer_4_rn = self.scratch.layer4_rn(layer_4)
path_4 = self.scratch.refinenet4(layer_4_rn)
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
out = self.scratch.output_conv(path_1)
return torch.squeeze(out, dim=1)
def fuse_model(m):
prev_previous_type = nn.Identity()
prev_previous_name = ''
previous_type = nn.Identity()
previous_name = ''
for name, module in m.named_modules():
if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(module) == nn.ReLU:
# print("FUSED ", prev_previous_name, previous_name, name)
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name, name], inplace=True)
elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d:
# print("FUSED ", prev_previous_name, previous_name)
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name], inplace=True)
# elif previous_type == nn.Conv2d and type(module) == nn.ReLU:
# print("FUSED ", previous_name, name)
# torch.quantization.fuse_modules(m, [previous_name, name], inplace=True)
prev_previous_type = previous_type
prev_previous_name = previous_name
previous_type = type(module)
previous_name = name |
import numpy as np
import cv2
import math
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
Args:
sample (dict): sample
size (tuple): image size
Returns:
tuple: new size
"""
shape = list(sample["disparity"].shape)
if shape[0] >= size[0] and shape[1] >= size[1]:
return sample
scale = [0, 0]
scale[0] = size[0] / shape[0]
scale[1] = size[1] / shape[1]
scale = max(scale)
shape[0] = math.ceil(scale * shape[0])
shape[1] = math.ceil(scale * shape[1])
# resize
sample["image"] = cv2.resize(
sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
)
sample["disparity"] = cv2.resize(
sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
)
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
tuple(shape[::-1]),
interpolation=cv2.INTER_NEAREST,
)
sample["mask"] = sample["mask"].astype(bool)
return tuple(shape)
class Resize(object):
"""Resize sample to given size (width, height).
"""
def __init__(
self,
width,
height,
resize_target=True,
keep_aspect_ratio=False,
ensure_multiple_of=1,
resize_method="lower_bound",
image_interpolation_method=cv2.INTER_AREA,
):
"""Init.
Args:
width (int): desired output width
height (int): desired output height
resize_target (bool, optional):
True: Resize the full sample (image, mask, target).
False: Resize image only.
Defaults to True.
keep_aspect_ratio (bool, optional):
True: Keep the aspect ratio of the input sample.
Output sample might not have the given width and height, and
resize behaviour depends on the parameter 'resize_method'.
Defaults to False.
ensure_multiple_of (int, optional):
Output width and height is constrained to be multiple of this parameter.
Defaults to 1.
resize_method (str, optional):
"lower_bound": Output will be at least as large as the given size.
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
Defaults to "lower_bound".
"""
self.__width = width
self.__height = height
self.__resize_target = resize_target
self.__keep_aspect_ratio = keep_aspect_ratio
self.__multiple_of = ensure_multiple_of
self.__resize_method = resize_method
self.__image_interpolation_method = image_interpolation_method
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
if max_val is not None and y > max_val:
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
if y < min_val:
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
return y
def get_size(self, width, height):
# determine new height and width
scale_height = self.__height / height
scale_width = self.__width / width
if self.__keep_aspect_ratio:
if self.__resize_method == "lower_bound":
# scale such that output size is lower bound
if scale_width > scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "upper_bound":
# scale such that output size is upper bound
if scale_width < scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "minimal":
# scale as least as possbile
if abs(1 - scale_width) < abs(1 - scale_height):
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
else:
raise ValueError(
f"resize_method {self.__resize_method} not implemented"
)
if self.__resize_method == "lower_bound":
new_height = self.constrain_to_multiple_of(
scale_height * height, min_val=self.__height
)
new_width = self.constrain_to_multiple_of(
scale_width * width, min_val=self.__width
)
elif self.__resize_method == "upper_bound":
new_height = self.constrain_to_multiple_of(
scale_height * height, max_val=self.__height
)
new_width = self.constrain_to_multiple_of(
scale_width * width, max_val=self.__width
)
elif self.__resize_method == "minimal":
new_height = self.constrain_to_multiple_of(scale_height * height)
new_width = self.constrain_to_multiple_of(scale_width * width)
else:
raise ValueError(f"resize_method {self.__resize_method} not implemented")
return (new_width, new_height)
def __call__(self, sample):
width, height = self.get_size(
sample["image"].shape[1], sample["image"].shape[0]
)
# resize sample
sample["image"] = cv2.resize(
sample["image"],
(width, height),
interpolation=self.__image_interpolation_method,
)
if self.__resize_target:
if "disparity" in sample:
sample["disparity"] = cv2.resize(
sample["disparity"],
(width, height),
interpolation=cv2.INTER_NEAREST,
)
if "depth" in sample:
sample["depth"] = cv2.resize(
sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
)
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
(width, height),
interpolation=cv2.INTER_NEAREST,
)
sample["mask"] = sample["mask"].astype(bool)
return sample
class NormalizeImage(object):
"""Normlize image by given mean and std.
"""
def __init__(self, mean, std):
self.__mean = mean
self.__std = std
def __call__(self, sample):
sample["image"] = (sample["image"] - self.__mean) / self.__std
return sample
class PrepareForNet(object):
"""Prepare sample for usage as network input.
"""
def __init__(self):
pass
def __call__(self, sample):
image = np.transpose(sample["image"], (2, 0, 1))
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
if "mask" in sample:
sample["mask"] = sample["mask"].astype(np.float32)
sample["mask"] = np.ascontiguousarray(sample["mask"])
if "disparity" in sample:
disparity = sample["disparity"].astype(np.float32)
sample["disparity"] = np.ascontiguousarray(disparity)
if "depth" in sample:
depth = sample["depth"].astype(np.float32)
sample["depth"] = np.ascontiguousarray(depth)
return sample
|
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
This file contains code that is adapted from
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
"""
import torch
import torch.nn as nn
from .base_model import BaseModel
from .blocks import FeatureFusionBlock, Interpolate, _make_encoder
class MidasNet(BaseModel):
"""Network for monocular depth estimation.
"""
def __init__(self, path=None, features=256, non_negative=True):
"""Init.
Args:
path (str, optional): Path to saved model. Defaults to None.
features (int, optional): Number of features. Defaults to 256.
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
"""
print("Loading weights: ", path)
super(MidasNet, self).__init__()
use_pretrained = False if path is None else True
self.pretrained, self.scratch = _make_encoder(backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained)
self.scratch.refinenet4 = FeatureFusionBlock(features)
self.scratch.refinenet3 = FeatureFusionBlock(features)
self.scratch.refinenet2 = FeatureFusionBlock(features)
self.scratch.refinenet1 = FeatureFusionBlock(features)
self.scratch.output_conv = nn.Sequential(
nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1),
Interpolate(scale_factor=2, mode="bilinear"),
nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
nn.ReLU(True) if non_negative else nn.Identity(),
)
if path:
self.load(path)
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input data (image)
Returns:
tensor: depth
"""
layer_1 = self.pretrained.layer1(x)
layer_2 = self.pretrained.layer2(layer_1)
layer_3 = self.pretrained.layer3(layer_2)
layer_4 = self.pretrained.layer4(layer_3)
layer_1_rn = self.scratch.layer1_rn(layer_1)
layer_2_rn = self.scratch.layer2_rn(layer_2)
layer_3_rn = self.scratch.layer3_rn(layer_3)
layer_4_rn = self.scratch.layer4_rn(layer_4)
path_4 = self.scratch.refinenet4(layer_4_rn)
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
out = self.scratch.output_conv(path_1)
return torch.squeeze(out, dim=1)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
from .base_model import BaseModel
from .blocks import (
FeatureFusionBlock,
FeatureFusionBlock_custom,
Interpolate,
_make_encoder,
forward_vit,
)
def _make_fusion_block(features, use_bn):
return FeatureFusionBlock_custom(
features,
nn.ReLU(False),
deconv=False,
bn=use_bn,
expand=False,
align_corners=True,
)
class DPT(BaseModel):
def __init__(
self,
head,
features=256,
backbone="vitb_rn50_384",
readout="project",
channels_last=False,
use_bn=False,
):
super(DPT, self).__init__()
self.channels_last = channels_last
hooks = {
"vitb_rn50_384": [0, 1, 8, 11],
"vitb16_384": [2, 5, 8, 11],
"vitl16_384": [5, 11, 17, 23],
}
# Instantiate backbone and reassemble blocks
self.pretrained, self.scratch = _make_encoder(
backbone,
features,
False, # Set to true of you want to train from scratch, uses ImageNet weights
groups=1,
expand=False,
exportable=False,
hooks=hooks[backbone],
use_readout=readout,
)
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
self.scratch.output_conv = head
def forward(self, x):
if self.channels_last == True:
x.contiguous(memory_format=torch.channels_last)
layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
layer_1_rn = self.scratch.layer1_rn(layer_1)
layer_2_rn = self.scratch.layer2_rn(layer_2)
layer_3_rn = self.scratch.layer3_rn(layer_3)
layer_4_rn = self.scratch.layer4_rn(layer_4)
path_4 = self.scratch.refinenet4(layer_4_rn)
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
out = self.scratch.output_conv(path_1)
return out
class DPTDepthModel(DPT):
def __init__(self, path=None, non_negative=True, **kwargs):
features = kwargs["features"] if "features" in kwargs else 256
head = nn.Sequential(
nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
nn.ReLU(True) if non_negative else nn.Identity(),
nn.Identity(),
)
super().__init__(head, **kwargs)
if path is not None:
self.load(path)
def forward(self, x):
return super().forward(x).squeeze(dim=1)
|
import torch
class BaseModel(torch.nn.Module):
def load(self, path):
"""Load model from file.
Args:
path (str): file path
"""
parameters = torch.load(path, map_location=torch.device('cpu'))
if "optimizer" in parameters:
parameters = parameters["model"]
self.load_state_dict(parameters)
|
import torch
import torch.nn as nn
import timm
import types
import math
import torch.nn.functional as F
class Slice(nn.Module):
def __init__(self, start_index=1):
super(Slice, self).__init__()
self.start_index = start_index
def forward(self, x):
return x[:, self.start_index :]
class AddReadout(nn.Module):
def __init__(self, start_index=1):
super(AddReadout, self).__init__()
self.start_index = start_index
def forward(self, x):
if self.start_index == 2:
readout = (x[:, 0] + x[:, 1]) / 2
else:
readout = x[:, 0]
return x[:, self.start_index :] + readout.unsqueeze(1)
class ProjectReadout(nn.Module):
def __init__(self, in_features, start_index=1):
super(ProjectReadout, self).__init__()
self.start_index = start_index
self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
def forward(self, x):
readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :])
features = torch.cat((x[:, self.start_index :], readout), -1)
return self.project(features)
class Transpose(nn.Module):
def __init__(self, dim0, dim1):
super(Transpose, self).__init__()
self.dim0 = dim0
self.dim1 = dim1
def forward(self, x):
x = x.transpose(self.dim0, self.dim1)
return x
def forward_vit(pretrained, x):
b, c, h, w = x.shape
glob = pretrained.model.forward_flex(x)
layer_1 = pretrained.activations["1"]
layer_2 = pretrained.activations["2"]
layer_3 = pretrained.activations["3"]
layer_4 = pretrained.activations["4"]
layer_1 = pretrained.act_postprocess1[0:2](layer_1)
layer_2 = pretrained.act_postprocess2[0:2](layer_2)
layer_3 = pretrained.act_postprocess3[0:2](layer_3)
layer_4 = pretrained.act_postprocess4[0:2](layer_4)
unflatten = nn.Sequential(
nn.Unflatten(
2,
torch.Size(
[
h // pretrained.model.patch_size[1],
w // pretrained.model.patch_size[0],
]
),
)
)
if layer_1.ndim == 3:
layer_1 = unflatten(layer_1)
if layer_2.ndim == 3:
layer_2 = unflatten(layer_2)
if layer_3.ndim == 3:
layer_3 = unflatten(layer_3)
if layer_4.ndim == 3:
layer_4 = unflatten(layer_4)
layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1)
layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2)
layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3)
layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4)
return layer_1, layer_2, layer_3, layer_4
def _resize_pos_embed(self, posemb, gs_h, gs_w):
posemb_tok, posemb_grid = (
posemb[:, : self.start_index],
posemb[0, self.start_index :],
)
gs_old = int(math.sqrt(len(posemb_grid)))
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
return posemb
def forward_flex(self, x):
b, c, h, w = x.shape
pos_embed = self._resize_pos_embed(
self.pos_embed, h // self.patch_size[1], w // self.patch_size[0]
)
B = x.shape[0]
if hasattr(self.patch_embed, "backbone"):
x = self.patch_embed.backbone(x)
if isinstance(x, (list, tuple)):
x = x[-1] # last feature if backbone outputs list/tuple of features
x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
if getattr(self, "dist_token", None) is not None:
cls_tokens = self.cls_token.expand(
B, -1, -1
) # stole cls_tokens impl from Phil Wang, thanks
dist_token = self.dist_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, dist_token, x), dim=1)
else:
cls_tokens = self.cls_token.expand(
B, -1, -1
) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
x = x + pos_embed
x = self.pos_drop(x)
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
return x
activations = {}
def get_activation(name):
def hook(model, input, output):
activations[name] = output
return hook
def get_readout_oper(vit_features, features, use_readout, start_index=1):
if use_readout == "ignore":
readout_oper = [Slice(start_index)] * len(features)
elif use_readout == "add":
readout_oper = [AddReadout(start_index)] * len(features)
elif use_readout == "project":
readout_oper = [
ProjectReadout(vit_features, start_index) for out_feat in features
]
else:
assert (
False
), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'"
return readout_oper
def _make_vit_b16_backbone(
model,
features=[96, 192, 384, 768],
size=[384, 384],
hooks=[2, 5, 8, 11],
vit_features=768,
use_readout="ignore",
start_index=1,
):
pretrained = nn.Module()
pretrained.model = model
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
pretrained.activations = activations
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
# 32, 48, 136, 384
pretrained.act_postprocess1 = nn.Sequential(
readout_oper[0],
Transpose(1, 2),
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
nn.Conv2d(
in_channels=vit_features,
out_channels=features[0],
kernel_size=1,
stride=1,
padding=0,
),
nn.ConvTranspose2d(
in_channels=features[0],
out_channels=features[0],
kernel_size=4,
stride=4,
padding=0,
bias=True,
dilation=1,
groups=1,
),
)
pretrained.act_postprocess2 = nn.Sequential(
readout_oper[1],
Transpose(1, 2),
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
nn.Conv2d(
in_channels=vit_features,
out_channels=features[1],
kernel_size=1,
stride=1,
padding=0,
),
nn.ConvTranspose2d(
in_channels=features[1],
out_channels=features[1],
kernel_size=2,
stride=2,
padding=0,
bias=True,
dilation=1,
groups=1,
),
)
pretrained.act_postprocess3 = nn.Sequential(
readout_oper[2],
Transpose(1, 2),
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
nn.Conv2d(
in_channels=vit_features,
out_channels=features[2],
kernel_size=1,
stride=1,
padding=0,
),
)
pretrained.act_postprocess4 = nn.Sequential(
readout_oper[3],
Transpose(1, 2),
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
nn.Conv2d(
in_channels=vit_features,
out_channels=features[3],
kernel_size=1,
stride=1,
padding=0,
),
nn.Conv2d(
in_channels=features[3],
out_channels=features[3],
kernel_size=3,
stride=2,
padding=1,
),
)
pretrained.model.start_index = start_index
pretrained.model.patch_size = [16, 16]
# We inject this function into the VisionTransformer instances so that
# we can use it with interpolated position embeddings without modifying the library source.
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
pretrained.model._resize_pos_embed = types.MethodType(
_resize_pos_embed, pretrained.model
)
return pretrained
def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None):
model = timm.create_model("vit_large_patch16_384", pretrained=pretrained)
hooks = [5, 11, 17, 23] if hooks == None else hooks
return _make_vit_b16_backbone(
model,
features=[256, 512, 1024, 1024],
hooks=hooks,
vit_features=1024,
use_readout=use_readout,
)
def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None):
model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
hooks = [2, 5, 8, 11] if hooks == None else hooks
return _make_vit_b16_backbone(
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
)
def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None):
model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained)
hooks = [2, 5, 8, 11] if hooks == None else hooks
return _make_vit_b16_backbone(
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
)
def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None):
model = timm.create_model(
"vit_deit_base_distilled_patch16_384", pretrained=pretrained
)
hooks = [2, 5, 8, 11] if hooks == None else hooks
return _make_vit_b16_backbone(
model,
features=[96, 192, 384, 768],
hooks=hooks,
use_readout=use_readout,
start_index=2,
)
def _make_vit_b_rn50_backbone(
model,
features=[256, 512, 768, 768],
size=[384, 384],
hooks=[0, 1, 8, 11],
vit_features=768,
use_vit_only=False,
use_readout="ignore",
start_index=1,
):
pretrained = nn.Module()
pretrained.model = model
if use_vit_only == True:
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
else:
pretrained.model.patch_embed.backbone.stages[0].register_forward_hook(
get_activation("1")
)
pretrained.model.patch_embed.backbone.stages[1].register_forward_hook(
get_activation("2")
)
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
pretrained.activations = activations
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
if use_vit_only == True:
pretrained.act_postprocess1 = nn.Sequential(
readout_oper[0],
Transpose(1, 2),
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
nn.Conv2d(
in_channels=vit_features,
out_channels=features[0],
kernel_size=1,
stride=1,
padding=0,
),
nn.ConvTranspose2d(
in_channels=features[0],
out_channels=features[0],
kernel_size=4,
stride=4,
padding=0,
bias=True,
dilation=1,
groups=1,
),
)
pretrained.act_postprocess2 = nn.Sequential(
readout_oper[1],
Transpose(1, 2),
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
nn.Conv2d(
in_channels=vit_features,
out_channels=features[1],
kernel_size=1,
stride=1,
padding=0,
),
nn.ConvTranspose2d(
in_channels=features[1],
out_channels=features[1],
kernel_size=2,
stride=2,
padding=0,
bias=True,
dilation=1,
groups=1,
),
)
else:
pretrained.act_postprocess1 = nn.Sequential(
nn.Identity(), nn.Identity(), nn.Identity()
)
pretrained.act_postprocess2 = nn.Sequential(
nn.Identity(), nn.Identity(), nn.Identity()
)
pretrained.act_postprocess3 = nn.Sequential(
readout_oper[2],
Transpose(1, 2),
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
nn.Conv2d(
in_channels=vit_features,
out_channels=features[2],
kernel_size=1,
stride=1,
padding=0,
),
)
pretrained.act_postprocess4 = nn.Sequential(
readout_oper[3],
Transpose(1, 2),
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
nn.Conv2d(
in_channels=vit_features,
out_channels=features[3],
kernel_size=1,
stride=1,
padding=0,
),
nn.Conv2d(
in_channels=features[3],
out_channels=features[3],
kernel_size=3,
stride=2,
padding=1,
),
)
pretrained.model.start_index = start_index
pretrained.model.patch_size = [16, 16]
# We inject this function into the VisionTransformer instances so that
# we can use it with interpolated position embeddings without modifying the library source.
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
# We inject this function into the VisionTransformer instances so that
# we can use it with interpolated position embeddings without modifying the library source.
pretrained.model._resize_pos_embed = types.MethodType(
_resize_pos_embed, pretrained.model
)
return pretrained
def _make_pretrained_vitb_rn50_384(
pretrained, use_readout="ignore", hooks=None, use_vit_only=False
):
model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
hooks = [0, 1, 8, 11] if hooks == None else hooks
return _make_vit_b_rn50_backbone(
model,
features=[256, 512, 768, 768],
size=[384, 384],
hooks=hooks,
use_vit_only=use_vit_only,
use_readout=use_readout,
)
|
import torch
import torch.nn as nn
from .vit import (
_make_pretrained_vitb_rn50_384,
_make_pretrained_vitl16_384,
_make_pretrained_vitb16_384,
forward_vit,
)
def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore",):
if backbone == "vitl16_384":
pretrained = _make_pretrained_vitl16_384(
use_pretrained, hooks=hooks, use_readout=use_readout
)
scratch = _make_scratch(
[256, 512, 1024, 1024], features, groups=groups, expand=expand
) # ViT-L/16 - 85.0% Top1 (backbone)
elif backbone == "vitb_rn50_384":
pretrained = _make_pretrained_vitb_rn50_384(
use_pretrained,
hooks=hooks,
use_vit_only=use_vit_only,
use_readout=use_readout,
)
scratch = _make_scratch(
[256, 512, 768, 768], features, groups=groups, expand=expand
) # ViT-H/16 - 85.0% Top1 (backbone)
elif backbone == "vitb16_384":
pretrained = _make_pretrained_vitb16_384(
use_pretrained, hooks=hooks, use_readout=use_readout
)
scratch = _make_scratch(
[96, 192, 384, 768], features, groups=groups, expand=expand
) # ViT-B/16 - 84.6% Top1 (backbone)
elif backbone == "resnext101_wsl":
pretrained = _make_pretrained_resnext101_wsl(use_pretrained)
scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand) # efficientnet_lite3
elif backbone == "efficientnet_lite3":
pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable)
scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand) # efficientnet_lite3
else:
print(f"Backbone '{backbone}' not implemented")
assert False
return pretrained, scratch
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
scratch = nn.Module()
out_shape1 = out_shape
out_shape2 = out_shape
out_shape3 = out_shape
out_shape4 = out_shape
if expand==True:
out_shape1 = out_shape
out_shape2 = out_shape*2
out_shape3 = out_shape*4
out_shape4 = out_shape*8
scratch.layer1_rn = nn.Conv2d(
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer2_rn = nn.Conv2d(
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer3_rn = nn.Conv2d(
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer4_rn = nn.Conv2d(
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
return scratch
def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False):
efficientnet = torch.hub.load(
"rwightman/gen-efficientnet-pytorch",
"tf_efficientnet_lite3",
pretrained=use_pretrained,
exportable=exportable
)
return _make_efficientnet_backbone(efficientnet)
def _make_efficientnet_backbone(effnet):
pretrained = nn.Module()
pretrained.layer1 = nn.Sequential(
effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2]
)
pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3])
pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5])
pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9])
return pretrained
def _make_resnet_backbone(resnet):
pretrained = nn.Module()
pretrained.layer1 = nn.Sequential(
resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1
)
pretrained.layer2 = resnet.layer2
pretrained.layer3 = resnet.layer3
pretrained.layer4 = resnet.layer4
return pretrained
def _make_pretrained_resnext101_wsl(use_pretrained):
resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl")
return _make_resnet_backbone(resnet)
class Interpolate(nn.Module):
"""Interpolation module.
"""
def __init__(self, scale_factor, mode, align_corners=False):
"""Init.
Args:
scale_factor (float): scaling
mode (str): interpolation mode
"""
super(Interpolate, self).__init__()
self.interp = nn.functional.interpolate
self.scale_factor = scale_factor
self.mode = mode
self.align_corners = align_corners
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input
Returns:
tensor: interpolated data
"""
x = self.interp(
x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners
)
return x
class ResidualConvUnit(nn.Module):
"""Residual convolution module.
"""
def __init__(self, features):
"""Init.
Args:
features (int): number of features
"""
super().__init__()
self.conv1 = nn.Conv2d(
features, features, kernel_size=3, stride=1, padding=1, bias=True
)
self.conv2 = nn.Conv2d(
features, features, kernel_size=3, stride=1, padding=1, bias=True
)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input
Returns:
tensor: output
"""
out = self.relu(x)
out = self.conv1(out)
out = self.relu(out)
out = self.conv2(out)
return out + x
class FeatureFusionBlock(nn.Module):
"""Feature fusion block.
"""
def __init__(self, features):
"""Init.
Args:
features (int): number of features
"""
super(FeatureFusionBlock, self).__init__()
self.resConfUnit1 = ResidualConvUnit(features)
self.resConfUnit2 = ResidualConvUnit(features)
def forward(self, *xs):
"""Forward pass.
Returns:
tensor: output
"""
output = xs[0]
if len(xs) == 2:
output += self.resConfUnit1(xs[1])
output = self.resConfUnit2(output)
output = nn.functional.interpolate(
output, scale_factor=2, mode="bilinear", align_corners=True
)
return output
class ResidualConvUnit_custom(nn.Module):
"""Residual convolution module.
"""
def __init__(self, features, activation, bn):
"""Init.
Args:
features (int): number of features
"""
super().__init__()
self.bn = bn
self.groups=1
self.conv1 = nn.Conv2d(
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
)
self.conv2 = nn.Conv2d(
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
)
if self.bn==True:
self.bn1 = nn.BatchNorm2d(features)
self.bn2 = nn.BatchNorm2d(features)
self.activation = activation
self.skip_add = nn.quantized.FloatFunctional()
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input
Returns:
tensor: output
"""
out = self.activation(x)
out = self.conv1(out)
if self.bn==True:
out = self.bn1(out)
out = self.activation(out)
out = self.conv2(out)
if self.bn==True:
out = self.bn2(out)
if self.groups > 1:
out = self.conv_merge(out)
return self.skip_add.add(out, x)
# return out + x
class FeatureFusionBlock_custom(nn.Module):
"""Feature fusion block.
"""
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True):
"""Init.
Args:
features (int): number of features
"""
super(FeatureFusionBlock_custom, self).__init__()
self.deconv = deconv
self.align_corners = align_corners
self.groups=1
self.expand = expand
out_features = features
if self.expand==True:
out_features = features//2
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
self.skip_add = nn.quantized.FloatFunctional()
def forward(self, *xs):
"""Forward pass.
Returns:
tensor: output
"""
output = xs[0]
if len(xs) == 2:
res = self.resConfUnit1(xs[1])
output = self.skip_add.add(output, res)
# output += res
output = self.resConfUnit2(output)
output = nn.functional.interpolate(
output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
)
output = self.out_conv(output)
return output
|
import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
import open_clip
from ldm.util import default, count_params
class AbstractEncoder(nn.Module):
def __init__(self):
super().__init__()
def encode(self, *args, **kwargs):
raise NotImplementedError
class IdentityEncoder(AbstractEncoder):
def encode(self, x):
return x
class ClassEmbedder(nn.Module):
def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1):
super().__init__()
self.key = key
self.embedding = nn.Embedding(n_classes, embed_dim)
self.n_classes = n_classes
self.ucg_rate = ucg_rate
def forward(self, batch, key=None, disable_dropout=False):
if key is None:
key = self.key
# this is for use in crossattn
c = batch[key][:, None]
if self.ucg_rate > 0. and not disable_dropout:
mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
c = mask * c + (1-mask) * torch.ones_like(c)*(self.n_classes-1)
c = c.long()
c = self.embedding(c)
return c
def get_unconditional_conditioning(self, bs, device="cuda"):
uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
uc = torch.ones((bs,), device=device) * uc_class
uc = {self.key: uc}
return uc
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
class FrozenT5Embedder(AbstractEncoder):
"""Uses the T5 transformer encoder for text"""
def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
super().__init__()
self.tokenizer = T5Tokenizer.from_pretrained(version)
self.transformer = T5EncoderModel.from_pretrained(version)
self.device = device
self.max_length = max_length # TODO: typical value?
if freeze:
self.freeze()
def freeze(self):
self.transformer = self.transformer.eval()
#self.train = disabled_train
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
tokens = batch_encoding["input_ids"].to(self.device)
outputs = self.transformer(input_ids=tokens)
z = outputs.last_hidden_state
return z
def encode(self, text):
return self(text)
class FrozenCLIPEmbedder(AbstractEncoder):
"""Uses the CLIP transformer encoder for text (from huggingface)"""
LAYERS = [
"last",
"pooled",
"hidden"
]
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77,
freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32
super().__init__()
assert layer in self.LAYERS
self.tokenizer = CLIPTokenizer.from_pretrained(version)
self.transformer = CLIPTextModel.from_pretrained(version)
self.device = device
self.max_length = max_length
if freeze:
self.freeze()
self.layer = layer
self.layer_idx = layer_idx
if layer == "hidden":
assert layer_idx is not None
assert 0 <= abs(layer_idx) <= 12
def freeze(self):
self.transformer = self.transformer.eval()
#self.train = disabled_train
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
tokens = batch_encoding["input_ids"].to(self.device)
outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
if self.layer == "last":
z = outputs.last_hidden_state
elif self.layer == "pooled":
z = outputs.pooler_output[:, None, :]
else:
z = outputs.hidden_states[self.layer_idx]
return z
def encode(self, text):
return self(text)
class FrozenOpenCLIPEmbedder(AbstractEncoder):
"""
Uses the OpenCLIP transformer encoder for text
"""
LAYERS = [
#"pooled",
"last",
"penultimate"
]
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
freeze=True, layer="last"):
super().__init__()
assert layer in self.LAYERS
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version)
del model.visual
self.model = model
self.device = device
self.max_length = max_length
if freeze:
self.freeze()
self.layer = layer
if self.layer == "last":
self.layer_idx = 0
elif self.layer == "penultimate":
self.layer_idx = 1
else:
raise NotImplementedError()
def freeze(self):
self.model = self.model.eval()
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
tokens = open_clip.tokenize(text)
z = self.encode_with_transformer(tokens.to(self.device))
return z
def encode_with_transformer(self, text):
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
x = x + self.model.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.model.ln_final(x)
return x
def text_transformer_forward(self, x: torch.Tensor, attn_mask = None):
for i, r in enumerate(self.model.transformer.resblocks):
if i == len(self.model.transformer.resblocks) - self.layer_idx:
break
if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint(r, x, attn_mask)
else:
x = r(x, attn_mask=attn_mask)
return x
def encode(self, text):
return self(text)
class FrozenCLIPT5Encoder(AbstractEncoder):
def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda",
clip_max_length=77, t5_max_length=77):
super().__init__()
self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length)
self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, "
f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params.")
def encode(self, text):
return self(text)
def forward(self, text):
clip_z = self.clip_encoder.encode(text)
t5_z = self.t5_encoder.encode(text)
return [clip_z, t5_z]
|
# -*- coding: utf-8 -*-
"""
# --------------------------------------------
# Super-Resolution
# --------------------------------------------
#
# Kai Zhang ([email protected])
# https://github.com/cszn
# From 2019/03--2021/08
# --------------------------------------------
"""
import numpy as np
import cv2
import torch
from functools import partial
import random
from scipy import ndimage
import scipy
import scipy.stats as ss
from scipy.interpolate import interp2d
from scipy.linalg import orth
import albumentations
import ldm.modules.image_degradation.utils_image as util
def modcrop_np(img, sf):
'''
Args:
img: numpy image, WxH or WxHxC
sf: scale factor
Return:
cropped image
'''
w, h = img.shape[:2]
im = np.copy(img)
return im[:w - w % sf, :h - h % sf, ...]
"""
# --------------------------------------------
# anisotropic Gaussian kernels
# --------------------------------------------
"""
def analytic_kernel(k):
"""Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
k_size = k.shape[0]
# Calculate the big kernels size
big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
# Loop over the small kernel to fill the big one
for r in range(k_size):
for c in range(k_size):
big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
# Crop the edges of the big kernel to ignore very small values and increase run time of SR
crop = k_size // 2
cropped_big_k = big_k[crop:-crop, crop:-crop]
# Normalize to 1
return cropped_big_k / cropped_big_k.sum()
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
""" generate an anisotropic Gaussian kernel
Args:
ksize : e.g., 15, kernel size
theta : [0, pi], rotation angle range
l1 : [0.1,50], scaling of eigenvalues
l2 : [0.1,l1], scaling of eigenvalues
If l1 = l2, will get an isotropic Gaussian kernel.
Returns:
k : kernel
"""
v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
V = np.array([[v[0], v[1]], [v[1], -v[0]]])
D = np.array([[l1, 0], [0, l2]])
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
return k
def gm_blur_kernel(mean, cov, size=15):
center = size / 2.0 + 0.5
k = np.zeros([size, size])
for y in range(size):
for x in range(size):
cy = y - center + 1
cx = x - center + 1
k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
k = k / np.sum(k)
return k
def shift_pixel(x, sf, upper_left=True):
"""shift pixel for super-resolution with different scale factors
Args:
x: WxHxC or WxH
sf: scale factor
upper_left: shift direction
"""
h, w = x.shape[:2]
shift = (sf - 1) * 0.5
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
if upper_left:
x1 = xv + shift
y1 = yv + shift
else:
x1 = xv - shift
y1 = yv - shift
x1 = np.clip(x1, 0, w - 1)
y1 = np.clip(y1, 0, h - 1)
if x.ndim == 2:
x = interp2d(xv, yv, x)(x1, y1)
if x.ndim == 3:
for i in range(x.shape[-1]):
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
return x
def blur(x, k):
'''
x: image, NxcxHxW
k: kernel, Nx1xhxw
'''
n, c = x.shape[:2]
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
k = k.repeat(1, c, 1, 1)
k = k.view(-1, 1, k.shape[2], k.shape[3])
x = x.view(1, -1, x.shape[2], x.shape[3])
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
x = x.view(n, c, x.shape[2], x.shape[3])
return x
def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
""""
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator
# Kai Zhang
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
# max_var = 2.5 * sf
"""
# Set random eigen-vals (lambdas) and angle (theta) for COV matrix
lambda_1 = min_var + np.random.rand() * (max_var - min_var)
lambda_2 = min_var + np.random.rand() * (max_var - min_var)
theta = np.random.rand() * np.pi # random theta
noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
# Set COV matrix using Lambdas and Theta
LAMBDA = np.diag([lambda_1, lambda_2])
Q = np.array([[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)]])
SIGMA = Q @ LAMBDA @ Q.T
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
# Set expectation position (shifting kernel for aligned image)
MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
MU = MU[None, None, :, None]
# Create meshgrid for Gaussian
[X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
Z = np.stack([X, Y], 2)[:, :, :, None]
# Calcualte Gaussian for every pixel of the kernel
ZZ = Z - MU
ZZ_t = ZZ.transpose(0, 1, 3, 2)
raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
# shift the kernel so it will be centered
# raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
# Normalize the kernel and return
# kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
kernel = raw_kernel / np.sum(raw_kernel)
return kernel
def fspecial_gaussian(hsize, sigma):
hsize = [hsize, hsize]
siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
std = sigma
[x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
arg = -(x * x + y * y) / (2 * std * std)
h = np.exp(arg)
h[h < scipy.finfo(float).eps * h.max()] = 0
sumh = h.sum()
if sumh != 0:
h = h / sumh
return h
def fspecial_laplacian(alpha):
alpha = max([0, min([alpha, 1])])
h1 = alpha / (alpha + 1)
h2 = (1 - alpha) / (alpha + 1)
h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
h = np.array(h)
return h
def fspecial(filter_type, *args, **kwargs):
'''
python code from:
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
'''
if filter_type == 'gaussian':
return fspecial_gaussian(*args, **kwargs)
if filter_type == 'laplacian':
return fspecial_laplacian(*args, **kwargs)
"""
# --------------------------------------------
# degradation models
# --------------------------------------------
"""
def bicubic_degradation(x, sf=3):
'''
Args:
x: HxWxC image, [0, 1]
sf: down-scale factor
Return:
bicubicly downsampled LR image
'''
x = util.imresize_np(x, scale=1 / sf)
return x
def srmd_degradation(x, k, sf=3):
''' blur + bicubic downsampling
Args:
x: HxWxC image, [0, 1]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
Reference:
@inproceedings{zhang2018learning,
title={Learning a single convolutional super-resolution network for multiple degradations},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={3262--3271},
year={2018}
}
'''
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
x = bicubic_degradation(x, sf=sf)
return x
def dpsr_degradation(x, k, sf=3):
''' bicubic downsampling + blur
Args:
x: HxWxC image, [0, 1]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
Reference:
@inproceedings{zhang2019deep,
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={1671--1681},
year={2019}
}
'''
x = bicubic_degradation(x, sf=sf)
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
return x
def classical_degradation(x, k, sf=3):
''' blur + downsampling
Args:
x: HxWxC image, [0, 1]/[0, 255]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
'''
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
# x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
st = 0
return x[st::sf, st::sf, ...]
def add_sharpening(img, weight=0.5, radius=50, threshold=10):
"""USM sharpening. borrowed from real-ESRGAN
Input image: I; Blurry image: B.
1. K = I + weight * (I - B)
2. Mask = 1 if abs(I - B) > threshold, else: 0
3. Blur mask:
4. Out = Mask * K + (1 - Mask) * I
Args:
img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
weight (float): Sharp weight. Default: 1.
radius (float): Kernel size of Gaussian blur. Default: 50.
threshold (int):
"""
if radius % 2 == 0:
radius += 1
blur = cv2.GaussianBlur(img, (radius, radius), 0)
residual = img - blur
mask = np.abs(residual) * 255 > threshold
mask = mask.astype('float32')
soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
K = img + weight * residual
K = np.clip(K, 0, 1)
return soft_mask * K + (1 - soft_mask) * img
def add_blur(img, sf=4):
wd2 = 4.0 + sf
wd = 2.0 + 0.2 * sf
if random.random() < 0.5:
l1 = wd2 * random.random()
l2 = wd2 * random.random()
k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
else:
k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random())
img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
return img
def add_resize(img, sf=4):
rnum = np.random.rand()
if rnum > 0.8: # up
sf1 = random.uniform(1, 2)
elif rnum < 0.7: # down
sf1 = random.uniform(0.5 / sf, 1)
else:
sf1 = 1.0
img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
img = np.clip(img, 0.0, 1.0)
return img
# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
# noise_level = random.randint(noise_level1, noise_level2)
# rnum = np.random.rand()
# if rnum > 0.6: # add color Gaussian noise
# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
# elif rnum < 0.4: # add grayscale Gaussian noise
# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
# else: # add noise
# L = noise_level2 / 255.
# D = np.diag(np.random.rand(3))
# U = orth(np.random.rand(3, 3))
# conv = np.dot(np.dot(np.transpose(U), D), U)
# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
# img = np.clip(img, 0.0, 1.0)
# return img
def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
noise_level = random.randint(noise_level1, noise_level2)
rnum = np.random.rand()
if rnum > 0.6: # add color Gaussian noise
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
elif rnum < 0.4: # add grayscale Gaussian noise
img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
else: # add noise
L = noise_level2 / 255.
D = np.diag(np.random.rand(3))
U = orth(np.random.rand(3, 3))
conv = np.dot(np.dot(np.transpose(U), D), U)
img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
img = np.clip(img, 0.0, 1.0)
return img
def add_speckle_noise(img, noise_level1=2, noise_level2=25):
noise_level = random.randint(noise_level1, noise_level2)
img = np.clip(img, 0.0, 1.0)
rnum = random.random()
if rnum > 0.6:
img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
elif rnum < 0.4:
img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
else:
L = noise_level2 / 255.
D = np.diag(np.random.rand(3))
U = orth(np.random.rand(3, 3))
conv = np.dot(np.dot(np.transpose(U), D), U)
img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
img = np.clip(img, 0.0, 1.0)
return img
def add_Poisson_noise(img):
img = np.clip((img * 255.0).round(), 0, 255) / 255.
vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
if random.random() < 0.5:
img = np.random.poisson(img * vals).astype(np.float32) / vals
else:
img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
img += noise_gray[:, :, np.newaxis]
img = np.clip(img, 0.0, 1.0)
return img
def add_JPEG_noise(img):
quality_factor = random.randint(30, 95)
img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
img = cv2.imdecode(encimg, 1)
img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
return img
def random_crop(lq, hq, sf=4, lq_patchsize=64):
h, w = lq.shape[:2]
rnd_h = random.randint(0, h - lq_patchsize)
rnd_w = random.randint(0, w - lq_patchsize)
lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
return lq, hq
def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
"""
This is the degradation model of BSRGAN from the paper
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
----------
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
sf: scale factor
isp_model: camera ISP model
Returns
-------
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
"""
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
sf_ori = sf
h1, w1 = img.shape[:2]
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
h, w = img.shape[:2]
if h < lq_patchsize * sf or w < lq_patchsize * sf:
raise ValueError(f'img size ({h1}X{w1}) is too small!')
hq = img.copy()
if sf == 4 and random.random() < scale2_prob: # downsample1
if np.random.rand() < 0.5:
img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
interpolation=random.choice([1, 2, 3]))
else:
img = util.imresize_np(img, 1 / 2, True)
img = np.clip(img, 0.0, 1.0)
sf = 2
shuffle_order = random.sample(range(7), 7)
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
if idx1 > idx2: # keep downsample3 last
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
for i in shuffle_order:
if i == 0:
img = add_blur(img, sf=sf)
elif i == 1:
img = add_blur(img, sf=sf)
elif i == 2:
a, b = img.shape[1], img.shape[0]
# downsample2
if random.random() < 0.75:
sf1 = random.uniform(1, 2 * sf)
img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
interpolation=random.choice([1, 2, 3]))
else:
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
k_shifted = shift_pixel(k, sf)
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
img = img[0::sf, 0::sf, ...] # nearest downsampling
img = np.clip(img, 0.0, 1.0)
elif i == 3:
# downsample3
img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
img = np.clip(img, 0.0, 1.0)
elif i == 4:
# add Gaussian noise
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
elif i == 5:
# add JPEG noise
if random.random() < jpeg_prob:
img = add_JPEG_noise(img)
elif i == 6:
# add processed camera sensor noise
if random.random() < isp_prob and isp_model is not None:
with torch.no_grad():
img, hq = isp_model.forward(img.copy(), hq)
# add final JPEG compression noise
img = add_JPEG_noise(img)
# random crop
img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
return img, hq
# todo no isp_model?
def degradation_bsrgan_variant(image, sf=4, isp_model=None):
"""
This is the degradation model of BSRGAN from the paper
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
----------
sf: scale factor
isp_model: camera ISP model
Returns
-------
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
"""
image = util.uint2single(image)
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
sf_ori = sf
h1, w1 = image.shape[:2]
image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
h, w = image.shape[:2]
hq = image.copy()
if sf == 4 and random.random() < scale2_prob: # downsample1
if np.random.rand() < 0.5:
image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
interpolation=random.choice([1, 2, 3]))
else:
image = util.imresize_np(image, 1 / 2, True)
image = np.clip(image, 0.0, 1.0)
sf = 2
shuffle_order = random.sample(range(7), 7)
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
if idx1 > idx2: # keep downsample3 last
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
for i in shuffle_order:
if i == 0:
image = add_blur(image, sf=sf)
elif i == 1:
image = add_blur(image, sf=sf)
elif i == 2:
a, b = image.shape[1], image.shape[0]
# downsample2
if random.random() < 0.75:
sf1 = random.uniform(1, 2 * sf)
image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
interpolation=random.choice([1, 2, 3]))
else:
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
k_shifted = shift_pixel(k, sf)
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
image = image[0::sf, 0::sf, ...] # nearest downsampling
image = np.clip(image, 0.0, 1.0)
elif i == 3:
# downsample3
image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
image = np.clip(image, 0.0, 1.0)
elif i == 4:
# add Gaussian noise
image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25)
elif i == 5:
# add JPEG noise
if random.random() < jpeg_prob:
image = add_JPEG_noise(image)
# elif i == 6:
# # add processed camera sensor noise
# if random.random() < isp_prob and isp_model is not None:
# with torch.no_grad():
# img, hq = isp_model.forward(img.copy(), hq)
# add final JPEG compression noise
image = add_JPEG_noise(image)
image = util.single2uint(image)
example = {"image":image}
return example
# TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc...
def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None):
"""
This is an extended degradation model by combining
the degradation models of BSRGAN and Real-ESRGAN
----------
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
sf: scale factor
use_shuffle: the degradation shuffle
use_sharp: sharpening the img
Returns
-------
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
"""
h1, w1 = img.shape[:2]
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
h, w = img.shape[:2]
if h < lq_patchsize * sf or w < lq_patchsize * sf:
raise ValueError(f'img size ({h1}X{w1}) is too small!')
if use_sharp:
img = add_sharpening(img)
hq = img.copy()
if random.random() < shuffle_prob:
shuffle_order = random.sample(range(13), 13)
else:
shuffle_order = list(range(13))
# local shuffle for noise, JPEG is always the last one
shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6)))
shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13)))
poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1
for i in shuffle_order:
if i == 0:
img = add_blur(img, sf=sf)
elif i == 1:
img = add_resize(img, sf=sf)
elif i == 2:
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
elif i == 3:
if random.random() < poisson_prob:
img = add_Poisson_noise(img)
elif i == 4:
if random.random() < speckle_prob:
img = add_speckle_noise(img)
elif i == 5:
if random.random() < isp_prob and isp_model is not None:
with torch.no_grad():
img, hq = isp_model.forward(img.copy(), hq)
elif i == 6:
img = add_JPEG_noise(img)
elif i == 7:
img = add_blur(img, sf=sf)
elif i == 8:
img = add_resize(img, sf=sf)
elif i == 9:
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
elif i == 10:
if random.random() < poisson_prob:
img = add_Poisson_noise(img)
elif i == 11:
if random.random() < speckle_prob:
img = add_speckle_noise(img)
elif i == 12:
if random.random() < isp_prob and isp_model is not None:
with torch.no_grad():
img, hq = isp_model.forward(img.copy(), hq)
else:
print('check the shuffle!')
# resize to desired size
img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])),
interpolation=random.choice([1, 2, 3]))
# add final JPEG compression noise
img = add_JPEG_noise(img)
# random crop
img, hq = random_crop(img, hq, sf, lq_patchsize)
return img, hq
if __name__ == '__main__':
print("hey")
img = util.imread_uint('utils/test.png', 3)
print(img)
img = util.uint2single(img)
print(img)
img = img[:448, :448]
h = img.shape[0] // 4
print("resizing to", h)
sf = 4
deg_fn = partial(degradation_bsrgan_variant, sf=sf)
for i in range(20):
print(i)
img_lq = deg_fn(img)
print(img_lq)
img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"]
print(img_lq.shape)
print("bicubic", img_lq_bicubic.shape)
print(img_hq.shape)
lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
interpolation=0)
lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
interpolation=0)
img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
util.imsave(img_concat, str(i) + '.png')
|
from ldm.modules.image_degradation.bsrgan import degradation_bsrgan_variant as degradation_fn_bsr
from ldm.modules.image_degradation.bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light
|
import os
import math
import random
import numpy as np
import torch
import cv2
from torchvision.utils import make_grid
from datetime import datetime
#import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
'''
# --------------------------------------------
# Kai Zhang (github: https://github.com/cszn)
# 03/Mar/2019
# --------------------------------------------
# https://github.com/twhui/SRGAN-pyTorch
# https://github.com/xinntao/BasicSR
# --------------------------------------------
'''
IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif']
def is_image_file(filename):
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
def get_timestamp():
return datetime.now().strftime('%y%m%d-%H%M%S')
def imshow(x, title=None, cbar=False, figsize=None):
plt.figure(figsize=figsize)
plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
if title:
plt.title(title)
if cbar:
plt.colorbar()
plt.show()
def surf(Z, cmap='rainbow', figsize=None):
plt.figure(figsize=figsize)
ax3 = plt.axes(projection='3d')
w, h = Z.shape[:2]
xx = np.arange(0,w,1)
yy = np.arange(0,h,1)
X, Y = np.meshgrid(xx, yy)
ax3.plot_surface(X,Y,Z,cmap=cmap)
#ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap)
plt.show()
'''
# --------------------------------------------
# get image pathes
# --------------------------------------------
'''
def get_image_paths(dataroot):
paths = None # return None if dataroot is None
if dataroot is not None:
paths = sorted(_get_paths_from_images(dataroot))
return paths
def _get_paths_from_images(path):
assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
images = []
for dirpath, _, fnames in sorted(os.walk(path)):
for fname in sorted(fnames):
if is_image_file(fname):
img_path = os.path.join(dirpath, fname)
images.append(img_path)
assert images, '{:s} has no valid image file'.format(path)
return images
'''
# --------------------------------------------
# split large images into small images
# --------------------------------------------
'''
def patches_from_image(img, p_size=512, p_overlap=64, p_max=800):
w, h = img.shape[:2]
patches = []
if w > p_max and h > p_max:
w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int))
h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int))
w1.append(w-p_size)
h1.append(h-p_size)
# print(w1)
# print(h1)
for i in w1:
for j in h1:
patches.append(img[i:i+p_size, j:j+p_size,:])
else:
patches.append(img)
return patches
def imssave(imgs, img_path):
"""
imgs: list, N images of size WxHxC
"""
img_name, ext = os.path.splitext(os.path.basename(img_path))
for i, img in enumerate(imgs):
if img.ndim == 3:
img = img[:, :, [2, 1, 0]]
new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png')
cv2.imwrite(new_path, img)
def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000):
"""
split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size),
and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max)
will be splitted.
Args:
original_dataroot:
taget_dataroot:
p_size: size of small images
p_overlap: patch size in training is a good choice
p_max: images with smaller size than (p_max)x(p_max) keep unchanged.
"""
paths = get_image_paths(original_dataroot)
for img_path in paths:
# img_name, ext = os.path.splitext(os.path.basename(img_path))
img = imread_uint(img_path, n_channels=n_channels)
patches = patches_from_image(img, p_size, p_overlap, p_max)
imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path)))
#if original_dataroot == taget_dataroot:
#del img_path
'''
# --------------------------------------------
# makedir
# --------------------------------------------
'''
def mkdir(path):
if not os.path.exists(path):
os.makedirs(path)
def mkdirs(paths):
if isinstance(paths, str):
mkdir(paths)
else:
for path in paths:
mkdir(path)
def mkdir_and_rename(path):
if os.path.exists(path):
new_name = path + '_archived_' + get_timestamp()
print('Path already exists. Rename it to [{:s}]'.format(new_name))
os.rename(path, new_name)
os.makedirs(path)
'''
# --------------------------------------------
# read image from path
# opencv is fast, but read BGR numpy image
# --------------------------------------------
'''
# --------------------------------------------
# get uint8 image of size HxWxn_channles (RGB)
# --------------------------------------------
def imread_uint(path, n_channels=3):
# input: path
# output: HxWx3(RGB or GGG), or HxWx1 (G)
if n_channels == 1:
img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE
img = np.expand_dims(img, axis=2) # HxWx1
elif n_channels == 3:
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G
if img.ndim == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG
else:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB
return img
# --------------------------------------------
# matlab's imwrite
# --------------------------------------------
def imsave(img, img_path):
img = np.squeeze(img)
if img.ndim == 3:
img = img[:, :, [2, 1, 0]]
cv2.imwrite(img_path, img)
def imwrite(img, img_path):
img = np.squeeze(img)
if img.ndim == 3:
img = img[:, :, [2, 1, 0]]
cv2.imwrite(img_path, img)
# --------------------------------------------
# get single image of size HxWxn_channles (BGR)
# --------------------------------------------
def read_img(path):
# read image by cv2
# return: Numpy float32, HWC, BGR, [0,1]
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE
img = img.astype(np.float32) / 255.
if img.ndim == 2:
img = np.expand_dims(img, axis=2)
# some images have 4 channels
if img.shape[2] > 3:
img = img[:, :, :3]
return img
'''
# --------------------------------------------
# image format conversion
# --------------------------------------------
# numpy(single) <---> numpy(unit)
# numpy(single) <---> tensor
# numpy(unit) <---> tensor
# --------------------------------------------
'''
# --------------------------------------------
# numpy(single) [0, 1] <---> numpy(unit)
# --------------------------------------------
def uint2single(img):
return np.float32(img/255.)
def single2uint(img):
return np.uint8((img.clip(0, 1)*255.).round())
def uint162single(img):
return np.float32(img/65535.)
def single2uint16(img):
return np.uint16((img.clip(0, 1)*65535.).round())
# --------------------------------------------
# numpy(unit) (HxWxC or HxW) <---> tensor
# --------------------------------------------
# convert uint to 4-dimensional torch tensor
def uint2tensor4(img):
if img.ndim == 2:
img = np.expand_dims(img, axis=2)
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0)
# convert uint to 3-dimensional torch tensor
def uint2tensor3(img):
if img.ndim == 2:
img = np.expand_dims(img, axis=2)
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.)
# convert 2/3/4-dimensional torch tensor to uint
def tensor2uint(img):
img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
if img.ndim == 3:
img = np.transpose(img, (1, 2, 0))
return np.uint8((img*255.0).round())
# --------------------------------------------
# numpy(single) (HxWxC) <---> tensor
# --------------------------------------------
# convert single (HxWxC) to 3-dimensional torch tensor
def single2tensor3(img):
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float()
# convert single (HxWxC) to 4-dimensional torch tensor
def single2tensor4(img):
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0)
# convert torch tensor to single
def tensor2single(img):
img = img.data.squeeze().float().cpu().numpy()
if img.ndim == 3:
img = np.transpose(img, (1, 2, 0))
return img
# convert torch tensor to single
def tensor2single3(img):
img = img.data.squeeze().float().cpu().numpy()
if img.ndim == 3:
img = np.transpose(img, (1, 2, 0))
elif img.ndim == 2:
img = np.expand_dims(img, axis=2)
return img
def single2tensor5(img):
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0)
def single32tensor5(img):
return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0)
def single42tensor4(img):
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float()
# from skimage.io import imread, imsave
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
'''
Converts a torch Tensor into an image Numpy array of BGR channel order
Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
'''
tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
n_dim = tensor.dim()
if n_dim == 4:
n_img = len(tensor)
img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
elif n_dim == 3:
img_np = tensor.numpy()
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
elif n_dim == 2:
img_np = tensor.numpy()
else:
raise TypeError(
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
if out_type == np.uint8:
img_np = (img_np * 255.0).round()
# Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
return img_np.astype(out_type)
'''
# --------------------------------------------
# Augmentation, flipe and/or rotate
# --------------------------------------------
# The following two are enough.
# (1) augmet_img: numpy image of WxHxC or WxH
# (2) augment_img_tensor4: tensor image 1xCxWxH
# --------------------------------------------
'''
def augment_img(img, mode=0):
'''Kai Zhang (github: https://github.com/cszn)
'''
if mode == 0:
return img
elif mode == 1:
return np.flipud(np.rot90(img))
elif mode == 2:
return np.flipud(img)
elif mode == 3:
return np.rot90(img, k=3)
elif mode == 4:
return np.flipud(np.rot90(img, k=2))
elif mode == 5:
return np.rot90(img)
elif mode == 6:
return np.rot90(img, k=2)
elif mode == 7:
return np.flipud(np.rot90(img, k=3))
def augment_img_tensor4(img, mode=0):
'''Kai Zhang (github: https://github.com/cszn)
'''
if mode == 0:
return img
elif mode == 1:
return img.rot90(1, [2, 3]).flip([2])
elif mode == 2:
return img.flip([2])
elif mode == 3:
return img.rot90(3, [2, 3])
elif mode == 4:
return img.rot90(2, [2, 3]).flip([2])
elif mode == 5:
return img.rot90(1, [2, 3])
elif mode == 6:
return img.rot90(2, [2, 3])
elif mode == 7:
return img.rot90(3, [2, 3]).flip([2])
def augment_img_tensor(img, mode=0):
'''Kai Zhang (github: https://github.com/cszn)
'''
img_size = img.size()
img_np = img.data.cpu().numpy()
if len(img_size) == 3:
img_np = np.transpose(img_np, (1, 2, 0))
elif len(img_size) == 4:
img_np = np.transpose(img_np, (2, 3, 1, 0))
img_np = augment_img(img_np, mode=mode)
img_tensor = torch.from_numpy(np.ascontiguousarray(img_np))
if len(img_size) == 3:
img_tensor = img_tensor.permute(2, 0, 1)
elif len(img_size) == 4:
img_tensor = img_tensor.permute(3, 2, 0, 1)
return img_tensor.type_as(img)
def augment_img_np3(img, mode=0):
if mode == 0:
return img
elif mode == 1:
return img.transpose(1, 0, 2)
elif mode == 2:
return img[::-1, :, :]
elif mode == 3:
img = img[::-1, :, :]
img = img.transpose(1, 0, 2)
return img
elif mode == 4:
return img[:, ::-1, :]
elif mode == 5:
img = img[:, ::-1, :]
img = img.transpose(1, 0, 2)
return img
elif mode == 6:
img = img[:, ::-1, :]
img = img[::-1, :, :]
return img
elif mode == 7:
img = img[:, ::-1, :]
img = img[::-1, :, :]
img = img.transpose(1, 0, 2)
return img
def augment_imgs(img_list, hflip=True, rot=True):
# horizontal flip OR rotate
hflip = hflip and random.random() < 0.5
vflip = rot and random.random() < 0.5
rot90 = rot and random.random() < 0.5
def _augment(img):
if hflip:
img = img[:, ::-1, :]
if vflip:
img = img[::-1, :, :]
if rot90:
img = img.transpose(1, 0, 2)
return img
return [_augment(img) for img in img_list]
'''
# --------------------------------------------
# modcrop and shave
# --------------------------------------------
'''
def modcrop(img_in, scale):
# img_in: Numpy, HWC or HW
img = np.copy(img_in)
if img.ndim == 2:
H, W = img.shape
H_r, W_r = H % scale, W % scale
img = img[:H - H_r, :W - W_r]
elif img.ndim == 3:
H, W, C = img.shape
H_r, W_r = H % scale, W % scale
img = img[:H - H_r, :W - W_r, :]
else:
raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim))
return img
def shave(img_in, border=0):
# img_in: Numpy, HWC or HW
img = np.copy(img_in)
h, w = img.shape[:2]
img = img[border:h-border, border:w-border]
return img
'''
# --------------------------------------------
# image processing process on numpy image
# channel_convert(in_c, tar_type, img_list):
# rgb2ycbcr(img, only_y=True):
# bgr2ycbcr(img, only_y=True):
# ycbcr2rgb(img):
# --------------------------------------------
'''
def rgb2ycbcr(img, only_y=True):
'''same as matlab rgb2ycbcr
only_y: only return Y channel
Input:
uint8, [0, 255]
float, [0, 1]
'''
in_img_type = img.dtype
img.astype(np.float32)
if in_img_type != np.uint8:
img *= 255.
# convert
if only_y:
rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
else:
rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
[24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
if in_img_type == np.uint8:
rlt = rlt.round()
else:
rlt /= 255.
return rlt.astype(in_img_type)
def ycbcr2rgb(img):
'''same as matlab ycbcr2rgb
Input:
uint8, [0, 255]
float, [0, 1]
'''
in_img_type = img.dtype
img.astype(np.float32)
if in_img_type != np.uint8:
img *= 255.
# convert
rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
[0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
if in_img_type == np.uint8:
rlt = rlt.round()
else:
rlt /= 255.
return rlt.astype(in_img_type)
def bgr2ycbcr(img, only_y=True):
'''bgr version of rgb2ycbcr
only_y: only return Y channel
Input:
uint8, [0, 255]
float, [0, 1]
'''
in_img_type = img.dtype
img.astype(np.float32)
if in_img_type != np.uint8:
img *= 255.
# convert
if only_y:
rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
else:
rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
[65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
if in_img_type == np.uint8:
rlt = rlt.round()
else:
rlt /= 255.
return rlt.astype(in_img_type)
def channel_convert(in_c, tar_type, img_list):
# conversion among BGR, gray and y
if in_c == 3 and tar_type == 'gray': # BGR to gray
gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list]
return [np.expand_dims(img, axis=2) for img in gray_list]
elif in_c == 3 and tar_type == 'y': # BGR to y
y_list = [bgr2ycbcr(img, only_y=True) for img in img_list]
return [np.expand_dims(img, axis=2) for img in y_list]
elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR
return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list]
else:
return img_list
'''
# --------------------------------------------
# metric, PSNR and SSIM
# --------------------------------------------
'''
# --------------------------------------------
# PSNR
# --------------------------------------------
def calculate_psnr(img1, img2, border=0):
# img1 and img2 have range [0, 255]
#img1 = img1.squeeze()
#img2 = img2.squeeze()
if not img1.shape == img2.shape:
raise ValueError('Input images must have the same dimensions.')
h, w = img1.shape[:2]
img1 = img1[border:h-border, border:w-border]
img2 = img2[border:h-border, border:w-border]
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
mse = np.mean((img1 - img2)**2)
if mse == 0:
return float('inf')
return 20 * math.log10(255.0 / math.sqrt(mse))
# --------------------------------------------
# SSIM
# --------------------------------------------
def calculate_ssim(img1, img2, border=0):
'''calculate SSIM
the same outputs as MATLAB's
img1, img2: [0, 255]
'''
#img1 = img1.squeeze()
#img2 = img2.squeeze()
if not img1.shape == img2.shape:
raise ValueError('Input images must have the same dimensions.')
h, w = img1.shape[:2]
img1 = img1[border:h-border, border:w-border]
img2 = img2[border:h-border, border:w-border]
if img1.ndim == 2:
return ssim(img1, img2)
elif img1.ndim == 3:
if img1.shape[2] == 3:
ssims = []
for i in range(3):
ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
return np.array(ssims).mean()
elif img1.shape[2] == 1:
return ssim(np.squeeze(img1), np.squeeze(img2))
else:
raise ValueError('Wrong input image dimensions.')
def ssim(img1, img2):
C1 = (0.01 * 255)**2
C2 = (0.03 * 255)**2
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
kernel = cv2.getGaussianKernel(11, 1.5)
window = np.outer(kernel, kernel.transpose())
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
mu1_sq = mu1**2
mu2_sq = mu2**2
mu1_mu2 = mu1 * mu2
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
(sigma1_sq + sigma2_sq + C2))
return ssim_map.mean()
'''
# --------------------------------------------
# matlab's bicubic imresize (numpy and torch) [0, 1]
# --------------------------------------------
'''
# matlab 'imresize' function, now only support 'bicubic'
def cubic(x):
absx = torch.abs(x)
absx2 = absx**2
absx3 = absx**3
return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \
(-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx))
def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
if (scale < 1) and (antialiasing):
# Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
kernel_width = kernel_width / scale
# Output-space coordinates
x = torch.linspace(1, out_length, out_length)
# Input-space coordinates. Calculate the inverse mapping such that 0.5
# in output space maps to 0.5 in input space, and 0.5+scale in output
# space maps to 1.5 in input space.
u = x / scale + 0.5 * (1 - 1 / scale)
# What is the left-most pixel that can be involved in the computation?
left = torch.floor(u - kernel_width / 2)
# What is the maximum number of pixels that can be involved in the
# computation? Note: it's OK to use an extra pixel here; if the
# corresponding weights are all zero, it will be eliminated at the end
# of this function.
P = math.ceil(kernel_width) + 2
# The indices of the input pixels involved in computing the k-th output
# pixel are in row k of the indices matrix.
indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view(
1, P).expand(out_length, P)
# The weights used to compute the k-th output pixel are in row k of the
# weights matrix.
distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices
# apply cubic kernel
if (scale < 1) and (antialiasing):
weights = scale * cubic(distance_to_center * scale)
else:
weights = cubic(distance_to_center)
# Normalize the weights matrix so that each row sums to 1.
weights_sum = torch.sum(weights, 1).view(out_length, 1)
weights = weights / weights_sum.expand(out_length, P)
# If a column in weights is all zero, get rid of it. only consider the first and last column.
weights_zero_tmp = torch.sum((weights == 0), 0)
if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
indices = indices.narrow(1, 1, P - 2)
weights = weights.narrow(1, 1, P - 2)
if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
indices = indices.narrow(1, 0, P - 2)
weights = weights.narrow(1, 0, P - 2)
weights = weights.contiguous()
indices = indices.contiguous()
sym_len_s = -indices.min() + 1
sym_len_e = indices.max() - in_length
indices = indices + sym_len_s - 1
return weights, indices, int(sym_len_s), int(sym_len_e)
# --------------------------------------------
# imresize for tensor image [0, 1]
# --------------------------------------------
def imresize(img, scale, antialiasing=True):
# Now the scale should be the same for H and W
# input: img: pytorch tensor, CHW or HW [0,1]
# output: CHW or HW [0,1] w/o round
need_squeeze = True if img.dim() == 2 else False
if need_squeeze:
img.unsqueeze_(0)
in_C, in_H, in_W = img.size()
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
kernel_width = 4
kernel = 'cubic'
# Return the desired dimension order for performing the resize. The
# strategy is to perform the resize first along the dimension with the
# smallest scale factor.
# Now we do not support this.
# get weights and indices
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
in_H, out_H, scale, kernel, kernel_width, antialiasing)
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
in_W, out_W, scale, kernel, kernel_width, antialiasing)
# process H dimension
# symmetric copying
img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W)
img_aug.narrow(1, sym_len_Hs, in_H).copy_(img)
sym_patch = img[:, :sym_len_Hs, :]
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(1, inv_idx)
img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv)
sym_patch = img[:, -sym_len_He:, :]
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(1, inv_idx)
img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
out_1 = torch.FloatTensor(in_C, out_H, in_W)
kernel_width = weights_H.size(1)
for i in range(out_H):
idx = int(indices_H[i][0])
for j in range(out_C):
out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i])
# process W dimension
# symmetric copying
out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We)
out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1)
sym_patch = out_1[:, :, :sym_len_Ws]
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(2, inv_idx)
out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv)
sym_patch = out_1[:, :, -sym_len_We:]
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(2, inv_idx)
out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
out_2 = torch.FloatTensor(in_C, out_H, out_W)
kernel_width = weights_W.size(1)
for i in range(out_W):
idx = int(indices_W[i][0])
for j in range(out_C):
out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i])
if need_squeeze:
out_2.squeeze_()
return out_2
# --------------------------------------------
# imresize for numpy image [0, 1]
# --------------------------------------------
def imresize_np(img, scale, antialiasing=True):
# Now the scale should be the same for H and W
# input: img: Numpy, HWC or HW [0,1]
# output: HWC or HW [0,1] w/o round
img = torch.from_numpy(img)
need_squeeze = True if img.dim() == 2 else False
if need_squeeze:
img.unsqueeze_(2)
in_H, in_W, in_C = img.size()
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
kernel_width = 4
kernel = 'cubic'
# Return the desired dimension order for performing the resize. The
# strategy is to perform the resize first along the dimension with the
# smallest scale factor.
# Now we do not support this.
# get weights and indices
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
in_H, out_H, scale, kernel, kernel_width, antialiasing)
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
in_W, out_W, scale, kernel, kernel_width, antialiasing)
# process H dimension
# symmetric copying
img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
img_aug.narrow(0, sym_len_Hs, in_H).copy_(img)
sym_patch = img[:sym_len_Hs, :, :]
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(0, inv_idx)
img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv)
sym_patch = img[-sym_len_He:, :, :]
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(0, inv_idx)
img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
out_1 = torch.FloatTensor(out_H, in_W, in_C)
kernel_width = weights_H.size(1)
for i in range(out_H):
idx = int(indices_H[i][0])
for j in range(out_C):
out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i])
# process W dimension
# symmetric copying
out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C)
out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1)
sym_patch = out_1[:, :sym_len_Ws, :]
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(1, inv_idx)
out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv)
sym_patch = out_1[:, -sym_len_We:, :]
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(1, inv_idx)
out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
out_2 = torch.FloatTensor(out_H, out_W, in_C)
kernel_width = weights_W.size(1)
for i in range(out_W):
idx = int(indices_W[i][0])
for j in range(out_C):
out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i])
if need_squeeze:
out_2.squeeze_()
return out_2.numpy()
if __name__ == '__main__':
print('---')
# img = imread_uint('test.bmp', 3)
# img = uint2single(img)
# img_bicubic = imresize_np(img, 1/4) |
# -*- coding: utf-8 -*-
import numpy as np
import cv2
import torch
from functools import partial
import random
from scipy import ndimage
import scipy
import scipy.stats as ss
from scipy.interpolate import interp2d
from scipy.linalg import orth
import albumentations
import ldm.modules.image_degradation.utils_image as util
"""
# --------------------------------------------
# Super-Resolution
# --------------------------------------------
#
# Kai Zhang ([email protected])
# https://github.com/cszn
# From 2019/03--2021/08
# --------------------------------------------
"""
def modcrop_np(img, sf):
'''
Args:
img: numpy image, WxH or WxHxC
sf: scale factor
Return:
cropped image
'''
w, h = img.shape[:2]
im = np.copy(img)
return im[:w - w % sf, :h - h % sf, ...]
"""
# --------------------------------------------
# anisotropic Gaussian kernels
# --------------------------------------------
"""
def analytic_kernel(k):
"""Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
k_size = k.shape[0]
# Calculate the big kernels size
big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
# Loop over the small kernel to fill the big one
for r in range(k_size):
for c in range(k_size):
big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
# Crop the edges of the big kernel to ignore very small values and increase run time of SR
crop = k_size // 2
cropped_big_k = big_k[crop:-crop, crop:-crop]
# Normalize to 1
return cropped_big_k / cropped_big_k.sum()
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
""" generate an anisotropic Gaussian kernel
Args:
ksize : e.g., 15, kernel size
theta : [0, pi], rotation angle range
l1 : [0.1,50], scaling of eigenvalues
l2 : [0.1,l1], scaling of eigenvalues
If l1 = l2, will get an isotropic Gaussian kernel.
Returns:
k : kernel
"""
v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
V = np.array([[v[0], v[1]], [v[1], -v[0]]])
D = np.array([[l1, 0], [0, l2]])
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
return k
def gm_blur_kernel(mean, cov, size=15):
center = size / 2.0 + 0.5
k = np.zeros([size, size])
for y in range(size):
for x in range(size):
cy = y - center + 1
cx = x - center + 1
k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
k = k / np.sum(k)
return k
def shift_pixel(x, sf, upper_left=True):
"""shift pixel for super-resolution with different scale factors
Args:
x: WxHxC or WxH
sf: scale factor
upper_left: shift direction
"""
h, w = x.shape[:2]
shift = (sf - 1) * 0.5
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
if upper_left:
x1 = xv + shift
y1 = yv + shift
else:
x1 = xv - shift
y1 = yv - shift
x1 = np.clip(x1, 0, w - 1)
y1 = np.clip(y1, 0, h - 1)
if x.ndim == 2:
x = interp2d(xv, yv, x)(x1, y1)
if x.ndim == 3:
for i in range(x.shape[-1]):
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
return x
def blur(x, k):
'''
x: image, NxcxHxW
k: kernel, Nx1xhxw
'''
n, c = x.shape[:2]
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
k = k.repeat(1, c, 1, 1)
k = k.view(-1, 1, k.shape[2], k.shape[3])
x = x.view(1, -1, x.shape[2], x.shape[3])
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
x = x.view(n, c, x.shape[2], x.shape[3])
return x
def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
""""
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator
# Kai Zhang
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
# max_var = 2.5 * sf
"""
# Set random eigen-vals (lambdas) and angle (theta) for COV matrix
lambda_1 = min_var + np.random.rand() * (max_var - min_var)
lambda_2 = min_var + np.random.rand() * (max_var - min_var)
theta = np.random.rand() * np.pi # random theta
noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
# Set COV matrix using Lambdas and Theta
LAMBDA = np.diag([lambda_1, lambda_2])
Q = np.array([[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)]])
SIGMA = Q @ LAMBDA @ Q.T
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
# Set expectation position (shifting kernel for aligned image)
MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
MU = MU[None, None, :, None]
# Create meshgrid for Gaussian
[X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
Z = np.stack([X, Y], 2)[:, :, :, None]
# Calcualte Gaussian for every pixel of the kernel
ZZ = Z - MU
ZZ_t = ZZ.transpose(0, 1, 3, 2)
raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
# shift the kernel so it will be centered
# raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
# Normalize the kernel and return
# kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
kernel = raw_kernel / np.sum(raw_kernel)
return kernel
def fspecial_gaussian(hsize, sigma):
hsize = [hsize, hsize]
siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
std = sigma
[x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
arg = -(x * x + y * y) / (2 * std * std)
h = np.exp(arg)
h[h < scipy.finfo(float).eps * h.max()] = 0
sumh = h.sum()
if sumh != 0:
h = h / sumh
return h
def fspecial_laplacian(alpha):
alpha = max([0, min([alpha, 1])])
h1 = alpha / (alpha + 1)
h2 = (1 - alpha) / (alpha + 1)
h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
h = np.array(h)
return h
def fspecial(filter_type, *args, **kwargs):
'''
python code from:
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
'''
if filter_type == 'gaussian':
return fspecial_gaussian(*args, **kwargs)
if filter_type == 'laplacian':
return fspecial_laplacian(*args, **kwargs)
"""
# --------------------------------------------
# degradation models
# --------------------------------------------
"""
def bicubic_degradation(x, sf=3):
'''
Args:
x: HxWxC image, [0, 1]
sf: down-scale factor
Return:
bicubicly downsampled LR image
'''
x = util.imresize_np(x, scale=1 / sf)
return x
def srmd_degradation(x, k, sf=3):
''' blur + bicubic downsampling
Args:
x: HxWxC image, [0, 1]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
Reference:
@inproceedings{zhang2018learning,
title={Learning a single convolutional super-resolution network for multiple degradations},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={3262--3271},
year={2018}
}
'''
x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
x = bicubic_degradation(x, sf=sf)
return x
def dpsr_degradation(x, k, sf=3):
''' bicubic downsampling + blur
Args:
x: HxWxC image, [0, 1]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
Reference:
@inproceedings{zhang2019deep,
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={1671--1681},
year={2019}
}
'''
x = bicubic_degradation(x, sf=sf)
x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
return x
def classical_degradation(x, k, sf=3):
''' blur + downsampling
Args:
x: HxWxC image, [0, 1]/[0, 255]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
'''
x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
# x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
st = 0
return x[st::sf, st::sf, ...]
def add_sharpening(img, weight=0.5, radius=50, threshold=10):
"""USM sharpening. borrowed from real-ESRGAN
Input image: I; Blurry image: B.
1. K = I + weight * (I - B)
2. Mask = 1 if abs(I - B) > threshold, else: 0
3. Blur mask:
4. Out = Mask * K + (1 - Mask) * I
Args:
img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
weight (float): Sharp weight. Default: 1.
radius (float): Kernel size of Gaussian blur. Default: 50.
threshold (int):
"""
if radius % 2 == 0:
radius += 1
blur = cv2.GaussianBlur(img, (radius, radius), 0)
residual = img - blur
mask = np.abs(residual) * 255 > threshold
mask = mask.astype('float32')
soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
K = img + weight * residual
K = np.clip(K, 0, 1)
return soft_mask * K + (1 - soft_mask) * img
def add_blur(img, sf=4):
wd2 = 4.0 + sf
wd = 2.0 + 0.2 * sf
wd2 = wd2/4
wd = wd/4
if random.random() < 0.5:
l1 = wd2 * random.random()
l2 = wd2 * random.random()
k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
else:
k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random())
img = ndimage.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
return img
def add_resize(img, sf=4):
rnum = np.random.rand()
if rnum > 0.8: # up
sf1 = random.uniform(1, 2)
elif rnum < 0.7: # down
sf1 = random.uniform(0.5 / sf, 1)
else:
sf1 = 1.0
img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
img = np.clip(img, 0.0, 1.0)
return img
# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
# noise_level = random.randint(noise_level1, noise_level2)
# rnum = np.random.rand()
# if rnum > 0.6: # add color Gaussian noise
# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
# elif rnum < 0.4: # add grayscale Gaussian noise
# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
# else: # add noise
# L = noise_level2 / 255.
# D = np.diag(np.random.rand(3))
# U = orth(np.random.rand(3, 3))
# conv = np.dot(np.dot(np.transpose(U), D), U)
# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
# img = np.clip(img, 0.0, 1.0)
# return img
def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
noise_level = random.randint(noise_level1, noise_level2)
rnum = np.random.rand()
if rnum > 0.6: # add color Gaussian noise
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
elif rnum < 0.4: # add grayscale Gaussian noise
img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
else: # add noise
L = noise_level2 / 255.
D = np.diag(np.random.rand(3))
U = orth(np.random.rand(3, 3))
conv = np.dot(np.dot(np.transpose(U), D), U)
img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
img = np.clip(img, 0.0, 1.0)
return img
def add_speckle_noise(img, noise_level1=2, noise_level2=25):
noise_level = random.randint(noise_level1, noise_level2)
img = np.clip(img, 0.0, 1.0)
rnum = random.random()
if rnum > 0.6:
img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
elif rnum < 0.4:
img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
else:
L = noise_level2 / 255.
D = np.diag(np.random.rand(3))
U = orth(np.random.rand(3, 3))
conv = np.dot(np.dot(np.transpose(U), D), U)
img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
img = np.clip(img, 0.0, 1.0)
return img
def add_Poisson_noise(img):
img = np.clip((img * 255.0).round(), 0, 255) / 255.
vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
if random.random() < 0.5:
img = np.random.poisson(img * vals).astype(np.float32) / vals
else:
img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
img += noise_gray[:, :, np.newaxis]
img = np.clip(img, 0.0, 1.0)
return img
def add_JPEG_noise(img):
quality_factor = random.randint(80, 95)
img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
img = cv2.imdecode(encimg, 1)
img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
return img
def random_crop(lq, hq, sf=4, lq_patchsize=64):
h, w = lq.shape[:2]
rnd_h = random.randint(0, h - lq_patchsize)
rnd_w = random.randint(0, w - lq_patchsize)
lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
return lq, hq
def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
"""
This is the degradation model of BSRGAN from the paper
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
----------
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
sf: scale factor
isp_model: camera ISP model
Returns
-------
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
"""
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
sf_ori = sf
h1, w1 = img.shape[:2]
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
h, w = img.shape[:2]
if h < lq_patchsize * sf or w < lq_patchsize * sf:
raise ValueError(f'img size ({h1}X{w1}) is too small!')
hq = img.copy()
if sf == 4 and random.random() < scale2_prob: # downsample1
if np.random.rand() < 0.5:
img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
interpolation=random.choice([1, 2, 3]))
else:
img = util.imresize_np(img, 1 / 2, True)
img = np.clip(img, 0.0, 1.0)
sf = 2
shuffle_order = random.sample(range(7), 7)
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
if idx1 > idx2: # keep downsample3 last
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
for i in shuffle_order:
if i == 0:
img = add_blur(img, sf=sf)
elif i == 1:
img = add_blur(img, sf=sf)
elif i == 2:
a, b = img.shape[1], img.shape[0]
# downsample2
if random.random() < 0.75:
sf1 = random.uniform(1, 2 * sf)
img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
interpolation=random.choice([1, 2, 3]))
else:
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
k_shifted = shift_pixel(k, sf)
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
img = ndimage.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
img = img[0::sf, 0::sf, ...] # nearest downsampling
img = np.clip(img, 0.0, 1.0)
elif i == 3:
# downsample3
img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
img = np.clip(img, 0.0, 1.0)
elif i == 4:
# add Gaussian noise
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8)
elif i == 5:
# add JPEG noise
if random.random() < jpeg_prob:
img = add_JPEG_noise(img)
elif i == 6:
# add processed camera sensor noise
if random.random() < isp_prob and isp_model is not None:
with torch.no_grad():
img, hq = isp_model.forward(img.copy(), hq)
# add final JPEG compression noise
img = add_JPEG_noise(img)
# random crop
img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
return img, hq
# todo no isp_model?
def degradation_bsrgan_variant(image, sf=4, isp_model=None, up=False):
"""
This is the degradation model of BSRGAN from the paper
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
----------
sf: scale factor
isp_model: camera ISP model
Returns
-------
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
"""
image = util.uint2single(image)
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
sf_ori = sf
h1, w1 = image.shape[:2]
image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
h, w = image.shape[:2]
hq = image.copy()
if sf == 4 and random.random() < scale2_prob: # downsample1
if np.random.rand() < 0.5:
image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
interpolation=random.choice([1, 2, 3]))
else:
image = util.imresize_np(image, 1 / 2, True)
image = np.clip(image, 0.0, 1.0)
sf = 2
shuffle_order = random.sample(range(7), 7)
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
if idx1 > idx2: # keep downsample3 last
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
for i in shuffle_order:
if i == 0:
image = add_blur(image, sf=sf)
# elif i == 1:
# image = add_blur(image, sf=sf)
if i == 0:
pass
elif i == 2:
a, b = image.shape[1], image.shape[0]
# downsample2
if random.random() < 0.8:
sf1 = random.uniform(1, 2 * sf)
image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
interpolation=random.choice([1, 2, 3]))
else:
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
k_shifted = shift_pixel(k, sf)
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
image = ndimage.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
image = image[0::sf, 0::sf, ...] # nearest downsampling
image = np.clip(image, 0.0, 1.0)
elif i == 3:
# downsample3
image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
image = np.clip(image, 0.0, 1.0)
elif i == 4:
# add Gaussian noise
image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2)
elif i == 5:
# add JPEG noise
if random.random() < jpeg_prob:
image = add_JPEG_noise(image)
#
# elif i == 6:
# # add processed camera sensor noise
# if random.random() < isp_prob and isp_model is not None:
# with torch.no_grad():
# img, hq = isp_model.forward(img.copy(), hq)
# add final JPEG compression noise
image = add_JPEG_noise(image)
image = util.single2uint(image)
if up:
image = cv2.resize(image, (w1, h1), interpolation=cv2.INTER_CUBIC) # todo: random, as above? want to condition on it then
example = {"image": image}
return example
if __name__ == '__main__':
print("hey")
img = util.imread_uint('utils/test.png', 3)
img = img[:448, :448]
h = img.shape[0] // 4
print("resizing to", h)
sf = 4
deg_fn = partial(degradation_bsrgan_variant, sf=sf)
for i in range(20):
print(i)
img_hq = img
img_lq = deg_fn(img)["image"]
img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq)
print(img_lq)
img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"]
print(img_lq.shape)
print("bicubic", img_lq_bicubic.shape)
print(img_hq.shape)
lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
interpolation=0)
lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic),
(int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
interpolation=0)
img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
util.imsave(img_concat, str(i) + '.png')
|
# adopted from
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
# and
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
# and
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
#
# thanks!
import math
import os
import numpy as np
import torch
import torch.nn as nn
from einops import repeat
from ldm.util import instantiate_from_config
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
if schedule == "linear":
betas = (torch.linspace(linear_start**0.5, linear_end**0.5, n_timestep, dtype=torch.float64)**2)
elif schedule == "cosine":
timesteps = (torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s)
alphas = timesteps / (1 + cosine_s) * np.pi / 2
alphas = torch.cos(alphas).pow(2)
alphas = alphas / alphas[0]
betas = 1 - alphas[1:] / alphas[:-1]
betas = np.clip(betas, a_min=0, a_max=0.999)
elif schedule == "sqrt_linear":
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
elif schedule == "sqrt":
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)**0.5
else:
raise ValueError(f"schedule '{schedule}' unknown.")
return betas.numpy()
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
if ddim_discr_method == 'uniform':
c = num_ddpm_timesteps // num_ddim_timesteps
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
elif ddim_discr_method == 'quad':
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps))**2).astype(int)
else:
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
# add one to get the final alpha values right (the ones from first scale to data during sampling)
steps_out = ddim_timesteps + 1
if verbose:
print(f'Selected timesteps for ddim sampler: {steps_out}')
return steps_out
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
# select alphas for computing the variance schedule
alphas = alphacums[ddim_timesteps]
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
# according the the formula provided in https://arxiv.org/abs/2010.02502
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
if verbose:
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
print(f'For the chosen value of eta, which is {eta}, '
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
return sigmas, alphas, alphas_prev
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
"""
Create a beta schedule that discretizes the given alpha_t_bar function,
which defines the cumulative product of (1-beta) over time from t = [0,1].
:param num_diffusion_timesteps: the number of betas to produce.
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
produces the cumulative product of (1-beta) up to that
part of the diffusion process.
:param max_beta: the maximum beta to use; use values lower than 1 to
prevent singularities.
"""
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
return np.array(betas)
def extract_into_tensor(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def checkpoint(func, inputs, params, flag):
"""
Evaluate a function without caching intermediate activations, allowing for
reduced memory at the expense of extra compute in the backward pass.
:param func: the function to evaluate.
:param inputs: the argument sequence to pass to `func`.
:param params: a sequence of parameters `func` depends on but does not
explicitly take as arguments.
:param flag: if False, disable gradient checkpointing.
"""
if flag:
from torch.utils.checkpoint import checkpoint as torch_checkpoint
return torch_checkpoint(func, *inputs)
# args = tuple(inputs) + tuple(params)
# return CheckpointFunction.apply(func, len(inputs), *args)
else:
return func(*inputs)
class CheckpointFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, run_function, length, *args):
ctx.run_function = run_function
ctx.input_tensors = list(args[:length])
ctx.input_params = list(args[length:])
ctx.gpu_autocast_kwargs = {
"enabled": torch.is_autocast_enabled(),
"dtype": torch.get_autocast_gpu_dtype(),
"cache_enabled": torch.is_autocast_cache_enabled()
}
with torch.no_grad():
output_tensors = ctx.run_function(*ctx.input_tensors)
return output_tensors
@staticmethod
def backward(ctx, *output_grads):
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
with torch.enable_grad(), \
torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
# Fixes a bug where the first op in run_function modifies the
# Tensor storage in place, which is not allowed for detach()'d
# Tensors.
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
output_tensors = ctx.run_function(*shallow_copies)
input_grads = torch.autograd.grad(
output_tensors,
ctx.input_tensors + ctx.input_params,
output_grads,
allow_unused=True,
)
del ctx.input_tensors
del ctx.input_params
del output_tensors
return (None, None) + input_grads
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
if not repeat_only:
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) /
half).to(device=timesteps.device)
args = timesteps[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
else:
embedding = repeat(timesteps, 'b -> b d', d=dim)
return embedding
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
def scale_module(module, scale):
"""
Scale the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().mul_(scale)
return module
def mean_flat(tensor):
"""
Take the mean over all non-batch dimensions.
"""
return tensor.mean(dim=list(range(1, len(tensor.shape))))
def normalization(channels):
"""
Make a standard normalization layer.
:param channels: number of input channels.
:return: an nn.Module for normalization.
"""
return nn.GroupNorm(16, channels)
# return GroupNorm32(32, channels)
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
class SiLU(nn.Module):
def forward(self, x):
return x * torch.sigmoid(x)
class GroupNorm32(nn.GroupNorm):
def forward(self, x):
return super().forward(x.float()).type(x.dtype)
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
def linear(*args, **kwargs):
"""
Create a linear module.
"""
return nn.Linear(*args, **kwargs)
def avg_pool_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D average pooling module.
"""
if dims == 1:
return nn.AvgPool1d(*args, **kwargs)
elif dims == 2:
return nn.AvgPool2d(*args, **kwargs)
elif dims == 3:
return nn.AvgPool3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
class HybridConditioner(nn.Module):
def __init__(self, c_concat_config, c_crossattn_config):
super().__init__()
self.concat_conditioner = instantiate_from_config(c_concat_config)
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
def forward(self, c_concat, c_crossattn):
c_concat = self.concat_conditioner(c_concat)
c_crossattn = self.crossattn_conditioner(c_crossattn)
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
def noise_like(shape, device, repeat=False):
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
noise = lambda: torch.randn(shape, device=device)
return repeat_noise() if repeat else noise()
|
import torch
import torch.nn as nn
import numpy as np
from functools import partial
from ldm.modules.diffusionmodules.util import extract_into_tensor, make_beta_schedule
from ldm.util import default
class AbstractLowScaleModel(nn.Module):
# for concatenating a downsampled image to the latent representation
def __init__(self, noise_schedule_config=None):
super(AbstractLowScaleModel, self).__init__()
if noise_schedule_config is not None:
self.register_schedule(**noise_schedule_config)
def register_schedule(self, beta_schedule="linear", timesteps=1000,
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
cosine_s=cosine_s)
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
self.linear_start = linear_start
self.linear_end = linear_end
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
to_torch = partial(torch.tensor, dtype=torch.float32)
self.register_buffer('betas', to_torch(betas))
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
def q_sample(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
def forward(self, x):
return x, None
def decode(self, x):
return x
class SimpleImageConcat(AbstractLowScaleModel):
# no noise level conditioning
def __init__(self):
super(SimpleImageConcat, self).__init__(noise_schedule_config=None)
self.max_noise_level = 0
def forward(self, x):
# fix to constant noise level
return x, torch.zeros(x.shape[0], device=x.device).long()
class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel):
def __init__(self, noise_schedule_config, max_noise_level=1000, to_cuda=False):
super().__init__(noise_schedule_config=noise_schedule_config)
self.max_noise_level = max_noise_level
def forward(self, x, noise_level=None):
if noise_level is None:
noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
else:
assert isinstance(noise_level, torch.Tensor)
z = self.q_sample(x, noise_level)
return z, noise_level
|
# pytorch_diffusion + derived encoder decoder
import math
from typing import Any, Optional
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
try:
from lightning.pytorch.utilities import rank_zero_info
except:
from pytorch_lightning.utilities import rank_zero_info
from ldm.modules.attention import MemoryEfficientCrossAttention
try:
import xformers
import xformers.ops
XFORMERS_IS_AVAILBLE = True
except:
XFORMERS_IS_AVAILBLE = False
print("No module 'xformers'. Proceeding without it.")
def get_timestep_embedding(timesteps, embedding_dim):
"""
This matches the implementation in Denoising Diffusion Probabilistic Models:
From Fairseq.
Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly
from the description in Section 3.5 of "Attention Is All You Need".
"""
assert len(timesteps.shape) == 1
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
emb = emb.to(device=timesteps.device)
emb = timesteps.float()[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb
def nonlinearity(x):
# swish
return x * torch.sigmoid(x)
def Normalize(in_channels, num_groups=32):
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
class Upsample(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x):
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
if self.with_conv:
x = self.conv(x)
return x
class Downsample(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
# no asymmetric padding in torch conv, must do it ourselves
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
def forward(self, x):
if self.with_conv:
pad = (0, 1, 0, 1)
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
else:
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
return x
class ResnetBlock(nn.Module):
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.norm1 = Normalize(in_channels)
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
if temb_channels > 0:
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
self.norm2 = Normalize(out_channels)
self.dropout = torch.nn.Dropout(dropout)
self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
else:
self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x, temb):
h = x
h = self.norm1(h)
h = nonlinearity(h)
h = self.conv1(h)
if temb is not None:
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
h = self.norm2(h)
h = nonlinearity(h)
h = self.dropout(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
return x + h
class AttnBlock(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels)
self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b, c, h, w = q.shape
q = q.reshape(b, c, h * w)
q = q.permute(0, 2, 1) # b,hw,c
k = k.reshape(b, c, h * w) # b,c,hw
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
w_ = w_ * (int(c)**(-0.5))
w_ = torch.nn.functional.softmax(w_, dim=2)
# attend to values
v = v.reshape(b, c, h * w)
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
h_ = h_.reshape(b, c, h, w)
h_ = self.proj_out(h_)
return x + h_
class MemoryEfficientAttnBlock(nn.Module):
"""
Uses xformers efficient implementation,
see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
Note: this is a single-head self-attention operation
"""
#
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels)
self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.attention_op: Optional[Any] = None
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
B, C, H, W = q.shape
q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v))
q, k, v = map(
lambda t: t.unsqueeze(3).reshape(B, t.shape[1], 1, C).permute(0, 2, 1, 3).reshape(B * 1, t.shape[1], C).
contiguous(),
(q, k, v),
)
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
out = (out.unsqueeze(0).reshape(B, 1, out.shape[1], C).permute(0, 2, 1, 3).reshape(B, out.shape[1], C))
out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C)
out = self.proj_out(out)
return x + out
class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
def forward(self, x, context=None, mask=None):
b, c, h, w = x.shape
x = rearrange(x, 'b c h w -> b (h w) c')
out = super().forward(x, context=context, mask=mask)
out = rearrange(out, 'b (h w) c -> b c h w', h=h, w=w, c=c)
return x + out
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear",
"none"], f'attn_type {attn_type} unknown'
if XFORMERS_IS_AVAILBLE and attn_type == "vanilla":
attn_type = "vanilla-xformers"
if attn_type == "vanilla":
assert attn_kwargs is None
return AttnBlock(in_channels)
elif attn_type == "vanilla-xformers":
rank_zero_info(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
return MemoryEfficientAttnBlock(in_channels)
elif type == "memory-efficient-cross-attn":
attn_kwargs["query_dim"] = in_channels
return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
elif attn_type == "none":
return nn.Identity(in_channels)
else:
raise NotImplementedError()
class Model(nn.Module):
def __init__(self,
*,
ch,
out_ch,
ch_mult=(1, 2, 4, 8),
num_res_blocks,
attn_resolutions,
dropout=0.0,
resamp_with_conv=True,
in_channels,
resolution,
use_timestep=True,
use_linear_attn=False,
attn_type="vanilla"):
super().__init__()
if use_linear_attn:
attn_type = "linear"
self.ch = ch
self.temb_ch = self.ch * 4
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.use_timestep = use_timestep
if self.use_timestep:
# timestep embedding
self.temb = nn.Module()
self.temb.dense = nn.ModuleList([
torch.nn.Linear(self.ch, self.temb_ch),
torch.nn.Linear(self.temb_ch, self.temb_ch),
])
# downsampling
self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
curr_res = resolution
in_ch_mult = (1,) + tuple(ch_mult)
self.down = nn.ModuleList()
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks):
block.append(
ResnetBlock(in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout))
block_in = block_out
if curr_res in attn_resolutions:
attn.append(make_attn(block_in, attn_type=attn_type))
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
down.downsample = Downsample(block_in, resamp_with_conv)
curr_res = curr_res // 2
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout)
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
self.mid.block_2 = ResnetBlock(in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch * ch_mult[i_level]
skip_in = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks + 1):
if i_block == self.num_res_blocks:
skip_in = ch * in_ch_mult[i_level]
block.append(
ResnetBlock(in_channels=block_in + skip_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout))
block_in = block_out
if curr_res in attn_resolutions:
attn.append(make_attn(block_in, attn_type=attn_type))
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample(block_in, resamp_with_conv)
curr_res = curr_res * 2
self.up.insert(0, up) # prepend to get consistent order
# end
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
def forward(self, x, t=None, context=None):
#assert x.shape[2] == x.shape[3] == self.resolution
if context is not None:
# assume aligned context, cat along channel axis
x = torch.cat((x, context), dim=1)
if self.use_timestep:
# timestep embedding
assert t is not None
temb = get_timestep_embedding(t, self.ch)
temb = self.temb.dense[0](temb)
temb = nonlinearity(temb)
temb = self.temb.dense[1](temb)
else:
temb = None
# downsampling
hs = [self.conv_in(x)]
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](hs[-1], temb)
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
hs.append(h)
if i_level != self.num_resolutions - 1:
hs.append(self.down[i_level].downsample(hs[-1]))
# middle
h = hs[-1]
h = self.mid.block_1(h, temb)
h = self.mid.attn_1(h)
h = self.mid.block_2(h, temb)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level].block[i_block](torch.cat([h, hs.pop()], dim=1), temb)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
if i_level != 0:
h = self.up[i_level].upsample(h)
# end
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
return h
def get_last_layer(self):
return self.conv_out.weight
class Encoder(nn.Module):
def __init__(self,
*,
ch,
out_ch,
ch_mult=(1, 2, 4, 8),
num_res_blocks,
attn_resolutions,
dropout=0.0,
resamp_with_conv=True,
in_channels,
resolution,
z_channels,
double_z=True,
use_linear_attn=False,
attn_type="vanilla",
**ignore_kwargs):
super().__init__()
if use_linear_attn:
attn_type = "linear"
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
# downsampling
self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
curr_res = resolution
in_ch_mult = (1,) + tuple(ch_mult)
self.in_ch_mult = in_ch_mult
self.down = nn.ModuleList()
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks):
block.append(
ResnetBlock(in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout))
block_in = block_out
if curr_res in attn_resolutions:
attn.append(make_attn(block_in, attn_type=attn_type))
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
down.downsample = Downsample(block_in, resamp_with_conv)
curr_res = curr_res // 2
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout)
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
self.mid.block_2 = ResnetBlock(in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout)
# end
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv2d(block_in,
2 * z_channels if double_z else z_channels,
kernel_size=3,
stride=1,
padding=1)
def forward(self, x):
# timestep embedding
temb = None
# downsampling
hs = [self.conv_in(x)]
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](hs[-1], temb)
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
hs.append(h)
if i_level != self.num_resolutions - 1:
hs.append(self.down[i_level].downsample(hs[-1]))
# middle
h = hs[-1]
h = self.mid.block_1(h, temb)
h = self.mid.attn_1(h)
h = self.mid.block_2(h, temb)
# end
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
return h
class Decoder(nn.Module):
def __init__(self,
*,
ch,
out_ch,
ch_mult=(1, 2, 4, 8),
num_res_blocks,
attn_resolutions,
dropout=0.0,
resamp_with_conv=True,
in_channels,
resolution,
z_channels,
give_pre_end=False,
tanh_out=False,
use_linear_attn=False,
attn_type="vanilla",
**ignorekwargs):
super().__init__()
if use_linear_attn:
attn_type = "linear"
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.give_pre_end = give_pre_end
self.tanh_out = tanh_out
# compute in_ch_mult, block_in and curr_res at lowest res
in_ch_mult = (1,) + tuple(ch_mult)
block_in = ch * ch_mult[self.num_resolutions - 1]
curr_res = resolution // 2**(self.num_resolutions - 1)
self.z_shape = (1, z_channels, curr_res, curr_res)
rank_zero_info("Working with z of shape {} = {} dimensions.".format(self.z_shape, np.prod(self.z_shape)))
# z to block_in
self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout)
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
self.mid.block_2 = ResnetBlock(in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks + 1):
block.append(
ResnetBlock(in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout))
block_in = block_out
if curr_res in attn_resolutions:
attn.append(make_attn(block_in, attn_type=attn_type))
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample(block_in, resamp_with_conv)
curr_res = curr_res * 2
self.up.insert(0, up) # prepend to get consistent order
# end
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
def forward(self, z):
#assert z.shape[1:] == self.z_shape[1:]
self.last_z_shape = z.shape
# timestep embedding
temb = None
# z to block_in
h = self.conv_in(z)
# middle
h = self.mid.block_1(h, temb)
h = self.mid.attn_1(h)
h = self.mid.block_2(h, temb)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level].block[i_block](h, temb)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
if i_level != 0:
h = self.up[i_level].upsample(h)
# end
if self.give_pre_end:
return h
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
if self.tanh_out:
h = torch.tanh(h)
return h
class SimpleDecoder(nn.Module):
def __init__(self, in_channels, out_channels, *args, **kwargs):
super().__init__()
self.model = nn.ModuleList([
nn.Conv2d(in_channels, in_channels, 1),
ResnetBlock(in_channels=in_channels, out_channels=2 * in_channels, temb_channels=0, dropout=0.0),
ResnetBlock(in_channels=2 * in_channels, out_channels=4 * in_channels, temb_channels=0, dropout=0.0),
ResnetBlock(in_channels=4 * in_channels, out_channels=2 * in_channels, temb_channels=0, dropout=0.0),
nn.Conv2d(2 * in_channels, in_channels, 1),
Upsample(in_channels, with_conv=True)
])
# end
self.norm_out = Normalize(in_channels)
self.conv_out = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x):
for i, layer in enumerate(self.model):
if i in [1, 2, 3]:
x = layer(x, None)
else:
x = layer(x)
h = self.norm_out(x)
h = nonlinearity(h)
x = self.conv_out(h)
return x
class UpsampleDecoder(nn.Module):
def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution, ch_mult=(2, 2), dropout=0.0):
super().__init__()
# upsampling
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
block_in = in_channels
curr_res = resolution // 2**(self.num_resolutions - 1)
self.res_blocks = nn.ModuleList()
self.upsample_blocks = nn.ModuleList()
for i_level in range(self.num_resolutions):
res_block = []
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks + 1):
res_block.append(
ResnetBlock(in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout))
block_in = block_out
self.res_blocks.append(nn.ModuleList(res_block))
if i_level != self.num_resolutions - 1:
self.upsample_blocks.append(Upsample(block_in, True))
curr_res = curr_res * 2
# end
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv2d(block_in, out_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x):
# upsampling
h = x
for k, i_level in enumerate(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = self.res_blocks[i_level][i_block](h, None)
if i_level != self.num_resolutions - 1:
h = self.upsample_blocks[k](h)
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
return h
class LatentRescaler(nn.Module):
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
super().__init__()
# residual block, interpolate, residual block
self.factor = factor
self.conv_in = nn.Conv2d(in_channels, mid_channels, kernel_size=3, stride=1, padding=1)
self.res_block1 = nn.ModuleList([
ResnetBlock(in_channels=mid_channels, out_channels=mid_channels, temb_channels=0, dropout=0.0)
for _ in range(depth)
])
self.attn = AttnBlock(mid_channels)
self.res_block2 = nn.ModuleList([
ResnetBlock(in_channels=mid_channels, out_channels=mid_channels, temb_channels=0, dropout=0.0)
for _ in range(depth)
])
self.conv_out = nn.Conv2d(
mid_channels,
out_channels,
kernel_size=1,
)
def forward(self, x):
x = self.conv_in(x)
for block in self.res_block1:
x = block(x, None)
x = torch.nn.functional.interpolate(x,
size=(int(round(x.shape[2] * self.factor)),
int(round(x.shape[3] * self.factor))))
x = self.attn(x)
for block in self.res_block2:
x = block(x, None)
x = self.conv_out(x)
return x
class MergedRescaleEncoder(nn.Module):
def __init__(self,
in_channels,
ch,
resolution,
out_ch,
num_res_blocks,
attn_resolutions,
dropout=0.0,
resamp_with_conv=True,
ch_mult=(1, 2, 4, 8),
rescale_factor=1.0,
rescale_module_depth=1):
super().__init__()
intermediate_chn = ch * ch_mult[-1]
self.encoder = Encoder(in_channels=in_channels,
num_res_blocks=num_res_blocks,
ch=ch,
ch_mult=ch_mult,
z_channels=intermediate_chn,
double_z=False,
resolution=resolution,
attn_resolutions=attn_resolutions,
dropout=dropout,
resamp_with_conv=resamp_with_conv,
out_ch=None)
self.rescaler = LatentRescaler(factor=rescale_factor,
in_channels=intermediate_chn,
mid_channels=intermediate_chn,
out_channels=out_ch,
depth=rescale_module_depth)
def forward(self, x):
x = self.encoder(x)
x = self.rescaler(x)
return x
class MergedRescaleDecoder(nn.Module):
def __init__(self,
z_channels,
out_ch,
resolution,
num_res_blocks,
attn_resolutions,
ch,
ch_mult=(1, 2, 4, 8),
dropout=0.0,
resamp_with_conv=True,
rescale_factor=1.0,
rescale_module_depth=1):
super().__init__()
tmp_chn = z_channels * ch_mult[-1]
self.decoder = Decoder(out_ch=out_ch,
z_channels=tmp_chn,
attn_resolutions=attn_resolutions,
dropout=dropout,
resamp_with_conv=resamp_with_conv,
in_channels=None,
num_res_blocks=num_res_blocks,
ch_mult=ch_mult,
resolution=resolution,
ch=ch)
self.rescaler = LatentRescaler(factor=rescale_factor,
in_channels=z_channels,
mid_channels=tmp_chn,
out_channels=tmp_chn,
depth=rescale_module_depth)
def forward(self, x):
x = self.rescaler(x)
x = self.decoder(x)
return x
class Upsampler(nn.Module):
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
super().__init__()
assert out_size >= in_size
num_blocks = int(np.log2(out_size // in_size)) + 1
factor_up = 1. + (out_size % in_size)
rank_zero_info(
f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}"
)
self.rescaler = LatentRescaler(factor=factor_up,
in_channels=in_channels,
mid_channels=2 * in_channels,
out_channels=in_channels)
self.decoder = Decoder(out_ch=out_channels,
resolution=out_size,
z_channels=in_channels,
num_res_blocks=2,
attn_resolutions=[],
in_channels=None,
ch=in_channels,
ch_mult=[ch_mult for _ in range(num_blocks)])
def forward(self, x):
x = self.rescaler(x)
x = self.decoder(x)
return x
class Resize(nn.Module):
def __init__(self, in_channels=None, learned=False, mode="bilinear"):
super().__init__()
self.with_conv = learned
self.mode = mode
if self.with_conv:
rank_zero_info(
f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
raise NotImplementedError()
assert in_channels is not None
# no asymmetric padding in torch conv, must do it ourselves
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=4, stride=2, padding=1)
def forward(self, x, scale_factor=1.0):
if scale_factor == 1.0:
return x
else:
x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
return x
|
from abc import abstractmethod
import math
import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from ldm.modules.diffusionmodules.util import (
checkpoint,
conv_nd,
linear,
avg_pool_nd,
zero_module,
normalization,
timestep_embedding,
)
from ldm.modules.attention import SpatialTransformer
from ldm.util import exists
# dummy replace
def convert_module_to_f16(x):
pass
def convert_module_to_f32(x):
pass
## go
class AttentionPool2d(nn.Module):
"""
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
"""
def __init__(
self,
spacial_dim: int,
embed_dim: int,
num_heads_channels: int,
output_dim: int = None,
):
super().__init__()
self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
self.num_heads = embed_dim // num_heads_channels
self.attention = QKVAttention(self.num_heads)
def forward(self, x):
b, c, *_spatial = x.shape
x = x.reshape(b, c, -1) # NC(HW)
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
x = self.qkv_proj(x)
x = self.attention(x)
x = self.c_proj(x)
return x[:, :, 0]
class TimestepBlock(nn.Module):
"""
Any module where forward() takes timestep embeddings as a second argument.
"""
@abstractmethod
def forward(self, x, emb):
"""
Apply the module to `x` given `emb` timestep embeddings.
"""
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
"""
A sequential module that passes timestep embeddings to the children that
support it as an extra input.
"""
def forward(self, x, emb, context=None):
for layer in self:
if isinstance(layer, TimestepBlock):
x = layer(x, emb)
elif isinstance(layer, SpatialTransformer):
x = layer(x, context)
else:
x = layer(x)
return x
class Upsample(nn.Module):
"""
An upsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
upsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
if use_conv:
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
def forward(self, x):
assert x.shape[1] == self.channels
if self.dims == 3:
x = F.interpolate(
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
)
else:
x = F.interpolate(x, scale_factor=2, mode="nearest")
if self.use_conv:
x = self.conv(x)
return x
class TransposedUpsample(nn.Module):
'Learned 2x upsampling without padding'
def __init__(self, channels, out_channels=None, ks=5):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
def forward(self,x):
return self.up(x)
class Downsample(nn.Module):
"""
A downsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
downsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
stride = 2 if dims != 3 else (1, 2, 2)
if use_conv:
self.op = conv_nd(
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
)
else:
assert self.channels == self.out_channels
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
def forward(self, x):
assert x.shape[1] == self.channels
return self.op(x)
class ResBlock(TimestepBlock):
"""
A residual block that can optionally change the number of channels.
:param channels: the number of input channels.
:param emb_channels: the number of timestep embedding channels.
:param dropout: the rate of dropout.
:param out_channels: if specified, the number of out channels.
:param use_conv: if True and out_channels is specified, use a spatial
convolution instead of a smaller 1x1 convolution to change the
channels in the skip connection.
:param dims: determines if the signal is 1D, 2D, or 3D.
:param use_checkpoint: if True, use gradient checkpointing on this module.
:param up: if True, use this block for upsampling.
:param down: if True, use this block for downsampling.
"""
def __init__(
self,
channels,
emb_channels,
dropout,
out_channels=None,
use_conv=False,
use_scale_shift_norm=False,
dims=2,
use_checkpoint=False,
up=False,
down=False,
):
super().__init__()
self.channels = channels
self.emb_channels = emb_channels
self.dropout = dropout
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_checkpoint = use_checkpoint
self.use_scale_shift_norm = use_scale_shift_norm
self.in_layers = nn.Sequential(
normalization(channels),
nn.SiLU(),
conv_nd(dims, channels, self.out_channels, 3, padding=1),
)
self.updown = up or down
if up:
self.h_upd = Upsample(channels, False, dims)
self.x_upd = Upsample(channels, False, dims)
elif down:
self.h_upd = Downsample(channels, False, dims)
self.x_upd = Downsample(channels, False, dims)
else:
self.h_upd = self.x_upd = nn.Identity()
self.emb_layers = nn.Sequential(
nn.SiLU(),
linear(
emb_channels,
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
),
)
self.out_layers = nn.Sequential(
normalization(self.out_channels),
nn.SiLU(),
nn.Dropout(p=dropout),
zero_module(
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
),
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
elif use_conv:
self.skip_connection = conv_nd(
dims, channels, self.out_channels, 3, padding=1
)
else:
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
def forward(self, x, emb):
"""
Apply the block to a Tensor, conditioned on a timestep embedding.
:param x: an [N x C x ...] Tensor of features.
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
:return: an [N x C x ...] Tensor of outputs.
"""
return checkpoint(
self._forward, (x, emb), self.parameters(), self.use_checkpoint
)
def _forward(self, x, emb):
if self.updown:
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
h = in_rest(x)
h = self.h_upd(h)
x = self.x_upd(x)
h = in_conv(h)
else:
h = self.in_layers(x)
emb_out = self.emb_layers(emb).type(h.dtype)
while len(emb_out.shape) < len(h.shape):
emb_out = emb_out[..., None]
if self.use_scale_shift_norm:
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
scale, shift = th.chunk(emb_out, 2, dim=1)
h = out_norm(h) * (1 + scale) + shift
h = out_rest(h)
else:
h = h + emb_out
h = self.out_layers(h)
return self.skip_connection(x) + h
class AttentionBlock(nn.Module):
"""
An attention block that allows spatial positions to attend to each other.
Originally ported from here, but adapted to the N-d case.
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
"""
def __init__(
self,
channels,
num_heads=1,
num_head_channels=-1,
use_checkpoint=False,
use_new_attention_order=False,
):
super().__init__()
self.channels = channels
if num_head_channels == -1:
self.num_heads = num_heads
else:
assert (
channels % num_head_channels == 0
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
self.num_heads = channels // num_head_channels
self.use_checkpoint = use_checkpoint
self.norm = normalization(channels)
self.qkv = conv_nd(1, channels, channels * 3, 1)
if use_new_attention_order:
# split qkv before split heads
self.attention = QKVAttention(self.num_heads)
else:
# split heads before split qkv
self.attention = QKVAttentionLegacy(self.num_heads)
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
def forward(self, x):
return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
#return pt_checkpoint(self._forward, x) # pytorch
def _forward(self, x):
b, c, *spatial = x.shape
x = x.reshape(b, c, -1)
qkv = self.qkv(self.norm(x))
h = self.attention(qkv)
h = self.proj_out(h)
return (x + h).reshape(b, c, *spatial)
def count_flops_attn(model, _x, y):
"""
A counter for the `thop` package to count the operations in an
attention operation.
Meant to be used like:
macs, params = thop.profile(
model,
inputs=(inputs, timestamps),
custom_ops={QKVAttention: QKVAttention.count_flops},
)
"""
b, c, *spatial = y[0].shape
num_spatial = int(np.prod(spatial))
# We perform two matmuls with the same number of ops.
# The first computes the weight matrix, the second computes
# the combination of the value vectors.
matmul_ops = 2 * b * (num_spatial ** 2) * c
model.total_ops += th.DoubleTensor([matmul_ops])
class QKVAttentionLegacy(nn.Module):
"""
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
"""
def __init__(self, n_heads):
super().__init__()
self.n_heads = n_heads
def forward(self, qkv):
"""
Apply QKV attention.
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
:return: an [N x (H * C) x T] tensor after attention.
"""
bs, width, length = qkv.shape
assert width % (3 * self.n_heads) == 0
ch = width // (3 * self.n_heads)
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
scale = 1 / math.sqrt(math.sqrt(ch))
weight = th.einsum(
"bct,bcs->bts", q * scale, k * scale
) # More stable with f16 than dividing afterwards
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
a = th.einsum("bts,bcs->bct", weight, v)
return a.reshape(bs, -1, length)
@staticmethod
def count_flops(model, _x, y):
return count_flops_attn(model, _x, y)
class QKVAttention(nn.Module):
"""
A module which performs QKV attention and splits in a different order.
"""
def __init__(self, n_heads):
super().__init__()
self.n_heads = n_heads
def forward(self, qkv):
"""
Apply QKV attention.
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
:return: an [N x (H * C) x T] tensor after attention.
"""
bs, width, length = qkv.shape
assert width % (3 * self.n_heads) == 0
ch = width // (3 * self.n_heads)
q, k, v = qkv.chunk(3, dim=1)
scale = 1 / math.sqrt(math.sqrt(ch))
weight = th.einsum(
"bct,bcs->bts",
(q * scale).view(bs * self.n_heads, ch, length),
(k * scale).view(bs * self.n_heads, ch, length),
) # More stable with f16 than dividing afterwards
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
return a.reshape(bs, -1, length)
@staticmethod
def count_flops(model, _x, y):
return count_flops_attn(model, _x, y)
class UNetModel(nn.Module):
"""
The full UNet model with attention and timestep embedding.
:param in_channels: channels in the input Tensor.
:param model_channels: base channel count for the model.
:param out_channels: channels in the output Tensor.
:param num_res_blocks: number of residual blocks per downsample.
:param attention_resolutions: a collection of downsample rates at which
attention will take place. May be a set, list, or tuple.
For example, if this contains 4, then at 4x downsampling, attention
will be used.
:param dropout: the dropout probability.
:param channel_mult: channel multiplier for each level of the UNet.
:param conv_resample: if True, use learned convolutions for upsampling and
downsampling.
:param dims: determines if the signal is 1D, 2D, or 3D.
:param num_classes: if specified (as an int), then this model will be
class-conditional with `num_classes` classes.
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
:param num_heads: the number of attention heads in each attention layer.
:param num_heads_channels: if specified, ignore num_heads and instead use
a fixed channel width per attention head.
:param num_heads_upsample: works with num_heads to set a different number
of heads for upsampling. Deprecated.
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
:param resblock_updown: use residual blocks for up/downsampling.
:param use_new_attention_order: use a different attention pattern for potentially
increased efficiency.
"""
def __init__(
self,
image_size,
in_channels,
model_channels,
out_channels,
num_res_blocks,
attention_resolutions,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
num_classes=None,
use_checkpoint=False,
use_fp16=False,
num_heads=-1,
num_head_channels=-1,
num_heads_upsample=-1,
use_scale_shift_norm=False,
resblock_updown=False,
use_new_attention_order=False,
use_spatial_transformer=False, # custom transformer support
transformer_depth=1, # custom transformer support
context_dim=None, # custom transformer support
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
legacy=True,
disable_self_attentions=None,
num_attention_blocks=None,
disable_middle_self_attn=False,
use_linear_in_transformer=False,
):
super().__init__()
if use_spatial_transformer:
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
if context_dim is not None:
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
from omegaconf.listconfig import ListConfig
if type(context_dim) == ListConfig:
context_dim = list(context_dim)
if num_heads_upsample == -1:
num_heads_upsample = num_heads
if num_heads == -1:
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
if num_head_channels == -1:
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
self.image_size = image_size
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else:
if len(num_res_blocks) != len(channel_mult):
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
"as a list/tuple (per-level) with the same length as channel_mult")
self.num_res_blocks = num_res_blocks
if disable_self_attentions is not None:
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
assert len(disable_self_attentions) == len(channel_mult)
if num_attention_blocks is not None:
assert len(num_attention_blocks) == len(self.num_res_blocks)
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
f"attention will still not be set.")
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.num_classes = num_classes
self.use_checkpoint = use_checkpoint
self.dtype = th.float16 if use_fp16 else th.float32
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.num_heads_upsample = num_heads_upsample
self.predict_codebook_ids = n_embed is not None
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
if self.num_classes is not None:
if isinstance(self.num_classes, int):
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
elif self.num_classes == "continuous":
print("setting up linear c_adm embedding layer")
self.label_emb = nn.Linear(1, time_embed_dim)
else:
raise ValueError()
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(
conv_nd(dims, in_channels, model_channels, 3, padding=1)
)
]
)
self._feature_size = model_channels
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for nr in range(self.num_res_blocks[level]):
layers = [
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
#num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
if exists(disable_self_attentions):
disabled_sa = disable_self_attentions[level]
else:
disabled_sa = False
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
layers.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
)
if resblock_updown
else Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch
)
)
)
ch = out_ch
input_block_chans.append(ch)
ds *= 2
self._feature_size += ch
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
#num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
self.middle_block = TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
),
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
)
self._feature_size += ch
self.output_blocks = nn.ModuleList([])
for level, mult in list(enumerate(channel_mult))[::-1]:
for i in range(self.num_res_blocks[level] + 1):
ich = input_block_chans.pop()
layers = [
ResBlock(
ch + ich,
time_embed_dim,
dropout,
out_channels=model_channels * mult,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = model_channels * mult
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
#num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
if exists(disable_self_attentions):
disabled_sa = disable_self_attentions[level]
else:
disabled_sa = False
if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
layers.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads_upsample,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
)
)
if level and i == self.num_res_blocks[level]:
out_ch = ch
layers.append(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
up=True,
)
if resblock_updown
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
)
ds //= 2
self.output_blocks.append(TimestepEmbedSequential(*layers))
self._feature_size += ch
self.out = nn.Sequential(
normalization(ch),
nn.SiLU(),
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
)
if self.predict_codebook_ids:
self.id_predictor = nn.Sequential(
normalization(ch),
conv_nd(dims, model_channels, n_embed, 1),
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
)
def convert_to_fp16(self):
"""
Convert the torso of the model to float16.
"""
self.input_blocks.apply(convert_module_to_f16)
self.middle_block.apply(convert_module_to_f16)
self.output_blocks.apply(convert_module_to_f16)
def convert_to_fp32(self):
"""
Convert the torso of the model to float32.
"""
self.input_blocks.apply(convert_module_to_f32)
self.middle_block.apply(convert_module_to_f32)
self.output_blocks.apply(convert_module_to_f32)
def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
"""
Apply the model to an input batch.
:param x: an [N x C x ...] Tensor of inputs.
:param timesteps: a 1-D batch of timesteps.
:param context: conditioning plugged in via crossattn
:param y: an [N] Tensor of labels, if class-conditional.
:return: an [N x C x ...] Tensor of outputs.
"""
assert (y is not None) == (
self.num_classes is not None
), "must specify y if and only if the model is class-conditional"
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
t_emb = t_emb.type(self.dtype)
emb = self.time_embed(t_emb)
if self.num_classes is not None:
assert y.shape[0] == x.shape[0]
emb = emb + self.label_emb(y)
h = x.type(self.dtype)
for module in self.input_blocks:
h = module(h, emb, context)
hs.append(h)
h = self.middle_block(h, emb, context)
for module in self.output_blocks:
h = th.cat([h, hs.pop()], dim=1)
h = module(h, emb, context)
h = h.type(x.dtype)
if self.predict_codebook_ids:
return self.id_predictor(h)
else:
return self.out(h)
|
import torch
import numpy as np
class AbstractDistribution:
def sample(self):
raise NotImplementedError()
def mode(self):
raise NotImplementedError()
class DiracDistribution(AbstractDistribution):
def __init__(self, value):
self.value = value
def sample(self):
return self.value
def mode(self):
return self.value
class DiagonalGaussianDistribution(object):
def __init__(self, parameters, deterministic=False):
self.parameters = parameters
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
self.deterministic = deterministic
self.std = torch.exp(0.5 * self.logvar)
self.var = torch.exp(self.logvar)
if self.deterministic:
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
def sample(self):
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
return x
def kl(self, other=None):
if self.deterministic:
return torch.Tensor([0.])
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean, 2)
+ self.var - 1.0 - self.logvar,
dim=[1, 2, 3])
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean, 2) / other.var
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
dim=[1, 2, 3])
def nll(self, sample, dims=[1,2,3]):
if self.deterministic:
return torch.Tensor([0.])
logtwopi = np.log(2.0 * np.pi)
return 0.5 * torch.sum(
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
dim=dims)
def mode(self):
return self.mean
def normal_kl(mean1, logvar1, mean2, logvar2):
"""
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
Compute the KL divergence between two gaussians.
Shapes are automatically broadcasted, so batches can be compared to
scalars, among other use cases.
"""
tensor = None
for obj in (mean1, logvar1, mean2, logvar2):
if isinstance(obj, torch.Tensor):
tensor = obj
break
assert tensor is not None, "at least one argument must be a Tensor"
# Force variances to be Tensors. Broadcasting helps convert scalars to
# Tensors, but it does not work for torch.exp().
logvar1, logvar2 = [
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
for x in (logvar1, logvar2)
]
return 0.5 * (
-1.0
+ logvar2
- logvar1
+ torch.exp(logvar1 - logvar2)
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
)
|
import os
import numpy as np
import PIL
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
class LSUNBase(Dataset):
def __init__(self,
txt_file,
data_root,
size=None,
interpolation="bicubic",
flip_p=0.5
):
self.data_paths = txt_file
self.data_root = data_root
with open(self.data_paths, "r") as f:
self.image_paths = f.read().splitlines()
self._length = len(self.image_paths)
self.labels = {
"relative_file_path_": [l for l in self.image_paths],
"file_path_": [os.path.join(self.data_root, l)
for l in self.image_paths],
}
self.size = size
self.interpolation = {"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
}[interpolation]
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
def __len__(self):
return self._length
def __getitem__(self, i):
example = dict((k, self.labels[k][i]) for k in self.labels)
image = Image.open(example["file_path_"])
if not image.mode == "RGB":
image = image.convert("RGB")
# default to score-sde preprocessing
img = np.array(image).astype(np.uint8)
crop = min(img.shape[0], img.shape[1])
h, w, = img.shape[0], img.shape[1]
img = img[(h - crop) // 2:(h + crop) // 2,
(w - crop) // 2:(w + crop) // 2]
image = Image.fromarray(img)
if self.size is not None:
image = image.resize((self.size, self.size), resample=self.interpolation)
image = self.flip(image)
image = np.array(image).astype(np.uint8)
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
return example
class LSUNChurchesTrain(LSUNBase):
def __init__(self, **kwargs):
super().__init__(txt_file="data/lsun/church_outdoor_train.txt", data_root="data/lsun/churches", **kwargs)
class LSUNChurchesValidation(LSUNBase):
def __init__(self, flip_p=0., **kwargs):
super().__init__(txt_file="data/lsun/church_outdoor_val.txt", data_root="data/lsun/churches",
flip_p=flip_p, **kwargs)
class LSUNBedroomsTrain(LSUNBase):
def __init__(self, **kwargs):
super().__init__(txt_file="data/lsun/bedrooms_train.txt", data_root="data/lsun/bedrooms", **kwargs)
class LSUNBedroomsValidation(LSUNBase):
def __init__(self, flip_p=0.0, **kwargs):
super().__init__(txt_file="data/lsun/bedrooms_val.txt", data_root="data/lsun/bedrooms",
flip_p=flip_p, **kwargs)
class LSUNCatsTrain(LSUNBase):
def __init__(self, **kwargs):
super().__init__(txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs)
class LSUNCatsValidation(LSUNBase):
def __init__(self, flip_p=0., **kwargs):
super().__init__(txt_file="data/lsun/cat_val.txt", data_root="data/lsun/cats",
flip_p=flip_p, **kwargs)
|
import os, yaml, pickle, shutil, tarfile, glob
import cv2
import albumentations
import PIL
import numpy as np
import torchvision.transforms.functional as TF
from omegaconf import OmegaConf
from functools import partial
from PIL import Image
from tqdm import tqdm
from torch.utils.data import Dataset, Subset
import taming.data.utils as tdu
from taming.data.imagenet import str_to_indices, give_synsets_from_indices, download, retrieve
from taming.data.imagenet import ImagePaths
from ldm.modules.image_degradation import degradation_fn_bsr, degradation_fn_bsr_light
def synset2idx(path_to_yaml="data/index_synset.yaml"):
with open(path_to_yaml) as f:
di2s = yaml.load(f)
return dict((v,k) for k,v in di2s.items())
class ImageNetBase(Dataset):
def __init__(self, config=None):
self.config = config or OmegaConf.create()
if not type(self.config)==dict:
self.config = OmegaConf.to_container(self.config)
self.keep_orig_class_label = self.config.get("keep_orig_class_label", False)
self.process_images = True # if False we skip loading & processing images and self.data contains filepaths
self._prepare()
self._prepare_synset_to_human()
self._prepare_idx_to_synset()
self._prepare_human_to_integer_label()
self._load()
def __len__(self):
return len(self.data)
def __getitem__(self, i):
return self.data[i]
def _prepare(self):
raise NotImplementedError()
def _filter_relpaths(self, relpaths):
ignore = set([
"n06596364_9591.JPEG",
])
relpaths = [rpath for rpath in relpaths if not rpath.split("/")[-1] in ignore]
if "sub_indices" in self.config:
indices = str_to_indices(self.config["sub_indices"])
synsets = give_synsets_from_indices(indices, path_to_yaml=self.idx2syn) # returns a list of strings
self.synset2idx = synset2idx(path_to_yaml=self.idx2syn)
files = []
for rpath in relpaths:
syn = rpath.split("/")[0]
if syn in synsets:
files.append(rpath)
return files
else:
return relpaths
def _prepare_synset_to_human(self):
SIZE = 2655750
URL = "https://heibox.uni-heidelberg.de/f/9f28e956cd304264bb82/?dl=1"
self.human_dict = os.path.join(self.root, "synset_human.txt")
if (not os.path.exists(self.human_dict) or
not os.path.getsize(self.human_dict)==SIZE):
download(URL, self.human_dict)
def _prepare_idx_to_synset(self):
URL = "https://heibox.uni-heidelberg.de/f/d835d5b6ceda4d3aa910/?dl=1"
self.idx2syn = os.path.join(self.root, "index_synset.yaml")
if (not os.path.exists(self.idx2syn)):
download(URL, self.idx2syn)
def _prepare_human_to_integer_label(self):
URL = "https://heibox.uni-heidelberg.de/f/2362b797d5be43b883f6/?dl=1"
self.human2integer = os.path.join(self.root, "imagenet1000_clsidx_to_labels.txt")
if (not os.path.exists(self.human2integer)):
download(URL, self.human2integer)
with open(self.human2integer, "r") as f:
lines = f.read().splitlines()
assert len(lines) == 1000
self.human2integer_dict = dict()
for line in lines:
value, key = line.split(":")
self.human2integer_dict[key] = int(value)
def _load(self):
with open(self.txt_filelist, "r") as f:
self.relpaths = f.read().splitlines()
l1 = len(self.relpaths)
self.relpaths = self._filter_relpaths(self.relpaths)
print("Removed {} files from filelist during filtering.".format(l1 - len(self.relpaths)))
self.synsets = [p.split("/")[0] for p in self.relpaths]
self.abspaths = [os.path.join(self.datadir, p) for p in self.relpaths]
unique_synsets = np.unique(self.synsets)
class_dict = dict((synset, i) for i, synset in enumerate(unique_synsets))
if not self.keep_orig_class_label:
self.class_labels = [class_dict[s] for s in self.synsets]
else:
self.class_labels = [self.synset2idx[s] for s in self.synsets]
with open(self.human_dict, "r") as f:
human_dict = f.read().splitlines()
human_dict = dict(line.split(maxsplit=1) for line in human_dict)
self.human_labels = [human_dict[s] for s in self.synsets]
labels = {
"relpath": np.array(self.relpaths),
"synsets": np.array(self.synsets),
"class_label": np.array(self.class_labels),
"human_label": np.array(self.human_labels),
}
if self.process_images:
self.size = retrieve(self.config, "size", default=256)
self.data = ImagePaths(self.abspaths,
labels=labels,
size=self.size,
random_crop=self.random_crop,
)
else:
self.data = self.abspaths
class ImageNetTrain(ImageNetBase):
NAME = "ILSVRC2012_train"
URL = "http://www.image-net.org/challenges/LSVRC/2012/"
AT_HASH = "a306397ccf9c2ead27155983c254227c0fd938e2"
FILES = [
"ILSVRC2012_img_train.tar",
]
SIZES = [
147897477120,
]
def __init__(self, process_images=True, data_root=None, **kwargs):
self.process_images = process_images
self.data_root = data_root
super().__init__(**kwargs)
def _prepare(self):
if self.data_root:
self.root = os.path.join(self.data_root, self.NAME)
else:
cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
self.datadir = os.path.join(self.root, "data")
self.txt_filelist = os.path.join(self.root, "filelist.txt")
self.expected_length = 1281167
self.random_crop = retrieve(self.config, "ImageNetTrain/random_crop",
default=True)
if not tdu.is_prepared(self.root):
# prep
print("Preparing dataset {} in {}".format(self.NAME, self.root))
datadir = self.datadir
if not os.path.exists(datadir):
path = os.path.join(self.root, self.FILES[0])
if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
import academictorrents as at
atpath = at.get(self.AT_HASH, datastore=self.root)
assert atpath == path
print("Extracting {} to {}".format(path, datadir))
os.makedirs(datadir, exist_ok=True)
with tarfile.open(path, "r:") as tar:
tar.extractall(path=datadir)
print("Extracting sub-tars.")
subpaths = sorted(glob.glob(os.path.join(datadir, "*.tar")))
for subpath in tqdm(subpaths):
subdir = subpath[:-len(".tar")]
os.makedirs(subdir, exist_ok=True)
with tarfile.open(subpath, "r:") as tar:
tar.extractall(path=subdir)
filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
filelist = [os.path.relpath(p, start=datadir) for p in filelist]
filelist = sorted(filelist)
filelist = "\n".join(filelist)+"\n"
with open(self.txt_filelist, "w") as f:
f.write(filelist)
tdu.mark_prepared(self.root)
class ImageNetValidation(ImageNetBase):
NAME = "ILSVRC2012_validation"
URL = "http://www.image-net.org/challenges/LSVRC/2012/"
AT_HASH = "5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5"
VS_URL = "https://heibox.uni-heidelberg.de/f/3e0f6e9c624e45f2bd73/?dl=1"
FILES = [
"ILSVRC2012_img_val.tar",
"validation_synset.txt",
]
SIZES = [
6744924160,
1950000,
]
def __init__(self, process_images=True, data_root=None, **kwargs):
self.data_root = data_root
self.process_images = process_images
super().__init__(**kwargs)
def _prepare(self):
if self.data_root:
self.root = os.path.join(self.data_root, self.NAME)
else:
cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
self.datadir = os.path.join(self.root, "data")
self.txt_filelist = os.path.join(self.root, "filelist.txt")
self.expected_length = 50000
self.random_crop = retrieve(self.config, "ImageNetValidation/random_crop",
default=False)
if not tdu.is_prepared(self.root):
# prep
print("Preparing dataset {} in {}".format(self.NAME, self.root))
datadir = self.datadir
if not os.path.exists(datadir):
path = os.path.join(self.root, self.FILES[0])
if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
import academictorrents as at
atpath = at.get(self.AT_HASH, datastore=self.root)
assert atpath == path
print("Extracting {} to {}".format(path, datadir))
os.makedirs(datadir, exist_ok=True)
with tarfile.open(path, "r:") as tar:
tar.extractall(path=datadir)
vspath = os.path.join(self.root, self.FILES[1])
if not os.path.exists(vspath) or not os.path.getsize(vspath)==self.SIZES[1]:
download(self.VS_URL, vspath)
with open(vspath, "r") as f:
synset_dict = f.read().splitlines()
synset_dict = dict(line.split() for line in synset_dict)
print("Reorganizing into synset folders")
synsets = np.unique(list(synset_dict.values()))
for s in synsets:
os.makedirs(os.path.join(datadir, s), exist_ok=True)
for k, v in synset_dict.items():
src = os.path.join(datadir, k)
dst = os.path.join(datadir, v)
shutil.move(src, dst)
filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
filelist = [os.path.relpath(p, start=datadir) for p in filelist]
filelist = sorted(filelist)
filelist = "\n".join(filelist)+"\n"
with open(self.txt_filelist, "w") as f:
f.write(filelist)
tdu.mark_prepared(self.root)
class ImageNetSR(Dataset):
def __init__(self, size=None,
degradation=None, downscale_f=4, min_crop_f=0.5, max_crop_f=1.,
random_crop=True):
"""
Imagenet Superresolution Dataloader
Performs following ops in order:
1. crops a crop of size s from image either as random or center crop
2. resizes crop to size with cv2.area_interpolation
3. degrades resized crop with degradation_fn
:param size: resizing to size after cropping
:param degradation: degradation_fn, e.g. cv_bicubic or bsrgan_light
:param downscale_f: Low Resolution Downsample factor
:param min_crop_f: determines crop size s,
where s = c * min_img_side_len with c sampled from interval (min_crop_f, max_crop_f)
:param max_crop_f: ""
:param data_root:
:param random_crop:
"""
self.base = self.get_base()
assert size
assert (size / downscale_f).is_integer()
self.size = size
self.LR_size = int(size / downscale_f)
self.min_crop_f = min_crop_f
self.max_crop_f = max_crop_f
assert(max_crop_f <= 1.)
self.center_crop = not random_crop
self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)
self.pil_interpolation = False # gets reset later if incase interp_op is from pillow
if degradation == "bsrgan":
self.degradation_process = partial(degradation_fn_bsr, sf=downscale_f)
elif degradation == "bsrgan_light":
self.degradation_process = partial(degradation_fn_bsr_light, sf=downscale_f)
else:
interpolation_fn = {
"cv_nearest": cv2.INTER_NEAREST,
"cv_bilinear": cv2.INTER_LINEAR,
"cv_bicubic": cv2.INTER_CUBIC,
"cv_area": cv2.INTER_AREA,
"cv_lanczos": cv2.INTER_LANCZOS4,
"pil_nearest": PIL.Image.NEAREST,
"pil_bilinear": PIL.Image.BILINEAR,
"pil_bicubic": PIL.Image.BICUBIC,
"pil_box": PIL.Image.BOX,
"pil_hamming": PIL.Image.HAMMING,
"pil_lanczos": PIL.Image.LANCZOS,
}[degradation]
self.pil_interpolation = degradation.startswith("pil_")
if self.pil_interpolation:
self.degradation_process = partial(TF.resize, size=self.LR_size, interpolation=interpolation_fn)
else:
self.degradation_process = albumentations.SmallestMaxSize(max_size=self.LR_size,
interpolation=interpolation_fn)
def __len__(self):
return len(self.base)
def __getitem__(self, i):
example = self.base[i]
image = Image.open(example["file_path_"])
if not image.mode == "RGB":
image = image.convert("RGB")
image = np.array(image).astype(np.uint8)
min_side_len = min(image.shape[:2])
crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None)
crop_side_len = int(crop_side_len)
if self.center_crop:
self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len)
else:
self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len)
image = self.cropper(image=image)["image"]
image = self.image_rescaler(image=image)["image"]
if self.pil_interpolation:
image_pil = PIL.Image.fromarray(image)
LR_image = self.degradation_process(image_pil)
LR_image = np.array(LR_image).astype(np.uint8)
else:
LR_image = self.degradation_process(image=image)["image"]
example["image"] = (image/127.5 - 1.0).astype(np.float32)
example["LR_image"] = (LR_image/127.5 - 1.0).astype(np.float32)
return example
class ImageNetSRTrain(ImageNetSR):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def get_base(self):
with open("data/imagenet_train_hr_indices.p", "rb") as f:
indices = pickle.load(f)
dset = ImageNetTrain(process_images=False,)
return Subset(dset, indices)
class ImageNetSRValidation(ImageNetSR):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def get_base(self):
with open("data/imagenet_val_hr_indices.p", "rb") as f:
indices = pickle.load(f)
dset = ImageNetValidation(process_images=False,)
return Subset(dset, indices)
|
from typing import Dict
import numpy as np
from omegaconf import DictConfig, ListConfig
import torch
from torch.utils.data import Dataset
from pathlib import Path
import json
from PIL import Image
from torchvision import transforms
from einops import rearrange
from ldm.util import instantiate_from_config
from datasets import load_dataset
def make_multi_folder_data(paths, caption_files=None, **kwargs):
"""Make a concat dataset from multiple folders
Don't suport captions yet
If paths is a list, that's ok, if it's a Dict interpret it as:
k=folder v=n_times to repeat that
"""
list_of_paths = []
if isinstance(paths, (Dict, DictConfig)):
assert caption_files is None, \
"Caption files not yet supported for repeats"
for folder_path, repeats in paths.items():
list_of_paths.extend([folder_path]*repeats)
paths = list_of_paths
if caption_files is not None:
datasets = [FolderData(p, caption_file=c, **kwargs) for (p, c) in zip(paths, caption_files)]
else:
datasets = [FolderData(p, **kwargs) for p in paths]
return torch.utils.data.ConcatDataset(datasets)
class FolderData(Dataset):
def __init__(self,
root_dir,
caption_file=None,
image_transforms=[],
ext="jpg",
default_caption="",
postprocess=None,
return_paths=False,
) -> None:
"""Create a dataset from a folder of images.
If you pass in a root directory it will be searched for images
ending in ext (ext can be a list)
"""
self.root_dir = Path(root_dir)
self.default_caption = default_caption
self.return_paths = return_paths
if isinstance(postprocess, DictConfig):
postprocess = instantiate_from_config(postprocess)
self.postprocess = postprocess
if caption_file is not None:
with open(caption_file, "rt") as f:
ext = Path(caption_file).suffix.lower()
if ext == ".json":
captions = json.load(f)
elif ext == ".jsonl":
lines = f.readlines()
lines = [json.loads(x) for x in lines]
captions = {x["file_name"]: x["text"].strip("\n") for x in lines}
else:
raise ValueError(f"Unrecognised format: {ext}")
self.captions = captions
else:
self.captions = None
if not isinstance(ext, (tuple, list, ListConfig)):
ext = [ext]
# Only used if there is no caption file
self.paths = []
for e in ext:
self.paths.extend(list(self.root_dir.rglob(f"*.{e}")))
if isinstance(image_transforms, ListConfig):
image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
image_transforms.extend([transforms.ToTensor(),
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
image_transforms = transforms.Compose(image_transforms)
self.tform = image_transforms
def __len__(self):
if self.captions is not None:
return len(self.captions.keys())
else:
return len(self.paths)
def __getitem__(self, index):
data = {}
if self.captions is not None:
chosen = list(self.captions.keys())[index]
caption = self.captions.get(chosen, None)
if caption is None:
caption = self.default_caption
filename = self.root_dir/chosen
else:
filename = self.paths[index]
if self.return_paths:
data["path"] = str(filename)
im = Image.open(filename)
im = self.process_im(im)
data["image"] = im
if self.captions is not None:
data["txt"] = caption
else:
data["txt"] = self.default_caption
if self.postprocess is not None:
data = self.postprocess(data)
return data
def process_im(self, im):
im = im.convert("RGB")
return self.tform(im)
def hf_dataset(
name,
image_transforms=[],
image_column="img",
label_column="label",
text_column="txt",
split='train',
image_key='image',
caption_key='txt',
):
"""Make huggingface dataset with appropriate list of transforms applied
"""
ds = load_dataset(name, split=split)
image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
image_transforms.extend([transforms.ToTensor(),
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
tform = transforms.Compose(image_transforms)
assert image_column in ds.column_names, f"Didn't find column {image_column} in {ds.column_names}"
assert label_column in ds.column_names, f"Didn't find column {label_column} in {ds.column_names}"
def pre_process(examples):
processed = {}
processed[image_key] = [tform(im) for im in examples[image_column]]
label_to_text_dict = {0: "airplane", 1: "automobile", 2: "bird", 3: "cat", 4: "deer", 5: "dog", 6: "frog", 7: "horse", 8: "ship", 9: "truck"}
processed[caption_key] = [label_to_text_dict[label] for label in examples[label_column]]
return processed
ds.set_transform(pre_process)
return ds
class TextOnly(Dataset):
def __init__(self, captions, output_size, image_key="image", caption_key="txt", n_gpus=1):
"""Returns only captions with dummy images"""
self.output_size = output_size
self.image_key = image_key
self.caption_key = caption_key
if isinstance(captions, Path):
self.captions = self._load_caption_file(captions)
else:
self.captions = captions
if n_gpus > 1:
# hack to make sure that all the captions appear on each gpu
repeated = [n_gpus*[x] for x in self.captions]
self.captions = []
[self.captions.extend(x) for x in repeated]
def __len__(self):
return len(self.captions)
def __getitem__(self, index):
dummy_im = torch.zeros(3, self.output_size, self.output_size)
dummy_im = rearrange(dummy_im * 2. - 1., 'c h w -> h w c')
return {self.image_key: dummy_im, self.caption_key: self.captions[index]}
def _load_caption_file(self, filename):
with open(filename, 'rt') as f:
captions = f.readlines()
return [x.strip('\n') for x in captions] |
import math
import os
from abc import abstractmethod
import cv2
import numpy as np
import torch
from torch.utils.data import ChainDataset, ConcatDataset, Dataset, IterableDataset
class Txt2ImgIterableBaseDataset(IterableDataset):
'''
Define an interface to make the IterableDatasets for text2img data chainable
'''
def __init__(self, file_path: str, rank, world_size):
super().__init__()
self.file_path = file_path
self.folder_list = []
self.file_list = []
self.txt_list = []
self.info = self._get_file_info(file_path)
self.start = self.info['start']
self.end = self.info['end']
self.rank = rank
self.world_size = world_size
# self.per_worker = int(math.floor((self.end - self.start) / float(self.world_size)))
# self.iter_start = self.start + self.rank * self.per_worker
# self.iter_end = min(self.iter_start + self.per_worker, self.end)
# self.num_records = self.iter_end - self.iter_start
# self.valid_ids = [i for i in range(self.iter_end)]
self.num_records = self.end - self.start
self.valid_ids = [i for i in range(self.end)]
print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.')
def __len__(self):
# return self.iter_end - self.iter_start
return self.end - self.start
def __iter__(self):
sample_iterator = self._sample_generator(self.start, self.end)
# sample_iterator = self._sample_generator(self.iter_start, self.iter_end)
return sample_iterator
def _sample_generator(self, start, end):
for idx in range(start, end):
file_name = self.file_list[idx]
txt_name = self.txt_list[idx]
f_ = open(txt_name, 'r')
txt_ = f_.read()
f_.close()
image = cv2.imdecode(np.fromfile(file_name, dtype=np.uint8), 1)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = torch.from_numpy(image) / 255
yield {"txt": txt_, "image": image}
def _get_file_info(self, file_path):
info = \
{
"start": 1,
"end": 0,
}
self.folder_list = [file_path + i for i in os.listdir(file_path) if '.' not in i]
for folder in self.folder_list:
files = [folder + '/' + i for i in os.listdir(folder) if 'jpg' in i]
txts = [k.replace('jpg', 'txt') for k in files]
self.file_list.extend(files)
self.txt_list.extend(txts)
info['end'] = len(self.file_list)
# with open(file_path, 'r') as fin:
# for _ in enumerate(fin):
# info['end'] += 1
# self.txt_list = [k.replace('jpg', 'txt') for k in self.file_list]
return info
|
from typing import Dict
import numpy as np
from omegaconf import DictConfig, ListConfig
import torch
from torch.utils.data import Dataset
from pathlib import Path
import json
from PIL import Image
from torchvision import transforms
from einops import rearrange
from ldm.util import instantiate_from_config
from datasets import load_dataset
def make_multi_folder_data(paths, caption_files=None, **kwargs):
"""Make a concat dataset from multiple folders
Don't suport captions yet
If paths is a list, that's ok, if it's a Dict interpret it as:
k=folder v=n_times to repeat that
"""
list_of_paths = []
if isinstance(paths, (Dict, DictConfig)):
assert caption_files is None, \
"Caption files not yet supported for repeats"
for folder_path, repeats in paths.items():
list_of_paths.extend([folder_path]*repeats)
paths = list_of_paths
if caption_files is not None:
datasets = [FolderData(p, caption_file=c, **kwargs) for (p, c) in zip(paths, caption_files)]
else:
datasets = [FolderData(p, **kwargs) for p in paths]
return torch.utils.data.ConcatDataset(datasets)
class FolderData(Dataset):
def __init__(self,
root_dir,
caption_file=None,
image_transforms=[],
ext="jpg",
default_caption="",
postprocess=None,
return_paths=False,
) -> None:
"""Create a dataset from a folder of images.
If you pass in a root directory it will be searched for images
ending in ext (ext can be a list)
"""
self.root_dir = Path(root_dir)
self.default_caption = default_caption
self.return_paths = return_paths
if isinstance(postprocess, DictConfig):
postprocess = instantiate_from_config(postprocess)
self.postprocess = postprocess
if caption_file is not None:
with open(caption_file, "rt") as f:
ext = Path(caption_file).suffix.lower()
if ext == ".json":
captions = json.load(f)
elif ext == ".jsonl":
lines = f.readlines()
lines = [json.loads(x) for x in lines]
captions = {x["file_name"]: x["text"].strip("\n") for x in lines}
else:
raise ValueError(f"Unrecognised format: {ext}")
self.captions = captions
else:
self.captions = None
if not isinstance(ext, (tuple, list, ListConfig)):
ext = [ext]
# Only used if there is no caption file
self.paths = []
for e in ext:
self.paths.extend(list(self.root_dir.rglob(f"*.{e}")))
if isinstance(image_transforms, ListConfig):
image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
image_transforms.extend([transforms.ToTensor(),
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
image_transforms = transforms.Compose(image_transforms)
self.tform = image_transforms
def __len__(self):
if self.captions is not None:
return len(self.captions.keys())
else:
return len(self.paths)
def __getitem__(self, index):
data = {}
if self.captions is not None:
chosen = list(self.captions.keys())[index]
caption = self.captions.get(chosen, None)
if caption is None:
caption = self.default_caption
filename = self.root_dir/chosen
else:
filename = self.paths[index]
if self.return_paths:
data["path"] = str(filename)
im = Image.open(filename)
im = self.process_im(im)
data["image"] = im
if self.captions is not None:
data["txt"] = caption
else:
data["txt"] = self.default_caption
if self.postprocess is not None:
data = self.postprocess(data)
return data
def process_im(self, im):
im = im.convert("RGB")
return self.tform(im)
def hf_dataset(
path = "Fazzie/Teyvat",
image_transforms=[],
image_column="image",
text_column="text",
image_key='image',
caption_key='txt',
):
"""Make huggingface dataset with appropriate list of transforms applied
"""
ds = load_dataset(path, name="train")
ds = ds["train"]
image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
image_transforms.extend([transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))]
)
tform = transforms.Compose(image_transforms)
assert image_column in ds.column_names, f"Didn't find column {image_column} in {ds.column_names}"
assert text_column in ds.column_names, f"Didn't find column {text_column} in {ds.column_names}"
def pre_process(examples):
processed = {}
processed[image_key] = [tform(im) for im in examples[image_column]]
processed[caption_key] = examples[text_column]
return processed
ds.set_transform(pre_process)
return ds |
from abc import ABC, abstractmethod
import torch
import torch.nn as nn
from transformers import ViTConfig, ViTForImageClassification
from colossalai.utils.cuda import get_current_device
class DummyDataGenerator(ABC):
def __init__(self, length=10):
self.length = length
@abstractmethod
def generate(self):
pass
def __iter__(self):
self.step = 0
return self
def __next__(self):
if self.step < self.length:
self.step += 1
return self.generate()
else:
raise StopIteration
def __len__(self):
return self.length
class DummyDataLoader(DummyDataGenerator):
def __init__(self, length=10, batch_size=4, channel=3, category=8, image_size=224, return_dict=True):
super().__init__(length)
self.batch_size = batch_size
self.channel = channel
self.category = category
self.image_size = image_size
self.return_dict = return_dict
def generate(self):
image_dict = {}
image_dict['pixel_values'] = torch.rand(
self.batch_size, self.channel, self.image_size, self.image_size, device=get_current_device()) * 2 - 1
image_dict['label'] = torch.randint(self.category, (self.batch_size,),
dtype=torch.int64,
device=get_current_device())
if not self.return_dict:
return image_dict['pixel_values'], image_dict['label']
return image_dict
class ViTCVModel(nn.Module):
def __init__(self,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
image_size=224,
patch_size=16,
num_channels=3,
num_labels=8,
checkpoint=False):
super().__init__()
self.checkpoint = checkpoint
self.model = ViTForImageClassification(
ViTConfig(hidden_size=hidden_size,
num_hidden_layers=num_hidden_layers,
num_attention_heads=num_attention_heads,
image_size=image_size,
patch_size=patch_size,
num_channels=num_channels,
num_labels=num_labels))
if checkpoint:
self.model.gradient_checkpointing_enable()
def forward(self, pixel_values):
return self.model(pixel_values=pixel_values)
def vit_base_s(checkpoint=True):
return ViTCVModel(checkpoint=checkpoint)
def vit_base_micro(checkpoint=True):
return ViTCVModel(hidden_size=32, num_hidden_layers=2, num_attention_heads=4, checkpoint=checkpoint)
def get_training_components():
trainloader = DummyDataLoader()
testloader = DummyDataLoader()
return vit_base_micro, trainloader, testloader, torch.optim.Adam, torch.nn.functional.cross_entropy
|
import os
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from timm.models.vision_transformer import _create_vision_transformer
from titans.dataloader.imagenet import build_dali_imagenet
from tqdm import tqdm
from vit import DummyDataLoader
import colossalai
from colossalai.core import global_context as gpc
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.nn import CrossEntropyLoss
from colossalai.nn._ops import *
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
from colossalai.nn.optimizer import HybridAdam
from colossalai.nn.parallel.data_parallel import ColoDDP
from colossalai.tensor import ComputePattern, ComputeSpec, DistSpecManager, ProcessGroup, ShardSpec
from colossalai.utils import get_current_device
from colossalai.utils.model.colo_init_context import ColoInitContext
def init_1d_row_for_linear_weight_spec(model, world_size: int):
pg = ProcessGroup(tp_degree=world_size)
spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
with DistSpecManager.no_grad():
for n, p in model.named_parameters():
if 'weight' in n and 'norm' not in n and 'patch_embed.proj.weight' not in n:
p.set_process_group(pg)
p.set_tensor_spec(*spec)
# Similarly, it's col split for Linear but row split for others.
def init_1d_col_for_linear_weight_bias_spec(model, world_size: int):
pg = ProcessGroup(tp_degree=world_size)
spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
with DistSpecManager.no_grad():
for n, p in model.named_parameters():
if ('weight' in n or 'bias' in n) and 'norm' not in n and ('patch_embed.proj.weight' not in n
and 'patch_embed.proj.bias' not in n):
p.set_process_group(pg)
p.set_tensor_spec(*spec)
def init_spec_func(model, tp_type):
world_size = torch.distributed.get_world_size()
if tp_type == 'row':
init_1d_row_for_linear_weight_spec(model, world_size)
elif tp_type == 'col':
init_1d_col_for_linear_weight_bias_spec(model, world_size)
else:
raise NotImplemented
def train_imagenet():
parser = colossalai.get_default_parser()
parser.add_argument('--resume_from', default=False, action='store_true')
parser.add_argument('--dummy_data', default=False, action='store_true')
args = parser.parse_args()
colossalai.launch_from_torch(config=args.config)
use_ddp = gpc.config.USE_DDP
disable_existing_loggers()
logger = get_dist_logger()
if hasattr(gpc.config, 'LOG_PATH'):
if gpc.get_global_rank() == 0:
log_path = gpc.config.LOG_PATH
if not os.path.exists(log_path):
os.mkdir(log_path)
logger.log_to_file(log_path)
logger.info('Build data loader', ranks=[0])
if not args.dummy_data:
root = os.environ['DATA']
train_dataloader, test_dataloader = build_dali_imagenet(root,
train_batch_size=gpc.config.BATCH_SIZE,
test_batch_size=gpc.config.BATCH_SIZE)
else:
train_dataloader = DummyDataLoader(length=10,
batch_size=gpc.config.BATCH_SIZE,
category=gpc.config.NUM_CLASSES,
image_size=gpc.config.IMG_SIZE,
return_dict=False)
test_dataloader = DummyDataLoader(length=5,
batch_size=gpc.config.BATCH_SIZE,
category=gpc.config.NUM_CLASSES,
image_size=gpc.config.IMG_SIZE,
return_dict=False)
logger.info('Build model', ranks=[0])
model_kwargs = dict(img_size=gpc.config.IMG_SIZE,
patch_size=gpc.config.PATCH_SIZE,
embed_dim=gpc.config.HIDDEN_SIZE,
depth=gpc.config.DEPTH,
num_heads=gpc.config.NUM_HEADS,
mlp_ratio=gpc.config.MLP_RATIO,
num_classes=gpc.config.NUM_CLASSES,
drop_rate=0.1,
attn_drop_rate=0.1,
weight_init='jax')
with ColoInitContext(device=get_current_device()):
model = _create_vision_transformer('vit_small_patch16_224', pretrained=False, **model_kwargs)
init_spec_func(model, gpc.config.TP_TYPE)
world_size = torch.distributed.get_world_size()
model = ColoDDP(module=model, process_group=ProcessGroup(tp_degree=world_size))
logger.info('Build criterion, optimizer, lr_scheduler', ranks=[0])
optimizer = HybridAdam(model.parameters(), lr=gpc.config.LEARNING_RATE, weight_decay=gpc.config.WEIGHT_DECAY)
criterion = CrossEntropyLoss()
lr_scheduler = CosineAnnealingWarmupLR(optimizer=optimizer,
total_steps=gpc.config.NUM_EPOCHS,
warmup_steps=gpc.config.WARMUP_EPOCHS)
start_epoch = 0
if args.resume_from:
load_model = torch.load(args.resume_from + '_model.pth')
start_epoch = load_model['epoch']
model.load_state_dict(load_model['model'])
load_optim = torch.load(args.resume_from + '_optim_rank_{}.pth'.format(dist.get_rank()))
optimizer.load_state_dict(load_optim['optim'])
for epoch in range(start_epoch, gpc.config.NUM_EPOCHS):
model.train()
for index, (x, y) in tqdm(enumerate(train_dataloader), total=len(train_dataloader), leave=False):
x, y = x.cuda(), y.cuda()
output = model(x)
loss = criterion(output, y)
loss = loss / gpc.config.gradient_accumulation
if use_ddp:
model.backward(loss)
else:
loss.backward()
if (index + 1) % gpc.config.gradient_accumulation == 0:
optimizer.step()
if use_ddp:
model.zero_grad()
else:
optimizer.zero_grad()
logger.info(
f"Finish Train Epoch [{epoch+1}/{gpc.config.NUM_EPOCHS}] loss: {loss.item():.3f} lr: {optimizer.state_dict()['param_groups'][0]['lr']}",
ranks=[0])
model.eval()
test_loss = 0
correct = 0
test_sum = 0
with torch.no_grad():
for index, (x, y) in tqdm(enumerate(test_dataloader), total=len(test_dataloader), leave=False):
x, y = x.cuda(), y.cuda()
output = model(x)
test_loss += F.cross_entropy(output, y, reduction='sum').item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(y.view_as(pred)).sum().item()
test_sum += y.size(0)
test_loss /= test_sum
logger.info(
f"Finish Test Epoch [{epoch+1}/{gpc.config.NUM_EPOCHS}] loss: {test_loss:.3f} Accuracy: [{correct}/{test_sum}]({correct/test_sum:.3f})",
ranks=[0])
lr_scheduler.step()
if __name__ == '__main__':
train_imagenet()
|
import os
import random
from functools import partial
import numpy as np
import pytest
import torch
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
from vit import get_training_components
import colossalai
from colossalai.context import ParallelMode
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.nn.parallel.data_parallel import ColoDDP
from colossalai.tensor import ComputePattern, ComputeSpec, DistSpecManager, ProcessGroup, ShardSpec
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils import free_port
from colossalai.utils.cuda import get_current_device
from colossalai.utils.model.colo_init_context import ColoInitContext
def set_seed(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def tensor_equal(A, B):
return torch.allclose(A, B, rtol=1e-3, atol=1e-1)
def tensor_shard_equal(tensor: torch.Tensor, shard: torch.Tensor):
assert tensor.ndim == shard.ndim
if tensor.shape == shard.shape:
return tensor_equal(tensor, shard)
else:
dims_not_eq = torch.nonzero(torch.tensor(tensor.shape) != torch.tensor(shard.shape))
if dims_not_eq.numel() == 1:
# 1D shard
dim = dims_not_eq.item()
world_size = gpc.get_world_size(ParallelMode.PARALLEL_1D)
rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
return tensor_equal(tensor.chunk(world_size, dim)[rank], shard)
else:
raise
# Only for all Linear, it's 1d_row split because Linear will be transposed when calculating.
# But for other layers, it's 1d_col split.
# Layernorm is not supported for now.
# patch_embeddings.projection has nn.Conv2d
# https://github.com/huggingface/transformers/blob/dcb08b99f44919425f8ba9be9ddcc041af8ec25e/src/transformers/models/vit/modeling_vit.py#L182
def init_1d_row_for_linear_weight_spec(model, world_size: int):
pg = ProcessGroup(tp_degree=world_size)
spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
with DistSpecManager.no_grad():
for n, p in model.named_parameters():
if 'weight' in n and 'layernorm' not in n and 'embeddings.patch_embeddings.projection.weight' not in n:
p.set_process_group(pg)
p.set_tensor_spec(*spec)
# Similarly, it's col split for Linear but row split for others.
def init_1d_col_for_linear_weight_bias_spec(model, world_size: int):
pg = ProcessGroup(tp_degree=world_size)
spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
with DistSpecManager.no_grad():
for n, p in model.named_parameters():
if ('weight' in n
or 'bias' in n) and 'layernorm' not in n and 'embeddings.patch_embeddings.projection' not in n:
p.set_process_group(pg)
p.set_tensor_spec(*spec)
def check_param_equal(model, torch_model):
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
assert tensor_shard_equal(torch_p, p)
def check_grad_equal(model, torch_model):
for p, torch_p in zip(model.parameters(), torch_model.parameters()):
if (torch_p.grad.shape == p.grad.shape):
assert torch.allclose(torch_p.grad, p.grad, rtol=1e-3, atol=2.0) == True
else:
dims_not_eq = torch.nonzero(torch.tensor(torch_p.grad.shape) != torch.tensor(p.grad.shape))
dim = dims_not_eq.item()
world_size = gpc.get_world_size(ParallelMode.PARALLEL_1D)
rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
assert torch.allclose(torch_p.grad.chunk(world_size, dim)[rank], p.grad, rtol=1e-3, atol=2.0) == True
def run_vit(init_spec_func, use_ddp):
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_training_components()
with ColoInitContext(device=get_current_device()):
model = model_builder()
model = model.cuda()
torch_model = model_builder().cuda()
if use_ddp:
model = ColoDDP(model)
torch_model = DDP(torch_model,
device_ids=[gpc.get_global_rank()],
process_group=gpc.get_group(ParallelMode.DATA))
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
torch_p.data.copy_(p)
world_size = torch.distributed.get_world_size()
init_spec_func(model, world_size)
check_param_equal(model, torch_model)
model.train()
torch_model.train()
set_seed(gpc.get_local_rank(ParallelMode.DATA))
optimizer = optimizer_class(model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
torch_optimizer = optimizer_class(torch_model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
for i, image_dict in enumerate(train_dataloader):
if use_ddp:
model.zero_grad()
else:
optimizer.zero_grad()
logits = model(image_dict['pixel_values'])
torch_logits = torch_model(image_dict['pixel_values'])
assert tensor_equal(torch_logits.logits, logits.logits)
loss = criterion(logits.logits, image_dict['label'])
torch_loss = criterion(torch_logits.logits, image_dict['label'])
if use_ddp:
model.backward(loss)
else:
loss.backward()
torch_loss.backward()
check_grad_equal(model, torch_model)
optimizer.step()
torch_optimizer.step()
check_param_equal(model, torch_model)
break
def run_dist(rank, world_size, port, use_ddp):
if use_ddp and world_size == 1:
return
tp_world_size = world_size // 2 if use_ddp else world_size
config = dict(parallel=dict(tensor=dict(mode="1d", size=tp_world_size),))
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_vit(init_1d_row_for_linear_weight_spec, use_ddp)
run_vit(init_1d_col_for_linear_weight_bias_spec, use_ddp)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
@pytest.mark.parametrize('use_ddp', [False, True])
@rerun_if_address_is_in_use()
def test_vit(world_size, use_ddp):
run_func = partial(run_dist, world_size=world_size, port=free_port(), use_ddp=use_ddp)
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_vit(1, False)
|
from colossalai.amp import AMP_TYPE
# hyperparameters
# BATCH_SIZE is as per GPU
# global batch size = BATCH_SIZE x data parallel size
BATCH_SIZE = 8
LEARNING_RATE = 3e-3
WEIGHT_DECAY = 0.3
NUM_EPOCHS = 3
WARMUP_EPOCHS = 1
# model config
IMG_SIZE = 224
PATCH_SIZE = 16
HIDDEN_SIZE = 32
DEPTH = 2
NUM_HEADS = 4
MLP_RATIO = 4
NUM_CLASSES = 10
CHECKPOINT = False
SEQ_LENGTH = (IMG_SIZE // PATCH_SIZE)**2 + 1 # add 1 for cls token
USE_DDP = True
TP_WORLD_SIZE = 2
TP_TYPE = 'row'
parallel = dict(tensor=dict(mode="1d", size=TP_WORLD_SIZE),)
fp16 = dict(mode=AMP_TYPE.NAIVE)
clip_grad_norm = 1.0
gradient_accumulation = 2
LOG_PATH = "./log_ci"
|
from colossalai.amp import AMP_TYPE
# hyperparameters
# BATCH_SIZE is as per GPU
# global batch size = BATCH_SIZE x data parallel size
BATCH_SIZE = 256
LEARNING_RATE = 3e-3
WEIGHT_DECAY = 0.3
NUM_EPOCHS = 300
WARMUP_EPOCHS = 32
# model config
IMG_SIZE = 224
PATCH_SIZE = 16
HIDDEN_SIZE = 384
DEPTH = 12
NUM_HEADS = 6
MLP_RATIO = 4
NUM_CLASSES = 1000
CHECKPOINT = False
SEQ_LENGTH = (IMG_SIZE // PATCH_SIZE)**2 + 1 # add 1 for cls token
USE_DDP = True
TP_WORLD_SIZE = 2
TP_TYPE = 'row'
parallel = dict(tensor=dict(mode="1d", size=TP_WORLD_SIZE),)
fp16 = dict(mode=AMP_TYPE.NAIVE)
clip_grad_norm = 1.0
gradient_accumulation = 8
LOG_PATH = "./log"
|
import argparse
import hashlib
import itertools
import math
import os
from pathlib import Path
from typing import Optional
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel
from diffusers.optimization import get_scheduler
from huggingface_hub import HfFolder, Repository, whoami
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig
logger = get_logger(__name__)
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path,
subfolder="text_encoder",
revision=args.revision,
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "RobertaSeriesModelWithTransformation":
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation
return RobertaSeriesModelWithTransformation
else:
raise ValueError(f"{model_class} is not supported.")
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--instance_data_dir",
type=str,
default=None,
required=True,
help="A folder containing the training data of instance images.",
)
parser.add_argument(
"--class_data_dir",
type=str,
default=None,
required=False,
help="A folder containing the training data of class images.",
)
parser.add_argument(
"--instance_prompt",
type=str,
default=None,
required=True,
help="The prompt with identifier specifying the instance",
)
parser.add_argument(
"--class_prompt",
type=str,
default=None,
help="The prompt to specify images in the same class as provided instance images.",
)
parser.add_argument(
"--with_prior_preservation",
default=False,
action="store_true",
help="Flag to add prior preservation loss.",
)
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
parser.add_argument(
"--num_class_images",
type=int,
default=100,
help=("Minimal class images for prior preservation loss. If there are not enough images already present in"
" class_data_dir, additional images will be sampled with class_prompt."),
)
parser.add_argument(
"--output_dir",
type=str,
default="text-inversion-model",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=("The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"),
)
parser.add_argument("--center_crop",
action="store_true",
help="Whether to center crop images before resizing to resolution")
parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder")
parser.add_argument("--train_batch_size",
type=int,
default=4,
help="Batch size (per device) for the training dataloader.")
parser.add_argument("--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images.")
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-6,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=('The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'),
)
parser.add_argument("--lr_warmup_steps",
type=int,
default=500,
help="Number of steps for the warmup in the lr scheduler.")
parser.add_argument("--use_8bit_adam",
action="store_true",
help="Whether or not to use 8-bit Adam from bitsandbytes.")
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=("[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
if args.with_prior_preservation:
if args.class_data_dir is None:
raise ValueError("You must specify a data directory for class images.")
if args.class_prompt is None:
raise ValueError("You must specify prompt for class images.")
else:
if args.class_data_dir is not None:
logger.warning("You need not use --class_data_dir without --with_prior_preservation.")
if args.class_prompt is not None:
logger.warning("You need not use --class_prompt without --with_prior_preservation.")
return args
class DreamBoothDataset(Dataset):
"""
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
It pre-processes the images and the tokenizes prompts.
"""
def __init__(
self,
instance_data_root,
instance_prompt,
tokenizer,
class_data_root=None,
class_prompt=None,
size=512,
center_crop=False,
):
self.size = size
self.center_crop = center_crop
self.tokenizer = tokenizer
self.instance_data_root = Path(instance_data_root)
if not self.instance_data_root.exists():
raise ValueError("Instance images root doesn't exists.")
self.instance_images_path = list(Path(instance_data_root).iterdir())
self.num_instance_images = len(self.instance_images_path)
self.instance_prompt = instance_prompt
self._length = self.num_instance_images
if class_data_root is not None:
self.class_data_root = Path(class_data_root)
self.class_data_root.mkdir(parents=True, exist_ok=True)
self.class_images_path = list(self.class_data_root.iterdir())
self.num_class_images = len(self.class_images_path)
self._length = max(self.num_class_images, self.num_instance_images)
self.class_prompt = class_prompt
else:
self.class_data_root = None
self.image_transforms = transforms.Compose([
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
def __len__(self):
return self._length
def __getitem__(self, index):
example = {}
instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
if not instance_image.mode == "RGB":
instance_image = instance_image.convert("RGB")
example["instance_images"] = self.image_transforms(instance_image)
example["instance_prompt_ids"] = self.tokenizer(
self.instance_prompt,
padding="do_not_pad",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids
if self.class_data_root:
class_image = Image.open(self.class_images_path[index % self.num_class_images])
if not class_image.mode == "RGB":
class_image = class_image.convert("RGB")
example["class_images"] = self.image_transforms(class_image)
example["class_prompt_ids"] = self.tokenizer(
self.class_prompt,
padding="do_not_pad",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids
return example
class PromptDataset(Dataset):
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
def __init__(self, prompt, num_samples):
self.prompt = prompt
self.num_samples = num_samples
def __len__(self):
return self.num_samples
def __getitem__(self, index):
example = {}
example["prompt"] = self.prompt
example["index"] = index
return example
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
if token is None:
token = HfFolder.get_token()
if organization is None:
username = whoami(token)["name"]
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
def main(args):
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with="tensorboard",
logging_dir=logging_dir,
)
# Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
# This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
# TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
raise ValueError(
"Gradient accumulation is not supported when training the text encoder in distributed training. "
"Please set gradient_accumulation_steps to 1. This feature will be supported in the future.")
if args.seed is not None:
set_seed(args.seed)
if args.with_prior_preservation:
class_images_dir = Path(args.class_data_dir)
if not class_images_dir.exists():
class_images_dir.mkdir(parents=True)
cur_class_images = len(list(class_images_dir.iterdir()))
if cur_class_images < args.num_class_images:
torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
pipeline = DiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
torch_dtype=torch_dtype,
safety_checker=None,
revision=args.revision,
)
pipeline.set_progress_bar_config(disable=True)
num_new_images = args.num_class_images - cur_class_images
logger.info(f"Number of class images to sample: {num_new_images}.")
sample_dataset = PromptDataset(args.class_prompt, num_new_images)
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)
sample_dataloader = accelerator.prepare(sample_dataloader)
pipeline.to(accelerator.device)
for example in tqdm(sample_dataloader,
desc="Generating class images",
disable=not accelerator.is_local_main_process):
images = pipeline(example["prompt"]).images
for i, image in enumerate(images):
hash_image = hashlib.sha1(image.tobytes()).hexdigest()
image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
image.save(image_filename)
del pipeline
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load the tokenizer
if args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name,
revision=args.revision,
use_fast=False,
)
elif args.pretrained_model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=args.revision,
use_fast=False,
)
# import correct text encoder class
text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path)
# Load models and create wrapper for stable diffusion
text_encoder = text_encoder_cls.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="text_encoder",
revision=args.revision,
)
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="vae",
revision=args.revision,
)
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="unet",
revision=args.revision,
)
vae.requires_grad_(False)
if not args.train_text_encoder:
text_encoder.requires_grad_(False)
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
if args.train_text_encoder:
text_encoder.gradient_checkpointing_enable()
if args.scale_lr:
args.learning_rate = (args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size *
accelerator.num_processes)
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError("To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`.")
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
params_to_optimize = (itertools.chain(unet.parameters(), text_encoder.parameters())
if args.train_text_encoder else unet.parameters())
optimizer = optimizer_class(
params_to_optimize,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
noise_scheduler = DDPMScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")
train_dataset = DreamBoothDataset(
instance_data_root=args.instance_data_dir,
instance_prompt=args.instance_prompt,
class_data_root=args.class_data_dir if args.with_prior_preservation else None,
class_prompt=args.class_prompt,
tokenizer=tokenizer,
size=args.resolution,
center_crop=args.center_crop,
)
def collate_fn(examples):
input_ids = [example["instance_prompt_ids"] for example in examples]
pixel_values = [example["instance_images"] for example in examples]
# Concat class and instance examples for prior preservation.
# We do this to avoid doing two forward passes.
if args.with_prior_preservation:
input_ids += [example["class_prompt_ids"] for example in examples]
pixel_values += [example["class_images"] for example in examples]
pixel_values = torch.stack(pixel_values)
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
input_ids = tokenizer.pad(
{
"input_ids": input_ids
},
padding="max_length",
max_length=tokenizer.model_max_length,
return_tensors="pt",
).input_ids
batch = {
"input_ids": input_ids,
"pixel_values": pixel_values,
}
return batch
train_dataloader = torch.utils.data.DataLoader(train_dataset,
batch_size=args.train_batch_size,
shuffle=True,
collate_fn=collate_fn,
num_workers=1)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
if args.train_text_encoder:
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, text_encoder, optimizer, train_dataloader, lr_scheduler)
else:
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader,
lr_scheduler)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu.
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
vae.to(accelerator.device, dtype=weight_dtype)
if not args.train_text_encoder:
text_encoder.to(accelerator.device, dtype=weight_dtype)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("dreambooth", config=vars(args))
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
global_step = 0
for epoch in range(args.num_train_epochs):
unet.train()
if args.train_text_encoder:
text_encoder.train()
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(unet):
# Convert images to latent space
latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
latents = latents * 0.18215
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
# Predict the noise residual
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
if args.with_prior_preservation:
# Chunk the noise and model_pred into two parts and compute the loss on each part separately.
model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
target, target_prior = torch.chunk(target, 2, dim=0)
# Compute instance loss
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none").mean([1, 2, 3]).mean()
# Compute prior loss
prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
# Add the prior loss to the instance loss.
loss = loss + args.prior_loss_weight * prior_loss
else:
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
accelerator.backward(loss)
if accelerator.sync_gradients:
params_to_clip = (itertools.chain(unet.parameters(), text_encoder.parameters())
if args.train_text_encoder else unet.parameters())
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if global_step % args.save_steps == 0:
if accelerator.is_main_process:
pipeline = DiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=accelerator.unwrap_model(unet),
text_encoder=accelerator.unwrap_model(text_encoder),
revision=args.revision,
)
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
pipeline.save_pretrained(save_path)
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
accelerator.wait_for_everyone()
# Create the pipeline using using the trained modules and save it.
if accelerator.is_main_process:
pipeline = DiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=accelerator.unwrap_model(unet),
text_encoder=accelerator.unwrap_model(text_encoder),
revision=args.revision,
)
pipeline.save_pretrained(args.output_dir)
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True)
accelerator.end_training()
if __name__ == "__main__":
args = parse_args()
main(args)
|
import argparse
import hashlib
import itertools
import math
import os
import random
from pathlib import Path
from typing import Optional
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import (
AutoencoderKL,
DDPMScheduler,
StableDiffusionInpaintPipeline,
StableDiffusionPipeline,
UNet2DConditionModel,
)
from diffusers.optimization import get_scheduler
from huggingface_hub import HfFolder, Repository, whoami
from PIL import Image, ImageDraw
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
logger = get_logger(__name__)
def prepare_mask_and_masked_image(image, mask):
image = np.array(image.convert("RGB"))
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
mask = np.array(mask.convert("L"))
mask = mask.astype(np.float32) / 255.0
mask = mask[None, None]
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask)
masked_image = image * (mask < 0.5)
return mask, masked_image
# generate random masks
def random_mask(im_shape, ratio=1, mask_full_image=False):
mask = Image.new("L", im_shape, 0)
draw = ImageDraw.Draw(mask)
size = (random.randint(0, int(im_shape[0] * ratio)), random.randint(0, int(im_shape[1] * ratio)))
# use this to always mask the whole image
if mask_full_image:
size = (int(im_shape[0] * ratio), int(im_shape[1] * ratio))
limits = (im_shape[0] - size[0] // 2, im_shape[1] - size[1] // 2)
center = (random.randint(size[0] // 2, limits[0]), random.randint(size[1] // 2, limits[1]))
draw_type = random.randint(0, 1)
if draw_type == 0 or mask_full_image:
draw.rectangle(
(center[0] - size[0] // 2, center[1] - size[1] // 2, center[0] + size[0] // 2, center[1] + size[1] // 2),
fill=255,
)
else:
draw.ellipse(
(center[0] - size[0] // 2, center[1] - size[1] // 2, center[0] + size[0] // 2, center[1] + size[1] // 2),
fill=255,
)
return mask
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--instance_data_dir",
type=str,
default=None,
required=True,
help="A folder containing the training data of instance images.",
)
parser.add_argument(
"--class_data_dir",
type=str,
default=None,
required=False,
help="A folder containing the training data of class images.",
)
parser.add_argument(
"--instance_prompt",
type=str,
default=None,
help="The prompt with identifier specifying the instance",
)
parser.add_argument(
"--class_prompt",
type=str,
default=None,
help="The prompt to specify images in the same class as provided instance images.",
)
parser.add_argument(
"--with_prior_preservation",
default=False,
action="store_true",
help="Flag to add prior preservation loss.",
)
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
parser.add_argument(
"--num_class_images",
type=int,
default=100,
help=("Minimal class images for prior preservation loss. If not have enough images, additional images will be"
" sampled with class_prompt."),
)
parser.add_argument(
"--output_dir",
type=str,
default="text-inversion-model",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=("The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"),
)
parser.add_argument("--center_crop",
action="store_true",
help="Whether to center crop images before resizing to resolution")
parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder")
parser.add_argument("--train_batch_size",
type=int,
default=4,
help="Batch size (per device) for the training dataloader.")
parser.add_argument("--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images.")
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-6,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=('The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'),
)
parser.add_argument("--lr_warmup_steps",
type=int,
default=500,
help="Number of steps for the warmup in the lr scheduler.")
parser.add_argument("--use_8bit_adam",
action="store_true",
help="Whether or not to use 8-bit Adam from bitsandbytes.")
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=("[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=("Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
if args.instance_data_dir is None:
raise ValueError("You must specify a train data directory.")
if args.with_prior_preservation:
if args.class_data_dir is None:
raise ValueError("You must specify a data directory for class images.")
if args.class_prompt is None:
raise ValueError("You must specify prompt for class images.")
return args
class DreamBoothDataset(Dataset):
"""
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
It pre-processes the images and the tokenizes prompts.
"""
def __init__(
self,
instance_data_root,
instance_prompt,
tokenizer,
class_data_root=None,
class_prompt=None,
size=512,
center_crop=False,
):
self.size = size
self.center_crop = center_crop
self.tokenizer = tokenizer
self.instance_data_root = Path(instance_data_root)
if not self.instance_data_root.exists():
raise ValueError("Instance images root doesn't exists.")
self.instance_images_path = list(Path(instance_data_root).iterdir())
self.num_instance_images = len(self.instance_images_path)
self.instance_prompt = instance_prompt
self._length = self.num_instance_images
if class_data_root is not None:
self.class_data_root = Path(class_data_root)
self.class_data_root.mkdir(parents=True, exist_ok=True)
self.class_images_path = list(self.class_data_root.iterdir())
self.num_class_images = len(self.class_images_path)
self._length = max(self.num_class_images, self.num_instance_images)
self.class_prompt = class_prompt
else:
self.class_data_root = None
self.image_transforms = transforms.Compose([
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
def __len__(self):
return self._length
def __getitem__(self, index):
example = {}
instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
if not instance_image.mode == "RGB":
instance_image = instance_image.convert("RGB")
example["PIL_images"] = instance_image
example["instance_images"] = self.image_transforms(instance_image)
example["instance_prompt_ids"] = self.tokenizer(
self.instance_prompt,
padding="do_not_pad",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids
if self.class_data_root:
class_image = Image.open(self.class_images_path[index % self.num_class_images])
if not class_image.mode == "RGB":
class_image = class_image.convert("RGB")
example["class_images"] = self.image_transforms(class_image)
example["class_PIL_images"] = class_image
example["class_prompt_ids"] = self.tokenizer(
self.class_prompt,
padding="do_not_pad",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids
return example
class PromptDataset(Dataset):
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
def __init__(self, prompt, num_samples):
self.prompt = prompt
self.num_samples = num_samples
def __len__(self):
return self.num_samples
def __getitem__(self, index):
example = {}
example["prompt"] = self.prompt
example["index"] = index
return example
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
if token is None:
token = HfFolder.get_token()
if organization is None:
username = whoami(token)["name"]
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
def main():
args = parse_args()
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with="tensorboard",
logging_dir=logging_dir,
)
# Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
# This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
# TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
raise ValueError(
"Gradient accumulation is not supported when training the text encoder in distributed training. "
"Please set gradient_accumulation_steps to 1. This feature will be supported in the future.")
if args.seed is not None:
set_seed(args.seed)
if args.with_prior_preservation:
class_images_dir = Path(args.class_data_dir)
if not class_images_dir.exists():
class_images_dir.mkdir(parents=True)
cur_class_images = len(list(class_images_dir.iterdir()))
if cur_class_images < args.num_class_images:
torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
pipeline = StableDiffusionInpaintPipeline.from_pretrained(args.pretrained_model_name_or_path,
torch_dtype=torch_dtype,
safety_checker=None)
pipeline.set_progress_bar_config(disable=True)
num_new_images = args.num_class_images - cur_class_images
logger.info(f"Number of class images to sample: {num_new_images}.")
sample_dataset = PromptDataset(args.class_prompt, num_new_images)
sample_dataloader = torch.utils.data.DataLoader(sample_dataset,
batch_size=args.sample_batch_size,
num_workers=1)
sample_dataloader = accelerator.prepare(sample_dataloader)
pipeline.to(accelerator.device)
transform_to_pil = transforms.ToPILImage()
for example in tqdm(sample_dataloader,
desc="Generating class images",
disable=not accelerator.is_local_main_process):
bsz = len(example["prompt"])
fake_images = torch.rand((3, args.resolution, args.resolution))
transform_to_pil = transforms.ToPILImage()
fake_pil_images = transform_to_pil(fake_images)
fake_mask = random_mask((args.resolution, args.resolution), ratio=1, mask_full_image=True)
images = pipeline(prompt=example["prompt"], mask_image=fake_mask, image=fake_pil_images).images
for i, image in enumerate(images):
hash_image = hashlib.sha1(image.tobytes()).hexdigest()
image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
image.save(image_filename)
del pipeline
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load the tokenizer
if args.tokenizer_name:
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
elif args.pretrained_model_name_or_path:
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
# Load models and create wrapper for stable diffusion
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
vae.requires_grad_(False)
if not args.train_text_encoder:
text_encoder.requires_grad_(False)
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
if args.train_text_encoder:
text_encoder.gradient_checkpointing_enable()
if args.scale_lr:
args.learning_rate = (args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size *
accelerator.num_processes)
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError("To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`.")
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
params_to_optimize = (itertools.chain(unet.parameters(), text_encoder.parameters())
if args.train_text_encoder else unet.parameters())
optimizer = optimizer_class(
params_to_optimize,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
noise_scheduler = DDPMScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")
train_dataset = DreamBoothDataset(
instance_data_root=args.instance_data_dir,
instance_prompt=args.instance_prompt,
class_data_root=args.class_data_dir if args.with_prior_preservation else None,
class_prompt=args.class_prompt,
tokenizer=tokenizer,
size=args.resolution,
center_crop=args.center_crop,
)
def collate_fn(examples):
image_transforms = transforms.Compose([
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
])
input_ids = [example["instance_prompt_ids"] for example in examples]
pixel_values = [example["instance_images"] for example in examples]
# Concat class and instance examples for prior preservation.
# We do this to avoid doing two forward passes.
if args.with_prior_preservation:
input_ids += [example["class_prompt_ids"] for example in examples]
pixel_values += [example["class_images"] for example in examples]
pior_pil = [example["class_PIL_images"] for example in examples]
masks = []
masked_images = []
for example in examples:
pil_image = example["PIL_images"]
# generate a random mask
mask = random_mask(pil_image.size, 1, False)
# apply transforms
mask = image_transforms(mask)
pil_image = image_transforms(pil_image)
# prepare mask and masked image
mask, masked_image = prepare_mask_and_masked_image(pil_image, mask)
masks.append(mask)
masked_images.append(masked_image)
if args.with_prior_preservation:
for pil_image in pior_pil:
# generate a random mask
mask = random_mask(pil_image.size, 1, False)
# apply transforms
mask = image_transforms(mask)
pil_image = image_transforms(pil_image)
# prepare mask and masked image
mask, masked_image = prepare_mask_and_masked_image(pil_image, mask)
masks.append(mask)
masked_images.append(masked_image)
pixel_values = torch.stack(pixel_values)
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
input_ids = tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt").input_ids
masks = torch.stack(masks)
masked_images = torch.stack(masked_images)
batch = {"input_ids": input_ids, "pixel_values": pixel_values, "masks": masks, "masked_images": masked_images}
return batch
train_dataloader = torch.utils.data.DataLoader(train_dataset,
batch_size=args.train_batch_size,
shuffle=True,
collate_fn=collate_fn)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
if args.train_text_encoder:
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, text_encoder, optimizer, train_dataloader, lr_scheduler)
else:
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader,
lr_scheduler)
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu.
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
vae.to(accelerator.device, dtype=weight_dtype)
if not args.train_text_encoder:
text_encoder.to(accelerator.device, dtype=weight_dtype)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("dreambooth", config=vars(args))
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
global_step = 0
for epoch in range(args.num_train_epochs):
unet.train()
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(unet):
# Convert images to latent space
latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
latents = latents * 0.18215
# Convert masked images to latent space
masked_latents = vae.encode(batch["masked_images"].reshape(
batch["pixel_values"].shape).to(dtype=weight_dtype)).latent_dist.sample()
masked_latents = masked_latents * 0.18215
masks = batch["masks"]
# resize the mask to latents shape as we concatenate the mask to the latents
mask = torch.stack([
torch.nn.functional.interpolate(mask, size=(args.resolution // 8, args.resolution // 8))
for mask in masks
])
mask = mask.reshape(-1, 1, args.resolution // 8, args.resolution // 8)
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# concatenate the noised latents with the mask and the masked latents
latent_model_input = torch.cat([noisy_latents, mask, masked_latents], dim=1)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
# Predict the noise residual
noise_pred = unet(latent_model_input, timesteps, encoder_hidden_states).sample
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
if args.with_prior_preservation:
# Chunk the noise and noise_pred into two parts and compute the loss on each part separately.
noise_pred, noise_pred_prior = torch.chunk(noise_pred, 2, dim=0)
target, target_prior = torch.chunk(target, 2, dim=0)
# Compute instance loss
loss = F.mse_loss(noise_pred.float(), target.float(), reduction="none").mean([1, 2, 3]).mean()
# Compute prior loss
prior_loss = F.mse_loss(noise_pred_prior.float(), target_prior.float(), reduction="mean")
# Add the prior loss to the instance loss.
loss = loss + args.prior_loss_weight * prior_loss
else:
loss = F.mse_loss(noise_pred.float(), target.float(), reduction="mean")
accelerator.backward(loss)
if accelerator.sync_gradients:
params_to_clip = (itertools.chain(unet.parameters(), text_encoder.parameters())
if args.train_text_encoder else unet.parameters())
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
accelerator.wait_for_everyone()
# Create the pipeline using using the trained modules and save it.
if accelerator.is_main_process:
pipeline = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=accelerator.unwrap_model(unet),
text_encoder=accelerator.unwrap_model(text_encoder),
)
pipeline.save_pretrained(args.output_dir)
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True)
accelerator.end_training()
if __name__ == "__main__":
main()
|
'''
torchrun --standalone --nproc_per_node=1 debug.py
'''
from diffusers import AutoencoderKL
import colossalai
from colossalai.utils.model.colo_init_context import ColoInitContext, post_process_colo_init_ctx
path = "/data/scratch/diffuser/stable-diffusion-v1-4"
colossalai.launch_from_torch(config={})
with ColoInitContext(device='cpu'):
vae = AutoencoderKL.from_pretrained(
path,
subfolder="vae",
revision=None,
)
for n, p in vae.named_parameters():
print(n)
|
from diffusers import StableDiffusionPipeline, DiffusionPipeline
import torch
model_id = <Your Model Path>
print(f"Loading model... from{model_id}")
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
prompt = "A photo of an apple."
image = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0]
image.save("output.png")
|
import argparse
import hashlib
import math
import os
from pathlib import Path
from typing import Optional
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel
from diffusers.optimization import get_scheduler
from huggingface_hub import HfFolder, Repository, create_repo, whoami
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig
import colossalai
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.nn.optimizer.gemini_optimizer import GeminiAdamOptimizer
from colossalai.nn.parallel.utils import get_static_torch_model
from colossalai.utils import get_current_device
from colossalai.utils.model.colo_init_context import ColoInitContext
disable_existing_loggers()
logger = get_dist_logger()
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path,
subfolder="text_encoder",
revision=args.revision,
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "RobertaSeriesModelWithTransformation":
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation
return RobertaSeriesModelWithTransformation
else:
raise ValueError(f"{model_class} is not supported.")
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--instance_data_dir",
type=str,
default=None,
required=True,
help="A folder containing the training data of instance images.",
)
parser.add_argument(
"--class_data_dir",
type=str,
default=None,
required=False,
help="A folder containing the training data of class images.",
)
parser.add_argument(
"--instance_prompt",
type=str,
default="a photo of sks dog",
required=False,
help="The prompt with identifier specifying the instance",
)
parser.add_argument(
"--class_prompt",
type=str,
default=None,
help="The prompt to specify images in the same class as provided instance images.",
)
parser.add_argument(
"--with_prior_preservation",
default=False,
action="store_true",
help="Flag to add prior preservation loss.",
)
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
parser.add_argument(
"--num_class_images",
type=int,
default=100,
help=("Minimal class images for prior preservation loss. If there are not enough images already present in"
" class_data_dir, additional images will be sampled with class_prompt."),
)
parser.add_argument(
"--output_dir",
type=str,
default="text-inversion-model",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=("The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"),
)
parser.add_argument(
"--placement",
type=str,
default="cpu",
help="Placement Policy for Gemini. Valid when using colossalai as dist plan.",
)
parser.add_argument(
"--center_crop",
default=False,
action="store_true",
help=("Whether to center crop the input images to the resolution. If not set, the images will be randomly"
" cropped. The images will be resized to the resolution first before cropping."),
)
parser.add_argument("--train_batch_size",
type=int,
default=4,
help="Batch size (per device) for the training dataloader.")
parser.add_argument("--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images.")
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-6,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=('The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'),
)
parser.add_argument("--lr_warmup_steps",
type=int,
default=500,
help="Number of steps for the warmup in the lr scheduler.")
parser.add_argument("--use_8bit_adam",
action="store_true",
help="Whether or not to use 8-bit Adam from bitsandbytes.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=("[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
if args.with_prior_preservation:
if args.class_data_dir is None:
raise ValueError("You must specify a data directory for class images.")
if args.class_prompt is None:
raise ValueError("You must specify prompt for class images.")
else:
if args.class_data_dir is not None:
logger.warning("You need not use --class_data_dir without --with_prior_preservation.")
if args.class_prompt is not None:
logger.warning("You need not use --class_prompt without --with_prior_preservation.")
return args
class DreamBoothDataset(Dataset):
"""
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
It pre-processes the images and the tokenizes prompts.
"""
def __init__(
self,
instance_data_root,
instance_prompt,
tokenizer,
class_data_root=None,
class_prompt=None,
size=512,
center_crop=False,
):
self.size = size
self.center_crop = center_crop
self.tokenizer = tokenizer
self.instance_data_root = Path(instance_data_root)
if not self.instance_data_root.exists():
raise ValueError("Instance images root doesn't exists.")
self.instance_images_path = list(Path(instance_data_root).iterdir())
self.num_instance_images = len(self.instance_images_path)
self.instance_prompt = instance_prompt
self._length = self.num_instance_images
if class_data_root is not None:
self.class_data_root = Path(class_data_root)
self.class_data_root.mkdir(parents=True, exist_ok=True)
self.class_images_path = list(self.class_data_root.iterdir())
self.num_class_images = len(self.class_images_path)
self._length = max(self.num_class_images, self.num_instance_images)
self.class_prompt = class_prompt
else:
self.class_data_root = None
self.image_transforms = transforms.Compose([
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
def __len__(self):
return self._length
def __getitem__(self, index):
example = {}
instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
if not instance_image.mode == "RGB":
instance_image = instance_image.convert("RGB")
example["instance_images"] = self.image_transforms(instance_image)
example["instance_prompt_ids"] = self.tokenizer(
self.instance_prompt,
padding="do_not_pad",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids
if self.class_data_root:
class_image = Image.open(self.class_images_path[index % self.num_class_images])
if not class_image.mode == "RGB":
class_image = class_image.convert("RGB")
example["class_images"] = self.image_transforms(class_image)
example["class_prompt_ids"] = self.tokenizer(
self.class_prompt,
padding="do_not_pad",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids
return example
class PromptDataset(Dataset):
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
def __init__(self, prompt, num_samples):
self.prompt = prompt
self.num_samples = num_samples
def __len__(self):
return self.num_samples
def __getitem__(self, index):
example = {}
example["prompt"] = self.prompt
example["index"] = index
return example
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
if token is None:
token = HfFolder.get_token()
if organization is None:
username = whoami(token)["name"]
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
# Gemini + ZeRO DDP
def gemini_zero_dpp(model: torch.nn.Module, placememt_policy: str = "auto"):
from colossalai.nn.parallel import GeminiDDP
model = GeminiDDP(model,
device=get_current_device(),
placement_policy=placememt_policy,
pin_memory=True,
search_range_mb=64)
return model
def main(args):
if args.seed is None:
colossalai.launch_from_torch(config={})
else:
colossalai.launch_from_torch(config={}, seed=args.seed)
local_rank = gpc.get_local_rank(ParallelMode.DATA)
world_size = gpc.get_world_size(ParallelMode.DATA)
if args.with_prior_preservation:
class_images_dir = Path(args.class_data_dir)
if not class_images_dir.exists():
class_images_dir.mkdir(parents=True)
cur_class_images = len(list(class_images_dir.iterdir()))
if cur_class_images < args.num_class_images:
torch_dtype = torch.float16 if get_current_device() == "cuda" else torch.float32
pipeline = DiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
torch_dtype=torch_dtype,
safety_checker=None,
revision=args.revision,
)
pipeline.set_progress_bar_config(disable=True)
num_new_images = args.num_class_images - cur_class_images
logger.info(f"Number of class images to sample: {num_new_images}.")
sample_dataset = PromptDataset(args.class_prompt, num_new_images)
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)
pipeline.to(get_current_device())
for example in tqdm(
sample_dataloader,
desc="Generating class images",
disable=not local_rank == 0,
):
images = pipeline(example["prompt"]).images
for i, image in enumerate(images):
hash_image = hashlib.sha1(image.tobytes()).hexdigest()
image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
image.save(image_filename)
del pipeline
# Handle the repository creation
if local_rank == 0:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
create_repo(repo_name, exist_ok=True, token=args.hub_token)
repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load the tokenizer
if args.tokenizer_name:
logger.info(f"Loading tokenizer from {args.tokenizer_name}", ranks=[0])
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name,
revision=args.revision,
use_fast=False,
)
elif args.pretrained_model_name_or_path:
logger.info("Loading tokenizer from pretrained model", ranks=[0])
tokenizer = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=args.revision,
use_fast=False,
)
# import correct text encoder class
text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path)
# Load models and create wrapper for stable diffusion
logger.info(f"Loading text_encoder from {args.pretrained_model_name_or_path}", ranks=[0])
text_encoder = text_encoder_cls.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="text_encoder",
revision=args.revision,
)
logger.info(f"Loading AutoencoderKL from {args.pretrained_model_name_or_path}", ranks=[0])
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="vae",
revision=args.revision,
)
logger.info(f"Loading UNet2DConditionModel from {args.pretrained_model_name_or_path}", ranks=[0])
with ColoInitContext(device=get_current_device()):
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path,
subfolder="unet",
revision=args.revision,
low_cpu_mem_usage=False)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
if args.scale_lr:
args.learning_rate = args.learning_rate * args.train_batch_size * world_size
unet = gemini_zero_dpp(unet, args.placement)
# config optimizer for colossalai zero
optimizer = GeminiAdamOptimizer(unet, lr=args.learning_rate, initial_scale=2**5, clipping_norm=args.max_grad_norm)
# load noise_scheduler
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
# prepare dataset
logger.info(f"Prepare dataset from {args.instance_data_dir}", ranks=[0])
train_dataset = DreamBoothDataset(
instance_data_root=args.instance_data_dir,
instance_prompt=args.instance_prompt,
class_data_root=args.class_data_dir if args.with_prior_preservation else None,
class_prompt=args.class_prompt,
tokenizer=tokenizer,
size=args.resolution,
center_crop=args.center_crop,
)
def collate_fn(examples):
input_ids = [example["instance_prompt_ids"] for example in examples]
pixel_values = [example["instance_images"] for example in examples]
# Concat class and instance examples for prior preservation.
# We do this to avoid doing two forward passes.
if args.with_prior_preservation:
input_ids += [example["class_prompt_ids"] for example in examples]
pixel_values += [example["class_images"] for example in examples]
pixel_values = torch.stack(pixel_values)
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
input_ids = tokenizer.pad(
{
"input_ids": input_ids
},
padding="max_length",
max_length=tokenizer.model_max_length,
return_tensors="pt",
).input_ids
batch = {
"input_ids": input_ids,
"pixel_values": pixel_values,
}
return batch
train_dataloader = torch.utils.data.DataLoader(train_dataset,
batch_size=args.train_batch_size,
shuffle=True,
collate_fn=collate_fn,
num_workers=1)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader))
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps,
num_training_steps=args.max_train_steps,
)
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu.
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
vae.to(get_current_device(), dtype=weight_dtype)
text_encoder.to(get_current_device(), dtype=weight_dtype)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader))
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Train!
total_batch_size = args.train_batch_size * world_size
logger.info("***** Running training *****", ranks=[0])
logger.info(f" Num examples = {len(train_dataset)}", ranks=[0])
logger.info(f" Num batches each epoch = {len(train_dataloader)}", ranks=[0])
logger.info(f" Num Epochs = {args.num_train_epochs}", ranks=[0])
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}", ranks=[0])
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}", ranks=[0])
logger.info(f" Total optimization steps = {args.max_train_steps}", ranks=[0])
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not local_rank == 0)
progress_bar.set_description("Steps")
global_step = 0
torch.cuda.synchronize()
for epoch in range(args.num_train_epochs):
unet.train()
for step, batch in enumerate(train_dataloader):
torch.cuda.reset_peak_memory_stats()
# Move batch to gpu
for key, value in batch.items():
batch[key] = value.to(get_current_device(), non_blocking=True)
# Convert images to latent space
optimizer.zero_grad()
latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
latents = latents * 0.18215
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
# Predict the noise residual
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
if args.with_prior_preservation:
# Chunk the noise and model_pred into two parts and compute the loss on each part separately.
model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
target, target_prior = torch.chunk(target, 2, dim=0)
# Compute instance loss
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none").mean([1, 2, 3]).mean()
# Compute prior loss
prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
# Add the prior loss to the instance loss.
loss = loss + args.prior_loss_weight * prior_loss
else:
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
optimizer.backward(loss)
optimizer.step()
lr_scheduler.step()
logger.info(f"max GPU_mem cost is {torch.cuda.max_memory_allocated()/2**20} MB", ranks=[0])
# Checks if the accelerator has performed an optimization step behind the scenes
progress_bar.update(1)
global_step += 1
logs = {
"loss": loss.detach().item(),
"lr": optimizer.param_groups[0]["lr"],
} # lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if global_step % args.save_steps == 0:
torch.cuda.synchronize()
torch_unet = get_static_torch_model(unet)
if local_rank == 0:
pipeline = DiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=torch_unet,
revision=args.revision,
)
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
pipeline.save_pretrained(save_path)
logger.info(f"Saving model checkpoint to {save_path}", ranks=[0])
if global_step >= args.max_train_steps:
break
torch.cuda.synchronize()
unet = get_static_torch_model(unet)
if local_rank == 0:
pipeline = DiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=unet,
revision=args.revision,
)
pipeline.save_pretrained(args.output_dir)
logger.info(f"Saving model checkpoint to {args.output_dir}", ranks=[0])
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True)
if __name__ == "__main__":
args = parse_args()
main(args)
|
import contextlib
import os
import torch
import torch.nn as nn
from dataset.webtext import WebtextDataset
from titans.model.gpt import GPTLMLoss
import colossalai
import colossalai.utils as utils
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.nn import LinearWarmupLR
from colossalai.trainer import Trainer, hooks
from colossalai.utils import colo_set_process_memory_fraction, is_using_pp
from colossalai.utils.timer import MultiTimer
from colossalai.zero.init_ctx import ZeroInitContext
def calc_local_model_size(model: torch.nn.Module):
numel_per_device = 0
for p in model.parameters():
numel_per_device += p.numel()
return numel_per_device
VOCAB_SIZE = 50257
def main():
parser = colossalai.get_default_parser()
parser.add_argument('--from_torch', default=False, action='store_true')
parser.add_argument('--use_dummy_dataset', default=False, action='store_true')
args = parser.parse_args()
disable_existing_loggers()
if args.from_torch:
colossalai.launch_from_torch(config=args.config)
else:
colossalai.launch_from_slurm(config=args.config, host=args.host, port=29500, seed=42)
logger = get_dist_logger()
data_path = None if args.use_dummy_dataset else os.environ['DATA']
logger.info(f'Build data loader from path {data_path}', ranks=[0])
train_ds = WebtextDataset(path=data_path, seq_len=gpc.config.SEQ_LEN)
train_dataloader = utils.get_dataloader(train_ds,
seed=42,
batch_size=gpc.config.BATCH_SIZE,
pin_memory=True,
shuffle=True,
drop_last=True)
logger.info('Build model', ranks=[0])
use_pipeline = is_using_pp()
use_interleaved = hasattr(gpc.config.model, 'num_chunks')
use_zero3 = hasattr(gpc.config, 'zero')
ctx = contextlib.nullcontext()
if use_zero3:
ctx = ZeroInitContext(target_device=torch.cuda.current_device(),
shard_strategy=gpc.config.zero.model_config.shard_strategy,
shard_param=True)
with ctx:
model = gpc.config.model.pop('type')(**gpc.config.model)
if use_pipeline and use_interleaved and not isinstance(model, nn.ModuleList):
model = nn.ModuleList([model])
if use_zero3:
numel = ctx.model_numel_tensor.item()
else:
numel = calc_local_model_size(model)
tflop = numel * gpc.config.BATCH_SIZE * gpc.config.SEQ_LEN \
* gpc.get_world_size(ParallelMode.MODEL) * gpc.get_world_size(ParallelMode.DATA) * 8 / (1024 ** 4)
criterion = getattr(gpc.config, 'loss_fn', None)
if criterion is not None:
criterion = criterion.type()
else:
criterion = GPTLMLoss()
logger.info('Build optimizer', ranks=[0])
optimizer = gpc.config.optimizer.pop('type')(model.parameters(), **gpc.config.optimizer)
lr_scheduler = LinearWarmupLR(optimizer, total_steps=gpc.config.NUM_EPOCHS, warmup_steps=5)
engine, train_dataloader, _, lr_scheduler = colossalai.initialize(model,
optimizer,
criterion,
train_dataloader=train_dataloader,
lr_scheduler=lr_scheduler)
global_batch_size = gpc.config.BATCH_SIZE * \
gpc.get_world_size(ParallelMode.DATA) * getattr(gpc.config, "gradient_accumulation", 1)
logger.info(f'Init done, global batch size = {global_batch_size}', ranks=[0])
timier = MultiTimer()
trainer = Trainer(engine=engine, logger=logger, timer=timier)
hook_list = [
hooks.LossHook(),
hooks.LRSchedulerHook(lr_scheduler=lr_scheduler, by_epoch=True),
hooks.LogMetricByEpochHook(logger),
hooks.ThroughputHook(ignored_steps=10, tflop_per_step=tflop),
hooks.LogMetricByStepHook(),
hooks.LogMemoryByEpochHook(logger),
# hooks.LogMemoryByEpochHook(logger),
# hooks.LogTimingByEpochHook(timer, logger),
]
trainer.fit(train_dataloader=train_dataloader,
epochs=gpc.config.NUM_EPOCHS,
test_interval=1,
hooks=hook_list,
display_progress=True,
return_output_label=False)
if __name__ == '__main__':
main()
|
import json
import os
from typing import Optional
import torch
from torch.utils.data import Dataset
from transformers import GPT2Tokenizer
from colossalai.registry import DATASETS
@DATASETS.register_module
class WebtextDataset(Dataset):
def __init__(self, path: Optional[str] = None, seq_len=1024) -> None:
super().__init__()
if path is not None:
root = os.path.dirname(path)
encoded_data_cache_path = os.path.join(root, f'gpt_webtext_{seq_len}.pt')
if os.path.isfile(encoded_data_cache_path):
seq_len_, data, attention_mask = torch.load(encoded_data_cache_path)
if seq_len_ == seq_len:
self.data = data
self.attention_mask = attention_mask
return
raw_data = []
with open(path) as f:
for line in f.readlines():
raw_data.append(json.loads(line)['text'])
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer.pad_token = tokenizer.unk_token
encoded_data = tokenizer(raw_data, padding=True, truncation=True, max_length=seq_len, return_tensors='pt')
self.data = encoded_data['input_ids']
self.attention_mask = encoded_data['attention_mask']
else:
self.data = torch.randint(0, 50257, (10240, seq_len))
self.attention_mask = torch.ones_like(self.data)
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return {'input_ids': self.data[index], 'attention_mask': self.attention_mask[index]}, self.data[index]
|
from model import GPT3_pipeline_hybrid
from colossalai.nn.optimizer import HybridAdam
from colossalai.zero.shard_utils import TensorShardStrategy
BATCH_SIZE = 192
NUM_EPOCHS = 60
SEQ_LEN = 2048
NUM_MICRO_BATCHES = 192
HIDDEN_SIZE = 12288
TENSOR_SHAPE = (BATCH_SIZE // NUM_MICRO_BATCHES, SEQ_LEN, HIDDEN_SIZE)
# if you do no want zero, just comment out this dictionary
zero = dict(model_config=dict(tensor_placement_policy='cuda', shard_strategy=TensorShardStrategy()),
optimizer_config=dict(initial_scale=2**16))
optimizer = dict(
type=HybridAdam,
lr=0.00015,
weight_decay=1e-2,
)
model = dict(type=GPT3_pipeline_hybrid, checkpoint=True, num_chunks=1)
# pipeline parallel: modify integer value for the number of pipeline stages
# tensor parallel: modify size to set the tensor parallel size, usually the number of GPUs per node
# for the current model implementation, mode can only be 1D or None
parallel = dict(
pipeline=1,
tensor=dict(size=2, mode='1d'), # for the current model implementation, mode can only be 1D or None
)
|
from model import GPT2_small_pipeline_hybrid
from colossalai.nn.optimizer import HybridAdam
from colossalai.zero.shard_utils import TensorShardStrategy
BATCH_SIZE = 8
NUM_EPOCHS = 10
SEQ_LEN = 1024
NUM_MICRO_BATCHES = 4
HIDDEN_SIZE = 768
TENSOR_SHAPE = (BATCH_SIZE // NUM_MICRO_BATCHES, SEQ_LEN, HIDDEN_SIZE)
# if you do no want zero, just comment out this dictionary
zero = dict(model_config=dict(tensor_placement_policy='cuda', shard_strategy=TensorShardStrategy()),
optimizer_config=dict(initial_scale=2**5))
optimizer = dict(
type=HybridAdam,
lr=0.000015,
weight_decay=1e-2,
)
model = dict(type=GPT2_small_pipeline_hybrid, checkpoint=True, num_chunks=1)
# pipeline parallel: modify integer value for the number of pipeline stages
# tensor parallel: modify size to set the tensor parallel size, usually the number of GPUs per node
# for the current model implementation, mode can only be 1D or None
parallel = dict(
pipeline=1,
tensor=dict(size=2, mode='1d'),
)
|
import torch
import torch.nn.init as init
from torch import Tensor
from torch import distributed as dist
from torch import nn as nn
from torch.nn import functional as F
from torch.nn.parameter import Parameter
from colossalai.context import ParallelMode, seed
from colossalai.core import global_context as gpc
from colossalai.nn.layer.base_layer import ParallelLayer
from colossalai.nn.layer.parallel_1d._utils import gather_forward_split_backward, reduce_grad, reduce_input
from colossalai.nn.layer.parallel_1d.layers import Linear1D_Row
from colossalai.nn.layer.utils import divide
from colossalai.registry import LAYERS, LOSSES, MODELS
from colossalai.utils import get_current_device
class VocabParallelEmbedding(torch.nn.Module):
"""Language model embeddings.
Arguments:
hidden_size: hidden size
vocab_size: vocabulary size
max_sequence_length: maximum size of sequence. This
is used for positional embedding
embedding_dropout_prob: dropout probability for embeddings
init_method: weight initialization method
num_tokentypes: size of the token-type embeddings. 0 value
will ignore this embedding
"""
def __init__(self,
hidden_size,
vocab_size,
max_sequence_length,
embedding_dropout_prob,
num_tokentypes=0,
dtype=torch.float):
super(VocabParallelEmbedding, self).__init__()
self.hidden_size = hidden_size
self.num_tokentypes = num_tokentypes
# Word embeddings (parallel).
self.word_embeddings = VocabParallelEmbedding1D(vocab_size, self.hidden_size, dtype=dtype)
self._word_embeddings_key = 'word_embeddings'
# Position embedding (serial).
self.position_embeddings = torch.nn.Embedding(max_sequence_length, self.hidden_size, dtype=dtype)
self._position_embeddings_key = 'position_embeddings'
# Initialize the position embeddings.
# self.init_method(self.position_embeddings.weight)
# Token type embedding.
# Add this as an optional field that can be added through
# method call so we can load a pretrain model without
# token types and add them as needed.
self._tokentype_embeddings_key = 'tokentype_embeddings'
if self.num_tokentypes > 0:
self.tokentype_embeddings = torch.nn.Embedding(self.num_tokentypes, self.hidden_size, dtype=dtype)
# Initialize the token-type embeddings.
# self.init_method(self.tokentype_embeddings.weight)
else:
self.tokentype_embeddings = None
# Embeddings dropout
self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob)
def zero_parameters(self):
"""Zero out all parameters in embedding."""
self.word_embeddings.weight.data.fill_(0)
self.word_embeddings.weight.shared = True
self.position_embeddings.weight.data.fill_(0)
self.position_embeddings.weight.shared = True
if self.num_tokentypes > 0:
self.tokentype_embeddings.weight.data.fill_(0)
self.tokentype_embeddings.weight.shared = True
def add_tokentype_embeddings(self, num_tokentypes):
"""Add token-type embedding. This function is provided so we can add
token-type embeddings in case the pretrained model does not have it.
This allows us to load the model normally and then add this embedding.
"""
if self.tokentype_embeddings is not None:
raise Exception('tokentype embeddings is already initialized')
if torch.distributed.get_rank() == 0:
print('adding embedding for {} tokentypes'.format(num_tokentypes), flush=True)
self.num_tokentypes = num_tokentypes
self.tokentype_embeddings = torch.nn.Embedding(num_tokentypes, self.hidden_size)
# Initialize the token-type embeddings.
# self.init_method(self.tokentype_embeddings.weight)
def forward(self, input_ids, position_ids=None, tokentype_ids=None):
# Embeddings.
if input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
words_embeddings = self.word_embeddings(input_ids)
if position_ids is not None:
position_ids = position_ids.view(-1, input_shape[-1])
if position_ids is None:
position_ids = torch.arange(0, input_shape[-1] + 0, dtype=torch.long, device=get_current_device())
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
position_embeddings = self.position_embeddings(position_ids)
embeddings = words_embeddings + position_embeddings
# Dropout.
with seed(ParallelMode.TENSOR):
embeddings = self.embedding_dropout(embeddings)
return embeddings
def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False):
"""For easy load."""
state_dict_ = {}
state_dict_[self._word_embeddings_key] \
= self.word_embeddings.state_dict(destination, prefix, keep_vars)
state_dict_[self._position_embeddings_key] \
= self.position_embeddings.state_dict(
destination, prefix, keep_vars)
if self.num_tokentypes > 0:
state_dict_[self._tokentype_embeddings_key] \
= self.tokentype_embeddings.state_dict(
destination, prefix, keep_vars)
return state_dict_
def load_state_dict(self, state_dict, strict=True):
"""Customized load."""
# Word embedding.
if self._word_embeddings_key in state_dict:
state_dict_ = state_dict[self._word_embeddings_key]
else:
# for backward compatibility.
state_dict_ = {}
for key in state_dict.keys():
if 'word_embeddings' in key:
state_dict_[key.split('word_embeddings.')[1]] \
= state_dict[key]
self.word_embeddings.load_state_dict(state_dict_, strict=strict)
# Position embedding.
if self._position_embeddings_key in state_dict:
state_dict_ = state_dict[self._position_embeddings_key]
else:
# for backward compatibility.
state_dict_ = {}
for key in state_dict.keys():
if 'position_embeddings' in key:
state_dict_[key.split('position_embeddings.')[1]] \
= state_dict[key]
self.position_embeddings.load_state_dict(state_dict_, strict=strict)
# Tokentype embedding.
if self.num_tokentypes > 0:
state_dict_ = {}
if self._tokentype_embeddings_key in state_dict:
state_dict_ = state_dict[self._tokentype_embeddings_key]
else:
# for backward compatibility.
for key in state_dict.keys():
if 'tokentype_embeddings' in key:
state_dict_[key.split('tokentype_embeddings.')[1]] \
= state_dict[key]
if len(state_dict_.keys()) > 0:
self.tokentype_embeddings.load_state_dict(state_dict_, strict=strict)
else:
print('***WARNING*** expected tokentype embeddings in the '
'checkpoint but could not find it',
flush=True)
class VocabParallelEmbedding1D(torch.nn.Module):
"""Embedding parallelized in the vocabulary dimension.
This is mainly adapted from torch.nn.Embedding and all the default
values are kept.
Arguments:
num_embeddings: vocabulary size.
embedding_dim: size of hidden state.
init_method: method to initialize weights.
"""
def __init__(self, num_embeddings, embedding_dim, dtype=None, init_method=None):
super(VocabParallelEmbedding1D, self).__init__()
# Keep the input dimensions.
self.num_embeddings = num_embeddings
self.embedding_dim = embedding_dim
# Set the details for compatibility.
self.padding_idx = None
self.max_norm = None
self.norm_type = 2.
self.scale_grad_by_freq = False
self.sparse = False
self._weight = None
self.tensor_model_parallel_size = gpc.tensor_parallel_size
# Divide the weight matrix along the vocabulary dimension.
self.vocab_start_index, self.vocab_end_index = \
VocabUtility.vocab_range_from_global_vocab_size(
self.num_embeddings, gpc.get_local_rank(ParallelMode.PARALLEL_1D),
self.tensor_model_parallel_size)
self.num_embeddings_per_partition = self.vocab_end_index - \
self.vocab_start_index
# Allocate weights and initialize.
factory_kwargs = {'device': get_current_device(), 'dtype': dtype}
self.weight = Parameter(torch.empty(self.num_embeddings_per_partition, self.embedding_dim, **factory_kwargs))
init.uniform_(self.weight, -1, 1)
def forward(self, input_):
if self.tensor_model_parallel_size > 1:
# Build the mask.
input_mask = (input_ < self.vocab_start_index) | \
(input_ >= self.vocab_end_index)
# Mask the input.
masked_input = input_.clone() - self.vocab_start_index
masked_input[input_mask] = 0
else:
masked_input = input_
# Get the embeddings.
output_parallel = F.embedding(masked_input, self.weight, self.padding_idx, self.max_norm, self.norm_type,
self.scale_grad_by_freq, self.sparse)
# Mask the output embedding.
if self.tensor_model_parallel_size > 1:
output_parallel[input_mask, :] = 0.0
# Reduce across all the model parallel GPUs.
output = output = reduce_input(output_parallel, ParallelMode.PARALLEL_1D)
return output
@LOSSES.register_module
class vocab_parallel_cross_entropy(nn.Module):
def __init__(self):
super().__init__()
def forward(self, vocab_parallel_logits, target):
"""Helper function for the cross entropy."""
vocab_parallel_logits = vocab_parallel_logits[..., :-1, :].contiguous()
target = target[..., 1:].contiguous()
return _VocabParallelCrossEntropy.apply(vocab_parallel_logits.view(-1, vocab_parallel_logits.size(-1)),
target.view(-1))
class _VocabParallelCrossEntropy(torch.autograd.Function):
@staticmethod
def forward(ctx, vocab_parallel_logits, target):
# Maximum value along vocab dimension across all GPUs.
logits_max = torch.max(vocab_parallel_logits, dim=-1)[0]
torch.distributed.all_reduce(logits_max,
op=torch.distributed.ReduceOp.MAX,
group=gpc.get_group(ParallelMode.PARALLEL_1D))
# Subtract the maximum value.
vocab_parallel_logits.sub_(logits_max.unsqueeze(dim=-1))
# Get the partition's vocab indices
get_vocab_range = VocabUtility.vocab_range_from_per_partition_vocab_size
partition_vocab_size = vocab_parallel_logits.size()[-1]
rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
world_size = gpc.tensor_parallel_size
vocab_start_index, vocab_end_index = get_vocab_range(partition_vocab_size, rank, world_size)
# Create a mask of valid vocab ids (1 means it needs to be masked).
target_mask = (target < vocab_start_index) | (target >= vocab_end_index)
masked_target = target.clone() - vocab_start_index
masked_target[target_mask] = 0
# Get predicted-logits = logits[target].
# For Simplicity, we convert logits to a 2-D tensor with size
# [*, partition-vocab-size] and target to a 1-D tensor of size [*].
logits_2d = vocab_parallel_logits.view(-1, partition_vocab_size)
masked_target_1d = masked_target.view(-1)
arange_1d = torch.arange(start=0, end=logits_2d.size()[0], device=logits_2d.device)
predicted_logits_1d = logits_2d[arange_1d, masked_target_1d]
predicted_logits_1d = predicted_logits_1d.clone().contiguous()
predicted_logits = predicted_logits_1d.view_as(target)
predicted_logits[target_mask] = 0.0
# All reduce is needed to get the chunks from other GPUs.
torch.distributed.all_reduce(predicted_logits,
op=torch.distributed.ReduceOp.SUM,
group=gpc.get_group(ParallelMode.PARALLEL_1D))
# Sum of exponential of logits along vocab dimension across all GPUs.
exp_logits = vocab_parallel_logits
torch.exp(vocab_parallel_logits, out=exp_logits)
sum_exp_logits = exp_logits.sum(dim=-1)
torch.distributed.all_reduce(sum_exp_logits,
op=torch.distributed.ReduceOp.SUM,
group=gpc.get_group(ParallelMode.PARALLEL_1D))
# Loss = log(sum(exp(logits))) - predicted-logit.
loss = torch.log(sum_exp_logits) - predicted_logits
loss = loss.mean()
# Store softmax, target-mask and masked-target for backward pass.
exp_logits.div_(sum_exp_logits.unsqueeze(dim=-1))
ctx.save_for_backward(exp_logits, target_mask, masked_target_1d)
return loss
@staticmethod
def backward(ctx, grad_output):
# Retreive tensors from the forward path.
softmax, target_mask, masked_target_1d = ctx.saved_tensors
# All the inputs have softmax as their gradient.
grad_input = softmax
# For simplicity, work with the 2D gradient.
partition_vocab_size = softmax.size()[-1]
grad_2d = grad_input.view(-1, partition_vocab_size)
# Add the gradient from matching classes.
arange_1d = torch.arange(start=0, end=grad_2d.size()[0], device=grad_2d.device)
grad_2d[arange_1d, masked_target_1d] -= (1.0 - target_mask.view(-1).float())
# Finally elementwise multiplication with the output gradients.
grad_input.mul_(grad_output.unsqueeze(dim=-1))
return grad_input, None
class VocabUtility:
"""Split the vocabulary into `world_size` chunks amd return the
first and last index of the vocabulary belonging to the `rank`
partition: Note that indices in [fist, last)"""
@staticmethod
def vocab_range_from_per_partition_vocab_size(per_partition_vocab_size, rank, world_size):
index_f = rank * per_partition_vocab_size
index_l = index_f + per_partition_vocab_size
return index_f, index_l
@staticmethod
def vocab_range_from_global_vocab_size(global_vocab_size, rank, world_size):
per_partition_vocab_size = divide(global_vocab_size, world_size)
return VocabUtility.vocab_range_from_per_partition_vocab_size(per_partition_vocab_size, rank, world_size)
class VocabParallelGPTLMHead1D(ParallelLayer):
"""
Language model head that shares the same parameters with the embedding matrix.
"""
def __init__(self, embed=None, vocab_size=None, dtype=None, embed_dim=None):
super().__init__()
if embed is not None:
self.head = embed
else:
self.head = VocabParallelEmbedding1D(vocab_size, embed_dim, dtype=dtype)
def forward(self, x: Tensor) -> Tensor:
x = reduce_grad(x, ParallelMode.PARALLEL_1D)
x = F.linear(x, self.head.weight)
return x
###################################
class HiddenParallelEmbedding(torch.nn.Module):
"""Language model embeddings.
Arguments:
hidden_size: hidden size
vocab_size: vocabulary size
max_sequence_length: maximum size of sequence. This
is used for positional embedding
embedding_dropout_prob: dropout probability for embeddings
init_method: weight initialization method
num_tokentypes: size of the token-type embeddings. 0 value
will ignore this embedding
"""
def __init__(
self,
hidden_size,
vocab_size,
max_sequence_length,
embedding_dropout_prob,
dtype=torch.float,
padding_idx: int = 0,
num_tokentypes=0,
):
super(HiddenParallelEmbedding, self).__init__()
self.hidden_size = hidden_size
self.num_tokentypes = num_tokentypes
# Word embeddings (parallel).
self.word_embeddings = HiddenParallelEmbedding1D(vocab_size, hidden_size, dtype, padding_idx)
self._word_embeddings_key = 'word_embeddings'
# Position embedding (serial).
self.position_embeddings = torch.nn.Embedding(max_sequence_length, self.hidden_size)
self._position_embeddings_key = 'position_embeddings'
# Initialize the position embeddings.
# self.init_method(self.position_embeddings.weight)
# Token type embedding.
# Add this as an optional field that can be added through
# method call so we can load a pretrain model without
# token types and add them as needed.
self._tokentype_embeddings_key = 'tokentype_embeddings'
if self.num_tokentypes > 0:
self.tokentype_embeddings = torch.nn.Embedding(self.num_tokentypes, self.hidden_size)
# Initialize the token-type embeddings.
# self.init_method(self.tokentype_embeddings.weight)
else:
self.tokentype_embeddings = None
# Embeddings dropout
self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob)
def zero_parameters(self):
"""Zero out all parameters in embedding."""
self.word_embeddings.weight.data.fill_(0)
self.word_embeddings.weight.shared = True
self.position_embeddings.weight.data.fill_(0)
self.position_embeddings.weight.shared = True
if self.num_tokentypes > 0:
self.tokentype_embeddings.weight.data.fill_(0)
self.tokentype_embeddings.weight.shared = True
def add_tokentype_embeddings(self, num_tokentypes):
"""Add token-type embedding. This function is provided so we can add
token-type embeddings in case the pretrained model does not have it.
This allows us to load the model normally and then add this embedding.
"""
if self.tokentype_embeddings is not None:
raise Exception('tokentype embeddings is already initialized')
if torch.distributed.get_rank() == 0:
print('adding embedding for {} tokentypes'.format(num_tokentypes), flush=True)
self.num_tokentypes = num_tokentypes
self.tokentype_embeddings = torch.nn.Embedding(num_tokentypes, self.hidden_size)
# Initialize the token-type embeddings.
# self.init_method(self.tokentype_embeddings.weight)
def forward(self, input_ids, position_ids=None, tokentype_ids=None):
if input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
words_embeddings = self.word_embeddings(input_ids)
if position_ids is not None:
position_ids = position_ids.view(-1, input_shape[-1])
if position_ids is None:
position_ids = torch.arange(0, input_shape[-1] + 0, dtype=torch.long, device=get_current_device())
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
position_embeddings = self.position_embeddings(position_ids)
embeddings = words_embeddings + position_embeddings
# Dropout.
with seed(ParallelMode.TENSOR):
embeddings = self.embedding_dropout(embeddings)
return embeddings
def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False):
"""For easy load."""
state_dict_ = {}
state_dict_[self._word_embeddings_key] \
= self.word_embeddings.state_dict(destination, prefix, keep_vars)
state_dict_[self._position_embeddings_key] \
= self.position_embeddings.state_dict(
destination, prefix, keep_vars)
if self.num_tokentypes > 0:
state_dict_[self._tokentype_embeddings_key] \
= self.tokentype_embeddings.state_dict(
destination, prefix, keep_vars)
return state_dict_
def load_state_dict(self, state_dict, strict=True):
"""Customized load."""
# Word embedding.
if self._word_embeddings_key in state_dict:
state_dict_ = state_dict[self._word_embeddings_key]
else:
# for backward compatibility.
state_dict_ = {}
for key in state_dict.keys():
if 'word_embeddings' in key:
state_dict_[key.split('word_embeddings.')[1]] \
= state_dict[key]
self.word_embeddings.load_state_dict(state_dict_, strict=strict)
# Position embedding.
if self._position_embeddings_key in state_dict:
state_dict_ = state_dict[self._position_embeddings_key]
else:
# for backward compatibility.
state_dict_ = {}
for key in state_dict.keys():
if 'position_embeddings' in key:
state_dict_[key.split('position_embeddings.')[1]] \
= state_dict[key]
self.position_embeddings.load_state_dict(state_dict_, strict=strict)
# Tokentype embedding.
if self.num_tokentypes > 0:
state_dict_ = {}
if self._tokentype_embeddings_key in state_dict:
state_dict_ = state_dict[self._tokentype_embeddings_key]
else:
# for backward compatibility.
for key in state_dict.keys():
if 'tokentype_embeddings' in key:
state_dict_[key.split('tokentype_embeddings.')[1]] \
= state_dict[key]
if len(state_dict_.keys()) > 0:
self.tokentype_embeddings.load_state_dict(state_dict_, strict=strict)
else:
print('***WARNING*** expected tokentype embeddings in the '
'checkpoint but could not find it',
flush=True)
class HiddenParallelEmbedding1D(torch.nn.Module):
"""Embedding parallelized in the vocabulary dimension.
This is mainly adapted from torch.nn.Embedding and all the default
values are kept.
Arguments:
num_embeddings: vocabulary size.
embedding_dim: size of hidden state.
init_method: method to initialize weights.
"""
def __init__(self, num_embeddings, embedding_dim, dtype=torch.float, padding_idx: int = None, init_method=None):
super(HiddenParallelEmbedding1D, self).__init__()
# Keep the input dimensions.
self.num_embeddings = num_embeddings
self.embedding_dim = embedding_dim
embed_dim_per_partition = divide(embedding_dim, gpc.tensor_parallel_size)
# Set the details for compatibility.
self.padding_idx = padding_idx
self.max_norm = None
self.norm_type = 2.
self.scale_grad_by_freq = False
self.sparse = False
self._weight = None
# Allocate weights and initialize.
factory_kwargs = {'device': get_current_device(), 'dtype': dtype}
self.weight = Parameter(torch.empty(num_embeddings, embed_dim_per_partition, **factory_kwargs))
init.uniform_(self.weight, -1, 1)
def forward(self, input_):
# Get the embeddings.
output_parallel = F.embedding(input_, self.weight, self.padding_idx, self.max_norm, self.norm_type,
self.scale_grad_by_freq, self.sparse)
# Reduce across all the model parallel GPUs.
output = gather_forward_split_backward(output_parallel, ParallelMode.PARALLEL_1D, dim=-1)
return output
@LAYERS.register_module
class HiddenParallelGPTLMHead1D(ParallelLayer):
"""
Language model head that shares the same parameters with the embedding matrix.
"""
def __init__(
self,
embed=None,
embed_dim=None,
vocab_size=None,
dtype=None,
):
super().__init__()
if embed is not None:
self.head = embed
self.synced_embed = True
else:
# self.embedding = HiddenParallelEmbedding1D(vocab_size, hidden_size, dtype, padding_idx)
# (hidden_size/q, vocab_size)
self.synced_embed = False
self.head = Linear1D_Row(in_features=embed_dim,
out_features=vocab_size,
bias=False,
dtype=dtype,
parallel_input=False)
def forward(self, x: Tensor) -> Tensor:
if self.synced_embed:
x = F.linear(x, self.head.weight)
else:
x = self.head(x)
return x
|
from .embed import vocab_parallel_cross_entropy
from .gpt1d import *
from .pipeline_gpt1d import *
|
import inspect
# import model_zoo.gpt.gpt as col_gpt
import titans.model.gpt.gpt as col_gpt
import torch
import torch.nn as nn
from colossalai import kernel
from colossalai import nn as col_nn
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.logging import get_dist_logger
from colossalai.nn.layer.wrapper import PipelineSharedModuleWrapper
from colossalai.pipeline.utils import partition_uniform
from .embed import HiddenParallelEmbedding, HiddenParallelGPTLMHead1D, VocabParallelEmbedding, VocabParallelGPTLMHead1D
from .gpt1d import FusedGPTTransformerLayer1D, GPTTransformerLayer1D
__all__ = [
'GPT2_small_pipeline_1D',
'GPT2_exlarge_pipeline_1D',
'GPT3_pipeline_1D',
'GPT2_exlarge_pipeline_hybrid',
'GPT2_small_pipeline_hybrid',
'GPT3_pipeline_hybrid',
]
class GenericPipelineGPT(nn.Module):
def __init__(self, embedding=None, blocks=None, norm=None, head=None) -> None:
super().__init__()
self.embedding = embedding
self.blocks = blocks
self.norm = norm
self.head = head
assert blocks is not None
if norm is not None or head is not None:
assert norm is not None and head is not None
def forward(self, hidden_states=None, input_ids=None, attention_mask=None):
if self.embedding is not None:
hidden_states = self.embedding(input_ids=input_ids)
batch_size = hidden_states.shape[0]
attention_mask = attention_mask.view(batch_size, -1)
attention_mask = attention_mask[:, None, None, :]
attention_mask = attention_mask.to(dtype=hidden_states.dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * -10000.0
for block in self.blocks:
hidden_states, attention_mask = block(hidden_states, attention_mask)
if self.norm is not None:
hidden_states = self.head(self.norm(hidden_states))
return hidden_states
class PipelineGPT1D(GenericPipelineGPT):
def __init__(self,
num_layers: int = 12,
hidden_size: int = 768,
num_attention_heads: int = 12,
vocab_size: int = 50304,
embed_drop_rate: float = 0.,
act_func: str = 'gelu',
mlp_ratio: int = 4.0,
attn_drop_rate: float = 0.,
drop_rate: float = 0.,
dtype: torch.dtype = torch.float,
checkpoint: bool = False,
max_position_embeddings: int = 1024,
layer_norm_epsilon: float = 1e-5,
apply_post_layer_norm: bool = False,
first: bool = False,
last: bool = False,
embed_split_hidden=False):
embedding = None
norm = None
head = None
embed_cls = VocabParallelEmbedding
head_cls = VocabParallelGPTLMHead1D
if embed_split_hidden:
embed_cls = HiddenParallelEmbedding
head_cls = HiddenParallelGPTLMHead1D
if first:
embedding = embed_cls(hidden_size, vocab_size, max_position_embeddings, embed_drop_rate, dtype=dtype)
blocks = nn.ModuleList([
GPTTransformerLayer1D(hidden_size,
num_attention_heads,
act_func=act_func,
mlp_ratio=mlp_ratio,
attention_dropout_prob=attn_drop_rate,
hidden_dropout_prob=drop_rate,
dtype=dtype,
checkpoint=checkpoint,
max_position_embeddings=max_position_embeddings,
layer_norm_epsilon=layer_norm_epsilon,
apply_post_layer_norm=apply_post_layer_norm) for _ in range(num_layers)
])
if last:
norm = nn.LayerNorm(hidden_size, eps=layer_norm_epsilon)
head = head_cls(vocab_size=vocab_size, embed_dim=hidden_size, dtype=dtype)
super().__init__(embedding=embedding, blocks=blocks, norm=norm, head=head)
class FusedPipelineGPT1D(GenericPipelineGPT):
def __init__(self,
num_layers: int = 12,
hidden_size: int = 768,
num_attention_heads: int = 12,
vocab_size: int = 50304,
embed_drop_rate: float = 0.,
act_func: str = 'gelu',
mlp_ratio: int = 4.0,
attn_drop_rate: float = 0.,
drop_rate: float = 0.,
dtype: torch.dtype = torch.float,
checkpoint: bool = False,
max_position_embeddings: int = 1024,
layer_norm_epsilon: float = 1e-5,
apply_post_layer_norm: bool = False,
first: bool = False,
last: bool = False,
embed_split_hidden=False):
embedding = None
norm = None
head = None
embed_cls = VocabParallelEmbedding
head_cls = VocabParallelGPTLMHead1D
if embed_split_hidden:
embed_cls = HiddenParallelEmbedding
head_cls = HiddenParallelGPTLMHead1D
if first:
embedding = embed_cls(hidden_size, vocab_size, max_position_embeddings, embed_drop_rate, dtype=dtype)
blocks = nn.ModuleList([
FusedGPTTransformerLayer1D(hidden_size,
num_attention_heads,
act_func=act_func,
mlp_ratio=mlp_ratio,
attention_dropout_prob=attn_drop_rate,
hidden_dropout_prob=drop_rate,
dtype=dtype,
checkpoint=checkpoint,
max_position_embeddings=max_position_embeddings,
layer_norm_epsilon=layer_norm_epsilon,
apply_post_layer_norm=apply_post_layer_norm) for _ in range(num_layers)
])
if last:
norm = kernel.LayerNorm(hidden_size, eps=layer_norm_epsilon)
head = head_cls(vocab_size=vocab_size, embed_dim=hidden_size, dtype=dtype)
super().__init__(embedding=embedding, blocks=blocks, norm=norm, head=head)
def forward(self, hidden_states=None, input_ids=None, attention_mask=None):
if self.embedding is not None:
hidden_states = self.embedding(input_ids=input_ids)
attention_mask = attention_mask.to(dtype=hidden_states.dtype) # fp16 compatibility
for block in self.blocks:
hidden_states, attention_mask = block(hidden_states, attention_mask)
if self.norm is not None:
hidden_states = self.head(self.norm(hidden_states))
return hidden_states
class PipelineGPTHybrid(GenericPipelineGPT):
def __init__(self,
num_layers: int = 12,
hidden_size: int = 768,
num_attention_heads: int = 12,
vocab_size: int = 50304,
embed_drop_rate: float = 0.,
act_func: str = 'gelu',
mlp_ratio: int = 4,
attn_drop_rate: float = 0.,
drop_rate: float = 0.,
dtype: torch.dtype = torch.float,
checkpoint: bool = False,
max_position_embeddings: int = 1024,
layer_norm_epsilon: float = 1e-5,
apply_post_layer_norm: bool = False,
first: bool = False,
last: bool = False,
embed_split_hidden=False):
embedding = None
norm = None
head = None
if first:
embedding = col_gpt.GPTEmbedding(hidden_size,
vocab_size,
max_position_embeddings,
dropout=embed_drop_rate,
dtype=dtype)
blocks = nn.ModuleList([
col_gpt.GPTBlock(hidden_size,
num_attention_heads,
mlp_ratio=mlp_ratio,
attention_dropout=attn_drop_rate,
dropout=drop_rate,
dtype=dtype,
checkpoint=checkpoint,
activation=nn.functional.gelu) for _ in range(num_layers)
])
if last:
norm = col_nn.LayerNorm(hidden_size, eps=layer_norm_epsilon)
# head = col_gpt.GPTLMHead(vocab_size=vocab_size,
# hidden_size=hidden_size,
# dtype=dtype,
# bias=False)
head = col_nn.Classifier(hidden_size, vocab_size, dtype=dtype, bias=False)
super().__init__(embedding=embedding, blocks=blocks, norm=norm, head=head)
def _filter_kwargs(func, kwargs):
sig = inspect.signature(func)
return {k: v for k, v in kwargs.items() if k in sig.parameters}
def _build_generic_gpt_pipeline_1d(module_cls, num_layers, num_chunks, device=torch.device('cuda'), **kwargs):
logger = get_dist_logger()
if gpc.is_initialized(ParallelMode.PIPELINE):
pipeline_size = gpc.get_world_size(ParallelMode.PIPELINE)
pipeline_rank = gpc.get_local_rank(ParallelMode.PIPELINE)
else:
pipeline_size = 1
pipeline_rank = 0
rank = gpc.get_global_rank()
if pipeline_size > 1:
wrapper = PipelineSharedModuleWrapper([0, pipeline_size - 1])
else:
wrapper = None
parts = partition_uniform(num_layers, pipeline_size, num_chunks)[pipeline_rank]
models = []
for start, end in parts:
kwargs['num_layers'] = end - start
kwargs['first'] = start == 0
kwargs['last'] = end == num_layers
logger.info(f'Rank{rank} build layer {start}-{end}, {end-start}/{num_layers} layers')
chunk = module_cls(**_filter_kwargs(module_cls.__init__, kwargs)).to(device)
if wrapper is not None:
if start == 0:
wrapper.register_module(chunk.embedding.word_embeddings)
elif end == num_layers:
wrapper.register_module(chunk.head)
models.append(chunk)
if len(models) == 1:
model = models[0]
else:
model = nn.ModuleList(models)
numel = 0
for _, param in model.named_parameters(recurse=True):
numel += param.numel()
logger.info(f'Rank{rank}/{pipeline_rank} model size = {numel * 2 / 1e9} GB')
return model
def _build_gpt_pipeline_1d(num_layers, num_chunks, device=torch.device('cuda'), fused=False, **kwargs):
model = FusedPipelineGPT1D if fused else PipelineGPT1D
return _build_generic_gpt_pipeline_1d(model, num_layers, num_chunks, device, **kwargs)
def _build_gpt_pipeline_hybrid(num_layers, num_chunks, device=torch.device('cuda'), **kwargs):
return _build_generic_gpt_pipeline_1d(PipelineGPTHybrid, num_layers, num_chunks, device, **kwargs)
def GPT2_small_pipeline_1D(num_chunks=1, checkpoint=False, dtype=torch.float, embed_split_hidden=False, fused=False):
cfg = dict(hidden_size=768,
num_attention_heads=12,
checkpoint=checkpoint,
dtype=dtype,
embed_split_hidden=embed_split_hidden)
return _build_gpt_pipeline_1d(12, num_chunks, fused=fused, **cfg)
def GPT2_exlarge_pipeline_1D(num_chunks=1, checkpoint=False, dtype=torch.float, embed_split_hidden=False, fused=False):
cfg = dict(hidden_size=1600,
num_attention_heads=32,
checkpoint=checkpoint,
dtype=dtype,
embed_split_hidden=embed_split_hidden)
return _build_gpt_pipeline_1d(48, num_chunks, fused=fused, **cfg)
def GPT3_pipeline_1D(num_chunks=1, checkpoint=False, dtype=torch.float, embed_split_hidden=False, fused=False):
cfg = dict(hidden_size=12288,
num_attention_heads=96,
checkpoint=checkpoint,
max_position_embeddings=2048,
dtype=dtype,
embed_split_hidden=embed_split_hidden)
return _build_gpt_pipeline_1d(96, num_chunks, fused=fused, **cfg)
def GPT2_exlarge_pipeline_hybrid(num_chunks=1, checkpoint=False, dtype=torch.float, embed_split_hidden=False):
cfg = dict(hidden_size=1600,
num_attention_heads=32,
checkpoint=checkpoint,
dtype=dtype,
embed_split_hidden=embed_split_hidden)
return _build_gpt_pipeline_hybrid(48, num_chunks, **cfg)
def GPT2_small_pipeline_hybrid(num_chunks=1, checkpoint=False, dtype=torch.float, embed_split_hidden=False):
cfg = dict(hidden_size=768,
num_attention_heads=12,
checkpoint=checkpoint,
dtype=dtype,
embed_split_hidden=embed_split_hidden)
return _build_gpt_pipeline_hybrid(12, num_chunks, **cfg)
def GPT3_pipeline_hybrid(num_chunks=1, checkpoint=False, dtype=torch.float, embed_split_hidden=False):
cfg = dict(hidden_size=12288,
num_attention_heads=96,
checkpoint=checkpoint,
max_position_embeddings=2048,
dtype=dtype,
embed_split_hidden=embed_split_hidden)
return _build_gpt_pipeline_hybrid(96, num_chunks, **cfg)
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import math
import torch
from torch import Tensor
from torch import nn as nn
from colossalai import kernel
from colossalai import nn as col_nn
from colossalai.core import global_context as gpc
from colossalai.kernel.cuda_native.scaled_softmax import AttnMaskType
from colossalai.nn.layer import Linear1D_Col, Linear1D_Row
from colossalai.nn.layer.base_layer import ParallelLayer
from colossalai.nn.layer.utils import ACT2FN, divide
from colossalai.utils import checkpoint
from colossalai.utils.activation_checkpoint import checkpoint
__all__ = [
'GPTMLP1D', 'GPTSelfAttention1D', 'GPTTransformerLayer1D', 'FusedGPTSelfAttention1D', 'FusedGPTTransformerLayer1D'
]
class GPTMLP1D(ParallelLayer):
def __init__(
self,
in_features: int,
mlp_ratio: int,
act_func: str = 'gelu',
dropout_prob: float = 0.,
dtype=None,
checkpoint: bool = False,
skip_bias_add: bool = False,
):
super().__init__()
self.in_features = in_features
self.mlp_ratio = mlp_ratio
self.checkpoint = checkpoint
self.skip_bias_add = skip_bias_add
self.act = ACT2FN[act_func]
skip_dense_1_add_bias = False
# Project to mlp_ratio * h.
self.dense_1 = Linear1D_Col(
self.in_features,
int(self.mlp_ratio * self.in_features),
dtype=dtype,
gather_output=False,
skip_bias_add=skip_dense_1_add_bias,
)
# Project back to h.
self.dense_2 = Linear1D_Row(
int(self.mlp_ratio * self.in_features),
self.in_features,
dtype=dtype,
parallel_input=True,
)
self.dropout = col_nn.Dropout(dropout_prob)
def _forward(self, hidden_states: Tensor) -> Tensor:
intermediate_output = self.dense_1(hidden_states)
intermediate_output = self.act(intermediate_output)
output = self.dense_2(intermediate_output)
output = self.dropout(output)
return output
def _checkpoint_forward(self, hidden_states: Tensor) -> Tensor:
return checkpoint(self._forward, False, hidden_states)
def forward(self, hidden_states: Tensor) -> Tensor:
if self.checkpoint:
return self._checkpoint_forward(hidden_states)
else:
return self._forward(hidden_states)
class GenericGPTSelfAttention1D(ParallelLayer):
def __init__(
self,
hidden_size: int,
num_attention_heads: int,
attention_dropout_prob: float,
hidden_dropout_prob: float,
dtype=None,
checkpoint: bool = False,
max_position_embeddings=1024,
):
super().__init__()
self.hidden_size = hidden_size
self.attention_head_size = divide(hidden_size, num_attention_heads)
self.num_attention_heads_per_partition = divide(num_attention_heads, gpc.tensor_parallel_size)
self.hidden_size_per_partition = divide(hidden_size, gpc.tensor_parallel_size)
self.checkpoint = checkpoint
self.query_key_value = Linear1D_Col(
hidden_size,
3 * hidden_size,
dtype=dtype,
)
self.attention_dropout = col_nn.Dropout(attention_dropout_prob)
self.dense = Linear1D_Row(
hidden_size,
hidden_size,
dtype=dtype,
parallel_input=True,
)
self.dropout = col_nn.Dropout(hidden_dropout_prob)
def softmax_forward(self, attention_scores, attention_mask, query_layer, key_layer):
raise NotImplementedError
def _forward(self, hidden_states: Tensor, attention_mask=None) -> Tensor:
query_key_value = self.query_key_value(hidden_states)
new_qkv_shape = query_key_value.shape[:-1] + \
(self.num_attention_heads_per_partition, 3 * self.attention_head_size)
query_key_value = query_key_value.view(new_qkv_shape)
query_key_value = query_key_value.permute((0, 2, 1, 3))
query_layer, key_layer, value_layer = torch.chunk(query_key_value, 3, dim=-1)
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = self.softmax_forward(attention_scores, attention_mask, query_layer, key_layer)
attention_scores = attention_scores.type(value_layer.dtype)
attention_probs = self.attention_dropout(attention_scores)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.transpose(1, 2)
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
context_layer = context_layer.reshape(new_context_layer_shape)
output = self.dense(context_layer)
output = self.dropout(output)
return output
def _checkpoint_forward(self, hidden_states: Tensor, attention_mask=None) -> Tensor:
return checkpoint(self._forward, False, hidden_states, attention_mask)
def forward(self, hidden_states: Tensor, attention_mask=None) -> Tensor:
if self.checkpoint:
return self._checkpoint_forward(hidden_states, attention_mask)
else:
return self._forward(hidden_states, attention_mask)
class GPTSelfAttention1D(GenericGPTSelfAttention1D):
def __init__(self,
hidden_size: int,
num_attention_heads: int,
attention_dropout_prob: float,
hidden_dropout_prob: float,
dtype=None,
checkpoint: bool = False,
max_position_embeddings=1024):
super().__init__(hidden_size,
num_attention_heads,
attention_dropout_prob,
hidden_dropout_prob,
dtype=dtype,
checkpoint=checkpoint,
max_position_embeddings=max_position_embeddings)
self.softmax = nn.Softmax(dim=-1)
max_positions = max_position_embeddings
self.register_buffer(
"bias",
torch.tril(torch.ones((max_positions, max_positions),
dtype=torch.uint8)).view(1, 1, max_positions, max_positions),
)
self.register_buffer("masked_bias", torch.tensor(-1e4))
def softmax_forward(self, attention_scores, attention_mask, query_layer, key_layer):
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# causal mask
query_length, key_length = query_layer.size(-2), key_layer.size(-2)
causal_mask = self.bias[:, :, key_length - query_length:key_length, :key_length].bool()
attention_scores = torch.where(causal_mask, attention_scores, self.masked_bias.to(attention_scores))
if attention_mask is not None:
# Apply the attention mask
attention_scores = attention_scores + attention_mask
attention_scores = self.softmax(attention_scores)
return attention_scores
class FusedGPTSelfAttention1D(GenericGPTSelfAttention1D):
def __init__(self,
hidden_size: int,
num_attention_heads: int,
attention_dropout_prob: float,
hidden_dropout_prob: float,
dtype=None,
checkpoint: bool = False,
max_position_embeddings=1024):
super().__init__(hidden_size,
num_attention_heads,
attention_dropout_prob,
hidden_dropout_prob,
dtype=dtype,
checkpoint=checkpoint,
max_position_embeddings=max_position_embeddings)
self.softmax = kernel.FusedScaleMaskSoftmax(input_in_fp16=True,
input_in_bf16=False,
attn_mask_type=AttnMaskType.causal,
scaled_masked_softmax_fusion=True,
mask_func=None,
softmax_in_fp32=True,
scale=math.sqrt(self.attention_head_size))
def softmax_forward(self, attention_scores, attention_mask, query_layer, key_layer):
return self.softmax(attention_scores, attention_mask)
class GenericGPTTransformerLayer1D(ParallelLayer):
def __init__(self,
hidden_size: int,
num_attention_heads: int,
act_func: str = 'gelu',
mlp_ratio: float = 4.0,
attention_dropout_prob: float = 0.,
hidden_dropout_prob: float = 0.,
dtype=None,
checkpoint: bool = False,
max_position_embeddings: int = 1024,
layer_norm_epsilon: float = 1e-5,
apply_post_layer_norm: bool = False,
attention=None,
layer_norm=None):
super().__init__()
self.checkpoint = checkpoint
self.dtype = dtype
self.norm1 = layer_norm(hidden_size, eps=layer_norm_epsilon)
self.apply_post_layer_norm = apply_post_layer_norm
self.attention = attention(
hidden_size=hidden_size,
num_attention_heads=num_attention_heads,
attention_dropout_prob=attention_dropout_prob,
hidden_dropout_prob=hidden_dropout_prob,
dtype=dtype,
max_position_embeddings=max_position_embeddings,
checkpoint=False,
)
self.norm2 = layer_norm(hidden_size, eps=layer_norm_epsilon)
self.mlp = GPTMLP1D(
in_features=hidden_size,
dropout_prob=hidden_dropout_prob,
act_func=act_func,
mlp_ratio=mlp_ratio,
dtype=dtype,
checkpoint=False,
)
def _forward(self, hidden_states, attention_mask) -> Tensor:
if not self.apply_post_layer_norm:
residual = hidden_states
hidden_states = self.norm1(hidden_states)
if self.apply_post_layer_norm:
residual = hidden_states
attention_output = self.attention(hidden_states, attention_mask)
hidden_states = residual + attention_output
if not self.apply_post_layer_norm:
residual = hidden_states
hidden_states = self.norm2(hidden_states)
if self.apply_post_layer_norm:
residual = hidden_states
feed_forward_hidden_states = self.mlp(hidden_states)
hidden_states = residual + feed_forward_hidden_states
output = (hidden_states, attention_mask)
return output
def forward(self, hidden_states, attention_mask):
if self.checkpoint:
return checkpoint(self._forward, False, hidden_states, attention_mask)
else:
return self._forward(hidden_states, attention_mask)
class GPTTransformerLayer1D(GenericGPTTransformerLayer1D):
def __init__(self,
hidden_size: int,
num_attention_heads: int,
act_func: str = 'gelu',
mlp_ratio: float = 4,
attention_dropout_prob: float = 0,
hidden_dropout_prob: float = 0,
dtype=None,
checkpoint: bool = False,
max_position_embeddings: int = 1024,
layer_norm_epsilon: float = 0.00001,
apply_post_layer_norm: bool = False):
attention = GPTSelfAttention1D
layer_norm = nn.LayerNorm
super().__init__(hidden_size,
num_attention_heads,
act_func=act_func,
mlp_ratio=mlp_ratio,
attention_dropout_prob=attention_dropout_prob,
hidden_dropout_prob=hidden_dropout_prob,
dtype=dtype,
checkpoint=checkpoint,
max_position_embeddings=max_position_embeddings,
layer_norm_epsilon=layer_norm_epsilon,
apply_post_layer_norm=apply_post_layer_norm,
attention=attention,
layer_norm=layer_norm)
class FusedGPTTransformerLayer1D(GenericGPTTransformerLayer1D):
def __init__(self,
hidden_size: int,
num_attention_heads: int,
act_func: str = 'gelu',
mlp_ratio: float = 4,
attention_dropout_prob: float = 0,
hidden_dropout_prob: float = 0,
dtype=None,
checkpoint: bool = False,
max_position_embeddings: int = 1024,
layer_norm_epsilon: float = 0.00001,
apply_post_layer_norm: bool = False):
attention = FusedGPTSelfAttention1D
layer_norm = kernel.LayerNorm
super().__init__(hidden_size,
num_attention_heads,
act_func=act_func,
mlp_ratio=mlp_ratio,
attention_dropout_prob=attention_dropout_prob,
hidden_dropout_prob=hidden_dropout_prob,
dtype=dtype,
checkpoint=checkpoint,
max_position_embeddings=max_position_embeddings,
layer_norm_epsilon=layer_norm_epsilon,
apply_post_layer_norm=apply_post_layer_norm,
attention=attention,
layer_norm=layer_norm)
|
import os
from functools import partial
from time import time
import psutil
import torch
import torch.nn as nn
from commons.model_zoo import model_builder
from commons.utils import get_data, get_profile_context, get_tflops, get_time_stamp
from packaging import version
from torch.nn.parallel import DistributedDataParallel as DDP
import colossalai
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.nn.optimizer import HybridAdam
from colossalai.nn.parallel import zero_model_wrapper, zero_optim_wrapper
from colossalai.tensor import ColoParameter, ComputePattern, ComputeSpec, ProcessGroup, ReplicaSpec, ShardSpec
from colossalai.utils import get_current_device
from colossalai.utils.model.colo_init_context import ColoInitContext
CAI_VERSION = colossalai.__version__
def parse_args():
parser = colossalai.get_default_parser()
parser.add_argument(
"--distplan",
type=str,
default='CAI_Gemini',
help="The distributed plan [colossalai, zero1, zero2, torch_ddp, torch_zero].",
)
parser.add_argument(
"--tp_degree",
type=int,
default=1,
help="Tensor Parallelism Degree. Valid when using colossalai as dist plan.",
)
parser.add_argument(
"--placement",
type=str,
default='cpu',
help="Placement Policy for Gemini. Valid when using colossalai as dist plan.",
)
parser.add_argument(
"--shardinit",
action='store_true',
help=
"Shard the tensors when init the model to shrink peak memory size on the assigned device. Valid when using colossalai as dist plan.",
)
parser.add_argument(
"--batch_size",
type=int,
default=8,
help="batch size per DP group of training.",
)
parser.add_argument(
"--model_type",
type=str,
default="gpt2_medium",
help="model model scale",
)
parser.add_argument(
"--train_step",
type=int,
default=10,
help="training iterations for test",
)
args = parser.parse_args()
return args
# Parameter Sharding Strategies for Tensor Parallelism
def split_param_single_dim_tp1d(dim: int, param: ColoParameter, pg: ProcessGroup):
spec = (ShardSpec([dim], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
param.set_tensor_spec(*spec)
def split_param_row_tp1d(param: ColoParameter, pg: ProcessGroup):
split_param_single_dim_tp1d(0, param, pg)
def split_param_col_tp1d(param: ColoParameter, pg: ProcessGroup):
split_param_single_dim_tp1d(-1, param, pg)
class GPTLMLoss(nn.Module):
def __init__(self):
super().__init__()
self.loss_fn = nn.CrossEntropyLoss()
def forward(self, logits, labels):
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
def get_cpu_mem():
return psutil.Process().memory_info().rss / 1024**2
def get_gpu_mem():
return torch.cuda.memory_allocated() / 1024**2
def get_mem_info(prefix=''):
return f'{prefix}GPU memory usage: {get_gpu_mem():.2f} MB, CPU memory usage: {get_cpu_mem():.2f} MB'
def get_model_size(model: nn.Module):
total_numel = 0
for module in model.modules():
for p in module.parameters(recurse=False):
total_numel += p.numel()
return total_numel
def model_size_formatter(numel: int) -> str:
GB_SIZE = 10**9
MB_SIZE = 10**6
KB_SIZE = 10**3
if numel >= GB_SIZE:
return f'{numel / GB_SIZE:.1f}B'
elif numel >= MB_SIZE:
return f'{numel / MB_SIZE:.1f}M'
elif numel >= KB_SIZE:
return f'{numel / KB_SIZE:.1f}K'
else:
return str(numel)
def set_cpu_maximum_parallelism():
conf_str = torch.__config__.parallel_info()
inter_str = conf_str.split("hardware_concurrency() : ")[1]
max_concurrency = inter_str.split('\n')[0]
os.environ["OMP_NUM_THREADS"] = max_concurrency
print(f"environmental variable OMP_NUM_THREADS is set to {max_concurrency}.")
# Tensor Parallel
def tensor_parallelize(model: torch.nn.Module, pg: ProcessGroup):
"""tensor_parallelize
Sharding the Model Parameters.
Args:
model (torch.nn.Module): a torch module to be sharded
"""
for mn, module in model.named_modules():
for pn, param in module.named_parameters(recurse=False):
# NOTE() a param maybe shared by two modules
if hasattr(param, 'visited'):
continue
# if shard init, then convert param to replica and use the dp-only ProcessGroup
param: ColoParameter = param
param.set_dist_spec(ReplicaSpec())
param.set_process_group(pg)
# shard it w.r.t tp pattern
if 'mlp.c_fc' in mn:
if 'weight' in pn or 'bias' in pn:
split_param_col_tp1d(param, pg) # colmn slice
# keep the shape of the output from c_fc
param.compute_spec.set_output_replicate(False)
else:
param.set_dist_spec(ReplicaSpec())
elif 'mlp.c_proj' in mn:
if 'weight' in pn:
split_param_row_tp1d(param, pg) # row slice
else:
param.set_dist_spec(ReplicaSpec())
elif 'wte' in mn or 'wpe' in mn:
split_param_col_tp1d(param, pg) # colmn slice
elif 'c_attn' in mn or 'c_proj' in mn:
split_param_col_tp1d(param, pg) # colmn slice
else:
param.set_dist_spec(ReplicaSpec())
param.visited = True
def main():
# version check
# this example is supposed to work for versions greater than 0.2.0
assert version.parse(CAI_VERSION) >= version.parse("0.2.0")
set_cpu_maximum_parallelism()
args = parse_args()
# if args.distplan not in ["colossalai", "torch_ddp", "torch_zero", "zero1", "zero2"]:
if args.distplan not in ["CAI_ZeRO1", "CAI_ZeRO2", "CAI_Gemini", "Pytorch_DDP", "Pytorch_ZeRO"]:
raise TypeError(f"{args.distplan} is error")
# batch size per DP degree
BATCH_SIZE = args.batch_size
SEQ_LEN = 1024
VOCAB_SIZE = 50257
NUM_STEPS = args.train_step
WARMUP_STEPS = 1
assert WARMUP_STEPS < NUM_STEPS, "warmup steps should smaller than the total steps"
assert (NUM_STEPS - WARMUP_STEPS) % 2 == 1, "the number of valid steps should be odd to take the median"
PROF_FLAG = False # The flag of profiling, False by default
disable_existing_loggers()
colossalai.launch_from_torch(config={})
logger = get_dist_logger()
logger.info(f"{args.model_type}, {args.distplan}, batch size {BATCH_SIZE}", ranks=[0])
# build criterion
criterion = GPTLMLoss()
torch.manual_seed(123)
if args.distplan.startswith("CAI"):
# all param must use the same process group.
world_size = torch.distributed.get_world_size()
shard_pg = ProcessGroup(tp_degree=world_size) if args.shardinit else None
default_dist_spec = ShardSpec([-1], [world_size]) if args.shardinit else None
if args.shardinit and args.distplan != "CAI_Gemini":
raise RuntimeError("You can only use shardinit with CAI_Gemini")
# build GPT model
with ColoInitContext(device=get_current_device(),
dtype=torch.half,
default_dist_spec=default_dist_spec,
default_pg=shard_pg):
model = model_builder(args.model_type)(checkpoint=True)
tp_pg = ProcessGroup(tp_degree=args.tp_degree)
# Tensor Parallelism (TP)
# You should notice that v0.1.10 is not compatible with TP degree > 1
if args.tp_degree > 1:
tensor_parallelize(model, tp_pg)
# asign running configurations
gemini_config = None
if args.distplan.startswith("CAI_ZeRO"):
optim_config = dict(reduce_bucket_size=12 * 1024 * 1024, overlap_communication=True, verbose=True)
elif args.distplan == "CAI_Gemini":
gemini_config = dict(strict_ddp_mode=args.tp_degree == 1,
device=get_current_device(),
placement_policy=args.placement,
pin_memory=True,
hidden_dim=model.config.n_embd,
search_range_mb=128)
optim_config = dict(gpu_margin_mem_ratio=0.)
else:
raise RuntimeError
# build a highly optimized gpu/cpu optimizer
optimizer = HybridAdam(model.parameters(), lr=1e-3)
if args.distplan == "CAI_ZeRO1":
zero_stage = 1
elif args.distplan == "CAI_ZeRO2":
zero_stage = 2
elif args.distplan == "CAI_Gemini":
zero_stage = 3
else:
raise RuntimeError
# wrap your model and optimizer
model = zero_model_wrapper(model, zero_stage, gemini_config)
optimizer = zero_optim_wrapper(model, optimizer, optim_config=optim_config)
logger.info(get_mem_info(prefix='After init optim, '), ranks=[0])
elif args.distplan.startswith("Pytorch"):
assert args.tp_degree == 1, "The degree of TP should be 1 for DDP examples."
model = model_builder(args.model_type)(checkpoint=True).cuda()
model = DDP(model)
if args.distplan.endswith("DDP"):
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
elif args.distplan.endswith("ZeRO"):
from torch.distributed.optim import ZeroRedundancyOptimizer
optimizer = ZeroRedundancyOptimizer(model.parameters(), optimizer_class=torch.optim.Adam, lr=1e-3)
else:
raise RuntimeError
# model is shared after TP
numel = get_model_size(model)
logger.info(f"the size of testing model size is {model_size_formatter(numel)}.")
logger.info(get_mem_info(prefix='After init model, '), ranks=[0])
# Tflops_per_GPU = global_batch * global_numel * seq_len * 8 / #gpu
# = (batch_per_DP_group * dp_degree) * (numel * tp_degree) * seq_len * 8 / (tp_degree * dp_degree)
# = batch_per_DP_group * numel * seq_len * 8
get_tflops_func = partial(get_tflops, numel, BATCH_SIZE, SEQ_LEN)
torch.cuda.synchronize()
model.train()
tflops_list = []
def train_step():
# we just use randomly generated data here
input_ids, attn_mask = get_data(BATCH_SIZE, SEQ_LEN, VOCAB_SIZE)
optimizer.zero_grad()
start = time()
outputs = model(input_ids, attn_mask)
loss = criterion(outputs, input_ids)
torch.cuda.synchronize()
fwd_end = time()
fwd_time = fwd_end - start
logger.info(get_mem_info(prefix=f'[{n + 1}/{NUM_STEPS}] Forward '), ranks=[0])
if args.distplan.startswith("CAI"):
optimizer.backward(loss)
elif args.distplan.startswith("Pytorch"):
loss.backward()
else:
raise RuntimeError
torch.cuda.synchronize()
bwd_end = time()
bwd_time = bwd_end - fwd_end
logger.info(get_mem_info(prefix=f'[{n + 1}/{NUM_STEPS}] Backward '), ranks=[0])
optimizer.step()
torch.cuda.synchronize()
optim_time = time() - bwd_end
step_time = time() - start
logger.info(get_mem_info(prefix=f'[{n + 1}/{NUM_STEPS}] Optimizer step '), ranks=[0])
step_tflops = get_tflops_func(step_time)
logger.info(
f"[{n + 1}/{NUM_STEPS}] Loss:{loss.item():.3f}, Step time: {step_time:.3f}s, TFLOPS: {get_tflops_func(step_time):.3f}, FWD time: {fwd_time:.3f}s, BWD time: {bwd_time:.3f}s, OPTIM time: {optim_time:.3f}s",
ranks=[0],
)
if n >= WARMUP_STEPS:
tflops_list.append(step_tflops)
demo_profiler = get_profile_context(PROF_FLAG,
WARMUP_STEPS,
NUM_STEPS - WARMUP_STEPS,
save_dir=f"profile/{get_time_stamp()}-demo")
with demo_profiler as prof:
for n in range(NUM_STEPS):
train_step()
prof.step()
tflops_list.sort()
median_index = ((NUM_STEPS - WARMUP_STEPS) >> 1) + WARMUP_STEPS
logger.info(f"Median TFLOPS is {tflops_list[median_index]:.3f}")
torch.cuda.synchronize()
if __name__ == '__main__':
main()
|
from torch import nn
from transformers import GPT2Config, GPT2LMHeadModel
## Define the Model and Loss Based on Huggingface transformers GPT2LMHeadModel
class GPTLMModel(nn.Module):
def __init__(self,
hidden_size=768,
num_layers=12,
num_attention_heads=12,
max_seq_len=1024,
vocab_size=50257,
checkpoint=False):
super().__init__()
self.checkpoint = checkpoint
self.config = GPT2Config(n_embd=hidden_size,
n_layer=num_layers,
n_head=num_attention_heads,
n_positions=max_seq_len,
n_ctx=max_seq_len,
vocab_size=vocab_size)
self.model = GPT2LMHeadModel(self.config)
if checkpoint:
self.model.gradient_checkpointing_enable()
def forward(self, input_ids, attention_mask):
# Only return lm_logits
return self.model(input_ids=input_ids, attention_mask=attention_mask, use_cache=not self.checkpoint)[0]
def gpt2_medium(checkpoint=False):
return GPTLMModel(hidden_size=1024, num_layers=24, num_attention_heads=16, checkpoint=checkpoint)
def gpt2_xl(checkpoint=True):
return GPTLMModel(hidden_size=1600, num_layers=48, num_attention_heads=32, checkpoint=checkpoint)
def gpt2_10b(checkpoint=True):
return GPTLMModel(hidden_size=4096, num_layers=50, num_attention_heads=16, checkpoint=checkpoint)
def gpt2_14b(checkpoint=True):
return GPTLMModel(hidden_size=4096, num_layers=70, num_attention_heads=16, checkpoint=checkpoint)
def gpt2_20b(checkpoint=True):
return GPTLMModel(hidden_size=8192, num_layers=25, num_attention_heads=16, checkpoint=checkpoint)
def gpt2_24b(checkpoint=True):
return GPTLMModel(hidden_size=8192, num_layers=30, num_attention_heads=16, checkpoint=checkpoint)
def gpt2_30b(checkpoint=True):
return GPTLMModel(hidden_size=8192, num_layers=37, num_attention_heads=16, checkpoint=checkpoint)
def gpt2_40b(checkpoint=True):
return GPTLMModel(hidden_size=8192, num_layers=50, num_attention_heads=16, checkpoint=checkpoint)
def model_builder(model_size: str) -> callable:
if model_size == "gpt2_medium":
return gpt2_medium
elif model_size == "gpt2_xl":
return gpt2_xl
elif model_size == "gpt2_10b":
return gpt2_10b
elif model_size == "gpt2_14b":
return gpt2_14b
elif model_size == "gpt2_20b":
return gpt2_20b
elif model_size == "gpt2_24b":
return gpt2_24b
elif model_size == "gpt2_30b":
return gpt2_30b
elif model_size == "gpt2_40b":
return gpt2_40b
else:
raise TypeError(f"model_builder {model_size}")
__all__ = ['model_builder']
|
import time
from contextlib import nullcontext
import torch
from torch.profiler import ProfilerActivity, profile, schedule, tensorboard_trace_handler
class DummyProfiler:
def __init__(self):
self.step_number = 0
def step(self):
self.step_number += 1
# Randomly Generated Data
def get_data(batch_size, seq_len, vocab_size):
input_ids = torch.randint(0, vocab_size, (batch_size, seq_len), device=torch.cuda.current_device())
attention_mask = torch.ones_like(input_ids)
return input_ids, attention_mask
def get_tflops(model_numel, batch_size, seq_len, step_time):
return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12)
def get_profile_context(enable_flag, warmup_steps, active_steps, save_dir):
if enable_flag:
return profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
schedule=schedule(wait=0, warmup=warmup_steps, active=active_steps),
on_trace_ready=tensorboard_trace_handler(save_dir),
record_shapes=True,
profile_memory=True)
else:
return nullcontext(DummyProfiler())
def get_time_stamp():
cur_time = time.strftime("%d-%H:%M", time.localtime())
return cur_time
|
from torch import nn
from transformers import GPT2Config, GPT2LMHeadModel
## Define the Model and Loss Based on Huggingface transformers GPT2LMHeadModel
class GPTLMModel(nn.Module):
def __init__(self,
hidden_size=768,
num_layers=12,
num_attention_heads=12,
max_seq_len=1024,
vocab_size=50257,
checkpoint=False):
super().__init__()
self.checkpoint = checkpoint
self.config = GPT2Config(n_embd=hidden_size,
n_layer=num_layers,
n_head=num_attention_heads,
n_positions=max_seq_len,
n_ctx=max_seq_len,
vocab_size=vocab_size)
self.model = GPT2LMHeadModel(self.config)
if checkpoint:
self.model.gradient_checkpointing_enable()
def forward(self, input_ids, attention_mask):
# Only return lm_logits
return self.model(input_ids=input_ids, attention_mask=attention_mask, use_cache=not self.checkpoint)[0]
def gpt2_medium(checkpoint=False):
return GPTLMModel(hidden_size=1024, num_layers=24, num_attention_heads=16, checkpoint=checkpoint)
def gpt2_xl(checkpoint=True):
return GPTLMModel(hidden_size=1600, num_layers=48, num_attention_heads=32, checkpoint=checkpoint)
def gpt2_10b(checkpoint=True):
return GPTLMModel(hidden_size=4096, num_layers=50, num_attention_heads=16, checkpoint=checkpoint)
def gpt2_14b(checkpoint=True):
return GPTLMModel(hidden_size=4096, num_layers=70, num_attention_heads=16, checkpoint=checkpoint)
def gpt2_20b(checkpoint=True):
return GPTLMModel(hidden_size=8192, num_layers=25, num_attention_heads=16, checkpoint=checkpoint)
def gpt2_24b(checkpoint=True):
return GPTLMModel(hidden_size=8192, num_layers=30, num_attention_heads=16, checkpoint=checkpoint)
def model_builder(model_size: str) -> callable:
if model_size == "gpt2_medium":
return gpt2_medium
elif model_size == "gpt2_xl":
return gpt2_xl
elif model_size == "gpt2_10b":
return gpt2_10b
elif model_size == "gpt2_14b":
return gpt2_14b
elif model_size == "gpt2_20b":
return gpt2_20b
elif model_size == "gpt2_24b":
return gpt2_24b
else:
raise TypeError(f"model_builder {model_size}")
__all__ = ['model_builder']
|
import argparse
import time
from functools import partial
import torch
from model_zoo import model_builder
from torch import nn
from tqdm import tqdm
from colossalai.fx import ColoTracer
from colossalai.fx.passes.adding_split_node_pass import avgnode_split_pass, split_with_split_nodes_pass
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.nn.optimizer import HybridAdam
from colossalai.pipeline.middleware.adaptor import get_fx_topology
from colossalai.pipeline.rpc._pipeline_schedule import OneFOneBPipelineEngine
from colossalai.pipeline.rpc.utils import rpc_run
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model_type', type=str, default="gpt2_medium")
parser.add_argument('--world_size', type=int, default=2)
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--dp_degree', type=int, default=1)
parser.add_argument('--tp_degree', type=int, default=1)
parser.add_argument('--num_microbatches', type=int, default=2)
parser.add_argument('--device', type=str, choices=['cpu', 'cuda'], default='cuda')
parser.add_argument('--master_addr', type=str, default='localhost')
parser.add_argument('--master_port', type=str, default='29011')
parser.add_argument('--num_worker_threads', type=int, default=128)
return parser.parse_args()
class GPTLMLoss(nn.Module):
def __init__(self):
super().__init__()
self.loss_fn = nn.CrossEntropyLoss()
def forward(self, logits, labels):
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
# Randomly Generated Data
def get_data(batch_size, seq_len, vocab_size):
input_ids = torch.randint(0, vocab_size, (batch_size, seq_len), device=torch.cuda.current_device())
attention_mask = torch.ones_like(input_ids)
return input_ids, attention_mask
def get_tflops(model_numel, batch_size, seq_len, step_time):
return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12)
def create_partition_module(pp_rank: int, stage_num: int, model, data_kwargs):
tracer = ColoTracer()
meta_args = {k: v.to('meta') for k, v in data_kwargs.items()}
graph = tracer.trace(root=model, meta_args=meta_args)
gm = torch.fx.GraphModule(model, graph, model.__class__.__name__)
annotated_model = avgnode_split_pass(gm, stage_num)
top_module, split_submodules = split_with_split_nodes_pass(annotated_model, merge_output=True)
topo = get_fx_topology(top_module)
for submodule in split_submodules:
if isinstance(submodule, torch.fx.GraphModule):
setattr(submodule, '_topo', topo)
return split_submodules[pp_rank + 1]
def partition(model, data_kwargs, pp_rank: int, chunk: int, stage_num: int):
module = create_partition_module(pp_rank, stage_num, model, data_kwargs)
return module
def run_master(args):
batch_size = args.batch_size
device = args.device
world_size = args.world_size
stage_num = world_size
num_microbatches = args.num_microbatches
model_type = args.model_type
# batch size per DP degree
SEQ_LEN = 1024
VOCAB_SIZE = 50257
NUM_STEPS = 10
WARMUP_STEPS = 1
disable_existing_loggers()
logger = get_dist_logger()
logger.info(f"{args.model_type}, batch size {batch_size}, num stage {stage_num}, num microbatch {num_microbatches}",
ranks=[0])
torch.manual_seed(123)
# build criterion
criterion = GPTLMLoss()
# warm up pipeline fx partition
input_ids, attn_mask = get_data(batch_size, SEQ_LEN, VOCAB_SIZE)
warmup_data_kwargs = {'input_ids': input_ids, 'attention_mask': attn_mask}
# create model
model = model_builder(model_type)(checkpoint=False)
# set 1f1b pipeline engine
pp_engine = OneFOneBPipelineEngine(partition_fn=partial(partition, model, warmup_data_kwargs),
stage_num=stage_num,
num_microbatches=num_microbatches,
device=device,
chunk=1,
criterion=criterion,
metric=None,
checkpoint=False)
partition_numels = pp_engine.remote_numels()
for rank, numel in partition_numels.items():
logger.info(f'{rank=} numel in the partition:{numel}')
# build optim
pp_engine.initialize_optimizer(torch.optim.Adam, lr=1e-3)
ranks_tflops = {}
for n in range(NUM_STEPS):
# we just use randomly generated data here
input_ids, attn_mask = get_data(batch_size, SEQ_LEN, VOCAB_SIZE)
batch = {'input_ids': input_ids, 'attention_mask': attn_mask}
start = time.time()
outputs = pp_engine.forward_backward(batch=batch, labels=input_ids, forward_only=False)
step_time = time.time() - start
for rank, numel in partition_numels.items():
if rank not in ranks_tflops:
ranks_tflops[rank] = []
step_tflops = get_tflops(numel, batch_size, SEQ_LEN, step_time)
logger.info(
f"Rank{rank} , [{n + 1}/{NUM_STEPS}] , Step time: {step_time:.3f}s, TFLOPS: {get_tflops(numel, batch_size, SEQ_LEN, step_time):.3f}",
ranks=[0],
)
if n >= WARMUP_STEPS:
ranks_tflops[rank].append(step_tflops)
median_index = ((NUM_STEPS - WARMUP_STEPS) >> 1) + WARMUP_STEPS
gpu_tflops = []
for rank, tflops_list in ranks_tflops.items():
tflops_list.sort()
gpu_tflops.append(tflops_list[median_index])
logger.info(f"GPU{rank} Median TFLOPS is {tflops_list[median_index]:.3f}")
logger.info(f"Total TFLOPS is {sum(gpu_tflops):.3f}")
logger.info(f"Avg TFLOPS per GPU is {sum(gpu_tflops) / world_size:.3f}")
if __name__ == '__main__':
args = parse_args()
rpc_run(args, run_master)
|
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from transformers.activations import ACT2FN
from transformers.models.gpt2.modeling_gpt2 import BaseModelOutputWithPastAndCrossAttentions, GPT2PreTrainedModel
from transformers.pytorch_utils import Conv1D
class GPT2MLP(nn.Module):
def __init__(self, intermediate_size, config):
super().__init__()
embed_dim = config.hidden_size
self.c_fc = Conv1D(intermediate_size, embed_dim)
self.c_proj = Conv1D(embed_dim, intermediate_size)
self.act = ACT2FN[config.activation_function]
self.dropout = nn.Dropout(config.resid_pdrop)
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
hidden_states = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.c_proj(hidden_states)
return hidden_states
# The reason Why we don't import GPT2Attention from transformers directly is that:
# 1. The tracer will not work correctly when we feed meta_args and concrete_args at same time,
# so we have to build the customized GPT2Attention class and remove the conditional branch manually.
# 2. The order of split and view op has been changed in the customized GPT2Attention class, the new
# order is same as megatron-lm gpt model.
class GPT2Attention(nn.Module):
def __init__(self, config, layer_idx=None):
super().__init__()
max_positions = config.max_position_embeddings
self.register_buffer(
"bias",
torch.tril(torch.ones((max_positions, max_positions),
dtype=torch.uint8)).view(1, 1, max_positions, max_positions),
)
self.register_buffer("masked_bias", torch.tensor(-1e4))
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
self.split_size = self.embed_dim
self.scale_attn_weights = config.scale_attn_weights
# Layer-wise attention scaling, reordering, and upcasting
self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
self.layer_idx = layer_idx
self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
self.attn_dropout = nn.Dropout(config.attn_pdrop)
self.resid_dropout = nn.Dropout(config.resid_pdrop)
self.pruned_heads = set()
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
attn_weights = torch.matmul(query, key.transpose(-1, -2))
if self.scale_attn_weights:
attn_weights = attn_weights / (value.size(-1)**0.5)
# Layer-wise attention scaling
if self.scale_attn_by_inverse_layer_idx:
attn_weights = attn_weights / float(self.layer_idx + 1)
# if only "normal" attention layer implements causal mask
query_length, key_length = query.size(-2), key.size(-2)
causal_mask = self.bias[:, :, key_length - query_length:key_length, :key_length].to(torch.bool)
attn_weights = torch.where(causal_mask, attn_weights, self.masked_bias.to(attn_weights.dtype))
if attention_mask is not None:
# Apply the attention mask
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
attn_weights = attn_weights.type(value.dtype)
# Mask heads if we want to
if head_mask is not None:
attn_weights = attn_weights * head_mask
attn_output = torch.matmul(attn_weights, value)
return attn_output, attn_weights
def _split_heads(self, tensor, num_heads, attn_head_size):
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
tensor = tensor.view(new_shape)
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
def _merge_heads(self, tensor, num_heads, attn_head_size):
tensor = tensor.permute(0, 2, 1, 3).contiguous()
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
return tensor.view(new_shape)
def forward(
self,
hidden_states: Optional[Tuple[torch.FloatTensor]],
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
qkv = self.c_attn(hidden_states)
query, key, value = self._split_heads(qkv, self.num_heads, 3 * self.head_dim).split(self.head_dim, dim=3)
present = (key, value)
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
attn_output = self.c_proj(attn_output)
return attn_output
class GPT2Block(nn.Module):
def __init__(self, config, layer_idx=None):
super().__init__()
hidden_size = config.hidden_size
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.attn = GPT2Attention(config, layer_idx=layer_idx)
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.mlp = GPT2MLP(inner_dim, config)
def forward(
self,
hidden_states: Optional[Tuple[torch.FloatTensor]],
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_outputs = self.attn(
hidden_states,
attention_mask=attention_mask,
head_mask=head_mask,
)
# residual connection
hidden_states = attn_outputs + residual
residual = hidden_states
hidden_states = self.ln_2(hidden_states)
feed_forward_hidden_states = self.mlp(hidden_states)
# residual connection
hidden_states = residual + feed_forward_hidden_states
return hidden_states
class GPT2Model(GPT2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.embed_dim = config.hidden_size
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
self.drop = nn.Dropout(config.embd_pdrop)
self.h = nn.ModuleList([GPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)])
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
batch_size = input_ids.shape[0]
device = input_ids.device
past_length = 0
past_key_values = tuple([None] * len(self.h))
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
# GPT2Attention mask.
attention_mask = attention_mask.view(batch_size, -1)
attention_mask = attention_mask[:, None, None, :]
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * -10000.0
encoder_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# head_mask has shape n_layer x batch x n_heads x N x N
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
inputs_embeds = self.wte(input_ids)
position_embeds = self.wpe(position_ids)
hidden_states = inputs_embeds + position_embeds
output_shape = input_shape + (hidden_states.size(-1),)
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
outputs = block(hidden_states, attention_mask=attention_mask, head_mask=head_mask[i])
hidden_states = outputs
hidden_states = self.ln_f(hidden_states)
hidden_states = hidden_states.view(output_shape)
return hidden_states
class GPT2LMHeadModel(GPT2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.transformer = GPT2Model(config)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
):
transformer_outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
)
lm_logits = self.lm_head(transformer_outputs)
return lm_logits
class GPTLMLoss(nn.Module):
def __init__(self):
super().__init__()
self.loss_fn = nn.CrossEntropyLoss()
def forward(self, logits, labels):
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
from functools import partial
from time import time
from typing import Dict, Optional, Tuple, Union
import psutil
import torch
import torch.multiprocessing as mp
import torch.nn as nn
import transformers
from gpt_modules import GPT2LMHeadModel, GPTLMLoss
from torch.fx import GraphModule
from colossalai.auto_parallel.tensor_shard.initialize import autoparallelize, initialize_model
from colossalai.core import global_context as gpc
from colossalai.device.device_mesh import DeviceMesh
from colossalai.initialize import launch_from_torch
from colossalai.logging import disable_existing_loggers, get_dist_logger
BATCH_SIZE = 16
SEQ_LENGTH = 1024
HIDDEN_DIM = 4096
NUM_HEADS = 16
NUM_LAYERS = 4
VOCAB_SIZE = 50257
NUM_STEPS = 10
FP16 = True
def get_cpu_mem():
return psutil.Process().memory_info().rss / 1024**2
def get_gpu_mem():
return torch.cuda.memory_allocated() / 1024**2
def get_mem_info(prefix=''):
return f'{prefix}GPU memory usage: {get_gpu_mem():.2f} MB, CPU memory usage: {get_cpu_mem():.2f} MB'
def get_tflops(model_numel, batch_size, seq_len, step_time):
# Tflops_per_GPU = global_batch * global_numel * seq_len * 8 / #gpu
return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12) / 8
# Randomly Generated Data
def get_data(batch_size, seq_len, vocab_size):
input_ids = torch.randint(0, vocab_size, (batch_size, seq_len), device=torch.cuda.current_device())
attention_mask = torch.ones_like(input_ids)
return input_ids, attention_mask
def main():
disable_existing_loggers()
launch_from_torch(config={})
logger = get_dist_logger()
config = transformers.GPT2Config(n_position=SEQ_LENGTH, n_layer=NUM_LAYERS, n_head=NUM_HEADS, n_embd=HIDDEN_DIM)
if FP16:
model = GPT2LMHeadModel(config=config).half().to('cuda')
else:
model = GPT2LMHeadModel(config=config).to('cuda')
global_numel = sum([p.numel() for p in model.parameters()])
meta_input_sample = {
'input_ids': torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64).to('meta'),
'attention_mask': torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64).to('meta'),
}
gm, solution = autoparallelize(model, meta_input_sample, return_solution=True)
# print solution on rank 0
if gpc.get_global_rank() == 0:
for node_strategy in solution:
print(node_strategy)
# build criterion
criterion = GPTLMLoss()
optimizer = torch.optim.Adam(gm.parameters(), lr=0.01)
logger.info(get_mem_info(prefix='After init model, '), ranks=[0])
get_tflops_func = partial(get_tflops, global_numel, BATCH_SIZE, SEQ_LENGTH)
torch.cuda.synchronize()
model.train()
for n in range(10):
# we just use randomly generated data here
input_ids, attn_mask = get_data(BATCH_SIZE, SEQ_LENGTH, VOCAB_SIZE)
optimizer.zero_grad()
start = time()
outputs = gm(input_ids, attn_mask)
loss = criterion(outputs, input_ids)
loss.backward()
optimizer.step()
torch.cuda.synchronize()
step_time = time() - start
logger.info(
f'[{n+1}/{NUM_STEPS}] Loss:{loss.item():.3f}, Step time: {step_time:.3f}s, TFLOPS: {get_tflops_func(step_time):.3f}',
ranks=[0])
torch.cuda.synchronize()
if __name__ == '__main__':
main()
|
import torch
# Randomly Generated Data
def get_data(batch_size, seq_len, vocab_size):
input_ids = torch.randint(0, vocab_size, (batch_size, seq_len), device=torch.cuda.current_device())
attention_mask = torch.ones_like(input_ids)
return input_ids, attention_mask
def get_tflops(model_numel, batch_size, seq_len, step_time):
return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12)
|
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...)
on a text file or a dataset without using HuggingFace Trainer.
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=text-generation
"""
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
import time
from functools import partial
import datasets
import torch
import torch.distributed as dist
import transformers
from transformers import CONFIG_MAPPING, MODEL_MAPPING, AutoConfig, OPTForCausalLM
from transformers.utils.versions import require_version
import colossalai
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.nn.optimizer.gemini_optimizer import GeminiAdamOptimizer
from colossalai.nn.parallel import GeminiDDP
from colossalai.utils import get_current_device
from colossalai.utils.model.colo_init_context import ColoInitContext
def get_data(batch_size, seq_len, vocab_size):
input_ids = torch.randint(0, vocab_size, (batch_size, seq_len), device=torch.cuda.current_device())
attention_mask = torch.ones_like(input_ids)
return input_ids, attention_mask
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
def get_time_stamp():
torch.cuda.synchronize()
return time.time()
def get_tflops(model_numel, batch_size, seq_len, step_time):
return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12)
def parse_args():
parser = colossalai.get_default_parser()
parser.add_argument(
"--model_name_or_path",
type=str,
help="Path to pretrained model or model identifier from huggingface.co/models.",
required=True,
)
parser.add_argument(
"--config_name",
type=str,
default=None,
help="Pretrained config name or path if not the same as model_name",
)
parser.add_argument(
"--batch_size",
type=int,
default=8,
help="Batch size (per dp group) for the training dataloader.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument(
"--max_train_steps",
type=int,
default=20,
help="Total number of training steps to perform.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--model_type",
type=str,
default=None,
help="Model type to use if training from scratch.",
choices=MODEL_TYPES,
)
parser.add_argument("--mem_cap", type=int, default=0, help="use mem cap")
parser.add_argument("--init_in_cpu", action='store_true', default=False, help="init training model in cpu")
args = parser.parse_args()
return args
def colo_memory_cap(size_in_GB):
from colossalai.utils import colo_device_memory_capacity, colo_set_process_memory_fraction, get_current_device
cuda_capacity = colo_device_memory_capacity(get_current_device())
if size_in_GB * (1024**3) < cuda_capacity:
colo_set_process_memory_fraction(size_in_GB * (1024**3) / cuda_capacity)
print("Using {} GB of GPU memory".format(size_in_GB))
def main():
args = parse_args()
disable_existing_loggers()
colossalai.launch_from_torch({})
logger = get_dist_logger()
is_main_process = dist.get_rank() == 0
if is_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
if args.mem_cap > 0:
colo_memory_cap(args.mem_cap)
# If passed along, set the training seed now.
if args.seed is not None:
torch.mannul_seed(args.seed)
logger.info(f"Rank {dist.get_rank()}: random seed is set to {args.seed}")
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if args.config_name:
config = AutoConfig.from_pretrained(args.config_name)
elif args.model_name_or_path:
config = AutoConfig.from_pretrained(args.model_name_or_path)
else:
config = CONFIG_MAPPING[args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
logger.info("Model config has been created", ranks=[0])
if args.init_in_cpu:
init_dev = torch.device('cpu')
else:
init_dev = get_current_device()
# build model
if args.model_name_or_path is None or args.model_name_or_path == 'facebook/opt-13b':
# currently, there has a bug in pretrained opt-13b
# we can not import it until huggingface fix it
logger.info("Train a new model from scratch", ranks=[0])
with ColoInitContext(device=init_dev, dtype=torch.half):
model = OPTForCausalLM(config)
else:
logger.info("Finetune a pre-trained model", ranks=[0])
with ColoInitContext(device=init_dev, dtype=torch.half):
model = OPTForCausalLM.from_pretrained(args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
local_files_only=False)
# enable graident checkpointing
model.gradient_checkpointing_enable()
numel = sum([p.numel() for p in model.parameters()])
PLACEMENT_POLICY = 'cpu'
model = GeminiDDP(model, device=get_current_device(), placement_policy=PLACEMENT_POLICY, pin_memory=True)
optimizer = GeminiAdamOptimizer(model, lr=args.learning_rate, initial_scale=2**14, gpu_margin_mem_ratio=0.0)
SEQ_LEN = 1024
VOCAB_SIZE = 50257
get_tflops_func = partial(get_tflops, numel, args.batch_size, SEQ_LEN)
model.train()
for step in range(args.max_train_steps):
st_time = time.time()
input_ids, attn_mask = get_data(args.batch_size, SEQ_LEN, VOCAB_SIZE)
outputs = model(input_ids=input_ids, attention_mask=attn_mask, labels=input_ids, use_cache=False)
loss = outputs['loss']
optimizer.backward(loss)
optimizer.step()
optimizer.zero_grad()
torch.cuda.synchronize()
step_time = time.time() - st_time
step_tflops = get_tflops_func(step_time)
logger.info("step {} finished, Tflops {}".format(step, step_tflops), ranks=[0])
logger.info("Training finished", ranks=[0])
if __name__ == "__main__":
main()
|
from colossalai.zero.shard_utils import TensorShardStrategy
from colossalai.nn.optimizer import FusedAdam
# fp16 = dict(
# mode=AMP_TYPE.TORCH,
# )
# seed = 2
zero = dict(model_config=dict(shard_strategy=TensorShardStrategy(),
reduce_scatter_bucket_size_mb=25,
fp32_reduce_scatter=False,
tensor_placement_policy="cuda",
gradient_predivide_factor=1.0,
reuse_fp16_shard=False),
optimizer_config=dict(gpu_margin_mem_ratio=0.8,
initial_scale=2**5,
min_scale=1,
growth_factor=2,
backoff_factor=0.5,
growth_interval=1000,
hysteresis=2,
max_scale=2**32))
# gradient_accumulation = 4
clip_grad_norm = 1.0
optimizer = dict(
type=FusedAdam,
lr=0.00015,
weight_decay=1e-2,
)
# 64433 |
from colossalai.zero.shard_utils import TensorShardStrategy
from colossalai.nn.optimizer import FusedAdam
clip_grad_norm = 1.0
|
import multiprocessing
import os
import re
from tqdm import tqdm
from typing import List
import json
import time
import argparse
import functools
def split_sentence(document: str, flag: str = "all", limit: int = 510) -> List[str]:
"""
Args:
document:
flag: Type:str, "all" 中英文标点分句,"zh" 中文标点分句,"en" 英文标点分句
limit: 默认单句最大长度为510个字符
Returns: Type:list
"""
sent_list = []
try:
if flag == "zh":
document = re.sub('(?P<quotation_mark>([。?!…](?![”’"\'])))', r'\g<quotation_mark>\n', document) # 单字符断句符
document = re.sub('(?P<quotation_mark>([。?!]|…{1,2})[”’"\'])', r'\g<quotation_mark>\n', document) # 特殊引号
elif flag == "en":
document = re.sub('(?P<quotation_mark>([.?!](?![”’"\'])))', r'\g<quotation_mark>\n', document) # 英文单字符断句符
document = re.sub('(?P<quotation_mark>([?!.]["\']))', r'\g<quotation_mark>\n', document) # 特殊引号
else:
document = re.sub('(?P<quotation_mark>([。?!….?!](?![”’"\'])))', r'\g<quotation_mark>\n', document) # 单字符断句符
document = re.sub('(?P<quotation_mark>(([。?!.!?]|…{1,2})[”’"\']))', r'\g<quotation_mark>\n',
document) # 特殊引号
sent_list_ori = document.splitlines()
for sent in sent_list_ori:
sent = sent.strip()
if not sent:
continue
elif len(sent) <= 2:
continue
else:
while len(sent) > limit:
temp = sent[0:limit]
sent_list.append(temp)
sent = sent[limit:]
sent_list.append(sent)
except:
sent_list.clear()
sent_list.append(document)
return sent_list
def get_sent(output_path,
input_path,
fin_list=[], host=-1, seq_len=512) -> None:
workers = 32
if input_path[-1] == '/':
input_path = input_path[:-1]
cur_path = os.path.join(output_path, str(host) + '.txt')
new_split_sentence = functools.partial(split_sentence, limit=seq_len-2)
with open(cur_path, 'w', encoding='utf-8') as f:
for fi, fin_path in enumerate(fin_list):
if not os.path.exists(os.path.join(input_path, fin_path[0])):
continue
if '.json' not in fin_path[0]:
continue
print("Processing ", fin_path[0], " ", fi)
with open(os.path.join(input_path, fin_path[0]), 'r') as fin:
f_data = [l['content'] for l in json.load(fin)]
pool = multiprocessing.Pool(workers)
all_sent = pool.imap_unordered(new_split_sentence, f_data, 32)
pool.close()
print('finished..')
cnt = 0
for d in tqdm(all_sent):
for i in d:
f.write(i.strip() + '\n')
f.write(']]' + '\n')
cnt += 1
# if cnt >= 2:
# exit()
def getFileSize(filepath, shard):
all_data = []
for i in os.listdir(filepath):
all_data.append(os.path.join(filepath, i))
all_size = sum([os.path.getsize(os.path.join(filepath, f)) for f in all_data])
ans = [[f.split('/')[-1], os.path.getsize(os.path.join(filepath, f))] for f in all_data]
ans = sorted(ans, key=lambda x: x[1], reverse=True)
per_size = all_size / shard
real_shard = []
temp = []
accu_size = 0
for i in ans:
accu_size += i[1]
temp.append(i)
if accu_size > per_size:
real_shard.append(temp)
accu_size = 0
temp = []
if len(temp) > 0:
real_shard.append(temp)
return real_shard
def get_start_end(real_shard, base=0, server_num=10, server_name='GPU'):
import socket
host = int(socket.gethostname().split(server_name)[-1])
fin_list = real_shard[server_num * base + host - 1]
print(fin_list)
print(f'I am server {host}, process {server_num * base + host - 1}, len {len(fin_list)}')
return fin_list, host
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--server_num', type=int, default=10, help='number of servers')
parser.add_argument('--seq_len', type=int, default=512, help='sequence length')
parser.add_argument('--shard', type=int, default=100, help='number of shards, e.g., 10, 50, or 100')
parser.add_argument('--input_path', type=str, required=True, help='input path of original corpus')
parser.add_argument('--output_path', type=str, required=True, help='output path of shard which has split sentence')
args = parser.parse_args()
server_num = args.server_num
seq_len = args.seq_len
shard = args.shard
input_path = args.input_path
output_path = args.output_path
real_shard = getFileSize(input_path, shard)
start = time.time()
for index, shard in enumerate(real_shard):
get_sent(output_path,
input_path,
fin_list=shard,
host=index,
seq_len=seq_len)
print(f'cost {str(time.time() - start)}')
# if you have multiple server, you can use code below or modify code to openmpi
# for i in range(len(real_shard) // server_num + 1):
# fin_list, host = get_start_end(real_shard, i)
# start = time.time()
# get_sent(output_path,
# input_path,
# fin_list=fin_list, host= 10 * i + host - 1)
# print(f'cost {str(time.time() - start)}')
|
import time
import os
import psutil
import h5py
import socket
import argparse
import numpy as np
import multiprocessing
from tqdm import tqdm
from random import shuffle
from transformers import AutoTokenizer
from get_mask import PreTrainingDataset
def get_raw_instance(document, max_sequence_length=512):
"""
获取初步的训练实例,将整段按照max_sequence_length切分成多个部分,并以多个处理好的实例的形式返回。
:param document: 一整段
:param max_sequence_length:
:return: a list. each element is a sequence of text
"""
# document = self.documents[index]
max_sequence_length_allowed = max_sequence_length - 2
# document = [seq for seq in document if len(seq)<max_sequence_length_allowed]
sizes = [len(seq) for seq in document]
result_list = []
curr_seq = [] # 当前处理的序列
sz_idx = 0
while sz_idx < len(sizes):
# 当前句子加上新的句子,如果长度小于最大限制,则合并当前句子和新句子;否则即超过了最大限制,那么做为一个新的序列加到目标列表中
if len(curr_seq) + sizes[sz_idx] <= max_sequence_length_allowed: # or len(curr_seq)==0:
curr_seq += document[sz_idx]
sz_idx += 1
elif sizes[sz_idx] >= max_sequence_length_allowed:
if len(curr_seq) > 0:
result_list.append(curr_seq)
curr_seq = []
result_list.append(document[sz_idx][ : max_sequence_length_allowed])
sz_idx += 1
else:
result_list.append(curr_seq)
curr_seq = []
# 对最后一个序列进行处理,如果太短的话,丢弃掉。
if len(curr_seq) > max_sequence_length_allowed / 2: # /2
result_list.append(curr_seq)
# # 计算总共可以得到多少份
# num_instance=int(len(big_list)/max_sequence_length_allowed)+1
# print("num_instance:",num_instance)
# # 切分成多份,添加到列表中
# result_list=[]
# for j in range(num_instance):
# index=j*max_sequence_length_allowed
# end_index=index+max_sequence_length_allowed if j!=num_instance-1 else -1
# result_list.append(big_list[index:end_index])
return result_list
def split_numpy_chunk(path, tokenizer, pretrain_data, host):
documents = []
instances = []
s = time.time()
with open(path, encoding='utf-8') as fd:
document = []
for i, line in enumerate(tqdm(fd)):
line = line.strip()
# document = line
# if len(document.split("<sep>")) <= 3:
# continue
if len(line
) > 0 and line[:2] == "]]": # This is end of document
documents.append(document)
document = []
elif len(line) >= 2:
document.append(line)
if len(document) > 0:
documents.append(document)
print('read_file ', time.time() - s)
# documents = [x for x in documents if x]
# print(len(documents))
# print(len(documents[0]))
# print(documents[0][0:10])
from typing import List
import multiprocessing
ans = []
for docs in tqdm(documents):
ans.append(pretrain_data.tokenize(docs))
print(time.time() - s)
del documents
instances = []
for a in tqdm(ans):
raw_ins = get_raw_instance(a)
instances.extend(raw_ins)
del ans
print('len instance', len(instances))
sen_num = len(instances)
seq_len = 512
input_ids = np.zeros([sen_num, seq_len], dtype=np.int32)
input_mask = np.zeros([sen_num, seq_len], dtype=np.int32)
segment_ids = np.zeros([sen_num, seq_len], dtype=np.int32)
masked_lm_output = np.zeros([sen_num, seq_len], dtype=np.int32)
for index, ins in tqdm(enumerate(instances)):
mask_dict = pretrain_data.create_training_instance(ins)
input_ids[index] = mask_dict[0]
input_mask[index] = mask_dict[1]
segment_ids[index] = mask_dict[2]
masked_lm_output[index] = mask_dict[3]
with h5py.File(f'/output/{host}.h5', 'w') as hf:
hf.create_dataset("input_ids", data=input_ids)
hf.create_dataset("input_mask", data=input_ids)
hf.create_dataset("segment_ids", data=segment_ids)
hf.create_dataset("masked_lm_positions", data=masked_lm_output)
del instances
def split_numpy_chunk_pool(input_path,
output_path,
pretrain_data,
worker,
dupe_factor,
seq_len,
file_name):
if os.path.exists(os.path.join(output_path, f'{file_name}.h5')):
print(f'{file_name}.h5 exists')
return
documents = []
instances = []
s = time.time()
with open(input_path, 'r', encoding='utf-8') as fd:
document = []
for i, line in enumerate(tqdm(fd)):
line = line.strip()
if len(line
) > 0 and line[:2] == "]]": # This is end of document
documents.append(document)
document = []
elif len(line) >= 2:
document.append(line)
if len(document) > 0:
documents.append(document)
print(f'read_file cost {time.time() - s}, length is {len(documents)}')
ans = []
s = time.time()
pool = multiprocessing.Pool(worker)
encoded_doc = pool.imap_unordered(pretrain_data.tokenize, documents, 100)
for index, res in tqdm(enumerate(encoded_doc, start=1), total=len(documents), colour='cyan'):
ans.append(res)
pool.close()
print((time.time() - s) / 60)
del documents
instances = []
for a in tqdm(ans, colour='MAGENTA'):
raw_ins = get_raw_instance(a, max_sequence_length=seq_len)
instances.extend(raw_ins)
del ans
print('len instance', len(instances))
new_instances = []
for _ in range(dupe_factor):
for ins in instances:
new_instances.append(ins)
shuffle(new_instances)
instances = new_instances
print('after dupe_factor, len instance', len(instances))
sentence_num = len(instances)
input_ids = np.zeros([sentence_num, seq_len], dtype=np.int32)
input_mask = np.zeros([sentence_num, seq_len], dtype=np.int32)
segment_ids = np.zeros([sentence_num, seq_len], dtype=np.int32)
masked_lm_output = np.zeros([sentence_num, seq_len], dtype=np.int32)
s = time.time()
pool = multiprocessing.Pool(worker)
encoded_docs = pool.imap_unordered(pretrain_data.create_training_instance, instances, 32)
for index, mask_dict in tqdm(enumerate(encoded_docs), total=len(instances), colour='blue'):
input_ids[index] = mask_dict[0]
input_mask[index] = mask_dict[1]
segment_ids[index] = mask_dict[2]
masked_lm_output[index] = mask_dict[3]
pool.close()
print((time.time() - s) / 60)
with h5py.File(os.path.join(output_path, f'{file_name}.h5'), 'w') as hf:
hf.create_dataset("input_ids", data=input_ids)
hf.create_dataset("input_mask", data=input_mask)
hf.create_dataset("segment_ids", data=segment_ids)
hf.create_dataset("masked_lm_positions", data=masked_lm_output)
del instances
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--tokenizer_path', type=str, required=True, default=10, help='path of tokenizer')
parser.add_argument('--seq_len', type=int, default=512, help='sequence length')
parser.add_argument('--max_predictions_per_seq', type=int, default=80, help='number of shards, e.g., 10, 50, or 100')
parser.add_argument('--input_path', type=str, required=True, help='input path of shard which has split sentence')
parser.add_argument('--output_path', type=str, required=True, help='output path of h5 contains token id')
parser.add_argument('--backend', type=str, default='python', help='backend of mask token, python, c++, numpy respectively')
parser.add_argument('--dupe_factor', type=int, default=1, help='specifies how many times the preprocessor repeats to create the input from the same article/document')
parser.add_argument('--worker', type=int, default=32, help='number of process')
parser.add_argument('--server_num', type=int, default=10, help='number of servers')
args = parser.parse_args()
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_path)
pretrain_data = PreTrainingDataset(tokenizer,
args.seq_len,
args.backend,
max_predictions_per_seq=args.max_predictions_per_seq)
data_len = len(os.listdir(args.input_path))
for i in range(data_len):
input_path = os.path.join(args.input_path, f'{i}.txt')
if os.path.exists(input_path):
start = time.time()
print(f'process {input_path}')
split_numpy_chunk_pool(input_path,
args.output_path,
pretrain_data,
args.worker,
args.dupe_factor,
args.seq_len,
i)
end_ = time.time()
print(u'memory:%.4f GB' % (psutil.Process(os.getpid()).memory_info().rss / 1024 / 1024 / 1024) )
print(f'has cost {(end_ - start) / 60}')
print('-' * 100)
print('')
# if you have multiple server, you can use code below or modify code to openmpi
# host = int(socket.gethostname().split('GPU')[-1])
# for i in range(data_len // args.server_num + 1):
# h = args.server_num * i + host - 1
# input_path = os.path.join(args.input_path, f'{h}.txt')
# if os.path.exists(input_path):
# start = time.time()
# print(f'I am server {host}, process {input_path}')
# split_numpy_chunk_pool(input_path,
# args.output_path,
# pretrain_data,
# args.worker,
# args.dupe_factor,
# args.seq_len,
# h)
# end_ = time.time()
# print(u'memory:%.4f GB' % (psutil.Process(os.getpid()).memory_info().rss / 1024 / 1024 / 1024) )
# print(f'has cost {(end_ - start) / 60}')
# print('-' * 100)
# print('')
|
import torch
import os
from enum import IntEnum
from random import choice
import random
import collections
import time
import logging
import jieba
jieba.setLogLevel(logging.CRITICAL)
import re
import numpy as np
import mask
PAD = 0
MaskedLMInstance = collections.namedtuple("MaskedLMInstance",
["index", "label"])
def map_to_numpy(data):
return np.asarray(data)
class PreTrainingDataset():
def __init__(self,
tokenizer,
max_seq_length,
backend='python',
max_predictions_per_seq: int = 80,
do_whole_word_mask: bool = True):
self.tokenizer = tokenizer
self.max_seq_length = max_seq_length
self.masked_lm_prob = 0.15
self.backend = backend
self.do_whole_word_mask = do_whole_word_mask
self.max_predictions_per_seq = max_predictions_per_seq
self.vocab_words = list(tokenizer.vocab.keys())
self.rec = re.compile('[\u4E00-\u9FA5]')
self.whole_rec = re.compile('##[\u4E00-\u9FA5]')
self.mlm_p = 0.15
self.mlm_mask_p = 0.8
self.mlm_tamper_p = 0.05
self.mlm_maintain_p = 0.1
def tokenize(self, doc):
temp = []
for d in doc:
temp.append(self.tokenizer.tokenize(d))
return temp
def create_training_instance(self, instance):
is_next = 1
raw_text_list = self.get_new_segment(instance)
tokens_a = raw_text_list
assert len(tokens_a) == len(instance)
# tokens_a, tokens_b, is_next = instance.get_values()
# print(f'is_next label:{is_next}')
# Create mapper
tokens = []
original_tokens = []
segment_ids = []
tokens.append("[CLS]")
original_tokens.append('[CLS]')
segment_ids.append(0)
for index, token in enumerate(tokens_a):
tokens.append(token)
original_tokens.append(instance[index])
segment_ids.append(0)
tokens.append("[SEP]")
original_tokens.append('[SEP]')
segment_ids.append(0)
# for token in tokens_b:
# tokens.append(token)
# segment_ids.append(1)
# tokens.append("[SEP]")
# segment_ids.append(1)
# Get Masked LM predictions
if self.backend == 'c++':
output_tokens, masked_lm_output = mask.create_whole_masked_lm_predictions(tokens, original_tokens, self.vocab_words,
self.tokenizer.vocab, self.max_predictions_per_seq, self.masked_lm_prob)
elif self.backend == 'python':
output_tokens, masked_lm_output = self.create_whole_masked_lm_predictions(tokens)
# Convert to Ids
input_ids = self.tokenizer.convert_tokens_to_ids(output_tokens)
input_mask = [1] * len(input_ids)
while len(input_ids) < self.max_seq_length:
input_ids.append(PAD)
segment_ids.append(PAD)
input_mask.append(PAD)
masked_lm_output.append(-1)
return ([
map_to_numpy(input_ids),
map_to_numpy(input_mask),
map_to_numpy(segment_ids),
map_to_numpy(masked_lm_output),
map_to_numpy([is_next])
])
def create_masked_lm_predictions(self, tokens):
cand_indexes = []
for i, token in enumerate(tokens):
if token == "[CLS]" or token == "[SEP]":
continue
if (self.do_whole_word_mask and len(cand_indexes) >= 1 and
token.startswith("##")):
cand_indexes[-1].append(i)
else:
cand_indexes.append([i])
# cand_indexes.append(i)
random.shuffle(cand_indexes)
output_tokens = list(tokens)
num_to_predict = min(
self.max_predictions_per_seq,
max(1, int(round(len(tokens) * self.masked_lm_prob))))
masked_lms = []
covered_indexes = set()
for index in cand_indexes:
if len(masked_lms) >= num_to_predict:
break
if index in covered_indexes:
continue
covered_indexes.add(index)
masked_token = None
# 80% mask
if random.random() < 0.8:
masked_token = "[MASK]"
else:
# 10% Keep Original
if random.random() < 0.5:
masked_token = tokens[index]
# 10% replace w/ random word
else:
masked_token = self.vocab_words[random.randint(
0,
len(self.vocab_words) - 1)]
output_tokens[index] = masked_token
masked_lms.append(
MaskedLMInstance(index=index, label=tokens[index]))
masked_lms = sorted(masked_lms, key=lambda x: x.index)
masked_lm_output = [-1] * len(output_tokens)
for p in masked_lms:
masked_lm_output[p.index] = self.tokenizer.vocab[p.label]
return (output_tokens, masked_lm_output)
def get_new_segment(self, segment):
"""
输入一句话,返回一句经过处理的话: 为了支持中文全称mask,将被分开的词,将上特殊标记("#"),使得后续处理模块,能够知道哪些字是属于同一个词的。
:param segment: 一句话
:return: 一句处理过的话
"""
seq_cws = jieba.lcut(''.join(segment))
seq_cws_dict = {x: 1 for x in seq_cws}
new_segment = []
i = 0
while i < len(segment):
if len(self.rec.findall(segment[i])) == 0: # 不是中文的,原文加进去。
new_segment.append(segment[i])
i += 1
continue
has_add = False
for length in range(3, 0, -1):
if i + length > len(segment):
continue
if ''.join(segment[i: i+length]) in seq_cws_dict:
new_segment.append(segment[i])
for l in range(1, length):
new_segment.append('##' + segment[i+l])
i += length
has_add = True
break
if not has_add:
new_segment.append(segment[i])
i += 1
return new_segment
def create_whole_masked_lm_predictions(self, tokens):
"""Creates the predictions for the masked LM objective."""
cand_indexes = []
for (i, token) in enumerate(tokens):
if token == "[CLS]" or token == "[SEP]":
continue
# Whole Word Masking means that if we mask all of the wordpieces
# corresponding to an original word. When a word has been split into
# WordPieces, the first token does not have any marker and any subsequence
# tokens are prefixed with ##. So whenever we see the ## token, we
# append it to the previous set of word indexes.
#
# Note that Whole Word Masking does *not* change the training code
# at all -- we still predict each WordPiece independently, softmaxed
# over the entire vocabulary.
if (self.do_whole_word_mask and len(cand_indexes) >= 1 and
token.startswith("##")):
cand_indexes[-1].append(i)
else:
cand_indexes.append([i])
random.shuffle(cand_indexes)
output_tokens = [t[2:] if len(self.whole_rec.findall(t))>0 else t for t in tokens] # 去掉"##"
num_to_predict = min(self.max_predictions_per_seq,
max(1, int(round(len(tokens) * self.masked_lm_prob))))
masked_lms = []
covered_indexes = set()
for index_set in cand_indexes:
if len(masked_lms) >= num_to_predict:
break
# If adding a whole-word mask would exceed the maximum number of
# predictions, then just skip this candidate.
if len(masked_lms) + len(index_set) > num_to_predict:
continue
is_any_index_covered = False
for index in index_set:
if index in covered_indexes:
is_any_index_covered = True
break
if is_any_index_covered:
continue
for index in index_set:
covered_indexes.add(index)
masked_token = None
# 80% of the time, replace with [MASK]
if random.random() < 0.8:
masked_token = "[MASK]"
else:
# 10% of the time, keep original
if random.random() < 0.5:
masked_token = tokens[index][2:] if len(self.whole_rec.findall(tokens[index]))>0 else tokens[index] # 去掉"##"
# 10% of the time, replace with random word
else:
masked_token = self.vocab_words[random.randint(0, len(self.vocab_words) - 1)]
output_tokens[index] = masked_token
masked_lms.append(MaskedLMInstance(index=index, label=tokens[index][2:] if len(self.whole_rec.findall(tokens[index]))>0 else tokens[index]))
assert len(masked_lms) <= num_to_predict
masked_lms = sorted(masked_lms, key=lambda x: x.index)
masked_lm_output = [-1] * len(output_tokens)
for p in masked_lms:
masked_lm_output[p.index] = self.tokenizer.vocab[p.label]
return (output_tokens, masked_lm_output)
|
class BertDatasetProviderInterface:
def get_shard(self, index, shuffle=True):
raise NotImplementedError
def release_shard(self, index):
raise NotImplementedError
def prefetch_shard(self, index):
raise NotImplementedError
def get_batch(self, batch_iter):
raise NotImplementedError
def prefetch_batch(self):
raise NotImplementedError
|
import os
import random
import h5py
import logging
import json
import time
from concurrent.futures import ProcessPoolExecutor
import numpy as np
import torch
import torch.distributed as dist
from torch.utils.data import DataLoader, Dataset
from torch.utils.data.sampler import RandomSampler
from torch.utils.data.distributed import DistributedSampler
from bert_dataset_provider import BertDatasetProviderInterface
import colossalai.utils as utils
# Workaround because python functions are not picklable
class WorkerInitObj(object):
def __init__(self, seed):
self.seed = seed
def __call__(self, id):
np.random.seed(seed=self.seed + id)
random.seed(self.seed + id)
def create_pretraining_dataset(input_file, max_predictions_per_seq,
num_workers, train_batch_size, worker_init,
data_sampler):
train_data = pretraining_dataset(
input_file=input_file, max_predictions_per_seq=max_predictions_per_seq)
train_dataloader = DataLoader(train_data,
sampler=data_sampler(train_data),
batch_size=train_batch_size,
num_workers=num_workers,
worker_init_fn=worker_init,
pin_memory=True
)
return train_dataloader, len(train_data)
class pretraining_dataset(Dataset):
def __init__(self, input_file, max_predictions_per_seq):
self.input_file = input_file
self.max_predictions_per_seq = max_predictions_per_seq
f = h5py.File(input_file, "r")
keys = [
'input_ids', 'input_mask', 'segment_ids', 'masked_lm_positions'
]
self.inputs = [np.asarray(f[key][:]) for key in keys]
f.close()
def __len__(self):
'Denotes the total number of samples'
return len(self.inputs[0])
def __getitem__(self, index):
[
input_ids, input_mask, segment_ids, masked_lm_labels
] = [
torch.from_numpy(input[index].astype(np.int64)) if indice < 5 else
torch.from_numpy(np.asarray(input[index].astype(np.int64)))
for indice, input in enumerate(self.inputs)
]
return [
input_ids, input_mask,
segment_ids, masked_lm_labels
]
class NvidiaBertDatasetProvider(BertDatasetProviderInterface):
def __init__(self, args, evaluate=False):
self.num_workers = args.num_workers
self.max_seq_length = args.max_seq_length
self.max_predictions_per_seq = args.max_predictions_per_seq
self.gradient_accumulation_steps = args.gradient_accumulation_steps
if not evaluate:
self.train_micro_batch_size_per_gpu = args.train_micro_batch_size_per_gpu
else:
self.train_micro_batch_size_per_gpu = args.eval_micro_batch_size_per_gpu
self.logger = args.logger
self.global_rank = dist.get_rank()
self.world_size = dist.get_world_size()
# Initialize dataset files
if not evaluate:
self.dataset_files = [
os.path.join(args.data_path_prefix, f) for f in os.listdir(args.data_path_prefix) if
os.path.isfile(os.path.join(args.data_path_prefix, f)) and 'h5' in f
]
else:
self.dataset_files = [
os.path.join(args.eval_data_path_prefix, f) for f in os.listdir(args.eval_data_path_prefix) if
os.path.isfile(os.path.join(args.eval_data_path_prefix, f)) and 'h5' in f
]
self.dataset_files.sort()
# random.shuffle(self.dataset_files)
self.num_files = len(self.dataset_files)
# self.data_sampler = RandomSampler
self.data_sampler = DistributedSampler
self.worker_init = WorkerInitObj(args.seed + args.local_rank)
self.dataset_future = None
self.pool = ProcessPoolExecutor(1)
self.data_file = None
self.shuffle = True
if self.global_rank == 0:
self.logger.info(
f"NvidiaBertDatasetProvider - Initialization: num_files = {self.num_files}"
)
def get_shard(self, index):
start = time.time()
if self.dataset_future is None:
self.data_file = self._get_shard_file(index)
self.train_dataloader, sample_count = create_pretraining_dataset(
input_file=self.data_file,
max_predictions_per_seq=self.max_predictions_per_seq,
num_workers=self.num_workers,
train_batch_size=self.train_micro_batch_size_per_gpu,
worker_init=self.worker_init,
data_sampler=self.data_sampler)
else:
self.train_dataloader, sample_count = self.dataset_future.result(
timeout=None)
self.logger.info(
f"Data Loading Completed for Pretraining Data from {self.data_file} with {sample_count} samples took {time.time()-start:.2f}s."
)
return self.train_dataloader, sample_count
def release_shard(self):
del self.train_dataloader
self.pool.shutdown()
def prefetch_shard(self, index):
self.data_file = self._get_shard_file(index)
self.dataset_future = self.pool.submit(
create_pretraining_dataset, self.data_file,
self.max_predictions_per_seq, self.num_workers,
self.train_micro_batch_size_per_gpu, self.worker_init,
self.data_sampler)
def get_batch(self, batch_iter):
return batch_iter
def prefetch_batch(self):
pass
def _get_shard_file(self, shard_index):
file_index = self._get_shard_file_index(shard_index, self.global_rank)
return self.dataset_files[file_index]
def _get_shard_file_index(self, shard_index, global_rank):
# if dist.is_initialized() and self.world_size > self.num_files:
# remainder = self.world_size % self.num_files
# file_index = (shard_index * self.world_size) + global_rank + (
# remainder * shard_index)
# else:
# file_index = shard_index * self.world_size + global_rank
return shard_index % self.num_files
def shuffle_dataset(self, epoch):
if self.shuffle:
# deterministically shuffle based on epoch and seed
g = torch.Generator()
g.manual_seed(self.epoch)
indices = torch.randperm(self.num_files, generator=g).tolist()
new_dataset = [self.dataset_files[i] for i in indices]
self.dataset_files = new_dataset
|
import colossalai
from numpy import require
__all__ = ['parse_args']
def parse_args():
parser = colossalai.get_default_parser()
parser.add_argument(
'--lr',
type=float,
required=True,
help='initial learning rate')
parser.add_argument(
'--epoch',
type=int,
required=True,
help='number of epoch')
parser.add_argument(
'--data_path_prefix',
type=str,
required=True,
help="location of the train data corpus")
parser.add_argument(
'--eval_data_path_prefix',
type=str,
required=True,
help='location of the evaluation data corpus')
parser.add_argument(
'--tokenizer_path',
type=str,
required=True,
help='location of the tokenizer')
parser.add_argument(
'--max_seq_length',
type=int,
default=512,
help='sequence length')
parser.add_argument(
'--refresh_bucket_size',
type=int,
default=1,
help=
"This param makes sure that a certain task is repeated for this time steps to \
optimise on the back propogation speed with APEX's DistributedDataParallel")
parser.add_argument(
"--max_predictions_per_seq",
"--max_pred",
default=80,
type=int,
help=
"The maximum number of masked tokens in a sequence to be predicted.")
parser.add_argument(
"--gradient_accumulation_steps",
default=1,
type=int,
help="accumulation_steps")
parser.add_argument(
"--train_micro_batch_size_per_gpu",
default=2,
type=int,
required=True,
help="train batch size")
parser.add_argument(
"--eval_micro_batch_size_per_gpu",
default=2,
type=int,
required=True,
help="eval batch size")
parser.add_argument(
"--num_workers",
default=8,
type=int,
help="")
parser.add_argument(
"--async_worker",
action='store_true',
help="")
parser.add_argument(
"--bert_config",
required=True,
type=str,
help="location of config.json")
parser.add_argument(
"--wandb",
action='store_true',
help="use wandb to watch model")
parser.add_argument(
"--wandb_project_name",
default='roberta',
help="wandb project name")
parser.add_argument(
"--log_interval",
default=100,
type=int,
help="report interval")
parser.add_argument(
"--log_path",
type=str,
required=True,
help="log file which records train step")
parser.add_argument(
"--tensorboard_path",
type=str,
required=True,
help="location of tensorboard file")
parser.add_argument(
"--colossal_config",
type=str,
required=True,
help="colossal config, which contains zero config and so on")
parser.add_argument(
"--ckpt_path",
type=str,
required=True,
help="location of saving checkpoint, which contains model and optimizer")
parser.add_argument(
'--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument(
'--vscode_debug',
action='store_true',
help="use vscode to debug")
parser.add_argument(
'--load_pretrain_model',
default='',
type=str,
help="location of model's checkpoin")
parser.add_argument(
'--load_optimizer_lr',
default='',
type=str,
help="location of checkpoint, which contains optimerzier, learning rate, epoch, shard and global_step")
parser.add_argument(
'--resume_train',
action='store_true',
help="whether resume training from a early checkpoint")
parser.add_argument(
'--mlm',
default='bert',
type=str,
help="model type, bert or deberta")
parser.add_argument(
'--checkpoint_activations',
action='store_true',
help="whether to use gradient checkpointing")
args = parser.parse_args()
return args
|
import os
import math
import torch
from tqdm import tqdm
from utils.global_vars import get_timers, get_tensorboard_writer
from nvidia_bert_dataset_provider import NvidiaBertDatasetProvider
def evaluate(engine, args, logger, global_step):
evaluate_dataset_provider = NvidiaBertDatasetProvider(args, evaluate=True)
start_shard = 0
engine.eval()
timers = get_timers()
eval_step = 0
eval_loss = 0
cur_loss = 0
world_size = torch.distributed.get_world_size()
with torch.no_grad():
for shard in range(start_shard, len(os.listdir(args.eval_data_path_prefix))):
timers('eval_shard_time').start()
dataset_iterator, total_length = evaluate_dataset_provider.get_shard(shard)
# evaluate_dataset_provider.prefetch_shard(shard + 1)
if torch.distributed.get_rank() == 0:
iterator_data = tqdm(enumerate(dataset_iterator), total=(total_length // args.eval_micro_batch_size_per_gpu // world_size), colour='MAGENTA', smoothing=1)
else:
iterator_data = enumerate(dataset_iterator)
for step, batch_data in iterator_data: #tqdm(enumerate(dataset_iterator), total=(total_length // args.train_micro_batch_size_per_gpu // world_size), colour='cyan', smoothing=1):
# batch_data = pretrain_dataset_provider.get_batch(batch_index)
eval_step += 1
input_ids = batch_data[0].cuda()
attention_mask = batch_data[1].cuda()
token_type_ids = batch_data[2].cuda()
mlm_label = batch_data[3].cuda()
# nsp_label = batch_data[5].cuda()
output = engine(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
loss = engine.criterion(output.logits, mlm_label)#prediction_scores
evaluate_dataset_provider.prefetch_batch()
eval_loss += loss.float().item()
cur_loss = eval_loss / eval_step
elapsed_time = timers("eval_shard_time").elapsed()
elapsed_time_per_iteration = elapsed_time / eval_step
ppl = math.exp(cur_loss)
if args.wandb and torch.distributed.get_rank() == 0:
tensorboard_log = get_tensorboard_writer()
tensorboard_log.log_eval({
'loss': cur_loss,
'ppl': ppl,
'mins_batch': elapsed_time_per_iteration
}, global_step)
eval_log_str = f'evaluation shard: {shard} | step: {eval_step} | elapsed_time: {elapsed_time / 60 :.3f} minutes ' + \
f'| mins/batch: {elapsed_time_per_iteration :.3f} seconds | loss: {cur_loss:.7f} | ppl: {ppl:.7f}'
logger.info(eval_log_str)
logger.info('-' * 100)
logger.info('')
evaluate_dataset_provider.release_shard()
engine.train()
return cur_loss
|
import transformers
import logging
from colossalai.nn.lr_scheduler import LinearWarmupLR
from transformers import get_linear_schedule_with_warmup
from transformers import BertForPreTraining, RobertaForMaskedLM, RobertaConfig
from transformers import GPT2Config, GPT2LMHeadModel
from transformers import AutoTokenizer, AutoModelForMaskedLM
from colossalai.nn.optimizer import FusedAdam
from torch.optim import AdamW
from colossalai.core import global_context as gpc
import torch
import os
import sys
sys.path.append(os.getcwd())
from model.deberta_v2 import DebertaV2ForMaskedLM
from model.bert import BertForMaskedLM
import torch.nn as nn
from collections import OrderedDict
__all__ = ['get_model', 'get_optimizer', 'get_lr_scheduler', 'get_dataloader_for_pretraining']
def get_new_state_dict(state_dict, start_index=13):
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[start_index:]
new_state_dict[name] = v
return new_state_dict
class LMModel(nn.Module):
def __init__(self, model, config, args):
super().__init__()
self.checkpoint = args.checkpoint_activations
self.config = config
self.model = model
if self.checkpoint:
self.model.gradient_checkpointing_enable()
def forward(self, input_ids, token_type_ids=None, attention_mask=None):
# Only return lm_logits
return self.model(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
def get_model(args, logger):
if args.mlm == 'bert':
config = transformers.BertConfig.from_json_file(args.bert_config)
model = BertForMaskedLM(config)
elif args.mlm == 'deberta_v2':
config = transformers.DebertaV2Config.from_json_file(args.bert_config)
model = DebertaV2ForMaskedLM(config)
else:
raise Exception("Invalid mlm!")
if len(args.load_pretrain_model) > 0:
assert os.path.exists(args.load_pretrain_model)
# load_checkpoint(args.load_pretrain_model, model, strict=False)
m_state_dict = torch.load(args.load_pretrain_model, map_location=torch.device(f"cuda:{torch.cuda.current_device()}"))
# new_state_dict = get_new_state_dict(m_state_dict)
model.load_state_dict(m_state_dict, strict=True) # must insure that every process have identical parameters !!!!!!!
logger.info("load model success")
numel = sum([p.numel() for p in model.parameters()])
if args.checkpoint_activations:
model.gradient_checkpointing_enable()
# model = LMModel(model, config, args)
return config, model, numel
def get_optimizer(model, lr):
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'gamma', 'beta', 'LayerNorm']
# configure the weight decay for bert models
optimizer_grouped_parameters = [{
'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
'weight_decay': 0.1
}, {
'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
'weight_decay': 0.0
}]
optimizer = FusedAdam(optimizer_grouped_parameters, lr=lr, betas=[0.9, 0.95])
return optimizer
def get_lr_scheduler(optimizer, total_steps, warmup_steps=2000, last_epoch=-1):
# warmup_steps = int(total_steps * warmup_ratio)
lr_scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=total_steps, last_epoch=last_epoch)
# lr_scheduler = LinearWarmupLR(optimizer, total_steps=total_steps, warmup_steps=warmup_steps)
return lr_scheduler
def save_ckpt(model, optimizer, lr_scheduler, path, epoch, shard, global_step):
model_path = path + '_pytorch_model.bin'
optimizer_lr_path = path + '.op_lrs'
checkpoint = {}
checkpoint['optimizer'] = optimizer.state_dict()
checkpoint['lr_scheduler'] = lr_scheduler.state_dict()
checkpoint['epoch'] = epoch
checkpoint['shard'] = shard
checkpoint['global_step'] = global_step
model_state = model.state_dict() #each process must run model.state_dict()
if gpc.get_global_rank() == 0:
torch.save(checkpoint, optimizer_lr_path)
torch.save(model_state, model_path)
|
import colossalai
import math
import torch
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
import colossalai.nn as col_nn
from arguments import parse_args
from pretrain_utils import get_model, get_optimizer, get_lr_scheduler, save_ckpt
from utils.exp_util import get_tflops, get_mem_info, throughput_calculator, log_args
from utils.global_vars import set_global_variables, get_timers, get_tensorboard_writer
from utils.logger import Logger
from evaluation import evaluate
from loss import LossForPretraining
from colossalai.zero.init_ctx import ZeroInitContext
from colossalai.zero.shard_utils import TensorShardStrategy
from colossalai.zero.sharded_model import ShardedModelV2
from colossalai.zero.sharded_optim import ShardedOptimizerV2
from nvidia_bert_dataset_provider import NvidiaBertDatasetProvider
from tqdm import tqdm
import os
import time
from functools import partial
from transformers import AutoTokenizer
from colossalai.gemini import ChunkManager, GeminiManager
from colossalai.utils.model.colo_init_context import ColoInitContext
from colossalai.utils import get_current_device
from colossalai.nn.parallel import ZeroDDP
from colossalai.zero import ZeroOptimizer
from colossalai.tensor import ProcessGroup
from colossalai.nn.optimizer import HybridAdam
def main():
args = parse_args()
launch_time = time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime())
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_path)
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
logger = Logger(os.path.join(args.log_path, launch_time), cuda=torch.cuda.is_available(), debug=args.vscode_debug)
if args.vscode_debug:
colossalai.launch(config={},
rank=args.rank,
world_size=args.world_size,
host=args.host,
port=args.port,
backend=args.backend)
args.local_rank = -1
args.log_interval = 1
else:
colossalai.launch_from_torch(args.colossal_config) #args.colossal_config
args.local_rank = int(os.environ["LOCAL_RANK"])
logger.info(f'launch_from_torch, world size: {torch.distributed.get_world_size()} | ' +
f'ParallelMode.MODEL: {ParallelMode.MODEL} | ParallelMode.DATA: {ParallelMode.DATA} | ParallelMode.TENSOR: {ParallelMode.TENSOR}')
log_args(logger, args)
args.tokenizer = tokenizer
args.logger = logger
set_global_variables(launch_time, args.tensorboard_path)
use_zero = hasattr(gpc.config, 'zero')
world_size = torch.distributed.get_world_size()
# build model, optimizer and criterion
if use_zero:
shard_strategy = TensorShardStrategy()
with ZeroInitContext(target_device=torch.cuda.current_device(), shard_strategy=shard_strategy,
shard_param=True):
config, model, numel = get_model(args, logger)
# model = ShardedModelV2(model, shard_strategy, tensor_placement_policy='cpu', reuse_fp16_shard=True)
else:
config, model, numel = get_model(args, logger)
logger.info("no_zero")
if torch.distributed.get_rank() == 0:
os.mkdir(os.path.join(args.ckpt_path, launch_time))
logger.info(f'Model numel: {numel}')
get_tflops_func = partial(get_tflops, numel, args.train_micro_batch_size_per_gpu, args.max_seq_length)
steps_per_epoch = 144003367 // world_size // args.train_micro_batch_size_per_gpu // args.gradient_accumulation_steps // args.refresh_bucket_size #len(dataloader)
total_steps = steps_per_epoch * args.epoch
# build optimizer and lr_scheduler
start_epoch = 0
start_shard = 0
global_step = 0
if args.resume_train:
assert os.path.exists(args.load_optimizer_lr)
o_l_state_dict = torch.load(args.load_optimizer_lr, map_location='cpu')
o_l_state_dict['lr_scheduler']['last_epoch'] = o_l_state_dict['lr_scheduler']['last_epoch'] - 1
optimizer = get_optimizer(model, lr=args.lr)
optimizer.load_state_dict(o_l_state_dict['optimizer'])
lr_scheduler = get_lr_scheduler(optimizer, total_steps=total_steps, last_epoch=o_l_state_dict['lr_scheduler']['last_epoch']) #o_l_state_dict['lr_scheduler']['last_epoch']
for state in optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.cuda(f"cuda:{torch.cuda.current_device()}")
# if you want delete the above three code, have to move the model to gpu, because in optimizer.step()
lr_scheduler.load_state_dict(o_l_state_dict['lr_scheduler'])
start_epoch = o_l_state_dict['epoch']
start_shard = o_l_state_dict['shard'] + 1
# global_step = o_l_state_dict['global_step'] + 1
logger.info(f'resume from epoch {start_epoch} shard {start_shard} step {lr_scheduler.last_epoch} lr {lr_scheduler.get_last_lr()[0]}')
else:
optimizer = get_optimizer(model, lr=args.lr)
lr_scheduler = get_lr_scheduler(optimizer, total_steps=total_steps, last_epoch=-1)
# optimizer = gpc.config.optimizer.pop('type')(
# model.parameters(), **gpc.config.optimizer)
# optimizer = ShardedOptimizerV2(model, optimizer, initial_scale=2**5)
criterion = LossForPretraining(config.vocab_size)
# build dataloader
pretrain_dataset_provider = NvidiaBertDatasetProvider(args)
# initialize with colossalai
engine, _, _, lr_scheduelr = colossalai.initialize(model=model,
optimizer=optimizer,
criterion=criterion,
lr_scheduler=lr_scheduler)
logger.info(get_mem_info(prefix='After init model, '))
best_loss = None
eval_loss = 0
train_loss = 0
timers = get_timers()
timers('interval_time').start()
timers('epoch_time').start()
timers('shard_time').start()
for epoch in range(start_epoch, args.epoch):
for shard in range(start_shard, len(os.listdir(args.data_path_prefix))):
dataset_iterator, total_length = pretrain_dataset_provider.get_shard(shard)
# pretrain_dataset_provider.prefetch_shard(shard + 1) # may cause cpu memory overload
if torch.distributed.get_rank() == 0:
iterator_data = tqdm(enumerate(dataset_iterator), total=(total_length // args.train_micro_batch_size_per_gpu // world_size), colour='cyan', smoothing=1)
else:
iterator_data = enumerate(dataset_iterator)
engine.train()
for step, batch_data in iterator_data:
# batch_data = pretrain_dataset_provider.get_batch(batch_index)
input_ids = batch_data[0].cuda(f"cuda:{torch.cuda.current_device()}")
attention_mask = batch_data[1].cuda(f"cuda:{torch.cuda.current_device()}")
token_type_ids = batch_data[2].cuda(f"cuda:{torch.cuda.current_device()}")
mlm_label = batch_data[3].cuda(f"cuda:{torch.cuda.current_device()}")
# nsp_label = batch_data[5].cuda()
output = engine(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
loss = engine.criterion(output.logits, mlm_label)
pretrain_dataset_provider.prefetch_batch()
engine.backward(loss)
train_loss += loss.float().item()
# if (step + 1) % args.accumulation_step == 0:
engine.step()
lr_scheduelr.step()
engine.zero_grad()
global_step += 1
if global_step % args.log_interval == 0 and global_step != 0 \
and torch.distributed.get_rank() == 0:
elapsed_time = timers('interval_time').elapsed(reset=False)
elapsed_time_per_iteration = elapsed_time / global_step
samples_per_sec, tflops, approx_parameters_in_billions = throughput_calculator(numel, args, config, elapsed_time, global_step, world_size)
cur_loss = train_loss / args.log_interval
current_lr = lr_scheduelr.get_last_lr()[0]
log_str = f'| epoch: {epoch} | shard: {shard} | step: {global_step} | lr {current_lr:.7f} | elapsed_time: {elapsed_time / 60 :.3f} minutes ' + \
f'| mins/batch: {elapsed_time_per_iteration :.3f} seconds | loss: {cur_loss:.7f} | ppl: {math.exp(cur_loss):.3f} | TFLOPS: {get_tflops_func(elapsed_time_per_iteration):.3f} or {tflops:.3f}'
logger.info(log_str, print_=False)
if args.wandb:
tensorboard_log = get_tensorboard_writer()
tensorboard_log.log_train({
'lr': current_lr,
'loss': cur_loss,
'ppl': math.exp(cur_loss),
'mins_batch': elapsed_time_per_iteration
}, global_step)
train_loss = 0
logger.info(f'epoch {epoch} shard {shard} has cost {timers("shard_time").elapsed() / 60 :.3f} mins')
logger.info('*' * 100)
eval_loss += evaluate(engine, args, logger, global_step)
save_ckpt(engine.model, optimizer, lr_scheduelr, os.path.join(args.ckpt_path, launch_time, f'epoch-{epoch}_shard-{shard}_' + launch_time), epoch, shard, global_step)
eval_loss /= len(os.listdir(args.data_path_prefix))
logger.info(f'epoch {epoch} | shard_length {len(os.listdir(args.data_path_prefix))} | elapsed_time: {timers("epoch_time").elapsed() / 60 :.3f} mins' + \
f'eval_loss: {eval_loss} | ppl: {math.exp(eval_loss)}')
logger.info('-' * 100)
if args.wandb and torch.distributed.get_rank() == 0:
tensorboard_log = get_tensorboard_writer()
tensorboard_log.log_eval({
'all_eval_shard_loss': eval_loss,
}, epoch)
start_shard = 0
eval_loss = 0
pretrain_dataset_provider.release_shard()
logger.info('Congratulation, training has finished!!!')
if __name__ == '__main__':
main()
|
import torch
__all__ = ['LossForPretraining']
class LossForPretraining(torch.nn.Module):
def __init__(self, vocab_size):
super(LossForPretraining, self).__init__()
self.loss_fn = torch.nn.CrossEntropyLoss(ignore_index=-1)
self.vocab_size = vocab_size
def forward(self, prediction_scores, masked_lm_labels, next_sentence_labels=None):
masked_lm_loss = self.loss_fn(prediction_scores.view(-1, self.vocab_size), masked_lm_labels.view(-1))
# next_sentence_loss = self.loss_fn(seq_relationship_score.view(-1, 2), next_sentence_labels.view(-1))
total_loss = masked_lm_loss #+ next_sentence_loss
return total_loss
|
import functools
import os, shutil
import torch
import psutil
from colossalai.core import global_context as gpc
def logging(s, log_path, print_=True, log_=True):
if print_:
print(s)
if log_:
with open(log_path, 'a+') as f_log:
f_log.write(s + '\n')
def get_logger(log_path, **kwargs):
return functools.partial(logging, log_path=log_path, **kwargs)
def create_exp_dir(dir_path, scripts_to_save=None, debug=False):
if debug:
print('Debug Mode : no experiment dir created')
return functools.partial(logging, log_path=None, log_=False)
if not os.path.exists(dir_path):
os.makedirs(dir_path)
print('Experiment dir : {}'.format(dir_path))
if scripts_to_save is not None:
script_path = os.path.join(dir_path, 'scripts')
if not os.path.exists(script_path):
os.makedirs(script_path)
for script in scripts_to_save:
dst_file = os.path.join(dir_path, 'scripts', os.path.basename(script))
shutil.copyfile(script, dst_file)
return get_logger(log_path=os.path.join(dir_path, 'log.txt'))
def get_cpu_mem():
return psutil.Process().memory_info().rss / 1024**2
def get_gpu_mem():
return torch.cuda.memory_allocated() / 1024**2
def get_mem_info(prefix=''):
return f'{prefix}GPU memory usage: {get_gpu_mem():.2f} MB, CPU memory usage: {get_cpu_mem():.2f} MB'
def get_tflops(model_numel, batch_size, seq_len, step_time):
return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12)
def get_parameters_in_billions(model, world_size=1):
gpus_per_model = world_size
approx_parameters_in_billions = sum([sum([p.ds_numel if hasattr(p,'ds_id') else p.nelement() for p in model_module.parameters()])
for model_module in model])
return approx_parameters_in_billions * gpus_per_model / (1e9)
def throughput_calculator(numel, args, config, iteration_time, total_iterations, world_size=1):
gpus_per_model = 1
batch_size = args.train_micro_batch_size_per_gpu
samples_per_model = batch_size * args.max_seq_length
model_replica_count = world_size / gpus_per_model
approx_parameters_in_billions = numel
elapsed_time_per_iter = iteration_time / total_iterations
samples_per_second = batch_size / elapsed_time_per_iter
#flops calculator
hidden_size = config.hidden_size
num_layers = config.num_hidden_layers
vocab_size = config.vocab_size
# General TFLOPs formula (borrowed from Equation 3 in Section 5.1 of
# https://arxiv.org/pdf/2104.04473.pdf).
# The factor of 4 is when used with activation check-pointing,
# otherwise it will be 3.
checkpoint_activations_factor = 4 if args.checkpoint_activations else 3
flops_per_iteration = (24 * checkpoint_activations_factor * batch_size * args.max_seq_length * num_layers * (hidden_size**2)) * (1. + (args.max_seq_length / (6. * hidden_size)) + (vocab_size / (16. * num_layers * hidden_size)))
tflops = flops_per_iteration / (elapsed_time_per_iter * (10**12))
return samples_per_second, tflops, approx_parameters_in_billions
def synchronize():
if not torch.distributed.is_available():
return
if not torch.distributed.is_intialized():
return
world_size = torch.distributed.get_world_size()
if world_size == 1:
return
torch.distributed.barrier()
def log_args(logger, args):
logger.info('--------args----------')
message = '\n'.join([f'{k:<30}: {v}' for k, v in vars(args).items()])
message += '\n'
message += '\n'.join([f'{k:<30}: {v}' for k, v in gpc.config.items()])
logger.info(message)
logger.info('--------args----------\n') |
import time
import wandb
import os
from torch.utils.tensorboard import SummaryWriter
class WandbLog:
@classmethod
def init_wandb(cls, project, notes=None, name=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), config=None):
wandb.init(project=project, notes=notes, name=name, config=config)
@classmethod
def log(cls, result, model=None, gradient=None):
wandb.log(result)
if model:
wandb.watch(model)
if gradient:
wandb.watch(gradient)
class TensorboardLog:
def __init__(self, location, name=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), config=None):
if not os.path.exists(location):
os.mkdir(location)
self.writer = SummaryWriter(location, comment=name)
def log_train(self, result, step):
for k, v in result.items():
self.writer.add_scalar(f'{k}/train', v, step)
def log_eval(self, result, step):
for k, v in result.items():
self.writer.add_scalar(f'{k}/eval', v, step)
def log_zeroshot(self, result, step):
for k, v in result.items():
self.writer.add_scalar(f'{k}_acc/eval', v, step)
|
import os
import logging
import torch.distributed as dist
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
class Logger():
def __init__(self, log_path, cuda=False, debug=False):
self.logger = logging.getLogger(__name__)
self.cuda = cuda
self.log_path = log_path
self.debug = debug
def info(self, message, log_=True, print_=True, *args, **kwargs):
if (self.cuda and dist.get_rank() == 0) or not self.cuda:
if print_:
self.logger.info(message, *args, **kwargs)
if log_:
with open(self.log_path, 'a+') as f_log:
f_log.write(message + '\n')
def error(self, message, *args, **kwargs):
self.logger.error(message, *args, **kwargs)
|
import time
import torch
from .WandbLog import TensorboardLog
_GLOBAL_TIMERS = None
_GLOBAL_TENSORBOARD_WRITER = None
def set_global_variables(launch_time, tensorboard_path):
_set_timers()
_set_tensorboard_writer(launch_time, tensorboard_path)
def _set_timers():
"""Initialize timers."""
global _GLOBAL_TIMERS
_ensure_var_is_not_initialized(_GLOBAL_TIMERS, 'timers')
_GLOBAL_TIMERS = Timers()
def _set_tensorboard_writer(launch_time, tensorboard_path):
"""Set tensorboard writer."""
global _GLOBAL_TENSORBOARD_WRITER
_ensure_var_is_not_initialized(_GLOBAL_TENSORBOARD_WRITER,
'tensorboard writer')
if torch.distributed.get_rank() == 0:
_GLOBAL_TENSORBOARD_WRITER = TensorboardLog(tensorboard_path + f'/{launch_time}', launch_time)
def get_timers():
"""Return timers."""
_ensure_var_is_initialized(_GLOBAL_TIMERS, 'timers')
return _GLOBAL_TIMERS
def get_tensorboard_writer():
"""Return tensorboard writer. It can be None so no need
to check if it is initialized."""
return _GLOBAL_TENSORBOARD_WRITER
def _ensure_var_is_initialized(var, name):
"""Make sure the input variable is not None."""
assert var is not None, '{} is not initialized.'.format(name)
def _ensure_var_is_not_initialized(var, name):
"""Make sure the input variable is not None."""
assert var is None, '{} is already initialized.'.format(name)
class _Timer:
"""Timer."""
def __init__(self, name):
self.name_ = name
self.elapsed_ = 0.0
self.started_ = False
self.start_time = time.time()
def start(self):
"""Start the timer."""
# assert not self.started_, 'timer has already been started'
torch.cuda.synchronize()
self.start_time = time.time()
self.started_ = True
def stop(self):
"""Stop the timer."""
assert self.started_, 'timer is not started'
torch.cuda.synchronize()
self.elapsed_ += (time.time() - self.start_time)
self.started_ = False
def reset(self):
"""Reset timer."""
self.elapsed_ = 0.0
self.started_ = False
def elapsed(self, reset=True):
"""Calculate the elapsed time."""
started_ = self.started_
# If the timing in progress, end it first.
if self.started_:
self.stop()
# Get the elapsed time.
elapsed_ = self.elapsed_
# Reset the elapsed time
if reset:
self.reset()
# If timing was in progress, set it back.
if started_:
self.start()
return elapsed_
class Timers:
"""Group of timers."""
def __init__(self):
self.timers = {}
def __call__(self, name):
if name not in self.timers:
self.timers[name] = _Timer(name)
return self.timers[name]
def write(self, names, writer, iteration, normalizer=1.0, reset=False):
"""Write timers to a tensorboard writer"""
# currently when using add_scalars,
# torch.utils.add_scalars makes each timer its own run, which
# polutes the runs list, so we just add each as a scalar
assert normalizer > 0.0
for name in names:
value = self.timers[name].elapsed(reset=reset) / normalizer
writer.add_scalar(name + '-time', value, iteration)
def log(self, names, normalizer=1.0, reset=True):
"""Log a group of timers."""
assert normalizer > 0.0
string = 'time (ms)'
for name in names:
elapsed_time = self.timers[name].elapsed(
reset=reset) * 1000.0 / normalizer
string += ' | {}: {:.2f}'.format(name, elapsed_time)
if torch.distributed.is_initialized():
if torch.distributed.get_rank() == (
torch.distributed.get_world_size() - 1):
print(string, flush=True)
else:
print(string, flush=True)
|
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""
import math
import os
import warnings
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPoolingAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
MaskedLMOutput,
MultipleChoiceModelOutput,
NextSentencePredictorOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from transformers.utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from transformers.models.bert.configuration_bert import BertConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "bert-base-uncased"
_CONFIG_FOR_DOC = "BertConfig"
_TOKENIZER_FOR_DOC = "BertTokenizer"
# TokenClassification docstring
_CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "dbmdz/bert-large-cased-finetuned-conll03-english"
_TOKEN_CLASS_EXPECTED_OUTPUT = (
"['O', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC'] "
)
_TOKEN_CLASS_EXPECTED_LOSS = 0.01
# QuestionAnswering docstring
_CHECKPOINT_FOR_QA = "deepset/bert-base-cased-squad2"
_QA_EXPECTED_OUTPUT = "'a nice puppet'"
_QA_EXPECTED_LOSS = 7.41
_QA_TARGET_START_INDEX = 14
_QA_TARGET_END_INDEX = 15
# SequenceClassification docstring
_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "textattack/bert-base-uncased-yelp-polarity"
_SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_1'"
_SEQ_CLASS_EXPECTED_LOSS = 0.01
BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"bert-base-uncased",
"bert-large-uncased",
"bert-base-cased",
"bert-large-cased",
"bert-base-multilingual-uncased",
"bert-base-multilingual-cased",
"bert-base-chinese",
"bert-base-german-cased",
"bert-large-uncased-whole-word-masking",
"bert-large-cased-whole-word-masking",
"bert-large-uncased-whole-word-masking-finetuned-squad",
"bert-large-cased-whole-word-masking-finetuned-squad",
"bert-base-cased-finetuned-mrpc",
"bert-base-german-dbmdz-cased",
"bert-base-german-dbmdz-uncased",
"cl-tohoku/bert-base-japanese",
"cl-tohoku/bert-base-japanese-whole-word-masking",
"cl-tohoku/bert-base-japanese-char",
"cl-tohoku/bert-base-japanese-char-whole-word-masking",
"TurkuNLP/bert-base-finnish-cased-v1",
"TurkuNLP/bert-base-finnish-uncased-v1",
"wietsedv/bert-base-dutch-cased",
# See all BERT models at https://huggingface.co/models?filter=bert
]
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
"""Load tf checkpoints in a pytorch model."""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_path = os.path.abspath(tf_checkpoint_path)
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}")
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array)
for name, array in zip(names, arrays):
name = name.split("/")
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
for n in name
):
logger.info(f"Skipping {'/'.join(name)}")
continue
pointer = model
for m_name in name:
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
scope_names = re.split(r"_(\d+)", m_name)
else:
scope_names = [m_name]
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
pointer = getattr(pointer, "bias")
elif scope_names[0] == "output_weights":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "squad":
pointer = getattr(pointer, "classifier")
else:
try:
pointer = getattr(pointer, scope_names[0])
except AttributeError:
logger.info(f"Skipping {'/'.join(name)}")
continue
if len(scope_names) >= 2:
num = int(scope_names[1])
pointer = pointer[num]
if m_name[-11:] == "_embeddings":
pointer = getattr(pointer, "weight")
elif m_name == "kernel":
array = np.transpose(array)
try:
if pointer.shape != array.shape:
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
logger.info(f"Initialize PyTorch weight {name}")
pointer.data = torch.from_numpy(array)
return model
class BertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
if version.parse(torch.__version__) > version.parse("1.6.0"):
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long),
persistent=False,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values_length: int = 0,
) -> torch.Tensor:
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class BertSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
seq_length = hidden_states.size()[1]
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
class BertSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = BertSelfAttention(config, position_embedding_type=position_embedding_type)
self.output = BertSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class BertIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BertOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = BertAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = BertAttention(config, position_embedding_type="absolute")
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class BertEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, past_key_value, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
class BertPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class BertPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class BertLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = BertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
class BertOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = BertLMPredictionHead(config)
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
prediction_scores = self.predictions(sequence_output)
return prediction_scores
class BertOnlyNSPHead(nn.Module):
def __init__(self, config):
super().__init__()
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, pooled_output):
seq_relationship_score = self.seq_relationship(pooled_output)
return seq_relationship_score
class BertPreTrainingHeads(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = BertLMPredictionHead(config)
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, sequence_output, pooled_output):
prediction_scores = self.predictions(sequence_output)
seq_relationship_score = self.seq_relationship(pooled_output)
return prediction_scores, seq_relationship_score
class BertPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BertConfig
load_tf_weights = load_tf_weights_in_bert
base_model_prefix = "bert"
supports_gradient_checkpointing = True
_keys_to_ignore_on_load_missing = [r"position_ids"]
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, BertEncoder):
module.gradient_checkpointing = value
@dataclass
class BertForPreTrainingOutput(ModelOutput):
"""
Output type of [`BertForPreTraining`].
Args:
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of the masked language modeling loss and the next sequence prediction
(classification) loss.
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
prediction_logits: torch.FloatTensor = None
seq_relationship_logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
BERT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`BertConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
BERT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`BertTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
BERT_START_DOCSTRING,
)
class BertModel(BertPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
"""
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = BertEmbeddings(config)
self.encoder = BertEncoder(config)
self.pooler = BertPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings(
"""
Bert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
sentence prediction (classification)` head.
""",
BERT_START_DOCSTRING,
)
class BertForPreTraining(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.bert = BertModel(config)
self.cls = BertPreTrainingHeads(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=BertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
next_sentence_label: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BertForPreTrainingOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked),
the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence
pair (see `input_ids` docstring) Indices should be in `[0, 1]`:
- 0 indicates sequence B is a continuation of sequence A,
- 1 indicates sequence B is a random sequence.
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
Used to hide legacy arguments that have been deprecated.
Returns:
Example:
```python
>>> from transformers import BertTokenizer, BertForPreTraining
>>> import torch
>>> tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
>>> model = BertForPreTraining.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output, pooled_output = outputs[:2]
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
total_loss = None
if labels is not None and next_sentence_label is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
total_loss = masked_lm_loss + next_sentence_loss
if not return_dict:
output = (prediction_scores, seq_relationship_score) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return BertForPreTrainingOutput(
loss=total_loss,
prediction_logits=prediction_scores,
seq_relationship_logits=seq_relationship_score,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""Bert Model with a `language modeling` head on top for CLM fine-tuning.""", BERT_START_DOCSTRING
)
class BertLMHeadModel(BertPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
def __init__(self, config):
super().__init__(config)
if not config.is_decoder:
logger.warning("If you want to use `BertLMHeadModel` as a standalone, add `is_decoder=True.`")
self.bert = BertModel(config, add_pooling_layer=False)
self.cls = BertOnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutputWithCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.Tensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
lm_loss = None
if labels is not None:
# we are doing next-token prediction; shift prediction scores and input ids by one
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = CrossEntropyLoss()
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs):
input_shape = input_ids.shape
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_shape)
# cut decoder_input_ids if past is used
if past is not None:
input_ids = input_ids[:, -1:]
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past}
def _reorder_cache(self, past, beam_idx):
reordered_past = ()
for layer_past in past:
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
return reordered_past
@add_start_docstrings("""Bert Model with a `language modeling` head on top.""", BERT_START_DOCSTRING)
class BertForMaskedLM(BertPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
def __init__(self, config):
super().__init__(config)
if config.is_decoder:
logger.warning(
"If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.bert = BertModel(config, add_pooling_layer=False)
self.cls = BertOnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="'paris'",
expected_loss=0.88,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
input_shape = input_ids.shape
effective_batch_size = input_shape[0]
# add a dummy token
if self.config.pad_token_id is None:
raise ValueError("The PAD token should be defined for generation")
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
dummy_token = torch.full(
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
)
input_ids = torch.cat([input_ids, dummy_token], dim=1)
return {"input_ids": input_ids, "attention_mask": attention_mask}
@add_start_docstrings(
"""Bert Model with a `next sentence prediction (classification)` head on top.""",
BERT_START_DOCSTRING,
)
class BertForNextSentencePrediction(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.bert = BertModel(config)
self.cls = BertOnlyNSPHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple[torch.Tensor], NextSentencePredictorOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
(see `input_ids` docstring). Indices should be in `[0, 1]`:
- 0 indicates sequence B is a continuation of sequence A,
- 1 indicates sequence B is a random sequence.
Returns:
Example:
```python
>>> from transformers import BertTokenizer, BertForNextSentencePrediction
>>> import torch
>>> tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
>>> model = BertForNextSentencePrediction.from_pretrained("bert-base-uncased")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
```
"""
if "next_sentence_label" in kwargs:
warnings.warn(
"The `next_sentence_label` argument is deprecated and will be removed in a future version, use"
" `labels` instead.",
FutureWarning,
)
labels = kwargs.pop("next_sentence_label")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
seq_relationship_scores = self.cls(pooled_output)
next_sentence_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1))
if not return_dict:
output = (seq_relationship_scores,) + outputs[2:]
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
return NextSentencePredictorOutput(
loss=next_sentence_loss,
logits=seq_relationship_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
output) e.g. for GLUE tasks.
""",
BERT_START_DOCSTRING,
)
class BertForSequenceClassification(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.bert = BertModel(config)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
BERT_START_DOCSTRING,
)
class BertForMultipleChoice(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.bert = BertModel(config)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
BERT_START_DOCSTRING,
)
class BertForTokenClassification(BertPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.bert = BertModel(config, add_pooling_layer=False)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT,
expected_loss=_TOKEN_CLASS_EXPECTED_LOSS,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
BERT_START_DOCSTRING,
)
class BertForQuestionAnswering(BertPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.bert = BertModel(config, add_pooling_layer=False)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_QA,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
qa_target_start_index=_QA_TARGET_START_INDEX,
qa_target_end_index=_QA_TARGET_END_INDEX,
expected_output=_QA_EXPECTED_OUTPUT,
expected_loss=_QA_EXPECTED_LOSS,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
# coding=utf-8
# Copyright 2020 Microsoft and the Hugging Face Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch DeBERTa-v2 model."""
import math
from collections.abc import Sequence
from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
BaseModelOutput,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.pytorch_utils import softmax_backward_data
from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from transformers.models.deberta_v2.configuration_deberta_v2 import DebertaV2Config
from transformers import T5Tokenizer, T5ForConditionalGeneration, FillMaskPipeline
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "DebertaV2Config"
_TOKENIZER_FOR_DOC = "DebertaV2Tokenizer"
_CHECKPOINT_FOR_DOC = "microsoft/deberta-v2-xlarge"
DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = [
"microsoft/deberta-v2-xlarge",
"microsoft/deberta-v2-xxlarge",
"microsoft/deberta-v2-xlarge-mnli",
"microsoft/deberta-v2-xxlarge-mnli",
]
# Copied from transformers.models.deberta.modeling_deberta.ContextPooler
class ContextPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size)
self.dropout = StableDropout(config.pooler_dropout)
self.config = config
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
context_token = hidden_states[:, 0]
context_token = self.dropout(context_token)
pooled_output = self.dense(context_token)
pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output)
return pooled_output
@property
def output_dim(self):
return self.config.hidden_size
# Copied from transformers.models.deberta.modeling_deberta.XSoftmax with deberta->deberta_v2
class XSoftmax(torch.autograd.Function):
"""
Masked Softmax which is optimized for saving memory
Args:
input (`torch.tensor`): The input tensor that will apply softmax.
mask (`torch.IntTensor`):
The mask matrix where 0 indicate that element will be ignored in the softmax calculation.
dim (int): The dimension that will apply softmax
Example:
```python
>>> import torch
>>> from transformers.models.deberta_v2.modeling_deberta_v2 import XSoftmax
>>> # Make a tensor
>>> x = torch.randn([4, 20, 100])
>>> # Create a mask
>>> mask = (x > 0).int()
>>> # Specify the dimension to apply softmax
>>> dim = -1
>>> y = XSoftmax.apply(x, mask, dim)
```"""
@staticmethod
def forward(self, input, mask, dim):
self.dim = dim
rmask = ~(mask.to(torch.bool))
output = input.masked_fill(rmask, torch.tensor(torch.finfo(input.dtype).min))
output = torch.softmax(output, self.dim)
output.masked_fill_(rmask, 0)
self.save_for_backward(output)
return output
@staticmethod
def backward(self, grad_output):
(output,) = self.saved_tensors
inputGrad = softmax_backward_data(self, grad_output, output, self.dim, output)
return inputGrad, None, None
@staticmethod
def symbolic(g, self, mask, dim):
import torch.onnx.symbolic_helper as sym_help
from torch.onnx.symbolic_opset9 import masked_fill, softmax
mask_cast_value = g.op("Cast", mask, to_i=sym_help.cast_pytorch_to_onnx["Long"])
r_mask = g.op(
"Cast",
g.op("Sub", g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64)), mask_cast_value),
to_i=sym_help.cast_pytorch_to_onnx["Byte"],
)
output = masked_fill(
g, self, r_mask, g.op("Constant", value_t=torch.tensor(torch.finfo(self.type().dtype()).min))
)
output = softmax(g, output, dim)
return masked_fill(g, output, r_mask, g.op("Constant", value_t=torch.tensor(0, dtype=torch.uint8)))
# Copied from transformers.models.deberta.modeling_deberta.DropoutContext
class DropoutContext(object):
def __init__(self):
self.dropout = 0
self.mask = None
self.scale = 1
self.reuse_mask = True
# Copied from transformers.models.deberta.modeling_deberta.get_mask
def get_mask(input, local_context):
if not isinstance(local_context, DropoutContext):
dropout = local_context
mask = None
else:
dropout = local_context.dropout
dropout *= local_context.scale
mask = local_context.mask if local_context.reuse_mask else None
if dropout > 0 and mask is None:
mask = (1 - torch.empty_like(input).bernoulli_(1 - dropout)).to(torch.bool)
if isinstance(local_context, DropoutContext):
if local_context.mask is None:
local_context.mask = mask
return mask, dropout
# Copied from transformers.models.deberta.modeling_deberta.XDropout
class XDropout(torch.autograd.Function):
"""Optimized dropout function to save computation and memory by using mask operation instead of multiplication."""
@staticmethod
def forward(ctx, input, local_ctx):
mask, dropout = get_mask(input, local_ctx)
ctx.scale = 1.0 / (1 - dropout)
if dropout > 0:
ctx.save_for_backward(mask)
return input.masked_fill(mask, 0) * ctx.scale
else:
return input
@staticmethod
def backward(ctx, grad_output):
if ctx.scale > 1:
(mask,) = ctx.saved_tensors
return grad_output.masked_fill(mask, 0) * ctx.scale, None
else:
return grad_output, None
# Copied from transformers.models.deberta.modeling_deberta.StableDropout
class StableDropout(nn.Module):
"""
Optimized dropout module for stabilizing the training
Args:
drop_prob (float): the dropout probabilities
"""
def __init__(self, drop_prob):
super().__init__()
self.drop_prob = drop_prob
self.count = 0
self.context_stack = None
def forward(self, x):
"""
Call the module
Args:
x (`torch.tensor`): The input tensor to apply dropout
"""
if self.training and self.drop_prob > 0:
return XDropout.apply(x, self.get_context())
return x
def clear_context(self):
self.count = 0
self.context_stack = None
def init_context(self, reuse_mask=True, scale=1):
if self.context_stack is None:
self.context_stack = []
self.count = 0
for c in self.context_stack:
c.reuse_mask = reuse_mask
c.scale = scale
def get_context(self):
if self.context_stack is not None:
if self.count >= len(self.context_stack):
self.context_stack.append(DropoutContext())
ctx = self.context_stack[self.count]
ctx.dropout = self.drop_prob
self.count += 1
return ctx
else:
return self.drop_prob
# Copied from transformers.models.deberta.modeling_deberta.DebertaSelfOutput with DebertaLayerNorm->LayerNorm
class DebertaV2SelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
self.dropout = StableDropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.deberta.modeling_deberta.DebertaAttention with Deberta->DebertaV2
class DebertaV2Attention(nn.Module):
def __init__(self, config):
super().__init__()
self.self = DisentangledSelfAttention(config)
self.output = DebertaV2SelfOutput(config)
self.config = config
def forward(
self,
hidden_states,
attention_mask,
output_attentions=False,
query_states=None,
relative_pos=None,
rel_embeddings=None,
):
self_output = self.self(
hidden_states,
attention_mask,
output_attentions,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
)
if output_attentions:
self_output, att_matrix = self_output
if query_states is None:
query_states = hidden_states
attention_output = self.output(self_output, query_states)
if output_attentions:
return (attention_output, att_matrix)
else:
return attention_output
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->DebertaV2
class DebertaV2Intermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.deberta.modeling_deberta.DebertaOutput with DebertaLayerNorm->LayerNorm
class DebertaV2Output(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
self.dropout = StableDropout(config.hidden_dropout_prob)
self.config = config
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.deberta.modeling_deberta.DebertaLayer with Deberta->DebertaV2
class DebertaV2Layer(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = DebertaV2Attention(config)
self.intermediate = DebertaV2Intermediate(config)
self.output = DebertaV2Output(config)
def forward(
self,
hidden_states,
attention_mask,
query_states=None,
relative_pos=None,
rel_embeddings=None,
output_attentions=False,
):
attention_output = self.attention(
hidden_states,
attention_mask,
output_attentions=output_attentions,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
)
if output_attentions:
attention_output, att_matrix = attention_output
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
if output_attentions:
return (layer_output, att_matrix)
else:
return layer_output
class ConvLayer(nn.Module):
def __init__(self, config):
super().__init__()
kernel_size = getattr(config, "conv_kernel_size", 3)
groups = getattr(config, "conv_groups", 1)
self.conv_act = getattr(config, "conv_act", "tanh")
self.conv = nn.Conv1d(
config.hidden_size, config.hidden_size, kernel_size, padding=(kernel_size - 1) // 2, groups=groups
)
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
self.dropout = StableDropout(config.hidden_dropout_prob)
self.config = config
def forward(self, hidden_states, residual_states, input_mask):
out = self.conv(hidden_states.permute(0, 2, 1).contiguous()).permute(0, 2, 1).contiguous()
rmask = (1 - input_mask).bool()
out.masked_fill_(rmask.unsqueeze(-1).expand(out.size()), 0)
out = ACT2FN[self.conv_act](self.dropout(out))
layer_norm_input = residual_states + out
output = self.LayerNorm(layer_norm_input).to(layer_norm_input)
if input_mask is None:
output_states = output
else:
if input_mask.dim() != layer_norm_input.dim():
if input_mask.dim() == 4:
input_mask = input_mask.squeeze(1).squeeze(1)
input_mask = input_mask.unsqueeze(2)
input_mask = input_mask.to(output.dtype)
output_states = output * input_mask
return output_states
class DebertaV2Encoder(nn.Module):
"""Modified BertEncoder with relative position bias support"""
def __init__(self, config):
super().__init__()
self.layer = nn.ModuleList([DebertaV2Layer(config) for _ in range(config.num_hidden_layers)])
self.relative_attention = getattr(config, "relative_attention", False)
if self.relative_attention:
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
if self.max_relative_positions < 1:
self.max_relative_positions = config.max_position_embeddings
self.position_buckets = getattr(config, "position_buckets", -1)
pos_ebd_size = self.max_relative_positions * 2
if self.position_buckets > 0:
pos_ebd_size = self.position_buckets * 2
# rel = nn.Parameter(torch.empty((pos_ebd_size, config.hidden_size)))
# self.rel_embeddings = nn.init.normal_(rel, mean=0.0, std=config.initializer_range)
self.rel_embeddings = nn.Embedding(pos_ebd_size, config.hidden_size)
self.norm_rel_ebd = [x.strip() for x in getattr(config, "norm_rel_ebd", "none").lower().split("|")]
if "layer_norm" in self.norm_rel_ebd:
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True)
self.conv = ConvLayer(config) if getattr(config, "conv_kernel_size", 0) > 0 else None
self.gradient_checkpointing = False
def get_rel_embedding(self):
att_span = self.position_buckets
rel_index = torch.arange(0, att_span * 2).long().to(self.rel_embeddings.weight.device)
rel_embeddings = self.rel_embeddings(rel_index)
# rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None
# rel_embeddings = self.rel_embeddings if self.relative_attention else None
if rel_embeddings is not None and ("layer_norm" in self.norm_rel_ebd):
rel_embeddings = self.LayerNorm(rel_embeddings)
return rel_embeddings
def get_attention_mask(self, attention_mask):
if attention_mask.dim() <= 2:
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1)
attention_mask = attention_mask.byte()
elif attention_mask.dim() == 3:
attention_mask = attention_mask.unsqueeze(1)
return attention_mask
def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
if self.relative_attention and relative_pos is None:
q = query_states.size(-2) if query_states is not None else hidden_states.size(-2)
relative_pos = build_relative_position(
q, hidden_states.size(-2), bucket_size=self.position_buckets, max_position=self.max_relative_positions
)
return relative_pos
def forward(
self,
hidden_states,
attention_mask,
output_hidden_states=True,
output_attentions=False,
query_states=None,
relative_pos=None,
return_dict=True,
):
if attention_mask.dim() <= 2:
input_mask = attention_mask
else:
input_mask = (attention_mask.sum(-2) > 0).byte()
attention_mask = self.get_attention_mask(attention_mask)
relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
if isinstance(hidden_states, Sequence):
next_kv = hidden_states[0]
else:
next_kv = hidden_states
rel_embeddings = self.get_rel_embedding()
output_states = next_kv
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (output_states,)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
output_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
next_kv,
attention_mask,
query_states,
relative_pos,
rel_embeddings,
)
else:
output_states = layer_module(
next_kv,
attention_mask,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
output_attentions=output_attentions,
)
if output_attentions:
output_states, att_m = output_states
if i == 0 and self.conv is not None:
output_states = self.conv(hidden_states, output_states, input_mask)
if query_states is not None:
query_states = output_states
if isinstance(hidden_states, Sequence):
next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None
else:
next_kv = output_states
if output_attentions:
all_attentions = all_attentions + (att_m,)
if output_hidden_states:
all_hidden_states = all_hidden_states + (output_states,)
if not return_dict:
return tuple(v for v in [output_states, all_hidden_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=output_states, hidden_states=all_hidden_states, attentions=all_attentions
)
def make_log_bucket_position(relative_pos, bucket_size, max_position):
sign = np.sign(relative_pos)
mid = bucket_size // 2
abs_pos = np.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, np.abs(relative_pos))
log_pos = np.ceil(np.log(abs_pos / mid) / np.log((max_position - 1) / mid) * (mid - 1)) + mid
bucket_pos = np.where(abs_pos <= mid, relative_pos, log_pos * sign).astype(np.int)
return bucket_pos
def build_relative_position(query_size, key_size, bucket_size=-1, max_position=-1):
"""
Build relative position according to the query and key
We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key
\\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q -
P_k\\)
Args:
query_size (int): the length of query
key_size (int): the length of key
bucket_size (int): the size of position bucket
max_position (int): the maximum allowed absolute position
Return:
`torch.LongTensor`: A tensor with shape [1, query_size, key_size]
"""
q_ids = np.arange(0, query_size)
k_ids = np.arange(0, key_size)
rel_pos_ids = q_ids[:, None] - np.tile(k_ids, (q_ids.shape[0], 1))
if bucket_size > 0 and max_position > 0:
rel_pos_ids = make_log_bucket_position(rel_pos_ids, bucket_size, max_position)
rel_pos_ids = torch.tensor(rel_pos_ids, dtype=torch.long)
rel_pos_ids = rel_pos_ids[:query_size, :]
rel_pos_ids = rel_pos_ids.unsqueeze(0)
return rel_pos_ids
@torch.jit.script
# Copied from transformers.models.deberta.modeling_deberta.c2p_dynamic_expand
def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos):
return c2p_pos.expand([query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)])
@torch.jit.script
# Copied from transformers.models.deberta.modeling_deberta.p2c_dynamic_expand
def p2c_dynamic_expand(c2p_pos, query_layer, key_layer):
return c2p_pos.expand([query_layer.size(0), query_layer.size(1), key_layer.size(-2), key_layer.size(-2)])
@torch.jit.script
# Copied from transformers.models.deberta.modeling_deberta.pos_dynamic_expand
def pos_dynamic_expand(pos_index, p2c_att, key_layer):
return pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2)))
class DisentangledSelfAttention(nn.Module):
"""
Disentangled self-attention module
Parameters:
config (`DebertaV2Config`):
A model config class instance with the configuration to build a new model. The schema is similar to
*BertConfig*, for more details, please refer [`DebertaV2Config`]
"""
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
_attention_head_size = config.hidden_size // config.num_attention_heads
self.attention_head_size = getattr(config, "attention_head_size", _attention_head_size)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
self.key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
self.value_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
self.share_att_key = getattr(config, "share_att_key", False)
self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else []
self.relative_attention = getattr(config, "relative_attention", False)
if self.relative_attention:
self.position_buckets = getattr(config, "position_buckets", -1)
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
if self.max_relative_positions < 1:
self.max_relative_positions = config.max_position_embeddings
self.pos_ebd_size = self.max_relative_positions
if self.position_buckets > 0:
self.pos_ebd_size = self.position_buckets
self.pos_dropout = StableDropout(config.hidden_dropout_prob)
if not self.share_att_key:
if "c2p" in self.pos_att_type:
self.pos_key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
if "p2c" in self.pos_att_type:
self.pos_query_proj = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = StableDropout(config.attention_probs_dropout_prob)
# self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True)
def transpose_for_scores(self, x, attention_heads):
new_x_shape = x.size()[:-1] + (attention_heads, -1)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3).contiguous().view(-1, x.size(1), x.size(-1))
def forward(
self,
hidden_states,
attention_mask,
output_attentions=False,
query_states=None,
relative_pos=None,
rel_embeddings=None,
):
"""
Call the module
Args:
hidden_states (`torch.FloatTensor`):
Input states to the module usually the output from previous layer, it will be the Q,K and V in
*Attention(Q,K,V)*
attention_mask (`torch.ByteTensor`):
An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum
sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j*
th token.
output_attentions (`bool`, optional):
Whether return the attention matrix.
query_states (`torch.FloatTensor`, optional):
The *Q* state in *Attention(Q,K,V)*.
relative_pos (`torch.LongTensor`):
The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with
values ranging in [*-max_relative_positions*, *max_relative_positions*].
rel_embeddings (`torch.FloatTensor`):
The embedding of relative distances. It's a tensor of shape [\\(2 \\times
\\text{max_relative_positions}\\), *hidden_size*].
"""
if query_states is None:
query_states = hidden_states
query_layer = self.transpose_for_scores(self.query_proj(query_states), self.num_attention_heads)
key_layer = self.transpose_for_scores(self.key_proj(hidden_states), self.num_attention_heads)
value_layer = self.transpose_for_scores(self.value_proj(hidden_states), self.num_attention_heads)
rel_att = None
# Take the dot product between "query" and "key" to get the raw attention scores.
scale_factor = 1
if "c2p" in self.pos_att_type:
scale_factor += 1
if "p2c" in self.pos_att_type:
scale_factor += 1
scale = math.sqrt(query_layer.size(-1) * scale_factor)
attention_scores = torch.bmm(query_layer, key_layer.transpose(-1, -2)) / scale
if self.relative_attention:
rel_embeddings = self.pos_dropout(rel_embeddings)
rel_att = self.disentangled_attention_bias(
query_layer, key_layer, relative_pos, rel_embeddings, scale_factor
)
if rel_att is not None:
attention_scores = attention_scores + rel_att
attention_scores = attention_scores
attention_scores = attention_scores.view(
-1, self.num_attention_heads, attention_scores.size(-2), attention_scores.size(-1)
)
# bsz x height x length x dimension
attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1)
attention_probs = self.dropout(attention_probs)
context_layer = torch.bmm(
attention_probs.view(-1, attention_probs.size(-2), attention_probs.size(-1)), value_layer
)
context_layer = (
context_layer.view(-1, self.num_attention_heads, context_layer.size(-2), context_layer.size(-1))
.permute(0, 2, 1, 3)
.contiguous()
)
new_context_layer_shape = context_layer.size()[:-2] + (-1,)
context_layer = context_layer.view(new_context_layer_shape)
if output_attentions:
return (context_layer, attention_probs)
else:
return context_layer
def disentangled_attention_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor):
if relative_pos is None:
q = query_layer.size(-2)
relative_pos = build_relative_position(
q, key_layer.size(-2), bucket_size=self.position_buckets, max_position=self.max_relative_positions
)
if relative_pos.dim() == 2:
relative_pos = relative_pos.unsqueeze(0).unsqueeze(0)
elif relative_pos.dim() == 3:
relative_pos = relative_pos.unsqueeze(1)
# bsz x height x query x key
elif relative_pos.dim() != 4:
raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}")
att_span = self.pos_ebd_size
relative_pos = relative_pos.long().to(query_layer.device)
# rel_index = torch.arange(0, att_span * 2).long().to(query_layer.device)
# rel_embeddings = rel_embeddings(rel_index).unsqueeze(0)
rel_embeddings = rel_embeddings.unsqueeze(0)
# rel_embeddings = rel_embeddings.unsqueeze(0)
# rel_embeddings = rel_embeddings[0 : att_span * 2, :].unsqueeze(0)
if self.share_att_key:
pos_query_layer = self.transpose_for_scores(
self.query_proj(rel_embeddings), self.num_attention_heads
).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1)
pos_key_layer = self.transpose_for_scores(self.key_proj(rel_embeddings), self.num_attention_heads).repeat(
query_layer.size(0) // self.num_attention_heads, 1, 1
)
else:
if "c2p" in self.pos_att_type:
pos_key_layer = self.transpose_for_scores(
self.pos_key_proj(rel_embeddings), self.num_attention_heads
).repeat(
query_layer.size(0) // self.num_attention_heads, 1, 1
) # .split(self.all_head_size, dim=-1)
if "p2c" in self.pos_att_type:
pos_query_layer = self.transpose_for_scores(
self.pos_query_proj(rel_embeddings), self.num_attention_heads
).repeat(
query_layer.size(0) // self.num_attention_heads, 1, 1
) # .split(self.all_head_size, dim=-1)
score = 0
# content->position
if "c2p" in self.pos_att_type:
scale = math.sqrt(pos_key_layer.size(-1) * scale_factor)
c2p_att = torch.bmm(query_layer, pos_key_layer.transpose(-1, -2))
c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1)
c2p_att = torch.gather(
c2p_att,
dim=-1,
index=c2p_pos.squeeze(0).expand([query_layer.size(0), query_layer.size(1), relative_pos.size(-1)]),
)
score += c2p_att / scale
# position->content
if "p2c" in self.pos_att_type:
scale = math.sqrt(pos_query_layer.size(-1) * scale_factor)
if key_layer.size(-2) != query_layer.size(-2):
r_pos = build_relative_position(
key_layer.size(-2),
key_layer.size(-2),
bucket_size=self.position_buckets,
max_position=self.max_relative_positions,
).to(query_layer.device)
r_pos = r_pos.unsqueeze(0)
else:
r_pos = relative_pos
p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1)
p2c_att = torch.bmm(key_layer, pos_query_layer.transpose(-1, -2))
p2c_att = torch.gather(
p2c_att,
dim=-1,
index=p2c_pos.squeeze(0).expand([query_layer.size(0), key_layer.size(-2), key_layer.size(-2)]),
).transpose(-1, -2)
score += p2c_att / scale
return score
# Copied from transformers.models.deberta.modeling_deberta.DebertaEmbeddings with DebertaLayerNorm->LayerNorm
class DebertaV2Embeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
pad_token_id = getattr(config, "pad_token_id", 0)
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
self.word_embeddings = nn.Embedding(config.vocab_size, self.embedding_size, padding_idx=pad_token_id)
self.position_biased_input = getattr(config, "position_biased_input", True)
if not self.position_biased_input:
self.position_embeddings = None
else:
self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.embedding_size)
if config.type_vocab_size > 0:
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, self.embedding_size)
if self.embedding_size != config.hidden_size:
self.embed_proj = nn.Linear(self.embedding_size, config.hidden_size, bias=False)
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
self.dropout = StableDropout(config.hidden_dropout_prob)
self.config = config
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, mask=None, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
if self.position_embeddings is not None:
position_embeddings = self.position_embeddings(position_ids.long())
else:
position_embeddings = torch.zeros_like(inputs_embeds)
embeddings = inputs_embeds
if self.position_biased_input:
embeddings += position_embeddings
if self.config.type_vocab_size > 0:
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings += token_type_embeddings
if self.embedding_size != self.config.hidden_size:
embeddings = self.embed_proj(embeddings)
embeddings = self.LayerNorm(embeddings)
if mask is not None:
if mask.dim() != embeddings.dim():
if mask.dim() == 4:
mask = mask.squeeze(1).squeeze(1)
mask = mask.unsqueeze(2)
mask = mask.to(embeddings.dtype)
embeddings = embeddings * mask
embeddings = self.dropout(embeddings)
return embeddings
# Copied from transformers.models.deberta.modeling_deberta.DebertaPreTrainedModel with Deberta->DebertaV2
class DebertaV2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DebertaV2Config
base_model_prefix = "deberta"
_keys_to_ignore_on_load_missing = ["position_ids"]
_keys_to_ignore_on_load_unexpected = ["position_embeddings"]
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, DebertaV2Encoder):
module.gradient_checkpointing = value
DEBERTA_START_DOCSTRING = r"""
The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled
Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. It's build
on top of BERT/RoBERTa with two improvements, i.e. disentangled attention and enhanced mask decoder. With those two
improvements, it out perform BERT/RoBERTa on a majority of tasks with 80GB pretraining data.
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.```
Parameters:
config ([`DebertaV2Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
DEBERTA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`DebertaV2Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare DeBERTa Model transformer outputting raw hidden-states without any specific head on top.",
DEBERTA_START_DOCSTRING,
)
# Copied from transformers.models.deberta.modeling_deberta.DebertaModel with Deberta->DebertaV2
class DebertaV2Model(DebertaV2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.embeddings = DebertaV2Embeddings(config)
self.encoder = DebertaV2Encoder(config)
self.z_steps = 0
self.config = config
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, new_embeddings):
self.embeddings.word_embeddings = new_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
raise NotImplementedError("The prune function is not implemented in DeBERTa model.")
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
embedding_output = self.embeddings(
input_ids=input_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
mask=attention_mask,
inputs_embeds=inputs_embeds,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask,
output_hidden_states=True,
output_attentions=output_attentions,
return_dict=return_dict,
)
encoded_layers = encoder_outputs[1]
if self.z_steps > 1:
hidden_states = encoded_layers[-2]
layers = [self.encoder.layer[-1] for _ in range(self.z_steps)]
query_states = encoded_layers[-1]
rel_embeddings = self.encoder.get_rel_embedding()
attention_mask = self.encoder.get_attention_mask(attention_mask)
rel_pos = self.encoder.get_rel_pos(embedding_output)
for layer in layers[1:]:
query_states = layer(
hidden_states,
attention_mask,
output_attentions=False,
query_states=query_states,
relative_pos=rel_pos,
rel_embeddings=rel_embeddings,
)
encoded_layers.append(query_states)
sequence_output = encoded_layers[-1]
if not return_dict:
return (sequence_output,) + encoder_outputs[(1 if output_hidden_states else 2) :]
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states if output_hidden_states else None,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings("""DeBERTa Model with a `language modeling` head on top.""", DEBERTA_START_DOCSTRING)
# Copied from transformers.models.deberta.modeling_deberta.DebertaForMaskedLM with Deberta->DebertaV2
class DebertaV2ForMaskedLM(DebertaV2PreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
def __init__(self, config):
super().__init__(config)
self.deberta = DebertaV2Model(config)
self.cls = DebertaV2OnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.deberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# copied from transformers.models.bert.BertPredictionHeadTransform with bert -> deberta
class DebertaV2PredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
# copied from transformers.models.bert.BertLMPredictionHead with bert -> deberta
class DebertaV2LMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = DebertaV2PredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
# copied from transformers.models.bert.BertOnlyMLMHead with bert -> deberta
class DebertaV2OnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = DebertaV2LMPredictionHead(config)
def forward(self, sequence_output):
prediction_scores = self.predictions(sequence_output)
return prediction_scores
@add_start_docstrings(
"""
DeBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
DEBERTA_START_DOCSTRING,
)
# Copied from transformers.models.deberta.modeling_deberta.DebertaForSequenceClassification with Deberta->DebertaV2
class DebertaV2ForSequenceClassification(DebertaV2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
num_labels = getattr(config, "num_labels", 2)
self.num_labels = num_labels
self.deberta = DebertaV2Model(config)
self.pooler = ContextPooler(config)
output_dim = self.pooler.output_dim
self.classifier = nn.Linear(output_dim, num_labels)
drop_out = getattr(config, "cls_dropout", None)
drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
self.dropout = StableDropout(drop_out)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.deberta.get_input_embeddings()
def set_input_embeddings(self, new_embeddings):
self.deberta.set_input_embeddings(new_embeddings)
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.deberta(
input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
encoder_layer = outputs[0]
pooled_output = self.pooler(encoder_layer)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
# regression task
loss_fn = nn.MSELoss()
logits = logits.view(-1).to(labels.dtype)
loss = loss_fn(logits, labels.view(-1))
elif labels.dim() == 1 or labels.size(-1) == 1:
label_index = (labels >= 0).nonzero()
labels = labels.long()
if label_index.size(0) > 0:
labeled_logits = torch.gather(
logits, 0, label_index.expand(label_index.size(0), logits.size(1))
)
labels = torch.gather(labels, 0, label_index.view(-1))
loss_fct = CrossEntropyLoss()
loss = loss_fct(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1))
else:
loss = torch.tensor(0).to(logits)
else:
log_softmax = nn.LogSoftmax(-1)
loss = -((log_softmax(logits) * labels).sum(-1)).mean()
elif self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
@add_start_docstrings(
"""
DeBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
DEBERTA_START_DOCSTRING,
)
# Copied from transformers.models.deberta.modeling_deberta.DebertaForTokenClassification with Deberta->DebertaV2
class DebertaV2ForTokenClassification(DebertaV2PreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.deberta = DebertaV2Model(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.deberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
@add_start_docstrings(
"""
DeBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
DEBERTA_START_DOCSTRING,
)
# Copied from transformers.models.deberta.modeling_deberta.DebertaForQuestionAnswering with Deberta->DebertaV2
class DebertaV2ForQuestionAnswering(DebertaV2PreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.deberta = DebertaV2Model(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.deberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
DeBERTa Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
DEBERTA_START_DOCSTRING,
)
class DebertaV2ForMultipleChoice(DebertaV2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
num_labels = getattr(config, "num_labels", 2)
self.num_labels = num_labels
self.deberta = DebertaV2Model(config)
self.pooler = ContextPooler(config)
output_dim = self.pooler.output_dim
self.classifier = nn.Linear(output_dim, 1)
drop_out = getattr(config, "cls_dropout", None)
drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
self.dropout = StableDropout(drop_out)
self.init_weights()
def get_input_embeddings(self):
return self.deberta.get_input_embeddings()
def set_input_embeddings(self, new_embeddings):
self.deberta.set_input_embeddings(new_embeddings)
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
flat_inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.deberta(
flat_input_ids,
position_ids=flat_position_ids,
token_type_ids=flat_token_type_ids,
attention_mask=flat_attention_mask,
inputs_embeds=flat_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
encoder_layer = outputs[0]
pooled_output = self.pooler(encoder_layer)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
import gzip
import random
from functools import partial
from time import time
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import tqdm
from packaging import version
from palm_pytorch import PaLM
from palm_pytorch.autoregressive_wrapper import AutoregressiveWrapper
from torch.utils.data import DataLoader, Dataset
import colossalai
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.nn.optimizer.gemini_optimizer import GeminiAdamOptimizer
from colossalai.nn.parallel import ZeroDDP
from colossalai.tensor import ColoParameter, ComputePattern, ComputeSpec, ProcessGroup, ReplicaSpec, ShardSpec
from colossalai.utils import MultiTimer, get_current_device
from colossalai.utils.model.colo_init_context import ColoInitContext
# constants
NUM_BATCHES = int(10)
WARMUP_BATCHES = 1
GRADIENT_ACCUMULATE_EVERY = 1
LEARNING_RATE = 2e-4
VALIDATE_EVERY = 100
GENERATE_EVERY = 500
GENERATE_LENGTH = 512
SEQ_LEN = 1024
def parse_args():
parser = colossalai.get_default_parser()
parser.add_argument(
"--distplan",
type=str,
default='colossalai',
help="The distributed plan [colossalai, pytorch].",
)
parser.add_argument(
"--tp_degree",
type=int,
default=1,
help="Tensor Parallelism Degree. Valid when using colossalai as dist plan.",
)
parser.add_argument(
"--placement",
type=str,
default='cpu',
help="Placement Policy for Gemini. Valid when using colossalai as dist plan.",
)
parser.add_argument(
"--shardinit",
type=bool,
default=False,
help=
"Shard the tensors when init the model to shrink peak memory size on the assigned device. Valid when using colossalai as dist plan.",
)
parser.add_argument(
"--batch_size",
type=int,
default=8,
help="batch size per DP group of training.",
)
parser.add_argument(
"--dummy_data",
type=bool,
default=False,
help="use dummy dataset.",
)
args = parser.parse_args()
return args
# helpers
def cycle(loader):
while True:
for data in loader:
yield data
def decode_token(token):
return str(chr(max(32, token)))
def get_tflops(model_numel, batch_size, seq_len, step_time):
return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12)
def decode_tokens(tokens):
return "".join(list(map(decode_token, tokens)))
def get_model_size(model: nn.Module):
total_numel = 0
for module in model.modules():
for p in module.parameters(recurse=False):
total_numel += p.numel()
return total_numel
# Gemini + ZeRO DDP
def gemini_zero_dpp(model: torch.nn.Module, pg: ProcessGroup, placememt_policy: str = "auto"):
cai_version = colossalai.__version__
if version.parse(cai_version) > version.parse("0.1.10"):
from colossalai.nn.parallel import GeminiDDP
model = GeminiDDP(model,
device=get_current_device(),
placement_policy=placememt_policy,
pin_memory=True,
search_range_mb=32)
elif version.parse(cai_version) <= version.parse("0.1.10") and version.parse(cai_version) >= version.parse("0.1.9"):
from colossalai.gemini import ChunkManager, GeminiManager
chunk_size = ChunkManager.search_chunk_size(model, 64 * 1024**2, 32)
gemini_manager = GeminiManager(placememt_policy, chunk_manager)
chunk_manager = ChunkManager(chunk_size,
pg,
enable_distributed_storage=True,
init_device=GeminiManager.get_default_device(placememt_policy))
model = ZeroDDP(model, gemini_manager)
else:
raise NotImplemented(f"CAI version {cai_version} is not supported")
return model
## Parameter Sharding Strategies for Tensor Parallelism
def split_param_single_dim_tp1d(dim: int, param: ColoParameter, pg: ProcessGroup):
spec = (ShardSpec([dim], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
param.set_tensor_spec(*spec)
def split_param_row_tp1d(param: ColoParameter, pg: ProcessGroup):
split_param_single_dim_tp1d(0, param, pg)
def split_param_col_tp1d(param: ColoParameter, pg: ProcessGroup):
split_param_single_dim_tp1d(-1, param, pg)
# Tensor Parallel
def tensor_parallelize(model: torch.nn.Module, pg: ProcessGroup):
"""tensor_parallelize
Sharding the Model Parameters.
Args:
model (torch.nn.Module): a torch module to be sharded
"""
for mn, module in model.named_modules():
for pn, param in module.named_parameters(recurse=False):
if hasattr(param, 'visited'):
continue
param.set_dist_spec(ReplicaSpec())
if 'net.0' in mn:
split_param_col_tp1d(param, pg) # colmn slice
elif 'to_q' in mn:
split_param_col_tp1d(param, pg) # colmn slice
elif 'to_kv' in mn:
split_param_row_tp1d(param, pg) # row slice
elif 'to_out' in mn:
split_param_row_tp1d(param, pg) # row slice
elif '1.1' in mn:
split_param_col_tp1d(param, pg) # colmn slice
elif '1.2' in mn:
split_param_row_tp1d(param, pg) # row slice
else:
param.set_dist_spec(ReplicaSpec())
param.visited = True
args = parse_args()
if args.distplan not in ["colossalai", "pytorch"]:
raise TypeError(f"{args.distplan} is error")
disable_existing_loggers()
colossalai.launch_from_torch(config={})
logger = get_dist_logger()
def generate_dataset(dummy_data: bool = False):
if not dummy_data:
with gzip.open("./data/enwik8.gz") as file:
X = np.fromstring(file.read(int(95e6)), dtype=np.uint8)
trX, vaX = np.split(X, [int(90e6)])
data_train, data_val = torch.from_numpy(trX), torch.from_numpy(vaX)
# print(f"data_train {data_train.shape} {data_train.dtype} {max(data_train)} {min(data_train)}")
# print(f"data_val {data_val.shape} {data_val.dtype} {max(data_val)} {min(data_val)}")
return data_train, data_val
else:
return torch.randint(0, 100, (90000000,)), torch.randint(0, 100, (5000000,))
data_train, data_val = generate_dataset(args.dummy_data)
print("generate dataset ready!")
class TextSamplerDataset(Dataset):
def __init__(self, data, seq_len):
super().__init__()
self.data = data
self.seq_len = seq_len
def __getitem__(self, index):
rand_start = torch.randint(0, self.data.size(0) - self.seq_len, (1,))
full_seq = self.data[rand_start:rand_start + self.seq_len + 1].long()
return full_seq.cuda()
def __len__(self):
return self.data.size(0) // self.seq_len
train_dataset = TextSamplerDataset(data_train, SEQ_LEN)
val_dataset = TextSamplerDataset(data_val, SEQ_LEN)
train_loader = cycle(DataLoader(train_dataset, batch_size=args.batch_size))
val_loader = cycle(DataLoader(val_dataset, batch_size=args.batch_size))
if args.distplan == "colossalai":
# instantiate GPT-like decoder model
default_pg = ProcessGroup(tp_degree=args.tp_degree)
default_dist_spec = ShardSpec([-1], [args.tp_degree]) if args.shardinit else None
ctx = ColoInitContext(device='cpu', default_dist_spec=default_dist_spec, default_pg=default_pg)
with ctx:
model = PaLM(num_tokens=50304, dim=4096, depth=64)
model = AutoregressiveWrapper(model, max_seq_len=SEQ_LEN)
pg = default_pg
tensor_parallelize(model, pg)
model = gemini_zero_dpp(model, pg, args.placement)
#optimizer
#optimizer = GeminiAdamOptimizer(model, lr=1e-7, initial_scale=2**5)
optimizer = GeminiAdamOptimizer(model, lr=LEARNING_RATE, initial_scale=2**5)
else:
model = PaLM(num_tokens=256, dim=512, depth=8)
model = AutoregressiveWrapper(model, max_seq_len=2048)
model.cuda()
optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
# model is shared after TP
numel = get_model_size(model)
get_tflops_func = partial(get_tflops, numel, args.batch_size, SEQ_LEN)
# training
model.train()
tflops_list = []
for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"):
if args.distplan == "colossalai":
optimizer.zero_grad()
start = time()
loss = model(next(train_loader))
fwd_end = time()
fwd_time = fwd_end - start
# loss.backward()
optimizer.backward(loss)
bwd_end = time()
bwd_time = bwd_end - fwd_end
# print(f"training loss: {loss.item()}")
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
# optim.step()
# optim.zero_grad()
optimizer.step()
optim_time = time() - bwd_end
step_time = time() - start
step_tflops = get_tflops_func(step_time)
logger.info(
f"[{i + 1}/{NUM_BATCHES}] Loss:{loss.item():.3f}, Step time: {step_time:.3f}s, TFLOPS: {get_tflops_func(step_time):.3f}, FWD time: {fwd_time:.3f}s, BWD time: {bwd_time:.3f}s, OPTIM time: {optim_time:.3f}s",
ranks=[0],
)
if i >= WARMUP_BATCHES:
tflops_list.append(step_tflops)
else:
for __ in range(GRADIENT_ACCUMULATE_EVERY):
loss = model(next(train_loader))
loss.backward()
print(f"training loss: {loss.item()}")
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optim.step()
optim.zero_grad()
tflops_list.sort()
median_index = ((NUM_BATCHES - WARMUP_BATCHES) >> 1) + WARMUP_BATCHES
logger.info(f"Median TFLOPS is {tflops_list[median_index]:.3f}")
# TODO
# if i % VALIDATE_EVERY == 0:
# model.eval()
# with torch.no_grad():
# loss = model(next(val_loader))
# print(f"validation loss: {loss.item()}")
# if i % GENERATE_EVERY == 0:
# model.eval()
# inp = random.choice(val_dataset)[:-1]
# prime = decode_tokens(inp)
# print(f"%s \n\n %s", (prime, "*" * 100))
# sample = model.generate(inp[None, ...], GENERATE_LENGTH)
# output_str = decode_tokens(sample[0])
# print(output_str)
|
import torch
import torch.nn.functional as F
from einops import rearrange
from torch import einsum, matmul, nn
# normalization
# they use layernorm without bias, something that pytorch does not offer
class LayerNorm(nn.Module):
def __init__(self, dim, eps=1e-5):
super().__init__()
self.eps = eps
self.gamma = nn.Parameter(torch.ones(dim))
self.register_buffer("beta", torch.zeros(dim))
def forward(self, x):
return F.layer_norm(x, x.shape[-1:], self.gamma, self.beta)
# parallel with residual
# discovered by Wang et al + EleutherAI from GPT-J fame
class ParallelResidual(nn.Module):
def __init__(self, *fns):
super().__init__()
self.fns = nn.ModuleList(fns)
def forward(self, x):
return x + sum([fn(x) for fn in self.fns])
# rotary positional embedding
# https://arxiv.org/abs/2104.09864
class RotaryEmbedding(nn.Module):
def __init__(self, dim):
super().__init__()
inv_freq = 1.0 / (10000**(torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
def forward(self, max_seq_len, *, device):
seq = torch.arange(max_seq_len, device=device)
#freqs = einsum("i , j -> i j", seq.type_as(self.inv_freq), self.inv_freq)
#freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
i, j = len(seq.type_as(self.inv_freq)), len(self.inv_freq)
freqs = matmul(seq.type_as(self.inv_freq).reshape(i, 1), self.inv_freq.reshape(1, j))
return torch.cat((freqs, freqs), dim=-1)
def rotate_half(x):
x = rearrange(x, "... (j d) -> ... j d", j=2)
x1, x2 = x.unbind(dim=-2)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(pos, t):
return (t * pos.cos()) + (rotate_half(t) * pos.sin())
# feedforward
# classic Noam Shazeer paper, except here they use SwiGLU instead of the more popular GEGLU
# https://arxiv.org/abs/2002.05202
class SwiGLU(nn.Module):
def forward(self, x):
x, gate = x.chunk(2, dim=-1)
return F.silu(gate) * x
def FeedForward(dim, mult=4):
inner_dim = int(dim * mult)
return nn.Sequential(
LayerNorm(dim),
nn.Linear(dim, inner_dim * 2, bias=False),
SwiGLU(),
nn.Linear(inner_dim, dim, bias=False),
)
# attention
class Attention(nn.Module):
def __init__(self, dim, dim_head=64, heads=8):
super().__init__()
inner_dim = dim_head * heads
self.norm = LayerNorm(dim)
self.heads = heads
self.scale = dim_head**-0.5
self.rotary_emb = RotaryEmbedding(dim_head)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim, dim_head * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
# for caching causal mask and rotary embeddings
self.register_buffer("mask", None, persistent=False)
self.register_buffer("pos_emb", None, persistent=False)
def get_mask(self, n, device):
if self.mask is not None and self.mask.shape[-1] >= n:
return self.mask[:n, :n]
mask = torch.ones((n, n), device=device, dtype=torch.bool).triu(1)
self.register_buffer("mask", mask, persistent=False)
return mask
def get_rotary_embedding(self, n, device):
if self.pos_emb is not None and self.pos_emb.shape[-2] >= n:
return self.pos_emb[:n]
pos_emb = self.rotary_emb(n, device=device)
self.register_buffer("position", pos_emb, persistent=False)
return pos_emb
def forward(self, x):
"""
einstein notation
b - batch
h - heads
n, i, j - sequence length (base sequence length, source, target)
d - feature dimension
"""
n, device, h = x.shape[1], x.device, self.heads
# pre layernorm
x = self.norm(x)
# queries, keys, values
q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim=-1))
# split heads
# they use multi-query single-key-value attention, yet another Noam Shazeer paper
# they found no performance loss past a certain scale, and more efficient decoding obviously
# https://arxiv.org/abs/1911.02150
q = rearrange(q, "b n (h d) -> b h n d", h=h)
# rotary embeddings
positions = self.get_rotary_embedding(n, device)
q, k = map(lambda t: apply_rotary_pos_emb(positions, t), (q, k))
# scale
q = q * self.scale
b, h, i, d, j = q.size(0), q.size(1), q.size(2), q.size(3), k.size(1)
# similarity
#sim = einsum("b h i d, b j d -> b h i j", q, k)
sim = matmul(q.reshape(b, h * i, d), k.transpose(1, 2))
sim = sim.reshape(b, h, i, j)
# causal mask
causal_mask = self.get_mask(n, device)
sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max)
# attention
sim = sim - sim.amax(dim=-1, keepdim=True).detach()
attn = sim.softmax(dim=-1)
b_, h_, i_, j_, d_ = attn.size(0), attn.size(1), attn.size(2), attn.size(3), v.size(2)
# aggregate values
#out = einsum("b h i j, b j d -> b h i d", attn, v)
out = matmul(attn.reshape(b_, h_ * i_, j_), v)
out = out.reshape(b_, h_, i_, d_)
# merge heads
out = rearrange(out, "b h n d -> b n (h d)")
return self.to_out(out)
# transformer
def PaLM(*, dim, num_tokens, depth, dim_head=64, heads=8, ff_mult=4):
net = nn.Sequential(
nn.Embedding(num_tokens, dim), *[
ParallelResidual(
Attention(dim=dim, dim_head=dim_head, heads=heads),
FeedForward(dim=dim, mult=ff_mult),
) for _ in range(depth)
], LayerNorm(dim), nn.Linear(dim, num_tokens, bias=False))
# they used embedding weight tied projection out to logits, not common, but works
net[-1].weight = net[0].weight
nn.init.normal_(net[0].weight, std=0.02)
return net
|
import torch
import torch.nn.functional as F
from einops import rearrange
from torch import nn
# helper function
def exists(val):
return val is not None
def eval_decorator(fn):
def inner(model, *args, **kwargs):
was_training = model.training
model.eval()
out = fn(model, *args, **kwargs)
model.train(was_training)
return out
return inner
# top k filtering
def top_k(logits, thres=0.9):
k = int((1 - thres) * logits.shape[-1])
val, ind = torch.topk(logits, k)
probs = torch.full_like(logits, float("-inf"))
probs.scatter_(1, ind, val)
return probs
class AutoregressiveWrapper(nn.Module):
def __init__(self, net, max_seq_len=2048, pad_value=0):
super().__init__()
self.max_seq_len = max_seq_len
self.pad_value = pad_value
self.net = net
@torch.no_grad()
@eval_decorator
def generate(self, start_tokens, seq_len, eos_token=None, temperature=1.0, filter_thres=0.9, **kwargs):
b, t, device = *start_tokens.shape, start_tokens.device
out = start_tokens
for _ in range(seq_len):
logits = self.net(out, **kwargs)[:, -1, :]
filtered_logits = top_k(logits, thres=filter_thres)
probs = F.softmax(filtered_logits / temperature, dim=-1)
sample = torch.multinomial(probs, 1)
out = torch.cat((out, sample), dim=-1)
if exists(eos_token):
is_eos_token = out == eos_token
if is_eos_token.any(dim=-1).all():
# mask out everything after the eos tokens
shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1))
mask = shifted_is_eos_tokens.float().cumsum(dim=-1) >= 1
out = out.masked_fill(mask, self.pad_value)
break
out = out[:, t:]
return out
def forward(self, x, **kwargs):
x_inp, x_labels = x[:, :-1], x[:, 1:]
logits = self.net(x_inp, **kwargs)
return F.cross_entropy(rearrange(logits, "b c n -> b n c"), x_labels)
|
from palm_pytorch.palm_pytorch import PaLM
|
#!/usr/bin/env python
# coding: utf-8
import argparse
import os
import re
import requests
COMMIT_API = 'https://api.github.com/repos/hpcaitech/ColossalAI/commits'
TAGS_API = 'https://api.github.com/repos/hpcaitech/ColossalAI/tags'
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--out', type=str, help='output path for the release draft', required=True)
parser.add_argument('--version', type=str, help='current version to release', required=True)
return parser.parse_args()
def get_latest_tag_commit(headers=None):
res = requests.get(url=TAGS_API, headers=headers)
data = res.json()
commit_hash = data[0]['commit']['sha']
version = data[0]['name']
return commit_hash, version
def get_commit_info(commit_hash, headers=None):
api = f'{COMMIT_API}/{commit_hash}'
res = requests.get(url=api, headers=headers)
return res.json()
def get_all_commit_info(since, headers=None):
page = 1
results = []
while True:
api = f'{COMMIT_API}?since={since}&per_page=100&page={page}'
resp = requests.get(url=api, headers=headers)
data = resp.json()
# exit when no more data
if len(data) == 0:
break
results.extend(data)
page += 1
return results
def collate_release_info(commit_info_list):
results = dict()
pattern = pattern = r'\[.*\]'
for commit_info in commit_info_list:
author = commit_info['commit']['author']['name']
try:
author_url = commit_info['author']['url']
except:
# author can be None
author_url = None
msg = commit_info['commit']['message']
match = re.search(pattern, msg)
if match:
tag = match.group().lstrip('[').rstrip(']').capitalize()
if tag not in results:
results[tag] = []
results[tag].append((msg, author, author_url))
return results
def generate_release_post_markdown(current_version, last_version, release_info):
text = []
# add highlights
highlights = "## What's Changed \n\n"
text.append(highlights)
# add items
for k, v in release_info.items():
topic = f"### {k} \n"
text.append(topic)
for msg, author, author_url in v:
# only keep the first line
msg = msg.split('\n')[0]
if author_url:
item = f'{msg} by [{author}]({author_url})\n'
else:
item = f'{msg} by {author}\n'
text.append(f'- {item}')
text.append('\n')
# add full change log
text.append(
f'**Full Changelog**: https://github.com/hpcaitech/ColossalAI/compare/{current_version}...{last_version}')
return text
if __name__ == '__main__':
args = parse_args()
token = os.environ['GITHUB_API_TOKEN']
headers = {'Authorization': token}
# get previous release tag
last_release_commit, last_version = get_latest_tag_commit(headers)
last_release_commit_info = get_commit_info(last_release_commit, headers=headers)
last_release_date = last_release_commit_info['commit']['author']['date']
# get the commits since last release
commit_info = get_all_commit_info(since=last_release_date, headers=headers)
commit_info = commit_info[:-1] # remove the release commit
# collate into markdown
release_info = collate_release_info(commit_info)
markdown_text = generate_release_post_markdown(args.version, last_version, release_info)
# write into a file
with open(args.out, 'w') as f:
for line in markdown_text:
f.write(line)
|
import argparse
import os
def compare_dirs(dir1, dir2):
# First, we need to check if the two directories exist
if not os.path.exists(dir1) or not os.path.exists(dir2):
return False
# Now, we compare the list of items in each directory
items1 = os.listdir(dir1)
items2 = os.listdir(dir2)
# If the number of items in each directory is different, the directories are different
if len(items1) != len(items2):
return False
# For each item in the first directory, we check if there is a corresponding item in the second directory
for item in items1:
item_path1 = os.path.join(dir1, item)
item_path2 = os.path.join(dir2, item)
# If the corresponding item doesn't exist in the second directory, the directories are different
if not os.path.exists(item_path2):
print(f'Found mismatch: {item_path1}, {item_path2}')
return False
# If the corresponding item is a directory, we compare the two directories recursively
if os.path.isdir(item_path1) and os.path.isdir(item_path2):
if not compare_dirs(item_path1, item_path2):
print(f'Found mismatch: {item_path1}, {item_path2}')
return False
# both are files
elif os.path.isfile(item_path1) and os.path.isfile(item_path2):
continue
# If the corresponding item is not a file or a directory, the directories are different
else:
print(f'Found mismatch: {item_path1}, {item_path2}')
return False
# If all items are the same, the directories are the same
return True
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--directory', help="The directory where the multi-language source files are kept.")
args = parser.parse_args()
i18n_folders = os.listdir(args.directory)
i18n_folders = [os.path.join(args.directory, val) for val in i18n_folders]
if len(i18n_folders) > 1:
for i in range(1, len(i18n_folders)):
dir1 = i18n_folders[0]
dir2 = i18n_folders[i]
print(f'comparing {dir1} vs {dir2}')
match = compare_dirs(i18n_folders[0], i18n_folders[i])
if not match:
print(
f"{dir1} and {dir2} don't match, please ensure that your documentation is available in different languages"
)
else:
print(f"{dir1} and {dir2} match")
|
import os
from dataclasses import dataclass
from datetime import datetime, timedelta
from typing import Any, Dict, List
import matplotlib.pyplot as plt
import pytz
import requests
import seaborn
from requests_toolbelt import MultipartEncoder
@dataclass
class Contributor:
"""
Dataclass for a github contributor.
Args:
name (str): name of the contributor
num_commits_this_week (int): number of commits made within one week
"""
name: str
num_commits_this_week: int
def plot_bar_chart(x: List[Any], y: List[Any], xlabel: str, ylabel: str, title: str, output_path: str) -> None:
"""
This function is a utility to plot the bar charts.
"""
plt.clf()
seaborn.color_palette()
fig = seaborn.barplot(x=x, y=y)
fig.set(xlabel=xlabel, ylabel=ylabel, title=title)
seaborn.despine()
plt.tight_layout()
plt.savefig(output_path, dpi=1200)
def get_issue_pull_request_comments(github_token: str, since: str) -> Dict[str, int]:
"""
Retrive the issue/PR comments made by our members in the last 7 days.
Args:
github_token (str): GitHub access token for API calls
since (str): the path parameter required by GitHub Restful APIs, in the format of YYYY-MM-DDTHH:MM:SSZ
"""
# prepare header
headers = {
'Authorization': f'Bearer {github_token}',
'Accept': 'application/vnd.github+json',
'X-GitHub-Api-Version': '2022-11-28'
}
user_engagement_count = {}
# do pagination to the API
page = 1
while True:
comment_api = f'https://api.github.com/repos/hpcaitech/ColossalAI/issues/comments?since={since}&page={page}'
comment_response = requests.get(comment_api, headers=headers).json()
if len(comment_response) == 0:
break
else:
for item in comment_response:
comment_author_relationship = item['author_association']
if comment_author_relationship != 'MEMBER':
# if the comment is not made by our member
# we don't count this comment towards user engagement
continue
issue_id = item['issue_url'].split('/')[-1]
issue_api = f'https://api.github.com/repos/hpcaitech/ColossalAI/issues/{issue_id}'
issue_response = requests.get(issue_api, headers=headers).json()
issue_author_relationship = issue_response['author_association']
if issue_author_relationship != 'MEMBER':
# this means that the issue/PR is not created by our own people
# any comments in this issue/PR by our member will be counted towards the leaderboard
member_name = item['user']['login']
if member_name in user_engagement_count:
user_engagement_count[member_name] += 1
else:
user_engagement_count[member_name] = 1
page += 1
return user_engagement_count
def get_discussion_comments(github_token, since) -> Dict[str, int]:
"""
Retrive the discussion comments made by our members in the last 7 days.
This is only available via the GitHub GraphQL API.
Args:
github_token (str): GitHub access token for API calls
since (Datetime): the query parameter to determine whether the comment is made this week
"""
# use graphql to get the discussions updated in the last 7 days
def _generate_discussion_query(num, cursor: str = None):
if cursor is None:
offset_str = ""
else:
offset_str = f", after: \"{cursor}\""
query = f"""
{{
repository(owner: "hpcaitech", name: "ColossalAI"){{
discussions(first: {num} {offset_str}){{
edges {{
cursor
node{{
title
author{{
login
}}
number
authorAssociation
updatedAt
}}
}}
}}
}}
}}
"""
return query
def _generate_comment_reply_count_for_discussion(discussion_number, num, cursor: str = None):
# here we assume that each comment will not have more than 100 replies for simplicity
# otherwise, we have to go through pagination for both comment and reply
if cursor is None:
offset_str = ""
else:
offset_str = f", before: \"{cursor}\""
query = f"""
{{
repository(owner: "hpcaitech", name: "ColossalAI"){{
discussion(number: {discussion_number}){{
title
comments(last: {num} {offset_str}){{
edges{{
cursor
node {{
author{{
login
}}
updatedAt
authorAssociation
replies (last: 100) {{
edges {{
node {{
author {{
login
}}
updatedAt
authorAssociation
}}
}}
}}
}}
}}
}}
}}
}}
}}
"""
return query
# a utility function to make call to Github GraphQL API
def _call_graphql_api(query):
headers = {"Authorization": f"Bearer {github_token}"}
json_data = {'query': query}
response = requests.post('https://api.github.com/graphql', json=json_data, headers=headers)
data = response.json()
return data
# get the discussion numbers updated in the last 7 days
discussion_numbers = []
num_per_request = 10
cursor = None
while True:
query = _generate_discussion_query(num_per_request, cursor)
data = _call_graphql_api(query)
found_discussion_out_of_time_range = False
edges = data['data']['repository']['discussions']['edges']
if len(edges) == 0:
break
else:
# keep the discussion whose author is not a member
for edge in edges:
# print the discussion title
discussion = edge['node']
discussion_updated_at = datetime.strptime(discussion['updatedAt'], "%Y-%m-%dT%H:%M:%SZ")
# check if the updatedAt is within the last 7 days
# if yes, add it to dicussion_numbers
if discussion_updated_at > since:
if discussion['authorAssociation'] != 'MEMBER':
discussion_numbers.append(discussion['number'])
else:
found_discussion_out_of_time_range = True
if found_discussion_out_of_time_range:
break
else:
# update cursor
cursor = edges[-1]['cursor']
# get the dicussion comments and replies made by our member
user_engagement_count = {}
for dicussion_number in discussion_numbers:
cursor = None
num_per_request = 10
while True:
query = _generate_comment_reply_count_for_discussion(dicussion_number, num_per_request, cursor)
data = _call_graphql_api(query)
# get the comments
edges = data['data']['repository']['discussion']['comments']['edges']
# update the cursor
if len(edges) == 0:
break
else:
# update cursor for pagination
cursor = edges[-1]['cursor']
for edge in edges:
comment = edge['node']
if comment['authorAssociation'] == 'MEMBER':
# check if the updatedAt is within the last 7 days
# if yes, add it to user_engagement_count
comment_updated_at = datetime.strptime(comment['updatedAt'], "%Y-%m-%dT%H:%M:%SZ")
if comment_updated_at > since:
member_name = comment['author']['login']
if member_name in user_engagement_count:
user_engagement_count[member_name] += 1
else:
user_engagement_count[member_name] = 1
# get the replies
reply_edges = comment['replies']['edges']
if len(reply_edges) == 0:
continue
else:
for reply_edge in reply_edges:
reply = reply_edge['node']
if reply['authorAssociation'] == 'MEMBER':
# check if the updatedAt is within the last 7 days
# if yes, add it to dicussion_numbers
reply_updated_at = datetime.strptime(reply['updatedAt'], "%Y-%m-%dT%H:%M:%SZ")
if reply_updated_at > since:
member_name = reply['author']['login']
if member_name in user_engagement_count:
user_engagement_count[member_name] += 1
else:
user_engagement_count[member_name] = 1
return user_engagement_count
def generate_user_engagement_leaderboard_image(github_token: str, output_path: str) -> bool:
"""
Generate the user engagement leaderboard image for stats within the last 7 days
Args:
github_token (str): GitHub access token for API calls
output_path (str): the path to save the image
"""
# request to the Github API to get the users who have replied the most in the last 7 days
now = datetime.utcnow()
start_datetime = now - timedelta(days=7)
start_datetime_str = start_datetime.strftime("%Y-%m-%dT%H:%M:%SZ")
# get the issue/PR comments and discussion comment count
issue_pr_engagement_count = get_issue_pull_request_comments(github_token=github_token, since=start_datetime_str)
discussion_engagement_count = get_discussion_comments(github_token=github_token, since=start_datetime)
total_engagement_count = {}
# update the total engagement count
total_engagement_count.update(issue_pr_engagement_count)
for name, count in discussion_engagement_count.items():
if name in total_engagement_count:
total_engagement_count[name] += count
else:
total_engagement_count[name] = count
# prepare the data for plotting
x = []
y = []
if len(total_engagement_count) > 0:
ranking = []
for name, count in total_engagement_count.items():
ranking.append((name, count))
ranking.sort(key=lambda x: x[1], reverse=True)
for name, count in ranking:
x.append(count)
y.append(name)
# use Shanghai time to display on the image
start_datetime_str = datetime.now(pytz.timezone('Asia/Shanghai')).strftime("%Y-%m-%dT%H:%M:%SZ")
# plot the leaderboard
xlabel = f"Number of Comments made (since {start_datetime_str})"
ylabel = "Member"
title = 'Active User Engagement Leaderboard'
plot_bar_chart(x, y, xlabel=xlabel, ylabel=ylabel, title=title, output_path=output_path)
return True
else:
return False
def generate_contributor_leaderboard_image(github_token, output_path) -> bool:
"""
Generate the contributor leaderboard image for stats within the last 7 days
Args:
github_token (str): GitHub access token for API calls
output_path (str): the path to save the image
"""
# request to the Github API to get the users who have contributed in the last 7 days
URL = 'https://api.github.com/repos/hpcaitech/ColossalAI/stats/contributors'
headers = {
'Authorization': f'Bearer {github_token}',
'Accept': 'application/vnd.github+json',
'X-GitHub-Api-Version': '2022-11-28'
}
while True:
response = requests.get(URL, headers=headers).json()
if len(response) != 0:
# sometimes the Github API returns empty response for unknown reason
# request again if the response is empty
break
contributor_list = []
# get number of commits for each contributor
start_timestamp = None
for item in response:
num_commits_this_week = item['weeks'][-1]['c']
name = item['author']['login']
contributor = Contributor(name=name, num_commits_this_week=num_commits_this_week)
contributor_list.append(contributor)
# update start_timestamp
start_timestamp = item['weeks'][-1]['w']
# convert unix timestamp to Beijing datetime
start_datetime = datetime.fromtimestamp(start_timestamp, tz=pytz.timezone('Asia/Shanghai'))
start_datetime_str = start_datetime.strftime("%Y-%m-%dT%H:%M:%SZ")
# sort by number of commits
contributor_list.sort(key=lambda x: x.num_commits_this_week, reverse=True)
# remove contributors who has zero commits
contributor_list = [x for x in contributor_list if x.num_commits_this_week > 0]
# prepare the data for plotting
x = [x.num_commits_this_week for x in contributor_list]
y = [x.name for x in contributor_list]
# plot
if len(x) > 0:
xlabel = f"Number of Commits (since {start_datetime_str})"
ylabel = "Contributor"
title = 'Active Contributor Leaderboard'
plot_bar_chart(x, y, xlabel=xlabel, ylabel=ylabel, title=title, output_path=output_path)
return True
else:
return False
def upload_image_to_lark(lark_tenant_token: str, image_path: str) -> str:
"""
Upload image to Lark and return the image key
Args:
lark_tenant_token (str): Lark tenant access token
image_path (str): the path to the image to be uploaded
"""
url = "https://open.feishu.cn/open-apis/im/v1/images"
form = {'image_type': 'message', 'image': (open(image_path, 'rb'))} # 需要替换具体的path
multi_form = MultipartEncoder(form)
headers = {
'Authorization': f'Bearer {lark_tenant_token}', ## 获取tenant_access_token, 需要替换为实际的token
}
headers['Content-Type'] = multi_form.content_type
response = requests.request("POST", url, headers=headers, data=multi_form).json()
return response['data']['image_key']
def generate_lark_tenant_access_token(app_id: str, app_secret: str) -> str:
"""
Generate Lark tenant access token.
Args:
app_id (str): Lark app id
app_secret (str): Lark app secret
"""
url = 'https://open.feishu.cn/open-apis/auth/v3/tenant_access_token/internal'
data = {'app_id': app_id, 'app_secret': app_secret}
response = requests.post(url, json=data).json()
return response['tenant_access_token']
def send_image_to_lark(image_key: str, webhook_url: str) -> None:
"""
Send image to Lark.
Args:
image_key (str): the image key returned by Lark
webhook_url (str): the webhook url to send the image
"""
data = {"msg_type": "image", "content": {"image_key": image_key}}
requests.post(webhook_url, json=data)
def send_message_to_lark(message: str, webhook_url: str):
"""
Send message to Lark.
Args:
message (str): the message to be sent
webhook_url (str): the webhook url to send the message
"""
data = {"msg_type": "text", "content": {"text": message}}
requests.post(webhook_url, json=data)
if __name__ == '__main__':
GITHUB_TOKEN = os.environ['GITHUB_TOKEN']
CONTRIBUTOR_IMAGE_PATH = 'contributor_leaderboard.png'
USER_ENGAGEMENT_IMAGE_PATH = 'engagement_leaderboard.png'
# generate images
contrib_success = generate_contributor_leaderboard_image(GITHUB_TOKEN, CONTRIBUTOR_IMAGE_PATH)
engagement_success = generate_user_engagement_leaderboard_image(GITHUB_TOKEN, USER_ENGAGEMENT_IMAGE_PATH)
# upload images
APP_ID = os.environ['LARK_APP_ID']
APP_SECRET = os.environ['LARK_APP_SECRET']
LARK_TENANT_TOKEN = generate_lark_tenant_access_token(app_id=APP_ID, app_secret=APP_SECRET)
contributor_image_key = upload_image_to_lark(LARK_TENANT_TOKEN, CONTRIBUTOR_IMAGE_PATH)
user_engagement_image_key = upload_image_to_lark(LARK_TENANT_TOKEN, USER_ENGAGEMENT_IMAGE_PATH)
# send message to lark
LARK_WEBHOOK_URL = os.environ['LARK_WEBHOOK_URL']
message = """本周的社区榜单出炉啦!
1. 开发贡献者榜单
2. 用户互动榜单
注:
- 开发贡献者测评标准为:本周由公司成员提交的commit次数
- 用户互动榜单测评标准为:本周由公司成员在非成员创建的issue/PR/discussion中回复的次数
"""
send_message_to_lark(message, LARK_WEBHOOK_URL)
# send contributor image to lark
if contrib_success:
send_image_to_lark(contributor_image_key, LARK_WEBHOOK_URL)
else:
send_message_to_lark("本周没有成员贡献commit,无榜单图片生成。", LARK_WEBHOOK_URL)
# send user engagement image to lark
if engagement_success:
send_image_to_lark(user_engagement_image_key, LARK_WEBHOOK_URL)
else:
send_message_to_lark("本周没有成员互动,无榜单图片生成。", LARK_WEBHOOK_URL)
|
import argparse
import requests
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('-m', '--message', type=str)
parser.add_argument('-u', '--url', type=str)
return parser.parse_args()
def send_message_to_lark(message, webhook_url):
data = {"msg_type": "text", "content": {"text": message}}
requests.post(webhook_url, json=data)
if __name__ == '__main__':
args = parse_args()
send_message_to_lark(args.message, args.url)
|
import argparse
import os
def check_inputs(input_list):
for path in input_list:
real_path = os.path.join('examples', path)
if not os.path.exists(real_path):
return False
return True
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-f', '--fileNameList', type=str, help="List of file names")
args = parser.parse_args()
name_list = args.fileNameList.split(",")
is_correct = check_inputs(name_list)
if is_correct:
print('success')
else:
print('failure')
if __name__ == '__main__':
main()
|
import argparse
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-f', '--fileNameList', type=str, help="The list of changed files")
args = parser.parse_args()
name_list = args.fileNameList.split(":")
folder_need_check = set()
for loc in name_list:
# Find only the sub-sub-folder of 'example' folder
# the examples folder structure is like
# - examples
# - area
# - application
# - file
if loc.split("/")[0] == "examples" and len(loc.split("/")) >= 4:
folder_need_check.add('/'.join(loc.split("/")[1:3]))
# Output the result using print. Then the shell can get the values.
print(list(folder_need_check))
if __name__ == '__main__':
main()
|
import os
def show_files(path, all_files):
# Traverse all the folder/file in current directory
file_list = os.listdir(path)
# Determine the element is folder or file. If file, pass it into list, if folder, recurse.
for file_name in file_list:
# Get the abs directory using os.path.join() and store into cur_path.
cur_path = os.path.join(path, file_name)
# Determine whether folder
if os.path.isdir(cur_path):
show_files(cur_path, all_files)
else:
all_files.append(cur_path)
return all_files
def join(input_list, sep=None):
return (sep or ' ').join(input_list)
def main():
contents = show_files('examples/', [])
all_loc = []
for file_loc in contents:
split_loc = file_loc.split('/')
# must have two sub-folder levels after examples folder, such as examples/images/vit is acceptable, examples/images/README.md is not, examples/requirements.txt is not.
if len(split_loc) >= 4:
re_loc = '/'.join(split_loc[1:3])
if re_loc not in all_loc:
all_loc.append(re_loc)
print(all_loc)
if __name__ == '__main__':
main()
|
from setuptools import find_packages, setup
def fetch_requirements(path):
with open(path, 'r') as fd:
return [r.strip() for r in fd.readlines()]
def fetch_readme():
with open('README.md', encoding='utf-8') as f:
return f.read()
def fetch_version():
with open('version.txt', 'r') as f:
return f.read().strip()
setup(
name='chatgpt',
version=fetch_version(),
packages=find_packages(exclude=(
'tests',
'benchmarks',
'*.egg-info',
)),
description='A RLFH implementation (ChatGPT) powered by ColossalAI',
long_description=fetch_readme(),
long_description_content_type='text/markdown',
license='Apache Software License 2.0',
url='https://github.com/hpcaitech/ChatGPT',
install_requires=fetch_requirements('requirements.txt'),
python_requires='>=3.6',
classifiers=[
'Programming Language :: Python :: 3',
'License :: OSI Approved :: Apache Software License',
'Environment :: GPU :: NVIDIA CUDA',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Topic :: System :: Distributed Computing',
],
)
|
import os
from copy import deepcopy
from functools import partial
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from chatgpt.experience_maker import NaiveExperienceMaker
from chatgpt.nn import GPTActor, GPTCritic, RewardModel
from chatgpt.replay_buffer import NaiveReplayBuffer
from chatgpt.trainer.strategies import ColossalAIStrategy, DDPStrategy
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils import free_port
def get_data(batch_size: int, seq_len: int = 10) -> dict:
input_ids = torch.randint(0, 50257, (batch_size, seq_len), device='cuda')
attention_mask = torch.ones_like(input_ids)
return dict(input_ids=input_ids, attention_mask=attention_mask)
def gather_and_equal(tensor: torch.Tensor) -> bool:
world_size = dist.get_world_size()
outputs = [torch.empty_like(tensor) for _ in range(world_size)]
dist.all_gather(outputs, tensor.contiguous())
for t in outputs[1:]:
if not torch.equal(outputs[0], t):
return False
return True
def run_test_data(strategy):
EXPERINCE_BATCH_SIZE = 4
SAMPLE_BATCH_SIZE = 2
if strategy == 'ddp':
strategy = DDPStrategy()
elif strategy == 'colossalai':
strategy = ColossalAIStrategy(placement_policy='cuda')
else:
raise ValueError(f'Unsupported strategy "{strategy}"')
actor = GPTActor().cuda()
critic = GPTCritic().cuda()
initial_model = deepcopy(actor)
reward_model = RewardModel(deepcopy(critic.model)).cuda()
experience_maker = NaiveExperienceMaker(actor, critic, reward_model, initial_model)
replay_buffer = NaiveReplayBuffer(SAMPLE_BATCH_SIZE, cpu_offload=False)
# experience of all ranks should be the same
for _ in range(2):
data = get_data(EXPERINCE_BATCH_SIZE)
assert gather_and_equal(data['input_ids'])
assert gather_and_equal(data['attention_mask'])
experience = experience_maker.make_experience(**data,
do_sample=True,
max_length=16,
eos_token_id=50256,
pad_token_id=50256)
assert gather_and_equal(experience.sequences)
assert gather_and_equal(experience.action_log_probs)
assert gather_and_equal(experience.values)
assert gather_and_equal(experience.reward)
assert gather_and_equal(experience.advantages)
assert gather_and_equal(experience.action_mask)
assert gather_and_equal(experience.attention_mask)
replay_buffer.append(experience)
# replay buffer's data should be the same
buffer_size = torch.tensor([len(replay_buffer)], device='cuda')
assert gather_and_equal(buffer_size)
for item in replay_buffer.items:
assert gather_and_equal(item.sequences)
assert gather_and_equal(item.action_log_probs)
assert gather_and_equal(item.values)
assert gather_and_equal(item.reward)
assert gather_and_equal(item.advantages)
assert gather_and_equal(item.action_mask)
assert gather_and_equal(item.attention_mask)
# dataloader of each rank should have the same size and different batch
dataloader = strategy.setup_dataloader(replay_buffer)
dataloader_size = torch.tensor([len(dataloader)], device='cuda')
assert gather_and_equal(dataloader_size)
for experience in dataloader:
assert not gather_and_equal(experience.sequences)
assert not gather_and_equal(experience.action_log_probs)
assert not gather_and_equal(experience.values)
assert not gather_and_equal(experience.reward)
assert not gather_and_equal(experience.advantages)
# action mask and attention mask may be same
def run_dist(rank, world_size, port, strategy):
os.environ['RANK'] = str(rank)
os.environ['LOCAL_RANK'] = str(rank)
os.environ['WORLD_SIZE'] = str(world_size)
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = str(port)
run_test_data(strategy)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [2])
@pytest.mark.parametrize('strategy', ['ddp', 'colossalai'])
@rerun_if_address_is_in_use()
def test_data(world_size, strategy):
run_func = partial(run_dist, world_size=world_size, port=free_port(), strategy=strategy)
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_data(2, 'colossalai')
|
import argparse
from copy import deepcopy
import pandas as pd
from chatgpt.nn import BLOOMActor, BLOOMCritic, GPTActor, GPTCritic, OPTActor, OPTCritic, RewardModel
from chatgpt.trainer import PPOTrainer
from chatgpt.trainer.strategies import ColossalAIStrategy, DDPStrategy, NaiveStrategy
from torch.optim import Adam
from transformers import AutoTokenizer, BloomTokenizerFast
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
from colossalai.nn.optimizer import HybridAdam
def main(args):
# configure strategy
if args.strategy == 'naive':
strategy = NaiveStrategy()
elif args.strategy == 'ddp':
strategy = DDPStrategy()
elif args.strategy == 'colossalai_gemini':
strategy = ColossalAIStrategy(stage=3, placement_policy='cuda')
elif args.strategy == 'colossalai_zero2':
strategy = ColossalAIStrategy(stage=2, placement_policy='cuda')
else:
raise ValueError(f'Unsupported strategy "{args.strategy}"')
# configure model
with strategy.model_init_context():
if args.model == 'gpt2':
actor = GPTActor().cuda()
critic = GPTCritic().cuda()
elif args.model == 'bloom':
actor = BLOOMActor(pretrained=args.pretrain, lora_rank=args.lora_rank).cuda()
critic = BLOOMCritic(pretrained=args.pretrain, lora_rank=args.lora_rank).cuda()
elif args.model == 'opt':
actor = OPTActor(lora_rank=args.lora_rank).cuda()
critic = OPTCritic(lora_rank=args.lora_rank).cuda()
else:
raise ValueError(f'Unsupported model "{args.model}"')
initial_model = deepcopy(actor)
reward_model = RewardModel(deepcopy(critic.model), deepcopy(critic.value_head)).cuda()
# configure optimizer
if args.strategy.startswith('colossalai'):
actor_optim = HybridAdam(actor.parameters(), lr=5e-6)
critic_optim = HybridAdam(critic.parameters(), lr=5e-6)
else:
actor_optim = Adam(actor.parameters(), lr=5e-6)
critic_optim = Adam(critic.parameters(), lr=5e-6)
# configure tokenizer
if args.model == 'gpt2':
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer.pad_token = tokenizer.eos_token
elif args.model == 'bloom':
tokenizer = BloomTokenizerFast.from_pretrained(args.pretrain)
tokenizer.pad_token = tokenizer.eos_token
elif args.model == 'opt':
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
else:
raise ValueError(f'Unsupported model "{args.model}"')
dataset = pd.read_csv(args.prompt_path)['prompt']
def tokenize_fn(texts):
batch = tokenizer(texts, return_tensors='pt', max_length=96, padding=True, truncation=True)
return {k: v.cuda() for k, v in batch.items()}
# configure trainer
trainer = PPOTrainer(
strategy,
actor,
critic,
reward_model,
initial_model,
actor_optim,
critic_optim,
max_epochs=args.max_epochs,
train_batch_size=args.train_batch_size,
tokenizer=tokenize_fn,
max_length=128,
do_sample=True,
temperature=1.0,
top_k=50,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
trainer.fit(dataset,
num_episodes=args.num_episodes,
max_timesteps=args.max_timesteps,
update_timesteps=args.update_timesteps)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('prompt_path')
parser.add_argument('--strategy',
choices=['naive', 'ddp', 'colossalai_gemini', 'colossalai_zero2'],
default='naive')
parser.add_argument('--model', default='gpt2', choices=['gpt2', 'bloom', 'opt'])
parser.add_argument('--pretrain', type=str, default=None)
parser.add_argument('--num_episodes', type=int, default=10)
parser.add_argument('--max_timesteps', type=int, default=10)
parser.add_argument('--update_timesteps', type=int, default=10)
parser.add_argument('--max_epochs', type=int, default=5)
parser.add_argument('--train_batch_size', type=int, default=8)
parser.add_argument('--lora_rank', type=int, default=0, help="low-rank adaptation matrices rank")
args = parser.parse_args()
main(args)
|
import argparse
from copy import deepcopy
import torch
from chatgpt.nn import BLOOMActor, BLOOMCritic, GPTActor, GPTCritic, OPTActor, OPTCritic, RewardModel
from chatgpt.trainer import PPOTrainer
from chatgpt.trainer.strategies import ColossalAIStrategy, DDPStrategy, NaiveStrategy
from torch.optim import Adam
from transformers import AutoTokenizer, BloomTokenizerFast
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
from colossalai.nn.optimizer import HybridAdam
def preprocess_batch(samples):
input_ids = torch.stack(samples)
attention_mask = torch.ones_like(input_ids, dtype=torch.long)
return {'input_ids': input_ids, 'attention_mask': attention_mask}
def main(args):
# configure strategy
if args.strategy == 'naive':
strategy = NaiveStrategy()
elif args.strategy == 'ddp':
strategy = DDPStrategy()
elif args.strategy == 'colossalai_gemini':
strategy = ColossalAIStrategy(stage=3, placement_policy='cuda')
elif args.strategy == 'colossalai_zero2':
strategy = ColossalAIStrategy(stage=2, placement_policy='cuda')
else:
raise ValueError(f'Unsupported strategy "{args.strategy}"')
# configure model
with strategy.model_init_context():
if args.model == 'gpt2':
actor = GPTActor().cuda()
critic = GPTCritic().cuda()
elif args.model == 'bloom':
actor = BLOOMActor(pretrained=args.pretrain, lora_rank=args.lora_rank).cuda()
critic = BLOOMCritic(pretrained=args.pretrain, lora_rank=args.lora_rank).cuda()
elif args.model == 'opt':
actor = OPTActor().cuda()
critic = OPTCritic().cuda()
else:
raise ValueError(f'Unsupported model "{args.model}"')
initial_model = deepcopy(actor).cuda()
reward_model = RewardModel(deepcopy(critic.model), deepcopy(critic.value_head)).cuda()
# configure optimizer
if args.strategy.startswith('colossalai'):
actor_optim = HybridAdam(actor.parameters(), lr=5e-6)
critic_optim = HybridAdam(critic.parameters(), lr=5e-6)
else:
actor_optim = Adam(actor.parameters(), lr=5e-6)
critic_optim = Adam(critic.parameters(), lr=5e-6)
# configure tokenizer
if args.model == 'gpt2':
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer.pad_token = tokenizer.eos_token
elif args.model == 'bloom':
tokenizer = BloomTokenizerFast.from_pretrained(args.pretrain)
tokenizer.pad_token = tokenizer.eos_token
elif args.model == 'opt':
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
else:
raise ValueError(f'Unsupported model "{args.model}"')
# configure trainer
trainer = PPOTrainer(
strategy,
actor,
critic,
reward_model,
initial_model,
actor_optim,
critic_optim,
max_epochs=args.max_epochs,
train_batch_size=args.train_batch_size,
tokenizer=preprocess_batch,
max_length=128,
do_sample=True,
temperature=1.0,
top_k=50,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
random_prompts = torch.randint(tokenizer.vocab_size, (1000, 64), device=torch.cuda.current_device())
trainer.fit(random_prompts,
num_episodes=args.num_episodes,
max_timesteps=args.max_timesteps,
update_timesteps=args.update_timesteps)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--strategy',
choices=['naive', 'ddp', 'colossalai_gemini', 'colossalai_zero2'],
default='naive')
parser.add_argument('--model', type=str, default='gpt2', choices=['gpt2', 'bloom', 'opt'])
parser.add_argument('--pretrain', type=str, default=None)
parser.add_argument('--num_episodes', type=int, default=50)
parser.add_argument('--max_timesteps', type=int, default=10)
parser.add_argument('--update_timesteps', type=int, default=10)
parser.add_argument('--max_epochs', type=int, default=5)
parser.add_argument('--train_batch_size', type=int, default=8)
parser.add_argument('--lora_rank', type=int, default=0, help="low-rank adaptation matrices rank")
args = parser.parse_args()
main(args)
|
import argparse
import loralib as lora
import torch
from chatgpt.dataset import RewardDataset
from chatgpt.nn import BLOOMRM
from chatgpt.trainer import RewardModelTrainer
from chatgpt.trainer.strategies import ColossalAIStrategy, DDPStrategy, NaiveStrategy
from datasets import load_dataset
from torch.optim import Adam
from transformers import BloomTokenizerFast
from colossalai.nn.optimizer import HybridAdam
def train(args):
# configure strategy
if args.strategy == 'naive':
strategy = NaiveStrategy()
elif args.strategy == 'ddp':
strategy = DDPStrategy()
elif args.strategy == 'colossalai_gemini':
strategy = ColossalAIStrategy(stage=3, placement_policy='cuda')
elif args.strategy == 'colossalai_zero2':
strategy = ColossalAIStrategy(stage=2, placement_policy='cuda')
else:
raise ValueError(f'Unsupported strategy "{args.strategy}"')
# configure model
tokenizer = BloomTokenizerFast.from_pretrained(args.pretrain)
tokenizer.pad_token = tokenizer.eos_token
model = BLOOMRM(pretrained=args.pretrain).cuda()
max_len = 1024
# configure optimizer
if args.strategy.startswith('colossalai'):
optim = HybridAdam(model.parameters(), lr=5e-5)
else:
optim = Adam(model.parameters(), lr=5e-5)
# prepare for data and dataset
data = load_dataset(args.dataset)
train_data = data["train"].select(range(100))
eval_data = data['test'].select(range(5))
train_dataset = RewardDataset(train_data, tokenizer, max_len)
eval_dataset = RewardDataset(eval_data, tokenizer, max_len)
# batch_size here is expected to be C(k,2), k means # response of each prompt
# be limited with the format of dataset 'Dahoas/rm-static', we'd better use batch_size as 1
trainer = RewardModelTrainer(model=model,
strategy=strategy,
optim=optim,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
batch_size=args.batch_size,
max_epochs=args.max_epochs)
trainer.fit(use_lora=args.lora_rank)
if args.lora_rank > 0:
torch.save({'model_state_dict': lora.lora_state_dict(trainer.model)}, args.save_path)
else:
torch.save(trainer.model, args.save_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--strategy',
choices=['naive', 'ddp', 'colossalai_gemini', 'colossalai_zero2'],
default='naive')
parser.add_argument('--pretrain', type=str, default=None)
parser.add_argument('--dataset', type=str, default='Dahoas/rm-static')
parser.add_argument('--save_path', type=str, default='rm_ckpt.pth')
parser.add_argument('--max_epochs', type=int, default=2)
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--lora_rank', type=int, default=0, help="low-rank adaptation matrices rank")
args = parser.parse_args()
train(args)
|
import argparse
from copy import deepcopy
import torch
import torch.distributed as dist
import torch.nn as nn
from chatgpt.nn import OPTActor, OPTCritic, RewardModel
from chatgpt.trainer import PPOTrainer
from chatgpt.trainer.callbacks import PerformanceEvaluator
from chatgpt.trainer.strategies import ColossalAIStrategy, DDPStrategy, Strategy
from torch.optim import Adam
from transformers import AutoTokenizer
from transformers.models.opt.configuration_opt import OPTConfig
from colossalai.nn.optimizer import HybridAdam
def get_model_numel(model: nn.Module, strategy: Strategy) -> int:
numel = sum(p.numel() for p in model.parameters())
if isinstance(strategy, ColossalAIStrategy) and strategy.stage == 3 and strategy.shard_init:
numel *= dist.get_world_size()
return numel
def preprocess_batch(samples) -> dict:
input_ids = torch.stack(samples)
attention_mask = torch.ones_like(input_ids, dtype=torch.long)
return {'input_ids': input_ids, 'attention_mask': attention_mask}
def print_rank_0(*args, **kwargs) -> None:
if dist.get_rank() == 0:
print(*args, **kwargs)
def print_model_numel(model_dict: dict) -> None:
B = 1024**3
M = 1024**2
K = 1024
outputs = ''
for name, numel in model_dict.items():
outputs += f'{name}: '
if numel >= B:
outputs += f'{numel / B:.2f} B\n'
elif numel >= M:
outputs += f'{numel / M:.2f} M\n'
elif numel >= K:
outputs += f'{numel / K:.2f} K\n'
else:
outputs += f'{numel}\n'
print_rank_0(outputs)
def get_gpt_config(model_name: str) -> OPTConfig:
model_map = {
'125m': OPTConfig.from_pretrained('facebook/opt-125m'),
'350m': OPTConfig(hidden_size=1024, ffn_dim=4096, num_hidden_layers=24, num_attention_heads=16),
'700m': OPTConfig(hidden_size=1280, ffn_dim=5120, num_hidden_layers=36, num_attention_heads=20),
'1.3b': OPTConfig.from_pretrained('facebook/opt-1.3b'),
'2.7b': OPTConfig.from_pretrained('facebook/opt-2.7b'),
'3.5b': OPTConfig(hidden_size=3072, ffn_dim=12288, num_hidden_layers=32, num_attention_heads=32),
'5.5b': OPTConfig(hidden_size=3840, ffn_dim=15360, num_hidden_layers=32, num_attention_heads=32),
'6.7b': OPTConfig.from_pretrained('facebook/opt-6.7b'),
'10b': OPTConfig(hidden_size=5120, ffn_dim=20480, num_hidden_layers=32, num_attention_heads=32),
'13b': OPTConfig.from_pretrained('facebook/opt-13b'),
}
try:
return model_map[model_name]
except KeyError:
raise ValueError(f'Unknown model "{model_name}"')
def main(args):
if args.strategy == 'ddp':
strategy = DDPStrategy()
elif args.strategy == 'colossalai_gemini':
strategy = ColossalAIStrategy(stage=3, placement_policy='cuda', initial_scale=2**5)
elif args.strategy == 'colossalai_gemini_cpu':
strategy = ColossalAIStrategy(stage=3, placement_policy='cpu', initial_scale=2**5)
elif args.strategy == 'colossalai_zero2':
strategy = ColossalAIStrategy(stage=2, placement_policy='cuda')
elif args.strategy == 'colossalai_zero2_cpu':
strategy = ColossalAIStrategy(stage=2, placement_policy='cpu')
elif args.strategy == 'colossalai_zero1':
strategy = ColossalAIStrategy(stage=1, placement_policy='cuda')
elif args.strategy == 'colossalai_zero1_cpu':
strategy = ColossalAIStrategy(stage=1, placement_policy='cpu')
else:
raise ValueError(f'Unsupported strategy "{args.strategy}"')
torch.cuda.set_per_process_memory_fraction(args.cuda_mem_frac)
model_config = get_gpt_config(args.model)
with strategy.model_init_context():
actor = OPTActor(config=model_config, lora_rank=args.lora_rank).cuda()
critic = OPTCritic(config=model_config, lora_rank=args.lora_rank).cuda()
initial_model = deepcopy(actor).cuda()
reward_model = RewardModel(deepcopy(critic.model), deepcopy(critic.value_head)).cuda()
actor_numel = get_model_numel(actor, strategy)
critic_numel = get_model_numel(critic, strategy)
initial_model_numel = get_model_numel(initial_model, strategy)
reward_model_numel = get_model_numel(reward_model, strategy)
print_model_numel({
'Actor': actor_numel,
'Critic': critic_numel,
'Initial model': initial_model_numel,
'Reward model': reward_model_numel
})
performance_evaluator = PerformanceEvaluator(actor_numel,
critic_numel,
initial_model_numel,
reward_model_numel,
enable_grad_checkpoint=False,
ignore_episodes=1)
if args.strategy.startswith('colossalai'):
actor_optim = HybridAdam(actor.parameters(), lr=5e-6)
critic_optim = HybridAdam(critic.parameters(), lr=5e-6)
else:
actor_optim = Adam(actor.parameters(), lr=5e-6)
critic_optim = Adam(critic.parameters(), lr=5e-6)
tokenizer = AutoTokenizer.from_pretrained('facebook/opt-350m')
tokenizer.pad_token = tokenizer.eos_token
trainer = PPOTrainer(strategy,
actor,
critic,
reward_model,
initial_model,
actor_optim,
critic_optim,
max_epochs=args.max_epochs,
train_batch_size=args.train_batch_size,
experience_batch_size=args.experience_batch_size,
tokenizer=preprocess_batch,
max_length=512,
do_sample=True,
temperature=1.0,
top_k=50,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
callbacks=[performance_evaluator])
random_prompts = torch.randint(tokenizer.vocab_size, (1000, 400), device=torch.cuda.current_device())
trainer.fit(random_prompts,
num_episodes=args.num_episodes,
max_timesteps=args.max_timesteps,
update_timesteps=args.update_timesteps)
print_rank_0(f'Peak CUDA mem: {torch.cuda.max_memory_allocated()/1024**3:.2f} GB')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model', default='125m')
parser.add_argument('--strategy',
choices=[
'ddp', 'colossalai_gemini', 'colossalai_gemini_cpu', 'colossalai_zero2',
'colossalai_zero2_cpu', 'colossalai_zero1', 'colossalai_zero1_cpu'
],
default='ddp')
parser.add_argument('--num_episodes', type=int, default=3)
parser.add_argument('--max_timesteps', type=int, default=8)
parser.add_argument('--update_timesteps', type=int, default=8)
parser.add_argument('--max_epochs', type=int, default=3)
parser.add_argument('--train_batch_size', type=int, default=8)
parser.add_argument('--experience_batch_size', type=int, default=8)
parser.add_argument('--lora_rank', type=int, default=4)
parser.add_argument('--cuda_mem_frac', type=float, default=1.0)
args = parser.parse_args()
main(args)
|
import argparse
from copy import deepcopy
import torch
import torch.distributed as dist
import torch.nn as nn
from chatgpt.nn import GPTActor, GPTCritic, RewardModel
from chatgpt.trainer import PPOTrainer
from chatgpt.trainer.callbacks import PerformanceEvaluator
from chatgpt.trainer.strategies import ColossalAIStrategy, DDPStrategy, Strategy
from torch.optim import Adam
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
from colossalai.nn.optimizer import HybridAdam
def get_model_numel(model: nn.Module, strategy: Strategy) -> int:
numel = sum(p.numel() for p in model.parameters())
if isinstance(strategy, ColossalAIStrategy) and strategy.stage == 3 and strategy.shard_init:
numel *= dist.get_world_size()
return numel
def preprocess_batch(samples) -> dict:
input_ids = torch.stack(samples)
attention_mask = torch.ones_like(input_ids, dtype=torch.long)
return {'input_ids': input_ids, 'attention_mask': attention_mask}
def print_rank_0(*args, **kwargs) -> None:
if dist.get_rank() == 0:
print(*args, **kwargs)
def print_model_numel(model_dict: dict) -> None:
B = 1024**3
M = 1024**2
K = 1024
outputs = ''
for name, numel in model_dict.items():
outputs += f'{name}: '
if numel >= B:
outputs += f'{numel / B:.2f} B\n'
elif numel >= M:
outputs += f'{numel / M:.2f} M\n'
elif numel >= K:
outputs += f'{numel / K:.2f} K\n'
else:
outputs += f'{numel}\n'
print_rank_0(outputs)
def get_gpt_config(model_name: str) -> GPT2Config:
model_map = {
's': GPT2Config(),
'm': GPT2Config(n_embd=1024, n_layer=24, n_head=16),
'l': GPT2Config(n_embd=1280, n_layer=36, n_head=20),
'xl': GPT2Config(n_embd=1600, n_layer=48, n_head=25),
'2b': GPT2Config(n_embd=2048, n_layer=40, n_head=16),
'4b': GPT2Config(n_embd=2304, n_layer=64, n_head=16),
'6b': GPT2Config(n_embd=4096, n_layer=30, n_head=16),
'8b': GPT2Config(n_embd=4096, n_layer=40, n_head=16),
'10b': GPT2Config(n_embd=4096, n_layer=50, n_head=16),
'12b': GPT2Config(n_embd=4096, n_layer=60, n_head=16),
'15b': GPT2Config(n_embd=4096, n_layer=78, n_head=16),
'18b': GPT2Config(n_embd=4096, n_layer=90, n_head=16),
'20b': GPT2Config(n_embd=8192, n_layer=25, n_head=16),
'24b': GPT2Config(n_embd=8192, n_layer=30, n_head=16),
'28b': GPT2Config(n_embd=8192, n_layer=35, n_head=16),
'32b': GPT2Config(n_embd=8192, n_layer=40, n_head=16),
'36b': GPT2Config(n_embd=8192, n_layer=45, n_head=16),
'40b': GPT2Config(n_embd=8192, n_layer=50, n_head=16),
'175b': GPT2Config(n_positions=2048, n_embd=12288, n_layer=96, n_head=96),
}
try:
return model_map[model_name]
except KeyError:
raise ValueError(f'Unknown model "{model_name}"')
def main(args):
if args.strategy == 'ddp':
strategy = DDPStrategy()
elif args.strategy == 'colossalai_gemini':
strategy = ColossalAIStrategy(stage=3, placement_policy='cuda', initial_scale=2**5)
elif args.strategy == 'colossalai_gemini_cpu':
strategy = ColossalAIStrategy(stage=3, placement_policy='cpu', initial_scale=2**5)
elif args.strategy == 'colossalai_zero2':
strategy = ColossalAIStrategy(stage=2, placement_policy='cuda')
elif args.strategy == 'colossalai_zero2_cpu':
strategy = ColossalAIStrategy(stage=2, placement_policy='cpu')
elif args.strategy == 'colossalai_zero1':
strategy = ColossalAIStrategy(stage=1, placement_policy='cuda')
elif args.strategy == 'colossalai_zero1_cpu':
strategy = ColossalAIStrategy(stage=1, placement_policy='cpu')
else:
raise ValueError(f'Unsupported strategy "{args.strategy}"')
model_config = get_gpt_config(args.model)
with strategy.model_init_context():
actor = GPTActor(config=model_config).cuda()
critic = GPTCritic(config=model_config).cuda()
initial_model = deepcopy(actor).cuda()
reward_model = RewardModel(deepcopy(critic.model), deepcopy(critic.value_head)).cuda()
actor_numel = get_model_numel(actor, strategy)
critic_numel = get_model_numel(critic, strategy)
initial_model_numel = get_model_numel(initial_model, strategy)
reward_model_numel = get_model_numel(reward_model, strategy)
print_model_numel({
'Actor': actor_numel,
'Critic': critic_numel,
'Initial model': initial_model_numel,
'Reward model': reward_model_numel
})
performance_evaluator = PerformanceEvaluator(actor_numel,
critic_numel,
initial_model_numel,
reward_model_numel,
enable_grad_checkpoint=False,
ignore_episodes=1)
if args.strategy.startswith('colossalai'):
actor_optim = HybridAdam(actor.parameters(), lr=5e-6)
critic_optim = HybridAdam(critic.parameters(), lr=5e-6)
else:
actor_optim = Adam(actor.parameters(), lr=5e-6)
critic_optim = Adam(critic.parameters(), lr=5e-6)
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer.pad_token = tokenizer.eos_token
trainer = PPOTrainer(strategy,
actor,
critic,
reward_model,
initial_model,
actor_optim,
critic_optim,
max_epochs=args.max_epochs,
train_batch_size=args.train_batch_size,
experience_batch_size=args.experience_batch_size,
tokenizer=preprocess_batch,
max_length=512,
do_sample=True,
temperature=1.0,
top_k=50,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
callbacks=[performance_evaluator])
random_prompts = torch.randint(tokenizer.vocab_size, (1000, 400), device=torch.cuda.current_device())
trainer.fit(random_prompts,
num_episodes=args.num_episodes,
max_timesteps=args.max_timesteps,
update_timesteps=args.update_timesteps)
print_rank_0(f'Peak CUDA mem: {torch.cuda.max_memory_allocated()/1024**3:.2f} GB')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model', default='s')
parser.add_argument('--strategy',
choices=[
'ddp', 'colossalai_gemini', 'colossalai_gemini_cpu', 'colossalai_zero2',
'colossalai_zero2_cpu', 'colossalai_zero1', 'colossalai_zero1_cpu'
],
default='ddp')
parser.add_argument('--num_episodes', type=int, default=3)
parser.add_argument('--max_timesteps', type=int, default=8)
parser.add_argument('--update_timesteps', type=int, default=8)
parser.add_argument('--max_epochs', type=int, default=3)
parser.add_argument('--train_batch_size', type=int, default=8)
parser.add_argument('--experience_batch_size', type=int, default=8)
args = parser.parse_args()
main(args)
|
from .base import ReplayBuffer
from .naive import NaiveReplayBuffer
__all__ = ['ReplayBuffer', 'NaiveReplayBuffer']
|
import random
from typing import List
import torch
from chatgpt.experience_maker.base import Experience
from .base import ReplayBuffer
from .utils import BufferItem, make_experience_batch, split_experience_batch
class NaiveReplayBuffer(ReplayBuffer):
"""Naive replay buffer class. It stores experience.
Args:
sample_batch_size (int): Batch size when sampling.
limit (int, optional): Limit of number of experience samples. A number <= 0 means unlimited. Defaults to 0.
cpu_offload (bool, optional): Whether to offload experience to cpu when sampling. Defaults to True.
"""
def __init__(self, sample_batch_size: int, limit: int = 0, cpu_offload: bool = True) -> None:
super().__init__(sample_batch_size, limit)
self.cpu_offload = cpu_offload
self.target_device = torch.device(f'cuda:{torch.cuda.current_device()}')
# TODO(ver217): add prefetch
self.items: List[BufferItem] = []
@torch.no_grad()
def append(self, experience: Experience) -> None:
if self.cpu_offload:
experience.to_device(torch.device('cpu'))
items = split_experience_batch(experience)
self.items.extend(items)
if self.limit > 0:
samples_to_remove = len(self.items) - self.limit
if samples_to_remove > 0:
self.items = self.items[samples_to_remove:]
def clear(self) -> None:
self.items.clear()
@torch.no_grad()
def sample(self) -> Experience:
items = random.sample(self.items, self.sample_batch_size)
experience = make_experience_batch(items)
if self.cpu_offload:
experience.to_device(self.target_device)
return experience
def __len__(self) -> int:
return len(self.items)
def __getitem__(self, idx: int) -> BufferItem:
return self.items[idx]
def collate_fn(self, batch) -> Experience:
experience = make_experience_batch(batch)
return experience
|
from dataclasses import dataclass
from typing import List, Optional
import torch
import torch.nn.functional as F
from chatgpt.experience_maker.base import Experience
@dataclass
class BufferItem:
"""BufferItem is an item of experience data.
Shapes of each tensor:
sequences: (S)
action_log_probs: (A)
values: (1)
reward: (1)
advatanges: (1)
attention_mask: (S)
action_mask: (A)
"A" is the number of actions.
"""
sequences: torch.Tensor
action_log_probs: torch.Tensor
values: torch.Tensor
reward: torch.Tensor
advantages: torch.Tensor
attention_mask: Optional[torch.LongTensor]
action_mask: Optional[torch.BoolTensor]
def split_experience_batch(experience: Experience) -> List[BufferItem]:
batch_size = experience.sequences.size(0)
batch_kwargs = [{} for _ in range(batch_size)]
keys = ('sequences', 'action_log_probs', 'values', 'reward', 'advantages', 'attention_mask', 'action_mask')
for key in keys:
value = getattr(experience, key)
if isinstance(value, torch.Tensor):
vals = torch.unbind(value)
else:
# None
vals = [value for _ in range(batch_size)]
assert batch_size == len(vals)
for i, v in enumerate(vals):
batch_kwargs[i][key] = v
items = [BufferItem(**kwargs) for kwargs in batch_kwargs]
return items
def zero_pad_sequences(sequences: List[torch.Tensor], side: str = 'left') -> torch.Tensor:
assert side in ('left', 'right')
max_len = max(seq.size(0) for seq in sequences)
padded_sequences = []
for seq in sequences:
pad_len = max_len - seq.size(0)
padding = (pad_len, 0) if side == 'left' else (0, pad_len)
padded_sequences.append(F.pad(seq, padding))
return torch.stack(padded_sequences, dim=0)
def make_experience_batch(items: List[BufferItem]) -> Experience:
kwargs = {}
to_pad_keys = set(('action_log_probs', 'action_mask'))
keys = ('sequences', 'action_log_probs', 'values', 'reward', 'advantages', 'attention_mask', 'action_mask')
for key in keys:
vals = [getattr(item, key) for item in items]
if key in to_pad_keys:
batch_data = zero_pad_sequences(vals)
else:
batch_data = torch.stack(vals, dim=0)
kwargs[key] = batch_data
return Experience(**kwargs)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.