python_code
stringlengths
0
456k
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import pycutlass from pycutlass import * from pycutlass.test import * from time import sleep from bfloat16 import bfloat16 import subprocess from typeguard import typechecked import re def getTensorRef(tensor, tensor_layout, conv_kind, problem_size, operand): ptr = tensor.__array_interface__['data'][0] if operand == "a": tensor_coord = cutlass.conv.implicit_gemm_tensor_a_extent(conv_kind, problem_size) elif operand == "b": tensor_coord = cutlass.conv.implicit_gemm_tensor_b_extent(conv_kind, problem_size) elif operand in ["c", "d"]: tensor_coord = cutlass.conv.implicit_gemm_tensor_c_extent(conv_kind, problem_size) else: raise ValueError("unknown operand: " + operand) layout = tensor_layout.packed(tensor_coord) if tensor.dtype == np.float64: return cutlass.TensorRefF64NHWC(ptr, layout) elif tensor.dtype == np.float32: return cutlass.TensorRefF32NHWC(ptr, layout) elif tensor.dtype == np.float16: return cutlass.TensorRefF16NHWC(ptr, layout) if tensor.dtype == bfloat16: return cutlass.TensorRefBF16NHWC(ptr, layout) elif tensor.dtype == np.int32: return cutlass.TensorRefS32NHWC(ptr, layout) elif tensor.dtype == np.int8: if tensor_layout == cutlass.TensorNC32HW32: return cutlass.TensorRefS8NC32HW32(ptr, layout) elif tensor_layout == cutlass.TensorC32RSK32: return cutlass.TensorRefS8C32RSK32(ptr, layout) else: return cutlass.TensorRefS8NHWC(ptr, layout) else: raise ValueError("unsupported data type") def getTensorView(tensor, tensor_layout, conv_kind, problem_size, operand): tensor_ref = getTensorRef(tensor, tensor_layout, conv_kind, problem_size, operand) if operand == "a": tensor_coord = cutlass.conv.implicit_gemm_tensor_a_extent(conv_kind, problem_size) elif operand == "b": tensor_coord = cutlass.conv.implicit_gemm_tensor_b_extent(conv_kind, problem_size) elif operand in ["c", "d"]: tensor_coord = cutlass.conv.implicit_gemm_tensor_c_extent(conv_kind, problem_size) else: raise ValueError("unknown operand: " + operand) if tensor.dtype == np.float64: return cutlass.TensorViewF64NHWC(tensor_ref, tensor_coord) elif tensor.dtype == np.float32: return cutlass.TensorViewF32NHWC(tensor_ref, tensor_coord) elif tensor.dtype == np.float16: return cutlass.TensorViewF16NHWC(tensor_ref, tensor_coord) elif tensor.dtype == bfloat16: return cutlass.TensorViewBF16NHWC(tensor_ref, tensor_coord) elif tensor.dtype == np.int32: return cutlass.TensorViewS32NHWC(tensor_ref, tensor_coord) elif tensor.dtype == np.int8: if tensor_layout == cutlass.TensorNC32HW32: return cutlass.TensorViewS8NC32HW32(tensor_ref, tensor_coord) elif tensor_layout == cutlass.TensorC32RSK32: return cutlass.TensorViewS8C32RSK32(tensor_ref, tensor_coord) else: return cutlass.TensorViewS8NHWC(tensor_ref, tensor_coord) else: raise ValueError("unsupported data type") # @typechecked class Conv2dLauncher: """ Launcher that runs the operation on given problem size """ def __init__(self, operation: 'Conv2dOperation', seed: int=2080, interleaved=False, verification=True, profiling=False, warmup_iterations=500, iterations=500, **kwargs) -> None: self.enable_cached_results = True self.interleaved = interleaved # create the reduction kernel self.reduction_operation = ReductionOperation( shape=cutlass.MatrixCoord(4, 32 * operation.C.alignment), C=operation.C, element_accumulator=operation.tile_description.math_instruction.element_accumulator, element_compute=operation.epilogue_functor.element_epilogue, epilogue_functor=operation.epilogue_functor, count=operation.C.alignment ) #: verify the output result self.verification = verification #: profile the kernel's runtime self.profiling = profiling self.timer = GpuTimer() self.warmup_iterations = warmup_iterations self.iterations = iterations if "sleep" in kwargs.keys(): self.sleep_time = kwargs["sleep"] else: self.sleep_time = 0 # # Compile the operator # pycutlass.compiler.add_module([operation, self.reduction_operation]) self.operation = operation self.dtype_A = Conv2dLauncher.numpy_type(operation.A.element) self.layout_A = operation.A.layout self.dtype_B = Conv2dLauncher.numpy_type(operation.B.element) self.layout_B = operation.B.layout self.dtype_C = Conv2dLauncher.numpy_type(operation.C.element) self.layout_C = operation.C.layout self.dtype_D = Conv2dLauncher.numpy_type(operation.C.element) self.layout_D = operation.C.layout accumulator_size = DataTypeSize[operation.tile_description.math_instruction.element_accumulator] element_size = DataTypeSize[operation.A.element] if element_size <= 8: self.scope = 1 elif element_size == 16: if accumulator_size <= 16: self.scope = 2 else: self.scope = 4 else: self.scope = 7 # Seed self.seed = seed self.conv_kind = operation.conv_kind # # Get the host reference function # self.element_compute = operation.epilogue_functor.element_epilogue self.host_conv2d = cutlass.test.conv.host.conv2d self.timer = GpuTimer() @staticmethod def numpy_type(type): if type == cutlass.float64: return np.float64 elif type == cutlass.float32: return np.float32 elif type == cutlass.float16: return np.float16 elif type == cutlass.bfloat16: return bfloat16 elif type == cutlass.int32: return np.int32 elif type == cutlass.int8: return np.int8 else: raise ValueError("unsupported type: %s" % ShortDataTypeNames[type]) def print_problem_size(self, p, split_k_mode=1): print("nhwc_%dx%dx%dx%d_krsc_%dx%dx%dx%d_padding_%dx%d_stride_%dx%d_dilation_%dx%d_splitkslices_%d_splitkmode_%d" % (p.N, p.H, p.W, p.C, p.K, p.R, p.S, p.C, p.pad_h, p.pad_w, p.stride_h, p.stride_w, p.dilation_h, p.dilation_w, p.split_k_slices, split_k_mode)) def uniform_init(self, size, dtype): if dtype in [np.float32, np.float16, bfloat16, np.float64]: return np.ceil( np.random.uniform( low=-self.scope - 0.5, high=self.scope - 0.5, size=size).astype(dtype) ) else: return np.random.uniform( low=-self.scope - 1, high=self.scope + 1, size=size).astype(dtype) def eq_gemm_size(self, problem_size): n = problem_size.N p = problem_size.P q = problem_size.Q k = problem_size.K r = problem_size.R s = problem_size.S c = problem_size.C h = problem_size.H w = problem_size.W if self.conv_kind == cutlass.conv.Operator.fprop: return cutlass.gemm.GemmCoord(n * p * q, k, r * s * c) elif self.conv_kind == cutlass.conv.Operator.dgrad: return cutlass.gemm.GemmCoord(n * h * w, c, k * r * s) else: return cutlass.gemm.GemmCoord(k, r * s * c, n * p * q) def bytes(self, problem_size, alpha, beta): mnk = self.eq_gemm_size(problem_size) bytes_ = \ (DataTypeSize[self.operation.A.element] * mnk.m() // 8) * mnk.k() + \ (DataTypeSize[self.operation.B.element] * mnk.n() // 8) * mnk.k() + \ (DataTypeSize[self.operation.C.element] * mnk.m() // 8) * mnk.n() if beta != 0: bytes_ += (DataTypeSize[self.operation.C.element] * mnk.m() // 8) * mnk.n() return bytes_ def flops(self, problem_size): mnk = self.eq_gemm_size(problem_size) flops_mainloop_ = mnk.m() * mnk.n() * mnk.k() * 2 flops_epilogue_ = mnk.m() * mnk.n() * 2 # Adjust mainloop flop for dgrad stride if self.conv_kind == cutlass.conv.Operator.dgrad: flops_mainloop_ = flops_mainloop_ // (problem_size.stride_h * problem_size.stride_w) flops_total_ = flops_mainloop_ + flops_epilogue_ return flops_total_ def host_reference(self, problem_size, tensor_A, tensor_B, tensor_C, alpha, beta): if self.element_compute == cutlass.float16: alpha = cutlass.float16(alpha) beta = cutlass.float16(beta) elif self.element_compute == cutlass.int32: alpha = int(alpha) beta = int(beta) else: alpha = alpha beta = beta # if cached result is loaded cached_result_loaded = False if self.enable_cached_results: # get problem key cached_test_key = cutlass.test.conv.host.CreateCachedConv2dTestKey( self.conv_kind, problem_size, alpha, beta, getTensorView(tensor_A, self.layout_A, self.conv_kind, problem_size, "a"), getTensorView(tensor_B, self.layout_B, self.conv_kind, problem_size, "b"), getTensorView(tensor_C, self.layout_C, self.conv_kind, problem_size, "c"), ) cached_test_result = cutlass.test.conv.host.CachedTestResult() conv2d_result_cache_name = "cached_results_SM%d_%d.txt" % (self.operation.arch, self.seed) cached_results = cutlass.test.conv.host.CachedTestResultListing(conv2d_result_cache_name) # CachedTestResultListing cached_results(conv2d_result_cache_name); cached = cached_results.find(cached_test_key) cached_result_loaded = cached[0] if cached_result_loaded : cached_test_result = cached[1] if not cached_result_loaded: # compute the conv2d on host tensor_D_ref = np.ones_like(tensor_C) tensor_ref_A = getTensorRef(tensor_A, self.layout_A, self.conv_kind, problem_size, "a") tensor_ref_B = getTensorRef(tensor_B, self.layout_B, self.conv_kind, problem_size, "b") tensor_ref_C = getTensorRef(tensor_C, self.layout_C, self.conv_kind, problem_size, "c") tensor_ref_D_ref = getTensorRef(tensor_D_ref, self.layout_D, self.conv_kind, problem_size, "d") self.host_conv2d( self.conv_kind, problem_size, tensor_ref_A, tensor_ref_B, tensor_ref_C, tensor_ref_D_ref, alpha, beta ) tensor_view_D_ref = getTensorView(tensor_D_ref, self.layout_D, self.conv_kind, problem_size, "d") if self.enable_cached_results: cached_test_result.D = cutlass.test.conv.host.TensorHash(tensor_view_D_ref) cached_results = cutlass.test.conv.host.CachedTestResultListing(conv2d_result_cache_name) cached_results.append(cached_test_key, cached_test_result) cached_results.write(conv2d_result_cache_name) else: return tensor_D_ref return cached_test_result.D def equal(self, tensor_D, tensor_D_ref, problem_size): if self.enable_cached_results: tensor_view_D = getTensorView(tensor_D, self.layout_D, self.conv_kind, problem_size, "d") tensor_D_hash = cutlass.test.conv.host.TensorHash(tensor_view_D) return tensor_D_hash == tensor_D_ref else: tensor_view_D = getTensorView(tensor_D, self.layout_D, self.conv_kind, problem_size, "d") tensor_view_D_ref = getTensorView(tensor_D_ref, self.layout_D, self.conv_kind, problem_size, "d") return cutlass.test.conv.host.equals(tensor_view_D, tensor_view_D_ref) def run_cutlass_profiler(self, problem_size, split_k_mode=cutlass.conv.SplitKMode.Serial, alpha=1.0, beta=0.0): if split_k_mode == cutlass.conv.SplitKMode.Serial: split_k_mode_ = "serial" else: split_k_mode_ = "parallel" cutlass_path = os.getenv('CUTLASS_PATH') assert cutlass_path is not None, "Environment variable 'CUTLASS_PATH' is not defined." values = { "profiler_path": cutlass_path + "/build/tools/profiler/cutlass_profiler", "kernel_name": self.operation.procedural_name(), "verification_providers": "device", "provider": "cutlass", 'n': str(problem_size.N), 'h': str(problem_size.H), 'w': str(problem_size.W), 'c': str(problem_size.C), 'k': str(problem_size.K), 'r': str(problem_size.R), 's': str(problem_size.S), 'p': str(problem_size.P), 'q': str(problem_size.Q), 'pad_h': str(problem_size.pad_h), 'pad_w': str(problem_size.pad_w), 'stride_h': str(problem_size.stride_h), 'stride_w': str(problem_size.stride_w), 'dilation_h': str(problem_size.dilation_h), 'dilation_w': str(problem_size.dilation_w), 'split_k_slices': str(problem_size.split_k_slices), 'split_k_mode': split_k_mode_, 'alpha': str(alpha), 'beta': str(beta), 'warmup': str(self.warmup_iterations), 'profile': str(self.iterations) } cmd_template = \ "${profiler_path} --kernels=${kernel_name} --verification-providers=${verification_providers}" \ " --providers=${provider} --n=${n} --h=${h} --w=${w} --c=${c} --k=${k} --r=${r} --s=${s} --p=${p}" \ " --q=${q} --pad_h=${pad_h} --pad_w=${pad_w} --stride_h={stride_h} --stride_w=${stride_w}" \ " --dilation_h=${dilation_h} --dilation_w=${dilation_w} --warmup-iterations=${warmup} --profiling-iterations=${profile}" \ " --split_k_slices=${split_k_slices} --alpha=${alpha} --beta=${beta} --split_k_mode=${split_k_mode}" cmd = SubstituteTemplate(cmd_template, values) result = subprocess.getoutput(cmd) m = re.search(r"Runtime:\s+(?P<runtime>\d+.\d+)", result) runtime = float(m.group('runtime')) m = re.search(r"Bytes:\s+(?P<bytes>\d+)", result) bytes = int(m.group('bytes')) m = re.search(r"FLOPs:\s+(?P<flops>\d+)", result) flops = int(m.group('flops')) # check if the problem size matches assert bytes == self.bytes(problem_size, alpha, beta) assert flops == self.flops(problem_size) return runtime def run(self, problem_size, split_k_mode=cutlass.conv.SplitKMode.Serial, alpha=1.0, beta=0.0): assert get_allocated_size() == 0, "%d byte of pool memory is not released in previous run" % get_allocated_size() # # Initialize input and output tensors # tensor_A_size = cutlass.conv.implicit_gemm_tensor_a_size(self.conv_kind, problem_size) tensor_B_size = cutlass.conv.implicit_gemm_tensor_b_size(self.conv_kind, problem_size) tensor_C_size = cutlass.conv.implicit_gemm_tensor_c_size(self.conv_kind, problem_size) np.random.seed(self.seed) tensor_A = self.uniform_init(size=(tensor_A_size,), dtype=self.dtype_A) tensor_B = self.uniform_init(size=(tensor_B_size,), dtype=self.dtype_B) tensor_C = self.uniform_init(size=(tensor_C_size,), dtype=self.dtype_C) tensor_D = np.zeros(shape=(tensor_C_size,), dtype=self.dtype_D) # # Launch kernel # arguments = Conv2dArguments( operation=self.operation, problem_size=problem_size, A=tensor_A, B=tensor_B, C=tensor_C, D=tensor_D, output_op = self.operation.epilogue_type(alpha, beta), split_k_slices=problem_size.split_k_slices, split_k_mode=split_k_mode ) if split_k_mode == cutlass.conv.SplitKMode.Parallel: implicit_gemm_size = cutlass.conv.implicit_gemm_problem_size(self.operation.conv_kind, arguments.problem_size) reduction_arguments = ReductionArguments( self.reduction_operation, problem_size=[implicit_gemm_size.m(), implicit_gemm_size.n()], partitions=problem_size.split_k_slices, workspace=arguments.ptr_D, destination=tensor_D, source=tensor_C, output_op = self.reduction_operation.epilogue_type(alpha, beta) ) self.operation.run(arguments) if split_k_mode == cutlass.conv.SplitKMode.Parallel: self.reduction_operation.run(reduction_arguments) passed = True if self.verification: if split_k_mode == cutlass.conv.SplitKMode.Parallel: reduction_arguments.sync() else: arguments.sync() tensor_D_ref = self.host_reference(problem_size, tensor_A, tensor_B, tensor_C, alpha, beta) passed = self.equal(tensor_D, tensor_D_ref, problem_size) try: assert passed except AssertionError: self.print_problem_size(problem_size, split_k_mode) if self.profiling: sleep(self.sleep_time) for _ in range(self.warmup_iterations): self.operation.run(arguments) if split_k_mode == cutlass.conv.SplitKMode.Parallel: self.reduction_operation.run(reduction_arguments) self.timer.start() for _ in range(self.warmup_iterations): self.operation.run(arguments) if split_k_mode == cutlass.conv.SplitKMode.Parallel: self.reduction_operation.run(reduction_arguments) self.timer.stop_and_wait() runtime = self.timer.duration(self.iterations) # free memory del arguments if split_k_mode == cutlass.conv.SplitKMode.Parallel: del reduction_arguments assert get_allocated_size() == 0, "%d byte of pool memory is not released after current run" % get_allocated_size() if self.profiling: return runtime return passed ######################################################################################################## # TestAllConv: Runs cutlass::conv::device::ImplicitGemmConvolution operator and compares it with reference # TestAllConv runs conv operator on default conv problem sizes from test::conv::device::TestbedConv2dProblemSizes # Additionally, each conv2d test can provide conv problem sizes (conv_test_sizes) and blacklist of sizes # (conv_blacklist_sizes) ############################################################################################################ def test_all_conv2d(operation: Conv2dOperation, conv_test_sizes = [], interleaved=False): passed = True # # Testbed object # testbed = Conv2dLauncher(operation, interleaved=interleaved) # # Get conv problem sizes to run conv operator # conv_problems = cutlass.test.conv.TestbedConv2dProblemSizes(64) # Vector of conv2d problem sizes to avoid duplicate runs conv_tested_sizes = [] # Flatten 2D problem_vectors into a 1D problem sizes problem_sizes = conv_problems.conv2d_default_sizes problem_sizes = [conv_problem for conv_problem in problem_sizes] + conv_test_sizes # Sweep conv2d problem sizes (split-k-mode=kSerial, split-k-slices=1, alpha=1.0, beta=0.0) for conv_problem in problem_sizes: if conv_problem in conv_tested_sizes: continue # skip channel dimension % 32 != 0 for interleaved case if interleaved: if conv_problem.K % 32 != 0 or conv_problem.C % 32 != 0: continue # # Procedurally disable certain cases # # CUTLASS DGRAD's *unity* stride specialization only support stride {1, 1} if operation.conv_kind == cutlass.conv.Operator.dgrad and operation.stride_support == StrideSupport.Unity: if not ((conv_problem.stride_h == 1) and (conv_problem.stride_w == 1)): continue if not interleaved: # Fixed channels algorithm requires channel count to match access size if operation.iterator_algorithm == cutlass.conv.IteratorAlgorithm.fixed_channels: if conv_problem.C != operation.A.alignment: continue # Few channels algorithm requires channel count to match access size if operation.iterator_algorithm == cutlass.conv.IteratorAlgorithm.few_channels: if conv_problem.C % operation.A.alignment: continue # CUTLASS DGRAD's *strided* stride specialization supports all stride {stride_h, stride_w} # Although strided dgrad works for all stride combinations, we are only going # to run strided dgrad for non-unity strides if operation.conv_kind == cutlass.conv.Operator.dgrad and operation.stride_support == StrideSupport.Strided: if (conv_problem.stride_h == 1) and (conv_problem.stride_w == 1): continue # # Test # # push back tested problem size to avoid re-running duplicates conv_tested_sizes.append(conv_problem) passed = testbed.run(conv_problem) if not passed: return False if interleaved: return True # # filter the cases for split K # # Small-channels convolution can't run here. if operation.iterator_algorithm in [cutlass.conv.IteratorAlgorithm.fixed_channels, cutlass.conv.IteratorAlgorithm.few_channels]: return True # CUTLASS DGRAD's *stride* specialization does not support split-k mode if operation.conv_kind == cutlass.conv.Operator.dgrad and operation.stride_support == StrideSupport.Strided: conv_problem = cutlass.conv.Conv2dProblemSize( cutlass.Tensor4DCoord(1, 56, 56, 8), cutlass.Tensor4DCoord(8, 1, 1, 8), cutlass.Tensor4DCoord(0, 0, 0, 0), cutlass.MatrixCoord(2, 2), cutlass.MatrixCoord(1, 1), cutlass.conv.Mode.cross_correlation, 1, 1 ) passed = testbed.run(conv_problem) return passed # Sweep split-k-slice using serial and prallel reduction with non-unity alpha and non-zero beta for # a single conv2d problem size. Convolution unit tests take a long time to run so only sweep parameters # which are abolutely neccessary to catch functional bugs. The below code does provide option to sweep # alpha and beta for local testing, but only runs one value for alpha and beta. conv2d_split_k_test_size = cutlass.conv.Conv2dProblemSize( cutlass.Tensor4DCoord(1, 17, 11, 288), cutlass.Tensor4DCoord(160, 3, 3, 288), cutlass.Tensor4DCoord(1, 1, 1, 1), cutlass.MatrixCoord(1, 1), cutlass.MatrixCoord(1, 1), cutlass.conv.Mode.cross_correlation, 1, 1 ) split_k_modes = [cutlass.conv.SplitKMode.Parallel, cutlass.conv.SplitKMode.Serial] split_k_slices = [1, 2, 3, 4, 201] problem_alpha = [2.0,] problem_beta = [2.0,] for split_k_mode in split_k_modes: for split_k_slice in split_k_slices: for alpha in problem_alpha: for beta in problem_beta: passed = testbed.run(conv2d_split_k_test_size.reset_split_k_slices(split_k_slice), split_k_mode, alpha, beta) return passed
from pycutlass.test.profiler import * from pycutlass.test.conv2d_testbed import * from pycutlass.test.gemm_testbed import * from pycutlass.test.gemm_grouped_testbed import *
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import cutlass from pycutlass import library, SubstituteTemplate class Layout: """ Utility class to map transpose and non-transpose terminology to row- and column-major terminology """ T = cutlass.RowMajor N = cutlass.ColumnMajor class LayoutCombination: """ Utility class defining all combinations of row- and column-major layouts for operands to a GEMMs """ NNN = (Layout.N, Layout.N, Layout.N) NNT = (Layout.N, Layout.N, Layout.T) NTN = (Layout.N, Layout.T, Layout.N) NTT = (Layout.N, Layout.T, Layout.T) TNN = (Layout.T, Layout.N, Layout.N) TNT = (Layout.T, Layout.N, Layout.T) TTN = (Layout.T, Layout.T, Layout.N) TTT = (Layout.T, Layout.T, Layout.T) def get_name(layouts, alignments, element_output, element_accumulator, element_epilogue, cluster_shape, threadblock_shape, stages, element_a, element_b, arch, opclass, suffix=""): """ Generates a procedural name for a test case. :param layouts: indexable container of layouts of A, B, and C operands :param alignments: indexable container of alignments of A, B, and C operands :param element_output: data type of the output element :param element_accumulator: data type used in accumulation :param element_epilogue: data type used in computing the epilogue :param cluster_shape: indexable container of dimensions of threadblock cluster to be launched :param threadblock_shape: indexable container of dimensions of threadblock tiles :param stages: number of pipeline stages to use in the kernel :type stages: int :param element_a: data type of operand A :param element_b: data type of operand B :param arch: compute capability of kernel being generated :type arch: int :param opclass: class of operation being performed (e.g., SIMT, Tensor Core) :type opclass: cutlass.OpClass :param suffix: additional string to add to the suffix of the name :type suffix: str :return: str """ name_format = 'test_SM${arch}_Device_Gemm_${eA}${lA}_${eB}${lB}_${eC}${lC}_${opclass}_${acc}_${tbM}x${tbN}x${tbK}_${cM}x${cN}x${cK}_${stages}_align${aA}-${aB}-${aC}${suffix}' return SubstituteTemplate(name_format, { 'arch': str(arch), 'eA': library.DataTypeNames[element_a], 'eB': library.DataTypeNames[element_b], 'eC': library.DataTypeNames[element_output], 'lA': library.ShortLayoutTypeNames[layouts[0]], 'lB': library.ShortLayoutTypeNames[layouts[1]], 'lC': library.ShortLayoutTypeNames[layouts[2]], 'opclass': library.OpcodeClassNames[opclass], 'acc': library.DataTypeNames[element_accumulator], 'cM': str(cluster_shape[0]), 'cN': str(cluster_shape[1]), 'cK': str(cluster_shape[2]), 'tbM': str(threadblock_shape[0]), 'tbN': str(threadblock_shape[1]), 'tbK': str(threadblock_shape[2]), 'stages': str(stages) if stages is not None else 'auto', 'aA' : str(alignments[0]), 'aB' : str(alignments[1]), 'aC' : str(alignments[2]), 'suffix': '' if suffix is None else suffix } )
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# from time import sleep import pycutlass from pycutlass import * import pycutlass.utils.datatypes as datatypes import cutlass from cuda import cudart from cuda import cuda from bfloat16 import bfloat16 from .profiler import GpuTimer import subprocess def transpose(layout): if layout == cutlass.RowMajor: return cutlass.ColumnMajor elif layout == cutlass.ColumnMajor: return cutlass.RowMajor elif layout == cutlass.ColumnMajorInterleaved32: return cutlass.RowMajorInterleaved32 elif layout == cutlass.RowMajorInterleaved32: return cutlass.ColumnMajorInterleaved32 def getTensorRef(tensor: np.ndarray, problem_size: cutlass.gemm.GemmCoord, operand: str, layout: cutlass.layout, batch_offset: int = 0): ptr = tensor.__array_interface__['data'][0] if operand == "a": tensor_coord = problem_size.mk() batch_stride = problem_size.m() * problem_size.k() elif operand == "b": tensor_coord = problem_size.kn() batch_stride = problem_size.k() * problem_size.n() elif operand in ["c", "d"]: tensor_coord = problem_size.mn() batch_stride = problem_size.m() * problem_size.n() else: raise ValueError("Unknown operand: " + operand) elt_size = DataTypeSizeBytes[datatypes.to_cutlass(tensor.dtype)] ptr += batch_offset * batch_stride * elt_size if layout == cutlass.RowMajor: layout = cutlass.RowMajor.packed(tensor_coord) layout_tag = "RowMajor" elif layout == cutlass.ColumnMajor: layout = cutlass.ColumnMajor.packed(tensor_coord) layout_tag = "ColumnMajor" elif layout == cutlass.ColumnMajorInterleaved32: layout = cutlass.ColumnMajorInterleaved32.packed(tensor_coord) layout_tag = "ColumnMajorInterleaved32" elif layout == cutlass.RowMajorInterleaved32: layout = cutlass.RowMajorInterleaved32.packed(tensor_coord) layout_tag = "RowMajorInterleaved32" else: raise ValueError("unsupported layout") if tensor.dtype == np.float32: ref_name = "TensorRefF32" + layout_tag elif tensor.dtype == np.float64: ref_name = "TensorRefF64" + layout_tag elif tensor.dtype == np.float16: ref_name = "TensorRefF16" + layout_tag elif tensor.dtype == bfloat16: ref_name = "TensorRefBF16" + layout_tag elif tensor.dtype == np.int8: ref_name = "TensorRefS8" + layout_tag elif tensor.dtype == np.int32: ref_name = "TensorRefS32" + layout_tag else: raise ValueError("unsupported datatype %s" % ShortDataTypeNames[tensor.dtype]) return getattr(cutlass, ref_name)(ptr, layout) def getTensorView(tensor: np.ndarray, problem_size: cutlass.gemm.GemmCoord, operand: str, layout: str, batch_offset: int = 0): tensor_ref = getTensorRef(tensor, problem_size, operand, layout, batch_offset) if operand == "a": tensor_coord = problem_size.mk() elif operand == "b": tensor_coord = problem_size.kn() elif operand in ["c", "d"]: tensor_coord = problem_size.mn() else: raise ValueError("Unknown operand: " + operand) if layout == cutlass.RowMajor: layout_tag = "RowMajor" elif layout == cutlass.ColumnMajor: layout_tag = "ColumnMajor" elif layout == cutlass.ColumnMajorInterleaved32: layout_tag = "ColumnMajorInterleaved32" elif layout == cutlass.RowMajorInterleaved32: layout_tag = "RowMajorInterleaved32" else: raise ValueError("unsupported layout") if tensor.dtype == np.float32: ref_name = "TensorViewF32" + layout_tag elif tensor.dtype == np.float64: ref_name = "TensorViewF64" + layout_tag elif tensor.dtype == np.float16: ref_name = "TensorViewF16" + layout_tag elif tensor.dtype == bfloat16: ref_name = "TensorViewBF16" + layout_tag elif tensor.dtype == np.int32: ref_name = "TensorViewS32" + layout_tag elif tensor.dtype == np.int8: ref_name = "TensorViewS8" + layout_tag else: raise ValueError("unsupported datatype") return getattr(cutlass, ref_name)(tensor_ref, tensor_coord) class GemmUniversalLauncher: def __init__(self, operation: 'GemmOperationUniversal', seed: int = 2080, interleaved=False, verification=True, profiling=False, warmup_iterations=500, iterations=500, **kwargs) -> None: # create the reduction kernel self.reduction_operation: ReductionOperation = ReductionOperation( shape=cutlass.MatrixCoord(4, 32 * operation.C.alignment), C=operation.C, element_accumulator=operation.tile_description.math_instruction.element_accumulator, element_compute=operation.epilogue_functor.element_epilogue, epilogue_functor=operation.epilogue_functor, count=operation.C.alignment ) self.math_operation = operation.tile_description.math_instruction.math_operation #: verify the output result self.verification = verification #: profile the kernel's runtime self.profiling = profiling self.timer = GpuTimer() self.warmup_iterations = warmup_iterations self.iterations = iterations if "sleep" in kwargs.keys(): self.sleep_time = kwargs["sleep"] else: self.sleep_time = 0 # # Compile the operator # op_list = [operation] if operation.arch < 90: # Split K via Python is currently only supported for pre-SM90 kernels op_list.append(self.reduction_operation) pycutlass.compiler.add_module(op_list) self.operation = operation self.dtype_A = GemmUniversalLauncher.numpy_type(operation.A.element) self.dtype_B = GemmUniversalLauncher.numpy_type(operation.B.element) self.dtype_C = GemmUniversalLauncher.numpy_type(operation.C.element) self.dtype_D = GemmUniversalLauncher.numpy_type(operation.C.element) accumulator_size = DataTypeSize[operation.tile_description.math_instruction.element_accumulator] element_size = DataTypeSize[operation.A.element] if element_size == 1: self.scope_max = 1 self.scope_min = 0 elif element_size <= 8: self.scope_max = 1 self.scope_min = -1 elif element_size == 16: self.scope_max = 4 self.scope_min = -4 else: self.scope_max = 8 self.scope_min = -8 #: seed self.seed: int = seed #: whether the layout is interleaved self.interleaved = interleaved #: compute type self.compute_type = operation.epilogue_functor.element_epilogue self.accumulator_type = operation.tile_description.math_instruction.element_accumulator def print_problem_size(self, p, mode, batch_count): if mode == cutlass.gemm.Mode.Gemm: mode = "Gemm" elif mode == cutlass.gemm.Mode.Batched: mode = "GemmBatched" elif mode == cutlass.gemm.Mode.GemmSplitKParallel: mode = "GemmSplitKParallel" problem_size = "problem: %d, %d, %d\n batch_count: %d\n mode: %s" % ( p.m(), p.n(), p.k(), batch_count, mode) print(problem_size) @staticmethod def numpy_type(type): if type == cutlass.float64: return np.float64 elif type == cutlass.float32: return np.float32 elif type == cutlass.float16: return np.float16 elif type == cutlass.bfloat16: return bfloat16 elif type == cutlass.int32: return np.int32 elif type == cutlass.int8: return np.int8 else: raise ValueError("unsupported type: %s" % ShortDataTypeNames[type]) def uniform_init(self, size, dtype): if dtype in [np.float32, np.float16, bfloat16, np.float64]: return np.ceil( np.random.uniform( low=self.scope_min - 0.5, high=self.scope_max - 0.5, size=size).astype(dtype) ) else: return np.random.uniform( low=self.scope_min - 1, high=self.scope_max + 1, size=size).astype(dtype) def reorder_tensor_B(self, tensor_B, problem_size): reordered_tensor_B = np.empty_like(tensor_B) tensor_ref_B = getTensorRef( tensor_B, problem_size, "b", self.operation.B.layout) reordered_tensor_ref_B = getTensorRef( reordered_tensor_B, problem_size, "b", self.operation.B.layout) cutlass.gemm.host.reorder_column( tensor_ref_B, reordered_tensor_ref_B, problem_size) return reordered_tensor_B def host_reference(self, problem_size, batch_count, tensor_A, tensor_B, tensor_C, alpha, beta): tensor_D_ref = np.ones_like(tensor_C) alpha = self.numpy_type(self.compute_type)(alpha) beta = self.numpy_type(self.compute_type)(beta) init_acc = 0 alpha = self.compute_type(alpha).value() beta = self.compute_type(beta).value() init_acc = self.accumulator_type(init_acc).value() for i in range(batch_count): if self.operation.switched: tensor_ref_A = getTensorRef( tensor_A, problem_size, "a", transpose(self.operation.B.layout), batch_offset=i) tensor_ref_B = getTensorRef( tensor_B, problem_size, "b", transpose(self.operation.A.layout), batch_offset=i) tensor_ref_C = getTensorRef( tensor_C, problem_size, "c", transpose(self.operation.C.layout), batch_offset=i) tensor_ref_D_ref = getTensorRef( tensor_D_ref, problem_size, "d", transpose(self.operation.C.layout), batch_offset=i) else: tensor_ref_A = getTensorRef( tensor_A, problem_size, "a", self.operation.A.layout, batch_offset=i) tensor_ref_B = getTensorRef( tensor_B, problem_size, "b", self.operation.B.layout, batch_offset=i) tensor_ref_C = getTensorRef( tensor_C, problem_size, "c", self.operation.C.layout, batch_offset=i) tensor_ref_D_ref = getTensorRef( tensor_D_ref, problem_size, "d", self.operation.C.layout, batch_offset=i) if self.math_operation in [MathOperation.multiply_add_saturate]: cutlass.test.gemm.host.gemm_saturate( problem_size, alpha, tensor_ref_A, tensor_ref_B, beta, tensor_ref_C, tensor_ref_D_ref, init_acc) else: cutlass.test.gemm.host.gemm(problem_size, alpha, tensor_ref_A, tensor_ref_B, beta, tensor_ref_C, tensor_ref_D_ref, init_acc) return tensor_D_ref def equal(self, tensor_D, tensor_D_ref, problem_size, batch_count): for i in range(batch_count): tensor_view_D = getTensorView( tensor_D, problem_size, "d", self.operation.C.layout, batch_offset=i) tensor_view_D_ref = getTensorView( tensor_D_ref, problem_size, "d", self.operation.C.layout, batch_offset=i) if not cutlass.test.gemm.host.equals(tensor_view_D, tensor_view_D_ref): return False return True def bytes(self, problem_size, batch_count=1, alpha=1.0, beta=0.0): m = problem_size.m() n = problem_size.n() k = problem_size.k() bytes = \ (DataTypeSize[self.operation.A.element] * m // 8) * k + \ (DataTypeSize[self.operation.B.element] * n // 8) * k + \ (DataTypeSize[self.operation.C.element] * m // 8) * n if beta != 0: bytes += (DataTypeSize[self.operation.C.element] * m // 8) * n bytes *= batch_count return bytes def flops(self, problem_size, batch_count=1): m = problem_size.m() n = problem_size.n() k = problem_size.k() flops_ = (m * n * k) * 2 * batch_count return flops_ def run_cutlass_profiler(self, mode, problem_size, batch_count=1, alpha=1.0, beta=0.0): cutlass_path = os.getenv('CUTLASS_PATH') assert cutlass_path is not None, "Environment variable 'CUTLASS_PATH' is not defined." values = { "profiler_path": cutlass_path + "/build/tools/profiler/cutlass_profiler", "kernel_name": self.operation.procedural_name(), "verification_providers": "device", "provider": "cutlass", "m": str(problem_size.m()), "n": str(problem_size.n()), "k": str(problem_size.k()), 'split_k_slices': str(batch_count), 'alpha': str(alpha), 'beta': str(beta), 'warmup': str(self.warmup_iterations), 'profile': str(self.iterations) } cmd_template = \ "${profiler_path} --kernels=${kernel_name} --verification-providers=${verification_providers}" \ " --providers=${provider} --m=${m} --n=${n} --k=${k}" cmd = SubstituteTemplate(cmd_template, values) result = subprocess.getoutput(cmd) m = re.search(r"Runtime:\s+(?P<runtime>\d+.\d+)", result) runtime = float(m.group('runtime')) m = re.search(r"Bytes:\s+(?P<bytes>\d+)", result) bytes = int(m.group('bytes')) m = re.search(r"FLOPs:\s+(?P<flops>\d+)", result) flops = int(m.group('flops')) # check if the problem size matches assert bytes == self.bytes(problem_size, alpha, beta) assert flops == self.flops(problem_size) return runtime def run(self, mode, problem_size, batch_count=1, split_k_slices=1, alpha=1.0, beta=0.0): assert get_allocated_size( ) == 0, "%d byte of pool memory is not released in previous run" % get_allocated_size() np.random.seed(self.seed) # Assign an actual batch count in cases where we are not running in batched mode. # This is to differentiate between the number of split K slices and the batch count, # which are overloaded within the single `batch_count` variable. true_batch_count = batch_count if mode == cutlass.gemm.Mode.Batched else 1 tensor_A = self.uniform_init( size=(problem_size.m() * problem_size.k() * true_batch_count,), dtype=self.dtype_A) tensor_B = self.uniform_init( size=(problem_size.n() * problem_size.k() * true_batch_count,), dtype=self.dtype_B) tensor_C = self.uniform_init( size=(problem_size.m() * problem_size.n() * true_batch_count,), dtype=self.dtype_C) tensor_D = np.zeros( shape=(problem_size.m() * problem_size.n() * true_batch_count,), dtype=self.dtype_D) # # Launch kernel # arguments = GemmArguments( operation=self.operation, problem_size=problem_size, A=tensor_A, B=tensor_B, C=tensor_C, D=tensor_D, output_op=self.operation.epilogue_type(alpha, beta), gemm_mode=mode, split_k_slices=split_k_slices, batch=batch_count ) if mode == cutlass.gemm.Mode.GemmSplitKParallel: reduction_arguments = ReductionArguments( self.reduction_operation, problem_size=[ problem_size.m(), problem_size.n()], partitions=split_k_slices, workspace=arguments.ptr_D, destination=tensor_D, source=tensor_C, output_op=self.reduction_operation.epilogue_type(alpha, beta) ) self.operation.run(arguments) if mode == cutlass.gemm.Mode.GemmSplitKParallel: self.reduction_operation.run(reduction_arguments) passed = True if self.verification: if mode == cutlass.gemm.Mode.GemmSplitKParallel: reduction_arguments.sync() else: arguments.sync() tensor_D_ref = self.host_reference( problem_size, true_batch_count, tensor_A, tensor_B, tensor_C, alpha, beta) passed = self.equal(tensor_D, tensor_D_ref, problem_size, true_batch_count) try: assert passed except AssertionError: self.print_problem_size(problem_size, mode, batch_count) if self.profiling: sleep(self.sleep_time) for _ in range(self.warmup_iterations): self.operation.run(arguments) if mode == cutlass.gemm.Mode.GemmSplitKParallel: self.reduction_operation.run(reduction_arguments) self.timer.start() for _ in range(self.iterations): self.operation.run(arguments) if mode == cutlass.gemm.Mode.GemmSplitKParallel: self.reduction_operation.run(reduction_arguments) self.timer.stop_and_wait() runtime = self.timer.duration(self.iterations) # free memory and clear buffers del arguments if mode == cutlass.gemm.Mode.GemmSplitKParallel: del reduction_arguments assert get_allocated_size( ) == 0, "%d byte of pool memory is not released after current run" % get_allocated_size() if self.profiling: return runtime return passed def test_all_gemm(operation: 'GemmOperationUniversal', testcase="universal"): passed = True minimum_operand_element_size = min( DataTypeSize[operation.A.element], DataTypeSize[operation.B.element]) opcode_class = operation.tile_description.math_instruction.opcode_class if opcode_class == cutlass.OpClass.Simt: alignment = 1 else: alignment = 128 // minimum_operand_element_size # int8_t gemm alignment constraints if opcode_class == cutlass.OpClass.Simt and operation.A.element == cutlass.int8 and operation.A.layout == cutlass.ColumnMajor: alignment_m = 4 else: alignment_m = alignment if opcode_class == cutlass.OpClass.Simt and operation.B.element == cutlass.int8 and operation.A.layout == cutlass.RowMajor: alignment_n = 4 else: alignment_n = alignment if opcode_class == cutlass.OpClass.Simt and operation.A.element == cutlass.int8 \ and operation.B.element == cutlass.int8 \ and (operation.A.layout == cutlass.RowMajor or operation.B.layout == cutlass.ColumnMajor): alignment_k = 4 else: alignment_k = alignment threadblock_k = operation.tile_description.threadblock_shape[2] if testcase == "interleaved": if operation.A.layout in [cutlass.ColumnMajorInterleaved32, cutlass.RowMajorInterleaved32]: interleavedk = 32 else: raise ValueError("Unknown layout") if testcase == "interleaved": modes = [cutlass.gemm.Mode.Gemm, ] problem_size_m = [interleavedk, 512+interleavedk] problem_size_n = [interleavedk, 512+interleavedk] problem_size_k = [interleavedk, threadblock_k * operation.tile_description.stages + interleavedk] problem_alpha = [1.0] problem_beta = [0.0] batch_counts = [1, ] elif testcase == "multistage": modes = [cutlass.gemm.Mode.Gemm, ] problem_size_m = [16, 528] problem_size_n = [16, 528] problem_size_k = [threadblock_k, threadblock_k * operation.tile_description.stages + operation.tile_description.math_instruction.instruction_shape[2]] problem_alpha = [1.0] problem_beta = [0.0] batch_counts = [1, ] else: # universal modes = [cutlass.gemm.Mode.Gemm] batch_counts = [1, 2, 3, 5, 7] if operation.arch < 90: # Split K kernels via Python are currently only supported pre-SM90 modes.append(cutlass.gemm.Mode.GemmSplitKParallel) problem_size_m = [alignment_m, 512 - 3 * alignment_m] problem_size_n = [alignment_n, 512 - 2 * alignment_n] if operation.tile_description.stages is None: stages_for_k_calc = 7 else: stages_for_k_calc = operation.tile_description.stages problem_size_k = [ alignment_k, threadblock_k * stages_for_k_calc - alignment_k, threadblock_k * stages_for_k_calc * 3 - alignment_k] problem_alpha = [1.0] problem_beta = [2.0] testbed = GemmUniversalLauncher( operation, interleaved=(testcase == "interleaved")) for mode in modes: for m in problem_size_m: for n in problem_size_n: for k in problem_size_k: for batch_count in batch_counts: for alpha in problem_alpha: for beta in problem_beta: # skip very small K problems if testcase == "universal": if (k // batch_count < 2 * threadblock_k): continue problem_size = cutlass.gemm.GemmCoord(m, n, k) if operation.arch < 90: split_k_slices = batch_count else: split_k_slices = 1 overridden_mode = mode if mode == cutlass.gemm.Mode.Gemm and batch_count > 1: overridden_mode = cutlass.gemm.Mode.Batched passed = testbed.run( overridden_mode, problem_size, batch_count, split_k_slices, alpha, beta) err, = cudart.cudaDeviceSynchronize() if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError( "CUDA Error %s" % str(err)) if not passed: return False return passed
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# from cuda import cuda from cuda import cudart class GpuTimer: def __init__(self) -> None: self.events = [ cuda.cuEventCreate(cuda.CUevent_flags.CU_EVENT_DEFAULT)[1], cuda.cuEventCreate(cuda.CUevent_flags.CU_EVENT_DEFAULT)[1] ] def start(self, stream=cuda.CUstream(0)): err, = cuda.cuEventRecord(self.events[0], stream) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) def stop(self, stream=cuda.CUstream(0)): err, = cuda.cuEventRecord(self.events[1], stream) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) pass def stop_and_wait(self, stream=cuda.CUstream(0)): self.stop(stream) if stream: err, = cuda.cuStreamSynchronize(stream) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) else: err, = cudart.cudaDeviceSynchronize() if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) def duration(self, iterations=1): err, duration = cuda.cuEventElapsedTime(self.events[0], self.events[1]) if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("CUDA Error %s" % str(err)) return duration / float(iterations)
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Utility functions for interacting with the device """ from cuda import cudart def check_cuda_errors(result: list): """ Checks whether `result` contains a CUDA error raises the error as an exception, if so. Otherwise, returns the result contained in the remaining fields of `result`. :param result: the results of the `cudart` method, consisting of an error code and any method results :type result: list :return: non-error-code results from the `results` parameter """ # `result` is of the format : (cudaError_t, result...) err = result[0] if err.value: raise RuntimeError("CUDA error: {}".format(cudart.cudaGetErrorName(err))) if len(result) == 1: return None elif len(result) == 2: return result[1] else: return result[1:] def device_cc(device: int = 0) -> int: """ Returns the compute capability of the device with ID `device`. :param device: ID of the device to query :type device: int :return: compute capability of the queried device (e.g., 80 for SM80) :rtype: int """ deviceProp = check_cuda_errors(cudart.cudaGetDeviceProperties(device)) major = str(deviceProp.major) minor = str(deviceProp.minor) return int(major + minor)
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import numpy as np import cutlass from pycutlass.library import TensorDescription from typing import Union from bfloat16 import bfloat16 try: import torch torch_available = True except ImportError: torch_available = False class ReferenceModule: def __init__(self, A: TensorDescription, B: TensorDescription, C: TensorDescription) -> None: self.layout_A = A.layout self.layout_B = B.layout self.layout_C = C.layout def run(self, A: np.ndarray, B: np.ndarray, C: np.ndarray, problem_size: cutlass.gemm.GemmCoord, alpha: float=1.0, beta: float=0.0, bias=False, batch=1): """ Compute the reference result on CPU Args: A: dense operator with shape (M, K) in row-major and (K, M) in column-major B: dense operator with shape (K, N) in row-major and (N, K) in column-major C: dense operator with shape (M, N) in row-major and (N, M) in column-major """ M, N, K = problem_size.m(), problem_size.n(), problem_size.k() if isinstance(A, np.ndarray): if self.layout_A == cutlass.RowMajor: A_row = np.reshape(A, newshape=(batch, M, K)) else: A_col = np.reshape(A, newshape=(batch, K, M)) A_row = np.transpose(A_col, axes=(0, 2, 1)) if self.layout_B == cutlass.RowMajor: B_row = np.reshape(B, newshape=(batch, K, N)) else: B_col = np.reshape(B, newshape=(batch, N, K)) B_row = np.transpose(B_col, axes=(0, 2, 1)) if self.layout_C == cutlass.RowMajor: if bias: C_row = np.reshape(C, newshape=(batch, 1, N)) else: C_row = np.reshape(C, newshape=(batch, M, N)) else: if bias: C_row = np.reshape(C, newshape=(batch, M, 1)) else: C_col = np.reshape(C, newshape=(batch, N, M)) C_row = np.transpose(C_col, axes=(0, 2, 1)) if A_row.dtype == bfloat16: # numpy's einsum doesn't support bfloat16 out_row = np.einsum("bik,bkj->bij", A_row.astype(np.float32), B_row.astype(np.float32)) * alpha + C_row * beta out_row = out_row.astype(C_row.dtype) else: out_row = np.einsum("bik,bkj->bij", A_row, B_row) * alpha + C_row * beta if self.layout_C == cutlass.ColumnMajor: out = np.transpose(out_row, axes=(0, 2, 1)) else: out = out_row return out.ravel() elif isinstance(A, torch.Tensor): if self.layout_A == cutlass.RowMajor: A_row = A.view((M, K)) else: A_col = A.view((K, M)) A_row = torch.permute(A_col, (1, 0)) if self.layout_B == cutlass.RowMajor: B_row = B.view((K, N)) else: B_col = B.view((N, K)) B_row = torch.permute(B_col, (1, 0)) if self.layout_C == cutlass.RowMajor: C_row = C.view((M, N)) else: C_col = C.view((N, M)) C_row = torch.permute(C_col, (1, 0)) out_row = torch.matmul(A_row, B_row) * alpha + C_row * beta if self.layout_C == cutlass.ColumnMajor: out = torch.permute(out_row, (1, 0)) else: out = out_row return torch.flatten(out) ##################################################################################################### # Conv2d ##################################################################################################### if torch_available: class Conv2dReferenceModule: def __init__(self, A: TensorDescription, B: TensorDescription, C: TensorDescription, kind: cutlass.conv.Operator.fprop) -> None: self.layout_A = A.layout self.layout_B = B.layout self.layout_C = C.layout self.kind = kind def run(self, A: Union[np.ndarray, torch.Tensor], B: Union[np.ndarray, torch.Tensor], C: Union[np.ndarray, torch.Tensor], problem_size, alpha=1.0, beta=0.0, bias=False) -> np.ndarray: """ Compute the reference result on CPU """ n = problem_size.N h = problem_size.H w = problem_size.W c = problem_size.C k = problem_size.K r = problem_size.R s = problem_size.S p = problem_size.P q = problem_size.Q stride_h = problem_size.stride_h stride_w = problem_size.stride_w pad_h = problem_size.pad_h pad_w = problem_size.pad_w dilation_h = problem_size.dilation_h dilation_w = problem_size.dilation_w groups = problem_size.groups if isinstance(A, np.ndarray): # the pytorch activation layout is NCHW # weight layout is Cout Cin Kh Kw (also NCHW) if self.layout_A == cutlass.TensorNHWC: A_nhwc = np.reshape(A, newshape=(n, h, w, c)) A_torch_nhwc = torch.from_numpy(A_nhwc).to("cuda") A_torch_nchw = torch.permute(A_torch_nhwc, (0, 3, 1, 2)) if self.layout_B == cutlass.TensorNHWC: B_nhwc = np.reshape(B, newshape=(k, r, s, c)) B_torch_nhwc = torch.from_numpy(B_nhwc).to("cuda") B_torch_nchw = torch.permute(B_torch_nhwc, (0, 3, 1, 2)) if self.layout_C == cutlass.TensorNHWC: C_nhwc = np.reshape(C, newshape=(n, p, q, k)) C_torch_nhwc = torch.from_numpy(C_nhwc).to("cuda") C_torch_nchw = torch.permute(C_torch_nhwc, (0, 3, 1, 2)) elif isinstance(A, torch.Tensor): if self.kind == cutlass.conv.Operator.wgrad: if self.layout_A == cutlass.TensorNHWC: A_nhwc = A.view((n, p, q, k)) A_torch_nchw = torch.permute(A_nhwc, (0, 3, 1, 2)) if self.layout_B == cutlass.TensorNHWC: B_nhwc = B.view((n, h, w, c)) B_torch_nchw = torch.permute(B_nhwc, (0, 3, 1, 2)) if self.layout_C == cutlass.TensorNHWC: if bias: C_nhwc = C.view((1, 1, 1, c)) else: C_nhwc = C.view((k, r, s, c)) C_torch_nchw = torch.permute(C_nhwc, (0, 3, 1, 2)) elif self.kind == cutlass.conv.Operator.dgrad: if self.layout_A == cutlass.TensorNHWC: A_nhwc = A.view((n, p, q, k)) A_torch_nchw = torch.permute(A_nhwc, (0, 3, 1, 2)) if self.layout_B == cutlass.TensorNHWC: B_nhwc = B.view((k, r, s, c)) B_torch_nchw = torch.permute(B_nhwc, (0, 3, 1, 2)) if self.layout_C == cutlass.TensorNHWC: if bias: C_nhwc = C.view((1, 1, 1, c)) else: C_nhwc = C.view((n, h, w, c)) C_torch_nchw = torch.permute(C_nhwc, (0, 3, 1, 2)) else: if self.layout_A == cutlass.TensorNHWC: A_nhwc = A.view((n, h, w, c)) A_torch_nchw = torch.permute(A_nhwc, (0, 3, 1, 2)) if self.layout_B == cutlass.TensorNHWC: B_nhwc = B.view((k, r, s, c)) B_torch_nchw = torch.permute(B_nhwc, (0, 3, 1, 2)) if self.layout_C == cutlass.TensorNHWC: if bias: C_nhwc = C.view((1, 1, 1, k)) else: C_nhwc = C.view((n, p, q, k)) C_torch_nchw = torch.permute(C_nhwc, (0, 3, 1, 2)) if self.kind == cutlass.conv.Operator.fprop: D_torch_nchw = alpha * torch.nn.functional.conv2d( A_torch_nchw, B_torch_nchw, stride=(stride_h, stride_w), padding=(pad_h, pad_w), dilation=(dilation_h, dilation_w), groups=groups) + beta * C_torch_nchw elif self.kind == cutlass.conv.Operator.dgrad: D_torch_nchw = alpha * torch.nn.grad.conv2d_input( (n, c, h, w), B_torch_nchw, A_torch_nchw, padding=(pad_h, pad_w), stride=(stride_h, stride_w) ).to(torch.float32) + beta * C_torch_nchw elif self.kind == cutlass.conv.Operator.wgrad: D_torch_nchw = alpha * torch.nn.grad.conv2d_weight( B_torch_nchw, (k, c, r, s), A_torch_nchw, padding=(pad_h, pad_w), stride=(stride_h, stride_w) ).to(torch.float32) + beta * C_torch_nchw if self.layout_C == cutlass.TensorNHWC: if isinstance(A, np.ndarray): D_torch_out = torch.permute(D_torch_nchw, (0, 2, 3, 1)).detach().cpu().numpy() elif isinstance(A, torch.Tensor): D_torch_out = torch.permute(D_torch_nchw, (0, 2, 3, 1)) return D_torch_out.flatten()
from pycutlass.utils.reference_model import *
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Utility functions for converting between frontend datatypes and CUTLASS datatypes """ from typing import Union, Tuple import cutlass import pycutlass.library as library try: import numpy as np numpy_available = True except ImportError: numpy_available = False def numpy_to_cutlass(inp): if numpy_available: if inp == np.float16: return cutlass.float16 elif inp == np.float32: return cutlass.float32 elif inp == np.float64: return cutlass.float64 elif inp == np.int8: return cutlass.int8 elif inp == np.int32: return cutlass.int32 return None try: import cupy as cp cupy_available = True cupy_to_cutlass_dict = { cp.float16: cutlass.float16, cp.float32: cutlass.float32, cp.float64: cutlass.float64 } except ImportError: cupy_available = False def cupy_to_cutlass(inp): if cupy_available: if inp == cp.float16: return cutlass.float16 elif inp == cp.float32: return cutlass.float32 elif inp == cp.float64: return cutlass.float64 return None try: import torch torch_available = True torch_to_cutlass_dict = { torch.half: cutlass.float16, torch.float16: cutlass.float16, torch.float: cutlass.float32, torch.float32: cutlass.float32, torch.double: cutlass.float64, torch.float64: cutlass.float64 } except ImportError: torch_available = False def torch_to_cutlass(inp): if torch_available: return torch_to_cutlass_dict.get(inp, None) try: import bfloat16 bfloat16_available = True except ImportError: bfloat16_available = False def bfloat16_to_cutlass(inp): if bfloat16_available: if inp == bfloat16.bfloat16: return cutlass.bfloat16 def to_cutlass(inp): for cvt_fn in [bfloat16_to_cutlass, cupy_to_cutlass, numpy_to_cutlass, torch_to_cutlass]: out = cvt_fn(inp) if out is not None: return out raise Exception('No available conversion from type {} to a CUTLASS type.'.format(inp))
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Utilities for stamping out collective mainloops for SM90 kernels """ import cute import cutlass from pycutlass import SubstituteTemplate import pycutlass.library as library tma_alignment_bytes = 16 cp_async_min_alignment_bytes = 4 class RowColMajorToGMMAMajor: @staticmethod def A(layout, element): """ Converts operand A's layout from row/column major format into CuTe's GMMA major format :param layout: layout of the A operand :type layout: cutlass.RowMajor or cutlass.ColumnMajor :param element: data type of the A operand :return: C++ CuTe GMMA major format :rtype: cute.GMMAMajor """ type_requires_k_major = (element == cutlass.tfloat32) or (element == cutlass.int8) if layout == cutlass.ColumnMajor and not type_requires_k_major: return cute.GMMAMajor.MN else: return cute.GMMAMajor.K @staticmethod def B(layout, element): """ Converts operand B's layout from row/column major format into CuTe's GMMA major format :param layout: layout of the B operand :type layout: cutlass.RowMajor or cutlass.ColumnMajor :param element: data type of the B operand :return: C++ CuTe GMMA major format :rtype: cute.GMMAMajor """ type_requires_k_major = (element == cutlass.tfloat32) or (element == cutlass.int8) if layout == cutlass.RowMajor and not type_requires_k_major: return cute.GMMAMajor.MN else: return cute.GMMAMajor.K def cluster_shape_to_tma(dim): """ Returns the TMA copy type for a given cluster dimension :param dim: a given dimension of a cluster :type dim: layout :return: C++ TMA copy time :rtype: str """ return 'cute::SM90_TMA_LOAD' if dim == 1 else 'cute::SM90_TMA_LOAD_MULTICAST' def make_cpasync_gmem_tiled_copy(thread_count, element, alignment, gmma_layout, dim_mn, dim_k): """ Returns a `make_tiled_copy` call for a given configuration :param thread_count: number of threads in the threadblock :type thread_count: int :param element: datatype of the operand in question :param alignment: byte alignment of the operand in question :type alignment: int :param gmma_layout: GMMA layout of the operand in question :type gmma_layout: cute.GMMAMajor :param dim_mn: extent of the M/N dimension of the tile :type dim_mn: int :param dim_k: extent of the reduction dimension of the tile :type dim_k: int :return: C++ call to `make_tiled_copy` :rtype: str """ emission_str = """decltype(cute::make_tiled_copy( cute::Copy_Atom<SM80_CP_ASYNC_CACHEALWAYS<cute::uint_byte_t<static_cast<int>(sizeof(${element})) * ${alignment}>>, ${element}>{}, cute::Layout<cute::Shape<_${shape0_x}, _${shape0_y}>, cute::Stride<_${stride_x}, _${stride_y}>>{}, cute::Layout<cute::Shape<_${shape1_x}, _${shape1_y}>>{}))""" if gmma_layout == cute.GMMAMajor.K: threads_major = dim_k // alignment threads_minor = thread_count // threads_major values = { 'shape0_x': str(threads_minor), 'shape0_y': str(threads_major), 'stride_x': str(threads_major), 'stride_y': '1', 'shape1_x': '1', 'shape1_y': str(alignment) } elif gmma_layout == cute.GMMAMajor.MN: threads_major = dim_mn // alignment threads_minor = thread_count // threads_major values = { 'shape0_x': str(threads_major), 'shape0_y': str(threads_minor), 'stride_x': '1', 'stride_y': str(threads_major), 'shape1_x': str(alignment), 'shape1_y': '1' } else: raise Exception('Unexpected GMMA layout {}'.format(gmma_layout)) # Add common values values['element'] = library.DataTypeTag[element] values['alignment'] = str(alignment) return SubstituteTemplate(emission_str, values) def max_stages(op, arch): """ Returns the maximum number pipeline stages that can be used for an operation. :param op: operation for which the maximum stages should be computed. If stages are set via the `op.tile_description.stages` parameter, this setting is ignored in the present calculation :type op: pycutlass.GemmOperation :param arch: compute capability of the device on which the operation will be run :type arch: int :return: maximum number of pipeline stages that can be used for an operation :rtype: int """ smem_per_stage = library.CalculateSmemUsagePerStage(op) smem_capacity = library.SharedMemPerCC[arch] return int(smem_capacity // smem_per_stage) class LayoutToStride: _variable_first = 'cute::Stride<int64_t, cute::Int<1>, int64_t>' _variable_last = 'cute::Stride<cute::Int<1>, int64_t, int64_t>' @staticmethod def A(layout): """ Returns the CuTe shape type corresponding to the layout of operand A :param layout: layout of the B operand :type layout: cutlass.RowMajor or cutlass.ColumnMajor :return: C++ declaration of CuTe stride :rtype: str """ if layout == cutlass.RowMajor: return LayoutToStride._variable_first elif layout == cutlass.ColumnMajor: return LayoutToStride._variable_last else: raise Exception('Unsupported layout {}'.format(layout)) @staticmethod def B(layout): """ Returns the CuTe shape type corresponding to the layout of operand B :param layout: layout of the B operand :type layout: cutlass.RowMajor or cutlass.ColumnMajor :return: C++ declaration of CuTe stride :rtype: str """ if layout == cutlass.RowMajor: return LayoutToStride._variable_last elif layout == cutlass.ColumnMajor: return LayoutToStride._variable_first else: raise Exception('Unsupported layout {}'.format(layout)) EMISSION_STR = """ using TileShape_MNK = cute::Shape<_${threadblock_shape_m}, _${threadblock_shape_n}, _${threadblock_shape_k}>; using ClusterShape_MNK = cute::Shape<_${cluster_shape_m}, _${cluster_shape_n}, _${cluster_shape_k}>; using TiledMma = decltype(cute::make_tiled_mma(cute::GMMA::ss_op_selector< ${internal_element_A}, ${internal_element_B}, ${element_accumulator}, TileShape_MNK, ${gmma_layout_A}, ${gmma_layout_B}>())); using SmemLayoutAtomA = decltype(cute::GMMA::smem_selector<${gmma_layout_A}, ${internal_element_A}, _${threadblock_shape_m}, _${threadblock_shape_k}>()); using SmemLayoutAtomB = decltype(cute::GMMA::smem_selector<${gmma_layout_B}, ${internal_element_B}, _${threadblock_shape_n}, _${threadblock_shape_k}>()); using CollectiveOp = typename cutlass::gemm::collective::CollectiveMma< ${mainloop_type}<${stage_count}, ClusterShape_MNK${kernel_schedule}>, TileShape_MNK, ${element_A}, ${stride_A}, ${element_B}, ${stride_B}, TiledMma, ${gmem_tiled_copy_A}, SmemLayoutAtomA, void, // GMMA_SS does not need an SmemCopyAtom ${transform_A}, ${gmem_tiled_copy_B}, SmemLayoutAtomB, void, // GMMA_SS does not need an SmemCopyAtom ${transform_B} >; """ def internal_element(element): """ Returns the data type internally used for `element`. :param element: data type :return: data type used internally """ return cutlass.tfloat32 if element == cutlass.float32 else element def common_values(op, stage_count, transform_A, transform_B): """ Returns a dictionary containing common values to be substituted in the emission of the collective operation declaration. Values specific to a particular collective operation should be added to these. :param op: GEMM operation for which to build a collective operation :type op: pycutlass.GemmOperation :param stage_count: number of pipeline stages to use in the operation :type stage_count: int :param transform_A: transformation to perform on the A operand :type transform_A: str :param transform_B: transformation to perform on the B operand :type transform_B: str :return: dictionary containing values to substitute in emission string :rtype: dict """ internal_element_a = internal_element(op.A.element) internal_element_b = internal_element(op.B.element) return { 'threadblock_shape_m': str(op.tile_description.threadblock_shape[0]), 'threadblock_shape_n': str(op.tile_description.threadblock_shape[1]), 'threadblock_shape_k': str(op.tile_description.threadblock_shape[2]), 'cluster_shape_m': str(op.tile_description.cluster_shape[0]), 'cluster_shape_n': str(op.tile_description.cluster_shape[1]), 'cluster_shape_k': str(op.tile_description.cluster_shape[2]), 'element_A': library.DataTypeTag[op.A.element], 'element_B': library.DataTypeTag[op.B.element], 'internal_element_A': library.DataTypeTag[internal_element_a], 'internal_element_B': library.DataTypeTag[internal_element_b], 'element_accumulator': library.DataTypeTag[op.accumulator_type()], 'gmma_layout_A': library.CuTeLayoutTag[RowColMajorToGMMAMajor.A(op.A.layout, internal_element_a)], 'gmma_layout_B': library.CuTeLayoutTag[RowColMajorToGMMAMajor.B(op.B.layout, internal_element_b)], 'stride_A': LayoutToStride.A(op.A.layout), 'stride_B': LayoutToStride.B(op.B.layout), 'stage_count': str(stage_count), 'transform_A': transform_A, 'transform_B': transform_B } def build_gmma_tma(op): """ Builds a collective operation declaration targeting TMA GMMA kernels :param op: GEMM operation for which to build a collective operation :type op: pycutlass.GemmOperation :return: string containing the C++ declaration of collective operation :rtype: str """ A_tma_aligned = (library.DataTypeSizeBytes[op.A.element] * op.A.alignment) % tma_alignment_bytes == 0 B_tma_aligned = (library.DataTypeSizeBytes[op.B.element] * op.B.alignment) % tma_alignment_bytes == 0 if not A_tma_aligned or not B_tma_aligned: raise Exception('Each of the A or B operands must be aligned to {} bytes to use TMA'.format(tma_alignment_bytes)) max_stage_count = max_stages(op, arch=90) if op.tile_description.stages is None: op.tile_description.stages = max_stage_count elif op.tile_description.stages > max_stage_count: raise Exception('Combination of threadblock shape, data types, and number of stages exceeds shared memory capacity.') kernel_schedule = 'cutlass::gemm::KernelTmaWarpSpecialized' if op.tile_description.persistent: kernel_schedule = 'cutlass::gemm::KernelTmaWarpSpecializedPersistent' transform_A = 'cute::identity' transform_B = 'cute::identity' values = common_values(op, op.tile_description.stages, transform_A, transform_B) specific_values = { 'mainloop_type': 'cutlass::gemm::MainloopSm90TmaGmmaWarpSpecialized', 'kernel_schedule': ', ' + kernel_schedule, 'gmem_tiled_copy_A': cluster_shape_to_tma(op.tile_description.cluster_shape[1]), 'gmem_tiled_copy_B': cluster_shape_to_tma(op.tile_description.cluster_shape[0]) } values.update(specific_values) return SubstituteTemplate(EMISSION_STR, values) def build_gmma_cpasync(op): """ Builds a collective operation declaration targeting cp.async GMMA kernels :param op: GEMM operation for which to build a collective operation :type op: pycutlass.GemmOperation :return: string containing the C++ declaration of collective operation :rtype: str """ A_cp_async_aligned = (library.DataTypeSizeBytes[op.A.element] * op.A.alignment) % cp_async_min_alignment_bytes == 0 B_cp_async_aligned = (library.DataTypeSizeBytes[op.B.element] * op.B.alignment) % cp_async_min_alignment_bytes == 0 if not A_cp_async_aligned or not B_cp_async_aligned: raise Exception('Each of the A or B operands must be aligned to {} bytes to use cp.async'.format(cp_async_min_alignment_bytes)) max_stage_count = max_stages(op, arch=90) if op.tile_description.stages is None: op.tile_description.stages = max_stage_count elif op.tile_description.stages > max_stage_count: raise Exception('Combination of threadblock shape, data types, and number of stages exceeds shared memory capacity.') transform_A = 'cute::identity' transform_B = 'cute::identity' thread_count = 128 cpasync_copy_A = make_cpasync_gmem_tiled_copy(thread_count, op.A.element, op.A.alignment, RowColMajorToGMMAMajor.A(op.A.layout, op.A.element), op.tile_description.threadblock_shape[0], op.tile_description.threadblock_shape[2]) cpasync_copy_B = make_cpasync_gmem_tiled_copy(thread_count, op.B.element, op.B.alignment, RowColMajorToGMMAMajor.B(op.B.layout, op.B.element), op.tile_description.threadblock_shape[1], op.tile_description.threadblock_shape[2]) values = common_values(op, op.tile_description.stages, transform_A, transform_B) specific_values = { 'mainloop_type': 'cutlass::gemm::MainloopSm90CpAsyncGmma', 'kernel_schedule': '', 'gmem_tiled_copy_A': cpasync_copy_A, 'gmem_tiled_copy_B': cpasync_copy_B } values.update(specific_values) return SubstituteTemplate(EMISSION_STR, values) def build(operation): """ Builds a collective operation declaration targeting cp.async or TMA for GMMA kernels :param operation: GEMM operation for which to build a collective operation :type operation: pycutlass.GemmOperation :return: string containing the C++ declaration of collective operation :rtype: str """ A_tma_aligned = (library.DataTypeSizeBytes[operation.A.element] * operation.A.alignment) % tma_alignment_bytes == 0 B_tma_aligned = (library.DataTypeSizeBytes[operation.B.element] * operation.B.alignment) % tma_alignment_bytes == 0 tma_correct_size = (library.DataTypeSizeBytes[operation.A.element] == 2 and library.DataTypeSizeBytes[operation.B.element] == 2) tma_correct_layout = (operation.A.layout == cutlass.RowMajor or operation.B.layout == cutlass.ColumnMajor) if A_tma_aligned and B_tma_aligned and (tma_correct_size or tma_correct_layout): return build_gmma_tma(operation) else: return build_gmma_cpasync(operation)
# Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # this file creates the test/unit/gemm/device simt tests outputDir = "" ################################################################################ # parameters # Edge - for tiles, the edges represent the length of one side # Ratio - the maximum ratio between 2 edges, limits the skinnyness of tiles # MaxEdge - maximum length of each edge # Min/Max - minimum/maximum of the product of edge lengths ################################################################################ warpsPerThreadblockEdge = [1, 2, 4, 8, 16] warpsPerThreadblockRatio = 2 warpsPerThreadblockMax = 16 # NOTE 1x32 and 2x16 warp tile shapes fail validation for ~10% of cases warpShapeEdges = [8, 16, 32, 64, 128, 256] warpShapeRatio = 4 warpShapeMax = 64*64 warpShapeMin = 8*8 threadblockEdgeMax = 256 # char, type bits/elem, max tile, L0 threadblock tiles precisions = [ ["c", "cutlass::complex<float>", 64, 64*128, [ [ 64, 128], [ 64, 32] ] ], ["q", "cutlass::Quaternion<float>", 64, 64*128, [ [ 64, 128], [ 64, 32] ] ], ["d", "double", 64, 64*64, [ [ 64, 64], [ 32, 32] ] ], ["h", "cutlass::half_t", 16, 128*256, [ [256, 128], [ 64, 128], [ 64, 32] ] ], ["i", "int", 32, 128*128, [ [128, 64], [ 16, 32] ] ], ["s", "float", 32, 128*128, [ [128, 256], [128, 128], [ 64, 64] ] ], ["z", "cutlass::complex<double>", 128, 64*64, [ [ 32, 64], [ 16, 32] ] ], ] # L1 will have a single kernel for every unique shape # L2 will have everything else transposes = [ [False, False], [False, True], [True, False], [True, True] ] ################################################################################ # warps per threadblock ################################################################################ warpsPerThreadblocks = [] for warpsPerThreadblock0 in warpsPerThreadblockEdge: for warpsPerThreadblock1 in warpsPerThreadblockEdge: if warpsPerThreadblock0 / warpsPerThreadblock1 <= warpsPerThreadblockRatio and warpsPerThreadblock1 / warpsPerThreadblock0 <= warpsPerThreadblockRatio and warpsPerThreadblock0 * warpsPerThreadblock1 <= warpsPerThreadblockMax: warpsPerThreadblocks.append([warpsPerThreadblock0, warpsPerThreadblock1]) print("WarpsPerThreadblocks",warpsPerThreadblocks) ################################################################################ # warp shapes ################################################################################ warpNumThreads = 32 warpShapes = [] for warp0 in warpShapeEdges: for warp1 in warpShapeEdges: if warp0 / warp1 <= warpShapeRatio and warp1 / warp0 <= warpShapeRatio and warp0*warp1 <= warpShapeMax and warp0*warp1 > warpShapeMin: warpShapes.append([warp0, warp1]) print("WarpShapes", warpShapes) numL0 = 0 numL1 = 0 numL2 = 0 ################################################################################ # create kernels # create a file for each precision/transpose # each file contains many tile sizes ################################################################################ # precisions for precision in precisions: # get precision char precisionChar = precision[0] precisionType = precision[1] precisionBits = precision[2] threadblockMaxElements = precision[3] threadblockTilesL0 = precision[4] # transposes for transpose in transposes: # get transpose char columnMajorA = transpose[0] columnMajorB = transpose[1] transCharA = "n" if columnMajorA else "t" transCharB = "n" if columnMajorB else "t" # open file fileName="simt_%sgemm_%s%s_sm50.cu" % (precisionChar, transCharA, transCharB) print("\n", fileName) filePath = "%s%s" % (outputDir, fileName) out = open(filePath, "w+") # write file header out.write("/***************************************************************************************************\n" " * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. \n" " * SPDX-License-Identifier: BSD-3-Clause \n" " * \n" " * Redistribution and use in source and binary forms, with or without \n" " * modification, are permitted provided that the following conditions are met: \n" " * \n" " * 1. Redistributions of source code must retain the above copyright notice, this \n" " * list of conditions and the following disclaimer. \n" " * \n" " * 2. Redistributions in binary form must reproduce the above copyright notice, \n" " * this list of conditions and the following disclaimer in the documentation \n" " * and/or other materials provided with the distribution. \n" " * \n" " * 3. Neither the name of the copyright holder nor the names of its \n" " * contributors may be used to endorse or promote products derived from \n" " * this software without specific prior written permission. \n" " * \n" " * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\" \n" " * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE \n" " * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE \n" " * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE \n" " * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL \n" " * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR \n" " * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER \n" " * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, \n" " * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE \n" " * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. \n" " *\n" " **************************************************************************************************/\n" "/*! \\file\n" " \\brief Tests for device-wide GEMM interface\n" "*/\n" "\n" "#include <iostream>\n" "\n" "#include \"cutlass/cutlass.h\"\n" "#include \"cutlass/gemm/device/gemm.h\"\n" "#include \"cutlass/numeric_types.h\"\n" "\n" "#include \"../../common/cutlass_unit_test.h\"\n" "\n" "#include \"cutlass/util/host_tensor.h\"\n" "#include \"cutlass/util/tensor_view_io.h\"\n" "#include \"cutlass/util/reference/host/tensor_fill.h\"\n" "#include \"cutlass/util/reference/host/tensor_copy.h\"\n" "#include \"cutlass/util/reference/host/tensor_compare.h\"\n" "#include \"cutlass/util/reference/host/gemm.h\"\n" "\n" "#include \"testbed.h\"\n" "\n") foundThreadblockTilesL0 = {} foundThreadblockTilesL1 = {} ######################################################################## # for each combination of tile sizes ######################################################################## for warpsPerThreadblock in warpsPerThreadblocks: for warpShape in warpShapes: warpThreadsM = 0 if warpShape[0] > warpShape[1]: warpThreadsM = 8 else: warpThreadsM = 4 warpThreadsN = warpNumThreads / warpThreadsM # skip shapes with conflicting rectangularity # they are unlikely to be fastest blockG = warpsPerThreadblock[0] > warpsPerThreadblock[1] blockL = warpsPerThreadblock[0] < warpsPerThreadblock[1] warpG = warpShape[0] > warpShape[1] warpL = warpShape[0] < warpShape[1] blockG2 = warpsPerThreadblock[0] > warpsPerThreadblock[1]*2 blockL2 = warpsPerThreadblock[0]*2 < warpsPerThreadblock[1] warpG2 = warpShape[0] > warpShape[1]*2 warpL2 = warpShape[0]*2 < warpShape[1] if blockG2 and warpL: continue if blockL2 and warpG: continue if warpG2 and blockL: continue if warpL2 and blockG: continue # check threadblock ratios and max threadblockTile = [warpShape[0]*warpsPerThreadblock[0], warpShape[1]*warpsPerThreadblock[1]] if threadblockTile[0] * threadblockTile[1] > threadblockMaxElements: continue if threadblockTile[0] > threadblockEdgeMax: continue if threadblockTile[1] > threadblockEdgeMax: continue totalThreads = warpNumThreads*warpsPerThreadblock[0]*warpsPerThreadblock[1] # calculate unroll # ensure that every iteration at least a full load of A,B are done unrollMin = 8 unrollMin0 = totalThreads / threadblockTile[0] unrollMin1 = totalThreads / threadblockTile[1] unroll = max(unrollMin, unrollMin0, unrollMin1) threadTileM = warpShape[0] / warpThreadsM threadTileN = warpShape[1] / warpThreadsN if threadTileM < 2 or threadTileN < 2: continue if threadTileM*threadTileN*precisionBits > 8*8*32: continue # epilogue currently only supports N < WarpNumThreads if threadblockTile[1] < warpNumThreads: continue # limit smem smemBitsA = threadblockTile[0]*unroll*2*precisionBits smemBitsB = threadblockTile[1]*unroll*2*precisionBits smemKBytes = (smemBitsA+smemBitsB)/8/1024 if (smemKBytes > 48): continue # test level 0 testLevel = -1 for tileId in range(0, len(threadblockTilesL0)): tbTile = threadblockTilesL0[tileId] if tbTile[0] == threadblockTile[0] and tbTile[1] == threadblockTile[1]: if tuple(tbTile) not in foundThreadblockTilesL0: testLevel = 0 numL0 += 1 foundThreadblockTilesL0[tuple(tbTile)] = True # test level 1 if testLevel < 0: threadblockTileAlreadyUsed = False if tuple(threadblockTile) not in foundThreadblockTilesL1: testLevel = 1 numL1 += 1 foundThreadblockTilesL1[tuple(threadblockTile)] = True # test level 2 if testLevel < 0: testLevel = 2 numL2 += 1 ################################################################ # write this tile to file ################################################################ print("%ix%ix%i__%ix%i_%ix%i_%ix%i L%i" % ( threadblockTile[0], threadblockTile[1], unroll, threadTileM, threadTileN, warpThreadsM, warpThreadsN, warpsPerThreadblock[0], warpsPerThreadblock[1], testLevel)) out.write("////////////////////////////////////////////////////////////////////////////////\n" "// Elements / Thread: %3i x %3i\n" "// Threads / Warp: %3i x %3i\n" "// Warps / Block: %3i x %3i\n" "// Threadblock: %3i x %3i x %2i\n" % ( threadTileM, threadTileN, warpThreadsM, warpThreadsN, warpsPerThreadblock[0], warpsPerThreadblock[1], threadblockTile[0], threadblockTile[1], unroll ) ) out.write("CUTLASS_TEST_L%i(SM50_device_%sgemm_%s%s, %ix%ix%i_%ix%ix1_%ix%i_%ix%i_%ix%i, {\n" % ( testLevel, precisionChar, transCharA, transCharB, threadblockTile[0], threadblockTile[1], unroll, warpShape[0], warpShape[1], threadTileM, threadTileN, warpThreadsM, warpThreadsN, warpsPerThreadblock[0], warpsPerThreadblock[1] )) out.write(" using precision = %s;\n" % precisionType) out.write(" using ThreadblockShape = cutlass::gemm::GemmShape<%i, %i, %i>;\n" % ( threadblockTile[0], threadblockTile[1], unroll)) out.write(" using WarpShape = cutlass::gemm::GemmShape<%i, %i, %i>;\n\n" % ( warpShape[0], warpShape[1], unroll)) out.write(" static int const kEpilogueElementsPerAccess = 1;\n" " using InstructionShape = cutlass::gemm::GemmShape<1, 1, 1>;\n" " using EpilogueOutputOp = cutlass::epilogue::thread::LinearCombination<\n" " precision, kEpilogueElementsPerAccess, precision, precision>;\n\n") out.write(" using Gemm = cutlass::gemm::device::Gemm<\n" " precision, cutlass::layout::%sMajor,\n" " precision, cutlass::layout::%sMajor,\n" " precision, cutlass::layout::RowMajor,\n" " precision,\n" " cutlass::arch::OpClassSimt,\n" " cutlass::arch::Sm50,\n" " ThreadblockShape, WarpShape, InstructionShape,\n" " EpilogueOutputOp,\n" " cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,\n" " 2 // Stages\n" " >;\n" % ( "Column" if columnMajorA else "Row", "Column" if columnMajorB else "Row", )) out.write(" EXPECT_TRUE(test::gemm::device::TestAllGemm<Gemm>());\n" "} )\n\n") out.close() print("NumKernels:", numL0, numL1, numL2)
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import gen_turing_and_volta as api_generator import gen_sample as sample_creater import gen_cmake as cmake_creater import gen_verify as verify_creater import gen_device as b2b_fused_generator import replace_fix_impl_header import argparse import os import json parser = argparse.ArgumentParser(description="Generates Fused Multi-GEMM CUTLASS Kernels") parser.add_argument("--config-file", default="config.json", help="JSON file containing configuration to generate") parser.add_argument("--gen-name", default="FusedMultiGemmForward", help="Specific the output name") parser.add_argument("--output-dir", default="", help="Specifies the output dir") parser.add_argument("--cutlass-dir", default="", help="Specifies the dependent CUTLASS repo dir") parser.add_argument("--gen-include-cutlass-dir", default="", help="Specifies the generated CUTLASS code include dir, if needed.") args = parser.parse_args() gen_name = args.gen_name cutlass_deps_dir = args.cutlass_dir output_dir = args.output_dir output_dir += "/" cutlass_deps_root = args.gen_include_cutlass_dir if cutlass_deps_root == '': cutlass_deps_root = cutlass_deps_dir + "/include/" cutlass_deps_root +='/' if not os.path.exists(output_dir): os.makedirs(output_dir) if not os.path.exists(output_dir + "/" + "auto_gen"): os.mkdir(output_dir + "/" + "auto_gen") if not os.path.exists(output_dir + "/" + "fixed_impl"): os.mkdir(output_dir + "/" + "fixed_impl" ) if not os.path.exists(output_dir + "/" + "sample"): os.mkdir(output_dir + "/" + "sample" ) if not os.path.exists(output_dir + "/" + "auto_gen" + "/" + "device"): os.mkdir(output_dir + "/" + "auto_gen" + "/" + "device") if not os.path.exists(output_dir + "/" + "auto_gen" + "/" + "kernel"): os.mkdir(output_dir + "/" + "auto_gen" + "/" + "kernel") if not os.path.exists(output_dir + "/" + "auto_gen" + "/" + "threadblock"): os.mkdir(output_dir + "/" + "auto_gen" + "/" + "threadblock") with open(args.config_file, 'r') as infile: gemm_info_dict = json.load(infile) keys = sorted(gemm_info_dict.keys()) fuse_gemm_info = [gemm_info_dict[k] for k in keys] for_cutlass_gen_user_include_header_file = [ cutlass_deps_root + "cutlass/epilogue/thread/linear_combination_leaky_relu.h", cutlass_deps_root + "cutlass/epilogue/thread/linear_combination.h", ] for_fused_wrapper = [ cutlass_deps_root + "cutlass/epilogue/thread/linear_combination_leaky_relu.h", cutlass_deps_root + "cutlass/epilogue/thread/linear_combination.h", "auto_gen/device/" + gen_name + ".h", cutlass_deps_root + "cutlass/gemm/device/gemm_batched.h", cutlass_deps_root + "cutlass/cutlass.h", ] # Copy fixed implementation to the output directory fix_impl = replace_fix_impl_header.replace_fix_impl("../fixed_impl/", output_dir +"/fixed_impl/", cutlass_deps_root) fix_impl.gen_code() auto_gen_output_dir = output_dir + "/auto_gen/" project_root = "" turing_plus = b2b_fused_generator.gen_device(fuse_gemm_info, gen_name, for_cutlass_gen_user_include_header_file, cutlass_deps_root, project_root, auto_gen_output_dir) turing_plus.gen_code(75, 'hmma1688', False) api = api_generator.gen_one_API(fuse_gemm_info, gen_name, for_fused_wrapper, output_dir) api.gen_code() # Generate C++ sample os.system("cp ../leaky_bias.h " + output_dir + "/sample/") os.system("cp ../utils.h " + output_dir + "/sample/") sample_dir = output_dir + "/sample/" sample = sample_creater.gen_test(fuse_gemm_info, gen_name, for_cutlass_gen_user_include_header_file, sample_dir) sample.gen_cpp_sample() cmake_gen = cmake_creater.gen_build_sys(cutlass_deps_dir, output_dir) cmake_gen.gen_code() verify = verify_creater.gen_verify(fuse_gemm_info, gen_name, for_fused_wrapper, output_dir) verify.gen_code()
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# from typing import * import helper import gen_ir import gen_kernel as gen_ker class gen_device: def __init__(self, fuse_gemm_info, gen_class_name, user_header_file, cutlass_deps_root, project_root, output_dir = "../"): self.fuse_gemm_info = fuse_gemm_info self.raw_gemm_info = fuse_gemm_info self.b2b_num = len(fuse_gemm_info) self.user_header_file = user_header_file self.args = {} # device arg struct memebr self.arg_member = [] self.gen_class_name = gen_class_name self.gen_kernel_name = gen_class_name + "Kernel" self.tempalte_args = [] self.__tempalate_arg_list = {'Stages': int, 'SplitKSerial': bool, 'IsBetaZero': bool, 'AlignmentA': int, 'AlignmentB': int} self.file_name = output_dir + "/device/" +gen_class_name +".h" self.sample_dir = output_dir self.cutlass_deps_root = cutlass_deps_root self.project_root = project_root self.this_file_root = output_dir + "/device/" self.first_use_1stage = False ## gen kernel self.gen_kernel = gen_ker.gen_kernel(self.tempalte_args, self.gen_class_name, self.b2b_num, output_dir, cutlass_deps_root, project_root) def __check_arg_type(self, temp_arg): if temp_arg in self.__tempalate_arg_list.keys(): return self.__tempalate_arg_list[temp_arg] find_sub = False for candidate_arg in self.__tempalate_arg_list.keys(): if (temp_arg.find(candidate_arg) != -1): return self.__tempalate_arg_list[candidate_arg] return 'typename' # def gen_B2b2bGemm_class(): def set_arch(self, sm_cap, mma_tp): if sm_cap == 75 or sm_cap == 80 or sm_cap == 86: self.arch = "cutlass::arch::Sm" + str(sm_cap) if mma_tp is 'hmma1688': self.mma_shape = [16, 8, 8] self.mma_tp = 'hmma' elif mma_tp is 'imma8816': self.mma_tp = 'imma' self.mma_shape = [8, 8, 16] else: return 0 def gen_include_header(self): code = '''\ /* Auto Generated code - Do not edit.*/ #pragma once #include \"{cutlass_root}cutlass/cutlass.h\" #include \"{cutlass_root}cutlass/numeric_types.h\" #include \"{cutlass_root}cutlass/arch/arch.h\" #include \"{cutlass_root}cutlass/device_kernel.h\" #include \"{cutlass_root}cutlass/gemm/threadblock/threadblock_swizzle.h\" #include \"{cutlass_root}cutlass/gemm/device/default_gemm_configuration.h\" #include \"{cutlass_root}cutlass/epilogue/thread/linear_combination_relu.h\" #include \"{cutlass_root}cutlass/epilogue/thread/linear_combination.h\" #include \"{project_root}../kernel/b2b_gemm.h\" #include \"{project_root}../kernel/default_b2b_gemm.h\" '''.format(cutlass_root=self.cutlass_deps_root, project_root=self.project_root, this_file_root=self.this_file_root) include_user_header = "" for header in self.user_header_file: include_user_header += "#include \"" + header + "\"\n" return code + include_user_header def gen_code(self, sm_cap, mma_tp, ifprint = True): self.set_arch(sm_cap, mma_tp) self.update_b2b_args() print(self.fuse_gemm_info) self.update_b2b_class_template_args() func_code = self.gen_all_func() member_var_code = "private:\n typename B2bGemmKernel::Params params_;\n" gen_code = gen_ir.gen_template_class(self.gen_class_name, self.tempalte_args, func_code + member_var_code) code = self.gen_include_header() + gen_ir.gen_namespace("cutlass", gen_ir.gen_namespace("gemm", gen_ir.gen_namespace("device", gen_code))) if ifprint: print(code) print("[INFO]: Gen device code output Dir: is ", self.file_name) with open(self.file_name, 'w+') as f: f.write(code) gen_kernel = self.gen_kernel.gen_code(self.first_use_1stage) print(gen_kernel) def update_b2b_class_template_args(self): for arg in self.args.keys(): self.tempalte_args.append([self.__check_arg_type(arg), arg, self.args[arg]]) def update_b2b_args(self): self.args['ElementA'] = helper.type_2_cutlass_type(self.fuse_gemm_info[0]['A_tp']) self.args['LayoutA'] = helper.type_2_cutlass_type(self.fuse_gemm_info[0]['A_format']) cnt = 0 warp_M_tile = 32 # Determine maxmimum N_tile Max_Ntile = 0 for layer in self.fuse_gemm_info: n_tile = layer['mnk'][1] if n_tile > Max_Ntile: Max_Ntile = n_tile if Max_Ntile >= 256: warp_M_tile = 16 stages_temp = [] for layer in self.fuse_gemm_info: cnt_str = str(cnt) B_tp_str= 'ElementB' + cnt_str B_format_str = 'LayoutB' + cnt_str C_tp_str= 'ElementC' + cnt_str C_format_str = 'LayoutC' + cnt_str Acc_str = 'ElementAccumulator' + cnt_str self.args[B_tp_str] = helper.type_2_cutlass_type(layer['B_tp']) self.args[B_format_str] = helper.type_2_cutlass_type(layer['B_format']) self.args[C_tp_str] = helper.type_2_cutlass_type(layer['C_tp']) self.args[C_format_str] = helper.type_2_cutlass_type(layer['C_format']) self.args[Acc_str] = helper.type_2_cutlass_type(layer['Acc_tp']) mnk = layer['mnk'][:] tile_mnk = mnk[:] tile_mnk[2] = 32 # force the ktile is 32 #N tile gen if mnk[1] > 1024: assert(0) elif mnk[1] > 512: tile_mnk[1] = 1024 elif mnk[1] > 256: tile_mnk[1] = 512 elif mnk[1] > 128: tile_mnk[1] = 256 elif mnk[1] > 64: tile_mnk[1] = 128 elif mnk[1] > 32: tile_mnk[1] = 64 else : tile_mnk[1] = 32 if tile_mnk[1] == 512: stages_temp.append(1) else: stages_temp.append(2) tile_mnk[0] = 4 * warp_M_tile epilogue_setted_type = helper.get_epilogue_tp(layer) cutlass_epilogue_name = "LinearCombinationRelu" if epilogue_setted_type.lower() == 'leakyrelu': cutlass_epilogue_name = "LinearCombinationLeakyRelu" elif epilogue_setted_type.lower() == 'identity': cutlass_epilogue_name = "LinearCombination" epilogue_str = 'EpilogueOutputOp' + cnt_str if cnt != len(self.fuse_gemm_info) - 1: n = layer['mnk'][1] Fragments = tile_mnk[1] // 8 * 2 self.args[epilogue_str] = "cutlass::epilogue::thread::" + cutlass_epilogue_name + "<ElementC0_, " + str(Fragments) +", ElementAccumulator0_, ElementAccumulator0_>" else: n = layer['mnk'][1] n_mod_8 = n % 4 N_align_elements = 1 if n_mod_8 == 0: N_align_elements = 8 elif n_mod_8 == 4: N_align_elements = 4 elif n_mod_8 == 2 or n_mod_8 == 6: N_align_elements = 2 self.args[epilogue_str] = "cutlass::epilogue::thread::" + cutlass_epilogue_name+ "<ElementC0_, " + str(N_align_elements) + ", ElementAccumulator0_, ElementAccumulator0_>" ThreadBlockShape_str = 'ThreadblockShape' + cnt_str self.args[ThreadBlockShape_str] = helper.cvt_2_cutlass_shape(tile_mnk) WarpShape_str = 'WarpShape' + cnt_str tile_mnk[0] = warp_M_tile self.args[WarpShape_str] = helper.cvt_2_cutlass_shape(tile_mnk) cnt += 1 self.args['ElementD'] = helper.type_2_cutlass_type(self.fuse_gemm_info[self.b2b_num - 1]['C_tp']) self.args['LayoutD'] = helper.type_2_cutlass_type(self.fuse_gemm_info[self.b2b_num - 1]['C_format']) self.args['InstructionShape'] = helper.cvt_2_cutlass_shape(self.mma_shape) self.args['OperatorClass'] = 'arch::OpClassTensorOp' self.args['ArchTag'] = self.arch self.args['ThreadblockSwizzle'] = 'threadblock::GemmBatchedIdentityThreadblockSwizzle' for i in range(self.b2b_num): self.args[helper.var_idx('Stages', i)] = "2" self.args['AlignmentA'] = str(8) self.args['AlignmentB'] = str(8) self.args['SplitKSerial'] = 'false' self.args['Operator'] = 'typename DefaultGemmConfiguration<OperatorClass_, ArchTag_, ElementA_, ElementB0_, ElementC0_, ElementAccumulator0_>::Operator' self.args['IsBetaZero'] = 'false' def gen_using_kernel(self): code = "using B2bGemmKernel = typename kernel::DefaultB2bGemm<\n" code += " " + "ElementA,\n" code += " " + "LayoutA,\n" for i in range(self.b2b_num): code += " " + helper.var_idx("ElementB", i) + ",\n" code += " " + helper.var_idx("LayoutB", i) + ",\n" code += " " + helper.var_idx("ElementC", i) + ",\n" code += " " + helper.var_idx("LayoutC", i) + ",\n" code += " " + helper.var_idx("ElementAccumulator", i) + ",\n" code += " " + helper.var_idx("EpilogueOutputOp", i) + ",\n" code += " " + helper.var_idx("ThreadblockShape", i) + ",\n" code += " " + helper.var_idx("WarpShape", i) + ",\n" code += " " + "ElementD,\n" code += " " + "LayoutD,\n" code += " " + "InstructionShape,\n" code += " " + "OperatorClass,\n" code += " " + "ArchTag,\n" code += " " + "ThreadblockSwizzle,\n" for i in range(self.b2b_num): code += " " + helper.var_idx("Stages", i) + ",\n" code += " " + "AlignmentA,\n" code += " " + "AlignmentB,\n" code += " " + "SplitKSerial,\n" code += " " + "Operator,\n" code += " " + "IsBetaZero_\n" code += ">::B2bGemmKernel;\n\n" return code def gen_args(self): def gen_arg_member(b2b_num): data_members = [] for i in range(b2b_num): member_type = "GemmCoord" member_name = "problem_size_" + str(i) data_members.append((member_type, member_name)) member_type = "TensorRef<ElementA const, LayoutA>" member_name = "ref_A0" data_members.append((member_type, member_name)) for i in range(b2b_num): member_type = "TensorRef<ElementB" + str(i) + " const, LayoutB" + str(i) +">" member_name = "ref_B" + str(i) data_members.append((member_type, member_name)) member_type = "TensorRef<ElementC" + str(i) + " const, LayoutC" + str(i) +">" member_name = "ref_C" + str(i) data_members.append((member_type, member_name)) member_type = "TensorRef<ElementD, LayoutD>" member_name = helper.var_idx("ref_D", b2b_num - 1) data_members.append((member_type, member_name)) for i in range(b2b_num): member_type = "typename EpilogueOutputOp" + str(i) + "::Params" member_name = "epilogue" + str(i) data_members.append((member_type, member_name)) data_members.append(('int', 'batch_count')) return data_members def gen_arg_struct_default_ctor(struct_name, data_members, inital_param_num, inital_value): constructs_code = gen_ir.indentation + "CUTLASS_HOST_DEVICE\n" + \ gen_ir.indentation + struct_name + " (): " for i in range(inital_param_num): final_param = ',' if i == inital_param_num - 1: final_param = '{ }' constructs_code += data_members[i][1] + inital_value + final_param constructs_code += "\n" return constructs_code def gen_arg_struct_ctor(struct_name, data_members): constructs_code = gen_ir.indentation + "CUTLASS_HOST_DEVICE\n" + \ gen_ir.indentation + struct_name + " (\n" cnt = 0 param_num = len(data_members) for param in data_members: final = ',\n' if cnt == param_num - 1: final = '\n):\n' constructs_code += gen_ir.indentation + param[0] + " " + param[1] + "_" + final cnt += 1 cnt = 0 for param in data_members: final = '),\n' if cnt == param_num - 1: final = ") { }\n" constructs_code += gen_ir.indentation + param[1] + "(" + param[1] + "_" + final cnt += 1 constructs_code += "\n" return constructs_code # (variable type, variable name) struct_member = gen_arg_member(self.b2b_num) self.arg_member = struct_member codeBody = "" for each_member in struct_member: codeBody += gen_ir.indentation + each_member[0] + " " + each_member[1] + ";\n" codeBody += gen_arg_struct_default_ctor("Arguments", struct_member, self.b2b_num, "(0,0,0)") + "\n" codeBody += gen_arg_struct_ctor("Arguments", struct_member) + "\n" struct_code = gen_ir.gen_struct("Arguments", codeBody) return struct_code def gen_func_constructs(self): code = self.gen_class_name +"() {}" return code def gen_func_initialize(self): code = "Status initialize(Arguments const &args, void *workspace = nullptr, cudaStream_t stream = nullptr) {\n" + \ "// Determine grid shape\n" + \ "ThreadblockSwizzle threadblock_swizzle;\n" + \ "cutlass::gemm::GemmCoord grid_shape = threadblock_swizzle.get_tiled_shape(\n" + \ " args.problem_size_0, \n" + \ " { ThreadblockShape0::kM, ThreadblockShape0::kN, ThreadblockShape0::kK },\n" + \ " args.batch_count);\n" + \ "// Initialize the Params structure\n" + \ "params_ = typename B2bGemmKernel::Params{\n" for i in range(self.b2b_num): code += helper.var_idx(" args.problem_size_", i) + ",\n" code += " grid_shape,\n" + \ " args.ref_A0.non_const_ref(),\n" for i in range(self.b2b_num): code += helper.var_idx(" args.ref_B", i) + ".non_const_ref(),\n" code += helper.var_idx(" args.ref_C", i) + ".non_const_ref(),\n" code += helper.var_idx(" args.ref_D", self.b2b_num - 1) + ",\n" for i in range(self.b2b_num): code += helper.var_idx(" args.epilogue", i) + ",\n" code += " args.batch_count\n" code += "};\n" + \ "return Status::kSuccess;\n" + \ "}\n" return code def gen_func_run(self): code = "Status run(cudaStream_t stream = nullptr) {\n" + \ "\n" + \ " ThreadblockSwizzle threadblock_swizzle;\n" + \ "\n" + \ " dim3 grid = threadblock_swizzle.get_grid_shape(params_.grid_tiled_shape);\n" + \ " dim3 block(B2bGemmKernel::kThreadCount, 1, 1);\n" + \ "\n" + \ " cudaError_t result;\n" + \ "\n" + \ " int smem_size = int(sizeof(typename B2bGemmKernel::SharedStorage));\n" + \ " if (smem_size >= (48 << 10)) {\n" + \ " result = cudaFuncSetAttribute(Kernel<B2bGemmKernel>, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size);\n" + \ "\n" + \ " if (result != cudaSuccess) {\n" + \ " return Status::kErrorInternal;\n" + \ " }\n" + \ "\n" + \ " result = cudaFuncSetAttribute(\n" + \ " Kernel<B2bGemmKernel>,\n" + \ " cudaFuncAttributePreferredSharedMemoryCarveout, 100);\n" + \ "\n" + \ " if (result != cudaSuccess) {\n" + \ " return Status::kErrorInternal;\n" + \ " }\n" + \ " }\n" + \ " cutlass::Kernel<B2bGemmKernel><<<grid, block, smem_size, stream>>>(params_);\n" + \ " result = cudaGetLastError();\n" + \ " return result == cudaSuccess ? Status::kSuccess : Status::kErrorInternal;\n" + \ " }\n" return code def gen_func_operator(self): opeartor_with_arg_code = "Status operator()(\n" + \ " Arguments const &args,\n" + \ " void *workspace = nullptr,\n" + \ " cudaStream_t stream = nullptr) {\n" + \ " Status status = initialize(args, workspace);\n" + \ " \n" + \ " if (status == Status::kSuccess) {\n" + \ " status = run(stream);\n" + \ " }\n" + \ " return status;\n" + \ "}\n" operator_code = "Status operator()(\n" + \ " cudaStream_t stream = nullptr) {\n" + \ " Status status = run(stream);\n" + \ " return status;\n" + \ "}\n" return opeartor_with_arg_code + "\n" + operator_code def gen_all_func(self): return self.gen_using_kernel() + "\n" + \ self.gen_args() + "\n" + \ self.gen_func_constructs() + "\n" + \ self.gen_func_initialize() + "\n" + \ self.gen_func_run() + "\n" + \ self.gen_func_operator()
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import gen_ir import helper import gen_threadblock as gen_tb class gen_default_Gemm: def __init__(self, template_param, gen_class_name, b2b_num, cutlass_deps_root, project_root): self.gen_class_name = "B2bGemm" self.template_param = template_param self.b2b_num = b2b_num self.cutlass_deps_root = cutlass_deps_root self.project_root = project_root def gen_B2bMma(self, specialized_template_args): code = "using B2bMma = typename cutlass::gemm::threadblock::DefaultB2bMma<\n" code += specialized_template_args code += ">::ThreadblockB2bMma;\n" # print(code) return code def gen_epilogue(self): epilogue_code = "" epilogue_code += helper.var_idx("static const int kPartitionsK", self.b2b_num - 1) + helper.var_idx(" = ThreadblockShape", self.b2b_num - 1) + helper.var_idx("::kK / WarpShape", self.b2b_num - 1) + "::kK;\n" epilogue_code += "using Epilogue = typename cutlass::epilogue::threadblock::DefaultEpilogueTensorOp<\n" epilogue_code += " " + helper.var_idx("ThreadblockShape", self.b2b_num - 1) + ",\n" epilogue_code += " " + helper.var_idx("typename B2bMma::Operator", self.b2b_num - 1) + ",\n" epilogue_code += " " + helper.var_idx("kPartitionsK", self.b2b_num - 1) + ",\n" epilogue_code += " " + helper.var_idx("EpilogueOutputOp", self.b2b_num - 1) + ",\n" epilogue_code += " " + helper.var_idx("EpilogueOutputOp", self.b2b_num - 1) + "::kCount\n" epilogue_code += ">::Epilogue;\n" epilogue_code += "using B2bGemmKernel = kernel::B2bGemm<B2bMma, Epilogue, ThreadblockSwizzle, SplitKSerial>;\n\n" return epilogue_code def gen_include_header(self): code = ''' /* Auto Generated code - Do not edit.*/ #pragma once #include \"{cutlass_dir}cutlass/cutlass.h\" #include \"{cutlass_dir}cutlass/layout/matrix.h\" #include \"{cutlass_dir}cutlass/numeric_types.h\" #include \"{cutlass_dir}cutlass/epilogue/threadblock/epilogue.h\" #include \"{cutlass_dir}cutlass/epilogue/thread/linear_combination.h\" #include \"{cutlass_dir}cutlass/gemm/gemm.h\" #include \"{cutlass_dir}cutlass/gemm/kernel/gemm_pipelined.h\" #include \"{cutlass_dir}cutlass/gemm/threadblock/default_mma_core_sm75.h\" #include \"{cutlass_dir}cutlass/gemm/threadblock/default_mma_core_sm70.h\" #include \"{cutlass_dir}cutlass/gemm/threadblock/default_mma_core_sm80.h\" #include \"{cutlass_dir}cutlass/gemm/threadblock/default_mma_core_simt.h\" #include \"{cutlass_dir}cutlass/gemm/threadblock/threadblock_swizzle.h\" #include \"{cutlass_dir}cutlass/epilogue/threadblock/default_epilogue_tensor_op.h\" #include \"{cutlass_dir}cutlass/epilogue/threadblock/default_epilogue_volta_tensor_op.h\" #include \"{cutlass_dir}cutlass/epilogue/threadblock/default_epilogue_simt.h\" #include \"{cutlass_dir}cutlass/transform/threadblock/predicated_tile_iterator.h\" #include \"../kernel/b2b_gemm.h\" #include \"../threadblock/default_b2b_mma.h\" '''.format(cutlass_dir=self.cutlass_deps_root) return code def gen_code(self): gen_using = '' # Generate default template struct gen_code = gen_ir.gen_template_struct("Default" + self.gen_class_name, self.template_param,"", speicalized = None, set_default=False) filter_list = [] filter_list.append(('Stages', 2)) filter_list.append(("OperatorClass", "arch::OpClassTensorOp")) filter_list.append(("ArchTag", "arch::Sm75")) for i in range(self.b2b_num): filter_list.append((helper.var_idx("LayoutC", i), "layout::RowMajor")) rtn_template_args, speicalized_template_args = gen_ir.filtered_param(self.template_param, filter_list, keep_= True) B2bMma_code = self.gen_B2bMma(speicalized_template_args) epilogue_and_rest_code = self.gen_epilogue() gen_special_code = gen_ir.gen_template_struct("Default" + self.gen_class_name, rtn_template_args, B2bMma_code + epilogue_and_rest_code, speicalized = speicalized_template_args, set_default=False) code = gen_ir.gen_namespace("cutlass", gen_ir.gen_namespace("gemm", gen_ir.gen_namespace("kernel", gen_code + gen_special_code))) return self.gen_include_header() + code class gen_Kernel: def __init__(self, template_param, gen_class_name, b2b_num, cutlass_deps_root, project_root): self.gen_class_name = "B2bGemm" self.template_param = template_param self.b2bnum = b2b_num self.cutlass_deps_root = cutlass_deps_root self.project_root = project_root def gen_include_header(self): code = ''' #pragma once #include \"{cutlass_dir}cutlass/cutlass.h\" #include \"{cutlass_dir}cutlass/gemm/gemm.h\" #include \"{cutlass_dir}cutlass/matrix_coord.h\"\n'''.format(cutlass_dir=self.cutlass_deps_root) return code def gen_Params(self): gen_param = "" for i in range(self.b2bnum): gen_param += " " + helper.var_idx("cutlass::gemm::GemmCoord problem_size_", i) + ";\n" gen_param += " " + "cutlass::gemm::GemmCoord grid_tiled_shape;\n" gen_param += " " + "typename B2bMma::IteratorA0::Params params_A0;\n" gen_param += " " + "typename B2bMma::IteratorA0::TensorRef ref_A0;\n" for i in range(self.b2bnum): gen_param += " " + helper.var_idx("typename B2bMma::IteratorB", i) + helper.var_idx("::Params params_B", i) + ";\n" gen_param += " " + helper.var_idx("typename B2bMma::IteratorB", i) + helper.var_idx("::TensorRef ref_B", i) + ";\n" if i == self.b2bnum - 1: gen_param += " " + helper.var_idx("typename Epilogue::OutputTileIterator::Params params_C", i) + ";\n" gen_param += " " + helper.var_idx("typename Epilogue::OutputTileIterator::TensorRef ref_C", i) + ";\n" else: gen_param += " " + helper.var_idx("typename FusedAddBiasEpilogue", i) + helper.var_idx("::OutputTileIterator::Params params_C", i) + ";\n" gen_param += " " + helper.var_idx("typename FusedAddBiasEpilogue", i) + helper.var_idx("::OutputTileIterator::TensorRef ref_C", i) + ";\n" gen_param += " " + helper.var_idx("typename Epilogue::OutputTileIterator::Params params_D", self.b2bnum - 1) + ";\n" gen_param += " " + helper.var_idx("typename Epilogue::OutputTileIterator::TensorRef ref_D", self.b2bnum - 1) + ";\n" for i in range(self.b2bnum): gen_param += " " + helper.var_idx("typename OutputOp", i) + helper.var_idx("::Params output_op_", i) + ";\n" gen_param += " " + 'int batch_count' + ";\n" gen_param += " " + 'int gemm_k_iterations_0' + ";\n" return gen_param def gen_Memberfunc(self): code_default = "\nCUTLASS_HOST_DEVICE\n" code_default += "Params()" code_default += " { } \n\n" code_construct = "\nCUTLASS_HOST_DEVICE\n" code_construct += "Params(\n" for i in range(self.b2bnum): code_construct += " " + helper.var_idx("cutlass::gemm::GemmCoord const & problem_size_", i) + ",\n" code_construct += " " + "cutlass::gemm::GemmCoord const & grid_tiled_shape,\n" code_construct += " " + "typename B2bMma::IteratorA0::TensorRef ref_A0,\n" for i in range(self.b2bnum): code_construct += " " + helper.var_idx("typename B2bMma::IteratorB", i) + helper.var_idx("::TensorRef ref_B", i) + ",\n" if i == self.b2bnum - 1: code_construct += " " + helper.var_idx("typename Epilogue::OutputTileIterator::TensorRef ref_C", i) + ",\n" else: code_construct += " " + helper.var_idx("typename FusedAddBiasEpilogue", i) + helper.var_idx("::OutputTileIterator::TensorRef ref_C", i) + ",\n" code_construct += " " + helper.var_idx("typename Epilogue::OutputTileIterator::TensorRef ref_D", self.b2bnum - 1) + ",\n" for i in range(self.b2bnum): code_construct += " " + helper.var_idx("typename OutputOp", i) + helper.var_idx("::Params output_op_", i) + helper.var_idx(" = typename OutputOp", i) + "::Params(),\n" code_construct += " " + "int batch_count = 1\n" code_construct += "):\n" for i in range(self.b2bnum): code_construct += " " + helper.var_idx("problem_size_", i) + helper.var_idx("(problem_size_", i) + "),\n" code_construct += " " + "grid_tiled_shape(grid_tiled_shape),\n" code_construct += " " + "params_A0(ref_A0.layout()),\n" code_construct += " " + "ref_A0(ref_A0),\n" for i in range(self.b2bnum): code_construct += " " + helper.var_idx("params_B", i) + helper.var_idx("(ref_B", i) + ".layout()),\n" code_construct += " " + helper.var_idx("ref_B", i) + helper.var_idx("(ref_B", i) + "),\n" code_construct += " " + helper.var_idx("params_C", i) + helper.var_idx("(ref_C", i) + ".layout()),\n" code_construct += " " + helper.var_idx("ref_C", i) + helper.var_idx("(ref_C", i) + "),\n" code_construct += " " + helper.var_idx("params_D", self.b2bnum - 1) + helper.var_idx("(ref_D", self.b2bnum - 1) + ".layout()),\n" code_construct += " " + helper.var_idx("ref_D", self.b2bnum - 1) + helper.var_idx("(ref_D", self.b2bnum - 1) + "),\n" for i in range(self.b2bnum): code_construct += " " + helper.var_idx("output_op_", i) + helper.var_idx("(output_op_", i) + "), \n" code_construct += " " + "batch_count(batch_count) {\n" code_construct += " " + helper.var_idx("gemm_k_iterations_", 0) + helper.var_idx(" = (problem_size_", 0) + helper.var_idx(".k() + B2bMma::Shape", 0) + helper.var_idx("::kK - 1) / B2bMma::Shape", 0) + "::kK;\n" code_construct += "}\n" return code_default + code_construct def gen_using(self): code_using = "" for i in range(self.b2bnum - 1): code_using += " " + helper.var_idx("using OutputOp", i) + helper.var_idx(" = typename B2bMma::OutputOp", i) + ";\n" code_using += " " + helper.var_idx("using OutputOp", self.b2bnum - 1) + " = typename Epilogue::OutputOp;\n" for i in range(self.b2bnum - 1): code_using += " " + helper.var_idx("using FusedAddBiasEpilogue", i) + helper.var_idx(" = typename B2bMma::FusedAddBiasEpilogue", i) +";\n" code_using += " " + "using WarpCount0 = typename B2bMma::WarpCount0;\n" code_using += " " + "static int const kThreadCount = 32 * WarpCount0::kCount;\n" code_using += gen_ir.gen_struct("Params", self.gen_Params() + self.gen_Memberfunc()) code_using += "union SharedStorage {\n" code_using += " " + "typename B2bMma::B2bMmaSharedStorage main_loop;\n" code_using += " " + "typename Epilogue::SharedStorage epilogue;\n" code_using += "};\n" return code_using def gen_can_implement(self): gen_code = "" return gen_code def gen_operator_and_constr(self): ctr_code = "CUTLASS_HOST_DEVICE\n" ctr_code += self.gen_class_name + "() { } \n\n" operator_code = "CUTLASS_DEVICE\n" operator_code += "void operator()(Params const &params, SharedStorage &shared_storage) {\n" operator_code += " " + "ThreadblockSwizzle threadblock_swizzle;\n" operator_code += " " + "cutlass::gemm::GemmCoord threadblock_tile_offset = threadblock_swizzle.get_tile_offset(params.grid_tiled_shape);\n" operator_code += " " + "int batch_idx = threadblock_tile_offset.k();\n" operator_code += " " + "if (params.grid_tiled_shape.m() <= threadblock_tile_offset.m() ||\n" operator_code += " " + "params.grid_tiled_shape.n() <= threadblock_tile_offset.n()) {\n" operator_code += " " + " " + "return;\n" operator_code += " " + "}\n" operator_code += " " + "cutlass::MatrixCoord tb_offset_A0{\n" operator_code += " " + " " + "threadblock_tile_offset.m() * B2bMma::Shape0::kM,\n" operator_code += " " + " " + "0\n" operator_code += " " + "};\n" for i in range(self.b2bnum): operator_code += " " + helper.var_idx("cutlass::MatrixCoord tb_offset_B", i) + "{\n" operator_code += " " + " " + "0,\n" operator_code += " " + " " + helper.var_idx("threadblock_tile_offset.n() * B2bMma::Shape", i) + "::kN\n" operator_code += " " + "};\n" operator_code += " " + "int thread_idx = threadIdx.x;\n\n" operator_code += " " + "MatrixCoord threadblock_offset(\n" operator_code += " " + " " + helper.var_idx("threadblock_tile_offset.m() * B2bMma::Shape", self.b2bnum - 1) + "::kM,\n" operator_code += " " + " " + helper.var_idx("threadblock_tile_offset.n() * B2bMma::Shape", self.b2bnum - 1) + "::kN\n" operator_code += " " + ");\n" operator_code += " " + "typename B2bMma::IteratorA0 iterator_A0(\n" operator_code += " " + " " + "params.params_A0,\n" operator_code += " " + " " + "params.ref_A0.data(),\n" operator_code += " " + " " + "params.problem_size_0.mk(),\n" operator_code += " " + " " + "thread_idx,\n" operator_code += " " + " " + "tb_offset_A0);\n" operator_code += " " + "iterator_A0.add_pointer_offset(batch_idx * params.problem_size_0.m() * params.problem_size_0.k());\n\n" for i in range (self.b2bnum): operator_code += " " + helper.var_idx("typename B2bMma::IteratorB", i ) + helper.var_idx(" iterator_B", i) + "(\n" operator_code += " " + " " + helper.var_idx("params.params_B", i) + ",\n" operator_code += " " + " " + helper.var_idx("params.ref_B", i) + ".data(),\n" operator_code += " " + " " + helper.var_idx("params.problem_size_", i) + ".kn(),\n" operator_code += " " + " " + "thread_idx,\n" operator_code += " " + " " + helper.var_idx("tb_offset_B", i) + ");\n" operator_code += " " + helper.var_idx("iterator_B", i) + helper.var_idx(".add_pointer_offset(batch_idx * params.problem_size_", i) + helper.var_idx(".n() * params.problem_size_", i) + ".k());\n\n" for i in range (self.b2bnum - 1): operator_code += " " + helper.var_idx("typename FusedAddBiasEpilogue", i ) + helper.var_idx("::OutputTileIterator iterator_C", i) + "(\n" operator_code += " " + " " + helper.var_idx("params.params_C", i) + ",\n" operator_code += " " + " " + helper.var_idx("params.ref_C", i) + ".data(),\n" operator_code += " " + " " + helper.var_idx("params.problem_size_" , i) + ".mn(),\n" operator_code += " " + " " + "thread_idx,\n" operator_code += " " + " " + "threadblock_offset" + ");\n" operator_code += " " + helper.var_idx("int ref_C", i) + helper.var_idx("_stride = params.ref_C", i) + ".stride()[0];\n" operator_code += " " + helper.var_idx("iterator_C", i) + helper.var_idx(".add_pointer_offset(batch_idx * params.problem_size_", i) + helper.var_idx(".n() * (ref_C", i) + helper.var_idx("_stride == 0 ? 1 : params.problem_size_", i) + ".m()));\n\n" for i in range (self.b2bnum - 1): operator_code += " " + helper.var_idx("FusedAddBiasEpilogue", i ) + helper.var_idx(" epilogue_", i ) + ";\n" operator_code += " " + "int warp_idx = __shfl_sync(0x1f, threadIdx.x / 32, 0);\n" operator_code += " " + "int lane_idx = threadIdx.x % 32;\n" for i in range (self.b2bnum - 1): operator_code += " " + helper.var_idx("OutputOp", i) + helper.var_idx(" output_op_", i) + helper.var_idx("(params.output_op_", i) + ");\n" operator_code += " " + "B2bMma b2bMma(shared_storage.main_loop, thread_idx, warp_idx, lane_idx);\n" operator_code += " " + "typename B2bMma::FragmentC0 src_accum;\n" operator_code += " " + helper.var_idx("typename B2bMma::FragmentC", self.b2bnum - 1)+ " accumulators;\n" operator_code += " " + "src_accum.clear();\n" operator_code += " " + "accumulators.clear();\n" operator_code += " " + "b2bMma(params.gemm_k_iterations_0, accumulators, iterator_A0, " for i in range(self.b2bnum): operator_code += helper.var_idx("iterator_B", i) + ", " operator_code += "src_accum" if self.b2bnum != 1: operator_code += ", " for i in range(self.b2bnum - 1): operator_code += helper.var_idx("output_op_", i) + ", " for i in range(self.b2bnum - 1): operator_code += helper.var_idx("epilogue_", i) + ", " for i in range(self.b2bnum - 1): final = ", " if i == self.b2bnum - 2: final ="" operator_code += helper.var_idx("iterator_C", i) + final operator_code += ");\n" operator_code += " " + helper.var_idx("OutputOp", self.b2bnum - 1) + helper.var_idx(" output_op_", self.b2bnum - 1) + helper.var_idx("(params.output_op_", self.b2bnum - 1) + ");\n" operator_code += " " + "threadblock_tile_offset = threadblock_swizzle.get_tile_offset(params.grid_tiled_shape);\n" operator_code += " " + helper.var_idx("typename Epilogue::OutputTileIterator iterator_C", self.b2bnum - 1) + "(\n" operator_code += " " + " " + helper.var_idx("params.params_C", self.b2bnum - 1) + ",\n" operator_code += " " + " " + helper.var_idx("params.ref_C", self.b2bnum - 1) + ".data(),\n" operator_code += " " + " " + helper.var_idx("params.problem_size_", self.b2bnum - 1) + ".mn(),\n" operator_code += " " + " " + "thread_idx,\n" operator_code += " " + " " + "threadblock_offset\n" operator_code += " " + ");\n" operator_code += " " + helper.var_idx("int ref_C", self.b2bnum - 1) + helper.var_idx("_stride = params.ref_C", self.b2bnum - 1) + ".stride()[0];\n" operator_code += " " + helper.var_idx("iterator_C", self.b2bnum - 1) + helper.var_idx(".add_pointer_offset(batch_idx * params.problem_size_", self.b2bnum - 1) + helper.var_idx(".n() * (ref_C", self.b2bnum - 1) + helper.var_idx("_stride == 0 ? 1 : params.problem_size_", self.b2bnum - 1) + ".m()));\n\n" operator_code += " " + helper.var_idx("typename Epilogue::OutputTileIterator iterator_D", self.b2bnum - 1) + "(\n" operator_code += " " + " " + helper.var_idx("params.params_D", self.b2bnum - 1) + ",\n" operator_code += " " + " " + helper.var_idx("params.ref_D", self.b2bnum - 1) + ".data(),\n" operator_code += " " + " " + helper.var_idx("params.problem_size_", self.b2bnum - 1) + ".mn(),\n" operator_code += " " + " " + "thread_idx,\n" operator_code += " " + " " + "threadblock_offset\n" operator_code += " " + ");\n" operator_code += " " + helper.var_idx("iterator_D", self.b2bnum - 1) + helper.var_idx(".add_pointer_offset(batch_idx * params.problem_size_", self.b2bnum - 1) + helper.var_idx(".n() * params.problem_size_", self.b2bnum - 1) + ".m());\n\n" operator_code += " " + "Epilogue epilogue(\n" operator_code += " " + " " + "shared_storage.epilogue,\n" operator_code += " " + " " + "thread_idx,\n" operator_code += " " + " " + "warp_idx,\n" operator_code += " " + " " + "lane_idx\n" operator_code += " " + ");\n" operator_code += " " + "epilogue(" operator_code += helper.var_idx("output_op_", self.b2bnum - 1) + ", " operator_code += helper.var_idx("iterator_D", self.b2bnum - 1) + ", " operator_code += "accumulators, " operator_code += helper.var_idx("iterator_C", self.b2bnum - 1) + ");\n" operator_code += "}\n" return ctr_code + operator_code def gen_include_header(self): code = ''' #pragma once #include \"{cutlass_dir}cutlass/cutlass.h\" #include \"{cutlass_dir}cutlass/gemm/gemm.h\" #include \"{cutlass_dir}cutlass/matrix_coord.h\" #include \"{cutlass_dir}cutlass/semaphore.h\" '''.format(cutlass_dir=self.cutlass_deps_root) return code def gen_code(self): template_param = [] template_param.append(("typename", "B2bMma")) template_param.append(("typename", "Epilogue")) template_param.append(("typename", "ThreadblockSwizzle")) template_param.append((bool, "SplitKSerial")) code_body = "" code_body += self.gen_using() code_body += self.gen_operator_and_constr() struct_code = gen_ir.gen_template_struct(self.gen_class_name, template_param, code_body) code = self.gen_include_header() code += gen_ir.gen_namespace("cutlass", gen_ir.gen_namespace("gemm", gen_ir.gen_namespace("kernel", struct_code))) return self.gen_include_header() + code class gen_kernel: def __init__(self, template_param, gen_class_name, b2b_num, output_dir, cutlass_deps_root, project_root): self.template_param = template_param self.gen_class_name = "B2bGemm" self.gen_kernel_name = gen_class_name + "Kernel" self.tempalte_args = [] self.cutlass_deps_root = cutlass_deps_root self.project_root = project_root self.gen_default_b2b_gemm = gen_default_Gemm(template_param, gen_class_name, b2b_num, cutlass_deps_root, project_root) self.gen_Kerenl = gen_Kernel(template_param, gen_class_name, b2b_num, cutlass_deps_root, project_root) # Include gen_threadBlock self.gen_threadBlock = gen_tb.gen_threadblock(template_param, gen_class_name, b2b_num, output_dir, cutlass_deps_root, project_root) self.file_dir = output_dir + "/kernel/" def gen_code(self, first_use_1stage): default_b2b_gemm = self.gen_default_b2b_gemm.gen_code() print("[INFO]: Gen kernel code [default_b2b_gemm.h]output Dir: is ", self.file_dir) with open(self.file_dir + "default_b2b_gemm.h", "w+") as f: f.write(default_b2b_gemm) kernel = self.gen_Kerenl.gen_code() print("[INFO]: Gen kernel code [b2b_gemm.h]output Dir: is ", self.file_dir) with open(self.file_dir + "b2b_gemm.h", "w+") as f: f.write(kernel) # Call code to gen threadblock self.gen_threadBlock.gen_code(first_use_1stage)
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import gen_ir import helper class gen_default_b2b_mma: def __init__(self, template_param, gen_class_name, b2b_num,cutlass_deps_root, project_root): self.gen_class_name = "DefaultB2bMma" self.template_param = template_param self.b2b_num = b2b_num self.cutlass_deps_root = cutlass_deps_root self.project_root = project_root def gen_include_header(self): code = ''' /* Auto Generated code - Do not edit.*/ #pragma once #include \"{cutlass_dir}cutlass/cutlass.h\" #include \"{cutlass_dir}cutlass/numeric_types.h\" #include \"{cutlass_dir}cutlass/arch/arch.h\" #include \"{cutlass_dir}cutlass/transform/threadblock/predicated_tile_iterator.h\" #include \"{cutlass_dir}cutlass/transform/threadblock/predicated_tile_iterator_2dthreadtile.h\" #include \"{cutlass_dir}cutlass/gemm/threadblock/default_mma_core_sm70.h\" #include \"{cutlass_dir}cutlass/gemm/threadblock/default_mma_core_sm75.h\" #include \"{cutlass_dir}cutlass/gemm/threadblock/default_mma_core_sm80.h\" #include \"../threadblock/b2b_mma_pipelined.h\" #include \"../../fixed_impl/epilogue/threadblock/fused_bias_act_epilogue.h\" #include \"../../fixed_impl/epilogue/threadblock/default_bias_act_epilogue_tensor_op.h\" #include \"../../fixed_impl/gemm/warp/mma_tensor_op_fragment_iterator_without_output_op.h\" '''.format(cutlass_dir=self.cutlass_deps_root) return code def gen_using_MmaCore(self, stage): threadBlockShape = "ThreadblockShape" warpShape = "WarpShape" instrunctionShape = "InstructionShape" Mma_typename = "typename cutlass::gemm::threadblock::DefaultMmaCore" gen_code = "" for i in range(self.b2b_num): code_using = "using MmaCore" + str(i) gen_code += code_using + " = " + gen_ir.gen_declare_template_struct(Mma_typename, \ helper.var_idx(threadBlockShape, i), helper.var_idx(warpShape, i), instrunctionShape, \ "ElementA", "LayoutA", \ helper.var_idx("ElementB", i), helper.var_idx("LayoutB", i), \ helper.var_idx("ElementAccumulator", i), "layout::RowMajor", \ "OperatorClass", str(stage), "Operator") return gen_code def gen_using_FusedAddBiasEpilogue(self): gen_code = "" for i in range(self.b2b_num - 1): code_using = helper.var_idx("using FusedAddBiasEpilogue", i) epilogue_name = "typename cutlass::epilogue::threadblock::DefaultFusedBiasActEpilogueTensorOp" template_args = helper.var_idx("<ThreadblockShape", i) + helper.var_idx(",typename MmaCore", i) + helper.var_idx("::MmaPolicy::Operator, 1, EpilogueOutputOp", i) + ", 2>::Epilogue" gen_code += code_using + " = " + epilogue_name + template_args + ";\n" return gen_code def gen_using_Iterator(self): code_using = "using IteratorA0" iterator_typename = "cutlass::transform::threadblock::PredicatedTileIterator" MmaCore = "MmaCore0" matrix_shape = "cutlass::MatrixShape<" + MmaCore + "::Shape::kM, " + MmaCore + "::Shape::kK>" iterator_map = "typename " + MmaCore + "::IteratorThreadMapA" gen_code = code_using + " = " + gen_ir.gen_declare_template_struct(iterator_typename, \ matrix_shape, "ElementA", "LayoutA", "1", iterator_map, "AlignmentA_") for i in range(self.b2b_num): code_using = "using IteratorB" + str(i) iterator_typename = "cutlass::transform::threadblock::PredicatedTileIterator" MmaCore = "MmaCore" + str(i) matrix_shape = "cutlass::MatrixShape<" + MmaCore + "::Shape::kK, " + MmaCore + "::Shape::kN>" iterator_map = "typename " + MmaCore + "::IteratorThreadMapB" gen_code += code_using + " = " + gen_ir.gen_declare_template_struct(iterator_typename, \ matrix_shape, helper.var_idx("ElementB", i), helper.var_idx("LayoutB", i), "0", iterator_map, "AlignmentB_") return gen_code def gen_fragment_iterator(self): gen_code = "using AccumulatorLayout = cutlass::layout::ColumnMajor;\n" for i in range(1, self.b2b_num): code_using = "using FragmentIteratorA" + str(i) iterator_typename = "cutlass::gemm::warp::MmaTensorOpPureFragmentIterator" curr_MmaCore = "MmaCore" + str(i) prev_MmaCore = "MmaCore" + str(i - 1) Matrix_shape_curr = "cutlass::MatrixShape<" + curr_MmaCore + "::WarpShape::kM, " + curr_MmaCore + "::InstructionShape::kK>" Matrix_shape_prev = "cutlass::MatrixShape<" + prev_MmaCore + "::WarpShape::kM, " + prev_MmaCore + "::WarpShape::kN>" Curr_shape_kK = curr_MmaCore + "::Shape::kK" gen_code += code_using + " = " + gen_ir.gen_declare_template_struct(iterator_typename, \ Matrix_shape_curr, Matrix_shape_prev, Curr_shape_kK, \ helper.var_idx("ElementAccumulator", i-1), "ElementA", \ "AccumulatorLayout", "InstructionShape_", "true") return gen_code def gen_threadblockmma(self): code_using = "using ThreadblockB2bMma" iterator_typename = "cutlass::gemm::threadblock::B2bMmaPipelined" MmaPipelined_param_Mma0_shape = "typename MmaCore0::Shape" MmaPipelined_param_Mma0_iteratorA = "IteratorA0" MmaPipelined_param_Mma0_smemIteratorA = "typename MmaCore0::SmemIteratorA" MmaPipelined_param_Mma0_iteratorB = "IteratorB0" MmaPipelined_param_Mma0_smemIteratorB = "typename MmaCore0::SmemIteratorB" MmaPipelined_param_list = MmaPipelined_param_Mma0_shape + ", " + MmaPipelined_param_Mma0_iteratorA + ", " + MmaPipelined_param_Mma0_smemIteratorA + ", " + MmaPipelined_param_Mma0_iteratorB + ", " + MmaPipelined_param_Mma0_smemIteratorB + ", " for i in range(1, self.b2b_num): MmaPipelined_param_Mma_shape = "typename MmaCore" + str(i) + "::Shape" MmaPipelined_param_Mma_iteratorA = "FragmentIteratorA" + str(i) MmaPipelined_param_Mma_iteratorB = "IteratorB" + str(i) MmaPipelined_param_Mma_smemIteratorB = "typename MmaCore" + str(i) + "::SmemIteratorB" MmaPipelined_param_list += MmaPipelined_param_Mma_shape + ", " + MmaPipelined_param_Mma_iteratorA + ", " + MmaPipelined_param_Mma_iteratorB + ", " + MmaPipelined_param_Mma_smemIteratorB + ", " MmaPipelined_param_list += "ElementAccumulator0, layout::RowMajor, " for i in range(self.b2b_num - 1): epilogue_name = "EpilogueOutputOp" + str(i) MmaPipelined_param_list += epilogue_name + ", " for i in range(self.b2b_num - 1): epilogue_name = "FusedAddBiasEpilogue" + str(i) MmaPipelined_param_list += epilogue_name + ", " for i in range(self.b2b_num): MmaPolicy = "typename MmaCore" + str(i) + "::MmaPolicy" MmaPipelined_param_list += MmaPolicy + ", " cnt = 0 for i in range(self.b2b_num): MmaStage = helper.var_idx("Stages", i) final = ", " if cnt == self.b2b_num - 1: final = "" MmaPipelined_param_list += MmaStage + final cnt += 1 gen_code = code_using + " = " + gen_ir.gen_declare_template_struct(iterator_typename, MmaPipelined_param_list) return gen_code def gen_code(self): gen_using = '' # Generate default template struct gen_code = gen_ir.gen_template_struct(self.gen_class_name, self.template_param, "", speicalized = None, set_default=False) # Generate specialized template struct mmacore_codebody = self.gen_using_MmaCore(2) iterator_codebody = self.gen_using_Iterator() fragment_iterator_codebody = self.gen_fragment_iterator() epilogue_iterator_codebody = self.gen_using_FusedAddBiasEpilogue() threadBlockMma = self.gen_threadblockmma() specialized_code = mmacore_codebody + iterator_codebody + fragment_iterator_codebody + epilogue_iterator_codebody + threadBlockMma # Specialize layout C -> cutlass::layout::RowMajor rtn_template_args, speicalized_template_args = gen_ir.filtered_param(self.template_param, [ ('LayoutD', "cutlass::layout::RowMajor")], keep_= True) gen_speical_code = gen_ir.gen_template_struct(self.gen_class_name, rtn_template_args, specialized_code, speicalized = speicalized_template_args, set_default=False) code = gen_ir.gen_namespace("cutlass", gen_ir.gen_namespace("gemm", gen_ir.gen_namespace("threadblock", gen_code + gen_speical_code))) return self.gen_include_header() + code class gen_b2b_mme_pipelined: def __init__(self, template_param, gen_class_name, b2b_num, cutlass_deps_root, project_root): self.gen_class_name = "B2bMmaPipelined" self.template_param = template_param self.b2b_num = b2b_num self.cutlass_deps_root = cutlass_deps_root self.project_root = project_root def gen_include_header(self): code = ''' #pragma once #include \"{cutlass_dir}cutlass/cutlass.h\" #include \"{cutlass_dir}cutlass/array.h\" #include \"{cutlass_dir}cutlass/aligned_buffer.h\" #include \"{cutlass_dir}cutlass/numeric_conversion.h\" #include \"{cutlass_dir}cutlass/numeric_types.h\" #include \"{cutlass_dir}cutlass/matrix_shape.h\" #include \"{cutlass_dir}cutlass/gemm/gemm.h\" #include \"{cutlass_dir}cutlass/gemm/warp/mma_tensor_op_fragment_iterator.h\" #include \"../threadblock/b2b_mma_base.h\"\n'''.format(cutlass_dir = self.cutlass_deps_root) return code def gen_using(self): code_using = "using FragmentA0 = typename IteratorA0::Fragment;\n" code_using += "using Base = B2bMmaBase<" for i in range(self.b2b_num): code_using += helper.var_idx("Shape", i) + "_, " for i in range(self.b2b_num): code_using += helper.var_idx("Policy", i) + "_, " for i in range(self.b2b_num): code_using += helper.var_idx("Stage", i) + "_, " code_using = code_using[: -2] + ">;\n" for i in range(self.b2b_num): code_using += helper.var_idx("using FragmentB", i) + helper.var_idx(" = typename IteratorB", i) + "::Fragment;\n" code_using += helper.var_idx("using FragmentC", i) + helper.var_idx(" = typename Policy", i) + "::Operator::FragmentC;\n" code_using += helper.var_idx("using Operator", i) + helper.var_idx(" = typename Policy", i) + "::Operator;\n" for i in range(self.b2b_num - 1): code_using += helper.var_idx("using IteratorC", i) + helper.var_idx(" = typename FusedAddBiasEpilogue", i) + "::OutputTileIterator;\n" code_using += "using ArchTag = typename Policy0::Operator::ArchTag;\n" code_using += "static ComplexTransform const kTransformA0 = Operator0::kTransformA;\n" for i in range(self.b2b_num): code_using += helper.var_idx("static ComplexTransform const kTransformB", i) + helper.var_idx(" = Operator", i) + "::kTransformB;\n" code_using += "private:\n" code_using += "using WarpFragmentA0 = typename Operator0::FragmentA;\n" code_using += "using WarpFragmentB0 = typename Operator0::FragmentB;\n" for i in range(1, self.b2b_num): code_using += helper.var_idx("using WarpFragmentA", i) + helper.var_idx(" = typename FragmentIteratorA", i) + "::Fragment;\n" code_using += helper.var_idx("using WarpFragmentB", i) + helper.var_idx(" = typename Operator", i) + "::FragmentB;\n" code_using += "protected:\n" code_using += "SmemIteratorA0 smem_iterator_A_;\n" for i in range(self.b2b_num): code_using += helper.var_idx("SmemIteratorB", i) + helper.var_idx(" smem_iterator_B", i) + "_;\n" return code_using def gen_operator(self, first_use_1stage = False): code = "" def gen_operator_param(b2b_num): param_code = "" param_code += "int gemm_k_iterations_0,\n" param_code += helper.var_idx("FragmentC", b2b_num-1) + helper.var_idx(" &accum", b2b_num-1) + ",\n" param_code += "IteratorA0 iterator_A,\n" for i in range(b2b_num): param_code += helper.var_idx("IteratorB", i) + " " + helper.var_idx("iterator_B", i) + ",\n" param_code += "FragmentC0 const &src_accum, \n" for i in range(b2b_num - 1): param_code += helper.var_idx("OutputOp", i) + " " + helper.var_idx("output_op_", i) + ",\n" for i in range(b2b_num - 1): param_code += helper.var_idx("FusedAddBiasEpilogue", i) + " " + helper.var_idx("epilogue_", i) + ",\n" for i in range(b2b_num - 1): param_code += helper.var_idx("IteratorC", i) + " " + helper.var_idx("iterator_C", i) + ",\n" param_code += "TransformA0 transform_A0 = TransformA0(), \n" for i in range(b2b_num): final = "(),\n" if i == b2b_num - 1: final = "()\n" param_code += helper.var_idx("TransformB", i) + " " + helper.var_idx("transform_B", i) + " = " +helper.var_idx("TransformB", i) + final return param_code def gen_first_gemm_1stage(b2b_num): accu_code = " FragmentC0 accum0 = src_accum;\n" if b2b_num == 1: accu_code = " accum0 = src_accum;\n" code ="\ \n\ FragmentA0 tb_frag_A;\n\ FragmentB0 tb_frag_B0;\n\ \n\ int smem_write_stage_idx = 1;\n\ \n\ tb_frag_A.clear();\n\ tb_frag_B0.clear();\n\ \n\ // The last kblock is loaded in the prolog\n\ iterator_A.load(tb_frag_A);\n\ iterator_B0.load(tb_frag_B0);\n\ \n\ ++iterator_A;\n\ ++iterator_B0;\n\ \n\ WarpFragmentA0 warp_frag_A0;\n\ WarpFragmentB0 warp_frag_B0;\n\ \n\ Operator0 warp_mma0;\n\ \n\ // Avoid reading out of bounds\n\ if (gemm_k_iterations_0 <= 1) {\n\ iterator_A.clear_mask();\n\ iterator_B0.clear_mask();\n\ }\n\ \n\ // Issue loads during the first warp-level matrix multiply-add *AFTER* issuing \n\ // shared memory loads (which have the tightest latency requirement).\n\ \n\ //\n\ // Mainloop\n\ //\n\ \n\ // Note: The main loop does not support Base::WarpGemmIterations == 2.\n\ CUTLASS_GEMM_LOOP\n\ for (; gemm_k_iterations_0 > 0; --gemm_k_iterations_0) {\n\ \n\ this->smem_iterator_A_.store(tb_frag_A);\n\ this->smem_iterator_B0_.store(tb_frag_B0);\n\ \n\ __syncthreads();\n\ //\n\ // Loop over GEMM K dimension\n\ //\n\ \n\ CUTLASS_PRAGMA_UNROLL\n\ for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations0; ++warp_mma_k) {\n\ \n\ // Load warp-level tiles from shared memory, wrapping to k offset if this is the last group\n\ // as the case may be.\n\ \n\ this->warp_tile_iterator_A0_.set_kgroup_index(warp_mma_k % Base::kWarpGemmIterations0);\n\ this->warp_tile_iterator_B0_.set_kgroup_index(warp_mma_k % Base::kWarpGemmIterations0);\n\ \n\ this->warp_tile_iterator_A0_.load(warp_frag_A0);\n\ this->warp_tile_iterator_B0_.load(warp_frag_B0);\n\ \n\ ++this->warp_tile_iterator_A0_;\n\ ++this->warp_tile_iterator_B0_;\n\ \n\ warp_mma0(accum0, warp_frag_A0, warp_frag_B0, accum0);\n\ }\n\ this->warp_tile_iterator_A0_.add_tile_offset({0, -Policy0::kPartitionsK * Base::kWarpGemmIterations0});\n\ this->warp_tile_iterator_B0_.add_tile_offset({-Policy0::kPartitionsK * Base::kWarpGemmIterations0, 0});\n\ \n\ __syncthreads();\n\ iterator_A.load(tb_frag_A);\n\ iterator_B0.load(tb_frag_B0);\n\ \n\ ++iterator_A;\n\ ++iterator_B0;\n\ \n\ if(gemm_k_iterations_0 <= 2) {\n\ iterator_A.clear_mask();\n\ iterator_B0.clear_mask();\n\ }\n\ }\n" return accu_code + code def gen_first_gemm_2stage(b2b_num): accu_code = " FragmentC0 accum0 = src_accum;\n" if b2b_num == 1: accu_code = " accum0 = src_accum;\n" code ="\ \n\ FragmentA0 tb_frag_A;\n\ FragmentB0 tb_frag_B0;\n\ \n\ tb_frag_A.clear();\n\ tb_frag_B0.clear();\n\ \n\ // The last kblock is loaded in the prolog\n\ iterator_A.load(tb_frag_A);\n\ iterator_B0.load(tb_frag_B0);\n\ \n\ ++iterator_A;\n\ ++iterator_B0;\n\ \n\ this->smem_iterator_A_.store(tb_frag_A);\n\ this->smem_iterator_B0_.store(tb_frag_B0);\n\ \n\ ++this->smem_iterator_A_;\n\ ++this->smem_iterator_B0_;\n\ \n\ __syncthreads();\n\ \n\ // Pair of fragments used to overlap shared memory loads and math instructions\n\ WarpFragmentA0 warp_frag_A0[2];\n\ WarpFragmentB0 warp_frag_B0[2];\n\ \n\ this->warp_tile_iterator_A0_.set_kgroup_index(0);\n\ this->warp_tile_iterator_B0_.set_kgroup_index(0);\n\ \n\ this->warp_tile_iterator_A0_.load(warp_frag_A0[0]);\n\ this->warp_tile_iterator_B0_.load(warp_frag_B0[0]);\n\ \n\ ++this->warp_tile_iterator_A0_;\n\ ++this->warp_tile_iterator_B0_;\n\ \n\ Operator0 warp_mma0;\n\ \n\ int smem_write_stage_idx = 1;\n\ \n\ // Avoid reading out of bounds\n\ if (gemm_k_iterations_0 <= 1) {\n\ iterator_A.clear_mask();\n\ iterator_B0.clear_mask();\n\ }\n\ \n\ // Issue loads during the first warp-level matrix multiply-add *AFTER* issuing \n\ // shared memory loads (which have the tightest latency requirement).\n\ iterator_A.load(tb_frag_A);\n\ \n\ //\n\ // Mainloop\n\ //\n\ \n\ // Note: The main loop does not support Base::WarpGemmIterations == 2.\n\ CUTLASS_GEMM_LOOP\n\ for (; gemm_k_iterations_0 > 0; --gemm_k_iterations_0) {\n\ \n\ //\n\ // Loop over GEMM K dimension\n\ //\n\ \n\ CUTLASS_PRAGMA_UNROLL\n\ for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations0; ++warp_mma_k) {\n\ \n\ // Load warp-level tiles from shared memory, wrapping to k offset if this is the last group\n\ // as the case may be.\n\ \n\ if (warp_mma_k == Base::kWarpGemmIterations0 - 1) {\n\ \n\ // Write fragments to shared memory\n\ this->smem_iterator_A_.store(tb_frag_A);\n\ \n\ this->smem_iterator_B0_.store(tb_frag_B0);\n\ \n\ __syncthreads();\n\ \n\ // Issue loads during the first warp-level matrix multiply-add *AFTER* issuing \n\ // shared memory loads (which have the tightest latency requirement).\n\ iterator_A.load(tb_frag_A);\n\ \n\ ++this->smem_iterator_B0_;\n\ ++this->smem_iterator_A_;\n\ \n\ \n\ // Add negative offsets to return iterators to the 'start' of the circular buffer in shared memory\n\ if (smem_write_stage_idx == 1) {\n\ this->smem_iterator_A_.add_tile_offset({0, -Base::Stage0});\n\ this->smem_iterator_B0_.add_tile_offset({-Base::Stage0, 0});\n\ }\n\ else {\n\ this->warp_tile_iterator_A0_.add_tile_offset(\n\ {0, -Base::Stage0 * Policy0::kPartitionsK * Base::kWarpGemmIterations0});\n\ this->warp_tile_iterator_B0_.add_tile_offset(\n\ {-Base::Stage0 * Policy0::kPartitionsK * Base::kWarpGemmIterations0,\n\ 0});\n\ }\n\ \n\ smem_write_stage_idx ^= 1;\n\ }\n\ \n\ this->warp_tile_iterator_A0_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations0);\n\ this->warp_tile_iterator_B0_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations0);\n\ \n\ this->warp_tile_iterator_A0_.load(warp_frag_A0[(warp_mma_k + 1) % 2]);\n\ this->warp_tile_iterator_B0_.load(warp_frag_B0[(warp_mma_k + 1) % 2]);\n\ \n\ ++this->warp_tile_iterator_A0_;\n\ ++this->warp_tile_iterator_B0_;\n\ \n\ if (warp_mma_k == 0) {\n\ \n\ iterator_B0.load(tb_frag_B0);\n\ \n\ ++iterator_A;\n\ ++iterator_B0;\n\ \n\ // Avoid reading out of bounds if this was the last loop iteration\n\ if (gemm_k_iterations_0 <= 2) {\n\ iterator_A.clear_mask();\n\ iterator_B0.clear_mask();\n\ }\n\ }\n\ \n\ warp_mma0(accum0, warp_frag_A0[warp_mma_k % 2], warp_frag_B0[warp_mma_k % 2], accum0);\n\ }\n\ }\n" return accu_code + code def gen_other_gemms_2stage(b2b_num): code = "" def gemm_teamplate(id): code = "// " + str(id + 1) + " Gemm" code += " /// Iterator to load a warp-scoped tile of A1 operand from intermediate accumulator tile\n" code += " " + helper.var_idx("FragmentC", id - 1) + helper.var_idx(" after_epilogue_accu", id - 1) + ";\n" code += " " + helper.var_idx("epilogue_", id - 1) + helper.var_idx("(output_op_", id - 1) + helper.var_idx(", accum", id - 1) \ + helper.var_idx(", after_epilogue_accu", id - 1) + helper.var_idx(", iterator_C", id - 1) +");\n" # FragmentIteratorA1 warp_tile_iterator_A1_(accum0); code += " " + helper.var_idx("FragmentIteratorA", id) + helper.var_idx(" warp_tile_iterator_A", id) +"_(" + helper.var_idx("after_epilogue_accu", id - 1) + ");\n" # FragmentB1 tb_frag_B1; code += " " + helper.var_idx("FragmentB", id) + " " + helper.var_idx("tb_frag_B", id) + ";\n" # tb_frag_B1.clear(); code += " " + helper.var_idx("tb_frag_B", id) + ".clear();\n" # iterator_B1.load(tb_frag_B1); code += " " + helper.var_idx("iterator_B", id) + ".load(" + helper.var_idx("tb_frag_B", id) + ");\n" # ++iterator_B1; code += " " + "++" + helper.var_idx("iterator_B", id) + ";\n" # this->smem_iterator_B1_.store(tb_frag_B1); code += " " + helper.var_idx("this->smem_iterator_B", id) + "_.store(" + helper.var_idx("tb_frag_B", id) + ");\n" # ++this->smem_iterator_B1_; code += " " + helper.var_idx("++this->smem_iterator_B", id) + "_;\n" # __syncthreads(); code += " " + "__syncthreads();\n" # WarpFragmentA1 warp_frag_A1[2]; code += " " + helper.var_idx("WarpFragmentA", id) + helper.var_idx(" warp_frag_A", id) + "[2];\n" # WarpFragmentB1 warp_frag_B1[2]; code += " " + helper.var_idx("WarpFragmentB", id) + helper.var_idx(" warp_frag_B", id) + "[2];\n" # this->warp_tile_iterator_B1_.set_kgroup_index(0); code += " " + helper.var_idx("this->warp_tile_iterator_B", id) + "_.set_kgroup_index(0);\n" # warp_tile_iterator_A1_.load(warp_frag_A1[0], output_op_0); code += " " + helper.var_idx("warp_tile_iterator_A", id) + helper.var_idx("_.load(warp_frag_A", id) + "[0]);\n" # this->warp_tile_iterator_B1_.load(warp_frag_B1[0]); code += " " + helper.var_idx("this->warp_tile_iterator_B", id) + helper.var_idx("_.load(warp_frag_B", id) + "[0]);\n" # ++warp_tile_iterator_A1_; code += " " + helper.var_idx("++warp_tile_iterator_A", id) + "_;\n" # ++this->warp_tile_iterator_B1_; code += " " + helper.var_idx("++this->warp_tile_iterator_B", id) + "_;\n" # Operator1 warp_mma1; code += " " + helper.var_idx("Operator", id) + " " + helper.var_idx("warp_mma", id) + ";\n" # smem_write_stage_idx = 1; code += " " + "smem_write_stage_idx = 1;\n" # int gemm_k_iterations_1 = FragmentIteratorA1::Policy::kIterations / Base::kWarpGemmIterations1; code += " " + helper.var_idx("int gemm_k_iterations_", id) + " = " + helper.var_idx("FragmentIteratorA", id) + helper.var_idx("::Policy::kIterations / Base::kWarpGemmIterations", id) +";\n" # if (gemm_k_iterations_1 <= 1) { # iterator_B1.clear_mask(); # } code += " " + "if (" + helper.var_idx("gemm_k_iterations_", id) + " <= 1 ){\n" \ + " " + " " + helper.var_idx("iterator_B", id) + ".clear_mask();\n" \ + " " +"}\n" # CUTLASS_PRAGMA_UNROLL code += " " + "CUTLASS_PRAGMA_UNROLL\n" # for (; gemm_k_iterations_1 > 0; --gemm_k_iterations_1) { code += " " + helper.var_idx("for (; gemm_k_iterations_", id) + helper.var_idx(" > 0; --gemm_k_iterations_", id) + ") {\n" # CUTLASS_PRAGMA_UNROLL code += " " + " " + "CUTLASS_PRAGMA_UNROLL\n" # for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations1; ++warp_mma_k) { code += " " + " " + helper.var_idx("for (int warp_mma_k = 0; warp_mma_k < Base::kWarpGemmIterations", id) + "; ++warp_mma_k) {\n" # if (warp_mma_k == Base::kWarpGemmIterations1 - 1) { code += " " + " " + " " + helper.var_idx("if (warp_mma_k == Base::kWarpGemmIterations", id) + " - 1) {\n" # this->smem_iterator_B1_.store(tb_frag_B1); code += " " + " " + " " + " " + helper.var_idx(" this->smem_iterator_B", id) + helper.var_idx("_.store(tb_frag_B", id) + ");\n" # __syncthreads(); code += " " + " " + " " + " " + "__syncthreads();\n" # ++smem_iterator_B1_; code += " " + " " + " " + " " + helper.var_idx(" ++smem_iterator_B", id) + "_;\n" # if (smem_write_stage_idx == 1) { # smem_iterator_B1_.add_tile_offset({-Base::Stage, 0}); # } code += " " + " " + " " + " " + "if ( smem_write_stage_idx == 1 ) {\n" \ + " " + " " + " " + " " + " " + helper.var_idx("smem_iterator_B", id) + helper.var_idx("_.add_tile_offset({-Base::Stage", i) + ", 0});\n" \ + " " + " " + " " + " " +"}\n" # else { # this->warp_tile_iterator_B1_.add_tile_offset( # {-Base::Stage * Policy1::kPartitionsK * # Base::kWarpGemmIterations1, # 0}); # } code += " " + " " + " " + " " + "else {\n" \ + " " + " " + " " + " " + " " + helper.var_idx("this->warp_tile_iterator_B", id) + "_.add_tile_offset(\n" \ + " " + " " + " " + " " + " " + helper.var_idx("{-Base::Stage", id) + helper.var_idx(" * Policy", id) + "::kPartitionsK *\n" \ + " " + " " + " " + " " + " " + helper.var_idx("Base::kWarpGemmIterations", id) + ",\n" \ + " " + " " + " " + " " + " " + "0});\n" \ + " " + " " + " " + " " + "}\n" # smem_write_stage_idx ^= 1; # } code += " " + " " + " " + " " + "smem_write_stage_idx ^= 1;\n" \ + " " + " " + " " + "}\n" # this->warp_tile_iterator_B1_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations1); code += " " + " " + " " + helper.var_idx("this->warp_tile_iterator_B", id) + helper.var_idx("_.set_kgroup_index((warp_mma_k + 1) % Base::kWarpGemmIterations", id) + ");\n" # warp_tile_iterator_A1_.load(warp_frag_A1[(warp_mma_k + 1) % 2], output_op_0); code += " " + " " + " " + helper.var_idx("warp_tile_iterator_A", id) + helper.var_idx("_.load(warp_frag_A", id) + "[(warp_mma_k + 1) % 2]);\n" # this->warp_tile_iterator_B1_.load(warp_frag_B1[(warp_mma_k + 1) % 2]); code += " " + " " + " " + helper.var_idx("this->warp_tile_iterator_B", id) + helper.var_idx("_.load(warp_frag_B", id) + "[(warp_mma_k + 1) % 2]);\n" # ++warp_tile_iterator_A1_; code += " " + " " + " " + helper.var_idx("++warp_tile_iterator_A", id) + "_;\n" # ++this->warp_tile_iterator_B1_; code += " " + " " + " " + helper.var_idx("++this->warp_tile_iterator_B", id) + "_;\n" # if (warp_mma_k == 0) { # iterator_B1.load(tb_frag_B1); # ++iterator_B1; # if (gemm_k_iterations_1 <= 2) { # iterator_B1.clear_mask(); # } # } code += " " + " " + " " + " if (warp_mma_k == 0) {\n" \ + " " + " " + " " + " " + helper.var_idx("iterator_B", id) + helper.var_idx(".load(tb_frag_B", id) + ");\n" \ + " " + " " + " " + " " + helper.var_idx("++iterator_B", id) +";\n" \ + " " + " " + " " + " " + helper.var_idx("if (gemm_k_iterations_", id) +" <= 2) {\n" \ + " " + " " + " " + " " + " " + helper.var_idx("iterator_B", id) + ".clear_mask();\n" \ + " " + " " + " " + " " + "}\n" \ + " " + " " + " " + "}\n" # warp_mma1(accum, warp_frag_A1[warp_mma_k % 2], warp_frag_B1[warp_mma_k % 2], accum); # } # } code += " " + " " + " " + helper.var_idx("warp_mma", id) + helper.var_idx("(accum", id) + helper.var_idx(", warp_frag_A", id) + helper.var_idx("[warp_mma_k % 2], warp_frag_B", id) + helper.var_idx("[warp_mma_k % 2], accum", id) + ");\n" \ + " " + " " + "}\n" \ + " " + "}\n\n\n" return code for i in range (1, b2b_num): clear_accu = "" if i != b2b_num - 1: clear_accu = " " + helper.var_idx("FragmentC", i) + helper.var_idx(" accum", i) +";\n" clear_accu += " " + helper.var_idx("accum", i) +".clear();\n" code += clear_accu + gemm_teamplate(i) return code operator_code = " CUTLASS_DEVICE\n\ void operator()(\n " + gen_operator_param(self.b2b_num) + ") {\n" if first_use_1stage: operator_code += gen_first_gemm_1stage(self.b2b_num) else: operator_code += gen_first_gemm_2stage(self.b2b_num) operator_code += gen_other_gemms_2stage(self.b2b_num) + "}\n" return operator_code def gen_construct_func(self): name = self.gen_class_name func_code = "CUTLASS_DEVICE\n" func_code += name + "(\n" \ + " " + "typename Base::B2bMmaSharedStorage &shared_storage,\n" \ + " " + "int thread_idx,\n" \ + " " + "int warp_idx,\n" \ + " " + "int lane_idx\n" \ + "):\n" func_code += " " + "Base(shared_storage, thread_idx, warp_idx, lane_idx),\n" \ + " " + "smem_iterator_A_(shared_storage.sharedStorage0.operand_A_ref(), thread_idx),\n" for i in range(self.b2b_num): final = ",\n" if i == self.b2b_num - 1: final = " {\n" func_code += helper.var_idx("smem_iterator_B", i) + helper.var_idx("_(shared_storage.sharedStorage", i) +".operand_B_ref(), thread_idx)" + final func_code += " " + "int warp_idx_mn = warp_idx % (Base::WarpCount0::kM * Base::WarpCount0::kN);\n" func_code += " " + "int warp_idx_k = warp_idx / (Base::WarpCount0::kM * Base::WarpCount0::kN);\n" func_code += " " + "int warp_idx_m = warp_idx_mn % Base::WarpCount0::kM;\n" func_code += " " + "int warp_idx_n = warp_idx_mn / Base::WarpCount0::kM;\n" for i in range(self.b2b_num): func_code += " " + helper.var_idx("int tile_offset_k", i) + helper.var_idx(" = Base::kWarpGemmIterations", i) + " * warp_idx_k;\n" func_code += " " + "this->warp_tile_iterator_A0_.add_tile_offset({warp_idx_m, tile_offset_k0});\n" for i in range(self.b2b_num): func_code += " " + helper.var_idx("this->warp_tile_iterator_B", i) + helper.var_idx("_.add_tile_offset({tile_offset_k", i) + ", warp_idx_n});\n" func_code += "}\n" return func_code def gen_member_func(self, first_use_1stage): code = "public:\n" code += self.gen_operator(first_use_1stage) code += self.gen_construct_func() return code def gen_code(self, first_use_1stage): def gen_template_args(b2b_num): template_param = [] template_param.append(("typename", "Shape0")) template_param.append(("typename", "IteratorA0")) template_param.append(("typename", "SmemIteratorA0")) template_param.append(("typename", "IteratorB0")) template_param.append(("typename", "SmemIteratorB0")) for i in range(1, b2b_num): template_param.append(("typename", helper.var_idx("Shape", i))) template_param.append(("typename", helper.var_idx("FragmentIteratorA", i))) template_param.append(("typename", helper.var_idx("IteratorB", i))) template_param.append(("typename", helper.var_idx("SmemIteratorB", i))) template_param.append(("typename", "ElementC")) template_param.append(("typename", "LayoutC")) for i in range(0, b2b_num - 1): template_param.append(("typename", helper.var_idx("OutputOp", i))) for i in range(0, b2b_num - 1): template_param.append(("typename", helper.var_idx("FusedAddBiasEpilogue", i))) for i in range(0, b2b_num): template_param.append(("typename", helper.var_idx("Policy", i))) for i in range(0, b2b_num): template_param.append((int, helper.var_idx("Stage", i))) template_param.append(("typename","TransformA0", "NumericArrayConverter<typename SmemIteratorA0_::Element, typename IteratorA0_::Element, IteratorA0_::Fragment::kElements>")) for i in range(0, b2b_num): cvtr = helper.var_idx("NumericArrayConverter<typename SmemIteratorB", i) + helper.var_idx("_::Element, typename IteratorB", i) + helper.var_idx("_::Element, IteratorB", i) + "_::Fragment::kElements>" template_param.append(("typename", helper.var_idx("TransformB", i), cvtr)) template_param.append(("typename", "Enable", "bool")) return template_param template_param = gen_template_args(self.b2b_num) inheritance_code = "public B2bMmaBase<" for i in range(self.b2b_num): inheritance_code += helper.var_idx("Shape", i) + "_, " for i in range(self.b2b_num): inheritance_code += helper.var_idx("Policy", i) + "_, " for i in range(self.b2b_num - 1): inheritance_code += helper.var_idx("Stage", i) + "_, " inheritance_code += helper.var_idx("Stage", self.b2b_num - 1) + "_" inheritance_code += ">" code_body = "" using_code= self.gen_using() func_code = self.gen_member_func(first_use_1stage) code_body = using_code + func_code class_code = gen_ir.gen_template_class(self.gen_class_name, template_param, code_body, inheritance_code = inheritance_code) code = self.gen_include_header() code += gen_ir.gen_namespace("cutlass", gen_ir.gen_namespace("gemm", gen_ir.gen_namespace("threadblock", class_code))) # print(code) return code class gen_b2b_mma_base: def __init__(self, template_param, gen_class_name, b2b_num, cutlass_deps_root, project_root): self.gen_class_name = gen_class_name self.template_param = template_param self.b2b_num = b2b_num self.cutlass_deps_root = cutlass_deps_root self.project_root = project_root def gen_include_header(self): code = ''' #pragma once #include \"{cutlass_dirs}cutlass/aligned_buffer.h\" #include \"{cutlass_dirs}cutlass/arch/memory.h\" #include \"{cutlass_dirs}cutlass/array.h\" #include \"{cutlass_dirs}cutlass/cutlass.h\" #include \"{cutlass_dirs}cutlass/gemm/gemm.h\" #include \"{cutlass_dirs}cutlass/matrix_shape.h\" #include \"{cutlass_dirs}cutlass/numeric_types.h\"\n'''.format(cutlass_dirs=self.cutlass_deps_root) return code def gen_shared_storage(self): code = \ " template< \n\ typename Shape_,\n\ typename Policy_,\n\ int ThisStage_\n\ >\n\ class SharedStorage {\n\ public:\n\ using Shape = Shape_;\n\ using Policy = Policy_;\n\ static int const ThisStage = ThisStage_;\n\ using Operator = typename Policy::Operator;\n\ \ using TensorRefA = TensorRef<typename Operator::ElementA, typename Operator::LayoutA>;\n\ \ /// Tensor reference to the B operand \n\ using TensorRefB = TensorRef<typename Operator::ElementB, typename Operator::LayoutB>;\n\ \n\ /// Shape of the A matrix operand in shared memory \n\ using ShapeA = MatrixShape<Shape::kM + Policy::SmemPaddingA::kRow,\n\ Shape::kK * ThisStage +\n\ Policy::SmemPaddingA::kColumn>;\n\ \n\ /// Shape of the B matrix operand in shared memory\n\ using ShapeB =\n\ MatrixShape<Shape::kK * ThisStage + Policy::SmemPaddingB::kRow,\n\ Shape::kN + Policy::SmemPaddingB::kColumn>;\n\ \n\ public:\n\ \n\ /// Buffer for A operand\n\ AlignedBuffer<typename Operator::ElementA, ShapeA::kCount> operand_A;\n\ \n\ /// Buffer for B operand\n\ AlignedBuffer<typename Operator::ElementB, ShapeB::kCount> operand_B;\n\ \n\ public:\n\ \n\ /// Returns a layout object for the A matrix\n\ CUTLASS_DEVICE\n\ static typename Operator::LayoutA LayoutA() {\n\ return Operator::LayoutA::packed({ShapeA::kRow, ShapeA::kColumn});\n\ }\n\ \n\ /// Returns a layout object for the B matrix\n\ CUTLASS_HOST_DEVICE\n\ static typename Operator::LayoutB LayoutB() {\n\ return Operator::LayoutB::packed({ShapeB::kRow, ShapeB::kColumn});\n\ }\n\ \n\ /// Returns a TensorRef to the A operand\n\ CUTLASS_HOST_DEVICE\n\ TensorRefA operand_A_ref() {\n\ return TensorRefA{operand_A.data(), LayoutA()};\n\ }\n\ \n\ /// Returns a TensorRef to the B operand\n\ CUTLASS_HOST_DEVICE\n\ TensorRefB operand_B_ref() {\n\ return TensorRefB{operand_B.data(), LayoutB()};\n\ }\n\ CUTLASS_HOST_DEVICE\n\ void * get_B_Shared_ptr() {\n\ return operand_B.data();\n\ }\n\ };\n" return code def gen_using_and_misc(self, b2b_num): code_using = "" for i in range(b2b_num): code_using += "using Operator" +str(i) + " = typename Policy" + str(i) +"::Operator;\n" for i in range(b2b_num): code_using += "using WarpGemm" +str(i) + " = typename Policy" + str(i) +"::Operator::Shape;\n" for i in range(b2b_num): code_using += "using WarpCount" +str(i) + " = GemmShape<" + helper.var_idx("Shape", i) +"::kM / " + helper.var_idx("WarpGemm", i) +"::kM, "\ + helper.var_idx("Shape", i) +"::kN / " + helper.var_idx("WarpGemm", i) +"::kN, "\ + helper.var_idx("Shape", i) +"::kK / " + helper.var_idx("WarpGemm", i) +"::kK>;\n" code_misc = "" for i in range(b2b_num): code_misc += "static int const " + helper.var_idx("kWarpGemmIterations", i) + " = (" + helper.var_idx("WarpGemm", i) + "::kK / " + helper.var_idx("Operator", i) +"::Policy::MmaShape::kK);\n" code = code_using + code_misc + self.gen_shared_storage() for i in range(b2b_num): code += "using " + helper.var_idx("SharedStorage", i) + " = SharedStorage<" + helper.var_idx("Shape", i) + ", " + helper.var_idx("Policy", i) +", " + helper.var_idx("Stage", i) + ">;\n" def gen_union_shared_storage(b2b_num): code = "" for i in range(b2b_num): code += " " +helper.var_idx("SharedStorage", i) + " " + helper.var_idx("sharedStorage", i) +";\n" return code code += "union B2bMmaSharedStorage {\n" + gen_union_shared_storage(self.b2b_num) + "};\n" for i in range(b2b_num - 1): code += helper.var_idx("void * C", i) + "_smm_ptr;\n" return code def gen_protected(self): code = "\nprotected:\n" code += "typename Operator0::IteratorA warp_tile_iterator_A0_;\n" for i in range(self.b2b_num): code += "typename Operator" +str(i) + "::IteratorB" +" warp_tile_iterator_B" + str(i) + "_;\n" return code def gen_public_member(self): code = "\npublic:\n" code += "CUTLASS_DEVICE\n" code += \ "B2bMmaBase(\n" + \ " B2bMmaSharedStorage & shared_storage,\n" + \ " int thread_idx,\n" + \ " int warp_idx,\n" + \ " int lane_idx\n" + \ "):\n" + \ " warp_tile_iterator_A0_(shared_storage.sharedStorage0.operand_A_ref(), lane_idx),\n" for i in range(self.b2b_num): final = ",\n" if i == self.b2b_num-1: final = "\n" iterator = " warp_tile_iterator_B" + str(i) + "_" shared_storage = "shared_storage.sharedStorage" + str(i) + ".operand_B_ref()" code += iterator + "(" + shared_storage + ", lane_idx)" + final code += "{\n" for i in range(self.b2b_num - 1): code += helper.var_idx(" C", i) + helper.var_idx("_smm_ptr = shared_storage.sharedStorage", i) + ".get_B_Shared_ptr();\n" code += "}\n" return code def gen_code(self): tempalte_arg = [] for i in range(self.b2b_num): tempalte_arg.append(("typename", helper.var_idx("Shape", i))) for i in range(self.b2b_num): tempalte_arg.append(("typename", helper.var_idx("Policy", i))) for i in range(self.b2b_num): tempalte_arg.append((int, helper.var_idx("Stage", i))) code_body = self.gen_using_and_misc(self.b2b_num) code_body += self.gen_protected() code_body += self.gen_public_member() class_code = gen_ir.gen_template_class("B2bMmaBase", tempalte_arg, code_body) code = self.gen_include_header() + gen_ir.gen_namespace("cutlass", gen_ir.gen_namespace("gemm", gen_ir.gen_namespace("threadblock", class_code))) return code class gen_threadblock: def __init__(self, template_param, gen_class_name, b2b_num, output_dir, cutlass_deps_root, project_root): self.gen_class_name = gen_class_name self.template_param = template_param self.b2b_num = b2b_num self.file_dir = output_dir + "/threadblock/" self.cutlass_deps_root = cutlass_deps_root self.project_root = project_root self.gen_b2b_mma_base = gen_b2b_mma_base(template_param, gen_class_name, b2b_num, cutlass_deps_root, project_root) self.gen_b2b_mma_pipelined = gen_b2b_mme_pipelined(template_param, gen_class_name, b2b_num, cutlass_deps_root, project_root) self.gen_default_b2b_mma = gen_default_b2b_mma(template_param, gen_class_name, b2b_num, cutlass_deps_root, project_root) def gen_code(self, first_use_1stage): base_code = self.gen_b2b_mma_base.gen_code() print("[INFO]: Gen kernel code [b2b_mma_base.h]output Dir: is ", self.file_dir) with open(self.file_dir + "b2b_mma_base.h", "w+") as f: f.write(base_code) pipeline_code = self.gen_b2b_mma_pipelined.gen_code(first_use_1stage = first_use_1stage) print("[INFO]: Gen kernel code [b2b_mma_pipelined.h]output Dir: is ", self.file_dir) with open(self.file_dir + "b2b_mma_pipelined.h", "w+") as f: f.write(pipeline_code) default_code = self.gen_default_b2b_mma.gen_code() print("[INFO]: Gen kernel code [default_b2b_mma.h]output Dir: is ", self.file_dir) with open(self.file_dir + "default_b2b_mma.h", "w+") as f: f.write(default_code)
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import ast fuse_gemm_info = [ { 'epilogue': { 'tp': 'LeakyRelu', #'CustomizedLeaky_RELU' 'bias': {'addbias': False, 'bias_tp': 'mat'}, 'args': [('float', 'leaky_alpha', 1.3), ], 'func': ''' y = max(leaky_alpha * x, x) y = y * x ''' } }, ] class AnalysisNodeVisitor(ast.NodeVisitor): def visit_Import(self,node): ast.NodeVisitor.generic_visit(self, node) def visit_ImportFrom(self,node): ast.NodeVisitor.generic_visit(self, node) def visit_Assign(self,node): print('Node type: Assign and fields: ', node._fields) # print('Node type: Assign and targets value: ', node.targets, node.value) ast.NodeVisitor.generic_visit(self, node) def visit_BinOp(self, node): print('Node type: BinOp and fields: ', node._fields) print('node op: ', type(node.op).__name__) ast.NodeVisitor.generic_visit(self, node) def visit_Expr(self, node): print('Node type: Expr and fields: ', node._fields) ast.NodeVisitor.generic_visit(self, node) def visit_Num(self,node): print('Node type: Num and fields: ', node._fields) print('Node type: Num: ', node.n) def visit_Name(self,node): print('Node type: Name and fields: ', node._fields) print('Node type: Name and fields: ', type(node.ctx).__name__, node.id) ast.NodeVisitor.generic_visit(self, node) def visit_Str(self, node): print('Node type: Str and fields: ', node._fields) class CodeVisitor(ast.NodeVisitor): def visit_BinOp(self, node): if isinstance(node.op, ast.Add): node.op = ast.Sub() self.generic_visit(node) def visit_Assign(self, node): print('Assign %s' % node.value) self.generic_visit(node) def visit_Name(self, node): print("Name:", node.id) self.generic_visit(node) def visit_FunctionDef(self, node): print('Function Name:%s'% node.name.op) self.generic_visit(node) func_log_stmt = ast.Print( dest = None, values = [ast.Str(s = 'calling func: %s' % node.name, lineno = 0, col_offset = 0)], nl = True, lineno = 0, col_offset = 0, ) node.body.insert(0, func_log_stmt) visitor = AnalysisNodeVisitor() code = \ ''' a=max(leaky_alpha * x, x +1) ''' visitor.visit(ast.parse(code))
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# class gen_build_sys: def __init__(self, cutlass_deps_dir, output_dir = "../"): self.output_dir = output_dir self.cutlass_deps_dir = cutlass_deps_dir def gen_top(self): code = "" code += '''\ # Auto Generated code - Do not edit. cmake_minimum_required(VERSION 3.8) project(CUTLASS_MULTI_GEMMS LANGUAGES CXX CUDA) find_package(CUDAToolkit) set(CUDA_PATH ${{CUDA_TOOLKIT_ROOT_DIR}}) set(CUTLASS_PATH \"{cutlass_deps_dir}/include\") set(CUTLASS_UTIL_PATH \"{cutlass_deps_dir}/tools/util/include\") list(APPEND CMAKE_MODULE_PATH ${{CUDAToolkit_LIBRARY_DIR}}) '''.format(cutlass_deps_dir=self.cutlass_deps_dir) code += '''\ set(GPU_ARCHS \"\" CACHE STRING \"List of GPU architectures (semicolon-separated) to be compiled for.\") if(\"${GPU_ARCHS}\" STREQUAL \"\") set(GPU_ARCHS \"70\") endif() foreach(arch ${GPU_ARCHS}) set(CMAKE_CUDA_FLAGS \"${CMAKE_CUDA_FLAGS} -gencode arch=compute_${arch},code=sm_${arch}\") if(SM STREQUAL 70 OR SM STREQUAL 75) set(CMAKE_C_FLAGS \"${CMAKE_C_FLAGS} -DWMMA\") set(CMAKE_CXX_FLAGS \"${CMAKE_CXX_FLAGS} -DWMMA\") set(CMAKE_CUDA_FLAGS \"${CMAKE_CUDA_FLAGS} -DWMMA\") endif() endforeach() set(CMAKE_C_FLAGS \"${CMAKE_C_FLAGS}\") set(CMAKE_CXX_FLAGS \"${CMAKE_CXX_FLAGS}\") set(CMAKE_CUDA_FLAGS \"${CMAKE_CUDA_FLAGS} -Xcompiler -Wall\") set(CMAKE_C_FLAGS_DEBUG \"${CMAKE_C_FLAGS_DEBUG} -Wall -O0\") set(CMAKE_CXX_FLAGS_DEBUG \"${CMAKE_CXX_FLAGS_DEBUG} -Wall -O0\") set(CMAKE_CUDA_FLAGS_DEBUG \"${CMAKE_CUDA_FLAGS_DEBUG} -O0 -G -Xcompiler -Wall\") set(CMAKE_CXX_STANDARD 11) set(CMAKE_CXX_STANDARD_REQUIRED ON) if(CMAKE_CXX_STANDARD STREQUAL \"11\") set(CMAKE_CUDA_FLAGS \"${CMAKE_CUDA_FLAGS} --expt-extended-lambda\") set(CMAKE_CUDA_FLAGS \"${CMAKE_CUDA_FLAGS} --expt-relaxed-constexpr\") endif() set(CMAKE_CXX_FLAGS \"${CMAKE_CXX_FLAGS} -g -O3\") set(CMAKE_CUDA_FLAGS \"${CMAKE_CUDA_FLAGS} -Xcompiler -O3\") set(CMAKE_CUDA_FLAGS \"${CMAKE_CUDA_FLAGS} -Xcompiler=-fno-strict-aliasing\") set(COMMON_HEADER_DIRS ${PROJECT_SOURCE_DIR} ${CUDAToolkit_INCLUDE_DIRS} ) set(COMMON_LIB_DIRS ${CUDAToolkit_LIBRARY_DIR} ) list(APPEND COMMON_HEADER_DIRS ${CUTLASS_PATH}) list(APPEND COMMON_HEADER_DIRS ${CUTLASS_UTIL_PATH}) ''' code += '''\ include_directories( ${COMMON_HEADER_DIRS} ) link_directories( ${COMMON_LIB_DIRS} ) add_definitions(-D_GLIBCXX_USE_CXX11_ABI=0) add_definitions(-DGOOGLE_CUDA=1) add_executable(sample sample/sample.cu one_api.cu ) target_link_libraries(sample PRIVATE -lcudart -lnvToolsExt ${CMAKE_THREAD_LIBS_INIT} ) if(NOT DEFINED LIB_INSTALL_PATH) set(LIB_INSTALL_PATH ${CMAKE_CURRENT_BINARY_DIR}) endif() ''' return code def gen_code(self): top_code = self.gen_top() with open(self.output_dir + "CMakeLists.txt", "w") as f: f.write(top_code)
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import helper import gen_ir as ir import gen_turing_and_volta as gen_basic class gen_verify: def __init__(self, fuse_gemm_info, gen_class_name, user_header_file, output_dir = "../"): self.fuse_gemm_info = fuse_gemm_info self.name = gen_class_name + "_verify" self.b2b_num = len(fuse_gemm_info) self.params = [] self.user_header_file = "" for header in user_header_file: self.user_header_file += "#include \"" + header + "\"\n" self.separate_cutlass = gen_basic.gen_volta_turing_fuse_act_impl(fuse_gemm_info, gen_class_name, user_header_file, output_dir) self.gen_params() self.output_dir = output_dir def gen_code(self): code = "" code += self.user_header_file code += self.separate_cutlass.gen_using(False) #False -> Turing, True -> Volta code_body = "" for i in range(self.b2b_num): code_body += " " + helper.var_idx("Gemm", i) + helper.var_idx(" gemm_op_", i) + ";\n" code_body += " " + helper.var_idx("gemm_op_", i) + helper.var_idx(".initialize(Arguments_", i) + ", nullptr);\n" code_body += self.separate_cutlass.gen_run() code += ir.gen_func(self.name, self.params, code_body) helper.write_2_headfile("cutlass_verify.h", self.output_dir, code) def gen_params(self): for i in range(self.b2b_num): self.params.append( ( helper.var_idx("typename Gemm", i)+ "::Arguments", helper.var_idx("Arguments_", i) ) ) def get_params(self, declartion = True): code = "" if declartion: for param in self.params: code += param[0] + " " + param[1] + ";\n" return code def gen_initialize(): code = "" initialize_code = self.separate_cutlass.gen_initialize() code = ir.gen_func("initialize", [[]])
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# def type_2_cutlass_type(input_type = "fp16"): # float point type if input_type == "fp32": return "float" if input_type == "bf16": return "cutlass::bfloat16_t" if input_type == "fp16": return "cutlass::half_t" # integer type if(input_type == "int32"): return "int32_t" if(input_type == "int8"): return "int8_t" if input_type == 'Row': return 'cutlass::layout::RowMajor' if input_type == 'Col': return 'cutlass::layout::ColumnMajor' def cvt_2_cutlass_shape(gemm_shape): # gemm shape if len(gemm_shape) == 3: val = "cutlass::gemm::GemmShape<" \ + str(gemm_shape[0]) + ", " \ + str(gemm_shape[1]) + ", " \ + str(gemm_shape[2]) + ">" return val def write_2_headfile(filename, file_dir, string): with open(file_dir + filename, 'w') as f: f.write("/* Auto Generated code - Do not edit.*/\n\n\n#pragma once\n" + string) def var_idx(varaiable, index): return varaiable + str(index) def list_2_string(input_list, ): rtn_string = "" cnt = 0 for element in input_list: final = ", \n" if cnt == len(input_list) - 1: final = "\n" cnt += 1 rtn_string += str(element) + final return rtn_string def get_epilogue_info(layer_info): return layer_info['epilogue'] def get_epilogue_tp(layer_info): epilogue_info = get_epilogue_info(layer_info) return epilogue_info['tp'] def get_epilogue_add_bias_or_not(layer_info): epilogue_info = get_epilogue_info(layer_info) return epilogue_info['bias']['addbias'] def get_epilogue_add_bias_tp(layer_info): epilogue_info = get_epilogue_info(layer_info) return epilogue_info['bias']['bias_tp'] def get_epilogue_args(layer_info): epilogue_info = get_epilogue_info(layer_info) return epilogue_info['args'] def get_epilogue_bias_shape(layer_info): bias_tp = get_epilogue_add_bias_tp(layer_info).lower() mn_shape = layer_info['mnk'][:-1] if bias_tp == 'mat': mn_shape[0] = 'M' return mn_shape elif bias_tp == 'vec': mn_shape[0] = 1 return mn_shape else: assert(0) def get_epilogue_bias_ldm(layer_info): bias_tp = get_epilogue_add_bias_tp(layer_info).lower() mn_shape = layer_info['mnk'][:-1] c_layout = layer_info['C_format'].lower() if c_layout != 'row': assert(0) if bias_tp == 'mat': return mn_shape[1] elif bias_tp == 'vec': return 0 else: assert(0) def get_epilogue_compute_tp(layer_info): return layer_info['Acc_tp']
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import helper import gen_ir as ir class gen_turing_impl: def __init__(self,fuse_gemm_info, gen_class_name, user_header_file, output_dir = "../"): self.fuse_gemm_info = fuse_gemm_info self.class_name = gen_class_name self.gen_class_name = gen_class_name + "_turing_impl" self.user_header_file = "" for header in user_header_file: self.user_header_file += "#include \"" + header + "\"\n" self.output_dir = output_dir self.b2b_num = len(fuse_gemm_info) self.gen_turing_unfused = gen_volta_turing_fuse_act_impl(fuse_gemm_info, gen_class_name, user_header_file, output_dir) def gen_using(self): code_using = "using b2b_gemm = typename cutlass::gemm::device::" + self.class_name + "<cutlass::half_t>;" return code_using + "\n" def gen_initialize(self): code = "" for i in range(self.b2b_num): code_this = "" code_this += helper.var_idx(helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + " alpha", i) + " = " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + "(1);\n" beta = "(1)" if helper.get_epilogue_add_bias_or_not(self.fuse_gemm_info[i]) is False: beta = "(0)" code_this += helper.var_idx(helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + " beta", i) + " = " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + beta + ";\n" k_str = str(self.fuse_gemm_info[i]['mnk'][2]) if i == 0: k_str = "K0" code_this += helper.var_idx("cutlass::gemm::GemmCoord problem_size_", i) + "(M, " + str(self.fuse_gemm_info[i]['mnk'][1]) + ", " + k_str + ");\n" code += code_this code += "typename b2b_gemm::Arguments arguments{\n" for i in range(self.b2b_num): code += " " + helper.var_idx("problem_size_", i) + ",\n" code += " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['A_tp']) + "*>(" + helper.var_idx("A", 0) + "), " + helper.var_idx("problem_size_", 0) + ".k()},\n" for i in range(self.b2b_num): ldmB = str(self.fuse_gemm_info[i]['mnk'][2]) if i == 0: ldmB = "K0" if self.fuse_gemm_info[i]['B_format'] is 'Row': ldmB = str(self.fuse_gemm_info[i]['mnk'][1]) ldmC = str(helper.get_epilogue_bias_ldm(self.fuse_gemm_info[i])) code += " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['B_tp']) + "*>(" + helper.var_idx("B", i) + "), " + ldmB + "},\n" code += " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['C_tp']) + "*>(" + helper.var_idx("C", i) + "), " + ldmC + "},\n" code += " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['C_tp']) + "*>(" + helper.var_idx("D", self.b2b_num -1) + "), " + helper.var_idx("problem_size_", self.b2b_num - 1) + ".n()},\n" for i in range(self.b2b_num): code += " " + "{ " + helper.var_idx("alpha", i) + ", " + helper.var_idx("beta", i) for epilogue_arg in helper.get_epilogue_args(self.fuse_gemm_info[i]): arg_name = helper.var_idx("Epilogue", i) + "_" + epilogue_arg[1] code += ", " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + "(" + str(arg_name) + ")" code += "},\n" code += " " + "Batch};\n\n" code += " " "b2b_gemm gemm_op;\n" code += " " + "gemm_op.initialize(arguments);\n" return code + "\n" def gen_run(self): code = " " + "gemm_op(stream);\n" return code def gen_wrapper(self): code_body = "" arg_lists = [] arg_lists.append(["int", "M"]) arg_lists.append(["int", "K0"]) arg_lists.append(["int", "Batch"]) arg_lists.append(["void*", helper.var_idx("A", 0)]) for i in range(self.b2b_num): arg_lists.append(["void*", helper.var_idx("B", i)]) arg_lists.append(["void*", helper.var_idx("C", i)]) arg_lists.append(["void*", helper.var_idx("D", i)]) epilogue_args = helper.get_epilogue_args(self.fuse_gemm_info[i]) acc_tp = helper.get_epilogue_compute_tp(self.fuse_gemm_info[i]) for arg in epilogue_args: arg_tp = arg[0] arg_name = helper.var_idx("Epilogue", i) + "_" + arg[1] arg_lists.append([arg_tp, arg_name]) if self.b2b_num == 1: code_body += self.gen_turing_unfused.gen_using(False) #False -> Turing, True -> Volta code_body += self.gen_turing_unfused.gen_initialize() code_body += self.gen_turing_unfused.gen_run() else: code_body += self.gen_using() code_body += self.gen_initialize() code_body += self.gen_run() code = ir.gen_func(self.gen_class_name, arg_lists, code_body) return code def gen_code(self): code = self.gen_wrapper() helper.write_2_headfile("turing_impl.h", self.output_dir, self.user_header_file + "\n" + code) class gen_volta_turing_fuse_act_impl: def __init__(self, fuse_gemm_info, gen_class_name, user_header_file, output_dir = "../"): self.fuse_gemm_info = fuse_gemm_info self.gen_class_name = gen_class_name + "_volta_impl" self.user_header_file = "" for header in user_header_file: self.user_header_file += "#include \"" + header + "\"\n" self.output_dir = output_dir self.b2b_num = len(fuse_gemm_info) def perf_tiling(self, layer_mnk): mnk = layer_mnk[:] block_tile = mnk[:] block_tile[2] = 32 # force the K tile to be 32 # M tile gen block_tile[0] = 32 # N tile gen if mnk[1] > 128: block_tile[1] = 256 elif mnk[1] > 64: block_tile[1] = 128 elif mnk[1] > 32: block_tile[1] = 64 else : block_tile[1] = 32 warp_tile = block_tile[:] if block_tile[1] == 256: warp_tile[1] = 64 elif block_tile[1] == 128: warp_tile[1] = 32 elif block_tile[1] == 64: warp_tile[1] = 32 else : warp_tile[1] = 32 warp_tile[0] = 32 return block_tile, warp_tile def process_epilogue(self, epilogue_tp, n, C_tp, Acc_tp): epilogue_setted_type = epilogue_tp cutlass_epilogue_name = "LinearCombinationRelu" if epilogue_setted_type.lower() == 'leakyrelu': cutlass_epilogue_name = "LinearCombinationLeakyRelu" elif epilogue_setted_type.lower() == 'identity': cutlass_epilogue_name = "LinearCombination" n_mod_8 = n % 4 N_align_elements = 1 if n_mod_8 == 0: N_align_elements = 8 elif n_mod_8 == 4: N_align_elements = 4 elif n_mod_8 == 2 or n_mod_8 == 6: N_align_elements = 2 epilogue_str = "cutlass::epilogue::thread::" + cutlass_epilogue_name+ "<" + C_tp + ", " + str(N_align_elements) + ", " + Acc_tp + ", " + Acc_tp + ">" return epilogue_str def gen_using(self, volta = True): code_using = "" volta_arch = "cutlass::arch::Sm70" volta_tc = "cutlass::gemm::GemmShape<8, 8, 4>" turing_arch = "cutlass::arch::Sm75" turing_tc = "cutlass::gemm::GemmShape<16, 8, 8>" arch = "" tc = "" if volta: arch = volta_arch tc = volta_tc else: arch = turing_arch tc = turing_tc for i in range(self.b2b_num): k = self.fuse_gemm_info[i]['mnk'][2] k_mod_8 = k % 4 ab_ldm = 1 if k_mod_8 == 0: ab_ldm = 8 elif k_mod_8 == 4: ab_ldm = 4 elif k_mod_8 == 2 or k_mod_8 == 6: ab_ldm = 2 block_tile, warp_tile = self.perf_tiling(self.fuse_gemm_info[i]['mnk']) this_gemm_config = helper.var_idx("using Gemm", i) + " = cutlass::gemm::device::GemmBatched<\n" this_gemm_config += " " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['A_tp']) + ",\n" this_gemm_config += " " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['A_format']) + ",\n" this_gemm_config += " " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['B_tp']) + ",\n" this_gemm_config += " " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['B_format']) + ",\n" this_gemm_config += " " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['C_tp']) + ",\n" this_gemm_config += " " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['C_format']) + ",\n" this_gemm_config += " " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + ",\n" this_gemm_config += " " + "cutlass::arch::OpClassTensorOp,\n" this_gemm_config += " " + arch + ",\n" this_gemm_config += " " + "cutlass::gemm::GemmShape<" + str(block_tile[0]) + ", " + str(block_tile[1]) + ", " + str(block_tile[2]) + ">,\n" this_gemm_config += " " + "cutlass::gemm::GemmShape<" + str(warp_tile[0]) + ", " + str(warp_tile[1]) + ", " + str(warp_tile[2]) + ">,\n" this_gemm_config += " " + tc + ",\n" this_gemm_config += " " + self.process_epilogue(helper.get_epilogue_tp(self.fuse_gemm_info[i]), self.fuse_gemm_info[i]['mnk'][1], helper.type_2_cutlass_type(self.fuse_gemm_info[i]['C_tp']), helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp'])) + ",\n" this_gemm_config += " " + "cutlass::gemm::threadblock::GemmBatchedIdentityThreadblockSwizzle,\n" this_gemm_config += " " + "2,\n" this_gemm_config += " " + str(ab_ldm) + ",\n" this_gemm_config += " " + str(ab_ldm) + ">;\n" code_using += this_gemm_config + "\n" return code_using + "\n" def gen_initialize(self): code = "" for i in range(self.b2b_num): code_this = "" N_str = str(self.fuse_gemm_info[i]['mnk'][1]) code_this += helper.var_idx(helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + " alpha", i) + " = " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + "(1);\n" beta = "(1)" if helper.get_epilogue_add_bias_or_not( self.fuse_gemm_info[i]) is False: beta = "(0)" code_this += helper.var_idx(helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + " beta", i) + " = " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + beta + ";\n" k_str = str(self.fuse_gemm_info[i]['mnk'][2]) if i == 0: k_str = "K0" code_this += helper.var_idx("cutlass::gemm::GemmCoord problem_size_", i) + "(M, " + str(self.fuse_gemm_info[i]['mnk'][1]) + ", " + k_str + ");\n" code_this += helper.var_idx("typename Gemm", i) + helper.var_idx("::Arguments arguments_", i) + "{\n" code_this += " " + helper.var_idx("problem_size_", i) + ",\n" ldmA = k_str ldmB = k_str ldmC = str(self.fuse_gemm_info[i]['mnk'][1]) ldmBias = str(helper.get_epilogue_bias_ldm(self.fuse_gemm_info[i])) if self.fuse_gemm_info[i]['A_format'] is 'Col': ldmA = "M" if self.fuse_gemm_info[i]['B_format'] is 'Row': ldmB = str(self.fuse_gemm_info[i]['mnk'][1]) if self.fuse_gemm_info[i]['C_format'] is 'Col': ldmC = "M" if i == 0: code_this += " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['A_tp']) + "*>(" + helper.var_idx("A", i) + "), " + ldmA + "}, " + "M * " + ldmA + ",\n" else: code_this += " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['A_tp']) + "*>(" + helper.var_idx("D", i - 1) + "), " + ldmA + "}, " + "M * " + ldmA + ",\n" code_this += " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['B_tp']) + "*>(" + helper.var_idx("B", i) + "), " + ldmB + "}, " + N_str + " * " + ldmB + ",\n" M_bias = str(helper.get_epilogue_bias_shape(self.fuse_gemm_info[i])[0]) code_this += " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['C_tp']) + "*>(" + helper.var_idx("C", i) + "), " + ldmBias + "}, " + M_bias + " * " + N_str + ",\n" code_this += " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['C_tp']) + "*>(" + helper.var_idx("D", i) + "), " + ldmC + "}, " + "M * " + ldmC + ",\n" code_this += " " + "{ " + helper.var_idx("alpha", i) + ", " + helper.var_idx("beta", i) for epilogue_arg in helper.get_epilogue_args(self.fuse_gemm_info[i]): arg_name = helper.var_idx("Epilogue", i) + "_" + epilogue_arg[1] code_this += ", " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + "(" + str(arg_name) + ")" code_this += " },\n" code_this += " " + "Batch};\n" code_this += " " + helper.var_idx("Gemm", i) + helper.var_idx(" gemm_op_", i) + ";\n" code_this += " " + helper.var_idx("gemm_op_", i) + helper.var_idx(".initialize(arguments_", i) + ", nullptr);\n" code += code_this + "\n" return code + "\n" def gen_run(self): code = "" for i in range(self.b2b_num): code_this = "" code_this += " " + helper.var_idx("gemm_op_", i) + "(stream);\n" code += code_this return code def gen_wrapper(self): code_body = "" arg_lists = [] arg_lists.append(["int", "M"]) arg_lists.append(["int", "K0"]) arg_lists.append(["int", "Batch"]) arg_lists.append(["void*", helper.var_idx("A", 0)]) for i in range(self.b2b_num): arg_lists.append(["void*", helper.var_idx("B", i)]) arg_lists.append(["void*", helper.var_idx("C", i)]) arg_lists.append(["void*", helper.var_idx("D", i)]) epilogue_args = helper.get_epilogue_args(self.fuse_gemm_info[i]) acc_tp = helper.get_epilogue_compute_tp(self.fuse_gemm_info[i]) for arg in epilogue_args: arg_tp = arg[0] arg_name = helper.var_idx("Epilogue", i) + "_" + arg[1] arg_lists.append([arg_tp, arg_name]) code_body += self.gen_using() code_body += self.gen_initialize() code_body += self.gen_run() code = ir.gen_func(self.gen_class_name, arg_lists, code_body) return code def gen_code(self): code = self.gen_wrapper() helper.write_2_headfile("volta_impl.h", self.output_dir, self.user_header_file + "\n" + code) class gen_one_API: def __init__(self, fuse_gemm_info, gen_class_name, user_header_file, output_dir = "../"): self.fuse_gemm_info = fuse_gemm_info self.gen_class_name = gen_class_name self.user_header_file = "" for header in user_header_file: self.user_header_file += "#include \"" + header + "\"\n" self.output_dir = output_dir self.b2b_num = len(fuse_gemm_info) self.gen_volta = gen_volta_turing_fuse_act_impl(fuse_gemm_info, gen_class_name, user_header_file, output_dir) self.gen_turing = gen_turing_impl(fuse_gemm_info, gen_class_name, user_header_file, output_dir) def gen_CUTLASS_irrelevant_API(self): code = "" code += "#include <cuda_runtime.h>\n" code += "#include <assert.h>\n" param_name = "Fused" + str(self.b2b_num) + "xGemm_" for i in range(self.b2b_num): param_name += str(self.fuse_gemm_info[i]['mnk'][1]) + "_" param_name += "Params" params = "" params += " " + "int M;\n" params += " " + "int K0;\n" params += " " + "int Batch;\n" params += " " + "const void* A0;\n" for i in range(self.b2b_num): params += " " + "const void* " + helper.var_idx("B", i) + ";\n" params += " " + "const void* " + helper.var_idx("C", i) + ";\n" epilogue_args = helper.get_epilogue_args(self.fuse_gemm_info[i]) acc_tp = helper.get_epilogue_compute_tp(self.fuse_gemm_info[i]) for arg in epilogue_args: arg_tp = arg[0] arg_name = helper.var_idx("Epilogue", i) + "_" + arg[1] params += " " + arg_tp + " " + arg_name + ";\n" params += " " + "void* " + helper.var_idx("D", i) + ";\n" code += ir.gen_struct(param_name, params) code += "using Param = " + param_name + ";\n" code += "void one_api( const Param & param, int sm, cudaStream_t stream);\n" return code def gen_one_api(self): code = "" code += "/* Auto Generated code - Do not edit.*/\n" code += "#include \"cutlass_irrelevant.h\"\n" code += "#include \"api.h\"\n" code += "void one_api( const Param & param, int sm, cudaStream_t stream) {\n" code += " " + "if (sm == 70) \n" code += " " + " " + self.gen_class_name + "_volta_impl(param.M, param.K0, param.Batch, const_cast<void*>(param.A0), " for i in range(self.b2b_num): code += helper.var_idx("const_cast<void*>(param.B", i) + "), " code += helper.var_idx("const_cast<void*>(param.C", i) + "), " code += helper.var_idx("param.D", i) + ", " epilogue_args = helper.get_epilogue_args(self.fuse_gemm_info[i]) for arg in epilogue_args: arg_name = helper.var_idx("Epilogue", i) + "_" + arg[1] code += "param." + arg_name + ", " code += "stream);\n" code += " " + "else if(sm >= 75) \n" code += " " + " " + self.gen_class_name + "_turing_impl(param.M, param.K0, param.Batch, const_cast<void*>(param.A0), " for i in range(self.b2b_num): code += helper.var_idx("const_cast<void*>(param.B", i) + "), " code += helper.var_idx("const_cast<void*>(param.C", i) + "), " code += helper.var_idx("param.D", i) + ", " epilogue_args = helper.get_epilogue_args(self.fuse_gemm_info[i]) for arg in epilogue_args: arg_name = helper.var_idx("Epilogue", i) + "_" + arg[1] code += "param." + arg_name + ", " code += "stream);\n" code += " " + "else assert(0);\n" code += "}\n" return code def gen_code(self): turing_code = self.gen_turing.gen_wrapper() volta_code = self.gen_volta.gen_wrapper() cutlass_irrelevant_code = self.gen_CUTLASS_irrelevant_API() one_api_code = self.gen_one_api() with open(self.output_dir + "one_api.cu", "w+") as f: f.write(one_api_code) helper.write_2_headfile("cutlass_irrelevant.h", self.output_dir, cutlass_irrelevant_code) helper.write_2_headfile("api.h", self.output_dir, self.user_header_file + "\n" + turing_code + volta_code)
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import helper import gen_ir as ir class gen_test: def __init__(self, fuse_gemm_info, gen_class_name, user_header_file, output_dir = "../"): self.fuse_gemm_info = fuse_gemm_info self.gen_class_name = gen_class_name self.user_header_file = user_header_file self.sample_dir = output_dir self.b2b_num = len(fuse_gemm_info) def gen_cpp_sample(self): code = "/* Auto Generated code - Do not edit.*/\n" code += "#include <stdio.h> \n" code += "#include \"cutlass/gemm/device/gemm_batched.h\" \n" code += "#include \"cutlass/cutlass.h\" \n" code += "#include \"../cutlass_irrelevant.h\" \n" code += "#include \"../cutlass_verify.h\" \n" code += "#include \"leaky_bias.h\" \n" code += "#include \"utils.h\" \n" code += "int main(int args, char * argv[]) {\n" code += " " + "int M = atoi(argv[1]);\n" code += " " + "int K0 = " + str(self.fuse_gemm_info[0]['mnk'][0]) + ";\n" code += " " + "if(args == 3);\n" code += " " + " " + "K0 = atoi(argv[2]);\n" code += " " + "int B = 1;\n" code += " " + "if(args == 4);\n" code += " " + " " + "B = atoi(argv[3]);\n" code += " " + "srand(1234UL);\n" code += " " + "int device_id = 0;\n" code += " " + "cudaGetDevice(&device_id);\n" code += " " + "cudaDeviceProp prop;\n" code += " " + "cudaGetDeviceProperties(&prop, device_id);\n" code += " " + "int sm = prop.major *10 + prop.minor;\n" code += "using ElementCompute = cutlass::half_t;\n" for i in range(self.b2b_num): code += " " + helper.var_idx("ElementCompute alpha", i) + " = ElementCompute(1);\n" addbias = helper.get_epilogue_add_bias_or_not( self.fuse_gemm_info[i]) if addbias: code += " " + helper.var_idx("ElementCompute beta", i) + " = ElementCompute(1);\n" else: code += " " + helper.var_idx("ElementCompute beta", i) + " = ElementCompute(0);\n" code += " " + "size_t flops = 0;\n" for i in range(self.b2b_num): m = self.fuse_gemm_info[i]['mnk'][0] n = self.fuse_gemm_info[i]['mnk'][1] k = self.fuse_gemm_info[i]['mnk'][2] bias_shape = helper.get_epilogue_bias_shape(self.fuse_gemm_info[i]) this_k = "K0" if (i > 0): this_k = str(k) code += " " + "flops += size_t(2) * size_t(M) * size_t(B) * " + "size_t(" + str(n) + ") * size_t(" + this_k + ");\n" code += " " + helper.var_idx("cutlass::gemm::GemmCoord problem_size_", i) + "(" + "M" + ", " + str(n) + ", " + this_k + ");\n" code += " " + helper.var_idx("memory_unit<cutlass::half_t> Mat_A", i) + helper.var_idx("(B * problem_size_", i) + helper.var_idx(".m() * problem_size_", i) + ".k());\n" code += " " + helper.var_idx("memory_unit<cutlass::half_t> Mat_B", i) + helper.var_idx("(B * problem_size_", i) + helper.var_idx(".n() * problem_size_", i) + ".k());\n" code += " " + helper.var_idx("memory_unit<cutlass::half_t> Mat_C", i) + "(B * " + str(bias_shape[0]) + " * " + str(bias_shape[1]) + ");\n" code += " " + helper.var_idx("memory_unit<cutlass::half_t> Mat_D_cutlass_ref", i) + helper.var_idx("(B * problem_size_", i) + helper.var_idx(".m() * problem_size_", i) + ".n());\n" code += " " + helper.var_idx("Mat_A", i) + ".init();\n" code += " " + helper.var_idx("Mat_B", i) + ".init();\n" code += " " + helper.var_idx("Mat_C", i) + ".init();\n" code += " " + helper.var_idx("memory_unit<cutlass::half_t> Mat_D", self.b2b_num - 1) + helper.var_idx("(B * problem_size_", i) + helper.var_idx(".m() * problem_size_",self.b2b_num - 1) + ".n());\n" params = [] params.append("M") params.append("B") params.append("Mat_A0.device_ptr") for i in range(self.b2b_num): params.append(helper.var_idx("Mat_B", i) + ".device_ptr") params.append(helper.var_idx("Mat_C", i) + ".device_ptr") if i != self.b2b_num-1: params.append(helper.var_idx("Mat_D_cutlass_ref", i) + ".device_ptr") params.append(helper.var_idx("Mat_D", self.b2b_num - 1) + ".device_ptr") code += " " + "Param arguments = {\n" code += " " + " " + "M,\n" code += " " + " " + "K0,\n" code += " " + " " + "B,\n" code += " " + " " + "reinterpret_cast<const void*>(Mat_A0.device_ptr),\n" cnt = 1 for i in range(self.b2b_num): bias_flag = helper.get_epilogue_add_bias_or_not( self.fuse_gemm_info[i]) code += " " + " " + "reinterpret_cast<const void*>(" + helper.var_idx("Mat_B", i) + ".device_ptr" + "),\n" cnt += 1 if bias_flag: code += " " + " " + "reinterpret_cast<const void*>(" + helper.var_idx("Mat_C", i) + ".device_ptr" + "),\n" cnt += 1 else: code += " " + " " + "reinterpret_cast<const void*>(NULL),\n" epilogue_args = helper.get_epilogue_args(self.fuse_gemm_info[i]) acc_tp = helper.get_epilogue_compute_tp(self.fuse_gemm_info[i]) for arg in epilogue_args: arg_value = str(arg[2]) code += " " + " " + helper.type_2_cutlass_type(acc_tp) + "(" + arg_value + "),\n" if i != self.b2b_num - 1: code += " " + " " + "reinterpret_cast<void*>(" + helper.var_idx("Mat_D_cutlass_ref", i) + ".device_ptr" + "),\n" else: code += " " + " " + "reinterpret_cast<void*>(" + helper.var_idx("Mat_D", i) + ".device_ptr" + ")};\n" code += " " + "TI(FUSED_CUTLASS);\n" code += " " + "for(int i = 0; i < 100; i++){\n" code += " " + " " + "one_api(arguments, sm, NULL);\n" code += " " + "}\n" code += " " + "TO(FUSED_CUTLASS, \"FUSED_CUTLASS\", 100);\n" code += "\n" for i in range(self.b2b_num): code_this = "" N_str = str(self.fuse_gemm_info[i]['mnk'][1]) code_this += " " + helper.var_idx("typename Gemm", i) + helper.var_idx("::Arguments arguments_", i) + "{\n" code_this += " " + " " + helper.var_idx("problem_size_", i) + ",\n" ldmA = str(self.fuse_gemm_info[i]['mnk'][2]) if i == 0: ldmA = "K0" ldmB = str(self.fuse_gemm_info[i]['mnk'][2]) if i == 0: ldmB = "K0" ldmC = str(self.fuse_gemm_info[i]['mnk'][1]) ldmBias = str(helper.get_epilogue_bias_ldm(self.fuse_gemm_info[i])) if self.fuse_gemm_info[i]['A_format'] is 'Col': ldmA = "M" if self.fuse_gemm_info[i]['B_format'] is 'Row': ldmB = str(self.fuse_gemm_info[i]['mnk'][1]) if self.fuse_gemm_info[i]['C_format'] is 'Col': ldmC = "M" if i == 0: code_this += " " + " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['A_tp']) + "*>(" + helper.var_idx("Mat_A", i) + ".device_ptr), " + ldmA + "}, " + "M * " + ldmA + ",\n" else: code_this += " " + " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['A_tp']) + "*>(" + helper.var_idx("Mat_D_cutlass_ref", i - 1) + ".device_ptr), " + ldmA + "}, " + "M * " + ldmA + ",\n" code_this += " " + " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['B_tp']) + "*>(" + helper.var_idx("Mat_B", i) + ".device_ptr), " + ldmB + "}, " + N_str + " * " + ldmB + ",\n" M_bias = str(helper.get_epilogue_bias_shape(self.fuse_gemm_info[i])[0]) code_this += " " + " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['C_tp']) + "*>(" + helper.var_idx("Mat_C", i) + ".device_ptr), " + ldmBias + "}, " + M_bias + " * " + N_str + ",\n" code_this += " " + " " + "{reinterpret_cast<" + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['C_tp']) + "*>(" + helper.var_idx("Mat_D_cutlass_ref", i) + ".device_ptr), " + ldmC + "}, " + "M * " + ldmC + ",\n" code_this += " " + " " + "{ " + helper.var_idx("alpha", i) + ", " + helper.var_idx("beta", i) for epilogue_arg in helper.get_epilogue_args(self.fuse_gemm_info[i]): arg_value = str(epilogue_arg[2]) code_this += ", " + helper.type_2_cutlass_type(self.fuse_gemm_info[i]['Acc_tp']) + "(" + str(arg_value) + ")" code_this += " " + " },\n" code_this += " " + " " + "B};\n" code += code_this code += " " + "TI(UNFUSED_CUTLASS);\n" code += " " + "for(int i = 0; i < 100; i++){\n" code += " " + " " + self.gen_class_name + "_verify(\n" for i in range(self.b2b_num): code += " " + " " + " " + helper.var_idx("arguments_", i) + ",\n" code += " " + " " + " " + "NULL);\n" code += " " + "}\n" code += " " + "TO(UNFUSED_CUTLASS, \"UNFUSED_CUTLASS\", 100);\n" code += " " + helper.var_idx("Mat_D_cutlass_ref", self.b2b_num - 1) + ".d2h();\n" code += " " + helper.var_idx("Mat_D", self.b2b_num - 1) + ".d2h();\n" code += " " + helper.var_idx("check_result(Mat_D_cutlass_ref", self.b2b_num - 1) + helper.var_idx(".host_ptr, Mat_D", self.b2b_num - 1) \ + helper.var_idx(".host_ptr, Mat_D", self.b2b_num - 1) + ".elements);\n" code += "\n\n}\n" with open(self.sample_dir + "sample.cu", "w+") as f: f.write(code)
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import os class replace_fix_impl: def __init__(self, src_dir, dst_dir, cutlass_deps_root): self.src_dir = src_dir self.dst_dir = dst_dir self.cutlass_deps_root = cutlass_deps_root def gen_code(self): for sub_dir in os.walk(self.src_dir): files_in_sub_dir = sub_dir[2] src_dirs = sub_dir[0] output_dirs = self.dst_dir + sub_dir[0][len(self.src_dir):] if not os.path.exists(output_dirs): os.mkdir(output_dirs) for f in files_in_sub_dir: with open(src_dirs +"/" + f, 'r') as current_file: output_lines = [] lines = current_file.readlines() for line in lines: if(len(line) >= len("#include \"cutlass") and line[:len("#include \"cutlass")] == "#include \"cutlass"): new_line = "#include \"" + self.cutlass_deps_root + line[len("#include \""):] # print(new_line) output_lines.append(new_line) else: output_lines.append(line) with open(output_dirs + "/" + f, "w+") as dest_file: dest_file.writelines(output_lines)
################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import helper indentation = " " def append_word(word): code = "" code += word code += " " return code def gen_namespace(namespace, codeBody): code_gen = "namespace " + namespace + " {\n" code_gen += codeBody code_gen += "} // namespace " + namespace + "\n" return code_gen def gen_expression(type, lval, rval = None): code_gen = "" code_gen += append_word(type) code_gen += append_word(lval) if rval is not None: code_gen += append_word("=") code_gen += append_word(rval) return code_gen def gen_class(name, codeBody, inheritance_code = None): code_gen = "" if inheritance_code is None: code_gen = "class " + name + "{\n" else: code_gen = "class " + name + " : "+ inheritance_code + "{\n" code_gen += codeBody code_gen += "}; // class " + name + "\n" return code_gen def gen_struct(name, codeBody, specialized = None): specialized_code = "" if specialized is not None: specialized_code = "<" + specialized + ">" code_gen = "struct " + name + specialized_code + "{\n" code_gen += codeBody code_gen += "}; // struct " + name + "\n" return code_gen def gen_template_arg(arg_type, arg_name, default_val = None): rval = None if default_val is not None: rval = str(default_val) arg_typename = "" if arg_type is int: arg_typename = "int" elif arg_type is bool: arg_typename = "bool" else: arg_typename = "typename" internal_arg_name = arg_name + "_" code_gen = indentation code_gen += gen_expression(arg_typename, internal_arg_name, rval) return code_gen def gen_template_args(args, set_default = True): arg_len = len(args) cnt = 1 code_gen = "" for arg_tuple in args: arg_type = arg_tuple[0] arg_name = arg_tuple[1] arg_default_val = None if len(arg_tuple) == 3 and set_default: arg_default_val = arg_tuple[2] code_gen += gen_template_arg(arg_type, arg_name, arg_default_val) if cnt != arg_len: code_gen += ",\n" cnt += 1 return code_gen def gen_template_head(args, set_default = True): code_gen = "template <\n" code_gen += gen_template_args(args, set_default) code_gen += ">\n" return code_gen def export_template_args(args): code_gen = "public:\n" for arg_tuple in args: code_gen += indentation arg_type = arg_tuple[0] arg_name = arg_tuple[1] internal_arg_name = arg_name + "_" typename = "" if arg_type is int: typename = "static int const" elif arg_type is bool: typename = "static bool const" else: typename = "using" code_gen += gen_expression(typename, arg_name, internal_arg_name) code_gen += ";\n" return code_gen def gen_template_class(class_name, args, codeBody, set_default = True, inheritance_code = None): code_gen = "" code_gen += gen_template_head(args, set_default) code_gen += gen_class(class_name, export_template_args(args) + codeBody, inheritance_code) return code_gen def gen_template_struct(struct_name, args, codeBody, speicalized = None, set_default = True, export_args = True): code_gen = "" code_gen += gen_template_head(args, set_default) code = export_template_args(args) + codeBody if export_args is False: code = codeBody code_gen += gen_struct(struct_name, code , speicalized) return code_gen def gen_declare_template_struct(name, *params): code = name + "<" cnt = 0 param_num = len(params) for param in params: final = ", " if cnt == param_num - 1: final = "" code += param + final cnt += 1 code += ">;\n" return code def filtered_param(params, name_and_value_pair, keep_ = False): rtn_template_args = [] speicalized_template_args = [] for param in params: param_name = "" if len(param) >= 1: param_name = param[1] else: param_name = param[0] hit_flag = False set_value = "" for n_v_pair in name_and_value_pair: filter_name = n_v_pair[0] set_value = n_v_pair[1] if param_name == (filter_name + "_") or param_name == filter_name : hit_flag = True break if hit_flag is False: rtn_template_args.append(param) if hit_flag is True: speicalized_template_args.append(set_value) else: if keep_ is True: speicalized_template_args.append(param_name + "_") else: speicalized_template_args.append(param_name) specialized_template_arg_str = helper.list_2_string(speicalized_template_args) return rtn_template_args, specialized_template_arg_str def gen_func(func_name, arg_lists, code_body, only_declare = False, with_cudaStream = True): code = "void " + func_name + "(\n" for arg in arg_lists: arg_tp = arg[0] arg_nm = arg[1] code += " " + arg_tp + " " + arg_nm + ",\n" code += "cudaStream_t stream)" if only_declare : return code code += "{\n" code += code_body + "\n" code += "}\n" return code def indent_level(code, level = 0): rtn_code = "" for i in range(level): rtn_code += " " rtn_code += code return rtn_code
################################################################################ # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ """ Basic example of using the CUTLASS Python interface to run a GEMM """ import argparse import numpy as np import sys import cutlass import pycutlass from pycutlass import * from pycutlass.utils.device import device_cc parser = argparse.ArgumentParser(description="Launch a GEMM kernel from Python: 'D = alpha * A * B + beta * C'") parser.add_argument("--m", default=128, type=int, help="M dimension of the GEMM") parser.add_argument("--n", default=128, type=int, help="N dimension of the GEMM") parser.add_argument("--k", default=128, type=int, help="K dimension of the GEMM") parser.add_argument('--print_cuda', action="store_true", help="Print the underlying CUDA kernel") try: args = parser.parse_args() except: sys.exit(0) # Check that the device is of a sufficient compute capability cc = device_cc() assert cc >= 70, "The CUTLASS Python GEMM example requires compute capability greater than or equal to 70." alignment = 8 assert args.m % alignment == 0, "M dimension of size {} is not divisible by alignment of {}".format(args.m, alignment) assert args.n % alignment == 0, "N dimension of size {} is not divisible by alignment of {}".format(args.n, alignment) assert args.k % alignment == 0, "K dimension of size {} is not divisible by alignment of {}".format(args.k, alignment) np.random.seed(0) # Allocate a pool of device memory to be used by the kernel pycutlass.get_memory_pool(init_pool_size=2**30, max_pool_size=2**32) # Set the compiler to use to NVCC pycutlass.compiler.nvcc() # Set up A, B, C and accumulator A = TensorDescription(cutlass.float16, cutlass.ColumnMajor, alignment) B = TensorDescription(cutlass.float16, cutlass.RowMajor, alignment) C = TensorDescription(cutlass.float32, cutlass.ColumnMajor, alignment) element_acc = cutlass.float32 element_epilogue = cutlass.float32 # Select instruction shape based on the Tensor Core instructions supported # by the device on which we are running if cc == 70: instruction_shape = [8, 8, 4] elif cc == 75: instruction_shape = [16, 8, 8] else: instruction_shape = [16, 8, 16] math_inst = MathInstruction( instruction_shape, A.element, B.element, element_acc, cutlass.OpClass.TensorOp, MathOperation.multiply_add ) tile_description = TileDescription( [128, 128, 32], # Threadblock shape 2, # Number of stages [2, 2, 1], # Number of warps within each dimension of the threadblock shape math_inst ) epilogue_functor = pycutlass.LinearCombination(C.element, C.alignment, element_acc, element_epilogue) operation = GemmOperationUniversal( arch=cc, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor) if args.print_cuda: print(operation.rt_module.emit()) operations = [operation, ] # Compile the operation pycutlass.compiler.add_module(operations) # Randomly initialize tensors tensor_A = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(args.m * args.k,))).astype(np.float16) tensor_B = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(args.k * args.n,))).astype(np.float16) tensor_C = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(args.m * args.n,))).astype(np.float32) tensor_D = np.zeros(shape=(args.m * args.n,)).astype(np.float32) problem_size = cutlass.gemm.GemmCoord(args.m, args.n, args.k) alpha = 1. beta = 0. arguments = GemmArguments( operation=operation, problem_size=problem_size, A=tensor_A, B=tensor_B, C=tensor_C, D=tensor_D, output_op=operation.epilogue_type(alpha, beta)) # Run the operation operation.run(arguments) arguments.sync() # Run the host reference module and compare to the CUTLASS result reference = ReferenceModule(A, B, C) tensor_D_ref = reference.run(tensor_A, tensor_B, tensor_C, problem_size, alpha, beta) try: assert np.array_equal(tensor_D, tensor_D_ref) except: assert np.allclose(tensor_D, tensor_D_ref, atol=1e-5) print("Passed.")
################################################################################ # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ """ Basic example of using the CUTLASS Python interface to run a 2d convolution """ import argparse import torch import numpy as np import sys import cutlass import pycutlass from pycutlass import * from pycutlass.utils.device import device_cc parser = argparse.ArgumentParser( description=("Launch a 2d convolution kernel from Python. " "See https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html#convo-intro for notation.")) parser.add_argument("--n", default=1, type=int, help="N dimension of the convolution") parser.add_argument("--c", default=64, type=int, help="C dimension of the convolution") parser.add_argument("--h", default=32, type=int, help="H dimension of the convolution") parser.add_argument("--w", default=32, type=int, help="W dimension of the convolution") parser.add_argument("--k", default=32, type=int, help="N dimension of the convolution") parser.add_argument("--r", default=3, type=int, help="R dimension of the convolution") parser.add_argument("--s", default=3, type=int, help="S dimension of the convolution") parser.add_argument('--print_cuda', action="store_true", help="Print the underlying CUDA kernel") try: args = parser.parse_args() except: sys.exit(0) # Check that the device is of a sufficient compute capability cc = device_cc() assert cc >= 70, "The CUTLASS Python Conv2d example requires compute capability greater than or equal to 70." alignment = 1 np.random.seed(0) # Allocate a pool of device memory to be used by the kernel pycutlass.get_memory_pool(init_pool_size=2**30, max_pool_size=2**32) # Set the compiler to use to NVCC pycutlass.compiler.nvcc() # Set up A, B, C and accumulator A = TensorDescription(cutlass.float16, cutlass.TensorNHWC, alignment) B = TensorDescription(cutlass.float16, cutlass.TensorNHWC, alignment) C = TensorDescription(cutlass.float32, cutlass.TensorNHWC, alignment) element_acc = cutlass.float32 element_epilogue = cutlass.float32 # Select instruction shape based on the Tensor Core instructions supported # by the device on which we are running if cc == 70: instruction_shape = [8, 8, 4] elif cc == 75: instruction_shape = [16, 8, 8] else: instruction_shape = [16, 8, 16] math_inst = MathInstruction( instruction_shape, A.element, B.element, element_acc, cutlass.OpClass.TensorOp, MathOperation.multiply_add ) tile_description = TileDescription( [128, 128, 32], # Threadblock shape 2, # Number of stages [2, 2, 1], # Number of warps within each dimension of the threadblock shape math_inst ) epilogue_functor = pycutlass.LinearCombination(C.element, C.alignment, element_acc, element_epilogue) operation = Conv2dOperation( conv_kind=cutlass.conv.Operator.fprop, iterator_algorithm=cutlass.conv.IteratorAlgorithm.optimized, arch=cc, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor ) if args.print_cuda: print(operation.rt_module.emit()) operations = [operation, ] # Compile the operation pycutlass.compiler.add_module(operations) # Randomly initialize tensors problem_size = cutlass.conv.Conv2dProblemSize( cutlass.Tensor4DCoord(args.n, args.h, args.c, args.w), cutlass.Tensor4DCoord(args.k, args.r, args.s, args.c), cutlass.Tensor4DCoord(0, 0, 0, 0), # Padding cutlass.MatrixCoord(1, 1), # Strides cutlass.MatrixCoord(1, 1), # Dilation cutlass.conv.Mode.cross_correlation, 1, # Split k slices 1 # Groups ) tensor_A_size = cutlass.conv.implicit_gemm_tensor_a_size(operation.conv_kind, problem_size) tensor_B_size = cutlass.conv.implicit_gemm_tensor_b_size(operation.conv_kind, problem_size) tensor_C_size = cutlass.conv.implicit_gemm_tensor_c_size(operation.conv_kind, problem_size) tensor_A = torch.ceil(torch.empty(size=(tensor_A_size,), dtype=torch.float16, device="cuda").uniform_(-8.5, 7.5)) tensor_B = torch.ceil(torch.empty(size=(tensor_B_size,), dtype=torch.float16, device="cuda").uniform_(-8.5, 7.5)) tensor_C = torch.ceil(torch.empty(size=(tensor_C_size,), dtype=torch.float32, device="cuda").uniform_(-8.5, 7.5)) tensor_D = torch.ones(size=(tensor_C_size,), dtype=torch.float32, device="cuda") alpha = 1. beta = 0. arguments = Conv2dArguments( operation=operation, problem_size=problem_size, A=tensor_A, B=tensor_B, C=tensor_C, D=tensor_D, output_op=operation.epilogue_type(alpha, beta) ) # Run the operation operation.run(arguments) arguments.sync() # Run the host reference module and compare to the CUTLASS result reference = Conv2dReferenceModule(A, B, C, operation.conv_kind) tensor_D_ref = reference.run(tensor_A, tensor_B, tensor_C, problem_size, alpha, beta) try: assert torch.equal(tensor_D, tensor_D_ref) except: assert torch.allclose(tensor_D, tensor_D_ref, rtol=1e-2) print("Passed.")
################################################################################ # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ """ Basic example of using the CUTLASS Python interface to run a grouped GEMM """ import argparse import numpy as np import sys import cutlass import pycutlass from pycutlass import * from pycutlass.utils.device import device_cc parser = argparse.ArgumentParser(description="Launch a grouped GEMM kernel from Python") parser.add_argument('--print_cuda', action="store_true", help="Print the underlying CUDA kernel") try: args = parser.parse_args() except: sys.exit(0) # Check that the device is of a sufficient compute capability cc = device_cc() assert cc >= 70, "The CUTLASS Python grouped GEMM example requires compute capability greater than or equal to 70." np.random.seed(0) # Allocate a pool of device memory to be used by the kernel pycutlass.get_memory_pool(init_pool_size=2**30, max_pool_size=2**32) # Set the compiler to use to NVCC pycutlass.compiler.nvcc() # Set up A, B, C and accumulator alignment = 1 A = TensorDescription(cutlass.float16, cutlass.ColumnMajor, alignment) B = TensorDescription(cutlass.float16, cutlass.RowMajor, alignment) C = TensorDescription(cutlass.float32, cutlass.ColumnMajor, alignment) element_acc = cutlass.float32 element_epilogue = cutlass.float32 # Select instruction shape based on the Tensor Core instructions supported # by the device on which we are running if cc == 70: instruction_shape = [8, 8, 4] elif cc == 75: instruction_shape = [16, 8, 8] else: instruction_shape = [16, 8, 16] math_inst = MathInstruction( instruction_shape, A.element, B.element, element_acc, cutlass.OpClass.TensorOp, MathOperation.multiply_add ) tile_description = TileDescription( [128, 128, 32], # Threadblock shape 2, # Number of stages [2, 2, 1], # Number of warps within each dimension of the threadblock shape math_inst ) epilogue_functor = pycutlass.LinearCombination(C.element, C.alignment, element_acc, element_epilogue) operation = GemmOperationGrouped( arch=cc, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, precompute_mode=SchedulerMode.Device) if args.print_cuda: print(operation.rt_module.emit()) operations = [operation, ] # Compile the operation pycutlass.compiler.add_module(operations) # Initialize tensors for each problem in the group problem_sizes = [ cutlass.gemm.GemmCoord(128, 128, 64), cutlass.gemm.GemmCoord(512, 256, 128) ] problem_count = len(problem_sizes) alpha = 1. beta = 0. tensor_As = [] tensor_Bs = [] tensor_Cs = [] tensor_Ds = [] tensor_D_refs = [] reference = ReferenceModule(A, B, C) for problem_size in problem_sizes: # Randomly initialize tensors m = problem_size.m() n = problem_size.n() k = problem_size.k() tensor_A = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(m * k,))).astype(np.float16) tensor_B = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(k * n,))).astype(np.float16) tensor_C = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(m * n,))).astype(np.float32) tensor_D = np.zeros(shape=(m * n,)).astype(np.float32) tensor_As.append(tensor_A) tensor_Bs.append(tensor_B) tensor_Cs.append(tensor_C) tensor_Ds.append(tensor_D) # Run the reference GEMM tensor_D_ref = reference.run(tensor_A, tensor_B, tensor_C, problem_size, alpha, beta) tensor_D_refs.append(tensor_D_ref) arguments = GemmGroupedArguments( operation, problem_sizes, tensor_As, tensor_Bs, tensor_Cs, tensor_Ds, output_op=operation.epilogue_type(alpha, beta) ) # Run the operation operation.run(arguments) arguments.sync() # Compare the CUTLASS result to the host reference result for tensor_d, tensor_d_ref in zip(tensor_Ds, tensor_D_refs): try: assert np.array_equal(tensor_d, tensor_d_ref) except: assert np.allclose(tensor_d, tensor_d_ref, rtol=1e-5) print("Passed.")
################################################################################ # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ import numpy as np import pycutlass from pycutlass import * from pycutlass.utils.device import device_cc import cutlass from bfloat16 import bfloat16 import sys import argparse # parse the arguments parser = argparse.ArgumentParser(description="Launch CUTLASS GEMM kernels from Python: 'D = alpha * A * B + beta * C'") # Operation description # math instruction description parser.add_argument("-i", "--instruction_shape", default=[1, 1, 1], nargs=3, type=int, help="This option describes the size of MMA op") parser.add_argument("-ta", "--element_a", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor A') parser.add_argument("-tb", "--element_b", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor B') parser.add_argument("-tc", "--element_c", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor C and output tensor D') parser.add_argument("-tacc", "--element_acc", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of accumulator') parser.add_argument('-m', "--math", default="multiply_add", type=str, choices=["multiply_add", "multiply_add_fast_bf16", "multiply_add_fast_f32"], help="math instruction") parser.add_argument('-op', "--opcode", default="simt", type=str, choices=["Simt", 'TensorOp'], help="This option describes whether you want to use tensor \ cores (TensorOp) or regular SIMT cores (Simt) on GPU SM") # tile description parser.add_argument("-b", "--threadblock_shape", default=[128, 128, 8], nargs=3, type=int, help="This option describes the tile size a thread block with compute") parser.add_argument("-s", "--stages", default=4, type=int, help="Number of pipelines you want to use") parser.add_argument("-w", "--warp_count", default=[4, 2, 1], nargs=3, type=int, help="This option describes the number of warps along M, N, and K of the threadblock") parser.add_argument("-cc", "--compute_capability", default=80, type=int, help="This option describes CUDA SM architecture number") # A parser.add_argument('-la', "--layout_a", default="RowMajor", type=str, choices=[ "RowMajor", "ColumnMajor", "RowMajorInterleaved32", "ColumnMajorInterleaved32"], help="Memory layout of input tensor A") parser.add_argument('-aa', '--alignment_a', default=1, type=int, help="Memory alignement of input tensor A") # B parser.add_argument('-lb', "--layout_b", default="RowMajor", type=str, choices=[ "RowMajor", "ColumnMajor", "RowMajorInterleaved32", "ColumnMajorInterleaved32"], help="Memory layout of input tensor B") parser.add_argument('-ab', '--alignment_b', default=1, type=int, help="Memory alignment of input tensor B") # C parser.add_argument('-lc', "--layout_c", default="RowMajor", type=str, choices=[ "RowMajor", "ColumnMajor", "RowMajorInterleaved32", "ColumnMajorInterleaved32"], help="Memory layout of input tensor C and output tensor D") parser.add_argument('-ac', '--alignment_c', default=1, type=int, help="Memory alignment of input tensor C and output tensor D") # epilogue parser.add_argument("-te", "--element_epilogue", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16'], help='Epilogue datatype') parser.add_argument("-ep", "--epilogue_functor", default="LinearCombination", type=str, choices=['LinearCombination', 'FastLinearCombinationClamp', 'LinearCombinationClamp'], help="This option describes the epilogue part of the kernel") parser.add_argument("-epv", "--epilogue_visitor", default=None, type=str, choices=['RowReduction', 'ColumnReduction', 'RowBroadcast', 'ColumnBroadcast'], help="epilogue visitor for more complex epilogues") # swizzling parser.add_argument("-sw", "--swizzling_functor", default="IdentitySwizzle1", type=str, choices=[ "IdentitySwizzle1", "IdentitySwizzle2", "IdentitySwizzle4", "IdentitySwizzle8", "HorizontalSwizzle", "BatchedIdentitySwizzle"], help="This option describes how thread blocks are scheduled on GPU") # Argument parser.add_argument("-p", "--problem_size", default=[128, 128, 128], nargs=3, type=int, help="GEMM problem size M, N, K") parser.add_argument("-alpha", "--alpha", default=1.0, type=float, help="Scaling factor of A * B") parser.add_argument("-beta", "--beta", default=0.0, type=float, help="Scaling factor of C") parser.add_argument("-gm", "--gemm_mode", default="Gemm", type=str, choices=["Gemm", "GemmSplitKParallel", "Batched", "Array"], help="GEMM mode. Gemm is used for non-splitK or serial-splitK. \ GemmSplitKParallel is used for parallel splitK") parser.add_argument('-k', '--split_k_slices', default=1, type=int, help="Number of split-k partitions. (default 1)") parser.add_argument('-bias', '--bias', action='store_true', help="C is bias vector") parser.add_argument('-batch', '--batch', default=1, type=int, help="batch size for batched GEMM") # Activation function parser.add_argument("-activ", "--activation_function", default="identity", choices=["identity", "relu", "leaky_relu", "tanh", "sigmoid", "silu", "hardswish", "gelu"], help="activation function") parser.add_argument("-activ_arg", "--activation_args", default=[], nargs="+", type=float, help="addition arguments for activation") parser.add_argument('--print_cuda', action="store_true", help="print the underlying CUDA kernel") try: args = parser.parse_args() except: sys.exit(0) cc = device_cc() if args.compute_capability != cc: raise Exception(("Parameter --compute-capability of {} " "does not match that of the device of {}.").format(args.compute_capability, cc)) pycutlass.get_memory_pool(init_pool_size=2**30, max_pool_size=2**32) pycutlass.compiler.nvcc() np.random.seed(0) element_a = getattr(cutlass, args.element_a) element_b = getattr(cutlass, args.element_b) element_c = getattr(cutlass, args.element_c) element_acc = getattr(cutlass, args.element_acc) math_operation = getattr(MathOperation, args.math) opclass = getattr(cutlass.OpClass, args.opcode) math_inst = MathInstruction( args.instruction_shape, element_a, element_b, element_acc, opclass, math_operation ) tile_description = TileDescription( args.threadblock_shape, args.stages, args.warp_count, math_inst ) layout_a = getattr(cutlass, args.layout_a) layout_b = getattr(cutlass, args.layout_b) layout_c = getattr(cutlass, args.layout_c) A = TensorDescription( element_a, layout_a, args.alignment_a ) B = TensorDescription( element_b, layout_b, args.alignment_b ) C = TensorDescription( element_c, layout_c, args.alignment_c ) element_epilogue = getattr(cutlass, args.element_epilogue) if (args.activation_function == "identity" or (args.gemm_mode == "GemmSplitKParallel" and args.split_k_slices > 1)): # epilogue_functor = getattr(pycutlass, args.epilogue_functor)( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) else: epilogue_functor = getattr(pycutlass, "LinearCombinationGeneric")( getattr(pycutlass, args.activation_function)(element_epilogue), C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = getattr(cutlass, args.swizzling_functor) visitor = args.epilogue_visitor is not None if args.epilogue_visitor == "ColumnReduction": class ColumnReduction_(EpilogueVisitTree): def __call__( self, accum: 'tensor', c: 'tensor', alpha: 'scalar', beta: 'scalar'): # D = alpha * accum + beta * c reduction = reduction_op(D, "column", "Add", args.threadblock_shape[0]) return D, reduction epilogue_functor = ColumnReduction_( epilogue_functor, tile_description, math_inst.element_accumulator, C.alignment, element_epilogue, C.element) epilogue_functor.initialize() elif args.epilogue_visitor == "RowReduction": class RowReduction_(EpilogueVisitTree): def __call__( self, accum: 'tensor', c: 'tensor', alpha: 'scalar', beta: 'scalar'): # D = alpha * accum + tanh.numpy(beta * c) reduction = reduction_op(D, "row", "Add", args.threadblock_shape[1]) return D, reduction epilogue_functor = RowReduction_( epilogue_functor, tile_description, math_inst.element_accumulator, C.alignment, element_epilogue, C.element) epilogue_functor.initialize() elif args.epilogue_visitor == "RowBroadcast": class RowBroadcast_(EpilogueVisitTree): def __call__( self, accum: 'tensor', c: 'tensor', vector: 'row', alpha: 'scalar', beta: 'scalar'): # T = accum + vector scale_T = alpha * T Z = relu.numpy(scale_T + beta * c) return Z, T epilogue_functor = RowBroadcast_( epilogue_functor, tile_description, math_inst.element_accumulator, C.alignment, element_epilogue, C.element) epilogue_functor.initialize() elif args.epilogue_visitor == "ColumnBroadcast": class ColumnBroadcast_(EpilogueVisitTree): def __call__( self, accum: 'tensor', c: 'tensor', vector: 'column', alpha: 'scalar', beta: 'scalar'): # T = accum + vector scale_T = leaky_relu.numpy(alpha * T, 0.2) Z = scale_T + beta * c return Z, T epilogue_functor = ColumnBroadcast_( epilogue_functor, tile_description, math_inst.element_accumulator, C.alignment, element_epilogue, C.element) epilogue_functor.initialize() else: epilogue_functor = epilogue_functor operation = GemmOperationUniversal( arch=args.compute_capability, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor, visitor=visitor ) if args.print_cuda: print(operation.rt_module.emit()) operations = [operation, ] if args.gemm_mode == "GemmSplitKParallel": if (args.activation_function == "identity"): epilogue_functor_reduction = getattr(pycutlass, args.epilogue_functor)( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) else: epilogue_functor_reduction = getattr(pycutlass, "LinearCombinationGeneric")( getattr(pycutlass, args.activation_function)(element_epilogue), C.element, C.alignment, math_inst.element_accumulator, element_epilogue) reduction_operation = ReductionOperation( shape=cutlass.MatrixCoord(4, 32 * C.alignment), C=C, element_accumulator=element_acc, element_compute=element_epilogue, epilogue_functor=epilogue_functor_reduction, count=C.alignment ) operations.append(reduction_operation) pycutlass.compiler.add_module(operations) # User-provide inputs problem_size = cutlass.gemm.GemmCoord( args.problem_size[0], args.problem_size[1], args.problem_size[2]) tensor_a_size = args.batch * problem_size.m() * problem_size.k() if args.element_a != "int8": if args.element_a == "bfloat16": tensor_A = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(tensor_a_size,)) ).astype(bfloat16) else: tensor_A = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(tensor_a_size,)) ).astype(getattr(np, args.element_a)) else: tensor_A = np.random.uniform( low=-2, high=2,size=(tensor_a_size,) ).astype(getattr(np, args.element_a)) tensor_b_size = args.batch * problem_size.k() * problem_size.n() if args.element_b != "int8": if args.element_b == "bfloat16": tensor_B = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(tensor_b_size,)) ).astype(bfloat16) else: tensor_B = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(tensor_b_size,)) ).astype(getattr(np, args.element_b)) else: tensor_B = np.random.uniform( low=-2, high=2, size=(tensor_b_size,) ).astype(getattr(np, args.element_b)) if args.element_c != "int8": if args.bias: if args.layout_c == "RowMajor": tensor_c_size = args.batch * problem_size.n() elif args.layout_c == "ColumnMajor": tensor_c_size = args.batch * problem_size.m() else: raise ValueError(args.layout_c) else: tensor_c_size = args.batch * problem_size.m() * problem_size.n() if args.element_c == "bfloat16": tensor_C = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(tensor_c_size,)) ).astype(bfloat16) else: tensor_C = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(tensor_c_size,)) ).astype(getattr(np, args.element_c)) else: tensor_C = np.random.uniform( low=-2, high=2, size=(args.batch * problem_size.m() * problem_size.n(),) ).astype(getattr(np, args.element_c)) tensor_D = np.zeros( shape=(args.batch * problem_size.m() * problem_size.n(),) ).astype(getattr(np, args.element_c)) if args.epilogue_visitor == "RowReduction": cta_n = args.threadblock_shape[1] num_cta_n = (problem_size.n() + cta_n - 1) // cta_n reduction = np.zeros(shape=(args.batch * problem_size.m() * num_cta_n,), dtype=getattr(np, args.element_c)) output_op = operation.epilogue_type( D=tensor_D, alpha=args.alpha, beta=args.beta, c=tensor_C, reduction=reduction, problem_size=[problem_size.m(), problem_size.n()] ) elif args.epilogue_visitor == "ColumnReduction": cta_m = args.threadblock_shape[0] num_cta_m = (problem_size.m() + cta_m - 1) // cta_m reduction = np.zeros(shape=(args.batch * problem_size.n() * num_cta_m,), dtype=getattr(np, args.element_c)) output_op = operation.epilogue_type( D=tensor_D, alpha=args.alpha, beta=args.beta, c=tensor_C, reduction=reduction, problem_size=[problem_size.m(), problem_size.n()] ) elif args.epilogue_visitor == "RowBroadcast": vector = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(args.batch, 1, problem_size.n())) ).astype(getattr(np, args.element_c)) tensor_t = np.empty_like(tensor_D) output_op = operation.epilogue_type( c=tensor_C, vector=vector, alpha=args.alpha, beta=args.beta, Z=tensor_D, T=tensor_t, problem_size=[problem_size.m(), problem_size.n()] ) elif args.epilogue_visitor == "ColumnBroadcast": vector = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(args.batch, problem_size.m(), 1)) ).astype(getattr(np, args.element_c)) tensor_t = np.empty_like(tensor_D) output_op = operation.epilogue_type( c=tensor_C, vector=vector, alpha=args.alpha, beta=args.beta, Z=tensor_D, T=tensor_t, problem_size=[problem_size.m(), problem_size.n()] ) else: output_op = operation.epilogue_type(*([args.alpha, args.beta] + args.activation_args)) arguments = GemmArguments( operation=operation, problem_size=problem_size, A=tensor_A, B=tensor_B, C=tensor_C, D=tensor_D, output_op=output_op, gemm_mode=getattr(cutlass.gemm.Mode, args.gemm_mode), split_k_slices=args.split_k_slices, batch=args.batch ) if args.gemm_mode == "GemmSplitKParallel": reduction_arguments = ReductionArguments( operation=reduction_operation, problem_size=[problem_size.m(), problem_size.n()], partitions=args.split_k_slices, workspace=arguments.ptr_D, destination=tensor_D, source=tensor_C, output_op=reduction_operation.epilogue_type(*([args.alpha, args.beta] + args.activation_args)), bias = arguments.bias ) operation.run(arguments) if args.gemm_mode == "GemmSplitKParallel": reduction_operation.run(reduction_arguments) reduction_arguments.sync() else: arguments.sync() # run the host reference module reference = ReferenceModule(A, B, C) tensor_D_ref = reference.run( tensor_A, tensor_B, tensor_C, problem_size, args.alpha, args.beta, args.bias, args.batch) if args.epilogue_visitor in ["RowBroadcast", "ColumnBroadcast"]: tensor_D_ref = (tensor_D_ref.reshape((args.batch, problem_size.m(), problem_size.n())) + vector).flatten() tensor_D_ref = getattr(pycutlass, args.activation_function).numpy(*([tensor_D_ref,] + args.activation_args)) if args.epilogue_visitor in ["RowReduction", "ColumnReduction"]: output_op.sync() accum_ref = reference.run( tensor_A, tensor_B, tensor_C, problem_size, 1.0, 0.0, args.bias, args.batch) tensor_D_ref, reduction_ref = epilogue_functor( accum_ref.reshape((args.batch, problem_size.m(), problem_size.n())), tensor_C.reshape((args.batch, problem_size.m(), problem_size.n())), args.alpha, args.beta ) tensor_D_ref = tensor_D_ref.flatten() reduction_ref = reduction_ref.flatten() assert np.allclose(reduction_ref, reduction, atol=1e-2) elif args.epilogue_visitor in ["RowBroadcast", "ColumnBroadcast"]: output_op.sync() accum_ref = reference.run( tensor_A, tensor_B, tensor_C, problem_size, 1.0, 0.0, args.bias, args.batch) tensor_D_ref, tensor_T_ref = epilogue_functor( accum_ref.reshape((args.batch, problem_size.m(), problem_size.n())), tensor_C.reshape((args.batch, problem_size.m(), problem_size.n())), vector, args.alpha, args.beta) tensor_D_ref = tensor_D_ref.flatten() tensor_T_ref = tensor_T_ref.flatten() assert np.array_equal(tensor_t, tensor_T_ref) try: assert np.array_equal(tensor_D, tensor_D_ref) except: assert np.allclose(tensor_D, tensor_D_ref, atol=1e-5) print("Passed.")
################################################################################ # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ import numpy as np import pycutlass from pycutlass import * from pycutlass.conv2d_operation import * from pycutlass.utils import reference_model from pycutlass.utils.device import device_cc import sys import torch.nn.functional as F import argparse # parse the arguments parser = argparse.ArgumentParser(description="Launch CUTLASS convolution 2d kernels from Python") # Operation description # math instruction description parser.add_argument("-i", "--instruction_shape", default=[1, 1, 1], nargs=3, type=int, help="This option describes the size of MMA op") parser.add_argument("-ta", "--element_a", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor A') parser.add_argument("-tb", "--element_b", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor B') parser.add_argument("-tc", "--element_c", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor C and output tensor D') parser.add_argument("-tacc", "--element_acc", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of accumulator') parser.add_argument('-m', "--math", default="multiply_add", type=str, choices=["multiply_add", "multiply_add_fast_bf16", "multiply_add_fast_f32"], help="math instruction") parser.add_argument('-op', "--opcode", default="simt", type=str, choices=["Simt", 'TensorOp'], help='This option describes whether you want to use tensor \ cores (TensorOp) or regular SIMT cores (Simt) on GPU SM') # tile description parser.add_argument("-b", "--threadblock_shape", default=[128, 128, 8], nargs=3, type=int, help="This option describes the tile size a thread block with compute") parser.add_argument("-s", "--stages", default=4, type=int, help="Number of pipelines you want to use") parser.add_argument("-w", "--warp_count", default=[ 4, 2, 1], nargs=3, type=int, help="This option describes the number of warps along M, N, and K of the threadblock") parser.add_argument("-cc", "--compute_capability", default=80, type=int, help="This option describes CUDA SM architecture number") # A parser.add_argument('-la', "--layout_a", default="TensorNHWC", type=str, choices=[ "TensorNHWC", "TensorNC32HW32"], help="Memory layout of input tensor A") parser.add_argument('-aa', '--alignment_a', default=1, type=int, help="Memory alignement of input tensor A") # B parser.add_argument('-lb', "--layout_b", default="TensorNHWC", type=str, choices=[ "TensorNHWC", "TensorC32RSK32"], help="Memory layout of input tensor B") parser.add_argument('-ab', '--alignment_b', default=1, type=int, help="Memory alignment of input tensor B") # C parser.add_argument('-lc', "--layout_c", default="TensorNHWC", type=str, choices=[ "TensorNHWC", "TensorNC32HW32"], help="Memory layout of input tensor C and output tensor D") parser.add_argument('-ac', '--alignment_c', default=1, type=int, help="Memory alignment of input tensor C and output tensor D") # epilogue parser.add_argument("-te", "--element_epilogue", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16'], help='Data type of computation in the epilogue') parser.add_argument("-ep", "--epilogue_functor", default="LinearCombination", type=str, choices=['LinearCombination', 'FastLinearCombinationClamp', 'LinearCombinationClamp'], help="This option describes the epilogue part of the kernel") # swizzling parser.add_argument("-sw", "--swizzling_functor", default="IdentitySwizzle1", type=str, choices=[ "IdentitySwizzle1", "IdentitySwizzle2", "IdentitySwizzle4", "IdentitySwizzle8", "HorizontalSwizzle", "StridedDgradIdentitySwizzle1", "StridedDgradIdentitySwizzle4", "StridedDgradHorizontalSwizzle"], help="This option describes how thread blocks are scheduled on GPU") # conv related parser.add_argument("-co", "--conv_kind", default="fprop", type=str, choices=['fprop', 'dgrad', 'wgrad'], help="The type of convolution: forward propagation (fprop), \ gradient of activation (dgrad), gradient of weight (wgrad)") parser.add_argument("-st", "--stride_support", default="Strided", type=str, choices=["Strided", "Unity"], ) parser.add_argument("-ia", "--iterator_algorithm", default="analytic", type=str, choices=["analytic", "optimized", "fixed_channels", "few_channels"], help="This option describes iterator algorithm") # arguments parser.add_argument("-sm", "--split_k_mode", default="Serial", type=str, choices=["Serial", "Parallel"], help="Split K Mode. Serial is used for non-splitK or serial-splitK.\ Parallel is used for parallel splitK.") parser.add_argument('-k', '--split_k_slices', default=1, type=int, help="Number of split-k partitions. (default 1)") parser.add_argument("-nhwc", "--nhwc", nargs=4, type=int, help="input size (NHWC)") parser.add_argument("-krsc", "--krsc", nargs=4, type=int, help="filter size (KRSC)") parser.add_argument("-pad", "--pad", nargs=4, type=int, help="padding (pad_h, _, pad_w, _)") parser.add_argument("-stride", "--stride", nargs=2, type=int, help="stride (stride_h, stride_w)") parser.add_argument("-dilation", "--dilation", nargs=2, type=int, help="dilation (dilation_h, dilation_w)") parser.add_argument("-alpha", "--alpha", default=1.0, type=float, help="alpha") parser.add_argument("-beta", "--beta", default=0.0, type=float, help="beta") parser.add_argument('-bias', '--bias', action='store_true', help="C is bias vector") # Activation function parser.add_argument("-activ", "--activation_function", default="identity", choices=["identity", "relu", "leaky_relu", "tanh", "sigmoid", "silu", "hardswish", "gelu"], help="activation function") parser.add_argument("-activ_arg", "--activation_args", default=[], nargs="+", type=float, help="addition arguments for activation") parser.add_argument('--print_cuda', action="store_true", help="print the underlying CUDA kernel") try: args = parser.parse_args() except: sys.exit(0) cc = device_cc() if args.compute_capability != cc: raise Exception(("Parameter --compute-capability of {} " "does not match that of the device of {}.").format(args.compute_capability, cc)) pycutlass.get_memory_pool(init_pool_size=2**30, max_pool_size=2**32) np.random.seed(0) element_a = getattr(cutlass, args.element_a) element_b = getattr(cutlass, args.element_b) element_c = getattr(cutlass, args.element_c) element_acc = getattr(cutlass, args.element_acc) math_operation = getattr(MathOperation, args.math) opclass = getattr(cutlass.OpClass, args.opcode) math_inst = MathInstruction( args.instruction_shape, element_a, element_b, element_acc, opclass, math_operation ) tile_description = TileDescription( args.threadblock_shape, args.stages, args.warp_count, math_inst ) layout_a = getattr(cutlass, args.layout_a) layout_b = getattr(cutlass, args.layout_b) layout_c = getattr(cutlass, args.layout_c) A = TensorDescription( element_a, layout_a, args.alignment_a ) B = TensorDescription( element_b, layout_b, args.alignment_b ) C = TensorDescription( element_c, layout_c, args.alignment_c ) element_epilogue = getattr(cutlass, args.element_epilogue) if (args.activation_function == "identity" or (args.split_k_mode == "Parallel" and args.split_k_slices > 1)): # epilogue_functor = getattr(pycutlass, args.epilogue_functor)( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) else: epilogue_functor = getattr(pycutlass, "LinearCombinationGeneric")( getattr(pycutlass, args.activation_function)(element_epilogue), C.element, C.alignment, math_inst.element_accumulator, element_epilogue) iterator_algorithm = getattr(cutlass.conv.IteratorAlgorithm, args.iterator_algorithm) swizzling_functor = getattr(cutlass, args.swizzling_functor) stride_support = getattr(StrideSupport, args.stride_support) conv_kind = getattr(cutlass.conv.Operator, args.conv_kind) operation = Conv2dOperation( conv_kind=conv_kind, iterator_algorithm=iterator_algorithm, arch=args.compute_capability, tile_description=tile_description, A=A, B=B, C=C, stride_support=stride_support, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor ) if args.print_cuda: print(operation.rt_module.emit()) operations = [operation,] if args.split_k_mode == "Parallel" and args.split_k_slices > 1: if (args.activation_function == "identity"): epilogue_functor_reduction = getattr(pycutlass, args.epilogue_functor)( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) else: epilogue_functor_reduction = getattr(pycutlass, "LinearCombinationGeneric")( getattr(pycutlass, args.activation_function)(element_epilogue), C.element, C.alignment, math_inst.element_accumulator, element_epilogue) reduction_operation = ReductionOperation( shape=cutlass.MatrixCoord(4, 32 * C.alignment), C=C, element_accumulator=element_acc, element_compute=element_epilogue, epilogue_functor=epilogue_functor_reduction, count=C.alignment ) operations.append(reduction_operation) pycutlass.compiler.add_module(operations) problem_size = cutlass.conv.Conv2dProblemSize( cutlass.Tensor4DCoord(args.nhwc[0], args.nhwc[1], args.nhwc[2], args.nhwc[3]), cutlass.Tensor4DCoord(args.krsc[0], args.krsc[1], args.krsc[2], args.krsc[3]), cutlass.Tensor4DCoord(args.pad[0], args.pad[1], args.pad[2], args.pad[3]), cutlass.MatrixCoord(args.stride[0], args.stride[1]), cutlass.MatrixCoord(args.dilation[0], args.dilation[1]), cutlass.conv.Mode.cross_correlation, args.split_k_slices, 1 ) # User-provide inputs tensor_A_size = cutlass.conv.implicit_gemm_tensor_a_size( conv_kind, problem_size ) tensor_B_size = cutlass.conv.implicit_gemm_tensor_b_size( conv_kind, problem_size ) if args.bias: tensor_C_size = cutlass.conv.implicit_gemm_tensor_c_extent( conv_kind, problem_size ).at(3) else: tensor_C_size = cutlass.conv.implicit_gemm_tensor_c_size( conv_kind, problem_size ) tensor_D_size = cutlass.conv.implicit_gemm_tensor_c_size( conv_kind, problem_size ) if args.element_a != "int8": tensor_A = torch.ceil(torch.empty(size=(tensor_A_size,), dtype=getattr(torch, args.element_a), device="cuda").uniform_(-8.5, 7.5)) else: tensor_A = torch.empty(size=(tensor_A_size,), dtype=getattr(torch, args.element_a), device="cuda").uniform_(-2, 2) if args.element_b != "int8": tensor_B = torch.ceil(torch.empty(size=(tensor_B_size,), dtype=getattr(torch, args.element_b), device="cuda").uniform_(-8.5, 7.5)) else: tensor_B = torch.empty(size=(tensor_B_size,), dtype=getattr(torch, args.element_b), device="cuda").uniform_(-2, 2) if args.element_c != "int8": tensor_C = torch.ceil(torch.empty(size=(tensor_C_size,), dtype=getattr(torch, args.element_c), device="cuda").uniform_(-8.5, 7.5)) else: tensor_C = torch.empty(size=(tensor_C_size,), dtype=getattr(torch, args.element_c), device="cuda").uniform_(-2, 2) tensor_D = torch.ones(size=(tensor_D_size,), dtype=getattr(torch, args.element_c), device="cuda") arguments = Conv2dArguments( operation=operation, problem_size=problem_size, A=tensor_A, B=tensor_B, C=tensor_C, D=tensor_D, output_op = operation.epilogue_type(*([args.alpha, args.beta] + args.activation_args)), split_k_mode=getattr(cutlass.conv.SplitKMode, args.split_k_mode), split_k_slices=problem_size.split_k_slices ) if args.split_k_mode == "Parallel" and args.split_k_slices > 1: implicit_gemm_size = cutlass.conv.implicit_gemm_problem_size(conv_kind, arguments.problem_size) reduction_arguments = ReductionArguments( reduction_operation, problem_size=[implicit_gemm_size.m(), implicit_gemm_size.n()], partitions=problem_size.split_k_slices, workspace=arguments.ptr_D, destination=tensor_D, source=tensor_C, output_op = reduction_operation.epilogue_type(*([args.alpha, args.beta] + args.activation_args)), bias = arguments.bias ) operation.run(arguments) if args.split_k_mode == "Parallel" and args.split_k_slices > 1: reduction_operation.run(reduction_arguments) reduction_arguments.sync() else: arguments.sync() reference_model = Conv2dReferenceModule(A, B, C, conv_kind) tensor_D_ref = reference_model.run(tensor_A, tensor_B, tensor_C, arguments.problem_size, args.alpha, args.beta, args.bias) if (args.activation_function != "identity"): tensor_D_ref = getattr(F, args.activation_function)(*([tensor_D_ref,] + args.activation_args)) try: assert torch.equal(tensor_D, tensor_D_ref) except: assert torch.allclose(tensor_D, tensor_D_ref, rtol=1e-2) print("Passed.")
################################################################################ # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ import numpy as np import pycutlass from pycutlass import * from pycutlass.utils.device import device_cc import csv import sys import argparse # parse the arguments parser = argparse.ArgumentParser( description="Launch CUTLASS GEMM Grouped kernels from Python") # Operation description # math instruction description parser.add_argument("-i", "--instruction_shape", default=[1, 1, 1], nargs=3, type=int, help="This option describes the size of MMA op") parser.add_argument("-ta", "--element_a", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor A') parser.add_argument("-tb", "--element_b", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor B') parser.add_argument("-tc", "--element_c", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor C and output tensor D') parser.add_argument("-tacc", "--element_acc", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of accumulator') parser.add_argument('-m', "--math", default="multiply_add", type=str, choices=["multiply_add", "multiply_add_fast_bf16", "multiply_add_fast_f32"], help="math instruction") parser.add_argument('-op', "--opcode", default="simt", type=str, choices=["Simt", 'TensorOp'], help='This option describes whether you want to use tensor \ cores (TensorOp) or regular SIMT cores (Simt) on GPU SM') # tile description parser.add_argument("-b", "--threadblock_shape", default=[128, 128, 8], nargs=3, type=int, help="This option describes the tile size a thread block with compute") parser.add_argument("-s", "--stages", default=4, type=int, help="Number of pipelines you want to use") parser.add_argument("-w", "--warp_count", default=[ 4, 2, 1], nargs=3, type=int, help="This option describes the number of warps along M, N, and K of the threadblock") parser.add_argument("-cc", "--compute_capability", default=80, type=int, help="This option describes CUDA SM architecture number") # A parser.add_argument('-la', "--layout_a", default="RowMajor", type=str, choices=[ "RowMajor", "ColumnMajor", "RowMajorInterleaved32", "ColumnMajorInterleaved32"], help="Memory layout of input tensor A") parser.add_argument('-aa', '--alignment_a', default=1, type=int, help="Memory alignment of input tensor A") # B parser.add_argument('-lb', "--layout_b", default="RowMajor", type=str, choices=[ "RowMajor", "ColumnMajor", "RowMajorInterleaved32", "ColumnMajorInterleaved32"], help="Memory layout of input tensor B") parser.add_argument('-ab', '--alignment_b', default=1, type=int, help="Memory alignment of input tensor B") # C parser.add_argument('-lc', "--layout_c", default="RowMajor", type=str, choices=[ "RowMajor", "ColumnMajor", "RowMajorInterleaved32", "ColumnMajorInterleaved32"], help="Memory layout of input tensor C and output tensor D") parser.add_argument('-ac', '--alignment_c', default=1, type=int, help="Memory alignment of input tensor C and output tensor D") # epilogue parser.add_argument("-te", "--element_epilogue", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16'], help='Epilogue datatype') parser.add_argument("-ep", "--epilogue_functor", default="LinearCombination", type=str, choices=['LinearCombination', 'FastLinearCombinationClamp', 'LinearCombinationClamp'], help="This option describes the epilogue part of the kernel") # swizzling parser.add_argument("-sw", "--swizzling_functor", default="IdentitySwizzle1", type=str, choices=[ "IdentitySwizzle1", "IdentitySwizzle2", "IdentitySwizzle4", "IdentitySwizzle8", "HorizontalSwizzle"], help="This option describes how thread blocks are scheduled on GPU. \ NOTE: Threadblock swizzling is currently not supported by CUTLASS's grouped kernels. \ This parameter is passed in at present to match the APIs of other kernels. The parameter \ is unused within the kernel") # precompute mode parser.add_argument("-pm", "--precompute_mode", default="Device", type=str, choices=["Host", "Device"], help="Grouped Gemm Scheduing on device only (Device) or using host precompute (Host)") # arguments parser.add_argument("-p", "--problem_size_dir", type=str, help="path to the csv file contains the problem sizes") parser.add_argument("-alpha", "--alpha", default=1.0, type=float, help="alpha") parser.add_argument("-beta", "--beta", default=0.0, type=float, help="beta") parser.add_argument('-bias', '--bias', action='store_true', help="C is bias vector") # Activation function parser.add_argument("-activ", "--activation_function", default="identity", choices=["identity", "relu", "leaky_relu", "tanh", "sigmoid", "silu", "hardswish", "gelu"], help="activation function") parser.add_argument("-activ_arg", "--activation_args", default=[], nargs="+", type=float, help="addition arguments for activation") parser.add_argument('--print_cuda', action="store_true", help="print the underlying CUDA kernel") try: args = parser.parse_args() except: sys.exit(0) cc = device_cc() if args.compute_capability != cc: raise Exception(("Parameter --compute-capability of {} " "does not match that of the device of {}.").format(args.compute_capability, cc)) pycutlass.get_memory_pool(init_pool_size=2**30, max_pool_size=2**32) np.random.seed(0) element_a = getattr(cutlass, args.element_a) element_b = getattr(cutlass, args.element_b) element_c = getattr(cutlass, args.element_c) element_acc = getattr(cutlass, args.element_acc) math_operation = getattr(MathOperation, args.math) opclass = getattr(cutlass.OpClass, args.opcode) math_inst = MathInstruction( args.instruction_shape, element_a, element_b, element_acc, opclass, math_operation ) tile_description = TileDescription( args.threadblock_shape, args.stages, args.warp_count, math_inst ) layout_a = getattr(cutlass, args.layout_a) layout_b = getattr(cutlass, args.layout_b) layout_c = getattr(cutlass, args.layout_c) A = TensorDescription( element_a, layout_a, args.alignment_a ) B = TensorDescription( element_b, layout_b, args.alignment_b ) C = TensorDescription( element_c, layout_c, args.alignment_c ) element_epilogue = getattr(cutlass, args.element_epilogue) if args.activation_function == "identity": epilogue_functor = getattr(pycutlass, args.epilogue_functor)( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) else: epilogue_functor = getattr(pycutlass, "LinearCombinationGeneric")( getattr(pycutlass, args.activation_function)(element_epilogue), C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = getattr(cutlass, args.swizzling_functor) precompute_mode = getattr(SchedulerMode, args.precompute_mode) operation = GemmOperationGrouped( arch=args.compute_capability, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor, precompute_mode=precompute_mode ) if args.print_cuda: print(operation.rt_module.emit()) pycutlass.compiler.add_module([operation, ]) reference_module = ReferenceModule(A, B, C) # get problems problem_sizes = [] with open(args.problem_size_dir) as csv_file: reader = csv.reader(csv_file) for row in reader: problem_sizes.append( cutlass.gemm.GemmCoord(int(row[0]), int(row[1]), int(row[2])) ) problem_count = len(problem_sizes) tensor_As = [] tensor_Bs = [] tensor_Cs = [] tensor_Ds = [] problem_sizes_coord = [] tensor_D_refs = [] for problem_size in problem_sizes: if args.element_a != "int8": if args.element_a == "bfloat16": tensor_A = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(problem_size.m() * problem_size.k(),))).astype(bfloat16) else: tensor_A = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(problem_size.m() * problem_size.k(),))).astype(getattr(np, args.element_a)) else: tensor_A = np.random.uniform(low=-2, high=2, size=(problem_size.m() * problem_size.k(),)).astype(getattr(np, args.element_a)) if args.element_b != "int8": if args.element_b == "bfloat16": tensor_B = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(problem_size.k() * problem_size.n(),))).astype(bfloat16) else: tensor_B = np.ceil(np.random.uniform(low=-8.5, high=7.5, size=(problem_size.k() * problem_size.n(),))).astype(getattr(np, args.element_b)) else: tensor_B = np.random.uniform(low=-2, high=2, size=(problem_size.k() * problem_size.n(),)).astype(getattr(np, args.element_b)) if args.element_c != "int8": if args.bias: if args.layout_c == "RowMajor": c_size = problem_size.n() elif args.layout_c == "ColumnMajor": c_size = problem_size.m() else: raise ValueError(args.layout_c) else: c_size = problem_size.m() * problem_size.n() if args.element_c == "bfloat16": tensor_C = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(c_size,)) ).astype(bfloat16) else: tensor_C = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(c_size,)) ).astype(getattr(np, args.element_c)) else: tensor_C = np.random.uniform( low=-2, high=2, size=(problem_size.m() * problem_size.n(),) ).astype(getattr(np, args.element_c)) tensor_D = np.zeros( shape=(problem_size.m() * problem_size.n(),) ).astype(getattr(np, args.element_c)) tensor_As.append(tensor_A) tensor_Bs.append(tensor_B) tensor_Cs.append(tensor_C) tensor_Ds.append(tensor_D) tensor_D_ref = reference_module.run( tensor_A, tensor_B, tensor_C, problem_size, args.alpha, args.beta, args.bias) tensor_D_ref = getattr(pycutlass, args.activation_function).numpy(*([tensor_D_ref,] + args.activation_args)) tensor_D_refs.append(tensor_D_ref) problem_sizes_coord.append(problem_size) arguments = GemmGroupedArguments( operation, problem_sizes_coord, tensor_As, tensor_Bs, tensor_Cs, tensor_Ds, output_op=operation.epilogue_type(*([args.alpha, args.beta] + args.activation_args)) ) operation.run(arguments) arguments.sync() for tensor_d, tensor_d_ref in zip(tensor_Ds, tensor_D_refs): try: assert np.array_equal(tensor_d, tensor_d_ref) except: assert np.allclose(tensor_d, tensor_d_ref, rtol=1e-5) print("Passed.")
#!/usr/bin/env python from __future__ import absolute_import, division, print_function import os import sys import subprocess import argparse from functools import reduce from itertools import chain from pyHIPIFY import hipify_python parser = argparse.ArgumentParser(description='Top-level script for HIPifying, filling in most common parameters') parser.add_argument( '--project-directory', type=str, default=os.path.normpath(os.path.join( os.path.realpath(__file__), os.pardir, os.pardir, os.pardir, )), help="The root of the project. (default: %(default)s)", required=False) parser.add_argument( '--output-directory', type=str, default='', help="The Directory to Store the Hipified Project", required=False) parser.add_argument( '--list-files-only', action='store_true', help="Only print the list of hipify files.") parser.add_argument( '--root-dir', type=str, default="gloo", help="The root directory of gloo project", required=False) args = parser.parse_args() amd_build_dir = os.path.dirname(os.path.realpath(__file__)) proj_dir = os.path.join(os.path.dirname(os.path.dirname(amd_build_dir))) if args.project_directory: proj_dir = args.project_directory out_dir = proj_dir if args.output_directory: out_dir = args.output_directory includes = [ os.path.join(args.root_dir, "*cuda*"), os.path.join(args.root_dir, "*nccl*"), ] ignores = [ ] hipify_python.hipify( project_directory=proj_dir, output_directory=out_dir, includes=includes, ignores=ignores, list_files_only=args.list_files_only, show_progress=False)
import collections from pyHIPIFY.constants import * """ Mapping of CUDA functions, include files, constants, and types to ROCm/HIP equivalents This closely follows the implementation in hipify-clang https://github.com/ROCm-Developer-Tools/HIP/blob/master/hipify-clang/src/CUDA2HipMap.cpp and its structure. There are different maps for fundamental names, include files, identifies, sparse, and PyTorch specific translations. Each of the entries in these maps translates a CUDA string to a tuple containing the ROCm/HIP string, a type and API annotation and - optionally - an annotation if it is not supported in ROCm/HIP yet. """ CUDA_TYPE_NAME_MAP = collections.OrderedDict([ ("CUresult", ("hipError_t", CONV_TYPE, API_DRIVER)), ("cudaError_t", ("hipError_t", CONV_TYPE, API_RUNTIME)), ("CUDA_ARRAY3D_DESCRIPTOR", ("HIP_ARRAY3D_DESCRIPTOR", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUDA_ARRAY_DESCRIPTOR", ("HIP_ARRAY_DESCRIPTOR", CONV_TYPE, API_DRIVER)), ("CUDA_MEMCPY2D", ("hip_Memcpy2D", CONV_TYPE, API_DRIVER)), ("CUDA_MEMCPY3D", ("HIP_MEMCPY3D", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUDA_MEMCPY3D_PEER", ("HIP_MEMCPY3D_PEER", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUDA_POINTER_ATTRIBUTE_P2P_TOKENS", ("HIP_POINTER_ATTRIBUTE_P2P_TOKENS", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUDA_RESOURCE_DESC", ("HIP_RESOURCE_DESC", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUDA_RESOURCE_VIEW_DESC", ("HIP_RESOURCE_VIEW_DESC", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUipcEventHandle", ("hipIpcEventHandle", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUipcMemHandle", ("hipIpcMemHandle", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUaddress_mode", ("hipAddress_mode", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUarray_cubemap_face", ("hipArray_cubemap_face", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUarray_format", ("hipArray_format", CONV_TYPE, API_DRIVER)), ("CUcomputemode", ("hipComputemode", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUmem_advise", ("hipMemAdvise", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUmem_range_attribute", ("hipMemRangeAttribute", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUctx_flags", ("hipCctx_flags", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUdevice", ("hipDevice_t", CONV_TYPE, API_DRIVER)), ("CUdevice_attribute_enum", ("hipDeviceAttribute_t", CONV_TYPE, API_DRIVER)), ("CUdevice_attribute", ("hipDeviceAttribute_t", CONV_TYPE, API_DRIVER)), ("CUdeviceptr", ("hipDeviceptr_t", CONV_TYPE, API_DRIVER)), ("CUarray_st", ("hipArray", CONV_TYPE, API_DRIVER)), ("CUarray", ("hipArray *", CONV_TYPE, API_DRIVER)), ("CUdevprop_st", ("hipDeviceProp_t", CONV_TYPE, API_DRIVER)), ("CUdevprop", ("hipDeviceProp_t", CONV_TYPE, API_DRIVER)), ("CUfunction", ("hipFunction_t", CONV_TYPE, API_DRIVER)), ("CUgraphicsResource", ("hipGraphicsResource_t", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUmipmappedArray", ("hipMipmappedArray_t", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUfunction_attribute", ("hipFuncAttribute_t", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUfunction_attribute_enum", ("hipFuncAttribute_t", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUgraphicsMapResourceFlags", ("hipGraphicsMapFlags", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUgraphicsMapResourceFlags_enum", ("hipGraphicsMapFlags", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUgraphicsRegisterFlags", ("hipGraphicsRegisterFlags", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUgraphicsRegisterFlags_enum", ("hipGraphicsRegisterFlags", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUoccupancy_flags", ("hipOccupancyFlags", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUoccupancy_flags_enum", ("hipOccupancyFlags", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUfunc_cache_enum", ("hipFuncCache", CONV_TYPE, API_DRIVER)), ("CUfunc_cache", ("hipFuncCache", CONV_TYPE, API_DRIVER)), ("CUipcMem_flags", ("hipIpcMemFlags", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUipcMem_flags_enum", ("hipIpcMemFlags", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUjit_cacheMode", ("hipJitCacheMode", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CUjit_cacheMode_enum", ("hipJitCacheMode", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CUjit_fallback", ("hipJitFallback", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CUjit_fallback_enum", ("hipJitFallback", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CUjit_option", ("hipJitOption", CONV_JIT, API_DRIVER)), ("CUjit_option_enum", ("hipJitOption", CONV_JIT, API_DRIVER)), ("CUjit_target", ("hipJitTarget", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CUjit_target_enum", ("hipJitTarget", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CUjitInputType", ("hipJitInputType", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CUjitInputType_enum", ("hipJitInputType", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CUlimit", ("hipLimit_t", CONV_TYPE, API_DRIVER)), ("CUlimit_enum", ("hipLimit_t", CONV_TYPE, API_DRIVER)), ("CUmemAttach_flags", ("hipMemAttachFlags_t", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUmemAttach_flags_enum", ("hipMemAttachFlags_t", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUmemorytype", ("hipMemType_t", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUmemorytype_enum", ("hipMemType_t", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUresourcetype", ("hipResourceType", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("CUresourcetype_enum", ("hipResourceType", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("CUresourceViewFormat", ("hipResourceViewFormat", CONV_TEX, API_DRIVER)), ("CUresourceViewFormat_enum", ("hipResourceViewFormat", CONV_TEX, API_DRIVER)), ("CUsharedconfig", ("hipSharedMemConfig", CONV_TYPE, API_DRIVER)), ("CUsharedconfig_enum", ("hipSharedMemConfig", CONV_TYPE, API_DRIVER)), ("CUcontext", ("hipCtx_t", CONV_TYPE, API_DRIVER)), ("CUmodule", ("hipModule_t", CONV_TYPE, API_DRIVER)), ("CUstream", ("hipStream_t", CONV_TYPE, API_DRIVER)), ("CUstream_st", ("ihipStream_t", CONV_TYPE, API_DRIVER)), ("CUstreamCallback", ("hipStreamCallback_t", CONV_TYPE, API_DRIVER)), ("CUsurfObject", ("hipSurfaceObject", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUsurfref", ("hipSurfaceReference_t", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUtexObject", ("hipTextureObject_t", CONV_TYPE, API_DRIVER)), ("CUtexref", ("textureReference", CONV_TYPE, API_DRIVER)), ("CUstream_flags", ("hipStreamFlags", CONV_TYPE, API_DRIVER)), ("CUstreamWaitValue_flags", ("hipStreamWaitValueFlags", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUstreamWriteValue_flags", ("hipStreamWriteValueFlags", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUstreamBatchMemOpType", ("hipStreamBatchMemOpType", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUdevice_P2PAttribute", ("hipDeviceP2PAttribute", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUevent", ("hipEvent_t", CONV_TYPE, API_DRIVER)), ("CUevent_flags", ("hipEventFlags", CONV_EVENT, API_DRIVER, HIP_UNSUPPORTED)), ("CUfilter_mode", ("hipTextureFilterMode", CONV_TEX, API_DRIVER)), ("CUGLDeviceList", ("hipGLDeviceList", CONV_GL, API_DRIVER, HIP_UNSUPPORTED)), ("CUGLmap_flags", ("hipGLMapFlags", CONV_GL, API_DRIVER, HIP_UNSUPPORTED)), ("CUd3d9DeviceList", ("hipD3D9DeviceList", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED)), ("CUd3d9map_flags", ("hipD3D9MapFlags", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED)), ("CUd3d9register_flags", ("hipD3D9RegisterFlags", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED)), ("CUd3d10DeviceList", ("hipd3d10DeviceList", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED)), ("CUd3d10map_flags", ("hipD3D10MapFlags", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED)), ("CUd3d10register_flags", ("hipD3D10RegisterFlags", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED)), ("CUd3d11DeviceList", ("hipd3d11DeviceList", CONV_D3D11, API_DRIVER, HIP_UNSUPPORTED)), ("CUeglStreamConnection_st", ("hipEglStreamConnection", CONV_EGL, API_DRIVER, HIP_UNSUPPORTED)), ("CUeglStreamConnection", ("hipEglStreamConnection", CONV_EGL, API_DRIVER, HIP_UNSUPPORTED)), ("libraryPropertyType_t", ("hipLibraryPropertyType_t", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("libraryPropertyType", ("hipLibraryPropertyType_t", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaStreamCallback_t", ("hipStreamCallback_t", CONV_TYPE, API_RUNTIME)), ("cudaArray", ("hipArray", CONV_MEM, API_RUNTIME)), ("cudaArray_t", ("hipArray_t", CONV_MEM, API_RUNTIME)), ("cudaArray_const_t", ("hipArray_const_t", CONV_MEM, API_RUNTIME)), ("cudaMipmappedArray_t", ("hipMipmappedArray_t", CONV_MEM, API_RUNTIME)), ("cudaMipmappedArray_const_t", ("hipMipmappedArray_const_t", CONV_MEM, API_RUNTIME)), ("cudaArrayDefault", ("hipArrayDefault", CONV_MEM, API_RUNTIME)), ("cudaArrayLayered", ("hipArrayLayered", CONV_MEM, API_RUNTIME)), ("cudaArraySurfaceLoadStore", ("hipArraySurfaceLoadStore", CONV_MEM, API_RUNTIME)), ("cudaArrayCubemap", ("hipArrayCubemap", CONV_MEM, API_RUNTIME)), ("cudaArrayTextureGather", ("hipArrayTextureGather", CONV_MEM, API_RUNTIME)), ("cudaMemoryAdvise", ("hipMemAdvise", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemRangeAttribute", ("hipMemRangeAttribute", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemcpyKind", ("hipMemcpyKind", CONV_MEM, API_RUNTIME)), ("cudaMemoryType", ("hipMemoryType", CONV_MEM, API_RUNTIME)), ("cudaExtent", ("hipExtent", CONV_MEM, API_RUNTIME)), ("cudaPitchedPtr", ("hipPitchedPtr", CONV_MEM, API_RUNTIME)), ("cudaPos", ("hipPos", CONV_MEM, API_RUNTIME)), ("cudaEvent_t", ("hipEvent_t", CONV_TYPE, API_RUNTIME)), ("cudaStream_t", ("hipStream_t", CONV_TYPE, API_RUNTIME)), ("cudaPointerAttributes", ("hipPointerAttribute_t", CONV_TYPE, API_RUNTIME)), ("cudaDeviceAttr", ("hipDeviceAttribute_t", CONV_TYPE, API_RUNTIME)), ("cudaDeviceProp", ("hipDeviceProp_t", CONV_TYPE, API_RUNTIME)), ("cudaDeviceP2PAttr", ("hipDeviceP2PAttribute", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaComputeMode", ("hipComputeMode", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaFuncCache", ("hipFuncCache_t", CONV_CACHE, API_RUNTIME)), ("cudaFuncAttributes", ("hipFuncAttributes", CONV_EXEC, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaSharedMemConfig", ("hipSharedMemConfig", CONV_TYPE, API_RUNTIME)), ("cudaLimit", ("hipLimit_t", CONV_TYPE, API_RUNTIME)), ("cudaOutputMode", ("hipOutputMode", CONV_OTHER, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaTextureReadMode", ("hipTextureReadMode", CONV_TEX, API_RUNTIME)), ("cudaTextureFilterMode", ("hipTextureFilterMode", CONV_TEX, API_RUNTIME)), ("cudaChannelFormatKind", ("hipChannelFormatKind", CONV_TEX, API_RUNTIME)), ("cudaChannelFormatDesc", ("hipChannelFormatDesc", CONV_TEX, API_RUNTIME)), ("cudaResourceDesc", ("hipResourceDesc", CONV_TEX, API_RUNTIME)), ("cudaResourceViewDesc", ("hipResourceViewDesc", CONV_TEX, API_RUNTIME)), ("cudaTextureDesc", ("hipTextureDesc", CONV_TEX, API_RUNTIME)), ("surfaceReference", ("hipSurfaceReference", CONV_SURFACE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaTextureObject_t", ("hipTextureObject_t", CONV_TEX, API_RUNTIME)), ("cudaResourceType", ("hipResourceType", CONV_TEX, API_RUNTIME)), ("cudaResourceViewFormat", ("hipResourceViewFormat", CONV_TEX, API_RUNTIME)), ("cudaTextureAddressMode", ("hipTextureAddressMode", CONV_TEX, API_RUNTIME)), ("cudaSurfaceBoundaryMode", ("hipSurfaceBoundaryMode", CONV_SURFACE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaSurfaceFormatMode", ("hipSurfaceFormatMode", CONV_SURFACE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaTextureType1D", ("hipTextureType1D", CONV_TEX, API_RUNTIME)), ("cudaTextureType2D", ("hipTextureType2D", CONV_TEX, API_RUNTIME)), ("cudaTextureType3D", ("hipTextureType3D", CONV_TEX, API_RUNTIME)), ("cudaTextureTypeCubemap", ("hipTextureTypeCubemap", CONV_TEX, API_RUNTIME)), ("cudaTextureType1DLayered", ("hipTextureType1DLayered", CONV_TEX, API_RUNTIME)), ("cudaTextureType2DLayered", ("hipTextureType2DLayered", CONV_TEX, API_RUNTIME)), ("cudaTextureTypeCubemapLayered", ("hipTextureTypeCubemapLayered", CONV_TEX, API_RUNTIME)), ("cudaIpcEventHandle_t", ("hipIpcEventHandle_t", CONV_TYPE, API_RUNTIME)), ("cudaIpcEventHandle_st", ("hipIpcEventHandle_t", CONV_TYPE, API_RUNTIME)), ("cudaIpcMemHandle_t", ("hipIpcMemHandle_t", CONV_TYPE, API_RUNTIME)), ("cudaIpcMemHandle_st", ("hipIpcMemHandle_t", CONV_TYPE, API_RUNTIME)), ("cudaGraphicsCubeFace", ("hipGraphicsCubeFace", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsMapFlags", ("hipGraphicsMapFlags", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsRegisterFlags", ("hipGraphicsRegisterFlags", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGLDeviceList", ("hipGLDeviceList", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGLMapFlags", ("hipGLMapFlags", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D9DeviceList", ("hipD3D9DeviceList", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D9MapFlags", ("hipD3D9MapFlags", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D9RegisterFlags", ("hipD3D9RegisterFlags", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D10DeviceList", ("hipd3d10DeviceList", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D10MapFlags", ("hipD3D10MapFlags", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D10RegisterFlags", ("hipD3D10RegisterFlags", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D11DeviceList", ("hipd3d11DeviceList", CONV_D3D11, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaEglStreamConnection", ("hipEglStreamConnection", CONV_EGL, API_RUNTIME, HIP_UNSUPPORTED)), ("cublasHandle_t", ("rocblas_handle", CONV_TYPE, API_BLAS)), ("cublasOperation_t", ("rocblas_operation", CONV_TYPE, API_BLAS)), ("cublasStatus_t", ("rocblas_status", CONV_TYPE, API_BLAS)), ("cublasFillMode_t", ("rocblas_fill", CONV_TYPE, API_BLAS)), ("cublasDiagType_t", ("rocblas_diagonal", CONV_TYPE, API_BLAS)), ("cublasSideMode_t", ("rocblas_side", CONV_TYPE, API_BLAS)), ("cublasPointerMode_t", ("rocblas_pointer_mode", CONV_TYPE, API_BLAS)), ("cublasAtomicsMode_t", ("rocblas_atomics_mode", CONV_TYPE, API_BLAS, HIP_UNSUPPORTED)), ("cublasDataType_t", ("rocblas_data_type", CONV_TYPE, API_BLAS, HIP_UNSUPPORTED)), ("curandStatus", ("hiprandStatus_t", CONV_TYPE, API_RAND)), ("curandStatus_t", ("hiprandStatus_t", CONV_TYPE, API_RAND)), ("curandRngType", ("hiprandRngType_t", CONV_TYPE, API_RAND)), ("curandRngType_t", ("hiprandRngType_t", CONV_TYPE, API_RAND)), ("curandGenerator_st", ("hiprandGenerator_st", CONV_TYPE, API_RAND)), ("curandGenerator_t", ("hiprandGenerator_t", CONV_TYPE, API_RAND)), ("curandDirectionVectorSet", ("hiprandDirectionVectorSet_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED)), ("curandDirectionVectorSet_t", ("hiprandDirectionVectorSet_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED)), ("curandOrdering", ("hiprandOrdering_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED)), ("curandOrdering_t", ("hiprandOrdering_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED)), ("curandDistribution_st", ("hiprandDistribution_st", CONV_TYPE, API_RAND, HIP_UNSUPPORTED)), ("curandHistogramM2V_st", ("hiprandDistribution_st", CONV_TYPE, API_RAND, HIP_UNSUPPORTED)), ("curandDistribution_t", ("hiprandDistribution_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED)), ("curandHistogramM2V_t", ("hiprandDistribution_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED)), ("curandDistributionShift_st", ("hiprandDistributionShift_st", CONV_TYPE, API_RAND, HIP_UNSUPPORTED)), ("curandDistributionShift_t", ("hiprandDistributionShift_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED)), ("curandDistributionM2Shift_st", ("hiprandDistributionM2Shift_st", CONV_TYPE, API_RAND, HIP_UNSUPPORTED)), ("curandDistributionM2Shift_t", ("hiprandDistributionM2Shift_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED)), ("curandHistogramM2_st", ("hiprandHistogramM2_st", CONV_TYPE, API_RAND, HIP_UNSUPPORTED)), ("curandHistogramM2_t", ("hiprandHistogramM2_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED)), ("curandHistogramM2K_st", ("hiprandHistogramM2K_st", CONV_TYPE, API_RAND, HIP_UNSUPPORTED)), ("curandHistogramM2K_t", ("hiprandHistogramM2K_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED)), ("curandDiscreteDistribution_st", ("hiprandDiscreteDistribution_st", CONV_TYPE, API_RAND)), ("curandDiscreteDistribution_t", ("hiprandDiscreteDistribution_t", CONV_TYPE, API_RAND)), ("curandMethod", ("hiprandMethod_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED)), ("curandMethod_t", ("hiprandMethod_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED)), ("curandDirectionVectors32_t", ("hiprandDirectionVectors32_t", CONV_TYPE, API_RAND)), ("curandDirectionVectors64_t", ("hiprandDirectionVectors64_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED)), ("curandStateMtgp32_t", ("hiprandStateMtgp32_t", CONV_TYPE, API_RAND)), ("curandStateMtgp32", ("hiprandStateMtgp32_t", CONV_TYPE, API_RAND)), ("curandStateScrambledSobol64_t", ("hiprandStateScrambledSobol64_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED)), ("curandStateSobol64_t", ("hiprandStateSobol64_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED)), ("curandStateScrambledSobol32_t", ("hiprandStateScrambledSobol32_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED)), ("curandStateSobol32_t", ("hiprandStateSobol32_t", CONV_TYPE, API_RAND)), ("curandStateMRG32k3a_t", ("hiprandStateMRG32k3a_t", CONV_TYPE, API_RAND)), ("curandStatePhilox4_32_10_t", ("hiprandStatePhilox4_32_10_t", CONV_TYPE, API_RAND)), ("curandStateXORWOW_t", ("hiprandStateXORWOW_t", CONV_TYPE, API_RAND)), ("curandState_t", ("hiprandState_t", CONV_TYPE, API_RAND)), ("curandState", ("hiprandState_t", CONV_TYPE, API_RAND)), ]) CUDA_INCLUDE_MAP = collections.OrderedDict([ # since pytorch uses "\b{pattern}\b" as the actual re pattern, # patterns listed here have to begin and end with alnum chars ("include <cuda.h", ("include <hip/hip_runtime.h", CONV_INCLUDE_CUDA_MAIN_H, API_DRIVER)), ('include "cuda.h', ('include "hip/hip_runtime.h', CONV_INCLUDE_CUDA_MAIN_H, API_DRIVER)), ("cuda_runtime.h", ("hip/hip_runtime.h", CONV_INCLUDE_CUDA_MAIN_H, API_RUNTIME)), ("cuda_runtime_api.h", ("hip/hip_runtime_api.h", CONV_INCLUDE, API_RUNTIME)), ("channel_descriptor.h", ("hip/channel_descriptor.h", CONV_INCLUDE, API_RUNTIME)), ("device_functions.h", ("hip/device_functions.h", CONV_INCLUDE, API_RUNTIME)), ("driver_types.h", ("hip/driver_types.h", CONV_INCLUDE, API_RUNTIME)), ("cuComplex.h", ("hip/hip_complex.h", CONV_INCLUDE, API_RUNTIME)), ("cuda_fp16.h", ("hip/hip_fp16.h", CONV_INCLUDE, API_RUNTIME)), ("cuda_texture_types.h", ("hip/hip_texture_types.h", CONV_INCLUDE, API_RUNTIME)), ("vector_types.h", ("hip/hip_vector_types.h", CONV_INCLUDE, API_RUNTIME)), ("cublas.h", ("rocblas.h", CONV_INCLUDE_CUDA_MAIN_H, API_BLAS)), ("cublas_v2.h", ("rocblas.h", CONV_INCLUDE_CUDA_MAIN_H, API_BLAS)), ("curand.h", ("hiprand.h", CONV_INCLUDE_CUDA_MAIN_H, API_RAND)), ("curand_kernel.h", ("hiprand_kernel.h", CONV_INCLUDE, API_RAND)), ("curand_discrete.h", ("hiprand_kernel.h", CONV_INCLUDE, API_RAND)), ("curand_discrete2.h", ("hiprand_kernel.h", CONV_INCLUDE, API_RAND)), ("curand_globals.h", ("hiprand_kernel.h", CONV_INCLUDE, API_RAND)), ("curand_lognormal.h", ("hiprand_kernel.h", CONV_INCLUDE, API_RAND)), ("curand_mrg32k3a.h", ("hiprand_kernel.h", CONV_INCLUDE, API_RAND)), ("curand_mtgp32.h", ("hiprand_kernel.h", CONV_INCLUDE, API_RAND)), ("curand_mtgp32_host.h", ("hiprand_mtgp32_host.h", CONV_INCLUDE, API_RAND)), ("curand_mtgp32_kernel.h", ("hiprand_kernel.h", CONV_INCLUDE, API_RAND)), ("curand_mtgp32dc_p_11213.h", ("rocrand_mtgp32_11213.h", CONV_INCLUDE, API_RAND)), ("curand_normal.h", ("hiprand_kernel.h", CONV_INCLUDE, API_RAND)), ("curand_normal_static.h", ("hiprand_kernel.h", CONV_INCLUDE, API_RAND)), ("curand_philox4x32_x.h", ("hiprand_kernel.h", CONV_INCLUDE, API_RAND)), ("curand_poisson.h", ("hiprand_kernel.h", CONV_INCLUDE, API_RAND)), ("curand_precalc.h", ("hiprand_kernel.h", CONV_INCLUDE, API_RAND)), ("curand_uniform.h", ("hiprand_kernel.h", CONV_INCLUDE, API_RAND)), ("cusparse.h", ("hipsparse.h", CONV_INCLUDE, API_RAND)), ("cufft.h", ("hipfft.h", CONV_INCLUDE, API_BLAS)), ("cufftXt.h", ("hipfft.h", CONV_INCLUDE, API_BLAS)), ]) CUDA_IDENTIFIER_MAP = collections.OrderedDict([ ("__CUDACC__", ("__HIPCC__", CONV_DEF, API_RUNTIME)), ("CUDA_ERROR_INVALID_CONTEXT", ("hipErrorInvalidContext", CONV_TYPE, API_DRIVER)), ("CUDA_ERROR_CONTEXT_ALREADY_CURRENT", ("hipErrorContextAlreadyCurrent", CONV_TYPE, API_DRIVER)), ("CUDA_ERROR_ARRAY_IS_MAPPED", ("hipErrorArrayIsMapped", CONV_TYPE, API_DRIVER)), ("CUDA_ERROR_ALREADY_MAPPED", ("hipErrorAlreadyMapped", CONV_TYPE, API_DRIVER)), ("CUDA_ERROR_ALREADY_ACQUIRED", ("hipErrorAlreadyAcquired", CONV_TYPE, API_DRIVER)), ("CUDA_ERROR_NOT_MAPPED", ("hipErrorNotMapped", CONV_TYPE, API_DRIVER)), ("CUDA_ERROR_NOT_MAPPED_AS_ARRAY", ("hipErrorNotMappedAsArray", CONV_TYPE, API_DRIVER)), ("CUDA_ERROR_NOT_MAPPED_AS_POINTER", ("hipErrorNotMappedAsPointer", CONV_TYPE, API_DRIVER)), ("CUDA_ERROR_CONTEXT_ALREADY_IN_USE", ("hipErrorContextAlreadyInUse", CONV_TYPE, API_DRIVER)), ("CUDA_ERROR_INVALID_SOURCE", ("hipErrorInvalidSource", CONV_TYPE, API_DRIVER)), ("CUDA_ERROR_FILE_NOT_FOUND", ("hipErrorFileNotFound", CONV_TYPE, API_DRIVER)), ("CUDA_ERROR_NOT_FOUND", ("hipErrorNotFound", CONV_TYPE, API_DRIVER)), ("CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING", ("hipErrorLaunchIncompatibleTexturing", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUDA_ERROR_PRIMARY_CONTEXT_ACTIVE", ("hipErrorPrimaryContextActive", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUDA_ERROR_CONTEXT_IS_DESTROYED", ("hipErrorContextIsDestroyed", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUDA_ERROR_NOT_PERMITTED", ("hipErrorNotPermitted", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUDA_ERROR_NOT_SUPPORTED", ("hipErrorNotSupported", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("cudaErrorMissingConfiguration", ("hipErrorMissingConfiguration", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorPriorLaunchFailure", ("hipErrorPriorLaunchFailure", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorInvalidDeviceFunction", ("hipErrorInvalidDeviceFunction", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorInvalidConfiguration", ("hipErrorInvalidConfiguration", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorInvalidPitchValue", ("hipErrorInvalidPitchValue", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorInvalidSymbol", ("hipErrorInvalidSymbol", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorInvalidHostPointer", ("hipErrorInvalidHostPointer", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorInvalidDevicePointer", ("hipErrorInvalidDevicePointer", CONV_TYPE, API_RUNTIME)), ("cudaErrorInvalidTexture", ("hipErrorInvalidTexture", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorInvalidTextureBinding", ("hipErrorInvalidTextureBinding", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorInvalidChannelDescriptor", ("hipErrorInvalidChannelDescriptor", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorInvalidMemcpyDirection", ("hipErrorInvalidMemcpyDirection", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorAddressOfConstant", ("hipErrorAddressOfConstant", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorTextureFetchFailed", ("hipErrorTextureFetchFailed", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorTextureNotBound", ("hipErrorTextureNotBound", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorSynchronizationError", ("hipErrorSynchronizationError", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorInvalidFilterSetting", ("hipErrorInvalidFilterSetting", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorInvalidNormSetting", ("hipErrorInvalidNormSetting", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorMixedDeviceExecution", ("hipErrorMixedDeviceExecution", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorNotYetImplemented", ("hipErrorNotYetImplemented", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorMemoryValueTooLarge", ("hipErrorMemoryValueTooLarge", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorInsufficientDriver", ("hipErrorInsufficientDriver", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorSetOnActiveProcess", ("hipErrorSetOnActiveProcess", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorInvalidSurface", ("hipErrorInvalidSurface", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorDuplicateVariableName", ("hipErrorDuplicateVariableName", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorDuplicateTextureName", ("hipErrorDuplicateTextureName", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorDuplicateSurfaceName", ("hipErrorDuplicateSurfaceName", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorDevicesUnavailable", ("hipErrorDevicesUnavailable", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorIncompatibleDriverContext", ("hipErrorIncompatibleDriverContext", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorDeviceAlreadyInUse", ("hipErrorDeviceAlreadyInUse", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorLaunchMaxDepthExceeded", ("hipErrorLaunchMaxDepthExceeded", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorLaunchFileScopedTex", ("hipErrorLaunchFileScopedTex", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorLaunchFileScopedSurf", ("hipErrorLaunchFileScopedSurf", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorSyncDepthExceeded", ("hipErrorSyncDepthExceeded", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorLaunchPendingCountExceeded", ("hipErrorLaunchPendingCountExceeded", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorNotPermitted", ("hipErrorNotPermitted", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorNotSupported", ("hipErrorNotSupported", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorStartupFailure", ("hipErrorStartupFailure", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaErrorApiFailureBase", ("hipErrorApiFailureBase", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_SUCCESS", ("hipSuccess", CONV_TYPE, API_DRIVER)), ("cudaSuccess", ("hipSuccess", CONV_TYPE, API_RUNTIME)), ("CUDA_ERROR_INVALID_VALUE", ("hipErrorInvalidValue", CONV_TYPE, API_DRIVER)), ("cudaErrorInvalidValue", ("hipErrorInvalidValue", CONV_TYPE, API_RUNTIME)), ("CUDA_ERROR_OUT_OF_MEMORY", ("hipErrorMemoryAllocation", CONV_TYPE, API_DRIVER)), ("cudaErrorMemoryAllocation", ("hipErrorMemoryAllocation", CONV_TYPE, API_RUNTIME)), ("CUDA_ERROR_NOT_INITIALIZED", ("hipErrorNotInitialized", CONV_TYPE, API_DRIVER)), ("cudaErrorInitializationError", ("hipErrorInitializationError", CONV_TYPE, API_RUNTIME)), ("CUDA_ERROR_DEINITIALIZED", ("hipErrorDeinitialized", CONV_TYPE, API_DRIVER)), ("cudaErrorCudartUnloading", ("hipErrorDeinitialized", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_ERROR_PROFILER_DISABLED", ("hipErrorProfilerDisabled", CONV_TYPE, API_DRIVER)), ("cudaErrorProfilerDisabled", ("hipErrorProfilerDisabled", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_ERROR_PROFILER_NOT_INITIALIZED", ("hipErrorProfilerNotInitialized", CONV_TYPE, API_DRIVER)), ("cudaErrorProfilerNotInitialized", ("hipErrorProfilerNotInitialized", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_ERROR_PROFILER_ALREADY_STARTED", ("hipErrorProfilerAlreadyStarted", CONV_TYPE, API_DRIVER)), ("cudaErrorProfilerAlreadyStarted", ("hipErrorProfilerAlreadyStarted", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_ERROR_PROFILER_ALREADY_STOPPED", ("hipErrorProfilerAlreadyStopped", CONV_TYPE, API_DRIVER)), ("cudaErrorProfilerAlreadyStopped", ("hipErrorProfilerAlreadyStopped", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_ERROR_NO_DEVICE", ("hipErrorNoDevice", CONV_TYPE, API_DRIVER)), ("cudaErrorNoDevice", ("hipErrorNoDevice", CONV_TYPE, API_RUNTIME)), ("CUDA_ERROR_INVALID_DEVICE", ("hipErrorInvalidDevice", CONV_TYPE, API_DRIVER)), ("cudaErrorInvalidDevice", ("hipErrorInvalidDevice", CONV_TYPE, API_RUNTIME)), ("CUDA_ERROR_INVALID_IMAGE", ("hipErrorInvalidImage", CONV_TYPE, API_DRIVER)), ("cudaErrorInvalidKernelImage", ("hipErrorInvalidImage", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_ERROR_MAP_FAILED", ("hipErrorMapFailed", CONV_TYPE, API_DRIVER)), ("cudaErrorMapBufferObjectFailed", ("hipErrorMapFailed", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_ERROR_UNMAP_FAILED", ("hipErrorUnmapFailed", CONV_TYPE, API_DRIVER)), ("cudaErrorUnmapBufferObjectFailed", ("hipErrorUnmapFailed", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_ERROR_NO_BINARY_FOR_GPU", ("hipErrorNoBinaryForGpu", CONV_TYPE, API_DRIVER)), ("cudaErrorNoKernelImageForDevice", ("hipErrorNoBinaryForGpu", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_ERROR_ECC_UNCORRECTABLE", ("hipErrorECCNotCorrectable", CONV_TYPE, API_DRIVER)), ("cudaErrorECCUncorrectable", ("hipErrorECCNotCorrectable", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_ERROR_UNSUPPORTED_LIMIT", ("hipErrorUnsupportedLimit", CONV_TYPE, API_DRIVER)), ("cudaErrorUnsupportedLimit", ("hipErrorUnsupportedLimit", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_ERROR_PEER_ACCESS_UNSUPPORTED", ("hipErrorPeerAccessUnsupported", CONV_TYPE, API_DRIVER)), ("cudaErrorPeerAccessUnsupported", ("hipErrorPeerAccessUnsupported", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_ERROR_INVALID_PTX", ("hipErrorInvalidKernelFile", CONV_TYPE, API_DRIVER)), ("cudaErrorInvalidPtx", ("hipErrorInvalidKernelFile", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_ERROR_INVALID_GRAPHICS_CONTEXT", ("hipErrorInvalidGraphicsContext", CONV_TYPE, API_DRIVER)), ("cudaErrorInvalidGraphicsContext", ("hipErrorInvalidGraphicsContext", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_ERROR_NVLINK_UNCORRECTABLE", ("hipErrorNvlinkUncorrectable", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("cudaErrorNvlinkUncorrectable", ("hipErrorNvlinkUncorrectable", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND", ("hipErrorSharedObjectSymbolNotFound", CONV_TYPE, API_DRIVER)), ("cudaErrorSharedObjectSymbolNotFound", ("hipErrorSharedObjectSymbolNotFound", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_ERROR_SHARED_OBJECT_INIT_FAILED", ("hipErrorSharedObjectInitFailed", CONV_TYPE, API_DRIVER)), ("cudaErrorSharedObjectInitFailed", ("hipErrorSharedObjectInitFailed", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_ERROR_OPERATING_SYSTEM", ("hipErrorOperatingSystem", CONV_TYPE, API_DRIVER)), ("cudaErrorOperatingSystem", ("hipErrorOperatingSystem", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_ERROR_INVALID_HANDLE", ("hipErrorInvalidResourceHandle", CONV_TYPE, API_DRIVER)), ("cudaErrorInvalidResourceHandle", ("hipErrorInvalidResourceHandle", CONV_TYPE, API_RUNTIME)), ("CUDA_ERROR_NOT_READY", ("hipErrorNotReady", CONV_TYPE, API_DRIVER)), ("cudaErrorNotReady", ("hipErrorNotReady", CONV_TYPE, API_RUNTIME)), ("CUDA_ERROR_ILLEGAL_ADDRESS", ("hipErrorIllegalAddress", CONV_TYPE, API_DRIVER)), ("cudaErrorIllegalAddress", ("hipErrorIllegalAddress", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES", ("hipErrorLaunchOutOfResources", CONV_TYPE, API_DRIVER)), ("cudaErrorLaunchOutOfResources", ("hipErrorLaunchOutOfResources", CONV_TYPE, API_RUNTIME)), ("CUDA_ERROR_LAUNCH_TIMEOUT", ("hipErrorLaunchTimeOut", CONV_TYPE, API_DRIVER)), ("cudaErrorLaunchTimeout", ("hipErrorLaunchTimeOut", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_ERROR_PEER_ACCESS_ALREADY_ENABLED", ("hipErrorPeerAccessAlreadyEnabled", CONV_TYPE, API_DRIVER)), ("cudaErrorPeerAccessAlreadyEnabled", ("hipErrorPeerAccessAlreadyEnabled", CONV_TYPE, API_RUNTIME)), ("CUDA_ERROR_PEER_ACCESS_NOT_ENABLED", ("hipErrorPeerAccessNotEnabled", CONV_TYPE, API_DRIVER)), ("cudaErrorPeerAccessNotEnabled", ("hipErrorPeerAccessNotEnabled", CONV_TYPE, API_RUNTIME)), ("CUDA_ERROR_ASSERT", ("hipErrorAssert", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("cudaErrorAssert", ("hipErrorAssert", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_ERROR_TOO_MANY_PEERS", ("hipErrorTooManyPeers", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("cudaErrorTooManyPeers", ("hipErrorTooManyPeers", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_ERROR_HOST_MEMORY_ALREADY_REGISTERED", ("hipErrorHostMemoryAlreadyRegistered", CONV_TYPE, API_DRIVER)), ("cudaErrorHostMemoryAlreadyRegistered", ("hipErrorHostMemoryAlreadyRegistered", CONV_TYPE, API_RUNTIME)), ("CUDA_ERROR_HOST_MEMORY_NOT_REGISTERED", ("hipErrorHostMemoryNotRegistered", CONV_TYPE, API_DRIVER)), ("cudaErrorHostMemoryNotRegistered", ("hipErrorHostMemoryNotRegistered", CONV_TYPE, API_RUNTIME)), ("CUDA_ERROR_HARDWARE_STACK_ERROR", ("hipErrorHardwareStackError", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("cudaErrorHardwareStackError", ("hipErrorHardwareStackError", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_ERROR_ILLEGAL_INSTRUCTION", ("hipErrorIllegalInstruction", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("cudaErrorIllegalInstruction", ("hipErrorIllegalInstruction", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_ERROR_MISALIGNED_ADDRESS", ("hipErrorMisalignedAddress", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("cudaErrorMisalignedAddress", ("hipErrorMisalignedAddress", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_ERROR_INVALID_ADDRESS_SPACE", ("hipErrorInvalidAddressSpace", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("cudaErrorInvalidAddressSpace", ("hipErrorInvalidAddressSpace", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_ERROR_INVALID_PC", ("hipErrorInvalidPc", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("cudaErrorInvalidPc", ("hipErrorInvalidPc", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_ERROR_LAUNCH_FAILED", ("hipErrorLaunchFailure", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("cudaErrorLaunchFailure", ("hipErrorLaunchFailure", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_ERROR_UNKNOWN", ("hipErrorUnknown", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("cudaErrorUnknown", ("hipErrorUnknown", CONV_TYPE, API_RUNTIME)), ("CU_TR_ADDRESS_MODE_WRAP", ("HIP_TR_ADDRESS_MODE_WRAP", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_TR_ADDRESS_MODE_CLAMP", ("HIP_TR_ADDRESS_MODE_CLAMP", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_TR_ADDRESS_MODE_MIRROR", ("HIP_TR_ADDRESS_MODE_MIRROR", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_TR_ADDRESS_MODE_BORDER", ("HIP_TR_ADDRESS_MODE_BORDER", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_CUBEMAP_FACE_POSITIVE_X", ("HIP_CUBEMAP_FACE_POSITIVE_X", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_CUBEMAP_FACE_NEGATIVE_X", ("HIP_CUBEMAP_FACE_NEGATIVE_X", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_CUBEMAP_FACE_POSITIVE_Y", ("HIP_CUBEMAP_FACE_POSITIVE_Y", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_CUBEMAP_FACE_NEGATIVE_Y", ("HIP_CUBEMAP_FACE_NEGATIVE_Y", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_CUBEMAP_FACE_POSITIVE_Z", ("HIP_CUBEMAP_FACE_POSITIVE_Z", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_CUBEMAP_FACE_NEGATIVE_Z", ("HIP_CUBEMAP_FACE_NEGATIVE_Z", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_AD_FORMAT_UNSIGNED_INT8", ("HIP_AD_FORMAT_UNSIGNED_INT8", CONV_TYPE, API_DRIVER)), ("CU_AD_FORMAT_UNSIGNED_INT16", ("HIP_AD_FORMAT_UNSIGNED_INT16", CONV_TYPE, API_DRIVER)), ("CU_AD_FORMAT_UNSIGNED_INT32", ("HIP_AD_FORMAT_UNSIGNED_INT32", CONV_TYPE, API_DRIVER)), ("CU_AD_FORMAT_SIGNED_INT8", ("HIP_AD_FORMAT_SIGNED_INT8", CONV_TYPE, API_DRIVER)), ("CU_AD_FORMAT_SIGNED_INT16", ("HIP_AD_FORMAT_SIGNED_INT16", CONV_TYPE, API_DRIVER)), ("CU_AD_FORMAT_SIGNED_INT32", ("HIP_AD_FORMAT_SIGNED_INT32", CONV_TYPE, API_DRIVER)), ("CU_AD_FORMAT_HALF", ("HIP_AD_FORMAT_HALF", CONV_TYPE, API_DRIVER)), ("CU_AD_FORMAT_FLOAT", ("HIP_AD_FORMAT_FLOAT", CONV_TYPE, API_DRIVER)), ("CU_COMPUTEMODE_DEFAULT", ("hipComputeModeDefault", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_COMPUTEMODE_EXCLUSIVE", ("hipComputeModeExclusive", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_COMPUTEMODE_PROHIBITED", ("hipComputeModeProhibited", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_COMPUTEMODE_EXCLUSIVE_PROCESS", ("hipComputeModeExclusiveProcess", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_MEM_ADVISE_SET_READ_MOSTLY", ("hipMemAdviseSetReadMostly", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_MEM_ADVISE_UNSET_READ_MOSTLY", ("hipMemAdviseUnsetReadMostly", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_MEM_ADVISE_SET_PREFERRED_LOCATION", ("hipMemAdviseSetPreferredLocation", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_MEM_ADVISE_UNSET_PREFERRED_LOCATION", ("hipMemAdviseUnsetPreferredLocation", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_MEM_ADVISE_SET_ACCESSED_BY", ("hipMemAdviseSetAccessedBy", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_MEM_ADVISE_UNSET_ACCESSED_BY", ("hipMemAdviseUnsetAccessedBy", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_MEM_RANGE_ATTRIBUTE_READ_MOSTLY", ("hipMemRangeAttributeReadMostly", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_MEM_RANGE_ATTRIBUTE_PREFERRED_LOCATION", ("hipMemRangeAttributePreferredLocation", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_MEM_RANGE_ATTRIBUTE_ACCESSED_BY", ("hipMemRangeAttributeAccessedBy", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_MEM_RANGE_ATTRIBUTE_LAST_PREFETCH_LOCATION", ("hipMemRangeAttributeLastPrefetchLocation", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_CTX_SCHED_AUTO", ("HIP_CTX_SCHED_AUTO", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_CTX_SCHED_SPIN", ("HIP_CTX_SCHED_SPIN", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_CTX_SCHED_YIELD", ("HIP_CTX_SCHED_YIELD", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_CTX_SCHED_BLOCKING_SYNC", ("HIP_CTX_SCHED_BLOCKING_SYNC", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_CTX_BLOCKING_SYNC", ("HIP_CTX_BLOCKING_SYNC", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_CTX_SCHED_MASK", ("HIP_CTX_SCHED_MASK", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_CTX_MAP_HOST", ("HIP_CTX_MAP_HOST", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_CTX_LMEM_RESIZE_TO_MAX", ("HIP_CTX_LMEM_RESIZE_TO_MAX", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_CTX_FLAGS_MASK", ("HIP_CTX_FLAGS_MASK", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_LAUNCH_PARAM_BUFFER_POINTER", ("HIP_LAUNCH_PARAM_BUFFER_POINTER", CONV_TYPE, API_DRIVER)), ("CU_LAUNCH_PARAM_BUFFER_SIZE", ("HIP_LAUNCH_PARAM_BUFFER_SIZE", CONV_TYPE, API_DRIVER)), ("CU_LAUNCH_PARAM_END", ("HIP_LAUNCH_PARAM_END", CONV_TYPE, API_DRIVER)), ("CU_IPC_HANDLE_SIZE", ("HIP_LAUNCH_PARAM_END", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_MEMHOSTALLOC_DEVICEMAP", ("HIP_MEMHOSTALLOC_DEVICEMAP", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_MEMHOSTALLOC_PORTABLE", ("HIP_MEMHOSTALLOC_PORTABLE", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_MEMHOSTALLOC_WRITECOMBINED", ("HIP_MEMHOSTALLOC_WRITECOMBINED", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_MEMHOSTREGISTER_DEVICEMAP", ("HIP_MEMHOSTREGISTER_DEVICEMAP", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_MEMHOSTREGISTER_IOMEMORY", ("HIP_MEMHOSTREGISTER_IOMEMORY", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_MEMHOSTREGISTER_PORTABLE", ("HIP_MEMHOSTREGISTER_PORTABLE", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_PARAM_TR_DEFAULT", ("HIP_PARAM_TR_DEFAULT", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_STREAM_LEGACY", ("HIP_STREAM_LEGACY", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_STREAM_PER_THREAD", ("HIP_STREAM_PER_THREAD", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_TRSA_OVERRIDE_FORMAT", ("HIP_TRSA_OVERRIDE_FORMAT", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_TRSF_NORMALIZED_COORDINATES", ("HIP_TRSF_NORMALIZED_COORDINATES", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_TRSF_READ_AS_INTEGER", ("HIP_TRSF_READ_AS_INTEGER", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_TRSF_SRGB", ("HIP_TRSF_SRGB", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUDA_ARRAY3D_2DARRAY", ("HIP_ARRAY3D_LAYERED", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUDA_ARRAY3D_CUBEMAP", ("HIP_ARRAY3D_CUBEMAP", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUDA_ARRAY3D_DEPTH_TEXTURE", ("HIP_ARRAY3D_DEPTH_TEXTURE", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUDA_ARRAY3D_LAYERED", ("HIP_ARRAY3D_LAYERED", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUDA_ARRAY3D_SURFACE_LDST", ("HIP_ARRAY3D_SURFACE_LDST", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUDA_ARRAY3D_TEXTURE_GATHER", ("HIP_ARRAY3D_TEXTURE_GATHER", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), # ("CUDA_VERSION", ("HIP_VERSION", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK", ("hipDeviceAttributeMaxThreadsPerBlock", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X", ("hipDeviceAttributeMaxBlockDimX", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y", ("hipDeviceAttributeMaxBlockDimY", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z", ("hipDeviceAttributeMaxBlockDimZ", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X", ("hipDeviceAttributeMaxGridDimX", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Y", ("hipDeviceAttributeMaxGridDimY", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Z", ("hipDeviceAttributeMaxGridDimZ", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK", ("hipDeviceAttributeMaxSharedMemoryPerBlock", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_SHARED_MEMORY_PER_BLOCK", ("hipDeviceAttributeMaxSharedMemoryPerBlock", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_TOTAL_CONSTANT_MEMORY", ("hipDeviceAttributeTotalConstantMemory", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_WARP_SIZE", ("hipDeviceAttributeWarpSize", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAX_PITCH", ("hipDeviceAttributeMaxPitch", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_BLOCK", ("hipDeviceAttributeMaxRegistersPerBlock", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_REGISTERS_PER_BLOCK", ("hipDeviceAttributeMaxRegistersPerBlock", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_CLOCK_RATE", ("hipDeviceAttributeClockRate", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT", ("hipDeviceAttributeTextureAlignment", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_GPU_OVERLAP", ("hipDeviceAttributeAsyncEngineCount", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT", ("hipDeviceAttributeMultiprocessorCount", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT", ("hipDeviceAttributeKernelExecTimeout", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_INTEGRATED", ("hipDeviceAttributeIntegrated", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY", ("hipDeviceAttributeCanMapHostMemory", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_COMPUTE_MODE", ("hipDeviceAttributeComputeMode", CONV_TYPE, API_DRIVER)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_WIDTH", ("hipDeviceAttributeMaxTexture1DWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_WIDTH", ("hipDeviceAttributeMaxTexture2DWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_HEIGHT", ("hipDeviceAttributeMaxTexture2DHeight", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_WIDTH", ("hipDeviceAttributeMaxTexture3DWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_HEIGHT", ("hipDeviceAttributeMaxTexture3DHeight", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_DEPTH", ("hipDeviceAttributeMaxTexture3DDepth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_WIDTH", ("hipDeviceAttributeMaxTexture2DLayeredWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_HEIGHT", ("hipDeviceAttributeMaxTexture2DLayeredHeight", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_LAYERS", ("hipDeviceAttributeMaxTexture2DLayeredLayers", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_ARRAY_WIDTH", ("hipDeviceAttributeMaxTexture2DLayeredWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_ARRAY_HEIGHT", ("hipDeviceAttributeMaxTexture2DLayeredHeight", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_ARRAY_NUMSLICES", ("hipDeviceAttributeMaxTexture2DLayeredLayers", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_SURFACE_ALIGNMENT", ("hipDeviceAttributeSurfaceAlignment", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_CONCURRENT_KERNELS", ("hipDeviceAttributeConcurrentKernels", CONV_TYPE, API_DRIVER)), ("CU_DEVICE_ATTRIBUTE_ECC_ENABLED", ("hipDeviceAttributeEccEnabled", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_PCI_BUS_ID", ("hipDeviceAttributePciBusId", CONV_TYPE, API_DRIVER)), ("CU_DEVICE_ATTRIBUTE_PCI_DEVICE_ID", ("hipDeviceAttributePciDeviceId", CONV_TYPE, API_DRIVER)), ("CU_DEVICE_ATTRIBUTE_TCC_DRIVER", ("hipDeviceAttributeTccDriver", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE", ("hipDeviceAttributeMemoryClockRate", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH", ("hipDeviceAttributeMemoryBusWidth", CONV_TYPE, API_DRIVER)), ("CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE", ("hipDeviceAttributeL2CacheSize", CONV_TYPE, API_DRIVER)), ("CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR", ("hipDeviceAttributeMaxThreadsPerMultiProcessor", CONV_TYPE, API_DRIVER)), ("CU_DEVICE_ATTRIBUTE_ASYNC_ENGINE_COUNT", ("hipDeviceAttributeAsyncEngineCount", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_UNIFIED_ADDRESSING", ("hipDeviceAttributeUnifiedAddressing", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LAYERED_WIDTH", ("hipDeviceAttributeMaxTexture1DLayeredWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LAYERED_LAYERS", ("hipDeviceAttributeMaxTexture1DLayeredLayers", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_CAN_TEX2D_GATHER", ("hipDeviceAttributeCanTex2DGather", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_GATHER_WIDTH", ("hipDeviceAttributeMaxTexture2DGatherWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_GATHER_HEIGHT", ("hipDeviceAttributeMaxTexture2DGatherHeight", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_WIDTH_ALTERNATE", ("hipDeviceAttributeMaxTexture3DWidthAlternate", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_HEIGHT_ALTERNATE", ("hipDeviceAttributeMaxTexture3DHeightAlternate", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_DEPTH_ALTERNATE", ("hipDeviceAttributeMaxTexture3DDepthAlternate", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_PCI_DOMAIN_ID", ("hipDeviceAttributePciDomainId", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_TEXTURE_PITCH_ALIGNMENT", ("hipDeviceAttributeTexturePitchAlignment", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURECUBEMAP_WIDTH", ("hipDeviceAttributeMaxTextureCubemapWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURECUBEMAP_LAYERED_WIDTH", ("hipDeviceAttributeMaxTextureCubemapLayeredWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURECUBEMAP_LAYERED_LAYERS", ("hipDeviceAttributeMaxTextureCubemapLayeredLayers", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE1D_WIDTH", ("hipDeviceAttributeMaxSurface1DWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_WIDTH", ("hipDeviceAttributeMaxSurface2DWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_HEIGHT", ("hipDeviceAttributeMaxSurface2DHeight", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE3D_WIDTH", ("hipDeviceAttributeMaxSurface3DWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE3D_HEIGHT", ("hipDeviceAttributeMaxSurface3DHeight", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE3D_DEPTH", ("hipDeviceAttributeMaxSurface3DDepth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE1D_LAYERED_WIDTH", ("hipDeviceAttributeMaxSurface1DLayeredWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE1D_LAYERED_LAYERS", ("hipDeviceAttributeMaxSurface1DLayeredLayers", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_LAYERED_WIDTH", ("hipDeviceAttributeMaxSurface2DLayeredWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_LAYERED_HEIGHT", ("hipDeviceAttributeMaxSurface2DLayeredHeight", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_LAYERED_LAYERS", ("hipDeviceAttributeMaxSurface2DLayeredLayers", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACECUBEMAP_WIDTH", ("hipDeviceAttributeMaxSurfaceCubemapWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACECUBEMAP_LAYERED_WIDTH", ("hipDeviceAttributeMaxSurfaceCubemapLayeredWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACECUBEMAP_LAYERED_LAYERS", ("hipDeviceAttributeMaxSurfaceCubemapLayeredLayers", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LINEAR_WIDTH", ("hipDeviceAttributeMaxTexture1DLinearWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LINEAR_WIDTH", ("hipDeviceAttributeMaxTexture2DLinearWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LINEAR_HEIGHT", ("hipDeviceAttributeMaxTexture2DLinearHeight", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LINEAR_PITCH", ("hipDeviceAttributeMaxTexture2DLinearPitch", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_MIPMAPPED_WIDTH", ("hipDeviceAttributeMaxTexture2DMipmappedWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_MIPMAPPED_HEIGHT", ("hipDeviceAttributeMaxTexture2DMipmappedHeight", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR", ("hipDeviceAttributeComputeCapabilityMajor", CONV_TYPE, API_DRIVER)), ("CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR", ("hipDeviceAttributeComputeCapabilityMinor", CONV_TYPE, API_DRIVER)), ("CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_MIPMAPPED_WIDTH", ("hipDeviceAttributeMaxTexture1DMipmappedWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_STREAM_PRIORITIES_SUPPORTED", ("hipDeviceAttributeStreamPrioritiesSupported", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_GLOBAL_L1_CACHE_SUPPORTED", ("hipDeviceAttributeGlobalL1CacheSupported", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_LOCAL_L1_CACHE_SUPPORTED", ("hipDeviceAttributeLocalL1CacheSupported", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_MULTIPROCESSOR", ("hipDeviceAttributeMaxSharedMemoryPerMultiprocessor", CONV_TYPE, API_DRIVER)), ("CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_MULTIPROCESSOR", ("hipDeviceAttributeMaxRegistersPerMultiprocessor", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MANAGED_MEMORY", ("hipDeviceAttributeManagedMemory", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MULTI_GPU_BOARD", ("hipDeviceAttributeIsMultiGpuBoard", CONV_TYPE, API_DRIVER)), ("CU_DEVICE_ATTRIBUTE_MULTI_GPU_BOARD_GROUP_ID", ("hipDeviceAttributeMultiGpuBoardGroupId", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_HOST_NATIVE_ATOMIC_SUPPORTED", ("hipDeviceAttributeHostNativeAtomicSupported", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_SINGLE_TO_DOUBLE_PRECISION_PERF_RATIO", ("hipDeviceAttributeSingleToDoublePrecisionPerfRatio", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_PAGEABLE_MEMORY_ACCESS", ("hipDeviceAttributePageableMemoryAccess", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_CONCURRENT_MANAGED_ACCESS", ("hipDeviceAttributeConcurrentManagedAccess", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_COMPUTE_PREEMPTION_SUPPORTED", ("hipDeviceAttributeComputePreemptionSupported", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_CAN_USE_HOST_POINTER_FOR_REGISTERED_MEM", ("hipDeviceAttributeCanUseHostPointerForRegisteredMem", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_ATTRIBUTE_MAX", ("hipDeviceAttributeMax", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_POINTER_ATTRIBUTE_CONTEXT", ("hipPointerAttributeContext", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_POINTER_ATTRIBUTE_MEMORY_TYPE", ("hipPointerAttributeMemoryType", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_POINTER_ATTRIBUTE_DEVICE_POINTER", ("hipPointerAttributeDevicePointer", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_POINTER_ATTRIBUTE_HOST_POINTER", ("hipPointerAttributeHostPointer", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_POINTER_ATTRIBUTE_P2P_TOKENS", ("hipPointerAttributeP2pTokens", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_POINTER_ATTRIBUTE_SYNC_MEMOPS", ("hipPointerAttributeSyncMemops", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_POINTER_ATTRIBUTE_BUFFER_ID", ("hipPointerAttributeBufferId", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_POINTER_ATTRIBUTE_IS_MANAGED", ("hipPointerAttributeIsManaged", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK", ("hipFuncAttributeMaxThreadsPerBlocks", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_FUNC_ATTRIBUTE_SHARED_SIZE_BYTES", ("hipFuncAttributeSharedSizeBytes", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_FUNC_ATTRIBUTE_CONST_SIZE_BYTES", ("hipFuncAttributeConstSizeBytes", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_FUNC_ATTRIBUTE_LOCAL_SIZE_BYTES", ("hipFuncAttributeLocalSizeBytes", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_FUNC_ATTRIBUTE_NUM_REGS", ("hipFuncAttributeNumRegs", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_FUNC_ATTRIBUTE_PTX_VERSION", ("hipFuncAttributePtxVersion", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_FUNC_ATTRIBUTE_BINARY_VERSION", ("hipFuncAttributeBinaryVersion", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_FUNC_ATTRIBUTE_CACHE_MODE_CA", ("hipFuncAttributeCacheModeCA", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_FUNC_ATTRIBUTE_MAX", ("hipFuncAttributeMax", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_GRAPHICS_MAP_RESOURCE_FLAGS_NONE", ("hipGraphicsMapFlagsNone", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_GRAPHICS_MAP_RESOURCE_FLAGS_READ_ONLY", ("hipGraphicsMapFlagsReadOnly", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_GRAPHICS_MAP_RESOURCE_FLAGS_WRITE_DISCARD", ("hipGraphicsMapFlagsWriteDiscard", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_GRAPHICS_REGISTER_FLAGS_NONE", ("hipGraphicsRegisterFlagsNone", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_GRAPHICS_REGISTER_FLAGS_READ_ONLY", ("hipGraphicsRegisterFlagsReadOnly", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_GRAPHICS_REGISTER_FLAGS_WRITE_DISCARD", ("hipGraphicsRegisterFlagsWriteDiscard", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_GRAPHICS_REGISTER_FLAGS_SURFACE_LDST", ("hipGraphicsRegisterFlagsSurfaceLoadStore", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_GRAPHICS_REGISTER_FLAGS_TEXTURE_GATHER", ("hipGraphicsRegisterFlagsTextureGather", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_OCCUPANCY_DEFAULT", ("hipOccupancyDefault", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_OCCUPANCY_DISABLE_CACHING_OVERRIDE", ("hipOccupancyDisableCachingOverride", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_FUNC_CACHE_PREFER_NONE", ("hipFuncCachePreferNone", CONV_CACHE, API_DRIVER)), ("CU_FUNC_CACHE_PREFER_SHARED", ("hipFuncCachePreferShared", CONV_CACHE, API_DRIVER)), ("CU_FUNC_CACHE_PREFER_L1", ("hipFuncCachePreferL1", CONV_CACHE, API_DRIVER)), ("CU_FUNC_CACHE_PREFER_EQUAL", ("hipFuncCachePreferEqual", CONV_CACHE, API_DRIVER)), ("CU_IPC_MEM_LAZY_ENABLE_PEER_ACCESS", ("hipIpcMemLazyEnablePeerAccess", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUDA_IPC_HANDLE_SIZE", ("HIP_IPC_HANDLE_SIZE", CONV_TYPE, API_DRIVER)), ("CU_JIT_CACHE_OPTION_NONE", ("hipJitCacheModeOptionNone", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CU_JIT_CACHE_OPTION_CG", ("hipJitCacheModeOptionCG", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CU_JIT_CACHE_OPTION_CA", ("hipJitCacheModeOptionCA", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CU_PREFER_PTX", ("hipJitFallbackPreferPtx", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CU_PREFER_BINARY", ("hipJitFallbackPreferBinary", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CU_JIT_MAX_REGISTERS", ("hipJitOptionMaxRegisters", CONV_JIT, API_DRIVER)), ("CU_JIT_THREADS_PER_BLOCK", ("hipJitOptionThreadsPerBlock", CONV_JIT, API_DRIVER)), ("CU_JIT_WALL_TIME", ("hipJitOptionWallTime", CONV_JIT, API_DRIVER)), ("CU_JIT_INFO_LOG_BUFFER", ("hipJitOptionInfoLogBuffer", CONV_JIT, API_DRIVER)), ("CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES", ("hipJitOptionInfoLogBufferSizeBytes", CONV_JIT, API_DRIVER)), ("CU_JIT_ERROR_LOG_BUFFER", ("hipJitOptionErrorLogBuffer", CONV_JIT, API_DRIVER)), ("CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES", ("hipJitOptionErrorLogBufferSizeBytes", CONV_JIT, API_DRIVER)), ("CU_JIT_OPTIMIZATION_LEVEL", ("hipJitOptionOptimizationLevel", CONV_JIT, API_DRIVER)), ("CU_JIT_TARGET_FROM_CUCONTEXT", ("hipJitOptionTargetFromContext", CONV_JIT, API_DRIVER)), ("CU_JIT_TARGET", ("hipJitOptionTarget", CONV_JIT, API_DRIVER)), ("CU_JIT_FALLBACK_STRATEGY", ("hipJitOptionFallbackStrategy", CONV_JIT, API_DRIVER)), ("CU_JIT_GENERATE_DEBUG_INFO", ("hipJitOptionGenerateDebugInfo", CONV_JIT, API_DRIVER)), ("CU_JIT_LOG_VERBOSE", ("hipJitOptionLogVerbose", CONV_JIT, API_DRIVER)), ("CU_JIT_GENERATE_LINE_INFO", ("hipJitOptionGenerateLineInfo", CONV_JIT, API_DRIVER)), ("CU_JIT_CACHE_MODE", ("hipJitOptionCacheMode", CONV_JIT, API_DRIVER)), ("CU_JIT_NEW_SM3X_OPT", ("hipJitOptionSm3xOpt", CONV_JIT, API_DRIVER)), ("CU_JIT_FAST_COMPILE", ("hipJitOptionFastCompile", CONV_JIT, API_DRIVER)), ("CU_JIT_NUM_OPTIONS", ("hipJitOptionNumOptions", CONV_JIT, API_DRIVER)), ("CU_TARGET_COMPUTE_10", ("hipJitTargetCompute10", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CU_TARGET_COMPUTE_11", ("hipJitTargetCompute11", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CU_TARGET_COMPUTE_12", ("hipJitTargetCompute12", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CU_TARGET_COMPUTE_13", ("hipJitTargetCompute13", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CU_TARGET_COMPUTE_20", ("hipJitTargetCompute20", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CU_TARGET_COMPUTE_21", ("hipJitTargetCompute21", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CU_TARGET_COMPUTE_30", ("hipJitTargetCompute30", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CU_TARGET_COMPUTE_32", ("hipJitTargetCompute32", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CU_TARGET_COMPUTE_35", ("hipJitTargetCompute35", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CU_TARGET_COMPUTE_37", ("hipJitTargetCompute37", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CU_TARGET_COMPUTE_50", ("hipJitTargetCompute50", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CU_TARGET_COMPUTE_52", ("hipJitTargetCompute52", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CU_TARGET_COMPUTE_53", ("hipJitTargetCompute53", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CU_TARGET_COMPUTE_60", ("hipJitTargetCompute60", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CU_TARGET_COMPUTE_61", ("hipJitTargetCompute61", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CU_TARGET_COMPUTE_62", ("hipJitTargetCompute62", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CU_JIT_INPUT_CUBIN", ("hipJitInputTypeBin", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CU_JIT_INPUT_PTX", ("hipJitInputTypePtx", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CU_JIT_INPUT_FATBINARY", ("hipJitInputTypeFatBinary", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CU_JIT_INPUT_OBJECT", ("hipJitInputTypeObject", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CU_JIT_INPUT_LIBRARY", ("hipJitInputTypeLibrary", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CU_JIT_NUM_INPUT_TYPES", ("hipJitInputTypeNumInputTypes", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CU_LIMIT_STACK_SIZE", ("hipLimitStackSize", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_LIMIT_PRINTF_FIFO_SIZE", ("hipLimitPrintfFifoSize", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_LIMIT_MALLOC_HEAP_SIZE", ("hipLimitMallocHeapSize", CONV_TYPE, API_DRIVER)), ("CU_LIMIT_DEV_RUNTIME_SYNC_DEPTH", ("hipLimitDevRuntimeSyncDepth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_LIMIT_DEV_RUNTIME_PENDING_LAUNCH_COUNT", ("hipLimitDevRuntimePendingLaunchCount", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_LIMIT_STACK_SIZE", ("hipLimitStackSize", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_MEM_ATTACH_GLOBAL", ("hipMemAttachGlobal", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_MEM_ATTACH_HOST", ("hipMemAttachHost", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_MEM_ATTACH_SINGLE", ("hipMemAttachSingle", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_MEMORYTYPE_HOST", ("hipMemTypeHost", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_MEMORYTYPE_DEVICE", ("hipMemTypeDevice", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_MEMORYTYPE_ARRAY", ("hipMemTypeArray", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_MEMORYTYPE_UNIFIED", ("hipMemTypeUnified", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_RESOURCE_TYPE_ARRAY", ("hipResourceTypeArray", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("CU_RESOURCE_TYPE_MIPMAPPED_ARRAY", ("hipResourceTypeMipmappedArray", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("CU_RESOURCE_TYPE_LINEAR", ("hipResourceTypeLinear", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("CU_RESOURCE_TYPE_PITCH2D", ("hipResourceTypePitch2D", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("CU_RES_VIEW_FORMAT_NONE", ("hipResViewFormatNone", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_UINT_1X8", ("hipResViewFormatUnsignedChar1", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_UINT_2X8", ("hipResViewFormatUnsignedChar2", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_UINT_4X8", ("hipResViewFormatUnsignedChar4", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_SINT_1X8", ("hipResViewFormatSignedChar1", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_SINT_2X8", ("hipResViewFormatSignedChar2", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_SINT_4X8", ("hipResViewFormatSignedChar4", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_UINT_1X16", ("hipResViewFormatUnsignedShort1", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_UINT_2X16", ("hipResViewFormatUnsignedShort2", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_UINT_4X16", ("hipResViewFormatUnsignedShort4", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_SINT_1X16", ("hipResViewFormatSignedShort1", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_SINT_2X16", ("hipResViewFormatSignedShort2", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_SINT_4X16", ("hipResViewFormatSignedShort4", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_UINT_1X32", ("hipResViewFormatUnsignedInt1", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_UINT_2X32", ("hipResViewFormatUnsignedInt2", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_UINT_4X32", ("hipResViewFormatUnsignedInt4", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_SINT_1X32", ("hipResViewFormatSignedInt1", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_SINT_2X32", ("hipResViewFormatSignedInt2", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_SINT_4X32", ("hipResViewFormatSignedInt4", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_FLOAT_1X16", ("hipResViewFormatHalf1", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_FLOAT_2X16", ("hipResViewFormatHalf2", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_FLOAT_4X16", ("hipResViewFormatHalf4", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_FLOAT_1X32", ("hipResViewFormatFloat1", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_FLOAT_2X32", ("hipResViewFormatFloat2", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_FLOAT_4X32", ("hipResViewFormatFloat4", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_UNSIGNED_BC1", ("hipResViewFormatUnsignedBlockCompressed1", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_UNSIGNED_BC2", ("hipResViewFormatUnsignedBlockCompressed2", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_UNSIGNED_BC3", ("hipResViewFormatUnsignedBlockCompressed3", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_UNSIGNED_BC4", ("hipResViewFormatUnsignedBlockCompressed4", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_SIGNED_BC4", ("hipResViewFormatSignedBlockCompressed4", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_UNSIGNED_BC5", ("hipResViewFormatUnsignedBlockCompressed5", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_SIGNED_BC5", ("hipResViewFormatSignedBlockCompressed5", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_UNSIGNED_BC6H", ("hipResViewFormatUnsignedBlockCompressed6H", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_SIGNED_BC6H", ("hipResViewFormatSignedBlockCompressed6H", CONV_TEX, API_DRIVER)), ("CU_RES_VIEW_FORMAT_UNSIGNED_BC7", ("hipResViewFormatUnsignedBlockCompressed7", CONV_TEX, API_DRIVER)), ("CU_SHARED_MEM_CONFIG_DEFAULT_BANK_SIZE", ("hipSharedMemBankSizeDefault", CONV_TYPE, API_DRIVER)), ("CU_SHARED_MEM_CONFIG_FOUR_BYTE_BANK_SIZE", ("hipSharedMemBankSizeFourByte", CONV_TYPE, API_DRIVER)), ("CU_SHARED_MEM_CONFIG_EIGHT_BYTE_BANK_SIZE", ("hipSharedMemBankSizeEightByte", CONV_TYPE, API_DRIVER)), ("CU_STREAM_DEFAULT", ("hipStreamDefault", CONV_TYPE, API_DRIVER)), ("CU_STREAM_NON_BLOCKING", ("hipStreamNonBlocking", CONV_TYPE, API_DRIVER)), ("CU_STREAM_WAIT_VALUE_GEQ", ("hipStreamWaitValueGeq", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_STREAM_WAIT_VALUE_EQ", ("hipStreamWaitValueEq", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_STREAM_WAIT_VALUE_AND", ("hipStreamWaitValueAnd", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_STREAM_WAIT_VALUE_FLUSH", ("hipStreamWaitValueFlush", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_STREAM_WRITE_VALUE_DEFAULT", ("hipStreamWriteValueDefault", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_STREAM_WRITE_VALUE_NO_MEMORY_BARRIER", ("hipStreamWriteValueNoMemoryBarrier", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_STREAM_MEM_OP_WAIT_VALUE_32", ("hipStreamBatchMemOpWaitValue32", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_STREAM_MEM_OP_WRITE_VALUE_32", ("hipStreamBatchMemOpWriteValue32", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_STREAM_MEM_OP_FLUSH_REMOTE_WRITES", ("hipStreamBatchMemOpFlushRemoteWrites", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("cuGetErrorName", ("hipGetErrorName___", CONV_ERROR, API_DRIVER, HIP_UNSUPPORTED)), ("cuGetErrorString", ("hipGetErrorString___", CONV_ERROR, API_DRIVER, HIP_UNSUPPORTED)), ("cuInit", ("hipInit", CONV_INIT, API_DRIVER)), ("cuDriverGetVersion", ("hipDriverGetVersion", CONV_VERSION, API_DRIVER)), ("cuCtxCreate_v2", ("hipCtxCreate", CONV_CONTEXT, API_DRIVER)), ("cuCtxDestroy_v2", ("hipCtxDestroy", CONV_CONTEXT, API_DRIVER)), ("cuCtxGetApiVersion", ("hipCtxGetApiVersion", CONV_CONTEXT, API_DRIVER)), ("cuCtxGetCacheConfig", ("hipCtxGetCacheConfig", CONV_CONTEXT, API_DRIVER)), ("cuCtxGetCurrent", ("hipCtxGetCurrent", CONV_CONTEXT, API_DRIVER)), ("cuCtxGetDevice", ("hipCtxGetDevice", CONV_CONTEXT, API_DRIVER)), ("cuCtxGetFlags", ("hipCtxGetFlags", CONV_CONTEXT, API_DRIVER)), ("cuCtxGetLimit", ("hipCtxGetLimit", CONV_CONTEXT, API_DRIVER, HIP_UNSUPPORTED)), ("cuCtxGetSharedMemConfig", ("hipCtxGetSharedMemConfig", CONV_CONTEXT, API_DRIVER)), ("cuCtxGetStreamPriorityRange", ("hipCtxGetStreamPriorityRange", CONV_CONTEXT, API_DRIVER, HIP_UNSUPPORTED)), ("cuCtxPopCurrent_v2", ("hipCtxPopCurrent", CONV_CONTEXT, API_DRIVER)), ("cuCtxPushCurrent_v2", ("hipCtxPushCurrent", CONV_CONTEXT, API_DRIVER)), ("cuCtxSetCacheConfig", ("hipCtxSetCacheConfig", CONV_CONTEXT, API_DRIVER)), ("cuCtxSetCurrent", ("hipCtxSetCurrent", CONV_CONTEXT, API_DRIVER)), ("cuCtxSetLimit", ("hipCtxSetLimit", CONV_CONTEXT, API_DRIVER, HIP_UNSUPPORTED)), ("cuCtxSetSharedMemConfig", ("hipCtxSetSharedMemConfig", CONV_CONTEXT, API_DRIVER)), ("cuCtxSynchronize", ("hipCtxSynchronize", CONV_CONTEXT, API_DRIVER)), ("cuCtxAttach", ("hipCtxAttach", CONV_CONTEXT, API_DRIVER, HIP_UNSUPPORTED)), ("cuCtxDetach", ("hipCtxDetach", CONV_CONTEXT, API_DRIVER, HIP_UNSUPPORTED)), ("cuCtxEnablePeerAccess", ("hipCtxEnablePeerAccess", CONV_PEER, API_DRIVER)), ("cuCtxDisablePeerAccess", ("hipCtxDisablePeerAccess", CONV_PEER, API_DRIVER)), ("cuDeviceCanAccessPeer", ("hipDeviceCanAccessPeer", CONV_PEER, API_DRIVER)), ("cuDeviceGetP2PAttribute", ("hipDeviceGetP2PAttribute", CONV_PEER, API_DRIVER, HIP_UNSUPPORTED)), ("cuDevicePrimaryCtxGetState", ("hipDevicePrimaryCtxGetState", CONV_CONTEXT, API_DRIVER)), ("cuDevicePrimaryCtxRelease", ("hipDevicePrimaryCtxRelease", CONV_CONTEXT, API_DRIVER)), ("cuDevicePrimaryCtxReset", ("hipDevicePrimaryCtxReset", CONV_CONTEXT, API_DRIVER)), ("cuDevicePrimaryCtxRetain", ("hipDevicePrimaryCtxRetain", CONV_CONTEXT, API_DRIVER)), ("cuDevicePrimaryCtxSetFlags", ("hipDevicePrimaryCtxSetFlags", CONV_CONTEXT, API_DRIVER)), ("cuDeviceGet", ("hipGetDevice", CONV_DEVICE, API_DRIVER)), ("cuDeviceGetName", ("hipDeviceGetName", CONV_DEVICE, API_DRIVER)), ("cuDeviceGetCount", ("hipGetDeviceCount", CONV_DEVICE, API_DRIVER)), ("cuDeviceGetAttribute", ("hipDeviceGetAttribute", CONV_DEVICE, API_DRIVER)), ("cuDeviceGetPCIBusId", ("hipDeviceGetPCIBusId", CONV_DEVICE, API_DRIVER)), ("cuDeviceGetByPCIBusId", ("hipDeviceGetByPCIBusId", CONV_DEVICE, API_DRIVER)), ("cuDeviceTotalMem_v2", ("hipDeviceTotalMem", CONV_DEVICE, API_DRIVER)), ("cuDeviceComputeCapability", ("hipDeviceComputeCapability", CONV_DEVICE, API_DRIVER)), ("cuDeviceGetProperties", ("hipGetDeviceProperties", CONV_DEVICE, API_DRIVER)), ("cuLinkAddData", ("hipLinkAddData", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED)), ("cuLinkAddFile", ("hipLinkAddFile", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED)), ("cuLinkComplete", ("hipLinkComplete", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED)), ("cuLinkCreate", ("hipLinkCreate", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED)), ("cuLinkDestroy", ("hipLinkDestroy", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED)), ("cuModuleGetFunction", ("hipModuleGetFunction", CONV_MODULE, API_DRIVER)), ("cuModuleGetGlobal_v2", ("hipModuleGetGlobal", CONV_MODULE, API_DRIVER)), ("cuModuleGetSurfRef", ("hipModuleGetSurfRef", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED)), ("cuModuleGetTexRef", ("hipModuleGetTexRef", CONV_MODULE, API_DRIVER)), ("cuModuleLoad", ("hipModuleLoad", CONV_MODULE, API_DRIVER)), ("cuModuleLoadData", ("hipModuleLoadData", CONV_MODULE, API_DRIVER)), ("cuModuleLoadDataEx", ("hipModuleLoadDataEx", CONV_MODULE, API_DRIVER)), ("cuModuleLoadFatBinary", ("hipModuleLoadFatBinary", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED)), ("cuModuleUnload", ("hipModuleUnload", CONV_MODULE, API_DRIVER)), ("CU_DEVICE_P2P_ATTRIBUTE_PERFORMANCE_RANK", ("hipDeviceP2PAttributePerformanceRank", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_P2P_ATTRIBUTE_ACCESS_SUPPORTED", ("hipDeviceP2PAttributeAccessSupported", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_DEVICE_P2P_ATTRIBUTE_NATIVE_ATOMIC_SUPPORTED", ("hipDeviceP2PAttributeNativeAtomicSupported", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CU_EVENT_DEFAULT", ("hipEventDefault", CONV_EVENT, API_DRIVER)), ("CU_EVENT_BLOCKING_SYNC", ("hipEventBlockingSync", CONV_EVENT, API_DRIVER)), ("CU_EVENT_DISABLE_TIMING", ("hipEventDisableTiming", CONV_EVENT, API_DRIVER)), ("CU_EVENT_INTERPROCESS", ("hipEventInterprocess", CONV_EVENT, API_DRIVER)), ("cuEventCreate", ("hipEventCreate", CONV_EVENT, API_DRIVER)), ("cuEventDestroy_v2", ("hipEventDestroy", CONV_EVENT, API_DRIVER)), ("cuEventElapsedTime", ("hipEventElapsedTime", CONV_EVENT, API_DRIVER)), ("cuEventQuery", ("hipEventQuery", CONV_EVENT, API_DRIVER)), ("cuEventRecord", ("hipEventRecord", CONV_EVENT, API_DRIVER)), ("cuEventSynchronize", ("hipEventSynchronize", CONV_EVENT, API_DRIVER)), ("cuFuncGetAttribute", ("hipFuncGetAttribute", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED)), ("cuFuncSetCacheConfig", ("hipFuncSetCacheConfig", CONV_MODULE, API_DRIVER)), ("cuFuncSetSharedMemConfig", ("hipFuncSetSharedMemConfig", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED)), ("cuLaunchKernel", ("hipModuleLaunchKernel", CONV_MODULE, API_DRIVER)), ("cuFuncSetBlockShape", ("hipFuncSetBlockShape", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED)), ("cuFuncSetSharedSize", ("hipFuncSetSharedSize", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED)), ("cuLaunch", ("hipLaunch", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED)), ("cuLaunchGrid", ("hipLaunchGrid", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED)), ("cuLaunchGridAsync", ("hipLaunchGridAsync", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED)), ("cuParamSetf", ("hipParamSetf", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED)), ("cuParamSeti", ("hipParamSeti", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED)), ("cuParamSetSize", ("hipParamSetSize", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED)), ("cuParamSetSize", ("hipParamSetSize", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED)), ("cuParamSetv", ("hipParamSetv", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED)), ("cuOccupancyMaxActiveBlocksPerMultiprocessor", ("hipOccupancyMaxActiveBlocksPerMultiprocessor", CONV_OCCUPANCY, API_DRIVER)), ("cuOccupancyMaxActiveBlocksPerMultiprocessorWithFlags", ("hipOccupancyMaxActiveBlocksPerMultiprocessorWithFlags", CONV_OCCUPANCY, API_DRIVER, HIP_UNSUPPORTED)), ("cuOccupancyMaxPotentialBlockSize", ("hipOccupancyMaxPotentialBlockSize", CONV_OCCUPANCY, API_DRIVER)), ("cuOccupancyMaxPotentialBlockSizeWithFlags", ("hipOccupancyMaxPotentialBlockSizeWithFlags", CONV_OCCUPANCY, API_DRIVER, HIP_UNSUPPORTED)), ("cuStreamAddCallback", ("hipStreamAddCallback", CONV_STREAM, API_DRIVER)), ("cuStreamAttachMemAsync", ("hipStreamAttachMemAsync", CONV_STREAM, API_DRIVER, HIP_UNSUPPORTED)), ("cuStreamCreate", ("hipStreamCreate__", CONV_STREAM, API_DRIVER, HIP_UNSUPPORTED)), ("cuStreamCreateWithPriority", ("hipStreamCreateWithPriority", CONV_STREAM, API_DRIVER, HIP_UNSUPPORTED)), ("cuStreamDestroy_v2", ("hipStreamDestroy", CONV_STREAM, API_DRIVER)), ("cuStreamGetFlags", ("hipStreamGetFlags", CONV_STREAM, API_DRIVER)), ("cuStreamGetPriority", ("hipStreamGetPriority", CONV_STREAM, API_DRIVER, HIP_UNSUPPORTED)), ("cuStreamQuery", ("hipStreamQuery", CONV_STREAM, API_DRIVER)), ("cuStreamSynchronize", ("hipStreamSynchronize", CONV_STREAM, API_DRIVER)), ("cuStreamWaitEvent", ("hipStreamWaitEvent", CONV_STREAM, API_DRIVER)), ("cuStreamWaitValue32", ("hipStreamWaitValue32", CONV_STREAM, API_DRIVER, HIP_UNSUPPORTED)), ("cuStreamWriteValue32", ("hipStreamWriteValue32", CONV_STREAM, API_DRIVER, HIP_UNSUPPORTED)), ("cuStreamBatchMemOp", ("hipStreamBatchMemOp", CONV_STREAM, API_DRIVER, HIP_UNSUPPORTED)), ("cuArray3DCreate", ("hipArray3DCreate", CONV_MEM, API_DRIVER)), ("cuArray3DGetDescriptor", ("hipArray3DGetDescriptor", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuArrayCreate", ("hipArrayCreate", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuArrayDestroy", ("hipArrayDestroy", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuArrayGetDescriptor", ("hipArrayGetDescriptor", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuIpcCloseMemHandle", ("hipIpcCloseMemHandle", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuIpcGetEventHandle", ("hipIpcGetEventHandle", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuIpcGetMemHandle", ("hipIpcGetMemHandle", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuIpcOpenEventHandle", ("hipIpcOpenEventHandle", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuIpcOpenMemHandle", ("hipIpcOpenMemHandle", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemAlloc_v2", ("hipMalloc", CONV_MEM, API_DRIVER)), ("cuMemAllocHost", ("hipMemAllocHost", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemAllocManaged", ("hipMemAllocManaged", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemAllocPitch", ("hipMemAllocPitch__", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemcpy", ("hipMemcpy__", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemcpy2D", ("hipMemcpy2D__", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemcpy2DAsync", ("hipMemcpy2DAsync__", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemcpy2DUnaligned", ("hipMemcpy2DUnaligned", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemcpy3D", ("hipMemcpy3D__", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemcpy3DAsync", ("hipMemcpy3DAsync__", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemcpy3DPeer", ("hipMemcpy3DPeer__", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemcpy3DPeerAsync", ("hipMemcpy3DPeerAsync__", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemcpyAsync", ("hipMemcpyAsync__", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemcpyAtoA", ("hipMemcpyAtoA", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemcpyAtoD", ("hipMemcpyAtoD", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemcpyAtoH", ("hipMemcpyAtoH", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemcpyAtoHAsync", ("hipMemcpyAtoHAsync", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemcpyDtoA", ("hipMemcpyDtoA", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemcpyDtoD_v2", ("hipMemcpyDtoD", CONV_MEM, API_DRIVER)), ("cuMemcpyDtoDAsync_v2", ("hipMemcpyDtoDAsync", CONV_MEM, API_DRIVER)), ("cuMemcpyDtoH_v2", ("hipMemcpyDtoH", CONV_MEM, API_DRIVER)), ("cuMemcpyDtoHAsync_v2", ("hipMemcpyDtoHAsync", CONV_MEM, API_DRIVER)), ("cuMemcpyHtoA", ("hipMemcpyHtoA", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemcpyHtoAAsync", ("hipMemcpyHtoAAsync", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemcpyHtoD_v2", ("hipMemcpyHtoD", CONV_MEM, API_DRIVER)), ("cuMemcpyHtoDAsync_v2", ("hipMemcpyHtoDAsync", CONV_MEM, API_DRIVER)), ("cuMemcpyPeerAsync", ("hipMemcpyPeerAsync__", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemcpyPeer", ("hipMemcpyPeer__", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemFree_v2", ("hipFree", CONV_MEM, API_DRIVER)), ("cuMemFreeHost", ("hipHostFree", CONV_MEM, API_DRIVER)), ("cuMemGetAddressRange", ("hipMemGetAddressRange", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemGetInfo_v2", ("hipMemGetInfo", CONV_MEM, API_DRIVER)), ("cuMemHostAlloc", ("hipHostMalloc", CONV_MEM, API_DRIVER)), ("cuMemHostGetDevicePointer", ("hipMemHostGetDevicePointer", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemHostGetFlags", ("hipMemHostGetFlags", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemHostRegister_v2", ("hipHostRegister", CONV_MEM, API_DRIVER)), ("cuMemHostUnregister", ("hipHostUnregister", CONV_MEM, API_DRIVER)), ("cuMemsetD16_v2", ("hipMemsetD16", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemsetD16Async", ("hipMemsetD16Async", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemsetD2D16_v2", ("hipMemsetD2D16", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemsetD2D16Async", ("hipMemsetD2D16Async", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemsetD2D32_v2", ("hipMemsetD2D32", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemsetD2D32Async", ("hipMemsetD2D32Async", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemsetD2D8_v2", ("hipMemsetD2D8", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemsetD2D8Async", ("hipMemsetD2D8Async", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemsetD32_v2", ("hipMemset", CONV_MEM, API_DRIVER)), ("cuMemsetD32Async", ("hipMemsetAsync", CONV_MEM, API_DRIVER)), ("cuMemsetD8_v2", ("hipMemsetD8", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemsetD8Async", ("hipMemsetD8Async", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMipmappedArrayCreate", ("hipMipmappedArrayCreate", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMipmappedArrayDestroy", ("hipMipmappedArrayDestroy", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMipmappedArrayGetLevel", ("hipMipmappedArrayGetLevel", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemPrefetchAsync", ("hipMemPrefetchAsync__", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemAdvise", ("hipMemAdvise", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemRangeGetAttribute", ("hipMemRangeGetAttribute", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemRangeGetAttributes", ("hipMemRangeGetAttributes", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuPointerGetAttribute", ("hipPointerGetAttribute", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuPointerGetAttributes", ("hipPointerGetAttributes", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuPointerSetAttribute", ("hipPointerSetAttribute", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("CU_TR_FILTER_MODE_POINT", ("hipFilterModePoint", CONV_TEX, API_DRIVER)), ("CU_TR_FILTER_MODE_LINEAR", ("hipFilterModeLinear", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuTexRefGetAddress", ("hipTexRefGetAddress", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuTexRefGetAddressMode", ("hipTexRefGetAddressMode", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuTexRefGetArray", ("hipTexRefGetArray", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuTexRefGetBorderColor", ("hipTexRefGetBorderColor", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuTexRefGetFilterMode", ("hipTexRefGetFilterMode", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuTexRefGetFlags", ("hipTexRefGetFlags", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuTexRefGetFormat", ("hipTexRefGetFormat", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuTexRefGetMaxAnisotropy", ("hipTexRefGetMaxAnisotropy", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuTexRefGetMipmapFilterMode", ("hipTexRefGetMipmapFilterMode", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuTexRefGetMipmapLevelBias", ("hipTexRefGetMipmapLevelBias", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuTexRefGetMipmapLevelClamp", ("hipTexRefGetMipmapLevelClamp", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuTexRefGetMipmappedArray", ("hipTexRefGetMipmappedArray", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuTexRefSetAddress", ("hipTexRefSetAddress", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuTexRefSetAddress2D", ("hipTexRefSetAddress2D", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuTexRefSetAddressMode", ("hipTexRefSetAddressMode", CONV_TEX, API_DRIVER)), ("cuTexRefSetArray", ("hipTexRefSetArray", CONV_TEX, API_DRIVER)), ("cuTexRefSetBorderColor", ("hipTexRefSetBorderColor", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuTexRefSetFilterMode", ("hipTexRefSetFilterMode", CONV_TEX, API_DRIVER)), ("cuTexRefSetFlags", ("hipTexRefSetFlags", CONV_TEX, API_DRIVER)), ("cuTexRefSetFormat", ("hipTexRefSetFormat", CONV_TEX, API_DRIVER)), ("cuTexRefSetMaxAnisotropy", ("hipTexRefSetMaxAnisotropy", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuTexRefSetMipmapFilterMode", ("hipTexRefSetMipmapFilterMode", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuTexRefSetMipmapLevelBias", ("hipTexRefSetMipmapLevelBias", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuTexRefSetMipmapLevelClamp", ("hipTexRefSetMipmapLevelClamp", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuTexRefSetMipmappedArray", ("hipTexRefSetMipmappedArray", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuTexRefCreate", ("hipTexRefCreate", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuTexRefDestroy", ("hipTexRefDestroy", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuSurfRefGetArray", ("hipSurfRefGetArray", CONV_SURFACE, API_DRIVER, HIP_UNSUPPORTED)), ("cuSurfRefSetArray", ("hipSurfRefSetArray", CONV_SURFACE, API_DRIVER, HIP_UNSUPPORTED)), ("cuTexObjectCreate", ("hipTexObjectCreate", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuTexObjectDestroy", ("hipTexObjectDestroy", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuTexObjectGetResourceDesc", ("hipTexObjectGetResourceDesc", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuTexObjectGetResourceViewDesc", ("hipTexObjectGetResourceViewDesc", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuTexObjectGetTextureDesc", ("hipTexObjectGetTextureDesc", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuSurfObjectCreate", ("hipSurfObjectCreate", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuSurfObjectDestroy", ("hipSurfObjectDestroy", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuSurfObjectGetResourceDesc", ("hipSurfObjectGetResourceDesc", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ("cuGraphicsMapResources", ("hipGraphicsMapResources", CONV_GRAPHICS, API_DRIVER, HIP_UNSUPPORTED)), ("cuGraphicsResourceGetMappedMipmappedArray", ("hipGraphicsResourceGetMappedMipmappedArray", CONV_GRAPHICS, API_DRIVER, HIP_UNSUPPORTED)), ("cuGraphicsResourceGetMappedPointer", ("hipGraphicsResourceGetMappedPointer", CONV_GRAPHICS, API_DRIVER, HIP_UNSUPPORTED)), ("cuGraphicsResourceSetMapFlags", ("hipGraphicsResourceSetMapFlags", CONV_GRAPHICS, API_DRIVER, HIP_UNSUPPORTED)), ("cuGraphicsSubResourceGetMappedArray", ("hipGraphicsSubResourceGetMappedArray", CONV_GRAPHICS, API_DRIVER, HIP_UNSUPPORTED)), ("cuGraphicsUnmapResources", ("hipGraphicsUnmapResources", CONV_GRAPHICS, API_DRIVER, HIP_UNSUPPORTED)), ("cuGraphicsUnregisterResource", ("hipGraphicsUnregisterResource", CONV_GRAPHICS, API_DRIVER, HIP_UNSUPPORTED)), ("cuProfilerInitialize", ("hipProfilerInitialize", CONV_OTHER, API_DRIVER, HIP_UNSUPPORTED)), ("cuProfilerStart", ("hipProfilerStart", CONV_OTHER, API_DRIVER)), ("cuProfilerStop", ("hipProfilerStop", CONV_OTHER, API_DRIVER)), ("CU_GL_DEVICE_LIST_ALL", ("HIP_GL_DEVICE_LIST_ALL", CONV_GL, API_DRIVER, HIP_UNSUPPORTED)), ("CU_GL_DEVICE_LIST_CURRENT_FRAME", ("HIP_GL_DEVICE_LIST_CURRENT_FRAME", CONV_GL, API_DRIVER, HIP_UNSUPPORTED)), ("CU_GL_DEVICE_LIST_NEXT_FRAME", ("HIP_GL_DEVICE_LIST_NEXT_FRAME", CONV_GL, API_DRIVER, HIP_UNSUPPORTED)), ("cuGLGetDevices", ("hipGLGetDevices", CONV_GL, API_DRIVER, HIP_UNSUPPORTED)), ("cuGraphicsGLRegisterBuffer", ("hipGraphicsGLRegisterBuffer", CONV_GL, API_DRIVER, HIP_UNSUPPORTED)), ("cuGraphicsGLRegisterImage", ("hipGraphicsGLRegisterImage", CONV_GL, API_DRIVER, HIP_UNSUPPORTED)), ("cuWGLGetDevice", ("hipWGLGetDevice", CONV_GL, API_DRIVER, HIP_UNSUPPORTED)), ("CU_GL_MAP_RESOURCE_FLAGS_NONE", ("HIP_GL_MAP_RESOURCE_FLAGS_NONE", CONV_GL, API_DRIVER, HIP_UNSUPPORTED)), ("CU_GL_MAP_RESOURCE_FLAGS_READ_ONLY", ("HIP_GL_MAP_RESOURCE_FLAGS_READ_ONLY", CONV_GL, API_DRIVER, HIP_UNSUPPORTED)), ("CU_GL_MAP_RESOURCE_FLAGS_WRITE_DISCARD", ("HIP_GL_MAP_RESOURCE_FLAGS_WRITE_DISCARD", CONV_GL, API_DRIVER, HIP_UNSUPPORTED)), ("cuGLCtxCreate", ("hipGLCtxCreate", CONV_GL, API_DRIVER, HIP_UNSUPPORTED)), ("cuGLInit", ("hipGLInit", CONV_GL, API_DRIVER, HIP_UNSUPPORTED)), ("cuGLMapBufferObject", ("hipGLMapBufferObject", CONV_GL, API_DRIVER, HIP_UNSUPPORTED)), ("cuGLMapBufferObjectAsync", ("hipGLMapBufferObjectAsync", CONV_GL, API_DRIVER, HIP_UNSUPPORTED)), ("cuGLRegisterBufferObject", ("hipGLRegisterBufferObject", CONV_GL, API_DRIVER, HIP_UNSUPPORTED)), ("cuGLSetBufferObjectMapFlags", ("hipGLSetBufferObjectMapFlags", CONV_GL, API_DRIVER, HIP_UNSUPPORTED)), ("cuGLUnmapBufferObject", ("hipGLUnmapBufferObject", CONV_GL, API_DRIVER, HIP_UNSUPPORTED)), ("cuGLUnmapBufferObjectAsync", ("hipGLUnmapBufferObjectAsync", CONV_GL, API_DRIVER, HIP_UNSUPPORTED)), ("cuGLUnregisterBufferObject", ("hipGLUnregisterBufferObject", CONV_GL, API_DRIVER, HIP_UNSUPPORTED)), ("CU_D3D9_DEVICE_LIST_ALL", ("HIP_D3D9_DEVICE_LIST_ALL", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED)), ("CU_D3D9_DEVICE_LIST_CURRENT_FRAME", ("HIP_D3D9_DEVICE_LIST_CURRENT_FRAME", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED)), ("CU_D3D9_DEVICE_LIST_NEXT_FRAME", ("HIP_D3D9_DEVICE_LIST_NEXT_FRAME", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D9CtxCreate", ("hipD3D9CtxCreate", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D9CtxCreateOnDevice", ("hipD3D9CtxCreateOnDevice", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D9GetDevice", ("hipD3D9GetDevice", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D9GetDevices", ("hipD3D9GetDevices", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D9GetDirect3DDevice", ("hipD3D9GetDirect3DDevice", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED)), ("cuGraphicsD3D9RegisterResource", ("hipGraphicsD3D9RegisterResource", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED)), ("CU_D3D9_MAPRESOURCE_FLAGS_NONE", ("HIP_D3D9_MAPRESOURCE_FLAGS_NONE", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED)), ("CU_D3D9_MAPRESOURCE_FLAGS_READONLY", ("HIP_D3D9_MAPRESOURCE_FLAGS_READONLY", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED)), ("CU_D3D9_MAPRESOURCE_FLAGS_WRITEDISCARD", ("HIP_D3D9_MAPRESOURCE_FLAGS_WRITEDISCARD", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED)), ("CU_D3D9_REGISTER_FLAGS_NONE", ("HIP_D3D9_REGISTER_FLAGS_NONE", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED)), ("CU_D3D9_REGISTER_FLAGS_ARRAY", ("HIP_D3D9_REGISTER_FLAGS_ARRAY", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D9MapResources", ("hipD3D9MapResources", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D9RegisterResource", ("hipD3D9RegisterResource", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D9ResourceGetMappedArray", ("hipD3D9ResourceGetMappedArray", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D9ResourceGetMappedPitch", ("hipD3D9ResourceGetMappedPitch", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D9ResourceGetMappedPointer", ("hipD3D9ResourceGetMappedPointer", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D9ResourceGetMappedSize", ("hipD3D9ResourceGetMappedSize", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D9ResourceGetSurfaceDimensions", ("hipD3D9ResourceGetSurfaceDimensions", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D9ResourceSetMapFlags", ("hipD3D9ResourceSetMapFlags", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D9UnmapResources", ("hipD3D9UnmapResources", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D9UnregisterResource", ("hipD3D9UnregisterResource", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED)), ("CU_D3D10_DEVICE_LIST_ALL", ("HIP_D3D10_DEVICE_LIST_ALL", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED)), ("CU_D3D10_DEVICE_LIST_CURRENT_FRAME", ("HIP_D3D10_DEVICE_LIST_CURRENT_FRAME", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED)), ("CU_D3D10_DEVICE_LIST_NEXT_FRAME", ("HIP_D3D10_DEVICE_LIST_NEXT_FRAME", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D10GetDevice", ("hipD3D10GetDevice", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D10GetDevices", ("hipD3D10GetDevices", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED)), ("cuGraphicsD3D10RegisterResource", ("hipGraphicsD3D10RegisterResource", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED)), ("CU_D3D10_MAPRESOURCE_FLAGS_NONE", ("HIP_D3D10_MAPRESOURCE_FLAGS_NONE", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED)), ("CU_D3D10_MAPRESOURCE_FLAGS_READONLY", ("HIP_D3D10_MAPRESOURCE_FLAGS_READONLY", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED)), ("CU_D3D10_MAPRESOURCE_FLAGS_WRITEDISCARD", ("HIP_D3D10_MAPRESOURCE_FLAGS_WRITEDISCARD", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED)), ("CU_D3D10_REGISTER_FLAGS_NONE", ("HIP_D3D10_REGISTER_FLAGS_NONE", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED)), ("CU_D3D10_REGISTER_FLAGS_ARRAY", ("HIP_D3D10_REGISTER_FLAGS_ARRAY", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D10CtxCreate", ("hipD3D10CtxCreate", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D10CtxCreateOnDevice", ("hipD3D10CtxCreateOnDevice", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D10GetDirect3DDevice", ("hipD3D10GetDirect3DDevice", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D10MapResources", ("hipD3D10MapResources", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D10RegisterResource", ("hipD3D10RegisterResource", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D10ResourceGetMappedArray", ("hipD3D10ResourceGetMappedArray", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D10ResourceGetMappedPitch", ("hipD3D10ResourceGetMappedPitch", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D10ResourceGetMappedPointer", ("hipD3D10ResourceGetMappedPointer", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D10ResourceGetMappedSize", ("hipD3D10ResourceGetMappedSize", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D10ResourceGetSurfaceDimensions", ("hipD3D10ResourceGetSurfaceDimensions", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED)), ("cuD310ResourceSetMapFlags", ("hipD3D10ResourceSetMapFlags", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D10UnmapResources", ("hipD3D10UnmapResources", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D10UnregisterResource", ("hipD3D10UnregisterResource", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED)), ("CU_D3D11_DEVICE_LIST_ALL", ("HIP_D3D11_DEVICE_LIST_ALL", CONV_D3D11, API_DRIVER, HIP_UNSUPPORTED)), ("CU_D3D11_DEVICE_LIST_CURRENT_FRAME", ("HIP_D3D11_DEVICE_LIST_CURRENT_FRAME", CONV_D3D11, API_DRIVER, HIP_UNSUPPORTED)), ("CU_D3D11_DEVICE_LIST_NEXT_FRAME", ("HIP_D3D11_DEVICE_LIST_NEXT_FRAME", CONV_D3D11, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D11GetDevice", ("hipD3D11GetDevice", CONV_D3D11, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D11GetDevices", ("hipD3D11GetDevices", CONV_D3D11, API_DRIVER, HIP_UNSUPPORTED)), ("cuGraphicsD3D11RegisterResource", ("hipGraphicsD3D11RegisterResource", CONV_D3D11, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D11CtxCreate", ("hipD3D11CtxCreate", CONV_D3D11, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D11CtxCreateOnDevice", ("hipD3D11CtxCreateOnDevice", CONV_D3D11, API_DRIVER, HIP_UNSUPPORTED)), ("cuD3D11GetDirect3DDevice", ("hipD3D11GetDirect3DDevice", CONV_D3D11, API_DRIVER, HIP_UNSUPPORTED)), ("cuGraphicsVDPAURegisterOutputSurface", ("hipGraphicsVDPAURegisterOutputSurface", CONV_VDPAU, API_DRIVER, HIP_UNSUPPORTED)), ("cuGraphicsVDPAURegisterVideoSurface", ("hipGraphicsVDPAURegisterVideoSurface", CONV_VDPAU, API_DRIVER, HIP_UNSUPPORTED)), ("cuVDPAUGetDevice", ("hipVDPAUGetDevice", CONV_VDPAU, API_DRIVER, HIP_UNSUPPORTED)), ("cuVDPAUCtxCreate", ("hipVDPAUCtxCreate", CONV_VDPAU, API_DRIVER, HIP_UNSUPPORTED)), ("cuEGLStreamConsumerAcquireFrame", ("hipEGLStreamConsumerAcquireFrame", CONV_EGL, API_DRIVER, HIP_UNSUPPORTED)), ("cuEGLStreamConsumerConnect", ("hipEGLStreamConsumerConnect", CONV_EGL, API_DRIVER, HIP_UNSUPPORTED)), ("cuEGLStreamConsumerConnectWithFlags", ("hipEGLStreamConsumerConnectWithFlags", CONV_EGL, API_DRIVER, HIP_UNSUPPORTED)), ("cuEGLStreamConsumerDisconnect", ("hipEGLStreamConsumerDisconnect", CONV_EGL, API_DRIVER, HIP_UNSUPPORTED)), ("cuEGLStreamConsumerReleaseFrame", ("hipEGLStreamConsumerReleaseFrame", CONV_EGL, API_DRIVER, HIP_UNSUPPORTED)), ("cuEGLStreamProducerConnect", ("hipEGLStreamProducerConnect", CONV_EGL, API_DRIVER, HIP_UNSUPPORTED)), ("cuEGLStreamProducerDisconnect", ("hipEGLStreamProducerDisconnect", CONV_EGL, API_DRIVER, HIP_UNSUPPORTED)), ("cuEGLStreamProducerPresentFrame", ("hipEGLStreamProducerPresentFrame", CONV_EGL, API_DRIVER, HIP_UNSUPPORTED)), ("cuEGLStreamProducerReturnFrame", ("hipEGLStreamProducerReturnFrame", CONV_EGL, API_DRIVER, HIP_UNSUPPORTED)), ("cuGraphicsEGLRegisterImage", ("hipGraphicsEGLRegisterImage", CONV_EGL, API_DRIVER, HIP_UNSUPPORTED)), ("cuGraphicsResourceGetMappedEglFrame", ("hipGraphicsResourceGetMappedEglFrame", CONV_EGL, API_DRIVER, HIP_UNSUPPORTED)), ("cudaDataType_t", ("hipDataType_t", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDataType", ("hipDataType_t", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_R_16F", ("hipR16F", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_C_16F", ("hipC16F", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_R_32F", ("hipR32F", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_C_32F", ("hipC32F", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_R_64F", ("hipR64F", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_C_64F", ("hipC64F", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_R_8I", ("hipR8I", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_C_8I", ("hipC8I", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_R_8U", ("hipR8U", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_C_8U", ("hipC8U", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_R_32I", ("hipR32I", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_C_32I", ("hipC32I", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_R_32U", ("hipR32U", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_C_32U", ("hipC32U", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("MAJOR_VERSION", ("hipLibraryMajorVersion", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("MINOR_VERSION", ("hipLibraryMinorVersion", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("PATCH_LEVEL", ("hipLibraryPatchVersion", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemAttachGlobal", ("hipMemAttachGlobal", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemAttachHost", ("hipMemAttachHost", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemAttachSingle", ("hipMemAttachSingle", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaOccupancyDefault", ("hipOccupancyDefault", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaOccupancyDisableCachingOverride", ("hipOccupancyDisableCachingOverride", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGetLastError", ("hipGetLastError", CONV_ERROR, API_RUNTIME)), ("cudaPeekAtLastError", ("hipPeekAtLastError", CONV_ERROR, API_RUNTIME)), ("cudaGetErrorName", ("hipGetErrorName", CONV_ERROR, API_RUNTIME)), ("cudaGetErrorString", ("hipGetErrorString", CONV_ERROR, API_RUNTIME)), ("cudaMemcpy3DParms", ("hipMemcpy3DParms", CONV_MEM, API_RUNTIME)), ("cudaMemcpy3DPeerParms", ("hipMemcpy3DPeerParms", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemcpy", ("hipMemcpy", CONV_MEM, API_RUNTIME)), ("cudaMemcpyToArray", ("hipMemcpyToArray", CONV_MEM, API_RUNTIME)), ("cudaMemcpyToSymbol", ("hipMemcpyToSymbol", CONV_MEM, API_RUNTIME)), ("cudaMemcpyToSymbolAsync", ("hipMemcpyToSymbolAsync", CONV_MEM, API_RUNTIME)), ("cudaMemcpyAsync", ("hipMemcpyAsync", CONV_MEM, API_RUNTIME)), ("cudaMemcpy2D", ("hipMemcpy2D", CONV_MEM, API_RUNTIME)), ("cudaMemcpy2DAsync", ("hipMemcpy2DAsync", CONV_MEM, API_RUNTIME)), ("cudaMemcpy2DToArray", ("hipMemcpy2DToArray", CONV_MEM, API_RUNTIME)), ("cudaMemcpy2DArrayToArray", ("hipMemcpy2DArrayToArray", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemcpy2DFromArray", ("hipMemcpy2DFromArray", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemcpy2DFromArrayAsync", ("hipMemcpy2DFromArrayAsync", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemcpy2DToArrayAsync", ("hipMemcpy2DToArrayAsync", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemcpy3D", ("hipMemcpy3D", CONV_MEM, API_RUNTIME)), ("cudaMemcpy3DAsync", ("hipMemcpy3DAsync", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemcpy3DPeer", ("hipMemcpy3DPeer", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemcpy3DPeerAsync", ("hipMemcpy3DPeerAsync", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemcpyArrayToArray", ("hipMemcpyArrayToArray", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemcpyFromArrayAsync", ("hipMemcpyFromArrayAsync", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemcpyFromSymbol", ("hipMemcpyFromSymbol", CONV_MEM, API_RUNTIME)), ("cudaMemcpyFromSymbolAsync", ("hipMemcpyFromSymbolAsync", CONV_MEM, API_RUNTIME)), ("cudaMemAdvise", ("hipMemAdvise", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemRangeGetAttribute", ("hipMemRangeGetAttribute", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemRangeGetAttributes", ("hipMemRangeGetAttributes", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemAdviseSetReadMostly", ("hipMemAdviseSetReadMostly", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemAdviseUnsetReadMostly", ("hipMemAdviseUnsetReadMostly", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemAdviseSetPreferredLocation", ("hipMemAdviseSetPreferredLocation", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemAdviseUnsetPreferredLocation", ("hipMemAdviseUnsetPreferredLocation", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemAdviseSetAccessedBy", ("hipMemAdviseSetAccessedBy", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemAdviseUnsetAccessedBy", ("hipMemAdviseUnsetAccessedBy", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemRangeAttributeReadMostly", ("hipMemRangeAttributeReadMostly", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemRangeAttributePreferredLocation", ("hipMemRangeAttributePreferredLocation", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemRangeAttributeAccessedBy", ("hipMemRangeAttributeAccessedBy", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemRangeAttributeLastPrefetchLocation", ("hipMemRangeAttributeLastPrefetchLocation", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemcpyHostToHost", ("hipMemcpyHostToHost", CONV_MEM, API_RUNTIME)), ("cudaMemcpyHostToDevice", ("hipMemcpyHostToDevice", CONV_MEM, API_RUNTIME)), ("cudaMemcpyDeviceToHost", ("hipMemcpyDeviceToHost", CONV_MEM, API_RUNTIME)), ("cudaMemcpyDeviceToDevice", ("hipMemcpyDeviceToDevice", CONV_MEM, API_RUNTIME)), ("cudaMemcpyDefault", ("hipMemcpyDefault", CONV_MEM, API_RUNTIME)), ("cudaMemset", ("hipMemset", CONV_MEM, API_RUNTIME)), ("cudaMemsetAsync", ("hipMemsetAsync", CONV_MEM, API_RUNTIME)), ("cudaMemset2D", ("hipMemset2D", CONV_MEM, API_RUNTIME)), ("cudaMemset2DAsync", ("hipMemset2DAsync", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemset3D", ("hipMemset3D", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemset3DAsync", ("hipMemset3DAsync", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemGetInfo", ("hipMemGetInfo", CONV_MEM, API_RUNTIME)), ("cudaArrayGetInfo", ("hipArrayGetInfo", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaFreeMipmappedArray", ("hipFreeMipmappedArray", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGetMipmappedArrayLevel", ("hipGetMipmappedArrayLevel", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGetSymbolAddress", ("hipGetSymbolAddress", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGetSymbolSize", ("hipGetSymbolSize", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMemPrefetchAsync", ("hipMemPrefetchAsync", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMallocHost", ("hipHostMalloc", CONV_MEM, API_RUNTIME)), ("cudaMallocArray", ("hipMallocArray", CONV_MEM, API_RUNTIME)), ("cudaMalloc", ("hipMalloc", CONV_MEM, API_RUNTIME)), ("cudaMalloc3D", ("hipMalloc3D", CONV_MEM, API_RUNTIME)), ("cudaMalloc3DArray", ("hipMalloc3DArray", CONV_MEM, API_RUNTIME)), ("cudaMallocManaged", ("hipMallocManaged", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMallocMipmappedArray", ("hipMallocMipmappedArray", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaMallocPitch", ("hipMallocPitch", CONV_MEM, API_RUNTIME)), ("cudaFreeHost", ("hipHostFree", CONV_MEM, API_RUNTIME)), ("cudaFreeArray", ("hipFreeArray", CONV_MEM, API_RUNTIME)), ("cudaFree", ("hipFree", CONV_MEM, API_RUNTIME)), ("cudaHostRegister", ("hipHostRegister", CONV_MEM, API_RUNTIME)), ("cudaHostUnregister", ("hipHostUnregister", CONV_MEM, API_RUNTIME)), ("cudaHostAlloc", ("hipHostMalloc", CONV_MEM, API_RUNTIME)), ("cudaMemoryTypeHost", ("hipMemoryTypeHost", CONV_MEM, API_RUNTIME)), ("cudaMemoryTypeDevice", ("hipMemoryTypeDevice", CONV_MEM, API_RUNTIME)), ("make_cudaExtent", ("make_hipExtent", CONV_MEM, API_RUNTIME)), ("make_cudaPitchedPtr", ("make_hipPitchedPtr", CONV_MEM, API_RUNTIME)), ("make_cudaPos", ("make_hipPos", CONV_MEM, API_RUNTIME)), ("cudaHostAllocDefault", ("hipHostMallocDefault", CONV_MEM, API_RUNTIME)), ("cudaHostAllocPortable", ("hipHostMallocPortable", CONV_MEM, API_RUNTIME)), ("cudaHostAllocMapped", ("hipHostMallocMapped", CONV_MEM, API_RUNTIME)), ("cudaHostAllocWriteCombined", ("hipHostMallocWriteCombined", CONV_MEM, API_RUNTIME)), ("cudaHostGetFlags", ("hipHostGetFlags", CONV_MEM, API_RUNTIME)), ("cudaHostRegisterDefault", ("hipHostRegisterDefault", CONV_MEM, API_RUNTIME)), ("cudaHostRegisterPortable", ("hipHostRegisterPortable", CONV_MEM, API_RUNTIME)), ("cudaHostRegisterMapped", ("hipHostRegisterMapped", CONV_MEM, API_RUNTIME)), ("cudaHostRegisterIoMemory", ("hipHostRegisterIoMemory", CONV_MEM, API_RUNTIME)), # ("warpSize", ("hipWarpSize", CONV_SPECIAL_FUNC, API_RUNTIME), (HIP actually uses warpSize...), ("cudaEventCreate", ("hipEventCreate", CONV_EVENT, API_RUNTIME)), ("cudaEventCreateWithFlags", ("hipEventCreateWithFlags", CONV_EVENT, API_RUNTIME)), ("cudaEventDestroy", ("hipEventDestroy", CONV_EVENT, API_RUNTIME)), ("cudaEventRecord", ("hipEventRecord", CONV_EVENT, API_RUNTIME)), ("cudaEventElapsedTime", ("hipEventElapsedTime", CONV_EVENT, API_RUNTIME)), ("cudaEventSynchronize", ("hipEventSynchronize", CONV_EVENT, API_RUNTIME)), ("cudaEventQuery", ("hipEventQuery", CONV_EVENT, API_RUNTIME)), ("cudaEventDefault", ("hipEventDefault", CONV_EVENT, API_RUNTIME)), ("cudaEventBlockingSync", ("hipEventBlockingSync", CONV_EVENT, API_RUNTIME)), ("cudaEventDisableTiming", ("hipEventDisableTiming", CONV_EVENT, API_RUNTIME)), ("cudaEventInterprocess", ("hipEventInterprocess", CONV_EVENT, API_RUNTIME)), ("cudaStreamCreate", ("hipStreamCreate", CONV_STREAM, API_RUNTIME)), ("cudaStreamCreateWithFlags", ("hipStreamCreateWithFlags", CONV_STREAM, API_RUNTIME)), ("cudaStreamCreateWithPriority", ("hipStreamCreateWithPriority", CONV_STREAM, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaStreamDestroy", ("hipStreamDestroy", CONV_STREAM, API_RUNTIME)), ("cudaStreamWaitEvent", ("hipStreamWaitEvent", CONV_STREAM, API_RUNTIME)), ("cudaStreamSynchronize", ("hipStreamSynchronize", CONV_STREAM, API_RUNTIME)), ("cudaStreamGetFlags", ("hipStreamGetFlags", CONV_STREAM, API_RUNTIME)), ("cudaStreamQuery", ("hipStreamQuery", CONV_STREAM, API_RUNTIME)), ("cudaStreamAddCallback", ("hipStreamAddCallback", CONV_STREAM, API_RUNTIME)), ("cudaStreamAttachMemAsync", ("hipStreamAttachMemAsync", CONV_STREAM, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaStreamGetPriority", ("hipStreamGetPriority", CONV_STREAM, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaStreamDefault", ("hipStreamDefault", CONV_TYPE, API_RUNTIME)), ("cudaStreamNonBlocking", ("hipStreamNonBlocking", CONV_TYPE, API_RUNTIME)), ("cudaDeviceSynchronize", ("hipDeviceSynchronize", CONV_DEVICE, API_RUNTIME)), ("cudaDeviceReset", ("hipDeviceReset", CONV_DEVICE, API_RUNTIME)), ("cudaSetDevice", ("hipSetDevice", CONV_DEVICE, API_RUNTIME)), ("cudaGetDevice", ("hipGetDevice", CONV_DEVICE, API_RUNTIME)), ("cudaGetDeviceCount", ("hipGetDeviceCount", CONV_DEVICE, API_RUNTIME)), ("cudaChooseDevice", ("hipChooseDevice", CONV_DEVICE, API_RUNTIME)), ("cudaThreadExit", ("hipDeviceReset", CONV_THREAD, API_RUNTIME)), ("cudaThreadGetCacheConfig", ("hipDeviceGetCacheConfig", CONV_THREAD, API_RUNTIME)), ("cudaThreadGetLimit", ("hipThreadGetLimit", CONV_THREAD, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaThreadSetCacheConfig", ("hipDeviceSetCacheConfig", CONV_THREAD, API_RUNTIME)), ("cudaThreadSetLimit", ("hipThreadSetLimit", CONV_THREAD, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaThreadSynchronize", ("hipDeviceSynchronize", CONV_THREAD, API_RUNTIME)), ("cudaDeviceGetAttribute", ("hipDeviceGetAttribute", CONV_DEVICE, API_RUNTIME)), ("cudaDevAttrMaxThreadsPerBlock", ("hipDeviceAttributeMaxThreadsPerBlock", CONV_TYPE, API_RUNTIME)), ("cudaDevAttrMaxBlockDimX", ("hipDeviceAttributeMaxBlockDimX", CONV_TYPE, API_RUNTIME)), ("cudaDevAttrMaxBlockDimY", ("hipDeviceAttributeMaxBlockDimY", CONV_TYPE, API_RUNTIME)), ("cudaDevAttrMaxBlockDimZ", ("hipDeviceAttributeMaxBlockDimZ", CONV_TYPE, API_RUNTIME)), ("cudaDevAttrMaxGridDimX", ("hipDeviceAttributeMaxGridDimX", CONV_TYPE, API_RUNTIME)), ("cudaDevAttrMaxGridDimY", ("hipDeviceAttributeMaxGridDimY", CONV_TYPE, API_RUNTIME)), ("cudaDevAttrMaxGridDimZ", ("hipDeviceAttributeMaxGridDimZ", CONV_TYPE, API_RUNTIME)), ("cudaDevAttrMaxSharedMemoryPerBlock", ("hipDeviceAttributeMaxSharedMemoryPerBlock", CONV_TYPE, API_RUNTIME)), ("cudaDevAttrTotalConstantMemory", ("hipDeviceAttributeTotalConstantMemory", CONV_TYPE, API_RUNTIME)), ("cudaDevAttrWarpSize", ("hipDeviceAttributeWarpSize", CONV_TYPE, API_RUNTIME)), ("cudaDevAttrMaxPitch", ("hipDeviceAttributeMaxPitch", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxRegistersPerBlock", ("hipDeviceAttributeMaxRegistersPerBlock", CONV_TYPE, API_RUNTIME)), ("cudaDevAttrClockRate", ("hipDeviceAttributeClockRate", CONV_TYPE, API_RUNTIME)), ("cudaDevAttrTextureAlignment", ("hipDeviceAttributeTextureAlignment", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrGpuOverlap", ("hipDeviceAttributeGpuOverlap", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMultiProcessorCount", ("hipDeviceAttributeMultiprocessorCount", CONV_TYPE, API_RUNTIME)), ("cudaDevAttrKernelExecTimeout", ("hipDeviceAttributeKernelExecTimeout", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrIntegrated", ("hipDeviceAttributeIntegrated", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrCanMapHostMemory", ("hipDeviceAttributeCanMapHostMemory", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrComputeMode", ("hipDeviceAttributeComputeMode", CONV_TYPE, API_RUNTIME)), ("cudaDevAttrMaxTexture1DWidth", ("hipDeviceAttributeMaxTexture1DWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxTexture2DWidth", ("hipDeviceAttributeMaxTexture2DWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxTexture2DHeight", ("hipDeviceAttributeMaxTexture2DHeight", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxTexture3DWidth", ("hipDeviceAttributeMaxTexture3DWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxTexture3DHeight", ("hipDeviceAttributeMaxTexture3DHeight", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxTexture3DDepth", ("hipDeviceAttributeMaxTexture3DDepth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxTexture2DLayeredWidth", ("hipDeviceAttributeMaxTexture2DLayeredWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxTexture2DLayeredHeight", ("hipDeviceAttributeMaxTexture2DLayeredHeight", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxTexture2DLayeredLayers", ("hipDeviceAttributeMaxTexture2DLayeredLayers", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrSurfaceAlignment", ("hipDeviceAttributeSurfaceAlignment", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrConcurrentKernels", ("hipDeviceAttributeConcurrentKernels", CONV_TYPE, API_RUNTIME)), ("cudaDevAttrEccEnabled", ("hipDeviceAttributeEccEnabled", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrPciBusId", ("hipDeviceAttributePciBusId", CONV_TYPE, API_RUNTIME)), ("cudaDevAttrPciDeviceId", ("hipDeviceAttributePciDeviceId", CONV_TYPE, API_RUNTIME)), ("cudaDevAttrTccDriver", ("hipDeviceAttributeTccDriver", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMemoryClockRate", ("hipDeviceAttributeMemoryClockRate", CONV_TYPE, API_RUNTIME)), ("cudaDevAttrGlobalMemoryBusWidth", ("hipDeviceAttributeMemoryBusWidth", CONV_TYPE, API_RUNTIME)), ("cudaDevAttrL2CacheSize", ("hipDeviceAttributeL2CacheSize", CONV_TYPE, API_RUNTIME)), ("cudaDevAttrMaxThreadsPerMultiProcessor", ("hipDeviceAttributeMaxThreadsPerMultiProcessor", CONV_TYPE, API_RUNTIME)), ("cudaDevAttrAsyncEngineCount", ("hipDeviceAttributeAsyncEngineCount", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrUnifiedAddressing", ("hipDeviceAttributeUnifiedAddressing", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxTexture1DLayeredWidth", ("hipDeviceAttributeMaxTexture1DLayeredWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxTexture1DLayeredLayers", ("hipDeviceAttributeMaxTexture1DLayeredLayers", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxTexture2DGatherWidth", ("hipDeviceAttributeMaxTexture2DGatherWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxTexture2DGatherHeight", ("hipDeviceAttributeMaxTexture2DGatherHeight", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxTexture3DWidthAlt", ("hipDeviceAttributeMaxTexture3DWidthAlternate", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxTexture3DHeightAlt", ("hipDeviceAttributeMaxTexture3DHeightAlternate", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxTexture3DDepthAlt", ("hipDeviceAttributeMaxTexture3DDepthAlternate", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrPciDomainId", ("hipDeviceAttributePciDomainId", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrTexturePitchAlignment", ("hipDeviceAttributeTexturePitchAlignment", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxTextureCubemapWidth", ("hipDeviceAttributeMaxTextureCubemapWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxTextureCubemapLayeredWidth", ("hipDeviceAttributeMaxTextureCubemapLayeredWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxTextureCubemapLayeredLayers", ("hipDeviceAttributeMaxTextureCubemapLayeredLayers", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxSurface1DWidth", ("hipDeviceAttributeMaxSurface1DWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxSurface2DWidth", ("hipDeviceAttributeMaxSurface2DWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxSurface2DHeight", ("hipDeviceAttributeMaxSurface2DHeight", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxSurface3DWidth", ("hipDeviceAttributeMaxSurface3DWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxSurface3DHeight", ("hipDeviceAttributeMaxSurface3DHeight", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxSurface3DDepth", ("hipDeviceAttributeMaxSurface3DDepth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxSurface1DLayeredWidth", ("hipDeviceAttributeMaxSurface1DLayeredWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxSurface1DLayeredLayers", ("hipDeviceAttributeMaxSurface1DLayeredLayers", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxSurface2DLayeredWidth", ("hipDeviceAttributeMaxSurface2DLayeredWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxSurface2DLayeredHeight", ("hipDeviceAttributeMaxSurface2DLayeredHeight", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxSurface2DLayeredLayers", ("hipDeviceAttributeMaxSurface2DLayeredLayers", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxSurfaceCubemapWidth", ("hipDeviceAttributeMaxSurfaceCubemapWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxSurfaceCubemapLayeredWidth", ("hipDeviceAttributeMaxSurfaceCubemapLayeredWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxSurfaceCubemapLayeredLayers", ("hipDeviceAttributeMaxSurfaceCubemapLayeredLayers", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxTexture1DLinearWidth", ("hipDeviceAttributeMaxTexture1DLinearWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxTexture2DLinearWidth", ("hipDeviceAttributeMaxTexture2DLinearWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxTexture2DLinearHeight", ("hipDeviceAttributeMaxTexture2DLinearHeight", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxTexture2DLinearPitch", ("hipDeviceAttributeMaxTexture2DLinearPitch", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxTexture2DMipmappedWidth", ("hipDeviceAttributeMaxTexture2DMipmappedWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxTexture2DMipmappedHeight", ("hipDeviceAttributeMaxTexture2DMipmappedHeight", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrComputeCapabilityMajor", ("hipDeviceAttributeComputeCapabilityMajor", CONV_TYPE, API_RUNTIME)), ("cudaDevAttrComputeCapabilityMinor", ("hipDeviceAttributeComputeCapabilityMinor", CONV_TYPE, API_RUNTIME)), ("cudaDevAttrMaxTexture1DMipmappedWidth", ("hipDeviceAttributeMaxTexture1DMipmappedWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrStreamPrioritiesSupported", ("hipDeviceAttributeStreamPrioritiesSupported", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrGlobalL1CacheSupported", ("hipDeviceAttributeGlobalL1CacheSupported", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrLocalL1CacheSupported", ("hipDeviceAttributeLocalL1CacheSupported", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrMaxSharedMemoryPerMultiprocessor", ("hipDeviceAttributeMaxSharedMemoryPerMultiprocessor", CONV_TYPE, API_RUNTIME)), ("cudaDevAttrMaxRegistersPerMultiprocessor", ("hipDeviceAttributeMaxRegistersPerMultiprocessor", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrManagedMemory", ("hipDeviceAttributeManagedMemory", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrIsMultiGpuBoard", ("hipDeviceAttributeIsMultiGpuBoard", CONV_TYPE, API_RUNTIME)), ("cudaDevAttrMultiGpuBoardGroupID", ("hipDeviceAttributeMultiGpuBoardGroupID", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrHostNativeAtomicSupported", ("hipDeviceAttributeHostNativeAtomicSupported", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrSingleToDoublePrecisionPerfRatio", ("hipDeviceAttributeSingleToDoublePrecisionPerfRatio", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrPageableMemoryAccess", ("hipDeviceAttributePageableMemoryAccess", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrConcurrentManagedAccess", ("hipDeviceAttributeConcurrentManagedAccess", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrComputePreemptionSupported", ("hipDeviceAttributeComputePreemptionSupported", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevAttrCanUseHostPointerForRegisteredMem", ("hipDeviceAttributeCanUseHostPointerForRegisteredMem", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaPointerGetAttributes", ("hipPointerGetAttributes", CONV_MEM, API_RUNTIME)), ("cudaHostGetDevicePointer", ("hipHostGetDevicePointer", CONV_MEM, API_RUNTIME)), ("cudaGetDeviceProperties", ("hipGetDeviceProperties", CONV_DEVICE, API_RUNTIME)), ("cudaDeviceGetPCIBusId", ("hipDeviceGetPCIBusId", CONV_DEVICE, API_RUNTIME)), ("cudaDeviceGetByPCIBusId", ("hipDeviceGetByPCIBusId", CONV_DEVICE, API_RUNTIME)), ("cudaDeviceGetStreamPriorityRange", ("hipDeviceGetStreamPriorityRange", CONV_DEVICE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaSetValidDevices", ("hipSetValidDevices", CONV_DEVICE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevP2PAttrPerformanceRank", ("hipDeviceP2PAttributePerformanceRank", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevP2PAttrAccessSupported", ("hipDeviceP2PAttributeAccessSupported", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDevP2PAttrNativeAtomicSupported", ("hipDeviceP2PAttributeNativeAtomicSupported", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDeviceGetP2PAttribute", ("hipDeviceGetP2PAttribute", CONV_DEVICE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaComputeModeDefault", ("hipComputeModeDefault", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaComputeModeExclusive", ("hipComputeModeExclusive", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaComputeModeProhibited", ("hipComputeModeProhibited", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaComputeModeExclusiveProcess", ("hipComputeModeExclusiveProcess", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGetDeviceFlags", ("hipGetDeviceFlags", CONV_DEVICE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaSetDeviceFlags", ("hipSetDeviceFlags", CONV_DEVICE, API_RUNTIME)), ("cudaDeviceScheduleAuto", ("hipDeviceScheduleAuto", CONV_TYPE, API_RUNTIME)), ("cudaDeviceScheduleSpin", ("hipDeviceScheduleSpin", CONV_TYPE, API_RUNTIME)), ("cudaDeviceScheduleYield", ("hipDeviceScheduleYield", CONV_TYPE, API_RUNTIME)), ("cudaDeviceBlockingSync", ("hipDeviceScheduleBlockingSync", CONV_TYPE, API_RUNTIME)), ("cudaDeviceScheduleBlockingSync", ("hipDeviceScheduleBlockingSync", CONV_TYPE, API_RUNTIME)), ("cudaDeviceScheduleMask", ("hipDeviceScheduleMask", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDeviceMapHost", ("hipDeviceMapHost", CONV_TYPE, API_RUNTIME)), ("cudaDeviceLmemResizeToMax", ("hipDeviceLmemResizeToMax", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDeviceMask", ("hipDeviceMask", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDeviceSetCacheConfig", ("hipDeviceSetCacheConfig", CONV_CACHE, API_RUNTIME)), ("cudaDeviceGetCacheConfig", ("hipDeviceGetCacheConfig", CONV_CACHE, API_RUNTIME)), ("cudaFuncSetCacheConfig", ("hipFuncSetCacheConfig", CONV_CACHE, API_RUNTIME)), ("cudaFuncCachePreferNone", ("hipFuncCachePreferNone", CONV_CACHE, API_RUNTIME)), ("cudaFuncCachePreferShared", ("hipFuncCachePreferShared", CONV_CACHE, API_RUNTIME)), ("cudaFuncCachePreferL1", ("hipFuncCachePreferL1", CONV_CACHE, API_RUNTIME)), ("cudaFuncCachePreferEqual", ("hipFuncCachePreferEqual", CONV_CACHE, API_RUNTIME)), ("cudaFuncGetAttributes", ("hipFuncGetAttributes", CONV_EXEC, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaFuncSetSharedMemConfig", ("hipFuncSetSharedMemConfig", CONV_EXEC, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGetParameterBuffer", ("hipGetParameterBuffer", CONV_EXEC, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaSetDoubleForDevice", ("hipSetDoubleForDevice", CONV_EXEC, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaSetDoubleForHost", ("hipSetDoubleForHost", CONV_EXEC, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaConfigureCall", ("hipConfigureCall", CONV_EXEC, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaLaunch", ("hipLaunch", CONV_EXEC, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaSetupArgument", ("hipSetupArgument", CONV_EXEC, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDriverGetVersion", ("hipDriverGetVersion", CONV_VERSION, API_RUNTIME)), ("cudaRuntimeGetVersion", ("hipRuntimeGetVersion", CONV_VERSION, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaOccupancyMaxPotentialBlockSize", ("hipOccupancyMaxPotentialBlockSize", CONV_OCCUPANCY, API_RUNTIME)), ("cudaOccupancyMaxPotentialBlockSizeWithFlags", ("hipOccupancyMaxPotentialBlockSizeWithFlags", CONV_OCCUPANCY, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaOccupancyMaxActiveBlocksPerMultiprocessor", ("hipOccupancyMaxActiveBlocksPerMultiprocessor", CONV_OCCUPANCY, API_RUNTIME)), ("cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags", ("hipOccupancyMaxActiveBlocksPerMultiprocessorWithFlags", CONV_OCCUPANCY, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaOccupancyMaxPotentialBlockSizeVariableSMem", ("hipOccupancyMaxPotentialBlockSizeVariableSMem", CONV_OCCUPANCY, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags", ("hipOccupancyMaxPotentialBlockSizeVariableSMemWithFlags", CONV_OCCUPANCY, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDeviceCanAccessPeer", ("hipDeviceCanAccessPeer", CONV_PEER, API_RUNTIME)), ("cudaDeviceDisablePeerAccess", ("hipDeviceDisablePeerAccess", CONV_PEER, API_RUNTIME)), ("cudaDeviceEnablePeerAccess", ("hipDeviceEnablePeerAccess", CONV_PEER, API_RUNTIME)), ("cudaMemcpyPeerAsync", ("hipMemcpyPeerAsync", CONV_MEM, API_RUNTIME)), ("cudaMemcpyPeer", ("hipMemcpyPeer", CONV_MEM, API_RUNTIME)), ("cudaIpcMemLazyEnablePeerAccess", ("hipIpcMemLazyEnablePeerAccess", CONV_TYPE, API_RUNTIME)), ("cudaDeviceSetSharedMemConfig", ("hipDeviceSetSharedMemConfig", CONV_DEVICE, API_RUNTIME)), ("cudaDeviceGetSharedMemConfig", ("hipDeviceGetSharedMemConfig", CONV_DEVICE, API_RUNTIME)), ("cudaSharedMemBankSizeDefault", ("hipSharedMemBankSizeDefault", CONV_TYPE, API_RUNTIME)), ("cudaSharedMemBankSizeFourByte", ("hipSharedMemBankSizeFourByte", CONV_TYPE, API_RUNTIME)), ("cudaSharedMemBankSizeEightByte", ("hipSharedMemBankSizeEightByte", CONV_TYPE, API_RUNTIME)), ("cudaLimitStackSize", ("hipLimitStackSize", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaLimitPrintfFifoSize", ("hipLimitPrintfFifoSize", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaLimitMallocHeapSize", ("hipLimitMallocHeapSize", CONV_TYPE, API_RUNTIME)), ("cudaLimitDevRuntimeSyncDepth", ("hipLimitDevRuntimeSyncDepth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaLimitDevRuntimePendingLaunchCount", ("hipLimitDevRuntimePendingLaunchCount", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDeviceGetLimit", ("hipDeviceGetLimit", CONV_DEVICE, API_RUNTIME)), ("cudaProfilerInitialize", ("hipProfilerInitialize", CONV_OTHER, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaProfilerStart", ("hipProfilerStart", CONV_OTHER, API_RUNTIME)), ("cudaProfilerStop", ("hipProfilerStop", CONV_OTHER, API_RUNTIME)), ("cudaKeyValuePair", ("hipKeyValuePair", CONV_OTHER, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaCSV", ("hipCSV", CONV_OTHER, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaReadModeElementType", ("hipReadModeElementType", CONV_TEX, API_RUNTIME)), ("cudaReadModeNormalizedFloat", ("hipReadModeNormalizedFloat", CONV_TEX, API_RUNTIME)), ("cudaFilterModePoint", ("hipFilterModePoint", CONV_TEX, API_RUNTIME)), ("cudaFilterModeLinear", ("hipFilterModeLinear", CONV_TEX, API_RUNTIME)), ("cudaBindTexture", ("hipBindTexture", CONV_TEX, API_RUNTIME)), ("cudaUnbindTexture", ("hipUnbindTexture", CONV_TEX, API_RUNTIME)), ("cudaBindTexture2D", ("hipBindTexture2D", CONV_TEX, API_RUNTIME)), ("cudaBindTextureToArray", ("hipBindTextureToArray", CONV_TEX, API_RUNTIME)), ("cudaBindTextureToMipmappedArray", ("hipBindTextureToMipmappedArray", CONV_TEX, API_RUNTIME)), ("cudaGetTextureAlignmentOffset", ("hipGetTextureAlignmentOffset", CONV_TEX, API_RUNTIME)), ("cudaGetTextureReference", ("hipGetTextureReference", CONV_TEX, API_RUNTIME)), ("cudaChannelFormatKindSigned", ("hipChannelFormatKindSigned", CONV_TEX, API_RUNTIME)), ("cudaChannelFormatKindUnsigned", ("hipChannelFormatKindUnsigned", CONV_TEX, API_RUNTIME)), ("cudaChannelFormatKindFloat", ("hipChannelFormatKindFloat", CONV_TEX, API_RUNTIME)), ("cudaChannelFormatKindNone", ("hipChannelFormatKindNone", CONV_TEX, API_RUNTIME)), ("cudaCreateChannelDesc", ("hipCreateChannelDesc", CONV_TEX, API_RUNTIME)), ("cudaGetChannelDesc", ("hipGetChannelDesc", CONV_TEX, API_RUNTIME)), ("cudaResourceTypeArray", ("hipResourceTypeArray", CONV_TEX, API_RUNTIME)), ("cudaResourceTypeMipmappedArray", ("hipResourceTypeMipmappedArray", CONV_TEX, API_RUNTIME)), ("cudaResourceTypeLinear", ("hipResourceTypeLinear", CONV_TEX, API_RUNTIME)), ("cudaResourceTypePitch2D", ("hipResourceTypePitch2D", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatNone", ("hipResViewFormatNone", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatUnsignedChar1", ("hipResViewFormatUnsignedChar1", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatUnsignedChar2", ("hipResViewFormatUnsignedChar2", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatUnsignedChar4", ("hipResViewFormatUnsignedChar4", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatSignedChar1", ("hipResViewFormatSignedChar1", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatSignedChar2", ("hipResViewFormatSignedChar2", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatSignedChar4", ("hipResViewFormatSignedChar4", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatUnsignedShort1", ("hipResViewFormatUnsignedShort1", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatUnsignedShort2", ("hipResViewFormatUnsignedShort2", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatUnsignedShort4", ("hipResViewFormatUnsignedShort4", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatSignedShort1", ("hipResViewFormatSignedShort1", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatSignedShort2", ("hipResViewFormatSignedShort2", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatSignedShort4", ("hipResViewFormatSignedShort4", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatUnsignedInt1", ("hipResViewFormatUnsignedInt1", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatUnsignedInt2", ("hipResViewFormatUnsignedInt2", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatUnsignedInt4", ("hipResViewFormatUnsignedInt4", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatSignedInt1", ("hipResViewFormatSignedInt1", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatSignedInt2", ("hipResViewFormatSignedInt2", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatSignedInt4", ("hipResViewFormatSignedInt4", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatHalf1", ("hipResViewFormatHalf1", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatHalf2", ("hipResViewFormatHalf2", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatHalf4", ("hipResViewFormatHalf4", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatFloat1", ("hipResViewFormatFloat1", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatFloat2", ("hipResViewFormatFloat2", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatFloat4", ("hipResViewFormatFloat4", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatUnsignedBlockCompressed1", ("hipResViewFormatUnsignedBlockCompressed1", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatUnsignedBlockCompressed2", ("hipResViewFormatUnsignedBlockCompressed2", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatUnsignedBlockCompressed3", ("hipResViewFormatUnsignedBlockCompressed3", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatUnsignedBlockCompressed4", ("hipResViewFormatUnsignedBlockCompressed4", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatSignedBlockCompressed4", ("hipResViewFormatSignedBlockCompressed4", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatUnsignedBlockCompressed5", ("hipResViewFormatUnsignedBlockCompressed5", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatSignedBlockCompressed5", ("hipResViewFormatSignedBlockCompressed5", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatUnsignedBlockCompressed6H", ("hipResViewFormatUnsignedBlockCompressed6H", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatSignedBlockCompressed6H", ("hipResViewFormatSignedBlockCompressed6H", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatUnsignedBlockCompressed7", ("hipResViewFormatUnsignedBlockCompressed7", CONV_TEX, API_RUNTIME)), ("cudaAddressModeWrap", ("hipAddressModeWrap", CONV_TEX, API_RUNTIME)), ("cudaAddressModeClamp", ("hipAddressModeClamp", CONV_TEX, API_RUNTIME)), ("cudaAddressModeMirror", ("hipAddressModeMirror", CONV_TEX, API_RUNTIME)), ("cudaAddressModeBorder", ("hipAddressModeBorder", CONV_TEX, API_RUNTIME)), ("cudaCreateTextureObject", ("hipCreateTextureObject", CONV_TEX, API_RUNTIME)), ("cudaDestroyTextureObject", ("hipDestroyTextureObject", CONV_TEX, API_RUNTIME)), ("cudaGetTextureObjectResourceDesc", ("hipGetTextureObjectResourceDesc", CONV_TEX, API_RUNTIME)), ("cudaGetTextureObjectResourceViewDesc", ("hipGetTextureObjectResourceViewDesc", CONV_TEX, API_RUNTIME)), ("cudaGetTextureObjectTextureDesc", ("hipGetTextureObjectTextureDesc", CONV_TEX, API_RUNTIME)), ("cudaBindSurfaceToArray", ("hipBindSurfaceToArray", CONV_SURFACE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGetSurfaceReference", ("hipGetSurfaceReference", CONV_SURFACE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaBoundaryModeZero", ("hipBoundaryModeZero", CONV_SURFACE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaBoundaryModeClamp", ("hipBoundaryModeClamp", CONV_SURFACE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaBoundaryModeTrap", ("hipBoundaryModeTrap", CONV_SURFACE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaFormatModeForced", ("hipFormatModeForced", CONV_SURFACE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaFormatModeAuto", ("hipFormatModeAuto", CONV_SURFACE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaCreateSurfaceObject", ("hipCreateSurfaceObject", CONV_SURFACE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDestroySurfaceObject", ("hipDestroySurfaceObject", CONV_SURFACE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGetSurfaceObjectResourceDesc", ("hipGetSurfaceObjectResourceDesc", CONV_SURFACE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaIpcCloseMemHandle", ("hipIpcCloseMemHandle", CONV_DEVICE, API_RUNTIME)), ("cudaIpcGetEventHandle", ("hipIpcGetEventHandle", CONV_DEVICE, API_RUNTIME)), ("cudaIpcGetMemHandle", ("hipIpcGetMemHandle", CONV_DEVICE, API_RUNTIME)), ("cudaIpcOpenEventHandle", ("hipIpcOpenEventHandle", CONV_DEVICE, API_RUNTIME)), ("cudaIpcOpenMemHandle", ("hipIpcOpenMemHandle", CONV_DEVICE, API_RUNTIME)), ("cudaGLGetDevices", ("hipGLGetDevices", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsGLRegisterBuffer", ("hipGraphicsGLRegisterBuffer", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsGLRegisterImage", ("hipGraphicsGLRegisterImage", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaWGLGetDevice", ("hipWGLGetDevice", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsMapResources", ("hipGraphicsMapResources", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsResourceGetMappedMipmappedArray", ("hipGraphicsResourceGetMappedMipmappedArray", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsResourceGetMappedPointer", ("hipGraphicsResourceGetMappedPointer", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsResourceSetMapFlags", ("hipGraphicsResourceSetMapFlags", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsSubResourceGetMappedArray", ("hipGraphicsSubResourceGetMappedArray", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsUnmapResources", ("hipGraphicsUnmapResources", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsUnregisterResource", ("hipGraphicsUnregisterResource", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsCubeFacePositiveX", ("hipGraphicsCubeFacePositiveX", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsCubeFaceNegativeX", ("hipGraphicsCubeFaceNegativeX", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsCubeFacePositiveY", ("hipGraphicsCubeFacePositiveY", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsCubeFaceNegativeY", ("hipGraphicsCubeFaceNegativeY", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsCubeFacePositiveZ", ("hipGraphicsCubeFacePositiveZ", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsCubeFaceNegativeZ", ("hipGraphicsCubeFaceNegativeZ", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsMapFlagsNone", ("hipGraphicsMapFlagsNone", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsMapFlagsReadOnly", ("hipGraphicsMapFlagsReadOnly", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsMapFlagsWriteDiscard", ("hipGraphicsMapFlagsWriteDiscard", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsRegisterFlagsNone", ("hipGraphicsRegisterFlagsNone", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsRegisterFlagsReadOnly", ("hipGraphicsRegisterFlagsReadOnly", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsRegisterFlagsWriteDiscard", ("hipGraphicsRegisterFlagsWriteDiscard", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsRegisterFlagsSurfaceLoadStore", ("hipGraphicsRegisterFlagsSurfaceLoadStore", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsRegisterFlagsTextureGather", ("hipGraphicsRegisterFlagsTextureGather", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGLDeviceListAll", ("HIP_GL_DEVICE_LIST_ALL", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGLDeviceListCurrentFrame", ("HIP_GL_DEVICE_LIST_CURRENT_FRAME", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGLDeviceListNextFrame", ("HIP_GL_DEVICE_LIST_NEXT_FRAME", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGLGetDevices", ("hipGLGetDevices", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsGLRegisterBuffer", ("hipGraphicsGLRegisterBuffer", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsGLRegisterImage", ("hipGraphicsGLRegisterImage", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaWGLGetDevice", ("hipWGLGetDevice", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGLMapFlagsNone", ("HIP_GL_MAP_RESOURCE_FLAGS_NONE", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGLMapFlagsReadOnly", ("HIP_GL_MAP_RESOURCE_FLAGS_READ_ONLY", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGLMapFlagsWriteDiscard", ("HIP_GL_MAP_RESOURCE_FLAGS_WRITE_DISCARD", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGLMapBufferObject", ("hipGLMapBufferObject__", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGLMapBufferObjectAsync", ("hipGLMapBufferObjectAsync__", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGLRegisterBufferObject", ("hipGLRegisterBufferObject", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGLSetBufferObjectMapFlags", ("hipGLSetBufferObjectMapFlags", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGLSetGLDevice", ("hipGLSetGLDevice", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGLUnmapBufferObject", ("hipGLUnmapBufferObject", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGLUnmapBufferObjectAsync", ("hipGLUnmapBufferObjectAsync", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGLUnregisterBufferObject", ("hipGLUnregisterBufferObject", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D9DeviceListAll", ("HIP_D3D9_DEVICE_LIST_ALL", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D9DeviceListCurrentFrame", ("HIP_D3D9_DEVICE_LIST_CURRENT_FRAME", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D9DeviceListNextFrame", ("HIP_D3D9_DEVICE_LIST_NEXT_FRAME", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D9GetDevice", ("hipD3D9GetDevice", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D9GetDevices", ("hipD3D9GetDevices", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D9GetDirect3DDevice", ("hipD3D9GetDirect3DDevice", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D9SetDirect3DDevice", ("hipD3D9SetDirect3DDevice", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsD3D9RegisterResource", ("hipGraphicsD3D9RegisterResource", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D9MapFlags", ("hipD3D9MapFlags", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D9MapFlagsNone", ("HIP_D3D9_MAPRESOURCE_FLAGS_NONE", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D9MapFlagsReadOnly", ("HIP_D3D9_MAPRESOURCE_FLAGS_READONLY", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D9MapFlagsWriteDiscard", ("HIP_D3D9_MAPRESOURCE_FLAGS_WRITEDISCARD", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D9RegisterFlagsNone", ("HIP_D3D9_REGISTER_FLAGS_NONE", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D9RegisterFlagsArray", ("HIP_D3D9_REGISTER_FLAGS_ARRAY", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D9MapResources", ("hipD3D9MapResources", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D9RegisterResource", ("hipD3D9RegisterResource", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D9ResourceGetMappedArray", ("hipD3D9ResourceGetMappedArray", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D9ResourceGetMappedPitch", ("hipD3D9ResourceGetMappedPitch", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D9ResourceGetMappedPointer", ("hipD3D9ResourceGetMappedPointer", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D9ResourceGetMappedSize", ("hipD3D9ResourceGetMappedSize", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D9ResourceGetSurfaceDimensions", ("hipD3D9ResourceGetSurfaceDimensions", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D9ResourceSetMapFlags", ("hipD3D9ResourceSetMapFlags", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D9UnmapResources", ("hipD3D9UnmapResources", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D9UnregisterResource", ("hipD3D9UnregisterResource", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D10DeviceListAll", ("HIP_D3D10_DEVICE_LIST_ALL", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D10DeviceListCurrentFrame", ("HIP_D3D10_DEVICE_LIST_CURRENT_FRAME", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D10DeviceListNextFrame", ("HIP_D3D10_DEVICE_LIST_NEXT_FRAME", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D10GetDevice", ("hipD3D10GetDevice", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D10GetDevices", ("hipD3D10GetDevices", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsD3D10RegisterResource", ("hipGraphicsD3D10RegisterResource", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D10MapFlagsNone", ("HIP_D3D10_MAPRESOURCE_FLAGS_NONE", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D10MapFlagsReadOnly", ("HIP_D3D10_MAPRESOURCE_FLAGS_READONLY", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D10MapFlagsWriteDiscard", ("HIP_D3D10_MAPRESOURCE_FLAGS_WRITEDISCARD", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D10RegisterFlagsNone", ("HIP_D3D10_REGISTER_FLAGS_NONE", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D10RegisterFlagsArray", ("HIP_D3D10_REGISTER_FLAGS_ARRAY", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D10GetDirect3DDevice", ("hipD3D10GetDirect3DDevice", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D10MapResources", ("hipD3D10MapResources", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D10RegisterResource", ("hipD3D10RegisterResource", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D10ResourceGetMappedArray", ("hipD3D10ResourceGetMappedArray", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D10ResourceGetMappedPitch", ("hipD3D10ResourceGetMappedPitch", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D10ResourceGetMappedPointer", ("hipD3D10ResourceGetMappedPointer", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D10ResourceGetMappedSize", ("hipD3D10ResourceGetMappedSize", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D10ResourceGetSurfaceDimensions", ("hipD3D10ResourceGetSurfaceDimensions", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D10ResourceSetMapFlags", ("hipD3D10ResourceSetMapFlags", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D10SetDirect3DDevice", ("hipD3D10SetDirect3DDevice", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D10UnmapResources", ("hipD3D10UnmapResources", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D10UnregisterResource", ("hipD3D10UnregisterResource", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D11DeviceListAll", ("HIP_D3D11_DEVICE_LIST_ALL", CONV_D3D11, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D11DeviceListCurrentFrame", ("HIP_D3D11_DEVICE_LIST_CURRENT_FRAME", CONV_D3D11, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D11DeviceListNextFrame", ("HIP_D3D11_DEVICE_LIST_NEXT_FRAME", CONV_D3D11, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D11GetDevice", ("hipD3D11GetDevice", CONV_D3D11, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D11GetDevices", ("hipD3D11GetDevices", CONV_D3D11, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsD3D11RegisterResource", ("hipGraphicsD3D11RegisterResource", CONV_D3D11, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D11GetDevice", ("hipD3D11GetDevice", CONV_D3D11, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaD3D11GetDevices", ("hipD3D11GetDevices", CONV_D3D11, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsD3D11RegisterResource", ("hipGraphicsD3D11RegisterResource", CONV_D3D11, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsVDPAURegisterOutputSurface", ("hipGraphicsVDPAURegisterOutputSurface", CONV_VDPAU, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsVDPAURegisterVideoSurface", ("hipGraphicsVDPAURegisterVideoSurface", CONV_VDPAU, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaVDPAUGetDevice", ("hipVDPAUGetDevice", CONV_VDPAU, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaVDPAUSetVDPAUDevice", ("hipVDPAUSetDevice", CONV_VDPAU, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaEGLStreamConsumerAcquireFrame", ("hipEGLStreamConsumerAcquireFrame", CONV_EGL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaEGLStreamConsumerConnect", ("hipEGLStreamConsumerConnect", CONV_EGL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaEGLStreamConsumerConnectWithFlags", ("hipEGLStreamConsumerConnectWithFlags", CONV_EGL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaEGLStreamConsumerReleaseFrame", ("hipEGLStreamConsumerReleaseFrame", CONV_EGL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaEGLStreamProducerConnect", ("hipEGLStreamProducerConnect", CONV_EGL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaEGLStreamProducerDisconnect", ("hipEGLStreamProducerDisconnect", CONV_EGL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaEGLStreamProducerPresentFrame", ("hipEGLStreamProducerPresentFrame", CONV_EGL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaEGLStreamProducerReturnFrame", ("hipEGLStreamProducerReturnFrame", CONV_EGL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsEGLRegisterImage", ("hipGraphicsEGLRegisterImage", CONV_EGL, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaGraphicsResourceGetMappedEglFrame", ("hipGraphicsResourceGetMappedEglFrame", CONV_EGL, API_RUNTIME, HIP_UNSUPPORTED)), ("cublasInit", ("rocblas_init", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasShutdown", ("rocblas_shutdown", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasGetVersion", ("rocblas_get_version", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasGetError", ("rocblas_get_error", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasAlloc", ("rocblas_alloc", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasFree", ("rocblas_free", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSetKernelStream", ("rocblas_set_kernel_stream", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasGetAtomicsMode", ("rocblas_get_atomics_mode", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSetAtomicsMode", ("rocblas_set_atomics_mode", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasGetMathMode", ("rocblas_get_math_mode", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSetMathMode", ("rocblas_set_math_mode", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("CUBLAS_OP_N", ("rocblas_operation_none", CONV_NUMERIC_LITERAL, API_BLAS)), ("CUBLAS_OP_T", ("rocblas_operation_transpose", CONV_NUMERIC_LITERAL, API_BLAS)), ("CUBLAS_OP_C", ("rocblas_operation_conjugate_transpose", CONV_NUMERIC_LITERAL, API_BLAS)), ("CUBLAS_STATUS_SUCCESS", ("rocblas_status_success", CONV_NUMERIC_LITERAL, API_BLAS)), ("CUBLAS_STATUS_NOT_INITIALIZED", ("rocblas_status_invalid_handle", CONV_NUMERIC_LITERAL, API_BLAS)), ("CUBLAS_STATUS_ALLOC_FAILED", ("rocblas_status_memory_error", CONV_NUMERIC_LITERAL, API_BLAS)), ("CUBLAS_STATUS_INVALID_VALUE", ("rocblas_status_invalid_pointer", CONV_NUMERIC_LITERAL, API_BLAS)), ("CUBLAS_STATUS_MAPPING_ERROR", ("rocblas_status_internal_error", CONV_NUMERIC_LITERAL, API_BLAS)), ("CUBLAS_STATUS_EXECUTION_FAILED", ("rocblas_status_internal_error", CONV_NUMERIC_LITERAL, API_BLAS)), ("CUBLAS_STATUS_INTERNAL_ERROR", ("rocblas_status_internal_error", CONV_NUMERIC_LITERAL, API_BLAS)), ("CUBLAS_STATUS_NOT_SUPPORTED", ("rocblas_status_not_implemented", CONV_NUMERIC_LITERAL, API_BLAS)), ("CUBLAS_STATUS_ARCH_MISMATCH", ("rocblas_status_not_implemented", CONV_NUMERIC_LITERAL, API_BLAS)), ("CUBLAS_FILL_MODE_LOWER", ("rocblas_fill_lower", CONV_NUMERIC_LITERAL, API_BLAS)), ("CUBLAS_FILL_MODE_UPPER", ("rocblas_fill_upper", CONV_NUMERIC_LITERAL, API_BLAS)), ("CUBLAS_DIAG_NON_UNIT", ("rocblas_diagonal_non_unit", CONV_NUMERIC_LITERAL, API_BLAS)), ("CUBLAS_DIAG_UNIT", ("rocblas_diagonal_unit", CONV_NUMERIC_LITERAL, API_BLAS)), ("CUBLAS_SIDE_LEFT", ("rocblas_side_left", CONV_NUMERIC_LITERAL, API_BLAS)), ("CUBLAS_SIDE_RIGHT", ("rocblas_side_right", CONV_NUMERIC_LITERAL, API_BLAS)), ("CUBLAS_POINTER_MODE_HOST", ("rocblas_pointer_mode_host", CONV_NUMERIC_LITERAL, API_BLAS)), ("CUBLAS_POINTER_MODE_DEVICE", ("rocblas_pointer_mode_device", CONV_NUMERIC_LITERAL, API_BLAS)), ("CUBLAS_ATOMICS_NOT_ALLOWED", ("rocblas_atomics_not_allowed", CONV_NUMERIC_LITERAL, API_BLAS, HIP_UNSUPPORTED)), ("CUBLAS_ATOMICS_ALLOWED", ("rocblas_atomics_allowed", CONV_NUMERIC_LITERAL, API_BLAS, HIP_UNSUPPORTED)), ("CUBLAS_DATA_FLOAT", ("rocblas_precision_float", CONV_NUMERIC_LITERAL, API_BLAS, HIP_UNSUPPORTED)), ("CUBLAS_DATA_DOUBLE", ("rocblas_precision_double", CONV_NUMERIC_LITERAL, API_BLAS, HIP_UNSUPPORTED)), ("CUBLAS_DATA_HALF", ("rocblas_precision_half", CONV_NUMERIC_LITERAL, API_BLAS, HIP_UNSUPPORTED)), ("CUBLAS_DATA_INT8", ("rocblas_precision_int8", CONV_NUMERIC_LITERAL, API_BLAS, HIP_UNSUPPORTED)), ("cublasCreate", ("rocblas_create_handle", CONV_MATH_FUNC, API_BLAS)), ("cublasDestroy", ("rocblas_destroy_handle", CONV_MATH_FUNC, API_BLAS)), ("cublasSetVector", ("rocblas_set_vector", CONV_MATH_FUNC, API_BLAS)), ("cublasGetVector", ("rocblas_get_vector", CONV_MATH_FUNC, API_BLAS)), ("cublasSetVectorAsync", ("rocblas_set_vector_async", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasGetVectorAsync", ("rocblas_get_vector_async", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSetMatrix", ("rocblas_set_matrix", CONV_MATH_FUNC, API_BLAS)), ("cublasGetMatrix", ("rocblas_get_matrix", CONV_MATH_FUNC, API_BLAS)), ("cublasGetMatrixAsync", ("rocblas_get_matrix_async", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSetMatrixAsync", ("rocblas_set_matrix_async", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasXerbla", ("rocblas_xerbla", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSnrm2", ("rocblas_snrm2", CONV_MATH_FUNC, API_BLAS)), ("cublasDnrm2", ("rocblas_dnrm2", CONV_MATH_FUNC, API_BLAS)), ("cublasScnrm2", ("rocblas_scnrm2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDznrm2", ("rocblas_dznrm2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasNrm2Ex", ("rocblas_nrm2_ex", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSdot", ("rocblas_sdot", CONV_MATH_FUNC, API_BLAS)), ("cublasSdotBatched", ("rocblas_sdot_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDdot", ("rocblas_ddot", CONV_MATH_FUNC, API_BLAS)), ("cublasDdotBatched", ("rocblas_ddot_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCdotu", ("rocblas_cdotu", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCdotc", ("rocblas_cdotc", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZdotu", ("rocblas_zdotu", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZdotc", ("rocblas_zdotc", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSscal", ("rocblas_sscal", CONV_MATH_FUNC, API_BLAS)), ("cublasSscalBatched", ("rocblas_sscal_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDscal", ("rocblas_dscal", CONV_MATH_FUNC, API_BLAS)), ("cublasDscalBatched", ("rocblas_dscal_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCscal", ("rocblas_cscal", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCsscal", ("rocblas_csscal", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZscal", ("rocblas_zscal", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZdscal", ("rocblas_zdscal", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSaxpy", ("rocblas_saxpy", CONV_MATH_FUNC, API_BLAS)), ("cublasSaxpyBatched", ("rocblas_saxpy_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDaxpy", ("rocblas_daxpy", CONV_MATH_FUNC, API_BLAS)), ("cublasCaxpy", ("rocblas_caxpy", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZaxpy", ("rocblas_zaxpy", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasScopy", ("rocblas_scopy", CONV_MATH_FUNC, API_BLAS)), ("cublasScopyBatched", ("rocblas_scopy_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDcopy", ("rocblas_dcopy", CONV_MATH_FUNC, API_BLAS)), ("cublasDcopyBatched", ("rocblas_dcopy_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCcopy", ("rocblas_ccopy", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZcopy", ("rocblas_zcopy", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSswap", ("rocblas_sswap", CONV_MATH_FUNC, API_BLAS)), ("cublasDswap", ("rocblas_dswap", CONV_MATH_FUNC, API_BLAS)), ("cublasCswap", ("rocblas_cswap", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZswap", ("rocblas_zswap", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasIsamax", ("rocblas_isamax", CONV_MATH_FUNC, API_BLAS)), ("cublasIdamax", ("rocblas_idamax", CONV_MATH_FUNC, API_BLAS)), ("cublasIcamax", ("rocblas_icamax", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasIzamax", ("rocblas_izamax", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasIsamin", ("rocblas_isamin", CONV_MATH_FUNC, API_BLAS)), ("cublasIdamin", ("rocblas_idamin", CONV_MATH_FUNC, API_BLAS)), ("cublasIcamin", ("rocblas_icamin", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasIzamin", ("rocblas_izamin", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSasum", ("rocblas_sasum", CONV_MATH_FUNC, API_BLAS)), ("cublasSasumBatched", ("rocblas_sasum_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDasum", ("rocblas_dasum", CONV_MATH_FUNC, API_BLAS)), ("cublasDasumBatched", ("rocblas_dasum_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasScasum", ("rocblas_scasum", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDzasum", ("rocblas_dzasum", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSrot", ("rocblas_srot", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDrot", ("rocblas_drot", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCrot", ("rocblas_crot", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCsrot", ("rocblas_csrot", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZrot", ("rocblas_zrot", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZdrot", ("rocblas_zdrot", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSrotg", ("rocblas_srotg", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDrotg", ("rocblas_drotg", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCrotg", ("rocblas_crotg", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZrotg", ("rocblas_zrotg", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSrotm", ("rocblas_srotm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDrotm", ("rocblas_drotm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSrotmg", ("rocblas_srotmg", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDrotmg", ("rocblas_drotmg", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSgemv", ("rocblas_sgemv", CONV_MATH_FUNC, API_BLAS)), ("cublasSgemvBatched", ("rocblas_sgemv_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDgemv", ("rocblas_dgemv", CONV_MATH_FUNC, API_BLAS)), ("cublasCgemv", ("rocblas_cgemv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZgemv", ("rocblas_zgemv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSgbmv", ("rocblas_sgbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDgbmv", ("rocblas_dgbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCgbmv", ("rocblas_cgbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZgbmv", ("rocblas_zgbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStrmv", ("rocblas_strmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDtrmv", ("rocblas_dtrmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCtrmv", ("rocblas_ctrmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtrmv", ("rocblas_ztrmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStbmv", ("rocblas_stbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDtbmv", ("rocblas_dtbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCtbmv", ("rocblas_ctbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtbmv", ("rocblas_ztbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStpmv", ("rocblas_stpmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDtpmv", ("rocblas_dtpmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCtpmv", ("rocblas_ctpmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtpmv", ("rocblas_ztpmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStrsv", ("rocblas_strsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDtrsv", ("rocblas_dtrsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCtrsv", ("rocblas_ctrsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtrsv", ("rocblas_ztrsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStpsv", ("rocblas_stpsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDtpsv", ("rocblas_dtpsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCtpsv", ("rocblas_ctpsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtpsv", ("rocblas_ztpsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStbsv", ("rocblas_stbsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDtbsv", ("rocblas_dtbsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCtbsv", ("rocblas_ctbsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtbsv", ("rocblas_ztbsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSsymv", ("rocblas_ssymv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDsymv", ("rocblas_dsymv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCsymv", ("rocblas_csymv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZsymv", ("rocblas_zsymv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasChemv", ("rocblas_chemv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZhemv", ("rocblas_zhemv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSsbmv", ("rocblas_ssbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDsbmv", ("rocblas_dsbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasChbmv", ("rocblas_chbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZhbmv", ("rocblas_zhbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSspmv", ("rocblas_sspmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDspmv", ("rocblas_dspmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasChpmv", ("rocblas_chpmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZhpmv", ("rocblas_zhpmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSger", ("rocblas_sger", CONV_MATH_FUNC, API_BLAS)), ("cublasDger", ("rocblas_dger", CONV_MATH_FUNC, API_BLAS)), ("cublasCgeru", ("rocblas_cgeru", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCgerc", ("rocblas_cgerc", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZgeru", ("rocblas_zgeru", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZgerc", ("rocblas_zgerc", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSsyr", ("rocblas_ssyr", CONV_MATH_FUNC, API_BLAS)), ("cublasDsyr", ("rocblas_dsyr", CONV_MATH_FUNC, API_BLAS)), ("cublasCher", ("rocblas_cher", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZher", ("rocblas_zher", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSspr", ("rocblas_sspr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDspr", ("rocblas_dspr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasChpr", ("rocblas_chpr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZhpr", ("rocblas_zhpr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSsyr2", ("rocblas_ssyr2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDsyr2", ("rocblas_dsyr2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCher2", ("rocblas_cher2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZher2", ("rocblas_zher2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSspr2", ("rocblas_sspr2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDspr2", ("rocblas_dspr2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasChpr2", ("rocblas_chpr2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZhpr2", ("rocblas_zhpr2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSgemmBatched", ("rocblas_sgemm_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDgemmBatched", ("rocblas_dgemm_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasHgemmBatched", ("rocblas_hgemm_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSgemmStridedBatched", ("rocblas_sgemm_strided_batched", CONV_MATH_FUNC, API_BLAS)), ("cublasDgemmStridedBatched", ("rocblas_dgemm_strided_batched", CONV_MATH_FUNC, API_BLAS)), ("cublasHgemmStridedBatched", ("rocblas_hgemm_strided_batched", CONV_MATH_FUNC, API_BLAS)), ("cublasCgemmBatched", ("rocblas_cgemm_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCgemm3mBatched", ("rocblas_cgemm_3m_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZgemmBatched", ("rocblas_zgemm_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCgemmStridedBatched", ("rocblas_cgemm_strided_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCgemm3mStridedBatched", ("rocblas_cgemm_3m_strided_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZgemmStridedBatched", ("rocblas_zgemm_strided_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasHgemmStridedBatched", ("rocblas_hgemm_strided_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSgemm", ("rocblas_sgemm", CONV_MATH_FUNC, API_BLAS)), ("cublasDgemm", ("rocblas_dgemm", CONV_MATH_FUNC, API_BLAS)), ("cublasCgemm", ("rocblas_cgemm", CONV_MATH_FUNC, API_BLAS)), ("cublasZgemm", ("rocblas_zgemm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasHgemm", ("rocblas_hgemm", CONV_MATH_FUNC, API_BLAS)), ("cublasSsyrk", ("rocblas_ssyrk", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDsyrk", ("rocblas_dsyrk", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCsyrk", ("rocblas_csyrk", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZsyrk", ("rocblas_zsyrk", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCherk", ("rocblas_cherk", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZherk", ("rocblas_zherk", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSsyr2k", ("rocblas_ssyr2k", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDsyr2k", ("rocblas_dsyr2k", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCsyr2k", ("rocblas_csyr2k", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZsyr2k", ("rocblas_zyr2k", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSsyrkx", ("rocblas_ssyrkx", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDsyrkx", ("rocblas_dsyrkx", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCsyrkx", ("rocblas_csyrkx", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZsyrkx", ("rocblas_zsyrkx", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCher2k", ("rocblas_cher2k", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZher2k", ("rocblas_zher2k", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCherkx", ("rocblas_cherkx", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZherkx", ("rocblas_zherkx", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSsymm", ("rocblas_ssymm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDsymm", ("rocblas_dsymm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCsymm", ("rocblas_csymm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZsymm", ("rocblas_zsymm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasChemm", ("rocblas_chemm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZhemm", ("rocblas_zhemm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStrsm", ("rocblas_strsm", CONV_MATH_FUNC, API_BLAS)), ("cublasDtrsm", ("rocblas_dtrsm", CONV_MATH_FUNC, API_BLAS)), ("cublasCtrsm", ("rocblas_ctrsm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtrsm", ("rocblas_ztrsm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStrsmBatched", ("rocblas_strsm_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDtrsmBatched", ("rocblas_dtrsm_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCtrsmBatched", ("rocblas_ctrsm_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtrsmBatched", ("rocblas_ztrsm_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStrmm", ("rocblas_strmm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDtrmm", ("rocblas_dtrmm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCtrmm", ("rocblas_ctrmm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtrmm", ("rocblas_ztrmm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSgeam", ("rocblas_sgeam", CONV_MATH_FUNC, API_BLAS)), ("cublasDgeam", ("rocblas_dgeam", CONV_MATH_FUNC, API_BLAS)), ("cublasCgeam", ("rocblas_cgeam", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZgeam", ("rocblas_zgeam", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSgetrfBatched", ("rocblas_sgetrf_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDgetrfBatched", ("rocblas_dgetrf_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCgetrfBatched", ("rocblas_cgetrf_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZgetrfBatched", ("rocblas_zgetrf_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSgetriBatched", ("rocblas_sgetri_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDgetriBatched", ("rocblas_dgetri_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCgetriBatched", ("rocblas_cgetri_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZgetriBatched", ("rocblas_zgetri_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSgetrsBatched", ("rocblas_sgetrs_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDgetrsBatched", ("rocblas_dgetrs_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCgetrsBatched", ("rocblas_cgetrs_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZgetrsBatched", ("rocblas_zgetrs_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStrsmBatched", ("rocblas_strsm_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDtrsmBatched", ("rocblas_dtrsm_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCtrsmBatched", ("rocblas_ctrsm_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtrsmBatched", ("rocblas_dtrsm_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSmatinvBatched", ("rocblas_smatinv_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDmatinvBatched", ("rocblas_dmatinv_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCmatinvBatched", ("rocblas_cmatinv_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZmatinvBatched", ("rocblas_zmatinv_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSgeqrfBatched", ("rocblas_sgeqrf_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDgeqrfBatched", ("rocblas_dgeqrf_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCgeqrfBatched", ("rocblas_cgeqrf_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZgeqrfBatched", ("rocblas_zgeqrf_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSgelsBatched", ("rocblas_sgels_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDgelsBatched", ("rocblas_dgels_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCgelsBatched", ("rocblas_cgels_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZgelsBatched", ("rocblas_zgels_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSdgmm", ("rocblas_sdgmm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDdgmm", ("rocblas_ddgmm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCdgmm", ("rocblas_cdgmm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZdgmm", ("rocblas_zdgmm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStpttr", ("rocblas_stpttr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDtpttr", ("rocblas_dtpttr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCtpttr", ("rocblas_ctpttr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtpttr", ("rocblas_ztpttr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStrttp", ("rocblas_strttp", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDtrttp", ("rocblas_dtrttp", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCtrttp", ("rocblas_ctrttp", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtrttp", ("rocblas_ztrttp", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCreate_v2", ("rocblas_create_handle", CONV_MATH_FUNC, API_BLAS)), ("cublasDestroy_v2", ("rocblas_destroy_handle", CONV_MATH_FUNC, API_BLAS)), ("cublasGetVersion_v2", ("rocblas_get_version", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSetStream", ("rocblas_set_stream", CONV_MATH_FUNC, API_BLAS)), ("cublasGetStream", ("rocblas_get_stream", CONV_MATH_FUNC, API_BLAS)), ("cublasSetStream_v2", ("rocblas_set_stream", CONV_MATH_FUNC, API_BLAS)), ("cublasGetStream_v2", ("rocblas_get_stream", CONV_MATH_FUNC, API_BLAS)), ("cublasGetPointerMode", ("rocblas_get_pointer_mode", CONV_MATH_FUNC, API_BLAS)), ("cublasSetPointerMode", ("rocblas_set_pointer_mode", CONV_MATH_FUNC, API_BLAS)), ("cublasGetPointerMode_v2", ("rocblas_get_pointer_mode", CONV_MATH_FUNC, API_BLAS)), ("cublasSetPointerMode_v2", ("rocblas_set_pointer_mode", CONV_MATH_FUNC, API_BLAS)), ("cublasSgemv_v2", ("rocblas_sgemv", CONV_MATH_FUNC, API_BLAS)), ("cublasDgemv_v2", ("rocblas_dgemv", CONV_MATH_FUNC, API_BLAS)), ("cublasCgemv_v2", ("rocblas_cgemv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZgemv_v2", ("rocblas_zgemv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSgbmv_v2", ("rocblas_sgbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDgbmv_v2", ("rocblas_dgbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCgbmv_v2", ("rocblas_cgbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZgbmv_v2", ("rocblas_zgbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStrmv_v2", ("rocblas_strmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDtrmv_v2", ("rocblas_dtrmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCtrmv_v2", ("rocblas_ctrmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtrmv_v2", ("rocblas_ztrmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStbmv_v2", ("rocblas_stbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDtbmv_v2", ("rocblas_dtbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCtbmv_v2", ("rocblas_ctbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtbmv_v2", ("rocblas_ztbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStpmv_v2", ("rocblas_stpmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDtpmv_v2", ("rocblas_dtpmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCtpmv_v2", ("rocblas_ctpmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtpmv_v2", ("rocblas_ztpmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStrsv_v2", ("rocblas_strsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDtrsv_v2", ("rocblas_dtrsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCtrsv_v2", ("rocblas_ctrsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtrsv_v2", ("rocblas_ztrsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStpsv_v2", ("rocblas_stpsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDtpsv_v2", ("rocblas_dtpsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCtpsv_v2", ("rocblas_ctpsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtpsv_v2", ("rocblas_ztpsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStbsv_v2", ("rocblas_stbsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDtbsv_v2", ("rocblas_dtbsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCtbsv_v2", ("rocblas_ctbsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtbsv_v2", ("rocblas_ztbsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSsymv_v2", ("rocblas_ssymv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDsymv_v2", ("rocblas_dsymv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCsymv_v2", ("rocblas_csymv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZsymv_v2", ("rocblas_zsymv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasChemv_v2", ("rocblas_chemv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZhemv_v2", ("rocblas_zhemv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSsbmv_v2", ("rocblas_ssbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDsbmv_v2", ("rocblas_dsbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasChbmv_v2", ("rocblas_chbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZhbmv_v2", ("rocblas_zhbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSspmv_v2", ("rocblas_sspmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDspmv_v2", ("rocblas_dspmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasChpmv_v2", ("rocblas_chpmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZhpmv_v2", ("rocblas_zhpmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSger_v2", ("rocblas_sger", CONV_MATH_FUNC, API_BLAS)), ("cublasDger_v2", ("rocblas_dger", CONV_MATH_FUNC, API_BLAS)), ("cublasCgeru_v2", ("rocblas_cgeru", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCgerc_v2", ("rocblas_cergc", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZgeru_v2", ("rocblas_zgeru", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZgerc_v2", ("rocblas_zgerc", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSsyr_v2", ("rocblas_ssyr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDsyr_v2", ("rocblas_dsyr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCsyr_v2", ("rocblas_csyr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZsyr_v2", ("rocblas_zsyr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCher_v2", ("rocblas_cher", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZher_v2", ("rocblas_zher", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSspr_v2", ("rocblas_sspr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDspr_v2", ("rocblas_dspr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasChpr_v2", ("rocblas_chpr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZhpr_v2", ("rocblas_zhpr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSsyr2_v2", ("rocblas_ssyr2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDsyr2_v2", ("rocblas_dsyr2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCsyr2_v2", ("rocblas_csyr2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZsyr2_v2", ("rocblas_zsyr2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCher2_v2", ("rocblas_cher2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZher2_v2", ("rocblas_zher2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSspr2_v2", ("rocblas_sspr2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDspr2_v2", ("rocblas_dspr2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasChpr2_v2", ("rocblas_chpr2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZhpr2_v2", ("rocblas_zhpr2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSgemm_v2", ("rocblas_sgemm", CONV_MATH_FUNC, API_BLAS)), ("cublasDgemm_v2", ("rocblas_dgemm", CONV_MATH_FUNC, API_BLAS)), ("cublasCgemm_v2", ("rocblas_cgemm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCgemm3m", ("rocblas_cgemm_3m", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCgemm3mEx", ("rocblas_cgemm_3mex", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZgemm_v2", ("rocblas_zgemm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZgemm3m", ("rocblas_zgemm_3m", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), # NB: The function rocblas_sgemmex doesn't actually exist in # rocblas, as of 2018-12-05 ("cublasSgemmEx", ("rocblas_sgemmex", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasGemmEx", ("rocblas_gemmex", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCgemmEx", ("rocblas_cgemmex", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasUint8gemmBias", ("rocblas_uint8gemmbias", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSsyrk_v2", ("rocblas_ssyrk", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDsyrk_v2", ("rocblas_dsyrk", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCsyrk_v2", ("rocblas_csyrk", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZsyrk_v2", ("rocblas_zsyrk", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCsyrkEx", ("rocblas_csyrkex", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCsyrk3mEx", ("rocblas_csyrk3mex", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCherk_v2", ("rocblas_cherk", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCherkEx", ("rocblas_cherkex", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCherk3mEx", ("rocblas_cherk3mex", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZherk_v2", ("rocblas_zherk", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSsyr2k_v2", ("rocblas_ssyr2k", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDsyr2k_v2", ("rocblas_dsyr2k", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCsyr2k_v2", ("rocblas_csyr2k", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZsyr2k_v2", ("rocblas_zsyr2k", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCher2k_v2", ("rocblas_cher2k", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZher2k_v2", ("rocblas_zher2k", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSsymm_v2", ("rocblas_ssymm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDsymm_v2", ("rocblas_dsymm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCsymm_v2", ("rocblas_csymm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZsymm_v2", ("rocblas_zsymm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasChemm_v2", ("rocblas_chemm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZhemm_v2", ("rocblas_zhemm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStrsm_v2", ("rocblas_strsm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDtrsm_v2", ("rocblas_dtrsm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCtrsm_v2", ("rocblas_ctrsm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtrsm_v2", ("rocblas_ztrsm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStrmm_v2", ("rocblas_strmm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDtrmm_v2", ("rocblas_dtrmm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCtrmm_v2", ("rocblas_ctrmm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtrmm_v2", ("rocblas_ztrmm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSnrm2_v2", ("rocblas_snrm2", CONV_MATH_FUNC, API_BLAS)), ("cublasDnrm2_v2", ("rocblas_dnrm2", CONV_MATH_FUNC, API_BLAS)), ("cublasScnrm2_v2", ("rocblas_scnrm2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDznrm2_v2", ("rocblas_dznrm2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDotEx", ("rocblas_dotex", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDotcEx", ("rocblas_dotcex", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSdot_v2", ("rocblas_sdot", CONV_MATH_FUNC, API_BLAS)), ("cublasDdot_v2", ("rocblas_ddot", CONV_MATH_FUNC, API_BLAS)), ("cublasCdotu_v2", ("rocblas_cdotu", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCdotc_v2", ("rocblas_cdotc", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZdotu_v2", ("rocblas_zdotu", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZdotc_v2", ("rocblas_zdotc", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasScalEx", ("rocblas_scalex", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSscal_v2", ("rocblas_sscal", CONV_MATH_FUNC, API_BLAS)), ("cublasDscal_v2", ("rocblas_dscal", CONV_MATH_FUNC, API_BLAS)), ("cublasCscal_v2", ("rocblas_cscal", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCsscal_v2", ("rocblas_csscal", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZscal_v2", ("rocblas_zcsal", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZdscal_v2", ("rocblas_zdscal", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasAxpyEx", ("rocblas_axpyex", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSaxpy_v2", ("rocblas_saxpy", CONV_MATH_FUNC, API_BLAS)), ("cublasDaxpy_v2", ("rocblas_daxpy", CONV_MATH_FUNC, API_BLAS)), ("cublasCaxpy_v2", ("rocblas_caxpy", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZaxpy_v2", ("rocblas_zaxpy", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasScopy_v2", ("rocblas_scopy", CONV_MATH_FUNC, API_BLAS)), ("cublasDcopy_v2", ("rocblas_dcopy", CONV_MATH_FUNC, API_BLAS)), ("cublasCcopy_v2", ("rocblas_ccopy", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZcopy_v2", ("rocblas_zcopy", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSswap_v2", ("rocblas_sswap", CONV_MATH_FUNC, API_BLAS)), ("cublasDswap_v2", ("rocblas_dswap", CONV_MATH_FUNC, API_BLAS)), ("cublasCswap_v2", ("rocblas_cswap", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZswap_v2", ("rocblas_zswap", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasIsamax_v2", ("rocblas_isamax", CONV_MATH_FUNC, API_BLAS)), ("cublasIdamax_v2", ("rocblas_idamax", CONV_MATH_FUNC, API_BLAS)), ("cublasIcamax_v2", ("rocblas_icamax", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasIzamax_v2", ("rocblas_izamax", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasIsamin_v2", ("rocblas_isamin", CONV_MATH_FUNC, API_BLAS)), ("cublasIdamin_v2", ("rocblas_idamin", CONV_MATH_FUNC, API_BLAS)), ("cublasIcamin_v2", ("rocblas_icamin", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasIzamin_v2", ("rocblas_izamin", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSasum_v2", ("rocblas_sasum", CONV_MATH_FUNC, API_BLAS)), ("cublasDasum_v2", ("rocblas_dasum", CONV_MATH_FUNC, API_BLAS)), ("cublasScasum_v2", ("rocblas_scasum", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDzasum_v2", ("rocblas_dzasum", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSrot_v2", ("rocblas_srot", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDrot_v2", ("rocblas_drot", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCrot_v2", ("rocblas_crot", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCsrot_v2", ("rocblas_csrot", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZrot_v2", ("rocblas_zrot", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZdrot_v2", ("rocblas_zdrot", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSrotg_v2", ("rocblas_srotg", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDrotg_v2", ("rocblas_drotg", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCrotg_v2", ("rocblas_crotg", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZrotg_v2", ("rocblas_zrotg", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSrotm_v2", ("rocblas_srotm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDrotm_v2", ("rocblas_drotm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSrotmg_v2", ("rocblas_srotmg", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDrotmg_v2", ("rocblas_drotmg", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("CURAND_STATUS_SUCCESS", ("HIPRAND_STATUS_SUCCESS", CONV_NUMERIC_LITERAL, API_RAND)), ("CURAND_STATUS_VERSION_MISMATCH", ("HIPRAND_STATUS_VERSION_MISMATCH", CONV_NUMERIC_LITERAL, API_RAND)), ("CURAND_STATUS_NOT_INITIALIZED", ("HIPRAND_STATUS_NOT_INITIALIZED", CONV_NUMERIC_LITERAL, API_RAND)), ("CURAND_STATUS_ALLOCATION_FAILED", ("HIPRAND_STATUS_ALLOCATION_FAILED", CONV_NUMERIC_LITERAL, API_RAND)), ("CURAND_STATUS_TYPE_ERROR", ("HIPRAND_STATUS_TYPE_ERROR", CONV_NUMERIC_LITERAL, API_RAND)), ("CURAND_STATUS_OUT_OF_RANGE", ("HIPRAND_STATUS_OUT_OF_RANGE", CONV_NUMERIC_LITERAL, API_RAND)), ("CURAND_STATUS_LENGTH_NOT_MULTIPLE", ("HIPRAND_STATUS_LENGTH_NOT_MULTIPLE", CONV_NUMERIC_LITERAL, API_RAND)), ("CURAND_STATUS_DOUBLE_PRECISION_REQUIRED", ("HIPRAND_STATUS_DOUBLE_PRECISION_REQUIRED", CONV_NUMERIC_LITERAL, API_RAND)), ("CURAND_STATUS_LAUNCH_FAILURE", ("HIPRAND_STATUS_LAUNCH_FAILURE", CONV_NUMERIC_LITERAL, API_RAND)), ("CURAND_STATUS_PREEXISTING_FAILURE", ("HIPRAND_STATUS_PREEXISTING_FAILURE", CONV_NUMERIC_LITERAL, API_RAND)), ("CURAND_STATUS_INITIALIZATION_FAILED", ("HIPRAND_STATUS_INITIALIZATION_FAILED", CONV_NUMERIC_LITERAL, API_RAND)), ("CURAND_STATUS_ARCH_MISMATCH", ("HIPRAND_STATUS_ARCH_MISMATCH", CONV_NUMERIC_LITERAL, API_RAND)), ("CURAND_STATUS_INTERNAL_ERROR", ("HIPRAND_STATUS_INTERNAL_ERROR", CONV_NUMERIC_LITERAL, API_RAND)), ("CURAND_RNG_TEST", ("HIPRAND_RNG_TEST", CONV_NUMERIC_LITERAL, API_RAND)), ("mtgp32dc_params_fast_11213", ("mtgp32dc_params_fast_11213", CONV_NUMERIC_LITERAL, API_RAND)), ("CURAND_RNG_PSEUDO_DEFAULT", ("HIPRAND_RNG_PSEUDO_DEFAULT", CONV_NUMERIC_LITERAL, API_RAND)), ("CURAND_RNG_PSEUDO_XORWOW", ("HIPRAND_RNG_PSEUDO_XORWOW", CONV_NUMERIC_LITERAL, API_RAND)), ("CURAND_RNG_PSEUDO_MRG32K3A", ("HIPRAND_RNG_PSEUDO_MRG32K3A", CONV_NUMERIC_LITERAL, API_RAND)), ("CURAND_RNG_PSEUDO_MTGP32", ("HIPRAND_RNG_PSEUDO_MTGP32", CONV_NUMERIC_LITERAL, API_RAND)), ("CURAND_RNG_PSEUDO_MT19937", ("HIPRAND_RNG_PSEUDO_MT19937", CONV_NUMERIC_LITERAL, API_RAND)), ("CURAND_RNG_PSEUDO_PHILOX4_32_10", ("HIPRAND_RNG_PSEUDO_PHILOX4_32_10", CONV_NUMERIC_LITERAL, API_RAND)), ("CURAND_RNG_QUASI_DEFAULT", ("HIPRAND_RNG_QUASI_DEFAULT", CONV_NUMERIC_LITERAL, API_RAND)), ("CURAND_RNG_QUASI_SOBOL32", ("HIPRAND_RNG_QUASI_SOBOL32", CONV_NUMERIC_LITERAL, API_RAND)), ("CURAND_RNG_QUASI_SCRAMBLED_SOBOL32", ("HIPRAND_RNG_QUASI_SCRAMBLED_SOBOL32", CONV_NUMERIC_LITERAL, API_RAND)), ("CURAND_RNG_QUASI_SOBOL64", ("HIPRAND_RNG_QUASI_SOBOL64", CONV_NUMERIC_LITERAL, API_RAND)), ("CURAND_RNG_QUASI_SCRAMBLED_SOBOL64", ("HIPRAND_RNG_QUASI_SCRAMBLED_SOBOL64", CONV_NUMERIC_LITERAL, API_RAND)), ("curand_ORDERING_PSEUDO_BEST", ("HIPRAND_ORDERING_PSEUDO_BEST", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED)), ("curand_ORDERING_PSEUDO_DEFAULT", ("HIPRAND_ORDERING_PSEUDO_DEFAULT", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED)), ("curand_ORDERING_PSEUDO_SEEDED", ("HIPRAND_ORDERING_PSEUDO_SEEDED", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED)), ("curand_ORDERING_QUASI_DEFAULT", ("HIPRAND_ORDERING_QUASI_DEFAULT", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED)), ("curand_DIRECTION_VECTORS_32_JOEKUO6", ("HIPRAND_DIRECTION_VECTORS_32_JOEKUO6", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED)), ("curand_SCRAMBLED_DIRECTION_VECTORS_32_JOEKUO6", ("HIPRAND_SCRAMBLED_DIRECTION_VECTORS_32_JOEKUO6", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED)), ("curand_DIRECTION_VECTORS_64_JOEKUO6", ("HIPRAND_DIRECTION_VECTORS_64_JOEKUO6", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED)), ("curand_SCRAMBLED_DIRECTION_VECTORS_64_JOEKUO6", ("HIPRAND_SCRAMBLED_DIRECTION_VECTORS_64_JOEKUO6", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED)), ("curand_CHOOSE_BEST", ("HIPRAND_CHOOSE_BEST", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED)), ("curand_ITR", ("HIPRAND_ITR", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED)), ("curand_KNUTH", ("HIPRAND_KNUTH", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED)), ("curand_HITR", ("HIPRAND_HITR", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED)), ("curand_M1", ("HIPRAND_M1", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED)), ("curand_M2", ("HIPRAND_M2", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED)), ("curand_BINARY_SEARCH", ("HIPRAND_BINARY_SEARCH", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED)), ("curand_DISCRETE_GAUSS", ("HIPRAND_DISCRETE_GAUSS", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED)), ("curand_REJECTION", ("HIPRAND_REJECTION", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED)), ("curand_DEVICE_API", ("HIPRAND_DEVICE_API", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED)), ("curand_FAST_REJECTION", ("HIPRAND_FAST_REJECTION", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED)), ("curand_3RD", ("HIPRAND_3RD", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED)), ("curand_DEFINITION", ("HIPRAND_DEFINITION", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED)), ("curand_POISSON", ("HIPRAND_POISSON", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED)), ("curandCreateGenerator", ("hiprandCreateGenerator", CONV_MATH_FUNC, API_RAND)), ("curandCreateGeneratorHost", ("hiprandCreateGeneratorHost", CONV_MATH_FUNC, API_RAND)), ("curandCreatePoissonDistribution", ("hiprandCreatePoissonDistribution", CONV_MATH_FUNC, API_RAND)), ("curandDestroyDistribution", ("hiprandDestroyDistribution", CONV_MATH_FUNC, API_RAND)), ("curandDestroyGenerator", ("hiprandDestroyGenerator", CONV_MATH_FUNC, API_RAND)), ("curandGenerate", ("hiprandGenerate", CONV_MATH_FUNC, API_RAND)), ("curandGenerateLogNormal", ("hiprandGenerateLogNormal", CONV_MATH_FUNC, API_RAND)), ("curandGenerateLogNormalDouble", ("hiprandGenerateLogNormalDouble", CONV_MATH_FUNC, API_RAND)), ("curandGenerateLongLong", ("hiprandGenerateLongLong", CONV_MATH_FUNC, API_RAND, HIP_UNSUPPORTED)), ("curandGenerateNormal", ("hiprandGenerateNormal", CONV_MATH_FUNC, API_RAND)), ("curandGenerateNormalDouble", ("hiprandGenerateNormalDouble", CONV_MATH_FUNC, API_RAND)), ("curandGeneratePoisson", ("hiprandGeneratePoisson", CONV_MATH_FUNC, API_RAND)), ("curandGenerateSeeds", ("hiprandGenerateSeeds", CONV_MATH_FUNC, API_RAND)), ("curandGenerateUniform", ("hiprandGenerateUniform", CONV_MATH_FUNC, API_RAND)), ("curandGenerateUniformDouble", ("hiprandGenerateUniformDouble", CONV_MATH_FUNC, API_RAND)), ("curandGetDirectionVectors32", ("hiprandGetDirectionVectors32", CONV_MATH_FUNC, API_RAND, HIP_UNSUPPORTED)), ("curandGetDirectionVectors64", ("hiprandGetDirectionVectors64", CONV_MATH_FUNC, API_RAND, HIP_UNSUPPORTED)), ("curandGetProperty", ("hiprandGetProperty", CONV_MATH_FUNC, API_RAND, HIP_UNSUPPORTED)), ("curandGetScrambleConstants32", ("hiprandGetScrambleConstants32", CONV_MATH_FUNC, API_RAND, HIP_UNSUPPORTED)), ("curandGetScrambleConstants64", ("hiprandGetScrambleConstants64", CONV_MATH_FUNC, API_RAND, HIP_UNSUPPORTED)), ("curandGetVersion", ("hiprandGetVersion", CONV_MATH_FUNC, API_RAND)), ("curandSetGeneratorOffset", ("hiprandSetGeneratorOffset", CONV_MATH_FUNC, API_RAND)), ("curandSetGeneratorOrdering", ("hiprandSetGeneratorOrdering", CONV_MATH_FUNC, API_RAND, HIP_UNSUPPORTED)), ("curandSetPseudoRandomGeneratorSeed", ("hiprandSetPseudoRandomGeneratorSeed", CONV_MATH_FUNC, API_RAND)), ("curandSetQuasiRandomGeneratorDimensions", ("hiprandSetQuasiRandomGeneratorDimensions", CONV_MATH_FUNC, API_RAND)), ("curandSetStream", ("hiprandSetStream", CONV_MATH_FUNC, API_RAND)), ("curand", ("hiprand", CONV_DEVICE_FUNC, API_RAND)), ("curand_init", ("hiprand_init", CONV_DEVICE_FUNC, API_RAND)), ("curand_log_normal", ("hiprand_log_normal", CONV_DEVICE_FUNC, API_RAND)), ("curand_log_normal_double", ("hiprand_log_normal_double", CONV_DEVICE_FUNC, API_RAND)), ("curand_log_normal2", ("hiprand_log_normal2", CONV_DEVICE_FUNC, API_RAND)), ("curand_log_normal2_double", ("hiprand_log_normal2_double", CONV_DEVICE_FUNC, API_RAND)), ("curand_log_normal4", ("hiprand_log_normal4", CONV_DEVICE_FUNC, API_RAND)), ("curand_log_normal4_double", ("hiprand_log_normal4_double", CONV_DEVICE_FUNC, API_RAND)), ("curand_mtgp32_single", ("hiprand_mtgp32_single", CONV_DEVICE_FUNC, API_RAND, HIP_UNSUPPORTED)), ("curand_mtgp32_single_specific", ("hiprand_mtgp32_single_specific", CONV_DEVICE_FUNC, API_RAND, HIP_UNSUPPORTED)), ("curand_mtgp32_specific", ("hiprand_mtgp32_specific", CONV_DEVICE_FUNC, API_RAND, HIP_UNSUPPORTED)), ("curand_normal", ("hiprand_normal", CONV_DEVICE_FUNC, API_RAND)), ("curandMakeMTGP32Constants", ("hiprandMakeMTGP32Constants", CONV_DEVICE_FUNC, API_RAND)), ("curandMakeMTGP32KernelState", ("hiprandMakeMTGP32KernelState", CONV_DEVICE_FUNC, API_RAND)), ("curand_normal_double", ("hiprand_normal_double", CONV_DEVICE_FUNC, API_RAND)), ("curand_normal2", ("hiprand_normal2", CONV_DEVICE_FUNC, API_RAND)), ("curand_normal2_double", ("hiprand_normal2_double", CONV_DEVICE_FUNC, API_RAND)), ("curand_normal4", ("hiprand_normal4", CONV_DEVICE_FUNC, API_RAND)), ("curand_normal4_double", ("hiprand_normal4_double", CONV_DEVICE_FUNC, API_RAND)), ("curand_uniform", ("hiprand_uniform", CONV_DEVICE_FUNC, API_RAND)), ("curand_uniform_double", ("hiprand_uniform_double", CONV_DEVICE_FUNC, API_RAND)), ("curand_uniform2_double", ("hiprand_uniform2_double", CONV_DEVICE_FUNC, API_RAND)), ("curand_uniform4", ("hiprand_uniform4", CONV_DEVICE_FUNC, API_RAND)), ("curand_uniform4_double", ("hiprand_uniform4_double", CONV_DEVICE_FUNC, API_RAND)), ("curand_discrete", ("hiprand_discrete", CONV_DEVICE_FUNC, API_RAND)), ("curand_discrete4", ("hiprand_discrete4", CONV_DEVICE_FUNC, API_RAND)), ("curand_poisson", ("hiprand_poisson", CONV_DEVICE_FUNC, API_RAND)), ("curand_poisson4", ("hiprand_poisson4", CONV_DEVICE_FUNC, API_RAND)), ("curand_Philox4x32_10", ("hiprand_Philox4x32_10", CONV_DEVICE_FUNC, API_RAND, HIP_UNSUPPORTED)), ("mtgp32_kernel_params", ("mtgp32_kernel_params_t", CONV_MATH_FUNC, API_RAND)), ("CUFFT_FORWARD", ("HIPFFT_FORWARD", CONV_NUMERIC_LITERAL, API_BLAS)), ("CUFFT_INVERSE", ("HIPFFT_BACKWARD", CONV_NUMERIC_LITERAL, API_BLAS)), ("CUFFT_COMPATIBILITY_DEFAULT", ("HIPFFT_COMPATIBILITY_DEFAULT", CONV_NUMERIC_LITERAL, API_BLAS, HIP_UNSUPPORTED)), ("cufftResult_t", ("hipfftResult_t", CONV_TYPE, API_FFT)), ("cufftResult", ("hipfftResult", CONV_TYPE, API_FFT)), ("CUFFT_SUCCESS", ("HIPFFT_SUCCESS", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_INVALID_PLAN", ("HIPFFT_INVALID_PLAN", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_ALLOC_FAILED", ("HIPFFT_ALLOC_FAILED", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_INVALID_TYPE", ("HIPFFT_INVALID_TYPE", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_INVALID_VALUE", ("HIPFFT_INVALID_VALUE", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_INTERNAL_ERROR", ("HIPFFT_INTERNAL_ERROR", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_EXEC_FAILED", ("HIPFFT_EXEC_FAILED", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_SETUP_FAILED", ("HIPFFT_SETUP_FAILED", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_INVALID_SIZE", ("HIPFFT_INVALID_SIZE", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_UNALIGNED_DATA", ("HIPFFT_UNALIGNED_DATA", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_INCOMPLETE_PARAMETER_LIST", ("HIPFFT_INCOMPLETE_PARAMETER_LIST", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_INVALID_DEVICE", ("HIPFFT_INVALID_DEVICE", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_PARSE_ERROR", ("HIPFFT_PARSE_ERROR", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_NO_WORKSPACE", ("HIPFFT_NO_WORKSPACE", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_NOT_IMPLEMENTED", ("HIPFFT_NOT_IMPLEMENTED", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_LICENSE_ERROR", ("HIPFFT_LICENSE_ERROR", CONV_NUMERIC_LITERAL, API_FFT, HIP_UNSUPPORTED)), ("CUFFT_NOT_SUPPORTED", ("HIPFFT_NOT_SUPPORTED", CONV_NUMERIC_LITERAL, API_FFT)), ("cufftType_t", ("hipfftType_t", CONV_TYPE, API_FFT)), ("cufftType", ("hipfftType", CONV_TYPE, API_FFT)), ("CUFFT_R2C", ("HIPFFT_R2C", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_C2R", ("HIPFFT_C2R", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_C2C", ("HIPFFT_C2C", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_D2Z", ("HIPFFT_D2Z", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_Z2D", ("HIPFFT_Z2D", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_Z2Z", ("HIPFFT_Z2Z", CONV_NUMERIC_LITERAL, API_FFT)), ("cufftCompatibility_t", ("hipfftCompatibility_t", CONV_TYPE, API_FFT, HIP_UNSUPPORTED)), ("cufftCompatibility", ("hipfftCompatibility", CONV_TYPE, API_FFT, HIP_UNSUPPORTED)), ("CUFFT_COMPATIBILITY_FFTW_PADDING", ("HIPFFT_COMPATIBILITY_FFTW_PADDING", CONV_NUMERIC_LITERAL, API_FFT, HIP_UNSUPPORTED)), ("cufftReal", ("hipfftReal", CONV_TYPE, API_FFT)), ("cufftDoubleReal", ("hipfftDoubleReal", CONV_TYPE, API_FFT)), ("cufftComplex", ("hipfftComplex", CONV_TYPE, API_FFT)), ("cufftDoubleComplex", ("hipfftDoubleComplex", CONV_TYPE, API_FFT)), ("cufftHandle", ("hipfftHandle", CONV_TYPE, API_FFT)), ("cufftPlan1d", ("hipfftPlan1d", CONV_MATH_FUNC, API_FFT)), ("cufftPlan2d", ("hipfftPlan2d", CONV_MATH_FUNC, API_FFT)), ("cufftPlan3d", ("hipfftPlan3d", CONV_MATH_FUNC, API_FFT)), ("cufftPlanMany", ("hipfftPlanMany", CONV_MATH_FUNC, API_FFT)), ("cufftMakePlan1d", ("hipfftMakePlan1d", CONV_MATH_FUNC, API_FFT)), ("cufftMakePlan2d", ("hipfftMakePlan2d", CONV_MATH_FUNC, API_FFT)), ("cufftMakePlan3d", ("hipfftMakePlan3d", CONV_MATH_FUNC, API_FFT)), ("cufftMakePlanMany", ("hipfftMakePlanMany", CONV_MATH_FUNC, API_FFT)), ("cufftMakePlanMany64", ("hipfftMakePlanMany64", CONV_MATH_FUNC, API_FFT)), ("cufftGetSizeMany64", ("hipfftGetSizeMany64", CONV_MATH_FUNC, API_FFT)), ("cufftEstimate1d", ("hipfftEstimate1d", CONV_MATH_FUNC, API_FFT)), ("cufftEstimate2d", ("hipfftEstimate2d", CONV_MATH_FUNC, API_FFT)), ("cufftEstimate3d", ("hipfftEstimate3d", CONV_MATH_FUNC, API_FFT)), ("cufftEstimateMany", ("hipfftEstimateMany", CONV_MATH_FUNC, API_FFT)), ("cufftCreate", ("hipfftCreate", CONV_MATH_FUNC, API_FFT)), ("cufftGetSize1d", ("hipfftGetSize1d", CONV_MATH_FUNC, API_FFT)), ("cufftGetSize2d", ("hipfftGetSize2d", CONV_MATH_FUNC, API_FFT)), ("cufftGetSize3d", ("hipfftGetSize3d", CONV_MATH_FUNC, API_FFT)), ("cufftGetSizeMany", ("hipfftGetSizeMany", CONV_MATH_FUNC, API_FFT)), ("cufftGetSize", ("hipfftGetSize", CONV_MATH_FUNC, API_FFT)), ("cufftSetWorkArea", ("hipfftSetWorkArea", CONV_MATH_FUNC, API_FFT)), ("cufftSetAutoAllocation", ("hipfftSetAutoAllocation", CONV_MATH_FUNC, API_FFT)), ("cufftExecC2C", ("hipfftExecC2C", CONV_MATH_FUNC, API_FFT)), ("cufftExecR2C", ("hipfftExecR2C", CONV_MATH_FUNC, API_FFT)), ("cufftExecC2R", ("hipfftExecC2R", CONV_MATH_FUNC, API_FFT)), ("cufftExecZ2Z", ("hipfftExecZ2Z", CONV_MATH_FUNC, API_FFT)), ("cufftExecD2Z", ("hipfftExecD2Z", CONV_MATH_FUNC, API_FFT)), ("cufftExecZ2D", ("hipfftExecZ2D", CONV_MATH_FUNC, API_FFT)), ("cufftSetStream", ("hipfftSetStream", CONV_MATH_FUNC, API_FFT)), ("cufftDestroy", ("hipfftDestroy", CONV_MATH_FUNC, API_FFT)), ("cufftGetVersion", ("hipfftGetVersion", CONV_MATH_FUNC, API_FFT)), ("cufftGetProperty", ("hipfftGetProperty", CONV_MATH_FUNC, API_FFT, HIP_UNSUPPORTED)), ]) CUDA_SPARSE_MAP = collections.OrderedDict([ ("cusparseStatus_t", ("hipsparseStatus_t", CONV_MATH_FUNC, API_SPARSE)), ("cusparseHandle_t", ("hipsparseHandle_t", CONV_MATH_FUNC, API_SPARSE)), ("cusparseOperation_t", ("hipsparseOperation_t", CONV_TYPE, API_SPARSE)), ("cusparseCreateMatDescr", ("hipsparseCreateMatDescr", CONV_MATH_FUNC, API_SPARSE)), ("cusparseCreate", ("hipsparseCreate", CONV_MATH_FUNC, API_SPARSE)), ("cusparseDestroyMatDescr", ("hipsparseDestroyMatDescr", CONV_MATH_FUNC, API_SPARSE)), ("cusparseDestroy", ("hipsparseDestroy", CONV_MATH_FUNC, API_SPARSE)), ("cusparseXcoo2csr", ("hipsparseXcoo2csr", CONV_MATH_FUNC, API_SPARSE)), ("cusparseMatDescr_t", ("hipsparseMatDescr_t", CONV_MATH_FUNC, API_SPARSE)), ("cusparseScsrmm2", ("hipsparseScsrmm2", CONV_MATH_FUNC, API_SPARSE)), ("cusparseDcsrmm2", ("hipsparseDcsrmm2", CONV_MATH_FUNC, API_SPARSE)), ("cusparseScsrmm", ("hipsparseScsrmm", CONV_MATH_FUNC, API_SPARSE)), ("cusparseDcsrmm", ("hipsparseDcsrmm", CONV_MATH_FUNC, API_SPARSE)), ("cusparseXcsrsort_bufferSizeExt", ("hipsparseXcsrsort_bufferSizeExt", CONV_MATH_FUNC, API_SPARSE)), ("cusparseXcsrsort", ("hipsparseXcsrsort", CONV_MATH_FUNC, API_SPARSE)), ("cusparseXcoosort_bufferSizeExt", ("hipsparseXcoosort_bufferSizeExt", CONV_MATH_FUNC, API_SPARSE)), ("cusparseXcoosortByRow", ("hipsparseXcoosortByRow", CONV_MATH_FUNC, API_SPARSE)), ("cusparseSetStream", ("hipsparseSetStream", CONV_MATH_FUNC, API_SPARSE)), ("cusparseCreateIdentityPermutation", ("hipsparseCreateIdentityPermutation", CONV_MATH_FUNC, API_SPARSE)), ("cusparseSetMatIndexBase", ("hipsparseSetMatIndexBase", CONV_MATH_FUNC, API_SPARSE)), ("cusparseSetMatType", ("hipsparseSetMatType", CONV_MATH_FUNC, API_SPARSE)), ("CUSPARSE_STATUS_SUCCESS", ("HIPSPARSE_STATUS_SUCCESS", CONV_NUMERIC_LITERAL, API_SPARSE)), ("CUSPARSE_STATUS_NOT_INITIALIZED", ("HIPSPARSE_STATUS_NOT_INITIALIZED", CONV_NUMERIC_LITERAL, API_SPARSE)), ("CUSPARSE_STATUS_ALLOC_FAILED", ("HIPSPARSE_STATUS_ALLOC_FAILED", CONV_NUMERIC_LITERAL, API_SPARSE)), ("CUSPARSE_STATUS_INVALID_VALUE", ("HIPSPARSE_STATUS_INVALID_VALUE", CONV_NUMERIC_LITERAL, API_SPARSE)), ("CUSPARSE_STATUS_MAPPING_ERROR", ("HIPSPARSE_STATUS_MAPPING_ERROR", CONV_NUMERIC_LITERAL, API_SPARSE)), ("CUSPARSE_STATUS_EXECUTION_FAILED", ("HIPSPARSE_STATUS_EXECUTION_FAILED", CONV_NUMERIC_LITERAL, API_SPARSE)), ("CUSPARSE_STATUS_INTERNAL_ERROR", ("HIPSPARSE_STATUS_INTERNAL_ERROR", CONV_NUMERIC_LITERAL, API_SPARSE)), ("CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED", ("HIPSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED", CONV_NUMERIC_LITERAL, API_SPARSE)), ("CUSPARSE_STATUS_ARCH_MISMATCH", ("HIPSPARSE_STATUS_ARCH_MISMATCH", CONV_NUMERIC_LITERAL, API_SPARSE)), ("CUSPARSE_STATUS_ZERO_PIVOT", ("HIPSPARSE_STATUS_ZERO_PIVOT", CONV_NUMERIC_LITERAL, API_SPARSE)), ("CUSPARSE_OPERATION_TRANSPOSE", ("HIPSPARSE_OPERATION_TRANSPOSE", CONV_NUMERIC_LITERAL, API_SPARSE)), ("CUSPARSE_OPERATION_NON_TRANSPOSE", ("HIPSPARSE_OPERATION_NON_TRANSPOSE", CONV_NUMERIC_LITERAL, API_SPARSE)), ("CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE", ("HIPSPARSE_OPERATION_CONJUGATE_TRANSPOSE", CONV_NUMERIC_LITERAL, API_SPARSE)), ("CUSPARSE_INDEX_BASE_ZERO", ("HIPSPARSE_INDEX_BASE_ZERO", CONV_NUMERIC_LITERAL, API_SPARSE)), ("CUSPARSE_INDEX_BASE_ONE", ("HIPSPARSE_INDEX_BASE_ONE", CONV_NUMERIC_LITERAL, API_SPARSE)), ("CUSPARSE_MATRIX_TYPE_GENERAL", ("HIPSPARSE_MATRIX_TYPE_GENERAL", CONV_NUMERIC_LITERAL, API_SPARSE)), ]) GLOO_SPECIFIC_MAPPINGS = collections.OrderedDict([ ("cuda_stream" , ("hip_stream", API_GLOO)), ("REGISTER_CUDA_OPERATOR" , ("REGISTER_HIP_OPERATOR", API_GLOO)), ("CUDA_1D_KERNEL_LOOP" , ("HIP_1D_KERNEL_LOOP", API_GLOO)), ("CUDAContext" , ("HIPContext", API_GLOO)), ("CAFFE_CUDA_NUM_THREADS" , ("CAFFE_HIP_NUM_THREADS", API_GLOO)), ("HasCudaGPU" , ("HasHipGPU", API_GLOO)), ("__expf" , ("expf", API_GLOO)), ("CUBLAS_ENFORCE" , ("ROCBLAS_ENFORCE", API_GLOO)), ("CUBLAS_CHECK" , ("ROCBLAS_CHECK", API_GLOO)), ("cublas_handle" , ("rocblashandle", API_GLOO)), ("CURAND_ENFORCE" ,("HIPRAND_ENFORCE", API_GLOO)), ("CURAND_CHECK" ,("HIPRAND_CHECK", API_GLOO)), ("curandGenerateUniform" , ("hiprandGenerateUniform", API_GLOO)), ("curand_generator" , ("hiprand_generator", API_GLOO)), ("CaffeCudaGetDevice" , ("CaffeHipGetDevice", API_GLOO)), ("USE_CUDA" ,("USE_ROCM", API_GLOO)), ("CUDA" ,("HIP", API_GLOO)), ("Cuda" ,("Hip", API_GLOO)), ("cuda_" ,("hip_", API_GLOO)), ("_cuda" ,("_hip", API_GLOO)), ("cuda::" ,("hip::", API_GLOO)), ("CUDNN" ,("MIOPEN", API_GLOO)), ("CuDNN" ,("MIOPEN", API_GLOO)), ("cudnn" ,("miopen", API_GLOO)), ("namespace cuda", ("namespace hip", API_GLOO)), ("gloo/cuda.h", ("gloo/hip.h", API_GLOO)), ("<nccl.h>", ("<rccl.h>", API_GLOO)), ("GLOO_USE_NCCL", ("GLOO_USE_RCCL", API_GLOO)), ]) # NB: C10 mappings are more specific than Caffe2 mappings, so run them # first CUDA_TO_HIP_MAPPINGS = [CUDA_IDENTIFIER_MAP, CUDA_TYPE_NAME_MAP, CUDA_INCLUDE_MAP, CUDA_SPARSE_MAP, GLOO_SPECIFIC_MAPPINGS]
""" Constants for annotations in the mapping. The constants defined here are used to annotate the mapping tuples in cuda_to_hip_mappings.py. They are based on https://github.com/ROCm-Developer-Tools/HIP/blob/master/hipify-clang/src/Statistics.h and fall in three categories: 1) type of mapping, 2) API of mapping, 3) unsupported mapping. """ CONV_VERSION = 0, CONV_INIT = 1 CONV_DEVICE = 2 CONV_MEM = 3 CONV_KERN = 4 CONV_COORD_FUNC = 5 CONV_MATH_FUNC = 6 CONV_DEVICE_FUNC = 7 CONV_SPECIAL_FUNC = 8 CONV_STREAM = 9 CONV_EVENT = 10 CONV_OCCUPANCY = 11 CONV_CONTEXT = 12 CONV_PEER = 13 CONV_MODULE = 14 CONV_CACHE = 15 CONV_EXEC = 16 CONV_ERROR = 17 CONV_DEF = 18 CONV_TEX = 19 CONV_GL = 20 CONV_GRAPHICS = 21 CONV_SURFACE = 22 CONV_JIT = 23 CONV_D3D9 = 24 CONV_D3D10 = 25 CONV_D3D11 = 26 CONV_VDPAU = 27 CONV_EGL = 28 CONV_THREAD = 29 CONV_OTHER = 30 CONV_INCLUDE = 31 CONV_INCLUDE_CUDA_MAIN_H = 32 CONV_TYPE = 33 CONV_LITERAL = 34 CONV_NUMERIC_LITERAL = 35 CONV_LAST = 36 API_DRIVER = 37 API_RUNTIME = 38 API_BLAS = 39 API_SPARSE = 40 API_RAND = 41 API_LAST = 42 API_FFT = 43 HIP_UNSUPPORTED = 43 API_GLOO = 1340
#!/usr/bin/env python """ The Python Hipify script. ## # Copyright (c) 2015-2016 Advanced Micro Devices, Inc. All rights reserved. # 2017-2018 Advanced Micro Devices, Inc. and # Facebook Inc. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """ from __future__ import absolute_import, division, print_function import fnmatch import re import shutil import sys import os import json from pyHIPIFY.cuda_to_hip_mappings import CUDA_TO_HIP_MAPPINGS class InputError(Exception): # Exception raised for errors in the input. def __init__(self, message): super(InputError, self).__init__(message) self.message = message def __str__(self): return "{}: {}".format("Input error", self.message) def matched_files_iter(root_path, includes=('*',), ignores=(), extensions=()): def _fnmatch(filepath, patterns): return any(fnmatch.fnmatch(filepath, pattern) for pattern in patterns) def match_extensions(filename): """Helper method to see if filename ends with certain extension""" return any(filename.endswith(e) for e in extensions) exact_matches = set(includes) # This is a very rough heuristic; really, we want to avoid scanning # any file which is not checked into source control, but this script # needs to work even if you're in a Git or Hg checkout, so easier to # just blacklist the biggest time sinks that won't matter in the # end. for (abs_dirpath, dirs, filenames) in os.walk(root_path, topdown=True): rel_dirpath = os.path.relpath(abs_dirpath, root_path) if rel_dirpath == '.': # Blah blah blah O(n) blah blah if ".git" in dirs: dirs.remove(".git") if "build" in dirs: dirs.remove("build") if "third_party" in dirs: dirs.remove("third_party") for filename in filenames: filepath = os.path.join(rel_dirpath, filename) # We respect extensions, UNLESS you wrote the entire # filename verbatim, in which case we always accept it if _fnmatch(filepath, includes) and \ (not _fnmatch(filepath, ignores)) and \ (match_extensions(filepath) or filepath in exact_matches): yield filepath def preprocess( project_directory, output_directory, all_files, show_progress=True): """ Call preprocessor on selected files. """ for filepath in all_files: preprocessor(project_directory, output_directory, filepath) if show_progress: print( filepath, "->", get_hip_file_path(filepath)) print("Successfully preprocessed all matching files.") def add_dim3(kernel_string, cuda_kernel): '''adds dim3() to the second and third arguments in the kernel launch''' count = 0 closure = 0 kernel_string = kernel_string.replace("<<<", "").replace(">>>", "") arg_locs = [{} for _ in range(2)] arg_locs[count]['start'] = 0 for ind, c in enumerate(kernel_string): if count > 1: break if c == "(": closure += 1 elif c == ")": closure -= 1 elif (c == "," or ind == len(kernel_string) - 1) and closure == 0: arg_locs[count]['end'] = ind + (c != ",") count += 1 if count < 2: arg_locs[count]['start'] = ind + 1 first_arg_raw = kernel_string[arg_locs[0]['start']:arg_locs[0]['end'] + 1] second_arg_raw = kernel_string[arg_locs[1]['start']:arg_locs[1]['end']] first_arg_clean = kernel_string[arg_locs[0]['start']:arg_locs[0]['end']].replace("\n", "").strip(" ") second_arg_clean = kernel_string[arg_locs[1]['start']:arg_locs[1]['end']].replace("\n", "").strip(" ") first_arg_dim3 = "dim3({})".format(first_arg_clean) second_arg_dim3 = "dim3({})".format(second_arg_clean) first_arg_raw_dim3 = first_arg_raw.replace(first_arg_clean, first_arg_dim3) second_arg_raw_dim3 = second_arg_raw.replace(second_arg_clean, second_arg_dim3) cuda_kernel = cuda_kernel.replace(first_arg_raw + second_arg_raw, first_arg_raw_dim3 + second_arg_raw_dim3) return cuda_kernel RE_KERNEL_LAUNCH = re.compile(r'([ ]+)(detail?)::[ ]+\\\n[ ]+') def processKernelLaunches(string): """ Replace the CUDA style Kernel launches with the HIP style kernel launches.""" # Concat the namespace with the kernel names. (Find cleaner way of doing this later). string = RE_KERNEL_LAUNCH.sub(lambda inp: "{0}{1}::".format(inp.group(1), inp.group(2)), string) def grab_method_and_template(in_kernel): # The positions for relevant kernel components. pos = { "kernel_launch": {"start": in_kernel["start"], "end": in_kernel["end"]}, "kernel_name": {"start": -1, "end": -1}, "template": {"start": -1, "end": -1} } # Count for balancing template count = {"<>": 0} # Status for whether we are parsing a certain item. START = 0 AT_TEMPLATE = 1 AFTER_TEMPLATE = 2 AT_KERNEL_NAME = 3 status = START # Parse the string character by character for i in range(pos["kernel_launch"]["start"] - 1, -1, -1): char = string[i] # Handle Templating Arguments if status == START or status == AT_TEMPLATE: if char == ">": if status == START: status = AT_TEMPLATE pos["template"]["end"] = i count["<>"] += 1 if char == "<": count["<>"] -= 1 if count["<>"] == 0 and (status == AT_TEMPLATE): pos["template"]["start"] = i status = AFTER_TEMPLATE # Handle Kernel Name if status != AT_TEMPLATE: if string[i].isalnum() or string[i] in {'(', ')', '_', ':', '#'}: if status != AT_KERNEL_NAME: status = AT_KERNEL_NAME pos["kernel_name"]["end"] = i # Case: Kernel name starts the string. if i == 0: pos["kernel_name"]["start"] = 0 # Finished return [(pos["kernel_name"]), (pos["template"]), (pos["kernel_launch"])] else: # Potential ending point if we're already traversing a kernel's name. if status == AT_KERNEL_NAME: pos["kernel_name"]["start"] = i # Finished return [(pos["kernel_name"]), (pos["template"]), (pos["kernel_launch"])] def find_kernel_bounds(string): """Finds the starting and ending points for all kernel launches in the string.""" kernel_end = 0 kernel_positions = [] # Continue until we cannot find any more kernels anymore. while string.find("<<<", kernel_end) != -1: # Get kernel starting position (starting from the previous ending point) kernel_start = string.find("<<<", kernel_end) # Get kernel ending position (adjust end point past the >>>) kernel_end = string.find(">>>", kernel_start) + 3 if kernel_end <= 0: raise InputError("no kernel end found") # Add to list of traversed kernels kernel_positions.append({"start": kernel_start, "end": kernel_end, "group": string[kernel_start: kernel_end]}) return kernel_positions # Grab positional ranges of all kernel launchces get_kernel_positions = [k for k in find_kernel_bounds(string)] output_string = string # Replace each CUDA kernel with a HIP kernel. for kernel in get_kernel_positions: # Get kernel components params = grab_method_and_template(kernel) # Find parenthesis after kernel launch parenthesis = string.find("(", kernel["end"]) # Extract cuda kernel cuda_kernel = string[params[0]["start"]:parenthesis + 1] kernel_string = string[kernel['start']:kernel['end']] cuda_kernel_dim3 = add_dim3(kernel_string, cuda_kernel) # Keep number of kernel launch params consistent (grid dims, group dims, stream, dynamic shared size) num_klp = len(extract_arguments(0, kernel["group"].replace("<<<", "(").replace(">>>", ")"))) hip_kernel = "hipLaunchKernelGGL(" + cuda_kernel_dim3[0:-1].replace( ">>>", ", 0" * (4 - num_klp) + ">>>").replace("<<<", ", ").replace(">>>", ", ") # Replace cuda kernel with hip kernel output_string = output_string.replace(cuda_kernel, hip_kernel) return output_string def get_hip_file_path(filepath): """ Returns the new name of the hipified file """ dirpath, filename = os.path.split(filepath) root, ext = os.path.splitext(filename) # Concretely, we do the following: # # - If there is a directory component named "cuda", replace # it with "hip", AND # # - If the file name contains "CUDA", replace it with "HIP", AND # Furthermore, ALWAYS replace '.cu' with '.hip', because those files # contain CUDA kernels that needs to be hipified and processed with # hcc compiler # # This isn't set in stone; we might adjust this to support other # naming conventions. if ext == '.cu': ext = '.hip' orig_dirpath = dirpath dirpath = dirpath.replace('cuda', 'hip') root = root.replace('cuda', 'hip') root = root.replace('CUDA', 'HIP') return os.path.join(dirpath, root + ext) # Cribbed from https://stackoverflow.com/questions/42742810/speed-up-millions-of-regex-replacements-in-python-3/42789508#42789508 class Trie(): """Regex::Trie in Python. Creates a Trie out of a list of words. The trie can be exported to a Regex pattern. The corresponding Regex should match much faster than a simple Regex union.""" def __init__(self): self.data = {} def add(self, word): ref = self.data for char in word: ref[char] = char in ref and ref[char] or {} ref = ref[char] ref[''] = 1 def dump(self): return self.data def quote(self, char): return re.escape(char) def _pattern(self, pData): data = pData if "" in data and len(data.keys()) == 1: return None alt = [] cc = [] q = 0 for char in sorted(data.keys()): if isinstance(data[char], dict): try: recurse = self._pattern(data[char]) alt.append(self.quote(char) + recurse) except Exception: cc.append(self.quote(char)) else: q = 1 cconly = not len(alt) > 0 if len(cc) > 0: if len(cc) == 1: alt.append(cc[0]) else: alt.append('[' + ''.join(cc) + ']') if len(alt) == 1: result = alt[0] else: result = "(?:" + "|".join(alt) + ")" if q: if cconly: result += "?" else: result = "(?:%s)?" % result return result def pattern(self): return self._pattern(self.dump()) RE_TRIE = Trie() RE_MAP = {} for mapping in CUDA_TO_HIP_MAPPINGS: for src, value in mapping.items(): dst = value[0] RE_TRIE.add(src) RE_MAP[src] = dst RE_PREPROCESSOR = re.compile(RE_TRIE.pattern()) def re_replace(input_string): def sub_repl(m): return RE_MAP[m.group(0)] return RE_PREPROCESSOR.sub(sub_repl, input_string) def preprocessor(project_directory, output_directory, filepath): """ Executes the CUDA -> HIP conversion on the specified file. """ fin_path = os.path.join(project_directory, filepath) with open(fin_path, 'r') as fin: output_source = fin.read() fout_path = os.path.join(output_directory, get_hip_file_path(filepath)) assert(os.path.join(output_directory, fout_path) != os.path.join(project_directory, fin_path)) if not os.path.exists(os.path.dirname(fout_path)): os.makedirs(os.path.dirname(fout_path)) with open(fout_path, 'w') as fout: output_source = re_replace(output_source) # Perform Kernel Launch Replacements output_source = processKernelLaunches(output_source) fout.write(output_source) def extract_arguments(start, string): """ Return the list of arguments in the upcoming function parameter closure. Example: string (input): '(blocks, threads, 0, THCState_getCurrentStream(state))' arguments (output): '[{'start': 1, 'end': 7}, {'start': 8, 'end': 16}, {'start': 17, 'end': 19}, {'start': 20, 'end': 53}]' """ arguments = [] closures = { "<": 0, "(": 0 } current_position = start argument_start_pos = current_position + 1 # Search for final parenthesis while current_position < len(string): if string[current_position] == "(": closures["("] += 1 elif string[current_position] == ")": closures["("] -= 1 elif string[current_position] == "<": closures["<"] += 1 elif string[current_position] == ">" and string[current_position - 1] != "-" and closures["<"] > 0: closures["<"] -= 1 # Finished all arguments if closures["("] == 0 and closures["<"] == 0: # Add final argument arguments.append({"start": argument_start_pos, "end": current_position}) break # Finished current argument if closures["("] == 1 and closures["<"] == 0 and string[current_position] == ",": arguments.append({"start": argument_start_pos, "end": current_position}) argument_start_pos = current_position + 1 current_position += 1 return arguments def hipify( project_directory, extensions=(".cu", ".cuh", ".c", ".cc", ".cpp", ".h", ".in", ".hpp"), output_directory=None, includes=(), ignores=(), list_files_only=False, show_progress=True, ): assert os.path.exists(project_directory) # If no output directory, provide a default one. if not output_directory: output_directory = os.path.join(project_directory, "hip") all_files = list(matched_files_iter(project_directory, includes=includes, ignores=ignores, extensions=extensions)) if list_files_only: print(os.linesep.join(all_files)) return # Start Preprocessor preprocess( project_directory, output_directory, all_files, show_progress=show_progress)
# -*- coding: utf-8 -*- import unittest from collections import namedtuple from flake8_coding import CodingChecker from mock import patch Options = namedtuple('Options', 'no_accept_encodings, accept_encodings') class TestFlake8Coding(unittest.TestCase): def test_has_utf8_coding_header(self): checker = CodingChecker(None, 'testsuite/utf8.py') checker.encodings = ['latin-1', 'utf-8'] ret = list(checker.run()) self.assertEqual(ret, []) def test_file_not_found(self): checker = CodingChecker(None, 'file_not_found') checker.encodings = ['latin-1', 'utf-8'] ret = list(checker.run()) self.assertEqual(ret, []) def test_empty_file(self): checker = CodingChecker(None, 'testsuite/empty.py') checker.encodings = ['latin-1', 'utf-8'] ret = list(checker.run()) self.assertEqual(ret, []) def test_has_latin1_coding_header(self): checker = CodingChecker(None, 'testsuite/latin1.py') checker.encodings = ['latin-1', 'utf-8'] ret = list(checker.run()) self.assertEqual(ret, []) def test_has_coding_header_at_2nd_line(self): checker = CodingChecker(None, 'testsuite/2nd-line.py') checker.encodings = ['latin-1', 'utf-8'] ret = list(checker.run()) self.assertEqual(ret, []) def test_has_coding_header_at_3rd_line(self): checker = CodingChecker(None, 'testsuite/3rd-line.py') checker.encodings = ['latin-1', 'utf-8'] ret = list(checker.run()) self.assertEqual(len(ret), 1) self.assertEqual(ret[0][0], 1) self.assertEqual(ret[0][1], 0) self.assertTrue(ret[0][2].startswith('C101 ')) def test_has_vim_styled_coding_header(self): checker = CodingChecker(None, 'testsuite/vim-style.py') checker.encodings = ['latin-1', 'utf-8'] ret = list(checker.run()) self.assertEqual(ret, []) def test_has_coding_header_with_invalid_encoding_name(self): checker = CodingChecker(None, 'testsuite/invalid.py') checker.encodings = ['latin-1', 'utf-8'] ret = list(checker.run()) self.assertEqual(len(ret), 1) self.assertEqual(ret[0][0], 2) self.assertEqual(ret[0][1], 0) self.assertTrue(ret[0][2].startswith('C102 ')) def test_has_no_coding_headers(self): checker = CodingChecker(None, 'testsuite/nocodings.py') checker.encodings = ['latin-1', 'utf-8'] ret = list(checker.run()) self.assertEqual(len(ret), 1) self.assertEqual(ret[0][0], 1) self.assertEqual(ret[0][1], 0) self.assertTrue(ret[0][2].startswith('C101 ')) def test_default_encoding(self): try: options = Options(False, 'latin-1, utf-8') CodingChecker.parse_options(options) self.assertEqual(CodingChecker.encodings, ['latin-1', 'utf-8']) finally: if hasattr(CodingChecker, 'encodings'): del CodingChecker.encodings def test_change_encoding(self): try: options = Options(False, 'utf-8,utf-16') CodingChecker.parse_options(options) self.assertEqual(CodingChecker.encodings, ['utf-8', 'utf-16']) finally: if hasattr(CodingChecker, 'encodings'): del CodingChecker.encodings def test_stdin(self): try: from flake8.engine import pep8 as stdin_utils # noqa target = 'flake8.engine.pep8.stdin_get_value' except ImportError: from flake8 import utils as stdin_utils # noqa target = 'flake8.utils.stdin_get_value' with patch(target) as stdin_get_value: with open('testsuite/nocodings.py') as fp: stdin_get_value.return_value = fp.read() for input in ['stdin', '-', None]: checker = CodingChecker(None, input) checker.encodings = ['latin-1', 'utf-8'] ret = list(checker.run()) self.assertEqual(len(ret), 1) self.assertEqual(ret[0][0], 1) self.assertEqual(ret[0][1], 0) self.assertTrue(ret[0][2].startswith('C101 ')) def test_no_accept_encodings_sets_encodings_none(self): try: options = Options(True, 'latin-1,utf-8') CodingChecker.parse_options(options) self.assertTrue(CodingChecker.encodings is None) finally: if hasattr(CodingChecker, 'encodings'): del CodingChecker.encodings def test_encoding_none_with_no_coding_comment(self): checker = CodingChecker(None, 'testsuite/nocoding.py') checker.encodings = None ret = list(checker.run()) self.assertEqual(ret, []) def test_encoding_none_with_coding_comment(self): checker = CodingChecker(None, 'testsuite/utf8.py') checker.encodings = None ret = list(checker.run()) self.assertEqual(len(ret), 1) self.assertEqual(ret[0][0], 1) self.assertEqual(ret[0][1], 0) self.assertTrue(ret[0][2].startswith('C103 ')) if __name__ == '__main__': unittest.main()
# -*- coding: utf-8 -*- import re from setuptools import setup def get_version(filename): """ Return package version as listed in `__version__` in `filename`. """ init_py = open(filename).read() return re.search("__version__ = ['\"]([^'\"]+)['\"]", init_py).group(1) version = get_version('flake8_coding.py') with open('README.rst') as readme_file: readme = readme_file.read() setup( name='flake8-coding', version=version, description='Adds coding magic comment checks to flake8', long_description=readme, classifiers=[ 'Development Status :: 3 - Alpha', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Topic :: Software Development', ], author='Takeshi KOMIYA', author_email='[email protected]', url='https://github.com/tk0miya/flake8-coding', license='Apache License 2.0', keywords='pep8 flake8 coding', py_modules=['flake8_coding'], install_requires=[ 'flake8', ], entry_points={ 'flake8.extension': ['C10 = flake8_coding:CodingChecker'], }, )
# -*- coding: utf-8 -*- import re __version__ = '1.3.3' class CodingChecker(object): name = 'flake8_coding' version = __version__ def __init__(self, tree, filename): self.filename = filename @classmethod def add_options(cls, parser): parser.add_option( '--accept-encodings', default='latin-1, utf-8', action='store', help="Acceptable source code encodings for `coding:` magic comment" ) parser.add_option( '--no-accept-encodings', action='store_true', parse_from_config=True, help="Warn for files containing a `coding:` magic comment" ) parser.add_option( '--optional-ascii-coding', action='store_true', parse_from_config=True, help="Do not force 'coding:' header on ascii only files" ) if hasattr(parser, 'config_options'): # for flake8 < 3.0 parser.config_options.append('accept-encodings') parser.config_options.append('no-accept-encodings') parser.config_options.append('optional-ascii-coding') @classmethod def parse_options(cls, options): if options.no_accept_encodings: cls.encodings = None else: cls.encodings = [e.strip().lower() for e in options.accept_encodings.split(',')] cls.optional_ascii_coding = options.optional_ascii_coding @classmethod def has_non_ascii_characters(cls, lines): return any(any(ord(c) > 127 for c in line) for line in lines) def read_lines(self): if self.filename in ('stdin', '-', None): try: # flake8 >= v3.0 from flake8.engine import pep8 as stdin_utils except ImportError: from flake8 import utils as stdin_utils return stdin_utils.stdin_get_value().splitlines(True) else: try: import pycodestyle except ImportError: import pep8 as pycodestyle return pycodestyle.readlines(self.filename) def run(self): try: # PEP-263 says: a magic comment must be placed into the source # files either as first or second line in the file lines = self.read_lines() if len(lines) == 0: return for lineno, line in enumerate(lines[:2], start=1): matched = re.search(r'coding[:=]\s*([-\w.]+)', line, re.IGNORECASE) if matched: if self.encodings: if matched.group(1).lower() not in self.encodings: yield lineno, 0, "C102 Unknown encoding found in coding magic comment", type(self) else: yield lineno, 0, "C103 Coding magic comment present", type(self) break else: if self.encodings: if not self.optional_ascii_coding or self.has_non_ascii_characters(lines): yield 1, 0, "C101 Coding magic comment not found", type(self) except IOError: pass
# -*- coding: latin-1 -*-
#!/usr/bin/python # # -*- coding: utf-8 -*-
# -*- coding: utf-8 -*-
#!/usr/bin/python # -*- coding: utf -*-
#!/usr/bin/python #
#!/usr/bin/python # vim: set fileencoding=utf-8 :
#!/usr/bin/python # -*- coding: utf-8 -*-
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import os import sys import argparse import json from hipify import hipify_python def main(): parser = argparse.ArgumentParser( description='Top-level script for HIPifying, filling in most common parameters') parser.add_argument( '--project-directory', type=str, help="The root of the project. (default: %(default)s)") parser.add_argument( '--output-directory', type=str, default=None, help="The Directory to Store the Hipified Project", required=False) parser.add_argument( '--list-files-only', action='store_true', help="Only print the list of hipify files.") parser.add_argument( '--header-include-dirs', default=[], help="Directories to add to search path for header includes", required=False) parser.add_argument( '--includes', default=['*'], help="Source files to be included for hipify", required=False) parser.add_argument( '--ignores', default=[], help="Source files to be excluded for hipify", required=False) parser.add_argument( '--dump-dict-file', type=str, help="The file to Store the return dict output after hipification", required=False) parser.add_argument( '--config-json', type=str, help="relative path of hipify config json which contains arguments to hipify", required=False) args = parser.parse_args() if(args.config_json): if(os.path.exists(args.config_json)): with open(args.config_json) as jsonf: json_args = json.load(jsonf) if(json_args.get('project_directory') is not None): project_directory = os.path.join(os.path.dirname(args.config_json), json_args['project_directory']) else: raise ValueError('relative path to project_dir to config_json should be mentioned') if(json_args.get('output_directory') is not None): output_directory = os.path.join(os.path.dirname(args.config_json), json_args['output_directory']) else: output_directory = project_directory if(json_args.get('includes') is not None): includes = json_args['includes'] else: includes = ['*'] if(json_args.get('header_include_dirs') is not None): header_include_dirs = json_args['header_include_dirs'] else: header_include_dirs = [] if(json_args.get('ignores') is not None): ignores = json_args['ignores'] else: ignores = [] else: raise ValueError('config json file specified should be a valid file path') else: if args.project_directory is not None: project_directory=args.project_directory; else: raise ValueError('If not using config json , project_directory should be mentioned in commadline') if args.output_directory: output_directory = args.output_directory else: output_directory = args.project_directory includes=args.includes ignores=args.ignores header_include_dirs=args.header_include_dirs dump_dict_file = args.dump_dict_file print("project_directory :",project_directory , " output_directory: ", output_directory, " includes: ", includes, " ignores: ", ignores, " header_include_dirs: ", header_include_dirs) HipifyFinalResult = hipify_python.hipify( project_directory=project_directory, output_directory=output_directory, includes=includes, ignores=ignores, header_include_dirs=args.header_include_dirs if type(args.header_include_dirs) is list \ else args.header_include_dirs.strip("[]").split(";"), is_pytorch_extension=True, show_detailed=True) if dump_dict_file: with open(dump_dict_file, 'w') as dict_file: dict_file.write(json.dumps(HipifyFinalResult)) else: raise ValueError ('dump_dict_file should be defined') if __name__ == "__main__": main()
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import os import sys import argparse import json def main(): parser = argparse.ArgumentParser(description="") parser.add_argument( '--io-file', type=str, help="Input file containing list of files which will be overwritten by hipified file names", required=True) parser.add_argument( '--dump-dict-file', type=str, help="Input file where the dictionary output of hipify is stored", required=True) args = parser.parse_args() file_obj = open(args.dump_dict_file, mode='r') json_string = file_obj.read() file_obj.close() hipified_result = json.loads(json_string) out_list = [] with open(args.io_file) as inp_file: for line in inp_file: line = line.strip() if line in hipified_result: out_list.append(hipified_result[line]['hipified_path']) else: out_list.append(line) w_file_obj = open(args.io_file, mode='w') for f in out_list: w_file_obj.write(f+"\n") w_file_obj.close() if __name__ == "__main__": main()
__version__ = '1.0.0'
import collections from .constants import (API_BLAS, API_C10, API_CAFFE2, API_DRIVER, API_FFT, API_PYTORCH, API_RAND, API_ROCTX, API_RTC, API_RUNTIME, API_SPARSE, CONV_CACHE, CONV_CONTEXT, CONV_D3D9, CONV_D3D10, CONV_D3D11, CONV_DEF, CONV_DEVICE, CONV_DEVICE_FUNC, CONV_EGL, CONV_ERROR, CONV_EVENT, CONV_EXEC, CONV_GL, CONV_GRAPHICS, CONV_INCLUDE, CONV_INCLUDE_CUDA_MAIN_H, CONV_INIT, CONV_JIT, CONV_MATH_FUNC, CONV_MEM, CONV_MODULE, CONV_NUMERIC_LITERAL, CONV_OCCUPANCY, CONV_OTHER, CONV_PEER, CONV_SPECIAL_FUNC, CONV_STREAM, CONV_SURFACE, CONV_TEX, CONV_THREAD, CONV_TYPE, CONV_VDPAU, CONV_VERSION, HIP_UNSUPPORTED) """ Mapping of CUDA functions, include files, constants, and types to ROCm/HIP equivalents This closely follows the implementation in hipify-clang https://github.com/ROCm-Developer-Tools/HIP/blob/master/hipify-clang/src/CUDA2HipMap.cpp and its structure. There are different maps for fundamental names, include files, identifies, sparse, and PyTorch specific translations. Each of the entries in these maps translates a CUDA string to a tuple containing the ROCm/HIP string, a type and API annotation and - optionally - an annotation if it is not supported in ROCm/HIP yet. """ # List of math functions that should be replaced inside device code only. MATH_TRANSPILATIONS = collections.OrderedDict( [ ("std::max", ("::max")), ("std::min", ("::min")), ("std::ceil", ("::ceil")), ("std::floor", ("::floor")), ("std::exp", ("::exp")), ("std::log", ("::log")), ("std::pow", ("::pow")), ("std::fabs", ("::fabs")), ("std::fmod", ("::fmod")), ("std::remainder", ("::remainder")), ("std::frexp", ("::frexp")), ] ) CUDA_TYPE_NAME_MAP = collections.OrderedDict( [ ("CUresult", ("hipError_t", CONV_TYPE, API_DRIVER)), ("cudaError_t", ("hipError_t", CONV_TYPE, API_RUNTIME)), ( "CUDA_ARRAY3D_DESCRIPTOR", ("HIP_ARRAY3D_DESCRIPTOR", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ("CUDA_ARRAY_DESCRIPTOR", ("HIP_ARRAY_DESCRIPTOR", CONV_TYPE, API_DRIVER)), ("CUDA_MEMCPY2D", ("hip_Memcpy2D", CONV_TYPE, API_DRIVER)), ("CUDA_MEMCPY3D", ("HIP_MEMCPY3D", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ( "CUDA_MEMCPY3D_PEER", ("HIP_MEMCPY3D_PEER", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUDA_POINTER_ATTRIBUTE_P2P_TOKENS", ( "HIP_POINTER_ATTRIBUTE_P2P_TOKENS", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CUDA_RESOURCE_DESC", ("HIP_RESOURCE_DESC", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUDA_RESOURCE_VIEW_DESC", ("HIP_RESOURCE_VIEW_DESC", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUipcEventHandle", ("hipIpcEventHandle", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ("CUipcMemHandle", ("hipIpcMemHandle", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUaddress_mode", ("hipAddress_mode", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ( "CUarray_cubemap_face", ("hipArray_cubemap_face", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ("CUarray_format", ("hipArray_format", CONV_TYPE, API_DRIVER)), ("CUcomputemode", ("hipComputemode", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUmem_advise", ("hipMemAdvise", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ( "CUmem_range_attribute", ("hipMemRangeAttribute", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ("CUctx_flags", ("hipCctx_flags", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUdevice", ("hipDevice_t", CONV_TYPE, API_DRIVER)), ("CUdevice_attribute_enum", ("hipDeviceAttribute_t", CONV_TYPE, API_DRIVER)), ("CUdevice_attribute", ("hipDeviceAttribute_t", CONV_TYPE, API_DRIVER)), ("CUdeviceptr", ("hipDeviceptr_t", CONV_TYPE, API_DRIVER)), ("CUarray_st", ("hipArray", CONV_TYPE, API_DRIVER)), ("CUarray", ("hipArray *", CONV_TYPE, API_DRIVER)), ("CUdevprop_st", ("hipDeviceProp_t", CONV_TYPE, API_DRIVER)), ("CUdevprop", ("hipDeviceProp_t", CONV_TYPE, API_DRIVER)), ("CUfunction", ("hipFunction_t", CONV_TYPE, API_DRIVER)), ( "CUgraphicsResource", ("hipGraphicsResource_t", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUmipmappedArray", ("hipMipmappedArray_t", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUfunction_attribute", ("hipFuncAttribute_t", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUfunction_attribute_enum", ("hipFuncAttribute_t", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUgraphicsMapResourceFlags", ("hipGraphicsMapFlags", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUgraphicsMapResourceFlags_enum", ("hipGraphicsMapFlags", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUgraphicsRegisterFlags", ("hipGraphicsRegisterFlags", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUgraphicsRegisterFlags_enum", ("hipGraphicsRegisterFlags", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUoccupancy_flags", ("hipOccupancyFlags", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUoccupancy_flags_enum", ("hipOccupancyFlags", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ("CUfunc_cache_enum", ("hipFuncCache", CONV_TYPE, API_DRIVER)), ("CUfunc_cache", ("hipFuncCache", CONV_TYPE, API_DRIVER)), ("CUipcMem_flags", ("hipIpcMemFlags", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ( "CUipcMem_flags_enum", ("hipIpcMemFlags", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ("CUjit_cacheMode", ("hipJitCacheMode", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ( "CUjit_cacheMode_enum", ("hipJitCacheMode", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ("CUjit_fallback", ("hipJitFallback", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ( "CUjit_fallback_enum", ("hipJitFallback", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ("CUjit_option", ("hipJitOption", CONV_JIT, API_DRIVER)), ("CUjit_option_enum", ("hipJitOption", CONV_JIT, API_DRIVER)), ("CUjit_target", ("hipJitTarget", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CUjit_target_enum", ("hipJitTarget", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ("CUjitInputType", ("hipJitInputType", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED)), ( "CUjitInputType_enum", ("hipJitInputType", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ("CUlimit", ("hipLimit_t", CONV_TYPE, API_DRIVER)), ("CUlimit_enum", ("hipLimit_t", CONV_TYPE, API_DRIVER)), ( "CUmemAttach_flags", ("hipMemAttachFlags_t", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUmemAttach_flags_enum", ("hipMemAttachFlags_t", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ("CUmemorytype", ("hipMemType_t", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUmemorytype_enum", ("hipMemType_t", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ("CUresourcetype", ("hipResourceType", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ( "CUresourcetype_enum", ("hipResourceType", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ("CUresourceViewFormat", ("hipResourceViewFormat", CONV_TEX, API_DRIVER)), ("CUresourceViewFormat_enum", ("hipResourceViewFormat", CONV_TEX, API_DRIVER)), ("CUsharedconfig", ("hipSharedMemConfig", CONV_TYPE, API_DRIVER)), ("CUsharedconfig_enum", ("hipSharedMemConfig", CONV_TYPE, API_DRIVER)), ("CUcontext", ("hipCtx_t", CONV_TYPE, API_DRIVER)), ("CUmodule", ("hipModule_t", CONV_TYPE, API_DRIVER)), ("CUstream", ("hipStream_t", CONV_TYPE, API_DRIVER)), ("CUstream_st", ("ihipStream_t", CONV_TYPE, API_DRIVER)), ("CUstreamCallback", ("hipStreamCallback_t", CONV_TYPE, API_DRIVER)), ("CUsurfObject", ("hipSurfaceObject", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ( "CUsurfref", ("hipSurfaceReference_t", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ("CUtexObject", ("hipTextureObject_t", CONV_TYPE, API_DRIVER)), ("CUtexref", ("textureReference", CONV_TYPE, API_DRIVER)), ("CUstream_flags", ("hipStreamFlags", CONV_TYPE, API_DRIVER)), ( "CUstreamWaitValue_flags", ("hipStreamWaitValueFlags", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUstreamWriteValue_flags", ("hipStreamWriteValueFlags", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUstreamBatchMemOpType", ("hipStreamBatchMemOpType", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUdevice_P2PAttribute", ("hipDeviceP2PAttribute", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ("CUevent", ("hipEvent_t", CONV_TYPE, API_DRIVER)), ("CUevent_st", ("ihipEvent_t", CONV_TYPE, API_DRIVER)), ("CUevent_flags", ("hipEventFlags", CONV_EVENT, API_DRIVER, HIP_UNSUPPORTED)), ("CUfilter_mode", ("hipTextureFilterMode", CONV_TEX, API_DRIVER)), ("CUGLDeviceList", ("hipGLDeviceList", CONV_GL, API_DRIVER, HIP_UNSUPPORTED)), ("CUGLmap_flags", ("hipGLMapFlags", CONV_GL, API_DRIVER, HIP_UNSUPPORTED)), ( "CUd3d9DeviceList", ("hipD3D9DeviceList", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUd3d9map_flags", ("hipD3D9MapFlags", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUd3d9register_flags", ("hipD3D9RegisterFlags", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUd3d10DeviceList", ("hipd3d10DeviceList", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUd3d10map_flags", ("hipD3D10MapFlags", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUd3d10register_flags", ("hipD3D10RegisterFlags", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUd3d11DeviceList", ("hipd3d11DeviceList", CONV_D3D11, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUeglStreamConnection_st", ("hipEglStreamConnection", CONV_EGL, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUeglStreamConnection", ("hipEglStreamConnection", CONV_EGL, API_DRIVER, HIP_UNSUPPORTED), ), ( "libraryPropertyType_t", ("hipLibraryPropertyType_t", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "libraryPropertyType", ("hipLibraryPropertyType_t", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ("cudaStreamCallback_t", ("hipStreamCallback_t", CONV_TYPE, API_RUNTIME)), ("cudaArray", ("hipArray", CONV_MEM, API_RUNTIME)), ("cudaArray_t", ("hipArray_t", CONV_MEM, API_RUNTIME)), ("cudaArray_const_t", ("hipArray_const_t", CONV_MEM, API_RUNTIME)), ("cudaMipmappedArray_t", ("hipMipmappedArray_t", CONV_MEM, API_RUNTIME)), ( "cudaMipmappedArray_const_t", ("hipMipmappedArray_const_t", CONV_MEM, API_RUNTIME), ), ("cudaArrayDefault", ("hipArrayDefault", CONV_MEM, API_RUNTIME)), ("cudaArrayLayered", ("hipArrayLayered", CONV_MEM, API_RUNTIME)), ( "cudaArraySurfaceLoadStore", ("hipArraySurfaceLoadStore", CONV_MEM, API_RUNTIME), ), ("cudaArrayCubemap", ("hipArrayCubemap", CONV_MEM, API_RUNTIME)), ("cudaArrayTextureGather", ("hipArrayTextureGather", CONV_MEM, API_RUNTIME)), ("cudaMemoryAdvise", ("hipMemoryAdvise", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ( "cudaMemRangeAttribute", ("hipMemRangeAttribute", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ("cudaMemcpyKind", ("hipMemcpyKind", CONV_MEM, API_RUNTIME)), ("cudaMemoryType", ("hipMemoryType", CONV_MEM, API_RUNTIME)), ("cudaExtent", ("hipExtent", CONV_MEM, API_RUNTIME)), ("cudaPitchedPtr", ("hipPitchedPtr", CONV_MEM, API_RUNTIME)), ("cudaPos", ("hipPos", CONV_MEM, API_RUNTIME)), ("cudaEvent_t", ("hipEvent_t", CONV_TYPE, API_RUNTIME)), ("cudaStream_t", ("hipStream_t", CONV_TYPE, API_RUNTIME)), ("cudaPointerAttributes", ("hipPointerAttribute_t", CONV_TYPE, API_RUNTIME)), ("cudaDeviceAttr", ("hipDeviceAttribute_t", CONV_TYPE, API_RUNTIME)), ("cudaDeviceProp", ("hipDeviceProp_t", CONV_TYPE, API_RUNTIME)), ( "cudaDeviceP2PAttr", ("hipDeviceP2PAttribute", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaComputeMode", ("hipComputeMode", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ("cudaFuncCache", ("hipFuncCache_t", CONV_CACHE, API_RUNTIME)), ( "cudaFuncAttributes", ("hipFuncAttributes", CONV_EXEC, API_RUNTIME, HIP_UNSUPPORTED), ), ("cudaSharedMemConfig", ("hipSharedMemConfig", CONV_TYPE, API_RUNTIME)), ("cudaLimit", ("hipLimit_t", CONV_TYPE, API_RUNTIME)), ("cudaOutputMode", ("hipOutputMode", CONV_OTHER, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaTextureReadMode", ("hipTextureReadMode", CONV_TEX, API_RUNTIME)), ("cudaTextureFilterMode", ("hipTextureFilterMode", CONV_TEX, API_RUNTIME)), ("cudaChannelFormatKind", ("hipChannelFormatKind", CONV_TEX, API_RUNTIME)), ("cudaChannelFormatDesc", ("hipChannelFormatDesc", CONV_TEX, API_RUNTIME)), ("cudaResourceDesc", ("hipResourceDesc", CONV_TEX, API_RUNTIME)), ("cudaResourceViewDesc", ("hipResourceViewDesc", CONV_TEX, API_RUNTIME)), ("cudaTextureDesc", ("hipTextureDesc", CONV_TEX, API_RUNTIME)), ( "surfaceReference", ("hipSurfaceReference", CONV_SURFACE, API_RUNTIME, HIP_UNSUPPORTED), ), ("cudaTextureObject_t", ("hipTextureObject_t", CONV_TEX, API_RUNTIME)), ("cudaResourceType", ("hipResourceType", CONV_TEX, API_RUNTIME)), ("cudaResourceViewFormat", ("hipResourceViewFormat", CONV_TEX, API_RUNTIME)), ("cudaTextureAddressMode", ("hipTextureAddressMode", CONV_TEX, API_RUNTIME)), ( "cudaSurfaceBoundaryMode", ("hipSurfaceBoundaryMode", CONV_SURFACE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaSurfaceFormatMode", ("hipSurfaceFormatMode", CONV_SURFACE, API_RUNTIME, HIP_UNSUPPORTED), ), ("cudaTextureType1D", ("hipTextureType1D", CONV_TEX, API_RUNTIME)), ("cudaTextureType2D", ("hipTextureType2D", CONV_TEX, API_RUNTIME)), ("cudaTextureType3D", ("hipTextureType3D", CONV_TEX, API_RUNTIME)), ("cudaTextureTypeCubemap", ("hipTextureTypeCubemap", CONV_TEX, API_RUNTIME)), ( "cudaTextureType1DLayered", ("hipTextureType1DLayered", CONV_TEX, API_RUNTIME), ), ( "cudaTextureType2DLayered", ("hipTextureType2DLayered", CONV_TEX, API_RUNTIME), ), ( "cudaTextureTypeCubemapLayered", ("hipTextureTypeCubemapLayered", CONV_TEX, API_RUNTIME), ), ("cudaIpcEventHandle_t", ("hipIpcEventHandle_t", CONV_TYPE, API_RUNTIME)), ("cudaIpcEventHandle_st", ("hipIpcEventHandle_t", CONV_TYPE, API_RUNTIME)), ("cudaIpcMemHandle_t", ("hipIpcMemHandle_t", CONV_TYPE, API_RUNTIME)), ("cudaIpcMemHandle_st", ("hipIpcMemHandle_t", CONV_TYPE, API_RUNTIME)), ( "cudaGraphicsCubeFace", ("hipGraphicsCubeFace", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGraphicsMapFlags", ("hipGraphicsMapFlags", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGraphicsRegisterFlags", ("hipGraphicsRegisterFlags", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGLDeviceList", ("hipGLDeviceList", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED), ), ("cudaGLMapFlags", ("hipGLMapFlags", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED)), ( "cudaD3D9DeviceList", ("hipD3D9DeviceList", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D9MapFlags", ("hipD3D9MapFlags", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D9RegisterFlags", ("hipD3D9RegisterFlags", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D10DeviceList", ("hipd3d10DeviceList", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D10MapFlags", ("hipD3D10MapFlags", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D10RegisterFlags", ("hipD3D10RegisterFlags", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D11DeviceList", ("hipd3d11DeviceList", CONV_D3D11, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaEglStreamConnection", ("hipEglStreamConnection", CONV_EGL, API_RUNTIME, HIP_UNSUPPORTED), ), ("cublasHandle_t", ("rocblas_handle", CONV_TYPE, API_BLAS)), ("cublasOperation_t", ("rocblas_operation", CONV_TYPE, API_BLAS)), ("cublasStatus_t", ("rocblas_status", CONV_TYPE, API_BLAS)), ("cublasFillMode_t", ("rocblas_fill", CONV_TYPE, API_BLAS)), ("cublasDiagType_t", ("rocblas_diagonal", CONV_TYPE, API_BLAS)), ("cublasSideMode_t", ("rocblas_side", CONV_TYPE, API_BLAS)), ("cublasPointerMode_t", ("rocblas_pointer_mode", CONV_TYPE, API_BLAS)), ( "cublasAtomicsMode_t", ("rocblas_atomics_mode", CONV_TYPE, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDataType_t", ("rocblas_data_type", CONV_TYPE, API_BLAS, HIP_UNSUPPORTED), ), ("curandStatus", ("hiprandStatus_t", CONV_TYPE, API_RAND)), ("curandStatus_t", ("hiprandStatus_t", CONV_TYPE, API_RAND)), ("curandRngType", ("hiprandRngType_t", CONV_TYPE, API_RAND)), ("curandRngType_t", ("hiprandRngType_t", CONV_TYPE, API_RAND)), ("curandGenerator_st", ("hiprandGenerator_st", CONV_TYPE, API_RAND)), ("curandGenerator_t", ("hiprandGenerator_t", CONV_TYPE, API_RAND)), ( "curandDirectionVectorSet", ("hiprandDirectionVectorSet_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED), ), ( "curandDirectionVectorSet_t", ("hiprandDirectionVectorSet_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED), ), ("curandOrdering", ("hiprandOrdering_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED)), ( "curandOrdering_t", ("hiprandOrdering_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED), ), ( "curandDistribution_st", ("hiprandDistribution_st", CONV_TYPE, API_RAND, HIP_UNSUPPORTED), ), ( "curandHistogramM2V_st", ("hiprandDistribution_st", CONV_TYPE, API_RAND, HIP_UNSUPPORTED), ), ( "curandDistribution_t", ("hiprandDistribution_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED), ), ( "curandHistogramM2V_t", ("hiprandDistribution_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED), ), ( "curandDistributionShift_st", ("hiprandDistributionShift_st", CONV_TYPE, API_RAND, HIP_UNSUPPORTED), ), ( "curandDistributionShift_t", ("hiprandDistributionShift_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED), ), ( "curandDistributionM2Shift_st", ("hiprandDistributionM2Shift_st", CONV_TYPE, API_RAND, HIP_UNSUPPORTED), ), ( "curandDistributionM2Shift_t", ("hiprandDistributionM2Shift_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED), ), ( "curandHistogramM2_st", ("hiprandHistogramM2_st", CONV_TYPE, API_RAND, HIP_UNSUPPORTED), ), ( "curandHistogramM2_t", ("hiprandHistogramM2_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED), ), ( "curandHistogramM2K_st", ("hiprandHistogramM2K_st", CONV_TYPE, API_RAND, HIP_UNSUPPORTED), ), ( "curandHistogramM2K_t", ("hiprandHistogramM2K_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED), ), ( "curandDiscreteDistribution_st", ("hiprandDiscreteDistribution_st", CONV_TYPE, API_RAND), ), ( "curandDiscreteDistribution_t", ("hiprandDiscreteDistribution_t", CONV_TYPE, API_RAND), ), ("curandMethod", ("hiprandMethod_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED)), ("curandMethod_t", ("hiprandMethod_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED)), ( "curandDirectionVectors32_t", ("hiprandDirectionVectors32_t", CONV_TYPE, API_RAND), ), ( "curandDirectionVectors64_t", ("hiprandDirectionVectors64_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED), ), ("curandStateMtgp32_t", ("hiprandStateMtgp32_t", CONV_TYPE, API_RAND)), ("curandStateMtgp32", ("hiprandStateMtgp32_t", CONV_TYPE, API_RAND)), ( "curandStateScrambledSobol64_t", ("hiprandStateScrambledSobol64_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED), ), ( "curandStateSobol64_t", ("hiprandStateSobol64_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED), ), ( "curandStateScrambledSobol32_t", ("hiprandStateScrambledSobol32_t", CONV_TYPE, API_RAND, HIP_UNSUPPORTED), ), ("curandStateSobol32_t", ("hiprandStateSobol32_t", CONV_TYPE, API_RAND)), ("curandStateMRG32k3a_t", ("hiprandStateMRG32k3a_t", CONV_TYPE, API_RAND)), ( "curandStatePhilox4_32_10_t", ("hiprandStatePhilox4_32_10_t", CONV_TYPE, API_RAND), ), ("curandStateXORWOW_t", ("hiprandStateXORWOW_t", CONV_TYPE, API_RAND)), ("curandState_t", ("hiprandState_t", CONV_TYPE, API_RAND)), ("curandState", ("hiprandState_t", CONV_TYPE, API_RAND)), ] ) CUDA_INCLUDE_MAP = collections.OrderedDict( [ # since pytorch uses "\b{pattern}\b" as the actual re pattern, # patterns listed here have to begin and end with alnum chars ( "include <cuda.h", ("include <hip/hip_runtime.h", CONV_INCLUDE_CUDA_MAIN_H, API_DRIVER), ), ( 'include "cuda.h', ('include "hip/hip_runtime.h', CONV_INCLUDE_CUDA_MAIN_H, API_DRIVER), ), ( "cuda_runtime.h", ("hip/hip_runtime.h", CONV_INCLUDE_CUDA_MAIN_H, API_RUNTIME), ), ("cuda_runtime_api.h", ("hip/hip_runtime_api.h", CONV_INCLUDE, API_RUNTIME)), ( "channel_descriptor.h", ("hip/channel_descriptor.h", CONV_INCLUDE, API_RUNTIME), ), ("device_functions.h", ("hip/device_functions.h", CONV_INCLUDE, API_RUNTIME)), ("driver_types.h", ("hip/driver_types.h", CONV_INCLUDE, API_RUNTIME)), ("library_types.h", ("hip/library_types.h", CONV_INCLUDE, API_RUNTIME)), ("cuComplex.h", ("hip/hip_complex.h", CONV_INCLUDE, API_RUNTIME)), ("cuda_fp16.h", ("hip/hip_fp16.h", CONV_INCLUDE, API_RUNTIME)), ( "cuda_texture_types.h", ("hip/hip_texture_types.h", CONV_INCLUDE, API_RUNTIME), ), ("vector_types.h", ("hip/hip_vector_types.h", CONV_INCLUDE, API_RUNTIME)), ("cublas.h", ("rocblas.h", CONV_INCLUDE_CUDA_MAIN_H, API_BLAS)), ("cublas_v2.h", ("rocblas.h", CONV_INCLUDE_CUDA_MAIN_H, API_BLAS)), ("curand.h", ("hiprand/hiprand.h", CONV_INCLUDE_CUDA_MAIN_H, API_RAND)), ("curand_kernel.h", ("hiprand/hiprand_kernel.h", CONV_INCLUDE, API_RAND)), ("curand_discrete.h", ("hiprand/hiprand_kernel.h", CONV_INCLUDE, API_RAND)), ("curand_discrete2.h", ("hiprand/hiprand_kernel.h", CONV_INCLUDE, API_RAND)), ("curand_globals.h", ("hiprand/hiprand_kernel.h", CONV_INCLUDE, API_RAND)), ("curand_lognormal.h", ("hiprand/hiprand_kernel.h", CONV_INCLUDE, API_RAND)), ("curand_mrg32k3a.h", ("hiprand/hiprand_kernel.h", CONV_INCLUDE, API_RAND)), ("curand_mtgp32.h", ("hiprand/hiprand_kernel.h", CONV_INCLUDE, API_RAND)), ("curand_mtgp32_host.h", ("hiprand/hiprand_mtgp32_host.h", CONV_INCLUDE, API_RAND)), ("curand_mtgp32_kernel.h", ("hiprand/hiprand_kernel.h", CONV_INCLUDE, API_RAND)), ( "curand_mtgp32dc_p_11213.h", ("rocrand/rocrand_mtgp32_11213.h", CONV_INCLUDE, API_RAND), ), ("curand_normal.h", ("hiprand/hiprand_kernel.h", CONV_INCLUDE, API_RAND)), ("curand_normal_static.h", ("hiprand/hiprand_kernel.h", CONV_INCLUDE, API_RAND)), ("curand_philox4x32_x.h", ("hiprand/hiprand_kernel.h", CONV_INCLUDE, API_RAND)), ("curand_poisson.h", ("hiprand/hiprand_kernel.h", CONV_INCLUDE, API_RAND)), ("curand_precalc.h", ("hiprand/hiprand_kernel.h", CONV_INCLUDE, API_RAND)), ("curand_uniform.h", ("hiprand/hiprand_kernel.h", CONV_INCLUDE, API_RAND)), ("cusparse.h", ("hipsparse.h", CONV_INCLUDE, API_RAND)), ("cufft.h", ("hipfft.h", CONV_INCLUDE, API_BLAS)), ("cufftXt.h", ("hipfft.h", CONV_INCLUDE, API_BLAS)), # PyTorch also has a source file named "nccl.h", so we need to "<"">" to differentiate ("<nccl.h>", ("<rccl.h>", CONV_INCLUDE, API_RUNTIME)), ("nvrtc.h", ("hip/hiprtc.h", CONV_INCLUDE, API_RTC)), ("thrust/system/cuda", ("thrust/system/hip", CONV_INCLUDE, API_BLAS)), ("cub/util_allocator.cuh", ("hipcub/hipcub.hpp", CONV_INCLUDE, API_BLAS)), ("cub/block/block_reduce.cuh", ("hipcub/hipcub.hpp", CONV_INCLUDE, API_BLAS)), ("cub/cub.cuh", ("hipcub/hipcub.hpp", CONV_INCLUDE, API_BLAS)), ("cub/device/device_run_length_encode.cuh", ("hipcub/hipcub.hpp", CONV_INCLUDE, API_BLAS)), ("cub/block/block_load.cuh", ("hipcub/hipcub.hpp", CONV_INCLUDE, API_BLAS)), ("cub/device/device_radix_sort.cuh", ("hipcub/hipcub.hpp", CONV_INCLUDE, API_BLAS)), ("cub/device/device_reduce.cuh", ("hipcub/hipcub.hpp", CONV_INCLUDE, API_BLAS)), ("cub/device/device_scan.cuh", ("hipcub/hipcub.hpp", CONV_INCLUDE, API_BLAS)), ("cub/device/device_select.cuh", ("hipcub/hipcub.hpp", CONV_INCLUDE, API_BLAS)), ("nvToolsExt.h", ("roctracer/roctx.h", CONV_INCLUDE, API_ROCTX)), ] ) CUDA_IDENTIFIER_MAP = collections.OrderedDict( [ ("__CUDACC__", ("__HIPCC__", CONV_DEF, API_RUNTIME)), ( "CUDA_ERROR_INVALID_CONTEXT", ("hipErrorInvalidContext", CONV_TYPE, API_DRIVER), ), ( "CUDA_ERROR_CONTEXT_ALREADY_CURRENT", ("hipErrorContextAlreadyCurrent", CONV_TYPE, API_DRIVER), ), ( "CUDA_ERROR_ARRAY_IS_MAPPED", ("hipErrorArrayIsMapped", CONV_TYPE, API_DRIVER), ), ("CUDA_ERROR_ALREADY_MAPPED", ("hipErrorAlreadyMapped", CONV_TYPE, API_DRIVER)), ( "CUDA_ERROR_ALREADY_ACQUIRED", ("hipErrorAlreadyAcquired", CONV_TYPE, API_DRIVER), ), ("CUDA_ERROR_NOT_MAPPED", ("hipErrorNotMapped", CONV_TYPE, API_DRIVER)), ( "CUDA_ERROR_NOT_MAPPED_AS_ARRAY", ("hipErrorNotMappedAsArray", CONV_TYPE, API_DRIVER), ), ( "CUDA_ERROR_NOT_MAPPED_AS_POINTER", ("hipErrorNotMappedAsPointer", CONV_TYPE, API_DRIVER), ), ( "CUDA_ERROR_CONTEXT_ALREADY_IN_USE", ("hipErrorContextAlreadyInUse", CONV_TYPE, API_DRIVER), ), ("CUDA_ERROR_INVALID_SOURCE", ("hipErrorInvalidSource", CONV_TYPE, API_DRIVER)), ("CUDA_ERROR_FILE_NOT_FOUND", ("hipErrorFileNotFound", CONV_TYPE, API_DRIVER)), ("CUDA_ERROR_NOT_FOUND", ("hipErrorNotFound", CONV_TYPE, API_DRIVER)), ( "CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING", ( "hipErrorLaunchIncompatibleTexturing", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CUDA_ERROR_PRIMARY_CONTEXT_ACTIVE", ("hipErrorPrimaryContextActive", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUDA_ERROR_CONTEXT_IS_DESTROYED", ("hipErrorContextIsDestroyed", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUDA_ERROR_NOT_PERMITTED", ("hipErrorNotPermitted", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUDA_ERROR_NOT_SUPPORTED", ("hipErrorNotSupported", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "cudaErrorMissingConfiguration", ("hipErrorMissingConfiguration", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorPriorLaunchFailure", ("hipErrorPriorLaunchFailure", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorInvalidDeviceFunction", ("hipErrorInvalidDeviceFunction", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorInvalidConfiguration", ("hipErrorInvalidConfiguration", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorInvalidPitchValue", ("hipErrorInvalidPitchValue", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorInvalidSymbol", ("hipErrorInvalidSymbol", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorInvalidHostPointer", ("hipErrorInvalidHostPointer", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorInvalidDevicePointer", ("hipErrorInvalidDevicePointer", CONV_TYPE, API_RUNTIME), ), ( "cudaErrorInvalidTexture", ("hipErrorInvalidTexture", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorInvalidTextureBinding", ("hipErrorInvalidTextureBinding", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorInvalidChannelDescriptor", ( "hipErrorInvalidChannelDescriptor", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaErrorInvalidMemcpyDirection", ("hipErrorInvalidMemcpyDirection", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorAddressOfConstant", ("hipErrorAddressOfConstant", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorTextureFetchFailed", ("hipErrorTextureFetchFailed", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorTextureNotBound", ("hipErrorTextureNotBound", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorSynchronizationError", ("hipErrorSynchronizationError", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorInvalidFilterSetting", ("hipErrorInvalidFilterSetting", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorInvalidNormSetting", ("hipErrorInvalidNormSetting", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorMixedDeviceExecution", ("hipErrorMixedDeviceExecution", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorNotYetImplemented", ("hipErrorNotYetImplemented", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorMemoryValueTooLarge", ("hipErrorMemoryValueTooLarge", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorInsufficientDriver", ("hipErrorInsufficientDriver", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorSetOnActiveProcess", ("hipErrorSetOnActiveProcess", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorInvalidSurface", ("hipErrorInvalidSurface", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorDuplicateVariableName", ("hipErrorDuplicateVariableName", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorDuplicateTextureName", ("hipErrorDuplicateTextureName", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorDuplicateSurfaceName", ("hipErrorDuplicateSurfaceName", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorDevicesUnavailable", ("hipErrorDevicesUnavailable", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorIncompatibleDriverContext", ( "hipErrorIncompatibleDriverContext", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaErrorDeviceAlreadyInUse", ("hipErrorDeviceAlreadyInUse", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorLaunchMaxDepthExceeded", ("hipErrorLaunchMaxDepthExceeded", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorLaunchFileScopedTex", ("hipErrorLaunchFileScopedTex", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorLaunchFileScopedSurf", ("hipErrorLaunchFileScopedSurf", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorSyncDepthExceeded", ("hipErrorSyncDepthExceeded", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorLaunchPendingCountExceeded", ( "hipErrorLaunchPendingCountExceeded", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaErrorNotPermitted", ("hipErrorNotPermitted", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorNotSupported", ("hipErrorNotSupported", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorStartupFailure", ("hipErrorStartupFailure", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaErrorApiFailureBase", ("hipErrorApiFailureBase", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ("CUDA_SUCCESS", ("hipSuccess", CONV_TYPE, API_DRIVER)), ("cudaSuccess", ("hipSuccess", CONV_TYPE, API_RUNTIME)), ("CUDA_ERROR_INVALID_VALUE", ("hipErrorInvalidValue", CONV_TYPE, API_DRIVER)), ("cudaErrorInvalidValue", ("hipErrorInvalidValue", CONV_TYPE, API_RUNTIME)), ( "CUDA_ERROR_OUT_OF_MEMORY", ("hipErrorMemoryAllocation", CONV_TYPE, API_DRIVER), ), ( "cudaErrorMemoryAllocation", ("hipErrorMemoryAllocation", CONV_TYPE, API_RUNTIME), ), ( "CUDA_ERROR_NOT_INITIALIZED", ("hipErrorNotInitialized", CONV_TYPE, API_DRIVER), ), ( "cudaErrorInitializationError", ("hipErrorInitializationError", CONV_TYPE, API_RUNTIME), ), ("CUDA_ERROR_DEINITIALIZED", ("hipErrorDeinitialized", CONV_TYPE, API_DRIVER)), ( "cudaErrorCudartUnloading", ("hipErrorDeinitialized", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "CUDA_ERROR_PROFILER_DISABLED", ("hipErrorProfilerDisabled", CONV_TYPE, API_DRIVER), ), ( "cudaErrorProfilerDisabled", ("hipErrorProfilerDisabled", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "CUDA_ERROR_PROFILER_NOT_INITIALIZED", ("hipErrorProfilerNotInitialized", CONV_TYPE, API_DRIVER), ), ( "cudaErrorProfilerNotInitialized", ("hipErrorProfilerNotInitialized", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "CUDA_ERROR_PROFILER_ALREADY_STARTED", ("hipErrorProfilerAlreadyStarted", CONV_TYPE, API_DRIVER), ), ( "cudaErrorProfilerAlreadyStarted", ("hipErrorProfilerAlreadyStarted", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "CUDA_ERROR_PROFILER_ALREADY_STOPPED", ("hipErrorProfilerAlreadyStopped", CONV_TYPE, API_DRIVER), ), ( "cudaErrorProfilerAlreadyStopped", ("hipErrorProfilerAlreadyStopped", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ("CUDA_ERROR_NO_DEVICE", ("hipErrorNoDevice", CONV_TYPE, API_DRIVER)), ("cudaErrorNoDevice", ("hipErrorNoDevice", CONV_TYPE, API_RUNTIME)), ("CUDA_ERROR_INVALID_DEVICE", ("hipErrorInvalidDevice", CONV_TYPE, API_DRIVER)), ("cudaErrorInvalidDevice", ("hipErrorInvalidDevice", CONV_TYPE, API_RUNTIME)), ("CUDA_ERROR_INVALID_IMAGE", ("hipErrorInvalidImage", CONV_TYPE, API_DRIVER)), ( "cudaErrorInvalidKernelImage", ("hipErrorInvalidImage", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ("CUDA_ERROR_MAP_FAILED", ("hipErrorMapFailed", CONV_TYPE, API_DRIVER)), ( "cudaErrorMapBufferObjectFailed", ("hipErrorMapFailed", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ("CUDA_ERROR_UNMAP_FAILED", ("hipErrorUnmapFailed", CONV_TYPE, API_DRIVER)), ( "cudaErrorUnmapBufferObjectFailed", ("hipErrorUnmapFailed", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "CUDA_ERROR_NO_BINARY_FOR_GPU", ("hipErrorNoBinaryForGpu", CONV_TYPE, API_DRIVER), ), ( "cudaErrorNoKernelImageForDevice", ("hipErrorNoBinaryForGpu", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "CUDA_ERROR_ECC_UNCORRECTABLE", ("hipErrorECCNotCorrectable", CONV_TYPE, API_DRIVER), ), ( "cudaErrorECCUncorrectable", ("hipErrorECCNotCorrectable", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "CUDA_ERROR_UNSUPPORTED_LIMIT", ("hipErrorUnsupportedLimit", CONV_TYPE, API_DRIVER), ), ( "cudaErrorUnsupportedLimit", ("hipErrorUnsupportedLimit", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "CUDA_ERROR_PEER_ACCESS_UNSUPPORTED", ("hipErrorPeerAccessUnsupported", CONV_TYPE, API_DRIVER), ), ( "cudaErrorPeerAccessUnsupported", ("hipErrorPeerAccessUnsupported", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "CUDA_ERROR_INVALID_PTX", ("hipErrorInvalidKernelFile", CONV_TYPE, API_DRIVER), ), ( "cudaErrorInvalidPtx", ("hipErrorInvalidKernelFile", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "CUDA_ERROR_INVALID_GRAPHICS_CONTEXT", ("hipErrorInvalidGraphicsContext", CONV_TYPE, API_DRIVER), ), ( "cudaErrorInvalidGraphicsContext", ("hipErrorInvalidGraphicsContext", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "CUDA_ERROR_NVLINK_UNCORRECTABLE", ("hipErrorNvlinkUncorrectable", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "cudaErrorNvlinkUncorrectable", ("hipErrorNvlinkUncorrectable", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND", ("hipErrorSharedObjectSymbolNotFound", CONV_TYPE, API_DRIVER), ), ( "cudaErrorSharedObjectSymbolNotFound", ( "hipErrorSharedObjectSymbolNotFound", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "CUDA_ERROR_SHARED_OBJECT_INIT_FAILED", ("hipErrorSharedObjectInitFailed", CONV_TYPE, API_DRIVER), ), ( "cudaErrorSharedObjectInitFailed", ("hipErrorSharedObjectInitFailed", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "CUDA_ERROR_OPERATING_SYSTEM", ("hipErrorOperatingSystem", CONV_TYPE, API_DRIVER), ), ( "cudaErrorOperatingSystem", ("hipErrorOperatingSystem", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "CUDA_ERROR_INVALID_HANDLE", ("hipErrorInvalidResourceHandle", CONV_TYPE, API_DRIVER), ), ( "cudaErrorInvalidResourceHandle", ("hipErrorInvalidResourceHandle", CONV_TYPE, API_RUNTIME), ), ("CUDA_ERROR_NOT_READY", ("hipErrorNotReady", CONV_TYPE, API_DRIVER)), ("cudaErrorNotReady", ("hipErrorNotReady", CONV_TYPE, API_RUNTIME)), ( "CUDA_ERROR_ILLEGAL_ADDRESS", ("hipErrorIllegalAddress", CONV_TYPE, API_DRIVER), ), ( "cudaErrorIllegalAddress", ("hipErrorIllegalAddress", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES", ("hipErrorLaunchOutOfResources", CONV_TYPE, API_DRIVER), ), ( "cudaErrorLaunchOutOfResources", ("hipErrorLaunchOutOfResources", CONV_TYPE, API_RUNTIME), ), ("CUDA_ERROR_LAUNCH_TIMEOUT", ("hipErrorLaunchTimeOut", CONV_TYPE, API_DRIVER)), ( "cudaErrorLaunchTimeout", ("hipErrorLaunchTimeOut", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "CUDA_ERROR_PEER_ACCESS_ALREADY_ENABLED", ("hipErrorPeerAccessAlreadyEnabled", CONV_TYPE, API_DRIVER), ), ( "cudaErrorPeerAccessAlreadyEnabled", ("hipErrorPeerAccessAlreadyEnabled", CONV_TYPE, API_RUNTIME), ), ( "CUDA_ERROR_PEER_ACCESS_NOT_ENABLED", ("hipErrorPeerAccessNotEnabled", CONV_TYPE, API_DRIVER), ), ( "cudaErrorPeerAccessNotEnabled", ("hipErrorPeerAccessNotEnabled", CONV_TYPE, API_RUNTIME), ), ( "CUDA_ERROR_ASSERT", ("hipErrorAssert", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "cudaErrorAssert", ("hipErrorAssert", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "CUDA_ERROR_TOO_MANY_PEERS", ("hipErrorTooManyPeers", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "cudaErrorTooManyPeers", ("hipErrorTooManyPeers", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "CUDA_ERROR_HOST_MEMORY_ALREADY_REGISTERED", ("hipErrorHostMemoryAlreadyRegistered", CONV_TYPE, API_DRIVER), ), ( "cudaErrorHostMemoryAlreadyRegistered", ("hipErrorHostMemoryAlreadyRegistered", CONV_TYPE, API_RUNTIME), ), ( "CUDA_ERROR_HOST_MEMORY_NOT_REGISTERED", ("hipErrorHostMemoryNotRegistered", CONV_TYPE, API_DRIVER), ), ( "cudaErrorHostMemoryNotRegistered", ("hipErrorHostMemoryNotRegistered", CONV_TYPE, API_RUNTIME), ), ( "CUDA_ERROR_HARDWARE_STACK_ERROR", ("hipErrorHardwareStackError", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "cudaErrorHardwareStackError", ("hipErrorHardwareStackError", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "CUDA_ERROR_ILLEGAL_INSTRUCTION", ("hipErrorIllegalInstruction", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "cudaErrorIllegalInstruction", ("hipErrorIllegalInstruction", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "CUDA_ERROR_MISALIGNED_ADDRESS", ("hipErrorMisalignedAddress", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "cudaErrorMisalignedAddress", ("hipErrorMisalignedAddress", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "CUDA_ERROR_INVALID_ADDRESS_SPACE", ("hipErrorInvalidAddressSpace", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "cudaErrorInvalidAddressSpace", ("hipErrorInvalidAddressSpace", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "CUDA_ERROR_INVALID_PC", ("hipErrorInvalidPc", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "cudaErrorInvalidPc", ("hipErrorInvalidPc", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "CUDA_ERROR_LAUNCH_FAILED", ("hipErrorLaunchFailure", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "cudaErrorLaunchFailure", ("hipErrorLaunchFailure", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "CUDA_ERROR_UNKNOWN", ("hipErrorUnknown", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ("cudaErrorUnknown", ("hipErrorUnknown", CONV_TYPE, API_RUNTIME)), ( "CU_TR_ADDRESS_MODE_WRAP", ("HIP_TR_ADDRESS_MODE_WRAP", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_TR_ADDRESS_MODE_CLAMP", ("HIP_TR_ADDRESS_MODE_CLAMP", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_TR_ADDRESS_MODE_MIRROR", ("HIP_TR_ADDRESS_MODE_MIRROR", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_TR_ADDRESS_MODE_BORDER", ("HIP_TR_ADDRESS_MODE_BORDER", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_CUBEMAP_FACE_POSITIVE_X", ("HIP_CUBEMAP_FACE_POSITIVE_X", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_CUBEMAP_FACE_NEGATIVE_X", ("HIP_CUBEMAP_FACE_NEGATIVE_X", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_CUBEMAP_FACE_POSITIVE_Y", ("HIP_CUBEMAP_FACE_POSITIVE_Y", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_CUBEMAP_FACE_NEGATIVE_Y", ("HIP_CUBEMAP_FACE_NEGATIVE_Y", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_CUBEMAP_FACE_POSITIVE_Z", ("HIP_CUBEMAP_FACE_POSITIVE_Z", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_CUBEMAP_FACE_NEGATIVE_Z", ("HIP_CUBEMAP_FACE_NEGATIVE_Z", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_AD_FORMAT_UNSIGNED_INT8", ("HIP_AD_FORMAT_UNSIGNED_INT8", CONV_TYPE, API_DRIVER), ), ( "CU_AD_FORMAT_UNSIGNED_INT16", ("HIP_AD_FORMAT_UNSIGNED_INT16", CONV_TYPE, API_DRIVER), ), ( "CU_AD_FORMAT_UNSIGNED_INT32", ("HIP_AD_FORMAT_UNSIGNED_INT32", CONV_TYPE, API_DRIVER), ), ( "CU_AD_FORMAT_SIGNED_INT8", ("HIP_AD_FORMAT_SIGNED_INT8", CONV_TYPE, API_DRIVER), ), ( "CU_AD_FORMAT_SIGNED_INT16", ("HIP_AD_FORMAT_SIGNED_INT16", CONV_TYPE, API_DRIVER), ), ( "CU_AD_FORMAT_SIGNED_INT32", ("HIP_AD_FORMAT_SIGNED_INT32", CONV_TYPE, API_DRIVER), ), ("CU_AD_FORMAT_HALF", ("HIP_AD_FORMAT_HALF", CONV_TYPE, API_DRIVER)), ("CU_AD_FORMAT_FLOAT", ("HIP_AD_FORMAT_FLOAT", CONV_TYPE, API_DRIVER)), ( "CU_COMPUTEMODE_DEFAULT", ("hipComputeModeDefault", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_COMPUTEMODE_EXCLUSIVE", ("hipComputeModeExclusive", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_COMPUTEMODE_PROHIBITED", ("hipComputeModeProhibited", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_COMPUTEMODE_EXCLUSIVE_PROCESS", ("hipComputeModeExclusiveProcess", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_MEM_ADVISE_SET_READ_MOSTLY", ("hipMemAdviseSetReadMostly", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_MEM_ADVISE_UNSET_READ_MOSTLY", ("hipMemAdviseUnsetReadMostly", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_MEM_ADVISE_SET_PREFERRED_LOCATION", ( "hipMemAdviseSetPreferredLocation", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_MEM_ADVISE_UNSET_PREFERRED_LOCATION", ( "hipMemAdviseUnsetPreferredLocation", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_MEM_ADVISE_SET_ACCESSED_BY", ("hipMemAdviseSetAccessedBy", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_MEM_ADVISE_UNSET_ACCESSED_BY", ("hipMemAdviseUnsetAccessedBy", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_MEM_RANGE_ATTRIBUTE_READ_MOSTLY", ("hipMemRangeAttributeReadMostly", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_MEM_RANGE_ATTRIBUTE_PREFERRED_LOCATION", ( "hipMemRangeAttributePreferredLocation", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_MEM_RANGE_ATTRIBUTE_ACCESSED_BY", ("hipMemRangeAttributeAccessedBy", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_MEM_RANGE_ATTRIBUTE_LAST_PREFETCH_LOCATION", ( "hipMemRangeAttributeLastPrefetchLocation", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_CTX_SCHED_AUTO", ("HIP_CTX_SCHED_AUTO", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_CTX_SCHED_SPIN", ("HIP_CTX_SCHED_SPIN", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_CTX_SCHED_YIELD", ("HIP_CTX_SCHED_YIELD", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_CTX_SCHED_BLOCKING_SYNC", ("HIP_CTX_SCHED_BLOCKING_SYNC", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_CTX_BLOCKING_SYNC", ("HIP_CTX_BLOCKING_SYNC", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_CTX_SCHED_MASK", ("HIP_CTX_SCHED_MASK", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_CTX_MAP_HOST", ("HIP_CTX_MAP_HOST", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_CTX_LMEM_RESIZE_TO_MAX", ("HIP_CTX_LMEM_RESIZE_TO_MAX", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_CTX_FLAGS_MASK", ("HIP_CTX_FLAGS_MASK", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_LAUNCH_PARAM_BUFFER_POINTER", ("HIP_LAUNCH_PARAM_BUFFER_POINTER", CONV_TYPE, API_DRIVER), ), ( "CU_LAUNCH_PARAM_BUFFER_SIZE", ("HIP_LAUNCH_PARAM_BUFFER_SIZE", CONV_TYPE, API_DRIVER), ), ("CU_LAUNCH_PARAM_END", ("HIP_LAUNCH_PARAM_END", CONV_TYPE, API_DRIVER)), ( "CU_IPC_HANDLE_SIZE", ("HIP_IPC_HANDLE_SIZE", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_MEMHOSTALLOC_DEVICEMAP", ("HIP_MEMHOSTALLOC_DEVICEMAP", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_MEMHOSTALLOC_PORTABLE", ("HIP_MEMHOSTALLOC_PORTABLE", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_MEMHOSTALLOC_WRITECOMBINED", ("HIP_MEMHOSTALLOC_WRITECOMBINED", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_MEMHOSTREGISTER_DEVICEMAP", ("HIP_MEMHOSTREGISTER_DEVICEMAP", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_MEMHOSTREGISTER_IOMEMORY", ("HIP_MEMHOSTREGISTER_IOMEMORY", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_MEMHOSTREGISTER_PORTABLE", ("HIP_MEMHOSTREGISTER_PORTABLE", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_PARAM_TR_DEFAULT", ("HIP_PARAM_TR_DEFAULT", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_STREAM_LEGACY", ("HIP_STREAM_LEGACY", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_STREAM_PER_THREAD", ("HIP_STREAM_PER_THREAD", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_TRSA_OVERRIDE_FORMAT", ("HIP_TRSA_OVERRIDE_FORMAT", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_TRSF_NORMALIZED_COORDINATES", ("HIP_TRSF_NORMALIZED_COORDINATES", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_TRSF_READ_AS_INTEGER", ("HIP_TRSF_READ_AS_INTEGER", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ("CU_TRSF_SRGB", ("HIP_TRSF_SRGB", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED)), ( "CUDA_ARRAY3D_2DARRAY", ("HIP_ARRAY3D_LAYERED", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUDA_ARRAY3D_CUBEMAP", ("HIP_ARRAY3D_CUBEMAP", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUDA_ARRAY3D_DEPTH_TEXTURE", ("HIP_ARRAY3D_DEPTH_TEXTURE", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUDA_ARRAY3D_LAYERED", ("HIP_ARRAY3D_LAYERED", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUDA_ARRAY3D_SURFACE_LDST", ("HIP_ARRAY3D_SURFACE_LDST", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CUDA_ARRAY3D_TEXTURE_GATHER", ("HIP_ARRAY3D_TEXTURE_GATHER", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK", ( "hipDeviceAttributeMaxThreadsPerBlock", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X", ("hipDeviceAttributeMaxBlockDimX", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y", ("hipDeviceAttributeMaxBlockDimY", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z", ("hipDeviceAttributeMaxBlockDimZ", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X", ("hipDeviceAttributeMaxGridDimX", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Y", ("hipDeviceAttributeMaxGridDimY", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Z", ("hipDeviceAttributeMaxGridDimZ", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK", ( "hipDeviceAttributeMaxSharedMemoryPerBlock", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_SHARED_MEMORY_PER_BLOCK", ( "hipDeviceAttributeMaxSharedMemoryPerBlock", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_TOTAL_CONSTANT_MEMORY", ( "hipDeviceAttributeTotalConstantMemory", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_WARP_SIZE", ("hipDeviceAttributeWarpSize", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_DEVICE_ATTRIBUTE_MAX_PITCH", ("hipDeviceAttributeMaxPitch", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_BLOCK", ( "hipDeviceAttributeMaxRegistersPerBlock", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_REGISTERS_PER_BLOCK", ( "hipDeviceAttributeMaxRegistersPerBlock", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_CLOCK_RATE", ("hipDeviceAttributeClockRate", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT", ( "hipDeviceAttributeTextureAlignment", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_GPU_OVERLAP", ( "hipDeviceAttributeAsyncEngineCount", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT", ( "hipDeviceAttributeMultiprocessorCount", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT", ( "hipDeviceAttributeKernelExecTimeout", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_INTEGRATED", ("hipDeviceAttributeIntegrated", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY", ( "hipDeviceAttributeCanMapHostMemory", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_COMPUTE_MODE", ("hipDeviceAttributeComputeMode", CONV_TYPE, API_DRIVER), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_WIDTH", ( "hipDeviceAttributeMaxTexture1DWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_WIDTH", ( "hipDeviceAttributeMaxTexture2DWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_HEIGHT", ( "hipDeviceAttributeMaxTexture2DHeight", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_WIDTH", ( "hipDeviceAttributeMaxTexture3DWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_HEIGHT", ( "hipDeviceAttributeMaxTexture3DHeight", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_DEPTH", ( "hipDeviceAttributeMaxTexture3DDepth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_WIDTH", ( "hipDeviceAttributeMaxTexture2DLayeredWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_HEIGHT", ( "hipDeviceAttributeMaxTexture2DLayeredHeight", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_LAYERS", ( "hipDeviceAttributeMaxTexture2DLayeredLayers", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_ARRAY_WIDTH", ( "hipDeviceAttributeMaxTexture2DLayeredWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_ARRAY_HEIGHT", ( "hipDeviceAttributeMaxTexture2DLayeredHeight", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_ARRAY_NUMSLICES", ( "hipDeviceAttributeMaxTexture2DLayeredLayers", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_SURFACE_ALIGNMENT", ( "hipDeviceAttributeSurfaceAlignment", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_CONCURRENT_KERNELS", ("hipDeviceAttributeConcurrentKernels", CONV_TYPE, API_DRIVER), ), ( "CU_DEVICE_ATTRIBUTE_ECC_ENABLED", ("hipDeviceAttributeEccEnabled", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_DEVICE_ATTRIBUTE_PCI_BUS_ID", ("hipDeviceAttributePciBusId", CONV_TYPE, API_DRIVER), ), ( "CU_DEVICE_ATTRIBUTE_PCI_DEVICE_ID", ("hipDeviceAttributePciDeviceId", CONV_TYPE, API_DRIVER), ), ( "CU_DEVICE_ATTRIBUTE_TCC_DRIVER", ("hipDeviceAttributeTccDriver", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE", ( "hipDeviceAttributeMemoryClockRate", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH", ("hipDeviceAttributeMemoryBusWidth", CONV_TYPE, API_DRIVER), ), ( "CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE", ("hipDeviceAttributeL2CacheSize", CONV_TYPE, API_DRIVER), ), ( "CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR", ("hipDeviceAttributeMaxThreadsPerMultiProcessor", CONV_TYPE, API_DRIVER), ), ( "CU_DEVICE_ATTRIBUTE_ASYNC_ENGINE_COUNT", ( "hipDeviceAttributeAsyncEngineCount", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_UNIFIED_ADDRESSING", ( "hipDeviceAttributeUnifiedAddressing", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LAYERED_WIDTH", ( "hipDeviceAttributeMaxTexture1DLayeredWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LAYERED_LAYERS", ( "hipDeviceAttributeMaxTexture1DLayeredLayers", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_CAN_TEX2D_GATHER", ( "hipDeviceAttributeCanTex2DGather", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_GATHER_WIDTH", ( "hipDeviceAttributeMaxTexture2DGatherWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_GATHER_HEIGHT", ( "hipDeviceAttributeMaxTexture2DGatherHeight", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_WIDTH_ALTERNATE", ( "hipDeviceAttributeMaxTexture3DWidthAlternate", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_HEIGHT_ALTERNATE", ( "hipDeviceAttributeMaxTexture3DHeightAlternate", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_DEPTH_ALTERNATE", ( "hipDeviceAttributeMaxTexture3DDepthAlternate", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_PCI_DOMAIN_ID", ("hipDeviceAttributePciDomainId", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_DEVICE_ATTRIBUTE_TEXTURE_PITCH_ALIGNMENT", ( "hipDeviceAttributeTexturePitchAlignment", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURECUBEMAP_WIDTH", ( "hipDeviceAttributeMaxTextureCubemapWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURECUBEMAP_LAYERED_WIDTH", ( "hipDeviceAttributeMaxTextureCubemapLayeredWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURECUBEMAP_LAYERED_LAYERS", ( "hipDeviceAttributeMaxTextureCubemapLayeredLayers", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE1D_WIDTH", ( "hipDeviceAttributeMaxSurface1DWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_WIDTH", ( "hipDeviceAttributeMaxSurface2DWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_HEIGHT", ( "hipDeviceAttributeMaxSurface2DHeight", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE3D_WIDTH", ( "hipDeviceAttributeMaxSurface3DWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE3D_HEIGHT", ( "hipDeviceAttributeMaxSurface3DHeight", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE3D_DEPTH", ( "hipDeviceAttributeMaxSurface3DDepth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE1D_LAYERED_WIDTH", ( "hipDeviceAttributeMaxSurface1DLayeredWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE1D_LAYERED_LAYERS", ( "hipDeviceAttributeMaxSurface1DLayeredLayers", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_LAYERED_WIDTH", ( "hipDeviceAttributeMaxSurface2DLayeredWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_LAYERED_HEIGHT", ( "hipDeviceAttributeMaxSurface2DLayeredHeight", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_LAYERED_LAYERS", ( "hipDeviceAttributeMaxSurface2DLayeredLayers", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACECUBEMAP_WIDTH", ( "hipDeviceAttributeMaxSurfaceCubemapWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACECUBEMAP_LAYERED_WIDTH", ( "hipDeviceAttributeMaxSurfaceCubemapLayeredWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACECUBEMAP_LAYERED_LAYERS", ( "hipDeviceAttributeMaxSurfaceCubemapLayeredLayers", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LINEAR_WIDTH", ( "hipDeviceAttributeMaxTexture1DLinearWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LINEAR_WIDTH", ( "hipDeviceAttributeMaxTexture2DLinearWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LINEAR_HEIGHT", ( "hipDeviceAttributeMaxTexture2DLinearHeight", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LINEAR_PITCH", ( "hipDeviceAttributeMaxTexture2DLinearPitch", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_MIPMAPPED_WIDTH", ( "hipDeviceAttributeMaxTexture2DMipmappedWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_MIPMAPPED_HEIGHT", ( "hipDeviceAttributeMaxTexture2DMipmappedHeight", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR", ("hipDeviceAttributeComputeCapabilityMajor", CONV_TYPE, API_DRIVER), ), ( "CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR", ("hipDeviceAttributeComputeCapabilityMinor", CONV_TYPE, API_DRIVER), ), ( "CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_MIPMAPPED_WIDTH", ( "hipDeviceAttributeMaxTexture1DMipmappedWidth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_STREAM_PRIORITIES_SUPPORTED", ( "hipDeviceAttributeStreamPrioritiesSupported", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_GLOBAL_L1_CACHE_SUPPORTED", ( "hipDeviceAttributeGlobalL1CacheSupported", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_LOCAL_L1_CACHE_SUPPORTED", ( "hipDeviceAttributeLocalL1CacheSupported", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_MULTIPROCESSOR", ( "hipDeviceAttributeMaxSharedMemoryPerMultiprocessor", CONV_TYPE, API_DRIVER, ), ), ( "CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_MULTIPROCESSOR", ( "hipDeviceAttributeMaxRegistersPerMultiprocessor", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MANAGED_MEMORY", ("hipDeviceAttributeManagedMemory", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_DEVICE_ATTRIBUTE_MULTI_GPU_BOARD", ("hipDeviceAttributeIsMultiGpuBoard", CONV_TYPE, API_DRIVER), ), ( "CU_DEVICE_ATTRIBUTE_MULTI_GPU_BOARD_GROUP_ID", ( "hipDeviceAttributeMultiGpuBoardGroupId", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_HOST_NATIVE_ATOMIC_SUPPORTED", ( "hipDeviceAttributeHostNativeAtomicSupported", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_SINGLE_TO_DOUBLE_PRECISION_PERF_RATIO", ( "hipDeviceAttributeSingleToDoublePrecisionPerfRatio", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_PAGEABLE_MEMORY_ACCESS", ( "hipDeviceAttributePageableMemoryAccess", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_CONCURRENT_MANAGED_ACCESS", ( "hipDeviceAttributeConcurrentManagedAccess", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_COMPUTE_PREEMPTION_SUPPORTED", ( "hipDeviceAttributeComputePreemptionSupported", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_CAN_USE_HOST_POINTER_FOR_REGISTERED_MEM", ( "hipDeviceAttributeCanUseHostPointerForRegisteredMem", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_ATTRIBUTE_MAX", ("hipDeviceAttributeMax", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_POINTER_ATTRIBUTE_CONTEXT", ("hipPointerAttributeContext", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_POINTER_ATTRIBUTE_MEMORY_TYPE", ("hipPointerAttributeMemoryType", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_POINTER_ATTRIBUTE_DEVICE_POINTER", ( "hipPointerAttributeDevicePointer", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_POINTER_ATTRIBUTE_HOST_POINTER", ("hipPointerAttributeHostPointer", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_POINTER_ATTRIBUTE_P2P_TOKENS", ("hipPointerAttributeP2pTokens", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_POINTER_ATTRIBUTE_SYNC_MEMOPS", ("hipPointerAttributeSyncMemops", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_POINTER_ATTRIBUTE_BUFFER_ID", ("hipPointerAttributeBufferId", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_POINTER_ATTRIBUTE_IS_MANAGED", ("hipPointerAttributeIsManaged", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK", ( "hipFuncAttributeMaxThreadsPerBlocks", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_FUNC_ATTRIBUTE_SHARED_SIZE_BYTES", ("hipFuncAttributeSharedSizeBytes", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_FUNC_ATTRIBUTE_CONST_SIZE_BYTES", ("hipFuncAttributeConstSizeBytes", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_FUNC_ATTRIBUTE_LOCAL_SIZE_BYTES", ("hipFuncAttributeLocalSizeBytes", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_FUNC_ATTRIBUTE_NUM_REGS", ("hipFuncAttributeNumRegs", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_FUNC_ATTRIBUTE_PTX_VERSION", ("hipFuncAttributePtxVersion", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_FUNC_ATTRIBUTE_BINARY_VERSION", ("hipFuncAttributeBinaryVersion", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_FUNC_ATTRIBUTE_CACHE_MODE_CA", ("hipFuncAttributeCacheModeCA", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_FUNC_ATTRIBUTE_MAX", ("hipFuncAttributeMax", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_GRAPHICS_MAP_RESOURCE_FLAGS_NONE", ("hipGraphicsMapFlagsNone", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_GRAPHICS_MAP_RESOURCE_FLAGS_READ_ONLY", ("hipGraphicsMapFlagsReadOnly", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_GRAPHICS_MAP_RESOURCE_FLAGS_WRITE_DISCARD", ("hipGraphicsMapFlagsWriteDiscard", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_GRAPHICS_REGISTER_FLAGS_NONE", ("hipGraphicsRegisterFlagsNone", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_GRAPHICS_REGISTER_FLAGS_READ_ONLY", ( "hipGraphicsRegisterFlagsReadOnly", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_GRAPHICS_REGISTER_FLAGS_WRITE_DISCARD", ( "hipGraphicsRegisterFlagsWriteDiscard", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_GRAPHICS_REGISTER_FLAGS_SURFACE_LDST", ( "hipGraphicsRegisterFlagsSurfaceLoadStore", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_GRAPHICS_REGISTER_FLAGS_TEXTURE_GATHER", ( "hipGraphicsRegisterFlagsTextureGather", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_OCCUPANCY_DEFAULT", ("hipOccupancyDefault", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_OCCUPANCY_DISABLE_CACHING_OVERRIDE", ( "hipOccupancyDisableCachingOverride", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_FUNC_CACHE_PREFER_NONE", ("hipFuncCachePreferNone", CONV_CACHE, API_DRIVER), ), ( "CU_FUNC_CACHE_PREFER_SHARED", ("hipFuncCachePreferShared", CONV_CACHE, API_DRIVER), ), ("CU_FUNC_CACHE_PREFER_L1", ("hipFuncCachePreferL1", CONV_CACHE, API_DRIVER)), ( "CU_FUNC_CACHE_PREFER_EQUAL", ("hipFuncCachePreferEqual", CONV_CACHE, API_DRIVER), ), ( "CU_IPC_MEM_LAZY_ENABLE_PEER_ACCESS", ("hipIpcMemLazyEnablePeerAccess", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ("CUDA_IPC_HANDLE_SIZE", ("HIP_IPC_HANDLE_SIZE", CONV_TYPE, API_DRIVER)), ( "CU_JIT_CACHE_OPTION_NONE", ("hipJitCacheModeOptionNone", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_JIT_CACHE_OPTION_CG", ("hipJitCacheModeOptionCG", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_JIT_CACHE_OPTION_CA", ("hipJitCacheModeOptionCA", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_PREFER_PTX", ("hipJitFallbackPreferPtx", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_PREFER_BINARY", ("hipJitFallbackPreferBinary", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ("CU_JIT_MAX_REGISTERS", ("hipJitOptionMaxRegisters", CONV_JIT, API_DRIVER)), ( "CU_JIT_THREADS_PER_BLOCK", ("hipJitOptionThreadsPerBlock", CONV_JIT, API_DRIVER), ), ("CU_JIT_WALL_TIME", ("hipJitOptionWallTime", CONV_JIT, API_DRIVER)), ("CU_JIT_INFO_LOG_BUFFER", ("hipJitOptionInfoLogBuffer", CONV_JIT, API_DRIVER)), ( "CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES", ("hipJitOptionInfoLogBufferSizeBytes", CONV_JIT, API_DRIVER), ), ( "CU_JIT_ERROR_LOG_BUFFER", ("hipJitOptionErrorLogBuffer", CONV_JIT, API_DRIVER), ), ( "CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES", ("hipJitOptionErrorLogBufferSizeBytes", CONV_JIT, API_DRIVER), ), ( "CU_JIT_OPTIMIZATION_LEVEL", ("hipJitOptionOptimizationLevel", CONV_JIT, API_DRIVER), ), ( "CU_JIT_TARGET_FROM_CUCONTEXT", ("hipJitOptionTargetFromContext", CONV_JIT, API_DRIVER), ), ("CU_JIT_TARGET", ("hipJitOptionTarget", CONV_JIT, API_DRIVER)), ( "CU_JIT_FALLBACK_STRATEGY", ("hipJitOptionFallbackStrategy", CONV_JIT, API_DRIVER), ), ( "CU_JIT_GENERATE_DEBUG_INFO", ("hipJitOptionGenerateDebugInfo", CONV_JIT, API_DRIVER), ), ("CU_JIT_LOG_VERBOSE", ("hipJitOptionLogVerbose", CONV_JIT, API_DRIVER)), ( "CU_JIT_GENERATE_LINE_INFO", ("hipJitOptionGenerateLineInfo", CONV_JIT, API_DRIVER), ), ("CU_JIT_CACHE_MODE", ("hipJitOptionCacheMode", CONV_JIT, API_DRIVER)), ("CU_JIT_NEW_SM3X_OPT", ("hipJitOptionSm3xOpt", CONV_JIT, API_DRIVER)), ("CU_JIT_FAST_COMPILE", ("hipJitOptionFastCompile", CONV_JIT, API_DRIVER)), ("CU_JIT_NUM_OPTIONS", ("hipJitOptionNumOptions", CONV_JIT, API_DRIVER)), ( "CU_TARGET_COMPUTE_10", ("hipJitTargetCompute10", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_TARGET_COMPUTE_11", ("hipJitTargetCompute11", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_TARGET_COMPUTE_12", ("hipJitTargetCompute12", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_TARGET_COMPUTE_13", ("hipJitTargetCompute13", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_TARGET_COMPUTE_20", ("hipJitTargetCompute20", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_TARGET_COMPUTE_21", ("hipJitTargetCompute21", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_TARGET_COMPUTE_30", ("hipJitTargetCompute30", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_TARGET_COMPUTE_32", ("hipJitTargetCompute32", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_TARGET_COMPUTE_35", ("hipJitTargetCompute35", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_TARGET_COMPUTE_37", ("hipJitTargetCompute37", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_TARGET_COMPUTE_50", ("hipJitTargetCompute50", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_TARGET_COMPUTE_52", ("hipJitTargetCompute52", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_TARGET_COMPUTE_53", ("hipJitTargetCompute53", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_TARGET_COMPUTE_60", ("hipJitTargetCompute60", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_TARGET_COMPUTE_61", ("hipJitTargetCompute61", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_TARGET_COMPUTE_62", ("hipJitTargetCompute62", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_JIT_INPUT_CUBIN", ("hipJitInputTypeBin", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_JIT_INPUT_PTX", ("hipJitInputTypePtx", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_JIT_INPUT_FATBINARY", ("hipJitInputTypeFatBinary", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_JIT_INPUT_OBJECT", ("hipJitInputTypeObject", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_JIT_INPUT_LIBRARY", ("hipJitInputTypeLibrary", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_JIT_NUM_INPUT_TYPES", ("hipJitInputTypeNumInputTypes", CONV_JIT, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_LIMIT_STACK_SIZE", ("hipLimitStackSize", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_LIMIT_PRINTF_FIFO_SIZE", ("hipLimitPrintfFifoSize", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_LIMIT_MALLOC_HEAP_SIZE", ("hipLimitMallocHeapSize", CONV_TYPE, API_DRIVER), ), ( "CU_LIMIT_DEV_RUNTIME_SYNC_DEPTH", ("hipLimitDevRuntimeSyncDepth", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_LIMIT_DEV_RUNTIME_PENDING_LAUNCH_COUNT", ( "hipLimitDevRuntimePendingLaunchCount", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_LIMIT_STACK_SIZE", ("hipLimitStackSize", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_MEM_ATTACH_GLOBAL", ("hipMemAttachGlobal", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_MEM_ATTACH_HOST", ("hipMemAttachHost", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_MEM_ATTACH_SINGLE", ("hipMemAttachSingle", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_MEMORYTYPE_HOST", ("hipMemTypeHost", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_MEMORYTYPE_DEVICE", ("hipMemTypeDevice", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_MEMORYTYPE_ARRAY", ("hipMemTypeArray", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_MEMORYTYPE_UNIFIED", ("hipMemTypeUnified", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_RESOURCE_TYPE_ARRAY", ("hipResourceTypeArray", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_RESOURCE_TYPE_MIPMAPPED_ARRAY", ("hipResourceTypeMipmappedArray", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_RESOURCE_TYPE_LINEAR", ("hipResourceTypeLinear", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_RESOURCE_TYPE_PITCH2D", ("hipResourceTypePitch2D", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ("CU_RES_VIEW_FORMAT_NONE", ("hipResViewFormatNone", CONV_TEX, API_DRIVER)), ( "CU_RES_VIEW_FORMAT_UINT_1X8", ("hipResViewFormatUnsignedChar1", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_UINT_2X8", ("hipResViewFormatUnsignedChar2", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_UINT_4X8", ("hipResViewFormatUnsignedChar4", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_SINT_1X8", ("hipResViewFormatSignedChar1", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_SINT_2X8", ("hipResViewFormatSignedChar2", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_SINT_4X8", ("hipResViewFormatSignedChar4", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_UINT_1X16", ("hipResViewFormatUnsignedShort1", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_UINT_2X16", ("hipResViewFormatUnsignedShort2", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_UINT_4X16", ("hipResViewFormatUnsignedShort4", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_SINT_1X16", ("hipResViewFormatSignedShort1", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_SINT_2X16", ("hipResViewFormatSignedShort2", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_SINT_4X16", ("hipResViewFormatSignedShort4", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_UINT_1X32", ("hipResViewFormatUnsignedInt1", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_UINT_2X32", ("hipResViewFormatUnsignedInt2", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_UINT_4X32", ("hipResViewFormatUnsignedInt4", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_SINT_1X32", ("hipResViewFormatSignedInt1", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_SINT_2X32", ("hipResViewFormatSignedInt2", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_SINT_4X32", ("hipResViewFormatSignedInt4", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_FLOAT_1X16", ("hipResViewFormatHalf1", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_FLOAT_2X16", ("hipResViewFormatHalf2", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_FLOAT_4X16", ("hipResViewFormatHalf4", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_FLOAT_1X32", ("hipResViewFormatFloat1", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_FLOAT_2X32", ("hipResViewFormatFloat2", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_FLOAT_4X32", ("hipResViewFormatFloat4", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_UNSIGNED_BC1", ("hipResViewFormatUnsignedBlockCompressed1", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_UNSIGNED_BC2", ("hipResViewFormatUnsignedBlockCompressed2", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_UNSIGNED_BC3", ("hipResViewFormatUnsignedBlockCompressed3", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_UNSIGNED_BC4", ("hipResViewFormatUnsignedBlockCompressed4", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_SIGNED_BC4", ("hipResViewFormatSignedBlockCompressed4", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_UNSIGNED_BC5", ("hipResViewFormatUnsignedBlockCompressed5", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_SIGNED_BC5", ("hipResViewFormatSignedBlockCompressed5", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_UNSIGNED_BC6H", ("hipResViewFormatUnsignedBlockCompressed6H", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_SIGNED_BC6H", ("hipResViewFormatSignedBlockCompressed6H", CONV_TEX, API_DRIVER), ), ( "CU_RES_VIEW_FORMAT_UNSIGNED_BC7", ("hipResViewFormatUnsignedBlockCompressed7", CONV_TEX, API_DRIVER), ), ( "CU_SHARED_MEM_CONFIG_DEFAULT_BANK_SIZE", ("hipSharedMemBankSizeDefault", CONV_TYPE, API_DRIVER), ), ( "CU_SHARED_MEM_CONFIG_FOUR_BYTE_BANK_SIZE", ("hipSharedMemBankSizeFourByte", CONV_TYPE, API_DRIVER), ), ( "CU_SHARED_MEM_CONFIG_EIGHT_BYTE_BANK_SIZE", ("hipSharedMemBankSizeEightByte", CONV_TYPE, API_DRIVER), ), ("CU_STREAM_DEFAULT", ("hipStreamDefault", CONV_TYPE, API_DRIVER)), ("CU_STREAM_NON_BLOCKING", ("hipStreamNonBlocking", CONV_TYPE, API_DRIVER)), ( "CU_STREAM_WAIT_VALUE_GEQ", ("hipStreamWaitValueGeq", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_STREAM_WAIT_VALUE_EQ", ("hipStreamWaitValueEq", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_STREAM_WAIT_VALUE_AND", ("hipStreamWaitValueAnd", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_STREAM_WAIT_VALUE_FLUSH", ("hipStreamWaitValueFlush", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_STREAM_WRITE_VALUE_DEFAULT", ("hipStreamWriteValueDefault", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_STREAM_WRITE_VALUE_NO_MEMORY_BARRIER", ( "hipStreamWriteValueNoMemoryBarrier", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_STREAM_MEM_OP_WAIT_VALUE_32", ("hipStreamBatchMemOpWaitValue32", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_STREAM_MEM_OP_WRITE_VALUE_32", ("hipStreamBatchMemOpWriteValue32", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_STREAM_MEM_OP_FLUSH_REMOTE_WRITES", ( "hipStreamBatchMemOpFlushRemoteWrites", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "cuGetErrorName", ("hipGetErrorName___", CONV_ERROR, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuGetErrorString", ("hipGetErrorString___", CONV_ERROR, API_DRIVER, HIP_UNSUPPORTED), ), ("cuInit", ("hipInit", CONV_INIT, API_DRIVER)), ("cuDriverGetVersion", ("hipDriverGetVersion", CONV_VERSION, API_DRIVER)), ("cuCtxCreate", ("hipCtxCreate", CONV_CONTEXT, API_DRIVER)), ("cuCtxCreate_v2", ("hipCtxCreate", CONV_CONTEXT, API_DRIVER)), ("cuCtxDestroy", ("hipCtxDestroy", CONV_CONTEXT, API_DRIVER)), ("cuCtxDestroy_v2", ("hipCtxDestroy", CONV_CONTEXT, API_DRIVER)), ("cuCtxGetApiVersion", ("hipCtxGetApiVersion", CONV_CONTEXT, API_DRIVER)), ("cuCtxGetCacheConfig", ("hipCtxGetCacheConfig", CONV_CONTEXT, API_DRIVER)), ("cuCtxGetCurrent", ("hipCtxGetCurrent", CONV_CONTEXT, API_DRIVER)), ("cuCtxGetDevice", ("hipCtxGetDevice", CONV_CONTEXT, API_DRIVER)), ("cuCtxGetFlags", ("hipCtxGetFlags", CONV_CONTEXT, API_DRIVER)), ( "cuCtxGetLimit", ("hipCtxGetLimit", CONV_CONTEXT, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuCtxGetSharedMemConfig", ("hipCtxGetSharedMemConfig", CONV_CONTEXT, API_DRIVER), ), ( "cuCtxGetStreamPriorityRange", ("hipCtxGetStreamPriorityRange", CONV_CONTEXT, API_DRIVER, HIP_UNSUPPORTED), ), ("cuCtxPopCurrent_v2", ("hipCtxPopCurrent", CONV_CONTEXT, API_DRIVER)), ("cuCtxPushCurrent_v2", ("hipCtxPushCurrent", CONV_CONTEXT, API_DRIVER)), ("cuCtxSetCacheConfig", ("hipCtxSetCacheConfig", CONV_CONTEXT, API_DRIVER)), ("cuCtxSetCurrent", ("hipCtxSetCurrent", CONV_CONTEXT, API_DRIVER)), ( "cuCtxSetLimit", ("hipCtxSetLimit", CONV_CONTEXT, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuCtxSetSharedMemConfig", ("hipCtxSetSharedMemConfig", CONV_CONTEXT, API_DRIVER), ), ("cuCtxSynchronize", ("hipCtxSynchronize", CONV_CONTEXT, API_DRIVER)), ("cuCtxAttach", ("hipCtxAttach", CONV_CONTEXT, API_DRIVER, HIP_UNSUPPORTED)), ("cuCtxDetach", ("hipCtxDetach", CONV_CONTEXT, API_DRIVER, HIP_UNSUPPORTED)), ("cuCtxEnablePeerAccess", ("hipCtxEnablePeerAccess", CONV_PEER, API_DRIVER)), ("cuCtxDisablePeerAccess", ("hipCtxDisablePeerAccess", CONV_PEER, API_DRIVER)), ("cuDeviceCanAccessPeer", ("hipDeviceCanAccessPeer", CONV_PEER, API_DRIVER)), ( "cuDeviceGetP2PAttribute", ("hipDeviceGetP2PAttribute", CONV_PEER, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuDevicePrimaryCtxGetState", ("hipDevicePrimaryCtxGetState", CONV_CONTEXT, API_DRIVER), ), ( "cuDevicePrimaryCtxRelease", ("hipDevicePrimaryCtxRelease", CONV_CONTEXT, API_DRIVER), ), ( "cuDevicePrimaryCtxReset", ("hipDevicePrimaryCtxReset", CONV_CONTEXT, API_DRIVER), ), ( "cuDevicePrimaryCtxRetain", ("hipDevicePrimaryCtxRetain", CONV_CONTEXT, API_DRIVER), ), ( "cuDevicePrimaryCtxSetFlags", ("hipDevicePrimaryCtxSetFlags", CONV_CONTEXT, API_DRIVER), ), ("cuDeviceGet", ("hipGetDevice", CONV_DEVICE, API_DRIVER)), ("cuDeviceGetName", ("hipDeviceGetName", CONV_DEVICE, API_DRIVER)), ("cuDeviceGetCount", ("hipGetDeviceCount", CONV_DEVICE, API_DRIVER)), ("cuDeviceGetAttribute", ("hipDeviceGetAttribute", CONV_DEVICE, API_DRIVER)), ("cuDeviceGetPCIBusId", ("hipDeviceGetPCIBusId", CONV_DEVICE, API_DRIVER)), ("cuDeviceGetByPCIBusId", ("hipDeviceGetByPCIBusId", CONV_DEVICE, API_DRIVER)), ("cuDeviceTotalMem_v2", ("hipDeviceTotalMem", CONV_DEVICE, API_DRIVER)), ( "cuDeviceComputeCapability", ("hipDeviceComputeCapability", CONV_DEVICE, API_DRIVER), ), ("cuDeviceGetProperties", ("hipGetDeviceProperties", CONV_DEVICE, API_DRIVER)), ("cuLinkAddData", ("hipLinkAddData", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED)), ("cuLinkAddFile", ("hipLinkAddFile", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED)), ( "cuLinkComplete", ("hipLinkComplete", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED), ), ("cuLinkCreate", ("hipLinkCreate", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED)), ("cuLinkDestroy", ("hipLinkDestroy", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED)), ("cuModuleGetFunction", ("hipModuleGetFunction", CONV_MODULE, API_DRIVER)), ("cuModuleGetGlobal_v2", ("hipModuleGetGlobal", CONV_MODULE, API_DRIVER)), ( "cuModuleGetSurfRef", ("hipModuleGetSurfRef", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED), ), ("cuModuleGetTexRef", ("hipModuleGetTexRef", CONV_MODULE, API_DRIVER)), ("cuModuleLoad", ("hipModuleLoad", CONV_MODULE, API_DRIVER)), ("cuModuleLoadData", ("hipModuleLoadData", CONV_MODULE, API_DRIVER)), ("cuModuleLoadDataEx", ("hipModuleLoadDataEx", CONV_MODULE, API_DRIVER)), ( "cuModuleLoadFatBinary", ("hipModuleLoadFatBinary", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED), ), ("cuModuleUnload", ("hipModuleUnload", CONV_MODULE, API_DRIVER)), ( "CU_DEVICE_P2P_ATTRIBUTE_PERFORMANCE_RANK", ( "hipDeviceP2PAttributePerformanceRank", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_P2P_ATTRIBUTE_ACCESS_SUPPORTED", ( "hipDeviceP2PAttributeAccessSupported", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_DEVICE_P2P_ATTRIBUTE_NATIVE_ATOMIC_SUPPORTED", ( "hipDeviceP2PAttributeNativeAtomicSupported", CONV_TYPE, API_DRIVER, HIP_UNSUPPORTED, ), ), ("CU_EVENT_DEFAULT", ("hipEventDefault", CONV_EVENT, API_DRIVER)), ("CU_EVENT_BLOCKING_SYNC", ("hipEventBlockingSync", CONV_EVENT, API_DRIVER)), ("CU_EVENT_DISABLE_TIMING", ("hipEventDisableTiming", CONV_EVENT, API_DRIVER)), ("CU_EVENT_INTERPROCESS", ("hipEventInterprocess", CONV_EVENT, API_DRIVER)), ("cuEventCreate", ("hipEventCreate", CONV_EVENT, API_DRIVER)), ("cuEventDestroy", ("hipEventDestroy", CONV_EVENT, API_DRIVER)), ("cuEventDestroy_v2", ("hipEventDestroy", CONV_EVENT, API_DRIVER)), ("cuEventElapsedTime", ("hipEventElapsedTime", CONV_EVENT, API_DRIVER)), ("cuEventQuery", ("hipEventQuery", CONV_EVENT, API_DRIVER)), ("cuEventRecord", ("hipEventRecord", CONV_EVENT, API_DRIVER)), ("cuEventSynchronize", ("hipEventSynchronize", CONV_EVENT, API_DRIVER)), ( "cuFuncGetAttribute", ("hipFuncGetAttribute", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED), ), ("cuFuncSetCacheConfig", ("hipFuncSetCacheConfig", CONV_MODULE, API_DRIVER)), ( "cuFuncSetSharedMemConfig", ("hipFuncSetSharedMemConfig", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED), ), ("cuLaunchKernel", ("hipModuleLaunchKernel", CONV_MODULE, API_DRIVER)), ( "cuFuncSetBlockShape", ("hipFuncSetBlockShape", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuFuncSetSharedSize", ("hipFuncSetSharedSize", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED), ), ("cuLaunch", ("hipLaunch", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED)), ("cuLaunchGrid", ("hipLaunchGrid", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED)), ( "cuLaunchGridAsync", ("hipLaunchGridAsync", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED), ), ("cuParamSetf", ("hipParamSetf", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED)), ("cuParamSeti", ("hipParamSeti", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED)), ( "cuParamSetSize", ("hipParamSetSize", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuParamSetSize", ("hipParamSetSize", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED), ), ("cuParamSetv", ("hipParamSetv", CONV_MODULE, API_DRIVER, HIP_UNSUPPORTED)), ( "cuOccupancyMaxActiveBlocksPerMultiprocessor", ( "hipModuleOccupancyMaxActiveBlocksPerMultiprocessor", CONV_OCCUPANCY, API_DRIVER, ), ), ( "cuOccupancyMaxActiveBlocksPerMultiprocessorWithFlags", ( "hipModuleOccupancyMaxActiveBlocksPerMultiprocessorWithFlags", CONV_OCCUPANCY, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "cuOccupancyMaxPotentialBlockSize", ("hipModuleOccupancyMaxPotentialBlockSize", CONV_OCCUPANCY, API_DRIVER), ), ( "cuOccupancyMaxPotentialBlockSizeWithFlags", ( "hipModuleOccupancyMaxPotentialBlockSizeWithFlags", CONV_OCCUPANCY, API_DRIVER, HIP_UNSUPPORTED, ), ), ("cuStreamAddCallback", ("hipStreamAddCallback", CONV_STREAM, API_DRIVER)), ( "cuStreamAttachMemAsync", ("hipStreamAttachMemAsync", CONV_STREAM, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuStreamCreate", ("hipStreamCreate__", CONV_STREAM, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuStreamCreateWithPriority", ("hipStreamCreateWithPriority", CONV_STREAM, API_DRIVER, HIP_UNSUPPORTED), ), ("cuStreamDestroy", ("hipStreamDestroy", CONV_STREAM, API_DRIVER)), ("cuStreamDestroy_v2", ("hipStreamDestroy", CONV_STREAM, API_DRIVER)), ("cuStreamGetFlags", ("hipStreamGetFlags", CONV_STREAM, API_DRIVER)), ( "cuStreamGetPriority", ("hipStreamGetPriority", CONV_STREAM, API_DRIVER, HIP_UNSUPPORTED), ), ("cuStreamQuery", ("hipStreamQuery", CONV_STREAM, API_DRIVER)), ("cuStreamSynchronize", ("hipStreamSynchronize", CONV_STREAM, API_DRIVER)), ("cuStreamWaitEvent", ("hipStreamWaitEvent", CONV_STREAM, API_DRIVER)), ( "cuStreamWaitValue32", ("hipStreamWaitValue32", CONV_STREAM, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuStreamWriteValue32", ("hipStreamWriteValue32", CONV_STREAM, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuStreamBatchMemOp", ("hipStreamBatchMemOp", CONV_STREAM, API_DRIVER, HIP_UNSUPPORTED), ), ("cuArray3DCreate", ("hipArray3DCreate", CONV_MEM, API_DRIVER)), ( "cuArray3DGetDescriptor", ("hipArray3DGetDescriptor", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ("cuArrayCreate", ("hipArrayCreate", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuArrayDestroy", ("hipArrayDestroy", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ( "cuArrayGetDescriptor", ("hipArrayGetDescriptor", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuIpcCloseMemHandle", ("hipIpcCloseMemHandle", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuIpcGetEventHandle", ("hipIpcGetEventHandle", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuIpcGetMemHandle", ("hipIpcGetMemHandle", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuIpcOpenEventHandle", ("hipIpcOpenEventHandle", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuIpcOpenMemHandle", ("hipIpcOpenMemHandle", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ("cuMemAlloc_v2", ("hipMalloc", CONV_MEM, API_DRIVER)), ("cuMemAllocHost", ("hipMemAllocHost", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ( "cuMemAllocManaged", ("hipMemAllocManaged", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuMemAllocPitch", ("hipMemAllocPitch__", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ("cuMemcpy", ("hipMemcpy__", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemcpy2D", ("hipMemcpy2D__", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ( "cuMemcpy2DAsync", ("hipMemcpy2DAsync__", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuMemcpy2DUnaligned", ("hipMemcpy2DUnaligned", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ("cuMemcpy3D", ("hipMemcpy3D__", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ( "cuMemcpy3DAsync", ("hipMemcpy3DAsync__", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuMemcpy3DPeer", ("hipMemcpy3DPeer__", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuMemcpy3DPeerAsync", ("hipMemcpy3DPeerAsync__", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ("cuMemcpyAsync", ("hipMemcpyAsync__", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemcpyAtoA", ("hipMemcpyAtoA", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemcpyAtoD", ("hipMemcpyAtoD", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemcpyAtoH", ("hipMemcpyAtoH", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ( "cuMemcpyAtoHAsync", ("hipMemcpyAtoHAsync", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ("cuMemcpyDtoA", ("hipMemcpyDtoA", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemcpyDtoD_v2", ("hipMemcpyDtoD", CONV_MEM, API_DRIVER)), ("cuMemcpyDtoDAsync_v2", ("hipMemcpyDtoDAsync", CONV_MEM, API_DRIVER)), ("cuMemcpyDtoH_v2", ("hipMemcpyDtoH", CONV_MEM, API_DRIVER)), ("cuMemcpyDtoHAsync_v2", ("hipMemcpyDtoHAsync", CONV_MEM, API_DRIVER)), ("cuMemcpyHtoA", ("hipMemcpyHtoA", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ( "cuMemcpyHtoAAsync", ("hipMemcpyHtoAAsync", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ("cuMemcpyHtoD_v2", ("hipMemcpyHtoD", CONV_MEM, API_DRIVER)), ("cuMemcpyHtoDAsync_v2", ("hipMemcpyHtoDAsync", CONV_MEM, API_DRIVER)), ( "cuMemcpyPeerAsync", ("hipMemcpyPeerAsync__", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ("cuMemcpyPeer", ("hipMemcpyPeer__", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ("cuMemFree", ("hipFree", CONV_MEM, API_DRIVER)), ("cuMemFree_v2", ("hipFree", CONV_MEM, API_DRIVER)), ("cuMemFreeHost", ("hipHostFree", CONV_MEM, API_DRIVER)), ( "cuMemGetAddressRange", ("hipMemGetAddressRange", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ("cuMemGetInfo_v2", ("hipMemGetInfo", CONV_MEM, API_DRIVER)), ("cuMemHostAlloc", ("hipHostMalloc", CONV_MEM, API_DRIVER)), ( "cuMemHostGetDevicePointer", ("hipMemHostGetDevicePointer", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuMemHostGetFlags", ("hipMemHostGetFlags", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ("cuMemHostRegister_v2", ("hipHostRegister", CONV_MEM, API_DRIVER)), ("cuMemHostUnregister", ("hipHostUnregister", CONV_MEM, API_DRIVER)), ("cuMemsetD16_v2", ("hipMemsetD16", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ( "cuMemsetD16Async", ("hipMemsetD16Async", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ("cuMemsetD2D16_v2", ("hipMemsetD2D16", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ( "cuMemsetD2D16Async", ("hipMemsetD2D16Async", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ("cuMemsetD2D32_v2", ("hipMemsetD2D32", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ( "cuMemsetD2D32Async", ("hipMemsetD2D32Async", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ("cuMemsetD2D8_v2", ("hipMemsetD2D8", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ( "cuMemsetD2D8Async", ("hipMemsetD2D8Async", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ("cuMemsetD32_v2", ("hipMemset", CONV_MEM, API_DRIVER)), ("cuMemsetD32Async", ("hipMemsetAsync", CONV_MEM, API_DRIVER)), ("cuMemsetD8_v2", ("hipMemsetD8", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ( "cuMemsetD8Async", ("hipMemsetD8Async", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuMipmappedArrayCreate", ("hipMipmappedArrayCreate", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuMipmappedArrayDestroy", ("hipMipmappedArrayDestroy", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuMipmappedArrayGetLevel", ("hipMipmappedArrayGetLevel", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuMemPrefetchAsync", ("hipMemPrefetchAsync__", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ("cuMemAdvise", ("hipMemAdvise", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED)), ( "cuMemRangeGetAttribute", ("hipMemRangeGetAttribute", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuMemRangeGetAttributes", ("hipMemRangeGetAttributes", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuPointerGetAttribute", ("hipPointerGetAttribute", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuPointerGetAttributes", ("hipPointerGetAttributes", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuPointerSetAttribute", ("hipPointerSetAttribute", CONV_MEM, API_DRIVER, HIP_UNSUPPORTED), ), ("CU_TR_FILTER_MODE_POINT", ("hipFilterModePoint", CONV_TEX, API_DRIVER)), ( "CU_TR_FILTER_MODE_LINEAR", ("hipFilterModeLinear", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuTexRefGetAddress", ("hipTexRefGetAddress", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuTexRefGetAddressMode", ("hipTexRefGetAddressMode", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuTexRefGetArray", ("hipTexRefGetArray", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuTexRefGetBorderColor", ("hipTexRefGetBorderColor", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuTexRefGetFilterMode", ("hipTexRefGetFilterMode", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuTexRefGetFlags", ("hipTexRefGetFlags", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuTexRefGetFormat", ("hipTexRefGetFormat", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuTexRefGetMaxAnisotropy", ("hipTexRefGetMaxAnisotropy", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuTexRefGetMipmapFilterMode", ("hipTexRefGetMipmapFilterMode", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuTexRefGetMipmapLevelBias", ("hipTexRefGetMipmapLevelBias", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuTexRefGetMipmapLevelClamp", ("hipTexRefGetMipmapLevelClamp", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuTexRefGetMipmappedArray", ("hipTexRefGetMipmappedArray", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuTexRefSetAddress", ("hipTexRefSetAddress", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuTexRefSetAddress2D", ("hipTexRefSetAddress2D", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ("cuTexRefSetAddressMode", ("hipTexRefSetAddressMode", CONV_TEX, API_DRIVER)), ("cuTexRefSetArray", ("hipTexRefSetArray", CONV_TEX, API_DRIVER)), ( "cuTexRefSetBorderColor", ("hipTexRefSetBorderColor", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ("cuTexRefSetFilterMode", ("hipTexRefSetFilterMode", CONV_TEX, API_DRIVER)), ("cuTexRefSetFlags", ("hipTexRefSetFlags", CONV_TEX, API_DRIVER)), ("cuTexRefSetFormat", ("hipTexRefSetFormat", CONV_TEX, API_DRIVER)), ( "cuTexRefSetMaxAnisotropy", ("hipTexRefSetMaxAnisotropy", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuTexRefSetMipmapFilterMode", ("hipTexRefSetMipmapFilterMode", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuTexRefSetMipmapLevelBias", ("hipTexRefSetMipmapLevelBias", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuTexRefSetMipmapLevelClamp", ("hipTexRefSetMipmapLevelClamp", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuTexRefSetMipmappedArray", ("hipTexRefSetMipmappedArray", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ("cuTexRefCreate", ("hipTexRefCreate", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED)), ( "cuTexRefDestroy", ("hipTexRefDestroy", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuSurfRefGetArray", ("hipSurfRefGetArray", CONV_SURFACE, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuSurfRefSetArray", ("hipSurfRefSetArray", CONV_SURFACE, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuTexObjectCreate", ("hipTexObjectCreate", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuTexObjectDestroy", ("hipTexObjectDestroy", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuTexObjectGetResourceDesc", ("hipTexObjectGetResourceDesc", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuTexObjectGetResourceViewDesc", ("hipTexObjectGetResourceViewDesc", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuTexObjectGetTextureDesc", ("hipTexObjectGetTextureDesc", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuSurfObjectCreate", ("hipSurfObjectCreate", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuSurfObjectDestroy", ("hipSurfObjectDestroy", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuSurfObjectGetResourceDesc", ("hipSurfObjectGetResourceDesc", CONV_TEX, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuGraphicsMapResources", ("hipGraphicsMapResources", CONV_GRAPHICS, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuGraphicsResourceGetMappedMipmappedArray", ( "hipGraphicsResourceGetMappedMipmappedArray", CONV_GRAPHICS, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "cuGraphicsResourceGetMappedPointer", ( "hipGraphicsResourceGetMappedPointer", CONV_GRAPHICS, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "cuGraphicsResourceSetMapFlags", ( "hipGraphicsResourceSetMapFlags", CONV_GRAPHICS, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "cuGraphicsSubResourceGetMappedArray", ( "hipGraphicsSubResourceGetMappedArray", CONV_GRAPHICS, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "cuGraphicsUnmapResources", ("hipGraphicsUnmapResources", CONV_GRAPHICS, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuGraphicsUnregisterResource", ( "hipGraphicsUnregisterResource", CONV_GRAPHICS, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "cuProfilerInitialize", ("hipProfilerInitialize", CONV_OTHER, API_DRIVER, HIP_UNSUPPORTED), ), ("cuProfilerStart", ("hipProfilerStart", CONV_OTHER, API_DRIVER)), ("cuProfilerStop", ("hipProfilerStop", CONV_OTHER, API_DRIVER)), ( "CU_GL_DEVICE_LIST_ALL", ("HIP_GL_DEVICE_LIST_ALL", CONV_GL, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_GL_DEVICE_LIST_CURRENT_FRAME", ("HIP_GL_DEVICE_LIST_CURRENT_FRAME", CONV_GL, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_GL_DEVICE_LIST_NEXT_FRAME", ("HIP_GL_DEVICE_LIST_NEXT_FRAME", CONV_GL, API_DRIVER, HIP_UNSUPPORTED), ), ("cuGLGetDevices", ("hipGLGetDevices", CONV_GL, API_DRIVER, HIP_UNSUPPORTED)), ( "cuGraphicsGLRegisterBuffer", ("hipGraphicsGLRegisterBuffer", CONV_GL, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuGraphicsGLRegisterImage", ("hipGraphicsGLRegisterImage", CONV_GL, API_DRIVER, HIP_UNSUPPORTED), ), ("cuWGLGetDevice", ("hipWGLGetDevice", CONV_GL, API_DRIVER, HIP_UNSUPPORTED)), ( "CU_GL_MAP_RESOURCE_FLAGS_NONE", ("HIP_GL_MAP_RESOURCE_FLAGS_NONE", CONV_GL, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_GL_MAP_RESOURCE_FLAGS_READ_ONLY", ( "HIP_GL_MAP_RESOURCE_FLAGS_READ_ONLY", CONV_GL, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_GL_MAP_RESOURCE_FLAGS_WRITE_DISCARD", ( "HIP_GL_MAP_RESOURCE_FLAGS_WRITE_DISCARD", CONV_GL, API_DRIVER, HIP_UNSUPPORTED, ), ), ("cuGLCtxCreate", ("hipGLCtxCreate", CONV_GL, API_DRIVER, HIP_UNSUPPORTED)), ("cuGLInit", ("hipGLInit", CONV_GL, API_DRIVER, HIP_UNSUPPORTED)), ( "cuGLMapBufferObject", ("hipGLMapBufferObject", CONV_GL, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuGLMapBufferObjectAsync", ("hipGLMapBufferObjectAsync", CONV_GL, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuGLRegisterBufferObject", ("hipGLRegisterBufferObject", CONV_GL, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuGLSetBufferObjectMapFlags", ("hipGLSetBufferObjectMapFlags", CONV_GL, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuGLUnmapBufferObject", ("hipGLUnmapBufferObject", CONV_GL, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuGLUnmapBufferObjectAsync", ("hipGLUnmapBufferObjectAsync", CONV_GL, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuGLUnregisterBufferObject", ("hipGLUnregisterBufferObject", CONV_GL, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_D3D9_DEVICE_LIST_ALL", ("HIP_D3D9_DEVICE_LIST_ALL", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_D3D9_DEVICE_LIST_CURRENT_FRAME", ( "HIP_D3D9_DEVICE_LIST_CURRENT_FRAME", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_D3D9_DEVICE_LIST_NEXT_FRAME", ("HIP_D3D9_DEVICE_LIST_NEXT_FRAME", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D9CtxCreate", ("hipD3D9CtxCreate", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D9CtxCreateOnDevice", ("hipD3D9CtxCreateOnDevice", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D9GetDevice", ("hipD3D9GetDevice", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D9GetDevices", ("hipD3D9GetDevices", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D9GetDirect3DDevice", ("hipD3D9GetDirect3DDevice", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuGraphicsD3D9RegisterResource", ("hipGraphicsD3D9RegisterResource", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_D3D9_MAPRESOURCE_FLAGS_NONE", ("HIP_D3D9_MAPRESOURCE_FLAGS_NONE", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_D3D9_MAPRESOURCE_FLAGS_READONLY", ( "HIP_D3D9_MAPRESOURCE_FLAGS_READONLY", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_D3D9_MAPRESOURCE_FLAGS_WRITEDISCARD", ( "HIP_D3D9_MAPRESOURCE_FLAGS_WRITEDISCARD", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_D3D9_REGISTER_FLAGS_NONE", ("HIP_D3D9_REGISTER_FLAGS_NONE", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_D3D9_REGISTER_FLAGS_ARRAY", ("HIP_D3D9_REGISTER_FLAGS_ARRAY", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D9MapResources", ("hipD3D9MapResources", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D9RegisterResource", ("hipD3D9RegisterResource", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D9ResourceGetMappedArray", ("hipD3D9ResourceGetMappedArray", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D9ResourceGetMappedPitch", ("hipD3D9ResourceGetMappedPitch", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D9ResourceGetMappedPointer", ("hipD3D9ResourceGetMappedPointer", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D9ResourceGetMappedSize", ("hipD3D9ResourceGetMappedSize", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D9ResourceGetSurfaceDimensions", ( "hipD3D9ResourceGetSurfaceDimensions", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "cuD3D9ResourceSetMapFlags", ("hipD3D9ResourceSetMapFlags", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D9UnmapResources", ("hipD3D9UnmapResources", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D9UnregisterResource", ("hipD3D9UnregisterResource", CONV_D3D9, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_D3D10_DEVICE_LIST_ALL", ("HIP_D3D10_DEVICE_LIST_ALL", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_D3D10_DEVICE_LIST_CURRENT_FRAME", ( "HIP_D3D10_DEVICE_LIST_CURRENT_FRAME", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_D3D10_DEVICE_LIST_NEXT_FRAME", ( "HIP_D3D10_DEVICE_LIST_NEXT_FRAME", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "cuD3D10GetDevice", ("hipD3D10GetDevice", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D10GetDevices", ("hipD3D10GetDevices", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuGraphicsD3D10RegisterResource", ( "hipGraphicsD3D10RegisterResource", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_D3D10_MAPRESOURCE_FLAGS_NONE", ( "HIP_D3D10_MAPRESOURCE_FLAGS_NONE", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_D3D10_MAPRESOURCE_FLAGS_READONLY", ( "HIP_D3D10_MAPRESOURCE_FLAGS_READONLY", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_D3D10_MAPRESOURCE_FLAGS_WRITEDISCARD", ( "HIP_D3D10_MAPRESOURCE_FLAGS_WRITEDISCARD", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_D3D10_REGISTER_FLAGS_NONE", ("HIP_D3D10_REGISTER_FLAGS_NONE", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_D3D10_REGISTER_FLAGS_ARRAY", ("HIP_D3D10_REGISTER_FLAGS_ARRAY", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D10CtxCreate", ("hipD3D10CtxCreate", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D10CtxCreateOnDevice", ("hipD3D10CtxCreateOnDevice", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D10GetDirect3DDevice", ("hipD3D10GetDirect3DDevice", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D10MapResources", ("hipD3D10MapResources", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D10RegisterResource", ("hipD3D10RegisterResource", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D10ResourceGetMappedArray", ("hipD3D10ResourceGetMappedArray", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D10ResourceGetMappedPitch", ("hipD3D10ResourceGetMappedPitch", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D10ResourceGetMappedPointer", ( "hipD3D10ResourceGetMappedPointer", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "cuD3D10ResourceGetMappedSize", ("hipD3D10ResourceGetMappedSize", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D10ResourceGetSurfaceDimensions", ( "hipD3D10ResourceGetSurfaceDimensions", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "cuD310ResourceSetMapFlags", ("hipD3D10ResourceSetMapFlags", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D10UnmapResources", ("hipD3D10UnmapResources", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D10UnregisterResource", ("hipD3D10UnregisterResource", CONV_D3D10, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_D3D11_DEVICE_LIST_ALL", ("HIP_D3D11_DEVICE_LIST_ALL", CONV_D3D11, API_DRIVER, HIP_UNSUPPORTED), ), ( "CU_D3D11_DEVICE_LIST_CURRENT_FRAME", ( "HIP_D3D11_DEVICE_LIST_CURRENT_FRAME", CONV_D3D11, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "CU_D3D11_DEVICE_LIST_NEXT_FRAME", ( "HIP_D3D11_DEVICE_LIST_NEXT_FRAME", CONV_D3D11, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "cuD3D11GetDevice", ("hipD3D11GetDevice", CONV_D3D11, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D11GetDevices", ("hipD3D11GetDevices", CONV_D3D11, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuGraphicsD3D11RegisterResource", ( "hipGraphicsD3D11RegisterResource", CONV_D3D11, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "cuD3D11CtxCreate", ("hipD3D11CtxCreate", CONV_D3D11, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D11CtxCreateOnDevice", ("hipD3D11CtxCreateOnDevice", CONV_D3D11, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuD3D11GetDirect3DDevice", ("hipD3D11GetDirect3DDevice", CONV_D3D11, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuGraphicsVDPAURegisterOutputSurface", ( "hipGraphicsVDPAURegisterOutputSurface", CONV_VDPAU, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "cuGraphicsVDPAURegisterVideoSurface", ( "hipGraphicsVDPAURegisterVideoSurface", CONV_VDPAU, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "cuVDPAUGetDevice", ("hipVDPAUGetDevice", CONV_VDPAU, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuVDPAUCtxCreate", ("hipVDPAUCtxCreate", CONV_VDPAU, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuEGLStreamConsumerAcquireFrame", ("hipEGLStreamConsumerAcquireFrame", CONV_EGL, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuEGLStreamConsumerConnect", ("hipEGLStreamConsumerConnect", CONV_EGL, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuEGLStreamConsumerConnectWithFlags", ( "hipEGLStreamConsumerConnectWithFlags", CONV_EGL, API_DRIVER, HIP_UNSUPPORTED, ), ), ( "cuEGLStreamConsumerDisconnect", ("hipEGLStreamConsumerDisconnect", CONV_EGL, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuEGLStreamConsumerReleaseFrame", ("hipEGLStreamConsumerReleaseFrame", CONV_EGL, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuEGLStreamProducerConnect", ("hipEGLStreamProducerConnect", CONV_EGL, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuEGLStreamProducerDisconnect", ("hipEGLStreamProducerDisconnect", CONV_EGL, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuEGLStreamProducerPresentFrame", ("hipEGLStreamProducerPresentFrame", CONV_EGL, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuEGLStreamProducerReturnFrame", ("hipEGLStreamProducerReturnFrame", CONV_EGL, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuGraphicsEGLRegisterImage", ("hipGraphicsEGLRegisterImage", CONV_EGL, API_DRIVER, HIP_UNSUPPORTED), ), ( "cuGraphicsResourceGetMappedEglFrame", ( "hipGraphicsResourceGetMappedEglFrame", CONV_EGL, API_DRIVER, HIP_UNSUPPORTED, ), ), ("cudaDataType_t", ("hipDataType_t", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaDataType", ("hipDataType", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_R_16F", ("HIP_R_16F", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_C_16F", ("HIP_C_16F", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_R_32F", ("HIP_R_32F", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_C_32F", ("HIP_C_32F", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_R_64F", ("HIP_R_64F", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_C_64F", ("HIP_C_64F", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_R_8I", ("HIP_R_8I", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_C_8I", ("HIP_C_8I", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_R_8U", ("HIP_R_8U", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_C_8U", ("HIP_C_8U", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_R_32I", ("HIP_R_32I", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_C_32I", ("HIP_C_32I", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_R_32U", ("HIP_R_32U", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ("CUDA_C_32U", ("HIP_C_32U", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ( "MAJOR_VERSION", ("hipLibraryMajorVersion", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "MINOR_VERSION", ("hipLibraryMinorVersion", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "PATCH_LEVEL", ("hipLibraryPatchVersion", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaMemAttachGlobal", ("hipMemAttachGlobal", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaMemAttachHost", ("hipMemAttachHost", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaMemAttachSingle", ("hipMemAttachSingle", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaOccupancyDefault", ("hipOccupancyDefault", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaOccupancyDisableCachingOverride", ( "hipOccupancyDisableCachingOverride", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ("cudaGetLastError", ("hipGetLastError", CONV_ERROR, API_RUNTIME)), ("cudaPeekAtLastError", ("hipPeekAtLastError", CONV_ERROR, API_RUNTIME)), ("cudaGetErrorName", ("hipGetErrorName", CONV_ERROR, API_RUNTIME)), ("cudaGetErrorString", ("hipGetErrorString", CONV_ERROR, API_RUNTIME)), ("cudaMemcpy3DParms", ("hipMemcpy3DParms", CONV_MEM, API_RUNTIME)), ( "cudaMemcpy3DPeerParms", ("hipMemcpy3DPeerParms", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED), ), ("cudaMemcpy", ("hipMemcpy", CONV_MEM, API_RUNTIME)), ("cudaMemcpyToArray", ("hipMemcpyToArray", CONV_MEM, API_RUNTIME)), ("cudaMemcpyToSymbol", ("hipMemcpyToSymbol", CONV_MEM, API_RUNTIME)), ("cudaMemcpyToSymbolAsync", ("hipMemcpyToSymbolAsync", CONV_MEM, API_RUNTIME)), ("cudaMemcpyAsync", ("hipMemcpyAsync", CONV_MEM, API_RUNTIME)), ("cudaMemcpy2D", ("hipMemcpy2D", CONV_MEM, API_RUNTIME)), ("cudaMemcpy2DAsync", ("hipMemcpy2DAsync", CONV_MEM, API_RUNTIME)), ("cudaMemcpy2DToArray", ("hipMemcpy2DToArray", CONV_MEM, API_RUNTIME)), ( "cudaMemcpy2DArrayToArray", ("hipMemcpy2DArrayToArray", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaMemcpy2DFromArray", ("hipMemcpy2DFromArray", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaMemcpy2DFromArrayAsync", ("hipMemcpy2DFromArrayAsync", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaMemcpy2DToArrayAsync", ("hipMemcpy2DToArrayAsync", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED), ), ("cudaMemcpy3D", ("hipMemcpy3D", CONV_MEM, API_RUNTIME)), ( "cudaMemcpy3DAsync", ("hipMemcpy3DAsync", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaMemcpy3DPeer", ("hipMemcpy3DPeer", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaMemcpy3DPeerAsync", ("hipMemcpy3DPeerAsync", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaMemcpyArrayToArray", ("hipMemcpyArrayToArray", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaMemcpyFromArrayAsync", ("hipMemcpyFromArrayAsync", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED), ), ("cudaMemcpyFromSymbol", ("hipMemcpyFromSymbol", CONV_MEM, API_RUNTIME)), ( "cudaMemcpyFromSymbolAsync", ("hipMemcpyFromSymbolAsync", CONV_MEM, API_RUNTIME), ), ("cudaMemAdvise", ("hipMemAdvise", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED)), ( "cudaMemRangeGetAttribute", ("hipMemRangeGetAttribute", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaMemRangeGetAttributes", ("hipMemRangeGetAttributes", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaMemAdviseSetReadMostly", ("hipMemAdviseSetReadMostly", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaMemAdviseUnsetReadMostly", ("hipMemAdviseUnsetReadMostly", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaMemAdviseSetPreferredLocation", ( "hipMemAdviseSetPreferredLocation", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaMemAdviseUnsetPreferredLocation", ( "hipMemAdviseUnsetPreferredLocation", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaMemAdviseSetAccessedBy", ("hipMemAdviseSetAccessedBy", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaMemAdviseUnsetAccessedBy", ("hipMemAdviseUnsetAccessedBy", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaMemRangeAttributeReadMostly", ("hipMemRangeAttributeReadMostly", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaMemRangeAttributePreferredLocation", ( "hipMemRangeAttributePreferredLocation", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaMemRangeAttributeAccessedBy", ("hipMemRangeAttributeAccessedBy", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaMemRangeAttributeLastPrefetchLocation", ( "hipMemRangeAttributeLastPrefetchLocation", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ("cudaMemcpyHostToHost", ("hipMemcpyHostToHost", CONV_MEM, API_RUNTIME)), ("cudaMemcpyHostToDevice", ("hipMemcpyHostToDevice", CONV_MEM, API_RUNTIME)), ("cudaMemcpyDeviceToHost", ("hipMemcpyDeviceToHost", CONV_MEM, API_RUNTIME)), ( "cudaMemcpyDeviceToDevice", ("hipMemcpyDeviceToDevice", CONV_MEM, API_RUNTIME), ), ("cudaMemcpyDefault", ("hipMemcpyDefault", CONV_MEM, API_RUNTIME)), ("cudaMemset", ("hipMemset", CONV_MEM, API_RUNTIME)), ("cudaMemsetAsync", ("hipMemsetAsync", CONV_MEM, API_RUNTIME)), ("cudaMemset2D", ("hipMemset2D", CONV_MEM, API_RUNTIME)), ( "cudaMemset2DAsync", ("hipMemset2DAsync", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED), ), ("cudaMemset3D", ("hipMemset3D", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED)), ( "cudaMemset3DAsync", ("hipMemset3DAsync", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED), ), ("cudaMemGetInfo", ("hipMemGetInfo", CONV_MEM, API_RUNTIME)), ( "cudaArrayGetInfo", ("hipArrayGetInfo", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaFreeMipmappedArray", ("hipFreeMipmappedArray", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGetMipmappedArrayLevel", ("hipGetMipmappedArrayLevel", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGetSymbolAddress", ("hipGetSymbolAddress", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGetSymbolSize", ("hipGetSymbolSize", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaMemPrefetchAsync", ("hipMemPrefetchAsync", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED), ), ("cudaMallocHost", ("hipHostMalloc", CONV_MEM, API_RUNTIME)), ("cudaMallocArray", ("hipMallocArray", CONV_MEM, API_RUNTIME)), ("cudaMalloc", ("hipMalloc", CONV_MEM, API_RUNTIME)), ("cudaMalloc3D", ("hipMalloc3D", CONV_MEM, API_RUNTIME)), ("cudaMalloc3DArray", ("hipMalloc3DArray", CONV_MEM, API_RUNTIME)), ( "cudaMallocManaged", ("hipMallocManaged", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaMallocMipmappedArray", ("hipMallocMipmappedArray", CONV_MEM, API_RUNTIME, HIP_UNSUPPORTED), ), ("cudaMallocPitch", ("hipMallocPitch", CONV_MEM, API_RUNTIME)), ("cudaFreeHost", ("hipHostFree", CONV_MEM, API_RUNTIME)), ("cudaFreeArray", ("hipFreeArray", CONV_MEM, API_RUNTIME)), ("cudaFree", ("hipFree", CONV_MEM, API_RUNTIME)), ("cudaHostRegister", ("hipHostRegister", CONV_MEM, API_RUNTIME)), ("cudaHostUnregister", ("hipHostUnregister", CONV_MEM, API_RUNTIME)), ("cudaHostAlloc", ("hipHostMalloc", CONV_MEM, API_RUNTIME)), ("cudaMemoryTypeHost", ("hipMemoryTypeHost", CONV_MEM, API_RUNTIME)), ("cudaMemoryTypeDevice", ("hipMemoryTypeDevice", CONV_MEM, API_RUNTIME)), ("make_cudaExtent", ("make_hipExtent", CONV_MEM, API_RUNTIME)), ("make_cudaPitchedPtr", ("make_hipPitchedPtr", CONV_MEM, API_RUNTIME)), ("make_cudaPos", ("make_hipPos", CONV_MEM, API_RUNTIME)), ("cudaHostAllocDefault", ("hipHostMallocDefault", CONV_MEM, API_RUNTIME)), ("cudaHostAllocPortable", ("hipHostMallocPortable", CONV_MEM, API_RUNTIME)), ("cudaHostAllocMapped", ("hipHostMallocMapped", CONV_MEM, API_RUNTIME)), ( "cudaHostAllocWriteCombined", ("hipHostMallocWriteCombined", CONV_MEM, API_RUNTIME), ), ("cudaHostGetFlags", ("hipHostGetFlags", CONV_MEM, API_RUNTIME)), ("cudaHostRegisterDefault", ("hipHostRegisterDefault", CONV_MEM, API_RUNTIME)), ( "cudaHostRegisterPortable", ("hipHostRegisterPortable", CONV_MEM, API_RUNTIME), ), ("cudaHostRegisterMapped", ("hipHostRegisterMapped", CONV_MEM, API_RUNTIME)), ( "cudaHostRegisterIoMemory", ("hipHostRegisterIoMemory", CONV_MEM, API_RUNTIME), ), # ("warpSize", ("hipWarpSize", CONV_SPECIAL_FUNC, API_RUNTIME), (HIP actually uses warpSize...)), ("cudaEventCreate", ("hipEventCreate", CONV_EVENT, API_RUNTIME)), ( "cudaEventCreateWithFlags", ("hipEventCreateWithFlags", CONV_EVENT, API_RUNTIME), ), ("cudaEventDestroy", ("hipEventDestroy", CONV_EVENT, API_RUNTIME)), ("cudaEventRecord", ("hipEventRecord", CONV_EVENT, API_RUNTIME)), ("cudaEventElapsedTime", ("hipEventElapsedTime", CONV_EVENT, API_RUNTIME)), ("cudaEventSynchronize", ("hipEventSynchronize", CONV_EVENT, API_RUNTIME)), ("cudaEventQuery", ("hipEventQuery", CONV_EVENT, API_RUNTIME)), ("cudaEventDefault", ("hipEventDefault", CONV_EVENT, API_RUNTIME)), ("cudaEventBlockingSync", ("hipEventBlockingSync", CONV_EVENT, API_RUNTIME)), ("cudaEventDisableTiming", ("hipEventDisableTiming", CONV_EVENT, API_RUNTIME)), ("cudaEventInterprocess", ("hipEventInterprocess", CONV_EVENT, API_RUNTIME)), ("cudaStreamCreate", ("hipStreamCreate", CONV_STREAM, API_RUNTIME)), ( "cudaStreamCreateWithFlags", ("hipStreamCreateWithFlags", CONV_STREAM, API_RUNTIME), ), ( "cudaStreamCreateWithPriority", ("hipStreamCreateWithPriority", CONV_STREAM, API_RUNTIME, HIP_UNSUPPORTED), ), ("cudaStreamDestroy", ("hipStreamDestroy", CONV_STREAM, API_RUNTIME)), ("cudaStreamWaitEvent", ("hipStreamWaitEvent", CONV_STREAM, API_RUNTIME)), ("cudaStreamSynchronize", ("hipStreamSynchronize", CONV_STREAM, API_RUNTIME)), ("cudaStreamGetFlags", ("hipStreamGetFlags", CONV_STREAM, API_RUNTIME)), ("cudaStreamQuery", ("hipStreamQuery", CONV_STREAM, API_RUNTIME)), ("cudaStreamAddCallback", ("hipStreamAddCallback", CONV_STREAM, API_RUNTIME)), ( "cudaStreamAttachMemAsync", ("hipStreamAttachMemAsync", CONV_STREAM, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaStreamGetPriority", ("hipStreamGetPriority", CONV_STREAM, API_RUNTIME, HIP_UNSUPPORTED), ), ("cudaStreamDefault", ("hipStreamDefault", CONV_TYPE, API_RUNTIME)), ("cudaStreamNonBlocking", ("hipStreamNonBlocking", CONV_TYPE, API_RUNTIME)), ("cudaDeviceSynchronize", ("hipDeviceSynchronize", CONV_DEVICE, API_RUNTIME)), ("cudaDeviceReset", ("hipDeviceReset", CONV_DEVICE, API_RUNTIME)), ("cudaSetDevice", ("hipSetDevice", CONV_DEVICE, API_RUNTIME)), ("cudaGetDevice", ("hipGetDevice", CONV_DEVICE, API_RUNTIME)), ("cudaGetDeviceCount", ("hipGetDeviceCount", CONV_DEVICE, API_RUNTIME)), ("cudaChooseDevice", ("hipChooseDevice", CONV_DEVICE, API_RUNTIME)), ("cudaThreadExit", ("hipDeviceReset", CONV_THREAD, API_RUNTIME)), ( "cudaThreadGetCacheConfig", ("hipDeviceGetCacheConfig", CONV_THREAD, API_RUNTIME), ), ( "cudaThreadGetLimit", ("hipThreadGetLimit", CONV_THREAD, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaThreadSetCacheConfig", ("hipDeviceSetCacheConfig", CONV_THREAD, API_RUNTIME), ), ( "cudaThreadSetLimit", ("hipThreadSetLimit", CONV_THREAD, API_RUNTIME, HIP_UNSUPPORTED), ), ("cudaThreadSynchronize", ("hipDeviceSynchronize", CONV_THREAD, API_RUNTIME)), ("cudaDeviceGetAttribute", ("hipDeviceGetAttribute", CONV_DEVICE, API_RUNTIME)), ( "cudaDevAttrMaxThreadsPerBlock", ("hipDeviceAttributeMaxThreadsPerBlock", CONV_TYPE, API_RUNTIME), ), ( "cudaDevAttrMaxBlockDimX", ("hipDeviceAttributeMaxBlockDimX", CONV_TYPE, API_RUNTIME), ), ( "cudaDevAttrMaxBlockDimY", ("hipDeviceAttributeMaxBlockDimY", CONV_TYPE, API_RUNTIME), ), ( "cudaDevAttrMaxBlockDimZ", ("hipDeviceAttributeMaxBlockDimZ", CONV_TYPE, API_RUNTIME), ), ( "cudaDevAttrMaxGridDimX", ("hipDeviceAttributeMaxGridDimX", CONV_TYPE, API_RUNTIME), ), ( "cudaDevAttrMaxGridDimY", ("hipDeviceAttributeMaxGridDimY", CONV_TYPE, API_RUNTIME), ), ( "cudaDevAttrMaxGridDimZ", ("hipDeviceAttributeMaxGridDimZ", CONV_TYPE, API_RUNTIME), ), ( "cudaDevAttrMaxSharedMemoryPerBlock", ("hipDeviceAttributeMaxSharedMemoryPerBlock", CONV_TYPE, API_RUNTIME), ), ( "cudaDevAttrTotalConstantMemory", ("hipDeviceAttributeTotalConstantMemory", CONV_TYPE, API_RUNTIME), ), ("cudaDevAttrWarpSize", ("hipDeviceAttributeWarpSize", CONV_TYPE, API_RUNTIME)), ( "cudaDevAttrMaxPitch", ("hipDeviceAttributeMaxPitch", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaDevAttrMaxRegistersPerBlock", ("hipDeviceAttributeMaxRegistersPerBlock", CONV_TYPE, API_RUNTIME), ), ( "cudaDevAttrClockRate", ("hipDeviceAttributeClockRate", CONV_TYPE, API_RUNTIME), ), ( "cudaDevAttrTextureAlignment", ( "hipDeviceAttributeTextureAlignment", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrGpuOverlap", ("hipDeviceAttributeGpuOverlap", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaDevAttrMultiProcessorCount", ("hipDeviceAttributeMultiprocessorCount", CONV_TYPE, API_RUNTIME), ), ( "cudaDevAttrKernelExecTimeout", ( "hipDeviceAttributeKernelExecTimeout", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrIntegrated", ("hipDeviceAttributeIntegrated", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaDevAttrCanMapHostMemory", ( "hipDeviceAttributeCanMapHostMemory", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrComputeMode", ("hipDeviceAttributeComputeMode", CONV_TYPE, API_RUNTIME), ), ( "cudaDevAttrMaxTexture1DWidth", ( "hipDeviceAttributeMaxTexture1DWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxTexture2DWidth", ( "hipDeviceAttributeMaxTexture2DWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxTexture2DHeight", ( "hipDeviceAttributeMaxTexture2DHeight", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxTexture3DWidth", ( "hipDeviceAttributeMaxTexture3DWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxTexture3DHeight", ( "hipDeviceAttributeMaxTexture3DHeight", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxTexture3DDepth", ( "hipDeviceAttributeMaxTexture3DDepth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxTexture2DLayeredWidth", ( "hipDeviceAttributeMaxTexture2DLayeredWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxTexture2DLayeredHeight", ( "hipDeviceAttributeMaxTexture2DLayeredHeight", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxTexture2DLayeredLayers", ( "hipDeviceAttributeMaxTexture2DLayeredLayers", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrSurfaceAlignment", ( "hipDeviceAttributeSurfaceAlignment", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrConcurrentKernels", ("hipDeviceAttributeConcurrentKernels", CONV_TYPE, API_RUNTIME), ), ( "cudaDevAttrEccEnabled", ("hipDeviceAttributeEccEnabled", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ("cudaDevAttrPciBusId", ("hipDeviceAttributePciBusId", CONV_TYPE, API_RUNTIME)), ( "cudaDevAttrPciDeviceId", ("hipDeviceAttributePciDeviceId", CONV_TYPE, API_RUNTIME), ), ( "cudaDevAttrTccDriver", ("hipDeviceAttributeTccDriver", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaDevAttrMemoryClockRate", ("hipDeviceAttributeMemoryClockRate", CONV_TYPE, API_RUNTIME), ), ( "cudaDevAttrGlobalMemoryBusWidth", ("hipDeviceAttributeMemoryBusWidth", CONV_TYPE, API_RUNTIME), ), ( "cudaDevAttrL2CacheSize", ("hipDeviceAttributeL2CacheSize", CONV_TYPE, API_RUNTIME), ), ( "cudaDevAttrMaxThreadsPerMultiProcessor", ("hipDeviceAttributeMaxThreadsPerMultiProcessor", CONV_TYPE, API_RUNTIME), ), ( "cudaDevAttrAsyncEngineCount", ( "hipDeviceAttributeAsyncEngineCount", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrUnifiedAddressing", ( "hipDeviceAttributeUnifiedAddressing", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxTexture1DLayeredWidth", ( "hipDeviceAttributeMaxTexture1DLayeredWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxTexture1DLayeredLayers", ( "hipDeviceAttributeMaxTexture1DLayeredLayers", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxTexture2DGatherWidth", ( "hipDeviceAttributeMaxTexture2DGatherWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxTexture2DGatherHeight", ( "hipDeviceAttributeMaxTexture2DGatherHeight", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxTexture3DWidthAlt", ( "hipDeviceAttributeMaxTexture3DWidthAlternate", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxTexture3DHeightAlt", ( "hipDeviceAttributeMaxTexture3DHeightAlternate", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxTexture3DDepthAlt", ( "hipDeviceAttributeMaxTexture3DDepthAlternate", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrPciDomainId", ("hipDeviceAttributePciDomainId", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaDevAttrTexturePitchAlignment", ( "hipDeviceAttributeTexturePitchAlignment", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxTextureCubemapWidth", ( "hipDeviceAttributeMaxTextureCubemapWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxTextureCubemapLayeredWidth", ( "hipDeviceAttributeMaxTextureCubemapLayeredWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxTextureCubemapLayeredLayers", ( "hipDeviceAttributeMaxTextureCubemapLayeredLayers", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxSurface1DWidth", ( "hipDeviceAttributeMaxSurface1DWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxSurface2DWidth", ( "hipDeviceAttributeMaxSurface2DWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxSurface2DHeight", ( "hipDeviceAttributeMaxSurface2DHeight", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxSurface3DWidth", ( "hipDeviceAttributeMaxSurface3DWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxSurface3DHeight", ( "hipDeviceAttributeMaxSurface3DHeight", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxSurface3DDepth", ( "hipDeviceAttributeMaxSurface3DDepth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxSurface1DLayeredWidth", ( "hipDeviceAttributeMaxSurface1DLayeredWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxSurface1DLayeredLayers", ( "hipDeviceAttributeMaxSurface1DLayeredLayers", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxSurface2DLayeredWidth", ( "hipDeviceAttributeMaxSurface2DLayeredWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxSurface2DLayeredHeight", ( "hipDeviceAttributeMaxSurface2DLayeredHeight", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxSurface2DLayeredLayers", ( "hipDeviceAttributeMaxSurface2DLayeredLayers", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxSurfaceCubemapWidth", ( "hipDeviceAttributeMaxSurfaceCubemapWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxSurfaceCubemapLayeredWidth", ( "hipDeviceAttributeMaxSurfaceCubemapLayeredWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxSurfaceCubemapLayeredLayers", ( "hipDeviceAttributeMaxSurfaceCubemapLayeredLayers", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxTexture1DLinearWidth", ( "hipDeviceAttributeMaxTexture1DLinearWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxTexture2DLinearWidth", ( "hipDeviceAttributeMaxTexture2DLinearWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxTexture2DLinearHeight", ( "hipDeviceAttributeMaxTexture2DLinearHeight", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxTexture2DLinearPitch", ( "hipDeviceAttributeMaxTexture2DLinearPitch", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxTexture2DMipmappedWidth", ( "hipDeviceAttributeMaxTexture2DMipmappedWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxTexture2DMipmappedHeight", ( "hipDeviceAttributeMaxTexture2DMipmappedHeight", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrComputeCapabilityMajor", ("hipDeviceAttributeComputeCapabilityMajor", CONV_TYPE, API_RUNTIME), ), ( "cudaDevAttrComputeCapabilityMinor", ("hipDeviceAttributeComputeCapabilityMinor", CONV_TYPE, API_RUNTIME), ), ( "cudaDevAttrMaxTexture1DMipmappedWidth", ( "hipDeviceAttributeMaxTexture1DMipmappedWidth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrStreamPrioritiesSupported", ( "hipDeviceAttributeStreamPrioritiesSupported", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrGlobalL1CacheSupported", ( "hipDeviceAttributeGlobalL1CacheSupported", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrLocalL1CacheSupported", ( "hipDeviceAttributeLocalL1CacheSupported", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrMaxSharedMemoryPerMultiprocessor", ( "hipDeviceAttributeMaxSharedMemoryPerMultiprocessor", CONV_TYPE, API_RUNTIME, ), ), ( "cudaDevAttrMaxRegistersPerMultiprocessor", ( "hipDeviceAttributeMaxRegistersPerMultiprocessor", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrManagedMemory", ( "hipDeviceAttributeManagedMemory", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrIsMultiGpuBoard", ("hipDeviceAttributeIsMultiGpuBoard", CONV_TYPE, API_RUNTIME), ), ( "cudaDevAttrMultiGpuBoardGroupID", ( "hipDeviceAttributeMultiGpuBoardGroupID", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrHostNativeAtomicSupported", ( "hipDeviceAttributeHostNativeAtomicSupported", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrSingleToDoublePrecisionPerfRatio", ( "hipDeviceAttributeSingleToDoublePrecisionPerfRatio", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrPageableMemoryAccess", ( "hipDeviceAttributePageableMemoryAccess", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrConcurrentManagedAccess", ( "hipDeviceAttributeConcurrentManagedAccess", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrComputePreemptionSupported", ( "hipDeviceAttributeComputePreemptionSupported", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevAttrCanUseHostPointerForRegisteredMem", ( "hipDeviceAttributeCanUseHostPointerForRegisteredMem", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaPointerGetAttributes", ("hipPointerGetAttributes", CONV_MEM, API_RUNTIME), ), ( "cudaHostGetDevicePointer", ("hipHostGetDevicePointer", CONV_MEM, API_RUNTIME), ), ( "cudaGetDeviceProperties", ("hipGetDeviceProperties", CONV_DEVICE, API_RUNTIME), ), ("cudaDeviceGetPCIBusId", ("hipDeviceGetPCIBusId", CONV_DEVICE, API_RUNTIME)), ( "cudaDeviceGetByPCIBusId", ("hipDeviceGetByPCIBusId", CONV_DEVICE, API_RUNTIME), ), ( "cudaDeviceGetStreamPriorityRange", ( "hipDeviceGetStreamPriorityRange", CONV_DEVICE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaSetValidDevices", ("hipSetValidDevices", CONV_DEVICE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaDevP2PAttrPerformanceRank", ( "hipDeviceP2PAttributePerformanceRank", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevP2PAttrAccessSupported", ( "hipDeviceP2PAttributeAccessSupported", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDevP2PAttrNativeAtomicSupported", ( "hipDeviceP2PAttributeNativeAtomicSupported", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaDeviceGetP2PAttribute", ("hipDeviceGetP2PAttribute", CONV_DEVICE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaComputeModeDefault", ("hipComputeModeDefault", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaComputeModeExclusive", ("hipComputeModeExclusive", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaComputeModeProhibited", ("hipComputeModeProhibited", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaComputeModeExclusiveProcess", ("hipComputeModeExclusiveProcess", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGetDeviceFlags", ("hipGetDeviceFlags", CONV_DEVICE, API_RUNTIME, HIP_UNSUPPORTED), ), ("cudaSetDeviceFlags", ("hipSetDeviceFlags", CONV_DEVICE, API_RUNTIME)), ("cudaDeviceScheduleAuto", ("hipDeviceScheduleAuto", CONV_TYPE, API_RUNTIME)), ("cudaDeviceScheduleSpin", ("hipDeviceScheduleSpin", CONV_TYPE, API_RUNTIME)), ("cudaDeviceScheduleYield", ("hipDeviceScheduleYield", CONV_TYPE, API_RUNTIME)), ( "cudaDeviceBlockingSync", ("hipDeviceScheduleBlockingSync", CONV_TYPE, API_RUNTIME), ), ( "cudaDeviceScheduleBlockingSync", ("hipDeviceScheduleBlockingSync", CONV_TYPE, API_RUNTIME), ), ( "cudaDeviceScheduleMask", ("hipDeviceScheduleMask", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ("cudaDeviceMapHost", ("hipDeviceMapHost", CONV_TYPE, API_RUNTIME)), ( "cudaDeviceLmemResizeToMax", ("hipDeviceLmemResizeToMax", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ("cudaDeviceMask", ("hipDeviceMask", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED)), ( "cudaDeviceSetCacheConfig", ("hipDeviceSetCacheConfig", CONV_CACHE, API_RUNTIME), ), ( "cudaDeviceGetCacheConfig", ("hipDeviceGetCacheConfig", CONV_CACHE, API_RUNTIME), ), ("cudaFuncSetCacheConfig", ("hipFuncSetCacheConfig", CONV_CACHE, API_RUNTIME)), ( "cudaFuncCachePreferNone", ("hipFuncCachePreferNone", CONV_CACHE, API_RUNTIME), ), ( "cudaFuncCachePreferShared", ("hipFuncCachePreferShared", CONV_CACHE, API_RUNTIME), ), ("cudaFuncCachePreferL1", ("hipFuncCachePreferL1", CONV_CACHE, API_RUNTIME)), ( "cudaFuncCachePreferEqual", ("hipFuncCachePreferEqual", CONV_CACHE, API_RUNTIME), ), ( "cudaFuncGetAttributes", ("hipFuncGetAttributes", CONV_EXEC, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaFuncSetSharedMemConfig", ("hipFuncSetSharedMemConfig", CONV_EXEC, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGetParameterBuffer", ("hipGetParameterBuffer", CONV_EXEC, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaSetDoubleForDevice", ("hipSetDoubleForDevice", CONV_EXEC, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaSetDoubleForHost", ("hipSetDoubleForHost", CONV_EXEC, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaConfigureCall", ("hipConfigureCall", CONV_EXEC, API_RUNTIME, HIP_UNSUPPORTED), ), ("cudaLaunch", ("hipLaunch", CONV_EXEC, API_RUNTIME, HIP_UNSUPPORTED)), ( "cudaSetupArgument", ("hipSetupArgument", CONV_EXEC, API_RUNTIME, HIP_UNSUPPORTED), ), ("cudaDriverGetVersion", ("hipDriverGetVersion", CONV_VERSION, API_RUNTIME)), ( "cudaRuntimeGetVersion", ("hipRuntimeGetVersion", CONV_VERSION, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaOccupancyMaxPotentialBlockSize", ("hipOccupancyMaxPotentialBlockSize", CONV_OCCUPANCY, API_RUNTIME), ), ( "cudaOccupancyMaxPotentialBlockSizeWithFlags", ( "hipOccupancyMaxPotentialBlockSizeWithFlags", CONV_OCCUPANCY, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaOccupancyMaxActiveBlocksPerMultiprocessor", ( "hipOccupancyMaxActiveBlocksPerMultiprocessor", CONV_OCCUPANCY, API_RUNTIME, ), ), ( "cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags", ( "hipOccupancyMaxActiveBlocksPerMultiprocessorWithFlags", CONV_OCCUPANCY, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaOccupancyMaxPotentialBlockSizeVariableSMem", ( "hipOccupancyMaxPotentialBlockSizeVariableSMem", CONV_OCCUPANCY, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags", ( "hipOccupancyMaxPotentialBlockSizeVariableSMemWithFlags", CONV_OCCUPANCY, API_RUNTIME, HIP_UNSUPPORTED, ), ), ("cudaDeviceCanAccessPeer", ("hipDeviceCanAccessPeer", CONV_PEER, API_RUNTIME)), ( "cudaDeviceDisablePeerAccess", ("hipDeviceDisablePeerAccess", CONV_PEER, API_RUNTIME), ), ( "cudaDeviceEnablePeerAccess", ("hipDeviceEnablePeerAccess", CONV_PEER, API_RUNTIME), ), ("cudaMemcpyPeerAsync", ("hipMemcpyPeerAsync", CONV_MEM, API_RUNTIME)), ("cudaMemcpyPeer", ("hipMemcpyPeer", CONV_MEM, API_RUNTIME)), ( "cudaIpcMemLazyEnablePeerAccess", ("hipIpcMemLazyEnablePeerAccess", CONV_TYPE, API_RUNTIME), ), ( "cudaDeviceSetSharedMemConfig", ("hipDeviceSetSharedMemConfig", CONV_DEVICE, API_RUNTIME), ), ( "cudaDeviceGetSharedMemConfig", ("hipDeviceGetSharedMemConfig", CONV_DEVICE, API_RUNTIME), ), ( "cudaSharedMemBankSizeDefault", ("hipSharedMemBankSizeDefault", CONV_TYPE, API_RUNTIME), ), ( "cudaSharedMemBankSizeFourByte", ("hipSharedMemBankSizeFourByte", CONV_TYPE, API_RUNTIME), ), ( "cudaSharedMemBankSizeEightByte", ("hipSharedMemBankSizeEightByte", CONV_TYPE, API_RUNTIME), ), ( "cudaLimitStackSize", ("hipLimitStackSize", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaLimitPrintfFifoSize", ("hipLimitPrintfFifoSize", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ("cudaLimitMallocHeapSize", ("hipLimitMallocHeapSize", CONV_TYPE, API_RUNTIME)), ( "cudaLimitDevRuntimeSyncDepth", ("hipLimitDevRuntimeSyncDepth", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaLimitDevRuntimePendingLaunchCount", ( "hipLimitDevRuntimePendingLaunchCount", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ("cudaDeviceGetLimit", ("hipDeviceGetLimit", CONV_DEVICE, API_RUNTIME)), ( "cudaProfilerInitialize", ("hipProfilerInitialize", CONV_OTHER, API_RUNTIME, HIP_UNSUPPORTED), ), ("cudaProfilerStart", ("hipProfilerStart", CONV_OTHER, API_RUNTIME)), ("cudaProfilerStop", ("hipProfilerStop", CONV_OTHER, API_RUNTIME)), ( "cudaKeyValuePair", ("hipKeyValuePair", CONV_OTHER, API_RUNTIME, HIP_UNSUPPORTED), ), ("cudaCSV", ("hipCSV", CONV_OTHER, API_RUNTIME, HIP_UNSUPPORTED)), ("cudaReadModeElementType", ("hipReadModeElementType", CONV_TEX, API_RUNTIME)), ( "cudaReadModeNormalizedFloat", ("hipReadModeNormalizedFloat", CONV_TEX, API_RUNTIME), ), ("cudaFilterModePoint", ("hipFilterModePoint", CONV_TEX, API_RUNTIME)), ("cudaFilterModeLinear", ("hipFilterModeLinear", CONV_TEX, API_RUNTIME)), ("cudaBindTexture", ("hipBindTexture", CONV_TEX, API_RUNTIME)), ("cudaUnbindTexture", ("hipUnbindTexture", CONV_TEX, API_RUNTIME)), ("cudaBindTexture2D", ("hipBindTexture2D", CONV_TEX, API_RUNTIME)), ("cudaBindTextureToArray", ("hipBindTextureToArray", CONV_TEX, API_RUNTIME)), ( "cudaBindTextureToMipmappedArray", ("hipBindTextureToMipmappedArray", CONV_TEX, API_RUNTIME), ), ( "cudaGetTextureAlignmentOffset", ("hipGetTextureAlignmentOffset", CONV_TEX, API_RUNTIME), ), ("cudaGetTextureReference", ("hipGetTextureReference", CONV_TEX, API_RUNTIME)), ( "cudaChannelFormatKindSigned", ("hipChannelFormatKindSigned", CONV_TEX, API_RUNTIME), ), ( "cudaChannelFormatKindUnsigned", ("hipChannelFormatKindUnsigned", CONV_TEX, API_RUNTIME), ), ( "cudaChannelFormatKindFloat", ("hipChannelFormatKindFloat", CONV_TEX, API_RUNTIME), ), ( "cudaChannelFormatKindNone", ("hipChannelFormatKindNone", CONV_TEX, API_RUNTIME), ), ("cudaCreateChannelDesc", ("hipCreateChannelDesc", CONV_TEX, API_RUNTIME)), ("cudaGetChannelDesc", ("hipGetChannelDesc", CONV_TEX, API_RUNTIME)), ("cudaResourceTypeArray", ("hipResourceTypeArray", CONV_TEX, API_RUNTIME)), ( "cudaResourceTypeMipmappedArray", ("hipResourceTypeMipmappedArray", CONV_TEX, API_RUNTIME), ), ("cudaResourceTypeLinear", ("hipResourceTypeLinear", CONV_TEX, API_RUNTIME)), ("cudaResourceTypePitch2D", ("hipResourceTypePitch2D", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatNone", ("hipResViewFormatNone", CONV_TEX, API_RUNTIME)), ( "cudaResViewFormatUnsignedChar1", ("hipResViewFormatUnsignedChar1", CONV_TEX, API_RUNTIME), ), ( "cudaResViewFormatUnsignedChar2", ("hipResViewFormatUnsignedChar2", CONV_TEX, API_RUNTIME), ), ( "cudaResViewFormatUnsignedChar4", ("hipResViewFormatUnsignedChar4", CONV_TEX, API_RUNTIME), ), ( "cudaResViewFormatSignedChar1", ("hipResViewFormatSignedChar1", CONV_TEX, API_RUNTIME), ), ( "cudaResViewFormatSignedChar2", ("hipResViewFormatSignedChar2", CONV_TEX, API_RUNTIME), ), ( "cudaResViewFormatSignedChar4", ("hipResViewFormatSignedChar4", CONV_TEX, API_RUNTIME), ), ( "cudaResViewFormatUnsignedShort1", ("hipResViewFormatUnsignedShort1", CONV_TEX, API_RUNTIME), ), ( "cudaResViewFormatUnsignedShort2", ("hipResViewFormatUnsignedShort2", CONV_TEX, API_RUNTIME), ), ( "cudaResViewFormatUnsignedShort4", ("hipResViewFormatUnsignedShort4", CONV_TEX, API_RUNTIME), ), ( "cudaResViewFormatSignedShort1", ("hipResViewFormatSignedShort1", CONV_TEX, API_RUNTIME), ), ( "cudaResViewFormatSignedShort2", ("hipResViewFormatSignedShort2", CONV_TEX, API_RUNTIME), ), ( "cudaResViewFormatSignedShort4", ("hipResViewFormatSignedShort4", CONV_TEX, API_RUNTIME), ), ( "cudaResViewFormatUnsignedInt1", ("hipResViewFormatUnsignedInt1", CONV_TEX, API_RUNTIME), ), ( "cudaResViewFormatUnsignedInt2", ("hipResViewFormatUnsignedInt2", CONV_TEX, API_RUNTIME), ), ( "cudaResViewFormatUnsignedInt4", ("hipResViewFormatUnsignedInt4", CONV_TEX, API_RUNTIME), ), ( "cudaResViewFormatSignedInt1", ("hipResViewFormatSignedInt1", CONV_TEX, API_RUNTIME), ), ( "cudaResViewFormatSignedInt2", ("hipResViewFormatSignedInt2", CONV_TEX, API_RUNTIME), ), ( "cudaResViewFormatSignedInt4", ("hipResViewFormatSignedInt4", CONV_TEX, API_RUNTIME), ), ("cudaResViewFormatHalf1", ("hipResViewFormatHalf1", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatHalf2", ("hipResViewFormatHalf2", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatHalf4", ("hipResViewFormatHalf4", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatFloat1", ("hipResViewFormatFloat1", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatFloat2", ("hipResViewFormatFloat2", CONV_TEX, API_RUNTIME)), ("cudaResViewFormatFloat4", ("hipResViewFormatFloat4", CONV_TEX, API_RUNTIME)), ( "cudaResViewFormatUnsignedBlockCompressed1", ("hipResViewFormatUnsignedBlockCompressed1", CONV_TEX, API_RUNTIME), ), ( "cudaResViewFormatUnsignedBlockCompressed2", ("hipResViewFormatUnsignedBlockCompressed2", CONV_TEX, API_RUNTIME), ), ( "cudaResViewFormatUnsignedBlockCompressed3", ("hipResViewFormatUnsignedBlockCompressed3", CONV_TEX, API_RUNTIME), ), ( "cudaResViewFormatUnsignedBlockCompressed4", ("hipResViewFormatUnsignedBlockCompressed4", CONV_TEX, API_RUNTIME), ), ( "cudaResViewFormatSignedBlockCompressed4", ("hipResViewFormatSignedBlockCompressed4", CONV_TEX, API_RUNTIME), ), ( "cudaResViewFormatUnsignedBlockCompressed5", ("hipResViewFormatUnsignedBlockCompressed5", CONV_TEX, API_RUNTIME), ), ( "cudaResViewFormatSignedBlockCompressed5", ("hipResViewFormatSignedBlockCompressed5", CONV_TEX, API_RUNTIME), ), ( "cudaResViewFormatUnsignedBlockCompressed6H", ("hipResViewFormatUnsignedBlockCompressed6H", CONV_TEX, API_RUNTIME), ), ( "cudaResViewFormatSignedBlockCompressed6H", ("hipResViewFormatSignedBlockCompressed6H", CONV_TEX, API_RUNTIME), ), ( "cudaResViewFormatUnsignedBlockCompressed7", ("hipResViewFormatUnsignedBlockCompressed7", CONV_TEX, API_RUNTIME), ), ("cudaAddressModeWrap", ("hipAddressModeWrap", CONV_TEX, API_RUNTIME)), ("cudaAddressModeClamp", ("hipAddressModeClamp", CONV_TEX, API_RUNTIME)), ("cudaAddressModeMirror", ("hipAddressModeMirror", CONV_TEX, API_RUNTIME)), ("cudaAddressModeBorder", ("hipAddressModeBorder", CONV_TEX, API_RUNTIME)), ("cudaCreateTextureObject", ("hipCreateTextureObject", CONV_TEX, API_RUNTIME)), ( "cudaDestroyTextureObject", ("hipDestroyTextureObject", CONV_TEX, API_RUNTIME), ), ( "cudaGetTextureObjectResourceDesc", ("hipGetTextureObjectResourceDesc", CONV_TEX, API_RUNTIME), ), ( "cudaGetTextureObjectResourceViewDesc", ("hipGetTextureObjectResourceViewDesc", CONV_TEX, API_RUNTIME), ), ( "cudaGetTextureObjectTextureDesc", ("hipGetTextureObjectTextureDesc", CONV_TEX, API_RUNTIME), ), ( "cudaBindSurfaceToArray", ("hipBindSurfaceToArray", CONV_SURFACE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGetSurfaceReference", ("hipGetSurfaceReference", CONV_SURFACE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaBoundaryModeZero", ("hipBoundaryModeZero", CONV_SURFACE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaBoundaryModeClamp", ("hipBoundaryModeClamp", CONV_SURFACE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaBoundaryModeTrap", ("hipBoundaryModeTrap", CONV_SURFACE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaFormatModeForced", ("hipFormatModeForced", CONV_SURFACE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaFormatModeAuto", ("hipFormatModeAuto", CONV_SURFACE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaCreateSurfaceObject", ("hipCreateSurfaceObject", CONV_SURFACE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaDestroySurfaceObject", ("hipDestroySurfaceObject", CONV_SURFACE, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGetSurfaceObjectResourceDesc", ( "hipGetSurfaceObjectResourceDesc", CONV_SURFACE, API_RUNTIME, HIP_UNSUPPORTED, ), ), ("cudaIpcCloseMemHandle", ("hipIpcCloseMemHandle", CONV_DEVICE, API_RUNTIME)), ("cudaIpcGetEventHandle", ("hipIpcGetEventHandle", CONV_DEVICE, API_RUNTIME)), ("cudaIpcGetMemHandle", ("hipIpcGetMemHandle", CONV_DEVICE, API_RUNTIME)), ("cudaIpcOpenEventHandle", ("hipIpcOpenEventHandle", CONV_DEVICE, API_RUNTIME)), ("cudaIpcOpenMemHandle", ("hipIpcOpenMemHandle", CONV_DEVICE, API_RUNTIME)), ( "cudaGLGetDevices", ("hipGLGetDevices", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGraphicsGLRegisterBuffer", ("hipGraphicsGLRegisterBuffer", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGraphicsGLRegisterImage", ("hipGraphicsGLRegisterImage", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaWGLGetDevice", ("hipWGLGetDevice", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGraphicsMapResources", ("hipGraphicsMapResources", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGraphicsResourceGetMappedMipmappedArray", ( "hipGraphicsResourceGetMappedMipmappedArray", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaGraphicsResourceGetMappedPointer", ( "hipGraphicsResourceGetMappedPointer", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaGraphicsResourceSetMapFlags", ( "hipGraphicsResourceSetMapFlags", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaGraphicsSubResourceGetMappedArray", ( "hipGraphicsSubResourceGetMappedArray", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaGraphicsUnmapResources", ("hipGraphicsUnmapResources", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGraphicsUnregisterResource", ( "hipGraphicsUnregisterResource", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaGraphicsCubeFacePositiveX", ( "hipGraphicsCubeFacePositiveX", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaGraphicsCubeFaceNegativeX", ( "hipGraphicsCubeFaceNegativeX", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaGraphicsCubeFacePositiveY", ( "hipGraphicsCubeFacePositiveY", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaGraphicsCubeFaceNegativeY", ( "hipGraphicsCubeFaceNegativeY", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaGraphicsCubeFacePositiveZ", ( "hipGraphicsCubeFacePositiveZ", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaGraphicsCubeFaceNegativeZ", ( "hipGraphicsCubeFaceNegativeZ", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaGraphicsMapFlagsNone", ("hipGraphicsMapFlagsNone", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGraphicsMapFlagsReadOnly", ( "hipGraphicsMapFlagsReadOnly", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaGraphicsMapFlagsWriteDiscard", ( "hipGraphicsMapFlagsWriteDiscard", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaGraphicsRegisterFlagsNone", ( "hipGraphicsRegisterFlagsNone", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaGraphicsRegisterFlagsReadOnly", ( "hipGraphicsRegisterFlagsReadOnly", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaGraphicsRegisterFlagsWriteDiscard", ( "hipGraphicsRegisterFlagsWriteDiscard", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaGraphicsRegisterFlagsSurfaceLoadStore", ( "hipGraphicsRegisterFlagsSurfaceLoadStore", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaGraphicsRegisterFlagsTextureGather", ( "hipGraphicsRegisterFlagsTextureGather", CONV_GRAPHICS, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaGLDeviceListAll", ("HIP_GL_DEVICE_LIST_ALL", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGLDeviceListCurrentFrame", ("HIP_GL_DEVICE_LIST_CURRENT_FRAME", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGLDeviceListNextFrame", ("HIP_GL_DEVICE_LIST_NEXT_FRAME", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGLGetDevices", ("hipGLGetDevices", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGraphicsGLRegisterBuffer", ("hipGraphicsGLRegisterBuffer", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGraphicsGLRegisterImage", ("hipGraphicsGLRegisterImage", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaWGLGetDevice", ("hipWGLGetDevice", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGLMapFlagsNone", ("HIP_GL_MAP_RESOURCE_FLAGS_NONE", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGLMapFlagsReadOnly", ( "HIP_GL_MAP_RESOURCE_FLAGS_READ_ONLY", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaGLMapFlagsWriteDiscard", ( "HIP_GL_MAP_RESOURCE_FLAGS_WRITE_DISCARD", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaGLMapBufferObject", ("hipGLMapBufferObject__", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGLMapBufferObjectAsync", ("hipGLMapBufferObjectAsync__", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGLRegisterBufferObject", ("hipGLRegisterBufferObject", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGLSetBufferObjectMapFlags", ("hipGLSetBufferObjectMapFlags", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGLSetGLDevice", ("hipGLSetGLDevice", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGLUnmapBufferObject", ("hipGLUnmapBufferObject", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGLUnmapBufferObjectAsync", ("hipGLUnmapBufferObjectAsync", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGLUnregisterBufferObject", ("hipGLUnregisterBufferObject", CONV_GL, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D9DeviceListAll", ("HIP_D3D9_DEVICE_LIST_ALL", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D9DeviceListCurrentFrame", ( "HIP_D3D9_DEVICE_LIST_CURRENT_FRAME", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaD3D9DeviceListNextFrame", ( "HIP_D3D9_DEVICE_LIST_NEXT_FRAME", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaD3D9GetDevice", ("hipD3D9GetDevice", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D9GetDevices", ("hipD3D9GetDevices", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D9GetDirect3DDevice", ("hipD3D9GetDirect3DDevice", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D9SetDirect3DDevice", ("hipD3D9SetDirect3DDevice", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGraphicsD3D9RegisterResource", ( "hipGraphicsD3D9RegisterResource", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaD3D9MapFlags", ("hipD3D9MapFlags", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D9MapFlagsNone", ( "HIP_D3D9_MAPRESOURCE_FLAGS_NONE", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaD3D9MapFlagsReadOnly", ( "HIP_D3D9_MAPRESOURCE_FLAGS_READONLY", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaD3D9MapFlagsWriteDiscard", ( "HIP_D3D9_MAPRESOURCE_FLAGS_WRITEDISCARD", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaD3D9RegisterFlagsNone", ("HIP_D3D9_REGISTER_FLAGS_NONE", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D9RegisterFlagsArray", ("HIP_D3D9_REGISTER_FLAGS_ARRAY", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D9MapResources", ("hipD3D9MapResources", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D9RegisterResource", ("hipD3D9RegisterResource", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D9ResourceGetMappedArray", ("hipD3D9ResourceGetMappedArray", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D9ResourceGetMappedPitch", ("hipD3D9ResourceGetMappedPitch", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D9ResourceGetMappedPointer", ( "hipD3D9ResourceGetMappedPointer", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaD3D9ResourceGetMappedSize", ("hipD3D9ResourceGetMappedSize", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D9ResourceGetSurfaceDimensions", ( "hipD3D9ResourceGetSurfaceDimensions", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaD3D9ResourceSetMapFlags", ("hipD3D9ResourceSetMapFlags", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D9UnmapResources", ("hipD3D9UnmapResources", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D9UnregisterResource", ("hipD3D9UnregisterResource", CONV_D3D9, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D10DeviceListAll", ("HIP_D3D10_DEVICE_LIST_ALL", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D10DeviceListCurrentFrame", ( "HIP_D3D10_DEVICE_LIST_CURRENT_FRAME", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaD3D10DeviceListNextFrame", ( "HIP_D3D10_DEVICE_LIST_NEXT_FRAME", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaD3D10GetDevice", ("hipD3D10GetDevice", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D10GetDevices", ("hipD3D10GetDevices", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGraphicsD3D10RegisterResource", ( "hipGraphicsD3D10RegisterResource", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaD3D10MapFlagsNone", ( "HIP_D3D10_MAPRESOURCE_FLAGS_NONE", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaD3D10MapFlagsReadOnly", ( "HIP_D3D10_MAPRESOURCE_FLAGS_READONLY", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaD3D10MapFlagsWriteDiscard", ( "HIP_D3D10_MAPRESOURCE_FLAGS_WRITEDISCARD", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaD3D10RegisterFlagsNone", ("HIP_D3D10_REGISTER_FLAGS_NONE", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D10RegisterFlagsArray", ( "HIP_D3D10_REGISTER_FLAGS_ARRAY", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaD3D10GetDirect3DDevice", ("hipD3D10GetDirect3DDevice", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D10MapResources", ("hipD3D10MapResources", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D10RegisterResource", ("hipD3D10RegisterResource", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D10ResourceGetMappedArray", ( "hipD3D10ResourceGetMappedArray", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaD3D10ResourceGetMappedPitch", ( "hipD3D10ResourceGetMappedPitch", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaD3D10ResourceGetMappedPointer", ( "hipD3D10ResourceGetMappedPointer", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaD3D10ResourceGetMappedSize", ("hipD3D10ResourceGetMappedSize", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D10ResourceGetSurfaceDimensions", ( "hipD3D10ResourceGetSurfaceDimensions", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaD3D10ResourceSetMapFlags", ("hipD3D10ResourceSetMapFlags", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D10SetDirect3DDevice", ("hipD3D10SetDirect3DDevice", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D10UnmapResources", ("hipD3D10UnmapResources", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D10UnregisterResource", ("hipD3D10UnregisterResource", CONV_D3D10, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D11DeviceListAll", ("HIP_D3D11_DEVICE_LIST_ALL", CONV_D3D11, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D11DeviceListCurrentFrame", ( "HIP_D3D11_DEVICE_LIST_CURRENT_FRAME", CONV_D3D11, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaD3D11DeviceListNextFrame", ( "HIP_D3D11_DEVICE_LIST_NEXT_FRAME", CONV_D3D11, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaD3D11GetDevice", ("hipD3D11GetDevice", CONV_D3D11, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D11GetDevices", ("hipD3D11GetDevices", CONV_D3D11, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGraphicsD3D11RegisterResource", ( "hipGraphicsD3D11RegisterResource", CONV_D3D11, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaD3D11GetDevice", ("hipD3D11GetDevice", CONV_D3D11, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaD3D11GetDevices", ("hipD3D11GetDevices", CONV_D3D11, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGraphicsD3D11RegisterResource", ( "hipGraphicsD3D11RegisterResource", CONV_D3D11, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaGraphicsVDPAURegisterOutputSurface", ( "hipGraphicsVDPAURegisterOutputSurface", CONV_VDPAU, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaGraphicsVDPAURegisterVideoSurface", ( "hipGraphicsVDPAURegisterVideoSurface", CONV_VDPAU, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaVDPAUGetDevice", ("hipVDPAUGetDevice", CONV_VDPAU, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaVDPAUSetVDPAUDevice", ("hipVDPAUSetDevice", CONV_VDPAU, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaEGLStreamConsumerAcquireFrame", ( "hipEGLStreamConsumerAcquireFrame", CONV_EGL, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaEGLStreamConsumerConnect", ("hipEGLStreamConsumerConnect", CONV_EGL, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaEGLStreamConsumerConnectWithFlags", ( "hipEGLStreamConsumerConnectWithFlags", CONV_EGL, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaEGLStreamConsumerReleaseFrame", ( "hipEGLStreamConsumerReleaseFrame", CONV_EGL, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaEGLStreamProducerConnect", ("hipEGLStreamProducerConnect", CONV_EGL, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaEGLStreamProducerDisconnect", ("hipEGLStreamProducerDisconnect", CONV_EGL, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaEGLStreamProducerPresentFrame", ( "hipEGLStreamProducerPresentFrame", CONV_EGL, API_RUNTIME, HIP_UNSUPPORTED, ), ), ( "cudaEGLStreamProducerReturnFrame", ("hipEGLStreamProducerReturnFrame", CONV_EGL, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGraphicsEGLRegisterImage", ("hipGraphicsEGLRegisterImage", CONV_EGL, API_RUNTIME, HIP_UNSUPPORTED), ), ( "cudaGraphicsResourceGetMappedEglFrame", ( "hipGraphicsResourceGetMappedEglFrame", CONV_EGL, API_RUNTIME, HIP_UNSUPPORTED, ), ), ("cublasInit", ("rocblas_init", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ( "cublasShutdown", ("rocblas_shutdown", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasGetVersion", ("rocblas_get_version", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasGetError", ("rocblas_get_error", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasAlloc", ("rocblas_alloc", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasFree", ("rocblas_free", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ( "cublasSetKernelStream", ("rocblas_set_kernel_stream", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasGetAtomicsMode", ("rocblas_get_atomics_mode", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasSetAtomicsMode", ("rocblas_set_atomics_mode", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasGetMathMode", ("rocblas_get_math_mode", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasSetMathMode", ("rocblas_set_math_mode", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("CUBLAS_OP_N", ("rocblas_operation_none", CONV_NUMERIC_LITERAL, API_BLAS)), ( "CUBLAS_OP_T", ("rocblas_operation_transpose", CONV_NUMERIC_LITERAL, API_BLAS), ), ( "CUBLAS_OP_C", ("rocblas_operation_conjugate_transpose", CONV_NUMERIC_LITERAL, API_BLAS), ), ( "CUBLAS_STATUS_SUCCESS", ("rocblas_status_success", CONV_NUMERIC_LITERAL, API_BLAS), ), ( "CUBLAS_STATUS_NOT_INITIALIZED", ("rocblas_status_invalid_handle", CONV_NUMERIC_LITERAL, API_BLAS), ), ( "CUBLAS_STATUS_ALLOC_FAILED", ("rocblas_status_memory_error", CONV_NUMERIC_LITERAL, API_BLAS), ), ( "CUBLAS_STATUS_INVALID_VALUE", ("rocblas_status_invalid_pointer", CONV_NUMERIC_LITERAL, API_BLAS), ), ( "CUBLAS_STATUS_MAPPING_ERROR", ("rocblas_status_internal_error", CONV_NUMERIC_LITERAL, API_BLAS), ), ( "CUBLAS_STATUS_EXECUTION_FAILED", ("rocblas_status_internal_error", CONV_NUMERIC_LITERAL, API_BLAS), ), ( "CUBLAS_STATUS_INTERNAL_ERROR", ("rocblas_status_internal_error", CONV_NUMERIC_LITERAL, API_BLAS), ), ( "CUBLAS_STATUS_NOT_SUPPORTED", ("rocblas_status_not_implemented", CONV_NUMERIC_LITERAL, API_BLAS), ), ( "CUBLAS_STATUS_ARCH_MISMATCH", ("rocblas_status_not_implemented", CONV_NUMERIC_LITERAL, API_BLAS), ), ( "CUBLAS_FILL_MODE_LOWER", ("rocblas_fill_lower", CONV_NUMERIC_LITERAL, API_BLAS), ), ( "CUBLAS_FILL_MODE_UPPER", ("rocblas_fill_upper", CONV_NUMERIC_LITERAL, API_BLAS), ), ( "CUBLAS_DIAG_NON_UNIT", ("rocblas_diagonal_non_unit", CONV_NUMERIC_LITERAL, API_BLAS), ), ("CUBLAS_DIAG_UNIT", ("rocblas_diagonal_unit", CONV_NUMERIC_LITERAL, API_BLAS)), ("CUBLAS_SIDE_LEFT", ("rocblas_side_left", CONV_NUMERIC_LITERAL, API_BLAS)), ("CUBLAS_SIDE_RIGHT", ("rocblas_side_right", CONV_NUMERIC_LITERAL, API_BLAS)), ( "CUBLAS_POINTER_MODE_HOST", ("rocblas_pointer_mode_host", CONV_NUMERIC_LITERAL, API_BLAS), ), ( "CUBLAS_POINTER_MODE_DEVICE", ("rocblas_pointer_mode_device", CONV_NUMERIC_LITERAL, API_BLAS), ), ( "CUBLAS_ATOMICS_NOT_ALLOWED", ( "rocblas_atomics_not_allowed", CONV_NUMERIC_LITERAL, API_BLAS, HIP_UNSUPPORTED, ), ), ( "CUBLAS_ATOMICS_ALLOWED", ( "rocblas_atomics_allowed", CONV_NUMERIC_LITERAL, API_BLAS, HIP_UNSUPPORTED, ), ), ( "CUBLAS_DATA_FLOAT", ( "rocblas_precision_float", CONV_NUMERIC_LITERAL, API_BLAS, HIP_UNSUPPORTED, ), ), ( "CUBLAS_DATA_DOUBLE", ( "rocblas_precision_double", CONV_NUMERIC_LITERAL, API_BLAS, HIP_UNSUPPORTED, ), ), ( "CUBLAS_DATA_HALF", ("rocblas_precision_half", CONV_NUMERIC_LITERAL, API_BLAS, HIP_UNSUPPORTED), ), ( "CUBLAS_DATA_INT8", ("rocblas_precision_int8", CONV_NUMERIC_LITERAL, API_BLAS, HIP_UNSUPPORTED), ), ("cublasCreate", ("rocblas_create_handle", CONV_MATH_FUNC, API_BLAS)), ("cublasDestroy", ("rocblas_destroy_handle", CONV_MATH_FUNC, API_BLAS)), ("cublasSetVector", ("rocblas_set_vector", CONV_MATH_FUNC, API_BLAS)), ("cublasGetVector", ("rocblas_get_vector", CONV_MATH_FUNC, API_BLAS)), ( "cublasSetVectorAsync", ("rocblas_set_vector_async", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasGetVectorAsync", ("rocblas_get_vector_async", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasSetMatrix", ("rocblas_set_matrix", CONV_MATH_FUNC, API_BLAS)), ("cublasGetMatrix", ("rocblas_get_matrix", CONV_MATH_FUNC, API_BLAS)), ( "cublasGetMatrixAsync", ("rocblas_get_matrix_async", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasSetMatrixAsync", ("rocblas_set_matrix_async", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasXerbla", ("rocblas_xerbla", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSnrm2", ("rocblas_snrm2", CONV_MATH_FUNC, API_BLAS)), ("cublasDnrm2", ("rocblas_dnrm2", CONV_MATH_FUNC, API_BLAS)), ("cublasScnrm2", ("rocblas_scnrm2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDznrm2", ("rocblas_dznrm2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ( "cublasNrm2Ex", ("rocblas_nrm2_ex", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasSdot", ("rocblas_sdot", CONV_MATH_FUNC, API_BLAS)), ( "cublasSdotBatched", ("rocblas_sdot_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasDdot", ("rocblas_ddot", CONV_MATH_FUNC, API_BLAS)), ( "cublasDdotBatched", ("rocblas_ddot_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasCdotu", ("rocblas_cdotu", CONV_MATH_FUNC, API_BLAS)), ("cublasCdotc", ("rocblas_cdotc", CONV_MATH_FUNC, API_BLAS)), ("cublasZdotu", ("rocblas_zdotu", CONV_MATH_FUNC, API_BLAS)), ("cublasZdotc", ("rocblas_zdotc", CONV_MATH_FUNC, API_BLAS)), ("cublasSscal", ("rocblas_sscal", CONV_MATH_FUNC, API_BLAS)), ( "cublasSscalBatched", ("rocblas_sscal_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasDscal", ("rocblas_dscal", CONV_MATH_FUNC, API_BLAS)), ( "cublasDscalBatched", ("rocblas_dscal_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasCscal", ("rocblas_cscal", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCsscal", ("rocblas_csscal", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZscal", ("rocblas_zscal", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZdscal", ("rocblas_zdscal", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSaxpy", ("rocblas_saxpy", CONV_MATH_FUNC, API_BLAS)), ( "cublasSaxpyBatched", ("rocblas_saxpy_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasDaxpy", ("rocblas_daxpy", CONV_MATH_FUNC, API_BLAS)), ("cublasCaxpy", ("rocblas_caxpy", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZaxpy", ("rocblas_zaxpy", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasScopy", ("rocblas_scopy", CONV_MATH_FUNC, API_BLAS)), ( "cublasScopyBatched", ("rocblas_scopy_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasDcopy", ("rocblas_dcopy", CONV_MATH_FUNC, API_BLAS)), ( "cublasDcopyBatched", ("rocblas_dcopy_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasCcopy", ("rocblas_ccopy", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZcopy", ("rocblas_zcopy", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSswap", ("rocblas_sswap", CONV_MATH_FUNC, API_BLAS)), ("cublasDswap", ("rocblas_dswap", CONV_MATH_FUNC, API_BLAS)), ("cublasCswap", ("rocblas_cswap", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZswap", ("rocblas_zswap", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasIsamax", ("rocblas_isamax", CONV_MATH_FUNC, API_BLAS)), ("cublasIdamax", ("rocblas_idamax", CONV_MATH_FUNC, API_BLAS)), ("cublasIcamax", ("rocblas_icamax", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasIzamax", ("rocblas_izamax", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasIsamin", ("rocblas_isamin", CONV_MATH_FUNC, API_BLAS)), ("cublasIdamin", ("rocblas_idamin", CONV_MATH_FUNC, API_BLAS)), ("cublasIcamin", ("rocblas_icamin", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasIzamin", ("rocblas_izamin", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSasum", ("rocblas_sasum", CONV_MATH_FUNC, API_BLAS)), ( "cublasSasumBatched", ("rocblas_sasum_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasDasum", ("rocblas_dasum", CONV_MATH_FUNC, API_BLAS)), ( "cublasDasumBatched", ("rocblas_dasum_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasScasum", ("rocblas_scasum", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDzasum", ("rocblas_dzasum", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSrot", ("rocblas_srot", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDrot", ("rocblas_drot", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCrot", ("rocblas_crot", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCsrot", ("rocblas_csrot", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZrot", ("rocblas_zrot", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZdrot", ("rocblas_zdrot", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSrotg", ("rocblas_srotg", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDrotg", ("rocblas_drotg", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCrotg", ("rocblas_crotg", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZrotg", ("rocblas_zrotg", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSrotm", ("rocblas_srotm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDrotm", ("rocblas_drotm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSrotmg", ("rocblas_srotmg", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDrotmg", ("rocblas_drotmg", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSgemv", ("rocblas_sgemv", CONV_MATH_FUNC, API_BLAS)), ( "cublasSgemvBatched", ("rocblas_sgemv_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasDgemv", ("rocblas_dgemv", CONV_MATH_FUNC, API_BLAS)), ("cublasCgemv", ("rocblas_cgemv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZgemv", ("rocblas_zgemv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSgbmv", ("rocblas_sgbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDgbmv", ("rocblas_dgbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCgbmv", ("rocblas_cgbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZgbmv", ("rocblas_zgbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStrmv", ("rocblas_strmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDtrmv", ("rocblas_dtrmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCtrmv", ("rocblas_ctrmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtrmv", ("rocblas_ztrmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStbmv", ("rocblas_stbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDtbmv", ("rocblas_dtbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCtbmv", ("rocblas_ctbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtbmv", ("rocblas_ztbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStpmv", ("rocblas_stpmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDtpmv", ("rocblas_dtpmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCtpmv", ("rocblas_ctpmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtpmv", ("rocblas_ztpmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStrsv", ("rocblas_strsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDtrsv", ("rocblas_dtrsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCtrsv", ("rocblas_ctrsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtrsv", ("rocblas_ztrsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStpsv", ("rocblas_stpsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDtpsv", ("rocblas_dtpsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCtpsv", ("rocblas_ctpsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtpsv", ("rocblas_ztpsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStbsv", ("rocblas_stbsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDtbsv", ("rocblas_dtbsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCtbsv", ("rocblas_ctbsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtbsv", ("rocblas_ztbsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSsymv", ("rocblas_ssymv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDsymv", ("rocblas_dsymv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCsymv", ("rocblas_csymv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZsymv", ("rocblas_zsymv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasChemv", ("rocblas_chemv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZhemv", ("rocblas_zhemv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSsbmv", ("rocblas_ssbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDsbmv", ("rocblas_dsbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasChbmv", ("rocblas_chbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZhbmv", ("rocblas_zhbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSspmv", ("rocblas_sspmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDspmv", ("rocblas_dspmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasChpmv", ("rocblas_chpmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZhpmv", ("rocblas_zhpmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSger", ("rocblas_sger", CONV_MATH_FUNC, API_BLAS)), ("cublasDger", ("rocblas_dger", CONV_MATH_FUNC, API_BLAS)), ("cublasCgeru", ("rocblas_cgeru", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCgerc", ("rocblas_cgerc", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZgeru", ("rocblas_zgeru", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZgerc", ("rocblas_zgerc", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSsyr", ("rocblas_ssyr", CONV_MATH_FUNC, API_BLAS)), ("cublasDsyr", ("rocblas_dsyr", CONV_MATH_FUNC, API_BLAS)), ("cublasCher", ("rocblas_cher", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZher", ("rocblas_zher", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSspr", ("rocblas_sspr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDspr", ("rocblas_dspr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasChpr", ("rocblas_chpr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZhpr", ("rocblas_zhpr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSsyr2", ("rocblas_ssyr2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDsyr2", ("rocblas_dsyr2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCher2", ("rocblas_cher2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZher2", ("rocblas_zher2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSspr2", ("rocblas_sspr2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDspr2", ("rocblas_dspr2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasChpr2", ("rocblas_chpr2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZhpr2", ("rocblas_zhpr2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ( "cublasSgemmBatched", ("rocblas_sgemm_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDgemmBatched", ("rocblas_dgemm_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasHgemmBatched", ("rocblas_hgemm_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasSgemmStridedBatched", ("rocblas_sgemm_strided_batched", CONV_MATH_FUNC, API_BLAS), ), ( "cublasDgemmStridedBatched", ("rocblas_dgemm_strided_batched", CONV_MATH_FUNC, API_BLAS), ), ( "cublasHgemmStridedBatched", ("rocblas_hgemm_strided_batched", CONV_MATH_FUNC, API_BLAS), ), ( "cublasCgemmBatched", ("rocblas_cgemm_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCgemm3mBatched", ("rocblas_cgemm_3m_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZgemmBatched", ("rocblas_zgemm_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCgemmStridedBatched", ( "rocblas_cgemm_strided_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED, ), ), ( "cublasCgemm3mStridedBatched", ( "rocblas_cgemm_3m_strided_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED, ), ), ( "cublasZgemmStridedBatched", ( "rocblas_zgemm_strided_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED, ), ), ( "cublasHgemmStridedBatched", ( "rocblas_hgemm_strided_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED, ), ), ("cublasSgemm", ("rocblas_sgemm", CONV_MATH_FUNC, API_BLAS)), ("cublasDgemm", ("rocblas_dgemm", CONV_MATH_FUNC, API_BLAS)), ("cublasCgemm", ("rocblas_cgemm", CONV_MATH_FUNC, API_BLAS)), ("cublasZgemm", ("rocblas_zgemm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasHgemm", ("rocblas_hgemm", CONV_MATH_FUNC, API_BLAS)), ("cublasSsyrk", ("rocblas_ssyrk", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDsyrk", ("rocblas_dsyrk", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCsyrk", ("rocblas_csyrk", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZsyrk", ("rocblas_zsyrk", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCherk", ("rocblas_cherk", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZherk", ("rocblas_zherk", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSsyr2k", ("rocblas_ssyr2k", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDsyr2k", ("rocblas_dsyr2k", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCsyr2k", ("rocblas_csyr2k", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZsyr2k", ("rocblas_zyr2k", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSsyrkx", ("rocblas_ssyrkx", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDsyrkx", ("rocblas_dsyrkx", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCsyrkx", ("rocblas_csyrkx", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZsyrkx", ("rocblas_zsyrkx", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCher2k", ("rocblas_cher2k", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZher2k", ("rocblas_zher2k", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCherkx", ("rocblas_cherkx", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZherkx", ("rocblas_zherkx", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSsymm", ("rocblas_ssymm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDsymm", ("rocblas_dsymm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCsymm", ("rocblas_csymm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZsymm", ("rocblas_zsymm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasChemm", ("rocblas_chemm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZhemm", ("rocblas_zhemm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStrsm", ("rocblas_strsm", CONV_MATH_FUNC, API_BLAS)), ("cublasDtrsm", ("rocblas_dtrsm", CONV_MATH_FUNC, API_BLAS)), ("cublasCtrsm", ("rocblas_ctrsm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtrsm", ("rocblas_ztrsm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ( "cublasStrsmBatched", ("rocblas_strsm_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDtrsmBatched", ("rocblas_dtrsm_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCtrsmBatched", ("rocblas_ctrsm_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZtrsmBatched", ("rocblas_ztrsm_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasStrmm", ("rocblas_strmm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDtrmm", ("rocblas_dtrmm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCtrmm", ("rocblas_ctrmm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtrmm", ("rocblas_ztrmm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSgeam", ("rocblas_sgeam", CONV_MATH_FUNC, API_BLAS)), ("cublasDgeam", ("rocblas_dgeam", CONV_MATH_FUNC, API_BLAS)), ("cublasCgeam", ("rocblas_cgeam", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZgeam", ("rocblas_zgeam", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ( "cublasSgetrfBatched", ("rocblas_sgetrf_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDgetrfBatched", ("rocblas_dgetrf_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCgetrfBatched", ("rocblas_cgetrf_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZgetrfBatched", ("rocblas_zgetrf_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasSgetriBatched", ("rocblas_sgetri_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDgetriBatched", ("rocblas_dgetri_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCgetriBatched", ("rocblas_cgetri_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZgetriBatched", ("rocblas_zgetri_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasSgetrsBatched", ("rocblas_sgetrs_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDgetrsBatched", ("rocblas_dgetrs_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCgetrsBatched", ("rocblas_cgetrs_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZgetrsBatched", ("rocblas_zgetrs_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasStrsmBatched", ("rocblas_strsm_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDtrsmBatched", ("rocblas_dtrsm_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCtrsmBatched", ("rocblas_ctrsm_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZtrsmBatched", ("rocblas_ztrsm_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasSmatinvBatched", ("rocblas_smatinv_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDmatinvBatched", ("rocblas_dmatinv_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCmatinvBatched", ("rocblas_cmatinv_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZmatinvBatched", ("rocblas_zmatinv_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasSgeqrfBatched", ("rocblas_sgeqrf_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDgeqrfBatched", ("rocblas_dgeqrf_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCgeqrfBatched", ("rocblas_cgeqrf_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZgeqrfBatched", ("rocblas_zgeqrf_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasSgelsBatched", ("rocblas_sgels_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDgelsBatched", ("rocblas_dgels_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCgelsBatched", ("rocblas_cgels_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZgelsBatched", ("rocblas_zgels_batched", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasSdgmm", ("rocblas_sdgmm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDdgmm", ("rocblas_ddgmm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCdgmm", ("rocblas_cdgmm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZdgmm", ("rocblas_zdgmm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStpttr", ("rocblas_stpttr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDtpttr", ("rocblas_dtpttr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCtpttr", ("rocblas_ctpttr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtpttr", ("rocblas_ztpttr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasStrttp", ("rocblas_strttp", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDtrttp", ("rocblas_dtrttp", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCtrttp", ("rocblas_ctrttp", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZtrttp", ("rocblas_ztrttp", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCreate_v2", ("rocblas_create_handle", CONV_MATH_FUNC, API_BLAS)), ("cublasDestroy_v2", ("rocblas_destroy_handle", CONV_MATH_FUNC, API_BLAS)), ( "cublasGetVersion_v2", ("rocblas_get_version", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasSetStream", ("rocblas_set_stream", CONV_MATH_FUNC, API_BLAS)), ("cublasGetStream", ("rocblas_get_stream", CONV_MATH_FUNC, API_BLAS)), ("cublasSetStream_v2", ("rocblas_set_stream", CONV_MATH_FUNC, API_BLAS)), ("cublasGetStream_v2", ("rocblas_get_stream", CONV_MATH_FUNC, API_BLAS)), ( "cublasGetPointerMode", ("rocblas_get_pointer_mode", CONV_MATH_FUNC, API_BLAS), ), ( "cublasSetPointerMode", ("rocblas_set_pointer_mode", CONV_MATH_FUNC, API_BLAS), ), ( "cublasGetPointerMode_v2", ("rocblas_get_pointer_mode", CONV_MATH_FUNC, API_BLAS), ), ( "cublasSetPointerMode_v2", ("rocblas_set_pointer_mode", CONV_MATH_FUNC, API_BLAS), ), ("cublasSgemv_v2", ("rocblas_sgemv", CONV_MATH_FUNC, API_BLAS)), ("cublasDgemv_v2", ("rocblas_dgemv", CONV_MATH_FUNC, API_BLAS)), ( "cublasCgemv_v2", ("rocblas_cgemv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZgemv_v2", ("rocblas_zgemv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasSgbmv_v2", ("rocblas_sgbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDgbmv_v2", ("rocblas_dgbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCgbmv_v2", ("rocblas_cgbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZgbmv_v2", ("rocblas_zgbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasStrmv_v2", ("rocblas_strmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDtrmv_v2", ("rocblas_dtrmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCtrmv_v2", ("rocblas_ctrmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZtrmv_v2", ("rocblas_ztrmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasStbmv_v2", ("rocblas_stbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDtbmv_v2", ("rocblas_dtbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCtbmv_v2", ("rocblas_ctbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZtbmv_v2", ("rocblas_ztbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasStpmv_v2", ("rocblas_stpmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDtpmv_v2", ("rocblas_dtpmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCtpmv_v2", ("rocblas_ctpmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZtpmv_v2", ("rocblas_ztpmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasStrsv_v2", ("rocblas_strsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDtrsv_v2", ("rocblas_dtrsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCtrsv_v2", ("rocblas_ctrsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZtrsv_v2", ("rocblas_ztrsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasStpsv_v2", ("rocblas_stpsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDtpsv_v2", ("rocblas_dtpsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCtpsv_v2", ("rocblas_ctpsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZtpsv_v2", ("rocblas_ztpsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasStbsv_v2", ("rocblas_stbsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDtbsv_v2", ("rocblas_dtbsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCtbsv_v2", ("rocblas_ctbsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZtbsv_v2", ("rocblas_ztbsv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasSsymv_v2", ("rocblas_ssymv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDsymv_v2", ("rocblas_dsymv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCsymv_v2", ("rocblas_csymv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZsymv_v2", ("rocblas_zsymv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasChemv_v2", ("rocblas_chemv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZhemv_v2", ("rocblas_zhemv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasSsbmv_v2", ("rocblas_ssbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDsbmv_v2", ("rocblas_dsbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasChbmv_v2", ("rocblas_chbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZhbmv_v2", ("rocblas_zhbmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasSspmv_v2", ("rocblas_sspmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDspmv_v2", ("rocblas_dspmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasChpmv_v2", ("rocblas_chpmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZhpmv_v2", ("rocblas_zhpmv", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasSger_v2", ("rocblas_sger", CONV_MATH_FUNC, API_BLAS)), ("cublasDger_v2", ("rocblas_dger", CONV_MATH_FUNC, API_BLAS)), ( "cublasCgeru_v2", ("rocblas_cgeru", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCgerc_v2", ("rocblas_cergc", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZgeru_v2", ("rocblas_zgeru", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZgerc_v2", ("rocblas_zgerc", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasSsyr_v2", ("rocblas_ssyr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDsyr_v2", ("rocblas_dsyr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCsyr_v2", ("rocblas_csyr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZsyr_v2", ("rocblas_zsyr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCher_v2", ("rocblas_cher", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZher_v2", ("rocblas_zher", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSspr_v2", ("rocblas_sspr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDspr_v2", ("rocblas_dspr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasChpr_v2", ("rocblas_chpr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasZhpr_v2", ("rocblas_zhpr", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ( "cublasSsyr2_v2", ("rocblas_ssyr2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDsyr2_v2", ("rocblas_dsyr2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCsyr2_v2", ("rocblas_csyr2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZsyr2_v2", ("rocblas_zsyr2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCher2_v2", ("rocblas_cher2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZher2_v2", ("rocblas_zher2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasSspr2_v2", ("rocblas_sspr2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDspr2_v2", ("rocblas_dspr2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasChpr2_v2", ("rocblas_chpr2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZhpr2_v2", ("rocblas_zhpr2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasSgemm_v2", ("rocblas_sgemm", CONV_MATH_FUNC, API_BLAS)), ("cublasDgemm_v2", ("rocblas_dgemm", CONV_MATH_FUNC, API_BLAS)), ( "cublasCgemm_v2", ("rocblas_cgemm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCgemm3m", ("rocblas_cgemm_3m", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCgemm3mEx", ("rocblas_cgemm_3mex", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZgemm_v2", ("rocblas_zgemm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZgemm3m", ("rocblas_zgemm_3m", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), # NB: The function rocblas_sgemmex doesn't actually exist in # rocblas, as of 2018-12-05 ( "cublasSgemmEx", ("rocblas_sgemmex", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasGemmEx", ("rocblas_gemmex", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ( "cublasCgemmEx", ("rocblas_cgemmex", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasUint8gemmBias", ("rocblas_uint8gemmbias", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasSsyrk_v2", ("rocblas_ssyrk", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDsyrk_v2", ("rocblas_dsyrk", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCsyrk_v2", ("rocblas_csyrk", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZsyrk_v2", ("rocblas_zsyrk", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCsyrkEx", ("rocblas_csyrkex", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCsyrk3mEx", ("rocblas_csyrk3mex", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCherk_v2", ("rocblas_cherk", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCherkEx", ("rocblas_cherkex", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCherk3mEx", ("rocblas_cherk3mex", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZherk_v2", ("rocblas_zherk", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasSsyr2k_v2", ("rocblas_ssyr2k", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDsyr2k_v2", ("rocblas_dsyr2k", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCsyr2k_v2", ("rocblas_csyr2k", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZsyr2k_v2", ("rocblas_zsyr2k", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCher2k_v2", ("rocblas_cher2k", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZher2k_v2", ("rocblas_zher2k", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasSsymm_v2", ("rocblas_ssymm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDsymm_v2", ("rocblas_dsymm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCsymm_v2", ("rocblas_csymm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZsymm_v2", ("rocblas_zsymm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasChemm_v2", ("rocblas_chemm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZhemm_v2", ("rocblas_zhemm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasStrsm_v2", ("rocblas_strsm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDtrsm_v2", ("rocblas_dtrsm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCtrsm_v2", ("rocblas_ctrsm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZtrsm_v2", ("rocblas_ztrsm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasStrmm_v2", ("rocblas_strmm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDtrmm_v2", ("rocblas_dtrmm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCtrmm_v2", ("rocblas_ctrmm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZtrmm_v2", ("rocblas_ztrmm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasSnrm2_v2", ("rocblas_snrm2", CONV_MATH_FUNC, API_BLAS)), ("cublasDnrm2_v2", ("rocblas_dnrm2", CONV_MATH_FUNC, API_BLAS)), ( "cublasScnrm2_v2", ("rocblas_scnrm2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDznrm2_v2", ("rocblas_dznrm2", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasDotEx", ("rocblas_dotex", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDotcEx", ("rocblas_dotcex", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSdot_v2", ("rocblas_sdot", CONV_MATH_FUNC, API_BLAS)), ("cublasDdot_v2", ("rocblas_ddot", CONV_MATH_FUNC, API_BLAS)), ( "cublasCdotu_v2", ("rocblas_cdotu", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCdotc_v2", ("rocblas_cdotc", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZdotu_v2", ("rocblas_zdotu", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZdotc_v2", ("rocblas_zdotc", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasScalEx", ("rocblas_scalex", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSscal_v2", ("rocblas_sscal", CONV_MATH_FUNC, API_BLAS)), ("cublasDscal_v2", ("rocblas_dscal", CONV_MATH_FUNC, API_BLAS)), ( "cublasCscal_v2", ("rocblas_cscal", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCsscal_v2", ("rocblas_csscal", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZscal_v2", ("rocblas_zcsal", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZdscal_v2", ("rocblas_zdscal", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasAxpyEx", ("rocblas_axpyex", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasSaxpy_v2", ("rocblas_saxpy", CONV_MATH_FUNC, API_BLAS)), ("cublasDaxpy_v2", ("rocblas_daxpy", CONV_MATH_FUNC, API_BLAS)), ( "cublasCaxpy_v2", ("rocblas_caxpy", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZaxpy_v2", ("rocblas_zaxpy", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasScopy_v2", ("rocblas_scopy", CONV_MATH_FUNC, API_BLAS)), ("cublasDcopy_v2", ("rocblas_dcopy", CONV_MATH_FUNC, API_BLAS)), ( "cublasCcopy_v2", ("rocblas_ccopy", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZcopy_v2", ("rocblas_zcopy", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasSswap_v2", ("rocblas_sswap", CONV_MATH_FUNC, API_BLAS)), ("cublasDswap_v2", ("rocblas_dswap", CONV_MATH_FUNC, API_BLAS)), ( "cublasCswap_v2", ("rocblas_cswap", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZswap_v2", ("rocblas_zswap", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasIsamax_v2", ("rocblas_isamax", CONV_MATH_FUNC, API_BLAS)), ("cublasIdamax_v2", ("rocblas_idamax", CONV_MATH_FUNC, API_BLAS)), ( "cublasIcamax_v2", ("rocblas_icamax", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasIzamax_v2", ("rocblas_izamax", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasIsamin_v2", ("rocblas_isamin", CONV_MATH_FUNC, API_BLAS)), ("cublasIdamin_v2", ("rocblas_idamin", CONV_MATH_FUNC, API_BLAS)), ( "cublasIcamin_v2", ("rocblas_icamin", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasIzamin_v2", ("rocblas_izamin", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasSasum_v2", ("rocblas_sasum", CONV_MATH_FUNC, API_BLAS)), ("cublasDasum_v2", ("rocblas_dasum", CONV_MATH_FUNC, API_BLAS)), ( "cublasScasum_v2", ("rocblas_scasum", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDzasum_v2", ("rocblas_dzasum", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasSrot_v2", ("rocblas_srot", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasDrot_v2", ("rocblas_drot", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ("cublasCrot_v2", ("rocblas_crot", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ( "cublasCsrot_v2", ("rocblas_csrot", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ("cublasZrot_v2", ("rocblas_zrot", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED)), ( "cublasZdrot_v2", ("rocblas_zdrot", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasSrotg_v2", ("rocblas_srotg", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDrotg_v2", ("rocblas_drotg", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasCrotg_v2", ("rocblas_crotg", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasZrotg_v2", ("rocblas_zrotg", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasSrotm_v2", ("rocblas_srotm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDrotm_v2", ("rocblas_drotm", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasSrotmg_v2", ("rocblas_srotmg", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "cublasDrotmg_v2", ("rocblas_drotmg", CONV_MATH_FUNC, API_BLAS, HIP_UNSUPPORTED), ), ( "CURAND_STATUS_SUCCESS", ("HIPRAND_STATUS_SUCCESS", CONV_NUMERIC_LITERAL, API_RAND), ), ( "CURAND_STATUS_VERSION_MISMATCH", ("HIPRAND_STATUS_VERSION_MISMATCH", CONV_NUMERIC_LITERAL, API_RAND), ), ( "CURAND_STATUS_NOT_INITIALIZED", ("HIPRAND_STATUS_NOT_INITIALIZED", CONV_NUMERIC_LITERAL, API_RAND), ), ( "CURAND_STATUS_ALLOCATION_FAILED", ("HIPRAND_STATUS_ALLOCATION_FAILED", CONV_NUMERIC_LITERAL, API_RAND), ), ( "CURAND_STATUS_TYPE_ERROR", ("HIPRAND_STATUS_TYPE_ERROR", CONV_NUMERIC_LITERAL, API_RAND), ), ( "CURAND_STATUS_OUT_OF_RANGE", ("HIPRAND_STATUS_OUT_OF_RANGE", CONV_NUMERIC_LITERAL, API_RAND), ), ( "CURAND_STATUS_LENGTH_NOT_MULTIPLE", ("HIPRAND_STATUS_LENGTH_NOT_MULTIPLE", CONV_NUMERIC_LITERAL, API_RAND), ), ( "CURAND_STATUS_DOUBLE_PRECISION_REQUIRED", ( "HIPRAND_STATUS_DOUBLE_PRECISION_REQUIRED", CONV_NUMERIC_LITERAL, API_RAND, ), ), ( "CURAND_STATUS_LAUNCH_FAILURE", ("HIPRAND_STATUS_LAUNCH_FAILURE", CONV_NUMERIC_LITERAL, API_RAND), ), ( "CURAND_STATUS_PREEXISTING_FAILURE", ("HIPRAND_STATUS_PREEXISTING_FAILURE", CONV_NUMERIC_LITERAL, API_RAND), ), ( "CURAND_STATUS_INITIALIZATION_FAILED", ("HIPRAND_STATUS_INITIALIZATION_FAILED", CONV_NUMERIC_LITERAL, API_RAND), ), ( "CURAND_STATUS_ARCH_MISMATCH", ("HIPRAND_STATUS_ARCH_MISMATCH", CONV_NUMERIC_LITERAL, API_RAND), ), ( "CURAND_STATUS_INTERNAL_ERROR", ("HIPRAND_STATUS_INTERNAL_ERROR", CONV_NUMERIC_LITERAL, API_RAND), ), ("CURAND_RNG_TEST", ("HIPRAND_RNG_TEST", CONV_NUMERIC_LITERAL, API_RAND)), ( "mtgp32dc_params_fast_11213", ("mtgp32dc_params_fast_11213", CONV_NUMERIC_LITERAL, API_RAND), ), ( "CURAND_RNG_PSEUDO_DEFAULT", ("HIPRAND_RNG_PSEUDO_DEFAULT", CONV_NUMERIC_LITERAL, API_RAND), ), ( "CURAND_RNG_PSEUDO_XORWOW", ("HIPRAND_RNG_PSEUDO_XORWOW", CONV_NUMERIC_LITERAL, API_RAND), ), ( "CURAND_RNG_PSEUDO_MRG32K3A", ("HIPRAND_RNG_PSEUDO_MRG32K3A", CONV_NUMERIC_LITERAL, API_RAND), ), ( "CURAND_RNG_PSEUDO_MTGP32", ("HIPRAND_RNG_PSEUDO_MTGP32", CONV_NUMERIC_LITERAL, API_RAND), ), ( "CURAND_RNG_PSEUDO_MT19937", ("HIPRAND_RNG_PSEUDO_MT19937", CONV_NUMERIC_LITERAL, API_RAND), ), ( "CURAND_RNG_PSEUDO_PHILOX4_32_10", ("HIPRAND_RNG_PSEUDO_PHILOX4_32_10", CONV_NUMERIC_LITERAL, API_RAND), ), ( "CURAND_RNG_QUASI_DEFAULT", ("HIPRAND_RNG_QUASI_DEFAULT", CONV_NUMERIC_LITERAL, API_RAND), ), ( "CURAND_RNG_QUASI_SOBOL32", ("HIPRAND_RNG_QUASI_SOBOL32", CONV_NUMERIC_LITERAL, API_RAND), ), ( "CURAND_RNG_QUASI_SCRAMBLED_SOBOL32", ("HIPRAND_RNG_QUASI_SCRAMBLED_SOBOL32", CONV_NUMERIC_LITERAL, API_RAND), ), ( "CURAND_RNG_QUASI_SOBOL64", ("HIPRAND_RNG_QUASI_SOBOL64", CONV_NUMERIC_LITERAL, API_RAND), ), ( "CURAND_RNG_QUASI_SCRAMBLED_SOBOL64", ("HIPRAND_RNG_QUASI_SCRAMBLED_SOBOL64", CONV_NUMERIC_LITERAL, API_RAND), ), ( "curand_ORDERING_PSEUDO_BEST", ( "HIPRAND_ORDERING_PSEUDO_BEST", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED, ), ), ( "curand_ORDERING_PSEUDO_DEFAULT", ( "HIPRAND_ORDERING_PSEUDO_DEFAULT", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED, ), ), ( "curand_ORDERING_PSEUDO_SEEDED", ( "HIPRAND_ORDERING_PSEUDO_SEEDED", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED, ), ), ( "curand_ORDERING_QUASI_DEFAULT", ( "HIPRAND_ORDERING_QUASI_DEFAULT", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED, ), ), ( "curand_DIRECTION_VECTORS_32_JOEKUO6", ( "HIPRAND_DIRECTION_VECTORS_32_JOEKUO6", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED, ), ), ( "curand_SCRAMBLED_DIRECTION_VECTORS_32_JOEKUO6", ( "HIPRAND_SCRAMBLED_DIRECTION_VECTORS_32_JOEKUO6", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED, ), ), ( "curand_DIRECTION_VECTORS_64_JOEKUO6", ( "HIPRAND_DIRECTION_VECTORS_64_JOEKUO6", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED, ), ), ( "curand_SCRAMBLED_DIRECTION_VECTORS_64_JOEKUO6", ( "HIPRAND_SCRAMBLED_DIRECTION_VECTORS_64_JOEKUO6", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED, ), ), ( "curand_CHOOSE_BEST", ("HIPRAND_CHOOSE_BEST", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED), ), ( "curand_ITR", ("HIPRAND_ITR", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED), ), ( "curand_KNUTH", ("HIPRAND_KNUTH", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED), ), ( "curand_HITR", ("HIPRAND_HITR", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED), ), ("curand_M1", ("HIPRAND_M1", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED)), ("curand_M2", ("HIPRAND_M2", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED)), ( "curand_BINARY_SEARCH", ("HIPRAND_BINARY_SEARCH", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED), ), ( "curand_DISCRETE_GAUSS", ("HIPRAND_DISCRETE_GAUSS", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED), ), ( "curand_REJECTION", ("HIPRAND_REJECTION", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED), ), ( "curand_DEVICE_API", ("HIPRAND_DEVICE_API", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED), ), ( "curand_FAST_REJECTION", ("HIPRAND_FAST_REJECTION", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED), ), ( "curand_3RD", ("HIPRAND_3RD", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED), ), ( "curand_DEFINITION", ("HIPRAND_DEFINITION", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED), ), ( "curand_POISSON", ("HIPRAND_POISSON", CONV_NUMERIC_LITERAL, API_RAND, HIP_UNSUPPORTED), ), ("curandCreateGenerator", ("hiprandCreateGenerator", CONV_MATH_FUNC, API_RAND)), ( "curandCreateGeneratorHost", ("hiprandCreateGeneratorHost", CONV_MATH_FUNC, API_RAND), ), ( "curandCreatePoissonDistribution", ("hiprandCreatePoissonDistribution", CONV_MATH_FUNC, API_RAND), ), ( "curandDestroyDistribution", ("hiprandDestroyDistribution", CONV_MATH_FUNC, API_RAND), ), ( "curandDestroyGenerator", ("hiprandDestroyGenerator", CONV_MATH_FUNC, API_RAND), ), ("curandGenerate", ("hiprandGenerate", CONV_MATH_FUNC, API_RAND)), ( "curandGenerateLogNormal", ("hiprandGenerateLogNormal", CONV_MATH_FUNC, API_RAND), ), ( "curandGenerateLogNormalDouble", ("hiprandGenerateLogNormalDouble", CONV_MATH_FUNC, API_RAND), ), ( "curandGenerateLongLong", ("hiprandGenerateLongLong", CONV_MATH_FUNC, API_RAND, HIP_UNSUPPORTED), ), ("curandGenerateNormal", ("hiprandGenerateNormal", CONV_MATH_FUNC, API_RAND)), ( "curandGenerateNormalDouble", ("hiprandGenerateNormalDouble", CONV_MATH_FUNC, API_RAND), ), ("curandGeneratePoisson", ("hiprandGeneratePoisson", CONV_MATH_FUNC, API_RAND)), ("curandGenerateSeeds", ("hiprandGenerateSeeds", CONV_MATH_FUNC, API_RAND)), ("curandGenerateUniform", ("hiprandGenerateUniform", CONV_MATH_FUNC, API_RAND)), ( "curandGenerateUniformDouble", ("hiprandGenerateUniformDouble", CONV_MATH_FUNC, API_RAND), ), ( "curandGetDirectionVectors32", ("hiprandGetDirectionVectors32", CONV_MATH_FUNC, API_RAND, HIP_UNSUPPORTED), ), ( "curandGetDirectionVectors64", ("hiprandGetDirectionVectors64", CONV_MATH_FUNC, API_RAND, HIP_UNSUPPORTED), ), ( "curandGetProperty", ("hiprandGetProperty", CONV_MATH_FUNC, API_RAND, HIP_UNSUPPORTED), ), ( "curandGetScrambleConstants32", ( "hiprandGetScrambleConstants32", CONV_MATH_FUNC, API_RAND, HIP_UNSUPPORTED, ), ), ( "curandGetScrambleConstants64", ( "hiprandGetScrambleConstants64", CONV_MATH_FUNC, API_RAND, HIP_UNSUPPORTED, ), ), ("curandGetVersion", ("hiprandGetVersion", CONV_MATH_FUNC, API_RAND)), ( "curandSetGeneratorOffset", ("hiprandSetGeneratorOffset", CONV_MATH_FUNC, API_RAND), ), ( "curandSetGeneratorOrdering", ("hiprandSetGeneratorOrdering", CONV_MATH_FUNC, API_RAND, HIP_UNSUPPORTED), ), ( "curandSetPseudoRandomGeneratorSeed", ("hiprandSetPseudoRandomGeneratorSeed", CONV_MATH_FUNC, API_RAND), ), ( "curandSetQuasiRandomGeneratorDimensions", ("hiprandSetQuasiRandomGeneratorDimensions", CONV_MATH_FUNC, API_RAND), ), ("curandSetStream", ("hiprandSetStream", CONV_MATH_FUNC, API_RAND)), ("curand", ("hiprand", CONV_DEVICE_FUNC, API_RAND)), ("curand4", ("hiprand4", CONV_DEVICE_FUNC, API_RAND)), ("curand_init", ("hiprand_init", CONV_DEVICE_FUNC, API_RAND)), ("curand_log_normal", ("hiprand_log_normal", CONV_DEVICE_FUNC, API_RAND)), ( "curand_log_normal_double", ("hiprand_log_normal_double", CONV_DEVICE_FUNC, API_RAND), ), ("curand_log_normal2", ("hiprand_log_normal2", CONV_DEVICE_FUNC, API_RAND)), ( "curand_log_normal2_double", ("hiprand_log_normal2_double", CONV_DEVICE_FUNC, API_RAND), ), ("curand_log_normal4", ("hiprand_log_normal4", CONV_DEVICE_FUNC, API_RAND)), ( "curand_log_normal4_double", ("hiprand_log_normal4_double", CONV_DEVICE_FUNC, API_RAND), ), ( "curand_mtgp32_single", ("hiprand_mtgp32_single", CONV_DEVICE_FUNC, API_RAND, HIP_UNSUPPORTED), ), ( "curand_mtgp32_single_specific", ( "hiprand_mtgp32_single_specific", CONV_DEVICE_FUNC, API_RAND, HIP_UNSUPPORTED, ), ), ( "curand_mtgp32_specific", ("hiprand_mtgp32_specific", CONV_DEVICE_FUNC, API_RAND, HIP_UNSUPPORTED), ), ("curand_normal", ("hiprand_normal", CONV_DEVICE_FUNC, API_RAND)), ( "curandMakeMTGP32Constants", ("hiprandMakeMTGP32Constants", CONV_DEVICE_FUNC, API_RAND), ), ( "curandMakeMTGP32KernelState", ("hiprandMakeMTGP32KernelState", CONV_DEVICE_FUNC, API_RAND), ), ("curand_normal_double", ("hiprand_normal_double", CONV_DEVICE_FUNC, API_RAND)), ("curand_normal2", ("hiprand_normal2", CONV_DEVICE_FUNC, API_RAND)), ( "curand_normal2_double", ("hiprand_normal2_double", CONV_DEVICE_FUNC, API_RAND), ), ("curand_normal4", ("hiprand_normal4", CONV_DEVICE_FUNC, API_RAND)), ( "curand_normal4_double", ("hiprand_normal4_double", CONV_DEVICE_FUNC, API_RAND), ), ("curand_uniform", ("hiprand_uniform", CONV_DEVICE_FUNC, API_RAND)), ( "curand_uniform_double", ("hiprand_uniform_double", CONV_DEVICE_FUNC, API_RAND), ), ( "curand_uniform2_double", ("hiprand_uniform2_double", CONV_DEVICE_FUNC, API_RAND), ), ("curand_uniform4", ("hiprand_uniform4", CONV_DEVICE_FUNC, API_RAND)), ( "curand_uniform4_double", ("hiprand_uniform4_double", CONV_DEVICE_FUNC, API_RAND), ), ("curand_discrete", ("hiprand_discrete", CONV_DEVICE_FUNC, API_RAND)), ("curand_discrete4", ("hiprand_discrete4", CONV_DEVICE_FUNC, API_RAND)), ("curand_poisson", ("hiprand_poisson", CONV_DEVICE_FUNC, API_RAND)), ("curand_poisson4", ("hiprand_poisson4", CONV_DEVICE_FUNC, API_RAND)), ( "curand_Philox4x32_10", ("hiprand_Philox4x32_10", CONV_DEVICE_FUNC, API_RAND, HIP_UNSUPPORTED), ), ("mtgp32_kernel_params", ("mtgp32_kernel_params_t", CONV_MATH_FUNC, API_RAND)), ("CUFFT_FORWARD", ("HIPFFT_FORWARD", CONV_NUMERIC_LITERAL, API_BLAS)), ("CUFFT_INVERSE", ("HIPFFT_BACKWARD", CONV_NUMERIC_LITERAL, API_BLAS)), ( "CUFFT_COMPATIBILITY_DEFAULT", ( "HIPFFT_COMPATIBILITY_DEFAULT", CONV_NUMERIC_LITERAL, API_BLAS, HIP_UNSUPPORTED, ), ), ("cuComplex", ("rocblas_float_complex", CONV_TYPE, API_BLAS)), ("cuDoubleComplex", ("rocblas_double_complex", CONV_TYPE, API_BLAS)), ("cufftResult_t", ("hipfftResult_t", CONV_TYPE, API_FFT)), ("cufftResult", ("hipfftResult", CONV_TYPE, API_FFT)), ("CUFFT_SUCCESS", ("HIPFFT_SUCCESS", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_INVALID_PLAN", ("HIPFFT_INVALID_PLAN", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_ALLOC_FAILED", ("HIPFFT_ALLOC_FAILED", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_INVALID_TYPE", ("HIPFFT_INVALID_TYPE", CONV_NUMERIC_LITERAL, API_FFT)), ( "CUFFT_INVALID_VALUE", ("HIPFFT_INVALID_VALUE", CONV_NUMERIC_LITERAL, API_FFT), ), ( "CUFFT_INTERNAL_ERROR", ("HIPFFT_INTERNAL_ERROR", CONV_NUMERIC_LITERAL, API_FFT), ), ("CUFFT_EXEC_FAILED", ("HIPFFT_EXEC_FAILED", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_SETUP_FAILED", ("HIPFFT_SETUP_FAILED", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_INVALID_SIZE", ("HIPFFT_INVALID_SIZE", CONV_NUMERIC_LITERAL, API_FFT)), ( "CUFFT_UNALIGNED_DATA", ("HIPFFT_UNALIGNED_DATA", CONV_NUMERIC_LITERAL, API_FFT), ), ( "CUFFT_INCOMPLETE_PARAMETER_LIST", ("HIPFFT_INCOMPLETE_PARAMETER_LIST", CONV_NUMERIC_LITERAL, API_FFT), ), ( "CUFFT_INVALID_DEVICE", ("HIPFFT_INVALID_DEVICE", CONV_NUMERIC_LITERAL, API_FFT), ), ("CUFFT_PARSE_ERROR", ("HIPFFT_PARSE_ERROR", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_NO_WORKSPACE", ("HIPFFT_NO_WORKSPACE", CONV_NUMERIC_LITERAL, API_FFT)), ( "CUFFT_NOT_IMPLEMENTED", ("HIPFFT_NOT_IMPLEMENTED", CONV_NUMERIC_LITERAL, API_FFT), ), ( "CUFFT_LICENSE_ERROR", ("HIPFFT_LICENSE_ERROR", CONV_NUMERIC_LITERAL, API_FFT, HIP_UNSUPPORTED), ), ( "CUFFT_NOT_SUPPORTED", ("HIPFFT_NOT_SUPPORTED", CONV_NUMERIC_LITERAL, API_FFT), ), ("cufftType_t", ("hipfftType_t", CONV_TYPE, API_FFT)), ("cufftType", ("hipfftType", CONV_TYPE, API_FFT)), ("CUFFT_R2C", ("HIPFFT_R2C", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_C2R", ("HIPFFT_C2R", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_C2C", ("HIPFFT_C2C", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_D2Z", ("HIPFFT_D2Z", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_Z2D", ("HIPFFT_Z2D", CONV_NUMERIC_LITERAL, API_FFT)), ("CUFFT_Z2Z", ("HIPFFT_Z2Z", CONV_NUMERIC_LITERAL, API_FFT)), ( "cufftCompatibility_t", ("hipfftCompatibility_t", CONV_TYPE, API_FFT, HIP_UNSUPPORTED), ), ( "cufftCompatibility", ("hipfftCompatibility", CONV_TYPE, API_FFT, HIP_UNSUPPORTED), ), ( "CUFFT_COMPATIBILITY_FFTW_PADDING", ( "HIPFFT_COMPATIBILITY_FFTW_PADDING", CONV_NUMERIC_LITERAL, API_FFT, HIP_UNSUPPORTED, ), ), ("cufftReal", ("hipfftReal", CONV_TYPE, API_FFT)), ("cufftDoubleReal", ("hipfftDoubleReal", CONV_TYPE, API_FFT)), ("cufftComplex", ("hipfftComplex", CONV_TYPE, API_FFT)), ("cufftDoubleComplex", ("hipfftDoubleComplex", CONV_TYPE, API_FFT)), ("cufftHandle", ("hipfftHandle", CONV_TYPE, API_FFT)), ("cufftPlan1d", ("hipfftPlan1d", CONV_MATH_FUNC, API_FFT)), ("cufftPlan2d", ("hipfftPlan2d", CONV_MATH_FUNC, API_FFT)), ("cufftPlan3d", ("hipfftPlan3d", CONV_MATH_FUNC, API_FFT)), ("cufftPlanMany", ("hipfftPlanMany", CONV_MATH_FUNC, API_FFT)), ("cufftMakePlan1d", ("hipfftMakePlan1d", CONV_MATH_FUNC, API_FFT)), ("cufftMakePlan2d", ("hipfftMakePlan2d", CONV_MATH_FUNC, API_FFT)), ("cufftMakePlan3d", ("hipfftMakePlan3d", CONV_MATH_FUNC, API_FFT)), ("cufftMakePlanMany", ("hipfftMakePlanMany", CONV_MATH_FUNC, API_FFT)), ("cufftMakePlanMany64", ("hipfftMakePlanMany64", CONV_MATH_FUNC, API_FFT)), ("cufftGetSizeMany64", ("hipfftGetSizeMany64", CONV_MATH_FUNC, API_FFT)), ("cufftEstimate1d", ("hipfftEstimate1d", CONV_MATH_FUNC, API_FFT)), ("cufftEstimate2d", ("hipfftEstimate2d", CONV_MATH_FUNC, API_FFT)), ("cufftEstimate3d", ("hipfftEstimate3d", CONV_MATH_FUNC, API_FFT)), ("cufftEstimateMany", ("hipfftEstimateMany", CONV_MATH_FUNC, API_FFT)), ("cufftCreate", ("hipfftCreate", CONV_MATH_FUNC, API_FFT)), ("cufftGetSize1d", ("hipfftGetSize1d", CONV_MATH_FUNC, API_FFT)), ("cufftGetSize2d", ("hipfftGetSize2d", CONV_MATH_FUNC, API_FFT)), ("cufftGetSize3d", ("hipfftGetSize3d", CONV_MATH_FUNC, API_FFT)), ("cufftGetSizeMany", ("hipfftGetSizeMany", CONV_MATH_FUNC, API_FFT)), ("cufftGetSize", ("hipfftGetSize", CONV_MATH_FUNC, API_FFT)), ("cufftSetWorkArea", ("hipfftSetWorkArea", CONV_MATH_FUNC, API_FFT)), ( "cufftSetAutoAllocation", ("hipfftSetAutoAllocation", CONV_MATH_FUNC, API_FFT), ), ("cufftExecC2C", ("hipfftExecC2C", CONV_MATH_FUNC, API_FFT)), ("cufftExecR2C", ("hipfftExecR2C", CONV_MATH_FUNC, API_FFT)), ("cufftExecC2R", ("hipfftExecC2R", CONV_MATH_FUNC, API_FFT)), ("cufftExecZ2Z", ("hipfftExecZ2Z", CONV_MATH_FUNC, API_FFT)), ("cufftExecD2Z", ("hipfftExecD2Z", CONV_MATH_FUNC, API_FFT)), ("cufftExecZ2D", ("hipfftExecZ2D", CONV_MATH_FUNC, API_FFT)), ("cufftSetStream", ("hipfftSetStream", CONV_MATH_FUNC, API_FFT)), ("cufftDestroy", ("hipfftDestroy", CONV_MATH_FUNC, API_FFT)), ("cufftGetVersion", ("hipfftGetVersion", CONV_MATH_FUNC, API_FFT)), ( "cufftGetProperty", ("hipfftGetProperty", CONV_MATH_FUNC, API_FFT, HIP_UNSUPPORTED), ), ("nvrtcResult", ("hiprtcResult", CONV_TYPE, API_RTC)), ("NVRTC_SUCCESS", ("HIPRTC_SUCCESS", CONV_TYPE, API_RTC)), ( "NVRTC_ERROR_OUT_OF_MEMORY", ("HIPRTC_ERROR_OUT_OF_MEMORY", CONV_TYPE, API_RTC), ), ( "NVRTC_ERROR_PROGRAM_CREATION_FAILURE", ("HIPRTC_ERROR_PROGRAM_CREATION_FAILURE", CONV_TYPE, API_RTC), ), ( "NVRTC_ERROR_INVALID_INPUT", ("HIPRTC_ERROR_INVALID_INPUT", CONV_TYPE, API_RTC), ), ( "NVRTC_ERROR_INVALID_PROGRAM", ("HIPRTC_ERROR_INVALID_PROGRAM", CONV_TYPE, API_RTC), ), ("NVRTC_ERROR_COMPILATION", ("HIPRTC_ERROR_COMPILATION", CONV_TYPE, API_RTC)), ( "NVRTC_ERROR_BUILTIN_OPERATION_FAILURE", ("HIPRTC_ERROR_BUILTIN_OPERATION_FAILURE", CONV_TYPE, API_RTC), ), ( "NVRTC_ERROR_NO_NAME_EXPRESSIONS_AFTER_COMPILATION", ("HIPRTC_ERROR_NO_NAME_EXPRESSIONS_AFTER_COMPILATION", CONV_TYPE, API_RTC), ), ( "NVRTC_ERROR_NAME_EXPRESSION_NOT_VALID", ("HIPRTC_ERROR_NAME_EXPRESSION_NOT_VALID", CONV_TYPE, API_RTC), ), ( "NVRTC_ERROR_INTERNAL_ERROR", ("HIPRTC_ERROR_INTERNAL_ERROR", CONV_TYPE, API_RTC), ), ("nvrtcGetErrorString", ("hiprtcGetErrorString", CONV_JIT, API_RTC)), ("nvrtcVersion", ("hiprtcVersion", CONV_JIT, API_RTC)), ("nvrtcProgram", ("hiprtcProgram", CONV_TYPE, API_RTC)), ("nvrtcAddNameExpression", ("hiprtcAddNameExpression", CONV_JIT, API_RTC)), ("nvrtcCompileProgram", ("hiprtcCompileProgram", CONV_JIT, API_RTC)), ("nvrtcCreateProgram", ("hiprtcCreateProgram", CONV_JIT, API_RTC)), ("nvrtcDestroyProgram", ("hiprtcDestroyProgram", CONV_JIT, API_RTC)), ("nvrtcGetLoweredName", ("hiprtcGetLoweredName", CONV_JIT, API_RTC)), ("nvrtcGetProgramLog", ("hiprtcGetProgramLog", CONV_JIT, API_RTC)), ("nvrtcGetProgramLogSize", ("hiprtcGetProgramLogSize", CONV_JIT, API_RTC)), ("nvrtcGetPTX", ("hiprtcGetCode", CONV_JIT, API_RTC)), ("nvrtcGetPTXSize", ("hiprtcGetCodeSize", CONV_JIT, API_RTC)), ("thrust::cuda", ("thrust::hip", CONV_MATH_FUNC, API_BLAS)), ( "cudaCpuDeviceId", ("hipCpuDeviceId", CONV_TYPE, API_RUNTIME, HIP_UNSUPPORTED), ), # The caffe2 directory does a string match; pytorch does a word-boundary match. # Patterns such as 'cub::' will not match for pytorch. # We list all current uses of cub symbols for this reason. ("cub::", ("hipcub::", CONV_SPECIAL_FUNC, API_RUNTIME)), ("cub::ArgMax", ("hipcub::ArgMax", CONV_SPECIAL_FUNC, API_RUNTIME)), ("cub::ArgMin", ("hipcub::ArgMin", CONV_SPECIAL_FUNC, API_RUNTIME)), ("cub::BLOCK_REDUCE_WARP_REDUCTIONS", ("hipcub::BLOCK_REDUCE_WARP_REDUCTIONS", CONV_SPECIAL_FUNC, API_RUNTIME)), ("cub::BlockReduce", ("hipcub::BlockReduce", CONV_SPECIAL_FUNC, API_RUNTIME)), ("cub::BlockScan", ("hipcub::BlockScan", CONV_SPECIAL_FUNC, API_RUNTIME)), ("cub::CachingDeviceAllocator", ("hipcub::CachingDeviceAllocator", CONV_SPECIAL_FUNC, API_RUNTIME)), ("cub::CountingInputIterator", ("hipcub::CountingInputIterator", CONV_SPECIAL_FUNC, API_RUNTIME)), ("cub::DeviceRadixSort", ("hipcub::DeviceRadixSort", CONV_SPECIAL_FUNC, API_RUNTIME)), ("cub::DeviceReduce", ("hipcub::DeviceReduce", CONV_SPECIAL_FUNC, API_RUNTIME)), ("cub::DeviceRunLengthEncode", ("hipcub::DeviceRunLengthEncode", CONV_SPECIAL_FUNC, API_RUNTIME)), ("cub::DeviceScan", ("hipcub::DeviceScan", CONV_SPECIAL_FUNC, API_RUNTIME)), ("cub::DeviceSegmentedRadixSort", ("hipcub::DeviceSegmentedRadixSort", CONV_SPECIAL_FUNC, API_RUNTIME)), ("cub::DeviceSegmentedReduce", ("hipcub::DeviceSegmentedReduce", CONV_SPECIAL_FUNC, API_RUNTIME)), ("cub::DeviceSelect", ("hipcub::DeviceSelect", CONV_SPECIAL_FUNC, API_RUNTIME)), ("cub::KeyValuePair", ("hipcub::KeyValuePair", CONV_SPECIAL_FUNC, API_RUNTIME)), ("cub::Max", ("hipcub::Max", CONV_SPECIAL_FUNC, API_RUNTIME)), ("cub::Min", ("hipcub::Min", CONV_SPECIAL_FUNC, API_RUNTIME)), ("cub::Sum", ("hipcub::Sum", CONV_SPECIAL_FUNC, API_RUNTIME)), ("cub::ArgIndexInputIterator", ("hipcub::ArgIndexInputIterator", CONV_SPECIAL_FUNC, API_RUNTIME)), ("cub::TransformInputIterator", ("hipcub::TransformInputIterator", CONV_SPECIAL_FUNC, API_RUNTIME)), ("cub::WarpReduce", ("hipcub::WarpReduce", CONV_SPECIAL_FUNC, API_RUNTIME)), ("nvtxMark", ("roctxMark", CONV_OTHER, API_ROCTX)), ("nvtxMarkA", ("roctxMarkA", CONV_OTHER, API_ROCTX)), ("nvtxRangePushA", ("roctxRangePushA", CONV_OTHER, API_ROCTX)), ("nvtxRangePop", ("roctxRangePop", CONV_OTHER, API_ROCTX)), ("nvtxRangeStartA", ("roctxRangeStartA", CONV_OTHER, API_ROCTX)), ("nvtxRangeEnd", ("roctxRangeStop", CONV_OTHER, API_ROCTX)), ] ) CUDA_SPARSE_MAP = collections.OrderedDict( [ ("cusparseStatus_t", ("hipsparseStatus_t", CONV_MATH_FUNC, API_SPARSE)), ("cusparseHandle_t", ("hipsparseHandle_t", CONV_MATH_FUNC, API_SPARSE)), ("cuComplex", ("hipComplex", CONV_TYPE, API_SPARSE)), ("cuDoubleComplex", ("hipDoubleComplex", CONV_TYPE, API_SPARSE)), ( "CUSPARSE_POINTER_MODE_HOST", ("HIPSPARSE_POINTER_MODE_HOST", CONV_NUMERIC_LITERAL, API_SPARSE), ), ("cusparseOperation_t", ("hipsparseOperation_t", CONV_TYPE, API_SPARSE)), ( "cusparseCreateMatDescr", ("hipsparseCreateMatDescr", CONV_MATH_FUNC, API_SPARSE), ), ("cusparseCreate", ("hipsparseCreate", CONV_MATH_FUNC, API_SPARSE)), ( "cusparseDestroyMatDescr", ("hipsparseDestroyMatDescr", CONV_MATH_FUNC, API_SPARSE), ), ("cusparseDestroy", ("hipsparseDestroy", CONV_MATH_FUNC, API_SPARSE)), ("cusparseXcoo2csr", ("hipsparseXcoo2csr", CONV_MATH_FUNC, API_SPARSE)), ("cusparseMatDescr_t", ("hipsparseMatDescr_t", CONV_MATH_FUNC, API_SPARSE)), ("cusparseDiagType_t", ("hipsparseDiagType_t", CONV_TYPE, API_SPARSE)), ("CUSPARSE_DIAG_TYPE_UNIT", ("HIPSPARSE_DIAG_TYPE_UNIT", CONV_NUMERIC_LITERAL, API_SPARSE)), ("CUSPARSE_DIAG_TYPE_NON_UNIT", ("HIPSPARSE_DIAG_TYPE_NON_UNIT", CONV_NUMERIC_LITERAL, API_SPARSE)), ("cusparseSetMatDiagType", ("hipsparseSetMatDiagType", CONV_MATH_FUNC, API_SPARSE)), ("cusparseFillMode_t", ("hipsparseFillMode_t", CONV_TYPE, API_SPARSE)), ("CUSPARSE_FILL_MODE_UPPER", ("HIPSPARSE_FILL_MODE_UPPER", CONV_NUMERIC_LITERAL, API_SPARSE)), ("CUSPARSE_FILL_MODE_LOWER", ("HIPSPARSE_FILL_MODE_LOWER", CONV_NUMERIC_LITERAL, API_SPARSE)), ("cusparseSetMatFillMode", ("hipsparseSetMatFillMode", CONV_MATH_FUNC, API_SPARSE)), ("cusparseDirection_t", ("hipsparseDirection_t", CONV_TYPE, API_SPARSE)), ("CUSPARSE_DIRECTION_ROW", ("HIPSPARSE_DIRECTION_ROW", CONV_NUMERIC_LITERAL, API_SPARSE)), ("CUSPARSE_DIRECTION_COLUMN", ("HIPSPARSE_DIRECTION_COLUMN", CONV_NUMERIC_LITERAL, API_SPARSE)), ("cusparseSolvePolicy_t", ("hipsparseSolvePolicy_t", CONV_TYPE, API_SPARSE)), ("CUSPARSE_SOLVE_POLICY_NO_LEVEL", ("HIPSPARSE_SOLVE_POLICY_NO_LEVEL", CONV_NUMERIC_LITERAL, API_SPARSE)), ("CUSPARSE_SOLVE_POLICY_USE_LEVEL", ("HIPSPARSE_SOLVE_POLICY_USE_LEVEL", CONV_NUMERIC_LITERAL, API_SPARSE)), ("cusparseCreateBsrsv2Info", ("hipsparseCreateBsrsv2Info", CONV_MATH_FUNC, API_SPARSE)), ("cusparseCreateBsrsm2Info", ("hipsparseCreateBsrsm2Info", CONV_MATH_FUNC, API_SPARSE)), ("cusparseDestroyBsrsv2Info", ("hipsparseDestroyBsrsv2Info", CONV_MATH_FUNC, API_SPARSE)), ("cusparseDestroyBsrsm2Info", ("hipsparseDestroyBsrsm2Info", CONV_MATH_FUNC, API_SPARSE)), ("cusparseSbsrmm", ("hipsparseSbsrmm", CONV_MATH_FUNC, API_SPARSE)), ("cusparseDbsrmm", ("hipsparseDbsrmm", CONV_MATH_FUNC, API_SPARSE)), ("cusparseCbsrmm", ("hipsparseCbsrmm", CONV_MATH_FUNC, API_SPARSE)), ("cusparseZbsrmm", ("hipsparseZbsrmm", CONV_MATH_FUNC, API_SPARSE)), ("cusparseSbsrmv", ("hipsparseSbsrmv", CONV_MATH_FUNC, API_SPARSE)), ("cusparseDbsrmv", ("hipsparseDbsrmv", CONV_MATH_FUNC, API_SPARSE)), ("cusparseCbsrmv", ("hipsparseCbsrmv", CONV_MATH_FUNC, API_SPARSE)), ("cusparseZbsrmv", ("hipsparseZbsrmv", CONV_MATH_FUNC, API_SPARSE)), ("cusparseSbsrsv2_bufferSize", ("hipsparseSbsrsv2_bufferSize", CONV_MATH_FUNC, API_SPARSE)), ("cusparseDbsrsv2_bufferSize", ("hipsparseDbsrsv2_bufferSize", CONV_MATH_FUNC, API_SPARSE)), ("cusparseCbsrsv2_bufferSize", ("hipsparseCbsrsv2_bufferSize", CONV_MATH_FUNC, API_SPARSE)), ("cusparseZbsrsv2_bufferSize", ("hipsparseZbsrsv2_bufferSize", CONV_MATH_FUNC, API_SPARSE)), ("cusparseSbsrsv2_analysis", ("hipsparseSbsrsv2_analysis", CONV_MATH_FUNC, API_SPARSE)), ("cusparseDbsrsv2_analysis", ("hipsparseDbsrsv2_analysis", CONV_MATH_FUNC, API_SPARSE)), ("cusparseCbsrsv2_analysis", ("hipsparseCbsrsv2_analysis", CONV_MATH_FUNC, API_SPARSE)), ("cusparseZbsrsv2_analysis", ("hipsparseZbsrsv2_analysis", CONV_MATH_FUNC, API_SPARSE)), ("cusparseSbsrsv2_solve", ("hipsparseSbsrsv2_solve", CONV_MATH_FUNC, API_SPARSE)), ("cusparseDbsrsv2_solve", ("hipsparseDbsrsv2_solve", CONV_MATH_FUNC, API_SPARSE)), ("cusparseCbsrsv2_solve", ("hipsparseCbsrsv2_solve", CONV_MATH_FUNC, API_SPARSE)), ("cusparseZbsrsv2_solve", ("hipsparseZbsrsv2_solve", CONV_MATH_FUNC, API_SPARSE)), ("cusparseSbsrsm2_bufferSize", ("hipsparseSbsrsm2_bufferSize", CONV_MATH_FUNC, API_SPARSE)), ("cusparseDbsrsm2_bufferSize", ("hipsparseDbsrsm2_bufferSize", CONV_MATH_FUNC, API_SPARSE)), ("cusparseCbsrsm2_bufferSize", ("hipsparseCbsrsm2_bufferSize", CONV_MATH_FUNC, API_SPARSE)), ("cusparseZbsrsm2_bufferSize", ("hipsparseZbsrsm2_bufferSize", CONV_MATH_FUNC, API_SPARSE)), ("cusparseSbsrsm2_analysis", ("hipsparseSbsrsm2_analysis", CONV_MATH_FUNC, API_SPARSE)), ("cusparseDbsrsm2_analysis", ("hipsparseDbsrsm2_analysis", CONV_MATH_FUNC, API_SPARSE)), ("cusparseCbsrsm2_analysis", ("hipsparseCbsrsm2_analysis", CONV_MATH_FUNC, API_SPARSE)), ("cusparseZbsrsm2_analysis", ("hipsparseZbsrsm2_analysis", CONV_MATH_FUNC, API_SPARSE)), ("cusparseSbsrsm2_solve", ("hipsparseSbsrsm2_solve", CONV_MATH_FUNC, API_SPARSE)), ("cusparseDbsrsm2_solve", ("hipsparseDbsrsm2_solve", CONV_MATH_FUNC, API_SPARSE)), ("cusparseCbsrsm2_solve", ("hipsparseCbsrsm2_solve", CONV_MATH_FUNC, API_SPARSE)), ("cusparseZbsrsm2_solve", ("hipsparseZbsrsm2_solve", CONV_MATH_FUNC, API_SPARSE)), ("cusparseScsrmm2", ("hipsparseScsrmm2", CONV_MATH_FUNC, API_SPARSE)), ("cusparseDcsrmm2", ("hipsparseDcsrmm2", CONV_MATH_FUNC, API_SPARSE)), ("cusparseCcsrmm2", ("hipsparseCcsrmm2", CONV_MATH_FUNC, API_SPARSE)), ("cusparseZcsrmm2", ("hipsparseZcsrmm2", CONV_MATH_FUNC, API_SPARSE)), ("cusparseScsrmm", ("hipsparseScsrmm", CONV_MATH_FUNC, API_SPARSE)), ("cusparseDcsrmm", ("hipsparseDcsrmm", CONV_MATH_FUNC, API_SPARSE)), ( "cusparseXcsrsort_bufferSizeExt", ("hipsparseXcsrsort_bufferSizeExt", CONV_MATH_FUNC, API_SPARSE), ), ("cusparseCreateCsrgemm2Info", ("hipsparseCreateCsrgemm2Info", CONV_MATH_FUNC, API_SPARSE)), ( "cusparseDestroyCsrgemm2Info", ("hipsparseDestroyCsrgemm2Info", CONV_MATH_FUNC, API_SPARSE), ), ("cusparseXcsrgemm2Nnz", ("hipsparseXcsrgemm2Nnz", CONV_MATH_FUNC, API_SPARSE)), ("cusparseDcsrgemm2_bufferSizeExt", ("hipsparseDcsrgemm2_bufferSizeExt", CONV_MATH_FUNC, API_SPARSE)), ("cusparseScsrgemm2_bufferSizeExt", ("hipsparseScsrgemm2_bufferSizeExt", CONV_MATH_FUNC, API_SPARSE)), ("cusparseDcsrgemm2", ("hipsparseDcsrgemm2", CONV_MATH_FUNC, API_SPARSE)), ("cusparseScsrgemm2", ("hipsparseScsrgemm2", CONV_MATH_FUNC, API_SPARSE)), ("cusparseSetPointerMode", ("hipsparseSetPointerMode", CONV_MATH_FUNC, API_SPARSE)), ("cusparseXcsrgeam2Nnz", ("hipsparseXcsrgeam2Nnz", CONV_MATH_FUNC, API_SPARSE)), ("cusparseScsrgeam2_bufferSizeExt", ("hipsparseScsrgeam2_bufferSizeExt", CONV_MATH_FUNC, API_SPARSE)), ("cusparseDcsrgeam2_bufferSizeExt", ("hipsparseDcsrgeam2_bufferSizeExt", CONV_MATH_FUNC, API_SPARSE)), ("cusparseCcsrgeam2_bufferSizeExt", ("hipsparseCcsrgeam2_bufferSizeExt", CONV_MATH_FUNC, API_SPARSE)), ("cusparseZcsrgeam2_bufferSizeExt", ("hipsparseZcsrgeam2_bufferSizeExt", CONV_MATH_FUNC, API_SPARSE)), ("cusparseScsrgeam2", ("hipsparseScsrgeam2", CONV_MATH_FUNC, API_SPARSE)), ("cusparseDcsrgeam2", ("hipsparseDcsrgeam2", CONV_MATH_FUNC, API_SPARSE)), ("cusparseCcsrgeam2", ("hipsparseCcsrgeam2", CONV_MATH_FUNC, API_SPARSE)), ("cusparseZcsrgeam2", ("hipsparseZcsrgeam2", CONV_MATH_FUNC, API_SPARSE)), ("cusparseXcsrsort", ("hipsparseXcsrsort", CONV_MATH_FUNC, API_SPARSE)), ("cusparseXbsrsm2_zeroPivot", ("hipsparseXbsrsm2_zeroPivot", CONV_MATH_FUNC, API_SPARSE)), ("cusparseXbsrsv2_zeroPivot", ("hipsparseXbsrsv2_zeroPivot", CONV_MATH_FUNC, API_SPARSE)), ( "cusparseXcoosort_bufferSizeExt", ("hipsparseXcoosort_bufferSizeExt", CONV_MATH_FUNC, API_SPARSE), ), ( "cusparseXcoosortByRow", ("hipsparseXcoosortByRow", CONV_MATH_FUNC, API_SPARSE), ), ("cusparseSetStream", ("hipsparseSetStream", CONV_MATH_FUNC, API_SPARSE)), ( "cusparseCreateIdentityPermutation", ("hipsparseCreateIdentityPermutation", CONV_MATH_FUNC, API_SPARSE), ), ( "cusparseSetMatIndexBase", ("hipsparseSetMatIndexBase", CONV_MATH_FUNC, API_SPARSE), ), ("cusparseSetMatType", ("hipsparseSetMatType", CONV_MATH_FUNC, API_SPARSE)), ("cusparseSpMV", ("hipsparseSpMV", CONV_MATH_FUNC, API_SPARSE)), ("cusparseSpMV_bufferSize", ("hipsparseSpMV_bufferSize", CONV_MATH_FUNC, API_SPARSE)), ("cusparseSpMM", ("hipsparseSpMM", CONV_MATH_FUNC, API_SPARSE)), ("cusparseSpMM_bufferSize", ("hipsparseSpMM_bufferSize", CONV_MATH_FUNC, API_SPARSE)), ("cusparseCreateDnMat", ("hipsparseCreateDnMat", CONV_MATH_FUNC, API_SPARSE)), ("cusparseDnMatSetStridedBatch", ("hipsparseDnMatSetStridedBatch", CONV_MATH_FUNC, API_SPARSE)), ("cusparseCsrSetStridedBatch", ("hipsparseCsrSetStridedBatch", CONV_MATH_FUNC, API_SPARSE)), ("cusparseCreateDnVec", ("hipsparseCreateDnVec", CONV_MATH_FUNC, API_SPARSE)), ("cusparseCreateCsr", ("hipsparseCreateCsr", CONV_MATH_FUNC, API_SPARSE)), ("cusparseDestroyDnMat", ("hipsparseDestroyDnMat", CONV_MATH_FUNC, API_SPARSE)), ("cusparseDestroyDnVec", ("hipsparseDestroyDnVec", CONV_MATH_FUNC, API_SPARSE)), ("cusparseDestroySpMat", ("hipsparseDestroySpMat", CONV_MATH_FUNC, API_SPARSE)), ("cusparseCreateCoo", ("hipsparseCreateCoo", CONV_MATH_FUNC, API_SPARSE)), ("cusparseCreateCsr", ("hipsparseCreateCsr", CONV_MATH_FUNC, API_SPARSE)), ("cusparseDnMatSetStridedBatch", ("hipsparseDnMatSetStridedBatch", CONV_MATH_FUNC, API_SPARSE)), ("cusparseSpMVAlg_t", ("hipsparseSpMVAlg_t", CONV_TYPE, API_SPARSE)), ("cusparseSpMMAlg_t", ("hipsparseSpMMAlg_t", CONV_TYPE, API_SPARSE)), ("cusparseIndexType_t", ("hipsparseIndexType_t", CONV_TYPE, API_SPARSE)), # Unsupported ("cusparseDnMatDescr", ("hipsparseDnMatDescr", CONV_TYPE, API_SPARSE)), # Unsupported ("cusparseDnVecDescr", ("hipsparseDnVecDescr", CONV_TYPE, API_SPARSE)), # Unsupported ("cusparseSpMatDescr", ("hipsparseSpMatDescr", CONV_TYPE, API_SPARSE)), ("cusparseDnMatDescr_t", ("hipsparseDnMatDescr_t", CONV_TYPE, API_SPARSE)), ("cusparseDnVecDescr_t", ("hipsparseDnVecDescr_t", CONV_TYPE, API_SPARSE)), ("cusparseSpMatDescr_t", ("hipsparseSpMatDescr_t", CONV_TYPE, API_SPARSE)), ("CUSPARSE_INDEX_32I", ("HIPSPARSE_INDEX_32I", CONV_NUMERIC_LITERAL, API_SPARSE)), ("CUSPARSE_INDEX_64I", ("HIPSPARSE_INDEX_64I", CONV_NUMERIC_LITERAL, API_SPARSE)), ("CUSPARSE_ORDER_COL", ("HIPSPARSE_ORDER_COLUMN", CONV_NUMERIC_LITERAL, API_SPARSE)), ("CUSPARSE_MV_ALG_DEFAULT", ("HIPSPARSE_MV_ALG_DEFAULT", CONV_NUMERIC_LITERAL, API_SPARSE)), ("CUSPARSE_MM_ALG_DEFAULT", ("HIPSPARSE_MM_ALG_DEFAULT", CONV_NUMERIC_LITERAL, API_SPARSE)), ("CUSPARSE_COOMM_ALG1", ("HIPSPARSE_COOMM_ALG1", CONV_NUMERIC_LITERAL, API_SPARSE)), ("CUSPARSE_COOMM_ALG2", ("HIPSPARSE_COOMM_ALG2", CONV_NUMERIC_LITERAL, API_SPARSE)), ("CUSPARSE_COOMM_ALG3", ("HIPSPARSE_COOMM_ALG3", CONV_NUMERIC_LITERAL, API_SPARSE)), ("CUSPARSE_COOMV_ALG", ("HIPSPARSE_COOMV_ALG", CONV_NUMERIC_LITERAL, API_SPARSE)), ("CUSPARSE_CSRMM_ALG1", ("HIPSPARSE_CSRMM_ALG1", CONV_NUMERIC_LITERAL, API_SPARSE)), ( "CUSPARSE_STATUS_SUCCESS", ("HIPSPARSE_STATUS_SUCCESS", CONV_NUMERIC_LITERAL, API_SPARSE), ), ( "CUSPARSE_STATUS_NOT_INITIALIZED", ("HIPSPARSE_STATUS_NOT_INITIALIZED", CONV_NUMERIC_LITERAL, API_SPARSE), ), ( "CUSPARSE_STATUS_ALLOC_FAILED", ("HIPSPARSE_STATUS_ALLOC_FAILED", CONV_NUMERIC_LITERAL, API_SPARSE), ), ( "CUSPARSE_STATUS_INVALID_VALUE", ("HIPSPARSE_STATUS_INVALID_VALUE", CONV_NUMERIC_LITERAL, API_SPARSE), ), ( "CUSPARSE_STATUS_MAPPING_ERROR", ("HIPSPARSE_STATUS_MAPPING_ERROR", CONV_NUMERIC_LITERAL, API_SPARSE), ), ( "CUSPARSE_STATUS_EXECUTION_FAILED", ("HIPSPARSE_STATUS_EXECUTION_FAILED", CONV_NUMERIC_LITERAL, API_SPARSE), ), ( "CUSPARSE_STATUS_INTERNAL_ERROR", ("HIPSPARSE_STATUS_INTERNAL_ERROR", CONV_NUMERIC_LITERAL, API_SPARSE), ), ( "CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED", ( "HIPSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED", CONV_NUMERIC_LITERAL, API_SPARSE, ), ), ( "CUSPARSE_STATUS_ARCH_MISMATCH", ("HIPSPARSE_STATUS_ARCH_MISMATCH", CONV_NUMERIC_LITERAL, API_SPARSE), ), ( "CUSPARSE_STATUS_ZERO_PIVOT", ("HIPSPARSE_STATUS_ZERO_PIVOT", CONV_NUMERIC_LITERAL, API_SPARSE), ), ( "CUSPARSE_OPERATION_TRANSPOSE", ("HIPSPARSE_OPERATION_TRANSPOSE", CONV_NUMERIC_LITERAL, API_SPARSE), ), ( "CUSPARSE_OPERATION_NON_TRANSPOSE", ("HIPSPARSE_OPERATION_NON_TRANSPOSE", CONV_NUMERIC_LITERAL, API_SPARSE), ), ( "CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE", ( "HIPSPARSE_OPERATION_CONJUGATE_TRANSPOSE", CONV_NUMERIC_LITERAL, API_SPARSE, ), ), ( "CUSPARSE_INDEX_BASE_ZERO", ("HIPSPARSE_INDEX_BASE_ZERO", CONV_NUMERIC_LITERAL, API_SPARSE), ), ( "CUSPARSE_INDEX_BASE_ONE", ("HIPSPARSE_INDEX_BASE_ONE", CONV_NUMERIC_LITERAL, API_SPARSE), ), ( "CUSPARSE_MATRIX_TYPE_GENERAL", ("HIPSPARSE_MATRIX_TYPE_GENERAL", CONV_NUMERIC_LITERAL, API_SPARSE), ), ] ) PYTORCH_SPECIFIC_MAPPINGS = collections.OrderedDict( [ ("USE_CUDA", ("USE_ROCM", API_PYTORCH)), ("CUDA_VERSION", ("TORCH_HIP_VERSION", API_PYTORCH)), ("cudaHostAllocator", ("hipHostAllocator", API_PYTORCH)), ("cudaDeviceAllocator", ("hipDeviceAllocator", API_PYTORCH)), ("define MAX_NUM_BLOCKS 200", ("define MAX_NUM_BLOCKS 64", API_PYTORCH)), ("cuda::CUDAGuard", ("hip::HIPGuardMasqueradingAsCUDA", API_PYTORCH)), ("CUDAGuard", ("HIPGuardMasqueradingAsCUDA", API_PYTORCH)), ( "cuda::OptionalCUDAGuard", ("hip::OptionalHIPGuardMasqueradingAsCUDA", API_PYTORCH), ), ("OptionalCUDAGuard", ("OptionalHIPGuardMasqueradingAsCUDA", API_PYTORCH)), ( "cuda::CUDAStreamGuard", ("hip::HIPStreamGuardMasqueradingAsCUDA", API_PYTORCH), ), ("CUDAStreamGuard", ("HIPStreamGuardMasqueradingAsCUDA", API_PYTORCH)), ( "cuda::OptionalCUDAStreamGuard", ("hip::OptionalHIPStreamGuardMasqueradingAsCUDA", API_PYTORCH), ), ( "OptionalCUDAStreamGuard", ("OptionalHIPStreamGuardMasqueradingAsCUDA", API_PYTORCH), ), ( "cuda::CUDAMultiStreamGuard", ("hip::HIPMultiStreamGuardMasqueradingAsCUDA", API_PYTORCH), ), ( "CUDAMultiStreamGuard", ("HIPMultiStreamGuardMasqueradingAsCUDA", API_PYTORCH), ), # Only get needs to be transformed this way; all the other ones can go # straight to the normal versions hip::HIPCachingAllocator ( "cuda::CUDACachingAllocator::get", ("hip::HIPCachingAllocatorMasqueradingAsCUDA::get", API_PYTORCH), ), ( "CUDACachingAllocator::get", ("HIPCachingAllocatorMasqueradingAsCUDA::get", API_PYTORCH), ), ( "cuda::CUDACachingAllocator::recordStream", ( "hip::HIPCachingAllocatorMasqueradingAsCUDA::recordStreamMasqueradingAsCUDA", API_PYTORCH, ), ), ( "CUDACachingAllocator::recordStream", ( "HIPCachingAllocatorMasqueradingAsCUDA::recordStreamMasqueradingAsCUDA", API_PYTORCH, ), ), ("cuda::CUDAStream", ("hip::HIPStreamMasqueradingAsCUDA", API_PYTORCH)), ("CUDAStream", ("HIPStreamMasqueradingAsCUDA", API_PYTORCH)), ( "cuda::getStreamFromPool", ("hip::getStreamFromPoolMasqueradingAsCUDA", API_PYTORCH), ), ("getStreamFromPool", ("getStreamFromPoolMasqueradingAsCUDA", API_PYTORCH)), ( "cuda::getDefaultCUDAStream", ("hip::getDefaultHIPStreamMasqueradingAsCUDA", API_PYTORCH), ), ( "cuda::getStreamFromExternal", ("hip::getStreamFromExternalMasqueradingAsCUDA", API_PYTORCH), ), ("getStreamFromExternal", ("getStreamFromExternalMasqueradingAsCUDA", API_PYTORCH)), ( "cuda::getDefaultCUDAStream", ("hip::getDefaultHIPStreamMasqueradingAsCUDA", API_PYTORCH), ), ( "getDefaultCUDAStream", ("getDefaultHIPStreamMasqueradingAsCUDA", API_PYTORCH), ), ( "cuda::getCurrentCUDAStream", ("hip::getCurrentHIPStreamMasqueradingAsCUDA", API_PYTORCH), ), ( "getCurrentCUDAStream", ("getCurrentHIPStreamMasqueradingAsCUDA", API_PYTORCH), ), ( "cuda::setCurrentCUDAStream", ("hip::setCurrentHIPStreamMasqueradingAsCUDA", API_PYTORCH), ), ( "setCurrentCUDAStream", ("setCurrentHIPStreamMasqueradingAsCUDA", API_PYTORCH), ), # TODO: Undo this special-case; see the header for motivation behind this # hack. It's VERY important this is only applied to PyTorch HIPify. ( "c10/cuda/CUDAGuard.h", ("ATen/hip/impl/HIPGuardImplMasqueradingAsCUDA.h", API_PYTORCH), ), ( "c10/cuda/CUDACachingAllocator.h", ("ATen/hip/impl/HIPCachingAllocatorMasqueradingAsCUDA.h", API_PYTORCH), ), ( "c10/cuda/CUDAStream.h", ("ATen/hip/impl/HIPStreamMasqueradingAsCUDA.h", API_PYTORCH), ), ("gloo/cuda.h", ("gloo/hip.h", API_PYTORCH)), ( "gloo/cuda_allreduce_halving_doubling.h", ("gloo/hip_allreduce_halving_doubling.h", API_PYTORCH), ), ( "gloo/cuda_allreduce_halving_doubling_pipelined.h", ("gloo/hip_allreduce_halving_doubling_pipelined.h", API_PYTORCH), ), ("gloo/cuda_allreduce_ring.h", ("gloo/hip_allreduce_ring.h", API_PYTORCH)), ( "gloo/cuda_broadcast_one_to_all.h", ("gloo/hip_broadcast_one_to_all.h", API_PYTORCH), ), ( "gloo::CudaAllreduceHalvingDoublingPipelined", ("gloo::HipAllreduceHalvingDoublingPipelined", API_PYTORCH), ), ("gloo::CudaBroadcastOneToAll", ("gloo::HipBroadcastOneToAll", API_PYTORCH)), ("gloo::CudaHostWorkspace", ("gloo::HipHostWorkspace", API_PYTORCH)), ("gloo::CudaDeviceWorkspace", ("gloo::HipDeviceWorkspace", API_PYTORCH)), ("CUDNN_RNN_RELU", ("miopenRNNRELU", API_PYTORCH)), ("CUDNN_RNN_TANH", ("miopenRNNTANH", API_PYTORCH)), ("CUDNN_LSTM", ("miopenLSTM", API_PYTORCH)), ("CUDNN_GRU", ("miopenGRU", API_PYTORCH)), ("cudnnRNNMode_t", ("miopenRNNMode_t", API_PYTORCH)), ("magma_queue_create_from_cuda", ("magma_queue_create_from_hip", API_PYTORCH)), ] ) CAFFE2_SPECIFIC_MAPPINGS = collections.OrderedDict( [ ("cuda_stream", ("hip_stream", API_CAFFE2)), # if the header is a native hip folder (under hip directory), # there is no need to add a hip path to it; the trie in hipify script # takes this mapping order to forbid further replacement ("/hip/", ("/hip/", API_CAFFE2)), ("/context_gpu", ("/hip/context_gpu", API_CAFFE2)), ("/common_gpu", ("/hip/common_gpu", API_CAFFE2)), ("/cuda_nccl_gpu", ("/hip/hip_nccl_gpu", API_CAFFE2)), ("/mixed_utils", ("/hip/mixed_utils", API_CAFFE2)), ("/operator_fallback_gpu", ("/hip/operator_fallback_gpu", API_CAFFE2)), ( "/spatial_batch_norm_op_impl", ("/hip/spatial_batch_norm_op_impl", API_CAFFE2), ), ( "/recurrent_network_executor_gpu", ("/hip/recurrent_network_executor_gpu", API_CAFFE2), ), ( "/generate_proposals_op_util_nms_gpu", ("/hip/generate_proposals_op_util_nms_gpu", API_CAFFE2), ), ("/max_pool_with_index_gpu", ("/hip/max_pool_with_index_gpu", API_CAFFE2)), ("/THCCachingAllocator_gpu", ("/hip/THCCachingAllocator_gpu", API_CAFFE2)), ("/top_k_heap_selection", ("/hip/top_k_heap_selection", API_CAFFE2)), ("/top_k_radix_selection", ("/hip/top_k_radix_selection", API_CAFFE2)), ("/GpuAtomics", ("/hip/GpuAtomics", API_CAFFE2)), ("/GpuDefs", ("/hip/GpuDefs", API_CAFFE2)), ("/GpuScanUtils", ("/hip/GpuScanUtils", API_CAFFE2)), ("/GpuBitonicSort", ("/hip/GpuBitonicSort", API_CAFFE2)), ("/math/reduce.cuh", ("/math/hip/reduce.cuh", API_CAFFE2)), ("/sgd/adagrad_fused_op_gpu.cuh", ("/sgd/hip/adagrad_fused_op_gpu.cuh", API_CAFFE2)), ("/operators/segment_reduction_op_gpu.cuh", ("/operators/hip/segment_reduction_op_gpu.cuh", API_CAFFE2)), ("/gather_op.cuh", ("/hip/gather_op.cuh", API_CAFFE2)), ("caffe2/core/common_cudnn.h", ("caffe2/core/hip/common_miopen.h", API_CAFFE2)), ("REGISTER_CUDA_OPERATOR", ("REGISTER_HIP_OPERATOR", API_CAFFE2)), ("CUDA_1D_KERNEL_LOOP", ("HIP_1D_KERNEL_LOOP", API_CAFFE2)), ("CUDAContext", ("HIPContext", API_CAFFE2)), ("CAFFE_CUDA_NUM_THREADS", ("CAFFE_HIP_NUM_THREADS", API_CAFFE2)), ("HasCudaGPU", ("HasHipGPU", API_CAFFE2)), ("__expf", ("expf", API_CAFFE2)), ("CUBLAS_ENFORCE", ("ROCBLAS_ENFORCE", API_CAFFE2)), ("CUBLAS_CHECK", ("ROCBLAS_CHECK", API_CAFFE2)), ("cublas_handle", ("rocblashandle", API_CAFFE2)), ("CURAND_ENFORCE", ("HIPRAND_ENFORCE", API_CAFFE2)), ("CURAND_CHECK", ("HIPRAND_CHECK", API_CAFFE2)), ("curandGenerateUniform", ("hiprandGenerateUniform", API_CAFFE2)), ("curand_generator", ("hiprand_generator", API_CAFFE2)), ("CaffeCudaGetDevice", ("CaffeHipGetDevice", API_CAFFE2)), # do not rename CUDA_KERNEL_ASSERT, lazyInitCUDA in caffe2 sources # the ordered dict guarantees this pattern will match first, before "CUDA" ("CUDA_KERNEL_ASSERT", ("CUDA_KERNEL_ASSERT", API_CAFFE2)), ("lazyInitCUDA", ("lazyInitCUDA", API_CAFFE2)), ("CUDA_VERSION", ("TORCH_HIP_VERSION", API_CAFFE2)), ("CUDA", ("HIP", API_CAFFE2)), ("Cuda", ("Hip", API_CAFFE2)), ("cuda_", ("hip_", API_CAFFE2)), ("_cuda", ("_hip", API_CAFFE2)), ("CUDNN", ("MIOPEN", API_CAFFE2)), ("CuDNN", ("MIOPEN", API_CAFFE2)), ("cudnn", ("miopen", API_CAFFE2)), ("namespace cuda", ("namespace hip", API_CAFFE2)), ("cuda::CUDAGuard", ("hip::HIPGuard", API_CAFFE2)), ("cuda::OptionalCUDAGuard", ("hip::OptionalHIPGuard", API_CAFFE2)), ("cuda::CUDAStreamGuard", ("hip::HIPStreamGuard", API_CAFFE2)), ("cuda::OptionalCUDAStreamGuard", ("hip::OptionalHIPStreamGuard", API_CAFFE2)), ("c10/cuda/CUDAGuard.h", ("c10/hip/HIPGuard.h", API_CAFFE2)), ("gloo/cuda", ("gloo/hip", API_CAFFE2)), ] ) # We must tread very carefully here. Blanket conversions like are done # in CAFFE2_SPECIFIC_MAPPINGS are not presently supported on PyTorch, # because a regex for CUDA will also match a filename like CUDAGuard.h, # but the HIPIFY script doesn't presently move the file and so the substitution # will be invalid. Instead, we specifically list out every identifier # and file from c10/cuda which may be used externally, and do substitutions this # way. # # NB: if you want a transformation to ONLY apply to the c10/ directory, # put it as API_CAFFE2 C10_MAPPINGS = collections.OrderedDict( [ ("cuda::compat::", ("hip::compat::", API_C10)), ("c10/cuda/CUDAException.h", ("c10/hip/HIPException.h", API_C10)), ("c10/cuda/CUDAMacros.h", ("c10/hip/HIPMacros.h", API_C10)), ("c10/cuda/CUDAMathCompat.h", ("c10/hip/HIPMathCompat.h", API_C10)), ("c10/cuda/CUDAFunctions.h", ("c10/hip/HIPFunctions.h", API_C10)), ("c10/cuda/CUDAMiscFunctions.h", ("c10/hip/HIPMiscFunctions.h", API_C10)), ("c10/cuda/CUDAStream.h", ("c10/hip/HIPStream.h", API_C10)), ("c10/cuda/CUDAGraphsC10Utils.h", ("c10/hip/HIPGraphsC10Utils.h", API_C10)), ("c10/cuda/CUDACachingAllocator.h", ("c10/hip/HIPCachingAllocator.h", API_C10)), ("c10/cuda/impl/CUDATest.h", ("c10/hip/impl/HIPTest.h", API_C10)), ("c10/cuda/impl/CUDAGuardImpl.h", ("c10/hip/impl/HIPGuardImpl.h", API_C10)), ( "c10/cuda/impl/cuda_cmake_macros.h", ("c10/hip/impl/hip_cmake_macros.h", API_C10), ), ("C10_CUDA_CHECK", ("C10_HIP_CHECK", API_C10)), ("C10_CUDA_CHECK_WARN", ("C10_HIP_CHECK_WARN", API_C10)), ("c10::cuda", ("c10::hip", API_C10)), ("cuda::CUDAStream", ("hip::HIPStream", API_C10)), ("CUDAStream", ("HIPStream", API_C10)), # This substitution is not permissible, because there's another copy of this # function in torch/cuda.h # ("cuda::device_count", ("hip::device_count", API_C10)), ("cuda::current_device", ("hip::current_device", API_C10)), ("cuda::set_device", ("hip::set_device", API_C10)), ("cuda::device_synchronize", ("hip::device_synchronize", API_C10)), ("cuda::getStreamFromPool", ("hip::getStreamFromPool", API_C10)), ("getStreamFromPool", ("getStreamFromPool", API_C10)), ("cuda::getDefaultCUDAStream", ("hip::getDefaultHIPStream", API_C10)), ("getDefaultCUDAStream", ("getDefaultHIPStream", API_C10)), ("cuda::getCurrentCUDAStream", ("hip::getCurrentHIPStream", API_C10)), ("getCurrentCUDAStream", ("getCurrentHIPStream", API_C10)), ("cuda::get_cuda_check_prefix", ("hip::get_cuda_check_prefix", API_C10)), ("cuda::setCurrentCUDAStream", ("hip::setCurrentHIPStream", API_C10)), ("setCurrentCUDAStream", ("setCurrentHIPStream", API_C10)), ("cuda::CUDACachingAllocator", ("hip::HIPCachingAllocator", API_C10)), ("CUDACachingAllocator", ("HIPCachingAllocator", API_C10)), ("C10_CUDA_KERNEL_LAUNCH_CHECK", ("C10_HIP_KERNEL_LAUNCH_CHECK", API_C10)) ] ) # NB: C10 mappings are more specific than Caffe2 mappings, so run them # first CUDA_TO_HIP_MAPPINGS = [ CUDA_IDENTIFIER_MAP, CUDA_TYPE_NAME_MAP, CUDA_INCLUDE_MAP, CUDA_SPARSE_MAP, C10_MAPPINGS, PYTORCH_SPECIFIC_MAPPINGS, CAFFE2_SPECIFIC_MAPPINGS, ]
""" Constants for annotations in the mapping. The constants defined here are used to annotate the mapping tuples in cuda_to_hip_mappings.py. They are based on https://github.com/ROCm-Developer-Tools/HIP/blob/master/hipify-clang/src/Statistics.h and fall in three categories: 1) type of mapping, 2) API of mapping, 3) unsupported mapping. """ CONV_VERSION = 0, CONV_INIT = 1 CONV_DEVICE = 2 CONV_MEM = 3 CONV_KERN = 4 CONV_COORD_FUNC = 5 CONV_MATH_FUNC = 6 CONV_DEVICE_FUNC = 7 CONV_SPECIAL_FUNC = 8 CONV_STREAM = 9 CONV_EVENT = 10 CONV_OCCUPANCY = 11 CONV_CONTEXT = 12 CONV_PEER = 13 CONV_MODULE = 14 CONV_CACHE = 15 CONV_EXEC = 16 CONV_ERROR = 17 CONV_DEF = 18 CONV_TEX = 19 CONV_GL = 20 CONV_GRAPHICS = 21 CONV_SURFACE = 22 CONV_JIT = 23 CONV_D3D9 = 24 CONV_D3D10 = 25 CONV_D3D11 = 26 CONV_VDPAU = 27 CONV_EGL = 28 CONV_THREAD = 29 CONV_OTHER = 30 CONV_INCLUDE = 31 CONV_INCLUDE_CUDA_MAIN_H = 32 CONV_TYPE = 33 CONV_LITERAL = 34 CONV_NUMERIC_LITERAL = 35 CONV_LAST = 36 API_DRIVER = 37 API_RUNTIME = 38 API_BLAS = 39 API_SPARSE = 40 API_RAND = 41 API_LAST = 42 API_FFT = 43 API_RTC = 44 API_ROCTX = 45 HIP_UNSUPPORTED = 46 API_PYTORCH = 1337 API_CAFFE2 = 1338 API_C10 = 1339
from .version import __version__
#!/usr/bin/env python3 """ The Python Hipify script. ## # Copyright (c) 2015-2016 Advanced Micro Devices, Inc. All rights reserved. # 2017-2018 Advanced Micro Devices, Inc. and # Facebook Inc. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """ import argparse import fnmatch import re import shutil import sys import os from . import constants from .cuda_to_hip_mappings import CUDA_TO_HIP_MAPPINGS from .cuda_to_hip_mappings import MATH_TRANSPILATIONS from typing import Dict, List, Iterator, Optional from collections.abc import Mapping, Iterable HipifyResult = Dict[str, Optional[str]] HipifyFinalResult = Dict[str, HipifyResult] HIPIFY_C_BREADCRUMB = "// !!! This is a file automatically generated by hipify!!!\n" HIPIFY_FINAL_RESULT: HipifyFinalResult = {} # Hardcode the PyTorch template map """This dictionary provides the mapping from PyTorch kernel template types to their actual types.""" PYTORCH_TEMPLATE_MAP = {"Dtype": "scalar_t", "T": "scalar_t"} class InputError(Exception): # Exception raised for errors in the input. def __init__(self, message): super(InputError, self).__init__(message) self.message = message def __str__(self): return "{}: {}".format("Input error", self.message) def openf(filename, mode): return open(filename, mode, errors='ignore') # Color coding for printing class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' # To the programmer, the output of hipify most likely are intermediates. # This class allows users of hipify to ask for a cleanup by running the # hipify and compilation in a with instantiating this context manager class # with keep_intermediates=False. # The main usecase is the cpp_extensions, specifically the load method. # It is a good idea to keep intermediates (in case of errors or to # not recompile unchanged files), but in cases where you don't want to # keep them (e.g. in the CI), this can be used to remove files. class GeneratedFileCleaner: """Context Manager to clean up generated files""" def __init__(self, keep_intermediates=False): self.keep_intermediates = keep_intermediates self.files_to_clean = set() self.dirs_to_clean = [] def __enter__(self): return self def open(self, fn, *args, **kwargs): if not os.path.exists(fn): self.files_to_clean.add(os.path.abspath(fn)) return open(fn, *args, **kwargs) def makedirs(self, dn, exist_ok=False): parent, n = os.path.split(dn) if not n: parent, n = os.path.split(parent) if parent and n and not os.path.exists(parent): self.makedirs(parent, exist_ok=True) if not os.path.isdir(dn) or not exist_ok: os.mkdir(dn) self.dirs_to_clean.append(os.path.abspath(dn)) def __exit__(self, type, value, traceback): if not self.keep_intermediates: for f in self.files_to_clean: os.unlink(f) for d in self.dirs_to_clean[::-1]: os.rmdir(d) def match_extensions(filename: str, extensions: Iterable) -> bool: """Helper method to see if filename ends with certain extension""" return any(filename.endswith(e) for e in extensions) def _fnmatch(filepath, patterns): return any(fnmatch.fnmatch(filepath, pattern) for pattern in patterns) def matched_files_iter( root_path: str, includes: Iterable = (), ignores: Iterable = (), extensions: Iterable = (), out_of_place_only: bool = False, is_pytorch_extension: bool = False) -> Iterator[str]: exact_matches = set(includes) # This is a very rough heuristic; really, we want to avoid scanning # any file which is not checked into source control, but this script # needs to work even if you're in a Git or Hg checkout, so easier to # just block the biggest time sinks that won't matter in the # end. for (abs_dirpath, dirs, filenames) in os.walk(root_path, topdown=True): rel_dirpath = os.path.relpath(abs_dirpath, root_path) if rel_dirpath == '.': # Blah blah blah O(n) blah blah if ".git" in dirs: dirs.remove(".git") if "build" in dirs: dirs.remove("build") if "third_party" in dirs: dirs.remove("third_party") for filename in filenames: filepath = os.path.join(abs_dirpath, filename) rel_filepath = os.path.join(rel_dirpath, filename) # We respect extensions, UNLESS you wrote the entire # filename verbatim, in which case we always accept it if ( _fnmatch(filepath, includes) and (not _fnmatch(filepath, ignores)) and (match_extensions(filepath, extensions) or filepath in exact_matches) ): if not is_pytorch_extension: # for pytorch extensions, consider all files if not is_pytorch_file(rel_filepath) and not is_caffe2_gpu_file(rel_filepath): continue if out_of_place_only and not is_out_of_place(rel_filepath): continue yield filepath def preprocess_file_and_save_result( output_directory: str, filepath: str, all_files: Iterable, header_include_dirs: Iterable, stats: Dict[str, List], hip_clang_launch: bool, is_pytorch_extension: bool, clean_ctx: GeneratedFileCleaner, show_progress: bool) -> None: result = preprocessor(output_directory, filepath, all_files, header_include_dirs, stats, hip_clang_launch, is_pytorch_extension, clean_ctx, show_progress) fin_path = os.path.abspath(os.path.join(output_directory, filepath)) # Show what happened if show_progress and "ignored" not in result["status"]: print( fin_path, "->", result["hipified_path"], result["status"], flush=True) HIPIFY_FINAL_RESULT[fin_path] = result def compute_stats(stats): unsupported_calls = {cuda_call for (cuda_call, _filepath) in stats["unsupported_calls"]} # Print the number of unsupported calls print("Total number of unsupported CUDA function calls: {0:d}".format(len(unsupported_calls))) # Print the list of unsupported calls print(", ".join(unsupported_calls)) # Print the number of kernel launches print("\nTotal number of replaced kernel launches: {0:d}".format(len(stats["kernel_launches"]))) def add_dim3(kernel_string, cuda_kernel): '''adds dim3() to the second and third arguments in the kernel launch''' count = 0 closure = 0 kernel_string = kernel_string.replace("<<<", "").replace(">>>", "") arg_locs: List[Dict[str, int]] = [{} for _ in range(2)] arg_locs[count]['start'] = 0 for ind, c in enumerate(kernel_string): if count > 1: break if c == "(": closure += 1 elif c == ")": closure -= 1 if (c == "," or ind == len(kernel_string) - 1) and closure == 0: arg_locs[count]['end'] = ind + (c != ",") count += 1 if count < 2: arg_locs[count]['start'] = ind + 1 first_arg_raw = kernel_string[arg_locs[0]['start']:arg_locs[0]['end'] + 1] second_arg_raw = kernel_string[arg_locs[1]['start']:arg_locs[1]['end']] first_arg_clean = kernel_string[arg_locs[0]['start']:arg_locs[0]['end']].replace("\n", "").strip(" ") second_arg_clean = kernel_string[arg_locs[1]['start']:arg_locs[1]['end']].replace("\n", "").strip(" ") first_arg_dim3 = "dim3({})".format(first_arg_clean) second_arg_dim3 = "dim3({})".format(second_arg_clean) first_arg_raw_dim3 = first_arg_raw.replace(first_arg_clean, first_arg_dim3) second_arg_raw_dim3 = second_arg_raw.replace(second_arg_clean, second_arg_dim3) cuda_kernel = cuda_kernel.replace(first_arg_raw + second_arg_raw, first_arg_raw_dim3 + second_arg_raw_dim3) return cuda_kernel RE_KERNEL_LAUNCH = re.compile(r'([ ]+)(detail?)::[ ]+\\\n[ ]+') def processKernelLaunches(string, stats): """ Replace the CUDA style Kernel launches with the HIP style kernel launches.""" # Concat the namespace with the kernel names. (Find cleaner way of doing this later). string = RE_KERNEL_LAUNCH.sub(lambda inp: "{0}{1}::".format(inp.group(1), inp.group(2)), string) def grab_method_and_template(in_kernel): # The positions for relevant kernel components. pos = { "kernel_launch": {"start": in_kernel["start"], "end": in_kernel["end"]}, "kernel_name": {"start": -1, "end": -1}, "template": {"start": -1, "end": -1} } # Count for balancing template count = {"<>": 0} # Status for whether we are parsing a certain item. START = 0 AT_TEMPLATE = 1 AFTER_TEMPLATE = 2 AT_KERNEL_NAME = 3 status = START # Parse the string character by character for i in range(pos["kernel_launch"]["start"] - 1, -1, -1): char = string[i] # Handle Templating Arguments if status == START or status == AT_TEMPLATE: if char == ">": if status == START: status = AT_TEMPLATE pos["template"]["end"] = i count["<>"] += 1 if char == "<": count["<>"] -= 1 if count["<>"] == 0 and (status == AT_TEMPLATE): pos["template"]["start"] = i status = AFTER_TEMPLATE # Handle Kernel Name if status != AT_TEMPLATE: if string[i].isalnum() or string[i] in {'(', ')', '_', ':', '#'}: if status != AT_KERNEL_NAME: status = AT_KERNEL_NAME pos["kernel_name"]["end"] = i # Case: Kernel name starts the string. if i == 0: pos["kernel_name"]["start"] = 0 # Finished return [(pos["kernel_name"]), (pos["template"]), (pos["kernel_launch"])] else: # Potential ending point if we're already traversing a kernel's name. if status == AT_KERNEL_NAME: pos["kernel_name"]["start"] = i # Finished return [(pos["kernel_name"]), (pos["template"]), (pos["kernel_launch"])] def find_kernel_bounds(string): """Finds the starting and ending points for all kernel launches in the string.""" kernel_end = 0 kernel_positions = [] # Continue until we cannot find any more kernels anymore. while string.find("<<<", kernel_end) != -1: # Get kernel starting position (starting from the previous ending point) kernel_start = string.find("<<<", kernel_end) # Get kernel ending position (adjust end point past the >>>) kernel_end = string.find(">>>", kernel_start) + 3 if kernel_end <= 0: raise InputError("no kernel end found") # Add to list of traversed kernels kernel_positions.append({"start": kernel_start, "end": kernel_end, "group": string[kernel_start: kernel_end]}) return kernel_positions # Replace comments and string literals from the code so that find_kernel_bounds does not # wrongly capture kernels in comments and string literals. # This function replaces them with "x" to keep positions. def mask_comments(string): in_comment = '' prev_c = '' new_string = '' for c in string: if in_comment == '': # Outside comments if c == '/' and prev_c == '/': in_comment = '//' elif c == '*' and prev_c == '/': in_comment = '/*' elif c == '"' and prev_c != '\\' and prev_c != "'": in_comment = '"' elif in_comment == '//': # In // xxx if c == '\r' or c == '\n': in_comment = '' elif in_comment == '/*': # In /* xxx */ if c == '/' and prev_c == '*': in_comment = '' elif in_comment == '"': # In "" if c == '"' and prev_c != '\\': in_comment = '' prev_c = c if in_comment == '': new_string += c else: new_string += 'x' return new_string # Grab positional ranges of all kernel launches get_kernel_positions = list(find_kernel_bounds(mask_comments(string))) output_string = string # Replace each CUDA kernel with a HIP kernel. for kernel in get_kernel_positions: # Get kernel components params = grab_method_and_template(kernel) # Find parenthesis after kernel launch parenthesis = string.find("(", kernel["end"]) # Extract cuda kernel cuda_kernel = string[params[0]["start"]:parenthesis + 1] kernel_string = string[kernel['start']:kernel['end']] end_param_index = 0 if params[1]['end'] == -1 else 1 kernel_name_with_template = string[params[0]['start']:params[end_param_index]['end'] + 1] cuda_kernel_dim3 = add_dim3(kernel_string, cuda_kernel) # Keep number of kernel launch params consistent (grid dims, group dims, stream, dynamic shared size) num_klp = len(extract_arguments(0, kernel["group"].replace("<<<", "(").replace(">>>", ")"))) hip_kernel = "hipLaunchKernelGGL(" + cuda_kernel_dim3[0:-1].replace( ">>>", ", 0" * (4 - num_klp) + ">>>").replace("<<<", ", ").replace( ">>>", ", ").replace(kernel_name_with_template, "(" + kernel_name_with_template + ")") # Replace cuda kernel with hip kernel output_string = output_string.replace(cuda_kernel, hip_kernel) # Update the statistics stats["kernel_launches"].append(hip_kernel) return output_string def find_closure_group(input_string, start, group): """Generalization for finding a balancing closure group if group = ["(", ")"], then finds the first balanced parentheses. if group = ["{", "}"], then finds the first balanced bracket. Given an input string, a starting position in the input string, and the group type, find_closure_group returns the positions of group[0] and group[1] as a tuple. Example: find_closure_group("(hi)", 0, ["(", ")"]) Returns: 0, 3 """ inside_parenthesis = False parens = 0 pos = start p_start, p_end = -1, -1 while pos < len(input_string): if input_string[pos] == group[0]: if inside_parenthesis is False: inside_parenthesis = True parens = 1 p_start = pos else: parens += 1 elif input_string[pos] == group[1] and inside_parenthesis: parens -= 1 if parens == 0: p_end = pos return p_start, p_end pos += 1 return None, None def find_bracket_group(input_string, start): """Finds the first balanced parantheses.""" return find_closure_group(input_string, start, group=["{", "}"]) def find_parentheses_group(input_string, start): """Finds the first balanced bracket.""" return find_closure_group(input_string, start, group=["(", ")"]) RE_ASSERT = re.compile(r"\bassert[ ]*\(") def replace_math_functions(input_string): """FIXME: Temporarily replace std:: invocations of math functions with non-std:: versions to prevent linker errors NOTE: This can lead to correctness issues when running tests, since the correct version of the math function (exp/expf) might not get called. Plan is to remove this function once HIP supports std:: math function calls inside device code """ output_string = input_string for func in MATH_TRANSPILATIONS: output_string = output_string.replace(r'{}('.format(func), '{}('.format(MATH_TRANSPILATIONS[func])) return output_string RE_SYNCTHREADS = re.compile(r":?:?\b(__syncthreads)\b(\w*\()") def hip_header_magic(input_string): """If the file makes kernel builtin calls and does not include the cuda_runtime.h header, then automatically add an #include to match the "magic" includes provided by NVCC. TODO: Update logic to ignore cases where the cuda_runtime.h is included by another file. """ # Copy the input. output_string = input_string # Check if one of the following headers is already included. headers = ["hip/hip_runtime.h", "hip/hip_runtime_api.h"] if any(re.search(r'#include ("{0}"|<{0}>)'.format(ext), output_string) for ext in headers): return output_string # Rough logic to detect if we're inside device code hasDeviceLogic: int hasDeviceLogic = "hipLaunchKernelGGL" in output_string hasDeviceLogic += "__global__" in output_string hasDeviceLogic += "__shared__" in output_string hasDeviceLogic += RE_SYNCTHREADS.search(output_string) is not None # If device logic found, provide the necessary header. if hasDeviceLogic: output_string = '#include "hip/hip_runtime.h"\n' + input_string return output_string RE_EXTERN_SHARED = re.compile(r"extern\s+([\w\(\)]+)?\s*__shared__\s+([\w:<>\s]+)\s+(\w+)\s*\[\s*\]\s*;") def replace_extern_shared(input_string): """Match extern __shared__ type foo[]; syntax and use HIP_DYNAMIC_SHARED() MACRO instead. https://github.com/ROCm-Developer-Tools/HIP/blob/master/docs/markdown/hip_kernel_language.md#__shared__ Example: "extern __shared__ char smemChar[];" => "HIP_DYNAMIC_SHARED( char, smemChar)" "extern __shared__ unsigned char smem[];" => "HIP_DYNAMIC_SHARED( unsigned char, my_smem)" """ output_string = input_string output_string = RE_EXTERN_SHARED.sub( lambda inp: "HIP_DYNAMIC_SHARED({0} {1}, {2})".format( inp.group(1) or "", inp.group(2), inp.group(3)), output_string) return output_string def get_hip_file_path(rel_filepath, is_pytorch_extension=False): """ Returns the new name of the hipified file """ # At the moment, some PyTorch source files are HIPified in place. The predicate # is_out_of_place tells us if this is the case or not. assert(not os.path.isabs(rel_filepath)) if not is_pytorch_extension and not is_out_of_place(rel_filepath): return rel_filepath dirpath, filename = os.path.split(rel_filepath) root, ext = os.path.splitext(filename) # Here's the plan: # # In general, we need to disambiguate the HIPified filename so that # it gets a different name from the original filename, so # that we don't overwrite the original file # # There's a lot of different naming conventions across PyTorch # and Caffe2, but the general recipe is to convert occurrences # of cuda/gpu to hip, and add hip if there are no occurrences # of cuda/gpu anywhere. # # Concretely, we do the following: # # - If there is a directory component named "cuda", replace # it with "hip", AND # # - If the file name contains "CUDA", replace it with "HIP", AND # # - ALWAYS replace '.cu' with '.hip', because those files # contain CUDA kernels that needs to be hipified and processed with # hip compiler # # - If we are not hipifying a PyTorch extension, and the parent # directory name did not change as a result of the above # transformations, insert "hip" in the file path # as the direct parent folder of the file # # - If we are hipifying a PyTorch extension, and the parent directory # name as well as the filename (incl. extension) did not change as # a result of the above transformations, insert "_hip" in the filename # # This isn't set in stone; we might adjust this to support other # naming conventions. if ext == '.cu': ext = '.hip' orig_filename = filename orig_dirpath = dirpath dirpath = dirpath.replace('cuda', 'hip') dirpath = dirpath.replace('CUDA', 'HIP') dirpath = dirpath.replace('THC', 'THH') root = root.replace('cuda', 'hip') root = root.replace('CUDA', 'HIP') # Special case to handle caffe2/core/THCCachingAllocator if dirpath != "caffe2/core": root = root.replace('THC', 'THH') if not is_pytorch_extension and dirpath == orig_dirpath: dirpath = os.path.join(dirpath, 'hip') if is_pytorch_extension and dirpath == orig_dirpath and (root + ext) == orig_filename: root = root + "_hip" return os.path.join(dirpath, root + ext) def is_out_of_place(rel_filepath): assert(not os.path.isabs(rel_filepath)) if rel_filepath.startswith("torch/"): return False if rel_filepath.startswith("tools/autograd/templates/"): return False return True # Keep this synchronized with includes/ignores in build_amd.py def is_pytorch_file(rel_filepath): assert(not os.path.isabs(rel_filepath)) if rel_filepath.startswith("aten/"): if rel_filepath.startswith("aten/src/ATen/core/"): return False return True if rel_filepath.startswith("torch/"): return True if rel_filepath.startswith("tools/autograd/templates/"): return True return False def is_cusparse_file(rel_filepath): assert(not os.path.isabs(rel_filepath)) if is_pytorch_file(rel_filepath): return "sparse" in rel_filepath.lower() return False def is_caffe2_gpu_file(rel_filepath): assert(not os.path.isabs(rel_filepath)) if rel_filepath.startswith("c10/cuda"): return True filename = os.path.basename(rel_filepath) _, ext = os.path.splitext(filename) return ('gpu' in filename or ext in ['.cu', '.cuh']) and ('cudnn' not in filename) # Cribbed from https://stackoverflow.com/questions/42742810/speed-up-millions-of-regex-replacements-in-python-3/42789508#42789508 class Trie(): """Regex::Trie in Python. Creates a Trie out of a list of words. The trie can be exported to a Regex pattern. The corresponding Regex should match much faster than a simple Regex union.""" def __init__(self): self.data = {} def add(self, word): ref = self.data for char in word: ref[char] = char in ref and ref[char] or {} ref = ref[char] ref[''] = 1 def dump(self): return self.data def quote(self, char): return re.escape(char) def _pattern(self, pData): data = pData if "" in data and len(data.keys()) == 1: return None alt = [] cc = [] q = 0 for char in sorted(data.keys()): if isinstance(data[char], dict): try: recurse = self._pattern(data[char]) alt.append(self.quote(char) + recurse) except Exception: cc.append(self.quote(char)) else: q = 1 cconly = not len(alt) > 0 if len(cc) > 0: if len(cc) == 1: alt.append(cc[0]) else: alt.append('[' + ''.join(cc) + ']') if len(alt) == 1: result = alt[0] else: result = "(?:" + "|".join(alt) + ")" if q: if cconly: result += "?" else: result = "(?:%s)?" % result return result def pattern(self): return self._pattern(self.dump()) CAFFE2_TRIE = Trie() CAFFE2_MAP = {} PYTORCH_TRIE = Trie() PYTORCH_MAP: Dict[str, object] = {} # In PyTorch, we map cuBLAS->rocBLAS and cuSPARSE->hipSPARSE. Note the prefix, roc versus hip. # The 'hip' APIs offer a more direct CUDA-friendly mapping, but calling rocBLAS directly has better performance. # Unfortunately, the roc* types and hip* types differ, i.e., rocblas_float_complex versus hipComplex. # In the case of SPARSE, we must use the hip types for complex instead of the roc types, # but the pytorch mappings assume roc. Therefore, we create a new SPARSE mapping that has a higher priority. # Its mappings will trigger first, and only when a miss occurs will the lower-priority pytorch mapping take place. # When a file contains "sparse" in the filename, a mapping marked with API_SPARSE is preferred over other choices. PYTORCH_SPARSE_MAP = {} for mapping in CUDA_TO_HIP_MAPPINGS: assert isinstance(mapping, Mapping) for src, value in mapping.items(): dst = value[0] meta_data = value[1:] if constants.API_CAFFE2 not in meta_data: PYTORCH_TRIE.add(src) # if src is already in PYTORCH_MAP and dst belongs to API_SPARSE # do not overwrite PYTORCH_MAP, store dst separately if constants.API_SPARSE in meta_data and PYTORCH_MAP.get(src, ""): PYTORCH_SPARSE_MAP[src] = dst else: PYTORCH_MAP[src] = dst if constants.API_PYTORCH not in meta_data: CAFFE2_TRIE.add(src) CAFFE2_MAP[src] = dst RE_CAFFE2_PREPROCESSOR = re.compile(CAFFE2_TRIE.pattern()) RE_PYTORCH_PREPROCESSOR = re.compile(r'(?<=\W)({0})(?=\W)'.format(PYTORCH_TRIE.pattern())) RE_QUOTE_HEADER = re.compile(r'#include "([^"]+)"') RE_ANGLE_HEADER = re.compile(r'#include <([^>]+)>') RE_THC_GENERIC_FILE = re.compile(r'#define THC_GENERIC_FILE "([^"]+)"') RE_CU_SUFFIX = re.compile(r'\.cu\b') # be careful not to pick up .cuh """ Returns a dict with the following keys: "hipified_path" : absolute path of hipified source file "status" : "ok" if hipified file was written out "skipped" if an identical hipified file already existed or hipified file couldn't be written out "ignored" if the source file was a hipified file itself or not meant to be hipified """ def preprocessor( output_directory: str, filepath: str, all_files: Iterable, header_include_dirs: Iterable, stats: Dict[str, List], hip_clang_launch: bool, is_pytorch_extension: bool, clean_ctx: GeneratedFileCleaner, show_progress: bool) -> HipifyResult: """ Executes the CUDA -> HIP conversion on the specified file. """ if filepath not in all_files: return {"hipified_path": None, "status": "[ignored, not to be hipified]"} fin_path = os.path.abspath(os.path.join(output_directory, filepath)) rel_filepath = os.path.relpath(filepath, output_directory) with open(fin_path, 'r', encoding='utf-8') as fin: if fin.readline() == HIPIFY_C_BREADCRUMB: return {"hipified_path": None, "status": "[ignored, input is hipified output]"} fin.seek(0) output_source = fin.read() orig_output_source = output_source # get_hip_file_path needs a relative path to work correctly fout_path = os.path.abspath(os.path.join(output_directory, get_hip_file_path(rel_filepath, is_pytorch_extension))) if not os.path.exists(os.path.dirname(fout_path)): clean_ctx.makedirs(os.path.dirname(fout_path)) # unsupported_calls statistics reporting is broken atm def pt_repl(m): return PYTORCH_MAP[m.group(0)] def pt_sparse_repl(m): # checks SPARSE map first, and if a miss occurs, falls back to pytorch mappings return PYTORCH_SPARSE_MAP.get(m.group(0), pt_repl(m)) if is_pytorch_extension: output_source = RE_PYTORCH_PREPROCESSOR.sub(pt_repl, output_source) else: if is_cusparse_file(rel_filepath): output_source = RE_PYTORCH_PREPROCESSOR.sub(pt_sparse_repl, output_source) elif is_pytorch_file(rel_filepath): output_source = RE_PYTORCH_PREPROCESSOR.sub(pt_repl, output_source) else: def c2_repl(m): return CAFFE2_MAP[m.group(0)] output_source = RE_CAFFE2_PREPROCESSOR.sub(c2_repl, output_source) # Header rewrites def mk_repl(templ, include_current_dir=True): def repl(m): f = m.group(1) dirpath, filename = os.path.split(f) if ( f.startswith("ATen/cuda") or f.startswith("ATen/native/cuda") or f.startswith("ATen/native/nested/cuda") or f.startswith("ATen/native/quantized/cuda") or f.startswith("ATen/native/sparse/cuda") or f.startswith("ATen/native/transformers/cuda") or f.startswith("THC/") or f.startswith("THCUNN/") or (f.startswith("THC") and not f.startswith("THCP")) ): return templ.format(get_hip_file_path(m.group(1), is_pytorch_extension)) # if filename is one of the files being hipified for this extension if (is_pytorch_extension and any(s.endswith(filename) for s in all_files)): header_dir = None header_filepath = None # If include_current_dir True, look first in same dir as the including source file if include_current_dir: header_dir_to_check = os.path.dirname(fin_path) header_path_to_check = os.path.abspath(os.path.join(header_dir_to_check, f)) if os.path.exists(header_path_to_check): header_dir = header_dir_to_check header_filepath = header_path_to_check # If not found, look in include dirs one by one and first match wins if header_filepath is None: for header_include_dir in header_include_dirs: header_dir_to_check = os.path.join(output_directory, header_include_dir) header_path_to_check = os.path.abspath(os.path.join(header_dir_to_check, f)) if os.path.exists(header_path_to_check): header_dir = header_dir_to_check header_filepath = header_path_to_check # If header file not found, keep as is if header_filepath is None: return m.group(0) # Hipify header file first if needed if header_filepath not in HIPIFY_FINAL_RESULT: preprocess_file_and_save_result(output_directory, header_filepath, all_files, header_include_dirs, stats, hip_clang_launch, is_pytorch_extension, clean_ctx, show_progress) hipified_header_filepath = HIPIFY_FINAL_RESULT[header_filepath]["hipified_path"] return templ.format(os.path.relpath(hipified_header_filepath if hipified_header_filepath is not None else header_filepath, header_dir)) return m.group(0) return repl output_source = RE_QUOTE_HEADER.sub(mk_repl('#include "{0}"', True), output_source) output_source = RE_ANGLE_HEADER.sub(mk_repl('#include <{0}>', False), output_source) output_source = RE_THC_GENERIC_FILE.sub(mk_repl('#define THC_GENERIC_FILE "{0}"'), output_source) # CMakeLists.txt rewrites if filepath.endswith('CMakeLists.txt'): output_source = output_source.replace('CUDA', 'HIP') output_source = output_source.replace('THC', 'THH') output_source = RE_CU_SUFFIX.sub('.hip', output_source) # Perform Kernel Launch Replacements if not hip_clang_launch: output_source = processKernelLaunches(output_source, stats) # Replace std:: with non-std:: versions if (filepath.endswith(".cu") or filepath.endswith(".cuh")) and "PowKernel" not in filepath: output_source = replace_math_functions(output_source) # Include header if device code is contained. output_source = hip_header_magic(output_source) # Replace the extern __shared__ output_source = replace_extern_shared(output_source) # Don't write out identical hipified files for extensions if dirpath has not changed if ( is_pytorch_extension and orig_output_source == output_source and os.path.dirname(fin_path) == os.path.dirname(fout_path) ): return {"hipified_path": fin_path, "status": "[skipped, no changes]"} # Add hipify breadcrumb for C-style files to avoid re-hipification if fin_path != fout_path and match_extensions(fin_path, (".cu", ".cuh", ".c", ".cc", ".cpp", ".h", ".hpp")): output_source_ascii=output_source.encode("ascii", "ignore").decode() output_source = HIPIFY_C_BREADCRUMB + output_source_ascii do_write = True if os.path.exists(fout_path): with open(fout_path, 'r', encoding='utf-8') as fout_old: do_write = fout_old.read() != output_source if do_write: try: with clean_ctx.open(fout_path, 'w', encoding='utf-8') as fout: fout.write(output_source) return {"hipified_path": fout_path, "status": "[ok]"} except PermissionError as e: print(f"{bcolors.WARNING}Failed to save {fout_path} with \"{e.strerror}\", leaving {fin_path} unchanged.{bcolors.ENDC}", file=sys.stderr) return {"hipified_path": fin_path, "status": "[skipped, no permissions]"} else: return {"hipified_path": fout_path, "status": "[skipped, already hipified]"} def file_specific_replacement(filepath, search_string, replace_string, strict=False): with openf(filepath, "r+") as f: contents = f.read() if strict: contents = re.sub(r'\b({0})\b'.format(re.escape(search_string)), lambda x: replace_string, contents) else: contents = contents.replace(search_string, replace_string) f.seek(0) f.write(contents) f.truncate() def file_add_header(filepath, header): with openf(filepath, "r+") as f: contents = f.read() if header[0] != "<" and header[-1] != ">": header = '"{0}"'.format(header) contents = ('#include {0} \n'.format(header)) + contents f.seek(0) f.write(contents) f.truncate() def fix_static_global_kernels(in_txt): """Static global kernels in HIP results in a compilation error.""" in_txt = in_txt.replace(" __global__ static", "__global__") return in_txt RE_INCLUDE = re.compile(r"#include .*\n") def extract_arguments(start, string): """ Return the list of arguments in the upcoming function parameter closure. Example: string (input): '(blocks, threads, 0, THCState_getCurrentStream(state))' arguments (output): '[{'start': 1, 'end': 7}, {'start': 8, 'end': 16}, {'start': 17, 'end': 19}, {'start': 20, 'end': 53}]' """ arguments = [] closures = { "<": 0, "(": 0 } current_position = start argument_start_pos = current_position + 1 # Search for final parenthesis while current_position < len(string): if string[current_position] == "(": closures["("] += 1 elif string[current_position] == ")": closures["("] -= 1 elif string[current_position] == "<": closures["<"] += 1 elif string[current_position] == ">" and string[current_position - 1] != "-" and closures["<"] > 0: closures["<"] -= 1 # Finished all arguments if closures["("] == 0 and closures["<"] == 0: # Add final argument arguments.append({"start": argument_start_pos, "end": current_position}) break # Finished current argument if closures["("] == 1 and closures["<"] == 0 and string[current_position] == ",": arguments.append({"start": argument_start_pos, "end": current_position}) argument_start_pos = current_position + 1 current_position += 1 return arguments def str2bool(v): """ArgumentParser doesn't support type=bool. Thus, this helper method will convert from possible string types to True / False.""" if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def hipify( project_directory: str, show_detailed: bool = False, extensions: Iterable = (".cu", ".cuh", ".c", ".cc", ".cpp", ".h", ".in", ".hpp"), header_extensions: Iterable = (".cuh", ".h", ".hpp"), output_directory: str = "", header_include_dirs: Iterable = (), includes: Iterable = ('*',), extra_files: Iterable = (), out_of_place_only: bool = False, ignores: Iterable = (), show_progress: bool = True, hip_clang_launch: bool = False, is_pytorch_extension: bool = False, hipify_extra_files_only: bool = False, clean_ctx: Optional[GeneratedFileCleaner] = None ) -> HipifyFinalResult: if project_directory == "": project_directory = os.getcwd() # Verify the project directory exists. if not os.path.exists(project_directory): print("The project folder specified does not exist.") sys.exit(1) # If no output directory, provide a default one. if not output_directory: project_directory.rstrip("/") output_directory = project_directory + "_amd" if project_directory != output_directory: includes = [include.replace(project_directory, output_directory) for include in includes] ignores = [ignore.replace(project_directory, output_directory) for ignore in ignores] # Copy from project directory to output directory if not done already. if not os.path.exists(output_directory): shutil.copytree(project_directory, output_directory) all_files = list(matched_files_iter(output_directory, includes=includes, ignores=ignores, extensions=extensions, out_of_place_only=out_of_place_only, is_pytorch_extension=is_pytorch_extension)) all_files_set = set(all_files) for f in extra_files: if not os.path.isabs(f): f = os.path.join(output_directory, f) if f not in all_files_set: all_files.append(f) # List all files in header_include_paths to ensure they are hipified from pathlib import Path for header_include_dir in header_include_dirs: if os.path.isabs(header_include_dir): header_include_dir_path = Path(header_include_dir) else: header_include_dir_path = Path(os.path.join(output_directory, header_include_dir)) for path in header_include_dir_path.rglob('*'): if ( path.is_file() and _fnmatch(str(path), includes) and (not _fnmatch(str(path), ignores)) and match_extensions(path.name, header_extensions) ): all_files.append(str(path)) if clean_ctx is None: clean_ctx = GeneratedFileCleaner(keep_intermediates=True) # Preprocessing statistics. stats: Dict[str, List] = {"unsupported_calls": [], "kernel_launches": []} for filepath in (all_files if not hipify_extra_files_only else extra_files): preprocess_file_and_save_result(output_directory, filepath, all_files, header_include_dirs, stats, hip_clang_launch, is_pytorch_extension, clean_ctx, show_progress) print(bcolors.OKGREEN + "Successfully preprocessed all matching files." + bcolors.ENDC, file=sys.stderr) # Show detailed summary if show_detailed: compute_stats(stats) return HIPIFY_FINAL_RESULT
#!/usr/bin/env python3 # # This file has been generated by conda-smithy in order to build the recipe # locally. # import os import glob import subprocess from argparse import ArgumentParser import platform def setup_environment(ns): os.environ["CONFIG"] = ns.config os.environ["UPLOAD_PACKAGES"] = "False" if ns.debug: os.environ["BUILD_WITH_CONDA_DEBUG"] = "1" if ns.output_id: os.environ["BUILD_OUTPUT_ID"] = ns.output_id if "MINIFORGE_HOME" not in os.environ: os.environ["MINIFORGE_HOME"] = os.path.join( os.path.dirname(__file__), "miniforge3" ) def run_docker_build(ns): script = ".scripts/run_docker_build.sh" subprocess.check_call([script]) def run_osx_build(ns): script = ".scripts/run_osx_build.sh" subprocess.check_call([script]) def verify_config(ns): valid_configs = { os.path.basename(f)[:-5] for f in glob.glob(".ci_support/*.yaml") } print(f"valid configs are {valid_configs}") if ns.config in valid_configs: print("Using " + ns.config + " configuration") return elif len(valid_configs) == 1: ns.config = valid_configs.pop() print("Found " + ns.config + " configuration") elif ns.config is None: print("config not selected, please choose from the following:\n") selections = list(enumerate(sorted(valid_configs), 1)) for i, c in selections: print(f"{i}. {c}") s = input("\n> ") idx = int(s) - 1 ns.config = selections[idx][1] print(f"selected {ns.config}") else: raise ValueError("config " + ns.config + " is not valid") # Remove the following, as implemented if ns.config.startswith("win"): raise ValueError( f"only Linux/macOS configs currently supported, got {ns.config}" ) elif ns.config.startswith("osx") and platform.system() == "Darwin": if "OSX_SDK_DIR" not in os.environ: raise RuntimeError( "Need OSX_SDK_DIR env variable set. Run 'export OSX_SDK_DIR=/opt'" "to download the SDK automatically to '/opt/MacOSX<ver>.sdk'" ) def main(args=None): p = ArgumentParser("build-locally") p.add_argument("config", default=None, nargs="?") p.add_argument( "--debug", action="store_true", help="Setup debug environment using `conda debug`", ) p.add_argument( "--output-id", help="If running debug, specify the output to setup." ) ns = p.parse_args(args=args) verify_config(ns) setup_environment(ns) if ns.config.startswith("linux") or ( ns.config.startswith("osx") and platform.system() == "Linux" ): run_docker_build(ns) elif ns.config.startswith("osx"): run_osx_build(ns) if __name__ == "__main__": main()
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import os import re import setuptools this_dir = os.path.dirname(os.path.abspath(__file__)) def fetch_requirements(): with open("requirements.txt") as f: reqs = f.read().strip().split("\n") return reqs # https://packaging.python.org/guides/single-sourcing-package-version/ def find_version(version_file_path) -> str: with open(version_file_path) as version_file: version_match = re.search(r"^__version_tuple__ = (.*)", version_file.read(), re.M) if version_match: ver_tup = eval(version_match.group(1)) ver_str = ".".join([str(x) for x in ver_tup]) return ver_str raise RuntimeError("Unable to find version tuple.") extensions = [] cmdclass = {} setup_requires = [] if os.getenv("BUILD_CUDA_EXTENSIONS", "0") == "1": from torch.utils.cpp_extension import BuildExtension, CUDAExtension setup_requires = ["ninja"] extensions.extend( [ CUDAExtension( name="fairscale.fused_adam_cuda", include_dirs=[os.path.join(this_dir, "fairscale/clib/fused_adam_cuda")], sources=[ "fairscale/clib/fused_adam_cuda/fused_adam_cuda.cpp", "fairscale/clib/fused_adam_cuda/fused_adam_cuda_kernel.cu", ], extra_compile_args={"cxx": ["-O3"], "nvcc": ["-O3", "--use_fast_math"]}, ) ] ) cmdclass["build_ext"] = BuildExtension if __name__ == "__main__": setuptools.setup( name="fairscale", description="FairScale: A PyTorch library for large-scale and high-performance training.", version=find_version("fairscale/version.py"), setup_requires=setup_requires, install_requires=fetch_requirements(), include_package_data=True, packages=setuptools.find_packages(include=["fairscale*"]), # Only include code within fairscale. ext_modules=extensions, cmdclass=cmdclass, python_requires=">=3.8", author="Foundational AI Research @ Meta AI", author_email="[email protected]", long_description=( "FairScale is a PyTorch extension library for high performance and " "large scale training on one or multiple machines/nodes. This library " "extends basic PyTorch capabilities while adding new experimental ones." ), long_description_content_type="text/markdown", entry_points={"console_scripts": ["wgit = fairscale.experimental.wgit.__main__:main"]}, classifiers=[ "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "License :: OSI Approved :: BSD License", "Topic :: Scientific/Engineering :: Artificial Intelligence", "Operating System :: OS Independent", ], )
import argparse import re from typing import Tuple from setup import find_version def get_next_version(release_type) -> Tuple[Tuple[int, int, int], str, str]: current_ver = find_version("fairscale/version.py") version_list = [int(x) for x in current_ver.strip("'").split(".")] major, minor, patch = version_list[0], version_list[1], version_list[2] if release_type == "patch": patch += 1 elif release_type == "minor": minor += 1 patch = 0 elif release_type == "major": major += 1 minor = patch = 0 else: raise ValueError("Incorrect release type specified. Acceptable types are major, minor and patch.") new_version_tuple = (major, minor, patch) new_version_str = ".".join([str(x) for x in new_version_tuple]) new_tag_str = "v" + new_version_str return new_version_tuple, new_version_str, new_tag_str def update_version(new_version_tuple) -> None: """ given the current version, update the version to the next version depending on the type of release. """ with open("fairscale/version.py", "r") as reader: current_version_data = reader.read() # for line in current_version_data: version_match = re.search(r"^__version_tuple__ ", current_version_data) if version_match: new_version_data = "__version_tuple__ = %s\n" % str(new_version_tuple) current_version_data = current_version_data.replace(version_match.string, new_version_data) with open("fairscale/version.py", "w") as writer: writer.write(current_version_data) else: raise RuntimeError("__version_tuple__ not found in version.py") def main(args): if args.release_type in ["major", "minor", "patch"]: new_version_tuple, new_version, new_tag = get_next_version(args.release_type) else: raise ValueError("Incorrect release type specified") if args.update_version: update_version(new_version_tuple) print(new_version, new_tag) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Versioning utils") parser.add_argument("--release-type", type=str, required=True, help="type of release = major/minor/patch") parser.add_argument( "--update-version", action="store_true", required=False, help="updates the version in fairscale/version.py" ) args = parser.parse_args() main(args)
__version_tuple__ = (0, 4, 13)
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. ################################################################################ # Import most common subpackages # # NOTE: we don't maintain any public APIs in both experimental and fair_dev # sub-modules. Code in them are experimental or for developer only. They # can be changed, removed, anytime. ################################################################################ from typing import List from . import nn from .version import __version_tuple__ __version__ = ".".join([str(x) for x in __version_tuple__]) __all__: List[str] = []
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. ################################################################################ # Import most common subpackages ################################################################################ from typing import List # Don't import sub-modules as experimental stuff otherwise gets imported directly # when user does an `import fairscale`. This can cause experimental code's import # dependencies (like pygit2) to leak into the fairscale main dependency. __all__: List[str] = []
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from contextlib import contextmanager from dataclasses import dataclass from enum import Enum, auto from functools import lru_cache from typing import Any, Callable, Dict, Iterator, List, NamedTuple, Optional, Sequence, Set, Tuple, Union import numpy as np import torch import torch.nn as nn from torch.utils.hooks import RemovableHandle from fairscale.nn import FullyShardedDataParallel class TraceForwardEvent(NamedTuple): """ Complementary trace event collected during the forward pass to trace the memory increase and the memory taken by activations """ memory_diff: int memory_activations: int def to_dict(self) -> Dict[str, Any]: return { "memory_diff": self.memory_diff, "memory_activations": self.memory_activations, } @classmethod def from_dict(cls, serialized: Dict[str, Any]) -> "TraceForwardEvent": return TraceForwardEvent( memory_diff=serialized["memory_diff"], memory_activations=serialized["memory_activations"], ) class TraceBackwardEvent(NamedTuple): """ Complementary trace event collected during the forward pass to trace the memory taken by activations """ memory_activations: int def to_dict(self) -> Dict[str, Any]: return {"memory_activations": self.memory_activations} @classmethod def from_dict(cls, serialized: Dict[str, Any]) -> "TraceBackwardEvent": return TraceBackwardEvent(memory_activations=serialized["memory_activations"]) class LayerMemoryTrace(NamedTuple): """ Trace event providing the current memory usage at a point occuring during the forward or backward module_name: name of the module under processing module_params: size of the module parameters allocated: state of the PyTorch allocated memory reserved: state of the PyTorch reserved memory is_forward: whether the trace was collected during forward all_gathered: memory gathered since last event by FSDP cumul_all_gathered: total amount of memory currently gathered by FSDP event: additional information on the trace """ module_name: str module_params: int allocated: int reserved: int is_forward: bool all_gathered: int cumul_all_gathered: int event: Union[TraceForwardEvent, TraceBackwardEvent] def to_dict(self) -> Dict[str, Any]: return { "module_name": self.module_name, "module_params": self.module_params, "allocated": self.allocated, "reserved": self.reserved, "is_forward": self.is_forward, "all_gathered": self.all_gathered, "cumul_all_gathered": self.cumul_all_gathered, "event": self.event.to_dict(), } @classmethod def from_dict(cls, serialized: Dict[str, Any]) -> "LayerMemoryTrace": if serialized["is_forward"]: event: Union[TraceForwardEvent, TraceBackwardEvent] = TraceForwardEvent.from_dict(serialized["event"]) else: event = TraceBackwardEvent.from_dict(serialized["event"]) return LayerMemoryTrace( module_name=serialized["module_name"], module_params=serialized["module_params"], allocated=serialized["allocated"], reserved=serialized["reserved"], is_forward=serialized["is_forward"], all_gathered=serialized["all_gathered"], cumul_all_gathered=serialized["cumul_all_gathered"], event=event, ) @dataclass class LayerwiseMemoryTrackerSummary: """ Summary of the memory allocation during forward/backward - max_memory_allocated: the peak of memory allocated - max_memory_cached: the peak of memory cached by PyTorch - total_activation_allocations: cumulative count of activations allocations - total_forward_allocations: cumulative count of forward pass allocations - top_forward_activation_producers: layers that allocated the most activations """ max_memory_allocated: int max_memory_cached: int total_activation_allocations: int total_forward_allocations: int top_forward_activation_producers: List[LayerMemoryTrace] class ProcessGroupTrackingEvent(Enum): """ Types of events that can be tracked in the process group: - allgather: will track calls to ProcessGroup.allgather """ allgather = auto() class ProcessGroupTracker: """ To be used as a wrapper around a ProcessGroup to track the calls to specific ProcessGroup function such as "allgather" calls. The tracker will send a notification to the listener when such calls occur. Best used in conjunction with LayerwiseMemoryTracker: ``` # wrap the group used for FSDP group = ProcessGroupTracker(group) # use this group when creating FSDP blocks model = FullyShardedDataParallel(model, process_group=group), # monitor the model as before tracker = LayerwiseMemoryTracker() tracker.monitor(model) # the detailed traces will now contain information # about the amount of all gathered data tracker.memory_traces ``` """ def __init__(self, group: Any, listener: Optional[Callable] = None): self.group = group self.listener = listener def __getattr__(self, item: str) -> Any: # Forward: for functions not traces if item == "allgather": # For PyTorch 1.8 and below return self._build_wrapper(fct=self.group.allgather) elif item == "_allgather_base": # For PyTorch 1.9 and above return self._build_wrapper(fct=getattr(self.group, item)) return getattr(self.group, item) def _build_wrapper(self, fct: Callable) -> Callable: def wrapper( output_tensors: Union[torch.Tensor, Sequence[torch.Tensor]], input_tensors: Union[torch.Tensor, Sequence[torch.Tensor]], *args: list, **kwargs: dict, ) -> Any: if self.listener is not None: self.listener(ProcessGroupTrackingEvent.allgather, output_tensors, input_tensors) return fct(output_tensors, input_tensors, *args, **kwargs) return wrapper class LayerwiseMemoryTracker: """ Observe a module to get the graph of the memory consumption during the forward and backward, layer by layer, with: - a breakdown of the memory used (activations memory estimation) - additional details such as amount of data exchanged with all gather Requires the model to be on a CUDA device to track its memory Example usage (no FSDP): ``` # create your model model = models.resnet50().cuda() # monitor the model tracker = LayerwiseMemoryTracker() tracker.monitor(model) # Do a forward/backward criterion(model(input), target).backward() # show the plots tracker.show_plots() # get the detailed traces tracker.memory_traces # print a summary print(tracker.summary) ``` Advanced usage (for FSDP): ``` # wrap the group used for FSDP group = ProcessGroupTracker(group) # use this group when creating FSDP blocks model = FullyShardedDataParallel(model, process_group=group), # monitor the model as before tracker = LayerwiseMemoryTracker() tracker.monitor(model) # the detailed traces will now contain information # about the amount of all gathered data tracker.memory_traces ``` """ def __init__(self) -> None: self.memory_traces: List[LayerMemoryTrace] = [] self._hooks: List[RemovableHandle] = [] self._previous_module_name: Optional[str] = None self._last_all_gather_memory = 0 self._cumul_all_gather_memory: List[int] = [] self._memory_pre_forward = 0 self._traced_module_names: Set[str] = set() def monitor(self, model: nn.Module) -> None: """ Install hooks on the model to track its memory usage """ for name, m in model.named_modules(): h1 = m.register_forward_pre_hook(self._create_pre_forward_hook(name)) h2 = m.register_forward_hook(self._create_post_forward_hook(name)) h3 = m.register_backward_hook(self._create_backward_hook(name)) self._hooks.extend([h1, h2, h3]) if isinstance(m, FullyShardedDataParallel): if isinstance(m.process_group, ProcessGroupTracker): m.process_group.listener = self._handle_process_group_call torch.cuda.empty_cache() def clear_traces(self) -> None: """ Clear all the traces: new traces will be written on a clean slate """ self.memory_traces.clear() def stop(self) -> None: """ Stop any form of tracking (removes the hooks used to monitor the model) """ for h in self._hooks: h.remove() self._hooks.clear() self._previous_module_name = None self._memory_pre_forward = 0 self._last_all_gather_memory = 0 self._cumul_all_gather_memory.clear() @property def forward_traces(self) -> List[LayerMemoryTrace]: """ Get the part of the traces which corresponds to the forward pass """ return [t for t in self.memory_traces if t.is_forward] @property def backward_traces(self) -> List[LayerMemoryTrace]: """ Get the part of the traces which corresponds to the backward pass """ return [t for t in self.memory_traces if not t.is_forward] @property def max_memory_allocated(self) -> int: """ Peak memory allocated during the forward/backward pass """ return max(t.allocated for t in self.memory_traces) @property def max_memory_cached(self) -> int: """ Peak memory cached during the forward/backward pass """ return max(t.reserved for t in self.memory_traces) @property def summary(self) -> LayerwiseMemoryTrackerSummary: """ A quick summary of interesting statistics on the memory usage during the forward/backward pass """ total_diff = sum(t.event.memory_diff for t in self.forward_traces) # type: ignore total_act = sum(t.event.memory_activations for t in self.forward_traces) top_act_producers = self.top_forward_activation_producers(top=10) return LayerwiseMemoryTrackerSummary( max_memory_allocated=self.max_memory_allocated, max_memory_cached=self.max_memory_cached, total_activation_allocations=total_act, total_forward_allocations=total_diff, top_forward_activation_producers=top_act_producers, ) def top_forward_activation_producers(self, top: int = 10) -> List[LayerMemoryTrace]: """ What are the top activation producers during the forward pass """ return sorted(self.forward_traces, key=lambda a: a.event.memory_activations, reverse=True)[:top] def show_plots(self, figsize: Tuple[int, int] = (16, 20), capture: bool = False) -> Optional[Any]: """ Show useful memory plots. Use "capture=True" to return an image rather than displaying the plots. """ return compare_memory_traces_in_plot({"run": self.memory_traces}, figsize=figsize, capture=capture) def save_traces(self, path: str) -> None: """ Save the traces in a JSON file """ import json with open(path, "w") as f: json_traces = [t.to_dict() for t in self.memory_traces] json.dump({"traces": json_traces}, f) @classmethod def load(cls, path: str) -> "LayerwiseMemoryTracker": import json out = cls() with open(path, "r") as f: traces = json.load(f)["traces"] out.memory_traces = [LayerMemoryTrace.from_dict(t) for t in traces] return out def _create_pre_forward_hook(self, name: str) -> Callable: def _pre_forward_hook(module: nn.Module, inputs: Any) -> None: torch.cuda.synchronize() allocated, reserved = self._capture_memory() self._previous_module_name = name self._memory_pre_forward = allocated if isinstance(module, FullyShardedDataParallel): self._cumul_all_gather_memory.append(0) return _pre_forward_hook def _handle_process_group_call(self, event: ProcessGroupTrackingEvent, *args: Sequence[Any]) -> None: torch.cuda.synchronize() if event == ProcessGroupTrackingEvent.allgather: outputs, inputs = args output_size = self._get_module_output_size(outputs) self._last_all_gather_memory += output_size if self._cumul_all_gather_memory: self._cumul_all_gather_memory[-1] += output_size def _create_post_forward_hook(self, name: str) -> Callable: def _post_forward_hook( module: nn.Module, inputs: Sequence[torch.Tensor], outputs: Sequence[torch.Tensor] ) -> None: torch.cuda.synchronize() if isinstance(module, FullyShardedDataParallel): self._cumul_all_gather_memory.pop() # Only if it is a leaf module if name == self._previous_module_name: allocated, reserved = self._capture_memory() self._traced_module_names.add(name) # Get the memory allocated for output activations ys = self._filter_allocated_output(inputs, outputs) activations = sum(self._get_module_output_size(y) for y in ys) # Compute the memory diff + memory taken by the activations self.memory_traces.append( LayerMemoryTrace( module_name=name, module_params=self._get_parameter_size(module), allocated=allocated, reserved=reserved, is_forward=True, all_gathered=self._last_all_gather_memory, cumul_all_gathered=sum(self._cumul_all_gather_memory), event=TraceForwardEvent( memory_diff=allocated - self._memory_pre_forward, memory_activations=activations, ), ) ) self._last_all_gather_memory = 0 # Clean previous forward call values self._previous_module_name = None self._memory_pre_forward = 0 return _post_forward_hook def _create_backward_hook(self, name: str) -> Callable: def _backward_hook(module: nn.Module, grad_input: torch.Tensor, grad_output: torch.Tensor) -> None: torch.cuda.synchronize() if name not in self._traced_module_names: return ys = self._filter_allocated_output(grad_input, grad_output) memory = sum(self._get_module_output_size(y) for y in ys) allocated, reserved = self._capture_memory() self.memory_traces.append( LayerMemoryTrace( module_name=name, module_params=self._get_parameter_size(module), allocated=allocated, reserved=reserved, is_forward=False, all_gathered=self._last_all_gather_memory, cumul_all_gathered=0, event=TraceBackwardEvent(memory_activations=memory), ) ) # Cleaning accumulated values since last call self._last_all_gather_memory = 0 return _backward_hook @staticmethod def _capture_memory() -> Tuple[int, int]: torch.cuda.synchronize() allocated_mb = torch.cuda.memory_allocated() reserved_mb = torch.cuda.memory_reserved() # type: ignore return allocated_mb, reserved_mb @classmethod def _get_parameter_size(cls, module: nn.Module) -> int: return sum(p.numel() * cls._get_dtype_size(p) for p in module.parameters()) @classmethod def _get_module_output_size(cls, xs: Union[torch.Tensor, Sequence[torch.Tensor]]) -> int: """ Return the minimum memory requirement to store the tensors provided as parameters """ if isinstance(xs, torch.Tensor): x = xs p = cls._get_dtype_size(x) for d in x.shape: p *= d return p elif isinstance(xs, tuple) or isinstance(xs, list): return sum(cls._get_module_output_size(x) for x in xs) return 0 @classmethod def _get_dtype_size(cls, x: torch.Tensor) -> int: return 2 if x.dtype == torch.float16 else 4 @classmethod def _filter_allocated_output( cls, inputs: Union[torch.Tensor, Sequence[torch.Tensor]], outputs: Union[torch.Tensor, Sequence[torch.Tensor]] ) -> List[torch.Tensor]: """ Only return the outputs that are allocated and not views, reshape or stride of the inputs """ xs = cls._collect_tensors(inputs) ys = cls._collect_tensors(outputs) return [y for y in ys if all(not cls._is_same_storage(x, y) for x in xs)] @staticmethod def _is_same_storage(x: torch.Tensor, y: torch.Tensor) -> bool: """ Indicate if x and y share the same storage, meaning that one of them is a view, reshape or stride of the other or from a common tensor """ return x.storage().data_ptr() == y.storage().data_ptr() @staticmethod def _collect_tensors(module_io_tensors: Union[torch.Tensor, Sequence[torch.Tensor]]) -> List[torch.Tensor]: """ Extract the tensors out of the provided input or output of a nn.Module """ tensors = [] to_visit = [module_io_tensors] while to_visit: x = to_visit.pop() if isinstance(x, torch.Tensor): tensors.append(x) elif isinstance(x, tuple) or isinstance(x, list): to_visit.extend(module_io_tensors) return tensors def find_best_reset_points(activation_sizes: List[int], num_checkpoints: int) -> Tuple[int, List[int]]: """ Assuming constant memory requirement from the model, its gradients and the associated optimizer state (realistic for small models or models that are sharded enough to be considered small), this function computes the ideal placement for the checkpoints by returning the limits at which we should reset memory. """ n = len(activation_sizes) @lru_cache(maxsize=None) def visit(pos: int, remaining: int) -> Tuple[int, List[int]]: if pos == n: return 0, [] if remaining == 0: return sum(activation_sizes[pos:]), [] min_val = float("inf") allocation = [] current_chunk = 0 for curr_pos in range(pos, n): current_chunk += activation_sizes[curr_pos] sub_result, sub_alloc = visit(curr_pos + 1, remaining - 1) result = max(current_chunk, sub_result) if result < min_val: min_val = result allocation = list(sub_alloc) allocation.append(curr_pos + 1) return int(min_val), allocation best_score, best_allocation = visit(0, num_checkpoints) return best_score, best_allocation[::-1] @dataclass class SuggestedCheckpoints: max_memory: int split_modules: List[str] all_modules: List[str] def suggest_checkpoint_location( traces: List[LayerMemoryTrace], num_checkpoints: int, num_skipped_layers: int = 0 ) -> SuggestedCheckpoints: """ Given a trace of a model, collected with or without checkpoint, return the best places to insert a reset of activation memory. The names of the returned modules are the boundaries of the suggested checkpoint_wrapper wrappings """ # From the traces, extract how much activation memory # is generated during the forward pass, layer by layer visited = set() modules, allocations = [], [] for t in traces: if t.is_forward: name = t.module_name memory = t.event.memory_activations if name not in visited: visited.add(name) modules.append(name) allocations.append(memory) # To skip some layers where we do not want activations if num_skipped_layers: modules = modules[num_skipped_layers:] allocations = allocations[num_skipped_layers:] # Compute the best positions to reset the memory max_memory, reset_indices = find_best_reset_points(allocations, num_checkpoints=num_checkpoints) # Then map it back to module names return SuggestedCheckpoints( max_memory=max_memory, split_modules=[modules[i] for i in reset_indices], all_modules=modules, ) def _assert_visualisation_library_installed() -> None: try: import PIL # NOQA import matplotlib # NOQA except ImportError: install_matplotlib = "pip install matplotlib" install_pil = "pip install Pillow" error_message = "Visualizing memory plots requires matplotlib and Pillow installed" assert False, f"{error_message}: {install_matplotlib}, {install_pil}" def compare_memory_traces_in_plot( memory_traces_by_job: Dict[str, List[LayerMemoryTrace]], figsize: Tuple[int, int] = (16, 20), capture: bool = False, ) -> Optional[Any]: """ Create a plot of the memory allocation over time during the forward/backward passes, with a breakdown of the memory used for activation VS parameters """ _assert_visualisation_library_installed() import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=figsize, ncols=2, nrows=3) graph_creator = _MemoryGraphCreator() ax[0, 0].set_title("memory allocated") for job_name, memory_traces in memory_traces_by_job.items(): graph_creator.allocated_memory_curve(ax[0, 0], job_name, memory_traces) if len(memory_traces_by_job) > 1: ax[0, 0].legend() ax[0, 1].set_title("memory reserved") for job_name, memory_traces in memory_traces_by_job.items(): graph_creator.reserved_memory_curve(ax[0, 1], job_name, memory_traces) if len(memory_traces_by_job) > 1: ax[0, 1].legend() ax[1, 0].set_title("activation allocations") for job_name, memory_traces in memory_traces_by_job.items(): graph_creator.activation_allocations(ax[1, 0], job_name, memory_traces) if len(memory_traces_by_job) > 1: ax[1, 0].legend() ax[1, 1].set_title("cumulative forward activations") for job_name, memory_traces in memory_traces_by_job.items(): graph_creator.cumulative_activations(ax[1, 1], job_name, memory_traces) if len(memory_traces_by_job) > 1: ax[1, 1].legend() ax[2, 0].set_title("all gathered memory") for job_name, memory_traces in memory_traces_by_job.items(): graph_creator.all_gathered_memory(ax[2, 0], job_name, memory_traces) if len(memory_traces_by_job) > 1: ax[2, 0].legend() ax[2, 1].set_title("parameter memory") for job_name, memory_traces in memory_traces_by_job.items(): graph_creator.module_parameters(ax[2, 1], job_name, memory_traces) if len(memory_traces_by_job) > 1: ax[2, 1].legend() if not capture: plt.show() return None else: return matplotlib_figure_to_image(fig) class _MemoryGraphCreator: """ Helper class to create graphs to display memory """ def __init__(self) -> None: import matplotlib self.font = { "family": matplotlib.rcParams["font.family"], "weight": "normal", "size": 12, } def allocated_memory_curve(self, ax: Any, job_name: str, memory_traces: List[LayerMemoryTrace]) -> None: allocated_memory = [t.allocated for t in memory_traces] x, y_forward, y_backward = self._split_forward_backward(memory_traces, allocated_memory) ax.plot(x, y_forward, x, y_backward, label=job_name) max_index = np.argmax(allocated_memory) max_trace = memory_traces[max_index] max_module = ".".join([n for n in max_trace.module_name.split(".") if not n.startswith("_")]) max_phase = "fwd" if max_trace.is_forward else "bwd" ax.set_ylim([None, max_trace.allocated * 1.1]) x_text, y_text = max(0, max_index * 0.8), max_trace.allocated * 1.04 # type: ignore ax.text(x_text, y_text, f"{max_module} ({max_phase})", fontdict=self.font) self._y_axis_in_gigabytes(ax) def reserved_memory_curve(self, ax: Any, job_name: str, memory_traces: List[LayerMemoryTrace]) -> None: reserved_memory = [t.reserved for t in memory_traces] x, y_forward, y_backward = self._split_forward_backward(memory_traces, reserved_memory) ax.plot(x, y_forward, x, y_backward, label=job_name) self._y_axis_in_gigabytes(ax) def activation_allocations(self, ax: Any, job_name: str, memory_traces: List[LayerMemoryTrace]) -> None: event_allocations = [t.event.memory_activations for t in memory_traces] x, y_forward, y_backward = self._split_forward_backward(memory_traces, event_allocations) ax.plot(x, y_forward, x, y_backward, label=job_name) self._y_axis_in_gigabytes(ax) def cumulative_activations(self, ax: Any, job_name: str, memory_traces: List[LayerMemoryTrace]) -> None: event_allocations = [t.event.memory_activations for t in memory_traces] x, y_forward, y_backward = self._split_forward_backward(memory_traces, event_allocations) cumulative_forward_activations = np.cumsum(y_forward) ax.plot(x, cumulative_forward_activations, label=job_name) self._y_axis_in_gigabytes(ax) def all_gathered_memory(self, ax: Any, job_name: str, memory_traces: List[LayerMemoryTrace]) -> None: # Plot the all_gathered and cumulative all_gathered memory gathered_memory = [t.all_gathered for t in memory_traces] cumul_gathered_memory = [t.cumul_all_gathered for t in memory_traces] x, y_forward, y_backward = self._split_forward_backward(memory_traces, gathered_memory) ax.plot(x, y_forward, x, y_backward, label=job_name) ax.plot(x, cumul_gathered_memory, label=job_name) self._y_axis_in_gigabytes(ax) # Adding the name of the layer with max cumulative all_gathered memory max_index = np.argmax(cumul_gathered_memory) max_trace = memory_traces[max_index] max_module = ".".join([n for n in max_trace.module_name.split(".") if not n.startswith("_")]) ax.set_ylim([None, max_trace.cumul_all_gathered * 1.1]) x_text, y_text = max(0, max_index * 0.8), max_trace.cumul_all_gathered * 1.04 # type: ignore ax.text(x_text, y_text, f"{max_module} (fwd)", fontdict=self.font) def module_parameters(self, ax: Any, job_name: str, memory_traces: List[LayerMemoryTrace]) -> None: module_parameters = [t.module_params for t in memory_traces] x, y_forward, y_backward = self._split_forward_backward(memory_traces, module_parameters) ax.plot(x, y_forward, x, y_backward, label=job_name) self._y_axis_in_gigabytes(ax) @staticmethod def _y_axis_in_gigabytes(ax: Any) -> None: ax.ticklabel_format(axis="y", style="sci", scilimits=(9, 9)) @classmethod def _split_forward_backward( cls, memory_traces: List[LayerMemoryTrace], values: List[Any] ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: x_values = np.array(list(range(len(memory_traces)))) mask_forwards, mask_backwards = cls._mask_forward_backward(memory_traces) return ( x_values, np.ma.masked_where(mask_backwards, values), # type: ignore np.ma.masked_where(mask_forwards, values), # type: ignore ) @classmethod def _mask_forward_backward(cls, memory_traces: List[LayerMemoryTrace]) -> Tuple[np.ndarray, np.ndarray]: mask_forwards = np.array([t.is_forward for t in memory_traces]) return mask_forwards, ~mask_forwards @contextmanager def null_context() -> Iterator[None]: yield def matplotlib_figure_to_image(fig: Any) -> Any: """ Convert a matplotlib figure to an image in RGB format, for instance to save it on disk """ import io from PIL import Image buf = io.BytesIO() fig.savefig(buf) buf.seek(0) return Image.open(buf).convert("RGB")
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from typing import List __all__: List[str] = []
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import logging from typing import Dict, List, Set import torch import torch.fx from torch.fx.node import Node def _get_count(param_count: Dict, node_name: str) -> int: """Identify different mutations of a given node name.""" # TODO(anj): This is not very stable since it is possible that the name # may not be in the same format. Is there another way to identify nodes # in a graph? if node_name in param_count: return param_count[node_name] elif node_name.split("_")[0] in param_count: return param_count[node_name.split("_")[0]] else: raise RuntimeError(f"Unable to find match between param {param_count} and node {node_name}") def _create_shard_to_param_count(param_count: Dict, node_name_to_shard_id: Dict) -> Dict: """Utility to create a map from shard id to param count using existing state.""" shard_to_param_count: Dict[int, int] = {} for node_name in node_name_to_shard_id.keys(): try: count = _get_count(param_count, node_name) except RuntimeError: continue if node_name_to_shard_id[node_name] in shard_to_param_count: shard_to_param_count[node_name_to_shard_id[node_name]] += count else: shard_to_param_count[node_name_to_shard_id[node_name]] = count return shard_to_param_count def _split_nodes(traced_graph_module: torch.fx.GraphModule, shard_count: int = 3) -> Dict: """Utility used to trace a graph and identify shard cutpoints.""" node_name_to_shard_id: Dict[str, int] = {} shard_id = 0 nodes_so_far = [] param_count: Dict[str, int] = {} shard_to_param_count = {} # Find the total number of params in the model and # the number of params per shard we are aiming for. for name, module in traced_graph_module.named_modules(): name = name.replace(".", "_") param_count[name] = sum([x.numel() for x in module.parameters()]) logging.info(f"Total number of params are {param_count['']}") per_shard_param = param_count[""] // shard_count logging.info(f"Per shard param count {per_shard_param}") for node in traced_graph_module.graph.nodes: if node.op == "placeholder": node_name_to_shard_id[node.name] = shard_id nodes_so_far.append(node.name) elif node.op in ["get_attr", "call_function", "call_method", "call_module"]: min_shard_id = shard_id min_node_name = "" # For each of the args of a given node, find the arg that is not the # last node we traversed. This is to help us find skip connections # across shards. for arg in node.args: # If the node has args that are inputs to the forward function, they # may not have explicit names. if not hasattr(arg, "name"): continue if arg.name in node_name_to_shard_id and arg.name != nodes_so_far[-1]: if node_name_to_shard_id[arg.name] < min_shard_id: min_shard_id = node_name_to_shard_id[arg.name] min_node_name = arg.name # If there is an input that is not from the previous shard, # we collapse all the shards in between to be part of 1 shard. # and update the param count per shard accordingly. if min_shard_id < shard_id: for node_name in reversed(nodes_so_far): node_name_to_shard_id[node_name] = min_shard_id if node_name == min_node_name: break shard_id = min_shard_id # TODO(anj-s): Find a way to raise an error early if this can cause OOM errors. shard_to_param_count = _create_shard_to_param_count(param_count, node_name_to_shard_id) # Update state that is tracking node -> shard id and shard id -> param count. node_name_to_shard_id[node.name] = shard_id nodes_so_far.append(node.name) # TODO(anj): This could just be an update, we don't need to recreate the map. shard_to_param_count = _create_shard_to_param_count(param_count, node_name_to_shard_id) # If we have gone over the number of params per shard count that we want to # achieve, we should add a new shard. # The shard_id may not have been updated in the map if we are at a node that does not # have params. if shard_id in shard_to_param_count and shard_to_param_count[shard_id] > per_shard_param: shard_id += 1 elif node.op == "output": break return node_name_to_shard_id class _ExtendedLeafTracer(torch.fx.Tracer): """Tracer with an extended set of leaf nn.Modules.""" def __init__(self, leaf_modules: Set[torch.nn.Module]): """Initializes a new _ExtendedLeafTracer object. Args: leaf_modules: The set of extra nn.Modules instances which will not be traced through but instead considered to be leaves. """ super().__init__() self.leaf_modules = leaf_modules def is_leaf_module(self, m: torch.nn.Module, model_qualified_name: str) -> bool: return super().is_leaf_module(m, model_qualified_name) or m in self.leaf_modules # TODO(ehotaj): Extend this method to wrap at the least granular level. One way to do # would be to wrap the Module tree bottom up, first wrapping untracable children and # only wrapping parents if they are also untracable. def _trace(model: torch.nn.Module) -> torch.fx.GraphModule: """Traces the given model and automatically wraps untracable modules into leaves.""" leaf_modules = set() tracer = _ExtendedLeafTracer(leaf_modules) for name, module in model.named_modules(): # TODO(ehotaj): The default is_leaf_module includes everything in torch.nn. # This means that some coarse modules like nn.TransformerEncoder are treated # as leaves, not traced, and are unable to be sharded. We may want to extend our # sharding code to trace through these modules as well. if tracer.is_leaf_module(module, ""): continue try: tracer.trace(module) except (TypeError, torch.fx.proxy.TraceError): leaf_modules.add(module) tracer = _ExtendedLeafTracer(leaf_modules) graph = tracer.trace(model) return torch.fx.GraphModule(model, graph) def shard_model(model: torch.nn.Module, shard_count: int = 3) -> List[torch.fx.GraphModule]: """Utility used to shard a model using torch.fx. This function traces the model twice in an attempt to identify the right cutpoints and then shard the model. In the first pass we calculate the number of parameters as we are tracing the graph and mark nodes at which we might want to create a new module. In the second pass we modify the graph by inserting placeholders and output nodes to essentially shard the graph. We don't support skip connections between shards. This means that all input and output is self contained within a given shard. A node from shard 1 cannot be an input to a node from shard 3. We expect all inputs to a given shard to be coming from the last node in the previous shard. This means that we may not be able to shard models by the specified `shard_count` mentioned by the user. Args: model (nn.Module): Model to be sharded as specified by the device count. shard_count (int): Number of shards that we want to split the model into. """ module_list: List[torch.fx.GraphModule] = [] num_graphs = 0 new_graph = torch.fx.Graph() # type: ignore env: Dict[str, Node] = {} new_input_node = None traced_graph_module = _trace(model) # This is the first pass where we attempt to get a map of where # we need to insert placeholder and output nodes. node_name_to_shard_id = _split_nodes(traced_graph_module, shard_count=shard_count) # dummy value which indicates that this is the first node. prev_shard_id = 1000 prev_node = None for node in traced_graph_module.graph.nodes: # If the current node is in the next shard, we insert an output node. # A new graph is created and a placeholder is added for the next shard. if node.name in node_name_to_shard_id and prev_shard_id < node_name_to_shard_id[node.name]: assert prev_node, "prev_node cannot be None" with new_graph.inserting_after(prev_node): new_graph.output(env[prev_node.name]) num_graphs += 1 module_list.append(torch.fx.GraphModule(model, new_graph)) new_graph = torch.fx.Graph() node_name = "placeholder" + str(num_graphs) pl_node = new_graph.create_node("placeholder", node_name) env[node_name] = pl_node new_input_node = pl_node if new_input_node is not None: # Account for a placeholder in the new graph. node.args = (new_input_node,) new_input_node = None if node.op in ["placeholder", "get_attr", "call_function", "call_method", "call_module"]: # Copy the nodes from the existing graph to the new graph. new_node = new_graph.node_copy(node, lambda x: env[x.name]) env[node.name] = new_node elif node.op == "output": # If this is the last node, we should add an output # node and add the last graph to the list. assert prev_node, "prev_node cannot be None" with new_graph.inserting_after(prev_node): new_graph.output(env[prev_node.name]) module_list.append(torch.fx.GraphModule(model, new_graph)) break prev_node = new_node prev_shard_id = node_name_to_shard_id[node.name] return module_list
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from typing import List from .mevo import BaselineSoftmaxNllLoss from .mevo import MemoryEfficientVocabOutput as MEVO from .offload import OffloadModel from .sync_batchnorm import SyncBatchNorm __all__: List[str] = []
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Dict, List, Optional, Tuple import torch from torch import Tensor import torch.distributed as dist from torch.distributed import ProcessGroup from fairscale.internal import torch_version from fairscale.nn.checkpoint import is_checkpointing, is_recomputing def _forward(input: Tensor, affine: bool, mean: Tensor, invstd: Tensor, weight: Tensor, bias: Tensor) -> Tensor: if affine: return (input - mean) * (invstd * weight.reshape_as(mean)) + bias.reshape_as(mean) else: return (input - mean) * invstd def _track_running_stats( running_mean: Tensor, running_var: Tensor, momentum: float, mean: Tensor, var: Tensor, total_count: Tensor ) -> None: unbiased_var = var * (total_count / (total_count - 1)) running_mean += momentum * (mean.reshape(-1) - running_mean) running_var += momentum * (unbiased_var.reshape(-1) - running_var) def _calculate_stats(input: Tensor, eps: float, process_group: ProcessGroup) -> Tuple[Tensor, Tensor, Tensor, Tensor]: dim = [d for d in range(input.ndim) if d != 1] count = torch.full((1,), input.numel() // input.size(1), device=input.device, dtype=input.dtype) total_count = count.clone() all_reduce_handle = dist.all_reduce(total_count, group=process_group, async_op=True) mean = torch.mean(input, dim=dim, keepdim=True) meansqr = torch.mean(input * input, dim=dim, keepdim=True) vec = torch.cat([mean, meansqr]) all_reduce_handle.wait() vec = vec * (count / total_count) dist.all_reduce(vec, group=process_group) mean, meansqr = vec.chunk(2) var = meansqr - mean * mean invstd = torch.rsqrt(var + eps) return mean, var, invstd, total_count if torch_version()[:2] >= (1, 7): _forward = torch.jit.script(_forward) _track_running_stats = torch.jit.script(_track_running_stats) class _SyncBatchNormFunction(torch.autograd.Function): """ An autograd function used to avoid storing activations for intermediate results. NOTE: Even though the mean and var are passed into this function, we do the entire backward, including mean and var, here. We have to calculate statistics outside this function in order to avoid multiple all_reduces when using checkpointing. """ @staticmethod # type: ignore def forward(ctx, input, weight, bias, affine, mean, invstd, total_count, process_group): ctx.save_for_backward(input, weight, bias, mean, invstd, total_count) ctx.process_group = process_group return _forward(input, affine, mean, invstd, weight, bias) @staticmethod # type: ignore def backward(ctx, grad_output): needs_input_grad = ctx.needs_input_grad[0] needs_weight_grad = ctx.needs_input_grad[1] grad_input = None grad_weight = None grad_bias = None input, weight, bias, mean, invstd, total_count = ctx.saved_tensors process_group = ctx.process_group dim = [d for d in range(input.ndim) if d != 1] if needs_input_grad or needs_weight_grad: grad_common = torch.sum( (input - mean) * grad_output, dim=dim, keepdim=True ) # common to grad_weight and grad_invstd if needs_input_grad: if weight is None: # i.e. affine is False grad_input = invstd * grad_output grad_mean = -torch.sum(grad_input, dim=dim, keepdim=True) grad_invstd = grad_common else: grad_input = (invstd * weight.reshape_as(mean)) * grad_output grad_mean = -torch.sum(grad_input, dim=dim, keepdim=True) grad_invstd = grad_common * weight.reshape_as(mean) grad_var = -0.5 * invstd.pow(3) * grad_invstd grad_mean += -2 * mean * grad_var grad_meansqr = grad_var vec = torch.cat([grad_mean, grad_meansqr]) all_reduce_handle = dist.all_reduce(vec, group=process_group, async_op=True) if needs_weight_grad: grad_weight = (grad_common * invstd).resize_as(weight) grad_bias = torch.sum(grad_output, dim=dim) if needs_input_grad: all_reduce_handle.wait() vec = vec / total_count # NOTE(msb) removed '* count' here to avoid '/ count' below grad_mean, grad_meansqr = vec.chunk(2) grad_input += grad_mean # removed '/ count' grad_input += input * (2 * grad_meansqr) # removed '/ count' return grad_input, grad_weight, grad_bias, None, None, None, None, None, None, None class SyncBatchNorm(torch.nn.BatchNorm2d): """ Fast re-implementation of ``torch.nn.SyncBatchNorm`` that can achieve a speedup of 5x or more over the default implementation depending on size of the input and number of distributed workers. """ def __init__( self, *args: Tuple[Any, ...], process_group: Optional[ProcessGroup] = None, **kwargs: Dict[str, Any] ) -> None: super().__init__(*args, **kwargs) # type: ignore self._process_group = process_group if process_group is not None else dist.group.WORLD self.saved_for_2nd_fwd: List[Tuple] = [] self.disable_patch_batchnorm = True def forward(self, input: Tensor) -> Tensor: # type: ignore # There are 3 modes this is being called: # 1. not wrapped (and there is only a single phase) # 2. wrapped and in checkpointing phase # 3. wrapped and in recomputing phase if not dist.is_initialized() or not self.training: return super().forward(input) wrapped = is_checkpointing() or is_recomputing() if not wrapped or is_checkpointing(): # NOTE The full backward, including mean and var, is done by _SyncBatchNormFunction. with torch.no_grad(): mean, var, invstd, total_count = _calculate_stats(input, self.eps, self._process_group) if self.track_running_stats: _track_running_stats(self.running_mean, self.running_var, self.momentum, mean, var, total_count) if is_checkpointing(): self.saved_for_2nd_fwd.append((mean, invstd, total_count)) return _forward(input, self.affine, mean, invstd, self.weight, self.bias) if is_recomputing(): mean, invstd, total_count = self.saved_for_2nd_fwd.pop(0) return _SyncBatchNormFunction.apply( input, self.weight, self.bias, self.affine, mean, invstd, total_count, self._process_group ) @classmethod def convert_sync_batchnorm( cls, module: torch.nn.Module, process_group: Optional[ProcessGroup] = None ) -> torch.nn.Module: r"""Helper function to convert all :attr:`BatchNorm*D` layers in the model to :class:`fairscale.experimental.nn.SyncBatchNorm` layers. Args: module (nn.Module): module containing one or more attr:`BatchNorm*D` layers process_group (optional): process group to scope synchronization, default is the whole world Returns: The original :attr:`module` with the converted :class:`torch.nn.SyncBatchNorm` layers. If the original :attr:`module` is a :attr:`BatchNorm*D` layer, a new :class:`torch.nn.SyncBatchNorm` layer object will be returned instead. Example:: >>> # Network with nn.BatchNorm layer >>> module = torch.nn.Sequential( >>> torch.nn.Linear(20, 100), >>> torch.nn.BatchNorm1d(100), >>> ).cuda() >>> # creating process group (optional) >>> # ranks is a list of int identifying rank ids. >>> ranks = list(range(8)) >>> r1, r2 = ranks[:4], ranks[4:] >>> # Note: every rank calls into new_group for every >>> # process group created, even if that rank is not >>> # part of the group. >>> process_groups = [torch.distributed.new_group(pids) for pids in [r1, r2]] >>> process_group = process_groups[0 if dist.get_rank() <= 3 else 1] >>> sync_bn_module = fairscale.experimental.nn.SyncBatchNorm.convert_sync_batchnorm(module, process_group) """ module_output = module if isinstance(module, torch.nn.modules.batchnorm._BatchNorm): module_output = SyncBatchNorm( module.num_features, # type: ignore module.eps, # type: ignore module.momentum, # type: ignore module.affine, # type: ignore module.track_running_stats, # type: ignore process_group=process_group, ) if module.affine: with torch.no_grad(): module_output.weight = module.weight module_output.bias = module.bias module_output.running_mean = module.running_mean module_output.running_var = module.running_var module_output.num_batches_tracked = module.num_batches_tracked if hasattr(module, "qconfig"): module_output.qconfig = module.qconfig for name, child in module.named_children(): module_output.add_module(name, cls.convert_sync_batchnorm(child, process_group)) del module return module_output
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Optional, Tuple import torch from torch import nn import torch.distributed as dist import torch.nn.functional as F # Debugging flag to enable some prints. Useful to debug with FSDP. DEBUG = False def _next_power_of_2_or_max(n: int, max_n: int) -> int: """Return the smallest power of 2 greater than or equal to n, with a limit. Useful when used in splitting a tensor into chunks with power-of-2 sizes. """ # special case, just split to 1 element chunks. if n == 0: return 1 orig_n = n n -= 1 n |= n >> 1 n |= n >> 2 n |= n >> 4 n |= n >> 8 n |= n >> 16 n += 1 assert n >= orig_n, f"{n} vs. {orig_n}" assert bin(n).count("1") == 1, bin(n) # Catch the case n is too large for this function. if n > max_n: return max_n return n def _reshape_inputs(input: torch.Tensor, target: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """Convert 3D inputs to 2D for this kernel""" if len(input.shape) == 3: input = input.reshape(-1, input.shape[2]) if len(target.shape) == 2: target = target.reshape(-1) return input, target def get_data( shape: Tuple[Tuple[int, int], Tuple[int, int]], dtype: torch.dtype = torch.float16, device: str = "cuda" ) -> Tuple[torch.Tensor, nn.Parameter, torch.Tensor]: """Utility function for getting some tensors for testing and benchmarking.""" (tokens, d1), (d2, vocabs) = shape assert d1 == d2 input = torch.rand(tokens, d1, device=device, dtype=dtype).requires_grad_(True) # Before pytorch 1.9, nn.Linear does not support device and dtype init option. So we use to() # and an if condition. layer = nn.Linear(d2, vocabs, bias=False).to(device) assert dtype in [torch.float16, torch.float32] if dtype == torch.float16: layer = layer.half() weight = layer.weight target = (torch.rand(tokens, device=device) * vocabs).long() return input, weight, target class BaselineSoftmax(nn.Module): """Baseline softmax that does an output linear projection and a softmax. We also support LMCL (Large Margin Cosine Loss) from the CosFace paper. See more detailed comment in the MEVO class below. This is intended to be used with an embedding layer with shared weights. Args: proj_weight (nn.Parameter): The shared weight. tile_factor (int): Unused. It is here to make kernel init easier with MEVO. log_softmax (bool): If True, use log_softmax instead of softmax. margin (float): Used in LMCL (when scale != None). See MEVO comments for more details. scale (Optional[float]): Used in LMCL. If scale is None, LMCL is turned off. See MEVO comments for more details. """ def __init__( self, proj_weight: nn.Parameter, tile_factor: int = 0, log_softmax: bool = True, margin: float = 0.35, scale: Optional[float] = None, ): super().__init__() out_dim, in_dim = proj_weight.shape assert "cuda" in str(proj_weight.device), "weight should be on GPU" self.fc = nn.Linear(in_dim, out_dim, bias=False).to("cuda") assert proj_weight.dtype in [torch.float16, torch.float32] if proj_weight.dtype == torch.float16: self.fc = self.fc.half() self.fc.weight = proj_weight assert self.fc.weight.dtype in [torch.float16, torch.float32], self.fc.weight.dtype self.fp16 = self.fc.weight.dtype == torch.float16 self.log_softmax = log_softmax self.margin = margin self.scale = scale def lmcl_pre_softmax(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor: # normalize feature and fc layer before multiplication # n: number of features (tokens) # k: number of classes (vocab size) # c: hidden dimension (d_model) x = F.normalize(input, dim=1) w = F.normalize(self.fc.weight, dim=1) logits = torch.einsum("nc,kc->nk", x, w) # add margin row_ind = torch.arange(x.shape[0], dtype=torch.long).to(x.device) col_ind = target logits[row_ind, col_ind] -= self.margin # add scale logits *= self.scale return logits def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor: # type: ignore """Forward function that computes softmax output with the input and target.""" assert isinstance(input, torch.Tensor) assert isinstance(target, torch.Tensor) input, target = _reshape_inputs(input, target) if self.fp16: assert input.dtype == torch.float16 if self.scale is not None: x = self.lmcl_pre_softmax(input, target) else: x = self.fc(input) # Note that we do softmax in FP32, which is important for numerical stability. if self.log_softmax: x = F.log_softmax(x, dim=-1, dtype=torch.float32) else: x = F.softmax(x, dim=-1, dtype=torch.float32) assert x.dtype == torch.float32 return x class BaselineSoftmaxNllLoss(BaselineSoftmax): """Baseline that does an output projection, a softmax & a NLL loss (cross-entropy). See BaselineSoftmax above. Constructor is the same. Only difference is in the forward function. This class is used for testing and benchmarking. """ def __init__( self, proj_weight: nn.Parameter, tile_factor: int = 0, log_softmax: bool = True, margin: float = 0.35, scale: Optional[float] = None, ): super().__init__(proj_weight, tile_factor, log_softmax, margin, scale) def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor: # type: ignore """Forward that directly compute the loss.""" assert isinstance(input, torch.Tensor) assert isinstance(target, torch.Tensor) input, target = _reshape_inputs(input, target) x = super().forward(input, target) return F.nll_loss(x, target, reduction="sum") def lmcl_matmul( i: torch.Tensor, w: torch.Tensor, tgt: torch.Tensor, w_idx: int, margin: float, scale: Optional[float] ) -> torch.Tensor: """LMCL variation of matmul with normalization, margin and scale.""" # normalize and matmul logits = torch.matmul(F.normalize(i, dim=1), F.normalize(w, dim=1).T) # add margin using a mask since tgt might be out of the the weight split's range. mask = torch.arange(w_idx * w.shape[0], (w_idx + 1) * w.shape[0], dtype=torch.long, device=i.device).expand( i.shape[0], -1 ) logits[mask == tgt.reshape(-1, 1)] -= margin # add scale logits *= scale return logits class GetMaxFunction(torch.autograd.Function): """Custom checkpointed function to get max-per-token from an input and a weight""" @staticmethod def get_max( i: torch.Tensor, w: torch.Tensor, tgt: torch.Tensor, w_idx: int, full_precision: bool, margin: float, scale: Optional[float], ) -> torch.Tensor: """ Throughout this code: i: input data with shape = (split-of-tokens, d_model) w: weight data with shape = (split-of-vocabs, d_model) tgt: target prediction data with shape = (split-of-tokens,) """ if scale is not None: _m = lmcl_matmul(i, w, tgt, w_idx, margin, scale) else: _m = torch.matmul(i, w.T) if full_precision: _m = _m.float() _m = _m.max(dim=1)[0] return _m @staticmethod def forward( # type: ignore ctx: Any, i: torch.Tensor, w: torch.Tensor, tgt: torch.Tensor, kernel_obj: "MemoryEfficientVocabOutput", w_idx: int, w_split_size: int, split_dim: int, ) -> torch.Tensor: """Forward function that computes the max, without saving activations.""" if DEBUG and dist.is_initialized() and dist.get_rank() == 0: print("DEBUG max fwd") ctx.save_for_backward(i, w, tgt) ctx.kernel_obj = kernel_obj ctx.w_idx = w_idx ctx.w_split_size = w_split_size ctx.args = {} assert split_dim == 0 # During forward, we use ``no_grad'' to avoid saving the activations. # The activations will be recomputed in backward below and freed # immediately after use. This saves the overall GPU peak memory of this layer. with torch.no_grad(): return GetMaxFunction.get_max(i, w, tgt, w_idx, kernel_obj.fp_max, kernel_obj.margin, kernel_obj.scale) @staticmethod def backward(ctx: Any, *args: Any) -> Any: """Recompute the forward max and backward grad. Accumulate the grad to the right split of the full grad. """ if DEBUG and dist.is_initialized() and dist.get_rank() == 0: print("DEBUG max bwd") assert len(args) == 1 # Gradients should already exist due to TargetScoreFunction's backward. assert ctx.kernel_obj.proj_weight.grad is not None # Get saved i and w. i, w, tgt = ctx.saved_tensors assert i.requires_grad assert w.requires_grad # We use ``detach()'' to ensure the backward call below does not # trigger backward computation that produced i and w here. Otherwise, # the backward call below would trigger backward all the way to # the batch input. i = i.detach().requires_grad_(True) w = w.detach().requires_grad_(True) # Forward + backward again. with torch.enable_grad(): # This saves the activations. maxs = GetMaxFunction.get_max( i, w, tgt, ctx.w_idx, ctx.kernel_obj.fp_max, ctx.kernel_obj.margin, ctx.kernel_obj.scale ) # This will use the activations and free them immediately. torch.autograd.backward(maxs, *args) # Accumulate the computed gradients into the bigger weight tensor's gradient tensor. assert w.grad is not None with torch.no_grad(): grads = torch.split(ctx.kernel_obj.proj_weight.grad, ctx.w_split_size) grads[ctx.w_idx].add_(w.grad) return i.grad, None, None, None, None, None, None class GetSumFunction(torch.autograd.Function): """Custom checkpointed function to get sum-per-token from an input and a weight.""" @staticmethod def get_sum( i: torch.Tensor, w: torch.Tensor, tgt: torch.Tensor, maxs: torch.Tensor, w_idx: int, full_precision: bool, margin: float, scale: Optional[float], ) -> torch.Tensor: if scale is not None: _s = lmcl_matmul(i, w, tgt, w_idx, margin, scale) else: _s = torch.matmul(i, w.T) if full_precision: _s = _s.float() _s = (_s - maxs.reshape(-1, 1)).exp().sum(dim=1) return _s @staticmethod def forward( # type: ignore ctx: Any, i: torch.Tensor, w: torch.Tensor, tgt: torch.Tensor, maxs: torch.Tensor, kernel_obj: "MemoryEfficientVocabOutput", w_idx: int, w_split_size: int, split_dim: int, ) -> torch.Tensor: """Forward function that computes the sum, without saving activations.""" if DEBUG and dist.is_initialized() and dist.get_rank() == 0: print("DEBUG sum fwd") ctx.save_for_backward(i, w, tgt, maxs) ctx.kernel_obj = kernel_obj ctx.w_idx = w_idx ctx.w_split_size = w_split_size assert split_dim == 0 with torch.no_grad(): return GetSumFunction.get_sum( i, w, tgt, maxs, w_idx, kernel_obj.fp_sum, kernel_obj.margin, kernel_obj.scale ) @staticmethod def backward(ctx: Any, *args: Any) -> Any: """Recompute the forward sum and backward grad. Accumulate the grad to the right split of the full grad. """ if DEBUG and dist.is_initialized() and dist.get_rank() == 0: print("DEBUG sum bwd") assert len(args) == 1 # Gradients should already exist due to TargetScoreFunction's backward. assert ctx.kernel_obj.proj_weight.grad is not None # Get saved i, w, and maxs. i, w, tgt, maxs = ctx.saved_tensors assert i.requires_grad assert w.requires_grad assert maxs.requires_grad i = i.detach().requires_grad_(True) w = w.detach().requires_grad_(True) maxs = maxs.detach().requires_grad_(True) # Forward + backward again. with torch.enable_grad(): sums = GetSumFunction.get_sum( i, w, tgt, maxs, ctx.w_idx, ctx.kernel_obj.fp_sum, ctx.kernel_obj.margin, ctx.kernel_obj.scale ) torch.autograd.backward(sums, *args) # Accumulate the grads. assert w.grad is not None with torch.no_grad(): grads = torch.split(ctx.kernel_obj.proj_weight.grad, ctx.w_split_size) grads[ctx.w_idx].add_(w.grad) return i.grad, None, None, maxs.grad, None, None, None, None class TargetScoreFunction(torch.autograd.Function): """Custom checkpointed function to compute the target score.""" @staticmethod def get_target_score( i: torch.Tensor, w: torch.Tensor, target: torch.Tensor, full_precision: bool, margin: float, scale: Optional[float], ) -> torch.Tensor: tokens, d_model = i.shape assert d_model == w.shape[1] tw = w.gather(dim=0, index=target.reshape(target.shape[0], 1).expand(target.shape[0], d_model)) assert tw.shape == (tokens, d_model) if scale is not None: target_score = F.normalize(i, dim=1) * F.normalize(tw, dim=1) else: target_score = i * tw if full_precision: target_score = target_score.float() target_score = target_score.sum(dim=1) # sum into target scores with shape (tokens,) if scale is not None: target_score -= margin target_score *= scale return target_score @staticmethod def forward( # type: ignore ctx: Any, i: torch.Tensor, w: torch.Tensor, target: torch.Tensor, kernel_obj: "MemoryEfficientVocabOutput" ) -> torch.Tensor: """Forward, without activations.""" if DEBUG and dist.is_initialized() and dist.get_rank() == 0: print("DEBUG target fwd") ctx.save_for_backward(i, w, target) ctx.kernel_obj = kernel_obj with torch.no_grad(): x = TargetScoreFunction.get_target_score( i, w, target, kernel_obj.fp_target, kernel_obj.margin, kernel_obj.scale ) return x @staticmethod def backward(ctx: Any, *args: Any) -> Any: """Forward and backward again, assign or accumulate the gradients.""" if DEBUG and dist.is_initialized() and dist.get_rank() == 0: print("DEBUG target bwd") assert len(args) == 1 i, w, target = ctx.saved_tensors assert i.requires_grad assert w.requires_grad assert not target.requires_grad i = i.detach().requires_grad_(True) w = w.detach().requires_grad_(True) with torch.enable_grad(): scores = TargetScoreFunction.get_target_score( i, w, target, ctx.kernel_obj.fp_target, ctx.kernel_obj.margin, ctx.kernel_obj.scale ) torch.autograd.backward(scores, *args) if ctx.kernel_obj.proj_weight.grad is not None: # This means we accumulate full grad between iters. Not memory efficient. ctx.kernel_obj.proj_weight.grad.add_(w.grad) else: ctx.kernel_obj.proj_weight.grad = w.grad return i.grad, None, None, None class BackwardTriggerFn(torch.autograd.Function): """A backward trigger function.""" @staticmethod def forward(ctx: Any, w: torch.Tensor, trigger_tensor: torch.Tensor) -> torch.Tensor: # type: ignore """We take a weight tensor and the trigger as inputs and output the weight directly.""" if DEBUG and dist.is_initialized() and dist.get_rank() == 0: print("DEBUG trigger fwd") ctx.save_for_backward(w, trigger_tensor) return w @staticmethod def backward(ctx: Any, *args: Any) -> Any: """We return zero grad for the trigger only.""" if DEBUG and dist.is_initialized() and dist.get_rank() == 0: print("DEBUG trigger bwd") assert len(args) == 1 w, trigger = ctx.saved_tensors assert w.requires_grad assert trigger.requires_grad return None, torch.zeros_like(trigger) class BackwardTrigger(nn.Module): """A backward trigger module. This module takes a parameter as an input and create a linked parameter from a newly created trigger parameter. The way to use it in a module's ``__init__'' and ``forward'' functions: ``` def __init__(): ... self.trigger = BackwardTrigger(some_layer.weight) ... def forward(): w = self.trigger() ... continue to use w ... ``` As a resule, the trigger's backward hook will be called at the end of the backward for the module that uses this trigger. """ def __init__(self, linked_param: torch.Tensor): super().__init__() assert isinstance(linked_param, nn.Parameter) self.trigger = nn.Parameter(torch.rand(1, dtype=linked_param.dtype, device=linked_param.device)) self.trigger._linked_param = linked_param def forward(self) -> torch.Tensor: # type: ignore return BackwardTriggerFn.apply(self.trigger._linked_param, self.trigger) class MemoryEfficientVocabOutput(nn.Module): # AKA. MEVO """Fused fc + softmax + nll_loss in a tiled fashion. MEVO uses much less memory but is quite a bit slower. MEVO also implements the LMCL (Large Margin Cosine Loss) function introduced by highly cited `CosFace: Large Margin Cosine Loss for Deep Face Recognition [Wang et al.]`_. .. _`CosFace: Large Margin Cosine Loss for Deep Face Recognition [Wang et al.]`: https://arxiv.org/abs/1801.09414 LMCL can be turned on using the ``margin`` and ``scale`` parameters below. These hyperparameters most likely require tuning, depending on the number of classes etc. MEVO LMCL can be suitable for face recognition and image retrieval tasks, esp. when the number prediction target classes is large. MEVO is slower but can use much less GPU memory in that case, which enables training with larger batches. We hope this is helpful but we strongly recommend users (AI researchers and engineers) to carefully consider their applications of this technology. This types of technology should not be used by small group of people exclusively to potentially harm the general public. Args: proj_weight (nn.Parameter): Sharing this weight with an embedding layer. tile_factor (int): Number of splits to use on the input sequence and vocab dimensions. Default: 16 reduction (str): Reduction OP (sum or mean). Default: sum margin (float): Hyperparameter of the separation margin between classes. See the appendix of the CosFace paper for a formula on how to compute its value properly. The default value is unlikely to be suitable in all cases. Default: 0.35 scale (Optional[float]): Hyperparameter of the feature-vector-scaling for LMCL. When not supplied, LMCL is turned off. See the appendix of the CosFace paper for a formula on how to compute its value properly. Default: None """ def __init__( self, proj_weight: nn.Parameter, tile_factor: int = 16, reduction: str = "sum", margin: float = 0.35, scale: Optional[float] = None, ): super().__init__() self.proj_weight = proj_weight # TODO (Min): these two factors doesn't have to be the same. More tuning can be done. self.tf_in, self.tf_w = tile_factor, tile_factor self.fp_max = True self.fp_sum = True # This is esp. important when tensors are large. Otherwise, you get inf. self.fp_target = True self.log_softmax = True self.reduction = reduction assert self.reduction in ["sum", "mean"] self.margin = margin self.scale = scale self.trigger = BackwardTrigger(self.proj_weight) if DEBUG and dist.is_initialized() and dist.get_rank() == 0: print( f"DEBUG cfg tf_in={self.tf_in} tf_w={self.tf_w} fp_max={self.fp_max} " f"fp_sum={self.fp_sum} fp_target={self.fp_target} log_softmax={self.log_softmax} " f"reduction={self.reduction} margin={self.margin} scale={self.scale}" ) def get_target_nlprob( self, i: torch.Tensor, w: torch.Tensor, target: torch.Tensor, debase_max: torch.Tensor, exp_sums: torch.Tensor ) -> torch.Tensor: """Get target's negative log probability.""" target_score = TargetScoreFunction.apply(i, w, target, self) prob = (target_score - debase_max).exp() / exp_sums if self.log_softmax: # lprob prob = prob.log() # nlprob, then sum over all tokens. return -prob.sum() def eval_forward(self, input: torch.Tensor) -> torch.Tensor: """Eval time forward that doesn't fuse the softmax and NLL Loss kernels.""" # Margin, scaling and normalization of LMCL does not apply to eval time as far as # I can tell. Therefore, we just do a matmul like the standard output layer. return torch.matmul(input, self.proj_weight.T) def forward(self, input: torch.Tensor, target: Optional[torch.Tensor]) -> torch.Tensor: # type: ignore if not self.training and target is None: return self.eval_forward(input) if DEBUG and dist.is_initialized() and dist.get_rank() == 0: cur_mem = round(torch.cuda.memory_allocated() / 1024 / 1024) mem = round(torch.cuda.max_memory_allocated() / 1024 / 1024) print("DEBUG cur, peak", cur_mem, mem) assert isinstance(input, torch.Tensor) assert isinstance(target, torch.Tensor) if torch.is_grad_enabled(): assert input.requires_grad input, target = _reshape_inputs(input, target) tokens, d_model = input.shape (t2,) = target.shape vocab, d2 = self.proj_weight.shape assert d_model == d2, f"incorrect shape {d_model} vs {d2}" assert tokens == t2, f"incorrect shape {tokens} vs {t2}" split_dim = 0 input_split_size = _next_power_of_2_or_max(tokens // self.tf_in, tokens) weight_split_size = _next_power_of_2_or_max(vocab // self.tf_w, vocab) inputs = torch.split(input, input_split_size, split_dim) weight = self.trigger() weights = torch.split(weight, weight_split_size, split_dim) targets = tuple([torch.Tensor()] * len(inputs)) if self.scale is not None: targets = torch.split(target, input_split_size, split_dim) # Get maxs maxs = [] for i, tgt in zip(inputs, targets): m = None # max with (tokens_tile,) shape for w_idx, w in enumerate(weights): _m = GetMaxFunction.apply(i, w, tgt, self, w_idx, weight_split_size, split_dim) if m is None: m = _m else: m = torch.max(m, _m) assert m is not None maxs.append(m) # (tokens_tile,) maxs_tensor = torch.cat(maxs) # (tokens,) assert maxs_tensor.shape == (tokens,) # Get sums. sums = [] for i, tgt, debase_max in zip(inputs, targets, maxs): s = None # sum with (tokens_tile,) shape for w_idx, w in enumerate(weights): _s = GetSumFunction.apply(i, w, tgt, debase_max, self, w_idx, weight_split_size, split_dim) if s is None: s = _s else: s += _s assert s is not None sums.append(s) # (tokens_tile,) sums_tensor = torch.cat(sums) # (tokens,) assert sums_tensor.shape == (tokens,) # select weights for targets result = self.get_target_nlprob(input, self.proj_weight, target, maxs_tensor, sums_tensor) if self.reduction == "mean": result /= tokens return result
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from builtins import isinstance import functools import logging from typing import Any, List, Tuple import torch from torch import nn def _conditional_amp_fwd_decorator(orig_func): # type: ignore if hasattr(torch.cuda.amp, "custom_fwd"): return torch.cuda.amp.custom_fwd(orig_func) # type: ignore @functools.wraps(orig_func) def inner_decorator(*args: Any, **kwargs: Any) -> Any: return orig_func(*args, **kwargs) return inner_decorator def _conditional_amp_bwd_decorator(orig_func): # type: ignore if hasattr(torch.cuda.amp, "custom_bwd"): return torch.cuda.amp.custom_bwd(orig_func) # type: ignore @functools.wraps(orig_func) def inner_decorator(*args: Any, **kwargs: Any) -> Any: return orig_func(*args, **kwargs) return inner_decorator def _split(modules: nn.Sequential, number_splits: int) -> List[List[nn.Module]]: number_splits = min(len(modules), number_splits) splits: List[List[nn.Module]] = [[] for _ in range(number_splits)] # Count the number of parameters per exposed layer, use that as a proxy for memory footprint total_number_params = sum([sum(p.numel() for p in m.parameters()) for m in modules]) number_parameters_per_shard = total_number_params // number_splits current_shard = 0 logging.info( f"This model has {total_number_params/1e6:.2f}M parameters, aiming for {number_parameters_per_shard/1e6:.2f}M parameters per shard" ) for m in modules: for p in m.parameters(): p.data = p.data.pin_memory() # Number of parameters in the current shard current_shard_params = sum(p.numel() for sm in splits[current_shard] for p in sm.parameters()) # This shard is big enough, point to the next one if ( current_shard_params > 0 and current_shard_params + sum(p.numel() for p in m.parameters()) > number_parameters_per_shard and current_shard < number_splits - 1 ): current_shard += 1 splits[current_shard].append(m) for i, split in enumerate(splits): current_shard_params = sum(p.numel() for sm in split for p in sm.parameters()) logging.info(f"Shard {i} holds {current_shard_params/1e6:.2f}M parameters") return splits class ModelShard(nn.Module): """ Wrap one shard of the model, make it possible to load parameters on the fly for the FW and BW pass on the given device. """ def __init__( self, cpu_model_shard: nn.Module, device: torch.device, offload_device: torch.device, index: int, ): super().__init__() self.model_shard = cpu_model_shard self.index = index # Save all the parameter sizes to be able to restore them self.device = device torch.cuda.device(self.device) self.offload_device = offload_device self.model_shard.to(offload_device) self._cpu_to_gpu_stream = torch.cuda.Stream(device=self.device) self._gpu_to_cpu_stream = torch.cuda.Stream(device=self.device) def forward(self, *inputs): # type: ignore return self.model_shard(*inputs) if isinstance(inputs, tuple) else self.model_shard(inputs) def to(self, device: torch.device) -> "ModelShard": # type: ignore # Make sure that the lookahead and lookback shards are not captured by this call self.model_shard.to(device) return self def train(self, mode: bool = True) -> "ModelShard": # Make sure that the lookahead and lookback shards are not captured by this call self.model_shard.train(mode) return self def to_device(self) -> None: self.model_shard.to(device=self.device, non_blocking=True) def forward_load(self, non_blocking: bool = True) -> None: with torch.cuda.stream(self._cpu_to_gpu_stream): # Restore all the parameter buffers self.model_shard.to(device=self.device, non_blocking=non_blocking) # Ignore the following function for code coverage since the backward pass # is triggered by C++ code and cannot be calculated when overriding # autograd.Function def backward_load(self, non_blocking: bool = True) -> None: # pragma: no cover with torch.cuda.stream(self._cpu_to_gpu_stream): self.model_shard.to(self.device, non_blocking=non_blocking) def forward_drop(self, non_blocking: bool = True) -> None: with torch.cuda.stream(self._gpu_to_cpu_stream): self.model_shard.to(self.offload_device, non_blocking=non_blocking) # Ignore the following function for code coverage since the backward pass # is triggered by C++ code and cannot be calculated when overriding # autograd.Function def backward_drop(self, non_blocking: bool = True) -> None: # pragma: no cover with torch.cuda.stream(self._gpu_to_cpu_stream): self.model_shard.to(self.offload_device, non_blocking=non_blocking) class OffloadFunction(torch.autograd.Function): """ This Function enables checkpointing of intermediate activations at shard boundaries by overriding the forward and backward pass of the nn.Module. - In the FW pass, it drops parameters in the previous shard and loads parameters for the next shard. No graph is constructed in the FW pass. This enables us to offload intermediate activations present at the shard boundaries. - In the BW pass, it does the reverse. We run the forward pass using the saved intermediate activations and calculate gradients as needed. The trade-off is latency vs memory when using activation checkpointing. - Follows heavily from https://pytorch.org/docs/stable/_modules/torch/utils/checkpoint.html#checkpoint. NOTE: see https://pytorch.org/docs/stable/autograd.html#torch.autograd.Function """ @staticmethod @_conditional_amp_fwd_decorator # type: ignore def forward(ctx: Any, inputs: Any, dummy_input: Any, model_instance: Any) -> Any: inputs = inputs if isinstance(inputs, tuple) else (inputs,) ctx.inputs = inputs ctx.model_instance = model_instance # TODO(anj-s): We might need to store this for each boundary activation. # Currently we assume all boundary activation inputs require ctx.grad_requirements = tuple(x.requires_grad for x in inputs) ctx.fwd_rng_state = torch.get_rng_state() # List of input activations starting with the given input. model_instance._activations = [inputs] # Enumerate through layer shards and apply activations from the previous shard. for index, layer_shard in enumerate(model_instance.model_slices): with torch.autograd.profiler.record_function("fairscale.experimental.nn.offload:forward_load"): # Bring in the current activations onto the device. model_instance._activations[index] = tuple([a.cuda() for a in list(model_instance._activations[index])]) # Bring in the current layer shard onto the device. layer_shard.forward_load() # Apply the FP and store the activations on the CPU. inputs = model_instance._activations[index] with torch.autograd.profiler.record_function("fairscale.experimental.nn.offload:no_grad_forward_pass"): with torch.no_grad(): output_list: List[Any] = [] for given_input in inputs: given_input_list = torch.chunk(given_input, model_instance._num_microbatches) given_output_list = [] for inputs in given_input_list: output = layer_shard(inputs) given_output_list.append(output) given_output = torch.cat(given_output_list).squeeze(-1) output_list.append(given_output) output = tuple(output_list) output = output if isinstance(output, tuple) else (output,) with torch.autograd.profiler.record_function("fairscale.experimental.nn.offload:forward_drop"): # Move the activation used back for the curent shard back to the CPU. model_instance._activations[index] = tuple([a.cpu() for a in list(model_instance._activations[index])]) # The newly computed activations remain on the GPU ready for the next shard computation. model_instance._activations.append(output) # Move the layer shard back to the CPU. layer_shard.forward_drop() # The last instance will lose the gradient function if we move it to the CPU. # This is because all grad function are present on the device that ran the FW pass. # The last activation remains on the GPU and is the return value of this function. # Note that this assumes that the target is also on the GPU which is required for calculating # the loss. result = model_instance._activations[-1] result = [r.cuda() for r in result] for r in result: r.requires_grad = True return result[0] if len(result) == 1 else result # Ignore the following function for code coverage since the backward pass # is triggered by C++ code and cannot be calculated when overriding # autograd.Function @staticmethod @_conditional_amp_bwd_decorator def backward(ctx, *grad_outputs): # type: ignore # pragma: no cover if not torch.autograd._is_checkpoint_valid(): raise RuntimeError("Checkpointing is not compatible with .grad(), please use .backward() if possible") inputs = ctx.inputs model_instance = ctx.model_instance for i, need_grad in enumerate(ctx.grad_requirements): inputs[i].requires_grad = need_grad all_grads = [grad_outputs] for model_shard, activation in zip( reversed(model_instance.model_slices), reversed(model_instance._activations[:-1]) ): with torch.autograd.profiler.record_function("fairscale.experimental.nn.offload:backward_load"): # Move the activation to the GPU. activation = tuple([a.cuda() for a in list(activation)]) # Move the model shard to the GPU. model_shard.backward_load() # Store the BW pass state. bwd_rng_state = torch.get_rng_state() # TODO(anj-s): Why detach inputs? activation = torch.utils.checkpoint.detach_variable(activation) # Get the last gradient calculation. final_grads = all_grads[-1] if isinstance(activation, torch.Tensor): activation = (activation,) if isinstance(final_grads, torch.Tensor): final_grads = (final_grads,) # Iterate through all the inputs/outputs of a shard (there could be multiple). chunked_grad_list: List[Any] = [] # Chunk the activation and grad based on the number of microbatches that are set. for chunked_activation, chunked_grad in zip( torch.chunk(*activation, model_instance._num_microbatches), # type: ignore torch.chunk(*final_grads, model_instance._num_microbatches), # type: ignore ): # Set the states to what it used to be before the forward pass. torch.set_rng_state(ctx.fwd_rng_state) if isinstance(chunked_activation, torch.Tensor): chunked_activation = (chunked_activation,) # type: ignore if isinstance(chunked_grad, torch.Tensor): chunked_grad = (chunked_grad,) # type: ignore # Since we need a grad value of a non leaf element we need to set these properties. for a in chunked_activation: if a.dtype == torch.long: continue a.requires_grad = True a.retain_grad() with torch.autograd.profiler.record_function( "fairscale.experimental.nn.offload:forward_pass_with_enable_grad" ): with torch.enable_grad(): # calculate the output of the last shard wrt to the stored activation at the slice boundary. outputs = model_shard(*chunked_activation) # Set the states back to what it was at the start of this function. torch.set_rng_state(bwd_rng_state) with torch.autograd.profiler.record_function("fairscale.experimental.nn.offload:backward_pass"): torch.autograd.backward(outputs, chunked_grad) intermediate_grads = [] for a in chunked_activation: if a.grad is not None: intermediate_grads.append(a.grad) if None not in intermediate_grads: chunked_grad_list += intermediate_grads if chunked_grad_list: # Append the list of grads to the all_grads list and this should be on the GPU. all_grads.append(torch.cat(chunked_grad_list).squeeze(-1)) # type: ignore with torch.autograd.profiler.record_function("fairscale.experimental.nn.offload:backward_drop"): # Move the shard back to the CPU. This should move all the grad tensors to CPU as well. # We don't need to move activations since we are using a copy of the tensors on the GPU. model_shard.backward_drop() detached_inputs = model_instance._activations[0] grads = tuple(inp.grad if isinstance(inp, torch.Tensor) else inp for inp in detached_inputs) return (None, None) + grads class ShardSyncLayer(torch.autograd.Function): """ The shard sync layer is a synchronization point between model shards. - In the forward pass, it drops parameters in the previous shard and loads parameters for the next shard. - In the backward pass, it does the reverse. It does not change or create any outputs at all, instead it just forwards the input as the output. NOTE: see https://pytorch.org/docs/stable/autograd.html#torch.autograd.Function """ @staticmethod @_conditional_amp_fwd_decorator # type: ignore def forward(ctx: Any, inputs: Any, index: int, model_slices: Any, model_instance: Any) -> Any: drop_index = index load_index = index + 1 max_slices = len(model_slices) if drop_index >= 0: # Move shard from device to offload device. model_slices[drop_index].forward_drop() if load_index < max_slices: # Load shard from offload device to device. model_slices[load_index].forward_load() ctx.index = index ctx.model_slices = model_slices ctx.model_instance = model_instance return inputs if isinstance(inputs, tuple) else (inputs,) # Ignore the following function for code coverage since the backward pass # is triggered by C++ code and cannot be calculated when overriding # autograd.Function @staticmethod @_conditional_amp_bwd_decorator def backward(ctx, *grad_outputs): # type: ignore # pragma: no cover load_index = ctx.index drop_index = load_index + 1 model_slices = ctx.model_slices model_instance = ctx.model_instance # TODO(anj-s): Are these redundant in the backward pass? if drop_index == len(model_slices): # Drop the last activation since it is still on the CPU # after the loss.backward() call. model_instance._activations[-1] = tuple([a.cuda() for a in list(model_instance._activations[-1])]) if drop_index < len(model_slices): # Move shard from device to offload device. model_slices[drop_index].backward_drop() model_instance._activations[drop_index] = tuple( [a.cpu() for a in list(model_instance._activations[drop_index])] ) if load_index >= 0: # Load shard from offload device to device. model_slices[load_index].backward_load() model_instance._activations[load_index] = tuple( [a.cuda() for a in list(model_instance._activations[load_index])] ) # The returned variables need to mirror the forward inputs # TODO(anj-s): Why do we need to do this? if isinstance(grad_outputs, tuple): return grad_outputs[0], None, None, None return grad_outputs, None, None, None class OffloadModel(nn.Module): """Wraps an arbitrary :class:`nn.Sequential <torch.nn.Sequential>` module to train by offloading majority of the model parameters to the CPU. `OffloadModel` is heavily inspired by the _L2L algorithm and _Zero-Offload. :: model = get_model() offload_model = OffloadModel(model, device, offload_device=torch.device(“cpu”), num_slices=3, checkpoint_activation=True, num_microbatches=5) .. _L2L: https://arxiv.org/abs/2002.05645 .. _Zero-Offload: https://arxiv.org/abs/2101.06840 At each step, a layer(or series of layers) are loaded onto the GPU for the forward and backward pass with intermediate activations being copied onto the GPU as required. Once the forward or backward pass is completed for a given shard, it is moved back to the CPU again. `OffloadModel` supports activation checkpointing which reduces the memory footprint. You can also increase the number of microbatches which translates to more computation cycles for every shard load. This helps offset the cost of moving the shard from the CPU to GPU and vice versa. Note: OffloadModel currently only supports nn.Sequential models. Args: module (~torch.nn.Sequential): Module to be offloaded. device (torch.device): Device where the active model should reside. offload_device (torch.device): Device where the inactive model should reside. num_slices (int): Number of slices into which the model should be chunked. checkpoint_activation (bool): Boolean to indicate if we want to checkpoint intermediate activation states on the CPU. Default value is False. num_microbatches (int): Number of microbatches which should be run per model shard on device. """ def __init__( self, model: Any, device: torch.device, offload_device: torch.device = torch.device("cpu"), num_slices: int = 3, checkpoint_activation: bool = False, num_microbatches: int = 1, ): super().__init__() if not model: raise TypeError("`model` argument to `OffloadModel` cannot be None.") if not device: raise TypeError("`device` argument to `OffloadModel` cannot be None.") if not (isinstance(model, nn.Sequential) or type(model) == list): raise TypeError("`model` argument to `OffloadModel` must be of type `nn.Sequential`.") if not torch.cuda.is_available(): raise TypeError("CUDA must be available as one of the compute devices for `OffloadModel`.") self.device = device self.offload_device = offload_device # List of model shards that will be placed on/off the device. self.model_slices: List[nn.Module] = [] # TODO(anj): Add an experimental flag for using this instead of modifying the # arg type. if type(model) == list: # This is already sharded using the auto shard functinality. for i, m in enumerate(model): self.model_slices.append( ModelShard( cpu_model_shard=m, device=device, offload_device=offload_device, index=i, ) ) else: # Slice the model into roughly equivalent sequential shards. splits = _split(model, num_slices) # type: ignore for i, split in enumerate(splits): # Add one model handling this slice self.model_slices.append( ModelShard( cpu_model_shard=nn.Sequential(*split), device=device, offload_device=offload_device, index=i, ) ) # Expose a unified view of the slices self._model = torch.nn.Sequential(*self.model_slices) # intermediate activations at the slice boundaries. self._activations: List[Tuple] = [] # Currently we only support microbatches with activation checkpointing. if not checkpoint_activation and num_microbatches > 1: raise RuntimeError("We currently only support microbatches with activation checkpointing.") # Bool indicating if we want to checkpoint activation on the host. self._checkpoint_activation = checkpoint_activation # Number of microbatches to run per batch on the device self._num_microbatches = num_microbatches def forward(self, *inputs: Any, **_: Any) -> Any: # `apply` calls the `forward` function of the `OffloadFunction` class # and the `forward` function calls `inputs` on the first model shard. # Please see https://pytorch.org/docs/stable/autograd.html#function for more details. # We need the second param to be a dummy input to enable the # backward pass to be triggered for integer inputs. if self._checkpoint_activation: return OffloadFunction.apply(*inputs, torch.tensor([], requires_grad=True), self) self._activations = [] for index in range(-1, len(self.model_slices)): if index >= 0: # TODO(anj-s): This might be a redundant call since we have the previous # activation on the device already. self._activations[index] = tuple([a.cuda() for a in list(self._activations[index])]) inputs = self._activations[index] inputs = self.model_slices[index](*inputs) # Call the custom autograd hooks (discard/load slices FW and BW) inputs = ShardSyncLayer.apply(inputs, index, self.model_slices, self) self._activations.append(inputs) if index >= 0: self._activations[index] = tuple([a.cpu() for a in list(self._activations[index])]) result = self._activations[-1] result = tuple([r.cuda() for r in result]) return result[0] if len(result) == 1 else result
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import time from typing import Any, Dict, List, Tuple, Union import torch from torch import nn from torch.autograd.profiler import record_function from torch.distributed import ProcessGroup from torch.optim.optimizer import Optimizer from torch.utils.data import DataLoader from fairscale.nn.model_parallel import get_pipeline_parallel_ranks from fairscale.nn.pipe.async_schedule import ( AsyncMessageBody, AsyncMessageType, AsyncRecvOperator, Location, ModuleWrapper, ) from fairscale.nn.pipe.checkpoint import Checkpointing from fairscale.nn.pipe.messages import Transport from fairscale.nn.pipe.microbatch import Batch from fairscale.nn.pipe.types import ( EVENT_LOOP_ACTIVATIONS_QUEUE, EVENT_LOOP_GRADIENTS_QUEUE, PipeMessage, TensorOrTensors, ) from fairscale.nn.pipe.worker import Task def create_task_without_skip_trackers( checkpoint_stop: int, i: int, j: int, batch: Batch, partition: nn.Sequential, ) -> Task: # Determine whether checkpointing or not. if i < checkpoint_stop: def function( input: TensorOrTensors, partition: nn.Sequential = partition, chunk_id: int = i, part_id: int = j, ) -> TensorOrTensors: with record_function("chunk%d-part%d" % (chunk_id, part_id)): return partition(input) chk = Checkpointing(function, batch) task = Task(None, compute=chk.checkpoint, finalize=chk.recompute) del function, chk else: def compute( batch: Batch = batch, partition: nn.Sequential = partition, chunk_id: int = i, part_id: int = j, ) -> Batch: with record_function("chunk%d-part%d" % (chunk_id, part_id)): return batch.call(partition) task = Task(None, compute=compute, finalize=None) del compute return task class AsyncAMPnetEventLoop: def __init__( self, partitions: List[ModuleWrapper], group: ProcessGroup, transport: Transport, min_update_interval: int, weight_prediction: bool, checkpoint_stop: int, input_device: Union[None, int, str, torch.device], chunks: int, ): self.partitions = partitions self.group = group self.transport = transport self.min_update_interval = min_update_interval self.weight_prediction = weight_prediction self.checkpoint_stop = checkpoint_stop self.input_device = input_device self.chunks = chunks def perform_optimizer_step(self, optimizer: Any, num_gradients: Any) -> Any: return ( (optimizer is not None) and (not self.weight_prediction and num_gradients % self.min_update_interval == 0) or (self.weight_prediction and num_gradients % self.chunks == 0) ) def async_send_inner(self, batch: Batch, index: int) -> Tuple[Batch, PipeMessage]: task = create_task_without_skip_trackers( self.checkpoint_stop, index, self.group.rank(), batch, self.partitions[0].module, ) result = task.compute() task.finalize(result) ranks = get_pipeline_parallel_ranks() this_rank = torch.distributed.get_rank() body = AsyncMessageBody( AsyncMessageType.Activations, index, Location(this_rank, 0), Location(ranks[ranks.index(this_rank) + 1], 0), 0, ) message = PipeMessage( this_rank, ranks[ranks.index(this_rank) + 1], queue_name=EVENT_LOOP_ACTIVATIONS_QUEUE, args=body, tensors=tuple([*result]), ) return result, message def async_grad_inner(self, message: PipeMessage, activations: Dict[int, Batch]) -> None: args: AsyncMessageBody = message.args recvd_grads = self.transport.recv_message_tensors(message) batch = activations[args.microbatch_index] if len(recvd_grads.tensors) != len(batch): raise RuntimeError("different number of tensors and gradients") grads = [] final_tensors = [] for i, tensor in enumerate(batch): if tensor.requires_grad or getattr(tensor, "grad_fn", None) is not None: grads.append(recvd_grads.tensors[i]) final_tensors.append(tensor) torch.autograd.backward(final_tensors, grad_tensors=grads, retain_graph=True) del activations[args.microbatch_index] def get_batch_from_message(self, message: PipeMessage, queue_name: int) -> Batch: """Get the tensor(s) wrapped in a `Batch` from a `PipeMessage`, applying AsyncRecvOperator so we can intercept the backward pass""" microbatch_index = message.args.microbatch_index phony = torch.empty(0, device=self.transport.input_device, requires_grad=True) result = AsyncRecvOperator.apply(phony, self.transport, message, queue_name) if len(result) == 1: batch = Batch(result[0], microbatch_index) else: batch = Batch(result, microbatch_index) return batch def event_loop_head_across_minibatches( self, lm_dataloader: DataLoader, criterion: nn.Module, optimizer: Optimizer, transform_logger_object: Any ) -> None: # handles one epoch cur_rank = self.group.rank() N = len(get_pipeline_parallel_ranks()) # for warmup phase activations = dict() count = 0 num_gradients = 0 lm_iter = iter(lm_dataloader) # filling the pipeline: warmup -> all N - 1 forward passes while True: try: cur_batch = next(lm_iter) reqd_input = transform_logger_object.transform_input(cur_batch).to(self.input_device) batch = Batch(reqd_input, count) if self.weight_prediction: optimizer.update_weight_using_future_predictions(cur_rank, N, count, self.chunks, forward=True) activations[count], message = self.async_send_inner(batch, count) self.transport.send_message(message, sync=True) count += 1 if count == N - 1: break except StopIteration: break # steady state while True: try: # 1 forward pass cur_batch = next(lm_iter) reqd_input = transform_logger_object.transform_input(cur_batch).to(self.input_device) batch = Batch(reqd_input, count) if self.weight_prediction: optimizer.update_weight_using_future_predictions(cur_rank, N, count, self.chunks, forward=True) activations[count], forward_message = self.async_send_inner(batch, count) count += 1 # 1 backward pass message = self.transport.recv_message_header(EVENT_LOOP_GRADIENTS_QUEUE) args: AsyncMessageBody = message.args assert args.message_type is AsyncMessageType.Gradients if self.weight_prediction: optimizer.update_weight_using_future_predictions( cur_rank, N, num_gradients, self.chunks, forward=False ) self.async_grad_inner(message, activations) # Send after grad self.transport.send_message(forward_message, sync=True) num_gradients += 1 if self.perform_optimizer_step(optimizer, num_gradients): optimizer.step() optimizer.zero_grad() transform_logger_object.check_and_save_weights(num_gradients) except StopIteration: break # remaining items for backward remaining_items = len(activations) for _ in range(remaining_items): message = self.transport.recv_message_header(EVENT_LOOP_GRADIENTS_QUEUE) args = message.args assert args.message_type is AsyncMessageType.Gradients if self.weight_prediction: optimizer.update_weight_using_future_predictions(cur_rank, N, num_gradients, self.chunks, forward=False) self.async_grad_inner(message, activations) num_gradients += 1 if self.perform_optimizer_step(optimizer, num_gradients): optimizer.step() optimizer.zero_grad() transform_logger_object.check_and_save_weights(num_gradients) def event_loop_tail_across_minibatches( self, lm_dataloader: DataLoader, criterion: nn.Module, optimizer: Optimizer, transform_logger_object: Any ) -> None: # handles one epoch cur_rank = self.group.rank() N = len(get_pipeline_parallel_ranks()) num_batches = len(lm_dataloader) lm_iter = enumerate(lm_dataloader) # last partition -> one forward / one backward -> no warmup count = 0 num_gradients = 0 activations = dict() log_interval = 1 word_counter = 0 total_loss = 0 while True: try: start_time = time.time() microbatch_index, cur_batch = next(lm_iter) reqd_target = transform_logger_object.transform_target(cur_batch).to(self.input_device) # one forward message = self.transport.recv_message_header(EVENT_LOOP_ACTIVATIONS_QUEUE) args: AsyncMessageBody = message.args assert args.microbatch_index == count batch = self.get_batch_from_message(message, EVENT_LOOP_GRADIENTS_QUEUE) if self.weight_prediction: optimizer.update_weight_using_future_predictions(cur_rank, N, count, self.chunks, forward=True) task = create_task_without_skip_trackers( self.checkpoint_stop, args.microbatch_index, self.group.rank(), batch, self.partitions[0].module, ) output = task.compute() activations[args.microbatch_index] = output task.finalize(output) # one backward if self.weight_prediction: optimizer.update_weight_using_future_predictions( cur_rank, N, num_gradients, self.chunks, forward=False ) output_tensor = transform_logger_object.transform_output_before_loss(output.tensor) loss = criterion(output_tensor, reqd_target) loss.backward() count += 1 num_gradients += 1 if self.perform_optimizer_step(optimizer, num_gradients): optimizer.step() optimizer.zero_grad() transform_logger_object.check_and_save_weights(num_gradients) transform_logger_object.log_loss(cur_batch, loss, count) del loss del activations[args.microbatch_index] except StopIteration: break def event_loop_trunk_forward_helper(self, activations: Dict[int, Batch]) -> PipeMessage: message = self.transport.recv_message_header(EVENT_LOOP_ACTIVATIONS_QUEUE) args: AsyncMessageBody = message.args assert args.message_type is AsyncMessageType.Activations batch = self.get_batch_from_message(message, EVENT_LOOP_GRADIENTS_QUEUE) activations[args.microbatch_index], message = self.async_send_inner(batch, args.microbatch_index) return message def event_loop_trunk_backward_helper(self, activations: Dict[int, Batch]) -> None: message = self.transport.recv_message_header(EVENT_LOOP_GRADIENTS_QUEUE) args: AsyncMessageBody = message.args assert args.message_type is AsyncMessageType.Gradients self.async_grad_inner(message, activations) def event_loop_across_minibatches( self, lm_dataloader: DataLoader, criterion: nn.Module, optimizer: Optimizer, transform_logger_object: Any ) -> None: activations: Dict[int, Batch] = dict() num_microbatch = len(lm_dataloader) num_activations = 0 num_gradients = 0 ranks = get_pipeline_parallel_ranks() # for warmup phase N = len(ranks) cur_rank = torch.distributed.get_rank() # warmup phase (forward passes) # cur_rank worker will do (max_rank - cur_rank) forward passes n_warmup = ranks[-1] - cur_rank for _ in range(n_warmup): if self.weight_prediction: optimizer.update_weight_using_future_predictions( cur_rank, N, num_activations, self.chunks, forward=True ) message = self.event_loop_trunk_forward_helper(activations) self.transport.send_message(message, sync=True) num_activations += 1 # common loop for remanining items in the warmup phase and steady phase while num_activations < num_microbatch: # 1 Forward if self.weight_prediction: optimizer.update_weight_using_future_predictions( cur_rank, N, num_activations, self.chunks, forward=True ) message = self.event_loop_trunk_forward_helper(activations) num_activations += 1 # 1 Backward if self.weight_prediction: optimizer.update_weight_using_future_predictions(cur_rank, N, num_gradients, self.chunks, forward=False) self.event_loop_trunk_backward_helper(activations) num_gradients += 1 if self.perform_optimizer_step(optimizer, num_gradients): optimizer.step() optimizer.zero_grad() transform_logger_object.check_and_save_weights(num_gradients) self.transport.send_message(message, sync=True) # remaining backwards remaining = len(activations) for _ in range(remaining): if self.weight_prediction: optimizer.update_weight_using_future_predictions(cur_rank, N, num_gradients, self.chunks, forward=False) self.event_loop_trunk_backward_helper(activations) num_gradients += 1 if self.perform_optimizer_step(optimizer, num_gradients): optimizer.step() optimizer.zero_grad() transform_logger_object.check_and_save_weights(num_gradients)
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from typing import List __all__: List[str] = []
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. """The AMPnetPipe interface.""" from typing import Any from torch import nn from torch.optim.optimizer import Optimizer from torch.utils.data import DataLoader from fairscale.nn.pipe import AsyncPipe from .ampnet import AsyncAMPnetEventLoop __all__ = ["AMPnetPipe"] class AMPnetPipe(AsyncPipe): """ AMPnetPipe is the asynchronous version of the MultiProcessPipe implementation which avoids the bubble issue, by using stale weights and gradients. The implementation closely follows the paper: https://arxiv.org/abs/1705.09786 """ def __init__(self, **kwargs: Any) -> None: super().__init__(**kwargs) def interleave( self, lm_dataloader: DataLoader, criterion: nn.Module, optimizer: Optimizer, transform_logger_object: Any, min_update_interval: int = 1, weight_prediction: bool = False, ) -> None: partitions = self.partitions n = len(partitions) # AMPnet implementation doesn't handle skip_trackers! assert self.group rank = self.group.rank() transport = self.pipeline.transport checkpoint_stop = self.pipeline.checkpoint_stop ampnet_event_loop = AsyncAMPnetEventLoop( partitions, self.group, transport, min_update_interval, weight_prediction, checkpoint_stop, self.input_device, self.chunks, ) if rank == 0: ampnet_event_loop.event_loop_head_across_minibatches( lm_dataloader, criterion, optimizer, transform_logger_object ) elif self.final_stage: ampnet_event_loop.event_loop_tail_across_minibatches( lm_dataloader, criterion, optimizer, transform_logger_object ) else: ampnet_event_loop.event_loop_across_minibatches( lm_dataloader, criterion, optimizer, transform_logger_object )
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from .gossip import SlowMoBaseAlgorithm, SlowMoDistributedDataParallel # noqa
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. """ Mixing Manager Class :description: Class provides an API for dynamically selecting mixing weights for gossip """ from abc import ABC, abstractmethod from typing import Dict, Optional, Union import torch from .graph_manager import GraphManager class MixingManager(ABC): def __init__(self, graph: GraphManager, device: Optional[torch.device]) -> None: self.graph_manager = graph self.device = device def is_regular(self) -> bool: """ Whether there is bias accumulated in local entry of stationary distribution of mixing matrix """ return self.graph_manager.is_regular_graph() and self.is_uniform() @abstractmethod def is_uniform(self) -> bool: """Whether mixing weights are distributed uniformly over peers""" raise NotImplementedError @abstractmethod def get_mixing_weights(self, residual_adjusted: bool = True) -> Dict[Union[str, int], torch.Tensor]: """Create mixing weight dictionary using uniform allocation""" raise NotImplementedError class UniformMixing(MixingManager): def get_mixing_weights(self, residual_adjusted: bool = True) -> Dict[Union[str, int], torch.Tensor]: """Create mixing weight dictionary using uniform allocation""" mixing_weights: Dict[Union[str, int], torch.Tensor] = {} out_peers, _ = self.graph_manager.get_peers() w = torch.tensor([1.0 / (len(out_peers) + 1.0)], device=self.device) mixing_weights["lo"] = w.clone() w_op = w if not residual_adjusted else w / mixing_weights["lo"] mixing_weights["uniform"] = w_op.clone() for op in out_peers: mixing_weights[op] = w_op.clone() return mixing_weights def is_uniform(self) -> bool: return True
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from .distributed import SlowMoBaseAlgorithm, SlowMoDistributedDataParallel from .gossiper import PushPull, PushSum from .graph_manager import ( DynamicBipartiteExponentialGraph, DynamicBipartiteLinearGraph, DynamicDirectedExponentialGraph, DynamicDirectedLinearGraph, GraphManager, NPeerDynamicDirectedExponentialGraph, RingGraph, ) from .mixing_manager import MixingManager, UniformMixing from .utils import communicate from .utils.cuda_metering import CudaEventRecorder
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. """ Distributed Gossip Wrapper :description: Multi-Threaded Gossip Model Wrapper; designed for efficient multi-peer training. """ from enum import Enum import functools import logging import os import sys import threading from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union, cast import torch from torch.autograd import Variable import torch.distributed as dist from torch.nn.modules import Module from .gossiper import Gossiper, PushPull, PushSum from .graph_manager import GraphManager from .graph_manager import NPeerDynamicDirectedExponentialGraph as NPDDEGraph from .mixing_manager import MixingManager, UniformMixing from .utils import ( MultiProcessAdapter, communicate, create_process_group, flatten_tensors, group_by_dtype, make_logger, unflatten_tensors, ) from .utils.cuda_metering import EventRecorder, create_event_recorder HEARTBEAT_TIMEOUT = 300 # maximum time to wait for message (seconds) BROADCAST_BUCKET_SIZE = 10 * 1024 * 1024 class SlowMoBaseAlgorithm(str, Enum): LOCALSGD = "localsgd" SGP = "sgp" class SlowMoDistributedDataParallel(Module): """Wraps an arbitrary :class:`nn.Module <torch.nn.Module>` module and allows it to be run on multiple GPUs (distributed) in a data parallel setting. This container parallelizes the application of the given module by splitting the input across the specified devices by chunking in the batch dimension. The module is replicated on each machine and each device, and each such replica handles a portion of the input. After the optimizer update, it synchronizes the parameters on the different nodes using SlowMo (https://arxiv.org/abs/1910.00643). Please make sure to read the documentation for slowmo_memory_efficient parameter as it contains a non-trivial trick in order to optimize our implementation. Please refer to the documentation of ``torch.nn.parallel.DistributedDataParallel`` for other useful tips for using this container. Parameters: module (Module): module to be parallelized nprocs_per_node (int): Number of processes per node (one per GPU). This needs to be specified for optimal accuracy and speed. Syncing across GPUs in a node is extremely fast, which we utilize for performance optimization broadcast_buffers (bool): Flag that enables syncing (broadcasting) buffers (example - batchnorm buffers) of the module at beginning of the ``forward`` function. Setting it to False would result in better performance due to less communication on the network but might result in a reduced accuracy (default: ``True``) slowmo_base_algorithm (SlowMoBaseAlgorithm): The base algorithm to be used for approximately averaging the different parameters across nodes. The base algorithm is responsible for increasing the efficiency of this module. The base algorithm, combined with SlowMo, results in significant speedups without accuracy loss. Either Stochastic Gradient Push (SlowMoBaseAlgorithm.SGP) (https://arxiv.org/abs/1811.10792) or LocalSGD (SlowMoBaseAlgorithm.LOCALSGD) (https://arxiv.org/abs/1808.07217) can be used here (default: SlowMoBaseAlgorithm.LOCALSGD) SlowMo Parameters: slowmo_momentum (float): This specifies the value of slowmo momentum to be used (read https://arxiv.org/abs/1910.00643 for more details). This parameter might need to be tuned and the optimal value varies according to the use case and the number of nodes being run on. The optimal value typically increases with the number of nodes. On training transfomers on the WMT 16 En-De dataset, we have found the optimal values to be 0 for less than 4 nodes, 0.2 for 4 nodes, 0.5 for 8 nodes and 0.6 for 16 nodes (default: 0.5) slowmo_memory_efficient (bool): If enabled, use a memory efficient implementation of SlowMo. The basic implementation of SlowMo occupies extra memory equal to double the memory occupied by the model parameters. The memory efficient implementation shards that memory across a certain number of shards which is specified as a parameter below. In addition, slowmo_memory_efficient leads to extra communication with throughput equivalent to an allreduce, and performs an allreduce as a side-effect. In order to optimize the implementation, we skip the typical allreduce when slowmo_base_algorithm is localsgd and the localsgd step and slowmo step occur on the same iteration. Also, we skip the gossip step when slowmo_base_algorithm is sgp. We can skip these because the memory-efficient slowmo step does an allreduce as a side effect. Due to this skipping, when slowmo_base_algorithm is localsgd, we recommend setting slowmo_frequency to be a multiple of localsgd_frequency. We recommend setting this parameter to True when slowmo_base_algorithm is localsgd. In case of sgp, there is a tradeoff between extra memory usage which is double the memory occupied by the parameters, and extra time spent which is half the time taken up by an allreduce every slowmo_frequency iterations and we suggest setting it to False (default: True) slowmo_frequency (int): This specifies how often (number of iterations) slow momentum is to be performed. We recommend keeping slowmo_frequency as a multiple of localsgd_frequency. Please look at the documentation of slowmo_memory_efficient for the reasoning (default: 48) slowmo_lr (float): This specifies the value of slowmo learning rate to be used (read https://arxiv.org/abs/1910.00643 for more details). We do not recommend changing this (default: 1.0) slowmo_num_shards (int): The number of shards between which slow momentum parameters are distributed. This is only used when memory_efficient is set to True. The number of shards should scale with the number of parameters in the model. Increasing the number of shards decreases the memory used per node for storing the slow momentum parameters. However, if the shard size per node is too small, it results in a communication overhead (default: 32) LocalSGD Parameters: localsgd_frequency (int): LocalSGD typically averages the parameters once every few iterations. This parameter specifices the frequency of averaging. We recommend keeping slowmo_frequency as a multiple of localsgd_frequency. Please look at the documentation of slowmo_memory_efficient for the reasoning (default: 3) SGP Parameters: graph (Optional[GraphManager): Graph to be used for gossip communication. This is used to specify the interaction graph between the different nodes (default: None) mixing (Optional[MixingManager]): Mixing manager to be used for gossip communication. This is used to specify weights given to outgoing and incoming messages (default: None) push_sum (bool): Whether to use PushSum or PushPull gossip (default: True) overlap (bool): Whether to use the overlap form of SGP. This feature is currently disabled until further testing is done for its use (default: False) synch_freq (int): How often (number of iterations) to synchronize for overlap SGP. A value of 0 means to synchronize overlap SGP every iteration (default: 0) use_streams (bool): Whether to use CUDA streams to speed up SGP overlap (default: True) slowmo_sgp_average_params (bool): Whether to completely average the parameters when slowmo is done instead of a partial averaging that happens every iteration (default: False) Debugging Parameters: verbose (bool): Prints various logs which are useful for debugging (default: False) profile_mode (bool): Prints the time taken by different parts of the code, which can help in finding bottlenecks (default: False) Parameters for Advanced Users: process_rank (Optional[int]): Rank of the current process in the process group (default: None) process_world_size (Optional[int]): Size of the process group (default: None) global_group (Optional[torch.distributed.ProcessGroup]): Global process group initialized by init_process_group (default: None) master_group (Optional[torch.distributed.ProcessGroup]): Process group which only contains the master GPUs of each node (default: None) local_node_group (Optional[torch.distributed.ProcessGroup]): Process group which only contains the GPUs local to the current node (default: None) comm_device: (Optional[torch.device]): The torch.device on which torch tensors are to be placed before communication (default: None) Example: >>> torch.distributed.init_process_group(backend='nccl', world_size=4, init_method='...') >>> net = fairscale.data_parallel.SlowMoDistributedDataParallel(model, nprocs_per_node=8) >>> loss = criterion(net(inputs), targets) >>> loss.backward() >>> optimizer.step() >>> net.perform_slowmo(optimizer) """ def __init__( self, module: torch.nn.Module, nprocs_per_node: int, broadcast_buffers: bool = True, slowmo_base_algorithm: SlowMoBaseAlgorithm = SlowMoBaseAlgorithm.LOCALSGD, # SlowMo Args slowmo_momentum: float = 0.5, slowmo_memory_efficient: bool = True, slowmo_frequency: int = 48, slowmo_lr: float = 1.0, slowmo_num_shards: int = 32, # LocalSGD Args localsgd_frequency: int = 3, # SGP Args graph: Optional[GraphManager] = None, mixing: Optional[MixingManager] = None, push_sum: bool = True, overlap: bool = False, synch_freq: int = 0, use_streams: bool = True, slowmo_sgp_average_params: bool = False, # Debugging Args verbose: bool = False, profile_mode: bool = False, # Args for advanced users (these are automatically handled otherwise) process_rank: Optional[int] = None, process_world_size: Optional[int] = None, global_group: Optional[torch.distributed.ProcessGroup] = None, master_group: Optional[torch.distributed.ProcessGroup] = None, local_node_group: Optional[torch.distributed.ProcessGroup] = None, comm_device: Optional[torch.device] = None, ) -> None: super(SlowMoDistributedDataParallel, self).__init__() # NCCL_BLOCKING_WAIT causes issues with using multiple process groups assert os.environ.get("NCCL_BLOCKING_WAIT", "0") == "0" assert nprocs_per_node >= 1 self.nprocs_per_node = nprocs_per_node if process_world_size is None or process_rank is None: assert dist.is_initialized() process_rank = dist.get_rank() process_world_size = dist.get_world_size() assert process_world_size is not None and process_rank is not None self.process_rank = process_rank self.process_world_size = process_world_size self._initialize_logger(verbose, self.process_rank) # The logical prefix in the following variables denotes the variable value if nprocs_per_node processes # were treated as one process and then the following variables were calculated for the resulting process # group. This is how they are being treated for optimization purposes because intra-node communication is # very efficient with NVLink. logical_rank, logical_world_size = self._maybe_create_process_groups( self.process_rank, self.process_world_size, nprocs_per_node, global_group, master_group, local_node_group ) self.logical_rank = logical_rank self.logical_world_size = logical_world_size self.module = module self.broadcast_buffers = broadcast_buffers first_param_dtype = next(self.module.parameters()).dtype # prepare local intra-node all-reduce objects self.broadcast_bucket_size = BROADCAST_BUCKET_SIZE # bytes self.module_buffers = list(self.module.buffers()) # choose communication device based on backend if comm_device is None: cpu_comm = dist.get_backend() == "gloo" comm_device = torch.device("cpu") if cpu_comm else torch.device("cuda") self._cpu_comm = comm_device.type == "cpu" # distributed backend config self.dist_config = { "verbose": verbose, "comm_device": comm_device, "logical_rank": logical_rank, "process_rank": self.process_rank, "logical_world_size": logical_world_size, "cpu_comm": self._cpu_comm, } self.profile_mode = profile_mode self.num_updates = 0 self.portion_start: Optional[int] = None # slowmo being set to False is equivalent to slowmo_lr being set to 1 and slowmo_momentum being set to 0 # This condition is ensuring the values are safe to use even when slowmo is disabled self.slowmo = slowmo_lr != 1 or slowmo_momentum != 0 self.slowmo_lr = slowmo_lr if self.slowmo else 1 self.slowmo_momentum = slowmo_momentum if self.slowmo else 0 self.slowmo_frequency = slowmo_frequency self.slowmo_sgp_average_params = slowmo_sgp_average_params self.localsgd = slowmo_base_algorithm == SlowMoBaseAlgorithm.LOCALSGD self.sgp = slowmo_base_algorithm == SlowMoBaseAlgorithm.SGP self.localsgd_frequency = localsgd_frequency self.ef1: Optional[List[torch.Tensor]] = None self.global_momentum_buffers_initialized = False if self.master_group is None: assert self.localsgd or self.sgp self.localsgd = self.sgp = False self.logger.warning("Disabling LocalSGD and SGP since a local allreduce will suffice") if self.slowmo and not self.localsgd and not self.sgp: self.logger.warning("SlowMo is being used without LocalSGD and SGP") self.slowmo_memory_efficient = slowmo_memory_efficient self.slowmo_num_shards = min(self.process_world_size, slowmo_num_shards) if self.slowmo_memory_efficient else 1 self.is_current_node_a_slowmo_shard = ( self.process_rank < self.slowmo_num_shards if self.slowmo_memory_efficient else True ) self.nprocs_per_node_device = torch.tensor([self.nprocs_per_node], device=comm_device, dtype=first_param_dtype) if self.sgp: self._sgp_init( module=module, first_param_dtype=first_param_dtype, logical_rank=logical_rank, logical_world_size=logical_world_size, comm_device=comm_device, graph=graph, mixing=mixing, push_sum=push_sum, overlap=overlap, synch_freq=synch_freq, use_streams=use_streams, slowmo_sgp_average_params=slowmo_sgp_average_params, ) # register ps/grad-reduction hooks self._register_hooks() self.logger.debug("Initialization of SlowMoDistributedDataParallel complete") def _initialize_logger(self, verbose: bool, process_rank: int) -> None: """Initializes the logger""" self.logger = logging.getLogger(__name__) if verbose: self.logger.setLevel(logging.DEBUG) # Only create an adapter if debug logging is enabled to avoid additional overhead if self.logger.isEnabledFor(logging.DEBUG): # Set custom adapter on top of logger self.logger = cast(logging.Logger, MultiProcessAdapter(self.logger, {"process_num": process_rank})) def _maybe_create_process_groups( self, process_rank: int, process_world_size: int, nprocs_per_node: int, global_group: Optional[torch.distributed.ProcessGroup], master_group: Optional[torch.distributed.ProcessGroup], local_node_group: Optional[torch.distributed.ProcessGroup], ) -> Tuple[int, int]: """Creates the process groups required for the SlowMo implementation""" self.local_rank = process_rank % self.nprocs_per_node assert ( process_world_size % self.nprocs_per_node == 0 ) # total world size must be a multiple of `nprocs_per_node` logical_world_size = process_world_size // self.nprocs_per_node logical_rank = process_rank // self.nprocs_per_node self._maybe_initialize_global_group(global_group, process_world_size) self._maybe_initialize_local_node_group(local_node_group, process_rank, logical_world_size) self._maybe_initialize_master_group(master_group, process_rank, process_world_size, nprocs_per_node) self.logger.debug("Initialization of all process groups complete") return logical_rank, logical_world_size def _maybe_initialize_global_group( self, global_group: Optional[torch.distributed.ProcessGroup], process_world_size: int ) -> None: if global_group is None: all_processes = list(range(process_world_size)) self.global_group = create_process_group(all_processes) self.logger.debug("Initialization of global group complete") else: self.global_group = global_group self.logger.debug("Global group set") self.process_group = self.global_group def _maybe_initialize_master_group( self, master_group: Optional[torch.distributed.ProcessGroup], process_rank: int, process_world_size: int, nprocs_per_node: int, ) -> None: if master_group is not None: self.master_group: Optional[torch.distributed.ProcessGroup] = master_group return if self.nprocs_per_node > 1: self.logger.debug("Initializing master process group") master_nodes = [i for i in range(process_world_size) if i % nprocs_per_node == 0] self.master_group = create_process_group(master_nodes) if len(master_nodes) > 1 else None if self.master_group is not None and process_rank in master_nodes: self.logger.debug("Initialization of master group complete") else: self.master_group = self.global_group def _maybe_initialize_local_node_group( self, local_node_group: Optional[torch.distributed.ProcessGroup], process_rank: int, logical_world_size: int ) -> None: if self.nprocs_per_node == 1: self.local_node_group = None return if local_node_group is not None: self.local_node_group = local_node_group return self.logger.debug("Initializing local process groups") for node in range(logical_world_size): node_processes_ranks = list( range( node * self.nprocs_per_node, (node + 1) * self.nprocs_per_node, ) ) # Process group to communicate between processes on this machine new_local_group = create_process_group(node_processes_ranks) if process_rank in node_processes_ranks: self.local_node_group = new_local_group assert self.local_node_group is not None self.logger.debug("Initialization of local groups complete") def forward(self, *inputs: Any, **kwargs: Any) -> Union[torch.Tensor, List[torch.Tensor]]: """Forward pass performed in parallel across all devices on node""" return self.module(*inputs, **kwargs) def _sync_params(self) -> None: """Synchronize parameters across devices (intra-node)""" if self.local_node_group is None: return # intra-node parameter sync params = cast(List[torch.Tensor], list(self.module.parameters())) communication_op = functools.partial( dist.broadcast, src=self.logical_rank * self.nprocs_per_node, group=self.local_node_group, ) communicate(params, communication_op) self.logger.debug("Intra-node param sync complete") def _sync_buffers(self) -> None: """Synchronize buffers across nodes""" # module buffer sync if self.broadcast_buffers and len(self.module_buffers) > 0: # Synchronize buffers across processes. # The process with rank 0 is considered the authoritative copy. self._distributed_broadcast_coalesced(self.process_group, self.module_buffers, self.broadcast_bucket_size) self.logger.debug("Intra-node buffer sync complete") def _distributed_broadcast_coalesced( self, process_group: torch.distributed.ProcessGroup, tensors: List[torch.Tensor], buffer_size: int ) -> None: dist._broadcast_coalesced(process_group, tensors, buffer_size) def _create_event_recorder(self, event_name: str) -> EventRecorder: """Creates an cuda event recorder which helps in profiling""" return create_event_recorder(event_name, dummy=not self.profile_mode) def _fp16_fp32_iterator( self, optimizer: torch.optim.Optimizer, fp32_params: Optional[torch.Tensor] ) -> Iterable[Tuple[torch.Tensor, torch.Tensor]]: """Iterator for those fp16 parameters which have a fp32 copy""" # Handle apex fp16 optimizer if hasattr(optimizer, "_amp_stash") and hasattr(optimizer._amp_stash, "fp16_groups"): for p_fp16_group, p_fp32_group in zip( optimizer._amp_stash.fp16_groups, optimizer._amp_stash.fp32_from_fp16_groups, ): for p_fp16, p_fp32 in zip(p_fp16_group, p_fp32_group): yield p_fp16, p_fp32 # Handle fairseq fp16 optimizer elif fp32_params is not None: if isinstance(fp32_params, dict): fp32_params_list = list(fp32_params.values()) assert len(fp32_params_list) == 1 fp32_params = fp32_params_list[0] if isinstance(fp32_params, list): for p, fp32_param in zip(self.parameters(), fp32_params): yield p.view(-1), fp32_param else: offset = 0 for p in self.parameters(): yield p.view(-1), fp32_params[offset : offset + p.numel()] offset += p.numel() def _should_perform_slowmo(self) -> bool: return self.slowmo and (self.num_updates + 1) % self.slowmo_frequency == 0 def _should_perform_localsgd(self) -> bool: return self.localsgd and (self.num_updates + 1) % self.localsgd_frequency == 0 def _skip_averaging_memory_efficient_slowmo(self) -> bool: return self.slowmo_memory_efficient and self._should_perform_slowmo() def _should_perform_sgp_common(self) -> bool: return self.sgp and not self.overlap and not self._skip_averaging_memory_efficient_slowmo() def _should_perform_sgp(self) -> bool: return self._should_perform_sgp_common() and not self.overlap def _should_perform_sgp_overlap(self) -> bool: return self._should_perform_sgp_common() and self.overlap def _should_use_error_feedback(self, fp16_fp32_list: List[Tuple[torch.Tensor, torch.Tensor]]) -> bool: return bool(fp16_fp32_list) and (self._should_perform_sgp() or self._should_allreduce_params()) def _should_allreduce_params(self) -> bool: # We do not all-reduce parameters with local SGD if a slow momentum step is # performed, since this step contains a reduce operation already. Note that this # also means there is no error feedback correction in that case: it is not needed # since communication within the slow momentum step happens in fp32. return (self.sgp and self._should_perform_slowmo() and self.slowmo_sgp_average_params) or ( self._should_perform_localsgd() and not self._skip_averaging_memory_efficient_slowmo() ) def _maybe_pre_communicate_error_feedback(self, fp16_fp32_list: List[Tuple[torch.Tensor, torch.Tensor]]) -> None: ef_rec = self._create_event_recorder("Error feedback") if self._should_use_error_feedback(fp16_fp32_list): with torch.no_grad(): for p_fp16, p_fp32 in fp16_fp32_list: if self._should_allreduce_params(): # This division and multiplication with the same number is done # to ensure that we do not lose bits of information when we divide # before the all_reduce. In order to preserve these bits in an # error feedback (https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1050.5040&rep=rep1&type=pdf) # like manner, we are forcing the bits to be lost # initially, and storing the lost information in error feedback p_fp16.div_(self.logical_world_size) p_fp16.mul_(self.logical_world_size) p_fp32 -= p_fp16.float() if self.ef1 is not None: for idx, (_, p_fp32) in enumerate(fp16_fp32_list): p_fp32 += self.ef1[idx] p_fp32.div_(2) ef_rec.stop() self.logger.debug("Error feedback completed") def _maybe_post_communicate_error_feedback(self, fp16_fp32_list: List[Tuple[torch.Tensor, torch.Tensor]]) -> None: ef_unroll_rec = self._create_event_recorder("Sync and error feedback unroll rec") if self._should_use_error_feedback(fp16_fp32_list): # Error Feedback Reversal with torch.no_grad(): for p, p_fp32 in fp16_fp32_list: p_fp32 += p.float() ef_unroll_rec.stop() self.logger.debug("Error feedback unroll completed") def _maybe_perform_sgp(self) -> None: sgp_rec = self._create_event_recorder("SGP") if self._should_perform_sgp(): if not self._should_allreduce_params(): self._sgp_transfer_params() self._sgp_query_gossip_queue() torch.cuda.synchronize() self.logger.debug("SGP completed") sgp_rec.stop() def _maybe_allreduce(self) -> None: localsgd_rec = self._create_event_recorder("Localsgd communication time") if self._should_allreduce_params(): communication_op = functools.partial(dist.all_reduce, group=self.master_group) params = cast(List[torch.Tensor], list(self.parameters())) with torch.no_grad(): for p in params: p.div_(self.logical_world_size) self.logger.debug("Params normalized before localsgd step") # Commenting this out as it may cause an overhead. Can be uncommented if needed # synch_rec = self._create_event_recorder("Synchronization time for localsgd") # dist.barrier() # synch_rec.stop() # self.logger.debug("Barrier completed before localsgd step") communicate(params, communication_op, self.logger) torch.cuda.synchronize() self.logger.debug("Allreduce completed") localsgd_rec.stop() def _maybe_sync_locally(self) -> None: if self._should_perform_sgp() or self._should_allreduce_params(): self._sync_params() torch.cuda.synchronize() def _maybe_perform_slowmo(self, optimizer: torch.optim.Optimizer) -> None: slowmo_rec = self._create_event_recorder("Slowmo") if self._should_perform_slowmo(): self._global_momentum_step(optimizer) slowmo_rec.stop() self.logger.debug("Global momentum step completed") def _maybe_copy_back_fp32_parameters(self, fp16_fp32_list: List[Tuple[torch.Tensor, torch.Tensor]]) -> None: ef_copy_rec = self._create_event_recorder("Error feedback copy back") if ( self._should_perform_sgp() or self._should_allreduce_params() or self._should_perform_slowmo() ) and fp16_fp32_list: with torch.no_grad(): for idx, (p_fp16, p_fp32) in enumerate(fp16_fp32_list): p_fp16.copy_(p_fp32) ef_copy_rec.stop() self.logger.debug("Error feedback copy-back completed") def _maybe_sgp_overlap_pre_communicate_error_feedback( self, fp16_fp32_list: List[Tuple[torch.Tensor, torch.Tensor]] ) -> None: if self._should_perform_sgp_overlap() and fp16_fp32_list: # Initialize error feedback for SGP-overlap if self.ef1 is None: self.ef1 = [p_fp32.clone().detach_() for _, p_fp32 in fp16_fp32_list] with torch.no_grad(): assert self.ef1 is not None for ef1, (p_fp16, p_fp32) in zip(self.ef1, fp16_fp32_list): ef1.copy_(p_fp32 - p_fp16.float()) def perform_slowmo(self, optimizer: torch.optim.Optimizer, fp32_params: Optional[torch.Tensor] = None) -> None: """This is to be called after optimizer.step(). It performs the approximate averaging using the base algorithm (SGP/ LocalSGD) and the slow momentum step. Since LocalSGD and the slow momentum step are not performed every iteration, it only performs those when needed. It is recommended to call ``model.zero_grad(set_to_none=True)`` just before calling this function. This is because ``model.zero_grad(set_to_none=True)`` frees up the memory occupied by the gradients, some of which may be reused by this function. Args: optimizer (torch.optim.Optimizer): The optimizer being used for training the model fp32_params (Optional[torch.Tensor]): To be used when performing fp16 training. Needs to be set to the fp16 copy of the parameters (default: None) """ # Done here in case the global momentum buffers have not been initialized by the caller. # In an ideal implementation, this would be called by the caller. We do it here instead of # waiting for it to happen in the global_momentum step function so that we store a copy of # the version of the parameters at iteration 0 and can use them for a slow momentum step later. if not self.global_momentum_buffers_initialized: self._init_global_momentum_buffers(optimizer) fp16_fp32_list = list(self._fp16_fp32_iterator(optimizer, fp32_params)) self.logger.debug("Created a list of fp16 and fp32 corresponding parameters") self.logger.debug( "Booleans set. Values - self._should_perform_slowmo()=%r, self._should_perform_localsgd()=%r, self._should_allreduce_params()=%r", self._should_perform_slowmo(), self._should_perform_localsgd(), self._should_allreduce_params(), ) self.logger.debug("Step number(0-indexed)=%d", self.num_updates) if ( self.num_updates == 0 and fp32_params is None and not hasattr(optimizer, "_amp_stash") and any(p.dtype == torch.float16 for p in self.parameters()) ): self.logger.warning("WARNING: please set fp32_params in perform_slowmo() in order to avoid accuracy loss") self._maybe_pre_communicate_error_feedback(fp16_fp32_list) self._maybe_perform_sgp() self._maybe_allreduce() self._maybe_sync_locally() self._maybe_post_communicate_error_feedback(fp16_fp32_list) self._maybe_perform_slowmo(optimizer) self._maybe_copy_back_fp32_parameters(fp16_fp32_list) self._maybe_sgp_overlap_pre_communicate_error_feedback(fp16_fp32_list) self.num_updates += 1 def _init_global_momentum_buffers(self, optimizer: torch.optim.Optimizer) -> None: """Initializes the slow momentum buffers""" self.global_momentum_buffers_initialized = True if not self.slowmo: return total_elements = 0 params_dtype = None for group in optimizer.param_groups: for p in group["params"]: total_elements += p.numel() # Assert that all parameters have the same device and dtype if params_dtype is None: params_dtype, params_device = p.dtype, p.device # Check that dtype is fp32 since slow mometum is to be performed in fp32 assert p.dtype == params_dtype == torch.float32 assert p.device == params_device self.world_portion_length = (total_elements + self.slowmo_num_shards - 1) // self.slowmo_num_shards if not self.is_current_node_a_slowmo_shard: return self.portion_start = self.process_rank * self.world_portion_length if self.slowmo_memory_efficient else 0 self.portion_end = ( min((self.process_rank + 1) * self.world_portion_length, total_elements) if self.slowmo_memory_efficient else total_elements ) self.old_params = torch.empty(self.world_portion_length, dtype=params_dtype).to(params_device).detach() # copy params to old_params to initialize old_params offset = 0 for group in optimizer.param_groups: for p in group["params"]: numel = p.numel() if offset + numel > self.portion_start and offset < self.portion_end: # start and end for each overall_start = max(self.portion_start, offset) overall_end = min(self.portion_end, offset + numel) p_start = overall_start - offset p_end = overall_end - offset buffer_start = overall_start - self.portion_start buffer_end = overall_end - self.portion_start # let's see size of p and split based on that current_p = p.view(-1)[p_start:p_end] current_p_old = self.old_params[buffer_start:buffer_end] current_p_old.copy_(current_p) offset += numel self.global_momentum_buffer = torch.zeros_like(self.old_params).detach() def _distributed_comm(self, optimizer: torch.optim.Optimizer, mode: str) -> None: """Performs the communication needed for the efficient SlowMo implementation""" offset = 0 slowmo_comm_lists: List[List[torch.Tensor]] = [[] for _ in range(self.slowmo_num_shards)] with torch.no_grad(): for group in optimizer.param_groups: # aggregate different parts of p in required node for p in group["params"]: numel = p.numel() # gather has a reduce operation so division by world size is needed if mode == "gather": p /= self.process_world_size current_start = offset while current_start < offset + numel: main_node = current_start // self.world_portion_length main_node_end = (main_node + 1) * self.world_portion_length current_end = min(offset + numel, main_node_end) p_start = current_start - offset p_end = current_end - offset slowmo_comm_lists[main_node].append(p.view(-1)[p_start:p_end]) current_start = current_end offset += numel for slowmo_rank, slowmo_comm_list in enumerate(slowmo_comm_lists): if mode == "gather": communication_op = functools.partial(dist.reduce, dst=slowmo_rank) elif mode == "scatter": communication_op = functools.partial(dist.broadcast, src=slowmo_rank) communicate(slowmo_comm_list, communication_op) def _global_momentum_step(self, optimizer: torch.optim.Optimizer) -> None: """Performs the slow momentum step""" if not self.slowmo: return if not self.global_momentum_buffers_initialized: self._init_global_momentum_buffers(optimizer) if self.slowmo_memory_efficient: self._distributed_comm(optimizer, mode="gather") if self.is_current_node_a_slowmo_shard: self._perform_local_optimization(optimizer) if self.slowmo_memory_efficient: self._distributed_comm(optimizer, mode="scatter") def _perform_local_optimization(self, optimizer: torch.optim.Optimizer) -> None: """Performs the slow momentum on the local shard""" assert self.portion_start is not None with torch.no_grad(): offset = 0 for group in optimizer.param_groups: # perform local slowmo for p for p in group["params"]: numel = p.numel() if offset + numel > self.portion_start and offset < self.portion_end: # start and end for each overall_start = max(self.portion_start, offset) overall_end = min(self.portion_end, offset + numel) p_start = overall_start - offset p_end = overall_end - offset buffer_start = overall_start - self.portion_start buffer_end = overall_end - self.portion_start # let's see size of p and split based on that current_p = p.view(-1)[p_start:p_end] current_p_gmb = self.global_momentum_buffer[buffer_start:buffer_end] current_p_old = self.old_params[buffer_start:buffer_end] current_p_gmb.mul_(self.slowmo_momentum).sub_(current_p, alpha=1 / group["lr"]).add_( current_p_old, alpha=1 / group["lr"] ) current_p_old.add_(current_p_gmb, alpha=-group["lr"] * self.slowmo_lr) # type: ignore current_p.copy_(current_p_old) offset += numel def _register_hooks(self) -> None: """ Registers push-sum de-bias/bias hooks in pre-forward/post-backward passes in all leaf modules """ self.register_forward_pre_hook(self.__make_forward_pre_hook()) self.register_backward_hook(self.__make_backward_hook()) def __make_backward_hook(self) -> Callable[..., None]: self.logger.debug("making backward hook") def hook(*unused: Any) -> None: # reduce gradients across devices on a single machine if self.local_node_group is not None: grads = [] for p in self.module.parameters(): if not p.requires_grad or p.grad is None: continue p.grad.div_(self.nprocs_per_node) grads.append(p.grad) self.logger.debug("Gradients ready for syncing") communication_op = functools.partial(dist.all_reduce, group=self.local_node_group) communicate(grads, communication_op, self.logger) self.logger.debug("Gradient sync during backward pass in local_group complete") if self.sgp: # convert model back to ps-numerator self._sgp_ps_numerator() # gossip during training (not inference) if self.gossip_enable and self.overlap and not self._skip_averaging_memory_efficient_slowmo(): self._sgp_query_gossip_queue() def queue_hook(*unused: Any) -> None: Variable._execution_engine.queue_callback(hook) return queue_hook def __make_forward_pre_hook(self) -> Callable[..., None]: self.logger.debug("making forward pre-hook") def hook(*unused: Any) -> None: """Query gossip queue and de-bias during forward pass""" # sync buffers before the forward pass self._sync_buffers() # gossip during training (not inference) if self.sgp: if self.gossip_enable and self.overlap and not self._skip_averaging_memory_efficient_slowmo(): self._sgp_transfer_params() # convert model to de-biased estimate self._sgp_unbias() return hook # SGP related functions def _sgp_init( self, module: torch.nn.Module, first_param_dtype: torch.dtype, logical_rank: int, logical_world_size: int, comm_device: Optional[torch.device] = None, graph: Optional[GraphManager] = None, mixing: Optional[MixingManager] = None, push_sum: bool = True, overlap: bool = False, synch_freq: int = 0, use_streams: bool = True, slowmo_sgp_average_params: bool = False, ) -> None: """Perform initialization for Stochastic Gradient Push base algorithm""" if graph is None: graph = NPDDEGraph(logical_rank, logical_world_size, self.nprocs_per_node, self.local_rank) if mixing is None: mixing = UniformMixing(graph, comm_device) self.dist_config.update({"graph": graph, "mixing": mixing, "push_sum": push_sum}) self.overlap = overlap assert not self.overlap # currently disabled, see docstring self.synch_freq = synch_freq self.asynch = synch_freq > 0 # push-sum weight=1.0 ==> distributed averaging self.ps_weight = torch.ones(1, device=comm_device, dtype=first_param_dtype) self.is_sgp_ps_numerator = False self.gossip_enable = True self.gossiping = False self.params_mixed = True self.gossip_ps_factor = torch.zeros(1, device=comm_device, dtype=first_param_dtype) self.gossip_ps_weight = self.ps_weight.clone() self.gossip_params = [] self.gossip_device_buffer = [] for p in module.parameters(): cp = cast(torch.nn.Parameter, p.clone().detach_()) cp = cast(torch.nn.Parameter, cp.cpu().pin_memory() if self._cpu_comm else cp.cuda()) self.gossip_params.append(cp) self.gossip_device_buffer.append(cp) # prepare gossip process control objects self.gossip_lock = threading.Lock() self.gossip_flag = threading.Event() self.train_flag = threading.Event() if cast(torch.device, self.dist_config["comm_device"]).type != "cpu" and use_streams: self.gossip_stream = torch.cuda.Stream() else: self.gossip_stream = torch.cuda.current_stream() if self.process_rank % self.nprocs_per_node == 0: self.gossip_thread = threading.Thread( target=SlowMoDistributedDataParallel._sgp_gossip_target, args=( self.dist_config, self.gossip_flag, self.train_flag, self.gossip_lock, self.gossip_params, self.gossip_device_buffer, self.gossip_ps_weight, self.gossip_ps_factor, self.gossip_stream, ), ) self.gossip_thread.daemon = True self.gossip_thread.name = "Gossip-Thread" self.gossip_thread.start() else: self.gossip_flag.set() # wait for thread to complete initialization self.gossip_flag.wait() self.gossip_flag.clear() # lazy mixing avoids additional bias/de-bias steps self.lazy_mixing = not self.asynch and cast(MixingManager, self.dist_config["mixing"]).is_regular() self.lazy_ps_factor = self.gossip_ps_factor.clone() self.logger.debug("lazy mixing: %r", self.lazy_mixing) def state_dict(self) -> Dict[str, Union[torch.Tensor, bool]]: # type: ignore state_dict = super(SlowMoDistributedDataParallel, self).state_dict() if self.sgp: state_dict["ps_weight"] = self.ps_weight.cpu() state_dict["is_sgp_ps_numerator"] = self.is_sgp_ps_numerator # type: ignore return state_dict # type: ignore def load_state_dict(self, state_dict: Dict[str, Union[torch.Tensor, bool]]) -> None: # type: ignore if self.sgp: assert isinstance(state_dict, dict) self.ps_weight = cast(torch.Tensor, state_dict.pop("ps_weight")).to( device=cast(torch.device, self.dist_config["comm_device"]) ) self.is_sgp_ps_numerator = cast(bool, state_dict.pop("is_sgp_ps_numerator")) super(SlowMoDistributedDataParallel, self).load_state_dict(cast(Dict[str, torch.Tensor], state_dict)) def _sgp_ps_numerator(self) -> None: """Convert model params to ps-numerator""" if not self.is_sgp_ps_numerator: if not self.lazy_mixing: ps_weight = self.ps_weight with torch.no_grad(): for p in self.module.parameters(): p.mul_(cast(torch.Tensor, ps_weight.type(p.dtype))) self.is_sgp_ps_numerator = True def _sgp_unbias(self) -> None: """Convert model params to de-biased estimate""" if self.is_sgp_ps_numerator: if not self.lazy_mixing: ps_weight = self.ps_weight with torch.no_grad(): for p in self.module.parameters(): p.div_(cast(torch.Tensor, ps_weight.type(p.dtype))) # type: ignore self.is_sgp_ps_numerator = False def train(self, mode: bool = True) -> "SlowMoDistributedDataParallel": super(SlowMoDistributedDataParallel, self).train(mode) if self.sgp: self.gossip_enable = True return self def eval(self) -> "SlowMoDistributedDataParallel": super(SlowMoDistributedDataParallel, self).eval() if self.sgp: self.gossip_enable = False self._sgp_query_gossip_queue(non_blocking=self.asynch) return self def _sgp_query_gossip_queue(self, non_blocking: bool = False) -> bool: """Check gossip-queue for push-sum residuals and update model""" if not self.gossip_enable: return False self.logger.debug("querying gossip queue") # no gossip happening right now so just return if not self.gossiping: if self.process_rank % self.nprocs_per_node == 0: self.logger.warning("not gossiping right now") return False if not non_blocking and not self.gossip_flag.wait(timeout=HEARTBEAT_TIMEOUT): raise RuntimeError("Gossip flag timeout") sys.exit() # HEARTBEAT monitor # query gossip thread if self.gossip_flag.is_set(): self.logger.debug("received gossip flag") # atomic gossip was interrupted so try again if self.gossip_ps_weight[0] == -1: self.gossip_flag.clear() self.params_mixed = True self.gossiping = False self._sgp_transfer_params(mix=False) return False self.lazy_ps_factor.copy_(self.gossip_ps_factor) # convert model-params to ps numerators b4 adding residuals self._sgp_ps_numerator() # add residuals self.ps_weight += self.gossip_ps_weight if self.lazy_mixing: self.ps_weight *= self.lazy_ps_factor with torch.no_grad(): for p, r in zip(self.module.parameters(), self.gossip_device_buffer): p.add_(r) # type: ignore if self.lazy_mixing: p.mul_(cast(torch.Tensor, self.lazy_ps_factor.type(p.dtype))) # update flags self.logger.debug("updated ps-weight %f", self.ps_weight) self.logger.debug("updated model params") self.gossip_flag.clear() self.params_mixed = True self.gossiping = False return True return False def _sgp_transfer_params(self, mix: bool = True) -> bool: """Transfers COPY of model parameters to gossip queue""" if not self.gossip_enable or self.process_rank % self.nprocs_per_node != 0: return False self.logger.debug("transferring model params") # don't transfer new params if old params haven't been mixed yet if not self.params_mixed: self.logger.warning("params not mixed") return False # using lazy mixing ==> mix on query not transfer mix = mix and not self.lazy_mixing # Transfer ps-numerators to gossip-process: # -- self._sgp_ps_numerator() if mix: self.ps_weight *= self.gossip_ps_factor self.gossip_ps_weight.copy_(self.ps_weight) # -- # params gpu-gpu copy (fast) # -- with torch.no_grad(): for p, gossip_device_buffer_elem in zip(self.module.parameters(), self.gossip_device_buffer): if mix: p.mul_(cast(torch.Tensor, self.gossip_ps_factor.type(p.dtype))) gossip_device_buffer_elem.copy_(p) # -- # buffer to gossip-thread copy (potentially slow, but asynchronous) # -- self.gossip_stream.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(self.gossip_stream): for b, gp in zip(self.gossip_device_buffer, self.gossip_params): gp.copy_(b, non_blocking=True) # -- # update flags self.logger.debug("transferred model params") self.params_mixed = False self.gossiping = True self.train_flag.set() return True @staticmethod def _sgp_gossip_into_receive_buffer( send_buffer: List[torch.Tensor], gossiper: Gossiper, receive_buffer: List[torch.Tensor], gossip_ps_weight: torch.Tensor, gossip_lock: threading.Lock, dist_config: Dict[Any, Any], ) -> Tuple[torch.Tensor, torch.Tensor]: # flatten parameters before sending out_msg = flatten_tensors(send_buffer) # send and receive parameters with gossip_lock: in_msg, ps_weight = gossiper.mix(out_msg, gossip_ps_weight) ps_factor = gossiper.mixing_weights["lo"] # unflatten parameters with torch.no_grad(): for r, g in zip(unflatten_tensors(in_msg, send_buffer), receive_buffer): if dist_config["cpu_comm"]: g.copy_(r, non_blocking=True) else: g.copy_(r) return ps_weight, ps_factor @staticmethod def _sgp_gossip_target( dist_config: Dict[Any, Any], gossip_flag: threading.Event, train_flag: threading.Event, gossip_lock: threading.Lock, gossip_params: List[torch.Tensor], gossip_device_buffer: List[torch.Tensor], gossip_ps_weight: torch.Tensor, gossip_ps_factor: torch.Tensor, gossip_stream: torch.cuda.Stream, ) -> None: """Gossip thread, which performs push-sum on model params""" logger = make_logger(dist_config["logical_rank"], dist_config["verbose"]) gossip_params_by_dtype = group_by_dtype(gossip_params) gossip_device_buffer_by_dtype = group_by_dtype(gossip_device_buffer) gossipers = {} # init gossip instance gossiper_class = PushSum if dist_config["push_sum"] else PushPull for dtype in gossip_params_by_dtype: gossipers[dtype] = gossiper_class( flatten_tensors(gossip_params_by_dtype[dtype]), device=cast(torch.device, dist_config["comm_device"]), graph=cast(GraphManager, dist_config["graph"]), mixing=cast(MixingManager, dist_config["mixing"]), rank=dist_config["process_rank"], world_size=dist_config["logical_world_size"], logger=logger, ) dist_config["gossipers"] = gossipers gossip_ps_factor.copy_(gossipers[list(gossipers)[0]].mixing_weights["lo"]) gossip_flag.set() # gossip loop while True: train_flag.wait() logger.debug("received train-flag") try: with torch.cuda.stream(gossip_stream): for dtype in gossip_params_by_dtype: (ps_weight, ps_factor,) = SlowMoDistributedDataParallel._sgp_gossip_into_receive_buffer( gossip_params_by_dtype[dtype], gossipers[dtype], gossip_device_buffer_by_dtype[dtype], gossip_ps_weight, gossip_lock, dist_config, ) gossip_ps_weight.copy_(ps_weight) gossip_ps_factor.copy_(ps_factor) except RuntimeError as e: logger.warning("received runtime error {}".format(e)) for gossiper in gossipers.values(): gossiper.clean_msg_buffers_() gossip_ps_weight.fill_(-1) finally: # Make sure all queued operations are complete gossip_stream.synchronize() # give main thread go-ahead to read our gossip buffer train_flag.clear() gossip_flag.set()
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. """ Graph Manager Class :description: Class provides an API for loading different peer-to-peer communication topologies, and cycling through peers. """ from abc import ABC, abstractmethod from math import log as mlog from typing import List, Optional, Tuple import torch import torch.distributed as dist class Edge(object): def __init__(self, local_master_rank: int, dest: int, src: int, local_rank: int) -> None: self.src = src self.dest = dest self.process_group = dist.new_group([src, dest]) if local_master_rank in [self.src, self.dest] and local_rank == 0: initializer_tensor = torch.Tensor([1]).cuda() dist.all_reduce(initializer_tensor, group=self.process_group) initializer_tensor = torch.Tensor([1]).cuda().half() dist.all_reduce(initializer_tensor, group=self.process_group) class GraphManager(ABC): def __init__( self, rank: int, world_size: int, nprocs_per_node: int = 1, local_rank: int = 0, peers_per_itr: int = 1 ) -> None: assert int(peers_per_itr) >= 1 self.rank = rank self.world_size = world_size self.phone_book: List[List[Edge]] = [[] for _ in range(self.world_size)] self._peers_per_itr = peers_per_itr self._group_indices = list(range(peers_per_itr)) self.nprocs_per_node = nprocs_per_node self.local_rank = local_rank self._make_graph() @property def peers_per_itr(self) -> int: return self._peers_per_itr @peers_per_itr.setter def peers_per_itr(self, v: int) -> None: self._peers_per_itr = v # set group-indices attr. --- point to out-peers in phone-book self._group_indices = list(range(v)) @abstractmethod def _make_graph(self) -> None: """ Returns a nested list of peers; the outer-list is indexed by rank, the inner list denotes the set of peers that 'rank' can send messages to at any point in time """ raise NotImplementedError def _add_peers(self, rank: int, peers: List[int]) -> None: for peer in peers: if peer not in self.phone_book[rank]: self.phone_book[rank].append( Edge( local_master_rank=(self.rank * self.nprocs_per_node), dest=(peer * self.nprocs_per_node), src=(rank * self.nprocs_per_node), local_rank=self.local_rank, ) ) @abstractmethod def is_regular_graph(self) -> bool: """Whether each node has the same number of in-peers as out-peers""" raise NotImplementedError @abstractmethod def is_bipartite_graph(self) -> bool: """Whether graph is bipartite or not""" raise NotImplementedError @abstractmethod def is_passive(self, rank: Optional[int] = None) -> bool: """Whether 'rank' is a passive node or not""" raise NotImplementedError @abstractmethod def is_dynamic_graph(self) -> bool: """Whether the graph-type is dynamic (as opposed to static)""" raise NotImplementedError def get_peers(self, rotate: bool = False) -> Tuple[List[int], List[int]]: """Returns the out and in-peers corresponding to 'self.rank'""" # cycle through in- and out-peers by updating group-index if rotate: self._rotate_group_indices() # get out- and in-peers using new group-indices out_peers, in_peers = [], [] for group_index in self._group_indices: out_peers.append(self.phone_book[self.rank][group_index].dest) for rank, peers in enumerate(self.phone_book): if rank == self.rank: continue if self.rank * self.nprocs_per_node == peers[group_index].dest: in_peers.append(rank) return out_peers, in_peers def get_edges(self, rotate: bool = False) -> Tuple[List[Edge], List[Edge]]: """Returns the pairwise process groups between rank and the out and in-peers corresponding to 'self.rank'""" # cycle through in- and out-peers by updating group-index if rotate: self._rotate_group_indices() # get out- and in-peers using new group-indices out_edges, in_edges = [], [] for group_index in self._group_indices: out_edges.append(self.phone_book[self.rank][group_index]) for rank, edges in enumerate(self.phone_book): if rank == self.rank: continue if self.rank * self.nprocs_per_node == edges[group_index].dest: in_edges.append(self.phone_book[rank][group_index]) return out_edges, in_edges def _rotate_group_indices(self) -> None: """Incerement group indices to point to the next out-peer""" increment = self.peers_per_itr for i, group_index in enumerate(self._group_indices): self._group_indices[i] = int((group_index + increment) % len(self.phone_book[self.rank])) def _rotate_forward(self, r: int, p: int) -> int: """Helper function returns peer that is p hops ahead of r""" return (r + p) % self.world_size def _rotate_backward(self, r: int, p: int) -> int: """Helper function returns peer that is p hops behind r""" return (r - p) % self.world_size class DynamicDirectedExponentialGraph(GraphManager): def _make_graph(self) -> None: for rank in range(self.world_size): for i in range(0, int(mlog(self.world_size - 1, 2)) + 1): f_peer = self._rotate_forward(rank, 2**i) b_peer = self._rotate_backward(rank, 2**i) self._add_peers(rank, [f_peer, b_peer]) def is_regular_graph(self) -> bool: return True def is_bipartite_graph(self) -> bool: return False def is_passive(self, rank: Optional[int] = None) -> bool: return False def is_dynamic_graph(self) -> bool: return True class NPeerDynamicDirectedExponentialGraph(GraphManager): def _make_graph(self) -> None: for rank in range(self.world_size): for i in range(0, int(mlog(self.world_size - 1, self._peers_per_itr + 1)) + 1): for j in range(1, self._peers_per_itr + 1): distance_to_neighbor = j * ((self._peers_per_itr + 1) ** i) f_peer = self._rotate_forward(rank, distance_to_neighbor) self._add_peers(rank, [f_peer]) def is_regular_graph(self) -> bool: return True def is_bipartite_graph(self) -> bool: return False def is_passive(self, rank: Optional[int] = None) -> bool: return False def is_dynamic_graph(self) -> bool: return True class DynamicBipartiteExponentialGraph(GraphManager): def _make_graph(self) -> None: for rank in range(self.world_size): for i in range(0, int(mlog(self.world_size - 1, 2)) + 1): if i == 0: f_peer = self._rotate_forward(rank, 1) b_peer = self._rotate_backward(rank, 1) else: f_peer = self._rotate_forward(rank, 1 + 2**i) b_peer = self._rotate_backward(rank, 1 + 2**i) # create directory for non-passive peers if not self.is_passive(rank) and (self.is_passive(f_peer) and self.is_passive(b_peer)): self._add_peers(rank, [f_peer, b_peer]) # create directory for passive peers elif self.is_passive(rank) and (not (self.is_passive(f_peer) or self.is_passive(b_peer))): self._add_peers(rank, [f_peer, b_peer]) def is_regular_graph(self) -> bool: return True def is_bipartite_graph(self) -> bool: return True def is_passive(self, rank: Optional[int] = None) -> bool: rank = self.rank if rank is None else rank return (rank % 2) == 0 def is_dynamic_graph(self) -> bool: return True class DynamicDirectedLinearGraph(GraphManager): def _make_graph(self) -> None: for rank in range(self.world_size): for i in range(1, self.world_size): if i % 2 == 0: continue f_peer = self._rotate_forward(rank, i) b_peer = self._rotate_backward(rank, i) self._add_peers(rank, [f_peer, b_peer]) def is_regular_graph(self) -> bool: return True def is_bipartite_graph(self) -> bool: return False def is_passive(self, rank: Optional[int] = None) -> bool: return False def is_dynamic_graph(self) -> bool: return True class DynamicBipartiteLinearGraph(GraphManager): def _make_graph(self) -> None: for rank in range(self.world_size): for i in range(1, self.world_size): f_peer = self._rotate_forward(rank, i) b_peer = self._rotate_backward(rank, i) # create directory for non-passive peers if not self.is_passive(rank) and (self.is_passive(f_peer) and self.is_passive(b_peer)): self._add_peers(rank, [f_peer, b_peer]) # create directory for passive peers elif self.is_passive(rank) and (not (self.is_passive(f_peer) or self.is_passive(b_peer))): self._add_peers(rank, [f_peer, b_peer]) def is_regular_graph(self) -> bool: return True def is_bipartite_graph(self) -> bool: return True def is_passive(self, rank: Optional[int] = None) -> bool: rank = self.rank if rank is None else rank return (rank % 2) == 0 def is_dynamic_graph(self) -> bool: return True class RingGraph(GraphManager): def _make_graph(self) -> None: for rank in range(self.world_size): f_peer = self._rotate_forward(rank, 1) b_peer = self._rotate_backward(rank, 1) self._add_peers(rank, [f_peer, b_peer]) def is_regular_graph(self) -> bool: return True def is_bipartite_graph(self) -> bool: return False def is_passive(self, rank: Optional[int] = None) -> bool: return False def is_dynamic_graph(self) -> bool: return False
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. """ Gossipers :description: Gossiper's are designed for multi-peer communication (i.e., send and recv from multiple peers at each ieration) """ from enum import Enum import logging from typing import Iterator, List, Optional, Tuple, cast import torch import torch.distributed as dist from .graph_manager import GraphManager from .mixing_manager import MixingManager, UniformMixing class dist_backend(str, Enum): UNDEFINED = "undefined" TCP = "tcp" MPI = "mpi" GLOO = "gloo" NCCL = "nccl" class Gossiper(object): """Generic gossip averaging object for multi-peer communication Args: msg (torch.Tensor): message used to initialize recv buffer graph (GraphManager): Subclass of GraphManager device: (torch.Device) device on which to initialize recv buffer mixing (MixingManager): Subclass of MixingManager logger (logging.Logger): Module used to log results rank (int): Rank of the current process world_size (int): World size of the current process """ def __init__( self, msg: torch.Tensor, graph: GraphManager, device: Optional[torch.device] = None, mixing: MixingManager = None, logger: logging.Logger = None, rank: Optional[int] = None, world_size: Optional[int] = None, ) -> None: """ Initialize generic averaging class designed for multi-peer comms """ self.logger = logger if rank is None or world_size is None: assert dist.is_initialized() # for now p2p communication only supported with tcp and mpi assert dist.get_backend() != dist_backend.GLOO assert dist.get_backend() != dist_backend.NCCL rank = dist.get_rank() world_size = dist.get_world_size() # graph topology properties self.rank = rank self.world_size = world_size assert isinstance(graph, GraphManager) self._graph_manager = graph self.peers_per_itr_device = torch.tensor([self._graph_manager.peers_per_itr], device=device, dtype=msg.dtype) # This might need to be made float16 later on self.passive = self._graph_manager.is_passive() self.refresh_peers_(rotate=False) # sets in- and out-peers attributes # mixing matrix if mixing is None: mixing = UniformMixing(self._graph_manager, device) assert isinstance(mixing, MixingManager) self._mixing_manager = mixing self.refresh_mixing_weights_() # sets mixing-weights attribute # regular ==> we don't need to keep track of ps-weight explicitly self.regular = self._mixing_manager.is_regular() # msg buffers used during send/recv self.device = device if device is not None else msg.device self.out_msg_buffer: List[Tuple[dist.Work, torch.Tensor]] = [] self.in_msg_buffer = msg.clone().detach_().to(self.device) self._ps_weight: torch.Tensor = torch.ones(1, dtype=msg.dtype).detach_().to(self.device) # not using regular comms ==> need to communicate ps-weight if not self.regular: self.in_msg_buffer = torch.cat([self.in_msg_buffer, self.ps_weight]) if self.device.type == "cpu": try: self.in_msg_buffer = self.in_msg_buffer.pin_memory() except Exception as e: if self.logger is not None: self.logger.error(e) else: raise self.placeholder = self.in_msg_buffer.clone() @property def ps_weight(self) -> torch.Tensor: return self._ps_weight @ps_weight.setter def ps_weight(self, v: torch.Tensor) -> None: self._ps_weight.data[0] = v @property def peers_per_itr(self) -> int: return self._graph_manager.peers_per_itr @peers_per_itr.setter def peers_per_itr(self, v: int) -> None: self._graph_manager.peers_per_itr = v def refresh_peers_(self, rotate: Optional[bool] = None) -> None: """Update in- and out-peers""" if rotate is None: rotate = self._graph_manager.is_dynamic_graph() # cannot cycle peers in a static graph assert not (rotate and not self._graph_manager.is_dynamic_graph()) self.out_edges, self.in_edges = self._graph_manager.get_edges(rotate) def refresh_mixing_weights_(self, residual_adjusted: bool = False) -> None: """Update mixing-matrix weights""" self.mixing_weights = self._mixing_manager.get_mixing_weights(residual_adjusted) def mix_out_msg_(self, out_msg: torch.Tensor, ps_weight: torch.Tensor) -> Iterator[torch.Tensor]: """Returns a generator mixing messages on the fly""" self.refresh_mixing_weights_(residual_adjusted=True) self.ps_weight = ps_weight # check whether or not we need to communicate ps_weight if not self.regular: out_msg = torch.cat([out_msg, cast(torch.Tensor, self.ps_weight.type(out_msg.dtype))]) # check whether or not we need to create a buffer for each out-msg if self._mixing_manager.is_uniform(): weight = self.mixing_weights["uniform"] out_msg *= weight.type(out_msg.dtype) for _ in self.out_edges: yield out_msg else: for out_edge in self.out_edges: weight = self.mixing_weights[out_edge.dest] yield out_msg.mul(weight.type(out_msg.dtype)) # type: ignore def clean_msg_buffers_(self) -> None: """Clean outgoing message buffer""" while len(self.out_msg_buffer) > 0: req, msg = self.out_msg_buffer.pop() req.wait() msg.set_() def parse_in_msg_buffer(self) -> Tuple[torch.Tensor, torch.Tensor]: """Parse in-msg buffer and return msg and ps-weight separately""" msg = self.in_msg_buffer if not self.regular: return msg.narrow(0, 0, len(msg) - 1), msg[-1] else: return msg, self.ps_weight * self.peers_per_itr_device def mix(self, out_msg: torch.Tensor, ps_weight: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """Single gossip step""" raise NotImplementedError class PushSum(Gossiper): """1-peer Push-Sum consensus averaging module""" def mix(self, out_msg: torch.Tensor, ps_weight: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """Consensus averaging step""" # out_msg must be on the correct device assert out_msg.device.type == self.device.type if self.logger is not None: self.logger.debug("in/out -peers {}/{}".format(self.in_edges, self.out_edges)) # prepare messages for gossip mixed_out_msgs = self.mix_out_msg_(out_msg, ps_weight) # non-blocking send for out_edge in self.out_edges: msg = next(mixed_out_msgs) assert self.rank == out_edge.src req = dist.broadcast( tensor=msg, src=out_edge.src, group=out_edge.process_group, async_op=True, ) self.out_msg_buffer.append((req, msg)) # blocking recv w/ some code optimization to avoid buffer prep overhead if len(self.in_edges) == 1: in_edge = self.in_edges[0] dist.broadcast(tensor=self.in_msg_buffer, src=in_edge.src, group=in_edge.process_group) # regular non-blocking recv else: # prepare in-msg buffer self.in_msg_buffer.zero_() for in_edge in self.in_edges: dist.broadcast( tensor=self.placeholder, src=in_edge.src, group=in_edge.process_group, ) self.in_msg_buffer.add_(self.placeholder) # type: ignore self.refresh_peers_() self.clean_msg_buffers_() return self.parse_in_msg_buffer() class PushPull(Gossiper): """Doubly-stochastic consensus averaging module""" def mix(self, out_msg: torch.Tensor, ps_weight: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: # out_msg must be on the correct device assert out_msg.device.type == self.device.type if self.logger is not None: self.logger.debug("in/out -peers {}/{}".format(self.in_edges, self.out_edges)) # prepare messages for gossip mixed_out_msgs = self.mix_out_msg_(out_msg, ps_weight) # send-recv w/ some code optimization to avoid buffer prep overhead if len(self.in_edges) == 1 and len(self.out_edges) == 1: out_edge, in_edge = self.out_edges[0], self.in_edges[0] msg = next(mixed_out_msgs) if not self.passive: dist.broadcast(tensor=msg, src=out_edge.src, group=out_edge.process_group) dist.broadcast( tensor=self.in_msg_buffer, src=in_edge.src, group=in_edge.process_group, ) else: dist.broadcast( tensor=self.in_msg_buffer, src=in_edge.src, group=in_edge.process_group, ) dist.broadcast(tensor=msg, src=out_edge.src, group=out_edge.process_group) # regular send-recv else: # prepare in-msg buffer self.in_msg_buffer.zero_() # send-recv for out_edge, in_edge in zip(self.out_edges, self.in_edges): msg = next(mixed_out_msgs) if not self.passive: dist.broadcast(tensor=msg, src=out_edge.src, group=out_edge.process_group) dist.broadcast( tensor=self.placeholder, src=in_edge.src, group=in_edge.process_group, ) else: dist.broadcast( tensor=self.placeholder, src=in_edge.src, group=in_edge.process_group, ) dist.broadcast(tensor=msg, src=out_edge.src, group=out_edge.process_group) self.in_msg_buffer.add_(self.placeholder) # type: ignore self.refresh_peers_() self.clean_msg_buffers_() return self.parse_in_msg_buffer()
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from .helpers import ( MultiProcessAdapter, communicate, create_process_group, flatten_tensors, group_by_dtype, make_logger, unflatten_tensors, )
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. """ Benchmarking utils for timing cuda executions """ from collections import defaultdict, deque from functools import partial import statistics from typing import ClassVar, Deque, Dict, Optional import torch MAX_LEN_DEQUEUE = 10**4 deque_with_max_len_fixed = partial(deque, maxlen=MAX_LEN_DEQUEUE) def create_and_record_event() -> torch.cuda.Event: event = torch.cuda.Event(enable_timing=True) event.record() return event class EventRecorder(object): def stop(self) -> None: pass def create_event_recorder(event_name: str, dummy: bool = False) -> EventRecorder: if not dummy: return CudaEventRecorder(event_name) return DummyCudaEventRecorder() class CudaEventRecorder(EventRecorder): """Allows profiling in an easy-to-use manner. CudaEventRecorder can be used in a loop. When it is used in a loop (or when an event recorder is created multiple times with the same name), get_timings returns the statistics of the timings since the last reset. Note: in case the number of timings is greater than 10,000, only the last 10,000 timings are used to calculate the statistics. Usage: >>> event_recorder1 = CudaEventRecorder('1') >>> # Sequence of events whose time is to be measured >>> event_recorder1.stop() >>> event_recorder2 = CudaEventRecorder('2') >>> # Sequence of events whose time is to be measured >>> event_recorder2.stop() >>> print(CudaEventRecorder.get_timings()) Args: event_name (str): The name by which the cuda event is to be referred later on """ event_recorders: ClassVar[Dict[str, Deque["CudaEventRecorder"]]] = defaultdict(deque_with_max_len_fixed) # type: ignore all_event_recorders: ClassVar[Dict[str, Deque["CudaEventRecorder"]]] = defaultdict(deque_with_max_len_fixed) # type: ignore def __init__(self, event_name: str) -> None: self.event_name = event_name self.start_event = create_and_record_event() self.end_event: Optional[torch.cuda.Event] = None # Adding it to global tracker CudaEventRecorder.event_recorders[event_name].append(self) CudaEventRecorder.all_event_recorders[event_name].append(self) def stop(self) -> None: self.end_event = create_and_record_event() def find_time_elapsed(self) -> float: if self.end_event is None: raise Exception(f"stopEvent was not called for event with name {self.event_name}") self.end_event.synchronize() return self.start_event.elapsed_time(self.end_event) @classmethod def reset(cls) -> None: cls.event_recorders = defaultdict(deque_with_max_len_fixed) # type: ignore @classmethod def get_common_timings(cls, event_recorders: Dict[str, Deque["CudaEventRecorder"]], description: str) -> str: all_timings_str = f"{description}:\n" # Iterating over different types of events, eg., forward, backward for event_name, event_recorder_list in event_recorders.items(): # Iterating over different occurences of an event type time_taken_list = [event_recorder.find_time_elapsed() for event_recorder in event_recorder_list] all_timings_str += ("{}: Time taken: avg: {}, std: {}, count: " "{}\n").format( event_name, statistics.mean(time_taken_list), statistics.pstdev(time_taken_list), len(time_taken_list), ) return all_timings_str @classmethod def get_timings(cls) -> str: """Returns the timings since last reset was called""" return cls.get_common_timings(cls.event_recorders, "Timings since last reset") @classmethod def get_all_timings(cls) -> str: """Returns the statistics of all the timings""" return cls.get_common_timings(cls.all_event_recorders, "All timings") class DummyCudaEventRecorder(EventRecorder): pass
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. """ Collection of commonly used utility functions """ import collections import logging import sys from typing import Any, Dict, List, MutableMapping, Set, Tuple import torch import torch.distributed as dist def flatten_tensors(tensors: List[torch.Tensor]) -> torch.Tensor: """ Flatten dense tensors into a contiguous 1D buffer. Assume tensors are of same dense type. Since inputs are dense, the resulting tensor will be a concatenated 1D buffer. Element-wise operation on this buffer will be equivalent to operating individually Args: tensors (Iterable[Tensor]): dense tensors to flatten Returns: A 1D buffer containing input tensors """ if len(tensors) == 1: return tensors[0].view(-1).clone() flat = torch.cat([t.view(-1) for t in tensors], dim=0) return flat def unflatten_tensors(flat: torch.Tensor, tensors: List[torch.Tensor]) -> List[torch.Tensor]: """ View a flat buffer using the sizes of tensors. Assume that tensors are of same dense type, and that flat is given by flatten_dense_tensors. Args: flat (Tensor): flattened dense tensors to unflatten tensors (Iterable[Tensor]): dense tensors whose sizes will be used to unflatten flat Returns: Unflattened dense tensors with sizes same as tensors and values from flat """ outputs = [] offset = 0 for tensor in tensors: numel = tensor.numel() outputs.append(flat.narrow(0, offset, numel).view_as(tensor)) offset += numel return outputs def group_by_dtype(tensors: List[torch.Tensor]) -> Dict[torch.dtype, List[torch.Tensor]]: """ Returns a dict mapping from the tensor dtype to a list containing all tensors of that dtype. Arg: tensors (Iterable[Tensor]): list of tensors """ tensors_by_dtype = collections.defaultdict(list) for tensor in tensors: tensors_by_dtype[tensor.dtype].append(tensor) return tensors_by_dtype def communicate(tensors: List[torch.Tensor], communication_op: Any, logger: logging.Logger = None) -> None: """ Communicate a list of tensors Args: tensors (Iterable[Tensor]): list of tensors communication_op: a method or partial object which takes a tensor as input and communicates it. It can be a partial object around something like torch.distributed.all_reduce """ tensors_by_dtype = group_by_dtype(tensors) for tensors_with_same_dtype in tensors_by_dtype.values(): flat_tensor = flatten_tensors(tensors_with_same_dtype) if logger is not None: logger.debug("Flatten completed") communication_op(tensor=flat_tensor) if logger is not None: logger.debug("Commmunication completed") with torch.no_grad(): for f, t in zip( unflatten_tensors(flat_tensor, tensors_with_same_dtype), tensors_with_same_dtype, ): t.copy_(f) if logger is not None: logger.debug("Unflatten completed") HANDLER_AND_LEVEL_SET: Set[logging.Logger] = set() # TODO: deprecate this function def make_logger(rank: int, verbose: bool = True) -> logging.Logger: """ Return a logger for writing to stdout Args: rank (int): rank of node making logger verbose (bool): whether to set log-level to INFO; o.w. WARNING Returns: Python logger """ logger = logging.getLogger(__name__) if logger not in HANDLER_AND_LEVEL_SET: # if not getattr(logger, "handler_and_level_set", None): console = logging.StreamHandler(stream=sys.stdout) format_str = "{}".format(rank) format_str += ": %(levelname)s -- %(threadName)s -- %(message)s" console.setFormatter(logging.Formatter(format_str)) logger.addHandler(console) # prints to console if verbose: logger.setLevel(logging.DEBUG) else: logger.setLevel(logging.INFO) HANDLER_AND_LEVEL_SET.add(logger) # logger.handler_and_level_set = True return logger def create_process_group(ranks: List[int]) -> torch.distributed.ProcessGroup: """ Creates and intializes a new process group. Assumes init_process_group has already been called Arguments: ranks (list<int>): ranks corresponding to the processes which should belong the created process group Returns: New process group """ new_group = dist.new_group(ranks=ranks) init_tensor_fp32, init_tensor_fp16 = torch.zeros(1), torch.zeros(1).half() for init_tensor in [init_tensor_fp32, init_tensor_fp16]: if torch.cuda.is_available(): init_tensor = init_tensor.cuda() if dist.get_rank() in ranks: dist.all_reduce(init_tensor, group=new_group) torch.cuda.synchronize() return new_group class MultiProcessAdapter(logging.LoggerAdapter): """ Creates an adapter to make logging for multiple processes cleaner """ def process(self, msg: str, kwargs: Any) -> Tuple[str, MutableMapping[str, Any]]: # use process_num from kwargs or the default given on instantiation process_num = kwargs.pop("process_num", self.extra["process_num"]) return f"process: {process_num} {msg}", kwargs
import inspect import operator from typing import Dict, List, Optional, Tuple, cast from torch.distributed.nn import RemoteModule import torch.fx import torch.nn as nn from . import PipelineModulesGraph class RemoteModuleTracer(torch.fx.Tracer): def is_leaf_module(self, m: torch.nn.Module, module_qualified_name: str) -> bool: if isinstance(m, RemoteModule): return True return False class GraphCreator: def __init__(self, tracer: RemoteModuleTracer) -> None: self.tracer = tracer def get_module(self, node: torch.fx.Node) -> Optional[nn.Module]: """Given a call_module node, returns the module corresponding to this module call""" if node.op != "call_module": return None module = self.tracer.root for t in cast(str, node.target).split("."): module = getattr(module, t) return module def create_graph(self) -> PipelineModulesGraph: # node_to_data maps nodes to the data they represent node_to_data: Dict[torch.fx.Node, PipelineModulesGraph.DataSourceSpec] = {} remote_module_nodes: List[Tuple[torch.fx.Node, RemoteModule]] = [] for node in self.tracer.graph.nodes: if node.op == "call_module": module = self.get_module(node) assert isinstance(module, RemoteModule) node_to_data[node] = module remote_module_nodes.append((node, module)) elif node.target == operator.__getitem__ and node.op == "call_function": assert node.args[0] in node_to_data d = node_to_data[node.args[0]] assert isinstance(d, RemoteModule) node_to_data[node] = (d, node.args[1]) elif node.op == "placeholder": arg_names = list(inspect.signature(self.tracer.root.forward).parameters) node_to_data[node] = arg_names.index(node.target) elif node.op == "output": pass else: assert False, "Invalid node %s" % node # Following dict stores cardinality of the output for modules: for each module, it stores None if the output # is a simple tensor, and it stores the number of tensors in the the output if it is a tuple. module_to_num_outputs: Dict[nn.Module, Optional[int]] = {} for node, _ in remote_module_nodes: # iterate over inputs to the module. for arg in node.args: data = node_to_data[arg] if isinstance(data, int): continue if isinstance(data, RemoteModule): assert module_to_num_outputs.get(data, None) is None module_to_num_outputs[data] = None else: module, output_num = data # Here we discovered that the output number "output_num" is used, # so the number of outputs should be at least "output_num+1". if module in module_to_num_outputs: prev_value = module_to_num_outputs[module] assert prev_value is not None module_to_num_outputs[module] = max(prev_value, output_num + 1) else: module_to_num_outputs[module] = output_num + 1 graph = PipelineModulesGraph() for node, module in remote_module_nodes: inputs = [node_to_data[arg] for arg in node.args] graph.add_layer(module, inputs, module_to_num_outputs.get(module)) return graph def _call_trace(tracer: RemoteModuleTracer, module: nn.Module) -> torch.fx.Graph: try: org_named_modules = RemoteModule.named_modules org_named_children = RemoteModule.named_children RemoteModule.named_modules = nn.Module.named_modules # type: ignore RemoteModule.named_children = nn.Module.named_children # type: ignore return tracer.trace(module) finally: RemoteModule.named_modules = org_named_modules # type: ignore RemoteModule.named_children = org_named_children # type: ignore def make_graph(module: nn.Module) -> PipelineModulesGraph: """ Creates a PipelineModulesGraph for the module. The module should be traceable by torch.fx. Also all operators on tensors should be done by RemoteModule's. """ tracer = RemoteModuleTracer() r = _call_trace(tracer, module) g = torch.fx.GraphModule(module, r) return GraphCreator(tracer).create_graph()
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass from typing import List, Optional, Set, Tuple, Union from torch import Tensor, nn from torch.distributed import rpc from torch.distributed.nn import RemoteModule from .data import DataConsumer class MultiInputSequential(nn.Module): """A variation of nn.Sequential, that allows the first module in the sequence accepts multiple inputs. To be used internally by _split_module """ def __init__(self, *modules: nn.Module) -> None: super().__init__() self.modules_list = nn.ModuleList(modules) def forward(self, *inputs: Tuple[Tensor]) -> Tensor: # type: ignore input = self.modules_list[0](*inputs) for module in self.modules_list[1:]: input = module(input) return input def RemoteSequential(rref_list: List[rpc.RRef]) -> MultiInputSequential: return MultiInputSequential(*(r.local_value() for r in rref_list)) NodeDataConsumer = DataConsumer["Node"] @dataclass class DataSource: # If producer is None, we are referring to the model input producer: Optional["Node"] # indicating which output of the producer module, or which input of the model if producer is None. output_idx: int class Node: def __init__(self, module: RemoteModule): self.module = module self.num_outputs: Optional[int] = None self.inputs: List[DataSource] = [] # To be compiled by _compile method self.output_consumers: List[NodeDataConsumer] = [] class PipelineModulesGraph(nn.Module): """A collection of remote modules (of type RemoteModule) with connections showing how inputs to the model or outputs of individual modules are use as inputs of subsequent modules. The graph has a number of helper functions that add new modules to the graph and define inputs to these module. """ def __init__(self) -> None: super().__init__() self.nodes: List[Node] = [] def _find_node(self, module: RemoteModule) -> Node: for n in self.nodes: if n.module is module: return n raise ValueError def _find_or_add(self, module: RemoteModule) -> Node: try: return self._find_node(module) except ValueError: new_node = Node(module) self.nodes.append(new_node) return new_node # DataSourceSpec lists choices the user has for specifying the source of each input to a module: # -- If the input is one of model inputs, it is specified by a simple integer, which is the index of that input # -- If the input comes from a module with a simple output, it is specified by that module # -- If the input comes from a module with multiple outputs (a tuple), it is specified by that module and the # index of the output DataSourceSpec = Union[int, RemoteModule, Tuple[RemoteModule, int]] def _data_source_spec_to_data_source(self, spec: DataSourceSpec) -> DataSource: if isinstance(spec, int): return DataSource(None, spec) if isinstance(spec, RemoteModule): return DataSource(self._find_node(spec), 0) return DataSource(self._find_node(spec[0]), spec[1]) def add_layer(self, module: RemoteModule, inputs: List[DataSourceSpec], num_outputs: Optional[int] = None) -> None: """Adds a module with specified inputs to the graph. The modules that provide inputs to this module must have been added previously to the graph and are listed with argument inputs. If the module output is a tuple, num_outputs specifies the number of elements in the tuple. """ node = Node(module) node.inputs = [self._data_source_spec_to_data_source(spec) for spec in inputs] node.num_outputs = num_outputs self.nodes.append(node) def add_sequence( self, modules: List[RemoteModule], first_module_inputs: List[DataSourceSpec], last_module_num_outputs: Optional[int] = None, ) -> None: """Adds a list of modules to the graph, to be run sequentially. The connection between these modules is as follows: the output of each of these modules (except the last one) is used as the input of its next module in this sequence. So all modules (except the last one) must have simple output, and also all of them (except the first one) should have a single input. The user also specifies the input to the first module in this sequence with argument 'first_module_inputs'. In case the last module output is a tuple, 'last_module_num_outputs' specifies the number of elements in the tuple. """ next_input = first_module_inputs for i, module in enumerate(modules): self.add_layer(module, next_input, last_module_num_outputs if i == len(modules) - 1 else None) next_input = [module] def _compile(self) -> None: """Precomputes self.model_input_consumers and self.output_consumers for internal use by the pipleine class. These two lists show consumers of inputs to the model, and outputs of each module of the graph. Each consumer is a pair (i, j) which stands for the j'th input to the i'th module in the graph. """ # TODO: We need to make sure following conditions hold before preparing the graph for the pipeline: # * the graph has a least one module, and is connected. # * num_inputs and num_outputs for modules matche list of connections defined in the graph. # * all inputs to a module should come from model input, or modules with smaller index in # the graph. This condition is used in implementaion of DistributedPipeline.forward. Even # if we relax this condition, still need to make sure the graph is acyclic. m = len(self.nodes) self.model_input_consumers = [] for node in self.nodes: for input_index, input_item in enumerate(node.inputs): data_consumer = NodeDataConsumer(node, input_index, input_item.output_idx) if input_item.producer is not None: input_item.producer.output_consumers.append(data_consumer) else: self.model_input_consumers.append(data_consumer) def _trace_modules(self, node: Node) -> List[Node]: """Compiles a list of modules (starting from module number module_idx), where each module in the list gets the output of previous module in the list as its input. So every module in the list, except the first one should have only one input, and similarly, every module in the list, except the last one should have only one output. """ partition = [] current_node = node while True: partition.append(current_node) # If we reached a module with multiple outputs or with multiple consumers for its output, # stop adding more modules to the partition. if len(current_node.output_consumers) != 1: break if current_node.num_outputs is not None: break # Next module to add is the only consumer of the ouput of the current module next_node = current_node.output_consumers[0].consumer # If the next module has multiple inputs, do not add it to the current partition and stop. if next_node.inputs != [DataSource(current_node, 0)]: break # If the next module is on a different deivce or worker, stop if next_node.module.on != current_node.module.on: break if next_node.module.device != current_node.module.device: break current_node = next_node return partition def partition_graph(self) -> List[Tuple[List[Node], rpc.RRef]]: """Splits the graph into pipeline partitions and for each parition returns a tuple (indices, module_rref), where indices is indices of modules of the partition in the graph, and module_rref is an RRef to an nn.Module: Each partition is a list of modules on the same device that are executed sequentially (output of each module is the input to the next module). If there is only one module in the partition, module_rref is reference to that module; otherwise those modules are wrapped by a MultiInputSequential and module_rref referes to that. """ self._compile() modules_used: Set[Node] = set() partitions = [] for node in self.nodes: if node in modules_used: continue partition = self._trace_modules(node) assert not modules_used.intersection(partition) modules_used.update(partition) if len(partition) == 1: remote_module = partition[0].module.get_module_rref() else: remote_module = rpc.remote( partition[0].module.on, RemoteSequential, args=([p.module.get_module_rref() for p in partition],), ) partitions.append((partition, remote_module)) return partitions
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from .graph import PipelineModulesGraph from .loss import DistributedLoss from .pipeline import DistributedPipeline
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from threading import Condition from types import TracebackType from typing import Dict, List, Optional, Tuple, Type, Union, cast import torch from torch import Tensor from torch.autograd.profiler import record_function from torch.distributed import rpc from fairscale.nn.pipe import microbatch from fairscale.nn.pipe.checkpoint import Checkpointing, TensorOrTensors from fairscale.nn.pipe.dependency import fork, join from fairscale.nn.pipe.microbatch import Batch from fairscale.nn.pipe.stream import as_cuda, current_stream, is_cuda, use_device, use_stream from fairscale.nn.pipe.worker import Task, create_workers from .data import DataConsumer ExcInfo = Tuple[Type[BaseException], BaseException, TracebackType] class DistributedPipelineRecord: """A class for storing a single mini-batch (consisting of multiple micro-batches) as input to a single partition. Args: device: the local device that runs the partition. rank: the rank of the partition in the pipeline. chunks: number of micro-batches in a mini-batch num_inputs: number of inputs to the partition. consumers: list of consumers of outputs of the partition. Each consumer in the list is a tuple (remote_partition_rref, input_idx, output_idx) where remote_partition_rref points to a remote DistributedPipelineRecord for consumer partiton for this mini-batch. The output number output_idx of this partition will be used as the input number input_idx of that partition. """ # Need to use Union due to https://github.com/python/mypy/issues/7866 DataConsumer = Union[DataConsumer[rpc.RRef]] def __init__( self, device: torch.device, rank: int, chunks: int, num_inputs: int, num_outputs: Optional[int], consumers: List[DataConsumer], ) -> None: self.ready_cv = Condition() # Each chunk consists of num_inputs tensors. self.tensors stores these individual tensors. self.tensors: List[List[Optional[Tensor]]] = [[None] * num_inputs for _ in range(chunks)] # For each tensor in self.tensors, we record a cuda event in corrsponding tensorpipe stream in self.recv_events, # and later the stream that processes that tensor will wait on that event. self.recv_events = [[None] * num_inputs for _ in range(chunks)] # Once all num_inputs tensors of a given chunk are recieved, they are assembled as a batch and stored in # self.batches self.batches: List[Optional[Batch]] = [None] * chunks # For each tensor of each chunk, we fork a phony tensor, which will be used for injecting dependency between # different chunks in backward path. if num_outputs is None: num_outputs = 1 self.forwarded_phony: List[List[List[rpc.RRef]]] = [[[] for j in range(num_outputs)] for i in range(chunks)] self.consumers = consumers self.rank = rank self.device = device def __getstate__(self) -> Dict: # avoid pickling failure. return {} def feed(self, chunk: int, input_idx: int, input: Tensor) -> Tensor: """This function is called remotely to provide individual tensors of a given chunk.""" if input.device.type == "cpu": input = input.to(self.device) cuda_stream = torch.cuda.current_stream(input.device) if input.device.type == "cuda" else None with self.ready_cv: assert self.tensors[chunk][input_idx] is None input, phony = fork(input) self.recv_events[chunk][input_idx] = ( cuda_stream.record_event() if cuda_stream is not None else None # type: ignore ) self.tensors[chunk][input_idx] = input self.ready_cv.notify_all() return phony def wait_for(self, chunk: int) -> None: """Waits until all elements of given chunk is populated in self.tensors. Then it constructs self.batches[chunk] if it is not constructed yet. """ with self.ready_cv: while self.batches[chunk] is None and any(b is None for b in self.tensors[chunk]): self.ready_cv.wait() if self.batches[chunk] is None: tensors = cast(List[Tensor], self.tensors[chunk]) self.batches[chunk] = Batch(tuple(tensors), chunk) def fence(self, chunk: int) -> None: """Prepares micro-batches for computation.""" # Ensure that batches[chunk-1] is executed after batches[chunk] in # backpropagation by an explicit dependency. # TODO: This dependency injection causes deadlock if this partition # gets its input from model input. 1) Figure out why 2) If we need to live # with this constraint, replace the condition 'self.rank > 0' below with # a more accurate one. if chunk != 0 and self.consumers and self.rank > 0: batch = self.batches[chunk] assert batch is not None dependant_tensors = list(batch.tensors) for remote_ph_list in self.forwarded_phony[chunk - 1]: for remote_ph in remote_ph_list: phony = remote_ph.to_here() dependant_tensors[0] = join(dependant_tensors[0], phony) self.batches[chunk] = Batch(tuple(dependant_tensors), chunk) def sync_stream(self, chunk: int, stream: torch.cuda.Stream) -> None: """syncs the stream with cuda events associated with transmission of the chunck to the cuda device.""" for e in self.recv_events[chunk]: if e is not None: stream.wait_event(e) def forward_results(self, chunk: int) -> None: """Forward outputs of processing the chunk in this parition for processing by next partition.""" for consumer in self.consumers: v = self.get_batch(chunk).value[consumer.output_idx] self.forwarded_phony[chunk][consumer.output_idx].append( consumer.consumer.remote().feed(chunk, consumer.consumer_input_idx, v) ) def get_batch(self, chunk: int) -> Batch: batch = self.batches[chunk] assert batch is not None return batch class PartitionHandler: """This class processes a single partition of the pipeline. Args: module_rref: RRef to the nn.Module for this partition. It should be on the local rpc worker. device: The device that holds the module. num_inputs: Numer of inputs to the module num_outputs: Number of outputs of the module. If the module output is not a tuple (and it is a single tensor), num_outputs should be None. rank: The rank of the partition chunks: Number of micor-batches in a mini-batch checkpoint_stop:: Checkpointing is done only for the first checkpoint_stop chunks of a mini-batch. """ def __init__( self, module_rref: rpc.RRef, device: str, num_inputs: int, num_outputs: Optional[int], rank: int, chunks: int, checkpoint_stop: int, ) -> None: self.module = module_rref.local_value() self.chunks = chunks self.device = torch.device(device) self.checkpoint_stop = checkpoint_stop self.rank = rank self.num_inputs = num_inputs self.num_outputs = num_outputs (self.in_queue,), (self.out_queue,) = create_workers([self.device]) def __getstate__(self) -> Dict: # avoid pickling failure. return {} def local_parameter_rrefs(self) -> List[rpc.RRef]: r""" Create one RRef for each parameter in the given local module, and return a list of RRefs. """ return [rpc.RRef(p) for p in self.module.parameters()] def make_pipeline_record(self, consumers: List[DataConsumer]) -> DistributedPipelineRecord: return DistributedPipelineRecord( self.device, self.rank, self.chunks, self.num_inputs, self.num_outputs, consumers ) def run(self, pipeline_record: DistributedPipelineRecord) -> None: """Runs pipeline parallelism. It modifies the given batches in place.""" m = len(pipeline_record.batches) self.stream = current_stream(self.device) for chunk in range(m): with record_function("feed"): pipeline_record.wait_for(chunk) pipeline_record.fence(chunk) self.compute(pipeline_record, chunk) with use_stream(self.stream): pipeline_record.forward_results(chunk) def compute(self, pipeline_record: DistributedPipelineRecord, chunk: int) -> None: """Runs tasks with synchronization to tensor-pipe streams.""" checkpoint_stop = self.checkpoint_stop # Disable checkpointing if in eval mode. if not self.module.training: checkpoint_stop = 0 exc_info: Optional[ExcInfo] = None batch = pipeline_record.get_batch(chunk) if is_cuda(self.stream): pipeline_record.sync_stream(chunk, as_cuda(self.stream)) # Determine whether checkpointing or not. checkpoint = chunk < checkpoint_stop if checkpoint: def function(input: TensorOrTensors, chunk_id: int = chunk) -> TensorOrTensors: with record_function("chunk%d-rank%d" % (chunk_id, pipeline_record.rank)): result = self.module(*input) if self.num_outputs is None: result = (result,) return tuple(result) chk = Checkpointing(function, batch) task = Task(self.stream, compute=chk.checkpoint, finalize=chk.recompute) del function, chk else: def compute( batch: Batch = batch, chunk_id: int = chunk, rank: int = pipeline_record.rank if pipeline_record is not None else -1, ) -> Batch: with record_function("chunk%d-rank%d" % (chunk_id, pipeline_record.rank)): result = self.module(*batch.tensors) if self.num_outputs is None: result = (result,) return Batch(result, chunk_id) task = Task(self.stream, compute=compute, finalize=None) del compute self.in_queue.put(task) ok, payload = self.out_queue.get() # Hold the first exception. if exc_info is not None: pass elif not ok: exc_info = cast(ExcInfo, payload) else: task, batch = cast(Tuple[Task, Batch], payload) with use_device(self.device): task.finalize(batch) pipeline_record.batches[chunk] = batch if exc_info is not None: raise exc_info[0].with_traceback(exc_info[1], exc_info[2]) def run_pipeline(self, pipeline_record_rref: rpc.RRef) -> Optional[Tensor]: """Processes a min-batch on this partition. If this is the last partition (pipeline_record has no consumer), concatenates results of processing all chunks and returns the result as the output of the model on the whole mini-batch. """ pipeline_record = pipeline_record_rref.local_value() self.run(pipeline_record) result: Optional[Tensor] = None if not pipeline_record.consumers: gather_result = microbatch.gather(pipeline_record.batches) assert len(gather_result) == 1 result = gather_result[0] s0 = current_stream(result.device) if is_cuda(s0): # TODO. Investigate why this is needed and remove it if possible. as_cuda(s0).synchronize() # TODO: There seems to be a memory leak that is solved by following line. # Investigate why is it needed. del pipeline_record.batches return result
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from typing import Callable, Dict, Tuple from torch import nn from torch.distributed import rpc def _rloss(loss_func: Callable, input_rref: rpc.RRef, target_rref: rpc.RRef) -> rpc.RRef: return loss_func(input_rref.to_here(), target_rref.to_here()) def DistributedLoss(loss: nn.Module, *args: Tuple, **kwargs: Dict) -> Callable: loss_func = loss(*args, **kwargs) def dloss(input_rref: rpc.RRef, target_rref: rpc.RRef) -> rpc.RRef: return rpc.remote(input_rref.owner(), _rloss, args=(loss_func, input_rref, target_rref)) return dloss
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass from typing import Any, Dict, List, Optional, Union import torch from torch import Tensor, nn from torch.distributed import rpc from fairscale.internal import torch_version from fairscale.nn.pipe import microbatch from .data import DataConsumer from .graph import Node, PipelineModulesGraph from .partition_handler import DistributedPipelineRecord, PartitionHandler Device = Union[torch.device, int, str] def check_pytorch_version() -> None: if torch_version() < (1, 8, 0): raise Exception("DistributedPipeline requires PyTorch version 1.8 or higher") MOVING_DENIED = TypeError( "denied to move parameters and buffers, " "because DistributedPipeline should manage device placement" ) class DistributedPipeline(nn.Module): """Wraps a :class:`PipelineModulesGraph` model to train on using synchronous pipeline parallelism. If the model requires lots of memory and doesn't fit on a single GPU, pipeline parallelism is a useful technique to employ for training. The implementation is based on the torchgpipe_ paper. .. _torchgpipe: https://arxiv.org/abs/2004.09910 PipelineModulesGraph combines pipeline parallelism with checkpointing to reduce peak memory required to train while minimizing device under-utilization. You should place all the modules on the appropriate rpc workers and devices and wrap them into an :class:`PipelineModulesGraph` module defining the connection between them. Args: module (:class:`PipelineModulesGraph`): model to be parallelized using pipelining. Each module in the graph has to have all of its parameters on a single device. chunks (int): number of micro-batches (default: ``1``) checkpoint (str): when to enable checkpointing, one of ``'always'``, ``'except_last'``, or ``'never'`` (default: ``'except_last'``). ``'never'`` disables checkpointing completely, ``'except_last'`` enables checkpointing for all micro-batches except the last one and ``'always'`` enables checkpointing for all micro-batches. """ @dataclass class Partition: nodes: List[Node] handler: rpc.RRef def __hash__(self) -> int: return hash(self.handler) DataConsumer = DataConsumer[Partition] def __init__( self, graph: PipelineModulesGraph, chunks: int = 1, checkpoint: str = "except_last", ) -> None: super().__init__() check_pytorch_version() chunks = int(chunks) checkpoint = str(checkpoint) if chunks <= 0: raise ValueError("number of chunks must be positive integer") if checkpoint not in ["always", "except_last", "never"]: raise ValueError("checkpoint is not one of 'always', 'except_last', or 'never'") self.chunks = chunks # The micro-batch index where the checkpointing stops. checkpoint_stop = {"always": self.chunks, "except_last": self.chunks - 1, "never": 0}[checkpoint] self.partitions = [ self.Partition( nodes, rpc.remote( handler.owner(), PartitionHandler, args=( handler, nodes[0].module.device, len(nodes[0].inputs), nodes[-1].num_outputs, i, self.chunks, checkpoint_stop, ), ), ) for i, (nodes, handler) in enumerate(graph.partition_graph()) ] self.input_consumers = [ next( self.DataConsumer(partition, input_consumer.consumer_input_idx, input_consumer.output_idx) for partition in self.partitions if partition.nodes[0] is input_consumer.consumer ) for input_consumer in graph.model_input_consumers ] self.graph = graph # DistributedPipeline should manage the device of each partition. # Deny cuda(), cpu(), and to() with device, by TypeError. def cuda(self, device: Optional[Device] = None) -> "DistributedPipeline": raise MOVING_DENIED def cpu(self) -> "DistributedPipeline": raise MOVING_DENIED def to(self, *args: Any, **kwargs: Any) -> "DistributedPipeline": # Deny these usages: # # - to(device[, dtype, non_blocking]) # - to(tensor[, non_blocking]) # # But allow this: # # - to(dtype[, non_blocking]) # if "device" in kwargs or "tensor" in kwargs: raise MOVING_DENIED if args: if isinstance(args[0], (torch.device, int, str)): raise MOVING_DENIED if torch.is_tensor(args[0]): raise MOVING_DENIED return super().to(*args, **kwargs) def parameter_rrefs(self) -> List[rpc.RRef]: remote_params = [] for p in self.partitions: remote_params.extend(p.handler.rpc_sync().local_parameter_rrefs()) return remote_params def forward(self, *inputs: Tensor) -> rpc.RRef: # type: ignore for i, input in enumerate(inputs): microbatch.check(input) # Divide a mini-batch into micro-batches. batches_list = [microbatch.scatter(input, self.chunks) for input in inputs] # Create a DistributedPipelineRecord, one per partition, and make connections between them (i.e. # set list of consumers). pipeline_records: Dict[DistributedPipeline.Partition, rpc.RRef] = {} for partition in reversed(self.partitions): r_handler = partition.handler.remote() consumers = [] # Identify consumers of the outputs of the partition for consumer in partition.nodes[-1].output_consumers: consumer_partition = next(p for p in self.partitions if p.nodes[0] is consumer.consumer) # Index of a consumer partition should be greater than index of the partition. assert consumer_partition in pipeline_records consumers.append( DistributedPipelineRecord.DataConsumer( pipeline_records[consumer_partition], consumer.consumer_input_idx, consumer.output_idx ) ) pipeline_records[partition] = r_handler.make_pipeline_record(consumers) # Let the pipeline-handler for the partition starts processing the pipeline-record for that partition. this_result = r_handler.run_pipeline(pipeline_records[partition]) # If this is the last partition, we expect the result of the model be the output of this partition. if partition is self.partitions[-1]: result = this_result # Start feeding model input to the partitions that need them. for i, b in enumerate(zip(*batches_list)): for input_consumer in self.input_consumers: pipeline_record = pipeline_records[input_consumer.consumer] # TODO: Debug why we need this special handling if pipeline_record.owner().name == rpc.get_worker_info().name: # type: ignore pipeline_record.local_value().feed( i, input_consumer.consumer_input_idx, b[input_consumer.output_idx].value ) else: pipeline_record.rpc_async().feed(i, input_consumer.consumer_input_idx, b[input_consumer.output_idx].value) # type: ignore return result
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass from typing import Generic, TypeVar ConsumerType = TypeVar("ConsumerType") @dataclass class DataConsumer(Generic[ConsumerType]): """A data class for representating a consumer of an output of a module.""" consumer: ConsumerType consumer_input_idx: int # indicating which input of the consumer module output_idx: int # indicating which output of the producer module
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. """ To prevent underflow or overflow of gradients, DynamicLossScaler is used to dynamically scale up and down gradients by scaling the loss. The usage of the DynamicLossScaler is similar with the GradScaler except that DynamicLossScaler can be used for updates on a CPU device. https://pytorch.org/docs/stable/_modules/torch/cuda/amp/grad_scaler.html#GradScaler """ from collections import defaultdict from enum import Enum from typing import Dict, List, Optional import torch class OptState(Enum): READY = 0 UNSCALED = 1 STEPPED = 2 def _refresh_per_optimizer_state() -> OptState: return OptState.READY class DynamicLossScaler(object): """An instance ``scaler`` helps perform the steps of gradient scaling conveniently. """ def __init__( self, init_scale: float = 2.0**15, scale_factor: float = 2.0, scale_window: int = 2000, tolerance: float = 0.0, threshold: float = None, min_loss_scale: float = 1e-4, ): self.loss_scale = init_scale self.scale_factor = scale_factor self.scale_window = scale_window self.tolerance = tolerance self.threshold = threshold self.min_loss_scale = min_loss_scale self._iter = 0 self._last_overflow_iter = -1 self._last_rescale_iter = -1 self._overflows_since_rescale = 0 self._per_optimizer_states: Dict[int, OptState] = defaultdict(_refresh_per_optimizer_state) self._scale = None def scale(self, outputs): # type: ignore """ Multiplies ('scales') a tensor or list of tensors by the scale factor. Returns scaled outputs. Args: outputs (Tensor or iterable of Tensors): Outputs to scale. Returns: Tensor or iterable of Tensors: Scaled outputs. """ return self.loss_scale * outputs @torch.no_grad() def _get_gradients_norm(self, params: List[torch.nn.Parameter]) -> float: grads = [] for p in params: if p.grad is None: continue else: grads.append(p.grad.detach()) if len(grads) == 0: return 0.0 if len(grads) == 1: total_norm = torch.norm(grads[0], p=2, dtype=torch.float32) # type: ignore else: total_norm = torch.norm(torch.stack([torch.norm(g, p=2, dtype=torch.float32) for g in grads])) # type: ignore return total_norm.item() def _decrease_loss_scale(self) -> None: self.loss_scale /= self.scale_factor if self.threshold is not None: self.loss_scale = max(self.loss_scale, self.threshold) def _check_overflow(self, grad_norm: float) -> None: # detect inf and nan if grad_norm == float("inf") or grad_norm != grad_norm: # overflow has occured prev_scale = self.loss_scale iter_since_rescale = self._iter - self._last_rescale_iter self._last_overflow_iter = self._iter self._overflows_since_rescale += 1 pct_overflow = self._overflows_since_rescale / float(iter_since_rescale) if pct_overflow >= self.tolerance: self._decrease_loss_scale() self._last_rescale_iter = self._iter self._overflows_since_rescale = 0 if self.loss_scale <= self.min_loss_scale: # Use FloatingPointError as an uncommon error that parent # functions can safely catch to stop training. self.loss_scale = prev_scale raise FloatingPointError( ( "Minimum loss scale reached ({}). Your loss is probably exploding. " "Try lowering the learning rate, using gradient clipping or " "increasing the batch size." ).format(self.min_loss_scale) ) self._iter += 1 raise OverflowError("setting loss scale to: " + str(self.loss_scale)) def update(self) -> None: """Updates the scale factor.""" if (self._iter - self._last_overflow_iter) % self.scale_window == 0: self.loss_scale *= self.scale_factor self._last_rescale_iter = self._iter self._iter += 1 self._per_optimizer_states = defaultdict(_refresh_per_optimizer_state) def step(self, optimizer, *args, **kwargs): # type: ignore """ :meth:`step` unscale the gradients and step the optimizer. ``*args`` and ``**kwargs`` are forwarded to ``optimizer.step()``. Args: optimizer (torch.optim.Optimizer): Optimizer that applies the gradients. args: Any arguments. kwargs: Any keyword arguments. Returns: The return value of ``optimizer.step(*args, **kwargs)``. None when overflow or underflow gradients occur and optimizer.step() is skipped. """ if "closure" in kwargs: raise RuntimeError("Closure use is not currently supported if DynamicLossScaler is enabled.") optimizer_state = self._per_optimizer_states[id(optimizer)] if optimizer_state is OptState.STEPPED: raise RuntimeError("step() has already been called since the last update().") # check gradient norm. If gradient norm is nan or inf, adjust scale here, and skip step. # clip_grads_norm can happen before this step for group in optimizer.param_groups: grad_norm = self._get_gradients_norm(group["params"]) try: self._check_overflow(grad_norm) except OverflowError: return None if optimizer_state is OptState.READY: self.unscale_(optimizer) state_dict = optimizer.state_dict() state_dict["loss_scale"] = self.loss_scale retval = optimizer.step(*args, **kwargs) optimizer_state = OptState.STEPPED return retval def unscale_(self, optimizer: torch.optim.Optimizer) -> None: # uncale the gradients. optimizer_state = self._per_optimizer_states[id(optimizer)] if optimizer_state is OptState.UNSCALED: raise RuntimeError("unscale_() has already been called on this optimizer since the last update().") elif optimizer_state is OptState.STEPPED: raise RuntimeError("unscale_() is being called after step().") assert self.loss_scale is not None inv_scale = 1.0 / float(self.loss_scale) with torch.no_grad(): for group in optimizer.param_groups: for param in group["params"]: if param.grad is None: continue else: param.grad.data.mul_(inv_scale) optimizer_state = OptState.UNSCALED def state_dict(self) -> Optional[Dict[str, float]]: if self.loss_scale is not None: return {"loss_scale": self.loss_scale} else: return None def load_state_dict(self, state_dict: Dict[str, float]) -> None: if "loss_scale" in state_dict: self.loss_scale = state_dict["loss_scale"]
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from typing import List from .dynamic_loss_scaler import DynamicLossScaler __all__: List[str] = []
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from enum import Enum from typing import Optional, Tuple import torch from torch import Tensor # Helper Functions def _get_k_for_topk(topk_percent: Optional[float], top_k_element: Optional[int], top_k_total_size: int) -> int: """Converts the top_k_percent to top_k_element when top_k_percent is provided as the criterion for top-k calculation. When, top_k_element is used as the criterion, simply returns the value for k. Also, ensures k is never 0 to avoid all-zero tensors. """ if top_k_element is None: top_k_element = round(top_k_total_size * topk_percent / 100.0) elif top_k_element > top_k_total_size: raise ValueError("top_k_element for sst or dst is larger than max number of elements along top_k_dim") # ensure we never have 100% sparsity in tensor and always have 1 surviving element! return max(1, top_k_element) def _scatter_topk_to_sparse_tensor( top_k_tensor: Tensor, to_be_sparsify_tensor: Tensor, k: int, dim: Optional[int] ) -> Tensor: """Scatter the topk values of the to_be_sparsify_tensor to a zero tensor of the same shape at the top-k indices of the top_k_tensor. This function allows top-k computation with a derived tensor from to_be_sparsify_tensor. Args: top_k_tensor (Tensor): The source tensor whose top-k "indices" are taken and used to extract the corresponding "values" from the to_be_sparsify_tensor. to_be_sparsify_tensor (Tensor): The tensor whose values are gathered according to the top-k indices of the top_k_tensor, and a zero tensor of same shape is populated with these values at those indices and creates the sparse_tensor tensor. k (int): the value of k for top-k dim (Optional[int]): dimension for top-k Returns: (Tensor): Returns a sparse_tensor with the same shape as the top_k_tensor and to_be_sparsify_tensor, and populated with the values of the to_be_sparsify_tensor at the indices corresponding to the top-k indices of the source tensor. """ assert ( top_k_tensor.shape == to_be_sparsify_tensor.shape ), "top_k_tensor and to_be_sparsify_tensor have different shapes!" sparse_tensor = torch.zeros_like(to_be_sparsify_tensor) orig_shape = sparse_tensor.shape if dim is None and len(orig_shape) > 1: sparse_tensor = sparse_tensor.reshape(-1) to_be_sparsify_tensor = to_be_sparsify_tensor.reshape(-1) top_k_tensor = top_k_tensor.reshape(-1) dim = -1 _, i = top_k_tensor.topk(k, dim=dim) return sparse_tensor.scatter(dim, i, to_be_sparsify_tensor.gather(dim, i)).reshape(orig_shape) def _top_k_total_size(tensor: Tensor, topk_dim: Optional[int]) -> int: """Get the total size of the input tensor along the topk_dim dimension. When, the dimension is None, get the number of elements in the tensor. """ top_k_total_size = tensor.numel() if topk_dim is None else tensor.shape[topk_dim] assert top_k_total_size > 0, "Total size of input tensor along the topk_dim has to be greater than 0." return top_k_total_size def _is_sparsity_zero( dense: Tensor, topk_percent: Optional[float], topk_element: Optional[int], top_k_dim: Optional[int] ) -> bool: """Returns True when a given value of topk_percent or topk_element along a particular top_k_dim for an input tensor results in sparsity=0% (or top-100-percent). Otherwise, returns False. """ if topk_percent is None and topk_element is None: return False # 100% sparse top_k_total_size = _top_k_total_size(dense, top_k_dim) k = _get_k_for_topk(topk_percent, topk_element, top_k_total_size) return k == top_k_total_size def _fft_transform(dense: Tensor, dim: int) -> Tensor: """Wrapper of torch.fft.fft with more flexibility on dimensions. TODO (Min): figure out if we need to change other args like frequency length, n, or the normalization flag. For our use case, we use fft not rfft since we want big magnitute components from both positive and negative frequencies. Args: dense (Tensor): Input dense tensor (no zeros). dim (int): Which dimension to transform. Returns: (Tensor, complex): transformed dense tensor FFT components. """ orig_shape = None if dim is None: orig_shape = dense.shape dense = dense.reshape(-1) dim = -1 ret = torch.fft.fft(dense, dim=dim) if orig_shape is not None: ret = ret.reshape(orig_shape) return ret def _ifft_transform(sst: Tensor, dim: int) -> Tensor: """Wrapper of torch.fft.ifft with more flexibility on dimensions. Args: sst (Tensor): Input sst tensor (may have zeros) in frequency domain. dim (int): Which dimension to transform. Returns: (Tensor): A new, transformed dense tensor with real domain values. """ assert sst.is_complex() orig_shape = None if dim is None: orig_shape = sst.shape sst = sst.reshape(-1) dim = -1 ret = torch.fft.ifft(sst, dim=dim) if orig_shape is not None: ret = ret.reshape(orig_shape) return ret def _dct_transform(dense: Tensor, dim: int) -> Tensor: """Should take a tensor and perform a Discrete Cosine Transform on the tensor. Args: dense (Tensor): Input dense tensor (no zeros). dim (int): Which dimension to transform. Returns: (Tensor): transformed dense tensor DCT components """ raise NotImplementedError("Support for DCT has not been implemented yet!") def _idct_transform(sst: Tensor, dim: int) -> Tensor: """Should take a tensor and perform an inverse Discrete Cosine Transform and return a new tensor. Args: sst (Tensor): Input sst tensor (may have zeros) in frequency domain. dim (int): Which dimension to transform. Returns: (Tensor): A new, transformed dense tensor with real domain values. """ raise NotImplementedError("Support for iDCT has not been implemented yet!") class Algo(Enum): FFT = 0 DCT = 1 class SignalSparsity: """ This class represents a particular config for a set of signal processing based sparsification functions on tensors. This can be used both on weights, gradients and other tensors like the optimizer state. During initialization, this class requires a value for one of `sst_top_k_element` or `sst_top_k_percent` and also requires a value for one of `dst_top_k_element` or `dst_top_k_percent`. This class only handles tensor inputs and outputs. We leave state_dict type of data handling to upper layer functions. Args: algo (Algo): The algorithm used. Default: FFT sst_top_k_dim (int, optional): The dimension on which the top-k is done for SST. E.g. -1 is the last dim. None means flatten and top-k on all dims. There is no way to specify multiple dims other than None. Default: -1 sst_top_k_element (int, optional): Number of top-k elements to retain for SST. Default: None sst_top_k_percent (float, optional): Percent of top-k elements to retain for SST. Default: None dst_top_k_dim (int, optional): The dimension on which the top-k is done for DST. E.g. -1 is the last dim. None means flatten and top-k on all dims. There is no way to specify multiple dims other than None. Default: None dst_top_k_element (int, optional): Number of top-k elements to retain for DST. Default: None dst_top_k_percent (float, optional): Percent of top-k elements to retain for DST. Default: None Example: .. code-block:: python 2d_sparser = SignalSparsity(sst_top_k_element=10, dst_top_k_element=1) sst = 2d_sparser.dense_to_sst(linear.weight.data) 3d_sparser = SingalSparsity(algo=Algo.FFT, sst_top_k_dim=None, dst_top_k_dim=-1, sst_top_k_percent=10, dst_top_k_element=100) conv.weight.data, _, _ = 3d_sparser.lossy_compress(conv.weight.data) """ def __init__( self, algo: Algo = Algo.FFT, sst_top_k_dim: Optional[int] = -1, sst_top_k_element: Optional[int] = None, sst_top_k_percent: Optional[float] = None, dst_top_k_dim: Optional[int] = -1, dst_top_k_element: Optional[int] = None, dst_top_k_percent: Optional[float] = None, ) -> None: self._sst_top_k_dim = sst_top_k_dim self._sst_top_k_element = sst_top_k_element self._sst_top_k_percent = sst_top_k_percent self._dst_top_k_dim = dst_top_k_dim self._dst_top_k_element = dst_top_k_element self._dst_top_k_percent = dst_top_k_percent self._validate_conf() self._transform, self._inverse_transform = ( (_fft_transform, _ifft_transform) if algo is Algo.FFT else (_dct_transform, _idct_transform) ) @property def _sst_enabled(self) -> bool: """True if SST is enabled.""" return self._sst_top_k_element is not None or self._sst_top_k_percent is not None @property def _dst_enabled(self) -> bool: """True if DST is enabled.""" return self._dst_top_k_element is not None or self._dst_top_k_percent is not None def _validate_conf(self) -> None: """Validating if the config is valid. This includes asserting the following: 1. validating that one and only one of top_k_element and top_k_percent is set. 2. Asserting that both element and percentage are in valid ranges. Throws: ValueError: If validation fails. """ # assert that both top_k_elements and top_k_percent aren't set for sst and dst def both_set(a: Optional[int], b: Optional[float]) -> bool: return (a is not None) and (b is not None) if both_set(self._sst_top_k_element, self._sst_top_k_percent) or both_set( self._dst_top_k_element, self._dst_top_k_percent ): raise ValueError( "top_k_element and top_k_percent can't be both set\n" f"Input values are: sst element={self._sst_top_k_element}, sst percent={self._sst_top_k_percent}, " f"dst element={self._dst_top_k_element}, dst percent={self._dst_top_k_percent}" ) # assert that, if top_k_percent is not None, it is a valid number for a percentage. def none_or_in_range(a: Optional[float]) -> bool: return a is None or (0.0 < a <= 100.0) if not (none_or_in_range(self._sst_top_k_percent) and none_or_in_range(self._dst_top_k_percent)): raise ValueError( "top_k_percent values for sst and dst has to be in the interval (0, 100].\n" f"Input values are: sst percent={self._sst_top_k_percent}, dst percent={self._dst_top_k_percent}" ) def none_or_greater_0(a: Optional[int]) -> bool: return a is None or (0 < a) if not (none_or_greater_0(self._sst_top_k_element) and none_or_greater_0(self._dst_top_k_element)): raise ValueError( "top_k_element values for sst and dst has to be greater than 0.\n" f"Input values are: sst element={self._sst_top_k_element} " f"and dst element={self._dst_top_k_element}" ) def dense_to_sst(self, dense: Tensor) -> Optional[Tensor]: """Get Signal Sparse Tensor (SST) from a dense tensor Dense -> fft -> top-k -> results. The input dense tensor is transformed using a transform algorithm according to the `algo` initialization argument. The SST is then generated from the top_k_elements (or the top_k_percentage) of values from the transformed tensor along the 'sst_top_k_dim'. Args: dense (Tensor): Input dense tensor (no zeros). Returns: (Tensor, optional): Same shaped tensor as the input dense tensor, still in dense format but in frequency domain (complex valued) and has zeros. """ if not self._sst_enabled: # Special case, SST is simply None, which represents an all-zero tensor. return None top_k_total_size = _top_k_total_size(dense, self._sst_top_k_dim) k = _get_k_for_topk(self._sst_top_k_percent, self._sst_top_k_element, top_k_total_size) dense_freq = self._transform(dense, dim=self._sst_top_k_dim) # NOTE: real_dense_freq can potentially be magnitude of complex frequency components # or DCT transformed components when using DCT (currently not implemented). # TODO: In case of the FFT, the imaginary part can perhaps be quantized or pruning can be # done on the smaller phases. real_dense_freq = dense_freq.real.abs() return _scatter_topk_to_sparse_tensor(real_dense_freq, dense_freq, k, dim=self._sst_top_k_dim) def dense_sst_to_dst(self, dense: Tensor, sst: Optional[Tensor]) -> Optional[Tensor]: """Calculates DST from input dense and SST tensors. dense - inverse_transform(sst)[using sst_dst_to_dense method] -> top-k -> dst Args: dense (Tensor): Input dense tensor (no zeros). sst (Tensor): Input SST tensor (has zeros). Returns: (Tensor): Same shaped tensor, still dense format but has zeros. Non-zeros are top-k delta values. """ if not self._dst_enabled: # Special case, DST is simply None, which represents an all-zero tensor. return None if sst is None: sst = torch.zeros_like(dense, dtype=torch.complex64) if not (dense.shape == sst.shape): raise ValueError("dense and sst have different shapes!") top_k_total_size = _top_k_total_size(dense, self._dst_top_k_dim) k = _get_k_for_topk(self._dst_top_k_percent, self._dst_top_k_element, top_k_total_size) delta = dense - self.sst_dst_to_dense(sst) # sst_dst_to_dense(sst) returns the inverse transform here del dense return _scatter_topk_to_sparse_tensor(delta.abs(), delta, k, dim=self._dst_top_k_dim) def sst_dst_to_dense(self, sst: Optional[Tensor], dst: Optional[Tensor] = None) -> Tensor: """From SST and DST returns a dense reconstructed tensor (RT). When argument dst=None, simply returns the inverse transform of the SST tensor. Args: sst (Tensor): Singal sparse tensor. Required argument. dst (Tensor, optional): Delta sparse tensor, optional. Returns: (Tensor): A dense tensor in real number domain from the SST. """ assert not (sst is None and dst is None), "both-None-case is not useful" if sst is None: # Simply the delta is the reconstruction. return dst # Now, ifft and then add the delta. dense_rt = torch.real(self._inverse_transform(sst, dim=self._sst_top_k_dim)) if dst is not None: dense_rt += dst return dense_rt def lossy_compress(self, dense: Tensor) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]: """From dense tensor to lossy reconstruction of dense tensor with the help of SST and DST tensor calculation. If requested sparsity is zero (or top_100_percent) then simply returns the input dense tensor as the reconstruction. Args: dense (Tensor): Input dense tensor (no zeros). Returns: (Tuple[Tensor, Tensor, Tensor]): A tuple of the form (lossy_reconstruction, sst, dst) with three tensors of the same shape as the dense tensor. """ if _is_sparsity_zero( dense, self._sst_top_k_percent, self._sst_top_k_element, self._sst_top_k_dim ) and _is_sparsity_zero(dense, self._dst_top_k_percent, self._dst_top_k_element, self._dst_top_k_dim): # when sparsity is 0% for both sst and dst, the dense tensor itself is returned as the reconstructed # tensor, sst is returned as None and dst as the dense tensor. This choice is made because with the # returned sst=None and dst=dense, we should be able to recombine them if needed to retrieve the # dense tensor again as: dense = inv_transform(sst) + dst, where inv_transform(sst=None) = zero_tensor # of the same size as dense. return dense, None, dense else: # depending on whether self._sst_enabled and self._dst_enabled, None SST/DST tensors can be returned # below as well. sst = self.dense_to_sst(dense) dst = self.dense_sst_to_dst(dense, sst) return self.sst_dst_to_dense(sst, dst), sst, dst def random_sparse_mask(dense: Tensor, percent: float, dim: int) -> Tensor: """Get a random sparse mask Args: dense (Tensor): Input dense tensor (no zeros). percent (float): Percent of non-zeros (0, 100]. dim (int): Dimension on which the random sparse mask is computed. """ assert percent > 0 and percent <= 100, percent rand = torch.rand_like(dense) ones = torch.ones_like(dense) k = _get_k_for_topk(percent, None, dense.shape[dim]) return _scatter_topk_to_sparse_tensor(rand, ones, k, dim)
__version_tuple__ = (0, 0, 1)
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from typing import List import torch from torch import Tensor class EnergyConcentrationProfile: """Compute "energy" concentration level for a tensor Args: dim (int): The dimension to measure. top_k_percents (List[float]): List of percentage values. For each value, the `measure` function will compute and return the percentage of "energy" concentrated on that top-K percent of values in the dimension to measure. Note, this is the opposite of the sparsity percentage. """ def __init__(self, dim: int, top_k_percents: List[float]) -> None: assert isinstance(dim, int) self.dim = dim self.percents = [] last_p = 0.0 for p in top_k_percents: assert isinstance(p, (int, float)) assert p > 0, p assert p <= 100, p assert p > last_p, f"p {p} should be larger than last_p {last_p}" self.percents.append(float(p)) last_p = p def measure(self, in_tensor: Tensor) -> List[Tensor]: """Compute the return the results Note, we want this function to be nonblocking and async. Returns: (List[Tensor]) List of tensors. Each tensor is a singleton float that contains the energy measure for that top_k_percent. """ assert in_tensor.is_floating_point(), in_tensor.dtype assert self.dim < len(in_tensor.shape), f"tensor shape {in_tensor.shape} not compatible with dim {self.dim}" dim_size = in_tensor.shape[self.dim] abs_tensor = in_tensor.abs() full_energy = abs_tensor.sum() return_tensors = [] for p in self.percents: k = max(1, round(p / 100 * dim_size)) abs_top_k_values, _ = abs_tensor.topk(k, dim=self.dim) return_tensors.append(abs_top_k_values.sum() / full_energy) return return_tensors def measure_fft(self, in_tensor: Tensor) -> List[Tensor]: """Like measure, but do it in FFT frequency domain.""" return self.measure(torch.fft.fft(in_tensor, dim=self.dim).real)
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import sys from typing import List # Check for user requirements before we import our code. try: import pygit2 except ImportError: print("Error: please pip install pygit2 module to use wgit") sys.exit(1) try: import pgzip except ImportError: print("Error: please pip install pgzip module to use wgit") sys.exit(1) from .repo import Repo from .signal_sparsity import Algo, SignalSparsity, random_sparse_mask from .signal_sparsity_profiling import EnergyConcentrationProfile from .version import __version_tuple__ __version__ = ".".join([str(x) for x in __version_tuple__]) __all__: List[str] = []
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import argparse from pathlib import Path from typing import List from . import Repo, version def main(argv: List[str] = None) -> None: desc = "WeiGit: A git-like tool for model weight tracking" # top level parser and corresponding subparser parser = argparse.ArgumentParser(description=desc) subparsers = parser.add_subparsers(dest="command") # Version version_parser = subparsers.add_parser("version", description="Display version") version_parser.set_defaults(command="version", subcommand="") # Repo init_parser = subparsers.add_parser("init", description="Initialize a weigit repo") init_parser.add_argument("init", action="store_true", help="initialize the repo") status_parser = subparsers.add_parser("status", description="Shows the repo's current status") status_parser.add_argument("status", action="store_true", help="Show the repo's current status") add_parser = subparsers.add_parser("add", description="add a file to the staged changeset (default: none)") add_parser.add_argument( "add", default="", type=str, metavar="FILE_PATH", help="add a file to the staged changeset (default: none)", ) add_parser.add_argument( "--no_per_tensor", action="store_true", help="Disable per-tensor adding of a file", ) commit_parser = subparsers.add_parser("commit", description="Commits the staged changes") commit_parser.add_argument("commit", action="store_true", help="Commit the staged changes") commit_parser.add_argument( "-m", "--message", default="", type=str, metavar="MESSAGE", required=True, help="commit message", ) checkout_parser = subparsers.add_parser("checkout", description="checkout from a commit") checkout_parser.add_argument( "checkout", default="", type=str, metavar="FILE_SHA1", help="checkout from a commit", ) log_parser = subparsers.add_parser("log", description="Show the history log of the repo or optionally of a file.") log_parser.add_argument("log", action="store_true", help="Show the repo's history log") log_parser.add_argument( "-f", "--file", default="", type=str, metavar="FILE_PATH", help="Show the history log of a file", ) args = parser.parse_args(argv) if args.command == "init": repo = Repo(Path.cwd(), init=True) if args.command == "add": repo = Repo(Path.cwd()) repo.add(args.add, per_tensor=not args.no_per_tensor) if args.command == "status": repo = Repo(Path.cwd()) out = repo.status() print(out) if args.command == "log": repo = Repo(Path.cwd()) repo.log(args.file) if args.command == "commit": repo = Repo(Path.cwd()) repo.commit(args.message) if args.command == "checkout": repo = Repo(Path.cwd()) repo.checkout(args.checkout) if args.command == "version": print(".".join([str(x) for x in version.__version_tuple__])) if __name__ == "__main__": main()
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from enum import Enum class ExitCode(Enum): """Collections of the Exit codes as an Enum class""" CLEAN = 0 FILE_EXISTS_ERROR = 1 FILE_DOES_NOT_EXIST_ERROR = 2
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import copy from dataclasses import dataclass from enum import Enum import json from pathlib import Path import sys from typing import Any, Dict, List, Optional, Union import torch from torch import Tensor from .pygit import PyGit from .sha1_store import SHA1_Store # This is a fixed dir name we use for sha1_store. It should not be changed # for backward compatibility reasons. SHA1_STORE_DIR_NAME = "sha1_store" # These are on-disk keys. Don't modify for backward compatibility. SHA1_KEY = "SHA1" LAST_MODIFIED_TS_KEY = "last_modified_time_stamp" REL_PATH_KEY = "file_path" # this will be removed from the json since it is redundant. class RepoStatus(Enum): """Repo Statuses""" CLEAN = 1 CHANGES_NOT_ADDED = 2 CHANGES_ADDED_NOT_COMMITED = 3 @dataclass class SizeInfo: """Size info for a file or the repo in bytes. Deduped size can't be disabled. So it is always performed. Both sparsified and gzipped are optional. They are applied in the following order if both are enabled: sparsify -> gzip Therefore, original >= deduped >= sparsified >= gzipped """ original: int deduped: int sparsified: int gzipped: int @dataclass class _SHA1_Tensor: """Representing a tensor using sha1(s) from SHA1 store. It can be either a dense one or two sparse one (SST and DST). """ is_dense: bool = True dense_sha1: str = "" sst_sha1: str = "" dst_sha1: str = "" def _recursive_apply_to_elements(data: Union[List[Any], Dict[str, Any]], fn: Any, names: List[str]) -> None: """Helper function to traverse a dict recursively and apply a function to leafs. Args: data (dict or list): A dict or a list and it should only contain dict and list. fn (Any): A call back function on each element. Signature: fn(element: Any, names: List[str]) -> Any names (list): Stack of names for making the element path. """ if isinstance(data, list): for i, _ in enumerate(data): names.append(str(i)) if isinstance(data[i], (list, dict)): _recursive_apply_to_elements(data[i], fn, names) else: data[i] = fn(data[i], names) names.pop() elif isinstance(data, dict): for key in data.keys(): names.append(str(key)) if isinstance(data[key], (list, dict)): _recursive_apply_to_elements(data[key], fn, names) else: data[key] = fn(data[key], names) names.pop() else: assert False, f"Unexpected data type: {type(data)}" class Repo: """ Represents the WeiGit repo for tracking neural network weights and their versions. A WeiGit repo is like a git repo. It is a dir, in which a .wgit dir exists to keep track of the content. Args: parent_dir (Path, str): Parent dir in which to make or to load a .wgit dir. Default: "", which means CWD. init (bool, optional): - If ``True``, initializes a new WeiGit repo in the parent_dir. Initialization creates a `.wgit` directory within the <parent_dir>, triggers an initialization. of a sha1_store in the ./<parent_dir>/.wgit directory, and makes the ./<parent_dir>/.wgit a git repository through git initialization. - If ``False``, a new WeiGit repo is not initialized and the existing repo is wrapped, populating the `_wgit_parent` and other internal attributes. - Default: False """ def __init__(self, parent_dir: Union[Path, str] = "", init: bool = False) -> None: # Set _wgit_parent. self._wgit_parent = Path(parent_dir if parent_dir != "" else Path.cwd()) # Set _dot_wgit_dir_path. self._dot_wgit_dir_path: Optional[Path] = None exists = self._recursive_search_and_may_init_dot_wgit_dir_path(self._wgit_parent) if not exists and init: # No weigit repo exists and is being initialized with init=True # Make .wgit directory, create sha1_store self._dot_wgit_dir_path = self._wgit_parent.joinpath(".wgit") self._dot_wgit_dir_path.mkdir(parents=False, exist_ok=True) # Initializing sha1_store only after wgit has been initialized! self._sha1_store = SHA1_Store(self._dot_wgit_dir_path.joinpath(SHA1_STORE_DIR_NAME), init=True) # Create a git repo for the metadata versioning. self._pygit = PyGit(self._dot_wgit_dir_path, gitignore=[SHA1_STORE_DIR_NAME]) elif exists: # Weigit repo already exists, populate this object. assert self._dot_wgit_dir_path is not None self._sha1_store = SHA1_Store(self._dot_wgit_dir_path.joinpath(SHA1_STORE_DIR_NAME)) self._pygit = PyGit(self._dot_wgit_dir_path) else: # weigit doesn't exist and is not trying to be initialized (triggers # during non-init commands) sys.stderr.write("fatal: not a wgit repository!\n") sys.exit(1) # We are done init. Do a check. self._sanity_check() def _recursive_search_and_may_init_dot_wgit_dir_path(self, check_dir: Path) -> bool: """Search for a wgit repo top level dir from potentiall a subdir of a repo. This may set the self._dot_wgit_dir_path if a repo is found. Args: check_dir (Path): Path to the directory from where search is started. Returns: Returns True if a repo is found. """ assert self._dot_wgit_dir_path is None, f"_dot_wgit_dir_path is already set to {self._dot_wgit_dir_path}" if self._weigit_repo_exists(check_dir): self._dot_wgit_dir_path = check_dir.joinpath(".wgit") else: root = Path(check_dir.parts[0]) while check_dir != root: check_dir = check_dir.parent if self._weigit_repo_exists(check_dir): self._dot_wgit_dir_path = check_dir.joinpath(".wgit") break return True if self._dot_wgit_dir_path is not None else False def _weigit_repo_exists(self, check_dir: Path) -> bool: """Returns True if a valid WeiGit repo exists in the path: check_dir.""" wgit_exists, git_exists, gitignore_exists = self._weigit_repo_file_check(check_dir) return wgit_exists and git_exists and gitignore_exists def _weigit_repo_file_check(self, check_dir: Path) -> tuple: """Returns a tuple of boolean corresponding to the existence of each .wgit internally required files. """ wgit_exists = check_dir.joinpath(".wgit").exists() git_exists = check_dir.joinpath(".wgit/.git").exists() gitignore_exists = check_dir.joinpath(".wgit/.gitignore").exists() return wgit_exists, git_exists, gitignore_exists def _sanity_check(self) -> None: """Helper to check if on-disk state matches what we expect.""" if not self._weigit_repo_exists(self._wgit_parent): sys.stderr.write("fatal: no wgit repo exists!\n") sys.exit(1) def add( self, in_file_path: str, per_tensor: bool = True, gzip: bool = True, sparsify: bool = False, sparsify_policy: Any = None, ) -> Optional[Dict[Any, Any]]: """Add a file to the wgit repo. This could a new file or a modified file. Adding an unmodified, existing file is allowed but it is a noop. Args: in_file_path (str): Path to the file to be added. per_tensor (bool, optional): Add a file in a per-tensor fashion. This enables more deduplication due to tensors being identical. Deduplication cannot be disabled completely because we use a content addressable SHA1_Store class. Default: True gzip (bool, optional): Enable gzip based lossless compression on the object being added. Default: True sparsify (bool, optional): Enable sparsify for the tensors, which is going to modify the values for all or some tensors, i.e. lossy compression. Default: False sparsify_policy (Any): TODO (Min): need to add a callback function to control which tensors and how to sparsify. Default: None Returns: (Dict, optional) None if the content is added but not modified with lossy compression. Otherwise, returns a state_dict that contains the modified Tensors to be loaded back into the model, which means the tensors are dense, not SST and DST tensors. """ self._sanity_check() if sparsify and not per_tensor: raise ValueError("Only support sparsity when per_tensor is true") # Create the corresponding metadata file or load it if the file is # not a newly added file. file_path = Path(in_file_path) rel_file_path = self._rel_file_path(file_path) metadata_file = self._process_metadata_file(rel_file_path) # Add the file to the sha1_store. ret_state_dict = None file_path_or_state_dict: Union[Path, Dict] = file_path # TODO (Min): We don't add parent sha1 tracking to sha1 store due to # de-duplication & dependency tracking can create cycles. # We need to figure out a way to handle deletion. # TODO (Min): We don't detect changes and compute delta on a modified file # yet. Need to figure out a method for delta tracking. if per_tensor: def fn(element: Any, names: List[str]) -> Any: """Callback on each leaf object for _recursive_apply_to_elements below.""" if isinstance(element, Tensor): if sparsify: # TODO (Min): here we will optionally do SST/DST and add those # tensors with sparsity. # Remember to update ret_state_dict raise NotImplementedError() sha1 = self._sha1_store.add(element, compress=gzip, name=".".join(names)) return _SHA1_Tensor(is_dense=True, dense_sha1=sha1) else: return element state_dict = torch.load(file_path) ret_state_dict = copy.deepcopy(state_dict) # This is only a temporary addition for testing. _recursive_apply_to_elements(state_dict, fn, []) file_path_or_state_dict = state_dict # Add this top-level object. sha1 = self._sha1_store.add(file_path_or_state_dict, compress=gzip) # write metadata to the metadata-file self._write_metadata(metadata_file, file_path, sha1) self._pygit.add() # add to the .wgit/.git repo return ret_state_dict def commit(self, message: str) -> None: """Commits staged changes to the repo. Args: message (str): The commit message to be added. """ self._sanity_check() # TODO (Min): make commit message a json for better handling of metadata like step count, # LR, sparsity level, etc. self._pygit.commit(message) def size_info(self, path: Optional[str] = None) -> SizeInfo: """Get size info for a file or the whole repo. For the whole repo, just call size_info from sha1_store. For a file, needs to open the metadata and find the sha1 and then for per_tensor state_dict, collect size_info on all objects. TODO (Min): not exactly clear it is easy to compute this with delta encoding, deduplication between objects, this is possible to compute precisely. Args: path (str, optional): File path for the query. If None, return whole repo's info. Default: None Returns: (SizeInfo): The dataclass that contains the size info. """ raise NotImplementedError() def status(self) -> Dict[str, RepoStatus]: """Show the state of the weigit working tree. State can be 1. dirty with changes/modifications not added to weigit repo. 2. dirty with a file changes added but not committed. 3. clean and tracking files after a change has been committed, or clean with with an empty repo. TODO (Min): this needs to return repo status and dirty files and untracked files too. Returns: (dict): A dict keyed with files and their status. """ self._sanity_check() pygit_status = self._pygit.status() status = self._get_metdata_files() if status: out_status = dict() for metadata_file, is_modified in status.items(): # if metadata_file is among the keys of pygit_status dict, it has not been commited to git yet. if is_modified: out_status[str(metadata_file)] = RepoStatus.CHANGES_NOT_ADDED elif not is_modified and metadata_file in pygit_status.keys(): out_status[str(metadata_file)] = RepoStatus.CHANGES_ADDED_NOT_COMMITED elif not is_modified and metadata_file not in pygit_status.keys(): out_status[str(metadata_file)] = RepoStatus.CLEAN return out_status else: # if status dict is empty, nothing has been added so far. return {"": RepoStatus.CLEAN} # sub case of case-3, clean with an empty repo def log(self, file: str) -> None: """Returns the WeiGit log of commit history. Args: file (str, optional): Show the log of the commit history of the repo. Optionally, show the log history of a specific file. """ self._sanity_check() # TODO (Min): this should return a list of sha1 for the history as well as # each commit's message, which could be a dict from json commit msg. if file: print(f"wgit log of the file: {file}") else: print("wgit log") def checkout(self, sha1: str) -> None: """Checkout a previously commited version of the checkpoint. Args: sha1 (str): The sha1 hash of the file version to checkout. """ self._sanity_check() raise NotImplementedError() def checkout_by_steps(self) -> None: """Not Implemented: Checkout by step count of the train process""" self._sanity_check() raise NotImplementedError() def _get_metdata_files(self) -> Dict[str, bool]: """Walk the directories that contain the metadata files and check the status of those files, whether they have been modified or not. Dict[str, bool] is a path in string and whether the file is_modified. """ metadata_d = dict() for file in self._dot_wgit_dir_path.iterdir(): # iterate over the .wgit directory # exclude all the .wgit files and directory if file.name not in {"sha1_store", ".git", ".gitignore"}: # perform a directory walk on the metadata_file directories to find the metadata files for path in file.rglob("*"): if path.is_file(): rel_path = str(path.relative_to(self._dot_wgit_dir_path)) # metadata path relative to .wgit dir metadata_d[rel_path] = self._is_file_modified(path) return metadata_d def _is_metadata_file(self, file: Path) -> bool: """Checks whether a file is a valid metadata file by matching keys and checking if it has valid json data. """ try: with open(file) as f: metadata = json.load(f) is_metadata = set(metadata.keys()) == {SHA1_KEY, LAST_MODIFIED_TS_KEY, REL_PATH_KEY} except json.JSONDecodeError: return False # not a json file, so not valid metadata file return is_metadata def _is_file_modified(self, file: Path) -> bool: """Checks whether a file has been modified since its last recorded modification time recorded in the metadata_file. """ with open(file) as f: data = json.load(f) # Get the last modified timestamp recorded by weigit and the current modified # timestamp. If not the same, then file has been modified since last weigit # updated metadata. last_mod_timestamp = data[LAST_MODIFIED_TS_KEY] curr_mod_timestamp = Path(data[REL_PATH_KEY]).stat().st_mtime return not curr_mod_timestamp == last_mod_timestamp def _process_metadata_file(self, metadata_fname: Path) -> Path: """Create a metadata_file corresponding to the file to be tracked by weigit if the first version of the file is encountered. If a version already exists, open the file and get the sha1_hash of the last version as parent_sha1. """ metadata_file = self._dot_wgit_dir_path.joinpath(metadata_fname) metadata_file.parent.mkdir(parents=True, exist_ok=True) # create parent dirs for metadata file if not metadata_file.exists() or not metadata_file.stat().st_size: metadata_file.touch() else: with open(metadata_file, "r") as f: ref_data = json.load(f) return metadata_file def _write_metadata(self, metadata_file: Path, file_path: Path, sha1: str) -> None: """Write metadata to the metadata file""" change_time = Path(file_path).stat().st_mtime metadata = { SHA1_KEY: sha1, LAST_MODIFIED_TS_KEY: change_time, REL_PATH_KEY: str(file_path), } with open(metadata_file, "w", encoding="utf-8") as f: json.dump(metadata, f, ensure_ascii=False, indent=4) def _rel_file_path(self, filepath: Path) -> Path: """Find the relative part to the filepath from the current working directory and return the relative path. """ # get the absolute path filepath = filepath.resolve() # using zipped loop we get the path common to the filepath and cwd for i, (x, y) in enumerate(zip(filepath.parts, Path.cwd().parts)): pass # return the relative part (path not common to cwd) return Path(*filepath.parts[i:])
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from pathlib import Path import subprocess import sys from typing import Dict, List, Tuple import pygit2 class PyGit: """ PyGit class represents a git repo within a weigit repo. Args: parent_path (pathlib.Path) Has to be the full path of the parent! gitignore (List) a list of files to be added to the .gitignore name (str) Name of the author of the git repo. Optionally used if it can't be determined from user's .gitconfig. email (str) email address of the author of the git repo """ def __init__( self, parent_path: Path, gitignore: List = list(), name: str = "user", email: str = "[email protected]", ) -> None: # Find if a git repo exists within .wgit repo: # If exists: then discover it and set the self.gitrepo path to its path self._parent_path = parent_path git_repo_found = pygit2.discover_repository(self._parent_path) # If gitconfig file exists use the name and email from the file self.name, self.email = self._set_author_config(name, email) if git_repo_found: # grab the parent dir of this git repo git_repo = Path(pygit2.discover_repository(self._parent_path)) pygit_parent_p = git_repo.parent.absolute() # Check If the parent dir is a .wgit dir. If the .wgit is a git repo # just wrap the existing git repo with pygit2.Repository class if pygit_parent_p == self._parent_path: self.repo = pygit2.Repository(str(self._parent_path)) self.path = self._parent_path.joinpath(".git") else: # if the parent is not a .wgit repo, # then the found-repo is a different git repo. Init new .wgit/.git self._init_wgit_git(gitignore) else: # no git repo found, make .wgit a git repo self._init_wgit_git(gitignore) def _init_wgit_git(self, gitignore: List) -> None: """ Initializes a .git within .wgit directory, making it a git repo. Args: gitignore (List) a list of file paths to be ignored by the wgit git repo. """ self.repo = pygit2.init_repository(str(self._parent_path), False) self.path = self._parent_path.joinpath(".git") # create and populate a .gitignore self._parent_path.joinpath(".gitignore").touch(exist_ok=False) with open(self._parent_path.joinpath(".gitignore"), "a") as file: for item in gitignore: file.write(f"{item}\n") def add(self) -> None: """ git add all the untracked files not in gitignore, to the .wgit/.git repo. """ # If .wgit is git repo, add all the files in .wgit not being ignored to git # TODO: Add functionalities for add specific files and add all files. if self._exists: self.repo.index.add_all() self.repo.index.write() else: sys.stderr.write("fatal: git repo does not exist") def commit(self, message: str) -> None: """ git commit the staged changes to the .wgit/.git repo. Args: message (str) Commit message """ # If .wgit is git repo, commit the staged files to git if self._exists: # if no commit exists, set ref to HEAD and parents to empty try: ref = self.repo.head.name parents = [self.repo.head.target] except pygit2.GitError: ref = "HEAD" parents = [] author = pygit2.Signature(self.name, self.email) committer = pygit2.Signature(self.name, self.email) tree = self.repo.index.write_tree() self.repo.create_commit(ref, author, committer, message, tree, parents) @property def _exists(self) -> bool: """returns True if wgit is a git repository""" return self._parent_path == Path(self.repo.path).parent @property def _path(self) -> str: """returns the path of the git repository PyGit is wrapped around""" return self.repo.path def status(self) -> Dict: """Gathers the status of the git repo within wgit and returns a dictionary detailing the status. The dictionary contains the relative paths of the metadata files as keys and the values represent the status of the file in the form of an int number as status codes. These status codes are elaborated within PyGit2's documentation: https://www.pygit2.org/index_file.html#status and https://github.com/libgit2/pygit2/blob/320ee5e733039d4a3cc952b287498dbc5737c353/src/pygit2.c#L312-L320 Returns: {"relative path to a file" : pygit2 status codes} """ status_dict = self.repo.status() tracking_dict = dict(filter(lambda item: item[1] != pygit2.GIT_STATUS_IGNORED, status_dict.items())) return tracking_dict def _set_author_config(self, name: str, email: str) -> Tuple[str, str]: """Set the name and email for the pygit repo collecting from the gitconfig. If not available in gitconfig, set the values from the passed arguments.""" gitconfig = Path("~/.gitconfig").expanduser() # parse the .gitconfig file for name and email try: set_name = subprocess.run(["git", "config", "user.name"], capture_output=True, text=True).stdout.rstrip() set_email = subprocess.run(["git", "config", "user.email"], capture_output=True, text=True).stdout.rstrip() if not set_name or not set_email: set_name = name set_email = email except BaseException: set_name = name set_email = email return set_name, set_email
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from .cli import main if __name__ == "__main__": main()
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import hashlib import json import logging import os from pathlib import Path import pickle import shutil import sys import tempfile import time from typing import Any, Dict, Optional, Tuple, Union, cast import pgzip import torch from torch import Tensor from fairscale.internal.containers import from_np, to_np from .utils import ExitCode # # Const string keys for json file. Do not change for backward compatibilities. # # For each object entry in the metadata json file. ENTRY_RF_KEY = "ref_count" # int, reference count for this object. ENTRY_COMP_KEY = "compressed" # bool, is compressed or not. ENTRY_OS_KEY = "original_size" # int, original size for all identical objects mapped to this object. ENTRY_DS_KEY = "deduped_size" # int, size after deduplication (always enabled). ENTRY_CS_KEY = "compressed_size" # int, size after gzip compression, if enabled. ENTRY_NAMES_KEY = "names" # dict, names of objects and their count mapped to this object. # For the entire store in the metadata json file. STORE_CREATE_DATE_KEY = "created_on" # str, when is the store created. STORE_OS_KEY = "original_size" # int, original size for all objects added. STORE_DS_KEY = "deduped_size" # int, size after deduplication (always enabled). STORE_CS_KEY = "compressed_size" # int, size after gzip compression, if enabled on any object within the store. def _get_json_entry(d: Dict[str, Any]) -> Dict[str, Any]: """Get a dict from a json entry. This fills in any missing entries in case we load an older version json file from the disk. """ for int_key_init_zero in [ENTRY_RF_KEY, ENTRY_OS_KEY, STORE_DS_KEY, ENTRY_CS_KEY]: if int_key_init_zero not in d.keys(): d[int_key_init_zero] = 0 for bool_key_init_false in [ENTRY_COMP_KEY]: if bool_key_init_false not in d.keys(): d[bool_key_init_false] = False for dict_key_init_empty in [ENTRY_NAMES_KEY]: if dict_key_init_empty not in d.keys(): d[dict_key_init_empty] = {} return d def _copy_compressed(src: Path, dest: Path, thread: Optional[int], blocksize: int) -> Tuple[int, int]: """Helper to copy a file and compress it at the same time. Returns: (int, int): original size and compressed size in bytes. """ with open(str(src), "rb") as srcf: with pgzip.open(str(dest), "wb", compresslevel=5, thread=thread, blocksize=blocksize) as destf: while True: buf = srcf.read(blocksize) if len(buf) == 0: break destf.write(buf) orig, comp = Path(src).stat().st_size, Path(dest).stat().st_size assert orig >= comp or comp < 1 * 1024 * 1024, f"Compressed size {comp} > original {orig} for large data" return orig, comp def _copy_uncompressed(src: Path, dest: Path, thread: Optional[int], blocksize: int) -> None: """Helper to copy a file and uncompress it at the same time.""" with open(str(dest), "wb") as destf: with pgzip.open(str(src), "rb", thread=thread, blocksize=blocksize) as srcf: while True: buf = srcf.read(blocksize) if len(buf) == 0: break destf.write(buf) class _JSON_DictContext: """Helper class that handles syncing of a json and a dict.""" def __init__(self, s: "SHA1_Store", readonly: bool) -> None: self._s = s self._readonly = readonly def __enter__(self) -> None: """Load from file.""" assert self._s._json_dict is None if self._s._metadata_file_path.exists(): with open(self._s._metadata_file_path, "r") as f: self._s._json_dict = json.load(f) else: self._s._json_dict = {} def __exit__(self, exc_type: Any, exc_value: Any, exc_traceback: Any) -> None: """Store back to file.""" assert isinstance(self._s._json_dict, dict) if not self._readonly: with open(self._s._metadata_file_path, "w", encoding="utf-8") as f: json.dump(self._s._json_dict, f, ensure_ascii=False, indent=2) self._s._json_dict = None class SHA1_Store: """ This class represents a SHA1 checksum based storage dir for state_dict and tensors. This means the same content will not be stored multiple times, resulting in space savings. (a.k.a. de-duplication) To make things easier for the callers, this class accept input data as files, state_dict or tensors. This class always returns in-memory data, not on-disk files. This class doesn't really care or know the actually data types. A key issue is dealing with content deletion. We use a reference counting algorithm, which means the caller must have symmetrical add/remove calls for each object. We used to support children-parent dependency graph and ref counting, but it is flawed since a grand-child can have the same SHA1 as the grand-parent, resulting in a cycle. This means caller must compute which parent is safe to delete in a version tracking graph. The lesson here is that content addressibility and dependency graphs do not mix well. We support multicore compression for the data to be store on per-object basis. We use pgzip to do parallel compression/decompression on top of it to use all the cores. Args: path (Path): The path in which a SHA1_Store will be created. init (bool, optional): - If ``True``, a new SHA1_Store in the path if not already exists. - Default: False sha1_buf_size (int): Buffer size used for checksumming. Default: 100MB. tmp_dir (str): Dir for temporary files if input is an in-memory object or output data needs to be decompressed first. pgzip_threads (int, optional): Number of threads (cores) used in compression. Default: None to use all cores. pgzip_block_size (int): Per-thread block size for compression. Default: 10MB. """ def __init__( self, path: Path, init: bool = False, sha1_buf_size: int = 100 * 1024 * 1024, tmp_dir: str = "", pgzip_threads: Optional[int] = None, pgzip_block_size: int = 10 * 1024 * 1024, ) -> None: """Create or wrap (if already exists) a store.""" self._path = path self._sha1_buf_size = sha1_buf_size self._pgzip_threads = pgzip_threads self._pgzip_block_size = pgzip_block_size # Metadata related. self._metadata_file_path = self._path.joinpath("metadata.json") self._json_dict: Optional[Dict[str, Any]] = None self._json_ctx = _JSON_DictContext(self, readonly=False) self._readonly_json_ctx = _JSON_DictContext(self, readonly=True) # Initialize the store if not exist and if init is True. if init and not self._path.exists(): try: Path.mkdir(self._path, parents=False, exist_ok=False) except FileExistsError as error: sys.stderr.write(f"An exception occured while creating Sha1_store: {repr(error)}\n") sys.exit(ExitCode.FILE_EXISTS_ERROR) # Create a new json file for this new store. with self._json_ctx: self._json_dict = { STORE_CREATE_DATE_KEY: time.ctime(), STORE_OS_KEY: 0, STORE_DS_KEY: 0, STORE_CS_KEY: 0, } # This is an internal error since caller of this our own wgit code. assert ( self._path.exists() and self._metadata_file_path.exists() ), f"SHA1 store {self._path} does not exist and init is False" # Make sure there is a valid metadata file. with self._readonly_json_ctx: assert STORE_CREATE_DATE_KEY in self._json_dict, f"Invalid SHA1 Store in {self._path}" # Init temp dir. if tmp_dir: # Caller supplied tmp dir assert Path(tmp_dir).is_dir(), "incorrect input" self._tmp_dir = Path(tmp_dir) else: # Default tmp dir, need to clean it. self._tmp_dir = self._path.joinpath("tmp") shutil.rmtree(self._tmp_dir, ignore_errors=True) self._tmp_dir.mkdir() def add(self, file_or_obj: Union[Path, Tensor, Dict], compress: bool = True, name: str = None) -> str: """Adds a file/object to this store and the sha1 references accordingly. First, a sha1 hash is calculated. Utilizing the sha1 hash string, the actual file in <file_or_obj> is moved within the store and the reference file is updated. If the input is an object, it will be store in the self._tmp_dir and then moved. If compress is True, the stored file is also compressed, which is useful for tensors with a lot of zeros. We use pickle and numpy for saving, loading because it is more deterministic in terms of serialized bytes. They do lose info on device and dtype of tensors. Will handle those later. Args: file_or_obj (str or tensor or Dict): Path to the file to be added to the store or an in-memory object that can be handled by pickle. Note, OrderedDict is used when you call `state_dict()` on a nn.Module, and it is an instance of a Dict too. A model's state_dict can be a simple dict because it may contain both model state_dict and other non-tensor info. compress (bool, optional): Use gzip compression on this object or not. Default: True name (str, optional): Optional name for this object. Default: None """ start = time.time() is_pickle_file = None # Use `isinstance` not `type() == Path` since pathlib returns OS specific # Path types, which inherit from the Path class. if isinstance(file_or_obj, (Path, str)): # Make sure it is a valid file. try: pickle.load(open(file_or_obj, "rb")) is_pickle_file = True except Exception as e: is_pickle_file = False pass file_path = Path(file_or_obj) remove_tmp = False if is_pickle_file is False: # Continue to support torch.save()'ed files too by loading it # in memory and the next if condition will pickle it. file_or_obj = torch.load(cast(Union[Path, str], file_or_obj)) if isinstance(file_or_obj, (Tensor, Dict)): # Serialize the object into a tmp file. file_path = self._get_tmp_file_path() pickle.dump(to_np(file_or_obj), open(file_path, "wb")) remove_tmp = True else: assert False, f"incorrect input {type(file_or_obj)}" # Get SHA1 from the file. assert isinstance(file_path, Path), type(file_path) sha1_hash = self._get_sha1_hash(file_path) # Load json for many meta data operations below. Repeatedly loading # can be very slow. with self._json_ctx: # Add reference. ref_count = self._add_ref(sha1_hash, True, compress) if ref_count == 1: # First time adding. # Create the file dir, if needed. repo_fdir = self._sha1_to_dir(sha1_hash) if not repo_fdir.exists(): try: repo_fdir.mkdir(exist_ok=True, parents=True) except FileExistsError as error: sys.stderr.write(f"An exception occured: {repr(error)}\n") sys.exit(ExitCode.FILE_EXISTS_ERROR) # Transfer the file to the store. repo_fpath = repo_fdir.joinpath(sha1_hash) try: if compress: orig_size, comp_size = _copy_compressed( file_path, repo_fpath, self._pgzip_threads, self._pgzip_block_size ) else: shutil.copy2(file_path, repo_fpath) orig_size = comp_size = file_path.stat().st_size except BaseException as error: # Something went wrong, perhaps out of space, or race condition due to lack of locking. # TODO (Min): proper handle the error and recover when we learn more here. sys.stderr.write(f"An exception occured: {repr(error)}\n") ref_count = self._add_ref(sha1_hash, False, compress) # Update the sizes for this entry. entry = _get_json_entry(self._json_dict[sha1_hash]) assert ( ref_count == 1 or entry[ENTRY_OS_KEY] % (ref_count - 1) == 0 ), f"incorrect size: {entry[ENTRY_OS_KEY]} and {ref_count}" o_diff = orig_size if ref_count == 1 else (entry[ENTRY_OS_KEY] // (ref_count - 1)) d_diff = orig_size if ref_count == 1 else 0 c_diff = comp_size if ref_count == 1 else 0 entry[ENTRY_OS_KEY] += o_diff entry[ENTRY_DS_KEY] += d_diff entry[ENTRY_CS_KEY] += c_diff # Update whole store's stats. self._json_dict[STORE_OS_KEY] += o_diff self._json_dict[STORE_DS_KEY] += d_diff self._json_dict[STORE_CS_KEY] += c_diff # Update the name list for this entry. if name: if name not in entry[ENTRY_NAMES_KEY].keys(): entry[ENTRY_NAMES_KEY][name] = 1 else: entry[ENTRY_NAMES_KEY][name] += 1 # Clean up if needed. if remove_tmp: file_path.unlink() duration = time.time() - start if duration > 60: logging.warning(f"Add() is taking long: {duration}s") return sha1_hash def get(self, sha1: str) -> Union[Tensor, Dict]: """Get data from a SHA1 Args: sha1 (str): SHA1 of the object to get. Returns: (Tensor or Dict): In-memory object. Throws: ValueError if sha1 is not found. """ path = self._sha1_to_dir(sha1).joinpath(sha1) if not path.exists(): # This is potentially valid case for the caller, we need to inform the # the caller about it. raise ValueError(f"Try to get SHA1 {sha1} but it is not found") # Directly return the object after loading it. This could be throw an # exception but that indicates some internal error since we should never # have stored the (invalid) object in the first place with the add() API. # # TODO (Min): we could also keep a stats in the meta data on how many # times the object is read. Will add if that's needed. with self._readonly_json_ctx: if self._json_dict[sha1][ENTRY_COMP_KEY]: # Compressed. Because pgzip doesn't support tell() yet, we need to # uncompress into a temp file and return it. tmp = self._get_tmp_file_path() _copy_uncompressed(path, tmp, self._pgzip_threads, self._pgzip_block_size) obj = pickle.load(open(tmp, "rb")) tmp.unlink() else: # Uncompressed. obj = pickle.load(open(path, "rb")) return from_np(obj) def delete(self, sha1: str) -> None: """Delete a SHA1 Args: sha1 (str): SHA1 of the object to delete. Throws: ValueError if sha1 is not found. """ path = self._sha1_to_dir(sha1).joinpath(sha1) if not path.exists(): # This is potentially a valid case for the caller, we need to inform the # the caller about it. raise ValueError(f"Try to delete SHA1 {sha1} but it is not found") with self._json_ctx: assert sha1 in self._json_dict.keys(), "internal error: sha1 not found in json" entry = _get_json_entry(self._json_dict[sha1]) assert entry[ENTRY_RF_KEY] > 0, f"ref count {entry[ENTRY_RF_KEY]} should be positive" entry[ENTRY_RF_KEY] -= 1 if entry[ENTRY_RF_KEY] == 0: # Now, since ref count is 0 now deleting the object. path.unlink() # We may leave behind an empty dir, which is OK. entry = {} # Below, we remove the entry because of this. # Put the entry back and store it or delete it. if entry: self._json_dict[sha1] = entry else: # empty entry, it means this sha1 is deleted. del self._json_dict[sha1] def size_info(self, sha1: Optional[str] = None) -> Tuple[int, int, int]: """Return original, deduped, gzipped sizes for an entry or the store.""" with self._readonly_json_ctx: if sha1: if sha1 not in self._json_dict.keys(): raise ValueError(f"SHA1 {sha1} not found") entry = self._json_dict[sha1] return entry[ENTRY_OS_KEY], entry[ENTRY_DS_KEY], entry[ENTRY_CS_KEY] return self._json_dict[STORE_OS_KEY], self._json_dict[STORE_DS_KEY], self._json_dict[STORE_CS_KEY] def names(self, sha1: str = None) -> Dict[str, int]: """Return the names dict for an object.""" with self._readonly_json_ctx: if sha1 not in self._json_dict.keys(): raise ValueError(f"SHA1 {sha1} not found") entry = self._json_dict[sha1] return entry[ENTRY_NAMES_KEY] def _get_sha1_hash(self, file_path: Union[str, Path]) -> str: """Return the sha1 hash of a file Args: file_path (str, Path): Path to the file whose sha1 hash is to be calculalated and returned. Returns: (str): The SHA1 computed. """ sha1 = hashlib.sha1() with open(file_path, "rb") as f: while True: data = f.read(self._sha1_buf_size) if not data: break sha1.update(data) return sha1.hexdigest() def _get_tmp_file_path(self) -> Path: """Helper to get a tmp file name under self.tmp_dir.""" fd, name = tempfile.mkstemp(dir=self._tmp_dir) os.close(fd) # Must close this FD or unlink() won't be able to release the space of the file. return Path(name) def _sha1_to_dir(self, sha1: str) -> Path: """Helper to get the internal dir for a file based on its SHA1""" # Using first 2 letters of the sha1, which results 26 * 26 = 676 subdirs under the top # level. Then, using another 2 letters for sub-sub-dir. If each dir holds 1000 files, this # can hold 450 millions files. # NOTE: this can NOT be changed for backward compatible reasons once in production. assert len(sha1) > 4, "sha1 too short" part1, part2 = sha1[:2], sha1[2:4] return self._path.joinpath(part1, part2) def _add_ref(self, current_sha1_hash: str, inc: bool, compressed: bool) -> int: """ Update the reference count. If the reference counting file does not have this sha1, then a new tracking entry of the added. Args: current_sha1_hash (str): The sha1 hash of the incoming added file. inc (bool): Increment or decrement. Returns: (int): Resulting ref count. """ # Init the entry if needed. if current_sha1_hash not in self._json_dict: entry = {} else: entry = self._json_dict[current_sha1_hash] entry = _get_json_entry(entry) # Update the ref count. entry[ENTRY_RF_KEY] += 1 if inc else -1 assert entry[ENTRY_RF_KEY] >= 0, "negative ref count" # Update compressed flag. entry[ENTRY_COMP_KEY] = compressed self._json_dict[current_sha1_hash] = entry return entry[ENTRY_RF_KEY]
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from typing import List __all__: List[str] = []
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. "Common cache root for torchvision.datasets and others." DATASET_CACHE_ROOT = "cached_datasets"
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. """ Shared functions related to testing GPU memory sizes. """ import gc from typing import Tuple import torch def find_tensor_by_shape(target_shape: Tuple, only_param: bool = True) -> bool: """Find a tensor from the heap Args: target_shape (tuple): Tensor shape to locate. only_param (bool): Only match Parameter type (e.g. for weights). Returns: (bool): Return True if found. """ for obj in gc.get_objects(): try: # Only need to check parameter type objects if asked. if only_param and "torch.nn.parameter.Parameter" not in str(type(obj)): continue if torch.is_tensor(obj) or (hasattr(obj, "data") and torch.is_tensor(obj.data)): if obj.shape == target_shape: return True except Exception as e: pass return False
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. from typing import List __all__: List[str] = []