python_code
stringlengths 0
456k
|
---|
#!/usr/bin/env python
'''
example to detect upright people in images using HOG features
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2 as cv
def inside(r, q):
rx, ry, rw, rh = r
qx, qy, qw, qh = q
return rx > qx and ry > qy and rx + rw < qx + qw and ry + rh < qy + qh
from tests_common import NewOpenCVTests, intersectionRate
class peopledetect_test(NewOpenCVTests):
def test_peopledetect(self):
hog = cv.HOGDescriptor()
hog.setSVMDetector( cv.HOGDescriptor_getDefaultPeopleDetector() )
dirPath = 'samples/data/'
samples = ['basketball1.png', 'basketball2.png']
testPeople = [
[[23, 76, 164, 477], [440, 22, 637, 478]],
[[23, 76, 164, 477], [440, 22, 637, 478]]
]
eps = 0.5
for sample in samples:
img = self.get_sample(dirPath + sample, 0)
found, _w = hog.detectMultiScale(img, winStride=(8,8), padding=(32,32), scale=1.05)
found_filtered = []
for ri, r in enumerate(found):
for qi, q in enumerate(found):
if ri != qi and inside(r, q):
break
else:
found_filtered.append(r)
matches = 0
for i in range(len(found_filtered)):
for j in range(len(testPeople)):
found_rect = (found_filtered[i][0], found_filtered[i][1],
found_filtered[i][0] + found_filtered[i][2],
found_filtered[i][1] + found_filtered[i][3])
if intersectionRate(found_rect, testPeople[j][0]) > eps or intersectionRate(found_rect, testPeople[j][1]) > eps:
matches += 1
self.assertGreater(matches, 0)
if __name__ == '__main__':
NewOpenCVTests.bootstrap()
|
#!/usr/bin/env python
'''
face detection using haar cascades
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2 as cv
def detect(img, cascade):
rects = cascade.detectMultiScale(img, scaleFactor=1.275, minNeighbors=4, minSize=(30, 30),
flags=cv.CASCADE_SCALE_IMAGE)
if len(rects) == 0:
return []
rects[:,2:] += rects[:,:2]
return rects
from tests_common import NewOpenCVTests, intersectionRate
class facedetect_test(NewOpenCVTests):
def test_facedetect(self):
cascade_fn = self.repoPath + '/data/haarcascades/haarcascade_frontalface_alt.xml'
nested_fn = self.repoPath + '/data/haarcascades/haarcascade_eye.xml'
cascade = cv.CascadeClassifier(cascade_fn)
nested = cv.CascadeClassifier(nested_fn)
samples = ['samples/data/lena.jpg', 'cv/cascadeandhog/images/mona-lisa.png']
faces = []
eyes = []
testFaces = [
#lena
[[218, 200, 389, 371],
[ 244, 240, 294, 290],
[ 309, 246, 352, 289]],
#lisa
[[167, 119, 307, 259],
[188, 153, 229, 194],
[236, 153, 277, 194]]
]
for sample in samples:
img = self.get_sample( sample)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
gray = cv.GaussianBlur(gray, (5, 5), 0)
rects = detect(gray, cascade)
faces.append(rects)
if not nested.empty():
for x1, y1, x2, y2 in rects:
roi = gray[y1:y2, x1:x2]
subrects = detect(roi.copy(), nested)
for rect in subrects:
rect[0] += x1
rect[2] += x1
rect[1] += y1
rect[3] += y1
eyes.append(subrects)
faces_matches = 0
eyes_matches = 0
eps = 0.8
for i in range(len(faces)):
for j in range(len(testFaces)):
if intersectionRate(faces[i][0], testFaces[j][0]) > eps:
faces_matches += 1
#check eyes
if len(eyes[i]) == 2:
if intersectionRate(eyes[i][0], testFaces[j][1]) > eps and intersectionRate(eyes[i][1] , testFaces[j][2]) > eps:
eyes_matches += 1
elif intersectionRate(eyes[i][1], testFaces[j][1]) > eps and intersectionRate(eyes[i][0], testFaces[j][2]) > eps:
eyes_matches += 1
self.assertEqual(faces_matches, 2)
self.assertEqual(eyes_matches, 2)
if __name__ == '__main__':
NewOpenCVTests.bootstrap()
|
#!/usr/bin/env python
'''
===============================================================================
QR code detect and decode pipeline.
===============================================================================
'''
import os
import numpy as np
import cv2 as cv
from tests_common import NewOpenCVTests
class qrcode_detector_test(NewOpenCVTests):
def test_detect(self):
img = cv.imread(os.path.join(self.extraTestDataPath, 'cv/qrcode/link_ocv.jpg'))
self.assertFalse(img is None)
detector = cv.QRCodeDetector()
retval, points = detector.detect(img)
self.assertTrue(retval)
self.assertEqual(points.shape, (1, 4, 2))
def test_detect_and_decode(self):
img = cv.imread(os.path.join(self.extraTestDataPath, 'cv/qrcode/link_ocv.jpg'))
self.assertFalse(img is None)
detector = cv.QRCodeDetector()
retval, points, straight_qrcode = detector.detectAndDecode(img)
self.assertEqual(retval, "https://opencv.org/")
self.assertEqual(points.shape, (1, 4, 2))
def test_detect_multi(self):
img = cv.imread(os.path.join(self.extraTestDataPath, 'cv/qrcode/multiple/6_qrcodes.png'))
self.assertFalse(img is None)
detector = cv.QRCodeDetector()
retval, points = detector.detectMulti(img)
self.assertTrue(retval)
self.assertEqual(points.shape, (6, 4, 2))
def test_detect_and_decode_multi(self):
img = cv.imread(os.path.join(self.extraTestDataPath, 'cv/qrcode/multiple/6_qrcodes.png'))
self.assertFalse(img is None)
detector = cv.QRCodeDetector()
retval, decoded_data, points, straight_qrcode = detector.detectAndDecodeMulti(img)
self.assertTrue(retval)
self.assertEqual(len(decoded_data), 6)
self.assertEqual(decoded_data[0], "TWO STEPS FORWARD")
self.assertEqual(decoded_data[1], "EXTRA")
self.assertEqual(decoded_data[2], "SKIP")
self.assertEqual(decoded_data[3], "STEP FORWARD")
self.assertEqual(decoded_data[4], "STEP BACK")
self.assertEqual(decoded_data[5], "QUESTION")
self.assertEqual(points.shape, (6, 4, 2))
|
###############################################################################
#
# IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
#
# By downloading, copying, installing or using the software you agree to this license.
# If you do not agree to this license, do not download, install,
# copy or use the software.
#
#
# License Agreement
# For Open Source Computer Vision Library
#
# Copyright (C) 2013, OpenCV Foundation, all rights reserved.
# Third party copyrights are property of their respective owners.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# * Redistribution's of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# * Redistribution's in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * The name of the copyright holders may not be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# This software is provided by the copyright holders and contributors "as is" and
# any express or implied warranties, including, but not limited to, the implied
# warranties of merchantability and fitness for a particular purpose are disclaimed.
# In no event shall the Intel Corporation or contributors be liable for any direct,
# indirect, incidental, special, exemplary, or consequential damages
# (including, but not limited to, procurement of substitute goods or services;
# loss of use, data, or profits; or business interruption) however caused
# and on any theory of liability, whether in contract, strict liability,
# or tort (including negligence or otherwise) arising in any way out of
# the use of this software, even if advised of the possibility of such damage.
#
###############################################################################
# AUTHOR: Sajjad Taheri, University of California, Irvine. sajjadt[at]uci[dot]edu
#
# LICENSE AGREEMENT
# Copyright (c) 2015, 2015 The Regents of the University of California (Regents)
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# 3. Neither the name of the University nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
###############################################################################
from __future__ import print_function
import sys, re, os
from templates import *
if sys.version_info[0] >= 3:
from io import StringIO
else:
from cStringIO import StringIO
func_table = {}
# Ignore these functions due to Embind limitations for now
ignore_list = ['locate', #int&
'minEnclosingCircle', #float&
'checkRange',
'minMaxLoc', #double*
'floodFill', # special case, implemented in core_bindings.cpp
'phaseCorrelate',
'randShuffle',
'calibrationMatrixValues', #double&
'undistortPoints', # global redefinition
'CamShift', #Rect&
'meanShift' #Rect&
]
def makeWhiteList(module_list):
wl = {}
for m in module_list:
for k in m.keys():
if k in wl:
wl[k] += m[k]
else:
wl[k] = m[k]
return wl
white_list = None
exec(open(os.environ["OPENCV_JS_WHITELIST"]).read())
assert(white_list)
# Features to be exported
export_enums = False
export_consts = True
with_wrapped_functions = True
with_default_params = True
with_vec_from_js_array = True
wrapper_namespace = "Wrappers"
type_dict = {
'InputArray': 'const cv::Mat&',
'OutputArray': 'cv::Mat&',
'InputOutputArray': 'cv::Mat&',
'InputArrayOfArrays': 'const std::vector<cv::Mat>&',
'OutputArrayOfArrays': 'std::vector<cv::Mat>&',
'String': 'std::string',
'const String&':'const std::string&'
}
def normalize_class_name(name):
return re.sub(r"^cv\.", "", name).replace(".", "_")
class ClassProp(object):
def __init__(self, decl):
self.tp = decl[0].replace("*", "_ptr").strip()
self.name = decl[1]
self.readonly = True
if "/RW" in decl[3]:
self.readonly = False
class ClassInfo(object):
def __init__(self, name, decl=None):
self.cname = name.replace(".", "::")
self.name = self.wname = normalize_class_name(name)
self.ismap = False
self.issimple = False
self.isalgorithm = False
self.methods = {}
self.ext_constructors = {}
self.props = []
self.consts = {}
customname = False
self.jsfuncs = {}
self.constructor_arg_num = set()
self.has_smart_ptr = False
if decl:
self.bases = decl[1].split()[1:]
if len(self.bases) > 1:
self.bases = [self.bases[0].strip(",")]
# return sys.exit(-1)
if self.bases and self.bases[0].startswith("cv::"):
self.bases[0] = self.bases[0][4:]
if self.bases and self.bases[0] == "Algorithm":
self.isalgorithm = True
for m in decl[2]:
if m.startswith("="):
self.wname = m[1:]
customname = True
elif m == "/Map":
self.ismap = True
elif m == "/Simple":
self.issimple = True
self.props = [ClassProp(p) for p in decl[3]]
if not customname and self.wname.startswith("Cv"):
self.wname = self.wname[2:]
def handle_ptr(tp):
if tp.startswith('Ptr_'):
tp = 'Ptr<' + "::".join(tp.split('_')[1:]) + '>'
return tp
def handle_vector(tp):
if tp.startswith('vector_'):
tp = handle_vector(tp[tp.find('_') + 1:])
tp = 'std::vector<' + "::".join(tp.split('_')) + '>'
return tp
class ArgInfo(object):
def __init__(self, arg_tuple):
self.tp = handle_ptr(arg_tuple[0]).strip()
self.name = arg_tuple[1]
self.defval = arg_tuple[2]
self.isarray = False
self.arraylen = 0
self.arraycvt = None
self.inputarg = True
self.outputarg = False
self.returnarg = False
self.const = False
self.reference = False
for m in arg_tuple[3]:
if m == "/O":
self.inputarg = False
self.outputarg = True
self.returnarg = True
elif m == "/IO":
self.inputarg = True
self.outputarg = True
self.returnarg = True
elif m.startswith("/A"):
self.isarray = True
self.arraylen = m[2:].strip()
elif m.startswith("/CA"):
self.isarray = True
self.arraycvt = m[2:].strip()
elif m == "/C":
self.const = True
elif m == "/Ref":
self.reference = True
if self.tp == "Mat":
if self.outputarg:
self.tp = "cv::Mat&"
elif self.inputarg:
self.tp = "const cv::Mat&"
if self.tp == "vector_Mat":
if self.outputarg:
self.tp = "std::vector<cv::Mat>&"
elif self.inputarg:
self.tp = "const std::vector<cv::Mat>&"
self.tp = handle_vector(self.tp).strip()
if self.const:
self.tp = "const " + self.tp
if self.reference:
self.tp = self.tp + "&"
self.py_inputarg = False
self.py_outputarg = False
class FuncVariant(object):
def __init__(self, class_name, name, decl, is_constructor, is_class_method, is_const, is_virtual, is_pure_virtual, ref_return, const_return):
self.class_name = class_name
self.name = self.wname = name
self.is_constructor = is_constructor
self.is_class_method = is_class_method
self.is_const = is_const
self.is_virtual = is_virtual
self.is_pure_virtual = is_pure_virtual
self.refret = ref_return
self.constret = const_return
self.rettype = handle_vector(handle_ptr(decl[1]).strip()).strip()
if self.rettype == "void":
self.rettype = ""
self.args = []
self.array_counters = {}
for a in decl[3]:
ainfo = ArgInfo(a)
if ainfo.isarray and not ainfo.arraycvt:
c = ainfo.arraylen
c_arrlist = self.array_counters.get(c, [])
if c_arrlist:
c_arrlist.append(ainfo.name)
else:
self.array_counters[c] = [ainfo.name]
self.args.append(ainfo)
class FuncInfo(object):
def __init__(self, class_name, name, cname, namespace, isconstructor):
self.class_name = class_name
self.name = name
self.cname = cname
self.namespace = namespace
self.variants = []
self.is_constructor = isconstructor
def add_variant(self, variant):
self.variants.append(variant)
class Namespace(object):
def __init__(self):
self.funcs = {}
self.enums = {}
self.consts = {}
class JSWrapperGenerator(object):
def __init__(self):
self.bindings = []
self.wrapper_funcs = []
self.classes = {}
self.namespaces = {}
self.enums = {}
self.parser = hdr_parser.CppHeaderParser()
self.class_idx = 0
def add_class(self, stype, name, decl):
class_info = ClassInfo(name, decl)
class_info.decl_idx = self.class_idx
self.class_idx += 1
if class_info.name in self.classes:
print("Generator error: class %s (cpp_name=%s) already exists" \
% (class_info.name, class_info.cname))
sys.exit(-1)
self.classes[class_info.name] = class_info
if class_info.bases:
chunks = class_info.bases[0].split('::')
base = '_'.join(chunks)
while base not in self.classes and len(chunks) > 1:
del chunks[-2]
base = '_'.join(chunks)
if base not in self.classes:
print("Generator error: unable to resolve base %s for %s"
% (class_info.bases[0], class_info.name))
sys.exit(-1)
else:
class_info.bases[0] = "::".join(chunks)
class_info.isalgorithm |= self.classes[base].isalgorithm
def split_decl_name(self, name):
chunks = name.split('.')
namespace = chunks[:-1]
classes = []
while namespace and '.'.join(namespace) not in self.parser.namespaces:
classes.insert(0, namespace.pop())
return namespace, classes, chunks[-1]
def add_enum(self, decl):
name = decl[0].rsplit(" ", 1)[1]
namespace, classes, val = self.split_decl_name(name)
namespace = '.'.join(namespace)
ns = self.namespaces.setdefault(namespace, Namespace())
if len(name) == 0: name = "<unnamed>"
if name.endswith("<unnamed>"):
i = 0
while True:
i += 1
candidate_name = name.replace("<unnamed>", "unnamed_%u" % i)
if candidate_name not in ns.enums:
name = candidate_name
break;
cname = name.replace('.', '::')
type_dict[normalize_class_name(name)] = cname
if name in ns.enums:
print("Generator warning: enum %s (cname=%s) already exists" \
% (name, cname))
# sys.exit(-1)
else:
ns.enums[name] = []
for item in decl[3]:
ns.enums[name].append(item)
const_decls = decl[3]
for decl in const_decls:
name = decl[0]
self.add_const(name.replace("const ", "").strip(), decl)
def add_const(self, name, decl):
cname = name.replace('.','::')
namespace, classes, name = self.split_decl_name(name)
namespace = '.'.join(namespace)
name = '_'.join(classes+[name])
ns = self.namespaces.setdefault(namespace, Namespace())
if name in ns.consts:
print("Generator error: constant %s (cname=%s) already exists" \
% (name, cname))
sys.exit(-1)
ns.consts[name] = cname
def add_func(self, decl):
namespace, classes, barename = self.split_decl_name(decl[0])
cpp_name = "::".join(namespace + classes + [barename])
name = barename
class_name = ''
bare_class_name = ''
if classes:
class_name = normalize_class_name('.'.join(namespace + classes))
bare_class_name = classes[-1]
namespace = '.'.join(namespace)
is_constructor = name == bare_class_name
is_class_method = False
is_const_method = False
is_virtual_method = False
is_pure_virtual_method = False
const_return = False
ref_return = False
for m in decl[2]:
if m == "/S":
is_class_method = True
elif m == "/C":
is_const_method = True
elif m == "/V":
is_virtual_method = True
elif m == "/PV":
is_pure_virtual_method = True
elif m == "/Ref":
ref_return = True
elif m == "/CRet":
const_return = True
elif m.startswith("="):
name = m[1:]
if class_name:
cpp_name = barename
func_map = self.classes[class_name].methods
else:
func_map = self.namespaces.setdefault(namespace, Namespace()).funcs
func = func_map.setdefault(name, FuncInfo(class_name, name, cpp_name, namespace, is_constructor))
variant = FuncVariant(class_name, name, decl, is_constructor, is_class_method, is_const_method,
is_virtual_method, is_pure_virtual_method, ref_return, const_return)
func.add_variant(variant)
def save(self, path, name, buf):
f = open(path + "/" + name, "wt")
f.write(buf.getvalue())
f.close()
def gen_function_binding_with_wrapper(self, func, class_info):
binding_text = None
wrapper_func_text = None
bindings = []
wrappers = []
for index, variant in enumerate(func.variants):
factory = False
if class_info and 'Ptr<' in variant.rettype:
factory = True
base_class_name = variant.rettype
base_class_name = base_class_name.replace("Ptr<","").replace(">","").strip()
if base_class_name in self.classes:
self.classes[base_class_name].has_smart_ptr = True
else:
print(base_class_name, ' not found in classes for registering smart pointer using ', class_info.name, 'instead')
self.classes[class_info.name].has_smart_ptr = True
def_args = []
has_def_param = False
# Return type
ret_type = 'void' if variant.rettype.strip() == '' else variant.rettype
if ret_type.startswith('Ptr'): #smart pointer
ptr_type = ret_type.replace('Ptr<', '').replace('>', '')
if ptr_type in type_dict:
ret_type = type_dict[ptr_type]
for key in type_dict:
if key in ret_type:
ret_type = ret_type.replace(key, type_dict[key])
arg_types = []
unwrapped_arg_types = []
for arg in variant.args:
arg_type = None
if arg.tp in type_dict:
arg_type = type_dict[arg.tp]
else:
arg_type = arg.tp
# Add default value
if with_default_params and arg.defval != '':
def_args.append(arg.defval);
arg_types.append(arg_type)
unwrapped_arg_types.append(arg_type)
# Function attribure
func_attribs = ''
if '*' in ''.join(arg_types):
func_attribs += ', allow_raw_pointers()'
if variant.is_pure_virtual:
func_attribs += ', pure_virtual()'
# Wrapper function
wrap_func_name = (func.class_name+"_" if class_info != None else "") + func.name.split("::")[-1] + "_wrapper"
js_func_name = func.name
# TODO: Name functions based wrap directives or based on arguments list
if index > 0:
wrap_func_name += str(index)
js_func_name += str(index)
c_func_name = 'Wrappers::' + wrap_func_name
# Binding template-
raw_arg_names = ['arg' + str(i + 1) for i in range(0, len(variant.args))]
arg_names = []
w_signature = []
casted_arg_types = []
for arg_type, arg_name in zip(arg_types, raw_arg_names):
casted_arg_name = arg_name
if with_vec_from_js_array:
# Only support const vector reference as input parameter
match = re.search(r'const std::vector<(.*)>&', arg_type)
if match:
type_in_vect = match.group(1)
if type_in_vect in ['int', 'float', 'double', 'char', 'uchar', 'String', 'std::string']:
casted_arg_name = 'emscripten::vecFromJSArray<' + type_in_vect + '>(' + arg_name + ')'
arg_type = re.sub(r'std::vector<(.*)>', 'emscripten::val', arg_type)
w_signature.append(arg_type + ' ' + arg_name)
arg_names.append(casted_arg_name)
casted_arg_types.append(arg_type)
arg_types = casted_arg_types
# Argument list, signature
arg_names_casted = [c if a == b else c + '.as<' + a + '>()' for a, b, c in
zip(unwrapped_arg_types, arg_types, arg_names)]
# Add self object to the parameters
if class_info and not factory:
arg_types = [class_info.cname + '&'] + arg_types
w_signature = [class_info.cname + '& arg0 '] + w_signature
for j in range(0, len(def_args) + 1):
postfix = ''
if j > 0:
postfix = '_' + str(j);
###################################
# Wrapper
if factory: # TODO or static
name = class_info.cname+'::' if variant.class_name else ""
cpp_call_text = static_class_call_template.substitute(scope=name,
func=func.cname,
args=', '.join(arg_names[:len(arg_names)-j]))
elif class_info:
cpp_call_text = class_call_template.substitute(obj='arg0',
func=func.cname,
args=', '.join(arg_names[:len(arg_names)-j]))
else:
cpp_call_text = call_template.substitute(func=func.cname,
args=', '.join(arg_names[:len(arg_names)-j]))
wrapper_func_text = wrapper_function_template.substitute(ret_val=ret_type,
func=wrap_func_name+postfix,
signature=', '.join(w_signature[:len(w_signature)-j]),
cpp_call=cpp_call_text,
const='' if variant.is_const else '')
###################################
# Binding
if class_info:
if factory:
# print("Factory Function: ", c_func_name, len(variant.args) - j, class_info.name)
if variant.is_pure_virtual:
# FIXME: workaround for pure virtual in constructor
# e.g. DescriptorMatcher_clone_wrapper
continue
# consider the default parameter variants
args_num = len(variant.args) - j
if args_num in class_info.constructor_arg_num:
# FIXME: workaournd for constructor overload with same args number
# e.g. DescriptorMatcher
continue
class_info.constructor_arg_num.add(args_num)
binding_text = ctr_template.substitute(const='const' if variant.is_const else '',
cpp_name=c_func_name+postfix,
ret=ret_type,
args=','.join(arg_types[:len(arg_types)-j]),
optional=func_attribs)
else:
binding_template = overload_class_static_function_template if variant.is_class_method else \
overload_class_function_template
binding_text = binding_template.substitute(js_name=js_func_name,
const='' if variant.is_const else '',
cpp_name=c_func_name+postfix,
ret=ret_type,
args=','.join(arg_types[:len(arg_types)-j]),
optional=func_attribs)
else:
binding_text = overload_function_template.substitute(js_name=js_func_name,
cpp_name=c_func_name+postfix,
const='const' if variant.is_const else '',
ret=ret_type,
args=', '.join(arg_types[:len(arg_types)-j]),
optional=func_attribs)
bindings.append(binding_text)
wrappers.append(wrapper_func_text)
return [bindings, wrappers]
def gen_function_binding(self, func, class_info):
if not class_info == None :
func_name = class_info.cname+'::'+func.cname
else :
func_name = func.cname
binding_text = None
binding_text_list = []
for index, variant in enumerate(func.variants):
factory = False
#TODO if variant.is_class_method and variant.rettype == ('Ptr<' + class_info.name + '>'):
if (not class_info == None) and variant.rettype == ('Ptr<' + class_info.name + '>') or (func.name.startswith("create") and variant.rettype):
factory = True
base_class_name = variant.rettype
base_class_name = base_class_name.replace("Ptr<","").replace(">","").strip()
if base_class_name in self.classes:
self.classes[base_class_name].has_smart_ptr = True
else:
print(base_class_name, ' not found in classes for registering smart pointer using ', class_info.name, 'instead')
self.classes[class_info.name].has_smart_ptr = True
# Return type
ret_type = 'void' if variant.rettype.strip() == '' else variant.rettype
ret_type = ret_type.strip()
if ret_type.startswith('Ptr'): #smart pointer
ptr_type = ret_type.replace('Ptr<', '').replace('>', '')
if ptr_type in type_dict:
ret_type = type_dict[ptr_type]
for key in type_dict:
if key in ret_type:
ret_type = ret_type.replace(key, type_dict[key])
if variant.constret and ret_type.startswith('const') == False:
ret_type = 'const ' + ret_type
if variant.refret and ret_type.endswith('&') == False:
ret_type += '&'
arg_types = []
orig_arg_types = []
def_args = []
for arg in variant.args:
if arg.tp in type_dict:
arg_type = type_dict[arg.tp]
else:
arg_type = arg.tp
#if arg.outputarg:
# arg_type += '&'
orig_arg_types.append(arg_type)
if with_default_params and arg.defval != '':
def_args.append(arg.defval)
arg_types.append(orig_arg_types[-1])
# Function attribure
func_attribs = ''
if '*' in ''.join(orig_arg_types):
func_attribs += ', allow_raw_pointers()'
if variant.is_pure_virtual:
func_attribs += ', pure_virtual()'
#TODO better naming
#if variant.name in self.jsfunctions:
#else
js_func_name = variant.name
c_func_name = func.cname if (factory and variant.is_class_method == False) else func_name
################################### Binding
for j in range(0, len(def_args) + 1):
postfix = ''
if j > 0:
postfix = '_' + str(j);
if factory:
binding_text = ctr_template.substitute(const='const' if variant.is_const else '',
cpp_name=c_func_name+postfix,
ret=ret_type,
args=','.join(arg_types[:len(arg_types)-j]),
optional=func_attribs)
else:
binding_template = overload_class_static_function_template if variant.is_class_method else \
overload_function_template if class_info == None else overload_class_function_template
binding_text = binding_template.substitute(js_name=js_func_name,
const='const' if variant.is_const else '',
cpp_name=c_func_name+postfix,
ret=ret_type,
args=','.join(arg_types[:len(arg_types)-1]),
optional=func_attribs)
binding_text_list.append(binding_text)
return binding_text_list
def print_decls(self, decls):
"""
Prints the list of declarations, retrieived by the parse() method
"""
for d in decls:
print(d[0], d[1], ";".join(d[2]))
for a in d[3]:
print(" ", a[0], a[1], a[2], end="")
if a[3]:
print("; ".join(a[3]))
else:
print()
def gen(self, dst_file, src_files, core_bindings):
# step 1: scan the headers and extract classes, enums and functions
headers = []
for hdr in src_files:
decls = self.parser.parse(hdr)
# print(hdr);
# self.print_decls(decls);
if len(decls) == 0:
continue
headers.append(hdr[hdr.rindex('opencv2/'):])
for decl in decls:
name = decl[0]
type = name[:name.find(" ")]
if type == "struct" or type == "class": # class/structure case
name = name[name.find(" ") + 1:].strip()
self.add_class(type, name, decl)
elif name.startswith("enum"): # enumerations
self.add_enum(decl)
elif name.startswith("const"):
# constant
self.add_const(name.replace("const ", "").strip(), decl)
else: # class/global function
self.add_func(decl)
# step 2: generate bindings
# Global functions
for ns_name, ns in sorted(self.namespaces.items()):
if ns_name.split('.')[0] != 'cv':
continue
for name, func in sorted(ns.funcs.items()):
if name in ignore_list:
continue
if not name in white_list['']:
continue
ext_cnst = False
# Check if the method is an external constructor
for variant in func.variants:
if "Ptr<" in variant.rettype:
# Register the smart pointer
base_class_name = variant.rettype
base_class_name = base_class_name.replace("Ptr<","").replace(">","").strip()
self.classes[base_class_name].has_smart_ptr = True
# Adds the external constructor
class_name = func.name.replace("create", "")
if not class_name in self.classes:
self.classes[base_class_name].methods[func.cname] = func
else:
self.classes[class_name].methods[func.cname] = func
ext_cnst = True
if ext_cnst:
continue
if with_wrapped_functions:
binding, wrapper = self.gen_function_binding_with_wrapper(func, class_info=None)
self.bindings += binding
self.wrapper_funcs += wrapper
else:
binding = self.gen_function_binding(func, class_info=None)
self.bindings+=binding
# generate code for the classes and their methods
class_list = list(self.classes.items())
for name, class_info in class_list:
class_bindings = []
if not name in white_list:
continue
# Generate bindings for methods
for method_name, method in class_info.methods.items():
if method.cname in ignore_list:
continue
if not method.name in white_list[method.class_name]:
continue
if method.is_constructor:
for variant in method.variants:
args = []
for arg in variant.args:
arg_type = type_dict[arg.tp] if arg.tp in type_dict else arg.tp
args.append(arg_type)
# print('Constructor: ', class_info.name, len(variant.args))
args_num = len(variant.args)
if args_num in class_info.constructor_arg_num:
continue
class_info.constructor_arg_num.add(args_num)
class_bindings.append(constructor_template.substitute(signature=', '.join(args)))
else:
if with_wrapped_functions and (len(method.variants) > 1 or len(method.variants[0].args)>0 or "String" in method.variants[0].rettype):
binding, wrapper = self.gen_function_binding_with_wrapper(method, class_info=class_info)
self.wrapper_funcs = self.wrapper_funcs + wrapper
class_bindings = class_bindings + binding
else:
binding = self.gen_function_binding(method, class_info=class_info)
class_bindings = class_bindings + binding
# Regiseter Smart pointer
if class_info.has_smart_ptr:
class_bindings.append(smart_ptr_reg_template.substitute(cname=class_info.cname, name=class_info.name))
# Attach external constructors
# for method_name, method in class_info.ext_constructors.items():
# print("ext constructor", method_name)
#if class_info.ext_constructors:
# Generate bindings for properties
for property in class_info.props:
_class_property = class_property_enum_template if property.tp in type_dict else class_property_template
class_bindings.append(_class_property.substitute(js_name=property.name, cpp_name='::'.join(
[class_info.cname, property.name])))
dv = ''
base = Template("""base<$base>""")
assert len(class_info.bases) <= 1 , "multiple inheritance not supported"
if len(class_info.bases) == 1:
dv = "," + base.substitute(base=', '.join(class_info.bases))
self.bindings.append(class_template.substitute(cpp_name=class_info.cname,
js_name=name,
class_templates=''.join(class_bindings),
derivation=dv))
if export_enums:
# step 4: generate bindings for enums
# TODO anonymous enums are ignored for now.
for ns_name, ns in sorted(self.namespaces.items()):
if ns_name.split('.')[0] != 'cv':
continue
for name, enum in sorted(ns.enums.items()):
if not name.endswith('.anonymous'):
name = name.replace("cv.", "")
enum_values = []
for enum_val in enum:
value = enum_val[0][enum_val[0].rfind(".")+1:]
enum_values.append(enum_item_template.substitute(val=value,
cpp_val=name.replace('.', '::')+'::'+value))
self.bindings.append(enum_template.substitute(cpp_name=name.replace(".", "::"),
js_name=name.replace(".", "_"),
enum_items=''.join(enum_values)))
else:
print(name)
#TODO: represent anonymous enums with constants
if export_consts:
# step 5: generate bindings for consts
for ns_name, ns in sorted(self.namespaces.items()):
if ns_name.split('.')[0] != 'cv':
continue
for name, const in sorted(ns.consts.items()):
# print("Gen consts: ", name, const)
self.bindings.append(const_template.substitute(js_name=name, value=const))
with open(core_bindings) as f:
ret = f.read()
header_includes = '\n'.join(['#include "{}"'.format(hdr) for hdr in headers])
ret = ret.replace('@INCLUDES@', header_includes)
defis = '\n'.join(self.wrapper_funcs)
ret += wrapper_codes_template.substitute(ns=wrapper_namespace, defs=defis)
ret += emscripten_binding_template.substitute(binding_name='testBinding', bindings=''.join(self.bindings))
# print(ret)
text_file = open(dst_file, "w")
text_file.write(ret)
text_file.close()
if __name__ == "__main__":
if len(sys.argv) < 4:
print("Usage:\n", \
os.path.basename(sys.argv[0]), \
"<full path to hdr_parser.py> <bindings.cpp> <headers.txt> <core_bindings.cpp>")
print("Current args are: ", ", ".join(["'"+a+"'" for a in sys.argv]))
exit(0)
dstdir = "."
hdr_parser_path = os.path.abspath(sys.argv[1])
if hdr_parser_path.endswith(".py"):
hdr_parser_path = os.path.dirname(hdr_parser_path)
sys.path.append(hdr_parser_path)
import hdr_parser
bindingsCpp = sys.argv[2]
headers = open(sys.argv[3], 'r').read().split(';')
coreBindings = sys.argv[4]
generator = JSWrapperGenerator()
generator.gen(bindingsCpp, headers, coreBindings)
|
###############################################################################
#
# IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
#
# By downloading, copying, installing or using the software you agree to this license.
# If you do not agree to this license, do not download, install,
# copy or use the software.
#
#
# License Agreement
# For Open Source Computer Vision Library
#
# Copyright (C) 2013, OpenCV Foundation, all rights reserved.
# Third party copyrights are property of their respective owners.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# * Redistribution's of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# * Redistribution's in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * The name of the copyright holders may not be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# This software is provided by the copyright holders and contributors "as is" and
# any express or implied warranties, including, but not limited to, the implied
# warranties of merchantability and fitness for a particular purpose are disclaimed.
# In no event shall the Intel Corporation or contributors be liable for any direct,
# indirect, incidental, special, exemplary, or consequential damages
# (including, but not limited to, procurement of substitute goods or services;
# loss of use, data, or profits; or business interruption) however caused
# and on any theory of liability, whether in contract, strict liability,
# or tort (including negligence or otherwise) arising in any way out of
# the use of this software, even if advised of the possibility of such damage.
#
###############################################################################
# AUTHOR: Sajjad Taheri, University of California, Irvine. sajjadt[at]uci[dot]edu
#
# LICENSE AGREEMENT
# Copyright (c) 2015, 2015 The Regents of the University of California (Regents)
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# 3. Neither the name of the University nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
###############################################################################
import os, sys, re, json, shutil
from subprocess import Popen, PIPE, STDOUT
def make_umd(opencvjs, cvjs):
src = open(opencvjs, 'r+b')
dst = open(cvjs, 'w+b')
content = src.read()
dst.seek(0)
# inspired by https://github.com/umdjs/umd/blob/95563fd6b46f06bda0af143ff67292e7f6ede6b7/templates/returnExportsGlobal.js
dst.write(("""
(function (root, factory) {
if (typeof define === 'function' && define.amd) {
// AMD. Register as an anonymous module.
define(function () {
return (root.cv = factory());
});
} else if (typeof module === 'object' && module.exports) {
// Node. Does not work with strict CommonJS, but
// only CommonJS-like environments that support module.exports,
// like Node.
module.exports = factory();
} else if (typeof window === 'object') {
// Browser globals
root.cv = factory();
} else if (typeof importScripts === 'function') {
// Web worker
root.cv = factory;
} else {
// Other shells, e.g. d8
root.cv = factory();
}
}(this, function () {
%s
if (typeof Module === 'undefined')
Module = {};
return cv(Module);
}));
""" % (content)).lstrip())
if __name__ == "__main__":
if len(sys.argv) > 2:
opencvjs = sys.argv[1]
cvjs = sys.argv[2]
if not os.path.isfile(opencvjs):
print('opencv.js file not found! Have you compiled the opencv_js module?')
exit()
make_umd(opencvjs, cvjs);
|
###############################################################################
#
# IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
#
# By downloading, copying, installing or using the software you agree to this license.
# If you do not agree to this license, do not download, install,
# copy or use the software.
#
#
# License Agreement
# For Open Source Computer Vision Library
#
# Copyright (C) 2013, OpenCV Foundation, all rights reserved.
# Third party copyrights are property of their respective owners.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# * Redistribution's of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# * Redistribution's in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * The name of the copyright holders may not be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# This software is provided by the copyright holders and contributors "as is" and
# any express or implied warranties, including, but not limited to, the implied
# warranties of merchantability and fitness for a particular purpose are disclaimed.
# In no event shall the Intel Corporation or contributors be liable for any direct,
# indirect, incidental, special, exemplary, or consequential damages
# (including, but not limited to, procurement of substitute goods or services;
# loss of use, data, or profits; or business interruption) however caused
# and on any theory of liability, whether in contract, strict liability,
# or tort (including negligence or otherwise) arising in any way out of
# the use of this software, even if advised of the possibility of such damage.
#
###############################################################################
# AUTHOR: Sajjad Taheri, University of California, Irvine. sajjadt[at]uci[dot]edu
#
# LICENSE AGREEMENT
# Copyright (c) 2015, 2015 The Regents of the University of California (Regents)
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# 3. Neither the name of the University nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##############################################################################
from string import Template
wrapper_codes_template = Template("namespace $ns {\n$defs\n}")
call_template = Template("""$func($args)""")
class_call_template = Template("""$obj.$func($args)""")
static_class_call_template = Template("""$scope$func($args)""")
wrapper_function_template = Template(""" $ret_val $func($signature)$const {
return $cpp_call;
}
""")
wrapper_function_with_def_args_template = Template(""" $ret_val $func($signature)$const {
$check_args
}
""")
wrapper_overload_def_values = [
Template("""return $cpp_call;"""), Template("""if ($arg0.isUndefined())
return $cpp_call;
else
$next"""),
Template("""if ($arg0.isUndefined() && $arg1.isUndefined())
return $cpp_call;
else $next"""),
Template("""if ($arg0.isUndefined() && $arg1.isUndefined() && $arg2.isUndefined())
return $cpp_call;
else $next"""),
Template("""if ($arg0.isUndefined() && $arg1.isUndefined() && $arg2.isUndefined() && $arg3.isUndefined())
return $cpp_call;
else $next"""),
Template("""if ($arg0.isUndefined() && $arg1.isUndefined() && $arg2.isUndefined() && $arg3.isUndefined() &&
$arg4.isUndefined())
return $cpp_call;
else $next"""),
Template("""if ($arg0.isUndefined() && $arg1.isUndefined() && $arg2.isUndefined() && $arg3.isUndefined() &&
$arg4.isUndefined() && $arg5.isUndefined() )
return $cpp_call;
else $next"""),
Template("""if ($arg0.isUndefined() && $arg1.isUndefined() && $arg2.isUndefined() && $arg3.isUndefined() &&
$arg4.isUndefined() && $arg5.isUndefined() && $arg6.isUndefined() )
return $cpp_call;
else $next"""),
Template("""if ($arg0.isUndefined() && $arg1.isUndefined() && $arg2.isUndefined() && $arg3.isUndefined() &&
$arg4.isUndefined() && $arg5.isUndefined()&& $arg6.isUndefined() && $arg7.isUndefined())
return $cpp_call;
else $next"""),
Template("""if ($arg0.isUndefined() && $arg1.isUndefined() && $arg2.isUndefined() && $arg3.isUndefined() &&
$arg4.isUndefined() && $arg5.isUndefined()&& $arg6.isUndefined() && $arg7.isUndefined() &&
$arg8.isUndefined())
return $cpp_call;
else $next"""),
Template("""if ($arg0.isUndefined() && $arg1.isUndefined() && $arg2.isUndefined() && $arg3.isUndefined() &&
$arg4.isUndefined() && $arg5.isUndefined()&& $arg6.isUndefined() && $arg7.isUndefined()&&
$arg8.isUndefined() && $arg9.isUndefined())
return $cpp_call;
else $next""")]
emscripten_binding_template = Template("""
EMSCRIPTEN_BINDINGS($binding_name) {$bindings
}
""")
simple_function_template = Template("""
emscripten::function("$js_name", &$cpp_name);
""")
smart_ptr_reg_template = Template("""
.smart_ptr<Ptr<$cname>>("Ptr<$name>")
""")
overload_function_template = Template("""
function("$js_name", select_overload<$ret($args)$const>(&$cpp_name)$optional);
""")
overload_class_function_template = Template("""
.function("$js_name", select_overload<$ret($args)$const>(&$cpp_name)$optional)""")
overload_class_static_function_template = Template("""
.class_function("$js_name", select_overload<$ret($args)$const>(&$cpp_name)$optional)""")
class_property_template = Template("""
.property("$js_name", &$cpp_name)""")
class_property_enum_template = Template("""
.property("$js_name", binding_utils::underlying_ptr(&$cpp_name))""")
ctr_template = Template("""
.constructor(select_overload<$ret($args)$const>(&$cpp_name)$optional)""")
smart_ptr_ctr_overload_template = Template("""
.smart_ptr_constructor("$ptr_type", select_overload<$ret($args)$const>(&$cpp_name)$optional)""")
function_template = Template("""
.function("$js_name", &$cpp_name)""")
static_function_template = Template("""
.class_function("$js_name", &$cpp_name)""")
constructor_template = Template("""
.constructor<$signature>()""")
enum_item_template = Template("""
.value("$val", $cpp_val)""")
enum_template = Template("""
emscripten::enum_<$cpp_name>("$js_name")$enum_items;
""")
const_template = Template("""
constant("$js_name", static_cast<long>($value));
""")
vector_template = Template("""
emscripten::register_vector<$cType>("$js_name");
""")
map_template = Template("""
emscripten::register_map<cpp_type_key,$cpp_type_val>("$js_name");
""")
class_template = Template("""
emscripten::class_<$cpp_name $derivation>("$js_name")$class_templates;
""")
|
#!/usr/bin/env python
from __future__ import print_function
import sys, os, re
classes_ignore_list = (
'OpenCV(Test)?Case',
'OpenCV(Test)?Runner',
'CvException',
)
funcs_ignore_list = (
'\w+--HashCode',
'Mat--MatLong',
'\w+--Equals',
'Core--MinMaxLocResult',
)
class JavaParser:
def __init__(self):
self.clear()
def clear(self):
self.mdict = {}
self.tdict = {}
self.mwhere = {}
self.twhere = {}
self.empty_stubs_cnt = 0
self.r1 = re.compile("\s*public\s+(?:static\s+)?(\w+)\(([^)]*)\)") # c-tor
self.r2 = re.compile("\s*(?:(?:public|static|final)\s+){1,3}\S+\s+(\w+)\(([^)]*)\)")
self.r3 = re.compile('\s*fail\("Not yet implemented"\);') # empty test stub
def dict2set(self, d):
s = set()
for f in d.keys():
if len(d[f]) == 1:
s.add(f)
else:
s |= set(d[f])
return s
def get_tests_count(self):
return len(self.tdict)
def get_empty_stubs_count(self):
return self.empty_stubs_cnt
def get_funcs_count(self):
return len(self.dict2set(self.mdict)), len(self.mdict)
def get_not_tested(self):
mset = self.dict2set(self.mdict)
tset = self.dict2set(self.tdict)
nottested = mset - tset
out = set()
for name in nottested:
out.add(name + " " + self.mwhere[name])
return out
def parse(self, path):
if ".svn" in path:
return
if os.path.isfile(path):
if path.endswith("FeatureDetector.java"):
for prefix1 in ("", "Grid", "Pyramid", "Dynamic"):
for prefix2 in ("FAST", "STAR", "MSER", "ORB", "SIFT", "SURF", "GFTT", "HARRIS", "SIMPLEBLOB", "DENSE"):
parser.parse_file(path,prefix1+prefix2)
elif path.endswith("DescriptorExtractor.java"):
for prefix1 in ("", "Opponent"):
for prefix2 in ("BRIEF", "ORB", "SIFT", "SURF"):
parser.parse_file(path,prefix1+prefix2)
elif path.endswith("GenericDescriptorMatcher.java"):
for prefix in ("OneWay", "Fern"):
parser.parse_file(path,prefix)
elif path.endswith("DescriptorMatcher.java"):
for prefix in ("BruteForce", "BruteForceHamming", "BruteForceHammingLUT", "BruteForceL1", "FlannBased", "BruteForceSL2"):
parser.parse_file(path,prefix)
else:
parser.parse_file(path)
elif os.path.isdir(path):
for x in os.listdir(path):
self.parse(path + "/" + x)
return
def parse_file(self, fname, prefix = ""):
istest = fname.endswith("Test.java")
clsname = os.path.basename(fname).replace("Test", "").replace(".java", "")
clsname = prefix + clsname[0].upper() + clsname[1:]
for cls in classes_ignore_list:
if re.match(cls, clsname):
return
f = open(fname, "rt")
linenum = 0
for line in f:
linenum += 1
m1 = self.r1.match(line)
m2 = self.r2.match(line)
m3 = self.r3.match(line)
func = ''
args_str = ''
if m1:
func = m1.group(1)
args_str = m1.group(2)
elif m2:
if "public" not in line:
continue
func = m2.group(1)
args_str = m2.group(2)
elif m3:
self.empty_stubs_cnt += 1
continue
else:
#if "public" in line:
#print "UNRECOGNIZED: " + line
continue
d = (self.mdict, self.tdict)[istest]
w = (self.mwhere, self.twhere)[istest]
func = re.sub(r"^test", "", func)
func = clsname + "--" + func[0].upper() + func[1:]
args_str = args_str.replace("[]", "Array").replace("...", "Array ")
args_str = re.sub(r"List<(\w+)>", "ListOf\g<1>", args_str)
args_str = re.sub(r"List<(\w+)>", "ListOf\g<1>", args_str)
args = [a.split()[0] for a in args_str.split(",") if a]
func_ex = func + "".join([a[0].upper() + a[1:] for a in args])
func_loc = fname + " (line: " + str(linenum) + ")"
skip = False
for fi in funcs_ignore_list:
if re.match(fi, func_ex):
skip = True
break
if skip:
continue
if func in d:
d[func].append(func_ex)
else:
d[func] = [func_ex]
w[func_ex] = func_loc
w[func] = func_loc
f.close()
return
if __name__ == '__main__':
if len(sys.argv) < 2:
print("Usage:\n", \
os.path.basename(sys.argv[0]), \
"<Classes/Tests dir1/file1> [<Classes/Tests dir2/file2> ...]\n", "Not tested methods are loggedto stdout.")
exit(0)
parser = JavaParser()
for x in sys.argv[1:]:
parser.parse(x)
funcs = parser.get_not_tested()
if funcs:
print ('{} {}'.format("NOT TESTED methods:\n\t", "\n\t".join(sorted(funcs))))
print ("Total methods found: %i (%i)" % parser.get_funcs_count())
print ('{} {}'.format("Not tested methods found:", len(funcs)))
print ('{} {}'.format("Total tests found:", parser.get_tests_count()))
print ('{} {}'.format("Empty test stubs found:", parser.get_empty_stubs_count()))
|
#!/usr/bin/env python
import sys, re, os.path, errno, fnmatch
import json
import logging
import codecs
from shutil import copyfile
from pprint import pformat
from string import Template
if sys.version_info[0] >= 3:
from io import StringIO
else:
import io
class StringIO(io.StringIO):
def write(self, s):
if isinstance(s, str):
s = unicode(s) # noqa: F821
return super(StringIO, self).write(s)
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
# list of modules + files remap
config = None
ROOT_DIR = None
FILES_REMAP = {}
def checkFileRemap(path):
path = os.path.realpath(path)
if path in FILES_REMAP:
return FILES_REMAP[path]
assert path[-3:] != '.in', path
return path
total_files = 0
updated_files = 0
module_imports = []
module_j_code = None
module_jn_code = None
# list of class names, which should be skipped by wrapper generator
# the list is loaded from misc/java/gen_dict.json defined for the module and its dependencies
class_ignore_list = []
# list of constant names, which should be skipped by wrapper generator
# ignored constants can be defined using regular expressions
const_ignore_list = []
# list of private constants
const_private_list = []
# { Module : { public : [[name, val],...], private : [[]...] } }
missing_consts = {}
# c_type : { java/jni correspondence }
# Complex data types are configured for each module using misc/java/gen_dict.json
type_dict = {
# "simple" : { j_type : "?", jn_type : "?", jni_type : "?", suffix : "?" },
"" : { "j_type" : "", "jn_type" : "long", "jni_type" : "jlong" }, # c-tor ret_type
"void" : { "j_type" : "void", "jn_type" : "void", "jni_type" : "void" },
"env" : { "j_type" : "", "jn_type" : "", "jni_type" : "JNIEnv*"},
"cls" : { "j_type" : "", "jn_type" : "", "jni_type" : "jclass"},
"bool" : { "j_type" : "boolean", "jn_type" : "boolean", "jni_type" : "jboolean", "suffix" : "Z" },
"char" : { "j_type" : "char", "jn_type" : "char", "jni_type" : "jchar", "suffix" : "C" },
"int" : { "j_type" : "int", "jn_type" : "int", "jni_type" : "jint", "suffix" : "I" },
"long" : { "j_type" : "int", "jn_type" : "int", "jni_type" : "jint", "suffix" : "I" },
"float" : { "j_type" : "float", "jn_type" : "float", "jni_type" : "jfloat", "suffix" : "F" },
"double" : { "j_type" : "double", "jn_type" : "double", "jni_type" : "jdouble", "suffix" : "D" },
"size_t" : { "j_type" : "long", "jn_type" : "long", "jni_type" : "jlong", "suffix" : "J" },
"__int64" : { "j_type" : "long", "jn_type" : "long", "jni_type" : "jlong", "suffix" : "J" },
"int64" : { "j_type" : "long", "jn_type" : "long", "jni_type" : "jlong", "suffix" : "J" },
"double[]": { "j_type" : "double[]", "jn_type" : "double[]", "jni_type" : "jdoubleArray", "suffix" : "_3D" },
'string' : { # std::string, see "String" in modules/core/misc/java/gen_dict.json
'j_type': 'String',
'jn_type': 'String',
'jni_name': 'n_%(n)s',
'jni_type': 'jstring',
'jni_var': 'const char* utf_%(n)s = env->GetStringUTFChars(%(n)s, 0); std::string n_%(n)s( utf_%(n)s ? utf_%(n)s : "" ); env->ReleaseStringUTFChars(%(n)s, utf_%(n)s)',
'suffix': 'Ljava_lang_String_2',
'j_import': 'java.lang.String'
},
'vector_string': { # std::vector<std::string>, see "vector_String" in modules/core/misc/java/gen_dict.json
'j_type': 'List<String>',
'jn_type': 'List<String>',
'jni_type': 'jobject',
'jni_var': 'std::vector< std::string > %(n)s',
'suffix': 'Ljava_util_List',
'v_type': 'string',
'j_import': 'java.lang.String'
},
}
# Defines a rule to add extra prefixes for names from specific namespaces.
# In example, cv::fisheye::stereoRectify from namespace fisheye is wrapped as fisheye_stereoRectify
namespaces_dict = {}
# { class : { func : {j_code, jn_code, cpp_code} } }
ManualFuncs = {}
# { class : { func : { arg_name : {"ctype" : ctype, "attrib" : [attrib]} } } }
func_arg_fix = {}
def read_contents(fname):
with open(fname, 'r') as f:
data = f.read()
return data
def mkdir_p(path):
''' mkdir -p '''
try:
os.makedirs(path)
except OSError as exc:
if exc.errno == errno.EEXIST and os.path.isdir(path):
pass
else:
raise
T_JAVA_START_INHERITED = read_contents(os.path.join(SCRIPT_DIR, 'templates/java_class_inherited.prolog'))
T_JAVA_START_ORPHAN = read_contents(os.path.join(SCRIPT_DIR, 'templates/java_class.prolog'))
T_JAVA_START_MODULE = read_contents(os.path.join(SCRIPT_DIR, 'templates/java_module.prolog'))
T_CPP_MODULE = Template(read_contents(os.path.join(SCRIPT_DIR, 'templates/cpp_module.template')))
class GeneralInfo():
def __init__(self, type, decl, namespaces):
self.namespace, self.classpath, self.classname, self.name = self.parseName(decl[0], namespaces)
# parse doxygen comments
self.params={}
self.annotation=[]
if type == "class":
docstring="// C++: class " + self.name + "\n"
else:
docstring=""
if len(decl)>5 and decl[5]:
doc = decl[5]
#logging.info('docstring: %s', doc)
if re.search("(@|\\\\)deprecated", doc):
self.annotation.append("@Deprecated")
docstring += sanitize_java_documentation_string(doc, type)
self.docstring = docstring
def parseName(self, name, namespaces):
'''
input: full name and available namespaces
returns: (namespace, classpath, classname, name)
'''
name = name[name.find(" ")+1:].strip() # remove struct/class/const prefix
spaceName = ""
localName = name # <classes>.<name>
for namespace in sorted(namespaces, key=len, reverse=True):
if name.startswith(namespace + "."):
spaceName = namespace
localName = name.replace(namespace + ".", "")
break
pieces = localName.split(".")
if len(pieces) > 2: # <class>.<class>.<class>.<name>
return spaceName, ".".join(pieces[:-1]), pieces[-2], pieces[-1]
elif len(pieces) == 2: # <class>.<name>
return spaceName, pieces[0], pieces[0], pieces[1]
elif len(pieces) == 1: # <name>
return spaceName, "", "", pieces[0]
else:
return spaceName, "", "" # error?!
def fullName(self, isCPP=False):
result = ".".join([self.fullClass(), self.name])
return result if not isCPP else get_cname(result)
def fullClass(self, isCPP=False):
result = ".".join([f for f in [self.namespace] + self.classpath.split(".") if len(f)>0])
return result if not isCPP else get_cname(result)
class ConstInfo(GeneralInfo):
def __init__(self, decl, addedManually=False, namespaces=[], enumType=None):
GeneralInfo.__init__(self, "const", decl, namespaces)
self.cname = get_cname(self.name)
self.value = decl[1]
self.enumType = enumType
self.addedManually = addedManually
if self.namespace in namespaces_dict:
self.name = '%s_%s' % (namespaces_dict[self.namespace], self.name)
def __repr__(self):
return Template("CONST $name=$value$manual").substitute(name=self.name,
value=self.value,
manual="(manual)" if self.addedManually else "")
def isIgnored(self):
for c in const_ignore_list:
if re.match(c, self.name):
return True
return False
def normalize_field_name(name):
return name.replace(".","_").replace("[","").replace("]","").replace("_getNativeObjAddr()","_nativeObj")
def normalize_class_name(name):
return re.sub(r"^cv\.", "", name).replace(".", "_")
def get_cname(name):
return name.replace(".", "::")
def cast_from(t):
if t in type_dict and "cast_from" in type_dict[t]:
return type_dict[t]["cast_from"]
return t
def cast_to(t):
if t in type_dict and "cast_to" in type_dict[t]:
return type_dict[t]["cast_to"]
return t
class ClassPropInfo():
def __init__(self, decl): # [f_ctype, f_name, '', '/RW']
self.ctype = decl[0]
self.name = decl[1]
self.rw = "/RW" in decl[3]
def __repr__(self):
return Template("PROP $ctype $name").substitute(ctype=self.ctype, name=self.name)
class ClassInfo(GeneralInfo):
def __init__(self, decl, namespaces=[]): # [ 'class/struct cname', ': base', [modlist] ]
GeneralInfo.__init__(self, "class", decl, namespaces)
self.cname = get_cname(self.name)
self.methods = []
self.methods_suffixes = {}
self.consts = [] # using a list to save the occurrence order
self.private_consts = []
self.imports = set()
self.props= []
self.jname = self.name
self.smart = None # True if class stores Ptr<T>* instead of T* in nativeObj field
self.j_code = None # java code stream
self.jn_code = None # jni code stream
self.cpp_code = None # cpp code stream
for m in decl[2]:
if m.startswith("="):
self.jname = m[1:]
self.base = ''
if decl[1]:
#self.base = re.sub(r"\b"+self.jname+r"\b", "", decl[1].replace(":", "")).strip()
self.base = re.sub(r"^.*:", "", decl[1].split(",")[0]).strip().replace(self.jname, "")
def __repr__(self):
return Template("CLASS $namespace::$classpath.$name : $base").substitute(**self.__dict__)
def getAllImports(self, module):
return ["import %s;" % c for c in sorted(self.imports) if not c.startswith('org.opencv.'+module)
and (not c.startswith('java.lang.') or c.count('.') != 2)]
def addImports(self, ctype):
if ctype in type_dict:
if "j_import" in type_dict[ctype]:
self.imports.add(type_dict[ctype]["j_import"])
if "v_type" in type_dict[ctype]:
self.imports.add("java.util.List")
self.imports.add("java.util.ArrayList")
self.imports.add("org.opencv.utils.Converters")
if type_dict[ctype]["v_type"] in ("Mat", "vector_Mat"):
self.imports.add("org.opencv.core.Mat")
def getAllMethods(self):
result = []
result.extend([fi for fi in sorted(self.methods) if fi.isconstructor])
result.extend([fi for fi in sorted(self.methods) if not fi.isconstructor])
return result
def addMethod(self, fi):
self.methods.append(fi)
def getConst(self, name):
for cand in self.consts + self.private_consts:
if cand.name == name:
return cand
return None
def addConst(self, constinfo):
# choose right list (public or private)
consts = self.consts
for c in const_private_list:
if re.match(c, constinfo.name):
consts = self.private_consts
break
consts.append(constinfo)
def initCodeStreams(self, Module):
self.j_code = StringIO()
self.jn_code = StringIO()
self.cpp_code = StringIO()
if self.base:
self.j_code.write(T_JAVA_START_INHERITED)
else:
if self.name != Module:
self.j_code.write(T_JAVA_START_ORPHAN)
else:
self.j_code.write(T_JAVA_START_MODULE)
# misc handling
if self.name == Module:
for i in module_imports or []:
self.imports.add(i)
if module_j_code:
self.j_code.write(module_j_code)
if module_jn_code:
self.jn_code.write(module_jn_code)
def cleanupCodeStreams(self):
self.j_code.close()
self.jn_code.close()
self.cpp_code.close()
def generateJavaCode(self, m, M):
return Template(self.j_code.getvalue() + "\n\n" +
self.jn_code.getvalue() + "\n}\n").substitute(
module = m,
name = self.name,
jname = self.jname,
imports = "\n".join(self.getAllImports(M)),
docs = self.docstring,
annotation = "\n" + "\n".join(self.annotation) if self.annotation else "",
base = self.base)
def generateCppCode(self):
return self.cpp_code.getvalue()
class ArgInfo():
def __init__(self, arg_tuple): # [ ctype, name, def val, [mod], argno ]
self.pointer = False
ctype = arg_tuple[0]
if ctype.endswith("*"):
ctype = ctype[:-1]
self.pointer = True
self.ctype = ctype
self.name = arg_tuple[1]
self.defval = arg_tuple[2]
self.out = ""
if "/O" in arg_tuple[3]:
self.out = "O"
if "/IO" in arg_tuple[3]:
self.out = "IO"
def __repr__(self):
return Template("ARG $ctype$p $name=$defval").substitute(ctype=self.ctype,
p=" *" if self.pointer else "",
name=self.name,
defval=self.defval)
class FuncInfo(GeneralInfo):
def __init__(self, decl, namespaces=[]): # [ funcname, return_ctype, [modifiers], [args] ]
GeneralInfo.__init__(self, "func", decl, namespaces)
self.cname = get_cname(decl[0])
self.jname = self.name
self.isconstructor = self.name == self.classname
if "[" in self.name:
self.jname = "getelem"
if self.namespace in namespaces_dict:
self.jname = '%s_%s' % (namespaces_dict[self.namespace], self.jname)
for m in decl[2]:
if m.startswith("="):
self.jname = m[1:]
self.static = ["","static"][ "/S" in decl[2] ]
self.ctype = re.sub(r"^CvTermCriteria", "TermCriteria", decl[1] or "")
self.args = []
func_fix_map = func_arg_fix.get(self.jname, {})
for a in decl[3]:
arg = a[:]
arg_fix_map = func_fix_map.get(arg[1], {})
arg[0] = arg_fix_map.get('ctype', arg[0]) #fixing arg type
arg[3] = arg_fix_map.get('attrib', arg[3]) #fixing arg attrib
self.args.append(ArgInfo(arg))
def __repr__(self):
return Template("FUNC <$ctype $namespace.$classpath.$name $args>").substitute(**self.__dict__)
def __lt__(self, other):
return self.__repr__() < other.__repr__()
class JavaWrapperGenerator(object):
def __init__(self):
self.cpp_files = []
self.clear()
def clear(self):
self.namespaces = set(["cv"])
self.classes = { "Mat" : ClassInfo([ 'class Mat', '', [], [] ], self.namespaces) }
self.module = ""
self.Module = ""
self.ported_func_list = []
self.skipped_func_list = []
self.def_args_hist = {} # { def_args_cnt : funcs_cnt }
def add_class(self, decl):
classinfo = ClassInfo(decl, namespaces=self.namespaces)
if classinfo.name in class_ignore_list:
logging.info('ignored: %s', classinfo)
return
name = classinfo.name
if self.isWrapped(name) and not classinfo.base:
logging.warning('duplicated: %s', classinfo)
return
self.classes[name] = classinfo
if name in type_dict and not classinfo.base:
logging.warning('duplicated: %s', classinfo)
return
type_dict.setdefault(name, {}).update(
{ "j_type" : classinfo.jname,
"jn_type" : "long", "jn_args" : (("__int64", ".nativeObj"),),
"jni_name" : "(*("+classinfo.fullName(isCPP=True)+"*)%(n)s_nativeObj)", "jni_type" : "jlong",
"suffix" : "J",
"j_import" : "org.opencv.%s.%s" % (self.module, classinfo.jname)
}
)
type_dict.setdefault(name+'*', {}).update(
{ "j_type" : classinfo.jname,
"jn_type" : "long", "jn_args" : (("__int64", ".nativeObj"),),
"jni_name" : "("+classinfo.fullName(isCPP=True)+"*)%(n)s_nativeObj", "jni_type" : "jlong",
"suffix" : "J",
"j_import" : "org.opencv.%s.%s" % (self.module, classinfo.jname)
}
)
# missing_consts { Module : { public : [[name, val],...], private : [[]...] } }
if name in missing_consts:
if 'private' in missing_consts[name]:
for (n, val) in missing_consts[name]['private']:
classinfo.private_consts.append( ConstInfo([n, val], addedManually=True) )
if 'public' in missing_consts[name]:
for (n, val) in missing_consts[name]['public']:
classinfo.consts.append( ConstInfo([n, val], addedManually=True) )
# class props
for p in decl[3]:
if True: #"vector" not in p[0]:
classinfo.props.append( ClassPropInfo(p) )
else:
logging.warning("Skipped property: [%s]" % name, p)
if classinfo.base:
classinfo.addImports(classinfo.base)
type_dict.setdefault("Ptr_"+name, {}).update(
{ "j_type" : classinfo.jname,
"jn_type" : "long", "jn_args" : (("__int64", ".getNativeObjAddr()"),),
"jni_name" : "*((Ptr<"+classinfo.fullName(isCPP=True)+">*)%(n)s_nativeObj)", "jni_type" : "jlong",
"suffix" : "J",
"j_import" : "org.opencv.%s.%s" % (self.module, classinfo.jname)
}
)
logging.info('ok: class %s, name: %s, base: %s', classinfo, name, classinfo.base)
def add_const(self, decl, enumType=None): # [ "const cname", val, [], [] ]
constinfo = ConstInfo(decl, namespaces=self.namespaces, enumType=enumType)
if constinfo.isIgnored():
logging.info('ignored: %s', constinfo)
else:
if not self.isWrapped(constinfo.classname):
logging.info('class not found: %s', constinfo)
constinfo.name = constinfo.classname + '_' + constinfo.name
constinfo.classname = ''
ci = self.getClass(constinfo.classname)
duplicate = ci.getConst(constinfo.name)
if duplicate:
if duplicate.addedManually:
logging.info('manual: %s', constinfo)
else:
logging.warning('duplicated: %s', constinfo)
else:
ci.addConst(constinfo)
logging.info('ok: %s', constinfo)
def add_enum(self, decl): # [ "enum cname", "", [], [] ]
enumType = decl[0].rsplit(" ", 1)[1]
if enumType.endswith("<unnamed>"):
enumType = None
else:
ctype = normalize_class_name(enumType)
type_dict[ctype] = { "cast_from" : "int", "cast_to" : get_cname(enumType), "j_type" : "int", "jn_type" : "int", "jni_type" : "jint", "suffix" : "I" }
const_decls = decl[3]
for decl in const_decls:
self.add_const(decl, enumType)
def add_func(self, decl):
fi = FuncInfo(decl, namespaces=self.namespaces)
classname = fi.classname or self.Module
if classname in class_ignore_list:
logging.info('ignored: %s', fi)
elif classname in ManualFuncs and fi.jname in ManualFuncs[classname]:
logging.info('manual: %s', fi)
elif not self.isWrapped(classname):
logging.warning('not found: %s', fi)
else:
self.getClass(classname).addMethod(fi)
logging.info('ok: %s', fi)
# calc args with def val
cnt = len([a for a in fi.args if a.defval])
self.def_args_hist[cnt] = self.def_args_hist.get(cnt, 0) + 1
def save(self, path, buf):
global total_files, updated_files
total_files += 1
if os.path.exists(path):
with open(path, "rt") as f:
content = f.read()
if content == buf:
return
with codecs.open(path, "w", "utf-8") as f:
f.write(buf)
updated_files += 1
def gen(self, srcfiles, module, output_path, output_jni_path, output_java_path, common_headers):
self.clear()
self.module = module
self.Module = module.capitalize()
# TODO: support UMat versions of declarations (implement UMat-wrapper for Java)
parser = hdr_parser.CppHeaderParser(generate_umat_decls=False)
self.add_class( ['class ' + self.Module, '', [], []] ) # [ 'class/struct cname', ':bases', [modlist] [props] ]
# scan the headers and build more descriptive maps of classes, consts, functions
includes = []
for hdr in common_headers:
logging.info("\n===== Common header : %s =====", hdr)
includes.append('#include "' + hdr + '"')
for hdr in srcfiles:
decls = parser.parse(hdr)
self.namespaces = parser.namespaces
logging.info("\n\n===== Header: %s =====", hdr)
logging.info("Namespaces: %s", parser.namespaces)
if decls:
includes.append('#include "' + hdr + '"')
else:
logging.info("Ignore header: %s", hdr)
for decl in decls:
logging.info("\n--- Incoming ---\n%s", pformat(decl[:5], 4)) # without docstring
name = decl[0]
if name.startswith("struct") or name.startswith("class"):
self.add_class(decl)
elif name.startswith("const"):
self.add_const(decl)
elif name.startswith("enum"):
# enum
self.add_enum(decl)
else: # function
self.add_func(decl)
logging.info("\n\n===== Generating... =====")
moduleCppCode = StringIO()
package_path = os.path.join(output_java_path, module)
mkdir_p(package_path)
for ci in self.classes.values():
if ci.name == "Mat":
continue
ci.initCodeStreams(self.Module)
self.gen_class(ci)
classJavaCode = ci.generateJavaCode(self.module, self.Module)
self.save("%s/%s/%s.java" % (output_java_path, module, ci.jname), classJavaCode)
moduleCppCode.write(ci.generateCppCode())
ci.cleanupCodeStreams()
cpp_file = os.path.abspath(os.path.join(output_jni_path, module + ".inl.hpp"))
self.cpp_files.append(cpp_file)
self.save(cpp_file, T_CPP_MODULE.substitute(m = module, M = module.upper(), code = moduleCppCode.getvalue(), includes = "\n".join(includes)))
self.save(os.path.join(output_path, module+".txt"), self.makeReport())
def makeReport(self):
'''
Returns string with generator report
'''
report = StringIO()
total_count = len(self.ported_func_list)+ len(self.skipped_func_list)
report.write("PORTED FUNCs LIST (%i of %i):\n\n" % (len(self.ported_func_list), total_count))
report.write("\n".join(self.ported_func_list))
report.write("\n\nSKIPPED FUNCs LIST (%i of %i):\n\n" % (len(self.skipped_func_list), total_count))
report.write("".join(self.skipped_func_list))
for i in self.def_args_hist.keys():
report.write("\n%i def args - %i funcs" % (i, self.def_args_hist[i]))
return report.getvalue()
def fullTypeName(self, t):
if self.isWrapped(t):
return self.getClass(t).fullName(isCPP=True)
else:
return cast_from(t)
def gen_func(self, ci, fi, prop_name=''):
logging.info("%s", fi)
j_code = ci.j_code
jn_code = ci.jn_code
cpp_code = ci.cpp_code
# c_decl
# e.g: void add(Mat src1, Mat src2, Mat dst, Mat mask = Mat(), int dtype = -1)
if prop_name:
c_decl = "%s %s::%s" % (fi.ctype, fi.classname, prop_name)
else:
decl_args = []
for a in fi.args:
s = a.ctype or ' _hidden_ '
if a.pointer:
s += "*"
elif a.out:
s += "&"
s += " " + a.name
if a.defval:
s += " = "+a.defval
decl_args.append(s)
c_decl = "%s %s %s(%s)" % ( fi.static, fi.ctype, fi.cname, ", ".join(decl_args) )
# java comment
j_code.write( "\n //\n // C++: %s\n //\n\n" % c_decl )
# check if we 'know' all the types
if fi.ctype not in type_dict: # unsupported ret type
msg = "// Return type '%s' is not supported, skipping the function\n\n" % fi.ctype
self.skipped_func_list.append(c_decl + "\n" + msg)
j_code.write( " "*4 + msg )
logging.warning("SKIP:" + c_decl.strip() + "\t due to RET type " + fi.ctype)
return
for a in fi.args:
if a.ctype not in type_dict:
if not a.defval and a.ctype.endswith("*"):
a.defval = 0
if a.defval:
a.ctype = ''
continue
msg = "// Unknown type '%s' (%s), skipping the function\n\n" % (a.ctype, a.out or "I")
self.skipped_func_list.append(c_decl + "\n" + msg)
j_code.write( " "*4 + msg )
logging.warning("SKIP:" + c_decl.strip() + "\t due to ARG type " + a.ctype + "/" + (a.out or "I"))
return
self.ported_func_list.append(c_decl)
# jn & cpp comment
jn_code.write( "\n // C++: %s\n" % c_decl )
cpp_code.write( "\n//\n// %s\n//\n" % c_decl )
# java args
args = fi.args[:] # copy
j_signatures=[]
suffix_counter = int(ci.methods_suffixes.get(fi.jname, -1))
while True:
suffix_counter += 1
ci.methods_suffixes[fi.jname] = suffix_counter
# java native method args
jn_args = []
# jni (cpp) function args
jni_args = [ArgInfo([ "env", "env", "", [], "" ]), ArgInfo([ "cls", "", "", [], "" ])]
j_prologue = []
j_epilogue = []
c_prologue = []
c_epilogue = []
if type_dict[fi.ctype]["jni_type"] == "jdoubleArray":
fields = type_dict[fi.ctype]["jn_args"]
c_epilogue.append( \
("jdoubleArray _da_retval_ = env->NewDoubleArray(%(cnt)i); " +
"jdouble _tmp_retval_[%(cnt)i] = {%(args)s}; " +
"env->SetDoubleArrayRegion(_da_retval_, 0, %(cnt)i, _tmp_retval_);") %
{ "cnt" : len(fields), "args" : ", ".join(["(jdouble)_retval_" + f[1] for f in fields]) } )
if fi.classname and fi.ctype and not fi.static: # non-static class method except c-tor
# adding 'self'
jn_args.append ( ArgInfo([ "__int64", "nativeObj", "", [], "" ]) )
jni_args.append( ArgInfo([ "__int64", "self", "", [], "" ]) )
ci.addImports(fi.ctype)
for a in args:
if not a.ctype: # hidden
continue
ci.addImports(a.ctype)
if "v_type" in type_dict[a.ctype]: # pass as vector
if type_dict[a.ctype]["v_type"] in ("Mat", "vector_Mat"): #pass as Mat or vector_Mat
jn_args.append ( ArgInfo([ "__int64", "%s_mat.nativeObj" % a.name, "", [], "" ]) )
jni_args.append ( ArgInfo([ "__int64", "%s_mat_nativeObj" % a.name, "", [], "" ]) )
c_prologue.append( type_dict[a.ctype]["jni_var"] % {"n" : a.name} + ";" )
c_prologue.append( "Mat& %(n)s_mat = *((Mat*)%(n)s_mat_nativeObj)" % {"n" : a.name} + ";" )
if "I" in a.out or not a.out:
if type_dict[a.ctype]["v_type"] == "vector_Mat":
j_prologue.append( "List<Mat> %(n)s_tmplm = new ArrayList<Mat>((%(n)s != null) ? %(n)s.size() : 0);" % {"n" : a.name } )
j_prologue.append( "Mat %(n)s_mat = Converters.%(t)s_to_Mat(%(n)s, %(n)s_tmplm);" % {"n" : a.name, "t" : a.ctype} )
else:
if not type_dict[a.ctype]["j_type"].startswith("MatOf"):
j_prologue.append( "Mat %(n)s_mat = Converters.%(t)s_to_Mat(%(n)s);" % {"n" : a.name, "t" : a.ctype} )
else:
j_prologue.append( "Mat %s_mat = %s;" % (a.name, a.name) )
c_prologue.append( "Mat_to_%(t)s( %(n)s_mat, %(n)s );" % {"n" : a.name, "t" : a.ctype} )
else:
if not type_dict[a.ctype]["j_type"].startswith("MatOf"):
j_prologue.append( "Mat %s_mat = new Mat();" % a.name )
else:
j_prologue.append( "Mat %s_mat = %s;" % (a.name, a.name) )
if "O" in a.out:
if not type_dict[a.ctype]["j_type"].startswith("MatOf"):
j_epilogue.append("Converters.Mat_to_%(t)s(%(n)s_mat, %(n)s);" % {"t" : a.ctype, "n" : a.name})
j_epilogue.append( "%s_mat.release();" % a.name )
c_epilogue.append( "%(t)s_to_Mat( %(n)s, %(n)s_mat );" % {"n" : a.name, "t" : a.ctype} )
else: #pass as list
jn_args.append ( ArgInfo([ a.ctype, a.name, "", [], "" ]) )
jni_args.append ( ArgInfo([ a.ctype, "%s_list" % a.name , "", [], "" ]) )
c_prologue.append(type_dict[a.ctype]["jni_var"] % {"n" : a.name} + ";")
if "I" in a.out or not a.out:
c_prologue.append("%(n)s = List_to_%(t)s(env, %(n)s_list);" % {"n" : a.name, "t" : a.ctype})
if "O" in a.out:
c_epilogue.append("Copy_%s_to_List(env,%s,%s_list);" % (a.ctype, a.name, a.name))
else:
fields = type_dict[a.ctype].get("jn_args", ((a.ctype, ""),))
if "I" in a.out or not a.out or self.isWrapped(a.ctype): # input arg, pass by primitive fields
for f in fields:
jn_args.append ( ArgInfo([ f[0], a.name + f[1], "", [], "" ]) )
jni_args.append( ArgInfo([ f[0], a.name + normalize_field_name(f[1]), "", [], "" ]) )
if "O" in a.out and not self.isWrapped(a.ctype): # out arg, pass as double[]
jn_args.append ( ArgInfo([ "double[]", "%s_out" % a.name, "", [], "" ]) )
jni_args.append ( ArgInfo([ "double[]", "%s_out" % a.name, "", [], "" ]) )
j_prologue.append( "double[] %s_out = new double[%i];" % (a.name, len(fields)) )
c_epilogue.append(
"jdouble tmp_%(n)s[%(cnt)i] = {%(args)s}; env->SetDoubleArrayRegion(%(n)s_out, 0, %(cnt)i, tmp_%(n)s);" %
{ "n" : a.name, "cnt" : len(fields), "args" : ", ".join(["(jdouble)" + a.name + f[1] for f in fields]) } )
if type_dict[a.ctype]["j_type"] in ('bool', 'int', 'long', 'float', 'double'):
j_epilogue.append('if(%(n)s!=null) %(n)s[0] = (%(t)s)%(n)s_out[0];' % {'n':a.name,'t':type_dict[a.ctype]["j_type"]})
else:
set_vals = []
i = 0
for f in fields:
set_vals.append( "%(n)s%(f)s = %(t)s%(n)s_out[%(i)i]" %
{"n" : a.name, "t": ("("+type_dict[f[0]]["j_type"]+")", "")[f[0]=="double"], "f" : f[1], "i" : i}
)
i += 1
j_epilogue.append( "if("+a.name+"!=null){ " + "; ".join(set_vals) + "; } ")
# calculate java method signature to check for uniqueness
j_args = []
for a in args:
if not a.ctype: #hidden
continue
jt = type_dict[a.ctype]["j_type"]
if a.out and jt in ('bool', 'int', 'long', 'float', 'double'):
jt += '[]'
j_args.append( jt + ' ' + a.name )
j_signature = type_dict[fi.ctype]["j_type"] + " " + \
fi.jname + "(" + ", ".join(j_args) + ")"
logging.info("java: " + j_signature)
if j_signature in j_signatures:
if args:
args.pop()
continue
else:
break
# java part:
# private java NATIVE method decl
# e.g.
# private static native void add_0(long src1, long src2, long dst, long mask, int dtype);
jn_code.write( Template(
" private static native $type $name($args);\n").substitute(
type = type_dict[fi.ctype].get("jn_type", "double[]"),
name = fi.jname + '_' + str(suffix_counter),
args = ", ".join(["%s %s" % (type_dict[a.ctype]["jn_type"], normalize_field_name(a.name)) for a in jn_args])
) )
# java part:
#java doc comment
if fi.docstring:
lines = fi.docstring.splitlines()
returnTag = False
javadocParams = []
toWrite = []
inCode = False
for index, line in enumerate(lines):
p0 = line.find("@param")
if p0 != -1:
p0 += 7
p1 = line.find(' ', p0)
p1 = len(line) if p1 == -1 else p1
name = line[p0:p1]
javadocParams.append(name)
for arg in j_args:
if arg.endswith(" " + name):
toWrite.append(line);
break
else:
if "<code>" in line:
inCode = True
if "</code>" in line:
inCode = False
if "@return " in line:
returnTag = True
if (not inCode and toWrite and not toWrite[-1] and
line and not line.startswith("\\") and not line.startswith("<ul>") and not line.startswith("@param")):
toWrite.append("<p>");
if index == len(lines) - 1:
for arg in j_args:
name = arg[arg.rfind(' ') + 1:]
if not name in javadocParams:
toWrite.append(" * @param " + name + " automatically generated");
if type_dict[fi.ctype]["j_type"] and not returnTag and fi.ctype != "void":
toWrite.append(" * @return automatically generated");
toWrite.append(line);
for line in toWrite:
j_code.write(" "*4 + line + "\n")
if fi.annotation:
j_code.write(" "*4 + "\n".join(fi.annotation) + "\n")
# public java wrapper method impl (calling native one above)
# e.g.
# public static void add( Mat src1, Mat src2, Mat dst, Mat mask, int dtype )
# { add_0( src1.nativeObj, src2.nativeObj, dst.nativeObj, mask.nativeObj, dtype ); }
ret_type = fi.ctype
if fi.ctype.endswith('*'):
ret_type = ret_type[:-1]
ret_val = type_dict[ret_type]["j_type"] + " retVal = " if j_epilogue else "return "
tail = ""
ret = "return retVal;" if j_epilogue else ""
if "v_type" in type_dict[ret_type]:
j_type = type_dict[ret_type]["j_type"]
if type_dict[ret_type]["v_type"] in ("Mat", "vector_Mat"):
tail = ")"
if j_type.startswith('MatOf'):
ret_val += j_type + ".fromNativeAddr("
else:
ret_val = "Mat retValMat = new Mat("
j_prologue.append( j_type + ' retVal = new Array' + j_type+'();')
j_epilogue.append('Converters.Mat_to_' + ret_type + '(retValMat, retVal);')
ret = "return retVal;"
elif ret_type.startswith("Ptr_"):
constructor = type_dict[ret_type]["j_type"] + ".__fromPtr__("
if j_epilogue:
ret_val = type_dict[fi.ctype]["j_type"] + " retVal = " + constructor
else:
ret_val = "return " + constructor
tail = ")"
elif ret_type == "void":
ret_val = ""
ret = ""
elif ret_type == "": # c-tor
if fi.classname and ci.base:
ret_val = "super("
tail = ")"
else:
ret_val = "nativeObj = "
ret = ""
elif self.isWrapped(ret_type): # wrapped class
constructor = self.getClass(ret_type).jname + "("
if j_epilogue:
ret_val = type_dict[ret_type]["j_type"] + " retVal = new " + constructor
else:
ret_val = "return new " + constructor
tail = ")"
elif "jn_type" not in type_dict[ret_type]:
constructor = type_dict[ret_type]["j_type"] + "("
if j_epilogue:
ret_val = type_dict[fi.ctype]["j_type"] + " retVal = new " + constructor
else:
ret_val = "return new " + constructor
tail = ")"
static = "static"
if fi.classname:
static = fi.static
j_code.write( Template(
""" public $static$j_type$j_name($j_args) {$prologue
$ret_val$jn_name($jn_args_call)$tail;$epilogue$ret
}
"""
).substitute(
ret = "\n " + ret if ret else "",
ret_val = ret_val,
tail = tail,
prologue = "\n " + "\n ".join(j_prologue) if j_prologue else "",
epilogue = "\n " + "\n ".join(j_epilogue) if j_epilogue else "",
static = static + " " if static else "",
j_type=type_dict[fi.ctype]["j_type"] + " " if type_dict[fi.ctype]["j_type"] else "",
j_name=fi.jname,
j_args=", ".join(j_args),
jn_name=fi.jname + '_' + str(suffix_counter),
jn_args_call=", ".join( [a.name for a in jn_args] ),
)
)
# cpp part:
# jni_func(..) { _retval_ = cv_func(..); return _retval_; }
ret = "return _retval_;" if c_epilogue else ""
default = "return 0;"
if fi.ctype == "void":
ret = ""
default = ""
elif not fi.ctype: # c-tor
ret = "return (jlong) _retval_;"
elif "v_type" in type_dict[fi.ctype]: # c-tor
if type_dict[fi.ctype]["v_type"] in ("Mat", "vector_Mat"):
ret = "return (jlong) _retval_;"
elif fi.ctype in ['String', 'string']:
ret = "return env->NewStringUTF(_retval_.c_str());"
default = 'return env->NewStringUTF("");'
elif self.isWrapped(fi.ctype): # wrapped class:
ret = "return (jlong) new %s(_retval_);" % self.fullTypeName(fi.ctype)
elif fi.ctype.startswith('Ptr_'):
c_prologue.append("typedef Ptr<%s> %s;" % (self.fullTypeName(fi.ctype[4:]), fi.ctype))
ret = "return (jlong)(new %(ctype)s(_retval_));" % { 'ctype':fi.ctype }
elif self.isWrapped(ret_type): # pointer to wrapped class:
ret = "return (jlong) _retval_;"
elif type_dict[fi.ctype]["jni_type"] == "jdoubleArray":
ret = "return _da_retval_;"
# hack: replacing func call with property set/get
name = fi.name
if prop_name:
if args:
name = prop_name + " = "
else:
name = prop_name + ";//"
cvname = fi.fullName(isCPP=True)
retval = self.fullTypeName(fi.ctype) + " _retval_ = " if ret else "return "
if fi.ctype == "void":
retval = ""
elif fi.ctype == "String":
retval = "cv::" + self.fullTypeName(fi.ctype) + " _retval_ = "
elif fi.ctype == "string":
retval = "std::string _retval_ = "
elif "v_type" in type_dict[fi.ctype]: # vector is returned
retval = type_dict[fi.ctype]['jni_var'] % {"n" : '_ret_val_vector_'} + " = "
if type_dict[fi.ctype]["v_type"] in ("Mat", "vector_Mat"):
c_epilogue.append("Mat* _retval_ = new Mat();")
c_epilogue.append(fi.ctype+"_to_Mat(_ret_val_vector_, *_retval_);")
else:
if ret:
c_epilogue.append("jobject _retval_ = " + fi.ctype + "_to_List(env, _ret_val_vector_);")
else:
c_epilogue.append("return " + fi.ctype + "_to_List(env, _ret_val_vector_);")
if fi.classname:
if not fi.ctype: # c-tor
retval = fi.fullClass(isCPP=True) + "* _retval_ = "
cvname = "new " + fi.fullClass(isCPP=True)
elif fi.static:
cvname = fi.fullName(isCPP=True)
else:
cvname = ("me->" if not self.isSmartClass(ci) else "(*me)->") + name
c_prologue.append(
"%(cls)s* me = (%(cls)s*) self; //TODO: check for NULL"
% { "cls" : self.smartWrap(ci, fi.fullClass(isCPP=True))}
)
cvargs = []
for a in args:
if a.pointer:
jni_name = "&%(n)s"
else:
jni_name = "%(n)s"
if not a.out and not "jni_var" in type_dict[a.ctype]:
# explicit cast to C type to avoid ambiguous call error on platforms (mingw)
# where jni types are different from native types (e.g. jint is not the same as int)
jni_name = "(%s)%s" % (cast_to(a.ctype), jni_name)
if not a.ctype: # hidden
jni_name = a.defval
cvargs.append( type_dict[a.ctype].get("jni_name", jni_name) % {"n" : a.name})
if "v_type" not in type_dict[a.ctype]:
if ("I" in a.out or not a.out or self.isWrapped(a.ctype)) and "jni_var" in type_dict[a.ctype]: # complex type
c_prologue.append(type_dict[a.ctype]["jni_var"] % {"n" : a.name} + ";")
if a.out and "I" not in a.out and not self.isWrapped(a.ctype) and a.ctype:
c_prologue.append("%s %s;" % (a.ctype, a.name))
rtype = type_dict[fi.ctype].get("jni_type", "jdoubleArray")
clazz = ci.jname
cpp_code.write ( Template(
"""
${namespace}
JNIEXPORT $rtype JNICALL Java_org_opencv_${module}_${clazz}_$fname ($argst);
JNIEXPORT $rtype JNICALL Java_org_opencv_${module}_${clazz}_$fname
($args)
{
static const char method_name[] = "$module::$fname()";
try {
LOGD("%s", method_name);$prologue
$retval$cvname($cvargs);$epilogue$ret
} catch(const std::exception &e) {
throwJavaException(env, &e, method_name);
} catch (...) {
throwJavaException(env, 0, method_name);
}$default
}
""" ).substitute(
rtype = rtype,
module = self.module.replace('_', '_1'),
clazz = clazz.replace('_', '_1'),
fname = (fi.jname + '_' + str(suffix_counter)).replace('_', '_1'),
args = ", ".join(["%s %s" % (type_dict[a.ctype].get("jni_type"), a.name) for a in jni_args]),
argst = ", ".join([type_dict[a.ctype].get("jni_type") for a in jni_args]),
prologue = "\n " + "\n ".join(c_prologue) if c_prologue else "",
epilogue = "\n " + "\n ".join(c_epilogue) if c_epilogue else "",
ret = "\n " + ret if ret else "",
cvname = cvname,
cvargs = " " + ", ".join(cvargs) + " " if cvargs else "",
default = "\n " + default if default else "",
retval = retval,
namespace = ('using namespace ' + ci.namespace.replace('.', '::') + ';') if ci.namespace else ''
) )
# adding method signature to dictionary
j_signatures.append(j_signature)
# processing args with default values
if args and args[-1].defval:
args.pop()
else:
break
def gen_class(self, ci):
logging.info("%s", ci)
# constants
consts_map = {c.name: c for c in ci.private_consts}
consts_map.update({c.name: c for c in ci.consts})
def const_value(v):
if v in consts_map:
target = consts_map[v]
assert target.value != v
return const_value(target.value)
return v
if ci.private_consts:
logging.info("%s", ci.private_consts)
ci.j_code.write("""
private static final int
%s;\n\n""" % (",\n"+" "*12).join(["%s = %s" % (c.name, const_value(c.value)) for c in ci.private_consts])
)
if ci.consts:
enumTypes = set(map(lambda c: c.enumType, ci.consts))
grouped_consts = {enumType: [c for c in ci.consts if c.enumType == enumType] for enumType in enumTypes}
for typeName, consts in grouped_consts.items():
logging.info("%s", consts)
if typeName:
typeName = typeName.rsplit(".", 1)[-1]
###################### Utilize Java enums ######################
# ci.j_code.write("""
# public enum {1} {{
# {0};
#
# private final int id;
# {1}(int id) {{ this.id = id; }}
# {1}({1} _this) {{ this.id = _this.id; }}
# public int getValue() {{ return id; }}
# }}\n\n""".format((",\n"+" "*8).join(["%s(%s)" % (c.name, c.value) for c in consts]), typeName)
# )
################################################################
ci.j_code.write("""
// C++: enum {1}
public static final int
{0};\n\n""".format((",\n"+" "*12).join(["%s = %s" % (c.name, c.value) for c in consts]), typeName)
)
else:
ci.j_code.write("""
// C++: enum <unnamed>
public static final int
{0};\n\n""".format((",\n"+" "*12).join(["%s = %s" % (c.name, c.value) for c in consts]))
)
# methods
for fi in ci.getAllMethods():
self.gen_func(ci, fi)
# props
for pi in ci.props:
# getter
getter_name = ci.fullName() + ".get_" + pi.name
fi = FuncInfo( [getter_name, pi.ctype, [], []], self.namespaces ) # [ funcname, return_ctype, [modifiers], [args] ]
self.gen_func(ci, fi, pi.name)
if pi.rw:
#setter
setter_name = ci.fullName() + ".set_" + pi.name
fi = FuncInfo( [ setter_name, "void", [], [ [pi.ctype, pi.name, "", [], ""] ] ], self.namespaces)
self.gen_func(ci, fi, pi.name)
# manual ports
if ci.name in ManualFuncs:
for func in ManualFuncs[ci.name].keys():
ci.j_code.write ( "\n".join(ManualFuncs[ci.name][func]["j_code"]) )
ci.jn_code.write( "\n".join(ManualFuncs[ci.name][func]["jn_code"]) )
ci.cpp_code.write( "\n".join(ManualFuncs[ci.name][func]["cpp_code"]) )
if ci.name != self.Module or ci.base:
# finalize()
ci.j_code.write(
"""
@Override
protected void finalize() throws Throwable {
delete(nativeObj);
}
""" )
ci.jn_code.write(
"""
// native support for java finalize()
private static native void delete(long nativeObj);
""" )
# native support for java finalize()
ci.cpp_code.write(
"""
//
// native support for java finalize()
// static void %(cls)s::delete( __int64 self )
//
JNIEXPORT void JNICALL Java_org_opencv_%(module)s_%(j_cls)s_delete(JNIEnv*, jclass, jlong);
JNIEXPORT void JNICALL Java_org_opencv_%(module)s_%(j_cls)s_delete
(JNIEnv*, jclass, jlong self)
{
delete (%(cls)s*) self;
}
""" % {"module" : module.replace('_', '_1'), "cls" : self.smartWrap(ci, ci.fullName(isCPP=True)), "j_cls" : ci.jname.replace('_', '_1')}
)
def getClass(self, classname):
return self.classes[classname or self.Module]
def isWrapped(self, classname):
name = classname or self.Module
return name in self.classes
def isSmartClass(self, ci):
'''
Check if class stores Ptr<T>* instead of T* in nativeObj field
'''
if ci.smart != None:
return ci.smart
# if parents are smart (we hope) then children are!
# if not we believe the class is smart if it has "create" method
ci.smart = False
if ci.base or ci.name == 'Algorithm':
ci.smart = True
else:
for fi in ci.methods:
if fi.name == "create":
ci.smart = True
break
return ci.smart
def smartWrap(self, ci, fullname):
'''
Wraps fullname with Ptr<> if needed
'''
if self.isSmartClass(ci):
return "Ptr<" + fullname + ">"
return fullname
def finalize(self, output_jni_path):
list_file = os.path.join(output_jni_path, "opencv_jni.hpp")
self.save(list_file, '\n'.join(['#include "%s"' % f for f in self.cpp_files]))
def copy_java_files(java_files_dir, java_base_path, default_package_path='org/opencv/'):
global total_files, updated_files
java_files = []
re_filter = re.compile(r'^.+\.(java|aidl)(.in)?$')
for root, dirnames, filenames in os.walk(java_files_dir):
java_files += [os.path.join(root, filename) for filename in filenames if re_filter.match(filename)]
java_files = [f.replace('\\', '/') for f in java_files]
re_package = re.compile(r'^package +(.+);')
re_prefix = re.compile(r'^.+[\+/]([^\+]+).(java|aidl)(.in)?$')
for java_file in java_files:
src = checkFileRemap(java_file)
with open(src, 'r') as f:
package_line = f.readline()
m = re_prefix.match(java_file)
target_fname = (m.group(1) + '.' + m.group(2)) if m else os.path.basename(java_file)
m = re_package.match(package_line)
if m:
package = m.group(1)
package_path = package.replace('.', '/')
else:
package_path = default_package_path
#print(java_file, package_path, target_fname)
dest = os.path.join(java_base_path, os.path.join(package_path, target_fname))
assert dest[-3:] != '.in', dest + ' | ' + target_fname
mkdir_p(os.path.dirname(dest))
total_files += 1
if (not os.path.exists(dest)) or (os.stat(src).st_mtime - os.stat(dest).st_mtime > 1):
copyfile(src, dest)
updated_files += 1
def sanitize_java_documentation_string(doc, type):
if type == "class":
doc = doc.replace("@param ", "")
doc = re.sub(re.compile('\\\\f\\$(.*?)\\\\f\\$', re.DOTALL), '\\(' + r'\1' + '\\)', doc)
doc = re.sub(re.compile('\\\\f\\[(.*?)\\\\f\\]', re.DOTALL), '\\(' + r'\1' + '\\)', doc)
doc = re.sub(re.compile('\\\\f\\{(.*?)\\\\f\\}', re.DOTALL), '\\(' + r'\1' + '\\)', doc)
doc = doc.replace("&", "&") \
.replace("\\<", "<") \
.replace("\\>", ">") \
.replace("<", "<") \
.replace(">", ">") \
.replace("$", "$$") \
.replace("@anchor", "") \
.replace("@brief ", "").replace("\\brief ", "") \
.replace("@cite", "CITE:") \
.replace("@code{.cpp}", "<code>") \
.replace("@code{.txt}", "<code>") \
.replace("@code", "<code>") \
.replace("@copydoc", "") \
.replace("@copybrief", "") \
.replace("@date", "") \
.replace("@defgroup", "") \
.replace("@details ", "") \
.replace("@endcode", "</code>") \
.replace("@endinternal", "") \
.replace("@file", "") \
.replace("@include", "INCLUDE:") \
.replace("@ingroup", "") \
.replace("@internal", "") \
.replace("@overload", "") \
.replace("@param[in]", "@param") \
.replace("@param[out]", "@param") \
.replace("@ref", "REF:") \
.replace("@returns", "@return") \
.replace("@sa", "SEE:") \
.replace("@see", "SEE:") \
.replace("@snippet", "SNIPPET:") \
.replace("@todo", "TODO:") \
.replace("@warning ", "WARNING: ")
doc = re.sub(re.compile('\\*\\*([^\\*]+?)\\*\\*', re.DOTALL), '<b>' + r'\1' + '</b>', doc)
lines = doc.splitlines()
lines = list(map(lambda x: x[x.find('*'):].strip() if x.lstrip().startswith("*") else x, lines))
listInd = [];
indexDiff = 0;
for index, line in enumerate(lines[:]):
if line.strip().startswith("-"):
i = line.find("-")
if not listInd or i > listInd[-1]:
lines.insert(index + indexDiff, " "*len(listInd) + "<ul>")
indexDiff += 1
listInd.append(i);
lines.insert(index + indexDiff, " "*len(listInd) + "<li>")
indexDiff += 1
elif i == listInd[-1]:
lines.insert(index + indexDiff, " "*len(listInd) + "</li>")
indexDiff += 1
lines.insert(index + indexDiff, " "*len(listInd) + "<li>")
indexDiff += 1
elif len(listInd) > 1 and i == listInd[-2]:
lines.insert(index + indexDiff, " "*len(listInd) + "</li>")
indexDiff += 1
del listInd[-1]
lines.insert(index + indexDiff, " "*len(listInd) + "</ul>")
indexDiff += 1
lines.insert(index + indexDiff, " "*len(listInd) + "<li>")
indexDiff += 1
else:
lines.insert(index + indexDiff, " "*len(listInd) + "</li>")
indexDiff += 1
del listInd[-1]
lines.insert(index + indexDiff, " "*len(listInd) + "</ul>")
indexDiff += 1
lines.insert(index + indexDiff, " "*len(listInd) + "<ul>")
indexDiff += 1
listInd.append(i);
lines.insert(index + indexDiff, " "*len(listInd) + "<li>")
indexDiff += 1
lines[index + indexDiff] = lines[index + indexDiff][0:i] + lines[index + indexDiff][i + 1:]
else:
if listInd and (not line or line == "*" or line.startswith("@note")):
lines.insert(index + indexDiff, " "*len(listInd) + "</li>")
indexDiff += 1
del listInd[-1]
lines.insert(index + indexDiff, " "*len(listInd) + "</ul>")
indexDiff += 1
i = len(listInd) - 1
for value in enumerate(listInd):
lines.append(" "*i + " </li>")
lines.append(" "*i + "</ul>")
i -= 1;
lines = list(map(lambda x: "* " + x[1:].strip() if x.startswith("*") and x != "*" else x, lines))
lines = list(map(lambda x: x if x.startswith("*") else "* " + x if x and x != "*" else "*", lines))
lines = list(map(lambda x: x
.replace("@note", "<b>Note:</b>")
, lines))
lines = list(map(lambda x: re.sub('@b ([\\w:]+?)\\b', '<b>' + r'\1' + '</b>', x), lines))
lines = list(map(lambda x: re.sub('@c ([\\w:]+?)\\b', '<tt>' + r'\1' + '</tt>', x), lines))
lines = list(map(lambda x: re.sub('`(.*?)`', "{@code " + r'\1' + '}', x), lines))
lines = list(map(lambda x: re.sub('@p ([\\w:]+?)\\b', '{@code ' + r'\1' + '}', x), lines))
hasValues = False
for line in lines:
if line != "*":
hasValues = True
break
return "/**\n " + "\n ".join(lines) + "\n */" if hasValues else ""
if __name__ == "__main__":
# initialize logger
logging.basicConfig(filename='gen_java.log', format=None, filemode='w', level=logging.INFO)
handler = logging.StreamHandler()
handler.setLevel(logging.WARNING)
logging.getLogger().addHandler(handler)
# parse command line parameters
import argparse
arg_parser = argparse.ArgumentParser(description='OpenCV Java Wrapper Generator')
arg_parser.add_argument('-p', '--parser', required=True, help='OpenCV header parser')
arg_parser.add_argument('-c', '--config', required=True, help='OpenCV modules config')
args=arg_parser.parse_args()
# import header parser
hdr_parser_path = os.path.abspath(args.parser)
if hdr_parser_path.endswith(".py"):
hdr_parser_path = os.path.dirname(hdr_parser_path)
sys.path.append(hdr_parser_path)
import hdr_parser
with open(args.config) as f:
config = json.load(f)
ROOT_DIR = config['rootdir']; assert os.path.exists(ROOT_DIR)
FILES_REMAP = { os.path.realpath(os.path.join(ROOT_DIR, f['src'])): f['target'] for f in config['files_remap'] }
logging.info("\nRemapped configured files (%d):\n%s", len(FILES_REMAP), pformat(FILES_REMAP))
dstdir = "./gen"
jni_path = os.path.join(dstdir, 'cpp'); mkdir_p(jni_path)
java_base_path = os.path.join(dstdir, 'java'); mkdir_p(java_base_path)
java_test_base_path = os.path.join(dstdir, 'test'); mkdir_p(java_test_base_path)
for (subdir, target_subdir) in [('src/java', 'java'), ('android/java', None), ('android-21/java', None)]:
if target_subdir is None:
target_subdir = subdir
java_files_dir = os.path.join(SCRIPT_DIR, subdir)
if os.path.exists(java_files_dir):
target_path = os.path.join(dstdir, target_subdir); mkdir_p(target_path)
copy_java_files(java_files_dir, target_path)
# launch Java Wrapper generator
generator = JavaWrapperGenerator()
gen_dict_files = []
print("JAVA: Processing OpenCV modules: %d" % len(config['modules']))
for e in config['modules']:
(module, module_location) = (e['name'], os.path.join(ROOT_DIR, e['location']))
logging.info("\n=== MODULE: %s (%s) ===\n" % (module, module_location))
java_path = os.path.join(java_base_path, 'org/opencv')
mkdir_p(java_path)
module_imports = []
module_j_code = None
module_jn_code = None
srcfiles = []
common_headers = []
misc_location = os.path.join(module_location, 'misc/java')
srcfiles_fname = os.path.join(misc_location, 'filelist')
if os.path.exists(srcfiles_fname):
with open(srcfiles_fname) as f:
srcfiles = [os.path.join(module_location, str(l).strip()) for l in f.readlines() if str(l).strip()]
else:
re_bad = re.compile(r'(private|.inl.hpp$|_inl.hpp$|.details.hpp$|_winrt.hpp$|/cuda/|/legacy/)')
# .h files before .hpp
h_files = []
hpp_files = []
for root, dirnames, filenames in os.walk(os.path.join(module_location, 'include')):
h_files += [os.path.join(root, filename) for filename in fnmatch.filter(filenames, '*.h')]
hpp_files += [os.path.join(root, filename) for filename in fnmatch.filter(filenames, '*.hpp')]
srcfiles = h_files + hpp_files
srcfiles = [f for f in srcfiles if not re_bad.search(f.replace('\\', '/'))]
logging.info("\nFiles (%d):\n%s", len(srcfiles), pformat(srcfiles))
common_headers_fname = os.path.join(misc_location, 'filelist_common')
if os.path.exists(common_headers_fname):
with open(common_headers_fname) as f:
common_headers = [os.path.join(module_location, str(l).strip()) for l in f.readlines() if str(l).strip()]
logging.info("\nCommon headers (%d):\n%s", len(common_headers), pformat(common_headers))
gendict_fname = os.path.join(misc_location, 'gen_dict.json')
if os.path.exists(gendict_fname):
with open(gendict_fname) as f:
gen_type_dict = json.load(f)
class_ignore_list += gen_type_dict.get("class_ignore_list", [])
const_ignore_list += gen_type_dict.get("const_ignore_list", [])
const_private_list += gen_type_dict.get("const_private_list", [])
missing_consts.update(gen_type_dict.get("missing_consts", {}))
type_dict.update(gen_type_dict.get("type_dict", {}))
ManualFuncs.update(gen_type_dict.get("ManualFuncs", {}))
func_arg_fix.update(gen_type_dict.get("func_arg_fix", {}))
namespaces_dict.update(gen_type_dict.get("namespaces_dict", {}))
if 'module_j_code' in gen_type_dict:
module_j_code = read_contents(checkFileRemap(os.path.join(misc_location, gen_type_dict['module_j_code'])))
if 'module_jn_code' in gen_type_dict:
module_jn_code = read_contents(checkFileRemap(os.path.join(misc_location, gen_type_dict['module_jn_code'])))
module_imports += gen_type_dict.get("module_imports", [])
java_files_dir = os.path.join(misc_location, 'src/java')
if os.path.exists(java_files_dir):
copy_java_files(java_files_dir, java_base_path, 'org/opencv/' + module)
java_test_files_dir = os.path.join(misc_location, 'test')
if os.path.exists(java_test_files_dir):
copy_java_files(java_test_files_dir, java_test_base_path, 'org/opencv/test/' + module)
if len(srcfiles) > 0:
generator.gen(srcfiles, module, dstdir, jni_path, java_path, common_headers)
else:
logging.info("No generated code for module: %s", module)
generator.finalize(jni_path)
print('Generated files: %d (updated %d)' % (total_files, updated_files))
|
#!/usr/bin/env python
import cv2 as cv
from tests_common import NewOpenCVTests
class knearest_test(NewOpenCVTests):
def test_load(self):
k_nearest = cv.ml.KNearest_load(self.find_file("ml/opencv_ml_knn.xml"))
self.assertFalse(k_nearest.empty())
self.assertTrue(k_nearest.isTrained())
if __name__ == '__main__':
NewOpenCVTests.bootstrap()
|
#!/usr/bin/env python
'''
SVM and KNearest digit recognition.
Sample loads a dataset of handwritten digits from '../data/digits.png'.
Then it trains a SVM and KNearest classifiers on it and evaluates
their accuracy.
Following preprocessing is applied to the dataset:
- Moment-based image deskew (see deskew())
- Digit images are split into 4 10x10 cells and 16-bin
histogram of oriented gradients is computed for each
cell
- Transform histograms to space with Hellinger metric (see [1] (RootSIFT))
[1] R. Arandjelovic, A. Zisserman
"Three things everyone should know to improve object retrieval"
http://www.robots.ox.ac.uk/~vgg/publications/2012/Arandjelovic12/arandjelovic12.pdf
'''
# Python 2/3 compatibility
from __future__ import print_function
# built-in modules
from multiprocessing.pool import ThreadPool
import cv2 as cv
import numpy as np
from numpy.linalg import norm
SZ = 20 # size of each digit is SZ x SZ
CLASS_N = 10
DIGITS_FN = 'samples/data/digits.png'
def split2d(img, cell_size, flatten=True):
h, w = img.shape[:2]
sx, sy = cell_size
cells = [np.hsplit(row, w//sx) for row in np.vsplit(img, h//sy)]
cells = np.array(cells)
if flatten:
cells = cells.reshape(-1, sy, sx)
return cells
def deskew(img):
m = cv.moments(img)
if abs(m['mu02']) < 1e-2:
return img.copy()
skew = m['mu11']/m['mu02']
M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]])
img = cv.warpAffine(img, M, (SZ, SZ), flags=cv.WARP_INVERSE_MAP | cv.INTER_LINEAR)
return img
class StatModel(object):
def load(self, fn):
self.model.load(fn) # Known bug: https://github.com/opencv/opencv/issues/4969
def save(self, fn):
self.model.save(fn)
class KNearest(StatModel):
def __init__(self, k = 3):
self.k = k
self.model = cv.ml.KNearest_create()
def train(self, samples, responses):
self.model.train(samples, cv.ml.ROW_SAMPLE, responses)
def predict(self, samples):
_retval, results, _neigh_resp, _dists = self.model.findNearest(samples, self.k)
return results.ravel()
class SVM(StatModel):
def __init__(self, C = 1, gamma = 0.5):
self.model = cv.ml.SVM_create()
self.model.setGamma(gamma)
self.model.setC(C)
self.model.setKernel(cv.ml.SVM_RBF)
self.model.setType(cv.ml.SVM_C_SVC)
def train(self, samples, responses):
self.model.train(samples, cv.ml.ROW_SAMPLE, responses)
def predict(self, samples):
return self.model.predict(samples)[1].ravel()
def evaluate_model(model, digits, samples, labels):
resp = model.predict(samples)
err = (labels != resp).mean()
confusion = np.zeros((10, 10), np.int32)
for i, j in zip(labels, resp):
confusion[int(i), int(j)] += 1
return err, confusion
def preprocess_simple(digits):
return np.float32(digits).reshape(-1, SZ*SZ) / 255.0
def preprocess_hog(digits):
samples = []
for img in digits:
gx = cv.Sobel(img, cv.CV_32F, 1, 0)
gy = cv.Sobel(img, cv.CV_32F, 0, 1)
mag, ang = cv.cartToPolar(gx, gy)
bin_n = 16
bin = np.int32(bin_n*ang/(2*np.pi))
bin_cells = bin[:10,:10], bin[10:,:10], bin[:10,10:], bin[10:,10:]
mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:]
hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
hist = np.hstack(hists)
# transform to Hellinger kernel
eps = 1e-7
hist /= hist.sum() + eps
hist = np.sqrt(hist)
hist /= norm(hist) + eps
samples.append(hist)
return np.float32(samples)
from tests_common import NewOpenCVTests
class digits_test(NewOpenCVTests):
def load_digits(self, fn):
digits_img = self.get_sample(fn, 0)
digits = split2d(digits_img, (SZ, SZ))
labels = np.repeat(np.arange(CLASS_N), len(digits)/CLASS_N)
return digits, labels
def test_digits(self):
digits, labels = self.load_digits(DIGITS_FN)
# shuffle digits
rand = np.random.RandomState(321)
shuffle = rand.permutation(len(digits))
digits, labels = digits[shuffle], labels[shuffle]
digits2 = list(map(deskew, digits))
samples = preprocess_hog(digits2)
train_n = int(0.9*len(samples))
_digits_train, digits_test = np.split(digits2, [train_n])
samples_train, samples_test = np.split(samples, [train_n])
labels_train, labels_test = np.split(labels, [train_n])
errors = list()
confusionMatrixes = list()
model = KNearest(k=4)
model.train(samples_train, labels_train)
error, confusion = evaluate_model(model, digits_test, samples_test, labels_test)
errors.append(error)
confusionMatrixes.append(confusion)
model = SVM(C=2.67, gamma=5.383)
model.train(samples_train, labels_train)
error, confusion = evaluate_model(model, digits_test, samples_test, labels_test)
errors.append(error)
confusionMatrixes.append(confusion)
eps = 0.001
normEps = len(samples_test) * 0.02
confusionKNN = [[45, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 57, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 59, 1, 0, 0, 0, 0, 1, 0],
[ 0, 0, 0, 43, 0, 0, 0, 1, 0, 0],
[ 0, 0, 0, 0, 38, 0, 2, 0, 0, 0],
[ 0, 0, 0, 2, 0, 48, 0, 0, 1, 0],
[ 0, 1, 0, 0, 0, 0, 51, 0, 0, 0],
[ 0, 0, 1, 0, 0, 0, 0, 54, 0, 0],
[ 0, 0, 0, 0, 0, 1, 0, 0, 46, 0],
[ 1, 1, 0, 1, 1, 0, 0, 0, 2, 42]]
confusionSVM = [[45, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 57, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 59, 2, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 43, 0, 0, 0, 1, 0, 0],
[ 0, 0, 0, 0, 40, 0, 0, 0, 0, 0],
[ 0, 0, 0, 1, 0, 50, 0, 0, 0, 0],
[ 0, 0, 0, 0, 1, 0, 51, 0, 0, 0],
[ 0, 0, 1, 0, 0, 0, 0, 54, 0, 0],
[ 0, 0, 0, 0, 0, 0, 0, 0, 47, 0],
[ 0, 1, 0, 1, 0, 0, 0, 0, 1, 45]]
self.assertLess(cv.norm(confusionMatrixes[0] - confusionKNN, cv.NORM_L1), normEps)
self.assertLess(cv.norm(confusionMatrixes[1] - confusionSVM, cv.NORM_L1), normEps)
self.assertLess(errors[0] - 0.034, eps)
self.assertLess(errors[1] - 0.018, eps)
if __name__ == '__main__':
NewOpenCVTests.bootstrap()
|
#!/usr/bin/env python
# Python 2/3 compatibility
from __future__ import print_function
import cv2 as cv
import numpy as np
from tests_common import NewOpenCVTests
class TestGoodFeaturesToTrack_test(NewOpenCVTests):
def test_goodFeaturesToTrack(self):
arr = self.get_sample('samples/data/lena.jpg', 0)
original = arr.copy(True)
threshes = [ x / 100. for x in range(1,10) ]
numPoints = 20000
results = dict([(t, cv.goodFeaturesToTrack(arr, numPoints, t, 2, useHarrisDetector=True)) for t in threshes])
# Check that GoodFeaturesToTrack has not modified input image
self.assertTrue(arr.tostring() == original.tostring())
# Check for repeatability
for i in range(1):
results2 = dict([(t, cv.goodFeaturesToTrack(arr, numPoints, t, 2, useHarrisDetector=True)) for t in threshes])
for t in threshes:
self.assertTrue(len(results2[t]) == len(results[t]))
for i in range(len(results[t])):
self.assertTrue(cv.norm(results[t][i][0] - results2[t][i][0]) == 0)
for t0,t1 in zip(threshes, threshes[1:]):
r0 = results[t0]
r1 = results[t1]
# Increasing thresh should make result list shorter
self.assertTrue(len(r0) > len(r1))
# Increasing thresh should monly truncate result list
for i in range(len(r1)):
self.assertTrue(cv.norm(r1[i][0] - r0[i][0])==0)
if __name__ == '__main__':
NewOpenCVTests.bootstrap()
|
#!/usr/bin/env python
'''
The sample demonstrates how to train Random Trees classifier
(or Boosting classifier, or MLP, or Knearest, or Support Vector Machines) using the provided dataset.
We use the sample database letter-recognition.data
from UCI Repository, here is the link:
Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998).
UCI Repository of machine learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html].
Irvine, CA: University of California, Department of Information and Computer Science.
The dataset consists of 20000 feature vectors along with the
responses - capital latin letters A..Z.
The first 10000 samples are used for training
and the remaining 10000 - to test the classifier.
======================================================
Models: RTrees, KNearest, Boost, SVM, MLP
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2 as cv
def load_base(fn):
a = np.loadtxt(fn, np.float32, delimiter=',', converters={ 0 : lambda ch : ord(ch)-ord('A') })
samples, responses = a[:,1:], a[:,0]
return samples, responses
class LetterStatModel(object):
class_n = 26
train_ratio = 0.5
def load(self, fn):
self.model.load(fn)
def save(self, fn):
self.model.save(fn)
def unroll_samples(self, samples):
sample_n, var_n = samples.shape
new_samples = np.zeros((sample_n * self.class_n, var_n+1), np.float32)
new_samples[:,:-1] = np.repeat(samples, self.class_n, axis=0)
new_samples[:,-1] = np.tile(np.arange(self.class_n), sample_n)
return new_samples
def unroll_responses(self, responses):
sample_n = len(responses)
new_responses = np.zeros(sample_n*self.class_n, np.int32)
resp_idx = np.int32( responses + np.arange(sample_n)*self.class_n )
new_responses[resp_idx] = 1
return new_responses
class RTrees(LetterStatModel):
def __init__(self):
self.model = cv.ml.RTrees_create()
def train(self, samples, responses):
#sample_n, var_n = samples.shape
self.model.setMaxDepth(20)
self.model.train(samples, cv.ml.ROW_SAMPLE, responses.astype(int))
def predict(self, samples):
_ret, resp = self.model.predict(samples)
return resp.ravel()
class KNearest(LetterStatModel):
def __init__(self):
self.model = cv.ml.KNearest_create()
def train(self, samples, responses):
self.model.train(samples, cv.ml.ROW_SAMPLE, responses)
def predict(self, samples):
_retval, results, _neigh_resp, _dists = self.model.findNearest(samples, k = 10)
return results.ravel()
class Boost(LetterStatModel):
def __init__(self):
self.model = cv.ml.Boost_create()
def train(self, samples, responses):
_sample_n, var_n = samples.shape
new_samples = self.unroll_samples(samples)
new_responses = self.unroll_responses(responses)
var_types = np.array([cv.ml.VAR_NUMERICAL] * var_n + [cv.ml.VAR_CATEGORICAL, cv.ml.VAR_CATEGORICAL], np.uint8)
self.model.setWeakCount(15)
self.model.setMaxDepth(10)
self.model.train(cv.ml.TrainData_create(new_samples, cv.ml.ROW_SAMPLE, new_responses.astype(int), varType = var_types))
def predict(self, samples):
new_samples = self.unroll_samples(samples)
_ret, resp = self.model.predict(new_samples)
return resp.ravel().reshape(-1, self.class_n).argmax(1)
class SVM(LetterStatModel):
def __init__(self):
self.model = cv.ml.SVM_create()
def train(self, samples, responses):
self.model.setType(cv.ml.SVM_C_SVC)
self.model.setC(1)
self.model.setKernel(cv.ml.SVM_RBF)
self.model.setGamma(.1)
self.model.train(samples, cv.ml.ROW_SAMPLE, responses.astype(int))
def predict(self, samples):
_ret, resp = self.model.predict(samples)
return resp.ravel()
class MLP(LetterStatModel):
def __init__(self):
self.model = cv.ml.ANN_MLP_create()
def train(self, samples, responses):
_sample_n, var_n = samples.shape
new_responses = self.unroll_responses(responses).reshape(-1, self.class_n)
layer_sizes = np.int32([var_n, 100, 100, self.class_n])
self.model.setLayerSizes(layer_sizes)
self.model.setTrainMethod(cv.ml.ANN_MLP_BACKPROP)
self.model.setBackpropMomentumScale(0)
self.model.setBackpropWeightScale(0.001)
self.model.setTermCriteria((cv.TERM_CRITERIA_COUNT, 20, 0.01))
self.model.setActivationFunction(cv.ml.ANN_MLP_SIGMOID_SYM, 2, 1)
self.model.train(samples, cv.ml.ROW_SAMPLE, np.float32(new_responses))
def predict(self, samples):
_ret, resp = self.model.predict(samples)
return resp.argmax(-1)
from tests_common import NewOpenCVTests
class letter_recog_test(NewOpenCVTests):
def test_letter_recog(self):
eps = 0.01
models = [RTrees, KNearest, Boost, SVM, MLP]
models = dict( [(cls.__name__.lower(), cls) for cls in models] )
testErrors = {RTrees: (98.930000, 92.390000), KNearest: (94.960000, 92.010000),
Boost: (85.970000, 74.920000), SVM: (99.780000, 95.680000), MLP: (90.060000, 87.410000)}
for model in models:
Model = models[model]
classifier = Model()
samples, responses = load_base(self.repoPath + '/samples/data/letter-recognition.data')
train_n = int(len(samples)*classifier.train_ratio)
classifier.train(samples[:train_n], responses[:train_n])
train_rate = np.mean(classifier.predict(samples[:train_n]) == responses[:train_n].astype(int))
test_rate = np.mean(classifier.predict(samples[train_n:]) == responses[train_n:].astype(int))
self.assertLess(train_rate - testErrors[Model][0], eps)
self.assertLess(test_rate - testErrors[Model][1], eps)
if __name__ == '__main__':
NewOpenCVTests.bootstrap()
|
# This script is used to estimate an accuracy of different face detection models.
# COCO evaluation tool is used to compute an accuracy metrics (Average Precision).
# Script works with different face detection datasets.
import os
import json
from fnmatch import fnmatch
from math import pi
import cv2 as cv
import argparse
import os
import sys
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
parser = argparse.ArgumentParser(
description='Evaluate OpenCV face detection algorithms '
'using COCO evaluation tool, http://cocodataset.org/#detections-eval')
parser.add_argument('--proto', help='Path to .prototxt of Caffe model or .pbtxt of TensorFlow graph')
parser.add_argument('--model', help='Path to .caffemodel trained in Caffe or .pb from TensorFlow')
parser.add_argument('--cascade', help='Optional path to trained Haar cascade as '
'an additional model for evaluation')
parser.add_argument('--ann', help='Path to text file with ground truth annotations')
parser.add_argument('--pics', help='Path to images root directory')
parser.add_argument('--fddb', help='Evaluate FDDB dataset, http://vis-www.cs.umass.edu/fddb/', action='store_true')
parser.add_argument('--wider', help='Evaluate WIDER FACE dataset, http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/', action='store_true')
args = parser.parse_args()
dataset = {}
dataset['images'] = []
dataset['categories'] = [{ 'id': 0, 'name': 'face' }]
dataset['annotations'] = []
def ellipse2Rect(params):
rad_x = params[0]
rad_y = params[1]
angle = params[2] * 180.0 / pi
center_x = params[3]
center_y = params[4]
pts = cv.ellipse2Poly((int(center_x), int(center_y)), (int(rad_x), int(rad_y)),
int(angle), 0, 360, 10)
rect = cv.boundingRect(pts)
left = rect[0]
top = rect[1]
right = rect[0] + rect[2]
bottom = rect[1] + rect[3]
return left, top, right, bottom
def addImage(imagePath):
assert('images' in dataset)
imageId = len(dataset['images'])
dataset['images'].append({
'id': int(imageId),
'file_name': imagePath
})
return imageId
def addBBox(imageId, left, top, width, height):
assert('annotations' in dataset)
dataset['annotations'].append({
'id': len(dataset['annotations']),
'image_id': int(imageId),
'category_id': 0, # Face
'bbox': [int(left), int(top), int(width), int(height)],
'iscrowd': 0,
'area': float(width * height)
})
def addDetection(detections, imageId, left, top, width, height, score):
detections.append({
'image_id': int(imageId),
'category_id': 0, # Face
'bbox': [int(left), int(top), int(width), int(height)],
'score': float(score)
})
def fddb_dataset(annotations, images):
for d in os.listdir(annotations):
if fnmatch(d, 'FDDB-fold-*-ellipseList.txt'):
with open(os.path.join(annotations, d), 'rt') as f:
lines = [line.rstrip('\n') for line in f]
lineId = 0
while lineId < len(lines):
# Image
imgPath = lines[lineId]
lineId += 1
imageId = addImage(os.path.join(images, imgPath) + '.jpg')
img = cv.imread(os.path.join(images, imgPath) + '.jpg')
# Faces
numFaces = int(lines[lineId])
lineId += 1
for i in range(numFaces):
params = [float(v) for v in lines[lineId].split()]
lineId += 1
left, top, right, bottom = ellipse2Rect(params)
addBBox(imageId, left, top, width=right - left + 1,
height=bottom - top + 1)
def wider_dataset(annotations, images):
with open(annotations, 'rt') as f:
lines = [line.rstrip('\n') for line in f]
lineId = 0
while lineId < len(lines):
# Image
imgPath = lines[lineId]
lineId += 1
imageId = addImage(os.path.join(images, imgPath))
# Faces
numFaces = int(lines[lineId])
lineId += 1
for i in range(numFaces):
params = [int(v) for v in lines[lineId].split()]
lineId += 1
left, top, width, height = params[0], params[1], params[2], params[3]
addBBox(imageId, left, top, width, height)
def evaluate():
cocoGt = COCO('annotations.json')
cocoDt = cocoGt.loadRes('detections.json')
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
### Convert to COCO annotations format #########################################
assert(args.fddb or args.wider)
if args.fddb:
fddb_dataset(args.ann, args.pics)
elif args.wider:
wider_dataset(args.ann, args.pics)
with open('annotations.json', 'wt') as f:
json.dump(dataset, f)
### Obtain detections ##########################################################
detections = []
if args.proto and args.model:
net = cv.dnn.readNet(args.proto, args.model)
def detect(img, imageId):
imgWidth = img.shape[1]
imgHeight = img.shape[0]
net.setInput(cv.dnn.blobFromImage(img, 1.0, (300, 300), (104., 177., 123.), False, False))
out = net.forward()
for i in range(out.shape[2]):
confidence = out[0, 0, i, 2]
left = int(out[0, 0, i, 3] * img.shape[1])
top = int(out[0, 0, i, 4] * img.shape[0])
right = int(out[0, 0, i, 5] * img.shape[1])
bottom = int(out[0, 0, i, 6] * img.shape[0])
x = max(0, min(left, img.shape[1] - 1))
y = max(0, min(top, img.shape[0] - 1))
w = max(0, min(right - x + 1, img.shape[1] - x))
h = max(0, min(bottom - y + 1, img.shape[0] - y))
addDetection(detections, imageId, x, y, w, h, score=confidence)
elif args.cascade:
cascade = cv.CascadeClassifier(args.cascade)
def detect(img, imageId):
srcImgGray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
faces = cascade.detectMultiScale(srcImgGray)
for rect in faces:
left, top, width, height = rect[0], rect[1], rect[2], rect[3]
addDetection(detections, imageId, left, top, width, height, score=1.0)
for i in range(len(dataset['images'])):
sys.stdout.write('\r%d / %d' % (i + 1, len(dataset['images'])))
sys.stdout.flush()
img = cv.imread(dataset['images'][i]['file_name'])
imageId = int(dataset['images'][i]['id'])
detect(img, imageId)
with open('detections.json', 'wt') as f:
json.dump(detections, f)
evaluate()
def rm(f):
if os.path.exists(f):
os.remove(f)
rm('annotations.json')
rm('detections.json')
|
from __future__ import print_function
import sys
import argparse
import cv2 as cv
import tensorflow as tf
import numpy as np
import struct
if sys.version_info > (3,):
long = int
from tensorflow.python.tools import optimize_for_inference_lib
from tensorflow.tools.graph_transforms import TransformGraph
from tensorflow.core.framework.node_def_pb2 import NodeDef
from google.protobuf import text_format
parser = argparse.ArgumentParser(description="Use this script to create TensorFlow graph "
"with weights from OpenCV's face detection network. "
"Only backbone part of SSD model is converted this way. "
"Look for .pbtxt configuration file at "
"https://github.com/opencv/opencv_extra/tree/master/testdata/dnn/opencv_face_detector.pbtxt")
parser.add_argument('--model', help='Path to .caffemodel weights', required=True)
parser.add_argument('--proto', help='Path to .prototxt Caffe model definition', required=True)
parser.add_argument('--pb', help='Path to output .pb TensorFlow model', required=True)
parser.add_argument('--pbtxt', help='Path to output .pbxt TensorFlow graph', required=True)
parser.add_argument('--quantize', help='Quantize weights to uint8', action='store_true')
parser.add_argument('--fp16', help='Convert weights to half precision floats', action='store_true')
args = parser.parse_args()
assert(not args.quantize or not args.fp16)
dtype = tf.float16 if args.fp16 else tf.float32
################################################################################
cvNet = cv.dnn.readNetFromCaffe(args.proto, args.model)
def dnnLayer(name):
return cvNet.getLayer(long(cvNet.getLayerId(name)))
def scale(x, name):
with tf.variable_scope(name):
layer = dnnLayer(name)
w = tf.Variable(layer.blobs[0].flatten(), dtype=dtype, name='mul')
if len(layer.blobs) > 1:
b = tf.Variable(layer.blobs[1].flatten(), dtype=dtype, name='add')
return tf.nn.bias_add(tf.multiply(x, w), b)
else:
return tf.multiply(x, w, name)
def conv(x, name, stride=1, pad='SAME', dilation=1, activ=None):
with tf.variable_scope(name):
layer = dnnLayer(name)
w = tf.Variable(layer.blobs[0].transpose(2, 3, 1, 0), dtype=dtype, name='weights')
if dilation == 1:
conv = tf.nn.conv2d(x, filter=w, strides=(1, stride, stride, 1), padding=pad)
else:
assert(stride == 1)
conv = tf.nn.atrous_conv2d(x, w, rate=dilation, padding=pad)
if len(layer.blobs) > 1:
b = tf.Variable(layer.blobs[1].flatten(), dtype=dtype, name='bias')
conv = tf.nn.bias_add(conv, b)
return activ(conv) if activ else conv
def batch_norm(x, name):
with tf.variable_scope(name):
# Unfortunately, TensorFlow's batch normalization layer doesn't work with fp16 input.
# Here we do a cast to fp32 but remove it in the frozen graph.
if x.dtype != tf.float32:
x = tf.cast(x, tf.float32)
layer = dnnLayer(name)
assert(len(layer.blobs) >= 3)
mean = layer.blobs[0].flatten()
std = layer.blobs[1].flatten()
scale = layer.blobs[2].flatten()
eps = 1e-5
hasBias = len(layer.blobs) > 3
hasWeights = scale.shape != (1,)
if not hasWeights and not hasBias:
mean /= scale[0]
std /= scale[0]
mean = tf.Variable(mean, dtype=tf.float32, name='mean')
std = tf.Variable(std, dtype=tf.float32, name='std')
gamma = tf.Variable(scale if hasWeights else np.ones(mean.shape), dtype=tf.float32, name='gamma')
beta = tf.Variable(layer.blobs[3].flatten() if hasBias else np.zeros(mean.shape), dtype=tf.float32, name='beta')
bn = tf.nn.fused_batch_norm(x, gamma, beta, mean, std, eps,
is_training=False)[0]
if bn.dtype != dtype:
bn = tf.cast(bn, dtype)
return bn
def l2norm(x, name):
with tf.variable_scope(name):
layer = dnnLayer(name)
w = tf.Variable(layer.blobs[0].flatten(), dtype=dtype, name='mul')
return tf.nn.l2_normalize(x, 3, epsilon=1e-10) * w
### Graph definition ###########################################################
inp = tf.placeholder(dtype, [1, 300, 300, 3], 'data')
data_bn = batch_norm(inp, 'data_bn')
data_scale = scale(data_bn, 'data_scale')
# Instead of tf.pad we use tf.space_to_batch_nd layers which override convolution's padding strategy to explicit numbers
# data_scale = tf.pad(data_scale, [[0, 0], [3, 3], [3, 3], [0, 0]])
data_scale = tf.space_to_batch_nd(data_scale, [1, 1], [[3, 3], [3, 3]], name='Pad')
conv1_h = conv(data_scale, stride=2, pad='VALID', name='conv1_h')
conv1_bn_h = batch_norm(conv1_h, 'conv1_bn_h')
conv1_scale_h = scale(conv1_bn_h, 'conv1_scale_h')
conv1_relu = tf.nn.relu(conv1_scale_h)
conv1_pool = tf.layers.max_pooling2d(conv1_relu, pool_size=(3, 3), strides=(2, 2),
padding='SAME', name='conv1_pool')
layer_64_1_conv1_h = conv(conv1_pool, 'layer_64_1_conv1_h')
layer_64_1_bn2_h = batch_norm(layer_64_1_conv1_h, 'layer_64_1_bn2_h')
layer_64_1_scale2_h = scale(layer_64_1_bn2_h, 'layer_64_1_scale2_h')
layer_64_1_relu2 = tf.nn.relu(layer_64_1_scale2_h)
layer_64_1_conv2_h = conv(layer_64_1_relu2, 'layer_64_1_conv2_h')
layer_64_1_sum = layer_64_1_conv2_h + conv1_pool
layer_128_1_bn1_h = batch_norm(layer_64_1_sum, 'layer_128_1_bn1_h')
layer_128_1_scale1_h = scale(layer_128_1_bn1_h, 'layer_128_1_scale1_h')
layer_128_1_relu1 = tf.nn.relu(layer_128_1_scale1_h)
layer_128_1_conv1_h = conv(layer_128_1_relu1, stride=2, name='layer_128_1_conv1_h')
layer_128_1_bn2 = batch_norm(layer_128_1_conv1_h, 'layer_128_1_bn2')
layer_128_1_scale2 = scale(layer_128_1_bn2, 'layer_128_1_scale2')
layer_128_1_relu2 = tf.nn.relu(layer_128_1_scale2)
layer_128_1_conv2 = conv(layer_128_1_relu2, 'layer_128_1_conv2')
layer_128_1_conv_expand_h = conv(layer_128_1_relu1, stride=2, name='layer_128_1_conv_expand_h')
layer_128_1_sum = layer_128_1_conv2 + layer_128_1_conv_expand_h
layer_256_1_bn1 = batch_norm(layer_128_1_sum, 'layer_256_1_bn1')
layer_256_1_scale1 = scale(layer_256_1_bn1, 'layer_256_1_scale1')
layer_256_1_relu1 = tf.nn.relu(layer_256_1_scale1)
# layer_256_1_conv1 = tf.pad(layer_256_1_relu1, [[0, 0], [1, 1], [1, 1], [0, 0]])
layer_256_1_conv1 = tf.space_to_batch_nd(layer_256_1_relu1, [1, 1], [[1, 1], [1, 1]], name='Pad_1')
layer_256_1_conv1 = conv(layer_256_1_conv1, stride=2, pad='VALID', name='layer_256_1_conv1')
layer_256_1_bn2 = batch_norm(layer_256_1_conv1, 'layer_256_1_bn2')
layer_256_1_scale2 = scale(layer_256_1_bn2, 'layer_256_1_scale2')
layer_256_1_relu2 = tf.nn.relu(layer_256_1_scale2)
layer_256_1_conv2 = conv(layer_256_1_relu2, 'layer_256_1_conv2')
layer_256_1_conv_expand = conv(layer_256_1_relu1, stride=2, name='layer_256_1_conv_expand')
layer_256_1_sum = layer_256_1_conv2 + layer_256_1_conv_expand
layer_512_1_bn1 = batch_norm(layer_256_1_sum, 'layer_512_1_bn1')
layer_512_1_scale1 = scale(layer_512_1_bn1, 'layer_512_1_scale1')
layer_512_1_relu1 = tf.nn.relu(layer_512_1_scale1)
layer_512_1_conv1_h = conv(layer_512_1_relu1, 'layer_512_1_conv1_h')
layer_512_1_bn2_h = batch_norm(layer_512_1_conv1_h, 'layer_512_1_bn2_h')
layer_512_1_scale2_h = scale(layer_512_1_bn2_h, 'layer_512_1_scale2_h')
layer_512_1_relu2 = tf.nn.relu(layer_512_1_scale2_h)
layer_512_1_conv2_h = conv(layer_512_1_relu2, dilation=2, name='layer_512_1_conv2_h')
layer_512_1_conv_expand_h = conv(layer_512_1_relu1, 'layer_512_1_conv_expand_h')
layer_512_1_sum = layer_512_1_conv2_h + layer_512_1_conv_expand_h
last_bn_h = batch_norm(layer_512_1_sum, 'last_bn_h')
last_scale_h = scale(last_bn_h, 'last_scale_h')
fc7 = tf.nn.relu(last_scale_h, name='last_relu')
conv6_1_h = conv(fc7, 'conv6_1_h', activ=tf.nn.relu)
conv6_2_h = conv(conv6_1_h, stride=2, name='conv6_2_h', activ=tf.nn.relu)
conv7_1_h = conv(conv6_2_h, 'conv7_1_h', activ=tf.nn.relu)
# conv7_2_h = tf.pad(conv7_1_h, [[0, 0], [1, 1], [1, 1], [0, 0]])
conv7_2_h = tf.space_to_batch_nd(conv7_1_h, [1, 1], [[1, 1], [1, 1]], name='Pad_2')
conv7_2_h = conv(conv7_2_h, stride=2, pad='VALID', name='conv7_2_h', activ=tf.nn.relu)
conv8_1_h = conv(conv7_2_h, pad='SAME', name='conv8_1_h', activ=tf.nn.relu)
conv8_2_h = conv(conv8_1_h, pad='VALID', name='conv8_2_h', activ=tf.nn.relu)
conv9_1_h = conv(conv8_2_h, 'conv9_1_h', activ=tf.nn.relu)
conv9_2_h = conv(conv9_1_h, pad='VALID', name='conv9_2_h', activ=tf.nn.relu)
conv4_3_norm = l2norm(layer_256_1_relu1, 'conv4_3_norm')
### Locations and confidences ##################################################
locations = []
confidences = []
flattenLayersNames = [] # Collect all reshape layers names that should be replaced to flattens.
for top, suffix in zip([locations, confidences], ['_mbox_loc', '_mbox_conf']):
for bottom, name in zip([conv4_3_norm, fc7, conv6_2_h, conv7_2_h, conv8_2_h, conv9_2_h],
['conv4_3_norm', 'fc7', 'conv6_2', 'conv7_2', 'conv8_2', 'conv9_2']):
name += suffix
flat = tf.layers.flatten(conv(bottom, name))
flattenLayersNames.append(flat.name[:flat.name.find(':')])
top.append(flat)
mbox_loc = tf.concat(locations, axis=-1, name='mbox_loc')
mbox_conf = tf.concat(confidences, axis=-1, name='mbox_conf')
total = int(np.prod(mbox_conf.shape[1:]))
mbox_conf_reshape = tf.reshape(mbox_conf, [-1, 2], name='mbox_conf_reshape')
mbox_conf_softmax = tf.nn.softmax(mbox_conf_reshape, name='mbox_conf_softmax')
mbox_conf_flatten = tf.reshape(mbox_conf_softmax, [-1, total], name='mbox_conf_flatten')
flattenLayersNames.append('mbox_conf_flatten')
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
### Check correctness ######################################################
out_nodes = ['mbox_loc', 'mbox_conf_flatten']
inp_nodes = [inp.name[:inp.name.find(':')]]
np.random.seed(2701)
inputData = np.random.standard_normal([1, 3, 300, 300]).astype(np.float32)
cvNet.setInput(inputData)
cvNet.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
outDNN = cvNet.forward(out_nodes)
outTF = sess.run([mbox_loc, mbox_conf_flatten], feed_dict={inp: inputData.transpose(0, 2, 3, 1)})
print('Max diff @ locations: %e' % np.max(np.abs(outDNN[0] - outTF[0])))
print('Max diff @ confidence: %e' % np.max(np.abs(outDNN[1] - outTF[1])))
# Save a graph
graph_def = sess.graph.as_graph_def()
# Freeze graph. Replaces variables to constants.
graph_def = tf.graph_util.convert_variables_to_constants(sess, graph_def, out_nodes)
# Optimize graph. Removes training-only ops, unused nodes.
graph_def = optimize_for_inference_lib.optimize_for_inference(graph_def, inp_nodes, out_nodes, dtype.as_datatype_enum)
# Fuse constant operations.
transforms = ["fold_constants(ignore_errors=True)"]
if args.quantize:
transforms += ["quantize_weights(minimum_size=0)"]
transforms += ["sort_by_execution_order"]
graph_def = TransformGraph(graph_def, inp_nodes, out_nodes, transforms)
# By default, float16 weights are stored in repeated tensor's field called
# `half_val`. It has type int32 with leading zeros for unused bytes.
# This type is encoded by Variant that means only 7 bits are used for value
# representation but the last one is indicated the end of encoding. This way
# float16 might takes 1 or 2 or 3 bytes depends on value. To improve compression,
# we replace all `half_val` values to `tensor_content` using only 2 bytes for everyone.
for node in graph_def.node:
if 'value' in node.attr:
halfs = node.attr["value"].tensor.half_val
if not node.attr["value"].tensor.tensor_content and halfs:
node.attr["value"].tensor.tensor_content = struct.pack('H' * len(halfs), *halfs)
node.attr["value"].tensor.ClearField('half_val')
# Serialize
with tf.gfile.FastGFile(args.pb, 'wb') as f:
f.write(graph_def.SerializeToString())
################################################################################
# Write a text graph representation
################################################################################
def tensorMsg(values):
msg = 'tensor { dtype: DT_FLOAT tensor_shape { dim { size: %d } }' % len(values)
for value in values:
msg += 'float_val: %f ' % value
return msg + '}'
# Remove Const nodes and unused attributes.
for i in reversed(range(len(graph_def.node))):
if graph_def.node[i].op in ['Const', 'Dequantize']:
del graph_def.node[i]
for attr in ['T', 'data_format', 'Tshape', 'N', 'Tidx', 'Tdim',
'use_cudnn_on_gpu', 'Index', 'Tperm', 'is_training',
'Tpaddings', 'Tblock_shape', 'Tcrops']:
if attr in graph_def.node[i].attr:
del graph_def.node[i].attr[attr]
# Append prior box generators
min_sizes = [30, 60, 111, 162, 213, 264]
max_sizes = [60, 111, 162, 213, 264, 315]
steps = [8, 16, 32, 64, 100, 300]
aspect_ratios = [[2], [2, 3], [2, 3], [2, 3], [2], [2]]
layers = [conv4_3_norm, fc7, conv6_2_h, conv7_2_h, conv8_2_h, conv9_2_h]
for i in range(6):
priorBox = NodeDef()
priorBox.name = 'PriorBox_%d' % i
priorBox.op = 'PriorBox'
priorBox.input.append(layers[i].name[:layers[i].name.find(':')])
priorBox.input.append(inp_nodes[0]) # data
text_format.Merge('i: %d' % min_sizes[i], priorBox.attr["min_size"])
text_format.Merge('i: %d' % max_sizes[i], priorBox.attr["max_size"])
text_format.Merge('b: true', priorBox.attr["flip"])
text_format.Merge('b: false', priorBox.attr["clip"])
text_format.Merge(tensorMsg(aspect_ratios[i]), priorBox.attr["aspect_ratio"])
text_format.Merge(tensorMsg([0.1, 0.1, 0.2, 0.2]), priorBox.attr["variance"])
text_format.Merge('f: %f' % steps[i], priorBox.attr["step"])
text_format.Merge('f: 0.5', priorBox.attr["offset"])
graph_def.node.extend([priorBox])
# Concatenate prior boxes
concat = NodeDef()
concat.name = 'mbox_priorbox'
concat.op = 'ConcatV2'
for i in range(6):
concat.input.append('PriorBox_%d' % i)
concat.input.append('mbox_loc/axis')
graph_def.node.extend([concat])
# DetectionOutput layer
detectionOut = NodeDef()
detectionOut.name = 'detection_out'
detectionOut.op = 'DetectionOutput'
detectionOut.input.append('mbox_loc')
detectionOut.input.append('mbox_conf_flatten')
detectionOut.input.append('mbox_priorbox')
text_format.Merge('i: 2', detectionOut.attr['num_classes'])
text_format.Merge('b: true', detectionOut.attr['share_location'])
text_format.Merge('i: 0', detectionOut.attr['background_label_id'])
text_format.Merge('f: 0.45', detectionOut.attr['nms_threshold'])
text_format.Merge('i: 400', detectionOut.attr['top_k'])
text_format.Merge('s: "CENTER_SIZE"', detectionOut.attr['code_type'])
text_format.Merge('i: 200', detectionOut.attr['keep_top_k'])
text_format.Merge('f: 0.01', detectionOut.attr['confidence_threshold'])
graph_def.node.extend([detectionOut])
# Replace L2Normalization subgraph onto a single node.
for i in reversed(range(len(graph_def.node))):
if graph_def.node[i].name in ['conv4_3_norm/l2_normalize/Square',
'conv4_3_norm/l2_normalize/Sum',
'conv4_3_norm/l2_normalize/Maximum',
'conv4_3_norm/l2_normalize/Rsqrt']:
del graph_def.node[i]
for node in graph_def.node:
if node.name == 'conv4_3_norm/l2_normalize':
node.op = 'L2Normalize'
node.input.pop()
node.input.pop()
node.input.append(layer_256_1_relu1.name)
node.input.append('conv4_3_norm/l2_normalize/Sum/reduction_indices')
break
softmaxShape = NodeDef()
softmaxShape.name = 'reshape_before_softmax'
softmaxShape.op = 'Const'
text_format.Merge(
'tensor {'
' dtype: DT_INT32'
' tensor_shape { dim { size: 3 } }'
' int_val: 0'
' int_val: -1'
' int_val: 2'
'}', softmaxShape.attr["value"])
graph_def.node.extend([softmaxShape])
for node in graph_def.node:
if node.name == 'mbox_conf_reshape':
node.input[1] = softmaxShape.name
elif node.name == 'mbox_conf_softmax':
text_format.Merge('i: 2', node.attr['axis'])
elif node.name in flattenLayersNames:
node.op = 'Flatten'
inpName = node.input[0]
node.input.pop()
node.input.pop()
node.input.append(inpName)
tf.train.write_graph(graph_def, "", args.pbtxt, as_text=True)
|
#!/usr/bin/env python
import os
import cv2 as cv
import numpy as np
from tests_common import NewOpenCVTests, unittest
def normAssert(test, a, b, msg=None, lInf=1e-5):
test.assertLess(np.max(np.abs(a - b)), lInf, msg)
def inter_area(box1, box2):
x_min, x_max = max(box1[0], box2[0]), min(box1[2], box2[2])
y_min, y_max = max(box1[1], box2[1]), min(box1[3], box2[3])
return (x_max - x_min) * (y_max - y_min)
def area(box):
return (box[2] - box[0]) * (box[3] - box[1])
def box2str(box):
left, top = box[0], box[1]
width, height = box[2] - left, box[3] - top
return '[%f x %f from (%f, %f)]' % (width, height, left, top)
def normAssertDetections(test, refClassIds, refScores, refBoxes, testClassIds, testScores, testBoxes,
confThreshold=0.0, scores_diff=1e-5, boxes_iou_diff=1e-4):
matchedRefBoxes = [False] * len(refBoxes)
errMsg = ''
for i in range(len(testBoxes)):
testScore = testScores[i]
if testScore < confThreshold:
continue
testClassId, testBox = testClassIds[i], testBoxes[i]
matched = False
for j in range(len(refBoxes)):
if (not matchedRefBoxes[j]) and testClassId == refClassIds[j] and \
abs(testScore - refScores[j]) < scores_diff:
interArea = inter_area(testBox, refBoxes[j])
iou = interArea / (area(testBox) + area(refBoxes[j]) - interArea)
if abs(iou - 1.0) < boxes_iou_diff:
matched = True
matchedRefBoxes[j] = True
if not matched:
errMsg += '\nUnmatched prediction: class %d score %f box %s' % (testClassId, testScore, box2str(testBox))
for i in range(len(refBoxes)):
if (not matchedRefBoxes[i]) and refScores[i] > confThreshold:
errMsg += '\nUnmatched reference: class %d score %f box %s' % (refClassIds[i], refScores[i], box2str(refBoxes[i]))
if errMsg:
test.fail(errMsg)
def printParams(backend, target):
backendNames = {
cv.dnn.DNN_BACKEND_OPENCV: 'OCV',
cv.dnn.DNN_BACKEND_INFERENCE_ENGINE: 'DLIE'
}
targetNames = {
cv.dnn.DNN_TARGET_CPU: 'CPU',
cv.dnn.DNN_TARGET_OPENCL: 'OCL',
cv.dnn.DNN_TARGET_OPENCL_FP16: 'OCL_FP16',
cv.dnn.DNN_TARGET_MYRIAD: 'MYRIAD'
}
print('%s/%s' % (backendNames[backend], targetNames[target]))
testdata_required = bool(os.environ.get('OPENCV_DNN_TEST_REQUIRE_TESTDATA', False))
g_dnnBackendsAndTargets = None
class dnn_test(NewOpenCVTests):
def setUp(self):
super(dnn_test, self).setUp()
global g_dnnBackendsAndTargets
if g_dnnBackendsAndTargets is None:
g_dnnBackendsAndTargets = self.initBackendsAndTargets()
self.dnnBackendsAndTargets = g_dnnBackendsAndTargets
def initBackendsAndTargets(self):
self.dnnBackendsAndTargets = [
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
]
if self.checkIETarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_CPU):
self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_CPU])
if self.checkIETarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_MYRIAD):
self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_MYRIAD])
if cv.ocl.haveOpenCL() and cv.ocl.useOpenCL():
self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_OPENCL])
self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_OPENCL_FP16])
if cv.ocl_Device.getDefault().isIntel():
if self.checkIETarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL):
self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL])
if self.checkIETarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL_FP16):
self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL_FP16])
return self.dnnBackendsAndTargets
def find_dnn_file(self, filename, required=True):
if not required:
required = testdata_required
return self.find_file(filename, [os.environ.get('OPENCV_DNN_TEST_DATA_PATH', os.getcwd()),
os.environ['OPENCV_TEST_DATA_PATH']],
required=required)
def checkIETarget(self, backend, target):
proto = self.find_dnn_file('dnn/layers/layer_convolution.prototxt')
model = self.find_dnn_file('dnn/layers/layer_convolution.caffemodel')
net = cv.dnn.readNet(proto, model)
net.setPreferableBackend(backend)
net.setPreferableTarget(target)
inp = np.random.standard_normal([1, 2, 10, 11]).astype(np.float32)
try:
net.setInput(inp)
net.forward()
except BaseException as e:
return False
return True
def test_getAvailableTargets(self):
targets = cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_OPENCV)
self.assertTrue(cv.dnn.DNN_TARGET_CPU in targets)
def test_blobFromImage(self):
np.random.seed(324)
width = 6
height = 7
scale = 1.0/127.5
mean = (10, 20, 30)
# Test arguments names.
img = np.random.randint(0, 255, [4, 5, 3]).astype(np.uint8)
blob = cv.dnn.blobFromImage(img, scale, (width, height), mean, True, False)
blob_args = cv.dnn.blobFromImage(img, scalefactor=scale, size=(width, height),
mean=mean, swapRB=True, crop=False)
normAssert(self, blob, blob_args)
# Test values.
target = cv.resize(img, (width, height), interpolation=cv.INTER_LINEAR)
target = target.astype(np.float32)
target = target[:,:,[2, 1, 0]] # BGR2RGB
target[:,:,0] -= mean[0]
target[:,:,1] -= mean[1]
target[:,:,2] -= mean[2]
target *= scale
target = target.transpose(2, 0, 1).reshape(1, 3, height, width) # to NCHW
normAssert(self, blob, target)
def test_model(self):
img_path = self.find_dnn_file("dnn/street.png")
weights = self.find_dnn_file("dnn/MobileNetSSD_deploy.caffemodel", required=False)
config = self.find_dnn_file("dnn/MobileNetSSD_deploy.prototxt", required=False)
if weights is None or config is None:
raise unittest.SkipTest("Missing DNN test files (dnn/MobileNetSSD_deploy.{prototxt/caffemodel}). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.")
frame = cv.imread(img_path)
model = cv.dnn_DetectionModel(weights, config)
model.setInputParams(size=(300, 300), mean=(127.5, 127.5, 127.5), scale=1.0/127.5)
iouDiff = 0.05
confThreshold = 0.0001
nmsThreshold = 0
scoreDiff = 1e-3
classIds, confidences, boxes = model.detect(frame, confThreshold, nmsThreshold)
refClassIds = (7, 15)
refConfidences = (0.9998, 0.8793)
refBoxes = ((328, 238, 85, 102), (101, 188, 34, 138))
normAssertDetections(self, refClassIds, refConfidences, refBoxes,
classIds, confidences, boxes,confThreshold, scoreDiff, iouDiff)
for box in boxes:
cv.rectangle(frame, box, (0, 255, 0))
cv.rectangle(frame, np.array(box), (0, 255, 0))
cv.rectangle(frame, tuple(box), (0, 255, 0))
cv.rectangle(frame, list(box), (0, 255, 0))
def test_classification_model(self):
img_path = self.find_dnn_file("dnn/googlenet_0.png")
weights = self.find_dnn_file("dnn/squeezenet_v1.1.caffemodel", required=False)
config = self.find_dnn_file("dnn/squeezenet_v1.1.prototxt")
ref = np.load(self.find_dnn_file("dnn/squeezenet_v1.1_prob.npy"))
if weights is None or config is None:
raise unittest.SkipTest("Missing DNN test files (dnn/squeezenet_v1.1.{prototxt/caffemodel}). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.")
frame = cv.imread(img_path)
model = cv.dnn_ClassificationModel(config, weights)
model.setInputSize(227, 227)
model.setInputCrop(True)
out = model.predict(frame)
normAssert(self, out, ref)
def test_face_detection(self):
proto = self.find_dnn_file('dnn/opencv_face_detector.prototxt')
model = self.find_dnn_file('dnn/opencv_face_detector.caffemodel', required=False)
if proto is None or model is None:
raise unittest.SkipTest("Missing DNN test files (dnn/opencv_face_detector.{prototxt/caffemodel}). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.")
img = self.get_sample('gpu/lbpcascade/er.png')
blob = cv.dnn.blobFromImage(img, mean=(104, 177, 123), swapRB=False, crop=False)
ref = [[0, 1, 0.99520785, 0.80997437, 0.16379407, 0.87996572, 0.26685631],
[0, 1, 0.9934696, 0.2831718, 0.50738752, 0.345781, 0.5985168],
[0, 1, 0.99096733, 0.13629119, 0.24892329, 0.19756334, 0.3310290],
[0, 1, 0.98977017, 0.23901358, 0.09084064, 0.29902688, 0.1769477],
[0, 1, 0.97203469, 0.67965847, 0.06876482, 0.73999709, 0.1513494],
[0, 1, 0.95097077, 0.51901293, 0.45863652, 0.5777427, 0.5347801]]
print('\n')
for backend, target in self.dnnBackendsAndTargets:
printParams(backend, target)
net = cv.dnn.readNet(proto, model)
net.setPreferableBackend(backend)
net.setPreferableTarget(target)
net.setInput(blob)
out = net.forward().reshape(-1, 7)
scoresDiff = 4e-3 if target in [cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD] else 1e-5
iouDiff = 2e-2 if target in [cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD] else 1e-4
ref = np.array(ref, np.float32)
refClassIds, testClassIds = ref[:, 1], out[:, 1]
refScores, testScores = ref[:, 2], out[:, 2]
refBoxes, testBoxes = ref[:, 3:], out[:, 3:]
normAssertDetections(self, refClassIds, refScores, refBoxes, testClassIds,
testScores, testBoxes, 0.5, scoresDiff, iouDiff)
def test_async(self):
timeout = 10*1000*10**6 # in nanoseconds (10 sec)
proto = self.find_dnn_file('dnn/layers/layer_convolution.prototxt')
model = self.find_dnn_file('dnn/layers/layer_convolution.caffemodel')
if proto is None or model is None:
raise unittest.SkipTest("Missing DNN test files (dnn/layers/layer_convolution.{prototxt/caffemodel}). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.")
print('\n')
for backend, target in self.dnnBackendsAndTargets:
if backend != cv.dnn.DNN_BACKEND_INFERENCE_ENGINE:
continue
printParams(backend, target)
netSync = cv.dnn.readNet(proto, model)
netSync.setPreferableBackend(backend)
netSync.setPreferableTarget(target)
netAsync = cv.dnn.readNet(proto, model)
netAsync.setPreferableBackend(backend)
netAsync.setPreferableTarget(target)
# Generate inputs
numInputs = 10
inputs = []
for _ in range(numInputs):
inputs.append(np.random.standard_normal([2, 6, 75, 113]).astype(np.float32))
# Run synchronously
refs = []
for i in range(numInputs):
netSync.setInput(inputs[i])
refs.append(netSync.forward())
# Run asynchronously. To make test more robust, process inputs in the reversed order.
outs = []
for i in reversed(range(numInputs)):
netAsync.setInput(inputs[i])
outs.insert(0, netAsync.forwardAsync())
for i in reversed(range(numInputs)):
ret, result = outs[i].get(timeoutNs=float(timeout))
self.assertTrue(ret)
normAssert(self, refs[i], result, 'Index: %d' % i, 1e-10)
def test_custom_layer(self):
class CropLayer(object):
def __init__(self, params, blobs):
self.xstart = 0
self.xend = 0
self.ystart = 0
self.yend = 0
# Our layer receives two inputs. We need to crop the first input blob
# to match a shape of the second one (keeping batch size and number of channels)
def getMemoryShapes(self, inputs):
inputShape, targetShape = inputs[0], inputs[1]
batchSize, numChannels = inputShape[0], inputShape[1]
height, width = targetShape[2], targetShape[3]
self.ystart = (inputShape[2] - targetShape[2]) // 2
self.xstart = (inputShape[3] - targetShape[3]) // 2
self.yend = self.ystart + height
self.xend = self.xstart + width
return [[batchSize, numChannels, height, width]]
def forward(self, inputs):
return [inputs[0][:,:,self.ystart:self.yend,self.xstart:self.xend]]
cv.dnn_registerLayer('CropCaffe', CropLayer)
proto = '''
name: "TestCrop"
input: "input"
input_shape
{
dim: 1
dim: 2
dim: 5
dim: 5
}
input: "roi"
input_shape
{
dim: 1
dim: 2
dim: 3
dim: 3
}
layer {
name: "Crop"
type: "CropCaffe"
bottom: "input"
bottom: "roi"
top: "Crop"
}'''
net = cv.dnn.readNetFromCaffe(bytearray(proto.encode()))
for backend, target in self.dnnBackendsAndTargets:
if backend != cv.dnn.DNN_BACKEND_OPENCV:
continue
printParams(backend, target)
net.setPreferableBackend(backend)
net.setPreferableTarget(target)
src_shape = [1, 2, 5, 5]
dst_shape = [1, 2, 3, 3]
inp = np.arange(0, np.prod(src_shape), dtype=np.float32).reshape(src_shape)
roi = np.empty(dst_shape, dtype=np.float32)
net.setInput(inp, "input")
net.setInput(roi, "roi")
out = net.forward()
ref = inp[:, :, 1:4, 1:4]
normAssert(self, out, ref)
cv.dnn_unregisterLayer('CropCaffe')
if __name__ == '__main__':
NewOpenCVTests.bootstrap()
|
import numpy as np
import sys
import os
import argparse
import tensorflow as tf
from tensorflow.python.platform import gfile
from imagenet_cls_test_alexnet import MeanValueFetch, DnnCaffeModel, Framework, ClsAccEvaluation
try:
import cv2 as cv
except ImportError:
raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, '
'configure environment variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)')
# If you've got an exception "Cannot load libmkl_avx.so or libmkl_def.so" or similar, try to export next variable
# before running the script:
# LD_PRELOAD=/opt/intel/mkl/lib/intel64/libmkl_core.so:/opt/intel/mkl/lib/intel64/libmkl_sequential.so
class TensorflowModel(Framework):
sess = tf.Session
output = tf.Graph
def __init__(self, model_file, in_blob_name, out_blob_name):
self.in_blob_name = in_blob_name
self.sess = tf.Session()
with gfile.FastGFile(model_file, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
self.sess.graph.as_default()
tf.import_graph_def(graph_def, name='')
self.output = self.sess.graph.get_tensor_by_name(out_blob_name + ":0")
def get_name(self):
return 'Tensorflow'
def get_output(self, input_blob):
assert len(input_blob.shape) == 4
batch_tf = input_blob.transpose(0, 2, 3, 1)
out = self.sess.run(self.output,
{self.in_blob_name+':0': batch_tf})
out = out[..., 1:1001]
return out
class DnnTfInceptionModel(DnnCaffeModel):
net = cv.dnn.Net()
def __init__(self, model_file, in_blob_name, out_blob_name):
self.net = cv.dnn.readNetFromTensorflow(model_file)
self.in_blob_name = in_blob_name
self.out_blob_name = out_blob_name
def get_output(self, input_blob):
return super(DnnTfInceptionModel, self).get_output(input_blob)[..., 1:1001]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--imgs_dir", help="path to ImageNet validation subset images dir, ILSVRC2012_img_val dir")
parser.add_argument("--img_cls_file", help="path to file with classes ids for images, download it here:"
"https://github.com/opencv/opencv_extra/tree/master/testdata/dnn/img_classes_inception.txt")
parser.add_argument("--model", help="path to tensorflow model, download it here:"
"https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip")
parser.add_argument("--log", help="path to logging file")
parser.add_argument("--batch_size", help="size of images in batch", default=1)
parser.add_argument("--frame_size", help="size of input image", default=224)
parser.add_argument("--in_blob", help="name for input blob", default='input')
parser.add_argument("--out_blob", help="name for output blob", default='softmax2')
args = parser.parse_args()
data_fetcher = MeanValueFetch(args.frame_size, args.imgs_dir, True)
frameworks = [TensorflowModel(args.model, args.in_blob, args.out_blob),
DnnTfInceptionModel(args.model, '', args.out_blob)]
acc_eval = ClsAccEvaluation(args.log, args.img_cls_file, args.batch_size)
acc_eval.process(frameworks, data_fetcher)
|
import numpy as np
import sys
import os
import fnmatch
import argparse
try:
import cv2 as cv
except ImportError:
raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, '
'configure environment variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)')
try:
import torch
except ImportError:
raise ImportError('Can\'t find pytorch. Please install it by following instructions on the official site')
from torch.utils.serialization import load_lua
from pascal_semsegm_test_fcn import eval_segm_result, get_conf_mat, get_metrics, DatasetImageFetch, SemSegmEvaluation
from imagenet_cls_test_alexnet import Framework, DnnCaffeModel
class NormalizePreproc:
def __init__(self):
pass
@staticmethod
def process(img):
image_data = np.array(img).transpose(2, 0, 1).astype(np.float32)
image_data = np.expand_dims(image_data, 0)
image_data /= 255.0
return image_data
class CityscapesDataFetch(DatasetImageFetch):
img_dir = ''
segm_dir = ''
segm_files = []
colors = []
i = 0
def __init__(self, img_dir, segm_dir, preproc):
self.img_dir = img_dir
self.segm_dir = segm_dir
self.segm_files = sorted([img for img in self.locate('*_color.png', segm_dir)])
self.colors = self.get_colors()
self.data_prepoc = preproc
self.i = 0
@staticmethod
def get_colors():
result = []
colors_list = (
(0, 0, 0), (128, 64, 128), (244, 35, 232), (70, 70, 70), (102, 102, 156), (190, 153, 153), (153, 153, 153),
(250, 170, 30), (220, 220, 0), (107, 142, 35), (152, 251, 152), (70, 130, 180), (220, 20, 60), (255, 0, 0),
(0, 0, 142), (0, 0, 70), (0, 60, 100), (0, 80, 100), (0, 0, 230), (119, 11, 32))
for c in colors_list:
result.append(DatasetImageFetch.pix_to_c(c))
return result
def __iter__(self):
return self
def next(self):
if self.i < len(self.segm_files):
segm_file = self.segm_files[self.i]
segm = cv.imread(segm_file, cv.IMREAD_COLOR)[:, :, ::-1]
segm = cv.resize(segm, (1024, 512), interpolation=cv.INTER_NEAREST)
img_file = self.rreplace(self.img_dir + segm_file[len(self.segm_dir):], 'gtFine_color', 'leftImg8bit')
assert os.path.exists(img_file)
img = cv.imread(img_file, cv.IMREAD_COLOR)[:, :, ::-1]
img = cv.resize(img, (1024, 512))
self.i += 1
gt = self.color_to_gt(segm, self.colors)
img = self.data_prepoc.process(img)
return img, gt
else:
self.i = 0
raise StopIteration
def get_num_classes(self):
return len(self.colors)
@staticmethod
def locate(pattern, root_path):
for path, dirs, files in os.walk(os.path.abspath(root_path)):
for filename in fnmatch.filter(files, pattern):
yield os.path.join(path, filename)
@staticmethod
def rreplace(s, old, new, occurrence=1):
li = s.rsplit(old, occurrence)
return new.join(li)
class TorchModel(Framework):
net = object
def __init__(self, model_file):
self.net = load_lua(model_file)
def get_name(self):
return 'Torch'
def get_output(self, input_blob):
tensor = torch.FloatTensor(input_blob)
out = self.net.forward(tensor).numpy()
return out
class DnnTorchModel(DnnCaffeModel):
net = cv.dnn.Net()
def __init__(self, model_file):
self.net = cv.dnn.readNetFromTorch(model_file)
def get_output(self, input_blob):
self.net.setBlob("", input_blob)
self.net.forward()
return self.net.getBlob(self.net.getLayerNames()[-1])
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--imgs_dir", help="path to Cityscapes validation images dir, imgsfine/leftImg8bit/val")
parser.add_argument("--segm_dir", help="path to Cityscapes dir with segmentation, gtfine/gtFine/val")
parser.add_argument("--model", help="path to torch model, download it here: "
"https://www.dropbox.com/sh/dywzk3gyb12hpe5/AAD5YkUa8XgMpHs2gCRgmCVCa")
parser.add_argument("--log", help="path to logging file")
args = parser.parse_args()
prep = NormalizePreproc()
df = CityscapesDataFetch(args.imgs_dir, args.segm_dir, prep)
fw = [TorchModel(args.model),
DnnTorchModel(args.model)]
segm_eval = SemSegmEvaluation(args.log)
segm_eval.process(fw, df)
|
import numpy as np
import sys
import os
import argparse
from imagenet_cls_test_alexnet import MeanChannelsFetch, CaffeModel, DnnCaffeModel, ClsAccEvaluation
try:
import caffe
except ImportError:
raise ImportError('Can\'t find Caffe Python module. If you\'ve built it from sources without installation, '
'configure environment variable PYTHONPATH to "git/caffe/python" directory')
try:
import cv2 as cv
except ImportError:
raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, '
'configure environment variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--imgs_dir", help="path to ImageNet validation subset images dir, ILSVRC2012_img_val dir")
parser.add_argument("--img_cls_file", help="path to file with classes ids for images, val.txt file from this "
"archive: http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz")
parser.add_argument("--prototxt", help="path to caffe prototxt, download it here: "
"https://github.com/BVLC/caffe/blob/master/models/bvlc_alexnet/deploy.prototxt")
parser.add_argument("--caffemodel", help="path to caffemodel file, download it here: "
"http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel")
parser.add_argument("--log", help="path to logging file")
parser.add_argument("--batch_size", help="size of images in batch", default=500, type=int)
parser.add_argument("--frame_size", help="size of input image", default=224, type=int)
parser.add_argument("--in_blob", help="name for input blob", default='data')
parser.add_argument("--out_blob", help="name for output blob", default='prob')
args = parser.parse_args()
data_fetcher = MeanChannelsFetch(args.frame_size, args.imgs_dir)
frameworks = [CaffeModel(args.prototxt, args.caffemodel, args.in_blob, args.out_blob),
DnnCaffeModel(args.prototxt, args.caffemodel, '', args.out_blob)]
acc_eval = ClsAccEvaluation(args.log, args.img_cls_file, args.batch_size)
acc_eval.process(frameworks, data_fetcher)
|
from __future__ import print_function
from abc import ABCMeta, abstractmethod
import numpy as np
import sys
import os
import argparse
import time
try:
import caffe
except ImportError:
raise ImportError('Can\'t find Caffe Python module. If you\'ve built it from sources without installation, '
'configure environment variable PYTHONPATH to "git/caffe/python" directory')
try:
import cv2 as cv
except ImportError:
raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, '
'configure environment variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)')
try:
xrange # Python 2
except NameError:
xrange = range # Python 3
class DataFetch(object):
imgs_dir = ''
frame_size = 0
bgr_to_rgb = False
__metaclass__ = ABCMeta
@abstractmethod
def preprocess(self, img):
pass
def get_batch(self, imgs_names):
assert type(imgs_names) is list
batch = np.zeros((len(imgs_names), 3, self.frame_size, self.frame_size)).astype(np.float32)
for i in range(len(imgs_names)):
img_name = imgs_names[i]
img_file = self.imgs_dir + img_name
assert os.path.exists(img_file)
img = cv.imread(img_file, cv.IMREAD_COLOR)
min_dim = min(img.shape[-3], img.shape[-2])
resize_ratio = self.frame_size / float(min_dim)
img = cv.resize(img, (0, 0), fx=resize_ratio, fy=resize_ratio)
cols = img.shape[1]
rows = img.shape[0]
y1 = (rows - self.frame_size) / 2
y2 = y1 + self.frame_size
x1 = (cols - self.frame_size) / 2
x2 = x1 + self.frame_size
img = img[y1:y2, x1:x2]
if self.bgr_to_rgb:
img = img[..., ::-1]
image_data = img[:, :, 0:3].transpose(2, 0, 1)
batch[i] = self.preprocess(image_data)
return batch
class MeanBlobFetch(DataFetch):
mean_blob = np.ndarray(())
def __init__(self, frame_size, mean_blob_path, imgs_dir):
self.imgs_dir = imgs_dir
self.frame_size = frame_size
blob = caffe.proto.caffe_pb2.BlobProto()
data = open(mean_blob_path, 'rb').read()
blob.ParseFromString(data)
self.mean_blob = np.array(caffe.io.blobproto_to_array(blob))
start = (self.mean_blob.shape[2] - self.frame_size) / 2
stop = start + self.frame_size
self.mean_blob = self.mean_blob[:, :, start:stop, start:stop][0]
def preprocess(self, img):
return img - self.mean_blob
class MeanChannelsFetch(MeanBlobFetch):
def __init__(self, frame_size, imgs_dir):
self.imgs_dir = imgs_dir
self.frame_size = frame_size
self.mean_blob = np.ones((3, self.frame_size, self.frame_size)).astype(np.float32)
self.mean_blob[0] *= 104
self.mean_blob[1] *= 117
self.mean_blob[2] *= 123
class MeanValueFetch(MeanBlobFetch):
def __init__(self, frame_size, imgs_dir, bgr_to_rgb):
self.imgs_dir = imgs_dir
self.frame_size = frame_size
self.mean_blob = np.ones((3, self.frame_size, self.frame_size)).astype(np.float32)
self.mean_blob *= 117
self.bgr_to_rgb = bgr_to_rgb
def get_correct_answers(img_list, img_classes, net_output_blob):
correct_answers = 0
for i in range(len(img_list)):
indexes = np.argsort(net_output_blob[i])[-5:]
correct_index = img_classes[img_list[i]]
if correct_index in indexes:
correct_answers += 1
return correct_answers
class Framework(object):
in_blob_name = ''
out_blob_name = ''
__metaclass__ = ABCMeta
@abstractmethod
def get_name(self):
pass
@abstractmethod
def get_output(self, input_blob):
pass
class CaffeModel(Framework):
net = caffe.Net
need_reshape = False
def __init__(self, prototxt, caffemodel, in_blob_name, out_blob_name, need_reshape=False):
caffe.set_mode_cpu()
self.net = caffe.Net(prototxt, caffemodel, caffe.TEST)
self.in_blob_name = in_blob_name
self.out_blob_name = out_blob_name
self.need_reshape = need_reshape
def get_name(self):
return 'Caffe'
def get_output(self, input_blob):
if self.need_reshape:
self.net.blobs[self.in_blob_name].reshape(*input_blob.shape)
return self.net.forward_all(**{self.in_blob_name: input_blob})[self.out_blob_name]
class DnnCaffeModel(Framework):
net = object
def __init__(self, prototxt, caffemodel, in_blob_name, out_blob_name):
self.net = cv.dnn.readNetFromCaffe(prototxt, caffemodel)
self.in_blob_name = in_blob_name
self.out_blob_name = out_blob_name
def get_name(self):
return 'DNN'
def get_output(self, input_blob):
self.net.setInput(input_blob, self.in_blob_name)
return self.net.forward(self.out_blob_name)
class ClsAccEvaluation:
log = sys.stdout
img_classes = {}
batch_size = 0
def __init__(self, log_path, img_classes_file, batch_size):
self.log = open(log_path, 'w')
self.img_classes = self.read_classes(img_classes_file)
self.batch_size = batch_size
@staticmethod
def read_classes(img_classes_file):
result = {}
with open(img_classes_file) as file:
for l in file.readlines():
result[l.split()[0]] = int(l.split()[1])
return result
def process(self, frameworks, data_fetcher):
sorted_imgs_names = sorted(self.img_classes.keys())
correct_answers = [0] * len(frameworks)
samples_handled = 0
blobs_l1_diff = [0] * len(frameworks)
blobs_l1_diff_count = [0] * len(frameworks)
blobs_l_inf_diff = [sys.float_info.min] * len(frameworks)
inference_time = [0.0] * len(frameworks)
for x in xrange(0, len(sorted_imgs_names), self.batch_size):
sublist = sorted_imgs_names[x:x + self.batch_size]
batch = data_fetcher.get_batch(sublist)
samples_handled += len(sublist)
frameworks_out = []
fw_accuracy = []
for i in range(len(frameworks)):
start = time.time()
out = frameworks[i].get_output(batch)
end = time.time()
correct_answers[i] += get_correct_answers(sublist, self.img_classes, out)
fw_accuracy.append(100 * correct_answers[i] / float(samples_handled))
frameworks_out.append(out)
inference_time[i] += end - start
print(samples_handled, 'Accuracy for', frameworks[i].get_name() + ':', fw_accuracy[i], file=self.log)
print("Inference time, ms ", \
frameworks[i].get_name(), inference_time[i] / samples_handled * 1000, file=self.log)
for i in range(1, len(frameworks)):
log_str = frameworks[0].get_name() + " vs " + frameworks[i].get_name() + ':'
diff = np.abs(frameworks_out[0] - frameworks_out[i])
l1_diff = np.sum(diff) / diff.size
print(samples_handled, "L1 difference", log_str, l1_diff, file=self.log)
blobs_l1_diff[i] += l1_diff
blobs_l1_diff_count[i] += 1
if np.max(diff) > blobs_l_inf_diff[i]:
blobs_l_inf_diff[i] = np.max(diff)
print(samples_handled, "L_INF difference", log_str, blobs_l_inf_diff[i], file=self.log)
self.log.flush()
for i in range(1, len(blobs_l1_diff)):
log_str = frameworks[0].get_name() + " vs " + frameworks[i].get_name() + ':'
print('Final l1 diff', log_str, blobs_l1_diff[i] / blobs_l1_diff_count[i], file=self.log)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--imgs_dir", help="path to ImageNet validation subset images dir, ILSVRC2012_img_val dir")
parser.add_argument("--img_cls_file", help="path to file with classes ids for images, val.txt file from this "
"archive: http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz")
parser.add_argument("--prototxt", help="path to caffe prototxt, download it here: "
"https://github.com/BVLC/caffe/blob/master/models/bvlc_alexnet/deploy.prototxt")
parser.add_argument("--caffemodel", help="path to caffemodel file, download it here: "
"http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel")
parser.add_argument("--log", help="path to logging file")
parser.add_argument("--mean", help="path to ImageNet mean blob caffe file, imagenet_mean.binaryproto file from"
"this archive: http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz")
parser.add_argument("--batch_size", help="size of images in batch", default=1000)
parser.add_argument("--frame_size", help="size of input image", default=227)
parser.add_argument("--in_blob", help="name for input blob", default='data')
parser.add_argument("--out_blob", help="name for output blob", default='prob')
args = parser.parse_args()
data_fetcher = MeanBlobFetch(args.frame_size, args.mean, args.imgs_dir)
frameworks = [CaffeModel(args.prototxt, args.caffemodel, args.in_blob, args.out_blob),
DnnCaffeModel(args.prototxt, args.caffemodel, '', args.out_blob)]
acc_eval = ClsAccEvaluation(args.log, args.img_cls_file, args.batch_size)
acc_eval.process(frameworks, data_fetcher)
|
from __future__ import print_function
from abc import ABCMeta, abstractmethod
import numpy as np
import sys
import argparse
import time
from imagenet_cls_test_alexnet import CaffeModel, DnnCaffeModel
try:
import cv2 as cv
except ImportError:
raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, '
'configure environment variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)')
def get_metrics(conf_mat):
pix_accuracy = np.trace(conf_mat) / np.sum(conf_mat)
t = np.sum(conf_mat, 1)
num_cl = np.count_nonzero(t)
assert num_cl
mean_accuracy = np.sum(np.nan_to_num(np.divide(np.diagonal(conf_mat), t))) / num_cl
col_sum = np.sum(conf_mat, 0)
mean_iou = np.sum(
np.nan_to_num(np.divide(np.diagonal(conf_mat), (t + col_sum - np.diagonal(conf_mat))))) / num_cl
return pix_accuracy, mean_accuracy, mean_iou
def eval_segm_result(net_out):
assert type(net_out) is np.ndarray
assert len(net_out.shape) == 4
channels_dim = 1
y_dim = channels_dim + 1
x_dim = y_dim + 1
res = np.zeros(net_out.shape).astype(np.int)
for i in range(net_out.shape[y_dim]):
for j in range(net_out.shape[x_dim]):
max_ch = np.argmax(net_out[..., i, j])
res[0, max_ch, i, j] = 1
return res
def get_conf_mat(gt, prob):
assert type(gt) is np.ndarray
assert type(prob) is np.ndarray
conf_mat = np.zeros((gt.shape[0], gt.shape[0]))
for ch_gt in range(conf_mat.shape[0]):
gt_channel = gt[ch_gt, ...]
for ch_pr in range(conf_mat.shape[1]):
prob_channel = prob[ch_pr, ...]
conf_mat[ch_gt][ch_pr] = np.count_nonzero(np.multiply(gt_channel, prob_channel))
return conf_mat
class MeanChannelsPreproc:
def __init__(self):
pass
@staticmethod
def process(img):
image_data = np.array(img).transpose(2, 0, 1).astype(np.float32)
mean = np.ones(image_data.shape)
mean[0] *= 104
mean[1] *= 117
mean[2] *= 123
image_data -= mean
image_data = np.expand_dims(image_data, 0)
return image_data
class DatasetImageFetch(object):
__metaclass__ = ABCMeta
data_prepoc = object
@abstractmethod
def __iter__(self):
pass
@abstractmethod
def next(self):
pass
@staticmethod
def pix_to_c(pix):
return pix[0] * 256 * 256 + pix[1] * 256 + pix[2]
@staticmethod
def color_to_gt(color_img, colors):
num_classes = len(colors)
gt = np.zeros((num_classes, color_img.shape[0], color_img.shape[1])).astype(np.int)
for img_y in range(color_img.shape[0]):
for img_x in range(color_img.shape[1]):
c = DatasetImageFetch.pix_to_c(color_img[img_y][img_x])
if c in colors:
cls = colors.index(c)
gt[cls][img_y][img_x] = 1
return gt
class PASCALDataFetch(DatasetImageFetch):
img_dir = ''
segm_dir = ''
names = []
colors = []
i = 0
def __init__(self, img_dir, segm_dir, names_file, segm_cls_colors_file, preproc):
self.img_dir = img_dir
self.segm_dir = segm_dir
self.colors = self.read_colors(segm_cls_colors_file)
self.data_prepoc = preproc
self.i = 0
with open(names_file) as f:
for l in f.readlines():
self.names.append(l.rstrip())
@staticmethod
def read_colors(img_classes_file):
result = []
with open(img_classes_file) as f:
for l in f.readlines():
color = np.array(map(int, l.split()[1:]))
result.append(DatasetImageFetch.pix_to_c(color))
return result
def __iter__(self):
return self
def next(self):
if self.i < len(self.names):
name = self.names[self.i]
self.i += 1
segm_file = self.segm_dir + name + ".png"
img_file = self.img_dir + name + ".jpg"
gt = self.color_to_gt(cv.imread(segm_file, cv.IMREAD_COLOR)[:, :, ::-1], self.colors)
img = self.data_prepoc.process(cv.imread(img_file, cv.IMREAD_COLOR)[:, :, ::-1])
return img, gt
else:
self.i = 0
raise StopIteration
def get_num_classes(self):
return len(self.colors)
class SemSegmEvaluation:
log = sys.stdout
def __init__(self, log_path,):
self.log = open(log_path, 'w')
def process(self, frameworks, data_fetcher):
samples_handled = 0
conf_mats = [np.zeros((data_fetcher.get_num_classes(), data_fetcher.get_num_classes())) for i in range(len(frameworks))]
blobs_l1_diff = [0] * len(frameworks)
blobs_l1_diff_count = [0] * len(frameworks)
blobs_l_inf_diff = [sys.float_info.min] * len(frameworks)
inference_time = [0.0] * len(frameworks)
for in_blob, gt in data_fetcher:
frameworks_out = []
samples_handled += 1
for i in range(len(frameworks)):
start = time.time()
out = frameworks[i].get_output(in_blob)
end = time.time()
segm = eval_segm_result(out)
conf_mats[i] += get_conf_mat(gt, segm[0])
frameworks_out.append(out)
inference_time[i] += end - start
pix_acc, mean_acc, miou = get_metrics(conf_mats[i])
name = frameworks[i].get_name()
print(samples_handled, 'Pixel accuracy, %s:' % name, 100 * pix_acc, file=self.log)
print(samples_handled, 'Mean accuracy, %s:' % name, 100 * mean_acc, file=self.log)
print(samples_handled, 'Mean IOU, %s:' % name, 100 * miou, file=self.log)
print("Inference time, ms ", \
frameworks[i].get_name(), inference_time[i] / samples_handled * 1000, file=self.log)
for i in range(1, len(frameworks)):
log_str = frameworks[0].get_name() + " vs " + frameworks[i].get_name() + ':'
diff = np.abs(frameworks_out[0] - frameworks_out[i])
l1_diff = np.sum(diff) / diff.size
print(samples_handled, "L1 difference", log_str, l1_diff, file=self.log)
blobs_l1_diff[i] += l1_diff
blobs_l1_diff_count[i] += 1
if np.max(diff) > blobs_l_inf_diff[i]:
blobs_l_inf_diff[i] = np.max(diff)
print(samples_handled, "L_INF difference", log_str, blobs_l_inf_diff[i], file=self.log)
self.log.flush()
for i in range(1, len(blobs_l1_diff)):
log_str = frameworks[0].get_name() + " vs " + frameworks[i].get_name() + ':'
print('Final l1 diff', log_str, blobs_l1_diff[i] / blobs_l1_diff_count[i], file=self.log)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--imgs_dir", help="path to PASCAL VOC 2012 images dir, data/VOC2012/JPEGImages")
parser.add_argument("--segm_dir", help="path to PASCAL VOC 2012 segmentation dir, data/VOC2012/SegmentationClass/")
parser.add_argument("--val_names", help="path to file with validation set image names, download it here: "
"https://github.com/shelhamer/fcn.berkeleyvision.org/blob/master/data/pascal/seg11valid.txt")
parser.add_argument("--cls_file", help="path to file with colors for classes, download it here: "
"https://github.com/opencv/opencv/blob/master/samples/data/dnn/pascal-classes.txt")
parser.add_argument("--prototxt", help="path to caffe prototxt, download it here: "
"https://github.com/opencv/opencv/blob/master/samples/data/dnn/fcn8s-heavy-pascal.prototxt")
parser.add_argument("--caffemodel", help="path to caffemodel file, download it here: "
"http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel")
parser.add_argument("--log", help="path to logging file")
parser.add_argument("--in_blob", help="name for input blob", default='data')
parser.add_argument("--out_blob", help="name for output blob", default='score')
args = parser.parse_args()
prep = MeanChannelsPreproc()
df = PASCALDataFetch(args.imgs_dir, args.segm_dir, args.val_names, args.cls_file, prep)
fw = [CaffeModel(args.prototxt, args.caffemodel, args.in_blob, args.out_blob, True),
DnnCaffeModel(args.prototxt, args.caffemodel, '', args.out_blob)]
segm_eval = SemSegmEvaluation(args.log)
segm_eval.process(fw, df)
|
# Iterate all GLSL shaders (with suffix '.comp') in current directory.
#
# Use glslangValidator to compile them to SPIR-V shaders and write them
# into .cpp files as unsigned int array.
#
# Also generate a header file 'spv_shader.hpp' to extern declare these shaders.
import re
import os
import sys
dir = "./"
license_decl = \
'// This file is part of OpenCV project.\n'\
'// It is subject to the license terms in the LICENSE file found in the top-level directory\n'\
'// of this distribution and at http://opencv.org/license.html.\n'\
'//\n'\
'// Copyright (C) 2018, Intel Corporation, all rights reserved.\n'\
'// Third party copyrights are property of their respective owners.\n\n'
precomp = '#include \"../../precomp.hpp\"\n'
ns_head = '\nnamespace cv { namespace dnn { namespace vkcom {\n\n'
ns_tail = '\n}}} // namespace cv::dnn::vkcom\n'
headfile = open('spv_shader.hpp', 'w')
headfile.write(license_decl)
headfile.write('#ifndef OPENCV_DNN_SPV_SHADER_HPP\n')
headfile.write('#define OPENCV_DNN_SPV_SHADER_HPP\n\n')
headfile.write(ns_head)
cmd_remove = ''
null_out = ''
if sys.platform.find('win32') != -1:
cmd_remove = 'del'
null_out = ' >>nul 2>nul'
elif sys.platform.find('linux') != -1:
cmd_remove = 'rm'
null_out = ' > /dev/null 2>&1'
list = os.listdir(dir)
for i in range(0, len(list)):
if (os.path.splitext(list[i])[-1] != '.comp'):
continue
prefix = os.path.splitext(list[i])[0];
path = os.path.join(dir, list[i])
bin_file = prefix + '.tmp'
cmd = ' glslangValidator -V ' + path + ' -S comp -o ' + bin_file
print('compiling')
if os.system(cmd) != 0:
continue;
size = os.path.getsize(bin_file)
spv_txt_file = prefix + '.spv'
cmd = 'glslangValidator -V ' + path + ' -S comp -o ' + spv_txt_file + ' -x' + null_out
os.system(cmd)
infile_name = spv_txt_file
outfile_name = prefix + '_spv.cpp'
array_name = prefix + '_spv'
infile = open(infile_name, 'r')
outfile = open(outfile_name, 'w')
outfile.write(license_decl)
outfile.write(precomp)
outfile.write(ns_head)
# xxx.spv ==> xxx_spv.cpp
fmt = 'extern const unsigned int %s[%d] = {\n' % (array_name, size/4)
outfile.write(fmt)
for eachLine in infile:
if(re.match(r'^.*\/\/', eachLine)):
continue
newline = ' ' + eachLine.replace('\t','')
outfile.write(newline)
infile.close()
outfile.write("};\n")
outfile.write(ns_tail)
# write a line into header file
fmt = 'extern const unsigned int %s[%d];\n' % (array_name, size/4)
headfile.write(fmt)
os.system(cmd_remove + ' ' + bin_file)
os.system(cmd_remove + ' ' + spv_txt_file)
headfile.write(ns_tail)
headfile.write('\n#endif /* OPENCV_DNN_SPV_SHADER_HPP */\n')
headfile.close();
|
#!/usr/bin/env python
from __future__ import print_function
import numpy as np
import cv2 as cv
from tests_common import NewOpenCVTests
class Bindings(NewOpenCVTests):
def check_name(self, name):
#print(name)
self.assertFalse(name == None)
self.assertFalse(name == "")
def test_registry(self):
self.check_name(cv.videoio_registry.getBackendName(cv.CAP_ANY));
self.check_name(cv.videoio_registry.getBackendName(cv.CAP_FFMPEG))
self.check_name(cv.videoio_registry.getBackendName(cv.CAP_OPENCV_MJPEG))
backends = cv.videoio_registry.getBackends()
for backend in backends:
self.check_name(cv.videoio_registry.getBackendName(backend))
if __name__ == '__main__':
NewOpenCVTests.bootstrap()
|
#!/usr/bin/env python
'''
Feature homography
==================
Example of using features2d framework for interactive video homography matching.
ORB features and FLANN matcher are used. The actual tracking is implemented by
PlaneTracker class in plane_tracker.py
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2 as cv
import sys
PY3 = sys.version_info[0] == 3
if PY3:
xrange = range
# local modules
from tst_scene_render import TestSceneRender
def intersectionRate(s1, s2):
x1, y1, x2, y2 = s1
s1 = np.array([[x1, y1], [x2,y1], [x2, y2], [x1, y2]])
area, _intersection = cv.intersectConvexConvex(s1, np.array(s2))
return 2 * area / (cv.contourArea(s1) + cv.contourArea(np.array(s2)))
from tests_common import NewOpenCVTests
class feature_homography_test(NewOpenCVTests):
render = None
tracker = None
framesCounter = 0
frame = None
def test_feature_homography(self):
self.render = TestSceneRender(self.get_sample('samples/data/graf1.png'),
self.get_sample('samples/data/box.png'), noise = 0.5, speed = 0.5)
self.frame = self.render.getNextFrame()
self.tracker = PlaneTracker()
self.tracker.clear()
self.tracker.add_target(self.frame, self.render.getCurrentRect())
while self.framesCounter < 100:
self.framesCounter += 1
tracked = self.tracker.track(self.frame)
if len(tracked) > 0:
tracked = tracked[0]
self.assertGreater(intersectionRate(self.render.getCurrentRect(), np.int32(tracked.quad)), 0.6)
else:
self.assertEqual(0, 1, 'Tracking error')
self.frame = self.render.getNextFrame()
# built-in modules
from collections import namedtuple
FLANN_INDEX_KDTREE = 1
FLANN_INDEX_LSH = 6
flann_params= dict(algorithm = FLANN_INDEX_LSH,
table_number = 6, # 12
key_size = 12, # 20
multi_probe_level = 1) #2
MIN_MATCH_COUNT = 10
'''
image - image to track
rect - tracked rectangle (x1, y1, x2, y2)
keypoints - keypoints detected inside rect
descrs - their descriptors
data - some user-provided data
'''
PlanarTarget = namedtuple('PlaneTarget', 'image, rect, keypoints, descrs, data')
'''
target - reference to PlanarTarget
p0 - matched points coords in target image
p1 - matched points coords in input frame
H - homography matrix from p0 to p1
quad - target boundary quad in input frame
'''
TrackedTarget = namedtuple('TrackedTarget', 'target, p0, p1, H, quad')
class PlaneTracker:
def __init__(self):
self.detector = cv.AKAZE_create(threshold = 0.003)
self.matcher = cv.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329)
self.targets = []
self.frame_points = []
def add_target(self, image, rect, data=None):
'''Add a new tracking target.'''
x0, y0, x1, y1 = rect
raw_points, raw_descrs = self.detect_features(image)
points, descs = [], []
for kp, desc in zip(raw_points, raw_descrs):
x, y = kp.pt
if x0 <= x <= x1 and y0 <= y <= y1:
points.append(kp)
descs.append(desc)
descs = np.uint8(descs)
self.matcher.add([descs])
target = PlanarTarget(image = image, rect=rect, keypoints = points, descrs=descs, data=data)
self.targets.append(target)
def clear(self):
'''Remove all targets'''
self.targets = []
self.matcher.clear()
def track(self, frame):
'''Returns a list of detected TrackedTarget objects'''
self.frame_points, frame_descrs = self.detect_features(frame)
if len(self.frame_points) < MIN_MATCH_COUNT:
return []
matches = self.matcher.knnMatch(frame_descrs, k = 2)
matches = [m[0] for m in matches if len(m) == 2 and m[0].distance < m[1].distance * 0.75]
if len(matches) < MIN_MATCH_COUNT:
return []
matches_by_id = [[] for _ in xrange(len(self.targets))]
for m in matches:
matches_by_id[m.imgIdx].append(m)
tracked = []
for imgIdx, matches in enumerate(matches_by_id):
if len(matches) < MIN_MATCH_COUNT:
continue
target = self.targets[imgIdx]
p0 = [target.keypoints[m.trainIdx].pt for m in matches]
p1 = [self.frame_points[m.queryIdx].pt for m in matches]
p0, p1 = np.float32((p0, p1))
H, status = cv.findHomography(p0, p1, cv.RANSAC, 3.0)
status = status.ravel() != 0
if status.sum() < MIN_MATCH_COUNT:
continue
p0, p1 = p0[status], p1[status]
x0, y0, x1, y1 = target.rect
quad = np.float32([[x0, y0], [x1, y0], [x1, y1], [x0, y1]])
quad = cv.perspectiveTransform(quad.reshape(1, -1, 2), H).reshape(-1, 2)
track = TrackedTarget(target=target, p0=p0, p1=p1, H=H, quad=quad)
tracked.append(track)
tracked.sort(key = lambda t: len(t.p0), reverse=True)
return tracked
def detect_features(self, frame):
'''detect_features(self, frame) -> keypoints, descrs'''
keypoints, descrs = self.detector.detectAndCompute(frame, None)
if descrs is None: # detectAndCompute returns descs=None if no keypoints found
descrs = []
return keypoints, descrs
if __name__ == '__main__':
NewOpenCVTests.bootstrap()
|
#!/usr/bin/env python
from __future__ import print_function
import collections
import re
import os.path
import sys
from xml.dom.minidom import parse
if sys.version_info > (3,):
long = int
def cmp(a, b): return (a>b)-(a<b)
class TestInfo(object):
def __init__(self, xmlnode):
self.fixture = xmlnode.getAttribute("classname")
self.name = xmlnode.getAttribute("name")
self.value_param = xmlnode.getAttribute("value_param")
self.type_param = xmlnode.getAttribute("type_param")
custom_status = xmlnode.getAttribute("custom_status")
failures = xmlnode.getElementsByTagName("failure")
if len(custom_status) > 0:
self.status = custom_status
elif len(failures) > 0:
self.status = "failed"
else:
self.status = xmlnode.getAttribute("status")
if self.name.startswith("DISABLED_"):
if self.status == 'notrun':
self.status = "disabled"
self.fixture = self.fixture.replace("DISABLED_", "")
self.name = self.name.replace("DISABLED_", "")
self.properties = {
prop.getAttribute("name") : prop.getAttribute("value")
for prop in xmlnode.getElementsByTagName("property")
if prop.hasAttribute("name") and prop.hasAttribute("value")
}
self.metrix = {}
self.parseLongMetric(xmlnode, "bytesIn");
self.parseLongMetric(xmlnode, "bytesOut");
self.parseIntMetric(xmlnode, "samples");
self.parseIntMetric(xmlnode, "outliers");
self.parseFloatMetric(xmlnode, "frequency", 1);
self.parseLongMetric(xmlnode, "min");
self.parseLongMetric(xmlnode, "median");
self.parseLongMetric(xmlnode, "gmean");
self.parseLongMetric(xmlnode, "mean");
self.parseLongMetric(xmlnode, "stddev");
self.parseFloatMetric(xmlnode, "gstddev");
self.parseFloatMetric(xmlnode, "time");
self.parseLongMetric(xmlnode, "total_memory_usage");
def parseLongMetric(self, xmlnode, name, default = 0):
if name in self.properties:
self.metrix[name] = long(self.properties[name])
elif xmlnode.hasAttribute(name):
self.metrix[name] = long(xmlnode.getAttribute(name))
else:
self.metrix[name] = default
def parseIntMetric(self, xmlnode, name, default = 0):
if name in self.properties:
self.metrix[name] = int(self.properties[name])
elif xmlnode.hasAttribute(name):
self.metrix[name] = int(xmlnode.getAttribute(name))
else:
self.metrix[name] = default
def parseFloatMetric(self, xmlnode, name, default = 0):
if name in self.properties:
self.metrix[name] = float(self.properties[name])
elif xmlnode.hasAttribute(name):
self.metrix[name] = float(xmlnode.getAttribute(name))
else:
self.metrix[name] = default
def parseStringMetric(self, xmlnode, name, default = None):
if name in self.properties:
self.metrix[name] = self.properties[name].strip()
elif xmlnode.hasAttribute(name):
self.metrix[name] = xmlnode.getAttribute(name).strip()
else:
self.metrix[name] = default
def get(self, name, units="ms"):
if name == "classname":
return self.fixture
if name == "name":
return self.name
if name == "fullname":
return self.__str__()
if name == "value_param":
return self.value_param
if name == "type_param":
return self.type_param
if name == "status":
return self.status
val = self.metrix.get(name, None)
if not val:
return val
if name == "time":
return self.metrix.get("time")
if name in ["gmean", "min", "mean", "median", "stddev"]:
scale = 1.0
frequency = self.metrix.get("frequency", 1.0) or 1.0
if units == "ms":
scale = 1000.0
if units == "us" or units == "mks": # mks is typo error for microsecond (<= OpenCV 3.4)
scale = 1000000.0
if units == "ns":
scale = 1000000000.0
if units == "ticks":
frequency = long(1)
scale = long(1)
return val * scale / frequency
return val
def dump(self, units="ms"):
print("%s ->\t\033[1;31m%s\033[0m = \t%.2f%s" % (str(self), self.status, self.get("gmean", units), units))
def getName(self):
pos = self.name.find("/")
if pos > 0:
return self.name[:pos]
return self.name
def getFixture(self):
if self.fixture.endswith(self.getName()):
fixture = self.fixture[:-len(self.getName())]
else:
fixture = self.fixture
if fixture.endswith("_"):
fixture = fixture[:-1]
return fixture
def param(self):
return '::'.join(filter(None, [self.type_param, self.value_param]))
def shortName(self):
name = self.getName()
fixture = self.getFixture()
return '::'.join(filter(None, [name, fixture]))
def __str__(self):
name = self.getName()
fixture = self.getFixture()
return '::'.join(filter(None, [name, fixture, self.type_param, self.value_param]))
def __cmp__(self, other):
r = cmp(self.fixture, other.fixture);
if r != 0:
return r
if self.type_param:
if other.type_param:
r = cmp(self.type_param, other.type_param);
if r != 0:
return r
else:
return -1
else:
if other.type_param:
return 1
if self.value_param:
if other.value_param:
r = cmp(self.value_param, other.value_param);
if r != 0:
return r
else:
return -1
else:
if other.value_param:
return 1
return 0
# This is a Sequence for compatibility with old scripts,
# which treat parseLogFile's return value as a list.
class TestRunInfo(collections.Sequence):
def __init__(self, properties, tests):
self.properties = properties
self.tests = tests
def __len__(self):
return len(self.tests)
def __getitem__(self, key):
return self.tests[key]
def parseLogFile(filename):
log = parse(filename)
properties = {
attr_name[3:]: attr_value
for (attr_name, attr_value) in log.documentElement.attributes.items()
if attr_name.startswith('cv_')
}
tests = list(map(TestInfo, log.getElementsByTagName("testcase")))
return TestRunInfo(properties, tests)
if __name__ == "__main__":
if len(sys.argv) < 2:
print("Usage:\n", os.path.basename(sys.argv[0]), "<log_name>.xml")
exit(0)
for arg in sys.argv[1:]:
print("Processing {}...".format(arg))
run = parseLogFile(arg)
print("Properties:")
for (prop_name, prop_value) in run.properties.items():
print("\t{} = {}".format(prop_name, prop_value))
print("Tests:")
for t in sorted(run.tests):
t.dump()
print()
|
#!/usr/bin/env python
from __future__ import print_function
import xml.etree.ElementTree as ET
from glob import glob
from pprint import PrettyPrinter as PP
LONG_TESTS_DEBUG_VALGRIND = [
('calib3d', 'Calib3d_InitUndistortRectifyMap.accuracy', 2017.22),
('dnn', 'Reproducibility*', 1000), # large DNN models
('dnn', '*RCNN*', 1000), # very large DNN models
('dnn', '*RFCN*', 1000), # very large DNN models
('dnn', '*EAST*', 1000), # very large DNN models
('dnn', '*VGG16*', 1000), # very large DNN models
('dnn', '*ZFNet*', 1000), # very large DNN models
('dnn', '*ResNet101_DUC_HDC*', 1000), # very large DNN models
('dnn', '*LResNet100E_IR*', 1000), # very large DNN models
('dnn', '*read_yolo_voc_stream*', 1000), # very large DNN models
('dnn', '*eccv16*', 1000), # very large DNN models
('dnn', '*OpenPose*', 1000), # very large DNN models
('dnn', '*SSD/*', 1000), # very large DNN models
('gapi', 'Fluid.MemoryConsumptionDoesNotGrowOnReshape', 1000000), # test doesn't work properly under valgrind
('face', 'CV_Face_FacemarkLBF.test_workflow', 10000.0), # >40min on i7
('features2d', 'Features2d/DescriptorImage.no_crash/3', 1000),
('features2d', 'Features2d/DescriptorImage.no_crash/4', 1000),
('features2d', 'Features2d/DescriptorImage.no_crash/5', 1000),
('features2d', 'Features2d/DescriptorImage.no_crash/6', 1000),
('features2d', 'Features2d/DescriptorImage.no_crash/7', 1000),
('imgcodecs', 'Imgcodecs_Png.write_big', 1000), # memory limit
('imgcodecs', 'Imgcodecs_Tiff.decode_tile16384x16384', 1000), # memory limit
('ml', 'ML_RTrees.regression', 1423.47),
('optflow', 'DenseOpticalFlow_DeepFlow.ReferenceAccuracy', 1360.95),
('optflow', 'DenseOpticalFlow_DeepFlow_perf.perf/0', 1881.59),
('optflow', 'DenseOpticalFlow_DeepFlow_perf.perf/1', 5608.75),
('optflow', 'DenseOpticalFlow_GlobalPatchColliderDCT.ReferenceAccuracy', 5433.84),
('optflow', 'DenseOpticalFlow_GlobalPatchColliderWHT.ReferenceAccuracy', 5232.73),
('optflow', 'DenseOpticalFlow_SimpleFlow.ReferenceAccuracy', 1542.1),
('photo', 'Photo_Denoising.speed', 1484.87),
('photo', 'Photo_DenoisingColoredMulti.regression', 2447.11),
('rgbd', 'Rgbd_Normals.compute', 1156.32),
('shape', 'Hauss.regression', 2625.72),
('shape', 'ShapeEMD_SCD.regression', 61913.7),
('shape', 'Shape_SCD.regression', 3311.46),
('tracking', 'AUKF.br_mean_squared_error', 10764.6),
('tracking', 'UKF.br_mean_squared_error', 5228.27),
('tracking', '*DistanceAndOverlap*/1', 1000.0), # dudek
('tracking', '*DistanceAndOverlap*/2', 1000.0), # faceocc2
('videoio', 'videoio/videoio_ffmpeg.write_big*', 1000),
('videoio', 'videoio_ffmpeg.parallel', 1000),
('xfeatures2d', 'Features2d_RotationInvariance_Descriptor_BoostDesc_LBGM.regression', 1124.51),
('xfeatures2d', 'Features2d_RotationInvariance_Descriptor_VGG120.regression', 2198.1),
('xfeatures2d', 'Features2d_RotationInvariance_Descriptor_VGG48.regression', 1958.52),
('xfeatures2d', 'Features2d_RotationInvariance_Descriptor_VGG64.regression', 2113.12),
('xfeatures2d', 'Features2d_RotationInvariance_Descriptor_VGG80.regression', 2167.16),
('xfeatures2d', 'Features2d_ScaleInvariance_Descriptor_BoostDesc_LBGM.regression', 1511.39),
('xfeatures2d', 'Features2d_ScaleInvariance_Descriptor_VGG120.regression', 1222.07),
('xfeatures2d', 'Features2d_ScaleInvariance_Descriptor_VGG48.regression', 1059.14),
('xfeatures2d', 'Features2d_ScaleInvariance_Descriptor_VGG64.regression', 1163.41),
('xfeatures2d', 'Features2d_ScaleInvariance_Descriptor_VGG80.regression', 1179.06),
('ximgproc', 'L0SmoothTest.SplatSurfaceAccuracy', 6382.26),
('ximgproc', 'perf*/1*:perf*/2*:perf*/3*:perf*/4*:perf*/5*:perf*/6*:perf*/7*:perf*/8*:perf*/9*', 1000.0), # only first 10 parameters
('ximgproc', 'TypicalSet1/RollingGuidanceFilterTest.MultiThreadReproducibility/5', 1086.33),
('ximgproc', 'TypicalSet1/RollingGuidanceFilterTest.MultiThreadReproducibility/7', 1405.05),
('ximgproc', 'TypicalSet1/RollingGuidanceFilterTest.SplatSurfaceAccuracy/5', 1253.07),
('ximgproc', 'TypicalSet1/RollingGuidanceFilterTest.SplatSurfaceAccuracy/7', 1599.98),
('ximgproc', '*MultiThreadReproducibility*/1:*MultiThreadReproducibility*/2:*MultiThreadReproducibility*/3:*MultiThreadReproducibility*/4:*MultiThreadReproducibility*/5:*MultiThreadReproducibility*/6:*MultiThreadReproducibility*/7:*MultiThreadReproducibility*/8:*MultiThreadReproducibility*/9:*MultiThreadReproducibility*/1*', 1000.0),
('ximgproc', '*AdaptiveManifoldRefImplTest*/1:*AdaptiveManifoldRefImplTest*/2:*AdaptiveManifoldRefImplTest*/3', 1000.0),
('ximgproc', '*JointBilateralFilterTest_NaiveRef*', 1000.0),
('ximgproc', '*RollingGuidanceFilterTest_BilateralRef*/1*:*RollingGuidanceFilterTest_BilateralRef*/2*:*RollingGuidanceFilterTest_BilateralRef*/3*', 1000.0),
('ximgproc', '*JointBilateralFilterTest_NaiveRef*', 1000.0),
]
def longTestFilter(data, module=None):
res = ['*', '-'] + [v for m, v, _time in data if module is None or m == module]
return '--gtest_filter={}'.format(':'.join(res))
# Parse one xml file, filter out tests which took less than 'timeLimit' seconds
# Returns tuple: ( <module_name>, [ (<module_name>, <test_name>, <test_time>), ... ] )
def parseOneFile(filename, timeLimit):
tree = ET.parse(filename)
root = tree.getroot()
def guess(s, delims):
for delim in delims:
tmp = s.partition(delim)
if len(tmp[1]) != 0:
return tmp[0]
return None
module = guess(filename, ['_posix_', '_nt_', '__']) or root.get('cv_module_name')
if not module:
return (None, None)
res = []
for elem in root.findall('.//testcase'):
key = '{}.{}'.format(elem.get('classname'), elem.get('name'))
val = elem.get('time')
if float(val) >= timeLimit:
res.append((module, key, float(val)))
return (module, res)
# Parse all xml files in current folder and combine results into one list
# Print result to the stdout
if __name__ == '__main__':
LIMIT = 1000
res = []
xmls = glob('*.xml')
for xml in xmls:
print('Parsing file', xml, '...')
module, testinfo = parseOneFile(xml, LIMIT)
if not module:
print('SKIP')
continue
res.extend(testinfo)
print('========= RESULTS =========')
PP(indent=4, width=100).pprint(sorted(res))
|
#!/usr/bin/env python
import os
import argparse
import logging
import datetime
from run_utils import Err, CMakeCache, log, execute
from run_suite import TestSuite
from run_android import AndroidTestSuite
epilog = '''
NOTE:
Additional options starting with "--gtest_" and "--perf_" will be passed directly to the test executables.
'''
if __name__ == "__main__":
# log.basicConfig(format='[%(levelname)s] %(message)s', level = log.DEBUG)
# log.basicConfig(format='[%(levelname)s] %(message)s', level = log.INFO)
parser = argparse.ArgumentParser(
description='OpenCV test runner script',
epilog=epilog,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument("build_path", nargs='?', default=".", help="Path to build directory (should contain CMakeCache.txt, default is current) or to directory with tests (all platform checks will be disabled in this case)")
parser.add_argument("-t", "--tests", metavar="MODULES", default="", help="Comma-separated list of modules to test (example: -t core,imgproc,java)")
parser.add_argument("-b", "--blacklist", metavar="MODULES", default="", help="Comma-separated list of modules to exclude from test (example: -b java)")
parser.add_argument("-a", "--accuracy", action="store_true", default=False, help="Look for accuracy tests instead of performance tests")
parser.add_argument("--check", action="store_true", default=False, help="Shortcut for '--perf_min_samples=1 --perf_force_samples=1'")
parser.add_argument("-w", "--cwd", metavar="PATH", default=".", help="Working directory for tests (default is current)")
parser.add_argument("--list", action="store_true", default=False, help="List available tests (executables)")
parser.add_argument("--list_short", action="store_true", default=False, help="List available tests (aliases)")
parser.add_argument("--list_short_main", action="store_true", default=False, help="List available tests (main repository, aliases)")
parser.add_argument("--configuration", metavar="CFG", default=None, help="Force Debug or Release configuration (for Visual Studio and Java tests build)")
parser.add_argument("-n", "--dry_run", action="store_true", help="Do not run the tests")
parser.add_argument("-v", "--verbose", action="store_true", default=False, help="Print more debug information")
# Valgrind
parser.add_argument("--valgrind", action="store_true", default=False, help="Run C++ tests in valgrind")
parser.add_argument("--valgrind_supp", metavar="FILE", action='append', help="Path to valgrind suppression file (example: --valgrind_supp opencv/platforms/scripts/valgrind.supp)")
parser.add_argument("--valgrind_opt", metavar="OPT", action="append", default=[], help="Add command line option to valgrind (example: --valgrind_opt=--leak-check=full)")
# QEMU
parser.add_argument("--qemu", default="", help="Specify qemu binary and base parameters")
# Android
parser.add_argument("--android", action="store_true", default=False, help="Android: force all tests to run on device")
parser.add_argument("--android_sdk", metavar="PATH", help="Android: path to SDK to use adb and aapt tools")
parser.add_argument("--android_test_data_path", metavar="PATH", default="/sdcard/opencv_testdata/", help="Android: path to testdata on device")
parser.add_argument("--android_env", action='append', help="Android: add environment variable (NAME=VALUE)")
parser.add_argument("--android_propagate_opencv_env", action="store_true", default=False, help="Android: propagate OPENCV* environment variables")
parser.add_argument("--serial", metavar="serial number", default="", help="Android: directs command to the USB device or emulator with the given serial number")
parser.add_argument("--package", metavar="package", default="", help="Java: run JUnit tests for specified module or Android package")
parser.add_argument("--trace", action="store_true", default=False, help="Trace: enable OpenCV tracing")
parser.add_argument("--trace_dump", metavar="trace_dump", default=-1, help="Trace: dump highlight calls (specify max entries count, 0 - dump all)")
args, other_args = parser.parse_known_args()
log.setLevel(logging.DEBUG if args.verbose else logging.INFO)
test_args = [a for a in other_args if a.startswith("--perf_") or a.startswith("--test_") or a.startswith("--gtest_")]
bad_args = [a for a in other_args if a not in test_args]
if len(bad_args) > 0:
log.error("Error: Bad arguments: %s", bad_args)
exit(1)
args.mode = "test" if args.accuracy else "perf"
android_env = []
if args.android_env:
android_env.extend([entry.split("=", 1) for entry in args.android_env])
if args.android_propagate_opencv_env:
android_env.extend([entry for entry in os.environ.items() if entry[0].startswith('OPENCV')])
android_env = dict(android_env)
if args.android_test_data_path:
android_env['OPENCV_TEST_DATA_PATH'] = args.android_test_data_path
if args.valgrind:
try:
ver = execute(["valgrind", "--version"], silent=True)
log.debug("Using %s", ver)
except OSError as e:
log.error("Failed to run valgrind: %s", e)
exit(1)
if len(args.build_path) != 1:
test_args = [a for a in test_args if not a.startswith("--gtest_output=")]
if args.check:
if not [a for a in test_args if a.startswith("--perf_min_samples=")]:
test_args.extend(["--perf_min_samples=1"])
if not [a for a in test_args if a.startswith("--perf_force_samples=")]:
test_args.extend(["--perf_force_samples=1"])
if not [a for a in test_args if a.startswith("--perf_verify_sanity")]:
test_args.extend(["--perf_verify_sanity"])
if bool(os.environ.get('BUILD_PRECOMMIT', None)):
test_args.extend(["--skip_unstable=1"])
ret = 0
logs = []
stamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
path = args.build_path
try:
if not os.path.isdir(path):
raise Err("Not a directory (should contain CMakeCache.txt ot test executables)")
cache = CMakeCache(args.configuration)
fname = os.path.join(path, "CMakeCache.txt")
if os.path.isfile(fname):
log.debug("Reading cmake cache file: %s", fname)
cache.read(path, fname)
else:
log.debug("Assuming folder contains tests: %s", path)
cache.setDummy(path)
if args.android or cache.getOS() == "android":
log.debug("Creating Android test runner")
suite = AndroidTestSuite(args, cache, stamp, android_env)
else:
log.debug("Creating native test runner")
suite = TestSuite(args, cache, stamp)
if args.list or args.list_short or args.list_short_main:
suite.listTests(args.list_short or args.list_short_main, args.list_short_main)
else:
log.debug("Running tests in '%s', working dir: '%s'", path, args.cwd)
def parseTests(s):
return [o.strip() for o in s.split(",") if o]
logs, ret = suite.runTests(parseTests(args.tests), parseTests(args.blacklist), args.cwd, test_args)
except Err as e:
log.error("ERROR: test path '%s' ==> %s", path, e.msg)
ret = -1
if logs:
log.warning("Collected: %s", logs)
if ret != 0:
log.error("ERROR: some tests have failed")
exit(ret)
|
#!/usr/bin/env python
import math, os, sys
webcolors = {
"indianred": "#cd5c5c",
"lightcoral": "#f08080",
"salmon": "#fa8072",
"darksalmon": "#e9967a",
"lightsalmon": "#ffa07a",
"red": "#ff0000",
"crimson": "#dc143c",
"firebrick": "#b22222",
"darkred": "#8b0000",
"pink": "#ffc0cb",
"lightpink": "#ffb6c1",
"hotpink": "#ff69b4",
"deeppink": "#ff1493",
"mediumvioletred": "#c71585",
"palevioletred": "#db7093",
"lightsalmon": "#ffa07a",
"coral": "#ff7f50",
"tomato": "#ff6347",
"orangered": "#ff4500",
"darkorange": "#ff8c00",
"orange": "#ffa500",
"gold": "#ffd700",
"yellow": "#ffff00",
"lightyellow": "#ffffe0",
"lemonchiffon": "#fffacd",
"lightgoldenrodyellow": "#fafad2",
"papayawhip": "#ffefd5",
"moccasin": "#ffe4b5",
"peachpuff": "#ffdab9",
"palegoldenrod": "#eee8aa",
"khaki": "#f0e68c",
"darkkhaki": "#bdb76b",
"lavender": "#e6e6fa",
"thistle": "#d8bfd8",
"plum": "#dda0dd",
"violet": "#ee82ee",
"orchid": "#da70d6",
"fuchsia": "#ff00ff",
"magenta": "#ff00ff",
"mediumorchid": "#ba55d3",
"mediumpurple": "#9370db",
"blueviolet": "#8a2be2",
"darkviolet": "#9400d3",
"darkorchid": "#9932cc",
"darkmagenta": "#8b008b",
"purple": "#800080",
"indigo": "#4b0082",
"darkslateblue": "#483d8b",
"slateblue": "#6a5acd",
"mediumslateblue": "#7b68ee",
"greenyellow": "#adff2f",
"chartreuse": "#7fff00",
"lawngreen": "#7cfc00",
"lime": "#00ff00",
"limegreen": "#32cd32",
"palegreen": "#98fb98",
"lightgreen": "#90ee90",
"mediumspringgreen": "#00fa9a",
"springgreen": "#00ff7f",
"mediumseagreen": "#3cb371",
"seagreen": "#2e8b57",
"forestgreen": "#228b22",
"green": "#008000",
"darkgreen": "#006400",
"yellowgreen": "#9acd32",
"olivedrab": "#6b8e23",
"olive": "#808000",
"darkolivegreen": "#556b2f",
"mediumaquamarine": "#66cdaa",
"darkseagreen": "#8fbc8f",
"lightseagreen": "#20b2aa",
"darkcyan": "#008b8b",
"teal": "#008080",
"aqua": "#00ffff",
"cyan": "#00ffff",
"lightcyan": "#e0ffff",
"paleturquoise": "#afeeee",
"aquamarine": "#7fffd4",
"turquoise": "#40e0d0",
"mediumturquoise": "#48d1cc",
"darkturquoise": "#00ced1",
"cadetblue": "#5f9ea0",
"steelblue": "#4682b4",
"lightsteelblue": "#b0c4de",
"powderblue": "#b0e0e6",
"lightblue": "#add8e6",
"skyblue": "#87ceeb",
"lightskyblue": "#87cefa",
"deepskyblue": "#00bfff",
"dodgerblue": "#1e90ff",
"cornflowerblue": "#6495ed",
"royalblue": "#4169e1",
"blue": "#0000ff",
"mediumblue": "#0000cd",
"darkblue": "#00008b",
"navy": "#000080",
"midnightblue": "#191970",
"cornsilk": "#fff8dc",
"blanchedalmond": "#ffebcd",
"bisque": "#ffe4c4",
"navajowhite": "#ffdead",
"wheat": "#f5deb3",
"burlywood": "#deb887",
"tan": "#d2b48c",
"rosybrown": "#bc8f8f",
"sandybrown": "#f4a460",
"goldenrod": "#daa520",
"darkgoldenrod": "#b8860b",
"peru": "#cd853f",
"chocolate": "#d2691e",
"saddlebrown": "#8b4513",
"sienna": "#a0522d",
"brown": "#a52a2a",
"maroon": "#800000",
"white": "#ffffff",
"snow": "#fffafa",
"honeydew": "#f0fff0",
"mintcream": "#f5fffa",
"azure": "#f0ffff",
"aliceblue": "#f0f8ff",
"ghostwhite": "#f8f8ff",
"whitesmoke": "#f5f5f5",
"seashell": "#fff5ee",
"beige": "#f5f5dc",
"oldlace": "#fdf5e6",
"floralwhite": "#fffaf0",
"ivory": "#fffff0",
"antiquewhite": "#faebd7",
"linen": "#faf0e6",
"lavenderblush": "#fff0f5",
"mistyrose": "#ffe4e1",
"gainsboro": "#dcdcdc",
"lightgrey": "#d3d3d3",
"silver": "#c0c0c0",
"darkgray": "#a9a9a9",
"gray": "#808080",
"dimgray": "#696969",
"lightslategray": "#778899",
"slategray": "#708090",
"darkslategray": "#2f4f4f",
"black": "#000000",
}
if os.name == "nt":
consoleColors = [
"#000000", #{ 0, 0, 0 },//0 - black
"#000080", #{ 0, 0, 128 },//1 - navy
"#008000", #{ 0, 128, 0 },//2 - green
"#008080", #{ 0, 128, 128 },//3 - teal
"#800000", #{ 128, 0, 0 },//4 - maroon
"#800080", #{ 128, 0, 128 },//5 - purple
"#808000", #{ 128, 128, 0 },//6 - olive
"#C0C0C0", #{ 192, 192, 192 },//7 - silver
"#808080", #{ 128, 128, 128 },//8 - gray
"#0000FF", #{ 0, 0, 255 },//9 - blue
"#00FF00", #{ 0, 255, 0 },//a - lime
"#00FFFF", #{ 0, 255, 255 },//b - cyan
"#FF0000", #{ 255, 0, 0 },//c - red
"#FF00FF", #{ 255, 0, 255 },//d - magenta
"#FFFF00", #{ 255, 255, 0 },//e - yellow
"#FFFFFF", #{ 255, 255, 255 } //f - white
]
else:
consoleColors = [
"#2e3436",
"#cc0000",
"#4e9a06",
"#c4a000",
"#3465a4",
"#75507b",
"#06989a",
"#d3d7cf",
"#ffffff",
"#555753",
"#ef2929",
"#8ae234",
"#fce94f",
"#729fcf",
"#ad7fa8",
"#34e2e2",
"#eeeeec",
]
def RGB2LAB(r,g,b):
if max(r,g,b):
r /= 255.
g /= 255.
b /= 255.
X = (0.412453 * r + 0.357580 * g + 0.180423 * b) / 0.950456
Y = (0.212671 * r + 0.715160 * g + 0.072169 * b)
Z = (0.019334 * r + 0.119193 * g + 0.950227 * b) / 1.088754
#[X * 0.950456] [0.412453 0.357580 0.180423] [R]
#[Y ] = [0.212671 0.715160 0.072169] * [G]
#[Z * 1.088754] [0.019334 0.119193 0.950227] [B]
T = 0.008856 #threshold
if X > T:
fX = math.pow(X, 1./3.)
else:
fX = 7.787 * X + 16./116.
# Compute L
if Y > T:
Y3 = math.pow(Y, 1./3.)
fY = Y3
L = 116. * Y3 - 16.0
else:
fY = 7.787 * Y + 16./116.
L = 903.3 * Y
if Z > T:
fZ = math.pow(Z, 1./3.)
else:
fZ = 7.787 * Z + 16./116.
# Compute a and b
a = 500. * (fX - fY)
b = 200. * (fY - fZ)
return (L,a,b)
def colorDistance(r1,g1,b1 = None, r2 = None, g2 = None,b2 = None):
if type(r1) == tuple and type(g1) == tuple and b1 is None and r2 is None and g2 is None and b2 is None:
(l1,a1,b1) = RGB2LAB(*r1)
(l2,a2,b2) = RGB2LAB(*g1)
else:
(l1,a1,b1) = RGB2LAB(r1,g1,b1)
(l2,a2,b2) = RGB2LAB(r2,g2,b2)
#CIE94
dl = l1-l2
C1 = math.sqrt(a1*a1 + b1*b1)
C2 = math.sqrt(a2*a2 + b2*b2)
dC = C1 - C2
da = a1-a2
db = b1-b2
dH = math.sqrt(max(0, da*da + db*db - dC*dC))
Kl = 1
K1 = 0.045
K2 = 0.015
s1 = dl/Kl
s2 = dC/(1. + K1 * C1)
s3 = dH/(1. + K2 * C1)
return math.sqrt(s1*s1 + s2*s2 + s3*s3)
def parseHexColor(col):
if len(col) != 4 and len(col) != 7 and not col.startswith("#"):
return (0,0,0)
if len(col) == 4:
r = col[1]*2
g = col[2]*2
b = col[3]*2
else:
r = col[1:3]
g = col[3:5]
b = col[5:7]
return (int(r,16), int(g,16), int(b,16))
def getColor(col):
if isinstance(col, str):
if col.lower() in webcolors:
return parseHexColor(webcolors[col.lower()])
else:
return parseHexColor(col)
else:
return col
def getNearestConsoleColor(col):
color = getColor(col)
minidx = 0
mindist = colorDistance(color, getColor(consoleColors[0]))
for i in range(len(consoleColors)):
dist = colorDistance(color, getColor(consoleColors[i]))
if dist < mindist:
mindist = dist
minidx = i
return minidx
if os.name == 'nt':
import msvcrt
from ctypes import windll, Structure, c_short, c_ushort, byref
SHORT = c_short
WORD = c_ushort
class COORD(Structure):
_fields_ = [
("X", SHORT),
("Y", SHORT)]
class SMALL_RECT(Structure):
_fields_ = [
("Left", SHORT),
("Top", SHORT),
("Right", SHORT),
("Bottom", SHORT)]
class CONSOLE_SCREEN_BUFFER_INFO(Structure):
_fields_ = [
("dwSize", COORD),
("dwCursorPosition", COORD),
("wAttributes", WORD),
("srWindow", SMALL_RECT),
("dwMaximumWindowSize", COORD)]
class winConsoleColorizer(object):
def __init__(self, stream):
self.handle = msvcrt.get_osfhandle(stream.fileno())
self.default_attrs = 7#self.get_text_attr()
self.stream = stream
def get_text_attr(self):
csbi = CONSOLE_SCREEN_BUFFER_INFO()
windll.kernel32.GetConsoleScreenBufferInfo(self.handle, byref(csbi))
return csbi.wAttributes
def set_text_attr(self, color):
windll.kernel32.SetConsoleTextAttribute(self.handle, color)
def write(self, *text, **attrs):
if not text:
return
color = attrs.get("color", None)
if color:
col = getNearestConsoleColor(color)
self.stream.flush()
self.set_text_attr(col)
self.stream.write(" ".join([str(t) for t in text]))
if color:
self.stream.flush()
self.set_text_attr(self.default_attrs)
class dummyColorizer(object):
def __init__(self, stream):
self.stream = stream
def write(self, *text, **attrs):
if text:
self.stream.write(" ".join([str(t) for t in text]))
class asciiSeqColorizer(object):
RESET_SEQ = "\033[0m"
#BOLD_SEQ = "\033[1m"
ITALIC_SEQ = "\033[3m"
UNDERLINE_SEQ = "\033[4m"
STRIKEOUT_SEQ = "\033[9m"
COLOR_SEQ0 = "\033[00;%dm" #dark
COLOR_SEQ1 = "\033[01;%dm" #bold and light
def __init__(self, stream):
self.stream = stream
def get_seq(self, code):
if code > 8:
return self.__class__.COLOR_SEQ1 % (30 + code - 9)
else:
return self.__class__.COLOR_SEQ0 % (30 + code)
def write(self, *text, **attrs):
if not text:
return
color = attrs.get("color", None)
if color:
col = getNearestConsoleColor(color)
self.stream.write(self.get_seq(col))
self.stream.write(" ".join([str(t) for t in text]))
if color:
self.stream.write(self.__class__.RESET_SEQ)
def getColorizer(stream):
if stream.isatty():
if os.name == "nt":
return winConsoleColorizer(stream)
else:
return asciiSeqColorizer(stream)
else:
return dummyColorizer(stream)
|
#!/usr/bin/env python
from optparse import OptionParser
import glob, sys, os, re
if __name__ == "__main__":
parser = OptionParser()
parser.add_option("-o", "--output", dest="output", help="output file name", metavar="FILENAME", default=None)
(options, args) = parser.parse_args()
if not options.output:
sys.stderr.write("Error: output file name is not provided")
exit(-1)
files = []
for arg in args:
if ("*" in arg) or ("?" in arg):
files.extend([os.path.abspath(f) for f in glob.glob(arg)])
else:
files.append(os.path.abspath(arg))
html = None
for f in sorted(files):
try:
fobj = open(f)
if not fobj:
continue
text = fobj.read()
if not html:
html = text
continue
idx1 = text.find("<tbody>") + len("<tbody>")
idx2 = html.rfind("</tbody>")
html = html[:idx2] + re.sub(r"[ \t\n\r]+", " ", text[idx1:])
except:
pass
if html:
idx1 = text.find("<title>") + len("<title>")
idx2 = html.find("</title>")
html = html[:idx1] + "OpenCV performance testing report" + html[idx2:]
open(options.output, "w").write(html)
else:
sys.stderr.write("Error: no input data")
exit(-1)
|
#!/usr/bin/env python
import testlog_parser, sys, os, xml, re
from table_formatter import *
from optparse import OptionParser
cvsize_re = re.compile("^\d+x\d+$")
cvtype_re = re.compile("^(CV_)(8U|8S|16U|16S|32S|32F|64F)(C\d{1,3})?$")
def keyselector(a):
if cvsize_re.match(a):
size = [int(d) for d in a.split('x')]
return size[0] * size[1]
elif cvtype_re.match(a):
if a.startswith("CV_"):
a = a[3:]
depth = 7
if a[0] == '8':
depth = (0, 1) [a[1] == 'S']
elif a[0] == '1':
depth = (2, 3) [a[2] == 'S']
elif a[2] == 'S':
depth = 4
elif a[0] == '3':
depth = 5
elif a[0] == '6':
depth = 6
cidx = a.find('C')
if cidx < 0:
channels = 1
else:
channels = int(a[a.index('C') + 1:])
#return (depth & 7) + ((channels - 1) << 3)
return ((channels-1) & 511) + (depth << 9)
return a
convert = lambda text: int(text) if text.isdigit() else text
alphanum_keyselector = lambda key: [ convert(c) for c in re.split('([0-9]+)', str(keyselector(key))) ]
def getValueParams(test):
param = test.get("value_param")
if not param:
return []
if param.startswith("("):
param = param[1:]
if param.endswith(")"):
param = param[:-1]
args = []
prev_pos = 0
start = 0
balance = 0
while True:
idx = param.find(",", prev_pos)
if idx < 0:
break
idxlb = param.find("(", prev_pos, idx)
while idxlb >= 0:
balance += 1
idxlb = param.find("(", idxlb+1, idx)
idxrb = param.find(")", prev_pos, idx)
while idxrb >= 0:
balance -= 1
idxrb = param.find(")", idxrb+1, idx)
assert(balance >= 0)
if balance == 0:
args.append(param[start:idx].strip())
start = idx + 1
prev_pos = idx + 1
args.append(param[start:].strip())
return args
#return [p.strip() for p in param.split(",")]
def nextPermutation(indexes, lists, x, y):
idx = len(indexes)-1
while idx >= 0:
while idx == x or idx == y:
idx -= 1
if idx < 0:
return False
v = indexes[idx] + 1
if v < len(lists[idx]):
indexes[idx] = v;
return True;
else:
indexes[idx] = 0;
idx -= 1
return False
def getTestWideName(sname, indexes, lists, x, y):
name = sname + "::("
for i in range(len(indexes)):
if i > 0:
name += ", "
if i == x:
name += "X"
elif i == y:
name += "Y"
else:
name += lists[i][indexes[i]]
return str(name + ")")
def getTest(stests, x, y, row, col):
for pair in stests:
if pair[1][x] == row and pair[1][y] == col:
return pair[0]
return None
if __name__ == "__main__":
parser = OptionParser()
parser.add_option("-o", "--output", dest="format", help="output results in text format (can be 'txt', 'html' or 'auto' - default)", metavar="FMT", default="auto")
parser.add_option("-u", "--units", dest="units", help="units for output values (s, ms (default), us, ns or ticks)", metavar="UNITS", default="ms")
parser.add_option("-m", "--metric", dest="metric", help="output metric", metavar="NAME", default="gmean")
parser.add_option("-x", "", dest="x", help="argument number for rows", metavar="ROW", default=1)
parser.add_option("-y", "", dest="y", help="argument number for columns", metavar="COL", default=0)
parser.add_option("-f", "--filter", dest="filter", help="regex to filter tests", metavar="REGEX", default=None)
(options, args) = parser.parse_args()
if len(args) != 1:
print >> sys.stderr, "Usage:\n", os.path.basename(sys.argv[0]), "<log_name1>.xml"
exit(1)
options.generateHtml = detectHtmlOutputType(options.format)
if options.metric not in metrix_table:
options.metric = "gmean"
if options.metric.endswith("%"):
options.metric = options.metric[:-1]
getter = metrix_table[options.metric][1]
tests = testlog_parser.parseLogFile(args[0])
if options.filter:
expr = re.compile(options.filter)
tests = [(t,getValueParams(t)) for t in tests if expr.search(str(t))]
else:
tests = [(t,getValueParams(t)) for t in tests]
args[0] = os.path.basename(args[0])
if not tests:
print >> sys.stderr, "Error - no tests matched"
exit(1)
argsnum = len(tests[0][1])
sname = tests[0][0].shortName()
arglists = []
for i in range(argsnum):
arglists.append({})
names = set()
names1 = set()
for pair in tests:
sn = pair[0].shortName()
if len(pair[1]) > 1:
names.add(sn)
else:
names1.add(sn)
if sn == sname:
if len(pair[1]) != argsnum:
print >> sys.stderr, "Error - unable to create chart tables for functions having different argument numbers"
sys.exit(1)
for i in range(argsnum):
arglists[i][pair[1][i]] = 1
if names1 or len(names) != 1:
print >> sys.stderr, "Error - unable to create tables for functions from different test suits:"
i = 1
for name in sorted(names):
print >> sys.stderr, "%4s: %s" % (i, name)
i += 1
if names1:
print >> sys.stderr, "Other suits in this log (can not be chosen):"
for name in sorted(names1):
print >> sys.stderr, "%4s: %s" % (i, name)
i += 1
sys.exit(1)
if argsnum < 2:
print >> sys.stderr, "Error - tests from %s have less than 2 parameters" % sname
exit(1)
for i in range(argsnum):
arglists[i] = sorted([str(key) for key in arglists[i].iterkeys()], key=alphanum_keyselector)
if options.generateHtml and options.format != "moinwiki":
htmlPrintHeader(sys.stdout, "Report %s for %s" % (args[0], sname))
indexes = [0] * argsnum
x = int(options.x)
y = int(options.y)
if x == y or x < 0 or y < 0 or x >= argsnum or y >= argsnum:
x = 1
y = 0
while True:
stests = []
for pair in tests:
t = pair[0]
v = pair[1]
for i in range(argsnum):
if i != x and i != y:
if v[i] != arglists[i][indexes[i]]:
t = None
break
if t:
stests.append(pair)
tbl = table(metrix_table[options.metric][0] + " for\n" + getTestWideName(sname, indexes, arglists, x, y))
tbl.newColumn("x", "X\Y")
for col in arglists[y]:
tbl.newColumn(col, col, align="center")
for row in arglists[x]:
tbl.newRow()
tbl.newCell("x", row)
for col in arglists[y]:
case = getTest(stests, x, y, row, col)
if case:
status = case.get("status")
if status != "run":
tbl.newCell(col, status, color = "red")
else:
val = getter(case, None, options.units)
if isinstance(val, float):
tbl.newCell(col, "%.2f %s" % (val, options.units), val)
else:
tbl.newCell(col, val, val)
else:
tbl.newCell(col, "-")
if options.generateHtml:
tbl.htmlPrintTable(sys.stdout, options.format == "moinwiki")
else:
tbl.consolePrintTable(sys.stdout)
if not nextPermutation(indexes, arglists, x, y):
break
if options.generateHtml and options.format != "moinwiki":
htmlPrintFooter(sys.stdout)
|
#!/usr/bin/env python
import sys
import os
import platform
import re
import tempfile
import glob
import logging
import shutil
from subprocess import check_call, check_output, CalledProcessError, STDOUT
def initLogger():
logger = logging.getLogger("run.py")
logger.setLevel(logging.DEBUG)
ch = logging.StreamHandler(sys.stderr)
ch.setFormatter(logging.Formatter("%(message)s"))
logger.addHandler(ch)
return logger
log = initLogger()
hostos = os.name # 'nt', 'posix'
class Err(Exception):
def __init__(self, msg, *args):
self.msg = msg % args
def execute(cmd, silent=False, cwd=".", env=None):
try:
log.debug("Run: %s", cmd)
if env is not None:
for k in env:
log.debug(" Environ: %s=%s", k, env[k])
new_env = os.environ.copy()
new_env.update(env)
env = new_env
if sys.platform == 'darwin': # https://github.com/opencv/opencv/issues/14351
if env is None:
env = os.environ.copy()
if 'DYLD_LIBRARY_PATH' in env:
env['OPENCV_SAVED_DYLD_LIBRARY_PATH'] = env['DYLD_LIBRARY_PATH']
if silent:
return check_output(cmd, stderr=STDOUT, cwd=cwd, env=env).decode("latin-1")
else:
return check_call(cmd, cwd=cwd, env=env)
except CalledProcessError as e:
if silent:
log.debug("Process returned: %d", e.returncode)
return e.output.decode("latin-1")
else:
log.error("Process returned: %d", e.returncode)
return e.returncode
def isColorEnabled(args):
usercolor = [a for a in args if a.startswith("--gtest_color=")]
return len(usercolor) == 0 and sys.stdout.isatty() and hostos != "nt"
def getPlatformVersion():
mv = platform.mac_ver()
if mv[0]:
return "Darwin" + mv[0]
else:
wv = platform.win32_ver()
if wv[0]:
return "Windows" + wv[0]
else:
lv = platform.linux_distribution()
if lv[0]:
return lv[0] + lv[1]
return None
parse_patterns = (
{'name': "cmake_home", 'default': None, 'pattern': re.compile(r"^CMAKE_HOME_DIRECTORY:\w+=(.+)$")},
{'name': "opencv_home", 'default': None, 'pattern': re.compile(r"^OpenCV_SOURCE_DIR:\w+=(.+)$")},
{'name': "opencv_build", 'default': None, 'pattern': re.compile(r"^OpenCV_BINARY_DIR:\w+=(.+)$")},
{'name': "tests_dir", 'default': None, 'pattern': re.compile(r"^EXECUTABLE_OUTPUT_PATH:\w+=(.+)$")},
{'name': "build_type", 'default': "Release", 'pattern': re.compile(r"^CMAKE_BUILD_TYPE:\w+=(.*)$")},
{'name': "android_abi", 'default': None, 'pattern': re.compile(r"^ANDROID_ABI:\w+=(.*)$")},
{'name': "android_executable", 'default': None, 'pattern': re.compile(r"^ANDROID_EXECUTABLE:\w+=(.*android.*)$")},
{'name': "ant_executable", 'default': None, 'pattern': re.compile(r"^ANT_EXECUTABLE:\w+=(.*ant.*)$")},
{'name': "java_test_dir", 'default': None, 'pattern': re.compile(r"^OPENCV_JAVA_TEST_DIR:\w+=(.*)$")},
{'name': "is_x64", 'default': "OFF", 'pattern': re.compile(r"^CUDA_64_BIT_DEVICE_CODE:\w+=(ON)$")},
{'name': "cmake_generator", 'default': None, 'pattern': re.compile(r"^CMAKE_GENERATOR:\w+=(.+)$")},
{'name': "python2", 'default': None, 'pattern': re.compile(r"^BUILD_opencv_python2:\w+=(.*)$")},
{'name': "python3", 'default': None, 'pattern': re.compile(r"^BUILD_opencv_python3:\w+=(.*)$")},
)
class CMakeCache:
def __init__(self, cfg=None):
self.setDefaultAttrs()
self.main_modules = []
if cfg:
self.build_type = cfg
def setDummy(self, path):
self.tests_dir = os.path.normpath(path)
def read(self, path, fname):
rx = re.compile(r'^OPENCV_MODULE_opencv_(\w+)_LOCATION:INTERNAL=(.*)$')
module_paths = {} # name -> path
with open(fname, "rt") as cachefile:
for l in cachefile.readlines():
ll = l.strip()
if not ll or ll.startswith("#"):
continue
for p in parse_patterns:
match = p["pattern"].match(ll)
if match:
value = match.groups()[0]
if value and not value.endswith("-NOTFOUND"):
setattr(self, p["name"], value)
# log.debug("cache value: %s = %s", p["name"], value)
match = rx.search(ll)
if match:
module_paths[match.group(1)] = match.group(2)
if not self.tests_dir:
self.tests_dir = path
else:
rel = os.path.relpath(self.tests_dir, self.opencv_build)
self.tests_dir = os.path.join(path, rel)
self.tests_dir = os.path.normpath(self.tests_dir)
# fix VS test binary path (add Debug or Release)
if "Visual Studio" in self.cmake_generator:
self.tests_dir = os.path.join(self.tests_dir, self.build_type)
for module, path in module_paths.items():
rel = os.path.relpath(path, self.opencv_home)
if ".." not in rel:
self.main_modules.append(module)
def setDefaultAttrs(self):
for p in parse_patterns:
setattr(self, p["name"], p["default"])
def gatherTests(self, mask, isGood=None):
if self.tests_dir and os.path.isdir(self.tests_dir):
d = os.path.abspath(self.tests_dir)
files = glob.glob(os.path.join(d, mask))
if not self.getOS() == "android" and self.withJava():
files.append("java")
if self.withPython2():
files.append("python2")
if self.withPython3():
files.append("python3")
return [f for f in files if isGood(f)]
return []
def isMainModule(self, name):
return name in self.main_modules + ['python2', 'python3']
def withJava(self):
return self.ant_executable and self.java_test_dir and os.path.exists(self.java_test_dir)
def withPython2(self):
return self.python2 == 'ON'
def withPython3(self):
return self.python3 == 'ON'
def getOS(self):
if self.android_executable:
return "android"
else:
return hostos
class TempEnvDir:
def __init__(self, envname, prefix):
self.envname = envname
self.prefix = prefix
self.saved_name = None
self.new_name = None
def init(self):
self.saved_name = os.environ.get(self.envname)
self.new_name = tempfile.mkdtemp(prefix=self.prefix, dir=self.saved_name or None)
os.environ[self.envname] = self.new_name
def clean(self):
if self.saved_name:
os.environ[self.envname] = self.saved_name
else:
del os.environ[self.envname]
try:
shutil.rmtree(self.new_name)
except:
pass
if __name__ == "__main__":
log.error("This is utility file, please execute run.py script")
|
#!/usr/bin/env python
import testlog_parser, sys, os, xml, glob, re
from table_formatter import *
from optparse import OptionParser
numeric_re = re.compile("(\d+)")
cvtype_re = re.compile("(8U|8S|16U|16S|32S|32F|64F)C(\d{1,3})")
cvtypes = { '8U': 0, '8S': 1, '16U': 2, '16S': 3, '32S': 4, '32F': 5, '64F': 6 }
convert = lambda text: int(text) if text.isdigit() else text
keyselector = lambda a: cvtype_re.sub(lambda match: " " + str(cvtypes.get(match.group(1), 7) + (int(match.group(2))-1) * 8) + " ", a)
alphanum_keyselector = lambda key: [ convert(c) for c in numeric_re.split(keyselector(key)) ]
def getSetName(tset, idx, columns, short = True):
if columns and len(columns) > idx:
prefix = columns[idx]
else:
prefix = None
if short and prefix:
return prefix
name = tset[0].replace(".xml","").replace("_", "\n")
if prefix:
return prefix + "\n" + ("-"*int(len(max(prefix.split("\n"), key=len))*1.5)) + "\n" + name
return name
if __name__ == "__main__":
if len(sys.argv) < 2:
print >> sys.stderr, "Usage:\n", os.path.basename(sys.argv[0]), "<log_name1>.xml [<log_name2>.xml ...]"
exit(0)
parser = OptionParser()
parser.add_option("-o", "--output", dest="format", help="output results in text format (can be 'txt', 'html', 'markdown' or 'auto' - default)", metavar="FMT", default="auto")
parser.add_option("-m", "--metric", dest="metric", help="output metric", metavar="NAME", default="gmean")
parser.add_option("-u", "--units", dest="units", help="units for output values (s, ms (default), us, ns or ticks)", metavar="UNITS", default="ms")
parser.add_option("-f", "--filter", dest="filter", help="regex to filter tests", metavar="REGEX", default=None)
parser.add_option("", "--module", dest="module", default=None, metavar="NAME", help="module prefix for test names")
parser.add_option("", "--columns", dest="columns", default=None, metavar="NAMES", help="comma-separated list of column aliases")
parser.add_option("", "--no-relatives", action="store_false", dest="calc_relatives", default=True, help="do not output relative values")
parser.add_option("", "--with-cycles-reduction", action="store_true", dest="calc_cr", default=False, help="output cycle reduction percentages")
parser.add_option("", "--with-score", action="store_true", dest="calc_score", default=False, help="output automatic classification of speedups")
parser.add_option("", "--progress", action="store_true", dest="progress_mode", default=False, help="enable progress mode")
parser.add_option("", "--regressions", dest="regressions", default=None, metavar="LIST", help="comma-separated custom regressions map: \"[r][c]#current-#reference\" (indexes of columns are 0-based, \"r\" - reverse flag, \"c\" - color flag for base data)")
parser.add_option("", "--show-all", action="store_true", dest="showall", default=False, help="also include empty and \"notrun\" lines")
parser.add_option("", "--match", dest="match", default=None)
parser.add_option("", "--match-replace", dest="match_replace", default="")
parser.add_option("", "--regressions-only", dest="regressionsOnly", default=None, metavar="X-FACTOR", help="show only tests with performance regressions not")
parser.add_option("", "--intersect-logs", dest="intersect_logs", default=False, help="show only tests present in all log files")
parser.add_option("", "--show_units", action="store_true", dest="show_units", help="append units into table cells")
(options, args) = parser.parse_args()
options.generateHtml = detectHtmlOutputType(options.format)
if options.metric not in metrix_table:
options.metric = "gmean"
if options.metric.endswith("%") or options.metric.endswith("$"):
options.calc_relatives = False
options.calc_cr = False
if options.columns:
options.columns = [s.strip().replace("\\n", "\n") for s in options.columns.split(",")]
if options.regressions:
assert not options.progress_mode, 'unsupported mode'
def parseRegressionColumn(s):
""" Format: '[r][c]<uint>-<uint>' """
reverse = s.startswith('r')
if reverse:
s = s[1:]
addColor = s.startswith('c')
if addColor:
s = s[1:]
parts = s.split('-', 1)
link = (int(parts[0]), int(parts[1]), reverse, addColor)
assert link[0] != link[1]
return link
options.regressions = [parseRegressionColumn(s) for s in options.regressions.split(',')]
show_units = options.units if options.show_units else None
# expand wildcards and filter duplicates
files = []
seen = set()
for arg in args:
if ("*" in arg) or ("?" in arg):
flist = [os.path.abspath(f) for f in glob.glob(arg)]
flist = sorted(flist, key= lambda text: str(text).replace("M", "_"))
files.extend([ x for x in flist if x not in seen and not seen.add(x)])
else:
fname = os.path.abspath(arg)
if fname not in seen and not seen.add(fname):
files.append(fname)
# read all passed files
test_sets = []
for arg in files:
try:
tests = testlog_parser.parseLogFile(arg)
if options.filter:
expr = re.compile(options.filter)
tests = [t for t in tests if expr.search(str(t))]
if options.match:
tests = [t for t in tests if t.get("status") != "notrun"]
if tests:
test_sets.append((os.path.basename(arg), tests))
except IOError as err:
sys.stderr.write("IOError reading \"" + arg + "\" - " + str(err) + os.linesep)
except xml.parsers.expat.ExpatError as err:
sys.stderr.write("ExpatError reading \"" + arg + "\" - " + str(err) + os.linesep)
if not test_sets:
sys.stderr.write("Error: no test data found" + os.linesep)
quit()
setsCount = len(test_sets)
if options.regressions is None:
reference = -1 if options.progress_mode else 0
options.regressions = [(i, reference, False, True) for i in range(1, len(test_sets))]
for link in options.regressions:
(i, ref, reverse, addColor) = link
assert i >= 0 and i < setsCount
assert ref < setsCount
# find matches
test_cases = {}
name_extractor = lambda name: str(name)
if options.match:
reg = re.compile(options.match)
name_extractor = lambda name: reg.sub(options.match_replace, str(name))
for i in range(setsCount):
for case in test_sets[i][1]:
name = name_extractor(case)
if options.module:
name = options.module + "::" + name
if name not in test_cases:
test_cases[name] = [None] * setsCount
test_cases[name][i] = case
# build table
getter = metrix_table[options.metric][1]
getter_score = metrix_table["score"][1] if options.calc_score else None
getter_p = metrix_table[options.metric + "%"][1] if options.calc_relatives else None
getter_cr = metrix_table[options.metric + "$"][1] if options.calc_cr else None
tbl = table('%s (%s)' % (metrix_table[options.metric][0], options.units), options.format)
# header
tbl.newColumn("name", "Name of Test", align = "left", cssclass = "col_name")
for i in range(setsCount):
tbl.newColumn(str(i), getSetName(test_sets[i], i, options.columns, False), align = "center")
def addHeaderColumns(suffix, description, cssclass):
for link in options.regressions:
(i, ref, reverse, addColor) = link
if reverse:
i, ref = ref, i
current_set = test_sets[i]
current = getSetName(current_set, i, options.columns)
if ref >= 0:
reference_set = test_sets[ref]
reference = getSetName(reference_set, ref, options.columns)
else:
reference = 'previous'
tbl.newColumn(str(i) + '-' + str(ref) + suffix, '%s\nvs\n%s\n(%s)' % (current, reference, description), align='center', cssclass=cssclass)
if options.calc_cr:
addHeaderColumns(suffix='$', description='cycles reduction', cssclass='col_cr')
if options.calc_relatives:
addHeaderColumns(suffix='%', description='x-factor', cssclass='col_rel')
if options.calc_score:
addHeaderColumns(suffix='S', description='score', cssclass='col_name')
# rows
prevGroupName = None
needNewRow = True
lastRow = None
for name in sorted(test_cases.keys(), key=alphanum_keyselector):
cases = test_cases[name]
if needNewRow:
lastRow = tbl.newRow()
if not options.showall:
needNewRow = False
tbl.newCell("name", name)
groupName = next(c for c in cases if c).shortName()
if groupName != prevGroupName:
prop = lastRow.props.get("cssclass", "")
if "firstingroup" not in prop:
lastRow.props["cssclass"] = prop + " firstingroup"
prevGroupName = groupName
for i in range(setsCount):
case = cases[i]
if case is None:
if options.intersect_logs:
needNewRow = False
break
tbl.newCell(str(i), "-")
else:
status = case.get("status")
if status != "run":
tbl.newCell(str(i), status, color="red")
else:
val = getter(case, cases[0], options.units)
if val:
needNewRow = True
tbl.newCell(str(i), formatValue(val, options.metric, show_units), val)
if needNewRow:
for link in options.regressions:
(i, reference, reverse, addColor) = link
if reverse:
i, reference = reference, i
tblCellID = str(i) + '-' + str(reference)
case = cases[i]
if case is None:
if options.calc_relatives:
tbl.newCell(tblCellID + "%", "-")
if options.calc_cr:
tbl.newCell(tblCellID + "$", "-")
if options.calc_score:
tbl.newCell(tblCellID + "$", "-")
else:
status = case.get("status")
if status != "run":
tbl.newCell(str(i), status, color="red")
if status != "notrun":
needNewRow = True
if options.calc_relatives:
tbl.newCell(tblCellID + "%", "-", color="red")
if options.calc_cr:
tbl.newCell(tblCellID + "$", "-", color="red")
if options.calc_score:
tbl.newCell(tblCellID + "S", "-", color="red")
else:
val = getter(case, cases[0], options.units)
def getRegression(fn):
if fn and val:
for j in reversed(range(i)) if reference < 0 else [reference]:
r = cases[j]
if r is not None and r.get("status") == 'run':
return fn(case, r, options.units)
valp = getRegression(getter_p) if options.calc_relatives or options.progress_mode else None
valcr = getRegression(getter_cr) if options.calc_cr else None
val_score = getRegression(getter_score) if options.calc_score else None
if not valp:
color = None
elif valp > 1.05:
color = 'green'
elif valp < 0.95:
color = 'red'
else:
color = None
if addColor:
if not reverse:
tbl.newCell(str(i), formatValue(val, options.metric, show_units), val, color=color)
else:
r = cases[reference]
if r is not None and r.get("status") == 'run':
val = getter(r, cases[0], options.units)
tbl.newCell(str(reference), formatValue(val, options.metric, show_units), val, color=color)
if options.calc_relatives:
tbl.newCell(tblCellID + "%", formatValue(valp, "%"), valp, color=color, bold=color)
if options.calc_cr:
tbl.newCell(tblCellID + "$", formatValue(valcr, "$"), valcr, color=color, bold=color)
if options.calc_score:
tbl.newCell(tblCellID + "S", formatValue(val_score, "S"), val_score, color = color, bold = color)
if not needNewRow:
tbl.trimLastRow()
if options.regressionsOnly:
for r in reversed(range(len(tbl.rows))):
for i in range(1, len(options.regressions) + 1):
val = tbl.rows[r].cells[len(tbl.rows[r].cells) - i].value
if val is not None and val < float(options.regressionsOnly):
break
else:
tbl.rows.pop(r)
# output table
if options.generateHtml:
if options.format == "moinwiki":
tbl.htmlPrintTable(sys.stdout, True)
else:
htmlPrintHeader(sys.stdout, "Summary report for %s tests from %s test logs" % (len(test_cases), setsCount))
tbl.htmlPrintTable(sys.stdout)
htmlPrintFooter(sys.stdout)
else:
tbl.consolePrintTable(sys.stdout)
if options.regressionsOnly:
sys.exit(len(tbl.rows))
|
#!/usr/bin/env python
from __future__ import print_function
import sys, re, os.path, cgi, stat, math
from optparse import OptionParser
from color import getColorizer, dummyColorizer
class tblCell(object):
def __init__(self, text, value = None, props = None):
self.text = text
self.value = value
self.props = props
class tblColumn(object):
def __init__(self, caption, title = None, props = None):
self.text = caption
self.title = title
self.props = props
class tblRow(object):
def __init__(self, colsNum, props = None):
self.cells = [None] * colsNum
self.props = props
def htmlEncode(str):
return '<br/>'.join([cgi.escape(s) for s in str])
class table(object):
def_align = "left"
def_valign = "middle"
def_color = None
def_colspan = 1
def_rowspan = 1
def_bold = False
def_italic = False
def_text="-"
def __init__(self, caption = None, format=None):
self.format = format
self.is_markdown = self.format == 'markdown'
self.columns = {}
self.rows = []
self.ridx = -1;
self.caption = caption
pass
def newRow(self, **properties):
if len(self.rows) - 1 == self.ridx:
self.rows.append(tblRow(len(self.columns), properties))
else:
self.rows[self.ridx + 1].props = properties
self.ridx += 1
return self.rows[self.ridx]
def trimLastRow(self):
if self.rows:
self.rows.pop()
if self.ridx >= len(self.rows):
self.ridx = len(self.rows) - 1
def newColumn(self, name, caption, title = None, **properties):
if name in self.columns:
index = self.columns[name].index
else:
index = len(self.columns)
if isinstance(caption, tblColumn):
caption.index = index
self.columns[name] = caption
return caption
else:
col = tblColumn(caption, title, properties)
col.index = index
self.columns[name] = col
return col
def getColumn(self, name):
if isinstance(name, str):
return self.columns.get(name, None)
else:
vals = [v for v in self.columns.values() if v.index == name]
if vals:
return vals[0]
return None
def newCell(self, col_name, text, value = None, **properties):
if self.ridx < 0:
self.newRow()
col = self.getColumn(col_name)
row = self.rows[self.ridx]
if not col:
return None
if isinstance(text, tblCell):
cl = text
else:
cl = tblCell(text, value, properties)
row.cells[col.index] = cl
return cl
def layoutTable(self):
columns = self.columns.values()
columns = sorted(columns, key=lambda c: c.index)
colspanned = []
rowspanned = []
self.headerHeight = 1
rowsToAppend = 0
for col in columns:
self.measureCell(col)
if col.height > self.headerHeight:
self.headerHeight = col.height
col.minwidth = col.width
col.line = None
for r in range(len(self.rows)):
row = self.rows[r]
row.minheight = 1
for i in range(len(row.cells)):
cell = row.cells[i]
if row.cells[i] is None:
continue
cell.line = None
self.measureCell(cell)
colspan = int(self.getValue("colspan", cell))
rowspan = int(self.getValue("rowspan", cell))
if colspan > 1:
colspanned.append((r,i))
if i + colspan > len(columns):
colspan = len(columns) - i
cell.colspan = colspan
#clear spanned cells
for j in range(i+1, min(len(row.cells), i + colspan)):
row.cells[j] = None
elif columns[i].minwidth < cell.width:
columns[i].minwidth = cell.width
if rowspan > 1:
rowspanned.append((r,i))
rowsToAppend2 = r + colspan - len(self.rows)
if rowsToAppend2 > rowsToAppend:
rowsToAppend = rowsToAppend2
cell.rowspan = rowspan
#clear spanned cells
for j in range(r+1, min(len(self.rows), r + rowspan)):
if len(self.rows[j].cells) > i:
self.rows[j].cells[i] = None
elif row.minheight < cell.height:
row.minheight = cell.height
self.ridx = len(self.rows) - 1
for r in range(rowsToAppend):
self.newRow()
self.rows[len(self.rows) - 1].minheight = 1
while colspanned:
colspanned_new = []
for r, c in colspanned:
cell = self.rows[r].cells[c]
sum([col.minwidth for col in columns[c:c + cell.colspan]])
cell.awailable = sum([col.minwidth for col in columns[c:c + cell.colspan]]) + cell.colspan - 1
if cell.awailable < cell.width:
colspanned_new.append((r,c))
colspanned = colspanned_new
if colspanned:
r,c = colspanned[0]
cell = self.rows[r].cells[c]
cols = columns[c:c + cell.colspan]
total = cell.awailable - cell.colspan + 1
budget = cell.width - cell.awailable
spent = 0
s = 0
for col in cols:
s += col.minwidth
addition = s * budget / total - spent
spent += addition
col.minwidth += addition
while rowspanned:
rowspanned_new = []
for r, c in rowspanned:
cell = self.rows[r].cells[c]
cell.awailable = sum([row.minheight for row in self.rows[r:r + cell.rowspan]])
if cell.awailable < cell.height:
rowspanned_new.append((r,c))
rowspanned = rowspanned_new
if rowspanned:
r,c = rowspanned[0]
cell = self.rows[r].cells[c]
rows = self.rows[r:r + cell.rowspan]
total = cell.awailable
budget = cell.height - cell.awailable
spent = 0
s = 0
for row in rows:
s += row.minheight
addition = s * budget / total - spent
spent += addition
row.minheight += addition
return columns
def measureCell(self, cell):
text = self.getValue("text", cell)
cell.text = self.reformatTextValue(text)
cell.height = len(cell.text)
cell.width = len(max(cell.text, key = lambda line: len(line)))
def reformatTextValue(self, value):
if sys.version_info >= (2,7):
unicode = str
if isinstance(value, str):
vstr = value
elif isinstance(value, unicode):
vstr = str(value)
else:
try:
vstr = '\n'.join([str(v) for v in value])
except TypeError:
vstr = str(value)
return vstr.splitlines()
def adjustColWidth(self, cols, width):
total = sum([c.minWidth for c in cols])
if total + len(cols) - 1 >= width:
return
budget = width - len(cols) + 1 - total
spent = 0
s = 0
for col in cols:
s += col.minWidth
addition = s * budget / total - spent
spent += addition
col.minWidth += addition
def getValue(self, name, *elements):
for el in elements:
try:
return getattr(el, name)
except AttributeError:
pass
try:
val = el.props[name]
if val:
return val
except AttributeError:
pass
except KeyError:
pass
try:
return getattr(self.__class__, "def_" + name)
except AttributeError:
return None
def consolePrintTable(self, out):
columns = self.layoutTable()
colrizer = getColorizer(out) if not self.is_markdown else dummyColorizer(out)
if self.caption:
out.write("%s%s%s" % ( os.linesep, os.linesep.join(self.reformatTextValue(self.caption)), os.linesep * 2))
headerRow = tblRow(len(columns), {"align": "center", "valign": "top", "bold": True, "header": True})
headerRow.cells = columns
headerRow.minheight = self.headerHeight
self.consolePrintRow2(colrizer, headerRow, columns)
for i in range(0, len(self.rows)):
self.consolePrintRow2(colrizer, i, columns)
def consolePrintRow2(self, out, r, columns):
if isinstance(r, tblRow):
row = r
r = -1
else:
row = self.rows[r]
#evaluate initial values for line numbers
i = 0
while i < len(row.cells):
cell = row.cells[i]
colspan = self.getValue("colspan", cell)
if cell is not None:
cell.wspace = sum([col.minwidth for col in columns[i:i + colspan]]) + colspan - 1
if cell.line is None:
if r < 0:
rows = [row]
else:
rows = self.rows[r:r + self.getValue("rowspan", cell)]
cell.line = self.evalLine(cell, rows, columns[i])
if len(rows) > 1:
for rw in rows:
rw.cells[i] = cell
i += colspan
#print content
if self.is_markdown:
out.write("|")
for c in row.cells:
text = ' '.join(self.getValue('text', c) or [])
out.write(text + "|")
out.write(os.linesep)
else:
for ln in range(row.minheight):
i = 0
while i < len(row.cells):
if i > 0:
out.write(" ")
cell = row.cells[i]
column = columns[i]
if cell is None:
out.write(" " * column.minwidth)
i += 1
else:
self.consolePrintLine(cell, row, column, out)
i += self.getValue("colspan", cell)
if self.is_markdown:
out.write("|")
out.write(os.linesep)
if self.is_markdown and row.props.get('header', False):
out.write("|")
for th in row.cells:
align = self.getValue("align", th)
if align == 'center':
out.write(":-:|")
elif align == 'right':
out.write("--:|")
else:
out.write("---|")
out.write(os.linesep)
def consolePrintLine(self, cell, row, column, out):
if cell.line < 0 or cell.line >= cell.height:
line = ""
else:
line = cell.text[cell.line]
width = cell.wspace
align = self.getValue("align", ((None, cell)[isinstance(cell, tblCell)]), row, column)
if align == "right":
pattern = "%" + str(width) + "s"
elif align == "center":
pattern = "%" + str((width - len(line)) // 2 + len(line)) + "s" + " " * (width - len(line) - (width - len(line)) // 2)
else:
pattern = "%-" + str(width) + "s"
out.write(pattern % line, color = self.getValue("color", cell, row, column))
cell.line += 1
def evalLine(self, cell, rows, column):
height = cell.height
valign = self.getValue("valign", cell, rows[0], column)
space = sum([row.minheight for row in rows])
if valign == "bottom":
return height - space
if valign == "middle":
return (height - space + 1) // 2
return 0
def htmlPrintTable(self, out, embeedcss = False):
columns = self.layoutTable()
if embeedcss:
out.write("<div style=\"font-family: Lucida Console, Courier New, Courier;font-size: 16px;color:#3e4758;\">\n<table style=\"background:none repeat scroll 0 0 #FFFFFF;border-collapse:collapse;font-family:'Lucida Sans Unicode','Lucida Grande',Sans-Serif;font-size:14px;margin:20px;text-align:left;width:480px;margin-left: auto;margin-right: auto;white-space:nowrap;\">\n")
else:
out.write("<div class=\"tableFormatter\">\n<table class=\"tbl\">\n")
if self.caption:
if embeedcss:
out.write(" <caption style=\"font:italic 16px 'Trebuchet MS',Verdana,Arial,Helvetica,sans-serif;padding:0 0 5px;text-align:right;white-space:normal;\">%s</caption>\n" % htmlEncode(self.reformatTextValue(self.caption)))
else:
out.write(" <caption>%s</caption>\n" % htmlEncode(self.reformatTextValue(self.caption)))
out.write(" <thead>\n")
headerRow = tblRow(len(columns), {"align": "center", "valign": "top", "bold": True, "header": True})
headerRow.cells = columns
header_rows = [headerRow]
header_rows.extend([row for row in self.rows if self.getValue("header")])
last_row = header_rows[len(header_rows) - 1]
for row in header_rows:
out.write(" <tr>\n")
for th in row.cells:
align = self.getValue("align", ((None, th)[isinstance(th, tblCell)]), row, row)
valign = self.getValue("valign", th, row)
cssclass = self.getValue("cssclass", th)
attr = ""
if align:
attr += " align=\"%s\"" % align
if valign:
attr += " valign=\"%s\"" % valign
if cssclass:
attr += " class=\"%s\"" % cssclass
css = ""
if embeedcss:
css = " style=\"border:none;color:#003399;font-size:16px;font-weight:normal;white-space:nowrap;padding:3px 10px;\""
if row == last_row:
css = css[:-1] + "padding-bottom:5px;\""
out.write(" <th%s%s>\n" % (attr, css))
if th is not None:
out.write(" %s\n" % htmlEncode(th.text))
out.write(" </th>\n")
out.write(" </tr>\n")
out.write(" </thead>\n <tbody>\n")
rows = [row for row in self.rows if not self.getValue("header")]
for r in range(len(rows)):
row = rows[r]
rowattr = ""
cssclass = self.getValue("cssclass", row)
if cssclass:
rowattr += " class=\"%s\"" % cssclass
out.write(" <tr%s>\n" % (rowattr))
i = 0
while i < len(row.cells):
column = columns[i]
td = row.cells[i]
if isinstance(td, int):
i += td
continue
colspan = self.getValue("colspan", td)
rowspan = self.getValue("rowspan", td)
align = self.getValue("align", td, row, column)
valign = self.getValue("valign", td, row, column)
color = self.getValue("color", td, row, column)
bold = self.getValue("bold", td, row, column)
italic = self.getValue("italic", td, row, column)
style = ""
attr = ""
if color:
style += "color:%s;" % color
if bold:
style += "font-weight: bold;"
if italic:
style += "font-style: italic;"
if align and align != "left":
attr += " align=\"%s\"" % align
if valign and valign != "middle":
attr += " valign=\"%s\"" % valign
if colspan > 1:
attr += " colspan=\"%s\"" % colspan
if rowspan > 1:
attr += " rowspan=\"%s\"" % rowspan
for q in range(r+1, min(r+rowspan, len(rows))):
rows[q].cells[i] = colspan
if style:
attr += " style=\"%s\"" % style
css = ""
if embeedcss:
css = " style=\"border:none;border-bottom:1px solid #CCCCCC;color:#666699;padding:6px 8px;white-space:nowrap;\""
if r == 0:
css = css[:-1] + "border-top:2px solid #6678B1;\""
out.write(" <td%s%s>\n" % (attr, css))
if td is not None:
out.write(" %s\n" % htmlEncode(td.text))
out.write(" </td>\n")
i += colspan
out.write(" </tr>\n")
out.write(" </tbody>\n</table>\n</div>\n")
def htmlPrintHeader(out, title = None):
if title:
titletag = "<title>%s</title>\n" % htmlEncode([str(title)])
else:
titletag = ""
out.write("""<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
%s<style type="text/css">
html, body {font-family: Lucida Console, Courier New, Courier;font-size: 16px;color:#3e4758;}
.tbl{background:none repeat scroll 0 0 #FFFFFF;border-collapse:collapse;font-family:"Lucida Sans Unicode","Lucida Grande",Sans-Serif;font-size:14px;margin:20px;text-align:left;width:480px;margin-left: auto;margin-right: auto;white-space:nowrap;}
.tbl span{display:block;white-space:nowrap;}
.tbl thead tr:last-child th {padding-bottom:5px;}
.tbl tbody tr:first-child td {border-top:3px solid #6678B1;}
.tbl th{border:none;color:#003399;font-size:16px;font-weight:normal;white-space:nowrap;padding:3px 10px;}
.tbl td{border:none;border-bottom:1px solid #CCCCCC;color:#666699;padding:6px 8px;white-space:nowrap;}
.tbl tbody tr:hover td{color:#000099;}
.tbl caption{font:italic 16px "Trebuchet MS",Verdana,Arial,Helvetica,sans-serif;padding:0 0 5px;text-align:right;white-space:normal;}
.firstingroup {border-top:2px solid #6678B1;}
</style>
<script type="text/javascript" src="https://ajax.googleapis.com/ajax/libs/jquery/1.6.4/jquery.min.js"></script>
<script type="text/javascript">
function abs(val) { return val < 0 ? -val : val }
$(function(){
//generate filter rows
$("div.tableFormatter table.tbl").each(function(tblIdx, tbl) {
var head = $("thead", tbl)
var filters = $("<tr></tr>")
var hasAny = false
$("tr:first th", head).each(function(colIdx, col) {
col = $(col)
var cell
var id = "t" + tblIdx + "r" + colIdx
if (col.hasClass("col_name")){
cell = $("<th><input id='" + id + "' name='" + id + "' type='text' style='width:100%%' class='filter_col_name' title='Regular expression for name filtering ("resize.*640x480" - resize tests on VGA resolution)'></input></th>")
hasAny = true
}
else if (col.hasClass("col_rel")){
cell = $("<th><input id='" + id + "' name='" + id + "' type='text' style='width:100%%' class='filter_col_rel' title='Filter out lines with a x-factor of acceleration less than Nx'></input></th>")
hasAny = true
}
else if (col.hasClass("col_cr")){
cell = $("<th><input id='" + id + "' name='" + id + "' type='text' style='width:100%%' class='filter_col_cr' title='Filter out lines with a percentage of acceleration less than N%%'></input></th>")
hasAny = true
}
else
cell = $("<th></th>")
cell.appendTo(filters)
})
if (hasAny){
$(tbl).wrap("<form id='form_t" + tblIdx + "' method='get' action=''></form>")
$("<input it='test' type='submit' value='Apply Filters' style='margin-left:10px;'></input>")
.appendTo($("th:last", filters.appendTo(head)))
}
})
//get filter values
var vars = []
var hashes = window.location.href.slice(window.location.href.indexOf('?') + 1).split('&')
for(var i = 0; i < hashes.length; ++i)
{
hash = hashes[i].split('=')
vars.push(decodeURIComponent(hash[0]))
vars[decodeURIComponent(hash[0])] = decodeURIComponent(hash[1]);
}
//set filter values
for(var i = 0; i < vars.length; ++i)
$("#" + vars[i]).val(vars[vars[i]])
//apply filters
$("div.tableFormatter table.tbl").each(function(tblIdx, tbl) {
filters = $("input:text", tbl)
var predicate = function(row) {return true;}
var empty = true
$.each($("input:text", tbl), function(i, flt) {
flt = $(flt)
var val = flt.val()
var pred = predicate;
if(val) {
empty = false
var colIdx = parseInt(flt.attr("id").slice(flt.attr("id").indexOf('r') + 1))
if(flt.hasClass("filter_col_name")) {
var re = new RegExp(val);
predicate = function(row) {
if (re.exec($(row.get(colIdx)).text()) == null)
return false
return pred(row)
}
} else if(flt.hasClass("filter_col_rel")) {
var percent = parseFloat(val)
if (percent < 0) {
predicate = function(row) {
var val = parseFloat($(row.get(colIdx)).text())
if (!val || val >= 1 || val > 1+percent)
return false
return pred(row)
}
} else {
predicate = function(row) {
var val = parseFloat($(row.get(colIdx)).text())
if (!val || val < percent)
return false
return pred(row)
}
}
} else if(flt.hasClass("filter_col_cr")) {
var percent = parseFloat(val)
predicate = function(row) {
var val = parseFloat($(row.get(colIdx)).text())
if (!val || val < percent)
return false
return pred(row)
}
}
}
});
if (!empty){
$("tbody tr", tbl).each(function (i, tbl_row) {
if(!predicate($("td", tbl_row)))
$(tbl_row).remove()
})
if($("tbody tr", tbl).length == 0) {
$("<tr><td colspan='"+$("thead tr:first th", tbl).length+"'>No results matching your search criteria</td></tr>")
.appendTo($("tbody", tbl))
}
}
})
})
</script>
</head>
<body>
""" % titletag)
def htmlPrintFooter(out):
out.write("</body>\n</html>")
def getStdoutFilename():
try:
if os.name == "nt":
import msvcrt, ctypes
handle = msvcrt.get_osfhandle(sys.stdout.fileno())
size = ctypes.c_ulong(1024)
nameBuffer = ctypes.create_string_buffer(size.value)
ctypes.windll.kernel32.GetFinalPathNameByHandleA(handle, nameBuffer, size, 4)
return nameBuffer.value
else:
return os.readlink('/proc/self/fd/1')
except:
return ""
def detectHtmlOutputType(requestedType):
if requestedType in ['txt', 'markdown']:
return False
elif requestedType in ["html", "moinwiki"]:
return True
else:
if sys.stdout.isatty():
return False
else:
outname = getStdoutFilename()
if outname:
if outname.endswith(".htm") or outname.endswith(".html"):
return True
else:
return False
else:
return False
def getRelativeVal(test, test0, metric):
if not test or not test0:
return None
val0 = test0.get(metric, "s")
if not val0:
return None
val = test.get(metric, "s")
if not val or val == 0:
return None
return float(val0)/val
def getCycleReduction(test, test0, metric):
if not test or not test0:
return None
val0 = test0.get(metric, "s")
if not val0 or val0 == 0:
return None
val = test.get(metric, "s")
if not val:
return None
return (1.0-float(val)/val0)*100
def getScore(test, test0, metric):
if not test or not test0:
return None
m0 = float(test.get("gmean", None))
m1 = float(test0.get("gmean", None))
if m0 == 0 or m1 == 0:
return None
s0 = float(test.get("gstddev", None))
s1 = float(test0.get("gstddev", None))
s = math.sqrt(s0*s0 + s1*s1)
m0 = math.log(m0)
m1 = math.log(m1)
if s == 0:
return None
return (m0-m1)/s
metrix_table = \
{
"name": ("Name of Test", lambda test,test0,units: str(test)),
"samples": ("Number of\ncollected samples", lambda test,test0,units: test.get("samples", units)),
"outliers": ("Number of\noutliers", lambda test,test0,units: test.get("outliers", units)),
"gmean": ("Geometric mean", lambda test,test0,units: test.get("gmean", units)),
"mean": ("Mean", lambda test,test0,units: test.get("mean", units)),
"min": ("Min", lambda test,test0,units: test.get("min", units)),
"median": ("Median", lambda test,test0,units: test.get("median", units)),
"stddev": ("Standard deviation", lambda test,test0,units: test.get("stddev", units)),
"gstddev": ("Standard deviation of Ln(time)", lambda test,test0,units: test.get("gstddev")),
"gmean%": ("Geometric mean (relative)", lambda test,test0,units: getRelativeVal(test, test0, "gmean")),
"mean%": ("Mean (relative)", lambda test,test0,units: getRelativeVal(test, test0, "mean")),
"min%": ("Min (relative)", lambda test,test0,units: getRelativeVal(test, test0, "min")),
"median%": ("Median (relative)", lambda test,test0,units: getRelativeVal(test, test0, "median")),
"stddev%": ("Standard deviation (relative)", lambda test,test0,units: getRelativeVal(test, test0, "stddev")),
"gstddev%": ("Standard deviation of Ln(time) (relative)", lambda test,test0,units: getRelativeVal(test, test0, "gstddev")),
"gmean$": ("Geometric mean (cycle reduction)", lambda test,test0,units: getCycleReduction(test, test0, "gmean")),
"mean$": ("Mean (cycle reduction)", lambda test,test0,units: getCycleReduction(test, test0, "mean")),
"min$": ("Min (cycle reduction)", lambda test,test0,units: getCycleReduction(test, test0, "min")),
"median$": ("Median (cycle reduction)", lambda test,test0,units: getCycleReduction(test, test0, "median")),
"stddev$": ("Standard deviation (cycle reduction)", lambda test,test0,units: getCycleReduction(test, test0, "stddev")),
"gstddev$": ("Standard deviation of Ln(time) (cycle reduction)", lambda test,test0,units: getCycleReduction(test, test0, "gstddev")),
"score": ("SCORE", lambda test,test0,units: getScore(test, test0, "gstddev")),
}
def formatValue(val, metric, units = None):
if val is None:
return "-"
if metric.endswith("%"):
return "%.2f" % val
if metric.endswith("$"):
return "%.2f%%" % val
if metric.endswith("S"):
if val > 3.5:
return "SLOWER"
if val < -3.5:
return "FASTER"
if val > -1.5 and val < 1.5:
return " "
if val < 0:
return "faster"
if val > 0:
return "slower"
#return "%.4f" % val
if units:
return "%.3f %s" % (val, units)
else:
return "%.3f" % val
if __name__ == "__main__":
if len(sys.argv) < 2:
print("Usage:\n", os.path.basename(sys.argv[0]), "<log_name>.xml")
exit(0)
parser = OptionParser()
parser.add_option("-o", "--output", dest="format", help="output results in text format (can be 'txt', 'html', 'markdown' or 'auto' - default)", metavar="FMT", default="auto")
parser.add_option("-m", "--metric", dest="metric", help="output metric", metavar="NAME", default="gmean")
parser.add_option("-u", "--units", dest="units", help="units for output values (s, ms (default), us, ns or ticks)", metavar="UNITS", default="ms")
(options, args) = parser.parse_args()
options.generateHtml = detectHtmlOutputType(options.format)
if options.metric not in metrix_table:
options.metric = "gmean"
#print options
#print args
# tbl = table()
# tbl.newColumn("first", "qqqq", align = "left")
# tbl.newColumn("second", "wwww\nz\nx\n")
# tbl.newColumn("third", "wwasdas")
#
# tbl.newCell(0, "ccc111", align = "right")
# tbl.newCell(1, "dddd1")
# tbl.newCell(2, "8768756754")
# tbl.newRow()
# tbl.newCell(0, "1\n2\n3\n4\n5\n6\n7", align = "center", colspan = 2, rowspan = 2)
# tbl.newCell(2, "xxx\nqqq", align = "center", colspan = 1, valign = "middle")
# tbl.newRow()
# tbl.newCell(2, "+", align = "center", colspan = 1, valign = "middle")
# tbl.newRow()
# tbl.newCell(0, "vcvvbasdsadassdasdasv", align = "right", colspan = 2)
# tbl.newCell(2, "dddd1")
# tbl.newRow()
# tbl.newCell(0, "vcvvbv")
# tbl.newCell(1, "3445324", align = "right")
# tbl.newCell(2, None)
# tbl.newCell(1, "0000")
# if sys.stdout.isatty():
# tbl.consolePrintTable(sys.stdout)
# else:
# htmlPrintHeader(sys.stdout)
# tbl.htmlPrintTable(sys.stdout)
# htmlPrintFooter(sys.stdout)
import testlog_parser
if options.generateHtml:
htmlPrintHeader(sys.stdout, "Tables demo")
getter = metrix_table[options.metric][1]
for arg in args:
tests = testlog_parser.parseLogFile(arg)
tbl = table(arg, format=options.format)
tbl.newColumn("name", "Name of Test", align = "left")
tbl.newColumn("value", metrix_table[options.metric][0], align = "center", bold = "true")
for t in sorted(tests):
tbl.newRow()
tbl.newCell("name", str(t))
status = t.get("status")
if status != "run":
tbl.newCell("value", status)
else:
val = getter(t, None, options.units)
if val:
if options.metric.endswith("%"):
tbl.newCell("value", "%.2f" % val, val)
else:
tbl.newCell("value", "%.3f %s" % (val, options.units), val)
else:
tbl.newCell("value", "-")
if options.generateHtml:
tbl.htmlPrintTable(sys.stdout)
else:
tbl.consolePrintTable(sys.stdout)
if options.generateHtml:
htmlPrintFooter(sys.stdout)
|
#!/usr/bin/env python
import os
import re
import getpass
from run_utils import Err, log, execute, isColorEnabled, hostos
from run_suite import TestSuite
def exe(program):
return program + ".exe" if hostos == 'nt' else program
class ApkInfo:
def __init__(self):
self.pkg_name = None
self.pkg_target = None
self.pkg_runner = None
def forcePackage(self, package):
if package:
if package.startswith("."):
self.pkg_target += package
else:
self.pkg_target = package
class Tool:
def __init__(self):
self.cmd = []
def run(self, args=[], silent=False):
cmd = self.cmd[:]
cmd.extend(args)
return execute(self.cmd + args, silent)
class Adb(Tool):
def __init__(self, sdk_dir):
Tool.__init__(self)
exe_path = os.path.join(sdk_dir, exe("platform-tools/adb"))
if not os.path.isfile(exe_path) or not os.access(exe_path, os.X_OK):
exe_path = None
# fix adb tool location
if not exe_path:
exe_path = "adb"
self.cmd = [exe_path]
def init(self, serial):
# remember current device serial. Needed if another device is connected while this script runs
if not serial:
serial = self.detectSerial()
if serial:
self.cmd.extend(["-s", serial])
def detectSerial(self):
adb_res = self.run(["devices"], silent=True)
# assume here that device name may consists of any characters except newline
connected_devices = re.findall(r"^[^\n]+[ \t]+device\r?$", adb_res, re.MULTILINE)
if not connected_devices:
raise Err("Can not find Android device")
elif len(connected_devices) != 1:
raise Err("Too many (%s) devices are connected. Please specify single device using --serial option:\n\n%s", len(connected_devices), adb_res)
else:
return connected_devices[0].split("\t")[0]
def getOSIdentifier(self):
return "Android" + self.run(["shell", "getprop ro.build.version.release"], silent=True).strip()
class Aapt(Tool):
def __init__(self, sdk_dir):
Tool.__init__(self)
aapt_fn = exe("aapt")
aapt = None
for r, ds, fs in os.walk(os.path.join(sdk_dir, 'build-tools')):
if aapt_fn in fs:
aapt = os.path.join(r, aapt_fn)
break
if not aapt:
raise Err("Can not find aapt tool: %s", aapt_fn)
self.cmd = [aapt]
def dump(self, exe):
res = ApkInfo()
output = self.run(["dump", "xmltree", exe, "AndroidManifest.xml"], silent=True)
if not output:
raise Err("Can not dump manifest from %s", exe)
tags = re.split(r"[ ]+E: ", output)
# get package name
manifest_tag = [t for t in tags if t.startswith("manifest ")]
if not manifest_tag:
raise Err("Can not read package name from: %s", exe)
res.pkg_name = re.search(r"^[ ]+A: package=\"(?P<pkg>.*?)\" \(Raw: \"(?P=pkg)\"\)\r?$", manifest_tag[0], flags=re.MULTILINE).group("pkg")
# get test instrumentation info
instrumentation_tag = [t for t in tags if t.startswith("instrumentation ")]
if not instrumentation_tag:
raise Err("Can not find instrumentation details in: %s", exe)
res.pkg_runner = re.search(r"^[ ]+A: android:name\(0x[0-9a-f]{8}\)=\"(?P<runner>.*?)\" \(Raw: \"(?P=runner)\"\)\r?$", instrumentation_tag[0], flags=re.MULTILINE).group("runner")
res.pkg_target = re.search(r"^[ ]+A: android:targetPackage\(0x[0-9a-f]{8}\)=\"(?P<pkg>.*?)\" \(Raw: \"(?P=pkg)\"\)\r?$", instrumentation_tag[0], flags=re.MULTILINE).group("pkg")
if not res.pkg_name or not res.pkg_runner or not res.pkg_target:
raise Err("Can not find instrumentation details in: %s", exe)
return res
class AndroidTestSuite(TestSuite):
def __init__(self, options, cache, id, android_env={}):
TestSuite.__init__(self, options, cache, id)
sdk_dir = options.android_sdk or os.environ.get("ANDROID_SDK", False) or os.path.dirname(os.path.dirname(self.cache.android_executable))
log.debug("Detecting Android tools in directory: %s", sdk_dir)
self.adb = Adb(sdk_dir)
self.aapt = Aapt(sdk_dir)
self.env = android_env
def isTest(self, fullpath):
if os.path.isfile(fullpath):
if fullpath.endswith(".apk") or os.access(fullpath, os.X_OK):
return True
return False
def getOS(self):
return self.adb.getOSIdentifier()
def checkPrerequisites(self):
self.adb.init(self.options.serial)
def runTest(self, module, path, logfile, workingDir, args=[]):
args = args[:]
exe = os.path.abspath(path)
if exe.endswith(".apk"):
info = self.aapt.dump(exe)
if not info:
raise Err("Can not read info from test package: %s", exe)
info.forcePackage(self.options.package)
self.adb.run(["uninstall", info.pkg_name])
output = self.adb.run(["install", exe], silent=True)
if not (output and "Success" in output):
raise Err("Can not install package: %s", exe)
params = ["-e package %s" % info.pkg_target]
ret = self.adb.run(["shell", "am instrument -w %s %s/%s" % (" ".join(params), info.pkg_name, info.pkg_runner)])
return None, ret
else:
device_dir = getpass.getuser().replace(" ", "") + "_" + self.options.mode + "/"
if isColorEnabled(args):
args.append("--gtest_color=yes")
tempdir = "/data/local/tmp/"
android_dir = tempdir + device_dir
exename = os.path.basename(exe)
android_exe = android_dir + exename
self.adb.run(["push", exe, android_exe])
self.adb.run(["shell", "chmod 777 " + android_exe])
env_pieces = ["export %s=%s" % (a, b) for a, b in self.env.items()]
pieces = ["cd %s" % android_dir, "./%s %s" % (exename, " ".join(args))]
log.warning("Run: %s" % " && ".join(pieces))
ret = self.adb.run(["shell", " && ".join(env_pieces + pieces)])
# try get log
hostlogpath = os.path.join(workingDir, logfile)
self.adb.run(["pull", android_dir + logfile, hostlogpath])
# cleanup
self.adb.run(["shell", "rm " + android_dir + logfile])
self.adb.run(["shell", "rm " + tempdir + "__opencv_temp.*"], silent=True)
if os.path.isfile(hostlogpath):
return hostlogpath, ret
return None, ret
if __name__ == "__main__":
log.error("This is utility file, please execute run.py script")
|
#!/usr/bin/env python
from __future__ import print_function
import testlog_parser, sys, os, xml, glob, re
from table_formatter import *
from optparse import OptionParser
from operator import itemgetter, attrgetter
from summary import getSetName, alphanum_keyselector
import re
if __name__ == "__main__":
usage = "%prog <log_name>.xml [...]"
parser = OptionParser(usage = usage)
parser.add_option("-o", "--output", dest = "format",
help = "output results in text format (can be 'txt', 'html' or 'auto' - default)",
metavar = 'FMT', default = 'auto')
parser.add_option("--failed-only", action = "store_true", dest = "failedOnly",
help = "print only failed tests", default = False)
(options, args) = parser.parse_args()
options.generateHtml = detectHtmlOutputType(options.format)
files = []
testsuits = [] # testsuit module, name, time, num, flag for failed tests
overall_time = 0
seen = set()
for arg in args:
if ("*" in arg) or ("?" in arg):
flist = [os.path.abspath(f) for f in glob.glob(arg)]
flist = sorted(flist, key= lambda text: str(text).replace("M", "_"))
files.extend([ x for x in flist if x not in seen and not seen.add(x)])
else:
fname = os.path.abspath(arg)
if fname not in seen and not seen.add(fname):
files.append(fname)
file = os.path.abspath(fname)
if not os.path.isfile(file):
sys.stderr.write("IOError reading \"" + file + "\" - " + str(err) + os.linesep)
parser.print_help()
exit(0)
fname = os.path.basename(fname)
find_module_name = re.search(r'([^_]*)', fname)
module_name = find_module_name.group(0)
test_sets = []
try:
tests = testlog_parser.parseLogFile(file)
if tests:
test_sets.append((os.path.basename(file), tests))
except IOError as err:
sys.stderr.write("IOError reading \"" + file + "\" - " + str(err) + os.linesep)
except xml.parsers.expat.ExpatError as err:
sys.stderr.write("ExpatError reading \"" + file + "\" - " + str(err) + os.linesep)
if not test_sets:
continue
# find matches
setsCount = len(test_sets)
test_cases = {}
name_extractor = lambda name: str(name)
for i in range(setsCount):
for case in test_sets[i][1]:
name = name_extractor(case)
if name not in test_cases:
test_cases[name] = [None] * setsCount
test_cases[name][i] = case
prevGroupName = None
suit_time = 0
suit_num = 0
fails_num = 0
for name in sorted(test_cases.iterkeys(), key=alphanum_keyselector):
cases = test_cases[name]
groupName = next(c for c in cases if c).shortName()
if groupName != prevGroupName:
if prevGroupName != None:
suit_time = suit_time/60 #from seconds to minutes
testsuits.append({'module': module_name, 'name': prevGroupName, \
'time': suit_time, 'num': suit_num, 'failed': fails_num})
overall_time += suit_time
suit_time = 0
suit_num = 0
fails_num = 0
prevGroupName = groupName
for i in range(setsCount):
case = cases[i]
if not case is None:
suit_num += 1
if case.get('status') == 'run':
suit_time += case.get('time')
if case.get('status') == 'failed':
fails_num += 1
# last testsuit processing
suit_time = suit_time/60
testsuits.append({'module': module_name, 'name': prevGroupName, \
'time': suit_time, 'num': suit_num, 'failed': fails_num})
overall_time += suit_time
if len(testsuits)==0:
exit(0)
tbl = table()
rows = 0
if not options.failedOnly:
tbl.newColumn('module', 'Module', align = 'left', cssclass = 'col_name')
tbl.newColumn('name', 'Testsuit', align = 'left', cssclass = 'col_name')
tbl.newColumn('time', 'Time (min)', align = 'center', cssclass = 'col_name')
tbl.newColumn('num', 'Num of tests', align = 'center', cssclass = 'col_name')
tbl.newColumn('failed', 'Failed', align = 'center', cssclass = 'col_name')
# rows
for suit in sorted(testsuits, key = lambda suit: suit['time'], reverse = True):
tbl.newRow()
tbl.newCell('module', suit['module'])
tbl.newCell('name', suit['name'])
tbl.newCell('time', formatValue(suit['time'], '', ''), suit['time'])
tbl.newCell('num', suit['num'])
if (suit['failed'] != 0):
tbl.newCell('failed', suit['failed'])
else:
tbl.newCell('failed', ' ')
rows += 1
else:
tbl.newColumn('module', 'Module', align = 'left', cssclass = 'col_name')
tbl.newColumn('name', 'Testsuit', align = 'left', cssclass = 'col_name')
tbl.newColumn('failed', 'Failed', align = 'center', cssclass = 'col_name')
# rows
for suit in sorted(testsuits, key = lambda suit: suit['time'], reverse = True):
if (suit['failed'] != 0):
tbl.newRow()
tbl.newCell('module', suit['module'])
tbl.newCell('name', suit['name'])
tbl.newCell('failed', suit['failed'])
rows += 1
# output table
if rows:
if options.generateHtml:
tbl.htmlPrintTable(sys.stdout)
htmlPrintFooter(sys.stdout)
else:
if not options.failedOnly:
print('\nOverall time: %.2f min\n' % overall_time)
tbl.consolePrintTable(sys.stdout)
print(2 * '\n')
|
#!/usr/bin/env python
import os
import re
import sys
from run_utils import Err, log, execute, getPlatformVersion, isColorEnabled, TempEnvDir
from run_long import LONG_TESTS_DEBUG_VALGRIND, longTestFilter
class TestSuite(object):
def __init__(self, options, cache, id):
self.options = options
self.cache = cache
self.nameprefix = "opencv_" + self.options.mode + "_"
self.tests = self.cache.gatherTests(self.nameprefix + "*", self.isTest)
self.id = id
def getOS(self):
return getPlatformVersion() or self.cache.getOS()
def getLogName(self, app):
return self.getAlias(app) + '_' + str(self.id) + '.xml'
def listTests(self, short=False, main=False):
if len(self.tests) == 0:
raise Err("No tests found")
for t in self.tests:
if short:
t = self.getAlias(t)
if not main or self.cache.isMainModule(t):
log.info("%s", t)
def getAlias(self, fname):
return sorted(self.getAliases(fname), key=len)[0]
def getAliases(self, fname):
def getCuts(fname, prefix):
# filename w/o extension (opencv_test_core)
noext = re.sub(r"\.(exe|apk)$", '', fname)
# filename w/o prefix (core.exe)
nopref = fname
if fname.startswith(prefix):
nopref = fname[len(prefix):]
# filename w/o prefix and extension (core)
noprefext = noext
if noext.startswith(prefix):
noprefext = noext[len(prefix):]
return noext, nopref, noprefext
# input is full path ('/home/.../bin/opencv_test_core') or 'java'
res = [fname]
fname = os.path.basename(fname)
res.append(fname) # filename (opencv_test_core.exe)
for s in getCuts(fname, self.nameprefix):
res.append(s)
if self.cache.build_type == "Debug" and "Visual Studio" in self.cache.cmake_generator:
res.append(re.sub(r"d$", '', s)) # MSVC debug config, remove 'd' suffix
log.debug("Aliases: %s", set(res))
return set(res)
def getTest(self, name):
# return stored test name by provided alias
for t in self.tests:
if name in self.getAliases(t):
return t
raise Err("Can not find test: %s", name)
def getTestList(self, white, black):
res = [t for t in white or self.tests if self.getAlias(t) not in black]
if len(res) == 0:
raise Err("No tests found")
return set(res)
def isTest(self, fullpath):
if fullpath in ['java', 'python2', 'python3']:
return self.options.mode == 'test'
if not os.path.isfile(fullpath):
return False
if self.cache.getOS() == "nt" and not fullpath.endswith(".exe"):
return False
return os.access(fullpath, os.X_OK)
def wrapCommand(self, module, cmd, env):
if self.options.valgrind:
res = ['valgrind']
supp = self.options.valgrind_supp or []
for f in supp:
if os.path.isfile(f):
res.append("--suppressions=%s" % f)
else:
print("WARNING: Valgrind suppression file is missing, SKIP: %s" % f)
res.extend(self.options.valgrind_opt)
has_gtest_filter = next((True for x in cmd if x.startswith('--gtest_filter=')), False)
return res + cmd + ([longTestFilter(LONG_TESTS_DEBUG_VALGRIND, module)] if not has_gtest_filter else [])
elif self.options.qemu:
import shlex
res = shlex.split(self.options.qemu)
for (name, value) in [entry for entry in os.environ.items() if entry[0].startswith('OPENCV') and not entry[0] in env]:
res += ['-E', '"{}={}"'.format(name, value)]
for (name, value) in env.items():
res += ['-E', '"{}={}"'.format(name, value)]
return res + ['--'] + cmd
return cmd
def tryCommand(self, cmd, workingDir):
try:
if 0 == execute(cmd, cwd=workingDir):
return True
except:
pass
return False
def runTest(self, module, path, logfile, workingDir, args=[]):
args = args[:]
exe = os.path.abspath(path)
if module == "java":
cmd = [self.cache.ant_executable, "-Dopencv.build.type=%s" % self.cache.build_type]
if self.options.package:
cmd += ["-Dopencv.test.package=%s" % self.options.package]
cmd += ["buildAndTest"]
ret = execute(cmd, cwd=self.cache.java_test_dir)
return None, ret
elif module in ['python2', 'python3']:
executable = os.getenv('OPENCV_PYTHON_BINARY', None)
if executable is None or module == 'python{}'.format(sys.version_info[0]):
executable = sys.executable
if executable is None:
executable = path
if not self.tryCommand([executable, '--version'], workingDir):
executable = 'python'
cmd = [executable, self.cache.opencv_home + '/modules/python/test/test.py', '--repo', self.cache.opencv_home, '-v'] + args
module_suffix = '' if 'Visual Studio' not in self.cache.cmake_generator else '/' + self.cache.build_type
env = {}
env['PYTHONPATH'] = self.cache.opencv_build + '/lib' + module_suffix + os.pathsep + os.getenv('PYTHONPATH', '')
if self.cache.getOS() == 'nt':
env['PATH'] = self.cache.opencv_build + '/bin' + module_suffix + os.pathsep + os.getenv('PATH', '')
else:
env['LD_LIBRARY_PATH'] = self.cache.opencv_build + '/bin' + os.pathsep + os.getenv('LD_LIBRARY_PATH', '')
ret = execute(cmd, cwd=workingDir, env=env)
return None, ret
else:
if isColorEnabled(args):
args.append("--gtest_color=yes")
env = {}
if not self.options.valgrind and self.options.trace:
env['OPENCV_TRACE'] = '1'
env['OPENCV_TRACE_LOCATION'] = 'OpenCVTrace-{}'.format(self.getLogBaseName(exe))
env['OPENCV_TRACE_SYNC_OPENCL'] = '1'
tempDir = TempEnvDir('OPENCV_TEMP_PATH', "__opencv_temp.")
tempDir.init()
cmd = self.wrapCommand(module, [exe] + args, env)
log.warning("Run: %s" % " ".join(cmd))
ret = execute(cmd, cwd=workingDir, env=env)
try:
if not self.options.valgrind and self.options.trace and int(self.options.trace_dump) >= 0:
import trace_profiler
trace = trace_profiler.Trace(env['OPENCV_TRACE_LOCATION']+'.txt')
trace.process()
trace.dump(max_entries=int(self.options.trace_dump))
except:
import traceback
traceback.print_exc()
pass
tempDir.clean()
hostlogpath = os.path.join(workingDir, logfile)
if os.path.isfile(hostlogpath):
return hostlogpath, ret
return None, ret
def runTests(self, tests, black, workingDir, args=[]):
args = args[:]
logs = []
test_list = self.getTestList(tests, black)
if len(test_list) != 1:
args = [a for a in args if not a.startswith("--gtest_output=")]
ret = 0
for test in test_list:
more_args = []
exe = self.getTest(test)
if exe in ["java", "python2", "python3"]:
logname = None
else:
userlog = [a for a in args if a.startswith("--gtest_output=")]
if len(userlog) == 0:
logname = self.getLogName(exe)
more_args.append("--gtest_output=xml:" + logname)
else:
logname = userlog[0][userlog[0].find(":")+1:]
log.debug("Running the test: %s (%s) ==> %s in %s", exe, args + more_args, logname, workingDir)
if self.options.dry_run:
logfile, r = None, 0
else:
logfile, r = self.runTest(test, exe, logname, workingDir, args + more_args)
log.debug("Test returned: %s ==> %s", r, logfile)
if r != 0:
ret = r
if logfile:
logs.append(os.path.relpath(logfile, workingDir))
return logs, ret
if __name__ == "__main__":
log.error("This is utility file, please execute run.py script")
|
#!/usr/bin/env python
"""
This script can generate XLS reports from OpenCV tests' XML output files.
To use it, first, create a directory for each machine you ran tests on.
Each such directory will become a sheet in the report. Put each XML file
into the corresponding directory.
Then, create your configuration file(s). You can have a global configuration
file (specified with the -c option), and per-sheet configuration files, which
must be called sheet.conf and placed in the directory corresponding to the sheet.
The settings in the per-sheet configuration file will override those in the
global configuration file, if both are present.
A configuration file must consist of a Python dictionary. The following keys
will be recognized:
* 'comparisons': [{'from': string, 'to': string}]
List of configurations to compare performance between. For each item,
the sheet will have a column showing speedup from configuration named
'from' to configuration named "to".
* 'configuration_matchers': [{'properties': {string: object}, 'name': string}]
Instructions for matching test run property sets to configuration names.
For each found XML file:
1) All attributes of the root element starting with the prefix 'cv_' are
placed in a dictionary, with the cv_ prefix stripped and the cv_module_name
element deleted.
2) The first matcher for which the XML's file property set contains the same
keys with equal values as its 'properties' dictionary is searched for.
A missing property can be matched by using None as the value.
Corollary 1: you should place more specific matchers before less specific
ones.
Corollary 2: an empty 'properties' dictionary matches every property set.
3) If a matching matcher is found, its 'name' string is presumed to be the name
of the configuration the XML file corresponds to. A warning is printed if
two different property sets match to the same configuration name.
4) If a such a matcher isn't found, if --include-unmatched was specified, the
configuration name is assumed to be the relative path from the sheet's
directory to the XML file's containing directory. If the XML file isinstance
directly inside the sheet's directory, the configuration name is instead
a dump of all its properties. If --include-unmatched wasn't specified,
the XML file is ignored and a warning is printed.
* 'configurations': [string]
List of names for compile-time and runtime configurations of OpenCV.
Each item will correspond to a column of the sheet.
* 'module_colors': {string: string}
Mapping from module name to color name. In the sheet, cells containing module
names from this mapping will be colored with the corresponding color. You can
find the list of available colors here:
<http://www.simplistix.co.uk/presentations/python-excel.pdf>.
* 'sheet_name': string
Name for the sheet. If this parameter is missing, the name of sheet's directory
will be used.
* 'sheet_properties': [(string, string)]
List of arbitrary (key, value) pairs that somehow describe the sheet. Will be
dumped into the first row of the sheet in string form.
Note that all keys are optional, although to get useful results, you'll want to
specify at least 'configurations' and 'configuration_matchers'.
Finally, run the script. Use the --help option for usage information.
"""
from __future__ import division
import ast
import errno
import fnmatch
import logging
import numbers
import os, os.path
import re
from argparse import ArgumentParser
from glob import glob
from itertools import ifilter
import xlwt
from testlog_parser import parseLogFile
re_image_size = re.compile(r'^ \d+ x \d+$', re.VERBOSE)
re_data_type = re.compile(r'^ (?: 8 | 16 | 32 | 64 ) [USF] C [1234] $', re.VERBOSE)
time_style = xlwt.easyxf(num_format_str='#0.00')
no_time_style = xlwt.easyxf('pattern: pattern solid, fore_color gray25')
failed_style = xlwt.easyxf('pattern: pattern solid, fore_color red')
noimpl_style = xlwt.easyxf('pattern: pattern solid, fore_color orange')
style_dict = {"failed": failed_style, "noimpl":noimpl_style}
speedup_style = time_style
good_speedup_style = xlwt.easyxf('font: color green', num_format_str='#0.00')
bad_speedup_style = xlwt.easyxf('font: color red', num_format_str='#0.00')
no_speedup_style = no_time_style
error_speedup_style = xlwt.easyxf('pattern: pattern solid, fore_color orange')
header_style = xlwt.easyxf('font: bold true; alignment: horizontal centre, vertical top, wrap True')
subheader_style = xlwt.easyxf('alignment: horizontal centre, vertical top')
class Collector(object):
def __init__(self, config_match_func, include_unmatched):
self.__config_cache = {}
self.config_match_func = config_match_func
self.include_unmatched = include_unmatched
self.tests = {}
self.extra_configurations = set()
# Format a sorted sequence of pairs as if it was a dictionary.
# We can't just use a dictionary instead, since we want to preserve the sorted order of the keys.
@staticmethod
def __format_config_cache_key(pairs, multiline=False):
return (
('{\n' if multiline else '{') +
(',\n' if multiline else ', ').join(
(' ' if multiline else '') + repr(k) + ': ' + repr(v) for (k, v) in pairs) +
('\n}\n' if multiline else '}')
)
def collect_from(self, xml_path, default_configuration):
run = parseLogFile(xml_path)
module = run.properties['module_name']
properties = run.properties.copy()
del properties['module_name']
props_key = tuple(sorted(properties.iteritems())) # dicts can't be keys
if props_key in self.__config_cache:
configuration = self.__config_cache[props_key]
else:
configuration = self.config_match_func(properties)
if configuration is None:
if self.include_unmatched:
if default_configuration is not None:
configuration = default_configuration
else:
configuration = Collector.__format_config_cache_key(props_key, multiline=True)
self.extra_configurations.add(configuration)
else:
logging.warning('failed to match properties to a configuration: %s',
Collector.__format_config_cache_key(props_key))
else:
same_config_props = [it[0] for it in self.__config_cache.iteritems() if it[1] == configuration]
if len(same_config_props) > 0:
logging.warning('property set %s matches the same configuration %r as property set %s',
Collector.__format_config_cache_key(props_key),
configuration,
Collector.__format_config_cache_key(same_config_props[0]))
self.__config_cache[props_key] = configuration
if configuration is None: return
module_tests = self.tests.setdefault(module, {})
for test in run.tests:
test_results = module_tests.setdefault((test.shortName(), test.param()), {})
new_result = test.get("gmean") if test.status == 'run' else test.status
test_results[configuration] = min(
test_results.get(configuration), new_result,
key=lambda r: (1, r) if isinstance(r, numbers.Number) else
(2,) if r is not None else
(3,)
) # prefer lower result; prefer numbers to errors and errors to nothing
def make_match_func(matchers):
def match_func(properties):
for matcher in matchers:
if all(properties.get(name) == value
for (name, value) in matcher['properties'].iteritems()):
return matcher['name']
return None
return match_func
def main():
arg_parser = ArgumentParser(description='Build an XLS performance report.')
arg_parser.add_argument('sheet_dirs', nargs='+', metavar='DIR', help='directory containing perf test logs')
arg_parser.add_argument('-o', '--output', metavar='XLS', default='report.xls', help='name of output file')
arg_parser.add_argument('-c', '--config', metavar='CONF', help='global configuration file')
arg_parser.add_argument('--include-unmatched', action='store_true',
help='include results from XML files that were not recognized by configuration matchers')
arg_parser.add_argument('--show-times-per-pixel', action='store_true',
help='for tests that have an image size parameter, show per-pixel time, as well as total time')
args = arg_parser.parse_args()
logging.basicConfig(format='%(levelname)s: %(message)s', level=logging.DEBUG)
if args.config is not None:
with open(args.config) as global_conf_file:
global_conf = ast.literal_eval(global_conf_file.read())
else:
global_conf = {}
wb = xlwt.Workbook()
for sheet_path in args.sheet_dirs:
try:
with open(os.path.join(sheet_path, 'sheet.conf')) as sheet_conf_file:
sheet_conf = ast.literal_eval(sheet_conf_file.read())
except IOError as ioe:
if ioe.errno != errno.ENOENT: raise
sheet_conf = {}
logging.debug('no sheet.conf for %s', sheet_path)
sheet_conf = dict(global_conf.items() + sheet_conf.items())
config_names = sheet_conf.get('configurations', [])
config_matchers = sheet_conf.get('configuration_matchers', [])
collector = Collector(make_match_func(config_matchers), args.include_unmatched)
for root, _, filenames in os.walk(sheet_path):
logging.info('looking in %s', root)
for filename in fnmatch.filter(filenames, '*.xml'):
if os.path.normpath(sheet_path) == os.path.normpath(root):
default_conf = None
else:
default_conf = os.path.relpath(root, sheet_path)
collector.collect_from(os.path.join(root, filename), default_conf)
config_names.extend(sorted(collector.extra_configurations - set(config_names)))
sheet = wb.add_sheet(sheet_conf.get('sheet_name', os.path.basename(os.path.abspath(sheet_path))))
sheet_properties = sheet_conf.get('sheet_properties', [])
sheet.write(0, 0, 'Properties:')
sheet.write(0, 1,
'N/A' if len(sheet_properties) == 0 else
' '.join(str(k) + '=' + repr(v) for (k, v) in sheet_properties))
sheet.row(2).height = 800
sheet.panes_frozen = True
sheet.remove_splits = True
sheet_comparisons = sheet_conf.get('comparisons', [])
row = 2
col = 0
for (w, caption) in [
(2500, 'Module'),
(10000, 'Test'),
(2000, 'Image\nwidth'),
(2000, 'Image\nheight'),
(2000, 'Data\ntype'),
(7500, 'Other parameters')]:
sheet.col(col).width = w
if args.show_times_per_pixel:
sheet.write_merge(row, row + 1, col, col, caption, header_style)
else:
sheet.write(row, col, caption, header_style)
col += 1
for config_name in config_names:
if args.show_times_per_pixel:
sheet.col(col).width = 3000
sheet.col(col + 1).width = 3000
sheet.write_merge(row, row, col, col + 1, config_name, header_style)
sheet.write(row + 1, col, 'total, ms', subheader_style)
sheet.write(row + 1, col + 1, 'per pixel, ns', subheader_style)
col += 2
else:
sheet.col(col).width = 4000
sheet.write(row, col, config_name, header_style)
col += 1
col += 1 # blank column between configurations and comparisons
for comp in sheet_comparisons:
sheet.col(col).width = 4000
caption = comp['to'] + '\nvs\n' + comp['from']
if args.show_times_per_pixel:
sheet.write_merge(row, row + 1, col, col, caption, header_style)
else:
sheet.write(row, col, caption, header_style)
col += 1
row += 2 if args.show_times_per_pixel else 1
sheet.horz_split_pos = row
sheet.horz_split_first_visible = row
module_colors = sheet_conf.get('module_colors', {})
module_styles = {module: xlwt.easyxf('pattern: pattern solid, fore_color {}'.format(color))
for module, color in module_colors.iteritems()}
for module, tests in sorted(collector.tests.iteritems()):
for ((test, param), configs) in sorted(tests.iteritems()):
sheet.write(row, 0, module, module_styles.get(module, xlwt.Style.default_style))
sheet.write(row, 1, test)
param_list = param[1:-1].split(', ') if param.startswith('(') and param.endswith(')') else [param]
image_size = next(ifilter(re_image_size.match, param_list), None)
if image_size is not None:
(image_width, image_height) = map(int, image_size.split('x', 1))
sheet.write(row, 2, image_width)
sheet.write(row, 3, image_height)
del param_list[param_list.index(image_size)]
data_type = next(ifilter(re_data_type.match, param_list), None)
if data_type is not None:
sheet.write(row, 4, data_type)
del param_list[param_list.index(data_type)]
sheet.row(row).write(5, ' | '.join(param_list))
col = 6
for c in config_names:
if c in configs:
sheet.write(row, col, configs[c], style_dict.get(configs[c], time_style))
else:
sheet.write(row, col, None, no_time_style)
col += 1
if args.show_times_per_pixel:
sheet.write(row, col,
xlwt.Formula('{0} * 1000000 / ({1} * {2})'.format(
xlwt.Utils.rowcol_to_cell(row, col - 1),
xlwt.Utils.rowcol_to_cell(row, 2),
xlwt.Utils.rowcol_to_cell(row, 3)
)),
time_style
)
col += 1
col += 1 # blank column
for comp in sheet_comparisons:
cmp_from = configs.get(comp["from"])
cmp_to = configs.get(comp["to"])
if isinstance(cmp_from, numbers.Number) and isinstance(cmp_to, numbers.Number):
try:
speedup = cmp_from / cmp_to
sheet.write(row, col, speedup, good_speedup_style if speedup > 1.1 else
bad_speedup_style if speedup < 0.9 else
speedup_style)
except ArithmeticError as e:
sheet.write(row, col, None, error_speedup_style)
else:
sheet.write(row, col, None, no_speedup_style)
col += 1
row += 1
if row % 1000 == 0: sheet.flush_row_data()
wb.save(args.output)
if __name__ == '__main__':
main()
|
from __future__ import print_function
import os
import sys
import csv
from pprint import pprint
from collections import deque
try:
long # Python 2
except NameError:
long = int # Python 3
# trace.hpp
REGION_FLAG_IMPL_MASK = 15 << 16
REGION_FLAG_IMPL_IPP = 1 << 16
REGION_FLAG_IMPL_OPENCL = 2 << 16
DEBUG = False
if DEBUG:
dprint = print
dpprint = pprint
else:
def dprint(args, **kwargs):
pass
def dpprint(args, **kwargs):
pass
def tryNum(s):
if s.startswith('0x'):
try:
return int(s, 16)
except ValueError:
pass
try:
return int(s)
except ValueError:
pass
if sys.version_info[0] < 3:
try:
return long(s)
except ValueError:
pass
return s
def formatTimestamp(t):
return "%.3f" % (t * 1e-6)
try:
from statistics import median
except ImportError:
def median(lst):
sortedLst = sorted(lst)
lstLen = len(lst)
index = (lstLen - 1) // 2
if (lstLen % 2):
return sortedLst[index]
else:
return (sortedLst[index] + sortedLst[index + 1]) * 0.5
def getCXXFunctionName(spec):
def dropParams(spec):
pos = len(spec) - 1
depth = 0
while pos >= 0:
if spec[pos] == ')':
depth = depth + 1
elif spec[pos] == '(':
depth = depth - 1
if depth == 0:
if pos == 0 or spec[pos - 1] in ['#', ':']:
res = dropParams(spec[pos+1:-1])
return (spec[:pos] + res[0], res[1])
return (spec[:pos], spec[pos:])
pos = pos - 1
return (spec, '')
def extractName(spec):
pos = len(spec) - 1
inName = False
while pos >= 0:
if spec[pos] == ' ':
if inName:
return spec[pos+1:]
elif spec[pos].isalnum():
inName = True
pos = pos - 1
return spec
if spec.startswith('IPP') or spec.startswith('OpenCL'):
prefix_size = len('IPP') if spec.startswith('IPP') else len('OpenCL')
prefix = spec[:prefix_size]
if prefix_size < len(spec) and spec[prefix_size] in ['#', ':']:
prefix = prefix + spec[prefix_size]
prefix_size = prefix_size + 1
begin = prefix_size
while begin < len(spec):
if spec[begin].isalnum() or spec[begin] in ['_', ':']:
break
begin = begin + 1
if begin == len(spec):
return spec
end = begin
while end < len(spec):
if not (spec[end].isalnum() or spec[end] in ['_', ':']):
break
end = end + 1
return prefix + spec[begin:end]
spec = spec.replace(') const', ')') # const methods
(ret_type_name, params) = dropParams(spec)
name = extractName(ret_type_name)
if 'operator' in name:
return name + params
if name.startswith('&'):
return name[1:]
return name
stack_size = 10
class Trace:
def __init__(self, filename=None):
self.tasks = {}
self.tasks_list = []
self.locations = {}
self.threads_stack = {}
self.pending_files = deque()
if filename:
self.load(filename)
class TraceTask:
def __init__(self, threadID, taskID, locationID, beginTimestamp):
self.threadID = threadID
self.taskID = taskID
self.locationID = locationID
self.beginTimestamp = beginTimestamp
self.endTimestamp = None
self.parentTaskID = None
self.parentThreadID = None
self.childTask = []
self.selfTimeIPP = 0
self.selfTimeOpenCL = 0
self.totalTimeIPP = 0
self.totalTimeOpenCL = 0
def __repr__(self):
return "TID={} ID={} loc={} parent={}:{} begin={} end={} IPP={}/{} OpenCL={}/{}".format(
self.threadID, self.taskID, self.locationID, self.parentThreadID, self.parentTaskID,
self.beginTimestamp, self.endTimestamp, self.totalTimeIPP, self.selfTimeIPP, self.totalTimeOpenCL, self.selfTimeOpenCL)
class TraceLocation:
def __init__(self, locationID, filename, line, name, flags):
self.locationID = locationID
self.filename = os.path.split(filename)[1]
self.line = line
self.name = getCXXFunctionName(name)
self.flags = flags
def __str__(self):
return "{}#{}:{}".format(self.name, self.filename, self.line)
def __repr__(self):
return "ID={} {}:{}:{}".format(self.locationID, self.filename, self.line, self.name)
def parse_file(self, filename):
dprint("Process file: '{}'".format(filename))
with open(filename) as infile:
for line in infile:
line = str(line).strip()
if line[0] == "#":
if line.startswith("#thread file:"):
name = str(line.split(':', 1)[1]).strip()
self.pending_files.append(os.path.join(os.path.split(filename)[0], name))
continue
self.parse_line(line)
def parse_line(self, line):
opts = line.split(',')
dpprint(opts)
if opts[0] == 'l':
opts = list(csv.reader([line]))[0] # process quote more
locationID = int(opts[1])
filename = str(opts[2])
line = int(opts[3])
name = opts[4]
flags = tryNum(opts[5])
self.locations[locationID] = self.TraceLocation(locationID, filename, line, name, flags)
return
extra_opts = {}
for e in opts[5:]:
if not '=' in e:
continue
(k, v) = e.split('=')
extra_opts[k] = tryNum(v)
if extra_opts:
dpprint(extra_opts)
threadID = None
taskID = None
locationID = None
ts = None
if opts[0] in ['b', 'e']:
threadID = int(opts[1])
taskID = int(opts[4])
locationID = int(opts[3])
ts = tryNum(opts[2])
thread_stack = None
currentTask = (None, None)
if threadID is not None:
if not threadID in self.threads_stack:
thread_stack = deque()
self.threads_stack[threadID] = thread_stack
else:
thread_stack = self.threads_stack[threadID]
currentTask = None if not thread_stack else thread_stack[-1]
t = (threadID, taskID)
if opts[0] == 'b':
assert not t in self.tasks, "Duplicate task: " + str(t) + repr(self.tasks[t])
task = self.TraceTask(threadID, taskID, locationID, ts)
self.tasks[t] = task
self.tasks_list.append(task)
thread_stack.append((threadID, taskID))
if currentTask:
task.parentThreadID = currentTask[0]
task.parentTaskID = currentTask[1]
if 'parentThread' in extra_opts:
task.parentThreadID = extra_opts['parentThread']
if 'parent' in extra_opts:
task.parentTaskID = extra_opts['parent']
if opts[0] == 'e':
task = self.tasks[t]
task.endTimestamp = ts
if 'tIPP' in extra_opts:
task.selfTimeIPP = extra_opts['tIPP']
if 'tOCL' in extra_opts:
task.selfTimeOpenCL = extra_opts['tOCL']
thread_stack.pop()
def load(self, filename):
self.pending_files.append(filename)
if DEBUG:
with open(filename, 'r') as f:
print(f.read(), end='')
while self.pending_files:
self.parse_file(self.pending_files.pop())
def getParentTask(self, task):
return self.tasks.get((task.parentThreadID, task.parentTaskID), None)
def process(self):
self.tasks_list.sort(key=lambda x: x.beginTimestamp)
parallel_for_location = None
for (id, l) in self.locations.items():
if l.name == 'parallel_for':
parallel_for_location = l.locationID
break
for task in self.tasks_list:
try:
task.duration = task.endTimestamp - task.beginTimestamp
task.selfDuration = task.duration
except:
task.duration = None
task.selfDuration = None
task.totalTimeIPP = task.selfTimeIPP
task.totalTimeOpenCL = task.selfTimeOpenCL
dpprint(self.tasks)
dprint("Calculate total times")
for task in self.tasks_list:
parentTask = self.getParentTask(task)
if parentTask:
parentTask.selfDuration = parentTask.selfDuration - task.duration
parentTask.childTask.append(task)
timeIPP = task.selfTimeIPP
timeOpenCL = task.selfTimeOpenCL
while parentTask:
if parentTask.locationID == parallel_for_location: # TODO parallel_for
break
parentLocation = self.locations[parentTask.locationID]
if (parentLocation.flags & REGION_FLAG_IMPL_MASK) == REGION_FLAG_IMPL_IPP:
parentTask.selfTimeIPP = parentTask.selfTimeIPP - timeIPP
timeIPP = 0
else:
parentTask.totalTimeIPP = parentTask.totalTimeIPP + timeIPP
if (parentLocation.flags & REGION_FLAG_IMPL_MASK) == REGION_FLAG_IMPL_OPENCL:
parentTask.selfTimeOpenCL = parentTask.selfTimeOpenCL - timeOpenCL
timeOpenCL = 0
else:
parentTask.totalTimeOpenCL = parentTask.totalTimeOpenCL + timeOpenCL
parentTask = self.getParentTask(parentTask)
dpprint(self.tasks)
dprint("Calculate total times (parallel_for)")
for task in self.tasks_list:
if task.locationID == parallel_for_location:
task.selfDuration = 0
childDuration = sum([t.duration for t in task.childTask])
if task.duration == 0 or childDuration == 0:
continue
timeCoef = task.duration / float(childDuration)
childTimeIPP = sum([t.totalTimeIPP for t in task.childTask])
childTimeOpenCL = sum([t.totalTimeOpenCL for t in task.childTask])
if childTimeIPP == 0 and childTimeOpenCL == 0:
continue
timeIPP = childTimeIPP * timeCoef
timeOpenCL = childTimeOpenCL * timeCoef
parentTask = task
while parentTask:
parentLocation = self.locations[parentTask.locationID]
if (parentLocation.flags & REGION_FLAG_IMPL_MASK) == REGION_FLAG_IMPL_IPP:
parentTask.selfTimeIPP = parentTask.selfTimeIPP - timeIPP
timeIPP = 0
else:
parentTask.totalTimeIPP = parentTask.totalTimeIPP + timeIPP
if (parentLocation.flags & REGION_FLAG_IMPL_MASK) == REGION_FLAG_IMPL_OPENCL:
parentTask.selfTimeOpenCL = parentTask.selfTimeOpenCL - timeOpenCL
timeOpenCL = 0
else:
parentTask.totalTimeOpenCL = parentTask.totalTimeOpenCL + timeOpenCL
parentTask = self.getParentTask(parentTask)
dpprint(self.tasks)
dprint("Done")
def dump(self, max_entries):
assert isinstance(max_entries, int)
class CallInfo():
def __init__(self, callID):
self.callID = callID
self.totalTimes = []
self.selfTimes = []
self.threads = set()
self.selfTimesIPP = []
self.selfTimesOpenCL = []
self.totalTimesIPP = []
self.totalTimesOpenCL = []
calls = {}
for currentTask in self.tasks_list:
task = currentTask
callID = []
for i in range(stack_size):
callID.append(task.locationID)
task = self.getParentTask(task)
if not task:
break
callID = tuple(callID)
if not callID in calls:
call = CallInfo(callID)
calls[callID] = call
else:
call = calls[callID]
call.totalTimes.append(currentTask.duration)
call.selfTimes.append(currentTask.selfDuration)
call.threads.add(currentTask.threadID)
call.selfTimesIPP.append(currentTask.selfTimeIPP)
call.selfTimesOpenCL.append(currentTask.selfTimeOpenCL)
call.totalTimesIPP.append(currentTask.totalTimeIPP)
call.totalTimesOpenCL.append(currentTask.totalTimeOpenCL)
dpprint(self.tasks)
dpprint(self.locations)
dpprint(calls)
calls_self_sum = {k: sum(v.selfTimes) for (k, v) in calls.items()}
calls_total_sum = {k: sum(v.totalTimes) for (k, v) in calls.items()}
calls_median = {k: median(v.selfTimes) for (k, v) in calls.items()}
calls_sorted = sorted(calls.keys(), key=lambda x: calls_self_sum[x], reverse=True)
calls_self_sum_IPP = {k: sum(v.selfTimesIPP) for (k, v) in calls.items()}
calls_total_sum_IPP = {k: sum(v.totalTimesIPP) for (k, v) in calls.items()}
calls_self_sum_OpenCL = {k: sum(v.selfTimesOpenCL) for (k, v) in calls.items()}
calls_total_sum_OpenCL = {k: sum(v.totalTimesOpenCL) for (k, v) in calls.items()}
if max_entries > 0 and len(calls_sorted) > max_entries:
calls_sorted = calls_sorted[:max_entries]
def formatPercents(p):
if p is not None:
return "{:>3d}".format(int(p*100))
return ''
name_width = 70
timestamp_width = 12
def fmtTS():
return '{:>' + str(timestamp_width) + '}'
fmt = "{:>3} {:<"+str(name_width)+"} {:>8} {:>3}"+((' '+fmtTS())*5)+((' '+fmtTS()+' {:>3}')*2)
fmt2 = "{:>3} {:<"+str(name_width)+"} {:>8} {:>3}"+((' '+fmtTS())*5)+((' '+fmtTS()+' {:>3}')*2)
print(fmt.format("ID", "name", "count", "thr", "min", "max", "median", "avg", "*self*", "IPP", "%", "OpenCL", "%"))
print(fmt2.format("", "", "", "", "t-min", "t-max", "t-median", "t-avg", "total", "t-IPP", "%", "t-OpenCL", "%"))
for (index, callID) in enumerate(calls_sorted):
call_self_times = calls[callID].selfTimes
loc0 = self.locations[callID[0]]
loc_array = [] # [str(callID)]
for (i, l) in enumerate(callID):
loc = self.locations[l]
loc_array.append(loc.name if i > 0 else str(loc))
loc_str = '|'.join(loc_array)
if len(loc_str) > name_width: loc_str = loc_str[:name_width-3]+'...'
print(fmt.format(index + 1, loc_str, len(call_self_times),
len(calls[callID].threads),
formatTimestamp(min(call_self_times)),
formatTimestamp(max(call_self_times)),
formatTimestamp(calls_median[callID]),
formatTimestamp(sum(call_self_times)/float(len(call_self_times))),
formatTimestamp(sum(call_self_times)),
formatTimestamp(calls_self_sum_IPP[callID]),
formatPercents(calls_self_sum_IPP[callID] / float(calls_self_sum[callID])) if calls_self_sum[callID] > 0 else formatPercents(None),
formatTimestamp(calls_self_sum_OpenCL[callID]),
formatPercents(calls_self_sum_OpenCL[callID] / float(calls_self_sum[callID])) if calls_self_sum[callID] > 0 else formatPercents(None),
))
call_total_times = calls[callID].totalTimes
print(fmt2.format("", "", "", "",
formatTimestamp(min(call_total_times)),
formatTimestamp(max(call_total_times)),
formatTimestamp(median(call_total_times)),
formatTimestamp(sum(call_total_times)/float(len(call_total_times))),
formatTimestamp(sum(call_total_times)),
formatTimestamp(calls_total_sum_IPP[callID]),
formatPercents(calls_total_sum_IPP[callID] / float(calls_total_sum[callID])) if calls_total_sum[callID] > 0 else formatPercents(None),
formatTimestamp(calls_total_sum_OpenCL[callID]),
formatPercents(calls_total_sum_OpenCL[callID] / float(calls_total_sum[callID])) if calls_total_sum[callID] > 0 else formatPercents(None),
))
print()
if __name__ == "__main__":
tracefile = sys.argv[1] if len(sys.argv) > 1 else 'OpenCVTrace.txt'
count = int(sys.argv[2]) if len(sys.argv) > 2 else 10
trace = Trace(tracefile)
trace.process()
trace.dump(max_entries = count)
print("OK")
|
#!/usr/bin/env python
import testlog_parser, sys, os, xml, re, glob
from table_formatter import *
from optparse import OptionParser
if __name__ == "__main__":
parser = OptionParser()
parser.add_option("-o", "--output", dest="format", help="output results in text format (can be 'txt', 'html' or 'auto' - default)", metavar="FMT", default="auto")
parser.add_option("-u", "--units", dest="units", help="units for output values (s, ms (default), us, ns or ticks)", metavar="UNITS", default="ms")
parser.add_option("-c", "--columns", dest="columns", help="comma-separated list of columns to show", metavar="COLS", default="")
parser.add_option("-f", "--filter", dest="filter", help="regex to filter tests", metavar="REGEX", default=None)
parser.add_option("", "--show-all", action="store_true", dest="showall", default=False, help="also include empty and \"notrun\" lines")
(options, args) = parser.parse_args()
if len(args) < 1:
print >> sys.stderr, "Usage:\n", os.path.basename(sys.argv[0]), "<log_name1>.xml"
exit(0)
options.generateHtml = detectHtmlOutputType(options.format)
# expand wildcards and filter duplicates
files = []
files1 = []
for arg in args:
if ("*" in arg) or ("?" in arg):
files1.extend([os.path.abspath(f) for f in glob.glob(arg)])
else:
files.append(os.path.abspath(arg))
seen = set()
files = [ x for x in files if x not in seen and not seen.add(x)]
files.extend((set(files1) - set(files)))
args = files
# load test data
tests = []
files = []
for arg in set(args):
try:
cases = testlog_parser.parseLogFile(arg)
if cases:
files.append(os.path.basename(arg))
tests.extend(cases)
except:
pass
if options.filter:
expr = re.compile(options.filter)
tests = [t for t in tests if expr.search(str(t))]
tbl = table(", ".join(files))
if options.columns:
metrics = [s.strip() for s in options.columns.split(",")]
metrics = [m for m in metrics if m and not m.endswith("%") and m in metrix_table]
else:
metrics = None
if not metrics:
metrics = ["name", "samples", "outliers", "min", "median", "gmean", "mean", "stddev"]
if "name" not in metrics:
metrics.insert(0, "name")
for m in metrics:
if m == "name":
tbl.newColumn(m, metrix_table[m][0])
else:
tbl.newColumn(m, metrix_table[m][0], align = "center")
needNewRow = True
for case in sorted(tests, key=lambda x: str(x)):
if needNewRow:
tbl.newRow()
if not options.showall:
needNewRow = False
status = case.get("status")
if status != "run":
if status != "notrun":
needNewRow = True
for m in metrics:
if m == "name":
tbl.newCell(m, str(case))
else:
tbl.newCell(m, status, color = "red")
else:
needNewRow = True
for m in metrics:
val = metrix_table[m][1](case, None, options.units)
if isinstance(val, float):
tbl.newCell(m, "%.2f %s" % (val, options.units), val)
else:
tbl.newCell(m, val, val)
if not needNewRow:
tbl.trimLastRow()
# output table
if options.generateHtml:
if options.format == "moinwiki":
tbl.htmlPrintTable(sys.stdout, True)
else:
htmlPrintHeader(sys.stdout, "Report %s tests from %s" % (len(tests), ", ".join(files)))
tbl.htmlPrintTable(sys.stdout)
htmlPrintFooter(sys.stdout)
else:
tbl.consolePrintTable(sys.stdout)
|
#!/usr/bin/env python
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2 as cv
from tests_common import NewOpenCVTests
class solvepnp_test(NewOpenCVTests):
def test_regression_16040(self):
obj_points = np.array([[0, 0, 0], [0, 1, 0], [1, 1, 0], [1, 0, 0]], dtype=np.float32)
img_points = np.array(
[[700, 400], [700, 600], [900, 600], [900, 400]], dtype=np.float32
)
cameraMatrix = np.array(
[[712.0634, 0, 800], [0, 712.540, 500], [0, 0, 1]], dtype=np.float32
)
distCoeffs = np.array([[0, 0, 0, 0]], dtype=np.float32)
r = np.array([], dtype=np.float32)
x, r, t, e = cv.solvePnPGeneric(
obj_points, img_points, cameraMatrix, distCoeffs, reprojectionError=r
)
def test_regression_16040_2(self):
obj_points = np.array([[0, 0, 0], [0, 1, 0], [1, 1, 0], [1, 0, 0]], dtype=np.float32)
img_points = np.array(
[[[700, 400], [700, 600], [900, 600], [900, 400]]], dtype=np.float32
)
cameraMatrix = np.array(
[[712.0634, 0, 800], [0, 712.540, 500], [0, 0, 1]], dtype=np.float32
)
distCoeffs = np.array([[0, 0, 0, 0]], dtype=np.float32)
r = np.array([], dtype=np.float32)
x, r, t, e = cv.solvePnPGeneric(
obj_points, img_points, cameraMatrix, distCoeffs, reprojectionError=r
)
def test_regression_16049(self):
obj_points = np.array([[0, 0, 0], [0, 1, 0], [1, 1, 0], [1, 0, 0]], dtype=np.float32)
img_points = np.array(
[[[700, 400], [700, 600], [900, 600], [900, 400]]], dtype=np.float32
)
cameraMatrix = np.array(
[[712.0634, 0, 800], [0, 712.540, 500], [0, 0, 1]], dtype=np.float32
)
distCoeffs = np.array([[0, 0, 0, 0]], dtype=np.float32)
x, r, t, e = cv.solvePnPGeneric(
obj_points, img_points, cameraMatrix, distCoeffs
)
if e is None:
# noArray() is supported, see https://github.com/opencv/opencv/issues/16049
pass
else:
eDump = cv.utils.dumpInputArray(e)
self.assertEqual(eDump, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=1 dims(-1)=2 size(-1)=1x1 type(-1)=CV_32FC1")
if __name__ == '__main__':
NewOpenCVTests.bootstrap()
|
#!/usr/bin/env python
'''
camera calibration for distorted images with chess board samples
reads distorted images, calculates the calibration and write undistorted images
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2 as cv
from tests_common import NewOpenCVTests
class calibration_test(NewOpenCVTests):
def test_calibration(self):
img_names = []
for i in range(1, 15):
if i < 10:
img_names.append('samples/data/left0{}.jpg'.format(str(i)))
elif i != 10:
img_names.append('samples/data/left{}.jpg'.format(str(i)))
square_size = 1.0
pattern_size = (9, 6)
pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32)
pattern_points[:, :2] = np.indices(pattern_size).T.reshape(-1, 2)
pattern_points *= square_size
obj_points = []
img_points = []
h, w = 0, 0
for fn in img_names:
img = self.get_sample(fn, 0)
if img is None:
continue
h, w = img.shape[:2]
found, corners = cv.findChessboardCorners(img, pattern_size)
if found:
term = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_COUNT, 30, 0.1)
cv.cornerSubPix(img, corners, (5, 5), (-1, -1), term)
if not found:
continue
img_points.append(corners.reshape(-1, 2))
obj_points.append(pattern_points)
# calculate camera distortion
rms, camera_matrix, dist_coefs, _rvecs, _tvecs = cv.calibrateCamera(obj_points, img_points, (w, h), None, None, flags = 0)
eps = 0.01
normCamEps = 10.0
normDistEps = 0.05
cameraMatrixTest = [[ 532.80992189, 0., 342.4952186 ],
[ 0., 532.93346422, 233.8879292 ],
[ 0., 0., 1. ]]
distCoeffsTest = [ -2.81325576e-01, 2.91130406e-02,
1.21234330e-03, -1.40825372e-04, 1.54865844e-01]
self.assertLess(abs(rms - 0.196334638034), eps)
self.assertLess(cv.norm(camera_matrix - cameraMatrixTest, cv.NORM_L1), normCamEps)
self.assertLess(cv.norm(dist_coefs - distCoeffsTest, cv.NORM_L1), normDistEps)
if __name__ == '__main__':
NewOpenCVTests.bootstrap()
|
#!/usr/bin/python
# Copyright 2016 Google Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following disclaimer
# in the documentation and/or other materials provided with the
# distribution.
# * Neither the name of Google Inc. nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""Convert gclient's DEPS file to repo's manifest xml file."""
from __future__ import print_function
import argparse
import os
import sys
REMOTES = {
'chromium': 'https://chromium.googlesource.com/',
'github': 'https://github.com/',
}
REVIEWS = {
'chromium': 'https://chromium-review.googlesource.com',
}
MANIFEST_HEAD = """<?xml version='1.0' encoding='UTF-8'?>
<!-- AUTOGENERATED BY %(prog)s; DO NOT EDIT -->
<manifest>
<default revision='refs/heads/master'
remote='chromium'
sync-c='true'
sync-j='8' />
"""
MANIFEST_REMOTE = """
<remote name='%(name)s'
fetch='%(fetch)s'
review='%(review)s' />
"""
MANIFEST_PROJECT = """
<project path='%(path)s'
name='%(name)s'
revision='%(revision)s'
remote='%(remote)s' />
"""
MANIFEST_TAIL = """
</manifest>
"""
def ConvertDepsToManifest(deps, manifest):
"""Convert the |deps| file to the |manifest|."""
# Load the DEPS file data.
ctx = {}
execfile(deps, ctx)
new_contents = ''
# Write out the common header.
data = {
'prog': os.path.basename(__file__),
}
new_contents += MANIFEST_HEAD % data
# Write out the <remote> sections.
for name, fetch in REMOTES.items():
data = {
'name': name,
'fetch': fetch,
'review': REVIEWS.get(name, ''),
}
new_contents += MANIFEST_REMOTE % data
# Write out the main repo itself.
data = {
'path': 'src',
'name': 'breakpad/breakpad',
'revision': 'refs/heads/master',
'remote': 'chromium',
}
new_contents += MANIFEST_PROJECT % data
# Write out the <project> sections.
for path, url in ctx['deps'].items():
for name, fetch in REMOTES.items():
if url.startswith(fetch):
remote = name
break
else:
raise ValueError('Unknown DEPS remote: %s: %s' % (path, url))
# The DEPS url will look like:
# https://chromium.googlesource.com/external/gyp/@e8ab0833a42691cd2
remote_path, rev = url.split('@')
remote_path = remote_path[len(fetch):]
# If it's not a revision, assume it's a tag. Repo wants full ref names.
if len(rev) != 40:
rev = 'refs/tags/%s' % rev
data = {
'path': path,
'name': remote_path,
'revision': rev,
'remote': remote,
}
new_contents += MANIFEST_PROJECT % data
# Write out the common footer.
new_contents += MANIFEST_TAIL
# See if the manifest has actually changed contents to avoid thrashing.
try:
old_contents = open(manifest).read()
except IOError:
# In case the file doesn't exist yet.
old_contents = ''
if old_contents != new_contents:
print('Updating %s due to changed %s' % (manifest, deps))
with open(manifest, 'w') as fp:
fp.write(new_contents)
def GetParser():
"""Return a CLI parser."""
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('deps',
help='The DEPS file to convert')
parser.add_argument('manifest',
help='The manifest xml to generate')
return parser
def main(argv):
"""The main func!"""
parser = GetParser()
opts = parser.parse_args(argv)
ConvertDepsToManifest(opts.deps, opts.manifest)
if __name__ == '__main__':
sys.exit(main(sys.argv[1:]))
|
#!/usr/bin/env python
# Copyright (c) 2012 Google Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following disclaimer
# in the documentation and/or other materials provided with the
# distribution.
# * Neither the name of Google Inc. nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""Normalizes and de-duplicates paths within Breakpad symbol files.
When using DWARF for storing debug symbols, some file information will be
stored relative to the current working directory of the current compilation
unit, and may be further relativized based upon how the file was #included.
This helper can be used to parse the Breakpad symbol file generated from such
DWARF files and normalize and de-duplicate the FILE records found within,
updating any references to the FILE records in the other record types.
"""
import macpath
import ntpath
import optparse
import os
import posixpath
import sys
class BreakpadParseError(Exception):
"""Unsupported Breakpad symbol record exception class."""
pass
class SymbolFileParser(object):
"""Parser for Breakpad symbol files.
The format of these files is documented at
https://chromium.googlesource.com/breakpad/breakpad/+/master/docs/symbol_files.md
"""
def __init__(self, input_stream, output_stream, ignored_prefixes=None,
path_handler=os.path):
"""Inits a SymbolFileParser to read symbol records from |input_stream| and
write the processed output to |output_stream|.
|ignored_prefixes| contains a list of optional path prefixes that
should be stripped from the final, normalized path outputs.
For example, if the Breakpad symbol file had all paths starting with a
common prefix, such as:
FILE 1 /b/build/src/foo.cc
FILE 2 /b/build/src/bar.cc
Then adding "/b/build/src" as an ignored prefix would result in an output
file that contained:
FILE 1 foo.cc
FILE 2 bar.cc
Note that |ignored_prefixes| does not necessarily contain file system
paths, as the contents of the DWARF DW_AT_comp_dir attribute is dependent
upon the host system and compiler, and may contain additional information
such as hostname or compiler version.
"""
self.unique_files = {}
self.duplicate_files = {}
self.input_stream = input_stream
self.output_stream = output_stream
self.ignored_prefixes = ignored_prefixes or []
self.path_handler = path_handler
def Process(self):
"""Processes the Breakpad symbol file."""
for line in self.input_stream:
parsed = self._ParseRecord(line.rstrip())
if parsed:
self.output_stream.write(parsed + '\n')
def _ParseRecord(self, record):
"""Parses a single Breakpad symbol record - a single line from the symbol
file.
Returns:
The modified string to write to the output file, or None if no line
should be written.
"""
record_type = record.partition(' ')[0]
if record_type == 'FILE':
return self._ParseFileRecord(record)
elif self._IsLineRecord(record_type):
return self._ParseLineRecord(record)
else:
# Simply pass the record through unaltered.
return record
def _NormalizePath(self, path):
"""Normalizes a file path to its canonical form.
As this may not execute on the machine or file system originally
responsible for compilation, it may be necessary to further correct paths
for symlinks, junctions, or other such file system indirections.
Returns:
A unique, canonical representation for the the file path.
"""
return self.path_handler.normpath(path)
def _AdjustPath(self, path):
"""Adjusts the supplied path after performing path de-duplication.
This may be used to perform secondary adjustments, such as removing a
common prefix, such as "/D/build", or replacing the file system path with
information from the version control system.
Returns:
The actual path to use when writing the FILE record.
"""
return path[len(filter(path.startswith,
self.ignored_prefixes + [''])[0]):]
def _ParseFileRecord(self, file_record):
"""Parses and corrects a FILE record."""
file_info = file_record[5:].split(' ', 3)
if len(file_info) > 2:
raise BreakpadParseError('Unsupported FILE record: ' + file_record)
file_index = int(file_info[0])
file_name = self._NormalizePath(file_info[1])
existing_file_index = self.unique_files.get(file_name)
if existing_file_index is None:
self.unique_files[file_name] = file_index
file_info[1] = self._AdjustPath(file_name)
return 'FILE ' + ' '.join(file_info)
else:
self.duplicate_files[file_index] = existing_file_index
return None
def _IsLineRecord(self, record_type):
"""Determines if the current record type is a Line record"""
try:
line = int(record_type, 16)
except (ValueError, TypeError):
return False
return True
def _ParseLineRecord(self, line_record):
"""Parses and corrects a Line record."""
line_info = line_record.split(' ', 5)
if len(line_info) > 4:
raise BreakpadParseError('Unsupported Line record: ' + line_record)
file_index = int(line_info[3])
line_info[3] = str(self.duplicate_files.get(file_index, file_index))
return ' '.join(line_info)
def main():
option_parser = optparse.OptionParser()
option_parser.add_option("-p", "--prefix",
action="append", dest="prefixes", type="string",
default=[],
help="A path prefix that should be removed from "
"all FILE lines. May be repeated to specify "
"multiple prefixes.")
option_parser.add_option("-t", "--path_type",
action="store", type="choice", dest="path_handler",
choices=['win32', 'posix'],
help="Indicates how file paths should be "
"interpreted. The default is to treat paths "
"the same as the OS running Python (eg: "
"os.path)")
options, args = option_parser.parse_args()
if args:
option_parser.error('Unknown argument: %s' % args)
path_handler = { 'win32': ntpath,
'posix': posixpath }.get(options.path_handler, os.path)
try:
symbol_parser = SymbolFileParser(sys.stdin, sys.stdout, options.prefixes,
path_handler)
symbol_parser.Process()
except BreakpadParseError, e:
print >> sys.stderr, 'Got an error while processing symbol file'
print >> sys.stderr, str(e)
return 1
return 0
if __name__ == '__main__':
sys.exit(main())
|
#!/usr/bin/env python
# Copyright (c) 2012 Google Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following disclaimer
# in the documentation and/or other materials provided with the
# distribution.
# * Neither the name of Google Inc. nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""Unit tests for filter_syms.py"""
import cStringIO
import ntpath
import os
import StringIO
import sys
import unittest
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, os.path.join(ROOT_DIR, '..'))
# In root
import filter_syms
class FilterSysmsTest(unittest.TestCase):
def assertParsed(self, input_data, ignored_prefixes, expected):
input_io = cStringIO.StringIO(input_data)
output_io = cStringIO.StringIO()
parser = filter_syms.SymbolFileParser(input_io, output_io,
ignored_prefixes, ntpath)
parser.Process()
self.assertEqual(output_io.getvalue(), expected)
def testDuplicateFiles(self):
"""Tests that duplicate files in FILE records are correctly removed and
that Line records are updated."""
INPUT = \
"""MODULE windows x86 111111111111111111111111111111111 module1.pdb
INFO CODE_ID FFFFFFFF module1.exe
FILE 1 foo/../file1_1.cc
FILE 2 bar/../file1_1.cc
FILE 3 baz/../file1_1.cc
FUNC 1000 c 0 Function1_1
1000 8 45 2
1008 4 46 3
100c 4 44 1
"""
EXPECTED_OUTPUT = \
"""MODULE windows x86 111111111111111111111111111111111 module1.pdb
INFO CODE_ID FFFFFFFF module1.exe
FILE 1 file1_1.cc
FUNC 1000 c 0 Function1_1
1000 8 45 1
1008 4 46 1
100c 4 44 1
"""
self.assertParsed(INPUT, [], EXPECTED_OUTPUT)
def testIgnoredPrefix(self):
"""Tests that prefixes in FILE records are correctly removed."""
INPUT = \
"""MODULE windows x86 111111111111111111111111111111111 module1.pdb
INFO CODE_ID FFFFFFFF module1.exe
FILE 1 /src/build/foo/../file1_1.cc
FILE 2 /src/build/bar/../file1_2.cc
FILE 3 /src/build/baz/../file1_2.cc
FUNC 1000 c 0 Function1_1
1000 8 45 2
1008 4 46 3
100c 4 44 1
"""
EXPECTED_OUTPUT = \
"""MODULE windows x86 111111111111111111111111111111111 module1.pdb
INFO CODE_ID FFFFFFFF module1.exe
FILE 1 file1_1.cc
FILE 2 file1_2.cc
FUNC 1000 c 0 Function1_1
1000 8 45 2
1008 4 46 2
100c 4 44 1
"""
IGNORED_PREFIXES = ['\\src\\build\\']
self.assertParsed(INPUT, IGNORED_PREFIXES, EXPECTED_OUTPUT)
def testIgnoredPrefixesDuplicateFiles(self):
"""Tests that de-duplication of FILE records happens BEFORE prefixes
are removed."""
INPUT = \
"""MODULE windows x86 111111111111111111111111111111111 module1.pdb
INFO CODE_ID FFFFFFFF module1.exe
FILE 1 /src/build/foo/../file1_1.cc
FILE 2 /src/build/bar/../file1_2.cc
FILE 3 D:/src/build2/baz/../file1_2.cc
FUNC 1000 c 0 Function1_1
1000 8 45 2
1008 4 46 3
100c 4 44 1
"""
EXPECTED_OUTPUT = \
"""MODULE windows x86 111111111111111111111111111111111 module1.pdb
INFO CODE_ID FFFFFFFF module1.exe
FILE 1 file1_1.cc
FILE 2 file1_2.cc
FILE 3 file1_2.cc
FUNC 1000 c 0 Function1_1
1000 8 45 2
1008 4 46 3
100c 4 44 1
"""
IGNORED_PREFIXES = ['\\src\\build\\', 'D:\\src\\build2\\']
self.assertParsed(INPUT, IGNORED_PREFIXES, EXPECTED_OUTPUT)
if __name__ == '__main__':
unittest.main() |
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import os
import os.path as osp
import argparse
import math
from tqdm import tqdm
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.utils.data
from torchvision import transforms, datasets
from ofa.utils import AverageMeter, accuracy
from ofa.model_zoo import ofa_specialized
specialized_network_list = [
################# FLOPs #################
"flops@[email protected]_finetune@75",
"flops@[email protected]_finetune@75",
"flops@[email protected]_finetune@75",
################# ResNet50 Design Space #################
"[email protected][email protected]",
"[email protected][email protected]",
"[email protected][email protected]",
"[email protected][email protected]",
"[email protected][email protected]",
"[email protected][email protected]_finetune@25",
"[email protected][email protected]_finetune@25",
"[email protected][email protected]_finetune@25",
################# Google pixel1 #################
"pixel1_lat@[email protected]_finetune@75",
"pixel1_lat@[email protected]_finetune@75",
"pixel1_lat@[email protected]_finetune@75",
"pixel1_lat@[email protected]_finetune@75",
"pixel1_lat@[email protected]_finetune@25",
"pixel1_lat@[email protected]_finetune@25",
"pixel1_lat@[email protected]_finetune@25",
################# Google pixel2 #################
"pixel2_lat@[email protected]_finetune@25",
"pixel2_lat@[email protected]_finetune@25",
"pixel2_lat@[email protected]_finetune@25",
"pixel2_lat@[email protected]_finetune@25",
################# Samsung note10 #################
"note10_lat@[email protected]_finetune@75",
"note10_lat@[email protected]_finetune@75",
"note10_lat@[email protected]_finetune@75",
"note10_lat@[email protected]_finetune@75",
"note10_lat@[email protected]_finetune@25",
"note10_lat@[email protected]_finetune@25",
"note10_lat@[email protected]_finetune@25",
"note10_lat@[email protected]_finetune@25",
################# Samsung note8 #################
"note8_lat@[email protected]_finetune@25",
"note8_lat@[email protected]_finetune@25",
"note8_lat@[email protected]_finetune@25",
"note8_lat@[email protected]_finetune@25",
################# Samsung S7 Edge #################
"s7edge_lat@[email protected]_finetune@25",
"s7edge_lat@[email protected]_finetune@25",
"s7edge_lat@[email protected]_finetune@25",
"s7edge_lat@[email protected]_finetune@25",
################# LG G8 #################
"LG-G8_lat@[email protected]_finetune@25",
"LG-G8_lat@[email protected]_finetune@25",
"LG-G8_lat@[email protected]_finetune@25",
"LG-G8_lat@[email protected]_finetune@25",
################# 1080ti GPU (Batch Size 64) #################
"1080ti_gpu64@[email protected]_finetune@25",
"1080ti_gpu64@[email protected]_finetune@25",
"1080ti_gpu64@[email protected]_finetune@25",
"1080ti_gpu64@[email protected]_finetune@25",
################# V100 GPU (Batch Size 64) #################
"v100_gpu64@[email protected]_finetune@25",
"v100_gpu64@[email protected]_finetune@25",
"v100_gpu64@[email protected]_finetune@25",
"v100_gpu64@[email protected]_finetune@25",
################# Jetson TX2 GPU (Batch Size 16) #################
"tx2_gpu16@[email protected]_finetune@25",
"tx2_gpu16@[email protected]_finetune@25",
"tx2_gpu16@[email protected]_finetune@25",
"tx2_gpu16@[email protected]_finetune@25",
################# Intel Xeon CPU with MKL-DNN (Batch Size 1) #################
"cpu_lat@[email protected]_finetune@25",
"cpu_lat@[email protected]_finetune@25",
"cpu_lat@[email protected]_finetune@25",
"cpu_lat@[email protected]_finetune@25",
]
parser = argparse.ArgumentParser()
parser.add_argument(
"-p", "--path", help="The path of imagenet", type=str, default="/dataset/imagenet"
)
parser.add_argument("-g", "--gpu", help="The gpu(s) to use", type=str, default="all")
parser.add_argument(
"-b",
"--batch-size",
help="The batch on every device for validation",
type=int,
default=100,
)
parser.add_argument("-j", "--workers", help="Number of workers", type=int, default=20)
parser.add_argument(
"-n",
"--net",
metavar="NET",
default="pixel1_lat@[email protected]_finetune@75",
choices=specialized_network_list,
help="OFA specialized networks: "
+ " | ".join(specialized_network_list)
+ " (default: pixel1_lat@[email protected]_finetune@75)",
)
args = parser.parse_args()
if args.gpu == "all":
device_list = range(torch.cuda.device_count())
args.gpu = ",".join(str(_) for _ in device_list)
else:
device_list = [int(_) for _ in args.gpu.split(",")]
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
net, image_size = ofa_specialized(net_id=args.net, pretrained=True)
args.batch_size = args.batch_size * max(len(device_list), 1)
data_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(
osp.join(args.path, "val"),
transforms.Compose(
[
transforms.Resize(int(math.ceil(image_size / 0.875))),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
]
),
),
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
pin_memory=True,
drop_last=False,
)
net = torch.nn.DataParallel(net).cuda()
cudnn.benchmark = True
criterion = nn.CrossEntropyLoss().cuda()
net.eval()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
with torch.no_grad():
with tqdm(total=len(data_loader), desc="Validate") as t:
for i, (images, labels) in enumerate(data_loader):
images, labels = images.cuda(), labels.cuda()
# compute output
output = net(images)
loss = criterion(output, labels)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, labels, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0].item(), images.size(0))
top5.update(acc5[0].item(), images.size(0))
t.set_postfix(
{
"loss": losses.avg,
"top1": top1.avg,
"top5": top5.avg,
"img_size": images.size(2),
}
)
t.update(1)
print("Test OFA specialized net <%s> with image size %d:" % (args.net, image_size))
print("Results: loss=%.5f,\t top1=%.1f,\t top5=%.1f" % (losses.avg, top1.avg, top5.avg))
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import argparse
import numpy as np
import os
import random
import horovod.torch as hvd
import torch
from ofa.imagenet_classification.elastic_nn.modules.dynamic_op import (
DynamicSeparableConv2d,
)
from ofa.imagenet_classification.elastic_nn.networks import OFAMobileNetV3
from ofa.imagenet_classification.run_manager import DistributedImageNetRunConfig
from ofa.imagenet_classification.networks import MobileNetV3Large
from ofa.imagenet_classification.run_manager.distributed_run_manager import (
DistributedRunManager,
)
from ofa.utils import download_url, MyRandomResizedCrop
from ofa.imagenet_classification.elastic_nn.training.progressive_shrinking import (
load_models,
)
parser = argparse.ArgumentParser()
parser.add_argument(
"--task",
type=str,
default="depth",
choices=[
"kernel",
"depth",
"expand",
],
)
parser.add_argument("--phase", type=int, default=1, choices=[1, 2])
parser.add_argument("--resume", action="store_true")
args = parser.parse_args()
if args.task == "kernel":
args.path = "exp/normal2kernel"
args.dynamic_batch_size = 1
args.n_epochs = 120
args.base_lr = 3e-2
args.warmup_epochs = 5
args.warmup_lr = -1
args.ks_list = "3,5,7"
args.expand_list = "6"
args.depth_list = "4"
elif args.task == "depth":
args.path = "exp/kernel2kernel_depth/phase%d" % args.phase
args.dynamic_batch_size = 2
if args.phase == 1:
args.n_epochs = 25
args.base_lr = 2.5e-3
args.warmup_epochs = 0
args.warmup_lr = -1
args.ks_list = "3,5,7"
args.expand_list = "6"
args.depth_list = "3,4"
else:
args.n_epochs = 120
args.base_lr = 7.5e-3
args.warmup_epochs = 5
args.warmup_lr = -1
args.ks_list = "3,5,7"
args.expand_list = "6"
args.depth_list = "2,3,4"
elif args.task == "expand":
args.path = "exp/kernel_depth2kernel_depth_width/phase%d" % args.phase
args.dynamic_batch_size = 4
if args.phase == 1:
args.n_epochs = 25
args.base_lr = 2.5e-3
args.warmup_epochs = 0
args.warmup_lr = -1
args.ks_list = "3,5,7"
args.expand_list = "4,6"
args.depth_list = "2,3,4"
else:
args.n_epochs = 120
args.base_lr = 7.5e-3
args.warmup_epochs = 5
args.warmup_lr = -1
args.ks_list = "3,5,7"
args.expand_list = "3,4,6"
args.depth_list = "2,3,4"
else:
raise NotImplementedError
args.manual_seed = 0
args.lr_schedule_type = "cosine"
args.base_batch_size = 64
args.valid_size = 10000
args.opt_type = "sgd"
args.momentum = 0.9
args.no_nesterov = False
args.weight_decay = 3e-5
args.label_smoothing = 0.1
args.no_decay_keys = "bn#bias"
args.fp16_allreduce = False
args.model_init = "he_fout"
args.validation_frequency = 1
args.print_frequency = 10
args.n_worker = 8
args.resize_scale = 0.08
args.distort_color = "tf"
args.image_size = "128,160,192,224"
args.continuous_size = True
args.not_sync_distributed_image_size = False
args.bn_momentum = 0.1
args.bn_eps = 1e-5
args.dropout = 0.1
args.base_stage_width = "proxyless"
args.width_mult_list = "1.0"
args.dy_conv_scaling_mode = 1
args.independent_distributed_sampling = False
args.kd_ratio = 1.0
args.kd_type = "ce"
if __name__ == "__main__":
os.makedirs(args.path, exist_ok=True)
# Initialize Horovod
hvd.init()
# Pin GPU to be used to process local rank (one GPU per process)
torch.cuda.set_device(hvd.local_rank())
args.teacher_path = download_url(
"https://hanlab.mit.edu/files/OnceForAll/ofa_checkpoints/ofa_D4_E6_K7",
model_dir=".torch/ofa_checkpoints/%d" % hvd.rank(),
)
num_gpus = hvd.size()
torch.manual_seed(args.manual_seed)
torch.cuda.manual_seed_all(args.manual_seed)
np.random.seed(args.manual_seed)
random.seed(args.manual_seed)
# image size
args.image_size = [int(img_size) for img_size in args.image_size.split(",")]
if len(args.image_size) == 1:
args.image_size = args.image_size[0]
MyRandomResizedCrop.CONTINUOUS = args.continuous_size
MyRandomResizedCrop.SYNC_DISTRIBUTED = not args.not_sync_distributed_image_size
# build run config from args
args.lr_schedule_param = None
args.opt_param = {
"momentum": args.momentum,
"nesterov": not args.no_nesterov,
}
args.init_lr = args.base_lr * num_gpus # linearly rescale the learning rate
if args.warmup_lr < 0:
args.warmup_lr = args.base_lr
args.train_batch_size = args.base_batch_size
args.test_batch_size = args.base_batch_size * 4
run_config = DistributedImageNetRunConfig(
**args.__dict__, num_replicas=num_gpus, rank=hvd.rank()
)
# print run config information
if hvd.rank() == 0:
print("Run config:")
for k, v in run_config.config.items():
print("\t%s: %s" % (k, v))
if args.dy_conv_scaling_mode == -1:
args.dy_conv_scaling_mode = None
DynamicSeparableConv2d.KERNEL_TRANSFORM_MODE = args.dy_conv_scaling_mode
# build net from args
args.width_mult_list = [
float(width_mult) for width_mult in args.width_mult_list.split(",")
]
args.ks_list = [int(ks) for ks in args.ks_list.split(",")]
args.expand_list = [int(e) for e in args.expand_list.split(",")]
args.depth_list = [int(d) for d in args.depth_list.split(",")]
args.width_mult_list = (
args.width_mult_list[0]
if len(args.width_mult_list) == 1
else args.width_mult_list
)
net = OFAMobileNetV3(
n_classes=run_config.data_provider.n_classes,
bn_param=(args.bn_momentum, args.bn_eps),
dropout_rate=args.dropout,
base_stage_width=args.base_stage_width,
width_mult=args.width_mult_list,
ks_list=args.ks_list,
expand_ratio_list=args.expand_list,
depth_list=args.depth_list,
)
# teacher model
if args.kd_ratio > 0:
args.teacher_model = MobileNetV3Large(
n_classes=run_config.data_provider.n_classes,
bn_param=(args.bn_momentum, args.bn_eps),
dropout_rate=0,
width_mult=1.0,
ks=7,
expand_ratio=6,
depth_param=4,
)
args.teacher_model.cuda()
""" Distributed RunManager """
# Horovod: (optional) compression algorithm.
compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none
distributed_run_manager = DistributedRunManager(
args.path,
net,
run_config,
compression,
backward_steps=args.dynamic_batch_size,
is_root=(hvd.rank() == 0),
)
distributed_run_manager.save_config()
# hvd broadcast
distributed_run_manager.broadcast()
# load teacher net weights
if args.kd_ratio > 0:
load_models(
distributed_run_manager, args.teacher_model, model_path=args.teacher_path
)
# training
from ofa.imagenet_classification.elastic_nn.training.progressive_shrinking import (
validate,
train,
)
validate_func_dict = {
"image_size_list": {224}
if isinstance(args.image_size, int)
else sorted({160, 224}),
"ks_list": sorted({min(args.ks_list), max(args.ks_list)}),
"expand_ratio_list": sorted({min(args.expand_list), max(args.expand_list)}),
"depth_list": sorted({min(net.depth_list), max(net.depth_list)}),
}
if args.task == "kernel":
validate_func_dict["ks_list"] = sorted(args.ks_list)
if distributed_run_manager.start_epoch == 0:
args.ofa_checkpoint_path = download_url(
"https://hanlab.mit.edu/files/OnceForAll/ofa_checkpoints/ofa_D4_E6_K7",
model_dir=".torch/ofa_checkpoints/%d" % hvd.rank(),
)
load_models(
distributed_run_manager,
distributed_run_manager.net,
args.ofa_checkpoint_path,
)
distributed_run_manager.write_log(
"%.3f\t%.3f\t%.3f\t%s"
% validate(distributed_run_manager, is_test=True, **validate_func_dict),
"valid",
)
else:
assert args.resume
train(
distributed_run_manager,
args,
lambda _run_manager, epoch, is_test: validate(
_run_manager, epoch, is_test, **validate_func_dict
),
)
elif args.task == "depth":
from ofa.imagenet_classification.elastic_nn.training.progressive_shrinking import (
train_elastic_depth,
)
if args.phase == 1:
args.ofa_checkpoint_path = download_url(
"https://hanlab.mit.edu/files/OnceForAll/ofa_checkpoints/ofa_D4_E6_K357",
model_dir=".torch/ofa_checkpoints/%d" % hvd.rank(),
)
else:
args.ofa_checkpoint_path = download_url(
"https://hanlab.mit.edu/files/OnceForAll/ofa_checkpoints/ofa_D34_E6_K357",
model_dir=".torch/ofa_checkpoints/%d" % hvd.rank(),
)
train_elastic_depth(train, distributed_run_manager, args, validate_func_dict)
elif args.task == "expand":
from ofa.imagenet_classification.elastic_nn.training.progressive_shrinking import (
train_elastic_expand,
)
if args.phase == 1:
args.ofa_checkpoint_path = download_url(
"https://hanlab.mit.edu/files/OnceForAll/ofa_checkpoints/ofa_D234_E6_K357",
model_dir=".torch/ofa_checkpoints/%d" % hvd.rank(),
)
else:
args.ofa_checkpoint_path = download_url(
"https://hanlab.mit.edu/files/OnceForAll/ofa_checkpoints/ofa_D234_E46_K357",
model_dir=".torch/ofa_checkpoints/%d" % hvd.rank(),
)
train_elastic_expand(train, distributed_run_manager, args, validate_func_dict)
else:
raise NotImplementedError
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import os
import torch
import argparse
from ofa.imagenet_classification.data_providers.imagenet import ImagenetDataProvider
from ofa.imagenet_classification.run_manager import ImagenetRunConfig, RunManager
from ofa.model_zoo import ofa_net
parser = argparse.ArgumentParser()
parser.add_argument(
"-p", "--path", help="The path of imagenet", type=str, default="/dataset/imagenet"
)
parser.add_argument("-g", "--gpu", help="The gpu(s) to use", type=str, default="all")
parser.add_argument(
"-b",
"--batch-size",
help="The batch on every device for validation",
type=int,
default=100,
)
parser.add_argument("-j", "--workers", help="Number of workers", type=int, default=20)
parser.add_argument(
"-n",
"--net",
metavar="OFANET",
default="ofa_resnet50",
choices=[
"ofa_mbv3_d234_e346_k357_w1.0",
"ofa_mbv3_d234_e346_k357_w1.2",
"ofa_proxyless_d234_e346_k357_w1.3",
"ofa_resnet50",
],
help="OFA networks",
)
args = parser.parse_args()
if args.gpu == "all":
device_list = range(torch.cuda.device_count())
args.gpu = ",".join(str(_) for _ in device_list)
else:
device_list = [int(_) for _ in args.gpu.split(",")]
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
args.batch_size = args.batch_size * max(len(device_list), 1)
ImagenetDataProvider.DEFAULT_PATH = args.path
ofa_network = ofa_net(args.net, pretrained=True)
run_config = ImagenetRunConfig(test_batch_size=args.batch_size, n_worker=args.workers)
""" Randomly sample a sub-network,
you can also manually set the sub-network using:
ofa_network.set_active_subnet(ks=7, e=6, d=4)
"""
ofa_network.sample_active_subnet()
subnet = ofa_network.get_active_subnet(preserve_weight=True)
""" Test sampled subnet
"""
run_manager = RunManager(".tmp/eval_subnet", subnet, run_config, init=False)
# assign image size: 128, 132, ..., 224
run_config.data_provider.assign_active_img_size(224)
run_manager.reset_running_statistics(net=subnet)
print("Test random subnet:")
print(subnet.module_str)
loss, (top1, top5) = run_manager.validate(net=subnet)
print("Results: loss=%.5f,\t top1=%.1f,\t top5=%.1f" % (loss, top1, top5))
|
#!/usr/bin/env python
import os, sys
import shutil
import datetime
from setuptools import setup, find_packages
from setuptools.command.install import install
# readme = open('README.md').read()
readme = """
# Once for All: Train One Network and Specialize it for Efficient Deployment [[arXiv]](https://arxiv.org/abs/1908.09791) [[Slides]](https://file.lzhu.me/projects/OnceForAll/OFA%20Slides.pdf) [[Video]](https://youtu.be/a_OeT8MXzWI)
```BibTex
@inproceedings{
cai2020once,
title={Once for All: Train One Network and Specialize it for Efficient Deployment},
author={Han Cai and Chuang Gan and Tianzhe Wang and Zhekai Zhang and Song Han},
booktitle={International Conference on Learning Representations},
year={2020},
url={https://arxiv.org/pdf/1908.09791.pdf}
}
```
## News
- Fisrt place in the 4th [Low-Power Computer Vision Challenge](https://lpcv.ai/competitions/2019), both classification and detection track.
- First place in the 3rd [Low-Power Computer Vision Challenge](https://lpcv.ai/competitions/2019), DSP track at ICCV’19 using the Once-for-all Network.
## Check our [GitHub](https://github.com/mit-han-lab/once-for-all) for more details.
"""
VERSION = "0.1.0"
requirements = [
"torch",
]
# import subprocess
# commit_hash = subprocess.check_output("git rev-parse HEAD", shell=True).decode('UTF-8').rstrip()
# VERSION += "_" + str(int(commit_hash, 16))[:8]
VERSION += "_" + datetime.datetime.now().strftime("%Y%m%d%H%M")
# print(VERSION)
setup(
# Metadata
name="ofa",
version=VERSION,
author="MTI HAN LAB ",
author_email="[email protected]",
url="https://github.com/mit-han-lab/once-for-all",
description="Once for All: Train One Network and Specialize it for Efficient Deployment.",
long_description=readme,
long_description_content_type="text/markdown",
license="MIT",
# Package info
packages=find_packages(exclude=("*test*",)),
#
zip_safe=True,
install_requires=requirements,
# Classifiers
classifiers=[
"Programming Language :: Python :: 3",
],
)
|
dependencies = ['torch', 'torchvision']
from functools import partial
from ofa.model_zoo import ofa_net, ofa_specialized
# general model
ofa_supernet_resnet50 = partial(ofa_net, net_id="ofa_resnet50", pretrained=True)
ofa_supernet_mbv3_w10 = partial(ofa_net, net_id="ofa_mbv3_d234_e346_k357_w1.0", pretrained=True)
ofa_supernet_mbv3_w12 = partial(ofa_net, net_id="ofa_mbv3_d234_e346_k357_w1.2", pretrained=True)
ofa_supernet_proxyless = partial(ofa_net, net_id="ofa_proxyless_d234_e346_k357_w1.3", pretrained=True)
# specialized
resnet50D_MAC_4_1B = partial(ofa_specialized, net_id="[email protected][email protected]")
resnet50D_MAC_3_7B = partial(ofa_specialized, net_id="[email protected][email protected]")
resnet50D_MAC_3_0B = partial(ofa_specialized, net_id="[email protected][email protected]")
resnet50D_MAC_2_4B = partial(ofa_specialized, net_id="[email protected][email protected]")
resnet50D_MAC_1_8B = partial(ofa_specialized, net_id="[email protected][email protected]")
resnet50D_MAC_1_2B = partial(ofa_specialized, net_id="[email protected][email protected]_finetune@25")
resnet50D_MAC_0_9B = partial(ofa_specialized, net_id="[email protected][email protected]_finetune@25")
resnet50D_MAC_0_6B = partial(ofa_specialized, net_id="[email protected][email protected]_finetune@25")
def ofa_specialized_get():
return ofa_specialized |
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import json
import torch
from ofa.utils import download_url
from ofa.imagenet_classification.networks import get_net_by_name, proxyless_base
from ofa.imagenet_classification.elastic_nn.networks import (
OFAMobileNetV3,
OFAProxylessNASNets,
OFAResNets,
)
__all__ = [
"ofa_specialized",
"ofa_net",
"proxylessnas_net",
"proxylessnas_mobile",
"proxylessnas_cpu",
"proxylessnas_gpu",
]
def ofa_specialized(net_id, pretrained=True):
url_base = "https://hanlab.mit.edu/files/OnceForAll/ofa_specialized/"
net_config = json.load(
open(
download_url(
url_base + net_id + "/net.config",
model_dir=".torch/ofa_specialized/%s/" % net_id,
)
)
)
net = get_net_by_name(net_config["name"]).build_from_config(net_config)
image_size = json.load(
open(
download_url(
url_base + net_id + "/run.config",
model_dir=".torch/ofa_specialized/%s/" % net_id,
)
)
)["image_size"]
if pretrained:
init = torch.load(
download_url(
url_base + net_id + "/init",
model_dir=".torch/ofa_specialized/%s/" % net_id,
),
map_location="cpu",
)["state_dict"]
net.load_state_dict(init)
return net, image_size
def ofa_net(net_id, pretrained=True):
if net_id == "ofa_proxyless_d234_e346_k357_w1.3":
net = OFAProxylessNASNets(
dropout_rate=0,
width_mult=1.3,
ks_list=[3, 5, 7],
expand_ratio_list=[3, 4, 6],
depth_list=[2, 3, 4],
)
elif net_id == "ofa_mbv3_d234_e346_k357_w1.0":
net = OFAMobileNetV3(
dropout_rate=0,
width_mult=1.0,
ks_list=[3, 5, 7],
expand_ratio_list=[3, 4, 6],
depth_list=[2, 3, 4],
)
elif net_id == "ofa_mbv3_d234_e346_k357_w1.2":
net = OFAMobileNetV3(
dropout_rate=0,
width_mult=1.2,
ks_list=[3, 5, 7],
expand_ratio_list=[3, 4, 6],
depth_list=[2, 3, 4],
)
elif net_id == "ofa_resnet50":
net = OFAResNets(
dropout_rate=0,
depth_list=[0, 1, 2],
expand_ratio_list=[0.2, 0.25, 0.35],
width_mult_list=[0.65, 0.8, 1.0],
)
net_id = "ofa_resnet50_d=0+1+2_e=0.2+0.25+0.35_w=0.65+0.8+1.0"
else:
raise ValueError("Not supported: %s" % net_id)
if pretrained:
url_base = "https://hanlab.mit.edu/files/OnceForAll/ofa_nets/"
init = torch.load(
download_url(url_base + net_id, model_dir=".torch/ofa_nets"),
map_location="cpu",
)["state_dict"]
net.load_state_dict(init)
return net
def proxylessnas_net(net_id, pretrained=True):
net = proxyless_base(
net_config="https://hanlab.mit.edu/files/proxylessNAS/%s.config" % net_id,
)
if pretrained:
net.load_state_dict(
torch.load(
download_url(
"https://hanlab.mit.edu/files/proxylessNAS/%s.pth" % net_id
),
map_location="cpu",
)["state_dict"]
)
return net
def proxylessnas_mobile(pretrained=True):
return proxylessnas_net("proxyless_mobile", pretrained)
def proxylessnas_cpu(pretrained=True):
return proxylessnas_net("proxyless_cpu", pretrained)
def proxylessnas_gpu(pretrained=True):
return proxylessnas_net("proxyless_gpu", pretrained)
|
import yaml
from ofa.utils import download_url
class LatencyEstimator(object):
def __init__(
self,
local_dir="~/.hancai/latency_tools/",
url="https://hanlab.mit.edu/files/proxylessNAS/LatencyTools/mobile_trim.yaml",
):
if url.startswith("http"):
fname = download_url(url, local_dir, overwrite=True)
else:
fname = url
with open(fname, "r") as fp:
self.lut = yaml.load(fp)
@staticmethod
def repr_shape(shape):
if isinstance(shape, (list, tuple)):
return "x".join(str(_) for _ in shape)
elif isinstance(shape, str):
return shape
else:
return TypeError
def query(
self,
l_type: str,
input_shape,
output_shape,
mid=None,
ks=None,
stride=None,
id_skip=None,
se=None,
h_swish=None,
):
infos = [
l_type,
"input:%s" % self.repr_shape(input_shape),
"output:%s" % self.repr_shape(output_shape),
]
if l_type in ("expanded_conv",):
assert None not in (mid, ks, stride, id_skip, se, h_swish)
infos += [
"expand:%d" % mid,
"kernel:%d" % ks,
"stride:%d" % stride,
"idskip:%d" % id_skip,
"se:%d" % se,
"hs:%d" % h_swish,
]
key = "-".join(infos)
return self.lut[key]["mean"]
def predict_network_latency(self, net, image_size=224):
predicted_latency = 0
# first conv
predicted_latency += self.query(
"Conv",
[image_size, image_size, 3],
[(image_size + 1) // 2, (image_size + 1) // 2, net.first_conv.out_channels],
)
# blocks
fsize = (image_size + 1) // 2
for block in net.blocks:
mb_conv = block.mobile_inverted_conv
shortcut = block.shortcut
if mb_conv is None:
continue
if shortcut is None:
idskip = 0
else:
idskip = 1
out_fz = int((fsize - 1) / mb_conv.stride + 1)
block_latency = self.query(
"expanded_conv",
[fsize, fsize, mb_conv.in_channels],
[out_fz, out_fz, mb_conv.out_channels],
mid=mb_conv.depth_conv.conv.in_channels,
ks=mb_conv.kernel_size,
stride=mb_conv.stride,
id_skip=idskip,
se=1 if mb_conv.use_se else 0,
h_swish=1 if mb_conv.act_func == "h_swish" else 0,
)
predicted_latency += block_latency
fsize = out_fz
# final expand layer
predicted_latency += self.query(
"Conv_1",
[fsize, fsize, net.final_expand_layer.in_channels],
[fsize, fsize, net.final_expand_layer.out_channels],
)
# global average pooling
predicted_latency += self.query(
"AvgPool2D",
[fsize, fsize, net.final_expand_layer.out_channels],
[1, 1, net.final_expand_layer.out_channels],
)
# feature mix layer
predicted_latency += self.query(
"Conv_2",
[1, 1, net.feature_mix_layer.in_channels],
[1, 1, net.feature_mix_layer.out_channels],
)
# classifier
predicted_latency += self.query(
"Logits", [1, 1, net.classifier.in_features], [net.classifier.out_features]
)
return predicted_latency
def predict_network_latency_given_spec(self, spec):
image_size = spec["r"][0]
predicted_latency = 0
# first conv
predicted_latency += self.query(
"Conv",
[image_size, image_size, 3],
[(image_size + 1) // 2, (image_size + 1) // 2, 24],
)
# blocks
fsize = (image_size + 1) // 2
# first block
predicted_latency += self.query(
"expanded_conv",
[fsize, fsize, 24],
[fsize, fsize, 24],
mid=24,
ks=3,
stride=1,
id_skip=1,
se=0,
h_swish=0,
)
in_channel = 24
stride_stages = [2, 2, 2, 1, 2]
width_stages = [32, 48, 96, 136, 192]
act_stages = ["relu", "relu", "h_swish", "h_swish", "h_swish"]
se_stages = [False, True, False, True, True]
for i in range(20):
stage = i // 4
depth_max = spec["d"][stage]
depth = i % 4 + 1
if depth > depth_max:
continue
ks, e = spec["ks"][i], spec["e"][i]
if i % 4 == 0:
stride = stride_stages[stage]
idskip = 0
else:
stride = 1
idskip = 1
out_channel = width_stages[stage]
out_fz = int((fsize - 1) / stride + 1)
mid_channel = round(in_channel * e)
block_latency = self.query(
"expanded_conv",
[fsize, fsize, in_channel],
[out_fz, out_fz, out_channel],
mid=mid_channel,
ks=ks,
stride=stride,
id_skip=idskip,
se=1 if se_stages[stage] else 0,
h_swish=1 if act_stages[stage] == "h_swish" else 0,
)
predicted_latency += block_latency
fsize = out_fz
in_channel = out_channel
# final expand layer
predicted_latency += self.query(
"Conv_1",
[fsize, fsize, 192],
[fsize, fsize, 1152],
)
# global average pooling
predicted_latency += self.query(
"AvgPool2D",
[fsize, fsize, 1152],
[1, 1, 1152],
)
# feature mix layer
predicted_latency += self.query("Conv_2", [1, 1, 1152], [1, 1, 1536])
# classifier
predicted_latency += self.query("Logits", [1, 1, 1536], [1000])
return predicted_latency
class LatencyTable:
def __init__(self, device="note10", resolutions=(160, 176, 192, 208, 224)):
self.latency_tables = {}
for image_size in resolutions:
self.latency_tables[image_size] = LatencyEstimator(
url="https://hanlab.mit.edu/files/OnceForAll/tutorial/latency_table@%s/%d_lookup_table.yaml"
% (device, image_size)
)
print("Built latency table for image size: %d." % image_size)
def predict_efficiency(self, spec: dict):
return self.latency_tables[spec["r"][0]].predict_network_latency_given_spec(
spec
)
|
import copy
import random
from tqdm import tqdm
import numpy as np
__all__ = ["EvolutionFinder"]
class ArchManager:
def __init__(self):
self.num_blocks = 20
self.num_stages = 5
self.kernel_sizes = [3, 5, 7]
self.expand_ratios = [3, 4, 6]
self.depths = [2, 3, 4]
self.resolutions = [160, 176, 192, 208, 224]
def random_sample(self):
sample = {}
d = []
e = []
ks = []
for i in range(self.num_stages):
d.append(random.choice(self.depths))
for i in range(self.num_blocks):
e.append(random.choice(self.expand_ratios))
ks.append(random.choice(self.kernel_sizes))
sample = {
"wid": None,
"ks": ks,
"e": e,
"d": d,
"r": [random.choice(self.resolutions)],
}
return sample
def random_resample(self, sample, i):
assert i >= 0 and i < self.num_blocks
sample["ks"][i] = random.choice(self.kernel_sizes)
sample["e"][i] = random.choice(self.expand_ratios)
def random_resample_depth(self, sample, i):
assert i >= 0 and i < self.num_stages
sample["d"][i] = random.choice(self.depths)
def random_resample_resolution(self, sample):
sample["r"][0] = random.choice(self.resolutions)
class EvolutionFinder:
valid_constraint_range = {
"flops": [150, 600],
"note10": [15, 60],
}
def __init__(
self,
constraint_type,
efficiency_constraint,
efficiency_predictor,
accuracy_predictor,
**kwargs
):
self.constraint_type = constraint_type
if not constraint_type in self.valid_constraint_range.keys():
self.invite_reset_constraint_type()
self.efficiency_constraint = efficiency_constraint
if not (
efficiency_constraint <= self.valid_constraint_range[constraint_type][1]
and efficiency_constraint >= self.valid_constraint_range[constraint_type][0]
):
self.invite_reset_constraint()
self.efficiency_predictor = efficiency_predictor
self.accuracy_predictor = accuracy_predictor
self.arch_manager = ArchManager()
self.num_blocks = self.arch_manager.num_blocks
self.num_stages = self.arch_manager.num_stages
self.mutate_prob = kwargs.get("mutate_prob", 0.1)
self.population_size = kwargs.get("population_size", 100)
self.max_time_budget = kwargs.get("max_time_budget", 500)
self.parent_ratio = kwargs.get("parent_ratio", 0.25)
self.mutation_ratio = kwargs.get("mutation_ratio", 0.5)
def invite_reset_constraint_type(self):
print(
"Invalid constraint type! Please input one of:",
list(self.valid_constraint_range.keys()),
)
new_type = input()
while new_type not in self.valid_constraint_range.keys():
print(
"Invalid constraint type! Please input one of:",
list(self.valid_constraint_range.keys()),
)
new_type = input()
self.constraint_type = new_type
def invite_reset_constraint(self):
print(
"Invalid constraint_value! Please input an integer in interval: [%d, %d]!"
% (
self.valid_constraint_range[self.constraint_type][0],
self.valid_constraint_range[self.constraint_type][1],
)
)
new_cons = input()
while (
(not new_cons.isdigit())
or (int(new_cons) > self.valid_constraint_range[self.constraint_type][1])
or (int(new_cons) < self.valid_constraint_range[self.constraint_type][0])
):
print(
"Invalid constraint_value! Please input an integer in interval: [%d, %d]!"
% (
self.valid_constraint_range[self.constraint_type][0],
self.valid_constraint_range[self.constraint_type][1],
)
)
new_cons = input()
new_cons = int(new_cons)
self.efficiency_constraint = new_cons
def set_efficiency_constraint(self, new_constraint):
self.efficiency_constraint = new_constraint
def random_sample(self):
constraint = self.efficiency_constraint
while True:
sample = self.arch_manager.random_sample()
efficiency = self.efficiency_predictor.predict_efficiency(sample)
if efficiency <= constraint:
return sample, efficiency
def mutate_sample(self, sample):
constraint = self.efficiency_constraint
while True:
new_sample = copy.deepcopy(sample)
if random.random() < self.mutate_prob:
self.arch_manager.random_resample_resolution(new_sample)
for i in range(self.num_blocks):
if random.random() < self.mutate_prob:
self.arch_manager.random_resample(new_sample, i)
for i in range(self.num_stages):
if random.random() < self.mutate_prob:
self.arch_manager.random_resample_depth(new_sample, i)
efficiency = self.efficiency_predictor.predict_efficiency(new_sample)
if efficiency <= constraint:
return new_sample, efficiency
def crossover_sample(self, sample1, sample2):
constraint = self.efficiency_constraint
while True:
new_sample = copy.deepcopy(sample1)
for key in new_sample.keys():
if not isinstance(new_sample[key], list):
continue
for i in range(len(new_sample[key])):
new_sample[key][i] = random.choice(
[sample1[key][i], sample2[key][i]]
)
efficiency = self.efficiency_predictor.predict_efficiency(new_sample)
if efficiency <= constraint:
return new_sample, efficiency
def run_evolution_search(self, verbose=False):
"""Run a single roll-out of regularized evolution to a fixed time budget."""
max_time_budget = self.max_time_budget
population_size = self.population_size
mutation_numbers = int(round(self.mutation_ratio * population_size))
parents_size = int(round(self.parent_ratio * population_size))
constraint = self.efficiency_constraint
best_valids = [-100]
population = [] # (validation, sample, latency) tuples
child_pool = []
efficiency_pool = []
best_info = None
if verbose:
print("Generate random population...")
for _ in range(population_size):
sample, efficiency = self.random_sample()
child_pool.append(sample)
efficiency_pool.append(efficiency)
accs = self.accuracy_predictor.predict_accuracy(child_pool)
for i in range(population_size):
population.append((accs[i].item(), child_pool[i], efficiency_pool[i]))
if verbose:
print("Start Evolution...")
# After the population is seeded, proceed with evolving the population.
for iter in tqdm(
range(max_time_budget),
desc="Searching with %s constraint (%s)"
% (self.constraint_type, self.efficiency_constraint),
):
parents = sorted(population, key=lambda x: x[0])[::-1][:parents_size]
acc = parents[0][0]
if verbose:
print("Iter: {} Acc: {}".format(iter - 1, parents[0][0]))
if acc > best_valids[-1]:
best_valids.append(acc)
best_info = parents[0]
else:
best_valids.append(best_valids[-1])
population = parents
child_pool = []
efficiency_pool = []
for i in range(mutation_numbers):
par_sample = population[np.random.randint(parents_size)][1]
# Mutate
new_sample, efficiency = self.mutate_sample(par_sample)
child_pool.append(new_sample)
efficiency_pool.append(efficiency)
for i in range(population_size - mutation_numbers):
par_sample1 = population[np.random.randint(parents_size)][1]
par_sample2 = population[np.random.randint(parents_size)][1]
# Crossover
new_sample, efficiency = self.crossover_sample(par_sample1, par_sample2)
child_pool.append(new_sample)
efficiency_pool.append(efficiency)
accs = self.accuracy_predictor.predict_accuracy(child_pool)
for i in range(population_size):
population.append((accs[i].item(), child_pool[i], efficiency_pool[i]))
return best_valids, best_info
|
from .accuracy_predictor import AccuracyPredictor
from .flops_table import FLOPsTable
from .latency_table import LatencyTable
from .evolution_finder import EvolutionFinder
from .imagenet_eval_helper import evaluate_ofa_subnet, evaluate_ofa_specialized
|
import torch.nn as nn
import torch
import copy
from ofa.utils import download_url
# Helper for constructing the one-hot vectors.
def construct_maps(keys):
d = dict()
keys = list(set(keys))
for k in keys:
if k not in d:
d[k] = len(list(d.keys()))
return d
ks_map = construct_maps(keys=(3, 5, 7))
ex_map = construct_maps(keys=(3, 4, 6))
dp_map = construct_maps(keys=(2, 3, 4))
class AccuracyPredictor:
def __init__(self, pretrained=True, device="cuda:0"):
self.device = device
self.model = nn.Sequential(
nn.Linear(128, 400),
nn.ReLU(),
nn.Linear(400, 400),
nn.ReLU(),
nn.Linear(400, 400),
nn.ReLU(),
nn.Linear(400, 1),
)
if pretrained:
# load pretrained model
fname = download_url(
"https://hanlab.mit.edu/files/OnceForAll/tutorial/acc_predictor.pth"
)
self.model.load_state_dict(
torch.load(fname, map_location=torch.device("cpu"))
)
self.model = self.model.to(self.device)
# TODO: merge it with serialization utils.
@torch.no_grad()
def predict_accuracy(self, population):
all_feats = []
for sample in population:
ks_list = copy.deepcopy(sample["ks"])
ex_list = copy.deepcopy(sample["e"])
d_list = copy.deepcopy(sample["d"])
r = copy.deepcopy(sample["r"])[0]
feats = (
AccuracyPredictor.spec2feats(ks_list, ex_list, d_list, r)
.reshape(1, -1)
.to(self.device)
)
all_feats.append(feats)
all_feats = torch.cat(all_feats, 0)
pred = self.model(all_feats).cpu()
return pred
@staticmethod
def spec2feats(ks_list, ex_list, d_list, r):
# This function converts a network config to a feature vector (128-D).
start = 0
end = 4
for d in d_list:
for j in range(start + d, end):
ks_list[j] = 0
ex_list[j] = 0
start += 4
end += 4
# convert to onehot
ks_onehot = [0 for _ in range(60)]
ex_onehot = [0 for _ in range(60)]
r_onehot = [0 for _ in range(8)]
for i in range(20):
start = i * 3
if ks_list[i] != 0:
ks_onehot[start + ks_map[ks_list[i]]] = 1
if ex_list[i] != 0:
ex_onehot[start + ex_map[ex_list[i]]] = 1
r_onehot[(r - 112) // 16] = 1
return torch.Tensor(ks_onehot + ex_onehot + r_onehot)
|
import time
import copy
import torch
import torch.nn as nn
import numpy as np
from ofa.utils.layers import *
__all__ = ["FLOPsTable"]
def rm_bn_from_net(net):
for m in net.modules():
if isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
m.forward = lambda x: x
class FLOPsTable:
def __init__(
self,
pred_type="flops",
device="cuda:0",
multiplier=1.2,
batch_size=64,
load_efficiency_table=None,
):
assert pred_type in ["flops", "latency"]
self.multiplier = multiplier
self.pred_type = pred_type
self.device = device
self.batch_size = batch_size
self.efficiency_dict = {}
if load_efficiency_table is not None:
self.efficiency_dict = np.load(
load_efficiency_table, allow_pickle=True
).item()
else:
self.build_lut(batch_size)
@torch.no_grad()
def measure_single_layer_latency(
self, layer: nn.Module, input_size: tuple, warmup_steps=10, measure_steps=50
):
total_time = 0
inputs = torch.randn(*input_size, device=self.device)
layer.eval()
rm_bn_from_net(layer)
network = layer.to(self.device)
torch.cuda.synchronize()
for i in range(warmup_steps):
network(inputs)
torch.cuda.synchronize()
torch.cuda.synchronize()
st = time.time()
for i in range(measure_steps):
network(inputs)
torch.cuda.synchronize()
ed = time.time()
total_time += ed - st
latency = total_time / measure_steps * 1000
return latency
@torch.no_grad()
def measure_single_layer_flops(self, layer: nn.Module, input_size: tuple):
import thop
inputs = torch.randn(*input_size, device=self.device)
network = layer.to(self.device)
layer.eval()
rm_bn_from_net(layer)
flops, params = thop.profile(network, (inputs,), verbose=False)
return flops / 1e6
def build_lut(self, batch_size=1, resolutions=[160, 176, 192, 208, 224]):
for resolution in resolutions:
self.build_single_lut(batch_size, resolution)
np.save("local_lut.npy", self.efficiency_dict)
def build_single_lut(self, batch_size=1, base_resolution=224):
print(
"Building the %s lookup table (resolution=%d)..."
% (self.pred_type, base_resolution)
)
# block, input_size, in_channels, out_channels, expand_ratio, kernel_size, stride, act, se
configurations = [
(ConvLayer, base_resolution, 3, 16, 3, 2, "relu"),
(
ResidualBlock,
base_resolution // 2,
16,
16,
[1],
[3, 5, 7],
1,
"relu",
False,
),
(
ResidualBlock,
base_resolution // 2,
16,
24,
[3, 4, 6],
[3, 5, 7],
2,
"relu",
False,
),
(
ResidualBlock,
base_resolution // 4,
24,
24,
[3, 4, 6],
[3, 5, 7],
1,
"relu",
False,
),
(
ResidualBlock,
base_resolution // 4,
24,
24,
[3, 4, 6],
[3, 5, 7],
1,
"relu",
False,
),
(
ResidualBlock,
base_resolution // 4,
24,
24,
[3, 4, 6],
[3, 5, 7],
1,
"relu",
False,
),
(
ResidualBlock,
base_resolution // 4,
24,
40,
[3, 4, 6],
[3, 5, 7],
2,
"relu",
True,
),
(
ResidualBlock,
base_resolution // 8,
40,
40,
[3, 4, 6],
[3, 5, 7],
1,
"relu",
True,
),
(
ResidualBlock,
base_resolution // 8,
40,
40,
[3, 4, 6],
[3, 5, 7],
1,
"relu",
True,
),
(
ResidualBlock,
base_resolution // 8,
40,
40,
[3, 4, 6],
[3, 5, 7],
1,
"relu",
True,
),
(
ResidualBlock,
base_resolution // 8,
40,
80,
[3, 4, 6],
[3, 5, 7],
2,
"h_swish",
False,
),
(
ResidualBlock,
base_resolution // 16,
80,
80,
[3, 4, 6],
[3, 5, 7],
1,
"h_swish",
False,
),
(
ResidualBlock,
base_resolution // 16,
80,
80,
[3, 4, 6],
[3, 5, 7],
1,
"h_swish",
False,
),
(
ResidualBlock,
base_resolution // 16,
80,
80,
[3, 4, 6],
[3, 5, 7],
1,
"h_swish",
False,
),
(
ResidualBlock,
base_resolution // 16,
80,
112,
[3, 4, 6],
[3, 5, 7],
1,
"h_swish",
True,
),
(
ResidualBlock,
base_resolution // 16,
112,
112,
[3, 4, 6],
[3, 5, 7],
1,
"h_swish",
True,
),
(
ResidualBlock,
base_resolution // 16,
112,
112,
[3, 4, 6],
[3, 5, 7],
1,
"h_swish",
True,
),
(
ResidualBlock,
base_resolution // 16,
112,
112,
[3, 4, 6],
[3, 5, 7],
1,
"h_swish",
True,
),
(
ResidualBlock,
base_resolution // 16,
112,
160,
[3, 4, 6],
[3, 5, 7],
2,
"h_swish",
True,
),
(
ResidualBlock,
base_resolution // 32,
160,
160,
[3, 4, 6],
[3, 5, 7],
1,
"h_swish",
True,
),
(
ResidualBlock,
base_resolution // 32,
160,
160,
[3, 4, 6],
[3, 5, 7],
1,
"h_swish",
True,
),
(
ResidualBlock,
base_resolution // 32,
160,
160,
[3, 4, 6],
[3, 5, 7],
1,
"h_swish",
True,
),
(ConvLayer, base_resolution // 32, 160, 960, 1, 1, "h_swish"),
(ConvLayer, 1, 960, 1280, 1, 1, "h_swish"),
(LinearLayer, 1, 1280, 1000, 1, 1),
]
efficiency_dict = {"mobile_inverted_blocks": [], "other_blocks": {}}
for layer_idx in range(len(configurations)):
config = configurations[layer_idx]
op_type = config[0]
if op_type == ResidualBlock:
(
_,
input_size,
in_channels,
out_channels,
expand_list,
ks_list,
stride,
act,
se,
) = config
in_channels = int(round(in_channels * self.multiplier))
out_channels = int(round(out_channels * self.multiplier))
template_config = {
"name": ResidualBlock.__name__,
"mobile_inverted_conv": {
"name": MBConvLayer.__name__,
"in_channels": in_channels,
"out_channels": out_channels,
"kernel_size": kernel_size,
"stride": stride,
"expand_ratio": 0,
# 'mid_channels': None,
"act_func": act,
"use_se": se,
},
"shortcut": {
"name": IdentityLayer.__name__,
"in_channels": in_channels,
"out_channels": out_channels,
}
if (in_channels == out_channels and stride == 1)
else None,
}
sub_dict = {}
for ks in ks_list:
for e in expand_list:
build_config = copy.deepcopy(template_config)
build_config["mobile_inverted_conv"]["expand_ratio"] = e
build_config["mobile_inverted_conv"]["kernel_size"] = ks
layer = ResidualBlock.build_from_config(build_config)
input_shape = (batch_size, in_channels, input_size, input_size)
if self.pred_type == "flops":
measure_result = (
self.measure_single_layer_flops(layer, input_shape)
/ batch_size
)
elif self.pred_type == "latency":
measure_result = self.measure_single_layer_latency(
layer, input_shape
)
sub_dict[(ks, e)] = measure_result
efficiency_dict["mobile_inverted_blocks"].append(sub_dict)
elif op_type == ConvLayer:
(
_,
input_size,
in_channels,
out_channels,
kernel_size,
stride,
activation,
) = config
in_channels = int(round(in_channels * self.multiplier))
out_channels = int(round(out_channels * self.multiplier))
build_config = {
# 'name': ConvLayer.__name__,
"in_channels": in_channels,
"out_channels": out_channels,
"kernel_size": kernel_size,
"stride": stride,
"dilation": 1,
"groups": 1,
"bias": False,
"use_bn": True,
"has_shuffle": False,
"act_func": activation,
}
layer = ConvLayer.build_from_config(build_config)
input_shape = (batch_size, in_channels, input_size, input_size)
if self.pred_type == "flops":
measure_result = (
self.measure_single_layer_flops(layer, input_shape) / batch_size
)
elif self.pred_type == "latency":
measure_result = self.measure_single_layer_latency(
layer, input_shape
)
efficiency_dict["other_blocks"][layer_idx] = measure_result
elif op_type == LinearLayer:
_, input_size, in_channels, out_channels, kernel_size, stride = config
in_channels = int(round(in_channels * self.multiplier))
out_channels = int(round(out_channels * self.multiplier))
build_config = {
# 'name': LinearLayer.__name__,
"in_features": in_channels,
"out_features": out_channels,
}
layer = LinearLayer.build_from_config(build_config)
input_shape = (batch_size, in_channels)
if self.pred_type == "flops":
measure_result = (
self.measure_single_layer_flops(layer, input_shape) / batch_size
)
elif self.pred_type == "latency":
measure_result = self.measure_single_layer_latency(
layer, input_shape
)
efficiency_dict["other_blocks"][layer_idx] = measure_result
else:
raise NotImplementedError
self.efficiency_dict[base_resolution] = efficiency_dict
print(
"Built the %s lookup table (resolution=%d)!"
% (self.pred_type, base_resolution)
)
return efficiency_dict
def predict_efficiency(self, sample):
input_size = sample.get("r", [224])
input_size = input_size[0]
assert "ks" in sample and "e" in sample and "d" in sample
assert len(sample["ks"]) == len(sample["e"]) and len(sample["ks"]) == 20
assert len(sample["d"]) == 5
total_stats = 0.0
for i in range(20):
stage = i // 4
depth_max = sample["d"][stage]
depth = i % 4 + 1
if depth > depth_max:
continue
ks, e = sample["ks"][i], sample["e"][i]
total_stats += self.efficiency_dict[input_size]["mobile_inverted_blocks"][
i + 1
][(ks, e)]
for key in self.efficiency_dict[input_size]["other_blocks"]:
total_stats += self.efficiency_dict[input_size]["other_blocks"][key]
total_stats += self.efficiency_dict[input_size]["mobile_inverted_blocks"][0][
(3, 1)
]
return total_stats
|
import os.path as osp
import numpy as np
import math
from tqdm import tqdm
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.utils.data
from torchvision import transforms, datasets
from ofa.utils import AverageMeter, accuracy
from ofa.model_zoo import ofa_specialized
from ofa.imagenet_classification.elastic_nn.utils import set_running_statistics
def evaluate_ofa_subnet(
ofa_net, path, net_config, data_loader, batch_size, device="cuda:0"
):
assert "ks" in net_config and "d" in net_config and "e" in net_config
assert (
len(net_config["ks"]) == 20
and len(net_config["e"]) == 20
and len(net_config["d"]) == 5
)
ofa_net.set_active_subnet(ks=net_config["ks"], d=net_config["d"], e=net_config["e"])
subnet = ofa_net.get_active_subnet().to(device)
calib_bn(subnet, path, net_config["r"][0], batch_size)
top1 = validate(subnet, path, net_config["r"][0], data_loader, batch_size, device)
return top1
def calib_bn(net, path, image_size, batch_size, num_images=2000):
# print('Creating dataloader for resetting BN running statistics...')
dataset = datasets.ImageFolder(
osp.join(path, "train"),
transforms.Compose(
[
transforms.RandomResizedCrop(image_size),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=32.0 / 255.0, saturation=0.5),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
]
),
)
chosen_indexes = np.random.choice(list(range(len(dataset))), num_images)
sub_sampler = torch.utils.data.sampler.SubsetRandomSampler(chosen_indexes)
data_loader = torch.utils.data.DataLoader(
dataset,
sampler=sub_sampler,
batch_size=batch_size,
num_workers=16,
pin_memory=True,
drop_last=False,
)
# print('Resetting BN running statistics (this may take 10-20 seconds)...')
set_running_statistics(net, data_loader)
def validate(net, path, image_size, data_loader, batch_size=100, device="cuda:0"):
if "cuda" in device:
net = torch.nn.DataParallel(net).to(device)
else:
net = net.to(device)
data_loader.dataset.transform = transforms.Compose(
[
transforms.Resize(int(math.ceil(image_size / 0.875))),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
cudnn.benchmark = True
criterion = nn.CrossEntropyLoss().to(device)
net.eval()
net = net.to(device)
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
with torch.no_grad():
with tqdm(total=len(data_loader), desc="Validate") as t:
for i, (images, labels) in enumerate(data_loader):
images, labels = images.to(device), labels.to(device)
# compute output
output = net(images)
loss = criterion(output, labels)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, labels, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0].item(), images.size(0))
top5.update(acc5[0].item(), images.size(0))
t.set_postfix(
{
"loss": losses.avg,
"top1": top1.avg,
"top5": top5.avg,
"img_size": images.size(2),
}
)
t.update(1)
print(
"Results: loss=%.5f,\t top1=%.1f,\t top5=%.1f"
% (losses.avg, top1.avg, top5.avg)
)
return top1.avg
def evaluate_ofa_specialized(path, data_loader, batch_size=100, device="cuda:0"):
def select_platform_name():
valid_platform_name = [
"pixel1",
"pixel2",
"note10",
"note8",
"s7edge",
"lg-g8",
"1080ti",
"v100",
"tx2",
"cpu",
"flops",
]
print(
"Please select a hardware platform from ('pixel1', 'pixel2', 'note10', 'note8', 's7edge', 'lg-g8', '1080ti', 'v100', 'tx2', 'cpu', 'flops')!\n"
)
while True:
platform_name = input()
platform_name = platform_name.lower()
if platform_name in valid_platform_name:
return platform_name
print(
"Platform name is invalid! Please select in ('pixel1', 'pixel2', 'note10', 'note8', 's7edge', 'lg-g8', '1080ti', 'v100', 'tx2', 'cpu', 'flops')!\n"
)
def select_netid(platform_name):
platform_efficiency_map = {
"pixel1": {
143: "pixel1_lat@[email protected]_finetune@75",
132: "pixel1_lat@[email protected]_finetune@75",
79: "pixel1_lat@[email protected]_finetune@75",
58: "pixel1_lat@[email protected]_finetune@75",
40: "pixel1_lat@[email protected]_finetune@25",
28: "pixel1_lat@[email protected]_finetune@25",
20: "pixel1_lat@[email protected]_finetune@25",
},
"pixel2": {
62: "pixel2_lat@[email protected]_finetune@25",
50: "pixel2_lat@[email protected]_finetune@25",
35: "pixel2_lat@[email protected]_finetune@25",
25: "pixel2_lat@[email protected]_finetune@25",
},
"note10": {
64: "note10_lat@[email protected]_finetune@75",
50: "note10_lat@[email protected]_finetune@75",
41: "note10_lat@[email protected]_finetune@75",
30: "note10_lat@[email protected]_finetune@75",
22: "note10_lat@[email protected]_finetune@25",
16: "note10_lat@[email protected]_finetune@25",
11: "note10_lat@[email protected]_finetune@25",
8: "note10_lat@[email protected]_finetune@25",
},
"note8": {
65: "note8_lat@[email protected]_finetune@25",
49: "note8_lat@[email protected]_finetune@25",
31: "note8_lat@[email protected]_finetune@25",
22: "note8_lat@[email protected]_finetune@25",
},
"s7edge": {
88: "s7edge_lat@[email protected]_finetune@25",
58: "s7edge_lat@[email protected]_finetune@25",
41: "s7edge_lat@[email protected]_finetune@25",
29: "s7edge_lat@[email protected]_finetune@25",
},
"lg-g8": {
24: "LG-G8_lat@[email protected]_finetune@25",
16: "LG-G8_lat@[email protected]_finetune@25",
11: "LG-G8_lat@[email protected]_finetune@25",
8: "LG-G8_lat@[email protected]_finetune@25",
},
"1080ti": {
27: "1080ti_gpu64@[email protected]_finetune@25",
22: "1080ti_gpu64@[email protected]_finetune@25",
15: "1080ti_gpu64@[email protected]_finetune@25",
12: "1080ti_gpu64@[email protected]_finetune@25",
},
"v100": {
11: "v100_gpu64@[email protected]_finetune@25",
9: "v100_gpu64@[email protected]_finetune@25",
6: "v100_gpu64@[email protected]_finetune@25",
5: "v100_gpu64@[email protected]_finetune@25",
},
"tx2": {
96: "tx2_gpu16@[email protected]_finetune@25",
80: "tx2_gpu16@[email protected]_finetune@25",
47: "tx2_gpu16@[email protected]_finetune@25",
35: "tx2_gpu16@[email protected]_finetune@25",
},
"cpu": {
17: "cpu_lat@[email protected]_finetune@25",
15: "cpu_lat@[email protected]_finetune@25",
11: "cpu_lat@[email protected]_finetune@25",
10: "cpu_lat@[email protected]_finetune@25",
},
"flops": {
595: "flops@[email protected]_finetune@75",
482: "flops@[email protected]_finetune@75",
389: "flops@[email protected]_finetune@75",
},
}
sub_efficiency_map = platform_efficiency_map[platform_name]
if not platform_name == "flops":
print(
"Now, please specify a latency constraint for model specialization among",
sorted(list(sub_efficiency_map.keys())),
"ms. (Please just input the number.) \n",
)
else:
print(
"Now, please specify a FLOPs constraint for model specialization among",
sorted(list(sub_efficiency_map.keys())),
"MFLOPs. (Please just input the number.) \n",
)
while True:
efficiency_constraint = input()
if not efficiency_constraint.isdigit():
print("Sorry, please input an integer! \n")
continue
efficiency_constraint = int(efficiency_constraint)
if not efficiency_constraint in sub_efficiency_map.keys():
print(
"Sorry, please choose a value from: ",
sorted(list(sub_efficiency_map.keys())),
".\n",
)
continue
return sub_efficiency_map[efficiency_constraint]
platform_name = select_platform_name()
net_id = select_netid(platform_name)
net, image_size = ofa_specialized(net_id=net_id, pretrained=True)
validate(net, path, image_size, data_loader, batch_size, device)
return net_id
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import os
import copy
from .latency_lookup_table import *
class BaseEfficiencyModel:
def __init__(self, ofa_net):
self.ofa_net = ofa_net
def get_active_subnet_config(self, arch_dict):
arch_dict = copy.deepcopy(arch_dict)
image_size = arch_dict.pop("image_size")
self.ofa_net.set_active_subnet(**arch_dict)
active_net_config = self.ofa_net.get_active_net_config()
return active_net_config, image_size
def get_efficiency(self, arch_dict):
raise NotImplementedError
class ProxylessNASFLOPsModel(BaseEfficiencyModel):
def get_efficiency(self, arch_dict):
active_net_config, image_size = self.get_active_subnet_config(arch_dict)
return ProxylessNASLatencyTable.count_flops_given_config(
active_net_config, image_size
)
class Mbv3FLOPsModel(BaseEfficiencyModel):
def get_efficiency(self, arch_dict):
active_net_config, image_size = self.get_active_subnet_config(arch_dict)
return MBv3LatencyTable.count_flops_given_config(active_net_config, image_size)
class ResNet50FLOPsModel(BaseEfficiencyModel):
def get_efficiency(self, arch_dict):
active_net_config, image_size = self.get_active_subnet_config(arch_dict)
return ResNet50LatencyTable.count_flops_given_config(
active_net_config, image_size
)
class ProxylessNASLatencyModel(BaseEfficiencyModel):
def __init__(self, ofa_net, lookup_table_path_dict):
super(ProxylessNASLatencyModel, self).__init__(ofa_net)
self.latency_tables = {}
for image_size, path in lookup_table_path_dict.items():
self.latency_tables[image_size] = ProxylessNASLatencyTable(
local_dir="/tmp/.ofa_latency_tools/",
url=os.path.join(path, "%d_lookup_table.yaml" % image_size),
)
def get_efficiency(self, arch_dict):
active_net_config, image_size = self.get_active_subnet_config(arch_dict)
return self.latency_tables[image_size].predict_network_latency_given_config(
active_net_config, image_size
)
class Mbv3LatencyModel(BaseEfficiencyModel):
def __init__(self, ofa_net, lookup_table_path_dict):
super(Mbv3LatencyModel, self).__init__(ofa_net)
self.latency_tables = {}
for image_size, path in lookup_table_path_dict.items():
self.latency_tables[image_size] = MBv3LatencyTable(
local_dir="/tmp/.ofa_latency_tools/",
url=os.path.join(path, "%d_lookup_table.yaml" % image_size),
)
def get_efficiency(self, arch_dict):
active_net_config, image_size = self.get_active_subnet_config(arch_dict)
return self.latency_tables[image_size].predict_network_latency_given_config(
active_net_config, image_size
)
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import yaml
from ofa.utils import download_url, make_divisible, MyNetwork
__all__ = [
"count_conv_flop",
"ProxylessNASLatencyTable",
"MBv3LatencyTable",
"ResNet50LatencyTable",
]
def count_conv_flop(out_size, in_channels, out_channels, kernel_size, groups):
out_h = out_w = out_size
delta_ops = (
in_channels * out_channels * kernel_size * kernel_size * out_h * out_w / groups
)
return delta_ops
class LatencyTable(object):
def __init__(
self,
local_dir="~/.ofa/latency_tools/",
url="https://hanlab.mit.edu/files/proxylessNAS/LatencyTools/mobile_trim.yaml",
):
if url.startswith("http"):
fname = download_url(url, local_dir, overwrite=True)
else:
fname = url
with open(fname, "r") as fp:
self.lut = yaml.load(fp)
@staticmethod
def repr_shape(shape):
if isinstance(shape, (list, tuple)):
return "x".join(str(_) for _ in shape)
elif isinstance(shape, str):
return shape
else:
return TypeError
def query(self, **kwargs):
raise NotImplementedError
def predict_network_latency(self, net, image_size):
raise NotImplementedError
def predict_network_latency_given_config(self, net_config, image_size):
raise NotImplementedError
@staticmethod
def count_flops_given_config(net_config, image_size=224):
raise NotImplementedError
class ProxylessNASLatencyTable(LatencyTable):
def query(
self,
l_type: str,
input_shape,
output_shape,
expand=None,
ks=None,
stride=None,
id_skip=None,
):
"""
:param l_type:
Layer type must be one of the followings
1. `Conv`: The initial 3x3 conv with stride 2.
2. `Conv_1`: feature_mix_layer
3. `Logits`: All operations after `Conv_1`.
4. `expanded_conv`: MobileInvertedResidual
:param input_shape: input shape (h, w, #channels)
:param output_shape: output shape (h, w, #channels)
:param expand: expansion ratio
:param ks: kernel size
:param stride:
:param id_skip: indicate whether has the residual connection
"""
infos = [
l_type,
"input:%s" % self.repr_shape(input_shape),
"output:%s" % self.repr_shape(output_shape),
]
if l_type in ("expanded_conv",):
assert None not in (expand, ks, stride, id_skip)
infos += [
"expand:%d" % expand,
"kernel:%d" % ks,
"stride:%d" % stride,
"idskip:%d" % id_skip,
]
key = "-".join(infos)
return self.lut[key]["mean"]
def predict_network_latency(self, net, image_size=224):
predicted_latency = 0
# first conv
predicted_latency += self.query(
"Conv",
[image_size, image_size, 3],
[(image_size + 1) // 2, (image_size + 1) // 2, net.first_conv.out_channels],
)
# blocks
fsize = (image_size + 1) // 2
for block in net.blocks:
mb_conv = block.conv
shortcut = block.shortcut
if mb_conv is None:
continue
if shortcut is None:
idskip = 0
else:
idskip = 1
out_fz = int((fsize - 1) / mb_conv.stride + 1) # fsize // mb_conv.stride
block_latency = self.query(
"expanded_conv",
[fsize, fsize, mb_conv.in_channels],
[out_fz, out_fz, mb_conv.out_channels],
expand=mb_conv.expand_ratio,
ks=mb_conv.kernel_size,
stride=mb_conv.stride,
id_skip=idskip,
)
predicted_latency += block_latency
fsize = out_fz
# feature mix layer
predicted_latency += self.query(
"Conv_1",
[fsize, fsize, net.feature_mix_layer.in_channels],
[fsize, fsize, net.feature_mix_layer.out_channels],
)
# classifier
predicted_latency += self.query(
"Logits",
[fsize, fsize, net.classifier.in_features],
[net.classifier.out_features], # 1000
)
return predicted_latency
def predict_network_latency_given_config(self, net_config, image_size=224):
predicted_latency = 0
# first conv
predicted_latency += self.query(
"Conv",
[image_size, image_size, 3],
[
(image_size + 1) // 2,
(image_size + 1) // 2,
net_config["first_conv"]["out_channels"],
],
)
# blocks
fsize = (image_size + 1) // 2
for block in net_config["blocks"]:
mb_conv = (
block["mobile_inverted_conv"]
if "mobile_inverted_conv" in block
else block["conv"]
)
shortcut = block["shortcut"]
if mb_conv is None:
continue
if shortcut is None:
idskip = 0
else:
idskip = 1
out_fz = int((fsize - 1) / mb_conv["stride"] + 1)
block_latency = self.query(
"expanded_conv",
[fsize, fsize, mb_conv["in_channels"]],
[out_fz, out_fz, mb_conv["out_channels"]],
expand=mb_conv["expand_ratio"],
ks=mb_conv["kernel_size"],
stride=mb_conv["stride"],
id_skip=idskip,
)
predicted_latency += block_latency
fsize = out_fz
# feature mix layer
predicted_latency += self.query(
"Conv_1",
[fsize, fsize, net_config["feature_mix_layer"]["in_channels"]],
[fsize, fsize, net_config["feature_mix_layer"]["out_channels"]],
)
# classifier
predicted_latency += self.query(
"Logits",
[fsize, fsize, net_config["classifier"]["in_features"]],
[net_config["classifier"]["out_features"]], # 1000
)
return predicted_latency
@staticmethod
def count_flops_given_config(net_config, image_size=224):
flops = 0
# first conv
flops += count_conv_flop(
(image_size + 1) // 2, 3, net_config["first_conv"]["out_channels"], 3, 1
)
# blocks
fsize = (image_size + 1) // 2
for block in net_config["blocks"]:
mb_conv = (
block["mobile_inverted_conv"]
if "mobile_inverted_conv" in block
else block["conv"]
)
if mb_conv is None:
continue
out_fz = int((fsize - 1) / mb_conv["stride"] + 1)
if mb_conv["mid_channels"] is None:
mb_conv["mid_channels"] = round(
mb_conv["in_channels"] * mb_conv["expand_ratio"]
)
if mb_conv["expand_ratio"] != 1:
# inverted bottleneck
flops += count_conv_flop(
fsize, mb_conv["in_channels"], mb_conv["mid_channels"], 1, 1
)
# depth conv
flops += count_conv_flop(
out_fz,
mb_conv["mid_channels"],
mb_conv["mid_channels"],
mb_conv["kernel_size"],
mb_conv["mid_channels"],
)
# point linear
flops += count_conv_flop(
out_fz, mb_conv["mid_channels"], mb_conv["out_channels"], 1, 1
)
fsize = out_fz
# feature mix layer
flops += count_conv_flop(
fsize,
net_config["feature_mix_layer"]["in_channels"],
net_config["feature_mix_layer"]["out_channels"],
1,
1,
)
# classifier
flops += count_conv_flop(
1,
net_config["classifier"]["in_features"],
net_config["classifier"]["out_features"],
1,
1,
)
return flops / 1e6 # MFLOPs
class MBv3LatencyTable(LatencyTable):
def query(
self,
l_type: str,
input_shape,
output_shape,
mid=None,
ks=None,
stride=None,
id_skip=None,
se=None,
h_swish=None,
):
infos = [
l_type,
"input:%s" % self.repr_shape(input_shape),
"output:%s" % self.repr_shape(output_shape),
]
if l_type in ("expanded_conv",):
assert None not in (mid, ks, stride, id_skip, se, h_swish)
infos += [
"expand:%d" % mid,
"kernel:%d" % ks,
"stride:%d" % stride,
"idskip:%d" % id_skip,
"se:%d" % se,
"hs:%d" % h_swish,
]
key = "-".join(infos)
return self.lut[key]["mean"]
def predict_network_latency(self, net, image_size=224):
predicted_latency = 0
# first conv
predicted_latency += self.query(
"Conv",
[image_size, image_size, 3],
[(image_size + 1) // 2, (image_size + 1) // 2, net.first_conv.out_channels],
)
# blocks
fsize = (image_size + 1) // 2
for block in net.blocks:
mb_conv = block.conv
shortcut = block.shortcut
if mb_conv is None:
continue
if shortcut is None:
idskip = 0
else:
idskip = 1
out_fz = int((fsize - 1) / mb_conv.stride + 1)
block_latency = self.query(
"expanded_conv",
[fsize, fsize, mb_conv.in_channels],
[out_fz, out_fz, mb_conv.out_channels],
mid=mb_conv.depth_conv.conv.in_channels,
ks=mb_conv.kernel_size,
stride=mb_conv.stride,
id_skip=idskip,
se=1 if mb_conv.use_se else 0,
h_swish=1 if mb_conv.act_func == "h_swish" else 0,
)
predicted_latency += block_latency
fsize = out_fz
# final expand layer
predicted_latency += self.query(
"Conv_1",
[fsize, fsize, net.final_expand_layer.in_channels],
[fsize, fsize, net.final_expand_layer.out_channels],
)
# global average pooling
predicted_latency += self.query(
"AvgPool2D",
[fsize, fsize, net.final_expand_layer.out_channels],
[1, 1, net.final_expand_layer.out_channels],
)
# feature mix layer
predicted_latency += self.query(
"Conv_2",
[1, 1, net.feature_mix_layer.in_channels],
[1, 1, net.feature_mix_layer.out_channels],
)
# classifier
predicted_latency += self.query(
"Logits", [1, 1, net.classifier.in_features], [net.classifier.out_features]
)
return predicted_latency
def predict_network_latency_given_config(self, net_config, image_size=224):
predicted_latency = 0
# first conv
predicted_latency += self.query(
"Conv",
[image_size, image_size, 3],
[
(image_size + 1) // 2,
(image_size + 1) // 2,
net_config["first_conv"]["out_channels"],
],
)
# blocks
fsize = (image_size + 1) // 2
for block in net_config["blocks"]:
mb_conv = (
block["mobile_inverted_conv"]
if "mobile_inverted_conv" in block
else block["conv"]
)
shortcut = block["shortcut"]
if mb_conv is None:
continue
if shortcut is None:
idskip = 0
else:
idskip = 1
out_fz = int((fsize - 1) / mb_conv["stride"] + 1)
if mb_conv["mid_channels"] is None:
mb_conv["mid_channels"] = round(
mb_conv["in_channels"] * mb_conv["expand_ratio"]
)
block_latency = self.query(
"expanded_conv",
[fsize, fsize, mb_conv["in_channels"]],
[out_fz, out_fz, mb_conv["out_channels"]],
mid=mb_conv["mid_channels"],
ks=mb_conv["kernel_size"],
stride=mb_conv["stride"],
id_skip=idskip,
se=1 if mb_conv["use_se"] else 0,
h_swish=1 if mb_conv["act_func"] == "h_swish" else 0,
)
predicted_latency += block_latency
fsize = out_fz
# final expand layer
predicted_latency += self.query(
"Conv_1",
[fsize, fsize, net_config["final_expand_layer"]["in_channels"]],
[fsize, fsize, net_config["final_expand_layer"]["out_channels"]],
)
# global average pooling
predicted_latency += self.query(
"AvgPool2D",
[fsize, fsize, net_config["final_expand_layer"]["out_channels"]],
[1, 1, net_config["final_expand_layer"]["out_channels"]],
)
# feature mix layer
predicted_latency += self.query(
"Conv_2",
[1, 1, net_config["feature_mix_layer"]["in_channels"]],
[1, 1, net_config["feature_mix_layer"]["out_channels"]],
)
# classifier
predicted_latency += self.query(
"Logits",
[1, 1, net_config["classifier"]["in_features"]],
[net_config["classifier"]["out_features"]],
)
return predicted_latency
@staticmethod
def count_flops_given_config(net_config, image_size=224):
flops = 0
# first conv
flops += count_conv_flop(
(image_size + 1) // 2, 3, net_config["first_conv"]["out_channels"], 3, 1
)
# blocks
fsize = (image_size + 1) // 2
for block in net_config["blocks"]:
mb_conv = (
block["mobile_inverted_conv"]
if "mobile_inverted_conv" in block
else block["conv"]
)
if mb_conv is None:
continue
out_fz = int((fsize - 1) / mb_conv["stride"] + 1)
if mb_conv["mid_channels"] is None:
mb_conv["mid_channels"] = round(
mb_conv["in_channels"] * mb_conv["expand_ratio"]
)
if mb_conv["expand_ratio"] != 1:
# inverted bottleneck
flops += count_conv_flop(
fsize, mb_conv["in_channels"], mb_conv["mid_channels"], 1, 1
)
# depth conv
flops += count_conv_flop(
out_fz,
mb_conv["mid_channels"],
mb_conv["mid_channels"],
mb_conv["kernel_size"],
mb_conv["mid_channels"],
)
if mb_conv["use_se"]:
# SE layer
se_mid = make_divisible(
mb_conv["mid_channels"] // 4, divisor=MyNetwork.CHANNEL_DIVISIBLE
)
flops += count_conv_flop(1, mb_conv["mid_channels"], se_mid, 1, 1)
flops += count_conv_flop(1, se_mid, mb_conv["mid_channels"], 1, 1)
# point linear
flops += count_conv_flop(
out_fz, mb_conv["mid_channels"], mb_conv["out_channels"], 1, 1
)
fsize = out_fz
# final expand layer
flops += count_conv_flop(
fsize,
net_config["final_expand_layer"]["in_channels"],
net_config["final_expand_layer"]["out_channels"],
1,
1,
)
# feature mix layer
flops += count_conv_flop(
1,
net_config["feature_mix_layer"]["in_channels"],
net_config["feature_mix_layer"]["out_channels"],
1,
1,
)
# classifier
flops += count_conv_flop(
1,
net_config["classifier"]["in_features"],
net_config["classifier"]["out_features"],
1,
1,
)
return flops / 1e6 # MFLOPs
class ResNet50LatencyTable(LatencyTable):
def query(self, **kwargs):
raise NotImplementedError
def predict_network_latency(self, net, image_size):
raise NotImplementedError
def predict_network_latency_given_config(self, net_config, image_size):
raise NotImplementedError
@staticmethod
def count_flops_given_config(net_config, image_size=224):
flops = 0
# input stem
for layer_config in net_config["input_stem"]:
if layer_config["name"] != "ConvLayer":
layer_config = layer_config["conv"]
in_channel = layer_config["in_channels"]
out_channel = layer_config["out_channels"]
out_image_size = int((image_size - 1) / layer_config["stride"] + 1)
flops += count_conv_flop(
out_image_size,
in_channel,
out_channel,
layer_config["kernel_size"],
layer_config.get("groups", 1),
)
image_size = out_image_size
# max pooling
image_size = int((image_size - 1) / 2 + 1)
# ResNetBottleneckBlocks
for block_config in net_config["blocks"]:
in_channel = block_config["in_channels"]
out_channel = block_config["out_channels"]
out_image_size = int((image_size - 1) / block_config["stride"] + 1)
mid_channel = (
block_config["mid_channels"]
if block_config["mid_channels"] is not None
else round(out_channel * block_config["expand_ratio"])
)
mid_channel = make_divisible(mid_channel, MyNetwork.CHANNEL_DIVISIBLE)
# conv1
flops += count_conv_flop(image_size, in_channel, mid_channel, 1, 1)
# conv2
flops += count_conv_flop(
out_image_size,
mid_channel,
mid_channel,
block_config["kernel_size"],
block_config["groups"],
)
# conv3
flops += count_conv_flop(out_image_size, mid_channel, out_channel, 1, 1)
# downsample
if block_config["stride"] == 1 and in_channel == out_channel:
pass
else:
flops += count_conv_flop(out_image_size, in_channel, out_channel, 1, 1)
image_size = out_image_size
# final classifier
flops += count_conv_flop(
1,
net_config["classifier"]["in_features"],
net_config["classifier"]["out_features"],
1,
1,
)
return flops / 1e6 # MFLOPs
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import copy
import random
import numpy as np
from tqdm import tqdm
__all__ = ["EvolutionFinder"]
class EvolutionFinder:
def __init__(self, efficiency_predictor, accuracy_predictor, **kwargs):
self.efficiency_predictor = efficiency_predictor
self.accuracy_predictor = accuracy_predictor
# evolution hyper-parameters
self.arch_mutate_prob = kwargs.get("arch_mutate_prob", 0.1)
self.resolution_mutate_prob = kwargs.get("resolution_mutate_prob", 0.5)
self.population_size = kwargs.get("population_size", 100)
self.max_time_budget = kwargs.get("max_time_budget", 500)
self.parent_ratio = kwargs.get("parent_ratio", 0.25)
self.mutation_ratio = kwargs.get("mutation_ratio", 0.5)
@property
def arch_manager(self):
return self.accuracy_predictor.arch_encoder
def update_hyper_params(self, new_param_dict):
self.__dict__.update(new_param_dict)
def random_valid_sample(self, constraint):
while True:
sample = self.arch_manager.random_sample_arch()
efficiency = self.efficiency_predictor.get_efficiency(sample)
if efficiency <= constraint:
return sample, efficiency
def mutate_sample(self, sample, constraint):
while True:
new_sample = copy.deepcopy(sample)
self.arch_manager.mutate_resolution(new_sample, self.resolution_mutate_prob)
self.arch_manager.mutate_arch(new_sample, self.arch_mutate_prob)
efficiency = self.efficiency_predictor.get_efficiency(new_sample)
if efficiency <= constraint:
return new_sample, efficiency
def crossover_sample(self, sample1, sample2, constraint):
while True:
new_sample = copy.deepcopy(sample1)
for key in new_sample.keys():
if not isinstance(new_sample[key], list):
new_sample[key] = random.choice([sample1[key], sample2[key]])
else:
for i in range(len(new_sample[key])):
new_sample[key][i] = random.choice(
[sample1[key][i], sample2[key][i]]
)
efficiency = self.efficiency_predictor.get_efficiency(new_sample)
if efficiency <= constraint:
return new_sample, efficiency
def run_evolution_search(self, constraint, verbose=False, **kwargs):
"""Run a single roll-out of regularized evolution to a fixed time budget."""
self.update_hyper_params(kwargs)
mutation_numbers = int(round(self.mutation_ratio * self.population_size))
parents_size = int(round(self.parent_ratio * self.population_size))
best_valids = [-100]
population = [] # (validation, sample, latency) tuples
child_pool = []
efficiency_pool = []
best_info = None
if verbose:
print("Generate random population...")
for _ in range(self.population_size):
sample, efficiency = self.random_valid_sample(constraint)
child_pool.append(sample)
efficiency_pool.append(efficiency)
accs = self.accuracy_predictor.predict_acc(child_pool)
for i in range(self.population_size):
population.append((accs[i].item(), child_pool[i], efficiency_pool[i]))
if verbose:
print("Start Evolution...")
# After the population is seeded, proceed with evolving the population.
with tqdm(
total=self.max_time_budget,
desc="Searching with constraint (%s)" % constraint,
disable=(not verbose),
) as t:
for i in range(self.max_time_budget):
parents = sorted(population, key=lambda x: x[0])[::-1][:parents_size]
acc = parents[0][0]
t.set_postfix({"acc": parents[0][0]})
if not verbose and (i + 1) % 100 == 0:
print("Iter: {} Acc: {}".format(i + 1, parents[0][0]))
if acc > best_valids[-1]:
best_valids.append(acc)
best_info = parents[0]
else:
best_valids.append(best_valids[-1])
population = parents
child_pool = []
efficiency_pool = []
for j in range(mutation_numbers):
par_sample = population[np.random.randint(parents_size)][1]
# Mutate
new_sample, efficiency = self.mutate_sample(par_sample, constraint)
child_pool.append(new_sample)
efficiency_pool.append(efficiency)
for j in range(self.population_size - mutation_numbers):
par_sample1 = population[np.random.randint(parents_size)][1]
par_sample2 = population[np.random.randint(parents_size)][1]
# Crossover
new_sample, efficiency = self.crossover_sample(
par_sample1, par_sample2, constraint
)
child_pool.append(new_sample)
efficiency_pool.append(efficiency)
accs = self.accuracy_predictor.predict_acc(child_pool)
for j in range(self.population_size):
population.append(
(accs[j].item(), child_pool[j], efficiency_pool[j])
)
t.update(1)
return best_valids, best_info
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
from .evolution import *
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
from .acc_dataset import *
from .acc_predictor import *
from .arch_encoder import *
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import os
import numpy as np
import torch
import torch.nn as nn
__all__ = ["AccuracyPredictor"]
class AccuracyPredictor(nn.Module):
def __init__(
self,
arch_encoder,
hidden_size=400,
n_layers=3,
checkpoint_path=None,
device="cuda:0",
):
super(AccuracyPredictor, self).__init__()
self.arch_encoder = arch_encoder
self.hidden_size = hidden_size
self.n_layers = n_layers
self.device = device
# build layers
layers = []
for i in range(self.n_layers):
layers.append(
nn.Sequential(
nn.Linear(
self.arch_encoder.n_dim if i == 0 else self.hidden_size,
self.hidden_size,
),
nn.ReLU(inplace=True),
)
)
layers.append(nn.Linear(self.hidden_size, 1, bias=False))
self.layers = nn.Sequential(*layers)
self.base_acc = nn.Parameter(
torch.zeros(1, device=self.device), requires_grad=False
)
if checkpoint_path is not None and os.path.exists(checkpoint_path):
checkpoint = torch.load(checkpoint_path, map_location="cpu")
if "state_dict" in checkpoint:
checkpoint = checkpoint["state_dict"]
self.load_state_dict(checkpoint)
print("Loaded checkpoint from %s" % checkpoint_path)
self.layers = self.layers.to(self.device)
def forward(self, x):
y = self.layers(x).squeeze()
return y + self.base_acc
def predict_acc(self, arch_dict_list):
X = [self.arch_encoder.arch2feature(arch_dict) for arch_dict in arch_dict_list]
X = torch.tensor(np.array(X)).float().to(self.device)
return self.forward(X)
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import os
import json
import numpy as np
from tqdm import tqdm
import torch
import torch.utils.data
from ofa.utils import list_mean
__all__ = ["net_setting2id", "net_id2setting", "AccuracyDataset"]
def net_setting2id(net_setting):
return json.dumps(net_setting)
def net_id2setting(net_id):
return json.loads(net_id)
class RegDataset(torch.utils.data.Dataset):
def __init__(self, inputs, targets):
super(RegDataset, self).__init__()
self.inputs = inputs
self.targets = targets
def __getitem__(self, index):
return self.inputs[index], self.targets[index]
def __len__(self):
return self.inputs.size(0)
class AccuracyDataset:
def __init__(self, path):
self.path = path
os.makedirs(self.path, exist_ok=True)
@property
def net_id_path(self):
return os.path.join(self.path, "net_id.dict")
@property
def acc_src_folder(self):
return os.path.join(self.path, "src")
@property
def acc_dict_path(self):
return os.path.join(self.path, "acc.dict")
# TODO: support parallel building
def build_acc_dataset(
self, run_manager, ofa_network, n_arch=1000, image_size_list=None
):
# load net_id_list, random sample if not exist
if os.path.isfile(self.net_id_path):
net_id_list = json.load(open(self.net_id_path))
else:
net_id_list = set()
while len(net_id_list) < n_arch:
net_setting = ofa_network.sample_active_subnet()
net_id = net_setting2id(net_setting)
net_id_list.add(net_id)
net_id_list = list(net_id_list)
net_id_list.sort()
json.dump(net_id_list, open(self.net_id_path, "w"), indent=4)
image_size_list = (
[128, 160, 192, 224] if image_size_list is None else image_size_list
)
with tqdm(
total=len(net_id_list) * len(image_size_list), desc="Building Acc Dataset"
) as t:
for image_size in image_size_list:
# load val dataset into memory
val_dataset = []
run_manager.run_config.data_provider.assign_active_img_size(image_size)
for images, labels in run_manager.run_config.valid_loader:
val_dataset.append((images, labels))
# save path
os.makedirs(self.acc_src_folder, exist_ok=True)
acc_save_path = os.path.join(
self.acc_src_folder, "%d.dict" % image_size
)
acc_dict = {}
# load existing acc dict
if os.path.isfile(acc_save_path):
existing_acc_dict = json.load(open(acc_save_path, "r"))
else:
existing_acc_dict = {}
for net_id in net_id_list:
net_setting = net_id2setting(net_id)
key = net_setting2id({**net_setting, "image_size": image_size})
if key in existing_acc_dict:
acc_dict[key] = existing_acc_dict[key]
t.set_postfix(
{
"net_id": net_id,
"image_size": image_size,
"info_val": acc_dict[key],
"status": "loading",
}
)
t.update()
continue
ofa_network.set_active_subnet(**net_setting)
run_manager.reset_running_statistics(ofa_network)
net_setting_str = ",".join(
[
"%s_%s"
% (
key,
"%.1f" % list_mean(val)
if isinstance(val, list)
else val,
)
for key, val in net_setting.items()
]
)
loss, (top1, top5) = run_manager.validate(
run_str=net_setting_str,
net=ofa_network,
data_loader=val_dataset,
no_logs=True,
)
info_val = top1
t.set_postfix(
{
"net_id": net_id,
"image_size": image_size,
"info_val": info_val,
}
)
t.update()
acc_dict.update({key: info_val})
json.dump(acc_dict, open(acc_save_path, "w"), indent=4)
def merge_acc_dataset(self, image_size_list=None):
# load existing data
merged_acc_dict = {}
for fname in os.listdir(self.acc_src_folder):
if ".dict" not in fname:
continue
image_size = int(fname.split(".dict")[0])
if image_size_list is not None and image_size not in image_size_list:
print("Skip ", fname)
continue
full_path = os.path.join(self.acc_src_folder, fname)
partial_acc_dict = json.load(open(full_path))
merged_acc_dict.update(partial_acc_dict)
print("loaded %s" % full_path)
json.dump(merged_acc_dict, open(self.acc_dict_path, "w"), indent=4)
return merged_acc_dict
def build_acc_data_loader(
self, arch_encoder, n_training_sample=None, batch_size=256, n_workers=16
):
# load data
acc_dict = json.load(open(self.acc_dict_path))
X_all = []
Y_all = []
with tqdm(total=len(acc_dict), desc="Loading data") as t:
for k, v in acc_dict.items():
dic = json.loads(k)
X_all.append(arch_encoder.arch2feature(dic))
Y_all.append(v / 100.0) # range: 0 - 1
t.update()
base_acc = np.mean(Y_all)
# convert to torch tensor
X_all = torch.tensor(X_all, dtype=torch.float)
Y_all = torch.tensor(Y_all)
# random shuffle
shuffle_idx = torch.randperm(len(X_all))
X_all = X_all[shuffle_idx]
Y_all = Y_all[shuffle_idx]
# split data
idx = X_all.size(0) // 5 * 4 if n_training_sample is None else n_training_sample
val_idx = X_all.size(0) // 5 * 4
X_train, Y_train = X_all[:idx], Y_all[:idx]
X_test, Y_test = X_all[val_idx:], Y_all[val_idx:]
print("Train Size: %d," % len(X_train), "Valid Size: %d" % len(X_test))
# build data loader
train_dataset = RegDataset(X_train, Y_train)
val_dataset = RegDataset(X_test, Y_test)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
pin_memory=False,
num_workers=n_workers,
)
valid_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=batch_size,
shuffle=False,
pin_memory=False,
num_workers=n_workers,
)
return train_loader, valid_loader, base_acc
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import random
import numpy as np
from ofa.imagenet_classification.networks import ResNets
__all__ = ["MobileNetArchEncoder", "ResNetArchEncoder"]
class MobileNetArchEncoder:
SPACE_TYPE = "mbv3"
def __init__(
self,
image_size_list=None,
ks_list=None,
expand_list=None,
depth_list=None,
n_stage=None,
):
self.image_size_list = [224] if image_size_list is None else image_size_list
self.ks_list = [3, 5, 7] if ks_list is None else ks_list
self.expand_list = (
[3, 4, 6]
if expand_list is None
else [int(expand) for expand in expand_list]
)
self.depth_list = [2, 3, 4] if depth_list is None else depth_list
if n_stage is not None:
self.n_stage = n_stage
elif self.SPACE_TYPE == "mbv2":
self.n_stage = 6
elif self.SPACE_TYPE == "mbv3":
self.n_stage = 5
else:
raise NotImplementedError
# build info dict
self.n_dim = 0
self.r_info = dict(id2val={}, val2id={}, L=[], R=[])
self._build_info_dict(target="r")
self.k_info = dict(id2val=[], val2id=[], L=[], R=[])
self.e_info = dict(id2val=[], val2id=[], L=[], R=[])
self._build_info_dict(target="k")
self._build_info_dict(target="e")
@property
def max_n_blocks(self):
if self.SPACE_TYPE == "mbv3":
return self.n_stage * max(self.depth_list)
elif self.SPACE_TYPE == "mbv2":
return (self.n_stage - 1) * max(self.depth_list) + 1
else:
raise NotImplementedError
def _build_info_dict(self, target):
if target == "r":
target_dict = self.r_info
target_dict["L"].append(self.n_dim)
for img_size in self.image_size_list:
target_dict["val2id"][img_size] = self.n_dim
target_dict["id2val"][self.n_dim] = img_size
self.n_dim += 1
target_dict["R"].append(self.n_dim)
else:
if target == "k":
target_dict = self.k_info
choices = self.ks_list
elif target == "e":
target_dict = self.e_info
choices = self.expand_list
else:
raise NotImplementedError
for i in range(self.max_n_blocks):
target_dict["val2id"].append({})
target_dict["id2val"].append({})
target_dict["L"].append(self.n_dim)
for k in choices:
target_dict["val2id"][i][k] = self.n_dim
target_dict["id2val"][i][self.n_dim] = k
self.n_dim += 1
target_dict["R"].append(self.n_dim)
def arch2feature(self, arch_dict):
ks, e, d, r = (
arch_dict["ks"],
arch_dict["e"],
arch_dict["d"],
arch_dict["image_size"],
)
feature = np.zeros(self.n_dim)
for i in range(self.max_n_blocks):
nowd = i % max(self.depth_list)
stg = i // max(self.depth_list)
if nowd < d[stg]:
feature[self.k_info["val2id"][i][ks[i]]] = 1
feature[self.e_info["val2id"][i][e[i]]] = 1
feature[self.r_info["val2id"][r]] = 1
return feature
def feature2arch(self, feature):
img_sz = self.r_info["id2val"][
int(np.argmax(feature[self.r_info["L"][0] : self.r_info["R"][0]]))
+ self.r_info["L"][0]
]
assert img_sz in self.image_size_list
arch_dict = {"ks": [], "e": [], "d": [], "image_size": img_sz}
d = 0
for i in range(self.max_n_blocks):
skip = True
for j in range(self.k_info["L"][i], self.k_info["R"][i]):
if feature[j] == 1:
arch_dict["ks"].append(self.k_info["id2val"][i][j])
skip = False
break
for j in range(self.e_info["L"][i], self.e_info["R"][i]):
if feature[j] == 1:
arch_dict["e"].append(self.e_info["id2val"][i][j])
assert not skip
skip = False
break
if skip:
arch_dict["e"].append(0)
arch_dict["ks"].append(0)
else:
d += 1
if (i + 1) % max(self.depth_list) == 0 or (i + 1) == self.max_n_blocks:
arch_dict["d"].append(d)
d = 0
return arch_dict
def random_sample_arch(self):
return {
"ks": random.choices(self.ks_list, k=self.max_n_blocks),
"e": random.choices(self.expand_list, k=self.max_n_blocks),
"d": random.choices(self.depth_list, k=self.n_stage),
"image_size": random.choice(self.image_size_list),
}
def mutate_resolution(self, arch_dict, mutate_prob):
if random.random() < mutate_prob:
arch_dict["image_size"] = random.choice(self.image_size_list)
return arch_dict
def mutate_arch(self, arch_dict, mutate_prob):
for i in range(self.max_n_blocks):
if random.random() < mutate_prob:
arch_dict["ks"][i] = random.choice(self.ks_list)
arch_dict["e"][i] = random.choice(self.expand_list)
for i in range(self.n_stage):
if random.random() < mutate_prob:
arch_dict["d"][i] = random.choice(self.depth_list)
return arch_dict
class ResNetArchEncoder:
def __init__(
self,
image_size_list=None,
depth_list=None,
expand_list=None,
width_mult_list=None,
base_depth_list=None,
):
self.image_size_list = [224] if image_size_list is None else image_size_list
self.expand_list = [0.2, 0.25, 0.35] if expand_list is None else expand_list
self.depth_list = [0, 1, 2] if depth_list is None else depth_list
self.width_mult_list = (
[0.65, 0.8, 1.0] if width_mult_list is None else width_mult_list
)
self.base_depth_list = (
ResNets.BASE_DEPTH_LIST if base_depth_list is None else base_depth_list
)
"""" build info dict """
self.n_dim = 0
# resolution
self.r_info = dict(id2val={}, val2id={}, L=[], R=[])
self._build_info_dict(target="r")
# input stem skip
self.input_stem_d_info = dict(id2val={}, val2id={}, L=[], R=[])
self._build_info_dict(target="input_stem_d")
# width_mult
self.width_mult_info = dict(id2val=[], val2id=[], L=[], R=[])
self._build_info_dict(target="width_mult")
# expand ratio
self.e_info = dict(id2val=[], val2id=[], L=[], R=[])
self._build_info_dict(target="e")
@property
def n_stage(self):
return len(self.base_depth_list)
@property
def max_n_blocks(self):
return sum(self.base_depth_list) + self.n_stage * max(self.depth_list)
def _build_info_dict(self, target):
if target == "r":
target_dict = self.r_info
target_dict["L"].append(self.n_dim)
for img_size in self.image_size_list:
target_dict["val2id"][img_size] = self.n_dim
target_dict["id2val"][self.n_dim] = img_size
self.n_dim += 1
target_dict["R"].append(self.n_dim)
elif target == "input_stem_d":
target_dict = self.input_stem_d_info
target_dict["L"].append(self.n_dim)
for skip in [0, 1]:
target_dict["val2id"][skip] = self.n_dim
target_dict["id2val"][self.n_dim] = skip
self.n_dim += 1
target_dict["R"].append(self.n_dim)
elif target == "e":
target_dict = self.e_info
choices = self.expand_list
for i in range(self.max_n_blocks):
target_dict["val2id"].append({})
target_dict["id2val"].append({})
target_dict["L"].append(self.n_dim)
for e in choices:
target_dict["val2id"][i][e] = self.n_dim
target_dict["id2val"][i][self.n_dim] = e
self.n_dim += 1
target_dict["R"].append(self.n_dim)
elif target == "width_mult":
target_dict = self.width_mult_info
choices = list(range(len(self.width_mult_list)))
for i in range(self.n_stage + 2):
target_dict["val2id"].append({})
target_dict["id2val"].append({})
target_dict["L"].append(self.n_dim)
for w in choices:
target_dict["val2id"][i][w] = self.n_dim
target_dict["id2val"][i][self.n_dim] = w
self.n_dim += 1
target_dict["R"].append(self.n_dim)
def arch2feature(self, arch_dict):
d, e, w, r = (
arch_dict["d"],
arch_dict["e"],
arch_dict["w"],
arch_dict["image_size"],
)
input_stem_skip = 1 if d[0] > 0 else 0
d = d[1:]
feature = np.zeros(self.n_dim)
feature[self.r_info["val2id"][r]] = 1
feature[self.input_stem_d_info["val2id"][input_stem_skip]] = 1
for i in range(self.n_stage + 2):
feature[self.width_mult_info["val2id"][i][w[i]]] = 1
start_pt = 0
for i, base_depth in enumerate(self.base_depth_list):
depth = base_depth + d[i]
for j in range(start_pt, start_pt + depth):
feature[self.e_info["val2id"][j][e[j]]] = 1
start_pt += max(self.depth_list) + base_depth
return feature
def feature2arch(self, feature):
img_sz = self.r_info["id2val"][
int(np.argmax(feature[self.r_info["L"][0] : self.r_info["R"][0]]))
+ self.r_info["L"][0]
]
input_stem_skip = (
self.input_stem_d_info["id2val"][
int(
np.argmax(
feature[
self.input_stem_d_info["L"][0] : self.input_stem_d_info[
"R"
][0]
]
)
)
+ self.input_stem_d_info["L"][0]
]
* 2
)
assert img_sz in self.image_size_list
arch_dict = {"d": [input_stem_skip], "e": [], "w": [], "image_size": img_sz}
for i in range(self.n_stage + 2):
arch_dict["w"].append(
self.width_mult_info["id2val"][i][
int(
np.argmax(
feature[
self.width_mult_info["L"][i] : self.width_mult_info[
"R"
][i]
]
)
)
+ self.width_mult_info["L"][i]
]
)
d = 0
skipped = 0
stage_id = 0
for i in range(self.max_n_blocks):
skip = True
for j in range(self.e_info["L"][i], self.e_info["R"][i]):
if feature[j] == 1:
arch_dict["e"].append(self.e_info["id2val"][i][j])
skip = False
break
if skip:
arch_dict["e"].append(0)
skipped += 1
else:
d += 1
if (
i + 1 == self.max_n_blocks
or (skipped + d)
% (max(self.depth_list) + self.base_depth_list[stage_id])
== 0
):
arch_dict["d"].append(d - self.base_depth_list[stage_id])
d, skipped = 0, 0
stage_id += 1
return arch_dict
def random_sample_arch(self):
return {
"d": [random.choice([0, 2])]
+ random.choices(self.depth_list, k=self.n_stage),
"e": random.choices(self.expand_list, k=self.max_n_blocks),
"w": random.choices(
list(range(len(self.width_mult_list))), k=self.n_stage + 2
),
"image_size": random.choice(self.image_size_list),
}
def mutate_resolution(self, arch_dict, mutate_prob):
if random.random() < mutate_prob:
arch_dict["image_size"] = random.choice(self.image_size_list)
return arch_dict
def mutate_arch(self, arch_dict, mutate_prob):
# input stem skip
if random.random() < mutate_prob:
arch_dict["d"][0] = random.choice([0, 2])
# depth
for i in range(1, len(arch_dict["d"])):
if random.random() < mutate_prob:
arch_dict["d"][i] = random.choice(self.depth_list)
# width_mult
for i in range(len(arch_dict["w"])):
if random.random() < mutate_prob:
arch_dict["w"][i] = random.choice(
list(range(len(self.width_mult_list)))
)
# expand ratio
for i in range(len(arch_dict["e"])):
if random.random() < mutate_prob:
arch_dict["e"][i] = random.choice(self.expand_list)
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import math
import torch.nn as nn
import torch.nn.functional as F
from .common_tools import min_divisible_value
__all__ = [
"MyModule",
"MyNetwork",
"init_models",
"set_bn_param",
"get_bn_param",
"replace_bn_with_gn",
"MyConv2d",
"replace_conv2d_with_my_conv2d",
]
def set_bn_param(net, momentum, eps, gn_channel_per_group=None, ws_eps=None, **kwargs):
replace_bn_with_gn(net, gn_channel_per_group)
for m in net.modules():
if type(m) in [nn.BatchNorm1d, nn.BatchNorm2d]:
m.momentum = momentum
m.eps = eps
elif isinstance(m, nn.GroupNorm):
m.eps = eps
replace_conv2d_with_my_conv2d(net, ws_eps)
return
def get_bn_param(net):
ws_eps = None
for m in net.modules():
if isinstance(m, MyConv2d):
ws_eps = m.WS_EPS
break
for m in net.modules():
if isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
return {
"momentum": m.momentum,
"eps": m.eps,
"ws_eps": ws_eps,
}
elif isinstance(m, nn.GroupNorm):
return {
"momentum": None,
"eps": m.eps,
"gn_channel_per_group": m.num_channels // m.num_groups,
"ws_eps": ws_eps,
}
return None
def replace_bn_with_gn(model, gn_channel_per_group):
if gn_channel_per_group is None:
return
for m in model.modules():
to_replace_dict = {}
for name, sub_m in m.named_children():
if isinstance(sub_m, nn.BatchNorm2d):
num_groups = sub_m.num_features // min_divisible_value(
sub_m.num_features, gn_channel_per_group
)
gn_m = nn.GroupNorm(
num_groups=num_groups,
num_channels=sub_m.num_features,
eps=sub_m.eps,
affine=True,
)
# load weight
gn_m.weight.data.copy_(sub_m.weight.data)
gn_m.bias.data.copy_(sub_m.bias.data)
# load requires_grad
gn_m.weight.requires_grad = sub_m.weight.requires_grad
gn_m.bias.requires_grad = sub_m.bias.requires_grad
to_replace_dict[name] = gn_m
m._modules.update(to_replace_dict)
def replace_conv2d_with_my_conv2d(net, ws_eps=None):
if ws_eps is None:
return
for m in net.modules():
to_update_dict = {}
for name, sub_module in m.named_children():
if isinstance(sub_module, nn.Conv2d) and not sub_module.bias:
# only replace conv2d layers that are followed by normalization layers (i.e., no bias)
to_update_dict[name] = sub_module
for name, sub_module in to_update_dict.items():
m._modules[name] = MyConv2d(
sub_module.in_channels,
sub_module.out_channels,
sub_module.kernel_size,
sub_module.stride,
sub_module.padding,
sub_module.dilation,
sub_module.groups,
sub_module.bias,
)
# load weight
m._modules[name].load_state_dict(sub_module.state_dict())
# load requires_grad
m._modules[name].weight.requires_grad = sub_module.weight.requires_grad
if sub_module.bias is not None:
m._modules[name].bias.requires_grad = sub_module.bias.requires_grad
# set ws_eps
for m in net.modules():
if isinstance(m, MyConv2d):
m.WS_EPS = ws_eps
def init_models(net, model_init="he_fout"):
"""
Conv2d,
BatchNorm2d, BatchNorm1d, GroupNorm
Linear,
"""
if isinstance(net, list):
for sub_net in net:
init_models(sub_net, model_init)
return
for m in net.modules():
if isinstance(m, nn.Conv2d):
if model_init == "he_fout":
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2.0 / n))
elif model_init == "he_fin":
n = m.kernel_size[0] * m.kernel_size[1] * m.in_channels
m.weight.data.normal_(0, math.sqrt(2.0 / n))
else:
raise NotImplementedError
if m.bias is not None:
m.bias.data.zero_()
elif type(m) in [nn.BatchNorm2d, nn.BatchNorm1d, nn.GroupNorm]:
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
stdv = 1.0 / math.sqrt(m.weight.size(1))
m.weight.data.uniform_(-stdv, stdv)
if m.bias is not None:
m.bias.data.zero_()
class MyConv2d(nn.Conv2d):
"""
Conv2d with Weight Standardization
https://github.com/joe-siyuan-qiao/WeightStandardization
"""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
):
super(MyConv2d, self).__init__(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
)
self.WS_EPS = None
def weight_standardization(self, weight):
if self.WS_EPS is not None:
weight_mean = (
weight.mean(dim=1, keepdim=True)
.mean(dim=2, keepdim=True)
.mean(dim=3, keepdim=True)
)
weight = weight - weight_mean
std = (
weight.view(weight.size(0), -1).std(dim=1).view(-1, 1, 1, 1)
+ self.WS_EPS
)
weight = weight / std.expand_as(weight)
return weight
def forward(self, x):
if self.WS_EPS is None:
return super(MyConv2d, self).forward(x)
else:
return F.conv2d(
x,
self.weight_standardization(self.weight),
self.bias,
self.stride,
self.padding,
self.dilation,
self.groups,
)
def __repr__(self):
return super(MyConv2d, self).__repr__()[:-1] + ", ws_eps=%s)" % self.WS_EPS
class MyModule(nn.Module):
def forward(self, x):
raise NotImplementedError
@property
def module_str(self):
raise NotImplementedError
@property
def config(self):
raise NotImplementedError
@staticmethod
def build_from_config(config):
raise NotImplementedError
class MyNetwork(MyModule):
CHANNEL_DIVISIBLE = 8
def forward(self, x):
raise NotImplementedError
@property
def module_str(self):
raise NotImplementedError
@property
def config(self):
raise NotImplementedError
@staticmethod
def build_from_config(config):
raise NotImplementedError
def zero_last_gamma(self):
raise NotImplementedError
@property
def grouped_block_index(self):
raise NotImplementedError
""" implemented methods """
def set_bn_param(self, momentum, eps, gn_channel_per_group=None, **kwargs):
set_bn_param(self, momentum, eps, gn_channel_per_group, **kwargs)
def get_bn_param(self):
return get_bn_param(self)
def get_parameters(self, keys=None, mode="include"):
if keys is None:
for name, param in self.named_parameters():
if param.requires_grad:
yield param
elif mode == "include":
for name, param in self.named_parameters():
flag = False
for key in keys:
if key in name:
flag = True
break
if flag and param.requires_grad:
yield param
elif mode == "exclude":
for name, param in self.named_parameters():
flag = True
for key in keys:
if key in name:
flag = False
break
if flag and param.requires_grad:
yield param
else:
raise ValueError("do not support: %s" % mode)
def weight_parameters(self):
return self.get_parameters()
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import numpy as np
import os
import sys
import torch
try:
from urllib import urlretrieve
except ImportError:
from urllib.request import urlretrieve
__all__ = [
"sort_dict",
"get_same_padding",
"get_split_list",
"list_sum",
"list_mean",
"list_join",
"subset_mean",
"sub_filter_start_end",
"min_divisible_value",
"val2list",
"download_url",
"write_log",
"pairwise_accuracy",
"accuracy",
"AverageMeter",
"MultiClassAverageMeter",
"DistributedMetric",
"DistributedTensor",
]
def sort_dict(src_dict, reverse=False, return_dict=True):
output = sorted(src_dict.items(), key=lambda x: x[1], reverse=reverse)
if return_dict:
return dict(output)
else:
return output
def get_same_padding(kernel_size):
if isinstance(kernel_size, tuple):
assert len(kernel_size) == 2, "invalid kernel size: %s" % kernel_size
p1 = get_same_padding(kernel_size[0])
p2 = get_same_padding(kernel_size[1])
return p1, p2
assert isinstance(kernel_size, int), "kernel size should be either `int` or `tuple`"
assert kernel_size % 2 > 0, "kernel size should be odd number"
return kernel_size // 2
def get_split_list(in_dim, child_num, accumulate=False):
in_dim_list = [in_dim // child_num] * child_num
for _i in range(in_dim % child_num):
in_dim_list[_i] += 1
if accumulate:
for i in range(1, child_num):
in_dim_list[i] += in_dim_list[i - 1]
return in_dim_list
def list_sum(x):
return x[0] if len(x) == 1 else x[0] + list_sum(x[1:])
def list_mean(x):
return list_sum(x) / len(x)
def list_join(val_list, sep="\t"):
return sep.join([str(val) for val in val_list])
def subset_mean(val_list, sub_indexes):
sub_indexes = val2list(sub_indexes, 1)
return list_mean([val_list[idx] for idx in sub_indexes])
def sub_filter_start_end(kernel_size, sub_kernel_size):
center = kernel_size // 2
dev = sub_kernel_size // 2
start, end = center - dev, center + dev + 1
assert end - start == sub_kernel_size
return start, end
def min_divisible_value(n1, v1):
"""make sure v1 is divisible by n1, otherwise decrease v1"""
if v1 >= n1:
return n1
while n1 % v1 != 0:
v1 -= 1
return v1
def val2list(val, repeat_time=1):
if isinstance(val, list) or isinstance(val, np.ndarray):
return val
elif isinstance(val, tuple):
return list(val)
else:
return [val for _ in range(repeat_time)]
def download_url(url, model_dir="~/.torch/", overwrite=False):
target_dir = url.split("/")[-1]
model_dir = os.path.expanduser(model_dir)
try:
if not os.path.exists(model_dir):
os.makedirs(model_dir)
model_dir = os.path.join(model_dir, target_dir)
cached_file = model_dir
if not os.path.exists(cached_file) or overwrite:
sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
urlretrieve(url, cached_file)
return cached_file
except Exception as e:
# remove lock file so download can be executed next time.
os.remove(os.path.join(model_dir, "download.lock"))
sys.stderr.write("Failed to download from url %s" % url + "\n" + str(e) + "\n")
return None
def write_log(logs_path, log_str, prefix="valid", should_print=True, mode="a"):
if not os.path.exists(logs_path):
os.makedirs(logs_path, exist_ok=True)
""" prefix: valid, train, test """
if prefix in ["valid", "test"]:
with open(os.path.join(logs_path, "valid_console.txt"), mode) as fout:
fout.write(log_str + "\n")
fout.flush()
if prefix in ["valid", "test", "train"]:
with open(os.path.join(logs_path, "train_console.txt"), mode) as fout:
if prefix in ["valid", "test"]:
fout.write("=" * 10)
fout.write(log_str + "\n")
fout.flush()
else:
with open(os.path.join(logs_path, "%s.txt" % prefix), mode) as fout:
fout.write(log_str + "\n")
fout.flush()
if should_print:
print(log_str)
def pairwise_accuracy(la, lb, n_samples=200000):
n = len(la)
assert n == len(lb)
total = 0
count = 0
for _ in range(n_samples):
i = np.random.randint(n)
j = np.random.randint(n)
while i == j:
j = np.random.randint(n)
if la[i] >= la[j] and lb[i] >= lb[j]:
count += 1
if la[i] < la[j] and lb[i] < lb[j]:
count += 1
total += 1
return float(count) / total
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.reshape(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class AverageMeter(object):
"""
Computes and stores the average and current value
Copied from: https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
def __init__(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class MultiClassAverageMeter:
"""Multi Binary Classification Tasks"""
def __init__(self, num_classes, balanced=False, **kwargs):
super(MultiClassAverageMeter, self).__init__()
self.num_classes = num_classes
self.balanced = balanced
self.counts = []
for k in range(self.num_classes):
self.counts.append(np.ndarray((2, 2), dtype=np.float32))
self.reset()
def reset(self):
for k in range(self.num_classes):
self.counts[k].fill(0)
def add(self, outputs, targets):
outputs = outputs.data.cpu().numpy()
targets = targets.data.cpu().numpy()
for k in range(self.num_classes):
output = np.argmax(outputs[:, k, :], axis=1)
target = targets[:, k]
x = output + 2 * target
bincount = np.bincount(x.astype(np.int32), minlength=2 ** 2)
self.counts[k] += bincount.reshape((2, 2))
def value(self):
mean = 0
for k in range(self.num_classes):
if self.balanced:
value = np.mean(
(
self.counts[k]
/ np.maximum(np.sum(self.counts[k], axis=1), 1)[:, None]
).diagonal()
)
else:
value = np.sum(self.counts[k].diagonal()) / np.maximum(
np.sum(self.counts[k]), 1
)
mean += value / self.num_classes * 100.0
return mean
class DistributedMetric(object):
"""
Horovod: average metrics from distributed training.
"""
def __init__(self, name):
self.name = name
self.sum = torch.zeros(1)[0]
self.count = torch.zeros(1)[0]
def update(self, val, delta_n=1):
import horovod.torch as hvd
val *= delta_n
self.sum += hvd.allreduce(val.detach().cpu(), name=self.name)
self.count += delta_n
@property
def avg(self):
return self.sum / self.count
class DistributedTensor(object):
def __init__(self, name):
self.name = name
self.sum = None
self.count = torch.zeros(1)[0]
self.synced = False
def update(self, val, delta_n=1):
val *= delta_n
if self.sum is None:
self.sum = val.detach()
else:
self.sum += val.detach()
self.count += delta_n
@property
def avg(self):
import horovod.torch as hvd
if not self.synced:
self.sum = hvd.allreduce(self.sum, name=self.name)
self.synced = True
return self.sum / self.count
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import math
import copy
import time
import torch
import torch.nn as nn
__all__ = [
"mix_images",
"mix_labels",
"label_smooth",
"cross_entropy_loss_with_soft_target",
"cross_entropy_with_label_smoothing",
"clean_num_batch_tracked",
"rm_bn_from_net",
"get_net_device",
"count_parameters",
"count_net_flops",
"measure_net_latency",
"get_net_info",
"build_optimizer",
"calc_learning_rate",
]
""" Mixup """
def mix_images(images, lam):
flipped_images = torch.flip(images, dims=[0]) # flip along the batch dimension
return lam * images + (1 - lam) * flipped_images
def mix_labels(target, lam, n_classes, label_smoothing=0.1):
onehot_target = label_smooth(target, n_classes, label_smoothing)
flipped_target = torch.flip(onehot_target, dims=[0])
return lam * onehot_target + (1 - lam) * flipped_target
""" Label smooth """
def label_smooth(target, n_classes: int, label_smoothing=0.1):
# convert to one-hot
batch_size = target.size(0)
target = torch.unsqueeze(target, 1)
soft_target = torch.zeros((batch_size, n_classes), device=target.device)
soft_target.scatter_(1, target, 1)
# label smoothing
soft_target = soft_target * (1 - label_smoothing) + label_smoothing / n_classes
return soft_target
def cross_entropy_loss_with_soft_target(pred, soft_target):
logsoftmax = nn.LogSoftmax()
return torch.mean(torch.sum(-soft_target * logsoftmax(pred), 1))
def cross_entropy_with_label_smoothing(pred, target, label_smoothing=0.1):
soft_target = label_smooth(target, pred.size(1), label_smoothing)
return cross_entropy_loss_with_soft_target(pred, soft_target)
""" BN related """
def clean_num_batch_tracked(net):
for m in net.modules():
if isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
if m.num_batches_tracked is not None:
m.num_batches_tracked.zero_()
def rm_bn_from_net(net):
for m in net.modules():
if isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
m.forward = lambda x: x
""" Network profiling """
def get_net_device(net):
return net.parameters().__next__().device
def count_parameters(net):
total_params = sum(p.numel() for p in net.parameters() if p.requires_grad)
return total_params
def count_net_flops(net, data_shape=(1, 3, 224, 224)):
from .flops_counter import profile
if isinstance(net, nn.DataParallel):
net = net.module
flop, _ = profile(copy.deepcopy(net), data_shape)
return flop
def measure_net_latency(
net, l_type="gpu8", fast=True, input_shape=(3, 224, 224), clean=False
):
if isinstance(net, nn.DataParallel):
net = net.module
# remove bn from graph
rm_bn_from_net(net)
# return `ms`
if "gpu" in l_type:
l_type, batch_size = l_type[:3], int(l_type[3:])
else:
batch_size = 1
data_shape = [batch_size] + list(input_shape)
if l_type == "cpu":
if fast:
n_warmup = 5
n_sample = 10
else:
n_warmup = 50
n_sample = 50
if get_net_device(net) != torch.device("cpu"):
if not clean:
print("move net to cpu for measuring cpu latency")
net = copy.deepcopy(net).cpu()
elif l_type == "gpu":
if fast:
n_warmup = 5
n_sample = 10
else:
n_warmup = 50
n_sample = 50
else:
raise NotImplementedError
images = torch.zeros(data_shape, device=get_net_device(net))
measured_latency = {"warmup": [], "sample": []}
net.eval()
with torch.no_grad():
for i in range(n_warmup):
inner_start_time = time.time()
net(images)
used_time = (time.time() - inner_start_time) * 1e3 # ms
measured_latency["warmup"].append(used_time)
if not clean:
print("Warmup %d: %.3f" % (i, used_time))
outer_start_time = time.time()
for i in range(n_sample):
net(images)
total_time = (time.time() - outer_start_time) * 1e3 # ms
measured_latency["sample"].append((total_time, n_sample))
return total_time / n_sample, measured_latency
def get_net_info(net, input_shape=(3, 224, 224), measure_latency=None, print_info=True):
net_info = {}
if isinstance(net, nn.DataParallel):
net = net.module
# parameters
net_info["params"] = count_parameters(net) / 1e6
# flops
net_info["flops"] = count_net_flops(net, [1] + list(input_shape)) / 1e6
# latencies
latency_types = [] if measure_latency is None else measure_latency.split("#")
for l_type in latency_types:
latency, measured_latency = measure_net_latency(
net, l_type, fast=False, input_shape=input_shape
)
net_info["%s latency" % l_type] = {"val": latency, "hist": measured_latency}
if print_info:
print(net)
print("Total training params: %.2fM" % (net_info["params"]))
print("Total FLOPs: %.2fM" % (net_info["flops"]))
for l_type in latency_types:
print(
"Estimated %s latency: %.3fms"
% (l_type, net_info["%s latency" % l_type]["val"])
)
return net_info
""" optimizer """
def build_optimizer(
net_params, opt_type, opt_param, init_lr, weight_decay, no_decay_keys
):
if no_decay_keys is not None:
assert isinstance(net_params, list) and len(net_params) == 2
net_params = [
{"params": net_params[0], "weight_decay": weight_decay},
{"params": net_params[1], "weight_decay": 0},
]
else:
net_params = [{"params": net_params, "weight_decay": weight_decay}]
if opt_type == "sgd":
opt_param = {} if opt_param is None else opt_param
momentum, nesterov = opt_param.get("momentum", 0.9), opt_param.get(
"nesterov", True
)
optimizer = torch.optim.SGD(
net_params, init_lr, momentum=momentum, nesterov=nesterov
)
elif opt_type == "adam":
optimizer = torch.optim.Adam(net_params, init_lr)
else:
raise NotImplementedError
return optimizer
""" learning rate schedule """
def calc_learning_rate(
epoch, init_lr, n_epochs, batch=0, nBatch=None, lr_schedule_type="cosine"
):
if lr_schedule_type == "cosine":
t_total = n_epochs * nBatch
t_cur = epoch * nBatch + batch
lr = 0.5 * init_lr * (1 + math.cos(math.pi * t_cur / t_total))
elif lr_schedule_type is None:
lr = init_lr
else:
raise ValueError("do not support: %s" % lr_schedule_type)
return lr
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
from .pytorch_modules import *
from .pytorch_utils import *
from .my_modules import *
from .flops_counter import *
from .common_tools import *
from .my_dataloader import *
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import torch
import torch.nn as nn
from .my_modules import MyConv2d
__all__ = ["profile"]
def count_convNd(m, _, y):
cin = m.in_channels
kernel_ops = m.weight.size()[2] * m.weight.size()[3]
ops_per_element = kernel_ops
output_elements = y.nelement()
# cout x oW x oH
total_ops = cin * output_elements * ops_per_element // m.groups
m.total_ops = torch.zeros(1).fill_(total_ops)
def count_linear(m, _, __):
total_ops = m.in_features * m.out_features
m.total_ops = torch.zeros(1).fill_(total_ops)
register_hooks = {
nn.Conv1d: count_convNd,
nn.Conv2d: count_convNd,
nn.Conv3d: count_convNd,
MyConv2d: count_convNd,
######################################
nn.Linear: count_linear,
######################################
nn.Dropout: None,
nn.Dropout2d: None,
nn.Dropout3d: None,
nn.BatchNorm2d: None,
}
def profile(model, input_size, custom_ops=None):
handler_collection = []
custom_ops = {} if custom_ops is None else custom_ops
def add_hooks(m_):
if len(list(m_.children())) > 0:
return
m_.register_buffer("total_ops", torch.zeros(1))
m_.register_buffer("total_params", torch.zeros(1))
for p in m_.parameters():
m_.total_params += torch.zeros(1).fill_(p.numel())
m_type = type(m_)
fn = None
if m_type in custom_ops:
fn = custom_ops[m_type]
elif m_type in register_hooks:
fn = register_hooks[m_type]
if fn is not None:
_handler = m_.register_forward_hook(fn)
handler_collection.append(_handler)
original_device = model.parameters().__next__().device
training = model.training
model.eval()
model.apply(add_hooks)
x = torch.zeros(input_size).to(original_device)
with torch.no_grad():
model(x)
total_ops = 0
total_params = 0
for m in model.modules():
if len(list(m.children())) > 0: # skip for non-leaf module
continue
total_ops += m.total_ops
total_params += m.total_params
total_ops = total_ops.item()
total_params = total_params.item()
model.train(training).to(original_device)
for handler in handler_collection:
handler.remove()
return total_ops, total_params
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
from .my_modules import MyNetwork
__all__ = [
"make_divisible",
"build_activation",
"ShuffleLayer",
"MyGlobalAvgPool2d",
"Hswish",
"Hsigmoid",
"SEModule",
"MultiHeadCrossEntropyLoss",
]
def make_divisible(v, divisor, min_val=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
:param v:
:param divisor:
:param min_val:
:return:
"""
if min_val is None:
min_val = divisor
new_v = max(min_val, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
def build_activation(act_func, inplace=True):
if act_func == "relu":
return nn.ReLU(inplace=inplace)
elif act_func == "relu6":
return nn.ReLU6(inplace=inplace)
elif act_func == "tanh":
return nn.Tanh()
elif act_func == "sigmoid":
return nn.Sigmoid()
elif act_func == "h_swish":
return Hswish(inplace=inplace)
elif act_func == "h_sigmoid":
return Hsigmoid(inplace=inplace)
elif act_func is None or act_func == "none":
return None
else:
raise ValueError("do not support: %s" % act_func)
class ShuffleLayer(nn.Module):
def __init__(self, groups):
super(ShuffleLayer, self).__init__()
self.groups = groups
def forward(self, x):
batch_size, num_channels, height, width = x.size()
channels_per_group = num_channels // self.groups
# reshape
x = x.view(batch_size, self.groups, channels_per_group, height, width)
x = torch.transpose(x, 1, 2).contiguous()
# flatten
x = x.view(batch_size, -1, height, width)
return x
def __repr__(self):
return "ShuffleLayer(groups=%d)" % self.groups
class MyGlobalAvgPool2d(nn.Module):
def __init__(self, keep_dim=True):
super(MyGlobalAvgPool2d, self).__init__()
self.keep_dim = keep_dim
def forward(self, x):
return x.mean(3, keepdim=self.keep_dim).mean(2, keepdim=self.keep_dim)
def __repr__(self):
return "MyGlobalAvgPool2d(keep_dim=%s)" % self.keep_dim
class Hswish(nn.Module):
def __init__(self, inplace=True):
super(Hswish, self).__init__()
self.inplace = inplace
def forward(self, x):
return x * F.relu6(x + 3.0, inplace=self.inplace) / 6.0
def __repr__(self):
return "Hswish()"
class Hsigmoid(nn.Module):
def __init__(self, inplace=True):
super(Hsigmoid, self).__init__()
self.inplace = inplace
def forward(self, x):
return F.relu6(x + 3.0, inplace=self.inplace) / 6.0
def __repr__(self):
return "Hsigmoid()"
class SEModule(nn.Module):
REDUCTION = 4
def __init__(self, channel, reduction=None):
super(SEModule, self).__init__()
self.channel = channel
self.reduction = SEModule.REDUCTION if reduction is None else reduction
num_mid = make_divisible(
self.channel // self.reduction, divisor=MyNetwork.CHANNEL_DIVISIBLE
)
self.fc = nn.Sequential(
OrderedDict(
[
("reduce", nn.Conv2d(self.channel, num_mid, 1, 1, 0, bias=True)),
("relu", nn.ReLU(inplace=True)),
("expand", nn.Conv2d(num_mid, self.channel, 1, 1, 0, bias=True)),
("h_sigmoid", Hsigmoid(inplace=True)),
]
)
)
def forward(self, x):
y = x.mean(3, keepdim=True).mean(2, keepdim=True)
y = self.fc(y)
return x * y
def __repr__(self):
return "SE(channel=%d, reduction=%d)" % (self.channel, self.reduction)
class MultiHeadCrossEntropyLoss(nn.Module):
def forward(self, outputs, targets):
assert outputs.dim() == 3, outputs
assert targets.dim() == 2, targets
assert outputs.size(1) == targets.size(1), (outputs, targets)
num_heads = targets.size(1)
loss = 0
for k in range(num_heads):
loss += F.cross_entropy(outputs[:, k, :], targets[:, k]) / num_heads
return loss
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import torch
import torch.nn as nn
from collections import OrderedDict
from ofa.utils import get_same_padding, min_divisible_value, SEModule, ShuffleLayer
from ofa.utils import MyNetwork, MyModule
from ofa.utils import build_activation, make_divisible
__all__ = [
"set_layer_from_config",
"ConvLayer",
"IdentityLayer",
"LinearLayer",
"MultiHeadLinearLayer",
"ZeroLayer",
"MBConvLayer",
"ResidualBlock",
"ResNetBottleneckBlock",
]
def set_layer_from_config(layer_config):
if layer_config is None:
return None
name2layer = {
ConvLayer.__name__: ConvLayer,
IdentityLayer.__name__: IdentityLayer,
LinearLayer.__name__: LinearLayer,
MultiHeadLinearLayer.__name__: MultiHeadLinearLayer,
ZeroLayer.__name__: ZeroLayer,
MBConvLayer.__name__: MBConvLayer,
"MBInvertedConvLayer": MBConvLayer,
##########################################################
ResidualBlock.__name__: ResidualBlock,
ResNetBottleneckBlock.__name__: ResNetBottleneckBlock,
}
layer_name = layer_config.pop("name")
layer = name2layer[layer_name]
return layer.build_from_config(layer_config)
class My2DLayer(MyModule):
def __init__(
self,
in_channels,
out_channels,
use_bn=True,
act_func="relu",
dropout_rate=0,
ops_order="weight_bn_act",
):
super(My2DLayer, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.use_bn = use_bn
self.act_func = act_func
self.dropout_rate = dropout_rate
self.ops_order = ops_order
""" modules """
modules = {}
# batch norm
if self.use_bn:
if self.bn_before_weight:
modules["bn"] = nn.BatchNorm2d(in_channels)
else:
modules["bn"] = nn.BatchNorm2d(out_channels)
else:
modules["bn"] = None
# activation
modules["act"] = build_activation(
self.act_func, self.ops_list[0] != "act" and self.use_bn
)
# dropout
if self.dropout_rate > 0:
modules["dropout"] = nn.Dropout2d(self.dropout_rate, inplace=True)
else:
modules["dropout"] = None
# weight
modules["weight"] = self.weight_op()
# add modules
for op in self.ops_list:
if modules[op] is None:
continue
elif op == "weight":
# dropout before weight operation
if modules["dropout"] is not None:
self.add_module("dropout", modules["dropout"])
for key in modules["weight"]:
self.add_module(key, modules["weight"][key])
else:
self.add_module(op, modules[op])
@property
def ops_list(self):
return self.ops_order.split("_")
@property
def bn_before_weight(self):
for op in self.ops_list:
if op == "bn":
return True
elif op == "weight":
return False
raise ValueError("Invalid ops_order: %s" % self.ops_order)
def weight_op(self):
raise NotImplementedError
""" Methods defined in MyModule """
def forward(self, x):
# similar to nn.Sequential
for module in self._modules.values():
x = module(x)
return x
@property
def module_str(self):
raise NotImplementedError
@property
def config(self):
return {
"in_channels": self.in_channels,
"out_channels": self.out_channels,
"use_bn": self.use_bn,
"act_func": self.act_func,
"dropout_rate": self.dropout_rate,
"ops_order": self.ops_order,
}
@staticmethod
def build_from_config(config):
raise NotImplementedError
class ConvLayer(My2DLayer):
def __init__(
self,
in_channels,
out_channels,
kernel_size=3,
stride=1,
dilation=1,
groups=1,
bias=False,
has_shuffle=False,
use_se=False,
use_bn=True,
act_func="relu",
dropout_rate=0,
ops_order="weight_bn_act",
):
# default normal 3x3_Conv with bn and relu
self.kernel_size = kernel_size
self.stride = stride
self.dilation = dilation
self.groups = groups
self.bias = bias
self.has_shuffle = has_shuffle
self.use_se = use_se
super(ConvLayer, self).__init__(
in_channels, out_channels, use_bn, act_func, dropout_rate, ops_order
)
if self.use_se:
self.add_module("se", SEModule(self.out_channels))
def weight_op(self):
padding = get_same_padding(self.kernel_size)
if isinstance(padding, int):
padding *= self.dilation
else:
padding[0] *= self.dilation
padding[1] *= self.dilation
weight_dict = OrderedDict(
{
"conv": nn.Conv2d(
self.in_channels,
self.out_channels,
kernel_size=self.kernel_size,
stride=self.stride,
padding=padding,
dilation=self.dilation,
groups=min_divisible_value(self.in_channels, self.groups),
bias=self.bias,
)
}
)
if self.has_shuffle and self.groups > 1:
weight_dict["shuffle"] = ShuffleLayer(self.groups)
return weight_dict
@property
def module_str(self):
if isinstance(self.kernel_size, int):
kernel_size = (self.kernel_size, self.kernel_size)
else:
kernel_size = self.kernel_size
if self.groups == 1:
if self.dilation > 1:
conv_str = "%dx%d_DilatedConv" % (kernel_size[0], kernel_size[1])
else:
conv_str = "%dx%d_Conv" % (kernel_size[0], kernel_size[1])
else:
if self.dilation > 1:
conv_str = "%dx%d_DilatedGroupConv" % (kernel_size[0], kernel_size[1])
else:
conv_str = "%dx%d_GroupConv" % (kernel_size[0], kernel_size[1])
conv_str += "_O%d" % self.out_channels
if self.use_se:
conv_str = "SE_" + conv_str
conv_str += "_" + self.act_func.upper()
if self.use_bn:
if isinstance(self.bn, nn.GroupNorm):
conv_str += "_GN%d" % self.bn.num_groups
elif isinstance(self.bn, nn.BatchNorm2d):
conv_str += "_BN"
return conv_str
@property
def config(self):
return {
"name": ConvLayer.__name__,
"kernel_size": self.kernel_size,
"stride": self.stride,
"dilation": self.dilation,
"groups": self.groups,
"bias": self.bias,
"has_shuffle": self.has_shuffle,
"use_se": self.use_se,
**super(ConvLayer, self).config,
}
@staticmethod
def build_from_config(config):
return ConvLayer(**config)
class IdentityLayer(My2DLayer):
def __init__(
self,
in_channels,
out_channels,
use_bn=False,
act_func=None,
dropout_rate=0,
ops_order="weight_bn_act",
):
super(IdentityLayer, self).__init__(
in_channels, out_channels, use_bn, act_func, dropout_rate, ops_order
)
def weight_op(self):
return None
@property
def module_str(self):
return "Identity"
@property
def config(self):
return {
"name": IdentityLayer.__name__,
**super(IdentityLayer, self).config,
}
@staticmethod
def build_from_config(config):
return IdentityLayer(**config)
class LinearLayer(MyModule):
def __init__(
self,
in_features,
out_features,
bias=True,
use_bn=False,
act_func=None,
dropout_rate=0,
ops_order="weight_bn_act",
):
super(LinearLayer, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.bias = bias
self.use_bn = use_bn
self.act_func = act_func
self.dropout_rate = dropout_rate
self.ops_order = ops_order
""" modules """
modules = {}
# batch norm
if self.use_bn:
if self.bn_before_weight:
modules["bn"] = nn.BatchNorm1d(in_features)
else:
modules["bn"] = nn.BatchNorm1d(out_features)
else:
modules["bn"] = None
# activation
modules["act"] = build_activation(self.act_func, self.ops_list[0] != "act")
# dropout
if self.dropout_rate > 0:
modules["dropout"] = nn.Dropout(self.dropout_rate, inplace=True)
else:
modules["dropout"] = None
# linear
modules["weight"] = {
"linear": nn.Linear(self.in_features, self.out_features, self.bias)
}
# add modules
for op in self.ops_list:
if modules[op] is None:
continue
elif op == "weight":
if modules["dropout"] is not None:
self.add_module("dropout", modules["dropout"])
for key in modules["weight"]:
self.add_module(key, modules["weight"][key])
else:
self.add_module(op, modules[op])
@property
def ops_list(self):
return self.ops_order.split("_")
@property
def bn_before_weight(self):
for op in self.ops_list:
if op == "bn":
return True
elif op == "weight":
return False
raise ValueError("Invalid ops_order: %s" % self.ops_order)
def forward(self, x):
for module in self._modules.values():
x = module(x)
return x
@property
def module_str(self):
return "%dx%d_Linear" % (self.in_features, self.out_features)
@property
def config(self):
return {
"name": LinearLayer.__name__,
"in_features": self.in_features,
"out_features": self.out_features,
"bias": self.bias,
"use_bn": self.use_bn,
"act_func": self.act_func,
"dropout_rate": self.dropout_rate,
"ops_order": self.ops_order,
}
@staticmethod
def build_from_config(config):
return LinearLayer(**config)
class MultiHeadLinearLayer(MyModule):
def __init__(
self, in_features, out_features, num_heads=1, bias=True, dropout_rate=0
):
super(MultiHeadLinearLayer, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.num_heads = num_heads
self.bias = bias
self.dropout_rate = dropout_rate
if self.dropout_rate > 0:
self.dropout = nn.Dropout(self.dropout_rate, inplace=True)
else:
self.dropout = None
self.layers = nn.ModuleList()
for k in range(num_heads):
layer = nn.Linear(in_features, out_features, self.bias)
self.layers.append(layer)
def forward(self, inputs):
if self.dropout is not None:
inputs = self.dropout(inputs)
outputs = []
for layer in self.layers:
output = layer.forward(inputs)
outputs.append(output)
outputs = torch.stack(outputs, dim=1)
return outputs
@property
def module_str(self):
return self.__repr__()
@property
def config(self):
return {
"name": MultiHeadLinearLayer.__name__,
"in_features": self.in_features,
"out_features": self.out_features,
"num_heads": self.num_heads,
"bias": self.bias,
"dropout_rate": self.dropout_rate,
}
@staticmethod
def build_from_config(config):
return MultiHeadLinearLayer(**config)
def __repr__(self):
return (
"MultiHeadLinear(in_features=%d, out_features=%d, num_heads=%d, bias=%s, dropout_rate=%s)"
% (
self.in_features,
self.out_features,
self.num_heads,
self.bias,
self.dropout_rate,
)
)
class ZeroLayer(MyModule):
def __init__(self):
super(ZeroLayer, self).__init__()
def forward(self, x):
raise ValueError
@property
def module_str(self):
return "Zero"
@property
def config(self):
return {
"name": ZeroLayer.__name__,
}
@staticmethod
def build_from_config(config):
return ZeroLayer()
class MBConvLayer(MyModule):
def __init__(
self,
in_channels,
out_channels,
kernel_size=3,
stride=1,
expand_ratio=6,
mid_channels=None,
act_func="relu6",
use_se=False,
groups=None,
):
super(MBConvLayer, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.expand_ratio = expand_ratio
self.mid_channels = mid_channels
self.act_func = act_func
self.use_se = use_se
self.groups = groups
if self.mid_channels is None:
feature_dim = round(self.in_channels * self.expand_ratio)
else:
feature_dim = self.mid_channels
if self.expand_ratio == 1:
self.inverted_bottleneck = None
else:
self.inverted_bottleneck = nn.Sequential(
OrderedDict(
[
(
"conv",
nn.Conv2d(
self.in_channels, feature_dim, 1, 1, 0, bias=False
),
),
("bn", nn.BatchNorm2d(feature_dim)),
("act", build_activation(self.act_func, inplace=True)),
]
)
)
pad = get_same_padding(self.kernel_size)
groups = (
feature_dim
if self.groups is None
else min_divisible_value(feature_dim, self.groups)
)
depth_conv_modules = [
(
"conv",
nn.Conv2d(
feature_dim,
feature_dim,
kernel_size,
stride,
pad,
groups=groups,
bias=False,
),
),
("bn", nn.BatchNorm2d(feature_dim)),
("act", build_activation(self.act_func, inplace=True)),
]
if self.use_se:
depth_conv_modules.append(("se", SEModule(feature_dim)))
self.depth_conv = nn.Sequential(OrderedDict(depth_conv_modules))
self.point_linear = nn.Sequential(
OrderedDict(
[
("conv", nn.Conv2d(feature_dim, out_channels, 1, 1, 0, bias=False)),
("bn", nn.BatchNorm2d(out_channels)),
]
)
)
def forward(self, x):
if self.inverted_bottleneck:
x = self.inverted_bottleneck(x)
x = self.depth_conv(x)
x = self.point_linear(x)
return x
@property
def module_str(self):
if self.mid_channels is None:
expand_ratio = self.expand_ratio
else:
expand_ratio = self.mid_channels // self.in_channels
layer_str = "%dx%d_MBConv%d_%s" % (
self.kernel_size,
self.kernel_size,
expand_ratio,
self.act_func.upper(),
)
if self.use_se:
layer_str = "SE_" + layer_str
layer_str += "_O%d" % self.out_channels
if self.groups is not None:
layer_str += "_G%d" % self.groups
if isinstance(self.point_linear.bn, nn.GroupNorm):
layer_str += "_GN%d" % self.point_linear.bn.num_groups
elif isinstance(self.point_linear.bn, nn.BatchNorm2d):
layer_str += "_BN"
return layer_str
@property
def config(self):
return {
"name": MBConvLayer.__name__,
"in_channels": self.in_channels,
"out_channels": self.out_channels,
"kernel_size": self.kernel_size,
"stride": self.stride,
"expand_ratio": self.expand_ratio,
"mid_channels": self.mid_channels,
"act_func": self.act_func,
"use_se": self.use_se,
"groups": self.groups,
}
@staticmethod
def build_from_config(config):
return MBConvLayer(**config)
class ResidualBlock(MyModule):
def __init__(self, conv, shortcut):
super(ResidualBlock, self).__init__()
self.conv = conv
self.shortcut = shortcut
def forward(self, x):
if self.conv is None or isinstance(self.conv, ZeroLayer):
res = x
elif self.shortcut is None or isinstance(self.shortcut, ZeroLayer):
res = self.conv(x)
else:
res = self.conv(x) + self.shortcut(x)
return res
@property
def module_str(self):
return "(%s, %s)" % (
self.conv.module_str if self.conv is not None else None,
self.shortcut.module_str if self.shortcut is not None else None,
)
@property
def config(self):
return {
"name": ResidualBlock.__name__,
"conv": self.conv.config if self.conv is not None else None,
"shortcut": self.shortcut.config if self.shortcut is not None else None,
}
@staticmethod
def build_from_config(config):
conv_config = (
config["conv"] if "conv" in config else config["mobile_inverted_conv"]
)
conv = set_layer_from_config(conv_config)
shortcut = set_layer_from_config(config["shortcut"])
return ResidualBlock(conv, shortcut)
@property
def mobile_inverted_conv(self):
return self.conv
class ResNetBottleneckBlock(MyModule):
def __init__(
self,
in_channels,
out_channels,
kernel_size=3,
stride=1,
expand_ratio=0.25,
mid_channels=None,
act_func="relu",
groups=1,
downsample_mode="avgpool_conv",
):
super(ResNetBottleneckBlock, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.expand_ratio = expand_ratio
self.mid_channels = mid_channels
self.act_func = act_func
self.groups = groups
self.downsample_mode = downsample_mode
if self.mid_channels is None:
feature_dim = round(self.out_channels * self.expand_ratio)
else:
feature_dim = self.mid_channels
feature_dim = make_divisible(feature_dim, MyNetwork.CHANNEL_DIVISIBLE)
self.mid_channels = feature_dim
# build modules
self.conv1 = nn.Sequential(
OrderedDict(
[
(
"conv",
nn.Conv2d(self.in_channels, feature_dim, 1, 1, 0, bias=False),
),
("bn", nn.BatchNorm2d(feature_dim)),
("act", build_activation(self.act_func, inplace=True)),
]
)
)
pad = get_same_padding(self.kernel_size)
self.conv2 = nn.Sequential(
OrderedDict(
[
(
"conv",
nn.Conv2d(
feature_dim,
feature_dim,
kernel_size,
stride,
pad,
groups=groups,
bias=False,
),
),
("bn", nn.BatchNorm2d(feature_dim)),
("act", build_activation(self.act_func, inplace=True)),
]
)
)
self.conv3 = nn.Sequential(
OrderedDict(
[
(
"conv",
nn.Conv2d(feature_dim, self.out_channels, 1, 1, 0, bias=False),
),
("bn", nn.BatchNorm2d(self.out_channels)),
]
)
)
if stride == 1 and in_channels == out_channels:
self.downsample = IdentityLayer(in_channels, out_channels)
elif self.downsample_mode == "conv":
self.downsample = nn.Sequential(
OrderedDict(
[
(
"conv",
nn.Conv2d(
in_channels, out_channels, 1, stride, 0, bias=False
),
),
("bn", nn.BatchNorm2d(out_channels)),
]
)
)
elif self.downsample_mode == "avgpool_conv":
self.downsample = nn.Sequential(
OrderedDict(
[
(
"avg_pool",
nn.AvgPool2d(
kernel_size=stride,
stride=stride,
padding=0,
ceil_mode=True,
),
),
(
"conv",
nn.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False),
),
("bn", nn.BatchNorm2d(out_channels)),
]
)
)
else:
raise NotImplementedError
self.final_act = build_activation(self.act_func, inplace=True)
def forward(self, x):
residual = self.downsample(x)
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = x + residual
x = self.final_act(x)
return x
@property
def module_str(self):
return "(%s, %s)" % (
"%dx%d_BottleneckConv_%d->%d->%d_S%d_G%d"
% (
self.kernel_size,
self.kernel_size,
self.in_channels,
self.mid_channels,
self.out_channels,
self.stride,
self.groups,
),
"Identity"
if isinstance(self.downsample, IdentityLayer)
else self.downsample_mode,
)
@property
def config(self):
return {
"name": ResNetBottleneckBlock.__name__,
"in_channels": self.in_channels,
"out_channels": self.out_channels,
"kernel_size": self.kernel_size,
"stride": self.stride,
"expand_ratio": self.expand_ratio,
"mid_channels": self.mid_channels,
"act_func": self.act_func,
"groups": self.groups,
"downsample_mode": self.downsample_mode,
}
@staticmethod
def build_from_config(config):
return ResNetBottleneckBlock(**config)
|
r"""Definition of the DataLoader and associated iterators that subclass _BaseDataLoaderIter
To support these two classes, in `./_utils` we define many utility methods and
functions to be run in multiprocessing. E.g., the data loading worker loop is
in `./_utils/worker.py`.
"""
import threading
import itertools
import warnings
import multiprocessing as python_multiprocessing
import torch
import torch.multiprocessing as multiprocessing
from torch._utils import ExceptionWrapper
from torch.multiprocessing import Queue as queue
from torch._six import string_classes
from torch.utils.data.dataset import IterableDataset
from torch.utils.data import Sampler, SequentialSampler, RandomSampler, BatchSampler
from torch.utils.data import _utils
from .my_data_worker import worker_loop
__all__ = ["MyDataLoader"]
get_worker_info = _utils.worker.get_worker_info
# This function used to be defined in this file. However, it was moved to
# _utils/collate.py. Although it is rather hard to access this from user land
# (one has to explicitly directly `import torch.utils.data.dataloader`), there
# probably is user code out there using it. This aliasing maintains BC in this
# aspect.
default_collate = _utils.collate.default_collate
class _DatasetKind(object):
Map = 0
Iterable = 1
@staticmethod
def create_fetcher(kind, dataset, auto_collation, collate_fn, drop_last):
if kind == _DatasetKind.Map:
return _utils.fetch._MapDatasetFetcher(
dataset, auto_collation, collate_fn, drop_last
)
else:
return _utils.fetch._IterableDatasetFetcher(
dataset, auto_collation, collate_fn, drop_last
)
class _InfiniteConstantSampler(Sampler):
r"""Analogous to ``itertools.repeat(None, None)``.
Used as sampler for :class:`~torch.utils.data.IterableDataset`.
Arguments:
data_source (Dataset): dataset to sample from
"""
def __init__(self):
super(_InfiniteConstantSampler, self).__init__(None)
def __iter__(self):
while True:
yield None
class MyDataLoader(object):
r"""
Data loader. Combines a dataset and a sampler, and provides an iterable over
the given dataset.
The :class:`~torch.utils.data.DataLoader` supports both map-style and
iterable-style datasets with single- or multi-process loading, customizing
loading order and optional automatic batching (collation) and memory pinning.
See :py:mod:`torch.utils.data` documentation page for more details.
Arguments:
dataset (Dataset): dataset from which to load the data.
batch_size (int, optional): how many samples per batch to load
(default: ``1``).
shuffle (bool, optional): set to ``True`` to have the data reshuffled
at every epoch (default: ``False``).
sampler (Sampler, optional): defines the strategy to draw samples from
the dataset. If specified, :attr:`shuffle` must be ``False``.
batch_sampler (Sampler, optional): like :attr:`sampler`, but returns a batch of
indices at a time. Mutually exclusive with :attr:`batch_size`,
:attr:`shuffle`, :attr:`sampler`, and :attr:`drop_last`.
num_workers (int, optional): how many subprocesses to use for data
loading. ``0`` means that the data will be loaded in the main process.
(default: ``0``)
collate_fn (callable, optional): merges a list of samples to form a
mini-batch of Tensor(s). Used when using batched loading from a
map-style dataset.
pin_memory (bool, optional): If ``True``, the data loader will copy Tensors
into CUDA pinned memory before returning them. If your data elements
are a custom type, or your :attr:`collate_fn` returns a batch that is a custom type,
see the example below.
drop_last (bool, optional): set to ``True`` to drop the last incomplete batch,
if the dataset size is not divisible by the batch size. If ``False`` and
the size of dataset is not divisible by the batch size, then the last batch
will be smaller. (default: ``False``)
timeout (numeric, optional): if positive, the timeout value for collecting a batch
from workers. Should always be non-negative. (default: ``0``)
worker_init_fn (callable, optional): If not ``None``, this will be called on each
worker subprocess with the worker id (an int in ``[0, num_workers - 1]``) as
input, after seeding and before data loading. (default: ``None``)
.. warning:: If the ``spawn`` start method is used, :attr:`worker_init_fn`
cannot be an unpicklable object, e.g., a lambda function. See
:ref:`multiprocessing-best-practices` on more details related
to multiprocessing in PyTorch.
.. note:: ``len(dataloader)`` heuristic is based on the length of the sampler used.
When :attr:`dataset` is an :class:`~torch.utils.data.IterableDataset`,
``len(dataset)`` (if implemented) is returned instead, regardless
of multi-process loading configurations, because PyTorch trust
user :attr:`dataset` code in correctly handling multi-process
loading to avoid duplicate data. See `Dataset Types`_ for more
details on these two types of datasets and how
:class:`~torch.utils.data.IterableDataset` interacts with `Multi-process data loading`_.
"""
__initialized = False
def __init__(
self,
dataset,
batch_size=1,
shuffle=False,
sampler=None,
batch_sampler=None,
num_workers=0,
collate_fn=None,
pin_memory=False,
drop_last=False,
timeout=0,
worker_init_fn=None,
multiprocessing_context=None,
):
torch._C._log_api_usage_once("python.data_loader")
if num_workers < 0:
raise ValueError(
"num_workers option should be non-negative; "
"use num_workers=0 to disable multiprocessing."
)
if timeout < 0:
raise ValueError("timeout option should be non-negative")
self.dataset = dataset
self.num_workers = num_workers
self.pin_memory = pin_memory
self.timeout = timeout
self.worker_init_fn = worker_init_fn
self.multiprocessing_context = multiprocessing_context
# Arg-check dataset related before checking samplers because we want to
# tell users that iterable-style datasets are incompatible with custom
# samplers first, so that they don't learn that this combo doesn't work
# after spending time fixing the custom sampler errors.
if isinstance(dataset, IterableDataset):
self._dataset_kind = _DatasetKind.Iterable
# NOTE [ Custom Samplers and `IterableDataset` ]
#
# `IterableDataset` does not support custom `batch_sampler` or
# `sampler` since the key is irrelevant (unless we support
# generator-style dataset one day...).
#
# For `sampler`, we always create a dummy sampler. This is an
# infinite sampler even when the dataset may have an implemented
# finite `__len__` because in multi-process data loading, naive
# settings will return duplicated data (which may be desired), and
# thus using a sampler with length matching that of dataset will
# cause data lost (you may have duplicates of the first couple
# batches, but never see anything afterwards). Therefore,
# `Iterabledataset` always uses an infinite sampler, an instance of
# `_InfiniteConstantSampler` defined above.
#
# A custom `batch_sampler` essentially only controls the batch size.
# However, it is unclear how useful it would be since an iterable-style
# dataset can handle that within itself. Moreover, it is pointless
# in multi-process data loading as the assignment order of batches
# to workers is an implementation detail so users can not control
# how to batchify each worker's iterable. Thus, we disable this
# option. If this turns out to be useful in future, we can re-enable
# this, and support custom samplers that specify the assignments to
# specific workers.
if shuffle is not False:
raise ValueError(
"DataLoader with IterableDataset: expected unspecified "
"shuffle option, but got shuffle={}".format(shuffle)
)
elif sampler is not None:
# See NOTE [ Custom Samplers and IterableDataset ]
raise ValueError(
"DataLoader with IterableDataset: expected unspecified "
"sampler option, but got sampler={}".format(sampler)
)
elif batch_sampler is not None:
# See NOTE [ Custom Samplers and IterableDataset ]
raise ValueError(
"DataLoader with IterableDataset: expected unspecified "
"batch_sampler option, but got batch_sampler={}".format(
batch_sampler
)
)
else:
self._dataset_kind = _DatasetKind.Map
if sampler is not None and shuffle:
raise ValueError("sampler option is mutually exclusive with " "shuffle")
if batch_sampler is not None:
# auto_collation with custom batch_sampler
if batch_size != 1 or shuffle or sampler is not None or drop_last:
raise ValueError(
"batch_sampler option is mutually exclusive "
"with batch_size, shuffle, sampler, and "
"drop_last"
)
batch_size = None
drop_last = False
elif batch_size is None:
# no auto_collation
if shuffle or drop_last:
raise ValueError(
"batch_size=None option disables auto-batching "
"and is mutually exclusive with "
"shuffle, and drop_last"
)
if sampler is None: # give default samplers
if self._dataset_kind == _DatasetKind.Iterable:
# See NOTE [ Custom Samplers and IterableDataset ]
sampler = _InfiniteConstantSampler()
else: # map-style
if shuffle:
sampler = RandomSampler(dataset)
else:
sampler = SequentialSampler(dataset)
if batch_size is not None and batch_sampler is None:
# auto_collation without custom batch_sampler
batch_sampler = BatchSampler(sampler, batch_size, drop_last)
self.batch_size = batch_size
self.drop_last = drop_last
self.sampler = sampler
self.batch_sampler = batch_sampler
if collate_fn is None:
if self._auto_collation:
collate_fn = _utils.collate.default_collate
else:
collate_fn = _utils.collate.default_convert
self.collate_fn = collate_fn
self.__initialized = True
self._IterableDataset_len_called = (
None # See NOTE [ IterableDataset and __len__ ]
)
@property
def multiprocessing_context(self):
return self.__multiprocessing_context
@multiprocessing_context.setter
def multiprocessing_context(self, multiprocessing_context):
if multiprocessing_context is not None:
if self.num_workers > 0:
if not multiprocessing._supports_context:
raise ValueError(
"multiprocessing_context relies on Python >= 3.4, with "
"support for different start methods"
)
if isinstance(multiprocessing_context, string_classes):
valid_start_methods = multiprocessing.get_all_start_methods()
if multiprocessing_context not in valid_start_methods:
raise ValueError(
(
"multiprocessing_context option "
"should specify a valid start method in {}, but got "
"multiprocessing_context={}"
).format(valid_start_methods, multiprocessing_context)
)
multiprocessing_context = multiprocessing.get_context(
multiprocessing_context
)
if not isinstance(
multiprocessing_context, python_multiprocessing.context.BaseContext
):
raise ValueError(
(
"multiprocessing_context option should be a valid context "
"object or a string specifying the start method, but got "
"multiprocessing_context={}"
).format(multiprocessing_context)
)
else:
raise ValueError(
(
"multiprocessing_context can only be used with "
"multi-process loading (num_workers > 0), but got "
"num_workers={}"
).format(self.num_workers)
)
self.__multiprocessing_context = multiprocessing_context
def __setattr__(self, attr, val):
if self.__initialized and attr in (
"batch_size",
"batch_sampler",
"sampler",
"drop_last",
"dataset",
):
raise ValueError(
"{} attribute should not be set after {} is "
"initialized".format(attr, self.__class__.__name__)
)
super(MyDataLoader, self).__setattr__(attr, val)
def __iter__(self):
if self.num_workers == 0:
return _SingleProcessDataLoaderIter(self)
else:
return _MultiProcessingDataLoaderIter(self)
@property
def _auto_collation(self):
return self.batch_sampler is not None
@property
def _index_sampler(self):
# The actual sampler used for generating indices for `_DatasetFetcher`
# (see _utils/fetch.py) to read data at each time. This would be
# `.batch_sampler` if in auto-collation mode, and `.sampler` otherwise.
# We can't change `.sampler` and `.batch_sampler` attributes for BC
# reasons.
if self._auto_collation:
return self.batch_sampler
else:
return self.sampler
def __len__(self):
if self._dataset_kind == _DatasetKind.Iterable:
# NOTE [ IterableDataset and __len__ ]
#
# For `IterableDataset`, `__len__` could be inaccurate when one naively
# does multi-processing data loading, since the samples will be duplicated.
# However, no real use case should be actually using that behavior, so
# it should count as a user error. We should generally trust user
# code to do the proper thing (e.g., configure each replica differently
# in `__iter__`), and give us the correct `__len__` if they choose to
# implement it (this will still throw if the dataset does not implement
# a `__len__`).
#
# To provide a further warning, we track if `__len__` was called on the
# `DataLoader`, save the returned value in `self._len_called`, and warn
# if the iterator ends up yielding more than this number of samples.
length = self._IterableDataset_len_called = len(self.dataset)
return length
else:
return len(self._index_sampler)
class _BaseDataLoaderIter(object):
def __init__(self, loader):
self._dataset = loader.dataset
self._dataset_kind = loader._dataset_kind
self._IterableDataset_len_called = loader._IterableDataset_len_called
self._auto_collation = loader._auto_collation
self._drop_last = loader.drop_last
self._index_sampler = loader._index_sampler
self._num_workers = loader.num_workers
self._pin_memory = loader.pin_memory and torch.cuda.is_available()
self._timeout = loader.timeout
self._collate_fn = loader.collate_fn
self._sampler_iter = iter(self._index_sampler)
self._base_seed = torch.empty((), dtype=torch.int64).random_().item()
self._num_yielded = 0
def __iter__(self):
return self
def _next_index(self):
return next(self._sampler_iter) # may raise StopIteration
def _next_data(self):
raise NotImplementedError
def __next__(self):
data = self._next_data()
self._num_yielded += 1
if (
self._dataset_kind == _DatasetKind.Iterable
and self._IterableDataset_len_called is not None
and self._num_yielded > self._IterableDataset_len_called
):
warn_msg = (
"Length of IterableDataset {} was reported to be {} (when accessing len(dataloader)), but {} "
"samples have been fetched. "
).format(self._dataset, self._IterableDataset_len_called, self._num_yielded)
if self._num_workers > 0:
warn_msg += (
"For multiprocessing data-loading, this could be caused by not properly configuring the "
"IterableDataset replica at each worker. Please see "
"https://pytorch.org/docs/stable/data.html#torch.utils.data.IterableDataset for examples."
)
warnings.warn(warn_msg)
return data
next = __next__ # Python 2 compatibility
def __len__(self):
return len(self._index_sampler)
def __getstate__(self):
# across multiple threads for HOGWILD.
# Probably the best way to do this is by moving the sample pushing
# to a separate thread and then just sharing the data queue
# but signalling the end is tricky without a non-blocking API
raise NotImplementedError("{} cannot be pickled", self.__class__.__name__)
class _SingleProcessDataLoaderIter(_BaseDataLoaderIter):
def __init__(self, loader):
super(_SingleProcessDataLoaderIter, self).__init__(loader)
assert self._timeout == 0
assert self._num_workers == 0
self._dataset_fetcher = _DatasetKind.create_fetcher(
self._dataset_kind,
self._dataset,
self._auto_collation,
self._collate_fn,
self._drop_last,
)
def _next_data(self):
index = self._next_index() # may raise StopIteration
data = self._dataset_fetcher.fetch(index) # may raise StopIteration
if self._pin_memory:
data = _utils.pin_memory.pin_memory(data)
return data
class _MultiProcessingDataLoaderIter(_BaseDataLoaderIter):
r"""Iterates once over the DataLoader's dataset, as specified by the sampler"""
# NOTE [ Data Loader Multiprocessing Shutdown Logic ]
#
# Preliminary:
#
# Our data model looks like this (queues are indicated with curly brackets):
#
# main process ||
# | ||
# {index_queue} ||
# | ||
# worker processes || DATA
# | ||
# {worker_result_queue} || FLOW
# | ||
# pin_memory_thread of main process || DIRECTION
# | ||
# {data_queue} ||
# | ||
# data output \/
#
# P.S. `worker_result_queue` and `pin_memory_thread` part may be omitted if
# `pin_memory=False`.
#
#
# Terminating multiprocessing logic requires very careful design. In
# particular, we need to make sure that
#
# 1. The iterator gracefully exits the workers when its last reference is
# gone or it is depleted.
#
# In this case, the workers should be gracefully exited because the
# main process may still need to continue to run, and we want cleaning
# up code in the workers to be executed (e.g., releasing GPU memory).
# Naturally, we implement the shutdown logic in `__del__` of
# DataLoaderIterator.
#
# We delay the discussion on the logic in this case until later.
#
# 2. The iterator exits the workers when the loader process and/or worker
# processes exits normally or with error.
#
# We set all workers and `pin_memory_thread` to have `daemon=True`.
#
# You may ask, why can't we make the workers non-daemonic, and
# gracefully exit using the same logic as we have in `__del__` when the
# iterator gets deleted (see 1 above)?
#
# First of all, `__del__` is **not** guaranteed to be called when
# interpreter exits. Even if it is called, by the time it executes,
# many Python core library resources may alreay be freed, and even
# simple things like acquiring an internal lock of a queue may hang.
# Therefore, in this case, we actually need to prevent `__del__` from
# being executed, and rely on the automatic termination of daemonic
# children. Thus, we register an `atexit` hook that sets a global flag
# `_utils.python_exit_status`. Since `atexit` hooks are executed in the
# reverse order of registration, we are guaranteed that this flag is
# set before library resources we use are freed. (Hooks freeing those
# resources are registered at importing the Python core libraries at
# the top of this file.) So in `__del__`, we check if
# `_utils.python_exit_status` is set or `None` (freed), and perform
# no-op if so.
#
# Another problem with `__del__` is also related to the library cleanup
# calls. When a process ends, it shuts the all its daemonic children
# down with a SIGTERM (instead of joining them without a timeout).
# Simiarly for threads, but by a different mechanism. This fact,
# together with a few implementation details of multiprocessing, forces
# us to make workers daemonic. All of our problems arise when a
# DataLoader is used in a subprocess, and are caused by multiprocessing
# code which looks more or less like this:
#
# try:
# your_function_using_a_dataloader()
# finally:
# multiprocessing.util._exit_function()
#
# The joining/termination mentioned above happens inside
# `_exit_function()`. Now, if `your_function_using_a_dataloader()`
# throws, the stack trace stored in the exception will prevent the
# frame which uses `DataLoaderIter` to be freed. If the frame has any
# reference to the `DataLoaderIter` (e.g., in a method of the iter),
# its `__del__`, which starts the shutdown procedure, will not be
# called. That, in turn, means that workers aren't notified. Attempting
# to join in `_exit_function` will then result in a hang.
#
# For context, `_exit_function` is also registered as an `atexit` call.
# So it is unclear to me (@ssnl) why this is needed in a finally block.
# The code dates back to 2008 and there is no comment on the original
# PEP 371 or patch https://bugs.python.org/issue3050 (containing both
# the finally block and the `atexit` registration) that explains this.
#
# Another choice is to just shutdown workers with logic in 1 above
# whenever we see an error in `next`. This isn't ideal because
# a. It prevents users from using try-catch to resume data loading.
# b. It doesn't prevent hanging if users have references to the
# iterator.
#
# 3. All processes exit if any of them die unexpectedly by fatal signals.
#
# As shown above, the workers are set as daemonic children of the main
# process. However, automatic cleaning-up of such child processes only
# happens if the parent process exits gracefully (e.g., not via fatal
# signals like SIGKILL). So we must ensure that each process will exit
# even the process that should send/receive data to/from it were
# killed, i.e.,
#
# a. A process won't hang when getting from a queue.
#
# Even with carefully designed data dependencies (i.e., a `put()`
# always corresponding to a `get()`), hanging on `get()` can still
# happen when data in queue is corrupted (e.g., due to
# `cancel_join_thread` or unexpected exit).
#
# For child exit, we set a timeout whenever we try to get data
# from `data_queue`, and check the workers' status on each timeout
# and error.
# See `_DataLoaderiter._get_batch()` and
# `_DataLoaderiter._try_get_data()` for details.
#
# Additionally, for child exit on non-Windows platforms, we also
# register a SIGCHLD handler (which is supported on Windows) on
# the main process, which checks if any of the workers fail in the
# (Python) handler. This is more efficient and faster in detecting
# worker failures, compared to only using the above mechanism.
# See `DataLoader.cpp` and `_utils/signal_handling.py` for details.
#
# For `.get()` calls where the sender(s) is not the workers, we
# guard them with timeouts, and check the status of the sender
# when timeout happens:
# + in the workers, the `_utils.worker.ManagerWatchdog` class
# checks the status of the main process.
# + if `pin_memory=True`, when getting from `pin_memory_thread`,
# check `pin_memory_thread` status periodically until `.get()`
# returns or see that `pin_memory_thread` died.
#
# b. A process won't hang when putting into a queue;
#
# We use `mp.Queue` which has a separate background thread to put
# objects from an unbounded buffer array. The background thread is
# daemonic and usually automatically joined when the process
# exits.
#
# However, in case that the receiver has ended abruptly while
# reading from the pipe, the join will hang forever. Therefore,
# for both `worker_result_queue` (worker -> main process/pin_memory_thread)
# and each `index_queue` (main process -> worker), we use
# `q.cancel_join_thread()` in sender process before any `q.put` to
# prevent this automatic join.
#
# Moreover, having all queues called `cancel_join_thread` makes
# implementing graceful shutdown logic in `__del__` much easier.
# It won't need to get from any queue, which would also need to be
# guarded by periodic status checks.
#
# Nonetheless, `cancel_join_thread` must only be called when the
# queue is **not** going to be read from or write into by another
# process, because it may hold onto a lock or leave corrupted data
# in the queue, leading other readers/writers to hang.
#
# `pin_memory_thread`'s `data_queue` is a `queue.Queue` that does
# a blocking `put` if the queue is full. So there is no above
# problem, but we do need to wrap the `put` in a loop that breaks
# not only upon success, but also when the main process stops
# reading, i.e., is shutting down.
#
#
# Now let's get back to 1:
# how we gracefully exit the workers when the last reference to the
# iterator is gone.
#
# To achieve this, we implement the following logic along with the design
# choices mentioned above:
#
# `workers_done_event`:
# A `multiprocessing.Event` shared among the main process and all worker
# processes. This is used to signal the workers that the iterator is
# shutting down. After it is set, they will not send processed data to
# queues anymore, and only wait for the final `None` before exiting.
# `done_event` isn't strictly needed. I.e., we can just check for `None`
# from the input queue, but it allows us to skip wasting resources
# processing data if we are already shutting down.
#
# `pin_memory_thread_done_event`:
# A `threading.Event` for a similar purpose to that of
# `workers_done_event`, but is for the `pin_memory_thread`. The reason
# that separate events are needed is that `pin_memory_thread` reads from
# the output queue of the workers. But the workers, upon seeing that
# `workers_done_event` is set, only wants to see the final `None`, and is
# not required to flush all data in the output queue (e.g., it may call
# `cancel_join_thread` on that queue if its `IterableDataset` iterator
# happens to exhaust coincidentally, which is out of the control of the
# main process). Thus, since we will exit `pin_memory_thread` before the
# workers (see below), two separete events are used.
#
# NOTE: In short, the protocol is that the main process will set these
# `done_event`s and then the corresponding processes/threads a `None`,
# and that they may exit at any time after receiving the `None`.
#
# NOTE: Using `None` as the final signal is valid, since normal data will
# always be a 2-tuple with the 1st element being the index of the data
# transferred (different from dataset index/key), and the 2nd being
# either the dataset key or the data sample (depending on which part
# of the data model the queue is at).
#
# [ worker processes ]
# While loader process is alive:
# Get from `index_queue`.
# If get anything else,
# Check `workers_done_event`.
# If set, continue to next iteration
# i.e., keep getting until see the `None`, then exit.
# Otherwise, process data:
# If is fetching from an `IterableDataset` and the iterator
# is exhausted, send an `_IterableDatasetStopIteration`
# object to signal iteration end. The main process, upon
# receiving such an object, will send `None` to this
# worker and not use the corresponding `index_queue`
# anymore.
# If timed out,
# No matter `workers_done_event` is set (still need to see `None`)
# or not, must continue to next iteration.
# (outside loop)
# If `workers_done_event` is set, (this can be False with `IterableDataset`)
# `data_queue.cancel_join_thread()`. (Everything is ending here:
# main process won't read from it;
# other workers will also call
# `cancel_join_thread`.)
#
# [ pin_memory_thread ]
# # No need to check main thread. If this thread is alive, the main loader
# # thread must be alive, because this thread is set as daemonic.
# While `pin_memory_thread_done_event` is not set:
# Get from `index_queue`.
# If timed out, continue to get in the next iteration.
# Otherwise, process data.
# While `pin_memory_thread_done_event` is not set:
# Put processed data to `data_queue` (a `queue.Queue` with blocking put)
# If timed out, continue to put in the next iteration.
# Otherwise, break, i.e., continuing to the out loop.
#
# NOTE: we don't check the status of the main thread because
# 1. if the process is killed by fatal signal, `pin_memory_thread`
# ends.
# 2. in other cases, either the cleaning-up in __del__ or the
# automatic exit of daemonic thread will take care of it.
# This won't busy-wait either because `.get(timeout)` does not
# busy-wait.
#
# [ main process ]
# In the DataLoader Iter's `__del__`
# b. Exit `pin_memory_thread`
# i. Set `pin_memory_thread_done_event`.
# ii Put `None` in `worker_result_queue`.
# iii. Join the `pin_memory_thread`.
# iv. `worker_result_queue.cancel_join_thread()`.
#
# c. Exit the workers.
# i. Set `workers_done_event`.
# ii. Put `None` in each worker's `index_queue`.
# iii. Join the workers.
# iv. Call `.cancel_join_thread()` on each worker's `index_queue`.
#
# NOTE: (c) is better placed after (b) because it may leave corrupted
# data in `worker_result_queue`, which `pin_memory_thread`
# reads from, in which case the `pin_memory_thread` can only
# happen at timeing out, which is slow. Nonetheless, same thing
# happens if a worker is killed by signal at unfortunate times,
# but in other cases, we are better off having a non-corrupted
# `worker_result_queue` for `pin_memory_thread`.
#
# NOTE: If `pin_memory=False`, there is no `pin_memory_thread` and (b)
# can be omitted
#
# NB: `done_event`s isn't strictly needed. E.g., we can just check for
# `None` from `index_queue`, but it allows us to skip wasting resources
# processing indices already in `index_queue` if we are already shutting
# down.
def __init__(self, loader):
super(_MultiProcessingDataLoaderIter, self).__init__(loader)
assert self._num_workers > 0
if loader.multiprocessing_context is None:
multiprocessing_context = multiprocessing
else:
multiprocessing_context = loader.multiprocessing_context
self._worker_init_fn = loader.worker_init_fn
self._worker_queue_idx_cycle = itertools.cycle(range(self._num_workers))
self._worker_result_queue = multiprocessing_context.Queue()
self._worker_pids_set = False
self._shutdown = False
self._send_idx = 0 # idx of the next task to be sent to workers
self._rcvd_idx = 0 # idx of the next task to be returned in __next__
# information about data not yet yielded, i.e., tasks w/ indices in range [rcvd_idx, send_idx).
# map: task idx => - (worker_id,) if data isn't fetched (outstanding)
# \ (worker_id, data) if data is already fetched (out-of-order)
self._task_info = {}
self._tasks_outstanding = (
0 # always equal to count(v for v in task_info.values() if len(v) == 1)
)
self._workers_done_event = multiprocessing_context.Event()
self._index_queues = []
self._workers = []
# A list of booleans representing whether each worker still has work to
# do, i.e., not having exhausted its iterable dataset object. It always
# contains all `True`s if not using an iterable-style dataset
# (i.e., if kind != Iterable).
self._workers_status = []
for i in range(self._num_workers):
index_queue = multiprocessing_context.Queue()
# index_queue.cancel_join_thread()
w = multiprocessing_context.Process(
target=worker_loop,
args=(
self._dataset_kind,
self._dataset,
index_queue,
self._worker_result_queue,
self._workers_done_event,
self._auto_collation,
self._collate_fn,
self._drop_last,
self._base_seed + i,
self._worker_init_fn,
i,
self._num_workers,
),
)
w.daemon = True
# NB: Process.start() actually take some time as it needs to
# start a process and pass the arguments over via a pipe.
# Therefore, we only add a worker to self._workers list after
# it started, so that we do not call .join() if program dies
# before it starts, and __del__ tries to join but will get:
# AssertionError: can only join a started process.
w.start()
self._index_queues.append(index_queue)
self._workers.append(w)
self._workers_status.append(True)
if self._pin_memory:
self._pin_memory_thread_done_event = threading.Event()
self._data_queue = queue.Queue()
pin_memory_thread = threading.Thread(
target=_utils.pin_memory._pin_memory_loop,
args=(
self._worker_result_queue,
self._data_queue,
torch.cuda.current_device(),
self._pin_memory_thread_done_event,
),
)
pin_memory_thread.daemon = True
pin_memory_thread.start()
# Similar to workers (see comment above), we only register
# pin_memory_thread once it is started.
self._pin_memory_thread = pin_memory_thread
else:
self._data_queue = self._worker_result_queue
_utils.signal_handling._set_worker_pids(
id(self), tuple(w.pid for w in self._workers)
)
_utils.signal_handling._set_SIGCHLD_handler()
self._worker_pids_set = True
# prime the prefetch loop
for _ in range(2 * self._num_workers):
self._try_put_index()
def _try_get_data(self, timeout=_utils.MP_STATUS_CHECK_INTERVAL):
# Tries to fetch data from `self._data_queue` once for a given timeout.
# This can also be used as inner loop of fetching without timeout, with
# the sender status as the loop condition.
#
# This raises a `RuntimeError` if any worker died expectedly. This error
# can come from either the SIGCHLD handler in `_utils/signal_handling.py`
# (only for non-Windows platforms), or the manual check below on errors
# and timeouts.
#
# Returns a 2-tuple:
# (bool: whether successfully get data, any: data if successful else None)
try:
data = self._data_queue.get(timeout=timeout)
return (True, data)
except Exception as e:
# At timeout and error, we manually check whether any worker has
# failed. Note that this is the only mechanism for Windows to detect
# worker failures.
failed_workers = []
for worker_id, w in enumerate(self._workers):
if self._workers_status[worker_id] and not w.is_alive():
failed_workers.append(w)
self._shutdown_worker(worker_id)
if len(failed_workers) > 0:
pids_str = ", ".join(str(w.pid) for w in failed_workers)
raise RuntimeError(
"DataLoader worker (pid(s) {}) exited unexpectedly".format(pids_str)
)
if isinstance(e, queue.Empty):
return (False, None)
raise
def _get_data(self):
# Fetches data from `self._data_queue`.
#
# We check workers' status every `MP_STATUS_CHECK_INTERVAL` seconds,
# which we achieve by running `self._try_get_data(timeout=MP_STATUS_CHECK_INTERVAL)`
# in a loop. This is the only mechanism to detect worker failures for
# Windows. For other platforms, a SIGCHLD handler is also used for
# worker failure detection.
#
# If `pin_memory=True`, we also need check if `pin_memory_thread` had
# died at timeouts.
if self._timeout > 0:
success, data = self._try_get_data(self._timeout)
if success:
return data
else:
raise RuntimeError(
"DataLoader timed out after {} seconds".format(self._timeout)
)
elif self._pin_memory:
while self._pin_memory_thread.is_alive():
success, data = self._try_get_data()
if success:
return data
else:
# while condition is false, i.e., pin_memory_thread died.
raise RuntimeError("Pin memory thread exited unexpectedly")
# In this case, `self._data_queue` is a `queue.Queue`,. But we don't
# need to call `.task_done()` because we don't use `.join()`.
else:
while True:
success, data = self._try_get_data()
if success:
return data
def _next_data(self):
while True:
# If the worker responsible for `self._rcvd_idx` has already ended
# and was unable to fulfill this task (due to exhausting an `IterableDataset`),
# we try to advance `self._rcvd_idx` to find the next valid index.
#
# This part needs to run in the loop because both the `self._get_data()`
# call and `_IterableDatasetStopIteration` check below can mark
# extra worker(s) as dead.
while self._rcvd_idx < self._send_idx:
info = self._task_info[self._rcvd_idx]
worker_id = info[0]
if (
len(info) == 2 or self._workers_status[worker_id]
): # has data or is still active
break
del self._task_info[self._rcvd_idx]
self._rcvd_idx += 1
else:
# no valid `self._rcvd_idx` is found (i.e., didn't break)
self._shutdown_workers()
raise StopIteration
# Now `self._rcvd_idx` is the batch index we want to fetch
# Check if the next sample has already been generated
if len(self._task_info[self._rcvd_idx]) == 2:
data = self._task_info.pop(self._rcvd_idx)[1]
return self._process_data(data)
assert not self._shutdown and self._tasks_outstanding > 0
idx, data = self._get_data()
self._tasks_outstanding -= 1
if self._dataset_kind == _DatasetKind.Iterable:
# Check for _IterableDatasetStopIteration
if isinstance(data, _utils.worker._IterableDatasetStopIteration):
self._shutdown_worker(data.worker_id)
self._try_put_index()
continue
if idx != self._rcvd_idx:
# store out-of-order samples
self._task_info[idx] += (data,)
else:
del self._task_info[idx]
return self._process_data(data)
def _try_put_index(self):
assert self._tasks_outstanding < 2 * self._num_workers
try:
index = self._next_index()
except StopIteration:
return
for _ in range(self._num_workers): # find the next active worker, if any
worker_queue_idx = next(self._worker_queue_idx_cycle)
if self._workers_status[worker_queue_idx]:
break
else:
# not found (i.e., didn't break)
return
self._index_queues[worker_queue_idx].put((self._send_idx, index))
self._task_info[self._send_idx] = (worker_queue_idx,)
self._tasks_outstanding += 1
self._send_idx += 1
def _process_data(self, data):
self._rcvd_idx += 1
self._try_put_index()
if isinstance(data, ExceptionWrapper):
data.reraise()
return data
def _shutdown_worker(self, worker_id):
# Mark a worker as having finished its work and dead, e.g., due to
# exhausting an `IterableDataset`. This should be used only when this
# `_MultiProcessingDataLoaderIter` is going to continue running.
assert self._workers_status[worker_id]
# Signal termination to that specific worker.
q = self._index_queues[worker_id]
# Indicate that no more data will be put on this queue by the current
# process.
q.put(None)
# Note that we don't actually join the worker here, nor do we remove the
# worker's pid from C side struct because (1) joining may be slow, and
# (2) since we don't join, the worker may still raise error, and we
# prefer capturing those, rather than ignoring them, even though they
# are raised after the worker has finished its job.
# Joinning is deferred to `_shutdown_workers`, which it is called when
# all workers finish their jobs (e.g., `IterableDataset` replicas) or
# when this iterator is garbage collected.
self._workers_status[worker_id] = False
def _shutdown_workers(self):
# Called when shutting down this `_MultiProcessingDataLoaderIter`.
# See NOTE [ Data Loader Multiprocessing Shutdown Logic ] for details on
# the logic of this function.
python_exit_status = _utils.python_exit_status
if python_exit_status is True or python_exit_status is None:
# See (2) of the note. If Python is shutting down, do no-op.
return
# Normal exit when last reference is gone / iterator is depleted.
# See (1) and the second half of the note.
if not self._shutdown:
self._shutdown = True
try:
# Exit `pin_memory_thread` first because exiting workers may leave
# corrupted data in `worker_result_queue` which `pin_memory_thread`
# reads from.
if hasattr(self, "_pin_memory_thread"):
# Use hasattr in case error happens before we set the attribute.
self._pin_memory_thread_done_event.set()
# Send something to pin_memory_thread in case it is waiting
# so that it can wake up and check `pin_memory_thread_done_event`
self._worker_result_queue.put((None, None))
self._pin_memory_thread.join()
self._worker_result_queue.close()
# Exit workers now.
self._workers_done_event.set()
for worker_id in range(len(self._workers)):
# Get number of workers from `len(self._workers)` instead of
# `self._num_workers` in case we error before starting all
# workers.
if self._workers_status[worker_id]:
self._shutdown_worker(worker_id)
for w in self._workers:
w.join()
for q in self._index_queues:
q.cancel_join_thread()
q.close()
finally:
# Even though all this function does is putting into queues that
# we have called `cancel_join_thread` on, weird things can
# happen when a worker is killed by a signal, e.g., hanging in
# `Event.set()`. So we need to guard this with SIGCHLD handler,
# and remove pids from the C side data structure only at the
# end.
#
# FIXME: Unfortunately, for Windows, we are missing a worker
# error detection mechanism here in this function, as it
# doesn't provide a SIGCHLD handler.
if self._worker_pids_set:
_utils.signal_handling._remove_worker_pids(id(self))
self._worker_pids_set = False
def __del__(self):
self._shutdown_workers()
|
from .my_data_loader import *
from .my_data_worker import *
from .my_distributed_sampler import *
from .my_random_resize_crop import *
|
r""""Contains definitions of the methods used by the _BaseDataLoaderIter workers.
These **needs** to be in global scope since Py2 doesn't support serializing
static methods.
"""
import torch
import random
import os
from collections import namedtuple
# from torch._six import queue
from torch.multiprocessing import Queue as queue
from torch._utils import ExceptionWrapper
from torch.utils.data._utils import (
signal_handling,
MP_STATUS_CHECK_INTERVAL,
IS_WINDOWS,
)
from .my_random_resize_crop import MyRandomResizedCrop
__all__ = ["worker_loop"]
if IS_WINDOWS:
import ctypes
from ctypes.wintypes import DWORD, BOOL, HANDLE
# On Windows, the parent ID of the worker process remains unchanged when the manager process
# is gone, and the only way to check it through OS is to let the worker have a process handle
# of the manager and ask if the process status has changed.
class ManagerWatchdog(object):
def __init__(self):
self.manager_pid = os.getppid()
self.kernel32 = ctypes.WinDLL("kernel32", use_last_error=True)
self.kernel32.OpenProcess.argtypes = (DWORD, BOOL, DWORD)
self.kernel32.OpenProcess.restype = HANDLE
self.kernel32.WaitForSingleObject.argtypes = (HANDLE, DWORD)
self.kernel32.WaitForSingleObject.restype = DWORD
# Value obtained from https://msdn.microsoft.com/en-us/library/ms684880.aspx
SYNCHRONIZE = 0x00100000
self.manager_handle = self.kernel32.OpenProcess(
SYNCHRONIZE, 0, self.manager_pid
)
if not self.manager_handle:
raise ctypes.WinError(ctypes.get_last_error())
self.manager_dead = False
def is_alive(self):
if not self.manager_dead:
# Value obtained from https://msdn.microsoft.com/en-us/library/windows/desktop/ms687032.aspx
self.manager_dead = (
self.kernel32.WaitForSingleObject(self.manager_handle, 0) == 0
)
return not self.manager_dead
else:
class ManagerWatchdog(object):
def __init__(self):
self.manager_pid = os.getppid()
self.manager_dead = False
def is_alive(self):
if not self.manager_dead:
self.manager_dead = os.getppid() != self.manager_pid
return not self.manager_dead
_worker_info = None
class WorkerInfo(object):
__initialized = False
def __init__(self, **kwargs):
for k, v in kwargs.items():
setattr(self, k, v)
self.__initialized = True
def __setattr__(self, key, val):
if self.__initialized:
raise RuntimeError(
"Cannot assign attributes to {} objects".format(self.__class__.__name__)
)
return super(WorkerInfo, self).__setattr__(key, val)
def get_worker_info():
r"""Returns the information about the current
:class:`~torch.utils.data.DataLoader` iterator worker process.
When called in a worker, this returns an object guaranteed to have the
following attributes:
* :attr:`id`: the current worker id.
* :attr:`num_workers`: the total number of workers.
* :attr:`seed`: the random seed set for the current worker. This value is
determined by main process RNG and the worker id. See
:class:`~torch.utils.data.DataLoader`'s documentation for more details.
* :attr:`dataset`: the copy of the dataset object in **this** process. Note
that this will be a different object in a different process than the one
in the main process.
When called in the main process, this returns ``None``.
.. note::
When used in a :attr:`worker_init_fn` passed over to
:class:`~torch.utils.data.DataLoader`, this method can be useful to
set up each worker process differently, for instance, using ``worker_id``
to configure the ``dataset`` object to only read a specific fraction of a
sharded dataset, or use ``seed`` to seed other libraries used in dataset
code (e.g., NumPy).
"""
return _worker_info
r"""Dummy class used to signal the end of an IterableDataset"""
_IterableDatasetStopIteration = namedtuple(
"_IterableDatasetStopIteration", ["worker_id"]
)
def worker_loop(
dataset_kind,
dataset,
index_queue,
data_queue,
done_event,
auto_collation,
collate_fn,
drop_last,
seed,
init_fn,
worker_id,
num_workers,
):
# See NOTE [ Data Loader Multiprocessing Shutdown Logic ] for details on the
# logic of this function.
try:
# Intialize C side signal handlers for SIGBUS and SIGSEGV. Python signal
# module's handlers are executed after Python returns from C low-level
# handlers, likely when the same fatal signal had already happened
# again.
# https://docs.python.org/3/library/signal.html#execution-of-python-signal-handlers
signal_handling._set_worker_signal_handlers()
torch.set_num_threads(1)
random.seed(seed)
torch.manual_seed(seed)
global _worker_info
_worker_info = WorkerInfo(
id=worker_id, num_workers=num_workers, seed=seed, dataset=dataset
)
from torch.utils.data import _DatasetKind
init_exception = None
try:
if init_fn is not None:
init_fn(worker_id)
fetcher = _DatasetKind.create_fetcher(
dataset_kind, dataset, auto_collation, collate_fn, drop_last
)
except Exception:
init_exception = ExceptionWrapper(
where="in DataLoader worker process {}".format(worker_id)
)
# When using Iterable mode, some worker can exit earlier than others due
# to the IterableDataset behaving differently for different workers.
# When such things happen, an `_IterableDatasetStopIteration` object is
# sent over to the main process with the ID of this worker, so that the
# main process won't send more tasks to this worker, and will send
# `None` to this worker to properly exit it.
#
# Note that we cannot set `done_event` from a worker as it is shared
# among all processes. Instead, we set the `iteration_end` flag to
# signify that the iterator is exhausted. When either `done_event` or
# `iteration_end` is set, we skip all processing step and just wait for
# `None`.
iteration_end = False
watchdog = ManagerWatchdog()
while watchdog.is_alive():
try:
r = index_queue.get(timeout=MP_STATUS_CHECK_INTERVAL)
except queue.Empty:
continue
if r is None:
# Received the final signal
assert done_event.is_set() or iteration_end
break
elif done_event.is_set() or iteration_end:
# `done_event` is set. But I haven't received the final signal
# (None) yet. I will keep continuing until get it, and skip the
# processing steps.
continue
idx, index = r
""" Added """
MyRandomResizedCrop.sample_image_size(idx)
""" Added """
if init_exception is not None:
data = init_exception
init_exception = None
else:
try:
data = fetcher.fetch(index)
except Exception as e:
if (
isinstance(e, StopIteration)
and dataset_kind == _DatasetKind.Iterable
):
data = _IterableDatasetStopIteration(worker_id)
# Set `iteration_end`
# (1) to save future `next(...)` calls, and
# (2) to avoid sending multiple `_IterableDatasetStopIteration`s.
iteration_end = True
else:
# It is important that we don't store exc_info in a variable.
# `ExceptionWrapper` does the correct thing.
# See NOTE [ Python Traceback Reference Cycle Problem ]
data = ExceptionWrapper(
where="in DataLoader worker process {}".format(worker_id)
)
data_queue.put((idx, data))
del data, idx, index, r # save memory
except KeyboardInterrupt:
# Main process will raise KeyboardInterrupt anyways.
pass
if done_event.is_set():
data_queue.cancel_join_thread()
data_queue.close()
|
import time
import random
import math
import os
from PIL import Image
import torchvision.transforms.functional as F
import torchvision.transforms as transforms
__all__ = ["MyRandomResizedCrop", "MyResizeRandomCrop", "MyResize"]
_pil_interpolation_to_str = {
Image.NEAREST: "PIL.Image.NEAREST",
Image.BILINEAR: "PIL.Image.BILINEAR",
Image.BICUBIC: "PIL.Image.BICUBIC",
Image.LANCZOS: "PIL.Image.LANCZOS",
Image.HAMMING: "PIL.Image.HAMMING",
Image.BOX: "PIL.Image.BOX",
}
class MyRandomResizedCrop(transforms.RandomResizedCrop):
ACTIVE_SIZE = 224
IMAGE_SIZE_LIST = [224]
IMAGE_SIZE_SEG = 4
CONTINUOUS = False
SYNC_DISTRIBUTED = True
EPOCH = 0
BATCH = 0
def __init__(
self,
size,
scale=(0.08, 1.0),
ratio=(3.0 / 4.0, 4.0 / 3.0),
interpolation=Image.BILINEAR,
):
if not isinstance(size, int):
size = size[0]
super(MyRandomResizedCrop, self).__init__(size, scale, ratio, interpolation)
def __call__(self, img):
i, j, h, w = self.get_params(img, self.scale, self.ratio)
return F.resized_crop(
img,
i,
j,
h,
w,
(MyRandomResizedCrop.ACTIVE_SIZE, MyRandomResizedCrop.ACTIVE_SIZE),
self.interpolation,
)
@staticmethod
def get_candidate_image_size():
if MyRandomResizedCrop.CONTINUOUS:
min_size = min(MyRandomResizedCrop.IMAGE_SIZE_LIST)
max_size = max(MyRandomResizedCrop.IMAGE_SIZE_LIST)
candidate_sizes = []
for i in range(min_size, max_size + 1):
if i % MyRandomResizedCrop.IMAGE_SIZE_SEG == 0:
candidate_sizes.append(i)
else:
candidate_sizes = MyRandomResizedCrop.IMAGE_SIZE_LIST
relative_probs = None
return candidate_sizes, relative_probs
@staticmethod
def sample_image_size(batch_id=None):
if batch_id is None:
batch_id = MyRandomResizedCrop.BATCH
if MyRandomResizedCrop.SYNC_DISTRIBUTED:
_seed = int("%d%.3d" % (batch_id, MyRandomResizedCrop.EPOCH))
else:
_seed = os.getpid() + time.time()
random.seed(_seed)
candidate_sizes, relative_probs = MyRandomResizedCrop.get_candidate_image_size()
MyRandomResizedCrop.ACTIVE_SIZE = random.choices(
candidate_sizes, weights=relative_probs
)[0]
def __repr__(self):
interpolate_str = _pil_interpolation_to_str[self.interpolation]
format_string = self.__class__.__name__ + "(size={0}".format(
MyRandomResizedCrop.IMAGE_SIZE_LIST
)
if MyRandomResizedCrop.CONTINUOUS:
format_string += "@continuous"
format_string += ", scale={0}".format(tuple(round(s, 4) for s in self.scale))
format_string += ", ratio={0}".format(tuple(round(r, 4) for r in self.ratio))
format_string += ", interpolation={0})".format(interpolate_str)
return format_string
class MyResizeRandomCrop(object):
def __init__(
self,
interpolation=Image.BILINEAR,
use_padding=False,
pad_if_needed=False,
fill=0,
padding_mode="constant",
):
# resize
self.interpolation = interpolation
# random crop
self.use_padding = use_padding
self.pad_if_needed = pad_if_needed
self.fill = fill
self.padding_mode = padding_mode
def __call__(self, img):
crop_size = MyRandomResizedCrop.ACTIVE_SIZE
if not self.use_padding:
resize_size = int(math.ceil(crop_size / 0.875))
img = F.resize(img, resize_size, self.interpolation)
else:
img = F.resize(img, crop_size, self.interpolation)
padding_size = crop_size // 8
img = F.pad(img, padding_size, self.fill, self.padding_mode)
# pad the width if needed
if self.pad_if_needed and img.size[0] < crop_size:
img = F.pad(img, (crop_size - img.size[0], 0), self.fill, self.padding_mode)
# pad the height if needed
if self.pad_if_needed and img.size[1] < crop_size:
img = F.pad(img, (0, crop_size - img.size[1]), self.fill, self.padding_mode)
i, j, h, w = transforms.RandomCrop.get_params(img, (crop_size, crop_size))
return F.crop(img, i, j, h, w)
def __repr__(self):
return (
"MyResizeRandomCrop(size=%s%s, interpolation=%s, use_padding=%s, fill=%s)"
% (
MyRandomResizedCrop.IMAGE_SIZE_LIST,
"@continuous" if MyRandomResizedCrop.CONTINUOUS else "",
_pil_interpolation_to_str[self.interpolation],
self.use_padding,
self.fill,
)
)
class MyResize(object):
def __init__(self, interpolation=Image.BILINEAR):
self.interpolation = interpolation
def __call__(self, img):
target_size = MyRandomResizedCrop.ACTIVE_SIZE
img = F.resize(img, target_size, self.interpolation)
return img
def __repr__(self):
return "MyResize(size=%s%s, interpolation=%s)" % (
MyRandomResizedCrop.IMAGE_SIZE_LIST,
"@continuous" if MyRandomResizedCrop.CONTINUOUS else "",
_pil_interpolation_to_str[self.interpolation],
)
|
import math
import torch
from torch.utils.data.distributed import DistributedSampler
__all__ = ["MyDistributedSampler", "WeightedDistributedSampler"]
class MyDistributedSampler(DistributedSampler):
"""Allow Subset Sampler in Distributed Training"""
def __init__(
self, dataset, num_replicas=None, rank=None, shuffle=True, sub_index_list=None
):
super(MyDistributedSampler, self).__init__(dataset, num_replicas, rank, shuffle)
self.sub_index_list = sub_index_list # numpy
self.num_samples = int(
math.ceil(len(self.sub_index_list) * 1.0 / self.num_replicas)
)
self.total_size = self.num_samples * self.num_replicas
print("Use MyDistributedSampler: %d, %d" % (self.num_samples, self.total_size))
def __iter__(self):
# deterministically shuffle based on epoch
g = torch.Generator()
g.manual_seed(self.epoch)
indices = torch.randperm(len(self.sub_index_list), generator=g).tolist()
# add extra samples to make it evenly divisible
indices += indices[: (self.total_size - len(indices))]
indices = self.sub_index_list[indices].tolist()
assert len(indices) == self.total_size
# subsample
indices = indices[self.rank : self.total_size : self.num_replicas]
assert len(indices) == self.num_samples
return iter(indices)
class WeightedDistributedSampler(DistributedSampler):
"""Allow Weighted Random Sampling in Distributed Training"""
def __init__(
self,
dataset,
num_replicas=None,
rank=None,
shuffle=True,
weights=None,
replacement=True,
):
super(WeightedDistributedSampler, self).__init__(
dataset, num_replicas, rank, shuffle
)
self.weights = (
torch.as_tensor(weights, dtype=torch.double)
if weights is not None
else None
)
self.replacement = replacement
print("Use WeightedDistributedSampler")
def __iter__(self):
if self.weights is None:
return super(WeightedDistributedSampler, self).__iter__()
else:
g = torch.Generator()
g.manual_seed(self.epoch)
if self.shuffle:
# original: indices = torch.randperm(len(self.dataset), generator=g).tolist()
indices = torch.multinomial(
self.weights, len(self.dataset), self.replacement, generator=g
).tolist()
else:
indices = list(range(len(self.dataset)))
# add extra samples to make it evenly divisible
indices += indices[: (self.total_size - len(indices))]
assert len(indices) == self.total_size
# subsample
indices = indices[self.rank : self.total_size : self.num_replicas]
assert len(indices) == self.num_samples
return iter(indices)
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import copy
import torch.nn.functional as F
import torch.nn as nn
import torch
from ofa.utils import AverageMeter, get_net_device, DistributedTensor
from ofa.imagenet_classification.elastic_nn.modules.dynamic_op import DynamicBatchNorm2d
__all__ = ["set_running_statistics"]
def set_running_statistics(model, data_loader, distributed=False):
bn_mean = {}
bn_var = {}
forward_model = copy.deepcopy(model)
for name, m in forward_model.named_modules():
if isinstance(m, nn.BatchNorm2d):
if distributed:
bn_mean[name] = DistributedTensor(name + "#mean")
bn_var[name] = DistributedTensor(name + "#var")
else:
bn_mean[name] = AverageMeter()
bn_var[name] = AverageMeter()
def new_forward(bn, mean_est, var_est):
def lambda_forward(x):
batch_mean = (
x.mean(0, keepdim=True)
.mean(2, keepdim=True)
.mean(3, keepdim=True)
) # 1, C, 1, 1
batch_var = (x - batch_mean) * (x - batch_mean)
batch_var = (
batch_var.mean(0, keepdim=True)
.mean(2, keepdim=True)
.mean(3, keepdim=True)
)
batch_mean = torch.squeeze(batch_mean)
batch_var = torch.squeeze(batch_var)
mean_est.update(batch_mean.data, x.size(0))
var_est.update(batch_var.data, x.size(0))
# bn forward using calculated mean & var
_feature_dim = batch_mean.size(0)
return F.batch_norm(
x,
batch_mean,
batch_var,
bn.weight[:_feature_dim],
bn.bias[:_feature_dim],
False,
0.0,
bn.eps,
)
return lambda_forward
m.forward = new_forward(m, bn_mean[name], bn_var[name])
if len(bn_mean) == 0:
# skip if there is no batch normalization layers in the network
return
with torch.no_grad():
DynamicBatchNorm2d.SET_RUNNING_STATISTICS = True
for images, labels in data_loader:
images = images.to(get_net_device(forward_model))
forward_model(images)
DynamicBatchNorm2d.SET_RUNNING_STATISTICS = False
for name, m in model.named_modules():
if name in bn_mean and bn_mean[name].count > 0:
feature_dim = bn_mean[name].avg.size(0)
assert isinstance(m, nn.BatchNorm2d)
m.running_mean.data[:feature_dim].copy_(bn_mean[name].avg)
m.running_var.data[:feature_dim].copy_(bn_var[name].avg)
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
from .progressive_shrinking import *
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import torch.nn as nn
import random
import time
import torch
import torch.nn.functional as F
from tqdm import tqdm
from ofa.utils import AverageMeter, cross_entropy_loss_with_soft_target
from ofa.utils import (
DistributedMetric,
list_mean,
subset_mean,
val2list,
MyRandomResizedCrop,
)
from ofa.imagenet_classification.run_manager import DistributedRunManager
__all__ = [
"validate",
"train_one_epoch",
"train",
"load_models",
"train_elastic_depth",
"train_elastic_expand",
"train_elastic_width_mult",
]
def validate(
run_manager,
epoch=0,
is_test=False,
image_size_list=None,
ks_list=None,
expand_ratio_list=None,
depth_list=None,
width_mult_list=None,
additional_setting=None,
):
dynamic_net = run_manager.net
if isinstance(dynamic_net, nn.DataParallel):
dynamic_net = dynamic_net.module
dynamic_net.eval()
if image_size_list is None:
image_size_list = val2list(run_manager.run_config.data_provider.image_size, 1)
if ks_list is None:
ks_list = dynamic_net.ks_list
if expand_ratio_list is None:
expand_ratio_list = dynamic_net.expand_ratio_list
if depth_list is None:
depth_list = dynamic_net.depth_list
if width_mult_list is None:
if "width_mult_list" in dynamic_net.__dict__:
width_mult_list = list(range(len(dynamic_net.width_mult_list)))
else:
width_mult_list = [0]
subnet_settings = []
for d in depth_list:
for e in expand_ratio_list:
for k in ks_list:
for w in width_mult_list:
for img_size in image_size_list:
subnet_settings.append(
[
{
"image_size": img_size,
"d": d,
"e": e,
"ks": k,
"w": w,
},
"R%s-D%s-E%s-K%s-W%s" % (img_size, d, e, k, w),
]
)
if additional_setting is not None:
subnet_settings += additional_setting
losses_of_subnets, top1_of_subnets, top5_of_subnets = [], [], []
valid_log = ""
for setting, name in subnet_settings:
run_manager.write_log(
"-" * 30 + " Validate %s " % name + "-" * 30, "train", should_print=False
)
run_manager.run_config.data_provider.assign_active_img_size(
setting.pop("image_size")
)
dynamic_net.set_active_subnet(**setting)
run_manager.write_log(dynamic_net.module_str, "train", should_print=False)
run_manager.reset_running_statistics(dynamic_net)
loss, (top1, top5) = run_manager.validate(
epoch=epoch, is_test=is_test, run_str=name, net=dynamic_net
)
losses_of_subnets.append(loss)
top1_of_subnets.append(top1)
top5_of_subnets.append(top5)
valid_log += "%s (%.3f), " % (name, top1)
return (
list_mean(losses_of_subnets),
list_mean(top1_of_subnets),
list_mean(top5_of_subnets),
valid_log,
)
def train_one_epoch(run_manager, args, epoch, warmup_epochs=0, warmup_lr=0):
dynamic_net = run_manager.network
distributed = isinstance(run_manager, DistributedRunManager)
# switch to train mode
dynamic_net.train()
if distributed:
run_manager.run_config.train_loader.sampler.set_epoch(epoch)
MyRandomResizedCrop.EPOCH = epoch
nBatch = len(run_manager.run_config.train_loader)
data_time = AverageMeter()
losses = DistributedMetric("train_loss") if distributed else AverageMeter()
metric_dict = run_manager.get_metric_dict()
with tqdm(
total=nBatch,
desc="Train Epoch #{}".format(epoch + 1),
disable=distributed and not run_manager.is_root,
) as t:
end = time.time()
for i, (images, labels) in enumerate(run_manager.run_config.train_loader):
MyRandomResizedCrop.BATCH = i
data_time.update(time.time() - end)
if epoch < warmup_epochs:
new_lr = run_manager.run_config.warmup_adjust_learning_rate(
run_manager.optimizer,
warmup_epochs * nBatch,
nBatch,
epoch,
i,
warmup_lr,
)
else:
new_lr = run_manager.run_config.adjust_learning_rate(
run_manager.optimizer, epoch - warmup_epochs, i, nBatch
)
images, labels = images.cuda(), labels.cuda()
target = labels
# soft target
if args.kd_ratio > 0:
args.teacher_model.train()
with torch.no_grad():
soft_logits = args.teacher_model(images).detach()
soft_label = F.softmax(soft_logits, dim=1)
# clean gradients
dynamic_net.zero_grad()
loss_of_subnets = []
# compute output
subnet_str = ""
for _ in range(args.dynamic_batch_size):
# set random seed before sampling
subnet_seed = int("%d%.3d%.3d" % (epoch * nBatch + i, _, 0))
random.seed(subnet_seed)
subnet_settings = dynamic_net.sample_active_subnet()
subnet_str += (
"%d: " % _
+ ",".join(
[
"%s_%s"
% (
key,
"%.1f" % subset_mean(val, 0)
if isinstance(val, list)
else val,
)
for key, val in subnet_settings.items()
]
)
+ " || "
)
output = run_manager.net(images)
if args.kd_ratio == 0:
loss = run_manager.train_criterion(output, labels)
loss_type = "ce"
else:
if args.kd_type == "ce":
kd_loss = cross_entropy_loss_with_soft_target(
output, soft_label
)
else:
kd_loss = F.mse_loss(output, soft_logits)
loss = args.kd_ratio * kd_loss + run_manager.train_criterion(
output, labels
)
loss_type = "%.1fkd-%s & ce" % (args.kd_ratio, args.kd_type)
# measure accuracy and record loss
loss_of_subnets.append(loss)
run_manager.update_metric(metric_dict, output, target)
loss.backward()
run_manager.optimizer.step()
losses.update(list_mean(loss_of_subnets), images.size(0))
t.set_postfix(
{
"loss": losses.avg.item(),
**run_manager.get_metric_vals(metric_dict, return_dict=True),
"R": images.size(2),
"lr": new_lr,
"loss_type": loss_type,
"seed": str(subnet_seed),
"str": subnet_str,
"data_time": data_time.avg,
}
)
t.update(1)
end = time.time()
return losses.avg.item(), run_manager.get_metric_vals(metric_dict)
def train(run_manager, args, validate_func=None):
distributed = isinstance(run_manager, DistributedRunManager)
if validate_func is None:
validate_func = validate
for epoch in range(
run_manager.start_epoch, run_manager.run_config.n_epochs + args.warmup_epochs
):
train_loss, (train_top1, train_top5) = train_one_epoch(
run_manager, args, epoch, args.warmup_epochs, args.warmup_lr
)
if (epoch + 1) % args.validation_frequency == 0:
val_loss, val_acc, val_acc5, _val_log = validate_func(
run_manager, epoch=epoch, is_test=False
)
# best_acc
is_best = val_acc > run_manager.best_acc
run_manager.best_acc = max(run_manager.best_acc, val_acc)
if not distributed or run_manager.is_root:
val_log = (
"Valid [{0}/{1}] loss={2:.3f}, top-1={3:.3f} ({4:.3f})".format(
epoch + 1 - args.warmup_epochs,
run_manager.run_config.n_epochs,
val_loss,
val_acc,
run_manager.best_acc,
)
)
val_log += ", Train top-1 {top1:.3f}, Train loss {loss:.3f}\t".format(
top1=train_top1, loss=train_loss
)
val_log += _val_log
run_manager.write_log(val_log, "valid", should_print=False)
run_manager.save_model(
{
"epoch": epoch,
"best_acc": run_manager.best_acc,
"optimizer": run_manager.optimizer.state_dict(),
"state_dict": run_manager.network.state_dict(),
},
is_best=is_best,
)
def load_models(run_manager, dynamic_net, model_path=None):
# specify init path
init = torch.load(model_path, map_location="cpu")["state_dict"]
dynamic_net.load_state_dict(init)
run_manager.write_log("Loaded init from %s" % model_path, "valid")
def train_elastic_depth(train_func, run_manager, args, validate_func_dict):
dynamic_net = run_manager.net
if isinstance(dynamic_net, nn.DataParallel):
dynamic_net = dynamic_net.module
depth_stage_list = dynamic_net.depth_list.copy()
depth_stage_list.sort(reverse=True)
n_stages = len(depth_stage_list) - 1
current_stage = n_stages - 1
# load pretrained models
if run_manager.start_epoch == 0 and not args.resume:
validate_func_dict["depth_list"] = sorted(dynamic_net.depth_list)
load_models(run_manager, dynamic_net, model_path=args.ofa_checkpoint_path)
# validate after loading weights
run_manager.write_log(
"%.3f\t%.3f\t%.3f\t%s"
% validate(run_manager, is_test=True, **validate_func_dict),
"valid",
)
else:
assert args.resume
run_manager.write_log(
"-" * 30
+ "Supporting Elastic Depth: %s -> %s"
% (depth_stage_list[: current_stage + 1], depth_stage_list[: current_stage + 2])
+ "-" * 30,
"valid",
)
# add depth list constraints
if (
len(set(dynamic_net.ks_list)) == 1
and len(set(dynamic_net.expand_ratio_list)) == 1
):
validate_func_dict["depth_list"] = depth_stage_list
else:
validate_func_dict["depth_list"] = sorted(
{min(depth_stage_list), max(depth_stage_list)}
)
# train
train_func(
run_manager,
args,
lambda _run_manager, epoch, is_test: validate(
_run_manager, epoch, is_test, **validate_func_dict
),
)
def train_elastic_expand(train_func, run_manager, args, validate_func_dict):
dynamic_net = run_manager.net
if isinstance(dynamic_net, nn.DataParallel):
dynamic_net = dynamic_net.module
expand_stage_list = dynamic_net.expand_ratio_list.copy()
expand_stage_list.sort(reverse=True)
n_stages = len(expand_stage_list) - 1
current_stage = n_stages - 1
# load pretrained models
if run_manager.start_epoch == 0 and not args.resume:
validate_func_dict["expand_ratio_list"] = sorted(dynamic_net.expand_ratio_list)
load_models(run_manager, dynamic_net, model_path=args.ofa_checkpoint_path)
dynamic_net.re_organize_middle_weights(expand_ratio_stage=current_stage)
run_manager.write_log(
"%.3f\t%.3f\t%.3f\t%s"
% validate(run_manager, is_test=True, **validate_func_dict),
"valid",
)
else:
assert args.resume
run_manager.write_log(
"-" * 30
+ "Supporting Elastic Expand Ratio: %s -> %s"
% (
expand_stage_list[: current_stage + 1],
expand_stage_list[: current_stage + 2],
)
+ "-" * 30,
"valid",
)
if len(set(dynamic_net.ks_list)) == 1 and len(set(dynamic_net.depth_list)) == 1:
validate_func_dict["expand_ratio_list"] = expand_stage_list
else:
validate_func_dict["expand_ratio_list"] = sorted(
{min(expand_stage_list), max(expand_stage_list)}
)
# train
train_func(
run_manager,
args,
lambda _run_manager, epoch, is_test: validate(
_run_manager, epoch, is_test, **validate_func_dict
),
)
def train_elastic_width_mult(train_func, run_manager, args, validate_func_dict):
dynamic_net = run_manager.net
if isinstance(dynamic_net, nn.DataParallel):
dynamic_net = dynamic_net.module
width_stage_list = dynamic_net.width_mult_list.copy()
width_stage_list.sort(reverse=True)
n_stages = len(width_stage_list) - 1
current_stage = n_stages - 1
if run_manager.start_epoch == 0 and not args.resume:
load_models(run_manager, dynamic_net, model_path=args.ofa_checkpoint_path)
if current_stage == 0:
dynamic_net.re_organize_middle_weights(
expand_ratio_stage=len(dynamic_net.expand_ratio_list) - 1
)
run_manager.write_log(
"reorganize_middle_weights (expand_ratio_stage=%d)"
% (len(dynamic_net.expand_ratio_list) - 1),
"valid",
)
try:
dynamic_net.re_organize_outer_weights()
run_manager.write_log("reorganize_outer_weights", "valid")
except Exception:
pass
run_manager.write_log(
"%.3f\t%.3f\t%.3f\t%s"
% validate(run_manager, is_test=True, **validate_func_dict),
"valid",
)
else:
assert args.resume
run_manager.write_log(
"-" * 30
+ "Supporting Elastic Width Mult: %s -> %s"
% (width_stage_list[: current_stage + 1], width_stage_list[: current_stage + 2])
+ "-" * 30,
"valid",
)
validate_func_dict["width_mult_list"] = sorted({0, len(width_stage_list) - 1})
# train
train_func(
run_manager,
args,
lambda _run_manager, epoch, is_test: validate(
_run_manager, epoch, is_test, **validate_func_dict
),
)
|
import random
from ofa.imagenet_classification.elastic_nn.modules.dynamic_layers import (
DynamicConvLayer,
DynamicLinearLayer,
)
from ofa.imagenet_classification.elastic_nn.modules.dynamic_layers import (
DynamicResNetBottleneckBlock,
)
from ofa.utils.layers import IdentityLayer, ResidualBlock
from ofa.imagenet_classification.networks import ResNets
from ofa.utils import make_divisible, val2list, MyNetwork
__all__ = ["OFAResNets"]
class OFAResNets(ResNets):
def __init__(
self,
n_classes=1000,
bn_param=(0.1, 1e-5),
dropout_rate=0,
depth_list=2,
expand_ratio_list=0.25,
width_mult_list=1.0,
):
self.depth_list = val2list(depth_list)
self.expand_ratio_list = val2list(expand_ratio_list)
self.width_mult_list = val2list(width_mult_list)
# sort
self.depth_list.sort()
self.expand_ratio_list.sort()
self.width_mult_list.sort()
input_channel = [
make_divisible(64 * width_mult, MyNetwork.CHANNEL_DIVISIBLE)
for width_mult in self.width_mult_list
]
mid_input_channel = [
make_divisible(channel // 2, MyNetwork.CHANNEL_DIVISIBLE)
for channel in input_channel
]
stage_width_list = ResNets.STAGE_WIDTH_LIST.copy()
for i, width in enumerate(stage_width_list):
stage_width_list[i] = [
make_divisible(width * width_mult, MyNetwork.CHANNEL_DIVISIBLE)
for width_mult in self.width_mult_list
]
n_block_list = [
base_depth + max(self.depth_list) for base_depth in ResNets.BASE_DEPTH_LIST
]
stride_list = [1, 2, 2, 2]
# build input stem
input_stem = [
DynamicConvLayer(
val2list(3),
mid_input_channel,
3,
stride=2,
use_bn=True,
act_func="relu",
),
ResidualBlock(
DynamicConvLayer(
mid_input_channel,
mid_input_channel,
3,
stride=1,
use_bn=True,
act_func="relu",
),
IdentityLayer(mid_input_channel, mid_input_channel),
),
DynamicConvLayer(
mid_input_channel,
input_channel,
3,
stride=1,
use_bn=True,
act_func="relu",
),
]
# blocks
blocks = []
for d, width, s in zip(n_block_list, stage_width_list, stride_list):
for i in range(d):
stride = s if i == 0 else 1
bottleneck_block = DynamicResNetBottleneckBlock(
input_channel,
width,
expand_ratio_list=self.expand_ratio_list,
kernel_size=3,
stride=stride,
act_func="relu",
downsample_mode="avgpool_conv",
)
blocks.append(bottleneck_block)
input_channel = width
# classifier
classifier = DynamicLinearLayer(
input_channel, n_classes, dropout_rate=dropout_rate
)
super(OFAResNets, self).__init__(input_stem, blocks, classifier)
# set bn param
self.set_bn_param(*bn_param)
# runtime_depth
self.input_stem_skipping = 0
self.runtime_depth = [0] * len(n_block_list)
@property
def ks_list(self):
return [3]
@staticmethod
def name():
return "OFAResNets"
def forward(self, x):
for layer in self.input_stem:
if (
self.input_stem_skipping > 0
and isinstance(layer, ResidualBlock)
and isinstance(layer.shortcut, IdentityLayer)
):
pass
else:
x = layer(x)
x = self.max_pooling(x)
for stage_id, block_idx in enumerate(self.grouped_block_index):
depth_param = self.runtime_depth[stage_id]
active_idx = block_idx[: len(block_idx) - depth_param]
for idx in active_idx:
x = self.blocks[idx](x)
x = self.global_avg_pool(x)
x = self.classifier(x)
return x
@property
def module_str(self):
_str = ""
for layer in self.input_stem:
if (
self.input_stem_skipping > 0
and isinstance(layer, ResidualBlock)
and isinstance(layer.shortcut, IdentityLayer)
):
pass
else:
_str += layer.module_str + "\n"
_str += "max_pooling(ks=3, stride=2)\n"
for stage_id, block_idx in enumerate(self.grouped_block_index):
depth_param = self.runtime_depth[stage_id]
active_idx = block_idx[: len(block_idx) - depth_param]
for idx in active_idx:
_str += self.blocks[idx].module_str + "\n"
_str += self.global_avg_pool.__repr__() + "\n"
_str += self.classifier.module_str
return _str
@property
def config(self):
return {
"name": OFAResNets.__name__,
"bn": self.get_bn_param(),
"input_stem": [layer.config for layer in self.input_stem],
"blocks": [block.config for block in self.blocks],
"classifier": self.classifier.config,
}
@staticmethod
def build_from_config(config):
raise ValueError("do not support this function")
def load_state_dict(self, state_dict, **kwargs):
model_dict = self.state_dict()
for key in state_dict:
new_key = key
if new_key in model_dict:
pass
elif ".linear." in new_key:
new_key = new_key.replace(".linear.", ".linear.linear.")
elif "bn." in new_key:
new_key = new_key.replace("bn.", "bn.bn.")
elif "conv.weight" in new_key:
new_key = new_key.replace("conv.weight", "conv.conv.weight")
else:
raise ValueError(new_key)
assert new_key in model_dict, "%s" % new_key
model_dict[new_key] = state_dict[key]
super(OFAResNets, self).load_state_dict(model_dict)
""" set, sample and get active sub-networks """
def set_max_net(self):
self.set_active_subnet(
d=max(self.depth_list),
e=max(self.expand_ratio_list),
w=len(self.width_mult_list) - 1,
)
def set_active_subnet(self, d=None, e=None, w=None, **kwargs):
depth = val2list(d, len(ResNets.BASE_DEPTH_LIST) + 1)
expand_ratio = val2list(e, len(self.blocks))
width_mult = val2list(w, len(ResNets.BASE_DEPTH_LIST) + 2)
for block, e in zip(self.blocks, expand_ratio):
if e is not None:
block.active_expand_ratio = e
if width_mult[0] is not None:
self.input_stem[1].conv.active_out_channel = self.input_stem[
0
].active_out_channel = self.input_stem[0].out_channel_list[width_mult[0]]
if width_mult[1] is not None:
self.input_stem[2].active_out_channel = self.input_stem[2].out_channel_list[
width_mult[1]
]
if depth[0] is not None:
self.input_stem_skipping = depth[0] != max(self.depth_list)
for stage_id, (block_idx, d, w) in enumerate(
zip(self.grouped_block_index, depth[1:], width_mult[2:])
):
if d is not None:
self.runtime_depth[stage_id] = max(self.depth_list) - d
if w is not None:
for idx in block_idx:
self.blocks[idx].active_out_channel = self.blocks[
idx
].out_channel_list[w]
def sample_active_subnet(self):
# sample expand ratio
expand_setting = []
for block in self.blocks:
expand_setting.append(random.choice(block.expand_ratio_list))
# sample depth
depth_setting = [random.choice([max(self.depth_list), min(self.depth_list)])]
for stage_id in range(len(ResNets.BASE_DEPTH_LIST)):
depth_setting.append(random.choice(self.depth_list))
# sample width_mult
width_mult_setting = [
random.choice(list(range(len(self.input_stem[0].out_channel_list)))),
random.choice(list(range(len(self.input_stem[2].out_channel_list)))),
]
for stage_id, block_idx in enumerate(self.grouped_block_index):
stage_first_block = self.blocks[block_idx[0]]
width_mult_setting.append(
random.choice(list(range(len(stage_first_block.out_channel_list))))
)
arch_config = {"d": depth_setting, "e": expand_setting, "w": width_mult_setting}
self.set_active_subnet(**arch_config)
return arch_config
def get_active_subnet(self, preserve_weight=True):
input_stem = [self.input_stem[0].get_active_subnet(3, preserve_weight)]
if self.input_stem_skipping <= 0:
input_stem.append(
ResidualBlock(
self.input_stem[1].conv.get_active_subnet(
self.input_stem[0].active_out_channel, preserve_weight
),
IdentityLayer(
self.input_stem[0].active_out_channel,
self.input_stem[0].active_out_channel,
),
)
)
input_stem.append(
self.input_stem[2].get_active_subnet(
self.input_stem[0].active_out_channel, preserve_weight
)
)
input_channel = self.input_stem[2].active_out_channel
blocks = []
for stage_id, block_idx in enumerate(self.grouped_block_index):
depth_param = self.runtime_depth[stage_id]
active_idx = block_idx[: len(block_idx) - depth_param]
for idx in active_idx:
blocks.append(
self.blocks[idx].get_active_subnet(input_channel, preserve_weight)
)
input_channel = self.blocks[idx].active_out_channel
classifier = self.classifier.get_active_subnet(input_channel, preserve_weight)
subnet = ResNets(input_stem, blocks, classifier)
subnet.set_bn_param(**self.get_bn_param())
return subnet
def get_active_net_config(self):
input_stem_config = [self.input_stem[0].get_active_subnet_config(3)]
if self.input_stem_skipping <= 0:
input_stem_config.append(
{
"name": ResidualBlock.__name__,
"conv": self.input_stem[1].conv.get_active_subnet_config(
self.input_stem[0].active_out_channel
),
"shortcut": IdentityLayer(
self.input_stem[0].active_out_channel,
self.input_stem[0].active_out_channel,
),
}
)
input_stem_config.append(
self.input_stem[2].get_active_subnet_config(
self.input_stem[0].active_out_channel
)
)
input_channel = self.input_stem[2].active_out_channel
blocks_config = []
for stage_id, block_idx in enumerate(self.grouped_block_index):
depth_param = self.runtime_depth[stage_id]
active_idx = block_idx[: len(block_idx) - depth_param]
for idx in active_idx:
blocks_config.append(
self.blocks[idx].get_active_subnet_config(input_channel)
)
input_channel = self.blocks[idx].active_out_channel
classifier_config = self.classifier.get_active_subnet_config(input_channel)
return {
"name": ResNets.__name__,
"bn": self.get_bn_param(),
"input_stem": input_stem_config,
"blocks": blocks_config,
"classifier": classifier_config,
}
""" Width Related Methods """
def re_organize_middle_weights(self, expand_ratio_stage=0):
for block in self.blocks:
block.re_organize_middle_weights(expand_ratio_stage)
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import copy
import random
from ofa.utils import make_divisible, val2list, MyNetwork
from ofa.imagenet_classification.elastic_nn.modules import DynamicMBConvLayer
from ofa.utils.layers import (
ConvLayer,
IdentityLayer,
LinearLayer,
MBConvLayer,
ResidualBlock,
)
from ofa.imagenet_classification.networks.proxyless_nets import ProxylessNASNets
__all__ = ["OFAProxylessNASNets"]
class OFAProxylessNASNets(ProxylessNASNets):
def __init__(
self,
n_classes=1000,
bn_param=(0.1, 1e-3),
dropout_rate=0.1,
base_stage_width=None,
width_mult=1.0,
ks_list=3,
expand_ratio_list=6,
depth_list=4,
):
self.width_mult = width_mult
self.ks_list = val2list(ks_list, 1)
self.expand_ratio_list = val2list(expand_ratio_list, 1)
self.depth_list = val2list(depth_list, 1)
self.ks_list.sort()
self.expand_ratio_list.sort()
self.depth_list.sort()
if base_stage_width == "google":
# MobileNetV2 Stage Width
base_stage_width = [32, 16, 24, 32, 64, 96, 160, 320, 1280]
else:
# ProxylessNAS Stage Width
base_stage_width = [32, 16, 24, 40, 80, 96, 192, 320, 1280]
input_channel = make_divisible(
base_stage_width[0] * self.width_mult, MyNetwork.CHANNEL_DIVISIBLE
)
first_block_width = make_divisible(
base_stage_width[1] * self.width_mult, MyNetwork.CHANNEL_DIVISIBLE
)
last_channel = make_divisible(
base_stage_width[-1] * self.width_mult, MyNetwork.CHANNEL_DIVISIBLE
)
# first conv layer
first_conv = ConvLayer(
3,
input_channel,
kernel_size=3,
stride=2,
use_bn=True,
act_func="relu6",
ops_order="weight_bn_act",
)
# first block
first_block_conv = MBConvLayer(
in_channels=input_channel,
out_channels=first_block_width,
kernel_size=3,
stride=1,
expand_ratio=1,
act_func="relu6",
)
first_block = ResidualBlock(first_block_conv, None)
input_channel = first_block_width
# inverted residual blocks
self.block_group_info = []
blocks = [first_block]
_block_index = 1
stride_stages = [2, 2, 2, 1, 2, 1]
n_block_list = [max(self.depth_list)] * 5 + [1]
width_list = []
for base_width in base_stage_width[2:-1]:
width = make_divisible(
base_width * self.width_mult, MyNetwork.CHANNEL_DIVISIBLE
)
width_list.append(width)
for width, n_block, s in zip(width_list, n_block_list, stride_stages):
self.block_group_info.append([_block_index + i for i in range(n_block)])
_block_index += n_block
output_channel = width
for i in range(n_block):
if i == 0:
stride = s
else:
stride = 1
mobile_inverted_conv = DynamicMBConvLayer(
in_channel_list=val2list(input_channel, 1),
out_channel_list=val2list(output_channel, 1),
kernel_size_list=ks_list,
expand_ratio_list=expand_ratio_list,
stride=stride,
act_func="relu6",
)
if stride == 1 and input_channel == output_channel:
shortcut = IdentityLayer(input_channel, input_channel)
else:
shortcut = None
mb_inverted_block = ResidualBlock(mobile_inverted_conv, shortcut)
blocks.append(mb_inverted_block)
input_channel = output_channel
# 1x1_conv before global average pooling
feature_mix_layer = ConvLayer(
input_channel,
last_channel,
kernel_size=1,
use_bn=True,
act_func="relu6",
)
classifier = LinearLayer(last_channel, n_classes, dropout_rate=dropout_rate)
super(OFAProxylessNASNets, self).__init__(
first_conv, blocks, feature_mix_layer, classifier
)
# set bn param
self.set_bn_param(momentum=bn_param[0], eps=bn_param[1])
# runtime_depth
self.runtime_depth = [len(block_idx) for block_idx in self.block_group_info]
""" MyNetwork required methods """
@staticmethod
def name():
return "OFAProxylessNASNets"
def forward(self, x):
# first conv
x = self.first_conv(x)
# first block
x = self.blocks[0](x)
# blocks
for stage_id, block_idx in enumerate(self.block_group_info):
depth = self.runtime_depth[stage_id]
active_idx = block_idx[:depth]
for idx in active_idx:
x = self.blocks[idx](x)
# feature_mix_layer
x = self.feature_mix_layer(x)
x = x.mean(3).mean(2)
x = self.classifier(x)
return x
@property
def module_str(self):
_str = self.first_conv.module_str + "\n"
_str += self.blocks[0].module_str + "\n"
for stage_id, block_idx in enumerate(self.block_group_info):
depth = self.runtime_depth[stage_id]
active_idx = block_idx[:depth]
for idx in active_idx:
_str += self.blocks[idx].module_str + "\n"
_str += self.feature_mix_layer.module_str + "\n"
_str += self.classifier.module_str + "\n"
return _str
@property
def config(self):
return {
"name": OFAProxylessNASNets.__name__,
"bn": self.get_bn_param(),
"first_conv": self.first_conv.config,
"blocks": [block.config for block in self.blocks],
"feature_mix_layer": None
if self.feature_mix_layer is None
else self.feature_mix_layer.config,
"classifier": self.classifier.config,
}
@staticmethod
def build_from_config(config):
raise ValueError("do not support this function")
@property
def grouped_block_index(self):
return self.block_group_info
def load_state_dict(self, state_dict, **kwargs):
model_dict = self.state_dict()
for key in state_dict:
if ".mobile_inverted_conv." in key:
new_key = key.replace(".mobile_inverted_conv.", ".conv.")
else:
new_key = key
if new_key in model_dict:
pass
elif ".bn.bn." in new_key:
new_key = new_key.replace(".bn.bn.", ".bn.")
elif ".conv.conv.weight" in new_key:
new_key = new_key.replace(".conv.conv.weight", ".conv.weight")
elif ".linear.linear." in new_key:
new_key = new_key.replace(".linear.linear.", ".linear.")
##############################################################################
elif ".linear." in new_key:
new_key = new_key.replace(".linear.", ".linear.linear.")
elif "bn." in new_key:
new_key = new_key.replace("bn.", "bn.bn.")
elif "conv.weight" in new_key:
new_key = new_key.replace("conv.weight", "conv.conv.weight")
else:
raise ValueError(new_key)
assert new_key in model_dict, "%s" % new_key
model_dict[new_key] = state_dict[key]
super(OFAProxylessNASNets, self).load_state_dict(model_dict)
""" set, sample and get active sub-networks """
def set_max_net(self):
self.set_active_subnet(
ks=max(self.ks_list), e=max(self.expand_ratio_list), d=max(self.depth_list)
)
def set_active_subnet(self, ks=None, e=None, d=None, **kwargs):
ks = val2list(ks, len(self.blocks) - 1)
expand_ratio = val2list(e, len(self.blocks) - 1)
depth = val2list(d, len(self.block_group_info))
for block, k, e in zip(self.blocks[1:], ks, expand_ratio):
if k is not None:
block.conv.active_kernel_size = k
if e is not None:
block.conv.active_expand_ratio = e
for i, d in enumerate(depth):
if d is not None:
self.runtime_depth[i] = min(len(self.block_group_info[i]), d)
def set_constraint(self, include_list, constraint_type="depth"):
if constraint_type == "depth":
self.__dict__["_depth_include_list"] = include_list.copy()
elif constraint_type == "expand_ratio":
self.__dict__["_expand_include_list"] = include_list.copy()
elif constraint_type == "kernel_size":
self.__dict__["_ks_include_list"] = include_list.copy()
else:
raise NotImplementedError
def clear_constraint(self):
self.__dict__["_depth_include_list"] = None
self.__dict__["_expand_include_list"] = None
self.__dict__["_ks_include_list"] = None
def sample_active_subnet(self):
ks_candidates = (
self.ks_list
if self.__dict__.get("_ks_include_list", None) is None
else self.__dict__["_ks_include_list"]
)
expand_candidates = (
self.expand_ratio_list
if self.__dict__.get("_expand_include_list", None) is None
else self.__dict__["_expand_include_list"]
)
depth_candidates = (
self.depth_list
if self.__dict__.get("_depth_include_list", None) is None
else self.__dict__["_depth_include_list"]
)
# sample kernel size
ks_setting = []
if not isinstance(ks_candidates[0], list):
ks_candidates = [ks_candidates for _ in range(len(self.blocks) - 1)]
for k_set in ks_candidates:
k = random.choice(k_set)
ks_setting.append(k)
# sample expand ratio
expand_setting = []
if not isinstance(expand_candidates[0], list):
expand_candidates = [expand_candidates for _ in range(len(self.blocks) - 1)]
for e_set in expand_candidates:
e = random.choice(e_set)
expand_setting.append(e)
# sample depth
depth_setting = []
if not isinstance(depth_candidates[0], list):
depth_candidates = [
depth_candidates for _ in range(len(self.block_group_info))
]
for d_set in depth_candidates:
d = random.choice(d_set)
depth_setting.append(d)
depth_setting[-1] = 1
self.set_active_subnet(ks_setting, expand_setting, depth_setting)
return {
"ks": ks_setting,
"e": expand_setting,
"d": depth_setting,
}
def get_active_subnet(self, preserve_weight=True):
first_conv = copy.deepcopy(self.first_conv)
blocks = [copy.deepcopy(self.blocks[0])]
feature_mix_layer = copy.deepcopy(self.feature_mix_layer)
classifier = copy.deepcopy(self.classifier)
input_channel = blocks[0].conv.out_channels
# blocks
for stage_id, block_idx in enumerate(self.block_group_info):
depth = self.runtime_depth[stage_id]
active_idx = block_idx[:depth]
stage_blocks = []
for idx in active_idx:
stage_blocks.append(
ResidualBlock(
self.blocks[idx].conv.get_active_subnet(
input_channel, preserve_weight
),
copy.deepcopy(self.blocks[idx].shortcut),
)
)
input_channel = stage_blocks[-1].conv.out_channels
blocks += stage_blocks
_subnet = ProxylessNASNets(first_conv, blocks, feature_mix_layer, classifier)
_subnet.set_bn_param(**self.get_bn_param())
return _subnet
def get_active_net_config(self):
first_conv_config = self.first_conv.config
first_block_config = self.blocks[0].config
feature_mix_layer_config = self.feature_mix_layer.config
classifier_config = self.classifier.config
block_config_list = [first_block_config]
input_channel = first_block_config["conv"]["out_channels"]
for stage_id, block_idx in enumerate(self.block_group_info):
depth = self.runtime_depth[stage_id]
active_idx = block_idx[:depth]
stage_blocks = []
for idx in active_idx:
stage_blocks.append(
{
"name": ResidualBlock.__name__,
"conv": self.blocks[idx].conv.get_active_subnet_config(
input_channel
),
"shortcut": self.blocks[idx].shortcut.config
if self.blocks[idx].shortcut is not None
else None,
}
)
try:
input_channel = self.blocks[idx].conv.active_out_channel
except Exception:
input_channel = self.blocks[idx].conv.out_channels
block_config_list += stage_blocks
return {
"name": ProxylessNASNets.__name__,
"bn": self.get_bn_param(),
"first_conv": first_conv_config,
"blocks": block_config_list,
"feature_mix_layer": feature_mix_layer_config,
"classifier": classifier_config,
}
""" Width Related Methods """
def re_organize_middle_weights(self, expand_ratio_stage=0):
for block in self.blocks[1:]:
block.conv.re_organize_middle_weights(expand_ratio_stage)
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
from .ofa_proxyless import OFAProxylessNASNets
from .ofa_mbv3 import OFAMobileNetV3
from .ofa_resnets import OFAResNets
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import copy
import random
from ofa.imagenet_classification.elastic_nn.modules.dynamic_layers import (
DynamicMBConvLayer,
)
from ofa.utils.layers import (
ConvLayer,
IdentityLayer,
LinearLayer,
MBConvLayer,
ResidualBlock,
)
from ofa.imagenet_classification.networks import MobileNetV3
from ofa.utils import make_divisible, val2list, MyNetwork
__all__ = ["OFAMobileNetV3"]
class OFAMobileNetV3(MobileNetV3):
def __init__(
self,
n_classes=1000,
bn_param=(0.1, 1e-5),
dropout_rate=0.1,
base_stage_width=None,
width_mult=1.0,
ks_list=3,
expand_ratio_list=6,
depth_list=4,
):
self.width_mult = width_mult
self.ks_list = val2list(ks_list, 1)
self.expand_ratio_list = val2list(expand_ratio_list, 1)
self.depth_list = val2list(depth_list, 1)
self.ks_list.sort()
self.expand_ratio_list.sort()
self.depth_list.sort()
base_stage_width = [16, 16, 24, 40, 80, 112, 160, 960, 1280]
final_expand_width = make_divisible(
base_stage_width[-2] * self.width_mult, MyNetwork.CHANNEL_DIVISIBLE
)
last_channel = make_divisible(
base_stage_width[-1] * self.width_mult, MyNetwork.CHANNEL_DIVISIBLE
)
stride_stages = [1, 2, 2, 2, 1, 2]
act_stages = ["relu", "relu", "relu", "h_swish", "h_swish", "h_swish"]
se_stages = [False, False, True, False, True, True]
n_block_list = [1] + [max(self.depth_list)] * 5
width_list = []
for base_width in base_stage_width[:-2]:
width = make_divisible(
base_width * self.width_mult, MyNetwork.CHANNEL_DIVISIBLE
)
width_list.append(width)
input_channel, first_block_dim = width_list[0], width_list[1]
# first conv layer
first_conv = ConvLayer(
3, input_channel, kernel_size=3, stride=2, act_func="h_swish"
)
first_block_conv = MBConvLayer(
in_channels=input_channel,
out_channels=first_block_dim,
kernel_size=3,
stride=stride_stages[0],
expand_ratio=1,
act_func=act_stages[0],
use_se=se_stages[0],
)
first_block = ResidualBlock(
first_block_conv,
IdentityLayer(first_block_dim, first_block_dim)
if input_channel == first_block_dim
else None,
)
# inverted residual blocks
self.block_group_info = []
blocks = [first_block]
_block_index = 1
feature_dim = first_block_dim
for width, n_block, s, act_func, use_se in zip(
width_list[2:],
n_block_list[1:],
stride_stages[1:],
act_stages[1:],
se_stages[1:],
):
self.block_group_info.append([_block_index + i for i in range(n_block)])
_block_index += n_block
output_channel = width
for i in range(n_block):
if i == 0:
stride = s
else:
stride = 1
mobile_inverted_conv = DynamicMBConvLayer(
in_channel_list=val2list(feature_dim),
out_channel_list=val2list(output_channel),
kernel_size_list=ks_list,
expand_ratio_list=expand_ratio_list,
stride=stride,
act_func=act_func,
use_se=use_se,
)
if stride == 1 and feature_dim == output_channel:
shortcut = IdentityLayer(feature_dim, feature_dim)
else:
shortcut = None
blocks.append(ResidualBlock(mobile_inverted_conv, shortcut))
feature_dim = output_channel
# final expand layer, feature mix layer & classifier
final_expand_layer = ConvLayer(
feature_dim, final_expand_width, kernel_size=1, act_func="h_swish"
)
feature_mix_layer = ConvLayer(
final_expand_width,
last_channel,
kernel_size=1,
bias=False,
use_bn=False,
act_func="h_swish",
)
classifier = LinearLayer(last_channel, n_classes, dropout_rate=dropout_rate)
super(OFAMobileNetV3, self).__init__(
first_conv, blocks, final_expand_layer, feature_mix_layer, classifier
)
# set bn param
self.set_bn_param(momentum=bn_param[0], eps=bn_param[1])
# runtime_depth
self.runtime_depth = [len(block_idx) for block_idx in self.block_group_info]
""" MyNetwork required methods """
@staticmethod
def name():
return "OFAMobileNetV3"
def forward(self, x):
# first conv
x = self.first_conv(x)
# first block
x = self.blocks[0](x)
# blocks
for stage_id, block_idx in enumerate(self.block_group_info):
depth = self.runtime_depth[stage_id]
active_idx = block_idx[:depth]
for idx in active_idx:
x = self.blocks[idx](x)
x = self.final_expand_layer(x)
x = x.mean(3, keepdim=True).mean(2, keepdim=True) # global average pooling
x = self.feature_mix_layer(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
@property
def module_str(self):
_str = self.first_conv.module_str + "\n"
_str += self.blocks[0].module_str + "\n"
for stage_id, block_idx in enumerate(self.block_group_info):
depth = self.runtime_depth[stage_id]
active_idx = block_idx[:depth]
for idx in active_idx:
_str += self.blocks[idx].module_str + "\n"
_str += self.final_expand_layer.module_str + "\n"
_str += self.feature_mix_layer.module_str + "\n"
_str += self.classifier.module_str + "\n"
return _str
@property
def config(self):
return {
"name": OFAMobileNetV3.__name__,
"bn": self.get_bn_param(),
"first_conv": self.first_conv.config,
"blocks": [block.config for block in self.blocks],
"final_expand_layer": self.final_expand_layer.config,
"feature_mix_layer": self.feature_mix_layer.config,
"classifier": self.classifier.config,
}
@staticmethod
def build_from_config(config):
raise ValueError("do not support this function")
@property
def grouped_block_index(self):
return self.block_group_info
def load_state_dict(self, state_dict, **kwargs):
model_dict = self.state_dict()
for key in state_dict:
if ".mobile_inverted_conv." in key:
new_key = key.replace(".mobile_inverted_conv.", ".conv.")
else:
new_key = key
if new_key in model_dict:
pass
elif ".bn.bn." in new_key:
new_key = new_key.replace(".bn.bn.", ".bn.")
elif ".conv.conv.weight" in new_key:
new_key = new_key.replace(".conv.conv.weight", ".conv.weight")
elif ".linear.linear." in new_key:
new_key = new_key.replace(".linear.linear.", ".linear.")
##############################################################################
elif ".linear." in new_key:
new_key = new_key.replace(".linear.", ".linear.linear.")
elif "bn." in new_key:
new_key = new_key.replace("bn.", "bn.bn.")
elif "conv.weight" in new_key:
new_key = new_key.replace("conv.weight", "conv.conv.weight")
else:
raise ValueError(new_key)
assert new_key in model_dict, "%s" % new_key
model_dict[new_key] = state_dict[key]
super(OFAMobileNetV3, self).load_state_dict(model_dict)
""" set, sample and get active sub-networks """
def set_max_net(self):
self.set_active_subnet(
ks=max(self.ks_list), e=max(self.expand_ratio_list), d=max(self.depth_list)
)
def set_active_subnet(self, ks=None, e=None, d=None, **kwargs):
ks = val2list(ks, len(self.blocks) - 1)
expand_ratio = val2list(e, len(self.blocks) - 1)
depth = val2list(d, len(self.block_group_info))
for block, k, e in zip(self.blocks[1:], ks, expand_ratio):
if k is not None:
block.conv.active_kernel_size = k
if e is not None:
block.conv.active_expand_ratio = e
for i, d in enumerate(depth):
if d is not None:
self.runtime_depth[i] = min(len(self.block_group_info[i]), d)
def set_constraint(self, include_list, constraint_type="depth"):
if constraint_type == "depth":
self.__dict__["_depth_include_list"] = include_list.copy()
elif constraint_type == "expand_ratio":
self.__dict__["_expand_include_list"] = include_list.copy()
elif constraint_type == "kernel_size":
self.__dict__["_ks_include_list"] = include_list.copy()
else:
raise NotImplementedError
def clear_constraint(self):
self.__dict__["_depth_include_list"] = None
self.__dict__["_expand_include_list"] = None
self.__dict__["_ks_include_list"] = None
def sample_active_subnet(self):
ks_candidates = (
self.ks_list
if self.__dict__.get("_ks_include_list", None) is None
else self.__dict__["_ks_include_list"]
)
expand_candidates = (
self.expand_ratio_list
if self.__dict__.get("_expand_include_list", None) is None
else self.__dict__["_expand_include_list"]
)
depth_candidates = (
self.depth_list
if self.__dict__.get("_depth_include_list", None) is None
else self.__dict__["_depth_include_list"]
)
# sample kernel size
ks_setting = []
if not isinstance(ks_candidates[0], list):
ks_candidates = [ks_candidates for _ in range(len(self.blocks) - 1)]
for k_set in ks_candidates:
k = random.choice(k_set)
ks_setting.append(k)
# sample expand ratio
expand_setting = []
if not isinstance(expand_candidates[0], list):
expand_candidates = [expand_candidates for _ in range(len(self.blocks) - 1)]
for e_set in expand_candidates:
e = random.choice(e_set)
expand_setting.append(e)
# sample depth
depth_setting = []
if not isinstance(depth_candidates[0], list):
depth_candidates = [
depth_candidates for _ in range(len(self.block_group_info))
]
for d_set in depth_candidates:
d = random.choice(d_set)
depth_setting.append(d)
self.set_active_subnet(ks_setting, expand_setting, depth_setting)
return {
"ks": ks_setting,
"e": expand_setting,
"d": depth_setting,
}
def get_active_subnet(self, preserve_weight=True):
first_conv = copy.deepcopy(self.first_conv)
blocks = [copy.deepcopy(self.blocks[0])]
final_expand_layer = copy.deepcopy(self.final_expand_layer)
feature_mix_layer = copy.deepcopy(self.feature_mix_layer)
classifier = copy.deepcopy(self.classifier)
input_channel = blocks[0].conv.out_channels
# blocks
for stage_id, block_idx in enumerate(self.block_group_info):
depth = self.runtime_depth[stage_id]
active_idx = block_idx[:depth]
stage_blocks = []
for idx in active_idx:
stage_blocks.append(
ResidualBlock(
self.blocks[idx].conv.get_active_subnet(
input_channel, preserve_weight
),
copy.deepcopy(self.blocks[idx].shortcut),
)
)
input_channel = stage_blocks[-1].conv.out_channels
blocks += stage_blocks
_subnet = MobileNetV3(
first_conv, blocks, final_expand_layer, feature_mix_layer, classifier
)
_subnet.set_bn_param(**self.get_bn_param())
return _subnet
def get_active_net_config(self):
# first conv
first_conv_config = self.first_conv.config
first_block_config = self.blocks[0].config
final_expand_config = self.final_expand_layer.config
feature_mix_layer_config = self.feature_mix_layer.config
classifier_config = self.classifier.config
block_config_list = [first_block_config]
input_channel = first_block_config["conv"]["out_channels"]
for stage_id, block_idx in enumerate(self.block_group_info):
depth = self.runtime_depth[stage_id]
active_idx = block_idx[:depth]
stage_blocks = []
for idx in active_idx:
stage_blocks.append(
{
"name": ResidualBlock.__name__,
"conv": self.blocks[idx].conv.get_active_subnet_config(
input_channel
),
"shortcut": self.blocks[idx].shortcut.config
if self.blocks[idx].shortcut is not None
else None,
}
)
input_channel = self.blocks[idx].conv.active_out_channel
block_config_list += stage_blocks
return {
"name": MobileNetV3.__name__,
"bn": self.get_bn_param(),
"first_conv": first_conv_config,
"blocks": block_config_list,
"final_expand_layer": final_expand_config,
"feature_mix_layer": feature_mix_layer_config,
"classifier": classifier_config,
}
""" Width Related Methods """
def re_organize_middle_weights(self, expand_ratio_stage=0):
for block in self.blocks[1:]:
block.conv.re_organize_middle_weights(expand_ratio_stage)
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import copy
import torch
import torch.nn as nn
from collections import OrderedDict
from ofa.utils.layers import (
MBConvLayer,
ConvLayer,
IdentityLayer,
set_layer_from_config,
)
from ofa.utils.layers import ResNetBottleneckBlock, LinearLayer
from ofa.utils import (
MyModule,
val2list,
get_net_device,
build_activation,
make_divisible,
SEModule,
MyNetwork,
)
from .dynamic_op import (
DynamicSeparableConv2d,
DynamicConv2d,
DynamicBatchNorm2d,
DynamicSE,
DynamicGroupNorm,
)
from .dynamic_op import DynamicLinear
__all__ = [
"adjust_bn_according_to_idx",
"copy_bn",
"DynamicMBConvLayer",
"DynamicConvLayer",
"DynamicLinearLayer",
"DynamicResNetBottleneckBlock",
]
def adjust_bn_according_to_idx(bn, idx):
bn.weight.data = torch.index_select(bn.weight.data, 0, idx)
bn.bias.data = torch.index_select(bn.bias.data, 0, idx)
if type(bn) in [nn.BatchNorm1d, nn.BatchNorm2d]:
bn.running_mean.data = torch.index_select(bn.running_mean.data, 0, idx)
bn.running_var.data = torch.index_select(bn.running_var.data, 0, idx)
def copy_bn(target_bn, src_bn):
feature_dim = (
target_bn.num_channels
if isinstance(target_bn, nn.GroupNorm)
else target_bn.num_features
)
target_bn.weight.data.copy_(src_bn.weight.data[:feature_dim])
target_bn.bias.data.copy_(src_bn.bias.data[:feature_dim])
if type(src_bn) in [nn.BatchNorm1d, nn.BatchNorm2d]:
target_bn.running_mean.data.copy_(src_bn.running_mean.data[:feature_dim])
target_bn.running_var.data.copy_(src_bn.running_var.data[:feature_dim])
class DynamicLinearLayer(MyModule):
def __init__(self, in_features_list, out_features, bias=True, dropout_rate=0):
super(DynamicLinearLayer, self).__init__()
self.in_features_list = in_features_list
self.out_features = out_features
self.bias = bias
self.dropout_rate = dropout_rate
if self.dropout_rate > 0:
self.dropout = nn.Dropout(self.dropout_rate, inplace=True)
else:
self.dropout = None
self.linear = DynamicLinear(
max_in_features=max(self.in_features_list),
max_out_features=self.out_features,
bias=self.bias,
)
def forward(self, x):
if self.dropout is not None:
x = self.dropout(x)
return self.linear(x)
@property
def module_str(self):
return "DyLinear(%d, %d)" % (max(self.in_features_list), self.out_features)
@property
def config(self):
return {
"name": DynamicLinear.__name__,
"in_features_list": self.in_features_list,
"out_features": self.out_features,
"bias": self.bias,
"dropout_rate": self.dropout_rate,
}
@staticmethod
def build_from_config(config):
return DynamicLinearLayer(**config)
def get_active_subnet(self, in_features, preserve_weight=True):
sub_layer = LinearLayer(
in_features, self.out_features, self.bias, dropout_rate=self.dropout_rate
)
sub_layer = sub_layer.to(get_net_device(self))
if not preserve_weight:
return sub_layer
sub_layer.linear.weight.data.copy_(
self.linear.get_active_weight(self.out_features, in_features).data
)
if self.bias:
sub_layer.linear.bias.data.copy_(
self.linear.get_active_bias(self.out_features).data
)
return sub_layer
def get_active_subnet_config(self, in_features):
return {
"name": LinearLayer.__name__,
"in_features": in_features,
"out_features": self.out_features,
"bias": self.bias,
"dropout_rate": self.dropout_rate,
}
class DynamicMBConvLayer(MyModule):
def __init__(
self,
in_channel_list,
out_channel_list,
kernel_size_list=3,
expand_ratio_list=6,
stride=1,
act_func="relu6",
use_se=False,
):
super(DynamicMBConvLayer, self).__init__()
self.in_channel_list = in_channel_list
self.out_channel_list = out_channel_list
self.kernel_size_list = val2list(kernel_size_list)
self.expand_ratio_list = val2list(expand_ratio_list)
self.stride = stride
self.act_func = act_func
self.use_se = use_se
# build modules
max_middle_channel = make_divisible(
round(max(self.in_channel_list) * max(self.expand_ratio_list)),
MyNetwork.CHANNEL_DIVISIBLE,
)
if max(self.expand_ratio_list) == 1:
self.inverted_bottleneck = None
else:
self.inverted_bottleneck = nn.Sequential(
OrderedDict(
[
(
"conv",
DynamicConv2d(
max(self.in_channel_list), max_middle_channel
),
),
("bn", DynamicBatchNorm2d(max_middle_channel)),
("act", build_activation(self.act_func)),
]
)
)
self.depth_conv = nn.Sequential(
OrderedDict(
[
(
"conv",
DynamicSeparableConv2d(
max_middle_channel, self.kernel_size_list, self.stride
),
),
("bn", DynamicBatchNorm2d(max_middle_channel)),
("act", build_activation(self.act_func)),
]
)
)
if self.use_se:
self.depth_conv.add_module("se", DynamicSE(max_middle_channel))
self.point_linear = nn.Sequential(
OrderedDict(
[
(
"conv",
DynamicConv2d(max_middle_channel, max(self.out_channel_list)),
),
("bn", DynamicBatchNorm2d(max(self.out_channel_list))),
]
)
)
self.active_kernel_size = max(self.kernel_size_list)
self.active_expand_ratio = max(self.expand_ratio_list)
self.active_out_channel = max(self.out_channel_list)
def forward(self, x):
in_channel = x.size(1)
if self.inverted_bottleneck is not None:
self.inverted_bottleneck.conv.active_out_channel = make_divisible(
round(in_channel * self.active_expand_ratio),
MyNetwork.CHANNEL_DIVISIBLE,
)
self.depth_conv.conv.active_kernel_size = self.active_kernel_size
self.point_linear.conv.active_out_channel = self.active_out_channel
if self.inverted_bottleneck is not None:
x = self.inverted_bottleneck(x)
x = self.depth_conv(x)
x = self.point_linear(x)
return x
@property
def module_str(self):
if self.use_se:
return "SE(O%d, E%.1f, K%d)" % (
self.active_out_channel,
self.active_expand_ratio,
self.active_kernel_size,
)
else:
return "(O%d, E%.1f, K%d)" % (
self.active_out_channel,
self.active_expand_ratio,
self.active_kernel_size,
)
@property
def config(self):
return {
"name": DynamicMBConvLayer.__name__,
"in_channel_list": self.in_channel_list,
"out_channel_list": self.out_channel_list,
"kernel_size_list": self.kernel_size_list,
"expand_ratio_list": self.expand_ratio_list,
"stride": self.stride,
"act_func": self.act_func,
"use_se": self.use_se,
}
@staticmethod
def build_from_config(config):
return DynamicMBConvLayer(**config)
############################################################################################
@property
def in_channels(self):
return max(self.in_channel_list)
@property
def out_channels(self):
return max(self.out_channel_list)
def active_middle_channel(self, in_channel):
return make_divisible(
round(in_channel * self.active_expand_ratio), MyNetwork.CHANNEL_DIVISIBLE
)
############################################################################################
def get_active_subnet(self, in_channel, preserve_weight=True):
# build the new layer
sub_layer = set_layer_from_config(self.get_active_subnet_config(in_channel))
sub_layer = sub_layer.to(get_net_device(self))
if not preserve_weight:
return sub_layer
middle_channel = self.active_middle_channel(in_channel)
# copy weight from current layer
if sub_layer.inverted_bottleneck is not None:
sub_layer.inverted_bottleneck.conv.weight.data.copy_(
self.inverted_bottleneck.conv.get_active_filter(
middle_channel, in_channel
).data,
)
copy_bn(sub_layer.inverted_bottleneck.bn, self.inverted_bottleneck.bn.bn)
sub_layer.depth_conv.conv.weight.data.copy_(
self.depth_conv.conv.get_active_filter(
middle_channel, self.active_kernel_size
).data
)
copy_bn(sub_layer.depth_conv.bn, self.depth_conv.bn.bn)
if self.use_se:
se_mid = make_divisible(
middle_channel // SEModule.REDUCTION,
divisor=MyNetwork.CHANNEL_DIVISIBLE,
)
sub_layer.depth_conv.se.fc.reduce.weight.data.copy_(
self.depth_conv.se.get_active_reduce_weight(se_mid, middle_channel).data
)
sub_layer.depth_conv.se.fc.reduce.bias.data.copy_(
self.depth_conv.se.get_active_reduce_bias(se_mid).data
)
sub_layer.depth_conv.se.fc.expand.weight.data.copy_(
self.depth_conv.se.get_active_expand_weight(se_mid, middle_channel).data
)
sub_layer.depth_conv.se.fc.expand.bias.data.copy_(
self.depth_conv.se.get_active_expand_bias(middle_channel).data
)
sub_layer.point_linear.conv.weight.data.copy_(
self.point_linear.conv.get_active_filter(
self.active_out_channel, middle_channel
).data
)
copy_bn(sub_layer.point_linear.bn, self.point_linear.bn.bn)
return sub_layer
def get_active_subnet_config(self, in_channel):
return {
"name": MBConvLayer.__name__,
"in_channels": in_channel,
"out_channels": self.active_out_channel,
"kernel_size": self.active_kernel_size,
"stride": self.stride,
"expand_ratio": self.active_expand_ratio,
"mid_channels": self.active_middle_channel(in_channel),
"act_func": self.act_func,
"use_se": self.use_se,
}
def re_organize_middle_weights(self, expand_ratio_stage=0):
importance = torch.sum(
torch.abs(self.point_linear.conv.conv.weight.data), dim=(0, 2, 3)
)
if isinstance(self.depth_conv.bn, DynamicGroupNorm):
channel_per_group = self.depth_conv.bn.channel_per_group
importance_chunks = torch.split(importance, channel_per_group)
for chunk in importance_chunks:
chunk.data.fill_(torch.mean(chunk))
importance = torch.cat(importance_chunks, dim=0)
if expand_ratio_stage > 0:
sorted_expand_list = copy.deepcopy(self.expand_ratio_list)
sorted_expand_list.sort(reverse=True)
target_width_list = [
make_divisible(
round(max(self.in_channel_list) * expand),
MyNetwork.CHANNEL_DIVISIBLE,
)
for expand in sorted_expand_list
]
right = len(importance)
base = -len(target_width_list) * 1e5
for i in range(expand_ratio_stage + 1):
left = target_width_list[i]
importance[left:right] += base
base += 1e5
right = left
sorted_importance, sorted_idx = torch.sort(importance, dim=0, descending=True)
self.point_linear.conv.conv.weight.data = torch.index_select(
self.point_linear.conv.conv.weight.data, 1, sorted_idx
)
adjust_bn_according_to_idx(self.depth_conv.bn.bn, sorted_idx)
self.depth_conv.conv.conv.weight.data = torch.index_select(
self.depth_conv.conv.conv.weight.data, 0, sorted_idx
)
if self.use_se:
# se expand: output dim 0 reorganize
se_expand = self.depth_conv.se.fc.expand
se_expand.weight.data = torch.index_select(
se_expand.weight.data, 0, sorted_idx
)
se_expand.bias.data = torch.index_select(se_expand.bias.data, 0, sorted_idx)
# se reduce: input dim 1 reorganize
se_reduce = self.depth_conv.se.fc.reduce
se_reduce.weight.data = torch.index_select(
se_reduce.weight.data, 1, sorted_idx
)
# middle weight reorganize
se_importance = torch.sum(torch.abs(se_expand.weight.data), dim=(0, 2, 3))
se_importance, se_idx = torch.sort(se_importance, dim=0, descending=True)
se_expand.weight.data = torch.index_select(se_expand.weight.data, 1, se_idx)
se_reduce.weight.data = torch.index_select(se_reduce.weight.data, 0, se_idx)
se_reduce.bias.data = torch.index_select(se_reduce.bias.data, 0, se_idx)
if self.inverted_bottleneck is not None:
adjust_bn_according_to_idx(self.inverted_bottleneck.bn.bn, sorted_idx)
self.inverted_bottleneck.conv.conv.weight.data = torch.index_select(
self.inverted_bottleneck.conv.conv.weight.data, 0, sorted_idx
)
return None
else:
return sorted_idx
class DynamicConvLayer(MyModule):
def __init__(
self,
in_channel_list,
out_channel_list,
kernel_size=3,
stride=1,
dilation=1,
use_bn=True,
act_func="relu6",
):
super(DynamicConvLayer, self).__init__()
self.in_channel_list = in_channel_list
self.out_channel_list = out_channel_list
self.kernel_size = kernel_size
self.stride = stride
self.dilation = dilation
self.use_bn = use_bn
self.act_func = act_func
self.conv = DynamicConv2d(
max_in_channels=max(self.in_channel_list),
max_out_channels=max(self.out_channel_list),
kernel_size=self.kernel_size,
stride=self.stride,
dilation=self.dilation,
)
if self.use_bn:
self.bn = DynamicBatchNorm2d(max(self.out_channel_list))
self.act = build_activation(self.act_func)
self.active_out_channel = max(self.out_channel_list)
def forward(self, x):
self.conv.active_out_channel = self.active_out_channel
x = self.conv(x)
if self.use_bn:
x = self.bn(x)
x = self.act(x)
return x
@property
def module_str(self):
return "DyConv(O%d, K%d, S%d)" % (
self.active_out_channel,
self.kernel_size,
self.stride,
)
@property
def config(self):
return {
"name": DynamicConvLayer.__name__,
"in_channel_list": self.in_channel_list,
"out_channel_list": self.out_channel_list,
"kernel_size": self.kernel_size,
"stride": self.stride,
"dilation": self.dilation,
"use_bn": self.use_bn,
"act_func": self.act_func,
}
@staticmethod
def build_from_config(config):
return DynamicConvLayer(**config)
############################################################################################
@property
def in_channels(self):
return max(self.in_channel_list)
@property
def out_channels(self):
return max(self.out_channel_list)
############################################################################################
def get_active_subnet(self, in_channel, preserve_weight=True):
sub_layer = set_layer_from_config(self.get_active_subnet_config(in_channel))
sub_layer = sub_layer.to(get_net_device(self))
if not preserve_weight:
return sub_layer
sub_layer.conv.weight.data.copy_(
self.conv.get_active_filter(self.active_out_channel, in_channel).data
)
if self.use_bn:
copy_bn(sub_layer.bn, self.bn.bn)
return sub_layer
def get_active_subnet_config(self, in_channel):
return {
"name": ConvLayer.__name__,
"in_channels": in_channel,
"out_channels": self.active_out_channel,
"kernel_size": self.kernel_size,
"stride": self.stride,
"dilation": self.dilation,
"use_bn": self.use_bn,
"act_func": self.act_func,
}
class DynamicResNetBottleneckBlock(MyModule):
def __init__(
self,
in_channel_list,
out_channel_list,
expand_ratio_list=0.25,
kernel_size=3,
stride=1,
act_func="relu",
downsample_mode="avgpool_conv",
):
super(DynamicResNetBottleneckBlock, self).__init__()
self.in_channel_list = in_channel_list
self.out_channel_list = out_channel_list
self.expand_ratio_list = val2list(expand_ratio_list)
self.kernel_size = kernel_size
self.stride = stride
self.act_func = act_func
self.downsample_mode = downsample_mode
# build modules
max_middle_channel = make_divisible(
round(max(self.out_channel_list) * max(self.expand_ratio_list)),
MyNetwork.CHANNEL_DIVISIBLE,
)
self.conv1 = nn.Sequential(
OrderedDict(
[
(
"conv",
DynamicConv2d(max(self.in_channel_list), max_middle_channel),
),
("bn", DynamicBatchNorm2d(max_middle_channel)),
("act", build_activation(self.act_func, inplace=True)),
]
)
)
self.conv2 = nn.Sequential(
OrderedDict(
[
(
"conv",
DynamicConv2d(
max_middle_channel, max_middle_channel, kernel_size, stride
),
),
("bn", DynamicBatchNorm2d(max_middle_channel)),
("act", build_activation(self.act_func, inplace=True)),
]
)
)
self.conv3 = nn.Sequential(
OrderedDict(
[
(
"conv",
DynamicConv2d(max_middle_channel, max(self.out_channel_list)),
),
("bn", DynamicBatchNorm2d(max(self.out_channel_list))),
]
)
)
if self.stride == 1 and self.in_channel_list == self.out_channel_list:
self.downsample = IdentityLayer(
max(self.in_channel_list), max(self.out_channel_list)
)
elif self.downsample_mode == "conv":
self.downsample = nn.Sequential(
OrderedDict(
[
(
"conv",
DynamicConv2d(
max(self.in_channel_list),
max(self.out_channel_list),
stride=stride,
),
),
("bn", DynamicBatchNorm2d(max(self.out_channel_list))),
]
)
)
elif self.downsample_mode == "avgpool_conv":
self.downsample = nn.Sequential(
OrderedDict(
[
(
"avg_pool",
nn.AvgPool2d(
kernel_size=stride,
stride=stride,
padding=0,
ceil_mode=True,
),
),
(
"conv",
DynamicConv2d(
max(self.in_channel_list), max(self.out_channel_list)
),
),
("bn", DynamicBatchNorm2d(max(self.out_channel_list))),
]
)
)
else:
raise NotImplementedError
self.final_act = build_activation(self.act_func, inplace=True)
self.active_expand_ratio = max(self.expand_ratio_list)
self.active_out_channel = max(self.out_channel_list)
def forward(self, x):
feature_dim = self.active_middle_channels
self.conv1.conv.active_out_channel = feature_dim
self.conv2.conv.active_out_channel = feature_dim
self.conv3.conv.active_out_channel = self.active_out_channel
if not isinstance(self.downsample, IdentityLayer):
self.downsample.conv.active_out_channel = self.active_out_channel
residual = self.downsample(x)
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = x + residual
x = self.final_act(x)
return x
@property
def module_str(self):
return "(%s, %s)" % (
"%dx%d_BottleneckConv_in->%d->%d_S%d"
% (
self.kernel_size,
self.kernel_size,
self.active_middle_channels,
self.active_out_channel,
self.stride,
),
"Identity"
if isinstance(self.downsample, IdentityLayer)
else self.downsample_mode,
)
@property
def config(self):
return {
"name": DynamicResNetBottleneckBlock.__name__,
"in_channel_list": self.in_channel_list,
"out_channel_list": self.out_channel_list,
"expand_ratio_list": self.expand_ratio_list,
"kernel_size": self.kernel_size,
"stride": self.stride,
"act_func": self.act_func,
"downsample_mode": self.downsample_mode,
}
@staticmethod
def build_from_config(config):
return DynamicResNetBottleneckBlock(**config)
############################################################################################
@property
def in_channels(self):
return max(self.in_channel_list)
@property
def out_channels(self):
return max(self.out_channel_list)
@property
def active_middle_channels(self):
feature_dim = round(self.active_out_channel * self.active_expand_ratio)
feature_dim = make_divisible(feature_dim, MyNetwork.CHANNEL_DIVISIBLE)
return feature_dim
############################################################################################
def get_active_subnet(self, in_channel, preserve_weight=True):
# build the new layer
sub_layer = set_layer_from_config(self.get_active_subnet_config(in_channel))
sub_layer = sub_layer.to(get_net_device(self))
if not preserve_weight:
return sub_layer
# copy weight from current layer
sub_layer.conv1.conv.weight.data.copy_(
self.conv1.conv.get_active_filter(
self.active_middle_channels, in_channel
).data
)
copy_bn(sub_layer.conv1.bn, self.conv1.bn.bn)
sub_layer.conv2.conv.weight.data.copy_(
self.conv2.conv.get_active_filter(
self.active_middle_channels, self.active_middle_channels
).data
)
copy_bn(sub_layer.conv2.bn, self.conv2.bn.bn)
sub_layer.conv3.conv.weight.data.copy_(
self.conv3.conv.get_active_filter(
self.active_out_channel, self.active_middle_channels
).data
)
copy_bn(sub_layer.conv3.bn, self.conv3.bn.bn)
if not isinstance(self.downsample, IdentityLayer):
sub_layer.downsample.conv.weight.data.copy_(
self.downsample.conv.get_active_filter(
self.active_out_channel, in_channel
).data
)
copy_bn(sub_layer.downsample.bn, self.downsample.bn.bn)
return sub_layer
def get_active_subnet_config(self, in_channel):
return {
"name": ResNetBottleneckBlock.__name__,
"in_channels": in_channel,
"out_channels": self.active_out_channel,
"kernel_size": self.kernel_size,
"stride": self.stride,
"expand_ratio": self.active_expand_ratio,
"mid_channels": self.active_middle_channels,
"act_func": self.act_func,
"groups": 1,
"downsample_mode": self.downsample_mode,
}
def re_organize_middle_weights(self, expand_ratio_stage=0):
# conv3 -> conv2
importance = torch.sum(
torch.abs(self.conv3.conv.conv.weight.data), dim=(0, 2, 3)
)
if isinstance(self.conv2.bn, DynamicGroupNorm):
channel_per_group = self.conv2.bn.channel_per_group
importance_chunks = torch.split(importance, channel_per_group)
for chunk in importance_chunks:
chunk.data.fill_(torch.mean(chunk))
importance = torch.cat(importance_chunks, dim=0)
if expand_ratio_stage > 0:
sorted_expand_list = copy.deepcopy(self.expand_ratio_list)
sorted_expand_list.sort(reverse=True)
target_width_list = [
make_divisible(
round(max(self.out_channel_list) * expand),
MyNetwork.CHANNEL_DIVISIBLE,
)
for expand in sorted_expand_list
]
right = len(importance)
base = -len(target_width_list) * 1e5
for i in range(expand_ratio_stage + 1):
left = target_width_list[i]
importance[left:right] += base
base += 1e5
right = left
sorted_importance, sorted_idx = torch.sort(importance, dim=0, descending=True)
self.conv3.conv.conv.weight.data = torch.index_select(
self.conv3.conv.conv.weight.data, 1, sorted_idx
)
adjust_bn_according_to_idx(self.conv2.bn.bn, sorted_idx)
self.conv2.conv.conv.weight.data = torch.index_select(
self.conv2.conv.conv.weight.data, 0, sorted_idx
)
# conv2 -> conv1
importance = torch.sum(
torch.abs(self.conv2.conv.conv.weight.data), dim=(0, 2, 3)
)
if isinstance(self.conv1.bn, DynamicGroupNorm):
channel_per_group = self.conv1.bn.channel_per_group
importance_chunks = torch.split(importance, channel_per_group)
for chunk in importance_chunks:
chunk.data.fill_(torch.mean(chunk))
importance = torch.cat(importance_chunks, dim=0)
if expand_ratio_stage > 0:
sorted_expand_list = copy.deepcopy(self.expand_ratio_list)
sorted_expand_list.sort(reverse=True)
target_width_list = [
make_divisible(
round(max(self.out_channel_list) * expand),
MyNetwork.CHANNEL_DIVISIBLE,
)
for expand in sorted_expand_list
]
right = len(importance)
base = -len(target_width_list) * 1e5
for i in range(expand_ratio_stage + 1):
left = target_width_list[i]
importance[left:right] += base
base += 1e5
right = left
sorted_importance, sorted_idx = torch.sort(importance, dim=0, descending=True)
self.conv2.conv.conv.weight.data = torch.index_select(
self.conv2.conv.conv.weight.data, 1, sorted_idx
)
adjust_bn_according_to_idx(self.conv1.bn.bn, sorted_idx)
self.conv1.conv.conv.weight.data = torch.index_select(
self.conv1.conv.conv.weight.data, 0, sorted_idx
)
return None
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
from .dynamic_layers import *
from .dynamic_op import *
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import torch.nn.functional as F
import torch.nn as nn
import torch
from torch.nn.parameter import Parameter
from ofa.utils import (
get_same_padding,
sub_filter_start_end,
make_divisible,
SEModule,
MyNetwork,
MyConv2d,
)
__all__ = [
"DynamicSeparableConv2d",
"DynamicConv2d",
"DynamicGroupConv2d",
"DynamicBatchNorm2d",
"DynamicGroupNorm",
"DynamicSE",
"DynamicLinear",
]
class DynamicSeparableConv2d(nn.Module):
KERNEL_TRANSFORM_MODE = 1 # None or 1
def __init__(self, max_in_channels, kernel_size_list, stride=1, dilation=1):
super(DynamicSeparableConv2d, self).__init__()
self.max_in_channels = max_in_channels
self.kernel_size_list = kernel_size_list
self.stride = stride
self.dilation = dilation
self.conv = nn.Conv2d(
self.max_in_channels,
self.max_in_channels,
max(self.kernel_size_list),
self.stride,
groups=self.max_in_channels,
bias=False,
)
self._ks_set = list(set(self.kernel_size_list))
self._ks_set.sort() # e.g., [3, 5, 7]
if self.KERNEL_TRANSFORM_MODE is not None:
# register scaling parameters
# 7to5_matrix, 5to3_matrix
scale_params = {}
for i in range(len(self._ks_set) - 1):
ks_small = self._ks_set[i]
ks_larger = self._ks_set[i + 1]
param_name = "%dto%d" % (ks_larger, ks_small)
# noinspection PyArgumentList
scale_params["%s_matrix" % param_name] = Parameter(
torch.eye(ks_small ** 2)
)
for name, param in scale_params.items():
self.register_parameter(name, param)
self.active_kernel_size = max(self.kernel_size_list)
def get_active_filter(self, in_channel, kernel_size):
out_channel = in_channel
max_kernel_size = max(self.kernel_size_list)
start, end = sub_filter_start_end(max_kernel_size, kernel_size)
filters = self.conv.weight[:out_channel, :in_channel, start:end, start:end]
if self.KERNEL_TRANSFORM_MODE is not None and kernel_size < max_kernel_size:
start_filter = self.conv.weight[
:out_channel, :in_channel, :, :
] # start with max kernel
for i in range(len(self._ks_set) - 1, 0, -1):
src_ks = self._ks_set[i]
if src_ks <= kernel_size:
break
target_ks = self._ks_set[i - 1]
start, end = sub_filter_start_end(src_ks, target_ks)
_input_filter = start_filter[:, :, start:end, start:end]
_input_filter = _input_filter.contiguous()
_input_filter = _input_filter.view(
_input_filter.size(0), _input_filter.size(1), -1
)
_input_filter = _input_filter.view(-1, _input_filter.size(2))
_input_filter = F.linear(
_input_filter,
self.__getattr__("%dto%d_matrix" % (src_ks, target_ks)),
)
_input_filter = _input_filter.view(
filters.size(0), filters.size(1), target_ks ** 2
)
_input_filter = _input_filter.view(
filters.size(0), filters.size(1), target_ks, target_ks
)
start_filter = _input_filter
filters = start_filter
return filters
def forward(self, x, kernel_size=None):
if kernel_size is None:
kernel_size = self.active_kernel_size
in_channel = x.size(1)
filters = self.get_active_filter(in_channel, kernel_size).contiguous()
padding = get_same_padding(kernel_size)
filters = (
self.conv.weight_standardization(filters)
if isinstance(self.conv, MyConv2d)
else filters
)
y = F.conv2d(x, filters, None, self.stride, padding, self.dilation, in_channel)
return y
class DynamicConv2d(nn.Module):
def __init__(
self, max_in_channels, max_out_channels, kernel_size=1, stride=1, dilation=1
):
super(DynamicConv2d, self).__init__()
self.max_in_channels = max_in_channels
self.max_out_channels = max_out_channels
self.kernel_size = kernel_size
self.stride = stride
self.dilation = dilation
self.conv = nn.Conv2d(
self.max_in_channels,
self.max_out_channels,
self.kernel_size,
stride=self.stride,
bias=False,
)
self.active_out_channel = self.max_out_channels
def get_active_filter(self, out_channel, in_channel):
return self.conv.weight[:out_channel, :in_channel, :, :]
def forward(self, x, out_channel=None):
if out_channel is None:
out_channel = self.active_out_channel
in_channel = x.size(1)
filters = self.get_active_filter(out_channel, in_channel).contiguous()
padding = get_same_padding(self.kernel_size)
filters = (
self.conv.weight_standardization(filters)
if isinstance(self.conv, MyConv2d)
else filters
)
y = F.conv2d(x, filters, None, self.stride, padding, self.dilation, 1)
return y
class DynamicGroupConv2d(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size_list,
groups_list,
stride=1,
dilation=1,
):
super(DynamicGroupConv2d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size_list = kernel_size_list
self.groups_list = groups_list
self.stride = stride
self.dilation = dilation
self.conv = nn.Conv2d(
self.in_channels,
self.out_channels,
max(self.kernel_size_list),
self.stride,
groups=min(self.groups_list),
bias=False,
)
self.active_kernel_size = max(self.kernel_size_list)
self.active_groups = min(self.groups_list)
def get_active_filter(self, kernel_size, groups):
start, end = sub_filter_start_end(max(self.kernel_size_list), kernel_size)
filters = self.conv.weight[:, :, start:end, start:end]
sub_filters = torch.chunk(filters, groups, dim=0)
sub_in_channels = self.in_channels // groups
sub_ratio = filters.size(1) // sub_in_channels
filter_crops = []
for i, sub_filter in enumerate(sub_filters):
part_id = i % sub_ratio
start = part_id * sub_in_channels
filter_crops.append(sub_filter[:, start : start + sub_in_channels, :, :])
filters = torch.cat(filter_crops, dim=0)
return filters
def forward(self, x, kernel_size=None, groups=None):
if kernel_size is None:
kernel_size = self.active_kernel_size
if groups is None:
groups = self.active_groups
filters = self.get_active_filter(kernel_size, groups).contiguous()
padding = get_same_padding(kernel_size)
filters = (
self.conv.weight_standardization(filters)
if isinstance(self.conv, MyConv2d)
else filters
)
y = F.conv2d(
x,
filters,
None,
self.stride,
padding,
self.dilation,
groups,
)
return y
class DynamicBatchNorm2d(nn.Module):
SET_RUNNING_STATISTICS = False
def __init__(self, max_feature_dim):
super(DynamicBatchNorm2d, self).__init__()
self.max_feature_dim = max_feature_dim
self.bn = nn.BatchNorm2d(self.max_feature_dim)
@staticmethod
def bn_forward(x, bn: nn.BatchNorm2d, feature_dim):
if bn.num_features == feature_dim or DynamicBatchNorm2d.SET_RUNNING_STATISTICS:
return bn(x)
else:
exponential_average_factor = 0.0
if bn.training and bn.track_running_stats:
if bn.num_batches_tracked is not None:
bn.num_batches_tracked += 1
if bn.momentum is None: # use cumulative moving average
exponential_average_factor = 1.0 / float(bn.num_batches_tracked)
else: # use exponential moving average
exponential_average_factor = bn.momentum
return F.batch_norm(
x,
bn.running_mean[:feature_dim],
bn.running_var[:feature_dim],
bn.weight[:feature_dim],
bn.bias[:feature_dim],
bn.training or not bn.track_running_stats,
exponential_average_factor,
bn.eps,
)
def forward(self, x):
feature_dim = x.size(1)
y = self.bn_forward(x, self.bn, feature_dim)
return y
class DynamicGroupNorm(nn.GroupNorm):
def __init__(
self, num_groups, num_channels, eps=1e-5, affine=True, channel_per_group=None
):
super(DynamicGroupNorm, self).__init__(num_groups, num_channels, eps, affine)
self.channel_per_group = channel_per_group
def forward(self, x):
n_channels = x.size(1)
n_groups = n_channels // self.channel_per_group
return F.group_norm(
x, n_groups, self.weight[:n_channels], self.bias[:n_channels], self.eps
)
@property
def bn(self):
return self
class DynamicSE(SEModule):
def __init__(self, max_channel):
super(DynamicSE, self).__init__(max_channel)
def get_active_reduce_weight(self, num_mid, in_channel, groups=None):
if groups is None or groups == 1:
return self.fc.reduce.weight[:num_mid, :in_channel, :, :]
else:
assert in_channel % groups == 0
sub_in_channels = in_channel // groups
sub_filters = torch.chunk(
self.fc.reduce.weight[:num_mid, :, :, :], groups, dim=1
)
return torch.cat(
[sub_filter[:, :sub_in_channels, :, :] for sub_filter in sub_filters],
dim=1,
)
def get_active_reduce_bias(self, num_mid):
return (
self.fc.reduce.bias[:num_mid] if self.fc.reduce.bias is not None else None
)
def get_active_expand_weight(self, num_mid, in_channel, groups=None):
if groups is None or groups == 1:
return self.fc.expand.weight[:in_channel, :num_mid, :, :]
else:
assert in_channel % groups == 0
sub_in_channels = in_channel // groups
sub_filters = torch.chunk(
self.fc.expand.weight[:, :num_mid, :, :], groups, dim=0
)
return torch.cat(
[sub_filter[:sub_in_channels, :, :, :] for sub_filter in sub_filters],
dim=0,
)
def get_active_expand_bias(self, in_channel, groups=None):
if groups is None or groups == 1:
return (
self.fc.expand.bias[:in_channel]
if self.fc.expand.bias is not None
else None
)
else:
assert in_channel % groups == 0
sub_in_channels = in_channel // groups
sub_bias_list = torch.chunk(self.fc.expand.bias, groups, dim=0)
return torch.cat(
[sub_bias[:sub_in_channels] for sub_bias in sub_bias_list], dim=0
)
def forward(self, x, groups=None):
in_channel = x.size(1)
num_mid = make_divisible(
in_channel // self.reduction, divisor=MyNetwork.CHANNEL_DIVISIBLE
)
y = x.mean(3, keepdim=True).mean(2, keepdim=True)
# reduce
reduce_filter = self.get_active_reduce_weight(
num_mid, in_channel, groups=groups
).contiguous()
reduce_bias = self.get_active_reduce_bias(num_mid)
y = F.conv2d(y, reduce_filter, reduce_bias, 1, 0, 1, 1)
# relu
y = self.fc.relu(y)
# expand
expand_filter = self.get_active_expand_weight(
num_mid, in_channel, groups=groups
).contiguous()
expand_bias = self.get_active_expand_bias(in_channel, groups=groups)
y = F.conv2d(y, expand_filter, expand_bias, 1, 0, 1, 1)
# hard sigmoid
y = self.fc.h_sigmoid(y)
return x * y
class DynamicLinear(nn.Module):
def __init__(self, max_in_features, max_out_features, bias=True):
super(DynamicLinear, self).__init__()
self.max_in_features = max_in_features
self.max_out_features = max_out_features
self.bias = bias
self.linear = nn.Linear(self.max_in_features, self.max_out_features, self.bias)
self.active_out_features = self.max_out_features
def get_active_weight(self, out_features, in_features):
return self.linear.weight[:out_features, :in_features]
def get_active_bias(self, out_features):
return self.linear.bias[:out_features] if self.bias else None
def forward(self, x, out_features=None):
if out_features is None:
out_features = self.active_out_features
in_features = x.size(1)
weight = self.get_active_weight(out_features, in_features).contiguous()
bias = self.get_active_bias(out_features)
y = F.linear(x, weight, bias)
return y
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
from .run_config import *
from .run_manager import *
from .distributed_run_manager import *
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
from ofa.utils import calc_learning_rate, build_optimizer
from ofa.imagenet_classification.data_providers import ImagenetDataProvider
__all__ = ["RunConfig", "ImagenetRunConfig", "DistributedImageNetRunConfig"]
class RunConfig:
def __init__(
self,
n_epochs,
init_lr,
lr_schedule_type,
lr_schedule_param,
dataset,
train_batch_size,
test_batch_size,
valid_size,
opt_type,
opt_param,
weight_decay,
label_smoothing,
no_decay_keys,
mixup_alpha,
model_init,
validation_frequency,
print_frequency,
):
self.n_epochs = n_epochs
self.init_lr = init_lr
self.lr_schedule_type = lr_schedule_type
self.lr_schedule_param = lr_schedule_param
self.dataset = dataset
self.train_batch_size = train_batch_size
self.test_batch_size = test_batch_size
self.valid_size = valid_size
self.opt_type = opt_type
self.opt_param = opt_param
self.weight_decay = weight_decay
self.label_smoothing = label_smoothing
self.no_decay_keys = no_decay_keys
self.mixup_alpha = mixup_alpha
self.model_init = model_init
self.validation_frequency = validation_frequency
self.print_frequency = print_frequency
@property
def config(self):
config = {}
for key in self.__dict__:
if not key.startswith("_"):
config[key] = self.__dict__[key]
return config
def copy(self):
return RunConfig(**self.config)
""" learning rate """
def adjust_learning_rate(self, optimizer, epoch, batch=0, nBatch=None):
"""adjust learning of a given optimizer and return the new learning rate"""
new_lr = calc_learning_rate(
epoch, self.init_lr, self.n_epochs, batch, nBatch, self.lr_schedule_type
)
for param_group in optimizer.param_groups:
param_group["lr"] = new_lr
return new_lr
def warmup_adjust_learning_rate(
self, optimizer, T_total, nBatch, epoch, batch=0, warmup_lr=0
):
T_cur = epoch * nBatch + batch + 1
new_lr = T_cur / T_total * (self.init_lr - warmup_lr) + warmup_lr
for param_group in optimizer.param_groups:
param_group["lr"] = new_lr
return new_lr
""" data provider """
@property
def data_provider(self):
raise NotImplementedError
@property
def train_loader(self):
return self.data_provider.train
@property
def valid_loader(self):
return self.data_provider.valid
@property
def test_loader(self):
return self.data_provider.test
def random_sub_train_loader(
self, n_images, batch_size, num_worker=None, num_replicas=None, rank=None
):
return self.data_provider.build_sub_train_loader(
n_images, batch_size, num_worker, num_replicas, rank
)
""" optimizer """
def build_optimizer(self, net_params):
return build_optimizer(
net_params,
self.opt_type,
self.opt_param,
self.init_lr,
self.weight_decay,
self.no_decay_keys,
)
class ImagenetRunConfig(RunConfig):
def __init__(
self,
n_epochs=150,
init_lr=0.05,
lr_schedule_type="cosine",
lr_schedule_param=None,
dataset="imagenet",
train_batch_size=256,
test_batch_size=500,
valid_size=None,
opt_type="sgd",
opt_param=None,
weight_decay=4e-5,
label_smoothing=0.1,
no_decay_keys=None,
mixup_alpha=None,
model_init="he_fout",
validation_frequency=1,
print_frequency=10,
n_worker=32,
resize_scale=0.08,
distort_color="tf",
image_size=224,
**kwargs
):
super(ImagenetRunConfig, self).__init__(
n_epochs,
init_lr,
lr_schedule_type,
lr_schedule_param,
dataset,
train_batch_size,
test_batch_size,
valid_size,
opt_type,
opt_param,
weight_decay,
label_smoothing,
no_decay_keys,
mixup_alpha,
model_init,
validation_frequency,
print_frequency,
)
self.n_worker = n_worker
self.resize_scale = resize_scale
self.distort_color = distort_color
self.image_size = image_size
@property
def data_provider(self):
if self.__dict__.get("_data_provider", None) is None:
if self.dataset == ImagenetDataProvider.name():
DataProviderClass = ImagenetDataProvider
else:
raise NotImplementedError
self.__dict__["_data_provider"] = DataProviderClass(
train_batch_size=self.train_batch_size,
test_batch_size=self.test_batch_size,
valid_size=self.valid_size,
n_worker=self.n_worker,
resize_scale=self.resize_scale,
distort_color=self.distort_color,
image_size=self.image_size,
)
return self.__dict__["_data_provider"]
class DistributedImageNetRunConfig(ImagenetRunConfig):
def __init__(
self,
n_epochs=150,
init_lr=0.05,
lr_schedule_type="cosine",
lr_schedule_param=None,
dataset="imagenet",
train_batch_size=64,
test_batch_size=64,
valid_size=None,
opt_type="sgd",
opt_param=None,
weight_decay=4e-5,
label_smoothing=0.1,
no_decay_keys=None,
mixup_alpha=None,
model_init="he_fout",
validation_frequency=1,
print_frequency=10,
n_worker=8,
resize_scale=0.08,
distort_color="tf",
image_size=224,
**kwargs
):
super(DistributedImageNetRunConfig, self).__init__(
n_epochs,
init_lr,
lr_schedule_type,
lr_schedule_param,
dataset,
train_batch_size,
test_batch_size,
valid_size,
opt_type,
opt_param,
weight_decay,
label_smoothing,
no_decay_keys,
mixup_alpha,
model_init,
validation_frequency,
print_frequency,
n_worker,
resize_scale,
distort_color,
image_size,
**kwargs
)
self._num_replicas = kwargs["num_replicas"]
self._rank = kwargs["rank"]
@property
def data_provider(self):
if self.__dict__.get("_data_provider", None) is None:
if self.dataset == ImagenetDataProvider.name():
DataProviderClass = ImagenetDataProvider
else:
raise NotImplementedError
self.__dict__["_data_provider"] = DataProviderClass(
train_batch_size=self.train_batch_size,
test_batch_size=self.test_batch_size,
valid_size=self.valid_size,
n_worker=self.n_worker,
resize_scale=self.resize_scale,
distort_color=self.distort_color,
image_size=self.image_size,
num_replicas=self._num_replicas,
rank=self._rank,
)
return self.__dict__["_data_provider"]
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import os
import json
import time
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from tqdm import tqdm
from ofa.utils import (
cross_entropy_with_label_smoothing,
cross_entropy_loss_with_soft_target,
write_log,
init_models,
)
from ofa.utils import (
DistributedMetric,
list_mean,
get_net_info,
accuracy,
AverageMeter,
mix_labels,
mix_images,
)
from ofa.utils import MyRandomResizedCrop
__all__ = ["DistributedRunManager"]
class DistributedRunManager:
def __init__(
self,
path,
net,
run_config,
hvd_compression,
backward_steps=1,
is_root=False,
init=True,
):
import horovod.torch as hvd
self.path = path
self.net = net
self.run_config = run_config
self.is_root = is_root
self.best_acc = 0.0
self.start_epoch = 0
os.makedirs(self.path, exist_ok=True)
self.net.cuda()
cudnn.benchmark = True
if init and self.is_root:
init_models(self.net, self.run_config.model_init)
if self.is_root:
# print net info
net_info = get_net_info(self.net, self.run_config.data_provider.data_shape)
with open("%s/net_info.txt" % self.path, "w") as fout:
fout.write(json.dumps(net_info, indent=4) + "\n")
try:
fout.write(self.net.module_str + "\n")
except Exception:
fout.write("%s do not support `module_str`" % type(self.net))
fout.write(
"%s\n" % self.run_config.data_provider.train.dataset.transform
)
fout.write(
"%s\n" % self.run_config.data_provider.test.dataset.transform
)
fout.write("%s\n" % self.net)
# criterion
if isinstance(self.run_config.mixup_alpha, float):
self.train_criterion = cross_entropy_loss_with_soft_target
elif self.run_config.label_smoothing > 0:
self.train_criterion = (
lambda pred, target: cross_entropy_with_label_smoothing(
pred, target, self.run_config.label_smoothing
)
)
else:
self.train_criterion = nn.CrossEntropyLoss()
self.test_criterion = nn.CrossEntropyLoss()
# optimizer
if self.run_config.no_decay_keys:
keys = self.run_config.no_decay_keys.split("#")
net_params = [
self.net.get_parameters(
keys, mode="exclude"
), # parameters with weight decay
self.net.get_parameters(
keys, mode="include"
), # parameters without weight decay
]
else:
# noinspection PyBroadException
try:
net_params = self.network.weight_parameters()
except Exception:
net_params = []
for param in self.network.parameters():
if param.requires_grad:
net_params.append(param)
self.optimizer = self.run_config.build_optimizer(net_params)
self.optimizer = hvd.DistributedOptimizer(
self.optimizer,
named_parameters=self.net.named_parameters(),
compression=hvd_compression,
backward_passes_per_step=backward_steps,
)
""" save path and log path """
@property
def save_path(self):
if self.__dict__.get("_save_path", None) is None:
save_path = os.path.join(self.path, "checkpoint")
os.makedirs(save_path, exist_ok=True)
self.__dict__["_save_path"] = save_path
return self.__dict__["_save_path"]
@property
def logs_path(self):
if self.__dict__.get("_logs_path", None) is None:
logs_path = os.path.join(self.path, "logs")
os.makedirs(logs_path, exist_ok=True)
self.__dict__["_logs_path"] = logs_path
return self.__dict__["_logs_path"]
@property
def network(self):
return self.net
@network.setter
def network(self, new_val):
self.net = new_val
def write_log(self, log_str, prefix="valid", should_print=True, mode="a"):
if self.is_root:
write_log(self.logs_path, log_str, prefix, should_print, mode)
""" save & load model & save_config & broadcast """
def save_config(self, extra_run_config=None, extra_net_config=None):
if self.is_root:
run_save_path = os.path.join(self.path, "run.config")
if not os.path.isfile(run_save_path):
run_config = self.run_config.config
if extra_run_config is not None:
run_config.update(extra_run_config)
json.dump(run_config, open(run_save_path, "w"), indent=4)
print("Run configs dump to %s" % run_save_path)
try:
net_save_path = os.path.join(self.path, "net.config")
net_config = self.net.config
if extra_net_config is not None:
net_config.update(extra_net_config)
json.dump(net_config, open(net_save_path, "w"), indent=4)
print("Network configs dump to %s" % net_save_path)
except Exception:
print("%s do not support net config" % type(self.net))
def save_model(self, checkpoint=None, is_best=False, model_name=None):
if self.is_root:
if checkpoint is None:
checkpoint = {"state_dict": self.net.state_dict()}
if model_name is None:
model_name = "checkpoint.pth.tar"
latest_fname = os.path.join(self.save_path, "latest.txt")
model_path = os.path.join(self.save_path, model_name)
with open(latest_fname, "w") as _fout:
_fout.write(model_path + "\n")
torch.save(checkpoint, model_path)
if is_best:
best_path = os.path.join(self.save_path, "model_best.pth.tar")
torch.save({"state_dict": checkpoint["state_dict"]}, best_path)
def load_model(self, model_fname=None):
if self.is_root:
latest_fname = os.path.join(self.save_path, "latest.txt")
if model_fname is None and os.path.exists(latest_fname):
with open(latest_fname, "r") as fin:
model_fname = fin.readline()
if model_fname[-1] == "\n":
model_fname = model_fname[:-1]
# noinspection PyBroadException
try:
if model_fname is None or not os.path.exists(model_fname):
model_fname = "%s/checkpoint.pth.tar" % self.save_path
with open(latest_fname, "w") as fout:
fout.write(model_fname + "\n")
print("=> loading checkpoint '{}'".format(model_fname))
checkpoint = torch.load(model_fname, map_location="cpu")
except Exception:
self.write_log(
"fail to load checkpoint from %s" % self.save_path, "valid"
)
return
self.net.load_state_dict(checkpoint["state_dict"])
if "epoch" in checkpoint:
self.start_epoch = checkpoint["epoch"] + 1
if "best_acc" in checkpoint:
self.best_acc = checkpoint["best_acc"]
if "optimizer" in checkpoint:
self.optimizer.load_state_dict(checkpoint["optimizer"])
self.write_log("=> loaded checkpoint '{}'".format(model_fname), "valid")
# noinspection PyArgumentList
def broadcast(self):
import horovod.torch as hvd
self.start_epoch = hvd.broadcast(
torch.LongTensor(1).fill_(self.start_epoch)[0], 0, name="start_epoch"
).item()
self.best_acc = hvd.broadcast(
torch.Tensor(1).fill_(self.best_acc)[0], 0, name="best_acc"
).item()
hvd.broadcast_parameters(self.net.state_dict(), 0)
hvd.broadcast_optimizer_state(self.optimizer, 0)
""" metric related """
def get_metric_dict(self):
return {
"top1": DistributedMetric("top1"),
"top5": DistributedMetric("top5"),
}
def update_metric(self, metric_dict, output, labels):
acc1, acc5 = accuracy(output, labels, topk=(1, 5))
metric_dict["top1"].update(acc1[0], output.size(0))
metric_dict["top5"].update(acc5[0], output.size(0))
def get_metric_vals(self, metric_dict, return_dict=False):
if return_dict:
return {key: metric_dict[key].avg.item() for key in metric_dict}
else:
return [metric_dict[key].avg.item() for key in metric_dict]
def get_metric_names(self):
return "top1", "top5"
""" train & validate """
def validate(
self,
epoch=0,
is_test=False,
run_str="",
net=None,
data_loader=None,
no_logs=False,
):
if net is None:
net = self.net
if data_loader is None:
if is_test:
data_loader = self.run_config.test_loader
else:
data_loader = self.run_config.valid_loader
net.eval()
losses = DistributedMetric("val_loss")
metric_dict = self.get_metric_dict()
with torch.no_grad():
with tqdm(
total=len(data_loader),
desc="Validate Epoch #{} {}".format(epoch + 1, run_str),
disable=no_logs or not self.is_root,
) as t:
for i, (images, labels) in enumerate(data_loader):
images, labels = images.cuda(), labels.cuda()
# compute output
output = net(images)
loss = self.test_criterion(output, labels)
# measure accuracy and record loss
losses.update(loss, images.size(0))
self.update_metric(metric_dict, output, labels)
t.set_postfix(
{
"loss": losses.avg.item(),
**self.get_metric_vals(metric_dict, return_dict=True),
"img_size": images.size(2),
}
)
t.update(1)
return losses.avg.item(), self.get_metric_vals(metric_dict)
def validate_all_resolution(self, epoch=0, is_test=False, net=None):
if net is None:
net = self.net
if isinstance(self.run_config.data_provider.image_size, list):
img_size_list, loss_list, top1_list, top5_list = [], [], [], []
for img_size in self.run_config.data_provider.image_size:
img_size_list.append(img_size)
self.run_config.data_provider.assign_active_img_size(img_size)
self.reset_running_statistics(net=net)
loss, (top1, top5) = self.validate(epoch, is_test, net=net)
loss_list.append(loss)
top1_list.append(top1)
top5_list.append(top5)
return img_size_list, loss_list, top1_list, top5_list
else:
loss, (top1, top5) = self.validate(epoch, is_test, net=net)
return (
[self.run_config.data_provider.active_img_size],
[loss],
[top1],
[top5],
)
def train_one_epoch(self, args, epoch, warmup_epochs=5, warmup_lr=0):
self.net.train()
self.run_config.train_loader.sampler.set_epoch(
epoch
) # required by distributed sampler
MyRandomResizedCrop.EPOCH = epoch # required by elastic resolution
nBatch = len(self.run_config.train_loader)
losses = DistributedMetric("train_loss")
metric_dict = self.get_metric_dict()
data_time = AverageMeter()
with tqdm(
total=nBatch,
desc="Train Epoch #{}".format(epoch + 1),
disable=not self.is_root,
) as t:
end = time.time()
for i, (images, labels) in enumerate(self.run_config.train_loader):
MyRandomResizedCrop.BATCH = i
data_time.update(time.time() - end)
if epoch < warmup_epochs:
new_lr = self.run_config.warmup_adjust_learning_rate(
self.optimizer,
warmup_epochs * nBatch,
nBatch,
epoch,
i,
warmup_lr,
)
else:
new_lr = self.run_config.adjust_learning_rate(
self.optimizer, epoch - warmup_epochs, i, nBatch
)
images, labels = images.cuda(), labels.cuda()
target = labels
if isinstance(self.run_config.mixup_alpha, float):
# transform data
random.seed(int("%d%.3d" % (i, epoch)))
lam = random.betavariate(
self.run_config.mixup_alpha, self.run_config.mixup_alpha
)
images = mix_images(images, lam)
labels = mix_labels(
labels,
lam,
self.run_config.data_provider.n_classes,
self.run_config.label_smoothing,
)
# soft target
if args.teacher_model is not None:
args.teacher_model.train()
with torch.no_grad():
soft_logits = args.teacher_model(images).detach()
soft_label = F.softmax(soft_logits, dim=1)
# compute output
output = self.net(images)
if args.teacher_model is None:
loss = self.train_criterion(output, labels)
loss_type = "ce"
else:
if args.kd_type == "ce":
kd_loss = cross_entropy_loss_with_soft_target(
output, soft_label
)
else:
kd_loss = F.mse_loss(output, soft_logits)
loss = args.kd_ratio * kd_loss + self.train_criterion(
output, labels
)
loss_type = "%.1fkd+ce" % args.kd_ratio
# update
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# measure accuracy and record loss
losses.update(loss, images.size(0))
self.update_metric(metric_dict, output, target)
t.set_postfix(
{
"loss": losses.avg.item(),
**self.get_metric_vals(metric_dict, return_dict=True),
"img_size": images.size(2),
"lr": new_lr,
"loss_type": loss_type,
"data_time": data_time.avg,
}
)
t.update(1)
end = time.time()
return losses.avg.item(), self.get_metric_vals(metric_dict)
def train(self, args, warmup_epochs=5, warmup_lr=0):
for epoch in range(self.start_epoch, self.run_config.n_epochs + warmup_epochs):
train_loss, (train_top1, train_top5) = self.train_one_epoch(
args, epoch, warmup_epochs, warmup_lr
)
img_size, val_loss, val_top1, val_top5 = self.validate_all_resolution(
epoch, is_test=False
)
is_best = list_mean(val_top1) > self.best_acc
self.best_acc = max(self.best_acc, list_mean(val_top1))
if self.is_root:
val_log = (
"[{0}/{1}]\tloss {2:.3f}\t{6} acc {3:.3f} ({4:.3f})\t{7} acc {5:.3f}\t"
"Train {6} {top1:.3f}\tloss {train_loss:.3f}\t".format(
epoch + 1 - warmup_epochs,
self.run_config.n_epochs,
list_mean(val_loss),
list_mean(val_top1),
self.best_acc,
list_mean(val_top5),
*self.get_metric_names(),
top1=train_top1,
train_loss=train_loss
)
)
for i_s, v_a in zip(img_size, val_top1):
val_log += "(%d, %.3f), " % (i_s, v_a)
self.write_log(val_log, prefix="valid", should_print=False)
self.save_model(
{
"epoch": epoch,
"best_acc": self.best_acc,
"optimizer": self.optimizer.state_dict(),
"state_dict": self.net.state_dict(),
},
is_best=is_best,
)
def reset_running_statistics(
self, net=None, subset_size=2000, subset_batch_size=200, data_loader=None
):
from ofa.imagenet_classification.elastic_nn.utils import set_running_statistics
if net is None:
net = self.net
if data_loader is None:
data_loader = self.run_config.random_sub_train_loader(
subset_size, subset_batch_size
)
set_running_statistics(net, data_loader)
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import os
import random
import time
import json
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
from tqdm import tqdm
from ofa.utils import (
get_net_info,
cross_entropy_loss_with_soft_target,
cross_entropy_with_label_smoothing,
)
from ofa.utils import (
AverageMeter,
accuracy,
write_log,
mix_images,
mix_labels,
init_models,
)
from ofa.utils import MyRandomResizedCrop
__all__ = ["RunManager"]
class RunManager:
def __init__(
self, path, net, run_config, init=True, measure_latency=None, no_gpu=False
):
self.path = path
self.net = net
self.run_config = run_config
self.best_acc = 0
self.start_epoch = 0
os.makedirs(self.path, exist_ok=True)
# move network to GPU if available
if torch.cuda.is_available() and (not no_gpu):
self.device = torch.device("cuda:0")
self.net = self.net.to(self.device)
cudnn.benchmark = True
else:
self.device = torch.device("cpu")
# initialize model (default)
if init:
init_models(run_config.model_init)
# net info
net_info = get_net_info(
self.net, self.run_config.data_provider.data_shape, measure_latency, True
)
with open("%s/net_info.txt" % self.path, "w") as fout:
fout.write(json.dumps(net_info, indent=4) + "\n")
# noinspection PyBroadException
try:
fout.write(self.network.module_str + "\n")
except Exception:
pass
fout.write("%s\n" % self.run_config.data_provider.train.dataset.transform)
fout.write("%s\n" % self.run_config.data_provider.test.dataset.transform)
fout.write("%s\n" % self.network)
# criterion
if isinstance(self.run_config.mixup_alpha, float):
self.train_criterion = cross_entropy_loss_with_soft_target
elif self.run_config.label_smoothing > 0:
self.train_criterion = (
lambda pred, target: cross_entropy_with_label_smoothing(
pred, target, self.run_config.label_smoothing
)
)
else:
self.train_criterion = nn.CrossEntropyLoss()
self.test_criterion = nn.CrossEntropyLoss()
# optimizer
if self.run_config.no_decay_keys:
keys = self.run_config.no_decay_keys.split("#")
net_params = [
self.network.get_parameters(
keys, mode="exclude"
), # parameters with weight decay
self.network.get_parameters(
keys, mode="include"
), # parameters without weight decay
]
else:
# noinspection PyBroadException
try:
net_params = self.network.weight_parameters()
except Exception:
net_params = []
for param in self.network.parameters():
if param.requires_grad:
net_params.append(param)
self.optimizer = self.run_config.build_optimizer(net_params)
self.net = torch.nn.DataParallel(self.net)
""" save path and log path """
@property
def save_path(self):
if self.__dict__.get("_save_path", None) is None:
save_path = os.path.join(self.path, "checkpoint")
os.makedirs(save_path, exist_ok=True)
self.__dict__["_save_path"] = save_path
return self.__dict__["_save_path"]
@property
def logs_path(self):
if self.__dict__.get("_logs_path", None) is None:
logs_path = os.path.join(self.path, "logs")
os.makedirs(logs_path, exist_ok=True)
self.__dict__["_logs_path"] = logs_path
return self.__dict__["_logs_path"]
@property
def network(self):
return self.net.module if isinstance(self.net, nn.DataParallel) else self.net
def write_log(self, log_str, prefix="valid", should_print=True, mode="a"):
write_log(self.logs_path, log_str, prefix, should_print, mode)
""" save and load models """
def save_model(self, checkpoint=None, is_best=False, model_name=None):
if checkpoint is None:
checkpoint = {"state_dict": self.network.state_dict()}
if model_name is None:
model_name = "checkpoint.pth.tar"
checkpoint[
"dataset"
] = self.run_config.dataset # add `dataset` info to the checkpoint
latest_fname = os.path.join(self.save_path, "latest.txt")
model_path = os.path.join(self.save_path, model_name)
with open(latest_fname, "w") as fout:
fout.write(model_path + "\n")
torch.save(checkpoint, model_path)
if is_best:
best_path = os.path.join(self.save_path, "model_best.pth.tar")
torch.save({"state_dict": checkpoint["state_dict"]}, best_path)
def load_model(self, model_fname=None):
latest_fname = os.path.join(self.save_path, "latest.txt")
if model_fname is None and os.path.exists(latest_fname):
with open(latest_fname, "r") as fin:
model_fname = fin.readline()
if model_fname[-1] == "\n":
model_fname = model_fname[:-1]
# noinspection PyBroadException
try:
if model_fname is None or not os.path.exists(model_fname):
model_fname = "%s/checkpoint.pth.tar" % self.save_path
with open(latest_fname, "w") as fout:
fout.write(model_fname + "\n")
print("=> loading checkpoint '{}'".format(model_fname))
checkpoint = torch.load(model_fname, map_location="cpu")
except Exception:
print("fail to load checkpoint from %s" % self.save_path)
return {}
self.network.load_state_dict(checkpoint["state_dict"])
if "epoch" in checkpoint:
self.start_epoch = checkpoint["epoch"] + 1
if "best_acc" in checkpoint:
self.best_acc = checkpoint["best_acc"]
if "optimizer" in checkpoint:
self.optimizer.load_state_dict(checkpoint["optimizer"])
print("=> loaded checkpoint '{}'".format(model_fname))
return checkpoint
def save_config(self, extra_run_config=None, extra_net_config=None):
"""dump run_config and net_config to the model_folder"""
run_save_path = os.path.join(self.path, "run.config")
if not os.path.isfile(run_save_path):
run_config = self.run_config.config
if extra_run_config is not None:
run_config.update(extra_run_config)
json.dump(run_config, open(run_save_path, "w"), indent=4)
print("Run configs dump to %s" % run_save_path)
try:
net_save_path = os.path.join(self.path, "net.config")
net_config = self.network.config
if extra_net_config is not None:
net_config.update(extra_net_config)
json.dump(net_config, open(net_save_path, "w"), indent=4)
print("Network configs dump to %s" % net_save_path)
except Exception:
print("%s do not support net config" % type(self.network))
""" metric related """
def get_metric_dict(self):
return {
"top1": AverageMeter(),
"top5": AverageMeter(),
}
def update_metric(self, metric_dict, output, labels):
acc1, acc5 = accuracy(output, labels, topk=(1, 5))
metric_dict["top1"].update(acc1[0].item(), output.size(0))
metric_dict["top5"].update(acc5[0].item(), output.size(0))
def get_metric_vals(self, metric_dict, return_dict=False):
if return_dict:
return {key: metric_dict[key].avg for key in metric_dict}
else:
return [metric_dict[key].avg for key in metric_dict]
def get_metric_names(self):
return "top1", "top5"
""" train and test """
def validate(
self,
epoch=0,
is_test=False,
run_str="",
net=None,
data_loader=None,
no_logs=False,
train_mode=False,
):
if net is None:
net = self.net
if not isinstance(net, nn.DataParallel):
net = nn.DataParallel(net)
if data_loader is None:
data_loader = (
self.run_config.test_loader if is_test else self.run_config.valid_loader
)
if train_mode:
net.train()
else:
net.eval()
losses = AverageMeter()
metric_dict = self.get_metric_dict()
with torch.no_grad():
with tqdm(
total=len(data_loader),
desc="Validate Epoch #{} {}".format(epoch + 1, run_str),
disable=no_logs,
) as t:
for i, (images, labels) in enumerate(data_loader):
images, labels = images.to(self.device), labels.to(self.device)
# compute output
output = net(images)
loss = self.test_criterion(output, labels)
# measure accuracy and record loss
self.update_metric(metric_dict, output, labels)
losses.update(loss.item(), images.size(0))
t.set_postfix(
{
"loss": losses.avg,
**self.get_metric_vals(metric_dict, return_dict=True),
"img_size": images.size(2),
}
)
t.update(1)
return losses.avg, self.get_metric_vals(metric_dict)
def validate_all_resolution(self, epoch=0, is_test=False, net=None):
if net is None:
net = self.network
if isinstance(self.run_config.data_provider.image_size, list):
img_size_list, loss_list, top1_list, top5_list = [], [], [], []
for img_size in self.run_config.data_provider.image_size:
img_size_list.append(img_size)
self.run_config.data_provider.assign_active_img_size(img_size)
self.reset_running_statistics(net=net)
loss, (top1, top5) = self.validate(epoch, is_test, net=net)
loss_list.append(loss)
top1_list.append(top1)
top5_list.append(top5)
return img_size_list, loss_list, top1_list, top5_list
else:
loss, (top1, top5) = self.validate(epoch, is_test, net=net)
return (
[self.run_config.data_provider.active_img_size],
[loss],
[top1],
[top5],
)
def train_one_epoch(self, args, epoch, warmup_epochs=0, warmup_lr=0):
# switch to train mode
self.net.train()
MyRandomResizedCrop.EPOCH = epoch # required by elastic resolution
nBatch = len(self.run_config.train_loader)
losses = AverageMeter()
metric_dict = self.get_metric_dict()
data_time = AverageMeter()
with tqdm(
total=nBatch,
desc="{} Train Epoch #{}".format(self.run_config.dataset, epoch + 1),
) as t:
end = time.time()
for i, (images, labels) in enumerate(self.run_config.train_loader):
MyRandomResizedCrop.BATCH = i
data_time.update(time.time() - end)
if epoch < warmup_epochs:
new_lr = self.run_config.warmup_adjust_learning_rate(
self.optimizer,
warmup_epochs * nBatch,
nBatch,
epoch,
i,
warmup_lr,
)
else:
new_lr = self.run_config.adjust_learning_rate(
self.optimizer, epoch - warmup_epochs, i, nBatch
)
images, labels = images.to(self.device), labels.to(self.device)
target = labels
if isinstance(self.run_config.mixup_alpha, float):
# transform data
lam = random.betavariate(
self.run_config.mixup_alpha, self.run_config.mixup_alpha
)
images = mix_images(images, lam)
labels = mix_labels(
labels,
lam,
self.run_config.data_provider.n_classes,
self.run_config.label_smoothing,
)
# soft target
if args.teacher_model is not None:
args.teacher_model.train()
with torch.no_grad():
soft_logits = args.teacher_model(images).detach()
soft_label = F.softmax(soft_logits, dim=1)
# compute output
output = self.net(images)
loss = self.train_criterion(output, labels)
if args.teacher_model is None:
loss_type = "ce"
else:
if args.kd_type == "ce":
kd_loss = cross_entropy_loss_with_soft_target(
output, soft_label
)
else:
kd_loss = F.mse_loss(output, soft_logits)
loss = args.kd_ratio * kd_loss + loss
loss_type = "%.1fkd+ce" % args.kd_ratio
# compute gradient and do SGD step
self.net.zero_grad() # or self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# measure accuracy and record loss
losses.update(loss.item(), images.size(0))
self.update_metric(metric_dict, output, target)
t.set_postfix(
{
"loss": losses.avg,
**self.get_metric_vals(metric_dict, return_dict=True),
"img_size": images.size(2),
"lr": new_lr,
"loss_type": loss_type,
"data_time": data_time.avg,
}
)
t.update(1)
end = time.time()
return losses.avg, self.get_metric_vals(metric_dict)
def train(self, args, warmup_epoch=0, warmup_lr=0):
for epoch in range(self.start_epoch, self.run_config.n_epochs + warmup_epoch):
train_loss, (train_top1, train_top5) = self.train_one_epoch(
args, epoch, warmup_epoch, warmup_lr
)
if (epoch + 1) % self.run_config.validation_frequency == 0:
img_size, val_loss, val_acc, val_acc5 = self.validate_all_resolution(
epoch=epoch, is_test=False
)
is_best = np.mean(val_acc) > self.best_acc
self.best_acc = max(self.best_acc, np.mean(val_acc))
val_log = "Valid [{0}/{1}]\tloss {2:.3f}\t{5} {3:.3f} ({4:.3f})".format(
epoch + 1 - warmup_epoch,
self.run_config.n_epochs,
np.mean(val_loss),
np.mean(val_acc),
self.best_acc,
self.get_metric_names()[0],
)
val_log += "\t{2} {0:.3f}\tTrain {1} {top1:.3f}\tloss {train_loss:.3f}\t".format(
np.mean(val_acc5),
*self.get_metric_names(),
top1=train_top1,
train_loss=train_loss
)
for i_s, v_a in zip(img_size, val_acc):
val_log += "(%d, %.3f), " % (i_s, v_a)
self.write_log(val_log, prefix="valid", should_print=False)
else:
is_best = False
self.save_model(
{
"epoch": epoch,
"best_acc": self.best_acc,
"optimizer": self.optimizer.state_dict(),
"state_dict": self.network.state_dict(),
},
is_best=is_best,
)
def reset_running_statistics(
self, net=None, subset_size=2000, subset_batch_size=200, data_loader=None
):
from ofa.imagenet_classification.elastic_nn.utils import set_running_statistics
if net is None:
net = self.network
if data_loader is None:
data_loader = self.run_config.random_sub_train_loader(
subset_size, subset_batch_size
)
set_running_statistics(net, data_loader)
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
from .proxyless_nets import *
from .mobilenet_v3 import *
from .resnets import *
def get_net_by_name(name):
if name == ProxylessNASNets.__name__:
return ProxylessNASNets
elif name == MobileNetV3.__name__:
return MobileNetV3
elif name == ResNets.__name__:
return ResNets
else:
raise ValueError("unrecognized type of network: %s" % name)
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import copy
import torch.nn as nn
from ofa.utils.layers import (
set_layer_from_config,
MBConvLayer,
ConvLayer,
IdentityLayer,
LinearLayer,
ResidualBlock,
)
from ofa.utils import MyNetwork, make_divisible, MyGlobalAvgPool2d
__all__ = ["MobileNetV3", "MobileNetV3Large"]
class MobileNetV3(MyNetwork):
def __init__(
self, first_conv, blocks, final_expand_layer, feature_mix_layer, classifier
):
super(MobileNetV3, self).__init__()
self.first_conv = first_conv
self.blocks = nn.ModuleList(blocks)
self.final_expand_layer = final_expand_layer
self.global_avg_pool = MyGlobalAvgPool2d(keep_dim=True)
self.feature_mix_layer = feature_mix_layer
self.classifier = classifier
def forward(self, x):
x = self.first_conv(x)
for block in self.blocks:
x = block(x)
x = self.final_expand_layer(x)
x = self.global_avg_pool(x) # global average pooling
x = self.feature_mix_layer(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
@property
def module_str(self):
_str = self.first_conv.module_str + "\n"
for block in self.blocks:
_str += block.module_str + "\n"
_str += self.final_expand_layer.module_str + "\n"
_str += self.global_avg_pool.__repr__() + "\n"
_str += self.feature_mix_layer.module_str + "\n"
_str += self.classifier.module_str
return _str
@property
def config(self):
return {
"name": MobileNetV3.__name__,
"bn": self.get_bn_param(),
"first_conv": self.first_conv.config,
"blocks": [block.config for block in self.blocks],
"final_expand_layer": self.final_expand_layer.config,
"feature_mix_layer": self.feature_mix_layer.config,
"classifier": self.classifier.config,
}
@staticmethod
def build_from_config(config):
first_conv = set_layer_from_config(config["first_conv"])
final_expand_layer = set_layer_from_config(config["final_expand_layer"])
feature_mix_layer = set_layer_from_config(config["feature_mix_layer"])
classifier = set_layer_from_config(config["classifier"])
blocks = []
for block_config in config["blocks"]:
blocks.append(ResidualBlock.build_from_config(block_config))
net = MobileNetV3(
first_conv, blocks, final_expand_layer, feature_mix_layer, classifier
)
if "bn" in config:
net.set_bn_param(**config["bn"])
else:
net.set_bn_param(momentum=0.1, eps=1e-5)
return net
def zero_last_gamma(self):
for m in self.modules():
if isinstance(m, ResidualBlock):
if isinstance(m.conv, MBConvLayer) and isinstance(
m.shortcut, IdentityLayer
):
m.conv.point_linear.bn.weight.data.zero_()
@property
def grouped_block_index(self):
info_list = []
block_index_list = []
for i, block in enumerate(self.blocks[1:], 1):
if block.shortcut is None and len(block_index_list) > 0:
info_list.append(block_index_list)
block_index_list = []
block_index_list.append(i)
if len(block_index_list) > 0:
info_list.append(block_index_list)
return info_list
@staticmethod
def build_net_via_cfg(cfg, input_channel, last_channel, n_classes, dropout_rate):
# first conv layer
first_conv = ConvLayer(
3,
input_channel,
kernel_size=3,
stride=2,
use_bn=True,
act_func="h_swish",
ops_order="weight_bn_act",
)
# build mobile blocks
feature_dim = input_channel
blocks = []
for stage_id, block_config_list in cfg.items():
for (
k,
mid_channel,
out_channel,
use_se,
act_func,
stride,
expand_ratio,
) in block_config_list:
mb_conv = MBConvLayer(
feature_dim,
out_channel,
k,
stride,
expand_ratio,
mid_channel,
act_func,
use_se,
)
if stride == 1 and out_channel == feature_dim:
shortcut = IdentityLayer(out_channel, out_channel)
else:
shortcut = None
blocks.append(ResidualBlock(mb_conv, shortcut))
feature_dim = out_channel
# final expand layer
final_expand_layer = ConvLayer(
feature_dim,
feature_dim * 6,
kernel_size=1,
use_bn=True,
act_func="h_swish",
ops_order="weight_bn_act",
)
# feature mix layer
feature_mix_layer = ConvLayer(
feature_dim * 6,
last_channel,
kernel_size=1,
bias=False,
use_bn=False,
act_func="h_swish",
)
# classifier
classifier = LinearLayer(last_channel, n_classes, dropout_rate=dropout_rate)
return first_conv, blocks, final_expand_layer, feature_mix_layer, classifier
@staticmethod
def adjust_cfg(
cfg, ks=None, expand_ratio=None, depth_param=None, stage_width_list=None
):
for i, (stage_id, block_config_list) in enumerate(cfg.items()):
for block_config in block_config_list:
if ks is not None and stage_id != "0":
block_config[0] = ks
if expand_ratio is not None and stage_id != "0":
block_config[-1] = expand_ratio
block_config[1] = None
if stage_width_list is not None:
block_config[2] = stage_width_list[i]
if depth_param is not None and stage_id != "0":
new_block_config_list = [block_config_list[0]]
new_block_config_list += [
copy.deepcopy(block_config_list[-1]) for _ in range(depth_param - 1)
]
cfg[stage_id] = new_block_config_list
return cfg
def load_state_dict(self, state_dict, **kwargs):
current_state_dict = self.state_dict()
for key in state_dict:
if key not in current_state_dict:
assert ".mobile_inverted_conv." in key
new_key = key.replace(".mobile_inverted_conv.", ".conv.")
else:
new_key = key
current_state_dict[new_key] = state_dict[key]
super(MobileNetV3, self).load_state_dict(current_state_dict)
class MobileNetV3Large(MobileNetV3):
def __init__(
self,
n_classes=1000,
width_mult=1.0,
bn_param=(0.1, 1e-5),
dropout_rate=0.2,
ks=None,
expand_ratio=None,
depth_param=None,
stage_width_list=None,
):
input_channel = 16
last_channel = 1280
input_channel = make_divisible(
input_channel * width_mult, MyNetwork.CHANNEL_DIVISIBLE
)
last_channel = (
make_divisible(last_channel * width_mult, MyNetwork.CHANNEL_DIVISIBLE)
if width_mult > 1.0
else last_channel
)
cfg = {
# k, exp, c, se, nl, s, e,
"0": [
[3, 16, 16, False, "relu", 1, 1],
],
"1": [
[3, 64, 24, False, "relu", 2, None], # 4
[3, 72, 24, False, "relu", 1, None], # 3
],
"2": [
[5, 72, 40, True, "relu", 2, None], # 3
[5, 120, 40, True, "relu", 1, None], # 3
[5, 120, 40, True, "relu", 1, None], # 3
],
"3": [
[3, 240, 80, False, "h_swish", 2, None], # 6
[3, 200, 80, False, "h_swish", 1, None], # 2.5
[3, 184, 80, False, "h_swish", 1, None], # 2.3
[3, 184, 80, False, "h_swish", 1, None], # 2.3
],
"4": [
[3, 480, 112, True, "h_swish", 1, None], # 6
[3, 672, 112, True, "h_swish", 1, None], # 6
],
"5": [
[5, 672, 160, True, "h_swish", 2, None], # 6
[5, 960, 160, True, "h_swish", 1, None], # 6
[5, 960, 160, True, "h_swish", 1, None], # 6
],
}
cfg = self.adjust_cfg(cfg, ks, expand_ratio, depth_param, stage_width_list)
# width multiplier on mobile setting, change `exp: 1` and `c: 2`
for stage_id, block_config_list in cfg.items():
for block_config in block_config_list:
if block_config[1] is not None:
block_config[1] = make_divisible(
block_config[1] * width_mult, MyNetwork.CHANNEL_DIVISIBLE
)
block_config[2] = make_divisible(
block_config[2] * width_mult, MyNetwork.CHANNEL_DIVISIBLE
)
(
first_conv,
blocks,
final_expand_layer,
feature_mix_layer,
classifier,
) = self.build_net_via_cfg(
cfg, input_channel, last_channel, n_classes, dropout_rate
)
super(MobileNetV3Large, self).__init__(
first_conv, blocks, final_expand_layer, feature_mix_layer, classifier
)
# set bn param
self.set_bn_param(*bn_param)
|
import torch.nn as nn
from ofa.utils.layers import (
set_layer_from_config,
ConvLayer,
IdentityLayer,
LinearLayer,
)
from ofa.utils.layers import ResNetBottleneckBlock, ResidualBlock
from ofa.utils import make_divisible, MyNetwork, MyGlobalAvgPool2d
__all__ = ["ResNets", "ResNet50", "ResNet50D"]
class ResNets(MyNetwork):
BASE_DEPTH_LIST = [2, 2, 4, 2]
STAGE_WIDTH_LIST = [256, 512, 1024, 2048]
def __init__(self, input_stem, blocks, classifier):
super(ResNets, self).__init__()
self.input_stem = nn.ModuleList(input_stem)
self.max_pooling = nn.MaxPool2d(
kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False
)
self.blocks = nn.ModuleList(blocks)
self.global_avg_pool = MyGlobalAvgPool2d(keep_dim=False)
self.classifier = classifier
def forward(self, x):
for layer in self.input_stem:
x = layer(x)
x = self.max_pooling(x)
for block in self.blocks:
x = block(x)
x = self.global_avg_pool(x)
x = self.classifier(x)
return x
@property
def module_str(self):
_str = ""
for layer in self.input_stem:
_str += layer.module_str + "\n"
_str += "max_pooling(ks=3, stride=2)\n"
for block in self.blocks:
_str += block.module_str + "\n"
_str += self.global_avg_pool.__repr__() + "\n"
_str += self.classifier.module_str
return _str
@property
def config(self):
return {
"name": ResNets.__name__,
"bn": self.get_bn_param(),
"input_stem": [layer.config for layer in self.input_stem],
"blocks": [block.config for block in self.blocks],
"classifier": self.classifier.config,
}
@staticmethod
def build_from_config(config):
classifier = set_layer_from_config(config["classifier"])
input_stem = []
for layer_config in config["input_stem"]:
input_stem.append(set_layer_from_config(layer_config))
blocks = []
for block_config in config["blocks"]:
blocks.append(set_layer_from_config(block_config))
net = ResNets(input_stem, blocks, classifier)
if "bn" in config:
net.set_bn_param(**config["bn"])
else:
net.set_bn_param(momentum=0.1, eps=1e-5)
return net
def zero_last_gamma(self):
for m in self.modules():
if isinstance(m, ResNetBottleneckBlock) and isinstance(
m.downsample, IdentityLayer
):
m.conv3.bn.weight.data.zero_()
@property
def grouped_block_index(self):
info_list = []
block_index_list = []
for i, block in enumerate(self.blocks):
if (
not isinstance(block.downsample, IdentityLayer)
and len(block_index_list) > 0
):
info_list.append(block_index_list)
block_index_list = []
block_index_list.append(i)
if len(block_index_list) > 0:
info_list.append(block_index_list)
return info_list
def load_state_dict(self, state_dict, **kwargs):
super(ResNets, self).load_state_dict(state_dict)
class ResNet50(ResNets):
def __init__(
self,
n_classes=1000,
width_mult=1.0,
bn_param=(0.1, 1e-5),
dropout_rate=0,
expand_ratio=None,
depth_param=None,
):
expand_ratio = 0.25 if expand_ratio is None else expand_ratio
input_channel = make_divisible(64 * width_mult, MyNetwork.CHANNEL_DIVISIBLE)
stage_width_list = ResNets.STAGE_WIDTH_LIST.copy()
for i, width in enumerate(stage_width_list):
stage_width_list[i] = make_divisible(
width * width_mult, MyNetwork.CHANNEL_DIVISIBLE
)
depth_list = [3, 4, 6, 3]
if depth_param is not None:
for i, depth in enumerate(ResNets.BASE_DEPTH_LIST):
depth_list[i] = depth + depth_param
stride_list = [1, 2, 2, 2]
# build input stem
input_stem = [
ConvLayer(
3,
input_channel,
kernel_size=7,
stride=2,
use_bn=True,
act_func="relu",
ops_order="weight_bn_act",
)
]
# blocks
blocks = []
for d, width, s in zip(depth_list, stage_width_list, stride_list):
for i in range(d):
stride = s if i == 0 else 1
bottleneck_block = ResNetBottleneckBlock(
input_channel,
width,
kernel_size=3,
stride=stride,
expand_ratio=expand_ratio,
act_func="relu",
downsample_mode="conv",
)
blocks.append(bottleneck_block)
input_channel = width
# classifier
classifier = LinearLayer(input_channel, n_classes, dropout_rate=dropout_rate)
super(ResNet50, self).__init__(input_stem, blocks, classifier)
# set bn param
self.set_bn_param(*bn_param)
class ResNet50D(ResNets):
def __init__(
self,
n_classes=1000,
width_mult=1.0,
bn_param=(0.1, 1e-5),
dropout_rate=0,
expand_ratio=None,
depth_param=None,
):
expand_ratio = 0.25 if expand_ratio is None else expand_ratio
input_channel = make_divisible(64 * width_mult, MyNetwork.CHANNEL_DIVISIBLE)
mid_input_channel = make_divisible(
input_channel // 2, MyNetwork.CHANNEL_DIVISIBLE
)
stage_width_list = ResNets.STAGE_WIDTH_LIST.copy()
for i, width in enumerate(stage_width_list):
stage_width_list[i] = make_divisible(
width * width_mult, MyNetwork.CHANNEL_DIVISIBLE
)
depth_list = [3, 4, 6, 3]
if depth_param is not None:
for i, depth in enumerate(ResNets.BASE_DEPTH_LIST):
depth_list[i] = depth + depth_param
stride_list = [1, 2, 2, 2]
# build input stem
input_stem = [
ConvLayer(3, mid_input_channel, 3, stride=2, use_bn=True, act_func="relu"),
ResidualBlock(
ConvLayer(
mid_input_channel,
mid_input_channel,
3,
stride=1,
use_bn=True,
act_func="relu",
),
IdentityLayer(mid_input_channel, mid_input_channel),
),
ConvLayer(
mid_input_channel,
input_channel,
3,
stride=1,
use_bn=True,
act_func="relu",
),
]
# blocks
blocks = []
for d, width, s in zip(depth_list, stage_width_list, stride_list):
for i in range(d):
stride = s if i == 0 else 1
bottleneck_block = ResNetBottleneckBlock(
input_channel,
width,
kernel_size=3,
stride=stride,
expand_ratio=expand_ratio,
act_func="relu",
downsample_mode="avgpool_conv",
)
blocks.append(bottleneck_block)
input_channel = width
# classifier
classifier = LinearLayer(input_channel, n_classes, dropout_rate=dropout_rate)
super(ResNet50D, self).__init__(input_stem, blocks, classifier)
# set bn param
self.set_bn_param(*bn_param)
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import json
import torch.nn as nn
from ofa.utils.layers import (
set_layer_from_config,
MBConvLayer,
ConvLayer,
IdentityLayer,
LinearLayer,
ResidualBlock,
)
from ofa.utils import (
download_url,
make_divisible,
val2list,
MyNetwork,
MyGlobalAvgPool2d,
)
__all__ = ["proxyless_base", "ProxylessNASNets", "MobileNetV2"]
def proxyless_base(
net_config=None,
n_classes=None,
bn_param=None,
dropout_rate=None,
local_path="~/.torch/proxylessnas/",
):
assert net_config is not None, "Please input a network config"
if "http" in net_config:
net_config_path = download_url(net_config, local_path)
else:
net_config_path = net_config
net_config_json = json.load(open(net_config_path, "r"))
if n_classes is not None:
net_config_json["classifier"]["out_features"] = n_classes
if dropout_rate is not None:
net_config_json["classifier"]["dropout_rate"] = dropout_rate
net = ProxylessNASNets.build_from_config(net_config_json)
if bn_param is not None:
net.set_bn_param(*bn_param)
return net
class ProxylessNASNets(MyNetwork):
def __init__(self, first_conv, blocks, feature_mix_layer, classifier):
super(ProxylessNASNets, self).__init__()
self.first_conv = first_conv
self.blocks = nn.ModuleList(blocks)
self.feature_mix_layer = feature_mix_layer
self.global_avg_pool = MyGlobalAvgPool2d(keep_dim=False)
self.classifier = classifier
def forward(self, x):
x = self.first_conv(x)
for block in self.blocks:
x = block(x)
if self.feature_mix_layer is not None:
x = self.feature_mix_layer(x)
x = self.global_avg_pool(x)
x = self.classifier(x)
return x
@property
def module_str(self):
_str = self.first_conv.module_str + "\n"
for block in self.blocks:
_str += block.module_str + "\n"
_str += self.feature_mix_layer.module_str + "\n"
_str += self.global_avg_pool.__repr__() + "\n"
_str += self.classifier.module_str
return _str
@property
def config(self):
return {
"name": ProxylessNASNets.__name__,
"bn": self.get_bn_param(),
"first_conv": self.first_conv.config,
"blocks": [block.config for block in self.blocks],
"feature_mix_layer": None
if self.feature_mix_layer is None
else self.feature_mix_layer.config,
"classifier": self.classifier.config,
}
@staticmethod
def build_from_config(config):
first_conv = set_layer_from_config(config["first_conv"])
feature_mix_layer = set_layer_from_config(config["feature_mix_layer"])
classifier = set_layer_from_config(config["classifier"])
blocks = []
for block_config in config["blocks"]:
blocks.append(ResidualBlock.build_from_config(block_config))
net = ProxylessNASNets(first_conv, blocks, feature_mix_layer, classifier)
if "bn" in config:
net.set_bn_param(**config["bn"])
else:
net.set_bn_param(momentum=0.1, eps=1e-3)
return net
def zero_last_gamma(self):
for m in self.modules():
if isinstance(m, ResidualBlock):
if isinstance(m.conv, MBConvLayer) and isinstance(
m.shortcut, IdentityLayer
):
m.conv.point_linear.bn.weight.data.zero_()
@property
def grouped_block_index(self):
info_list = []
block_index_list = []
for i, block in enumerate(self.blocks[1:], 1):
if block.shortcut is None and len(block_index_list) > 0:
info_list.append(block_index_list)
block_index_list = []
block_index_list.append(i)
if len(block_index_list) > 0:
info_list.append(block_index_list)
return info_list
def load_state_dict(self, state_dict, **kwargs):
current_state_dict = self.state_dict()
for key in state_dict:
if key not in current_state_dict:
assert ".mobile_inverted_conv." in key
new_key = key.replace(".mobile_inverted_conv.", ".conv.")
else:
new_key = key
current_state_dict[new_key] = state_dict[key]
super(ProxylessNASNets, self).load_state_dict(current_state_dict)
class MobileNetV2(ProxylessNASNets):
def __init__(
self,
n_classes=1000,
width_mult=1.0,
bn_param=(0.1, 1e-3),
dropout_rate=0.2,
ks=None,
expand_ratio=None,
depth_param=None,
stage_width_list=None,
):
ks = 3 if ks is None else ks
expand_ratio = 6 if expand_ratio is None else expand_ratio
input_channel = 32
last_channel = 1280
input_channel = make_divisible(
input_channel * width_mult, MyNetwork.CHANNEL_DIVISIBLE
)
last_channel = (
make_divisible(last_channel * width_mult, MyNetwork.CHANNEL_DIVISIBLE)
if width_mult > 1.0
else last_channel
)
inverted_residual_setting = [
# t, c, n, s
[1, 16, 1, 1],
[expand_ratio, 24, 2, 2],
[expand_ratio, 32, 3, 2],
[expand_ratio, 64, 4, 2],
[expand_ratio, 96, 3, 1],
[expand_ratio, 160, 3, 2],
[expand_ratio, 320, 1, 1],
]
if depth_param is not None:
assert isinstance(depth_param, int)
for i in range(1, len(inverted_residual_setting) - 1):
inverted_residual_setting[i][2] = depth_param
if stage_width_list is not None:
for i in range(len(inverted_residual_setting)):
inverted_residual_setting[i][1] = stage_width_list[i]
ks = val2list(ks, sum([n for _, _, n, _ in inverted_residual_setting]) - 1)
_pt = 0
# first conv layer
first_conv = ConvLayer(
3,
input_channel,
kernel_size=3,
stride=2,
use_bn=True,
act_func="relu6",
ops_order="weight_bn_act",
)
# inverted residual blocks
blocks = []
for t, c, n, s in inverted_residual_setting:
output_channel = make_divisible(c * width_mult, MyNetwork.CHANNEL_DIVISIBLE)
for i in range(n):
if i == 0:
stride = s
else:
stride = 1
if t == 1:
kernel_size = 3
else:
kernel_size = ks[_pt]
_pt += 1
mobile_inverted_conv = MBConvLayer(
in_channels=input_channel,
out_channels=output_channel,
kernel_size=kernel_size,
stride=stride,
expand_ratio=t,
)
if stride == 1:
if input_channel == output_channel:
shortcut = IdentityLayer(input_channel, input_channel)
else:
shortcut = None
else:
shortcut = None
blocks.append(ResidualBlock(mobile_inverted_conv, shortcut))
input_channel = output_channel
# 1x1_conv before global average pooling
feature_mix_layer = ConvLayer(
input_channel,
last_channel,
kernel_size=1,
use_bn=True,
act_func="relu6",
ops_order="weight_bn_act",
)
classifier = LinearLayer(last_channel, n_classes, dropout_rate=dropout_rate)
super(MobileNetV2, self).__init__(
first_conv, blocks, feature_mix_layer, classifier
)
# set bn param
self.set_bn_param(*bn_param)
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import numpy as np
import torch
__all__ = ["DataProvider"]
class DataProvider:
SUB_SEED = 937162211 # random seed for sampling subset
VALID_SEED = 2147483647 # random seed for the validation set
@staticmethod
def name():
"""Return name of the dataset"""
raise NotImplementedError
@property
def data_shape(self):
"""Return shape as python list of one data entry"""
raise NotImplementedError
@property
def n_classes(self):
"""Return `int` of num classes"""
raise NotImplementedError
@property
def save_path(self):
"""local path to save the data"""
raise NotImplementedError
@property
def data_url(self):
"""link to download the data"""
raise NotImplementedError
@staticmethod
def random_sample_valid_set(train_size, valid_size):
assert train_size > valid_size
g = torch.Generator()
g.manual_seed(
DataProvider.VALID_SEED
) # set random seed before sampling validation set
rand_indexes = torch.randperm(train_size, generator=g).tolist()
valid_indexes = rand_indexes[:valid_size]
train_indexes = rand_indexes[valid_size:]
return train_indexes, valid_indexes
@staticmethod
def labels_to_one_hot(n_classes, labels):
new_labels = np.zeros((labels.shape[0], n_classes), dtype=np.float32)
new_labels[range(labels.shape[0]), labels] = np.ones(labels.shape)
return new_labels
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import warnings
import os
import math
import numpy as np
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from .base_provider import DataProvider
from ofa.utils.my_dataloader import MyRandomResizedCrop, MyDistributedSampler
__all__ = ["ImagenetDataProvider"]
class ImagenetDataProvider(DataProvider):
DEFAULT_PATH = "/dataset/imagenet"
def __init__(
self,
save_path=None,
train_batch_size=256,
test_batch_size=512,
valid_size=None,
n_worker=32,
resize_scale=0.08,
distort_color=None,
image_size=224,
num_replicas=None,
rank=None,
):
warnings.filterwarnings("ignore")
self._save_path = save_path
self.image_size = image_size # int or list of int
self.distort_color = "None" if distort_color is None else distort_color
self.resize_scale = resize_scale
self._valid_transform_dict = {}
if not isinstance(self.image_size, int):
from ofa.utils.my_dataloader import MyDataLoader
assert isinstance(self.image_size, list)
self.image_size.sort() # e.g., 160 -> 224
MyRandomResizedCrop.IMAGE_SIZE_LIST = self.image_size.copy()
MyRandomResizedCrop.ACTIVE_SIZE = max(self.image_size)
for img_size in self.image_size:
self._valid_transform_dict[img_size] = self.build_valid_transform(
img_size
)
self.active_img_size = max(self.image_size) # active resolution for test
valid_transforms = self._valid_transform_dict[self.active_img_size]
train_loader_class = MyDataLoader # randomly sample image size for each batch of training image
else:
self.active_img_size = self.image_size
valid_transforms = self.build_valid_transform()
train_loader_class = torch.utils.data.DataLoader
train_dataset = self.train_dataset(self.build_train_transform())
if valid_size is not None:
if not isinstance(valid_size, int):
assert isinstance(valid_size, float) and 0 < valid_size < 1
valid_size = int(len(train_dataset) * valid_size)
valid_dataset = self.train_dataset(valid_transforms)
train_indexes, valid_indexes = self.random_sample_valid_set(
len(train_dataset), valid_size
)
if num_replicas is not None:
train_sampler = MyDistributedSampler(
train_dataset, num_replicas, rank, True, np.array(train_indexes)
)
valid_sampler = MyDistributedSampler(
valid_dataset, num_replicas, rank, True, np.array(valid_indexes)
)
else:
train_sampler = torch.utils.data.sampler.SubsetRandomSampler(
train_indexes
)
valid_sampler = torch.utils.data.sampler.SubsetRandomSampler(
valid_indexes
)
self.train = train_loader_class(
train_dataset,
batch_size=train_batch_size,
sampler=train_sampler,
num_workers=n_worker,
pin_memory=True,
)
self.valid = torch.utils.data.DataLoader(
valid_dataset,
batch_size=test_batch_size,
sampler=valid_sampler,
num_workers=n_worker,
pin_memory=True,
)
else:
if num_replicas is not None:
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset, num_replicas, rank
)
self.train = train_loader_class(
train_dataset,
batch_size=train_batch_size,
sampler=train_sampler,
num_workers=n_worker,
pin_memory=True,
)
else:
self.train = train_loader_class(
train_dataset,
batch_size=train_batch_size,
shuffle=True,
num_workers=n_worker,
pin_memory=True,
)
self.valid = None
test_dataset = self.test_dataset(valid_transforms)
if num_replicas is not None:
test_sampler = torch.utils.data.distributed.DistributedSampler(
test_dataset, num_replicas, rank
)
self.test = torch.utils.data.DataLoader(
test_dataset,
batch_size=test_batch_size,
sampler=test_sampler,
num_workers=n_worker,
pin_memory=True,
)
else:
self.test = torch.utils.data.DataLoader(
test_dataset,
batch_size=test_batch_size,
shuffle=True,
num_workers=n_worker,
pin_memory=True,
)
if self.valid is None:
self.valid = self.test
@staticmethod
def name():
return "imagenet"
@property
def data_shape(self):
return 3, self.active_img_size, self.active_img_size # C, H, W
@property
def n_classes(self):
return 1000
@property
def save_path(self):
if self._save_path is None:
self._save_path = self.DEFAULT_PATH
if not os.path.exists(self._save_path):
self._save_path = os.path.expanduser("~/dataset/imagenet")
return self._save_path
@property
def data_url(self):
raise ValueError("unable to download %s" % self.name())
def train_dataset(self, _transforms):
return datasets.ImageFolder(self.train_path, _transforms)
def test_dataset(self, _transforms):
return datasets.ImageFolder(self.valid_path, _transforms)
@property
def train_path(self):
return os.path.join(self.save_path, "train")
@property
def valid_path(self):
return os.path.join(self.save_path, "val")
@property
def normalize(self):
return transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
def build_train_transform(self, image_size=None, print_log=True):
if image_size is None:
image_size = self.image_size
if print_log:
print(
"Color jitter: %s, resize_scale: %s, img_size: %s"
% (self.distort_color, self.resize_scale, image_size)
)
if isinstance(image_size, list):
resize_transform_class = MyRandomResizedCrop
print(
"Use MyRandomResizedCrop: %s, \t %s"
% MyRandomResizedCrop.get_candidate_image_size(),
"sync=%s, continuous=%s"
% (
MyRandomResizedCrop.SYNC_DISTRIBUTED,
MyRandomResizedCrop.CONTINUOUS,
),
)
else:
resize_transform_class = transforms.RandomResizedCrop
# random_resize_crop -> random_horizontal_flip
train_transforms = [
resize_transform_class(image_size, scale=(self.resize_scale, 1.0)),
transforms.RandomHorizontalFlip(),
]
# color augmentation (optional)
color_transform = None
if self.distort_color == "torch":
color_transform = transforms.ColorJitter(
brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1
)
elif self.distort_color == "tf":
color_transform = transforms.ColorJitter(
brightness=32.0 / 255.0, saturation=0.5
)
if color_transform is not None:
train_transforms.append(color_transform)
train_transforms += [
transforms.ToTensor(),
self.normalize,
]
train_transforms = transforms.Compose(train_transforms)
return train_transforms
def build_valid_transform(self, image_size=None):
if image_size is None:
image_size = self.active_img_size
return transforms.Compose(
[
transforms.Resize(int(math.ceil(image_size / 0.875))),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
self.normalize,
]
)
def assign_active_img_size(self, new_img_size):
self.active_img_size = new_img_size
if self.active_img_size not in self._valid_transform_dict:
self._valid_transform_dict[
self.active_img_size
] = self.build_valid_transform()
# change the transform of the valid and test set
self.valid.dataset.transform = self._valid_transform_dict[self.active_img_size]
self.test.dataset.transform = self._valid_transform_dict[self.active_img_size]
def build_sub_train_loader(
self, n_images, batch_size, num_worker=None, num_replicas=None, rank=None
):
# used for resetting BN running statistics
if self.__dict__.get("sub_train_%d" % self.active_img_size, None) is None:
if num_worker is None:
num_worker = self.train.num_workers
n_samples = len(self.train.dataset)
g = torch.Generator()
g.manual_seed(DataProvider.SUB_SEED)
rand_indexes = torch.randperm(n_samples, generator=g).tolist()
new_train_dataset = self.train_dataset(
self.build_train_transform(
image_size=self.active_img_size, print_log=False
)
)
chosen_indexes = rand_indexes[:n_images]
if num_replicas is not None:
sub_sampler = MyDistributedSampler(
new_train_dataset,
num_replicas,
rank,
True,
np.array(chosen_indexes),
)
else:
sub_sampler = torch.utils.data.sampler.SubsetRandomSampler(
chosen_indexes
)
sub_data_loader = torch.utils.data.DataLoader(
new_train_dataset,
batch_size=batch_size,
sampler=sub_sampler,
num_workers=num_worker,
pin_memory=True,
)
self.__dict__["sub_train_%d" % self.active_img_size] = []
for images, labels in sub_data_loader:
self.__dict__["sub_train_%d" % self.active_img_size].append(
(images, labels)
)
return self.__dict__["sub_train_%d" % self.active_img_size]
|
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
from .imagenet import *
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.