python_code
stringlengths
0
456k
""" File contains the standard library of Python 3.7. DO NOT EDIT. If the standard library changes, a new list should be created using the mkstdlibs.py script. """ stdlib = { "_ast", "_dummy_thread", "_thread", "abc", "aifc", "argparse", "array", "ast", "asynchat", "asyncio", "asyncore", "atexit", "audioop", "base64", "bdb", "binascii", "binhex", "bisect", "builtins", "bz2", "cProfile", "calendar", "cgi", "cgitb", "chunk", "cmath", "cmd", "code", "codecs", "codeop", "collections", "colorsys", "compileall", "concurrent", "configparser", "contextlib", "contextvars", "copy", "copyreg", "crypt", "csv", "ctypes", "curses", "dataclasses", "datetime", "dbm", "decimal", "difflib", "dis", "distutils", "doctest", "dummy_threading", "email", "encodings", "ensurepip", "enum", "errno", "faulthandler", "fcntl", "filecmp", "fileinput", "fnmatch", "formatter", "fractions", "ftplib", "functools", "gc", "getopt", "getpass", "gettext", "glob", "grp", "gzip", "hashlib", "heapq", "hmac", "html", "http", "imaplib", "imghdr", "imp", "importlib", "inspect", "io", "ipaddress", "itertools", "json", "keyword", "lib2to3", "linecache", "locale", "logging", "lzma", "macpath", "mailbox", "mailcap", "marshal", "math", "mimetypes", "mmap", "modulefinder", "msilib", "msvcrt", "multiprocessing", "netrc", "nis", "nntplib", "ntpath", "numbers", "operator", "optparse", "os", "ossaudiodev", "parser", "pathlib", "pdb", "pickle", "pickletools", "pipes", "pkgutil", "platform", "plistlib", "poplib", "posix", "posixpath", "pprint", "profile", "pstats", "pty", "pwd", "py_compile", "pyclbr", "pydoc", "queue", "quopri", "random", "re", "readline", "reprlib", "resource", "rlcompleter", "runpy", "sched", "secrets", "select", "selectors", "shelve", "shlex", "shutil", "signal", "site", "smtpd", "smtplib", "sndhdr", "socket", "socketserver", "spwd", "sqlite3", "sre", "sre_compile", "sre_constants", "sre_parse", "ssl", "stat", "statistics", "string", "stringprep", "struct", "subprocess", "sunau", "symbol", "symtable", "sys", "sysconfig", "syslog", "tabnanny", "tarfile", "telnetlib", "tempfile", "termios", "test", "textwrap", "threading", "time", "timeit", "tkinter", "token", "tokenize", "trace", "traceback", "tracemalloc", "tty", "turtle", "turtledemo", "types", "typing", "unicodedata", "unittest", "urllib", "uu", "uuid", "venv", "warnings", "wave", "weakref", "webbrowser", "winreg", "winsound", "wsgiref", "xdrlib", "xml", "xmlrpc", "zipapp", "zipfile", "zipimport", "zlib", }
""" File contains the standard library of Python 3.10. DO NOT EDIT. If the standard library changes, a new list should be created using the mkstdlibs.py script. """ stdlib = { "_ast", "_thread", "abc", "aifc", "argparse", "array", "ast", "asynchat", "asyncio", "asyncore", "atexit", "audioop", "base64", "bdb", "binascii", "binhex", "bisect", "builtins", "bz2", "cProfile", "calendar", "cgi", "cgitb", "chunk", "cmath", "cmd", "code", "codecs", "codeop", "collections", "colorsys", "compileall", "concurrent", "configparser", "contextlib", "contextvars", "copy", "copyreg", "crypt", "csv", "ctypes", "curses", "dataclasses", "datetime", "dbm", "decimal", "difflib", "dis", "distutils", "doctest", "email", "encodings", "ensurepip", "enum", "errno", "faulthandler", "fcntl", "filecmp", "fileinput", "fnmatch", "fractions", "ftplib", "functools", "gc", "getopt", "getpass", "gettext", "glob", "graphlib", "grp", "gzip", "hashlib", "heapq", "hmac", "html", "http", "imaplib", "imghdr", "imp", "importlib", "inspect", "io", "ipaddress", "itertools", "json", "keyword", "lib2to3", "linecache", "locale", "logging", "lzma", "mailbox", "mailcap", "marshal", "math", "mimetypes", "mmap", "modulefinder", "msilib", "msvcrt", "multiprocessing", "netrc", "nis", "nntplib", "ntpath", "numbers", "operator", "optparse", "os", "ossaudiodev", "pathlib", "pdb", "pickle", "pickletools", "pipes", "pkgutil", "platform", "plistlib", "poplib", "posix", "posixpath", "pprint", "profile", "pstats", "pty", "pwd", "py_compile", "pyclbr", "pydoc", "queue", "quopri", "random", "re", "readline", "reprlib", "resource", "rlcompleter", "runpy", "sched", "secrets", "select", "selectors", "shelve", "shlex", "shutil", "signal", "site", "smtpd", "smtplib", "sndhdr", "socket", "socketserver", "spwd", "sqlite3", "sre", "sre_compile", "sre_constants", "sre_parse", "ssl", "stat", "statistics", "string", "stringprep", "struct", "subprocess", "sunau", "symtable", "sys", "sysconfig", "syslog", "tabnanny", "tarfile", "telnetlib", "tempfile", "termios", "test", "textwrap", "threading", "time", "timeit", "tkinter", "token", "tokenize", "trace", "traceback", "tracemalloc", "tty", "turtle", "turtledemo", "types", "typing", "unicodedata", "unittest", "urllib", "uu", "uuid", "venv", "warnings", "wave", "weakref", "webbrowser", "winreg", "winsound", "wsgiref", "xdrlib", "xml", "xmlrpc", "zipapp", "zipfile", "zipimport", "zlib", "zoneinfo", }
""" File contains the standard library of Python 3.5. DO NOT EDIT. If the standard library changes, a new list should be created using the mkstdlibs.py script. """ stdlib = { "_ast", "_dummy_thread", "_thread", "abc", "aifc", "argparse", "array", "ast", "asynchat", "asyncio", "asyncore", "atexit", "audioop", "base64", "bdb", "binascii", "binhex", "bisect", "builtins", "bz2", "cProfile", "calendar", "cgi", "cgitb", "chunk", "cmath", "cmd", "code", "codecs", "codeop", "collections", "colorsys", "compileall", "concurrent", "configparser", "contextlib", "copy", "copyreg", "crypt", "csv", "ctypes", "curses", "datetime", "dbm", "decimal", "difflib", "dis", "distutils", "doctest", "dummy_threading", "email", "encodings", "ensurepip", "enum", "errno", "faulthandler", "fcntl", "filecmp", "fileinput", "fnmatch", "formatter", "fpectl", "fractions", "ftplib", "functools", "gc", "getopt", "getpass", "gettext", "glob", "grp", "gzip", "hashlib", "heapq", "hmac", "html", "http", "imaplib", "imghdr", "imp", "importlib", "inspect", "io", "ipaddress", "itertools", "json", "keyword", "lib2to3", "linecache", "locale", "logging", "lzma", "macpath", "mailbox", "mailcap", "marshal", "math", "mimetypes", "mmap", "modulefinder", "msilib", "msvcrt", "multiprocessing", "netrc", "nis", "nntplib", "ntpath", "numbers", "operator", "optparse", "os", "ossaudiodev", "parser", "pathlib", "pdb", "pickle", "pickletools", "pipes", "pkgutil", "platform", "plistlib", "poplib", "posix", "posixpath", "pprint", "profile", "pstats", "pty", "pwd", "py_compile", "pyclbr", "pydoc", "queue", "quopri", "random", "re", "readline", "reprlib", "resource", "rlcompleter", "runpy", "sched", "select", "selectors", "shelve", "shlex", "shutil", "signal", "site", "smtpd", "smtplib", "sndhdr", "socket", "socketserver", "spwd", "sqlite3", "sre", "sre_compile", "sre_constants", "sre_parse", "ssl", "stat", "statistics", "string", "stringprep", "struct", "subprocess", "sunau", "symbol", "symtable", "sys", "sysconfig", "syslog", "tabnanny", "tarfile", "telnetlib", "tempfile", "termios", "test", "textwrap", "threading", "time", "timeit", "tkinter", "token", "tokenize", "trace", "traceback", "tracemalloc", "tty", "turtle", "turtledemo", "types", "typing", "unicodedata", "unittest", "urllib", "uu", "uuid", "venv", "warnings", "wave", "weakref", "webbrowser", "winreg", "winsound", "wsgiref", "xdrlib", "xml", "xmlrpc", "zipapp", "zipfile", "zipimport", "zlib", }
"""Finders try to find right section for passed module name""" import importlib.machinery import inspect import os import os.path import re import sys import sysconfig from abc import ABCMeta, abstractmethod from contextlib import contextmanager from fnmatch import fnmatch from functools import lru_cache from glob import glob from pathlib import Path from typing import Dict, Iterable, Iterator, List, Optional, Pattern, Sequence, Tuple, Type from isort import sections from isort.settings import KNOWN_SECTION_MAPPING, Config from isort.utils import exists_case_sensitive try: from pipreqs import pipreqs # type: ignore except ImportError: pipreqs = None try: from pip_api import parse_requirements # type: ignore except ImportError: parse_requirements = None try: from requirementslib import Pipfile # type: ignore except ImportError: Pipfile = None @contextmanager def chdir(path: str) -> Iterator[None]: """Context manager for changing dir and restoring previous workdir after exit.""" curdir = os.getcwd() os.chdir(path) try: yield finally: os.chdir(curdir) class BaseFinder(metaclass=ABCMeta): def __init__(self, config: Config) -> None: self.config = config @abstractmethod def find(self, module_name: str) -> Optional[str]: raise NotImplementedError class ForcedSeparateFinder(BaseFinder): def find(self, module_name: str) -> Optional[str]: for forced_separate in self.config.forced_separate: # Ensure all forced_separate patterns will match to end of string path_glob = forced_separate if not forced_separate.endswith("*"): path_glob = "%s*" % forced_separate if fnmatch(module_name, path_glob) or fnmatch(module_name, "." + path_glob): return forced_separate return None class LocalFinder(BaseFinder): def find(self, module_name: str) -> Optional[str]: if module_name.startswith("."): return "LOCALFOLDER" return None class KnownPatternFinder(BaseFinder): def __init__(self, config: Config) -> None: super().__init__(config) self.known_patterns: List[Tuple[Pattern[str], str]] = [] for placement in reversed(config.sections): known_placement = KNOWN_SECTION_MAPPING.get(placement, placement).lower() config_key = f"known_{known_placement}" known_patterns = list( getattr(self.config, config_key, self.config.known_other.get(known_placement, [])) ) known_patterns = [ pattern for known_pattern in known_patterns for pattern in self._parse_known_pattern(known_pattern) ] for known_pattern in known_patterns: regexp = "^" + known_pattern.replace("*", ".*").replace("?", ".?") + "$" self.known_patterns.append((re.compile(regexp), placement)) def _parse_known_pattern(self, pattern: str) -> List[str]: """Expand pattern if identified as a directory and return found sub packages""" if pattern.endswith(os.path.sep): patterns = [ filename for filename in os.listdir(os.path.join(self.config.directory, pattern)) if os.path.isdir(os.path.join(self.config.directory, pattern, filename)) ] else: patterns = [pattern] return patterns def find(self, module_name: str) -> Optional[str]: # Try to find most specific placement instruction match (if any) parts = module_name.split(".") module_names_to_check = (".".join(parts[:first_k]) for first_k in range(len(parts), 0, -1)) for module_name_to_check in module_names_to_check: for pattern, placement in self.known_patterns: if pattern.match(module_name_to_check): return placement return None class PathFinder(BaseFinder): def __init__(self, config: Config, path: str = ".") -> None: super().__init__(config) # restore the original import path (i.e. not the path to bin/isort) root_dir = os.path.abspath(path) src_dir = f"{root_dir}/src" self.paths = [root_dir, src_dir] # virtual env self.virtual_env = self.config.virtual_env or os.environ.get("VIRTUAL_ENV") if self.virtual_env: self.virtual_env = os.path.realpath(self.virtual_env) self.virtual_env_src = "" if self.virtual_env: self.virtual_env_src = f"{self.virtual_env}/src/" for venv_path in glob(f"{self.virtual_env}/lib/python*/site-packages"): if venv_path not in self.paths: self.paths.append(venv_path) for nested_venv_path in glob(f"{self.virtual_env}/lib/python*/*/site-packages"): if nested_venv_path not in self.paths: self.paths.append(nested_venv_path) for venv_src_path in glob(f"{self.virtual_env}/src/*"): if os.path.isdir(venv_src_path): self.paths.append(venv_src_path) # conda self.conda_env = self.config.conda_env or os.environ.get("CONDA_PREFIX") or "" if self.conda_env: self.conda_env = os.path.realpath(self.conda_env) for conda_path in glob(f"{self.conda_env}/lib/python*/site-packages"): if conda_path not in self.paths: self.paths.append(conda_path) for nested_conda_path in glob(f"{self.conda_env}/lib/python*/*/site-packages"): if nested_conda_path not in self.paths: self.paths.append(nested_conda_path) # handle case-insensitive paths on windows self.stdlib_lib_prefix = os.path.normcase(sysconfig.get_paths()["stdlib"]) if self.stdlib_lib_prefix not in self.paths: self.paths.append(self.stdlib_lib_prefix) # add system paths for system_path in sys.path[1:]: if system_path not in self.paths: self.paths.append(system_path) def find(self, module_name: str) -> Optional[str]: for prefix in self.paths: package_path = "/".join((prefix, module_name.split(".")[0])) path_obj = Path(package_path).resolve() is_module = ( exists_case_sensitive(package_path + ".py") or any( exists_case_sensitive(package_path + ext_suffix) for ext_suffix in importlib.machinery.EXTENSION_SUFFIXES ) or exists_case_sensitive(package_path + "/__init__.py") ) is_package = exists_case_sensitive(package_path) and os.path.isdir(package_path) if is_module or is_package: if ( "site-packages" in prefix or "dist-packages" in prefix or (self.virtual_env and self.virtual_env_src in prefix) ): return sections.THIRDPARTY if os.path.normcase(prefix) == self.stdlib_lib_prefix: return sections.STDLIB if self.conda_env and self.conda_env in prefix: return sections.THIRDPARTY for src_path in self.config.src_paths: if src_path in path_obj.parents and not self.config.is_skipped(path_obj): return sections.FIRSTPARTY if os.path.normcase(prefix).startswith(self.stdlib_lib_prefix): return sections.STDLIB # pragma: no cover - edge case for one OS. Hard to test. return self.config.default_section return None class ReqsBaseFinder(BaseFinder): enabled = False def __init__(self, config: Config, path: str = ".") -> None: super().__init__(config) self.path = path if self.enabled: self.mapping = self._load_mapping() self.names = self._load_names() @abstractmethod def _get_names(self, path: str) -> Iterator[str]: raise NotImplementedError @abstractmethod def _get_files_from_dir(self, path: str) -> Iterator[str]: raise NotImplementedError @staticmethod def _load_mapping() -> Optional[Dict[str, str]]: """Return list of mappings `package_name -> module_name` Example: django-haystack -> haystack """ if not pipreqs: return None path = os.path.dirname(inspect.getfile(pipreqs)) path = os.path.join(path, "mapping") with open(path) as f: mappings: Dict[str, str] = {} # pypi_name: import_name for line in f: import_name, _, pypi_name = line.strip().partition(":") mappings[pypi_name] = import_name return mappings # return dict(tuple(line.strip().split(":")[::-1]) for line in f) def _load_names(self) -> List[str]: """Return list of thirdparty modules from requirements""" names = [] for path in self._get_files(): for name in self._get_names(path): names.append(self._normalize_name(name)) return names @staticmethod def _get_parents(path: str) -> Iterator[str]: prev = "" while path != prev: prev = path yield path path = os.path.dirname(path) def _get_files(self) -> Iterator[str]: """Return paths to all requirements files""" path = os.path.abspath(self.path) if os.path.isfile(path): path = os.path.dirname(path) for path in self._get_parents(path): yield from self._get_files_from_dir(path) def _normalize_name(self, name: str) -> str: """Convert package name to module name Examples: Django -> django django-haystack -> django_haystack Flask-RESTFul -> flask_restful """ if self.mapping: name = self.mapping.get(name.replace("-", "_"), name) return name.lower().replace("-", "_") def find(self, module_name: str) -> Optional[str]: # required lib not installed yet if not self.enabled: return None module_name, _sep, _submodules = module_name.partition(".") module_name = module_name.lower() if not module_name: return None for name in self.names: if module_name == name: return sections.THIRDPARTY return None class RequirementsFinder(ReqsBaseFinder): exts = (".txt", ".in") enabled = bool(parse_requirements) def _get_files_from_dir(self, path: str) -> Iterator[str]: """Return paths to requirements files from passed dir.""" yield from self._get_files_from_dir_cached(path) @classmethod @lru_cache(maxsize=16) def _get_files_from_dir_cached(cls, path: str) -> List[str]: results = [] for fname in os.listdir(path): if "requirements" not in fname: continue full_path = os.path.join(path, fname) # *requirements*/*.{txt,in} if os.path.isdir(full_path): for subfile_name in os.listdir(full_path): for ext in cls.exts: if subfile_name.endswith(ext): results.append(os.path.join(full_path, subfile_name)) continue # *requirements*.{txt,in} if os.path.isfile(full_path): for ext in cls.exts: if fname.endswith(ext): results.append(full_path) break return results def _get_names(self, path: str) -> Iterator[str]: """Load required packages from path to requirements file""" yield from self._get_names_cached(path) @classmethod @lru_cache(maxsize=16) def _get_names_cached(cls, path: str) -> List[str]: result = [] with chdir(os.path.dirname(path)): requirements = parse_requirements(path) for req in requirements.values(): if req.name: result.append(req.name) return result class PipfileFinder(ReqsBaseFinder): enabled = bool(Pipfile) def _get_names(self, path: str) -> Iterator[str]: with chdir(path): project = Pipfile.load(path) for req in project.packages: yield req.name def _get_files_from_dir(self, path: str) -> Iterator[str]: if "Pipfile" in os.listdir(path): yield path class DefaultFinder(BaseFinder): def find(self, module_name: str) -> Optional[str]: return self.config.default_section class FindersManager: _default_finders_classes: Sequence[Type[BaseFinder]] = ( ForcedSeparateFinder, LocalFinder, KnownPatternFinder, PathFinder, PipfileFinder, RequirementsFinder, DefaultFinder, ) def __init__( self, config: Config, finder_classes: Optional[Iterable[Type[BaseFinder]]] = None ) -> None: self.verbose: bool = config.verbose if finder_classes is None: finder_classes = self._default_finders_classes finders: List[BaseFinder] = [] for finder_cls in finder_classes: try: finders.append(finder_cls(config)) except Exception as exception: # if one finder fails to instantiate isort can continue using the rest if self.verbose: print( ( f"{finder_cls.__name__} encountered an error ({exception}) during " "instantiation and cannot be used" ) ) self.finders: Tuple[BaseFinder, ...] = tuple(finders) def find(self, module_name: str) -> Optional[str]: for finder in self.finders: try: section = finder.find(module_name) if section is not None: return section except Exception as exception: # isort has to be able to keep trying to identify the correct # import section even if one approach fails if self.verbose: print( f"{finder.__class__.__name__} encountered an error ({exception}) while " f"trying to identify the {module_name} module" ) return None
from natsort import natsorted def natural_plus(*args, **kwargs) -> str: """An even more natural sorting order for isort using natsort.""" return natsorted(*args, **kwargs)
#! /bin/env python import os from textwrap import dedent from typing import Any, Dict, Generator, Iterable, Optional, Type from isort._future import dataclass from isort.main import _build_arg_parser from isort.settings import _DEFAULT_SETTINGS as config OUTPUT_FILE = os.path.abspath( os.path.join(os.path.dirname(os.path.abspath(__file__)), "../docs/configuration/options.md") ) MD_NEWLINE = " " HUMAN_NAME = { "py_version": "Python Version", "vn": "Version Number", "str": "String", "frozenset": "List of Strings", "tuple": "List of Strings", } CONFIG_DEFAULTS = {"False": "false", "True": "true", "None": ""} DESCRIPTIONS = {} IGNORED = {"source", "help", "sources", "directory"} COLUMNS = ["Name", "Type", "Default", "Python / Config file", "CLI", "Description"] HEADER = """# Configuration options for isort As a code formatter isort has opinions. However, it also allows you to have your own. If your opinions disagree with those of isort, isort will disagree but commit to your way of formatting. To enable this, isort exposes a plethora of options to specify how you want your imports sorted, organized, and formatted. Too busy to build your perfect isort configuration? For curated common configurations, see isort's [built-in profiles](https://pycqa.github.io/isort/docs/configuration/profiles.html). """ parser = _build_arg_parser() @dataclass class Example: section_complete: str = "" cfg: str = "" pyproject_toml: str = "" cli: str = "" def __post_init__(self): if self.cfg or self.pyproject_toml or self.cli: if self.cfg: cfg = dedent(self.cfg).lstrip() self.cfg = ( dedent( """ ### Example `.isort.cfg` ``` [settings] {cfg} ``` """ ) .format(cfg=cfg) .lstrip() ) if self.pyproject_toml: pyproject_toml = dedent(self.pyproject_toml).lstrip() self.pyproject_toml = ( dedent( """ ### Example `pyproject.toml` ``` [tool.isort] {pyproject_toml} ``` """ ) .format(pyproject_toml=pyproject_toml) .lstrip() ) if self.cli: cli = dedent(self.cli).lstrip() self.cli = ( dedent( """ ### Example cli usage `{cli}` """ ) .format(cli=cli) .lstrip() ) sections = [s for s in [self.cfg, self.pyproject_toml, self.cli] if s] sections_str = "\n".join(sections) self.section_complete = f"""**Examples:** {sections_str}""" else: self.section_complete = "" def __str__(self): return self.section_complete description_mapping: Dict[str, str] description_mapping = { "length_sort_sections": "Sort the given sections by length", "forced_separate": "Force certain sub modules to show separately", "sections": "What sections isort should display imports for and in what order", "known_other": "known_OTHER is how imports of custom sections are defined. " "OTHER is a placeholder for the custom section name.", "comment_prefix": "Allows customizing how isort prefixes comments that it adds or modifies on import lines" "Generally ` #` (two spaces before a pound symbol) is use, though one space is also common.", "lines_before_imports": "The number of blank lines to place before imports. -1 for automatic determination", "lines_after_imports": "The number of blank lines to place after imports. -1 for automatic determination", "lines_between_sections": "The number of lines to place between sections", "lines_between_types": "The number of lines to place between direct and from imports", "lexicographical": "Lexicographical order is strictly alphabetical order. " "For example by default isort will sort `1, 10, 2` into `1, 2, 10` - but with " "lexicographical sorting enabled it will remain `1, 10, 2`.", "ignore_comments": "If enabled, isort will strip comments that exist within import lines.", "constants": "An override list of tokens to always recognize as a CONSTANT for order_by_type regardless of casing.", "classes": "An override list of tokens to always recognize as a Class for order_by_type regardless of casing.", "variables": "An override list of tokens to always recognize as a var for order_by_type regardless of casing.", "auto_identify_namespace_packages": "Automatically determine local namespace packages, generally by lack of any src files before a src containing directory.", "namespace_packages": "Manually specify one or more namespace packages.", "follow_links": "If `True` isort will follow symbolic links when doing recursive sorting.", "git_ignore": "If `True` isort will honor ignores within locally defined .git_ignore files.", "formatting_function": "The fully qualified Python path of a function to apply to format code sorted by isort.", "group_by_package": "If `True` isort will automatically create section groups by the top-level package they come from.", "indented_import_headings": "If `True` isort will apply import headings to indended imports the same way it does unindented ones.", "import_headings": "A mapping of import sections to import heading comments that should show above them.", "import_footers": "A mapping of import sections to import footer comments that should show below them.", } example_mapping: Dict[str, Example] example_mapping = { "skip": Example( cfg=""" skip=.gitignore,.dockerignore""", pyproject_toml=""" skip = [".gitignore", ".dockerignore"] """, ), "extend_skip": Example( cfg=""" extend_skip=.md,.json""", pyproject_toml=""" extend_skip = [".md", ".json"] """, ), "skip_glob": Example( cfg=""" skip_glob=docs/* """, pyproject_toml=""" skip_glob = ["docs/*"] """, ), "extend_skip_glob": Example( cfg=""" extend_skip_glob=my_*_module.py,test/* """, pyproject_toml=""" extend_skip_glob = ["my_*_module.py", "test/*"] """, ), "known_third_party": Example( cfg=""" known_third_party=my_module1,my_module2 """, pyproject_toml=""" known_third_party = ["my_module1", "my_module2"] """, ), "known_first_party": Example( cfg=""" known_first_party=my_module1,my_module2 """, pyproject_toml=""" known_first_party = ["my_module1", "my_module2"] """, ), "known_local_folder": Example( cfg=""" known_local_folder=my_module1,my_module2 """, pyproject_toml=""" known_local_folder = ["my_module1", "my_module2"] """, ), "known_standard_library": Example( cfg=""" known_standard_library=my_module1,my_module2 """, pyproject_toml=""" known_standard_library = ["my_module1", "my_module2"] """, ), "extra_standard_library": Example( cfg=""" extra_standard_library=my_module1,my_module2 """, pyproject_toml=""" extra_standard_library = ["my_module1", "my_module2"] """, ), "forced_separate": Example( cfg=""" forced_separate=glob_exp1,glob_exp2 """, pyproject_toml=""" forced_separate = ["glob_exp1", "glob_exp2"] """, ), "length_sort_sections": Example( cfg=""" length_sort_sections=future,stdlib """, pyproject_toml=""" length_sort_sections = ["future", "stdlib"] """, ), "add_imports": Example( cfg=""" add_imports=import os,import json """, pyproject_toml=""" add_imports = ["import os", "import json"] """, ), "remove_imports": Example( cfg=""" remove_imports=os,json """, pyproject_toml=""" remove_imports = ["os", "json"] """, ), "single_line_exclusions": Example( cfg=""" single_line_exclusions=os,json """, pyproject_toml=""" single_line_exclusions = ["os", "json"] """, ), "no_lines_before": Example( cfg=""" no_lines_before=future,stdlib """, pyproject_toml=""" no_lines_before = ["future", "stdlib"] """, ), "src_paths": Example( cfg=""" src_paths = src,tests """, pyproject_toml=""" src_paths = ["src", "tests"] """, ), "treat_comments_as_code": Example( cfg=""" treat_comments_as_code = # my comment 1, # my other comment """, pyproject_toml=""" treat_comments_as_code = ["# my comment 1", "# my other comment"] """, ), "supported_extensions": Example( cfg=""" supported_extensions=pyw,ext """, pyproject_toml=""" supported_extensions = ["pyw", "ext"] """, ), "blocked_extensions": Example( cfg=""" blocked_extensions=pyw,pyc """, pyproject_toml=""" blocked_extensions = ["pyw", "pyc"] """, ), "known_other": Example( cfg=""" sections=FUTURE,STDLIB,THIRDPARTY,AIRFLOW,FIRSTPARTY,LOCALFOLDER known_airflow=airflow""", pyproject_toml=""" sections = ['FUTURE', 'STDLIB', 'THIRDPARTY', 'AIRFLOW', 'FIRSTPARTY', 'LOCALFOLDER'] known_airflow = ['airflow']""", ), "multi_line_output": Example(cfg="multi_line_output=3", pyproject_toml="multi_line_output = 3"), "show_version": Example(cli="isort --version"), "py_version": Example( cli="isort --py 39", pyproject_toml=""" py_version=39 """, cfg=""" py_version=39 """, ), } @dataclass class ConfigOption: name: str type: Type = str default: Any = "" config_name: str = "**Not Supported**" cli_options: Iterable[str] = (" **Not Supported**",) description: str = "**No Description**" example: Optional[Example] = None def __str__(self): if self.name in IGNORED: return "" if self.cli_options == (" **Not Supported**",): cli_options = self.cli_options[0] else: cli_options = "\n\n- " + "\n- ".join(self.cli_options) # new line if example otherwise nothing example = f"\n{self.example}" if self.example else "" return f""" ## {human(self.name)} {self.description} **Type:** {human(self.type.__name__)}{MD_NEWLINE} **Default:** `{str(self.default) or " "}`{MD_NEWLINE} **Config default:** `{config_default(self.default) or " "}`{MD_NEWLINE} **Python & Config File Name:** {self.config_name}{MD_NEWLINE} **CLI Flags:**{cli_options} {example}""" def config_default(default: Any) -> str: if isinstance(default, (frozenset, tuple)): default = list(default) default_str = str(default) if default_str in CONFIG_DEFAULTS: return CONFIG_DEFAULTS[default_str] if default_str.startswith("py"): return default_str[2:] return default_str def human(name: str) -> str: if name in HUMAN_NAME: return HUMAN_NAME[name] return " ".join( part if part in ("of",) else part.capitalize() for part in name.replace("-", "_").split("_") ) def config_options() -> Generator[ConfigOption, None, None]: cli_actions = {action.dest: action for action in parser._actions} for name, default in config.items(): extra_kwargs = {} description: Optional[str] = description_mapping.get(name, None) cli = cli_actions.pop(name, None) if cli: extra_kwargs["cli_options"] = cli.option_strings if cli.help and not description: description = cli.help default_display = default if isinstance(default, (set, frozenset)) and len(default) > 0: default_display = tuple(sorted(default)) # todo: refactor place for example params # needs to integrate with isort/settings/_Config # needs to integrate with isort/main/_build_arg_parser yield ConfigOption( name=name, type=type(default), default=default_display, config_name=name, description=description or "**No Description**", example=example_mapping.get(name, None), **extra_kwargs, ) for name, cli in cli_actions.items(): extra_kwargs = {} description: Optional[str] = description_mapping.get(name, None) if cli.type: extra_kwargs["type"] = cli.type elif cli.default is not None: extra_kwargs["type"] = type(cli.default) if cli.help and not description: description = cli.help yield ConfigOption( name=name, default=cli.default, cli_options=cli.option_strings, example=example_mapping.get(name, None), description=description or "**No Description**", **extra_kwargs, ) def document_text() -> str: return f"{HEADER}{''.join(str(config_option) for config_option in config_options())}" def write_document(): with open(OUTPUT_FILE, "w") as output_file: output_file.write(document_text()) if __name__ == "__main__": write_document()
#!/usr/bin/env python3 from sphinx.ext.intersphinx import fetch_inventory URL = "https://docs.python.org/{}/objects.inv" PATH = "isort/stdlibs/py{}.py" VERSIONS = [("2", "7"), ("3", "5"), ("3", "6"), ("3", "7"), ("3", "8"), ("3", "9"), ("3", "10")] DOCSTRING = """ File contains the standard library of Python {}. DO NOT EDIT. If the standard library changes, a new list should be created using the mkstdlibs.py script. """ class FakeConfig: intersphinx_timeout = None tls_verify = True user_agent = "" class FakeApp: srcdir = "" config = FakeConfig() for version_info in VERSIONS: version = ".".join(version_info) url = URL.format(version) invdata = fetch_inventory(FakeApp(), "", url) # Any modules we want to enforce across Python versions stdlib can be included in set init modules = {"_ast", "posixpath", "ntpath", "sre_constants", "sre_parse", "sre_compile", "sre"} for module in invdata["py:module"]: root, *_ = module.split(".") if root not in ["__future__", "__main__"]: modules.add(root) path = PATH.format("".join(version_info)) with open(path, "w") as stdlib_file: docstring = DOCSTRING.format(version) stdlib_file.write(f'"""{docstring}"""\n\n') stdlib_file.write("stdlib = {\n") for module in sorted(modules): stdlib_file.write(f' "{module}",\n') stdlib_file.write("}\n")
#!/usr/bin/env python3 import asyncio import sys from getpass import getpass from pathlib import Path from typing import Dict import httpx import hug IGNORED_AUTHOR_LOGINS = {"deepsource-autofix[bot]"} REPO = "pycqa/isort" GITHUB_API_CONTRIBUTORS = f"https://api.github.com/repos/{REPO}/contributors" GITHUB_USER_CONTRIBUTIONS = f"https://github.com/{REPO}/commits?author=" GITHUB_USER_TYPE = "User" USER_DELIMITER = "-" * 80 PER_PAGE = 100 _ACK_FILE = Path(__file__).parent.parent / "docs" / "contributing" / "4.-acknowledgements.md" ACKNOWLEDGEMENTS = _ACK_FILE.read_text().lower() def _user_info(user: Dict[str, str], verbose=False) -> str: login = "@" + user["login"] name = user.get("name") display_name = f"{name} ({login})" if name else login user_info = f"- {display_name}" if verbose: contributions = f" {GITHUB_USER_CONTRIBUTIONS}{user['login']}" user_info += "\n" + contributions return user_info @hug.cli() async def main(): auth = (input("Github Username: "), getpass()) async with httpx.AsyncClient() as client: page = 0 results = [] contributors = [] while not page or len(results) == PER_PAGE: page += 1 response = await client.get( f"{GITHUB_API_CONTRIBUTORS}?per_page={PER_PAGE}&page={page}", auth=auth ) results = response.json() contributors.extend( ( contributor for contributor in results if contributor["type"] == GITHUB_USER_TYPE and contributor["login"] not in IGNORED_AUTHOR_LOGINS and f"@{contributor['login'].lower()}" not in ACKNOWLEDGEMENTS ) ) unacknowledged_users = await asyncio.gather( *(client.get(contributor["url"], auth=auth) for contributor in contributors) ) unacknowledged_users = [request.json() for request in unacknowledged_users] if not unacknowledged_users: sys.exit() print("Found unacknowledged authors:") print() for user in unacknowledged_users: print(_user_info(user, verbose=True)) print(USER_DELIMITER) print() print("Printing again for easy inclusion in Markdown file:") print() for user in unacknowledged_users: print(_user_info(user)) sys.exit(1) if __name__ == "__main__": main.interface.cli()
#! /bin/env python import os from typing import Any, Dict, Generator, Iterable, Type from isort.profiles import profiles OUTPUT_FILE = os.path.abspath( os.path.join(os.path.dirname(os.path.abspath(__file__)), "../docs/configuration/profiles.md") ) HEADER = """Built-in Profile for isort ======== The following profiles are built into isort to allow easy interoperability with common projects and code styles. To use any of the listed profiles, use `isort --profile PROFILE_NAME` from the command line, or `profile=PROFILE_NAME` in your configuration file. """ def format_profile(profile_name: str, profile: Dict[str, Any]) -> str: options = "\n".join(f" - **{name}**: `{repr(value)}`" for name, value in profile.items()) return f""" #{profile_name} {profile.get('description', '')} {options} """ def document_text() -> str: return f"{HEADER}{''.join(format_profile(profile_name, profile) for profile_name, profile in profiles.items())}" def write_document(): with open(OUTPUT_FILE, "w") as output_file: output_file.write(document_text()) if __name__ == "__main__": write_document()
PROFILE = { "multi_line_output": 3, "include_trailing_comma": True, "force_grid_wrap": 0, "use_parentheses": True, "line_length": 100, }
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from distutils.spawn import find_executable from distutils import sysconfig, log import setuptools import setuptools.command.build_py import setuptools.command.develop import setuptools.command.build_ext from collections import namedtuple from contextlib import contextmanager import glob import os import shlex import subprocess import sys import platform from textwrap import dedent import multiprocessing TOP_DIR = os.path.realpath(os.path.dirname(__file__)) SRC_DIR = os.path.join(TOP_DIR, 'onnx') TP_DIR = os.path.join(TOP_DIR, 'third_party') CMAKE_BUILD_DIR = os.path.join(TOP_DIR, '.setuptools-cmake-build') WINDOWS = (os.name == 'nt') CMAKE = find_executable('cmake3') or find_executable('cmake') MAKE = find_executable('make') install_requires = [] setup_requires = [] tests_require = [] extras_require = {} ################################################################################ # Global variables for controlling the build variant ################################################################################ # Default value is set to TRUE\1 to keep the settings same as the current ones. # However going forward the recomemded way to is to set this to False\0 USE_MSVC_STATIC_RUNTIME = bool(os.getenv('USE_MSVC_STATIC_RUNTIME', '1') == '1') ONNX_ML = not bool(os.getenv('ONNX_ML') == '0') ONNX_VERIFY_PROTO3 = bool(os.getenv('ONNX_VERIFY_PROTO3') == '1') ONNX_NAMESPACE = os.getenv('ONNX_NAMESPACE', 'onnx') ONNX_BUILD_TESTS = bool(os.getenv('ONNX_BUILD_TESTS') == '1') DEBUG = bool(os.getenv('DEBUG')) COVERAGE = bool(os.getenv('COVERAGE')) ################################################################################ # Version ################################################################################ try: git_version = subprocess.check_output(['git', 'rev-parse', 'HEAD'], cwd=TOP_DIR).decode('ascii').strip() except (OSError, subprocess.CalledProcessError): git_version = None with open(os.path.join(TOP_DIR, 'VERSION_NUMBER')) as version_file: VersionInfo = namedtuple('VersionInfo', ['version', 'git_version'])( version=version_file.read().strip(), git_version=git_version ) ################################################################################ # Pre Check ################################################################################ assert CMAKE, 'Could not find "cmake" executable!' ################################################################################ # Utilities ################################################################################ @contextmanager def cd(path): if not os.path.isabs(path): raise RuntimeError('Can only cd to absolute path, got: {}'.format(path)) orig_path = os.getcwd() os.chdir(path) try: yield finally: os.chdir(orig_path) ################################################################################ # Customized commands ################################################################################ class ONNXCommand(setuptools.Command): user_options = [] def initialize_options(self): pass def finalize_options(self): pass class create_version(ONNXCommand): def run(self): with open(os.path.join(SRC_DIR, 'version.py'), 'w') as f: f.write(dedent('''\ # This file is generated by setup.py. DO NOT EDIT! from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals version = '{version}' git_version = '{git_version}' '''.format(**dict(VersionInfo._asdict())))) class cmake_build(setuptools.Command): """ Compiles everything when `python setupmnm.py build` is run using cmake. Custom args can be passed to cmake by specifying the `CMAKE_ARGS` environment variable. The number of CPUs used by `make` can be specified by passing `-j<ncpus>` to `setup.py build`. By default all CPUs are used. """ user_options = [ (str('jobs='), str('j'), str('Specifies the number of jobs to use with make')) ] built = False def initialize_options(self): self.jobs = multiprocessing.cpu_count() def finalize_options(self): self.jobs = int(self.jobs) def run(self): if cmake_build.built: return cmake_build.built = True if not os.path.exists(CMAKE_BUILD_DIR): os.makedirs(CMAKE_BUILD_DIR) with cd(CMAKE_BUILD_DIR): build_type = 'Release' # configure cmake_args = [ CMAKE, '-DPYTHON_INCLUDE_DIR={}'.format(sysconfig.get_python_inc()), '-DPYTHON_EXECUTABLE={}'.format(sys.executable), '-DBUILD_ONNX_PYTHON=ON', '-DCMAKE_EXPORT_COMPILE_COMMANDS=ON', '-DONNX_NAMESPACE={}'.format(ONNX_NAMESPACE), '-DPY_EXT_SUFFIX={}'.format(sysconfig.get_config_var('EXT_SUFFIX') or ''), ] if COVERAGE: cmake_args.append('-DONNX_COVERAGE=ON') if COVERAGE or DEBUG: # in order to get accurate coverage information, the # build needs to turn off optimizations build_type = 'Debug' cmake_args.append('-DCMAKE_BUILD_TYPE=%s' % build_type) if WINDOWS: cmake_args.extend([ # we need to link with libpython on windows, so # passing python version to window in order to # find python in cmake '-DPY_VERSION={}'.format('{0}.{1}'.format(*sys.version_info[:2])), ]) if USE_MSVC_STATIC_RUNTIME: cmake_args.append('-DONNX_USE_MSVC_STATIC_RUNTIME=ON') if platform.architecture()[0] == '64bit': cmake_args.extend(['-A', 'x64', '-T', 'host=x64']) else: cmake_args.extend(['-A', 'Win32', '-T', 'host=x86']) if ONNX_ML: cmake_args.append('-DONNX_ML=1') if ONNX_VERIFY_PROTO3: cmake_args.append('-DONNX_VERIFY_PROTO3=1') if ONNX_BUILD_TESTS: cmake_args.append('-DONNX_BUILD_TESTS=ON') if 'CMAKE_ARGS' in os.environ: extra_cmake_args = shlex.split(os.environ['CMAKE_ARGS']) # prevent crossfire with downstream scripts del os.environ['CMAKE_ARGS'] log.info('Extra cmake args: {}'.format(extra_cmake_args)) cmake_args.extend(extra_cmake_args) cmake_args.append(TOP_DIR) subprocess.check_call(cmake_args) build_args = [CMAKE, '--build', os.curdir] if WINDOWS: build_args.extend(['--config', build_type]) build_args.extend(['--', '/maxcpucount:{}'.format(self.jobs)]) else: build_args.extend(['--', '-j', str(self.jobs)]) subprocess.check_call(build_args) class build_py(setuptools.command.build_py.build_py): def run(self): self.run_command('create_version') self.run_command('cmake_build') generated_python_files = \ glob.glob(os.path.join(CMAKE_BUILD_DIR, 'onnx', '*.py')) + \ glob.glob(os.path.join(CMAKE_BUILD_DIR, 'onnx', '*.pyi')) for src in generated_python_files: dst = os.path.join( TOP_DIR, os.path.relpath(src, CMAKE_BUILD_DIR)) self.copy_file(src, dst) return setuptools.command.build_py.build_py.run(self) class develop(setuptools.command.develop.develop): def run(self): self.run_command('build_py') setuptools.command.develop.develop.run(self) class build_ext(setuptools.command.build_ext.build_ext): def run(self): self.run_command('cmake_build') setuptools.command.build_ext.build_ext.run(self) def build_extensions(self): for ext in self.extensions: fullname = self.get_ext_fullname(ext.name) filename = os.path.basename(self.get_ext_filename(fullname)) lib_path = CMAKE_BUILD_DIR if os.name == 'nt': debug_lib_dir = os.path.join(lib_path, "Debug") release_lib_dir = os.path.join(lib_path, "Release") if os.path.exists(debug_lib_dir): lib_path = debug_lib_dir elif os.path.exists(release_lib_dir): lib_path = release_lib_dir src = os.path.join(lib_path, filename) dst = os.path.join(os.path.realpath(self.build_lib), "onnx", filename) self.copy_file(src, dst) class mypy_type_check(ONNXCommand): description = 'Run MyPy type checker' def run(self): """Run command.""" onnx_script = os.path.realpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), "tools/mypy-onnx.py")) returncode = subprocess.call([sys.executable, onnx_script]) sys.exit(returncode) cmdclass = { 'create_version': create_version, 'cmake_build': cmake_build, 'build_py': build_py, 'develop': develop, 'build_ext': build_ext, 'typecheck': mypy_type_check, } ################################################################################ # Extensions ################################################################################ ext_modules = [ setuptools.Extension( name=str('onnx.onnx_cpp2py_export'), sources=[]) ] ################################################################################ # Packages ################################################################################ # no need to do fancy stuff so far packages = setuptools.find_packages() install_requires.extend([ 'protobuf', 'numpy', 'six', 'typing>=3.6.4; python_version < "3.5"', 'typing-extensions>=3.6.2.1', ]) ################################################################################ # Test ################################################################################ setup_requires.append('pytest-runner') tests_require.append('pytest') tests_require.append('nbval') tests_require.append('tabulate') if sys.version_info[0] == 3: # Mypy doesn't work with Python 2 extras_require['mypy'] = ['mypy==0.600'] ################################################################################ # Final ################################################################################ setuptools.setup( name="onnx", version=VersionInfo.version, description="Open Neural Network Exchange", ext_modules=ext_modules, cmdclass=cmdclass, packages=packages, include_package_data=True, install_requires=install_requires, setup_requires=setup_requires, tests_require=tests_require, extras_require=extras_require, author='bddppq', author_email='[email protected]', url='https://github.com/onnx/onnx', entry_points={ 'console_scripts': [ 'check-model = onnx.bin.checker:check_model', 'check-node = onnx.bin.checker:check_node', 'backend-test-tools = onnx.backend.test.cmd_tools:main', ] }, )
#!/usr/bin/env python import argparse import os import subprocess import tempfile MYPY = False if MYPY: from typing import Text def parse_args(): # type: () -> argparse.Namespace parser = argparse.ArgumentParser(os.path.basename(__file__)) parser.add_argument('-r', '--root', default=os.path.dirname( os.path.dirname(os.path.abspath(__file__))), help='onnx root directory (default: %(default)s)') parser.add_argument('-o', '--out', required=True, help='output directory') return parser.parse_args() def gen_trace_file(root_dir, out_path): # type: (Text, Text) -> None subprocess.check_output([ 'lcov', '-c', '-d', root_dir, '--no-external', '--path', root_dir, '-o', out_path]) subprocess.check_output([ 'lcov', '-r', out_path, os.path.join(root_dir, 'third_party', '*'), '-o', out_path]) subprocess.check_output([ 'lcov', '-r', out_path, os.path.join(root_dir, '.setuptools-cmake-build', '*'), '-o', out_path ]) def gen_html_files(root_dir, trace_path, out_dir): # type: (Text, Text, Text) -> None subprocess.check_output([ 'genhtml', trace_path, '-p', root_dir, '-o', out_dir, ]) def main(): # type: () -> None args = parse_args() root = os.path.abspath(args.root) out = os.path.abspath(args.out) if not os.path.exists(out): os.makedirs(out) trace_path = os.path.join(out, 'onnx-coverage.info') gen_trace_file(root, trace_path) html_dir = os.path.join(out, 'html') gen_html_files(root, trace_path, html_dir) print('Static HTML files have been generated at:\n\t{}'.format(html_dir)) if __name__ == '__main__': main()
#!/usr/bin/env python # Taken from https://github.com/dropbox/mypy-protobuf/blob/d984389124eae6dbbb517f766b9266bb32171510/python/protoc-gen-mypy # (Apache 2.0 License) # with own fixes to # - appease flake8 # - exit without error when protobuf isn't installed # - fix recognition of whether an identifier is defined locally # (unfortunately, we use a python package name ONNX_NAMESPACE_FOO_BAR_FOR_CI # on CI, which by the original protoc-gen-mypy script was recognized to be # camel case and therefore handled as an entry in the local package) """Protoc Plugin to generate mypy stubs. Loosely based on @zbarsky's go implementation""" from __future__ import ( absolute_import, division, print_function, ) import sys from collections import defaultdict from contextlib import contextmanager try: import google.protobuf.descriptor_pb2 as d_typed import six from google.protobuf.compiler import plugin_pb2 as plugin except ImportError as e: sys.stderr.write('Failed to generate mypy stubs: {}\n'.format(e)) sys.exit(0) MYPY = False if MYPY: from typing import ( Any, Callable, Dict, Generator, List, Set, Text, cast, ) else: # Provide minimal mypy identifiers to make code run without typing module present Text = None def cast(type, value): return value # Hax to get around fact that google protobuf libraries aren't in typeshed yet d = d_typed # type: Any GENERATED = "@ge" + "nerated" # So phabricator doesn't think this file is generated HEADER = "# {} by generate_proto_mypy_stubs.py. Do not edit!\n".format(GENERATED) class PkgWriter(object): """Writes a single pyi file""" def __init__(self, fd, descriptors): # type: (d.FileDescriptorProto, Descriptors) -> None self.fd = fd self.descriptors = descriptors self.lines = [] # type: List[Text] self.indent = "" # dictionary of x->y for `from {x} import {y}` self.imports = defaultdict(set) # type: Dict[Text, Set[Text]] self.locals = set() # type: Set[Text] def _import(self, path, name): # type: (Text, Text) -> Text """Imports a stdlib path and returns a handle to it eg. self._import("typing", "Optional") -> "Optional" """ imp = path.replace('/', '.') self.imports[imp].add(name) return name def _import_message(self, type_name): # type: (d.FieldDescriptorProto) -> Text """Import a referenced message and return a handle""" name = cast(Text, type_name) if name[0] == '.' and name[1].isupper() and name[2].islower(): # Message defined in this file return name[1:] message_fd = self.descriptors.message_to_fd[name] if message_fd.name == self.fd.name: # message defined in this package split = name.split('.') for i, segment in enumerate(split): if segment and segment[0].isupper() and segment[1].islower(): return ".".join(split[i:]) # Not in package. Must import split = name.split(".") for i, segment in enumerate(split): if segment and segment[0].isupper() and segment[1].islower(): assert message_fd.name.endswith('.proto') import_name = self._import(message_fd.name[:-6].replace('-', '_') + "_pb2", segment) remains = ".".join(split[i + 1:]) if not remains: return import_name raise AssertionError("Don't support nested imports yet") # return new_nested_import(import_name, remains) raise AssertionError("Could not parse local name " + name) @contextmanager # type: ignore def _indent(self): # type: () -> Generator self.indent = self.indent + " " yield self.indent = self.indent[:-4] def _write_line(self, line, *args): # type: (Text, *Text) -> None self.lines.append(self.indent + line.format(*args)) def write_enums(self, enums): # type: (List[d.EnumDescriptorProto]) -> None line = self._write_line for enum in enums: line("class {}(int):", enum.name) with self._indent(): line("@classmethod") line("def Name(cls, number: int) -> str: ...") line("@classmethod") line("def Value(cls, name: str) -> int: ...") line("@classmethod") line("def keys(cls) -> {}[str]: ...", self._import("typing", "List")) line("@classmethod") line("def values(cls) -> {}[int]: ...", self._import("typing", "List")) line("@classmethod") line("def items(cls) -> {}[{}[str, int]]: ...", self._import("typing", "List"), self._import("typing", "Tuple")) for val in enum.value: line("{} = {}({}, {})", val.name, self._import("typing", "cast"), enum.name, val.number) line("") def write_messages(self, messages, prefix): # type: (List[d.DescriptorProto], Text) -> None line = self._write_line message_class = self._import("google.protobuf.message", "Message") for desc in messages: self.locals.add(desc.name) qualified_name = prefix + desc.name line("class {}({}):", desc.name, message_class) with self._indent(): # Nested enums/messages self.write_enums(desc.enum_type) self.write_messages(desc.nested_type, qualified_name + ".") # Scalar fields for field in [f for f in desc.field if is_scalar(f)]: if field.label == d.FieldDescriptorProto.LABEL_REPEATED: container = self._import("google.protobuf.internal.containers", "RepeatedScalarFieldContainer") line("{} = ... # type: {}[{}]", field.name, container, self.python_type(field)) else: line("{} = ... # type: {}", field.name, self.python_type(field)) line("") # Getters for non-scalar fields for field in [f for f in desc.field if not is_scalar(f)]: line("@property") if field.label == d.FieldDescriptorProto.LABEL_REPEATED: msg = self.descriptors.messages[field.type_name] if msg.options.map_entry: # map generates a special Entry wrapper message container = self._import("typing", "MutableMapping") line("def {}(self) -> {}[{}, {}]: ...", field.name, container, self.python_type(msg.field[0]), self.python_type(msg.field[1])) else: container = self._import("google.protobuf.internal.containers", "RepeatedCompositeFieldContainer") line("def {}(self) -> {}[{}]: ...", field.name, container, self.python_type(field)) else: line("def {}(self) -> {}: ...", field.name, self.python_type(field)) line("") # Constructor line("def __init__(self,") with self._indent(): # Required args for field in [f for f in desc.field if f.label == d.FieldDescriptorProto.LABEL_REQUIRED]: line("{} : {},", field.name, self.python_type(field)) for field in [f for f in desc.field if f.label != d.FieldDescriptorProto.LABEL_REQUIRED]: if field.label == d.FieldDescriptorProto.LABEL_REPEATED: if field.type_name != '' and self.descriptors.messages[field.type_name].options.map_entry: msg = self.descriptors.messages[field.type_name] line("{} : {}[{}[{}, {}]] = None,", field.name, self._import("typing", "Optional"), self._import("typing", "Mapping"), self.python_type(msg.field[0]), self.python_type(msg.field[1])) else: line("{} : {}[{}[{}]] = None,", field.name, self._import("typing", "Optional"), self._import("typing", "Iterable"), self.python_type(field)) else: line("{} : {}[{}] = None,", field.name, self._import("typing", "Optional"), self.python_type(field)) line(") -> None: ...") # Standard message methods line("@classmethod") line("def FromString(cls, s: bytes) -> {}: ...", qualified_name) line("def MergeFrom(self, other_msg: {}) -> None: ...", message_class) line("def CopyFrom(self, other_msg: {}) -> None: ...", message_class) line("") def write_services(self, services): # type: (d.ServiceDescriptorProto) -> None line = self._write_line for service in services: # The service definition interface line("class {}({}, metaclass={}):", service.name, self._import("google.protobuf.service", "Service"), self._import("abc", "ABCMeta")) with self._indent(): for method in service.method: line("@{}", self._import("abc", "abstractmethod")) line("def {}(self,", method.name) with self._indent(): line("rpc_controller: {},", self._import("google.protobuf.service", "RpcController")) line("request: {},", self._import_message(method.input_type)) line("done: {}[{}[[{}], None]],", self._import("typing", "Optional"), self._import("typing", "Callable"), self._import_message(method.output_type)) line(") -> {}[{}]: ...", self._import("concurrent.futures", "Future"), self._import_message(method.output_type)) # The stub client line("class {}({}):", service.name + "_Stub", service.name) with self._indent(): line("def __init__(self, rpc_channel: {}) -> None: ...", self._import("google.protobuf.service", "RpcChannel")) def python_type(self, field): # type: (d.FieldDescriptorProto) -> Text mapping = { d.FieldDescriptorProto.TYPE_DOUBLE: lambda: "float", d.FieldDescriptorProto.TYPE_FLOAT: lambda: "float", d.FieldDescriptorProto.TYPE_INT64: lambda: "int", d.FieldDescriptorProto.TYPE_UINT64: lambda: "int", d.FieldDescriptorProto.TYPE_FIXED64: lambda: "int", d.FieldDescriptorProto.TYPE_SFIXED64: lambda: "int", d.FieldDescriptorProto.TYPE_SINT64: lambda: "int", d.FieldDescriptorProto.TYPE_INT32: lambda: "int", d.FieldDescriptorProto.TYPE_UINT32: lambda: "int", d.FieldDescriptorProto.TYPE_FIXED32: lambda: "int", d.FieldDescriptorProto.TYPE_SFIXED32: lambda: "int", d.FieldDescriptorProto.TYPE_SINT32: lambda: "int", d.FieldDescriptorProto.TYPE_BOOL: lambda: "bool", d.FieldDescriptorProto.TYPE_STRING: lambda: self._import("typing", "Text"), d.FieldDescriptorProto.TYPE_BYTES: lambda: "bytes", d.FieldDescriptorProto.TYPE_ENUM: lambda: self._import_message(field.type_name), d.FieldDescriptorProto.TYPE_MESSAGE: lambda: self._import_message(field.type_name), d.FieldDescriptorProto.TYPE_GROUP: lambda: self._import_message(field.type_name), } # type: Dict[int, Callable[[], Text]] assert field.type in mapping, "Unrecognized type: " + field.type return mapping[field.type]() def write(self): # type: () -> Text imports = [] for pkg, items in six.iteritems(self.imports): imports.append(u"from {} import (".format(pkg)) for item in sorted(items): imports.append(u" {},".format(item)) imports.append(u")\n") return "\n".join(imports + self.lines) def is_scalar(fd): # type: (d.FileDescriptorProto) -> bool return not ( fd.type == d.FieldDescriptorProto.TYPE_MESSAGE or fd.type == d.FieldDescriptorProto.TYPE_GROUP ) def generate_mypy_stubs(descriptors, response): # type: (Descriptors, plugin.CodeGeneratorResponse) -> None for name, fd in six.iteritems(descriptors.to_generate): pkg_writer = PkgWriter(fd, descriptors) pkg_writer.write_enums(fd.enum_type) pkg_writer.write_messages(fd.message_type, "") pkg_writer.write_services(fd.service) assert name == fd.name assert fd.name.endswith('.proto') output = response.file.add() output.name = fd.name[:-6].replace('-', '_') + '_pb2.pyi' output.content = HEADER + pkg_writer.write() print("Writing mypy to", output.name, file=sys.stderr) class Descriptors(object): def __init__(self, request): # type: (plugin.CodeGeneratorRequest) -> None files = {f.name: f for f in request.proto_file} to_generate = {n: files[n] for n in request.file_to_generate} self.files = files # type: Dict[Text, d.FileDescriptorProto] self.to_generate = to_generate # type: Dict[Text, d.FileDescriptorProto] self.messages = {} # type: Dict[Text, d.DescriptorProto] self.message_to_fd = {} # type: Dict[Text, d.FileDescriptorProto] def _add_enums(enums, prefix, fd): # type: (d.EnumDescriptorProto, d.FileDescriptorProto) -> None for enum in enums: self.message_to_fd[prefix + enum.name] = fd def _add_messages(messages, prefix, fd): # type: (d.DescriptorProto, d.FileDescriptorProto) -> None for message in messages: self.messages[prefix + message.name] = message self.message_to_fd[prefix + message.name] = fd sub_prefix = prefix + message.name + "." _add_messages(message.nested_type, sub_prefix, fd) _add_enums(message.enum_type, sub_prefix, fd) for fd in request.proto_file: start_prefix = "." + fd.package + "." _add_messages(fd.message_type, start_prefix, fd) _add_enums(fd.enum_type, start_prefix, fd) def main(): # type: () -> None # Read request message from stdin if six.PY3: data = sys.stdin.buffer.read() else: data = sys.stdin.read() # Parse request request = plugin.CodeGeneratorRequest() request.ParseFromString(data) # Create response response = plugin.CodeGeneratorResponse() # Generate mypy generate_mypy_stubs(Descriptors(request), response) # Serialise response message output = response.SerializeToString() # Write to stdout if six.PY3: sys.stdout.buffer.write(output) else: sys.stdout.write(output) if __name__ == '__main__': main()
#!/usr/bin/env python import subprocess import os def main(): # type: () -> None try: root_folder = os.path.realpath(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) os.chdir(root_folder) subprocess.check_call(["mypy", "."]) subprocess.check_call(["mypy", "--py2", "."]) exit(0) except subprocess.CalledProcessError: # Catch this exception because we don't want it to output a backtrace that would clutter the mypy output exit(1) if __name__ == '__main__': main()
#!/usr/bin/env python from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import argparse import io import os import re import glob import subprocess from textwrap import dedent autogen_header = """\ // // WARNING: This file is automatically generated! Please edit onnx.in.proto. // """ LITE_OPTION = ''' // For using protobuf-lite option optimize_for = LITE_RUNTIME; ''' DEFAULT_PACKAGE_NAME = "onnx" IF_ONNX_ML_REGEX = re.compile(r'\s*//\s*#if\s+ONNX-ML\s*$') ENDIF_ONNX_ML_REGEX = re.compile(r'\s*//\s*#endif\s*$') ELSE_ONNX_ML_REGEX = re.compile(r'\s*//\s*#else\s*$') MYPY = False if MYPY: from typing import Iterable, Text def process_ifs(lines, onnx_ml): # type: (Iterable[Text], bool) -> Iterable[Text] in_if = 0 for line in lines: if IF_ONNX_ML_REGEX.match(line): assert 0 == in_if in_if = 1 elif ELSE_ONNX_ML_REGEX.match(line): assert 1 == in_if in_if = 2 elif ENDIF_ONNX_ML_REGEX.match(line): assert (1 == in_if or 2 == in_if) in_if = 0 else: if 0 == in_if: yield line elif (1 == in_if and onnx_ml): yield line elif (2 == in_if and not onnx_ml): yield line IMPORT_REGEX = re.compile(r'(\s*)import\s*"([^"]*)\.proto";\s*$') PACKAGE_NAME_REGEX = re.compile(r'\{PACKAGE_NAME\}') ML_REGEX = re.compile(r'(.*)\-ml') def process_package_name(lines, package_name): # type: (Iterable[Text], Text) -> Iterable[Text] need_rename = (package_name != DEFAULT_PACKAGE_NAME) for line in lines: m = IMPORT_REGEX.match(line) if need_rename else None if m: include_name = m.group(2) ml = ML_REGEX.match(include_name) if ml: include_name = "{}_{}-ml".format(ml.group(1), package_name) else: include_name = "{}_{}".format(include_name, package_name) yield m.group(1) + 'import "{}.proto";'.format(include_name) else: yield PACKAGE_NAME_REGEX.sub(package_name, line) PROTO_SYNTAX_REGEX = re.compile(r'(\s*)syntax\s*=\s*"proto2"\s*;\s*$') OPTIONAL_REGEX = re.compile(r'(\s*)optional\s(.*)$') def convert_to_proto3(lines): # type: (Iterable[Text]) -> Iterable[Text] for line in lines: # Set the syntax specifier m = PROTO_SYNTAX_REGEX.match(line) if m: yield m.group(1) + 'syntax = "proto3";' continue # Remove optional keywords m = OPTIONAL_REGEX.match(line) if m: yield m.group(1) + m.group(2) continue # Rewrite import m = IMPORT_REGEX.match(line) if m: yield m.group(1) + 'import "{}.proto3";'.format(m.group(2)) continue yield line def gen_proto3_code(protoc_path, proto3_path, include_path, cpp_out, python_out): # type: (Text, Text, Text, Text, Text) -> None print("Generate pb3 code using {}".format(protoc_path)) build_args = [protoc_path, proto3_path, '-I', include_path] build_args.extend(['--cpp_out', cpp_out, '--python_out', python_out]) subprocess.check_call(build_args) def translate(source, proto, onnx_ml, package_name): # type: (Text, int, bool, Text) -> Text lines = source.splitlines() # type: Iterable[Text] lines = process_ifs(lines, onnx_ml=onnx_ml) lines = process_package_name(lines, package_name=package_name) if proto == 3: lines = convert_to_proto3(lines) else: assert proto == 2 return "\n".join(lines) # TODO: not Windows friendly def qualify(f, pardir=os.path.realpath(os.path.dirname(__file__))): # type: (Text, Text) -> Text return os.path.join(pardir, f) def convert(stem, package_name, output, do_onnx_ml=False, lite=False, protoc_path=''): # type: (Text, Text, Text, bool, bool, Text) -> None proto_in = qualify("{}.in.proto".format(stem)) need_rename = (package_name != DEFAULT_PACKAGE_NAME) if do_onnx_ml: proto_base = "{}_{}-ml".format(stem, package_name) if need_rename else "{}-ml".format(stem) else: proto_base = "{}_{}".format(stem, package_name) if need_rename else "{}".format(stem) proto = qualify("{}.proto".format(proto_base), pardir=output) proto3 = qualify("{}.proto3".format(proto_base), pardir=output) print("Processing {}".format(proto_in)) with io.open(proto_in, 'r') as fin: source = fin.read() print("Writing {}".format(proto)) with io.open(proto, 'w', newline='') as fout: fout.write(autogen_header) fout.write(translate(source, proto=2, onnx_ml=do_onnx_ml, package_name=package_name)) if lite: fout.write(LITE_OPTION) print("Writing {}".format(proto3)) with io.open(proto3, 'w', newline='') as fout: fout.write(autogen_header) fout.write(translate(source, proto=3, onnx_ml=do_onnx_ml, package_name=package_name)) if lite: fout.write(LITE_OPTION) if protoc_path: porto3_dir = os.path.dirname(proto3) base_dir = os.path.dirname(porto3_dir) gen_proto3_code(protoc_path, proto3, base_dir, base_dir, base_dir) pb3_files = glob.glob(os.path.join(porto3_dir, '*.proto3.*')) for pb3_file in pb3_files: print("Removing {}".format(pb3_file)) os.remove(pb3_file) if need_rename: if do_onnx_ml: proto_header = qualify("{}-ml.pb.h".format(stem), pardir=output) else: proto_header = qualify("{}.pb.h".format(stem), pardir=output) print("Writing {}".format(proto_header)) with io.open(proto_header, 'w', newline='') as fout: fout.write("#pragma once\n") fout.write("#include \"{}.pb.h\"\n".format(proto_base)) # Generate py mapping # "-" is invalid in python module name, replaces '-' with '_' pb_py = qualify('{}_pb.py'.format(stem.replace('-', '_')), pardir=output) if need_rename: pb2_py = qualify('{}_pb2.py'.format(proto_base.replace('-', '_')), pardir=output) else: if do_onnx_ml: pb2_py = qualify('{}_ml_pb2.py'.format(stem.replace('-', '_')), pardir=output) else: pb2_py = qualify('{}_pb2.py'.format(stem.replace('-', '_')), pardir=output) print('generating {}'.format(pb_py)) with open(pb_py, 'w') as f: f.write(str(dedent('''\ # This file is generated by setup.py. DO NOT EDIT! from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from .{} import * # noqa '''.format(os.path.splitext(os.path.basename(pb2_py))[0])))) def main(): # type: () -> None parser = argparse.ArgumentParser( description='Generates .proto file variations from .in.proto') parser.add_argument('-p', '--package', default='onnx', help='package name in the generated proto files' ' (default: %(default)s)') parser.add_argument('-m', '--ml', action='store_true', help='ML mode') parser.add_argument('-l', '--lite', action='store_true', help='generate lite proto to use with protobuf-lite') parser.add_argument('-o', '--output', default=os.path.realpath(os.path.dirname(__file__)), help='output directory (default: %(default)s)') parser.add_argument('--protoc_path', default='', help='path to protoc for proto3 file validation') parser.add_argument('stems', nargs='*', default=['onnx', 'onnx-operators'], help='list of .in.proto file stems ' '(default: %(default)s)') args = parser.parse_args() if not os.path.exists(args.output): os.makedirs(args.output) for stem in args.stems: convert(stem, package_name=args.package, output=args.output, do_onnx_ml=args.ml, lite=args.lite, protoc_path=args.protoc_path) if __name__ == '__main__': main()
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os from .onnx_cpp2py_export import ONNX_ML from onnx.external_data_helper import load_external_data_for_model, write_external_data_tensors from .onnx_pb import * # noqa from .onnx_operators_pb import * # noqa from .version import version as __version__ # noqa # Import common subpackages so they're available when you 'import onnx' import onnx.helper # noqa import onnx.checker # noqa import onnx.defs # noqa import google.protobuf.message from typing import Union, Text, IO, Optional, cast, TypeVar, Any from six import string_types # f should be either readable or a file path def _load_bytes(f): # type: (Union[IO[bytes], Text]) -> bytes if hasattr(f, 'read') and callable(cast(IO[bytes], f).read): s = cast(IO[bytes], f).read() else: with open(cast(Text, f), 'rb') as readable: s = readable.read() return s # str should be bytes, # f should be either writable or a file path def _save_bytes(str, f): # type: (bytes, Union[IO[bytes], Text]) -> None if hasattr(f, 'write') and callable(cast(IO[bytes], f).write): cast(IO[bytes], f).write(str) else: with open(cast(Text, f), 'wb') as writable: writable.write(str) # f should be either a readable file or a file path def _get_file_path(f): # type: (Union[IO[bytes], Text]) -> Optional[Text] if isinstance(f, string_types): return os.path.abspath(f) if hasattr(f, 'name'): return os.path.abspath(f.name) return None def _serialize(proto): # type: (Union[bytes, google.protobuf.message.Message]) -> bytes ''' Serialize a in-memory proto to bytes @params proto is a in-memory proto, such as a ModelProto, TensorProto, etc @return Serialized proto in bytes ''' if isinstance(proto, bytes): return proto elif hasattr(proto, 'SerializeToString') and callable(proto.SerializeToString): result = proto.SerializeToString() return result else: raise TypeError('No SerializeToString method is detected. ' 'neither proto is a str.\ntype is {}'.format(type(proto))) _Proto = TypeVar('_Proto', bound=google.protobuf.message.Message) def _deserialize(s, proto): # type: (bytes, _Proto) -> _Proto ''' Parse bytes into a in-memory proto @params s is bytes containing serialized proto proto is a in-memory proto object @return The proto instance filled in by s ''' if not isinstance(s, bytes): raise ValueError('Parameter s must be bytes, but got type: {}'.format(type(s))) if not (hasattr(proto, 'ParseFromString') and callable(proto.ParseFromString)): raise ValueError('No ParseFromString method is detected. ' '\ntype is {}'.format(type(proto))) decoded = cast(Optional[int], proto.ParseFromString(s)) if decoded is not None and decoded != len(s): raise google.protobuf.message.DecodeError( "Protobuf decoding consumed too few bytes: {} out of {}".format( decoded, len(s))) return proto def load_model(f, format=None, load_external_data=True): # type: (Union[IO[bytes], Text], Optional[Any], bool) -> ModelProto ''' Loads a serialized ModelProto into memory @params f can be a file-like object (has "read" function) or a string containing a file name format is for future use @return Loaded in-memory ModelProto ''' s = _load_bytes(f) model = load_model_from_string(s, format=format) if load_external_data: model_filepath = _get_file_path(f) if model_filepath: base_dir = os.path.dirname(model_filepath) load_external_data_for_model(model, base_dir) return model def load_tensor(f, format=None): # type: (Union[IO[bytes], Text], Optional[Any]) -> TensorProto ''' Loads a serialized TensorProto into memory @params f can be a file-like object (has "read" function) or a string containing a file name format is for future use @return Loaded in-memory TensorProto ''' s = _load_bytes(f) return load_tensor_from_string(s, format=format) def load_model_from_string(s, format=None): # type: (bytes, Optional[Any]) -> ModelProto ''' Loads a binary string (bytes) that contains serialized ModelProto @params s is a string, which contains serialized ModelProto format is for future use @return Loaded in-memory ModelProto ''' return _deserialize(s, ModelProto()) def load_tensor_from_string(s, format=None): # type: (bytes, Optional[Any]) -> TensorProto ''' Loads a binary string (bytes) that contains serialized TensorProto @params s is a string, which contains serialized TensorProto format is for future use @return Loaded in-memory TensorProto ''' return _deserialize(s, TensorProto()) def save_model(proto, f, format=None): # type: (Union[ModelProto, bytes], Union[IO[bytes], Text], Optional[Any]) -> None ''' Saves the ModelProto to the specified path. @params proto should be a in-memory ModelProto f can be a file-like object (has "write" function) or a string containing a file name format is for future use ''' if isinstance(proto, bytes): proto = _deserialize(proto, ModelProto()) model_filepath = _get_file_path(f) if model_filepath: basepath = os.path.dirname(model_filepath) proto = write_external_data_tensors(proto, basepath) s = _serialize(proto) _save_bytes(s, f) def save_tensor(proto, f): # type: (TensorProto, Union[IO[bytes], Text]) -> None ''' Saves the TensorProto to the specified path. @params proto should be a in-memory TensorProto f can be a file-like object (has "write" function) or a string containing a file name format is for future use ''' s = _serialize(proto) _save_bytes(s, f) # For backward compatibility load = load_model load_from_string = load_model_from_string save = save_model
"""onnx shape inference. Shape inference is not guaranteed to be complete. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import onnx import onnx.onnx_cpp2py_export.shape_inference as C from onnx import ModelProto """Apply shape inference to the provided ModelProto. Inferred shapes are added to the value_info field of the graph. If the inferred values conflict with values already provided in the graph, that means that the provided values are invalid (or there is a bug in shape inference), and the result is unspecified. Arguments: input (ModelProto,bool): ModelProto Return: return (ModelProto) model with inferred shape information """ def infer_shapes(model, check_type=False): # type: (ModelProto,bool) -> ModelProto if not isinstance(model, ModelProto): raise TypeError('Shape inference only accepts ModelProto, ' 'incorrect type: {}'.format(type(model))) model_str = model.SerializeToString() inferred_model_str = C.infer_shapes(model_str, check_type) return onnx.load_from_string(inferred_model_str)
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import onnx.checker import onnx.helper import onnx.optimizer import onnx.shape_inference from onnx import ModelProto def polish_model(model): # type: (ModelProto) -> ModelProto ''' This function combines several useful utility functions together. ''' onnx.checker.check_model(model) onnx.helper.strip_doc_string(model) model = onnx.shape_inference.infer_shapes(model) model = onnx.optimizer.optimize(model) onnx.checker.check_model(model) return model
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import sys import platform import numpy as np # type: ignore from onnx import TensorProto from onnx import mapping from six import text_type, binary_type from typing import Sequence, Any, Optional, Text, List if platform.system() != 'AIX' and sys.byteorder != 'little': raise RuntimeError( 'Numpy helper for tensor/ndarray is not available on big endian ' 'systems yet.') def combine_pairs_to_complex(fa): # type: (Sequence[int]) -> Sequence[np.complex64] return [complex(fa[i * 2], fa[i * 2 + 1]) for i in range(len(fa) // 2)] def to_array(tensor): # type: (TensorProto) -> np.ndarray[Any] """Converts a tensor def object to a numpy array. Inputs: tensor: a TensorProto object. Returns: arr: the converted array. """ if tensor.HasField("segment"): raise ValueError( "Currently not supporting loading segments.") if tensor.data_type == TensorProto.UNDEFINED: raise TypeError("The element type in the input tensor is not defined.") tensor_dtype = tensor.data_type np_dtype = mapping.TENSOR_TYPE_TO_NP_TYPE[tensor_dtype] storage_type = mapping.TENSOR_TYPE_TO_STORAGE_TENSOR_TYPE[tensor_dtype] storage_np_dtype = mapping.TENSOR_TYPE_TO_NP_TYPE[storage_type] storage_field = mapping.STORAGE_TENSOR_TYPE_TO_FIELD[storage_type] dims = tensor.dims if tensor.data_type == TensorProto.STRING: utf8_strings = getattr(tensor, storage_field) ss = list(s.decode('utf-8') for s in utf8_strings) return np.asarray(ss).astype(np_dtype).reshape(dims) if tensor.HasField("raw_data"): # Raw_bytes support: using frombuffer. return np.frombuffer( tensor.raw_data, dtype=np_dtype).reshape(dims) else: data = getattr(tensor, storage_field), # type: Sequence[np.complex64] if (tensor_dtype == TensorProto.COMPLEX64 or tensor_dtype == TensorProto.COMPLEX128): data = combine_pairs_to_complex(data) return ( np.asarray( data, dtype=storage_np_dtype) .astype(np_dtype) .reshape(dims) ) def from_array(arr, name=None): # type: (np.ndarray[Any], Optional[Text]) -> TensorProto """Converts a numpy array to a tensor def. Inputs: arr: a numpy array. name: (optional) the name of the tensor. Returns: tensor_def: the converted tensor def. """ tensor = TensorProto() tensor.dims.extend(arr.shape) if name: tensor.name = name if arr.dtype == np.object: # Special care for strings. tensor.data_type = mapping.NP_TYPE_TO_TENSOR_TYPE[arr.dtype] # TODO: Introduce full string support. # We flatten the array in case there are 2-D arrays are specified # We throw the error below if we have a 3-D array or some kind of other # object. If you want more complex shapes then follow the below instructions. # Unlike other types where the shape is automatically inferred from # nested arrays of values, the only reliable way now to feed strings # is to put them into a flat array then specify type astype(np.object) # (otherwise all strings may have different types depending on their length) # and then specify shape .reshape([x, y, z]) flat_array = arr.flatten() for e in flat_array: if isinstance(e, text_type): tensor.string_data.append(e.encode('utf-8')) elif isinstance(e, np.ndarray): for s in e: if isinstance(s, text_type): tensor.string_data.append(s.encode('utf-8')) else: raise NotImplementedError( "Unrecognized object in the object array, expect a string, or array of bytes: ", str(type(e))) return tensor # For numerical types, directly use numpy raw bytes. try: dtype = mapping.NP_TYPE_TO_TENSOR_TYPE[arr.dtype] except KeyError: raise RuntimeError( "Numpy data type not understood yet: {}".format(str(arr.dtype))) tensor.data_type = dtype tensor.raw_data = arr.tobytes() # note: tobytes() is only after 1.9. return tensor
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import collections import numbers from six import text_type, integer_types, binary_type import google.protobuf.message from onnx import TensorProto, SparseTensorProto, AttributeProto, ValueInfoProto, TensorShapeProto, \ NodeProto, ModelProto, GraphProto, OperatorSetIdProto, TypeProto, IR_VERSION import onnx.defs as defs from onnx import mapping from onnx.mapping import STORAGE_TENSOR_TYPE_TO_FIELD from typing import Text, Sequence, Any, Optional, Dict, Union, TypeVar, Callable, Tuple, List, cast import numpy as np # type: ignore def make_node( op_type, # type: Text inputs, # type: Sequence[Text] outputs, # type: Sequence[Text] name=None, # type: Optional[Text] doc_string=None, # type: Optional[Text] domain=None, # type: Optional[Text] **kwargs # type: Any ): # type: (...) -> NodeProto """Construct a NodeProto. Arguments: op_type (string): The name of the operator to construct inputs (list of string): list of input names outputs (list of string): list of output names name (string, default None): optional unique identifier for NodeProto doc_string (string, default None): optional documentation string for NodeProto domain (string, default None): optional domain for NodeProto. If it's None, we will just use default domain (which is empty) **kwargs (dict): the attributes of the node. The acceptable values are documented in :func:`make_attribute`. """ node = NodeProto() node.op_type = op_type node.input.extend(inputs) node.output.extend(outputs) if name: node.name = name if doc_string: node.doc_string = doc_string if domain is not None: node.domain = domain if kwargs: node.attribute.extend( make_attribute(key, value) for key, value in sorted(kwargs.items())) return node def make_operatorsetid( domain, # type: Text version, # type: int ): # type: (...) -> OperatorSetIdProto """Construct an OperatorSetIdProto. Arguments: domain (string): The domain of the operator set id version (integer): Version of operator set id """ operatorsetid = OperatorSetIdProto() operatorsetid.domain = domain operatorsetid.version = version return operatorsetid def make_graph( nodes, # type: Sequence[NodeProto] name, # type: Text inputs, # type: Sequence[ValueInfoProto] outputs, # type: Sequence[ValueInfoProto] initializer=None, # type: Optional[Sequence[TensorProto]] doc_string=None, # type: Optional[Text] value_info=[], # type: Sequence[ValueInfoProto] ): # type: (...) -> GraphProto if initializer is None: initializer = [] if value_info is None: value_info = [] graph = GraphProto() graph.node.extend(nodes) graph.name = name graph.input.extend(inputs) graph.output.extend(outputs) graph.initializer.extend(initializer) graph.value_info.extend(value_info) if doc_string: graph.doc_string = doc_string return graph def make_opsetid(domain, version): # type: (Text, int) -> OperatorSetIdProto opsetid = OperatorSetIdProto() opsetid.domain = domain opsetid.version = version return opsetid def make_model(graph, **kwargs): # type: (GraphProto, **Any) -> ModelProto model = ModelProto() # Touch model.ir_version so it is stored as the version from which it is # generated. model.ir_version = IR_VERSION model.graph.CopyFrom(graph) opset_imports = None # type: Optional[Sequence[OperatorSetIdProto]] opset_imports = kwargs.pop('opset_imports', None) # type: ignore if opset_imports is not None: model.opset_import.extend(opset_imports) else: # Default import imp = model.opset_import.add() imp.version = defs.onnx_opset_version() for k, v in kwargs.items(): # TODO: Does this work with repeated fields? setattr(model, k, v) return model def set_model_props(model, dict_value): # type: (ModelProto, Dict[Text, Text]) -> None del model.metadata_props[:] for (k, v) in dict_value.items(): entry = model.metadata_props.add() entry.key = k entry.value = v # model.metadata_properties.append(entry) def split_complex_to_pairs(ca): # type: (Sequence[np.complex64]) -> Sequence[int] return [(ca[i // 2].real if (i % 2 == 0) else ca[i // 2].imag) for i in range(len(ca) * 2)] def make_tensor( name, # type: Text data_type, # type: int dims, # type: Sequence[int] vals, # type: Any raw=False # type: bool ): # type: (...) -> TensorProto ''' Make a TensorProto with specified arguments. If raw is False, this function will choose the corresponding proto field to store the values based on data_type. If raw is True, use "raw_data" proto field to store the values, and values should be of type bytes in this case. ''' tensor = TensorProto() tensor.data_type = data_type tensor.name = name if data_type == TensorProto.STRING: assert not raw, "Can not use raw_data to store string type" if (data_type == TensorProto.COMPLEX64 or data_type == TensorProto.COMPLEX128): vals = split_complex_to_pairs(vals) if raw: tensor.raw_data = vals else: field = mapping.STORAGE_TENSOR_TYPE_TO_FIELD[ mapping.TENSOR_TYPE_TO_STORAGE_TENSOR_TYPE[data_type]] getattr(tensor, field).extend(vals) tensor.dims.extend(dims) return tensor def make_sparse_tensor( values, # type: TensorProto indices, # type: TensorProto dims # type: Sequence[int] ): # type: (...) -> SparseTensorProto sparse = SparseTensorProto() sparse.values.CopyFrom(values) sparse.indices.CopyFrom(indices) sparse.dims.extend(dims) return sparse def _to_bytes_or_false(val): # type: (Union[Text, bytes]) -> Union[bytes, bool] """An internal graph to convert the input to a bytes or to False. The criteria for conversion is as follows and should be python 2 and 3 compatible: - If val is py2 str or py3 bytes: return bytes - If val is py2 unicode or py3 str: return val.decode('utf-8') - Otherwise, return False """ if isinstance(val, bytes): return val try: return val.encode('utf-8') except AttributeError: return False def make_attribute( key, # type: Text value, # type: Any doc_string=None # type: Optional[Text] ): # type: (...) -> AttributeProto """Makes an AttributeProto based on the value type.""" attr = AttributeProto() attr.name = key if doc_string: attr.doc_string = doc_string is_iterable = isinstance(value, collections.Iterable) bytes_or_false = _to_bytes_or_false(value) # First, singular cases # float if isinstance(value, float): attr.f = value attr.type = AttributeProto.FLOAT # integer elif isinstance(value, numbers.Integral): attr.i = cast(int, value) attr.type = AttributeProto.INT # string elif bytes_or_false is not False: assert isinstance(bytes_or_false, bytes) attr.s = bytes_or_false attr.type = AttributeProto.STRING elif isinstance(value, TensorProto): attr.t.CopyFrom(value) attr.type = AttributeProto.TENSOR elif isinstance(value, SparseTensorProto): attr.sparse_tensor.CopyFrom(value) attr.type = AttributeProto.SPARSE_TENSOR elif isinstance(value, GraphProto): attr.g.CopyFrom(value) attr.type = AttributeProto.GRAPH # third, iterable cases elif is_iterable: byte_array = [_to_bytes_or_false(v) for v in value] if all(isinstance(v, float) for v in value): attr.floats.extend(value) attr.type = AttributeProto.FLOATS elif all(isinstance(v, numbers.Integral) for v in value): # Turn np.int32/64 into Python built-in int. attr.ints.extend(int(v) for v in value) attr.type = AttributeProto.INTS elif all(map(lambda bytes_or_false: bytes_or_false is not False, byte_array)): attr.strings.extend(cast(List[bytes], byte_array)) attr.type = AttributeProto.STRINGS elif all(isinstance(v, TensorProto) for v in value): attr.tensors.extend(value) attr.type = AttributeProto.TENSORS elif all(isinstance(v, SparseTensorProto) for v in value): attr.sparse_tensors.extend(value) attr.type = AttributeProto.SPARSE_TENSORS elif all(isinstance(v, GraphProto) for v in value): attr.graphs.extend(value) attr.type = AttributeProto.GRAPHS else: raise ValueError( "You passed in an iterable attribute but I cannot figure out " "its applicable type.") else: raise TypeError( 'value "{}" is not valid attribute data type.'.format(value)) return attr def get_attribute_value(attr): # type: (AttributeProto) -> Any if attr.type == AttributeProto.FLOAT: return attr.f if attr.type == AttributeProto.INT: return attr.i if attr.type == AttributeProto.STRING: return attr.s if attr.type == AttributeProto.TENSOR: return attr.t if attr.type == AttributeProto.GRAPH: return attr.g if attr.type == AttributeProto.FLOATS: return list(attr.floats) if attr.type == AttributeProto.INTS: return list(attr.ints) if attr.type == AttributeProto.STRINGS: return list(attr.strings) if attr.type == AttributeProto.TENSORS: return list(attr.tensors) if attr.type == AttributeProto.GRAPHS: return list(attr.graphs) raise ValueError("Unsupported ONNX attribute: {}".format(attr)) def make_empty_tensor_value_info(name): # type: (Text) -> ValueInfoProto value_info_proto = ValueInfoProto() value_info_proto.name = name return value_info_proto def make_tensor_value_info( name, # type: Text elem_type, # type: int shape, # type: Optional[Sequence[Union[Text, int]]] doc_string="", # type: Text shape_denotation=None, # type: Optional[List[Text]] ): # type: (...) -> ValueInfoProto """Makes a ValueInfoProto based on the data type and shape.""" value_info_proto = ValueInfoProto() value_info_proto.name = name if doc_string: value_info_proto.doc_string = doc_string tensor_type_proto = value_info_proto.type.tensor_type tensor_type_proto.elem_type = elem_type tensor_shape_proto = tensor_type_proto.shape if shape is not None: # You might think this is a no-op (extending a normal Python # list by [] certainly is), but protobuf lists work a little # differently; if a field is never set, it is omitted from the # resulting protobuf; a list that is explicitly set to be # empty will get an (empty) entry in the protobuf. This # difference is visible to our consumers, so make sure we emit # an empty shape! tensor_shape_proto.dim.extend([]) if shape_denotation: if len(shape_denotation) != len(shape): raise ValueError( 'Invalid shape_denotation. ' 'Must be of the same length as shape.') for i, d in enumerate(shape): dim = tensor_shape_proto.dim.add() if d is None: pass elif isinstance(d, integer_types): dim.dim_value = d elif isinstance(d, text_type): dim.dim_param = d else: raise ValueError( 'Invalid item in shape: {}. ' 'Needs to of integer_types or text_type.'.format(d)) if shape_denotation: dim.denotation = shape_denotation[i] return value_info_proto def make_sequence_value_info( name, # type: Text elem_type, # type: int shape, # type: Optional[Sequence[Union[Text, int]]] doc_string="", # type: Text elem_shape_denotation=None, # type: Optional[List[Text]] ): # type: (...) -> ValueInfoProto """Makes a ValueInfoProto based on the data type and shape for Sequence.""" value_info_proto = ValueInfoProto() value_info_proto.name = name if doc_string: value_info_proto.doc_string = doc_string sequence_type_proto = value_info_proto.type.sequence_type sequence_type_proto.elem_type.tensor_type.elem_type = elem_type tensor_value_info = make_tensor_value_info(name, elem_type, shape, doc_string, elem_shape_denotation) if shape is not None: sequence_type_proto.elem_type.tensor_type.shape.CopyFrom(tensor_value_info.type.tensor_type.shape) return value_info_proto def _sanitize_str(s): # type: (Union[Text, bytes]) -> Text if isinstance(s, text_type): sanitized = s elif isinstance(s, binary_type): sanitized = s.decode('utf-8', errors='ignore') else: sanitized = str(s) if len(sanitized) < 64: return sanitized return sanitized[:64] + '...<+len=%d>' % (len(sanitized) - 64) def printable_attribute(attr, subgraphs=False): # type: (AttributeProto, bool) -> Union[Text, Tuple[Text, List[GraphProto]]] content = [] content.append(attr.name) content.append("=") def str_float(f): # type: (float) -> Text # NB: Different Python versions print different numbers of trailing # decimals, specifying this explicitly keeps it consistent for all # versions return '{:.15g}'.format(f) def str_int(i): # type: (int) -> Text # NB: In Python 2, longs will repr() as '2L', which is ugly and # unnecessary. Explicitly format it to keep it consistent. return '{:d}'.format(i) def str_str(s): # type: (Text) -> Text return repr(s) _T = TypeVar('_T') # noqa def str_list(str_elem, xs): # type: (Callable[[_T], Text], Sequence[_T]) -> Text return '[' + ', '.join(map(str_elem, xs)) + ']' # for now, this logic should continue to work as long as we are running on a proto3 # implementation. If/when we switch to proto3, we will need to use attr.type # To support printing subgraphs, if we find a graph attribute, print out # its name here and pass the graph itself up to the caller for later # printing. graphs = [] if attr.HasField("f"): content.append(str_float(attr.f)) elif attr.HasField("i"): content.append(str_int(attr.i)) elif attr.HasField("s"): # TODO: Bit nervous about Python 2 / Python 3 determinism implications content.append(repr(_sanitize_str(attr.s))) elif attr.HasField("t"): if len(attr.t.dims) > 0: content.append("<Tensor>") else: # special case to print scalars field = STORAGE_TENSOR_TYPE_TO_FIELD[attr.t.data_type] content.append('<Scalar Tensor {}>'.format(str(getattr(attr.t, field)))) elif attr.HasField("g"): content.append("<graph {}>".format(attr.g.name)) graphs.append(attr.g) elif attr.floats: content.append(str_list(str_float, attr.floats)) elif attr.ints: content.append(str_list(str_int, attr.ints)) elif attr.strings: # TODO: Bit nervous about Python 2 / Python 3 determinism implications content.append(str(list(map(_sanitize_str, attr.strings)))) elif attr.tensors: content.append("[<Tensor>, ...]") elif attr.graphs: content.append('[') for i, g in enumerate(attr.graphs): comma = ',' if i != len(attr.graphs) - 1 else '' content.append('<graph {}>{}'.format(g.name, comma)) content.append(']') graphs.extend(attr.graphs) else: content.append("<Unknown>") if subgraphs: return ' '.join(content), graphs else: return ' '.join(content) def printable_dim(dim): # type: (TensorShapeProto.Dimension) -> Text which = dim.WhichOneof('value') assert which is not None return str(getattr(dim, which)) def printable_type(t): # type: (TypeProto) -> Text if t.WhichOneof('value') == "tensor_type": s = TensorProto.DataType.Name(t.tensor_type.elem_type) if t.tensor_type.HasField('shape'): if len(t.tensor_type.shape.dim): s += str(', ' + 'x'.join(map(printable_dim, t.tensor_type.shape.dim))) else: s += str(', scalar') return s if t.WhichOneof('value') is None: return "" return 'Unknown type {}'.format(t.WhichOneof('value')) def printable_value_info(v): # type: (ValueInfoProto) -> Text s = '%{}'.format(v.name) if v.type: s = '{}[{}]'.format(s, printable_type(v.type)) return s def printable_tensor_proto(t): # type: (TensorProto) -> Text s = '%{}['.format(t.name) s += TensorProto.DataType.Name(t.data_type) if t.dims is not None: if len(t.dims): s += str(', ' + 'x'.join(map(str, t.dims))) else: s += str(', scalar') s += ']' return s def printable_node(node, prefix='', subgraphs=False): # type: (NodeProto, Text, bool) -> Union[Text, Tuple[Text, List[GraphProto]]] content = [] if len(node.output): content.append( ', '.join(['%{}'.format(name) for name in node.output])) content.append('=') # To deal with nested graphs graphs = [] # type: List[GraphProto] printed_attrs = [] for attr in node.attribute: if subgraphs: printed_attr, gs = printable_attribute(attr, subgraphs) assert isinstance(gs, list) graphs.extend(gs) printed_attrs.append(printed_attr) else: printed = printable_attribute(attr) assert isinstance(printed, Text) printed_attrs.append(printed) printed_attributes = ', '.join(sorted(printed_attrs)) printed_inputs = ', '.join(['%{}'.format(name) for name in node.input]) if node.attribute: content.append("{}[{}]({})".format(node.op_type, printed_attributes, printed_inputs)) else: content.append("{}({})".format(node.op_type, printed_inputs)) if subgraphs: return prefix + ' '.join(content), graphs else: return prefix + ' '.join(content) def printable_graph(graph, prefix=''): # type: (GraphProto, Text) -> Text content = [] indent = prefix + ' ' # header header = ['graph', graph.name] initializers = {t.name for t in graph.initializer} if len(graph.input): header.append("(") in_strs = [] # required inputs in_with_init_strs = [] # optional inputs with initializer providing default value for inp in graph.input: if inp.name not in initializers: in_strs.append(printable_value_info(inp)) else: in_with_init_strs.append(printable_value_info(inp)) if in_strs: content.append(prefix + ' '.join(header)) header = [] for line in in_strs: content.append(prefix + ' ' + line) header.append(")") if in_with_init_strs: header.append("optional inputs with matching initializers (") content.append(prefix + ' '.join(header)) header = [] for line in in_with_init_strs: content.append(prefix + ' ' + line) header.append(")") # from IR 4 onwards an initializer is not required to have a matching graph input # so output the name, type and shape of those as well if len(in_with_init_strs) < len(initializers): graph_inputs = {i.name for i in graph.input} init_strs = [printable_tensor_proto(i) for i in graph.initializer if i.name not in graph_inputs] header.append("initializers (") content.append(prefix + ' '.join(header)) header = [] for line in init_strs: content.append(prefix + ' ' + line) header.append(")") header.append('{') content.append(prefix + ' '.join(header)) graphs = [] # type: List[GraphProto] # body for node in graph.node: pn, gs = printable_node(node, indent, subgraphs=True) assert isinstance(gs, list) content.append(pn) graphs.extend(gs) # tail tail = ['return'] if len(graph.output): tail.append( ', '.join(['%{}'.format(out.name) for out in graph.output])) content.append(indent + ' '.join(tail)) # closing bracket content.append(prefix + '}') for g in graphs: content.append('\n' + printable_graph(g)) return '\n'.join(content) def strip_doc_string(proto): # type: (google.protobuf.message.Message) -> None """ Empties `doc_string` field on any nested protobuf messages """ assert isinstance(proto, google.protobuf.message.Message) for descriptor in proto.DESCRIPTOR.fields: if descriptor.name == 'doc_string': proto.ClearField(descriptor.name) elif descriptor.type == descriptor.TYPE_MESSAGE: if descriptor.label == descriptor.LABEL_REPEATED: for x in getattr(proto, descriptor.name): strip_doc_string(x) elif proto.HasField(descriptor.name): strip_doc_string(getattr(proto, descriptor.name))
# ATTENTION: The code in this file is highly EXPERIMENTAL. # Adventurous users should note that the APIs will probably change. """onnx optimizer This enables users to optimize their models. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import onnx import onnx.onnx_cpp2py_export.optimizer as C from onnx import ModelProto from typing import Text, Sequence, Optional """Apply the optimization on the serialized ModelProto. Arguments: input (ModelProto): model names (list of string): list of optimization names Return: return (ModelProto) optimized model Supported pass names: -- nop -- eliminate_identity -- eliminate_nop_transpose -- eliminate_nop_pad -- eliminate_unused_initializer -- fuse_consecutive_squeezes -- fuse_consecutive_transposes -- fuse_add_bias_into_conv -- fuse_transpose_into_gemm """ get_available_passes = C.get_available_passes def optimize(model, passes=None, fixed_point=False): # type: (ModelProto, Optional[Sequence[Text]], bool) -> ModelProto if passes is None: passes = ['eliminate_nop_transpose', 'eliminate_nop_pad', 'fuse_consecutive_transposes', 'fuse_transpose_into_gemm'] if not isinstance(model, ModelProto): raise ValueError('Optimizer only accepts ModelProto, incorrect type: {}'.format(type(model))) model_str = model.SerializeToString() if fixed_point: optimized_model_str = C.optimize_fixedpoint(model_str, passes) else: optimized_model_str = C.optimize(model_str, passes) return onnx.load_from_string(optimized_model_str)
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import uuid import os from itertools import chain from typing import Iterable, Text, Optional from .onnx_pb import TensorProto, ModelProto class ExternalDataInfo(object): def __init__(self, tensor): # type: (TensorProto) -> None self.location = '' self.offset = None self.length = None self.checksum = None self.basepath = '' for entry in tensor.external_data: setattr(self, entry.key, entry.value) if self.offset: self.offset = int(self.offset) if self.length: self.length = int(self.length) def load_external_data_for_tensor(tensor, base_dir): # type: (TensorProto, Text) -> None """ Load data from an external file for tensor. @params tensor: a TensorProto object. base_dir: directory that contains the external data. """ if tensor.HasField("raw_data"): # already loaded return info = ExternalDataInfo(tensor) file_location = _sanitize_path(info.location) external_data_file_path = os.path.join(base_dir, file_location) with open(external_data_file_path, 'rb') as data_file: if info.offset: data_file.seek(info.offset) if info.length: tensor.raw_data = data_file.read(info.length) else: tensor.raw_data = data_file.read() def load_external_data_for_model(model, base_dir): # type: (ModelProto, Text) -> None """ Loads external tensors into model @params model: ModelProto to load external data to base_dir: directory that contains external data """ for tensor in _get_all_tensors(model): if uses_external_data(tensor): load_external_data_for_tensor(tensor, base_dir) def set_external_data(tensor, # type: TensorProto location, # type: Text offset=None, # type: Optional[int] length=None, # type: Optional[int] checksum=None, # type: Optional[Text] basepath=None # type: Optional[Text] ): # type: (...) -> None del tensor.external_data[:] tensor.data_location = TensorProto.EXTERNAL for (k, v) in { 'location': location, 'offset': int(offset) if offset is not None else None, 'length': int(length) if length is not None else None, 'checksum': checksum, 'basepath': basepath }.items(): if v is not None: entry = tensor.external_data.add() entry.key = k entry.value = str(v) def convert_model_to_external_data(model, all_tensors_to_one_file=True, location=None): # type: (ModelProto, bool, Optional[Text]) -> None """ call to set all tensors as external data. save_model saves all the tensors data as external data after calling this function. @params model: ModelProto to be converted. all_tensors_to_one_file: If true, save all tensors to one external file specified by location. If false, save each tensor to a file named with the tensor name. location: specify the external file that all tensors to save to. If not specified, will use the model name. """ if all_tensors_to_one_file: file_name = Text(uuid.uuid1()) if location: file_name = location for tensor in _get_all_tensors(model): set_external_data(tensor, file_name) else: for tensor in _get_all_tensors(model): set_external_data(tensor, tensor.name) def convert_model_from_external_data(model): # type: (ModelProto) -> None """ call to set all tensors data as embedded data. save_model saves all the tensors data as embedded data after calling this function. @params model: ModelProto to be converted. """ for tensor in _get_all_tensors(model): if uses_external_data(tensor): if not tensor.HasField("raw_data"): raise ValueError("raw_data field doesn't exist.") del tensor.external_data[:] tensor.data_location = TensorProto.DEFAULT def save_external_data(tensor, base_path): # type: (TensorProto, Text) -> None """ Write tensor data to an external file according to information in the `external_data` field. @params tensor: Tensor object to be serialized base_path: System path of a folder where tensor data is to be stored """ info = ExternalDataInfo(tensor) external_data_file_path = os.path.join(base_path, info.location) # Retrieve the tensor's data from raw_data or load external file if not tensor.HasField("raw_data"): raise ValueError("raw_data field doesn't exist.") # Create file if it doesn't exist if not os.path.isfile(external_data_file_path): open(external_data_file_path, 'ab').close() # Open file for reading and writing at random locations ('r+b') with open(external_data_file_path, 'r+b') as data_file: data_file.seek(0, 2) if info.offset is not None: # Pad file to required offset if needed file_size = data_file.tell() if info.offset > file_size: data_file.write(b"\0" * (info.offset - file_size)) data_file.seek(info.offset) offset = data_file.tell() data_file.write(tensor.raw_data) set_external_data(tensor, info.location, offset, data_file.tell() - offset) def _get_all_tensors(onnx_model_proto): # type: (ModelProto) -> Iterable[TensorProto] """Scan an ONNX model for all tensors and return as an iterator.""" return chain(_get_initializer_tensors(onnx_model_proto), _get_attribute_tensors(onnx_model_proto)) def _get_initializer_tensors(onnx_model_proto): # type: (ModelProto) -> Iterable[TensorProto] """Create an iterator of initializer tensors from ONNX model.""" for initializer in onnx_model_proto.graph.initializer: yield initializer def _get_attribute_tensors(onnx_model_proto): # type: (ModelProto) -> Iterable[TensorProto] """Create an iterator of tensors from node attributes of an ONNX model.""" for node in onnx_model_proto.graph.node: for attribute in node.attribute: if attribute.HasField("t"): yield attribute.t for tensor in attribute.tensors: yield tensor def _sanitize_path(path): # type: (Text) -> Text """Remove path components which would allow traversing up a directory tree from a base path. Note: This method is currently very basic and should be expanded. """ return path.lstrip('/.') def uses_external_data(tensor): # type: (TensorProto) -> bool """Return true if the tensor stores data in an external location.""" return tensor.HasField("data_location") and tensor.data_location == TensorProto.EXTERNAL def remove_external_data_field(tensor, field_key): # type: (TensorProto, Text) -> None """ Remove a field from a Tensor's external_data key-value store. Modifies tensor object in place. @params tensor: Tensor object from which value will be removed field_key: The key of the field to be removed """ for (i, field) in enumerate(tensor.external_data): if field.key == field_key: del tensor.external_data[i] def write_external_data_tensors(model, filepath): # type: (ModelProto, Text) -> ModelProto """ Write external data of all tensors to files on disk. Note: This function also strips basepath information from all tensors' external_data fields. @params model: Model object which is the source of tensors to serialize. filepath: System path to the directory which should be treated as base path for external data. @return The modified model object. """ for tensor in _get_all_tensors(model): if uses_external_data(tensor): save_external_data(tensor, filepath) tensor.ClearField(str('raw_data')) return model
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from onnx import TensorProto from typing import Text, Any import numpy as np # type: ignore TENSOR_TYPE_TO_NP_TYPE = { int(TensorProto.FLOAT): np.dtype('float32'), int(TensorProto.UINT8): np.dtype('uint8'), int(TensorProto.INT8): np.dtype('int8'), int(TensorProto.UINT16): np.dtype('uint16'), int(TensorProto.INT16): np.dtype('int16'), int(TensorProto.INT32): np.dtype('int32'), int(TensorProto.INT64): np.dtype('int64'), int(TensorProto.BOOL): np.dtype('bool'), int(TensorProto.FLOAT16): np.dtype('float16'), int(TensorProto.DOUBLE): np.dtype('float64'), int(TensorProto.COMPLEX64): np.dtype('complex64'), int(TensorProto.COMPLEX128): np.dtype('complex128'), int(TensorProto.UINT32): np.dtype('uint32'), int(TensorProto.UINT64): np.dtype('uint64'), int(TensorProto.STRING): np.dtype(np.object) } NP_TYPE_TO_TENSOR_TYPE = {v: k for k, v in TENSOR_TYPE_TO_NP_TYPE.items()} TENSOR_TYPE_TO_STORAGE_TENSOR_TYPE = { int(TensorProto.FLOAT): int(TensorProto.FLOAT), int(TensorProto.UINT8): int(TensorProto.INT32), int(TensorProto.INT8): int(TensorProto.INT32), int(TensorProto.UINT16): int(TensorProto.INT32), int(TensorProto.INT16): int(TensorProto.INT32), int(TensorProto.INT32): int(TensorProto.INT32), int(TensorProto.INT64): int(TensorProto.INT64), int(TensorProto.BOOL): int(TensorProto.INT32), int(TensorProto.FLOAT16): int(TensorProto.UINT16), int(TensorProto.BFLOAT16): int(TensorProto.UINT16), int(TensorProto.DOUBLE): int(TensorProto.DOUBLE), int(TensorProto.COMPLEX64): int(TensorProto.FLOAT), int(TensorProto.COMPLEX128): int(TensorProto.DOUBLE), int(TensorProto.UINT32): int(TensorProto.UINT32), int(TensorProto.UINT64): int(TensorProto.UINT64), int(TensorProto.STRING): int(TensorProto.STRING), } STORAGE_TENSOR_TYPE_TO_FIELD = { int(TensorProto.FLOAT): 'float_data', int(TensorProto.INT32): 'int32_data', int(TensorProto.INT64): 'int64_data', int(TensorProto.UINT16): 'int32_data', int(TensorProto.DOUBLE): 'double_data', int(TensorProto.COMPLEX64): 'float_data', int(TensorProto.COMPLEX128): 'double_data', int(TensorProto.UINT32): 'uint64_data', int(TensorProto.UINT64): 'uint64_data', int(TensorProto.STRING): 'string_data', int(TensorProto.BOOL): 'int32_data', }
"""onnx version converter This enables users to convert their models between different opsets within the default domain ("" or "ai.onnx"). """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import onnx import onnx.onnx_cpp2py_export.version_converter as C from onnx import ModelProto from typing import Text, Sequence """Apply the version conversion on the serialized ModelProto. Arguments: input (ModelProto): model target_version (int): target opset version Return: return (ModelProto) converted model Raises Exceptions: RuntimeError when some necessary conversion is not supported Supported adapters: --Add from Opset 7 to Opset 6 --Add from Opset 6 to Opset 5 --Add from Opset 6 to Opset 7 --Add from Opset 5 to Opset 6 --Mul from Opset 6 to Opset 7 --Mul from Opset 7 to Opset 6 --Mul from Opset 6 to Opset 5 --Mul from Opset 5 to Opset 6 --Gemm from Opset 7 to Opset 6 --Gemm from Opset 6 to Opset 5 --Gemm from Opset 6 to Opset 7 --Gemm from Opset 5 to Opset 6 --Relu from Opset 6 to Opset 5 --Relu from Opset 5 to Opset 6 --BatchNorm from Opset 7 to Opset 6 --BatchNorm from Opset 6 to Opset 7 --BatchNorm from Opset 6 to Opset 5 --BatchNorm from Opset 5 to Opset 6 --Concat from Opset 4 to Opset 3 --Concat from Opset 3 to Opset 4 --Reshape from Opset 5 to Opset 4 --Reshape from Opset 4 to Opset 5 --Sum from Opset 7 to Opset 8 --Sum from Opset 8 to Opset 7 --Sum from Opset 6 to Opset 5 --Sum from Opset 5 to Opset 6 --MaxPool from Opset 8 to Opset 7 --MaxPool from Opset 7 to Opset 8 --AveragePool from Opset 7 to Opset 6 --AveragePool from Opset 6 to Opset 7 --Dropout from Opset 7 to Opset 6 --Dropout from Opset 6 to Opset 5 --Dropout from Opset 6 to Opset 7 --Dropout from Opset 5 to Opset 6 Unsupported adapters: --Min from Opset 8 to Opset 7 --Min from Opset 7 to Opset 8 --Min from Opset 6 to Opset 5 --Min from Opset 5 to Opset 6 --Mean from Opset 8 to Opset 7 --Mean from Opset 7 to Opset 8 --Mean from Opset 6 to Opset 5 --Mean from Opset 5 to Opset 6 --Max from Opset 8 to Opset 7 --Max from Opset 7 to Opset 8 --Max from Opset 6 to Opset 5 --Max from Opset 5 to Opset 6 --Xor from Opset 6 to Opset 7 --Xor from Opset 7 to Opset 6 --Upsample from Opset 6 to Opset 7 --Upsample from Opset 7 to Opset 6 --Sub from Opset 6 to Opset 7 --Sub from Opset 7 to Opset 6 --Sub from Opset 6 to Opset 5 --Sub from Opset 5 to Opset 6 --RNN from Opset 6 to Opset 7 --RNN from Opset 7 to Opset 6 --Pow from Opset 6 to Opset 7 --Pow from Opset 7 to Opset 6 --PRelu from Opset 6 to Opset 7 --PRelu from Opset 7 to Opset 6 --PRelu from Opset 6 to Opset 5 --PRelu from Opset 5 to Opset 6 --Or from Opset 6 to Opset 7 --Or from Opset 7 to Opset 6 --Less from Opset 6 to Opset 7 --Less from Opset 7 to Opset 6 --LSTM from Opset 6 to Opset 7 --LSTM from Opset 7 to Opset 6 --Greater from Opset 6 to Opset 7 --Greater from Opset 7 to Opset 6 --GRU from Opset 6 to Opset 7 --GRU from Opset 7 to Opset 6 --GRU from Opset 3 to Opset 2 --GRU from Opset 2 to Opset 3 --Equal from Opset 6 to Opset 7 --Equal from Opset 7 to Opset 6 --Div from Opset 6 to Opset 7 --Div from Opset 7 to Opset 6 --Div from Opset 6 to Opset 5 --Div from Opset 5 to Opset 6 --And from Opset 6 to Opset 7 --And from Opset 7 to Opset 6 --And from Opset 6 to Opset 5 --And from Opset 5 to Opset 6 --Tile from Opset 6 to Opset 5 --Tile from Opset 5 to Opset 6 --Sqrt from Opset 6 to Opset 5 --Sqrt from Opset 5 to Opset 6 --Sigmoid from opset 6 to opset 5 --Sigmoid from opset 5 to opset 6 --Selu from opset 6 to opset 5 --Selu from opset 5 to opset 6 --Reciprocal from opset 6 to opset 5 --Reciprocal from opset 5 to opset 6 --Neg from opset 6 to opset 5 --Neg from opset 5 to opset 6 --Log from opset 6 to opset 5 --Log from opset 5 to opset 6 --LeakyRelu from opset 6 to opset 5 --LeakyRelu from opset 5 to opset 6 --InstanceNormalization from opset 6 to opset 5 --InstanceNormalization from opset 5 to opset 6 --HardSigmoid from opset 6 to opset 5 --HardSigmoid from opset 5 to opset 6 --Floor from opset 6 to opset 5 --Floor from opset 5 to opset 6 --Exp from opset 6 to opset 5 --Exp from opset 5 to opset 6 --Elu from opset 6 to opset 5 --Elu from opset 5 to opset 6 --Clip from opset 6 to opset 5 --Clip from opset 5 to opset 6 --Ceil from opset 6 to opset 5 --Ceil from opset 5 to opset 6 --Cast from opset 6 to opset 5 --Cast from opset 5 to opset 6 --Abs from opset 6 to opset 5 --Abs from opset 5 to opset 6 --Split from opset 2 to opset 1 --Split from opset 1 to opset 2 --Pad from opset 2 to opset 1 --Pad from opset 1 to opset 2 --LpPool from opset 2 to opset 1 --LpPool from opset 1 to opset 2 --GlobalLpPool from opset 2 to opset 1 --GlobalLpPool from opset 1 to opset 2 """ def convert_version(model, target_version): # type: (ModelProto, int) -> ModelProto if not isinstance(model, ModelProto): raise ValueError('VersionConverter only accepts ModelProto as model, incorrect type: {}'.format(type(model))) if not isinstance(target_version, int): raise ValueError('VersionConverter only accepts int as target_version, incorrect type: {}'.format(type(target_version))) model_str = model.SerializeToString() converted_model_str = C.convert_version(model_str, target_version) return onnx.load_from_string(converted_model_str)
"""onnx checker This implements graphalities that allows us to check whether a serialized proto is legal. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import functools from onnx import (ValueInfoProto, AttributeProto, TensorProto, SparseTensorProto, NodeProto, ModelProto, GraphProto, IR_VERSION) import onnx.onnx_cpp2py_export.checker as C import onnx.defs from google.protobuf.message import Message from typing import TypeVar, Callable, Any, Type, cast, Union, Text from six import string_types import onnx.shape_inference # TODO: This thing where we reserialize the protobuf back into the # string, only to deserialize it at the call site, is really goofy. # Stop doing that. # NB: Please don't edit this context! DEFAULT_CONTEXT = C.CheckerContext() DEFAULT_CONTEXT.ir_version = IR_VERSION # TODO: Maybe ONNX-ML should also be defaulted? DEFAULT_CONTEXT.opset_imports = {'': onnx.defs.onnx_opset_version()} FuncType = TypeVar('FuncType', bound=Callable[..., Any]) # TODO: This really doesn't seem worth the metaprogramming... def _create_checker(proto_type): # type: (Type[Message]) -> Callable[[FuncType], FuncType] def decorator(py_func): # type: (FuncType) -> FuncType @functools.wraps(py_func) def checker(proto, ctx=DEFAULT_CONTEXT): # type: (Message, C.CheckerContext) -> Any if not isinstance(proto, proto_type): raise RuntimeError( 'You cannot pass an object that is not of type {}'.format( proto_type.__name__)) return getattr(C, py_func.__name__)( proto.SerializeToString(), ctx) return cast(FuncType, checker) return decorator @_create_checker(ValueInfoProto) def check_value_info(value_info, ctx=DEFAULT_CONTEXT): # type: (ValueInfoProto, C.CheckerContext) -> None pass @_create_checker(TensorProto) def check_tensor(tensor, ctx=DEFAULT_CONTEXT): # type: (TensorProto, C.CheckerContext) -> None pass @_create_checker(AttributeProto) def check_attribute(attr, ctx=DEFAULT_CONTEXT): # type: (AttributeProto, C.CheckerContext) -> None pass @_create_checker(NodeProto) def check_node(node, ctx=DEFAULT_CONTEXT): # type: (NodeProto, C.CheckerContext) -> None pass @_create_checker(GraphProto) def check_graph(graph, ctx=DEFAULT_CONTEXT): # type: (GraphProto, C.CheckerContext) -> None pass def check_sparse_tensor(sparse, ctx=DEFAULT_CONTEXT): # type: (SparseTensorProto, C.CheckerContext) -> None C.check_sparse_tensor(sparse.SerializeToString(), ctx) def check_model(model, full_check=False): # type: (Union[ModelProto, Text], bool) -> None if isinstance(model, string_types): C.check_model_path(model) m = onnx.load(model) else: C.check_model(model.SerializeToString()) m = model if full_check: onnx.shape_inference.infer_shapes(m, True) ValidationError = C.ValidationError
# A library and utility for drawing ONNX nets. Most of this implementation has # been borrowed from the caffe2 implementation # https://github.com/caffe2/caffe2/blob/master/caffe2/python/net_drawer.py # # The script takes two required arguments: # -input: a path to a serialized ModelProto .pb file. # -output: a path to write a dot file representation of the graph # # Given this dot file representation, you can-for example-export this to svg # with the graphviz `dot` utility, like so: # # $ dot -Tsvg my_output.dot -o my_output.svg from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import argparse from collections import defaultdict import json from onnx import ModelProto, GraphProto, NodeProto import pydot # type: ignore from typing import Text, Any, Callable, Optional, Dict OP_STYLE = { 'shape': 'box', 'color': '#0F9D58', 'style': 'filled', 'fontcolor': '#FFFFFF' } BLOB_STYLE = {'shape': 'octagon'} _NodeProducer = Callable[[NodeProto, int], pydot.Node] def _escape_label(name): # type: (Text) -> Text # json.dumps is poor man's escaping return json.dumps(name) def _form_and_sanitize_docstring(s): # type: (Text) -> Text url = 'javascript:alert(' url += _escape_label(s).replace('"', '\'').replace('<', '').replace('>', '') url += ')' return url def GetOpNodeProducer(embed_docstring=False, **kwargs): # type: (bool, **Any) -> _NodeProducer def ReallyGetOpNode(op, op_id): # type: (NodeProto, int) -> pydot.Node if op.name: node_name = '%s/%s (op#%d)' % (op.name, op.op_type, op_id) else: node_name = '%s (op#%d)' % (op.op_type, op_id) for i, input in enumerate(op.input): node_name += '\n input' + str(i) + ' ' + input for i, output in enumerate(op.output): node_name += '\n output' + str(i) + ' ' + output node = pydot.Node(node_name, **kwargs) if embed_docstring: url = _form_and_sanitize_docstring(op.doc_string) node.set_URL(url) return node return ReallyGetOpNode def GetPydotGraph( graph, # type: GraphProto name=None, # type: Optional[Text] rankdir='LR', # type: Text node_producer=None, # type: Optional[_NodeProducer] embed_docstring=False, # type: bool ): # type: (...) -> pydot.Dot if node_producer is None: node_producer = GetOpNodeProducer(embed_docstring=embed_docstring, **OP_STYLE) pydot_graph = pydot.Dot(name, rankdir=rankdir) pydot_nodes = {} # type: Dict[Text, pydot.Node] pydot_node_counts = defaultdict(int) # type: Dict[Text, int] for op_id, op in enumerate(graph.node): op_node = node_producer(op, op_id) pydot_graph.add_node(op_node) for input_name in op.input: if input_name not in pydot_nodes: input_node = pydot.Node( _escape_label( input_name + str(pydot_node_counts[input_name])), label=_escape_label(input_name), **BLOB_STYLE ) pydot_nodes[input_name] = input_node else: input_node = pydot_nodes[input_name] pydot_graph.add_node(input_node) pydot_graph.add_edge(pydot.Edge(input_node, op_node)) for output_name in op.output: if output_name in pydot_nodes: pydot_node_counts[output_name] += 1 output_node = pydot.Node( _escape_label( output_name + str(pydot_node_counts[output_name])), label=_escape_label(output_name), **BLOB_STYLE ) pydot_nodes[output_name] = output_node pydot_graph.add_node(output_node) pydot_graph.add_edge(pydot.Edge(op_node, output_node)) return pydot_graph def main(): # type: () -> None parser = argparse.ArgumentParser(description="ONNX net drawer") parser.add_argument( "--input", type=Text, required=True, help="The input protobuf file.", ) parser.add_argument( "--output", type=Text, required=True, help="The output protobuf file.", ) parser.add_argument( "--rankdir", type=Text, default='LR', help="The rank direction of the pydot graph.", ) parser.add_argument( "--embed_docstring", action="store_true", help="Embed docstring as javascript alert. Useful for SVG format.", ) args = parser.parse_args() model = ModelProto() with open(args.input, 'rb') as fid: content = fid.read() model.ParseFromString(content) pydot_graph = GetPydotGraph( model.graph, name=model.graph.name, rankdir=args.rankdir, node_producer=GetOpNodeProducer( embed_docstring=args.embed_docstring, **OP_STYLE ), ) pydot_graph.write_dot(args.output) if __name__ == '__main__': main()
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from six import string_types from typing import Any, List, Text, Dict, Set from onnx import ModelProto, ValueInfoProto import onnx.checker def update_inputs_outputs_dims(model, input_dims, output_dims): # type: (ModelProto, Dict[Text, List[Any]], Dict[Text, List[Any]]) -> ModelProto """ This function updates the dimension sizes of the model's inputs and outputs to the values provided in input_dims and output_dims. if the dim value provided is negative, a unique dim_param will be set for that dimension. Example. if we have the following shape for inputs and outputs: shape(input_1) = ('b', 3, 'w', 'h') shape(input_2) = ('b', 4) and shape(output) = ('b', 'd', 5) The parameters can be provided as: input_dims = { "input_1": ['b', 3, 'w', 'h'], "input_2": ['b', 4], } output_dims = { "output": ['b', -1, 5] } Putting it together: model = onnx.load('model.onnx') updated_model = update_inputs_outputs_dims(model, input_dims, output_dims) onnx.save(updated_model, 'model.onnx') """ dim_param_set = set() # type: Set[Text] def init_dim_param_set(dim_param_set, value_infos): # type: (Set[Text], List[ValueInfoProto]) -> None for info in value_infos: shape = info.type.tensor_type.shape for dim in shape.dim: if dim.HasField('dim_param'): dim_param_set.add(dim.dim_param) # type: ignore init_dim_param_set(dim_param_set, model.graph.input) # type: ignore init_dim_param_set(dim_param_set, model.graph.output) # type: ignore init_dim_param_set(dim_param_set, model.graph.value_info) # type: ignore def update_dim(tensor, dim, j, name): # type: (ValueInfoProto, Any, int, Text) -> None dim_proto = tensor.type.tensor_type.shape.dim[j] if isinstance(dim, int): if dim >= 0: if dim_proto.HasField('dim_value') and dim_proto.dim_value != dim: raise ValueError('Unable to set dimension value to {} for axis {} of {}. Contradicts existing dimension value {}.' .format(dim, j, name, dim_proto.dim_value)) dim_proto.dim_value = dim else: generated_dim_param = name + '_' + str(j) if generated_dim_param in dim_param_set: raise ValueError('Unable to generate unique dim_param for axis {} of {}. Please manually provide a dim_param value.' .format(j, name)) dim_proto.dim_param = generated_dim_param elif isinstance(dim, string_types): dim_proto.dim_param = dim else: raise ValueError('Only int or str is accepted as dimension value, incorrect type: {}'.format(type(dim))) for input in model.graph.input: input_name = input.name input_dim_arr = input_dims[input_name] for j, dim in enumerate(input_dim_arr): update_dim(input, dim, j, input_name) for output in model.graph.output: output_name = output.name output_dim_arr = output_dims[output_name] for j, dim in enumerate(output_dim_arr): update_dim(output, dim, j, output_name) onnx.checker.check_model(model) return model
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from onnx import checker, helper, ModelProto, TensorProto, GraphProto, NodeProto, shape_inference from typing import Sequence, Text, Any, Tuple, List, Callable from onnx import numpy_helper import numpy as np # type: ignore import onnx.optimizer import unittest class TestOptimizer(unittest.TestCase): def _optimized(self, graph, opts, fixed_point=False, **kwargs): # type: (GraphProto, Sequence[Text], bool, **Any) -> ModelProto orig_model = helper.make_model(graph, producer_name='onnx-test', **kwargs) optimized_model = onnx.optimizer.optimize(orig_model, opts, fixed_point) checker.check_model(optimized_model) return optimized_model # input_types and output_types are lists of triples of (name, type, shape) def _make_fake_loop_op(self, body_nodes, # type: Sequence[NodeProto] input_types, # type: Sequence[Tuple[TensorProto.DataType, Sequence[int], Text]] output_types # type: Sequence[Tuple[TensorProto.DataType, Sequence[int], Text]] ): # type: (...) -> List[NodeProto] zero = helper.make_tensor( "trip_count_value", TensorProto.INT32, (), [10]) true = helper.make_tensor("condition", TensorProto.BOOL, (), [True]) # lcd is a dummy loop-carried dependency that only exists because # right now the schema checker is broken and assumes a variadic # input needs at least one value. graph_inputs = [helper.make_tensor_value_info("i", TensorProto.INT32, ()), helper.make_tensor_value_info("cond", TensorProto.BOOL, ())] for type, shape, name in input_types: graph_inputs.append( helper.make_tensor_value_info("_" + name, type, shape)) graph_outputs = [helper.make_tensor_value_info( "cond", TensorProto.BOOL, ())] for type, shape, name in output_types: graph_outputs.append( helper.make_tensor_value_info("_" + name, type, shape)) body_graph = helper.make_graph(body_nodes, "body_graph", graph_inputs, graph_outputs) loop_inputs = ["trip_count", "condition"] loop_inputs.extend([name for _, _, name in input_types]) # TODO: fix checker to accept 0-input variadic inputs if len(loop_inputs) == 2: loop_inputs.append("") loop_outputs = [name for _, _, name in output_types] retval_nodes = [ helper.make_node("Constant", [], ["trip_count"], value=zero), helper.make_node("Constant", [], ["condition"], value=true), helper.make_node("Loop", loop_inputs, loop_outputs, body=body_graph) ] return retval_nodes def _make_fake_if_op(self, true_nodes, # type: Sequence[NodeProto] false_nodes, # type: Sequence[NodeProto] output_types # type: Sequence[Tuple[TensorProto.DataType, Sequence[int], Text]] ): # type: (...) -> List[NodeProto] true = helper.make_tensor("condition", TensorProto.BOOL, (), [True]) true_graph = helper.make_graph(true_nodes, "true_graph", [], []) false_graph = helper.make_graph(false_nodes, "false_graph", [], []) if_inputs = ["condition"] if_outputs = [name for _, _, name in output_types] retval_nodes = [ helper.make_node("Constant", [], ["condition"], value=true), helper.make_node("If", if_inputs, if_outputs, then_branch=true_graph, else_branch=false_graph) ] return retval_nodes # fn is a function that takes a single node as argument def _visit_all_nodes_recursive(self, graph, fn): # type: (GraphProto, Callable[[NodeProto], None]) -> None for node in graph.node: fn(node) for attr in node.attribute: if attr.g is not None: self._visit_all_nodes_recursive(attr.g, fn) if len(attr.graphs): for gr in attr.graphs: self._visit_all_nodes_recursive(gr, fn) def test_get_available_passes(self): # type: () -> None # FIXME does not guarantees to be listing all graph = helper.make_graph([], "dummy_graph", [], []) list_of_passes = onnx.optimizer.get_available_passes() assert isinstance(list_of_passes, (list)) and len(list_of_passes) > 0 for pass_name in list_of_passes: # If pass_name is invalid it throws a RuntimeError self._optimized(graph, [pass_name]) def test_eliminate_identity_single_use(self): # type: () -> None nodes = [helper.make_node("Identity", ["X"], ["Y"])] nodes.extend(self._make_fake_loop_op( [helper.make_node("Identity", ["_Y"], ["_Y2"])], [(TensorProto.FLOAT, (5,), "Y")], [(TensorProto.FLOAT, (5,), "Y2")])) graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (5,))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("Y2", TensorProto.FLOAT, (5,))]) optimized_model = self._optimized(graph, ["eliminate_identity"]) # All identity nodes should have been eliminated def check_identity(node): # type: (NodeProto) -> None assert node.op_type != "Identity" self._visit_all_nodes_recursive(optimized_model.graph, check_identity) # Use of the output from the Identity node in the main graph should # have been replaced with the input to the identity node assert len(optimized_model.graph.output) == 2 assert optimized_model.graph.output[0].name == "X" # Use of the output from the Identity node in the loop graph should # have been replaced with the input to that identity node assert len(optimized_model.graph.node[2].attribute[0].g.output) == 2 assert optimized_model.graph.node[2].attribute[0].g.output[1].name == "_Y" def test_eliminate_identity_graph_output(self): # type: () -> None add = helper.make_node("Add", ["X", "Y"], ["A"]) identity = helper.make_node("Identity", ["A"], ["B"]) graph = helper.make_graph( [add, identity], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5,))], [helper.make_tensor_value_info("B", TensorProto.FLOAT, (5,))]) optimized_model = self._optimized(graph, ["eliminate_identity"]) for node in optimized_model.graph.node: assert node.op_type != "Identity" assert len(optimized_model.graph.node) == 1 def test_eliminate_identity_multiple_uses(self): # type: () -> None identity = helper.make_node("Identity", ["X"], ["Y"]) add = helper.make_node("Add", ["Z", "Y"], ["A"]) mul = helper.make_node("Mul", ["A", "Y"], ["B"]) graph = helper.make_graph( [identity, add, mul], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("Z", TensorProto.FLOAT, (5,))], [helper.make_tensor_value_info("B", TensorProto.FLOAT, (5,))]) optimized_model = self._optimized(graph, ["eliminate_identity"]) for node in optimized_model.graph.node: assert node.op_type != "Identity" assert len(optimized_model.graph.node) == 2 def test_nop_transpose_graph_output(self): # type: () -> None add = helper.make_node("Add", ["X", "Y"], ["A"]) trans = helper.make_node("Transpose", ["A"], ["B"], perm=[0, 1]) graph = helper.make_graph( [add, trans], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (2, 3))], [helper.make_tensor_value_info("B", TensorProto.FLOAT, (2, 3))]) # The existence of shape infos of graoh outputs is checked in _optimized optimized_model = self._optimized(graph, ["eliminate_nop_transpose"]) def check_transpose(node): # type: (NodeProto) -> None assert node.op_type != "Transpose" self._visit_all_nodes_recursive(optimized_model.graph, check_transpose) assert len(optimized_model.graph.node) == 1 def test_nop_transpose(self): # type: () -> None nodes = [helper.make_node("Transpose", ["X"], ["Y"], perm=[0, 1])] nodes.extend(self._make_fake_loop_op( [helper.make_node("Transpose", ["_Y"], ["_Y2"], perm=[0, 1])], [(TensorProto.FLOAT, (2, 3), "Y")], [(TensorProto.FLOAT, (2, 3), "Y2")])) graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (2, 3)), helper.make_tensor_value_info("Y2", TensorProto.FLOAT, (2, 3))]) optimized_model = self._optimized(graph, ["eliminate_nop_transpose"]) def check_transpose(node): # type: (NodeProto) -> None assert node.op_type != "Transpose" self._visit_all_nodes_recursive(optimized_model.graph, check_transpose) # Use of the output from the Transpose node in the main graph should # have been replaced with the input to the identity node assert len(optimized_model.graph.output) == 2 assert optimized_model.graph.output[0].name == "X" # Use of the output from the Transpose node in the loop graph should # have been replaced with the input to that identity node assert len(optimized_model.graph.node[2].attribute[0].g.output) == 2 assert optimized_model.graph.node[2].attribute[0].g.output[1].name == "_Y" def test_nop_transpose_default(self): # type: () -> None trans = helper.make_node("Transpose", ["X"], ["Y"]) graph = helper.make_graph( [trans], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (3, 2))]) optimized_model = self._optimized(graph, ["eliminate_nop_transpose"]) assert len(list(optimized_model.graph.node)) == 1 assert optimized_model.graph.node[0].op_type == "Transpose" def test_nop_pad_opset10(self): # type: () -> None nodes = [helper.make_node("Pad", ["X"], ["Y"], pads=[0, 0])] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (2, 3))]) assert len(graph.node) == 1 optimized_model = self._optimized(graph, ["eliminate_nop_pad"], False, opset_imports=[helper.make_opsetid("", 10)]) def check_pad(node): # type: (NodeProto) -> None assert node.op_type != "Pad" self._visit_all_nodes_recursive(optimized_model.graph, check_pad) assert len(optimized_model.graph.output) == 1 assert optimized_model.graph.output[0].name == "X" assert len(optimized_model.graph.node) == 0 def test_nop_pad_graph_output(self): # type: () -> None add = helper.make_node("Add", ["X", "Y"], ["A"]) pad = helper.make_node("Pad", ["A", "Pads"], ["B"]) graph = helper.make_graph( [add, pad], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("Pads", TensorProto.INT64, (2,))], [helper.make_tensor_value_info("B", TensorProto.FLOAT, (5,))], [helper.make_tensor("Pads", TensorProto.INT64, dims=(2,), vals=np.array([0, 0]).astype(np.int64).tobytes(), raw=True)]) # The existence of shape infos of graoh outputs is checked in _optimized optimized_model = self._optimized(graph, ["eliminate_nop_pad"]) def check_pad(node): # type: (NodeProto) -> None assert node.op_type != "Pad" self._visit_all_nodes_recursive(optimized_model.graph, check_pad) assert len(optimized_model.graph.node) == 1 def test_nop_pad(self): # type: () -> None nodes = [helper.make_node("Pad", ["X", "Pads"], ["Y"])] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3)), helper.make_tensor_value_info("Pads", TensorProto.INT64, (4,))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (2, 3))], [helper.make_tensor("Pads", TensorProto.INT64, dims=(4,), vals=np.array([0, 0, 0, 0]).astype(np.int64).tobytes(), raw=True)]) assert len(graph.node) == 1 optimized_model = self._optimized(graph, ["eliminate_nop_pad"]) def check_pad(node): # type: (NodeProto) -> None assert node.op_type != "Pad" self._visit_all_nodes_recursive(optimized_model.graph, check_pad) assert len(optimized_model.graph.output) == 1 assert optimized_model.graph.output[0].name == "X" assert len(optimized_model.graph.node) == 0 def test_nop_pad_default_opset10(self): # type: () -> None trans = helper.make_node("Pad", ["X"], ["Y"], pads=[0, 1]) graph = helper.make_graph( [trans], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (2, 4))]) optimized_model = self._optimized(graph, ["eliminate_nop_pad"], False, opset_imports=[helper.make_opsetid("", 10)]) assert len(list(optimized_model.graph.node)) == 1 assert optimized_model.graph.node[0].op_type == "Pad" def test_nop_pad_default(self): # type: () -> None trans = helper.make_node("Pad", ["X", "Pads"], ["Y"]) graph = helper.make_graph( [trans], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3)), helper.make_tensor_value_info("Pads", TensorProto.INT64, (4,))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (2, 4))], [helper.make_tensor("Pads", TensorProto.INT64, dims=(4,), vals=np.array([0, 1, 0, 0]).astype(np.int64).tobytes(), raw=True)]) optimized_model = self._optimized(graph, ["eliminate_nop_pad"]) assert len(list(optimized_model.graph.node)) == 1 assert optimized_model.graph.node[0].op_type == "Pad" def test_eliminate_unused_initializer(self): # type: () -> None add = helper.make_node("Add", ["X", "Y"], ["Z"]) graph = helper.make_graph( [add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 2)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (1, 2))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 2))], [helper.make_tensor("A", TensorProto.FLOAT, dims=(2, 3), vals=np.random.randn(2, 3).astype( np.float32).tobytes(), raw=True)]) optimized_model = self._optimized( graph, ["eliminate_unused_initializer"]) assert len(list(optimized_model.graph.initializer)) == 0 def test_eliminate_unused_initializer_input(self): # type: () -> None add = helper.make_node("Add", ["X", "Y"], ["Z"]) graph = helper.make_graph( [add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 2)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (1, 2)), helper.make_tensor_value_info("A", TensorProto.FLOAT, (2, 3))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 2))], [helper.make_tensor("A", TensorProto.FLOAT, dims=(2, 3), vals=np.random.randn(2, 3).astype( np.float32).tobytes(), raw=True)]) optimized_model = self._optimized( graph, ["eliminate_unused_initializer"]) assert len(list(optimized_model.graph.initializer)) == 0 assert len(optimized_model.graph.input) == 2 def test_eliminate_unused_initializer_no_eliminate_used_default(self): # type: () -> None add = helper.make_node("Add", ["X", "A"], ["Z"]) graph = helper.make_graph( [add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 2)), helper.make_tensor_value_info("A", TensorProto.FLOAT, (1, 2))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 2))], [helper.make_tensor("A", TensorProto.FLOAT, dims=(1, 2), vals=np.random.randn(1, 2).astype( np.float32).tobytes(), raw=True)]) optimized_model = self._optimized( graph, ["eliminate_unused_initializer"]) assert len(list(optimized_model.graph.initializer)) == 1 def test_eliminate_unused_initializer_no_eliminate_used(self): # type: () -> None nodes = [helper.make_node("Add", ["X", "A"], ["Z"])] nodes.extend(self._make_fake_loop_op( [helper.make_node("Add", ["_X", "_A"], ["_Z2"])], [(TensorProto.FLOAT, (1, 2), "X"), (TensorProto.FLOAT, (1, 2), "A")], [(TensorProto.FLOAT, (1, 2), "Z2")])) graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 2)), helper.make_tensor_value_info("A", TensorProto.FLOAT, (1, 2))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 2))], [helper.make_tensor("A", TensorProto.FLOAT, dims=(1, 2), vals=np.random.randn(1, 2).astype( np.float32).tobytes(), raw=True)]) optimized_model = self._optimized( graph, ["eliminate_unused_initializer"]) # Add, Constant (trip count), Constant (cond), Loop assert len(list(optimized_model.graph.node)) == 4 assert optimized_model.graph.node[0].op_type == "Add" assert optimized_model.graph.output[0].name == "Z" # Add assert len(optimized_model.graph.node[3].attribute[0].g.node) == 1 assert optimized_model.graph.node[3].attribute[0].g.node[0].op_type == 'Add' assert optimized_model.graph.node[3].attribute[0].g.output[1].name == '_Z2' assert len(list(optimized_model.graph.initializer)) == 1 def test_eliminate_unused_initializer_no_eliminate_output(self): # type: () -> None add = helper.make_node("Add", ["X", "Y"], ["Z"]) graph = helper.make_graph( [add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 2)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (1, 2)), helper.make_tensor_value_info("A", TensorProto.FLOAT, (2, 3))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 2)), helper.make_tensor_value_info("A", TensorProto.FLOAT, (2, 3))], [helper.make_tensor("A", TensorProto.FLOAT, dims=(2, 3), vals=np.random.randn(2, 3).astype( np.float32).tobytes(), raw=True)]) optimized_model = self._optimized( graph, ["eliminate_unused_initializer"]) assert len(list(optimized_model.graph.initializer)) == 1 assert "Z" in [o.name for o in optimized_model.graph.output] def test_extract_constant_to_initializer(self): # type: () -> None conv = helper.make_node("Conv", ["X", "Y"], ["Z"]) constant = helper.make_node("Constant", [], ["A"], value=helper.make_tensor( name="bias", data_type=TensorProto.FLOAT, dims=(16, 1, 1), vals=np.random.randn(16).astype(np.float32).tolist())) add = helper.make_node("Add", ["Z", "A"], ["B"]) graph = helper.make_graph( [conv, constant, add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 5, 3, 3)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (16, 5, 3, 3))], [helper.make_tensor_value_info( "B", TensorProto.FLOAT, (1, 16, 1, 1))], ) optimized_model = self._optimized( graph, ["extract_constant_to_initializer"]) self.assertEqual( set(vi.name for vi in optimized_model.graph.input), {'X', 'Y', 'A'}) self.assertEqual(len(optimized_model.graph.initializer), 1) init = optimized_model.graph.initializer[0] self.assertEqual(init.name, 'A') self.assertEqual(init.dims, [16, 1, 1]) self.assertEqual(init.data_type, TensorProto.FLOAT) self.assertEqual( [n.op_type for n in optimized_model.graph.node], ['Conv', 'Add']) def test_fuse_concats(self): # type: () -> None nodes = [helper.make_node("Concat", ["A", "B", "C"], ["X"], axis=0), helper.make_node("Concat", ["D", "E", "F"], ["Y"], axis=0), helper.make_node("Concat", ["X", "G", "Y"], ["Z"], axis=0)] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("A", TensorProto.FLOAT, (2, 3, 4)), helper.make_tensor_value_info("B", TensorProto.FLOAT, (4, 3, 4)), helper.make_tensor_value_info("C", TensorProto.FLOAT, (2, 3, 4)), helper.make_tensor_value_info("D", TensorProto.FLOAT, (4, 3, 4)), helper.make_tensor_value_info("E", TensorProto.FLOAT, (2, 3, 4)), helper.make_tensor_value_info("F", TensorProto.FLOAT, (4, 3, 4)), helper.make_tensor_value_info("G", TensorProto.FLOAT, (4, 3, 4))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (18, 3, 4))]) optimized_model = self._optimized( graph, ["fuse_consecutive_concats"], True) # two passes are needed to simplify the graph to its simplest state. assert len(optimized_model.graph.node) == 1 assert len(optimized_model.graph.node[0].input) == 7 assert optimized_model.graph.node[0].input == [ "A", "B", "C", "G", "D", "E", "F"] assert optimized_model.graph.node[0].op_type == "Concat" def test_fuse_concats_different_axis(self): # type: () -> None nodes = [helper.make_node("Concat", ["A", "B", "C"], ["X"], axis=0), helper.make_node("Concat", ["D", "E", "F"], ["Y"], axis=1), helper.make_node("Concat", ["X", "Y"], ["Z"], axis=2)] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("A", TensorProto.FLOAT, (2, 3, 4)), helper.make_tensor_value_info("B", TensorProto.FLOAT, (4, 3, 4)), helper.make_tensor_value_info("C", TensorProto.FLOAT, (2, 3, 4)), helper.make_tensor_value_info("D", TensorProto.FLOAT, (4, 3, 4)), helper.make_tensor_value_info("E", TensorProto.FLOAT, (4, 3, 4)), helper.make_tensor_value_info("F", TensorProto.FLOAT, (4, 3, 4))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (18, 3, 4))]) optimized_model = self._optimized( graph, ["fuse_consecutive_concats"], True) # two passes are needed to simplify the graph to its simplest state. assert optimized_model.graph == graph def test_fuse_transpose(self): # type: () -> None nodes = [helper.make_node("Transpose", ["X"], ["Y"], perm=[1, 0, 2]), helper.make_node("Transpose", ["Y"], ["Z"], perm=[2, 0, 1]), helper.make_node("Transpose", ["Z"], ["A"], perm=[2, 0, 1])] nodes.extend(self._make_fake_loop_op( [helper.make_node("Transpose", ["_X"], ["_Y2"], perm=[1, 0, 2]), helper.make_node("Transpose", ["_Y2"], ["_Y3"], perm=[2, 0, 1]), helper.make_node("Transpose", ["_Y3"], ["_Y4"], perm=[2, 0, 1])], [(TensorProto.FLOAT, (2, 3), "X")], [(TensorProto.FLOAT, (2, 3), "Y4")])) graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3, 4))], [helper.make_tensor_value_info("A", TensorProto.FLOAT, (2, 4, 3)), helper.make_tensor_value_info("Y4", TensorProto.FLOAT, (4, 3, 2))]) original_model = helper.make_model(graph) shape_inference.infer_shapes(original_model) optimized_model = self._optimized( graph, ["fuse_consecutive_transposes"]) shape_inference.infer_shapes(optimized_model) # Transpose, Constant (trip count), Constant (cond), Loop assert len(list(optimized_model.graph.node)) == 4 # Transpose assert len(optimized_model.graph.node[3].attribute[0].g.node) == 1 def test_fuse_transpose_default_graph_output(self): # type: () -> None add = helper.make_node("Add", ["X", "Y"], ["A"]) trans1 = helper.make_node("Transpose", ["A"], ["B"]) trans2 = helper.make_node("Transpose", ["B"], ["C"]) graph = helper.make_graph( [add, trans1, trans2], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (2, 3))], [helper.make_tensor_value_info("C", TensorProto.FLOAT, (2, 3))]) # The existence of shape infos of graoh outputs is checked in _optimized optimized_model = self._optimized(graph, ["fuse_consecutive_transposes"]) def check_transpose(node): # type: (NodeProto) -> None assert node.op_type != "Transpose" self._visit_all_nodes_recursive(optimized_model.graph, check_transpose) assert len(optimized_model.graph.node) == 1 def test_fuse_transpose_default(self): # type: () -> None trans1 = helper.make_node("Transpose", ["X"], ["Y"]) trans2 = helper.make_node("Transpose", ["Y"], ["Z"]) graph = helper.make_graph( [trans1, trans2], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3, 4))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (2, 3, 4))]) optimized_model = self._optimized( graph, ["fuse_consecutive_transposes"]) assert len(list(optimized_model.graph.node)) == 0 def test_fuse_transpose_default_no_fuse(self): # type: () -> None trans1 = helper.make_node("Transpose", ["X"], ["Y"]) trans2 = helper.make_node("Transpose", ["Y"], ["Z"], perm=[0, 1, 2]) graph = helper.make_graph( [trans1, trans2], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3, 4))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (4, 3, 2))]) optimized_model = self._optimized( graph, ["fuse_consecutive_transposes"]) assert len(list(optimized_model.graph.node)) == 2 for node in optimized_model.graph.node: assert node.op_type == "Transpose" def test_fuse_transpose_into_gemm(self): # type: () -> None nodes = [helper.make_node("Transpose", ["X"], ["A"], perm=[1, 0]), helper.make_node("Transpose", ["Y"], ["B"], perm=[1, 0]), helper.make_node("Gemm", ["A", "B", "C"], ["Z"])] nodes.extend(self._make_fake_loop_op( [helper.make_node("Transpose", ["_X"], ["_A"], perm=[1, 0]), helper.make_node("Transpose", ["_Y"], ["_B"], perm=[1, 0]), helper.make_node("Gemm", ["_A", "_B", "_C"], ["_Z2"])], [(TensorProto.FLOAT, (2, 3), "X"), (TensorProto.FLOAT, (5, 2), "Y"), (TensorProto.FLOAT, (3, 5), "C")], [(TensorProto.FLOAT, (2, 3), "Z2")])) graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5, 2)), helper.make_tensor_value_info("C", TensorProto.FLOAT, (3, 5))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (3, 5))]) optimized_model = self._optimized(graph, ["fuse_transpose_into_gemm"]) # Gemm, Constant (trip count), Constant (cond), Loop assert len(list(optimized_model.graph.node)) == 4 assert optimized_model.graph.node[0].op_type == "Gemm" # Gemm assert len(optimized_model.graph.node[3].attribute[0].g.node) == 1 assert optimized_model.graph.node[3].attribute[0].g.node[0].op_type == "Gemm" def test_fuse_add_bias_into_conv_use_weight_shape(self): # type: () -> None nodes = [helper.make_node("Conv", ["X", "Y"], ["Z"]), helper.make_node("Add", ["Z", "A"], ["B"])] nodes.extend(self._make_fake_loop_op( [helper.make_node("Conv", ["_X", "_Y"], ["_Z"]), helper.make_node("Add", ["_Z", "_A"], ["_B2"])], [(TensorProto.FLOAT, (1, 5, 3, 3), "X"), (TensorProto.FLOAT, (16, 5, 3, 3), "Y"), (TensorProto.FLOAT, (16, 1, 1), "A")], [(TensorProto.FLOAT, (1, 16, 3, 3), "B2")])) graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 5, 3, 3)), helper.make_tensor_value_info( "Y", TensorProto.FLOAT, (16, 5, 3, 3)), helper.make_tensor_value_info("A", TensorProto.FLOAT, (16, 1, 1))], [helper.make_tensor_value_info( "B", TensorProto.FLOAT, (1, 16, 1, 1))], ) optimized_model = self._optimized(graph, ["fuse_add_bias_into_conv"]) # Squeeze, Conv, Constant (trip count), Constant (condition), Loop assert len(list(optimized_model.graph.node)) == 5 assert optimized_model.graph.node[0].op_type == 'Squeeze' assert optimized_model.graph.node[1].op_type == 'Conv' assert optimized_model.graph.output[0].name == 'Z' # Squeeze, Conv assert len(optimized_model.graph.node[4].attribute[0].g.node) == 2 assert optimized_model.graph.node[4].attribute[0].g.node[0].op_type == 'Squeeze' assert optimized_model.graph.node[4].attribute[0].g.node[1].op_type == 'Conv' # Output 1 since 0 is 'cond' assert optimized_model.graph.node[4].attribute[0].g.output[1].name == '_Z' def test_fuse_add_bias_into_conv_use_weight_shape_with_tile(self): # type: () -> None conv = helper.make_node("Conv", ["X", "Y"], ["Z"]) add = helper.make_node("Add", ["Z", "A"], ["B"]) graph = helper.make_graph( [conv, add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 5, 3, 3)), helper.make_tensor_value_info( "Y", TensorProto.FLOAT, (16, 5, 3, 3)), helper.make_tensor_value_info("A", TensorProto.FLOAT, (1,))], [helper.make_tensor_value_info( "B", TensorProto.FLOAT, (1, 16, 1, 1))], ) optimized_model = self._optimized(graph, ["fuse_add_bias_into_conv"]) assert len(list(optimized_model.graph.node)) == 3 assert len(optimized_model.graph.value_info) == 1 assert optimized_model.graph.value_info[0].type.tensor_type.elem_type == TensorProto.INT64 assert len( optimized_model.graph.value_info[0].type.tensor_type.shape.dim) == 1 assert optimized_model.graph.node[0].op_type == 'Constant' assert optimized_model.graph.node[1].op_type == 'Tile' assert optimized_model.graph.node[2].op_type == 'Conv' assert optimized_model.graph.output[0].name == 'Z' def test_fuse_add_bias_into_conv_use_conv_shape(self): # type: () -> None sub = helper.make_node("Sub", ["M", "N"], ["Y"]) conv = helper.make_node("Conv", ["X", "Y"], ["Z"]) add = helper.make_node("Add", ["Z", "A"], ["B"]) graph = helper.make_graph( [sub, conv, add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 5, 3, 3)), helper.make_tensor_value_info( "M", TensorProto.FLOAT, (16, 5, 3, 3)), helper.make_tensor_value_info( "N", TensorProto.FLOAT, (16, 5, 3, 3)), helper.make_tensor_value_info("A", TensorProto.FLOAT, (1, 16, 1, 1))], [helper.make_tensor_value_info( "B", TensorProto.FLOAT, (1, 16, 1, 1))], value_info=[ helper.make_tensor_value_info( "Z", TensorProto.FLOAT, (1, 16, 1, 1)) ], ) optimized_model = self._optimized(graph, ["fuse_add_bias_into_conv"]) assert len(optimized_model.graph.node) == 3 assert optimized_model.graph.node[0].op_type == 'Sub' assert optimized_model.graph.node[1].op_type == 'Squeeze' assert optimized_model.graph.node[2].op_type == 'Conv' assert optimized_model.graph.output[0].name == 'Z' assert optimized_model.graph.output[0].type.tensor_type.elem_type == TensorProto.FLOAT assert len( optimized_model.graph.output[0].type.tensor_type.shape.dim) == 4 def test_fuse_add_bias_into_conv_use_move_constant(self): # type: () -> None conv = helper.make_node("Conv", ["X", "Y"], ["Z"]) constant = helper.make_node("Constant", [], ["A"], value=helper.make_tensor( name="bias", data_type=TensorProto.FLOAT, dims=(16, 1, 1), vals=np.random.randn(16).astype(np.float32).tolist())) add = helper.make_node("Add", ["Z", "A"], ["B"]) graph = helper.make_graph( [conv, constant, add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 5, 3, 3)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (16, 5, 3, 3))], [helper.make_tensor_value_info( "B", TensorProto.FLOAT, (1, 16, 1, 1))], value_info=[ helper.make_tensor_value_info( "A", TensorProto.FLOAT, (16, 1, 1)), ] ) optimized_model = self._optimized(graph, ["fuse_add_bias_into_conv"]) assert len(optimized_model.graph.node) == 3 assert optimized_model.graph.node[0].op_type == 'Constant' assert optimized_model.graph.node[1].op_type == 'Squeeze' assert optimized_model.graph.node[2].op_type == 'Conv' assert optimized_model.graph.output[0].name == 'Z' assert optimized_model.graph.output[0].type.tensor_type.elem_type == TensorProto.FLOAT assert len( optimized_model.graph.output[0].type.tensor_type.shape.dim) == 4 def test_fuse_add_bias_into_conv_squeeze_1d_bias_no_fuse(self): # type: () -> None conv = helper.make_node("Conv", ["X", "Y"], ["Z"]) add = helper.make_node("Add", ["Z", "A"], ["B"]) graph = helper.make_graph( [conv, add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 5, 3, 3)), helper.make_tensor_value_info( "Y", TensorProto.FLOAT, (16, 5, 3, 3)), helper.make_tensor_value_info("A", TensorProto.FLOAT, (3,))], [helper.make_tensor_value_info( "B", TensorProto.FLOAT, (1, 16, 1, 3))], value_info=[ helper.make_tensor_value_info( "Z", TensorProto.FLOAT, (1, 16, 1, 1)), ] ) optimized_model = self._optimized(graph, ["fuse_add_bias_into_conv"]) assert len(list(optimized_model.graph.node)) == 2 assert optimized_model.graph.node[0].op_type == 'Conv' assert optimized_model.graph.node[1].op_type == 'Add' def test_fuse_add_bias_into_conv_squeeze_3d_bias_no_fuse(self): # type: () -> None conv = helper.make_node("Conv", ["X", "Y"], ["Z"]) add = helper.make_node("Add", ["Z", "A"], ["B"]) graph = helper.make_graph( [conv, add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 5, 3, 3)), helper.make_tensor_value_info( "Y", TensorProto.FLOAT, (16, 5, 3, 3)), helper.make_tensor_value_info("A", TensorProto.FLOAT, (16, 3, 3))], [helper.make_tensor_value_info( "B", TensorProto.FLOAT, (1, 16, 3, 3))], value_info=[ helper.make_tensor_value_info( "Z", TensorProto.FLOAT, (1, 16, 1, 1)), ] ) optimized_model = self._optimized(graph, ["fuse_add_bias_into_conv"]) assert len(list(optimized_model.graph.node)) == 2 assert optimized_model.graph.node[0].op_type == 'Conv' assert optimized_model.graph.node[1].op_type == 'Add' def test_fuse_add_bias_into_conv_squeeze_4d_bias_no_fuse(self): # type: () -> None conv = helper.make_node("Conv", ["X", "Y"], ["Z"]) add = helper.make_node("Add", ["Z", "A"], ["B"]) graph = helper.make_graph( [conv, add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 5, 3, 3)), helper.make_tensor_value_info( "Y", TensorProto.FLOAT, (16, 5, 3, 3)), helper.make_tensor_value_info("A", TensorProto.FLOAT, (1, 16, 3, 3))], [helper.make_tensor_value_info( "B", TensorProto.FLOAT, (1, 16, 3, 3))] ) optimized_model = self._optimized(graph, ["fuse_add_bias_into_conv"]) assert len(list(optimized_model.graph.node)) == 2 assert optimized_model.graph.node[0].op_type == 'Conv' assert optimized_model.graph.node[1].op_type == 'Add' def test_fuse_matmul_add_bias_into_gemm(self): # type: () -> None matmul = helper.make_node("MatMul", ["X", "Y"], ["Z"]) add = helper.make_node("Add", ["Z", "B"], ["A"]) graph = helper.make_graph( [matmul, add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (32, 10)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (10, 16)), helper.make_tensor_value_info("B", TensorProto.FLOAT, (16,))], [helper.make_tensor_value_info("A", TensorProto.FLOAT, (32, 16))] ) optimized_model = self._optimized(graph, ["fuse_matmul_add_bias_into_gemm"]) assert len(list(optimized_model.graph.node)) == 1 assert optimized_model.graph.node[0].op_type == "Gemm" def test_fuse_matmul_add_bias_into_gemm_2d_bias(self): # type: () -> None matmul = helper.make_node("MatMul", ["X", "Y"], ["Z"]) add = helper.make_node("Add", ["Z", "B"], ["A"]) graph = helper.make_graph( [matmul, add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (32, 10)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (10, 16)), helper.make_tensor_value_info("B", TensorProto.FLOAT, (1, 16))], [helper.make_tensor_value_info("A", TensorProto.FLOAT, (32, 16))] ) optimized_model = self._optimized(graph, ["fuse_matmul_add_bias_into_gemm"]) assert len(list(optimized_model.graph.node)) == 1 assert optimized_model.graph.node[0].op_type == "Gemm" def test_fuse_matmul_add_bias_into_gemm_2d_bias_same_shape(self): # type: () -> None matmul = helper.make_node("MatMul", ["X", "Y"], ["Z"]) add = helper.make_node("Add", ["Z", "B"], ["A"]) graph = helper.make_graph( [matmul, add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (32, 10)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (10, 16)), helper.make_tensor_value_info("B", TensorProto.FLOAT, (32, 16))], [helper.make_tensor_value_info("A", TensorProto.FLOAT, (32, 16))] ) optimized_model = self._optimized(graph, ["fuse_matmul_add_bias_into_gemm"]) assert len(list(optimized_model.graph.node)) == 1 assert optimized_model.graph.node[0].op_type == "Gemm" def test_fuse_matmul_add_bias_into_gemm_2d_bias_bcast_no_fuse(self): # type: () -> None matmul = helper.make_node("MatMul", ["X", "Y"], ["Z"]) add = helper.make_node("Add", ["Z", "B"], ["A"]) graph = helper.make_graph( [matmul, add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 10)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (10, 16)), helper.make_tensor_value_info("B", TensorProto.FLOAT, (16, 16))], [helper.make_tensor_value_info("A", TensorProto.FLOAT, (16, 16))] ) optimized_model = self._optimized(graph, ["fuse_matmul_add_bias_into_gemm"]) assert optimized_model.graph == graph def test_fuse_matmul_add_bias_into_gemm_3d_matmul_no_fuse(self): # type: () -> None matmul = helper.make_node("MatMul", ["X", "Y"], ["Z"]) add = helper.make_node("Add", ["Z", "B"], ["A"]) graph = helper.make_graph( [matmul, add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3, 4)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (2, 4, 3)), helper.make_tensor_value_info("B", TensorProto.FLOAT, (3, 3))], [helper.make_tensor_value_info("A", TensorProto.FLOAT, (2, 3, 3))] ) optimized_model = self._optimized(graph, ["fuse_matmul_add_bias_into_gemm"]) assert optimized_model.graph == graph def test_fuse_matmul_add_bias_into_gemm_3d_bias_no_fuse(self): # type: () -> None matmul = helper.make_node("MatMul", ["X", "Y"], ["Z"]) add = helper.make_node("Add", ["Z", "B"], ["A"]) graph = helper.make_graph( [matmul, add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (32, 10)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (10, 16)), helper.make_tensor_value_info("B", TensorProto.FLOAT, (4, 1, 16))], [helper.make_tensor_value_info("A", TensorProto.FLOAT, (32, 16))] ) optimized_model = self._optimized(graph, ["fuse_matmul_add_bias_into_gemm"]) assert optimized_model.graph == graph def test_fuse_matmul_add_bias_into_gemm_multiple_use_no_fuse(self): # type: () -> None matmul = helper.make_node("MatMul", ["X", "Y"], ["Z"]) identity = helper.make_node("Identity", ["Z"], ["A1"]) add = helper.make_node("Add", ["Z", "B"], ["A2"]) graph = helper.make_graph( [matmul, add, identity], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (32, 10)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (10, 16)), helper.make_tensor_value_info("B", TensorProto.FLOAT, (1, 16))], [helper.make_tensor_value_info("A1", TensorProto.FLOAT, (32, 16)), helper.make_tensor_value_info("A2", TensorProto.FLOAT, (32, 16))] ) optimized_model = self._optimized(graph, ["fuse_matmul_add_bias_into_gemm"]) assert optimized_model.graph == graph def test_fuse_pad_into_conv_no_optional_value_opset10(self): # type: () -> None pad = helper.make_node( "Pad", ["X"], ["P"], mode="constant", pads=[0, 0, 0, 0, 0, 0, 1, 1] ) conv = helper.make_node("Conv", ["P", "Y"], ["Z"]) graph = helper.make_graph( [pad, conv], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 5, 2, 2)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (16, 5, 3, 3))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 16, 1, 1))] ) optimized_model = self._optimized(graph, ["fuse_pad_into_conv"], False, opset_imports=[helper.make_opsetid("", 10)]) assert len(list(optimized_model.graph.node)) == 1 assert optimized_model.graph.node[0].op_type == "Conv" assert optimized_model.graph.node[0].attribute[0].name == "pads" assert list(optimized_model.graph.node[0].attribute[0].ints) == [0, 0, 1, 1] def test_fuse_pad_into_conv_no_optional_value(self): # type: () -> None pad = helper.make_node( "Pad", ["X", "Pads"], ["P"], mode="constant" ) conv = helper.make_node("Conv", ["P", "Y"], ["Z"]) graph = helper.make_graph( [pad, conv], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 5, 2, 2)), helper.make_tensor_value_info("Pads", TensorProto.INT64, (8,)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (16, 5, 3, 3))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 16, 1, 1))], [helper.make_tensor("Pads", TensorProto.INT64, dims=(8,), vals=np.array([0, 0, 0, 0, 0, 0, 1, 1]).astype(np.int64).tobytes(), raw=True)]) optimized_model = self._optimized(graph, ["fuse_pad_into_conv"]) assert len(list(optimized_model.graph.node)) == 1 assert optimized_model.graph.node[0].op_type == "Conv" assert optimized_model.graph.node[0].attribute[0].name == "pads" assert list(optimized_model.graph.node[0].attribute[0].ints) == [0, 0, 1, 1] def test_fuse_pad_into_conv_with_optional_value(self): # type: () -> None pad = helper.make_node( "Pad", ["X", "Pads", "Constant_value"], ["P"], mode="constant" ) conv = helper.make_node("Conv", ["P", "Y"], ["Z"]) graph = helper.make_graph( [pad, conv], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 5, 2, 2)), helper.make_tensor_value_info("Pads", TensorProto.INT64, (8,)), helper.make_tensor_value_info("Constant_value", TensorProto.FLOAT, ()), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (16, 5, 3, 3))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 16, 1, 1))], [helper.make_tensor("Pads", TensorProto.INT64, dims=(8,), vals=np.array([0, 0, 0, 0, 0, 0, 1, 1]).astype(np.int64).tobytes(), raw=True), helper.make_tensor("Constant_value", TensorProto.FLOAT, dims=(), vals=np.array([0]).astype(np.float32).tobytes(), raw=True)]) optimized_model = self._optimized(graph, ["fuse_pad_into_conv"]) assert len(list(optimized_model.graph.node)) == 1 assert optimized_model.graph.node[0].op_type == "Conv" assert optimized_model.graph.node[0].attribute[0].name == "pads" assert list(optimized_model.graph.node[0].attribute[0].ints) == [0, 0, 1, 1] def test_fuse_pad_into_conv_with_nonzero_optional_value(self): # type: () -> None pad = helper.make_node( "Pad", ["X", "Pads", "Constant_value"], ["P"], mode="constant" ) conv = helper.make_node("Conv", ["P", "Y"], ["Z"]) graph = helper.make_graph( [pad, conv], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 5, 2, 2)), helper.make_tensor_value_info("Pads", TensorProto.INT64, (8,)), helper.make_tensor_value_info("Constant_value", TensorProto.FLOAT, ()), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (16, 5, 3, 3))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 16, 1, 1))], [helper.make_tensor("Pads", TensorProto.INT64, dims=(8,), vals=np.array([0, 0, 0, 0, 0, 0, 1, 1]).astype(np.int64).tobytes(), raw=True), helper.make_tensor("Constant_value", TensorProto.FLOAT, dims=(), vals=np.array([25]).astype(np.float32).tobytes(), # non-zero Constant_value -> so no pad raw=True)]) optimized_model = self._optimized(graph, ["fuse_pad_into_conv"]) assert optimized_model.graph == graph def test_fuse_pad_into_conv_1d_opset10(self): # type: () -> None pad = helper.make_node( "Pad", ["X"], ["P"], mode="constant", pads=[0, 0, 1, 0, 0, 1] ) conv = helper.make_node("Conv", ["P", "Y"], ["Z"]) graph = helper.make_graph( [pad, conv], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 5, 30)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (16, 5, 32))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 16, 1))] ) optimized_model = self._optimized(graph, ["fuse_pad_into_conv"], False, opset_imports=[helper.make_opsetid("", 10)]) assert len(list(optimized_model.graph.node)) == 1 assert optimized_model.graph.node[0].op_type == "Conv" assert optimized_model.graph.node[0].attribute[0].name == "pads" assert list(optimized_model.graph.node[0].attribute[0].ints) == [1, 1] def test_fuse_pad_into_conv_1d(self): # type: () -> None pad = helper.make_node( "Pad", ["X", "Pads"], ["P"], mode="constant" ) conv = helper.make_node("Conv", ["P", "Y"], ["Z"]) graph = helper.make_graph( [pad, conv], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 5, 30)), helper.make_tensor_value_info("Pads", TensorProto.INT64, (6,)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (16, 5, 32))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 16, 1))], [helper.make_tensor("Pads", TensorProto.INT64, dims=(6,), vals=np.array([0, 0, 1, 0, 0, 1]).astype(np.int64).tobytes(), raw=True)]) optimized_model = self._optimized(graph, ["fuse_pad_into_conv"]) assert len(list(optimized_model.graph.node)) == 1 assert optimized_model.graph.node[0].op_type == "Conv" assert optimized_model.graph.node[0].attribute[0].name == "pads" assert list(optimized_model.graph.node[0].attribute[0].ints) == [1, 1] def test_fuse_pad_into_conv_existing_conv_pad_opset10(self): # type: () -> None pad = helper.make_node( "Pad", ["X"], ["P"], mode="constant", pads=[0, 0, 0, 0, 0, 0, 1, 1] ) conv = helper.make_node( "Conv", ["P", "Y"], ["Z"], pads=[1, 1, 0, 0] ) graph = helper.make_graph( [pad, conv], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 5, 2, 2)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (16, 5, 4, 4))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 16, 1, 1))] ) optimized_model = self._optimized(graph, ["fuse_pad_into_conv"], False, opset_imports=[helper.make_opsetid("", 10)]) assert len(list(optimized_model.graph.node)) == 1 assert optimized_model.graph.node[0].op_type == "Conv" assert optimized_model.graph.node[0].attribute[0].name == "pads" assert list(optimized_model.graph.node[0].attribute[0].ints) == [1, 1, 1, 1] def test_fuse_pad_into_conv_existing_conv_pad(self): # type: () -> None pad = helper.make_node( "Pad", ["X", "Pads"], ["P"], mode="constant" ) conv = helper.make_node( "Conv", ["P", "Y"], ["Z"], pads=[1, 1, 0, 0] ) graph = helper.make_graph( [pad, conv], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 5, 2, 2)), helper.make_tensor_value_info("Pads", TensorProto.INT64, (8,)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (16, 5, 4, 4))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 16, 1, 1))], [helper.make_tensor("Pads", TensorProto.INT64, dims=(8,), vals=np.array([0, 0, 0, 0, 0, 0, 1, 1]).astype(np.int64).tobytes(), raw=True)]) optimized_model = self._optimized(graph, ["fuse_pad_into_conv"]) assert len(list(optimized_model.graph.node)) == 1 assert optimized_model.graph.node[0].op_type == "Conv" assert optimized_model.graph.node[0].attribute[0].name == "pads" assert list(optimized_model.graph.node[0].attribute[0].ints) == [1, 1, 1, 1] def test_fuse_pad_into_conv_pad_feature_no_fuse_opset10(self): # type: () -> None pad = helper.make_node( "Pad", ["X"], ["P"], mode="constant", pads=[0, 1, 0, 0, 0, 0, 0, 0] ) conv = helper.make_node("Conv", ["P", "Y"], ["Z"]) graph = helper.make_graph( [pad, conv], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 4, 3, 3)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (16, 5, 3, 3))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 16, 1, 1))] ) optimized_model = self._optimized(graph, ["fuse_pad_into_conv"], False, opset_imports=[helper.make_opsetid("", 10)]) assert optimized_model.graph == graph def test_fuse_pad_into_conv_pad_feature_no_fuse(self): # type: () -> None pad = helper.make_node( "Pad", ["X", "Pads"], ["P"], mode="constant" ) conv = helper.make_node("Conv", ["P", "Y"], ["Z"]) graph = helper.make_graph( [pad, conv], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 4, 3, 3)), helper.make_tensor_value_info("Pads", TensorProto.INT64, (8,)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (16, 5, 3, 3))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 16, 1, 1))], [helper.make_tensor("Pads", TensorProto.INT64, dims=(8,), vals=np.array([0, 1, 0, 0, 0, 0, 0, 0]).astype(np.int64).tobytes(), raw=True)]) optimized_model = self._optimized(graph, ["fuse_pad_into_conv"]) assert optimized_model.graph == graph def test_fuse_pad_into_conv_negative_pad_no_fuse_opset10(self): # type: () -> None pad = helper.make_node( "Pad", ["X"], ["P"], mode="constant", pads=[0, 0, 0, 0, 0, 0, -1, -1] ) conv = helper.make_node("Conv", ["P", "Y"], ["Z"]) graph = helper.make_graph( [pad, conv], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 5, 4, 4)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (16, 5, 3, 3))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 16, 1, 1))] ) optimized_model = self._optimized(graph, ["fuse_pad_into_conv"], False, opset_imports=[helper.make_opsetid("", 10)]) assert optimized_model.graph == graph def test_fuse_pad_into_conv_negative_pad_no_fuse(self): # type: () -> None pad = helper.make_node( "Pad", ["X", "Pads"], ["P"], mode="constant" ) conv = helper.make_node("Conv", ["P", "Y"], ["Z"]) graph = helper.make_graph( [pad, conv], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 5, 4, 4)), helper.make_tensor_value_info("Pads", TensorProto.INT64, (8,)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (16, 5, 3, 3))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 16, 1, 1))], [helper.make_tensor("Pads", TensorProto.INT64, dims=(8,), vals=np.array([0, 0, 0, 0, 0, 0, -1, -1]).astype(np.int64).tobytes(), raw=True)]) optimized_model = self._optimized(graph, ["fuse_pad_into_conv"]) assert optimized_model.graph == graph def test_fuse_pad_into_conv_reflection_pad_no_fuse_opset10(self): # type: () -> None pad = helper.make_node( "Pad", ["X"], ["P"], mode="reflect", pads=[0, 0, 0, 0, 0, 0, 1, 1] ) conv = helper.make_node("Conv", ["P", "Y"], ["Z"]) graph = helper.make_graph( [pad, conv], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 5, 2, 2)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (16, 5, 3, 3))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 16, 1, 1))] ) optimized_model = self._optimized(graph, ["fuse_pad_into_conv"], False, opset_imports=[helper.make_opsetid("", 10)]) assert optimized_model.graph == graph def test_fuse_pad_into_conv_reflection_pad_no_fuse(self): # type: () -> None pad = helper.make_node( "Pad", ["X", "Pads"], ["P"], mode="reflect" ) conv = helper.make_node("Conv", ["P", "Y"], ["Z"]) graph = helper.make_graph( [pad, conv], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 5, 2, 2)), helper.make_tensor_value_info("Pads", TensorProto.INT64, (8,)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (16, 5, 3, 3))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 16, 1, 1))], [helper.make_tensor("Pads", TensorProto.INT64, dims=(8,), vals=np.array([0, 0, 0, 0, 0, 0, 1, 1]).astype(np.int64).tobytes(), raw=True)]) optimized_model = self._optimized(graph, ["fuse_pad_into_conv"]) assert optimized_model.graph == graph def test_fuse_consecutive_squeezes(self): # type: () -> None nodes = [helper.make_node("Squeeze", ["X"], ["Y"], axes=[0, 4, 5]), helper.make_node("Squeeze", ["Y"], ["Z"], axes=[0, 3])] nodes.extend(self._make_fake_loop_op( [helper.make_node("Squeeze", ["_X"], ["_Y"], axes=[0, 4, 5]), helper.make_node("Squeeze", ["_Y"], ["_Z2"], axes=[0, 3])], [(TensorProto.FLOAT, (1, 1, 2, 3, 1, 1, 1, 1, 8, 9), "X")], [(TensorProto.FLOAT, (2, 3, 1, 8, 9), "Z2")])) graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info( "X", TensorProto.FLOAT, (1, 1, 2, 3, 1, 1, 1, 1, 8, 9))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (2, 3, 1, 8, 9))]) optimized_model = self._optimized(graph, ["fuse_consecutive_squeezes"]) # Squeeze, Constant (trip count), Constant (cond), Loop assert optimized_model.graph.node[0].op_type == "Squeeze" assert list(optimized_model.graph.node[0].attribute[0].ints) == [ 0, 1, 4, 5, 6] assert len(list(optimized_model.graph.node)) == 4 def test_fuse_consecutive_squeezes_default(self): # type: () -> None squeeze1 = helper.make_node("Squeeze", ["X"], ["Y"], axes=[0, 4, 5]) squeeze2 = helper.make_node("Squeeze", ["Y"], ["Z"], axes=[0, 3]) squeeze3 = helper.make_node("Squeeze", ["Z"], ["A"], axes=[2]) nodes = [squeeze1, squeeze2, squeeze3] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info( "X", TensorProto.FLOAT, (1, 1, 2, 3, 1, 1, 1, 1, 8, 9))], [helper.make_tensor_value_info("A", TensorProto.FLOAT, (2, 3, 8, 9))]) optimized_model = self._optimized(graph, ["fuse_consecutive_squeezes"]) assert optimized_model.graph.node[0].op_type == "Squeeze" assert list(optimized_model.graph.node[0].attribute[0].ints) == [ 0, 1, 4, 5, 6, 7] assert len(list(optimized_model.graph.node)) == 1 def test_fuse_consecutive_squeezes_random(self): # type: () -> None x_shape = [1, 1, 1, 3, 4, 1, 6, 1, 1, 9] s1_one_indices = [i for i, a in enumerate(x_shape) if a == 1] s1_axes = np.random.choice(s1_one_indices, size=np.random.randint(low=1, high=len(s1_one_indices) - 1), replace=False) s2_x_shape = [a for i, a in enumerate(x_shape) if i not in s1_axes] s2_one_indices = [i for i, a in enumerate(s2_x_shape) if a == 1] s2_axes = s2_one_indices squeeze1 = helper.make_node("Squeeze", ["X"], ["Y"], axes=s1_axes) squeeze2 = helper.make_node("Squeeze", ["Y"], ["Z"], axes=s2_axes) nodes = [squeeze1, squeeze2] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, x_shape)], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (3, 4, 6, 9))]) optimized_model = self._optimized(graph, ["fuse_consecutive_squeezes"]) assert optimized_model.graph.node[0].op_type == "Squeeze" assert list(optimized_model.graph.node[0].attribute[0].ints) == [ 0, 1, 2, 5, 7, 8] assert len(list(optimized_model.graph.node)) == 1 def test_fuse_consecutive_squeezes_multi_uses(self): # type: () -> None squeeze1 = helper.make_node("Squeeze", ["X"], ["Y"], axes=[0, 4, 5]) add = helper.make_node("Add", ["Y", "A"], ["Z2"]) squeeze2 = helper.make_node("Squeeze", ["Y"], ["Z"], axes=[0, 3]) graph = helper.make_graph( [squeeze1, add, squeeze2], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 1, 2, 3, 1, 1, 1, 1, 8, 9)), helper.make_tensor_value_info("A", TensorProto.FLOAT, (1,))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (2, 3, 1, 8, 9)), helper.make_tensor_value_info("Z2", TensorProto.FLOAT, (1, 2, 3, 1, 1, 8, 9))]) optimized_model = self._optimized(graph, ["fuse_consecutive_squeezes"]) assert optimized_model.graph.node[0].op_type == "Squeeze" assert list(optimized_model.graph.node[0].attribute[0].ints) == [ 0, 4, 5] assert optimized_model.graph.node[2].op_type == "Squeeze" assert optimized_model.graph.node[2].input == ["X"] assert list(optimized_model.graph.node[2].attribute[0].ints) == [ 0, 1, 4, 5, 6] assert len(list(optimized_model.graph.node)) == 3 def test_fuse_consecutive_softmax_log_axis(self): # type: () -> None for axis in range(3): softmax = helper.make_node("Softmax", ["X"], ["Y"], axis=axis) log = helper.make_node("Log", ["Y"], ["Z"]) graph = helper.make_graph( [softmax, log], "test", [helper.make_tensor_value_info( "X", TensorProto.FLOAT, (5, 7, 11))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (5, 7, 11))]) optimized_model = self._optimized( graph, ["fuse_consecutive_log_softmax"]) assert optimized_model.graph.output[0].type.tensor_type.elem_type == TensorProto.FLOAT assert len(optimized_model.graph.output) == 1 assert len(optimized_model.graph.node) == 1 assert optimized_model.graph.node[0].op_type == "LogSoftmax" assert optimized_model.graph.node[0].attribute[0].name == "axis" assert optimized_model.graph.node[0].attribute[0].i == axis def test_fuse_consecutive_softmax_log_side_effect(self): # type: () -> None softmax = helper.make_node("Softmax", ["X"], ["Y"], axis=2) log = helper.make_node("Log", ["Y"], ["Z"]) graph = helper.make_graph( [softmax, log], "test", [helper.make_tensor_value_info( "X", TensorProto.FLOAT, (5, 7, 11))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (5, 7, 11)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5, 7, 11))]) optimized_model = self._optimized( graph, ["fuse_consecutive_log_softmax"]) assert graph == optimized_model.graph def test_fuse_consecutive_softmax_log_multiple_out(self): # type: () -> None softmax = helper.make_node("Softmax", ["X"], ["Y"], axis=2) log = helper.make_node("Log", ["Y"], ["Z"]) exp = helper.make_node("Exp", ["Z"], ["Z1"]) graph = helper.make_graph( [softmax, log, exp], "test", [helper.make_tensor_value_info( "X", TensorProto.FLOAT, (5, 7, 11))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (5, 7, 11)), helper.make_tensor_value_info("Z1", TensorProto.FLOAT, (5, 7, 11))]) optimized_model = self._optimized( graph, ["fuse_consecutive_log_softmax"]) assert len(optimized_model.graph.output) == 2 assert len(optimized_model.graph.node) == 2 assert optimized_model.graph.output[0].type.tensor_type.elem_type == TensorProto.FLOAT assert optimized_model.graph.output[1].type.tensor_type.elem_type == TensorProto.FLOAT assert optimized_model.graph.node[0].op_type == "LogSoftmax" assert optimized_model.graph.node[0].attribute[0].name == "axis" assert optimized_model.graph.node[0].attribute[0].i == 2 assert optimized_model.graph.node[1].op_type == "Exp" def test_preserve_value_info(self): # type: () -> None trans1 = helper.make_node("Transpose", ["X"], ["Y"], perm=[1, 0, 2]) trans2 = helper.make_node("Transpose", ["Y"], ["Z"], perm=[2, 0, 1]) trans3 = helper.make_node("Transpose", ["Z"], ["A"], perm=[2, 0, 1]) graph = helper.make_graph( [trans1, trans2, trans3], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3, 4))], [helper.make_tensor_value_info("A", TensorProto.FLOAT, (2, 4, 3))]) vi = helper.make_tensor_value_info("Y", TensorProto.FLOAT, (3, 2, 4)) graph.value_info.extend([vi]) optimized_model = self._optimized(graph, ["nop"]) assert list(optimized_model.graph.value_info) == [vi] assert len(list(optimized_model.graph.node)) == 3 def test_split(self): # type: () -> None node = onnx.helper.make_node( 'Constant', inputs=[], outputs=['X'], value=onnx.helper.make_tensor( name='X', data_type=TensorProto.FLOAT, dims=[1], vals=[5], ), ) graph = helper.make_graph( [node], 'test-optimize-split', [], [helper.make_tensor_value_info('X', TensorProto.FLOAT, (1,))]) init_model = self._optimized(graph, ['split_init']) self.assertEqual(len(init_model.graph.node), 1) self.assertEqual(len(init_model.graph.output), 1) self.assertEqual(init_model.graph.node[0].op_type, 'Constant') predict_model = self._optimized(graph, ['split_predict']) self.assertEqual(len(predict_model.graph.node), 0) self.assertEqual(len(predict_model.graph.input), 1) self.assertEqual(predict_model.graph.input[0].name, 'X') def test_lift_lex_loop(self): # type: () -> None nodes = [helper.make_node("Identity", ["X"], ["Y"])] nodes.extend(self._make_fake_loop_op( [helper.make_node("Identity", ["X"], ["_Y2"]), helper.make_node("Identity", ["Y"], ["_Y3"])], [], [(TensorProto.FLOAT, (5,), "Y2"), (TensorProto.FLOAT, (5,), "Y3")])) graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (5,))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("Y2", TensorProto.FLOAT, (5,))]) optimized_model = self._optimized(graph, ["lift_lexical_references"]) assert len(optimized_model.graph.node) == 4 # body_graph, __control_inputs assert len(optimized_model.graph.node[3].attribute) == 2 assert optimized_model.graph.node[3].attribute[1].name == "__control_inputs" assert optimized_model.graph.node[3].attribute[1].strings[0] == b"X" assert optimized_model.graph.node[3].attribute[1].strings[1] == b"Y" def test_lift_lex_if(self): # type: () -> None nodes = [helper.make_node("Identity", ["X"], ["Y"])] nodes.extend(self._make_fake_if_op( [helper.make_node("Identity", ["X"], ["_Y2"]), helper.make_node("Identity", ["Y"], ["_Y3"])], [helper.make_node("Identity", ["X"], ["_Y2"]), helper.make_node("Identity", ["X"], ["_Y3"])], [(TensorProto.FLOAT, (5,), "Y2"), (TensorProto.FLOAT, (5,), "Y3")])) graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (5,))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("Y2", TensorProto.FLOAT, (5,))]) # "If" node now diverges from ONNX schema. Disable checking. optimized_model = self._optimized(graph, ["lift_lexical_references"]) # Identity, Constant (condition), If assert len(optimized_model.graph.node) == 3 # else_branch, then_branch, __control_inputs assert len(optimized_model.graph.node[2].attribute) == 3 assert optimized_model.graph.node[2].attribute[2].name == "__control_inputs" assert optimized_model.graph.node[2].attribute[2].strings[0] == b"X" assert optimized_model.graph.node[2].attribute[2].strings[1] == b"Y" def test_fuse_bn_into_conv_simple(self): # type: () -> None for (tensor_type, np_type) in [(TensorProto.FLOAT, np.float32), (TensorProto.DOUBLE, np.float64)]: conv = helper.make_node("Conv", ["X", "W", "B"], ["Y"]) bn = helper.make_node("BatchNormalization", [ "Y", "scale", "b", "mean", "var"], ["Z"]) W = np.random.randn(3, 2, 5, 5).astype(np_type) + 2 B = np.random.randn(3,).astype(np_type) + 2 scale = np.random.randn(3,).astype(np_type) + 2 b = np.random.randn(3,).astype(np_type) + 2 mean = np.random.randn(3,).astype(np_type) + 2 var = np.abs(np.random.randn(3,).astype(np_type)) + 2 initializers = [ helper.make_tensor(name, tensor_type, npa.shape, npa.tobytes(), raw=True) for name, npa in [('W', W), ('B', B), ('scale', scale), ('b', b), ('mean', mean), ('var', var)] ] graph = helper.make_graph( [conv, bn], "test", [helper.make_tensor_value_info("X", tensor_type, (5, 2, 28, 28)), helper.make_tensor_value_info("W", tensor_type, (3, 2, 5, 5)), helper.make_tensor_value_info("B", tensor_type, (3,)), helper.make_tensor_value_info("scale", tensor_type, (3,)), helper.make_tensor_value_info("b", tensor_type, (3,)), helper.make_tensor_value_info("mean", tensor_type, (3,)), helper.make_tensor_value_info("var", tensor_type, (3,))], [helper.make_tensor_value_info( "Z", tensor_type, (5, 3, 24, 24))], initializer=initializers, value_info=[ helper.make_tensor_value_info( "Y", tensor_type, (5, 3, 24, 24)) ] ) optimized_model = self._optimized(graph, ["fuse_bn_into_conv"]) self.assertEqual(len(optimized_model.graph.node), 1) self.assertEqual(optimized_model.graph.node[0].op_type, 'Conv') self.assertEqual(len(optimized_model.graph.initializer), 2) new_W = numpy_helper.to_array(optimized_model.graph.initializer[0]) new_b = numpy_helper.to_array(optimized_model.graph.initializer[1]) f = scale / np.sqrt(var + 1e-5) np.testing.assert_almost_equal((B - mean) * f + b, new_b) np.testing.assert_almost_equal( W * f[:, np.newaxis, np.newaxis, np.newaxis], new_W) def _internal_test_deadend_elimination(self, fixed): # type: (bool) -> None softmax = helper.make_node("Softmax", ["X"], ["Y"], axis=2) log = helper.make_node("Log", ["Y"], ["Z"]) exp = helper.make_node("Exp", ["Z"], ["Z1"]) exp1 = helper.make_node("Log", ["Z"], ["Z2"]) exp2 = helper.make_node("Sqrt", ["Z1"], ["Z3"]) graph = helper.make_graph( [softmax, log, exp, exp1, exp2], "test", [helper.make_tensor_value_info( "X", TensorProto.FLOAT, (5, 7, 11))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (5, 7, 11))]) optimized_model = self._optimized( graph, ["eliminate_deadend"], fixed) assert len(optimized_model.graph.output) == 1 assert len(optimized_model.graph.node) == 2 assert optimized_model.graph.output[0].type.tensor_type.elem_type == TensorProto.FLOAT assert optimized_model.graph.node[0].op_type == "Softmax" assert optimized_model.graph.node[0].attribute[0].name == "axis" assert optimized_model.graph.node[0].attribute[0].i == 2 assert optimized_model.graph.node[1].op_type == "Log" def test_deadend_elimination_simple(self): # type: () -> None self._internal_test_deadend_elimination(False) def test_deadend_elimination_simple_fixed(self): # type: () -> None self._internal_test_deadend_elimination(True) def test_eliminate_nop_monotone_argmax_basic_no_node_axis(self): # type: () -> None for node_name in ["Log", "Exp", "Sqrt"]: for axis in range(3): node = helper.make_node(node_name, ["X"], ["Y"]) argmax = helper.make_node("ArgMax", ["Y"], ["Z"], axis=axis) graph = helper.make_graph( [node, argmax], "test", [helper.make_tensor_value_info( "X", TensorProto.FLOAT, (5, 7, 11))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (5, 7, 11))]) optimized_model = self._optimized( graph, ["eliminate_nop_monotone_argmax"]) assert len(optimized_model.graph.output) == 1 assert len(optimized_model.graph.node) == 1 assert optimized_model.graph.output[0].type.tensor_type.elem_type == TensorProto.FLOAT assert optimized_model.graph.node[0].op_type == "ArgMax" assert optimized_model.graph.node[0].attribute[0].name == "axis" assert optimized_model.graph.node[0].attribute[0].i == axis def test_eliminate_nop_monotone_argmax_basic_with_node_axis(self): # type: () -> None for node_name in ["Softmax", "LogSoftmax"]: for axis_n in range(3): for axis_max in range(3): node = helper.make_node(node_name, ["X"], ["Y"], axis=axis_n) argmax = helper.make_node("ArgMax", ["Y"], ["Z"], axis=axis_max) graph = helper.make_graph( [node, argmax], "test", [helper.make_tensor_value_info( "X", TensorProto.FLOAT, (5, 7, 11))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (5, 7, 11))]) optimized_model = self._optimized( graph, ["eliminate_nop_monotone_argmax"]) if axis_max == axis_n: assert len(optimized_model.graph.output) == 1 assert len(optimized_model.graph.node) == 1 assert optimized_model.graph.output[0].type.tensor_type.elem_type == TensorProto.FLOAT assert optimized_model.graph.node[0].op_type == "ArgMax" assert optimized_model.graph.node[0].attribute[0].name == "axis" assert optimized_model.graph.node[0].attribute[0].i == axis_max else: assert optimized_model.graph == graph def test_eliminate_nop_monotone_argmax_multiple_out(self): # type: () -> None for node_name in ["Log", "Exp", "Sqrt"]: for axis in range(3): node = helper.make_node(node_name, ["X"], ["Y"]) node2 = helper.make_node(node_name, ["Y"], ["Z1"]) argmax = helper.make_node("ArgMax", ["Y"], ["Z"], axis=axis) graph = helper.make_graph( [node, node2, argmax], "test", [helper.make_tensor_value_info( "X", TensorProto.FLOAT, (5, 7, 11))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (5, 7, 11)), helper.make_tensor_value_info("Z1", TensorProto.FLOAT, (5, 7, 11))]) optimized_model = self._optimized( graph, ["eliminate_nop_monotone_argmax"]) assert optimized_model.graph == graph def test_eliminate_nop_monotone_argmax_consecutive(self): # type: () -> None def _assertion(graph, optimized_model, axis_aligned, true_axis): # type: (GraphProto, ModelProto, bool, int) -> None if axis_aligned: assert len(optimized_model.graph.output) == 1 assert len(optimized_model.graph.node) == 1 assert optimized_model.graph.output[0].type.tensor_type.elem_type == TensorProto.FLOAT assert optimized_model.graph.node[0].op_type == "ArgMax" assert optimized_model.graph.node[0].attribute[0].name == "axis" assert optimized_model.graph.node[0].attribute[0].i == true_axis else: assert optimized_model.graph == graph # no axis X no axis test for node_name_0 in ["Log", "Exp", "Sqrt"]: for node_name_1 in ["Log", "Exp", "Sqrt"]: for axis in range(3): node = helper.make_node(node_name_0, ["X"], ["Y"]) node2 = helper.make_node(node_name_1, ["Y"], ["Y1"]) argmax = helper.make_node("ArgMax", ["Y1"], ["Z"], axis=axis) graph = helper.make_graph( [node, node2, argmax], "test", [helper.make_tensor_value_info( "X", TensorProto.FLOAT, (5, 7, 11))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (5, 7, 11))]) optimized_model = self._optimized( graph, ["eliminate_nop_monotone_argmax"], True) _assertion(graph, optimized_model, True, axis) # no axis X axis test for node_name_0 in ["Log", "Exp", "Sqrt"]: for node_name_1 in ["Softmax", "LogSoftmax"]: for axis_0 in range(3): for axis_1 in range(3): node = helper.make_node(node_name_0, ["X"], ["Y"]) node2 = helper.make_node(node_name_1, ["Y"], ["Y1"], axis=axis_0) argmax = helper.make_node("ArgMax", ["Y1"], ["Z"], axis=axis_1) graph = helper.make_graph( [node, node2, argmax], "test", [helper.make_tensor_value_info( "X", TensorProto.FLOAT, (5, 7, 11))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (5, 7, 11))]) optimized_model = self._optimized( graph, ["eliminate_nop_monotone_argmax"], True) _assertion(graph, optimized_model, axis_0 == axis_1, axis_1) # axis X axis test for node_name_0 in ["Softmax", "LogSoftmax"]: for node_name_1 in ["Softmax", "LogSoftmax"]: for axis_0 in range(3): for axis_1 in range(3): for axis_2 in range(3): node = helper.make_node(node_name_0, ["X"], ["Y"], axis=axis_0) node2 = helper.make_node(node_name_1, ["Y"], ["Y1"], axis=axis_1) argmax = helper.make_node("ArgMax", ["Y1"], ["Z"], axis=axis_2) graph = helper.make_graph( [node, node2, argmax], "test", [helper.make_tensor_value_info( "X", TensorProto.FLOAT, (5, 7, 11))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (5, 7, 11))]) optimized_model = self._optimized( graph, ["eliminate_nop_monotone_argmax"], True) if axis_0 == axis_1: # we can reduce both of the monotonic ops _assertion(graph, optimized_model, axis_1 == axis_2, axis_2) elif axis_1 == axis_2: # we can reduce one of the monotonic ops assert len(optimized_model.graph.output) == 1 assert len(optimized_model.graph.node) == 2 assert optimized_model.graph.output[0].type.tensor_type.elem_type == TensorProto.FLOAT assert optimized_model.graph.node[-1].op_type == "ArgMax" assert optimized_model.graph.node[-1].attribute[0].name == "axis" assert optimized_model.graph.node[-1].attribute[0].i == axis_2 else: # we can't reduce anything assert optimized_model.graph == graph def test_eliminate_nop_dropout(self): # type: () -> None node = helper.make_node("Dropout", ["X"], ["Y"]) node1 = helper.make_node("Log", ["Y"], ["Z"]) graph = helper.make_graph( [node, node1], "test", [helper.make_tensor_value_info( "X", TensorProto.FLOAT, (5, 7))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (5, 7))]) optimized_model = self._optimized( graph, ["eliminate_nop_dropout"], False) # we don't want to eliminate the dropoutin opset 12, # even when it';s an optional parameter (defaults to 0) assert optimized_model.graph == graph def test_eliminate_nop_dropout_opset11_graph_output(self): # type: () -> None node = helper.make_node("Log", ["X"], ["Y"]) node1 = helper.make_node("Dropout", ["Y"], ["Z"], ratio=0.0) graph = helper.make_graph( [node, node1], "test", [helper.make_tensor_value_info( "X", TensorProto.FLOAT, (5, 7))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (5, 7))]) optimized_model = self._optimized( graph, ["eliminate_nop_dropout"], False, opset_imports=[helper.make_opsetid("", 11)]) assert len(optimized_model.graph.output) == 1 assert len(optimized_model.graph.node) == 1 assert optimized_model.graph.node[0].op_type == "Log" def test_eliminate_nop_dropout_opset11(self): # type: () -> None for ratio in [0.0, 0.5]: node = helper.make_node("Dropout", ["X"], ["Y"], ratio=ratio) node1 = helper.make_node("Log", ["Y"], ["Z"]) graph = helper.make_graph( [node, node1], "test", [helper.make_tensor_value_info( "X", TensorProto.FLOAT, (5, 7))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (5, 7))]) optimized_model = self._optimized( graph, ["eliminate_nop_dropout"], False, opset_imports=[helper.make_opsetid("", 11)]) if ratio > 0.0: assert optimized_model.graph == graph else: assert len(optimized_model.graph.output) == 1 assert len(optimized_model.graph.node) == 1 assert optimized_model.graph.node[0].op_type == "Log" def test_fuse_reduction_unsqueeze(self): # type: () -> None def _calculate_post_transform_shape(input_shape, reduction_axes, unsqueeze_axes, keepdim): # type: (Tuple[int, ...], List[int], List[int], bool) -> Tuple[int, ...] post_reduce_shape = None if keepdim: post_reduce_shape = tuple([(x if i not in reduction_axes else 1) for i, x in enumerate(input_shape)]) else: post_reduce_shape = tuple([x for i, x in enumerate(input_shape) if i not in reduction_axes]) post_unsqueeze_shape = list(post_reduce_shape) for ax in unsqueeze_axes: post_unsqueeze_shape.insert(ax, 1) return tuple(post_unsqueeze_shape) for reduction in ["ReduceL1", "ReduceL2", "ReduceLogSum", "ReduceLogSumExp", "ReduceMax", "ReduceMean", "ReduceMin", "ReduceProd", "ReduceSum", "ReduceSumSquare"]: for axes1 in [[1], [1, 2], [2]]: for axes2 in [[1], [1, 2], [2]]: for keepdim in [False, True]: input_shape = (5, 7, 9) output_shape = _calculate_post_transform_shape(input_shape, axes1, axes2, keepdim) # type: Tuple[int, ...] node = helper.make_node(reduction, ["X"], ["Y"], axes=axes1, keepdims=keepdim) node1 = helper.make_node("Unsqueeze", ["Y"], ["Z"], axes=axes2) graph = helper.make_graph( [node, node1], "test", [helper.make_tensor_value_info( "X", TensorProto.FLOAT, input_shape)], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, output_shape)]) optimized_model = self._optimized( graph, ["fuse_consecutive_reduce_unsqueeze"], False) if keepdim or axes1 != axes2: assert optimized_model.graph == graph else: assert len(optimized_model.graph.output) == 1 assert len(optimized_model.graph.node) == 1 assert optimized_model.graph.output[0].type.tensor_type.elem_type == TensorProto.FLOAT assert optimized_model.graph.node[-1].op_type == reduction assert optimized_model.graph.node[-1].attribute[0].name == "axes" assert optimized_model.graph.node[-1].attribute[0].ints == axes1 optimized_output_shape = tuple(x.dim_value for x in optimized_model.graph.output[0].type.tensor_type.shape.dim) assert optimized_output_shape == output_shape if __name__ == '__main__': unittest.main()
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import unittest from typing import Sequence import numpy as np # type: ignore from onnx import checker, helper from onnx import TensorProto, GraphProto, SparseTensorProto import onnx.onnx_cpp2py_export.checker as C import onnx.defs class TestChecker(unittest.TestCase): @property def _sample_float_tensor(self): # type: () -> TensorProto np_array = np.random.randn(2, 3).astype(np.float32) return helper.make_tensor( name='test', data_type=TensorProto.FLOAT, dims=(2, 3), vals=np_array.reshape(6).tolist() ) def test_check_node(self): # type: () -> None node = helper.make_node( "Relu", ["X"], ["Y"], name="test") checker.check_node(node) def test_check_node_input_marked_optional(self): # type: () -> None # GivenTensorFill's input is marked optional, hence it is used in this test. node = helper.make_node( "GivenTensorFill", [], ["Y"], name="test") checker.check_node(node) # Explicitly pass the empty string as optional node = helper.make_node( "GivenTensorFill", [""], ["Y"], name="test") # Input of RELU is not optional node = helper.make_node( "Relu", [""], ["Y"], name="test") self.assertRaises(checker.ValidationError, checker.check_node, node) def test_check_graph_ir_version_3(self): # type: () -> None ctx = C.CheckerContext() ctx.ir_version = 3 ctx.opset_imports = {'': onnx.defs.onnx_opset_version()} def check_ir_version_3(g): # type: (GraphProto) -> None checker.check_graph(g, ctx) node = helper.make_node( "Relu", ["X"], ["Y"], name="test") graph = helper.make_graph( [node], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, [1, 2])], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, [1, 2])]) check_ir_version_3(graph) graph.initializer.extend([self._sample_float_tensor]) graph.initializer[0].name = 'no-exist' self.assertRaises(checker.ValidationError, check_ir_version_3, graph) graph.initializer[0].name = 'X' check_ir_version_3(graph) def test_check_graph(self): # type: () -> None node = helper.make_node( "Relu", ["X"], ["Y"], name="test") graph = helper.make_graph( [node], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, [1, 2])], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, [1, 2])]) checker.check_graph(graph) graph.initializer.extend([self._sample_float_tensor]) graph.initializer[0].name = 'no-exist' checker.check_graph(graph) graph.initializer[0].name = 'X' checker.check_graph(graph) def test_check_graph_optional_input(self): # type: () -> None # GivenTensorFill's input is marked optional, hence it is used in this test. node = helper.make_node( "GivenTensorFill", [""], ["Y"], name="test") graph = helper.make_graph( [node], "test", [], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, [1, 2])]) checker.check_graph(graph) def test_check_graph_ssa(self): # type: () -> None relu1 = helper.make_node( "Relu", ["X"], ["Z"], name="relu1") relu2 = helper.make_node( "Relu", ["Y"], ["Z"], name="relu2") graph = helper.make_graph( [relu1, relu2], "test", inputs=[ helper.make_tensor_value_info("X", TensorProto.FLOAT, [1, 2]), helper.make_tensor_value_info("Y", TensorProto.FLOAT, [1, 2]) ], outputs=[ helper.make_tensor_value_info("Z", TensorProto.FLOAT, [1, 2]) ] ) self.assertRaises(checker.ValidationError, checker.check_graph, graph) def test_check_graph_topologically_sorted(self): # type: () -> None n1 = helper.make_node( "Scale", ["X"], ["Y"], scale=2., name="n1") n2 = helper.make_node( "Scale", ["Y"], ["Z"], scale=3., name="n2") graph = helper.make_graph( [n2, n1], "test", inputs=[ helper.make_tensor_value_info("X", TensorProto.FLOAT, [1, 2]) ], outputs=[ helper.make_tensor_value_info("Z", TensorProto.FLOAT, [1, 2]) ] ) self.assertRaises(checker.ValidationError, checker.check_graph, graph) def test_check_model(self): # type: () -> None node = helper.make_node( "Relu", ["X"], ["Y"], name="test") graph = helper.make_graph( [node], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, [1, 2])], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, [1, 2])]) model = helper.make_model(graph, producer_name='test') checker.check_model(model) def test_check_old_model(self): # type: () -> None node = helper.make_node( "Pad", ["X"], ["Y"], paddings=(0, 0, 0, 0)) graph = helper.make_graph( [node], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, [1, 2])], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, [1, 2])]) onnx_id = helper.make_opsetid("", 1) model = helper.make_model(graph, producer_name='test', opset_imports=[onnx_id]) checker.check_model(model) def test_check_tensor(self): # type: () -> None tensor = self._sample_float_tensor checker.check_tensor(tensor) tensor.raw_data = np.random.randn(2, 3).astype(np.float32).tobytes() self.assertRaises(checker.ValidationError, checker.check_tensor, tensor) def test_check_string_tensor(self): # type: () -> None tensor = TensorProto() tensor.data_type = TensorProto.STRING tensor.dims.append(1) tensor.string_data.append('Test'.encode('utf-8')) checker.check_tensor(tensor) del tensor.string_data[:] tensor.raw_data = 'Test'.encode('utf-8') # string data should not be stored in raw_data field self.assertRaises(checker.ValidationError, checker.check_tensor, tensor) def test_check_tensor_mismatched_field(self): # type: () -> None tensor = self._sample_float_tensor tensor.data_type = TensorProto.INT32 self.assertRaises(checker.ValidationError, checker.check_tensor, tensor) def test_nested_graph(self): # type: () -> None n1 = helper.make_node( "Scale", ["X"], ["Y"], scale=2., name="n1") n2 = helper.make_node( "Scale", ["Y"], ["Z"], scale=3., name="n2") graph = helper.make_graph( [n1, n2], "nested", inputs=[ helper.make_tensor_value_info("X", TensorProto.FLOAT, [1, 2]) ], outputs=[ helper.make_tensor_value_info("Z", TensorProto.FLOAT, [1, 2]) ] ) i1 = helper.make_node( "If", ["cond"], ["Z"], then_branch=graph, else_branch=graph) graph = helper.make_graph( [i1], "test", inputs=[ helper.make_tensor_value_info("cond", TensorProto.BOOL, [1]), helper.make_tensor_value_info("X", TensorProto.FLOAT, [1, 2]) ], outputs=[helper.make_tensor_value_info("Z", TensorProto.FLOAT, [1, 2])], ) checker.check_graph(graph) #self.assertRaises(checker.ValidationError, checker.check_graph, graph) def test_nested_graph_without_subgraph_input_shape(self): # type: () -> None n1 = helper.make_node( "Scale", ["X"], ["Y"], scale=2., name="n1") n2 = helper.make_node( "Scale", ["Y"], ["Z"], scale=3., name="n2") input_x = onnx.ValueInfoProto() input_x.name = "X" graph = helper.make_graph( [n1, n2], "nested", inputs=[ input_x ], outputs=[ helper.make_tensor_value_info("Z", TensorProto.FLOAT, [1, 2]) ] ) i1 = helper.make_node( "If", ["cond"], ["Z"], then_branch=graph, else_branch=graph) graph = helper.make_graph( [i1], "test", inputs=[ helper.make_tensor_value_info("cond", TensorProto.BOOL, [1]), helper.make_tensor_value_info("X", TensorProto.FLOAT, [1, 2]) ], outputs=[helper.make_tensor_value_info("Z", TensorProto.FLOAT, [1, 2])], ) checker.check_graph(graph) @property def _sample_0_elem_tensor(self): # type: () -> TensorProto np_array = np.random.randn(0, 3).astype(np.float32) return helper.make_tensor( name='test', data_type=TensorProto.FLOAT, dims=(0, 3), vals=np_array.reshape(0).tolist() ) def test_check_tensor_zero_elem(self): # type: () -> None tensor = self._sample_0_elem_tensor checker.check_tensor(tensor) def test_check_removed_experimental_op(self): # type: () -> None node = helper.make_node( "ConstantFill", [], ["Y"], name="test", shape=[1, 2]) checker.check_node(node) def test_skip_schema_check_on_non_standard_domain(self): # type: () -> None node = helper.make_node( "NonExistOp", ["X"], ["Y"], name="test", domain="test.domain") graph = helper.make_graph( [node], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, [1, 2])], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, [1, 2])]) onnx_id = helper.make_opsetid("test.domain", 1) model = helper.make_model(graph, producer_name='test', opset_imports=[onnx_id]) checker.check_model(model) def make_sparse(self, shape, # type: Sequence[int] values, # type: Sequence[int] indices_shape, # type: Sequence[int] indices # type: Sequence[int] ): # type: (...) -> SparseTensorProto sparse = SparseTensorProto() sparse.dims.extend(shape) nnz = len(values) sparse.values.CopyFrom(helper.make_tensor('spval', TensorProto.INT64, (nnz,), values)) sparse.indices.CopyFrom(helper.make_tensor('spind', TensorProto.INT64, indices_shape, indices)) return sparse def test_check_sparse_tensor(self): # type: () -> None sparse = self.make_sparse([100], [13, 17, 19], [3], [9, 27, 81]) checker.check_sparse_tensor(sparse) def test_check_sparse_tensor_invalid_index(self): # type: () -> None # index value 181 is out-of-range sparse = self.make_sparse([100], [13, 17, 19], [3], [9, 27, 181]) self.assertRaises(checker.ValidationError, checker.check_sparse_tensor, sparse) def test_check_sparse_tensor_unordered(self): # type: () -> None # index values are not in sorted order sparse = self.make_sparse([100], [13, 17, 19], [3], [27, 9, 81]) self.assertRaises(checker.ValidationError, checker.check_sparse_tensor, sparse) def test_check_sparse_tensor_coo_format(self): # type: () -> None sparse = self.make_sparse([10, 10], [13, 17, 19], [3, 2], [0, 9, 2, 7, 8, 1]) checker.check_sparse_tensor(sparse) def test_check_sparse_tensor_coo_format_invalid_index(self): # type: () -> None sparse = self.make_sparse([10, 10], [13, 17, 19], [3, 2], [0, 9, 0, 27, 8, 1]) self.assertRaises(checker.ValidationError, checker.check_sparse_tensor, sparse) def test_check_sparse_tensor_coo_format_invalid_shape(self): # type: () -> None sparse = self.make_sparse([10, 10], [13, 17, 19], [2, 3], [0, 9, 2, 7, 8, 1]) self.assertRaises(checker.ValidationError, checker.check_sparse_tensor, sparse) def test_check_sparse_tensor_coo_format_invalid_dim2(self): # type: () -> None sparse = self.make_sparse([10, 10], [13, 17, 19], [3, 1], [0, 1, 2]) self.assertRaises(checker.ValidationError, checker.check_sparse_tensor, sparse) def test_check_sparse_matmul(self): # type: () -> None M = 5 N = 10 # Create ValueInfoProto for input X of shape [N] X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [N]) # Create a [M,N] sparse-matrix constant C sparse_tensor = self.make_sparse([M, N], [2, 3, 1], [3], [3, 11, 37]) node1 = helper.make_node('Constant', [], ['C'], sparse_value=sparse_tensor) # Create ValueInfoProto for output Y of shape [M] Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [M]) # Compute Y = C X node2 = helper.make_node('MatMul', ['C', 'X'], ['Y']) # create graph graph = helper.make_graph([node1, node2], "sparse_matmul", [X], [Y]) # check graph checker.check_graph(graph) def test_check_model_unsupported_input_type(self): # type: () -> None N = 10 X = helper.make_tensor_value_info('X', TensorProto.BOOL, [N]) Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [N]) Z = helper.make_tensor_value_info('Z', TensorProto.FLOAT, [N]) onnx_id = helper.make_opsetid("", 6) node = helper.make_node('Add', ['X', 'Y'], ['Z']) graph = helper.make_graph([node], "test_add_input", [X, Y], [Z]) model = helper.make_model(graph, producer_name='test', opset_imports=[onnx_id]) self.assertRaises(checker.ValidationError, checker.check_model, model, True) def test_check_modle_inconsistent_type(self): # type: () -> None N = 10 X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [N]) Y = helper.make_tensor_value_info('Y', TensorProto.INT32, [N]) Z = helper.make_tensor_value_info('Z', TensorProto.FLOAT, [N]) onnx_id = helper.make_opsetid("", 6) node = helper.make_node('Add', ['X', 'Y'], ['Z']) graph = helper.make_graph([node], "test_add_input", [X, Y], [Z]) model = helper.make_model(graph, producer_name='test', opset_imports=[onnx_id]) self.assertRaises(checker.ValidationError, checker.check_model, model, True) def test_check_model_unsupported_output_type(self): # type: () -> None N = 10 X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [N]) Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [N]) Z = helper.make_tensor_value_info('Z', TensorProto.BOOL, [N]) onnx_id = helper.make_opsetid("", 6) node = helper.make_node('Add', ['X', 'Y'], ['Z']) graph = helper.make_graph([node], "test_add_input", [X, Y], [Z]) model = helper.make_model(graph, producer_name='test', opset_imports=[onnx_id]) self.assertRaises(RuntimeError, checker.check_model, model, True) if __name__ == '__main__': unittest.main()
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import random import numpy as np # type: ignore from onnx import helper, defs, numpy_helper, checker from onnx import AttributeProto, TensorProto, GraphProto from typing import Text, Any, List import unittest class TestHelperAttributeFunctions(unittest.TestCase): def test_attr_float(self): # type: () -> None # float attr = helper.make_attribute("float", 1.) self.assertEqual(attr.name, "float") self.assertEqual(attr.f, 1.) checker.check_attribute(attr) # float with scientific attr = helper.make_attribute("float", 1e10) self.assertEqual(attr.name, "float") self.assertEqual(attr.f, 1e10) checker.check_attribute(attr) def test_attr_int(self): # type: () -> None # integer attr = helper.make_attribute("int", 3) self.assertEqual(attr.name, "int") self.assertEqual(attr.i, 3) checker.check_attribute(attr) # long integer attr = helper.make_attribute("int", 5) self.assertEqual(attr.name, "int") self.assertEqual(attr.i, 5) checker.check_attribute(attr) # octinteger attr = helper.make_attribute("int", 0o1701) self.assertEqual(attr.name, "int") self.assertEqual(attr.i, 0o1701) checker.check_attribute(attr) # hexinteger attr = helper.make_attribute("int", 0x1701) self.assertEqual(attr.name, "int") self.assertEqual(attr.i, 0x1701) checker.check_attribute(attr) def test_attr_doc_string(self): # type: () -> None attr = helper.make_attribute("a", "value") self.assertEqual(attr.name, "a") self.assertEqual(attr.doc_string, "") attr = helper.make_attribute("a", "value", "doc") self.assertEqual(attr.name, "a") self.assertEqual(attr.doc_string, "doc") def test_attr_string(self): # type: () -> None # bytes attr = helper.make_attribute("str", b"test") self.assertEqual(attr.name, "str") self.assertEqual(attr.s, b"test") checker.check_attribute(attr) # unspecified attr = helper.make_attribute("str", "test") self.assertEqual(attr.name, "str") self.assertEqual(attr.s, b"test") checker.check_attribute(attr) # unicode attr = helper.make_attribute("str", u"test") self.assertEqual(attr.name, "str") self.assertEqual(attr.s, b"test") checker.check_attribute(attr) # empty str attr = helper.make_attribute("str", "") self.assertEqual(attr.name, "str") self.assertEqual(helper.get_attribute_value(attr), b"") checker.check_attribute(attr) def test_attr_repeated_float(self): # type: () -> None attr = helper.make_attribute("floats", [1.0, 2.0]) self.assertEqual(attr.name, "floats") self.assertEqual(list(attr.floats), [1.0, 2.0]) checker.check_attribute(attr) def test_attr_repeated_int(self): # type: () -> None attr = helper.make_attribute("ints", [1, 2]) self.assertEqual(attr.name, "ints") self.assertEqual(list(attr.ints), [1, 2]) checker.check_attribute(attr) def test_attr_repeated_str(self): # type: () -> None attr = helper.make_attribute("strings", ["str1", "str2"]) self.assertEqual(attr.name, "strings") self.assertEqual(list(attr.strings), [b"str1", b"str2"]) checker.check_attribute(attr) def test_attr_repeated_tensor_proto(self): # type: () -> None tensors = [ helper.make_tensor( name='a', data_type=TensorProto.FLOAT, dims=(1,), vals=np.ones(1).tolist() ), helper.make_tensor( name='b', data_type=TensorProto.FLOAT, dims=(1,), vals=np.ones(1).tolist() )] attr = helper.make_attribute("tensors", tensors) self.assertEqual(attr.name, "tensors") self.assertEqual(list(attr.tensors), tensors) checker.check_attribute(attr) def test_attr_repeated_graph_proto(self): # type: () -> None graphs = [GraphProto(), GraphProto()] graphs[0].name = "a" graphs[1].name = "b" attr = helper.make_attribute("graphs", graphs) self.assertEqual(attr.name, "graphs") self.assertEqual(list(attr.graphs), graphs) checker.check_attribute(attr) def test_is_attr_legal(self): # type: () -> None # no name, no field attr = AttributeProto() self.assertRaises(checker.ValidationError, checker.check_attribute, attr) # name, but no field attr = AttributeProto() attr.name = "test" self.assertRaises(checker.ValidationError, checker.check_attribute, attr) # name, with two fields attr = AttributeProto() attr.name = "test" attr.f = 1.0 attr.i = 2 self.assertRaises(checker.ValidationError, checker.check_attribute, attr) def test_is_attr_legal_verbose(self): # type: () -> None def _set(attr, type, var, value): # type: (AttributeProto, AttributeProto.AttributeType, Text, Any) -> None setattr(attr, var, value) setattr(attr, 'type', type) def _extend(attr, type, var, value): # type: (AttributeProto, AttributeProto.AttributeType, List[Any], Any) -> None var.extend(value) setattr(attr, 'type', type) SET_ATTR = [ (lambda attr: _set(attr, AttributeProto.FLOAT, "f", 1.0)), (lambda attr: _set(attr, AttributeProto.INT, "i", 1)), (lambda attr: _set(attr, AttributeProto.STRING, "s", b"str")), (lambda attr: _extend(attr, AttributeProto.FLOATS, attr.floats, [1.0, 2.0])), (lambda attr: _extend(attr, AttributeProto.INTS, attr.ints, [1, 2])), (lambda attr: _extend(attr, AttributeProto.STRINGS, attr.strings, [b"a", b"b"])), ] # Randomly set one field, and the result should be legal. for _i in range(100): attr = AttributeProto() attr.name = "test" random.choice(SET_ATTR)(attr) checker.check_attribute(attr) # Randomly set two fields, and then ensure helper function catches it. for _i in range(100): attr = AttributeProto() attr.name = "test" for func in random.sample(SET_ATTR, 2): func(attr) self.assertRaises(checker.ValidationError, checker.check_attribute, attr) class TestHelperNodeFunctions(unittest.TestCase): def test_node_no_arg(self): # type: () -> None self.assertTrue(defs.has("Relu")) node_def = helper.make_node( "Relu", ["X"], ["Y"], name="test") self.assertEqual(node_def.op_type, "Relu") self.assertEqual(node_def.name, "test") self.assertEqual(list(node_def.input), ["X"]) self.assertEqual(list(node_def.output), ["Y"]) def test_attr_doc_string(self): # type: () -> None node_def = helper.make_node( "Relu", ["X"], ["Y"], name="test", doc_string="doc") self.assertEqual(node_def.doc_string, "doc") def test_node_with_arg(self): # type: () -> None self.assertTrue(defs.has("Relu")) # Note: Relu actually does not need an arg, but let's # test it. node_def = helper.make_node( "Relu", ["X"], ["Y"], arg_value=1) self.assertEqual(node_def.op_type, "Relu") self.assertEqual(list(node_def.input), ["X"]) self.assertEqual(list(node_def.output), ["Y"]) self.assertEqual(len(node_def.attribute), 1) self.assertEqual( node_def.attribute[0], helper.make_attribute("arg_value", 1)) def test_node_domain(self): # type: () -> None node_def = helper.make_node( "Relu", ["X"], ["Y"], name="test", doc_string="doc", domain="test.domain") self.assertEqual(node_def.domain, "test.domain") def test_graph(self): # type: () -> None node_def1 = helper.make_node( "Relu", ["X"], ["Y"]) node_def2 = helper.make_node( "Add", ["X", "Y"], ["Z"]) value_info = [helper.make_tensor_value_info("Y", TensorProto.FLOAT, [1, 2])] graph = helper.make_graph( [node_def1, node_def2], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, [1, 2])], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, [1, 2])], doc_string=None, value_info=value_info, ) self.assertEqual(graph.name, "test") self.assertEqual(len(graph.node), 2) self.assertEqual(graph.node[0], node_def1) self.assertEqual(graph.node[1], node_def2) self.assertEqual(graph.doc_string, "") self.assertEqual(graph.value_info[0], value_info[0]) def test_graph_docstring(self): # type: () -> None graph = helper.make_graph([], "my graph", [], [], None, "my docs") self.assertEqual(graph.name, "my graph") self.assertEqual(graph.doc_string, "my docs") def test_model(self): # type: () -> None node_def = helper.make_node( "Relu", ["X"], ["Y"]) graph_def = helper.make_graph( [node_def], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, [1, 2])], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, [1, 2])]) self.assertRaises(AttributeError, helper.make_model, graph_def, xxx=1) model_def = helper.make_model(graph_def, producer_name='test') self.assertEqual(model_def.producer_name, 'test') def test_model_docstring(self): # type: () -> None graph = helper.make_graph([], "my graph", [], []) model_def = helper.make_model(graph, doc_string='test') # models may have their own documentation, but don't have a name # their name is the domain-qualified name of the underlying graph. self.assertFalse(hasattr(model_def, "name")) self.assertEqual(model_def.doc_string, 'test') def test_model_metadata_props(self): # type: () -> None graph = helper.make_graph([], "my graph", [], []) model_def = helper.make_model(graph, doc_string='test') helper.set_model_props(model_def, {'Title': 'my graph', 'Keywords': 'test;graph'}) checker.check_model(model_def) helper.set_model_props(model_def, {'Title': 'my graph', 'Keywords': 'test;graph'}) checker.check_model(model_def) # helper replaces, so no dupe dupe = model_def.metadata_props.add() dupe.key = 'Title' dupe.value = 'Other' self.assertRaises(checker.ValidationError, checker.check_model, model_def) class TestHelperTensorFunctions(unittest.TestCase): def test_make_tensor(self): # type: () -> None np_array = np.random.randn(2, 3).astype(np.float32) tensor = helper.make_tensor( name='test', data_type=TensorProto.FLOAT, dims=(2, 3), vals=np_array.reshape(6).tolist() ) self.assertEqual(tensor.name, 'test') np.testing.assert_equal(np_array, numpy_helper.to_array(tensor)) # use raw_data field to store the data tensor = helper.make_tensor( name='test', data_type=TensorProto.FLOAT, dims=(2, 3), vals=np_array.reshape(6).tobytes(), raw=True, ) np.testing.assert_equal(np_array, numpy_helper.to_array(tensor)) string_list = list(s.encode('utf-8') for s in ['Amy', 'Billy', 'Cindy', 'David']) tensor = helper.make_tensor( name='test', data_type=TensorProto.STRING, dims=(2, 2), vals=string_list, raw=False ) self.assertEqual(string_list, list(tensor.string_data)) def test_make_sparse_tensor(self): # type: () -> None values = [1.1, 2.2, 3.3, 4.4, 5.5] values_tensor = helper.make_tensor( name='test', data_type=TensorProto.FLOAT, dims=(5, ), vals=values ) indices = [1, 3, 5, 7, 9] indices_tensor = helper.make_tensor( name='test_indices', data_type=TensorProto.INT64, dims=(5, ), vals=indices ) dense_shape = [10] sparse = helper.make_sparse_tensor(values_tensor, indices_tensor, dense_shape) self.assertEqual(sparse.values, values_tensor) self.assertEqual(sparse.indices, indices_tensor) self.assertEqual(sparse.dims, dense_shape) def test_make_tensor_value_info(self): # type: () -> None vi = helper.make_tensor_value_info('X', TensorProto.FLOAT, (2, 4)) checker.check_value_info(vi) # scalar value vi = helper.make_tensor_value_info('Y', TensorProto.FLOAT, ()) checker.check_value_info(vi) class TestPrintableGraph(unittest.TestCase): def test_initializer_with_matching_graph_input(self): # type: () -> None add = helper.make_node("Add", ["X", "Y_Initializer"], ["Z"]) value_info = [helper.make_tensor_value_info("Y", TensorProto.FLOAT, [1])] graph = helper.make_graph( [add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, [1]), helper.make_tensor_value_info("Y_Initializer", TensorProto.FLOAT, [1])], # inputs [helper.make_tensor_value_info("Z", TensorProto.FLOAT, [1])], # outputs [helper.make_tensor("Y_Initializer", TensorProto.FLOAT, [1], [1])], # initializers doc_string=None, value_info=value_info ) graph_str = helper.printable_graph(graph) self.assertTrue(''') optional inputs with matching initializers ( %Y_Initializer[FLOAT, 1]''' in graph_str, graph_str) def test_initializer_no_matching_graph_input(self): # type: () -> None add = helper.make_node("Add", ["X", "Y_Initializer"], ["Z"]) value_info = [helper.make_tensor_value_info("Y", TensorProto.FLOAT, [1])] graph = helper.make_graph( [add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, [1])], # inputs [helper.make_tensor_value_info("Z", TensorProto.FLOAT, [1])], # outputs [helper.make_tensor("Y_Initializer", TensorProto.FLOAT, [1], [1])], # initializers doc_string=None, value_info=value_info ) graph_str = helper.printable_graph(graph) self.assertTrue(''') initializers ( %Y_Initializer[FLOAT, 1]''' in graph_str, graph_str) if __name__ == '__main__': unittest.main()
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import unittest import onnx.utils from onnx import helper, TensorProto class TestUtilityFunctions(unittest.TestCase): def test_polish_model(self): # type: () -> None node_def = helper.make_node( "Relu", ["X"], ["Y"], doc_string="ABC") graph_def = helper.make_graph( [node_def], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, [1, 2])], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, [1, 2])]) model_def = helper.make_model(graph_def, producer_name='test') polished_def = onnx.utils.polish_model(model_def) self.assertEqual(polished_def.producer_name, 'test') self.assertEqual(len(polished_def.graph.node), 1) self.assertFalse(polished_def.graph.node[0].HasField('doc_string')) if __name__ == '__main__': unittest.main()
import unittest from onnx import defs, AttributeProto class TestSchema(unittest.TestCase): def test_get_schema(self): # type: () -> None defs.get_schema("Relu") def test_typecheck(self): # type: () -> None defs.get_schema("Conv") def test_attr_default_value(self): # type: () -> None v = defs.get_schema( "BatchNormalization").attributes['epsilon'].default_value self.assertEqual(type(v), AttributeProto) self.assertEqual(v.type, AttributeProto.FLOAT) if __name__ == '__main__': unittest.main()
import tempfile import unittest import uuid import numpy as np # type: ignore import shutil import os import os.path as Path import onnx from onnx import checker, helper from onnx import ModelProto, TensorProto from onnx.external_data_helper import set_external_data from onnx.external_data_helper import convert_model_to_external_data from onnx.external_data_helper import convert_model_from_external_data from onnx.external_data_helper import load_external_data_for_model from onnx.numpy_helper import to_array, from_array from typing import Any, Tuple, Text, List class TestLoadExternalData(unittest.TestCase): def setUp(self): # type: () -> None self.temp_dir = tempfile.mkdtemp() # type: Text self.initializer_value = np.arange(6).reshape(3, 2).astype(np.float32) + 512 self.attribute_value = np.arange(6).reshape(2, 3).astype(np.float32) + 256 self.model_filename = self.create_test_model() def tearDown(self): # type: () -> None shutil.rmtree(self.temp_dir) def get_temp_model_filename(self): # type: () -> Text return os.path.join(self.temp_dir, str(uuid.uuid4()) + '.onnx') def create_external_data_tensor(self, value, tensor_name): # type: (List[Any], Text) -> TensorProto tensor = from_array(np.array(value)) tensor.name = tensor_name tensor_filename = "{}.bin".format(tensor_name) set_external_data(tensor, location=tensor_filename) with open(os.path.join(self.temp_dir, tensor_filename), 'wb') as data_file: data_file.write(tensor.raw_data) tensor.ClearField('raw_data') tensor.data_location = onnx.TensorProto.EXTERNAL return tensor def create_test_model(self): # type: () -> Text constant_node = onnx.helper.make_node( 'Constant', inputs=[], outputs=['values'], value=self.create_external_data_tensor(self.attribute_value, "attribute_value") ) initializers = [self.create_external_data_tensor(self.initializer_value, "input_value")] inputs = [helper.make_tensor_value_info("input_value", onnx.TensorProto.FLOAT, self.initializer_value.shape)] graph = helper.make_graph([constant_node], "test_graph", inputs=inputs, outputs=[], initializer=initializers) model = helper.make_model(graph) model_filename = os.path.join(self.temp_dir, "model.onnx") with open(model_filename, "wb") as model_file: model_file.write(model.SerializeToString()) return model_filename def test_check_model(self): # type: () -> None checker.check_model(self.model_filename) def test_load_external_data(self): # type: () -> None model = onnx.load_model(self.model_filename) initializer_tensor = model.graph.initializer[0] self.assertTrue(np.allclose(to_array(initializer_tensor), self.initializer_value)) attribute_tensor = model.graph.node[0].attribute[0].t self.assertTrue(np.allclose(to_array(attribute_tensor), self.attribute_value)) def test_load_external_data_for_model(self): # type: () -> None model = onnx.load_model(self.model_filename, load_external_data=False) load_external_data_for_model(model, self.temp_dir) initializer_tensor = model.graph.initializer[0] self.assertTrue(np.allclose(to_array(initializer_tensor), self.initializer_value)) attribute_tensor = model.graph.node[0].attribute[0].t self.assertTrue(np.allclose(to_array(attribute_tensor), self.attribute_value)) def test_save_external_data(self): # type: () -> None model = onnx.load_model(self.model_filename) temp_dir = os.path.join(self.temp_dir, "save_copy") os.mkdir(temp_dir) new_model_filename = os.path.join(temp_dir, 'model.onnx') onnx.save_model(model, new_model_filename) new_model = onnx.load_model(new_model_filename) initializer_tensor = new_model.graph.initializer[0] self.assertTrue(np.allclose(to_array(initializer_tensor), self.initializer_value)) attribute_tensor = new_model.graph.node[0].attribute[0].t self.assertTrue(np.allclose(to_array(attribute_tensor), self.attribute_value)) class TestLoadExternalDataSingleFile(unittest.TestCase): def setUp(self): # type: () -> None self.temp_dir = tempfile.mkdtemp() # type: Text self.initializer_value = np.arange(6).reshape(3, 2).astype(np.float32) + 512 self.attribute_value = np.arange(6).reshape(2, 3).astype(np.float32) + 256 self.model_filename = self.create_test_model() def tearDown(self): # type: () -> None shutil.rmtree(self.temp_dir) def get_temp_model_filename(self): # type: () -> Text return os.path.join(self.temp_dir, str(uuid.uuid4()) + '.onnx') def create_external_data_tensors(self, tensors_data): # type: (List[Tuple[List[Any],Any]]) -> List[TensorProto] tensor_filename = "tensors.bin" tensors = [] with open(os.path.join(self.temp_dir, tensor_filename), 'ab') as data_file: for (value, tensor_name) in tensors_data: tensor = from_array(np.array(value)) offset = data_file.tell() if offset % 4096 != 0: data_file.write(b"\0" * (4096 - offset % 4096)) offset = offset + 4096 - offset % 4096 data_file.write(tensor.raw_data) set_external_data(tensor, location=tensor_filename, offset=offset, length=data_file.tell() - offset) tensor.name = tensor_name tensor.ClearField("raw_data") tensor.data_location = onnx.TensorProto.EXTERNAL tensors.append(tensor) return tensors def create_test_model(self): # type: () -> Text tensors = self.create_external_data_tensors([ (self.attribute_value, "attribute_value"), (self.initializer_value, "input_value"), ]) constant_node = onnx.helper.make_node( 'Constant', inputs=[], outputs=['values'], value=tensors[0] ) inputs = [helper.make_tensor_value_info("input_value", onnx.TensorProto.FLOAT, self.initializer_value.shape)] graph = helper.make_graph([constant_node], "test_graph", inputs=inputs, outputs=[], initializer=[tensors[1]]) model = helper.make_model(graph) model_filename = os.path.join(self.temp_dir, 'model.onnx') with open(model_filename, "wb") as model_file: model_file.write(model.SerializeToString()) return model_filename def test_check_model(self): # type: () -> None checker.check_model(self.model_filename) def test_load_external_single_file_data(self): # type: () -> None model = onnx.load_model(self.model_filename) initializer_tensor = model.graph.initializer[0] self.assertTrue(np.allclose(to_array(initializer_tensor), self.initializer_value)) attribute_tensor = model.graph.node[0].attribute[0].t self.assertTrue(np.allclose(to_array(attribute_tensor), self.attribute_value)) def test_save_external_single_file_data(self): # type: () -> None model = onnx.load_model(self.model_filename) temp_dir = os.path.join(self.temp_dir, "save_copy") os.mkdir(temp_dir) new_model_filename = os.path.join(temp_dir, 'model.onnx') onnx.save_model(model, new_model_filename) new_model = onnx.load_model(new_model_filename) initializer_tensor = new_model.graph.initializer[0] self.assertTrue(np.allclose(to_array(initializer_tensor), self.initializer_value)) attribute_tensor = new_model.graph.node[0].attribute[0].t self.assertTrue(np.allclose(to_array(attribute_tensor), self.attribute_value)) class TestSaveAllTensorsAsExternalData(unittest.TestCase): def setUp(self): # type: () -> None self.temp_dir = tempfile.mkdtemp() # type: Text self.initializer_value = np.arange(6).reshape(3, 2).astype(np.float32) + 512 self.attribute_value = np.arange(6).reshape(2, 3).astype(np.float32) + 256 self.model = self.create_test_model() def tearDown(self): # type: () -> None shutil.rmtree(self.temp_dir) def get_temp_model_filename(self): # type: () -> Text return os.path.join(self.temp_dir, str(uuid.uuid4()) + '.onnx') def create_data_tensors(self, tensors_data): # type: (List[Tuple[List[Any],Any]]) -> List[TensorProto] tensors = [] for (value, tensor_name) in tensors_data: tensor = from_array(np.array(value)) tensor.name = tensor_name tensors.append(tensor) return tensors def create_test_model(self): # type: () -> ModelProto tensors = self.create_data_tensors([ (self.attribute_value, "attribute_value"), (self.initializer_value, "input_value"), ]) constant_node = onnx.helper.make_node( 'Constant', inputs=[], outputs=['values'], value=tensors[0] ) inputs = [helper.make_tensor_value_info("input_value", onnx.TensorProto.FLOAT, self.initializer_value.shape)] graph = helper.make_graph([constant_node], "test_graph", inputs=inputs, outputs=[], initializer=[tensors[1]]) return helper.make_model(graph) def test_check_model(self): # type: () -> None checker.check_model(self.model) def test_convert_model_to_from_one_file(self): # type: () -> None model_file_path = self.get_temp_model_filename() external_data_file = str(uuid.uuid4()) convert_model_to_external_data(self.model, location=external_data_file) onnx.save_model(self.model, model_file_path) self.assertTrue(Path.isfile(model_file_path)) self.assertTrue(Path.isfile(os.path.join(self.temp_dir, external_data_file))) model = onnx.load_model(model_file_path) initializer_tensor = model.graph.initializer[0] self.assertTrue(np.allclose(to_array(initializer_tensor), self.initializer_value)) attribute_tensor = model.graph.node[0].attribute[0].t self.assertTrue(np.allclose(to_array(attribute_tensor), self.attribute_value)) # test convert model from external data convert_model_from_external_data(model) model_file_path = self.get_temp_model_filename() onnx.save_model(model, model_file_path) model = onnx.load_model(model_file_path) initializer_tensor = model.graph.initializer[0] self.assertFalse(len(initializer_tensor.external_data)) self.assertEqual(initializer_tensor.data_location, TensorProto.DEFAULT) self.assertTrue(np.allclose(to_array(initializer_tensor), self.initializer_value)) attribute_tensor = model.graph.node[0].attribute[0].t self.assertFalse(len(initializer_tensor.external_data)) self.assertEqual(attribute_tensor.data_location, TensorProto.DEFAULT) self.assertTrue(np.allclose(to_array(attribute_tensor), self.attribute_value)) def test_convert_model_to_external_data_one_file_per_tensor(self): # type: () -> None model_file_path = self.get_temp_model_filename() convert_model_to_external_data(self.model, all_tensors_to_one_file=False) onnx.save_model(self.model, model_file_path) self.assertTrue(Path.isfile(model_file_path)) self.assertTrue(Path.isfile(os.path.join(self.temp_dir, "input_value"))) self.assertTrue(Path.isfile(os.path.join(self.temp_dir, "attribute_value"))) model = onnx.load_model(model_file_path) initializer_tensor = model.graph.initializer[0] self.assertTrue(np.allclose(to_array(initializer_tensor), self.initializer_value)) attribute_tensor = model.graph.node[0].attribute[0].t self.assertTrue(np.allclose(to_array(attribute_tensor), self.attribute_value)) if __name__ == '__main__': unittest.main()
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from onnx import checker, helper, ModelProto, TensorProto, GraphProto, NodeProto, OperatorSetIdProto from typing import Sequence, Text, Tuple, List, Callable from onnx import numpy_helper import numpy as np # type: ignore import struct import onnx.version_converter import unittest class TestVersionConverter(unittest.TestCase): def _converted( self, graph, # type: GraphProto initial_version, # type: OperatorSetIdProto target_version # type: int ): # type: (...) -> ModelProto orig_model = helper.make_model(graph, producer_name='onnx-test', opset_imports=[initial_version]) # print(type(orig_model)) converted_model = onnx.version_converter.convert_version(orig_model, target_version) checker.check_model(converted_model) return converted_model # Test 1: Backwards Incompatible Conversion: Reshape: 8 -> 2 def test_backwards_incompatible(self): # type: () -> None def test(): # type: () -> None nodes = [helper.make_node('Add', ["W", "Z"], ["shape"]), helper.make_node('Reshape', ["X", "shape"], ["A"]), helper.make_node('Add', ["A", "W"], ["Y"])] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("W", TensorProto.FLOAT, (1,)), helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1,))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5,))]) self._converted(graph, helper.make_operatorsetid("", 8), 2) self.assertRaises(RuntimeError, test) # Test 2: Backwards Compatible Conversion (No Adaptations): Add: 3 -> 2 def test_backwards_compatible(self): # type: () -> None nodes = [helper.make_node('Add', ["X1", "X2"], ["Y"])] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X1", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("X2", TensorProto.FLOAT, (5,))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5,))]) converted_model = self._converted(graph, helper.make_operatorsetid( "", 3), 2) # Assert equality of graph and converted_model assert converted_model.graph.node[0].op_type == "Add" assert converted_model.opset_import[0].version == 2 # Test 3: Non-Existent Op Conversion: Cos: 8 -> 6 def test_non_existent_op(self): # type: () -> None def test(): # type: () -> None nodes = [helper.make_node('Cos', ["X"], ["Y"])] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (5,))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5,))]) self._converted(graph, helper.make_operatorsetid("", 8), 6) self.assertRaises(RuntimeError, test) # Test Add Adapter: 8 -> 5 def test_add_8_5(self): # type: () -> None nodes = [helper.make_node('Add', ["X1", "X2"], ["Y"])] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X1", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("X2", TensorProto.FLOAT, (1,))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5,))]) converted_model = self._converted(graph, helper.make_operatorsetid( "", 8), 5) # Assert equality of graph and converted_model assert converted_model.graph.node[0].op_type == "Add" assert converted_model.opset_import[0].version == 5 # Test Add Adapter: 5 -> 8 def test_add_5_8(self): # type: () -> None nodes = [helper.make_node('Add', ["X1", "X2"], ["Y"])] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X1", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("X2", TensorProto.FLOAT, (1,))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5,))]) converted_model = self._converted(graph, helper.make_operatorsetid( "", 5), 8) # Assert equality of graph and converted_model assert converted_model.graph.node[0].op_type == "Add" assert converted_model.opset_import[0].version == 8 # Test Add Adapter: 5 -> 8, requiring insertion of an Unsqueeze node def test_add_5_8_with_unsqueeze(self): # type: () -> None nodes = [helper.make_node('Add', ["X1", "X2"], ["Y"], axis=0, broadcast=1)] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X1", TensorProto.FLOAT, (5, 2)), helper.make_tensor_value_info("X2", TensorProto.FLOAT, (5,))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5,))]) converted_model = self._converted(graph, helper.make_operatorsetid( "", 5), 8) # Assert equality of graph and converted_model assert converted_model.graph.node[0].op_type == "Unsqueeze" assert converted_model.graph.node[1].op_type == "Add" assert converted_model.opset_import[0].version == 8 # Test Mul Adapter: 8 -> 5 def test_mul_8_5(self): # type: () -> None nodes = [helper.make_node('Mul', ["X1", "X2"], ["Y"])] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X1", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("X2", TensorProto.FLOAT, (1,))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5,))]) converted_model = self._converted(graph, helper.make_operatorsetid( "", 8), 5) # Assert equality of graph and converted_model assert converted_model.graph.node[0].op_type == "Mul" assert converted_model.opset_import[0].version == 5 # Test Mul Adapter: 5 -> 8 def test_mul_5_8(self): # type: () -> None nodes = [helper.make_node('Mul', ["X1", "X2"], ["Y"])] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X1", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("X2", TensorProto.FLOAT, (1,))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5,))]) converted_model = self._converted(graph, helper.make_operatorsetid( "", 5), 8) # Assert equality of graph and converted_model assert converted_model.graph.node[0].op_type == "Mul" assert converted_model.opset_import[0].version == 8 # Test Gemm Adapter: 1 -> 8 def test_gemm_up(self): # type: () -> None nodes = [helper.make_node('Gemm', ["A", "B", "C"], ["Y"])] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("A", TensorProto.FLOAT, (5, 5,)), helper.make_tensor_value_info("B", TensorProto.FLOAT, (5, 5,)), helper.make_tensor_value_info("C", TensorProto.FLOAT, (5, 5,))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5, 5,))]) converted_model = self._converted(graph, helper.make_operatorsetid( "", 1), 8) # Assert equality of graph and converted_model assert converted_model.graph.node[0].op_type == "Gemm" assert converted_model.opset_import[0].version == 8 # Test Gemm Adapter: 8 -> 1 def test_gemm_down(self): # type: () -> None nodes = [helper.make_node('Gemm', ["A", "B", "C"], ["Y"])] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("A", TensorProto.FLOAT, (5, 5,)), helper.make_tensor_value_info("B", TensorProto.FLOAT, (5, 5,)), helper.make_tensor_value_info("C", TensorProto.FLOAT, (5, 5,))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5, 5,))]) converted_model = self._converted(graph, helper.make_operatorsetid( "", 8), 1) # Assert equality of graph and converted_model assert converted_model.graph.node[0].op_type == "Gemm" assert converted_model.opset_import[0].version == 1 # Test Relu Adapter: 5 -> 7 def test_relu_5_7(self): # type: () -> None nodes = [helper.make_node('Relu', ["X"], ["Y"])] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (5,))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5,))]) converted_model = self._converted(graph, helper.make_operatorsetid( "", 5), 7) # Assert equality of graph and converted_model assert converted_model.graph.node[0].op_type == "Relu" assert converted_model.opset_import[0].version == 7 # Test Relu Adapter: 7 -> 5 def test_relu_7_5(self): # type: () -> None nodes = [helper.make_node('Relu', ["X"], ["Y"])] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (5,))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5,))]) converted_model = self._converted(graph, helper.make_operatorsetid( "", 7), 5) # Assert equality of graph and converted_model assert converted_model.graph.node[0].op_type == "Relu" assert converted_model.opset_import[0].version == 5 # Test BatchNormalization Adapter: 8 -> 5 def test_batch_normalization_8_5(self): # type: () -> None nodes = [helper.make_node('BatchNormalization', ["X", "scale", "B", "mean", "var"], ["Y"])] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("scale", TensorProto.FLOAT, (1,)), helper.make_tensor_value_info("B", TensorProto.FLOAT, (1,)), helper.make_tensor_value_info("mean", TensorProto.FLOAT, (1,)), helper.make_tensor_value_info("var", TensorProto.FLOAT, (1,))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5,))]) converted_model = self._converted(graph, helper.make_operatorsetid( "", 8), 5) # Assert equality of graph and converted_model assert converted_model.graph.node[0].op_type == "BatchNormalization" assert converted_model.opset_import[0].version == 5 # Test BatchNormalization Adapter: 5 -> 8 def test_batch_normalization_5_8(self): # type: () -> None nodes = [helper.make_node('BatchNormalization', ["X", "scale", "B", "mean", "var"], ["Y"])] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("scale", TensorProto.FLOAT, (1,)), helper.make_tensor_value_info("B", TensorProto.FLOAT, (1,)), helper.make_tensor_value_info("mean", TensorProto.FLOAT, (1,)), helper.make_tensor_value_info("var", TensorProto.FLOAT, (1,))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5,))]) converted_model = self._converted(graph, helper.make_operatorsetid( "", 5), 8) # Assert equality of graph and converted_model assert converted_model.graph.node[0].op_type == "BatchNormalization" assert converted_model.opset_import[0].version == 8 # Test Concat Adapter: 3 -> 5 def test_concat_3_5(self): # type: () -> None nodes = [helper.make_node('Concat', ["X1", "X2", "X3", "X4", "X5"], ["Y"])] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X1", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("X2", TensorProto.FLOAT, (1,)), helper.make_tensor_value_info("X3", TensorProto.FLOAT, (1,)), helper.make_tensor_value_info("X4", TensorProto.FLOAT, (1,)), helper.make_tensor_value_info("X5", TensorProto.FLOAT, (1,))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5,))]) converted_model = self._converted(graph, helper.make_operatorsetid( "", 3), 5) # Assert equality of graph and converted_model assert converted_model.graph.node[0].op_type == "Concat" assert converted_model.opset_import[0].version == 5 # Test Concat Adapter: 5 -> 3 def test_concat_5_3(self): # type: () -> None nodes = [helper.make_node('Concat', ["X1", "X2", "X3", "X4", "X5"], ["Y"])] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X1", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("X2", TensorProto.FLOAT, (1,)), helper.make_tensor_value_info("X3", TensorProto.FLOAT, (1,)), helper.make_tensor_value_info("X4", TensorProto.FLOAT, (1,)), helper.make_tensor_value_info("X5", TensorProto.FLOAT, (1,))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5,))]) converted_model = self._converted(graph, helper.make_operatorsetid( "", 5), 3) # Assert equality of graph and converted_model assert converted_model.graph.node[0].op_type == "Concat" assert converted_model.opset_import[0].version == 3 # Test Reshape Adapter: 6 -> 4 def test_reshape_6_4(self): # type: () -> None nodes = [helper.make_node('Constant', [], ["shape"], value=helper.make_tensor("", TensorProto.INT64, [1], [5])), helper.make_node('Reshape', ["X", "shape"], ["Y"])] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (5,))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5,))]) converted_model = self._converted(graph, helper.make_operatorsetid( "", 6), 4) # Assert equality of graph and converted_model assert converted_model.graph.node[0].op_type == "Reshape" assert converted_model.opset_import[0].version == 4 # Test Reshape Adapter: 4 -> 6 def test_reshape_4_6(self): # type: () -> None nodes = [helper.make_node('Reshape', ["X"], ["Y"], shape=[5])] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (5,))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5,))]) converted_model = self._converted(graph, helper.make_operatorsetid( "", 4), 6) # Assert equality of graph and converted_model assert converted_model.graph.node[0].op_type == "Reshape" assert converted_model.opset_import[0].version == 6 # Test Sum Adapter: 7 -> 8 def test_sum_7_8(self): # type: () -> None nodes = [helper.make_node('Sum', ["data_0", "data_1", "data_2", "data_3", "data_4"], ["sum"])] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("data_0", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("data_1", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("data_2", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("data_3", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("data_4", TensorProto.FLOAT, (5,))], [helper.make_tensor_value_info("sum", TensorProto.FLOAT, (5,))]) converted_model = self._converted(graph, helper.make_operatorsetid( "", 7), 8) # Assert equality of graph and converted_model assert converted_model.graph.node[0].op_type == "Sum" assert converted_model.opset_import[0].version == 8 # Test Sum Adapter: 5 -> 8 def test_sum_5_8(self): # type: () -> None nodes = [helper.make_node('Sum', ["data_0", "data_1", "data_2", "data_3", "data_4"], ["sum"])] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("data_0", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("data_1", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("data_2", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("data_3", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("data_4", TensorProto.FLOAT, (5,))], [helper.make_tensor_value_info("sum", TensorProto.FLOAT, (5,))]) converted_model = self._converted(graph, helper.make_operatorsetid( "", 5), 7) # Assert equality of graph and converted_model assert converted_model.graph.node[0].op_type == "Sum" assert converted_model.opset_import[0].version == 7 # Test Sum Adapter: 8 -> 5 def test_sum_8_5(self): # type: () -> None nodes = [helper.make_node('Sum', ["data_0", "data_1", "data_2", "data_3", "data_4"], ["sum"])] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("data_0", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("data_1", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("data_2", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("data_3", TensorProto.FLOAT, (5,)), helper.make_tensor_value_info("data_4", TensorProto.FLOAT, (5,))], [helper.make_tensor_value_info("sum", TensorProto.FLOAT, (5,))]) converted_model = self._converted(graph, helper.make_operatorsetid( "", 8), 5) # Assert equality of graph and converted_model assert converted_model.graph.node[0].op_type == "Sum" assert converted_model.opset_import[0].version == 5 # Test AveragePool Adapter: 1 -> 8 def test_averagepool_up(self): # type: () -> None nodes = [helper.make_node('AveragePool', ["X"], ["Y"], kernel_shape=[1, 1])] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (5, 5,))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5, 5,))]) converted_model = self._converted(graph, helper.make_operatorsetid( "", 1), 8) # Assert equality of graph and converted_model assert converted_model.graph.node[0].op_type == "AveragePool" assert converted_model.opset_import[0].version == 8 # Test AveragePool Adapter: 8 -> 1 def test_averagepool_down(self): # type: () -> None nodes = [helper.make_node('AveragePool', ["X"], ["Y"], kernel_shape=[1, 1])] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (5, 5,))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5, 5,))]) converted_model = self._converted(graph, helper.make_operatorsetid( "", 8), 1) # Assert equality of graph and converted_model assert converted_model.graph.node[0].op_type == "AveragePool" assert converted_model.opset_import[0].version == 1 # Test Dropout Adapter: 1 -> 8 def test_dropout_up(self): # type: () -> None nodes = [helper.make_node('Dropout', ["data"], ["output"], is_test=1)] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("data", TensorProto.FLOAT, (5, 5,))], [helper.make_tensor_value_info("output", TensorProto.FLOAT, (5, 5,))]) converted_model = self._converted(graph, helper.make_operatorsetid( "", 1), 8) # Assert equality of graph and converted_model assert converted_model.graph.node[0].op_type == "Dropout" assert converted_model.opset_import[0].version == 8 # Test Dropout Adapter: 8 -> 1 def test_dropout_down(self): # type: () -> None nodes = [helper.make_node('Dropout', ["data"], ["output"])] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("data", TensorProto.FLOAT, (5, 5,))], [helper.make_tensor_value_info("output", TensorProto.FLOAT, (5, 5,))]) converted_model = self._converted(graph, helper.make_operatorsetid( "", 8), 1) # Assert equality of graph and converted_model assert converted_model.graph.node[0].op_type == "Dropout" assert converted_model.opset_import[0].version == 1 # Test Max Adapter: 7 -> 8 def test_max_7_8(self): # type: () -> None from_opset = 7 to_opset = 8 data_type = TensorProto.FLOAT data_shape = (2, 3, 4) nodes = [onnx.helper.make_node( "Max", inputs=["X"], outputs=["Y"] )] graph = helper.make_graph( nodes, "test_max", [onnx.helper.make_tensor_value_info("X", data_type, data_shape)], [onnx.helper.make_tensor_value_info("Y", data_type, data_shape)]) converted_model = self._converted(graph, helper.make_operatorsetid("", from_opset), to_opset) assert converted_model.graph.node[0].op_type == "Max" assert converted_model.graph.output[0].type.tensor_type.elem_type == data_type assert converted_model.opset_import[0].version == to_opset # Test Min Adapter: 7 -> 8 def test_min_7_8(self): # type: () -> None from_opset = 7 to_opset = 8 data_type = TensorProto.FLOAT data_shape = (2, 3, 4) nodes = [onnx.helper.make_node( "Min", inputs=["X"], outputs=["Y"] )] graph = helper.make_graph( nodes, "test_min", [onnx.helper.make_tensor_value_info("X", data_type, data_shape)], [onnx.helper.make_tensor_value_info("Y", data_type, data_shape)]) converted_model = self._converted(graph, helper.make_operatorsetid("", from_opset), to_opset) assert converted_model.graph.node[0].op_type == "Min" assert converted_model.graph.output[0].type.tensor_type.elem_type == data_type assert converted_model.opset_import[0].version == to_opset # Test Mean Adapter: 7 -> 8 def test_mean_7_8(self): # type: () -> None from_opset = 7 to_opset = 8 data_type = TensorProto.FLOAT data_shape = (3,) nodes = [onnx.helper.make_node( "Mean", inputs=["X"], outputs=["Y"] )] graph = helper.make_graph( nodes, "test_mean", [onnx.helper.make_tensor_value_info("X", data_type, data_shape)], [onnx.helper.make_tensor_value_info("Y", data_type, data_shape)]) converted_model = self._converted(graph, helper.make_operatorsetid("", from_opset), to_opset) assert converted_model.graph.node[0].op_type == "Mean" assert converted_model.graph.output[0].type.tensor_type.elem_type == data_type assert converted_model.opset_import[0].version == to_opset # Test MaxPool Adapter: 1 -> 8 def test_maxpool_up(self): # type: () -> None nodes = [helper.make_node('MaxPool', ["X"], ["Y"], kernel_shape=[1, 1])] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (5, 5,))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5, 5,))]) converted_model = self._converted(graph, helper.make_operatorsetid( "", 1), 8) # Assert equality of graph and converted_model assert converted_model.graph.node[0].op_type == "MaxPool" assert converted_model.opset_import[0].version == 8 # Test MaxPool Adapter: 8 -> 1 def test_maxpool_down(self): # type: () -> None nodes = [helper.make_node('MaxPool', ["X"], ["Y"], kernel_shape=[1, 1])] graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (5, 5,))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (5, 5,))]) converted_model = self._converted(graph, helper.make_operatorsetid( "", 8), 1) # Assert equality of graph and converted_model assert converted_model.graph.node[0].op_type == "MaxPool" assert converted_model.opset_import[0].version == 1 # Test BatchNormalization Adapter: 8 -> 9 def test_batch_normalization_8_9(self): # type: () -> None from_opset = 8 to_opset = 9 data_type = TensorProto.FLOAT nodes = [helper.make_node( 'BatchNormalization', inputs=["x", "s", "bias", "mean", "var"], outputs=["y"] )] input_shape = (1, 2, 1, 3) x = helper.make_tensor_value_info("x", data_type, input_shape) scale = helper.make_tensor_value_info("s", data_type, [input_shape[1]]) B = helper.make_tensor_value_info("bias", data_type, [input_shape[1]]) mean = helper.make_tensor_value_info("mean", data_type, [input_shape[1]]) var = helper.make_tensor_value_info("var", data_type, [input_shape[1]]) y = helper.make_tensor_value_info("y", data_type, input_shape) graph = helper.make_graph( nodes, "test_batchnormalization_8_9", [x, scale, B, mean, var], [y] ) converted_model = self._converted(graph, helper.make_operatorsetid("", from_opset), to_opset) assert converted_model.graph.node[0].op_type == "BatchNormalization" assert converted_model.opset_import[0].version == to_opset # Test BatchNormalization Adapter: 9 -> 8 def test_batchnormalization_9_8(self): # type: () -> None from_opset = 9 to_opset = 8 data_type = TensorProto.FLOAT nodes = [onnx.helper.make_node( 'BatchNormalization', inputs=['X', 'scale', 'B', 'mean', 'var'], outputs=['Y'], )] input_shape = (2, 3, 4, 5) x = onnx.helper.make_tensor_value_info("X", data_type, input_shape) scale = onnx.helper.make_tensor_value_info("scale", data_type, [input_shape[1]]) B = onnx.helper.make_tensor_value_info("B", data_type, [input_shape[1]]) mean = onnx.helper.make_tensor_value_info("mean", data_type, [input_shape[1]]) var = onnx.helper.make_tensor_value_info("var", data_type, [input_shape[1]]) y = onnx.helper.make_tensor_value_info("Y", data_type, input_shape) graph = onnx.helper.make_graph( nodes, "test_batchnormalization", [x, scale, B, mean, var], [y] ) converted_model = self._converted(graph, helper.make_operatorsetid("", from_opset), to_opset) assert converted_model.graph.node[0].op_type == "BatchNormalization" assert converted_model.opset_import[0].version == to_opset # Test Constant Adapter: 8 -> 9 def test_constant_8_9(self): # type: () -> None from_opset = 8 to_opset = 9 data_type = TensorProto.FLOAT output_shape = [2, 3, 4] output_value = np.arange(24) nodes = [helper.make_node( "Constant", inputs=[], outputs=["Y"], value=helper.make_tensor("", data_type, output_shape, output_value))] graph = helper.make_graph( nodes, "test_constant", [], [onnx.helper.make_tensor_value_info("Y", data_type, output_shape)]) converted_model = self._converted(graph, helper.make_operatorsetid("", from_opset), to_opset) assert converted_model.graph.node[0].op_type == "Constant" assert converted_model.graph.output[0].type.tensor_type.elem_type == data_type assert converted_model.opset_import[0].version == to_opset # Test Constant Adapter: 9 -> 8 def test_constant_9_8(self): # type: () -> None from_opset = 9 to_opset = 8 data_type = TensorProto.UINT64 output_shape = [2, 3, 4] output_value = np.arange(24) nodes = [helper.make_node( "Constant", inputs=[], outputs=["Y"], value=helper.make_tensor("", data_type, output_shape, output_value))] graph = helper.make_graph( nodes, "test_constant", [], [onnx.helper.make_tensor_value_info("Y", data_type, output_shape)]) converted_model = self._converted(graph, helper.make_operatorsetid("", from_opset), to_opset) assert converted_model.graph.node[0].op_type == "Constant" assert converted_model.graph.output[0].type.tensor_type.elem_type == data_type assert converted_model.opset_import[0].version == to_opset # Test Flatten Adapter: 8 -> 9 def test_flatten_8_9(self): # type: () -> None from_opset = 8 to_opset = 9 data_type = TensorProto.FLOAT nodes = [onnx.helper.make_node( "Flatten", inputs=["X"], outputs=["Y"], axis=1 )] graph = helper.make_graph( nodes, "test_flatten", [onnx.helper.make_tensor_value_info("X", data_type, [2, 3, 4])], [onnx.helper.make_tensor_value_info("Y", data_type, [2, 12])]) converted_model = self._converted(graph, helper.make_operatorsetid("", from_opset), to_opset) assert converted_model.graph.node[0].op_type == "Flatten" assert converted_model.graph.output[0].type.tensor_type.elem_type == data_type assert converted_model.opset_import[0].version == to_opset # Test Flatten Adapter: 9 -> 8 def test_flatten_9_8(self): # type: () -> None from_opset = 9 to_opset = 8 data_type = TensorProto.UINT64 nodes = [onnx.helper.make_node( "Flatten", inputs=["X"], outputs=["Y"], axis=1 )] graph = helper.make_graph( nodes, "test_flatten", [onnx.helper.make_tensor_value_info("X", data_type, [2, 3, 4])], [onnx.helper.make_tensor_value_info("Y", data_type, [2, 12])]) converted_model = self._converted(graph, helper.make_operatorsetid("", from_opset), to_opset) assert converted_model.graph.node[1].op_type == "Flatten" assert converted_model.graph.output[0].type.tensor_type.elem_type == data_type assert converted_model.opset_import[0].version == to_opset # Test PRelu Adapter: 8 -> 9 def test_prelu_8_9(self): # type: () -> None from_opset = 8 to_opset = 9 data_type = TensorProto.FLOAT nodes = [onnx.helper.make_node( "PRelu", inputs=["X", "Slope"], outputs=["Y"] )] input_shape = [2, 3, 4] graph = helper.make_graph( nodes, "test_prelu", [onnx.helper.make_tensor_value_info("X", data_type, input_shape), onnx.helper.make_tensor_value_info("Slope", data_type, input_shape)], [onnx.helper.make_tensor_value_info("Y", data_type, input_shape)]) converted_model = self._converted(graph, helper.make_operatorsetid("", from_opset), to_opset) assert converted_model.graph.node[0].op_type == "PRelu" assert converted_model.graph.output[0].type.tensor_type.elem_type == data_type assert converted_model.opset_import[0].version == to_opset # Test PRelu Adapter: 9 -> 8 def test_prelu_9_8(self): # type: () -> None from_opset = 9 to_opset = 8 data_type = TensorProto.UINT64 nodes = [onnx.helper.make_node( "PRelu", inputs=["X", "Slope"], outputs=["Y"] )] input_shape = [2, 3, 4] graph = helper.make_graph( nodes, "test_prelu", [onnx.helper.make_tensor_value_info("X", data_type, input_shape), onnx.helper.make_tensor_value_info("Slope", data_type, input_shape)], [onnx.helper.make_tensor_value_info("Y", data_type, input_shape)]) converted_model = self._converted(graph, helper.make_operatorsetid("", from_opset), to_opset) assert converted_model.graph.node[2].op_type == "PRelu" assert converted_model.graph.output[0].type.tensor_type.elem_type == data_type assert converted_model.opset_import[0].version == to_opset # Test Greater Adapter: 8 -> 9 def test_greater_8_9(self): # type: () -> None from_opset = 8 to_opset = 9 data_type = TensorProto.FLOAT nodes = [onnx.helper.make_node( "Greater", inputs=["X1", "X2"], outputs=["Y"] )] input_shape = [2, 3, 4] graph = helper.make_graph( nodes, "test_greater", [onnx.helper.make_tensor_value_info("X1", data_type, input_shape), onnx.helper.make_tensor_value_info("X2", data_type, input_shape)], [onnx.helper.make_tensor_value_info("Y", TensorProto.BOOL, input_shape)]) converted_model = self._converted(graph, helper.make_operatorsetid("", from_opset), to_opset) assert converted_model.graph.node[0].op_type == "Greater" assert converted_model.graph.output[0].type.tensor_type.elem_type == TensorProto.BOOL assert converted_model.opset_import[0].version == to_opset # Test Greater Adapter: 9 -> 8 def test_greater_9_8(self): # type: () -> None from_opset = 9 to_opset = 8 data_type = TensorProto.UINT64 nodes = [onnx.helper.make_node( "Greater", inputs=["X1", "X2"], outputs=["Y"] )] input_shape = [2, 3, 4] graph = helper.make_graph( nodes, "test_greater", [onnx.helper.make_tensor_value_info("X1", data_type, input_shape), onnx.helper.make_tensor_value_info("X2", data_type, input_shape)], [onnx.helper.make_tensor_value_info("Y", TensorProto.BOOL, input_shape)]) converted_model = self._converted(graph, helper.make_operatorsetid("", from_opset), to_opset) assert converted_model.graph.node[2].op_type == "Greater" assert converted_model.graph.output[0].type.tensor_type.elem_type == TensorProto.BOOL assert converted_model.opset_import[0].version == to_opset # Test Less Adapter: 8 -> 9 def test_less_8_9(self): # type: () -> None from_opset = 8 to_opset = 9 data_type = TensorProto.FLOAT nodes = [onnx.helper.make_node( "Less", inputs=["X1", "X2"], outputs=["Y"] )] input_shape = [2, 3, 4] graph = helper.make_graph( nodes, "test_less", [onnx.helper.make_tensor_value_info("X1", data_type, input_shape), onnx.helper.make_tensor_value_info("X2", data_type, input_shape)], [onnx.helper.make_tensor_value_info("Y", TensorProto.BOOL, input_shape)]) converted_model = self._converted(graph, helper.make_operatorsetid("", from_opset), to_opset) assert converted_model.graph.node[0].op_type == "Less" assert converted_model.graph.output[0].type.tensor_type.elem_type == TensorProto.BOOL assert converted_model.opset_import[0].version == to_opset # Test Less Adapter: 9 -> 8 def test_less_9_8(self): # type: () -> None from_opset = 9 to_opset = 8 data_type = TensorProto.UINT64 nodes = [onnx.helper.make_node( "Less", inputs=["X1", "X2"], outputs=["Y"] )] input_shape = [2, 3, 4] graph = helper.make_graph( nodes, "test_less", [onnx.helper.make_tensor_value_info("X1", data_type, input_shape), onnx.helper.make_tensor_value_info("X2", data_type, input_shape)], [onnx.helper.make_tensor_value_info("Y", TensorProto.BOOL, input_shape)]) converted_model = self._converted(graph, helper.make_operatorsetid("", from_opset), to_opset) assert converted_model.graph.node[2].op_type == "Less" assert converted_model.graph.output[0].type.tensor_type.elem_type == TensorProto.BOOL assert converted_model.opset_import[0].version == to_opset # Test MatMul Adapter: 8 -> 9 def test_matmul_8_9(self): # type: () -> None from_opset = 8 to_opset = 9 data_type = TensorProto.FLOAT nodes = [onnx.helper.make_node( "MatMul", inputs=["X1", "X2"], outputs=["Y"] )] graph = helper.make_graph( nodes, "test_matmul", [onnx.helper.make_tensor_value_info("X1", data_type, [3, 4]), onnx.helper.make_tensor_value_info("X2", data_type, [4, 3])], [onnx.helper.make_tensor_value_info("Y", data_type, [3, 3])]) converted_model = self._converted(graph, helper.make_operatorsetid("", from_opset), to_opset) assert converted_model.graph.node[0].op_type == "MatMul" assert converted_model.graph.output[0].type.tensor_type.elem_type == data_type assert converted_model.opset_import[0].version == to_opset # Test MatMul Adapter: 9 -> 8 def test_matmul_9_8(self): # type: () -> None from_opset = 9 to_opset = 8 data_type = TensorProto.UINT64 nodes = [onnx.helper.make_node( "MatMul", inputs=["X1", "X2"], outputs=["Y"] )] graph = helper.make_graph( nodes, "test_matmul", [onnx.helper.make_tensor_value_info("X1", data_type, [3, 4]), onnx.helper.make_tensor_value_info("X2", data_type, [4, 3])], [onnx.helper.make_tensor_value_info("Y", data_type, [3, 3])]) converted_model = self._converted(graph, helper.make_operatorsetid("", from_opset), to_opset) assert converted_model.graph.node[2].op_type == "MatMul" assert converted_model.graph.output[0].type.tensor_type.elem_type == data_type assert converted_model.opset_import[0].version == to_opset # Test Gemm Adapter: 8 -> 9 def test_gemm_8_9(self): # type: () -> None from_opset = 8 to_opset = 9 data_type = TensorProto.FLOAT nodes = [onnx.helper.make_node( "Gemm", inputs=["X1", "X2", "X3"], outputs=["Y"] )] graph = helper.make_graph( nodes, "test_gemm", [onnx.helper.make_tensor_value_info("X1", data_type, [3, 4]), onnx.helper.make_tensor_value_info("X2", data_type, [4, 3]), onnx.helper.make_tensor_value_info("X3", data_type, [3, 3])], [onnx.helper.make_tensor_value_info("Y", data_type, [3, 3])]) converted_model = self._converted(graph, helper.make_operatorsetid("", from_opset), to_opset) assert converted_model.graph.node[0].op_type == "Gemm" assert converted_model.graph.output[0].type.tensor_type.elem_type == data_type assert converted_model.opset_import[0].version == to_opset # Test Gemm Adapter: 9 -> 8 def test_gemm_9_8(self): # type: () -> None from_opset = 9 to_opset = 8 data_type = TensorProto.UINT64 nodes = [onnx.helper.make_node( "Gemm", inputs=["X1", "X2", "X3"], outputs=["Y"] )] graph = helper.make_graph( nodes, "test_gemm", [onnx.helper.make_tensor_value_info("X1", data_type, [3, 4]), onnx.helper.make_tensor_value_info("X2", data_type, [4, 3]), onnx.helper.make_tensor_value_info("X3", data_type, [3, 3])], [onnx.helper.make_tensor_value_info("Y", data_type, [3, 3])]) converted_model = self._converted(graph, helper.make_operatorsetid("", from_opset), to_opset) assert converted_model.graph.node[3].op_type == "Gemm" assert converted_model.graph.output[0].type.tensor_type.elem_type == data_type assert converted_model.opset_import[0].version == to_opset # Test Upsample Adapter: 8 -> 9 def test_upsample_8_9(self): # type: () -> None from_opset = 8 to_opset = 9 data_type = TensorProto.FLOAT nodes = [onnx.helper.make_node( "Upsample", inputs=["X"], outputs=["Y"], mode="nearest", scales=[1.0, 1.0, 2.0, 3.0], )] graph = helper.make_graph( nodes, "test_upsample_8_9", [onnx.helper.make_tensor_value_info("X", data_type, [1, 1, 2, 2])], [onnx.helper.make_tensor_value_info("Y", data_type, [1, 1, 4, 6])] ) converted_model = self._converted(graph, helper.make_operatorsetid("", from_opset), to_opset) assert len(converted_model.graph.node) == 1 assert converted_model.graph.node[0].op_type == "Upsample" assert len(converted_model.graph.node[0].attribute) == 1 assert converted_model.graph.node[0].attribute[0].name == "mode" assert converted_model.opset_import[0].version == to_opset # Test Helper for Upsample Adapter: 9 -> 8 def helper_upsample_with_initializer(self, raw_scale=False): # type: (bool) -> None from_opset = 9 to_opset = 8 data_type = TensorProto.FLOAT nodes = [onnx.helper.make_node( "Upsample", inputs=["X", "Scales"], outputs=["Y"], mode="nearest" )] scale_value = [1.0, 1.0, 2.0, 3.0] scale_tensor = onnx.helper.make_tensor("Scales", onnx.TensorProto.FLOAT, [4], bytes(struct.pack("4f", *scale_value)) if raw_scale else scale_value, raw_scale) graph = helper.make_graph( nodes, "test_upsample", [onnx.helper.make_tensor_value_info("X", data_type, [1, 1, 2, 2]), onnx.helper.make_tensor_value_info("Scales", data_type, [4])], [onnx.helper.make_tensor_value_info("Y", data_type, [1, 1, 4, 6])], [scale_tensor]) converted_model = self._converted(graph, helper.make_operatorsetid("", from_opset), to_opset) assert converted_model.graph.node[0].op_type == "Upsample" assert len(converted_model.graph.initializer) == 0 assert len(converted_model.graph.node[0].attribute) == 2 assert converted_model.graph.node[0].attribute[1].name == "scales" assert converted_model.opset_import[0].version == to_opset # Test Helper for Upsample Adapter: 9 -> 8 def helper_upsample_with_constant(self, raw_scale=False): # type: (bool) -> None from_opset = 9 to_opset = 8 data_type = TensorProto.FLOAT scale_value = [1.0, 1.0, 2.0, 3.0] scale_tensor = onnx.helper.make_tensor("const_value", onnx.TensorProto.FLOAT, [4], bytes(struct.pack("4f", *scale_value)) if raw_scale else scale_value, raw_scale) nodes = [ onnx.helper.make_node( 'Constant', inputs=[], outputs=['Constant_Output'], value=scale_tensor), onnx.helper.make_node( "Upsample", inputs=["X", "Constant_Output"], outputs=["Y"], mode="nearest")] graph = helper.make_graph( nodes, "test_upsample", [onnx.helper.make_tensor_value_info("X", data_type, [1, 1, 2, 2])], [onnx.helper.make_tensor_value_info("Y", data_type, [1, 1, 4, 6])], value_info=[onnx.helper.make_tensor_value_info("Constant_Output", data_type, [4])]) converted_model = self._converted(graph, helper.make_operatorsetid("", from_opset), to_opset) assert len(converted_model.graph.node) == 1 assert converted_model.graph.node[0].op_type == "Upsample" assert len(converted_model.graph.node[0].attribute) == 2 assert converted_model.graph.node[0].attribute[1].name == "scales" assert converted_model.opset_import[0].version == to_opset # Test Upsample Adapter: 9 -> 8 def test_upsample_with_constant_node_9_8(self): # type: () -> None self.helper_upsample_with_constant(raw_scale=False) # Test Upsample Adapter: 9 -> 8 def test_upsample_with_initializer_9_8(self): # type: () -> None self.helper_upsample_with_initializer(raw_scale=False) # Test Upsample Adapter: 9 -> 8 def test_upsample_with_raw_initializer_9_8(self): # type: () -> None self.helper_upsample_with_constant(raw_scale=True) # Test Upsample Adapter: 9 -> 8 def test_upsample_with_raw_constant_node_9_8(self): # type: () -> None self.helper_upsample_with_constant(raw_scale=True) # Test Scan Adapter: 8 -> 9 def test_scan_8_9(self): # type: () -> None from_opset = 8 to_opset = 9 data_type = TensorProto.FLOAT node1 = onnx.helper.make_node("Add", inputs=["sum_in", "next"], outputs=["sum_out"],) node2 = onnx.helper.make_node("Identity", inputs=["sum_out"], outputs=["scan_out"],) g = onnx.helper.make_graph( [node1, node2], "scan_body", [onnx.helper.make_tensor_value_info("sum_in", data_type, [2]), onnx.helper.make_tensor_value_info("next", data_type, [2])], [onnx.helper.make_tensor_value_info("sum_out", data_type, [2]), onnx.helper.make_tensor_value_info("scan_out", data_type, [2])] ) nodes = [onnx.helper.make_node( "Scan", inputs=["", "initial", "x"], outputs=["y", "z"], body=g, num_scan_inputs=1, )] seq_lens = onnx.helper.make_empty_tensor_value_info(" ") initial = onnx.helper.make_tensor_value_info("initial", data_type, [1, 2]) x = onnx.helper.make_tensor_value_info("x", data_type, [1, 3, 2]) y = onnx.helper.make_tensor_value_info("y", data_type, [1, 2]) z = onnx.helper.make_tensor_value_info("z", data_type, [1, 3, 2]) graph = onnx.helper.make_graph( nodes, "test_scan_8_9", [seq_lens, initial, x], [y, z] ) converted_model = self._converted(graph, helper.make_operatorsetid("", from_opset), to_opset) assert converted_model.graph.node[0].op_type == "Scan" assert converted_model.opset_import[0].version == to_opset # Test Cast Adapter: 8 -> 9 def test_cast_8_9(self): # type: () -> None from_opset = 8 to_opset = 9 data_type_from = TensorProto.FLOAT data_type_to = TensorProto.UINT32 nodes = [onnx.helper.make_node( "Cast", inputs=["X"], outputs=["Y"], to=TensorProto.UINT32 )] graph = helper.make_graph( nodes, "test_cast", [onnx.helper.make_tensor_value_info("X", data_type_from, [2, 3])], [onnx.helper.make_tensor_value_info("Y", data_type_to, [2, 3])]) converted_model = self._converted(graph, helper.make_operatorsetid("", from_opset), to_opset) assert converted_model.graph.node[0].op_type == "Cast" assert converted_model.graph.output[0].type.tensor_type.elem_type == data_type_to assert converted_model.opset_import[0].version == to_opset if __name__ == '__main__': unittest.main()
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import itertools import os import platform import unittest import onnx.backend.base import onnx.backend.test from onnx.backend.base import Device, DeviceType from onnx.backend.test.runner import BackendIsNotSupposedToImplementIt import onnx.shape_inference import onnx.version_converter from typing import Optional, Text, Any, Tuple, Sequence from onnx import NodeProto, ModelProto, TensorProto import numpy # type: ignore # The following just executes the fake backend through the backend test # infrastructure. Since we don't have full reference implementation of all ops # in ONNX repo, it's impossible to produce the proper results. However, we can # run 'checker' (that's what base Backend class does) to verify that all tests # fed are actually well-formed ONNX models. # # If everything is fine, all the tests would be marked as "skipped". # # We don't enable report in this test because the report collection logic itself # fails when models are mal-formed. class DummyBackend(onnx.backend.base.Backend): @classmethod def prepare(cls, model, # type: ModelProto device='CPU', # type: Text **kwargs # type: Any ): # type: (...) -> Optional[onnx.backend.base.BackendRep] super(DummyBackend, cls).prepare(model, device, **kwargs) # test shape inference model = onnx.shape_inference.infer_shapes(model) value_infos = {vi.name: vi for vi in itertools.chain(model.graph.value_info, model.graph.output)} if do_enforce_test_coverage_whitelist(model): for node in model.graph.node: for i, output in enumerate(node.output): if node.op_type == 'Dropout' and i != 0: continue assert output in value_infos tt = value_infos[output].type.tensor_type assert tt.elem_type != TensorProto.UNDEFINED for dim in tt.shape.dim: assert dim.WhichOneof('value') == 'dim_value' raise BackendIsNotSupposedToImplementIt( "This is the dummy backend test that doesn't verify the results but does run the checker") @classmethod def run_node(cls, node, # type: NodeProto inputs, # type: Any device='CPU', # type: Text outputs_info=None, # type: Optional[Sequence[Tuple[numpy.dtype, Tuple[int, ...]]]] **kwargs # type: Any ): # type: (...) -> Optional[Tuple[Any, ...]] super(DummyBackend, cls).run_node(node, inputs, device=device, outputs_info=outputs_info) raise BackendIsNotSupposedToImplementIt( "This is the dummy backend test that doesn't verify the results but does run the checker") @classmethod def supports_device(cls, device): # type: (Text) -> bool d = Device(device) if d.type == DeviceType.CPU: return True return False test_coverage_whitelist = set( ['bvlc_alexnet', 'densenet121', 'inception_v1', 'inception_v2', 'resnet50', 'shufflenet', 'SingleRelu', 'squeezenet_old', 'vgg19', 'zfnet']) def do_enforce_test_coverage_whitelist(model): # type: (ModelProto) -> bool if model.graph.name not in test_coverage_whitelist: return False for node in model.graph.node: if node.op_type in set(['RNN', 'LSTM', 'GRU']): return False return True backend_test = onnx.backend.test.BackendTest(DummyBackend, __name__) if os.getenv('APPVEYOR'): backend_test.exclude(r'(test_vgg19|test_zfnet)') if platform.architecture()[0] == '32bit': backend_test.exclude(r'(test_vgg19|test_zfnet|test_bvlc_alexnet)') # import all test cases at global scope to make them visible to python.unittest globals().update(backend_test .test_cases) if __name__ == '__main__': unittest.main()
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import unittest import onnx from onnx.tools import update_model_dims from onnx import helper, TensorProto class TestToolsFunctions(unittest.TestCase): def test_update_inputs_outputs_dim(self): # type: () -> None node_def = helper.make_node( "Conv", inputs=['x', 'W'], outputs=['y'], kernel_shape=[3, 3], strides=[2, 2], ) graph_def = helper.make_graph( [node_def], 'test', [helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5]), helper.make_tensor_value_info('W', TensorProto.FLOAT, [1, 1, 3, 3])], [helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 1, 2, 2])] ) model_def = helper.make_model(graph_def, producer_name='test') updated_def = update_model_dims.update_inputs_outputs_dims( model_def, { "x": [1, 1, 'x1', -1], "W": [1, 1, 3, 3], }, { "y": [1, 1, -1, -1], }) onnx.checker.check_model(updated_def) self.assertEqual(updated_def.graph.input[0].type.tensor_type.shape.dim[2].dim_param, 'x1') self.assertEqual(updated_def.graph.input[0].type.tensor_type.shape.dim[3].dim_param, 'x_3') self.assertEqual(updated_def.graph.output[0].type.tensor_type.shape.dim[2].dim_param, 'y_2') self.assertEqual(updated_def.graph.output[0].type.tensor_type.shape.dim[3].dim_param, 'y_3') if __name__ == '__main__': unittest.main()
import unittest from onnx import defs, helper class TestRelu(unittest.TestCase): def test_relu(self): # type: () -> None self.assertTrue(defs.has('Relu')) helper.make_node( 'Relu', ['X'], ['Y']) if __name__ == '__main__': unittest.main()
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from onnx import checker, helper, TensorProto, NodeProto, GraphProto, ValueInfoProto, ModelProto, ONNX_ML, SparseTensorProto from onnx.helper import make_node, make_tensor, make_tensor_value_info, make_empty_tensor_value_info, make_opsetid, make_sequence_value_info from typing import Sequence, Union, Text, Tuple, List, Any, Optional import onnx.shape_inference import unittest import os import numpy as np # type: ignore class TestShapeInference(unittest.TestCase): def _make_graph(self, seed_values, # type: Sequence[Union[Text, Tuple[Text, TensorProto.DataType, Any]]] nodes, # type: List[NodeProto] value_info, # type: List[ValueInfoProto] initializer=None # type: Optional[Sequence[TensorProto]] ): # type: (...) -> GraphProto if initializer is None: initializer = [] names_in_initializer = set(x.name for x in initializer) input_value_infos = [] # If the starting values are not also initializers, # introduce the starting values as the output of reshape, # so that the sizes are guaranteed to be unknown for seed_value in seed_values: if isinstance(seed_value, tuple): seed_name = seed_value[0] seed_value_info = make_tensor_value_info(*seed_value) else: seed_name = seed_value seed_value_info = make_empty_tensor_value_info(seed_value) if seed_name in names_in_initializer: input_value_infos.append(seed_value_info) else: value_info.append(seed_value_info) input_value_infos.append(make_tensor_value_info('SEED_' + seed_name, TensorProto.UNDEFINED, ())) input_value_infos.append(make_tensor_value_info('UNKNOWN_SHAPE_' + seed_name, TensorProto.UNDEFINED, ())) nodes[:0] = [make_node("Reshape", ['SEED_' + seed_name, 'UNKNOWN_SHAPE_' + seed_name], [seed_name])] return helper.make_graph(nodes, "test", input_value_infos, [], initializer=initializer, value_info=value_info) def _inferred(self, graph, **kwargs): # type: (GraphProto, **Any) -> ModelProto kwargs[str('producer_name')] = 'onnx-test' orig_model = helper.make_model(graph, **kwargs) inferred_model = onnx.shape_inference.infer_shapes(orig_model) checker.check_model(inferred_model) return inferred_model def _assert_inferred(self, graph, vis, **kwargs): # type: (GraphProto, List[ValueInfoProto], **Any) -> None names_in_vis = set(x.name for x in vis) vis = list(x for x in graph.value_info if x.name not in names_in_vis) + vis inferred_model = self._inferred(graph, **kwargs) inferred_vis = list(inferred_model.graph.value_info) vis = list(sorted(vis, key=lambda x: x.name)) inferred_vis = list(sorted(inferred_vis, key=lambda x: x.name)) if vis == inferred_vis: return # otherwise some custom logic to give a nicer diff vis_names = set(x.name for x in vis) inferred_vis_names = set(x.name for x in inferred_vis) assert vis_names == inferred_vis_names, (vis_names, inferred_vis_names) for vi, inferred_vi in zip(vis, inferred_vis): assert vi == inferred_vi, '\n%s\n%s\n' % (vi, inferred_vi) assert False def test_empty_graph(self): # type: () -> None graph = self._make_graph( ['y'], [], []) self._assert_inferred(graph, []) def _identity_prop(self, op, **kwargs): # type: (Text, **Any) -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 5))], [make_node(op, 'x', 'y', **kwargs)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (30, 4, 5))]) def test_transpose(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (2, 3, 4))], [make_node("Transpose", ["X"], ["Y"], perm=[1, 0, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (3, 2, 4))]) def test_transpose_preexisting(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (2, 3, 4))], [make_node("Transpose", ["X"], ["Y"], perm=[1, 0, 2])], [make_tensor_value_info("Y", TensorProto.FLOAT, None)]) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (3, 2, 4))]) def test_transpose_partial(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (2, 3, 4))], [make_node("Transpose", ["X"], ["Y"], perm=[1, 0, 2])], [make_tensor_value_info("Y", TensorProto.UNDEFINED, (3, "a", "b"))]) # type: ignore self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (3, 2, 4))]) def test_transpose_preexisting_incorrect_shape(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (2, 3, 4))], [make_node("Transpose", ["X"], ["Y"], perm=[1, 0, 2])], [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 5, 5))]) self.assertRaises(RuntimeError, self._inferred, graph) def test_transpose_preexisting_incorrect_type(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (2, 3, 4))], [make_node("Transpose", ["X"], ["Y"], perm=[1, 0, 2])], [make_tensor_value_info("Y", TensorProto.STRING, (3, 2, 4))]) self.assertRaises(RuntimeError, self._inferred, graph) def _make_matmul_test_all_dims_known(self, shape1, shape2): # type: (Sequence[int], Sequence[int]) -> None expected_out_shape = np.matmul(np.arange(np.product(shape1)).reshape(shape1), np.arange(np.product(shape2)).reshape(shape2)).shape graph = self._make_graph( [('x', TensorProto.FLOAT, shape1), ('y', TensorProto.FLOAT, shape2)], [make_node('MatMul', ['x', 'y'], ['z'])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, expected_out_shape)]) def test_matmul_all_dims_known(self): # type: () -> None self._make_matmul_test_all_dims_known((2,), (2,)) self._make_matmul_test_all_dims_known((4, 2), (2, 4)) self._make_matmul_test_all_dims_known((5, 2), (2, 4)) self._make_matmul_test_all_dims_known((5, 2), (2, 1)) self._make_matmul_test_all_dims_known((1, 2), (2, 3)) self._make_matmul_test_all_dims_known((2,), (2, 3)) self._make_matmul_test_all_dims_known((4, 2), (2,)) self._make_matmul_test_all_dims_known((1, 4, 2), (3, 2, 3)) self._make_matmul_test_all_dims_known((3, 4, 2), (3, 2, 3)) self._make_matmul_test_all_dims_known((5, 1, 4, 2), (1, 3, 2, 3)) self._make_matmul_test_all_dims_known((4, 2), (3, 2, 3)) def _make_matmul_test_allow_unknown(self, shape1, shape2, expected_out_shape): # type: (Any, Any, Any) -> None graph = self._make_graph( [('x', TensorProto.FLOAT, shape1), ('y', TensorProto.FLOAT, shape2)], [make_node('MatMul', ['x', 'y'], ['z'])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, expected_out_shape)]) def test_matmul_allow_unknown(self): # type: () -> None self._make_matmul_test_allow_unknown((None,), (None,), ()) self._make_matmul_test_allow_unknown((3,), (None,), ()) self._make_matmul_test_allow_unknown((2,), (2, "a"), ("a",)) self._make_matmul_test_allow_unknown((4, 2), (2, "a"), (4, "a")) self._make_matmul_test_allow_unknown((4, None), (2, "a"), (4, "a")) self._make_matmul_test_allow_unknown((4, None), (None, "a"), (4, "a")) self._make_matmul_test_allow_unknown((1, 4, 2), ("a", 2, 5), ("a", 4, 5)) self._make_matmul_test_allow_unknown((1, 3, 4, 2), ("a", 2, 5), (1, 3, 4, 5)) self._make_matmul_test_allow_unknown((3,), None, None) self._make_matmul_test_allow_unknown(None, None, None) def test_cast(self): # type: () -> None graph = self._make_graph( [("x", TensorProto.FLOAT, (2, 4, 3))], [make_node("Cast", ["x"], ["y"], to=TensorProto.UINT8)], []) self._assert_inferred(graph, [make_tensor_value_info("y", TensorProto.UINT8, (2, 4, 3))]) def test_concat(self): # type: () -> None graph = self._make_graph( [("x", TensorProto.FLOAT, (2, 4, 3)), ("y", TensorProto.FLOAT, (7, 4, 3))], [make_node("Concat", ['x', 'y'], ['z'], axis=0)], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (9, 4, 3))]) def test_concat_missing_shape(self): # type: () -> None graph = self._make_graph( [("x", TensorProto.FLOAT, (2, 4, 3)), "y", ("z", TensorProto.FLOAT, (None, None, None))], [make_node("Concat", ['x', 'y', 'z'], ['out'], axis=0)], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, None)]) def test_concat_3d_axis_2(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 2, 2)), ('y', TensorProto.FLOAT, (2, 2, 2))], [make_node('Concat', ['x', 'y'], ['z'], axis=2)], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (2, 2, 4))]) def test_concat_param(self): # type: () -> None graph = self._make_graph( [("x", TensorProto.FLOAT, ("a", 2)), ("y", TensorProto.FLOAT, ("a", 3))], [make_node("Concat", ['x', 'y'], ['z'], axis=1)], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, ("a", 5))]) def test_concat_param_single_input(self): # type: () -> None graph = self._make_graph( [("x", TensorProto.FLOAT, ("a", 2))], [make_node("Concat", ['x'], ['z'], axis=0)], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, ("a", 2))]) def test_reshape_dynamic_shape(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.UINT8, (2, 4, 3)), ('shape', TensorProto.UNDEFINED, (2,))], [make_node("Reshape", ['x', 'shape'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, None)]) def test_reshape_static_shape(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.UINT8, (2, 4, 3)), ('shape', TensorProto.INT64, (2,))], [make_node("Reshape", ['x', 'shape'], ['y'])], [], initializer=[make_tensor('shape', TensorProto.INT64, (2,), (3, 8))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, (3, 8))]) def test_reshape_static_shape_inferred(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.UINT8, (2, 4, 3)), ('shape', TensorProto.INT64, (3,))], [make_node("Reshape", ['x', 'shape'], ['y'])], [], initializer=[make_tensor('shape', TensorProto.INT64, (3,), (0, 3, -1))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, (2, 3, 4))]) def test_reshape_static_shape_constant(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.UINT8, (2, 4, 3))], [make_node("Constant", [], ['shape'], value=make_tensor('shape', TensorProto.INT64, (2,), (3, 8))), make_node("Reshape", ['x', 'shape'], ['y'])], []) self._assert_inferred(graph, [ make_tensor_value_info('shape', TensorProto.INT64, (2,)), make_tensor_value_info('y', TensorProto.UINT8, (3, 8))]) def test_upsample(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.INT32, (2, 4, 3, 5)), ('scales', TensorProto.FLOAT, (4,))], [make_node("Upsample", ['x', 'scales'], ['y'])], [], initializer=[make_tensor('scales', TensorProto.FLOAT, (4,), (1.0, 1.1, 1.3, 1.9))]) self._assert_inferred( graph, [make_tensor_value_info('y', TensorProto.INT32, (2, 4, 3, 9))], opset_imports=[helper.make_opsetid("", 9)]) def test_upsample_raw_data(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.INT32, (2, 4, 3, 5)), ('scales', TensorProto.FLOAT, (4,))], [make_node("Upsample", ['x', 'scales'], ['y'])], [], initializer=[make_tensor('scales', TensorProto.FLOAT, (4,), vals=np.array([1.0, 1.1, 1.3, 1.9], dtype='<f4').tobytes(), raw=True)]) # Feed raw bytes (force little endian ordering like onnx standard) for test purpose self._assert_inferred( graph, [make_tensor_value_info('y', TensorProto.INT32, (2, 4, 3, 9))], opset_imports=[helper.make_opsetid("", 9)]) def test_upsample_raw_data_v7(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.INT32, (1, 3, 4, 5))], [make_node("Upsample", ['x'], ['y'], scales=[2.0, 1.1, 2.3, 1.9])], []) self._assert_inferred( graph, [make_tensor_value_info('y', TensorProto.INT32, (2, 3, 9, 9))], opset_imports=[helper.make_opsetid("", 7)]) def test_expand(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.INT32, (3, 1)), ('shape', TensorProto.INT64, (3,))], [make_node("Expand", ['x', 'shape'], ['y'])], [], initializer=[make_tensor('shape', TensorProto.INT64, (3,), (2, 1, 6))]) self._assert_inferred( graph, [make_tensor_value_info('y', TensorProto.INT32, (2, 3, 6))]) def test_expand_scalar_input(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.INT32, ()), ('shape', TensorProto.INT64, (2,))], [make_node("Expand", ['x', 'shape'], ['y'])], [], initializer=[make_tensor('shape', TensorProto.INT64, (2,), (4, 8))]) self._assert_inferred( graph, [make_tensor_value_info('y', TensorProto.INT32, (4, 8))]) def test_expand_raw_data(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.INT32, (3, 1)), ('shape', TensorProto.INT64, (2,))], [make_node("Expand", ['x', 'shape'], ['y'])], [], initializer=[make_tensor('shape', TensorProto.INT64, (2,), vals=np.array([3, 4], dtype='<i8').tobytes(), raw=True)]) # Feed raw bytes (force little endian ordering like onnx standard) for test purpose self._assert_inferred( graph, [make_tensor_value_info('y', TensorProto.INT32, (3, 4))]) def test_resize_size(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.INT32, (2, 4, 3, 5)), ('roi', TensorProto.FLOAT, (8,)), ('scales', TensorProto.FLOAT, (4,)), ('sizes', TensorProto.INT64, (4,))], [make_node("Resize", ['x', 'roi', 'scales', 'sizes'], ['y'])], [], initializer=[make_tensor('sizes', TensorProto.INT64, (4,), (3, 5, 6, 7))]) self._assert_inferred( graph, [make_tensor_value_info('y', TensorProto.INT32, (3, 5, 6, 7))]) def test_resize_scale(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.INT32, (2, 4, 3, 5)), ('roi', TensorProto.FLOAT, (8,)), ('scales', TensorProto.FLOAT, (4,))], [make_node("Resize", ['x', 'roi', 'scales'], ['y'])], [], initializer=[make_tensor('scales', TensorProto.FLOAT, (4,), (1.0, 1.1, 1.3, 1.9))]) self._assert_inferred( graph, [make_tensor_value_info('y', TensorProto.INT32, (2, 4, 3, 9))]) def test_resize_scale_raw_data(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.INT32, (1, 3, 4, 5)), ('roi', TensorProto.FLOAT, (8,)), ('scales', TensorProto.FLOAT, (4,))], [make_node("Resize", ['x', 'roi', 'scales'], ['y'])], [], initializer=[make_tensor('scales', TensorProto.FLOAT, (4,), vals=np.array([2.0, 1.1, 2.3, 1.9], dtype='<f4').tobytes(), raw=True)]) self._assert_inferred( graph, [make_tensor_value_info('y', TensorProto.INT32, (2, 3, 9, 9))]) def test_shape(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 4, 3))], [make_node("Shape", ['x'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, (3,))]) def test_size(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 4, 3))], [make_node("Size", ['x'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, ())]) def test_gather(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 3)), ('i', TensorProto.INT64, (2,))], [make_node("Gather", ['x', 'i'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2, 3))]) # type: ignore def test_gather_axis1(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 3, 5)), ('i', TensorProto.INT64, (1, 2))], [make_node("Gather", ['x', 'i'], ['y'], axis=1)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (4, 1, 2, 5))]) # type: ignore def test_gather_into_scalar(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3,)), ('i', TensorProto.INT64, ())], [make_node("Gather", ['x', 'i'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, ())]) def test_gather_elements(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 2)), ('i', TensorProto.INT64, (2, 2))], [make_node("GatherElements", ['x', 'i'], ['y'], axis=1)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2, 2))]) # type: ignore def test_gather_elements_axis0(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 3)), ('i', TensorProto.INT64, (2, 3))], [make_node("GatherElements", ['x', 'i'], ['y'], axis=0)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2, 3))]) # type: ignore def test_scatter(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 3)), ('i', TensorProto.INT64, (2, 3)), ('u', TensorProto.FLOAT, (2, 3))], [make_node("Scatter", ['x', 'i', 'u'], ['y'])], []) self._assert_inferred( graph, [make_tensor_value_info('y', TensorProto.FLOAT, (3, 3))], opset_imports=[helper.make_opsetid("", 10)]) # type: ignore def test_scatter_axis1(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (1, 5)), ('i', TensorProto.INT64, (1, 2)), ('u', TensorProto.FLOAT, (1, 2))], [make_node("Scatter", ['x', 'i', 'u'], ['y'], axis=1)], []) self._assert_inferred( graph, [make_tensor_value_info('y', TensorProto.FLOAT, (1, 5))], opset_imports=[helper.make_opsetid("", 10)]) # type: ignore def test_scatter_elements(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 3)), ('i', TensorProto.INT64, (2, 3)), ('u', TensorProto.FLOAT, (2, 3))], [make_node("ScatterElements", ['x', 'i', 'u'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (3, 3))]) # type: ignore def test_scatter_elements_axis1(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (1, 5)), ('i', TensorProto.INT64, (1, 2)), ('u', TensorProto.FLOAT, (1, 2))], [make_node("ScatterElements", ['x', 'i', 'u'], ['y'], axis=1)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (1, 5))]) # type: ignore def test_scatternd(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5, 6)), ('indices', TensorProto.INT64, (3, 3, 2)), ('updates', TensorProto.FLOAT, (3, 3, 6))], [make_node("ScatterND", ['x', 'indices', 'updates'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (4, 5, 6))]) # type: ignore def test_scatternd_noshape(self): # type: () -> None # The shape of 'x_reshaped' cannot be inferred, since it is the output of a dynamic reshape. # Thus the shape of 'y' is also None. graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5, 6)), ('indices', TensorProto.INT64, (3, 3, 2)), ('updates', TensorProto.FLOAT, (3, 3, 6)), ('shape', TensorProto.UNDEFINED, (2,))], [make_node("Reshape", ['x', 'shape'], ['x_reshaped']), make_node("ScatterND", ['x_reshaped', 'indices', 'updates'], ['y'])], []) self._assert_inferred(graph, [ make_tensor_value_info('x_reshaped', TensorProto.FLOAT, None), make_tensor_value_info('y', TensorProto.FLOAT, None)]) # type: ignore def test_squeeze(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (1, 3, 1, 1, 2, 1))], [make_node('Squeeze', 'x', 'y', axes=[0, 2, 3, 5])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (3, 2))]) def test_unsqueeze_regular(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 2))], [make_node('Unsqueeze', 'x', 'y', axes=[0, 1, 3, 5])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (1, 1, 3, 1, 2, 1))]) def test_unsqueeze_unsorted_axes(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 5))], [make_node('Unsqueeze', 'x', 'y', axes=[4, 0])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (1, 3, 4, 5, 1))]) def test_unsqueeze_negative_axes(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 5))], [make_node('Unsqueeze', 'x', 'y', axes=[0, -1])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (1, 3, 4, 5, 1))]) def test_slice_without_input_shape(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 2)), ('starts', TensorProto.INT64, (1,)), ('ends', TensorProto.INT64, (1,))], [make_node('Slice', ['x', 'starts', 'ends'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, None)]) def test_slice_with_input_shape(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 2)), ('starts', TensorProto.INT64, (2, )), ('ends', TensorProto.INT64, (2, ))], [make_node('Slice', ['x', 'starts', 'ends'], ['y'])], [], initializer=[make_tensor('starts', TensorProto.INT64, (2, ), vals=np.array([1, 0], dtype='<i8').tobytes(), raw=True), # Feed raw bytes (force little endian ordering like onnx standard) for test purpose make_tensor('ends', TensorProto.INT64, (2, ), (2, 2))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (1, 2))]) def test_slice_with_input_shape_containing_dim_params(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (1, 'a', 1)), ('starts', TensorProto.INT64, (3,)), ('ends', TensorProto.INT64, (3,))], [make_node('Slice', ['x', 'starts', 'ends'], ['y'])], [], initializer=[make_tensor('starts', TensorProto.INT64, (3,), (0, 0, 0)), make_tensor('ends', TensorProto.INT64, (3,), (1, 1, 1))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (1, None, 1))]) # type: ignore def test_slice_with_input_shape_steps(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (5, 6, 7)), ('starts', TensorProto.INT64, (3,)), ('ends', TensorProto.INT64, (3,)), ('axes'), ('steps', TensorProto.INT64, (3,))], [make_node('Slice', ['x', 'starts', 'ends', 'axes', 'steps'], ['y'])], [], initializer=[make_tensor('starts', TensorProto.INT64, (3,), (1, 0, 0)), make_tensor('ends', TensorProto.INT64, (3,), (2, 6, 6)), make_tensor('steps', TensorProto.INT64, (3,), (1, 4, 3))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (1, 2, 2))]) def test_slice_with_input_shape_axes(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 6, 2)), ('starts', TensorProto.INT64, (2,)), ('ends', TensorProto.INT64, (2,)), ('axes', TensorProto.INT64, (2,)), ('steps')], [make_node('Slice', ['x', 'starts', 'ends', 'axes', 'steps'], ['y'])], [], initializer=[make_tensor('starts', TensorProto.INT64, (2,), (1, 0)), make_tensor('ends', TensorProto.INT64, (2,), (2, 2)), make_tensor('axes', TensorProto.INT64, (2,), (0, 2))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (1, 6, 2))]) def test_slice_unsorted_axes(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 2)), ('starts', TensorProto.INT64, (2,)), ('ends', TensorProto.INT64, (2,)), ('axes', TensorProto.INT64, (2,))], [make_node('Slice', ['x', 'starts', 'ends', 'axes'], 'y')], [], initializer=[make_tensor('starts', TensorProto.INT64, (2,), (1, 0)), make_tensor('ends', TensorProto.INT64, (2,), (2, 2)), make_tensor('axes', TensorProto.INT64, (2,), (1, 0))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2, 1))]) # can handle unsorted axes def test_slice_giant_number(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 2)), ('starts', TensorProto.INT64, (2,)), ('ends', TensorProto.INT64, (2,)), ('axes', TensorProto.INT64, (2,))], [make_node('Slice', ['x', 'starts', 'ends', 'axes'], 'y')], [], initializer=[make_tensor('starts', TensorProto.INT64, (2,), (1, 0)), make_tensor('ends', TensorProto.INT64, (2,), (200, 22000)), make_tensor('axes', TensorProto.INT64, (2,), (0, 1))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2, 2))]) def test_slice_giant_step(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 2)), ('starts', TensorProto.INT64, (2,)), ('ends', TensorProto.INT64, (2,)), ('axes', TensorProto.INT64, (2,)), ('steps', TensorProto.INT64, (2,))], [make_node('Slice', ['x', 'starts', 'ends', 'axes', 'steps'], 'y')], [], initializer=[make_tensor('starts', TensorProto.INT64, (2,), (1, 0)), make_tensor('ends', TensorProto.INT64, (2,), (200, 200)), make_tensor('axes', TensorProto.INT64, (2,), (0, 1)), make_tensor('steps', TensorProto.INT64, (2,), (1, 200))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2, 1))]) def test_slice_negative_end(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 2)), ('starts', TensorProto.INT64, (2,)), ('ends', TensorProto.INT64, (2,)), ('axes', TensorProto.INT64, (2,))], [make_node('Slice', ['x', 'starts', 'ends', 'axes'], 'y')], [], initializer=[make_tensor('starts', TensorProto.INT64, (2,), (1, 0)), make_tensor('ends', TensorProto.INT64, (2,), (200, -1)), # negative end means begin from end of a dimension (here end = 2 - 1 = 1) make_tensor('axes', TensorProto.INT64, (2,), (0, 1))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2, 1))]) # type: ignore def test_slice_negative_start(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 2)), ('starts', TensorProto.INT64, (2,)), ('ends', TensorProto.INT64, (2,)), ('axes', TensorProto.INT64, (2,))], [make_node('Slice', ['x', 'starts', 'ends', 'axes'], 'y')], [], initializer=[make_tensor('starts', TensorProto.INT64, (2,), (1, -2)), # negative start means begin from end of a dimension (here end = 2 - 2 = 0) make_tensor('ends', TensorProto.INT64, (2,), (200, 3)), make_tensor('axes', TensorProto.INT64, (2,), (0, 1))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2, 2))]) # type: ignore def test_slice_negative_step(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4)), ('starts', TensorProto.INT64, (2,)), ('ends', TensorProto.INT64, (2,)), ('axes', TensorProto.INT64, (2,)), ('steps', TensorProto.INT64, (2,))], [make_node('Slice', ['x', 'starts', 'ends', 'axes', 'steps'], 'y')], [], initializer=[make_tensor('starts', TensorProto.INT64, (2,), (1, 4)), # 4 will be clamped to 3 since we are negative stepping make_tensor('ends', TensorProto.INT64, (2,), (200, 0)), make_tensor('axes', TensorProto.INT64, (2,), (0, 1)), make_tensor('steps', TensorProto.INT64, (2,), (1, -1))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2, 3))]) # type: ignore def test_slice_variable_copy(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, ("a", 2)), ('starts', TensorProto.INT64, (1,)), ('ends', TensorProto.INT64, (1,)), ('axes', TensorProto.INT64, (1,))], [make_node('Slice', ['x', 'starts', 'ends', 'axes'], 'y')], [], initializer=[make_tensor('starts', TensorProto.INT64, (1,), (1,)), make_tensor('ends', TensorProto.INT64, (1,), (200,)), make_tensor('axes', TensorProto.INT64, (1,), (1,))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, ("a", 1))]) # type: ignore def test_slice_variable_input_types(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.DOUBLE, (3, 2)), ('starts', TensorProto.INT32, (2,)), ('ends', TensorProto.INT32, (2,)), ('axes', TensorProto.INT32, (2,))], [make_node('Slice', ['x', 'starts', 'ends', 'axes'], 'y')], [], initializer=[make_tensor('starts', TensorProto.INT32, (2,), (1, 0)), make_tensor('ends', TensorProto.INT32, (2,), (200, 22000)), make_tensor('axes', TensorProto.INT32, (2,), (0, 1))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.DOUBLE, (2, 2))]) def test_conv(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 5, 6, 7)), ('y', TensorProto.FLOAT, (5, 4, 2, 4, 3))], [make_node('Conv', ['x', 'y'], 'z', pads=[0, 1, 1, 0, 0, 1], dilations=[1, 2, 2], strides=[1, 1, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (3, 5, 4, 1, 3))]) def test_conv_1d_simple(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 5)), ('y', TensorProto.FLOAT, (50, 4, 2))], [make_node('Conv', ['x', 'y'], 'z', dilations=[1])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (30, 50, 4))]) def test_conv_dilations(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 8, 8, 8)), ('y', TensorProto.FLOAT, (50, 4, 3, 3, 3))], [make_node('Conv', ['x', 'y'], 'z', dilations=[1, 2, 3])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (30, 50, 6, 4, 2))]) def test_conv_strides(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 8, 8, 8)), ('y', TensorProto.FLOAT, (50, 4, 3, 3, 3))], [make_node('Conv', ['x', 'y'], 'z', strides=[1, 2, 3])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (30, 50, 6, 3, 2))]) def test_conv_pads(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 7, 6, 4)), ('y', TensorProto.FLOAT, (50, 4, 3, 3, 3))], [make_node('Conv', ['x', 'y'], 'z', pads=[1, 1, 2, 0, 1, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (30, 50, 6, 6, 6))]) def test_conv_auto_pad(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 7, 6, 4)), ('y', TensorProto.FLOAT, (50, 4, 4, 3, 2))], [make_node('Conv', ['x', 'y'], 'z', auto_pad='SAME_UPPER')], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (30, 50, 7, 6, 4))]) def test_conv_auto_pad_dilation(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 65, 64, 63)), ('y', TensorProto.FLOAT, (50, 4, 4, 3, 2))], [make_node('Conv', ['x', 'y'], 'z', auto_pad='SAME_UPPER', dilations=[2, 3, 4])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (30, 50, 65, 64, 63))]) def test_conv_group(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 8, 8, 8)), ('y', TensorProto.FLOAT, (4, 1, 8, 8, 8))], [make_node('Conv', ['x', 'y'], 'z', group=4)], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (30, 4, 1, 1, 1))]) def test_conv_only_one_pos(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 5)), ('y', TensorProto.FLOAT, (50, 4, 5))], [make_node('Conv', ['x', 'y'], 'z', strides=[2])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (30, 50, 1))]) def test_conv_partial_missing_shape(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, None, 6, 4)), ('y', TensorProto.FLOAT, (50, 4, 3, 3, 3))], [make_node('Conv', ['x', 'y'], 'z', pads=[1, 1, 2, 0, 1, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (30, 50, None, 6, 6))]) # type: ignore def test_conv_partial_missing_weight_shape(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 7, 6, 4)), ('y', TensorProto.FLOAT, (50, 4, None, 3, 3))], [make_node('Conv', ['x', 'y'], 'z', pads=[1, 1, 2, 0, 1, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, None)]) def test_relu(self): # type: () -> None self._identity_prop('Relu') def test_add(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 5)), ('y', TensorProto.FLOAT, (30, 4, 5))], [make_node('Add', ['x', 'y'], 'z')], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (30, 4, 5))]) def test_pow(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 5)), ('y', TensorProto.FLOAT, (30, 4, 5))], [make_node('Pow', ['x', 'y'], 'z')], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (30, 4, 5))]) def test_bitshift(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.UINT32, (2, 3, 1)), ('y', TensorProto.UINT32, (2, 3, 1))], [make_node('BitShift', ['x', 'y'], 'z', direction="RIGHT")], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.UINT32, (2, 3, 1))]) def test_bitshift_broadcast_to_first(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.UINT32, (16, 4, 1)), ('y', TensorProto.UINT32, (1,))], [make_node('BitShift', ['x', 'y'], 'z', direction="RIGHT")], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.UINT32, (16, 4, 1))]) def test_bitshift_broadcast_to_second(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.UINT32, (1,)), ('y', TensorProto.UINT32, (2, 3, 1))], [make_node('BitShift', ['x', 'y'], 'z', direction="RIGHT")], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.UINT32, (2, 3, 1))]) def test_sum_single(self): # type: () -> None self._identity_prop('Sum') def test_sum_multi(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 5)), ('y', TensorProto.FLOAT, (30, 4, 5)), ('z', TensorProto.FLOAT, (30, 4, 5))], [make_node('Sum', ['x', 'y', 'z'], ['out'])], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (30, 4, 5))]) def test_sum_multi_broadcasting(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 1, 5)), ('y', TensorProto.FLOAT, ("a", 4, 1)), ('z', TensorProto.FLOAT, (4, "b"))], [make_node('Sum', ['x', 'y', 'z'], ['out'])], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (30, 4, 5))]) def test_sum_broadcasting_param(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, ("a", 1, 5)), ('y', TensorProto.FLOAT, ("a", 4, 1))], [make_node('Sum', ['x', 'y'], ['out'])], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, ("a", 4, 5))]) def test_random_normal(self): # type: () -> None graph = self._make_graph( [], [make_node('RandomNormal', [], ['out'], dtype=TensorProto.DOUBLE, shape=(3, 4, 5))], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.DOUBLE, (3, 4, 5))]) def test_random_normal_like(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (2, 3, 4))], [make_node('RandomNormalLike', ['X'], ['out'])], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (2, 3, 4))]) def test_random_normal_like_with_dtype(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (2, 3, 4))], [make_node('RandomNormalLike', ['X'], ['out'], dtype=TensorProto.DOUBLE,)], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.DOUBLE, (2, 3, 4))]) def _logical_binary_op(self, op, input_type): # type: (Text, TensorProto.DataType) -> None graph = self._make_graph( [('x', input_type, (30, 4, 5)), ('y', input_type, (30, 4, 5))], [make_node(op, ['x', 'y'], 'z')], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.BOOL, (30, 4, 5))]) def _logical_binary_op_with_broadcasting(self, op, input_type): # type: (Text, TensorProto.DataType) -> None graph = self._make_graph( [('x', input_type, (1, 5)), ('y', input_type, (30, 4, 5))], [make_node(op, ['x', 'y'], 'z')], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.BOOL, (30, 4, 5))]) def test_logical_and(self): # type: () -> None self._logical_binary_op('And', TensorProto.BOOL) self._logical_binary_op_with_broadcasting('And', TensorProto.BOOL) def test_logical_or(self): # type: () -> None self._logical_binary_op('Or', TensorProto.BOOL) self._logical_binary_op_with_broadcasting('Or', TensorProto.BOOL) def test_logical_xor(self): # type: () -> None self._logical_binary_op('Xor', TensorProto.BOOL) self._logical_binary_op_with_broadcasting('Xor', TensorProto.BOOL) def test_greater(self): # type: () -> None self._logical_binary_op('Greater', TensorProto.BOOL) self._logical_binary_op_with_broadcasting('Greater', TensorProto.BOOL) def test_less(self): # type: () -> None self._logical_binary_op('Less', TensorProto.BOOL) self._logical_binary_op_with_broadcasting('Less', TensorProto.BOOL) def test_equal(self): # type: () -> None self._logical_binary_op('Equal', TensorProto.BOOL) self._logical_binary_op_with_broadcasting('Equal', TensorProto.BOOL) def test_logical_not(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.BOOL, (30, 4, 5))], [make_node('Not', ['x'], 'z')], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.BOOL, (30, 4, 5))]) def test_less_or_equal(self): # type: () -> None self._logical_binary_op('LessOrEqual', TensorProto.BOOL) self._logical_binary_op_with_broadcasting('LessOrEqual', TensorProto.BOOL) def test_greater_or_equal(self): # type: () -> None self._logical_binary_op('GreaterOrEqual', TensorProto.BOOL) self._logical_binary_op_with_broadcasting('GreaterOrEqual', TensorProto.BOOL) def test_flatten(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 3, 4, 5))], [make_node('Flatten', ['x'], ['z'], axis=2)], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (6, 20))]) def test_flatten_default_axis(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 3, 4, 5))], [make_node('Flatten', ['x'], ['z'])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (2, 60))]) def test_flatten_zero_axis(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 3, 4, 5))], [make_node('Flatten', ['x'], ['z'], axis=0)], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (1, 120))]) def test_flatten_unknown_dim(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 'N', 4, 5))], [make_node('Flatten', ['x'], ['z'], axis=2)], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (None, 20))]) # type: ignore def test_space_to_depth(self): # type: () -> None b = 10 graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 3, 100, 100))], [make_node('SpaceToDepth', ['x'], ['z'], blocksize=b)], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (2, 300, 10, 10))]) def test_space_to_depth_unknown_dim(self): # type: () -> None b = 10 graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 'N', 100, 100))], [make_node('SpaceToDepth', ['x'], ['z'], blocksize=b)], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (2, None, 10, 10))]) # type: ignore def test_depth_to_space(self): # type: () -> None b = 10 graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 300, 10, 10))], [make_node('DepthToSpace', ['x'], ['z'], blocksize=b, mode='DCR')], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (2, 3, 100, 100))]) def _rnn_forward(self, seqlen, batchsize, inpsize, hiddensize): # type: (int, int, int, int) -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (seqlen, batchsize, inpsize)), ('w', TensorProto.FLOAT, (1, hiddensize, inpsize)), ('r', TensorProto.FLOAT, (1, hiddensize, hiddensize))], [make_node('RNN', ['x', 'w', 'r'], ['all', 'last'], hidden_size=hiddensize)], []) self._assert_inferred(graph, [ make_tensor_value_info('all', TensorProto.FLOAT, (seqlen, 1, batchsize, hiddensize)), make_tensor_value_info('last', TensorProto.FLOAT, (1, batchsize, hiddensize))]) def test_rnn_forward(self): # type: () -> None self._rnn_forward(64, 32, 10, 4) def _rnn_bidirectional(self, seqlen, batchsize, inpsize, hiddensize): # type: (int, int, int, int) -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (seqlen, batchsize, inpsize)), ('w', TensorProto.FLOAT, (2, hiddensize, inpsize)), ('r', TensorProto.FLOAT, (2, hiddensize, hiddensize))], [make_node('RNN', ['x', 'w', 'r'], ['all', 'last'], hidden_size=hiddensize, direction="bidirectional")], []) self._assert_inferred(graph, [ make_tensor_value_info('all', TensorProto.FLOAT, (seqlen, 2, batchsize, hiddensize)), make_tensor_value_info('last', TensorProto.FLOAT, (2, batchsize, hiddensize))]) def test_rnn_bidirectional(self): # type: () -> None self._rnn_bidirectional(64, 32, 10, 4) def _lstm_forward(self, seqlen, batchsize, inpsize, hiddensize): # type: (int, int, int, int) -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (seqlen, batchsize, inpsize)), ('w', TensorProto.FLOAT, (1, 4 * hiddensize, inpsize)), ('r', TensorProto.FLOAT, (1, 4 * hiddensize, hiddensize))], [make_node('LSTM', ['x', 'w', 'r'], ['all', 'hidden', 'last'], hidden_size=hiddensize)], []) self._assert_inferred(graph, [ make_tensor_value_info('all', TensorProto.FLOAT, (seqlen, 1, batchsize, hiddensize)), make_tensor_value_info('hidden', TensorProto.FLOAT, (1, batchsize, hiddensize)), make_tensor_value_info('last', TensorProto.FLOAT, (1, batchsize, hiddensize))]) def test_lstm_forward(self): # type: () -> None self._lstm_forward(64, 32, 10, 4) def test_topk_default_axis(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 5, 10))], [make_node('TopK', ['x', 'k'], ['y', 'z'])], [], initializer=[make_tensor('k', TensorProto.INT64, (1,), (2,))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (3, 4, 5, 2)), make_tensor_value_info('z', TensorProto.INT64, (3, 4, 5, 2))]) def test_topk(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 5, 10))], [make_node('TopK', ['x', 'k'], ['y', 'z'], axis=2)], [], initializer=[make_tensor('k', TensorProto.INT64, (1,), (2,))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (3, 4, 2, 10)), make_tensor_value_info('z', TensorProto.INT64, (3, 4, 2, 10))]) def test_topk_raw_data(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 5, 10))], [make_node('TopK', ['x', 'k'], ['y', 'z'], axis=2)], [], initializer=[make_tensor('k', TensorProto.INT64, (1,), vals=np.array([3], dtype='<i8').tobytes(), raw=True)]) # Feed raw bytes (force little endian ordering like onnx standard) for test purpose self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (3, 4, 3, 10)), make_tensor_value_info('z', TensorProto.INT64, (3, 4, 3, 10))]) def test_topk_missing_k_value_output_rank_check(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 5, 10)), ('k', TensorProto.INT64, (1,))], [make_node('TopK', ['x', 'k'], ['y', 'z'], axis=2)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (None, None, None, None)), # type: ignore make_tensor_value_info('z', TensorProto.INT64, (None, None, None, None))]) # type: ignore def test_gemm(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (7, 5)), ('y', TensorProto.FLOAT, (5, 11)), ('z', TensorProto.FLOAT, None)], [make_node('Gemm', ['x', 'y', 'z'], ['out'])], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (7, 11))]) def test_gemm_transA(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (5, 7)), ('y', TensorProto.FLOAT, (5, 11)), ('z', TensorProto.FLOAT, None)], [make_node('Gemm', ['x', 'y', 'z'], ['out'], transA=1)], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (7, 11))]) def test_gemm_transB(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (7, 5)), ('y', TensorProto.FLOAT, (11, 5)), ('z', TensorProto.FLOAT, None)], [make_node('Gemm', ['x', 'y', 'z'], ['out'], transB=1)], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (7, 11))]) def test_gemm_transA_and_transB(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (5, 7)), ('y', TensorProto.FLOAT, (11, 5)), ('z', TensorProto.FLOAT, None)], [make_node('Gemm', ['x', 'y', 'z'], ['out'], transA=1, transB=1)], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (7, 11))]) def test_gemm_no_bias(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (13, 7)), ('y', TensorProto.FLOAT, (7, 17))], [make_node('Gemm', ['x', 'y'], ['out'])], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (13, 17))]) def test_reduce_op_shape_2_axis(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (24, 4, 11))], [make_node('ReduceL1', 'x', 'y', axes=(1, 2), keepdims=0)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (24,))]) def test_reduce_op_shape_keep_dims(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (24, 4, 11))], [make_node('ReduceL1', 'x', 'y', axes=(1, 2), keepdims=1)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (24, 1, 1))]) def test_reduce_op_shape_default_value(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (24, 4, 11))], [make_node('ReduceL1', 'x', 'y')], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (1, 1, 1))]) def test_reduce_op_shape_no_axes_do_not_keep_dims(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (24, 4, 11))], [make_node('ReduceL1', 'x', 'y', keepdims=0)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, tuple())]) def test_reduce_op_shape_negative_axis(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (24, 4, 11))], [make_node('ReduceL1', 'x', 'y', axes=(-1, -2))], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (24, 1, 1))]) def test_argmax_shape(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (24, 4, 11))], [make_node('ArgMax', 'x', 'y', axis=1, keepdims=1)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, (24, 1, 11))]) def test_argmax_shape_keepdims(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (24, 4, 11))], [make_node('ArgMax', 'x', 'y', axis=0, keepdims=0)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, (4, 11))]) def test_argmax_shape_default_value(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (24, 4, 11))], [make_node('ArgMax', 'x', 'y')], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, (1, 4, 11))]) def test_argmax_shape_negative_axis(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (24, 4, 11))], [make_node('ArgMax', 'x', 'y', axis=-2)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, (24, 1, 11))]) def test_dropout(self): # type: () -> None graph = self._make_graph( [('data', TensorProto.FLOAT, (3, 4, 5,)), ('ratio', TensorProto.FLOAT, ())], [make_node('Dropout', ['data', 'ratio'], ['out'])], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (3, 4, 5,))]) def test_LRN(self): # type: () -> None self._identity_prop('LRN', alpha=0.5, beta=0.5, size=1) def test_batch_norm(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 5, 6, 7)), ('scale', TensorProto.FLOAT, (4,)), ('b', TensorProto.FLOAT, (4,)), ('mean', TensorProto.FLOAT, (4,)), ('var', TensorProto.FLOAT, (4,))], [make_node('BatchNormalization', ['x', 'scale', 'b', 'mean', 'var'], ['out'])], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (3, 4, 5, 6, 7))]) def test_split_negative_axis(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 4))], [make_node('Split', ['x'], ['y', 'z'], axis=-1)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2, 2)), make_tensor_value_info('z', TensorProto.FLOAT, (2, 2))]) def test_split_with_split_attribute(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 4))], [make_node('Split', ['x'], ['y', 'z'], axis=1, split=[3, 1])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2, 3)), make_tensor_value_info('z', TensorProto.FLOAT, (2, 1))]) def test_split_with_split_attribute_unknown_split_dim(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 'a', 'b'))], [make_node('Split', ['x'], ['y', 'z'], axis=1, split=[3, 1])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2, None, 'b')), # type: ignore make_tensor_value_info('z', TensorProto.FLOAT, (2, None, 'b'))]) # type: ignore def test_split_from_GLU(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (5, 6, 7))], [make_node('Split', ['x'], ['y', 'z'], axis=1)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (5, 3, 7)), make_tensor_value_info('z', TensorProto.FLOAT, (5, 3, 7))]) def test_GLU_partial(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (5, 6, 7))], [make_node('Split', ['x'], ['y', 'z'], axis=1), make_node('Sigmoid', ['z'], ['a'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (5, 3, 7)), make_tensor_value_info('z', TensorProto.FLOAT, (5, 3, 7)), make_tensor_value_info('a', TensorProto.FLOAT, (5, 3, 7))]) def test_GLU(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (5, 6, 7))], [make_node('Split', ['x'], ['y', 'z'], axis=1), make_node('Sigmoid', ['z'], ['a']), make_node('Mul', ['y', 'a'], ['b'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (5, 3, 7)), make_tensor_value_info('z', TensorProto.FLOAT, (5, 3, 7)), make_tensor_value_info('a', TensorProto.FLOAT, (5, 3, 7)), make_tensor_value_info('b', TensorProto.FLOAT, (5, 3, 7))]) def test_softmax_2d(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5))], [make_node('Softmax', ['x'], 'z')], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (4, 5))]) def test_softmax_3d(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5, 6))], [make_node('Softmax', ['x'], 'z')], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (4, 5, 6))]) def test_hardmax_2d(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5))], [make_node('Hardmax', ['x'], 'z')], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (4, 5))]) def test_hardmax_3d(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5, 6))], [make_node('Hardmax', ['x'], 'z')], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (4, 5, 6))]) def test_logsoftmax_2d(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5))], [make_node('LogSoftmax', ['x'], 'z')], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (4, 5))]) def test_logsoftmax_3d(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5, 6))], [make_node('LogSoftmax', ['x'], 'z')], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (4, 5, 6))]) def test_logsoftmax_3d_negative_axis(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5, 6))], [make_node('LogSoftmax', ['x'], 'z', axis=-1)], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (4, 5, 6))]) def test_maxpool(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("MaxPool", ["X"], ["Y"], kernel_shape=[2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 3, 3))]) def test_maxpool_with_indices(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("MaxPool", ["X"], ["Y", "Z"], kernel_shape=[2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 3, 3)), make_tensor_value_info("Z", TensorProto.INT64, (5, 3, 3, 3))]) def test_maxpool_3D(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4, 4))], [make_node("MaxPool", ["X"], ["Y"], kernel_shape=[2, 2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 3, 3, 3))]) def test_maxpool_with_padding(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("MaxPool", ["X"], ["Y"], kernel_shape=[2, 2], pads=[1, 1, 2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 6, 6))]) def test_maxpool_with_padding_and_stride(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("MaxPool", ["X"], ["Y"], kernel_shape=[2, 2], pads=[1, 1, 2, 2], strides=[2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 3, 3))]) def test_maxpool_with_floor_mode(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (32, 288, 35, 35))], [make_node("MaxPool", ["X"], ["Y"], kernel_shape=[2, 2], strides=[2, 2], ceil_mode=False)], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (32, 288, 17, 17))]) def test_maxpool_with_ceil_mode(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (32, 288, 35, 35))], [make_node("MaxPool", ["X"], ["Y"], kernel_shape=[2, 2], strides=[2, 2], ceil_mode=True)], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (32, 288, 18, 18))]) def test_maxpool_ceil(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (1, 1, 4, 4))], [make_node("MaxPool", ["X"], ["Y"], kernel_shape=[3, 3], strides=[2, 2], ceil_mode=True)], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (1, 1, 2, 2))]) def test_maxpool_with_dilations(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("MaxPool", ["X"], ["Y"], kernel_shape=[2, 2], dilations=[2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 2, 2))]) def test_maxpool_with_same_upper_padding_and_stride(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("MaxPool", ["X"], ["Y"], auto_pad="SAME_UPPER", kernel_shape=[2, 2], strides=[2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 2, 2))]) def test_maxpool_with_same_upper_padding_and_stride_and_dilation(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("MaxPool", ["X"], ["Y"], auto_pad="SAME_UPPER", kernel_shape=[2, 2], strides=[2, 2], dilations=[2, 3])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 2, 2))]) def test_maxpool_with_same_upper_padding_and_stride_one(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("MaxPool", ["X"], ["Y"], auto_pad="SAME_UPPER", kernel_shape=[2, 2], strides=[1, 1])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 4, 4))]) def test_maxpool_with_same_lower_padding_and_stride(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 9, 9))], [make_node("MaxPool", ["X"], ["Y"], auto_pad="SAME_LOWER", kernel_shape=[2, 2], strides=[2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 5, 5))]) def test_maxpool_with_same_lower_padding_and_stride_and_dilation(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 9, 9))], [make_node("MaxPool", ["X"], ["Y"], auto_pad="SAME_LOWER", kernel_shape=[2, 2], strides=[2, 2], dilations=[2, 3])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 5, 5))]) def test_maxpool_with_same_lower_padding_and_big_stride(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("MaxPool", ["X"], ["Y"], auto_pad="SAME_LOWER", kernel_shape=[2, 2], strides=[4, 4])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 1, 1))]) def test_averagepool(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("AveragePool", ["X"], ["Y"], kernel_shape=[2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 3, 3))]) def test_averagepool_3D(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4, 4))], [make_node("AveragePool", ["X"], ["Y"], kernel_shape=[2, 2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 3, 3, 3))]) def test_averagepool_with_padding(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("AveragePool", ["X"], ["Y"], kernel_shape=[2, 2], pads=[1, 1, 2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 6, 6))]) def test_averagepool_with_padding_and_stride(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("AveragePool", ["X"], ["Y"], kernel_shape=[2, 2], pads=[1, 1, 2, 2], strides=[2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 3, 3))]) def test_averagepool_ceil(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (1, 1, 4, 4))], [make_node("AveragePool", ["X"], ["Y"], kernel_shape=[3, 3], strides=[2, 2], ceil_mode=True)], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (1, 1, 2, 2))]) def test_lppool(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("LpPool", ["X"], ["Y"], kernel_shape=[2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 3, 3))]) def test_lppool_3D(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4, 4))], [make_node("LpPool", ["X"], ["Y"], kernel_shape=[2, 2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 3, 3, 3))]) def test_lppool_with_padding(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("LpPool", ["X"], ["Y"], kernel_shape=[2, 2], pads=[1, 1, 2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 6, 6))]) def test_lppool_with_padding_and_stride(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("LpPool", ["X"], ["Y"], kernel_shape=[2, 2], pads=[1, 1, 2, 2], strides=[2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 3, 3))]) def test_roipool(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4)), ("rois", TensorProto.INT64, (2, 5))], [make_node("MaxRoiPool", ["X", "rois"], ["Y"], pooled_shape=[2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (2, 3, 2, 2))]) def test_lp_norm(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 5, 6, 7))], [make_node('LpNormalization', ['x'], ['out'])], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (3, 4, 5, 6, 7))]) def test_instance_norm(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 5, 6, 7)), ('scale', TensorProto.FLOAT, (4,)), ('b', TensorProto.FLOAT, (4,))], [make_node('InstanceNormalization', ['x', 'scale', 'b'], ['out'])], []) self._assert_inferred(graph, [make_tensor_value_info('out', TensorProto.FLOAT, (3, 4, 5, 6, 7))]) def test_global_maxpool(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("GlobalMaxPool", ["X"], ["Y"])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 1, 1))]) def test_global_averagepool(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("GlobalAveragePool", ["X"], ["Y"])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 1, 1))]) def test_global_lppool(self): # type: () -> None graph = self._make_graph( [("X", TensorProto.FLOAT, (5, 3, 4, 4))], [make_node("GlobalLpPool", ["X"], ["Y"])], []) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, (5, 3, 1, 1))]) def test_conv_transpose(self): # type: () -> None graph = self._make_graph( [('X', TensorProto.FLOAT, (25, 48, 16, 16)), ('W', TensorProto.FLOAT, (48, 32, 3, 3))], [make_node('ConvTranspose', ['X', 'W'], 'Y', strides=[2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (25, 32, 33, 33))]) def test_conv_transpose_with_pads(self): # type: () -> None graph = self._make_graph( [('X', TensorProto.FLOAT, (25, 48, 16, 16)), ('W', TensorProto.FLOAT, (48, 32, 3, 3))], [make_node('ConvTranspose', ['X', 'W'], 'Y', strides=[2, 2], pads=[1, 1, 2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (25, 32, 30, 30))]) def test_conv_transpose_with_output_shape(self): # type: () -> None graph = self._make_graph( [('X', TensorProto.FLOAT, (25, 48, 16, 16)), ('W', TensorProto.FLOAT, (48, 32, 3, 3))], [make_node('ConvTranspose', ['X', 'W'], 'Y', strides=[2, 2], pads=[1, 1, 2, 2], output_shape=[36, 36])], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (25, 32, 36, 36))]) def test_conv_transpose_with_kernel_shape(self): # type: () -> None graph = self._make_graph( [('X', TensorProto.FLOAT, (25, 48, 16, 16)), ('W', TensorProto.FLOAT, (48, 32, None, None))], [make_node('ConvTranspose', ['X', 'W'], 'Y', kernel_shape=[3, 3], strides=[2, 2], pads=[1, 1, 2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (25, 32, 30, 30))]) def test_conv_transpose_with_dilations(self): # type: () -> None graph = self._make_graph( [('X', TensorProto.FLOAT, (25, 48, 16, 16)), ('W', TensorProto.FLOAT, (48, 32, 3, 3))], [make_node('ConvTranspose', ['X', 'W'], 'Y', strides=[2, 2], pads=[1, 1, 2, 2], dilations=[3, 3])], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (25, 32, 34, 34))]) def test_conv_transpose_with_group(self): # type: () -> None graph = self._make_graph( [('X', TensorProto.FLOAT, (25, 48, 16, 16)), ('W', TensorProto.FLOAT, (48, 32, 3, 3))], [make_node('ConvTranspose', ['X', 'W'], 'Y', strides=[2, 2], pads=[1, 1, 2, 2], group=2)], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (25, 64, 30, 30))]) def test_conv_transpose_with_group_and_output_shape(self): # type: () -> None graph = self._make_graph( [('X', TensorProto.FLOAT, (25, 48, 16, 16)), ('W', TensorProto.FLOAT, (48, 32, 3, 3))], [make_node('ConvTranspose', ['X', 'W'], 'Y', strides=[2, 2], pads=[1, 1, 2, 2], group=2, output_shape=[36, 36])], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (25, 64, 36, 36))]) def test_mvn_function_output_shape(self): # type: () -> None graph = self._make_graph( [('X', TensorProto.FLOAT, (25, 48, 16, 16))], [make_node('MeanVarianceNormalization', 'X', 'Y', axes=[0, 2, 3])], [] ) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (25, 48, 16, 16))]) def test_scan(self): # type: () -> None batch_size = 1 seq_len = 'sequence' input_size = 2 loop_state_size = 3 # can't use self._make_graph for the subgraph as it add more inputs for the Reshape operations it inserts. # this breaks the subgraph inferencing as it expects the number of inputs passed from Scan to match # the GraphProto, but Scan knows nothing about the additional inputs. input_value_infos = [make_tensor_value_info('loop_state_in', TensorProto.UNDEFINED, None), make_tensor_value_info('input', TensorProto.UNDEFINED, None)] output_value_infos = [make_tensor_value_info('loop_state_out', TensorProto.UNDEFINED, None), make_tensor_value_info('output', TensorProto.UNDEFINED, None)] subgraph = helper.make_graph( [make_node('Identity', ['loop_state_in'], ['loop_state_out']), make_node('Identity', ['input'], ['output'])], "subgraph", input_value_infos, output_value_infos ) graph = self._make_graph( [('loop_state_orig', TensorProto.FLOAT, (batch_size, loop_state_size)), ('scan_input', TensorProto.FLOAT, (batch_size, seq_len, input_size))], [make_node('Scan', ['', 'loop_state_orig', 'scan_input'], ['loop_state_final', 'scan_output'], num_scan_inputs=1, body=subgraph)], [] ) self._assert_inferred( graph, [make_tensor_value_info('loop_state_final', TensorProto.FLOAT, (batch_size, loop_state_size)), make_tensor_value_info('scan_output', TensorProto.FLOAT, (batch_size, seq_len, input_size))], opset_imports=[helper.make_opsetid("", 8)]) def test_scan_opset9(self): # type: () -> None seq_len = 'sequence' input_size = 2 loop_state_size = 3 # can't use self._make_graph for the subgraph as it add more inputs for the Reshape operations it inserts. # this breaks the subgraph inferencing as it expects the number of inputs passed from Scan to match # the GraphProto, but Scan knows nothing about the additional inputs. input_value_infos = [make_tensor_value_info('loop_state_in', TensorProto.UNDEFINED, None), make_tensor_value_info('input', TensorProto.UNDEFINED, None)] output_value_infos = [make_tensor_value_info('loop_state_out', TensorProto.UNDEFINED, None), make_tensor_value_info('output', TensorProto.UNDEFINED, None)] subgraph = helper.make_graph( [make_node('Identity', ['loop_state_in'], ['loop_state_out']), make_node('Identity', ['input'], ['output'])], "subgraph", input_value_infos, output_value_infos ) graph = self._make_graph( [('loop_state_orig', TensorProto.FLOAT, (loop_state_size,)), ('scan_input', TensorProto.FLOAT, (seq_len, input_size))], [make_node('Scan', ['loop_state_orig', 'scan_input'], ['loop_state_final', 'scan_output'], num_scan_inputs=1, body=subgraph)], [] ) self._assert_inferred( graph, [make_tensor_value_info('loop_state_final', TensorProto.FLOAT, (loop_state_size,)), make_tensor_value_info('scan_output', TensorProto.FLOAT, (seq_len, input_size))], opset_imports=[helper.make_opsetid("", 9)]) def test_scan_opset9_axes(self): # type: () -> None axis_0_len = 'axis0' seq_len = 'sequence' input_size = 2 loop_state_size = 3 # can't use self._make_graph for the subgraph as it add more inputs for the Reshape operations it inserts. # this breaks the subgraph inferencing as it expects the number of inputs passed from Scan to match # the GraphProto, but Scan knows nothing about the additional inputs. input_value_infos = [make_tensor_value_info('loop_state_in', TensorProto.UNDEFINED, None), make_tensor_value_info('input', TensorProto.UNDEFINED, None)] output_value_infos = [make_tensor_value_info('loop_state_out', TensorProto.UNDEFINED, None), make_tensor_value_info('output', TensorProto.UNDEFINED, None)] subgraph = helper.make_graph( [make_node('Identity', ['loop_state_in'], ['loop_state_out']), make_node('Identity', ['input'], ['output'])], "subgraph", input_value_infos, output_value_infos ) graph = self._make_graph( [('loop_state_orig', TensorProto.FLOAT, (loop_state_size,)), ('scan_input', TensorProto.FLOAT, (axis_0_len, seq_len, input_size))], [make_node('Scan', ['loop_state_orig', 'scan_input'], ['loop_state_final', 'scan_output'], num_scan_inputs=1, body=subgraph, scan_input_axes=[1])], [] ) self._assert_inferred( graph, [make_tensor_value_info('loop_state_final', TensorProto.FLOAT, (loop_state_size,)), make_tensor_value_info('scan_output', TensorProto.FLOAT, (seq_len, axis_0_len, input_size))], opset_imports=[helper.make_opsetid("", 9)]) def test_scan_opset9_output_axes(self): # type: () -> None axis_0_len = 'axis0' seq_len = 'sequence' input_size = 2 loop_state_size = 3 input_value_infos = [make_tensor_value_info('loop_state_in', TensorProto.UNDEFINED, None), make_tensor_value_info('input', TensorProto.UNDEFINED, None)] output_value_infos = [make_tensor_value_info('loop_state_out', TensorProto.UNDEFINED, None), make_tensor_value_info('output', TensorProto.UNDEFINED, None)] subgraph = helper.make_graph( [make_node('Identity', ['loop_state_in'], ['loop_state_out']), make_node('Identity', ['input'], ['output'])], "subgraph", input_value_infos, output_value_infos ) graph = self._make_graph( [('loop_state_orig', TensorProto.FLOAT, (loop_state_size,)), ('scan_input', TensorProto.FLOAT, (axis_0_len, seq_len, input_size))], [make_node('Scan', ['loop_state_orig', 'scan_input'], ['loop_state_final', 'scan_output'], num_scan_inputs=1, body=subgraph, scan_input_axes=[1], scan_output_axes=[1])], [] ) self._assert_inferred( graph, [make_tensor_value_info('loop_state_final', TensorProto.FLOAT, (loop_state_size,)), make_tensor_value_info('scan_output', TensorProto.FLOAT, (axis_0_len, seq_len, input_size))], opset_imports=[helper.make_opsetid("", 9)]) def test_scan_opset9_negative_axes(self): # type: () -> None axis_0_len = 'axis0' seq_len = 'sequence' input_size = 2 loop_state_size = 3 input_value_infos = [make_tensor_value_info('loop_state_in', TensorProto.UNDEFINED, None), make_tensor_value_info('input', TensorProto.UNDEFINED, None)] output_value_infos = [make_tensor_value_info('loop_state_out', TensorProto.UNDEFINED, None), make_tensor_value_info('output', TensorProto.UNDEFINED, None)] subgraph = helper.make_graph( [make_node('Identity', ['loop_state_in'], ['loop_state_out']), make_node('Identity', ['input'], ['output'])], "subgraph", input_value_infos, output_value_infos ) graph = self._make_graph( [('loop_state_orig', TensorProto.FLOAT, (loop_state_size,)), ('scan_input', TensorProto.FLOAT, (axis_0_len, seq_len, input_size))], [make_node('Scan', ['loop_state_orig', 'scan_input'], ['loop_state_final', 'scan_output'], num_scan_inputs=1, body=subgraph, scan_input_axes=[-2], scan_output_axes=[-2])], [] ) self._assert_inferred( graph, [make_tensor_value_info('loop_state_final', TensorProto.FLOAT, (loop_state_size,)), make_tensor_value_info('scan_output', TensorProto.FLOAT, (axis_0_len, seq_len, input_size))], opset_imports=[helper.make_opsetid("", 9)]) def test_if_ver1(self): # type: () -> None # Create a simple If node where the 'then' subgraph adds to the current value, and the 'else' subgraph # subtracts. # can't use self._make_graph for the subgraphs as that add more inputs for the Reshape operations it inserts. # this breaks the subgraph inferencing as it expects the subgraphs to have zero inputs then_subgraph = helper.make_graph( [make_node('Add', ['current_value', 'add_value'], ['then_output'])], "then_subgraph", [], # no inputs [make_tensor_value_info('then_output', TensorProto.UNDEFINED, None)], ) else_subgraph = helper.make_graph( [make_node('Sub', ['current_value', 'sub_value'], ['else_output'])], "else_subgraph", [], # no inputs [make_tensor_value_info('else_output', TensorProto.UNDEFINED, None)], ) graph = self._make_graph( [('cond', TensorProto.BOOL, (1,)), ('current_value', TensorProto.FLOAT, (1,)), ('add_value', TensorProto.FLOAT, (1,)), ('sub_value', TensorProto.FLOAT, (1,))], [make_node('If', ['cond'], ['if_output'], then_branch=then_subgraph, else_branch=else_subgraph)], [] ) self._assert_inferred( graph, [make_tensor_value_info('if_output', TensorProto.FLOAT, (1,))], opset_imports=[make_opsetid("", 10)]) def test_if(self): # type: () -> None # Create a simple If node where the 'then' subgraph adds to the current value, and the 'else' subgraph # subtracts. # can't use self._make_graph for the subgraphs as that add more inputs for the Reshape operations it inserts. # this breaks the subgraph inferencing as it expects the subgraphs to have zero inputs then_subgraph = helper.make_graph( [make_node('Add', ['current_value', 'add_value'], ['then_output'])], "then_subgraph", [], # no inputs [make_tensor_value_info('then_output', TensorProto.UNDEFINED, None)], ) else_subgraph = helper.make_graph( [make_node('Sub', ['current_value', 'sub_value'], ['else_output'])], "else_subgraph", [], # no inputs [make_tensor_value_info('else_output', TensorProto.UNDEFINED, None)], ) graph = self._make_graph( [('cond', TensorProto.BOOL, (1,)), ('current_value', TensorProto.FLOAT, (1,)), ('add_value', TensorProto.FLOAT, (1,)), ('sub_value', TensorProto.FLOAT, (1,))], [make_node('If', ['cond'], ['if_output'], then_branch=then_subgraph, else_branch=else_subgraph)], [] ) self._assert_inferred(graph, [make_tensor_value_info('if_output', TensorProto.FLOAT, (1,))]) def test_if_with_different_shapes_in_then_else_branches(self): # type: () -> None # Create a simple If node where the 'then' subgraph adds to the current value, and the 'else' subgraph # subtracts. # can't use self._make_graph for the subgraphs as that add more inputs for the Reshape operations it inserts. # this breaks the subgraph inferencing as it expects the subgraphs to have zero inputs then_subgraph = helper.make_graph( [make_node('Add', ['current_value', 'add_value'], ['then_output'])], "then_subgraph", [], # no inputs [make_tensor_value_info('then_output', TensorProto.UNDEFINED, (1,))], ) else_subgraph = helper.make_graph( [make_node('Sub', ['current_value', 'sub_value'], ['else_output'])], "else_subgraph", [], # no inputs [make_tensor_value_info('else_output', TensorProto.UNDEFINED, (5,))], ) graph = self._make_graph( [('cond', TensorProto.BOOL, (1,)), ('current_value', TensorProto.FLOAT, (1,)), ('add_value', TensorProto.FLOAT, (1,)), ('sub_value', TensorProto.FLOAT, (5,))], [make_node('If', ['cond'], ['if_output'], then_branch=then_subgraph, else_branch=else_subgraph)], [] ) self._assert_inferred(graph, [make_tensor_value_info('if_output', TensorProto.FLOAT, (None,))]) # type: ignore def test_maxunpool_shape_without_output_shape(self): # type: () -> None graph = self._make_graph( [('xT', TensorProto.FLOAT, (1, 1, 2, 2)), ('xI', TensorProto.FLOAT, (1, 1, 2, 2))], [make_node('MaxUnpool', ['xT', 'xI'], 'Y', kernel_shape=[2, 2], strides=[2, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (1, 1, 4, 4))]) def test_maxunpool_shape_with_output_shape(self): # type: () -> None graph = self._make_graph( [('xT', TensorProto.FLOAT, (1, 1, 2, 2)), ('xI', TensorProto.FLOAT, (1, 1, 2, 2)), ('output_shape', TensorProto.FLOAT, (4, ))], [make_node('MaxUnpool', ['xT', 'xI', 'output_shape'], 'Y', kernel_shape=[2, 2], strides=[2, 2])], [make_tensor_value_info("Y", TensorProto.FLOAT, None)]) self._assert_inferred(graph, [make_tensor_value_info("Y", TensorProto.FLOAT, None)]) def test_onehot_without_axis(self): # type: () -> None graph = self._make_graph( [('indices', TensorProto.INT64, (2, 2)), ('depth', TensorProto.INT64, ()), ('values', TensorProto.FLOAT, (2, ))], [make_node('OneHot', ['indices', 'depth', 'values'], 'Y')], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (2, 2, None))]) # type: ignore def test_onehot_with_axis(self): # type: () -> None graph = self._make_graph( [('indices', TensorProto.INT64, (2, 3, 5)), ('depth', TensorProto.INT64, (1, )), ('values', TensorProto.FLOAT, (2, ))], [make_node('OneHot', ['indices', 'depth', 'values'], 'Y', axis=1)], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (2, None, 3, 5))]) # type: ignore def test_loop(self): # type: () -> None # can't use self._make_graph for the subgraph as it add more inputs for the Reshape operations it inserts. # this breaks the subgraph inferencing as it expects the number of inputs passed from Loop to match # the GraphProto, but Loop knows nothing about the additional inputs. input_value_infos = [make_tensor_value_info('iter_num_in', TensorProto.INT64, (1,)), make_tensor_value_info('cond_in', TensorProto.UNDEFINED, None), make_tensor_value_info('loop_state_in', TensorProto.UNDEFINED, ())] output_value_infos = [make_tensor_value_info('cond_out', TensorProto.UNDEFINED, None), make_tensor_value_info('loop_state_out', TensorProto.UNDEFINED, None), make_tensor_value_info('output', TensorProto.FLOAT, (3,))] subgraph = helper.make_graph( [make_node('Identity', ['cond_in'], ['cond_out']), make_node('Identity', ['loop_state_in'], ['loop_state_out']), make_node('Identity', ['outer_scope_input'], ['output'])], "subgraph", input_value_infos, output_value_infos ) graph = self._make_graph( [('max_trip_count', TensorProto.INT64, (1,)), ('cond_orig', TensorProto.FLOAT, (1,)), ('loop_state_orig', TensorProto.FLOAT, (2,)), ('outer_scope_input', TensorProto.FLOAT, (3,))], [make_node('Loop', ['max_trip_count', 'cond_orig', 'loop_state_orig'], ['loop_state_final', 'loop_output'], body=subgraph)], [] ) self._assert_inferred( graph, [make_tensor_value_info('loop_state_final', TensorProto.FLOAT, None), # shape may change between iterations make_tensor_value_info('loop_output', TensorProto.FLOAT, (None, 3))]) # type: ignore def test_loop_no_state(self): # type: () -> None input_value_infos = [make_tensor_value_info('iter_num_in', TensorProto.INT64, (1,)), make_tensor_value_info('cond_in', TensorProto.UNDEFINED, None)] output_value_infos = [make_tensor_value_info('cond_out', TensorProto.UNDEFINED, None), make_tensor_value_info('output', TensorProto.FLOAT, (3,))] subgraph = helper.make_graph( [make_node('Identity', ['cond_in'], ['cond_out']), make_node('Identity', ['outer_scope_input'], ['output'])], "subgraph", input_value_infos, output_value_infos ) graph = self._make_graph( [('max_trip_count', TensorProto.INT64, (1,)), ('cond_orig', TensorProto.FLOAT, (1,)), ('outer_scope_input', TensorProto.FLOAT, (3,))], [make_node('Loop', ['max_trip_count', 'cond_orig'], ['loop_output'], body=subgraph)], [] ) self._assert_inferred( graph, [make_tensor_value_info('loop_output', TensorProto.FLOAT, (None, 3))]) # type: ignore def test_constantofshape_with_input_shape(self): # type: () -> None graph = self._make_graph([], [make_node("Constant", [], ['shape'], value=make_tensor('shape', TensorProto.INT64, (3,), (3, 4, 5))), make_node("ConstantOfShape", ['shape'], ['y'], value=make_tensor('value', TensorProto.INT32, (1, ), (2, )))], []) self._assert_inferred(graph, [make_tensor_value_info('shape', TensorProto.INT64, (3,)), make_tensor_value_info('y', TensorProto.INT32, (3, 4, 5))]) # type: ignore def test_constantofshape_without_input_shape(self): # type: () -> None graph = self._make_graph([('shape', TensorProto.INT64, (3, ))], [make_node("ConstantOfShape", ['shape'], ['y'], value=make_tensor('value', TensorProto.UINT8, (1, ), (2, )))], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, (None, None, None))]) # type: ignore def test_constantofshape_with_shape_zero(self): # type: () -> None graph = self._make_graph([], [make_node("Constant", [], ['shape'], value=make_tensor('shape', TensorProto.INT64, (3,), (0,))), make_node("ConstantOfShape", ['shape'], ['y'], value=make_tensor('value', TensorProto.INT32, (1, ), (2, )))], []) self._assert_inferred(graph, [make_tensor_value_info('shape', TensorProto.INT64, (3,)), make_tensor_value_info('y', TensorProto.INT32, (0,))]) # type: ignore def test_convinteger(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.UINT8, (3, 4, 5, 6, 7)), ('y', TensorProto.UINT8, (5, 4, 2, 4, 3))], [make_node('ConvInteger', ['x', 'y'], 'z', pads=[0, 1, 1, 0, 0, 1], dilations=[1, 2, 2], strides=[1, 1, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.INT32, (3, 5, 4, 1, 3))]) def test_convinetger_dilations(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.UINT8, (30, 4, 8, 8, 8)), ('y', TensorProto.INT8, (50, 4, 3, 3, 3)), ('x_zero_point', TensorProto.UINT8, ()), ('y_zero_point', TensorProto.UINT8, ())], [make_node('ConvInteger', ['x', 'y', 'x_zero_point', 'y_zero_point'], 'z', dilations=[1, 2, 3])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.INT32, (30, 50, 6, 4, 2))]) def test_convinteger_strides(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.INT8, (30, 4, 8, 8, 8)), ('y', TensorProto.INT8, (50, 4, 3, 3, 3)), ('x_zero_point', TensorProto.UINT8, ()), ('y_zero_point', TensorProto.UINT8, ())], [make_node('ConvInteger', ['x', 'y', 'x_zero_point', 'y_zero_point'], 'z', strides=[1, 2, 3])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.INT32, (30, 50, 6, 3, 2))]) def test_convineteger_pads(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.UINT8, (30, 4, 7, 6, 4)), ('y', TensorProto.INT8, (50, 4, 3, 3, 3))], [make_node('ConvInteger', ['x', 'y'], 'z', pads=[1, 1, 2, 0, 1, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.INT32, (30, 50, 6, 6, 6))]) def test_convineteger_group(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.INT8, (30, 4, 8, 8, 8)), ('y', TensorProto.INT8, (4, 1, 8, 8, 8))], [make_node('ConvInteger', ['x', 'y'], 'z', group=4)], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.INT32, (30, 4, 1, 1, 1))]) def test_convineteger_partial_missing_shape(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.UINT8, (30, 4, None, 6, 4)), ('y', TensorProto.UINT8, (50, 4, 3, 3, 3)), ('x_zero_point', TensorProto.UINT8, ()), ('y_zero_point', TensorProto.UINT8, ())], [make_node('ConvInteger', ['x', 'y', 'x_zero_point', 'y_zero_point'], 'z', pads=[1, 1, 2, 0, 1, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.INT32, (30, 50, None, 6, 6))]) # type: ignore def test_convineteger_partial_missing_weight_shape(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.UINT8, (30, 4, 7, 6, 4)), ('y', TensorProto.UINT8, (50, 4, None, 3, 3))], [make_node('ConvInteger', ['x', 'y'], 'z', pads=[1, 1, 2, 0, 1, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.INT32, None)]) def test_qlinearconv(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.UINT8, (3, 4, 5, 6, 7)), ('x_scale', TensorProto.FLOAT, ()), ('x_zero_point', TensorProto.UINT8, ()), ('w', TensorProto.UINT8, (5, 4, 2, 4, 3)), ('w_scale', TensorProto.FLOAT, ()), ('w_zero_point', TensorProto.UINT8, ()), ('y_scale', TensorProto.FLOAT, ()), ('y_zero_point', TensorProto.UINT8, ())], [make_node('QLinearConv', ['x', 'x_scale', 'x_zero_point', 'w', 'w_scale', 'w_zero_point', 'y_scale', 'y_zero_point'], 'y', pads=[0, 1, 1, 0, 0, 1], dilations=[1, 2, 2], strides=[1, 1, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, (3, 5, 4, 1, 3))]) def test_qlinearconv_dilations(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.UINT8, (30, 4, 8, 8, 8)), ('x_scale', TensorProto.FLOAT, ()), ('x_zero_point', TensorProto.UINT8, ()), ('w', TensorProto.UINT8, (50, 4, 3, 3, 3)), ('w_scale', TensorProto.FLOAT, ()), ('w_zero_point', TensorProto.UINT8, ()), ('y_scale', TensorProto.FLOAT, ()), ('y_zero_point', TensorProto.UINT8, ())], [make_node('QLinearConv', ['x', 'x_scale', 'x_zero_point', 'w', 'w_scale', 'w_zero_point', 'y_scale', 'y_zero_point'], 'y', dilations=[1, 2, 3])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, (30, 50, 6, 4, 2))]) def test_qlinearconv_strides(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.INT8, (30, 4, 8, 8, 8)), ('x_scale', TensorProto.FLOAT, ()), ('x_zero_point', TensorProto.INT8, ()), ('w', TensorProto.INT8, (50, 4, 3, 3, 3)), ('w_scale', TensorProto.FLOAT, ()), ('w_zero_point', TensorProto.INT8, ()), ('y_scale', TensorProto.FLOAT, ()), ('y_zero_point', TensorProto.INT8, ())], [make_node('QLinearConv', ['x', 'x_scale', 'x_zero_point', 'w', 'w_scale', 'w_zero_point', 'y_scale', 'y_zero_point'], 'y', strides=[1, 2, 3])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT8, (30, 50, 6, 3, 2))]) def test_qlinearconv_pads(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.UINT8, (30, 4, 7, 6, 4)), ('x_scale', TensorProto.FLOAT, ()), ('x_zero_point', TensorProto.UINT8, ()), ('w', TensorProto.INT8, (50, 4, 3, 3, 3)), ('w_scale', TensorProto.FLOAT, ()), ('w_zero_point', TensorProto.INT8, ()), ('y_scale', TensorProto.FLOAT, ()), ('y_zero_point', TensorProto.UINT8, ())], [make_node('QLinearConv', ['x', 'x_scale', 'x_zero_point', 'w', 'w_scale', 'w_zero_point', 'y_scale', 'y_zero_point'], 'y', pads=[1, 1, 2, 0, 1, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, (30, 50, 6, 6, 6))]) def test_qlinearconv_group(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.INT8, (30, 4, 8, 8, 8)), ('x_scale', TensorProto.FLOAT, ()), ('x_zero_point', TensorProto.INT8, ()), ('w', TensorProto.INT8, (4, 1, 8, 8, 8)), ('w_scale', TensorProto.FLOAT, ()), ('w_zero_point', TensorProto.INT8, ()), ('y_scale', TensorProto.FLOAT, ()), ('y_zero_point', TensorProto.INT8, ())], [make_node('QLinearConv', ['x', 'x_scale', 'x_zero_point', 'w', 'w_scale', 'w_zero_point', 'y_scale', 'y_zero_point'], 'y', group=4)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT8, (30, 4, 1, 1, 1))]) def test_qlinearconv_partial_missing_shape(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.UINT8, (30, 4, None, 6, 4)), ('x_scale', TensorProto.FLOAT, ()), ('x_zero_point', TensorProto.UINT8, ()), ('w', TensorProto.UINT8, (50, 4, 3, 3, 3)), ('w_scale', TensorProto.FLOAT, ()), ('w_zero_point', TensorProto.UINT8, ()), ('y_scale', TensorProto.FLOAT, ()), ('y_zero_point', TensorProto.UINT8, ())], [make_node('QLinearConv', ['x', 'x_scale', 'x_zero_point', 'w', 'w_scale', 'w_zero_point', 'y_scale', 'y_zero_point'], 'y', pads=[1, 1, 2, 0, 1, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, (30, 50, None, 6, 6))]) # type: ignore def test_qlinearconv_partial_missing_weight_shape(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.UINT8, (30, 4, 7, 6, 4)), ('x_scale', TensorProto.FLOAT, ()), ('x_zero_point', TensorProto.UINT8, ()), ('w', TensorProto.UINT8, (50, 4, None, 3, 3)), ('w_scale', TensorProto.FLOAT, ()), ('w_zero_point', TensorProto.UINT8, ()), ('y_scale', TensorProto.FLOAT, ()), ('y_zero_point', TensorProto.UINT8, ())], [make_node('QLinearConv', ['x', 'x_scale', 'x_zero_point', 'w', 'w_scale', 'w_zero_point', 'y_scale', 'y_zero_point'], 'y', pads=[1, 1, 2, 0, 1, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, None)]) def _make_qlinearmatmul_test(self, shape1, shape2): # type: (Sequence[int], Sequence[int]) -> None expected_out_shape = np.matmul(np.arange(np.product(shape1)).reshape(shape1), np.arange(np.product(shape2)).reshape(shape2)).shape graph = self._make_graph( [('a', TensorProto.UINT8, shape1), ('a_scale', TensorProto.FLOAT, ()), ('a_zero_point', TensorProto.UINT8, ()), ('b', TensorProto.UINT8, shape2), ('b_scale', TensorProto.FLOAT, ()), ('b_zero_point', TensorProto.UINT8, ()), ('y_scale', TensorProto.FLOAT, ()), ('y_zero_point', TensorProto.UINT8, ())], [make_node('QLinearMatMul', ['a', 'a_scale', 'a_zero_point', 'b', 'b_scale', 'b_zero_point', 'y_scale', 'y_zero_point'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, expected_out_shape)]) def test_qlinearmatmul(self): # type: () -> None self._make_qlinearmatmul_test((3,), (3,)) self._make_qlinearmatmul_test((4, 2), (2, 4)) self._make_qlinearmatmul_test((2,), (2, 3)) self._make_qlinearmatmul_test((4, 2), (2,)) self._make_qlinearmatmul_test((5, 1, 4, 2), (1, 3, 2, 3)) self._make_qlinearmatmul_test((4, 2), (3, 2, 3)) def _make_qlinearmatmul_test_allow_unknown(self, shape1, shape2, expected_out_shape): # type: (Any, Any, Any) -> None graph = self._make_graph( [('a', TensorProto.UINT8, shape1), ('a_scale', TensorProto.FLOAT, ()), ('a_zero_point', TensorProto.UINT8, ()), ('b', TensorProto.UINT8, shape2), ('b_scale', TensorProto.FLOAT, ()), ('b_zero_point', TensorProto.UINT8, ()), ('y_scale', TensorProto.FLOAT, ()), ('y_zero_point', TensorProto.UINT8, ())], [make_node('QLinearMatMul', ['a', 'a_scale', 'a_zero_point', 'b', 'b_scale', 'b_zero_point', 'y_scale', 'y_zero_point'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, expected_out_shape)]) def test_qlinearmatmul_allow_unknown(self): # type: () -> None self._make_qlinearmatmul_test_allow_unknown((None,), (None,), ()) self._make_qlinearmatmul_test_allow_unknown((3,), (None,), ()) self._make_qlinearmatmul_test_allow_unknown((2,), (2, "a"), ("a",)) self._make_qlinearmatmul_test_allow_unknown((4, 2), (2, "a"), (4, "a")) self._make_qlinearmatmul_test_allow_unknown((4, None), (2, "a"), (4, "a")) self._make_qlinearmatmul_test_allow_unknown((4, None), (None, "a"), (4, "a")) self._make_qlinearmatmul_test_allow_unknown((1, 4, 2), ("a", 2, 5), ("a", 4, 5)) self._make_qlinearmatmul_test_allow_unknown((1, 3, 4, 2), ("a", 2, 5), (1, 3, 4, 5)) self._make_qlinearmatmul_test_allow_unknown(None, ("a", 2, 5), None) self._make_qlinearmatmul_test_allow_unknown(None, None, None) def _make_matmulinteger_test(self, shape1, shape2): # type: (Sequence[int], Sequence[int]) -> None expected_out_shape = np.matmul(np.arange(np.product(shape1)).reshape(shape1), np.arange(np.product(shape2)).reshape(shape2)).shape graph = self._make_graph( [('A', TensorProto.UINT8, shape1), ('B', TensorProto.UINT8, shape2), ('a_zero_point', TensorProto.UINT8, ()), ('b_zero_point', TensorProto.UINT8, ())], [make_node('MatMulInteger', ['A', 'B', 'a_zero_point', 'b_zero_point'], ['Y'])], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.INT32, expected_out_shape)]) def test_matmulinteger(self): # type: () -> None self._make_matmulinteger_test((2,), (2,)) self._make_matmulinteger_test((1, 2), (2, 3)) self._make_matmulinteger_test((2,), (2, 3)) self._make_matmulinteger_test((4, 2), (2,)) self._make_matmulinteger_test((5, 1, 4, 2), (1, 3, 2, 3)) self._make_matmulinteger_test((4, 2), (3, 2, 3)) def test_quantizelinear(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (30, 4, 5)), ('y_scale', TensorProto.FLOAT, ()), ('y_zero_point', TensorProto.UINT8, ())], [make_node('QuantizeLinear', ['x', 'y_scale', 'y_zero_point'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.UINT8, (30, 4, 5))]) def test_dequantizelinear(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.UINT8, (30, 4, 5)), ('x_scale', TensorProto.FLOAT, ()), ('x_zero_point', TensorProto.UINT8, ())], [make_node('DequantizeLinear', ['x', 'x_scale', 'x_zero_point'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (30, 4, 5))]) def test_reversesequence(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5, 6)), ('sequence_lens', TensorProto.INT64, (5,))], [make_node('ReverseSequence', ['x', 'sequence_lens'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (4, 5, 6))]) def test_unique_without_axis(self): # type: () -> None graph = self._make_graph( [('X', TensorProto.FLOAT, (2, 4, 2))], [make_node('Unique', ['X'], ['Y', 'indices', 'inverse_indices', 'counts'])], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (None,)), # type: ignore make_tensor_value_info('indices', TensorProto.INT64, (None,)), # type: ignore make_tensor_value_info('inverse_indices', TensorProto.INT64, (None,)), # type: ignore make_tensor_value_info('counts', TensorProto.INT64, (None,))]) # type: ignore def test_unique_with_axis(self): # type: () -> None graph = self._make_graph( [('X', TensorProto.FLOAT, (2, 4, 2))], [make_node('Unique', ['X'], ['Y', 'indices', 'inverse_indices', 'counts'], axis=1)], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (2, None, 2)), # type: ignore make_tensor_value_info('indices', TensorProto.INT64, (None,)), # type: ignore make_tensor_value_info('inverse_indices', TensorProto.INT64, (None,)), # type: ignore make_tensor_value_info('counts', TensorProto.INT64, (None,))]) # type: ignore def test_det(self): # type: () -> None graph = self._make_graph( [('X', TensorProto.FLOAT, (3, 3))], [make_node('Det', ['X'], ['Y'])], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, ())]) graph = self._make_graph( [('X', TensorProto.FLOAT, (4, 5, 6, 7, 7))], [make_node('Det', ['X'], ['Y'])], []) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (4, 5, 6))]) def test_tile(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5, 6)), ('repeats', TensorProto.INT64, (3,))], [make_node('Tile', ['x', 'repeats'], ['y'])], [], initializer=[make_tensor('repeats', TensorProto.INT64, (3,), (1, 2, 3))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (4, 10, 18))]) def test_tile_raw_input_data(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5, 6)), ('repeats', TensorProto.INT64, (3,))], [make_node('Tile', ['x', 'repeats'], ['y'])], [], initializer=[make_tensor('repeats', TensorProto.INT64, (3,), vals=np.array([1, 2, 3], dtype='<i8').tobytes(), raw=True)]) # Feed raw bytes (force little endian ordering like onnx standard) for test purpose self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (4, 10, 18))]) def test_tile_rank_inference(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5, 6)), ('repeats', TensorProto.INT64, (3,))], [make_node('Tile', ['x', 'repeats'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (None, None, None))]) # type: ignore def test_linearclassifier_1D_input(self): # type: () -> None if ONNX_ML: graph = self._make_graph( [('x', TensorProto.FLOAT, (5,))], [make_node('LinearClassifier', ['x'], ['y', 'z'], domain='ai.onnx.ml', coefficients=[0.0008, -0.0008], intercepts=[2.0, 2.0], classlabels_ints=[1, 2])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, (1,)), make_tensor_value_info('z', TensorProto.FLOAT, (1, 2))], opset_imports=[make_opsetid('ai.onnx.ml', 1), make_opsetid('', 11)]) def test_linearclassifier_2D_input(self): # type: () -> None if ONNX_ML: graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5))], [make_node('LinearClassifier', ['x'], ['y', 'z'], domain='ai.onnx.ml', coefficients=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6], intercepts=[2.0, 2.0, 3.0], classlabels_ints=[1, 2, 3])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, (4,)), make_tensor_value_info('z', TensorProto.FLOAT, (4, 3))], opset_imports=[make_opsetid('ai.onnx.ml', 1), make_opsetid('', 11)]) def test_roialign_symbolic(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, ('N', 'C', 'H', 'W')), ('rois', TensorProto.FLOAT, ('num_rois', 4)), ('batch_indices', TensorProto.INT64, ('num_rois',))], [make_node('RoiAlign', ['x', 'rois', 'batch_indices'], ['y'], output_height=10, output_width=5)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, ('num_rois', 'C', 10, 5))]) # type: ignore def test_roialign_symbolic_defaults(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, ('N', 'C', 'H', 'W')), ('rois', TensorProto.FLOAT, ('num_rois', 4)), ('batch_indices', TensorProto.INT64, ('num_rois',))], [make_node('RoiAlign', ['x', 'rois', 'batch_indices'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, ('num_rois', 'C', 1, 1))]) # type: ignore def test_roialign_num_rois(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, ('N', 'C', 'H', 'W')), ('rois', TensorProto.FLOAT, ('num_rois', 4)), ('batch_indices', TensorProto.INT64, (15,))], [make_node('RoiAlign', ['x', 'rois', 'batch_indices'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (15, 'C', 1, 1))]) # type: ignore def test_label_encoder_string_int64(self): # type: () -> None if ONNX_ML: string_list = ['A', 'm', 'y'] float_list = [94.17, 36.00] int64_list = [12, 28, 86] graph = self._make_graph( [('x', TensorProto.STRING, (6, 1))], [make_node('LabelEncoder', ['x'], ['y'], domain='ai.onnx.ml', keys_strings=string_list, values_int64s=int64_list)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, (6, 1))], opset_imports=[make_opsetid('ai.onnx.ml', 2), make_opsetid('', 11)]) graph = self._make_graph( [('x', TensorProto.INT64, (2, 3))], [make_node('LabelEncoder', ['x'], ['y'], domain='ai.onnx.ml', keys_int64s=int64_list, values_strings=string_list)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.STRING, (2, 3))], opset_imports=[make_opsetid('ai.onnx.ml', 2), make_opsetid('', 11)]) graph = self._make_graph( [('x', TensorProto.FLOAT, (2,))], [make_node('LabelEncoder', ['x'], ['y'], domain='ai.onnx.ml', keys_floats=float_list, values_int64s=int64_list)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, (2,))], opset_imports=[make_opsetid('ai.onnx.ml', 2), make_opsetid('', 11)]) graph = self._make_graph( [('x', TensorProto.INT64, (8,))], [make_node('LabelEncoder', ['x'], ['y'], domain='ai.onnx.ml', keys_int64s=int64_list, values_floats=float_list)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (8,))], opset_imports=[make_opsetid('ai.onnx.ml', 2), make_opsetid('', 11)]) graph = self._make_graph( [('x', TensorProto.FLOAT, ())], [make_node('LabelEncoder', ['x'], ['y'], domain='ai.onnx.ml', keys_floats=float_list, values_strings=string_list)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.STRING, ())], opset_imports=[make_opsetid('ai.onnx.ml', 2), make_opsetid('', 11)]) graph = self._make_graph( [('x', TensorProto.STRING, (1, 2))], [make_node('LabelEncoder', ['x'], ['y'], domain='ai.onnx.ml', keys_strings=string_list, values_floats=float_list)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (1, 2))], opset_imports=[make_opsetid('ai.onnx.ml', 2), make_opsetid('', 11)]) def make_sparse(self, shape, # type: Sequence[int] values, # type: Sequence[int] indices_shape, # type: Sequence[int] indices # type: Sequence[int] ): # type: (...) -> SparseTensorProto sparse = SparseTensorProto() sparse.dims.extend(shape) nnz = len(values) sparse.values.CopyFrom(helper.make_tensor('spval', TensorProto.INT64, (nnz,), values)) sparse.indices.CopyFrom(helper.make_tensor('spind', TensorProto.INT64, indices_shape, indices)) return sparse def test_constant_sparse(self): # type: () -> None y_shape = [100] y_value = self.make_sparse(y_shape, [13, 17, 19], [3], [9, 27, 81]) graph = self._make_graph( [], [make_node('Constant', [], ['y'], sparse_value=y_value)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, y_shape)]) # type: ignore def test_constant_value_int(self): # type: () -> None graph = self._make_graph( [], [make_node('Constant', [], ['y'], value_int=42)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, [])]) def test_constant_value_ints(self): # type: () -> None value_ints = [1, 2, 3] graph = self._make_graph( [], [make_node('Constant', [], ['y'], value_ints=value_ints)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, [len(value_ints)])]) def test_constant_value_float(self): # type: () -> None graph = self._make_graph( [], [make_node('Constant', [], ['y'], value_float=1.42)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, [])]) def test_constant_value_floats(self): # type: () -> None value_floats = [1.0, 1.1, 1.2] graph = self._make_graph( [], [make_node('Constant', [], ['y'], value_floats=value_floats)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, [len(value_floats)])]) def test_constant_value_string(self): # type: () -> None graph = self._make_graph( [], [make_node('Constant', [], ['y'], value_string="String value")], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.STRING, [])]) def test_constant_value_strings(self): # type: () -> None value_strings = ["o", "n", "n", "x"] graph = self._make_graph( [], [make_node('Constant', [], ['y'], value_strings=value_strings)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.STRING, [len(value_strings)])]) def test_range(self): # type: () -> None graph = self._make_graph( [('start', TensorProto.FLOAT, ()), ('limit', TensorProto.FLOAT, ()), ('delta', TensorProto.FLOAT, ())], [make_node('Range', ['start', 'limit', 'delta'], ['output'])], [], initializer=[make_tensor('start', TensorProto.FLOAT, (), (1,)), make_tensor('limit', TensorProto.FLOAT, (), (5,)), make_tensor('delta', TensorProto.FLOAT, (), (2,))]) self._assert_inferred(graph, [make_tensor_value_info('output', TensorProto.FLOAT, (2,))]) def test_range_rank_inference(self): # type: () -> None graph = self._make_graph( [('start', TensorProto.INT32, ()), ('limit', TensorProto.INT32, ()), ('delta', TensorProto.INT32, ())], [make_node('Range', ['start', 'limit', 'delta'], ['output'])], [], initializer=[make_tensor('start', TensorProto.INT32, (), (1,)), make_tensor('limit', TensorProto.INT32, (), (5,))]) # Missing 'delta' initializer self._assert_inferred(graph, [make_tensor_value_info('output', TensorProto.INT32, (None,))]) # type: ignore def test_gathernd(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (4, 5, 6)), ('indices', TensorProto.INT64, (2,))], [make_node('GatherND', ['x', 'indices'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (6,))]) def test_gathernd_batchdim_1(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 2, 2)), ('indices', TensorProto.INT64, (2, 1))], [make_node('GatherND', ['x', 'indices'], ['y'], batch_dims=1)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2, 2))]) def test_cumsum(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 3)), ('axis', TensorProto.FLOAT, (1,))], [make_node('CumSum', ['x', 'axis'], 'z')], []) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (2, 3))]) def test_nonmaxsuppression(self): # type: () -> None graph = self._make_graph( [('boxes', TensorProto.FLOAT, (1, 3, 4)), ('scores', TensorProto.FLOAT, (1, 5, 3))], [make_node('NonMaxSuppression', ['boxes', 'scores'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.INT64, (None, 3))]) # type: ignore def test_sequence_empty(self): # type: () -> None graph = self._make_graph( [], [make_node('SequenceEmpty', [], ['output'])], []) self._assert_inferred(graph, [make_sequence_value_info('output', TensorProto.FLOAT, None)]) # type: ignore def test_sequence_construct(self): # type: () -> None graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 4)), ('input2', TensorProto.FLOAT, (2, 3, 4)), ('input3', TensorProto.FLOAT, (2, 3, 4))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['output_sequence'])], []) self._assert_inferred(graph, [make_sequence_value_info('output_sequence', TensorProto.FLOAT, (2, 3, 4))]) # type: ignore def test_sequence_construct_one_input(self): # type: () -> None graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 4))], [make_node('SequenceConstruct', ['input1'], ['output_sequence'])], []) self._assert_inferred(graph, [make_sequence_value_info('output_sequence', TensorProto.FLOAT, (2, 3, 4))]) # type: ignore def test_sequence_construct_diff_rank(self): # type: () -> None graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 4)), ('input2', TensorProto.FLOAT, (2, 3)), ('input3', TensorProto.FLOAT, (2, 3))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['output_sequence'])], []) self._assert_inferred(graph, [make_sequence_value_info('output_sequence', TensorProto.FLOAT, None)]) # type: ignore def test_sequence_construct_diff_dim_size(self): # type: () -> None graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 4)), ('input2', TensorProto.FLOAT, (2, 3, 5)), ('input3', TensorProto.FLOAT, (2, 3, 6))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['output_sequence'])], []) self._assert_inferred(graph, [make_sequence_value_info('output_sequence', TensorProto.FLOAT, (2, 3, None))]) # type: ignore def test_sequence_insert(self): # type: () -> None graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 4)), ('input2', TensorProto.FLOAT, (2, 3, 4)), ('input3', TensorProto.FLOAT, (2, 3, 4)), ('input4', TensorProto.FLOAT, (2, 3, 4))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('SequenceInsert', ['in_sequence', 'input4'], ['output_sequence'])], []) self._assert_inferred( graph, [make_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, 3, 4)), make_sequence_value_info('output_sequence', TensorProto.FLOAT, (2, 3, 4))]) # type: ignore def test_sequence_insert_diff_rank(self): # type: () -> None graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 4)), ('input2', TensorProto.FLOAT, (2, 3, 4)), ('input3', TensorProto.FLOAT, (2, 3, 4)), ('input4', TensorProto.FLOAT, (2, 3))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('SequenceInsert', ['in_sequence', 'input4'], ['output_sequence'])], []) self._assert_inferred( graph, [make_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, 3, 4)), make_sequence_value_info('output_sequence', TensorProto.FLOAT, None)]) # type: ignore def test_sequence_insert_diff_shape(self): # type: () -> None graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 4)), ('input2', TensorProto.FLOAT, (2, 3, 4)), ('input3', TensorProto.FLOAT, (2, 5, 4)), ('input4', TensorProto.FLOAT, (2, 5, 2))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('SequenceInsert', ['in_sequence', 'input4'], ['output_sequence'])], []) self._assert_inferred( graph, [make_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, None, 4)), # type: ignore make_sequence_value_info('output_sequence', TensorProto.FLOAT, (2, None, None))]) # type: ignore def test_sequence_at(self): # type: () -> None graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 4)), ('input2', TensorProto.FLOAT, (2, 3, 4)), ('input3', TensorProto.FLOAT, (2, 3, 4)), ('ind', TensorProto.INT64, ())], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('SequenceAt', ['in_sequence', 'ind'], ['output'])], []) self._assert_inferred( graph, [make_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, 3, 4)), make_tensor_value_info('output', TensorProto.FLOAT, (2, 3, 4))]) # type: ignore def test_sequence_at_unknown_shape(self): # type: () -> None graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 4)), ('input2', TensorProto.FLOAT, (2, 3)), ('input3', TensorProto.FLOAT, (2, 3, 4)), ('ind', TensorProto.INT64, ())], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('SequenceAt', ['in_sequence', 'ind'], ['output'])], []) self._assert_inferred( graph, [make_sequence_value_info('in_sequence', TensorProto.FLOAT, None), make_tensor_value_info('output', TensorProto.FLOAT, None)]) # type: ignore def test_sequence_at_unknown_dim_size(self): # type: () -> None graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 4)), ('input2', TensorProto.FLOAT, (2, 3, 5)), ('input3', TensorProto.FLOAT, (2, 3, 4)), ('ind', TensorProto.INT64, ())], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('SequenceAt', ['in_sequence', 'ind'], ['output'])], []) self._assert_inferred( graph, [make_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, 3, None)), # type: ignore make_tensor_value_info('output', TensorProto.FLOAT, (2, 3, None))]) # type: ignore def test_sequence_erase(self): # type: () -> None graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 4)), ('input2', TensorProto.FLOAT, (2, 3, 4)), ('input3', TensorProto.FLOAT, (2, 3, 4)), ('ind', TensorProto.INT64, ())], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('SequenceErase', ['in_sequence', 'ind'], ['output_sequence'])], []) self._assert_inferred( graph, [make_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, 3, 4)), make_sequence_value_info('output_sequence', TensorProto.FLOAT, (2, 3, 4))]) # type: ignore def test_sequence_erase_diff_dim_size(self): # type: () -> None graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 'x')), ('input2', TensorProto.FLOAT, (2, 3, 'x')), ('input3', TensorProto.FLOAT, (2, 5, 'x')), ('ind', TensorProto.INT64, ())], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('SequenceErase', ['in_sequence', 'ind'], ['output_sequence'])], []) self._assert_inferred( graph, [make_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, None, 'x')), # type: ignore make_sequence_value_info('output_sequence', TensorProto.FLOAT, (2, None, 'x'))]) # type: ignore def test_sequence_length(self): # type: () -> None graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 'x')), ('input2', TensorProto.FLOAT, (2, 3, 'x')), ('input3', TensorProto.FLOAT, (2, 3, 'x'))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('SequenceLength', ['in_sequence'], ['len'])], []) self._assert_inferred( graph, [make_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, 3, 'x')), make_tensor_value_info('len', TensorProto.INT64, ())]) # type: ignore def test_split_to_sequence(self): # type: () -> None graph = self._make_graph( [('input', TensorProto.FLOAT, (6, 4)), ('split', TensorProto.INT32, (2,))], [make_node('SplitToSequence', ['input', 'split'], ['output_sequence'])], [], initializer=[make_tensor('split', TensorProto.INT32, (), (3, 3))]) self._assert_inferred(graph, [make_sequence_value_info('output_sequence', TensorProto.FLOAT, (3, 4))]) # type: ignore def test_split_to_sequence_scalar(self): # type: () -> None graph = self._make_graph( [('input', TensorProto.FLOAT, (6, 4)), ('split', TensorProto.INT32, ())], [make_node('SplitToSequence', ['input', 'split'], ['output_sequence'])], [], initializer=[make_tensor('split', TensorProto.INT32, (), (2, ))]) self._assert_inferred(graph, [make_sequence_value_info('output_sequence', TensorProto.FLOAT, (2, 4))]) # type: ignore def test_split_to_sequence_keepdims(self): # type: () -> None graph = self._make_graph( [('input', TensorProto.FLOAT, (6, 4))], [make_node('SplitToSequence', ['input'], ['output_sequence'], keepdims=1)], []) self._assert_inferred(graph, [make_sequence_value_info('output_sequence', TensorProto.FLOAT, (1, 4))]) # type: ignore def test_split_to_sequence_not_keepdims(self): # type: () -> None graph = self._make_graph( [('input', TensorProto.FLOAT, (6, 4))], [make_node('SplitToSequence', ['input'], ['output_sequence'], keepdims=0)], []) self._assert_inferred(graph, [make_sequence_value_info('output_sequence', TensorProto.FLOAT, (4, ))]) # type: ignore def test_split_to_sequence_ignore_keepdims(self): # type: () -> None graph = self._make_graph( [('input', TensorProto.FLOAT, (6, 4)), ('split', TensorProto.INT32, (2,))], [make_node('SplitToSequence', ['input', 'split'], ['output_sequence'], keepdims=0)], [], initializer=[make_tensor('split', TensorProto.INT32, (), (3, 3))]) self._assert_inferred(graph, [make_sequence_value_info('output_sequence', TensorProto.FLOAT, (3, 4))]) # type: ignore def test_split_to_sequence_axis(self): # type: () -> None graph = self._make_graph( [('input', TensorProto.FLOAT, (6, 4))], [make_node('SplitToSequence', ['input'], ['output_sequence'], axis=1)], []) self._assert_inferred(graph, [make_sequence_value_info('output_sequence', TensorProto.FLOAT, (6, 1))]) # type: ignore def test_split_to_sequence_neg_axis(self): # type: () -> None graph = self._make_graph( [('input', TensorProto.FLOAT, (6, 4))], [make_node('SplitToSequence', ['input'], ['output_sequence'], axis=-2)], []) self._assert_inferred(graph, [make_sequence_value_info('output_sequence', TensorProto.FLOAT, (1, 4))]) # type: ignore def test_split_to_sequence_split_sizes(self): # type: () -> None graph = self._make_graph( [('input', TensorProto.FLOAT, (6, 4)), ('split', TensorProto.INT32, (3,))], [make_node('SplitToSequence', ['input', 'split'], ['output_sequence'])], [], initializer=[make_tensor('split', TensorProto.INT32, (), (2, 1, 3))]) self._assert_inferred(graph, [make_sequence_value_info('output_sequence', TensorProto.FLOAT, (None, 4))]) # type: ignore def test_split_to_sequence_non_divisible(self): # type: () -> None graph = self._make_graph( [('input', TensorProto.FLOAT, (6, 4)), ('split', TensorProto.INT32, ())], [make_node('SplitToSequence', ['input', 'split'], ['output_sequence'])], [], initializer=[make_tensor('split', TensorProto.INT32, (), (4, ))]) self._assert_inferred(graph, [make_sequence_value_info('output_sequence', TensorProto.FLOAT, (None, 4))]) # type: ignore def test_concat_from_sequence(self): # type: () -> None graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 'x')), ('input2', TensorProto.FLOAT, (2, 3, 'x')), ('input3', TensorProto.FLOAT, (2, 3, 'x'))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('ConcatFromSequence', ['in_sequence'], ['out'], axis=0)], []) self._assert_inferred( graph, [make_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, 3, 'x')), make_tensor_value_info('out', TensorProto.FLOAT, (None, 3, 'x'))]) # type: ignore def test_concat_from_sequence_unknown_shape(self): # type: () -> None graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 'x')), ('input2', TensorProto.FLOAT, (2, 3)), ('input3', TensorProto.FLOAT, (2, 3, 'x'))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('ConcatFromSequence', ['in_sequence'], ['out'], axis=0)], []) self._assert_inferred( graph, [make_sequence_value_info('in_sequence', TensorProto.FLOAT, None), make_tensor_value_info('out', TensorProto.FLOAT, None)]) # type: ignore def test_concat_from_sequence_unknown_dim_size(self): # type: () -> None graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 'x')), ('input2', TensorProto.FLOAT, (2, 4, 'x')), ('input3', TensorProto.FLOAT, (2, 3, 'x'))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('ConcatFromSequence', ['in_sequence'], ['out'], axis=0)], []) self._assert_inferred( graph, [make_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, None, 'x')), # type: ignore make_tensor_value_info('out', TensorProto.FLOAT, (None, None, 'x'))]) # type: ignore def test_concat_from_sequence_axis(self): # type: () -> None graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 'x')), ('input2', TensorProto.FLOAT, (2, 4, 'x')), ('input3', TensorProto.FLOAT, (2, 3, 'x'))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('ConcatFromSequence', ['in_sequence'], ['out'], axis=2)], []) self._assert_inferred( graph, [make_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, None, 'x')), # type: ignore make_tensor_value_info('out', TensorProto.FLOAT, (2, None, None))]) # type: ignore def test_concat_from_sequence_neg_axis(self): # type: () -> None graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 'x')), ('input2', TensorProto.FLOAT, (2, 4, 'x')), ('input3', TensorProto.FLOAT, (2, 3, 'x'))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('ConcatFromSequence', ['in_sequence'], ['out'], axis=-3)], []) self._assert_inferred( graph, [make_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, None, 'x')), # type: ignore make_tensor_value_info('out', TensorProto.FLOAT, (None, None, 'x'))]) # type: ignore def test_concat_from_sequence_new_axis(self): # type: () -> None graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 'x')), ('input2', TensorProto.FLOAT, (2, 3, 'x')), ('input3', TensorProto.FLOAT, (2, 3, 'x'))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('ConcatFromSequence', ['in_sequence'], ['out'], axis=2, new_axis=1)], []) self._assert_inferred( graph, [make_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, 3, 'x')), make_tensor_value_info('out', TensorProto.FLOAT, (2, 3, None, 'x'))]) # type: ignore def test_concat_from_sequence_neg_new_axis(self): # type: () -> None graph = self._make_graph( [('input1', TensorProto.FLOAT, (2, 3, 'x')), ('input2', TensorProto.FLOAT, (2, 3, 'x')), ('input3', TensorProto.FLOAT, (2, 3, 'x'))], [make_node('SequenceConstruct', ['input1', 'input2', 'input3'], ['in_sequence']), make_node('ConcatFromSequence', ['in_sequence'], ['out'], axis=-1, new_axis=1)], []) self._assert_inferred( graph, [make_sequence_value_info('in_sequence', TensorProto.FLOAT, (2, 3, 'x')), make_tensor_value_info('out', TensorProto.FLOAT, (2, 3, 'x', None))]) # type: ignore def test_adagrad(self): # type: () -> None graph = self._make_graph( [('R', TensorProto.FLOAT, ()), # scalar's shape is () ('T', TensorProto.INT64, ()), # scalar's shape is () ('X', TensorProto.FLOAT, (1, 2)), ('G', TensorProto.FLOAT, (1, 2)), ('H', TensorProto.FLOAT, (1, 2))], [make_node('Adagrad', ['R', 'T', 'X', 'G', 'H'], ['X_new', 'H_new'], domain='ai.onnx.training')], []) self._assert_inferred( graph, [make_tensor_value_info('X_new', TensorProto.FLOAT, (1, 2)), make_tensor_value_info('H_new', TensorProto.FLOAT, (1, 2))], opset_imports=[helper.make_opsetid('', 12), helper.make_opsetid('ai.onnx.training', 1)]) def test_adagrad_multiple(self): # type: () -> None graph = self._make_graph( [('R', TensorProto.FLOAT, ()), # scalar's shape is () ('T', TensorProto.INT64, ()), # scalar's shape is () ('X1', TensorProto.FLOAT, (1, 2)), ('X2', TensorProto.FLOAT, (3, 4)), ('G1', TensorProto.FLOAT, (1, 2)), ('G2', TensorProto.FLOAT, (3, 4)), ('H1', TensorProto.FLOAT, (1, 2)), ('H2', TensorProto.FLOAT, (3, 4))], [make_node('Adagrad', ['R', 'T', 'X1', 'X2', 'G1', 'G2', 'H1', 'H2'], ['X1_new', 'X2_new', 'H1_new', 'H2_new'], domain='ai.onnx.training')], []) self._assert_inferred(graph, [make_tensor_value_info('X1_new', TensorProto.FLOAT, (1, 2)), make_tensor_value_info('X2_new', TensorProto.FLOAT, (3, 4)), make_tensor_value_info('H1_new', TensorProto.FLOAT, (1, 2)), make_tensor_value_info('H2_new', TensorProto.FLOAT, (3, 4))], opset_imports=[helper.make_opsetid('', 12), helper.make_opsetid('ai.onnx.training', 1)]) def test_momentum(self): # type: () -> None graph = self._make_graph( [('R', TensorProto.FLOAT, ()), # scalar's shape is () ('T', TensorProto.INT64, ()), # scalar's shape is () ('X', TensorProto.FLOAT, (1, 2)), ('G', TensorProto.FLOAT, (1, 2)), ('V', TensorProto.FLOAT, (1, 2))], [make_node('Momentum', ['R', 'T', 'X', 'G', 'V'], ['X_new', 'V_new'], alpha=0.9, beta=1.0, norm_coefficient=0.02, mode='standard', domain='ai.onnx.training')], []) self._assert_inferred( graph, [make_tensor_value_info('X_new', TensorProto.FLOAT, (1, 2)), make_tensor_value_info('V_new', TensorProto.FLOAT, (1, 2))], opset_imports=[helper.make_opsetid('', 12), helper.make_opsetid('ai.onnx.training', 1)]) def test_momentum_multiple(self): # type: () -> None graph = self._make_graph( [('R', TensorProto.FLOAT, ()), # scalar's shape is () ('T', TensorProto.INT64, ()), # scalar's shape is () ('X1', TensorProto.FLOAT, (1, 2)), ('X2', TensorProto.FLOAT, (3, 4)), ('G1', TensorProto.FLOAT, (1, 2)), ('G2', TensorProto.FLOAT, (3, 4)), ('V1', TensorProto.FLOAT, (1, 2)), ('V2', TensorProto.FLOAT, (3, 4))], [make_node('Momentum', ['R', 'T', 'X1', 'X2', 'G1', 'G2', 'V1', 'V2'], ['X1_new', 'X2_new', 'V1_new', 'V2_new'], alpha=0.9, beta=1.0, norm_coefficient=0.02, mode='nesterov', domain='ai.onnx.training')], []) self._assert_inferred( graph, [make_tensor_value_info('X1_new', TensorProto.FLOAT, (1, 2)), make_tensor_value_info('X2_new', TensorProto.FLOAT, (3, 4)), make_tensor_value_info('V1_new', TensorProto.FLOAT, (1, 2)), make_tensor_value_info('V2_new', TensorProto.FLOAT, (3, 4))], opset_imports=[helper.make_opsetid('', 12), helper.make_opsetid('ai.onnx.training', 1)]) def test_adam(self): # type: () -> None graph = self._make_graph( [('R', TensorProto.FLOAT, ()), # scalar's shape is () ('T', TensorProto.INT64, ()), # scalar's shape is () ('X', TensorProto.FLOAT, (1, 2)), ('G', TensorProto.FLOAT, (1, 2)), ('V', TensorProto.FLOAT, (1, 2)), ('H', TensorProto.FLOAT, (1, 2))], [make_node('Adam', ['R', 'T', 'X', 'G', 'V', 'H'], ['X_new', 'V_new', 'H_new'], domain='ai.onnx.training', alpha=0.9, beta=1.0, norm_coefficient=0.02)], []) infos = [make_tensor_value_info('X_new', TensorProto.FLOAT, (1, 2)), make_tensor_value_info('V_new', TensorProto.FLOAT, (1, 2)), make_tensor_value_info('H_new', TensorProto.FLOAT, (1, 2))] self._assert_inferred( graph, infos, opset_imports=[make_opsetid('ai.onnx.training', 1), make_opsetid('', 12)]) def test_adam_multiple(self): # type: () -> None graph = self._make_graph( [('R', TensorProto.FLOAT, ()), # scalar's shape is () ('T', TensorProto.INT64, ()), # scalar's shape is () ('X1', TensorProto.FLOAT, (1, 2)), ('X2', TensorProto.FLOAT, (3, 4)), ('G1', TensorProto.FLOAT, (1, 2)), ('G2', TensorProto.FLOAT, (3, 4)), ('V1', TensorProto.FLOAT, (1, 2)), ('V2', TensorProto.FLOAT, (3, 4)), ('H1', TensorProto.FLOAT, (1, 2)), ('H2', TensorProto.FLOAT, (3, 4))], [make_node('Adam', ['R', 'T', 'X1', 'X2', 'G1', 'G2', 'V1', 'V2', 'H1', 'H2'], ['X1_new', 'X2_new', 'V1_new', 'V2_new', 'H1_new', 'H2_new'], domain='ai.onnx.training', alpha=0.9, beta=1.0, norm_coefficient=0.02)], []) infos = [make_tensor_value_info('X1_new', TensorProto.FLOAT, (1, 2)), make_tensor_value_info('X2_new', TensorProto.FLOAT, (3, 4)), make_tensor_value_info('V1_new', TensorProto.FLOAT, (1, 2)), make_tensor_value_info('V2_new', TensorProto.FLOAT, (3, 4)), make_tensor_value_info('H1_new', TensorProto.FLOAT, (1, 2)), make_tensor_value_info('H2_new', TensorProto.FLOAT, (3, 4))] self._assert_inferred( graph, infos, opset_imports=[make_opsetid('ai.onnx.training', 1), make_opsetid('', 12)]) def test_pad_opset10(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (1, None, 2))], [make_node('Pad', 'x', 'y', pads=[1, 3, 1, 1, 0, 1])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (3, None, 4))], opset_imports=[helper.make_opsetid("", 10)]) # type: ignore def test_constant_pad_2d_opset10(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 3, 4, 4))], [make_node('Pad', 'x', 'y', pads=[0, 0, 3, 1, 0, 0, 4, 2], mode="constant", value=2.0)], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2, 3, 11, 7))], opset_imports=[helper.make_opsetid("", 10)]) def test_pad(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (1, None, 2)), ('pads', TensorProto.INT64, (6,))], [make_node('Pad', ['x', 'pads'], 'y')], [], initializer=[make_tensor('pads', TensorProto.INT64, (6,), (1, 3, 1, 1, 0, 1,))]) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (3, None, 4))]) # type: ignore def test_gatherelements_basic(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (6,)), ('indices', TensorProto.INT64, (2,))], [make_node('GatherElements', ['x', 'indices'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (2,))]) def test_gatherelements_indices_missing_shape(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (6,)), ('indices', TensorProto.INT64, None)], # type: ignore [make_node('GatherElements', ['x', 'indices'], ['y'])], []) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, None)]) # type: ignore def test_einsum_transpose(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4))], [make_node('Einsum', ['x'], ['y'], equation='ij->ji')], [],) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (None, None))]) # type: ignore def test_einsum_dot(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (1,)), ('y', TensorProto.FLOAT, (1,))], [make_node('Einsum', ['x', 'y'], ['z'], equation='i,i->')], [],) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, ())]) # type: ignore def test_einsum_scalar(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, ()), ('y', TensorProto.FLOAT, ())], [make_node('Einsum', ['x', 'y'], ['z'], equation=',->')], [],) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, ())]) # type: ignore def test_einsum_outer_prod(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 5)), ('y', TensorProto.FLOAT, (7, 9))], [make_node('Einsum', ['x', 'y'], ['z'], equation='ij,ab->ijab')], [],) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (None, None, None, None))]) # type: ignore def test_einsum_sum_along_dim(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4))], [make_node('Einsum', ['x'], ['y'], equation='i j->i ')], [],) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (None, ))]) # type: ignore def test_einsum_ellipsis(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 4))], [make_node('Einsum', ['x'], ['y'], equation='... ii ->... i')], [],) self._assert_inferred(graph, [make_tensor_value_info('y', TensorProto.FLOAT, (None, None))]) # type: ignore def test_einsum_ellipsis_2(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 2, 2)), ('y', TensorProto.FLOAT, (2, 2, 2))], [make_node('Einsum', ['x', 'y'], ['z'], equation='...ij,...jk->...ik')], [], ) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (None, None, None))]) # type: ignore def test_einsum_ellipsis_3(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 2, 2)), ('y', TensorProto.FLOAT, (2, 2, 2))], [make_node('Einsum', ['x', 'y'], ['z'], equation='...ij,...jk')], [], ) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (None, None, None))]) # type: ignore def test_einsum_contraction(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (5, 6, 7, 8)), ('y', TensorProto.FLOAT, (8, 9, 10))], [make_node('Einsum', ['x', 'y'], ['z'], equation='abcd,dfg->abcfg')], [], ) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (None, None, None, None, None))]) # type: ignore def test_einsum_contraction_2(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (3, 4, 5)), ('y', TensorProto.FLOAT, (3, 5))], [make_node('Einsum', ['x', 'y'], ['z'], equation='ijk,ik->jk')], [], ) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (None, None))]) # type: ignore def test_einsum_batch_matmul(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (5, 2, 3)), ('y', TensorProto.FLOAT, (5, 3, 4))], [make_node('Einsum', ['x', 'y'], ['z'], equation='bij , b jk-> bik')], [],) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (None, None, None))]) # type: ignore def test_einsum_left_hand_eqn(self): # type: () -> None graph = self._make_graph( [('x', TensorProto.FLOAT, (2, 3)), ('y', TensorProto.FLOAT, (3, 4))], [make_node('Einsum', ['x', 'y'], ['z'], equation='ij,kl')], [],) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (None, None, None, None))]) # type: ignore def test_einsum_incorrect_num_inputs(self): # type: () -> None graph = self._make_graph( [("x", TensorProto.FLOAT, (2, 3)), ("y", TensorProto.FLOAT, (2, 3)), ("z", TensorProto.FLOAT, (2, 3))], [make_node('Einsum', ['x', 'y'], ['z'], equation='i,...j, k, l-> i')], []) self.assertRaises(checker.ValidationError, self._inferred, graph) def test_negative_log_likehood_shape_is_NCdd(self): # type: () -> None N, C = 3, 4 graph = self._make_graph( [('input', TensorProto.FLOAT, (N, C)), ('target', TensorProto.INT64, (N,))], [make_node('NegativeLogLikelihoodLoss', ['input', 'target'], ['loss'], reduction='none')], []) self._assert_inferred(graph, [make_tensor_value_info('loss', TensorProto.FLOAT, (N, ))]) # type: ignore def test_negative_log_likehood_shape_is_NC_with_weight(self): # type: () -> None N, C = 3, 4 graph = self._make_graph( [('input', TensorProto.FLOAT, (N, C)), ('target', TensorProto.INT64, (N,)), ('weight', TensorProto.FLOAT, (C,))], [make_node('NegativeLogLikelihoodLoss', ['input', 'target', 'weight'], ['loss'], reduction='none')], []) self._assert_inferred(graph, [make_tensor_value_info('loss', TensorProto.FLOAT, (N, ))]) # type: ignore def test_negative_log_likehood_shape_is_NC_reduction_mean(self): # type: () -> None N, C = 3, 4 graph = self._make_graph( [('input', TensorProto.FLOAT, (N, C)), ('target', TensorProto.INT64, (N,))], [make_node('NegativeLogLikelihoodLoss', ['input', 'target'], ['loss'], reduction='mean')], []) self._assert_inferred(graph, [make_tensor_value_info('loss', TensorProto.FLOAT, ())]) # type: ignore def test_negative_log_likehood_shape_is_NC_with_weight_reduction_mean(self): # type: () -> None N, C = 3, 4 graph = self._make_graph( [('input', TensorProto.FLOAT, (N, C)), ('target', TensorProto.INT64, (N,)), ('weight', TensorProto.FLOAT, (C,))], [make_node('NegativeLogLikelihoodLoss', ['input', 'target', 'weight'], ['loss'], reduction='mean')], []) self._assert_inferred(graph, [make_tensor_value_info('loss', TensorProto.FLOAT, ())]) # type: ignore def test_negative_log_likehood_shape_is_NCd1d2(self): # type: () -> None N, C, d1, d2 = 3, 4, 5, 6 graph = self._make_graph( [("input", TensorProto.FLOAT, (N, C, d1, d2)), ("target", TensorProto.INT64, (N, d1, d2))], [make_node('NegativeLogLikelihoodLoss', ['input', 'target'], ['loss'], reduction='none')], []) self._assert_inferred(graph, [make_tensor_value_info('loss', TensorProto.FLOAT, (N, d1, d2))]) # type: ignore def test_negative_log_likehood_shape_is_NCd1d2_with_weight(self): # type: () -> None N, C, d1, d2 = 3, 4, 5, 6 graph = self._make_graph( [("input", TensorProto.FLOAT, (N, C, d1, d2)), ("target", TensorProto.INT64, (N, d1, d2)), ("weight", TensorProto.FLOAT, (C,))], [make_node('NegativeLogLikelihoodLoss', ['input', 'target', 'weight'], ['loss'], reduction='none')], []) self._assert_inferred(graph, [make_tensor_value_info('loss', TensorProto.FLOAT, (N, d1, d2))]) # type: ignore def test_negative_log_likehood_shape_is_NCd1d2_reduction_sum(self): # type: () -> None N, C, d1, d2 = 3, 4, 5, 6 graph = self._make_graph( [("input", TensorProto.FLOAT, (N, C, d1, d2)), ("target", TensorProto.INT64, (N, d1, d2))], [make_node('NegativeLogLikelihoodLoss', ['input', 'target'], ['loss'], reduction='sum')], []) self._assert_inferred(graph, [make_tensor_value_info('loss', TensorProto.FLOAT, ())]) # type: ignore def test_negative_log_likehood_shape_is_NCd1d2_with_weight_reduction_mean(self): # type: () -> None N, C, d1, d2 = 3, 4, 5, 6 graph = self._make_graph( [("input", TensorProto.FLOAT, (N, C, d1, d2)), ("target", TensorProto.INT64, (N, d1, d2)), ("weight", TensorProto.FLOAT, (C,))], [make_node('NegativeLogLikelihoodLoss', ['input', 'target', 'weight'], ['loss'], reduction='mean')], []) self._assert_inferred(graph, [make_tensor_value_info('loss', TensorProto.FLOAT, ())]) # type: ignore def test_negative_log_likehood_input_target_shape_mismatch(self): # type: () -> None N, C, d1, d2 = 3, 4, 5, 6 graph = self._make_graph( [("input", TensorProto.FLOAT, (N, d1, d2)), ("target", TensorProto.INT64, (N, d1 + 1, d2)), ("weight", TensorProto.FLOAT, (C,)), ("loss", TensorProto.FLOAT, ())], [make_node('NegativeLogLikelihoodLoss', ['input', 'target', 'weight'], ['loss'], reduction='mean')], []) self.assertRaises(checker.ValidationError, self._inferred, graph) def test_negative_log_likehood_input_weight_shape_mismatch(self): # type: () -> None N, C, d1, d2 = 3, 4, 5, 6 graph = self._make_graph( [("input", TensorProto.FLOAT, (N, C, d1, d2)), ("target", TensorProto.INT64, (N, d1, d2)), ("weight", TensorProto.FLOAT, (C + 1,)), ("loss", TensorProto.FLOAT, (N, d1, d2))], [make_node('NegativeLogLikelihoodLoss', ['input', 'target', 'weight'], ['loss'], reduction='none')], []) self.assertRaises(checker.ValidationError, self._inferred, graph) def test_softmax_cross_entropy_none(self): # type: () -> None graph = self._make_graph( [("x", TensorProto.FLOAT, (2, 3)), ("y", TensorProto.FLOAT, (2,))], [make_node('SoftmaxCrossEntropyLoss', ['x', 'y'], ['z'], reduction='none')], [],) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (2,))]) # type: ignore def test_softmax_cross_entropy_mean(self): # type: () -> None graph = self._make_graph( [("x", TensorProto.FLOAT, (2, 3)), ("y", TensorProto.FLOAT, (2,))], [make_node('SoftmaxCrossEntropyLoss', ['x', 'y'], ['z'], reduction='mean')], [],) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, ())]) # type: ignore def test_softmax_cross_entropy_none_NCD1D2(self): # type: () -> None graph = self._make_graph( [("x", TensorProto.FLOAT, (2, 3, 5, 8)), ("y", TensorProto.FLOAT, (2, 5, 8))], [make_node('SoftmaxCrossEntropyLoss', ['x', 'y'], ['z'], reduction='none')], [],) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, (2, 5, 8))]) # type: ignore def test_softmax_cross_entropy_mean_NCD1D2(self): # type: () -> None graph = self._make_graph( [("x", TensorProto.FLOAT, (2, 3, 4, 5)), ("y", TensorProto.FLOAT, (2, 4, 5))], [make_node('SoftmaxCrossEntropyLoss', ['x', 'y'], ['z'], reduction='mean')], [],) self._assert_inferred(graph, [make_tensor_value_info('z', TensorProto.FLOAT, ())]) # type: ignore def test_celu_function_output_shape(self): # type: () -> None graph = self._make_graph( [('X', TensorProto.FLOAT, (25, 48, 16, 16))], [make_node('Celu', ['X'], ['Y'], alpha=2.0)], [] ) self._assert_inferred(graph, [make_tensor_value_info('Y', TensorProto.FLOAT, (25, 48, 16, 16))]) if __name__ == '__main__': unittest.main()
import unittest from onnx import defs, checker, helper class TestRelu(unittest.TestCase): def test_elu(self): # type: () -> None self.assertTrue(defs.has('Elu')) node_def = helper.make_node( 'Elu', ['X'], ['Y'], alpha=1.0) checker.check_node(node_def) if __name__ == '__main__': unittest.main()
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore from onnx import numpy_helper import unittest class TestNumpyHelper(unittest.TestCase): def _test_numpy_helper_float_type(self, dtype): # type: (np.number) -> None a = np.random.rand(13, 37).astype(dtype) tensor_def = numpy_helper.from_array(a, "test") self.assertEqual(tensor_def.name, "test") a_recover = numpy_helper.to_array(tensor_def) np.testing.assert_equal(a, a_recover) def _test_numpy_helper_int_type(self, dtype): # type: (np.number) -> None a = np.random.randint( np.iinfo(dtype).min, np.iinfo(dtype).max, dtype=dtype, size=(13, 37)) tensor_def = numpy_helper.from_array(a, "test") self.assertEqual(tensor_def.name, "test") a_recover = numpy_helper.to_array(tensor_def) np.testing.assert_equal(a, a_recover) def test_float(self): # type: () -> None self._test_numpy_helper_float_type(np.float32) def test_uint8(self): # type: () -> None self._test_numpy_helper_int_type(np.uint8) def test_int8(self): # type: () -> None self._test_numpy_helper_int_type(np.int8) def test_uint16(self): # type: () -> None self._test_numpy_helper_int_type(np.uint16) def test_int16(self): # type: () -> None self._test_numpy_helper_int_type(np.int16) def test_int32(self): # type: () -> None self._test_numpy_helper_int_type(np.int32) def test_int64(self): # type: () -> None self._test_numpy_helper_int_type(np.int64) def test_string(self): # type: () -> None a = np.array(['Amy', 'Billy', 'Cindy', 'David']).astype(np.object) tensor_def = numpy_helper.from_array(a, "test") self.assertEqual(tensor_def.name, "test") a_recover = numpy_helper.to_array(tensor_def) np.testing.assert_equal(a, a_recover) def test_bool(self): # type: () -> None a = np.random.randint(2, size=(13, 37)).astype(np.bool) tensor_def = numpy_helper.from_array(a, "test") self.assertEqual(tensor_def.name, "test") a_recover = numpy_helper.to_array(tensor_def) np.testing.assert_equal(a, a_recover) def test_float16(self): # type: () -> None self._test_numpy_helper_float_type(np.float32) def test_complex64(self): # type: () -> None self._test_numpy_helper_float_type(np.complex64) def test_complex128(self): # type: () -> None self._test_numpy_helper_float_type(np.complex128) if __name__ == '__main__': unittest.main()
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from onnx import AttributeProto, NodeProto, GraphProto, ModelProto, TensorProto, IR_VERSION import io import onnx import os import tempfile import unittest from onnx import helper class TestBasicFunctions(unittest.TestCase): def _simple_model(self): # type: () -> ModelProto # Create a ModelProto. model = ModelProto() model.ir_version = IR_VERSION return model def _simple_tensor(self): # type: () -> TensorProto # Create a TensorProto. tensor = helper.make_tensor( name='test-tensor', data_type=TensorProto.FLOAT, dims=(2, 3, 4), vals=[x + 0.5 for x in range(24)] ) return tensor def test_save_and_load_model(self): # type: () -> None proto = self._simple_model() cls = ModelProto proto_string = onnx._serialize(proto) # Test if input is string loaded_proto = onnx.load_model_from_string(proto_string) self.assertTrue(proto == loaded_proto) # Test if input has a read function f = io.BytesIO() onnx.save_model(proto_string, f) f = io.BytesIO(f.getvalue()) loaded_proto = onnx.load_model(f, cls) self.assertTrue(proto == loaded_proto) # Test if input is a file name try: fi = tempfile.NamedTemporaryFile(delete=False) onnx.save_model(proto, fi) fi.close() loaded_proto = onnx.load_model(fi.name, cls) self.assertTrue(proto == loaded_proto) finally: os.remove(fi.name) def test_save_and_load_tensor(self): # type: () -> None proto = self._simple_tensor() cls = TensorProto proto_string = onnx._serialize(proto) # Test if input is string loaded_proto = onnx.load_tensor_from_string(proto_string) self.assertTrue(proto == loaded_proto) # Test if input has a read function f = io.BytesIO() onnx.save_tensor(loaded_proto, f) f = io.BytesIO(f.getvalue()) loaded_proto = onnx.load_tensor(f, cls) self.assertTrue(proto == loaded_proto) # Test if input is a file name try: tfile = tempfile.NamedTemporaryFile(delete=False) onnx.save_tensor(proto, tfile) tfile.close() loaded_proto = onnx.load_tensor(tfile.name, cls) self.assertTrue(proto == loaded_proto) finally: os.remove(tfile.name) def test_existence(self): # type: () -> None try: AttributeProto NodeProto GraphProto ModelProto except Exception as e: self.fail( 'Did not find proper onnx protobufs. Error is: {}' .format(e)) def test_version_exists(self): # type: () -> None model = ModelProto() # When we create it, graph should not have a version string. self.assertFalse(model.HasField('ir_version')) # We should touch the version so it is annotated with the current # ir version of the running ONNX model.ir_version = IR_VERSION model_string = model.SerializeToString() model.ParseFromString(model_string) self.assertTrue(model.HasField('ir_version')) # Check if the version is correct. self.assertEqual(model.ir_version, IR_VERSION) if __name__ == '__main__': unittest.main()
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import argparse from onnx import load, checker, NodeProto def check_model(): # type: () -> None parser = argparse.ArgumentParser('check-model') parser.add_argument('model_pb', type=argparse.FileType('rb')) args = parser.parse_args() model = load(args.model_pb) checker.check_model(model) def check_node(): # type: () -> None parser = argparse.ArgumentParser('check-node') parser.add_argument('node_pb', type=argparse.FileType('rb')) args = parser.parse_args() node = NodeProto() node.ParseFromString(args.node_pb.read()) checker.check_node(node)
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from collections import namedtuple from typing import Text, Sequence, Any, Type, Tuple, NewType, Optional, Dict import six import numpy # type: ignore import onnx.checker import onnx.onnx_cpp2py_export.checker as c_checker from onnx import ModelProto, NodeProto, IR_VERSION class DeviceType(object): _Type = NewType('_Type', int) CPU = _Type(0) # type: _Type CUDA = _Type(1) # type: _Type class Device(object): ''' Describes device type and device id syntax: device_type:device_id(optional) example: 'CPU', 'CUDA', 'CUDA:1' ''' def __init__(self, device): # type: (Text) -> None options = device.split(':') self.type = getattr(DeviceType, options[0]) self.device_id = 0 if len(options) > 1: self.device_id = int(options[1]) def namedtupledict(typename, field_names, *args, **kwargs): # type: (Text, Sequence[Text], *Any, **Any) -> Type[Tuple[Any, ...]] field_names_map = {n: i for i, n in enumerate(field_names)} # Some output names are invalid python identifier, e.g. "0" kwargs.setdefault(str('rename'), True) data = namedtuple(typename, field_names, *args, **kwargs) # type: ignore def getitem(self, key): # type: (Any, Any) -> Any if isinstance(key, six.string_types): key = field_names_map[key] return super(type(self), self).__getitem__(key) # type: ignore data.__getitem__ = getitem return data class BackendRep(object): def run(self, inputs, **kwargs): # type: (Any, **Any) -> Tuple[Any, ...] pass class Backend(object): @classmethod def is_compatible(cls, model, # type: ModelProto device='CPU', # type: Text **kwargs # type: Any ): # type: (...) -> bool # Return whether the model is compatible with the backend. return True @classmethod def prepare(cls, model, # type: ModelProto device='CPU', # type: Text **kwargs # type: Any ): # type: (...) -> Optional[BackendRep] # TODO Remove Optional from return type onnx.checker.check_model(model) return None @classmethod def run_model(cls, model, # type: ModelProto inputs, # type: Any device='CPU', # type: Text **kwargs # type: Any ): # type: (...) -> Tuple[Any, ...] backend = cls.prepare(model, device, **kwargs) assert backend is not None return backend.run(inputs) @classmethod def run_node(cls, node, # type: NodeProto inputs, # type: Any device='CPU', # type: Text outputs_info=None, # type: Optional[Sequence[Tuple[numpy.dtype, Tuple[int, ...]]]] **kwargs # type: Dict[Text, Any] ): # type: (...) -> Optional[Tuple[Any, ...]] '''Simple run one operator and return the results. Args: outputs_info: a list of tuples, which contains the element type and shape of each output. First element of the tuple is the dtype, and the second element is the shape. More use case can be found in https://github.com/onnx/onnx/blob/master/onnx/backend/test/runner/__init__.py ''' # TODO Remove Optional from return type if 'opset_version' in kwargs: special_context = c_checker.CheckerContext() special_context.ir_version = IR_VERSION special_context.opset_imports = {'': kwargs['opset_version']} # type: ignore onnx.checker.check_node(node, special_context) else: onnx.checker.check_node(node) return None @classmethod def supports_device(cls, device): # type: (Text) -> bool """ Checks whether the backend is compiled with particular device support. In particular it's used in the testing suite. """ return True
#!/usr/bin/env python from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os import io from onnx import defs, load, AttributeProto from onnx.backend.test.case import collect_snippets from onnx.backend.test.runner import Runner from onnx.backend.test.loader import load_model_tests from typing import Any, IO, Sequence, Text, Dict, List def is_ml(schemas): # type: (Sequence[defs.OpSchema]) -> bool for s in schemas: if s.domain == 'ai.onnx.ml': return True return False def gen_outlines(f, ml): # type: (IO[Any], bool) -> None f.write('# Test Coverage Report') if ml: f.write(' (ONNX-ML Operators)\n') else: f.write(' (ONNX Core Operators)\n') f.write('## Outlines\n') f.write('* [Node Test Coverage](#node-test-coverage)\n') f.write('* [Model Test Coverage](#model-test-coverage)\n') f.write('* [Overall Test Coverage](#overall-test-coverage)\n') common_covered = [] # type: Sequence[Text] experimental_covered = [] # type: Sequence[Text] def gen_node_test_coverage(schemas, f, ml): # type: (Sequence[defs.OpSchema], IO[Any], bool) -> None global common_covered global experimental_covered generators = set({ 'Multinomial', 'RandomNormal', 'RandomNormalLike', 'RandomUniform', 'RandomUniformLike', }) node_tests = collect_snippets() common_covered = sorted([s.name for s in schemas if s.name in node_tests and s.support_level == defs.OpSchema.SupportType.COMMON and (s.domain == 'ai.onnx.ml') == ml]) common_no_cover = sorted([s.name for s in schemas if s.name not in node_tests and s.support_level == defs.OpSchema.SupportType.COMMON and (s.domain == 'ai.onnx.ml') == ml]) common_generator = sorted([name for name in common_no_cover if name in generators]) experimental_covered = sorted([s.name for s in schemas if s.name in node_tests and s.support_level == defs.OpSchema.SupportType.EXPERIMENTAL and (s.domain == 'ai.onnx.ml') == ml]) experimental_no_cover = sorted([s.name for s in schemas if s.name not in node_tests and s.support_level == defs.OpSchema.SupportType.EXPERIMENTAL and (s.domain == 'ai.onnx.ml') == ml]) experimental_generator = sorted([name for name in experimental_no_cover if name in generators]) num_common = len(common_covered) + len(common_no_cover) \ - len(common_generator) num_experimental = len(experimental_covered) + len(experimental_no_cover) \ - len(experimental_generator) f.write('# Node Test Coverage\n') f.write('## Summary\n') if num_common: f.write('Node tests have covered {}/{} ({:.2f}%, {} generators excluded) ' 'common operators.\n\n'.format( len(common_covered), num_common, (len(common_covered) / float(num_common) * 100), len(common_generator))) else: f.write('Node tests have covered 0/0 (N/A) common operators. \n\n') if num_experimental: f.write('Node tests have covered {}/{} ({:.2f}%, {} generators excluded) ' 'experimental operators.\n\n'.format( len(experimental_covered), num_experimental, (len(experimental_covered) / float(num_experimental) * 100), len(experimental_generator))) else: f.write('Node tests have covered 0/0 (N/A) experimental operators.\n\n') titles = ['&#x1F49A;Covered Common Operators', '&#x1F494;No Cover Common Operators', '&#x1F49A;Covered Experimental Operators', '&#x1F494;No Cover Experimental Operators', ] all_lists = [common_covered, common_no_cover, experimental_covered, experimental_no_cover] for t in titles: f.write('* [{}](#{})\n'.format(t[9:], t[9:].lower().replace(' ', '-'))) f.write('\n') for t, l in zip(titles, all_lists): f.write('## {}\n'.format(t)) for s in l: f.write('### {}'.format(s)) if s in node_tests: f.write('\nThere are {} test cases, listed as following:\n'.format( len(node_tests[s]))) for summary, code in sorted(node_tests[s]): f.write('<details>\n') f.write('<summary>{}</summary>\n\n'.format(summary)) f.write('```python\n{}\n```\n\n'.format(code)) f.write('</details>\n') else: if s in generators: f.write(' (random generator operator)\n') else: f.write(' (call for test cases)\n') f.write('\n\n') f.write('<br/>\n\n') def gen_model_test_coverage(schemas, f, ml): # type: (Sequence[defs.OpSchema], IO[Any], bool) -> None f.write('# Model Test Coverage\n') # Process schemas schema_dict = dict() for schema in schemas: schema_dict[schema.name] = schema # Load models from each model test using Runner.prepare_model_data # Need to grab associated nodes attrs = dict() # type: Dict[Text, Dict[Text, List[Any]]] model_paths = [] # type: List[Any] for rt in load_model_tests(kind='real'): model_dir = Runner.prepare_model_data(rt) model_paths.append(os.path.join(model_dir, 'model.onnx')) model_paths.sort() model_written = False for model_pb_path in model_paths: model = load(model_pb_path) if ml: ml_present = False for opset in model.opset_import: if opset.domain == 'ai.onnx.ml': ml_present = True if not ml_present: continue else: model_written = True f.write('## {}\n'.format(model.graph.name)) # Deconstruct model num_covered = 0 for node in model.graph.node: if node.op_type in common_covered or node.op_type in experimental_covered: num_covered += 1 # Add details of which nodes are/aren't covered # Iterate through and store each node's attributes for attr in node.attribute: if node.op_type not in attrs: attrs[node.op_type] = dict() if attr.name not in attrs[node.op_type]: attrs[node.op_type][attr.name] = [] if attr.type == AttributeProto.FLOAT: if attr.f not in attrs[node.op_type][attr.name]: attrs[node.op_type][attr.name].append(attr.f) elif attr.type == AttributeProto.INT: if attr.i not in attrs[node.op_type][attr.name]: attrs[node.op_type][attr.name].append(attr.i) elif attr.type == AttributeProto.STRING: if attr.s not in attrs[node.op_type][attr.name]: attrs[node.op_type][attr.name].append(attr.s) elif attr.type == AttributeProto.TENSOR: if attr.t not in attrs[node.op_type][attr.name]: attrs[node.op_type][attr.name].append(attr.t) elif attr.type == AttributeProto.GRAPH: if attr.g not in attrs[node.op_type][attr.name]: attrs[node.op_type][attr.name].append(attr.g) elif attr.type == AttributeProto.FLOATS: if attr.floats not in attrs[node.op_type][attr.name]: attrs[node.op_type][attr.name].append(attr.floats) elif attr.type == AttributeProto.INTS: if attr.ints not in attrs[node.op_type][attr.name]: attrs[node.op_type][attr.name].append(attr.ints) elif attr.type == AttributeProto.STRINGS: if attr.strings not in attrs[node.op_type][attr.name]: attrs[node.op_type][attr.name].append(attr.strings) elif attr.type == AttributeProto.TENSORS: if attr.tensors not in attrs[node.op_type][attr.name]: attrs[node.op_type][attr.name].append(attr.tensors) elif attr.type == AttributeProto.GRAPHS: if attr.graphs not in attrs[node.op_type][attr.name]: attrs[node.op_type][attr.name].append(attr.graphs) f.write('\n{} has {} nodes. Of these, {} are covered by node tests ({}%)\n\n\n'.format( model.graph.name, num_covered, len(model.graph.node), 100.0 * float( num_covered) / float(len(model.graph.node)))) # Iterate through attrs, print f.write('<details>\n') f.write('<summary>nodes</summary>\n\n') for op in sorted(attrs): f.write('<details>\n') # Get total number of attributes for node schema f.write('<summary>{}: {} out of {} attributes covered</summary>\n\n' .format(op, len(attrs[op].keys()), len(schema_dict[op] .attributes))) for attribute in sorted(schema_dict[op].attributes): if attribute in attrs[op]: f.write('{}: {}\n'.format(attribute, len(attrs[op][attribute]))) else: f.write('{}: 0\n'.format(attribute)) f.write('</details>\n') f.write('</details>\n\n\n') if not model_written and ml: f.write('No model tests present for selected domain\n') def gen_overall_test_coverage(schemas, f, ml): # type: (Sequence[defs.OpSchema], IO[Any], bool) -> None f.write('# Overall Test Coverage\n') f.write('## To be filled.\n') def main(): # type: () -> None base_dir = os.path.dirname(os.path.dirname(os.path.dirname( os.path.dirname(os.path.realpath(__file__))))) docs_dir = os.path.join(base_dir, 'docs') schemas = defs.get_all_schemas() has_ml = is_ml(schemas) fname = os.path.join(docs_dir, 'TestCoverage.md') with io.open(fname, 'w+', newline='', encoding="utf-8") as f: # type: ignore gen_outlines(f, False) gen_node_test_coverage(schemas, f, False) gen_model_test_coverage(schemas, f, False) gen_overall_test_coverage(schemas, f, False) if has_ml: fname = os.path.join(docs_dir, 'TestCoverage-ml.md') with io.open(fname, 'w+', newline='', encoding="utf-8") as f: # type: ignore gen_outlines(f, True) gen_node_test_coverage(schemas, f, True) gen_model_test_coverage(schemas, f, True) gen_overall_test_coverage(schemas, f, True) if __name__ == '__main__': main()
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals # for backward compatibility from .runner import Runner as BackendTest # noqa
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import argparse import json import os import shutil import onnx.backend.test.case.node as node_test import onnx.backend.test.case.model as model_test from onnx import numpy_helper from typing import Text TOP_DIR = os.path.realpath(os.path.dirname(__file__)) DATA_DIR = os.path.join(TOP_DIR, 'data') def generate_data(args): # type: (argparse.Namespace) -> None def prepare_dir(path): # type: (Text) -> None if os.path.exists(path): shutil.rmtree(path) os.makedirs(path) cases = model_test.collect_testcases() + node_test.collect_testcases() for case in cases: output_dir = os.path.join( args.output, case.kind, case.name) prepare_dir(output_dir) if case.kind == 'real': with open(os.path.join(output_dir, 'data.json'), 'w') as fi: json.dump({ 'url': case.url, 'model_name': case.model_name, 'rtol': case.rtol, 'atol': case.atol, }, fi, sort_keys=True) else: with open(os.path.join(output_dir, 'model.onnx'), 'wb') as f: f.write(case.model.SerializeToString()) for i, (inputs, outputs) in enumerate(case.data_sets): data_set_dir = os.path.join( output_dir, 'test_data_set_{}'.format(i)) prepare_dir(data_set_dir) for j, input_np in enumerate(inputs): tensor = numpy_helper.from_array( input_np, case.model.graph.input[j].name) with open(os.path.join( data_set_dir, 'input_{}.pb'.format(j)), 'wb') as f: f.write(tensor.SerializeToString()) for j, output_np in enumerate(outputs): tensor = numpy_helper.from_array( output_np, case.model.graph.output[j].name) with open(os.path.join( data_set_dir, 'output_{}.pb'.format(j)), 'wb') as f: f.write(tensor.SerializeToString()) def parse_args(): # type: () -> argparse.Namespace parser = argparse.ArgumentParser('backend-test-tools') subparsers = parser.add_subparsers() subparser = subparsers.add_parser('generate-data', help='convert testcases to test data') subparser.add_argument('-o', '--output', default=DATA_DIR, help='output directory (default: %(default)s)') subparser.set_defaults(func=generate_data) return parser.parse_args() def main(): # type: () -> None args = parse_args() args.func(args) if __name__ == '__main__': main()
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from collections import defaultdict import functools import glob import os import re import shutil import sys import tarfile import tempfile import time import unittest import numpy as np # type: ignore import onnx from onnx import helper, numpy_helper, NodeProto, ModelProto from onnx.backend.base import Backend from six.moves.urllib.request import urlretrieve from ..loader import load_model_tests from ..case.test_case import TestCase from .item import TestItem from typing import Optional, Pattern, Set, Dict, Text, Type, Sequence, Any, Callable, Union, Iterable, List class BackendIsNotSupposedToImplementIt(unittest.SkipTest): pass def retry_excute(times): # type: (int) -> Callable[[Callable[..., Any]], Callable[..., Any]] assert times >= 1 def wrapper(func): # type: (Callable[..., Any]) -> Callable[..., Any] @functools.wraps(func) def wrapped(*args, **kwargs): # type: (*Any, **Any) -> Any for i in range(1, times + 1): try: return func(*args, **kwargs) except Exception: print('{} times tried'.format(i)) if i == times: raise time.sleep(5 * i) return wrapped return wrapper class Runner(object): def __init__(self, backend, parent_module=None): # type: (Type[Backend], Optional[str]) -> None self.backend = backend self._parent_module = parent_module self._include_patterns = set() # type: Set[Pattern[Text]] self._exclude_patterns = set() # type: Set[Pattern[Text]] # This is the source of the truth of all test functions. # Properties `test_cases`, `test_suite` and `tests` will be # derived from it. # {category: {name: func}} self._test_items = defaultdict(dict) # type: Dict[Text, Dict[Text, TestItem]] for rt in load_model_tests(kind='node'): self._add_model_test(rt, 'Node') for rt in load_model_tests(kind='real'): self._add_model_test(rt, 'Real') for rt in load_model_tests(kind='simple'): self._add_model_test(rt, 'Simple') for ct in load_model_tests(kind='pytorch-converted'): self._add_model_test(ct, 'PyTorchConverted') for ot in load_model_tests(kind='pytorch-operator'): self._add_model_test(ot, 'PyTorchOperator') def _get_test_case(self, name): # type: (Text) -> Type[unittest.TestCase] test_case = type(str(name), (unittest.TestCase,), {}) if self._parent_module: test_case.__module__ = self._parent_module return test_case def include(self, pattern): # type: (Text) -> Runner self._include_patterns.add(re.compile(pattern)) return self def exclude(self, pattern): # type: (Text) -> Runner self._exclude_patterns.add(re.compile(pattern)) return self def enable_report(self): # type: () -> Runner import pytest # type: ignore for category, items_map in self._test_items.items(): for name, item in items_map.items(): item.func = pytest.mark.onnx_coverage(item.proto, category)(item.func) return self @property def _filtered_test_items(self): # type: () -> Dict[Text, Dict[Text, TestItem]] filtered = {} # type: Dict[Text, Dict[Text, TestItem]] for category, items_map in self._test_items.items(): filtered[category] = {} for name, item in items_map.items(): if (self._include_patterns and (not any(include.search(name) for include in self._include_patterns))): item.func = unittest.skip( 'no matched include pattern' )(item.func) for exclude in self._exclude_patterns: if exclude.search(name): item.func = unittest.skip( 'matched exclude pattern "{}"'.format( exclude.pattern) )(item.func) filtered[category][name] = item return filtered @property def test_cases(self): # type: () -> Dict[str, Type[unittest.TestCase]] ''' List of test cases to be applied on the parent scope Example usage: globals().update(BackendTest(backend).test_cases) ''' test_cases = {} for category, items_map in self._filtered_test_items.items(): test_case_name = str('OnnxBackend{}Test').format(category) test_case = self._get_test_case(test_case_name) for name, item in sorted(items_map.items()): setattr(test_case, name, item.func) test_cases[test_case_name] = test_case return test_cases @property def test_suite(self): # type: () -> unittest.TestSuite ''' TestSuite that can be run by TestRunner Example usage: unittest.TextTestRunner().run(BackendTest(backend).test_suite) ''' suite = unittest.TestSuite() for case in sorted(self.test_cases.values()): suite.addTests(unittest.defaultTestLoader.loadTestsFromTestCase(case)) return suite # For backward compatibility (we used to expose `.tests`) @property def tests(self): # type: () -> Type[unittest.TestCase] ''' One single unittest.TestCase that hosts all the test functions Example usage: onnx_backend_tests = BackendTest(backend).tests ''' tests = self._get_test_case('OnnxBackendTest') for items_map in sorted(self._filtered_test_items.values()): for name, item in sorted(items_map.items()): setattr(tests, name, item.func) return tests @classmethod def assert_similar_outputs(cls, ref_outputs, outputs, rtol, atol): # type: (Sequence[Any], Sequence[Any], float, float) -> None np.testing.assert_equal(len(ref_outputs), len(outputs)) for i in range(len(outputs)): np.testing.assert_equal(ref_outputs[i].dtype, outputs[i].dtype) if ref_outputs[i].dtype == np.object: np.testing.assert_array_equal(ref_outputs[i], outputs[i]) else: np.testing.assert_allclose( ref_outputs[i], outputs[i], rtol=rtol, atol=atol) @classmethod @retry_excute(3) def download_model(cls, model_test, model_dir, models_dir): # type: (TestCase, Text, Text) -> None # On Windows, NamedTemporaryFile can not be opened for a # second time download_file = tempfile.NamedTemporaryFile(delete=False) try: download_file.close() print('Start downloading model {} from {}'.format( model_test.model_name, model_test.url)) urlretrieve(model_test.url, download_file.name) print('Done') with tarfile.open(download_file.name) as t: t.extractall(models_dir) except Exception as e: print('Failed to prepare data for model {}: {}'.format( model_test.model_name, e)) raise finally: os.remove(download_file.name) @classmethod def prepare_model_data(cls, model_test): # type: (TestCase) -> Text onnx_home = os.path.expanduser(os.getenv('ONNX_HOME', os.path.join('~', '.onnx'))) models_dir = os.getenv('ONNX_MODELS', os.path.join(onnx_home, 'models')) model_dir = os.path.join(models_dir, model_test.model_name) # type: Text if not os.path.exists(os.path.join(model_dir, 'model.onnx')): if os.path.exists(model_dir): bi = 0 while True: dest = '{}.old.{}'.format(model_dir, bi) if os.path.exists(dest): bi += 1 continue shutil.move(model_dir, dest) break os.makedirs(model_dir) cls.download_model(model_test=model_test, model_dir=model_dir, models_dir=models_dir) return model_dir def _add_test(self, category, # type: Text test_name, # type: Text test_func, # type: Callable[..., Any] report_item, # type: List[Optional[Union[ModelProto, NodeProto]]] devices=('CPU', 'CUDA'), # type: Iterable[Text] ): # type: (...) -> None # We don't prepend the 'test_' prefix to improve greppability if not test_name.startswith('test_'): raise ValueError( 'Test name must start with test_: {}'.format(test_name)) def add_device_test(device): # type: (Text) -> None device_test_name = '{}_{}'.format(test_name, device.lower()) if device_test_name in self._test_items[category]: raise ValueError( 'Duplicated test name "{}" in category "{}"'.format( device_test_name, category)) @unittest.skipIf( # type: ignore not self.backend.supports_device(device), "Backend doesn't support device {}".format(device)) @functools.wraps(test_func) def device_test_func(*args, **kwargs): # type: (*Any, **Any) -> Any try: return test_func(*args, device=device, **kwargs) except BackendIsNotSupposedToImplementIt as e: # hacky verbose reporting if '-v' in sys.argv or '--verbose' in sys.argv: print('Test {} is effectively skipped: {}'.format( device_test_name, e)) self._test_items[category][device_test_name] = TestItem( device_test_func, report_item) for device in devices: add_device_test(device) def _add_model_test(self, model_test, kind): # type: (TestCase, Text) -> None # model is loaded at runtime, note sometimes it could even # never loaded if the test skipped model_marker = [None] # type: List[Optional[Union[ModelProto, NodeProto]]] def run(test_self, device): # type: (Any, Text) -> None if model_test.model_dir is None: model_dir = self.prepare_model_data(model_test) else: model_dir = model_test.model_dir model_pb_path = os.path.join(model_dir, 'model.onnx') model = onnx.load(model_pb_path) model_marker[0] = model if hasattr(self.backend, 'is_compatible') \ and callable(self.backend.is_compatible) \ and not self.backend.is_compatible(model): raise unittest.SkipTest('Not compatible with backend') prepared_model = self.backend.prepare(model, device) assert prepared_model is not None # TODO after converting all npz files to protobuf, we can delete this. for test_data_npz in glob.glob( os.path.join(model_dir, 'test_data_*.npz')): test_data = np.load(test_data_npz, encoding='bytes') inputs = list(test_data['inputs']) outputs = list(prepared_model.run(inputs)) ref_outputs = test_data['outputs'] self.assert_similar_outputs(ref_outputs, outputs, rtol=model_test.rtol, atol=model_test.atol) for test_data_dir in glob.glob( os.path.join(model_dir, "test_data_set*")): inputs = [] inputs_num = len(glob.glob(os.path.join(test_data_dir, 'input_*.pb'))) for i in range(inputs_num): input_file = os.path.join(test_data_dir, 'input_{}.pb'.format(i)) tensor = onnx.TensorProto() with open(input_file, 'rb') as f: tensor.ParseFromString(f.read()) inputs.append(numpy_helper.to_array(tensor)) ref_outputs = [] ref_outputs_num = len(glob.glob(os.path.join(test_data_dir, 'output_*.pb'))) for i in range(ref_outputs_num): output_file = os.path.join(test_data_dir, 'output_{}.pb'.format(i)) tensor = onnx.TensorProto() with open(output_file, 'rb') as f: tensor.ParseFromString(f.read()) ref_outputs.append(numpy_helper.to_array(tensor)) outputs = list(prepared_model.run(inputs)) self.assert_similar_outputs(ref_outputs, outputs, rtol=model_test.rtol, atol=model_test.atol) self._add_test(kind + 'Model', model_test.name, run, model_marker)
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from typing import Callable, Any, Union, List, Optional from onnx import NodeProto, ModelProto # A container that hosts the test function and the associated # test item (ModelProto) class TestItem(object): def __init__(self, func, proto): # type: (Callable[..., Any], List[Optional[Union[ModelProto, NodeProto]]]) -> None self.func = func self.proto = proto
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import json import os from ..case.test_case import TestCase from typing import List, Text, Optional DATA_DIR = os.path.join( os.path.dirname(os.path.realpath(os.path.dirname(__file__))), 'data') def load_model_tests( data_dir=DATA_DIR, # type: Text kind=None, # type: Optional[Text] ): # type: (...) -> List[TestCase] '''Load model test cases from on-disk data files. ''' supported_kinds = os.listdir(data_dir) if kind not in supported_kinds: raise ValueError("kind must be one of {}".format(supported_kinds)) testcases = [] kind_dir = os.path.join(data_dir, kind) for test_name in os.listdir(kind_dir): case_dir = os.path.join(kind_dir, test_name) # skip the non-dir files, such as generated __init__.py. rtol = 1e-3 atol = 1e-7 if not os.path.isdir(case_dir): continue if os.path.exists(os.path.join(case_dir, 'model.onnx')): url = None model_name = test_name[len('test_')] model_dir = case_dir # type: Optional[Text] else: with open(os.path.join(case_dir, 'data.json')) as f: data = json.load(f) url = data['url'] model_name = data['model_name'] rtol = data.get('rtol', 1e-3) atol = data.get('atol', 1e-7) model_dir = None testcases.append( TestCase( name=test_name, url=url, model_name=model_name, model_dir=model_dir, model=None, data_sets=None, kind=kind, rtol=rtol, atol=atol, )) return testcases
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import sys from .base import Snippets from .utils import import_recursive from typing import Dict, Text, List, Tuple def collect_snippets(): # type: () -> Dict[Text, List[Tuple[Text, Text]]] import_recursive(sys.modules[__name__]) return Snippets
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from collections import namedtuple TestCase = namedtuple('TestCase', [ 'name', 'model_name', 'url', 'model_dir', 'model', 'data_sets', 'kind', 'rtol', 'atol', ])
from __future__ import absolute_import from __future__ import division from __future__ import print_function import importlib import pkgutil from types import ModuleType from typing import Optional, List import numpy as np # type: ignore all_numeric_dtypes = [ np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64, np.float16, np.float32, np.float64, ] def import_recursive(package): # type: (ModuleType) -> None """ Takes a package and imports all modules underneath it """ pkg_dir = None # type: Optional[List[str]] pkg_dir = package.__path__ # type: ignore module_location = package.__name__ for (_module_loader, name, ispkg) in pkgutil.iter_modules(pkg_dir): module_name = "{}.{}".format(module_location, name) # Module/package module = importlib.import_module(module_name) if ispkg: import_recursive(module)
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from collections import defaultdict import inspect from textwrap import dedent from typing import Dict, Text, List, Tuple, Type, Sequence, Any import numpy as np # type: ignore from six import add_metaclass def process_snippet(op_name, name, export): # type: (Text, Text, Any) -> Tuple[Text, Text] snippet_name = name[len('export_'):] or op_name.lower() source_code = dedent(inspect.getsource(export)) # remove the function signature line lines = source_code.splitlines() assert lines[0] == '@staticmethod' assert lines[1].startswith('def export') return snippet_name, dedent("\n".join(lines[2:])) Snippets = defaultdict(list) # type: Dict[Text, List[Tuple[Text, Text]]] class _Exporter(type): exports = defaultdict(list) # type: Dict[Text, List[Tuple[Text, Text]]] def __init__(cls, name, bases, dct): # type: (str, Tuple[Type[Any], ...], Dict[str, Any]) -> None for k, v in dct.items(): if k.startswith('export'): if not isinstance(v, staticmethod): raise ValueError( 'Only staticmethods could be named as export.*') export = getattr(cls, k) Snippets[name].append(process_snippet(name, k, export)) # export functions should call expect and so populate # TestCases np.random.seed(seed=0) export() super(_Exporter, cls).__init__(name, bases, dct) @add_metaclass(_Exporter) class Base(object): pass
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class ShrinkTest(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'Shrink', ['x'], ['y'], lambd=1.5, bias=1.5,) graph = onnx.helper.make_graph( nodes=[node], name='Shrink', inputs=[onnx.helper.make_tensor_value_info( 'x', onnx.TensorProto.FLOAT, [5])], outputs=[onnx.helper.make_tensor_value_info( 'y', onnx.TensorProto.FLOAT, [5])]) model = onnx.helper.make_model(graph, producer_name='backend-test') x = np.array([-2.0, -1.0, 0.0, 1.0, 2.0], dtype=np.float32) y = np.array([-0.5, 0.0, 0.0, 0.0, 0.5], dtype=np.float32) expect(model, inputs=[x], outputs=[y], name='test_shrink')
# coding: utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect from typing import Sequence class NormalizeStrings(Base): @staticmethod def export(): # type: () -> None def make_graph(node, input_shape, output_shape): # type: (onnx.helper.NodeProto, Sequence[int], Sequence[int]) -> onnx.helper.GraphProto graph = onnx.helper.make_graph( nodes=[node], name='StringNormalizer', inputs=[onnx.helper.make_tensor_value_info('x', onnx.TensorProto.STRING, input_shape)], outputs=[onnx.helper.make_tensor_value_info('y', onnx.TensorProto.STRING, output_shape)]) return graph #1st model_monday_casesensintive_nochangecase stopwords = [u'monday'] node = onnx.helper.make_node( 'StringNormalizer', inputs=['x'], outputs=['y'], is_case_sensitive=1, stopwords=stopwords ) x = np.array([u'monday', u'tuesday', u'wednesday', u'thursday']).astype(np.object) y = np.array([u'tuesday', u'wednesday', u'thursday']).astype(np.object) graph = make_graph(node, [4], [3]) model = onnx.helper.make_model(graph, producer_name='backend-test') expect(model, inputs=[x], outputs=[y], name="test_strnorm_model_monday_casesensintive_nochangecase") #2nd model_nostopwords_nochangecase node = onnx.helper.make_node( 'StringNormalizer', inputs=['x'], outputs=['y'], is_case_sensitive=1 ) x = np.array([u'monday', u'tuesday']).astype(np.object) y = x graph = make_graph(node, [2], [2]) model = onnx.helper.make_model(graph, producer_name='backend-test') expect(model, inputs=[x], outputs=[y], name="test_strnorm_model_nostopwords_nochangecase") # 3rd model_monday_casesensintive_lower stopwords = [u'monday'] node = onnx.helper.make_node( 'StringNormalizer', inputs=['x'], outputs=['y'], case_change_action='LOWER', is_case_sensitive=1, stopwords=stopwords ) x = np.array([u'monday', u'tuesday', u'wednesday', u'thursday']).astype(np.object) y = np.array([u'tuesday', u'wednesday', u'thursday']).astype(np.object) graph = make_graph(node, [4], [3]) model = onnx.helper.make_model(graph, producer_name='backend-test') expect(model, inputs=[x], outputs=[y], name="test_strnorm_model_monday_casesensintive_lower") #4 model_monday_casesensintive_upper stopwords = [u'monday'] node = onnx.helper.make_node( 'StringNormalizer', inputs=['x'], outputs=['y'], case_change_action='UPPER', is_case_sensitive=1, stopwords=stopwords ) x = np.array([u'monday', u'tuesday', u'wednesday', u'thursday']).astype(np.object) y = np.array([u'TUESDAY', u'WEDNESDAY', u'THURSDAY']).astype(np.object) graph = make_graph(node, [4], [3]) model = onnx.helper.make_model(graph, producer_name='backend-test') expect(model, inputs=[x], outputs=[y], name="test_strnorm_model_monday_casesensintive_upper") #5 monday_insensintive_upper_twodim stopwords = [u'monday'] node = onnx.helper.make_node( 'StringNormalizer', inputs=['x'], outputs=['y'], case_change_action='UPPER', stopwords=stopwords ) input_shape = [1, 6] output_shape = [1, 4] x = np.array([u'Monday', u'tuesday', u'wednesday', u'Monday', u'tuesday', u'wednesday']).astype(np.object).reshape(input_shape) y = np.array([u'TUESDAY', u'WEDNESDAY', u'TUESDAY', u'WEDNESDAY']).astype(np.object).reshape(output_shape) graph = make_graph(node, input_shape, output_shape) model = onnx.helper.make_model(graph, producer_name='backend-test') expect(model, inputs=[x], outputs=[y], name="test_strnorm_model_monday_insensintive_upper_twodim") #6 monday_empty_output stopwords = [u'monday'] node = onnx.helper.make_node( 'StringNormalizer', inputs=['x'], outputs=['y'], case_change_action='UPPER', is_case_sensitive=0, stopwords=stopwords ) x = np.array([u'monday', u'monday']).astype(np.object) y = np.array([u'']).astype(np.object) graph = make_graph(node, [2], [1]) model = onnx.helper.make_model(graph, producer_name='backend-test') expect(model, inputs=[x], outputs=[y], name="test_strnorm_model_monday_empty_output")
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Gradient(Base): @staticmethod def export_gradient_scalar_add(): # type: () -> None add_node = onnx.helper.make_node('Add', ['a', 'b'], ['c'], name='my_add') gradient_node = onnx.helper.make_node( 'Gradient', ['a', 'b'], ['dc_da', 'dc_db'], name='my_gradient', domain='ai.onnx.training', xs=['a', 'b'], y='c') a = np.array(1.0).astype(np.float32) b = np.array(2.0).astype(np.float32) c = a + b # dc / da = d(a+b) / da = 1 dc_da = np.array(1).astype(np.float32) # db / db = d(a+b) / db = 1 dc_db = np.array(1).astype(np.float32) graph = onnx.helper.make_graph( nodes=[add_node, gradient_node], name='GradientOfAdd', inputs=[ onnx.helper.make_tensor_value_info('a', onnx.TensorProto.FLOAT, []), onnx.helper.make_tensor_value_info('b', onnx.TensorProto.FLOAT, [])], outputs=[ onnx.helper.make_tensor_value_info('c', onnx.TensorProto.FLOAT, []), onnx.helper.make_tensor_value_info('dc_da', onnx.TensorProto.FLOAT, []), onnx.helper.make_tensor_value_info('dc_db', onnx.TensorProto.FLOAT, [])]) opsets = [ onnx.helper.make_operatorsetid('', 12), onnx.helper.make_operatorsetid('ai.onnx.training', 1)] model = onnx.helper.make_model( graph, producer_name='backend-test', opset_imports=opsets) expect(model, inputs=[a, b], outputs=[c, dc_da, dc_db], name='test_gradient_of_add') @staticmethod def export_gradient_scalar_add_and_mul(): # type: () -> None add_node = onnx.helper.make_node('Add', ['a', 'b'], ['c'], name='my_add') mul_node = onnx.helper.make_node('Mul', ['c', 'a'], ['d'], name='my_mul') gradient_node = onnx.helper.make_node( 'Gradient', ['a', 'b'], ['dd_da', 'dd_db'], name='my_gradient', domain='ai.onnx.training', xs=['a', 'b'], y='d') a = np.array(1.0).astype(np.float32) b = np.array(2.0).astype(np.float32) c = a + b # d = a * c = a * (a + b) d = a * c # dd / da = d(a*a+a*b) / da = 2 * a + b dd_da = (2 * a + b).astype(np.float32) # dd / db = d(a*a+a*b) / db = a dd_db = a graph = onnx.helper.make_graph( nodes=[add_node, mul_node, gradient_node], name='GradientOfTwoOperators', inputs=[ onnx.helper.make_tensor_value_info('a', onnx.TensorProto.FLOAT, []), onnx.helper.make_tensor_value_info('b', onnx.TensorProto.FLOAT, [])], outputs=[ onnx.helper.make_tensor_value_info('d', onnx.TensorProto.FLOAT, []), onnx.helper.make_tensor_value_info('dd_da', onnx.TensorProto.FLOAT, []), onnx.helper.make_tensor_value_info('dd_db', onnx.TensorProto.FLOAT, [])]) opsets = [ onnx.helper.make_operatorsetid('', 12), onnx.helper.make_operatorsetid('ai.onnx.training', 1)] model = onnx.helper.make_model(graph, producer_name='backend-test', opset_imports=opsets) expect(model, inputs=[a, b], outputs=[d, dd_da, dd_db], name='test_gradient_of_add_and_mul')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx import typing from ..base import Base from . import expect from onnx import TensorProto from typing import List, Optional, Text, Union def SequenceEmptyImpl(): # type: () -> List[Optional[np.ndarray]] return [] def SequenceConstructImpl(*tensors): # type: (*np.ndarray) -> List[np.ndarray] return list(tensors) def SequenceInsertImpl(sequence, tensor, position=None): # type: (List[np.ndarray], np.ndarray, Optional[int]) -> List[np.ndarray] if position is None: position = len(sequence) sequence.insert(position, tensor) return sequence def SequenceAtImpl(sequence, position): # type: (List[np.ndarray], int) -> np.ndarray return sequence[position] def SequenceEraseImpl(sequence, position=None): # type: (List[np.ndarray], Optional[int]) -> List[Optional[np.ndarray]] if position is None: position = -1 del sequence[position] return sequence def SequenceLengthImpl(sequence): # type: (List[np.ndarray]) -> np.int64 return np.int64(len(sequence)) def SplitToSequenceImpl(tensor, split=None, axis=0, keepdims=1): # type: (np.ndarray, Optional[Union[int, List[int]]], int, int) -> List[np.ndarray] dim_size = tensor.shape[axis] if split is None: split = 1 split_indices = [i * split + 1 for i in range(dim_size) if i * split + 1 < dim_size] if not keepdims: results = np.array_split(tensor, split_indices, axis) return [np.squeeze(res, axis) for res in results] if np.isscalar(split): split_indices = [i * split + 1 for i in range(dim_size) if i * split + 1 < dim_size] # type: ignore else: split_indices = np.cumsum(split) + 1 return np.array_split(tensor, split_indices, axis) # type: ignore def ConcatFromSequenceImpl(sequence, axis, new_axis=0): # type: (List[np.ndarray], int, Optional[int]) -> np.ndarray if not new_axis: return np.concatenate(sequence, axis) else: return np.stack(sequence, axis) class Sequence(Base): @staticmethod def export(): # type: () -> None def make_graph( nodes, # type: List[onnx.helper.NodeProto] input_shapes, # type: List[Optional[typing.Sequence[Union[Text, int]]]] output_shapes, # type: List[Optional[typing.Sequence[Union[Text, int]]]] input_names, # type: List[Text] output_names, # type: List[Text] input_types, # type: List[TensorProto.DataType] output_types, # type: List[TensorProto.DataType] initializers=None # type: Optional[List[TensorProto]] ): # type: (...) -> onnx.helper.GraphProto graph = onnx.helper.make_graph( nodes=nodes, name='Sequence', inputs=[ onnx.helper.make_tensor_value_info( name, input_type, input_shape) for name, input_type, input_shape in zip(input_names, input_types, input_shapes)], outputs=[ onnx.helper.make_tensor_value_info( name, output_type, output_shape) for name, output_type, output_shape in zip(output_names, output_types, output_shapes)], initializer=initializers) return graph #1st testcase - insert and at. # 1. SequenceEmpty: -> [] # 2. SequenceInsert(x): -> [x] # 3. SequenceInsert(y): -> [x, y] # 4. SequenceInsert(z, 1): -> [x, z, y] # 5. SequenceAt(2): -> y seq_empty_node = onnx.helper.make_node('SequenceEmpty', [], ['Seq_empty']) seq_insert_node = onnx.helper.make_node('SequenceInsert', ['Seq_empty', 'X'], ['Seq_1']) seq_insert_node2 = onnx.helper.make_node('SequenceInsert', ['Seq_1', 'Y'], ['Seq_2']) seq_insert_node3 = onnx.helper.make_node('SequenceInsert', ['Seq_2', 'Z', 'pos'], ['Seq_3']) seq_at_node = onnx.helper.make_node('SequenceAt', ['Seq_3', 'pos_at'], ['out']) x_shape = [2, 3, 4] y_shape = [1, 3, 4] z_shape = [3, 3, 4] out_shape = [None, 3, 4] x = np.ones(x_shape, dtype=np.float32) y = np.zeros(y_shape, dtype=np.float32) z = np.ones(z_shape, dtype=np.float32) * 2 pos_val = 1 pos_at_val = 2 out = SequenceEmptyImpl() out = SequenceInsertImpl(out, x) out = SequenceInsertImpl(out, y) out = SequenceInsertImpl(out, z, pos_val) out = SequenceAtImpl(out, pos_at_val) assert np.array_equal(out, y) pos = onnx.helper.make_tensor('pos', TensorProto.INT64, (), (pos_val, )) pos_at = onnx.helper.make_tensor('pos_at', TensorProto.INT64, (), (pos_at_val, )) graph = make_graph( [seq_empty_node, seq_insert_node, seq_insert_node2, seq_insert_node3, seq_at_node], [x_shape, y_shape, z_shape, [], []], # type: ignore [out_shape], # type: ignore ['X', 'Y', 'Z', 'pos', 'pos_at'], ['out'], [onnx.TensorProto.FLOAT] * 3 + [onnx.TensorProto.INT64] * 2, # type: ignore [onnx.TensorProto.FLOAT], [pos, pos_at]) model = onnx.helper.make_model(graph, producer_name='backend-test') expect(model, inputs=[x, y, z], outputs=[out], name="test_sequence_model1") #2nd testcase - erase and at. # 1. SequenceConstruct(x, y, z): -> [x, y, z] # 2. SequenceErase(1): -> [x, z] # 3. SequenceAt(1): -> z seq_construct_node = onnx.helper.make_node('SequenceConstruct', ['X', 'Y', 'Z'], ['seq_1']) seq_erase_node = onnx.helper.make_node('SequenceErase', ['seq_1', 'pos_erase'], ['seq_2']) seq_at_node = onnx.helper.make_node('SequenceAt', ['seq_2', 'pos_at'], ['out']) tensor_shape = [2, 3, 4] x = np.ones(tensor_shape, dtype=np.float32) y = np.zeros(tensor_shape, dtype=np.float32) z = np.ones(tensor_shape, dtype=np.float32) * 2 pos_erase_val = 1 pos_at_val = 1 out = SequenceConstructImpl(x, y, z) out = SequenceEraseImpl(out, pos_erase_val) out = SequenceAtImpl(out, pos_at_val) assert np.array_equal(out, z) pos_erase = onnx.helper.make_tensor('pos_erase', TensorProto.INT64, (), (pos_erase_val, )) pos_at = onnx.helper.make_tensor('pos_at', TensorProto.INT64, (), (pos_at_val, )) graph = make_graph( [seq_construct_node, seq_erase_node, seq_at_node], [tensor_shape, tensor_shape, tensor_shape, [], []], # type: ignore [tensor_shape], # type: ignore ['X', 'Y', 'Z', 'pos_erase', 'pos_at'], ['out'], [onnx.TensorProto.FLOAT] * 3 + [onnx.TensorProto.INT64] * 2, # type: ignore [onnx.TensorProto.FLOAT], [pos_erase, pos_at]) model = onnx.helper.make_model(graph, producer_name='backend-test') expect(model, inputs=[x, y, z], outputs=[out], name="test_sequence_model2") #3rd testcase - erase, insert and at, with negative index value. # 1. SequenceConstruct(x, y, z): -> [x, y, z] # 2. SequenceErase(-3): -> [y, z] # 3. SequenceInsert(x, -1): -> [y, x, z] # 4. SequenceAt(-1): -> z seq_construct_node = onnx.helper.make_node('SequenceConstruct', ['X', 'Y', 'Z'], ['seq_1']) seq_erase_node = onnx.helper.make_node('SequenceErase', ['seq_1', 'pos_erase'], ['seq_2']) seq_insert_node = onnx.helper.make_node('SequenceInsert', ['seq_2', 'X', 'pos_insert'], ['seq_3']) seq_at_node = onnx.helper.make_node('SequenceAt', ['seq_3', 'pos_at'], ['out']) tensor_shape = [2, 3, 4] x = np.ones(tensor_shape, dtype=np.float32) y = np.zeros(tensor_shape, dtype=np.float32) z = np.ones(tensor_shape, dtype=np.float32) * 2 pos_erase_val = -3 pos_insert_val = -1 pos_at_val = -1 out = SequenceConstructImpl(x, y, z) out = SequenceEraseImpl(out, pos_erase_val) out = SequenceInsertImpl(out, x, pos_insert_val) out = SequenceAtImpl(out, pos_at_val) assert np.array_equal(out, z) pos_erase = onnx.helper.make_tensor('pos_erase', TensorProto.INT64, (), (pos_erase_val, )) pos_insert = onnx.helper.make_tensor('pos_insert', TensorProto.INT64, (), (pos_insert_val, )) pos_at = onnx.helper.make_tensor('pos_at', TensorProto.INT64, (), (pos_at_val, )) graph = make_graph( [seq_construct_node, seq_erase_node, seq_insert_node, seq_at_node], [tensor_shape, tensor_shape, tensor_shape, [], [], []], # type: ignore [tensor_shape], # type: ignore ['X', 'Y', 'Z', 'pos_erase', 'pos_insert', 'pos_at'], ['out'], [onnx.TensorProto.FLOAT] * 3 + [onnx.TensorProto.INT64] * 3, # type: ignore [onnx.TensorProto.FLOAT], [pos_erase, pos_insert, pos_at]) model = onnx.helper.make_model(graph, producer_name='backend-test') expect(model, inputs=[x, y, z], outputs=[out], name="test_sequence_model3") #4th testcase - concat seq_construct_node = onnx.helper.make_node('SequenceConstruct', ['X', 'Y', 'Z'], ['seq_1']) seq_concat_node = onnx.helper.make_node('ConcatFromSequence', ['seq_1'], ['out'], axis=1) tensor_shape = [2, 3, 4] concat_out_shape = [2, None, 4] x = np.ones(tensor_shape, dtype=np.float32) y = np.zeros(tensor_shape, dtype=np.float32) z = np.ones(tensor_shape, dtype=np.float32) * 2 out = SequenceConstructImpl(x, y, z) concat_out = ConcatFromSequenceImpl(out, 1) graph = make_graph( [seq_construct_node, seq_concat_node], [tensor_shape] * 3, # type: ignore [concat_out_shape], # type: ignore ['X', 'Y', 'Z'], ['out'], [onnx.TensorProto.FLOAT] * 3, # type: ignore [onnx.TensorProto.FLOAT]) model = onnx.helper.make_model(graph, producer_name='backend-test') expect(model, inputs=[x, y, z], outputs=[concat_out], name="test_sequence_model4") #5th testcase - concat with new_axis = 1 seq_construct_node = onnx.helper.make_node('SequenceConstruct', ['X', 'Y', 'Z'], ['seq_1']) seq_concat_node = onnx.helper.make_node('ConcatFromSequence', ['seq_1'], ['out'], axis=-1, new_axis=1) tensor_shape = [2, 3, 4] concat_out_shape = [2, 3, 4, 3] x = np.ones(tensor_shape, dtype=np.float32) y = np.zeros(tensor_shape, dtype=np.float32) z = np.ones(tensor_shape, dtype=np.float32) * 2 out = SequenceConstructImpl(x, y, z) concat_out = ConcatFromSequenceImpl(out, -1, 1) graph = make_graph( [seq_construct_node, seq_concat_node], [tensor_shape] * 3, # type: ignore [concat_out_shape], # type: ignore ['X', 'Y', 'Z'], ['out'], [onnx.TensorProto.FLOAT] * 3, # type: ignore [onnx.TensorProto.FLOAT],) model = onnx.helper.make_model(graph, producer_name='backend-test') expect(model, inputs=[x, y, z], outputs=[concat_out], name="test_sequence_model5") #6th testcase - split and len seq_split_node = onnx.helper.make_node('SplitToSequence', ['X'], ['seq_1'], axis=-1) seq_len_node = onnx.helper.make_node('SequenceLength', ['seq_1'], ['len']) tensor_shape = [2, 3, 4] len_shape = [] # type: ignore x = np.ones(tensor_shape, dtype=np.float32) out = SplitToSequenceImpl(x, axis=-1) out = SequenceLengthImpl(out) assert np.array_equal(out, np.int64(4)) graph = onnx.helper.make_graph( nodes=[seq_split_node, seq_len_node], name='Sequence', inputs=[ onnx.helper.make_tensor_value_info( 'X', onnx.TensorProto.FLOAT, tensor_shape)], outputs=[ onnx.helper.make_tensor_value_info( 'len', onnx.TensorProto.INT64, len_shape)]) # type: ignore model = onnx.helper.make_model(graph, producer_name='backend-test') expect(model, inputs=[x], outputs=[out], name="test_sequence_model6") #7th testcase - split with keepdims=0, and SequenceAt seq_split_node = onnx.helper.make_node('SplitToSequence', ['X'], ['seq_1'], axis=0, keepdims=0) seq_at_node = onnx.helper.make_node('SequenceAt', ['seq_1', 'pos_at'], ['out']) tensor_shape = [2, 3, 4] out_shape = [3, 4] x = np.random.rand(*tensor_shape) pos_at_val = 1 out = SplitToSequenceImpl(x, axis=0, keepdims=0) out = SequenceAtImpl(out, pos_at_val) assert np.array_equal(out, x[pos_at_val]) pos_at = onnx.helper.make_tensor('pos_at', TensorProto.INT64, (), (pos_at_val, )) graph = make_graph( [seq_split_node, seq_at_node], [tensor_shape, []], # type: ignore [out_shape], # type: ignore ['X', 'pos_at'], ['out'], [onnx.TensorProto.DOUBLE, onnx.TensorProto.INT64], [onnx.TensorProto.DOUBLE], [pos_at]) model = onnx.helper.make_model(graph, producer_name='backend-test') expect(model, inputs=[x], outputs=[out], name="test_sequence_model7") #8th testcase - split zero length seq_split_node = onnx.helper.make_node('SplitToSequence', ['X', 'Splits'], ['seq_1']) seq_len_node = onnx.helper.make_node('SequenceLength', ['seq_1'], ['len']) tensor_shape = ['n'] # type: ignore splits_shape = [3] # type: ignore x = np.array([]).astype(np.float32) splits = np.array([0, 0, 0]).astype(np.int64) out_len = np.int64(3) graph = onnx.helper.make_graph( nodes=[seq_split_node, seq_len_node], name='Sequence', inputs=[ onnx.helper.make_tensor_value_info( 'X', onnx.TensorProto.FLOAT, tensor_shape), # type: ignore onnx.helper.make_tensor_value_info( 'Splits', onnx.TensorProto.INT64, splits_shape)], # type: ignore outputs=[ onnx.helper.make_tensor_value_info( 'len', onnx.TensorProto.INT64, len_shape)]) # type: ignore model = onnx.helper.make_model(graph, producer_name='backend-test') expect(model, inputs=[x, splits], outputs=[out_len], name="test_sequence_model8")
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import sys import onnx.defs import numpy as np # type: ignore from onnx import ModelProto from typing import List, Optional, Text, Sequence from ..utils import import_recursive from ..test_case import TestCase _SimpleModelTestCases = [] def expect(model, # type: ModelProto inputs, # type: Sequence[np.ndarray] outputs, # type: Sequence[np.ndarray] name=None, # type: Optional[Text] ): # type: (...) -> None name = name or model.graph.name _SimpleModelTestCases.append( TestCase( name=name, model_name=model.graph.name, url=None, model_dir=None, model=model, data_sets=[(inputs, outputs)], kind='simple', rtol=1e-3, atol=1e-7, )) base_model_opset_version = 10 BASE_URL = 'https://s3.amazonaws.com/download.onnx/models/opset_{}'.format( base_model_opset_version) def collect_testcases(): # type: () -> List[TestCase] '''Collect model test cases defined in python/numpy code and in model zoo. ''' real_model_testcases = [] model_tests = [ ('test_bvlc_alexnet', 'bvlc_alexnet', 1e-3, 1e-7), ('test_densenet121', 'densenet121', 2e-3, 1e-7), ('test_inception_v1', 'inception_v1', 1e-3, 1e-7), ('test_inception_v2', 'inception_v2', 1e-3, 1e-7), ('test_resnet50', 'resnet50', 1e-3, 1e-7), ('test_shufflenet', 'shufflenet', 1e-3, 1e-7), ('test_squeezenet', 'squeezenet', 1e-3, 1e-7), ('test_vgg19', 'vgg19', 1e-3, 1e-7), ('test_zfnet512', 'zfnet512', 1e-3, 1e-7), ] for test_name, model_name, rtol, atol in model_tests: url = '{}/{}.tar.gz'.format(BASE_URL, model_name) real_model_testcases.append(TestCase( name=test_name, model_name=model_name, url=url, model_dir=None, model=None, data_sets=None, kind='real', rtol=rtol, atol=atol, )) import_recursive(sys.modules[__name__]) return real_model_testcases + _SimpleModelTestCases
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class SingleRelu(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'Relu', ['x'], ['y'], name='test') graph = onnx.helper.make_graph( nodes=[node], name='SingleRelu', inputs=[onnx.helper.make_tensor_value_info( 'x', onnx.TensorProto.FLOAT, [1, 2])], outputs=[onnx.helper.make_tensor_value_info( 'y', onnx.TensorProto.FLOAT, [1, 2])]) model = onnx.helper.make_model(graph, producer_name='backend-test') x = np.random.randn(1, 2).astype(np.float32) y = np.maximum(x, 0) expect(model, inputs=[x], outputs=[y], name='test_single_relu_model')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect from typing import Sequence class SingleSign(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'Sign', ['x'], ['y'], name='test') x = np.array([-1.0, 4.5, -4.5, 3.1, 0.0, 2.4, -5.5]).astype(np.float32) y = np.array([-1.0, 1.0, -1.0, 1.0, 0.0, 1.0, -1.0]).astype(np.float32) graph = onnx.helper.make_graph( nodes=[node], name='SingleSign', inputs=[onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [7])], outputs=[onnx.helper.make_tensor_value_info('y', onnx.TensorProto.FLOAT, [7])]) model = onnx.helper.make_model(graph, producer_name='backend-test') expect(model, inputs=[x], outputs=[y], name='test_sign_model')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect from typing import Sequence class ExpandDynamicShape(Base): @staticmethod def export(): # type: () -> None def make_graph(node, input_shape, shape_shape, output_shape): # type: (onnx.helper.NodeProto, Sequence[int], Sequence[int], Sequence[int]) -> onnx.helper.GraphProto graph = onnx.helper.make_graph( nodes=[node], name='Expand', inputs=[onnx.helper.make_tensor_value_info('X', onnx.TensorProto.FLOAT, input_shape), onnx.helper.make_tensor_value_info('shape', onnx.TensorProto.INT64, shape_shape)], outputs=[onnx.helper.make_tensor_value_info('Y', onnx.TensorProto.FLOAT, output_shape)]) return graph node = onnx.helper.make_node( 'Expand', ['X', 'shape'], ['Y'], name='test') input_shape = [1, 3, 1] x = np.ones(input_shape, dtype=np.float32) #1st testcase shape = np.array([3, 1], dtype=np.int64) y = x * np.ones(shape, dtype=np.float32) graph = make_graph(node, input_shape, shape.shape, y.shape) model = onnx.helper.make_model(graph, producer_name='backend-test') expect(model, inputs=[x, shape], outputs=[y], name="test_expand_shape_model1") #2nd testcase shape = np.array([1, 3], dtype=np.int64) y = x * np.ones(shape, dtype=np.float32) graph = make_graph(node, input_shape, shape.shape, y.shape) model = onnx.helper.make_model(graph, producer_name='backend-test') expect(model, inputs=[x, shape], outputs=[y], name="test_expand_shape_model2") #3rd testcase shape = np.array([3, 1, 3], dtype=np.int64) y = x * np.ones(shape, dtype=np.float32) graph = make_graph(node, input_shape, shape.shape, y.shape) model = onnx.helper.make_model(graph, producer_name='backend-test') expect(model, inputs=[x, shape], outputs=[y], name="test_expand_shape_model3") #4th testcase shape = np.array([3, 3, 1, 3], dtype=np.int64) y = x * np.ones(shape, dtype=np.float32) graph = make_graph(node, input_shape, shape.shape, y.shape) model = onnx.helper.make_model(graph, producer_name='backend-test') expect(model, inputs=[x, shape], outputs=[y], name="test_expand_shape_model4")
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class GlobalMaxPool(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'GlobalMaxPool', inputs=['x'], outputs=['y'], ) x = np.random.randn(1, 3, 5, 5).astype(np.float32) spatial_shape = np.ndim(x) - 2 y = np.max(x, axis=tuple(range(spatial_shape, spatial_shape + 2))) for _ in range(spatial_shape): y = np.expand_dims(y, -1) expect(node, inputs=[x], outputs=[y], name='test_globalmaxpool') @staticmethod def export_globalmaxpool_precomputed(): # type: () -> None node = onnx.helper.make_node( 'GlobalMaxPool', inputs=['x'], outputs=['y'], ) x = np.array([[[ [1, 2, 3], [4, 5, 6], [7, 8, 9], ]]]).astype(np.float32) y = np.array([[[[9]]]]).astype(np.float32) expect(node, inputs=[x], outputs=[y], name='test_globalmaxpool_precomputed')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Tile(Base): @staticmethod def export_tile(): # type: () -> None node = onnx.helper.make_node( 'Tile', inputs=['x', 'y'], outputs=['z'] ) x = np.random.rand(2, 3, 4, 5).astype(np.float32) repeats = np.random.randint(low=1, high=10, size=(np.ndim(x),)).astype(np.int64) z = np.tile(x, repeats) expect(node, inputs=[x, repeats], outputs=[z], name='test_tile') @staticmethod def export_tile_precomputed(): # type: () -> None node = onnx.helper.make_node( 'Tile', inputs=['x', 'y'], outputs=['z'] ) x = np.array([ [0, 1], [2, 3] ], dtype=np.float32) repeats = np.array([2, 2], dtype=np.int64) z = np.array([ [0, 1, 0, 1], [2, 3, 2, 3], [0, 1, 0, 1], [2, 3, 2, 3] ], dtype=np.float32) expect(node, inputs=[x, repeats], outputs=[z], name='test_tile_precomputed')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Hardmax(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'Hardmax', inputs=['x'], outputs=['y'], ) x = np.array([[3, 0, 1, 2], [2, 5, 1, 0], [0, 1, 3, 2], [0, 1, 2, 3]]).astype(np.float32) y = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]).astype(np.float32) expect(node, inputs=[x], outputs=[y], name='test_hardmax_example') # For multiple occurrences of the maximal values, the first occurrence is selected for one-hot output x = np.array([[3, 3, 3, 1]]).astype(np.float32) y = np.array([[1, 0, 0, 0]]).astype(np.float32) expect(node, inputs=[x], outputs=[y], name='test_hardmax_one_hot') @staticmethod def export_hardmax_axis(): # type: () -> None def hardmax_2d(x): # type: (np.ndarray) -> np.ndarray return np.eye(x.shape[1], dtype=x.dtype)[np.argmax(x, axis=1)] x = np.random.randn(3, 4, 5).astype(np.float32) node = onnx.helper.make_node( 'Hardmax', inputs=['x'], outputs=['y'], axis=0, ) y = hardmax_2d(x.reshape(1, 60)).reshape(3, 4, 5) expect(node, inputs=[x], outputs=[y], name='test_hardmax_axis_0') node = onnx.helper.make_node( 'Hardmax', inputs=['x'], outputs=['y'], axis=1, ) y = hardmax_2d(x.reshape(3, 20)).reshape(3, 4, 5) expect(node, inputs=[x], outputs=[y], name='test_hardmax_axis_1') # default axis is 1 node = onnx.helper.make_node( 'Hardmax', inputs=['x'], outputs=['y'], ) expect(node, inputs=[x], outputs=[y], name='test_hardmax_default_axis') node = onnx.helper.make_node( 'Hardmax', inputs=['x'], outputs=['y'], axis=2, ) y = hardmax_2d(x.reshape(12, 5)).reshape(3, 4, 5) expect(node, inputs=[x], outputs=[y], name='test_hardmax_axis_2') node = onnx.helper.make_node( 'Hardmax', inputs=['x'], outputs=['y'], axis=-1, ) y = hardmax_2d(x.reshape(12, 5)).reshape(3, 4, 5) expect(node, inputs=[x], outputs=[y], name='test_hardmax_negative_axis')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect from ..utils import all_numeric_dtypes class Max(Base): @staticmethod def export(): # type: () -> None data_0 = np.array([3, 2, 1]).astype(np.float32) data_1 = np.array([1, 4, 4]).astype(np.float32) data_2 = np.array([2, 5, 3]).astype(np.float32) result = np.array([3, 5, 4]).astype(np.float32) node = onnx.helper.make_node( 'Max', inputs=['data_0', 'data_1', 'data_2'], outputs=['result'], ) expect(node, inputs=[data_0, data_1, data_2], outputs=[result], name='test_max_example') node = onnx.helper.make_node( 'Max', inputs=['data_0'], outputs=['result'], ) expect(node, inputs=[data_0], outputs=[data_0], name='test_max_one_input') result = np.maximum(data_0, data_1) node = onnx.helper.make_node( 'Max', inputs=['data_0', 'data_1'], outputs=['result'], ) expect(node, inputs=[data_0, data_1], outputs=[result], name='test_max_two_inputs') @staticmethod def export_max_all_numeric_types(): # type: () -> None for op_dtype in all_numeric_dtypes: data_0 = np.array([3, 2, 1]).astype(op_dtype) data_1 = np.array([1, 4, 4]).astype(op_dtype) result = np.array([3, 4, 4]).astype(op_dtype) node = onnx.helper.make_node( 'Max', inputs=['data_0', 'data_1'], outputs=['result'], ) expect(node, inputs=[data_0, data_1], outputs=[result], name='test_max_{0}'.format(np.dtype(op_dtype).name))
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class ReduceSum(Base): @staticmethod def export_do_not_keepdims(): # type: () -> None shape = [3, 2, 2] axes = [1] keepdims = 0 node = onnx.helper.make_node( 'ReduceSum', inputs=['data'], outputs=['reduced'], axes=axes, keepdims=keepdims) data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]], dtype=np.float32) reduced = np.sum(data, axis=tuple(axes), keepdims=keepdims == 1) #print(reduced) #[[4., 6.] # [12., 14.] # [20., 22.]] expect(node, inputs=[data], outputs=[reduced], name='test_reduce_sum_do_not_keepdims_example') np.random.seed(0) data = np.random.uniform(-10, 10, shape).astype(np.float32) reduced = np.sum(data, axis=tuple(axes), keepdims=keepdims == 1) expect(node, inputs=[data], outputs=[reduced], name='test_reduce_sum_do_not_keepdims_random') @staticmethod def export_keepdims(): # type: () -> None shape = [3, 2, 2] axes = [1] keepdims = 1 node = onnx.helper.make_node( 'ReduceSum', inputs=['data'], outputs=['reduced'], axes=axes, keepdims=keepdims) data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]], dtype=np.float32) reduced = np.sum(data, axis=tuple(axes), keepdims=keepdims == 1) #print(reduced) #[[[4., 6.]] # [[12., 14.]] # [[20., 22.]]] expect(node, inputs=[data], outputs=[reduced], name='test_reduce_sum_keepdims_example') np.random.seed(0) data = np.random.uniform(-10, 10, shape).astype(np.float32) reduced = np.sum(data, axis=tuple(axes), keepdims=keepdims == 1) expect(node, inputs=[data], outputs=[reduced], name='test_reduce_sum_keepdims_random') @staticmethod def export_default_axes_keepdims(): # type: () -> None shape = [3, 2, 2] axes = None keepdims = 1 node = onnx.helper.make_node( 'ReduceSum', inputs=['data'], outputs=['reduced'], keepdims=keepdims) data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]], dtype=np.float32) reduced = np.sum(data, axis=axes, keepdims=keepdims == 1) #print(reduced) #[[[78.]]] expect(node, inputs=[data], outputs=[reduced], name='test_reduce_sum_default_axes_keepdims_example') np.random.seed(0) data = np.random.uniform(-10, 10, shape).astype(np.float32) reduced = np.sum(data, axis=axes, keepdims=keepdims == 1) expect(node, inputs=[data], outputs=[reduced], name='test_reduce_sum_default_axes_keepdims_random') @staticmethod def export_negative_axes_keepdims(): # type: () -> None shape = [3, 2, 2] axes = [-2] keepdims = 1 node = onnx.helper.make_node( 'ReduceSum', inputs=['data'], outputs=['reduced'], axes=axes, keepdims=keepdims) data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]], dtype=np.float32) reduced = np.sum(data, axis=tuple(axes), keepdims=keepdims == 1) # print(reduced) #[[[4., 6.]] # [[12., 14.]] # [[20., 22.]]] expect(node, inputs=[data], outputs=[reduced], name='test_reduce_sum_negative_axes_keepdims_example') np.random.seed(0) data = np.random.uniform(-10, 10, shape).astype(np.float32) reduced = np.sum(data, axis=tuple(axes), keepdims=keepdims == 1) expect(node, inputs=[data], outputs=[reduced], name='test_reduce_sum_negative_axes_keepdims_random')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class MatMul(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'MatMul', inputs=['a', 'b'], outputs=['c'], ) # 2d a = np.random.randn(3, 4).astype(np.float32) b = np.random.randn(4, 3).astype(np.float32) c = np.matmul(a, b) expect(node, inputs=[a, b], outputs=[c], name='test_matmul_2d') # 3d a = np.random.randn(2, 3, 4).astype(np.float32) b = np.random.randn(2, 4, 3).astype(np.float32) c = np.matmul(a, b) expect(node, inputs=[a, b], outputs=[c], name='test_matmul_3d') # 4d a = np.random.randn(1, 2, 3, 4).astype(np.float32) b = np.random.randn(1, 2, 4, 3).astype(np.float32) c = np.matmul(a, b) expect(node, inputs=[a, b], outputs=[c], name='test_matmul_4d')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Gather(Base): @staticmethod def export_gather_0(): # type: () -> None node = onnx.helper.make_node( 'Gather', inputs=['data', 'indices'], outputs=['y'], axis=0, ) data = np.random.randn(5, 4, 3, 2).astype(np.float32) indices = np.array([0, 1, 3]) y = np.take(data, indices, axis=0) expect(node, inputs=[data, indices.astype(np.int64)], outputs=[y], name='test_gather_0') @staticmethod def export_gather_1(): # type: () -> None node = onnx.helper.make_node( 'Gather', inputs=['data', 'indices'], outputs=['y'], axis=1, ) data = np.random.randn(5, 4, 3, 2).astype(np.float32) indices = np.array([0, 1, 3]) y = np.take(data, indices, axis=1) expect(node, inputs=[data, indices.astype(np.int64)], outputs=[y], name='test_gather_1') @staticmethod def export_gather_negative_indices(): # type: () -> None node = onnx.helper.make_node( 'Gather', inputs=['data', 'indices'], outputs=['y'], axis=0, ) data = np.arange(10).astype(np.float32) indices = np.array([0, -9, -10]) y = np.take(data, indices, axis=0) expect(node, inputs=[data, indices.astype(np.int64)], outputs=[y], name='test_gather_negative_indices') # print(y) # [0. 1. 0.]
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class MeanVarianceNormalization(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'MeanVarianceNormalization', inputs=['X'], outputs=['Y'] ) input_data = np.array([[[[0.8439683], [0.5665144], [0.05836735]], [[0.02916367], [0.12964272], [0.5060197]], [[0.79538304], [0.9411346], [0.9546573]]], [[[0.17730942], [0.46192095], [0.26480448]], [[0.6746842], [0.01665257], [0.62473077]], [[0.9240844], [0.9722341], [0.11965699]]], [[[0.41356155], [0.9129373], [0.59330076]], [[0.81929934], [0.7862604], [0.11799799]], [[0.69248444], [0.54119414], [0.07513223]]]], dtype=np.float32) # Calculate expected output data data_mean = np.mean(input_data, axis=(0, 2, 3), keepdims=1) data_mean_squared = np.power(data_mean, 2) data_squared = np.power(input_data, 2) data_squared_mean = np.mean(data_squared, axis=(0, 2, 3), keepdims=1) std = np.sqrt(data_squared_mean - data_mean_squared) expected_output = (input_data - data_mean) / (std + 1e-9) expect(node, inputs=[input_data], outputs=[expected_output], name='test_mvn')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Asinh(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'Asinh', inputs=['x'], outputs=['y'], ) x = np.array([-1, 0, 1]).astype(np.float32) y = np.arcsinh(x) # expected output [-0.88137358, 0., 0.88137358] expect(node, inputs=[x], outputs=[y], name='test_asinh_example') x = np.random.randn(3, 4, 5).astype(np.float32) y = np.arcsinh(x) expect(node, inputs=[x], outputs=[y], name='test_asinh')
# coding: utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from onnx import TensorProto from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE from ..base import Base from . import expect class Cast(Base): @staticmethod def export(): # type: () -> None shape = (3, 4) test_cases = [ ('FLOAT', 'FLOAT16'), ('FLOAT', 'DOUBLE'), ('FLOAT16', 'FLOAT'), ('FLOAT16', 'DOUBLE'), ('DOUBLE', 'FLOAT'), ('DOUBLE', 'FLOAT16'), ('FLOAT', 'STRING'), ('STRING', 'FLOAT'), ] for from_type, to_type in test_cases: if 'STRING' != from_type: input = np.random.random_sample(shape).astype( TENSOR_TYPE_TO_NP_TYPE[getattr(TensorProto, from_type)]) if ('STRING' == to_type): # Converting input to str, then give it np.object dtype for generating script ss = [] for i in input.flatten(): s = str(i).encode('utf-8') su = s.decode('utf-8') ss.append(su) output = np.array(ss).astype(np.object).reshape([3, 4]) else: output = input.astype(TENSOR_TYPE_TO_NP_TYPE[getattr(TensorProto, to_type)]) else: input = np.array([u'0.47892547', u'0.48033667', u'0.49968487', u'0.81910545', u'0.47031248', u'0.816468', u'0.21087195', u'0.7229038', u'NaN', u'INF', u'+INF', u'-INF'], dtype=np.dtype(np.object)).reshape([3, 4]) output = input.astype(TENSOR_TYPE_TO_NP_TYPE[getattr(TensorProto, to_type)]) node = onnx.helper.make_node( 'Cast', inputs=['input'], outputs=['output'], to=getattr(TensorProto, to_type), ) expect(node, inputs=[input], outputs=[output], name='test_cast_' + from_type + '_to_' + to_type)
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import math import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Det(Base): @staticmethod def export_2d(): # type: () -> None node = onnx.helper.make_node( 'Det', inputs=['x'], outputs=['y'], ) x = np.arange(4).reshape(2, 2).astype(np.float32) y = np.linalg.det(x) # expect -2 expect(node, inputs=[x], outputs=[y], name='test_det_2d') @staticmethod def export_nd(): # type: () -> None node = onnx.helper.make_node( 'Det', inputs=['x'], outputs=['y'], ) x = np.array([[[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]]]).astype(np.float32) y = np.linalg.det(x) # expect array([-2., -3., -8.]) expect(node, inputs=[x], outputs=[y], name='test_det_nd')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class ConvTranspose(Base): @staticmethod def export(): # type: () -> None x = np.array([[[[0., 1., 2.], # (1, 1, 3, 3) [3., 4., 5.], [6., 7., 8.]]]]).astype(np.float32) W = np.array([[[[1., 1., 1.], # (1, 2, 3, 3) [1., 1., 1.], [1., 1., 1.]], [[1., 1., 1.], [1., 1., 1.], [1., 1., 1.]]]]).astype(np.float32) node = onnx.helper.make_node("ConvTranspose", ["X", "W"], ["Y"]) y = np.array([[[[0., 1., 3., 3., 2.], # (1, 2, 5, 5) [3., 8., 15., 12., 7.], [9., 21., 36., 27., 15.], [9., 20., 33., 24., 13.], [6., 13., 21., 15., 8.]], [[0., 1., 3., 3., 2.], [3., 8., 15., 12., 7.], [9., 21., 36., 27., 15.], [9., 20., 33., 24., 13.], [6., 13., 21., 15., 8.]]]]).astype(np.float32) expect(node, inputs=[x, W], outputs=[y], name='test_convtranspose') @staticmethod def export_convtranspose_1d(): # type: () -> None x = np.array([[[0., 1., 2.]]]).astype(np.float32) # (1, 1, 3) W = np.array([[[1., 1., 1.], # (1, 2, 3) [1., 1., 1.]]]).astype(np.float32) node = onnx.helper.make_node("ConvTranspose", ["X", "W"], ["Y"]) y = np.array([[[0., 1., 3., 3., 2.], # (1, 2, 5) [0., 1., 3., 3., 2.]]]).astype(np.float32) expect(node, inputs=[x, W], outputs=[y], name='test_convtranspose_1d') @staticmethod def export_convtranspose_3d(): # type: () -> None x = np.array([[[[[0., 1., 2., 3., 4.], # (1, 1, 3, 4, 5) [5., 6., 7., 8., 9.], [10., 11., 12., 13., 14.], [15., 16., 17., 18., 19.]], [[20., 21., 22., 23., 24.], [25., 26., 27., 28., 29.], [30., 31., 32., 33., 34.], [35., 36., 37., 38., 39.]], [[40., 41., 42., 43., 44.], [45., 46., 47., 48., 49.], [50., 51., 52., 53., 54.], [55., 56., 57., 58., 59.]]]]]).astype(np.float32) W = np.array([[[[[1., 1., 1.], # (1, 2, 3, 3, 3) [1., 1., 1.], [1., 1., 1.]], [[1., 1., 1.], [1., 1., 1.], [1., 1., 1.]], [[1., 1., 1.], [1., 1., 1.], [1., 1., 1.]]], [[[1., 1., 1.], [1., 1., 1.], [1., 1., 1.]], [[1., 1., 1.], [1., 1., 1.], [1., 1., 1.]], [[1., 1., 1.], [1., 1., 1.], [1., 1., 1.]]]]]).astype(np.float32) node = onnx.helper.make_node("ConvTranspose", ["X", "W"], ["Y"]) y = np.array([[[[[0., 1., 3., 6., 9., 7., 4.], # (1, 2, 5, 6, 7) [5., 12., 21., 27., 33., 24., 13.], [15., 33., 54., 63., 72., 51., 27.], [30., 63., 99., 108., 117., 81., 42.], [25., 52., 81., 87., 93., 64., 33.], [15., 31., 48., 51., 54., 37., 19.]], [[20., 42., 66., 72., 78., 54., 28.], [50., 104., 162., 174., 186., 128., 66.], [90., 186., 288., 306., 324., 222., 114.], [120., 246., 378., 396., 414., 282., 144.], [90., 184., 282., 294., 306., 208., 106.], [50., 102., 156., 162., 168., 114., 58.]], [[60., 123., 189., 198., 207., 141., 72.], [135., 276., 423., 441., 459., 312., 159.], [225., 459., 702., 729., 756., 513., 261.], [270., 549., 837., 864., 891., 603., 306.], [195., 396., 603., 621., 639., 432., 219.], [105., 213., 324., 333., 342., 231., 117.]], [[60., 122., 186., 192., 198., 134., 68.], [130., 264., 402., 414., 426., 288., 146.], [210., 426., 648., 666., 684., 462., 234.], [240., 486., 738., 756., 774., 522., 264.], [170., 344., 522., 534., 546., 368., 186.], [90., 182., 276., 282., 288., 194., 98.]], [[40., 81., 123., 126., 129., 87., 44.], [85., 172., 261., 267., 273., 184., 93.], [135., 273., 414., 423., 432., 291., 147.], [150., 303., 459., 468., 477., 321., 162.], [105., 212., 321., 327., 333., 224., 113.], [55., 111., 168., 171., 174., 117., 59.]]], [[[0., 1., 3., 6., 9., 7., 4.], [5., 12., 21., 27., 33., 24., 13.], [15., 33., 54., 63., 72., 51., 27.], [30., 63., 99., 108., 117., 81., 42.], [25., 52., 81., 87., 93., 64., 33.], [15., 31., 48., 51., 54., 37., 19.]], [[20., 42., 66., 72., 78., 54., 28.], [50., 104., 162., 174., 186., 128., 66.], [90., 186., 288., 306., 324., 222., 114.], [120., 246., 378., 396., 414., 282., 144.], [90., 184., 282., 294., 306., 208., 106.], [50., 102., 156., 162., 168., 114., 58.]], [[60., 123., 189., 198., 207., 141., 72.], [135., 276., 423., 441., 459., 312., 159.], [225., 459., 702., 729., 756., 513., 261.], [270., 549., 837., 864., 891., 603., 306.], [195., 396., 603., 621., 639., 432., 219.], [105., 213., 324., 333., 342., 231., 117.]], [[60., 122., 186., 192., 198., 134., 68.], [130., 264., 402., 414., 426., 288., 146.], [210., 426., 648., 666., 684., 462., 234.], [240., 486., 738., 756., 774., 522., 264.], [170., 344., 522., 534., 546., 368., 186.], [90., 182., 276., 282., 288., 194., 98.]], [[40., 81., 123., 126., 129., 87., 44.], [85., 172., 261., 267., 273., 184., 93.], [135., 273., 414., 423., 432., 291., 147.], [150., 303., 459., 468., 477., 321., 162.], [105., 212., 321., 327., 333., 224., 113.], [55., 111., 168., 171., 174., 117., 59.]]]]]).astype(np.float32) expect(node, inputs=[x, W], outputs=[y], name='test_convtranspose_3d') @staticmethod def export_convtranspose_attributes(): # type: () -> None x = np.array([[[[0., 1., 2.], # (1, 1, 3, 3) [3., 4., 5.], [6., 7., 8.]]]]).astype(np.float32) W = np.array([[[[1., 1., 1.], # (1, 2, 3, 3) [1., 1., 1.], [1., 1., 1.]], [[1., 1., 1.], [1., 1., 1.], [1., 1., 1.]]]]).astype(np.float32) y = np.array([[[[0., 0., 1., 1., 3., 2., 2., 0.], # (1, 2, 10, 8) [0., 0., 1., 1., 3., 2., 2., 0.], [0., 0., 1., 1., 3., 2., 2., 0.], [3., 3., 7., 4., 9., 5., 5., 0.], [3., 3., 7., 4., 9., 5., 5., 0.], [3., 3., 7., 4., 9., 5., 5., 0.], [6., 6., 13., 7., 15., 8., 8., 0.], [6., 6., 13., 7., 15., 8., 8., 0.], [6., 6., 13., 7., 15., 8., 8., 0.], [0., 0., 0., 0., 0., 0., 0., 0.]], [[0., 0., 1., 1., 3., 2., 2., 0.], [0., 0., 1., 1., 3., 2., 2., 0.], [0., 0., 1., 1., 3., 2., 2., 0.], [3., 3., 7., 4., 9., 5., 5., 0.], [3., 3., 7., 4., 9., 5., 5., 0.], [3., 3., 7., 4., 9., 5., 5., 0.], [6., 6., 13., 7., 15., 8., 8., 0.], [6., 6., 13., 7., 15., 8., 8., 0.], [6., 6., 13., 7., 15., 8., 8., 0.], [0., 0., 0., 0., 0., 0., 0., 0.]]]]).astype(np.float32) node = onnx.helper.make_node("ConvTranspose", ["X", "W"], ["Y"], strides=[3, 2], output_shape=[10, 8]) expect(node, inputs=[x, W], outputs=[y], name='test_convtranspose_output_shape') node = onnx.helper.make_node("ConvTranspose", ["X", "W"], ["Y"], strides=[3, 2], output_padding=[1, 1]) expect(node, inputs=[x, W], outputs=[y], name='test_convtranspose_pad') node = onnx.helper.make_node( 'ConvTranspose', ['X', 'W'], ['Y'], name='test', strides=[3, 2], output_shape=[10, 8], kernel_shape=[3, 3], output_padding=[1, 1] ) expect(node, inputs=[x, W], outputs=[y], name='test_convtranspose_kernel_shape') @staticmethod def export_convtranspose_pads(): # type: () -> None x = np.array([[[[0., 1., 2.], # (1, 1, 3, 3) [3., 4., 5.], [6., 7., 8.]]]]).astype(np.float32) W = np.array([[[[1., 1., 1.], # (1, 2, 3, 3) [1., 1., 1.], [1., 1., 1.]], [[1., 1., 1.], [1., 1., 1.], [1., 1., 1.]]]]).astype(np.float32) node = onnx.helper.make_node("ConvTranspose", ["X", "W"], ["Y"], strides=[3, 2], pads=[1, 2, 1, 2]) y = np.array([[[[1., 1., 3.], # (1, 2, 7, 3) [1., 1., 3.], [7., 4., 9.], [7., 4., 9.], [7., 4., 9.], [13., 7., 15.], [13., 7., 15.]], [[1., 1., 3.], [1., 1., 3.], [7., 4., 9.], [7., 4., 9.], [7., 4., 9.], [13., 7., 15.], [13., 7., 15.]]]]).astype(np.float32) expect(node, inputs=[x, W], outputs=[y], name='test_convtranspose_pads') @staticmethod def export_convtranspose_dilations(): # type: () -> None x = np.array([[[[3., 8., 1.], # (1, 1, 3, 3) [9., 5., 7.], [3., 2., 6.]]]]).astype(np.float32) W = np.array([[[[7., 2.], # (1, 1, 2, 2) [1., 9.]]]]).astype(np.float32) node = onnx.helper.make_node("ConvTranspose", ["X", "W"], ["Y"], dilations=[2, 2]) y = np.array([[[[21., 56., 13., 16., 2.], # [1, 1, 5, 5] [63., 35., 67., 10., 14.], [24., 22., 76., 76., 21.], [9., 5., 88., 45., 63.], [3., 2., 33., 18., 54.]]]]).astype(np.float32) expect(node, inputs=[x, W], outputs=[y], name='test_convtranspose_dilations')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect def pow(x, y): # type: ignore z = np.power(x, y).astype(x.dtype) return z class Pow(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'Pow', inputs=['x', 'y'], outputs=['z'], ) x = np.array([1, 2, 3]).astype(np.float32) y = np.array([4, 5, 6]).astype(np.float32) z = pow(x, y) # expected output [1., 32., 729.] expect(node, inputs=[x, y], outputs=[z], name='test_pow_example') x = np.arange(60).reshape(3, 4, 5).astype(np.float32) y = np.random.randn(3, 4, 5).astype(np.float32) z = pow(x, y) expect(node, inputs=[x, y], outputs=[z], name='test_pow') @staticmethod def export_pow_broadcast(): # type: () -> None node = onnx.helper.make_node( 'Pow', inputs=['x', 'y'], outputs=['z'], ) x = np.array([1, 2, 3]).astype(np.float32) y = np.array(2).astype(np.float32) z = pow(x, y) # expected output [1., 4., 9.] expect(node, inputs=[x, y], outputs=[z], name='test_pow_bcast_scalar') node = onnx.helper.make_node( 'Pow', inputs=['x', 'y'], outputs=['z'], ) x = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32) y = np.array([1, 2, 3]).astype(np.float32) # expected output [[1, 4, 27], [4, 25, 216]] z = pow(x, y) expect(node, inputs=[x, y], outputs=[z], name='test_pow_bcast_array') @staticmethod def export_types(): # type: () -> None node = onnx.helper.make_node( 'Pow', inputs=['x', 'y'], outputs=['z'], ) x = np.array([1, 2, 3]).astype(np.float32) y = np.array([4, 5, 6]).astype(np.int64) z = pow(x, y) # expected output [1., 32., 729.] expect(node, inputs=[x, y], outputs=[z], name='test_pow_types_float32_int64') x = np.array([1, 2, 3]).astype(np.int64) y = np.array([4, 5, 6]).astype(np.float32) z = pow(x, y) # expected output [1, 32, 729] expect(node, inputs=[x, y], outputs=[z], name='test_pow_types_int64_float32') x = np.array([1, 2, 3]).astype(np.float32) y = np.array([4, 5, 6]).astype(np.int32) z = pow(x, y) # expected output [1., 32., 729.] expect(node, inputs=[x, y], outputs=[z], name='test_pow_types_float32_int32') x = np.array([1, 2, 3]).astype(np.int32) y = np.array([4, 5, 6]).astype(np.float32) z = pow(x, y) # expected output [1, 32, 729] expect(node, inputs=[x, y], outputs=[z], name='test_pow_types_int32_float32') x = np.array([1, 2, 3]).astype(np.float32) y = np.array([4, 5, 6]).astype(np.uint64) z = pow(x, y) # expected output [1., 32., 729.] expect(node, inputs=[x, y], outputs=[z], name='test_pow_types_float32_uint64') x = np.array([1, 2, 3]).astype(np.float32) y = np.array([4, 5, 6]).astype(np.uint32) z = pow(x, y) # expected output [1., 32., 729.] expect(node, inputs=[x, y], outputs=[z], name='test_pow_types_float32_uint32') x = np.array([1, 2, 3]).astype(np.int64) y = np.array([4, 5, 6]).astype(np.int64) z = pow(x, y) # expected output [1, 32, 729] expect(node, inputs=[x, y], outputs=[z], name='test_pow_types_int64_int64') x = np.array([1, 2, 3]).astype(np.int32) y = np.array([4, 5, 6]).astype(np.int32) z = pow(x, y) # expected output [1, 32, 729] expect(node, inputs=[x, y], outputs=[z], name='test_pow_types_int32_int32')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Acosh(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'Acosh', inputs=['x'], outputs=['y'], ) x = np.array([10, np.e, 1]).astype(np.float32) y = np.arccosh(x) # expected output [2.99322295, 1.65745449, 0.] expect(node, inputs=[x], outputs=[y], name='test_acosh_example') x = np.random.uniform(1.0, 10.0, (3, 4, 5)).astype(np.float32) y = np.arccosh(x) expect(node, inputs=[x], outputs=[y], name='test_acosh')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class InstanceNormalization(Base): @staticmethod def export(): # type: () -> None def _instancenorm_test_mode(x, s, bias, epsilon=1e-5): # type: ignore dims_x = len(x.shape) axis = tuple(range(2, dims_x)) mean = np.mean(x, axis=axis, keepdims=True) var = np.var(x, axis=axis, keepdims=True) dim_ones = (1,) * (dims_x - 2) s = s.reshape(-1, *dim_ones) bias = bias.reshape(-1, *dim_ones) return s * (x - mean) / np.sqrt(var + epsilon) + bias # input size: (1, 2, 1, 3) x = np.array([[[[-1, 0, 1]], [[2, 3, 4]]]]).astype(np.float32) s = np.array([1.0, 1.5]).astype(np.float32) bias = np.array([0, 1]).astype(np.float32) y = _instancenorm_test_mode(x, s, bias).astype(np.float32) node = onnx.helper.make_node( 'InstanceNormalization', inputs=['x', 's', 'bias'], outputs=['y'], ) # output size: (1, 2, 1, 3) expect(node, inputs=[x, s, bias], outputs=[y], name='test_instancenorm_example') # input size: (2, 3, 4, 5) x = np.random.randn(2, 3, 4, 5).astype(np.float32) s = np.random.randn(3).astype(np.float32) bias = np.random.randn(3).astype(np.float32) epsilon = 1e-2 y = _instancenorm_test_mode(x, s, bias, epsilon).astype(np.float32) node = onnx.helper.make_node( 'InstanceNormalization', inputs=['x', 's', 'bias'], outputs=['y'], epsilon=epsilon, ) # output size: (2, 3, 4, 5) expect(node, inputs=[x, s, bias], outputs=[y], name='test_instancenorm_epsilon')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class ThresholdedRelu(Base): @staticmethod def export(): # type: () -> None alpha = 2.0 node = onnx.helper.make_node( 'ThresholdedRelu', inputs=['x'], outputs=['y'], alpha=alpha ) x = np.array([-1.5, 0., 1.2, 2.0, 2.2]).astype(np.float32) y = np.clip(x, alpha, np.inf) # expected output [0., 0., 0., 0., 2.2] y[y == alpha] = 0 expect(node, inputs=[x], outputs=[y], name='test_thresholdedrelu_example') x = np.random.randn(3, 4, 5).astype(np.float32) y = np.clip(x, alpha, np.inf) y[y == alpha] = 0 expect(node, inputs=[x], outputs=[y], name='test_thresholdedrelu') @staticmethod def export_default(): # type: () -> None default_alpha = 1.0 node = onnx.helper.make_node( 'ThresholdedRelu', inputs=['x'], outputs=['y'] ) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.clip(x, default_alpha, np.inf) y[y == default_alpha] = 0 expect(node, inputs=[x], outputs=[y], name='test_thresholdedrelu_default')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Neg(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'Neg', inputs=['x'], outputs=['y'], ) x = np.array([-4, 2]).astype(np.float32) y = np.negative(x) # expected output [4., -2.], expect(node, inputs=[x], outputs=[y], name='test_neg_example') x = np.random.randn(3, 4, 5).astype(np.float32) y = np.negative(x) expect(node, inputs=[x], outputs=[y], name='test_neg')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Tanh(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'Tanh', inputs=['x'], outputs=['y'], ) x = np.array([-1, 0, 1]).astype(np.float32) y = np.tanh(x) # expected output [-0.76159418, 0., 0.76159418] expect(node, inputs=[x], outputs=[y], name='test_tanh_example') x = np.random.randn(3, 4, 5).astype(np.float32) y = np.tanh(x) expect(node, inputs=[x], outputs=[y], name='test_tanh')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class IsInf(Base): @staticmethod def export_infinity(): # type: () -> None node = onnx.helper.make_node('IsInf', inputs=['x'], outputs=['y'], ) x = np.array([-1.2, np.nan, np.inf, 2.8, np.NINF, np.inf], dtype=np.float32) y = np.isinf(x) expect(node, inputs=[x], outputs=[y], name='test_isinf') @staticmethod def export_positive_infinity_only(): # type: () -> None node = onnx.helper.make_node('IsInf', inputs=['x'], outputs=['y'], detect_negative=0 ) x = np.array([-1.7, np.nan, np.inf, 3.6, np.NINF, np.inf], dtype=np.float32) y = np.isposinf(x) expect(node, inputs=[x], outputs=[y], name='test_isinf_positive') @staticmethod def export_negative_infinity_only(): # type: () -> None node = onnx.helper.make_node('IsInf', inputs=['x'], outputs=['y'], detect_positive=0 ) x = np.array([-1.7, np.nan, np.inf, -3.6, np.NINF, np.inf], dtype=np.float32) y = np.isneginf(x) expect(node, inputs=[x], outputs=[y], name='test_isinf_negative')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Flatten(Base): @staticmethod def export(): # type: () -> None shape = (2, 3, 4, 5) a = np.random.random_sample(shape).astype(np.float32) for i in range(len(shape)): node = onnx.helper.make_node( 'Flatten', inputs=['a'], outputs=['b'], axis=i, ) new_shape = (1, -1) if i == 0 else (np.prod(shape[0:i]).astype(int), -1) b = np.reshape(a, new_shape) expect(node, inputs=[a], outputs=[b], name='test_flatten_axis' + str(i)) @staticmethod def export_flatten_with_default_axis(): # type: () -> None node = onnx.helper.make_node( 'Flatten', inputs=['a'], outputs=['b'], # Default value for axis: axis=1 ) shape = (5, 4, 3, 2) a = np.random.random_sample(shape).astype(np.float32) new_shape = (5, 24) b = np.reshape(a, new_shape) expect(node, inputs=[a], outputs=[b], name='test_flatten_default_axis') @staticmethod def export_flatten_negative_axis(): # type: () -> None shape = (2, 3, 4, 5) a = np.random.random_sample(shape).astype(np.float32) for i in range(-len(shape), 0): node = onnx.helper.make_node( 'Flatten', inputs=['a'], outputs=['b'], axis=i, ) new_shape = (np.prod(shape[0:i]).astype(int), -1) b = np.reshape(a, new_shape) expect(node, inputs=[a], outputs=[b], name='test_flatten_negative_axis' + str(abs(i)))
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Equal(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'Equal', inputs=['x', 'y'], outputs=['z'], ) x = (np.random.randn(3, 4, 5) * 10).astype(np.int32) y = (np.random.randn(3, 4, 5) * 10).astype(np.int32) z = np.equal(x, y) expect(node, inputs=[x, y], outputs=[z], name='test_equal') @staticmethod def export_equal_broadcast(): # type: () -> None node = onnx.helper.make_node( 'Equal', inputs=['x', 'y'], outputs=['z'], ) x = (np.random.randn(3, 4, 5) * 10).astype(np.int32) y = (np.random.randn(5) * 10).astype(np.int32) z = np.equal(x, y) expect(node, inputs=[x, y], outputs=[z], name='test_equal_bcast')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Softsign(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'Softsign', inputs=['x'], outputs=['y'], ) x = np.array([-1, 0, 1]).astype(np.float32) y = np.array([-0.5, 0, 0.5]).astype(np.float32) expect(node, inputs=[x], outputs=[y], name='test_softsign_example') x = np.random.randn(3, 4, 5).astype(np.float32) y = x / (1 + np.abs(x)) expect(node, inputs=[x], outputs=[y], name='test_softsign')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Shrink(Base): @staticmethod def export_hard_shrink(): # type: () -> None node = onnx.helper.make_node( 'Shrink', inputs=['x'], outputs=['y'], lambd=1.5, ) X = np.arange(-2.0, 2.1, dtype=np.float32) Y = np.array([-2, 0, 0, 0, 2], dtype=np.float32) expect(node, inputs=[X], outputs=[Y], name='test_shrink_hard') @staticmethod def export_soft_shrink(): # type: () -> None node = onnx.helper.make_node( 'Shrink', inputs=['x'], outputs=['y'], lambd=1.5, bias=1.5, ) X = np.arange(-2.0, 2.1, dtype=np.float32) Y = np.array([-0.5, 0, 0, 0, 0.5], dtype=np.float32) expect(node, inputs=[X], outputs=[Y], name='test_shrink_soft')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Add(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'Add', inputs=['x', 'y'], outputs=['sum'], ) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.random.randn(3, 4, 5).astype(np.float32) expect(node, inputs=[x, y], outputs=[x + y], name='test_add') @staticmethod def export_add_broadcast(): # type: () -> None node = onnx.helper.make_node( 'Add', inputs=['x', 'y'], outputs=['sum'], ) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.random.randn(5).astype(np.float32) expect(node, inputs=[x, y], outputs=[x + y], name='test_add_bcast')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class NonZero(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'NonZero', inputs=['condition'], outputs=['result'], ) condition = np.array([[1, 0], [1, 1]], dtype=np.bool) result = np.array((np.nonzero(condition))) # expected output [[0, 1, 1], [0, 0, 1]] expect(node, inputs=[condition], outputs=[result], name='test_nonzero_example')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class BatchNormalization(Base): @staticmethod def export(): # type: () -> None def _batchnorm_test_mode(x, s, bias, mean, var, epsilon=1e-5): # type: ignore dims_x = len(x.shape) dim_ones = (1,) * (dims_x - 2) s = s.reshape(-1, *dim_ones) bias = bias.reshape(-1, *dim_ones) mean = mean.reshape(-1, *dim_ones) var = var.reshape(-1, *dim_ones) return s * (x - mean) / np.sqrt(var + epsilon) + bias # input size: (1, 2, 1, 3) x = np.array([[[[-1, 0, 1]], [[2, 3, 4]]]]).astype(np.float32) s = np.array([1.0, 1.5]).astype(np.float32) bias = np.array([0, 1]).astype(np.float32) mean = np.array([0, 3]).astype(np.float32) var = np.array([1, 1.5]).astype(np.float32) y = _batchnorm_test_mode(x, s, bias, mean, var).astype(np.float32) node = onnx.helper.make_node( 'BatchNormalization', inputs=['x', 's', 'bias', 'mean', 'var'], outputs=['y'], ) # output size: (1, 2, 1, 3) expect(node, inputs=[x, s, bias, mean, var], outputs=[y], name='test_batchnorm_example') # input size: (2, 3, 4, 5) x = np.random.randn(2, 3, 4, 5).astype(np.float32) s = np.random.randn(3).astype(np.float32) bias = np.random.randn(3).astype(np.float32) mean = np.random.randn(3).astype(np.float32) var = np.random.rand(3).astype(np.float32) epsilon = 1e-2 y = _batchnorm_test_mode(x, s, bias, mean, var, epsilon).astype(np.float32) node = onnx.helper.make_node( 'BatchNormalization', inputs=['x', 's', 'bias', 'mean', 'var'], outputs=['y'], epsilon=epsilon, ) # output size: (2, 3, 4, 5) expect(node, inputs=[x, s, bias, mean, var], outputs=[y], name='test_batchnorm_epsilon')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class IsNaN(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'IsNaN', inputs=['x'], outputs=['y'], ) x = np.array([3.0, np.nan, 4.0, np.nan], dtype=np.float32) y = np.isnan(x) expect(node, inputs=[x], outputs=[y], name='test_isnan')
# coding: utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class StringNormalizer(Base): @staticmethod def export_nostopwords_nochangecase(): # type: () -> None input = np.array([u'monday', u'tuesday']).astype(np.object) output = input # No stopwords. This is a NOOP node = onnx.helper.make_node( 'StringNormalizer', inputs=['x'], outputs=['y'], is_case_sensitive=1, ) expect(node, inputs=[input], outputs=[output], name='test_strnormalizer_nostopwords_nochangecase') @staticmethod def export_monday_casesensintive_nochangecase(): # type: () -> None input = np.array([u'monday', u'tuesday', u'wednesday', u'thursday']).astype(np.object) output = np.array([u'tuesday', u'wednesday', u'thursday']).astype(np.object) stopwords = [u'monday'] node = onnx.helper.make_node( 'StringNormalizer', inputs=['x'], outputs=['y'], is_case_sensitive=1, stopwords=stopwords ) expect(node, inputs=[input], outputs=[output], name='test_strnormalizer_export_monday_casesensintive_nochangecase') @staticmethod def export_monday_casesensintive_lower(): # type: () -> None input = np.array([u'monday', u'tuesday', u'wednesday', u'thursday']).astype(np.object) output = np.array([u'tuesday', u'wednesday', u'thursday']).astype(np.object) stopwords = [u'monday'] node = onnx.helper.make_node( 'StringNormalizer', inputs=['x'], outputs=['y'], case_change_action='LOWER', is_case_sensitive=1, stopwords=stopwords ) expect(node, inputs=[input], outputs=[output], name='test_strnormalizer_export_monday_casesensintive_lower') @staticmethod def export_monday_casesensintive_upper(): # type: () -> None input = np.array([u'monday', u'tuesday', u'wednesday', u'thursday']).astype(np.object) output = np.array([u'TUESDAY', u'WEDNESDAY', u'THURSDAY']).astype(np.object) stopwords = [u'monday'] node = onnx.helper.make_node( 'StringNormalizer', inputs=['x'], outputs=['y'], case_change_action='UPPER', is_case_sensitive=1, stopwords=stopwords ) expect(node, inputs=[input], outputs=[output], name='test_strnormalizer_export_monday_casesensintive_upper') @staticmethod def export_monday_empty_output(): # type: () -> None input = np.array([u'monday', u'monday']).astype(np.object) output = np.array([u'']).astype(np.object) stopwords = [u'monday'] node = onnx.helper.make_node( 'StringNormalizer', inputs=['x'], outputs=['y'], case_change_action='UPPER', is_case_sensitive=1, stopwords=stopwords ) expect(node, inputs=[input], outputs=[output], name='test_strnormalizer_export_monday_empty_output') @staticmethod def export_monday_insensintive_upper_twodim(): # type: () -> None input = np.array([u'Monday', u'tuesday', u'wednesday', u'Monday', u'tuesday', u'wednesday']).astype(np.object).reshape([1, 6]) # It does upper case cecedille, accented E # and german umlaut but fails # with german eszett output = np.array([u'TUESDAY', u'WEDNESDAY', u'TUESDAY', u'WEDNESDAY']).astype(np.object).reshape([1, 4]) stopwords = [u'monday'] node = onnx.helper.make_node( 'StringNormalizer', inputs=['x'], outputs=['y'], case_change_action='UPPER', stopwords=stopwords ) expect(node, inputs=[input], outputs=[output], name='test_strnormalizer_export_monday_insensintive_upper_twodim')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Slice(Base): @staticmethod def export_slice(): # type: () -> None node = onnx.helper.make_node( 'Slice', inputs=['x', 'starts', 'ends', 'axes', 'steps'], outputs=['y'], ) x = np.random.randn(20, 10, 5).astype(np.float32) y = x[0:3, 0:10] starts = np.array([0, 0], dtype=np.int64) ends = np.array([3, 10], dtype=np.int64) axes = np.array([0, 1], dtype=np.int64) steps = np.array([1, 1], dtype=np.int64) expect(node, inputs=[x, starts, ends, axes, steps], outputs=[y], name='test_slice') @staticmethod def export_slice_neg(): # type: () -> None node = onnx.helper.make_node( 'Slice', inputs=['x', 'starts', 'ends', 'axes', 'steps'], outputs=['y'], ) x = np.random.randn(20, 10, 5).astype(np.float32) starts = np.array([0], dtype=np.int64) ends = np.array([-1], dtype=np.int64) axes = np.array([1], dtype=np.int64) steps = np.array([1], dtype=np.int64) y = x[:, 0:-1] expect(node, inputs=[x, starts, ends, axes, steps], outputs=[y], name='test_slice_neg') @staticmethod def export_slice_start_out_of_bounds(): # type: () -> None node = onnx.helper.make_node( 'Slice', inputs=['x', 'starts', 'ends', 'axes', 'steps'], outputs=['y'], ) x = np.random.randn(20, 10, 5).astype(np.float32) starts = np.array([1000], dtype=np.int64) ends = np.array([1000], dtype=np.int64) axes = np.array([1], dtype=np.int64) steps = np.array([1], dtype=np.int64) y = x[:, 1000:1000] expect(node, inputs=[x, starts, ends, axes, steps], outputs=[y], name='test_slice_start_out_of_bounds') @staticmethod def export_slice_end_out_of_bounds(): # type: () -> None node = onnx.helper.make_node( 'Slice', inputs=['x', 'starts', 'ends', 'axes', 'steps'], outputs=['y'], ) x = np.random.randn(20, 10, 5).astype(np.float32) starts = np.array([1], dtype=np.int64) ends = np.array([1000], dtype=np.int64) axes = np.array([1], dtype=np.int64) steps = np.array([1], dtype=np.int64) y = x[:, 1:1000] expect(node, inputs=[x, starts, ends, axes, steps], outputs=[y], name='test_slice_end_out_of_bounds') @staticmethod def export_slice_default_axes(): # type: () -> None node = onnx.helper.make_node( 'Slice', inputs=['x', 'starts', 'ends'], outputs=['y'], ) x = np.random.randn(20, 10, 5).astype(np.float32) starts = np.array([0, 0, 3], dtype=np.int64) ends = np.array([20, 10, 4], dtype=np.int64) y = x[:, :, 3:4] expect(node, inputs=[x, starts, ends], outputs=[y], name='test_slice_default_axes') @staticmethod def export_slice_default_steps(): # type: () -> None node = onnx.helper.make_node( 'Slice', inputs=['x', 'starts', 'ends', 'axes'], outputs=['y'], ) x = np.random.randn(20, 10, 5).astype(np.float32) starts = np.array([0, 0, 3], dtype=np.int64) ends = np.array([20, 10, 4], dtype=np.int64) axes = np.array([0, 1, 2], dtype=np.int64) y = x[:, :, 3:4] expect(node, inputs=[x, starts, ends, axes], outputs=[y], name='test_slice_default_steps') @staticmethod def export_slice_neg_steps(): # type: () -> None node = onnx.helper.make_node( 'Slice', inputs=['x', 'starts', 'ends', 'axes', 'steps'], outputs=['y'], ) x = np.random.randn(20, 10, 5).astype(np.float32) starts = np.array([20, 10, 4], dtype=np.int64) ends = np.array([0, 0, 1], dtype=np.int64) axes = np.array([0, 1, 2], dtype=np.int64) steps = np.array([-1, -3, -2]) y = x[20:0:-1, 10:0:-3, 4:1:-2] expect(node, inputs=[x, starts, ends, axes, steps], outputs=[y], name='test_slice_neg_steps') @staticmethod def export_slice_negative_axes(): # type: () -> None node = onnx.helper.make_node( 'Slice', inputs=['x', 'starts', 'ends', 'axes'], outputs=['y'], ) x = np.random.randn(20, 10, 5).astype(np.float32) starts = np.array([0, 0, 3], dtype=np.int64) ends = np.array([20, 10, 4], dtype=np.int64) axes = np.array([0, -2, -1], dtype=np.int64) y = x[:, :, 3:4] expect(node, inputs=[x, starts, ends, axes], outputs=[y], name='test_slice_negative_axes')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Sqrt(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'Sqrt', inputs=['x'], outputs=['y'], ) x = np.array([1, 4, 9]).astype(np.float32) y = np.sqrt(x) # expected output [1., 2., 3.] expect(node, inputs=[x], outputs=[y], name='test_sqrt_example') x = np.abs(np.random.randn(3, 4, 5).astype(np.float32)) y = np.sqrt(x) expect(node, inputs=[x], outputs=[y], name='test_sqrt')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Less(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'LessOrEqual', inputs=['x', 'y'], outputs=['less_equal'], ) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.random.randn(3, 4, 5).astype(np.float32) z = np.less_equal(x, y) expect(node, inputs=[x, y], outputs=[z], name='test_less_equal') @staticmethod def export_less_broadcast(): # type: () -> None node = onnx.helper.make_node( 'LessOrEqual', inputs=['x', 'y'], outputs=['less_equal'], ) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.random.randn(5).astype(np.float32) z = np.less_equal(x, y) expect(node, inputs=[x, y], outputs=[z], name='test_less_equal_bcast')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Div(Base): @staticmethod def export(): # type: () -> None node = onnx.helper.make_node( 'Div', inputs=['x', 'y'], outputs=['z'], ) x = np.array([3, 4]).astype(np.float32) y = np.array([1, 2]).astype(np.float32) z = x / y # expected output [3., 2.] expect(node, inputs=[x, y], outputs=[z], name='test_div_example') x = np.random.randn(3, 4, 5).astype(np.float32) y = np.random.rand(3, 4, 5).astype(np.float32) + 1.0 z = x / y expect(node, inputs=[x, y], outputs=[z], name='test_div') @staticmethod def export_div_broadcast(): # type: () -> None node = onnx.helper.make_node( 'Div', inputs=['x', 'y'], outputs=['z'], ) x = np.random.randn(3, 4, 5).astype(np.float32) y = np.random.rand(5).astype(np.float32) + 1.0 z = x / y expect(node, inputs=[x, y], outputs=[z], name='test_div_bcast')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class ReduceLogSum(Base): @staticmethod def export_nokeepdims(): # type: () -> None node = onnx.helper.make_node( 'ReduceLogSum', inputs=['data'], outputs=["reduced"], axes=[2, 1], keepdims=0 ) data = np.random.ranf([3, 4, 5]).astype(np.float32) reduced = np.log(np.sum(data, axis=(2, 1), keepdims=False)) expect(node, inputs=[data], outputs=[reduced], name='test_reduce_log_sum_desc_axes') node = onnx.helper.make_node( 'ReduceLogSum', inputs=['data'], outputs=["reduced"], axes=[0, 1], keepdims=0 ) data = np.random.ranf([3, 4, 5]).astype(np.float32) reduced = np.log(np.sum(data, axis=(0, 1), keepdims=False)) expect(node, inputs=[data], outputs=[reduced], name='test_reduce_log_sum_asc_axes') @staticmethod def export_keepdims(): # type: () -> None node = onnx.helper.make_node( 'ReduceLogSum', inputs=['data'], outputs=["reduced"] ) data = np.random.ranf([3, 4, 5]).astype(np.float32) reduced = np.log(np.sum(data, keepdims=True)) expect(node, inputs=[data], outputs=[reduced], name='test_reduce_log_sum_default') @staticmethod def export_negative_axes_keepdims(): # type: () -> None node = onnx.helper.make_node( 'ReduceLogSum', inputs=['data'], outputs=["reduced"], axes=[-2] ) data = np.random.ranf([3, 4, 5]).astype(np.float32) reduced = np.log(np.sum(data, axis=(-2), keepdims=True)) # print(reduced) expect(node, inputs=[data], outputs=[reduced], name='test_reduce_log_sum_negative_axes')
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Range(Base): @staticmethod def export_range_float_type_positive_delta(): # type: () -> None node = onnx.helper.make_node( 'Range', inputs=['start', 'limit', 'delta'], outputs=['output'], ) start = np.float32(1) limit = np.float32(5) delta = np.float32(2) output = np.arange(start, limit, delta, dtype=np.float32) # expected output [1.0, 3.0] expect(node, inputs=[start, limit, delta], outputs=[output], name='test_range_float_type_positive_delta') @staticmethod def export_range_int32_type_negative_delta(): # type: () -> None node = onnx.helper.make_node( 'Range', inputs=['start', 'limit', 'delta'], outputs=['output'], ) start = np.int32(10) limit = np.int32(6) delta = np.int32(-3) output = np.arange(start, limit, delta, dtype=np.int32) # expected output [10, 7] expect(node, inputs=[start, limit, delta], outputs=[output], name='test_range_int32_type_negative_delta')